THE EXPERT’S VOICE® IN WEB DEVELOPMENT

Practical

Ext JS Projects
with Gears

Learn about Ext JS 3.0 and Gears, two of the top
technologies for developing modern rich Internet
applications, by exploring the inner workings of
seven full, real-world applications

Frank W. Zammetti

APIESS®

Practical
Ext JS Projects
with Gears

Frank W. Zammetti

Apress’

Practical Ext JS Projects with Gears
Copyright © 2009 by Frank W. Zammetti

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1924-8
ISBN-13 (electronic): 978-1-4302-1925-5
Printed and bound in the United States of America 98 7654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was writ-
ten without endorsement from Sun Microsystems, Inc.

Lead Editor: Steve Anglin

Development Editor: Douglas Pundick

Technical Reviewer: Herman van Rosmalen

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,
Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto

Copy Editor: Liz Welch

Associate Production Director: Kari Brooks-Copony

Production Editor: Katie Stence

Compositor: Linda Weidemann, Wolf Creek Publishing Services

Proofreader: Kim Burton

Indexer: Brenda Miller

Artist: Anthony Volpe

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Spe-
cial Bulk Sales-eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every pre-
caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You may need to answer
questions pertaining to this book in order to successfully download the code.

I'm going to do something unusual for me here and write a serious
dedication. This book is dedicated to the memory of Michael A. Baker.
Mike, the lead singer for a band named Shadow Gallery, passed away in
October 2008 at the far-too-young age of 45. The music of Shadow Gallery
has always been a huge inspiration for me, as a musician myself, as a
writer, and simply as a human being who appreciates art that touches you.
Mike’s voice was the emotional anchor of the group’s music, an integral
part of the experience. I never had the privilege of meeting Mike in person,
but through his work I feel like I knew him extremely well, and I don’t think
I could come up with a greater compliment for any artist. Rest in peace, Mike,
and I think I can safely say, on behalf of all Shadow Gallery fans, thank you.

Contents at a Glance

Aboutthe AUTNOr. xiii
About the Technical Reviewero Xv
Aboutthe lllustrator Xvii
ACKNOWIBAgMENTS Xix
INrOdUCHION . . .o XXi
PART 1 The Preliminaries

CHAPTER 1 Introducing Web Development with ExtJS........................ 3

CHAPTER 2 Widgets and Advanced ExtJS, 57
PART 2 The Projects

CHAPTER 3 Ext JS for a Busy Lifestyle: OrganizerExt........................ 131

CHAPTER 4 Making Project Management Cool: TimekeeperExt.............. 195

CHAPTER 5 A Place for Your Stuff: Code CabinetExt........................ 259

CHAPTER 6 When the Yellow Pages Just Isn’t Cool Enough:

Local Business Search .. 309

CHAPTER 7 Your Dad Had a Workbench, Now So Do You: SQL Workbench 371

CHAPTER 8 All Work and No Play: DuelingCards 437

CHAPTER 9 Managing Your Finances: Finance Master 497

Contents

Aboutthe AUTNOr. Xiii
About the Technical Reviewer XV
Aboutthe lllustrator Xvii
ACKNOWIBAgMENTS Xix
INtrOdUCHION XXi

PART 1 The Preliminaries

CHAPTER 1 Introducing Web Development with ExtJS................. 3
The Evolution of the Web: Web Sites vs. Web Applications............. 3
The Rise of the Cool: Rich Internet Applications. 6
Enter Ajax: The Driving Force behindRIAS 9

Ajax (for Those Living under a Rock the Past 2-3 Years).......... 9
The Benefits of Ajax (and by Extension, RIAS)................... 10
The Evolution of Web Development 13
Choice Is Good: Toolkits Make ItaBreeze 14
Enter Ext JS: The Bestofthe Bunch................................ 16
Fisher Price™ My First Ext JS Application........................... 19
Ext JS’s High-Level Organizational Structure........................ 20
Global-Scope Classesc.oovviiiiii i 21
The EXtNamespace.t 34
EXCAIaX .. 34
Ext.DomHelper....... 36
EXtDOMQUErY. ... 39
ExtUpdater....... 43

vii

viii

CONTENTS

CHAPTER 2

The Ext.util Namespaceo i 44
ExtutiLCSS 44
Ext.util.DelayedTaskco i 45
ExtutiltFormat 46
ExtUtiLJSON. 49
Ext.util.MixedCollection., 50
Ext.utiLTaskRunnerl 53
Extutil.TextMetricsc i 54

But...but...What About the Widgets? 55

One Last Tangential Thing: ExtCore 55

SUMMANY. ... 56

Widgets and Advanced ExtJS.............................. 57

Ext JS Widgets: An Overview.o, 57
The Hierarchy of Widgets................... it 58
The Basics of WidgetUsage. 60
Layout and Containers inExtJS 62
FormWidgets. ... 75
Menus and Toolbars (Oh My!), 87
TreesinExtdS ... 90
Grids iNEXtJSo 93
The Other Widgets.............. 95

Working with Data in ExtJS............... 101

The Template and XTemplate Classes. 105

Dragand Drop 109

The “State” of ThingS...............co 116

For Your Date in the Boardroom: Ext JS Charting 118

PlUg-INS . . 122

These Are the Gears That Power the Tubes!. 123
LocalServer. 124
WorkerPool 124
Database. ... 124

SUMMANY. ... 127

PART 2

CHAPTER 3

CHAPTER 4

CONTENTS
The Projects
Ext JS for a Busy Lifestyle: OrganizerExt................. 131
What’s This Application Do Anyway?.............................. 131
Overall Structure and Files. 133
The Markup. 134
The Style Sheet 141
The Code. . ..o 144
The DAOCIAsS 144
The OrganizerExt Class.coo i ... 153
Suggested EXercises. 192
SUMMAY. 193
Making Project Management Cool: TimekeeperExt...... 195
What’s This Application Do Anyway?.............................. 195
Overall Structure and Files. i, 198
The Markup.o 200
The Style Sheet ... 201
The Code. 203
DA S .. 203
StoresAndRecords.js. ... 209
TimekeeperEXtjs ... 211
ProjectSummary.js, ResourceSummary.js, and
TaskSummary.js. ... 225
ProjectsTree.js, TasksTree.js, and ResourcesTree.js 227
Menu.js 229
NewProjectDialog.js, NewTaskDialog.js, and
NewResourceDialog.js...............coc il 233
ModifyProjectDialog.js. ... 242
ModifyResourceDialog.js ... 248
ModifyTaskDialog.js.cco i 254
DeleteProjectDialog.js, DeleteResourceDialog.js, and
DeleteTaskDialog.js ...l 254
Suggested EXercises. ... 257

SUMMANY. 258

ix

CONTENTS

CHAPTER 5

CHAPTER 6

A Place for Your Stuff: Code Cabinet Ext................. 259
What’s This Application Do, Anyway? 260
Overall Structure and Files.o i, 261
The Markup. 263
The Style Sheet 264
The Code. ... o 264
DAD .S .. 265
StoresAndRecords.js................. 272
CodeCabinetExt.js ..o 275
VieWport jS. 282
Toolbar.js. ... 285
Tree. S o 291
Details.js 293
SearChFOrmLjs. ... 301
SearchResults.js.................. i 306
Suggested EXercises. 308
SUMMAY. 308

When the Yellow Pages Just Isn’t Cool Enough:

Local Business Search................................. ... 309
What’s This Application Do Anyway?.............................. 310
The <script> Tag Injection Technique and JSON-P 312
Meet the Yahoo! Web Services ...t iin., 317
The Yahoo! Local Search Service 317
The Yahoo! Map Image Service.............................. 320
Overall Structure and Files.t 322
The Markup. 323
The Style Sheet 326
The COUB. 327
DA S .. 327
StoresAndRecords.js. ... 328
LocalBusinessSearch.js ...l 334
VIeWPOrLS. ..o 340
Header. S. ... 341
Details.js 350
Favorites.js 358
SeaArCh. S . . 360
Suggested EXercises. ... 369

SUMMANY. 370

CHAPTER 7

CHAPTER 8

CONTENTS
Your Dad Had a Workbench, Now So Do You:
SQLWorkbench. 37
What’s This Application Do Anyway?.............................. 371
Overall Structure and Files. 373
The Markup. 374
The Style Sheet ... 377
The Code.o 379
SQLWorkbench.js. ... 379
StoresAndRecords.js 383
DatabasesWindow.js...............l 385
TablesWindow.js ... 393
CreateTableWindow.js.coi s, 397
TableDetailsWindow.js, 403
QueryToolWindow.jso 422
Help.js ..o 430
Suggested Exercises. 434
SUMMANY. ... 435
All Work and No Play: DuelingCards 437
What’s This Application Do Anyway?.............................. 437
More Fun with Gears: WorkerPool, Worker, and Timer............... 440
Some WorkerPool Code ..., 442
Limitations and Solutions, 443
Overall Structure and Files. 444
The Markup. 446
TheStyle Sheet ... 447
The Code. ... 447
Data.js ... 449
SetupCode.jS. 452
IndicatorsCode.js 460
MenuCode.jS.cooei 464
DuelingCards.jscoovii 471
OpponentCode.js ... 486
Suggested EXercises. 495

SUMMANY. ... 495

Xi

Xii

CONTENTS

CHAPTER 9

Managing Your Finances: Finance Master 497
What’s This Application Do Anyway?.............................. 497
A Warning About Warnings.o L 499
Overall Structure and Files. i, 500
The Markup. 501
The Style Sheet 503
Preliminaries Part I: A Brief History of Portals and Portlets
(Apologies to Professor Hawking) 504
Preliminaries Part II: The Publish/Subscribe Model.................. 505
The Code. . ..o 506
StoresAndRecords.js................. 506
DAtaACCESS.[S . . o vt 509
FinanceMaster.js i 518
OpenPortfolioWindow.js 526
PortfolioOverviewPortlet.js................................. 531
PortfolioDistributionPortlet.js................................ 538
AccountActivityPortlet.js.................. ...l 542
AccountHistoryPortlet.js 553
Suggested EXercises. 557
SUMMAY. 557
... 559

About the Author

FRANK W. ZAMMETTI is a five-time Oscar nominee, a two-time daytime Emmy winner, and a
Grammy finalist three years running. He was also one of the top 36 in last years’ American Idol
competition, hikes in the Andes with Sir Richard Branson twice a year, and is scheduled to fly
aboard the next space shuttle flight this summer.

Okay, it’s possible that not all of that is true.

Frank, however, is in fact an author of a number of web development books with just a
<sarcasm>slight</sarcasm> slant toward Ajax development. He is a lead developer/architect/
whatever-his-title-says-this-week for one of the largest financial institutions in the United States,
leading development of next-generation web applications.

Frank also contributes to a number of open source projects, leads a couple of them, and
has even founded a few. His inane ramblings can be found in the archives of many projects’
mailing lists!

Frank has done a few public-speaking engagements over the past two or three years
and is most likely the reason scientists are currently developing time travel so that a sort of
seven-second delay can be applied to live speakers, as is frequently done with “live” television
programs to avoid FCC fines.

Frank has achieved a number of things of note in his life, but without question his
crowning achievement has been getting his band Cydonia into the top 250 in the video game
Rock Band. This even beats the time he spent in an actual rock band!

Frank lives in Pennsylvania with his longtime wife Traci and is a proud parent (on most
days anyway) of his two children, Andrew and Ashley. Oh yes, and lest his family have further
reason to yell at him, there’s also the pets: Belle (dog), and Pandora the guinea pig (R.I.P.
Flower, Pandora’s long-time cage mate who passed away shortly before this book was com-
pleted...how’s that for ending on a downer?!?).

xiii

About the Technical Reviewer

HERMAN VAN ROSMALEN works as a developer/software architect for De Nederlandsche Bank
N.V,, the central bank of the Netherlands. He has more than 20 years of experience in develop-
ing software applications in a variety of programming languages. Herman has been involved
in building mainframe, PC, and client-server applications. Since 2000, however, he has been
involved mainly in building all sorts of JEE web-based applications. After working with Struts
for years (pre-1.0), he got interested in Ajax and joined the Java Web Parts open source project
in 2005; he is now one of the project’s administrators. In addition to this book, Herman has
served as technical editor for other Apress titles in the Practical series. Herman lives in a small
town, Pijnacker, in the Netherlands with his wife Liesbeth and their children, Barbara, Leonie,
and Ramon. You can reach him via e-mail at herros@gmail. com.

Xv

About the lllustrator

ANTHONY VOLPE. What can be said about Anthony? He draws. He draws really well. He drew
the illustrations for this book. His artistic ability is to Frank’s as Albert Einstein’s intelligence is
to...well, anyone else really! That's why Anthony’s illustrations have appeared in all of Frank’s
books so far. Besides, they are far better than Frank’s stick figures that would otherwise be in
their place!

Not only that, but he happens to be a longtime friend of Frank to boot.

Anthony has worked with Frank to produce a number of video games for several plat-
forms, a few of which have been recognized with awards (too bad they weren’t recognized with
actual sales!), and they’ve even got an Internet cartoon under their belts based on some of the
characters from the games.

Anthony is a prolific creative force, with a ton of comics to his credit, fiction writing, and
a few video games, and he’s produced several albums over the years (some of which you can
pick up at finer Internet music retail sites (go, run, buy, now!). If you dare, check out his site:
http://planetvolpe.com/.

xvii

Acknowledgments

I’d like to acknowledge all the fine folks who made this book possible. Al Gore, inventor of
the Internet. Bill Gates, inventor of the top seven tax brackets in the United States. Billy Mays,
inventor of TALKING WAY TOO LOUDLY ON TELEVISION. Professor Hubert Farnsworth,
inventor of the “What-If Machine.” Conan O’Brien, inventor of television. Montgomery Scott,
inventor of transparent aluminum.

Of course, aside from those luminaries, plenty of other people helped make this book a
reality, and I'd like to acknowledge them: Richard Dal Porto, Steve Anglin, Douglas Pundick,
Liz Welch, Katie Stence, and everyone else at Apress who I inadvertently left out who continue
to make writing these books less like work and more like...well, still work, but it’s work that
I don’t mind doing!

I'd like to acknowledge Herman von Rosmalen and Anthony Volpe, the two names that
will forever be linked with mine in literary history (my heart goes out to them on that one!)

A special acknowledgment has to go to whatever alien species originally seeded our world
with life that eventually evolved from the primordial ooze into modern-day humans. I just
wonder, if when they return to check on their experiment, they’ll consider it a success or an
abject failure?

Xix

Introduction

The Web. A wise man once said: “The Web is like a box of chocolates.”

Well, sure, if you can find a box of chocolates that constantly jumps up in your face when
you try to open it and is filled with, shall we say, adult chocolates?

It used to be that you could slap some HTML up on a server and call it a web page, and
people would love you for it. Not anymore! Now, we’ve moved into the realm of web applica-
tions, where some useful function has to be performed. More than that, though, it’s got to look
cool and work in a slick, “modern” way.

That’s where the term RIA, or rich Internet application, comes from. People now expect a
certain degree of “coolness” when they hit a website. They expect the experience to be more
like the native applications they use on a daily basis. They want things to fly into view, they
want windows, and they want grids they can sort in place and they want... well, they want a
bunch of stuff that historically hasn’t been easy to deliver on the Web!

That is, until the modern JavaScript libraries hit the scene. There are lots of great libraries
out there today, from jQuery to Dojo, from YUI to script.aculo.us. All of them help you achieve
the goal of wicked-cool web applications.

One of them, though, in my opinion, stands above the rest, and that’s what we’re here to
look at: Ext JS.

Ext JS allows you to create applications with a richness that historically has only been
seen in native applications. From a top-notch windowing system to a data subsystem, various
effects, and drag-and-drop, everything you need to create modern web applications is here.
ExtJS isn’t limited to the user interface, though; it also contains tons of utility functions that
make the core of your application easier and cleaner. What’s more, it does all of this in a highly
logical, coherent manner that is, in my opinion, unrivaled on the current RIA landscape.

What'’s even better than Ext JS alone is when you team it with Gears, a product of those
uber-geniuses at Google. Now, not only can you create the user interface goodness your
employer desires but you can also do things like have a true relational database on the client
and even have multithreading capabilities in JavaScript! You can create “sovereign” webapps,
that special class of webapp where everything is on a single page and runs entirely in the
browser.

While the Ext JS and Gears documentation is excellent, with lots of examples and tutori-
als to learn from, it’s often not enough. Nothing beats having a real application in front of you,
one that has been commented and structured well and, better still, that you have the original
coder of sitting beside you explaining it all, not just the how’s, but the why’s behind the code.
That’s precisely what this book is all about! Contained within it you won’t find a bunch of sim-
plistic, contrived examples; you'll instead find seven complete, real-world applications that
will be dissected and explained. You'll have the opportunity to hack the code yourself to make
changes and enhancements, further providing you with a learn-by-doing experience.

In the end you'll have a solid grounding in what Ext JS and Gears are about, what they
offer, and how to use them effectively. You will also have a good time in the process because
I have what most people would describe as a unique tone about my writing. I believe that life is

XXi

XXii

INTRODUCTION

tough enough when you're serious every minute of every day, so I try to interject humor and a
carefree attitude whenever I can. Humor is highly subjective, but I feel confident in saying you
won'’t find this book boring or stuffy.

An Overview of This Book

Since my editor balked at the idea of one big chapter with a single run-on sentence as I sug-
gested (darn his sense of proper writing style and grammar!), I've instead broken this book
down into eight chapters as follows:

Chapter 1 is the obligatory introductory chapter. We’ll take a quick look at web applica-
tion development, Ajax, and choices in libraries. In no time we’ll get into Ext JS itself,
including its history, licensing concerns, and the first actual code! We’ll then begin
looking through ExtJS to start seeing in detail what it offers.

Chapter 2 covers more “advanced” topics, which just means we’ll get into much more
of what Ext JS has to offer: things like drag-and-drop, data, and the UI widgets. We’ll
also take our first look at Gears to see what it offers us.

Chapter 3 is where we begin our project chapters, beginning with OrganizerExt, a PIM
(personal information management) application that lets us store and organize things
like contacts, appointments, and notes. We’ll see all sorts of cool widgets and utility
functions along the way.

Chapter 4 presents the TimekeeperExt project, which is all about managing projects.
Time tracking of resources can be done against the project, and various views of the
data are offered. More widgets will present themselves, as well as a new way to archi-
tect our Ext JS applications.

Chapter 5 is when we look at the Code Cabinet Ext project, a handy little utility for code
monkey types where we can stash snippets of code and search for them later. We’ll
further evolve the architecture seen previously, and introduce examples of more Ext JS
capabilities.

Chapter 6 gives us the opportunity to see Local Business Search, which is a mashup, or
an application that uses some publicly available web services to create an application.
We’ll create an application that lets us search for businesses in a given area and see
information about it, including a map of the area. This is where we’ll look at some Ajax,
more specifically, JSON-P.

Chapter 7 provides us with another useful utility application, SQL Workbench. This

gives us a way to look at and manipulate the databases that Gears gives us access to.
We’ll get lots of experience with the Gears database component, and see some new

ways of working with Ext JS.

Chapter 8 is where we break the trend of “serious” applications and create Dueling
Cards, a web-based game. We'll see things like drag-and-drop, effects, and even some
game theory, not to mention the multithreading capabilities that Gears provides us.

Chapter 9 finishes things up by looking at an application for tracking your finances that
shows off some more cool features of Ext JS, including its charting capabilities.

INTRODUCTION

There’s quite a lot of territory to cover, and each chapter will build upon what you learned
in the previous chapters. Along the way you'll see multiple ways of doing things so you can
decide for yourself which you feel is the best approach.

Obtaining This Book’s Source Code

If you're anything like me, you’ll agree that work sucks. What I mean is, effort that isn’t actually
necessary tends to not be something I enjoy. Or, to put it more succinctly: I'm lazy!

However, I generally try to get as much code printed in my books as possible, so that they
pass the Bathroom Test™, that is, you can read them during your... how shall I say it... private
time and basically be able to follow everything along.

That being said, this isn’t the mid-1980s where you’d happily open up your copy of RUN
(an old Commodore 64-focused magazine) and type in the 20 pages of machine language
code for the parachuting game they published. No, we’re better than that now (read: lazier),
and typing in all the code yourself would be a monumental waste of your valuable time. So
all the source code for this book is available for download at the Apress website. Simply go to
apress.com, click the Source Code link, and then find this book in the list. Click it and you’ll
find a download link lurking somewhere on the next page.

Obtaining Updates for this Book

There are zero mistakes in this book. Not a single one.

Now, repeat that a bazillion times and the universe might oblige and make it true.

In reality, writing a technical book of virtually any length is an exercise in getting things
as right as possible but knowing you’ve almost certainly borked something, somewhere. You
can be sure that every possible effort was made to ensure everything is accurate, from me as
the author checking facts to the technical reviewer hammering me over every relatively minor
typo in the code to the editor, copy editor, layout editor, and others going over it with a fine-
toothed comb multiple times.

Still, if there really are no mistakes then I suspect that would be a first in the publishing
industry! In light of this, you can always find the current errata list on this book’s home page
on the Apress website. You can also submit errata of your own, and this is input I very much
welcome. In fact, you can feel free to call me if you ever need blood or a kidney (just please ask
first... don’t want to wake up in a hotel bathtub filled with ice). Consider it my way of saying
thanks for pointing out my ineptness!

Contacting the Author

I have been called bad before. Many have said I do things that are not correct to do. I don’t
believe in talk such as this. I am nice man, with happy feelings, all of the time!" If you feel the
need or, dare I say, desire, to contact me, please also feel perfectly free to do so! I'm avail-
able via email at fzammetti@omnytex.com, and you can catch me online to chat on AOL IM

1 This is a quote from the great movie Kung Pow: Enter the Fist. If you haven’t seen it, stop reading
and go do so now. If you have seen it but don't like it, well, let’s just say my editor wouldn’t let me
print what I suggest you do! In either case, how many times have you seen a footnote in a book’s
introduction?

xxiii

XXiv

INTRODUCTION

(fzammetti), Yahoo! Instant Messenger (fzammetti), or MSN (fzammetti@hotmail.com). I have
a bad habit of leaving my IM client open even when I'm not home, so if I don’t answer right
away don’t take it personally! You could also send a carrier pigeon over the northeastern
United States and tell them to look for the house with the horribly maintained front lawn
(which reminds me: buy another ten copies of this book so I can afford to hire a landscaper!).
I'll also point out that, like every other loser on the planet, I have a blog. I don’t update it
often, and the topics I cover can absolutely be anything (some not suitable for all audiences,
so I wouldn’t visit it at work if I were you). If you've really got nothing better to do on a rainy
Saturday, feel free to visit and even leave a comment or two: http://www.zammetti.com.

PART

The Preliminaries

A Netscape engineer who shan’t be named once passed a pointer to JavaScript, stored it
as a string and later passed it back to C, killing 30.

—Blake Ross
Debugging is twice as hard as writing the code in the first place. Therefore, if you write
the code as cleverly as possible, you are, by definition, not smart enough to debug it.
—Brian W. Kernighan
Einstein argued that there must be simplified explanations of nature, because God is not
capricious or arbitrary. No such faith comforts the software engineer.

—Fred Brooks

A word to the wise ain’t necessary—it’s the stupid ones that need the advice.

—Bill Cosby

All sorts of computer errors are now turning up. You'd be surprised to know the number
of doctors who claim they are treating pregnant men.

—Isaac Asimov
In ancient times they had no statistics so they had to fall back on lies.
—Stephen Leacock
If you love your job, you haven’t worked a day in your life.
—Tommy Lasorda

Oh, so they have internet on computers now!

—Homer Simpson

CHAPTER 1

Introducing Web Development
with Ext JS

In this chapter, we’ll begin our journey into the world of Ext JS by taking a step back and look-
ing at the evolution of web application development. In fact, we’ll take a step even further back
than that and look at what the term “web application” means in the first place (hint: it may not
be quite as obvious as it first seems!). We’ll deal with what the term “rich Internet application”
(RIA) is all about, and we’ll talk briefly about Ajax (what it used to mean and what it means
now) and why it’s such an important development. We’ll even look at some options for devel-
oping RIAs other than Ext JS, but before long we’ll dive right into the real red meat,! as the
political pundits say: Ext JS itselfl We’ll see what it has to offer and how it’s structured, learn a
bit about its history and philosophy, and then get started with the basics of using it.

Strap yourself in because it’s going to be a wild (but exciting) ride!

The Evolution of the Web: Web Sites vs.
Web Applications

If you've been doing web development for more than a few minutes—or so it seems some-
times given the rapid rate of technological development in this area—then you are well aware
of the fantastic evolution of the Web. It’s like a child growing up right before your eyes in many
ways, and we’ve had our share of teething pains to be sure!

Today we have all sorts of web sites. More than that, we have web applications. What's the
difference, you ask? A web site’s primary purpose is to disseminate information. There tends
to be little user interaction beyond some simple forms, and little opportunity for the user to
perform an actual function (other than researching the data available on the site). There is
a general flow through the site, and while the user can branch off into other flows at various
points via hyperlinks, these paths are essentially predetermined. In other words, navigation
through the site is hardwired into a limited set of possible paths. Also, web sites, because of

1 Atleastin American politics, the phrase “red meat” refers to rhetoric during a speech that is brash and
“in your face” with the purpose of getting the crowd energized and emotionally behind the speaker.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

their focus on delivering information, tend to be a bit simplistic so that they are accessible to
the largest possible audience.? In Figure 1-1 you can see an example of a simple web site.

o
3 omnytex Technologies - Mozilla Firefox
Fle Edit View History Bookmarks Tools Help

Products Forums

@

Electro Version 1.2

Product Info | Reviews [Support [Updates] Trial | |]
$25.00 Electro is the premiere electronics reference and tool collection for the PocketPC
Purchlase platform. With numerous calculators, reference tables and other tools for the

electronics technician as well as the electrical engineer, Electro is one PocketPC
program you cannot do without!

K&G Arcade Version 1.6

Product Info | Reviews [Support [Updates] |]
FREE! K&G Arcade is unlike any other PocketPC game out there.. Imagine being beamed
Duwnluac-l aboard an alien spacecraft by two wise-cracking aliens from the future. Further imagine
being forced to try and escape their ship by exploring five maze-like levels and playing
25 mini-games throughout, all the while avoiding deadly robots and conversing with strange fellow
captives. Sound like a good time? You betitis! That's K&G Arcade in a nutshell! And best of all, this
game is totally, completely, 100% FREE!

Invasion: Trivia Version 1.6

Product Info | Reviews [Support [Updates] |]
FREE! Trivia, with a very sick twist! Earth is threatened by two wise-cracking aliens and you are
Duwnluaa choosen to defend your world in a contest of knoweldge! Krelmac and Gentoo invite you
to fight for the survival of your world in 2 game of knowledge and wits. DIMWITS that is!
And best of all, this game is totally, completely, 100% FREE!

EZ 0.250s 1.344s 2672KB 1lreq B w# 216.227.215.170 Apache @ @5 © B - 12MB/24MB || 11.9MB/ 244 MB

Figure 1-1. An example of a web site

A web application, or web app for short, is an inherently dynamic beast where the user
is interested in performing some operation(s) in a (frequently, but not always) indeterminate
way. The user can move about a web app in a nonlinear fashion and in ways that the devel-
opers may not have expected. The user is usually manipulating data in some fashion, and
typically in a persistent manner (i.e., interacting with a server-based data store of some sort®).
Web apps tend to be more complex from a coding standpoint and often require more of the

2 This has been becoming less and less true in recent years. The multimedia nature of the Web as a whole
means that web sites no longer are necessarily coded to the lowest common denominator in terms of
browser capabilities. Perhaps it's more correct to say that the lowest common denominator is simply rising!

3 Inthis book we’ll in fact be building only applications that interact with a local data store. This doesn’t
mean they aren’t web apps, but a web app that doesn’t interact with a back-end data store is only in
recent years started to become a viable model.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

client in terms of technology and pure horsepower to execute them. In Figure 1-2 you can see
an example of a web app.

Added By:
Frank

Added On:
Wed Apr 05 00:22:22 EDT
2006

Type:
irg

File Size:
26817

Dimensions:
400x300

DPIL:
72

Color Depth:
24

Description:
A display from Alien
Encounters at Niagara Falls

4 o

Collection: ") Add Gollection |) Defete Coflection | *) Add Photo | *) Defete Photo
Miscellaneous =
) Rotate 90° |) Actual Size |) Default Size

| Done

Figure 1-2. An example of a web app

This web app has some richer and fancier functionality than is apparent on the printed
page.* For example, the filmstrip on the left scrolls to show images, and when you click one it
“flies” onto the main viewing area. Many of the buttons on the bottom allow you to manipu-
late the image in various ways, and some lead to pop-up dialogs, which represent alternate
“flows,” if you will, through the application. In other words, the purpose here is for users to
actually do something—they aren’t simply viewing a predefined set of images as would be the
case with a web site. This is also an example of an RIA, but based on the definition of RIA (the
“I” is for Internet after all), it'’s a web app too. We'll get to RIAs in particular shortly though.

Web sites and web apps are both of course 100 percent relevant today and probably will
be for a very long time (until some fundamental shift in technology changes everything). In
fact, the line between the two isn’t a hard-and-fast thing. Frequently there is room for debate
whether something is a web site or a web app. Take something like Digg (www.digg.com) for
example, which is a news site that is driven by input from the community of users who visit
it to determine what headlines are seen, which are seen most prominently, and so on. It has

4 <shamelessSelfPromotion>If you'd like to see this in action, then purchase my book Practical Ajax
Projects with Java Technology (Apress, 2006).</shamelessSelfPromotion>

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

many of the characteristic of both: its primary job is to disseminate information (new items),
yet there is plenty of opportunity for users to interact with it (by submitting and rating articles
and even posting comments to one another about the news items). It uses a fair amount of
client-side coding, which makes it more like a web app, but it’s also coded to be accessible to
as many people as possible, like a web site.

The point is that we're still in the midst of the evolution I'm talking about, and we’ll likely
be involved in the evolution for some time to come.

The Rise of the Cool: Rich Internet Applications

The point we find ourselves at now is that we're developing rather complex web apps these
days—so complex, in fact, that we probably need a new name for them. If nothing else, we all
know that the IT industry loves to invent new terms for things!

We’'re trying to recapture some of what we lost when we moved to the Web: the power
of the native application. Take a look at Figure 1-3, where you can see a fairly typical native
application.®

These so-called native applications are applications coded for a specific operating sys-
tem and that run more or less entirely locally on an individual workstation. These types of
applications have the benefit of access to the full power of the underlying operating system
and the hardware of the computer, so they tend to look better and, most importantly, are
more functional and full-featured. Things you take for granted in such an environment (such
as local disk storage; multimedia capabilities—video/audio playback, for example; access to
1/0 devices like disk drives, mice, and printers; more advanced Ul metaphors like grids, trees,
and drag and drop) all are harder to come by in the web environment than they are in native
applications. There is a richer set of user interface (UI) components, sometimes called wid-
gets, from which to build the application: grids that can do all sorts of sorting and splitting and
other advanced features; tree lists that can organize data and allow the user to expand and
contract groupings as they see fit; toolbars with all kinds of button features; menus and spin-
ners and tabs and fancy check boxes and sliders and so on and so forth! All of these are things
available in virtually any graphical user interface (GUI) environment like Windows or Mac OS.
On the Web, however, much of that sort of interface richness is harder to come by.

5 Note that I'm not holding this up as an example of a great native application! This is an old application
I had written at work over ten years ago now. It’s not stunningly beautiful or anything like that, but it
makes the point well enough.

CHAPTER 1 " INTRODUCING WEB DEVELOPMENT WITH EXT JS

ccMail Gateway Que Monitor

Figure 1-3. An example of a “rich-client” application

That’s where the RIAs come in. An RIA isn’t a single specific thing; it's more of a paradigm,
almost an approach to web app development. RIAs are characterized by appearing in many
ways to look, feel, and function just like those native applications we left behind.® We develop
them using more advanced techniques, a much heavier dependency on the clients’ capabili-
ties, and with an eye toward building a much more powerful application for the end user. In
Figure 1-4 you can see an example of such an application.

6 To be clear, native applications are of course still in use today and are still being developed anew.
However, it’s probably fair to say that more development effort these days goes into web-based appli-
cations, so in that sense we've “left native applications” behind, for the most part anyway.

8

CHAPTER 1

-
%) DWR File Manager - Mozilla Firefox

INTRODUCING WEB DEVELOPMENT WITH EXT JS

1 temp Blue Lace 16.bmp
o bootstat dat
B D\ cach
ache
-1 BN
3 F:\ CAVTemp
3 6\ cdplayer.ini
8 HA clock avi
-3 1\
cmsetacl.lo
I R g
B Ki\ Coffee Bean.bmp
B3 L\ COM+log
B0 X\ comsetup.log
=0 v Config
B3 Z:\ .
Conneclion Wizard
control.ini
croa.exe
croa exe manifest
ct6840 uns
ctdrins. exe
CTREGRUN.EXE
Cursors
[EZ] Done

1272 Bitmap Image File
2048 Unknown File
0 Directory
0 Directory
25 Configuration Settings
82944 Video Clip
200 Log File
17062 Bitmap Image File
5768 Log File
208626 Log File
0 Directory
0 Directory
0 Configuration Settings
52224 Application
583 Unknown File
4650 Unknown File
94208 Application
41984 Application
0 Directory

Tue Jun 252002 14:59:4
Fri Aug 10 2007 08:47.33
Thu Mov 09 2006 01:55:1
Tue Apr 17 2007 18:36:42
Thu Dec 07 2006 23:21:1
Tue Jun 252002 15:00:3
Mon Nov 06 2008 23:54:2
Tue Jun 25 2002 15:00:4
Tue Mov 07 2006 23:51:2
Sun Jul 15 2007 18:19:13
Mon Nov 06 2006 16:07:2
Mon Nov 06 2008 16:07.2
Mon Nov 06 2006 21:20:4
Sun Nov 07 2004 22501
Sat Mov 06 2004 10:27:3:
Wed Dec 19 2001 02:051
Tue Dec 18 2001 01:22:0
Tue Apr 09 2002 18:05.00
Mon Jan 29 2007 20.46.0

0.047s | 256105 390.60KB 2ireq LM w8 127.0.0.1 ApacheCoyotz/il @) /B © B 0.3MB[27MB [3.3MB/24.4MB

File Edit View History Bookmarks Tools Help
5 ~
@ . . @ L] [ntip:/focahost:8080/fieman index.jsp [~] [T =Y
Back Forward Reload Stop Home
B g [#] DWR File Manager (%]] -
()| File Edit Tools Help DWR File Manager
g O ! - i
@ @ » %ﬁ v v/ Tk e A ‘fj
= ‘ @ | L L{— 198 L O'X:U D &
13_ - Ay Name Size | Type | Modified |
L =E=eY -)
; -1 $VAULT$.AVG AppPatch 0 Directory Fri Dec 01 2006 19:46:34
i -1 ca_Lic Ascd_tmp.ini 19738 Configuration Settings Fri Apr 06 2007 23:43:39
j L1 cygwin assembly 0 Directory Sun Jul 15 2007 18:46:2C | ~
E (3 Diskeeper AS_Debug.td 0 TextD t Mon Nov 06 2006 21:53:2
3 B-C1 Documents and Settings —Debug & Dacumen on Nov bt
B flexsdk atcl01setup.log 180 Log File Mon Nov 08 2006 21:30:C
4 (=2 | Inetpub ATIMMC.INI 0 Configuration Settings Sun Nov 12 2006 18281
% 21 java atioglxml 11441 XML Document Mon Mar 26 2007 07°56:0
&1 javas . ATIWDM.LOG 1562 Log File Mon Jun 11 2007 00:06:3
B-C1 Program Files -
&1 RECYCLER basecsp.log 27974 Log File Mon Nov 06 2006 22:22:F
1 System Velume Information | BEBW_INFO.INI 91 Configuration Seftings Sun Nov 19 2006 00:58:2

Figure 1-4. An example of an RIA

Let’s compare and contrast the previous four screenshots, primarily comparing each to

the native application example on the basis that it is the ideal we’re striving for.

First, the web site, while hopefully (since it’s mine!) fairly pleasing visually, doesn’t really
look like any of the applications, least of all the native application example. The photo-sharing
web app looks more like the native application in the sense that it’s clear you are supposed
to perform some functions with it rather than just more passively obtain information from it,
but it still doesn’t look a whole lot like the native application; it looks like a hybrid, somewhere
between the web site and the native application.

Now, comparing the RIA to the native application, the RIA looks a lot more like the native
application. It has menus, toolbars, trees, grids, and just generally looks more robust. It’s clear
that its focus is in giving the user the ability to manipulate data, files, and directories in this
case. It’s clearly more focused on the idea of doing something than the web site example was.

RIAs, and perhaps more precisely the idea of bringing native applications to the Web, is
where we are today, although interestingly we’re also taking some of the “coolness” the Web
brought about—things like multimedia, animations, and effects—and rolling them into our

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

applications. We've evolved beyond simply bringing native application-like capabilities to the
Web; we're now trying to evolve that concept to make applications that are actually cool! This
combination of native application-like functionality and web coolness are what modern RIA
development is all about (and what Ext JS is all about too!).

Enter Ajax: The Driving Force behind RIAs

There isn’t any one thing that ushered in the age of the RIA. Many people were going down
that path long before we all even recognized the path! Still, there is something probably more
responsible for it than any other single thing, and that’s Ajax (see Figure 1-5... now you'll
always know what code and architectures would look like personified as a plucky super hero!).

Ajax came to life, so to speak, at the hands of one Jesse James Garrett of Adaptive Path
(www.adaptivepath.com). Mr. Garrett wrote an essay in February 2005 (you can see it here:
www.adaptivepath.com/publications/essays/archives/000385.php) in which he coined the
term Ajax.

Figure 1-5. Ajax personified

Ajax (for Those Living under a Rock the Past 2-3 Years)

Ajax, as I'd be willing to bet my dog you know already (well, not really, my wife and kids will
kill me if I gave away the family dog, although my wallet would thank me), stands for Asyn-
chronous JavaScript and XML. The interesting thing about Ajax, though, is that it doesn’t have
to be asynchronous (but virtually always is), doesn’t have to involve JavaScript (but virtually
always does), and doesn’t need to use XML at all (and more and more frequently doesn’t). In
fact, one of the most famous Ajax examples, Google Suggest, doesn’t pass back XML at all! The
fact is that it doesn’t even pass back data per se; it passes back JavaScript that contains datal!
(The data is essentially “wrapped” in JavaScript, which is then interpreted and executed upon
return to the browser. It then writes out the list of drop-down results you see as you type.)
Ajax is, at its core, an exceedingly simple, and by no stretch of the imagination original,
concept: it is not necessary to refresh the entire contents of a web page for each user interac-
tion, or each event, if you will. When the user clicks a button, it is no longer necessary to ask
the server to render an entirely new page, as is the case with the “classic” Web, which is the
term I like to use to describe this model of back-and-forth with the server where each user
interaction results in a new page in the browser. Instead, you can define regions on the page
to be updated and have much more fine-grained control over user events as well. No longer

10

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

are you limited to simply submitting a form or navigating to a new page when a link is clicked.
You can now do something in direct response to a non-submit button being clicked, a key
being pressed in a text box—in fact, to any event happening! The server is no longer com-
pletely responsible for rendering what the user sees; some of this logic is now performed in the
user’s browser. In fact, in a great many cases it is considerably better to simply return a set of
data and not a bunch of markup for the browser to display. As we traced along our admittedly
rough history of application development, we saw that the classic model of web development
is in a sense an aberration to the extent that we actually had it right before then!

