

Practical
Ext JS Projects
with Gears

Frank W. Zammetti

Practical Ext JS Projects with Gears

Copyright © 2009 by Frank W. Zammetti

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1924-8

ISBN-13 (electronic): 978-1-4302-1925-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was writ-
ten without endorsement from Sun Microsystems, Inc.

Lead Editor: Steve Anglin
Development Editor: Douglas Pundick
Technical Reviewer: Herman van Rosmalen
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto
Copy Editor: Liz Welch
Associate Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor: Linda Weidemann, Wolf Creek Publishing Services
Proofreader: Kim Burton
Indexer: Brenda Miller
Artist: Anthony Volpe
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail , or
visit .

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail , or visit

.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Spe-
cial Bulk Sales–eBook Licensing web page at .

The information in this book is distributed on an “as is” basis, without warranty. Although every pre-
caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at . You may need to answer
questions pertaining to this book in order to successfully download the code.

I’m going to do something unusual for me here and write a serious
dedication. This book is dedicated to the memory of Michael A. Baker.

Mike, the lead singer for a band named Shadow Gallery, passed away in
October 2008 at the far-too-young age of 45. The music of Shadow Gallery

has always been a huge inspiration for me, as a musician myself, as a
writer, and simply as a human being who appreciates art that touches you.

Mike’s voice was the emotional anchor of the group’s music, an integral
part of the experience. I never had the privilege of meeting Mike in person,

but through his work I feel like I knew him extremely well, and I don’t think
I could come up with a greater compliment for any artist. Rest in peace, Mike,
and I think I can safely say, on behalf of all Shadow Gallery fans, thank you.

v

Contents at a Glance

About the Author . xiii

About the Technical Reviewer . xv

About the Illustrator . xvii

Acknowledgments . xix

Introduction . xxi

PART 1 The Preliminaries
CHAPTER 1 Introducing Web Development with Ext JS . 3

CHAPTER 2 Widgets and Advanced Ext JS . 57

PART 2 The Projects
CHAPTER 3 Ext JS for a Busy Lifestyle: OrganizerExt . 131

CHAPTER 4 Making Project Management Cool: TimekeeperExt 195

CHAPTER 5 A Place for Your Stuff: Code Cabinet Ext . 259

CHAPTER 6 When the Yellow Pages Just Isn’t Cool Enough:
Local Business Search . 309

CHAPTER 7 Your Dad Had a Workbench, Now So Do You: SQL Workbench 371

CHAPTER 8 All Work and No Play: Dueling Cards . 437

CHAPTER 9 Managing Your Finances: Finance Master . 497

INDEX . 559

vii

Contents

About the Author . xiii

About the Technical Reviewer . xv

About the Illustrator . xvii

Acknowledgments . xix

Introduction . xxi

PART 1 The Preliminaries

CHAPTER 1 Introducing Web Development with Ext JS 3

The Evolution of the Web: Web Sites vs. Web Applications 3

The Rise of the Cool: Rich Internet Applications . 6

Enter Ajax: The Driving Force behind RIAs . 9

Ajax (for Those Living under a Rock the Past 2–3 Years) 9

The Benefits of Ajax (and by Extension, RIAs) 10

The Evolution of Web Development . 13

Choice Is Good: Toolkits Make It a Breeze . 14

Enter Ext JS: The Best of the Bunch . 16

Fisher Price™ My First Ext JS Application . 19

Ext JS’s High-Level Organizational Structure . 20

Global-Scope Classes . 21

The Ext Namespace. 34

Ext.Ajax . 34

Ext.DomHelper . 36

Ext.DomQuery . 39

Ext.Updater . 43

CONTENTSviii

The Ext.util Namespace . 44

Ext.util.CSS . 44

Ext.util.DelayedTask . 45

Ext.util.Format . 46

Ext.util.JSON . 49

Ext.util.MixedCollection . 50

Ext.util.TaskRunner . 53

Ext.util.TextMetrics . 54

But . . .but . . .What About the Widgets? . 55

One Last Tangential Thing: Ext Core . 55

Summary . 56

CHAPTER 2 Widgets and Advanced Ext JS . 57

Ext JS Widgets: An Overview . 57

The Hierarchy of Widgets . 58

The Basics of Widget Usage . 60

Layout and Containers in Ext JS . 62

Form Widgets . 75

Menus and Toolbars (Oh My!) . 87

Trees in Ext JS . 90

Grids in Ext JS . 93

The Other Widgets . 95

Working with Data in Ext JS. 101

The Template and XTemplate Classes . 105

Drag and Drop . 109

The “State” of Things . 116

For Your Date in the Boardroom: Ext JS Charting 118

Plug-ins . 122

These Are the Gears That Power the Tubes!. 123

LocalServer . 124

WorkerPool . 124

Database . 124

Summary . 127

CONTENTS ix

PART 2 The Projects

CHAPTER 3 Ext JS for a Busy Lifestyle: OrganizerExt 131

What’s This Application Do Anyway? . 131

Overall Structure and Files . 133

The Markup . 134

The Style Sheet . 141

The Code . 144

The DAO Class . 144

The OrganizerExt Class . 153

Suggested Exercises . 192

Summary . 193

CHAPTER 4 Making Project Management Cool: TimekeeperExt 195

What’s This Application Do Anyway? . 195

Overall Structure and Files . 198

The Markup . 200

The Style Sheet . 201

The Code . 203

DAO.js . 203

StoresAndRecords.js . 209

TimekeeperExt.js . 211

ProjectSummary.js, ResourceSummary.js, and
TaskSummary.js . 225

ProjectsTree.js, TasksTree.js, and ResourcesTree.js 227

Menu.js . 229

NewProjectDialog.js, NewTaskDialog.js, and
NewResourceDialog.js . 233

ModifyProjectDialog.js . 242

ModifyResourceDialog.js . 248

ModifyTaskDialog.js. 254

DeleteProjectDialog.js, DeleteResourceDialog.js, and
DeleteTaskDialog.js . 254

Suggested Exercises . 257

Summary . 258

CONTENTSx

CHAPTER 5 A Place for Your Stuff: Code Cabinet Ext 259

What’s This Application Do, Anyway? . 260

Overall Structure and Files . 261

The Markup . 263

The Style Sheet . 264

The Code . 264

DAO.js . 265

StoresAndRecords.js . 272

CodeCabinetExt.js . 275

Viewport.js . 282

Toolbar.js . 285

Tree.js . 291

Details.js . 293

SearchForm.js. 301

SearchResults.js . 306

Suggested Exercises . 308

Summary . 308

CHAPTER 6 When the Yellow Pages Just Isn’t Cool Enough:
Local Business Search . 309

What’s This Application Do Anyway? . 310

The <script> Tag Injection Technique and JSON-P 312

Meet the Yahoo! Web Services . 317

The Yahoo! Local Search Service . 317

The Yahoo! Map Image Service . 320

Overall Structure and Files . 322

The Markup . 323

The Style Sheet . 326

The Code . 327

DAO.js . 327

StoresAndRecords.js . 328

LocalBusinessSearch.js . 334

Viewport.js . 340

Header.js . 341

Details.js . 350

Favorites.js . 358

Search.js . 360

Suggested Exercises . 369

Summary . 370

CONTENTS xi

CHAPTER 7 Your Dad Had a Workbench, Now So Do You:
SQL Workbench . 371

What’s This Application Do Anyway? . 371

Overall Structure and Files . 373

The Markup . 374

The Style Sheet . 377

The Code . 379

SQLWorkbench.js . 379

StoresAndRecords.js . 383

DatabasesWindow.js . 385

TablesWindow.js . 393

CreateTableWindow.js . 397

TableDetailsWindow.js . 403

QueryToolWindow.js . 422

Help.js . 430

Suggested Exercises . 434

Summary . 435

CHAPTER 8 All Work and No Play: Dueling Cards . 437

What’s This Application Do Anyway? . 437

More Fun with Gears: WorkerPool, Worker, and Timer 440

Some WorkerPool Code . 442

Limitations and Solutions . 443

Overall Structure and Files . 444

The Markup . 446

The Style Sheet . 447

The Code . 447

Data.js . 449

SetupCode.js . 452

IndicatorsCode.js . 460

MenuCode.js . 464

DuelingCards.js . 471

OpponentCode.js . 486

Suggested Exercises . 495

Summary . 495

CONTENTSxii

CHAPTER 9 Managing Your Finances: Finance Master 497

What’s This Application Do Anyway? . 497

A Warning About Warnings . 499

Overall Structure and Files . 500

The Markup . 501

The Style Sheet . 503

Preliminaries Part I: A Brief History of Portals and Portlets
(Apologies to Professor Hawking) . 504

Preliminaries Part II: The Publish/Subscribe Model 505

The Code . 506

StoresAndRecords.js . 506

DataAccess.js . 509

FinanceMaster.js . 518

OpenPortfolioWindow.js . 526

PortfolioOverviewPortlet.js . 531

PortfolioDistributionPortlet.js . 538

AccountActivityPortlet.js . 542

AccountHistoryPortlet.js . 553

Suggested Exercises . 557

Summary . 557

INDEX . 559

xiii

About the Author

FRANK W. ZAMMETTI is a five-time Oscar nominee, a two-time daytime Emmy winner, and a
Grammy finalist three years running. He was also one of the top 36 in last years’ American Idol
competition, hikes in the Andes with Sir Richard Branson twice a year, and is scheduled to fly
aboard the next space shuttle flight this summer.

Okay, it’s possible that not all of that is true.
Frank, however, is in fact an author of a number of web development books with just a

<sarcasm>slight</sarcasm> slant toward Ajax development. He is a lead developer/architect/
whatever-his-title-says-this-week for one of the largest financial institutions in the United States,
leading development of next-generation web applications.

Frank also contributes to a number of open source projects, leads a couple of them, and
has even founded a few. His inane ramblings can be found in the archives of many projects’
mailing lists!

Frank has done a few public-speaking engagements over the past two or three years
and is most likely the reason scientists are currently developing time travel so that a sort of
seven-second delay can be applied to live speakers, as is frequently done with “live” television
programs to avoid FCC fines.

Frank has achieved a number of things of note in his life, but without question his
crowning achievement has been getting his band Cydonia into the top 250 in the video game
Rock Band. This even beats the time he spent in an actual rock band!

Frank lives in Pennsylvania with his longtime wife Traci and is a proud parent (on most
days anyway) of his two children, Andrew and Ashley. Oh yes, and lest his family have further
reason to yell at him, there’s also the pets: Belle (dog), and Pandora the guinea pig (R.I.P.
Flower, Pandora’s long-time cage mate who passed away shortly before this book was com-
pleted. . .how’s that for ending on a downer?!?).

xv

About the Technical Reviewer

HERMAN VAN ROSMALEN works as a developer/software architect for De Nederlandsche Bank
N.V., the central bank of the Netherlands. He has more than 20 years of experience in develop-
ing software applications in a variety of programming languages. Herman has been involved
in building mainframe, PC, and client-server applications. Since 2000, however, he has been
involved mainly in building all sorts of JEE web-based applications. After working with Struts
for years (pre-1.0), he got interested in Ajax and joined the Java Web Parts open source project
in 2005; he is now one of the project’s administrators. In addition to this book, Herman has
served as technical editor for other Apress titles in the Practical series. Herman lives in a small
town, Pijnacker, in the Netherlands with his wife Liesbeth and their children, Barbara, Leonie,
and Ramon. You can reach him via e-mail at .

xvii

About the Illustrator

ANTHONY VOLPE. What can be said about Anthony? He draws. He draws really well. He drew
the illustrations for this book. His artistic ability is to Frank’s as Albert Einstein’s intelligence is
to. . .well, anyone else really! That’s why Anthony’s illustrations have appeared in all of Frank’s
books so far. Besides, they are far better than Frank’s stick figures that would otherwise be in
their place!

Not only that, but he happens to be a longtime friend of Frank to boot.
Anthony has worked with Frank to produce a number of video games for several plat-

forms, a few of which have been recognized with awards (too bad they weren’t recognized with
actual sales!), and they’ve even got an Internet cartoon under their belts based on some of the
characters from the games.

Anthony is a prolific creative force, with a ton of comics to his credit, fiction writing, and
a few video games, and he’s produced several albums over the years (some of which you can
pick up at finer Internet music retail sites (go, run, buy, now!). If you dare, check out his site:

.

xix

Acknowledgments

I’d like to acknowledge all the fine folks who made this book possible. Al Gore, inventor of
the Internet. Bill Gates, inventor of the top seven tax brackets in the United States. Billy Mays,
inventor of TALKING WAY TOO LOUDLY ON TELEVISION. Professor Hubert Farnsworth,
inventor of the “What-If Machine.” Conan O’Brien, inventor of television. Montgomery Scott,
inventor of transparent aluminum.

Of course, aside from those luminaries, plenty of other people helped make this book a
reality, and I’d like to acknowledge them: Richard Dal Porto, Steve Anglin, Douglas Pundick,
Liz Welch, Katie Stence, and everyone else at Apress who I inadvertently left out who continue
to make writing these books less like work and more like. . .well, still work, but it’s work that
I don’t mind doing!

I’d like to acknowledge Herman von Rosmalen and Anthony Volpe, the two names that
will forever be linked with mine in literary history (my heart goes out to them on that one!)

A special acknowledgment has to go to whatever alien species originally seeded our world
with life that eventually evolved from the primordial ooze into modern-day humans. I just
wonder, if when they return to check on their experiment, they’ll consider it a success or an
abject failure?

xxi

Introduction

The Web. A wise man once said: “The Web is like a box of chocolates.”
Well, sure, if you can find a box of chocolates that constantly jumps up in your face when

you try to open it and is filled with, shall we say, adult chocolates?
It used to be that you could slap some HTML up on a server and call it a web page, and

people would love you for it. Not anymore! Now, we’ve moved into the realm of web applica-
tions, where some useful function has to be performed. More than that, though, it’s got to look
cool and work in a slick, “modern” way.

That’s where the term RIA, or rich Internet application, comes from. People now expect a
certain degree of “coolness” when they hit a website. They expect the experience to be more
like the native applications they use on a daily basis. They want things to fly into view, they
want windows, and they want grids they can sort in place and they want… well, they want a
bunch of stuff that historically hasn’t been easy to deliver on the Web!

That is, until the modern JavaScript libraries hit the scene. There are lots of great libraries
out there today, from jQuery to Dojo, from YUI to script.aculo.us. All of them help you achieve
the goal of wicked-cool web applications.

One of them, though, in my opinion, stands above the rest, and that’s what we’re here to
look at: Ext JS.

Ext JS allows you to create applications with a richness that historically has only been
seen in native applications. From a top-notch windowing system to a data subsystem, various
effects, and drag-and-drop, everything you need to create modern web applications is here.
Ext JS isn’t limited to the user interface, though; it also contains tons of utility functions that
make the core of your application easier and cleaner. What’s more, it does all of this in a highly
logical, coherent manner that is, in my opinion, unrivaled on the current RIA landscape.

What’s even better than Ext JS alone is when you team it with Gears, a product of those
uber-geniuses at Google. Now, not only can you create the user interface goodness your
employer desires but you can also do things like have a true relational database on the client
and even have multithreading capabilities in JavaScript! You can create “sovereign” webapps,
that special class of webapp where everything is on a single page and runs entirely in the
browser.

While the Ext JS and Gears documentation is excellent, with lots of examples and tutori-
als to learn from, it’s often not enough. Nothing beats having a real application in front of you,
one that has been commented and structured well and, better still, that you have the original
coder of sitting beside you explaining it all, not just the how’s, but the why’s behind the code.
That’s precisely what this book is all about! Contained within it you won’t find a bunch of sim-
plistic, contrived examples; you’ll instead find seven complete, real-world applications that
will be dissected and explained. You’ll have the opportunity to hack the code yourself to make
changes and enhancements, further providing you with a learn-by-doing experience.

In the end you’ll have a solid grounding in what Ext JS and Gears are about, what they
offer, and how to use them effectively. You will also have a good time in the process because
I have what most people would describe as a unique tone about my writing. I believe that life is

INTRODUCTIONxxii

tough enough when you’re serious every minute of every day, so I try to interject humor and a
carefree attitude whenever I can. Humor is highly subjective, but I feel confident in saying you
won’t find this book boring or stuffy.

An Overview of This Book
Since my editor balked at the idea of one big chapter with a single run-on sentence as I sug-
gested (darn his sense of proper writing style and grammar!), I’ve instead broken this book
down into eight chapters as follows:

-
tion development, Ajax, and choices in libraries. In no time we’ll get into Ext JS itself,
including its history, licensing concerns, and the first actual code! We’ll then begin
looking through Ext JS to start seeing in detail what it offers.

of what Ext JS has to offer: things like drag-and-drop, data, and the UI widgets. We’ll
also take our first look at Gears to see what it offers us.

(personal information management) application that lets us store and organize things
like contacts, appointments, and notes. We’ll see all sorts of cool widgets and utility
functions along the way.

Time tracking of resources can be done against the project, and various views of the
data are offered. More widgets will present themselves, as well as a new way to archi-
tect our Ext JS applications.

monkey types where we can stash snippets of code and search for them later. We’ll
further evolve the architecture seen previously, and introduce examples of more Ext JS
capabilities.

mashup, or
an application that uses some publicly available web services to create an application.
We’ll create an application that lets us search for businesses in a given area and see
information about it, including a map of the area. This is where we’ll look at some Ajax,
more specifically, JSON-P.

gives us a way to look at and manipulate the databases that Gears gives us access to.
We’ll get lots of experience with the Gears database component, and see some new
ways of working with Ext JS.

Cards, a web-based game. We’ll see things like drag-and-drop, effects, and even some
game theory, not to mention the multithreading capabilities that Gears provides us.

shows off some more cool features of Ext JS, including its charting capabilities.

INTRODUCTION xxiii

There’s quite a lot of territory to cover, and each chapter will build upon what you learned
in the previous chapters. Along the way you’ll see multiple ways of doing things so you can
decide for yourself which you feel is the best approach.

Obtaining This Book’s Source Code
If you’re anything like me, you’ll agree that work sucks. What I mean is, effort that isn’t actually
necessary tends to not be something I enjoy. Or, to put it more succinctly: I’m lazy!

However, I generally try to get as much code printed in my books as possible, so that they
pass the Bathroom Test™, that is, you can read them during your… how shall I say it… private
time and basically be able to follow everything along.

That being said, this isn’t the mid-1980s where you’d happily open up your copy of RUN
(an old Commodore 64-focused magazine) and type in the 20 pages of machine language
code for the parachuting game they published. No, we’re better than that now (read: lazier),
and typing in all the code yourself would be a monumental waste of your valuable time. So
all the source code for this book is available for download at the Apress website. Simply go to

, click the Source Code link, and then find this book in the list. Click it and you’ll
find a download link lurking somewhere on the next page.

Obtaining Updates for this Book
There are zero mistakes in this book. Not a single one.

Now, repeat that a bazillion times and the universe might oblige and make it true.
In reality, writing a technical book of virtually any length is an exercise in getting things

as right as possible but knowing you’ve almost certainly borked something, somewhere. You
can be sure that every possible effort was made to ensure everything is accurate, from me as
the author checking facts to the technical reviewer hammering me over every relatively minor
typo in the code to the editor, copy editor, layout editor, and others going over it with a fine-
toothed comb multiple times.

Still, if there really are no mistakes then I suspect that would be a first in the publishing
industry! In light of this, you can always find the current errata list on this book’s home page
on the Apress website. You can also submit errata of your own, and this is input I very much
welcome. In fact, you can feel free to call me if you ever need blood or a kidney (just please ask
first… I don’t want to wake up in a hotel bathtub filled with ice). Consider it my way of saying
thanks for pointing out my ineptness!

Contacting the Author
I have been called bad before. Many have said I do things that are not correct to do. I don’t
believe in talk such as this. I am nice man, with happy feelings, all of the time!1 If you feel the
need or, dare I say, desire, to contact me, please also feel perfectly free to do so! I’m avail-
able via email at , and you can catch me online to chat on AOL IM

 1 This is a quote from the great movie Kung Pow: Enter the Fist. If you haven’t seen it, stop reading
and go do so now. If you have seen it but don’t like it, well, let’s just say my editor wouldn’t let me
print what I suggest you do! In either case, how many times have you seen a footnote in a book’s
introduction?

INTRODUCTIONxxiv

(), Yahoo! Instant Messenger (), or MSN (). I have
a bad habit of leaving my IM client open even when I’m not home, so if I don’t answer right
away don’t take it personally! You could also send a carrier pigeon over the northeastern
United States and tell them to look for the house with the horribly maintained front lawn
(which reminds me: buy another ten copies of this book so I can afford to hire a landscaper!).

I’ll also point out that, like every other loser on the planet, I have a blog. I don’t update it
often, and the topics I cover can absolutely be anything (some not suitable for all audiences,
so I wouldn’t visit it at work if I were you). If you’ve really got nothing better to do on a rainy
Saturday, feel free to visit and even leave a comment or two: .

P A R T 1

The Preliminaries

A Netscape engineer who shan’t be named once passed a pointer to JavaScript, stored it

as a string and later passed it back to C, killing 30.

—Blake Ross

Debugging is twice as hard as writing the code in the first place. Therefore, if you write

the code as cleverly as possible, you are, by definition, not smart enough to debug it.

—Brian W. Kernighan

Einstein argued that there must be simplified explanations of nature, because God is not

capricious or arbitrary. No such faith comforts the software engineer.

—Fred Brooks

A word to the wise ain’t necessary—it’s the stupid ones that need the advice.

—Bill Cosby

All sorts of computer errors are now turning up. You’d be surprised to know the number

of doctors who claim they are treating pregnant men.

—Isaac Asimov

In ancient times they had no statistics so they had to fall back on lies.

—Stephen Leacock

If you love your job, you haven’t worked a day in your life.

—Tommy Lasorda

Oh, so they have internet on computers now!

—Homer Simpson

C H A P T E R 1

Introducing Web Development
with Ext JS

In this chapter, we’ll begin our journey into the world of Ext JS by taking a step back and look-
ing at the evolution of web application development. In fact, we’ll take a step even further back
than that and look at what the term “web application” means in the first place (hint: it may not
be quite as obvious as it first seems!). We’ll deal with what the term “rich Internet application”
(RIA) is all about, and we’ll talk briefly about Ajax (what it used to mean and what it means
now) and why it’s such an important development. We’ll even look at some options for devel-
oping RIAs other than Ext JS, but before long we’ll dive right into the real red meat,1 as the
political pundits say: Ext JS itself! We’ll see what it has to offer and how it’s structured, learn a
bit about its history and philosophy, and then get started with the basics of using it.

Strap yourself in because it’s going to be a wild (but exciting) ride!

The Evolution of the Web: Web Sites vs.
Web Applications
If you’ve been doing web development for more than a few minutes—or so it seems some-
times given the rapid rate of technological development in this area—then you are well aware
of the fantastic evolution of the Web. It’s like a child growing up right before your eyes in many
ways, and we’ve had our share of teething pains to be sure!

Today we have all sorts of web sites. More than that, we have web applications. What’s the
difference, you ask? A web site’s primary purpose is to disseminate information. There tends
to be little user interaction beyond some simple forms, and little opportunity for the user to
perform an actual function (other than researching the data available on the site). There is
a general flow through the site, and while the user can branch off into other flows at various
points via hyperlinks, these paths are essentially predetermined. In other words, navigation
through the site is hardwired into a limited set of possible paths. Also, web sites, because of

 1 At least in American politics, the phrase “red meat” refers to rhetoric during a speech that is brash and
“in your face” with the purpose of getting the crowd energized and emotionally behind the speaker.

3

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS4

their focus on delivering information, tend to be a bit simplistic so that they are accessible to
the largest possible audience.2 In Figure 1-1 you can see an example of a simple web site.

Figure 1-1. An example of a web site

A web application, or web app for short, is an inherently dynamic beast where the user
is interested in performing some operation(s) in a (frequently, but not always) indeterminate
way. The user can move about a web app in a nonlinear fashion and in ways that the devel-
opers may not have expected. The user is usually manipulating data in some fashion, and
typically in a persistent manner (i.e., interacting with a server-based data store of some sort3).
Web apps tend to be more complex from a coding standpoint and often require more of the

 2 This has been becoming less and less true in recent years. The multimedia nature of the Web as a whole
means that web sites no longer are necessarily coded to the lowest common denominator in terms of
browser capabilities. Perhaps it’s more correct to say that the lowest common denominator is simply rising!

 3 In this book we’ll in fact be building only applications that interact with a local data store. This doesn’t
mean they aren’t web apps, but a web app that doesn’t interact with a back-end data store is only in
recent years started to become a viable model.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 5

client in terms of technology and pure horsepower to execute them. In Figure 1-2 you can see
an example of a web app.

Figure 1-2. An example of a web app

This web app has some richer and fancier functionality than is apparent on the printed
page.4 For example, the filmstrip on the left scrolls to show images, and when you click one it
“flies” onto the main viewing area. Many of the buttons on the bottom allow you to manipu-
late the image in various ways, and some lead to pop-up dialogs, which represent alternate
“flows,” if you will, through the application. In other words, the purpose here is for users to
actually do something—they aren’t simply viewing a predefined set of images as would be the
case with a web site. This is also an example of an RIA, but based on the definition of RIA (the
“I” is for Internet after all), it’s a web app too. We’ll get to RIAs in particular shortly though.

Web sites and web apps are both of course 100 percent relevant today and probably will
be for a very long time (until some fundamental shift in technology changes everything). In
fact, the line between the two isn’t a hard-and-fast thing. Frequently there is room for debate
whether something is a web site or a web app. Take something like Digg () for
example, which is a news site that is driven by input from the community of users who visit
it to determine what headlines are seen, which are seen most prominently, and so on. It has

 4 <shamelessSelfPromotion>If you’d like to see this in action, then purchase my book Practical Ajax
Projects with Java Technology (Apress, 2006).</shamelessSelfPromotion>

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS6

many of the characteristic of both: its primary job is to disseminate information (new items),
yet there is plenty of opportunity for users to interact with it (by submitting and rating articles
and even posting comments to one another about the news items). It uses a fair amount of
client-side coding, which makes it more like a web app, but it’s also coded to be accessible to
as many people as possible, like a web site.

The point is that we’re still in the midst of the evolution I’m talking about, and we’ll likely
be involved in the evolution for some time to come.

The Rise of the Cool: Rich Internet Applications
The point we find ourselves at now is that we’re developing rather complex web apps these
days—so complex, in fact, that we probably need a new name for them. If nothing else, we all
know that the IT industry loves to invent new terms for things!

We’re trying to recapture some of what we lost when we moved to the Web: the power
of the native application. Take a look at Figure 1-3, where you can see a fairly typical native
application.5

These so-called native applications are applications coded for a specific operating sys-
tem and that run more or less entirely locally on an individual workstation. These types of
applications have the benefit of access to the full power of the underlying operating system
and the hardware of the computer, so they tend to look better and, most importantly, are
more functional and full-featured. Things you take for granted in such an environment (such
as local disk storage; multimedia capabilities—video/audio playback, for example; access to
I/O devices like disk drives, mice, and printers; more advanced UI metaphors like grids, trees,
and drag and drop) all are harder to come by in the web environment than they are in native
applications. There is a richer set of user interface (UI) components, sometimes called wid-
gets, from which to build the application: grids that can do all sorts of sorting and splitting and
other advanced features; tree lists that can organize data and allow the user to expand and
contract groupings as they see fit; toolbars with all kinds of button features; menus and spin-
ners and tabs and fancy check boxes and sliders and so on and so forth! All of these are things
available in virtually any graphical user interface (GUI) environment like Windows or Mac OS.
On the Web, however, much of that sort of interface richness is harder to come by.

 5 Note that I’m not holding this up as an example of a great native application! This is an old application
I had written at work over ten years ago now. It’s not stunningly beautiful or anything like that, but it
makes the point well enough.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 7

Figure 1-3. An example of a “rich-client” application

That’s where the RIAs come in. An RIA isn’t a single specific thing; it’s more of a paradigm,
almost an approach to web app development. RIAs are characterized by appearing in many
ways to look, feel, and function just like those native applications we left behind.6 We develop
them using more advanced techniques, a much heavier dependency on the clients’ capabili-
ties, and with an eye toward building a much more powerful application for the end user. In
Figure 1-4 you can see an example of such an application.

6 To be clear, native applications are of course still in use today and are still being developed anew.
However, it’s probably fair to say that more development effort these days goes into web-based appli-
cations, so in that sense we’ve “left native applications” behind, for the most part anyway.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS8

Figure 1-4. An example of an RIA

Let’s compare and contrast the previous four screenshots, primarily comparing each to
the native application example on the basis that it is the ideal we’re striving for.

First, the web site, while hopefully (since it’s mine!) fairly pleasing visually, doesn’t really
look like any of the applications, least of all the native application example. The photo-sharing
web app looks more like the native application in the sense that it’s clear you are supposed
to perform some functions with it rather than just more passively obtain information from it,
but it still doesn’t look a whole lot like the native application; it looks like a hybrid, somewhere
between the web site and the native application.

Now, comparing the RIA to the native application, the RIA looks a lot more like the native
application. It has menus, toolbars, trees, grids, and just generally looks more robust. It’s clear
that its focus is in giving the user the ability to manipulate data, files, and directories in this
case. It’s clearly more focused on the idea of doing something than the web site example was.

RIAs, and perhaps more precisely the idea of bringing native applications to the Web, is
where we are today, although interestingly we’re also taking some of the “coolness” the Web
brought about—things like multimedia, animations, and effects—and rolling them into our

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 9

applications. We’ve evolved beyond simply bringing native application-like capabilities to the
Web; we’re now trying to evolve that concept to make applications that are actually cool! This
combination of native application-like functionality and web coolness are what modern RIA
development is all about (and what Ext JS is all about too!).

Enter Ajax: The Driving Force behind RIAs
There isn’t any one thing that ushered in the age of the RIA. Many people were going down
that path long before we all even recognized the path! Still, there is something probably more
responsible for it than any other single thing, and that’s Ajax (see Figure 1-5… now you’ll
always know what code and architectures would look like personified as a plucky super hero!).

Ajax came to life, so to speak, at the hands of one Jesse James Garrett of Adaptive Path
(). Mr. Garrett wrote an essay in February 2005 (you can see it here:

) in which he coined the
term Ajax.

Figure 1-5. Ajax personified

Ajax (for Those Living under a Rock the Past 2–3 Years)
Ajax, as I’d be willing to bet my dog you know already (well, not really, my wife and kids will
kill me if I gave away the family dog, although my wallet would thank me), stands for Asyn-
chronous JavaScript and XML. The interesting thing about Ajax, though, is that it doesn’t have
to be asynchronous (but virtually always is), doesn’t have to involve JavaScript (but virtually
always does), and doesn’t need to use XML at all (and more and more frequently doesn’t). In
fact, one of the most famous Ajax examples, Google Suggest, doesn’t pass back XML at all! The
fact is that it doesn’t even pass back data per se; it passes back JavaScript that contains data!
(The data is essentially “wrapped” in JavaScript, which is then interpreted and executed upon
return to the browser. It then writes out the list of drop-down results you see as you type.)

Ajax is, at its core, an exceedingly simple, and by no stretch of the imagination original,
concept: it is not necessary to refresh the entire contents of a web page for each user interac-
tion, or each event, if you will. When the user clicks a button, it is no longer necessary to ask
the server to render an entirely new page, as is the case with the “classic” Web, which is the
term I like to use to describe this model of back-and-forth with the server where each user
interaction results in a new page in the browser. Instead, you can define regions on the page
to be updated and have much more fine-grained control over user events as well. No longer

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS10

are you limited to simply submitting a form or navigating to a new page when a link is clicked.
You can now do something in direct response to a non-submit button being clicked, a key
being pressed in a text box—in fact, to any event happening! The server is no longer com-
pletely responsible for rendering what the user sees; some of this logic is now performed in the
user’s browser. In fact, in a great many cases it is considerably better to simply return a set of
data and not a bunch of markup for the browser to display. As we traced along our admittedly
rough history of application development, we saw that the classic model of web development
is in a sense an aberration to the extent that we actually had it right before then!

Ajax is a return to that thinking. Notice I said “thinking.” That should be a very big clue to
you about what Ajax really is. It is not a specific technology, and it is not the myriad toolkits
available for doing Ajax. In fact, while Ajax originally was a term to describe a technique for
communicating with a server in an asynchronous fashion, what it means today is pretty differ-
ent, but let’s come back to that a little later.

The interesting thing about Ajax is that it is in no way, shape, or form new; only the term
used to describe it is. I was reminded of this fact a while ago at the Philadelphia Java Users
Group. A speaker by the name of Steve Banfield was talking about Ajax, and he said (para-
phrasing from memory), “You can always tell someone who has actually done Ajax because
they are pissed that it is all of a sudden popular.” This could not be truer! I was one of those
people doing Ajax years and years ago; I just never thought what I was doing was anything spe-
cial and hence did not give it a “proper” name. Mr. Garrett holds that distinction.

I mentioned that I personally have been doing Ajax for a number of years, and that is
true. What I did not say, however, is that I have been using XML or that I have been using the

 object, which usually powers Ajax applications, or any of the Ajax toolkits out
there. I’ve written a number of applications in the past that pulled tricks with hidden frames
and returned data to them, then used that data to populate existing portions of the screen.
This data was sometimes in the form of XML, but other times not. The important point here is
that the approach that is at the heart of Ajax is nothing new as it does not, contrary to its very
own name, require any specific technologies (aside from client-side scripting, which is, with
few exceptions, required of an Ajax or Ajax-like solution).

When you get into the Ajax frame of mind—which is what we are really talking about—
you are no longer bound by the rules of the classic Web. You can now take back at least some
of the power the native applications offer, while still keeping the benefits of the Web in place.
Those benefits begin, most importantly perhaps, with the ubiquity of the web browser.

Note Nowadays, Ajax sometimes has a wider meaning than simply a communication mechanism as
described here. In fact, to many people now, an “Ajax application” really means an RIA. I prefer to use the term
RIA and continue to use the term Ajax as described here so as to keep the two concepts separate. RIAs nearly
always involve Ajax, so in object-oriented programming (OOP) terminology, I prefer a “has a” relationship to an
“is a” relationship. But regardless, you should be aware that in conversation, to some, Ajax == RIA.

The Benefits of Ajax (and by Extension, RIAs)
Have you ever been at work and had to give a demo of some new native application, such as
a Visual Basic app, that you ran on a machine you have never touched before? Ever have to

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 11

do it in the boardroom in front of top company executives? Ever had that demo fail miser-
ably because of some DLL conflict you couldn’t possibly anticipate (see Figure 1-6)? You are
a developer, so the answer to all of those questions is likely yes7. If you have never done Win-
dows development, you may not have had these experiences (yeah, right. . . if you believe it
only happens on Windows, then I’ve got a big hunk of cheese to sell you.. . it’s on display every
evening, just look up in the sky and check it out). You will have to take my word for it when I
say that such situations were, for a long time, much more common than any of us would have
liked. With a web-based application, this is generally not a concern. Ensure the PC has the cor-
rect browser and version, and off you go 98 percent of the time.

Figure 1-6. We’ve all been there: live demos and engineers do not mix!

The other major benefit of a web app is distribution. No longer do you need a three-
month shakedown period to ensure your new application does not conflict with the existing
suite of corporate applications. An app running in a web browser, security issues aside, will
not affect, or be affected by, any other application on the PC (and I am sure we all have war
stories about exceptions to that, but they are just that: exceptions!).

Of course, you probably knew those benefits already, or you wouldn’t be interested in web
development in the first place. So we won’t spend any more time on this.

Ajax represents a paradigm shift for some people (even most people, given what most web
apps are today) because it can fundamentally change the way you develop a web app. More
important, perhaps, is that it represents a paradigm shift for the user, and in fact it is the user
who will drive the adoption of Ajax. Believe me, you can no longer ignore Ajax as a tool in your
toolbox. Ajax is one of the primary enablers of the RIA movement, and that’s what we’re really
talking about here.

Put a non-Ajax web app, or a non-RIA web app in other words, in front of users, and then
put that same app using Ajax techniques in front of them, and guess which one they are going
to want to use all day nine times out of ten? The Ajax-ified version! They will immediately see

 7 Unless you work in the public sector, and then it probably was not corporate executives but rather
generals or folks of that ilk, which I suppose means you may have run the risk of being lined up against
a wall and shot for your “crimes,” but either way, you get the point!

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS12

the increased responsiveness of the application and will notice that they no longer need to
wait for a response from the server while they stare at a spinning browser logo wondering if
anything is actually happening. They will see that the application alerts them on the fly of error
conditions they would have to wait for the server to tell them about in the non-Ajax web app.
They will see functionality like type-ahead suggestions and instantly sortable tables and mas-
ter-detail displays that update in real time—things that they would not see in a non-Ajax web
app. They will see maps that they can drag around the same way they can in the full-blown
mapping applications they spent $80 on. All of these things will be obvious advantages to the
user. Users have become accustomed to the classic web app model, but when confronted with
something that harkens back to those native application days in terms of user-friendliness and
responsiveness, there is almost an instantaneous realization that the Web as they knew it is
dead, or at least should be!

If you think about many of the big technologies to come down the pike in recent years, it
should occur to you that we technology folks rather than the users were driving many of them.
Do you think a user ever asked for an Enterprise JavaBean (EJB)–based application? No, we
just all thought it was a good idea (how wrong we were!). What about web services? Remember
when they were going to fundamentally change the way the world of application construction
worked? Sure, we are using them today, but are they, by and large, much more than an inter-
face between cooperating systems? Not usually. Whatever happened to Universal Description,
Discovery, and Integration (UDDI) directories and giving an application the ability to find,
dynamically link to, and use a registered service on the fly? How good did that sound? To us
geeks it was the next coming, but it didn’t even register with users.

Ajax is different, though. Users can see the benefits because RIAs nearly always stand
out from their less rich predecessors. The differences and the benefits are very real and very
tangible to them. In fact, we as technology people, especially those of us doing Java web devel-
opment, may even recoil at Ajax at first because more is being done on the client, which is
contrary to what we have been drilling into our brains all these years. After all, we all believe
scriptlets in JavaServer Pages (JSPs) are bad, eschewing them in favor of custom tags. Users
do not care about elegant architectures and separation of concerns and abstractions allowing
for code reuse. Users just want to be able to drag the map around in Google Maps (see Figure
1-11) and have it happen in real time without waiting for the whole page to refresh like they do
(or did anyway) when using Yahoo!’s mapping solution.

The difference is clear. They want it, and they want it now (stop snickering in your head,
we’re all adults here!).

Now we can come back to what I mentioned earlier: Ajax now means something different
than what it originally did. Ajax now means, if you’ll pardon my French, web apps that don’t
suck! The way we approach application design has fundamentally changed, thanks to the Ajax
revolution. We now recognize that the classic model of web development—when you fetch a
page from a server, the user enters some data, submits that data, and a new page is rendered—
is less than optimal. We also now recognize that adding some “cool” to a web app can do
wonders for it. Things like animations, multimedia feedback, and real-time graphics are no
longer just flashy tricks to attract attention but are core parts of what we do. That’s what Ajax
has come to mean.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 13

SOVEREIGN WEB APPS

Another term that has fairly recently come into vogue is “sovereign web app.” This refers to a web app that
runs in a browser independent of any server (except perhaps a server that initially serves it). This is yet
another result of the Ajax revolution, and in fact is what we’ll be dealing with in this book. Nowhere will I
discuss server-side technologies, except perhaps in passing here and there. We are dealing strictly with sov-
ereign web apps, and that means “no server required.”

This inherently means that we’re going to be doing things in an Ajax-y way, if you will. Since there’s no
server to render pages, it’s quite natural to wind up with a single-page design, which is another popular term
employed today. It turns out a single page is all you need in most cases to create a sovereign web app, as
you’ll see.

The Evolution of Web Development
Now that we’ve seen the evolution of web sites, to web apps, to RIAs, what about evolution
in terms of development? Has there been a parallel evolution there as well, an evolution of
techniques, tools, and knowledge? You’d certainly hope, I think, that the answer is yes, and
in fact it is.

Early on, way back in the distant year 1995 or so, when most “longtime” web develop-
ers (relatively speaking) began, you would frequently see someone with Notepad open if they
used Windows, or maybe emacs or vi if they were *nix users. In either case, they were happily
hacking away at code right there in their simple text editors, saving the file as an HTML file and
loading it up in their browser right there, no server or anything like that. For a while this was
quite sufficient because we weren’t ready to develop web apps just yet—we were just getting
our heads around web sites!8

Nowadays, there exists full-blown integrated development environments (IDEs)
that provide all the tools developers tend to need: debuggers, code completion, code
generators, profilers, and so on. Even without a full IDE, we have options like Firebug
(), which is an extension to the Firefox () browser. In fact,
many developers find that Firebug is all they need these days, and I count myself among them.

So, there has clearly been an evolution in terms of tooling for client-side development.
What about the code itself, though? Early on, people wrote a whole lot of JavaScript themselves
because there wasn’t much in the way of options. The best you could hope for was to find
some useful code snippets out on the Web that you could… AHEM… borrow. You wound up
typically taking that code, hacking it to death, and massaging it to fit your needs. If the code
was good to begin with, which was always a questionable thing, the result wouldn’t be too bad.

Using code snippets is part and parcel of developing software. We all do it, and the best
among us probably do it more than others! But just grabbing snippets here and there isn’t

 8 That’s not to say some people don’t still work this way—many do. In fact, I myself typically work at a
level just above that: while it’s not Notepad, I use a text editor called UltraEdit (). It’s
a pretty advanced editor with lots of features that make life easier, but it’s still a text editor in the end,
not a full-blown IDE like many people prefer. To each his own!

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS14

usually optimal, and also isn’t typical in most programming environment where full-blown
libraries are king. It took a while to get there, but client-side JavaScript development is now no
different.

Choice Is Good: Toolkits Make It a Breeze
After a while, the evolution from simple code snippets to full-blown libraries began to take
shape. Libraries of JavaScript emerged that you could use without hacking to fit your needs
(well, mostly without hacking). The early libraries weren’t terribly good—they were just loose
collections of snippets—but the underlying idea was solid, which meant that slowly but surely
the quality improved.

Today, we have literally thousands of JavaScript libraries to choose from, and many of
them are rather good (others, not so much). The following eight are considered by most to be
at the top of the heap and get the most usage:

) is a general-purpose library that tries to be everything to
everyone. It provides all sorts of JavaScript language extensions, utilities, and one of the
more advanced widget frameworks out there. In Figure 1-7 you can see an example of
an application built with Dojo.

) is a very widely used library that is famous for having
a small code footprint and for extending the JavaScript language itself (via extending
intrinsic JavaScript objects, such as adding methods to the object). Prototype is
an enabler in that a number of other popular libraries are built on top of it, such as the
next list item, script.aculo.us.

) is a library built on top of Prototype that spe-
cializes in effects. All the fancy fades, dissolves, compressions, and those sorts of things
that are popular in the Web 2.0 world are provided by this library and in a simple-to-
use way.

) is another extremely lightweight JavaScript library that, as the
authors themselves put it, is meant to change the way you write JavaScript. Its main
focus is on making HTML document traversal, event handling, and animating drop-

part to all the neat extensions that are built on top of it, such as lots of very good GUI
widgets.

) is a library that provides full Ajax support, drag-and-drop
management, and an entire cinematic effects module.

) has perhaps the best tagline going: “MochiKit makes
JavaScript suck less.” Indeed, many believe it does! MochiKit provides a good variety of
tools, including drag and drop, visual effects (including a really good rounded-corner
implementation for spicing up tables and s), and DOM functions.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 15

) is another wide-ranging library like Dojo that seeks to
provide virtually everything the modern JavaScript developer would need. Language
extensions, general utilities, widgets, animations, and all that kind of stuff is covered.
MooTools lets you create a custom version of the library right there on the MooTools
web site that suits your needs perfectly. For a long time, this feature was unique to
MooTools, but others have copied the idea.

) is an acronym for Yahoo! User Interface. YUI is
popular because it is extremely simple, easy to understand, and exceptionally well doc-
umented, with lots of examples to look at. Coming from Yahoo! doesn’t hurt in many
people’s minds. YUI is mostly interested in providing GUI widgets that are relatively
simple but cross-browser. There are general-purpose parts to YUI as well, such as Ajax
functionality.

Figure 1-7. An application built with Dojo

This is in not an exhaustive list, but as you can clearly see, there are quite a few to choose
from. This list barely scratches the surface of what’s available today. Of course, while all of
these are fine toolkits, we’re here to talk about one that’s not in that list, one that I feel is quite
possibly the best available today: Ext JS.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS16

Enter Ext JS: The Best of the Bunch
A long time ago in a galaxy far, far away (more precisely, early 2006, the planet Earth), a gentle-
man by the name of Jack Slocum developed a set of extension utilities to the YUI library. These
utilities rapidly gained popularity within the YUI community and were quickly organized into
an independent library called YUI-Ext. In fall 2006, Jack released the .33 version of this new
library under the terms of the Berkeley Software Distribution (BSD) license.

After a while, before 2006 was over in fact, the name of the library was changed to Ext,
because it was starting to develop independently of YUI at that point. In fact, support for other
libraries was beginning to be developed within Ext.

In 2007, Jack formed a company to further advance the development of Ext, which at
some point thereafter began to be known as Ext JS. On April 1, 2007, Ext JS 1.0 was released.

In a short period of time, Ext JS evolved from a handy set of extensions to a popular library
into what many people, including yours truly, feel is the most mature JavaScript UI develop-
ment library available today.

Ext JS is focused on allowing you to create great user interfaces in a web app. In fact, it
is best known for its top-notch collection of UI widgets. It allows you to create web apps that
mimic the look and feel of desktop native applications, and it also allows you to mimic most of
the functionality those applications provide. In short, Ext JS enables you to build true RIAs.

It’s not all about widgets, though, as we’ll see. There are a lot of useful utility-type func-
tions in Ext JS as well. Need some Ajax functionality? Check. Need some string manipulation
functions? It’s got those too. Need a data abstraction layer? Ext JS has you covered.

LICENSING QUESTIONS

Ext JS has undergone some licensing changes throughout its lifetime, and some of them have been tumul-
tuous in terms of Ext JS users having issues with the changes for one reason or another. I am in no way,
shape, or form a lawyer, and frankly, software licensing can be tricky. Therefore, I urge you to do independent
research in this area before using Ext JS to ensure it meets your needs. I won’t go anywhere near the debate
about whether or not things were done “properly.” I leave that to each person to decide. I’ll stick to the facts
here as best I can (one of the few times I shy away from giving my personal opinion on something!).

At the time of this writing, Ext JS is under a dual-license model. There is a commercial option, which
you have to pay for. Under this option, you do not have any obligation to release the source code for your
application. You get enhanced support from Ext, LLC (the company Jack Slocum started) for your money.

An open source option is available that allows you to use Ext JS for free, under the terms of the GNU
General Public License (GPL) 3.0. In addition, there is a mechanism allowing exceptions for open source proj-
ects that don’t fall under the terms of the GPL 3.0.

As you can see, licensing isn’t a simple matter at all! However, I think the Ext JS team has tried their
best to meet the needs of both commercial entities and those folks developing free/open source software
alike. Remember that Jack and Co. are trying to feed their families from their efforts, so the fact that they
offer a free alternative at all is a Good Thing™ to be sure!

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 17

In the end, though, I suggest reading the licensing terms and determining the right option for your proj-
ect before you get too far into it. Although you can download Ext JS at any time and begin developing right
away, it would probably be advisable to sort out the licensing issues sooner than later.

Note too that the story is a little different for something called Ext Core, but that topic is discussed a few
pages from now, so keep reading!

Let’s take a look at some examples of Ext JS in action. In Figure 1-8 you can see one such
example: an RSS feed reader. This is one of the many examples available on the Ext JS web
site itself.

Figure 1-8. RSS feed reader example

As you can see, the user interface here is quite nice-looking. Not only that, it’s very func-
tional. For example, the left-hand side, which contains the list of feeds, can be expanded or
contracted by dragging the divider line left or right. Likewise, the area at the bottom where a
selected article is read can similarly be resized by dragging the line above the View in New Tab
button. You can also collapse the list of feeds entirely by clicking the double arrow icon in the

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS18

upper-right corner, and this happens with a nice animation effect. Another feature is that the
list of articles on the top right are sortable by clicking the column headings. You can put the
list of articles and the reading pane (where you read an article) next to each by clicking the
Reading Pane button. Most of this functionality comes with the widgets used to build the UI
automatically without you as a developer having to do any real work (other than setting some
flags to indicate which capabilities you want).

Next, in Figure 1-9, you can see one of the examples that many people would simply refer
to as “wicked cool,” and I wouldn’t disagree one bit.

Figure 1-9. Web desktop example

This is the web desktop example. Yes, what you are looking at is a JavaScript-based web
application! As you can see, Ext JS is extremely powerful, giving you windows (which can be
dragged around, resized, maximized, and minimized) as well as tabbed interfaces, accordion
widgets, grids, and much more. I would say that if that example doesn’t impress you, then
there’s probably something wrong with your brain!

Note Both of these examples, along with tons more, are available directly on the Ext JS web site for you
to play with. Especially for the web desktop example, I suggest you take a few minutes to peruse the site. It’s
fun to play with them for real rather than just seeing them statically on the page.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 19

Fisher Price™ My First Ext JS Application
Before we start looking in detail at Ext JS’s overall structure and API, let’s talk about what it
takes to get a simple Ext JS application off the ground. As it happens, it isn’t much at all!

You’ll obviously need to download Ext JS from the Ext JS web site (). There’s
only a single download, and that’s the Ext JS SDK, which is pretty much everything, including
source code, examples, documentation, and examples. Once you have that downloaded and
unzipped, using Ext JS is as simple as a few imports in an HTML document.

Note There is also a “build your own” option in the download section of the web site. This allows you to
build a custom version of Ext JS that only includes those parts you want. This is a great way to optimize the
performance of your site, and I encourage you to play with that online tool as time allows.

The imports you’ll need are very simple and depend on what parts of Ext JS you wish to
use. First, if you intend to use any of the UI widgets, you’ll need a style sheet:

If, as in the case of all the example code in this chapter, you aren’t using widgets, then this
style sheet isn’t needed. Naturally, you’ll need to adjust that path to point to where Ext JS is
located.

Once that’s done, it’s on to JavaScript imports, and here you have some choices. You see,
Ext JS can integrate with many of today’s most popular libraries. Ext JS will in fact borrow
some “plumbing” code from these libraries, things like Ajax functions, animation, events, and
so on. Not too long ago, Ext JS actually required one of those libraries to work. That is no longer
the case; Ext JS can now run quite happily on its own (that is how all the applications in this
book are written). However, if you’re already using one of these other libraries you may want
to use what Ext JS terms “adapters” to integrate with those libraries. So, the JavaScript imports
you specify can vary based on what library, if any, you want to use along with Ext JS. Table 1-1
summarizes the required JavaScript imports; it also tells you in what order they are required to
appear because ordering is very important for everything to work as expected.

Table 1-1. JavaScript Imports, and Their Order, Required to Get Ext JS Working

Configuration Imports

Ext JS by itself , then (or for a debug
version, or you can specify source files instead)

Yahoo!’s YUI (v. 12 or higher) , then , then (or
 for a debug version, or you can specify source files

instead)

, then , then ,
then (or for a debug version, or you
can specify source files instead)

Prototype (v. 1.5 or higher) , then , then
and Script.aculo.us (v 1.7 , then (or for a debug
or higher) version, or you can specify source files instead)

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS20

Figure 1-10 summarizes the relationships between these various files.

Figure 1-10. Ext JS JavaScript files and their (optional) dependencies

All of the files mentioned here (except for and) are adapt-
ers and are located in the directory of your Ext JS directory. So, for example, let’s
assume we’re using Ext JS all by its lonesome, which is how all the applications in this book are
presented. Let’s further assume we’re not using the debug version, in which case we have only
these two imports to add to our page:

Once you have those files imported into your HTML document, you are ready to rock and
roll! Virtually all Ext JS has to offer is immediately available, right at your fingertips.

Now, let’s get to some learnin’, shall we? We begin by taking a look at Ext JS’s overall struc-
ture, and we’ll then quickly dive into some real code.

Ext JS’s High-Level Organizational Structure
One of the things that sets Ext JS apart from most other libraries is the clean structure of its
API. You can tell that Jack and Co. believe in the object-oriented paradigm quite strongly
because Ext JS follows a highly object-oriented design. Almost everything is within a class
(and they even differentiate between regular classes and singletons!). Classes are within
name spaces (analogous to packages in languages like Java), and classes extend other classes
to form logical hierarchies.

For example, take a widget. It extends from the class, which extends from
the class, which extends from the class, which extends from the

 class, which is the base of the inheritance tree (technically, extends
from the basic JavaScript class, but that’s true of any class in JavaScript and therefore

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 21

generally isn’t something to be concerned with). As is the case in object-oriented design, the
final class takes behavior and characteristics from each of its ancestors. This allows a

 to be treated like a , for instance, because it too is a by virtue of
its inheritance, which means it has all the methods and fields that any has. This all
means that (a) there’s a logical structure to the entire Ext JS API, and (b) learning about some-
thing usually helps you learn about something else because that new knowledge will apply to it
as well (or stated another way, once you learn what you can do with a , for example,
you’ll know at least some of what a can do automatically).

At the highest level, there are a number of classes in the global scope, and then there is the
 namespace. The contents of these classes and this namespace form the core of Ext JS, and

provide many of the utility-type functionality you’d want from a good JavaScript library.

Note The following section is not meant to be an exhaustive look at everything in Ext JS. It isn’t my intent
to duplicate the Ext JS API documentation, which is rather good. Instead, I will touch on the things that I see
as most useful and of special interest in the context of the projects to come. The bottom line is Ext JS already
has great reference documentation, and I’m not trying to re-create that merely to highlight cool stuff!

Global-Scope Classes
As of Ext JS version 2.2, there are six classes in global scope, one of which is a singleton.

Note The code snippets shown next are each part of an HTML file that you can load and see in action. An
HTML file is available for each of these classes.

Array
This class extends the built-in class, adding some new methods to it. One such method
is :

This will display an alert message with the text “2” because that’s the index where is
found.

The method is also added, so you can do this:

You can see the message in Figure 1-11. Note that was removed, which is
reflected in the message.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS22

Figure 1-11. Contents of the array after Bill is removed

Date
The class both extends the JavaScript intrinsic class and provides some static util-
ity methods itself. To begin, let’s take a look at a couple of methods that allow us to get values
from a object:

Here you can see the and methods. The former
will return “Sat” for this , and the later returns “Feb”. and are
methods of the standard class. This generates some HTML and writes to a with the
ID .

The method is another handy method. It uses a subset of PHP’s func-
tion, which is helpful only if you know PHP! For the rest of us, the Ext JS docs detail the format
specification very well. Here’s an example of it in action:

This results in the object seen previously being formatted into a string “Sat Feb 17,
1973” (which just so happens to be the output of the code seen earlier, which was constructed
manually).

Next up is a handy function for doing basic date math. For example, let’s say we want to
add four days to the object we’ve been looking at so far. Here’s all you need to do:

Note that calling the method doesn’t alter the object pointed to by the vari-
able here; it returns a new instance, in this case Wednesday February 21, 1973. You can use
negative numbers as well to effectively subtract from a date. In addition, here you can see one
of a number of properties present on the class. This one is a simple constant that speci-
fies what we’re adding to the object, the day in this case, so . If you wanted to
add four years to the date instead, you could use . In addition to the rest that you’d

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 23

expect, like and and so on, there are a couple of arrays that provide
useful information, such as and , which I suspect are self-
explanatory.

You can determine whether the year of a given object is a leap year by calling the
 method on it, which returns or . You can determine what day of the

year the represents by calling , which returns a number between 1 and
365 (or 366 in a leap year). The method tells you what week of the year the

 object falls in. The method tells you how many days are in the month
of the object. You can even get the suffix (like “th,” “nd,” “rd,” or “st” for a day. So, you
can do this:

This will result in the text “The day of Sat Feb 17, 1973 is the 17th (used to
get th)”. If you’ve ever written the typical block of code to do this yourself, you’ll very much
appreciate this method!

Another handy edition to the class is the method. This lets you determine
if the object you call on falls between two specified objects. Here’s an
example:

This will result in the text “Mon Feb 19, 1973.between(Sat Feb 17, 1973, Wed Feb 21, 1973):
true.” As you can see, returns a simple or .

Along the same lines is , which tells you how much time, in milliseconds, has
elapsed between the object you call it on and a given object.

Finally we have the method, which parses a string into a object using a
format specifier. Here it is in action:

This results in the text “Date.parseDate('1973-02-17 12:14:06AM', 'Y-m-d h:i:sA'): Sat Feb
17 1973 00:14:06 GMT-0500 (Eastern Standard Time).” As you can see, the string has been
properly parsed and the standard of the class is the proof of that.

The result of the execution of all these functions is shown in Figure 1-12.

Note The last line may look different depending on the browser you run it in because JavaScript imple-
mentations can implement of the class as they see fit (the screenshot is running in
Firefox). You should, however, see the same date represented.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS24

Figure 1-12. Output of the Date class examples

Ext
The class is that one singleton I mentioned earlier. You are not meant to instantiate this
class. More to the point, you cannot instantiate it—you’ll see “Ext is not a constructor error”
(in Firefox, at least) if you try.

The class has a number of useful members, starting with a batch of public properties.
These are summarized in Table 1-2 (which I copied directly from the Ext JS documentation on
the grounds that I’m lazy!).

Table 1-2. Public Properties of the Ext Class

Property Name Description

 Contains a URL to a 1 1 transparent GIF image used by Ext to cre-
ate inline icons with CSS background images. (Defaults to

; you should change this to a URL on your server.)

 Contains a URL to a blank file used by Ext when in secure mode for
 and o prevent the Internet Explorer inse-

cure content warning (defaults to).

 A reusable empty function.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 25

Property Name Description

 Set to to automatically uncache orphaned peri-
odically (defaults to).

 Set to to automatically purge event listeners after uncach-
ing an element (defaults to). Note: This only happens if

 is true.

 Contains if the detected platform is Adobe AIR.

 Contains if the detected browser is Internet Explorer running
in nonstrict mode.

 Contains if the detected browser is Google’s Chrome.

 Contains if the detected browser uses the Gecko layout engine
(e.g., Mozilla or Firefox).

 Contains if the detected browser uses a pre–Gecko 1.9 layout
engine (e.g., Firefox 2.x).

 Contains if the detected browser uses a Gecko 1.9+ layout
engine (e.g., Firefox 3.x).

 Contains if the detected browser is Internet Explorer.

 Contains if the detected browser is Internet Explorer 6.x.

 Contains if the detected browser is Internet Explorer 7.x.

 Contains if the detected browser is Internet Explorer 8.x.

 Contains if the detected platform is Linux.

 Contains if the detected platform is Mac OS.

 Contains if the detected browser is Opera.

 Contains when the document is fully initialized and ready for
action.

 Contains if the detected browser is Safari.

 Contains if the detected browser is Safari 2.x.

 Contains if the detected browser is Safari 3.x.

 Contains if the page is running over SSL.

 True if the browser is in strict (standards-compliant) mode, as op-
posed to quirks mode.

 Contains if the detected platform is Windows.

 By default, Ext intelligently decides whether floating elements should
be shimmed. Shimming is a trick used specifically to deal with an
Internet Explorer issue where elements will “poke through”
elements placed over them with style settings. So, let’s say
you have a that you want to float over a . By default,
the will be seen through the , or at least some portion
of the . Shimming means that you place an iFrame, which can
float over a , behind the and adjust the val-
ues of the iFrame and in such a way that the iFrame blocks the

, and then the , which can float on top of the iFrame,
is positioned in exactly the same location. So, the iFrame blocks the

, but the displays on top of the iFrame, so the user sees
the floating over the as expected and nothing more.
Thankfully, this Ext JS setting allows you to not have to know any of
that and simply let Ext JS deal with it! If you are using Flash, or Java
applets, you may want to set this to .

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS26

Here’s an example of these properties in action:

Assuming you ran this code in Firefox on Windows, and further assuming that there is a
 with the ID on the page, you’d see the output in Figure 1-13.

There are also a number of methods available via the class. First up is :

This method basically allows you to add event handlers to elements. You call it and pass
to it an object that contains a number of key/value pairs. The key portion is a CSS selector. Any
element on the page with that selector will have applied to it the function defined as the value
of the key/value pair. The name of the event follows the at sign ()in the key supplied. So here,
any on the page will react to click events by executing the inline function. If you’ve run
the example from the source bundle that shows everything that is being discussed now (and if
you haven’t yet, now would be a real good time!), you can click on the where the text is
located to see the appear. Note that the function arguments and are browser
objects that describe the event and a reference to the DOM node, respectively.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 27

Figure 1-13. Values of Ext class public properties

The method is next, and this allows you to apply properties from one object to
another:

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS28

The output to will be “liberate me,” which is defined in , and then you
will see “liberate tutame ex inferis,”9 which is defined in , but which has been applied to

 (an instance of).
Having an array and needing to do something with each member of it is a common

enough requirement, and Ext JS is there to help with the method:

Each element is multiplied by two and the output added to the string, which when
displayed shows this:

You can of course do whatever you want in the function, as simple or as complex as you
need.

In the class you’ll find a couple of methods for determining the identity of a variable.
There’s , which returns if the argument passed to it is an array and other-
wise. Likewise, returns if the argument is a and if not. There is also

, which returns if the argument is , , or an empty string.
The method is next, and it is used to validate that a given value is numeric. Further,

if it isn’t, a default value can be returned. For example:

This results in the following output:

 9 SPOILER ALERT… The phrase “liberate me” is Latin for “save me” (maybe… keep reading!). This was
the message received from the long-lost ship Event Horizon in the movie of the same name. Unfor-
tunately for the rescue crew that found the Event Horizon, the message was misheard and was not
“liberate me” but was actually “liberate tutame ex inferis,” which translated means “save yourself from
hell.” It doesn’t get much more ominous than that! My technical reviewer pointed out that “liber-
ate me” should actually have been translated as “free me,” and therefore “liberate tutame ex inferis”
would be “free me from hell.” Now, I’m no Latin expert, and even though I found some possibly con-
tradictory information on the Web, I tend to trust my tech reviewer here! Either way, that’s one scary
phrase in the context of the movie’s story!

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 29

The first call returns 12 because 12 is obviously a numeric value. The second parameter, 5,
would have been returned if it wasn’t, as is seen in the second call, where isn’t numeric
and so 123 is returned.

The method is one of the methods you’ll probably wind up using most. It’s a
shorthand version of the ubiquitous method. Simply pass it an ID
and you’ll get back a reference to the node, or if it isn’t found.

Say you have a reference to a node, and you want to remove it. Ext JS has you covered with
the method:

The method is another general-purpose function that is extremely useful. Pass
it basically anything you want and it’ll return its type. For example:

When you run this code, you’ll see this output:

The next two methods I want to discuss go hand in hand: and
. The method takes in an object and creates a URL-encoded

string (what you’d append to a URL for a GET request that accepts parameters). With it you
can do this:

Now you have a string “first=Archie&last=Bunker” sitting in the variable . Now, if you
want to take that string and get an object out of it, you use :

With that you could use to get an message with the text “Archie”
in it.

The final method to discuss is . You’ll see this in most of the examples in
this chapter and throughout the project. Simply, tells Ext JS what function
you want called when the DOM is loaded. This is before the typical event fires but also
before images are loaded. This function is handy because it allows you to execute code without
waiting for the entire page, and all dependent resources, to load. This helps your application
load faster and makes it more responsive for the user.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS30

Function
The class adds a number of methods to every single object in JavaScript.
Let’s begin with a look at the method:

The method allows you to create a single function call that is actually
two (or more) function calls executed in sequence. When this code is executed, four
messages appear in turn. The first says 4, since 2 + 2 = 4. The second says 2, since 5 – 3 = 2.
The third and fourth are both a result of calling . First, is called, passing it the
parameters 10 and 8, so the says 18. Then, is called, and the mes-
sage shows 2, since 10 – 8 = 2. The function passed to is called with the same
arguments as the is called with.

Another interesting method is . This provides a rudimentary form
of aspect-oriented programming (AOP) whereby you can have a given function called before
another is. For example:

Now, when is called, first the function defined inline in the call to
 is executed, multiplying the two arguments and showing the result via

, 42 in this case. Then, is called, and we see 13 in a second message. This
is nice because you’re tying two functions together in a loose way. The alternative would be to
have call the inline function (which would be defined like any other function is in that
case) before doing its own work, which makes them tightly coupled. The sort of loose coupling
that allows for is much cleaner, though.

Note The and at first glance look quite similar, but there is
one key distinction: with , if the function passed to returns

, then the function that is called on will not be called. In this case, if the inline
function returns , then will not be called.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 31

Next we’ll talk about the method, which allows you to execute the function you
call it on after some period of time. This is a nice abstraction of the usual mecha-
nism in JavaScript. In practice you would do something like this:

After three seconds (1,000 milliseconds per second, so 3,000 = 1,000 * 3), the func-
tion will be called, and the parameters 8 and 9 will be passed to it, so we’ll see an
message saying 17. The argument defines the object for which the scope is set. Also note
that the call to returns a number that is the ID of the created. This allows
you to do a before the function executes if you wish.

A BRIEF ASIDE ON ASPECT-ORIENTED PROGRAMMING

Aspect-oriented programming (AOP), sometimes called aspect-oriented software development (AOSD), is
the technique whereby you identify so-called cross-cutting concerns and externalize them from the code in
question.

A commonly used example is that of logging. Frequently, you want to output a log statement every time
a given function is called. Typically, you would include some sort of log statement directly in the function. This
works well enough, but the problem you quickly see is that you have logging code strewn all over the code
because in all likelihood you want to do this in many functions.

AOP enables you to do the equivalent of telling your runtime environment, “Hey, do me a favor, buddy;
output a log statement every time function A is called,” without you having to specifically include the code to
do so in the function. This is also an example of separation of concerns because what your function actually
does is separated from the logging concern.

How this AOP approach is accomplished depends on the AOP implementation you use. Some work by
modifying your code at compile time; others do so at runtime. Some truly work at the environment level,
meaning your code is not modified and the function calls are instead intercepted somehow. The implementa-
tion isn’t terribly important; the underlying concept is.

Number
The class extends the intrinsic JavaScript class and provides a single addition:
the method. This method allows you to determine if the current value of the

 object falls within a given range by specifying a minimum and maximum value. If it
does not fall within the range, will tell you which side of the range was exceeded
by returning to you the minimum or maximum value as appropriate. Here’s how it works:

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS32

This will result in two messages, the first saying 22, because 22 falls within the
range 10–25, and in that case returns the value of the object. The second

 will say 14 because 22 is obviously outside the range 1–14, and it’s higher than the
maximum of 14, so that’s the side of the range it exceeds.

String
The class adds a couple of static methods to the intrinsic JavaScript class, as well
as two instance methods. For starters, there’s the method:

This results in the pop-up seen in Figure 1-14.

Figure 1-14. The output of String.escape()

The double backslash in the original string is itself escaped, so the content of the string
would in fact be a single backslash. Then when the method gets a hold of it, it’s
escaped, resulting in the double backslash you see in the output. The single quote is escaped
as well.

The function is perhaps the handiest of all:

As you can see, it allows you to insert values into a string containing tokens. It’s a simple
positional insert, which means that subsequent arguments will be inserted sequentially into
the target string, which is the first argument. So, “Barack” is inserted in place of token {0}, and
“Michelle” into token {1}. The text in the pop-up after that work is what you see in Fig-
ure 1-15.

Figure 1-15. The output of String.format()

Next up is the method, which gives you a convenient way to pad out values
(most usually numbers, but not necessarily):

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 33

The first argument is the value to pad out, and the second is the final length we want it to
be. The final argument is the character to pad the first argument with, if its length initially is
less than the second argument. So here the message says “00001234,” and if you don’t
believe me take a look at Figure 1-16!

Figure 1-16. The output of String.leftPad()

The method is next, and it’s a deceptively simple little function:

Here, the message in the is as shown in Figure 1-17.

Figure 1-17. The output of String.toggle()

 has compared the value of the string to the literal string “Republican”. If it
matches, then it toggles the value and returns the second argument, “Democrat” in this case.
If it was any other value it would have simply returned the current value of . Note that the
string isn’t altered by this call.

The final method in the class is something I’m still surprised isn’t built into
JavaScript: the method.

It’s very simple but supremely helpful: given a string, trim whitespace from the start
and end of it, leaving any spaces in the middle alone. You would imagine the next revision of
JavaScript would finally eliminate the need for libraries to provide this function! Figure 1-18
shows the outcome of the example.

Figure 1-18. The output of String.trim()

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS34

Note There are a number of other classes in the global scope, including , ,
, , and . All of these are related to Ext JS’s chart-generation capabilities. We’ll

touch on charting in Chapter 2 and then see it in action in Chapter 9, but since that is a somewhat more
advanced topic I felt it better to not go into that stuff here. We’re still getting our Ext JS “sea legs,”10 so to
speak, under us!

The Ext Namespace
The Ext namespace is chock-full of goodness, to put it mildly. As has been the case previously,
it is not my intention to cover every single nook and cranny of it. My goal is to give you a solid
overview of what’s there, highlighting areas in more detail where I feel is warranted. So, with-
out further ado, let’s get to it!

Ext.Ajax
Ajax is, by most reckonings, the primary enabler of the whole RIA movement we are in the
midst of. As such, you wouldn’t expect any modern JavaScript library to not support it, and
Ext JS is no exception. It provides a number of useful methods that allow you to fire asynchro-
nous requests to a server. One of the simplest forms is this:

Here you can see the simple method in action. It has a number of
arguments that it accepts. The argument tells the method what URL to request (is
obviously just a placeholder). The argument, which defaults to but which I’ve over-
ridden as here, specifies the HTTP method that will be used. The argument is an
object that includes extra parameters to include with the request. The argu-
ment tells the method whether you want to ensure requests are never cached, which is

10 Sea legs is a term used to describe the ability of a person to walk steadily on the deck of a moving ship
at sea. More informally, the term is often used to describe when you are in the process of learning
something to mean that you aren’t fully knowledgeable on the topic just yet, but you’re working on it!

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 35

what indicates. This appends a dynamic parameter onto the request to ensure a unique
URL is requested no matter what. The and arguments define callback func-
tions to be executed when the request succeeds, or if it fails (communication failures, for
instance). Each is passed the options (the argument) that were used to make the call, and
the response (the argument) that came back from the server. The function also
gets a argument () that indicates whether the request succeeded. In addition, you
can pass a argument that names a form on the page from which parameters will be gener-
ated. There are also the and the arguments, which provide the method with
an XML document or a JSON object, respectively, from which to generate parameters.

When you call this method, it returns a that is the transaction ID for the request.
This is useful because you can then call the method, passing that trans-
action ID to it, to cancel the request if it is still in flight. Related to this is the

 method, which similarly accepts the transaction ID and tells you if the request
is still outstanding.

As you saw, the argument lets you serialize a form to generate parameters for the
request. If you need to serialize a form without making an Ajax request, you can use the

 method, which takes in the name of the form (or a reference to the
form node in the DOM) and returns to you a URL-encoded string of parameters generated
from it.

There are also a number of useful properties that you can set on the class.
For example, the property, when , will cause any new request to abort any
already in progress. The property allows you to globally set whether all
Ajax requests will include that cache-busting parameter that ensures unique URLs for
every request. The property allows you to set the default method (or) for
all Ajax requests. The property lets you tell how long it should wait for a
request to return before it assumes it timed out (the default is 30,000, or 30 seconds).

In addition to all this, the class uses an event-driven model that lets you handle
certain events globally. For example:

This hooks an event listener to the specified event and will cause an pop-up to
open before every Ajax request by calling the function passed as the second argument. The
other events you can handle are , whenever a response comes back from the
server, and , which occurs any time an HTTP error occurs.

You can also use the method to determine if there is currently
a listener for a given event (pass the name of the event you want to check as the argu-
ment to it). You can use the to stop handling a given event (or
use the to stop handling all events in one statement). There
is an to temporarily stop handling all events, and there is even
an method that lets you fire a specific event without firing an Ajax
request (pass it the name of the event to fire as the first argument and an object as the sec-
ond that contains the parameters to pass to the listener for the event).

The class is an especially clean and simple, and yet powerful, Ajax implemen-
tation. It is very robust and yet extremely easy to use, essentially boiling down to a single
method!

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS36

Ext.DomHelper
The class is a handy utility class that allows you to easily create fragments of
HTML and insert them into the DOM. If you’ve written code to work with the DOM methods,
then you’ll quickly realize how cool this class is (otherwise you’ll just have to take my word
for it!). Let’s look at the complete source code for the example , shown in
Listing 1-1.

Listing 1-1. The Ext_DomHelper.htm Example

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 37

If you load Listing 1-1 in your browser, you will see a simple page that looks something
like Figure 1-19.

When the page loads, because of the statement the method will
execute. In this method we see the first use of :

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS38

Figure 1-19. The page you’ll see when you load the page in Listing 1-1 in a browser

This builds a table and inserts it into the . We use the
method, and it’s a simple enough beast. The first argument it takes is the ID of the DOM node
to insert the generated HTML fragment into. The second argument is an object that describes
the fragment to generate. First, we tell it what HTML tag we want to create, in this case,
using the tag . We could create anything we want here, but a table is a good example
because it allows us to see the attribute in action. Even before that, though, we set
an of on the generated table, and we assign a style class of using the
attribute.

Now, on to the array. We can create as many children as we wish, and each child
can itself have a attribute. This allows us to create a hierarchy of elements as deep as
we wish. The attribute on each child is the content to insert in the element created.

In other words, you’re simply creating some number of nested objects, each with the
same attributes (, , , , and) that describes a snippet of HTML in object
form. takes care of converting that into HTML and inserting it into the DOM.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 39

It would probably be enlightening to jump ahead in the code a bit. The method
isn’t the only choice. We can also use method to insert the fragment before a
given element. There is also , which inserts the fragment after the given element.
You could also use , which inserts the fragment as the first child of the given ele-
ment. In the example code you’ll find an example of in action:

You’ll also notice the method is used. This returns the HTML
fragment generated by a call to one of the insert methods. So, the dialog here is what
you see in Figure 1-20.

Figure 1-20. The generated HTML fragment

Hopefully that markup doesn’t present any surprises, but it can be interesting to see what
Ext JS is generating for us.

As an exercise, I suggest you insert a call to and pass it the code
in the first call. This will show you the generated markup for the table.
Go ahead, do that now—I’ll wait!

The other method you can see in action here is , which, as
its name implies, allows you to apply styles to a given DOM node. The first argument is the
node itself, so I’ve used the method to get a reference to the second cell in the
second row of the generated table. It then changes the text color to green, which you’ll see if
you load the page (you can’t really tell from a black-and-white screenshot on the printed page
obviously).

The class, as you can see, is a handy tool indeed that saves you from having to
mess around with the DOM API, which is frequently not a pleasant experience.

Ext.DomQuery
CSS selector
for this, but Ext JS provides a robust engine for CSS selector queries as well, encapsulated in
the class. In Listing 1-2 you can see examples of a number of its methods.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS40

WHAT ARE CSS SELECTOR QUERIES?

In a nutshell, CSS selector queries are a mechanism for querying an HTML (or XML) document to retrieve one
or more elements on the page in a collection, usually with the purpose of styling them in some way. The CSS3
selector spec is one way to query for elements, XPath is another, and Ext.DomQuery supports both.

Sometimes you want to manipulate a particular element on a page, and using
 is a good choice, assuming the element is singular. But what if you want

to, for example, style all the cells of all tables on the page so that their text is red, and you want to do this on
the fly? Especially given that the contents of the table are possibly dynamically generated, you certainly don’t
want to try to retrieve each of them individually by ID. CSS selector queries allow you to do this succinctly.

Getting into constructing queries is a pretty extensive topic that I won’t be covering in any detail in this
book, so you may want to do some reading on that topic yourself. The Ext JS documentation for Ext.Dom-
Query has a decent summary, and a link to the official spec that includes more information and some good
details.