Ajax is a return to that thinking. Notice I said “thinking.” That should be a very big clue to
you about what Ajax really is. It is not a specific technology, and it is not the myriad toolkits
available for doing Ajax. In fact, while Ajax originally was a term to describe a technique for
communicating with a server in an asynchronous fashion, what it means today is pretty differ-
ent, but let’s come back to that a little later.

The interesting thing about Ajax is that it is in no way, shape, or form new; only the term
used to describe it is. I was reminded of this fact a while ago at the Philadelphia Java Users
Group. A speaker by the name of Steve Banfield was talking about Ajax, and he said (para-
phrasing from memory), “You can always tell someone who has actually done Ajax because
they are pissed that it is all of a sudden popular.” This could not be truer! I was one of those
people doing Ajax years and years ago; I just never thought what I was doing was anything spe-
cial and hence did not give it a “proper” name. Mr. Garrett holds that distinction.

I mentioned that I personally have been doing Ajax for a number of years, and that is
true. What I did not say, however, is that I have been using XML or that I have been using the
XMLHttpRequest object, which usually powers Ajax applications, or any of the Ajax toolkits out
there. I've written a number of applications in the past that pulled tricks with hidden frames
and returned data to them, then used that data to populate existing portions of the screen.
This data was sometimes in the form of XML, but other times not. The important point here is
that the approach that is at the heart of Ajax is nothing new as it does not, contrary to its very
own name, require any specific technologies (aside from client-side scripting, which is, with
few exceptions, required of an Ajax or Ajax-like solution).

When you get into the Ajax frame of mind—which is what we are really talking about—
you are no longer bound by the rules of the classic Web. You can now take back at least some
of the power the native applications offer, while still keeping the benefits of the Web in place.
Those benefits begin, most importantly perhaps, with the ubiquity of the web browser.

Note Nowadays, Ajax sometimes has a wider meaning than simply a communication mechanism as
described here. In fact, to many people now, an “Ajax application” really means an RIA. | prefer to use the term
RIA and continue to use the term Ajax as described here so as to keep the two concepts separate. RIAs nearly
always involve Ajax, so in object-oriented programming (OOP) terminology, | prefer a “has a” relationship to an
“is a” relationship. But regardless, you should be aware that in conversation, to some, Ajax == RIA.

The Benefits of Ajax (and by Extension, RIAs)

Have you ever been at work and had to give a demo of some new native application, such as
a Visual Basic app, that you ran on a machine you have never touched before? Ever have to

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

do it in the boardroom in front of top company executives? Ever had that demo fail miser-
ably because of some DLL conflict you couldn’t possibly anticipate (see Figure 1-6)? You are

a developer, so the answer to all of those questions is likely yes”. If you have never done Win-
dows development, you may not have had these experiences (yeah, right...if you believe it
only happens on Windows, then I've got a big hunk of cheese to sell you...it’s on display every
evening, just look up in the sky and check it out). You will have to take my word for it when I
say that such situations were, for a long time, much more common than any of us would have
liked. With a web-based application, this is generally not a concern. Ensure the PC has the cor-
rect browser and version, and off you go 98 percent of the time.

Figure 1-6. We've all been there: live demos and engineers do not mix!

The other major benefit of a web app is distribution. No longer do you need a three-
month shakedown period to ensure your new application does not conflict with the existing
suite of corporate applications. An app running in a web browser, security issues aside, will
not affect, or be affected by, any other application on the PC (and I am sure we all have war
stories about exceptions to that, but they are just that: exceptions!).

Of course, you probably knew those benefits already, or you wouldn’t be interested in web
development in the first place. So we won'’t spend any more time on this.

Ajax represents a paradigm shift for some people (even most people, given what most web
apps are today) because it can fundamentally change the way you develop a web app. More
important, perhaps, is that it represents a paradigm shift for the user, and in fact it is the user
who will drive the adoption of Ajax. Believe me, you can no longer ignore Ajax as a tool in your
toolbox. Ajax is one of the primary enablers of the RIA movement, and that’s what we’re really
talking about here.

Put a non-Ajax web app, or a non-RIA web app in other words, in front of users, and then
put that same app using Ajax techniques in front of them, and guess which one they are going
to want to use all day nine times out of ten? The Ajax-ified version! They will immediately see

7 Unless you work in the public sector, and then it probably was not corporate executives but rather
generals or folks of that ilk, which I suppose means you may have run the risk of being lined up against
a wall and shot for your “crimes,” but either way, you get the point!

1

12

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

the increased responsiveness of the application and will notice that they no longer need to
wait for a response from the server while they stare at a spinning browser logo wondering if
anything is actually happening. They will see that the application alerts them on the fly of error
conditions they would have to wait for the server to tell them about in the non-Ajax web app.
They will see functionality like type-ahead suggestions and instantly sortable tables and mas-
ter-detail displays that update in real time—things that they would not see in a non-Ajax web
app. They will see maps that they can drag around the same way they can in the full-blown
mapping applications they spent $80 on. All of these things will be obvious advantages to the
user. Users have become accustomed to the classic web app model, but when confronted with
something that harkens back to those native application days in terms of user-friendliness and
responsiveness, there is almost an instantaneous realization that the Web as they knew it is
dead, or at least should be!

If you think about many of the big technologies to come down the pike in recent years, it
should occur to you that we technology folks rather than the users were driving many of them.
Do you think a user ever asked for an Enterprise JavaBean (EJB)-based application? No, we
just all thought it was a good idea (how wrong we were!). What about web services? Remember
when they were going to fundamentally change the way the world of application construction
worked? Sure, we are using them today, but are they, by and large, much more than an inter-
face between cooperating systems? Not usually. Whatever happened to Universal Description,
Discovery, and Integration (UDDI) directories and giving an application the ability to find,
dynamically link to, and use a registered service on the fly? How good did that sound? To us
geeks it was the next coming, but it didn’t even register with users.

Ajax is different, though. Users can see the benefits because RIAs nearly always stand
out from their less rich predecessors. The differences and the benefits are very real and very
tangible to them. In fact, we as technology people, especially those of us doing Java web devel-
opment, may even recoil at Ajax at first because more is being done on the client, which is
contrary to what we have been drilling into our brains all these years. After all, we all believe
scriptlets in JavaServer Pages (JSPs) are bad, eschewing them in favor of custom tags. Users
do not care about elegant architectures and separation of concerns and abstractions allowing
for code reuse. Users just want to be able to drag the map around in Google Maps (see Figure
1-11) and have it happen in real time without waiting for the whole page to refresh like they do
(or did anyway) when using Yahoo!’s mapping solution.

The difference is clear. They want it, and they want it now (stop snickering in your head,
we're all adults here!).

Now we can come back to what I mentioned earlier: Ajax now means something different
than what it originally did. Ajax now means, if you’ll pardon my French, web apps that don’t
suck! The way we approach application design has fundamentally changed, thanks to the Ajax
revolution. We now recognize that the classic model of web development—when you fetch a
page from a server, the user enters some data, submits that data, and a new page is rendered—
is less than optimal. We also now recognize that adding some “cool” to a web app can do
wonders for it. Things like animations, multimedia feedback, and real-time graphics are no
longer just flashy tricks to attract attention but are core parts of what we do. That’s what Ajax
has come to mean.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

SOVEREIGN WEB APPS

Another term that has fairly recently come into vogue is “sovereign web app.” This refers to a web app that
runs in a browser independent of any server (except perhaps a server that initially serves it). This is yet
another result of the Ajax revolution, and in fact is what we’ll be dealing with in this book. Nowhere will |
discuss server-side technologies, except perhaps in passing here and there. We are dealing strictly with sov-
ereign web apps, and that means “no server required.”

This inherently means that we’re going to be doing things in an Ajax-y way, if you will. Since there’s no
server to render pages, it’s quite natural to wind up with a single-page design, which is another popular term
employed today. It turns out a single page is all you need in most cases to create a sovereign web app, as
you’ll see.

The Evolution of Web Development

Now that we’ve seen the evolution of web sites, to web apps, to RIAs, what about evolution
in terms of development? Has there been a parallel evolution there as well, an evolution of
techniques, tools, and knowledge? You'd certainly hope, I think, that the answer is yes, and
in factitis.

Early on, way back in the distant year 1995 or so, when most “longtime” web develop-
ers (relatively speaking) began, you would frequently see someone with Notepad open if they
used Windows, or maybe emacs or vi if they were *nix users. In either case, they were happily
hacking away at code right there in their simple text editors, saving the file as an HTML file and
loading it up in their browser right there, no server or anything like that. For a while this was
quite sufficient because we weren’t ready to develop web apps just yet—we were just getting
our heads around web sites!®

Nowadays, there exists full-blown integrated development environments (IDEs)
that provide all the tools developers tend to need: debuggers, code completion, code
generators, profilers, and so on. Even without a full IDE, we have options like Firebug
(www.getfirebug.com), which is an extension to the Firefox (www.firefox.com) browser. In fact,
many developers find that Firebug is all they need these days, and I count myself among them.

So, there has clearly been an evolution in terms of tooling for client-side development.
What about the code itself, though? Early on, people wrote a whole lot of JavaScript themselves
because there wasn’'t much in the way of options. The best you could hope for was to find
some useful code snippets out on the Web that you could... AHEM... borrow. You wound up
typically taking that code, hacking it to death, and massaging it to fit your needs. If the code
was good to begin with, which was always a questionable thing, the result wouldn’t be too bad.

Using code snippets is part and parcel of developing software. We all do it, and the best
among us probably do it more than others! But just grabbing snippets here and there isn’t

8 That’s not to say some people don’t still work this way—many do. In fact, I myself typically work at a
level just above that: while it’s not Notepad, I use a text editor called UltraEdit (www.ultraedit.com).It's
a pretty advanced editor with lots of features that make life easier, but it’s still a text editor in the end,
not a full-blown IDE like many people prefer. To each his own!

13

14

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

usually optimal, and also isn’t typical in most programming environment where full-blown
libraries are king. It took a while to get there, but client-side JavaScript development is now no
different.

Choice Is Good: Toolkits Make It a Breeze

After a while, the evolution from simple code snippets to full-blown libraries began to take
shape. Libraries of JavaScript emerged that you could use without hacking to fit your needs
(well, mostly without hacking). The early libraries weren’t terribly good—they were just loose
collections of snippets—but the underlying idea was solid, which meant that slowly but surely
the quality improved.

Today, we have literally thousands of JavaScript libraries to choose from, and many of
them are rather good (others, not so much). The following eight are considered by most to be
at the top of the heap and get the most usage:

* Dojo (www.dojotoolkit.org) is a general-purpose library that tries to be everything to
everyone. It provides all sorts of JavaScript language extensions, utilities, and one of the
more advanced widget frameworks out there. In Figure 1-7 you can see an example of
an application built with Dojo.

* Prototype (www.prototypejs.org) is a very widely used library that is famous for having
a small code footprint and for extending the JavaScript language itself (via extending
intrinsic JavaScript objects, such as adding methods to the String object). Prototype is
an enabler in that a number of other popular libraries are built on top of it, such as the
next list item, script.aculo.us.

e script.aculo.us (http://script.aculo.us) is alibrary built on top of Prototype that spe-
cializes in effects. All the fancy fades, dissolves, compressions, and those sorts of things
that are popular in the Web 2.0 world are provided by this library and in a simple-to-
use way.

* jQuery (www.jquery.com) is another extremely lightweight JavaScript library that, as the
authors themselves put it, is meant to change the way you write JavaScript. Its main
focus is on making HTML document traversal, event handling, and animating drop-
dead simple. jQuery has become extremely popular in a short period of time in large
part to all the neat extensions that are built on top of it, such as lots of very good GUI
widgets.

e Rico (http://openrico.org) is a library that provides full Ajax support, drag-and-drop
management, and an entire cinematic effects module.

e MochiKit (http://mochikit.com) has perhaps the best tagline going: “MochiKit makes
JavaScript suck less.” Indeed, many believe it does! MochiKit provides a good variety of
tools, including drag and drop, visual effects (including a really good rounded-corner
implementation for spicing up tables and <div>s), and DOM functions.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

e MooTools (www.mootools.net) is another wide-ranging library like Dojo that seeks to
provide virtually everything the modern JavaScript developer would need. Language
extensions, general utilities, widgets, animations, and all that kind of stuff is covered.
MooTools lets you create a custom version of the library right there on the MooTools
web site that suits your needs perfectly. For a long time, this feature was unique to
MooTools, but others have copied the idea.

e YUI (http://developer.yahoo.com/yui) is an acronym for Yahoo! User Interface. YUI is
popular because it is extremely simple, easy to understand, and exceptionally well doc-
umented, with lots of examples to look at. Coming from Yahoo! doesn’t hurt in many
people’s minds. YUI is mostly interested in providing GUI widgets that are relatively
simple but cross-browser. There are general-purpose parts to YUT as well, such as Ajax
functionality.

-
¥ Dojo Code Cabinet - Mozilla Firefox
File Edit View History Bookmarks Tools Help

Q oy
Back - Forward ~ file:/ / /C:/ projects/dojobook/Chapter%206%20- %20Code%20Cabinet/Code/index.ht | ¥ 17| Google oS
(5 wl [O B
Reload Sitop Home
4 I | Dojo Code Cabinet a]
S Add Category & Delete Category ‘ 2| Add Snippet) Delete Snippet
~
—Si t Cati 1
et ategories Snippets || Info | Code | Notes | Keywords
JavaScript

Snippet Name Description

| StringTrim ””””””‘}Tnma string
[se}

<] m | (@]

Search Snippet Name Description ‘

Keywords: StiingTrim Tiim & string

Code []

No: [P———————

Desciption: | | |

Ao []

Notes []

[S+ Done none © I YSlow 24695 - 0.LMB/27MB [OMB/9.8MB

Figure 1-7. An application built with Dojo

This is in not an exhaustive list, but as you can clearly see, there are quite a few to choose
from. This list barely scratches the surface of what’s available today. Of course, while all of
these are fine toolkits, we're here to talk about one that’s not in that list, one that I feel is quite
possibly the best available today: Ext JS.

15

16

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

Enter Ext JS: The Best of the Bunch

Along time ago in a galaxy far, far away (more precisely, early 2006, the planet Earth), a gentle-
man by the name of Jack Slocum developed a set of extension utilities to the YUI library. These
utilities rapidly gained popularity within the YUI community and were quickly organized into
an independent library called YUI-Ext. In fall 2006, Jack released the .33 version of this new
library under the terms of the Berkeley Software Distribution (BSD) license.

After a while, before 2006 was over in fact, the name of the library was changed to Ext,
because it was starting to develop independently of YUT at that point. In fact, support for other
libraries was beginning to be developed within Ext.

In 2007, Jack formed a company to further advance the development of Ext, which at
some point thereafter began to be known as Ext JS. On April 1, 2007, Ext JS 1.0 was released.

In a short period of time, Ext JS evolved from a handy set of extensions to a popular library
into what many people, including yours truly, feel is the most mature JavaScript UI develop-
ment library available today.

Ext JS is focused on allowing you to create great user interfaces in a web app. In fact, it
is best known for its top-notch collection of UI widgets. It allows you to create web apps that
mimic the look and feel of desktop native applications, and it also allows you to mimic most of
the functionality those applications provide. In short, Ext JS enables you to build true RIAs.

It’s not all about widgets, though, as we’ll see. There are a lot of useful utility-type func-
tions in Ext JS as well. Need some Ajax functionality? Check. Need some string manipulation
functions? It’s got those too. Need a data abstraction layer? Ext JS has you covered.

LICENSING QUESTIONS

Ext JS has undergone some licensing changes throughout its lifetime, and some of them have been tumul-
tuous in terms of Ext JS users having issues with the changes for one reason or another. | am in no way,
shape, or form a lawyer, and frankly, software licensing can be tricky. Therefore, | urge you to do independent
research in this area before using Ext JS to ensure it meets your needs. | won't go anywhere near the debate
about whether or not things were done “properly.” | leave that to each person to decide. I'll stick to the facts
here as best | can (one of the few times | shy away from giving my personal opinion on something!).

At the time of this writing, Ext JS is under a dual-license model. There is a commercial option, which
you have to pay for. Under this option, you do not have any obligation to release the source code for your
application. You get enhanced support from Ext, LLC (the company Jack Slocum started) for your money.

An open source option is available that allows you to use Ext JS for free, under the terms of the GNU
General Public License (GPL) 3.0. In addition, there is a mechanism allowing exceptions for open source proj-
ects that don’t fall under the terms of the GPL 3.0.

As you can see, licensing isn’t a simple matter at all! However, | think the Ext JS team has tried their
best to meet the needs of both commercial entities and those folks developing free/open source software
alike. Remember that Jack and Co. are trying to feed their families from their efforts, so the fact that they
offer a free alternative at all is a Good Thing™ to be sure!

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

In the end, though, | suggest reading the licensing terms and determining the right option for your proj-
ect before you get too far into it. Although you can download Ext JS at any time and begin developing right
away, it would probably be advisable to sort out the licensing issues sooner than later.

Note too that the story is a little different for something called Ext Core, but that topic is discussed a few
pages from now, so keep reading!

Let’s take a look at some examples of Ext JS in action. In Figure 1-8 you can see one such
example: an RSS feed reader. This is one of the many examples available on the Ext JS web
site itself.

» S My Foeds The Date =
&5 ExtIEcom Blog } ExtGWT 11 Rebeased Thus 1:39 am &
* Darrel Ueyer
ExtIE com Foruma
We are pleased ko anncunce Bhe release of Ext GWT 1.1. This release i packed ful of new feateres and compenents. Ext GWT 1.1 & recommended upgrade for al Ext GWT 1.0
Ajwasn
‘ b Lt 5 st The Ajax Lopersence W15 1024 am
i " aargn Conren
ack Shacm and | foe fws develepar focuned smpaicns, Hands On Exf” and “Aduasced CS8 and Thaming of Exl 157 ol The Ajax Exgeinnce al the sad of this month Fesl
e w akng wi
-
5 » Google Contacts: Creatimg a Google Chrome App with Ext and the Google Data AF1 w101 pm
9 " Jame s
P 1M wis Teieased ISt Witk | WAS ieresied i Seeng Raw Me APRRCALON mose fratire worked | Piied AN S0 propect b RtriAce wih the Gaogie Cantacts Data
%‘, Ext GWT: Herw weith Portal and Web Deskiop B8 147 am
" Darred weyer
L] T - 2 composents tfes new vesy o

Implementation Spotlght: Harketo BB &12 am :‘
[Ve e Tab | 5 6o o Post

Ext GWT 1.1 Released Sep 18, 2008, 1:39 am
by Duarred Meyer

Wi ane pleased to anncunce the release of Ext GWT 1.1. This release & packed full of new features and camponents. Bxt GWT 1.1 & 2 recommended upgrade for all Ext
GWT 1.0 users,
Email this » Technarati Links + Save to delicio.us (4 saves, tagged: grid java) » Add to delicio.us « Digg This) » Discuss on Newsvine » Stamble It!

@ riod: ETETNN © vext ©) previous ©) mighight all [] Match case (i) Phrase not found

= @ E oone 26IMB/27ME 5 aTMej4estn R vslow 2a0es o @ 1377 .

Figure 1-8. RSS feed reader example

As you can see, the user interface here is quite nice-looking. Not only that, it’s very func-
tional. For example, the left-hand side, which contains the list of feeds, can be expanded or
contracted by dragging the divider line left or right. Likewise, the area at the bottom where a
selected article is read can similarly be resized by dragging the line above the View in New Tab
button. You can also collapse the list of feeds entirely by clicking the double arrow icon in the

17

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

upper-right corner, and this happens with a nice animation effect. Another feature is that the
list of articles on the top right are sortable by clicking the column headings. You can put the
list of articles and the reading pane (where you read an article) next to each by clicking the
Reading Pane button. Most of this functionality comes with the widgets used to build the Ul
automatically without you as a developer having to do any real work (other than setting some
flags to indicate which capabilities you want).

Next, in Figure 1-9, you can see one of the examples that many people would simply refer
to as “wicked cool,” and I wouldn’t disagree one bit.

(2 Ext 2.0 Desktop Sample App - Windows Internet Explorer Exli= -
0 [hpijens denlov/d deskton html 3] [##][¢] [Googte 2]

File Edit View Favorites Tools Help

w [mEthUDesktw Sample App FiHome + [Feeds(l) - m@hPrint - [} Page - £ Tools »

] arid window

() Add something Options Remove Something
@ L @ = Accordion Window

Company Price % Change 738
3m Co s7172 003

Grline Users
1= =3 Friends

£ Jack

American International Group, Inc. 564.13 2 Brian

Alcoa Inc 529.01 147
American Express Company 85255 002

ATST nc. 53161 -0 E B o
Caterpillar Inc. 36727 B Tm
Citigroup, Inc. 549,37 £ Nige
Exxon Mobil Corp $68.10 E K & Fred

& Bob

@3 Family
General Motors Corporation 530.27 B Kely

Grid Window as Hewlett-Packard Co $36.53 - B sara

Tab Window s zack
[i£] Tab Window =|[=]%] & John

General Electric Company 53414

Do @ N @ s W =

&, Jack Slocum

B Accordion Window

TabText1 | TabText2 || TobText3 || TabTexts

() Bogus Submenu 5] Bogus Window 1

Settings
£ Window 6 5] Bogus Window 2 Something useful would be in here. Even More Stiff
[5] Bogus Windaw 3 My Stuff

[5] Bogus Window 4
] window &
[5] Bogus Window 5

Something useful would be in here.

http:/ /extis. ktop.html# & Internet # 100% -

Figure 1-9. Web desktop example

This is the web desktop example. Yes, what you are looking at is a JavaScript-based web
application! As you can see, Ext JS is extremely powerful, giving you windows (which can be
dragged around, resized, maximized, and minimized) as well as tabbed interfaces, accordion
widgets, grids, and much more. I would say that if that example doesn’t impress you, then
there’s probably something wrong with your brain!

Note Both of these examples, along with tons more, are available directly on the Ext JS web site for you
to play with. Especially for the web desktop example, | suggest you take a few minutes to peruse the site. It's
fun to play with them for real rather than just seeing them statically on the page.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

Fisher Price™ My First Ext JS Application

Before we start looking in detail at Ext JS’s overall structure and AP]J, let’s talk about what it
takes to get a simple Ext JS application off the ground. As it happens, it isn’t much at all!

You'll obviously need to download Ext JS from the Ext JS web site (www.extjs.com). There’s
only a single download, and that’s the Ext JS SDK, which is pretty much everything, including
source code, examples, documentation, and examples. Once you have that downloaded and
unzipped, using Ext JS is as simple as a few imports in an HTML document.

Note There is also a “build your own” option in the download section of the web site. This allows you to
build a custom version of Ext JS that only includes those parts you want. This is a great way to optimize the
performance of your site, and | encourage you to play with that online tool as time allows.

The imports you'll need are very simple and depend on what parts of Ext JS you wish to
use. First, if you intend to use any of the Ul widgets, you'll need a style sheet:

<link rel="stylesheet" type="text/css" href="extjs/resources/css/ext-all.css" />

If, as in the case of all the example code in this chapter, you aren’t using widgets, then this
style sheet isn’t needed. Naturally, you’ll need to adjust that path to point to where Ext JS is
located.

Once that’s done, it’s on to JavaScript imports, and here you have some choices. You see,
ExtJS can integrate with many of today’s most popular libraries. Ext JS will in fact borrow
some “plumbing” code from these libraries, things like Ajax functions, animation, events, and
so on. Not too long ago, Ext JS actually required one of those libraries to work. That is no longer
the case; Ext JS can now run quite happily on its own (that is how all the applications in this
book are written). However, if you're already using one of these other libraries you may want
to use what Ext JS terms “adapters” to integrate with those libraries. So, the JavaScript imports
you specify can vary based on what library, if any, you want to use along with Ext JS. Table 1-1
summarizes the required JavaScript imports; it also tells you in what order they are required to
appear because ordering is very important for everything to work as expected.

Table 1-1. JavaScript Imports, and Their Order, Required to Get Ext JS Working

Configuration Imports

Ext JS by itself ext-base.js, then ext-all. js (or ext-all-debug.js for a debug
version, or you can specify source files instead)

Yahoo!’s YUI (v. 12 or higher) yui-utilies.js, then ext-yui-adapter.js, then ext-all.js (or
ext-all-debug.js for a debug version, or you can specify source files
instead)

jQuery (v. 1.1 or higher) jquery.js, then jquery-plugin.js, then ext-jquery-adapter.js,
then ext-all.js (or ext-all-debug.js for a debug version, or you
can specify source files instead)

Prototype (v. 1.5 or higher) prototype.js, then scriptaculous. js, then ext-prototype-
and Script.aculo.us (v 1.7 adapter.js, then ext-all.js (or ext-all-debug.js for a debug
or higher) version, or you can specify source files instead)

19

20

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

Figure 1-10 summarizes the relationships between these various files.

ext-all.js or ext-all.debug.js or individual source files

ext-yui-adapter.js ext-jquery-adapter.js

ext-prototype-adapter.js

jquery.js
(Any jQuery plug-ins)

prototype.js
scriptaculous.js

yui-utilities.js ext-base.js

Figure 1-10. Ext JS JavaScript files and their (optional) dependencies

All of the files mentioned here (except for ext-all.js and ext-all-debug. js) are adapt-
ers and are located in the /adapters directory of your Ext JS directory. So, for example, let’s
assume we're using Ext JS all by its lonesome, which is how all the applications in this book are
presented. Let’s further assume we’re not using the debug version, in which case we have only
these two imports to add to our page:

<script type="text/javascript" src="extjs/adapter/ext/ext-base.js"></script>
<script type="text/javascript" src="extjs/ext-all.js"></script>

Once you have those files imported into your HTML document, you are ready to rock and
roll! Virtually all Ext JS has to offer is immediately available, right at your fingertips.

Now, let’s get to some learnin’, shall we? We begin by taking a look at Ext JS’s overall struc-
ture, and we’ll then quickly dive into some real code.

Ext JS’s High-Level Organizational Structure

One of the things that sets Ext JS apart from most other libraries is the clean structure of its
APL. You can tell that Jack and Co. believe in the object-oriented paradigm quite strongly
because Ext JS follows a highly object-oriented design. Almost everything is within a class
(and they even differentiate between regular classes and singletons!). Classes are within
namespaces (analogous to packages in languages like Java), and classes extend other classes
to form logical hierarchies.

For example, take a CheckBox widget. It extends from the Field class, which extends from
the BoxComponent class, which extends from the Component class, which extends from the
Observable class, which is the base of the inheritance tree (technically, Observable extends
from the basic JavaScript Object class, but that’s true of any class in JavaScript and therefore

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

generally isn’t something to be concerned with). As is the case in object-oriented design, the
final CheckBox class takes behavior and characteristics from each of its ancestors. This allows a
CheckBox to be treated like a Component, for instance, because it too is a Component by virtue of
its inheritance, which means it has all the methods and fields that any Component has. This all
means that (a) there’s a logical structure to the entire Ext JS API, and (b) learning about some-
thing usually helps you learn about something else because that new knowledge will apply to it
as well (or stated another way, once you learn what you can do with a Component, for example,
you’ll know at least some of what a CheckBox can do automatically).

At the highest level, there are a number of classes in the global scope, and then there is the
Ext namespace. The contents of these classes and this namespace form the core of Ext JS, and
provide many of the utility-type functionality you’d want from a good JavaScript library.

Note The following section is not meant to be an exhaustive look at everything in Ext JS. It isn’t my intent
to duplicate the Ext JS API documentation, which is rather good. Instead, | will touch on the things that | see
as most useful and of special interest in the context of the projects to come. The bottom line is Ext JS already
has great reference documentation, and I’'m not trying to re-create that merely to highlight cool stuff!

Global-Scope Classes

As of Ext JS version 2.2, there are six classes in global scope, one of which is a singleton.

Note The code snippets shown next are each part of an HTML file that you can load and see in action. An
HTML file is available for each of these classes.

Array

This class extends the built-in Array class, adding some new methods to it. One such method
is index0f():

var a = ["Frank", "Bill", "Mike", "Peter"];
alert(a.index0f("Mike"));

This will display an alert message with the text “2” because that’s the index where Mike is
found.
The remove () method is also added, so you can do this:

a.remove("Bill");
alert(a);

You can see the alert() message in Figure 1-11. Note that Bill was removed, which is
reflected in the alert() message.

21

22

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

[JavaScript Application]

& Frank,Mike, Peter

Figure 1-11. Contents of the array after Bill is removed

Date

The Date class both extends the JavaScript intrinsic Date class and provides some static util-
ity methods itself. To begin, let’s take a look at a couple of methods that allow us to get values
from a Date object:

var d = new Date("02/17/1973");

var sOut = "";

sOut += "Starting date: " +
Date.getShortDayName(d.getDay()) + " " +
Date.getShortMonthName(d.getMonth()) + " " +
d.getDate() + ", " + d.getFullYear() + "
";

Ext.getDom("divOutput").innerHTML = sOut;

Here you can see the getShortDayName() and getShortMonthName() methods. The former
will return “Sat” for this Date, and the later returns “Feb”. getDate() and getFullYear() are
methods of the standard Date class. This generates some HTML and writes to a <div> with the
ID divOutput.

The format() method is another handy method. It uses a subset of PHP’s date() func-
tion, which is helpful only if you know PHP! For the rest of us, the Ext JS docs detail the format
specification very well. Here’s an example of it in action:

var dFormatted = d.format("D M j, Y");

This results in the Date object seen previously being formatted into a string “Sat Feb 17,
1973” (which just so happens to be the output of the code seen earlier, which was constructed
manually).

Next up is a handy function for doing basic date math. For example, let’s say we want to
add four days to the Date object we’ve been looking at so far. Here’s all you need to do:

var d1 = d.add(Date.DAY, 4);

Note that calling the add() method doesn’t alter the Date object pointed to by the vari-
able d here; it returns a new instance, in this case Wednesday February 21, 1973. You can use
negative numbers as well to effectively subtract from a date. In addition, here you can see one
of a number of properties present on the Date class. This one is a simple constant that speci-
fies what we’re adding to the Date object, the day in this case, so Date.DAY. If you wanted to
add four years to the date instead, you could use Date.YEAR. In addition to the rest that you'd

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

expect, like Date.MONTH and Date.MINUTE and so on, there are a couple of arrays that provide
useful information, such as Date.dayNames and Date.monthNames, which I suspect are self-
explanatory.

You can determine whether the year of a given Date object is a leap year by calling the
isLeapYear() method on it, which returns true or false. You can determine what day of the
year the Date represents by calling getDayOfYear (), which returns a number between 1 and
365 (or 366 in a leap year). The getWeekOfYear () method tells you what week of the year the
Date object falls in. The getDaysInMonth() method tells you how many days are in the month
of the Date object. You can even get the suffix (like “th,” “nd,” “rd,” or “st” for a day. So, you
can do this:

sOut += "The day of " + d.format("D M j, Y") + " is the " +
d.getDate() + d.getSuffix() + " (used getSuffix() to get th)
";

This will result in the text “The day of Sat Feb 17, 1973 is the 17th (used getSuffix() to
get th)”. If you've ever written the typical if block of code to do this yourself, you'll very much
appreciate this method!

Another handy edition to the Date class is the between() method. This lets you determine
if the Date object you call between() on falls between two specified Date objects. Here’s an
example:

var d3 = new Date("02/19/1973");

sOut += d3.format("D M j, Y") + ".between(" +
d.format("D M j, Y") + ", " + di.format("D M j, Y") + "): " +
d3.between(d, d1) + "
";

This will result in the text “Mon Feb 19, 1973.between(Sat Feb 17, 1973, Wed Feb 21, 1973):
true.” As you can see, between() returns a simple true or false.

Along the same lines is getElapsed(), which tells you how much time, in milliseconds, has
elapsed between the Date object you call it on and a given Date object.

Finally we have the parseDate() method, which parses a string into a Date object using a
format specifier. Here it is in action:

sOut += "Date.parseDate('1973-02-17 12:14:06AM"', 'Y-m-d h:i:sA')" +
": " + Date.parseDate("1973-02-17 12:14:06AM", "Y-m-d h:i:sA");

This results in the text “Date.parseDate('1973-02-17 12:14:06AM', 'Y-m-d h:i:sA"): Sat Feb
17 1973 00:14:06 GMT-0500 (Eastern Standard Time).” As you can see, the string has been
properly parsed and the standard toString() of the Date class is the proof of that.

The result of the execution of all these functions is shown in Figure 1-12.

Note The last line may look different depending on the browser you run it in because JavaScript imple-
mentations can implement toString() of the Date class as they see fit (the screenshot is running in
Firefox). You should, however, see the same date represented.

23

24

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

-
3 Chapter 1 - Date class - Mozilla Firefox
File Edit View History Bookmarks Tools Help

(

) - D | & Y = 2 A L | @ -] [Cifosae Q)

Back Forward NewTab Reload Stop Print Home DownloadHelper Undo Closed Tab

@ pisable - 2 Cookies ~ [€55~] Forms - [#] Images - @ Information - () Miscellaneous ~ ./ Outline - | § Resize - J° Tools~ {2] View Source - .~ Options- 3 @ ©
© 8 () Chapter 1 - Date class x| F

Starting date: Sat Feb 17, 1973

Sat Feb 17, 1973 + 4 days: Wed Feb 21, 1973

Sat Feb 17, 1973 - 1 month: Wed Jan 17, 1973

isLeapYear() of Sat Feb 17. 1973: false

lgetDayOfYear() of Wed Jan 17. 1973: 16

|getDaysInMonth() of Wed Jan 17, 1973: 31

Mon Feb 19, 1973 between(Sat Feb 17, 1973, Wed Feb 21, 1973): true
Sat Feb 17, 1973 getElapsed(Wed Feb 21, 1973): 345600000

[The day of Sat Feb 17, 1973 is the 17th (used getSuffix() to get th)

Sat Feb 17, 1973 getWeekOfYear(): 7

Date.parseDate('1973-02-17 12:14:06AM’, "Y-m-d hisA"): Sat Feb 17 1973 00:14:06
[GMT-0500 (Eastern Standard Time)

W M| 6 A

- ®

DG~

-« ®

[@ EZ pone 205MB/27MB (] 164MB/488MB &' [vSlow & & 1337 -

Figure 1-12. Output of the Date class examples

Ext

The Ext class is that one singleton I mentioned earlier. You are not meant to instantiate this
class. More to the point, you cannot instantiate it—you’ll see “Ext is not a constructor error”
(in Firefox, at least) if you try.

The Ext class has a number of useful members, starting with a batch of public properties.
These are summarized in Table 1-2 (which I copied directly from the Ext JS documentation on
the grounds that I'm lazy!).

Table 1-2. Public Properties of the Ext Class

Property Name Description

BLANK_IMAGE_URL Contains a URL to a 1X1 transparent GIF image used by Ext to cre-
ate inline icons with CSS background images. (Defaults to http://
extjs.com/s.gif; youshould change this to a URL on your server.)

SSL_SECURE_URL Contains a URL to a blank file used by Ext when in secure mode for
iframe src and onReady src to prevent the Internet Explorer inse-
cure content warning (defaults to javascript:false).

emptyFn A reusable empty function.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

Property Name

Description

enableGarbageCollector

enablelistenerCollection

isAir

isBorderBox

isChrome

isGecko
isGecko2
isGecko3

isIE
isIE6
isIE7
isIE8
isLinux
isMac
isOpera
isReady

isSafari
isSafari2
isSafari3
isSecure

isStrict

isWindows

useShims

Set to true to automatically uncache orphaned Ext.Elements peri-
odically (defaults to true).

Set to true to automatically purge event listeners after uncach-
ing an element (defaults to false). Note: This only happens if
enableGarbageCollector is true.

Contains true if the detected platform is Adobe AIR.

Contains true if the detected browser is Internet Explorer running
in nonstrict mode.

Contains true if the detected browser is Google’s Chrome.

Contains true if the detected browser uses the Gecko layout engine
(e.g., Mozilla or Firefox).

Contains true if the detected browser uses a pre-Gecko 1.9 layout
engine (e.g., Firefox 2.x).

Contains true if the detected browser uses a Gecko 1.9+ layout
engine (e.g., Firefox 3.x).

Contains true if the detected browser is Internet Explorer.
Contains true if the detected browser is Internet Explorer 6.x.
Contains true if the detected browser is Internet Explorer 7.x.
Contains true if the detected browser is Internet Explorer 8.x.
Contains true if the detected platform is Linux.

Contains true if the detected platform is Mac OS.

Contains true if the detected browser is Opera.

Contains true when the document is fully initialized and ready for
action.

Contains true if the detected browser is Safari.
Contains true if the detected browser is Safari 2.x.
Contains true if the detected browser is Safari 3.x.
Contains true if the page is running over SSL.

True if the browser is in strict (standards-compliant) mode, as op-
posed to quirks mode.

Contains true if the detected platform is Windows.

By default, Ext intelligently decides whether floating elements should
be shimmed. Shimming is a trick used specifically to deal with an
Internet Explorer issue where <select> elements will “poke through”
elements placed over them with z-index style settings. So, let’s say
you have a <div> that you want to float over a <select>. By default,
the <select> will be seen through the <div>, or at least some portion
of the <div>. Shimming means that you place an iFrame, which can
float over a <select>, behind the <div> and adjust the z-index val-
ues of the iFrame and <div> in such a way that the iFrame blocks the
<select>, and then the <div>, which can float on top of the iFrame,
is positioned in exactly the same location. So, the iFrame blocks the
<select>, but the <div> displays on top of the iFrame, so the user sees
the <div> floating over the <select> as expected and nothing more.
Thankfully, this Ext JS setting allows you to not have to know any of
that and simply let Ext JS deal with it! If you are using Flash, or Java
applets, you may want to set this to true.

25

26

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

Here’s an example of these properties in action:

var sOut =
sOut += "isAir:
sOut += "isBorderBox:
sOut += "isStrict: "
sOut += "isGecko:

+ Ext.isAir + "
";

" + Ext.isBorderBox + "
";
+ Ext.isStrict + "
";
+ Ext.isGecko + "
";
sOut += "isGecko2: " + Ext.isGecko2 + "
";
sOut += "isGecko3: " + Ext.isGecko3 + "
";
sOut += "isIE: " + Ext.isIE + "
";
sOut += "isIE6: " + Ext.isIE6 + "
";
sOut += "isIE7: " + Ext.isIE7 + "
";
sOut += "islinux: " + Ext.islLinux + "
";
sOut += "isWindows: " + Ext.isWindows + "
";
sOut += "isMac: " + Ext.isMac + "
";
sOut += "isOpera: " + Ext.isOpera + "
";
sOut += "isSafari: " + Ext.isSafari + "
";
sOut += "isSafari2: " + Ext.isSafari2 + "
";
sOut += "isSafari3: " + Ext.isSafari3 + "
";
sOut += "isReady: " + Ext.isReady + "
";
sOut += "isSecure: " + Ext.isSecure + "
";
Ext.getDom("divOutput").innerHTML = sOut;

Assuming you ran this code in Firefox on Windows, and further assuming that there is a
<div> with the ID divOutput on the page, you'd see the output in Figure 1-13.
There are also a number of methods available via the Ext class. First up is addBehaviors():

Ext.addBehaviors({
"div@click" : function(e, t) {
alert("You clicked a div");
}
b;

This method basically allows you to add event handlers to elements. You call it and pass
to it an object that contains a number of key/value pairs. The key portion is a CSS selector. Any
element on the page with that selector will have applied to it the function defined as the value
of the key/value pair. The name of the event follows the at sign (@)in the key supplied. So here,
any <div> on the page will react to click events by executing the inline function. If you've run
the example from the source bundle that shows everything that is being discussed now (and if
you haven’t yet, now would be a real good time!), you can click on the <div> where the text is
located to see the alert() appear. Note that the function arguments e and t are browser Event
objects that describe the event and a reference to the DOM node, respectively.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 27

-
3 Chapter 1 - Ext class - Mozilla Firefox
File Edit View History Bookmarks Tools Help

D 0 B &H Q= P v S @ -] [Ccoose Q|

Back Forward NewTab Reload Stop Print Home DownloadHelper Undo Closed Tab
@ pisable - 2 Cookies ~ [€55~] Forms - [#] Images - @ Information - () Miscellaneous ~ ./ Outline - | | Resize - J° Tools~ {2] View Source - ./~ Options- 3 @ ©
8 () Chapter1- Extclass x|]

isAir: false
isBorderBox: false
isStrict: false
isGecko: true
isGecko2: false
isGecko3: true
isIE: false

isIE6: false
iSIET: false
isLinu: false
isWindows: true
isMac: false
isOpera: false
isSafari false
isSafari2: false
isSafari3: false
isReady: true
isSecure: false

WM 6 A

-

= r = @ =

#° spect Clear Profile [N -] <

| Console~ | HTML (S5 Script DOM HNet Cookies YSlow Options ~

>>> (=]
@& Done ~ 20.5MB/27MB [164MB/488MB #° [vSlow 07385 & @ 1337 »

Figure 1-13. Values of Ext class public properties

The apply() method is next, and this allows you to apply properties from one object to
another:

«»,

var sOut = “7;
function Classi() {
this.field1l = "liberate me";
}
function Class2() {
this.field2 = "liberate tutame ex inferis";
}
var objl = new Classi();
var obj2 = new Class2();
Ext.apply(obj1, obj2);
sOut += "obj1.field1: " + obji.fieldl + "
";
sOut += "obj1.field2: " + obj1.field2 + "
";
Ext.getDom("divOutput").innerHTML = sOut;

28

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

The output to divOutput will be “liberate me,” which is defined in Class1, and then you
will see “liberate tutame ex inferis,”® which is defined in Class2, but which has been applied to
obj1 (an instance of Class1).

Having an array and needing to do something with each member of it is a common
enough requirement, and Ext JS is there to help with the Ext.each() method:

var sOut = “7;
var a = [2, 4, 6, 8];
Ext.each(a, function(elem) {
sOut += elem + " * 2: " + elem * 2 + "
";

D;
Ext.getDom("divOutput").innerHTML = sOut;

Each element is multiplied by two and the output added to the sOut string, which when
displayed shows this:

2 %204
4 *2:8
6 * 2: 12
8 * 2: 16

You can of course do whatever you want in the function, as simple or as complex as you
need.

In the Ext class you'll find a couple of methods for determining the identity of a variable.
There’s isArray(), which returns true if the argument passed to it is an array and false other-
wise. Likewise, isDate() returns true if the argument is a Date and false if not. There is also
isEmpty(), which returns true if the argument is null, undefined, or an empty string.

The num() method is next, and it is used to validate that a given value is numeric. Further,
if itisn’t, a default value can be returned. For example:

var sOut = "";

sOut += "Ext.num(12, 5): " + Ext.num(12) + "
";

sOut += "Ext.num(\"Frank\", 123): " + Ext.num("Frank", 123) + "
";
Ext.getDom("divOutput").innerHTML = sOut;

This results in the following output:

Ext.num(12, 5): 12
Ext.num("Frank", 123): 123

9 SPOILER ALERT... The phrase “liberate me” is Latin for “save me” (maybe... keep reading!). This was
the message received from the long-lost ship Event Horizon in the movie of the same name. Unfor-
tunately for the rescue crew that found the Event Horizon, the message was misheard and was not
“liberate me” but was actually “liberate tutame ex inferis,” which translated means “save yourself from
hell.” It doesn’t get much more ominous than that! My technical reviewer pointed out that “liber-
ate me” should actually have been translated as “free me,” and therefore “liberate tutame ex inferis”
would be “free me from hell.” Now, I'm no Latin expert, and even though I found some possibly con-
tradictory information on the Web, I tend to trust my tech reviewer here! Either way, that’s one scary
phrase in the context of the movie’s story!

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

The first call returns 12 because 12 is obviously a numeric value. The second parameter, 5,
would have been returned if it wasn’t, as is seen in the second call, where Frank isn’t numeric
and so 123 is returned.

The Ext.getDom() method is one of the methods you'll probably wind up using most. It's a
shorthand version of the ubiquitous document.getElementById() method. Simply pass it an ID
and you'll get back a reference to the node, or null if it isn’t found.

Say you have a reference to a node, and you want to remove it. Ext JS has you covered with
the Ext.removeNode() method:

Ext.removeNode (Ext.getDom("removeMe"));

The Ext.type() method is another general-purpose function that is extremely useful. Pass
it basically anything you want and it'll return its type. For example:

var sOut = "";
sOut += "Ext.type(new Function()): " +
Ext.type(new Function()) + "
";
sOut += "Ext.type(123): " + Ext.type(123) + "
";
sOut += "Ext.type(\"test\"): " + Ext.type("test") + "
";
Ext.getDom("divOutput").innerHTML = sOut;

When you run this code, you'll see this output:

Ext.type(new Function()): function
Ext.type(123): number
Ext.type("test"): string

The next two methods I want to discuss go hand in hand: Ext.urlEncode() and
Ext.urlDecode(). The Ext.urlEncode() method takes in an object and creates a URL-encoded
string (what you'd append to a URL for a GET request that accepts parameters). With it you
can do this:

var s = Ext.urlEncode({first:"Archie",last:"Bunker"}) ;

Now you have a string “first=Archie&last=Bunker” sitting in the variable s. Now, if you
want to take that string and get an object out of it, you use Ext.ur1Decode():

var o = Ext.urlDecode(s);

With that you could use alert(o.first); to get an alert() message with the text “Archie”
in it.

The final method to discuss is Ext.onReady(). You'll see this in most of the examples in
this chapter and throughout the project. Simply, Ext.onReady() tells Ext JS what function
you want called when the DOM is loaded. This is before the typical onLoad event fires but also
before images are loaded. This function is handy because it allows you to execute code without
waiting for the entire page, and all dependent resources, to load. This helps your application
load faster and makes it more responsive for the user.

29

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

Function

The Function class adds a number of methods to every single Function object in JavaScript.
Let’s begin with a look at the createSequence() method:

function add(num1, num2) {
alert(numi + num2);

}

function subtract(numi, num2) {
alert(numi - num2);

}

add(2, 2);

subtract(5, 3);

var doBoth = add.createSequence(subtract);

doBoth(10, 8);

The createSequence() method allows you to create a single function call that is actually
two (or more) function calls executed in sequence. When this code is executed, four alert()
messages appear in turn. The first says 4, since 2 + 2 = 4. The second says 2, since 5-3 = 2.

The third and fourth are both a result of calling doBoth(). First, add() is called, passing it the
parameters 10 and 8, so the alert() says 18. Then, subtract() is called, and the alert() mes-
sage shows 2, since 10 — 8 = 2. The function passed to createSequence() is called with the same
arguments as the Function createSequence() is called with.

Another interesting method is createInterceptor(). This provides a rudimentary form
of aspect-oriented programming (AOP) whereby you can have a given function called before
another is. For example:

var addMult = add.createInterceptor(function(numi, num2) {
alert(numi * num2);

1
addMult(6, 7);

Now, when addMult() is called, first the function defined inline in the call to
createInterceptor() is executed, multiplying the two arguments and showing the result via
alert(), 42 in this case. Then, add() is called, and we see 13 in a second alert() message. This
is nice because you're tying two functions together in a loose way. The alternative would be to
have add() call the inline function (which would be defined like any other function is in that
case) before doing its own work, which makes them tightly coupled. The sort of loose coupling
that createInterceptor() allows for is much cleaner, though.

Note The createSequence() and createInterceptor() at first glance look quite similar, but there is
one key distinction: with createInterceptor(), if the function passed to createInterceptor() returns
false, then the function that createInterceptor() is called on will not be called. In this case, if the inline
function returns false, then add() will not be called.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

Next we'll talk about the defer () method, which allows you to execute the function you
call it on after some period of time. This is a nice abstraction of the usual timeout () mecha-
nism in JavaScript. In practice you would do something like this:

add.defer (3000, this, [8, 9]);

After three seconds (1,000 milliseconds per second, so 3,000 = 1,000 * 3), the add() func-
tion will be called, and the parameters 8 and 9 will be passed to it, so we’'ll see an alert()
message saying 17. The argument this defines the object for which the scope is set. Also note
that the call to defer() returns a number that is the ID of the timeout () created. This allows
you to do a clearTimeout () before the function executes if you wish.

A BRIEF ASIDE ON ASPECT-ORIENTED PROGRAMMING

Aspect-oriented programming (AOP), sometimes called aspect-oriented software development (AOSD), is
the technique whereby you identify so-called cross-cutting concerns and externalize them from the code in
question.

A commonly used example is that of logging. Frequently, you want to output a log statement every time
a given function is called. Typically, you would include some sort of log statement directly in the function. This
works well enough, but the problem you quickly see is that you have logging code strewn all over the code
because in all likelihood you want to do this in many functions.

AOP enables you to do the equivalent of telling your runtime environment, “Hey, do me a favor, buddy;
output a log statement every time function A is called,” without you having to specifically include the code to
do so in the function. This is also an example of separation of concerns because what your function actually
does is separated from the logging concern.

How this AOP approach is accomplished depends on the AOP implementation you use. Some work by
modifying your code at compile time; others do so at runtime. Some truly work at the environment level,
meaning your code is not modified and the function calls are instead intercepted somehow. The implementa-
tion isn’t terribly important; the underlying concept is.

Number

The Number class extends the intrinsic Number JavaScript class and provides a single addition:
the constrain() method. This method allows you to determine if the current value of the
Number object falls within a given range by specifying a minimum and maximum value. If it
does not fall within the range, constrain() will tell you which side of the range was exceeded
by returning to you the minimum or maximum value as appropriate. Here’s how it works:

var n = new Number(22);
alert(n.constrain(10, 25));
alert(n.constrain(1, 14));

31

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

This will result in two alert() messages, the first saying 22, because 22 falls within the
range 10-25, and in that case constrain() returns the value of the Number object. The second
alert() will say 14 because 22 is obviously outside the range 1-14, and it’s higher than the
maximum of 14, so that’s the side of the range it exceeds.

String

The String class adds a couple of static methods to the intrinsic JavaScript String class, as well
as two instance methods. For starters, there’s the escape() method:

alert(String.escape("This\\is'a test"));

This results in the alert() pop-up seen in Figure 1-14.

[JavaScript Application]

Figure 1-14. The output of String.escape()

The double backslash in the original string is itself escaped, so the content of the string
would in fact be a single backslash. Then when the escape() method gets a hold of it, it’s
escaped, resulting in the double backslash you see in the output. The single quote is escaped
as well.

The format() function is perhaps the handiest of all:

alert(String.format("Hello {0}, my name is {1}", "Barack", "Michelle"));

As you can see, it allows you to insert values into a string containing tokens. It’s a simple
positional insert, which means that subsequent arguments will be inserted sequentially into
the target string, which is the first argument. So, “Barack” is inserted in place of token {0}, and
“Michelle” into token {1}. The text in the alert() pop-up after that work is what you see in Fig-
ure 1-15.

[JavaScript Application]

& Hello Barack, my name is Michelle

Figure 1-15. The output of String.format()

Next up is the leftPad() method, which gives you a convenient way to pad out values
(most usually numbers, but not necessarily):

alert(String.leftPad("1234", 8, "0"));

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

The first argument is the value to pad out, and the second is the final length we want it to
be. The final argument is the character to pad the first argument with, if its length initially is
less than the second argument. So here the alert() message says “00001234,” and if you don’t
believe me take a look at Figure 1-16!

[JavaScript Application]

Figure 1-16. The output of String.leftPad()

The toggle() method is next, and it’s a deceptively simple little function:

var s = "Republican”;
alert(s.toggle("Republican", "Democrat"));

Here, the message in the alert() is as shown in Figure 1-17.

[JavaScript Application]

Figure 1-17. The output of String.toggle()

toggle() has compared the value of the string s to the literal string “Republican”. If it
matches, then it toggles the value and returns the second argument, “Democrat” in this case.
If it was any other value it would have simply returned the current value of s. Note that the
string s isn’t altered by this call.

The final method in the String class is something I'm still surprised isn’t built into
JavaScript: the trim() method.

" "

s = Trimmed String 5
alert("\"" + S.trim() + ll\llll);

It’s very simple but supremely helpful: given a string, trim whitespace from the start
and end of it, leaving any spaces in the middle alone. You would imagine the next revision of
JavaScript would finally eliminate the need for libraries to provide this function! Figure 1-18
shows the outcome of the example.

[JavaScript Application]

& “Trimmed String”

Figure 1-18. The output of String.trim()

34

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

Note There are a number of other classes in the global scope, including CategoryAxis, NumericAxis,
PieSeries, Series, and TimeAxis. All of these are related to Ext JS’s chart-generation capabilities. We'll
touch on charting in Chapter 2 and then see it in action in Chapter 9, but since that is a somewhat more
advanced topic | felt it better to not go into that stuff here. We’re still getting our Ext JS “sea legs,”'® so to
speak, under us!

The Ext Namespace

The Ext namespace is chock-full of goodness, to put it mildly. As has been the case previously,
it is not my intention to cover every single nook and cranny of it. My goal is to give you a solid
overview of what'’s there, highlighting areas in more detail where I feel is warranted. So, with-

out further ado, let’s get to it!

Ext.Ajax

Ajax is, by most reckonings, the primary enabler of the whole RIA movement we are in the
midst of. As such, you wouldn’t expect any modern JavaScript library to not support it, and
Ext]S is no exception. It provides a number of useful methods that allow you to fire asynchro-
nous requests to a server. One of the simplest forms is this:

Ext.Ajax.request({
url : "xxx", method : "post"
params : { firstName : "Paul", lastName : "Newman" },
headers : { fakeHeader : "someValue" }, disableCaching : true,
success : function(opt, suc, res) {
if (suc) {
alert("The response was successful and was:
}
}J

failure : function(res, opt) {
alert("Ajax failed: " + res);
}
D;

Here you can see the simple Ext.Ajax.request() method in action. It has a number of
arguments that it accepts. The url argument tells the method what URL to request (xxx is
obviously just a placeholder). The method argument, which defaults to GET but which I've over-
ridden as POST here, specifies the HTTP method that will be used. The params argument is an
object that includes extra parameters to include with the request. The disableCaching argu-
ment tells the method whether you want to ensure POST requests are never cached, which is

+ 1€5);

10 Sea legs is a term used to describe the ability of a person to walk steadily on the deck of a moving ship
at sea. More informally, the term is often used to describe when you are in the process of learning
something to mean that you aren’t fully knowledgeable on the topic just yet, but you're working on it!

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

what true indicates. This appends a dynamic parameter onto the request to ensure a unique
URL is requested no matter what. The success and failure arguments define callback func-
tions to be executed when the request succeeds, or if it fails (communication failures, for
instance). Each is passed the options (the opt argument) that were used to make the call, and
the response (the res argument) that came back from the server. The success function also
gets a Boolean argument (suc) that indicates whether the request succeeded. In addition, you
can pass a form argument that names a form on the page from which parameters will be gener-
ated. There are also the xmlData and the jsonData arguments, which provide the method with
an XML document or a JSON object, respectively, from which to generate parameters.

When you call this method, it returns a Number that is the transaction ID for the request.
This is useful because you can then call the Ext.Ajax.abort() method, passing that trans-
action ID to it, to cancel the request if it is still in flight. Related to this is the Ext.Ajax.
isLoading() method, which similarly accepts the transaction ID and tells you if the request
is still outstanding.

As you saw, the form argument lets you serialize a form to generate parameters for the
request. If you need to serialize a form without making an Ajax request, you can use the
Ext.Ajax.serializeForm() method, which takes in the name of the form (or a reference to the
form node in the DOM) and returns to you a URL-encoded string of parameters generated
from it.

There are also a number of useful properties that you can set on the Ext.Ajax class.
For example, the autoAbort property, when true, will cause any new request to abort any
already in progress. The disableCaching property allows you to globally set whether all
Ajax requests will include that cache-busting parameter that ensures unique URLSs for
every request. The method property allows you to set the default method (GET or POST) for
all Ajax requests. The timeout property lets you tell Ext.Ajax how long it should wait for a
request to return before it assumes it timed out (the default is 30,000, or 30 seconds).

In addition to all this, the Ext.Ajax class uses an event-driven model that lets you handle
certain events globally. For example:

Ext.Ajax.on('beforerequest', function() { alert("About to do Ajax"); });

This hooks an event listener to the specified event and will cause an alert() pop-up to
open before every Ajax request by calling the function passed as the second argument. The
other events you can handle are requestcomplete, whenever a response comes back from the
server, and requestexception, which occurs any time an HTTP error occurs.

You can also use the Ext.Ajax.hasListener() method to determine if there is currently
a listener for a given event (pass the name of the event you want to check as the argu-
ment to it). You can use the Ext.Ajax.removelistener() to stop handling a given event (or
use the Ext.Ajax.purgelListeners() to stop handling all events in one statement). There
is an Ext.Ajax.suspendEvents() to temporarily stop handling all events, and there is even
an Ext.Ajax.fireEvents() method that lets you fire a specific event without firing an Ajax
request (pass it the name of the event to fire as the first argument and an object as the sec-
ond that contains the parameters to pass to the listener for the event).

The Ext.Ajax class is an especially clean and simple, and yet powerful, Ajax implemen-
tation. It is very robust and yet extremely easy to use, essentially boiling down to a single
method!

35

36 CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

Ext.DomHelper

The Ext.DomHelper class is a handy utility class that allows you to easily create fragments of
HTML and insert them into the DOM. If you've written code to work with the DOM methods,
then you’ll quickly realize how cool this class is (otherwise you'll just have to take my word
forit!). Let’s look at the complete source code for the example Ext_DomHelper.htm, shown in
Listing 1-1.

Listing 1-1. The Ext_DomHelper.htm Example

<html>
<head>
<title>Chapter 1 - Ext.util Namespace - EXT.DomHelper class</title>

<script type="text/javascript" src="ext/adapter/ext/ext-base.js"></script>
<script type="text/javascript" src="ext/ext-all.js"></script>

<style>
.cssTable {
color : #ff0000;
border : 1px solid #000000;
}
.cssCell {
background-color : #eaeaea;

}
</style>

<script>
function testIt() {

Ext.DomHelper.append("divTable", {
id : "tblTable", tag : "table", cls : "cssTable", children : [
{ tag : "tr", id : "row1", children : [
{ tag : "td", cls : "cssCell", id : "rowl cell1", html : "1 1"},
{ tag : "td", cls : "cssCell", id : "rowl cell2", html : "1 2"},
{ tag : "td", cls : "cssCell", id : "rowl cell3", html : "1 3"}
]
b
{ tag : "tr", id : "row2", children : [
{ tag : "td", cls : "cssCell", id : "row2 cell1”, html : "2 1"},
{ tag : "td", cls : "cssCell", id : "row2 cell2", html : "2 2"},
{ tag : "td", cls : "cssCell", id : "row2 cell3", html : "2 3"}

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

Ext.DomHelper.applyStyles(Ext.getDom("row2 cell2"), "color:#00ff00");
Ext.DomHelper.insertAfter (Ext.getDom("tblTable"), {
tag : "div", id : "divDiv1", html : "I am divDiv1"
}s
alert(Ext.DomHelper.markup({
tag : "div", id : "divDiv1", html : "I am divDiv1"

s
}

Ext.onReady(testIt);
</script>
</head>

<body>
<div id="divTable"></div>
</body>

</html>

If you load Listing 1-1 in your browser, you will see a simple page that looks something
like Figure 1-19.

When the page loads, because of the Ext.onReady() statement the testIt() method will
execute. In this method we see the first use of DomHelper:

Ext.DomHelper.append("divTable", {
id : "tblTable", tag : "table", cls : "cssTable", children : [
{ tag : "tr", id : "row1", children : [
{ tag : "td", cls : "cssCell", id : "rowl cell1", html : "1 1"},
{ tag : "td", cls : "cssCell", id : "rowl cell2", html : "1 2"},
{ tag : "td", cls : "cssCell", id : "rowl cell3", html : "1 3"}
]
b
{ tag : "tr", id : "row2", children : [
{ tag : "td", cls : "cssCell", id : "row2 cell1l", html : "2 1"},
{ tag : "td", cls : "cssCell", id : "row2 cell2", html : "2 2"},
{ tag : "td", cls : "cssCell", id : "row2 cell3", html : "2 3"}

37

38

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

-
¥) Chapter 1 - Ext.util Namespace - EXT.DomHelper class - Mozilla Firefox

File Edit View History Bookmarks Tools Help 3t
Back Forward NewTab Reload \gtop Print Home DownloadHelper Undo Closed Tab :
© Dpisable - 2 Cookies~ [€55~ [] Forms - [¥| Images - (@ Information ~ (") Miscellaneous - ./ Outline - ;: Resize = V{b Todg
@ £q| [jd.apterl-ﬁct.uﬂllampaoe-[...m] F
* 111213
2 BB 215
& | 1em aviv1
|
i # Inspect Clear Profile hat laa
|| || console~ [HTML (S5 Script DOM mNet Cookies Vslow Options -
(L
=
By
3> @
[S& @ [Z| Done ~ 27MB[27MB (i 47.2MB/488MB &' [YSlow @ 1337 »

Figure 1-19. The page you'll see when you load the page in Listing 1-1 in a browser

This builds a table and inserts it into the divTable <div>. We use the DomHelper.append()
method, and it’s a simple enough beast. The first argument it takes is the ID of the DOM node
to insert the generated HTML fragment into. The second argument is an object that describes
the fragment to generate. First, we tell it what HTML tag we want to create, table in this case,
using the tag attribute. We could create anything we want here, but a table is a good example
because it allows us to see the children attribute in action. Even before that, though, we set
an id of tb1Table on the generated table, and we assign a style class of cssTable using the cls
attribute.

Now, on to the children array. We can create as many children as we wish, and each child
can itself have a children attribute. This allows us to create a hierarchy of elements as deep as
we wish. The html attribute on each child is the content to insert in the element created.

In other words, you're simply creating some number of nested objects, each with the
same attributes (tag, html, cls, id, and children) that describes a snippet of HTML in object
form. DomHelper takes care of converting that into HTML and inserting it into the DOM.

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

It would probably be enlightening to jump ahead in the code a bit. The append() method
isn’t the only choice. We can also use insertBefore() method to insert the fragment before a
given element. There is also insertAfter(), which inserts the fragment after the given element.
You could also use insertFirst(), which inserts the fragment as the first child of the given ele-
ment. In the example code you'll find an example of Ext.DomHelper.insertAfter() in action:

Ext.DomHelper.insertAfter (Ext.getDom("tblTable"), {
tag : "div", id : "divDiv1", html : "I am divDiv1"
1
alert(Ext.DomHelper.markup({
tag : "div", id : "divDiv1", html : "I am divDiv1"

D)

You'll also notice the Ext.DomHelper.markup() method is used. This returns the HTML
fragment generated by a call to one of the insert methods. So, the alert() dialog here is what
you see in Figure 1-20.

[JavaScript Application]

& <div id="divDiv1">1 am divDivl< /div>

Figure 1-20. The generated HTML fragment

Hopefully that markup doesn’t present any surprises, but it can be interesting to see what
Ext JS is generating for us.

As an exercise, I suggest you insert a call to Ext.DomHelper.markup() and pass it the code
in the first Ext.DomHelper.insert() call. This will show you the generated markup for the table.
Go ahead, do that now—I'll wait!

The other method you can see in action here is Ext.DomHelper.applyStyles(), which, as
its name implies, allows you to apply styles to a given DOM node. The first argument is the
node itself, so I've used the Ext.getDom() method to get a reference to the second cell in the
second row of the generated table. It then changes the text color to green, which you’ll see if
you load the page (you can’t really tell from a black-and-white screenshot on the printed page
obviously).

The DomHelper class, as you can see, is a handy tool indeed that saves you from having to
mess around with the DOM API, which is frequently not a pleasant experience.

Ext.DomQuery

CSS selector queries are all the rage these days. The jQuery library is perhaps the main catalyst
for this, but Ext JS provides a robust engine for CSS selector queries as well, encapsulated in
the Ext.DomQuery class. In Listing 1-2 you can see examples of a number of its methods.

39

40 CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

WHAT ARE CSS SELECTOR QUERIES?

In a nutshell, CSS selector queries are a mechanism for querying an HTML (or XML) document to retrieve one
or more elements on the page in a collection, usually with the purpose of styling them in some way. The CSS3
selector spec is one way to query for elements, XPath is another, and Ext.DomQuery supports both.

Sometimes you want to manipulate a particular element on a page, and using
document.getElementById() isagood choice, assuming the element is singular. But what if you want
to, for example, style all the cells of all tables on the page so that their text is red, and you want to do this on
the fly? Especially given that the contents of the table are possibly dynamically generated, you certainly don’t
want to try to retrieve each of them individually by ID. CSS selector queries allow you to do this succinctly.

Getting into constructing queries is a pretty extensive topic that | won’t be covering in any detail in this
book, so you may want to do some reading on that topic yourself. The Ext JS documentation for Ext.Dom-
Query has a decent summary, and a link to the official spec that includes more information and some good
details.

Listing 1-2. The DomQuery Class in Action

<html>
<head>
<title>Chapter 1 - Ext.util Namespace - EXT.DomQuery class</title>

<script type="text/javascript" src="ext/adapter/ext/ext-base.js"></script>
<script type="text/javascript" src="ext/ext-all.js"></script>

<style>
.cssRowl {
color : #ff0000;
}
.cssRow2 {
color : #0000ff;
}
.cssCell {
background-color : #00ff00;
}
.cssCellAlt {
background-color : #eaeaea;

}
</style>

<script>

function testIt() {

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

var query = "td[class=\"cssCell\"]";
var elems = Ext.DomQuery.select(query);
for (var i = 0; i < elems.length; i++) {
console.log(query + " = elems[" + i + "].firstChild.nodeValue
elems[i].firstChild.nodeValue);

n
+

}

query = "td[class=\"cssCellAlt\"]";

var f = Ext.DomQuery.compile(query);
elems = f(Ext.getDom("row1"));

for (var i = 0; i < elems.length; i++) {

console.log(query + " = elems[" + i + "].firstChild.nodeValue
elems[i].firstChild.nodeValue);

n
+

}

query = "tr[class=\"cssRow2\"]";

console.log("Ext.DomQuery.is(Ext.getDom(\"row2\"),
Ext.DomQuery.is(Ext.getDom("row2"), query));

n

+ query + ") =

|
+

query = "td";
elems = Ext.DomQuery.select(query);
console.log("Filtered list = " +

Ext.DomQuery.filter(elems, "td[class=\"cssCell\"]").length);

}

Ext.onReady(testIt);
</script>
</head>

<body>
<table border="1" cellpadding="2" cellspacing="2">
<tr id="row1" class="cssRow1">
<td class="cssCell">rowl celli</td>
<td class="cssCellAlt">rowl cell2</td>
<td class="cssCell">rowl cell3</td>
<td class="cssCellAlt">rowl cell4</td>
</tr>
<tr id="row2" class="cssRow2">
<td>row2 _celli</td>
<td>row2_cell2</td>
<td>row2_cell3</td>
<td>row2_cell4</td>
</tr>
</table>
</body>

</html>

42

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

The first thing to take note of is the table structure in the <body> of the document. It is this
structure that we’ll be querying against. Note too the style classes applied to the elements. It is
these settings specifically that are queried against.

If you open this page in Firefox with Firebug installed, Figure 1-21 will be the output in
Firebug’s console pane.

Note 0f course, if you aren’t using Firefox, or don’t have Firebug installed... why not? Seriously, though,
to run this example you’ll need to replace the console.log() calls with suitable replacements; alert()
should work fine in this case. The discussion that follows assumes you’re using Firefox with Firebug
installed.

td[class="cssCell”] = elems[0].firstChild.nodeValue = rowl_celll
td[class="cssCell”] = elems[1l].firstChild.nodeValue = rowl_cell3
td[class="cssCellalt"] = elems[0].firstChild.nodeValue = rowl_celll
td[class="cssCellalt"] = elems[l].firstChild.nodeValue = rowl_celld
Ext.DomQuery.is(Ext.getDom{"rowZ™), trlclass="cssRowi"]) = true

Filtered list = 2

Figure 1-21. The console output for this page

The first two lines of output are a result of this code:

var query = "td[class=\"cssCell\"]";
var elems = Ext.DomQuery.select(query);
for (var i = 0; i < elems.length; i++) {
console.log(query + " = elems[" + i + "].firstChild.nodeValue = " +
elems[i].firstChild.nodeValue);

First, a simple selector query is created. The query td[class="cssCell"] looks up all
<td> tags on the page that have a class attribute setting of cssCell. This query is passed to the
Ext.DomQuery.select() method, which returns an array of matching elements (you can pass
a second optional argument, a reference to a DOM Element, that would limit the scope of the
query, instead of querying the entire document as this example does). We can then iterate
over that array and output the value of the cell. We have to drill down through the hierarchy
a bit because each element of the array is a DOM Element object, and the firstChild of the
Element is the text within the cell (it’s actually a text node), and then the nodeValue attribute
of that child is the actual text contents of the cell.

Now, being able to do queries with Ext.DomQuery.select() is neat enough, but it turns
out to not be the most efficient thing out there. Precompiling the query when you know
you're going to be doing it a lot is far more efficient, and Ext.DomQuery allows for that via the
compile() method:

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

query = "td[class=\"cssCellAlt\"]";
var f = Ext.DomQuery.compile(query);
elems = f(Ext.getDom("row1"));
for (var i = 0; i < elems.length; i++) {
console.log(query + " = elems[" + i + "].firstChild.nodeValue = " +
elems[i].firstChild.nodeValue);

This time, we pass the query to Ext.DomQuery.compile(), which returns a Function
object. We can then call on that function, passing in a root node to begin the search at (this
is optional), and after that it works exactly as we saw before. The Ext.DomQuery.compile()
method is important if you are going to be reusing the same query many times.

Something else that can come up is the need to determine if a given Element matches
some query. You could perform a query and then see if you got any matches, but there’s a
more concise way to do it:

query = "tr[class=\"cssRow2\"]";
console.log("Ext.DomQuery.is(Ext.getDom(\"row2\"),
Ext.DomQuery.is(Ext.getDom("row2"), query));

n

+ query + ") =" +

The Ext.DomQuery.is() method allows you to pass in an Element (retrieve using
Ext.getDom() here) and a query, and it will return true if the element matches the query and
false if not.

Another commonly needed function is the ability to take an existing array of Elements and
filter it based on a query. The code in the example that demonstrates looks like this:

query = "td";
elems = Ext.DomQuery.select(query);
console.log("Filtered list = " +

Ext.DomQuery.filter(elems, "td[class=\"cssCell\"]").length);

First, a query is performed to get an array of all the <td> elements on the page (a total of
eight). Next, Ext.DomQuery.filter() is used to get an array of only those Elements matching
the query td[class="cssCell"]. That’s why we get the display “2” in Firebug’s console; only
two <td> elements match that query. You can optionally pass a second boolean argument to
Ext.DomQuery.filter(). If you pass true, you'll get only the elements that do not match the

query.

Ext.Updater

Earlier we took a look at the Ext.Ajax class. Now we’re going to look at another bit of Ajax
functionality provided by Ext JS: the Ext.Updater class. This allows us to perform Ajax updates
of a DOM element, and perhaps more importantly, allows us to do that periodically. Here’s a
simple example:

var u = new Ext.Updater("myDiv");
u.startAutoRefresh(30, "http://somedomain.com/somePage.jsp");

43

44

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

This will cause an Ajax request to fire every 30 seconds to the URL specified as the second
argument to u.startAutoRefresh(). The results will be inserted into the DOM node with ID
myDiv (presumably a <div>).

If you only need to update the element once as opposed to repeatedly, the
Ext.Updater.update() method is available:

var e = Ext.get("myDiv");

var u = e.getUpdater();

u.update({
url: "http://somedomain.com/somePage.jsp",
params: { paraml : "Mister", param2 : "Softie" }

1);

As you can see, passing parameters is available as well, so you can handle dynamic data
easily. You can also see the Ext.get () method in use. This returns an Ext.Element object repre-
senting the specified DOM node. An Ext.Element object essentially “wraps” a DOM node and
provides additional functionality to it, including methods like getUpdater ().

If you have an instance of Ext.Updater(), as via the var u = e.getUpdater(); line in the
example code but you no longer have a reference the DOM node it is bound to, you can call
getEl() on the Updater to get such a reference. You can also call abort () on the Ext.Updater
instance to abort any currently in-flight requests. The isAutoRefreshing() will return true if
the Ext.Updater instance is set to automatically refresh and false if not. The isUpdating()
method tells you if an update is currently in progress (true) or not (false). Finally, the
refresh() method can be called on an Ext.Updater instance, even if it was a onetime update,
to perform the update again.

The Ext.util Namespace

The Ext.util namespace contains a number of classes that provide some...wait for it...
utility-type functions, hence the name! We're talking about general-purpose stuff here, and
nothing specific to building UTs.

Ext.util. CSS

The Ext.util.CSS class is a singleton with a couple of useful methods for dealing with style
sheets. The first is Ext.util.CSS.createStyleSheet():

Ext.util.CSS.createStyleSheet(".cssDivi{color:#ff0000;}", "ssDivi");

Assuming you have an element on the page that has a class attribute value of cssDiv1, any
text in that element will be turned red at this point because the .cssDiv1 selector has been
modified to change the color to red (#ff0000). You can modify that selector like so:

Ext.util.CSS.updateRule(".cssDiv1", "color", "#00ff00");

The first argument is the selector name, the second is the attribute to update, and the
third is the new value. Once that code is executed you can get the contents of the selector
like this:

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS 45

var rule = Ext.util.CSS.getRule(".cssDivi");
alert(rule);

This will display [object CSSStyleRule], which isn’t terribly helpful. If you instead use the
code

console.log(rule);

assuming you have Firebug installed in Firefox (and are running this code there!), you'll see
the object displayed in the console. You can expand it to see the selectorText attribute, which
displays .cssDivi{color:#00ff00; } now after the color change, proving it worked. You can
also use the Ext.util.CSS.getRules()to get all the rules active in the document. Optionally,
you can pass true to that method, which will cause the rules cache to be refreshed, which is
useful if you've made changes.

If down the road you want to entirely remove a style sheet—say you don’t want that text to
be green anymore—you can use the Ext.util.CSS.removeStyleSheet() method:

Ext.util.CSS.removeStyleSheet("ssDivi");

The text will then turn back to the default color (black most likely).

Finally, with the Ext.util.CSS.getRules() method, there was that optional argument to
refresh the rules cache. Although it didn’t seem to be necessary in my testing, an Ext.util.
(SS.refreshCache() method exists that can be called if you've dynamically added style sheets.

Ext.util.DelayedTask

The DelayedTask provides an abstraction around JavaScript’s setTimeout () function. To use it,
you use code that looks like this:

var t = new Ext.util.DelayedTask(
function(inTime) {
alert(inTime);
}, this, [new Date()]
)s
t.delay(3000);

After three seconds, an alert () pop-up will appear with the current date/time showing, as
you can see in Figure 1-22.

[JavaScript Application]

& Sat Oct 04 2008 20:18:28 GMT-0400 (Eastern Daylight Time)

Figure 1-22. The alert() seen after the delay period completes

The first argument is obviously the function to execute. The second is the scope in which
the function will execute, in this case the this keyword, and the third is an array of arguments

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

to pass to the function. Note that the parameters are instantiated at the time of the call to
Ext.util.DelayedTask(). In other words, the Date object created as part of declaring that
array will show a time three seconds prior to when the alert() appears. Lastly, note that the
function specified as the first argument will not fire until a call is made to delay(), because
internally setTimeout () is used (presumably... I haven’t examined the code to verify that,
but it acts as if it is used, which is what matters). That call isn’t made until delay() is called
to define how long to wait until the function fires.

Ext.util. Format

The Ext.util.Format class contains a number of static methods for formatting values
in one fashion or another. It has some methods that deal with strings, some that deal
with numeric monetary values, and so on. Let’s take a look at each, beginning with the
Ext.util.Format.capitalize() method:

alert(Ext.util.Format.capitalize("this is a test"));

This results in an alert () pop-up that reads “This is a test”, capitalizing the first letter,
which you can see for yourself in Figure 1-23.

[JavaScript Application]

Figure 1-23. The output of Ext.util. Format.capitalize()

Similar to this is Ext.util.Format.uppercase():
alert(Ext.util.Format.uppercase("this is a test"));

From that you wind up with Figure 1-24 on your screen. As you likely guessed, there is an
Ext.util.Format.lowercase() method as well.

[JavaScript Application]

Figure 1-24. The output of Ext.util. Format.uppercase()

The Ext.util.Format.date()method formats a date:

alert(Ext.util.Format.date(new Date()));

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

The message seen here is something like “09/03/2008”, depending on the date you run it
of course, as in Figure 1-25. There is an optional second argument that specifies the format to
use, but this example will use the default “m/d/y”.

[JavaScript Application]

& 10/04/2008

Figure 1-25. The output of Ext.util. Format.date()

The Ext.util.Format.defaultValue()method is interesting:
alert(Ext.util.Format.defaultvalue("", "myDefault"));

The alert() message here is “myDefault”, as you see in Figure 1-26, because the first
argument (which is what'’s being checked by Ext.util.Format.defaultValue()) is empty—
which is precisely what this method is for.

[JavaScript Application]

Figure 1-26. The output of Ext.util. Format.defaultValue()
Similar to this is the Ext.util.Format.undef() method, which returns an empty string if
the passed-in argument is undefined. So, you’d get an empty string back from this example:

var z;
alert(Ext.util.Format.undef(z));

If z was instead defined in some way, you’d get the value of z back.
The Ext.util.Format.ellipsis() method is next:

alert(Ext.util.Format.ellipsis("I am way too long", 8));

This results in the string shown in Figure 1-27 because the first argument, a string to
check, is greater than the length specified by the second argument, so it is truncated and an
ellipsis is appended to the end.