Listing 1-2. The DomQuery Class in Action

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 41

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS42

The first thing to take note of is the table structure in the of the document. It is this
structure that we’ll be querying against. Note too the style classes applied to the elements. It is
these settings specifically that are queried against.

If you open this page in Firefox with Firebug installed, Figure 1-21 will be the output in
Firebug’s console pane.

Note Of course, if you aren’t using Firefox, or don’t have Firebug installed… why not? Seriously, though,
to run this example you’ll need to replace the calls with suitable replacements;
should work fine in this case. The discussion that follows assumes you’re using Firefox with Firebug
installed.

Figure 1-21. The console output for this page

The first two lines of output are a result of this code:

First, a simple selector query is created. The query looks up all
 tags on the page that have a class attribute setting of . This query is passed to the

 method, which returns an array of matching elements (you can pass
a second optional argument, a reference to a DOM , that would limit the scope of the
query, instead of querying the entire document as this example does). We can then iterate
over that array and output the value of the cell. We have to drill down through the hierarchy
a bit because each element of the array is a DOM object, and the of the

is the text within the cell (it’s actually a text node), and then the attribute
of that child is the actual text contents of the cell.

Now, being able to do queries with is neat enough, but it turns
out to not be the most efficient thing out there. Precompiling the query when you know
you’re going to be doing it a lot is far more efficient, and allows for that via the

method:

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 43

This time, we pass the query to , which returns a
object. We can then call on that function, passing in a root node to begin the search at (this
is optional), and after that it works exactly as we saw before. The
method is important if you are going to be reusing the same query many times.

Something else that can come up is the need to determine if a given matches
some query. You could perform a query and then see if you got any matches, but there’s a
more concise way to do it:

The method allows you to pass in an (retrieve using
 here) and a query, and it will return if the element matches the query and

 if not.
Another commonly needed function is the ability to take an existing array of s and

filter it based on a query. The code in the example that demonstrates looks like this:

First, a query is performed to get an array of all the elements on the page (a total of
eight). Next, is used to get an array of only those s matching
the query . That’s why we get the display “2” in Firebug’s console; only
two elements match that query. You can optionally pass a second boolean argument to

. If you pass , you’ll get only the elements that do not match the
query.

Ext.Updater
Earlier we took a look at the class. Now we’re going to look at another bit of Ajax
functionality provided by Ext JS: the class. This allows us to perform Ajax updates
of a DOM element, and perhaps more importantly, allows us to do that periodically. Here’s a
simple example:

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS44

This will cause an Ajax request to fire every 30 seconds to the URL specified as the second
argument to . The results will be inserted into the DOM node with ID

 (presumably a).
If you only need to update the element once as opposed to repeatedly, the

 method is available:

As you can see, passing parameters is available as well, so you can handle dynamic data
easily. You can also see the method in use. This returns an object repre-
senting the specified DOM node. An object essentially “wraps” a DOM node and
provides additional functionality to it, including methods like .

If you have an instance of , as via the line in the
example code but you no longer have a reference the DOM node it is bound to, you can call

 on the to get such a reference. You can also call on the
instance to abort any currently in-flight requests. The will return if
the instance is set to automatically refresh and if not. The
method tells you if an update is currently in progress () or not (). Finally, the

 method can be called on an instance, even if it was a onetime update,
to perform the update again.

The Ext.util Namespace
The namespace contains a number of classes that provide some.. .wait for it . . .
utility-type functions, hence the name! We’re talking about general-purpose stuff here, and
nothing specific to building UIs.

Ext.util.CSS
The class is a singleton with a couple of useful methods for dealing with style
sheets. The first is :

Assuming you have an element on the page that has a class attribute value of , any
text in that element will be turned red at this point because the selector has been
modified to change the color to red). You can modify that selector like so:

The first argument is the selector name, the second is the attribute to update, and the
third is the new value. Once that code is executed you can get the contents of the selector
like this:

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 45

This will display , which isn’t terribly helpful. If you instead use the
code

assuming you have Firebug installed in Firefox (and are running this code there!), you’ll see
the object displayed in the console. You can expand it to see the attribute, which
displays now after the color change, proving it worked. You can
also use the to get all the rules active in the document. Optionally,
you can pass to that method, which will cause the rules cache to be refreshed, which is
useful if you’ve made changes.

If down the road you want to entirely remove a style sheet—say you don’t want that text to
be green anymore—you can use the method:

The text will then turn back to the default color (black most likely).
Finally, with the method, there was that optional argument to

refresh the rules cache. Although it didn’t seem to be necessary in my testing, an
 method exists that can be called if you’ve dynamically added style sheets.

Ext.util.DelayedTask
The provides an abstraction around JavaScript’s function. To use it,
you use code that looks like this:

After three seconds, an pop-up will appear with the current date/time showing, as
you can see in Figure 1-22.

Figure 1-22. The alert() seen after the delay period completes

The first argument is obviously the function to execute. The second is the scope in which
the function will execute, in this case the keyword, and the third is an array of arguments

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS46

to pass to the function. Note that the parameters are instantiated at the time of the call to
. In other words, the object created as part of declaring that

array will show a time three seconds prior to when the appears. Lastly, note that the
function specified as the first argument will not fire until a call is made to , because
internally is used (presumably… I haven’t examined the code to verify that,
but it acts as if it is used, which is what matters). That call isn’t made until is called
to define how long to wait until the function fires.

Ext.util.Format
The class contains a number of static methods for formatting values
in one fashion or another. It has some methods that deal with strings, some that deal
with numeric monetary values, and so on. Let’s take a look at each, beginning with the

 method:

This results in an pop-up that reads “This is a test”, capitalizing the first letter,
which you can see for yourself in Figure 1-23.

Figure 1-23. The output of Ext.util.Format.capitalize()

Similar to this is :

From that you wind up with Figure 1-24 on your screen. As you likely guessed, there is an
 method as well.

Figure 1-24. The output of Ext.util.Format.uppercase()

The method formats a date:

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 47

The message seen here is something like “09/03/2008”, depending on the date you run it
of course, as in Figure 1-25. There is an optional second argument that specifies the format to
use, but this example will use the default “m/d/y”.

Figure 1-25. The output of Ext.util.Format.date()

The method is interesting:

The message here is “myDefault”, as you see in Figure 1-26, because the first
argument (which is what’s being checked by) is empty—
which is precisely what this method is for.

Figure 1-26. The output of Ext.util.Format.defaultValue()

Similar to this is the method, which returns an empty string if
the passed-in argument is undefined. So, you’d get an empty string back from this example:

If was instead defined in some way, you’d get the value of back.
The method is next:

This results in the string shown in Figure 1-27 because the first argument, a string to
check, is greater than the length specified by the second argument, so it is truncated and an
ellipsis is appended to the end.

Figure 1-27. The output of Ext.util.Format.ellipsis()

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS48

Let’s say you want to format the amount of space remaining on a hard drive for display to
the user. Ext JS has you covered:

Note that this method accepts a number or a string and either will be formatted prop-
erly (a string will be returned in both cases). The result of the example code is shown in
Figure 1-28.

Figure 1-28. The output of Ext.util.Format.fileSize()

 and are next, and their
names pretty well tell you what they do:

This code gives you two alerts, shown in Figure 1-29 and Figure 1-30.

Figure 1-29. The output of Ext.util.Format.htmlDecode()

Figure 1-30. The output of Ext.util.Format.htmlEncode()

Ext JS supplies the usual method in the form of , which
I suspect doesn’t need to be demonstrated. It simply strips leading and trailing space from a
string you pass to it. There is also an method, which is used like
this:

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 49

This code will display “Jess” because it grabbed four characters out of the string passed
as the first argument, starting with the fourth character (1-based indexing here). Figure 1-31
proves that this is indeed the result.

Figure 1-31. The output of Ext.util.Format.substr()

The next method to see in action is , which formats a string or
numeric value based on US money formatting rules. For example:

This results in Figure 1-32.

Figure 1-32. The output of Ext.util.Format.usMoney()

The last method we’ll look at is . This method strips out
HTML tags from a string, like so:

The displayed value will be simply what you see in Figure 1-33; the HTML tags have been
removed.

Figure 1-33. The output of Ext.util.Format.stripTags()

Ext.util.JSON
The class is a pretty simple animal but a very useful one. It contains only two
methods: and . Here are some working examples:

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS50

The first results in what you see in Figure 1-34 because the string of JSON was
encoded to an object, from which the references fields to generate the message.

Figure 1-34. The output of Ext.util.JSON.decode(), first alert()

The second , shown in Figure 1-35, shows the same (nearly) string that was passed
to . There are slight differences because puts
quotes around the field names as well as the values, but syntactically it’s identical. Note that
you can pass an array to as well.

Figure 1-35. The output of Ext.util.JSON.decode(),second alert()

Ext.util.MixedCollection
The class is essentially a hybrid data structure that combines a
with a . As such, it contains methods that come from both of those structures, plus a few
unique ones. Let’s start with looking at how to instantiate an and
how to add some items to it:

This adds four key/value pairs to the . The keys are “John”,
“Alex”, “Joe”, and “Jack”, and the corresponding values are “Resig”, “Russell”, “Walker”,
and “Slocum” (the four giants of the JavaScript world I’d say, no disrespect to Brendan Eich
or Douglas Crockford intended!). Assuming you run the code in Firefox and have Firebug
installed, the statement will result in the exploded view of the

 shown in Figure 1-36 (after you click on the line in the console).

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 51

Figure 1-36. The expanded view of the MixedCollection

Note Incidentally, something that threw me for a loop occurred here. If you run the entire example as
presented in the source download for this book (), you will likely see that
the first ’s output doesn’t show all four items. This appears to be a timing issue because
everything works as expected, but what you see in the console isn’t right (at least that was the case on my
PC). I don’t know if this is a bug in Firebug or truly a timing issue of some sort, but it was disconcerting.

Now, let’s say you want to see whether a given key is present in the
 or whether a given value is present. There are two methods specifi-

cally for doing both:

Both of these return because there is indeed a value with a key of “John” and there is
a value “Walker” present.

Now, what if you need to do something to each element in the ?
That too is easy to achieve, as you can see here:

The method allows you to iterate over the collection of items in the
. An item in this context really means the values, not the combination of

key and value, which the term “item” might seem to imply. When the iteration using

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS52

executes, it results in four pop-ups: the first says “0/4: Resig”, the second says “1/4:
Russell”, the third says “2/4: Walker”, and the final one says “3/4: Slocum”. Why are those
messages displayed? As you can see, the method accepts as an argument a function,
which is called for each item. To this function, which is called for each item, is passed the item
(value), the index of the item in the , and the overall length of the

. So, the first number you see in each of the messages is the index
value, which is zero-based, and the second is the length, or the number of items in the

. The method works the same, except that it is iterating over
all the keys in the . The function that is called for each accepts the
key and the value associated with the key. The method can also accept a second
argument that specifies the scope in which to execute the function.

Note I actually found this behavior a little weird: why doesn’t the function you provide for
receive an index value like the one for does? It seems to me that you might want the information
there as well (ditto for the length). I’m sure there’s some reason, but I found it a bit strange and thought it
was worth pointing out.

If you were paying attention, you may have taken note of the index value that you get
with . So far, has looked like a pretty typical in most
regards. However, an index is typically associated with a structure. This is why I said

 is a hybrid structure: it has characteristics of both. Now we’re going
to see how it’s like a (you could argue in fact that and are -like
structures as well, since iterating over elements in a , while not totally unusual, isn’t really
typical either). So, let’s say you want to know the index of a given key. That’s easy:

This will return 2 in our example, since that’s where “Joe” appears. Because it’s a , to
some extent order is maintained, which isn’t usually a guarantee of a . Again, we see the
hybridization here.

Now, how about if you want to retrieve a specific index? That too is easy:

The method accepts an index value and returns the associated value, so we get
“Russell” in this case. I hedged a little bit here though because as you can see, can do
more than that! You can also specify a key to get the associated value. So, in fact, the
message we seen here is “Russell – Russell”. I’ve simply retrieved the same value two different
ways, one -like and one -like.

We saw at first how we can add items, but what if we want to replace the value of one? All
it takes is a call to the method:

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 53

Now, the key “John” is associated with the value “Sheridan” instead of “Resig”. You can
outright remove items as well of course:

Again, you can do things the -like way, which means removing by key using the
 method, or you can do it the -like way, which means removing by index

using the method. The at this point contains only
 and .

Ext.util.TaskRunner
The is a mechanism that allows you to run arbitrary tasks in a multi-
threaded manner. Its usage is extremely simple, as this example illustrates:

A task is defined as an object with two attributes: , which is a reference to a function
to execute, and , which is how frequently to execute it (in milliseconds). So here, two
tasks are created. The first executes every half a second and simply inserts the current date
and time into the . The second task fires every three-quarters of a second and
just increments a counter each time. These tasks are run by instantiating a new instance of

, and then passing each task to the method.
The second task, when it reaches a count of five, will stop the first task by calling the

 method, passing a reference to the task to stop. When that task
reaches a count of ten, it stops all tasks (which is just itself at that point) by calling the

 method. Believe it or not, that pretty much does it for this class!
It’s simple but an effective tool none the less.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS54

IS THIS TRUE MULTITHREADING?

I don’t think I would testify to this in court, but I suspect, without looking at the Ext JS source code, that this
is not true multithreading. I say this because JavaScript is inherently single-threaded, and the only way to do
“multithreading” is with timeouts and intervals.

Now, you can get something more akin to true multithreading by installing Google’s Gears extension,
which we’ll get into later. You can also hold out for official, standard support for something called Web-
Workers, which is multithreading for JavaScript. That technology is still working its way through standards
bodies, however (for details see) so in the
meantime Gears is probably the best choice.

This is all beside the point, though, to the extent that gives you a nice,
clean approximation of multithreading in JavaScript, as close as you’re likely to get with the current imple-
mentations and without any add-ons like Gears. It certainly does make working with intervals a breeze, if
nothing else.

Ext.util.TextMetrics
The class gives you a handy mechanism to get information about
the size of text. This might not sound like much on the surface, but it’s actually a handy
thing to be able to do. Oftentimes you need to know how much space, right down to the
pixel, a certain amount of text will take up given a set of style settings. That’s precisely what

can do for you. Check out this code:

Assume too that there’s a on the page like so:

In Figure 1-37 you can see the resulting pop-up.

Figure 1-37. The alert() pop-up generated by running the Ext.util.TextMetrics example code

You begin by instantiating an instance of and passing it a reference
to a DOM node. This is necessary because the node gives the class information about the styles

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 55

to use in its calculations. Then, it’s a simple matter of calling methods like , which
tells you how tall in pixels the given text is, or , which does the same but tells you
how many pixels wide the text is. The method essentially gives you both combined
in a single object, but it’s based on the internal element’s style and width properties. Note that
if you are trying to get the height of a multiline bit of text, you will likely have to call

, passing it the width to set on the internal measurement ele-
ment. This is necessary to get the correct values back from the other methods.

But . . .but . . .What About the Widgets?
As cool as all of that is, if you think this is all there is to Ext JS, you are very much mistaken. The
widgets, which are probably the best part of Ext JS, are still left to be examined, and that’s pre-
cisely what Chapter 2 will mostly be about. The namespace is where all the UI widgets are
located on top of all we’ve seen so far. Because there are a good number of them, and they are
collectively what initially attracts most people to Ext JS to begin with, I felt it was better to wall
them off and devote an entire chapter to them.

In addition to the widgets, I’ve left out a few more “advanced” topics to cover in Chap-
ter 2. For example, Ext JS provides a very nice, robust data subsystem that allows you to
abstract away your data storage mechanism. This is something I also felt was better held off
until the next chapter.

One Last Tangential Thing: Ext Core
As of version 3.0, the Ext JS team has also released a separate, but very much related product
called Ext Core. Ext Core contains much of what has been discussed in this chapter, but it does
not include everything the full Ext JS library includes (widgets are the most obvious omission).
Ext Core is intended to provide a consistent, fully cross-browser API for performing the most
common tasks modern RIA developers need—tasks like DOM traversal and manipulation,
CSS management, event handling, Ajax, and animations.

The nice thing about Ext Core is that it is licensed under the liberal MIT license, which is
an open source license that allows a tremendous amount of freedom. Also, Ext Core is 100 per-
cent free to use under that license, so all of the previous statements about licensing issues are
null and void when it comes to Ext Core!

Ext Core is a real nice addition to the product offerings from Ext, LLC, and best of all, what
is covered in this book applies to Ext Core as well! It may well be that as you look at your needs
you discover that the full-blown Ext JS library has a lot more than you need, in which case
Ext Core may be just the ticket, and a cheaper ticket at that!

Of course, the Ext team obviously hopes that people become enamored of Ext Core and
eventually buy a full Ext JS license. This is, you have to remember, a business after all, so there’s
absolutely nothing wrong with that strategy. As good as Ext Core is, that’s probably a good strat-
egy on their part! In the end, though, Ext Core provides a ton of capabilities and a lot of power at
no cost, which I think says a lot about the Ext team and their belief in the open source model.

Note Ext Core 3.0 was released in beta as I was finishing up this chapter. Talk about a timely release!

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS56

Summary
In this chapter, we began our journey of exploration into the world of Ext JS by taking a step
back and looking at the evolution of web application development. In fact, we took a step even
further back than that and looked at what the term “web application” means in the first place.
We looked at what an RIA is all about, and we talked about Ajax and why it’s such an important
development. We even looked at some other options for developing RIAs other than Ext JS.
Finally, and most importantly for our purposes in this book, we looked at Ext JS itself! We saw
what it has to offer, how it’s structured, learned a bit about its history and philosophy, and we
got started with the basics of using it.

In the next chapter we’ll take the next step and look in much more detail at using Ext JS.
We’ll see more of its capabilities and get more familiar with it in general. All of this is meant to
set the stage for the project chapters to follow. Also in the next chapter we’ll look at something
called Gears, which coupled with Ext JS will allow us to create those coming applications.

So get comfortable and move on—the best is yet to come!

C H A P T E R 2

Widgets and Advanced Ext JS

In the previous chapter we began our look at Ext JS by seeing some of the basics of its usage,
but we focused primarily on the general utility-type aspects of the library. We only touched on
widgets in a limited way, and as it happens, Ext JS is primarily known for its widgets. So, in this
chapter we’ll focus almost entirely on the widgets. We’ll look at some of the more “advanced,”
relatively speaking, topics in Ext JS. Here I refer to things like data handling and binding, drag
and drop, and state management. Because all the applications in this book will make use of
it, we’ll also take a look at Google’s Gears browser extension. While Ext JS is in no way tied or
dependent on it, I think you’ll see how Ext JS works with Gears very well and opens up a whole
new world of possibilities for our development efforts.

Ext JS Widgets: An Overview
In many JavaScript frameworks and libraries you look at, you realize that each widget is
completely independent of the others in terms of code. Because of this, you often find great
disparity in what each widget offers. For example, getting the value of some sort of text field
widget might require a call to its method, while a calendar widget might require a
call to . One widget may have an option to have a border around it, while
another will not.

In recent years, the “modern” libraries have taken things to a much higher level. A number
of frameworks these days have a logical hierarchy to their widgets, so for example a text field
widget is an extension of an editable widget, and an editable widget is an extension of a plain
widget. This allows each subsequent child component to inherit the behaviors and capabilities
of its ancestors.

Ext JS takes this tact, and it takes it to a fantastic extreme. In terms of overall structure,
how clear it is, how logical it is, how efficient it is, Ext JS has no peers in the JavaScript library
space. Some other libraries certainly do a good job too, but Ext JS, at least in the opinion of this
author, takes it to another level.

57

CHAPTER 2 WIDGETS AND ADVANCED EXT JS58

Note Please understand that what follows is not meant to be an exhaustive reference. As in the first
chapter, I’ll be discussing the things I think you’ll find most interesting and useful. For individual widgets,
I won’t be listing every single config option, method, and event supported—that would just be reciting the
Ext JS documentation. I’ll try to note the parts I think you need to know about up front, but many other items
will be introduced as we progress through the projects to come. Remember, the whole point of this book is
learning by example and learning by seeing things in real use cases, so documenting every last detail would
be the exact opposite of that. Besides, as rich and powerful as Ext JS is, it would take a heck of a lot more
pages than this to do it right anyway!

The Hierarchy of Widgets
Most widgets have at their base of their inheritance hierarchy (not including the absolute base
JavaScript Object) the class. This is an abstract base class that provides a common
interface for publishing events. In other words, it normalizes the mechanisms associated with
events that any widget might expose or respond to. This means that the mechanism you use to
make a button response to being clicked is the same underlying mechanism you use to make a
grid column sort when clicked.

Extending from is the class. The class endows an Ext JS
component (or widget in other words) with some basic behaviors, such as the ability to be
hidden and shown, enabled, or disabled. It also allows a component to be able to participate
in the typical component life cycle that Ext JS provides for, including creation, rendering, and
destruction. The class also allows all components to automatically be registered
with the so that you can later use the method to get a refer-
ence to a named widget. In general, any visual widget should extend or its subclass

, which adds automatic box model adjustments so that sizing and positioning is
handled more or less automatically. (Not all widgets necessarily have to have a visible compo-
nent, it seems.)

Note You’ll notice that I use the terms “widget” and “component” interchangeably in various places. Ext
JS refers to UI widgets as components, which is not necessarily the same as the class (although
many of the components are in fact subclasses of the class). Don’t be confused, though: a wid-
get is the same as a component in the context of Ext JS. In the cases where I’m referring to the
class itself, I’ll write it capitalized just like that and apply the special used throughout this book,
but lowercase “component” when it refers to a widget.

Another inheritance path (there are more than one) still includes at its base,
with above it, followed by extending from that. A component extend-
ing from is a component that can itself have child components. Something like a

 likely wouldn’t have this capability (and doesn’t because extends directly from
). However, something like a does, so extends from .

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 59

As it happens, isn’t a direct child of —it’s actually a child of , but
 is a direct child of . Because this is a rich inheritance hierarchy, it means that

 is effectively a descendant of anyway.
As you look at what classes extend what, all of them descend from the JavaScript

class. From that you find a couple of “inheritance paths” that all of the widgets follow. Each of
these trees starts with a class that extends directly from .

Figure 2-1 depicts the entire inheritance tree with regard to components.

Figure 2-1. Ext JS object model, extending from Observable

CHAPTER 2 WIDGETS AND ADVANCED EXT JS60

Ext JS isn’t just a series of components, and it’s more than even a nice, logical, well-
modeled object-oriented API. Ext JS wouldn’t be nearly as powerful as it is if that’s all it was.
In fact, one of the things that make Ext JS so powerful is the concept of layout and layout-
related components. To be more precise, the idea of layout is what allows you to take all these
neat widgets and create a true user interface from them. We’ll be looking at the concept of
layout shortly, but before that, let’s talk about some widget basics.

The Basics of Widget Usage
Whenever you instantiate a widget you are calling a constructor. This may be explicit in
the case of using the keyword, or implicit when using the array attribute and the

 attribute. In any of these cases, though, you can pass a JavaScript object to the con-
structor that provides config options to the component being constructed.

Since all widgets extend from the class, they share many common config
options. Some of the more important ones are:

: For widgets that can use existing markup as their basis, such as the Window
component, this option specifies the DOM node to use as the structural markup of the
new widget.

: This is an optional style class name to apply to the widget, so you can provide your
own styling on a per-component basis if you wish.

: When this option is set to , the component is rendered in a disabled
state.

: This option specifies the unique ID to assign to the component.

: This option specifies one or more classes that will extend the functionality of
the widget in some way. More on this later!

: The value of this attribute is itself a JavaScript object; the names of the attri-
butes on it are event names and the corresponding values are functions to execute in
response to the named event.

This is not an exhaustive list but it includes the options I think you’ll find yourself using
the most. Note that while all subclasses of will expose these config options, that
doesn’t necessarily mean that every single one of them will do anything. You’ll have to check
the Ext JS documentation to make that determination. In my experience, most of them are
globally available, so you probably only have to worry about exceptions that come up when
something doesn’t do what you expect—you can normally assume everything works as
expected across the board.

For widgets that extend from the class, there are a few additional config proper-
ties that are important to talk about:

: Specifies the child item that should initially be active. This only applies to
some containers, such as the .

/ : Sets the and style attributes correspondingly to
100%. These are those options that all subclasses will inherit but not all will honor.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 61

: Set to to hide the border of all child elements.

: Specifies the of the layout this should use.

: This is an array of JavaScript objects, each describing a child component of the
.

Of these, and are used nearly always when dealing with containers, and we’ll
be seeing a lot of them in action.

Now, making use of a widget requires one of two things: you either create a new one
using the keyword as you would any other class, or you define it in the arrays of a
container. What route you take depends on how you’ve chosen to write your code. You’ll see
plenty of examples of both throughout the projects. Keep in mind that in either case you’ll
be creating a config object to define the widget (in the case of passing an object as part of the

 array, the object you’re passing is the config object).
By way of example, here’s one way you could create a new :

As you can see, the constructor accepts an object with four attributes: and
are the horizontal and vertical size of the new , is the text that will appear in the
title bar, and is the markup to use as the main content of the .

Now here’s a similar example that uses the array of a to add an
widget to it:

This comes from the file included in the source code. When you run
it, you’ll see a with a red border, as in Figure 2-2 (but in glorious Technicolor1 in your
browser!). Within it is the , with the title “My First Panel,” and within it is the .

 1 Around 1922, a company called Technicolor Motion Picture Corporation created a series of color file
processes. Up until around 1952, Technicolor was the dominant technology in Hollywood for creating
color motion pictures, and if you’ve ever watched an older movie you’ve no doubt seen the Techni-
color logo splashed across the screen at some point.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS62

Figure 2-2. Example of using the items array to create widgets

Layout and Containers in Ext JS
When you get down to creating a UI with Ext JS, at the core of this is the concept of lay-
out. More specifically, it’s dealing at a high level with any of the classes in the
namespace.

A layout is composed of some number of elements contained within it. Any
Ext JS UI is a hierarchy of containers, and it’s also very much possible for a given to
itself have some sort of layout in it. It’s this building up of layouts and s and layouts
again (and s again!) within one another that results in the UI you see on the screen.

As a hierarchy, there must be some root element, some outer that all others are
a child of. Indeed there is just such a thing in Ext JS: the .

Note The screenshots you see in this discussion of layouts, viewports, panels, and so forth are taken
from the examples you can find on the Ext JS web site. So if you’d like to see them in action, cruise on over
there and check ‘em out! It’s always more enlightening to see them in a browser and play with them a bit.

Viewport
The is a (it extends from the class) that itself has a layout
structure like any other does, but it holds a special place in Ext JS. The
represents the whole of the area visible to the user, which means the browser window in other
words (or to be more precise, not the entire browser window but just the portion where a web
site renders, typically called the browser viewport).

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 63

When created, the automatically renders itself into the of the document
loaded in the browser and sizes itself so that it takes up the entire browser viewport. It also
is aware of resizing events that can occur and reacts accordingly. If by this description you
reason that there may be only a single per page, you can pat yourself on the back
because that is absolutely true.

The is endowed with a specific layout structure, be it a , ,
or what have you. A layout is some organization of s, so by virtue of having some layout
on the you are defining the overall structure of your page. It’s the act of adding s
to the that adds the content.

You create a as shown in the example in Listing 2-1.

Listing 2-1. Creating the Viewport

CHAPTER 2 WIDGETS AND ADVANCED EXT JS64

If you load Listing 2-1 in your browser, you’ll find a title bar running across the top of the
page with the words “Hello there!” in it, with the text “I am some content” below that. The rest
of the page has a red background. The has filled up the whole browser viewport. The

 attribute passed to the constructor tells it what sort of layout to use. The value
of this attribute is the for the (see the accompanying sidebar for an explana-
tion of). A is a layout that has a single item that fills up the it is
placed in. So, the has a single contained within it.

We then add children to the via the array. Each object in this array is
a . Since there’s only a single in a , there is likewise only a
single in the array. Since there is no type specified for the , we get
a basic by default. The attribute is the text for the title bar, and the attri-
bute is the markup content to put in the .

This is a simple example. Most Ext JS-based UIs will be much more complex, as we’ll see
as we look at the projects. But, at the end of the day, that’s the basic concept.

WHAT IS AN XTYPE?

An , simply stated, is a symbolic name given to a specific class. In other words, it is a shorthand way to
name a class in some context.

In older versions of Ext JS, before the 2.x series came to be, you had to instantiate all your UI widgets
ahead of time. So, let’s say your UI had ten s in it. That meant you had to instantiate all ten of them up
front. But, what if nine of them weren’t visible initially? That could be a lot of wasted memory and processor
time to create all nine that you didn’t even need at the time.

So, Ext JS 2.x introduced the idea of . When you create a UI, as seen in the example in List-
ing 2-1, the allows Ext JS to create the specified component in a lazy fashion—in other words, when
it has to be displayed on the screen. In the example the layout is needed immediately, so there’s no real
difference.

Imagine, however, if we used a , which layers s one on top of another so only one
is visible at any given time. Further image that of three s created as part of the , the two
that aren’t initially visible had s on them. There’s no sense creating them all up front, so if we use an

 instead, then they won’t be rendered until needed.
Now, although “fit” here is an , note that we’re talking about the attribute. As you’ll see

later, in many instances there is literally an attribute that you can specify in many instances. It’s a
semantic difference, though: here, the value of the attribute is an value, just as it would be if
the attribute name was literally .

The Ext JS documentation lists all the possible values for you, but you can also register your own
if you like by using this code:

If was an instance of , it would be usable as an just as any Ext JS
component is.

As we explore the widgets, I’ll list their s so that you can quickly find them when you need them.
Although I said previously this isn’t intended as an exhaustive reference, I see no reason to not provide
aspects of a reference to an extent if it makes life a little easier!

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 65

Panels

I’ve mentioned the term before, but I haven’t defined it just yet. Along with the idea of
layouts, and of the lording over everything, s are a fundamental building block
of Ext JS-based UIs.

A is a , but it has additional functionality that is geared toward making it
an ideal building block for UIs. For example, a contains toolbars at the top and bottom,
and also has separate header, footer, and main content areas between them. In many cases
these are optional components that you may not know are there unless you specifically deal
with them, but all s have the capabilities in common nonetheless.

s also provide expand and collapse capabilities automatically, if you want them.
s are meant to be dropped into other s or more usually layouts, and the Ext JS

framework manages their life cycles.
There are many different types of s, and you’ll be pretty much always working with

descendants of the class when you work with s at all. We’ll discover various s
as we go, but for now it’s time to get back to the specific layouts that are possible.

FitLayout

We already saw this layout in a previous example, so there’s not a whole lot more to say about
it. A contains a single item that automatically expands to fill the it is
placed in. You generally won’t instantiate an instance of this class; you’ll instead use its
as the value of a attribute on some .

Interestingly, doesn’t have any of its own config options, aside from those it
inherits, which is always the case. When you want to have a that fills the entire
it’s placed in, is what you want. All you need to do is set the attribute of the

 to and add a single to it and you’re good to go. Note too that if you add
multiple s to the with a of type , only the first added will be
shown.

BorderLayout

A is a relatively simple layout that also happens to be extremely common, per-
haps even the most popular layout. It is a layout that has five regions: one along the top of the
page, one on the left side, one on the right side, one on the bottom, and one between all of
them in the middle. The four around the edges are referred to by compass directions (so the
one on top is north, and so forth), while the middle section is the center.

The supports automatic split bars between the regions, allowing the user
to resize them at will. It also supports expanding and collapsing of sections. Like ,
the itself doesn’t have of its own config options. The available options come
from the children of , which are instances of or

. These children are s into which you typically
put some sort of .

CHAPTER 2 WIDGETS AND ADVANCED EXT JS66

While there are five available regions in a , there’s no requirement that
you use them all. However, you cannot add regions after the has rendered,
so you have to ensure that any regions you need are configured for use when you create the

.
You don’t explicitly instantiate an instance of . Instead, you set

the attribute of some to (or the layout of the , which remem-
ber is just a special). For example, let’s say you want to create a to display that
uses a to organize its content. Here’s how you can do it:

Assuming this filled the entire browser viewport, the layout would consist of a
region running across the entire width of the browser viewport at top (), with two sec-
tions below it. The section on the right () would have an initial width of 300 pixels while
the region on the left () would fill the remainder of the browser viewport.

The and attributes set the initial size of a given region (only makes
sense for the north and south regions, while only makes sense for the east and west
regions; the center region always fills the remaining space). The and attributes
set the minimum size and maximum size the user is allowed to resize the region to via drag-
ging the split bar.

In Figure 2-3 you can see a page using a . It’s a bit more advanced than the
example code, too, showing all regions in use.

As you can see, a allows you to create rather complex layouts in a fashion
that is quite typical of GUIs. Once again, it’s probably the primary layout you’ll use in most
cases.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 67

Figure 2-3. The BorderLayout

Accordion

The is in some ways like its own widget. In other libraries it actually is, but in Ext JS
it is a type of layout (it’s literally an extension of). Simply stated, an is one
in which you have a series of panes that can be selected by the user. The panes are stacked
vertically (although some implementations allow horizontal stacking too) and usually include
a nice animation effect when switching between them.

In Figure 2-4 you can see an example of an .

CHAPTER 2 WIDGETS AND ADVANCED EXT JS68

Figure 2-4. The Accordion layout type

An example of creating an can be seen in this snippet of code taken from the
 example from the source code:

So an instance of is created here, with a value of . We explicitly
set a so it fits in the it’s rendered into () and set to
to indicate that there should be an icon on the title bar that when clicked collapses
the entire . The attribute is an object that contains settings specific to
the chosen layout. You’ll see this attribute a lot, but the attributes specified in it depend on the
layout being used. In other words, it is essentially an object like what you would pass to the
constructor of the class. Here, the attribute specifies that we want switch-
ing between the panes in the to be animated. This gives a nice sliding effect to the
switching. Finally, the array specifies the panes to be added, which by default are basic

s. We give each a and some content and we have ourselves an !

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 69

CardLayout

The is sort of like the on steroids: it allows you to have multiple s
fitted to the , but only allows a single one to be shown at a time. Things like wizard
interfaces are typically implemented with , as well as things like tabbed interfaces.

The single most important method exposed by the is . This
allows you to show a new in the by either ID or index value. This is com-
pletely under your control as a programmer; the doesn’t even switch between

s (or in response to user events, unless you write the code to do that), so there’s nothing
by default the user can click to switch as with an .

The also supports a config option , which, when , tells the
 to only render a given when it’s actually shown. This is a good setting to keep

in mind for efficiency of loading.
Here’s a code example, taken from :

Here we have a being rendered into our friendly neighborhood
. We give it a title, specify the as , and set its to fill the . Then we

also assign an ID to the . This is necessary because we’ll need to be able to call its
 method later, and this is how we can get it. We also specify that item 0 is ini-

tially active, which is the first added in the array.
Each of the s has some markup that contains a button. When one of them is clicked

we use the method, which is something you’ll see a lot. This takes in an ID and
returns a reference to the specified . On that returned reference we need to call the

 method to get the associated with the . This gives us back
a reference to the created implicitly by virtue of the attribute being set to

, and we can then call the method to flip to the other .
The is a relatively simple animal, but we’ll see it in use a lot. In Figure 2-5 you

can see the example code in action. I’ve put two screenshots side by side so you can see each

CHAPTER 2 WIDGETS AND ADVANCED EXT JS70

of the s. Just pretend the buttons were being clicked to jump back and forth between the
two images and you’ll get the idea (or simply run the example code!).

Figure 2-5. The CardLayout in action (sort of)

TableLayout

A allows you to create table-based layouts with ease. In some ways it’s conceptu-
ally similar to except that you are in control of what regions the layout has, how
they span across others, and so forth.

A big difference between creating a layout using and using plain old HTML
tables (which does behind the scenes) is that with you don’t concern
yourself with tables and rows explicitly. You don’t have to bother with nesting cells with rows
and so forth. All you do is specify the total number of columns the should have,
and then start adding s to it, from left to right and from top to bottom. The
will figure out how to position each based on that row count, in addition to any row
span and column span settings you specify. If you’re used to creating HTML tables, using

 can be a little tricky to wrap your brain around, but once you do you quickly
 realize the flexibility it provides.

Figure 2-6 shows an example of a . Here you can see there are two columns,
and the first one is divided into two cells, one on top of the other. In HTML, you’d do some-
thing like this:

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 71

Figure 2-6. The TableLayout

With Ext JS and , the same sort of thing is accomplished with this code:

CHAPTER 2 WIDGETS AND ADVANCED EXT JS72

The result of this, if you execute the example, is shown in Figure 2-7.

Figure 2-7. Another TableLayout example

As you can see, the number of is specified as part of the object, and
then each is added via the array, each given the and to fill the area
of the it’s supposed to. The second has a of , just as it does in the plain
HTML version.

AnchorLayout

An is a layout that allows you to anchor contained elements relative to the con-
tainers’ dimensions. In other words, if the is resized, either because the
itself is resized or as an indirect result of its parent being resized, then all of the
elements within it that have been anchored to it will be rerendered, and most importantly
resized, according to the anchoring rules you supply.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 73

It’s not all about size, however: positioning can also be specified within the .
Before we look at any code, take a look at Figure 2-8 to see what an anchored layout looks like.

Figure 2-8. A Panel using an AnchorLayout, at its minimal size and expanded to a larger size

In Figure 2-8 you see the same with an used internally to organize its
children, in two different sizes. The larger version is a result of dragging the corner of the win-
dow to resize it. Notice how the text fields and labels are in the same relative position in each
but have been resized to fill the .

What does the code for something like that look like? Well, it’s not the exact code for the
previous example, but it would look something like this:

This code is taken from the example, which when run results in
Figure 2-9.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS74

Figure 2-9. The AnchorLayout, part deux

In this case we have two text fields and one text area (we’ll be looking at form fields in just
a bit). The specifies an , which allows us to use the attribute on
each element added via the array. This is a string that can be used to specify anchoring
rules. The value of this attribute is always in the form “xx yy”; xx is a horizontal anchor value
and yy is a vertical anchor value.

Three types of values are supported here. The first is a percentage. So in the code, the
text area specifically, the attribute says that the text area should be expanded to fill the

 horizontally and that it should take up 60 percent of the height of the . You can
also supply just a single anchor value as a percent, which Ext JS takes to be the width specifica-
tion, and the height will default to a setting of .

You can also specify an offset value for the attribute. This can be a positive or nega-
tive number. The first value is an offset from the right edge of the container, and the second is
an offset from the bottom edge. So if we were to change the attribute for the text area
to –25 –75, that would tell Ext JS to render the item the complete width of the minus
25 pixels and the complete height of the minus 75 pixels. As with percentages, you can
instead specify only a single value, and that will be taken as the right offset, with the bottom
offset defaulting to 0.

You can also specify an anchor value of , or , or , or . In order for this to do
anything, however, the must have a fixed size or must have an config
value defined at render time.

You can also mix and match anchor value types. For example, a value of means
that the element should render the full width of the minus 50 pixels from the right
edge and 80 percent of the ’s height.

TabPanel

A isn’t actually a layout in the same way as the others are; it’s a type of . But
since it is a way to lay out content on the screen, it fits in this section.

A looks like what you see in Figure 2-10. Multiple tabs that allow the user to flip
between different panes of content are present, and only one within the is vis-
ible at a time.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 75

Figure 2-10. The TabPanel

The code that created the in Figure 2-10 looks like this:

You use this just like any of the other components we’ve looked at, so there’s nothing new
here. Here are some of the more interesting config options available:

, which when adds a button to scroll through tabs if there are
more than can be displayed across the (the option goes along with
this; when it animates the scrolling of tabs)

, which should be a valid URL specification as described for the
 method and will cause an Ajax request to fetch that URL and put

the response into the tab upon creation

, which accepts a value of or (the default is) that specifies
where the strip of tabs should be placed: above or below the tab bodies themselves

Form Widgets
Forms in Ext JS are in many ways similar to the usual HTML elements, but as you might
guess, with a lot more power, not to mention the fact that they look nicer! Creating forms is
pretty simple too and follows a model similar to the type of code we’ve seen earlier.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS76

As in HTML, it all starts with a container, a element of some sort, and then a bunch
of input fields. It usually ends with some sort of submit button, and the story is not fundamen-
tally different in Ext JS land.

FormPanel

In general, creating a form starts with creating a . It is used pretty much like any
other type. Internally, uses the component to organize its chil-
dren, which in this case are input fields of various types.

In its default state, a internally has a object that provides the
basic functionality of a form, which includes submitting of the form via Ajax. You can over-
ride this to make the form submit in the way a normal element does by setting its

 config option to , but in the RIA world you probably want the Ajax
method.

Here’s some example code for a simple form that you can see in Figure 2-11:

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 77

Figure 2-11. A very simple form example

It’s a very simple form. The is created and told to render to the
. We specify a and for the panel, as well as the attribute, which

tells the form how wide a label for a field should be. I also added a attribute here to
keep the form fields and labels from bumping right up against the border of the . The

 attribute specifies the URL that the form will be submitted to when the method
is called. Then, a bunch of input fields are added via the array, a , a ,
a , and a , all specified via . As you can see, each field can have a label
as well, and even values. (Remember, the value is the width of the field itself, so
you have to subtract the width of the label to ensure the label plus the field isn’t wider than the

.) You can also specify a , as I’ve done on the .
Then a button is added to the footer of the so the form can be submitted. It calls

the method of the to get the underlying , which we then call
the method on. The form knows what URL to submit to, so our work is done at that
point. (Note that clicking the submit button will result in an error because you can’t submit to
a local HTML file in most browsers due to security restrictions.)

Now we’ll look at the individual fields that can be put on a form. While I suspect most of
them are familiar to you because they are much like their plain old HTML counterparts, a few
of them have no direct analogy, so they may be a bit more interesting to you.

TextField

The ubiquitous is perhaps the most common form widget out there. Simply stated,
it is a box that allows the user to enter some text. Typically, the only real limitation placed on
the entry in a is the maximum length, but there can be others.

For example, the supports a config option whose value is a regular
expression that masks what the user can enter. For example, a single expression will match
all non-numeric characters. So you could enter but not (and not either).

CHAPTER 2 WIDGETS AND ADVANCED EXT JS78

The also has a config option, which specifies the maximum allowed
length of the input, just like a plain element does. The option, when

, allows the field to expand or contract to fit its content. Associated with the option
are and . With set to , sets the field’s minimum size and

 sets the maximum size. The option determines if any existing text in
the will be selected on focus () or not ().

I’m going to go out on a limb here and assume you don’t need to see a in action.
That being said, I’m going to do it anyway! Check out Figure 2-12 for a couple of s.

Figure 2-12. The TextField

Checkbox

I won’t spend much time on the widget as you saw it in the previous example.
A is used when users have a basic yes/no type of question that they need to

answer. It has two config options: , which is either or and determines
whether the check box starts off checked () or not (); and , which when

 makes the check box unclickable.
That about covers it! A isn’t exactly rocket science.

DateField

The is a neat little widget that allows you to provide your users with a pop-up cal-
endar so they can select a date value for a text input field. This allows you to ensure the value
is entered in the format you need it to be in. It also tends to make it easier on the user (some
people disagree; they say that hand-entering a date is always easier and quicker, and doubtless
it is sometimes, but many people feel it generally isn’t).

The on the screen looks like what you see in Figure 2-13. The little calendar
icon next to the text fields is what the user clicks to pop up the calendar. In this screenshot I’ve
clicked the calendar next to the End Date field.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 79

Figure 2-13. The DateField

The code behind this example is something along the lines of:

HtmlEditor

The widget is akin to what is usually called a rich editor in other libraries. It allows
you to edit text that includes formatting, things like colors, fonts, font styles, lists, and so forth.
I can only assume the Ext JS developers chose to call this thing an because when
you call its method, you get HTML representing the text, with all its formatting,
that you have entered.

Well, whatever it’s called and why it’s called that, the widget appears in Figure 2-14; it’s
the large text area at the bottom and the toolbar above it.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS80

Figure 2-14. The HtmlEditor

The code for using an is along these lines:

You’ll notice the button on the bottom that when clicked calls the method of
the . Let’s say the user entered in the , and they made the
text red and in bold. The shown would contain this string:

Now, you can argue that using a tag is bad news, given our love of CSS these days.
You might say the same for using the tag. However, you can’t deny that the HTML returned
is indeed valid and matches the formatting applied to the text entered. That’s the whole point
of the widget.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 81

NumberField

The is just like a except that it has built-in numeric filtering. In other
words, it’ll only let you enter numbers. You can set the number of decimal places to show after
the decimal point by specifying a value for the config option (it defaults to
2). Note that you can enter more than the value specified by , but when you
blur off the field—that is, when focus leaves the field—it will be truncated back to that size.
You can specify whether decimals are allowed in the first place by setting the
config option to or . You can also specify a character to use as a decimal separator
other than the default period by specifying it with the config option (this can
be a string of more than one allowed character if you wish). The config option,
similar to the option, determines whether the field will allow negative values
() or not (). The config option lets you set what characters are considered
valid (it defaults to). That’s helpful if you want to allow entering of hexadecimal
numbers, for example. The option, when , allows the field to expand or contract to
fit its content. Associated with the option are and . With set to ,

 sets the field’s minimum size and sets the maximum size.
Since the is very similar to , I don’t think there’s much more to say

about it, or a need to show it here, so let’s continue on with our survey of widgets.

TextArea

A is essentially a that has more than one line of text available for the user
to enter something into. It looks like what you see in Figure 2-15; it’s the last field with the
label Note.

Figure 2-15. The TextArea

CHAPTER 2 WIDGETS AND ADVANCED EXT JS82

The widget supports a and a config option to specify its size. It also
supports the , , and options previously discussed. It supports the
option for validating the input against a regular expression, as well as a option for
limiting the amount of text that can be entered.

The code for the shows a being created, so there’s no sense repeating
that here.

Radio/RadioGroup

A , or radio button as it’s frequently called, is a descendant of the and is
extremely similar. In contrast to a , a stand-alone button isn’t generally seen; it
is usually in a group. (The metaphor a button seeks to implement is a multiple-choice
question with a single correct but required answer, whereas a is for multiple-choice
questions where one or more answer may be given, or none at all.) You can in fact create a
stand-alone if you wish, but normally you you’ll use the widget instead. Here
are some examples:

This code generates a total of six buttons. The first two are solitary. If you click them
you’ll notice that while they become “checked,” as you would expect, there’s no way via the
UI to deselect them. This is usually considered a flaw in a UI (alternatively there may be some
button, or other trigger, that deselects it automatically, but that’s not typically the right way to
use a button).

The third and fourth buttons are also solitary, but notice that they have the same
. This tells Ext JS that they should be grouped and work as buttons are meant to

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 83

work: when you click one it is checked and the other is deselected. The two toggle each other,
in other words, so only a single one is ever checked.

So, while you can have solitary buttons that are essentially grouped via the
attribute, and while you may want to do this sometimes, it’s often better to use the
widget instead. The final two buttons are created this way. One of the advantages that
the gives you is that you can create columns of buttons. The two grouped

 buttons flowed straight down the page, and that would have continued it we’d added
more. Sometimes this is what you want, but sometimes you have more than a few but-
tons and you’d prefer to have two per line, side by side, just to save some space and make
things look a little better. That’s what you can do with . The config option
tells the widget how many columns you want. Then, the array specifies all the but-
tons you want, and takes care of organizing them into columns.

Aside from the config option, there’s little else specific to . Most of its
other config options are from parent objects.

ComboBox

A is a combination of a and a from plain old HTML. Users can
type a value in the portion and have the portion automatically match the
value as they type. The also can be used like a regular , forgoing the ability
for the user to type, whichever you need.

A looks like what you see in Figure 2-16. There I’ve begun typing something and
the has found a match in the drop-down portion.

Figure 2-16. The ComboBox

There are a couple of ways to create a , and we’ll see some of the more useful
ways in later chapters as we explore the projects. For now here’s a very simple method:

This creates a with eight options in its drop-down section. By default you can
type in the portion, so if you type a for example, you’ll find that the drop-down
opens up and shows Cadillac, Chevy, and Chrysler as the options. You could point to one and

CHAPTER 2 WIDGETS AND ADVANCED EXT JS84

click right then and there, or you could continue to type. Type an , so the has CH
in it, and you’ll then see the list shrink down to just Chevy and Chrysler. Now type an and
Chevy will be the only remaining option. At this point if you press Enter or Return, the value

 will be copied into the , and that becomes the value of the that you
can retrieve (which you can retrieve with the method).

If you want the to work like a plain old , you can set the config
option to . That’s all it takes!

As I mentioned, there are some other more useful usages of the , most notably
the ability to hook it to a data store, which is a topic we’ll discuss shortly. In the next chapter,
you’ll see an example of doing just that.

TimeField

Now that we’ve seen the we can look at the . It may at first seem a little odd
that a field meant for entering time values is related in any way to the , but I think
once you see Figure 2-17, the mystery will be solved.

Figure 2-17. The TimeField

You create the just as you would any other widget, as you can see here:

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 85

In its default form, the has options in the drop-down portion starting with
12am and running to 11:45pm in 15-minute intervals. Also by default the works like
a in that the user can type a value and have it be autocompleted.

By default also, the will only allow the user to enter a value that matches one of
the options in the drop-down portion. By setting the config option to ,
you can allow users to enter other valid time values, such as “11:53 PM.”

Form Validation
One of the best things about forms in Ext JS is that they can have validation logic built into
them without you having to so much as lift a finger! For example, check out the screenshot
in Figure 2-18. Here, the two password fields do not match and the user has been alerted to
that fact.

Figure 2-18. An example of a form validation failure

Think about this validation and what it would take to implement it. As another example,
think about if you wanted the user to enter an e-mail address in a field and ensure it was in a
valid form. If you’re like me, visions of disgustingly complex regular expressions are dancing in
your head right now, and that doesn’t even take into account what would be required to high-
light the field and show that little tooltip next to it. That’s a fair bit of work all told!

In Ext JS, however, validating an e-mail address is as easy as adding a single config option
to a ’s config object:

Add that, and voilà, any time the user exits the field the validation will be carried out and
the tooltip will appear if the field is invalid! There is in fact one more piece to the puzzle to
make that fully work, but that’s what matters at the field level—we’ll see the rest shortly.

Now there’s more to it than that: what if, as is usually the case on forms, there is a submit
button at the bottom, and we want the submit button to only be enabled when all fields in the
form are valid? Again, I’m sure you can imagine the code required in order to pull this off, and
while it’s not all that complex, Ext JS makes it ridiculously simple! Add this config option to the

’s config object:

This will cause the form to monitor itself to ensure all the fields within it are valid. You
can manually check the status of the form at any time by calling the method of the

, and then calling the method on the object returned by .

CHAPTER 2 WIDGETS AND ADVANCED EXT JS86

However, as is the case with Ext JS most of the time, there is a more elegant solution. You can
instead simply add a to the form with this config option:

From that point on, the will be disabled if any field on the form is invalid; other-
wise it will be enabled. That’s right—it’s completely automatic!

In fact, that’s the real beauty of Ext JS’s form validation: it’s all just some configuration
options, after which it’s all automatic!

Validating e-mail addresses isn’t all Ext JS can do. The e-mail address validation is one of
the built-in s, which is short for “validation type.” A number of other vtypes are available
out of the box, as summarized in Table 2-1.

Table 2-1. The Vtypes Available by Default with Ext JS

Vtype Description

 Only allows letters and the underscore character

 Only allows letters, numbers, and the underscore character

 Verifies that the entry is in the form

 Verifies that the entry is in the form

As you can see, there are just some basics there; it’s nowhere near all the s you’d
probably want and need in a complex application. Fortunately, the system allows you to
create your own s very easily. Here’s an example of doing just that:

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 87

First, we need to turn on the capability in Ext JS to display those tooltips (this is the other
piece of the puzzle to get errors to display, as I hinted at earlier). The first two lines accomplish
that. More precisely, the first line turns them on and the second globally sets where the icon
showing an invalid field should be. In this case we tell Ext JS to put them to the right of the field.

The call to adds the custom to the class, which is the
class that houses all the built-in s, as well as any we create. Each has three attri-
butes: the attribute tells Ext JS the regular expression to use to mask off the input. Here,
the expression says that only numbers and the dash symbol can be entered. Next is the
field, which is the text to be displayed when the field is invalid. Last is the function named after
the (which is also the value put in place of the asterisk in the other two attribute names).
Here for example, the is , so we have , , and the func-
tion. The function returns if the passed-in value of the field, the variable , is valid, and

 if not.
After that, it’s a simple matter of creating a as we’ve seen before, making sure

we set the config option to this time. The button is then added, with the
 config option set to . Finally, a is created with the as a child of

it. If you bring up this example () and try typing in the field, if you press letters
you’ll notice the Submit button becomes disabled and the field is highlighted in red with the
error icon next to it. Hovering over the icon reveals the error message.

You can do arbitrarily complex things in a , even as far as making an Ajax call to a
server to do some validation. You’ll want to exercise caution doing something like that as it
would be easy to destroy the performance of your application. But the basic mechanism is
there for you to use (or abuse) as you see fit.

Menus and Toolbars (Oh My!)
Menus and toolbars are fundamental parts of modern GUIs, and Ext JS provides them of
course! In Figure 2-19 you can see an example of a . Interestingly, it is also an example
of a (as we’ll discuss later). Notice that the has quite a bit of capability built into
it: aside from the usual icons, with or without text beside them, you can have toggle buttons,
drop-downs, and much more.

Figure 2-19. A Toolbar

CHAPTER 2 WIDGETS AND ADVANCED EXT JS88

What I meant about this being a as well as a is that in Ext JS, there is no such
thing as a separate menu bar for creating a menu on the top of a page, as is typical in many
applications. Instead, you have to use the , and then attach s to buttons on the

. This isn’t an optimal situation, and there is discussion on the Ext JS forums about
what the future might hold, but this is the case for the current version. You can find at least
one extension to Ext JS to give you a “proper” menu bar if you wish. However, as it happens,
a as a menu bar is pretty close to what you would want anyway—and in some ways
might even be better.

Let’s see how a and a are created:

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 89

This is the code from the example file. As you can see, two things are
being created here: a first, and then a (within a , so really three things). Let’s
start with the .

A , by itself, is just a container for other items. Take any menu bar in any application.
When you click one of the words up top, like the typical File menu item in many applications,
you get a pop-up window that happens to be anchored to that text, and this window has the
menu items on it. This is a object to Ext JS. You basically created these objects, and
then attached them to other elements (even the page, if you want a right-click context pop-up
menu, for example). To create a menu bar, you would create a series of objects and then
attach them to a . I’m getting ahead of myself here a bit!

Creating a , of type , is little more than instantiating it and passing it
the config object, in typical Ext JS fashion. This config object contains an array, and each
object in that array describes an item on the menu. For simple text items that can be clicked
and that you can write code to react to, the object needs simply to have a attribute, as you
can see in the code with the first item in the array.

The second item is some literal text, and in this case it’s a bit of text that Ext JS recognizes.
A single dash means draw a divider line on the menu. You can put in any text you like, but it
will become simply static text on the menu, good for headers and such. In fact, jumping ahead
a bit, I’ve done exactly that with the fifth item in the array, “Choose an OS text.” For that par-
ticular item I’ve also demonstrated that you can put arbitrary HTML in there, and I’ve used the

 CSS selector to style it (this selector is provided by Ext JS).
Going back a bit now, the third item in the array is a check box item. All it takes is add-

ing the config option and Ext JS knows you want it to be a item now. You
can include a attribute in the object as well, which is a reference to a function to
execute when the item is checked (or unchecked).

The sixth item in the array shows that you can have submenus as well. You can then add
any items you wish to it, and I’ve done so here. The items are this time buttons because
I’ve included the attribute, which forces Ext JS not to make them es—as it
would have done by virtue of the attribute—but to make them buttons.

Now that we’ve created a menu, we can move on to creating the . In this example
I’ve made it a child of a , and so I’ve used the approach to create it. Just like a

, a has an array to describe each element to add to it. The first element
I’ve added is a simple button that has an icon and some text next to it. The Ext JS-supplied

 selector sets the styles appropriately for displaying both an icon and the
text. The attribute tells Ext JS the name of the graphics file to use as the icon. The
attribute is the function to execute when the item is clicked—here just displaying an
message.

The second element added with the is a spacer element that puts some
blank space between elements. This allows you to make the look just how you want.

The third element added is another button, this time one with just an icon. In this case
the selector is used to get rid of the text and the space otherwise reserved for it. The

 attribute is again used to react to the user clicking the button. This time around it dis-
plays a , which we’ve seen before but which we’ll discuss further in a bit.

The fourth and sixth elements are again spacers, while the fifth element sandwiched
between them is another special , . This draws a vertical line on the ,
which is typically used to separate groups of icons.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS90

The final element added is a simple text item, no icon or anything, but it has something
new: the attribute. This refers back to the created right before the .
Now when you click this button on , the we created will pop up below it. We’ve
effectively made a out of the ! You can imagine a series of these text-only buttons
on the , each with a attached to it, and you can see how it would essentially simu-
late a menu bar.

The can house a number of other elements, but I feel it would be better to intro-
duce them as needed throughout the projects to come. With what you’ve seen here, you have
the basics you need to understand those other capabilities; they build directly off what you’ve
seen here.

Note One of the problems with using a as a menu bar is that the buttons on the have
arrows next to them, which normal menus that we all know and love usually don’t. As it happens, there is a
way to get rid of the arrow (actually, there appears to be multiple ways). If you add this code to the
item with the menu attached, the arrow goes away:

Not, perhaps, the best solution, but one that works.

Trees in Ext JS
s are another famous widget that you see all over the place. If you’re a Windows user you

are familiar with s as the list of folders on the left of Windows Explorer. s are great for
displaying hierarchical data in a way that lets the user drill down into the data. In Figure 2-20
you can see an example of a .

Figure 2-20. Trees in Ext JS, two of them to be precise!

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 91

Actually, that’s two s! This example, from the Ext JS web site, shows one of the more
advanced features of s: the ability to drag and drop items from one to another!

For now, however, let’s deal with a much simpler example by creating a and populat-
ing it manually in code:

s aren’t something you deal with directly. Instead, you use the . This is a
 like any other, which means it can partake in all the layout magic Ext JS offers.

The code begins with some plain old JavaScript objects in an array. This is the data we’re
going to load into the . Next, the is instantiated. When you do this, you need to
specify a node (of type) for the , or things don’t work. A has a

CHAPTER 2 WIDGETS AND ADVANCED EXT JS92

attribute, which contains what is displayed on the page. You can also specify an attribute for
working with the nodes in the later.

A can have any number of child nodes, or it can be on its own, which is referred
to as a leaf node. In this case we have the root node, which is a special case because, presum-
ably, there will always be child nodes underneath it (otherwise a wouldn’t be much
good!). Here, the root node represents authors.

Once the is created and rendered, we can add some data to it. To do so, we first
get a reference to the root node by calling on the object. Then, we
begin to iterate over the array. Each element in the array is an object that contains an

 attribute as well as a attribute, which is an array of plain strings.
For each object in the array, we create an , giving it the

taken from the attribute. We use the method of the root
object to add that node beneath the root node.

Then, we iterate over the array for that author. For each we again create a
object with the matching the next element in the array, which is a book title. We
append each of these objects to the for the author (to which we stored a
reference in the variable when we made the call to the method). The net
result is that we get a with authors at the top, with three authors below it: Stephen King,
Michael Crichton, and Isaac Asimov. Beneath each of those authors are a couple of book titles.

The user can now click each of the nodes to expand it and see what’s below it. Clicking on
Stephen King, for example, reveals four book titles: Carrie, It, The Stand, and Cujo. You’ll also
notice that when we created the objects for each book, a object was passed
with a handler for the click event. So, if you click one of the book titles you’ll get an
message saying you clicked the given title.

Loading a like this is a little atypical. The more common way is via remote loading
of data. Doing so is a simple matter. First, add a attribute to the config options of your

. This option points to an instance of . You construct a
like so:

Now, assuming is on the same server that served the page this code is in,
and assuming the returned data from that call is in the appropriate JSON form, the will be
populated automatically. The correct JSON form is this:

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 93

This would generate the same that we did via code, but without all that iterating
over data and such we had to do ourselves. This is great if your data comes from a server-side
source. But since that isn’t always the case, knowing you can do it both ways is obviously good!

Grids in Ext JS
The is one of the handiest widgets out there, and is about as common as a button is these
days! A is used to display columnar data that more times than not is a fairly large set of
data and allows the user to scroll through that large set of data little by little. In Figure 2-21 is
an example of a relatively simple .

Figure 2-21. An example of a basic Grid

The in Ext JS is full featured, to say the least! For example, you can sort the data
by clicking a column header. This is done on the client side and so is quite fast and doesn’t
impact your server infrastructure at all. You can also drag columns around, so if you wanted to
see the Price field first, you could drag it and drop it before the Company column. Users can
even turn columns off if they aren’t interested in the data they contain.

You can resize the columns by dragging the vertical line between them. The supports
row striping, which is a slight color tint to the background of the row (usual gray) that makes it
easier for users to track their eyes across the data.

The can even have editable fields embedded within it, as you can see in Figure 2-22.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS94

Figure 2-22. An example of a Grid with editable fields embedded within it

The is always what’s called a data-bound widget, which is a concept we’ll be dis-
cussing very soon. In short, though, it means that you have some data, and the is bound
to it so that it is automatically populated from the data, and changes to the data can repli-
cate back into the data automatically. This saves you from entering a lot of tedious code to
populate the .

Note In fact, I wasn’t able to find a way to manually add a row to a at all. It seems that you
always have to go through the data store (i.e., add some data to the store, and the will automatically
be refreshed). This makes working with a very easy, and also consistent, since the data model is a
concept that is used by other widgets. However, at the same time it’s a little disconcerting at first because
it seems as if you don’t have as much control as you should. Rest assured; the data-binding capabilities in
Ext JS more than make up for it!

s can do even fancier things too. For example, in Figure 2-23 you can see a that
allows for grouping of elements. These groups can be expanded and contracted as the user
desires.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 95

Figure 2-23. An example not only of a more advanced Grid, but of the Ext JS plug-in capabilities

The even supports drag-and-drop capabilities, so the user can move rows around
as they see fit (or drag them to other drag and drop–aware widgets). You can apply filtering
to a ’s data and make the filtering user driven. The widget also has support for pag-
ing through large sets of data and for retrieving each page of data from a remote source, even
across domains!

You’ll notice that I haven’t included any code example for this widget, and that’s very
much on purpose. If all those capabilities I mentioned earlier sounded a bit overwhelming,
that’s because they are! I believe that for this widget, you would be better served to have it
revealed little by little during the course of dissecting the projects. We’ll see plenty of
examples throughout the rest of the book, and many of these capabilities will be seen (but not
all of them). I think that will make it seem less daunting than trying to demonstrate everything
right here. Also, since a is always bound to a source of data, and since we haven’t really
talked about that yet, it would be jumping the gun a bit and might wind up being confusing.

Rest assured, though, the is going to be your friend by the end of this book, and you’ll
know it well!

The Other Widgets
There are a number of other widgets that sit in the main namespace that I’d like to
look at as well. Some of them fit conceptually with the others previously discussed (such as

, which logically fits with the form widgets), but others are off on their own. Some
of these are special-purpose widgets that you probably won’t use quite as much, others are
perhaps a little controversial (some people feel they shouldn’t be part of Ext JS at all), but still
others are things you’ll use very often.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS96

ColorPalette

The widget is a relatively simple widget that has a highly specialized focus:
allowing the user to choose a color. You’ve no doubt seen this in your favorite word pro-
cessing program when you want to change the color of some text. You are presented, quite
literally, with a palette of colors to choose from. Simply click one and you’re good to go. The

 widget looks like Figure 2-24.

Figure 2-24. The ColorPalette widget (which looks much better on a color monitor obviously!)

The code for getting this up on the screen is pretty simple:

The fires when a color is clicked, and here I’m just displaying the color.
So, for example, if you click a pure red square on the palette, the alert would say ,
which is the hexadecimal RGB value corresponding to pure red.

I won’t go into much more detail than this because, frankly, there’s not a whole lot more
to go into anyway. But more importantly, this is a specific use-case type of widget, so when
you happen to need it you can look up the remaining few details.

DatePicker

The you’ve already essentially seen: the form widget. The only real dif-
ference is that the widget popped up the calendar when the user clicked an icon,
and is specially designed to work within a form, whereas a is basically the calendar
portion of the but stands on its own.

 is a good choice when you want to show a calendar to users all the time, not
just when they click an icon. Figure 2-25 shows the .

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 97

Figure 2-25. The DatePicker widget

The config option allows you to specify an array of dates that should be
disabled so the user can’t select them. Similarly, the option allows you to dis-
able days of the week (0 for Sundays, 1 for Mondays, 2 for Tuesdays, and so on… so a value
of [0,2,4] would disable Sundays, Tuesdays, and Thursdays). The option allows
you to specify the lowest date the user can select, which is useful if past dates are not valid
inputs. The event is probably the primary event you’ll be interested in, and it fires
when the user selects a date.

Window

If you’ve ever done any Microsoft Windows development, the concept of a is quite
familiar to you. Check that: if you’ve ever simply used any modern GUI-based operating sys-
tem, you are quite familiar with a !

In Ext JS, are first-class citizens and have pretty much all the features a on
a proper OS has. They can be minimized, maximized, resized, and dragged around; they can
overlap other s and UI elements; they can host other widgets; and they can have anima-
tion effects when they open or are closed.

We’ve already seen at least one as part of the example. s can
have layouts applied to the elements displayed within them. In a sense, you can think of

s as their own s.
We’ll be seeing plenty of s throughout the rest of this book, and you’ll get to know

them very well. For now I think taking a look back at the code is enough (so, like,
go ahead and flip back a few pages and check it out again if you want!).

Slider

A is another standard GUI widget that most of us know and love (or hate. . .some people
are pretty adamant that a shouldn’t ever be used). A is a good choice when you
want the user to select a value within a specific range in discrete increments in a visual way. As
you can see in Figure 2-26, the in Ext JS is fairly robust.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS98

Figure 2-26. A couple of variants of the Slider widget

Creating a is a piece of cake, as we’ve come to expect of all Ext JS widgets. Here’s
some simple code to demonstrate it:

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 99

The supports a couple of useful config options. First, the option sets the
initial value of the . The option determines in what increments the user can
change the value of the . This is accomplished by simply clicking the knob, or handle,
and dragging it left or right (or up or down in the case of a vertical). The and

 options determine the upper and lower limits of the range. While you may at some
point see a that allows the user to select something that is non-numeric, underneath it
all the values are always numeric.

Note For example, in one of my previous books, Practical Dojo Projects (Apress, 2008), one of the proj-
ects was a game that used a , which the Dojo library also offers, to allow the user to select a difficulty
level. The values were easy, medium, and hard—at least, those were the values the user would see. Under-
neath the covers, though, each of those had a numeric value assigned to it, since that’s what a deals
with behind the scenes.

The user can also click somewhere on the ’s bar to change the value, which causes
it to jump to the nearest incremental value. The config option, which defaults
to , can be used to turn that off (set it to). The config option, when set
to , makes the orient up and down, as you can see in Figure 2-26 with the third

. The method, likely the most important method available, is used to retrieve
the current value of the . There is likewise a method if you need to set the
value after the is created. Note that, as far as I can tell, there is no way to change the

, , and settings after creating a , so you have to know those
before you instantiate it.

ProgressBar

Look, nobody likes to wait, least of all me! I want what I want, and I want it now!
Of course, life doesn’t work that way, and unfortunately, neither does software. It is often

the case that there is some task our computer needs to execute while we simply sit there and
wait. A good application will give the user some indication that things are proceeding normally
and how far along in the process things are. That’s exactly what the is for. Take a
look at Figure 2-27 to see what I’m talking about.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS100

Figure 2-27. Some variants of the ProgressBar widget

There are a couple of ways to use this widget. Here’s an example of one:

Here we’re creating a with an of . Then, we get a reference to it via
 and call its method. This method allows us to use a in one of

its two supported modes: auto-updating (manual updating is the other mode—more on this
shortly). In this mode, the will simply go off and update itself over some period of
time in some given increment step. This is a good choice if the operation the user has to wait
for doesn’t have predetermined “checkpoints.” This way, users have something to look at that
indicates the process is running.

In this mode, we pass a config object to the method. This object, in this case, has
three attributes. The first, , determines how often we want the to update
itself, in milliseconds. So here we’ll have ten updates per second. The attribute tells
the widget how many progress update segments to fill in with each interval. How many update
segments there will be depends on how wide the is. If the gets filled
up, it will reset (i.e., empty) and start filling again. Finally, the attribute determines what
text to show within the as it is running.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 101

In manual mode, it is your responsibility to update the value of the . This is
the right way to go if you know, for instance, that the process that is running has five discrete
parts to it. That way, you can update the when each part completes, thereby giv-
ing the user a true indication of how far along the process is. In this mode you would pass

 as part of the config object passed to the constructor, and you would not call
the method. Instead, you would make calls to the method to set the
value (and optionally new text) of the widget.

In general, you should use the manual mode any time you can because it has more true
meaning to the user. Use the auto-updating mode when the process being waited on is more
indeterminate.

Working with Data in Ext JS
Having all these widgets is great! It allows us to create some truly great web UIs with a
minimum of effort. We can create applications that not only look fantastic but that expose
advanced functionality to the user.

However, at the end of the day, nearly all applications have to have some data to operate
on. It’s one thing to be able to create a , but a isn’t much good without information
to put into it. With many other libraries, data is something that is left entirely to you. Sure, the
library may give you an easy way to create a , but putting data into it is your job.

With Ext JS, you can do things that way too. You can take control of every last detail and
take all responsibility for populating widgets with data. However, if you’re looking for some-
thing a bit better, Ext JS is there for you.

Data binding is the name of the game! The term “data binding” refers to a technique
where something, often GUI widgets, is declaratively bound to a data source. This binding pro-
vides the capability to automatically update the widget when the underlying data changes. You
don’t have to poll the data source and update anything yourself, and you don’t even have to tie
into events and do some processing. True data binding gives you everything for free (or at least
very close to free).

In Ext JS, two key concepts underlie data binding: and (or data stores, if
you want to be more pedantic). A is a client-side cache of objects. The data might
have originated on the client, read in from cookies or some other mechanism (like s,
which we’ll be discussing shortly), or it may have come from a server-side data store.

A is a low-level description of the data. Let’s jump right in and see some code:

This code creates a type of . The class exposes a method
that creates a constructor for a given record layout. In simpler terms, it creates a new subclass
of the class itself. The object you pass into the method describes the structure
of the data. It’s a simple structure that mimics rows in a database table. In this example we
have three fields that describe a person: , , and . The attribute

CHAPTER 2 WIDGETS AND ADVANCED EXT JS102

maps a given field to some underlying JavaScript object. Ext JS seeks to abstract the underlying
data store from its own data implementation, so at some point you will create a based
on some JavaScript object. The fields in that object may not match the fields in the —
in name, that is—so the attribute allows you to map a field to an object field
whose name may not match.

Note In theory, the attribute is only necessary if the fields of the don’t match the names
of the fields in the underlying object. In practice, however, I find that my code doesn’t work if I don’t explicitly
include the attribute, even when the field names are the same. I’m not sure why this is, so you may
want to include the attribute even when it isn’t necessary. I don’t see where there’s any harm in
doing so.

Once you have a , the next step is to create a for instances of that .
While you could have s that you put in simple arrays, or just have individual variables
pointing to the s, putting them in a is the most common approach. In addition, it
provides a host of capabilities, such as filtering, retrieval, event-based updates, and more.

To create a , you write code like this:

Yep, that’s right: strictly speaking, that’s all you need to do! There are a couple of differ-
ent types of stores to choose from, but this gives you a plain-vanilla , which oftentimes
is all you need. There is also a , which includes built-in Ajax mechanisms for load-
ing remote data in JSON form from a server. Also available is the , which adds
capabilities for grouping s based on a specified field. You will also see the
floating around, which is an extended that makes loading data from JavaScript arrays a
littler easier. In this book we’ll primarily be dealing with your basic, run-of-the-mill , but
at the end of the day the basic concepts are still the same.

Although most of the time you don’t need to concern yourself with it, a will use
some implementation of the abstract class. A knows how to take data in some
underlying JavaScript form, be it an array or JSON string, and turn it into a object, as
well as some metadata that the needs.

Another concept that you sometimes need to think about is the . A
implementation (is an abstract class) knows how to retrieve data in the underlying
JavaScript form. In conjunction with a , the provides a batch of s to a

. Some available implementations include the , which allows
you to read JSON-P data from a remote URL using dynamic tag insertion; ,
which supports Ajax requests to retrieve data; and , which accepts data during its
construction and returns it when the calls the proxy’s method (which is the
method always called by the implementation to request data from the proxy).

Figure 2-28 illustrates the relationship between these components.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 103

Figure 2-28. Diagram of the components of the Ext JS data system

In this book, we won’t need to concern ourselves with s or s; we’ll only
focus on s and s.

We saw how to create a type of , and we saw how to create a basic . So how do
we load data into the ? There are several ways; here’s a simple one:

CHAPTER 2 WIDGETS AND ADVANCED EXT JS104

Here we have a basic JavaScript array of objects; each object contains a and
a field. So, we simply iterate over this array and for each object we call the
method of the . Passed to this method is a new instance of . The constructor
to the accepts an object whose fields are mapped to the fields of the newly cre-
ated based on the attribute specified in the specification. The field is
autogenerated using the millisecond value of a object. That’s all it takes! From this point
on, we have a with three s in it; each has the data taken from the array.

The next order of business is to take this populated and bind it to a widget. That’s
even simpler than you might think, as you can see for yourself:

It literally takes only two things: the attribute points to the data to use, and the
s in the array include a attribute to specify which field in the s

returned by the each column maps to. Just like that, our shows the s in the
!

Now, the neat thing is that if we modify a record in the , the will automatically
be updated! For example:

This will retrieve the first in the store, the one with the “James” and
the “Cameron”, and changes the to “Mike” (thereby changing a famous
movie director to a not-quite-as-famous baseball player2). Best of all, that change will instantly
appear in the , without our having to write any code or do anything at all. That, my friend,
is the power of data binding!

Many Ext JS widgets include data-binding capabilities, but not all. Some that do include
the , (which we’ll look at next), and the .

 2 James Cameron is the famous director of such Hollywood hits as Aliens, Titanic, The Abyss, and Ter-
minator 2. Mike Cameron on the other hand is a Major League Baseball player, an outfielder, who has
played for such teams as the Chicago White Sox, Cincinnati Reds, and New York Mets.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 105

The Template and XTemplate Classes
Templating used to be the purview of “grown-up” languages like Java, but nowadays, in the
world of “professional” JavaScript, templating has found its way to the client as well.

Templating involves inserting dynamic data into static text to produce a final fragment of
text, typically HTML for web development. Ext JS provides a robust templating mechanism via
the and classes.

The difference between the two is that the class provides a relatively bare-
bones mechanism, whereas provides more advanced features, such as conditional
processing, comparison operators, subtemplates, basic math function support, and special
built-in template variables. Let’s look at an example of both, shown in Listing 2-2.

Listing 2-2. The Madlib Example

CHAPTER 2 WIDGETS AND ADVANCED EXT JS106

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 107

Do you remember those things called Mad Libs that you used to do as a kid? You are asked
for a noun, a verb, the name of an animal, a color, whatever, and they get plugged into some
text and it generates a mostly nonsensical little story? That’s precisely what this example is.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS108

If you look at the section, you’ll see some simple markup consisting of two forms
laid out via a (I know, it’s evil to use tables for layout, but you know, if it works, why
not?). Note that the fields in the forms don’t have names associated with them. While it
doesn’t have anything to do with or , there’s a neat function in Ext JS that
we’ll see, the method, that allows us to deal with this situation.

Note that each form has a button that when clicked calls either or
, depending on which form it was. For example, the button on the first form calls
, which is:

A new object is instantiated, and a variable-length argument list (containing
as many elements as you like) is passed to its constructor. The arguments are concatenated
into one giant string, and that’s our template text. You’ll note that within the text are tokens in
the form . They will be replaced dynamically with the values from the form.