[JavaScript Application]

Figure 1-27. The output of Ext.util. Format.ellipsis()

47

48

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

Let’s say you want to format the amount of space remaining on a hard drive for display to
the user. Ext JS has you covered:

alert(Ext.util.Format.fileSize("187387234"));

Note that this method accepts a number or a string and either will be formatted prop-
erly (a string will be returned in both cases). The result of the example code is shown in
Figure 1-28.

[JavaScript Application]

& 178.7 MB

Figure 1-28. The output of Ext.util. Format.fileSize()

Ext.util.Format.htmlDecode() and Ext.util.Format.htmlEncode() are next, and their
names pretty well tell you what they do:

alert(Ext.util.Format.htmlDecode("8&1t;8gt;"));
alert(Ext.util.Format.htmlEncode("<>"));

This code gives you two alerts, shown in Figure 1-29 and Figure 1-30.

[JavaScript Application]

Figure 1-30. The output of Ext.util. Format.htmlEncode()

Ext JS supplies the usual trim() method in the form of Ext.util.Format.trim(), which
I suspect doesn’t need to be demonstrated. It simply strips leading and trailing space from a
string you pass to it. There is also an Ext.util.Format.substr() method, which is used like
this:

alert(Ext.util.Format.substr("JoanJessBess", 4, 4));

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

This code will display “Jess” because it grabbed four characters out of the string passed
as the first argument, starting with the fourth character (1-based indexing here). Figure 1-31
proves that this is indeed the result.

[JavaScript Application]

Figure 1-31. The output of Ext.util. Format.substr()

The next method to see in action is Ext.util.Format.usMoney(), which formats a string or
numeric value based on US money formatting rules. For example:
alert(Ext.util.Format.usMoney("1234.56"));

This results in Figure 1-32.

[JavaScript Application]

Figure 1-32. The output of Ext.util. Format.usMoney()

The last method we’ll look at is Ext.util.Format.stripTags(). This method strips out
HTML tags from a string, like so:
alert(Ext.util.Format.stripTags("<tagi>Tagl stripped</tagl>"));

The displayed value will be simply what you see in Figure 1-33; the HTML tags have been
removed.

[JavaScript Application]

& Tag1 stripped

Figure 1-33. The output of Ext.util. Format.stripTags()

Ext.util.JSON

The Ext.util.JSON class is a pretty simple animal but a very useful one. It contains only two
methods: encode() and decode(). Here are some working examples:

49

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

var o = Ext.util.JSON.decode(

"{ firstName : \"Dudley\", lastName : \"Moore\" }");
alert(o.firstName + " " + o.lastName);
alert(Ext.util.JSON.encode(o));

The first alert () results in what you see in Figure 1-34 because the string of JSON was
encoded to an object, from which the alert() references fields to generate the message.

[JavaScript Application]

Figure 1-34. The output of Ext.util. JSON.decode(), first alert()

The second alert(), shown in Figure 1-35, shows the same (nearly) string that was passed
to Ext.util.JSON.decode(). There are slight differences because Ext.util.JSON.encode() puts
quotes around the field names as well as the values, but syntactically it’s identical. Note that
you can pass an array to Ext.util.JSON.encode() as well.

[JavaScript Application]

& {"firstlame":"Dudley”,"lastName":"Moore"}

Figure 1-35. The output of Ext.util. JSON.decode(),second alert()

Ext.util.MixedCollection

The Ext.util.MixedCollection class is essentially a hybrid data structure that combines a Map
with a List. As such, it contains methods that come from both of those structures, plus a few
unique ones. Let’s start with looking at how to instantiate an Ext.util.MixedCollection and
how to add some items to it:

var mc = new Ext.util.MixedCollection();
mc.add("John", "Resig");
mc.addAll(
{ "Alex" : "Russell", "Joe" : "Walker", "Jack" : "Slocum" }
)5

console.log(mc);

This adds four key/value pairs to the Ext.util.MixedCollection. The keys are “John”,
“Alex”, “Joe”, and “Jack”, and the corresponding values are “Resig”, “Russell”, “Walker”,
and “Slocum” (the four giants of the JavaScript world I'd say, no disrespect to Brendan Eich
or Douglas Crockford intended!). Assuming you run the code in Firefox and have Firebug
installed, the console.log(mc) statement will result in the exploded view of the Ext.util.
MixedCollection shown in Figure 1-36 (after you click on the line in the console).

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

allowFunctions false
events Object clear=trus add=true replace=irue remove=irue
filterOptRe 1*(?:scope|delay|buffer|single)$/
= items Resig,Russell,Walker,Slocum
0 "Resig"
1 "Russell™
2 "Walker™
3 "5locum™
remove functioni)
keys John,AlexJoe Jack
length 4
map Object John=Rszig Alex=FRussell Joe=Walker Jack=5Slocum
_sort function()
add function()
addAll function()
addEvents functioni)
addListener functioni)
afterMethod functioni)
beforeMethod functioni)
clear functioni)
clone functioni)

Figure 1-36. The expanded view of the MixedCollection

Note Incidentally, something that threw me for a loop occurred here. If you run the entire example as
presented in the source download for this book (Ext_util MixedCollection.htm), you will likely see that
the first console.log()’s output doesn’t show all four items. This appears to be a timing issue because
everything works as expected, but what you see in the console isn’t right (at least that was the case on my
PC). | don’t know if this is a bug in Firebug or truly a timing issue of some sort, but it was disconcerting.

Now, let’s say you want to see whether a given key is present in the
Ext.util.MixedCollection or whether a given value is present. There are two methods specifi-
cally for doing both:

alert(mc.containsKey("John"));
alert(mc.contains("Walker"));

Both of these return true because there is indeed a value with a key of “John” and there is
a value “Walker” present.

Now, what if you need to do something to each element in the Ext.util.MixedCollection?
That too is easy to achieve, as you can see here:

mc.each(function(item, idx, len) {

alert(didx + "/" + len + ": " + item);
IOk
mc.eachKey(function(key, item) {
alert(key + " = " + item);
IOk

The each() method allows you to iterate over the collection of items in the Ext.util.
MixedCollection. An item in this context really means the values, not the combination of
key and value, which the term “item” might seem to imply. When the iteration using each()

51

52

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

executes, it results in four alert() pop-ups: the first says “0/4: Resig”, the second says “1/4:
Russell”, the third says “2/4: Walker”, and the final one says “3/4: Slocum”. Why are those
messages displayed? As you can see, the each() method accepts as an argument a function,
which is called for each item. To this function, which is called for each item, is passed the item
(value), the index of the item in the Ext.util.MixedCollection, and the overall length of the
Ext.util.MixedCollection. So, the first number you see in each of the messages is the index
value, which is zero-based, and the second is the length, or the number of items in the Ext.
util.MixedCollection. The eachKey() method works the same, except that it is iterating over
all the keys in the Ext.util.MixedCollection. The function that is called for each accepts the
key and the value associated with the key. The eachKey() method can also accept a second
argument that specifies the scope in which to execute the function.

Note | actually found this behavior a little weird: why doesn’t the function you provide for eachKey ()
receive an index value like the one for each() does? It seems to me that you might want the information
there as well (ditto for the length). I'm sure there’s some reason, but | found it a bit strange and thought it
was worth pointing out.

If you were paying attention, you may have taken note of the index value that you get
with each(). So far, Ext.util.MixedCollection has looked like a pretty typical Map in most
regards. However, an index is typically associated with a List structure. This is why I said
Ext.util.MixedCollection is a hybrid structure: it has characteristics of both. Now we’re going
to see how it’s like a List (you could argue in fact that each() and eachKey() are List-like
structures as well, since iterating over elements in a Map, while not totally unusual, isn’t really
typical either). So, let’s say you want to know the index of a given key. That’s easy:

alert(mc.index0fKey("Joe"));

This will return 2 in our example, since that’s where “Joe” appears. Because it’s a List, to
some extent order is maintained, which isn’t usually a guarantee of a Map. Again, we see the
hybridization here.

Now, how about if you want to retrieve a specific index? That too is easy:

alert(mc.get(1) + " - " + mc.get("Alex"));

The get() method accepts an index value and returns the associated value, so we get
“Russell” in this case. I hedged a little bit here though because as you can see, get() can do
more than that! You can also specify a key to get the associated value. So, in fact, the alert()
message we seen here is “Russell — Russell”. I've simply retrieved the same value two different
ways, one List-like and one Map-like.

We saw at first how we can add items, but what if we want to replace the value of one? All
it takes is a call to the replace() method:

mc.replace("John", "Sheridan");

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

Now, the key “John” is associated with the value “Sheridan” instead of “Resig”. You can
outright remove items as well of course:

mc.remove("Joe");
mc.removeAt(0);

Again, you can do things the Map-like way, which means removing by key using the
remove () method, or you can do it the List-like way, which means removing by index
using the removeAt () method. The Ext.util.MixedCollection at this point contains only
Alex=Russell and Jack=Slocum.

Ext.util.TaskRunner

The Ext.util.TaskRunner is a mechanism that allows you to run arbitrary tasks in a multi-
threaded manner. Its usage is extremely simple, as this example illustrates:

var taski = {
run : function() {
Ext.fly("divDT").update(new Date());
}, interval : 500
}
var task2 = {
run : function() {
Ext.fly("divCount").update(count);
count = count + 1;
if (count == 5) {
runner.stop(task1);
}
if (count == 10) {
runner.stopAll();
}
}, interval : 750
}
runner = new Ext.util.TaskRunner();
runner.start(task1);
runner.start(task2);

A task is defined as an object with two attributes: run, which is a reference to a function
to execute, and interval, which is how frequently to execute it (in milliseconds). So here, two
tasks are created. The first executes every half a second and simply inserts the current date
and time into the <div> divDT. The second task fires every three-quarters of a second and
just increments a counter each time. These tasks are run by instantiating a new instance of
Ext.util.TaskRunner, and then passing each task to the start() method.

The second task, when it reaches a count of five, will stop the first task by calling the
Ext.util.TaskRunner.stop() method, passing a reference to the task to stop. When that task
reaches a count of ten, it stops all tasks (which is just itself at that point) by calling the Ext.
util.TaskRunner.stopAll() method. Believe it or not, that pretty much does it for this class!
It’s simple but an effective tool none the less.

53

54 CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

IS THIS TRUE MULTITHREADING?

| don’t think | would testify to this in court, but | suspect, without looking at the Ext JS source code, that this
is not true multithreading. | say this because JavaScript is inherently single-threaded, and the only way to do
“multithreading” is with timeouts and intervals.

Now, you can get something more akin to true multithreading by installing Google’s Gears extension,
which we’ll get into later. You can also hold out for official, standard support for something called Web-
Workers, which is multithreading for JavaScript. That technology is still working its way through standards
bodies, however (for details see waw.whatwg.org/specs/web-workers/current-work) so in the
meantime Gears is probably the best choice.

This is all beside the point, though, to the extent that Ext.util.TaskRunner gives you a nice,
clean approximation of multithreading in JavaScript, as close as you're likely to get with the current imple-
mentations and without any add-ons like Gears. It certainly does make working with intervals a breeze, if
nothing else.

Ext.util.TextMetrics

The Ext.util.TextMetrics class gives you a handy mechanism to get information about
the size of text. This might not sound like much on the surface, but it’s actually a handy
thing to be able to do. Oftentimes you need to know how much space, right down to the
pixel, a certain amount of text will take up given a set of style settings. That’s precisely what
Ext.util.TextMetrics can do for you. Check out this code:

var tm = Ext.util.TextMetrics.createInstance(Ext.getDom("div1"));
var h = tm.getHeight("How tall am I?");
var s = tm.getSize("How big am I?");
var w = tm.getWidth("How wide am I?");
alert("getHeight() = " + h + "\n" +
"getSize() = " + s.width + "/" + s.height + " (width/height)\n" +
"getWidth() = " + w);

Assume too that there’s a <div> on the page like so:
<div id="div1" style="font-size:32pt;">This is some text</div>

In Figure 1-37 you can see the resulting alert() pop-up.

[JavaScript Application]

& getHeight() = 51
getsSize() = 25451 (width/height)
getWidth() = 280

Figure 1-37. The alert() pop-up generated by running the Ext.util. TextMetrics example code

You begin by instantiating an instance of Ext.util.TextMetrics and passing it a reference
to a DOM node. This is necessary because the node gives the class information about the styles

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

to use in its calculations. Then, it’s a simple matter of calling methods like getHeight (), which
tells you how tall in pixels the given text is, or getWidth(), which does the same but tells you
how many pixels wide the text is. The getSize() method essentially gives you both combined
in a single object, but it’s based on the internal element’s style and width properties. Note that
if you are trying to get the height of a multiline bit of text, you will likely have to call Ext.util.
TextMetrics.setFixedWidth(), passing it the width to set on the internal measurement ele-
ment. This is necessary to get the correct values back from the other methods.

But...but...What About the Widgets?

As cool as all of that is, if you think this is all there is to Ext JS, you are very much mistaken. The
widgets, which are probably the best part of Ext JS, are still left to be examined, and that’s pre-
cisely what Chapter 2 will mostly be about. The Ext namespace is where all the UI widgets are
located on top of all we’ve seen so far. Because there are a good number of them, and they are
collectively what initially attracts most people to ExtJS to begin with, I felt it was better to wall
them off and devote an entire chapter to them.

In addition to the widgets, I've left out a few more “advanced” topics to cover in Chap-
ter 2. For example, Ext JS provides a very nice, robust data subsystem that allows you to
abstract away your data storage mechanism. This is something I also felt was better held off
until the next chapter.

One Last Tangential Thing: Ext Core

As of version 3.0, the Ext JS team has also released a separate, but very much related product
called Ext Core. Ext Core contains much of what has been discussed in this chapter, but it does
not include everything the full Ext JS library includes (widgets are the most obvious omission).
Ext Core is intended to provide a consistent, fully cross-browser API for performing the most
common tasks modern RIA developers need—tasks like DOM traversal and manipulation,
CSS management, event handling, Ajax, and animations.

The nice thing about Ext Core is that it is licensed under the liberal MIT license, which is
an open source license that allows a tremendous amount of freedom. Also, Ext Core is 100 per-
cent free to use under that license, so all of the previous statements about licensing issues are
null and void when it comes to Ext Core!

Ext Core is a real nice addition to the product offerings from Ext, LLC, and best of all, what
is covered in this book applies to Ext Core as well! It may well be that as you look at your needs
you discover that the full-blown Ext JS library has a lot more than you need, in which case
Ext Core may be just the ticket, and a cheaper ticket at that!

Of course, the Ext team obviously hopes that people become enamored of Ext Core and
eventually buy a full Ext JS license. This is, you have to remember, a business after all, so there’s
absolutely nothing wrong with that strategy. As good as Ext Core is, that’s probably a good strat-
egy on their part! In the end, though, Ext Core provides a ton of capabilities and a lot of power at
no cost, which I think says a lot about the Ext team and their belief in the open source model.

Note Ext Core 3.0 was released in beta as | was finishing up this chapter. Talk about a timely release!

55

56

CHAPTER 1 INTRODUCING WEB DEVELOPMENT WITH EXT JS

Summary

In this chapter, we began our journey of exploration into the world of Ext JS by taking a step
back and looking at the evolution of web application development. In fact, we took a step even
further back than that and looked at what the term “web application” means in the first place.
We looked at what an RIA is all about, and we talked about Ajax and why it’s such an important
development. We even looked at some other options for developing RIAs other than Ext JS.
Finally, and most importantly for our purposes in this book, we looked at Ext JS itselfl We saw
what it has to offer, how it’s structured, learned a bit about its history and philosophy, and we
got started with the basics of using it.

In the next chapter we’ll take the next step and look in much more detail at using ExtJS.
We'll see more of its capabilities and get more familiar with it in general. All of this is meant to
set the stage for the project chapters to follow. Also in the next chapter we’ll look at something
called Gears, which coupled with Ext JS will allow us to create those coming applications.

So get comfortable and move on—the best is yet to come!

CHAPTER 2

Widgets and Advanced Ext JS

In the previous chapter we began our look at Ext JS by seeing some of the basics of its usage,
but we focused primarily on the general utility-type aspects of the library. We only touched on
widgets in a limited way, and as it happens, Ext JS is primarily known for its widgets. So, in this
chapter we’ll focus almost entirely on the widgets. We’ll look at some of the more “advanced,”
relatively speaking, topics in ExtJS. Here I refer to things like data handling and binding, drag
and drop, and state management. Because all the applications in this book will make use of

it, we'll also take a look at Google’s Gears browser extension. While Ext JS is in no way tied or
dependent on it, I think you'll see how Ext JS works with Gears very well and opens up a whole
new world of possibilities for our development efforts.

Ext JS Widgets: An Overview

In many JavaScript frameworks and libraries you look at, you realize that each widget is
completely independent of the others in terms of code. Because of this, you often find great
disparity in what each widget offers. For example, getting the value of some sort of text field
widget might require a call to its getValue() method, while a calendar widget might require a
call to getSelectedDate(). One widget may have an option to have a border around it, while
another will not.

In recent years, the “modern” libraries have taken things to a much higher level. A number
of frameworks these days have a logical hierarchy to their widgets, so for example a text field
widget is an extension of an editable widget, and an editable widget is an extension of a plain
widget. This allows each subsequent child component to inherit the behaviors and capabilities
of its ancestors.

Ext JS takes this tact, and it takes it to a fantastic extreme. In terms of overall structure,
how clear it is, how logical it is, how efficient it is, Ext JS has no peers in the JavaScript library
space. Some other libraries certainly do a good job too, but ExtJS, at least in the opinion of this
author, takes it to another level.

57

58

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

Note Please understand that what follows is not meant to be an exhaustive reference. As in the first
chapter, I'll be discussing the things | think you'll find most interesting and useful. For individual widgets,
| won't be listing every single config option, method, and event supported—that would just be reciting the
Ext JS documentation. I'll try to note the parts | think you need to know about up front, but many other items
will be introduced as we progress through the projects to come. Remember, the whole point of this book is
learning by example and learning by seeing things in real use cases, so documenting every last detail would
be the exact opposite of that. Besides, as rich and powerful as Ext JS is, it would take a heck of a lot more
pages than this to do it right anyway!

The Hierarchy of Widgets

Most widgets have at their base of their inheritance hierarchy (not including the absolute base
JavaScript Object) the Observable class. This is an abstract base class that provides a common
interface for publishing events. In other words, it normalizes the mechanisms associated with
events that any widget might expose or respond to. This means that the mechanism you use to
make a button response to being clicked is the same underlying mechanism you use to make a
grid column sort when clicked.

Extending from Observable is the Component class. The Component class endows an Ext JS
component (or widget in other words) with some basic behaviors, such as the ability to be
hidden and shown, enabled, or disabled. It also allows a component to be able to participate
in the typical component life cycle that Ext JS provides for, including creation, rendering, and
destruction. The Component class also allows all components to automatically be registered
with the Ext.ComponentMgr so that you can later use the Ext.getCmp() method to get a refer-
ence to a named widget. In general, any visual widget should extend Component or its subclass
BoxComponent, which adds automatic box model adjustments so that sizing and positioning is
handled more or less automatically. (Not all widgets necessarily have to have a visible compo-
nent, it seems.)

Note You'll notice that | use the terms “widget” and “component” interchangeably in various places. Ext
JS refers to Ul widgets as components, which is not necessarily the same as the Component class (although
many of the components are in fact subclasses of the Component class). Don’t be confused, though: a wid-
get is the same as a component in the context of Ext JS. In the cases where I'm referring to the Component
class itself, I'll write it capitalized just like that and apply the special code font used throughout this book,
but lowercase “component” when it refers to a widget.

Another inheritance path (there are more than one) still includes Component at its base,
with BoxComponent above it, followed by Container extending from that. A component extend-
ing from Container is a component that can itself have child components. Something like a
Button likely wouldn’t have this capability (and doesn’t because Button extends directly from
Component). However, something like a TabPanel does, so TabPanel extends from Container.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

As it happens, TabPanel isn’t a direct child of Container—it’s actually a child of Panel, but
Panel is a direct child of Container. Because this is a rich inheritance hierarchy, it means that
TabPanel is effectively a descendant of Container anyway.

Asyou look at what classes extend what, all of them descend from the JavaScript Object
class. From that you find a couple of “inheritance paths” that all of the widgets follow. Each of
these trees starts with a class that extends directly from Object.

Figure 2-1 depicts the entire inheritance tree with regard to components.

Object Observable Component | }& ColorPalette .
S
Editor TreeEditor DatePicker
Textltem

| Slider |
| Button |
W= ==

SplitButton
BoxComponent [}&

Baseltem Checkltem

HtmiEditor

DisplayField

RadioGroup

CheckboxGroup

CartesianChart

FlashComponent

DataView.H ListView . BarChart

Spacer . Toolbar PagingToolbar
TextArea

e

ButtonGroup !
TabPanel TwinTriggerField . ComboBox DateField .
N

Ti ridPanel
* % TimeField .
ToolTip . EditorGridPaneI.

QuickTip . PropeﬂyGrid.

Figure 2-1. Ext JS object model, extending from Observable

NumberField

FormPanel

59

60

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

Ext]S isn’t just a series of components, and it’s more than even a nice, logical, well-
modeled object-oriented API. Ext JS wouldn’t be nearly as powerful as it is if that’s all it was.
In fact, one of the things that make ExtJS so powerful is the concept of layout and layout-
related components. To be more precise, the idea of layout is what allows you to take all these
neat widgets and create a true user interface from them. We’ll be looking at the concept of
layout shortly, but before that, let’s talk about some widget basics.

The Basics of Widget Usage

Whenever you instantiate a widget you are calling a constructor. This may be explicit in
the case of using the new keyword, or implicit when using the items array attribute and the
layout attribute. In any of these cases, though, you can pass a JavaScript object to the con-
structor that provides config options to the component being constructed.

Since all widgets extend from the Component class, they share many common config
options. Some of the more important ones are:

 applyTo: For widgets that can use existing markup as their basis, such as the Window
component, this option specifies the DOM node to use as the structural markup of the
new widget.

e cls: This is an optional style class name to apply to the widget, so you can provide your
own styling on a per-component basis if you wish.

e disabled: When this option is set to true, the component is rendered in a disabled
state.

 1id: This option specifies the unique ID to assign to the component.

* plugins: This option specifies one or more classes that will extend the functionality of
the widget in some way. More on this later!

e listeners: The value of this attribute is itself a JavaScript object; the names of the attri-
butes on it are event names and the corresponding values are functions to execute in
response to the named event.

This is not an exhaustive list but it includes the options I think you'll find yourself using
the most. Note that while all subclasses of Component will expose these config options, that
doesn’t necessarily mean that every single one of them will do anything. You’ll have to check
the ExtJS documentation to make that determination. In my experience, most of them are
globally available, so you probably only have to worry about exceptions that come up when
something doesn’t do what you expect—you can normally assume everything works as
expected across the board.

For widgets that extend from the Container class, there are a few additional config proper-
ties that are important to talk about:

e activeItem: Specifies the child item that should initially be active. This only applies to
some containers, such as the Accordion.

* autoHeight/autoWidth: Sets the height and width style attributes correspondingly to
100%. These are those options that all subclasses will inherit but not all will honor.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

* hideBorders: Set to true to hide the border of all child elements.
 layout: Specifies the xtype of the layout this Container should use.

e items: This is an array of JavaScript objects, each describing a child component of the
Container.

Of these, layout and items are used nearly always when dealing with containers, and we’ll
be seeing a lot of them in action.

Now, making use of a widget requires one of two things: you either create a new one
using the new keyword as you would any other class, or you define it in the items arrays of a
container. What route you take depends on how you’ve chosen to write your code. You'll see
plenty of examples of both throughout the projects. Keep in mind that in either case you'll
be creating a config object to define the widget (in the case of passing an object as part of the
items array, the object you're passing is the config object).

By way of example, here’s one way you could create a new Window:

var win = new Ext.Window({
width : 300,
height : 300,
title : "My First Window",
html : "I am some content"

1);

As you can see, the constructor accepts an object with four attributes: width and height
are the horizontal and vertical size of the new Window, title is the text that will appear in the
title bar, and html is the markup to use as the main content of the Window.

Now here’s a similar example that uses the items array of a Panel to add an HtmlEditor
widget to it:

new Ext.Panel({
renderTo : "panelTarget", layout : "fit",
title : "My First Panel",
items : [
{ xtype : "htmleditor", height : 200 }
]
D;

This comes from the ItemsExample.htm file included in the source code. When you run
it, you'll see a <div> with a red border, as in Figure 2-2 (but in glorious Technicolor! in your
browser!). Within it is the Panel, with the title “My First Panel,” and within it is the HtmlEditor.

1 Around 1922, a company called Technicolor Motion Picture Corporation created a series of color file
processes. Up until around 1952, Technicolor was the dominant technology in Hollywood for creating
color motion pictures, and if you’'ve ever watched an older movie you've no doubt seen the Techni-
color logo splashed across the screen at some point.

61

62

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

¥) Chapter 2 Items Example - Mozilla Firefox

File Edit View History Bookmarks Tools Help 3t
O e e B

My First Panel

BJU I AAA P =E==@Gli==B
¥ ~
¥

[v]

[S& @ [Z| Done - 26.7MB[27MB [488MB/488MB & [YSlow @ 1337 »

Figure 2-2. Example of using the items array to create widgets

Layout and Containers in Ext JS

When you get down to creating a UT with Ext JS, at the core of this is the concept of lay-
out. More specifically, it’s dealing at a high level with any of the classes in the Ext.layout
namespace.

A layout is composed of some number of Ext.Container elements contained within it. Any
ExtJS Ul is a hierarchy of containers, and it’s also very much possible for a given Container to
itself have some sort of layout in it. It’s this building up of layouts and Containers and layouts
again (and Containers again!) within one another that results in the Ul you see on the screen.

As a hierarchy, there must be some root element, some outer Container that all others are
a child of. Indeed there is just such a thing in Ext JS: the Viewport.

Note The screenshots you see in this discussion of layouts, viewports, panels, and so forth are taken
from the examples you can find on the Ext JS web site. So if you’d like to see them in action, cruise on over
there and check ‘em out! It's always more enlightening to see them in a browser and play with them a bit.

Viewport

The Viewport is a Container (it extends from the Container class) that itself has a layout
structure like any other Container does, but it holds a special place in Ext JS. The Viewport
represents the whole of the area visible to the user, which means the browser window in other
words (or to be more precise, not the entire browser window but just the portion where a web
site renders, typically called the browser viewport).

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

When created, the Viewport automatically renders itself into the <body> of the document
loaded in the browser and sizes itself so that it takes up the entire browser viewport. It also
is aware of resizing events that can occur and reacts accordingly. If by this description you
reason that there may be only a single Viewport per page, you can pat yourself on the back
because that is absolutely true.

The Viewport is endowed with a specific layout structure, be it a BorderLayout, CardLayout,
or what have you. A layout is some organization of Panels, so by virtue of having some layout
on the Viewport you are defining the overall structure of your page. It’s the act of adding Panels
to the Viewport that adds the content.

You create a Viewport as shown in the example in Listing 2-1.

Listing 2-1. Creating the Viewport
<html>
<head>

<title>Chapter 2 Viewport Example</title>

<link rel="stylesheet" type="text/css" href="ext/resources/css/ext-all.css">
<script type="text/javascript" src="ext/adapter/ext/ext-base.js"></script>
<script type="text/javascript" src="ext/ext-all.js"></script>

<script>
Ext.onReady(function() {
new Ext.Viewport({
layout : "fit",
items : [{

title : "Hello there!", bodyStyle : "background-color:#ff0000",
html : "I am some content",

H
1);

1

</script>
</head>
<body></body>

</html>

63

64

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

If you load Listing 2-1 in your browser, you'll find a title bar running across the top of the
page with the words “Hello there!” in it, with the text “I am some content” below that. The rest
of the page has a red background. The Viewport has filled up the whole browser viewport. The
layout attribute passed to the Viewport constructor tells it what sort of layout to use. The value
of this attribute is the xtype for the FitLayout (see the accompanying sidebar for an explana-
tion of xtype). A FitLayout is a layout that has a single item that fills up the Container itis
placed in. So, the Viewport has a single Container contained within it.

We then add children to the Viewport via the items array. Each object in this array is
a Container. Since there’s only a single Container in a FitLayout, there is likewise only a
single Container in the items array. Since there is no type specified for the Container, we get
a basic Container by default. The title attribute is the text for the title bar, and the html attri-
bute is the markup content to put in the Panel.

This is a simple example. Most Ext JS-based Uls will be much more complex, as we’ll see
as we look at the projects. But, at the end of the day, that’s the basic concept.

WHAT IS AN XTYPE?

An xtype, simply stated, is a symbolic name given to a specific class. In other words, it is a shorthand way to
name a class in some context.

In older versions of Ext JS, before the 2.x series came to be, you had to instantiate all your Ul widgets
ahead of time. So, let’s say your Ul had ten Grids in it. That meant you had to instantiate all ten of them up
front. But, what if nine of them weren’t visible initially? That could be a lot of wasted memory and processor
time to create all nine that you didn’t even need at the time.

So, Ext JS 2.x introduced the idea of xtype. When you create a Ul, as seen in the example in List-
ing 2-1, the xtype allows Ext JS to create the specified component in a lazy fashion—in other words, when
it has to be displayed on the screen. In the example the layout is needed immediately, so there’s no real
difference.

Imagine, however, if we used a CardLayout, which layers Panels one on top of another so only one
is visible at any given time. Further image that of three Panels created as part of the CardLayout, the two
that aren’t initially visible had Grids on them. There’s no sense creating them all up front, so if we use an
xtype instead, then they won’t be rendered until needed.

Now, although “fit” here is an xtype, note that we’re talking about the 1ayout attribute. As you'll see
later, in many instances there is literally an xtype attribute that you can specify in many instances. It’s a
semantic difference, though: here, the value of the 1ayout attribute is an xtype value, just as it would be if
the attribute name was literally xtype.

The Ext JS documentation lists all the possible xtype values for you, but you can also register your own
if you like by using this code:

Ext.reg("myxtype", My.Class.Here);

If My.Class .Here was an instance of Component, it would be usable as an xtype just as any Ext JS
component is.

As we explore the widgets, I'll list their xtypes so that you can quickly find them when you need them.
Although | said previously this isn’t intended as an exhaustive reference, | see no reason to not provide
aspects of a reference to an extent if it makes life a little easier!

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

Panels
xtype : panel

I've mentioned the term Panel before, but I haven’t defined it just yet. Along with the idea of
layouts, and of the Viewport lording over everything, Panels are a fundamental building block
of Ext JS-based Uls.

A Panel is a Container, but it has additional functionality that is geared toward making it
an ideal building block for Uls. For example, a Panel contains toolbars at the top and bottom,
and also has separate header, footer, and main content areas between them. In many cases
these are optional components that you may not know are there unless you specifically deal
with them, but all Panels have the capabilities in common nonetheless.

Panels also provide expand and collapse capabilities automatically, if you want them.
Panels are meant to be dropped into other Containers or more usually layouts, and the ExtJS
framework manages their life cycles.

There are many different types of Panels, and you’ll be pretty much always working with
descendants of the Panel class when you work with Panels at all. We’ll discover various Panels
as we go, but for now it’s time to get back to the specific layouts that are possible.

FitLayout
xtype : fit

We already saw this layout in a previous example, so there’s not a whole lot more to say about
it. AFitlLayout contains a single item that automatically expands to fill the Container itis
placed in. You generally won'’t instantiate an instance of this class; you’'ll instead use its xtype
as the value of a layout attribute on some Container.

Interestingly, FitLayout doesn’t have any of its own config options, aside from those it
inherits, which is always the case. When you want to have a Panel that fills the entire Container
it’s placed in, FitLayout is what you want. All you need to do is set the layout attribute of the
Container to fit and add a single Panel to it and you're good to go. Note too that if you add
multiple Panels to the Container with a layout of type fit, only the first added Panel will be
shown.

BorderLayout
xtype : border

A BorderLayout is a relatively simple layout that also happens to be extremely common, per-
haps even the most popular layout. It is a layout that has five regions: one along the top of the
page, one on the left side, one on the right side, one on the bottom, and one between all of
them in the middle. The four around the edges are referred to by compass directions (so the
one on top is north, and so forth), while the middle section is the center.

The BorderLayout supports automatic split bars between the regions, allowing the user
to resize them at will. It also supports expanding and collapsing of sections. Like FitLayout,
the BorderLayout itself doesn’t have of its own config options. The available options come
from the children of BorderLayout, which are instances of Ext.layout.BorderLayout.Region or
Ext.layout.BorderlLayout.SplitRegion. These children are Containers into which you typically
put some sort of Panel.

65

66

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

While there are five available regions in a BorderLayout, there’s no requirement that
you use them all. However, you cannot add regions after the BorderLayout has rendered,
so you have to ensure that any regions you need are configured for use when you create the
BorderLayout.

You don’t explicitly instantiate an instance of Ext.layout.BorderlLayout. Instead, you set
the layout attribute of some Container to border (or the layout of the Viewport, which remem-
ber is just a special Container). For example, let’s say you want to create a Panel to display that
uses a BorderLayout to organize its content. Here’s how you can do it:

var myPanel = new Ext.Panel({
title : “This is my panel.. there are many like it, but this one is mine”,
layout : “border”,
items: [{
title : “North”, region : “north”, height: 200, minSize : 400, maxSize : 50
b
title : “East”, region : “east”, width : 300
b

title : “Center”, region : “center”
1

b;

Assuming this Panel filled the entire browser viewport, the layout would consist of a
region running across the entire width of the browser viewport at top (north), with two sec-
tions below it. The section on the right (east) would have an initial width of 300 pixels while
the region on the left (center) would fill the remainder of the browser viewport.

The width and height attributes set the initial size of a given region (height only makes
sense for the north and south regions, while width only makes sense for the east and west
regions; the center region always fills the remaining space). The minSize and maxSize attributes
set the minimum size and maximum size the user is allowed to resize the region to via drag-
ging the split bar.

In Figure 2-3 you can see a page using a BorderLayout. It’s a bit more advanced than the
example code, too, showing all regions in use.

As you can see, a BorderLayout allows you to create rather complex layouts in a fashion
that is quite typical of GUIs. Once again, it’s probably the primary layout you’ll use in most
cases.

{7} Ext 35 - Client-side JavaScript Fra... | {2} Complex Layout x|}

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

West «
' Navigation =

Hi. I'm the west panel.

(22 settings +

South

[5& @ [Z] pone

Close Me '*/|| Center Panel

north - generally for menus, toolbars and/or advertisements

Done reading me? Close me by clicking the X in the top right corner.

Vestibulum semper. Nullam non odio. Aliguam quam. Mauris eu lectus non nunc auctor
ullamcorper. Sed tincidunt molestie enim. Phasellus lobortis justo sit amet guam. Duis
nulla erat, varius a, cursus in, tempor sollicitudin, mauris. Aliquam mi velit, consectetuer
mattis, consequat tristique, pulvinar ac, nisl. Aliquam mattis vehicula elit. Proin quis leo
sed tellus scelerisque maolestie. Quisque luctus. Integer mattis. Donec id augue sed leo
aliguam egestas. Quisque in sem. Donec dictum enim in dolor. Praesent non erat. Nulla
ultrices vestibulum guam.

Duis hendrerit, est vel lobortis saaittis, tortor erat scelerisque tortor, sed pellentesque
sem enim id metus. Maecenas at pede. Nulla velit libero, dictum at, mattis quis, sagittis
vel, ante. Phasellus faucibus rutrum dui. Cras mauris elit, bibendum at, feugiat non,
porta id, neque. Nulla et felis nec odio mollis vehicula. Donec elementum tincidunt
mauris. Duis vel dui. Fusce iaculis enim ac nulla. In risus.

Donec gravida. Donec et enim. Morbi sollicitudin, lacus a facilisis pulvinar, odio turpis
dapibus elit, in tincidunt turpis felis nec libero. Nam vestibulum tempus ipsum. In hac
habitasse platea dictumst. Nulla facilisi. Donec semper ligula. Donec commeodo tortor in
guam. Etiam massa. Ut tempus ligula eget tellus. Curabitur id velit ut velit varius
commodo. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia
Curae; Nulla facilisi. Fusce ornare pellentesque libero. Nunc rhoncus. Suspendisse
potenti. Ut consequat, leo eu accumsan vehicula, justo sem lobortis elit, ac sollicitudin
ipsum neque nec ante.

Aliguam elementum mauris id sem. Vivamus varius, est ut nonummy consectetuer, nulla
guam bibendum velit, ac gravida nisi felis sit amet urna. Aliguam nec risus. Maecenas
lacinia purus ut velit. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices
posuere cubilia Curae; Suspendisse sit amet dui vitae lacus fermentum sodales. Donec
varius dapibus nisl. Praesent at velit id risus convallis bibendum. Aliquam felis nibh,
rutrum nec, blandit non, mattis sit amet, magna. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Pellentesgue habitant morbi tristique senectus et netus et
malesuada fames ac turpis egestas. Etiam varius dignissim nibh. Quisgue id orci ac ante
hendrerit molestie. Aliquam malesuada enim non neque.

south - generally for informational stuff, also could be for status bar

258 MB [27 MB |/ 4B8.8 MB [4B8.8 MB

| East Side

Name

(name)

autoFitColumns. true

border\Width 1
created 1041572008
grouping false

productionQuality false

tested

wversion

ATab ||

B vslow @ 1237 .

Theme: [Ext Blue Tﬂ
»
Value

Properties Grid

false
0.01

Property Grid *

Figure 2-3. The BorderLayout

Accordion

xtype : accordion

The Accordion is in some ways like its own widget. In other libraries it actually is, but in Ext JS
itis a type of layout (it’s literally an extension of FitLayout). Simply stated, an Accordion is one
in which you have a series of panes that can be selected by the user. The panes are stacked
vertically (although some implementations allow horizontal stacking too) and usually include
a nice animation effect when switching between them.

In Figure 2-4 you can see an example of an Accordion.

67

68 CHAPTER 2 WIDGETS AND ADVANCED EXT JS

| Accordion Window M [=] £

s e8E

Online Users #[=

(=53] Friends
&Jack
&Brian
&Jun
& Tim
&Nige
&, Fred
& Bob

(= =5] Famity
£ Kely
&Sara

4h Zack
4h John

Settings
Even More Stuff
My Stuff s

Figure 2-4. The Accordion layout type

An example of creating an Accordion can be seen in this snippet of code taken from the
Accordion.htm example from the source code:

new Ext.Panel({
renderTo : "panelTarget", title : "My First Accordion",
layout : "accordion", height : 400, collapsible : true,
layoutConfig : { animate : true },
items: [{
title : "Pane 1",
html : "I am Pane #1"
b
title : "Pane 2",
html : "I am Pane #2"
b
title : "Pane 3",
html : "I am Pane #3"
}]
bs

So an instance of Ext.Panel is created here, with a layout value of accordion. We explicitly
set a height so it fits in the <div> it’s rendered into (panelTarget) and set collapsible to true
to indicate that there should be an icon on the Accordion title bar that when clicked collapses
the entire Accordion. The layoutConfig attribute is an object that contains settings specific to
the chosen layout. You'll see this attribute a lot, but the attributes specified in it depend on the
layout being used. In other words, it is essentially an object like what you would pass to the
constructor of the Accordion class. Here, the animate attribute specifies that we want switch-
ing between the panes in the Accordion to be animated. This gives a nice sliding effect to the
switching. Finally, the items array specifies the panes to be added, which by default are basic
Panels. We give each a title and some html content and we have ourselves an Accordion!

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

CardLayout
xtype : card

The CardLayout is sort of like the FitLayout on steroids: it allows you to have multiple Panels
fitted to the Container, but only allows a single one to be shown at a time. Things like wizard
interfaces are typically implemented with CardLayout, as well as things like tabbed interfaces.

The single most important method exposed by the CardLayout is setActiveItem(). This
allows you to show a new Panel in the CardLayout by either ID or index value. This is com-
pletely under your control as a programmer; the CardLayout doesn’t even switch between
Panels (or in response to user events, unless you write the code to do that), so there’s nothing
by default the user can click to switch as with an Accordion.

The CardLayout also supports a config option deferredRender, which, when true, tells the
Container to only render a given Panel when it’s actually shown. This is a good setting to keep
in mind for efficiency of loading.

Here’s a code example, taken from CardLayout.htm:

new Ext.Panel({
renderTo : "panelTarget", title : "My First CardlLayout",
layout : "card", height : 400, id : "myCardlLayout", activeItem : 0,
items: [{
title : "Panel 1",
html : "I am Panel #1

" +
"<input type=\"button\" value=\"Click to switch to #2\" " +
"onClick=\"Ext.getCmp('myCardLayout')" +
".getlayout().setActiveItem(1);\">"
b
title : "Panel 2",
html : "I am Panel #2

" +
"<input type=\"button\" value=\"Click to switch to #1\" " +
"onClick=\"Ext.getCmp('myCardLayout')" +
".getlayout().setActiveItem(0);\">"
1]
D;

Here we have a CardLayout being rendered into our friendly neighborhood panelTarget
<div>. We give it a title, specify the layout as card, and set its height to fill the <div>. Then we
also assign an ID to the CardLayout. This is necessary because we’ll need to be able to call its
setActiveItem() method later, and this is how we can get it. We also specify that item 0 is ini-
tially active, which is the first Panel added in the items array.

Each of the Panels has some markup that contains a button. When one of them is clicked
we use the Ext.getCmp() method, which is something you'll see a lot. This takes in an ID and
returns a reference to the specified Component. On that returned reference we need to call the
getlayout() method to get the CardLayout associated with the Container. This gives us back
areference to the CardLayout created implicitly by virtue of the layout attribute being set to
card, and we can then call the setActiveItem() method to flip to the other Panel.

The CardLayout is a relatively simple animal, but we’ll see it in use a lot. In Figure 2-5 you
can see the example code in action. I've put two screenshots side by side so you can see each

69

70

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

of the Panels. Just pretend the buttons were being clicked to jump back and forth between the
two images and you’ll get the idea (or simply run the example code!).

) chapter 2 CardLayout Example - Mozilla Firefox

File Edit View History Bookmarks Tools Help e File Edit View History Bookmarks Tools Help b
My First CardLayout My First CardLayout
Panel 1 Panel 2
I am Panel #1 I am Panel #2

Click to switch to #2 Click to switch to #1

== |®| = | | E ‘ One active download (Unknown time =] ‘@‘ = ‘ | Eﬂ One active download (Unknown time

Figure 2-5. The CardLayout in action (sort of)

TableLayout
xtype : table

A Tablelayout allows you to create table-based layouts with ease. In some ways it’s conceptu-
ally similar to BorderLayout except that you are in control of what regions the layout has, how
they span across others, and so forth.

A big difference between creating a layout using Tablelayout and using plain old HTML
tables (which Tablelayout does behind the scenes) is that with TableLayout you don’t concern
yourself with tables and rows explicitly. You don’t have to bother with nesting cells with rows
and so forth. All you do is specify the total number of columns the TablelLayout should have,
and then start adding Panels to it, from left to right and from top to bottom. The Tablelayout
will figure out how to position each Panel based on that row count, in addition to any row
span and column span settings you specify. If you're used to creating HTML tables, using
Tablelayout can be alittle tricky to wrap your brain around, but once you do you quickly
realize the flexibility it provides.

Figure 2-6 shows an example of a TableLayout. Here you can see there are two columns,
and the first one is divided into two cells, one on top of the other. In HTML, you’d do some-
thing like this:

<table border="0">

<tr>

<td>Column 1, Cell 1</td>

<td rowspan="2">Column 2</td>

</tr>
<tr>

<td>Column 1, Cell 2</td>

</tr>

</table>

CHAPTER 2

WIDGETS AND ADVANCED EXT JS

Sample Layouts

=] Table
[[Custom Layouts
[[Combination Examples

Details

Ext.layout.TableLayout

Outputs a standard HTML table as the layout
container, This is sometimes useful for complex
layouts where cell spanning is required, or when
you want to allow the contents to flow naturally
based on standard browser table layout rules.

Sample Config:

layout: 'table’,
layoutConfig: {
columns: 3

{hvml:"1,1", rowspan:3},

,colspan:2],

[S» @ [E] pone

>

Table Layout

Lots of Spanning | | Basic Table Cell

Raow spanning.
Row spanning.
Row spanning.
Row spanning.
Raow spanning.

Row spanning.

Spanning All Columns

Spanning all columns,

Another Cell

Plain panel

Basic panel in a table cell.

Plain cell spanning two columns

More Column Spanning

Spanning three columns.

25.5MB | 27 MB

Row spanning.
Row spanning.
Row spanning.

Row spanring.

|4 48.8MB [48.8 MB

I vslow

@ w1 .

Figure 2-6. The TableLayout

With Ext JS and Tablelayout, the same sort of thing is accomplished with this code:

new Ext.Panel({
renderTo : "panelTarget", title : "My First Tablelayout",
layout : "table", height:400,
layoutConfig: { columns : 2 },

n

72

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

items: [
{ html : "Column 1, Cell 1", width : 200, height : 200 },
{ html : "Column 2", rowspan : 2, width : 200, height : 400 },
{ html : "Column 1, Cell 2", height : 200 }

1);

The result of this, if you execute the TableLayout.htm example, is shown in Figure 2-7.

¥) Chapter 2 TableLayout Example - Mozilla Firefox
File Edit View History Bookmarks Tools Help b

O B
My First TableLayout
Cohmmn 1, Cell 1 Cohmmn 2

b ||Cotumn 1, Cell 2

[|®| = | | E] | One active download (Unknown time n

Figure 2-7. Another TableLayout example

Asyou can see, the number of columns is specified as part of the layoutConfig object, and
then each Panel is added via the items array, each given the height and width to fill the area
of the <div> it’s supposed to. The second Panel has a rowspan of 2, just as it does in the plain
HTML version.

AnchorlLayout

xtype : anchor

An Anchorlayout is a layout that allows you to anchor contained elements relative to the con-
tainers’ dimensions. In other words, if the Container is resized, either because the Container
itself is resized or as an indirect result of its parent Container being resized, then all of the
elements within it that have been anchored to it will be rerendered, and most importantly
resized, according to the anchoring rules you supply.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

It’s not all about size, however: positioning can also be specified within the Container.
Before we look at any code, take a look at Figure 2-8 to see what an anchored layout looks like.

— .y
R M 1 L.
esmelle | e,
Send To:
N
Subject: Ron,

"
th
Say
L
"""""
£

-
.y
.

.........
.....

. Resize Me

O Send To:
s, Subject:
s,

y
‘.

Figure 2-8. A Panel using an AnchorLayout, at its minimal size and expanded to a larger size

In Figure 2-8 you see the same Window with an AnchorLayout used internally to organize its
children, in two different sizes. The larger version is a result of dragging the corner of the win-
dow to resize it. Notice how the text fields and labels are in the same relative position in each
but have been resized to fill the Window.

What does the code for something like that look like? Well, it’s not the exact code for the
previous example, but it would look something like this:

new Ext.Window({

resizable : true, layout : "anchor", title : "My First Anchorlayout",
width : 200, height : 200,
items: [
{ xtype : "textfield", anchor : "100%", value : "textfield1" },
{ xtype : "textfield", anchor : "100%", value : "textfield2" },
{ xtype : "textarea", anchor : "100% 60%", value : "textarea" }
]
}).show();

This code is taken from the AnchorLayout.htm example, which when run results in
Figure 2-9.

73

74

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

.I'-'Iv First AnchorLayout x|
textfield1
textfield2

. textarea

Figure 2-9. The AnchorLayout, part deux

In this case we have two text fields and one text area (we’ll be looking at form fields in just
a bit). The Window specifies an anchor layout, which allows us to use the anchor attribute on
each element added via the items array. This is a string that can be used to specify anchoring
rules. The value of this attribute is always in the form “xx yy”; xx is a horizontal anchor value
and yy is a vertical anchor value.

Three types of values are supported here. The first is a percentage. So in the code, the
text area specifically, the anchor attribute says that the text area should be expanded to fill the
Window horizontally and that it should take up 60 percent of the height of the Window. You can
also supply just a single anchor value as a percent, which Ext JS takes to be the width specifica-
tion, and the height will default to a setting of auto.

You can also specify an offset value for the anchor attribute. This can be a positive or nega-
tive number. The first value is an offset from the right edge of the container, and the second is
an offset from the bottom edge. So if we were to change the anchor attribute for the text area
to —25 -75, that would tell Ext JS to render the item the complete width of the Window minus
25 pixels and the complete height of the Window minus 75 pixels. As with percentages, you can
instead specify only a single value, and that will be taken as the right offset, with the bottom
offset defaulting to 0.

You can also specify an anchor value of right, or r, or bottom, or b. In order for this to do
anything, however, the Container must have a fixed size or must have an anchorSize config
value defined at render time.

You can also mix and match anchor value types. For example, a value of -10 80% means
that the element should render the full width of the Container minus 50 pixels from the right
edge and 80 percent of the Container’s height.

TabPanel
xtype : tabpanel

A TabPanel isn’t actually a layout in the same way as the others are; it’s a type of Panel. But
since it is a way to lay out content on the screen, it fits in this section.

A TabPanel looks like what you see in Figure 2-10. Multiple tabs that allow the user to flip
between different panes of content are present, and only one Panel within the TabPanel is vis-
ible at a time.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

Mormal Tab || AjaxTab 1 Ajax Tab 2 || EventTab

My content was added during construction.

Figure 2-10. The TabPanel

The code that created the TabPanel in Figure 2-10 looks like this:

new Ext.TabPanel({
renderTo : "panelTarget",
activeTab : 0, width : 500, height : 200,
items: [
{
title: "Normal Tab",
html: "My content was added during construction”
b
{ title: "Ajax Tab 1" },
{ title: "Ajax Tab 2" },
{ title: "Event Tab" },
{ title: "Disabled Tab", disabled : true }
]
bs

You use this just like any of the other components we’ve looked at, so there’s nothing new
here. Here are some of the more interesting config options available:

e enableTabScroll, which when true adds a button to scroll through tabs if there are
more than can be displayed across the TabPanel (the animScroll option goes along with
this; when true it animates the scrolling of tabs)

* autoload, which should be a valid URL specification as described for the
Ext.Updated.update() method and will cause an Ajax request to fetch that URL and put
the response into the tab upon creation

* tabPosition, which accepts a value of top or bottom (the default is top) that specifies
where the strip of tabs should be placed: above or below the tab bodies themselves

Form Widgets

Forms in Ext JS are in many ways similar to the usual <form> HTML elements, but as you might
guess, with a lot more power, not to mention the fact that they look nicer! Creating forms is
pretty simple too and follows a model similar to the type of code we’ve seen earlier.

75

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

As in HTML, it all starts with a container, a Form element of some sort, and then a bunch
of input fields. It usually ends with some sort of submit button, and the story is not fundamen-
tally different in Ext JS land.

FormPanel
xtype : form

In general, creating a form starts with creating a FormPanel. It is used pretty much like any
other Panel type. Internally, FormPanel uses the FormLayout component to organize its chil-
dren, which in this case are input fields of various types.

In its default state, a FormPanel internally has a BasicForm object that provides the
basic functionality of a form, which includes submitting of the form via Ajax. You can over-
ride this to make the form submit in the way a normal <form> element does by setting its
standardSubmit config option to true, but in the RIA world you probably want the Ajax
method.

Here’s some example code for a simple form that you can see in Figure 2-11:

var fp = new Ext.FormPanel({
renderTo : "panelTarget", width : 400, height : 350, labelWidth : 120,
bodyStyle : "padding:6px", url : "test.htm",
items: [
{ xtype : "textfield", fieldlLabel : "Your name", width : 250 },
{ xtype : "datefield", fieldlLabel : "Your age" },
{ xtype : "checkbox", fieldlLabel : "Married?" },

{
xtype : "textarea", fieldlLabel : "About you", width : 250,
height : 200
}
1,
buttons: [{

text : "Submit",
handler : function() {
fp.getForm().submit();

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

Your name:

Your age: |
Married?: [l

About you:

Figure 2-11. A very simple form example

It’s a very simple form. The FormPanel is created and told to render to the panelTarget
<div>. We specify awidth and height for the panel, as well as the labelWidth attribute, which
tells the form how wide a label for a field should be. I also added a bodyStyle attribute here to
keep the form fields and labels from bumping right up against the border of the FormPanel. The
url attribute specifies the URL that the form will be submitted to when the submit() method
is called. Then, a bunch of input fields are added via the items array, a textfield, a datefield,
a checkbox, and a textarea, all specified via xtype. As you can see, each field can have a label
as well, and even width values. (Remember, the width value is the width of the field itself, so
you have to subtract the width of the label to ensure the label plus the field isn’t wider than the
FormPanel.) You can also specify a height, as I've done on the textarea.

Then a button is added to the footer of the FormPanel so the form can be submitted. It calls
the getForm() method of the FormPanel to get the underlying BasicForm, which we then call
the submit() method on. The form knows what URL to submit to, so our work is done at that
point. (Note that clicking the submit button will result in an error because you can’t submit to
alocal HTML file in most browsers due to security restrictions.)

Now we’ll look at the individual fields that can be put on a form. While I suspect most of
them are familiar to you because they are much like their plain old HTML counterparts, a few
of them have no direct analogy, so they may be a bit more interesting to you.

TextField
xtype : textfield

The ubiquitous TextField is perhaps the most common form widget out there. Simply stated,
it is a box that allows the user to enter some text. Typically, the only real limitation placed on
the entry in a TextField is the maximum length, but there can be others.

For example, the TextField supports a maskRe config option whose value is a regular
expression that masks what the user can enter. For example, a single expression \D* will match
all non-numeric characters. So you could enter abc but not abc123 (and not abc123def either).

7

78

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

The TextField also has a maxLength config option, which specifies the maximum allowed
length of the input, just like a plain <input type="text"> element does. The grow option, when
true, allows the field to expand or contract to fit its content. Associated with the grow option
are growMin and growMax. With grow set to true, growMin sets the field’s minimum size and
growMax sets the maximum size. The selectOnFocus option determines if any existing text in
the TextField will be selected on focus (true) or not (false).

I'm going to go out on a limb here and assume you don’t need to see a TextField in action.
That being said, I'm going to do it anyway! Check out Figure 2-12 for a couple of TextFields.

Simple Form

First Mame:
Last Mame:
Company:
Email:

Time: £

[Save ” Cancel]

Figure 2-12. The TextField

Checkbox
xtype : checkbox

Iwon’t spend much time on the Checkbox widget as you saw it in the previous example.
A Checkbox is used when users have a basic yes/no type of question that they need to
answer. It has two config options: checked, which is either true or false and determines
whether the check box starts off checked (true) or not (false); and readOnly, which when
true makes the check box unclickable.
That about covers it! A Checkbox isn’t exactly rocket science.

DateField
xtype : datefield

The DateField is a neat little widget that allows you to provide your users with a pop-up cal-
endar so they can select a date value for a text input field. This allows you to ensure the value
is entered in the format you need it to be in. It also tends to make it easier on the user (some
people disagree; they say that hand-entering a date is always easier and quicker, and doubtless
it is sometimes, but many people feel it generally isn’t).

The DateField on the screen looks like what you see in Figure 2-13. The little calendar
icon next to the text fields is what the user clicks to pop up the calendar. In this screenshot I've
clicked the calendar next to the End Date field.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

Date Range

Start Date: |

End Date: 3

2y T [||| FSE e =

22 29 30 1 2 3 4
s 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 20 22 23 24 [25]
26 27 28 29 30 M

Figure 2-13. The DateField

The code behind this example is something along the lines of:

new Ext.FormPanel({
renderTo : "panelTarget", width : 400, height : 350, labelWidth : 120,
bodyStyle : "padding:6px", url : "test.htm", title : "Date Range",
items: [
{ xtype : "datefield", fieldlLabel : "Start Date" },
{ xtype : "datefield", fieldlLabel : "End Date" }
]
bs

HtmlEditor
xtype : htmleditor

The HtmlEditor widget is akin to what is usually called a rich editor in other libraries. It allows

you to edit text that includes formatting, things like colors, fonts, font styles, lists, and so forth.

I can only assume the Ext JS developers chose to call this thing an HtmlEditor because when
you call its getValue() method, you get HTML representing the text, with all its formatting,
that you have entered.

Well, whatever it’s called and why it’s called that, the widget appears in Figure 2-14; it’s
the large text area at the bottom and the toolbar above it.

79

80 CHAPTER 2 WIDGETS AND ADVANCED EXT JS

Multi Column, Nested Layouts and Anchoring

First Name: Last Name:
Company: Ermail:

Biography:
T B 7 U A A|A2

o3

it
111
&

[pel

[Save] [Cancel

Figure 2-14. The HtmlEditor

The code for using an HtmlEditor is along these lines:

new Ext.Panel({
renderTo : "panelTarget", layout : "fit",
title : "HtmlEditor",

items : [
{ xtype : "htmleditor", height : 200, id : "he" },
{

xtype : "button", text : "Get HtmlEditor Value", listeners : {
click : function() {
alert(Ext.getCmp("he").getValue());

You'll notice the button on the bottom that when clicked calls the getValue() method of
the HtmlEditor. Let’s say the user entered Hello World in the HtmlEditor, and they made the
text red and in bold. The alert() shown would contain this string:

Hello World

Now, you can argue that using a tag is bad news, given our love of CSS these days.
You might say the same for using the tag. However, you can’t deny that the HTML returned
is indeed valid and matches the formatting applied to the text entered. That’s the whole point
of the HtmlEditor widget.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

NumberField
xtype : numberfield

The NumberField is just like a TextField except that it has built-in numeric filtering. In other
words, it'll only let you enter numbers. You can set the number of decimal places to show after
the decimal point by specifying a value for the decimalPrecision config option (it defaults to
2). Note that you can enter more than the value specified by decimalPrecision, but when you
blur off the field—that is, when focus leaves the field—it will be truncated back to that size.
You can specify whether decimals are allowed in the first place by setting the allowDecimals
config option to true or false. You can also specify a character to use as a decimal separator
other than the default period by specifying it with the decimalSeparator config option (this can
be a string of more than one allowed character if you wish). The allowNegative config option,
similar to the allowDecimals option, determines whether the field will allow negative values
(true) or not (false). The baseChars config option lets you set what characters are considered
valid (it defaults to 0123456789). That’s helpful if you want to allow entering of hexadecimal
numbers, for example. The grow option, when true, allows the field to expand or contract to
fit its content. Associated with the grow option are growMin and growMax. With grow set to true,
growMin sets the field’s minimum size and growMax sets the maximum size.

Since the NumberField is very similar to TextField, I don’t think there’s much more to say
about it, or a need to show it here, so let’s continue on with our survey of widgets.

TextArea

xtype : textarea

A TextArea is essentially a TextField that has more than one line of text available for the user
to enter something into. It looks like what you see in Figure 2-15; it’s the last field with the
label Note.

Create Appointment ®

Title:

Category: »
When:)
Location:

MNote:

[Cancel

Figure 2-15. The TextArea

81

82

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

The TextArea widget supports awidth and a height config option to specify its size. It also
supports the grow, growMin, and growMax options previously discussed. It supports the regex
option for validating the input against a regular expression, as well as a maxLength option for
limiting the amount of text that can be entered.

The code for the FormPanel shows a TextArea being created, so there’s no sense repeating
that here.

Radio/RadioGroup

xtype : radio/radiogroup

ARadio, or radio button as it’s frequently called, is a descendant of the Checkbox and is
extremely similar. In contrast to a Checkbox, a stand-alone Radio button isn’t generally seen; it
is usually in a group. (The metaphor a Radio button seeks to implement is a multiple-choice
question with a single correct but required answer, whereas a Checkbox is for multiple-choice
questions where one or more answer may be given, or none at all.) You can in fact create a
stand-alone Radio if you wish, but normally you you’ll use the RadioGroup widget instead. Here
are some examples:

new Ext.Panel({
renderTo : "panelTarget", layout : "fit",
title : "Radio Example",
items : [
{ xtype : "label", text : "I am a radio:" },
{ xtype : "radio", name : "radio1" },
{ xtype : "label", text : "I am another radio:" },
{ xtype : "radio", name : "radio2" },
{ xtype : "label", text : "A more proper group of radios:" },
{ xtype : "radio", name : "radio3" },
{ xtype : "radio", name : "radio3" },
{ xtype : "label", text : "A real RadioGroup:" },
{ xtype : "radiogroup", columns : 1,
items : [
{ boxLabel : "Item 1", name : "rg", inputValue : 1,
checked : true },
{ boxLabel : "Item 2", name : "rg", inputValue : 2 }

1);

This code generates a total of six Radio buttons. The first two are solitary. If you click them
you’ll notice that while they become “checked,” as you would expect, there’s no way via the
Ul to deselect them. This is usually considered a flaw in a UI (alternatively there may be some
button, or other trigger, that deselects it automatically, but that’s not typically the right way to
use a Radio button).

The third and fourth Radio buttons are also solitary, but notice that they have the same
name. This tells Ext JS that they should be grouped and work as Radio buttons are meant to

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

work: when you click one it is checked and the other is deselected. The two toggle each other,
in other words, so only a single one is ever checked.

So, while you can have solitary Radio buttons that are essentially grouped via the name
attribute, and while you may want to do this sometimes, it’s often better to use the RadioGroup
widget instead. The final two Radio buttons are created this way. One of the advantages that
the RadioGroup gives you is that you can create columns of Radio buttons. The two grouped
Radio buttons flowed straight down the page, and that would have continued it we’d added
more. Sometimes this is what you want, but sometimes you have more than a few Radio but-
tons and you’d prefer to have two per line, side by side, just to save some space and make
things look a little better. That’s what you can do with RadioGroup. The columns config option
tells the widget how many columns you want. Then, the items array specifies all the Radio but-
tons you want, and RadioGroup takes care of organizing them into columns.

Aside from the columns config option, there’s little else specific to RadioGroup. Most of its
other config options are from parent objects.

ComboBox

xtype : combo

A ComboBox is a combination of a TextField and a <select> from plain old HTML. Users can
type a value in the TextField portion and have the <select> portion automatically match the
value as they type. The ComboBox also can be used like a regular <select>, forgoing the ability
for the user to type, whichever you need.

A ComboBox looks like what you see in Figure 2-16. There I've begun typing something and
the ComboBox has found a match in the drop-down portion.

[Wishingtor]
Washington

West Virginia

Wisconsin

Wyoming

Figure 2-16. The ComboBox

There are a couple of ways to create a ComboBox, and we’ll see some of the more useful
ways in later chapters as we explore the projects. For now here’s a very simple method:

new Ext.form.ComboBox({
renderTo : "divTarget", style : "border:ipx solid #000000",
mode : "local", store : [
"Ford", "Cadillac", "Chevy", "Chrysler", "Dodge",
"Honda", "Hyundai", "Kia"
]
bs

This creates a ComboBox with eight options in its drop-down section. By default you can
type in the TextField portion, so if you type a C for example, you'll find that the drop-down
opens up and shows Cadillac, Chevy, and Chrysler as the options. You could point to one and

83

84

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

click right then and there, or you could continue to type. Type an H, so the TextField has CH
in it, and you’ll then see the list shrink down to just Chevy and Chrysler. Now type an E and
Chevy will be the only remaining option. At this point if you press Enter or Return, the value
Chevy will be copied into the TextField, and that becomes the value of the ComboBox that you
can retrieve (which you can retrieve with the getValue() method).

If you want the ComboBox to work like a plain old <select>, you can set the editable config
option to false. That’s all it takes!

As I mentioned, there are some other more useful usages of the ComboBox, most notably
the ability to hook it to a data store, which is a topic we’ll discuss shortly. In the next chapter,
you'll see an example of doing just that.

TimeField
xtype : timefield

Now that we’ve seen the ComboBox we can look at the TimeField. It may at first seem a little odd
that a field meant for entering time values is related in any way to the ComboBox, but I think
once you see Figure 2-17, the mystery will be solved.

Simple Form

First Name:
Last Mame:
Company:

Email:

Time: | i"i
8:00 AM |
8:15 AM
18:30 AM
8:45 AM
9:00 AM
9:15 AM -
9:30 AM
9:45 AM
10:00 AM
10:15 AM
10:30 AM
10:45 AM
11:00 AM
11:15 AM
11:30 AM [l

Figure 2-17. The TimeField

You create the TimeField just as you would any other widget, as you can see here:

Ext.onReady(function() {
new Ext.form.TimeField({ renderTo : "divTarget" });

1);

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

In its default form, the TimeField has options in the drop-down portion starting with
12am and running to 11:45pm in 15-minute intervals. Also by default the TimeField works like
a ComboBox in that the user can type a value and have it be autocompleted.

By default also, the TimeField will only allow the user to enter a value that matches one of
the options in the drop-down portion. By setting the forceSelection config option to false,
you can allow users to enter other valid time values, such as “11:53 PM.”

Form Validation

One of the best things about forms in Ext JS is that they can have validation logic built into

them without you having to so much as lift a finger! For example, check out the screenshot
in Figure 2-18. Here, the two password fields do not match and the user has been alerted to
that fact.

Password Verification
Password: sess
Confirm Password: seee] [T

i@ Passwords do not match

Figure 2-18. An example of a form validation failure

Think about this validation and what it would take to implement it. As another example,
think about if you wanted the user to enter an e-mail address in a field and ensure it was in a
valid form. If you're like me, visions of disgustingly complex regular expressions are dancing in
your head right now, and that doesn’t even take into account what would be required to high-
light the field and show that little tooltip next to it. That’s a fair bit of work all told!

In Ext JS, however, validating an e-mail address is as easy as adding a single config option
to a TextField’s config object:

type : "email"

Add that, and voila, any time the user exits the field the validation will be carried out and
the tooltip will appear if the field is invalid! There is in fact one more piece to the puzzle to
make that fully work, but that’s what matters at the field level—we’ll see the rest shortly.

Now there’s more to it than that: what if, as is usually the case on forms, there is a submit
button at the bottom, and we want the submit button to only be enabled when all fields in the
form are valid? Again, I'm sure you can imagine the code required in order to pull this off, and
while it’s not all that complex, Ext JS makes it ridiculously simple! Add this config option to the
FormPanel’s config object:

monitorValid : true,

This will cause the form to monitor itself to ensure all the fields within it are valid. You
can manually check the status of the form at any time by calling the getForm() method of the
FormPanel, and then calling the isValid() method on the Form object returned by getForm().

85

86

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

However, as is the case with Ext JS most of the time, there is a more elegant solution. You can
instead simply add a Button to the form with this config option:

formBind : true

From that point on, the Button will be disabled if any field on the form is invalid; other-
wise it will be enabled. That’s right—it’s completely automatic!

In fact, that’s the real beauty of Ext JS’s form validation: it’s all just some configuration
options, after which it’s all automatic!

Validating e-mail addresses isn’t all Ext JS can do. The e-mail address validation is one of
the built-in vtypes, which is short for “validation type.” A number of other vtypes are available
out of the box, as summarized in Table 2-1.

Table 2-1. The Vtypes Available by Default with Ext JS

Viype Description

alpha Only allows letters and the underscore character

alphanum Only allows letters, numbers, and the underscore character
email Verifies that the entry is in the form user@domain. com

url Verifies that the entry is in the form http://www.domain.com

As you can see, there are just some basics there; it’s nowhere near all the vtypes you'd
probably want and need in a complex application. Fortunately, the vtype system allows you to
create your own vtypes very easily. Here’s an example of doing just that:

Ext.QuickTips.init();
Ext.form.Field.prototype.msgTarget = "side";

Ext.apply(Ext.form.VTypes, {
phoneMask : /[0-9-]/1,
phoneText : "Phone number must be in the form 123-456-7890",
phone : function(v) {
if (v.length 1= 12) {
return false;
} else {
return true;

}
1;

var fp = new Ext.FormPanel({
height : 100, bodyStyle : "padding:4px", monitorValid : true,
items: [
{ xtype : "textfield", fieldlLabel : "Phone #", vtype : "phone" }
]
D;

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

fp.addButton({ text : "Submit", formBind : true });

var w = new Ext.Window({
title : "Test Custom VType", closable : false, modal : true,
width : 310, height : 130, minimizable : false, resizable : false,
draggable : false, items : [fp]
bs

w.show();

First, we need to turn on the capability in Ext JS to display those tooltips (this is the other
piece of the puzzle to get errors to display, as I hinted at earlier). The first two lines accomplish
that. More precisely, the first line turns them on and the second globally sets where the icon
showing an invalid field should be. In this case we tell Ext JS to put them to the right of the field.

The call to Ext.apply() adds the custom vtype to the Ext.form.VTypes class, which is the
class that houses all the built-in vtypes, as well as any we create. Each vtype has three attri-
butes: the *Mask attribute tells Ext JS the regular expression to use to mask off the input. Here,
the expression says that only numbers and the dash symbol can be entered. Next is the *Text
field, which is the text to be displayed when the field is invalid. Last is the function named after
the vtype (which is also the value put in place of the asterisk in the other two attribute names).
Here for example, the vtype is phone, so we have phoneMask, phoneText, and the phone() func-
tion. The function returns true if the passed-in value of the field, the variable v, is valid, and
falseif not.

After that, it’s a simple matter of creating a FormPanel as we’ve seen before, making sure
we set the monitorValid config option to true this time. The button is then added, with the
formBind config option set to true. Finally, a Window is created with the FormPanel as a child of
it. If you bring up this example (CustomVType.htm) and try typing in the field, if you press letters
you'll notice the Submit button becomes disabled and the field is highlighted in red with the
error icon next to it. Hovering over the icon reveals the error message.

You can do arbitrarily complex things in a vtype, even as far as making an Ajax call to a
server to do some validation. You'll want to exercise caution doing something like that as it
would be easy to destroy the performance of your application. But the basic mechanism is
there for you to use (or abuse) as you see fit.

Menus and Toolbars (Oh My!)

Menus and toolbars are fundamental parts of modern GUIs, and Ext JS provides them of
course! In Figure 2-19 you can see an example of a Toolbar. Interestingly, it is also an example
of aMenu (as we’ll discuss later). Notice that the Toolbar has quite a bit of capability built into
it: aside from the usual icons, with or without text beside them, you can have toggle buttons,
drop-downs, and much more.

@ Button w/ Menu + E Split Button |Tngg|eMe| E Select a =tate... [

Figure 2-19. A Toolbar

87

88 CHAPTER 2 WIDGETS AND ADVANCED EXT JS

What I meant about this being a Menu as well as a Toolbar is that in Ext JS, there is no such
thing as a separate menu bar for creating a menu on the top of a page, as is typical in many
applications. Instead, you have to use the Toolbar, and then attach Menus to buttons on the
Toolbar. This isn’t an optimal situation, and there is discussion on the Ext JS forums about
what the future might hold, but this is the case for the current version. You can find at least
one extension to Ext JS to give you a “proper” menu bar if you wish. However, as it happens,

a Toolbar as a menu bar is pretty close to what you would want anyway—and in some ways
might even be better.

Let’s see how a Toolbar and a Menu are created:

var myMenu = new Ext.menu.Menu({
items : [
{ text : "Menu Item 1" },
{ text : "Menu Item 2", checked : true },
"=, "<b class=\"menu-title\">Choose an 0S",
{ text : "Choose 0S", menu : { items: [
{ text : "Windows", checked : true, group : "os" },
{ text : "Linux", checked : false, group : "os" }
11}
]
bs

new Ext.Panel({
renderTo : "panelTarget", layout : "fit", border : false,
items : [{
xtype : "toolbar", items : [
{
text : "Toolbar Item 1", icon : "toolbarItemi.gif",
cls : "x-btn-text-icon", handler : function() {
alert("Toolbar Item 1 was clicked");
}
b
{ xtype : "tbspacer" },
{
icon : "toolbarItem2.gif", cls : "x-btn-icon",
handler : function() {
new Ext.Window({
closable : true, modal : true, width : 300, height : 100,
minimizable : false, resizable : false, draggable : false,
html : "I am a window displayed from a toolbar button"
}).show();
}
}J
{xtype:"tbspacer"}, {xtype:"tbseparator"}, {xtype:"tbspacer"},
{ text : "Click for Menu", menu : myMenu }

1);

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

This is the code from the ToolbarAndMenu.htm example file. As you can see, two things are
being created here: a Menu first, and then a Toolbar (within a Panel, so really three things). Let’s
start with the Menu.

A Menu, by itself, is just a container for other items. Take any menu bar in any application.
When you click one of the words up top, like the typical File menu item in many applications,
you get a pop-up window that happens to be anchored to that text, and this window has the
menu items on it. This is a Menu object to Ext JS. You basically created these Menu objects, and
then attached them to other elements (even the page, if you want a right-click context pop-up
menu, for example). To create a menu bar, you would create a series of Menu objects and then
attach them to a Toolbar. I'm getting ahead of myself here a bit!

Creating a Menu, of type Ext.menu.Menu, is little more than instantiating it and passing it
the config object, in typical Ext JS fashion. This config object contains an items array, and each
object in that array describes an item on the menu. For simple text items that can be clicked
and that you can write code to react to, the object needs simply to have a text attribute, as you
can see in the code with the first item in the array.

The second item is some literal text, and in this case it’s a bit of text that Ext JS recognizes.
A single dash means draw a divider line on the menu. You can put in any text you like, but it
will become simply static text on the menu, good for headers and such. In fact, jumping ahead
a bit, I've done exactly that with the fifth item in the array, “Choose an OS text.” For that par-
ticular item I've also demonstrated that you can put arbitrary HTML in there, and I've used the
menu-title CSS selector to style it (this selector is provided by Ext JS).

Going back a bit now, the third item in the array is a check box item. All it takes is add-
ing the checked config option and Ext JS knows you want it to be a CheckBox item now. You
can include a checkHandler attribute in the object as well, which is a reference to a function to
execute when the item is checked (or unchecked).

The sixth item in the array shows that you can have submenus as well. You can then add
any items you wish to it, and I've done so here. The items are this time Radio buttons because
I've included the group attribute, which forces Ext JS not to make them CheckBoxes—as it
would have done by virtue of the checked attribute—but to make them Radio buttons.

Now that we’ve created a menu, we can move on to creating the Toolbar. In this example
I've made it a child of a Panel, and so I've used the xtype approach to create it. Just like a
Menu, a Toolbar has an items array to describe each element to add to it. The first element
I've added is a simple button that has an icon and some text next to it. The Ext JS-supplied
x-btn-text-icon selector sets the styles appropriately for displaying both an icon and the
text. The icon attribute tells Ext JS the name of the graphics file to use as the icon. The handler
attribute is the function to execute when the item is clicked—here just displaying an alert()
message.

The second element added with the xtype tbspacer is a spacer element that puts some
blank space between elements. This allows you to make the Toolbar look just how you want.

The third element added is another button, this time one with just an icon. In this case
the x-btn-icon selector is used to get rid of the text and the space otherwise reserved for it. The
handler attribute is again used to react to the user clicking the button. This time around it dis-
plays a Window, which we’ve seen before but which we’ll discuss further in a bit.

The fourth and sixth elements are again spacers, while the fifth element sandwiched
between them is another special xtype, tbseparator. This draws a vertical line on the Toolbar,
which is typically used to separate groups of icons.

89

90

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

The final element added is a simple text item, no icon or anything, but it has something
new: the menu attribute. This refers back to the myMenu Menu created right before the Toolbar.
Now when you click this button on Toolbar, the Menu we created will pop up below it. We’ve
effectively made a Menu out of the Toolbar! You can imagine a series of these text-only buttons
on the Toolbar, each with a Menu attached to it, and you can see how it would essentially simu-
late a menu bar.

The Toolbar can house a number of other elements, but I feel it would be better to intro-
duce them as needed throughout the projects to come. With what you’ve seen here, you have
the basics you need to understand those other capabilities; they build directly off what you've
seen here.

Note One of the problems with using a Toolbar as a menu bar is that the buttons on the Toolbar have
arrows next to them, which normal menus that we all know and love usually don’t. As it happens, there is a
way to get rid of the arrow (actually, there appears to be multiple ways). If you add this code to the Toolbar
item with the menu attached, the arrow goes away:

listeners: { "render" : function(b) {
b.el.child(b.menuClassTarget).removeClass("x-btn-with-menu");

1}

Not, perhaps, the best solution, but one that works.

Trees in Ext JS

Trees are another famous widget that you see all over the place. If you're a Windows user you

are familiar with Trees as the list of folders on the left of Windows Explorer. Trees are great for
displaying hierarchical data in a way that lets the user drill down into the data. In Figure 2-20

you can see an example of a Tree.

2 SIExtis -~ =3I My Files
[ZJ adapter [=] Connection.js
[eore [E] DataReader js
@I data
=] ArrayReader.jz
(=] DataField js
[=] DataProxy.js
[=] GroupingStore.js
[=] HttpProxy.js
[=] JsonReader js |
=] JsonStorejs
=] MemoryProxy.js
=] Record j=
[=] SeriptTagProxy js
=] simpleStore js
=] SortTypes.js M

[etareie

Figure 2-20. Trees in Ext]S, two of them to be precise!

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

Actually, that’s fwo Trees! This example, from the Ext JS web site, shows one of the more
advanced features of Trees: the ability to drag and drop items from one Tree to another!

For now, however, let’s deal with a much simpler example by creating a Tree and populat-
ing it manually in code:

var treeData = [
{ authorName : "Stephen King", books : [
"Carrie", "It", "The Stand", "Cujo"
]
}

{ authorName : "Michael Crichton", books : [
"Jurassic Park", "The Lost World"

]
}

{ authorName : "Isaac Asimov", books : [
"2001", "2010", "2069"

]
}
15

var tree = new Ext.tree.TreePanel({
renderTo : "panelTarget", layout : "fit", width : 250, height : 300,
title : "Tree",
root : new Ext.tree.TreeNode({ text : "Authors" })

1);

var rootNode = tree.getRootNode();
for (var i = 0; i < treeData.length; i++) {
var node = rootNode.appendChild(new Ext.tree.TreeNode({
text : treeData[i].authorName
1);
for (var j = 0; j < treeData[i].books.length; j++) {
node.appendChild(new Ext.tree.TreeNode({
text : treeData[i].books[j], listeners : {
"click" : function(node) {
alert("You clicked: " + node.text);
}
}
N);
}
}

Trees aren’t something you deal with directly. Instead, you use the TreePanel. This is a
Panel like any other, which means it can partake in all the layout magic Ext JS offers.