Now, how do we get those values? Again, this isn’t related to templating, but the
 method is the answer. We use a simple CSS selector query that says to give us

back all the tags on the page that have a class attribute value of . If you look back
at the markup, you’ll see that all the tags in the first form have such a class value,
whereas all the tags in the second form have a class or . So, the net result is that

 now holds a reference to an array, where each element of the array is one of the
tags in the first form.

So, now that we have a and we have the values from the form, it’s time to merge
them. There are a couple of methods you could execute on the object at this point.
The method would insert the data, which we pass to it as an object that presumably
has fields matching the tokens in the template text. This would return an HTML fragment
that we could do whatever we want with. We could also use the method, which
works similarly but will append the fragment to the specified DOM node. Here, I’ve used the

 method. This will overwrite the specified DOM node with the fragment.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 109

One important aspect of the class is that if you are going to be reusing the
 often, you can call the method on it. This will optimize its performance.

Now, the second Mad Lib form uses the function, which uses an
instead of . That code looks like this:

As you can see, it largely works the same as . However, there are a couple
of important differences. First, in this case, we have a couple of objects contained in the

 array in the data object. To display these objects, we need to iterate over this
array. Within the template text you’ll notice the tag. This is simply a looping
construct. It says to iterate over the elements in the array and process the portion
of the template between and however many times there are elements in that
array. The purpose is to generate an unordered list (). The other difference is that this time
I decided to use the method. This is an alias for , and as such it does
the same thing: it gives us an HTML fragment. So, I directly set the attribute of the
target to that fragment.

Note A fairly robust set of processing directives is available with , and I’ll introduce them here
and there as required in various projects. Check out the Ext JS docs for full details.

Drag and Drop
The drag-and-drop metaphor is a common UI approach for various tasks, such as selecting
items from a list. It’s a more visual approach to the problem and is therefore popular in the
GUI world.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS110

Modern RIAs are expected to expose this sort of “advanced” UI metaphor, and any
good library these days will provide the basics for you at a minimum. Ext JS is definitely no
exception.

Take a peek at Listing 2-3. This is a full, working example of drag and drop.

Listing 2-3. An Example of Drag and Drop with Ext JS

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 111

CHAPTER 2 WIDGETS AND ADVANCED EXT JS112

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 113

Even though this isn’t going to win the award for great-looking applications, let’s have a
look anyway, in Figure 2-29.

Figure 2-29. The drag-and-drop example

CHAPTER 2 WIDGETS AND ADVANCED EXT JS114

Let’s not quibble over the fact that we’re using styles and JavaScript in the same file as
the markup, a practice generally frowned on these days. Sometimes it’s nice to have a single
HTML page that is all inclusive, and for a basic example like this I think it’s fine.

Anyway… the way this works is pretty simple. First, we have two s that are abso-
lutely positioned. Inside each is another . The inner s will contain other s,
each representing a US president. All of them start out in the on the left with the ID

. Users can drag the ones they want over to the on the right with the
ID to indicate which presidents they like.

You create the s for each president via code in the function:

This is just some basic DOM manipulation code to create the s and insert them as
children of using the names of the presidents found in the array.
Note that each has a class specified as (using the JavaScript attri-
bute name for the usual attribute as it would appear on a tag itself). This style is
found in the section and sets up such things as the cursor style that will be used for
this element.

These are just plain old s at this point, of course. The part that makes them drag-
gable via Ext JS is the following line:

An is an object that conceptually mimics the element you tell it to (the
argument passed to it, which you’ve noticed works out at runtime to be the same value as that
set for the id of the created). More specifically, it creates an empty, bordered that
knows how to follow the mouse as you move it around after clicking on the element that it
proxies (one of our president s in this case). This is much more lightweight than trying to
drag around the actual element.

The other task performed in is to register a drop target so that Ext JS knows
where a draggable element can be dropped. This snippet does that:

Once again we instantiate a class, this time, that basically wraps a DOM
node, here. Ext JS now knows that this element should react to drag-
gable items dropped onto it.

But how exactly does it react to anything? The answer lies in the code in the
 call. If you removed that statement and ran the example, you’d find that the

president items can be dragged, but you’d also see that dropping doesn’t work. That’s where
the statement comes into play.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 115

 in general allows you to add a list of functions to the prototype of an exist-
ing class, overwriting any existing methods with the same name. One such object floating
around is that class. This class contains a number of event handlers, and we
need to override some of those to make everything work.

Four events in particular are of interest to us: , which fires when you click a
draggable item and start dragging it around; , which fires whenever a dragged item
is hovering over a drop target; , which is the opposite of and thus fires
when a draggable item leaves a drop target; and , which fires when the item is dropped.

First let’s talk about the code that executes in response to the event. If you run
the code with the statement removed, you’ll notice that when you drag an
item, all you see is a border being dragged—you don’t see the contents of the original .
This may be fine in some cases, but wouldn’t it be a little better if we saw what we were actu-
ally dragging? I think so! To accomplish this, we write the following code in the
event handler:

The method returns a reference to the linked element (the created
by the proxy, in other words). Remember that this function is attached to the proxy, so the
keyword references the proxy itself. The method, on the other hand, returns a ref-
erence to the actual element being dragged. Then we set the contents of the empty proxy
using its method to the of the real element. This allows us to see what
we’re dragging. Then we add the style class (supplied by Ext JS itself) to the object so
it’s styled properly. The method is good for this purpose (and is a handy method to
remember since it is available on many objects when working with Ext JS).

So now that things look like we want, how do make it work like we want? It begins with the
 event handler. When this event fires we have a relatively simple task: determine

whether or not the dragged item is hovering over a valid drop target. To do this, we examine
the ID of the target that is passed in to this event handler. If it matches the ID of our drop tar-
get, in this case, we get a reference to the underlying the drop
target and store it in the attribute of the proxy. We also add the class to
it so the background color changes to indicate the item can be dropped there.

The next event to handle is . When the event fires, the code examines
the attribute to see if it’s . If it’s not, that means the item is hovering over
the drop target. In that case, we get a reference to the original , and we then append it
to the underlying the drop target. In other words, we move the DOM node from the

 to the . Finally, we remove the
class from the drop target and make sure we clear the attribute on the proxy.

The final event handler handles the event. We have little to do here: set
 to so we know the item isn’t hovering over a target, and if the target passed

into the event handler is the , we also remove the class
from it.

To see it all in action, take a look at Figure 2-30. In this screenshot you can see that
I’ve dragged a few presidents over already and am in the process of dragging another. The

CHAPTER 2 WIDGETS AND ADVANCED EXT JS116

 is highlighted (you won’t be able to see that too well on the printed
page, although you may be able to discern a subtle difference in shades of gray).

Figure 2-30. The drag-and-drop example in action

As you can see, implementing drag and drop with Ext JS is a piece of cake. You can build
some powerful UIs with these simple capabilities, and they’ll save you a ton of work along the
way!

The “State” of Things
Another neat capability that most Ext JS widgets have is the ability to save their own state. For
example, take this snippet of code:

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 117

As you know by now, that code creates a that is 200 pixels wide and 200 pixels tall.
It has a single default in its content fitted to the entire size of the .

By default, the will appear in the center of the page. Also by default, the can
be dragged around and resized. What happens, however, when you reload the page that code
is a part of? The answer is that the will again be 200 pixels wide by 200 pixels tall and
will appear in the center of the page.

Wouldn’t it be nice if wherever users dragged the to, and however big or small they
resized the to, it appeared that way when the page is reloaded? This is a typical function
of most GUI applications, and since Ext JS is supposed to let us build rich UIs in a browser,
shouldn’t that be possible too?

Well, you may be thinking in that clever little brain of yours, “I can just hook up some
event handlers to the resize and move events of the , use the and

 methods to get that information, and then store it somewhere, maybe a cookie.
Then, any time I create that I’ll first grab that cookie, get the values from it, and set the

’s initial location and size dynamically. Problem solved!” Indeed, you could likely pull
that off; it’s not all that tough.

But you don’t have to do all that work! Ext JS basically does it for you.
Look at this version of the previous code, with some slight additions:

The first new line deals with something called the . This is a singleton
object that all consult with when they are created. If the tells the
that it has some state information about it stored, it hands it to the , which then uses
it to do things like restore a ’s size and position.

You make a given state aware by adding the and config
options to it. In fact, only the option is necessary because the defaults to the

’s , which itself defaults to an automatically assigned value if you haven’t specified
it. That’s all it takes! From then on, the will work in tandem with the to store
and restore state.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS118

In order for the to do its work, it needs to know how to store state information.
In other words, it needs an implementation of the interface. Ext JS pro-
vides the implementation that stores the state information in cookies. You
can implement your own if you choose to do something more robust, such as making Ajax
requests to a server to save and restore the information from a database.

State-saving for widgets is an extremely simple-to-use mechanism that provides a com-
monly expected feature of rich UIs. Say thank-you to the Ext JS developers for this!

For Your Date in the Boardroom: Ext JS Charting
A long time ago in a web application far, far away, charting was, shall we say, a bit of a chal-
lenge… maybe not so much a challenge as a hassle! To generate a chart, say a bar chart, you
had to call on the server to generate some sort of image file, such as a JPEG, in real time. The
image was based on some data that you either passed from the client or that already resided
on the server. You then returned the image to the browser to be displayed. It wasn’t perhaps
the most difficult challenge in all of application development, but there were quite a few steps
involved that had to all work together to get the chart in front of your users’ eyes.

In the world of RIAs, where we endeavor to make the clients, rather than our poor serv-
ers, work their little tails off, we want those charts generated on the client. At this point in time
there are a number of ways you can do that. One that has gained a lot of popularity is to use
the nearly ubiquitous Flash plug-in. Since we’re talking about Ext JS here, we don’t want to
deal with Flash directly, and Ext JS gives us just the abstraction layer we want.

The namespace is where we find this graphical goodness. Thanks to Ext JS,
there’s no heavy lifting for us to do. In fact, the charting capabilities Ext JS provides are built
right on top of the data capabilities we’ve already seen, as well as the deeply object-oriented
nature of the library.

For example, let’s say we want to show a line chart to relay the relative awesomeness of
the five seasons of my all-time favorite sci-fi series, Babylon 5. To do so, all we need to do is
this:

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 119

Figure 2-31 shows the result.

Figure 2-31. An example of a line chart

The is used to read in some data, in JSON form. This produces
 which we can bind to many different Ext JS components, such as s. We can also

bind it to an , which is nearly all we have to do to produce a line chart!
We also need to tell the what fields in the data correspond to the x-axis (the seasons
of the show) and the y-axis (the awesomeness of each). Ext JS takes care of all the messy Flash
details. In this particular code, I’ve wrapped the in a , just to make it look a
little prettier (I gave it a title bar), and it is rendered to the .

CHAPTER 2 WIDGETS AND ADVANCED EXT JS120

Note All of these charts automatically have tooltips attached to the data points so that hovering over
a dot on the line chart shows the value of that element, and hovering over a bar in the bar chart shows the
value for the associated element. You can see an example of this in Figure 2-33 in a moment.

Now, let’s say we determine a line chart isn’t the best way to show this and decide instead
that a column chart would be better. All we need to do is change the to and
we’re off to the races, as you can see in Figure 2-32.

Figure 2-32. An example of a column chart

There is also a , but it’s similar enough to that I have not dem-
onstrated it here.

Now, let’s say, hypothetically, that we’re doing a fancy boardroom presentation for some
television executives to convince them to let JMS3 produce another season of Babylon 5. Fur-
ther, we decide that a pie chart would probably impress the bean counters more. Have no
fear; that’s easy too—although it’s not just an change, but a whole lot more. We need to
change the entire configuration of the component in the array of the to this:

 3 JMS stands for Joe Michael Straczynski, creator of Babylon 5. This series had a very interesting and
tumultuous existence: it was planned as a five-year story arc, but was going to be cancelled after the
fourth season. JMS rewrote a lot of the story to finish up the main arc in season four, but season five
was then green-lighted, requiring some quick on-the-fly storytelling! As a related aside, while season
five is generally considered not as strong as most others (as you can see in the charts!) it had a couple
of top-notch episodes, most notably “The Fall of Centauri Prime,” which was a very sad episode for
one particular character!

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 121

Here, we have to tell the pie chart what field in the data corresponds to the categories—
that is, the slices of the pie—and what field represents the values of each slice. Ext JS, in
concert with Flash, then takes care of rendering the pie chart you see in Figure 2-33, including
sizing each slice according to the relative value of each in the data.

Figure 2-33. An example of a pie chart

As you can see, generating charts with Ext JS is a piece of cake and builds directly on top
of the data mechanism, making it an extremely powerful and flexible solution. The downside
is that Flash is required, but with something like 99 percent of all desktops with Flash already
installed, that’s not such a big deal.4

Note One thing that doesn’t seem possible with the pie chart is to show the category names on the
slices. The tooltips are present, but that’s not ideal. This is a capability I’d hope to see added to Ext JS in
short order (and it possibly could be there in the currently released version).

You can see all of the charts described here by running the file included in the
download bundle for this book. If you load this file locally—that is, if you open your browser
and simply open the file—you may see errors indicating that a connection between JavaScript
and YUI Charts could not be established. This is a result of Adobe Flask blocking local content
from communicating with remote servers, which the charting capabilities seem to require. To
deal with this, you will need to tell the Flash plug-in that this communication is allowed.

 4 The 99 percent figure is as of the writing of this chapter. Adobe keeps current statistics on Flash’s pen-
etration on this page:

CHAPTER 2 WIDGETS AND ADVANCED EXT JS122

To do so, visit
. Select the Global Security Setting tab and either specify the location

of under “Always trust files in these locations,” or select the Always Allow radio
button. If you now reload , you should see the glorious charts appear! You should
have to perform these steps only once.

Plug-ins
By this point in this book I expect that you think Ext JS is pretty neat! It clearly has lots of
functionality and capabilities, but does it do everything you need? Probably not. Fortunately,
the Ext JS creators have thought ahead and have provided a plug-in system for you to use to
extend the library.

In fact, there is a pretty robust ecosystem of Ext JS plug-ins available already. If you cruise
on over to Ext JS web site—the page in particular—
you’ll be able to see a number of available plug-ins.

For example, there is the , shown in Figure 2-34. It allows you to create
a nice wizard interface with no trouble at all.

Figure 2-34. The Ext.ux.PowerWizard plug-in

The is another fine example, as you can see in Figure 2-35. This plug-
in allows you to choose from a number of options and “flip” them over into another box where
you can reorder them.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 123

Figure 2-35. The Ext.ux.MultiSelect plug-in

All the extensions aren’t even necessarily UI widgets, although most of them tend to be.
If you want to write your own widget, all it takes is creating a class that exposes an

method. Usually, a plug-in extends the class and extends an existing .
When that is instantiated, you can specify the plug-in by adding it to the
config attribute, which is an array of plug-ins. Each plug-in’s method will be called
and will be passed the instance of the . The plug-in can do whatever it wishes at that
point, including hooking into the various events the exposes, thereby allowing you
to extend what the original does.

Note Writing custom plug-ins won’t be demonstrated in this book, so if it is a topic you would like to
know more about, the Ext JS Learning Center (on the Ext JS web site) provides more details for you to
explore.

These Are the Gears That Power the Tubes!
Gears () is, in a nutshell, a browser extension that provides function-
ality in three distinct groups: , , and . Gears is available for
most major browsers and operating systems.

Note Although Gears is still technically in beta, I think we all recognize Google’s MO here: release some-
thing solid as beta; call it that for a good, long time; and then finally “flip the switch” to make it final years
later (although as I write this Gmail is still beta, and it’s more than a few years old!). Then make it gold years
later, even though it’s pretty much been that for a while. I suppose this is a lot better than the Microsoft “just
release it and we’ll fix it up later” approach.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS124

LocalServer
The component of Gears enables you to cache and serve the resources that go
into rendering a web page from a local cache. This may not sound too exciting at first. In fact,
your initial thought may be, “Browsers already have caches, so what’s the big deal?”

The big deal, my friend, is that this cache is under your programmatic control. You can tell
it what resources to cache and serve, and when. In other words, you can take an application
“offline,” assuming all its resources are in the cache, meaning a connection to the server is no
longer required.

There is obvious potential in terms of performance too, although interestingly, that’s a
secondary concern at best. It’s that ability to go offline and still have an application work that

 is there to address.
The applications in this book won’t be using , so I won’t go into anymore

detail on it here. This is, after all, a book on Ext JS and not Gears! Go to
 to learn more if is something that interests you.

WorkerPool
The component is another piece of Gears that is really very cool. You are no doubt
familiar with how easy it is—thanks to the single-threaded nature of JavaScript—to lock up the
browser with a loop that never breaks or make similar programming gaffs. You are also
no doubt aware that JavaScript doesn’t provide threads as a language like Java does. JavaScript
has timers and time-outs, which at least approximate threads, and we’ve seen how Ext JS
abstracts this a bit more and makes it a little nicer for us, but a single thread of execution is still
ultimately all there is in the interpreter at any given time; timers and time-outs are more an
illusion than anything else.

With , Google has given us about as close to real threading as possible in Java-
Script. It’s especially useful if you have calculation-intensive operations to perform or input/
output (I/O) operations in the background to run. There is at least one significant limitation to
be aware of, however: threads in a , which are not surprisingly called s, can’t
access the DOM. This limits the s’ usefulness quite a bit, but even with that limitation
there’s still plenty you can do with them.

, like , isn’t a part of Gears we’ll get much use from, so we’ll cut this
discussion short and jump into the component we’ll be using primarily: .

Database
Now, we are using the component of Gears in these applications. The com-
ponent of Gears provides a client-side relational database system based on the SQLite (

) engine, which is an open source database system. It essentially boils down to two
simple classes: and .

The architecture that Google talks about enabling with Gears provides for the ability to
switch an application from “online” state to “offline” state at the flip of a switch. The way
Google recommends doing this is shown in Figure 2-36.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 125

Figure 2-36. The architecture behind online/offline capabilities made possible by Gears

In this model, the Data Switch is some code in the client-side of your application that can
determine whether the application is online or offline and which API your application reads
and writes data to. In other words, you wouldn’t directly use the Gears API. Instead,
your application would use some API you provide that sits between the application code and
the Gears API. Then, when you detect that your application is online, you write those
data reads and writes to your server-side data store, typically via the Internet. When the appli-
cation is offline, though, you use Gears API instead. When the application goes back online,
the Data Switch is responsible for synchronizing the data in both directions.

Now, all the details about how you detect online versus offline status, and how data syn-
chronization is done, are left to your discretion. With any luck, the JavaScript library you chose
would help you out. Ext JS provides a robust event system that would potentially allow you to
do this, but it doesn’t itself deal with it.

As an example of using Gears, and the component in particular, consider the fol-
lowing HTML page:

CHAPTER 2 WIDGETS AND ADVANCED EXT JS126

Yep, that’s all it takes! Now, if you have Gears installed and you save that HTML to a file
and then load it in your browser, you should see two alert messages displaying the rows of the
table. Obviously not rocket science by any stretch!

You may have noticed the import of the file. This is a bit of JavaScript pro-
vided by Google that takes care of initializing Gears and that provides the and

 objects that you interact with.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 127

Note To install Gears, which you’ll need to do before you can play with the application in this chapter or
the preceding example, go to and you should find a big button right there in
front of your face to install it. Follow the rather simple instructions and you’ll be good to go in no time! Also
keep in mind that the first time you run Gears for a given application you will receive a security warning that
you’ll have to allow the application to use Gears.

We’ll see much more of Gears, its component in particular, in all the projects to
come, starting with the next chapter. So if this brief introduction seemed a little light, don’t
worry; you’ll get your fill! Remember, though, we’re here for Ext JS primarily, and that’s where
our focus will remain.

Summary
In this chapter we got a good look at the real stars of the Ext JS show: the widgets. We saw how
they are part of a rich object-oriented hierarchy that endows these widgets with lots of com-
mon behaviors and properties, making our job of learning how to use them easy. We saw how
the concept of layouts is at the core of what makes Ext JS so powerful. Then we moved beyond
the widgets and saw how Ext JS provides for automatic data binding to many widgets and how
it provides a rich event model to hook into in order to work with our data. We saw some other
more “advanced” capabilities, such as drag and drop and state management. We looked at
Gears (from Google), which will underlie all the applications in this book to provide a local
database to stash our data.

In the next chapter we’ll start with the project so you can see how Chapters 1 and 2 fit
together. You will learn how to build some cool applications with very little effort.

P A R T 2

The Projects

The Internet is the most important single development in the history of human commu-

nication since the invention of call waiting.

—Dave Barry

Real programmers can write assembly code in any language.

—Larry Wall

You have that vacant look in your eyes that says “Hold my head to your ear, you’ll hear

the sea!”

—Londo Mollari (Babylon 5)

Well, believe me, Mike, I calculated the odds of this succeeding versus the odds I was

doing something incredibly stupid. . .and I went ahead anyway.

—Crow (Mystery Science Theater 3000)

They’ve finally come up with the perfect office computer. If it makes a mistake, it blames

another computer.

—Milton Berle

In view of the fact that God limited the intelligence of man, it seems unfair that he did

not also limit his stupidity.

—Konrad Adenauer

I refuse to answer that question on the grounds that I don’t know the answer.

—Douglas Adams

The pen is mightier than the sword. . .and considerably easier to write with!

—Marty Feldman

The ability to quote is a serviceable substitute for wit.

—W. Somerset Maugham

131

C H A P T E R 3

Ext JS for a Busy Lifestyle:
OrganizerExt

Now that we’ve had a decent look at all Ext JS has to offer, it’s time to dive right into our
applications, starting with OrganizerExt. In this chapter we’ll get our first real-world example
of Ext JS in action. We’ll learn how to construct a relatively complex UI, how to create data
stores, and how to bind them to various UI components. We’ll explore one way to structure
an Ext JS application, and we’ll get a taste of Gears in action underneath it all. In the end we’ll
have a fairly useful little application that should give you a good grounding in working with
Ext JS in a realistic way.

What’s This Application Do Anyway?
Look, we all have busy lives. What with work, spouses, children, bills, dogs, cats, and whatever
else soaks up your time, it’s difficult to keep track of it all. At least for me it is! I frequently for-
get where I’m supposed to be and when, what I’m supposed to get done and by when, who I
need to talk to and how to contact them. True enough, my wife covers for me most of the time,
but not everyone is lucky enough to be married to such a capable social secretary!1

Wouldn’t it be nice if we had some sort of device that could help us get organized? Some
sort of electronic system where we could store information to help us through our busy day?
Oh, if only humankind could get off their collective lazy butts and create such a wonderful
invention!

Oh wait, we have just the thing: these computer things! Yes, that’s right, computers are
just the ticket. Of course, on their own they aren’t everything we need: we need some software
too, and that’s precisely where OrganizerExt comes in.

OrganizerExt will give us the tools we need to bring structure to our crazy lives. How
exactly, you ask? By providing the following functionality to its user:

notes, tasks, contacts, and appointments.

layout.

in a grid.

 1 I mean that in the best possible way, dear! Love ya!

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT132

-
teria, such as only showing notes in a specified category.

won’t be able to update existing items, though, for the sake of simplicity (and if you
think that’s a bit of foreshadowing of one suggested exercise afterwards, give yourself a
high-five!). In regard to tasks, we’ll be able to mark them as complete (which is a type of
update, but is one specific case).

as well as resize them, to ensure they can see what they are interested in. Fortunately,
we get all of this for free with Ext JS!

mechanisms to minimize the amount of work needed to tie this underlying data to
the UI.

If this all sounds a bit like Microsoft Outlook, just take a gander at the screenshot in
Figure 3-1.

Figure 3-1. Your first look OrganizerExt

Yes, I most definitely took the basic structure from Outlook, but let’s face it: it’s a pretty
simple and logical layout that lots of other applications have emulated (and probably many
had long before Outlook hit the scene). So, I don’t feel too badly about taking my inspiration
from what Microsoft has already done.

This is, by and large, a fairly simple application and so makes for a good starting point.
However, being simple doesn’t make it… err… simple! What I mean is, while functionality-
wise it’s not too far-reaching, there’s enough complexity in the code that it’s quite interesting.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 133

What you should take note of as we explore the code, however, is the code that’s missing.
Try to think what it would have taken to do many of the things that Ext JS is doing for us. It’s
sometimes downright amazing what a simple configuration parameter flag on a given widget
can cause to happen.

But I’ve whetted your appetite quite enough at this point—let’s get to it, starting with a
look at the overall structure of the application and the files that make it up.

Overall Structure and Files
The directory structure of the application, and the files you’ll find within it, is typical of all the
applications in this book, and it follows the pattern you see in Figure 3-2.

Figure 3-2. The application’s directory structure and constituent files

In the root directory is the file . Since this is a sovereign web app (discussed in
Chapter 1), this is the one and only page, and therefore it’s obviously what gets loaded into
the browser. Next is a directory, which contains a single file, . This file contains
all the styles for the application (those not provided by Ext JS itself, that is). Next is an
directory that contains any images needed by the application. In this case we’ve got a bunch
that begin with , and these are the images shown in the icon view, one for each category
of data. There are also those that start with , which are, I’m sure you’ve guessed, the
images for the toolbar buttons. After that is a directory that contains all the JavaScript that
makes up the application. In this case we find , which is our Data Access Object (DAO)

There is also , which is the main code of the application and is the code we’ll
be spending the most time with in this chapter. In addition there’s , which is
some code provided by Google to initialize Gears. We won’t be looking at this in any sort of
detail because it’s largely outside the scope of this book, although we will see it being used in
an indirect way.

There is also the directory, which of course contains Ext JS itself.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT134

Now that we know what the directory structure looks like and what files make up the
application, let’s begin examining it, starting with the markup.

Note The code printed in this chapter, as well as all subsequent chapters, has been condensed in the
interest of space on the printed page. I have removed comments and tightened up line spacing in some
cases, but the code itself is identical to what you’ll find in the book’s source code.

The Markup
As mentioned earlier, is the single HTML page that gets loaded into the browser.
Since there is no page-to-page transition as with a typical web site, everything we need
markup-wise is present in this single file.

To begin, let’s check out the of the document, which by and large is boilerplate-
type content and holds no real surprises based on what we’ve seen in the previous two
chapters:

First up, we find the usual Ext JS imports that we’ve seen previously—no surprises there.
After that is the import of the file, which as we saw in Chapter 2 is all we need to
do to allow us to use Gears (aside from having Gears installed, of course).

After that are the imports specific to this application, beginning with the style sheet in the
 file. Next are the two JavaScript source files, and . We’ll get

to all three of those shortly.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 135

The last thing we see is a call to . Recall from previous discussions that this
will occur when the DOM is fully loaded but potentially before all resources, such as images,
are loaded. This is when you ideally want to build the UI because it makes the application
more responsive sooner. Here we see that the method of the object is
called (points to an instance of the class).

Now we move on to the of the document, and the first thing we find is the follow-
ing line:

This is the that will serve as the source of window animations. I’ll explain this in
detail once we start looking at the style sheet for the application because it makes more sense
in that context. So for now just stash this in the back of your brain for later analysis!2

Please Wait dialog:

This uses a number of styles defined by Ext JS. The selector is a relatively
simple style that indicates that a given element should be hidden from view. Within the
you find a number of other s. The first is given the style and is essen-
tially a marker that Ext JS uses when parsing this HTML (which, as we’ll see later, is exactly
what happens to create the dialog you see) to determine what the header of the dialog should
be. Likewise, the style marks the main content of the dialog. When we tell Ext
JS we want to show the dialog, and we point it at the , Ext JS will use
these markers to create the dialog for us. This is a fairly elegant way to create UI elements
without having to write much code.

Within the we are free to do whatever we like with the style , and here
you can see it’s a simple table for centering that uses the selector (which we’ll
see shortly is defined in).

In Figure 3-3 you can see what this dialog window looks like when displayed.

 2 Hopefully it’s not like that nasty little fractal virus that Captain Picard had Data and La Forge create
in the Star Trek: The Next Generation
chance you’ll have to take, I guess!

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT136

Note You can create a number of UI elements this way, and we’ll see this approach sporadically through-
out the projects to come. By and large it’s a choice you make between a more code-intensive approach and
a more markup-based approach. You’ll find that one approach works better in some situations than in others.

Figure 3-3. The Please Wait initialization dialog

The next snippet encountered is what you would see if Gears wasn’t installed, and
Figure 3-4 shows what that looks like (because I assume you have Gears installed by now and
therefore wouldn’t see this).

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 137

This is pretty much the same as the Please Wait dialog definition, and it contains just
some simple markup, including a link to the Gears home page for users to click if they don’t
have Gears installed already. That page opens in a new window on the off chance that a restart
of the browser isn’t necessary (it generally is, but I did this just in case Google figures out a way
to do it without a restart down the road).

Figure 3-4. The Gears Not Available dialog

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT138

There’s a little more content here, but otherwise there aren’t any surprises after the
previous two dialogs we’ve seen. Figure 3-5 shows what this dialog looks like on the screen.
Note here how the content of the page behind the dialog window is grayed out. This is the

with just a simple configuration option with Ext JS. Note too that the OK button isn’t defined
in this markup. We’ll see how that button gets there soon, when we discuss the code in

.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 139

Figure 3-5. The self-aggrandizing About dialog

All that remains to be seen in are four chunks of HTML corresponding to the
detail sections for each of the four categories. They are all essentially the same, so I’ve chosen
one, tasks, to use as an example:

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT140

As you can see, this is basically just an ordinary table structure wrapped in a , which
is initially hidden using the selector. I make the assumption here that you can parse
simple table markup on your own, since it’s pretty basic stuff.

I went with a table here because (a) it’s a simple approach to implement, (b) I didn’t need
anything more complex, and (c) I wanted to demonstrate how this was possible. An alternative
would have been to create Ext JS widgets to do this, but that would have added some degree of
code and made things a little more complex. More importantly, though, I wanted to show that
you can indeed mix straight HTML like this into your Ext JS layouts, which is primarily how the
UI is put together.

In Figure 3-6 you can see what this detail section looks like on the screen. Note that like
Delete Task and Complete Task buttons are added dynamically via

code later on, which is also interesting to see (it’s not just mixing in straight HTML with Ext JS
widgets—it’s also mixing Ext JS widgets in with straight HTML!). You can see, however, that
there are two s where the buttons will be inserted.

Figure 3-6. Viewing the details of a selected task (note the filter in action too)

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 141

As I said, the other three chunks dealing with appointments, notes, and contacts are
by and large the same, but of course with differing fields. I suggest having a look at the full

 file to see this for yourself, but just looking at the tasks example pretty well gives you
the full picture.

The Style Sheet
The file contains all the style information used in the application that isn’t pro-
vided by Ext JS itself. There’s not a whole lot here, and none of it is even remotely complex
(unless CSS is new to you, in which case you probably want to make a quick detour into a CSS
tutorial first). The first thing we encounter in this file is the following:

The selector is used to style the text seen in each of the four accordion panes.
This just ensures a nice, consistent font styling across them all.

The selector is next:

This is the selector used to style the text in the Please Wait dialog. Here, the text is made a
little bigger and styled in bold to make it stand out a little more.

After that we find the selector:

This is used to style the text of the About dialog. Once again it’s nothing but some font
settings, a little bigger than the font setting in the accordion panes () and a little
smaller than the font setting in the Please Wait dialog ().

Next we come to , which is, for a change, not related to font styling and is a little
more interesting:

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT142

When you run the application (you have run it, haven’t you?), you’ll notice that all the

that they all fly in from the upper-left corner? If you were wondering how and why that is,
 is your answer, at least partially. You see, when you tell Ext JS to show a window, you

can also give it the ID of some element on the page from which the window will fly into view.
This can be anywhere you like, but in the case of this application I decided on the upper-left
corner. The selector is the style given to the , as we saw when we
looked at . This style puts that in the upper-left corner of the page via absolute
positioning. So, when we tell Ext JS to show a window and give it the ID to use as the
source of the animation, it’s by virtue of this selector that the window flies in from that corner
of the page.

Tip Try changing the position values in this selector to see the windows fly in from other places on the
page.

The selector is next:

This is the style given to the four tables used to display the details of a selected note,
task, appointment, or contact. As you can see, it’s really just a border specification and some
padding—not exactly rocket science! The color was chosen to match the default Ext JS styling
so it blends into the UI fairly well.

Within each of the details table are labels (like First Name, Last Name, and so on), and
there is the data itself. For the labels, the following style is applied:

This gives us a bluish background color, again chosen to blend in with the default Ext JS
style sheet. It also sets the font style once again to a reasonable size and family.

As you would guess, the selector for styling the actual data is next:

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 143

This gives the cell a light-gray background and sets the font style once again. Note that the
labels are bold but the data is not, which is a fairly typical thing to do (sometimes it’s reversed,
with the data bold and the labels not, but I personally find this way more visually appealing).

The following few styles are applied to the icon views for each of the four categories. The
first is :

This defines the style applied to the body of a given item. Changing the attri-
bute, for example, will put a color behind each of the icons and their labels.

Next up is some styling that gets wrapped around the icons and their labels:

This style ensures that the icons run horizontally across the page properly. This goes along
with the following selector:

This ensures that the labels are centered on the icons and that if the text is too long it’ll get
cut off (which isn’t a problem in this application because it’s handled differently, as we’ll see
later).

The next selector is the style for when an icon is hovered over:

It’s not much more than a border and a background color change to give a nice highlight-
ing effect. Related to this is

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT144

This is the style applied to an icon that has been selected, and once again it’s little more
than a different background color and border style (there’s also padding defined on both of
the previous selectors, but the color is what’s important since that is what’s apparent on the
screen).

The last bit of style definition in this style sheet looks like this:

These class definitions resolve a bug present in Ext JS v3.0 that causes the arrows on
 elements to appear on the left side in some situations instead of to the right of the

entry box portion. If nothing else, the fact that I was able to get an answer to this problem in
under an hour is a testament to how good support for Ext JS is!

The Code
Now that we’ve looked at the markup and the style sheet involved, we can move on to the
actual code. Let’s begin by looking at the class, which is in a sense a stand-alone entity to
the extent that you could rewrite the entire application and still reuse this class with little or no
change.

The DAO Class
Next we move on to the class, contained within the aptly named file. This class
presents the API to the rest of the application through which all access to the underlying Gears
database will be made. This gives us the possibility of storing the data in some other fashion
later, perhaps on a server, without changing the application code, which is one of the primary
benefits of the DAO pattern.

Let’s begin by getting a bird’s-eye view of this class via Figure 3-7, a UML class diagram
of it.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 145

Figure 3-7. UML class diagram of the DAO class

First we see that there are two public fields:

These are pseudo-constants that define the value that a task will have when it is active
and when it is complete. Since JavaScript doesn’t have the concept of a constant like most
languages do, the best we can do is name them in a fashion that tries to indicate they are
constants. There’s a fairly standard way of doing that: all uppercase with underscores between
words. This doesn’t stop someone from changing the value of these fields, but by general con-
vention most programmers will know they probably shouldn’t just by looking at the name.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT146

Next we find a private variable named :

This variable is used in the rest of the code to define the name of the database that Gears
will store for us. This variable is optional since Gears will create a default name if you omit it,
but it’s cleaner to explicitly name something that makes sense. This value isn’t needed outside
the class; hence it’s private to avoid any other code mistakenly changing it and breaking the
application.

Following that is the definition of a couple of string variables:

This code defines some SQL statements related to notes, starting with a table creation
statement. As you can see, it’s a perfectly standard statement that creates the table if it doesn’t
yet exist (and does nothing if it does exist).

Following that is an SQL statement to create a new note. As you can see, dynamic param-
eters are present in the form of question mark placeholders. The actual values will be bound
to these placeholders later when the statement is executed.

After that is the simple SQL statement to retrieve all notes. As it turns out, this is the only
retrieval operation we’ll need in this application, so it really is as simple as that.

Finally, there is an SQL statement used to delete a note. All this takes is an ID value for the
note to delete, again using dynamic parameters.

THE U IN CRUD

If you’ve never heard the term CRUD before, now you have! CRUD stands for Create, Retrieve, Update, and
Delete. These are the four basic operations that most database-driven applications need, and CRUD is a very
common term in programming circles. It’s also kind of fun to say, especially in place of more vulgar… er…
vulgarities!

So, we can see here that there is a create SQL statement, a retrieve statement, and a delete statement
for notes, but no update statement. The way I decided to code this application means that updating an item
isn’t necessary, at least in the case of notes, contacts, and appointments (tasks are a different story, as we’ll
see next).

In the interest of saving some space here I am not going to show the SQL statements for
contacts, appointments, and tasks because they are, by and large, no different than what we
just looked at, just with some different fields. Otherwise, they are the same, and there is a set of
four SQL statements for contacts and appointments as well.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 147

For tasks, however, there are five because there is an update query for them:

Because a task can be updated in the sense that it can be marked as having been com-
pleted, we need such an update query. It works just the same as any of the others; it’s just a
slightly different query.

Before we continue looking at the code, I thought it would be a good idea to take a glance
at the structure of each of the four tables (notes, tasks, contacts, and appointments). Seeing a
slightly more graphical representation helps, so Figure 3-8 shows just such a representation of
the table.

Figure 3-8. Table structure of the contacts table

A grand total of ten fields are present for each contact, all of them of type text, except for
the ID. Pretty straightforward, I suspect.

In Figure 3-9 you can see the corresponding diagram of the table.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT148

Figure 3-9. Table structure of the appointments table

There isn’t as much information to store for an appointment, so six fields are all we need.
Next up is the table, with three fields, as shown in Figure 3-10.

Figure 3-10. Table structure of the notes table

To round things out, in Figure 3-11 is the same diagram for the table. This is similar
to the table, with the addition of the field.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 149

Figure 3-11. Table structure of the tasks table

Now, getting back to the code, we encounter our first method: . This method is
responsible for some basic setup:

The first thing it does is ensure that Gears is installed and available. This will be the case
if there is a attribute on the object and if there is a attribute on that
object. If either of those conditions isn’t met, then the variable is set to ,
which will be the variable returned from this method (we optimistically default its value to

 in anticipation of no problems with Gears).

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT150

The next step is to ensure we have the tables we need. This is done by creating an instance
of the object via a call to , as we’ve previously
seen in Chapter 2. Then we open the database by name (using that private vari-
able we saw earlier). After that we execute each of the four table creation SQL statements, one
each for notes, tasks, contacts, and appointments. Recall that these statements will only have
an effect when the tables don’t already exist. Finally, we close the database (which is optional,
but is good style nonetheless) and return that variable so the caller knows whether
the underlying database is good to go.

Now that the database is initialized, we can go ahead and create items, delete them, and
so on. In celebration of that, let’s look at the next method, the method:

The argument is an object that contains fields where the data for a note is
stored. So, the first thing that’s done is a check to ensure that we got an object for
(it’s not , in other words) and that the fields that are absolutely required for a note to be
stored are not either. In the case of a note, all of them are required, but that’s not the case
for other types of items. Once we do that verification, we again open the database and simply
execute the query. Note the second argument to the method: an
array of data that will be inserted in place of those question mark placeholders we saw earlier.
Gears will take care of properly escaping the inserted data, so this is a safe way to create a final
SQL statement that avoids various hacking exploits that would otherwise be possible.

Now that we know how to create a note, seeing how to retrieve notes is the next logical
step. Here’s the code for that:

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 151

So once again the database is opened, and the query is executed. From
this we have a object, so we begin to iterate over that. This is done by continually
checking to see if returns , which indicates we have another row of data
to process. For each row, we create an object consisting of three properties: , , and

. These are the data stored for each note. The values of these attributes are pulled from
the row of data using the method, which simply gets the value of the named
field from the row. This created object is pushed into the array created before the iteration
began. Finally, the and database are closed and a simple array of objects is returned.
Note that the array could be empty, but would never be returned from this method,
which makes writing code that uses this method a little cleaner since there is no checking
to be done.

Note You may wonder why I didn’t simply return the to the caller. This would have worked,
with some changes to the calling code, but the reason for not doing that is because it creates a “leaky
abstraction.” In other words, this DAO class is currently the only code in the application that knows we’re
working with Gears. If we return the , which is a Gears-supplied class, the rest of the applica-
tion has to “know about” Gears as well. Transferring the data to a simple array of simple objects means the
application is abstracted from the underlying data store, which allows us to change to a different store down
the road (imagine if this method actually made an Ajax request to a server to get the data instead).

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT152

Deleting a note is much the same, although it takes even less code:

To start with we have another quick check of , ensuring it’s not and that
there is an specified on it. After that it’s a simple execution of the query,
dynamically inserting the value, and that’s that!

At this point you’ve seen how create, retrieve, and delete works for notes. For contacts,
appointments, and tasks, the code is virtually identical. The only differences are the SQL
queries executed and the fields referenced. Therefore, we won’t look at the methods for those
items here, but I encourage you to have a look at the code yourself.

There is only one thing left to look at: the method, which is used to mark
a task as complete:

There should by this point be little, if any, surprises. There is more verification this time
around because there are a few more required fields. In fact, it’s all of them, because when
updating a task the code makes no effort to determine what fields changed—it simply writes
out the values for all of them. Otherwise, this method is no different than what you’ve seen
before.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 153

The OrganizerExt Class
The class is the heart and soul of the application; it’s where all the best parts are!
It’s also a fairly lengthy piece of code, although as you’ll see, much of it isn’t what most people

Let’s start by looking at a UML class diagram of , as shown in Figure 3-12.

Figure 3-12. UML class diagram of the OrganizerExt class

There’s certainly a fair bit there, but as I’ve done before I’m going to cut some of it out of
our discussion on the grounds that what we will look at basically gives you the picture for the
pieces I skip as well. As always, though, I encourage you to look at the complete code in the
book’s source code, if for no other reason than to keep me honest!

Class Fields
Let’s begin by looking at the fields that are part of this class, beginning with :

This field, which is public, is used when the user clicks the View Mode toolbar button. It
is necessary to know which category of items is currently being shown to properly switch the
view mode, and while it likely would have been possible to interrogate the accordion itself

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT154

to determine what the selected pane is, how to do that wasn’t readily apparent to me. More
importantly, this approach offers greater efficiency.

Next we encounter a series of four public fields:

These hold references to the data stores we’ll be creating, one for each category. We’ll see
how the stores are created and manipulated in fairly short order, but for now let’s move on to
another group of four public fields:

These hold references to the classes we’ll create that describe a type of item. The
 classes describe what fields a note in a data store has, for example. Note that

these variables, as well as the previous data store variables, are all public because they will
need to be accessible outside the scope of this class, as we’ll see later.

The next field is :

This too is public because it will be needed outside the scope of the class. Its purpose is
to provide the list of categories under which an item can be saved. The items will be used to
populate the combo boxes on the various create forms, as well as in the panes for
filtering items.

The Initialization Code
Now that we’ve looked at the fields of the class, we can move right into the executable code.
The first method we encounter is , which you’ll recall from looking at is called
when the DOM is loaded:

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 155

First, an Ext JS is opened. The attribute is set to ; there-
fore, the markup in that contains the content of the will be
used to form the
now we can see why: the class knows about those markers and so can determine what
content in the specified DOM node is the header for the , what is the main content,
and so forth. We specifically make the window static in the sense that it can’t be minimized
(), can’t be resized (), and can’t be dragged around
(). We also make it modal (), which makes it a typical lightbox
pop-up (everything else on the page is dulled out and the is front and center with the
full focus of the user on it). In other words, it’s pretty well there until we tell it to go away. The
code here is interesting in that the object is created, and then we immediately show it
via the chained call to its method (which is passed a reference to the
so that the animation of the flying in starts from that location, which as you’ll recall is
the upper-left corner of the page). This chaining of method calls is pretty common in Ext JS
programming, and in JavaScript in general. If you’ve used the popular jQuery library, you’ll
know that this can be taken to an extreme, but some people find it to be a much better style;
it’s up to your own tastes in the end.

Finally, we see that a timeout is started with an interval of 500 milliseconds (half a sec-
ond). This is done to ensure that before the rest of the initialization procedure happens, the

 has completed its animation. This is important because JavaScript is always single-
threaded, so if we continued with the rest of our code the very likely would not be
visible, and almost certainly wouldn’t properly complete its animation (at best it would prob-
ably happen in a choppy, visually displeasing fashion).

Once that timeout occurs, it fires the method of the class, which
is up for examination next:

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT156

First, a call to the method is made, so let’s jump ahead slightly and look
at that now:

A call to the class’s method is made, which you’ll recall returns if Gears
is good to go, and otherwise. So, if we get here we begin by destroying the

 . Note that no animation occurs in this case—it’s simply destroyed,
which includes removing it from the screen straight away. After that, a new is created,
this one using the contents of the as its template. For this there
will be an OK button for the user to click to dismiss the . To do this we use the
configuration attribute to the constructor. This is a simple array of objects, where each
object defines a button. We only have one button here, and when it’s clicked we want to hide
the (we could destroy it as well, but there’s little different in this instance so I thought it
would be nice to see something different than we saw with the Please Wait). One of the
possible attributes on the object defining the button is the attribute, which is a refer-
ence to a function to execute when the button is clicked. In this case it’s an inline function,
since it’s not needed anywhere else.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 157

Note We have a closure here: the variable is a reference to the created, and it’s
still available to the callback function via closure. This makes for some clean, tight code, which is nice.

Finally, a call is made to the method of the new object. In this case I decided
not to chain the method call as we saw previously, just to show a different syntax to you (see, I
care about you, dear reader!)

A WORD ON CLOSURES

Although the assumption throughout this book is that the reader has a fair understanding of JavaScript,
closures are one of those concepts that confuse the heck out of most developers until it finally just suddenly
clicks. At that point, they see how very useful they are. Closures are not something that every developer has
experience with, so I’ll provide a brief description here.

A closure is an expression (typically a function) that can have free variables together with an environ-
ment that binds those variables (in other words, that “closes” the expression). Perhaps a simpler explanation
is that functions in JavaScript can have inner functions. These inner functions are allowed to access all the
local variables of the containing function, and most importantly, even after the containing function returns.

Each time a function is executed in JavaScript, an execution context is created. This is conceptually the
environment as it was when the function was entered. That’s why the inner function still has access to the
outer function’s variables even after return: the execution context of the inner function includes the execution
context of the outer function.

Of course, if Gears was available, then the branch would have hit, returning ,
which gets us back into the main code of the method. In that case, a bunch
of method calls execute. First is , which literally creates the four data
stores, one for each category of items. Note that populating the stores with what may
be in the Gears database is done later. Before that can occur, we need to create
descriptors for notes, tasks, contacts, and appointments, and that’s the result of calling the

 method.
Once those three methods complete, we have fully built data stores (although remember

that they do not yet have data in them). Let’s now we move on to creating the four dialog
 objects for creating notes, tasks, contacts, and appointments. There is a method

call corresponding to each of them: , ,
, and . We’ll look at those shortly.

Note I suppose, looking back on it now, creation of the data stores and descriptors could have
been broken out into four separate methods like the creation of the dialogs are… I don’t have any
secret reason for doing it this way, but putting all the creation code together would have made for a
much longer method!

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT158

Here are the next two lines of code:

This code configures Ext JS so that tooltips will work when validation failures occur on
those four new item creation forms. It also indicates that, by default, the messages will be
anchored to the side of the form elements. You can set this on a per-field or per-form basis,
but doing so globally is better if you can, and in this case we can.

The final two tasks are to build the UI via a call to , and to destroy the
Please Wait . When that’s done, the application is fully initialized and ready for user
interaction.

The is where most of the action is, but before we get to that we have a number
of other methods to look at, starting with .

The Data Stores
Creating the

A new object is instantiated, and that might be the end of it except that
we also need to add to it the ability to react to various events, namely adding objects to
it and removing objects from it. This is done by including the attribute in the
configuration object passed into the constructor. The attribute is an array of events,
and objects contain information defining what happens in response to the event. So, the add
event has an object that within it has a single attribute, . This is a reference to a function to
execute when the add event fires. The signature of this callback method is defined in the Ext JS

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 159

documentation for the event. In this case it gets passed a reference to the data store itself,
an array of objects being added (one or more objects can be added at a time),
and the index at which the object will be added. For our purposes, we only care about
that array of objects in actuality.

In the callback function itself, we do a quick check to see if the Please Wait is pres-
ent. This is because any time a is added to the store, this function will execute. So, when
the store is being populated initially, this will execute for each we add. Since at that
point we know we don’t want to save anything to the underlying database, we need to skip
execution, and checking to see if that exists is an easy way to determine that. So, if the

 doesn’t exist, all it takes is a call to the class’s method, passing it an
object that contains all the data for a note, taken from the incoming array. In our
use case, we know there’s only one record and there’s no iteration over the array to do, so we
just go after the first, and only, element, directly.

When a is removed from the store, the same sort of thing occurs, but the
event fires this time. In this case, we still pass an object to the class’s method,
but this time it’s only the of the note to be deleted that we care about.

In order to make this clear, take a look at the sequence diagram3 in Figure 3-13. This walks
you through the flow for adding, deleting, and even updating objects in both the data
stores and the underlying Gears database. Hopefully this figure helps you see how it all ties
together because an event-driven model like this can sometimes be difficult to wrap your
brain around.

Figure 3-13. Sequence diagram depicting the creation of a note

Although I said that seeing one data store created is pretty much seeing how they’re all
created, I wanted to call out the data store separately so you can see the update
event handling in action:

 3 I personally dislike sequence diagrams. I find that usually the degree to which they are useful is
inversely proportional to the amount of time the creator spent on it, and they are virtually never as
useful as you expect them to be. Hopefully this is one of the exceptions to disprove the rule!

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT160

As you can see, the and events are handled just as you saw a little while ago, but
now we have the event handled as well. It’s not any different from the other event han-
dlers, but I thought you’d like to see that for yourself! Note the use of ,
which returns a numeric value in milliseconds. This gives us a simple way to generate a unique
identifier for a record that should be safe too. (If you change your PC’s clock to a past date, or
if you run the code so fast that multiple records are created in the same millisecond of time,
a conflict could arise. But that seems unlikely in a JavaScript environment and especially so
within the context of how this application works.)

Note There are many events you can handle with regard to data stores, but here we only need these, and
my suspicion is that most of the time these three events will be all you need. I’ll name just a few others that
might be of interest: (fires when the data cache is cleared), (occurs if an exception
occurs in the proxy during loading) and (fires when the data cache has changed and a widget
bound to the store should refresh its view). Consult the Ext JS documentation for the full list of events and the
signatures for the callback functions to match.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 161

The Record Descriptors
The record descriptors are instances of , and as such are a little more than
simple value objects (VOs).4 However, by and large, that’s exactly how you can think of them.
Figure 3-14 is a diagram showing the structure of each of the four types of classes we’ll
be creating.

Figure 3-14. The record descriptors in all their glory

The way it works is that you instantiate an object by calling the static
 method of that class, feeding an array of field descriptors to the constructor, like so:

The result of this is the creation of a new class, , which we make a public mem-
ber of the instance. As you can see, we’re specifying that this type of has
four fields: , , , and . Each field is defined by an object in an array, and
the object has two attributes: , which is simply the name of the field in the , and

 4 A VO is a construct that’s seen most often in, but that’s not limited to, the Java languages. It’s sim-
ply a class designed for transferring data back and forth between two entities. This comes up in Java
because you don’t have structs like in C—classes are all there is. VOs usually contain no logic but just
data fields, as well as accessor and mutator methods (a.k.a. getters and setters) for setting and access-
ing those fields.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT162

, which is the name of the attribute of the underlying data object. So for example, when
we create an instance of a , we use this code:

With the and attributes defined as such, the knows that the
attribute of the incoming object maps to the field of the , and so forth. Note that
the attribute is optional if it’s the same as the attribute, or so says the Ext JS
documentation. However, I had trouble with the code working if I left it out, so I included
it. Also note that the value of the attribute depends on what underlying

 implementation is creating the . For example, if you were using the
, it’s a JavaScript expression to reference the data, whereas for the

, it’s an path to the element to map to the field. An
example would be , which matches an attribute that equals (see the Ext JS
documentation for full details).

The other three types are pretty redundant, aside from differing in the fields they
contain, so take a look on your own and let’s move on to some other things.

Populating the Data Stores
Populating the data stores from the Gears database, done once at startup, is a pretty trivial
task, as you can see for yourself:

A call to one of the retrieval methods in the , in this case, gets us all
the data there is to get. Remember that we get back an array of simple objects here, so the next
step is to iterate over that array. For each item we create the appropriate , a
here, and pass that to the method of the corresponding data store. This is all done
as one statement, just because it felt natural to me to do it this way. (The alternative would
have been to create a , assign it to a variable, and pass it along to the method,
but it’s purely a style choice.) The other four data stores are similarly populated, so again we’ll
save some space and move on to some other things.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 163

The “New Note” (and, Indirectly, the “New Task”) Dialog
The next method we run into as we walk through this class is the
method, which does precisely what its name implies it does:

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT164

In the case of previous s, we created the and immediately showed it, but in
this example we’re creating the for later. This is a good technique when you know the

 (or other UI widget) is something you’ll need over and over again. It’s better to avoid
the overhead of creation if you can by only creating it once and reusing it. That’s precisely
what we’re doing here. We create a new , which starts off not visible.

Before we create the itself, though, we’re creating a . This is a widget that
houses a form. On its own, a , a descendant of the class, doesn’t do much. It
has to be a child of some other widget to do much good. Here it’s going to be a child of our

.
Creating a , and by extension a form, is not too tough. We start by instantiating

an object, passing into its constructor a configuration object. This object con-
tains a number of fields, starting with , which is pretty self-describing. Next is ,

valid means in this context. This causes a looping event to occur whenever the valid state of
the form changes. We can react to this state if we wish. More importantly, though, is that we
can have other form elements tied to this state for free! Look down a bit in the code to where
the Create button is created and note the configuration option. This instructs
the button to take part in that looping event so that whenever the form is not valid, the but-
ton is disabled, and when the form is valid, the button is enabled. This is precisely what you’d
want to happen from a user interface perspective, and we got it without writing a lick of code.
Very sweet!

Returning to the configuration of the , we see the and speci-
fied, sized to fit nicely in our . We also see the attribute, which puts a nice
frame border around the , which just makes it look a little better within the .
We also inform the to set its height automatically () based on its
contents. We also include a setting that specifies how wide the labels of our fields should be
().

Following that is an array assigned to the attribute. This will be the fields on our
form. Each element of the array is an object that describes a given field. We start with the
Category field. The attribute tells us what kind of field this is going to be, a combo box in
this case. We specify a label for the field via the attribute, and we assign a to
the field to retrieve its value later. The attribute tells us how wide the field itself will be,
minus the width of the label. (You’ll notice the field is 280 pixels wide, and the label is 70 pixels
wide, leaving 50 pixels in the width of the and , which is enough to display the
error icon when a field is invalid.) The attribute, when set to , indicates that
this field is required in order for the form to be valid. This is how the mechanism enabled by

, and by extension the attribute of the Create button, knows whether or
not a given field is valid at a given point in time.

Setting the attribute to indicates that the user should not be able to type a
value into the combo box, which makes it work more like a traditional .

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 165

Note I encountered a problem while writing this code where once you select a value, the list of values
no longer appeared. A user in the support forums on the Ext JS web site came to the rescue, indicating that
the solution was to set to , as you see here. This essentially tells the combo box to re-
query the data that is used to populate it any time the field is triggered—in this case, when the down arrow
is clicked.

The attribute indicates whether the data for the combo box is coming from a remote
source—a server in other words—or from local JavaScript. Here we have no server and a set
list of options, so it’s local. We also need to tell the where the store of data is by
specifying the attribute. Here, it’s simply pointing at the simple array referenced by the

 attribute of the class.
A is next created for users to type their note into, which is where the of

 comes into play. Its attributes are obvious, given that we’ve seen them all already.
The now has all the fields the user can enter, so all that remains is adding some

buttons to it, one for actually creating the note and one for canceling, if the user changes his or
her mind (after all, creating a note is a lifelong commitment, no?). The method of
the is made especially for this purpose. First the Create button is created. The first
argument to this method is a configuration object, here specifying the on the button and
that attribute discussed earlier.

The second argument of the method is a function to execute when the but-
ton is clicked. Here, this function doesn’t have to do a whole lot: it gets a reference to the

 via the function, then gets the form contained within that .
It then calls the method of that form, which returns a simple object where the
attributes correspond to the form fields, with their corresponding values assigned to the attri-
butes. This object, reference by the variable, is used to create a object, which
is then passed to the method of the notes data store. As we saw previously, this triggers
the add event, which calls our method, which in turn writes the data to the
Gears database. Did you notice how relatively little code we had to write to get the connection
between the database, , data store, and form? It probably amounts to 20 lines of code or so
all totaled, which isn’t much at all!

The cancel button is created similarly, and its function simply calls the method on
the . Remember, we’re going to reuse this ; hence we don’t want to destroy it but
just hide it.

The final step in this method is to create the actual . You’ve seen that a few times
now, so it’s nothing new. This time around, though, we specify the attribute,
which is what will happen if the user clicks the close X icon on the . Again, we just want
to hide it. One difference in the way this is created is that previously we saw how to cre-
ate a based on some existing HTML, but this time around we’re building it completely
via code. So, the attribute is used to attach various UI widgets to the , in this case
our , which contains all the content. Likewise, we have to explicitly specify a
for the .

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT166

In Figure 3-15 you can see the results of all this effort.

Figure 3-15. The New Note window

In Figure 3-16 you can see what happens when a form is not valid. The tooltip you see is a
result of me hovering the mouse over the red exclamation bubble next to the field. Also notice
that the Create button has been disabled. Again, note that we accomplished that with just
some configuration options—we didn’t have to write any code to do it.

If you play with the contacts creation , you’ll notice that some other types of valida-
tions are present. For example, the e-mail address value must be a valid e-mail address. This
too is something we can get automatically, like so:

This is the object in the array that is specified for the in the create contact
. That attribute, short for validation type, specifies a type of validation to occur for

that field. Table 3-1 lists the other vtypes built into Ext JS.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 167

Figure 3-16. The New Task window, with a validation failure and the associated tooltip

Table 3-1. Vtypes Available by Default in Ext JS

Vtype Description

email Ensures the field’s value is a valid e-mail format (i.e.,)

url Ensures the field’s value is a valid URL format (i.e.,)

alpha Ensures the field’s value only contains letters and the underscore character

alphanum Ensures the field’s value only contains letters, numbers, and the underscore
character

It is also possible to create your own validation types, or extend these to meet your needs.
You’ll see an example of that in later chapters.

The New Appointment Dialog
Even though there’s not much more to it than you’ve seen already, let’s take a quick look at the
New Appointment :

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT168

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 169

The only thing really different here is the introduction of two new values:
and . The former creates a field with a calendar icon that, when clicked, presents a
full calendar from which to choose a date. The is just like except it is
a single-line place for the user to type a value.

You can also here see the use of the method when getting the value of
the When field. Because I wanted the data type of the field in the to
be a true JavaScript object, and since using on a form like this only gets you
strings, I needed to parse that string into a object. That is exactly what does
for us. The second argument to this function indicates what the format of the input date string
is, and gives us back a true object. Very nice!

Note The call to on the gives us back an , which has a
number of neat methods, among them. This is very much like an HTML form with all sorts of
handy utility methods hanging off it, and I suggest you spend a few minutes with the Ext JS API documenta-
tion on the class to become familiar with what it has to offer.

In Figure 3-17 you can see what the New Appointment looks like. I’ve even clicked
the calendar icon next to the When field to show the calendar in all its glory.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT170

Figure 3-17. The New Appointment dialog

Building the User Interface: The buildUI() Method
As it happens, building the UI pretty well boils down to one massive JavaScript statement!
You can take one of three approaches to building a UI with Ext JS. The first is what we’ll
see in this application: one giant statement. The second is to create a whole bunch of com-
ponents programmatically and then stitch them together via code. The third is more of a
declarative approach where you do as much as possible in markup, which is then used as the
templates for the widgets created via code (which we’ve seen some of here). The bottom line
is you’re going to be writing code one way or another—it’s just a question of how much and
in what form.

Creating the Viewport

The first step is typically creating a . There is exactly one per page that
takes up the entire browser window, and inside the goes various other
components (usually objects). Let’s see how that is created first. Note that this
begins that giant statement I mentioned, and all the code snippets that follow are parts of that
statement.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 171

The class is instantiated and passed a configuration object. The attri-
bute specifies how the will organize its child components. A number of layouts are
available, as you can see in Table 3-2. Note that these don’t only apply to the ; they
can also in most cases be applied to children of the .

Table 3-2. Layouts Available to the Viewport and Child Panels

Layout Attribute Value Description

 This layout inherits the anchoring of and adds
the ability for x/y positioning using the standard x and y component con-
fig options.

 This layout contains multiple panels in an expandable accordion style so
that only one panel can be open at any given time. Each panel has built-in
support for expanding and collapsing.

 This layout enables anchoring of contained elements relative to the
container’s dimensions. If the container is resized, all anchored items are
automatically rerendered according to their anchor rules.

 This is a multipane, application-oriented UI layout style that supports
multiple nested panels, automatic split bars between regions and built-in
expanding and collapsing of regions.

 This layout contains multiple panels, each fit to the container, where only
a single panel can be visible at any given time. This layout style is most
commonly used for wizards, tab implementations, or other UI interfaces

at a time.

 This is the layout style of choice for creating structural layouts in a multi-
column format where the width of each column can be specified as a
percentage or fixed width but the height is allowed to vary based on the
content.

 This layout contains a single item that automatically expands to fill the
layout’s container.

 This layout is specifically designed for creating forms. Typically you’ll use
the instead.

 This layout allows you to easily render content into an HTML table. The
total number of columns can be specified, and and can
be used to create complex layouts within the table.

There is also a basic layout, which is what you’ll get for the if you
supply no value for the attribute. In this case we’re using a layout, since the
structure of the application fits that model nicely: there’s something on the top (the toolbar),
something on the left (our category selector), and something in the middle (both
the icon/list views and the details section). Note that you do not have to use all of the areas
allowed for with a layout, you can skip any you like.

Creating the Accordion Pane

Once the is created and configured, we can start adding children to it, starting with
the on the left where the user can flip between categories and filter listings. The
code that begins creation of the looks like this:

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT172

The attribute specifies in what position of the layout this child should live
in—in this example, the left side, or area. An can be assigned to this if you
want to, as I’ve done here. You can set the attribute to have a title bar present. The
attribute, when , indicates that there is a split bar that the user can drag to resize this
area. The attribute specifies the starting width of the , and the and

 attribute specify the minimum and maximum width the can have when
the user resizes it. The attribute set to includes the little arrow in the title
bar of the that allows the user to quickly collapse this section of the layout. The

 attribute specifies attributes to be applied to any component added to this .
Here it applies some padding to the body of the content in each of the panes. The

 attribute is an object whose properties set attributes specific to the component
being created. So here, for example, we’re specifying that the should animate itself
whenever the user flips between panes.

Once you have the all set up, you can begin to add components to it, and in this
case I’ve done so using the attribute.

The Appointments Accordion Pane

Each element of the attribute array is an object that defines a component to be added to
the , creating another pane in the . The first one here is creating the pane
for appointments:

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 173

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT174

The first thing we see is that an event handler is defined by passing an array as the value
of the attribute. Each element in the array is an object with attributes named
after events, as we’ve previously seen. Here, we call the method of the

 class any time this pane is expanded.
After that we give an and to this particular pane, and then it’s time to add some

content to the pane. For that we use the array once again.
The first two items added are , which is just a simple string of text. Note that

you can have as the value here, and that renders as you’d expect it to. Following that is
the addition of an . This is some number of buttons grouped together
so that they function as mutually exclusive selections, just like buttons should.

The attribute specifies how many columns should be used to render the
buttons, and this allows you to have matrixes of buttons rather than just running right
down the page vertically, as is the case here. Within the we again see an
array (this is a common thread if you haven’t noticed by now!) where each element is a
button. Each button has a attribute, which is a fancy way of saying it’s the text
accompanying the button, and a attribute.

Note The attribute must match all the other buttons in the ; otherwise, they
don’t function in the expected way (i.e., only one selection allowed). This was frankly a little surprising to me;
I expected that making the buttons part of a made the name not matter, but that isn’t
the case.

The attribute allows you to assign a value to each button, and the
 attribute determines which of the options is selected upon creation. Finally, we see

another use of the attribute to define some code to execute when the button
is selected by responding to the event. In the case of the first button, we filter the
list currently being shown (although since this
here means selecting all items from the store). Note that the event fires when the item
is checked or when it is unchecked, hence the reason the argument is taken into
account: we only want this code to execute when the button has been selected, not when
it’s been unselected.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 175

Note You may at first find the attribute checked, and the event named , to be strange for a
button, since they don’t really get “checked.” However, a quick look at the Ext JS API docs clears it up:

s extend from the widget, and it inherits these items, among others. Remember, Ext JS is
built based on a rich OOP foundation, and that shines through frequently like this.

In the case of the second button, we need to enable the if the but-
ton has been checked, or disable the if the button has been unchecked. The
call to gets us a reference to the , which
we can then call or on as appropriate. Also, when the is dis-
abled, its date is set to today’s date so that it’s ready for the next time it’s needed.

The itself is the next item added to this pane using an of
. It starts out disabled () since the Show All button is by default

selected.
When the event fires on the , we execute some code to again filter the

items shown in the list. The method of the target data store is used to filter the items.
Recall that this method accepts a reference to a callback function that will be called for every

 in the store. The function returns if the should be included, if not.
Because the appointments objects are bound to the data store, they are updated
automatically.

The Notes Accordion Pane

The ane for notes is conceptually very similar to the one for appointments, and
the same is true for contacts and tasks. So, while I’ll show the code for the notes pane here, I’m
going to skip over much of it on the basis that you’ve already seen most of it, and I’ll only be
pointing out some differences for tasks and contacts.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT176

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 177

The primary difference between this and what we just looked at for appointments is that
instead of a we have a for the user to choose a category to filter by. This
uses an of and is nearly the same as the creations we saw earlier in the
item creation dialogs. In fact, it is bound to the same basic array of data as those others were.
Here, though, we have the addition of an event handler for the event. The callback
defined kicks off a call to on the data store for notes, just as you’d expect. A simple
comparison is all it takes to implement the required filtering logic.

In Figure 3-18 you can see what the looks like in action.

Figure 3-18. The category being used to filter notes

As you can see, it’s basically the same as in the creation dialogs, just as you’d expect.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT178

Filtering Tasks by Status

Within the configuration for the tasks pane is the callback executed in response to the
event of the Show Active button. I’d like to point that out here:

This code uses one of the pseudo-constants from the class in the comparison, but
aside from that it’s just like what we’ve seen already.

Filtering Contacts by Last Name

Like the active task filtering, contacts have a slightly different filtering capability, which is the
ability to filter by last name:

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 179

This is the definition for just one of a number of buttons, each corresponding to
a group of letters (A–C here, the next is D–F, and so forth). When one of these is selected,
the event fires, and for each in the data store we check if the first letter of the

 field starts with one of the letters in the selected group. If so, is returned; if not,
 is returned, and that gives us filtering by last name.

The Main Region

The main, or region of the , is where you find the icon/grid views and the
detail section for a given category. You can generally split up a given as many times
as you wish using various layouts, so here we have the center split into multiple
regions by using a again within it:

This means we have a nester inside the center region of another
. That also means that we could have up to five s (north, south, east,

west, and center) as part of the inner . As it turns out, we’ll only need two,
though.

The Icon and Grid Lists

The region of this inner is where we’ll put a series of s, eight of them:
four s for the icon view of each of the four categories, and four s for the list view of
each of the four categories. To achieve this we’ll use a in this region:

Again, all it takes is setting the attribute to and we have what we want. A
 stacks a number of s on top of one another so that only one is visible at a

time. The attribute indicates which of the s is active to begin with using
a simple 0-based index value. The attribute set to indicates that content
larger than the area occupied by the will be allowed to scroll. The attribute

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT180

tells the component that contains this (the inner) what region this
 should be rendered to—the north region in this case.

Now that we have a , let’s see how an icon view is created. We’ll just look at one
since—you guessed it—they are all virtually identical!

An Icon View

An icon view is a , defined by using an of :

A allows us to display items however we choose by specifying a template to use
to render each item. The attribute specifies the object to use for this pur-
pose, and here we’re creating a new one inline. As you can see, it consists of some basic HTML
with the addition of some replacement tokens in it and some special processing tags. For
example, the token will be replaced with the title of a given appointment as entered by
the user.

In addition to these tokens are some simple processing tags that can be used as part of the
template. One such tag is (the quotation marks are escaped in the code, but this

applied to all
to s matched by the method currently in effect, because the user could have
chosen to filter the data based on some selected criteria from the panes.

After the template we find a few more configuration options. The attri-
bute, when , indicates that only a single item in the can be selected at a given
time. The attribute specifies the style class to apply to an item when the mouse is

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 181

hovering over it. The attribute indicates the style class to apply to the selected
item. There is also the attribute, as we’ve seen plenty of already. This time, we
react to the event, which results in the selected being retrieved via a
call to . This method returns an array, but since we know
only one item can be selected, it’s the item at array index 0 that we’re interested in. A call to

 is then made, passing along the object that
was just retrieved. We’ll see how those details are displayed soon, but first we need to look at
a list view.

A List View

Creating a list view means creating a , as you can see here:

The does the basic work for us, and then it’s a matter of setting configuration
options and defining the columns. The options are , which names the col-
umn that will expand to take up all the space in the grid; , which is the smallest

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT182

the user can make a column by dragging to resize it; , which is the minimum
space the column named by can take; and , which is the
maximum width of the column named by . The attribute is the same
as we’ve seen earlier: it binds the to a particular data store, the one for appointments in
this case.

After that is the attribute, which is an array of objects where each object defines
a column in the . Each object has a attribute, which is the text to show in the col-
umn header; a attribute, which is the initial width of the column; a attribute,
which indicates whether the user can click the column header to sort the data () or not
(); and , which is the name of the field in a taken from the data store that
we want displayed in that column.

Following the attribute are a few more configuration options (I probably should
have grouped them all together, but Ext JS doesn’t care, so it’s purely a question of style).
The first is , which contains options that will be applied to the ’s UI. The lone
attribute within that object, , when indicates that we want the columns
automatically expanded to fit the in order to avoid horizontal scrolling. Next we see the

 attribute set to , and that does some color striping of the row to make it easier
to read across its rows.

After that is the attribute, whose value should be (and is in this case) an instance of
. This defines how the user is allowed to select rows. Here, users

can select only one at a time, so the attribute of the config object passed to the
constructor is set to .

Finally, we have our friendly attribute, and this time it’s the event
we’re interested in. When a row is clicked, we need to show the details of the selected
appointment via a call to . Passed to the callback
for the event is , a reference to the object; , literally the index number
of the row that was clicked; and , an object describing the event. The one
we’re interested in here is , because we can call the method to
return the object we attached to the , which contains a method for get-
ting the associated with the clicked row via a call to . That’s all that is
involved, aside from showing the details, which is coming up just a little later. For now, let’s
see how the areas where the details are shown are created, since that’s obviously necessary
before we can show details!

Item Details Panes

The details sections create another , just like the where the icon and list views
are housed, one card for each category for which we might want to show details. Each of the
four detail sections is defined by an object in the array:

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 183

Each of the detail sections is defined in as we saw earlier, and here we’re setting
the HTML that is to be displayed in a . You see, it’s not necessary to create Ext JS widgets
and add them to a ; you can insert plain old HTML if you want via the attribute.
Since we already have the HTML we want to insert sitting on , all we need to do is get
a reference to the appropriate with a call to and get the prop-
erty. That becomes the value of the attribute for the , and voilà, we have content in
the !

Defining the Toolbar

Only one thing remains for us to define in our : the toolbar area up at the top. This is
the closing section of that giant statement defining the that we started with, so let’s
dive right into it:

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT184

Thus begins the definition. It lives in the region of the main
and has no border (it looks a little weird with the border present). The first item on the tool-
bar is the New Note button. When you click that button, the function is executed.
Its job is to clear the form where the user enters note information. This requires a call to

 to get a reference to the , followed by a call to
 to get a reference to the underlying form. Finally, is called to do the actual

dirty work of resetting the form. Once that’s done, we can go ahead and show the Create Note
.

We’re putting the toolbar at the top of our , so we set the attribute
to . The attribute allows this to set its height according to its contents,
which is necessary for the toolbar to appear at all. We also indicate we don’t want a border via

, since that would just look a bit wrong.
Next, the array contains an object with an of , and that’s all it takes

essentially to create a toolbar. The array in that object then contains an object for each
button to add, as well as spacers. For example, we see here how the New Note button is cre-
ated. The attribute is what you see on the screen. The attribute is the code to
execute what the button is clicked. Here that’s simply to get a reference to the form contained
within the that we created earlier, resetting it via a call to its
method, and then showing the . Remember that this dialog was cre-
ated but initially not shown, so we can use the , which returns a reference to an
existing Ext JS widget (, technically). We then just call on it, giving it a refer-
ence to our animation source .

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 185

The attribute points to the image file to use as the icon for our button. This is
optional, but we do want one because it spices up the toolbar a bit. Finally, the attribute is
the style class to apply to the button, which here is supplied by Ext JS itself.

You’ll also notice a number of objects with an of . These are just blank
spaces you can use to spread things out a bit. Likewise, the puts a vertical
line on the toolbar to break things up into logical groups, as you can see in Figure 3-19.

Figure 3-19. An example of the tbseparator xtype

The rest of the buttons are pretty similar to what we just saw. The button for switching
between icon view and list view has a little more meat to it, so let’s take a look at it:

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT186

While the button itself is defined in the same way, the click event handler has a bit more
going on. First, we toggle the text shown on the button between icon view and list view. To
do this we use the handy method that Ext JS added to the class. This avoids
an statement or a trinary logic statement. Next we need to toggle the icon on the button as
well. To do this we call , which gives us the text currently on the button (which
remember, we just changed!). Using this, we set the appropriate value for the image file to use.
We do this by altering the style attribute (in JavaScript)
of the first child of the button. You see, the icon is placed on the button by setting it as the

 of the the button is contained within. By using , which
returns the underlying object that represents this widget in the DOM, we can then
call the method to get a reference to the appropriate DOM node. Then
we simply set its style attribute to point to the new image. Finally, a call to

, a method we’ll see soon, does the actual switch between icon
view and list view in the rest of the UI.

Note This switching of the icon involved trial and error and looking at Ext JS example code. I couldn’t find
any documentation that explicitly spelled this out, but it’s a testament to the quality of the Ext JS API docu-
mentation, along with the example code and support forums, that I was able to figure it out without too much
trouble.

Adding Buttons to the Detail Panes

Now that the UI has been largely constructed, there are a few loose ends to tie up to com-
plete the UI. Recall that when we created the sections where item details are displayed, we
left placeholders for the buttons, but we didn’t create the buttons. Well, now it’s time to turn
around and do just that! All the detail panes have a Delete button, so let’s look at just one as a
representative example:

We instantiate the class, passing it a configuration object during construc-
tion. This object has a couple of attributes. First, is literally the text to display on the
button. Second, gives the ID of a DOM node to put the button into; if you look back,
you’ll see that is the ID of the placeholder we created

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 187

(remember that the was created from existing markup, which contained a table struc-
ture). The attribute gives a reference to a function, inline in this case, to execute when
the button is clicked. The first thing we need to do in this handler is to determine whether the
user currently sees the icon view or the list view. We do this by interrogating the text of the
view switch toolbar button, just as we saw previously. This is necessary because we can then
construct the proper ID of the to reference, which we must do in order to ask it for a
reference to the selected from the data store. With that in hand, it can be passed
to the method of the for removal.

We also define the attribute with a value of so that the button begins dis-
abled and remains so until we enable it (when an item is selected).

The tasks detail section also includes a button to mark a task as complete, and that’s a bit
different from the Delete buttons:

It is only different in the code of the handler, and then it’s only different in that at the end
we call the method of the to set the status field. This causes the event to
fire on the data store, and the data is saved via a call to the DAO.

Note At the end of the method you’ll also notice this statement: . This
instructs the viewport essentially to draw itself. Typically you don’t need to do this; it happens automatically.
However, I noticed an issue in the latest version of Firefox (3.0.3 at the time of this writing) where the titles
of the icon view and the pane wouldn’t show up unless I issued this statement. It does no harm
to do so generally, although it’s probably inefficient and certainly redundant even if Ext JS is smart enough
to not do any extra work it doesn’t have to do. Just remember, you shouldn’t usually have to do this, but I
wanted to point out the reason I did.

Making the Accordion Work: Changing Categories
We’re very nearly at the end of the code of this application. We’ve seen how the data stores
and descriptors are created, and we’ve seen how the dialog s for creating new
items are created. In addition, we’ve seen how the UI is built and how most of it works. Along
the way, we saw calls to a few methods of the class, and those methods are what
remain to look at.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT188

First, recall that when the user clicks a pane in the , the
method is called:

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 189

Switching between categories entails switching the icon or list view, whichever mode the
application is currently in, to the appropriate data store. That’s what this method does, by and
large. The argument is a string naming the category to switch to. The first thing we
do is store the value in the field of , because we’re
going to need that value elsewhere.

So after that, we have a statement based on that argument. For each of the four
possible values, we set three variables. The first, , will be the value of the

 attribute of the , the containing the icon and list views.
(If you’re thinking ahead, you’ll recall that there are eight cards in that : four icon
views followed by four list views… yet we only have four values here! Don’t worry grasshopper,
all will be revealed!)

The second variable is , which is the text that will be displayed in the title bar
above the listing section. Likewise, is the text to display in the title bar above the
details section.

Once those variables are set, we move on to the common block of code following the
 block. First, we use the method to get a reference to the ,

which is the containing all four icon views and all four grid views. With that refer-
ence, we call to set the title bar text. Next, we call the method, which
gives us a reference to the underlying object for that . This object
exposes a method, to which we pass the variable. This flips
us over to the appropriate icon view for the category selected.

Next, we get a reference to the , and likewise set its title and active item.

to comes into play, which is our next destination.

Switching Between Icon View and List View
When users switch categories, or when they switch view modes, the method
gets called. In Figure 3-20 you can see an example of a switch to list view.

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT190

Figure 3-20. The list view mode

The code for this method is not terribly long, nor is it complex, as you can see for yourself:

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 191

Here, we’re being passed a string that tells us what mode we’re in. It happens to be
one of the two text strings displayed on the mode switch button, so either or

. The code begins by doing a switch based on the , set back in the
 method. We do this to determine the index of the card in the

that is currently selected and store that in . Since all four of the icon views were
added first, we know that at this point the index value is either 0, 1, 2, or 3 (remember that in

 we always switched to an icon view, never a list view).
Next, we examine what view mode we’re in. If we’re currently in list view, we add four to

the value of . Think about that for a moment. The four icon views have an index
value of 0, 1, 2, or 3. For example, the appointments icon view is index 0. The list views were
added to the right after the icon views, so that means they begin at index 4. So the
appointments list view is at index 4. So by adding four to the value, we now
have the correct index for the list view associated with the current category. Of course, if we’re
in icon view mode, then is the proper value already. In either case, the variable

 is set to the appropriate value.
Then, we set the active item in the to the value of . If we are in

icon view mode, then this effectively does nothing. But if we are in list view mode, we switch to
the list view. The user only sees a single switch because it happens so fast.

Showing Details of a Selected Item
The very last thing we need to look at is how the details of a selected item are displayed. I’m
definitely sounding like a broken record now, and I know it, but because all four of these meth-
ods (one each for notes, appointments, contacts, and tasks) are very similar, we only need to
examine one. I’ll pick on appointments one last time for this:

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT192

First, the code checks to see if the argument was or not. This is to cover the
case where the user clicks a blank section of the icon or list view, deselecting all items. In that
case, the branch would kick in. This disables the Delete button and creates a new
of the appropriate type with all blank fields.

Then, it’s a simple matter of setting the attribute of each of the detail fields,
which we get via calls to to the applicable fields from the object. If

 is , it effectively clears all the fields since we set all the fields to blank.
The field is slightly different. We want to display the value as mm/dd/yyyy, but

that can only be done (with the method at least) if it’s a . If no record is
available, however, it’s a string. So, we get its value, and then use the method to
determine if it’s a . If it is, we can go ahead and format it (using the m/d/y specification,
which outputs a value such as 10/21/2008); otherwise we just output an empty string.

And with that, our exploration of this code is complete!

Suggested Exercises
I hope you found this application a fun one to dissect! I also hope you found it at least a little
useful. It’s obvious that Microsoft shouldn’t be worried about competition with Outlook here!
Clearly features are missing that would be nice to have, and with that in mind here’s a list of
suggested exercises that I believe will not only make the application more useful but more
importantly will get you some good experience with Ext JS:

capability out because I think if you did no other exercises, this would be a worthwhile
one to do. Should you reuse the create dialogs to do maintenance as well? Should the
detail sections be forms that are editable? Or is there another option? It’s up to you, but
any choice will lead to a good learning experience.

an hour before a given appointment.

a (an Ext JS , that is, not a new browser window). Related to this, make
the e-mail field clickable so that a new message can be composed (use a simple
link).

CHAPTER 3 EXT JS FOR A BUSY L IFESTYLE: ORGANIZEREXT 193

opened at once by opening each in an Ext JS that is bound to the detail area.

add and remove what they wish and update the combo boxes accordingly.

-
ments for a specified range of dates.

Summary
In this chapter we saw how to construct a relatively complex Ext JS–based user interface.
We saw a number of widgets in action, including the , , ,

, , , , , and more. You saw how we can easily have
validations on forms with little work on our part. You also learned how to create stores of data
and have Ext JS automatically bind those to widgets. We explored a few utility-type functions
from Ext JS in action, too. You also saw how Gears can be used as the underlying data store
and can be integrated seamlessly into an Ext JS application.

In the next chapter we’ll create another personal information management (PIM)-type
application, a project timekeeping application. We’ll see a couple of new widgets in action,
more work with Gears and data stores, and a few more utility functions too.

195

C H A P T E R 4

Making Project Management
Cool: TimekeeperExt

I don’t like to mince words, so here goes: I hate project management! To me, it’s a rather
dull endeavor. It’s a lot of time spent bugging people on the phone, asking them what they’ve
accomplished since the last time I bugged them. It’s a lot of time writing status reports for
stakeholders and explaining why this is late or why that is taking longer than anticipated.
Given that, project management is an absolutely necessary evil, and I respect those who do the
job—it isn’t easy and requires great skill to do well. Still, project management, for me at least,
isn’t the most exciting job imaginable, but I see no reason not to make the chore as fun and
sexy as possible! So, the goal of this chapter is to create a basic project management and time-
tracking application using Ext JS (so we know it’ll be fairly sexy automatically). As we develop
this application, you’ll see another approach to structuring an Ext JS application, and you’ll
meet a few more UI widgets in real usage. You’ll see a few Ext JS utility functions in play, gain
more experience with the data subsystem, and play with the database component of Gears a
little more. In the end you’ll wind up with a useful tool, albeit not quite on par with Microsoft
Project, for tracking the status of a project.

What’s This Application Do Anyway?
As I mentioned in the opening paragraph, Microsoft Project is one of the top tools in use
today for project management. This feature-rich program tracks projects, tasks that are part
of that project, resources assigned to the project, and much more. It provides numerous
views of the project, including Gantt charts.1 It allows you to perform resource leveling2 and

 1 A Gantt chart is a specialized type of bar chart that graphically describes a project’s schedule. It pro-
vides an at-a-glance summary of a project’s status in a visual way (for those that can make sense of
them!).

 2 Resource leveling is a project management task focused on resolving conflicts that arise from tasks
running in parallel that may contend for resources, or resources that are overallocated, or other sorts
of resource allocation imbalances that can occur during project planning.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT196

create critical path schedules3 as well as critical chain4 and event chain methodology5 (by
way of add-ons).

If all of this is foreign to you, count your blessings! Project management is actually an
expansive area and a study that requires lots of, well, study, to master. I am in no way, shape,
or form an accomplished project manager (PM for short), although I know the basics.

Fortunately, for the purposes of this book, the basics are all we need to worry about, and
in fact we’ll only be dealing with the most basic of basics. Managing a project boils down
to three things: the project itself (obviously), tasks that make up the project, and resources
(people, usually) assigned to the tasks. With these basics in mind, we can begin to outline what
this application needs to do:

to specify a name, description, a starting date, an ending date, a number of hours allo-
cated to the project, and the PM.

to implement, any given task can only be associated with a single project. (In real life,
you might have tasks that are associated with multiple projects, but as far as using this
application goes, it’s not such a burden to have to create two copies of the same under-
lying task to manage, even if that strategy isn’t quite ideal.) For each task we should be
able to specify a name, description, a starting date, ending date, and number of hours
allocated to the task.

simplifying assumption here: a task can only be worked on by a single resource. This
again isn’t ideal or necessarily reflective of the real world, although I’d point out that
some PMs believe this should in fact be the way it’s done! For a resource we can specify
a name and description and designate the resource as a PM (so they can be the PM of
projects being tracked).

as not being able to delete a project that has tasks allocated to it).

-
thing can be modified except for the name, which we’ll be using as a key for all three
items.

to determine if a task is over its allocated hours, or close to it (within 10 percent of the
allocated hours).

graphical representation of how far along a task is.

 3 The critical path is a mathematical algorithm used to schedule a set of tasks within a project. More
often than not, though, you hear people talk about the critical path of a project in the context of the
linear set of tasks that must be completed for a project to reach a successful conclusion.

 4 The critical chain approach puts more of an emphasis on resources than on tasks and rigid schedules,
as is the case with the critical path approach.

 5 The event chain methodology focuses more on the events that occur during the lifetime of a project
more so than on tasks and resources. This approach allows for a less rigid schedule that provides more
flexibility to deal with uncertainty and the inevitable changes that occur as a project progresses.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 197

summary view that gives us the most
pertinent information about each entity at a glance. We’ll show some graphics to spec-
ify when a task is overdue, over hours, and so forth. We’ll do the same for a project.

quickly see what tasks belong to what project and who is working on a given task. We’ll
have three different views, one each for projects, tasks, and resources.

As you can see, the basics are covered fairly well, and you can actually track work with this
application, although it admittedly doesn’t hold a candle to Microsoft Project. Before we begin
tearing into the code, let’s take a quick look at the application, starting with Figure 4-1, which
shows the welcome screen.

Figure 4-1. The TimekeeperExt welcome screen

On the top we have a menu, and each of the main objects the application deals with: proj-
ects, resources, and tasks, each its own menu item. On the left is a tree view, and above it some
radio buttons that allow us to switch the view. Here we’re in the Project view, so the tree shows
all the projects that have been created, with the tasks associated with each nested underneath
them, and the resources assigned to each task below that. In the main portion of the page is
the welcome message and application title, and that’s also where we’ll see those summary
views I mentioned.

Speaking of those summary views, in Figure 4-2 you can see the Resource Summary of a
resource I’ve selected out of the Resource view tree.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT198

Figure 4-2. The TimekeeperExt Resource Summary

As you can see, three s are present in this summary view. The first contains some
basic details about the resource. Below that is another that lists the projects this resource
is involved in (meaning they are assigned to work on a task allocated to the project). Finally,
the third shows all the tasks that the resource is currently working on. For each we see a
bar graph that displays the task’s percentage of completion, as well as an icon that tells us at
a glance if the task is past due, under or over its allocated hours, or in danger of going over its
allocated hours.

We’ll see more of the application as we progress through the code, and you can play with
it any time you like (now would be a good time!).

Overall Structure and Files
by looking at the overall directory structure and the files involved in this applica-

tion. By and large it’s similar to the project in the previous chapter, and it’s very similar to all
the applications to come. Figure 4-3 shows the directory structure.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 199

Figure 4-3. The application’s directory structure and constituent files

In the root directory we have , the starting point for the application. The
directory contains the style sheet, , specific to this application. The directory
is where Ext JS itself is—I haven’t expanded it because it’s rather large and at this point you
should be fairly familiar with its contents. The directory contains a bunch of images used
in the application. The files , , and are the icons seen in
the tree views. The file is the image seen on the welcome screen. The remaining
images, the ones beginning with , are the status icons seen on the various summary
views. Three types are present: the green check mark (representing under the allocated
hours), the yellow warning sign (10 percent of allocated hours remaining), and the red stop
sign (over the allocated hours). Each icon also has a version that has “PastDue” added to the
end. These are the same icons but are animated GIFs so that the icon flashes to indicate the
item is past due.

In the directory are all our JavaScript files. In this application I’ve taken a fundamen-
tally different approach than in the previous project. Recall in that project that there was
a single monolithic JavaScript file (plus the class in a separate file, but the majority of
the code was in a single file). You’ll also recall there that to build the UI I used a single huge
JavaScript statement. This is far from the only way you can structure your code with Ext JS,
and in this project we see another. Here, each of the unique UI objects is in its own file. The

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT200

menu code is in , the code for the New Project dialog is in , the
code for the projects tree is in , and so on. We also find a
file that contains some more general code that the application uses. As was the case with the
previous project, there is also a file where the database access code lives. The familiar

 file is also present.

Note Which architecture you prefer is largely a matter of personal preference. Some argue that breaking
up the code like this makes it easier to comprehend, while others argue that the mental gymnastics of jump-
ing between multiple files negates that benefit. I personally have mixed feelings, so I generally try for a mixed
solution: I tend to break things up to a certain extent, but I don’t go overboard making things too granular.
What you decide to do is neither right nor wrong—it’s simply a design decision you have to make. I felt it
was important to demonstrate both approaches in this book.

The Markup
The markup for this application, housed in , is actually fewer than 100 lines of

 of the
document:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 201

Most of this is old hat6 by now. We begin by importing the usual Ext JS style sheet and
base JavaScript files.

After the Ext JS–specific imports is a long line of JavaScript file imports. These are the
JavaScript files containing the code for the application itself. We’ll be looking at each of these
individually. In addition there is the import of the main application style sheet, , as
well as .

After that is the usual call, this time referencing a function named .
As it turns out, this function is nearly identical to what we saw in the OrganizerExt project, but
don’t worry—we’ll be looking at it here shortly anyway.

With the section concluded, we can move on to the body. The first thing you’ll find
is a with an ID of . (I won’t show the here because that would be redun-
dant given that we saw it in the previous project.) This is the source element on the page to be
used for animation of windows.

After that is a with the ID , which is the seen when the
application starts up and is initializing. This too is just copied over from the previous chapter’s
project, so I’ll save a little space here by not printing it. In fact, I won’t even discuss it on the
grounds that it would be redundant. Please do refer back to the previous chapter if you need
a refresher.

Just like that , next is a with the ID . This
again is just copied from the previous project; it specifies the contents of the to be dis-
played if Gears is not available.

Finally, we have one last , this one with the ID . This specifies the con-
tents of the About , and is just some plain text in a (and, not to sound like a
broken record, but it’s just like in the last project!).

Note Because of its inherent length, I condensed the source code as much as possible. This mostly
amounts to removing all comments and blank lines, but I also reformatted some lines where possible.
The actual executable code is unchanged, however.

The Style Sheet
Just like , the file for this project is particularly simple. In fact, here’s the
entire style sheet, minus the comment block at the top:

 6 In case you’re unfamiliar with the saying, “old hat” means something that is repeated too often, or is
something very familiar.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT202

The selector styles the text on the About , the selector styles
the text on the seen during application initialization, and the selector styles
the used for the animation source for expand and collapse. We’ve seen all of this
before, so I won’t repeat the detailed explanations.

The next selector we find is . This is used to style the title seen on the
three summary views. It just gives us a nice, large, centered title. It’s applied to a , so set-
ting to and to ensures the title text will wind up centered on the
page, or more precisely within the center region of the that’s the basic layout
applied to the page.

The selector is next, and it is the style applied to the text seen
above each of the s in each of the summary views. It gives us a black(ish) bar across the
page with medium-sized (relative to other text on the page) white text on it. It also adds some
padding to the left so that it isn’t bumping right up against the edge of the bar.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 203

Finally, the selector is, really, the only interesting style. As you saw in
the earlier screenshots, a simple progress bar reveals the completion percentage of tasks. This
style is used to help provide that progress bar. I think it makes more sense to discuss it in the
context of understanding how the progress bars are done, so for now just remember this selec-
tor is here and we’ll refer back to it when the time comes.

Now that we’ve gotten the markup and style sheet out of the way, let’s get to some code!

The Code
The code for this application is organized into a number of JavaScript files that logically break
the application down into pieces that we can digest more easily. I’m going to tackle these in a
logical order, but there will necessarily have to be some jumping around and some “we’ll get

 file.

Note As we examine this code, you will frequently see me add something like “This code is just like the
others, so we’re not going to look at all three.” In fact, I suspect I’ll sound like a broken record by the time
this chapter is done! The reason for this is that large chunks of the code in this application are extremely
similar to other chunks. In fact, when I wrote the code, I generally wrote the parts pertaining to projects, and
then copied that code and modified it slightly to work for tasks and resources because conceptually they
were identical, just with some relatively minor differences. In most cases it is sufficient to just examine the
code for projects and have you look at the code for tasks and resources on your own. This saves space in
what is already a fairly long chapter, and I don’t believe you will miss anything by doing this—which ulti-
mately to me is what truly matters!

DAO.js
If you’ve read this book in order, and I kind of make the assumption you have, then the DAO
class isn’t anything new or exciting. Because of this, I’ll go through this very quickly. If by
chance you jumped ahead to this chapter and skipped the previous OrganizerExt chapter, I
suggest putting a bookmark on this page and going back to read that chapter.

-
gram for the class housed in the file, seen in Figure 4-4.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT204

Figure 4-4. UML class diagram of the DAO class

The class starts out with the field that names the Gears database we’ll be
using. The value in this case is . Following that we find 15 fields, the value of

projects, tasks, and resources. The database schema is simple, as you can see in Figure 4-5,
Figure 4-6, and Figure 4-7—one for each of the three tables corresponding to the three entities
involved.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 205

Figure 4-5. Table structure of the projects table

Figure 4-6. Table structure of the tasks table

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT206

Figure 4-7. Table structure of the resources table

table and one for each of the CRUD (Create, Retrieve, Update, and Delete) operations. So
for example, there are , , ,

, and fields, and there are five fields for tasks and five for
resources. The statements are about as you would expect. For example, here are the state-
ments pertaining to projects:

The statements for tasks and resources look very much the same, with different fields in
the statements.

Moving on to the methods of the class, we first find the method. It is called once
one the application start ups, and its code is as follows:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 207

As you can see, it first checks to be sure Gears is available and returns if not. Once
that is done, the three table creation statements are executed. They will only do something if
the tables do not already exist. The method returns when done, unless an exception is
thrown by one of the database function calls.

After we find that there are four methods for each of the three entities we’re work-
ing with, and each of the methods corresponds to one of the CRUD operations. Since each of
these methods is just like its counterpart for the other two entities, let’s just look at the four
methods pertaining to projects because the ones for tasks and resources are just like them.

 method:

In the OrganizerExt project you may recall that the methods of the class took plain-
old JavaScript objects, but here they are accepting objects—the objects used
in an Ext JS data store. I did it that way because it keeps the abstracter from Ext JS. If we
decided to rewrite that project with, say, Dojo, then we wouldn’t have to touch the classes
because they don’t care that they are being called from an application based on Dojo or Ext
JS or anything else. Here, however, the essentially “knows” it’s being used from an Ext JS
application. This approach is conceptually perhaps a little simpler because it’s more direct:
there’s never any transferring of data between objects; it’s just always objects from end
to end. The approach you prefer is a decision you’ll have to make for yourself. Usually I tend to
want to keep things abstracted, and most people feel that’s a better approach architecturally,
but I wanted to show you the alternative here.

The actual code of the method is pretty simple. Open the database and execute the appro-

of the call to . Because we received a object, we have to use the
method to get the values of the fields in the .

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT208

The method is next, and it too is pretty simple:

Executing the statement gets us all the projects currently in the data-
base. So, we iterate over the and for each we create a new and
it onto the array. Finally, that array is returned to the caller. Nothing to it!

Updating a project is also a simple matter:

The argument is a , so all that’s needed is to execute the
 statement and pass to as the second argument array the fields

that could have been changed.
 method:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 209

The name of a project is effectively its key (ditto for tasks and resources), so that’s the
argument to this method. Executing is all it takes, the name passed into the

I’ll remind you again that the four methods for tasks and the four for resources are nearly
identical to these, but please do check the downloaded code nonetheless. Aside from the fields
dealt with, the methods are pretty much carbon copies.

StoresAndRecords.js
The next piece of the puzzle to look at is the record types and data stores used in this applica-
tion, which you’ll find in the file. There are quite a few stores but only
three types of records: , , and . These types are shown
in Figure 4-8.

Figure 4-8. The record descriptors in all their glory

The fields of the and do not correspond to any field in
the database tables; they are values that are calculated when a record is read and the value set
on the . This is the field that is used to display the appropriate status icon in the
summary view grids. All the other fields correspond to database table fields.

As I mentioned, there are quite a few stores in this application. Three are probably
pretty obvious to you: a , a , and a . These stores are
populated from the corresponding database tables and literally just mimic the tables—all
the records in the table have corresponding s in the stores. These stores are populated
when the application starts up, as we’ll see, and any changes to them are replicated to the
database.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT210

This replication is an event-driven model, as you can see here:

I’m again picking on the code pertaining to projects, but you’ll find that the and
 is very much similar to this, so seeing the pretty much describes

the other two. As you can see, three events are hooked: , which fires when a is added
to the store; , which fires when a is removed from the store; and , which fires
when a obtained from the store is modified. Each of these events calls the appropriate
method. Note the check in the event handler to see if the is shown.
If it is, then this event is firing as a result of the initial population of the store, in which case it
would be a mistake to call the method.

Those three stores are the main ones in this application, but as I mentioned there are
quite a few others. All of them are derived from those three main stores, meaning they are
populated from some subset of data from those three. These other stores are transitory in
nature and are used as sources of data bound to UI elements. Table 4-1 runs down the other
stores and describes their purpose. Note that all of them are created like so:

They are empty and have no events hooked. Since anything done to them is meant to only
be temporary, there are no events that need to be handled.

Table 4-1. The Temporary Data Stores Used in This Application

Store Name Description

 Project managers data store. This stores the s
representing resources who are project managers. Although I
group this store in with all the other temporary stores, it is in
fact not quite temporary; it has data in it all along (assuming
there are resources designated as project managers). But it is
still derived from the , so in that regard it’s simi-
lar to the rest of the temporary stores.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 211

Store Name Description

 Available tasks data store. This stores s not asso-
ciated with a project. The comment about not being a truly
temporary store that applies to the
also applies to this one for the same reasons (although this one
derives from the instead of the as

 does).

 This is a temporary store that will be a copy of the available
 when the Modify Project dialog is shown.

 This is a temporary store used in the Modify Project dialog to
show the tasks the project is using.

 This is a temporary store used on the Modify Resource dialog to
show the tasks assigned to the resource.

 This is a temporary store used in the Resource Summary view to
show the details for the selected resource.

 This is a temporary store used in the Resource Summary view to
show the projects the selected resource is involved with.

 This is a temporary store used in the Resource Summary view to
show the tasks the selected resource is assigned to.

 This is a temporary store used in the Task Summary view to
show the details for the selected task.

 This is a temporary store used in the Task Summary view to
show the details for the resource assigned to the task.

 This is a temporary store used in the Project Summary view to
show the details for the selected project.

 This is a temporary store used in the Project Summary view to
show the tasks allocated to this project.

 This is a temporary store used in the Project Summary view to
show the resources involved with this project.

As we explore the rest of the code, you’ll see how and when these stores get loaded with
data, and when and how they are bound to UI elements.

TimekeeperExt.js
Within the file is most of what I would call the “core” code of the applica-
tion. It contains the code run to initialize the application, which includes loading data from
the database and constructing the UI, as well as a number of functions that handle things like
refreshing the various trees and displaying the various summary views.

A Custom RowSelectionModel
The first code we encounter is something we haven’t seen before, but before we get to the
code, let’s take a look at another screenshot from the application (see Figure 4-9).

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT212

Figure 4-9. The Project Summary view

In Figure 4-9, the Project Summary view is shown. What’s displayed here isn’t too impor-
tant just yet, except for one detail: the percent complete progress bars in the middle
showing the tasks allocated to this project. These progress bars give the user a visual represen-
tation of how far along a given task is. When we’ve seen s before, the cells have had just
plain text in them. However, that’s not a requirement of a . We can put other widgets in
them as well.

Doing this introduces a new concept, that of custom s. A
 defines how data can be selected in a , but more than that it allows

us to determine how the contents of a given cell will be rendered. You can create a custom
 type by extending existing ones, as the code here shows:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 213

The is the default selection model for a , so that makes
it a good starting point. The function provides a way to extend the existing

 class, and we’re adding the new type to so we can use it
later. I’ll jump the gun a bit and tell you that when you see this in use you’ll find that the
definition of the Percent Complete column of the specifies a new instance of

, so many of the options you would typically specify on the column
definition are defined here within the new class. For example, by default, a column using the

 will be sortable () and cannot be resized
by the user (). It will also have a width of 150 pixels. You’ll note that the
and values, both of which we’re familiar with, are empty strings. The reason they are
empty strings is that the code creating an instance of this class is expected to populate them
with values, whereas the other fields, while they could be overwritten, don’t have to be. Since
we have a specific use case here, and we know the values of most of these fields beforehand,
setting their values as part of the class definition makes sense.

Now we come to the attribute. This attribute references a function that
will be called for every value in each row of the in the column using the

. This allows us essentially to do whatever we want to render the
contents of the cell. The value from the field in the being used to populate the is
passed in as . The job of this code now is to create the markup for the progress bar.

The way this works is basically that the markup constructed uses the same basic structure
as an Ext JS progress bar, and in fact you can see that many of the same styles are used. We
have a template string with some replacement tokens present in it, three to be precise: the
value (which is the percent complete in this case), plus two versions of the same value. If the
value is less than or equal to 50 then the value, which has had a percent sign appended to it,
needs to be styled differently and placed in a different than if it’s greater than 50. So,
the value is put into an array as either the first or second element in the array, and the other
element is a blank string. This is done so that there isn’t any conditional logic in the markup
template; it simply inserts the values from the array using the function that
Ext JS provides.

The generated markup is returned, and will be inserted into the table cell. We could do
whatever we wanted in this renderer function, which makes the model concept seen here
extremely flexible and allows us to do much more in a than you can by default.

Note The original code that I derived this from was posted by an Ext JS user named EvilTed in the Ext JS
support forums. I’d like to thank that user for sharing this code (although he informs me that his work was
based on the work of someone else, so thanks to anyone else who had a hand in it too!).

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT214

A Few Variables for Good Measure
After that we find four global variables, which are summarized in Table 4-2.

Table 4-2. Global Variables Defined in TimekeeperExt.js

Variable Description

 This is a reference to the from the that is
currently selected, if any.

 This is a reference to the from the that
is currently selected, if any.

 This is a reference to the from the that is cur-
rently selected, if any.

 This contains the card index number of the currently visible summary
view, or 0 for the welcome view.

Initializing the Application
Following that are two methods, and . They more or less work the same as in
the OrganizerExt project, but they are structurally a little different, so let’s have a look, starting
with :

Just like in OrganizerExt, this function is called via , as seen in .
This displays the Please Wait and then fires off a that executes ,
which is this code:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 215

First, a call to is made, and if is returned then the No Gears is
shown and application startup is aborted.

Assuming returns , initialization continues, beginning with a call to
, which is responsible for loading all the data from the database for projects, tasks,

and resources.

Loading the Data
The function is as follows:

As you can see, a call is made to each of the retrieval methods in the DAO for the three
entity types: projects, tasks, and resources. For each, the returned array is iterated over.
These arrays contain objects, objects, or objects,
depending on the type being worked on. For every element in the array a call to the
method of the appropriate store is made. Finally, a call to and
a call to is made, which populates those two semi-temporary
derived stores we saw earlier.

Populating the projectManagersStore
Here is the function:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT216

First, we use the method of the to clear it out. This
is necessary because this function will be used at other times, and we always need the
store to be empty to begin with because the next step is to iterate over all the s in the

 via the method. The function passed to is called for every
, and that record is passed into the function as . The task here is to check the

value of the field in the . If its value is , then we add a copy of the
 to the by calling the method of the , which returns

an identical copy of the it is called on.

Note I had a nasty situation where originally I was simply calling on the
and adding the existing form the . The problem I discovered is that the update
event would never fire for the after that, and the reason is that a can be associated with one
and only one at any time in order for events to work properly. So, the simple solution was to use the

 method of the object to add a copy to the instead. The bad news
is that changes to the resource now require updating the as well, which is why I
said this function will be called at other times. So remember, don’t ever put the same in more than
one if you expect events to work as expected! Learn from my hours of pounding my head on the desk!

Populating the AvailableTasksStore and Getting Back to initMain()
The is extremely similar and also pretty simple:

The only real difference is that this time the field is what we’re interested in
checking, and simply stated, if the field has no value then the task isn’t assigned to a project,
and thus is available to be added to a project.

Getting back into , after the call to returns, we initialize QuickTips
as we saw in the last project so that we can have those pretty little validation error icons next
to fields in our forms. After that, a call to is made, which as the name implies, builds
the user interface. Finally, the Please Wait is hidden.

Building the UI
The next thing to look at is that function, and in stark contrast to the
method in the OrganizerExt project, which you’ll recall was pretty darned lengthy, the one in
this project is considerably smaller:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 217

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT218

The reason it is so much shorter is that instead of defining the entire UI within one single
statement, only the basic layout is defined while most of the components that go into it are
defined in separate source files. For example, in the OrganizerExt project, recall that the menu
was defined right there in , so that was a hundred or so lines of code right there.
Here, however, it’s a single statement:

The JSON that is fed to this constructor is contained in the file, which we’ll look
at shortly, and which declares the variable , which is the configuration object, in
JSON form, passed into the constructor. This is a common theme repeated in
this function a couple more times, for example, to construct the three view s seen on the
left of the screen:

Of course, there is some UI definition going on here, beginning with the defi-
nition. A is employed here to lay things out. The first item in the array
nested within the is the menu. The statement we just saw that instantiates the

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 219

 contains a region specification of , which is where the menu bar should be
in the , and it also defines an ID of . So, the first item in the array is
simply a call to which effectively means that the menu bar is the first
item (remember that you can create widgets and not render them immediately, but Ext JS still
knows how to give you a reference to it by ID, assuming you gave the component an ID).

The next item in the array is bound to the region and is a using the
 type with the ID . The array for it creates four nested items within

this
three items are the three summary views, the configuration of which we’ll look at later.

The next nested element in the is itself a in the region.
This is where the view selection buttons and the trees are shown. Remember that you
aren’t obligated to use all the regions of a , and here only the and
regions are used. In the region we create the buttons for selecting the view. This
is just a , as we’ve seen before, and for each of the buttons a event
handler is defined. The card showing in the component, which is created below the
code for the view buttons, is updated to show the appropriate (each is a card in
the shown in the region of the in the region of the main

 in use by the).
As mentioned, the s themselves are each a card in a , and this is defined

below the buttons.

Populating the Trees
Next up are three functions that have the responsibility of populating the three view trees.
These functions are aptly named , , and

.
If by chance you’ve forgotten what a looks like, take a gander at Figure 4-10.

Figure 4-10. The tree in the Task View

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT220

Because of the similarities in these three functions, let’s just take a look at one of them,
. This one is more complex and verbose than the other two, which

is good because the other two are effectively a subset of this one, so understanding how
 works means you’ll understand the other two. Here’s the code we’re

talking about:

The first task is to clear the , which we do by using the method to look
up the with the ID . Then the method is called to retrieve a ref-
erence to the root node. Then, we enter a loop that keeps going until the root node has
no more children. For each child node found, we call the method on the root

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 221

node, passing it a reference to the child node. I could find no single method to call to clear an
existing , and I also could find no simpler way to do it than this.

Once that’s done, it is time to populate the with the new data. The Project View
lists projects, with tasks nested below each, and resources nested below the tasks. So, we
begin by iterating over all the projects in the using its method. For each

 in the store, we append a new to the . A has an
 attribute and a attribute, among other things. The is a unique identifier, while

is what is seen in the tree by the user. The value for both of these comes from the field
of the , but for the the code prepends the string . The reasoning
behind this will be explained in more detail when we look at the code behind the itself,
but simply stated, it allows other code to determine whether a project, task, or resource was
clicked, and it also ensures all nodes in the have a unique ID, which is a requirement.

The also has an attribute that allows us to set the image seen next to the
node. I have different icons for projects, tasks, and resources, so it is easy to differentiate them
when looking at the tree.

Moving on, recall that tasks are nested beneath projects. Therefore, for each
, we also iterate over the objects in the , and for each we

check to see if its field value matches the field of the . If it does, we
add a as a child of the newly created for the project.

the s in a store, this time the . For each we check to see if the
field on the object matches the field of the , and if so, a

 is appended as a child to the new task . For projects and tasks, since no two
projects can have the same name, and the same goes for tasks, there is no risk of a conflicting

 value for the . However, this is not the case for resources, since the same resource
could be assigned to multiple tasks. So, to ensure a unique value, the value has a number
appended to it that is incremented with each resource added. As I mentioned, this
will be explained a bit more shortly, but that gives you most of the information you need.

As a last step, the root node is expanded via a call to its method. This just ensures
that all projects are seen after the is populated (by default, the root node would have been
collapsed, and there’s no point making users expand it when that’s probably what they’d want
to happen automatically anyway).

At this point I suggest looking at the and
functions, because going through them yourself is worth the time. However, as I previously
mentioned, they are essentially just a subset of what we just looked at, so even if you don’t,
you won’t be missing anything.

Showing Project, Task, and Resource Status
You may at this point have guessed how I wrote this code: I wrote a given function for projects,
say the , then took that function and modified it to work for tasks and
resources. That’s why I’ve said a few times now that seeing a single version of a given func-
tion is pretty well sufficient to understanding all three versions. Well, I’m about to say the
same thing again! We’re going to look at the three functions for displaying the project, task, or
resource summary views. Once again, we’ll take the function and look
at it, leaving and for you to review on your own, or
to skip entirely, since the two we won’t look at here are similar to the one we will look at.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT222

Speaking of the one we will look at, here it is:

The first check is to ensure that has a value, meaning it points to a
. If it’s , then the first card in the is shown. As you’ll

recall, this is the nested in the region of the applied to the
. The first card is the welcome screen, so this situation covers if the user clicks the

root node of the projects , in which case there is no active project, but this function will
still be called because this function is called from the click event handlers on the , as
you’ll see shortly.

If a project is selected, though, the second card is shown, which happens to be the Project
Summary view card.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 223

If you look at the Project Summary view, you’ll see there are three s, the second of
which shows all the tasks allocated to this project, so it needs to be populated first (and no, it’s
not a mistake, I skipped the first on purpose… more to come). To do this, we need to pop-
ulate a temporary store, appropriately named . Before this store can
be populated, though, it needs to be cleared, which we accomplish with a call to .
Then, we begin to iterate over the s in the . For each, we see if its
field matches the of the , and if so, then a new is created that is
a copy of the currently being examined. This gives us nearly all the data that we’ll
need to display in the , except for one piece of information: the current of the task.
To fulfill that requirement, we use a function named . The code for that
function is present in as well, and here it is:

This function is used to calculate the status of both projects and tasks, and essentially it
-

umn of a . This function accepts three arguments: the total time booked to the project or
task in hours, the number of hours allocated to the project or task, and the date the project or
task was due to be completed.

The first task is to determine if the project or task is over its allocated hours, within
10 percent of its allocated hours, or has had less than that booked against it. The code begins

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT224

by assuming that the project or task has had less than 90 percent of its allocated time booked
again it, signified by the variable having a value of 0 to begin with. Next, an check
is performed to determine if it is within 10 percent of the allocated hours, and if so, is
set to 1. If is greater than , then status is set to 2 to indicate an
overage.

After that, it’s time to determine whether the project or task is late. Before we go any
further, I should explain that there are six images that can be displayed as a result of using
this function. A green check mark indicates the project or task has had less than 90 percent
of its allocated hours booked. A yellow warning sign indicates danger of going over hours (10
percent of allocated hours remaining), and a red X symbol indicates an overage. In addition,
any one of these three can be blinking, indicating the project or task is past due. So, before the
second statement executes we know which of the three nonblinking images to display. The
second statement will then determine if one of the blinking versions needs to be returned.

So, the check is performed to see if the current date is greater than the value.
To do this comparison, we need to create a true object from a passed-in string, and the

 function that Ext JS provides is just the tonic for that! If the branch is
activated, then it examines the value of the variable and selects the appropriate image
based on it and creates the appropriate
not past due, then the branch hits, and there we check if the project or task is in danger
or is over hours, and select the appropriate blinking image there. (By default, the assump-
tion is made that the project or task is both under hours/not in danger and is also not past
due— that’s why only two cases are checked for in the branch: the third condition is the
default.)

Getting back to the code, we’ve just completed population of the
store for the middle task’s , save for one last detail. Note the line:

This line is the reason the s are not populated in the order they appear on the screen.
In order to show a status for the project as a whole, we need to know how much time has been
booked against it. Since that information is stored at the task level, we have to calculate it as
we iterate over the tasks during population of that .

Once we have that value, populating the project details (the first one in the Project
Summary view) is a pretty trivial matter. First, the store is cleared
by a call to . Then the is copied using its method.
Next, the field of that is set to the value that was just calculated, and the

 field is populated by making another call to .
Finally, the copy of the is added to

. The automatically refreshes because it has been bound to
that particular store (the same is true of all the s in all the summary views).

The last step is to populate the showing resources working on this project.
Since the only way to know this is by examining the tasks associated with this project,
we use the method on the store (yet another reason it
had to be done first) to iterate over its s. For each we retrieve the
from the by looking it up based on the value of the field of
the current being examined. Finally, a copy of the is added
to , but only if the resource wasn’t previously added. We

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 225

determined this by using the function. Simply put, the code tries to look up
the resource in , and if returns , then the
resource hasn’t been added yet and can be added now.

ProjectSummary.js, ResourceSummary.js, and
TaskSummary.js
The three summary views, one each for project, task, and resource, are each housed in their
own source file and are pretty simple config objects fed into an constructor, as we
saw in . As usual for this chapter, we’ll just look at the
since the other two are simply variations on a theme. The code begins with this snippet:

The variable holds the JSON config information that defines the .
We have a that specifies some padding on the left, right, and top of the contents of
the , just to avoid bumping up against borders.

Next we have a chunk that describes the title:

This winds up being a simple
the border so that it looks like a title and not a box with text in it!

Now we come to the first , but before that is the header you see above the :

This is again just a plain-old gives
some padding on the top of the header and so that there is space between it and whatever
content is above it (the title in this case). Following that is the definition of the itself:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT226

This is bound to the , which may be empty or
may have data in it, depending on whether a project is currently selected. Data binding
works either way, of course! For this (and in fact all the s on all three summary
views), the attribute is set to , which means the rows of the
won’t highlight when hovered over. Since these s aren’t meant to be interactive—they
are just a method for displaying read-only data—this is a necessary setting. By extension,

 makes sure the user can’t select a row. The definition of the columns is, I
suspect, pretty straightforward based on our previous experience with s, as are the rest
of the config options.

Next we find the second of the three s, this one listing the tasks allocated to this
project:

In this case I’ve listed the header and definition together, since you now know what
that header is all about from the last . In fact, the definition is pretty unremark-
able too, except for one detail: within the array, the first column is an instance of

, which we saw defined in . This takes
the value of the field of the for each row in the , plus
the column header and an value of , and renders the progress bar as previously
described.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 227

The final shows all resources involved with the project:

At this point, that bit of code should be nothing new at all!

ProjectsTree.js, TasksTree.js, and ResourcesTree.js
Each of the trees that you see when you select Project View, Task View, or Resource View is
housed in its own source file. The Project View tree, for example, is in the file.
The code you find in this file looks like this:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT228

Because each of these source files is so similar, just looking at this one will suffice.
I suggest taking a look at them on your own, but you’ll find that the and

 code are both a bit simpler and smaller than the code
because they in effect are a subset of what is in the code shown here.

As you can see, it’s really just some JSON assigned to a variable named
(stands for User Interface Object—just a prefix I invented). In you saw
that this variable is passed to an constructor, so this JSON is defining that

. It specifies a layout so that the tree takes up the entire space allocated to its par-
ent. It is given an ID of so that we can address it later, and it has a as well
so that there is something between the view switch radio buttons and the tree itself.

Any time you construct a tree in Ext JS, it has to have a root node, even if you don’t have
data to put in it yet. This is a requirement during construction, so here we use the attri-
bute, the value of which is a new . The root node is no different from any
other nodes—they are always instances. We give the root a very uncreative ID of

 and make the text that will be displayed next to the node , since this is the Proj-
ect View tree.

After that, event listeners are defined. In this case it’s just a single one: the event,
which fires any time a node is clicked. Every time this event fires, the callback function is
passed a reference to the node that was clicked as well as information about the event that
occurred. The second argument is an instance of that provides information
about the event such as X and Y location on the page of the event, character codes of pressed
keys involved, and more.

For our purposes, however, it’s only the first argument that matters to us, and that’s a
reference to the object that was clicked. Most important is the attribute of that
object, which is the ID assigned to the clicked node. The first thing we do is see if the clicked
node is the root node. If that is the case, the welcome screen is immediately shown by flip-
ping to the first element in the list of cards underneath the component with the ID

, which we know is the in the center region of the main that
organizes the contents.

Once we determine that it wasn’t the root node that was clicked, the next chore is to
determine the type of node that was clicked, and the ID associated with the item the node
represents. In the Project View tree, there are projects, there are tasks, and there are resources.
However, to the tree itself, they are all just objects; the tree doesn’t know or care what
they represent to the rest of our code. To give extra meaning to each node, I used a special
string format for the ID. That format is or . The first format is used
for projects and tasks, while the second is used for resources. The substring is nothing
but a delimiter. I used this instead of a comma or something more typical because I needed
something that I could safely assume wouldn’t naturally occur in entered data. This particular
combination seemed to me pretty safe. In both formats, the portion is the type of node,

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 229

so the value is either , , or . For projects and tasks, the portion is then
the actual ID of the project or task. (Remember that the ID is really the name of the item, but it
serves as a unique ID here.) In the case of resources, is instead a unique value constructed
based on the time the node was added, as you saw in , and is the ID. This
is necessary because a single resource can appear more than once in the tree since a resource
can be assigned to more than one task. If all nodes in the tree don’t have unique IDs, you’ll
find that the tree breaks, and things like hovering and selection don’t quite work right. Doing
this ensures those problems are avoided.

So, the ID of the clicked node is tokenized and broken into an array named that
has either two or three elements. The first element of the array, which is the type of node, is
used as the branch condition in a statement. Whatever the type is, the appropriate vari-
able is set. For projects, the variable is set to the in the
associated with the clicked node. For tasks, the from the is pointed to by
the variable, and for resources the comes from the and
is pointed to by the variable. This allows the summary views to know what

 to draw their displayed data from, and it allows the application to know what project,
resource, or task should be dealt with when using the Modify or Delete menu items.

Speaking of Modify and Delete, the next task performed is to enable those menu items
as appropriate. To do this, the first element in the array is capitalized using the

 function, yielding one of the strings “Project”, “Task”, or
“Resource”, depending on the type of node that was clicked. With this string we are then able
to construct the ID of the menu items that need to be enabled. For a project node, for example,
the menu items with the IDs and need
to be enabled, so those IDs are constructed. We use the function to get a refer-
ence to the menu item, and then its method is called to activate it.

As I mentioned, the code found in and is nearly identi-
cal to this, but since in the Task View tree there can only be tasks and resources shown, there
is one less case statement. In the case of tasks and resources, clicking on the root node does
nothing, so there is a simple check that effectively ignores clicks on that node. Also, in the case
of the Resource View tree, there’s no need to do any of the mucking around with node types
and IDs. Because there are only resources shown in that tree, and since resources must always
have a unique name anyway, and since the name is effectively the ID of the nodes in the tree,
there is no need to ensure uniqueness manually. It’s already ensured naturally, so the code
there has none of the branching involved. Have a look to verify I’m not making any of this up!

Menu.js
The main menu is how most of the functionality of TimekeeperExt is accessed. There is a
menu item for each entity we deal with. For instance, there is a Project menu, as shown in
Figure 4-11.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT230

Figure 4-11. The Project menu

Task menu, which you can see in Figure 4-12. Each of the first three
menus has three items: one to create a new project, task, or resource; one to delete the cur-
rently selected project, task or resource; and one to modify the currently selected project, task,
or resource.

Figure 4-12. The Task menu

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 231

Before an item is selected, the Delete and Modify options are disabled, as you can see in
Figure 4-13 where the Resources menu is shown.

Figure 4-13. The Resource menu

The final menu, the Help menu, contains a single option that shows an About dialog,
similar to what we saw in the OrganizerExt project. To save some space I haven’t shown a
screenshot of that menu here, nor have I shown the About dialog or explained its code. Except
for the text, it’s the same as in OrganizerExt, so feel free to go back to that chapter and check it
out if you need to.

The code behind the menu, how it is created, and how it reacts when clicked are all
housed in the file. This code is about 200 lines long, but a lot of very similar parts are
repeated. So, let’s look at just a small portion of it, that dealing with projects:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT232

Recall in the function that the variable is fed to the constructor of
an object. However, the reference to the created component was not stored.
Instead, in the config object for the we used the ID of the menu, , to retrieve
a reference to the widget, and that was used in the array of the . Now in the
definition of the menu you can see that the attribute is set to , because we used a

 on the , so this attribute tells the where to put the menu.
The array of the menu contains our top-level menus. The first one has a value

of . The attribute then defines the menu itself, the child elements of the top-level
menu element. The value of the attribute is an object which, in this case, has a single
attribute: . This is an array of the children that are part of that menu.

The first item is the New Project item, so that’s the value of the attribute. The
attribute defines the function that will be called when the item is clicked. You’ll notice as
you scan down the code that the function is nearly identical to the function

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 233

for the other two menu items; the only difference is the dialog that is shown. A reference
to the appropriate dialog is gotten by a call to , in this case the ID we’re look-
ing for is . Then, if the component wasn’t found, a new object
is created, passing it the config object defined that describes the for that dialog,

 in this case. This will only occur if this is the first time the dialog is
being shown. The s for all the pop-up dialogs are never destroyed; they are only hidden,
so the only time we won’t get a reference to an existing component is the first time it is used.
Finally, the method of the is called, passing it a reference to the
where our animation starts from.

You’ll also notice that between each of the three menu items is a single item that appears
to be a plain-old string: a dash character. This is a special cue to Ext JS to put a divider line on
the menu.

The other menus all have extremely similar code behind them, so we can move on to
something a bit more exciting.

NewProjectDialog.js, NewTaskDialog.js, and
NewResourceDialog.js
The New Project, New Task, and New Resource dialogs are all fairly similar, so we’ll just look
at the file here. Before that, let’s take a look at the dialog itself, shown in
Figure 4-14.

Figure 4-14. Page 1 of the New Project Wizard

The New Project and New Task dialogs are wizard-type dialogs, which Ext JS doesn’t pro-
vide out of the box, but fortunately it’s not difficult to implement at all. The first page of the
wizard allows the user to enter a name and description of the project. We’ll see the other two
pages as we chug through the code.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT234

Note The New Resource dialog isn’t a wizard flow because a single set of input fields is all it takes to
define a resource.

digestible pieces, in order:

Here we see the config information for a pretty ordinary . It has a width of 400
pixels and a height of 340 pixels. It cannot be minimized (), resized
(), or dragged (), and it has slightly larger shadow than
usual (). It is also modal (), so it acts like a lightbox. It has an of

 and a title of . It is closable (), and when
the close X is clicked it will be hidden () rather than destroyed.

Attached to this is a object defining some event handlers:

Well, it’s actually a single event handler, , which fires before the is
shown but after it is constructed. This event handler resets three forms, which are the forms
for each step of the wizard flow. We get a reference to the by ID (,
for example) and then get the underling form by calling on it. Then is
called on the form to reset it. At this point we also show the first step of the wizard by calling

 on the returned by called on the that will be
used to construct the wizard. Also at this point the Next, Back, and Finish buttons are disabled.

Speaking of those buttons, they are defined next, starting with Cancel:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 235

When Cancel is clicked, all that needs to be done is to hide this , so that’s all you see
here. The is hidden rather than destroyed so that when it’s shown later we don’t have to
incur the overhead of creation a second time.

The Back button is defined next:

As I mentioned earlier, Ext JS doesn’t provide a wizard by default; we have to build it
ourselves. To do so, we use the handy . Each step of the wizard is a card in that

, and we provide the functionality behind the Next and Back buttons that are typi-
cal of a wizard dialog. For the Back button, we begin by getting a handle to the .
Unfortunately, there is no easy way to ask a which item is active, so you either have
to keep track of that information yourself or figure it out dynamically. I wanted to minimize
the number of “status tracking” variables used in this application, so I decided to get the value
dynamically. We do this by getting the active item, which is available via the attri-
bute of the . We then get the ID of that item by calling . The cards have IDs
that begin with a number, 0–2, so we do a simple to get the first character, and then
use to get it as a number. We now have a variable named with the
value 0, 1, or 2, depending on which step of the wizard flow the user is on.

Next, if the is greater than 0, meaning users are on the second or third step,
then moving back is a valid operation, and it’s just a matter of calling on the

 and passing it the value of minus 1, which puts us on the previous
step. If is 1, then the Back button is disabled at this point, which handles the situ-
ation where the user clicked Back and we just moved to the first step.

The Next button is, er, next…

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT236

This is very much along the lines of the Back button’s code, except that here we need to
ensure is less than 2, because Next doesn’t work if we’re on the final step.

The last button is the Finish button, which clearly has the most work to do:

The handler defined for the Finish button begins by getting a reference to all three of the
forms, one on each page of the wizard flow. It then uses the method of the form to
get an object for each that has fields corresponding to the values entered in the form. The next
step is a check to ensure that no project currently exists in the with the name
that was entered. If that is the case, then a message is displayed via to inform the user
the project could not be added. Next, if the add is OK to continue, a new is cre-
ated, taking values from all three of the forms. The ID of the record is set to the same value as
the The constructor, any constructor actually, takes two arguments.
The first is an object that the reads to populate the , and the second,

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 237

which is optional, is the ID to assign to the . Note that an field on the
is different from the ID the store knows the as. Supplying this second argument to the
constructor gives each in the a unique ID that you can then use to retrieve the

 by later. Without an ID, you are left to scanning through all the s to find what you
want, which is inefficient and requires more work on your part.

Next, the new is added to the . This triggers the add event on
the store, which calls the ’s method to save the project to the database.

You might think that’s the end of the story, but you’d be mistaken! Next, we need to add
the project to the Project View . To do this, we must get a handle to the root node, which
we do by calling on the itself. Next, we call on that root
node and pass it a new object. The has two fields: , which is
the text seen in the , and , which is the internal ID the is known by. We also
pass a value for to specify the image to display next to the node. At this point we also call

 on the root node so that all the projects are again visible.
Finally, the New Project is hidden and we’re all done.
Moving on, we now come to this code:

This is the definition of the that houses the cards, each one of which is a step
in the wizard. The first item in the array looks like this:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT238

That’s the definition for the first page of the wizard. It doesn’t look much different than
the previous we’ve look at; however, there is one new attribute: . When
set to , as it is here, the will be hidden by moving it off screen, rather than
setting or style attribute on it. This was necessary because without it the

 on the second step didn’t display right (the drop-down portion wasn’t the same
width as the text box portion). This has to do with Ext JS needing to get width values of various
components, and that doesn’t work if the element isn’t visible. Fortunately, even if the ele-
ment is positioned to, say, –1000 pixels to the left, which pushes it off the left side of the page,
the browser considers it to still be visible even if the user can’t see it, and those calculations
work properly.

The first element in the array is just some instructions to the user. After that are
two form elements: a for entering the project’s name and a for entering
a description.

Notice that both are defined as required (). Also notice that the
 config option was set to . In the past, we’ve seen how we can have a button

that enables and disables depending on the validity of the form. Here, we’d want the Finish
button to work that way. Unfortunately, it doesn’t seem to be possible to tie a button to the
state of multiple forms, as we’d also need to do here. So instead, we use the list
and handle the event. This fires any time the validation state of the form
changes. In this function, the code gets a reference to the currently active card, and if it’s the
first step and if the argument was , then the Next button is enabled. Notice that
the Finish button isn’t dealt with here. That’s because the Finish button can only be activated
on the last step of the wizard, and to get there the Next button would have to have been
enabled on this step first.

Moving on, the second step of the wizard is shown in Figure 4-15.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 239

Figure 4-15. Page 2 of the New Project Wizard

All available PMs are presented in a , which works well since only a single PM can
be assigned to a project. Once the PM has been chosen, the user can move on to the third page
of the wizard, where the user will select a start and end date for the project and declare how
many hours are allocated to the project.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT240

It is largely defined in the same way as the first step; the only difference is that there is a
 on this step. That is bound to the , so only PMs are

available for selection. The is set up to work like a regular , so the user can’t
type anything in. This field is required, and the event is again handled and
again activates the Next button, if appropriate.

The final step of the wizard is shown in Figure 4-16. This is where the user selects a start
and end date for the project, as well as the number of hours allocated to the project.

Figure 4-16. Page 3 of the New Project Wizard

Once again, the definition of this step doesn’t deviate too much from the previous step,
nor does the handler code:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 241

Here, we have two s for the user to choose a start and end date. The Allocated
Hours field is a , so we know users are entering a valid numeric value by default. In
the handler, it’s time to enable the Finish button now, assuming the form on
the step is valid. Also, we know at this point that the Next button can be disabled, so we do that
as well.

Take some time now to look at the New Task and New Resource dialogs’ code; they follow
the same general model as this one. We will move on now to the dialogs for modifying existing
entities (and because each of them is fairly different, we’ll look at all three for a change!).

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT242

ModifyProjectDialog.js
Now that we’ve seen how new projects are created, it’s time to see how existing ones are modi-
fied. The Modify Project dialog is not a wizard paradigm like the dialog for creating a new
project; instead, it uses a simple tab-based UI metaphor. Take a look at Figure 4-17, which
shows the Details tab of the Modify Project dialog.

Figure 4-17. The Modify Project dialog’s Details tab

There is also a Tasks tab where tasks are assigned to the project. Before we see that,
though, let’s get to the start of the code found in :

This is the same sort of configuration we saw previously. A event han-
dler is defined in the object, as you can see here:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 243

The job of this event handler is to first set the title of the to indicate the project
being modified. Then, it populates the form that is present on the Details tab. To do so, we call

 to get a handle to the , and then call
to get the underlying form. Ext JS provides us with a handy convenience method hanging off
the form: , which takes as an argument a simple object. This object has fields with
names matching the fields in the form. The method iterates over the fields in the
form and sets the values from the fields in the object, if a matching field is found. That makes
life a lot easier! Since we have pointing to the appropriate , it’s
a simple matter to pull the data from that and put it in the object passed to .

Once that’s done we need to populate the and the
, which are used on the Tasks tab to populate the es. The

former is the list of tasks not yet assigned to a project, and the latter is the list of tasks assigned
to this project (if any). The method is used first to clear each of the stores. Then,
to populate , we use the method of the
to iterate over its members. For each we create a copy of the and add it to

. For the , we iterate over the collection of
s in . For each we see if its field matches the of .

If so, a copy is added to .
Next we come to the definition of the buttons seen on the dialog, beginning with the

Cancel button:

Just like on the New Project dialog, all this button does is hide the dialog. The Save
Changes button does a little more, as you can see for yourself:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT244

First, the values from the form named are retrieved. Next, we call
 on . This is something we haven’t seen before. As you’ll recall,

when you edit a , it fires an event, and if you’ve written an event handler for
it, your code will execute. That would be bad in this case because the event handler
calls a method to save the updated data to the database. It would be inefficient to do
that every time a single field was updated, which is precisely what would happen here. By
calling on the , the event will not fire until the
method is called. You can think of it as batching of updates. Only a single event will fire
now, and therefore the will only be called once, regardless of how much we modify the

.
Each of the fields that can be modified is updated, and the code is a little stupid to the

extent that it doesn’t do any “has this field changed?” sort of logic. Because we’re batching
all these updates it doesn’t matter; it’s a single hit on the database so it’ll do no harm. It also
seems that Ext JS is smart enough to not mark a field as changed that has been updated with
the same value it currently has, so that’s definitely good.

Once is called, the event fires, the is called, and the modified data
is written to the database. That’s not all we need to have happen here, though. We also
need to mark any tasks that are now allocated to this project as no longer available, and
likewise we have to mark as available any task that was previously allocated this project but
no longer is. To do this we iterate over the s in the two temporary stores, beginning
with . For each in that store, we look up the
in the with the same (remember, we only have a copy of that record in

) and set its field to a blank string, which makes it available
again. Similarly, we iterate over the s in and for each,
look up the with the same in and set its field to the of

. The event will fire for any modified and the change will be
written to the database.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 245

The other things we need to do here are update the Project View and update the
list of available tasks. The needs to be updated to reflect changes in task allocations for

. The needs to be updated so that if the user tries to
use the Modify Project dialog again, the list of available tasks accurately reflects these latest
changes.

Also, if ’s value is 1, which means the Project Summary view is show-
ing, we need to call as well so that task allocation changes are reflected
there immediately as well. That wraps up the Save Changes button!

Now we can look at the configuration that defines the UI of the :

As mentioned earlier, a tabbed interface is used here, which means an of .
The first tab is defined like so:

This is all very much along the lines of what you’ve explored before. You can see again
that the event is handled to enable and disable the Save Changes button as
appropriate. This ensures that all required fields are filled in, and that those fields that have
other types of validations are valid too.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT246

Note In this case it probably would have been fine to bind the Save Changes button to the state of the
 button, similar to what you saw in the OrganizerExt project. There isn’t any master

plan behind why I didn’t do it that way here other than I was following the same pattern I’d used in the code
for the New Project dialog. Take it as a demonstration of an alternative approach with no deeper meaning!

The second tab is where tasks are assigned to the project. Figure 4-18 shows what this tab
looks like. You can see where I’ve expanded the Allocated Tasks (the tasks allocated to this
project).

Figure 4-18. The Modify Project dialog’s Tasks tab

The code that creates this tab’s content is a little more complex than the Details tab, but is
little more than an extension of things we’ve seen before:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 247

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT248

This code is interesting because the plain text sections are interspersed with
the es as well as the buttons. The first , which is bound to the

, lists all tasks that aren’t currently allocated to a project. Remember
that a task can be allocated to only a single project, so a is a good choice here. The
user can select one of the tasks and click the Add button, which removes it from this
and adds it to the second Allocated Tasks .

Notice that the two es have a event handler defined that enables the asso-
ciated button. So, when an item is selected in the Available Tasks , the Add button is
enabled, and when an item is selected in the Allocated Tasks , the Remove button is
enabled. Then, each button has a handler defined, which is the function that is executed when
it is clicked. For the Add button, that code gets a reference to the

 and calls its method. This gives us the name of the task being added to
this project. The with that is then added to the .
It is then removed from the . Finally, the value selected in both

es is cleared by calling on each, and the Add button is disabled.
Similarly, the Remove button’s handler removes the from the

 and adds it to the . It then clears both
es and disabled the Remove button.

Note that none of these operations triggers any database modifications. That’s the point
of using copies of the s in these temporary stores: none of these changes hits the data-
base, or even the canonical data stores, until Save Changes is clicked. If the user clicks Cancel,
or clicks the ’s X close icon, there is no harm; these temporary changes simply go away.
No harm, no foul, as they say in basketball!

ModifyResourceDialog.js
I think it makes sense to look at some of the code for the Modify Resource dialog. While much
of the code is similar to the Modify Project dialog, there are a few parts that are different. I’ll
cut out the really redundant parts and only look at the delta between them. First, though, let’s
get a glimpse of this dialog (see Figure 4-19).

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 249

Figure 4-19. The Modify Resource dialog’s Details tab

As with the Modify Project dialog, a tabbed interface is used. First, let’s look at the
 event handler for this dialog:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT250

This code does the same sort of tasks as that of the Modify Project dialog. The title of
the is set, and then the form on the Details tab is populated from the values in the

 referenced by . Note the form field,
which I’ll jump the gun a little and tell you is a check box. To set its value, we need to supply
a , but the value stored in the field of the is the
string “Yes” or “No” (and it’s one of those rather than a real because it made display-
ing this value easier on the summary views).

Next, on the Time Booking tab (Figure 4-20, a few pages hence) you’ll find there is a
 where the number of hours booked to a given task can be entered. This field is

cleared, and disabled, and the associated Book button is disabled. The where the task
is selected will be cleared when the store to which it is bound is repopulated (more on that
soon!). Therefore, these three fields are in a consistent state—that is, users can’t enter a num-
ber for booked time until they’ve selected a task, and the Book button can’t be enabled until
a booked time value has been entered.

Next, the store to which the Assigned Tasks is bound on the Time Booking tab is
populated. This is done by iterating over the s in the . For each task that
this resource is assigned to work on, a copy is added to .

Next we come to the Save Changes button:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 251

First, all of the values on the form on the details are gotten, and the value of the
 field is checked. This is a check box, which means it has a

value, so if it isn’t checked, the code checks to see if any project in the has this
resource assigned as its PM. If so, then the change is aborted because we can no longer make
a resource a PM if they’re assigned as PM on a project. A message is shown via to indi-
cate the failure and that’s it; nothing else is done after that in this case.

If the change is going to proceed, we see the same sort of being called on the
 as we saw with Modify Project. The fields that can be updated are. Special

care is taken with the field to translate from a simple to a string
“Yes” for and “No” for . The is called, and the changes trigger the
event and a call to the .

Next, we use the method to iterate over the s in the
. For each we look at the field. This is a field—every has one—that will

be set to if the data in the has been modified. If it has, then we look up the
canonical matching this task’s in and set its field to the
value of the field in the from .

Next, if the Resource Summary is currently showing, it is refreshed to show any changes.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT252

I suspect this is very much as you’d expect. The event is used again to
enable or disable the Save Changes button. Again, it is done this way just to follow a consistent
approach throughout this project.

The Time Booking tab has a bit more meat on its bones, as you can see:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 253

First we see the , bound to the
, which lists the task this resource is assigned to. Below that is a for

entering time booked against the selected task. The event handler on the
enables the when a task is selected. A event
handler is then tied to the . Every time a key is pressed
the value of the field is examined. If it isn’t empty, then the Book button is enabled; otherwise
it is disabled. This gives us a nice UI where as soon as a number is entered the Book button
becomes available. But if the users backspace and delete their entry, it becomes disabled. In
Figure 4-20 you can see how the Book button is enabled when a value has been entered.

Figure 4-20. The Modify Resource dialog’s Time Booking tab

Finally, the Book button has a handler defined. When clicked, it gets the value from
, and then looks up the from

based on the value of the . It sets the field
of that , and then clears the and . Finally, it disables itself.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT254

ModifyTaskDialog.js
The code in is similar to the previous two dialogs and thus it’s probably
not necessary to go over it here. The only real difference is that it’s a bit simpler: as you can see
in Figure 4-21, this dialog does not use a tab-based interface.

Figure 4-21. The Modify Task dialog

Since there’s not as much information for a task that can be modified, a single does
the trick just fine. Everything we’ve seen before applies to this dialog. For example, there is a

 event handler that populates the form in exactly the same way as the previous two
dialogs. There is a temporary populated that the Project Manager is bound to,
and this is generated by copying records out of the .

A event handler is attached to the form to enable the Save Changes but-
ton if all required form fields are filled in and if all fields are valid. Otherwise, it disables them.

The is updated in the same way as we’ve seen before, and the Task Sum-
mary view is refreshed if it is currently showing. Also, the Task View and the Project
View are both refreshed because changes in this dialog could impact what should be
displayed in them.

As usual, I suggest looking over the code in the download package. I wouldn’t expect it
would take more than a few minutes if you’ve read our discussion on the previous two dialogs.

DeleteProjectDialog.js, DeleteResourceDialog.js, and
DeleteTaskDialog.js
The , , and files con-
tain the configuration object for the three dialog s displayed when you want to delete
a project, resource, or task. As with so much of the rest of this project, the task and resource
code was created by copying the code for the project and making the appropriate changes.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 255

Therefore, we’ll just look at , secure in the knowledge that it is repre-
sentative of the other two.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT256

In Figure 4-22 you can see what this dialog (indeed, all three of these dialogs) looks like.

Figure 4-22. The Delete Project dialog

The code is pretty straightforward. The is defined as having an of
. It is defined as being closable (), modal ()—

so that it is effectively a lightbox—not minimizable, not resizable, and not draggable
(, , and). The is given a size of
450 200 (and), and we make the shadow a little bigger by specifying

. Finally, the is set to so that when the user clicks the X to
close the , it will be hidden and not destroyed.

Also note that the attribute is a blank string. This will be populated dynamically,
and in fact that’s what we see next as part of the object. The event fires
before the is shown, and here we call the method on the to set the
title to the value of the field of the pointed to by .

After that we find the array, which defines the Yes and No buttons you see at the
bottom. The knows how and where to place these buttons; we only have to tell it what
kind of buttons we have. Each button has a attribute and a attribute. The
attribute points to a function that is executed when the button is clicked. For the No button,
that’s simply a call to the method of the , once we get a handle to it by calling

.
The Yes button has a little more work to do, though. First, some validations must be

performed. For a project, that validation is simply to ensure the project doesn’t have any
tasks allocated to it. While it would have been nicer if the application set the resource field
of all s associated with the project to a blank string to make them available for

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT 257

assignment again, this validation frankly makes the code simpler and shorter (but feel free
to enhance the application in this regard as an exercise!). The validation requires the code to
iterate over all s in the and look for any that have a field value
matching the field of . If any are found, we use the function to
display a message saying the project cannot be deleted and why.

Note Delete validations are one of the few differences between this and the resource and task delete
dialogs. For resources, the validation is required to ensure the resource being deleted isn’t assigned as the
PM of a project, and to ensure the resource is not assigned to any tasks. Either situation causes the deletion
to be aborted. For deletion of a task, the task cannot be deleted if it is assigned to a project. This is the only
substantive differences between these three source files.

Once we confirm the project can be deleted, a couple of tasks are required. First, the proj-
ect is removed from the via the method. You pass this a reference to
the to be removed, which we have by virtue of pointing to it. Next, the
node in the Projects for the project has to be removed. This requires us to get a reference
to the itself, and then call its method to get a reference to the .
Remember that the ID of the node has the type appended to the front of it, so we need to do
that here. Once we have a reference to that , we have only to call the method
on it and the is automatically updated.

Next, we set to to indicate no project is currently selected, and we
call , which will wind up showing the welcome screen again because

 is .
Finally, the Delete Project and Modify Project menu items are disabled and the Delete

Project dialog itself is hidden (but not destroyed).
The other part of this dialog’s definition is what is displayed in the ’s main content

area, and that’s done using the array. It contains a single element that is just some plain-

Now, if you replace the word with or everywhere in this code, you
effectively have the Delete Task and Delete Resource dialogs’ code, save for the validations we
previously discussed. Take a look at them now just to be sure, but trust me: there are no sur-
prises to be found!

Suggested Exercises
TimekeeperExt is a pretty useful little application. However, as I said in the beginning, it’s
certainly not on par with Microsoft Project or any number of other project management tools.
There are plenty of features you could implement that would make it even better. I will list
some of those to you as suggested exercises:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: T IMEKEEPEREXT258

would be a nice addition, I think. You should be able to determine an overall percent-
age based on the percentages of all the constituent tasks.

dates throughout the application to ensure the end date is after the start date. As it
stands now, the application would allow that rather illogical situation (barring time-
traveling visitors from Gallifrey7 anyway!)

and also allow a given task to be associated with more than one project. Both of those
are fairly significant changes, although they sound simple on the surface. You’ll have
to toy with the database structure, the UI, the core logic throughout, and more. This
would be a challenge, but I believe you’d learn a ton by doing it.

can’t begin until task A has been completed. TimekeeperExt doesn’t have any notion
of dependencies at all, so it might be a good idea to add that! It might be as simple as
being able to specify what task(s) a new task depends on, not allowing a start date that
is before the end date of any of those tasks, and not allowing time to be booked against
a task that cannot have started yet. You also probably would want to make the start
date not required for a task that is dependent on another.

drag tasks and resources around to assign them to projects and tasks correspondingly?
As Eric Cartman8

although it wouldn’t require anywhere near the degree of code change as the previous
suggestion, but it would require a fair bit of research on your part to figure out how to
pull it off.

Summary
In this chapter we took a task that many people, including myself, find it hard to get too
excited about, and we created an application that makes it just a little more fun than usual—
and we have Ext JS to thank for that! We saw some new UI widgets in action, including the

, and we saw some others used a bit more, such as the . We saw a different way
to structure an Ext JS application, and a different approach to organizing our code. We saw
some more action with Gears, focusing on its database component. You also probably learned
more project management terminology than you ever wanted to know!

In the next chapter we’ll create another handy application that will provide even more
exposure to many of the UI capabilities of Ext JS. That project, a code cabinet, will provide a
utility where we can stash snippets of code, retrieve them, search for them, and so on.

 7 Gallifrey is the home world of the Doctor from the long-running British sci-fi show Dr. Who, a mem-

his race, the Doctor is a time traveler!

 8 Eric Cartman is the obnoxious, overweight, and also hysterically funny kid from the long-running
show South Park. In one early episode, Cartman uses the term “hella-cool” to describe something that
is extremely cool. I’m not able to confirm if the term existed before Cartman uttered it, but it certainly
came to prominence after that.

259

C H A P T E R 5

A Place for Your Stuff:
Code Cabinet Ext

In this chapter, we’ll fulfill the need of our obsessive-compulsive personalities and develop an
application to store our code snippets in.

As good developers, we quickly learn that “stealing” is better than creating. That is, the
more you can find code that does what you need rather than writing it yourself, the better. This
doesn’t always mean stealing from others (and stealing is just an attempt at humor; it’s not
actually stealing, of course!). Especially after you do this programming thing for a while, you
begin to steal from yourself more and more because you remember that you wrote that func-
tion to encrypt passwords a couple of projects ago, or you remember that algorithm you put
together for processing account numbers, or whatever else.

Being able to find those snippets of code is a challenge, but it’s a challenge we’re here to
meet! With the help of Ext JS and Gears, we’ll create an application that lets us store our snip-
pets, organize them, and even search for them. That’s what this chapter is all about. In the
process, you’ll get some good experience with some new pieces of Ext JS that I think you’ll find
very interesting indeed!

Let’s begin by looking at what we want to accomplish and what we want this application
to be able to do.

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT260

What’s This Application Do, Anyway?
A code cabinet, a virtual filing cabinet for our code snippets, should in many ways model an
actual file cabinet. But what does that mean? Here are the bullet points:

categories here. We should
be able to create categories with any name so we then have a mechanism with which to
categorize our snippets. Being a virtual file cabinet, it will be allowed an unlimited num-
ber of drawers. In terms of user interface, let’s use a widget to display the categories
(although we’ll use it essentially like a list in that we won’t allow for subcategories—and if
you think that sounds like a hint for a suggested enhancement, you’re right!).

information stored about it, including name, description, author, e-mail address (of
the author, presumably!), and URL reference (that is, if we found the snippet online
and want to remember the site we got it from). We’ll also be able to store notes about
the snippet and associated keywords with the snippet to make searching possible. We
should also let the code and notes be entered in a rich way, not just in plain text.

-
ria, and in any combination of criteria. We’ll include things like being able to search by
name, description, author, keywords, and actual code content.

we’ll do throughout this book.

we screw up sometimes!

but why stop with just two? Let’s look at a third way to structure things, a way that I for
one feel is probably the best of the bunch.

-
tions of it as we wish. Let’s also allow the user to collapse and expand most sections.
Finally, let’s use Ext JS’s state-saving capabilities so that the sizes they set persist across
executions of the application.

All right, I think we’ve got enough here to get going, so off we go (if you’re a child of the
’80s feel free to start singing the theme to The Great Space Coaster1 right about now!) Before we

 1 The Great Space Coaster () was a children’s
television show from the early ’80s that many of us in our mid-thirties grew up with. Most people tend
to remember two things: Knock-Knock the bird, who naturally enough told knock-knock jokes, and
Gary Gnu, who did the fake news reports (“No gnews is good gnews with Gary Gnu”). Of course, the
theme song tends to stick in our heads too: “…get onboard, step inside, slowly for a magic ride… roar-
ing towards the other side where only rainbows hide…” Ah, the memories!

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 261

Figure 5-1. Code Cabinet Ext, in all its (initial) glory

See, just as described! You’ll find the code to be fairly terse, again owing to the power Ext
JS provides. In fact, there are number of new capabilities that add to the lack of verbosity of the
code… but not, apparently, to the lack of verbosity of my writing, so enough setup, let’s get to
it, shall we?

Overall Structure and Files
With this project I decided to go with a different architectural approach, which will be dis-
cussed as we look at the code. At this point I want to emphasize that this approach is an
extension of the previous project. That means we’ll see a number of source files for individual
UI elements, but there are fewer here, partially because the application itself is simply less

-
cation’s directory structure.

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT262

Figure 5-2. The application’s directory structure and constituent files

We have the usual directory with the single file in it, and as you’ll see
shortly, there’s not much to that file. The directory is naturally still present, and in this
application it is unmodified—that is, no theme or anything has been added as we did in the
previous project. The directory contains a couple of GIF files, all of them icons used on
the toolbar and the buttons throughout the application, just to spice them up a little. In the

 directory resides all our JavaScript source code. We have the file that we’d
expect given that this application uses Gears (like all the others). is our
“main” source file, but as you’ll see, it’s fairly sparse. The file is our data access object,
and contains the definitions of all the s and s we’ll
need. Each remaining file contains some configuration object that defines an element of the
UI. The names I suspect are completely obvious, but if not have no fear; we’ll be looking at
each individually.

In the root directory we have , which is where we’ll begin our exploration of the
code.

Note I may not have mentioned this previously, but all of the projects in this book are licensed under the
GPL open source license. This fulfills the Ext JS licensing requirements, but I point it out because that’s the
reason you find the file in the root of all the projects and why the GPL license header is pres-
ent in all the source files.

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 263

The Markup
The file in this application is a fair bit smaller than any of the others we’ve seen
so far:

I’d be willing to wager a minute’s salary (because I’m clearly not a Las Vegas high-roller!)
that this is probably pretty mundane by now. In fact, the only thing that may surprise you
is the fact that I’ve used the plain-old event handler to call the method of
the object, which is the one and only instance of the object defined in the

 file, and is what kicks off the application. The reason I did this is
because, frankly, I couldn’t get to work! I know we authors are supposed to have
all the answers, but the fact is that part of what makes a “practical” book worth something, in
my opinion anyway, is that you can read about the problems the author encountered writing
the example code and learn how they got around them. This saves you time later because you
don’t have to spend that time figuring out what we’ve already figured out.

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT264

In this case, I am not sure why didn’t work. As far as I can tell, it absolutely
should have. The application never gets past the Please Wait when using it, though,
and I’m not sure why. Falling back to works just fine, however. Keep in mind that the
primary reason for using is to start your application’s code executing as soon as
possible and not have to wait for all resources to load first, as is the case with . Because
of that, you can usually use the two approaches interchangeably, but will also
usually give the appearance of better application performance. Here it probably isn’t a big deal
either way.

Note too that the only markup present here is the familiar for our
animations. Because of some new functions used that we’ll see soon, there isn’t any need to
define in markup or anything else.

The Style Sheet
The style sheet in this application, like the markup in , is very limited. This is at least
in part due to the way this application is constructed.

The selector styles the text seen in the Please Wait pop-up during application
startup. The selector is applied to the . Here, however, notice that it is
different than in previous applications. Here, the is , whereas in previous applications
it was 1 pixel, like the other attributes. This changes the effect you see when s appear.
Instead of appearing to expand into view from the upper-left corner, they appear to “shrink into
view,” so to speak. In other words, the s fly in from the top, but they seem to shrink from

It’s a fairly subtle change, but one that I think looks quite a bit cooler!

The Code
Well, getting through the style sheet, markup, and directory structure didn’t take very long,
which means it’s now time to jump right into the code! Let’s begin with the class, since
that’s largely something that stands on its own.