The code begins with some plain old JavaScript objects in an array. This is the data we're
going to load into the Tree. Next, the TreePanel is instantiated. When you do this, you need to
specify a root node (of type TreeNode) for the Tree, or things don’t work. A TreeNode has a text

91

92

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

attribute, which contains what is displayed on the page. You can also specify an id attribute for
working with the nodes in the Tree later.

A TreeNode can have any number of child nodes, or it can be on its own, which is referred
to as aleaf node. In this case we have the root node, which is a special case because, presum-
ably, there will always be child nodes underneath it (otherwise a Tree wouldn’t be much
good!). Here, the root node represents authors.

Once the TreePanel is created and rendered, we can add some data to it. To do so, we first
get a reference to the root node by calling getRootNode () on the TreeNode object. Then, we
begin to iterate over the treeData array. Each element in the array is an object that contains an
authorName attribute as well as a books attribute, which is an array of plain strings.

For each object in the treeData array, we create an Ext.tree.TreeNode, giving it the text
taken from the authorName attribute. We use the appendChild() method of the root TreeNode
object to add that node beneath the root node.

Then, we iterate over the books array for that author. For each we again create a TreeNode
object with the text matching the next element in the books array, which is a book title. We
append each of these TreeNode objects to the TreeNode for the author (to which we stored a
reference in the node variable when we made the call to the appendChild() method). The net
result is that we get a Tree with authors at the top, with three authors below it: Stephen King,
Michael Crichton, and Isaac Asimov. Beneath each of those authors are a couple of book titles.

The user can now click each of the nodes to expand it and see what’s below it. Clicking on
Stephen King, for example, reveals four book titles: Carrie, It, The Stand, and Cujo. You'll also
notice that when we created the TreeNode objects for each book, a 1isteners object was passed
with a handler for the click event. So, if you click one of the book titles you'll get an alert()
message saying you clicked the given title.

Loading a Tree like this is a little atypical. The more common way is via remote loading
of data. Doing so is a simple matter. First, add a loader attribute to the config options of your
Tree. This option points to an instance of Ext.tree.TreelLoader. You construct a TreeLoader
like so:

var myTreeloader = new Ext.tree.Treeloader({
datalrl : "getMyData.jsp"
}s

Now, assuming getMyData. jsp is on the same server that served the page this code is in,
and assuming the returned data from that call is in the appropriate JSON form, the Tree will be
populated automatically. The correct JSON form is this:

[
{ text: "Stephen King", children : [

{ text : "Carrie", leaf: true },
{ text : "It", leaf: true },
{ text : "The Stand", leaf: true },
{ text : "Cujo", leaf: true }

1+

{ text: "Michael Crichton", children : [
{ text : "Jurassic Park", leaf: true },
{ text : "The Lost World", leaf: true }

1},

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

{ text: "Isaac Asimov", children : [
{ text : "2001", leaf: true },
{ text : "2010", leaf: true },
{ text : "2069", leaf: true }
1}
]

This would generate the same Tree that we did via code, but without all that iterating
over data and such we had to do ourselves. This is great if your data comes from a server-side
source. But since that isn’t always the case, knowing you can do it both ways is obviously good!

Grids in ExtJS

The Grid is one of the handiest widgets out there, and is about as common as a button is these
days! A Grid is used to display columnar data that more times than not is a fairly large set of
data and allows the user to scroll through that large set of data little by little. In Figure 2-21 is
an example of a relatively simple Grid.

Array Grid

Company Price Change % Change Last Updated
3m Co .72 0.0z 0.03% 09/01/2008
Alcoa Inc 529.01 0.42 1.47% 09/01/2008
Altria Group Inc 583.81 0.28 0.34% 09/01/2008
American Express Company §52.55 o.o1 0.02% 09/01/2008
American International Group, Inc. $64.13 0.31 0.45% 09/01/2008
ATET Inc. 33161 -0.48 -1.54% 09/01/2008
Boeing Co. 575.43 0.53 0.71% 08/01/2008
Caterpillar Inc. S67.27 0.82 1.38% 09/01/2008
Citigroup, Inc. 54937 0.02 0.04% 09/01/2008
E.l. du Pont de Nemours and Company 540.48 0.51 1.28% 09/01/2008
Exxon Mobil Corp 558.10 -0.43 -0.64% 09/01/2008
General Electric Company 23414 -0.08 -0:23% 09/01/2008
General Motors Corporation 23027 1.09 374% 09/01/2008
Hewlett-Packard Co. $36.53 -0.03 -0.08% 09/01/2008 li]

Figure 2-21. An example of a basic Grid

The Grid in Ext JS is full featured, to say the least! For example, you can sort the data
by clicking a column header. This is done on the client side and so is quite fast and doesn’t
impact your server infrastructure at all. You can also drag columns around, so if you wanted to
see the Price field first, you could drag it and drop it before the Company column. Users can
even turn columns off if they aren’t interested in the data they contain.

You can resize the columns by dragging the vertical line between them. The Grid supports
row striping, which is a slight color tint to the background of the row (usual gray) that makes it
easier for users to track their eyes across the data.

The Grid can even have editable fields embedded within it, as you can see in Figure 2-22.

93

94

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

Edit Plants?

| Add Plant
Common Name = Light

| Adder's-Tongue Shade
Anemone Mostly Shady
Bee Balm Shade
Bergamut123| | Shade
Black-Eyed Susan Sunny
Bloodroot Mostly Shady
Blue Gentian Sun or Shade
Buttercup Shade
Butterfly Weed Sunny

| California Poppy Sunny

Price
59.58
5$8.86
5459
57.16
59.80

$8.56
5257

57.89

Available

Apr 13, 2006
Dec 26, 2006
May 03, 2005
Apr 27, 2006
Jun 18, 2006
Mar 15, 2006
May 02, 2006
Jun 10, 2006
Jun 30, 2006
Mar 27, 2006

Indoor?

OO0EOEOEEEE

[v]

Figure 2-22. An example of a Grid with editable fields embedded within it

The Grid is always what’s called a data-bound widget, which is a concept we’ll be dis-
cussing very soon. In short, though, it means that you have some data, and the Grid is bound
to it so that it is automatically populated from the data, and changes to the data can repli-
cate back into the data automatically. This saves you from entering a lot of tedious code to

populate the Grid.

Note In fact, | wasn’t able to find a way to manually add a row to a Grid at all. It seems that you
always have to go through the data store (i.e., add some data to the store, and the Grid will automatically
be refreshed). This makes working with a Grid very easy, and also consistent, since the data model is a
concept that is used by other widgets. However, at the same time it’s a little disconcerting at first because
it seems as if you don’t have as much control as you should. Rest assured; the data-binding capabilities in

Ext JS more than make up for it!

Grids can do even fancier things too. For example, in Figure 2-23 you can see a Grid that
allows for grouping of elements. These groups can be expanded and contracted as the user

desires.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

[~ Sponsored Projects -
Task Due Date - Estimate Rate Cost
= Ext Forms: Field Anchoring had
Integrate 2,0 Forms with 2.0 Layouts 06242007 6 hours £150.00 £900.00
Implement Anchorlayout 06/25/2007 4hours £150.00 £600.00
Add support for multiple types of anchors 06/27/2007 4hours £150.00 £500.00
Testing and debugging 06/29/2007 8 hours £0.00 £0.00
(4 Tasks) 06/29/2007 22 hours $112.50 $2,100.00
= Ext Grid: Single-level Grouping 3
Add required rendering "hooks" to GridView 07012007 6 hours £100.00 £600.00
Extend GridView and override rendering functions 07/03/2007 & hours £100.00 $500.00
Extend Store with grouping functionality 07/04/2007 4 hours £100.00 $400.00
Default C55 Styling 07/05/2007 2 hours $100.00 $200.00
Testing and debugging 07f08/2007 6 hours £100.00 £500.00
(5 Tasks) 07/06/2007 24 hours $100.00 %2,400.00
= Ext Grid: Summary Rows i |
Ext Grid plugin integration 07/01/2007 4 hours £125.00 $500.00
Summary creation during rendering phase 07022007 4hours £125.00 $500.00
Dynamic summary updates in editor grids 07/05/2007 6 hours £125.00 £750.00 [v]

Figure 2-23. An example not only of a more advanced Grid, but of the Ext JS plug-in capabilities

The Grid even supports drag-and-drop capabilities, so the user can move rows around
as they see fit (or drag them to other drag and drop—aware widgets). You can apply filtering
to a Grid’s data and make the filtering user driven. The Grid widget also has support for pag-
ing through large sets of data and for retrieving each page of data from a remote source, even
across domains!

You'll notice that I haven’t included any code example for this widget, and that’s very
much on purpose. If all those capabilities I mentioned earlier sounded a bit overwhelming,
that’s because they are! I believe that for this widget, you would be better served to have it
revealed little by little during the course of dissecting the projects. We'll see plenty of Grid
examples throughout the rest of the book, and many of these capabilities will be seen (but not
all of them). I think that will make it seem less daunting than trying to demonstrate everything
right here. Also, since a Grid is always bound to a source of data, and since we haven’t really
talked about that yet, it would be jumping the gun a bit and might wind up being confusing.

Rest assured, though, the Grid is going to be your friend by the end of this book, and you’ll
know it well!

The Other Widgets

There are a number of other widgets that sit in the main Ext namespace that I'd like to

look at as well. Some of them fit conceptually with the others previously discussed (such as
DatePicker, which logically fits with the form widgets), but others are off on their own. Some
of these are special-purpose widgets that you probably won’t use quite as much, others are
perhaps a little controversial (some people feel they shouldn’t be part of Ext JS at all), but still
others are things you'll use very often.

95

96

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

ColorPalette
xtype : colorpalette

The ColorPalette widget is a relatively simple widget that has a highly specialized focus:
allowing the user to choose a color. You've no doubt seen this in your favorite word pro-
cessing program when you want to change the color of some text. You are presented, quite
literally, with a palette of colors to choose from. Simply click one and you're good to go. The
ColorPalette widget looks like Figure 2-24.

EEEEEENENR
ENEEEEEN
EEEEEEER
ED0O00ON NN
ENO00O0OEEO

Figure 2-24. The ColorPalette widget (which looks much better on a color monitor obviously!)

The code for getting this up on the screen is pretty simple:

new Ext.ColorPalette({
renderTo : "divTarget", style : "border:1px solid #000000",
listeners : {
select : function(inPalette, inColor) {
alert(inColor);

}
1);

The select listener fires when a color is clicked, and here I'm just displaying the color.
So, for example, if you click a pure red square on the palette, the alert would say #0000,
which is the hexadecimal RGB value corresponding to pure red.

Iwon’t go into much more detail than this because, frankly, there’s not a whole lot more
to go into anyway. But more importantly, this is a specific use-case type of widget, so when
you happen to need it you can look up the remaining few details.

DatePicker
xtype : datepicker

The DatePicker you've already essentially seen: the DateField form widget. The only real dif-
ference is that the DateField widget popped up the calendar when the user clicked an icon,
and is specially designed to work within a form, whereas a DatePicker is basically the calendar
portion of the DateField but stands on its own.

DatePicker is a good choice when you want to show a calendar to users all the time, not
just when they click an icon. Figure 2-25 shows the DatePicker.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

sy N R SR

5 6 7 & 8 10 M
12 13 14 |16 16 17 18
19 20 21 22 23 24 25

26 27 28 29 [30] 3

Figure 2-25. The DatePicker widget

The disabledDates config option allows you to specify an array of dates that should be
disabled so the user can’t select them. Similarly, the disabledDays option allows you to dis-
able days of the week (0 for Sundays, 1 for Mondays, 2 for Tuesdays, and so on... so a value
of [0,2,4] would disable Sundays, Tuesdays, and Thursdays). The minDate option allows
you to specify the lowest date the user can select, which is useful if past dates are not valid
inputs. The select event is probably the primary event you'll be interested in, and it fires
when the user selects a date.

Window

xtype : window

If you've ever done any Microsoft Windows development, the concept of a Window is quite
familiar to you. Check that: if you've ever simply used any modern GUI-based operating sys-
tem, you are quite familiar with a Window!

In ExtJS, Windows are first-class citizens and have pretty much all the features a Window on
a proper OS has. They can be minimized, maximized, resized, and dragged around; they can
overlap other Windows and UI elements; they can host other widgets; and they can have anima-
tion effects when they open or are closed.

We’ve already seen at least one Window as part of the AnchorLayout example. Windows can
have layouts applied to the elements displayed within them. In a sense, you can think of
Windows as their own Viewports.

We’ll be seeing plenty of Windows throughout the rest of this book, and you’ll get to know
them very well. For now I think taking a look back at the AnchorLayout code is enough (so, like,
go ahead and flip back a few pages and check it out again if you want!).

Slider
xtype : slider

A Slider is another standard GUI widget that most of us know and love (or hate...some people
are pretty adamant that a S1ider shouldn’t ever be used). A Slider is a good choice when you
want the user to select a value within a specific range in discrete increments in a visual way. As
you can see in Figure 2-26, the Slider in Ext JS is fairly robust.

97

98 CHAPTER 2 WIDGETS AND ADVANCED EXT JS

Basic Slider
|

Snapping Slider

Vertical Slider

Slider with tip
|

Slider with custom tip
|

CSS Customized Slider
I I I I I I I I I I I
Z

Figure 2-26. A couple of variants of the Slider widget

Creating a Slider is a piece of cake, as we’ve come to expect of all Ext JS widgets. Here’s

some simple code to demonstrate it:

new Ext.Panel({
renderTo : "panelTarget", layout : "fit", width : 500,

title : "Slider",
items : [

{

xtype : "slider", value : 150, increment : 25,
minValue : 0, maxValue : 500

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

The Slider supports a couple of useful config options. First, the value option sets the
initial value of the Slider. The increment option determines in what increments the user can
change the value of the Slider. This is accomplished by simply clicking the knob, or handle,
and dragging it left or right (or up or down in the case of a vertical Slider). The minValue and
maxValue options determine the upper and lower limits of the range. While you may at some
point see a Slider that allows the user to select something that is non-numeric, underneath it
all the values are always numeric.

Note For example, in one of my previous books, Practical Dojo Projects (Apress, 2008), one of the proj-
ects was a game that used a S1ider, which the Dojo library also offers, to allow the user to select a difficulty
level. The values were easy, medium, and hard—at least, those were the values the user would see. Under-
neath the covers, though, each of those had a numeric value assigned to it, since that’s what a S1ider deals
with behind the scenes.

The user can also click somewhere on the Slider’s bar to change the value, which causes
it to jump to the nearest incremental value. The clickToChange config option, which defaults
to true, can be used to turn that off (set it to false). The vertical config option, when set
to true, makes the Slider orient up and down, as you can see in Figure 2-26 with the third
Slider. The getValue() method, likely the most important method available, is used to retrieve
the current value of the S1ider. There is likewise a setValue() method if you need to set the
value after the Slider is created. Note that, as far as I can tell, there is no way to change the
increment, maxValue, and minValue settings after creating a S1ider, so you have to know those
before you instantiate it.

ProgressBar

xtype : progress

Look, nobody likes to wait, least of all me! I want what I want, and I want it now!

Of course, life doesn’t work that way, and unfortunately, neither does software. It is often
the case that there is some task our computer needs to execute while we simply sit there and
wait. A good application will give the user some indication that things are proceeding normally
and how far along in the process things are. That’s exactly what the ProgressBar is for. Take a
look at Figure 2-27 to see what I'm talking about.

99

100 CHAPTER 2 WIDGETS AND ADVANCED EXT JS

Waorking
|

iding item

Additional Options
Rendered on page load, left-aligned text and % width: | Show

h!o".'.--.'oh 2T |

Waiting Bar
Wait for a long operation to complete (example will stop after 5 secs): | Show

Working.............

Custom Styles
Rendered like Windows XP with custom progress text element: | 5

EEEEEE T |
Status: 37% completed. ..

Figure 2-27. Some variants of the ProgressBar widget

There are a couple of ways to use this widget. Here’s an example of one:

new Ext.Panel({
renderTo : "panelTarget", layout : "fit", width : 500,
title : "ProgressBar",

items : [
{
xtype : "progress", id : "pb"
}
]
D;

Ext.getCmp("pb").wait({
interval : 100, increment : 100,
text : "Processing, please wait..."

b;

Here we're creating a ProgressBar with an id of pb. Then, we get a reference to it via
Ext.getCmp() and call its wait() method. This method allows us to use a ProgressBar in one of
its two supported modes: auto-updating (manual updating is the other mode—more on this
shortly). In this mode, the ProgressBar will simply go off and update itself over some period of
time in some given increment step. This is a good choice if the operation the user has to wait
for doesn’t have predetermined “checkpoints.” This way, users have something to look at that
indicates the process is running.

In this mode, we pass a config object to the wait() method. This object, in this case, has
three attributes. The first, interval, determines how often we want the ProgressBar to update
itself, in milliseconds. So here we’ll have ten updates per second. The increment attribute tells
the widget how many progress update segments to fill in with each interval. How many update
segments there will be depends on how wide the ProgressBar is. If the ProgressBar gets filled
up, it will reset (i.e., empty) and start filling again. Finally, the text attribute determines what
text to show within the ProgressBar as it is running.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

In manual mode, it is your responsibility to update the value of the ProgressBar. This is
the right way to go if you know, for instance, that the process that is running has five discrete
parts to it. That way, you can update the ProgressBar when each part completes, thereby giv-
ing the user a true indication of how far along the process is. In this mode you would pass
text as part of the config object passed to the ProgressBar constructor, and you would not call
the wait() method. Instead, you would make calls to the updateProgress() method to set the
value (and optionally new text) of the widget.

In general, you should use the manual mode any time you can because it has more true
meaning to the user. Use the auto-updating mode when the process being waited on is more
indeterminate.

Working with Data in Ext JS

Having all these widgets is great! It allows us to create some truly great web Uls with a
minimum of effort. We can create applications that not only look fantastic but that expose
advanced functionality to the user.

However, at the end of the day, nearly all applications have to have some data to operate
on. It's one thing to be able to create a Grid, but a Grid isn’t much good without information
to put into it. With many other libraries, data is something that is left entirely to you. Sure, the
library may give you an easy way to create a Grid, but putting data into it is your job.

With Ext JS, you can do things that way too. You can take control of every last detail and
take all responsibility for populating widgets with data. However, if you're looking for some-
thing a bit better, Ext JS is there for you.

Data binding is the name of the game! The term “data binding” refers to a technique
where something, often GUI widgets, is declaratively bound to a data source. This binding pro-
vides the capability to automatically update the widget when the underlying data changes. You
don’t have to poll the data source and update anything yourself, and you don’t even have to tie
into events and do some processing. True data binding gives you everything for free (or at least
very close to free).

In ExtJS, two key concepts underlie data binding: Records and Stores (or data stores, if
you want to be more pedantic). A Store is a client-side cache of Record objects. The data might
have originated on the client, read in from cookies or some other mechanism (like Gears,
which we’ll be discussing shortly), or it may have come from a server-side data store.

A Record is a low-level description of the data. Let’s jump right in and see some code:

var PersonRecord = Ext.data.Record.create([
{ name : "id", mapping : "id" },
{ name : "firstName", mapping : "firstName" },
{ name : "lastName", mapping : "lastName" }

D;

This code creates a type of Record. The Ext.data.Record class exposes a create() method
that creates a constructor for a given record layout. In simpler terms, it creates a new subclass
of the Record class itself. The object you pass into the create() method describes the structure
of the data. It’s a simple structure that mimics rows in a database table. In this example we
have three fields that describe a person: id, firstName, and lastName. The mapping attribute

101

102

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

maps a given field to some underlying JavaScript object. Ext JS seeks to abstract the underlying
data store from its own data implementation, so at some point you will create a Record based
on some JavaScript object. The fields in that object may not match the fields in the Record—

in name, that is—so the mapping attribute allows you to map a Record field to an object field
whose name may not match.

Note In theory, the mapping attribute is only necessary if the fields of the Record don’t match the names
of the fields in the underlying object. In practice, however, | find that my code doesn’t work if | don’t explicitly
include the mapping attribute, even when the field names are the same. I’'m not sure why this is, so you may
want to include the mapping attribute even when it isn’t necessary. | don’t see where there’s any harm in
doing so.

Once you have a Record, the next step is to create a Store for instances of that Record.
While you could have Records that you put in simple arrays, or just have individual variables
pointing to the Records, putting them in a Store is the most common approach. In addition, it
provides a host of capabilities, such as filtering, retrieval, event-based updates, and more.

To create a Store, you write code like this:

var peopleStore = new Ext.data.Store({});

Yep, that’s right: strictly speaking, that’s all you need to do! There are a couple of differ-
ent types of stores to choose from, but this gives you a plain-vanilla Store, which oftentimes
is all you need. There is also a JsonStore, which includes built-in Ajax mechanisms for load-
ing remote data in JSON form from a server. Also available is the GroupingStore, which adds
capabilities for grouping Records based on a specified field. You will also see the SimpleStore
floating around, which is an extended Store that makes loading data from JavaScript arrays a
littler easier. In this book we’ll primarily be dealing with your basic, run-of-the-mill Store, but
at the end of the day the basic concepts are still the same.

Although most of the time you don’t need to concern yourself with it, a Store will use
some implementation of the Reader abstract class. A Reader knows how to take data in some
underlying JavaScript form, be it an array or JSON string, and turn it into a Record object, as
well as some metadata that the Store needs.

Another concept that you sometimes need to think about is the DataProxy. A DataProxy
implementation (DataProxy is an abstract class) knows how to retrieve data in the underlying
JavaScript form. In conjunction with a Reader, the DataProxy provides a batch of Records to a
Store. Some available DataProxy implementations include the ScriptTagProxy, which allows
you to read JSON-P data from a remote URL using dynamic <script> tag insertion; HttpProxy,
which supports Ajax requests to retrieve data; and DataProxy, which accepts data during its
construction and returns it when the Reader calls the proxy’s load() method (which is the
method always called by the Reader implementation to request data from the proxy).

Figure 2-28 illustrates the relationship between these components.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 103

Your application code (and/or data-bound widgets)

DataStore

Store
implementation

Records retrieved
from Reader
| = ———

Reads/writes
objects from/to
DataProxy,
produces records

Record(s)

Reader

Reads/writes
objects from/to
your data

DataProxy

Your data (local in Javascript or remote)

Figure 2-28. Diagram of the components of the Ext JS data system

In this book, we won’t need to concern ourselves with DataProxys or Readers; we’ll only
focus on Records and Stores.

We saw how to create a type of Record, and we saw how to create a basic Store. So how do
we load data into the Store? There are several ways; here’s a simple one:

var people = [
{ firstName : "James", lastName : "Cameron" },
{ firstName : "Ron", lastName : "Howard" },
{ firstName : "Uwe", lastName : "Bole" }

15

104

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

for (var i = 0; i < people.length; i++) {
peopleStore.add(
new PersonRecord({
id : new Date().getTime(),
firstName : people[i].firstName, lastName : people[i].lastName
)
)5
}

Here we have a basic JavaScript array of objects; each object contains a firstName and
a lastName field. So, we simply iterate over this array and for each object we call the add()
method of the Store. Passed to this method is a new instance of PersonRecord. The constructor
to the PersonRecord accepts an object whose fields are mapped to the fields of the newly cre-
ated Record based on the mapping attribute specified in the Record specification. The id field is
autogenerated using the millisecond value of a Date object. That’s all it takes! From this point
on, we have a Store with three Records in it; each Record has the data taken from the array.

The next order of business is to take this populated Store and bind it to a widget. That’s
even simpler than you might think, as you can see for yourself:

new Ext.grid.GridPanel({
store : peopleStore, renderTo : "panelTarget", width : 500,
height : 150, autoExpandColumn : "lastName", title : "List of people",
columns: [
{ header : "ID", width : 120, dataIndex : "id"},
{ header : "First Name", width : 150, dataIndex : "firstName" },
{ id : "lastName", header : "Last Name", dataIndex : "lastName" }
]
}s

It literally takes only two things: the store attribute points to the data Store to use, and the
elements in the columns array include a dataIndex attribute to specify which field in the Records
returned by the Store each column maps to. Just like that, our Grid shows the Records in the
Store!

Now, the neat thing is that if we modify a record in the Store, the Grid will automatically
be updated! For example:

var record = store.getAt(0);
record.set("firstName", “Mike”);

This will retrieve the first Record in the store, the one with the firstName “James” and
the lastName “Cameron”, and changes the firstName to “Mike” (thereby changing a famous
movie director to a not-quite-as-famous baseball player?). Best of all, that change will instantly
appear in the Grid, without our having to write any code or do anything at all. That, my friend,
is the power of data binding!

Many Ext JS widgets include data-binding capabilities, but not all. Some that do include
the ComboBox, DataView (which we’ll look at next), and the Grid.

2 James Cameron is the famous director of such Hollywood hits as Aliens, Titanic, The Abyss, and Ter-
minator 2. Mike Cameron on the other hand is a Major League Baseball player, an outfielder, who has
played for such teams as the Chicago White Sox, Cincinnati Reds, and New York Mets.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

The Template and XTemplate Classes

Templating used to be the purview of “grown-up” languages like Java, but nowadays, in the
world of “professional” JavaScript, templating has found its way to the client as well.

Templating involves inserting dynamic data into static text to produce a final fragment of
text, typically HTML for web development. Ext JS provides a robust templating mechanism via
the Template and XTemplate classes.

The difference between the two is that the Template class provides a relatively bare-
bones mechanism, whereas XTemplate provides more advanced features, such as conditional
processing, comparison operators, subtemplates, basic math function support, and special
built-in template variables. Let’s look at an example of both, shown in Listing 2-2.

Listing 2-2. The Madlib Example

<html>
<head>
<title>Chapter 2 Template/XTemplate Example</title>

<script type="text/javascript" src="ext/adapter/ext/ext-base.js"></script>
<script type="text/javascript" src="ext/ext-all.js"></script>

<script>
function doMadlib1() {

var t = new Ext.Template(
"Dear {personName},

",
"It is with great regret that I inform you that your ",
"{color} {animalType} {petName} ",
"has met with an unfortunate accident that caused their ",
"{bodyPart} to be turned into a stalk of celery while {animalsName} ",
"was at {place}.

",
"Err, sorry 'bout that!

",
"Sincerely,
",
"Mom"
)5
var vals = Ext.query("input[class=mlf1]");
t.append("MadlibiResults", {
personName : vals[0].value,
color : vals[1].value,
animalType : vals[2].value,
petName : vals[3].value,
bodyPart : vals[4].value,
place : vals[5].value

1;

105

106 CHAPTER 2 WIDGETS AND ADVANCED EXT JS

}

function doMadlib2() {

var t = new Ext.XTemplate(
"The robot overlords from planet {planetName} have declared that as ",
"of this time, no human may acquire the following items:
",
"<tpl for=\"bannedItems\">",
"{itemName} - Reason: {noReason}",
"</tpl>",
""
)5
var vals = Ext.query("input[class=mlf2]");
Ext.getDom("Madlib2Results").innerHTML = t.applyTemplate(
{
planetName : vals[0].value,
bannedItems : [
{ itemName : vals[1].value, noReason : vals[2].value },
{ itemName : vals[3].value, noReason : vals[4].value }
]
}
)5

}

</script>
</head>
<body>

<h1>Template/XTemplate-based Madlibs</h1>
<table border="0" cellpadding="2" cellspacing="2">
<tr>
<td>
<form name="MadlibiForm">

A person's name: <input class="mlf1" type="text">

A color: <input class="mlf1" type="text">

A type of animal: <input class="mlf1" type="text">

A pet's name: <input class="mlf1" type="text">

A body part: <input class="mlf1" type="text">

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

A place: <input class="mlf1" type="text">

<input type="button" value="Create Madlib" onClick="doMadlib1();">

</form>
</td>
<td>
<div id="MadlibiResults"
style="border:1px solid #000000;width:400px;height:240px;"></div>
</td>
</tr>
<tr>
<td colspan="2">

<hr>

</td>
</tr>
<tr>
<td>
<form name="Madlib2Form">
A planet name: <input class="mlf2" type="text">

An item: <input class="mlf2" type="text">

A reason to not allow it: <input class="mlf2" type="text">

Another item: <input class="mlf2" type="text">

Another reason to not allow it: <input class="mlf2" type="text">

<input type="button" value="Create Madlib" onClick="doMadlib2();">

</form>
</td>
<td>
<div id="Madlib2Results"
style="border:1px solid #000000;width:400px;height:240px;"></div>
</td>
</tr>
</table>

</body>

</html>

Do you remember those things called Mad Libs that you used to do as a kid? You are asked
for anoun, a verb, the name of an animal, a color, whatever, and they get plugged into some
text and it generates a mostly nonsensical little story? That’s precisely what this example is.

107

108

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

If you look at the <body> section, you'll see some simple markup consisting of two forms
laid out via a <table> (I know, it’s evil to use tables for layout, but you know, if it works, why
not?). Note that the fields in the forms don’t have names associated with them. While it
doesn’t have anything to do with Template or XTemplate, there’s a neat function in ExtJS that
we'll see, the query () method, that allows us to deal with this situation.

Note that each form has a button that when clicked calls either doMadlib1() or
doMadlib2(), depending on which form it was. For example, the button on the first form calls
doMadlib1(), which is:

var t = new Ext.Template(
"Dear {personName},

",
"It is with great regret that I inform you that your ",
"{color} {animalType} {petName} ",
"has met with an unfortunate accident that caused their ",
"{bodyPart} to be turned into a stalk of celery while {animalsName} ",
"was at {place}.

",
"Err, sorry 'bout that!

",
"Sincerely,
",
"“Mom"
)s
var vals = Ext.query("input[class=mlf1]");
t.overwrite("MadlibiResults", {
personName : vals[0].value,
color : vals[1].value,
animalType : vals[2].value,
petName : vals[3].value,
bodyPart : vals[4].value,
place : vals[5].value

1);

A new Ext.Template object is instantiated, and a variable-length argument list (containing
as many elements as you like) is passed to its constructor. The arguments are concatenated
into one giant string, and that’s our template text. You'll note that within the text are tokens in
the form {xxx}. They will be replaced dynamically with the values from the form.

Now, how do we get those values? Again, this isn’t related to templating, but the
Ext.query() method is the answer. We use a simple CSS selector query that says to give us
back all the <input> tags on the page that have a class attribute value of m1f1. If you look back
at the markup, you'll see that all the <input> tags in the first form have such a class value,
whereas all the <input> tags in the second form have a class or m1f2. So, the net result is that
vals now holds a reference to an array, where each element of the array is one of the <input>
tags in the first form.

So, now that we have a Template and we have the values from the form, it’s time to merge
them. There are a couple of methods you could execute on the Template object at this point.
The apply() method would insert the data, which we pass to it as an object that presumably
has fields matching the tokens in the template text. This would return an HTML fragment
that we could do whatever we want with. We could also use the append() method, which
works similarly but will append the fragment to the specified DOM node. Here, I've used the
overwrite() method. This will overwrite the specified DOM node with the fragment.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

One important aspect of the Template class is that if you are going to be reusing the
Template often, you can call the compile() method on it. This will optimize its performance.

Now, the second Mad Lib form uses the doMadlib2 () function, which uses an XTemplate
instead of Template. That code looks like this:

var t = new Ext.XTemplate(
"The robot overlords from planet {planetName} have declared that as ",
"of this time, no human may acquire the following items:
",
"<tpl for=\"bannedItems\">",
"{itemName} - Reason: {noReason}</1i>",
"</tpl>",
""
)5
var vals = Ext.query("input[class=mlf2]");
Ext.getDom("Madlib2Results").innerHTML = t.applyTemplate(
{
planetName : vals[0].value,
bannedItems : [
{ itemName : vals[1].value, noReason : vals[2].value },
{ itemName : vals[3].value, noReason : vals[4].value }
]
}
)

As you can see, it largely works the same as Template. However, there are a couple
of important differences. First, in this case, we have a couple of objects contained in the
bannedItems array in the data object. To display these objects, we need to iterate over this
array. Within the template text you'll notice the <tpl for> tag. This is simply a for looping
construct. It says to iterate over the elements in the bannedItems array and process the portion
of the template between <tpl for> and </tpl> however many times there are elements in that
array. The purpose is to generate an unordered list (). The other difference is that this time
I decided to use the applyTemplate() method. This is an alias for apply(), and as such it does
the same thing: it gives us an HTML fragment. So, I directly set the innerHTML attribute of the
target <div> to that fragment.

Note A fairly robust set of processing directives is available with XTemplate, and I'll introduce them here
and there as required in various projects. Check out the Ext JS docs for full details.

Drag and Drop

The drag-and-drop metaphor is a common UT approach for various tasks, such as selecting
items from a list. It’s a more visual approach to the problem and is therefore popular in the
GUI world.

109

110 CHAPTER 2 WIDGETS AND ADVANCED EXT JS

Modern RIAs are expected to expose this sort of “advanced” Ul metaphor, and any
good library these days will provide the basics for you at a minimum. Ext JS is definitely no
exception.

Take a peek at Listing 2-3. This is a full, working example of drag and drop.

Listing 2-3. An Example of Drag and Drop with Ext JS

<html>
<head>
<title>Chapter 2 Drag and Drop Example</title>
<style>

/* Style for a drop zone container. */
.cssDDContainer {

border : 1px solid #000000;

width : 200px;

height : 422px;

background-color : #dodoff;

overflow : auto;

margin : 2px;

}

/* Style for a draggable item. */
.cssDDItem {
font-size : 8pt;
font-weight : bold;
font-family : arial;
margin : 2px;
border : 1px solid #000000;
background-color : #ffdodo;
padding : 1px;
CULSOT : move;
z-index : 9999;
}

/* Style for when an item is hovering over a drop target. */
.cssDDHover {
background-color: #coffco;

}

</style>

<script type="text/javascript" src="ext/adapter/ext/ext-base.js"></script>
<script type="text/javascript" src="ext/ext-all.js"></script>

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

<script>

var presidents = ["George Washington", "John Adams", "Thomas Jefferson",
"James Madison", "James Monroe", "John Quincy Adams", "Andrew Jackson",
"Martin Van Buren", "William Harrison", "John Tyler", "James Polk",
"Zachary Taylor", "Millard Fillmore", "Franklin Pierce",
"James Buchanan", "Abraham Lincoln", "Andrew Johnson",
"Ulysses S. Grant", "Rutherford B. Hayes", "James Garfield",
"Chester A. Arthur", "Grover Cleveland", "Benjamin Harrison",
"Grover Cleveland", "William McKinley", "Theodore Roosevelt",
"William Howard Taft", "Woodrow Wilson", "Warren Harding",
"Calvin Coolidge", "Herbert Hoover", "Franklin Delano Roosevelt",
"Harry S. Truman", "Dwight D. Eisenhower", "John F. Kennedy",
"Lyndon B. Johnson", "Richard Milhous Nixon", "Gerald Ford",
"Jimmy Carter", "Ronald Reagan", "CGeorge Bush", "Bill Clinton",
"George W. Bush"

1;

// Override drag-and-drop events as necessary.
Ext.override(Ext.dd.DDProxy, {
// Event when the user starts dragging an item.
startDrag : function(inX, inY) {
// Show contents of item when dragging so it looks nicer.
var item = Ext.get(this.getDragtl());
var el = Ext.get(this.getEl());
item.update(el.dom.innerHTML);
item.addClass(el.dom.className + " dd-proxy");
b
// Event when an item hovers over a drop target.
onDragOver : function(inElement, inTargetID) {
// Only do something if item is over the drop target.
if (inTargetID == "destinationContainer") {
// Record this as the drop target for when dragging stops.
var dropTarget = Ext.get(inTargetID);
this.lastTarget = dropTarget;
// Style the drop target.
dropTarget.addClass("cssDDHover");
}
b
// Event when an item leaves a drop target.
onDragOut : function(inElement, inTargetID) {
// Clear the recorded drop target.
this.lastTarget = null;
if (inTargetID == "destinationContainer") {
// If leaving the destination container, remove the hover style.
Ext.get(inTargetID).removeClass("cssDDHover");
}

m

112 CHAPTER 2 WIDGETS AND ADVANCED EXT JS

b

// Event when the user stops dragging an item.
endDrag : function() {
// Only do something if the item is over a drop target.
if (this.lastTarget) {
// Append the item to the drop target and remove the style.
var item = Ext.get(this.getEl());
Ext.get(this.lastTarget).appendChild(item);
this.lastTarget.removeClass("cssDDHover");
this.lastTarget = null;
}
}
1;

/**

* The appInit() function fires when the page loads. It creates all the
* draggable items and defines the drop zones.

*/

function appInit() {

// Create items that can be dragged and insert them into the DOM.
var presidentsContainer = Ext.getDom("sourceContainer");
for (var i = 0; i < presidents.length; i++) {
var newDiv = document.createElement("div");
newDiv.className = '"cssDDItem";
newDiv.id = "president" + i;
newDiv.innerHTML = presidents[i];
presidentsContainer.appendChild(newDiv);
var divElem = Ext.getDom("president" + i);
divElem.dd = new Ext.dd.DDProxy("president™)

}

// Register drop zone.
var dz2 = new Ext.dd.DropZone("destinationContainer";

} /7 End appInit().
Ext.onReady(appInit);
</script>
</head>

<body>

CHAPTER 2 WIDGETS AND ADVANCED EXT JS 113

<!-- List of available presidents. -->
<div style="position:absolute;left:2px;top:2px;">
<center><h2>U.S. Presidents</h2></center>
<div class="cssDDContainer" id="sourceContainer">
</div>

<!-- List of presidents the user likes. -->

<div style="position:absolute;left:230px;top:2px;">
<center><h2>The ones8nbsp;I like</h2></center>

<div class="cssDDContainer" id="destinationContainer">

</div>

</body>

</html>

Even though this isn’t going to win the award for great-looking applications, let’s have a
look anyway, in Figure 2-29.

) Chapter 2 Drag And Drop Example - Mozilla Firefox

File Edit View History Bookmarks Tools Help i
E |_] Chapter 2 Drag And Drop Example | J] -
U.S. Presidents The ones I like
George Washington ,:
[John Adams

Thomas Jefferson

[James Madison

[James Monroe

John Quincy Adams

[Andrew Jackson

Martin Van Buren

William Harrison

John Tyler

[James Polk
[Zachary Taylor

Millard Fillmore

Franklin Pierce

[James Buchanan

[Abraham Lincoln

(Andrew Johnson

Ulysses 5. Grant
Rutherford B. Hayes
[James Garfield
Chester A. Arthur M

S @] 17.9MB/27MB || 488MB/488MB & B vslow 07065 &

Figure 2-29. The drag-and-drop example

114

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

Let’s not quibble over the fact that we're using styles and JavaScript in the same file as
the markup, a practice generally frowned on these days. Sometimes it’s nice to have a single
HTML page that is all inclusive, and for a basic example like this I think it’s fine.