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 265

DAO.js
Recall in the previous application that I decided to feed objects to the directly and
to have the return s directly. I again decided to go with this approach because even
though the argument against this—that the code is in a sense tied to Ext JS—is valid, the
simplicity of the code that results from this approach is highly compelling. With that in mind,

Figure 5-3. UML class diagram of the DAO class

The diagram shows that the structure of the is very much along the lines we’ve previ-
ously seen, and there’s little surprise there: the structure makes a lot of sense, so why not stick
with what works?

As we get into the code, however, we’re immediately faced with something new and, pre-
sumably, exciting:

Previously we saw the DAO code beginning simply with:

Later on, an instance of this class is created. Here, however, something else is going on.
That something else is called “namespaces.” I’m going to hold back on a full explanation at
this point because it’s easier to understand what’s going on by looking at one particular line
of code in . At this point I’ll simply tell you that the way this code opens
up is creating a instance as well, but where that instance lives, so to speak, is quite a bit
different.

Let’s move on to the next thing we find in the code:

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT266

As usual, we need a Gears database in which to store our application’s data, and this field
holds that name.

Next up we find a series of four SQL statements for dealing with categories:

This application deals with two entities: categories and snippets. A snippet is a child of
a category at all times, but other than that we essentially have two simple tables to deal with,

I suspect the four SQL statements need no explanation.

Figure 5-4. Table structure of the categories table

Dealing with snippets is a little more complicated, so we find that there are a few more
SQL statements to look at:

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 267

Even still, they are each individually pretty simple. There is more information to store

 field is a foreign key to the field of the categories table; other than that,
the fields in the snippets table describe the snippet itself.

Figure 5-5. Table structure of the snippets table

Notice that there are two different retrieval statements. The
 statement retrieves snippets in a given category and is used when a category is

selected and we want to see the snippets within it. The statement
returns all snippets across all categories and is used to perform searches. This hints at a slight

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT268

architectural difference in this application as compared to the previous ones. In the others, all
the data from the database is loaded at startup, and it’s only updates (or deletes) that cause
database access to occur again. Here, however, because of how the data is organized and how
the application works, it makes more sense to do retrievals when necessary.

For instance, you could envision loading all the snippets at startup and them filtering
down to the ones you need when a category is selected. However, why waste the memory
doing that? It’s more efficient to just read them in when needed. Since no network access is
involved, there’s no real concern about performance that might make you take a different
approach.

Next up is the method. This serves the same purpose as all the other meth-
ods we’ve seen: it ensures that Gears is available, and creates the table structure if necessary:

Here, I’ve modified the code to be slightly more helpful to its caller. In previous appli-
cations, a failure of any sort—either because Gears wasn’t available or because a problem
occurred trying to create the tables—was indistinguishable by the caller. Now the return type
isn’t just a simple —it’s a string that tells us what happened. If Gears truly isn’t avail-
able, then this method sends back “no_gears”. If an exception of any sort occurs, then the text
of the exception is sent back (and in the case of this application, is displayed to the user).

The next method we find is for creating a new category:

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 269

The argument is of type . We’ll see the definition of this shortly,
but as I think you can surmise, it contains a single field, and that’s it.

Retrieving categories is a simple matter, and unlike snippets there’s only a single retrieval
method to get all of them:

This is just like the retrieval methods in the from the previous project. All it takes is
executing the appropriate SQL statement, then iterating over the returned items and creating a

 for each. Throw them all in an array, wrap it in a bow, and return it, good to go!
We can also delete a category, which is somewhat interesting:

It’s interesting because deleting a category also means deleting all the snippets within it,
which arguably is not the way you’d want this application to work in an ideal world, but hey,
feel free to enhance it! So, there are two SQL statements to execute, but otherwise this method

this when they try to delete a category.

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT270

Figure 5-6. The Confirm Category Deletion dialog

Now we can move on to the methods for dealing with snippets, beginning with the ability
to create a new snippet:

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 271

The argument is a . It obviously has more fields than a
, but is an ordinary Ext JS nonetheless. Note that when a snippet is created it is

assigned an ID using the current time. This ensures uniqueness and also keeps our application
code from having to generate its own key value for the snippet (the ID is the unique key of the
table).

Retrieving snippets comes in two flavors, but both of them are implemented as part of the
same method:

Here, the argument names the category we want snippets for. However,
that argument can be , which means we want all snippets across all categories. The
queries executed in both cases differ in that the one for retrieving queries from a category,

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT272

, requires the category name be dynamically inserted into it,
while the does not. So, a little bit of conditional logic takes care of
that, and the appropriate query is executed. In other cases we simply get back all available data
and return an array of created objects, so after that little bit of logic the code is
identical. Note that each is provided with the unique value, but it is not one
of the fields of the itself—it is a separate property of the interface that
Ext JS knows about.

Snippets can also be updated, and because each snippet has a unique ID—as opposed to
previous projects, or even the categories in this one where the name is the key—the field
of a snippet can be updated as well, as you can see here:

Finally, snippets can be deleted too:

No surprises there!

StoresAndRecords.js
Now that we’ve seen the code, it makes sense to see the s and s involved in this
application. The

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 273

Figure 5-7. The record descriptors in all their glory

These s are very simple animals, but let’s see their definition anyway, starting with
the :

Yes, a single field, , is all we need to make this whole rigamarole work! The
 has a few more, though:

By the way, you can see here the same sort of “namespacing” going on as we saw with the
, so hold tight to your questions about that because we’re nearly to that explanation. (I just

hope I haven’t built it up so much that it’s a disappointment!)

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT274

With the s out of the way, we can see the s that are involved in this appli-
cation. As it turns out there are only three: one for categories, one for the snippets in the
currently selected category, and one for any search results that may exist. The first of these
is the :

This is where we store all the categories that currently exist. This is populated from
the database once at startup and then all adds and deletes of categories are executed against it.
As such we have an and event handler defined to call the appropriate method in
each case.

In the event handler we find something new: . Recall that
in previous applications we had some code to determine if the Please Wait was show-
ing to avoid the event firing during initial loading. Well, the same situation has to be
accounted for here, but in this application there is no Please Wait . Instead, we’re going
to be using the feature. This allows us to display various sorts of dialogs
without having to construct the s ourselves. We’ll see the code for this a little later, but
for now it’s important to understand that using means we can have a single

 at a time opened, which means we can ask Ext JS if the is currently open by
calling . So, effectively, this serves the exact same purpose as the
similar code seen in previous applications.

The is next, and it is virtually identical to the :

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 275

The only real difference is that the has an event handler as well
since snippets can be updated, while categories cannot.

Finally, we find :

This is a temporary that is loaded with s matching the entered search
criteria when the user wants to perform a search. At the start, though, it’s just an empty ,
but defining it allows us to bind widgets to it, even though it’s empty, so we can stick with a
more declarative approach to defining our widgets that way.

CodeCabinetExt.js
All right then, now we find ourselves staring face to face with the file,
which I’ve described as the “main” source file. Each of the previous applications had a
single JavaScript file that contained what you could call the “core” of the application. The

 file is similar, but in this situation it’s also quite a bit different. Let’s begin

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT276

Figure 5-8. UML class diagram of the CodeCabinetEx, and its sub-namespaces class

So, we can deduce that we’re looking at a class here, and that’s nothing we haven’t seen
before. What is new is how the class is defined. The answer happens to be the first line of
executable code in this file, and it also happens to be what I’ve hinted at before: namespaces.

The function is something we haven’t seen in action before. Here’s what

variables and classes so that they are not global.” Here’s what I have to say about it: it creates
classes!

Remember that in JavaScript, a class is a function. Every function you create, because you
can later create a new instance of it, is what you’d call a class in other languages such as Java.
But you also hear this term “namespace” a lot in JavaScript circles. It’s is really just another
name for a function.

You can create functions within functions in JavaScript—there’s no problem there. Each
time you create a member of a function, it is local to that function; its scope is the function, in
other words. That’s what namespacing is all about: keeping elements out of global scope and
instead putting them into some more private scope.

The function simply allows you to create these namespaces, these
functions, these classes, whatever term you’d like to use, without having to write the associ-
ated JavaScript code yourself. It’s a very handy function that takes any number of arguments
you care to throw at it, and it creates the namespaces in that list. You can create nested
namespaces, stand-alone namespaces, whatever you prefer.

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 277

So, in the call we see here, there is one namespace at the top of the heap: .
Then, it adds some namespaces within that namespace, namely ,
which is where we’ll put the configuration objects for all of user interface elements;

, which is where we’ll put the event handlers that are triggered by
user interactions with various UI elements; and , which is where we’ll put
all our data-related items such as s, s, and our instance.

Speaking of the , we saw this a little earlier in that code:

Now, that makes sense to me: in JavaScript remember that you can attach attributes
to existing objects any time you wish, and that’s exactly what’s happening here. The call
to created the namespace, and then the namespace
underneath it. Under the covers that means we have a function () nested within another
(), and now in the we’re adding a attribute to the function, which
happens to be a reference to the function that is our .

This is nice because it means the only thing we have in global scope in this application is
the object itself, regardless of all the source files we load (which foreshadows
what you’ll see: each of the JavaScript source files contains code that attaches new attributes
to the namespaces created here). So we can bring in other libraries or code if we wish and be
pretty well assured it won’t conflict with ours.

Now that we know all about namespaces, let’s see some of the attributes added to the
 namespace:

This is a reference to the currently selected , if any.

This is similarly a reference to the currently selected , if any.

This is a flag that tells us when the is in the process of being populated.
We’ll see a bit later why this is important, but for now just remember this flag and that it indi-
cates that is being populated.

The method that we saw called in response to the page’s event is next:

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT278

First, as with the other applications in this book, we want to show a Please Wait mes-
sage while the application initializes. In the previous projects we created our own and
showed it. Here we’re saving some time and effort and instead using the
function. This function allows us to create a variety of pop-up dialog message windows, some
that accept input, some with progress bars on them, and so on. Here we just want a simple
text-only message similar to a plain-old message.

There are a number of ways to get a message displayed, but one of the most flexible is to
use the method. This method accepts an object that provides configuration informa-
tion describing what you want to show. In this case we specify the attribute to set the
title of the , the attribute to set the message seen (and notice that you can include
markup here, which is how the selector is applied to the text), the attri-
bute (set to) to indicate we don’t want any buttons for the user to click, (set to

) to indicate that the message can’t be dismissed by clicking the close X icon, and finally

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 279

the attribute, which specifies the element on the page to use as the animation source
for showing and hiding the message.

Next is something else new. We’ve seen these five methods before, but this one
is structured quite a bit differently. We are defining an anonymous function. This function
contains all our initialization logic. Once that function is defined, we immediately call the

 method on it. The method is an embellishment that Ext JS adds to the proto-
type of JavaScript’s function, meaning every function we create has this method available to

the function is called on.” So, this is implementing the same sort of delay to give the
Please Wait message time to appear that we’ve seen in other applications implemented with

. This, I think you’ll agree, is a bit more elegant.

MORE INFO ON PROTOTYPE THAN YOU EVER WANTED TO KNOW!

Functions in JavaScript are first-class citizens, meaning they are proper objects, extending directly from the
 class, and they have properties and methods like any object does. Because of this, they also all have

common methods such as and and properties such as and .
One other such property is . Initially, its value is an empty object, so it’s as if you wrote:

The properties and methods of the object points to have no impact on itself; they are
not a part of it (directly at least; more on this shortly), but they will have an impact if you instantiate a new
instance of . They will become a part of the new object directly. Take this code, for example:

The result will be two pop-ups, one that says “no,” and another that says “test.” As you
can see, the property was added to the instance of pointed to by the variable . However, the
attempt to call on will fail, which is why it’s in the block, because it isn’t
a part of .

Now, there is a way you can access the property in , and here it is:

Since the object points to is a member of , you can still dig down through the hierarchy
like that to get to it. However, the idea of isn’t to store data, as other properties of would be,
but to define properties and methods that will become a part of any new instance of . It provides some-
thing of an inheritance mechanism in JavaScript.

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT280

The initialization logic itself is very much like we’ve seen before. First, the ’s
method is called. Remember that in this version of , it returns a string indicating
what happened. So, the next step is to switch on that return value. If the value is , then we
can continue initialization. Let’s come back to that.

If the return is , then we know Gears wasn’t available. So, we again use the
 function to display the same sort of message as seen in other applica-

tions. In those other applications the was defined in markup in , but here it’s
defined entirely in code. Note that the attribute is not set here, nor is , as seen
on the Please Wait pop-up. That means there will be a single OK button, which is the default
state of , and the close X icon can be used. The message seen in this

Figure 5-9. Oops, gotta go install Gears I guess!

The other possible outcome is some sort of exception. In that case,
 is used. As it happens, doesn’t look a whole lot different than

the

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 281

Figure 5-10. Some unknown error occurred.

Going back to the initialization that occurs when initialization is successful, the first
step is to set up for state saving. Remember the requirement for the user to be able to resize
sections of the application and have the sizes persist across application executions? Well, to
do that we need to tell Ext JS what kind of provider to use to store the information. We will
use cookies, and so it’s the we want. No further information is
needed; once the is handed the provider instance to use, we’re done.

The next step is to build the UI, and for that we need a call to the method:

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT282

Well now, that certainly is a bit different, and in a couple of ways! First, we clearly aren’t
defining the entire UI in one giant JSON object—it’s more like the TimekeeperExt project
where things are broken up, individually constructed, and then put together. Let’s see, we have
a being created, a for our categories, a where the tabs for our snippet
details and snippets will go, a for our search form, a plain-old where our
search results will live, and of course a to make it all work. What’s a bit bizarre
here, though, is we seem to be calling functions that must be returning configuration objects
to use to construct each of those elements. As we’ll see, that’s precisely what’s happening.

After all that, we’re also loading up categories from the database and populating the
that was just constructed. That code looks fairly familiar to us, having seen it a couple of times
in TimekeeperExt. The root node of the tree is expanded so that we can see all the categories,
and is done. Back in the calling code (that anonymous function from earlier whose
execution was deferred) the Please Wait message box is hidden, and application initialization
is complete.

Now, we should probably look in more detail and find out what those functions that were
called to get the configuration objects for the UI elements are all about, and maybe under-
stand why it’s done that way (yes, hard to believe, but there is absolutely a method behind
my madness!)

Viewport.js
A contains our UI, so defining one is obviously necessary in this appli-
cation. In the method we just discussed, we saw that a call is made to

, which we surmised must be returning a configura-
tion object describing the . Well, that function can be found in the aptly named

, and consists of this bit of code:

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 283

This isn’t a whole lot different than anything we’ve previously seen, and there aren’t any
new attributes to describe, so I’d like to spend our time talking about the approach rather than
the details.

You’ll notice right away that many parts of the UI are obtained via calls to
which is a technique we’ve seen before. As long as those elements are constructed before the

, which is the case as we saw in the method a short while ago, then everything
works as we expect.

However, what’s the thinking behind this being a function call? Why not just have
 be an object definition? That way, you could do what you

Listing 5-1. The Viewport Defined As a JSON Object Not Wrapped in a Function Call

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT284

Well, here’s the problem with doing that: the object definition is interpreted at the time
this file is imported into , which means that the order in which files are imported
becomes important. For example, if we have a that’s bound to a , then we have to
ensure that the code that defines the is imported before the file containing the
definition. This isn’t a huge problem in a relatively small application such as this one, or
TimekeeperExt, which suffers from this import order problem, but in a larger project it can
quickly become a big hassle.

By wrapping the configuration object in a function call, however, the JSON won’t be inter-
preted until the function is called. Assuming we only allow that to happen when the page is
loaded, we can ensure that import order doesn’t matter and our application is therefore much
easier to maintain.

Note In my first attempt, this code, and the other source files that we’ll see, were implemented as a
string. In other words, I used what you see in Listing 5-1, except that each line of the JSON was wrapped
in quotes, so a giant string of JSON was constructed. Then, instead of function calls to get the JSON I
instead fed the string to to get back the actual object to pass to the
constructor. This approach also gets around the problem of ordering of imports because the string won’t
be interpreted (into a JSON object, I mean) until the is constructed. However, it has a number
of drawbacks. First, you have to worry about escaping the JSON so as to not break the string construc-
tion, which can be a hassle. More importantly, though, code editors that do coloring and brace matching
can’t work in that situation, which means development can be more difficult. All in all, I like the function
call-wrapping approach seen in this application. You don’t have to worry about import order, you can define
elements in separate files, and you can continue to use your editor of choice most effectively. FTW!2

As you’ll see, the configuration objects for all the other UI elements are similarly defined
this way, and I think you’ll find the rest of the projects in this book will use the same structure
because I believe it is the best approach (at least, the best I’ve found!).

One other plus is that if you wanted to, you could replace the function calls with Ajax calls
that retrieved the configuration objects from the server. This would allow you to change your
UI structure pretty much on the fly (which could be a recipe for disaster as much as a really
cool capability). I’m not sure you’d ever want to do this, if for no other reason than the fact
that the extra round-trips involved from client to server would hurt performance, but it’s nice
to know the possibility exists. This approach of breaking up the UI elements into separate
source files and then returning the configuration JSON from a function call allows you that
flexibility.

 for more details)
which stands for “for the win.” This can frequently be seen at the end of argument threads where
someone is comparing a number of things and is making the argument that one of them is superior.
FTW can also have another—less kind—meaning. I will leave you to find out what that is on your own,
if you wish!

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 285

Toolbar.js
The next thing we’ll look at is the definition of the . You can see the here in

Figure 5-11. The Toolbar (bask in its majesty!) and the Info details tab, as an added bonus!

The configuration object for the looks like this:

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT286

As far as definitions go, there’s nothing special here. A couple of buttons, a

to start; the others are enabled as contextually logical (i.e., when you select a snippet, only
then does Delete Snippet become enabled).

One interesting thing here is that each of the buttons has an event handler attached that
calls a function defined in the namespace. You might expect
to find a separate file where all those event handlers live, but you’d be wrong. In fact, they are
grouped logically with the definition objects themselves, so they’re in this very file!

In fact, if you look out the right side of the aircraft you’ll see one of them now, the
 button:

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 287

to have this code right alongside the definition, and the namespaces allow us to do
that (or at least, makes it easier to do so). The function of adding a category begins with a
new method of . Whoa, wait, ? What’s that? Simply stated, it’s a pseudonym of

; they can be used interchangeably. This time, it’s the method we’re
interested in. This works just like the plain JavaScript function, it allows us to get
some input from the user. The first argument is the title of the pop-up, and the second is the
prompt text. Just as with the plain function, you can optionally pass a default value
as well.

Unlike with the plain function, though, you can also pass a callback function
that will be executed when the pop-up is closed. This function is passed the text of the button
that was clicked as well as the data that was entered. So, the code then checks to see what but-

Figure 5-12. The Add Category prompt

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT288

Interestingly, it is always passed in all lowercase, so we don’t have to do any converting
here. If the value is , only then do we do some work, and that work begins with trying to
retrieve the from the with the name that the user entered.
If it is found, the addition is not allowed because the name must be unique. In that case,

 is used to inform the user.
Assuming the name proves to be unique, it’s a simple matter of creating a new

 with the entered name, adding the to the , which trig-
gers the event. The event in turn calls the method, which adds
the category to the . The details of this code are nothing new.

event handler:

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 289

While deleting a category isn’t too hard, there are a number of steps that have to be
accomplished. First, we get the root node of the and then use its method.
We feed this method the name of the currently selected category (whose the

 field now points to) to get the representing the
category. Then we call on the root node, passing it the to remove. That
takes care of our .

Next, we call on the to remove the category. This triggers
the event on the , which calls the method, so
now the store and the underlying database is taken care of. We also set

 to to indicate no category is currently selected.
Next, we clear the since there are no longer snippets to show.

disabled since they only become available when a category and/or snippet is selected, which
obviously can’t be the case if we just deleted the selected category!

Then, the details section is taken care of. This amounts to switching to the first tab, and
then switching to the first card in the that houses the content of that tab. This
shows the “Select a category to view the snippets in it” message again, just like when the appli-
cation starts up and no category is selected. Finally, all the other detail tabs are disabled, and
at that point we’re done.

The search form and results are cleared, just in case there were results from this category
showing. It would be a Very Bad Thing™ if the user clicked a result and the category didn’t
exist any longer!

The Add Snippet button also has an event handler, shown here:

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT290

Adding a snippet is nothing more than adding a new to the .
However, since we only want to allow one new snippet at a time, we first try to retrieve the
snippet with the name “New Snippet.” If it’s not found, the addition can go ahead.

Finally, here’s the Delete Snippet button’s event handler:

Here we see yet another (we’re back to that instead of , but
remember, they’re the same thing!). This time it’s the function.

This provides a nice Yes/No-type question to the user. Just as with the method,
we get back the text of the clicked button, so we can branch accordingly. Only when the
user clicks Yes do we have something to do, and it begins by deleting the snippet from
the . Once again, this triggers the event on the store, which calls the

 method to take care of the database.
The field is set to , and then the Delete Snippet

 button is disabled. All the other buttons can remain as is, though, so the
 is done.

Finally, the Details section needs to be updated, which involves switching to the first tab,
which means we’ll be looking at the (now updated) list of snippets in the category again. The
other tabs are disabled, and that does it.

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 291

Figure 5-13. The Delete Snippet prompt

Tree.js
The code for the categories is not much more than a small configuration object along
with a single event handler. Let’s look at that configuration object first:

Here we have a simple definition with the single required root present. It
has a handler attached to react to its nodes being clicked. That handler, which is where
the more interesting stuff can be found, looks like this:

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT292

When a node in the is clicked, the required action is to display the snippets in that
category in the
This requires a couple of steps.

First, the associated with the clicked is retrieved from the
 via its method. The ID being searched for is retrieved from the

clicked node and passed into the handler function as the argument by getting its
property. Next, is set to the .

Next, we enable the
details section is set up. This means disabling all the tabs other than the Snippets tab (because
no snippet is selected at this point). We also set to at
this point.

The next step is to populate the with the snippets for this category. First,
the field is set to . Did you stash that in your
memory as I suggested earlier? Good! Now we can see why this is necessary: the and
events of the should not execute while the store is being populated, and that’s
where this variable comes in. When set to , those two handlers do nothing. Once they are
set to , the method can be called on the to clear it. Next, a call
to the ’s method is made, passing it the name of the category to get
snippets for (remember that the ID of the clicked is in fact the name of the category).

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 293

Once that method returns, we iterate over the array of s. We add each to
the , ensuring that we give it the appropriate ID as well. At the end of this loop
we set to so that the events on that can
once again fire.

Figure 5-14. With a category selected, the snippets within it can now be seen.

The last thing to do is to switch to the snippets on the Snippets tab by setting the
active item of the to 0 to ensure we’re on the right tab, and then setting the active
item of the within that tab to 1 to show the .

Note I encountered an issue where the wouldn’t show up all the time. My solution was to call the
 method on the Snippets tab, which shouldn’t be necessary, but seemed to do the trick in this case.

It’s good to know you can impose your will a bit and make Ext JS show something it has decided it wouldn’t!

Details.js
The file is where we’ll find the largest chunk of code in this application, and none
of it is rocket science by any stretch of the imagination! This file contains all the code pertain-
ing to the snippet detail tabbed section. I’ll break this up into some smaller chunks, beginning
with the configuration object for the first tab, the Snippets tab:

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT294

A single button is placed at the bottom for saving. This button remains visible on each of
the tabs; that way, users can save their changes at any time from any tab. The handler for this
button is called on the method, which we will
get to shortly as well.

This is where the snippets in the selected category are displayed in a , or where the
message telling the user to select a category is. This tab therefore contains a within
it, as you can see. The first card is the one containing the message. The value for the

from the top.

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 295

The second card is where the is, so it’s a (). This is bound
to the , which we know is populated when a node in the

 is clicked. Row striping is turned on for visual appeal, and the Description column is set
to auto-expand to fill up the space in the . We define a so that only a
single row can be selected at a time. Finally, a event handler is attached. This handler
gets the selected row via the . It passes this row to the

 function, which we’ll look at a bit later.
The code for the Info tab definition is next:

This is just a plain-old with a batch of s. The layout of the tab itself is
set to so that the content stretches to fill it (which you can’t really tell with this particular tab
anyway). This is in fact the case for all the rest of the tabs. Each field is given a unique as well.

Note During technical review, it was discovered that adding and updating snippets had, shall we say,
issues? The solution that I came up with was to assign each form field a unique ID and then not use the
typical and method on the they are a part of. After some research,
I found that it seems to be a known bug in Ext JS that is being corrected in a future release. This was the
simplest workaround I could find, but that’s why there’s still a attribute as well: while it’s not necessary
now, it was there for using and .

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT296

Figure 5-15. The Code tab

The interesting thing here is that instead of just a plain-old , which is what you
would probably at first think is the appropriate widget here, I’ve used the widget.
This is a rich-text editor that allows users to format their text in a variety of ways, including
colors, bold, and italics. I felt this was a good choice because as a developer it can be helpful to
highlight parts of the code, or color-code things, and so on.

The attribute is set to on this widget. As its name implies, this attribute
is used to hide the label that would otherwise be present on all form fields. Without this you
would have seen whitespace to the left of the , plus a colon, because the

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 297

attribute by default is empty. So Ext JS displays it and then appends the colon. All of that is just
ugly and entirely unnecessary given the existence of the attribute!

Figure 5-16. The Notes tab (which could just as easily be the Code tab)

The final tab to be defined is the Keywords tab, and it is very similar to the Info tab:

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT298

Once again we have just a simple form with five s on it, one for each keyword.
I felt five keywords would likely be sufficient in most cases, but feel free to disagree and modify

Figure 5-17. The Keywords tab

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 299

Now that we have the UI defined, we can go ahead and look those event handler functions
we saw being called, starting with the method:

Since we’ll be updating multiple fields on the we need to call
on the . That way, we conveniently have a reference to it and can update each
of the fields. The values are retrieved from the individual fields (see the note a few pages back
about why I didn’t use here). Finally, is called on the ,
triggering a call to , and we’re done. Saving couldn’t be easier!

The last bit of code to look at is the method. It’s fairly long in comparison to
most of the others in this application but isn’t any tougher to follow:

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT300

This method is called from two different places: clicking a snippet in the snippets , or
clicking a snippet from the search results (which we’ll be looking at next). That’s the rea-
son for the first little statement: the argument will only be when
this is called from the search results . In that situation, since we aren’t sure the category
of the selected snippet is selected, we need to ensure it is. To do so we’re going to simulate the
user clicking on the appropriate node. So naturally, the first step is to find the node in the

 by getting a reference to the and then using its method. Once we have
the , we call its method. Once that’s done we can simulate the click by call-
ing the method on the , passing it the name of the event to fire, in this
case, as well as a reference to the node itself. This then causes all the UI setup and such that
we previously saw.

After that, or if we’re dealing with a click of a row in the snippets and not the search
results , then we need to record the as current by setting

 to point to it. The appropriate items are then enabled.
Next, we have to populate all four of the detail tabs. So, for each, we get a reference to the

fields on them using our dear friend Mr. , and then the of the indi-
vidual fields to set the value retrieved from the .

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 301

Once all four of the tabs have been populated, a call is made to flip to the Info tab, and
then we call the method on the tab. This again shouldn’t be necessary, but without it
the details didn’t always appear.

SearchForm.js
The final two source files relate to the search capability. The first file, , imple-
ments the form where you enter search criteria, beginning with the UI definition:

The definition of the form is straightforward; there are no new fields to explain! One thing
that is new, however, is that these buttons are jazzed up a little by placing icons on them. We
do this using the and attributes. The attribute points to an image that we want to
put on the , and the attribute is what makes that button show up. The

 value is a style class supplied by Ext JS’s base style sheet that makes the show the
image along with a text label next to it.

The next method, , is by far the meatiest piece from the search feature. This
method implements the logic behind the search itself. Because it’s fairly lengthy, I’ll break it
down into small, more easily digestible chunks, starting with this one:

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT302

Here we’re getting the values of each of the search criteria s. This is done by get-
ting a reference to the form via , a construct we’ve seen
numerous times, and then calling its method. The values are trimmed and con-
verted to lowercase using the class and its and methods,
respectively, so all our searches will be case-insensitive and there’s no chance of not find-
ing matches due to wayward whitespace around values. (This assumes that the fields of the

 objects in which we try to find matches are similarly trimmed and lowercased,
but that assumption is correct, as you’ll see shortly.)

Once we have the values we can begin our work. Let’s start with some validation to ensure
only valid searches are attempted:

The validation amounts to nothing more than assuring at least one of the search criteria
has been entered. If not, we use our friend the method to show a fan-
cier, Ext JS-based pop-up.

Here’s the next bit of code we encounter:

To find matches we need the snippets to search through, so a quick call to the ’s
 method does the trick. Note that no category name is passed to this

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 303

method, so that argument is effectively , which you’ll recall from looking at the code
means all snippets in the database will be returned.

With those snippets in hand, we can go ahead and start trying to find matches:

We then begin to iterate over the array of objects returned from
. We have a variable set to initially. This will be set

to when we find that we have one or more matches. So, the next step is to process all the
fields in the next and do the same sort of trimming and case conversion that we
did with the search criteria to ensure that we’ll get matches, if there legitimately are any:

With the fields of the next to check suitably converted to lowercase and
trimmed, we can begin looking for matches. Because we can enter multiple search criteria,
that means we need to look for matches with whatever combination of criteria were entered.
If the user enters a value in the Name field and enters a value in the Keywords field, it means
we’re looking for all snippets that have the value in its Name field as well as the keywords
specified. To do that, we have a variable named :

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT304

We’ll then check each possible criterion in turn. Anytime a search criterion is in play, and
anytime a match is found based on those criteria, we’ll add a to matched. If a given criterion
is in play but there is no match, we’ll add an . That way, when we get to the end, if we have no

s in the matched string, that means the snippet is a match on all criteria requested. Not only
is this a simple approach, but it also enables us to extend the search facility by adding new
criteria, without having to redesign the underlying matching mechanism.

You can see the first criterion being checked: the name. If , which is
the value the user entered, is not a blank string, that criterion is in play. So, we do a simple

 search to see whether the entered value appears anywhere in the field of the
. If it does, we consider that a match; otherwise, it’s not a match.

The code, author, description, and notes search criteria are all essentially identical to the
name code, so just have a look at them; I won’t bore you by describing them:

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 305

Now, the keywords are just slightly different:

Here we the keywords the user entered. We then iterate over the resultant array.
The next token from the string is trimmed, and as long as it’s not blank, we see whether that
value appears anywhere in the keyword fields of the . If so, we again have a
match on this search criterion.

Finally, all the search criteria that are in play having been checked, we now see whether
there are any s in the matched string. If there aren’t, we have ourselves a match!

The is added to the , which is bound to the in the
search results area. Only one task remains at this point:

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT306

If there were any matches at all found, then the third card in the in the search
results area needs to be shown, which contains the ; otherwise, the second card is shown,
the one that informs the user that no matches were found.

One last method can be found in this source file, and it’s a simple one:

I think it’s obvious to you that this one is called when the clear button is clicked. A simple
 call on the search form is all it takes.

SearchResults.js
We saw how the search form is put together, so now it would probably be a good idea to see
how the results are put together. Before that, though, it’s been a while since our last screen-

have been pulled up based on my search criteria.

Figure 5-18. A search, having been executed, has returned results (just one, but it still counts!).

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 307

The code behind the results section is this:

So, we’ve got ourselves another , similar to the Snippets tab in the Details sec-
tion, because there is a message when there are no search results, and also a message when no
matches are found, and finally a for displaying the matches.

The first two cards are the messages, and they are just like what you saw on the Snippets
tab. The third card is the , and it isn’t much different either from the snippets on the
Snippets tab. It even uses the save handler, which we explored earlier.

In fact, this whole chunk of code, taken as a whole, is kind of like the episode “Mirror,
Mirror” of Star Trek: The Original Series. You know, the one when Kirk gets accidentally sent
to a mirror version of the universe, except everyone is evil? There’s evil Spock, evil Sulu, and
so forth. Now, I’m not sure which bit of code is the evil twin, but the point is they are mirror
images of one another, with just some minor differences. And yes, I am officially the master
of stretched analogies here!

And with that one last pop-culture reference we’ve officially completed our exploration of
this project and its code!

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT308

Suggested Exercises
I think the code cabinet as it is presented in this chapter is pretty useful, but as usual I’ve left
some things out. Here are just a few suggestions, all of which would make it a more useful
application, not to mention giving you a lot of good experience working with Ext JS:

subcategories. Say I want to have a Java category, and below that I want to
have a category for string-related snippets, one for math-related snippets, and one for
UI-related snippets. As it stands today, I’d have to create three separate Java categories,
all at the same level in the tree hierarchy. Allowing for subcategories would make the
organizational capabilities of the application that much more robust.

points, use the widget, and for even more bonus points, add it to the search
function.

-
ties. In other words, every time you make a change to a snippet, record the state of the
snippet before the change. Whether you simply duplicate the entire snippet record or
try to do a fancy-pants diff mechanism is up to you. Add a tab that lists all the history
records and allow one to be clicked so you can see the state of the snippet at that point.
This would give this application a source control system type of feel to it.

clipboard maintained by the operating system (there is JavaScript code to do this; just
Google for it). This is just a minor enhancement but could be a fairly significant conve-
nience for the user. (To be honest, I thought of this only after this chapter was nearly all
wrapped up. I feel a little silly for not thinking of it earlier, but hey, it gives me a chance
to offer another suggested exercise to you, my dear reader!)

s “shrink into view” from the top? How
about adding a different source for each in the application, each with its
own style selector so that one “shrinks in” from the top, one from the left, one from the
right, and one from the bottom. The selector you’d need for the bottom and right are
tricky because you only know some of their positional values at runtime, you’d have
to calculate them on the fly, and you’d also have to recalculate them if the is
resized. The results would look pretty cool, though!

I suspect those suggestions will keep you busy for a while. They will not only make the
application more useful but will definitely sharpen your skills in the process, so a definite win-
win situation! What are you doing still reading? Get to work!

Summary
In this chapter, we developed an application for coding code snippets. We used a few new
widgets and features in the process, got some further experience with the package,
and even played with Gears a bit more. We saw a whole new way to architect our applications,
one that is probably the best and cleanest that we’ve seen so far. In the process, we created an
application that we can use for a real purpose!

In the next chapter we’ll introduce a server-side component in the form of JSON-P Web
Services, and we’ll see how Ext JS allows us to do that with incredible ease.

309

C H A P T E R 6

When the Yellow Pages
Just Isn’t Cool Enough:
Local Business Search

Sit right back and you’ll hear a tale, a tale of a big yellow book.. . I know, it doesn’t quite fit
the melody of the Gilligan’s Island theme, but work with me here!

You kids today (hey, get off my lawn!) with your Internets and your iPhones1 and your
Tellmes,2 you don’t know what it was like! Back in the day, if you wanted to find a business
in your hometown, you either asked a neighbor or pulled out this huge yellow book called,
very creatively, the Yellow Pages. In this book, you could flip through an alphabetically sorted
listing of all sorts of businesses in your vicinity. It was a manual process: you actually had to
turn pages! You couldn’t just type something into a computer and have it spit out a list of busi-
nesses; you had to burn some calories and expend some mental effort.

Ah, but I like progress as much as the next guy, so now I get to play the part of the old
curmudgeon and tell these stories about how we used to walk to school in the snow, uphill,
both ways, and use the Yellow Pages. I also get to write books and show how the world is much
better now that we can write an application to save us from all that work, which is something
I strive to avoid every chance I get!

That’s precisely what this chapter is all about: we’ll be writing an application that enables
us to search for local businesses. We’ll be able to see a map of where the business is located,
along with some details about it. We’ll also have the ability to store a business as one of our
favorites so that, if you can believe it, we’ll be able to expend even less energy next time to find
it again! Ext JS will make all of this a piece of cake, of course, and we’ll have a pretty useful little
application by the time we’re finished.

 1 During the 2000 United States presidential campaign, George W. Bush uttered the term “Internets.”
Clearly, the Internet should never be pluralized like that; it was a typical Bushism, as it’s known,
which is why people now use this phrase in a humorous context (and sometimes in an insulting way,
depending on how it’s used).

 2 Tellme () is a voice-activated service that enables you to call a 1-800 number and get
information such as weather, sports scores, business listings, and more, all just by speaking into the
phone. It’s a very handy service to have at the ready in your cell phone’s contact list.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 310

What’s This Application Do Anyway?
Let’s get the silly terminology out of the way first, shall we? What we’re actually creating here
is called a mashup. A mashup, as these types of web apps have come to be known, is basically
a web site or application that takes content from multiple sources (usually via some sort of
public programmatic interface—a remote API, in other words), and integrates it all into a new
experience—that is, a new application.

The term mashup might sound a bit silly (it does to me!), but it’s the term that’s been
applied to what is at its core an extremely powerful vision: people provide various services and
data over the Internet via a well-defined programmatic interface, and anyone can come along
and combine them to create applications. In other words, we’re talking about a relatively
simple, open, platform-agnostic service-oriented architecture (SOA).

MORE ON SOA

The idea of SOA has been gaining steam over the past few years. Most notably, the concept of web services
has been evolving rapidly over that time. However, the meaning of that term has been evolving as well. Peo-
ple now often consider things such as the Yahoo! services, which will be used in this application, to be web
services, even though they don’t use the full web services stack (that is, SOAP, WS-Security, and all the other
specifications that can go along with it).

Whatever line of demarcation you choose to use, the bottom line is that you’re developing using a SOA,
which means you have loosely coupled components that expose a remote service interface that, usually, is
platform- and language-agnostic and can therefore be married together in nearly limitless ways.

The benefits of this approach are numerous. The simple fact that you aren’t generally tied to any par-
ticular technology or language is a big one. The ease with which updates can be done, assuming the interface
doesn’t change, is another big one (this is the same reason people love web apps in general). The ability to
use all sorts of automated tools to both create and consume services is another (although this isn’t always
a good thing, if those tools become a crutch that allows you to not understand what you’re doing). Realizing
the goal of building your application on top of established standards is another. Reusing existing assets and
therefore increasing the speed with which solutions can be delivered is another (some would argue this is the
biggest benefit). There are plenty more; these are just some that come to mind immediately.

You’ve almost certainly heard the term web services before too. Web services are some-
times involved in mashups. However, web services, as most people mean when they use the
term, can be pretty complicated beasts! SOAP; Universal Description, Discovery, and Integra-
tion (UDDI) directories; Web Services Description Language (WSDL) documents—not to
mention a whole host of other specifications—are the types of things you deal with in working
with web services. Although there’s nothing that says that stuff can’t be involved when writing
a mashup, typically they aren’t. There are other techniques available for writing mashups, as
we’ll soon see.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 311

Today, the term mashup can also refer to a web app that, by and large, runs within your
browser. In fact, for many people, mashup implies a JavaScript-based application that can
run locally with no server interaction (aside from loading it in the first place, which is actu-
ally optional too) and calling on remote servers. The term mashup has generally come to
mean browser-based JavaScript clients aggregating content through public APIs from vari-
ous companies and vendors to form new applications. These APIs are often referred to as
web services, and even though they may not truly be web services in the sense of using the
full technology stack—the whole alphabet soup of terms I threw around in the preceding
paragraph—they still fulfill the same basic goal as those types of web services. They provide
services and function over a network (specifically, the Web), so calling them web services
isn’t too far-fetched anyway.

 Many companies are getting into the API business, including companies you’ve certainly
heard of: Google, Yahoo!, Amazon, and eBay, just to name a few. Google and Yahoo! have led
the charge, and Yahoo!, in particular, originated a neat trick that will be central to the applica-
tion we’ll build in this chapter: the dynamic tag trick, or injection trick (it’s
sometimes referred to both ways). Now with the preliminaries out of the way, let’s go ahead
and spell out what this application is going to do:

address or some components of a location. We’ll be able to see a list of search results,
page through large result sets, and select one to view in more detail, including the
address, phone number, web site, and average user ratings.

zoom in and out of that map.

later. These favorites will naturally be stored in a local database via Gears.

bunch of times before so let’s see if we can use some of the visual effect functions Ext JS
provides to do something a little cooler, roughly emulating the Mac OS doc.

and we’ll do this via cookies, just for something different.

Let’s kick things off with Figure 6-1, depicting the application as it’s seen at startup.
Here you can see that I have some favorites already stored, and the search form is cleared,

all ready to receive my search criteria to look up more pizza parlors to feed my face at!
Now let’s have a look at the web services we’ll use to pull this off, and look at how we’re

going to be calling on them.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 312

Figure 6-1. The Local Business Search application as it appears at startup

The <script> Tag Injection Technique and JSON-P
Yahoo! did something very cool a little while ago, and it is this one cool thing that makes the
application in this chapter possible. Before we can explore that, though, we have to discuss
what was going on before the coolness occurred.

For a while now, many companies, Yahoo! among them, have been exposing public APIs
for people to use. For instance, you could perform a Yahoo! search remotely, or you could get
a Yahoo! map from your own application, and so on. These APIs, these “web services,” if you
will, typically used XML as their data transport mechanism. You would post some XML to a
given URL, and you would get an XML response back. It was (and still is) as simple as that.
These types of services don’t require all the web service technologies such as SOAP, UDDI,
WSDL, and the like. It’s a simple HTTP POST operation where the result returned by the server
just happens to be XML.

If you wanted to use these APIs from a JavaScript-based client running in a browser,
you quickly ran into a major stumbling block, though. Ajax, using the object,
has what’s known as the same-domain security restriction in place. This means that the

 object will not allow a request to a domain other than the domain from
which the document the object is a part of was served. For instance, if you have a page
named located at , you can make requests to any URL at

. However, if you try to make a request to something at , the
 object won’t allow it. This means that the APIs Yahoo! exposed aren’t of much

use to you if you try to access them directly from a browser. Because Ajax is the only way
(apparently!) to make an asynchronous call from a browser that doesn’t result in the full page

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 313

being reloaded, it seems we’re up a stream of feces without a means of locomotion! Even if
you use a library such as Ext JS, it can’t work around the limitations imposed by the underlying
browser technology, so there’s no relief to be had there.

There are ways around this same-domain restriction. Probably the most common is to
write a server-side component on your own server that acts as a proxy. This enables your code
to make requests via to something like , which makes
a request to something at on behalf of the calling code and returns the results.
This is very cool, but it requires your own server in the mix, which is limiting.

Wouldn’t it be so much more useful if the JavaScript running in the browser could make
the request directly to Yahoo! and not need a server-side component? Yes, indeed it would be!
And as you probably have guessed, there is a clever way to do it. Take a look at the following bit
of plain-old JavaScript:

So, what we have here is a new tag being created. We set the attribute to
point to some API at Yahoo! (which at the end of the day is just a specific URL), and finally
we append that new tag to the of the document. The browser will go off and retrieve
the resource at the specified URL, and then evaluate it, just as it does for any imported
JavaScript file.

To understand this fully, keep in mind that anytime the browser encounters a
tag in the HTML document that it is parsing, it stops, retrieves the code at the URL specified
by the attribute of the tag, and evaluates it, right then and there, meaning any
global-scope code is executed immediately. Fortunately, if you create a tag and insert
it into the as this code does, the browser does the same thing: it goes off and retrieves
the JavaScript resource and evaluates it.

Now, in and of itself, that isn’t too useful, for our purposes anyway. As I said, the Yahoo!
APIs return XML and XML being evaluated by the browser won’t do much. (Some browsers
may generate a DOM object from the XML, but even still, that on its own isn’t of much use.)
Unlike with the object, you don’t get any events to work with, callback func-
tions that can act on what was returned, and so on.

Now we come to the bit of coolness that Yahoo! came up with that I mentioned before.
Let’s say we have some XML being returned by a Yahoo! service, like so:

It may not be very interesting, but it’s perfectly valid XML. Now let’s ask the probing ques-
tion: what is the JSON equivalent to that XML? It’s nothing more than this:

Okay, now suppose that we pass that JSON to a JavaScript function, like so:

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 314

What is the parameter passed to ? As it turns out, it’s an object constructed
from the JSON. (Remember that JSON stands for JavaScript Object Notation: it is literally a
notation format that defines an object.) This means that if looks like:

…the result is an pop-up that reads “Frank”.
Are you starting to see what Yahoo! might have done? If you are thinking that the service

returns something like this:

…then give yourself a big round of applause because you just came to the same wonderful
discovery that Yahoo! did a while ago!

What Yahoo! came up with is the idea of returning JSON in place of XML from an API
service call, and wrapping the JSON in a function call. When you call the API function, you tell
it what the callback function is. In other words, you tell the remote service what JavaScript
function on your page you want passed the JSON that is returned. So let’s say you wanted to
interact with some Yahoo! API that returns a person’s name. Your page might look something
like this:

When you click the button, is called, and it uses that dynamic tag
trick to call the Yahoo! API function. Notice the URL, which specifies the name of the callback
function and also specifies that we want to get back JSON instead of the usual XML. Now,

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 315

when the response comes back, the browser evaluates what was inserted into the document
via the tag, which would be this:

 is called at that point, with the object resulting from evaluation of the JSON
being passed to it. You can load this page from any domain, and it will work. Hence, we’ve
done what the object does (in a basic sense, anyway), and we’ve gotten around
the same-domain limitation. Sweet!

Yahoo! was the first to use this hack (that I am aware of), but many others, such as Google,
have begun to follow suit because what this allows is purely client-side mashups and API
utilization. No longer do you need a server-side proxy. You can now make the requests across
domains directly. This is an extremely powerful capability that leads to some cool possibilities,
such as the type of application in this chapter.

Note While this technique is useful because it allows you to make direct requests to any server you want,
it also has the potential for malicious code to be introduced. Remember that what is being returned is script
that winds up executing with the same privileges as any other script on the page. This provides a potential
for scams including stealing cookies, spoofing, phishing, and so on. You therefore want to take care in your
choice of services and organizations. Accessing APIs from Yahoo! or Google, for instance, isn’t likely to pres-
ent any security issues, but less-well-known companies may not be quite as safe.

The approach to web services where JSON is returned wrapped in a JavaScript function
call has come to be known as JSON with Padding, or JSON-P. It is also sometimes referred to as
JSON-based web services. Whatever the term, it all means the same thing.

The example we just looked at is nice, and not too complicated code-wise, but as I’m sure
you can guess, Ext JS makes it even easier. Ext JS provides the for this
purpose:

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 316

We’ll get into the details of this later, but essentially you create an instance of
 and pass its constructor an object that provides the URL of the remote ser-

vice. Then, you call its method. The first argument to this method is an object that
contains parameters to pass to the service, in this case the parameter specifying .
The second argument is an instance of ; here a custom descendent of it
created right then and there, because a , which is a type of, needs a

 to do something with the response from the server. Typically this would be pars-
ing , which is the JSON returned from the server, and generating objects and
returning them. Here, however, we just literally return the object resulting from evaluating
the JSON returned by the server. Finally, the third argument is the callback method, which is
passed what the method returns. Note that Ext JS takes care of the
details of the callback, meaning you don’t explicitly tell the remote service the name of the
callback; it’s generated by Ext JS and passed to the service under the covers. Very clean, very
simple, typical Ext JS!

JSON-P AND ERROR HANDLING—THAT IS, THE LACK THEREOF!

JSON-P is a really handy technique. However, to call it anything other than a trick, even a hack, would mean
we aren’t being quite honest! It’s most definitely thinking outside the box, that’s for sure!

As neat a trick as it is, it has one significant flaw: error handling. That is to say, there really is none.
There is no error callback as with a typical Ajax request, no interrogating HTTP status codes, or any of that.
Your script simply doesn’t do something you expected it to do. Oh, you may well see a failed outbound
request in a debug tool such as Firebug, but that’s about it, and that won’t generally help your end users.

I’m talking here about “hard” errors—in other words, HTTP errors. Anything the remote service can
handle is okay because the service will usually define some sort of error element(s) in the JSON for you to
check for. But for the “hard” failures, it’s a whole different ballgame.

There is one way you can get at least some degree of “hard” error handling: use a time-out. In other
words, you fire off a request, and you start a JavaScript time-out, say to fire some function in 5 seconds. In
the callback to the JSON-P request, you cancel the time-out. So, if the request takes longer than 5 seconds to
execute, you take that to mean that the call failed, and the function the time-out fires is essentially your error
handler. (If the response comes back in less than 5 seconds, that function will never fire because the timeout
is canceled first.) This clearly isn’t ideal: who’s to say the request didn’t just go long and is taking a little more
than 5 seconds to complete? In fact, you could arguably make matters worse because you might flash an
error message and then a short time later process a completed request that you just told the user had failed!
You could code for this possibility too and avoid it with a system of status flags, but hopefully you see that in
any case, this simply isn’t a robust error-handling mechanism.

Even with Ext JS in the mix, it can’t overcome the underlying limitation of the tag injection
technique that underlies So, as an FYI, in this application I took the tact that because the
error-handling scheme is pretty poor anyway, I simply went with none at all—no timer tricks, nothing. If a
service call hangs, the application hangs with the Please Wait dialog box showing. Not great by any stretch of
the imagination, but such is the difficulty with the injection technique underlying this all.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 317

Meet the Yahoo! Web Services
Before you go looking at the web services we’ll use to build this application, you need to get
some paperwork out of the way first.

Most API services require you to register to use their APIs, and Yahoo! is no exception.
Every time you make a Yahoo! service call, you need to pass an parameter. The value of
this parameter is a unique identifier assigned to your application. Not passing this value, or
passing an invalid value, will result in the call failing. Before you can play with the application
in this chapter, you will have to register and get your own . It’s a painless process that you
can go through by accessing the following page:

You should plug your own into the file (in the aptly
named field) before you spend time with the application, just so you are playing nice
with Yahoo!. I’ll use in the following sections when referencing to indicate that you
should plug your ID in there.

There are some limitations associated with using the APIs in terms of request volume, but
the upper limit is so high as to not be a realistic concern for your adventures with this applica-
tion. In any case, the limits are based on requests made from a given IP address over a 24-hour
period, so even if you run over the limit just try again tomorrow and you should be good to go.
If you are intent on building a production-level application by using these services, you will
need to consult with Yahoo! for other registration options that allow for high volumes. Again,
for our purposes, the number of requests allowed is more than sufficient.

The Yahoo! Local Search Service
Yahoo! offers some very nice search services that you can play with, and one of them is the
Yahoo! Local search service. It enables you to search for businesses in a given geographic
location. For each search result, the service provides a plethora of information, including the
business location, contact information (phone number, web site, and so forth), and user rating
information.

Using this service requires you to access a given URL, for example:

The parameter enables you to specify a keyword to search for, is just a US zip
code to center the search around, and is the maximum number of results you want to
return. The is an ID you get when you register for the services, as discussed in the previ-
ous section. If you go ahead and paste that into the address bar of your web browser, assuming
you replace the with a valid ID, you’ll see the following response:

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 318

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 319

To turn this into a JSON-P request, we have only to add two parameters to the request:
, with a value of , and , with a value of the name of the function to call.

So, if we do this:

…the response we get is now this:

It’s not much to look at on the page, I admit, but it’s golden in the code: if we called this
by using the injection trick, would get called and passed an object with

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 320

a bunch of data fields we can reference. For instance, the and fields tell
us where this business is located, tells us the average user rating, and tells
us how far away the business is. The set of data returned by the service is pretty large, and
a lot of it won’t be used in this application, but if you cruise on over to

, you can get all those details, plus a lot more,
about this particular service.

The Yahoo! Map Image Service
Yahoo! is also going to be providing the maps that you can see on the Map pane of the applica-
tion (yes, take a break and go play with the application a bit now!). Yahoo! Maps is a service
that has been around for a while, even before a public JSON-P interface was provided for it.
It enables you to get maps for a given address, as well as access other features, such as traffic
and local places of interest. The API Yahoo! provides a number of different services, but for our
purposes, we’ll be focusing on the Map Image service.

The Yahoo! Maps Map Image API enables you to get a reference to a graphic of a map
generated according to the parameters you specify in your request. You may specify latitude
and longitude or address in your request (we’ll be specifying longitude and latitude in the
application itself, but in this discussion it’ll just be an address, more precisely, a component
of an address).

This service is referenced via a simple HTTP request, such as the following:

The parameter specified is just a US zip code, and the is once again your
registered application ID. If you go ahead and paste that into the address bar of your web
browser, you’ll see the following response:

What you’ve gotten back includes a reference to an image now sitting on Yahoo’s servers.
If you pluck out the following URL:

. . .and put that in the address bar of a web browser, you’ll see an image that is a map of the
Bellport/Mastic Beach area of Long Island, New York, as shown in Figure 6-2.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 321

Figure 6-2. The map resulting from assessing the URL in the example

You can also add some parameters to the original request. For instance, you can specify
that you want a GIF back (by default, you get a PNG file), and you can specify that instead of
XML, you want JSON back. The URL would then look like this:

Now the response you get is this:

A few other parameters are used in the application, and these are summarized in
Table 6-1.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 322

Table 6-1. Some Yahoo! Map Image Service Parameters Used in This Application

Parameter Meaning

 The latitude that is the center of the map.

 The longitude that is the center of the map.

 The width of the map image.

 The height of the map image.

 The zoom factor to apply to the map. This is a value in the range 1–12, where 1
represents street level and 12 represents regional level (a little wider than state
level).

As with the local search service, I encourage you to examine the Yahoo! Maps APIs
() because they can definitely do more than this
application demonstrates. This is about all we need for the purposes of this chapter, though,
so you’re now armed with all the knowledge you need to go forth and dissect this application!

Overall Structure and Files
This project uses the same basic architectural structure as the Code Cabinet project in
Chapter 5. That decision means we’ll see a number of source files for individual UI elements.
Figure 6-3 shows the breakdown of the application’s directory structure.

Figure 6-3. The application’s directory structure and constituent files

The directory, as with all the other applications so far, contains the lone
file in it, and like the Chapter 5 project, it’s pretty minimal. Our old friend the directory is
still there obviously. The directory contains a couple of GIF files which, in no particular

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 323

order, are as follows: , which is the logo you see in the upper-right
corner of the application; and , which are icons used on the
buttons on the search form; and , which is the heart icon shown next to my saved
favorites. The remaining images are the images for the toolbar icons at the top. In the direc-
tory is all our JavaScript source code. We have the file that we’d expect given
that this application uses Gears like all the others. The is our “main”
source file. The file is our data access object, and contains the
definitions of all the s and s we’ll need. The file contains the code
pertaining to the detail pane. The file contains the code for dealing
with the favorites list. The file contains the UI definition code for the top of the page,
the toolbar and logo, plus the code that makes the icons actually do things when clicked. The

 file, which is where most of the action in this application is, deals with the search
form and results and all the code related to that. Finally, the file contains the UI
definition for the Ext JS .

In the root directory we have , which is where we’ll begin our exploration of the
code.

The Markup
The file is the customary place to kick off the application, and as in past projects
there’s not a whole lot in it, as you can see for yourself:

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 324

We have the usual Ext JS imports, plus the Gears initialization JavaScript file. Following
that is the import of the application style sheet and all the JavaScript files that make up the
application itself. We again see being used to call the method of the

 object to kick-start the application.
The actual markup begins with the that we’ve by now become used to, the source of

our animations. Following that is some plain-old HTML that, based on the style classes
that are applied, we can surmise is used to form a at some point. As it happens, this is
the only in the application, and it is the one you see when you want to print a business,
both its details and the currently showing map. In Figure 6-4 you can see what this window
looks like.

Well, that’s not entirely true. What Figure 6-4 shows is the with a over
it. This will become clear when we see how printing works, but for now let’s take a look at
Figure 6-5.

Now, that is what the print actually looks like, the defined by the markup in
. It’s simply maximized to take up the entire browser area, but it is still a . The

markup itself is no big deal; most important are the elements, which will be populated
with the data about a selected business, with the map image mixed in.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 325

Figure 6-4. Telling users they can print

Figure 6-5. What the user will see printed

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 326

The Style Sheet
Let’s now move on to the application style sheet housed in , which, similar to

, is very simple. The first style class encountered is , which is one we’ve
seen many times before so I’ll skip an explanation here. I won’t, however, skip the next two
selectors for styling the text seen on the Details pane of the :

The style is applied to the field label, so it’s bolded to set it off from the
data itself. Speaking of the data:

As you can see, the only different is that the data itself isn’t bold; otherwise it’s the same.
The next style is also something involved in the display of details:

Simply stated, this is applied to the rows in the table that holds all the detail fields, or
more precisely, every other row in the table, so we get some striping going on.

The last style is something entirely new:

As a quick experiment, try deleting this style and then reload the application. You’ll see
that the top header section doesn’t stretch across the entire screen; it’s all scrunched up on
the left side only. That’s because a is used for the header, and a table with two
cells is generated. The toolbar icons are in the first, and the logo is in the other. The toolbar
icons should be left-aligned while the logo should be right-aligned, because I wanted them up
against the edges of the screen. However, that won’t happen by default because the table will
be sized to its contents, not the page width. So, this style overrides one of Ext JS’s built-in styles
that is applied to the table generated by a . Setting the width to 100% gets the table
to stretch across the entire page, and then those alignments work as expected and everything
looks as it should in the header.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 327

The Code
As we’ve done in the past, we’ll begin our exploration of the JavaScript portion of our show by
looking at the class.

DAO.js
You know the saying: if you’ve seen one class, you’ve seen ’em all! This is very true here:
this is no different than any of the others we’ve looked at, so I won’t go over every single
detail here. But a high-level view is warranted, so let’s start with Figure 6-6.

Figure 6-6. UML class diagram of the DAO class

As you can see, we’ve got all the typical fields and methods, starting with ,
which in this application is . Then we have a couple of fields for the SQL
queries. Table 6-2 summarizes everything.

Table 6-2. The SQL Queries Contained in the DAO Class

Field Name Query Description

 Creates the favorites table

 Creates a record in the
favorites table

 Retrieves all favorites

 Deletes a given favorite

 Deletes all favorites

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 328

That’s right, there is only a single table in the database, favorites, because that’s all this
application needs to store. This one table appears in the database, as seen in Figure 6-7.

Figure 6-7. Table structure of the favorites table

The remainder of the methods in the class— , ,
, and —are virtual copies of every other similarly named

 method we’ve looked at. So let’s move on to bigger and better things, although I do suggest
taking a moment to peek at the code from this chapter’s download nonetheless.

StoresAndRecords.js
This application also has a file containing… wait for it… s and

s! To be more precise, there’s a single , and it is the , whose defini-
tion looks like this:

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 329

Pretty boring, eh? Perhaps seeing it graphically would be a little more exciting? Let’s give
that a shot in Figure 6-8.

Figure 6-8. Say hello to the BusinessRecord descriptor!

Okay, yeah, you’re right, not really any more exciting! We’ve seen a bunch of s
before this, so it isn’t exactly earth-shattering at this point. However, what’s coming next very
well may be—the for storing search results:

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 330

Wow, there’s definitely some new stuff going on there! Even though the data that will pop-
ulate this will be coming from a call to the Yahoo! search service (which is drastically
different from the other applications we’ve seen so far), we still want to be able to use the same
basic Ext JS data mechanisms. That means having a with events and being able to
bind widgets to it. That’s what all the code here is about: making this work just as
any other even though it’s calling a remote server.

Recall that a uses a to retrieve data from some source, and then
uses a to read that data to produce s. So, skipping over the ele-
ment for just a moment, we see the element pointing to an instance of an

. We talked about that briefly earlier, but generally it’s a pretty simple animal:

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 331

construct an instance of it with a config object that includes a attribute defining the URL
to call to get a JSON-P response from, and that’s about it. In the previous example we called
its method to make the remote call and process the response. When it’s the proxy for
a , though, that all happens in the background, under control of the , so
there’s a bit less work here than we saw earlier.

The is next, and here we’ve got some funky syntax to deal with. The
 method is used to extend a given class based on another. So, the line

creates a new instance of , extends it, adds the elements from to
it, and then also overrides any elements, with the elements defined in the object passed as the
third argument. The attribute is assigned to that new class. So in this case, a plain-old

 is extended, adding in all the fields and methods from , and then
the method is overridden.

The method is called after the retrieves the data. The response
from that call—the object created by the JSON returned by the server—is passed into

. Its job is to produce an array of (plus some other stuff) and
return it. It’s not conceptually complex, but there’s a fair bit of work to do.

The first step is to determine if a “soft” error has occurred, things like “no matches
found.” To do so, we examine the element of the incoming object. If that element is
present, then we need to cut things short! We grab the and
elements for display, and we then return an object containing three elements: , which
indicates if the conversion to was successful; , which is an array of

s; and , which indicates the number of s. It may
seem odd to set to in this case, but it is in fact the correct thing to do because as
far as the rest of the code is concerned, worked as expected, even in
the case of a “soft” error. Therefore, we don’t want any error-related events to fire, and
does that for us.

Note Presumably you can get more than one error back at a time, given that is an array.
In practice I never saw this situation arise, and I can’t imagine a scenario where it would happen given this
application. So I think it’s safe to just grab the first element of the array.

The error title and message are set on fields of the object, so essen-
tially the work of is done at this point.

Now, what happens if no errors were returned? In that case we need to do some process-
ing. However, we must check for two other conditions first. I said earlier that an example
of a “soft” error is “no matches found,” but I actually lied there (consider it practice for my
future political career!) because that is in fact not a “soft” error condition. Finding no matches
is a perfectly valid response from the server, but we still need to handle it differently. So,
we grab the element from the returned object, and use

 to get a number from it. If that number is 0, then we do a similar short-circuit end

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 332

to and return the same sort of object as we saw earlier. We set an error title and
message on that reflects the fact that no matches were found. As I’m
sure you can guess, we’ll see some code later that knows how and when to display these error
messages.

The other condition to check for is if there are more than 200 matches to the request
search query. This is a problem because this application provides paging of large result sets. In
other words, the user sees 10 matches at a time but can retrieve another 10 at any time. When
dealing with the Yahoo! search service, you need to tell it what the number of the lowest search
result you want is. So, if you want items 30–39 out of the 100 matches, then you tell it the
lowest number you want is 30. The problem is that it won’t accept a number higher than 250
here, even though it will happily find more than 250 matches! So, effectively, we’re limited to
250 matches for any query because there’s no way to display the matches above 250. I backed
down to 200 instead of 250 to improve performance a little (fewer results to process means less
time overall) and also to avoid any weird conditions that might occur if the numbers were off
by one at any point. Besides, if you need more than 200 pizza parlors in an area, you’re prob-
ably on your way to the hospital with a massive coronary anyway!

Once we pass through both those conditions, it is time to produce those s
we need. Doing so is trivial: iterate over the array in the returned object
and for each instantiate a new object, populating its fields with the data from
the returned object. Finally, an object is returned that now includes a populated array of

s, plus the number returned.
Now we’ve seen how the for search results is put together. Later on we’ll see

how the loading of data (the remote service call, in this case) is triggered, but frankly, the truly
interesting stuff is what we’ve just seen. It means we now have a , like any other, that
we can bind to widgets, have events fire on, and so on. Speaking of events, we need to jump
back to the array for just a moment. You’ll notice there that the event
is handled. This event, as its name implies, fires just before the tries to load data,
before it asks the to get some data. To call on the Yahoo! search service, we’re obvi-
ously going to need to pass the search criteria to use. Every time we ask the to load
data, it passes the parameters stored in its field to the , which will pass
them along as HTTP request parameters (assuming the is one that makes a request
to a remote source). This is the mechanism used to pass the search criteria, which are stored
between searches on the object. This is necessary because when we
discuss how paging of data works, you’ll see that this information isn’t maintained automati-
cally between paging requests. The Yahoo! web service requires it, so we have to get it to the

, and the event is perfect for that.

Note Using for this seems a little wrong to me, but I couldn’t get it to work any other way.
It seemed to me that the should use the same parameters as it did the last time it was called,
which the Ext JS documentation seemed to indicate it should. In practice, though, that didn’t work. So, by
using in this way I was able to get everything to work as expected, and it didn’t take much
effort. It’s not that big of a hack as far as I can tell, so I’m okay with it!

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 333

Next up we have another , but a considerably simpler one:

 is used to populate the Sort By on the search form and provides
some options. A must be bound to a , so we can’t just simply add elements
to it manually. That’s where this comes in. Here we see something new: since we
know all the possible options for this up front, we can populate it right at the time
it is created, and that’s what we have here. The array is iterated over, and for each
element, a call to the method of the is made. Now, we can bind this

 to the and we’re good to go—it will be populated with the appropriate
options, just like that!

There is also a that is bound to the Minimum Rating ,
and a that is bound to the State . Aside from the data they are
loaded with, they are the same as , so we’ll skip looking at them here. Instead,
let’s look at the one remaining : .

This too doesn’t differ much from the s we’ve seen in other applications. Here,
we have our usual three events to deal with: , which fires when a is added to this

; , which is called when a is deleted; and , which fires when

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 334

the method is called on the . Each of these calls the appropriate
method, and only in the event handler do we need to avoid doing anything in certain situ-
ations (for example, when the UI is being built, which you’ll see in ,
the next stop on our code dissection train).

LocalBusinessSearch.js
The file contains the definition of the class. You
can see the class outline in Figure 6-9.

Figure 6-9. UML diagram of the LocalBusinessSearch class

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 335

As with the previous application, the file doesn’t contain all the
members you see in the UML diagram; many of them—most of them, in fact, in this appli-
cation—are in other source files. But the basis for this class is constructed here, and it begins
with this code:

As we’ve seen before, this code creates a top-level namespace (class),
, with three nested namespaces within it: , ,

and .
A number of fields are present in this class, and they are summarized in Table 6-3.

Table 6-3. The Fields of the LocalBusinessSearch Class

Field Initial Value Description

 You tell me! This stores the application ID for the
Yahoo! web services (don’t forget to
register for one or you won’t be able
to play with this application).

 This specifies the URL for the
business search API.

 This specifies the URL for the map
image retrieval service.

 This is where the reference to the
 currently being

viewed is stored.

 This is a flag that tells whether the
 currently being

viewed is a favorite (because there’s
nothing about the
that can tell us this).

 This tracks the zoom level at which
the map is currently being viewed.

 This stores the search parameters
last used when calling the search
service (needed for paging).

 This contains the title
for displaying errors occurring dur-
ing a call to the web services.

 This contains the mes-
sage for displaying errors occurring
during a call to the web services.

 When set to , this indicates that
events on the (
specifically) should not fire.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 336

One more field is present, but I want to discuss it separately here:

You’ve seen the before in previous projects with regard to
storing the widget state. What I didn’t tell you, however, is that you can use such an object to
store arbitrary data in cookies as well! In this application I wanted to be able to store certain
location-related fields from a search and make them default values. For instance, making
your zip code a default value makes a lot of sense and saves time. Normally you would just
instantiate and accept its default settings, but in this case I wanted
those default values to persist for longer than the default of seven days. I wanted them to
stick around for a year, and that’s precisely what this does. It does so by specifying a value for
the config attribute and setting its value to the current date (by getting its value in
milliseconds via its method) and then adding one year’s worth of milliseconds (cal-
culated here rather than just plugging in the magic number of 31,536,000,000).

To set and retrieve cookies, you use the and methods of the .
But let’s not get ahead of ourselves—we’ll see them in action soon enough!

Note You might be wondering why this default location information is stored in a cookie rather than in the
Gears database. The answer is this: I wanted to demonstrate using the Ext JS cookie functions to you! You
have already seen plenty of Gears interaction in this application and others, so I took this opportunity to go
in a different direction and show off more of Ext JS. Feel free to rewrite the code to store it in the database
if you wish; that wouldn’t be a bad exercise.

The method is next, and this too is something we’re quite familiar with. There are a
few new parts in here to make it interesting:

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 337

Before we discuss what’s new, let’s discuss what’s missing: this code isn’t being deferred
as we’ve seen earlier, and there’s no mention of a Please Wait message. These are interrelated
and are not present for the same reason: I was experiencing some sort of timing issue with the
Please Wait message that made the lightbox effect occasionally fail to go away when initializa-
tion was complete. I wasn’t able to find the root cause (there’s those darned deadlines again!),
so I decided the better option was to remove all that entirely. Fortunately, initialization is very
quick here so it’s not a big loss.

Most of this code is just like what we’ve seen before, but there are some new things going
on in the code of the statement. The first thing is the definition of a custom

. The issue here is that when a user enters a value in the Zip Code field, we want to
ensure it’s in a valid format. It’s always nice to use Ext JS’s built-in form validation logic, but
alas, there is no out of the box for a zip code. Therefore, we have to create our own. In
Chapter 2 you saw an example of creating a custom , but there is an even simpler way, as
you can see in this code. At least for types that only require a simple regex and no actual code
behind it, all you need to do is add three elements to the array of the object.
The first element is named for the you’re creating, so we use . The other two then
take that value as a base and append and , so you get and .
The first element defines the regex to run against the entered value to determine whether it’s
valid, the regex masks off the value for display, and the is the valida-
tion failure message seen when the value is not in a valid form.

The and validation message location are then initialized, as seen previously,
and the provider for the is also set to the created earlier.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 338

Next, is called, which we’ll skip for just a moment so we can finish looking through
the code. Next, a call to is made, which loads the stored default values, if
any, from cookies and populates the search forms. We’ll skip that for just a moment as well.

The final task is to size the area below the search form and results, where the users’ stored
favorites appear. This is necessary because there doesn’t seem to be a way to have Ext JS do it
automatically. The problem is that as the list grows, the area doesn’t scroll. In order to have it
scroll as you’d expect it to, we need to set the style attribute to on it and the area
the favorites are in needs to be sized so that its height is the height of the browser content area,
minus the header, and minus the search area. We also subtract a few more pixels to account
for borders and padding and such. That’s what the final line in the code does: it gets
a reference to the named and sets its style attribute. The body of
the document is gotten via a call to , which, because it’s an object,
includes some utility methods, most importantly, . This method gives us the
total height of the browser content area. We take that value and subtract 110 (the height of
the header) from it. Then we subtract 300 (the height of the search form and results area) and
finally subtract 58 (a “magic number” reached by trial and error that accounts for the borders
and padding and such). The result is that the now fits in the area it is supposed to, and
scrolling works as expected. As you’ll see later, this same code executes whenever the browser
is resized so that the is always sized properly.

Note Magic numbers are a code smell, that is, something that most programmers consider bad form. A
magic number is a “naked” number statically present in code whose meaning and derivation isn’t immedi-
ately obvious from the code. Generally, constants and/or variables are a better choice because they give the
numbers some semantic meaning. For instance, I could have had a variable named
and then used that in the expression to calculate the height. This arguably would have made the code more
readable, but this was a good opportunity to point out what a magic number is. Magic numbers usually do
make code harder to read, and you should therefore take this as an example of what you should not do in
your own code! (Of course, there are always exceptions.)

Next up is , which we skipped over a little while ago:

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 339

As is the case with much of the code here, this is just like what was in previous applica-
tions. The is first built, and again we’re using the pattern of having methods that
return the objects’ config information. One thing that makes this different, however, is that
the is all there is; in previous applications we’ve seen more than one object built
here, such as toolbars and s and the like. How is this possible? Well, it will be obvious
when we look at , but in short, the calls to the methods to create the other objects
are inlined with the code. This is a further enhancement to the architecture we’ve
been slowly evolving with each project. (I don’t know if there will be further evolutions… writ-
ing a book is as much an adventure as reading one!)

Once the is formed, which means all the subcomponents of it are as well, a
call to is made. If you play with the application you’ll notice that the
icons in the header have tooltips over them, text to tell you what they do when you hover over
them. This isn’t something you get for free; there is work involved in making that happen, and

 is where that work is done. However, as that is part of the file,
let’s put aside those details for now and continue.

The next step is to load the favorites from the database. As the method is used
to do that, we have the same situation as in other applications: the event will be firing
multiple times here, and we don’t want that. So, the flag is set to

, and the event handler checks that and skips its work when it’s true. A call to the
’s gets us an array of s, which is passed along to the

’s method. Finally, the flag is set to ,
because from that point on we want that event to fire. Finally the method
is called, which is more code we’ll defer looking at a little longer, but in short it generates the
markup for the list of favorites seen in the bottom-left corner of the page.

The final method in this file is that method I said we’d look at later.
(See, I may put things off, but I get back around to them eventually!) Here’s the code for that
method:

As I hinted at earlier, all it takes to retrieve a cookie is a call to the method of the
. You pass in the key, or name, of the cookie, and it is retrieved (assuming it

exists of course—you get a blank string if it doesn’t). Then, each of the search form fields is set
to the returned value, and that’s how we see the saved default values in the form at application
startup.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 340

Viewport.js
Now we come to the file, which is something I said we’d get to soon… is this soon
enough for you? Well, ready or not, here comes the code:

As far as s go, there are no surprises here. Once again we have our friend Mr.
 to thank for all the wonderfulness. In the region is the header area, which

contains the toolbar (well, not a real Ext JS toolbar, but still) and the application logo. In the
 is a that contains the Search and Results tabs, and below that is a plain-old

 where our favorites are shown. In the is where the details are, and it’s a as
well, one using an layout. Notice that the region has a layout of , so that
the takes up the whole region.

Of course, there is something exciting a new here: the fact that each of the components in
the three regions is instantiated inline. This is that architectural evolution I talked about ear-
lier. This lets the actual UI code be embedded in the definition, which I think makes
more sense than instantiating an object and then including in the defi-
nition, as we’ve seen previously. This way, even more ordering concerns are removed because
we no longer have to ensure that all the components get created before creating the .
It’s a relatively minor change, but it makes things even cleaner than before.

There is also the small matter of the array, and the one event handler contained
within it, . Recall our earlier discussion when we looked at how the favorites section
was sized properly during initialization. Well, this resizing needs to occur when the browser
window is resized as well, and that’s precisely the time at which the event fires. So, in it
we do the same sort of math that we saw earlier. However, one problem exists: it turns out the

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 341

 event fires during initialization as well, and unfortunately it occurs before
is created. So, to avoid a nasty little error we need to check for its existence before resizing
anything.

Header.js
The contains a lot of the code behind the functionality in this application, but the
first part of it is pure eye candy (which there’s nothing wrong with in my book, which this is, so
eye candy it is!).

Have you ever used Mac OS? Or, have you ever seen a Fisheye list from libraries like Dojo?
If not, I’ll briefly explain. Picture a row of icons. As you mouse over an icon, it expands gradu-
ally (but rapidly). As you mouse off it, it contracts. The Mac OS doc is where this interface
metaphor originated (to the best of my knowledge, and even if not, then certainly it’s what
made the effect famous). The Dojo toolkit has the Fisheye list as part of it, which provides this
widget, but Ext JS does not. Fortunately, it’s easy to replicate (at least roughly) and that’s what
I’ve done in the header, as you can see in Figure 6-10 (sort of). Of course, we’re talking about
animation here, so obviously this is something you need to play with the application to get a
full appreciation for.

Figure 6-10. The header with one of the toolbar icons being hovered over

In this screenshot, my mouse is hovering over the print icon, which has expanded, and
is also showing me a tooltip. So, how is this magic pulled off? Well, let’s look at some code,
shall we?

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 342

This block of code is the UI definition for the , and it contains two elements,
the first being this Mac OS–like toolbar. (I’ll simply be referring to it as the toolbar from
now on… no sense giving Steve Jobs more credit than he deserves!) This uses a

 to organize its children, which we haven’t seen in action yet, although we had an
introduction to it in Chapter 2. In short, the allows us to create an HTML table
structure without all that pedantic messing about with HTML that is otherwise required.

In this case it’s a simple table structure with two columns, one containing the toolbar
and one containing the application logo. The element allows us to specify the
number of columns, and the array is essentially an array of table cells. If there were more
than two elements in the array, the table would flow onto a second row, but here we only
have the two so it’s a table with a single row and two columns.

In the first column is the toolbar, and for each icon a call to the
 method is called. This method looks like this:

As you can see, each icon requires that an tag be generated. To do so, this method
uses the method that Ext JS adds to the class. This allows us to use
token replacements to insert some dynamic data into static text. In this case, the dynamic data
is the ID of the icon, passed into the method, and if you look back at
the definition you’ll see those values being passed in.

The actual markup returned by this method contains some new stuff for us. The
 event makes use of the Ext JS’s visual effect (or FX as it is sometimes written)

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 343

capabilities. What happens is that in the event handler, is used to
retrieve the representing the tag. Ext JS wraps all DOM elements in its own

 class that provides additional capabilities, and one of those capabilities is the
 method (this method and all other animations are provided by the class, but

this is applied to the class, so effectively they become members of the
class). This performs an animated scaling of the . The arguments to this method
are the new width of the image, the new height, and an options object that here contains a sin-
gle attribute, , which specifies the numbers of seconds the full animation should take.
So here we’re saying that the image should expand from its default size of 64 64 to 120 100
in a quarter second. Likewise, in the event handler, we scale the image back down
to its original size. That’s all it takes to fairly accurately emulate the Mac OS doc!

In the previous screenshot you can also see that each toolbar icon has a tooltip attached
to it that shows up when you hover over it, but so far we haven’t seen how that’s done. Recall
that in the method the was called after
nearly everything else was done? Well, that’s what does the deed, and now it’s time to come
face to face with that method:

For each toolbar icon we create a new object. This is a widget that is very easy
to use: you simply feed a configuration object to the constructor containing a couple of ele-
ments, the first of which is . This is the ID of the DOM node to attach the to. You
also supply the attribute, which is the text of the . You can also supply a number of

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 344

other attributes; for this example the only two we’re interested in are and ,
which is the amount of time to take before a is shown or hidden, respectively (here we
want them to show up immediately, so 0 is the appropriate value).

The remaining methods in are the functions that are called when each of the
toolbar icons is clicked. The first of these corresponds to the first toolbar icon, the one for
starting a new search:

Just a couple of relatively simple tasks are required to accomplish this. First, the
 is cleared in the usual manner. Next, the default values are loaded again, just like

during initialization. Then, the is cleared and the Results tab is disabled. In addi-
tion, by calling on the retrieved , the Search
tab is made current. Finally, both the Details and Map panes of the are collapsed.
All of this sets up the UI just like it was when the application began (unless the user saved new
default search values, in which case it’ll be a little different).

The Print toolbar icon is next, and clicking it results in a call to :

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 345

If no business is currently selected, then this method just ends and nothing is done. If a
business is selected, however, the first task is to populate all of the fields that we saw in the
markup in with the details from the current . Next, a new
is created, based on from . We define this as not being minimiz-
able, resizable, or draggable (although it is closable); as not having a shadow; and as being
constrained to the (, which means that even if the was dragga-
ble you wouldn’t be able to have part of it hanging off the screen… this is redundant given that
the can’t be dragged, but I thought you’d like to know about the attribute,
and it certainly doesn’t hurt anything being there). Finally, the ’s attribute is
set to so that we’ll get scrollbars as necessary.

Once the is created, it’s shown and then immediately maximized via its
method. What you have at this point is a that overlays everything else on the page and
takes up the entire browser content area. Finally, a is shown telling users they can
now print and to close the when they finish. It’s the user’s responsibility to print by
clicking the browser’s Print icon or menu option, and then to close the when done.

The next method we find lurking about is the method, called when
the Add to Favorites toolbar icon is clicked:

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 346

The job of this method is to add the current , assuming it is selected
and assuming it isn’t already a favorite (which happens to be the first check performed
here) to the saved favorites. The method of the is called, passing it the

, which triggers the call to the ’s
method. After that, is set to , since the business
being viewed is in fact now a favorite, and a call to is
called, which updates the list of favorites on the screen. Now we use a little more : a
reference to the newly added favorite is obtained, and the method is used to do
a Yellow Fade Effect.3 This is an effect whereby you highlight a changed piece of information
in yellow and then slowly fade it back to the nonhighlighted state. Of course, it does not have
to be yellow, and it does not have to fade, but the underlying concept is the same: highlight
changed information to provide a visual cue that something has happened (remember that
changes caused by Ajax or other UI interactions can sometimes be subtle, so anything you can
do to help people notice them will be appreciated). The method accepts as its first
argument an RGB value specifying the color to highlight the item in. As its second argument,
the method accepts an object that configures the item, including specifying the style attribute

 3 The term “Yellow Fade Effect” seems to have originated with a company called 37signals, as seen in
this article: .

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 347

to modify via the attribute, the ending color to fade to from the highlight color via the
 attribute, and the duration in seconds the fade should take via the attribute.

So here we’re highlighting the new favorite in yellow (), modifying its
style attribute, and fading from yellow to white) in one second’s time. The effect can
(sort of) be seen in Figure 6-11. Of course, like the toolbar, you have to see it in action for your-
self, so fire up that browser and have a peek!

Figure 6-11. A favorite has been added; notice it’s fading in yellow? (What? All you see is black
and white? Well, trust me, that’s what it does!)

Since we can add a favorite, it seems only reasonable to be able to delete one too, and
that’s what the next method is for:

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 348

First we confirm the currently selected is in fact a favorite; otherwise
there’s nothing to do. If it is, we then confirm that the user really wants to delete it using the

 function that we looked at earlier. Note that the text of the
contains the title of the favorite being deleted, rather than a generic message, which is gen-
erally better if for no other reason than convincing the user that the program knows what
it’s doing! If the user clicks yes, then the method of the is called,
which fires off the method. The reference is cleared,
and the flag is set to . Then, as with adding a favorite, we call on

 once more to update the list on the screen. There’s no highlighting to do
here, though, so there’s none of that code. Then, a call to is made. This has
the effect of clearing all the detail fields, since that method is smart enough to deal with the
case where there is no , as you’ll see later. Then, the two panes are
collapsed, and finally is called, which, like the call to , effectively
clears out the Map pane of the . The confirmation dialog is shown in Figure 6-12.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 349

Figure 6-12. Confirm Favorite Deletion prompt

The final method we have to look at handles the case of users wanting to clear all their
favorites in one go, and it’s the aptly named method:

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 350

This is very much like deleting a single favorite except that this time the
method of the is called, which fires the event. This results in the

 method of the being called with no favorite ID passed in, caus-
ing the query to be executed. Otherwise, it works just like the

 method.

Details.js
The file contains the definition and code related to the region of our

’s and is where details and the map for the currently selected business
are shown, as seen in Figure 6-13.

Figure 6-13. The details of a business are displayed.

This screen shows the details for a business and it is organized via an layout,
so the details for the business are on a different pane than the map, which you can see in
Figure 6-14.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 351

Figure 6-14. A map is displayed.

Let’s first look at the UI configuration object:

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 352

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 353

As expected, is the value, and we specify that we want flipping between
the panes to be animated by setting the object’s attribute to . I
wanted there to be some padding around the content of all panes in the , so the

 attribute comes into play, and the attribute within that object sets a pad-
ding style of 10 pixels. It also sets to so that any scrolling, which can happen
easily on the Map pane, kicks in as needed.

The array contains two elements, one for each pane. The first pane is the Details
pane, and it is defined using the attribute and a giant constructed string. The markup
itself is an unremarkable HTML table—nothing special there. Each cell in the table in the sec-
ond column has an ID because that’s where the detail information will be plugged in.

The second element in the array is the Map pane, and it’s slightly more interest-
ing. It has an array as well, and the first element in that array is a that, once
again, uses the . This time, however, there are 12 columns, and there happens
to be 12 s created for the map-zooming functionality, so all the buttons are in a single
row. This was necessary because if I hadn’t used a , the s would render
one under another, running down the screen, so that wouldn’t work. A was the
simplest way to avoid that problem. The s themselves are pretty simple—they just
have a defined that calls the method, passing what is
basically a zoom factor.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 354

The second element in the Map pane’s array is where the map itself goes, and it
too is a plain . All that’s required here is to use the attribute to create an tag.
The attribute on the sets the style attribute to to center the

 tag. The tag isn’t initially loaded with any image, so it is effectively empty. I put a
border around the image and initially hide it.

That’s it for the configuration; it is for the most part straightforward HTML wrapped by
some Ext JS components.

The first method we find, , is called to show the details for a selected
business:

The first line ensures that we always have a , whether it’s the currently
selected one referenced by or a new empty one. This
is required because, as you may recall, this method can be called at some points where the
intent is to clear the detail fields. Rather than code special logic for that, I decided it was easier
to just ensure I always had a , and then I could use the

 method during field population. So, for each detail field, a reference to it is
retrieved via , and then its property is set. The value set is determined
by a call to . If the first argument to that method is empty,
meaning the field retrieved from the is empty (which it would be if there is no
current record), then a blank string is returned and set in the field on the screen. This not only

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 355

covers the situation of clearing the detail fields but it also nicely deals with any missing fields
returned by the web service (for instance, will frequently come back as , and
we wouldn’t want to display on the screen, which is what happens without

 in there to effectively say “null means empty, so here’s a blank string
for ya” instead).

As mentioned before, the method accepts a zoom factor as an argument to it.
This results in a new web service request being made and the map tag updated to point
to a map at the new zoom level. For example, if you zoom to country level, you’ll get some-
thing that looks like Figure 6-15.

Figure 6-15. The map, zoomed to country level

The method looks like this:

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 356

Just like , is also used to clear the Map pane. So, the first check done
is to see if is , and if it is then the map tag is
hidden.

Next, we see if there was a zoom-level argument, and if not we set the default zoom level
to 6, midway in the zoom range. Related to this is the task of resetting the buttons. So, we iter-
ate over the buttons, and for each we check to see if it matches the zoom level. If it does, the
button is disabled; otherwise it is enabled (no sense making the button for the current zoom
level clickable).

After that comes the interesting bit: the web service call to get the new map image. Earlier
we saw how the can be tied to a to get data, but nothing says you
have to use a within the context of a . In this case, that’s exactly what
we need to do! So, a new is instantiated, and the URL to the map service is
passed via the config object’s attribute. Chained to that instantiation is a call to the

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 357

method. The method recall accepts an object that defines the parameters to pass to the
service. So, we have our , which is needed for the service to accept our request, followed
by the specification of , so we’ll get a JSON-P response. Then we have
and , pulled from the current . The and
attributes specify the size of the image we want back, and is the zoom level.

The second argument to is an instance of a new , and this is similar-
looking to what we saw earlier in terms of extending to include the methods of

.
The third argument is the callback function, here inlined. So, the ’s

 method fires, and here we’re not doing anything with the response—we’re
simply returning it. Because this isn’t in the context of a , there’s no need to parse
for s or any of that, and while there is some error handling that could be done, as we
did in , I decided to make things simple. We assume if a search result got a valid
response, then so too would an image request. (This could be a favorite, which means the
search service wouldn’t have been previously called, but like I said, I went for simplicity here,
not necessarily extreme robustness.)

Anyway, the callback executes and is passed the result of the call to ,
which is just the object resulting from the JSON returned by the service. From it we grab the

 element, which happens to be a URL to the image we requested. So we
point the attribute of the map tag to it, and lo and behold, we have a zoomed image
displayed, perhaps similar to what you see in Figure 6-16.

Figure 6-16. The map, zoomed to street level

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 358

Favorites.js
The next file to examine, , is a fairly small one compared to some of the others.
This is where the functionality related to the favorites list is located, beginning with the con-
figuration object for the , the area right below the search :

Here we’re simply defining two s, which will lay out horizontally (the default way
s lay out). The first contains some HTML for the Saved Favorites image. The second
 houses the where the generated list of favorites will go. Note that the

of this is set to , so there will always be scrollbars, even when they aren’t, strictly
speaking, necessary. I felt this gave a more consistent look to the UI, especially considering the
automatic height calculations we saw earlier.

The method that generates the list of favorites is up next, and its name is :

For each in the , some code is executed, and within it are
a few new tricks. First, the method is used to generate the markup.
This method allows you to append some new HTML to an existing element, but it does so

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 359

without you having to directly write that HTML. Think of this in comparison to the details
code we looked at earlier where there was that giant string construction that built up some
HTML. Here, we don’t have to do that; we can take a more object-oriented approach and let
Ext JS worry about the details. The first argument this method takes is the ID of the DOM node
to insert the created element under. The second argument can be a straight string of HTML,
so you can still do that if you prefer. You can also, as we’ve done here, pass in an object that
defines the element to be inserted. You can also pass in an array of such elements if you’re cre-
ating multiple things. Since we only have a single thing to create here, a single object it is! This
object has only one required attribute: , which names the HTML tag you want to create.
Here we’re creating a . Beyond that, the attributes you include depend on the tag you’re
creating and what you want to do with it.

So for instance, we saw earlier that after a favorite is added, this method will be called,
and then the new item is highlighted. To do that highlighting, we need the items to have IDs
associated with them, so is one of the attributes. There’s also some style setting to be done
here, such as , so that when the favorite is hovered over the user will get an
indication via cursor change that it is clickable. There’s also an handler defined so that
something happens when it is clicked, and ditto for and , which is how
the background color is changed to yellow when the favorite is hovered over as well.

Another attribute that you can have is the attribute. This allows you to create fur-
ther elements as children of the new element. Here I’m creating an tag for the little heart
icon next to the favorite, as well as a element where the title of the favorite is inserted
from the that is being operated on. Notice how the attributes for the tag
and the tag are all different from the tag being created, supporting what I said
earlier about the attributes beyond the attribute, which is always present, being dynamic.

Now, when a favorite is clicked, we just saw that the method is called,
and that’s what we’re looking at next:

Clicking a favorite requires a couple of things be done. First, the for the
favorite is pulled out of the by ID using the method.
Next, we set the flag to since we’ve seen where that’s necessary
to know. Then the details are populated, which we’ve also seen already. Next, the details

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 360

 pane is expanded and the map is shown (remember that the default zoom level of 6
will be used here as per the method’s logic when no zoom factor is passed in).

The last task that needs to be performed is to deselect any items in the search results
 that might be selected. We do this just to make the UI consistent: when an item is

selected from the it is highlighted in the , but here the business being shown isn’t
any that might be selected in the , so it makes sense to clear those selections. Doing so
requires that we get a reference to the by using , then get a reference to its

 via its method. Then, the method tells us if
there are any selections they are cleared via a call to .

Note The call to is wrapped in the check of because if we fail to do
so, and there are no items selected, then the call to results in an error. Figuring that
one out had me running in circles for a good 20 minutes or so!

Search.js
The final source file we have to look at, , is one of the largest (although still not too
large… thank you, Ext JS!). It’s also where a good portion of the work of this application is
done. Let’s begin by looking at the UI configuration object. I’ll split it in half to make it a little
easier to digest, beginning with the part that defines the Search tab and form:

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 361

Now, in other applications we’ve had tabs, and we’ve had forms, and there’s nothing
here that we haven’t seen before. The form uses validation to check a few things: that the
Keyword field has a value and that the Zip Code field is in the appropriate format. Note the
Zip Code field’s use of the that we saw defined early on. Speaking of that ,
in Figure 6-17 you can see the result of that particular validation failing (it also shows the Key-
word field as invalid since it has no value entered).

A number of the fields here are s, such as the Radius field, which allows us to
ensure they too are in a proper format (a number of course!) and are in a valid range. Note that

 is in fact a valid value in those fields, so they don’t have set to as the
Keyword field does.

We have a couple of fields as well. They are tied to the various s we saw
defined earlier.

Finally, two s are attached to the form: Execute Search and Save Location As
Default. The former is tied to the form’s validation so it will be disabled when the form is not
in a valid state. Both have icons on them, just to make them a little prettier, so the attribute
has the value to allow for that (and to still allow for text and to make sure it all
looks right).

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 362

Figure 6-17. The custom vtype in action

Now let’s move on to the Results tab, which has a few interesting and new things to talk
about:

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 363

Before we get into the code, though, have a look at Figure 6-18, where you can see some
search results.

Figure 6-18. Some search results, with the mouse hovering over a row

First, this tab is disabled initially so that users can only flip to this tab when they’ve per-
formed a search. This is to avoid a problem with the that I’ll talk about shortly
(the as well as the issue!).

The is defined much like the others we’ve seen. It has a event handler that
does the work that is similar to the work of the method we looked at in the
previous section. This is no accident: the work necessary in this situation is basically the same
as when a favorite is clicked, except that is set to .

The new thing here is the attribute, which we haven’t seen on a before. The
attribute defines a to be placed at the bottom of the (in fact, at the bottom of any

, of which is one). The element defined by the object that is the value of

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 364

must be an , or a descendant. One such descendant is the . This is
a specialized that allows for paging through large result sets. To use it, you tie it to the
same as the using the attribute, and then define a few other attributes.
These attributes are as follows:

, which determines how many results to show at a time in the

, which when , as it is here, displays information about what items are
being shown

, which is the message to be displayed (this string is formatted using the
braced numbers 0–2 as tokens that are replaced by the values for , , and ,
respectively)

, which is what will be displayed if there are no items to display

These messages are displayed in the itself on the right.
There is one other attribute: . This attribute maps parameter names for load

calls. Let me explain: whenever one of the paging buttons on the is clicked, a
call to the method of the associated is made. The will pass
along to it some parameters that define where in the results it is, and what elements it wants
to display. For example, say there are 100 results and you have a of 10 and you’re
currently viewing items 1–10. If you click the Next Page button, the will request
the next 10 items; it will do so by specifying a starting position of 11, as well as the of
10. By default, the names of the parameters passed to the will be and .
These two will be passed as HTTP parameters to the server fulfilling the request for data that
the will wind up making. In the case of the Yahoo! search service, it uses the
parameter, but it does not use a parameter named . Instead, it uses one named .
Therefore, the allows us to map , the name of the parameter internal to the

, to , the parameter name the web service will understand.
I hope you realize at this point that something fairly complex, paging through result sets,

was just implemented with nothing but some JSON configuration information! Well, nothing
but that and the code we wrote in the … but still! I mean, every time you click one of
the buttons on the , Ext JS is handling all the behind-the-scenes work of figuring
out what results to request and asking the to get the data. Data binding means the

 is updated automatically once the , and the web service by extension, fulfills the
request. If you’ve ever hand-coded something like that yourself, then you surely realize how
much work this saves you (and yes, I’ll stop calling you “Shirley4”).

 4 If you’ve never seen the movies Airplane and Airplane II I would say, first, what have you been doing
all this time? Go out and rent or buy the DVDs now! If you have seen them, then you recognize the
joke where someone says “Surely you can’t be serious” and the reply comes back “Yes, I am serious,
and stop calling me Shirley.” This was used a couple of times in both movies to great comic effect, and
most of us who have seen the movies use the line in real life every chance we get!

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 365

When the Execute Search button is clicked, I’ll give you just one guess what method is
executed! That’s right, it’s , and I’m going to break this into some chunks as
well, starting with this one:

First, the values of the form are retrieved into , and then a couple of valida-
tions are performed (they could have been coded into the form, but I felt it was simply easier
to implement them this way). The first check is to ensure some component of a location, Zip
Code at a minimum, has been entered. A valid search can’t be performed otherwise. If that
test passes, then we need to ensure that if a Street Address is entered, so too is a City and State.
While Zip Code alone is a sufficient location to perform a search, all of the other three must be
entered in concert to be able to search. In Figure 6-19 you can see the results of a validation
failure at this point.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 366

Figure 6-19. Oops, gotta enter the right thing, dude!

Next, a is shown to indicate a search is in progress:

Also at this point, the Results tab is disabled. This is to account for the case where a previ-
ous set of search results is sitting there, and at this point I’ll mention that problem with paging
that I saw. This seems to be a known issue with the , but there doesn’t appear to
be any simple way to reset the or clear it, even if the is cleared. While
researching this I came across a solution that, frankly, seemed like a whole lot more work than
I’d like and seemed to me rather “hacky” in nature. Now, me and hacky solutions are good
friends to be sure, but in this case there was a far easier solution: just disable the Results tab!
As it turns out, loading the with new data resets the , so when the next
set of results comes in, everything will work as expected. Sometimes, hiding a problem is a
perfectly valid solution!

Anyway, once the Please Wait window is showing, it’s time to deal with some default
search value issues:

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 367

 is a valid value in the Sort, Radius, and Minimum Rating fields because we’re setting
some default values for them. In addition to default values, there’s some other static values to
set:

The is set on the , as is the parameter. These are fed to the
web service and, as you’ll recall, are required to make the request work and to ensure we
get a JSON-P response. Also, the parameter is set to lowercase using

 because the values in the have capital letters in them so they look nice
on the screen, but the web service doesn’t take too kindly to the values not being all lowercase.

Once that’s done, it’s time to get some search results! Unlike with the paging toolbar
where the method of the will be called automatically, there is no such
automatic trigger here, so we have to do it ourselves, like so:

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 368

The first argument to this method is an object that sets some options for the load. Here we
have only two: and , which you should recognize are the parameter names we
specified in the attribute passed into the ’s definition. To begin with,
we want the first 10 records, so we start with item 0, and we want 10 results at a time.

The second argument to the method is a callback function to be called after
the fetches the data from the server and the has parsed the response
into s. The first thing done in this callback is to see if we actually got any

s back. If not, that means one of those “soft” error conditions we discussed
earlier occurred, so in that situation we need to display the message using

, and using the and
 attributes that we set in code in .

If we got results back, though, all we need to do now is enable that Results tab and flip
over to it, and of course hide the , which remember is the Please Wait message. The
magic of data binding means the now has the results showing, and paging is all ready to
go!

The last method to look at is the method called when that Save Location As Default button
is clicked:

Saving the default location isn’t too tough: get the values of the search form and set some
cookies. The we created earlier exposes a simple method that accepts a
key, or name for the cookie, and the value of the cookie to set. Once all the location fields have
been stored (whether they are blank or not doesn’t matter), then a is thrown up to
indicate the location has been successfully saved. That’s it!

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 369

Suggested Exercises
This is now my fifth book, and each one was an Apress “practical” book, which means I’ve
written a whole lot of mini-applications over the past few years! I refer back to them when I
have questions or need to remember how to do something. This application, however, is the
first that I’ve found myself using on a pretty regular basis! I find it to be genuinely useful in my
day-to-day life.

That being said, I think there are some things that could be added to make it even more
useful, and I think they would be good learning exercises for you to undertake as well. So here
are a few ideas:

the documentation for the local search service and you’ll find that such a link is part of
the data returned. This will enable you to see things like user ratings and reviews.

. This will enable you to see a list of search
hits for a given business as provided by Google. I say Google for two reasons: first, as for
most of the planet, it is my search engine of choice because I find the results are gen-
erally better than other engines, and second, I want to prove that there’s no inherent
limitation on mashing up services from two sources. Google provides web APIs just like
Yahoo! does, and while you could use Yahoo!’s web search services it might be fun to
play with Google a little too.

pull them up. Store the search results, not just the search criteria. No sense pinging
Yahoo!’s servers if you can avoid it!

, you can then use the arrow keys to move
up and down, but nothing changes on the right. It probably should, so how about you
fix that?

a service that gives you this capability; I’d check into what else Yahoo! offers first, and
then perhaps Google’s web API offerings.

application for my last book on Dojo, and that’s exactly what I did there. I ran into
some issues with making it work with Ext JS, so time being tight I had to drop back and
punt, and so using buttons was the answer. However, as an exercise, and heck, even if
you can’t make it work 100 percent, switching to a slider is a good exercise. The slider
itself works just fine, but there were some relatively minor rendering issues I ran into
that, while you could live with them as a result of an exercise like this, you wouldn’t
want to ship a book with them!

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 370

Summary
In this chapter, we looked at the concept of a mashup and saw how Ext JS provides some very
nice functions for being able to call on remote web services, allowing you to develop a com-
pletely client-side mashup. We developed such an application and saw some of the services
Yahoo! provides. We also learned about JSON-P, the technique underlying the functions Ext JS
provides. We got to play with some more widgets and saw some more utility functions in
action. We saw more of Ext JS’s data subsystem than ever before. Plus, we wound up with what
I think is a pretty useful application, which is definitely a win in my book!

In the next chapter we’ll develop a tool that works with the Gears database, a very handy
thing to have in your toolbox for sure!

371

C H A P T E R 7

Your Dad Had a Workbench,
Now So Do You: SQL Workbench

When I was a kid, I’d go into my dad’s tool closet and take out a bunch of his tools, find the
nearest electronic device, and proceed to take it apart. This didn’t always make my parents
too happy but at least they can rejoice in the fact that my son and daughter are doing the same
thing on occasion to me! Looking inside something and figuring out what makes it tick is part
and parcel of what we do as software developers, and just plain human beings. High-level
abstractions and descriptions are often all we need, but diving into the nitty-gritty details is at
other times exactly what we need.

We’ve been using Gears throughout this book, the database portion of it at least, but being
able to peer into the databases themselves, unless you use the SQLite Manager add-on for
Firefox, isn’t something within our power. In this chapter we’ll create an application that aims
to alleviate that shortcoming!

We’ll build ourselves an application called SQLWorkbench, and in the process we’ll see a
few new things in Ext JS. By the end of this chapter we’ll have a handy tool that will prove valu-
able when we’re using Gears for local database storage.

What’s This Application Do Anyway?
If you use the Firefox browser—and you do in all probability if you’re a (smart) developer—
then I suggest getting familiar with the SQLite Manager add-on (

). This is an especially great tool if you are doing Gears development, as we are
in this book. This add-on is a utility for peeking directly into the SQLite databases that Firefox
uses under the covers to store user data, as well as the databases created by Gears—in fact, any
SQLite database you can name.

SQLite Manager was created by developer Mrinal Kant. It is a fabulous piece of work that
makes dealing with SQLite vastly easier than it otherwise would be. You have already seen
it in action without realizing it: all those screenshots where table structures have appeared
throughout this book are a result of taking a snapshot of the table structure browser the add-
on provides. Let’s take a look at the full UI, though, shown in Figure 7-1.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 372

Figure 7-1. The SQLite Manager Firefox add-on in all its glory!

In short, the application we’ll be developing in this chapter is largely modeled after SQLite
Manager. In fact, when I started the project my intention was to use it nearly note for note, as
the expression goes, and mimic what you see here. As I developed the application, though, I
made some fairly large deviations from SQLite Manager, for better or worse, but most of the
functionality is still taken from the add-on.

So, in more specific terms, what features are we going to provide and what tricks will we
use to pull it off? Well, let’s see…

used. There will be no master viewport like we’ve always had. Instead, everything will
be a (except for the menu bar that we’ll have at the top). In other words, it’s a
desktop metaphor.

able to add and remove databases. This means not only adding and removing them
from the list but adding and removing them physically from the file system as well.

should be able to create new tables.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 373

-
ing its structure and the data it contains, in a read-only browse mode.

-
ing the table of all data (but leaving the table structure intact), renaming the table, and
copying the table (data and structure).

to be executed against any database they wish.

That’s a fair bit of functionality to implement, and is probably most of what you’d need
in a tool like this. The advantage of building this application—aside from the obvious benefit
of learning more about Ext JS, Gears, and SQLite—is that you can have the same basic capa-
bilities that SQLite Manager provides outside of Firefox, say in Internet Explorer. To be fair,
SQLite Manager is still the better tool overall, and it isn’t my intent to compete with it, but as
learning experiences go, this should be a good one, and the result of the work is a truly useful
tool too. So let’s get to it and build ourselves something useful!

Overall Structure and Files
The overall application structure is the same as that of previous applications, as you can see in
Figure 7-2. Four directories exist in the root of the application: , , , and .

Figure 7-2. The application’s directory structure and constituent files

In the root we have the file as always, and the file that puts this
application under the GPL license. In the directory is the single file that we’ve

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 374

come to expect housing the style sheet information for the application, and is Ext JS itself.
Once again, this is a plain-vanilla Ext JS “installation,” with no extra themes or other changes.

The directory contains a batch of GIF files, all of which are icons used on various but-
tons throughout the application. Without exception, the name of the image file matches the
caption of the button it appears on.

In the directory we have the usual file that allows us to use Gears, and a
main JavaScript file named after the application, in this case. This is where
we’ll find the method that, just like other applications, is essentially the entry point into
the application code, as well as some other general code. There is also a
file containing the definition of the s and s used in this application.

The rest of the files correspond to individual s seen throughout the application and
the code that goes along with them. So, the that shows the list of available databases is in
the is in and so on. The

 file contains the three (sort of, as we’ll see) s that you see when viewing help.

The Markup
As we’ve done with other applications, we’ll begin with the basic markup found in
that forms the basis of the application:

Nothing new here: we obviously need Ext JS to be imported (), along with its
style sheet () and we’re using Ext JS in stand-alone mode so no third-party librar-
ies are needed, so is the adapter we’ll use.

Next up are the imports of the resources specific to this application:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 375

No surprises there either! kick-starts the application by calling the
method of the class—we’ll get to that soon.

Note In fact, is a namespace created on our behalf by a call to , as
we’ve already seen. Since a namespace is nothing but a JavaScript function, which is how namespacing
of code is generally achieved in JavaScript, it’s quite natural to refer to a namespace as a class or even
an object. As it happens, all three terms are correct, in addition to the term function, in this case since a
namespace is a function is a class is an object in JavaScript!

For now, let’s look at the HTML in the of this document:

Setting the style attribute to a value of on the tag ensures that
we won’t have scrollbars in the browser content area, which can happen in some brows-
ers because of the way the content is generated by Ext JS within the DOM. The

 is present once more for animation sourcing (i.e., where the s fly in
from and fly to when closed).

There is also the . This is where the will be inserted when we
create it later. Note the is set to to stretch across the entire page, as a typi-
cally does. Also note how it’s positioned absolutely at pixel location 0, 0 so it’s right there at the
top of the page. I also set a on it, although strictly speaking that isn’t necessary since
the will expand to accommodate the content inserted into it. Still, I prefer to specify the
height so that I always can count on the exact size when I try to position other elements rela-
tive to it (such as one particular , as we’ll see in a bit).

The markup for the About is next:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 376

This is a simple definition in HTML, using the Ext JS-provided style classes to mark
up the parts of the such as the header () and the body ().
Other than that, it’s a simple table-based layout (I know, I’m evil for using a table-based lay-
out. . .so sue me!).

As I mentioned earlier, one of the things I wanted to use was a whole different UI
design paradigm with this application. Previously, all the applications you’ve seen used a

 to present the UI in discrete sections. This is a typical layout structure, one
that works extremely well for all sorts of applications, which is why we’ve seen so much of it.
However, it’s far from the only paradigm you can use; another you could choose is the one
employed in this application where everything you interact with is in its own separate .

This is essentially the same desktop metaphor your operating system itself uses
(unless you’re one of those masochistic personalities who prefer their Unix command
line—I kid!). This is a good paradigm to choose when you have multiple elements to open
and you don’t know beforehand how many there may be. Since we allow a for each
database to list its tables, that pretty much screams out “ s!” In Figure 7-3 you can
see what I’m talking about.

Here you can see we have the Databases , of which there is always a single one
(although it can be closed too). Then there are two Table List s, one for each database.
Finally, there is another opened that shows details of a selected table. I can open as
many of these as I wish, drag them around, resize them or close them, and basically organize
my workspace however I choose. This is fundamentally different from what you’d get with a

, and in fact there is no layout in play here! There is no either, as you’ll
see as we go through the code. As it turns out, while a typically is used in an Ext JS
application, there is no rule that says it has to be used, and this is such a case.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 377

Figure 7-3. An example of the multi-Window UI design this application is based on

The Style Sheet
Next up
repeating much of what we’ve seen in previous applications. Here’s our constant companion,
the class, which styles the :

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 378

As the UI is built up, we need the s used to stretch across their container,
which they don’t do by default. So here the , an Ext JS-provided class, is over-
ridden to give the stretching we’re after:

In the Table Details s you can view the structure of the table, as well as browse its
contents. In the course of constructing those tables, we need to put headers on them. This

 class is what styles those headers. I chose a background color that would
match the Ext JS default theme, and similarly the font styling goes along with title
 styling (at least roughly):

The data that is displayed in the tables I just mentioned get styled with this
class. The most important point here is that it adds some padding around each data element
so the table doesn’t appear all bunched up:

Some of the cells in those same tables, namely the ones with es in them, need
to be centered to look right—that’s what the class is for. As you’ll see, the

 class is still applied, but the is added to give the centering.
Keeping these as two separate classes allows for easily making a cell centered versus not cen-

Finally, is the style class applied to the text in the About :

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 379

The Code
The code for this application is broken out into multiple source files, similarly to how the pre-
vious few applications have been in that each file, generally, relates to a particular UI element.

Naturally, though, the first one we’re looking at doesn’t!

SQLWorkbench.js
Now we start with the true code for this application, beginning with the contents of

. You can see the UML diagram for this class in Figure 7-4. Its members
include 8 fields and 17 methods. Many of these are not defined in , so my
intention is to introduce each as they are encountered in whatever source file we happen
to be examining at the time.

Figure 7-4. UML class diagram of the SQLWorkbench class

As I mentioned earlier, this “class” is actually a namespace, which you can see created
with the first executable statement in this file:

Not only is the namespace being created, but so too are some sub-
namespaces nested underneath . These mimic what was seen in the previous
applications. To reiterate, the namespace contains the config objects

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 380

for the various UI components used in the application, con-
tains the JavaScript functions called in response to various UI events, and
is where we find things like and definitions.

In this application we list available databases that the user can play with, but within the
context of this application it is unfortunately a fact that Gears does not allow you to get such
a list automatically. Therefore, users have to tell us what database(s) they want to work with,
and we probably should store that information somewhere. It felt a little odd to have to main-
tain a database to store a list of databases, though! So, I opted to go with cookies, and so we
need an in this application:

As you saw earlier, this defines a so that the cookies persist for one year.
I suppose it’s not too nice for users to have to reenter the names of all their databases every
year, but it seems like a reasonable period of time (better than having to reenter them once
a week for example, or even worse, every time the application is used).

Next up we have the method that we know is called via from
. Its job is to “prime the pump,” so to speak, to get the application up and running

and ready for user interaction:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 381

First, the is built. The attribute in the config object tells Ext JS to put this
 into the we saw in . Again, while most of the applications

in this book take a very Ext JS–specific approach (meaning the UI is built as an explicit hier-
archy of components in JavaScript code), you can in fact build an entire UI this way instead.

and then simply create Ext JS components and insert them onto the page where you want, you
absolutely can. You will, however, give up some of the power of Ext JS, things like users being
able to dynamically resize page elements and things of that nature. But sometimes you don’t
need any of that, so the choice is often completely up to you.

CONTROVERSY/PHILOSOPHY: CODE-BASED LAYOUTS VS. MARKUP+CSS

Many people find the idea of designing the UI of an application in code to be controversial. I must admit, I do
to some extent. The argument against it most often heard centers around the idea of page “designers” versus
page “developers.” The thought is that you have graphic artists doing the design, and often that means they
are writing the simple markup and CSS that forms the structure of a page. Then, the developer comes along
and adds the functionality to the layout.

This separation of concerns allows each group to focus on their core competencies. It’s a compelling
argument.

However, the reality is that not nearly as many development environments work that way as we might
like. More often than not, it is the developer doing it all. There may still be guidance from a graphic artist, but
it is still left to the developer to implement both the functionality and the layout.

The argument frequently heard is that creating a UI in code is intermingling things that shouldn’t be
intermingled. After all, markup defines the structure of how some data is presented, and CSS defines what
it all looks like. If you have a database, and you want to display its data, you mark up the data using HTML’s
table features, and then style the table using CSS. The code’s job is to get the data and present it to the HTML
and CSS for display. This too is a pretty compelling argument.

However, using code to do layout allows for a level of dynamic ability that is hard to achieve otherwise.
Markup and CSS are, for the most part, pretty static. JavaScript obviously is not. Therefore, a layout using
JavaScript can allow for things that are difficult or impossible to achieve with just HTML and CSS—things like
reflowing of content on resize events, or manipulation of layout, or dynamic creation of content.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 382

In the end, I won’t try to give you a right or wrong answer here mainly because I don’t believe there is
one. Obviously, writing a book on Ext JS implies I have an affinity for JavaScript-based layouts, and I suppose
that’s a fair supposition, but I’ve also publicly argued against them in the past. I could give the typical cop-out
answer and simply say use the right tool for the job, and in fact, I think I’ll do exactly that! I will say this, how-
ever: doing RIA development with the intent of mimicking desktop app–like functionality pretty well requires
code-based UI layouts, so take that for what you will!

The About Window shown in Figure 7-5 is a result of executing the method,
which contains this code:

Recall in that this was described via markup. Of course, that in and of
itself does nothing for us until we create an actual from it!

The first step is to see if the has already been created, and if it has, we simply call
on it, passing it a reference to . If it doesn’t already exist, though, it is created here.

Linking the newly created to the markup in is a simple matter of point-
ing the config attribute of the constructor to the DOM node where the

 definition is. The is given an of so that we can reference it later
in the Ok ’s function to hide the by calling its method. The
is closable () and cannot be minimized, resized, or dragged (,

 and correspondingly). Finally, it is given a size of 400 by 320
pixels and is shown immediately upon creation by calling and passing it a reference to
the so we get our nice animation effect.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 383

Figure 7-5. The About Window

StoresAndRecords.js
The file contains a couple of and definitions, although not
too many in this particular application. In Figure 7-6 you can see the two types defined:

 and .

Figure 7-6. They may not be much to look at, but the Record descriptors hide some
interesting stuff!

The describes an SQLite database. All we need is the name of the database
and the tables it contains. The field is something new. Previously we’ve seen

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 384

fields as simple types like strings and numbers, but here it’s an , based on the
diagram at least. There is no limitation on what types a field can be in a . A doesn’t
especially care, although it may not know what to do with some types, so you may have to
write your own that does. In this case, however, these s are only used with the UI;
they aren’t read from or written to a persistent data store of any kind, so there’s none of that
concern.

The code that creates this is as follows:

Notice that there is no type attached to either field, again supporting the notion that you
can use any type you wish, and in true JavaScript form you could even dynamically change the
“type” of a field (although that’s typically not a smart thing to do, as much with s as in
JavaScript in general).

The is similarly defined for describing a table within a database:

For a table we need to know what database it belongs to, hence the field,
which maps to a given ’s field. The field itself is the name of the table,
and the field is the SQL statement that was used to create the table. As we’ll see later, this
is a bit of information that we can coax out of SQLite and it is the key to making this whole
application worth anything! Finally, the field, similar to the field in the

, isn’t a simple type. It will have a value that is a JavaScript object that will con-
tain information describing the table in detail (information that will be directly derived from
the value of the field). There will be more to say on this last field later, but for now that
gives you a good idea of what it and the others are for.

As you probably would have guessed, we need to have a for our s to
which we can bind the used to display them in the Databases :

s, there are no event handlers
that need to be attached, so that single line of code is all we need.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 385

Note The database names are persisted via cookies, as I mentioned earlier. It would have been possible
to use the event mechanism built into the to handle writing the cookies, but I chose to externalize it
because I felt it made the code clearer. You could make the argument that using the events would be more
in keeping with Ext JS best practices, and I wouldn’t argue against that too much.

The final bit of code looks like this:

This is a with some hardcoded values that will be bound to the es used
to select the type of a field when creating a table. The strings listed in the
array are the valid SQLite data types. That array is iterated over and is called on the

 for each string. This all executes immediately when this file is loaded, as part
of loading . Therefore, this is ready to go when the UI is built (which won’t
happen until the user decides to build a new table), so the es immediately have the
values in them upon creation.

DatabasesWindow.js
Now that we have some of the groundwork laid, let’s look at our first big piece of functionality:
the Databases , the code for which is found in the aptly named file.
This is what you see in Figure 7-7. Its job is to list all the databases that SQLWorkbench
knows about that the user can work with and give that user the ability to choose one to work
on, as well as add new ones and remove existing ones.

The first bit of code in this file is simply a field definition:

Generally, once users select a database, this doesn’t really care which one they
selected. The code will open the Tables for the selected database and that’s about the
extent that the code in this file cares about database selection. One important exception is
when the user wants to remove a database. In that case, obviously, the code needs to know
which database was selected, and that’s precisely what this field does: it stores the name of the
last selected database.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 386

Figure 7-7. The Databases Window

Following that field definition is the method, which is called to display
this and, you know, list databases!

First, we check to see if the is already open, and if so, it is closed. In this way we
have essentially a poor man’s refresh function, and it means that whatever is displayed in this
Window is current—at least since the last time this method was called.

The method continues thusly:1

 1 Thusly? Who talks like that? It’s like the expression “rue the day.” Who talks like that? And yes, that’s a
Real Genius reference for those “in the know” For those “outside the know” (now there’s an expression
to use more often!), see .

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 387

This has a within it, and that’s where the databases are listed. So, we need a
 to contain s that we can bind to that . To do that, we begin by calling

 on the so we’re starting with a clean slate. Next, we try retrieving
a cookie with the name . This name is formed by appending an index value
(starting with 0) to the static string . We use the function to see
if the cookie was retrieved. If it was, then a new is created and the field
is set to the value of the retrieved cookie, which is stored in the variable . Also, the

 of the record is set to the database name. Then, we bump up the index counter and try to
retrieve the next cookie. The loop continues until a cookie isn’t found, which means we’ve
read in all the previously saved databases from cookies.

Once that’s done, we can go ahead and construct the :

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 388

This is a straightforward definition. Note the use of the config attribute,
which ensures that the cannot be dragged off the edges of the page. Also note how the
and attributes are used to position the in the upper-left corner of the page just below
the (which is why, if you recall from earlier, I explicitly set the height of the
even though I said it wasn’t absolutely necessary… doing that allows me to know how far
down the page I need to position this so as to not overlap the). We use the
attribute to add some buttons to the bottom . The two buttons added are for adding
and removing a database from the list, which also do double duty by allowing the user to cre-

database to the list if the database exists, but it will create the database in SQLite automatically
if it doesn’t exist. Likewise, clicking Remove Database not only removes the database from the
list but actually removes it from the SQLite database. (There’s no way to simply remove the
database from the list, a point my diligent technical reviewer correctly made, so maybe that’s
your first enhancement challenge to tackle!)

The next part of the definition is the :

We’ve seen a bunch of s before, so there aren’t any surprises in the basic structure
here. The event handler is different. Here we begin by getting the name of the
selected database by first getting the selection model of the , then calling its
method to get the for the row that was clicked, and then getting the
field of that record. Once we have that, we set the field to the database

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 389

name so that we know which to remove if the user clicks that button. Then, the
method is called, which will open a listing the tables in the selected database. Finally,
the code clears the selection in this . The purpose of this and is for the user to
select a database. However, since more than one database at a time can be open, leaving the
last selected item in the
the selection is done.

Note I can certainly see the argument for not clearing the selection, and in a way it would simplify mat-
ters because you would no longer have to keep track of the last selected database with the

 field—you could simply interrogate the to see which item was selected at any given time.
I just felt that the UI interaction didn’t quite feel right going that route. Sometimes there’s definitive right
and wrong answers in UI design, other times it’s simply a gut feeling, and this is one of those “go with your
gut” times!

When the user clicks the Add Database button, the method is called (bet
you didn’t see that coming!). Here comes that method now:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 390

In Figure 7-8 you can see the result of this code, which starts by asking the user to supply
the name of the database to add. This is done by using the method,
similar to JavaScript’s built-in -
ally closing the aborts), then the name entered is trimmed and we simply open the
database. Gears and SQLite are kind enough to create the database if it doesn’t already exist,
and if it does, no harm is done and we simply close the database right away. Once that’s done,
the only things left to do are to add a to the for the new data-
base, write out our cookies by calling the method (which we’ll look
at shortly), and finally, call to re-create the Databases , but now with
the new database listed in it.

Figure 7-8. The user is asked for the name of a database to add.

The method is next. It looks a bit complex at first but it isn’t too bad:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 391

First, we ensure that a database has been selected and abort if not. Next, we pop a con-
firmation using the method, which you can see in Figure 7-9. The
text of the message asks users if they are sure they want to delete the database. If they click Yes,
then we’re off to the races. First, the database is opened and then the method on it
is called. This is a Gears-supplied method that takes care of destroying the currently opened
database for us. So, that part is

Next, we need to close the Tables for the database, if one was open.
is used and is passed the constructed ID of the . Assuming it is opened, the
method is called on it and it’s history.

Then we have to do the same thing for the Table Detail s that might be opened for
the tables in this database, so we retrieve the from the for the
database being removed. This is done because we need to get at the field, which lists
the tables in this database, if any. Once we have a hold of that store, we use its method
to iterate over the s in it (remember that’s the field that is itself a). For
each we try to get a reference to the Table Details for that table, and if found we close it.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 392

Once that’s done we can go ahead and remove the from the
. Then there’s just some housekeeping to do: a call to will

cause the cookie for the database to be deleted; is set to since the
last selected database was just removed and therefore is no longer a valid value; and finally,

 is called to effectively refresh the Databases on the screen.

Figure 7-9. The Confirm Database Removal prompt

The last method in this source file is the one you’ve seen a couple of times now:
. As you can see, there’s not much to it:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 393

The values corresponding to databases are stored in cookies named ,
where is a number starting at 0. “Updating” the cookies, whether as a result of adding a
new database or removing one, is a two-step process. First, a loop is entered into that keeps

,
which has the effect of removing it from the browser. Then, the is iterated
over using its method and for each a cookie is written out. In other
words, the “update” is a cheat: it’s really just re-creating all the cookies each time! I’m not
sure there are too many alternate ways to pull this off if you’re using cookies… you could
just write out a single cookie with something like a comma-separated list of database names,
but this way was more fun!

TablesWindow.js
The file contains all the code for the Tables (bet you didn’t see that
coming!). This , shown in Figure 7-10, is where the tables found in a selected database
are listed.

Any table listed can be clicked to open a Table Details for it, and a new table can
. Let’s take a look at the

 method, which is called when a database is selected from the Databases :

First we check to see if a Tables is already opened for the selected database. The
ID of any Tables is in the form , where
is replaced with the name of the selected database. If such a is already opened, we go
ahead and close it. This makes clicking a database double as a refresh function.

The next step is to get the list of tables in the selected database. To do that we’ll have to
play with Gears and SQLite a bit:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 394

Figure 7-10. The Tables Window

Every SQLite database has a special read-only table named in it. The data
in this table describes the database schema. The structure of this table is always what is shown
in Table 7-1.

Table 7-1. The Structure of the sqlite_master Table

Field Description

 Tells the type of entity the record describes. For our purposes, the only value we care
about is .

 Gives you the name of the entity the record describes. For our purposes, that means
the name of the table.

 When the value of type is , the record is describing a table index. In that case,
 gives the name of the table.

 I couldn’t find definitive documentation of what this is anywhere, but I’m putting my
money on it being the code page of the described table.

or table index.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 395

Since
 where

the type is and it returns the and fields, since that’s all we care about here.
The next step is to get the

for tables:

The purpose behind this is that we’re going to populate the field of the , which
you’ll recall from earlier is an Ext JS , with

 from the by using its method,
passing in the name of the database we want. Once we have that, we get its field. If the
returned value is , which happens the first time the database is selected from the Data-
bases , we create a new . If on the other hand we already have a ,
then we call on it since we’ll be repopulating it next, as you can see here:

We iterate over the and for each row
we create a new . The field is set, as is the
and is keyed by the table
name as well so that we can retrieve it by name easily later. This is added to the

 :

Finally, is added as the value of the field in the and
we’re good to go.

At this point we have all the information we need ready to go, so now it’s just a matter of
creating the :

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 396

The has a bottom , courtesy of the
New button that calls the method. The name of the database
that was passed in to the method is now passed in to the method,

The object in the array, which winds up being the main content of the , is a
 that is bound to the created previously. That’s how we get the list

 results in the event firing and the han-
dler defined here executing. This handler calls the method,
passing in the name of the table to display details for, which is derived from the row that was
clicked. We take the argument passed to the callback and call its
method to get a hold of its . From there we can get the selected by
calling the method, and then we just get the value of the field to pass along
to the method.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 397

CreateTableWindow.js
When users , the appears,
where they can enter the details for the new table they want to create. This is shown in
Figure 7-11.

Figure 7-11. The Create Table Window

As you can see, users enter the name of the table at the top, and then enter details for up
to 20 columns in the table. For each, they enter a name, the data type of the column, whether
the column is the primary key field of the table, whether or not nulls are allowed in the col-
umn, and what the default value should be for that column.

Note Twenty fields is an arbitrary limit; SQLite tables can have more. I limited it to 20 fields for two rea-
sons. First, that way the doesn’t take forever to appear, and second, doing so gave me at least one
exercise to suggest at the end of the chapter!

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 398

, the
method is called. I’ll chunk-ify this method a bit so it’s easier to digest:

The basic is constructed first. This one, like all the others, is constrained to the
boundaries of the browser’s content area, but it can be dragged and resized however users like.
It can even be maximized if they wish. Within this we create a , and the first
field we add is a simple for entering the name.

Note, however, that you do not see the 20 rows corresponding to the column details we
know the user can enter. If you look at the screenshot again, you’ll see that this is in some sort
of tabular layout, complete with column headers. We haven’t seen a form that looks like that
before, so how is that pulled off? The answer begins with this next chunk of code:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 399

So, we’re using the to create a table, which makes sense given what you see
in the screenshot. The interesting thing to note is that this using the is an
element in the collection of the , so any form-type fields we add here are still
part of the form, even though they are not directly nested under the itself (i.e., not
elements in the array directly, as the for entering the table’s name is).

But even still, all we see here are some header definitions! Now, the header definitions are
interesting because they are just simple elements with some HTML defined. Each is a
with a set and a -
ally have two classes applied, and . If you look back at the

 is the one with set to . So, the
data in these columns will be centered, and since they’re es it makes sense because
they look better as centered than using the default left alignment.

So, while that’s interesting, it still doesn’t explain how those 20 rows of data entry fields
get on the screen! I’ll pull one of my “we’ll get to that shortly” tricks… and in this case I do
mean shortly, but first we have one more chunk to see:

This defines the bottom on the
 method, passing it the name of the database this

gets a reference to the and closes it.
So now we come to the mythical, magical beast that is responsible for those 20 rows we

just know had to be here somewhere!

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 400

The ability to dynamically add elements to an existing is something we haven’t
seen before, but that’s precisely what we have here. We have a loop with 20 iterations (ah-ha!)
and within each we’re adding five elements (hey, that’s how many columns there are in the
table!) to the (the one using the). The method
allows us to add new Ext JS s to another . You simply pass in the config
object for the you want to create and it gets added.

The s added here aren’t too special; they’re just basic form elements that we’re
already pretty familiar with. A couple of s, a , and some es are what
we need. The gets bound to the that contains
the list of valid SQLite data types.

Note that on all of these fields the attribute is set to since the headers of
the table are effectively the field labels. We’ve manually done what Ext JS normally does for
us automatically (the price to pay for a different sort of UI presentation). Also note that each
gets a value that has the index of the array appended to it. That allows us to easily retrieve
them all later.

Now, these form elements aren’t being added directly to the ; they’re being
added to the with the , which you’ll recall was the directly under
the in its array. The nice thing here is that these dynamically added s
still become part of the , part of the underlying form, just as if they had been defined
explicitly in the config object of the . Doing it this way saves you from having to have a ton
more config information here: imagine 20 groups of five definitions statically within
the ’s config object. Not pretty at all!

Once all the s have been added, we have only to show the :

At this point users see the as they should, all created and ready for their use.
When users click the Ok button, it’s time to create the table:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 401

First, the form is retrieved and, once we ensure users entered a table name, we begin to
construct the SQL statement to execute, including the name of the table entered.

Note Making sure a table name was entered is the extent of the checking done here. I’m sure that you,
like me (and my technical reviewer who noted this) can point out about a billion ways you could break this
statement, or wreak havoc on the database. This is one of those “Doc, it hurts when I bend my arm,” “Well,
don’t bend your arm!” moments.

Next we can begin to deal with the columns of the table:

Since we know the names of the fields in the form used the index numbers, we can easily
construct those names again to pull the appropriate fields out of the object. So, we
grab the values of each of the five fields for the row we’re currently examining. Once we have
them, we can do some checks:

Note In all previous applications we’ve used code like to retrieve the fields’ value.
In JavaScript you can always access the elements of an object using dot notation or array notation, as we
did here. Array notation is necessary when you’re dynamically constructing the name of the field to access;

 would be a syntax error since the plus sign is not a valid character in an object field name.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 402

First we ensure that a name has been entered for the column and that a type has been

Not Null es were both checked, and if so, we set to and
 out of the loop. This is a simple error check that has to be done.

Next, we bump up the variable so we know we have enough information for
this column to actually create it. Next, we construct more of the SQL statement. Remember,
the SQL statement will be in the form:

So, first we see if a column has already been defined, and if so, we append a comma to
the value. Next, we construct the portion of the string. Next,
we see if the Primary Key was checked. If so, the string is appended.
Note too that the field is incremented in this case. The same thing is done for

. Finally, if a default value was supplied, we append it as well with the clause.
All of that completes the definition of this table column.

Next we have some error checking to do:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 403

First, if that flag is set, then we have to tell the user that a pri-
mary key field cannot allow null values and abort creation of the table. Next we ensure that
at least one valid column definition was found, meaning at least one column had a name
and type selected. Finally, we ensure that only a single column is the primary key, which
appears to be a limitation in SQLite.

Once all the validations have passed, we can get to the business of actually creating
the table:

After we confirm that users want to execute the SQL we’ve constructed (and we very nicely
show it to them!), then creating the table is a simple matter of opening the appropriate data-
base, the name of which was passed in as
wrap that all up in in case anything goes wrong, and if it does, we display the excep-
tion that was thrown. If no exception is thrown, we list the tables in this database again, which
to the user appears as a refresh of the Tables
and we’re all done.

TableDetailsWindow.js
At this point we’ve looked at maybe half the code in this application, but where we find our-

 file.
This is all the code related to the Table Details , seen in Figure 7-12. As it turns out, the
biggest chunk of functionality available in this application is found right here in this file.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 404

Figure 7-12. The Structure tab of the Table Details Window

Before we get to anything difficult, though, we have a bit of code that’s very simple:

As you can see, the name of both the database and the table to display details for are
passed in to this method as a result of the user clicking a table from the Tables . Using
the table name specifically, we try to get a reference to a associated with this table,
since one may already be opened. If one is found, we call its method, which results
in it being destroyed. The next step is to create the , so by closing it first and then re-
creating it we’re effectively implementing a cheap refresh capability.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 405

Defining the Window
Speaking of re-creating the :

The title of the shows both the database and table names, which is pretty logical.
The value is created based on the table name, which is how we’re able to get a reference
to it prior to this. The array begins with a of . If you look at
Figure 7-12 again, you’ll see there are two tabs, Structure and Browse. This is where the defi-
nition of those tabs begins. Note that I set the config option to . This
causes the tabs to be laid out when switched to. This is often necessary to get s that
are children of a tab to be drawn properly.

Defining the Structure Tab
With the started, we can begin to insert some tabs via its array. The first is the
Structure tab:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 406

That was a fairly lengthy chunk of code, but it’s not too complex and doesn’t really
contain anything new. A is used within the tab to create a table where the
details of the tables’ structure will be displayed. The table is defined as having five columns
(), and is set to to ensure the user can scroll the
content and not miss anything. After that, five elements with some simple HTML are added.
These are the headers of the table. They are simply s with a background color chosen
to blend in with the rest of the , and with the style class applied via
the attribute. Two of the headers, P. Key and Not Null, also have the additional

 class applied so that the text in the header is centered, which just plain
looks better when the fields themselves are drawn below the headers because they contain

es.
Next, the attribute is used to define a at the bottom of the tab. This includes

a number of s: Drop, for dropping the table from the database; Empty, for emptying the

creating a copy of the table, including its data. The first two call on the method,
and the last two call a third method named . We’ll be looking at those later,
so don’t worry about them just yet.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 407

Defining the Browse Tab
The definition of the Browse tab, which you can see in Figure 7-13, is next, and it is surpris-
ingly sparse.

Figure 7-13. The Browse tab of the Table Details Window

Yep, that’s it! The reason you don’t see a bunch more here is that the actual content that
will be shown is going to have to be built dynamically, and that’s something we’ll be looking at
shortly.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 408

Populating the Structure Tab
For now, though, the definition is complete and it’s time to look at some executable
code:

First, we retrieve the for the database name passed in as
from the by using its method. Once we have that, we grab the

 field from the , and then we grab the for the specified table
(). Finally, we get the SQL that was used to create the table by getting the value of
the field on the .

The next step is to do something with that SQL:

The method is a fairly complex and long piece of code that we’ll look at
later. For the moment let me just explain what it does: it parses the SQL statement passed in
and generates a simple JavaScript object from it that I call a table details record. This contains
information about the structure of the table, including the fields it contains and the informa-
tion about each, such as the type, whether each is a primary key, and whether any default
values may be defined. Once we have the table details object, it is added to the
in its field for later use.

With the details about the structure of the table in hand, we can move on to the business
of populating the Structure tab:

First we get a hold of the using the that was defined in the array
for the . This is the table we’ll be building. Next, we iterate over the fields in the table

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 409

details object. For each we’re going to add a cell to the table, five in total, which completes
a row in the table. The first one is the name of the field. All we need to do is use the
method of the and include the value to be displayed as the value of the attribute.
The class is assigned to the cell using the attribute, and the border is
turned off, which makes it look better. For the field name and data type, that’s all it takes.

For the columns that tell whether the database field is a primary key field or can be null,
there is just a little more work to do. We begin by looking to see if the field is a primary key by
checking the field of the appropriate element in the fields array that is part of the

 object. If the value returned is , then a cell is added that contains a
that is checked. If the field is not a primary key field, then an empty cell is inserted (the
HTML entity is used to avoid the cell collapsing, as happens in some browsers).

Note We used the attribute, which is an attribute of the itself that applies to the con-
tainer of the widget. This is different from the we’ve been seeing a lot of here. Centering didn’t
seem to work when applied to the table cell that the was in, but applying it to the container of the

 did—that’s why the attribute is used here.

The final column added is the default value. This could be empty, which is fine.

Populating the Browse Tab
The next step is to populate the Browse tab and show the we just built:

Don’t worry, the method is our next stop, and it’s responsible for popu-
lating the Browse tab:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 410

The same bit of code that we saw just a short while ago is again executed to get the
, and the containing all the s associated with the data-

base, and then the for this specific table. In this case, however, we don’t need
to parse the creation SQL because we already have the table details object sitting on the

; all we need to do is retrieve it from the field.
Next we need to get a reference to the Browse tab itself:

We also need to remove the using the that may exist, which fortunately
is easy: just call the method of the , passing it the ID of the to remove.
Since we’ll be re-creating that now, no one will miss it!

Once that’s done we can begin:

First, a new is created, which uses a . The rest of this is very much
along the lines of the Structure tab and how its contents were created. However, with that tab
we know the columns in the table; they are static. Here however, the columns we have in the
table depend on the fields in the table itself. So, we begin by setting the attribute of the

 object to the length of the field in the object. That way, the
table will have a column for each field in the table.

Next we start to iterate over the fields in the table. For each we add a cell to the table,
just like we saw in the Browse tab code. Once the loop is complete, we have column headers
in the table.

The next step is to populate the actual data, so as I’m sure you can guess we need to go get
it first:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 411

A simple
like it could be a problem if the table is too long, you’re right… see the suggested exercises at
the end of the chapter).

Once we have all the data it’s time to generate some stuff on the screen:

For each row returned we need to output the value for each field that we know is in the
table, and it has to be done in the proper order so the data matches up with the column head-
ers. So, we again loop through the elements in the array and for each add
a cell to the table, taking the value of the attribute from the current row of the .
Once that’s done we have only to close the and the and then:

 on the reference inserts the we just built into the DOM
(well, indirectly at least… it’s handed to Ext JS’s management, which then shoves it into the
DOM) and voilà, we have a read-only browse view of the data in the table on the screen ready
for the user to peruse!

Executing Various “Simple” Operations
As mentioned earlier, two of the s on the Structure tab call the method, and
as we’ll find out, actually handle the other two s as well! Here’s the beginning of that
method:

As you can see, the method accepts the name of the database and table to operate on,
which I think is pretty obvious, but it also accepts , which is literally the name
of the operation to perform. Four values are understood: , , , and . The

 argument is a value that will be used by the operation being performed. Two of the

The next thing this method does is some setup work:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 412

Based on the value of

(is used later). For rename, is used because that’s the new name of the
table, so you can see it being appended as part of the SQL statement.

The copy operation is different and more complex than the rest. First, we get the
 corresponding to in the same fashion as we’ve seen before. Then, we

get the tables in the database, then the for the specified table, and then the cre-
ation SQL statement. Next, we use the method, an intrinsic method available on all
JavaScript strings, to replace the name of the table with the value of , which is the name
of the copy of the table. Finally, we create a second SQL statement and assign it to the variable

 (all the others were assigned to notice, and started with a value of).
-

tion provided by Gears, to simply say “copy this table.” To “copy” a table really means creating
the new table and then copying the data from the old one. That’s why we need the creation

-
firms it:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 413

 is used to show users the SQL statement we’re about to execute
,

the argument passed to the callback function, is the value , then the operation can proceed.
So, we open the database specified, and try to execute . Then, if isn’t we execute
that as well.

Figure 7-14. Confirmation MessageBox for executing an SQL statement

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 414

left to do:

 method causes the Tables for this database to be
redrawn, which accounts for rename, drop, and copy operations to be reflected in the list
since those result in new tables to show, or one old one no longer being shown. Then, the

 is hidden.
After that we check to see if the operation that was just performed was a rename. If it was,

then we need to change the title of the Table Details for that table. allows
us to get a reference to it, once we construct the appropriate ID value, and then the
method is called, passing in the name title that reflects the new name. Similarly, if the opera-
tion was a drop operation, then we need to close the Table Details , which is a simple
matter of getting a handle to it and calling on it. At this point, we return so the
caller knows the operation was successful and we’re done.

, we know
there’s one last piece to this puzzle:

Any exceptions thrown simply result in an being shown
that contains the exception message. We also return in this case so the caller knows the
operation failed. Note that is also returned if the user didn’t click the Yes button in the
confirmation dialog (the final branch here accounts for that).

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 415

Renaming and Copying a Table
Although we just saw that renaming a table and copying a table are functions the
method handles, that isn’t the method that the s on the call directly. As it
turns out, there’s a little bit of preparation to do before those functions can be executed by

, and that work is handled by the method:

Similar to how accepts an argument, so too does this method.
Here, the supported values are and :

We start off assuming the operation will be rename, so the variable reflects
that, as does the variable. If is , though, we override the values for

 and so they apply to a copy operation.
Then, an dialog is opened:

table to or the name of the copy of the table. We use the and variables
to set the title of the and the text of the prompt message to the user accordingly.

The callback function passed to
button was clicked, and if so, it just returns, no harm no foul. If that doesn’t happen, we check
to make sure , what the user entered, isn’t , and if not we it. Then, if has
a value, we call , passing in all the pertinent information.

Note too that the name of the table being renamed or copied is the default value in the
, which is what that bit at the end with is all about.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 416

Parsing the Creation SQL Statement
Warning! The following is not especially pretty code! I have no doubt that readers will write
telling me a million different ways to do this part better, and that’s cool, I look forward to
hearing from you! In the meantime, while this code isn’t going to win any awards for. . .well,
anything probably, it does have the virtue of doing exactly what we need it to do: parse an SQL
creation statement and get the details about the table from it. Unfortunately, there’s no clean
way to obtain this information from SQLite through Gears, so this general approach, whether

First, two utility functions are created (remember you can nest functions in JavaScript all

clean up the value as we parse the incoming SQL string. The second replaces all occurrences of
a given string within another.

The structure is what we’re ultimately trying to create here. The fields in this
object are summarized in Table 7-2.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 417

Table 7-2. The Fields of the tableDetails Object

Field Description

 The table creation SQL statement passed into the method

 If certain errors occur during parsing, this field will contain the failure reason

 Tells us whether the table is a temporary table

 Tells us whether the clause was present in the SQL statement

 The name of the table

 The name of the database the table belongs to

 An array of field descriptor objects, which is another plain JavaScript object
with the following fields: , the name of the field; , the data type of the
field; , if the field is a primary key; , if is not
allowed in the field; and , the default value of the field

Next, the incoming SQL statement is trimmed:

Ensuring that there is no whitespace on either ends of the string makes parsing it easier.
In fact, anything we can do to “normalize” things as we go makes the job easier, and you’ll see
a lot of that now.

The next step is one such normalization step:

What we’re doing here is ensuring that throughout the entire string there are only single
spaces. Since whitespace will be ignored when the SQL is executed, it’s not an issue from a
“does the SQL statement work” perspective, but it does make parsing things harder because we
can’t treat a space as a token delimiter. Ensuring there are only single spaces, however, allows
us to do just that. So, a little regex magic later and the value of is guaranteed to only have
single spaces.

The next step is to get the “prefix” portion of the SQL—that is, in an SQL statement like

the prefix is the portion before the field list, meaning the portion before the opening parenthe-
sis. We can get this prefix pretty easily:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 418

If we don’t find the keyword, then it’s an error; we can’t parse the incoming string,
and the method aborts.

If this validation passes, then we know the first part of is . So, by using
, we get everything following the keyword. With that, we check for

a few other keywords:

If the keyword is present, then the table is a temporary table. It’s also possible to
have the keyword in there, so we have to check for that as well. Fortunately, or

 can only follow the keyword, so the code doesn’t have to be too clever (nor
do I, thankfully!). Another call gets us past whichever keyword was there, if any.

The next possible keyword is , so we check for it next:

In fact, it’s not just possible; it has to appear next. Once you work past and /
, is the only valid keyword that can follow. So, if it’s not found, it’s another vali-

dation error that aborts the method. If it is found, then we can continue to parse the prefix.

The clause is the next portion that can be present, so we check for that and
set the flag in if found.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 419

The next step is to get the name of the table:

The complication here is that the SQL can have just the table name or the table name plus
the database name in the form . So, we account for that by check-

around it, so now that method we created earlier comes into play. If a period was
found, then we split the prefix string on the period and trim both resulting array elements: the
first is the database name, and the second is the table name.

The next step is to retrieve the list of field specifications:

This is a simple matter of taking everything from the first character after the opening
parenthesis to the end of , minus the last character.

However, we have a problem: the string could contain a clause at the
end. So, we check for that:

If the test string is found, then we get everything from the point it’s found,
taking care to trim it. Then, it is removed from the string.

The next step is to scan through the list of field specifications and learn from each the
information we need. To do so, we tokenize the string with the JavaScript string’s
method, using commas as the delimiter:

Then we iterate over the resulting array. For each element, which is a field in the table, we
create a object:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 420

The next token, meaning the next field specification, is taken, trimmed, and converted to
lowercase:

Then, we search for each of the valid SQLite data types within that string:

Whichever one is found, we set the appropriate value in the . Finally, we
replace the data type in the token with a blank string, effectively removing it. This is another
one of those “normalization” tricks to make the next part easier:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 421

We check to see if the string appears in the token. If so, then we set the
field of the to and delete the string from the token. Then we move on to
a similar check for the string that might be present:

After that, we have to see if there is a default value specified for the field:

If the string
characters that must be surrounding the default value. Once found, we use the
method to get the portion of the string in between them and record that as the
in the .

field, if they are present, and then push the onto the array:

The last task is to deal with that that we pulled out earlier, if there is one:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 422

We start by trimming , and then find the content between the opening and
closing parentheses. With that portion of the string now in , we split on comma

ends, and it, just to be safe. At this point we have the name of the primary key field. So,
we now iterate over the array and look for that field. Once found, we set

 on that field descriptor to and we’re good to go.

The method returns the object and the caller has just what they want: an
object containing details about the table, derived from the SQL that created it! Again, I apolo-
gize if you find this bit of code to be rather brute-force. The apology only goes so far, however,
because, well, the code works! I have no doubt there’s some magic regex, or fancy recursive

being decent, right?

QueryToolWindow.js
To paraphrase Star Wars: “Don’t be too proud of this technological marvel you’ve created…
the power to browse a database table is insignificant next to the power of naked SQL.”2

Er, yeah, I realize that’s a stretch. Ricky Henderson3 stretching a single up the middle into
a triple stretch.

But, stretch jokes aside, there’s truth in the paraphrasing: this application lets us browse
database tables, drop and empty tables, some other basic things, but if you have the ability to
enter arbitrary, or naked, SQL statements and execute them, a ton more power becomes avail-
able to you. That’s exactly what the Query tool, shown in Figure 7-15, is all about.

any exceptions occur, that information will be displayed as well.
The code begins with the Window, which does exactly what you think it

does!

is from Star Wars (and I mean the real Star Wars, not Star Wars: A New Hope
but the real -
logical terror you’ve constructed. The ability to destroy a planet is insignificant next to the power of
the Force.”

 3 Ricky Henderson is a Hall of Fame baseball player who is considered by most to be one of, if not the,
best leadoff hitter in the history of the game. He is the all-time stolen base leader among other accom-

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 423

Figure 7-15. An example of an update operation in the Query tool Window

 is already opened, and if so,
it is shown, in front of all other open s. In that situation, this method is done, but if not,
this code executes:

The is defined with most of the usual config attributes, but the value is a
little different. We’ve seen used before to ensure that the content of the doesn’t
bump right up against the borders, but what gives with setting the ? As it
turns out, with the attribute set to as we have here, the space around the content
in the wasn’t white—it was blue, which makes it not look very good, and not that much
different either. So, by forcing the background color here to white, you can achieve the pad-
ding space you’re looking for.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 424

Next is the definition of two s, one on the top and one on the bottom of the :

The top contains two elements. The first is a plain-old with some text
in it via its property. Elements on a don’t necessarily have to be buttons; they
can be virtually any , of which a is one. This allows for simple text labels and
such, as is done here. Setting the attribute to ensures that the
has the same color styling as the ; otherwise its background would be white and it
would stick out like a sore thumb. Following that is a bound to the

in, this is necessary.
The bottom toolbar simply has the single Execute SQL button that calls the

 method. After that is the array:

Recall that on the config object was the setting. This is the first use
of in any project. Simply stated, an allows you to define regions in
a container in such a way that they will dynamically resize along with the container. Imagine,
for example, a in a and when you resize the the expands and
contracts along with the .

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 425

Usually you specify percentage values within an , but that’s not always the
case. In this example, though, it very much is. Each of the elements in the array has an

height (this isn’t the only form actually, but for our purposes here it is, so if and when you
decided to use an on your own I’d hop on over to the Ext JS documentation,
which lays this all out pretty well). Here, each of the elements should always stretch across the

So, what happens when the is resized? Well, the first element, which is just a simple
text label, will be resized so that it takes up 4 percent of the total height of the . The

the , and so on. This does leave open the possibility that the is resized too small
and certain elements don’t have enough space for their content. For example, making the

 too small will mean that 4 percent of its height is too small a space for the text to fit into
and it will be cut off. That’s exactly why the and attributes were specified
on the config: the values (and respectively) are about the minimum before Bad
Things™ begin to happen to some portions of the UI.

This fluidity of layout is one of the major benefits of the code-centric approach to UI
building that Ext JS provides.

the box where errors are reported (). This is purely a “it looks better this way” thing.
So, when the user finally clicks the Execute SQL , the

method is called:

First, we get the value from the and trim it using the method
that Ext JS adds to the class. Next, using , we make sure something was
actually entered, and if not we display an alert using and abort the
method.

aborted if not.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 426

With those validations out of the way, it’s time to execute some SQL:

Well, almost time to execute some SQL! First we confirm that users want to do this by
calling and showing the SQL to be executed and in what database
it will be executed against. If they click the Yes button, which is determined by checking the
value of the argument to the callback (and remember the value is always low-
ercase regardless of the label on the button), then we can do our work.

That works begins by getting a reference to the Query tool . Then, using the
 method available on it, we get rid of the elements seen in the array with the IDs

 and
are shown. As you’ll see, they are re-created during this process. Next, the variable
is initialized to an empty string and then the database is opened. Note that this code is not
wrapped in because if the database happens to not exist (which means it must have
been deleted since the cookies were last read in), then it will simply be created.

Then, we try to execute

This is wrapped in , however, because exceptions can most definitely be
thrown at this point and we want to be able to display them to the user.

results (we don’t know if there are any yet, but I’m getting ahead of things!). This will look very
similar to the Browse tab of the Table Details that we saw earlier. So first we check the

 to see if we have a valid row. The only time the call to will return

assume it returns .

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 427

In that case we’re basically going to be iterating over the . The first element
encountered is special because, as we’re building an HTML table here, we need some column
headers. So, the variable is checked, and it starts off as , so we hit the
branch of the check.

In that branch we build a new that uses a . Since we have to define the
number of columns, we need to ask the how many columns there are. Fortunately,
the method gives us exactly that information so our can be built
properly. Since this will eventually be added to the array of the , and since
we already established that an is used there, we need to include the attri-
bute on this new so that it works properly when the is resized.

Next, we need to add a column to the for each field in the . The
 is again used to perform a loop:

For each, we create a with a background color and those s have the
 style class applied to give them padding. The value inserted into the body of

the is the name of the field, obtained by calling and passing it the index
of the field. At the end we set to so that for the next iteration of the loop
(meaning the next row of data, if there is any), we’ll skip a generation of the headers.

Note and , in other words, provide meta-information about the
, more specifically, about the fields returned by the query. Meta-information is a common concept

when working with databases, and SQLite via Gears provides it as well.

So, that takes care of the headers. Remember at this point that we are already iterating

real data that needs to be displayed. So, we need to generate table cells for the data in addition
to the headers this time around:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 428

It’s the same sort of loop we used to generate the headers, but now we’re just going after
the field values in the normal way that we’ve become used to. The attri-
bute’s value is now rather than , but otherwise it’s not much
different. Figure 7-16 shows the result of all this hard work.

Figure 7-16. An example of a select operation in the Query tool Window

That concludes the iteration over the
that didn’t return results. To do this, we simplify things a little and simply check to see if

 is . If no results were returned, then would never have been
set to

could return no results, in which case we’d be showing the “Rows affected” message in a case

it’s probably good enough working this way anyway.
So, here’s what happens when is :

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 429

We still need to create a table, but this time there’s only a single column and it contains
just a simple message telling how many rows were affected. The method
gives us that bit of metadata (notice that method is on the object and not the

 object, as most of the others have been).
Once that’s done, we have some minor cleanup to do:

 and and then hide the that was prompting for
confirmation, and we’re done—well, unless an exception occurred. In that case, we set
to the exception value.

The final task is to ensure all this stuff gets put on the screen! Here’s that code:

First, we call the method on the to insert a new whose contents is
 (which may be a blank string of course, but that’s perfectly fine). The method

accepts as its first argument an index value that indicates where in the array this element
should be inserted. If you look back at the definition, the element was the fifth
element in the array, so that’s an index value of 4 in a zero-based array. Now, contrast
this to the addition of the results table. For that we’re using the method, which simply

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 430

appends the element to the end of the array, which is always where the results should
go. Finally, a call to causes the to redraw itself, resulting in all these UI
changes being shown as expected.

Note If you have the table opened for the table you’re doing an update-type operation on, you’ll
need to close the and open it again for the changes to be reflected on the Browse tab.

Help.js
The final file to look at is , which is where the online help resides. To begin with, we
have a field:

This records what page of help is currently being looked at. There are three pages that
can be displayed and the user can cycle through them, as you can see in Figure 7-17. Each
page is displayed in a and the

following array:

That’s the first element of the array, and the value of the element is simply a giant string
of HTML. This will become the content of the . There are similarly two more elements
in the array, one for each page of help that there is, but there’s probably no real benefit to
displaying all the text here. Suffice it to say that they are defined just like the first element is:
they too are just giant string concatenations where each formed string is the next element in
the array.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 431

Figure 7-17. A help page

The code that is called in response to the user clicking the Help button is the
 method:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 432

This first chunk of code builds a with an that has the page of help tied to it (so
 or , for example). The is not closable, maximizable

or minimizable, or resizable, but it is draggable. The type is so that the content we
insert fills the entire . The attribute is set ot to allow for scrolling of long
help pages (there aren’t any, but this way you could expand the text without worrying about
it not being visible). The attribute is a string that tells users what page they are looking
at. Finally, the array has a single element within it: a that has the contents of the

 array element corresponding to the help page currently being viewed.
Going back to the value for a moment, the number appended as part of it is taken

from the argument to the method. So, when the button is clicked,
the value passed in would be 0. However, when the user clicks the Previous Page or Next Page
button, the following code is executed:

Here we have a bottom defined via the attribute. Each button does some
bounds checking to ensure there is a next or previous page to display, then calls
again, passing in the new value for . The for the next page to display is
constructed, if necessary, but isn’t yet shown… we’ll get to that right after this break:

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 433

The Previous Page and Next Page buttons aren’t the only ones on the bottom .
After a divider is inserted (just like the one I neglected to mention is between the Previous

-
ence to the currently opened , using the value, and calls on it. Since only
a single can be open at a time, that’s all we need. In addition, the
field is set back to its starting value of , which strictly speaking isn’t necessary, but I
like having variables in known states whenever possible, so doing this satisfies that bit of
obsessive-compulsive disorder on my part!