Anyway... the way this works is pretty simple. First, we have two <div>s that are abso-
lutely positioned. Inside each is another <div>. The inner <div>s will contain other <div>s,
each representing a US president. All of them start out in the <div> on the left with the ID
sourceContainer. Users can drag the ones they want over to the <div> on the right with the
ID destinationContainer to indicate which presidents they like.

You create the <div>s for each president via code in the appInit() function:

for (var i = 0; i < presidents.length; i++) {
var newDiv = document.createElement("div");
newDiv.className = "cssDDItem";
newDiv.id = "president" + i;
newDiv.innerHTML = presidents[i];
presidentsContainer.appendChild(newDiv);
var divElem = Ext.getDom("president" + i);
divElem.dd = new Ext.dd.DDProxy("president" + i)

This is just some basic DOM manipulation code to create the <div>s and insert them as
children of sourceContainer using the names of the presidents found in the presidents array.
Note that each <div> has a class specified as cssDDItem (using the JavaScript className attri-
bute name for the usual class attribute as it would appear on a <div> tag itself). This style is
found in the <style> section and sets up such things as the cursor style that will be used for
this element.

These are just plain old <div>s at this point, of course. The part that makes them drag-
gable via Ext]S is the following line:

divElem.dd = new Ext.dd.DDProxy("president" + i)

An Ext.dd.DDProxy is an object that conceptually mimics the element you tell it to (the
argument passed to it, which you've noticed works out at runtime to be the same value as that
set for the id of the created <div>). More specifically, it creates an empty, bordered <div> that
knows how to follow the mouse as you move it around after clicking on the element that it
proxies (one of our president <div>s in this case). This is much more lightweight than trying to
drag around the actual element.

The other task performed in appInit() is to register a drop target so that Ext JS knows
where a draggable element can be dropped. This snippet does that:

var dz2 = new Ext.dd.DropZone("destinationContainer");

Once again we instantiate a class, Ext.dd.DropZone this time, that basically wraps a DOM
node, destinationContainer here. Ext JS now knows that this element should react to drag-
gable items dropped onto it.

But how exactly does it react to anything? The answer lies in the code in the
Ext.override() call. If you removed that statement and ran the example, you'd find that the
president items can be dragged, but you’d also see that dropping doesn’t work. That’s where
the Ext.override() statement comes into play.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

Ext.override() in general allows you to add a list of functions to the prototype of an exist-
ing class, overwriting any existing methods with the same name. One such object floating
around is that Ext.dd.DDProxy class. This class contains a number of event handlers, and we
need to override some of those to make everything work.

Four events in particular are of interest to us: startDrag, which fires when you click a
draggable item and start dragging it around; onDragOver, which fires whenever a dragged item
is hovering over a drop target; onDragOut, which is the opposite of onDragOver and thus fires
when a draggable item leaves a drop target; and endDrag, which fires when the item is dropped.

First let’s talk about the code that executes in response to the startDrag event. If you run
the code with the Ext.override() statement removed, you'll notice that when you drag an
item, all you see is a border being dragged—you don’t see the contents of the original <div>.
This may be fine in some cases, but wouldn'’t it be a little better if we saw what we were actu-
ally dragging? I think so! To accomplish this, we write the following code in the startDrag
event handler:

var item = Ext.get(this.getDragkl());

var el = Ext.get(this.getEl());
item.update(el.dom.innerHTML);
item.addClass(el.dom.className + " dd-proxy");

The getDragkl() method returns a reference to the linked element (the <div> created
by the proxy, in other words). Remember that this function is attached to the proxy, so the
keyword this references the proxy itself. The getE1() method, on the other hand, returns a ref-
erence to the actual element being dragged. Then we set the contents of the empty proxy <div>
using its update() method to the innerHTML of the real element. This allows us to see what
we're dragging. Then we add the dd-proxy style class (supplied by Ext JS itself) to the object so
it’s styled properly. The addClass() method is good for this purpose (and is a handy method to
remember since it is available on many objects when working with ExtJS).

So now that things look like we want, how do make it work like we want? It begins with the
onDragOver event handler. When this event fires we have a relatively simple task: determine
whether or not the dragged item is hovering over a valid drop target. To do this, we examine
the ID of the target that is passed in to this event handler. If it matches the ID of our drop tar-
get, destinationContainer in this case, we get a reference to the Element underlying the drop
target and store it in the lastTarget attribute of the proxy. We also add the cssDDHover class to
it so the background color changes to indicate the item can be dropped there.

The next event to handle is endDrag. When the endDrag event fires, the code examines
the lastTarget attribute to see if it’s null. If it’s not, that means the item is hovering over
the drop target. In that case, we get a reference to the original <div>, and we then append it
to the Element underlying the drop target. In other words, we move the DOM node from the
sourceContainer <div> to the destinationContainer <div>. Finally, we remove the cssDDHover
class from the drop target and make sure we clear the lastTarget attribute on the proxy.

The final event handler handles the onDragOut event. We have little to do here: set
lastTarget to null so we know the item isn’t hovering over a target, and if the target passed
into the event handler is the destinationContainer, we also remove the cssDDHover class
from it.

To see it all in action, take a look at Figure 2-30. In this screenshot you can see that
I've dragged a few presidents over already and am in the process of dragging another. The

115

116 CHAPTER 2 WIDGETS AND ADVANCED EXT JS

destinationContainer is highlighted (you won'’t be able to see that too well on the printed
page, although you may be able to discern a subtle difference in shades of gray).

¥ Chapter 2 Drag And Drop Example - Mozilla Firefox

File Edit View History Bookmarks Tools Help i
E |_] Chapter 2 Drag And Drop Example |] =
U.S. Presidents The ones I like
||Grover Cleveland b] George Washington
Benjamin Harrison John Adams
(Grover Cleveland [Abraham Lincoln
(William McKinley John F. Ki y

Theodore Roosevelt
William Howard Taft
VWoodrow Wilson

Warren Harding

(Calvin Coolidge

Herbert Hoover
|[Frankiin Delano Rooseveit
||Harry 5. Truman

| |[owight D. Eisenhower
||Lyndon B. Johnson

Richard Milhous Nixon

(Gerald Ford

Clin‘lq%,

Jimmy Carter
Ronald Reagan
||George Bush
|[Bilt Clinton
||George W. Bush

3|

S @ 17.9MB/27MB || 488MB/488MB & B vslow 07065 &

Figure 2-30. The drag-and-drop example in action

Asyou can see, implementing drag and drop with Ext JS is a piece of cake. You can build
some powerful UIs with these simple capabilities, and they’ll save you a ton of work along the
way!

The “State” of Things

Another neat capability that most Ext JS widgets have is the ability to save their own state. For
example, take this snippet of code:

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

var w = new Ext.Window({
resizable : true, layout : "fit", title : "State-Saving Window",
width : 200, height : 200,
items: [
{ html : "Resize me, move me, reload the page!" }
]
}s

w.show();

As you know by now, that code creates a Window that is 200 pixels wide and 200 pixels tall.
It has a single default Panel in its content fitted to the entire size of the Window.

By default, the Window will appear in the center of the page. Also by default, the Window can
be dragged around and resized. What happens, however, when you reload the page that code
is a part of? The answer is that the Window will again be 200 pixels wide by 200 pixels tall and
will appear in the center of the page.

Wouldn't it be nice if wherever users dragged the Window to, and however big or small they
resized the Window to, it appeared that way when the page is reloaded? This is a typical function
of most GUI applications, and since Ext JS is supposed to let us build rich Uls in a browser,
shouldn’t that be possible too?

Well, you may be thinking in that clever little brain of yours, “I can just hook up some
event handlers to the resize and move events of the Window, use the getPosition() and
getSize() methods to get that information, and then store it somewhere, maybe a cookie.
Then, any time I create that Window I'll first grab that cookie, get the values from it, and set the
Window’s initial location and size dynamically. Problem solved!” Indeed, you could likely pull
that off; it’s not all that tough.

But you don’t have to do all that work! Ext JS basically does it for you.

Look at this version of the previous code, with some slight additions:

Ext.state.Manager.setProvider(new Ext.state.CookieProvider());
var w = new Ext.Window({
resizable : true, layout : "fit", title : "State-Saving Window",
width : 200, height : 200, stateId : "windowl", stateful : true,
items: [
{ html : "Resize me, move me, reload the page!" }
]
bs

w.show();

The first new line deals with something called the Ext.state.Manager. This is a singleton
object that all Components consult with when they are created. If the Manager tells the Component
that it has some state information about it stored, it hands it to the Component, which then uses
it to do things like restore a Window’s size and position.

You make a given Component state aware by adding the stateId and stateful config
options to it. In fact, only the stateful option is necessary because the stateId defaults to the
Component’s id, which itself defaults to an automatically assigned value if you haven’t specified
it. That’s all it takes! From then on, the Component will work in tandem with the Manager to store
and restore state.

117

118

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

In order for the Manager to do its work, it needs to know how to store state information.
In other words, it needs an implementation of the Ext.state.Provider interface. Ext JS pro-
vides the CookieProvider implementation that stores the state information in cookies. You
can implement your own if you choose to do something more robust, such as making Ajax
requests to a server to save and restore the information from a database.

State-saving for widgets is an extremely simple-to-use mechanism that provides a com-
monly expected feature of rich Uls. Say thank-you to the Ext JS developers for this!

For Your Date in the Boardroom: Ext JS Charting

Along time ago in a web application far, far away, charting was, shall we say, a bit of a chal-
lenge... maybe not so much a challenge as a hassle! To generate a chart, say a bar chart, you
had to call on the server to generate some sort of image file, such as a JPEG, in real time. The
image was based on some data that you either passed from the client or that already resided
on the server. You then returned the image to the browser to be displayed. It wasn'’t perhaps
the most difficult challenge in all of application development, but there were quite a few steps
involved that had to all work together to get the chart in front of your users’ eyes.

In the world of RIAs, where we endeavor to make the clients, rather than our poor serv-
ers, work their little tails off, we want those charts generated on the client. At this point in time
there are a number of ways you can do that. One that has gained a lot of popularity is to use
the nearly ubiquitous Flash plug-in. Since we’re talking about Ext JS here, we don’t want to
deal with Flash directly, and Ext JS gives us just the abstraction layer we want.

The Ext.chart namespace is where we find this graphical goodness. Thanks to Ext JS,
there’s no heavy lifting for us to do. In fact, the charting capabilities Ext JS provides are built
right on top of the data capabilities we’ve already seen, as well as the deeply object-oriented
nature of the library.

For example, let’s say we want to show a line chart to relay the relative awesomeness of
the five seasons of my all-time favorite sci-fi series, Babylon 5. To do so, all we need to do is
this:

<html>
<head>

<link rel="stylesheet" type="text/css" href="ext/resources/css/ext-all.css">

<script type="text/javascript" src="ext/adapter/ext/ext-base.js"></script>

<script type="text/javascript" src="ext/ext-all.js"></script>

<script>

Ext.onReady(function() {
var B5Store = new Ext.data.JsonStore({
fields : ["season", "awesomeness"], data : [
{ season : "Signs And Portents", awesomeness : 10 },

season : "The Coming Of Shadows", awesomeness : 20 },
season : "Point Of No Return", awesomeness : 40 },
season : "No Surrender, No Retreat", awesomeness : 70 },
season : "The Wheel Of Fire", awesomeness : 15 }

e e)

1);

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

new Ext.Panel({
title : "The 'awesomeness' Of The Five Seasons Of Babylon 5 (line)",
renderTo : "divLineChart", width : 700, height : 400, layout : "fit",
items : [

{ xtype : "linechart", store : B5Store, xField : "season",
yField : "awesomeness" }

]

}s

Ds

</script>
</head>
<body><div id="divLineChart" style="padding:10px;"></div></body>
</html>

Figure 2-31 shows the result.

The 'awesomeness' Of The Five Seasons Of Babylon 5 (line)

80

&0 -

50 T

10

Signs And Portents The Coming Of Shadows Point Of Mo Return Mo Surrender, Mo Retreat The Wheel Of Fire

Figure 2-31. An example of a line chart

The Ext.data.JsonStore isused to read in some data, in JSON form. This produces
B5Store, which we can bind to many different Ext JS components, such as Grids. We can also
bind it to an Ext.chart.LineChart, which is nearly all we have to do to produce a line chart!
We also need to tell the LineChart what fields in the data correspond to the x-axis (the seasons
of the show) and the y-axis (the awesomeness of each). Ext JS takes care of all the messy Flash
details. In this particular code, I've wrapped the LineChart in a Panel, just to make it look a
little prettier (I gave it a title bar), and it is rendered to the divLineChart <div>.

119

120

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

Note All of these charts automatically have tooltips attached to the data points so that hovering over
a dot on the line chart shows the value of that element, and hovering over a bar in the bar chart shows the
value for the associated element. You can see an example of this in Figure 2-33 in a moment.

Now, let’s say we determine a line chart isn’t the best way to show this and decide instead
that a column chart would be better. All we need to do is change the xtype to columnchart and
we're off to the races, as you can see in Figure 2-32.

;Tll:'awcsnm"ofﬂl:ﬁve Of Babylon 5 (cobh 1)

80 1

70 -
80 +

50

a0+

30+

a0 - !

10 :

L

Signs And Portents The Coming Of Shadows Point Of Mo Return Mo Surrender, Mo Retreat The Wheel Of Fire

Figure 2-32. An example of a column chart

There is also a barchart xtype, but it’s similar enough to columnchart that I have not dem-
onstrated it here.

Now, let’s say, hypothetically, that we're doing a fancy boardroom presentation for some
television executives to convince them to let JMS® produce another season of Babylon 5. Fur-
ther, we decide that a pie chart would probably impress the bean counters more. Have no
fear; that’s easy too—although it’s not jus? an xtype change, but a whole lot more. We need to
change the entire configuration of the component in the items array of the Panel to this:

{ xtype : "piechart", store : B5Store, categoryField : "season",
dataField : "awesomeness" }

3 JMS stands for Joe Michael Straczynski, creator of Babylon 5. This series had a very interesting and
tumultuous existence: it was planned as a five-year story arc, but was going to be cancelled after the
fourth season. JMS rewrote a lot of the story to finish up the main arc in season four, but season five
was then green-lighted, requiring some quick on-the-fly storytelling! As a related aside, while season
five is generally considered not as strong as most others (as you can see in the charts!) it had a couple
of top-notch episodes, most notably “The Fall of Centauri Prime,” which was a very sad episode for
one particular character!

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

Here, we have to tell the pie chart what field in the data corresponds to the categories—
that is, the slices of the pie—and what field represents the values of each slice. Ext]S, in
concert with Flash, then takes care of rendering the pie chart you see in Figure 2-33, including
sizing each slice according to the relative value of each in the data.

The 'awesomeness' Of The Five Seasons Of Babylon 5 (pie)

The Coming OFf Shadows
20

12.904

Figure 2-33. An example of a pie chart

As you can see, generating charts with Ext JS is a piece of cake and builds directly on top
of the data mechanism, making it an extremely powerful and flexible solution. The downside
is that Flash is required, but with something like 99 percent of all desktops with Flash already
installed, that’s not such a big deal.*

Note One thing that doesn’t seem possible with the pie chart is to show the category names on the
slices. The tooltips are present, but that’s not ideal. This is a capability I'd hope to see added to Ext JS in
short order (and it possibly could be there in the currently released version).

You can see all of the charts described here by running the charts.htm file included in the
download bundle for this book. If you load this file locally—that is, if you open your browser
and simply open the file—you may see errors indicating that a connection between JavaScript
and YUI Charts could not be established. This is a result of Adobe Flask blocking local content
from communicating with remote servers, which the charting capabilities seem to require. To
deal with this, you will need to tell the Flash plug-in that this communication is allowed.

4 The 99 percent figure is as of the writing of this chapter. Adobe keeps current statistics on Flash’s pen-
etration on this page: http://www.adobe.com/products/player census/flashplayer/

121

122

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

To do so, visit http://www.macromedia.com/support/documentation/en/flashplayer/help/
settings_managero4.html. Select the Global Security Setting tab and either specify the location
of charts.htmunder “Always trust files in these locations,” or select the Always Allow radio
button. If you now reload charts.htm, you should see the glorious charts appear! You should
have to perform these steps only once.

Plug-ins

By this point in this book I expect that you think Ext JS is pretty neat! It clearly has lots of
functionality and capabilities, but does it do everything you need? Probably not. Fortunately,
the Ext JS creators have thought ahead and have provided a plug-in system for you to use to
extend the library.

In fact, there is a pretty robust ecosystem of Ext JS plug-ins available already. If you cruise
on over to Ext JS web site—the page http://extjs.com/learn/Ext_Extensions in particular—
you’ll be able to see a number of available plug-ins.

For example, there is the Ext.ux.PowerWizard, shown in Figure 2-34. It allows you to create
a nice wizard interface with no trouble at all.

Wizard Window ®

Cancel Prev Next Submit

Are you available to work without restriction?

O ves
O Mo

Figure 2-34. The Ext.ux.PowerWizard plug-in

The Ext.ux.MultiSelect is another fine example, as you can see in Figure 2-35. This plug-
in allows you to choose from a number of options and “flip” them over into another box where
you can reorder them.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

Available Selected
One Hundred Twenty Three [Clear
One Ten
Two E‘

Three

Four

Five

Six

Seven

Eight M

Figure 2-35. The Ext.ux.MultiSelect plug-in

All the extensions aren’t even necessarily Ul widgets, although most of them tend to be.

If you want to write your own widget, all it takes is creating a class that exposes an init()
method. Usually, a plug-in extends the Observable class and extends an existing Component.
When that Component is instantiated, you can specify the plug-in by adding it to the plugins
config attribute, which is an array of plug-ins. Each plug-in’s init() method will be called
and will be passed the instance of the Component. The plug-in can do whatever it wishes at that
point, including hooking into the various events the Component exposes, thereby allowing you
to extend what the original Component does.

Note Writing custom plug-ins won’t be demonstrated in this book, so if it is a topic you would like to
know more about, the Ext JS Learning Center (on the Ext JS web site) provides more details for you to
explore.

These Are the Gears That Power the Tubes!

Gears (http://gears.google.com) is, in a nutshell, a browser extension that provides function-
ality in three distinct groups: LocalServer, Database, and WorkerPool. Gears is available for
most major browsers and operating systems.

Note Although Gears is still technically in beta, | think we all recognize Google’s MO here: release some-
thing solid as beta; call it that for a good, long time; and then finally “flip the switch” to make it final years
later (although as | write this Gmail is still beta, and it's more than a few years old!). Then make it gold years
later, even though it’s pretty much been that for a while. | suppose this is a lot better than the Microsoft “just
release it and we’ll fix it up later” approach.

123

124

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

LocalServer

The LocalServer component of Gears enables you to cache and serve the resources that go
into rendering a web page from a local cache. This may not sound too exciting at first. In fact,
your initial thought may be, “Browsers already have caches, so what’s the big deal?”

The big deal, my friend, is that this cache is under your programmatic control. You can tell
it what resources to cache and serve, and when. In other words, you can take an application
“offline,” assuming all its resources are in the cache, meaning a connection to the server is no
longer required.

There is obvious potential in terms of performance too, although interestingly, that’s a
secondary concern at best. It’s that ability to go offline and still have an application work that
LocalServer is there to address.

The applications in this book won’t be using LocalServer, so I won'’t go into anymore
detail on it here. This is, after all, a book on ExtJS and not Gears! Go to http://gears.google.
com to learn more if LocalServer is something that interests you.

WorkerPool

The WorkerPool component is another piece of Gears that is really very cool. You are no doubt
familiar with how easy it is—thanks to the single-threaded nature of JavaScript—to lock up the
browser with a while loop that never breaks or make similar programming gaffs. You are also
no doubt aware that JavaScript doesn’t provide threads as a language like Java does. JavaScript
has timers and time-outs, which at least approximate threads, and we’ve seen how Ext JS
abstracts this a bit more and makes it a little nicer for us, but a single thread of execution is still
ultimately all there is in the interpreter at any given time; timers and time-outs are more an
illusion than anything else.

With WorkerPool, Google has given us about as close to real threading as possible in Java-
Script. It’s especially useful if you have calculation-intensive operations to perform or input/
output (I/0) operations in the background to run. There is at least one significant limitation to
be aware of, however: threads in a WorkerPool, which are not surprisingly called Workers, can’t
access the DOM. This limits the Workers’ usefulness quite a bit, but even with that limitation
there’s still plenty you can do with them.

WorkerPool, like LocalServer, isn’t a part of Gears we’ll get much use from, so we’ll cut this
discussion short and jump into the component we’ll be using primarily: Database.

Database

Now, we are using the Database component of Gears in these applications. The Database com-
ponent of Gears provides a client-side relational database system based on the SQLite (www.
sqlite.org) engine, which is an open source database system. It essentially boils down to two
simple classes: Database and ResultSet.

The architecture that Google talks about enabling with Gears provides for the ability to
switch an application from “online” state to “offline” state at the flip of a switch. The way
Google recommends doing this is shown in Figure 2-36.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

Application Ul <:> Data Switch “

Local Data
Storage Rersntgtrg Deata
(Gears) g

Figure 2-36. The architecture behind online/offline capabilities made possible by Gears

In this model, the Data Switch is some code in the client-side of your application that can
determine whether the application is online or offline and which API your application reads
and writes data to. In other words, you wouldn’t directly use the Gears Database API. Instead,
your application would use some API you provide that sits between the application code and
the Gears Database API. Then, when you detect that your application is online, you write those
data reads and writes to your server-side data store, typically via the Internet. When the appli-
cation is offline, though, you use Gears API instead. When the application goes back online,
the Data Switch is responsible for synchronizing the data in both directions.

Now, all the details about how you detect online versus offline status, and how data syn-
chronization is done, are left to your discretion. With any luck, the JavaScript library you chose
would help you out. Ext JS provides a robust event system that would potentially allow you to
do this, but it doesn’t itself deal with it.

As an example of using Gears, and the Database component in particular, consider the fol-
lowing HTML page:

125

126

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

<html>
<head>
<script type="text/javascript" src="gears init.js"></script>

<script>

db = google.gears.factory.create("beta.database”, "1.0");
db.open();
db.execute(
"CREATE TABLE IF NOT EXISTS test table (" +
"firstName TEXT, " +
"lastName TEXT, " +
"age INTEGER" +
"o
)5
db.execute("INSERT INTO test table " +
"(firstName, lastName, age) values (" +
"'Frank','Zammetti','35");");
db.execute("INSERT INTO test table " +
"(firstName, lastName, age) values (" +
"'Amanda', 'Tapping','42');");
var rs = db.execute("select * from test table");
while (rs.isValidRow()) {
alert(rs.field(0) + ", " + rs.field(1) + ", " + rs.field(2));
rs.next();

}
db.close();

</script>

</head>
<body></body>
</html>

Yep, that’s all it takes! Now, if you have Gears installed and you save that HTML to a file
and then load it in your browser, you should see two alert messages displaying the rows of the
table. Obviously not rocket science by any stretch!

You may have noticed the import of the gears_init. js file. This is a bit of JavaScript pro-
vided by Google that takes care of initializing Gears and that provides the google and google.
gears objects that you interact with.

CHAPTER 2 WIDGETS AND ADVANCED EXT JS

Note To install Gears, which you’ll need to do before you can play with the application in this chapter or
the preceding example, go to http://gears.google.com and you should find a big button right there in
front of your face to install it. Follow the rather simple instructions and you’ll be good to go in no time! Also
keep in mind that the first time you run Gears for a given application you will receive a security warning that
you’ll have to allow the application to use Gears.

We'll see much more of Gears, its Database component in particular, in all the projects to
come, starting with the next chapter. So if this brief introduction seemed a little light, don’t
worry; you'll get your filll Remember, though, we’re here for Ext JS primarily, and that’s where
our focus will remain.

Summary

In this chapter we got a good look at the real stars of the Ext JS show: the widgets. We saw how
they are part of a rich object-oriented hierarchy that endows these widgets with lots of com-
mon behaviors and properties, making our job of learning how to use them easy. We saw how
the concept of layouts is at the core of what makes Ext JS so powerful. Then we moved beyond
the widgets and saw how Ext JS provides for automatic data binding to many widgets and how
it provides a rich event model to hook into in order to work with our data. We saw some other
more “advanced” capabilities, such as drag and drop and state management. We looked at
Gears (from Google), which will underlie all the applications in this book to provide a local
database to stash our data.

In the next chapter we’ll start with the project so you can see how Chapters 1 and 2 fit
together. You will learn how to build some cool applications with very little effort.

127

PART 2

The Projects

The Internet is the most important single development in the history of human commu-
nication since the invention of call waiting.

—Dave Barry

Real programmers can write assembly code in any language.
—Larry Wall

You have that vacant look in your eyes that says “Hold my head to your ear, you'll hear
the sea!”

—Londo Mollari (Babylon 5)

Well, believe me, Mike, I calculated the odds of this succeeding versus the odds I was
doing something incredibly stupid...and I went ahead anyway.

—Crow (Mystery Science Theater 3000)

They've finally come up with the perfect office computer. If it makes a mistake, it blames
another computer.

—Milton Berle

In view of the fact that God limited the intelligence of man, it seems unfair that he did
not also limit his stupidity.

—Konrad Adenauer

I refuse to answer that question on the grounds that I don’t know the answer.

—Douglas Adams

The pen is mightier than the sword...and considerably easier to write with!

—Marty Feldman

The ability to quote is a serviceable substitute for wit.

—W. Somerset Maugham

CHAPTER 3

Ext JS for a Busy Lifestyle:
OrganizerExt

Now that we’ve had a decent look at all Ext JS has to offer, it’s time to dive right into our
applications, starting with OrganizerExt. In this chapter we’ll get our first real-world example
of ExtJS in action. We’ll learn how to construct a relatively complex U, how to create data
stores, and how to bind them to various UI components. We’ll explore one way to structure
an Ext JS application, and we’ll get a taste of Gears in action underneath it all. In the end we’ll
have a fairly useful little application that should give you a good grounding in working with
Ext JS in a realistic way.

What’s This Application Do Anyway?

Look, we all have busy lives. What with work, spouses, children, bills, dogs, cats, and whatever
else soaks up your time, it’s difficult to keep track of it all. At least for me it is! I frequently for-
get where I'm supposed to be and when, what I'm supposed to get done and by when, who I
need to talk to and how to contact them. True enough, my wife covers for me most of the time,
but not everyone is lucky enough to be married to such a capable social secretary!*

Wouldn’t it be nice if we had some sort of device that could help us get organized? Some
sort of electronic system where we could store information to help us through our busy day?
Oh, if only humankind could get off their collective lazy butts and create such a wonderful
invention!

Oh wait, we have just the thing: these computer things! Yes, that’s right, computers are
just the ticket. Of course, on their own they aren’t everything we need: we need some software
too, and that’s precisely where OrganizerExt comes in.

OrganizerExt will give us the tools we need to bring structure to our crazy lives. How
exactly, you ask? By providing the following functionality to its user:

¢ Four categories of information are provided: notes, tasks, contacts, and appointments.

» We'll be able to flip between the four categories quickly and easily using an Accordion
layout.

 In each category we’ll be able to view items in two ways: as icons or as a detailed listing
in a grid.

1 Imean that in the best possible way, dear! Love ya!

131

132 CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

» Also within each category, we’ll be able to filter what items we see based on simple cri-
teria, such as only showing notes in a specified category.

* We'll obviously be able to create items in all four categories as well as delete them. We
won'’t be able to update existing items, though, for the sake of simplicity (and if you
think that’s a bit of foreshadowing of one suggested exercise afterwards, give yourself a
high-five!). In regard to tasks, we’ll be able to mark them as complete (which is a type of
update, but is one specific case).

e We want a Ul that is “fluid” in the sense that the user can expand and contract sections,
as well as resize them, to ensure they can see what they are interested in. Fortunately,
we get all of this for free with Ext JS!

* We'll be using Gears to store all this data client-side, and we’ll use some Ext JS data
mechanisms to minimize the amount of work needed to tie this underlying data to
the UL

If this all sounds a bit like Microsoft Outlook, just take a gander at the screenshot in
Figure 3-1.

3 Organizer£xt - Moziilo Firefox

e gl iew Wgtory fookmarks ook Help
O] organkertat a8
] MewMote g MewTask 5§ NewContact 3! Hew Appontment () About GrganismsExt 7] foom Vo
Catrgorics “ Appuintments #
ppontmer - = =
il
: 4[4
Show Al Uedt wih chest | Testh cleaning
& Show Date:
Appointment Ortai
Tithe Mast with chant
Categary Work
When Sut Oct 18 2008 00:00:00 GMT-0400 (Eastern Dayhight Tima)
Location Home
Mote Hook up with the new dient 2o they can tell me how great T am!
[_Deete soponment
hates.
Tasks
Contacts
[Sa @ E Done FEAMB[ITHE | ArTHEsaEME & [vSow a75h @ uw

Figure 3-1. Your first look OrganizerExt

Yes, I most definitely took the basic structure from Outlook, but let’s face it: it’s a pretty
simple and logical layout that lots of other applications have emulated (and probably many
had long before Outlook hit the scene). So, I don'’t feel too badly about taking my inspiration
from what Microsoft has already done.

This is, by and large, a fairly simple application and so makes for a good starting point.
However, being simple doesn’t make it... err... simple! What I mean is, while functionality-
wise it’s not too far-reaching, there’s enough complexity in the code that it’s quite interesting.

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

What you should take note of as we explore the code, however, is the code that’s missing.
Try to think what it would have taken to do many of the things that Ext JS is doing for us. It’s
sometimes downright amazing what a simple configuration parameter flag on a given widget
can cause to happen.

But I've whetted your appetite quite enough at this point—let’s get to it, starting with a
look at the overall structure of the application and the files that make it up.

Overall Structure and Files

The directory structure of the application, and the files you'll find within it, is typical of all the
applications in this book, and it follows the pattern you see in Figure 3-2.

B |7 C:\OrganizerExt

B s

] } styles.css

B ext

=7 img

----- & iconViewAppointment. gif

----- @ iconViewContact. gif

fa iconViewMote. gif

----- @ iconviewTask. gif

----- & toolbarAbout. gif

----- Q toolbar Appointment. gif

----- & toolbarContact. gif

----- & toolbarIconView.gif

----- & toolbarListView.gif

----- & toolbarMote. gif

----- & toolbarTask. gif

B s
{2 Dao.js

|| gears_init.js

2| OrganizerExt.js

----- idex.htm

Figure 3-2. The application’s directory structure and constituent files

In the root directory is the file index.htm. Since this is a sovereign web app (discussed in
Chapter 1), this is the one and only page, and therefore it's obviously what gets loaded into
the browser. Next is a css directory, which contains a single file, styles.css. This file contains
all the styles for the application (those not provided by Ext JS itself, that is). Next is an img
directory that contains any images needed by the application. In this case we’ve got a bunch
that begin with icon, and these are the images shown in the icon view, one for each category
of data. There are also those that start with toolbar, which are, I'm sure you've guessed, the
images for the toolbar buttons. After that is a js directory that contains all the JavaScript that
makes up the application. In this case we find DAO. js, which is our Data Access Object (DAO)
class. This contains all the “low-level” code, so to speak, that interacts directly with Gears.
There is also OrganizerExt. js, which is the main code of the application and is the code we’ll
be spending the most time with in this chapter. In addition there’s gears_init. js, which is
some code provided by Google to initialize Gears. We won’t be looking at this in any sort of
detail because it’s largely outside the scope of this book, although we will see it being used in
an indirect way.

There is also the ext directory, which of course contains Ext JS itself.

133

134

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

Now that we know what the directory structure looks like and what files make up the
application, let’s begin examining it, starting with the markup.

Note The code printed in this chapter, as well as all subsequent chapters, has been condensed in the
interest of space on the printed page. | have removed comments and tightened up line spacing in some
cases, but the code itself is identical to what you’ll find in the book’s source code.

The Markup

As mentioned earlier, index.htm is the single HTML page that gets loaded into the browser.
Since there is no page-to-page transition as with a typical web site, everything we need
markup-wise is present in this single file.

To begin, let’s check out the <head> of the document, which by and large is boilerplate-
type content and holds no real surprises based on what we’ve seen in the previous two
chapters:

<head>
<title>OrganizerExt</title>

<link rel="stylesheet" type="text/css" href="ext/resources/css/ext-all.css">
<script type="text/javascript" src="ext/adapter/ext/ext-base.js"></script>
<script type="text/javascript" src="ext/ext-all.js"></script>

<script src="js/gears_init.js"></script>

<link rel="stylesheet" type="text/css" href="css/styles.css">
<script type="text/javascript" src="js/DAO.js"></script>
<script type="text/javascript" src="js/Organizerkxt.js"></script>

<script>
Ext.onReady(organizerExt.init);
</script>

</head>

First up, we find the usual Ext JS imports that we’ve seen previously—no surprises there.
After that is the import of the gears_init. js file, which as we saw in Chapter 2 is all we need to
do to allow us to use Gears (aside from having Gears installed, of course).

After that are the imports specific to this application, beginning with the style sheet in the
styles.css file. Next are the two JavaScript source files, DAO. js and OrganizerExt.js. We’ll get
to all three of those shortly.

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

The last thing we see is a call to Ext.onReady (). Recall from previous discussions that this
will occur when the DOM is fully loaded but potentially before all resources, such as images,
are loaded. This is when you ideally want to build the Ul because it makes the application
more responsive sooner. Here we see that the init() method of the organizerExt object is
called (organizerExt points to an instance of the OrganizerExt class).

Now we move on to the <body> of the document, and the first thing we find is the follow-
ing line:

<div id="divSource" class="cssSource"></div>

This is the <div> that will serve as the source of window animations. I'll explain this in
detail once we start looking at the style sheet for the application because it makes more sense
in that context. So for now just stash this in the back of your brain for later analysis!?

The next snippet of markup we see is that for our “initializing,” or Please Wait dialog:

<div id="dialogPleaseWait" class="x-hidden">
<div class="x-window-header">Please Wait</div>
<div class="x-window-body">
<table width="100%" height="100%" border="0" cellpadding="0"
cellspacing="0" class="cssPleaseWait">
<tr><td align="center" valign="middle">
. Initializing ...
</td></tr>
</table>
</div>
</div>

This <div> uses a number of styles defined by Ext JS. The x-hidden selector is a relatively
simple style that indicates that a given element should be hidden from view. Within the <div>
you find a number of other <div>s. The first is given the style x-window-header and is essen-
tially a marker that Ext JS uses when parsing this HTML (which, as we’ll see later, is exactly
what happens to create the dialog you see) to determine what the header of the dialog should
be. Likewise, the x-window-body style marks the main content of the dialog. When we tell Ext
JS we want to show the dialog, and we point it at the dialogPleaseWait <div>, Ext]JS will use
these markers to create the dialog for us. This is a fairly elegant way to create Ul elements
without having to write much code.

Within the <div> we are free to do whatever we like with the style x-window-body, and here
you can see it’s a simple table for centering that uses the cssPleaselait selector (which we’ll
see shortly is defined in styles.css).

In Figure 3-3 you can see what this dialog window looks like when displayed.

2 Hopefully it’s not like that nasty little fractal virus that Captain Picard had Data and La Forge create
in the Star Trek: The Next Generation episode “I, Borg” to destroy the Borg collective... that’s just the
chance you'll have to take, I guess!

135

136

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

Note You can create a number of Ul elements this way, and we’ll see this approach sporadically through-
out the projects to come. By and large it’s a choice you make between a more code-intensive approach and
a more markup-based approach. You'll find that one approach works better in some situations than in others.

) OrganizerExt - Mozilla Firefox

=y (_) OrganizerExt H| —

Please Wait \
.. Initializing ... ‘

[58 @ & file:///ClOrganizerExt/indexhtm# 26MB/27MB () 48.2MB/488MB #° B YSlow @ 137 -

Figure 3-3. The Please Wait initialization dialog

The next snippet encountered is what you would see if Gears wasn’t installed, and
Figure 3-4 shows what that looks like (because I assume you have Gears installed by now and
therefore wouldn't see this).

<div id="dialogNoGears" class="x-hidden">

<div class="x-window-header">Gears Not Available</div>

<div class="x-window-body" style="padding:8px;">

I'm sorry but Google Gears is not installed on your computer, or is
unavailable for some reason (like you disabled the browser plugin for
example).

If you do not have Gears installed, please visit

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

the Gears home page
to install it.

If you do have it installed, please try enabling the plugin in whatever
fashion is applicable in the browser you are using, and reload this
application.
</div>
</div>

This is pretty much the same as the Please Wait dialog definition, and it contains just
some simple markup, including a link to the Gears home page for users to click if they don’t
have Gears installed already. That page opens in a new window on the off chance that a restart
of the browser isn’t necessary (it generally is, but I did this just in case Google figures out a way
to do it without a restart down the road).

) OrganizerExt - Mozilla Firefox

x|

Gears Not Available

Tm sorry but Google Gears is not installed on your computer, or is
unavaiable for some reason (ke you disabled the browser plugin for
example).

1f you do not have Gears installed, please visit the Gears home page to
install it

1f you do have it installed, please try enabling the plugin in whatever fashion
is appliceble in the browser you are using, and reload this application.

[S8 @ [file:///C/OrganizerExt/indexhtm# 266MB/27MB [48.2MB/48.8MB & [B vslow o0761s @ 1337

Figure 3-4. The Gears Not Available dialog

137

138 CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

The “about” dialog is next, and it’s once again just a simple bit of markup:

<div id="dialogAbout" class="x-hidden">
<div class="x-window-header">About OrganizerExt</div>
<div class="x-window-body">
<table width="100%" height="100%" border="0" cellpadding="0"
cellspacing="0" class="cssAbout">
<tr><td align="center" valign="middle">
OrganizerExt

Version 1.0

Frank W. Zammetti

Originally appeared in the book

" Practical Ext JS Projects With Gears"

Apress, 2008

All rights reserved

(and vigorously defended by an army of microscopic
land-sharks with lasers mounted to their heads)
</td></tr>
</table>
</div>
</div>

There’s a little more content here, but otherwise there aren’t any surprises after the
previous two dialogs we’ve seen. Figure 3-5 shows what this dialog looks like on the screen.
Note here how the content of the page behind the dialog window is grayed out. This is the
typical “lightbox” effect that you see all over the place these days, and it’s something you get
with just a simple configuration option with Ext JS. Note too that the OK button isn’t defined
in this markup. We’ll see how that button gets there soon, when we discuss the code in
OrganizerExt. js.