The next bit of code follows the construction and is responsible for showing the
appropriate :

reference to the currently being shown and use the puff effect on it to close it. The puff
effect basically expands the and fades it out at the same time, like a puff of smoke does.
Note that the call to the method isn’t blocking, so we can issue another effect at the
same time, which comes into play next. By the way, the arguments to the method spec-
ify that we want the effect to take one second to complete and that the element being puffed
should be destroyed and removed from the DOM when the effect is completed.

Now, at the same time that the previous is puffed out of existence, the next
to be displayed is faded in:

The method provides that effect, and again we do it over the course of one sec-
ond. So, by the time the previous is gone, the new one is completely displayed, giving
us a nice, smooth transition. Finally, the is set to the new value provided by
the argument, and the method is done.

Note In Firefox at least, the combination of these two effects when the s overlap causes some
sheering, a common graphical glitch seen in many games. In Internet Explorer ironically, which web develop-
ers enjoy bashing any chance they get, the transition is perfectly smooth (in IE7 at least). It’s not a big deal in
Firefox—it works as expected and doesn’t look too bad—but for an anal retentive like me, it’s more than a
little annoying!

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 434

Suggested Exercises
Although this application nicely covers the basics (so say we all4!) there are certainly other
capabilities that a tool of this nature can, and arguably even should, provide. Fortunately, that
makes it pretty easy for me to suggest exercises to you:

the SQLite Manager Firefox add-on, index features should be roughly the same, which
means you’d want three new buttons on the Table Details
Index, and Reindex. The last one should be nothing more than a modification of the

 method in

table and then present a
or a list of existing indexes to choose from in the case of Delete Index. None of this is
especially hard, and would make for a good exercise (hint: getting the list of indexes is a

there was a Text Search tool, similar to the Query tool, where that could be used.

,
as well as the ability to duplicate, edit, or delete the selected record.

. You can implement
this however you choose; one way would be to dynamically add a new row to the form
any time you detect that all existing rows have been populated.

there are more than a trivial number of rows in the table? It’s going to grind the UI
down to a halt, that’s what! Therefore, you should implement some sort of paging
mechanism. You could take several approaches here (at least, two that I can think of).
The first would be to use the Ext JS Store/paging mechanism, which would be a fair

determining what provisions SQLite has for paging (and honestly, I’m not sure what it

already doing, then implement the paging capability yourself without using Ext JS’s
data mechanisms. This would probably wind up being easier to implement in an ironic
way, and performance shouldn’t be too bad (there’s still the possibility of a locked UI
if there’s a ton of rows, but I suspect there would truly have to be thousands and thou-
sands before it became an issue).

fields in the table and next to each is a
than, less, than, and so forth) and then a where a value is entered. Users can
use as few or as many as they wish, and you simply build the

 4 If you read that and immediately “geeked out,” as the saying goes, then I really don’t need to say
anything further. For those unfamiliar with the phrase “so say we all,” that is the call to arms in the
Battlestar Galactica television series. It basically means “We’re all working toward the same stated
goal as a unified front.” On the show it seems to have a religious origin, but we’ll skip getting into BSG
canon, in the interest of not killing any more trees than we have to in order to print this book!

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 435

Summary
In this chapter we put together a handy little application for messing around with the SQLite
databases that Gears produces. We saw a UI design different from other applications in that
there is no central in play and no used, which we’ve seen a lot of before.
Instead we developed this application using nothing but s, which is a perfectly viable
way to do things and sometimes is the best UI design to choose. We saw how we can dynami-
cally modify a . We saw a few more cool effects that Ext JS provides to us, and we also
saw the

 component, and although it’s not directly Ext JS or Gears related, we even saw how
to parse the SQL used to create a table in SQLite to get information about the table.

In the next chapter we’ll take a break from all this seriousness and develop something
entirely different than what has come before: a game! In the process we’ll see more of Gears in
action, aside from the component, and yet more Ext JS features in action. To boot, if
we do things right, we’ll have a handy little program we can use to waste time at work!

437

C H A P T E R 8

All Work and No Play:
Dueling Cards

Look, life is pretty tough. I mean, even on a good day we all face those little trials and tribula-
tions that drive some people crazy (and others to write web development books). That’s why
I try to inject some humor into my writing: as tough as life can be, it’s a lot easier if you’re
going through it with a smile. That explains why video games are so important. They’re an
escape from the drudgery of everyday life, a way to forget our woes for a little while and enjoy
ourselves.

So far in this book, all the applications have been pretty serious, with goals having to do
with working more efficiently or providing some useful service. This chapter, however, and the
project within it, is completely different. We’re going to drop our business clothing for a while
and replace it with t-shirts, jeans, and sneakers and write ourselves a good old-fashioned time-
wasting game!

Ironically, writing a game is perhaps the best way to become a better developer too! You
have to think in different ways than usual, confront different problems, and exercise your
mind to an extent that traditional business-oriented programming doesn’t always afford you.
Plus, it’s just plain fun!

So, we’ll make a game here, and in the process we’ll explore some new concepts,
including Gears’ (a way to get multithreading in JavaScript), new Ext JS effects,
drag-and-drop, and DOM manipulation techniques. We’ll see Ext JS and Gears in an entirely
different way than any other project in the book has allowed, and in the end we’ll have a fun
little game to play instead of getting real work done—which can’t be bad, can it?

What’s This Application Do Anyway?
The game we’re going to create is a relatively simple card game. I’ve personally never been
a fan of solitaire and all its variants; in fact, I don’t know the exact rules of a typical solitaire
game off the top of my head! Still, I decided early on that a card game would be a good choice
here because it would allow us to play with Ext JS’s drag-and-drop support, which is some-
thing I think is very much worth spending some time with in this book.

So, without knowing the real rules of solitaire, and also because I wanted a way to dem-
onstrate Gears’ API (we’ll get to that in a bit), I decided to mash up some concepts
I’ve seen in various cards games and come up with something unique that I’ve titled Dueling
Cards. So, rather than list the requirements for this application as I’ve previously done, I’ll
instead list the rules of the game:

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS438

opponent does.

showing; the rest are face-down in a stack. The remaining cards stay with “the dealer.”

between the player’s and opponent’s cards. Around each card are some indicators. The
indicators can be a single arrow pointed up, a single arrow pointed down, or a double
arrow pointed up or down. In addition, there can be an indicator above or below the
arrows that appears as all the card suits are cycling.

Only valid drops can be made, and a drop’s validity is determined by those indicators.

be placed there is a four of clubs. A double down arrow below a six of diamonds means
that only a four of diamonds can be placed on it. If the cycling suit indicator is there,
then the suit doesn’t matter (so a four of any suit could be placed on the three of clubs
or a four of any suit on the six of diamonds).

dropped on it. Likewise, you can drag a joker onto any action card at all.

can also click your own stack of cards to show five new ones.

determines how fast your opponent makes moves. One advantage you have over your
opponent is that your opponent cannot request new action cards from the dealer, so
you’re in control a bit there.

to have some “coolness” in this application. That means lots of animations, effects,
and graphics. We’ll also allow the user to choose from a couple of different card deck
designs, and change the background image of the page as well. None of that impacts
game play, but it’s fun little things like that which make a game a game.

The game screen is laid out pretty much just like those rules suggest it would be, as you

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 439

Figure 8-1. Dueling Cards in action

The cards on top are your opponent’s cards, the cards in the middle are the action cards,
and the cards at the bottom are your cards. The dealer’s stack is on the left, and the button in
the upper-left corner brings up the main game menu. So, as described in the rules, clicking the
dealer’s stack deals six new action cards and clicking your stack of cards to the left of your five
visible cards brings up the next five cards in that stack. You can drag any of your visible cards
onto any of the action cards, and if it’s a valid drop, you will see a new card from your stack
take its place among your visible cards (assuming you have any left in your stack). A new card
will then be dealt from the dealer’s stack.

So, it’s a fairly straightforward game, but one that presents a bit of a challenge, given that
your computerized opponent is quite good and pretty fast to boot, even on the easiest dif-
ficulty setting.

Now, before we tear into the code for this project we need to explore one new bit of Gears
functionality that we haven’t seen before: the component.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS440

More Fun with Gears: WorkerPool, Worker,
and Timer
You’ve probably heard on numerous occasions that JavaScript is inherently single-threaded.
The main consequence of this is that a single long-running process can lock up the entire

A good old infinite loop like that is all it takes. This is the sort of thing that results in the

hang in such cases).
If you keep up with the latest specification (spec) developments such as HTML 5, then you

may be aware of a spec called Web Workers. This spec defines an API for JavaScript-based web
applications to spawn background processes to provide something of a concurrent execution
environment in JavaScript. While this spec is gaining a lot of support and looks on track to be
adopted and (one would hope) implemented by the major browser vendors, it doesn’t really
help us today.

However, we do have something that is conceptually nearly identical to Web Workers, and
that’s the API of Gears.

Note In fact, if you check out the spec (
) and jump to the Acknowledgements section at the bottom, you’ll see that the Web Workers

spec is directly based on Gears’ . As such, what you’ll learn here will be very much applicable if
and when that spec is finalized and adopted.

The provides a way to spawn new processes that do not share execution state.
In many environments you have processes as well as threads. Threads are spawned by pro-
cesses and share the execution state of their parent processes. Developers often use the term
multithreaded when they really mean concurrent processes. The distinction is important to
know, but at the end of the day it probably only really matters when you have both processes
and threads to work with. If you only have one or the other, as with , then what you
really mean is simply bits of code that can run concurrently. Whether you say processes or a
thread almost doesn’t matter in that context—only your computer science buddies are likely
to make much of a fuss!

However, that part about no shared state is very important because it’s the basis for the
fact that the s, those bits of concurrently running JavaScript code, can only communi-
cate with each other (or with the containing) via a well-defined message-passing

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 441

mechanism. Even simple things that you take for granted, such as being able to output
 function call, isn’t available in a

 because the object isn’t available to it (it exists in the execution state of the
, but not of its child s). Likewise, the ubiquitous object isn’t available

for the same reason (which makes it tricky to use s, as you’ll see).
Since this whole project is about graphics, as most games are, I’ll throw a graphic at you

of Helm’s Deep, I’m not sure).

Figure 8-2. Gears WorkerPool API, a graphical representation

Babe, don’t smack my head while I’m typing!

The Lord of the Rings series, Helm’s Deep is a large valley in the White Mountains where the fortress
of Aglarond, aka the Hornburg, could be found at the entrance to the Glittering Caves. This is the site
of one of the epic battles against the forces of Saruman and Sauron during the War of the Ring in T.A.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS442

Some WorkerPool Code
So how do we use this thing and these things? Here’s a simple example:

So, the first thing we do is we create a new instance of a using the
 method, which we’ve seen before when we dealt with database

access. The first thing to do once we have that instance is to register with it a function that will
act as a callback. This function will receive all messages sent by any running within the

. This function accepts three arguments: the text of the message, the ID of the send-
ing , and an object that contains the message sent from the .

Note If this seems a little confusing, don’t shoot the messenger! The folks at Google at some point
decided to change the API. Originally, that third argument wasn’t present, but then they decided that was
the better approach. The current Gears documentation states that the first two arguments,
and , are actually deprecated and you should only work with the third argu-
ment. There are members within the object corresponding to the first two arguments (is

 and is).

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 443

The argument is the one we really care about. We can basically put whatever
we like in it; it’s completely up to us. Here we’re just going to pass back a simple string from
the , so the attribute of that we’ll look at is (that’s where the response
always is located—it’s just that in this case the body attribute is the entirety of the response,
but it could be an object with its own set of attributes, for instance). This will be the string
passed back from the . The callback simply inserts the response string, concatenated
with some other text, including the ID of the created , into a on the page.

The ID of the created is returned by the call to .
The exposes another method for creating s: .

 takes a string of JavaScript and takes a
 file. Either way the result is the same: some executable JavaScript is created in

memory that is now called a , and the ID of that is returned.
Now, the may or may not be doing anything at this point. In our example, it’s actu-

ally not doing anything yet because it hasn’t received any messages. So, in order to make it do
something we need to send it a message. You’ll notice (I hope!) that the ’s code included
its own callback definition registered with the (which we got a refer-
ence to as the first statement in the ’s code). Remember that passing messages is the
only way a can communicate with the and the outside world, but it’s also
the only way a can be communicated with by other code, be it another or the

 and its environment. So, it needs to have a callback as well. This particular callback
has the same signature as the first callback registered, and it basically works the same way.
This callback simply multiplies two passed-in numbers and returns a string stating the result.
The result string is returned by calling the method on the .

The method accepts two arguments: the message to send and the ID of the
recipient. The attribute provides the ID in this case, although it could be
the ID of another , if we had that information (it would have to have been passed it and
stored at some point).

Remember that the ’s attribute can be anything we like, and in this case
it’s a string. However, take a look at the final line of JavaScript where we send a message to the

. In this case, it’s an array. If you look again now at the callback within the you’ll
notice that the values to multiply are extracted from the array exactly as you’d expect.

Limitations and Solutions
A single web page can spawn multiple s, and they are completely isolated from one
another, just like how Will Turner and Elizabeth Swann wound up in Pirates of the Caribbean:
At World’s End, except that there’s not even the “they can be with each other every ten years”
rule. But I digress.

s can be loaded across domains in a secure fashion, and you can then use the
Gears-provided Ajax functions to communicate with the source domain. The inherits
the security constraint of the domain, so in other words you could have three different s
loaded from three different domains, each capable of communicating with their source
domain only.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS444

As previously mentioned, s do not have access to certain objects such as . In
fact, they don’t have access to the DOM. This makes using them interesting in certain cases,
as we’ll see in this project (hint: you need cooperation between the and the JavaScript
outside of it based on messages being passed back and forth).

Because of this limitation, there is one important thing that s also do not have:

However, what Gears has taken away Gears has provided too! The API provides an
implementation of the WhatWG Timer specification and allows its use within as well as
in plain-old JavaScript on a page. Here’s a simple example:

There is a method, as well as and , as
you’d expect.

So, that in a nutshell is the API. This will be the basis of how we implement the
computer opponent in this project. I’ll admit up-front that it’s a bit of a forced usage because
the opponent isn’t really a long-running process, which is really what the is for.

Overall Structure and Files
The directory structure of Dueling Cards is very similar to all the previous applications,

We have the usual file in the directory and the file in the root
directory. The primary difference between this and previous applications is the addition of
a couple of directories under the directory. The directory contains images for
the backs of the cards. You’ll notice three different images: , , and

. The first two are, as their name implies, your basic, run-of-the-mill red and blue
patterned card backs. The one gives you a more playful card back.

Note In my previous book, Practical Dojo Projects, my son Andrew designed the levels for the game proj-
ect presented there. My daughter Ashley, after seeing that, asked to play a role in this book somehow. My
son is a few years older than my daughter, however (9 versus 6), and is starting to get into programming a
little bit, while my daughter is the typical little princess with the dolls and tea parties and all that jazz and she
doesn’t really share my son’s fledgling interest in programming (although she can use a computer just fine,
better than some people I’ve seen at work!). So, I needed a task she could do that didn’t involve coding, and
a card back image turned out to be a good choice.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 445

Figure 8-3. The application’s directory structure and constituent files

The directory, which I haven’t expanded in the figure because it would be too
long, is where you’ll find 53 images, one for each card in a standard deck, plus one joker. The

 directory contains a couple of images used as the background for the page, and
users can switch those just like they can the card back in use.

The directory contains all our code, and in this application I’ve structured it a little
differently. This time, the files generally describe the functional area they belong to in the

 file contains the data fields that are a part of the namespace, which is
defined in the file. The file contains code dealing with the
indicator arrows around the action cards, and the file contains the code related
to the main menu. The file houses all the code that makes up the computer
opponent you’ll be trying to beat, and the file contains code run at application
startup.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS446

The Markup
The file contains all the markup for this application, and it’s at this point old hat
since it only varies from the previous applications in two relatively minor ways. Have a look:

The first difference is that the namespace, , is defined here rather than in one
of the files. I did this to allow maximum flexibility in the order of imports. Otherwise,
I’d have to ensure that either the one file that defines the namespace was imported first or that
each file tries to create the namespace if it doesn’t exist, which seemed like a bit too much
work to me, work being something I desperately try to avoid at all costs! So, the namespace is
defined and then all the files are imported.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 447

The other difference is that there’s basically no markup here! The only markup is in fact
the that we’re quite familiar with by now. Everything else you see on the
screen is under programmatic control from the get-go. Also note that the page background
is set inline with the element. The CSS purists out there will want to slap me for that,
since inlining styles is generally frowned upon, but it frankly doesn’t hurt my head in this case.

The Style Sheet
Similar to the markup in this application, the style sheet doesn’t have much in it at all. It’s like
one of those small Dessert Shooters at Applebee’s:3 just enough to finish off a nice meal (yeah,
I guess it’s really nothing like that, but I’m hungry right now).

The first two styles deal with drag-and-drop. The class is applied to cards

The class is applied to cards being hovered over, and it does the same thing but
this time it’s a red border. This gives a nice visual indication of when a card is being hovered
over (it’s also applied to the card being dragged for consistency).

The class is for our animation sourcing and is just a direct copy of what
we’ve seen in the previous applications.

The Code
All of the code in this application exists within the

there!

Applebee’s Neighborhood Bar and Grill. Some people love them, some don’t, but their desserts are
quite good: .

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS448

Figure 8-4. UML class diagram of the DuelingCards class

The trick in describing this application is exactly where to start from. I went back and forth
a few times. In the end I decided that we should probably start with the data fields, housed in
the file.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 449

Data.js
Because of the sheer number of data fields present in the namespace, I decided
to break them out into their own JavaScript file. I think you can better understand the rest of

Table 8-1. The Data Fields in the DuelingCards Namespace, Defined in the Data.js Source File

Field Name Description

 This is how many action cards there are in the middle of the screen. Its

 This is how many cards are visible for the player and computer oppo-
nent. Its initialized value is 5.

 This is how many cards in total are dealt to the player and to the com-
puter opponent. Its initialized value is 30.

 This is an that contains two attributes, and ,
which are the dimensions of the browser’s content area. is
used in calculations throughout the code and so is cached here for
performance.

 This indicates which of the page backgrounds is currently in use. Its
initialized value is .

 This stores which of the card deck images is currently in use. Its initial-
ized value is .

 This is a reference to the document’s element, cached for
performance.

 This is an array of objects that describes each of the
six action cards on the screen. We’ll get into what a is
shortly.

 This is an array of objects that describes each of the
five visible player cards on the screen.

 This is an array of
fewer) cards on the player’s stack of cards.

 This is an array of objects that describes the cards on
the dealer’s stack.

 This is the calculated Y position where the dealer’s card stack should
appear on the screen.

 This flag is set to once initialization tasks have completed.

 This stores a reference to the that the player last dragged a card
over and is used in drag-and-drop operations.

 This flag is set to when there is a game in progress.

 This flag is set to when the game in progress is paused (the game
being paused is different from a game being in progress, as you’ll see
later).

 This stores the number of cards the player has left overall. When this
reaches 0, the player wins.

 This stores the number of cards the computer opponent has left overall.
When this reaches 0, the computer opponent wins.

Continued

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS450

Table 8-1. Continued

Field Name Description

 This is an array of objects that describes each of the
given visible computer opponent cards on the screen.

 This is an array of
fewer) cards on the computer opponent’s stack of cards.

 This is the one and only Gears instance used to run our
computer opponent’s background code.

 This flag is set to when the How to Play instructions are currently
showing.

simple fields as the others are, I’ll describe them separately.

Note You’ll see where I’ve cached a number of DOM elements in these fields for “performance rea-
sons.” While this is generally true, especially in game development, because DOM access is relatively
expensive and slow I’d be willing to bet the Ext JS is doing the caching anyway. , for
example, is most likely caching the reference already (I didn’t dig through the Ext JS code to confirm this,
but knowing how smart the Ext JS developers are, it’s a safe bet). However, storing the reference here
does still have benefits because it trades a method call for a direct attribute access, which tends to be
faster. The difference is usually not worth worrying about, but in game development, every little bit of
speed helps, no matter how small.

The field is an that contains a number of fields. You see, all of the graph-
ics used in this game will be loaded during initialization to improve performance, and those
images will be stored in this . So, you’ll find the following fields in it:

, , , : Each of these is an array of the card face images.

: This is a single image of the joker card face.

, , , : Each of these is one of the arrow indicator images: a single down
arrow, a single up arrow, a double down arrow, and a double up arrow.

: This is the animated suit change indicator image.

, : The non-hover version of the menu button () and the
hover version ().

, , : Each of these is one of the card deck variation images.

, : The graphics seen when you win and lose the game, respectively.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 451

, , : These are the three images used in the title sequence.

:

Going along with the field is the field, which is an object with fields that
accompany the image references in the field, where each field is an with a
and a attribute that describes the dimensions of a given image. Here’s the code for this
field:

The attribute describes the elements in the , , , and arrays
in the object, as well as the element and the , , and card
deck design images. The field describes the size of the , , , and

 fields in the object. I believe all the rest are probably self-explanatory since they
match the fields in the object (except for , which describes both the
and fields in the object).

The last thing you’ll find in the file isn’t actually a data field but a method:

The reason I put this method here is because it returns an instance of a ,
and the is defined only within this method, so in that sense it’s still a data
definition.

A object is used throughout the code to describe a card. It has a number
 and fields tell you what suit (hearts,

well, if I tell you it’ll ruin a pretty good humorous payoff! Take a look for yourself:

a lot more sense after you watch that!

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS452

 attribute is a reference to the
 that is displaying the card (this will be for any card not currently visible). The

 attribute, which can have a value of or , tells what indicator is
currently around the card (so this only applies to action cards, as does the next two attributes).
This attribute, which can have a value of or , tells whether the arrow indicator
is pointing up or down. The flag, a simple flag, tells us whether the
cycling suit indicator is currently on this card.

SetupCode.js
The file is where most of the application initialization logic is found. There are a
few bits and pieces in other files, but the majority of it is here. The first bit of that logic is in the

 method:

The first line gets a reference to the document’s element so that we don’t have to
continually be calling over and over. Note that this returns an Ext JS
object, which is a wrapper around a DOM element that provides a host of extra functionality,
one of which is the method. This method returns an object containing a
and a attribute, so we then know the size of the browser’s content area, which we’ll
need later to position things properly.

The next line is responsible for preloading all the graphics used in the application so that
we don’t have a bunch of HTTP requests flying across the wire as the game runs (remember,
you might be running this off a server where that sort of thing will have a negative impact).
We’ll be looking at this method, and the next few that are called, shortly.

The method really just creates the menu button and not much else. The
 takes care of creating the elements for the five visible player

 creates the elements for the arrow and suit change indicators and posi-
tions them on the page; since they will never actually move, they only have to be positioned
once.

 class.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 453

I’m going to assume here that you didn’t skip ahead to this chapter and did indeed read

pertaining to this specific project (and if you did skip ahead, well, thanks for being totally into
-

cusses drag-and-drop back there).

I’m dragging the seven of spades onto the jack of diamonds. Note how the border of both
cards is changed to red to indicate what is being dragged and what the drop target is.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS454

Figure 8-5. The drag-and-drop of cards “in action”

Now, how does this work? To begin with, the event is handled because we
want to have a red border around the card being dragged. This is accomplished by adding
the class (which you’ll recall has a red border defined in it) onto the card being
dragged. We can get a reference to that card by calling , which returns the
for the of the card being dragged.

The event is then handled so that when we hover over an action card we can
put a red border on it too. So, we check that the ID of the being hovered over is an
action card by looking for that string in the ID. If it’s found, then we first store a reference to
the by the field and then add the class to it as
well.

When the user drags a card off a previously hovered over card, the event fires
and the border is removed from the target card, if any. Also, we set to so that
we know we no longer have an active drop target.

The
we remove the red border from the card being dragged. Next, assuming we have an active
drag target (which we may not, if the user just dropped the card on a blank area of the

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 455

page), then we remove the class from the target action card. We then call the
 method, passing it the index of the action card that was dropped on,

which is a number from 0 to 5. We’ll look at this method later, but in short, it will determine if
the drop was valid and do all the work necessary in that situation (or if it wasn’t a valid drop).

The last two lines of the method initialize the computer opponent and then kick-
start the title sequence, both of which are coming soon!

Preloading Images
As I previously mentioned, preloading images is something you have to do when writing a
web-based game. Preloading is an old web development optimization in general as people
tend to be more forgiving of startup delays than they are of constant little delays while using
an application. In a game, though, where speed and performance are paramount, it’s pretty
much not even an optional thing to do!

The method, called from , takes care of preloading all the images
used in the game. This is a fairly long method, but it’s also a fairly redundant method. In it
you’ll find a bunch of blocks of code that are nearly identical to one another with only minor
differences. Because of that redundancy, I’m only going to show one or two of those code
blocks here, with the expectation that you’ll review the entirety of the method on your own.

The first such block is actually a
be the numeric face values of the cards in a deck, if you assign numbers to jack, queen, king,

 loop you’ll find four blocks of code, one for each
suit in a deck, that look like this:

The first step is to create an tag, which we could do manually via standard DOM
manipulation, but we’re Ext JS fans around here, pal, so let’s use it! You can create a new

 object that wraps a new element. This is nice because it provides all the
 method we

can call to set various attributes of our , one of which is the attribute. The filename
is constructed using the suit of the card we’re preloading and the index value of the
loop. Next, the method is called and passed to it are the width and height of the
card image, which we find in the
the created is ’d onto the end of the appropriate array, based on suit, in the

 object that we also saw earlier.
After the loop ends, all the card images are loaded, save one: the joker. So, another

block just like the block shown here is executed to load it.
, , and card deck pat-

tern images.
Next is another

work with me here!). Within this loop the indicator images are loaded. Here’s that code:

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS456

The suit change indicator is then loaded after the loop.
Next, the two images for the menu button are loaded. There’s one version for when the

button is being hovered over and another for when it’s not. A similar loop to the indicator
images is done to minimize the actual code needed.

Next, the win and lose images are loaded, those displayed when you win or lose the game

can see here:

An is created and its attributes set, but this time around we do an additional
call to , passing it the created. The other
images are truly for preloading purposes, which means that at some point or another, the

 will have its attribute updated to the attribute of one of these preloaded
images. That, in a nutshell, is how image preloading works. However, in the case of the win
and lose images, these are the elements that will appear on the screen, so we have to
insert them into the DOM. Recall that is a reference to the docu-
ment’s element, so here the is appended to that element. Next, the
method is called to place it on the screen absolutely. The value 5 passed in as the second argu-
ment is the z-index, which we set to be higher than everything else on the page. The X and Y
coordinates are calculated by subtracting the width of the win image from the width of the

 is called so that the is hidden.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 457

Figure 8-6. Your slap-in-the-face image (at least it’s a pretty red with perspective on the screen!)

Note The method must be called after the is added to the DOM; otherwise, an
error occurs.

The three graphics associated with the title are then loaded in a manner similar to the win
and lose images. They are appended to the DOM immediately and centered on the page, but
in a slightly different way than the win and lose images:

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS458

Wow, 5000
effect sequence. You see, the arguments to don’t have to be the actual dimensions
of the image. If they are larger or smaller, the image will be scaled accordingly. So, you have to

5000 pixels in size, centered on the
browser viewport; so what happens to the portion of the image that doesn’t fit on the screen?

Simply stated, it gets clipped.
So now, if you played this game a bit before this point you’ll know exactly what happens:

the three lines of text that are the three title images, in sequence, quickly shrink down from
their initial huge size to their real size, centered on the page. If you haven’t run the code yet,
now is definitely a good time. It’s a relatively simple effect, but one that is pretty effective. We’ll
soon see how the actual animation is accomplished, but it’s this initial sizing and positioning
that makes it work right.

image used as a placeholder in various spots—for instance, as the initial images for the indica-
tor arrows, so they are effectively invisible.

Creating the Card Stack Images
With all the images preloaded, it’s time to create some elements for the three card
stacks—that is, the stack of nonvisible cards for the player, opponent, and dealer. The code for
creating each is, as you’d probably guess, all quite similar, so I’ll just show one here, the one
for the dealer, taken from the method:

same sort of basic formula for centering as we saw earlier but for vertical centering this time.
Then, we create a new wrapped around an element and set its attri-
bute to that of the preloaded current card deck pattern. Recall that the
field has a value of , or , which also happen to be the names of the
fields in the object where the preloaded images are stored. So, using

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 459

 as an array index into the object retrieves the refer-
ence to the appropriate image. Then, it’s just a matter of grabbing its attribute.

Note Remember that you can always access object attributes via array notation or dot notation, and when
you need to have the attribute you retrieve be dynamic, the array notation is the way to go. In cases where
the attribute name is static, however, dot notation is more readable to most people.

Interestingly, though, you can’t access the attribute directly because that’s simply
not how it’s done with an object. Instead, we have to use the
method, which returns the value of a namespaced attribute from the element’s underlying
DOM node. The first argument to that method is the namespace to look the attribute up
under, and the second is the name of the attribute.

The size of the image is then set, using the dimensions specified in the
, and then it is appended to the DOM. Next, it is positioned using

positioning, and given a z-index of 3.
Next, the method is called to attach a event handler. In this case,

clicking the dealer’s stack image calls the method,
which we’ll get to in a bit.

The opponent and player’s card stack images are created in the same basic way, although
the opponent’s image does not have a click handler attached. The vertical positioning is also

code that does that, just to see the math behind it, but I dare say it’s quite simple and should
be abundantly obvious. Other than that, the code is very much similar to what we’ve just
discussed.

Creating cardDescriptors
Now that we have all the images preloaded and the card stack images have been created, we
need to create objects for the five visible player cards, five visible opponent

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS460

A call to the method that we saw earlier gets us a plain old
JavaScript object that we call a . In that object we need to set some attribute

 attribute that points to the element that is the visual representa-
tion of this card on the screen. This attribute’s value is another wrapped around
an element. Next, its attribute is set so that we can use that ID later, specifically the
index number appended to the end, to determine which action card is being hovered over. Its
size is also set as we’ve seen before, and it is then ’d onto the
array. Next, it’s appended to the DOM and positioned at the same location as the dealer stack
image. Note that it has a lower z-index value than does the dealer’s stack image, so all these
card images will be obscured by the dealer’s stack image (which is what you’d want since these
cards will be showing face values rather than the back of the card as the stack image does).

 object wrapped around the element in the
DOM so that we can drop draggable objects here later.

The opponent and player cards are both created similarly, although the math behind
determining the X location is a little different since we want the five cards, plus the image
stack, to be centered on the screen. The only other difference is that the player cards are drag-
gable, so the last line of their creation is:

This makes the draggable, just as we need them to be. So, have a look at the code if
for no other reason than to see how the horizontal positioning is done. You’ll find it’s all, once
again, just like what you’ve seen here.

IndicatorsCode.js
Our next stop is the file, which contains two methods. The first is

, which is called from and whose job is to create the
 elements for all the indicators and position them properly. The first task it performs is

to figure out the X location of the first indicator on the left, as a starting point to base all the
others off of, and to calculate the Y location where all the indicators will be. Here’s that code:

The variable is again just some centering logic, but this time it takes into account
the number of action cards there are so that the entire group of them will be centered. It

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 461

uses the field to account for a bit of space
between the cards. Since the indicators are horizontally centered on each action card, this is
the proper metric to use.

The Y locations are different depending on whether you’re talking about the up arrows
on the top of the cards () or the suit change icon when there’s an up arrow by a card
(), a down arrow below a card (), or a suit change icon when there’s
a down arrow by a card (). I think the math for all of these should be fairly
self-explanatory, except perhaps for the number four pertaining to the suit change icons. This
is simply an arbitrary number of pixels between the top or bottom of an arrow indicator and
the suit change icon, to avoid them bunching up on the screen in an ugly way.

Once those values are calculated, the images themselves can be created, and this is done
inside a loop:

As you can see, there’s a block of code for creating the next up arrow indicator and the
next suit change indicator above an up arrow. There are two other blocks of similar code in

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS462

this loop, one for creating the next down arrow and one for the next suit change indicator
below a down arrow. To save space, I left them out here because they’re not much different.

By this point you’ve seen a bunch of code like this already, so there’s probably not much
to be gained by going through it. But read through it on your own and make sure it all makes
sense to you before continuing.

The next method in this source file is . This method is called
whenever one of the set of indicators around an action card needs to change and be updated
on the screen:

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 463

each iteration of that loop, we get a reference to the appropriate from the
 array. Next, we determine if this method passed a card number to

update. If it was, then only that card is going to be updated. This accounts for the situation
where a valid drop is made by the player or opponent and just that one action card needs to
be replaced and the indicators changed. If is passed in—which happens when the game
starts up, for example—all of the indicators need to be changed. So, in either case, if this card
is to be changed, we use a little utility method that we’ll see when we look at
called . This method simply generates a random number between two defined
values. So, the field randomly gets a value of or , the
field gets a value of or using some trinary logic, and the field gets
a value of or .

The next step is to prepare for setting the appropriate image by clearing any existing
images. This is done by setting the attribute of each of the indicators around the current
card being worked on to the attribute of the preloaded Pixel of Destiny image. This is
necessary to avoid double-indicators around cards. (Say a single up arrow is on the card now
and randomly it was determined that there should now be a double down arrow; the single
up arrow would still be set.) Keep in mind that all the indicator elements are always vis-

indicators.
Once that’s done, we set the appropriate arrow image. The code starts by assuming it’s

an up arrow and so gets a reference to the appropriate element. If it’s actually a down
arrow, then the reference is overridden with a reference to the down arrow . Next, the

 method is used to set the attribute to that of the appropriate preloaded image.
Once the arrow is done, the last step is to similarly set the appropriate image for the suit

change indicator. This is only done if is ; otherwise, the indicator
 is already showing the Pixel of Destiny, so there’s nothing to do.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS464

MenuCode.js
Next we’ll
the answer.

Figure 8-7. The main menu as it initially appears

The code behind the menu is actually one of the few places where you’ll find rather mun-
dane and altogether plain Ext JS code! It’s the type of stuff you’ve seen tons of times before,
beginning with the method:

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 465

 is created in much the same way as we’ve seen before.
This time, however, the method is used twice. The first time it is used to add
a event handler. When this event fires, the attribute of the is changed to
point to the preloaded image cached in the object. This makes it
red with yellow lettering to give a nice active look to it. The event handler, which is
the second time is used, resets the attribute to the original image
value.

A handler is also attached (which it would have to be; otherwise this button
wouldn’t do anything!). When the button is clicked, we check to see if initialization has com-
pleted by interrogating the field. This field is set to at the end
of the method, so this keeps the user from prematurely clicking the button and showing
the menu. In point of fact, the and event handlers perform the same check
for the same reason.

Assuming initialization is complete, another check is performed to see if the first title
image, referenced in the field, is visible. This is determined
by using the method supplied by the wrapper. If it’s , then we
need to first get rid of the title. We do this by calling the method on all three of the title
images. The puff effect is a really nice effect that gives the appearance of a puff of smoke van-
ishing. So, all three title graphics simultaneously, over the course of one second, expand a bit
and fade out at the same time.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS466

The third title image has a callback handler attached that calls the
 method when the effect completes. If the title wasn’t showing in the first place,

then that method is called directly instead of applying the effect, which accounts for the menu
being shown a subsequent time.

The next method in this source file is , and this is where that boring old Ext JS
code comes into play. In fact, it’s so boring (and fairly long) that I’m not going to print it all
here; otherwise, you’d be reading through about six straight pages of code. Instead, bring it up
in your favorite text editor and follow along, and I’ll call out bits and pieces of it as necessary.

The first block of code you’ll find is this:

Setting the field to when a game is currently in progress allows code
downstream to temporarily turn itself off, the background player code specifically, as we’ll see.
Once that’s done, we need to inform that background Gears that the game has paused
because, as you’ll recall, the can’t see the field. So, we use the
method of the created to send the “game_paused” message to the refer-
enced by the field. Don’t worry about the details of what this
does now; we’ll be looking at that code in a moment.

After that, we attempt to get a reference to the with the ID by using the
usual method. If the exists, we simply call on it, but if it doesn’t
exist, then it needs to be created.

The is defined just like all the others you’ve already seen. One interesting thing is
that it has a event handler attached:

The and form fields are the two es that allow the user
to change the page background image or the style of card deck they want to use. The values of
those form fields are set to whatever the current values are so that they reflect reality. Also, the

 is enabled when a game is in progress.
Three s are then defined, one of which is the How to Play (the other two are

the New Game and Resume Game s, which we will discuss in a moment). Let’s look at
the handler function defined for the How to Play button:

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 467

The menu
it’s a direct result of the branch executing.

Figure 8-8. The main menu as it appears when How to Play instructions are being viewed

As you can see, the height of the expands to allow the instructions to be displayed.
If that’s all we did, though, the wouldn’t now be centered on the page; it would be

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS468

down, quite possibly cut off on the bottom, and that just wouldn’t be cool. So, the branch
gets a reference to the , adjusts its size to allow for the area where the instructions are,
and then moves the branch
handles the case where the How to Play is clicked when the instructions are currently
showing. In that case, the is resized to its original size, which effectively hides the
instructions because it gets clipped by the bottom of the ’s main content area. The

’s vertical position is also reset.
The New Game is defined next. Its handler function looks like this:

If a game is currently in progress, then our friend Mr. is used to
ask users if they want to abandon the current game and start a new one. If they click the Yes
button, the menu is hidden and is called, which is in the source file we’ll
be looking at next. If they click No, the simply goes away—no harm done. If no
game is in progress, then the menu is hidden and is called right away.

The Resume Game is next; here’s its handler:

This is enabled only when a game is in progress. If that’s the case, then all we need
to do is flip the flag back to , and send the “game_resumed” message to the
opponent . Once the menu is hidden, it’s back to dueling!

After the s are defined, there are a couple of form field definitions. We have two
es and a , which is something new. Let’s start with the es first. We’ll

just look at one, since the other is very similar. Here’s the for selecting a page
background:

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 469

This is a pretty typical definition, although having the data inline like this is
something a bit different. A is created as part of the definition, and the

 attribute passed as part of its config object contains the actual items to be displayed.
The attribute defines the names of the fields—that is, the names assigned to each
element of the array—which allows us to reference them via the usual and

 attributes.
The object contains a select event handler. When an item is selected, we need

to update the style attribute of the body of the document and point it to the
newly selected image.

As I mentioned, the card deck image is pretty similar to this. When an
item is selected there, however, the card stack images that we have a reference to in the

 object are updated to point to the selected preloaded image.
The difficulty is the next form field, and this is the first time we’ve seen a in

action. There’s not really much to know about it. Have a look for yourself:

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS470

The attribute tells the how much change in its value there is for each tick
of the slider. The and define the lower and upper bounds of the ’s
value, and the attribute defines its initial value. This game provides three difficulty
levels—easy, medium, and hard—so there are just three ticks on this . Each time the
value of the is changed, its event fires, and we have a handler set up for that.
Its job is to update the right below the to display a textual representation
of its value.

Note The isn’t by default a form field, which means it won’t recognize the attribute
and the would actually appear where the field label should be. To make it work as a form field, you
have to provide the attribute set to in its config object.

Speaking of the , that’s actually a bit interesting. Let’s have a look:

My goal was to put the difficulty text right below the , which turned out to not be
as straightforward as you might think. In order to do it I used a set up in such a
way that you can’t tell it’s a . Specifically, this means making sure is set to

, that the is a blank string (but using the HTML nonbreaking space entity so
that it’s still displaying something for a field label), setting the background color to match the
background of the , making sure it has no border, and finally specifying a blank space
for the too. The effect is you just see plain old text below the , just like
I wanted—you can’t tell it’s a .

The last item in this is a simple that contains a boatload of text via its
attribute. This provides the How to Play instructions. The attribute is set on this

 to , and its background color is set to white, but otherwise it’s nothing but a plain
.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 471

DuelingCards.js
The file contains what could rightfully be called the main set of methods for
this project. It contains a number of utility methods that support the rest of the methods, and
it encapsulates much of the core game logic, aside from the opponent’s code.

Starting a New Game
The first method you find as you look at this source file is . Of course, this will only
be executed if a game isn’t in progress, or if the user decided to start a new game when pre-

Figure 8-9. Dueling Cards in action

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS472

Let’s step through the method:

The first task is to ensure that all our images are showing because many of them would
be hidden to start with. So, first the player and opponent’s stack images are shown, which is
a simple matter of getting a reference to them via a call to , then calling the
method on them (returns an object, remember). Then we start a
loop that iterates for the number of action cards specified by .
Within this loop we show all the arrow indicators, all the suit change indicators, all the
action cards, and all the player and opponent’s visible cards. This is all wrapped in a

 block, though, specifically because of the player and opponent cards. The value of
 is , but there are only five visible player and opponent cards,

so this loop would throw an exception. So, we catch that exception and simply ignore it. This
is basically a lazy way to write this code so that we don’t need two additional loops, one for the
player’s cards and one for the opponent’s cards, that have the appropriate terminator values.
We don’t need to build logic into this loop, either. It’s perhaps a little lazy, but it makes the
code more compact.

The code then hides the images for winning and losing the game, which is done if a game
has just ended and the user is starting a new one.

Next, the difficulty setting the user chose is retrieved:

It is converted to lowercase because we’re retrieving the value of the below the
, which has the difficulty level in proper capitalization, so lowercasing it ensures our

comparisons work properly.
Next, we send a message to the opponent thread via the

method. The message sent is “start_game”, and it also includes the difficulty level, since the
 code needs to know that in order to configure itself, as we’ll see.

Next, the flag is set to and is
set to .

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 473

Generating a “Shuffled” Deck of Cards
After that, the method is called, which we’ll actually jump ahead to right now:

The job of this method is to create four full decks of cards and “shuffle” them together.
So, a new array is instantiated, and we start a loop from 0 to 3. Each tick of the loop creates
another array to store the cards that have already been chosen. We also create a variable

 that will keep tabs on how many cards have been selected from the current deck
being shuffled. While method to choose a

we look up in the chosen array to see if that card has already been chosen. If it has, then
another will be chosen since won’t be incremented with this iteration. If it hasn’t
been chosen, though, we enter a big statement to determine the suit of the card.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS474

 statement determines.
A is created out of this with the and set accordingly, and

the is appended to the end of the array. The value
of is incremented, and the loop continues. When four of these loop iterations
have completed, we’ve got ourselves four decks of cards’ worth of s, all nicely
randomized.

Speaking of randomizing, let’s take a quick peek at that method we’ve
referred to a couple of times. As it happens, it’s literally a single line of code:

This is a pretty typical piece of JavaScript for generating a random number in a given
inclusive range refined by the and method arguments.

Starting a New Game Part Deux
Getting back to the method where we left off, the next bit of code you see after the
call to is this:

the field, and move them over to the array for the opponent and
player. The method removes the first item off the array and returns it,
and this returned object is then ’d onto the arrays for the opponent and
player.

 and
 fields are set to so that we

can examine these values and determine when either the player or the opponent has won the
game.

These three methods are called when one of the stack images is clicked to show the next
five cards for the player or opponent, or to deal six new action cards off the dealer’s stack. In
the case of the opponent’s stack image, literally clicking the image does nothing, but for the
sake of consistent naming I created an method anyway, which does
the same thing as if the image were actually clickable.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 475

Dealing New Action Cards
The method is the next one you find, and it’s the one responsible for
dealing six new action cards. This method begins with a quick check:

Obviously if a game isn’t in progress, then clicking the dealer’s stack image shouldn’t do
anything, and this takes care of that.

If a game is in progress, this code is executed:

We have a loop that goes for six iterations, as defined by .
With each tick of the loop we examine the action card that is currently visible. If it has a
and , then that action card is still in play—that is, the player or opponent hasn’t
made a valid drop on it, so it’s going to need to be returned to the bottom of the dealer’s
stack. The trick here, however, is that we have a for each of the visible action
cards, so if we were to put that object onto the dealer’s stack array, we’d no longer have a

 for the visible action card! Therefore, we create a new and
copy its and fields over from the existing action card. Then, it is that new
object that is ’d onto the dealer’s stack array.

Next, a call is made to , passing in the number of the action card being
worked on this loop iteration. This method, yet to come, deals a new action card to replace the

-
domly choose new indicators around all of them and update the graphics on the screen, which
is the job of the method that we saw earlier.

The last step this method has to perform is to inform the opponent about
the new action cards. Since the doesn’t share state with this code, it can’t see the

 array that it needs to. We therefore have to send a message and tell
it exactly what the action cards now are:

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS476

Simply passing a reference to the array won’t work, nor will
passing a new array containing the from because,
again, that would constitute sharing state. Therefore, we have to create a new array that con-
tains copies of the action card’s s. Once we build that array it’s a simple matter
of sending a message to the , passing in the array.

Dealing New Player Cards
When the player’s card stack is clicked, the method is called. It’s
a lot simpler than the dealer’s version of this method. It begins with the same check of

 that we saw earlier; then this bit of code follows:

Here, all we need to do is call the method, passing in whether
we’re dealing from the player’s or the opponent’s deck, and which card is being dealt. Doing
this call five times, as defined by , results in five new
cards from the player’s stack being shown.

Dealing a New Action Card
Earlier I referred to the method that was used when the dealer’s stack image
was clicked. This replaces one of the action cards with the next card on the dealer’s stack. This
method is as follows:

The first step is to determine the vertical position the card will be placed at. This is the
same centering code we’ve seen many times before. After that comes this code:

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 477

This gets a reference to the appropriate for the action card being updated,
and then gets the next card off the dealer’s stack via the method. Then, the action
card’s ’s and fields are updated to match the card pulled from

 attribute of the underlying element is updated to the appropri-
ate image. The object has four elements, one for each of the suits, so we
reference the appropriate one with array notation. Then array notation is again used to get the
appropriate face value. Remember that each of these suit elements is a zero-based array, but
the to get the appro-
priate array index.

Next, we determine the horizontal position of the card:

This determines the starting X position of the first card, which we’ll base the position of
this card off of, as you can see:

The card is positioned at the same place as the dealer’s stack image, but then the
method is used, which provides an animated movement from the current position of an ele-
ment to a specified position. The specified position in this case is the value, plus the
width of a card (with padding) times the number of the action card being updated. That, plus
the previously calculated Y position value, gives the method the appropriate destina-
tion coordinates. The duration of the animation is calculated based on which card is being
updated. The cards further from the dealer’s stack image take just a little longer to arrive,
which is physically consistent with a real person dealing cards.

Dealing a New Card for the Player or Opponent
The method is called when a valid drop has been made, or when
the player’s stack image is clicked, or when the game code simulates clicking the opponent’s
stack image. Its job is to take the next card off the player’s or opponent’s stack and replace the
specified visible card with it.

So, the first step is to get a reference to the of the visible card:

The variable is a method argument that will have a value of either or
. So, array notation is used to access the appropriate array within the

namespace, and then it’s just plain old array access to get the right .

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS478

Next, we have to deal with one edge condition:

If there are no cards left on the player or opponent’s stack, then we’re almost done here.
The only thing left to do is to hide the card image instead of changing its image since this
essentially means the game is over and we don’t want the last card hanging around on the
screen!

Assuming there’s at least one card left to be dealt, though, we next determine where this
card will be on the screen:

The horizontal position is the same old boring calculation that we’ve seen before. The
vertical position is different depending on the value of . We always want the card to

 block, it’s just a static value, but for the player’s
cards we have to base it off the height of the browser viewport, which we cached earlier in the

 object.
Next, we have to (possibly) put the current card on the bottom of the stack:

If the current has a and , then it’s still in play, which
happens when the player clicks their stack image. In that case, we make a copy of the

, for the reasons previously discussed, and it onto the stack array. If this
method was called as the result of a valid drop, then the will have values
for and and it won’t be put back on the stack.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 479

Figure 8-10. Notice the spacing between the player and opponent cards and the edge of the screen.

Now we have to get the next card off the stack:

The method gets the first item from the array, and we then take its and
 and set it on the for the visible card image. We also have to update

the as necessary, and with the same sort of code we saw earlier.
Next, because we’re trying to make a visually pleasing game here, we want to throw an

animation in:

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS480

The method fires an effect where an element slides into view at a given location.
All you need to do is ensure it’s positioned appropriately, using the coordinates calculated
earlier, and call the method. The default duration values and such are perfectly fine
in this case, so no need for any of that.

There’s just one more minor task to accomplish before we leave this method:

If there are no more cards to be dealt, then the stack image is hidden so the player (or
opponent) knows they have only their visible cards left to get rid of.

Handling a Player Card Drop
When the player drops one of their cards onto an action card, the method
is called:

Into this method is passed two arguments: , which is the number of the
, the number of the action card

.
Next, the method is called, passing these s. We’ll be looking at
that method next, for now just know that it returned if the drop is valid, if not.

If the drop was valid, we decrement the count of player card remaining. Then, we set the
 and fields to , and if you think back to the previous methods we’ve looked

at you’ll see that was a condition that was checked for to trigger certain code branches.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 481

Next, we see if there are no cards remaining for the player. If so, then the card is hidden,
and the method is called, passing it a value to indicate the player win graphic
should be shown. In this situation, the method terminates.

If the player hasn’t yet won, we need to deal a new action card to replace the one that was
just matched by calling and passing it the number of the card to replace. We
then deal a new card from the player’s stack to replace the one that was dropped by calling

card by calling .

Determining Player Drop Validity
As you just saw, the method needs to determine if a player card dropped
on an action card is valid or not, so it calls , which we’ll look at now:

This first quick check handles the case where a joker is the card being dropped, or is the
card being dropped on. In either case, the move is automatically valid so is returned.

Barring that initial quick check, there’s more work to be done:

This first check deals with the case where the action card has a single up arrow above it.
In this case, we have to essentially “normalize” the of the action card. The check,
which is the last statement, is very simple: increment the of the action card and
see if it matches the dropped card’s . The problem is, if the action card was an ace,

. So, if the
action card is an ace, then we change its

-
malizing is done in the next couple of code blocks as well, and I’ll skip the in-depth description
in those cases.

The next case is for a double up arrow:

It’s the same sort of logic, except that there’s two “wrap-around” cases this time because a

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS482

I’ll save a few lines on the page here and tell you that there are two more code blocks that
follow these that account for the down-arrow situations. They look and work just the same
except that they’re obviously doing subtractions rather than additions.

The final step is to deal with the suit of the cards. Remember that the method would have
terminated already if the drop wasn’t valid in terms of . Now, we check the suit,
which is easy:

If the suit change indicator isn’t present, and if the suits of the dropped card and the
action card don’t match, then the move isn’t valid; otherwise, it is.

The last line of this method returns , which we’ll only get to if all the validations were
passed.

Ending the Game
As you saw in the method, when players use all their cards they win the
game. This results in a call to

The code for the method is as follows:

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 483

Figure 8-11. Your reward for a game well played… is it really worth it?

 to .
Next, we hide all three stack images. Then, all of the indicator images are hidden, along with
all the player and opponent cards. We use the same sort of laziness we saw earlier to

 value. If it’s , then we
show the win image; otherwise, it’s the depressing lose image. Just displaying it would be bor-
ing, so we instead use the method, which gradually, over the course of one second as
specified, fades the graphic into view. That’s all there is to it!

Showing the Title Sequence
The title sequence is a nice little animation sequence that obviously doesn’t have the same

the sequence.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS484

Figure 8-12. Trust me, it looks much cooler on the screen!

Earlier we saw how the three title graphics are created at a monstrous 5000 5000 pixel
size, and I told you at that point that this sizing factors into how the title sequence works. Well,
now it’s time to see how, as implemented in the method. That method goes a little
somethin’ like this:

Three variables are created that reference the images in the array for
no other reason than I didn’t feel like typing over and over again!

There are three lines of title graphics, and each of them starts out huge, as you know,
and then shrinks down to its real size. These “shrinks” are done in sequence starting with the
first graphic. Therefore, you’re about to see three blocks of code, one for each of the graphics,
beginning with this one:

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 485

The method does just what its name implies: it scales an image from its current
size to the specified size. The specified size here is the real size of the graphic as defined in

. This scaling finishes in one second’s time.
Now, as the image is scaling, it also has to be moved to keep it centered on the screen.

This can be rather hard to visualize, so as a quick exercise I suggest you modify this code by
commenting out everything in this method after the first call, and then load the page.
You’ll pretty quickly see the problem! So, the animation is set up to occur simultane-
ously with the animation so that the image is continually shifted to keep it centered.

the page a bit. This is to account for the remaining two lines of the title because you want all
three graphics as a group to be centered, not just each individual image.

The function then fires:

As you can see, it’s the same sort of thing we did for the first image. Here, however, the
image is literally centered vertically on the page, which looks right when all three images are
shown.

Speaking of the three images, here’s the that fires the third image’s appearance:

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS486

Once again, it’s the same basic idea, but this time the image is pushed down 30 pixels so it
doesn’t overlap the first or second images.

The here simply sets to so that the rest of the code knows
when it can react to user clicks, the menu button in particular.

And that, my friends, is how we do a cool little title animation with as little real work on
our part as possible!

OpponentCode.js
The last source file we have to look at is , which is where all the code pertain-
ing to our computerized component lives (well, most of it anyway). This is also where most of
the Gears / stuff is.

Constructing the Worker
The first thing you’ll find when you open that file is the method, which as we
saw earlier is called from the method. Here it comes now:

The first thing we do is register a callback with the instance reference by
. This is the function that will receive all messages sent from the

 we’re about to create.
Now, earlier when we talked about

 method, or you can pass string to the method. The
latter is what we’ll be doing, but in a different, more interesting way. What we have this time
is an honest-to-goodness function named that is a method of
the namespace. We call on that method. Yes, you read that right!
Remember that in JavaScript a function is a first-class citizen; it’s a proper object that literally
extends from , which means it has a method that returns the function as a
string.

The unfortunate thing, though, is that it returns it fully, including the function
 part and the closing brace. So, the next two lines hack that stuff

off the two ends of the string. This is admittedly a little brittle because if a particular browser
implemented differently, this code might not work. But it works fine in Internet

missile defense shield here, I can live with it if you can!
That string, containing just the code within the function, is then passed along to

,the reference is stored in , and the
method is complete.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 487

The OpponentWorker
We’re now going to look at that , beginning with the private vari-

Table 8-2. The Private Variables within the opponentWorkerFunction()

Variable Description

 The collection of opponent card objects. This duplicates the
 collection internal to this .

 The collection of action card objects. This duplicates the
 collection internal to this .

 The difficulty level the game was started at: = easy, = medium, or = hard.

 The Gears object we’ll use to process game loop events.

 Reference to the interval created to fire the method periodically.

 Reference to the message sender—that is, the outside this
.

The Message Handler Method
In the method, we saw that a message callback handler was registered with the

 to handle messages sent by the . What about messages sent to the ?
We need a function to handle that, too, and that’s set up next:

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS488

Since multiple messages are understood by this , we begin by ing on the
 value passed in. The first case is the “start_game” message. The first task is to

store off the sender of the message, which is a reference to the . Since this message
is the first one that will be received, and since we need to know the sender in order to send
messages back to it, this is the right place to get that information and store it. Next, we take the

 instance (which is created when the variable is declared) to start an interval that
calls the method periodically, and the period is based on the difficulty level (every

The next message handled is the “end_game” message, and there’s nothing to do here
but clear the interval so that won’t be fired any further. In fact, the next message
handled is “game_paused” and its code is identical to the code for “end_game”.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 489

Note Yes, I know I could have let the cases fall through, but I generally dislike fall-through logic in
 statements because I’ve seen it have unintended side effects a few too many times. I prefer the

more deterministic form of coding. . .most of the time!

The “resume_game” message is handled next, and all it needs to do is kick off the previ-
ously cleared interval again.

The next message to be handled is “update_action_cards”. This message is sent when a
change to the action cards occurs, like when the player makes a valid drop or the dealer’s stack
image is clicked. This is necessary because of that annoying “no shared state” thing again! So,
this message is sent and along with it comes the list of s describing the action
cards. Before anything is done with them, the interval calling is cleared. It would
be a shame to try to execute the opponent’s logic while the action cards are changing! In real-
ity this probably isn’t possible anyway due to JavaScript being single-threaded, but I’m not

future browsers not doing that. So I figure it’s safer to clear the interval and not have to worry
about it. The code here then takes the s sent in, pushes them onto the internal

s, and restarts the interval.
Similarly, the “update_opponent_cards” message does the same thing for the cards

the opponent is holding. This message is sent when the opponent makes a valid drop and
the has told the external code about it. The external code does some work, which
results in the opponent’s cards being updated, and then sends this message, along with the

s for the opponent’s cards. They are stored internally, just as the action cards
are, and the message is fully handled.

The gameLoop() Method
The method is where most of the action really takes place; more specifically, it

graphical representation not only of this method but of the general flow of code within the
opponent , and the messages in and out of it.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS490

Figure 8-13. A diagram of the general flow in and around the opponent Worker

Let’s step through this method bit by bit:

The basic concept here is similar to how it works when the player drops a card on an
action card, but essentially in reverse. In that case, the code has to figure out if the drop was
valid, but here the logic is to figure out beforehand if there are any valid drops to be made for

 and
then do this:

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 491

If this code looks a bit familiar to you then, well, I haven’t lost your attention! This is
nearly the same code that you saw in the method in . Here,
though, we’re simply figuring out what the appropriate next card is based on the indicators

have the double up-arrow situation:

After this are the other two blocks that look at the single and double down arrows, which

Once we know what the next card should be, we have to see if that card is one of the vis-
ible opponent cards. So, we start a loop:

The way I’ve written this code, it’s possible to have more than one valid drop result from
the outer loop. So, we have to keep track of which opponent cards have been used already, and
that’s the purpose of the array. If the next opponent card checked in the loop hasn’t
been used, then we check to see if it, or the action card we’re trying to find a valid drop for, is a
joker. If either is a joker, then it’s automatically a match. If it’s not a joker, we have some more
checking to do:

If the matches, and if the suit matches or the suit change indicator is preset on
this action card, then it’s a match that way.

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS492

Once those checks have been done, we have some housekeeping work to do in case a
match is found:

The flag is set to since we now have at least one match resulting
from the iteration over the action cards. Next, the element in the array correspond-
ing to this opponent card is set to so that we don’t register a match for it twice during

. As you’ll see next,
that’s the other half of what makes this all work.

The final step is outside of the two loops:

When no valid drops are found, we send out the “opponent_stack_img_click” message,
which will simulate the computer opponent clicking their card stack image to see if there are
more cards on their stack that might match the action cards.

Handling Messages from the Opponent Worker
By this point we’ve seen that there are a couple of messages passed out from the to
the code that hosts the , and earlier we saw how that callback was registered with
the . Now it’s time to look at that callback function, the
method. This method, like the callback inside the opponent , has a statement
that branches based on the message received. The first message, “match_found”, is without a
doubt the more complex of the two, and it’s up first:

Recall that this message is sent as a result of a valid card being dropped by the opponent.
In this case we need to do the move animation to simulate the opponent dragging and drop-
ping the card. So, we get a reference to both the opponent card we want to drag and the action

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 493

card it will be dropped on. With these in hand, we call the method on the opponent
card reference, and set the destination X/Y coordinates to the location of the action card.

The callback function fires when the animation completes:

Here we’re getting a reference to the for the opponent card that was
dropped. Next, we decrement the number of cards the opponent has left. Then the suit and

 fields are set to in the . The check on the value of
 is next. If there are no cards left, we send the “end_game” mes-

sage to the so it can shut down the interval. Then the dragged card is hidden and the
 method is called, this time passing the value so the slap-in-the-face “you

stink” graphic is displayed (just kidding; it simply says “You lose”).
The following code executes when the opponent did not win and the game will continue:

opponent dropped their card on. Then, the opponent’s dropped card must be replaced as

already looked at the methods that accomplish all this, so there’s really not much to add at this
point.

Next we have a block of code whose job it is, partially at least, to tell the opponent
what the action cards now are:

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS494

We’re again copying the array so we can pass it in to the
. Similarly, the opponent’s cards must be updated:

With those two arrays in hand, it’s a simple matter of sending the two update messages
that we saw handled before:

When that’s all done, the is fully up to date and can continue to play the game
properly.

The Faux Stack Click Method
At the risk of sounding like a broken record, you know by now that the dealer’s stack card
image is clickable, as is the player’s. The opponent’s, however, is not—at least, not by
the player. The opponent can “click” their own stack to deal five new cards. Since Ext JS,
as cool as it is, can’t (yet) physically manifest an appendage out of the PC to actuate the
mouse and physically click the image, we have to simulate it. As you saw a little while back,
this occurs when the opponent finds no valid drops and needs to cycle their cards. The

 method is called in this situation:

CHAPTER 8 ALL WORK AND NO PLAY: DUELING CARDS 495

.
Then, we copy the array and send the “update_opponentCards”
message, passing the copy of the array. Yep, that’s all it takes! The now knows about the
five new visible cards and the game can continue.

Suggested Exercises
A game is perhaps the best kind of project for a book like this because there are literally limit-
less suggestions that could be made. I’ll leave you with just a few:

Er, you’ll have to implement high scores first of course! Maybe it’s just the fastest win-
ners or something like that, it’s up to you!

adding the ability to play against someone remotely? That’s clearly a much bigger proj-
ect, but it would let you play around with Ext JS’s Ajax capabilities, something that was
only briefly described in this book (on purpose, since this is a book focused on client-
side development).

that it gets set that way the next time the game is played. You could store this info in
cookies, or you could go hog-wild and stash it in a Gears database.

-
sitions itself. I left that out on purpose because that would be a good exercise for you to
do. My suggestion is to have a that takes up the whole page and hook into its
resizing event, but the approach is up to you!

Summary
In this chapter we took a break from the ordinary and wrote ourselves a nifty little game. In the
process we got our hands dirty with some non-widget goodness provided by Ext JS, including
drag-and-drop, the

 in action, allowing us to implement an efficient multithreading mechanism in
JavaScript.

In the next chapter, the final chapter of this book, we’ve put together an application for
tracking our finances that will allow us to see a few new capabilities that we haven’t seen
before, including the charting capabilities Ext JS provides. Stick around—the final adventure
is about to begin!

497

C H A P T E R 9

Managing Your Finances:
Finance Master

To quote the immortal words of Gordon Gekko:1 “Greed, for lack of a better word, is good.”
Greed probably most frequently comes in the form of money, so therefore money is good.
A big part of making money is simply being able to track your assets and liabilities and under-
stand where your money is and how it’s working for you in terms of return on investments.

With that in mind, the final project in this book is my special gift to you: a tool that will not
only teach you more about Ext JS but will, hopefully, assist you in making boatloads of money.
(This isn’t completely altruistic, of course: you making more money means you’ll have more to
spend on your favorite author’s future books!)

Note I’m going to do something right up front that I really hate to do but that circumstances are forcing
me to do: give a disclaimer for this project. While I strive to make all of the projects in my books cross-
browser (at least Internet Explorer and Firefox on Windows at a minimum), this project gave me a lot of
trouble in that regard. I was only able to get it to work reliably in Firefox. As far as I can tell, it’s the fact that
the charting support in Ext JS is new in version 3 and maybe still needs some work. But since the charting
support is Flash based, it could very well be a Flash issue too. So, my strong suggestion is to only try running
this app in Firefox to be safe, even though it should work in other browsers as well, and you may find it does.

What’s This Application Do Anyway?
There are some top-notch financial tracking/planning software products out there. Quicken
is probably the most well-known name. That product is developed by a team of dedicated
engineers and has been developed over a very long period of time to be the polished, powerful
solution it is today. At the end of the day, however, it all comes down to the relatively simple

 1 Gordon Gekko is the main antagonist in the classic movie Wall Street. Gordon, a corporate raider
played by Michael Douglas, embodies all that was wrong with those involved in the stock market in the
80s (and now too it seems!).

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER498

concept of a diary2 for your money! That’s exactly what Finance Master is. It won’t tell you how
to invest your money and it won’t balance your checkbook or simulate investment scenarios.
What it will do is give you a nice, organized way to see where your money is, and to some
extent, where it’s been.

So, what’s the feature set of this thing? The following is the list of what it’ll do:

accounts).
Portfolios have a name that is meaningful to the user and are password protected.

accounts, you can enter deposits or withdrawals and for other account types (invest-
ment, retirement and loan accounts), you can enter a new account balance. You can
also enter a description and a date to go along with each activity item.

portlets, that can be moved around on the screen as you desire. (Typically a portal
allows for adding and removing of portlets, but here we’ll just have four static portlets
that are always present.) The portlets can be collapsed if you want.

their current balances, and their type. This will be displayed in a that will group
the accounts by type. This portlet will also provide the ability to add new accounts and
delete existing accounts.

graphically represents how the assets in the portfolio are distributed across the various
account types.

 containing all
the activity for the account. For each, you will see the date, deposit, withdrawal or new
balance amount, and a description. This portlet will also let you add new activity and
delete existing activity.

illustrating the fluctuating balance of the account over time.

application.

So, there are quite a few bullet points there, and it sounds like a lot, but in actuality it’s
really not. However, we’ll definitely be seeing some new Ext JS stuff here, so let’s open with a
screenshot. In Figure 9-1 you see the initial Finance Master screen when the application is first
launched.

 2 My wife to this day refuses to use an actual checkbook. She instead opts for a simple spiral notebook
where she keeps track of everything. I’m not saying that’s good or bad; I’m just saying that we never
seem to have money! Hmm…

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 499

Figure 9-1. Finance Master as it appears upon launch

You can’t tell from looking at the printed page, but this application has a different overall
appearance than any we’ve seen thus far. That’s thanks to a custom theme we’ve used. We’ll
see how to use a theme in an Ext JS project shortly, and as usual I think you’ll be amazed at
how very little work is involved on your part!

Anyway, that’s jumping the gun a bit. Here we go, one more time!

Note The theme used is the Gray Extended theme created by Jose Alfonso Dacosta Dominguez, a.k.a.
galdaka, an Ext JS community member. Thank you, Jose, for giving this theme to the community! In case
you are interested in more details, check out this thread in the Ext JS forums:

.

A Warning About Warnings
Before we get going here, I need to point out a potential problem you may encounter the first
time you run the application. You may wind up seeing something that looks like Figure 9-2.

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER500

Figure 9-2. A potential problem with the charting support

the message text implies, is to run the application on a server of your choosing. That should be
all it takes to deal with this problem.

The other option, the one I personally went with, is to go into the Flash global security set-
tings panel as described in previous chapters and specifically give permission to the location
you have the project running from locally. This will allow JavaScript to talk to the Flash-based
charts and everything should work as expected.

Depending on your Flash settings you may or may not experience this problem, but it
happened to me the first time, so I give you the benefit of my experience!

Overall Structure and Files
The directory structure of Finance Master is not much different than previous applications,
just with a few interesting JavaScript files, as you can see for yourself in Figure 9-3.

In the root, we have the usual , and files, and in the directory
we have the usual . There’s also a file that is new, and this is the file that
contains styles needed for the portal extension, which we’ll get into as we examine the code in

.
In the directory we have , which is the logo in the upper-left corner

of the screen. We then have , , , , , and , all
of which are icons on various s throughout the UI.

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 501

Figure 9-3. The application’s directory structure and constituent files

The directory contains F , our “main” JavaScript file, so to speak.
We also find as always, and the file that we’re pretty
used to for our and definitions (although, as we’ll see, in
this application they aren’t all in there). There’s also , which is basically like
any of the files we’ve dealt with before, but there is a reason it’s named differently,
as we’ll see. There’s also something called , which is the source file that will
give us our publish/subscribe architecture. Although we won’t be looking at the contents
of this file, on the grounds that looking at the code behind a given extension is beyond the
scope of this book, we’ll certainly see it get plenty of use, which is the big thing for us. The

 is the code for the where a user opens (or creates, as it turns
out) a portfolio. The contains an Ext JS extension providing a portal-based
interface (we also won’t be looking at the code in this file since I didn’t write it, so it would be
like looking at the Ext JS source code, which we haven’t done either throughout this book).
Finally, there are four other source files: ,

, , and . If you said these
files contain the code for a given portlet, then give yourself a pat on the back!

The Markup
The file is, as usual, our starting point, and it’s at this point I think pretty boilerplate.
Here it is, in its entirety:

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER502

The usual Ext JS imports are present, but there’s a surprise here. Remember earlier I
mentioned that theme we’re using to give us a gray UI look? There’s just a single thing we
need to do to activate that: import the appropriate style sheet, in this
case. You’re good to go, assuming you’ve put the files for the theme in the right place—which
means you’ve put that style sheet file in under the directory, and also put

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 503

the corresponding images directory containing all the graphic resources for the theme under
. As usual, things that would otherwise be complex are made exceed-

ingly simple by Ext JS.
After that are a couple of imports for the portal extension: its and

 files. The file is also imported, providing our publish/
subscribe model, and of course things wouldn’t be complete without being
brought in.

Next, a couple of namespaces are created. I put these here because they must be present
before the rest of the application code is loaded, so this seemed like a good place. Remember
that the browser interprets things in the order they appear on the page, so these namespaces
will be created before anything that needs them is.

all that is done, we have the typical call to bootstrap the application.
We also have the that we’ve seen numerous times, but as we’ll see in a

bit, I’ve managed to slightly change the way this is used this time around.

The Style Sheet
The style sheet for this application is extremely simple, and if you don’t believe me, here’s the
entire thing:

 and nothing more. Notice
that there’s no attribute for this, as we’ve usually seen in the past. I’ll telegraph3 this a bit
and tell you that the attribute’s value will be dynamically applied, but we’ll get to that in
just a moment.

A few pages back we got our first look at Finance Master when it first loads, but that
doesn’t give you the full picture of the application. So, even though the code we’ve looked at so
far is only the tip of the iceberg, let’s get another, more complete look at Finance Master (see
Figure 9-4).

Here you can clearly see the portal architecture, with four total portlets, two of which are
currently expanded. You can also see the charting capabilities in action.

 3 In professional wrestling, “telegraphing” a move is when one wrestler does something that gives a clue
to their opponent what is coming, whether or not on purpose. When you telegraph something, in a
more generic sense, it’s a slang way of saying you’re foreshadowing something that is coming soon.

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER504

Figure 9-4. Finance Master, after a portfolio has been opened

Preliminaries Part I: A Brief History of Portals and
Portlets (Apologies to Professor Hawking)
Before we get into the code of this application, I want to provide a context for what is to come.
The first piece of business is to talk about the idea of a portal.

A portal is a way to organize the UI of an application so that there are small, discrete
“modules” that can be displayed on the screen. Generally, these modules, which are called
portlets, are rectangular in nature. Each portlet can provide some piece of functionality, and
the user usually has control over which portlets are on the screen.

For example, if you were to create a news portal site, you might have a portlet for world
news, another portlet for local news, one for sports, and one for financial news. You might also
have a portlet where discussions among users about news stories could be found. The user
could selectively show or hide any of these portlets, and usually they can be collapsed instead
of removed from the UI. Users can also add other portlets as they wish to the UI to have other
pieces of functionality available to them.

Portlets in a portal can also usually be arranged by the user. The interface to rearranging
them can vary, but one fairly typical approach is to allow users to drag the portlets around and
drop them where they want them to be.

The benefit to a portal architecture is that users are in control. They decide, from a list of
choices, the available portlets in this case, what they see on the page, and how it’s organized.
A portal is an aggregation of different pieces of functionality encapsulated within the portlets it
provides, so another advantage is that the user can have numerous, potentially very disparate
sources of information in one consolidated view.

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 505

Portals are a popular choice for company intranet sites, personal information manage-
ment (PIM) sites, and similar types of applications. In the Java world, there is a whole
specifi cation dedicated to the technology behind portals, and various vendors provide their
own unique implementations of the specification with all sorts of value-added goodies such
as cross-portlet authentication, preferences management, and out-of-the-box portlets for all
sorts of things.

However, in the case of Finance Master, we don’t have a full spec to support us. Instead,
we have to go it alone. Thankfully, the Ext JS team created an example, one you can find on the
Ext JS site that provides the basics of a portal application in JavaScript. Utilizing the extension
code they wrote for that example, we can provide the same sort of interface design to Finance
Master without much work at all.

the portlets can be added and removed, expanded or collapsed, and arranged by the user,
individual portlets have to be truly independent. They can’t make assumptions about other
portlets because it’s easy to imagine a function call to a portlet that was removed leading to a
quick JavaScript error. Fortunately, there is a rather easy solution to this problem: the publish/
subscribe model.

Preliminaries Part II: The Publish/Subscribe Model
The publish/subscribe model, or pub/sub as it is often abbreviated, is a way to architect an
application that is especially effective in asynchronous situations.

Let’s do a little thought experiment4 around the idea of portlets. Assume we have two
portlets, A and B. Let’s further say that portal A shows stock quotes in a typical animated ticker
display while portlet B shows the stock price for a limited number of user-selected stocks.
Now, assume we have a background process that polls some Internet-based source for stock
prices. Every minute, this background process runs and gets the latest prices for all stock
symbols available. Now, both portlets A and B will need to get this updated information. How
exactly do they get that information?

Well, certainly the portlets could poll some common location that the background
process updates, but that’s pretty inefficient because the prices in the common location will
frequently not be updated when the portlets check, so there’s a lot of wasted CPU time there
(and possibly network and storage bandwidth, depending on where the common location
is). Alternatively, the background process could call some function that both portlets A and
B expose to get the updated information. This will be efficient, but the problem here is that
since this is a portal, one of the portlets, or both, may have been turned off by the user. So,
we’ll either get errors occurring, or at best we’ll have some error handling that takes care of
the errors, but that’s a cop-out frankly.

The better approach in a situation like this would be a pub/sub model. Here, both of the
portlets would “subscribe” to a given type of message that the background process would
“publish.” Here’s the way it works. There is an entity, some sort of message processor, or

 4 A thought experiment is a proposal for an experiment that would test a hypothesis. Thought experi-
ments are a popular, and sometimes the only feasible, option to test theories in various scientific
disciplines. Albert Einstein postulated most of general and special relativity based on little more than
thought experiments!

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER506

message bus as it is often called, that has two methods, and The two
portlets call the method. They pass to it the type of message they are interested
in (usually by some sort of ID) and also a function to be called when the message is published.
Then, the background process, which has some information it wants to share with anyone
who has subscribed to a given message, calls the method, passing in the ID of the
message being published along with any other information that interested subscribers might
want. Then, the message bus goes through its list of subscribers to the published message and
calls the specified function, passing the information that was published along to it.

This model is a fairly simple way to allow communications between entities in a loosely
coupled way, meaning they don’t need to know anything about each other to communicate.
All they need is access to the common messaging bus, and knowledge of the messages that can
be published or subscribed to. This is all done asynchronously, so there is no need for any sort
of polling or background code running to send and receive messages (in other words, the mes-
sage bus only does something when or is called). It is therefore a quite
efficient way of doing things.

In a portal environment, this is the way you almost have to do things, or you don’t allow
cross-portlet communication at all. More than that, though, it’s the best way to design things
in terms of communication from the portal itself to the portlets it hosts, and from the port-
lets to the portal when necessary. This way, portlets can be added or dropped without any
concern. As long as they subscribe to the appropriate messages, and as long as the portal pub-
lishes the appropriate messages, or vice versa, everything will work great.

Even if you’ve never heard of the pub/sub model before, you in fact have been dealing
with it throughout this book: events are a form of pub/sub! Just plain JavaScript event handlers
are essentially a pub/sub model. If you add an handler to a , for example, that’s
essentially a way of saying the code in that handler is “subscribing” to the click “message.”
When the user clicks the button, the browser “publishes” a click message, and the handler gets
notified of the message and does its thing. I admit that’s a roundabout way of looking at it and
that having a message bus with explicit and methods is certainly more
obvious, but it’s the same basic concept either way.

With all of that in mind, we can now jump headlong into the JavaScript behind Finance
Master and be able to understand what’s going on a lot better now. Let’s start with the s
and s defined in, oddly enough, the file.

The Code
Now that the preliminary topics have been covered, we can now dissect the code of this appli-
cation. We’ll begin by looking at the data model the application uses, and then move on to the
“main” code, followed by the code for each of the four portlets.

StoresAndRecords.js
As we’ve seen in past applications, we’ll need a couple of data s and a couple of
types to make this application work. Unlike in past applications, though, not all of them will
be found in this file. Some are specific to a given portlet, so they will be defined in the source
files for those portlets. However, a couple of basic types are necessary for all portlets to be able
to use, so we’ll define them at a higher level here. In Figure 9-5 you can see the three

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 507

types and two common s in this namespace, defined in this source
file (partly at least, which is why you’ll notice the “part 1” in the figure caption).

Figure 9-5. The FinanceMaster.Data namespace (part 1)

The namespace was declared in , so we’re good to go,
beginning with the definition of a :

Naturally enough, a defines a portfolio. It only needs two simple attri-
butes: and
use to create instances this class, so there’s no need for a attribute. (This is a common
theme throughout this project—it makes the code more concise and self-describing.)

Next up we have the , which describes a given account inside a portfolio:

Since an account belongs to a portfolio, we’ll need a reference back to the field of the
 that the is associated with, and that’s the attribute.

The attribute is the name of the account, while is one of the types an account is
allowed to be (checking, savings, loan, retirement, and investment). The attribute is
the current balance of the account, and this field will be dynamically calculated, not stored in
the database.

Finally, we have the class, which describes a given bit of activity within an
account:

Unlike a , where the attribute is the unique key, and ,
where and form a composite key, there is no such key for an
that comes naturally from the data (unless you wanted to make a composite key out of all
the fields, but that seems overkill to me). Therefore, we have a unique field that serves

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER508

as the key. The attribute serves the same purpose as the attribute in
, and the attribute ties the back to the field of the
 it is associated with. The field is self-explanatory I suspect, but

is not. The problem that we’ll encounter later on is that when we generate the chart showing
activity for the account, there’s no way to format the real date attribute, so it’ll show up in the
chart in its long, default JavaScript object format, which is quite ugly. So, alongside the
real field we have , which is just a nicely formatted version of that looks
good on the chart. The attribute stores the deposit or withdrawal amount for check-
ing and savings accounts, while stores the balance of the account at the time the

 is created for other types of accounts. Finally, is just a freeform
note about the for the user’s own purposes.

Now that we know the types of s we’re dealing with, there are two s we need
to look at, beginning with :

This stores the canonical list of portfolios currently available. We use the same sort of
event-driven model here that we’ve seen before, hooking into the and events to
persist the changes to our database.

We also have an to store the list of accounts in the current portfolio:

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 509

Although the will generally remain unchanged while Finance Master
runs (unless a portfolio is added or removed), the will change any time a port-
folio is opened by the user because the accounts for the portfolio will be loaded into it.

Here’s a test of whether you were paying attention or not: did you notice that this isn’t
plain old as we’ve typically used? This time around we’re instantiating some-
thing called a . A is a data that. . .wait for it . . .groups its
data according to some criteria you specify. Here, we’re saying that we want all the records in
the grouped by their fields. This means that when we bind this to a , as we’ll do
soon, it will show the data in groups, so we’ll have all our checking accounts together, all our
savings accounts together, and so on. More than just grouping them together, the will
actually have divider lines between each group and a bit of text as a title of each group. Take a
look at virtually any of the screenshots in this chapter where you can see the portfolio overview
portlet and you’ll know exactly what I mean.

DataAccess.js
The file is akin to the file we’ve seen in previous projects. The reason
we don’t have a file this time around is that there is no class as in other projects.
Instead, we have methods and attributes added to the namespace. As
we know from past project dissections, a namespace and a class are basically the same thing,
since in JavaScript they are both functions. So in essence, what we have here isn’t much dif-
ferent; it’s just a different way of laying out the code. Figure 9-6 shows the members that are
added to the namespace courtesy of this source file.

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER510

Figure 9-6. The FinanceMaster.Data namespace (part 2)

The first thing we find is the field holding the name of the database:

that the field is fully qualified within the namespace, which as we’ll see goes for everything else
throughout the rest of the code as well.

Next up are a couple of SQL statements for working with portfolios:

I’ve generally assumed that you have some familiarity with SQL and so won’t go into
excruciating detail here unless there’s something unusual to point out. I dare say these three
statements wouldn’t fall in that category, though! You can see the table structure for the port-
folios table in Figure 9-7.

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 511

Figure 9-7. The structure of the portfolios table

Next up are a series of SQL statements for dealing with accounts:

Figure 9-8 shows the corresponding accounts table structure.

Figure 9-8. The structure of the accounts table

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER512

The next five SQL statements are all related to account activity records and the activity
table:

Figure 9-9 shows this table.

Figure 9-9. The structure of the activity table

The final two SQL statements are for two functions we’ll need later that get the balance for
a given account based on the type of account it is:

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 513

There are two statements, one for getting the balance of a checking or savings account
and the other for getting the balance of other types of accounts. The difference is that for a
checking or savings account we need to sum the field for all activity records within
the account. Since deposits are positive values and withdrawals are negative values in the
amount column, this works exactly as expected, producing a single value that is the cur-
rent balance of the account. For the other account types, however, what we really need to
retrieve is the most current field value. To do so, we select that column, order-
ing the result set by date in descending order so that the newest record is the first, and then
using the clause to return just a single record. Note that in both queries, the balance,
whether calculated or otherwise, is named in the result set, so in both cases we have
a common field to pull the value from and the code can therefore be pretty generic when
getting the balance of an account.

Initializing the Data Access Layer
Now that we have the queries out of the way, let’s look at the code that makes use of them,
beginning with the method:

This isn’t any different than previous methods in classes that we’ve looked
at. It’s just a quick check to be sure Gears is available, and if so we execute the table creation
queries so that any tables not present are created. The value is returned if initialization is
successful; otherwise the error that caused the failure is returned.

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER514

Working with Portfolios
Next up we have two methods for dealing with portfolios. Note that I’m going to breeze
through these (and nearly all the other methods in this source file), because frankly you’ve
seen them a number of times already and there are very few surprises. Let’s start with the

 method:

This method is called when the add event fires on the , and as you can see
it’s a simple query execution using the passed in.

Next up is , which is called once during application initialization:

The array of s we get from this method is used to populate the drop-down
from which the user chooses an existing portfolio to open. This method is called directly as
we’ll see later, not as a result of any events firing.

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 515

Working with Accounts
Dealing with accounts is much the same as dealing with portfolios, although there are three
methods to consider this time around. Let’s start with , which is called as a
result of the method of the firing:

, this time an ; insert its attributes into the
 query—and we’re off to the races.

method:

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER516

 and populate it from the data in the row. This time we have one additional
task, however, and that’s to get the balance for the account, since this isn’t information stored
in the database. So, once we have our array of s we iterate over it and call the

 method for each. We’ll see how that method works later, but for now it’s
enough to know that it returns the current balance of the account. We then insert the current
balance into the field of the , and then return the array to the caller.

Deleting an account is the next function to cover, :

Here we have two tasks to complete. First we delete the activity within the account, which
we do by executing the
execute to wipe out the account itself.

Working with Activity Records
Activity in an account is stored in the table. There are two methods we use to main-
tain this table, starting with the method:

Creating an activity record is no different than creating a portfolio or account record as
we’ve seen. Let’s move on to :

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 517

Note here that when the is created, its field is used as the ID of the
record in the as well (the second argument passed to the ’s constructor).
In fact, for portfolios and accounts it’s the field that becomes the ID of the record in the

. This is important to note because it allows us a way to retrieve a specific record from a
 if we know the ID of the record we want. Assigning an ID like this is optional, but with-

out it we’d have to iterate over the records in the looking for the one we want, so this is
clearly better if we’re going to need to retrieve individual records later.

Finally, deleting an activity is performed in the aptly named method:

No big deal I dare say and nothing that needs explaining at this point!

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER518

Getting the Balance of an Account
The final method in this JavaScript file is , which we saw being called
earlier from . Its job is to get the current balance of a specific account. Let’s
see how that works now, shall we?

As previously mentioned, how you get the current balance of an account depends on the
type of account it is, which is why the third argument to the method is the type of the account.
That, along with the name of the portfolio and account, gives us all the information we need.
So, we start by assuming we’ll be getting the balance of an account type other than a checking
or savings account, which corresponds to the SQL statement. We override
this assumption if the account type is “Checking” or “Savings,” in which case we’ll need to use
the SQL statement. We saw both of those SQL statements ear-
lier, so you should have a good idea how they work. So, we execute whichever SQL statement is
appropriate. We know that we’ll get a single row back with a single field in it, the field,
and it’s that field’s value that is returned from this method.

FinanceMaster.js
The next source file to look at is . In the past, the file named after the project
has been, in many ways, the “main” bit of code for the project. To the degree that initialization
happens here, it’s still sort of true in this project, but most of the real work is done outside this
file, so it shouldn’t take too long to get through this file. Let’s begin in the customary way and
check out the UML diagram in Figure 9-10.

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 519

Figure 9-10. The FinanceMaster namespace

Earlier you’ll recall that I talked about the pub/sub model and how that would be required
to make this project work. Well, to make that model work requires only one thing:

The is an Ext JS extension that provides the common message proces-
sor we discussed earlier. This is the component that exposes the and
methods this paradigm requires. We won’t look at the code behind this extension because it’s
an extension after all and we should be able to drop it in and use it like we do Ext JS itself. But
we’ll see it in action plenty of times as we explore the code.

After that we have a custom storage provider, just like we’ve seen before:

This time around it’s the positions of the portlets that we’re interested in saving, and we’ll
keep them around for a year.

Just like in previous projects we have data s that react to various events, but we also
have the situation during initialization where we don’t want to process those events. So we
again have a variable to tell us when the s should process those events and when they
shouldn’t:

Next up we have a field named :

This field stores the positions of the portlets within the portal. Notice that this is a multi-
dimensional array. Each of the elements in the top-level array is a column. The elements
within each array are the name of a portlet in that column. The initial values here are the
defaults before the user moves any portlets around.

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER520

The next two fields store a reference to the currently opened and
, if any:

The next bit of code is something new and exciting! An annoying shortcoming (some
would say) with Ext JS is that when you disable a form field, the label for that field is not simi-
larly disabled. I prefer the label be disabled, and the way to accomplish that is to override the

 and methods on the class:

In fact, we don’t want to override what those methods do; we simply want to add some
functionality to them. To do this, we wrap the invocation of those methods in an interceptor
and add our code that way. It’s a simple matter of adding or removing the
style class and we’re good to go.

Initializing the Application
The next bit of code is the method. This is somewhat long, so I’ll break it up into nice
bit-sized chunks for your consumption, beginning with this one:

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 521

Here we’re initializing data access as always and aborting initialization if any problems
occur.

the user can choose one to open:

I think that probably doesn’t need much explanation, but the next bit of code certainly
does:

To make it easier to build the UI we need to construct two arrays, one for each column in
the UI. For each column we need to discover, based on what the user has done, which portlet
is in each possible position. What I mean by position is that if you consider that you have two
columns on the screen where portlets can live, and you have four total portlets, that means
you could have any number of portlets in a given column, from zero to four. That means each
column has four conceptual positions where a portlet can go. So, for each of the two columns

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER522

we check to see what portlet is in each of the four possible positions, if any. The
method does that for us. Let’s break out of the method temporarily and get a look at

 right now:

This method begins by iterating over the two possible columns. For each it tries to
retrieve a cookie named , where is either 0 or 1. If the cookie is found,
we then need to see if its value is a single space character, which is a special case for when all
the portlets are in the other column. If it is, then we instantiate a new empty array; if it’s not,
we the value of the cookie, which is a comma-separated list of portlet names present
in that column. In either case we wind up with an array, which now becomes the value of the
element in the array corresponding to the column we’re trying to load. If
the cookie isn’t found, the default value found in will be used.

Finally, we read the element in corresponding to the portlet position
that the caller requested information on. Remember how this method is being called: in
the code is requesting what portlet is present in a given position, and the position is denoted
by the column number and position within the column. Using the value of the element from

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 523

, we try to get a handle to the namespace associated with the portlet and call
the method in it to return an Ext JS UI configuration object for a . It’s that
reference that is returned, or if the namespace isn’t found.

Now we can get back to itself. The next step is to create the :

 is back once more, and the first thing we have defined is a
north region. Its content is just some simple HTML, a table to be precise, where we have the
application logo on the left and a link to open a new portfolio on the right.

Following that is the required center region, and that’s where the portal itself sits:

The xtype is supplied by the portal extension in the file.
Like the code, we won’t be looking at the extension code in the same way that
you typically don’t (often at least) look at the code behind the class in Java or the

 available in C++. We just want to be blissfully ignorant and make use of it, and
that’s what we have here.

You define a layout as you see fit inside the portal. In this case, as I’ve mentioned before,
we have a two-column layout. Each column is given 50 percent of the width of the screen, and
some padding is added so things get spaced out nicely. The array for each column is the
value of the we generated right before this, so as you know, what you have here
is an array of config objects.

The result of all this can be seen in Figure 9-11, where the default layout of portlets is
shown.

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER524

Figure 9-11. The four portlets of the apocalypse

With the layout defined, we have some further work to do to make this layout complete:

Remember when we looked at that I said I managed to do something a little
different with the ? Well, here it is! In this project, s zoom in from the bottom
of the screen. To make this work, the style attribute of has to be set dynamically
because we don’t know the height of the browser window to begin with. So, we hook into the

 event of the , within which we can call to get
the current dimensions of the browser’s page area. Using this, we can use the
method on the Ext JS wrapper object around to set the attribute accord-
ingly. The event fires when the is first built, so we can ensure the value is set
correctly right away, and it’ll fire any time the user resizes the browser too so we know the
value will stay up to date.

Another event we have to handle is the event, which is provided by the portal
extension:

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 525

This event fires any time the user drags a portlet around and finally releases the mouse
 to set the new position. When this occurs, we have a couple of tasks to complete. First,

we need to remove the portlet from its previous position in the array. So, we
use the method added to the array prototype by Ext JS to find out where it is, based
on the ID of the that was dropped. Assuming it’s found, the basic array method
gets rid of it. After that we have to insert the portlet into its new position, and once again,

 does the trick. The next step is to write out the cookie values for the two columns.
To do this we take the element in corresponding to each column and use
the array method to create a comma-separated value from it. Now, if this value winds
up being empty, as determined by , then we need to write out that special single
space character because both cookies must always have some value; otherwise the UI breaks

persisted.

Completing Initialization
A few more miscellaneous tasks are required to complete initialization, beginning with this:

The previous code sets our custom storage provider as the default for Ext JS’s usage.
We’re also very familiar with these two lines of code, setting up our validation message to

be displayed on form fields:

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER526

These three lines of code close out the method:

 as seen in previous screenshots. The second
tells the data s they can begin processing events. The last one is the first time we’re see-
ing the message bus used. Here we’re publishing an “InitComplete” message. You’ll see later
that each of the portlets subscribes to this message so that they can do some first-time initial-
ization, but keep in mind that the code in isn’t directly calling on the portlets, since it
doesn’t know for sure which are present. That loose coupling (or no coupling really!) is the big
advantage of the pub/sub model. In this case there isn’t any data to pass to the subscribers, so
only the message itself is passed to the method.

OpenPortfolioWindow.js
The shown to the user to determine which portfolio to open (and doubling as the
mechanism by which to create new portfolio) is found in the file. You
can see its diagram in Figure 9-12.

Figure 9-12. The FinanceMaster.OpenPortfolioWindow namespace

We begin with the ’s config object, which I’ll break up a bit to make it less
overwhelming:

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 527

We start with a pretty basic config here. The array begins with a with
some instructions telling the user what to do.

After that comes a :

We have a where the existing portfolios are listed. This widget is bound to the
 we saw populated a while back in . Note that the attribute is

set to , which allows the user to type data in the text box area. This is required because this
 does double duty: the user can select an existing portfolio or can enter the name of

a new one. The below that is where the user enters the password for the portfolio.
Notice that the form has set to , and also notice that both of the fields

have set to . So, the s on the bottom will be disabled unless there is
a value in both form fields, as you can see here:

The s themselves are like most we’ve seen before and just call out to some other
:

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER528

 method, passing
it the portfolio name and password entered by the user. It may seem for a moment like this is
a superfluous bit of indirection. After all, why not just call directly from the

’s handler and do away with the need for at all? The reason is that the func-
tionality provided by is needed in two places, so doing it this way allows us to
share that code and save our fingers some typing!

Assuming returns , the portfolio is successfully opened, then the
 is closed. At that point the user is all set to begin making money.

However, if the user fails to enter a valid password for the selected portfolio, the message in
Figure 9-13 appears.

Figure 9-13. Possible hacker, possible hacker, go away, come again some other day!

The other , the one the user clicks to create a new portfolio, has its functionality
fulfilled by the method:

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 529

The first thing we need to do is see if the name the user entered is already in use. The way
I decided I wanted the application to handle this is to simply try to open the portfolio, rather
than displaying an annoying message like “Hey moron, that name is already in use, try again!”
So, the same call is made that we saw in .

However, if the name isn’t found in the list of existing portfolios, then we create a new
 with the entered name and password. That is then added to

the , which results in it being written to the database by virtue of the event
firing on the . Finally, we call to open it. Note that checking
the return code should be pointless here because we know the portfolio exists and that the
password here is correct, but we’ll do it anyway, just in case some funkiness ensues.

The final method is itself:

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER530

The first step is to try to retrieve the from the . If
the record is found, the password is then checked. Assuming the password matches, the

 field is pointed to the
is published. This time we have some information to pass along, namely the
itself. (There’s no reason it has to be passed, since points to it anyway and
any subscriber could get to it that way. But I wanted to demonstrate data passing as part of a
message.) If the password doesn’t match, then the message we saw a little while ago is shown.

Figure 9-14 shows the result if the isn’t found.

Figure 9-14. The user entered a bogus portfolio name.

We kindly give the user some helpful information on why this might have occurred and
what they might be able to do to correct it (see, who says usability doesn’t matter?).

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 531

PortfolioOverviewPortlet.js
Now let’s look at the code for our first portlet. The portfolio overview portlet is the one that
lists all the accounts in the portfolio and their balances. It is also where we can add and delete
accounts. Although there are not a lot of members in the namespace, as Figure 9-15 shows,
there’s a fair amount of code in it nonetheless.

Figure 9-15. The FinanceMaster.Portlets.PortfolioOverview namespace

We’re going to have the ability to add accounts here, which means we need the ability to
select an account. So, we’ll need a that we can bind to a for that purpose:

We do the same as in the past: by using an array as the source of data to populate the
. This is pretty simple, clean, and effective.

Defining the Portlet’s UI
Up next is the method, called to get the configuration object for the that is
the portlet (any portlet is just a , so we can do any Ext JS-ish stuff we want within it).

This covers the basics for us. This particular portlet will be a only, so using the
 layout ensures the fills the . After that we find the definition for the itself:

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER532

A couple of new things are shown here. First, the Current Balance column is right-aligned,
which is typical of monetary fields. Second, that same field uses the attribute. This
attribute allows us to specify a function that will essentially intercept the value in the column
for a given row before it is rendered and allows us to do whatever we like with it. Here, the

 is actually an Ext JS–supplied function that will format a numeric
value as a US currency value (making this application less than useful for users in other coun-
tries, but hey, there’s a good exercise for you to undertake!).

The next step is to hook into the event:

When an account is selected, the Delete Account is enabled, and the
 field gets a reference to the that was selected. Finally, the

the activity for the account and the account history portlet to update its chart.
The Delete Account that was just enabled is part of a top toolbar on the . Its def-

inition begins with the definition of the other you see on the UI, the Add Account :

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 533

The handler for this is where all the action is, as you can see for yourself:

A is opened that contains a . This form has two fields. The first is a
where the user enters the name of the account, and the second is a where

the user selects the type of the account. The is bound to the we saw populated
earlier. Both of these fields are required; therefore, they have set to , and the

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER534

form itself has set to . Two ,
which has set to so that it will only be enabled when both fields have been
entered, and Cancel, which the user clicks to abort adding a new account. This can be
seen in Figure 9-16, where I’ve also expanded the ’s options for you to see.

Figure 9-16. Adding a new account and determining its type

In Figure 9-17 you can see what happens when the user hasn’t entered a value in the type
field, and the user’s mouse pointer hovers over the error indicator icon.

s call on when
clicked, but for now let’s continue looking at that toolbar definition. Next is the Delete Account

:

This is another simple definition, but of course it starts out disabled until an
account is actually selected. The method we’ll see a bit later too. That actually
concludes the UI config object for this .

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 535

Figure 9-17. Oops, try again, dude!

Adding an Account
 in the add account is clicked, the method is called:

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER536

The first step, naturally enough, is to get the values of the form. Next, we attempt to retrieve
the with the name the user entered. If it’s found, we display a to tell
them the name is already in use. If the is not found, a new one is created and
added to the . This triggers the events, which causes the data to be saved to the
database. Finally, the add account is closed and the UI automatically gets updated based
on the having a new record added.

Deleting an Account
Deleting an account isn’t too tough, and it is a task handled by the well-named (if I do say so
myself!) method:

First we confirm that the user really wants to delete the account. Assuming the user clicks
the Yes , we call the method of the , passing in a reference to the

 currently selected in the accounts . That causes the event to fire on
the , which results in a call to the method in the data access layer, and
the account (and all its activity records you’ll recall) are removed from the database. We also
need to re-disable the Delete Account . Finally, the “AccountDelete” message is pub-
lished, since other portlets may need to update themselves based on this change (such as the
account activity and account history portlets, which will collapse themselves in this case).

Reacting to Events
To complete this portlet, we need to handle a couple of messages, which is another way of
saying we need to react to a couple of events (remember that messages being published is
basically synonymous with events firing). The first that we’ll begin with is the “InitComplete”
message, which as you’ll recall is published when the method completes. So, we have
a call on the message bus for that message:

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 537

The only task here is to collapse the portlet. This is done because I found there were
sometimes rendering glitches if the portlet starts out collapsed, resulting from sizes not being
calculated right because the element isn’t visible at the time (a fairly common issue in any
JavaScript-based UI construction). So I start them all out expanded and have them response
to the “InitComplete” message by collapsing themselves. In addition to avoiding the rendering
glitches, it starts the application in an “active” way, vis-à-vis, using some animation. This is
just a somewhat more interesting startup transition, that’s all.

when the user selects a portfolio to open (or creates a brand-new one):

In this case, the first chore is to expand this portlet, since seeing the overview of the
accounts in the portfolio is an obvious thing to do. Next, we grab the that
is passed into the method. When a message is published on the message bus, you can pass
any data you like after the message itself, and you can pass as much as you like. The function
that is passed to the method gets all of those arguments to the method
passed along to it (minus the message itself). Since every JavaScript function inherently has
access to an array, that’s how we can get a hold of that data. Alternatively you
could use named arguments; it would work just as well, but sticking with the array
enforces the idea that the list of arguments can be dynamic.

In any case, here we only have a single argument, the , so it’s the first
element in the

 method, passing it the name of the portfolio, to get the list of

array and add each of the objects to the . We have to be sure to
(a) clear the first by calling and (b) turn event processing off for

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER538

the while we’re loading the s; otherwise, we’ll get add events firing for
each, which would result in duplicates added to the database.

PortfolioDistributionPortlet.js
The next portlet we’ll look at is the portfolio distribution portlet. This is the portlet responsible
for showing a pie chart that visually conveys how the assets in the portfolio are distributed
between the various account types. Let’s begin with some UML, as shown in Figure 9-18.

Figure 9-18. The FinanceMaster.Portlets.PortfolioDistribution namespace

As you can see, this portlet is considerably simpler than the last. It begins with its own
:

This is the that will be bound to our pie chart. For now it is empty, but we’ll see
where and how it gets its data shortly.

Defining the Portlet’s UI
First, though, let’s see the UI configuration:

That’s about as simple as it gets! You may be wondering where exactly the definition of the
chart is. In point of fact, it is created dynamically a little bit downstream of here. Before we get
to that, though, have a gander at Figure 9-19 to see what this portlet looks like.

You’ll notice the tooltip showing details for the larger of the pie wedges. This appears
when users hover over it with their mouse.

Note It does not appear possible to put this information statically on a pie chart, which to me is a real
shortcoming. I asked around on the Ext JS forums about this and no one could tell me how to do it. Reading
through the documentation doesn’t give any clues either, so it appears to not be possible. Hopefully a future
version will provide this capability.

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 539

Figure 9-19. Hovering over the chart to see the underlying data

Refreshing the Chart
The real workhorse for this portlet is its method and, oh look, here it comes
now:

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER540

The first step is to clear out the . Unfortunately, I ran into a nasty problem
when I tried to do the more logical on it: a JavaScript error kept things from work-
ing. I found that to get around it I had to re-create the entirely as done here. Annoying
and inefficient, but it works!

The next step is to instantiate a that we’ll populate with elements keyed
by account type. For each we’ll store the accumulated balance across all accounts of that type
within the portfolio. Then, we iterate over the collection of accounts and for each we get its
type. We attempt to retrieve the element in the for that type, and if it’s there,
we get the balance. If no such element is found, then this account must be the first of its type.
In either case, we add the balance of the account to the accumulated balance and put the ele-
ment back in the , overriding the previous element if it was there.

, since that’s what the chart is
bound to and where it gets the data it’s charting from, so we go through the
and create an for each. This is effectively co-opting the , since
what we’re storing isn’t actually an account. However, the and fields are present,
so it’s a decent choice.

Next, we try to retrieve a reference to the chart. If it’s found, we call the method
on its container, which destroys it. Then, we create a new and add it to the container.
Finally, a call to the container’s method gets the chart drawn on the screen.

Note This destroying and creating of the chart also seemed to be a necessary evil to make things work
fairly consistently. While the charting support in Ext JS is very nice, powerful, and simple, my hope is that
future versions solidify it a bit. In the meantime, I suggest you exercise a certain amount of caution in using
it because you’ll likely face little nagging issues like I experienced until a future release.

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 541

Reacting to Events

“InitComplete” message handler:

The portlet is first expanded, and then the passed in is retrieved. The
 method is called and the chart is drawn as a result.

The “ActivityAdded” message also needs to be handled because the chart will have to
change any time activity is added to any account in the portfolio:

 is called, but this time the wasn’t passed
in so we need to use to do the same job.

Finally, the “ActivityDeleted” message also needs to be handled:

It’s identical to the “ActivityAdded” handler, for obvious reason!

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER542

AccountActivityPortlet.js
The next portlet we’ll examine is the account activity portlet, and you can see its UML diagram
in Figure 9-20.

Figure 9-20. The FinanceMaster.Portlets.AccountActivity namespace

This portlet begins with its own internal data , which is nearly identical to those
we’ve seen elsewhere in this project and in other projects:

As you can see, it’s the typical basic with the and events handled to tie it
back into the data layer and eventual persistence in the Gears-based database.

Defining the Portlet’s UI
The configuration object for this portlet’s UI is fairly lengthy, so we’ll go over it bit by bit so you
can build up an understanding of it. We begin with this fairly sizable chunk:

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 543

This is the for displaying the list of
it’s not exactly a now, is it? Here we’re using a new Ext JS component called a .
A is a more lightweight and efficient version of the . It doesn’t have all the capa-
bilities that the does, but it’s faster and more memory-efficient and is a great choice when
you don’t need all the capabilities a provides but you still have data to display in a table-
like format. The also does not provide horizontal scrolling as the does. Instead,
the widths of the columns are initially proportioned by percentage based on the container
width and the number of columns.

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER544

As you examine the configuration you’ll see it looks an awful lot like a that we know
and love. In the case of the , however, the columns have width attributes that are frac-
tions of 1. So as you see on the first three columns means the initial width of the column will
be one tenth, or 10 percent, of the total width of the .

Here we also have some formatting to do on each of the columns. To do so we supply the
 attribute, an template format specification.

For the first column we use the operator to format as the field of the
 being rendered.

For the other three columns, we need to do some conditional logic to determine whether
or not a value is rendered in the field. This is because the must be able to show activ-
ity for all types of accounts. But you’ll recall, for checking and savings accounts the can
be positive or negative, and based on that, the value should show up correctly in either the
Deposit or Withdrawal column, but not both.

For other types of accounts, it’s the field we’re interested in. This value needs
to go in the New Balance column, but then the Deposit and Withdrawal columns should be
blank. So, we use the tag (which is one of the tags the facility provides) to
make the appropriate determination.

For the deposit field, we’re checking to see if the field in the is
greater than or equal to 0, in which case the value goes there. The Withdrawal field checks to
see if is less than 0, and if so it goes there instead. (Note that the conditions on those
two fields exclude the possibility of the value showing up in both. Also note that if there
is no value in the field, then neither column will be populated.)

Likewise, if the field has a value greater than 0, then the value is inserted into
that column.

Using this attribute and the formatting functions means we don’t have to
write complex logic to do any of this work ourselves. We don’t have to conditionally populate
the s, for example; we instead let the make the determinations for us
and populate the data as needed.

The next bit of configuration defines the that will be used to add new activity. You
can see this in all its majesty in Figure 9-21.

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 545

Figure 9-21. Selecting a date for a new account activity record

As you can see, there is a involved here, along with some other stuff. That stuff
is apparent in the configuration for the , which is inside the callback for the Add
Activity :

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER546

This first bit is where we find the ’s configuration beginning. All of the attributes are
the usual suspects, and the first item in the array is simply some instructional text. What
follows that is the definition of the where users make their entries:

So, it’s probably about what you’d expect, or so I’d hope at this point in the book! We have
some s for entering a deposit and withdrawal amount, one for entering a new bal-
ance, and one for entering a description of the activity. There is, of course, that at
the top for selecting the date the activity occurred.

new balance fields all available is not the best UI design because which of those fields the user
enters date in is dependent on the type of the account. Rest assured, the correct field(s) will be
enabled and disabled as required.

Also note that only the has set to , so only that field appears
to be required. In fact, some of the others are as well logically, but we’ll have to deal with that
when the user tried to save the activity, as we’ll see shortly.

To finish up the definition of the Add Activity we find that there are two s:

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 547

The methods they call on will be explored shortly. However, there’s still some work that
needs to happen immediately after the is constructed—enabling and disabling form
fields as required:

The code is quite straightforward. Remember that override we saw in
that allows the labels of the form fields to be disabled along with the fields themselves? Notice
that there’s nothing special we need to do in the code here—the override takes care of it just
fine.

With the Add Activity code taken care of, the only thing left is a final bit of UI con-
figuration for the portlet’s main : the Delete Activity .

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER548

Keep in mind that all the code we saw for the Add Activity was within the
for the Add Activity , but that was all part of the of the portlet’s main , as is
the Delete Activity . A simple callout to the method is all it takes—and
what a coincidence, that’s the very next piece of code in this source file!

Deleting an Activity Record
The method is the next thing we come across as we traverse this source file,
and as we saw, it’s called when the user clicks the Delete Activity :

The function is used to make sure the user really wants to
delete this activity record. The confirmation pop-up is shown in Figure 9-22. If the user con-
firms the deletion, then the is consulted to get a reference to the selected .
That gives us what we need to call the method on the . This updates
the UI and the database as a result of the event firing on the .

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 549

Figure 9-22. Confirming activity record deletion

There are just a couple of cleanup tasks to complete, which amounts to disabling the
Delete Activity and getting the newly calculated balance of the account, which is set on
the . Finally, the “ActivityDeleted” message is published so that the rest of the
portlets can update themselves as necessary.

Adding an Activity Record
Adding an is the next logical thing to look at; otherwise we’d have nothing for

 to delete! Here’s the code that accomplishes that task, or rather, the first part
of it:

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER550

The code begins by getting the values of the form in the opened for adding activity.
Note that the has to be gotten individually because the attribute of the
object is a string, not a JavaScript object, which is what we’ll need here.

that either the Deposit or the Withdrawal field has a value in it. If that validation passes, we
then check to be sure that a Deposit, Withdrawal, or New Balance has been entered. Remem-
ber that the fields have been enabled and disabled according to the account type, so basically
one of these tests will always be redundant since the situation could never arise anyway.
But there’s no harm in double-checking (other than a few CPU cycles, but these aren’t the
C645 days, so we have some to spare). If this later validation fails, the result is what you see in
Figure 9-23.

Figure 9-23. The amount or new balance is required, depending on the account type.

 5 The C64, short for the Commodore 64, is the best-selling personal computer of all time. It was an
8-bit machine released in the mid-80s that had a blazing (ahem) 1MHz CPU and a spacious 64Kb of
memory. Many of us really learned about computers with a C64, and while I’ve met lots of great coders
who never owned a C64, I’d say that every good C64 programmer is now one of the best programmers
around. And in proper C64 tradition, here’s a greetings “scroller”. . . Infiltrator, FBR, RAD, Newage,
NWA, LTL, and all the folks who frequented The Lost Caverns and The Cove BBSs.

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 551

Assuming the validations pass through, it’s time to go about creating the
and associated database content:

Here we’re getting the time off a new object and using it as the unique key of the
record. Next, we get the value of the attribute of . Now, if the result of that is the
variable amount being , and if the attribute of is also , then we know
it was a withdrawal amount that was entered. So we multiply by –1 to get ourselves a
negative number. If it was a deposit, then the variable is already a positive value, so
we’re all set.

Next, a new is constructed and populated with the entered data, and that
record is added to the . The event fires as a result and the data is written out
to the database via a call to . Finally, the is closed.

A few more tasks are needed at this point:

The balance of the current account is recalculated and the “ActivityAdded” message is
published so that all interested subscribers can do their thing (such as the portfolio distribu-
tion portlet’s chart being redrawn).

Reacting to Events
A couple of events need to be handled here as in the previous portlets, beginning with
“InitComplete”:

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER552

As before, we need to collapse the portlet since it is initially expanded, to avoid the render-
ing problems we previously talked about.

Since no account will be current when a portfolio is first opened, we need to collapse this
portlet in response to this message. We also need to ensure that the Add Activity and Delete
Activity s are disabled to begin with, so that is done as well.

First, the portlet is expanded and the Add Activity and Delete Activity s are enabled.
Next, we get the that was passed along as part of the message publication
and retrieve the activity for it. We take the array returned by the call to

 and add each in it to the ; we make sure we
turn off event handling during the load.

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 553

To round out the message handling is the code that executes in response to the
“AccountDelete” message being published:

All this handler has to do is collapse the portlet and disable the two buttons and its job
is done.

AccountHistoryPortlet.js
The final portlet to examine is the account history portlet, and by and large, it’s just like
the portfolio distribution portlet. Figure 9-24 is the ubiquitous UML class diagram for the
namespace associate with this portlet.

Figure 9-24. The FinanceMaster.Portlets.AccountHistory namespace

Just like the portfolio distribution portlet, we’ll be drawing a chart here, and the chart
needs to be backed by a data :

Defining the Portlet’s UI
Also like that other portlet is the basic UI configuration, sans the chart:

As was the case with the portfolio distribution portlet, the UI configuration is extremely
simple and Spartan—the good stuff is in the method.

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER554

Refreshing the Chart
We again have a method that takes care of getting the chart onto the screen.
We’ll break this up a bit since it’s fairly lengthy:

We re-create the , in the same way and for the same reason as we
did for the portfolio distribution portlet. Next, the
method is used to get an array of s for the account.

The goal of this chart is to show every in chart form, so the next step is
to take that array and populate the from it:

Note the branching logic done based on the type of the account. For checking and savings
accounts we need to calculate the balance of the account for each . Remember
that the field can have a negative or positive number, for withdrawals and deposits cor-
respondingly. Since the chart is going to be a line graph—where each point on the line is the
balance of the account after applying each ’s amount in chronological order—
this works out very well.

Notice that the is coming into play here. This is again strictly for the pur-
poses of the chart so that we’re showing a formatted date rather than the default JavaScript

 version of a object (which is very long and would make the chart look horribly
cluttered).

For other types of accounts, the logic is a little different:

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 555

Here we are simply copying the field to the that is added to
the , since that field actually is the balance of the account after each activ-
ity record is applied.

The next step is to re-create the chart:

present and then add a whole new chart, this time a
 field and on the y-axis is the field, so the line goes in chronological order left

to right (because that’s the order the SQL specifies the results should be sorted in).

Reacting to Events
After that are a couple of message subscriptions:

Again, the portlet needs to be collapsed once the application initializes. Also, when a
portfolio is first opened we need to collapse the portlet as well since the account is initially

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER556

When an account is selected, it’s time to call on the method, as you can
see here:

It’s also necessary to expand the portlet in response to that message.
Another situation that impacts this portlet is when an account is deleted because it will

necessarily be the account that is currently displayed in this portlet (because it’s clicking an
account in the portfolio overview portlet, and thereby making it current, that generates the

All that we need to do in this case is collapse the portlet, so it’s a quick and easy message
handler.

Similarly, adding activity to an account needs to result in the chart being updated, and the
“ActivityAdded” message informs us of that situation:

A simple call to is all it takes.

CHAPTER 9 MANAGING YOUR F INANCES: F INANCE MASTER 557

Similarly, when an is deleted from the account, the “ActivityDeleted”
message is published and handled here:

The chart needs to reflect this change as well, so is once again called and
that’s a wrap!

Suggested Exercises
So, if you want to compete with Quicken, there’s certainly plenty of opportunity for extend-
ing Finance Master, all of which could be excellent learning opportunities. Here are just a few
suggestions:

Add a new portlet and allow the ability to remove and add it, along with the portfolio dis-
tribution and account history portlets. You’ll have to come up with a UI mechanism to list
available portlets and allow the user to add them, as well as add some sort of close
to those portlets (the portfolio overview and account activity portlets probably need to
always be present).

Add the ability to delete portfolios. Admittedly, I just got lazy and didn’t add that feature!
Also, how about being able to change passwords on a portfolio?

Provide the capability to edit existing accounts and activity records. This is trickier than
you think because the account name is the key of the accounts table, so you’ll first have to
modify the database structure to use a unique key for each, as in the activity table. But I
know you’re up to it!

Summary
And with this chapter, your journey through the world of Ext JS, courtesy of this book, is com-
plete! I sure hope you’ve enjoyed the ride and learned a bunch in the process. I’d like to thank
you for buying this book and more important, spending your time on it, and I hope you find it
to have been a worthwhile experience.

I’ll leave you with this thought: if you’ve enjoyed my book half as much as I enjoyed writ-
ing it, then you enjoyed reading it twice as much as I enjoyed writing it.

Hmm, wait, maybe that’s not quite right. Eh, I’ll go work on the Venn diagram to get this
right—you go have a bunch of fun working with Ext JS!

559

Symbols
@ (at sign), 26

A
abort() method, 44
About dialog

OrganizerExt sample application and, 138
TimekeeperExt sample application and,

201, 231
About Window, SQL Workbench sample

application and, 375, 382
Absolute layout, 171
Accordion layout, 67

LocalBusinessSearch sample application
and, 340, 350

OrganizerExt sample application and, 131,
171, 187

AccountActivityPortlet.js file, for Finance
Master sample application, 542–553

AccountHistoryPortlet.js file, for Finance
Master sample application, 553–557

activeItem configuration option, 60
add event, 159, 160
add event handler

CabinetExt sample application and, 274
TimekeeperExt sample application and,

210
add() method, 22, 30

LocalBusinessSearch sample application
and, 339, 346

Stores and, 104
TimekeeperExt sample application and,

215
addAccount() method, 535
addActivity() method, 551
addBehaviors() method, 26
addButton() method, 165
AddCategory() method, 286
addClass() method, 115
addDatabase() method, 389
addListener() method, 459, 465
addMult() method, 30
addSnippet() method, 289

AddToFavoritesClick() method, 345
Ajax, 9–13

Ext namespace and, 34
XMLHttpRequest and, 312

alert() method, 21, 30, 35, 80
CabinetExt sample application and, 278,

280, 288, 302
prototypes and, 279

allowDecimals configuration option, 81
allowNegative configuration option, 81
alphanum vtype, 86
alpha vtype, 86
AnchorLayout, 72

OrganizerExt sample application and, 171
SQL Workbench sample application and,

424, 427
AOP (aspect-oriented programming), 31
AOSD (aspect-oriented software develop-

ment), 31
append() method, 38, 108
appendChild() method, 456

TimekeeperExt sample application and,
237

TreeNode and, 92
appid parameter, 317
appInit() method, 114
applications. See web applications
apply() method, 27, 87

prototypes and, 279
templating and, 108, 109

applyStyles() method, 39, 524
applyTemplate() method, 109
applyTo configuration option, 60
appointments (OrganizerExt sample applica-

tion), 131, 141, 147–152
Accordion layout for, 172
creating, 167

AppointmentRecord field, 154
appointmentsStore field, 154
Array class, 21
arrowIndicator field, for Dueling Cards

sample game, 451
arrows, Toolbars and, 90

Index

INDEX560

aspect-oriented programming (AOP), 31
aspect-oriented software development

(AOSD), 31
at sign (@), 26
attachIconTooltips() method, 339, 343
autoAbort property, 35
autoExpandColumn configuration option,

181, 182
autoExpandMax configuration option, 182
autoExpandMin configuration option, 182
autoHeight/autoWidth configuration option,

60
autoLoad configuration options, 75

B
Banfield, Steve, 10
bar charts, 118
baseChars configuration option, 81
beforeshow event handler, TimekeeperExt

sample application and, 234, 242,
249, 254

beginEdit() method
CabinetExt sample application and, 299
TimekeeperExt sample application, 244,

251
between() method, 23
binding, 94, 101
BLANK_IMAGE_URL property, 24
body tag, 135
BorderLayout, 65, 171

LocalBusinessSearch sample application
and, 340, 350

menus and, 232
OrganizerExt sample application and, 179
vs. TableLayout, 70
TimekeeperExt sample application and,

218, 222, 228
vs. Window widget, 376

BoxComponent class, 58
buildUI() method

CabinetExt sample application and, 281
LocalBusinessSearch sample application

and, 338
OrganizerExt sample application and,

158, 187
TimekeeperExt sample application and,

216

C
CabinetExt (sample application), 259–308

adding features to, 308
CodeCabinetExt.js file for, 275–282
code for, 264–307
markup for, 263
structure of/files for, 261

calculateStatus() method, TimekeeperExt
sample application and, 223, 224

call() method, 279
capitalize() method, 46, 229
cardBacks directory, for Dueling Cards

sample game, 444
cardFaces directory, for Dueling Cards

sample game, 445
CardLayout, 69, 171

CabinetExt sample application and, 289,
293, 306

OrganizerExt sample application and, 179
TimekeeperExt sample application and,

219, 222, 228, 234, 237
cards, creating for Dueling Cards sample

game, 459
card stack images, creating for Dueling

Cards sample game, 458
categories

CabinetExt sample application and, 260,
268

creating/deleting, 288
subcategories and, 308

category property, 151
CategoryAxis class, 34
categoryList field, 154
center region

LocalBusinessSearch sample application
and, 340, 350

OrganizerExt sample application and, 179
TimekeeperExt sample application and,

219
changeCategory() method, 174, 188, 191
changeViewMode() method, 189
charting support, caution with, 499, 540
charts, 118
checkbox input field, 77
Checkbox widget, 78

Radio widget and, 82, 175

SQL Workbench sample application and,
378

checked configuration option, 89

INDEX 561

check event, 174, 178
check event handler, TimekeeperExt sample

application and, 219
classes, 20–34
clear event, 160
clearSelections() method, 360
click event handler, CabinetExt sample

application and, 291
clickToChange config option, 99
client-side mashups, 315
clientvalidation event handler, Timekeeper-

Ext sample application and, 238–241,
245, 252

closures, 157
cls configuration option, 60
CodeCabinetExt.js file, 262, 265, 275–282
code snippets

development and, 13
sample application for storing, 259–308

ColorPalette widget, 96
column charts, 120
column layout, 171
columns configuration option, 83
ComboBox widget, 83

bug involving arrow alignment and, 144
OrganizerExt sample application and, 177
TimeField widget and, 84
TimekeeperExt sample application and,

238–243, 248–254
compile() method, 43, 109
Complete Task button, 140
Component class, 58

Manager singleton and, 117
plug-ins and, 123

ComponentMgr class, 58
components. See widgets
configuration options, for widgets, 60
confirm() method, 290, 548
console.log() method, 42
constrain() method, 31
constructor property, 279
constructors, 60
ContactRecord field, 154
contacts (OrganizerExt sample application),

131, 141, 147–152
Accordion layout for, 175
filtering by status, 178

contactsStore field, 154
Container class, 58, 62

containers, 62–75
menus and, 89
for OrganizerExt sample application, 170,

171, 179
content property, 151
CookieProvider() method, 118, 336, 339

CabinetExt sample application and, 281
SQL Workbench sample application and,

380
copy() method, 216, 224
copy operation, databases and, 411–415
create() method, 101, 161
createAccount() method, 515
createActivity() method, 516
createAndPositionIndicators() method, 452,

460
createCardDescriptor() method, 460
createCardStackImages() method, 452, 458
createCategory() method, 268, 288
createDataStores() method, 157, 158
createInterceptor() method, 30
createNewAppointmentDialog() method,

157
createNewContactDialog() method, 157
createNewNoteDialog() method, 157, 163
createNewTaskDialog() method, 157
createNote() method, 150, 159, 165
createPortfolio() method, 514
createProject() method, 207, 237
createRecordDescriptors() method, 157
createSequence() method, 30
createSnippet() method, 270
createStyleSheet() method, 44
createTableExecute() method, 399
createTable() method, 398
CreateTableWindow.js, 397–403
createWorkerFromUrl() method, 486
createWorker() method, 486
critical chain methodology, 196
critical path schedules, 196
CRUD (Create, Retrieve, Update, and Delete)

OrganizerExt sample application and, 146
TimekeeperExt sample application and,

206
CSS class, 44
CSS selector queries, 39
cssAbout class, 378
cssAbout selector, 141, 202
cssAltRow selector, 326
cssDDHover class, 447
cssDDNoHover class, 447

INDEX562

cssDefault selector, 141
cssDetailsTable selector, 142
cssPleaseWait selector

CabinetExt sample application and, 264,
278

OrganizerExt sample application and, 141
TimekeeperExt sample application and,

202
cssProgressBarFill selector, 203
cssSource class, 377, 447
cssSource selector

CabinetExt sample application and, 264
OrganizerExt sample application and, 141
TimekeeperExt sample application and,

202
cssSummaryTableHeader selector, 202
cssSummaryTitle selector, 202
cssTableCell class, 378, 409, 428
cssTableCentered class, 378, 399, 406
cssTableHeader class, 378, 399, 406, 427
currentCategory field, 153

D
DAO class, 144–152, 203
DAO.js file

for CabinetExt sample application, 262,
265–272

for LocalBusinessSearch sample applica-
tion, 327

for OrganizerExt sample application, 133,
144

for TimekeeperExt sample application,
203–209

data binding, 94, 101
data stores. See Stores

Data.js file, for Dueling Cards sample game,
449–452

DataAccess.js file, for Finance Master sample
application, 509–518

Database class, 124
Database component (Gears), 124
DatabaseRecord, 383–395
databases. See also SQL Workbench (sample

application),
adding/removing, 388–391
executing table operations and, 411–415
list of databases and, 386
list of tables and, 376
query tool for, 422–430
table details and, 403–422

DatabasesWindow.js, for SQL Workbench
sample application, 385–393

datachanged event, 160
DataProxy class, 102
DataViews, icon views and, 180
Date class, 22
DateField form, 96
datefield input field, 77
DateField widget, 78
Date().getTime() method, 160
date() method, 22, 46
DatePicker widget, 96, 175
DDProxy class, 115, 452
dealActionCard() method, 475, 476, 481
dealerStackImgClick() method, 459, 475
dealPlayerOpponentCard() method, 476,

477, 481, 495
decimalSeparator config option, 81
decode() method, 49, 284
defaultValue() method, 47
defer() method, 31, 279
deferredRender configuration option, 69
delay() method, 46
DelayedTask class, 45
deleteAccount() method, 516, 536
deleteActivity() method, 517, 548
Delete button, 186
Delete Task button, 140
deleteCategory() method, 269, 288
deleteNote() method, 159
deleteProject() method, 208
DeleteProjectDialog.js file, 254–257
DeleteResourceDialog.js file, 254–257
deleteSnippet() method, 290
DeleteTaskDialog.js file, 254–257
destinationContainer, 114, 115
detail panes, adding buttons to, 186
detail sections

for CabinetExt sample application,
293–301

for OrganizerExt sample application, 182
details, showing for selected items, 191
Details.js file, for LocalBusinessSearch

sample application, 350–357
disable() method, 175, 520
disableCaching property, 35
disabled configuration option, 60
disabledDates configuration option, 97
disabledDays configuration option, 97
divider lines, for menus, 233
div tag, 135

INDEX 563

doBoth() method, 30
document.getElementById() method, 29
doEndGame() method, 481, 482, 493
Dojo, 14
doLayout() method, 430, 540
doMadlib1() method, 108
doMadlib2() method, 108
DomHelper class, 36
DomQuery class, 39–43
doTableOp() method, 406, 411, 415
doTitle() method, 484
downloading Ext JS, 19
drag-and-drop functionality, 109–116, 453
drawActionCardIndicators() method, 462,

481
drop operation, databases and, 411–414
Dueling Cards (sample game), 437–495

adding features to, 495
cardBacks directory for, 444
cardFaces directory for, 445
cards, creating for, 459
code for, 447–495
DuelingCards.js file for, 471–486
directory structure of/files for, 444
game logic of, 471–495
markup for, 446

E
eachKey() method, 52
each() method, 51

LocalBusinessSearch sample application
and, 358

TimekeeperExt sample application and,
216, 221, 224, 251

SQL Workbench sample application and,
391

editable configuration option, 84
Element class, 452–460, 465
Element() method, 455
ellipsis() method, 47
El() method, 454
email vtype, 86
emptyFn property, 24
empty operation, databases and, 411–414
enableGarbageCollector property, 25
enableListenerCollection property, 25
enable() method, 175, 520
enableTabScroll configuration options, 75
encode() method, 49
endDrag event, 115

endEdit() method
CabinetExt sample application and, 299
TimekeeperExt sample application, 244,

251
error handling

JSON-P and, 316
LocalBusinessSearch sample application

and, 331
escape() method, 32
event chain methodology, 196
EvilTed, 213
executeArbitrarySQL() method, 424
execute() method

OrganizerExt sample application and, 150
TimekeeperExt sample application and,

207
expand() method, TimekeeperExt sample

application and, 221, 237
Ext class, 24–29
Ext Core, 55
ext directory

for OrganizerExt sample application, 133
for TimekeeperExt sample application,

199
Ext JS, 16–55

downloading, 19
examples of, 17
Ext Core and, 55
licensing for, 16, 55
plug-ins for, 122
structure of, 20–34
web site for, 19

Ext namespace, 21
classes in, 34–44
widgets and, 55, 95

Ext.chart namespace, 118
Ext.data package, 308
Ext.each() method, 28
Ext.util namespace, 44–55
extend() method, RowSelectionModels and,

213
extensions, 122

F
faceValue field, for Dueling Cards sample

game, 451
fadeIn() method, 433, 483
Favorites.js file, for LocalBusinessSearch

sample application, 358
fieldByName() method, 151
fieldDescriptor, 419

INDEX564

file cabinet application. See CabinetExt
(sample application)

filterBy() method, 180
filter() method, 43
Finance Master (sample application),

497–557
accounts for, 498, 507–520, 531–557
adding features to, 557
code for, 506–557
directory structure of/files for, 500
FinanceMaster.js file for, 518–526
markup for, 501

Firebug, 13
fireEvent() method, CabinetExt sample

application and, 300
fireEvents() method, 35
Firefox, 13
Fisheye lists, 341
FitLayout, 65, 171
Flash-based charts, 500
folders, 90
forceFit configuration option, 182
forceSelection config option, 85
Format class, 46, 302
format() method, 22, 32, 192, 342
formBine configuration option, 164
Form layout, 171
FormPanel widget, 76, 85, 164–169

CabinetExt sample application and, 295
OrganizerExt sample application and, 184
SQL Workbench sample application and,

398, 400
forms, 75–87

SearchForm and, 301
validating, 85

foundTables DataStore, 395
Function class, 30
FX (visual effects), 342, 346

G
gameLoop() method, 488
gamePaused field, for Dueling Cards sample

game, 466
Gantt charts, 195
Garrett, Jesse James, 9
Gears (browser extension), 57, 123–127

CabinetExt sample application and, 262,
268, 280

multithreading and, 54
NoGears dialog and, 156, 201

OrganizerExt sample application and, 149
SQLite Manager and, 371
SQL Workbench sample application and,

371
testForGears() method and, 156
TimekeeperExt sample application and,

204
WorkerPool API, 437, 440–444, 486–495

gears_init.js file, 126
genDecks() method, 473, 474
generateActionImgTag() method, 342
get() method, 44, 52, 472

CookieProvider and, 336, 339
TimekeeperExt sample application and,

207
genRandom() method, 463, 473
getAccountBalance() method, 516, 518
getBody() method, 450, 452
getById() method

CabinetExt sample application and, 292
LocalBusinessSearch sample application

and, 359
getCmp() method, 58, 69

CabinetExt sample application and, 283,
300

Dueling Cards sample game, 466
OrganizerExt sample application and, 165,

184, 189
ProgressBar widget and, 100
SQL Workbench sample application and,

414
TimekeeperExt sample application and,

220, 229, 233, 256
getConfig() method, 523, 531
getCount() method, 360
getDate() method, 22
getDayOfYear() method, 23
getDaysInMonth() method, 23
getDom() method, 29, 39, 43, 183, 192
getDragEl() method, 115
getElapsed() method, 23
getElementById() method, 40
getEl() method, 115, 186
getForm() method, 77, 85

CabinetExt sample application and, 302
TimekeeperExt sample application and,

169, 184
getFullYear() method, 22
getHeight() method, 55
getId() method, 235

INDEX 565

getLayout() method, 69
OrganizerExt sample application and, 189
TimekeeperExt sample application and,

234
getMap() method, 348, 353, 355
getNodeById() method

CabinetExt sample application and, 289,
300

TimekeeperExt sample application and,
257

getPortlet() method, 522
getPosition() method, 117
getRootNode() method, 92

CabinetExt sample application and, 281
TimekeeperExt sample application and,

220, 237
getRules() method, 45
getSelectedDate() method, 57
getSelected() method, 182
getSelectedRecords() method, 181
getSelectionModel() method, 182, 360
getShortDayName() method, 22
getShortMonthName() method, 22
getSize() method, 55, 117
getSuffix() method, 23
getText() method, 186
getUpdater() method, 44
getValue() method, 57

ComboBox widget, 84
HtmlEditor widget, 79
Slider widget, 99

getValues() method, 165, 169
CabinetExt sample application and, 302
TimekeeperExt sample application and,

236
getViewSize() method, 452, 524
getWeekOfYear() method, 23
getWidth() method, 55
global-scope classes, 20–34
Google, Gears and. See Gears (browser

extension)
GPL open source license, 262
Gray Extended theme, 499, 502
Grid widget, 93

SQL Workbench sample application and,
388

TimekeeperExt sample application and,
198, 202, 212, 223–227

GroupingStore, 102, 509
grow configuration option, 78, 81

growMax configuration option, 78, 81
growMin configuration option, 78, 81

H
handlePlayerDrop() method, 455, 480, 481,

482
hasListener() method, 35
Header.js file, for LocalBusinessSearch

sample application, 341–350
head tag, 134
height configuration option, 82
Help.js, for SQL Workbench sample applica-

tion, 430–433
Help menu, TimekeeperExt sample applica-

tion and, 231
hide() method

Dueling Cards sample game and, 456
OrganizerExt sample application and, 165
TimekeeperExt sample application and,

256
hideBorders configuration option, 61
highlight() method, 346
htmlDecode() method, 48
HtmlEditor widget, 79
htmlEncode() method, 48
HttpProxy, 102

I
icon images, 133
icon views

for OrganizerExt sample application, 180
switching view modes and, 189

id configuration option, 60
IDEs (integrated development environ-

ments), 13
id property, 151
images

card stack, for Dueling Cards sample
game, 458

preloading, 455
images field, for Dueling Cards sample

game, 450
imagesSizes field, for Dueling Cards sample

game, 451
img directory

for CabinetExt sample application, 262
for OrganizerExt sample application, 133
for SQL Workbench sample application,

374
for TimekeeperExt sample application,

199

INDEX566

increment configuration option, 99
index.htm file

for CabinetExt sample application, 263
for OrganizerExt sample application, 133,

134
for SQL Workbench sample application,

374
for TimekeeperExt sample application,

199, 200
indexOf() method, 21
IndicatorsCode.js file, for Dueling Cards

sample game, 460–463
init() method

CabinetExt sample application and, 263,
268, 277

LocalBusinessSearch sample application
and, 336

OrganizerExt sample application and, 135,
149, 154

plug-ins and, 123
TimekeeperExt sample application and,

206, 214
initMain() method

OrganizerExt sample application and,
155, 157

TimekeeperExt sample application and,
214, 216

initOpponent() method, 486, 487
insert() method, 39

insertAfter() method, 39
insertBefore() method, 39
insertFirst() method, 39
integrated development environments

(IDEs), 13
is() method, 43
isAir property, 25
isArray() method, 28
isAutoRefreshing() method, 44
isBorderBox property, 25
isChrome property, 25
isDate() method, 28, 192
isEmpty() method, 28, 525
isGecko property, 25
isGecko2property, 25
isGecko3property, 25
isIE property, 25
isIE6 property, 25
isIE7 property, 25
isIE8 property, 25
isLeapYear() method, 23
isLinux property, 25

isMac property, 25
isOpera property, 25
isReady property, 25
isSafari2 property, 25
isSafari3 property, 25
isSafari property, 25
isStrict property, 25
isUpdating() method, 44
isValidDrop() method, 480
isValid() method, 85
isValidRow() method, 151
isVisible() method

CabinetExt sample application and, 274
Dueling Cards sample game and, 465

isWindows property, 25
items array, 60, 61
items configuration option, 61
itemSelector configuration option, 181

J
JavaScript imports, 19
JavaScript libraries, 14
JavaScript Object Notation (JSON), 314
join() method, 525
jQuery, 14
js directory

for CabinetExt sample application, 262
for OrganizerExt sample application, 133
for TimekeeperExt sample application,

199
JSON (JavaScript Object Notation), 314
JSON class, 49
JSON-P (JSON with Padding), 312–316
JsonStore, 102

K
Kant, Mrinal, 371
keyup event handler, TimekeeperExt sample

application and, 253

L
layout attribute, 60
layout configuration option, 61
layouts, 60, 62–75, 171
leftPad() method, 32
length property, 279
libraries, 14
licensing

for Ext Core, 55
for Ext JS, 16, 55, 262

line charts, 118

INDEX 567

listDatabases() method, 386, 390, 392
listeners configuration option, 60
listTableDetails() method, 396
listTables() method, 389, 393, 414
list views

for OrganizerExt sample application, 179,
181

switching view modes and, 189
load() method, 102

DataStore, 364
ResultsStore, 367
ScriptTagProxy, 316, 356

loadData() method, TimekeeperExt sample
application and, 215, 216

loadDefaults() method, 339
loadexception event, 160
LocalBusinessSearch (sample application),

322–369
adding features to, 369
code for, 327–368
favorites for, 328, 338, 345, 358
LocalBusinessSearch.js file for, 334–339
maps for, 353–357
markup for, 323
search functionality for, 360–369
structure of/files for, 322
what the application does, 310

LocalServer component (Gears), 124
lowercase() method, 46, 302

M
Mac OS, Fisheye lists and, 341
magic numbers, 336, 338
main region. See center region
Manager singleton, 117
map image service, available from Yahoo!,

320
markup() method, 39
mashups, 310, 315
maskRe configuration option, 77
maximize() method, 345
maxLength configuration option, 78
maxValue configuration option, 99
Menu.js file, for TimekeeperExt sample

application, 229–233
MenuCode.js file, for Dueling Cards sample

game, 464–470
menus, 87–90
MessageBox() method, 274, 278, 287, 290
method property, 35

Microsoft
Microsoft Project, 195, 257
Microsoft Outlook, 132

minColumnWidth configuration option, 181
minDate configuration option, 97
minValue configuration option, 99
MixedCollection class, 50
MochiKit, 14
ModifyProjectDialog.js file, for

TimekeeperExt sample application,
242–248

ModifyResourceDialog.js file, for Timekeep-
erExt sample application, 248–253

ModifyTaskDialog.js file, for TimekeeperExt
sample application, 254

monitorValid configuration option, 85–87
MooTools, 15
move() method, 485
moveTo() method, 477, 493
MultiSelect plug-in, 122
multithreading, 54

N
namespace() method, 276
namespaces

Ext JS high-level organizational structure
and, 20

terminology and, 375, 379
native applications, 6
newClick, 528
new keyword, 60, 61
NewProjectDialog.js file, for TimekeeperExt

sample application, 233–241
NewResourceDialog.js file, for Timekeeper-

Ext sample application, 233–241
NewTaskDialog.js file, for TimekeeperExt

sample application, 233–241
north region

LocalBusinessSearch sample application
and, 340

OrganizerExt sample application and,
179, 184

TimekeeperExt sample application and,
219

NoteRecord class, 161
NoteRecord field, 154
notes (OrganizerExt sample application),

131, 141, 147–152
Accordion layout for, 175
creating, 163–167

INDEX568

notesStore field, 154
Number class, 31
NumberField widget, 81
NumericAxis class, 34
num() method, 28

O
Object class, 59, 279
Observable class, 58, 123
onDragOut event, 115
onDragOver event, 115
online/offline applications capabilities, 124
onLoad event, 29
onMouseOut event, 343
onMouseOver event, 342
onReady() method, 29, 37

CabinetExt sample application and, 263
OrganizerExt sample application and, 135
TimekeeperExt sample application and,

201, 214
openClick() method, 528
openPortfolio() method, 528, 529
OpenPortfolioWindow.js file, for Finance

Master sample application, 526–530
OpponentCode.js file, for Dueling Cards

sample game, 486–495
opponentStackImgClick() method, 474, 494
opponentWorkerFunction() method, 486,

487
OrganizerExt class, 153–192
OrganizerExt (sample application), 131–193

adding features to, 192
code for, 144–192
directory structure of/files for, 133
markup for, 134–141
OrganizerExt.js file for, 133
user interface for, 170–187
what the application does, 131

Outlook (Microsoft), 132
overClass configuration option, 180
override() method, 114
overwrite() method, templating and, 108

P
PagingToolbar, 364
panels, 65, 179
parseCreateSQL() method, 408
parseDate() method, 23

OrganizerExt sample application and, 169
TimekeeperExt sample application and,

224

parseInt() method, TimekeeperExt sample
application and, 235

parsing SQL creation statements, in SQL
Workbench sample application,
416–422

pie charts, 538–541
PieSeries class, 34
playerStackImgClick() method, 476
plug-ins, 122
plugins configuration option, 60
PMs (project managers), 196
populateAvailableTasks() method, 216
populateProjectManagers() method, 215
populating view trees, 219
portals, 504
PortfolioDistributionPortlet.js file, for

Finance Master sample application,
538–541

PortfolioOverviewPortlet.js file, for Finance
Master sample application, 531–538

portlets, 504, 522, 531–557
position() method, 456
PowerWizard plug-in, 122
preloadImages() method, 455
preloading images, 455
primaryKeyNotNullFound, 402
PrintItemClick() method, 344
progress bars, 99, 212
ProgressBarSelectionModel, 213
project management application. See

TimekeeperExt (sample application)
project managers (PMs), 196
Project Summary view, 211, 212
projects (TimekeeperExt sample applica-

tion), 196
creating, 233–241
deleting, 254–257
global variables and, 214
menu for, 229
modifying, 242–248
summary view for, 221–227

projects table (TimekeeperExt sample
application), 204

ProjectsTree.js file, for TimekeeperExt
sample application, 227

ProjectSummary.js file, for TimekeeperExt
sample application, 225

prompt() method, 287
Prototype, 14
prototype property, 279
Provider interface, 118

INDEX 569

publish() method, 506, 537
publish/subscribe (pub/sub) model, 505
puff() method, 433, 465
purgeListeners () method, 35
push() method

Dueling Cards sample game and, 455, 478
TimekeeperExt sample application and,

208

Q
queries, 411, 426

query() method and, 108
QueryToolWindow.js and, 422–430

Quicken, 497

R
Radio button, 82, 174
RadioGroup, 82

OrganizerExt sample application and, 174
TimekeeperExt sample application and,

219
Reader class, Stores and, 102
Record classes, 154
record descriptors, 161
Records, 101

CabinetExt sample application and, 272,
292

Stores and, 158
TimekeeperExt sample application and,

209
refresh() method, 44
refreshCache() method, 45
refreshChart() method, 539, 554
remove event, 159, 160
remove event handler, CabinetExt sample

application and, 274
remove() method, 21, 53

CabinetExt sample application and, 289
Delete button and, 187
Finance Master sample application and,

536, 540, 548
LocalBusinessSearch sample application

and, 348
TimekeeperExt sample application and,

257
removeAll() method

CabinetExt sample application and, 292
Finance Master sample application and,

537

LocalBusinessSearch sample application
and, 350

TimekeeperExt sample application and,
216, 223, 243

removeAt() method, 53
removeChild() method

CabinetExt sample application and, 289
TimekeeperExt sample application and,

220
removeDatabase() method, 390
removeListener() method, 35
removeNode() method, 29
removeStyleSheet() method, 45
renameCopyTable() method, 406, 415
rename operation, databases and, 411–415
replace() method, 52
request() method, 34
reset() method, 184

CabinetExt sample application and, 306
TimekeeperExt sample application and,

234
resize event, LocalBusinessSearch sample

application and, 340
resource leveling, 195

Resource Summary view, 211
resources (TimekeeperExt sample applica-

tion), 196
creating, 233–241
deleting, 254–257
global variables and, 214
menu for, 231
modifying, 248–253
summary view for, 221–227

resources table, for TimekeeperExt sample
application, 204

ResourcesTree.js file, for TimekeeperExt
sample application, 227

ResourceSummary.js file (TimekeeperExt
sample application), 225

ResultSet class, 124
retrieveAccounts() method, 515, 518, 537
retrieveActivity() method, 516, 552, 554
retrieveCategory() method, 269
retrieveNotes() method, 162
retrievePortfolios() method, 514
retrieveProjects() method, 208
retrieveSnippet() method, 271
retrieveSnippets() method, 292, 302
RIAs (Rich Internet Applications), 6, 10–13
Rico, 14

INDEX570

rowclick event
CabinetExt sample application and, 295
OrganizerExt sample application and, 182

RowClick() method, 295, 299
RowSelectionModels, 211
RSS feed reader (sample application), 17

S
sample applications

CabinetExt, 259–308
Dueling Cards game, 437–495
Finance Master, 497–557
LocalBusinessSearch, 310, 322–369
OrganizerExt, 131–193
SQL Workbench, 371–435
TimekeeperExt, 195–258
web desktop, 18

SaveClick() method, 294, 299
scale() method, 343, 485
script.aculo.us, 14
script injection trick (script tag trick),

312–316, 319
ScriptTagProxy class

JSON-P data and, 102
LocalBusinessSearch sample application

and, 315, 330, 356
search services, available from Yahoo!, 317
Search.js file, for LocalBusinessSearch

sample application, 360–368
SearchClick() method, 301
SearchForm.js file, for CabinetExt sample

application, 301
SearchResults.js, for CabinetExt sample

application, 306
select event, 97
selectionchange event, 181
select() method, 42
selectOnFocus configuration option, 78
sendMessage() method, 443, 466, 472
serializeForm() method, 35
Series class, 34
service-oriented architecture (SOA), 310
setActiveItem() method, 69

OrganizerExt sample application and, 189
TimekeeperExt sample application and,

234, 235
setFixedWidth() method, 55
setInterval() method, 444
set() method, 455

CookieProvider and, 336, 368
Delete button and, 187

setSize() method, 455, 458
setTimeout() method, 45, 46
setTitle() method

OrganizerExt sample application and, 189
SQL Workbench sample application and,

414
TimekeeperExt sample application and,

256
SetupCode.js file, for Dueling Cards sample

game, 452–460
setupMenu() method, 452, 464
setValue() method, Slider widget and, 99
setValues() method

CabinetExt sample application and, 295,
300

TimekeeperExt sample application, 243
shift() method, 474, 477, 479
showAbout() method, 382
showAppointmentDetails() method, 181, 182
showFavorites() method, 346, 358
showHelp() method, 431
showMenu() method, 466
show() method

CabinetExt sample application and, 278,
293, 301, 302

Dueling Cards sample game and, 466, 468,
472

OrganizerExt sample application and, 155,
157, 184

TimekeeperExt sample application and,
233

showQueryTool() method, 422
SimpleStore, 102
single-page design, 13
singleSelect configuration option, 180, 182
slideIn() method, 480
Slider widget, 97
Slocum, Jack, 16
SOA (service-oriented architecture), 310
sourceContainer, 114, 115
sovereign web applications, 13, 133
spacers, 89
splice() method, 525
split() method, 305
SQL statements

CabinetExt sample application and,
266–272

OrganizerExt sample application and, 146
parsing in the SQL Workbench sample

application, 416–422
Query Tool Window and, 422–430

INDEX 571

SQL Workbench (sample application),
371–435

adding features to, 434
code for, 379–433
directory structure of/files for, 373
markup for, 374
SQLWorkbench.js for, 379–382
table operations, executing in, 411–415
what the application does, 371

SQLite, 124
SQLite Manager, 371
sqlite_master table, 394
SSL_SECURE_URL property, 24
standardSubmit configuration option, 76
startDrag event, 115
startGame() method, 468, 471, 474
state management, 116

state-saving capabilities, 260, 281, 308
stateful configuration option, 117
stateId configuration option, 117
stop() method, 53
stopAll() method, 53
Stores, 101

CabinetExt sample application and, 274,
292

creating, 158
populating, 162
TimekeeperExt sample application and,

209
StoresAndRecords.js file

for CabinetExt sample application, 262,
272

for Finance Master sample application,
506

for LocalBusinessSearch sample applica-
tion, 328–334

for SQL Workbench sample application,
383

for TimekeeperExt sample application,
209

String class, 32, 186
stripeRows configuration option, 182
stripTags() method, 49
styles.css file

for CabinetExt sample application, 262,
264

for Dueling Cards sample game, 444, 447
for Finance Master sample application,

503

for LocalBusinessSearch sample applica-
tion, 326

for OrganizerExt sample application, 133,
134, 141–144

for SQL Workbench sample application,
377

for TimekeeperExt sample application,
199, 201

submit() method, 77
subscribe() method, 506, 536
substract() method, 30
substr() method, 48, 235
summary views, TimekeeperExt sample

application and, 197, 214, 221–227
suspendEvents() method, 35

T
tableDetails structure, 416
TableDetailsWindow.js, 403–422

parsing SQL creation statements and,
416–422

table operations and, 411–415
window tabs and, 405–411

TableLayout, 70, 171, 326
LocalBusinessSearch sample application

and, 342, 353
SQL Workbench sample application and,

378, 399, 406, 427
table operations, executing in the SQL

Workbench sample application,
411–415

TableRecord, 383, 391, 395
TablesWindow.js, for SQL Workbench

sample application, 393–396
TabPanel, 74
tabPosition configuration options, 75
task buttons, 140

Task Summary view, 211
TaskRecord field, 154
TaskRunner class, 53
tasks (OrganizerExt sample application), 131,

139, 147–152
Accordion layout for, 175
creating, 163–167
filtering by status, 178

tasks (TimekeeperExt sample application),
196

creating, 233–241
deleting, 254–257
global variables and, 214

INDEX572

menu for, 230
modifying, 254
summary view for, 221–227

tasks table (TimekeeperExt sample applica-
tion), 204

taskStore data store, 159
TasksTree.js file, for TimekeeperExt sample

application, 227
TaskSummary.js file, for TimekeeperExt

sample application, 225
templates, 105–109, 180
testForGears() method, 156
testIt() method, 37
textarea input field, 77
TextArea widget, 81
textfield input field, 77
TextField widget, 77

ComboBox widget and, 83
vs. TextArea widget, 81

TextMetrics class, 54
themes, Gray Extended theme and, 499, 502
thought experiments, 505
threading, WorkerPool component and, 124
time-tracking application. See Timekeeper-

Ext (sample application)
TimeAxis class, 34
TimeField widget, 84
TimekeeperExt (sample application) 195–258

adding features to, 257
code for, 203–225
directory structure of/files for, 198
initializing, 214
markup for, 200
TimekeeperExt.js file for, 211–225
user interface for, 216–219
what the application does, 195

timeout() method, 31
CabinetExt sample application and, 279
TimekeeperExt sample application and,

214
timeout property, 35
Timer API, 444
toggle() method, 33, 186
toolbars, 87–90

for CabinetExt sample application,
285–290

images for, 133
for LocalBusinessSearch sample applica-

tion, 342, 364
for OrganizerExt sample application, 183
for SQL Workbench sample application,

381, 396, 424

tooltips, 120, 343
toString() method, 23, 486, 554
TreeLoader, 92
TreeNode, 92
TreePanel, 91
trees. See view trees
Tree widget, 90
trim() method, 33, 48, 302
trimQuotes() method, 419
type() method, 29

U
u.startAutoRefresh() method, 44
UI. See user interface
undef() method, 47
update event, 160
update event handler, TimekeeperExt

sample application and, 244
update() method, 44, 115
updateDatabaseCookies() method, 390, 392
updateProgress() method, 101
Updater class, 43
Updater() method, 44
updateSnippet() method, 272
updateTask() method, 152
uppercase() method, 46
urlDecode() method, 29
urlEncode() method, 29
url vtype, 86
user interface (UI)

for CabinetExt sample application, 261,
281, 283

code-based layouts vs. markup and CSS,
381

for OrganizerExt sample application,
building, 170–187

portals/portlets and, 504
for SQL Workbench sample application,

376
tabbed, 245, 249
for TimekeeperExt sample application,

216–219
useShims property, 25
usMoney() method, 49

V
validating forms, 85
validation types (vtypes), 86

built-in, 166
custom, 337

value objects (VOs), 161
viewConfig configuration option, 182

INDEX 573

Viewport class, 171
viewports, 62

for CabinetExt sample application, 282
for LocalBusinessSearch sample applica-

tion, 339, 340
for OrganizerExt sample application, 170
for TimekeeperExt sample application,

218
view trees, 218, 227

for CabinetExt sample application and,
291

populating, 219
visual effects (FX), 342, 346
VOs (value objects), 161
vtypes (validation types), 86

built-in, 166
custom, 337

W
wait() method, ProgressBar widget and, 100
waiting, Please Wait initialization dialog and

CabinetExt sample application and, 278
OrganizerExt sample application and, 135
TimekeeperExt sample application and,

201
web applications (web apps), 4. See also

sample applications
benefits of, 10
mashups and, 311
publish/subscribe model and, 505
sovereign, 13, 133

web desktop (sample application), 18
web development, evolution of, 13
web services, 310

available from Yahoo!, 317–322
JSON-P and, 312–316

web sites, 3

Web Workers, 54, 440
west region

LocalBusinessSearch sample application
and, 340

TimekeeperExt sample application and,
219

widgets, 57–101
basics of using, 60
configuration options for, 60
data-bound, 94
Ext namespace and, 55
form widgets and, 75–87
hierarchy of, 58

width configuration option, 82
Window widget, 97

About Window and, 375, 382
AnchorLayout and, 73
Create Table Window and, 397
Databases Window and, 385
state management and, 117
Table Details Window and, 403, 407, 414
Tables Window and, 393–414

wizards, PowerWizard plug-in for, 122
WorkerPool API (Gears), 437, 440–444,

486–495
WorkerPool component (Gears), 124
workerPoolCallback() method, 492

X
XMLHttpRequest, 312
XTemplate class, 105–109
xtypes, 64, 120

Y
Yahoo! Web Services, 317–322
YUI, 15, 16