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

%) OrganizerExt - Mozilla Firefox - oK
File Edit View History Bookmarks Tools Help s
| 9| () organzerext x| [
[MewNote i MewTask ff New Contact %! New Appointment () About OrganizerExt 7] Tcon View
Categories « | | Appointments A
Appaintments - I o

60 2007 _ 2007 F00°
Fi h(‘4(\"41 i
Uiz \ l I\
L= L= (= L=
@ show Al test! test2 Meet with client Teeth cleaning
D sho!
‘ e ‘ About Organizerbxt %
Appointment Detai i
OrganizerExt
i Version 1.0
| 8] Frank W. Zammetti

‘ Originally appeared in the book
— "Practical Dojo Projects"
=, Apress, 2008

All rights reserved | 3

(and vigorously defended by an army of microscopic
land-sharks with lasers mounted to their heads)
e P
Hates
Tasks
Contacts
[55 @ & file:t//c:/organizertxt/index htms 266MB/27MB [482MB/488ME 4 B vSlow 0755 @ 1337 ¢

Figure 3-5. The self-aggrandizing About dialog

All that remains to be seen in index. htm are four chunks of HTML corresponding to the
detail sections for each of the four categories. They are all essentially the same, so I've chosen
one, tasks, to use as an example:

<div id="divTaskDetails" class="x-hidden">
<table border="0" cellpadding="0" cellspacing="0" width="100%"
height="100%">
<tr><td align="center" valign="middle">
<table border="0" cellpadding="2" cellspacing="2" align="center"
width="75%" class="cssDetailsTable">
<tr>
<td class="cssDetailsLabel” width="30%">Category</td>
<td class="cssDetailsData" id="task category"></td>
</tr>
<tr>
<td class="cssDetailslLabel"” width="30%">Status</td>
<td class="cssDetailsData" id="task status"></td>
</tr>
<tr>
<td class="cssDetailslLabel" width="30%">Content</td>
<td class="cssDetailsData" id="task_content"></td>
</tr>

139

140

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

<tr><td colspan="2">8nbsp;</td></tr>

<tr>

<td align="left" id="tdTaskDetailsDeleteButton"></td>
<td align="right" id="tdTaskDetailsCompleteButton"></td>

</tr>
</table>
</td></tr>
</table>
</div>

As you can see, this is basically just an ordinary table structure wrapped in a <div>, which

is initially hidden using the x-hidden selector. I make the assumption here that you can parse
simple table markup on your own, since it’s pretty basic stuff.

I went with a table here because (a) it’s a simple approach to implement, (b) I didn’t need
anything more complex, and (c) I wanted to demonstrate how this was possible. An alternative
would have been to create Ext JS widgets to do this, but that would have added some degree of
code and made things a little more complex. More importantly, though, I wanted to show that
you can indeed mix straight HTML like this into your Ext JS layouts, which is primarily how the

Ul is put together.

In Figure 3-6 you can see what this detail section looks like on the screen. Note that like
the “about” dialog, the Delete Task and Complete Task buttons are added dynamically via

code later on, which is also interesting to see (it’s not just mixing in straight HTML with Ext JS

widgets—it’s also mixing Ext JS widgets in with straight HTML!). You can see, however, that
there are two <div>s where the buttons will be inserted.

%) OrganizerExt - Mozilla Firefox
File Edit View History Bookmarks

Tools Help

;J () Organizerext

x|

Categories
Appointments
Motes
Tasks

Filter:
© Show Al

© Show Active
@ Show Complete

® Show Category:
| | Goals/Objectives ¥

Contacts

[55 @ & oone

%

+

s

Tasks

Exercise more

Task Details

Category
Status
Content

Delete Task

] NewNote @) NewTask 4! New Contact %! New Appointment () About Organizerext 7] Tcon View

Goals/Objectives
ACTIVE
Exercise more

Complete Task

264MB/27MB [483MB/488MB &° [vslow o0s987s & 1337

Figure 3-6. Viewing the details of a selected task (note the filter in action too)

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

As I said, the other three chunks dealing with appointments, notes, and contacts are
by and large the same, but of course with differing fields. I suggest having a look at the full
index.htmfile to see this for yourself, but just looking at the tasks example pretty well gives you
the full picture.

The Style Sheet

The styles.css file contains all the style information used in the application that isn’t pro-
vided by Ext JS itself. There’s not a whole lot here, and none of it is even remotely complex
(unless CSS is new to you, in which case you probably want to make a quick detour into a CSS
tutorial first). The first thing we encounter in this file is the following:

.cssDefault {
font-size : 10pt;
font-family : arial;

}

The cssDefault selector is used to style the text seen in each of the four accordion panes.
This just ensures a nice, consistent font styling across them all.
The cssPleaseWait selector is next:

.cssPleaseWait {
font-size : 12pt;
font-weight : bold;
font-family : arial;

}

This is the selector used to style the text in the Please Wait dialog. Here, the text is made a
little bigger and styled in bold to make it stand out a little more.
After that we find the cssAbout selector:

.cssAbout {
font-size : 11pt;
font-weight : bold;
font-family : arial;

}

This is used to style the text of the About dialog. Once again it’s nothing but some font
settings, a little bigger than the font setting in the accordion panes (cssDefault) and a little
smaller than the font setting in the Please Wait dialog (cssPleasehait).

Next we come to cssSource, which is, for a change, not related to font styling and is a little
more interesting:

.cssSource {
position : absolute;

left: 1px;
top : 1px;
width : 1px;

height : 1px;

141

142

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

When you run the application (you have run it, haven’t you?), you’ll notice that all the
dialog windows don’t just appear on the screen—they actually “fly” into view. Did you notice
that they all fly in from the upper-left corner? If you were wondering how and why that is,
cssSource is your answer, at least partially. You see, when you tell Ext JS to show a window, you
can also give it the ID of some element on the page from which the window will fly into view.
This can be anywhere you like, but in the case of this application I decided on the upper-left
corner. The cssSource selector is the style given to the divSource <div>, as we saw when we
looked at index.htm. This style puts that <div> in the upper-left corner of the page via absolute
positioning. So, when we tell Ext JS to show a window and give it the ID divSource to use as the
source of the animation, it’s by virtue of this selector that the window flies in from that corner
of the page.

Tip Try changing the position values in this selector to see the windows fly in from other places on the
page.

The cssDetailsTable selector is next:

.cssDetailsTable {
border : 2px solid #99bbe8;
padding : 2px;

}

This is the style given to the four tables used to display the details of a selected note,
task, appointment, or contact. As you can see, it’s really just a border specification and some
padding—not exactly rocket science! The color was chosen to match the default Ext JS styling
so it blends into the UI fairly well.

Within each of the details table are labels (like First Name, Last Name, and so on), and
there is the data itself. For the labels, the following style is applied:

.cssDetailslabel {
background-color : #c7dffc;
font-weight : bold;
font-size : 10pt;
font-family : arial;

}

This gives us a bluish background color, again chosen to blend in with the default Ext JS
style sheet. It also sets the font style once again to a reasonable size and family.
As you would guess, the selector for styling the actual data is next:

.cssDetailsData {
background-color : #f4f4f4;
font-size : 10pt;
font-family : arial;

}

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

This gives the cell a light-gray background and sets the font style once again. Note that the
labels are bold but the data is not, which is a fairly typical thing to do (sometimes it’s reversed,
with the data bold and the labels not, but I personally find this way more visually appealing).

The following few styles are applied to the icon views for each of the four categories. The
first is x-panel-body:

#listingCard .x-panel-body {
background : white;
font-size : 8pt;
font-family : arial;

}

This defines the style applied to the body of a given item. Changing the background attri-
bute, for example, will put a color behind each of the icons and their labels.
Next up is some styling that gets wrapped around the icons and their labels:

#listingCard .thumb-wrap {
float : left;
margin : 4px;
margin-right : 0;
padding : 5px;

}

This style ensures that the icons run horizontally across the page properly. This goes along
with the following selector:

#listingCard .thumb-wrap span {
display : block;
overflow : hidden;
text-align : center;

}

This ensures that the labels are centered on the icons and that if the text is too long it'll get
cut off (which isn’t a problem in this application because it’s handled differently, as we’ll see
later).

The next selector is the style for when an icon is hovered over:

#listingCard .x-view-over {
border :1px solid #dddddd;
background : #efefef;
padding: 4px;

}

It’s not much more than a border and a background color change to give a nice highlight-
ing effect. Related to this is

#listingCard .x-view-selected {
background : #eff5fb;
border : 1px solid #99bbe8;
padding : 4px;

}

143

144

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

This is the style applied to an icon that has been selected, and once again it’s little more
than a different background color and border style (there’s also padding defined on both of
the previous selectors, but the color is what’s important since that is what’s apparent on the
screen).

The last bit of style definition in this style sheet looks like this:

.x-form-field-wrap {
position : static;
}
.x-form-field-wrap .x-form-trigger {
position : static;
top : auto;
vertical-align : middle;
}
.x-form-field-wrap .x-form-twin-triggers .x-form-trigger {
position : static;
top : auto;
vertical-align : middle;

}

These class definitions resolve a bug present in Ext JS v3.0 that causes the arrows on
ComboBox elements to appear on the left side in some situations instead of to the right of the
entry box portion. If nothing else, the fact that I was able to get an answer to this problem in
under an hour is a testament to how good support for Ext JS is!

The Code

Now that we’ve looked at the markup and the style sheet involved, we can move on to the
actual code. Let’s begin by looking at the DAO class, which is in a sense a stand-alone entity to
the extent that you could rewrite the entire application and still reuse this class with little or no
change.

The DAO Class

Next we move on to the DAO class, contained within the aptly named DAO. js file. This class
presents the API to the rest of the application through which all access to the underlying Gears
database will be made. This gives us the possibility of storing the data in some other fashion
later, perhaps on a server, without changing the application code, which is one of the primary
benefits of the DAO pattern.

Let’s begin by getting a bird’s-eye view of this class via Figure 3-7, a UML class diagram
of it.

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

C DAO

(+TASK_STATUS_ACTIVE : String
+TASK_STATUS_COMPLETE : String
-databaseName : String
-sqlCreateNotesTable : String
-sqiCreateNote : String
-sqlRetrieveNotes : String
-sqlDeleteNote : String
-sqlCreateTasksTable : String
-sqlCreateTask : String
-sqlRetrieveTasks : String
-sqlUpdateTask : String
-sqlDeleteTask : String
-sqiCreateContactsTable : String
-sqlCreateContact : String
-sqlRetrieveContacts : String
-sqlDeleteContact : String
-sqlCreateAppointmentsTable : String
-sqlCreateAppointment : String
-sqlRetrieveAppointments : String

_-SqlDeleteAppointment : String

AN

(+init() : boolean
+createNote()
+retrieveNotes() : array
+deleteNote()
+createTask()
+retrieveTasks() : array
+updateTask()
+deleteTask()
+createContact()
+retrieveContacts() : array
+deleteContact()
+createAppointment()
+retrieveAppointments() : array

\ +deleteAppointment()

AN

J

Figure 3-7. UML class diagram of the DAO class

First we see that there are two public fields:

DAO.TASK STATUS ACTIVE = "active";
DAO.TASK STATUS COMPLETE = "complete";

These are pseudo-constants that define the value that a task will have when it is active
and when it is complete. Since JavaScript doesn’t have the concept of a constant like most
languages do, the best we can do is name them in a fashion that tries to indicate they are
constants. There’s a fairly standard way of doing that: all uppercase with underscores between
words. This doesn’t stop someone from changing the value of these fields, but by general con-
vention most programmers will know they probably shouldn’t just by looking at the name.

145

146

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

Next we find a private variable named databaseName:
var databaseName = "OrganizerExt";

This variable is used in the rest of the code to define the name of the database that Gears
will store for us. This variable is optional since Gears will create a default name if you omit it,
but it’s cleaner to explicitly name something that makes sense. This value isn’t needed outside
the class; hence it’s private to avoid any other code mistakenly changing it and breaking the
application.

Following that is the definition of a couple of string variables:

var sqlCreateNotesTable = "CREATE TABLE IF NOT EXISTS notes (" +
"id INT, category TEXT, content TEXT" +

myn

var sqlCreateNote =
"INSERT INTO notes (id, category, content) " +
"VALUES (2, 2, ?)";

var sqlRetrieveNotes = "SELECT * FROM notes";

var sqlDeleteNote = "DELETE FROM notes WHERE id=?";

This code defines some SQL statements related to notes, starting with a table creation
statement. As you can see, it’s a perfectly standard statement that creates the table if it doesn’t
yet exist (and does nothing if it does exist).

Following that is an SQL statement to create a new note. As you can see, dynamic param-
eters are present in the form of question mark placeholders. The actual values will be bound
to these placeholders later when the statement is executed.

After that is the simple SQL statement to retrieve all notes. As it turns out, this is the only
retrieval operation we’ll need in this application, so it really is as simple as that.

Finally, there is an SQL statement used to delete a note. All this takes is an ID value for the
note to delete, again using dynamic parameters.

THE U IN CRUD

If you’ve never heard the term CRUD before, now you have! CRUD stands for Create, Retrieve, Update, and
Delete. These are the four basic operations that most database-driven applications need, and CRUD is a very
common term in programming circles. It's also kind of fun to say, especially in place of more vulgar... er...
vulgarities!

So, we can see here that there is a create SQL statement, a retrieve statement, and a delete statement
for notes, but no update statement. The way | decided to code this application means that updating an item
isn’t necessary, at least in the case of notes, contacts, and appointments (tasks are a different story, as we’ll
see next).

In the interest of saving some space here I am not going to show the SQL statements for
contacts, appointments, and tasks because they are, by and large, no different than what we
just looked at, just with some different fields. Otherwise, they are the same, and there is a set of
four SQL statements for contacts and appointments as well.

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

For tasks, however, there are five because there is an update query for them:

var sqlUpdateTask = "UPDATE tasks SET category=?, status=?, content=? " +
"WHERE id=?";

Because a task can be updated in the sense that it can be marked as having been com-
pleted, we need such an update query. It works just the same as any of the others; it’s just a
slightly different query.

Before we continue looking at the code, I thought it would be a good idea to take a glance
at the structure of each of the four tables (notes, tasks, contacts, and appointments). Seeing a
slightly more graphical representation helps, so Figure 3-8 shows just such a representation of
the contacts table.

~ Information from Master table
TABLE : contacts
Associated with table/view: contacts Rootpage: 5
SQL t that 1 this object:

CREATE TABLE contacts (id INT, category TEXT, company TEXT, firstname TEXT, lastname TEXT,
phonenumber TEXT, cellnumber TEXT, faxnumber TEXT, email TEXT, note TEXT)

~ More Info
No. of Col 10 No. of Ind o No. of R d: 3

-~ Col

Name Type P.Key NotMNull Default

£ JE— s | (oo colunn]
ategor . s | [orocolunn]
compamy fr s | [orocolunn]
frtname = s | [orocolunn]
ttame fr s | [orocolunn]
honnmber o0 s | [orpcolunn]
b x| s | [orocolunn]
b x| s | [orpcolunn]
e e s | [orocolunn]
ot = s | [orcolunn]
| L Mo 0 | [ecom]

Figure 3-8. Table structure of the contacts table

A grand total of ten fields are present for each contact, all of them of type text, except for
the ID. Pretty straightforward, I suspect.
In Figure 3-9 you can see the corresponding diagram of the appointments table.

147

148 CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

~ Information from Master table

TABLE : appointments

Associated with table/view: appointments Rootpage: 6

SQL t that 1 this object:

CREATE TABLE appointments (id INT, title TEXT, category TEXT, whendt TEXT, location TEXT, note TEXT)

~ More Info
‘nn_nfr' [6] no.ofmd [0 | no.ofRecords: [2 |

-~ Col

Name Type P.Key NotMNull Default

L JE s | (o colunn]
e e s | [orpcolunn]
categor i s | [orocolunn]
henit . s | [orpcolunn]
== e s | [orocolunn]
ot e s | [orcolumn]
| I 0 | [sdcoum]

Figure 3-9. Table structure of the appointments table

There isn’t as much information to store for an appointment, so six fields are all we need.
Next up is the notes table, with three fields, as shown in Figure 3-10.

~ Information from Master table

TABLE : notes

Associated with table/view: notes Rootpage: 3
sSQL t that 1 this object:

CREATE TABLE notes (id INT, category TEXT, content TEXT)

~ More Info
No. of Col 3 No. of Ind: o No. of R d: 2

-~ Col

Name Type P.Key NotMNull Default

L JE— s | (o colunn]
categor = s | [orpcolunn]
conten = s | [orocolunn]
| I 0 | [sdcom]

Figure 3-10. Table structure of the notes table

To round things out, in Figure 3-11 is the same diagram for the tasks table. This is similar
to the notes table, with the addition of the status field.

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT 149

~ Information from Master table

TABLE : tasks

Associated with table/view: tasks Rootpage: 4

sQL t that 1 this object:

CREATE TABLE tasks (id INT, category TEXT, status TEXT, content TEXT)

~ More Info
Mo. of Col 4 No. of Ind o No. of R d 2

~ Coll

Name Type P.Key NotMNull Default

£ JE— s | (oo colunn]
ategor fr s | [orocolunn]
st x| s | [orpcolunn]
conten = s | [orocolunn]
| L Mo 8 | [dcom]

Figure 3-11. Table structure of the tasks table

Now, getting back to the code, we encounter our first method: init(). This method is
responsible for some basic setup:

this.init = function() {

var initReturn = true;
if (!window.google || !google.gears) {
initReturn = false;

}

var db = google.gears.factory.create("beta.database");
db.open(databaseName);
db.execute(sqlCreateNotesTable);
db.execute(sqlCreateTasksTable);
db.execute(sqlCreateContactsTable);
db.execute(sqlCreateAppointmentsTable);

db.close();

return initReturn;

The first thing it does is ensure that Gears is installed and available. This will be the case
if there is a google attribute on the window object and if there is a gears attribute on that google
object. If either of those conditions isn’t met, then the variable initReturn is set to false,
which will be the variable returned from this method (we optimistically default its value to
true in anticipation of no problems with Gears).

150

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

The next step is to ensure we have the tables we need. This is done by creating an instance
of the beta.database object via a call to google.gears.factory.create(), as we've previously
seen in Chapter 2. Then we open the database by name (using that private databaseName vari-
able we saw earlier). After that we execute each of the four table creation SQL statements, one
each for notes, tasks, contacts, and appointments. Recall that these statements will only have
an effect when the tables don’t already exist. Finally, we close the database (which is optional,
but is good style nonetheless) and return that initReturn variable so the caller knows whether
the underlying database is good to go.

Now that the database is initialized, we can go ahead and create items, delete them, and
so on. In celebration of that, let’s look at the next method, the createNote() method:

this.createNote = function(inNoteDesc) {

if (inNoteDesc && inNoteDesc.id 8& inNoteDesc.category &8
inNoteDesc.content) {
var db = google.gears.factory.create("beta.database");
db.open(databaseName);
db.execute(sqlCreateNote, [
parseInt(inNoteDesc.id), inNoteDesc.category, inNoteDesc.content

D;
db.close();

The inNoteDesc argument is an object that contains fields where the data for a note is
stored. So, the first thing that’s done is a check to ensure that we got an object for inNoteDesc
(it’s not null, in other words) and that the fields that are absolutely required for a note to be
stored are not null either. In the case of a note, all of them are required, but that’s not the case
for other types of items. Once we do that verification, we again open the database and simply
execute the sqlCreateNote query. Note the second argument to the db.execute() method: an
array of data that will be inserted in place of those question mark placeholders we saw earlier.
Gears will take care of properly escaping the inserted data, so this is a safe way to create a final
SQL statement that avoids various hacking exploits that would otherwise be possible.

Now that we know how to create a note, seeing how to retrieve notes is the next logical
step. Here’s the code for that:

this.retrieveNotes = function() {
var db = google.gears.factory.create("beta.database");

db.open(databaseName);
var rs = db.execute(sqlRetrieveNotes);

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

var results = [];
while (rs.isValidRow()) {
results.push({
id : rs.fieldByName("id"),
category : rs.fieldByName("category"),
content : rs.fieldByName("content")

1);

rs.next();
}
rs.close();
db.close();

return results;

So once again the database is opened, and the sqlRetrieveNotes query is executed. From
this we have a ResultSet object, so we begin to iterate over that. This is done by continually
checking to see if rs.isValidRow() returns true, which indicates we have another row of data
to process. For each row, we create an object consisting of three properties: id, category, and
content. These are the data stored for each note. The values of these attributes are pulled from
the row of data using the rs.fieldByName() method, which simply gets the value of the named
field from the row. This created object is pushed into the array created before the iteration
began. Finally, the ResultSet and database are closed and a simple array of objects is returned.
Note that the array could be empty, but null would never be returned from this method,
which makes writing code that uses this method a little cleaner since there is no null checking
to be done.

Note You may wonder why | didn’t simply return the ResultSet to the caller. This would have worked,
with some changes to the calling code, but the reason for not doing that is because it creates a “leaky
abstraction.” In other words, this DAO class is currently the only code in the application that knows we’re
working with Gears. If we return the ResultSet, which is a Gears-supplied class, the rest of the applica-
tion has to “know about” Gears as well. Transferring the data to a simple array of simple objects means the
application is abstracted from the underlying data store, which allows us to change to a different store down
the road (imagine if this method actually made an Ajax request to a server to get the data instead).

151

152 CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

Deleting a note is much the same, although it takes even less code:

this.deleteNote = function(inNoteDesc) {

if (inNoteDesc &8 inNoteDesc.id) {
var db = google.gears.factory.create("beta.database");
db.open(databaseName);
db.execute(sqlDeleteNote, [inNoteDesc.id]);
db.close();

}

To start with we have another quick check of inNoteDesc, ensuring it’s not null and that
there is an id specified on it. After that it’s a simple execution of the sqlDeleteNote query,
dynamically inserting the id value, and that’s that!

At this point you've seen how create, retrieve, and delete works for notes. For contacts,
appointments, and tasks, the code is virtually identical. The only differences are the SQL
queries executed and the fields referenced. Therefore, we won’t look at the methods for those
items here, but I encourage you to have a look at the code yourself.

There is only one thing left to look at: the updateTask() method, which is used to mark
a task as complete:

this.updateTask = function(inTaskDesc) {

if (inTaskDesc 88 inTaskDesc.id && inTaskDesc.category 88&
inTaskDesc.status && inTaskDesc.content) {
var db = google.gears.factory.create("beta.database");
db.open(databaseName);
db.execute(sqlUpdateTask, [
inTaskDesc.category, inTaskDesc.status, inTaskDesc.content,
inTaskDesc.id

1;
db.close();

There should by this point be little, if any, surprises. There is more verification this time
around because there are a few more required fields. In fact, it’s all of them, because when
updating a task the code makes no effort to determine what fields changed—it simply writes
out the values for all of them. Otherwise, this method is no different than what you’ve seen
before.

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

The OrganizerExt Class

The OrganizerExt class is the heart and soul of the application; it's where all the best parts are!
It’s also a fairly lengthy piece of code, although as you'll see, much of it isn’t what most people
consider “code” per se—it’s more configuration-type code.

Let’s start by looking at a UML class diagram of OrganizerExt, as shown in Figure 3-12.

C OrganizerExt)
(+currentCategory : String N
+notesStore : Ext.data.Store
+tasksStore : Ext.data.Store
+contactsStore : Ext.data.Store
+appointmentsStore : Ext.data.Store
+NoteRecord : Ext.data.Record
+TaskRecord : Ext.data.Record
+ContactRecord : Ext.data.Record
+AppointmentRecord : Ext.data.Record
\+categoryList : String

(+init()

+initMain()

-testForGears() : boolean
-createDataStores|()
-createRecordDescriptors()
-populateStores()
-createNewNoteDialog()
-createNewTaskDialog()
-createNewContactDialog()
-createNewAppointmentDialog()
-buildUl()

+changeCategory()
+changeViewMode()
+showAppointmentDetails()
+showNoteDetails()
+showTaskDetails()

\ +showContactDetails())

N

Figure 3-12. UML class diagram of the OrganizerExt class

There’s certainly a fair bit there, but as I've done before I'm going to cut some of it out of
our discussion on the grounds that what we will look at basically gives you the picture for the
pieces I skip as well. As always, though, I encourage you to look at the complete code in the
book’s source code, if for no other reason than to keep me honest!

Class Fields
Let’s begin by looking at the fields that are part of this class, beginning with currentCategory:

this.currentCategory = "appointments";

This field, which is public, is used when the user clicks the View Mode toolbar button. It
is necessary to know which category of items is currently being shown to properly switch the
view mode, and while it likely would have been possible to interrogate the accordion itself

153

154

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

to determine what the selected pane is, how to do that wasn’t readily apparent to me. More
importantly, this approach offers greater efficiency.
Next we encounter a series of four public fields:

this.notesStore = null;
this.tasksStore = null;
this.contactsStore = null;
this.appointmentsStore = null;

These hold references to the data stores we’ll be creating, one for each category. We’ll see
how the stores are created and manipulated in fairly short order, but for now let’s move on to
another group of four public fields:

this.NoteRecord = null;
this.TaskRecord = null;
this.ContactRecord = null;
this.AppointmentRecord = null;

These hold references to the Record classes we’ll create that describe a type of item. The
Record classes describe what fields a note Record in a data store has, for example. Note that
these variables, as well as the previous data store variables, are all public because they will
need to be accessible outside the scope of this class, as we’ll see later.

The next field is categorylist:

this.categorylist = [
"Competition", "Family", "Favorites", "Gifts", "Goals/Objectives",
"Holiday", "Home", "Hot Contacts", "Ideas", "International"”, "Key Custom",
"Medical", "Meeting", "Miscellaneous", "Other", "Personal", "Phone Calls",
"Status", "Strategies", "Suppliers", "Time And Expenses", "VIP", "Waiting",
"Work"

15

This too is public because it will be needed outside the scope of the class. Its purpose is
to provide the list of categories under which an item can be saved. The items will be used to
populate the combo boxes on the various create forms, as well as in the Accordion panes for
filtering items.

The Initialization Code

Now that we’ve looked at the fields of the class, we can move right into the executable code.
The first method we encounter is init(), which you’ll recall from looking at index.htm is called
when the DOM is loaded:

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

this.init = function() {

new Ext.Window({
applyTo : "dialogPleaseWait", closable : false, modal : true,
width : 200, height : 100, minimizable : false, resizable : false,
draggable : false, shadowOffset : 8, id : "dialogPleaseWait"
}).show(Ext.getDom("divSource"));
setTimeout("organizerExt.initMain()", 500);

First, an Ext JS Window is opened. The applyTo attribute is set to dialogPleaseWait; there-
fore, the markup in index.htm that contains the content of the <div> dialogPleaseWait will be
used to form the Window. Recall that the special “marker” styles were used in that markup, and
now we can see why: the Window class knows about those markers and so can determine what
content in the specified DOM node is the header for the Window, what is the main content,
and so forth. We specifically make the window static in the sense that it can’t be minimized
(minimizable:false), can’t be resized (resizable:false), and can’t be dragged around
(draggable:false). We also make it modal (modal:true), which makes it a typical lightbox
pop-up (everything else on the page is dulled out and the Window is front and center with the
full focus of the user on it). In other words, it’s pretty well there until we tell it to go away. The
code here is interesting in that the Window object is created, and then we immediately show it
via the chained call to its show() method (which is passed a reference to the divSource <div>
so that the animation of the Window flying in starts from that location, which as you’ll recall is
the upper-left corner of the page). This chaining of method calls is pretty common in Ext JS
programming, and in JavaScript in general. If you've used the popular jQuery library, you'll
know that this can be taken to an extreme, but some people find it to be a much better style;
it’s up to your own tastes in the end.

Finally, we see that a timeout is started with an interval of 500 milliseconds (half a sec-
ond). This is done to ensure that before the rest of the initialization procedure happens, the
Window has completed its animation. This is important because JavaScript is always single-
threaded, so if we continued with the rest of our code the Window very likely would not be
visible, and almost certainly wouldn’t properly complete its animation (at best it would prob-
ably happen in a choppy, visually displeasing fashion).

Once that timeout occurs, it fires the initMain() method of the OrganizerExt class, which
is up for examination next:

this.initMain = function() {
if (!testForGears()) { return; }

createDataStores();
createRecordDescriptors();
populateStores();
createNewNoteDialog();
createNewTaskDialog();
createNewContactDialog();
createNewAppointmentDialog();

155

156

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

Ext.QuickTips.init();
Ext.form.Field.prototype.msgTarget = "side";

buildUI();

Ext.getCmp("dialogPleaseWait").destroy();

First, a call to the testForGears() method is made, so let’s jump ahead slightly and look
at that now:

var testForGears = function() {

if (!dao.init()) {
Ext.getCmp("dialogPleaseWait").destroy();
var dialogNoGears = new Ext.Window({
applyTo : "dialogNoGears", closable : false, modal : true,
width : 400, height : 220, minimizable : false, resizable : false,
draggable : false, shadowOffset : 8, closeAction : "hide",
buttons : [{
text : "Ok",
handler : function() {
dialogNoGears.hide();
}
}
bs
dialogNoGears.show(Ext.getDom("divSource"));
return false;
} else {
return true;

}

A call to the DAO class’s init () method is made, which you'll recall returns true if Gears
is good to go, and false otherwise. So, if we get false here we begin by destroying the
dialogPleaseWait Window. Note that no animation occurs in this case—it’s simply destroyed,
which includes removing it from the screen straight away. After that, a new Window is created,
this one using the contents of the dialogNoGears <div> as its template. For this Window there
will be an OK button for the user to click to dismiss the Window. To do this we use the buttons
configuration attribute to the Window constructor. This is a simple array of objects, where each
object defines a button. We only have one button here, and when it’s clicked we want to hide
the Window (we could destroy it as well, but there’s little different in this instance so I thought it
would be nice to see something different than we saw with the Please Wait Window). One of the
possible attributes on the object defining the button is the handler attribute, which is a refer-
ence to a function to execute when the button is clicked. In this case it’s an inline function,
since it’s not needed anywhere else.

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

Note We have a closure here: the dialogNoGears variable is a reference to the Window created, and it's
still available to the callback function via closure. This makes for some clean, tight code, which is nice.

Finally, a call is made to the show() method of the new Window object. In this case I decided
not to chain the method call as we saw previously, just to show a different syntax to you (see, I
care about you, dear reader!)

A WORD ON CLOSURES

Although the assumption throughout this book is that the reader has a fair understanding of JavaScript,
closures are one of those concepts that confuse the heck out of most developers until it finally just suddenly
clicks. At that point, they see how very useful they are. Closures are not something that every developer has
experience with, so I'll provide a brief description here.

A closure is an expression (typically a function) that can have free variables together with an environ-
ment that binds those variables (in other words, that “closes” the expression). Perhaps a simpler explanation
is that functions in JavaScript can have inner functions. These inner functions are allowed to access all the
local variables of the containing function, and most importantly, even after the containing function returns.

Each time a function is executed in JavaScript, an execution context is created. This is conceptually the
environment as it was when the function was entered. That’s why the inner function still has access to the
outer function’s variables even after return: the execution context of the inner function includes the execution
context of the outer function.

Of course, if Gears was available, then the else branch would have hit, returning true,
which gets us back into the main code of the initMain() method. In that case, a bunch
of method calls execute. First is createDataStores(), which literally creates the four data
stores, one for each category of items. Note that populating the stores with what may
be in the Gears database is done later. Before that can occur, we need to create Record
descriptors for notes, tasks, contacts, and appointments, and that’s the result of calling the
createRecordDescriptors() method.

Once those three methods complete, we have fully built data stores (although remember
that they do not yet have data in them). Let’s now we move on to creating the four dialog
Window objects for creating notes, tasks, contacts, and appointments. There is a method
call corresponding to each of them: createNewNoteDialog(), createNewTaskDialog(),
createNewContactDialog(), and createNewAppointmentDialog(). We'll look at those shortly.

Note | suppose, looking back on it now, creation of the data stores and Record descriptors could have
been broken out into four separate methods like the creation of the Window dialogs are... | don’t have any
secret reason for doing it this way, but putting all the Window creation code together would have made for a
much longer method!

157

158

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

Here are the next two lines of code:

Ext.QuickTips.init();
Ext.form.Field.prototype.msgTarget = "side";

This code configures Ext JS so that tooltips will work when validation failures occur on
those four new item creation forms. It also indicates that, by default, the messages will be
anchored to the side of the form elements. You can set this on a per-field or per-form basis,
but doing so globally is better if you can, and in this case we can.

The final two tasks are to build the Ul via a call to buildUI(), and to destroy the
Please Wait Window. When that’s done, the application is fully initialized and ready for user
interaction.

The buildUI() is where most of the action is, but before we get to that we have a number
of other methods to look at, starting with createDataStores().

The Data Stores

Creating the data stores isn’t a big deal at all—in fact, it's another of those “if you've seen one,
you've seen 'em all” situations. So, with that in mind, let’s look at one:

organizerExt.notesStore = new Ext.data.Store({
listeners : {
"add" : {
fn : function(inStore, inRecords, inIndex) {
if (Ext.getCmp("dialogPleaseWait")) { return; }
dao.createNote({
id : new Date().getTime(),
category : inRecords[0].get("category"),
content : inRecords[0].get("content")
}s
}
b

"remove" : {
fn : function(inStore, inRecord, inIndex) {
dao.deleteNote({ id : inRecord.get("id") });
}

1);

A new Ext.data.Store() object is instantiated, and that might be the end of it except that
we also need to add to it the ability to react to various events, namely adding Record objects to
it and removing Record objects from it. This is done by including the listeners attribute in the
configuration object passed into the constructor. The listeners attribute is an array of events,
and objects contain information defining what happens in response to the event. So, the add
event has an object that within it has a single attribute, fn. This is a reference to a function to
execute when the add event fires. The signature of this callback method is defined in the Ext JS

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

documentation for the add event. In this case it gets passed a reference to the data store itself,
an array of Record objects being added (one or more Record objects can be added at a time),
and the index at which the Record object will be added. For our purposes, we only care about
that array of Record objects in actuality.

In the callback function itself, we do a quick check to see if the Please Wait Window is pres-
ent. This is because any time a Record is added to the store, this function will execute. So, when
the store is being populated initially, this will execute for each Record we add. Since at that
point we know we don’t want to save anything to the underlying database, we need to skip
execution, and checking to see if that Window exists is an easy way to determine that. So, if the
Window doesn’t exist, all it takes is a call to the DAO class’s createNote() method, passing it an
object that contains all the data for a note, taken from the incoming inRecords array. In our
use case, we know there’s only one record and there’s no iteration over the array to do, so we
just go after the first, and only, element, directly.

When a Record is removed from the store, the same sort of thing occurs, but the remove
event fires this time. In this case, we still pass an object to the DAO class’s deleteNote() method,
but this time it’s only the id of the note to be deleted that we care about.

In order to make this clear, take a look at the sequence diagram? in Figure 3-13. This walks
you through the flow for adding, deleting, and even updating Record objects in both the data
stores and the underlying Gears database. Hopefully this figure helps you see how it all ties
together because an event-driven model like this can sometimes be difficult to wrap your
brain around.

(=
o

% NoteRecord Notes Data Store Gears Database

1
OrganizerExt

1
NoteRecord created

NoteRecord added
to data store

N

Add event fires,

DAO.createNote() caIIed\.
1

: Data written to database

oV

1oV

Z
o 1 Execution continues i
1 1 1 1

Figure 3-13. Sequence diagram depicting the creation of a note

Although I said that seeing one data store created is pretty much seeing how they’re all
created, I wanted to call out the tasksStore data store separately so you can see the update
event handling in action:

3 Ipersonally dislike sequence diagrams. I find that usually the degree to which they are useful is
inversely proportional to the amount of time the creator spent on it, and they are virtually never as
useful as you expect them to be. Hopefully this is one of the exceptions to disprove the rule!

159

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

organizerExt.tasksStore = new Ext.data.Store({
listeners : {
"add" : {
fn : function(inStore, inRecords, inIndex) {
if (Ext.getCmp("dialogPleaseWait")) { return; }
dao.createTask({
id : new Date().getTime(),
status : inRecords[0].get("status"),
category : inRecords[0].get("category"),
content : inRecords[0].get("content")
bs
}
b
"update" : {
fn : function(inStore, inRecord, inOperation) {
dao.updateTask({
id : inRecord.get("id"), category : inRecord.get("category"),
status : inRecord.get("status"), content : inRecord.get("content")
IOk
organizerExt.showTaskDetails(inRecord);
}
b
"remove" : {
fn : function(inStore, inRecord, inIndex) {
dao.deleteTask({ id : inRecord.get("id") });

}

1);

As you can see, the add and remove events are handled just as you saw a little while ago, but
now we have the update event handled as well. It’s not any different from the other event han-
dlers, but I thought you'’d like to see that for yourself! Note the use of new Date().getTime(),
which returns a numeric value in milliseconds. This gives us a simple way to generate a unique
identifier for a record that should be safe too. (If you change your PC’s clock to a past date, or
if you run the code so fast that multiple records are created in the same millisecond of time,

a conflict could arise. But that seems unlikely in a JavaScript environment and especially so
within the context of how this application works.)

Note There are many events you can handle with regard to data stores, but here we only need these, and
my suspicion is that most of the time these three events will be all you need. I'll name just a few others that
might be of interest: clear (fires when the data cache is cleared), loadexception (occurs if an exception
occurs in the proxy during loading) and datachanged (fires when the data cache has changed and a widget
bound to the store should refresh its view). Consult the Ext JS documentation for the full list of events and the
signatures for the callback functions to match.

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT 161

The Record Descriptors

The record descriptors are instances of Ext.data.Record, and as such are a little more than
simple value objects (VOs).* However, by and large, that’s exactly how you can think of them.
Figure 3-14 is a diagram showing the structure of each of the four types of Record classes we’ll
be creating.

organizerExt.NoteRecord organizerExt.TaskRecord
-id : float -id : float
-category : string -category : string
-content : string -content : string
-type : string -status : string

-type : string
organizerExt.ContactRecord organizerExt.AppointmentRecord
-id : float -id : float
-category : string -title : string
-company : string -category : string
-firstname : string -whendt : datetime
-lastname : string -location : string
-phonenumber : string -note : string
-cellnumber : string -type : string
-faxnumber : string
-email : string
-note : string
-type : string

Figure 3-14. The record descriptors in all their glory

The way it works is that you instantiate an Ext.data.Record object by calling the static
create() method of that class, feeding an array of field descriptors to the constructor, like so:

organizerExt.NoteRecord = Ext.data.Record.create(][
{ name : "id", mapping : "id" },
{ name : "category", mapping : "category" },
{ name : "content", mapping : "content" },
{ name : "type", mapping : "type" },

The result of this is the creation of a new class, NoteRecord, which we make a public mem-
ber of the OrganizerExt instance. As you can see, we're specifying that this type of Record has
four fields: id, category, content, and type. Each field is defined by an object in an array, and
the object has two attributes: name, which is simply the name of the field in the Record, and

4 AVOis a construct that’s seen most often in, but that’s not limited to, the Java languages. It’s sim-
ply a class designed for transferring data back and forth between two entities. This comes up in Java
because you don’t have structs like in C—classes are all there is. VOs usually contain no logic but just
data fields, as well as accessor and mutator methods (a.k.a. getters and setters) for setting and access-
ing those fields.

162 CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

mapping, which is the name of the attribute of the underlying data object. So for example, when
we create an instance of a NoteRecord, we use this code:

var nr = new organizerExt.NoteRecord({
id : 123, category : "myCategory", type : "Note", content : "myContent”

1;

With the name and mapping attributes defined as such, the Record knows that the id
attribute of the incoming object maps to the id field of the Record, and so forth. Note that
the mapping attribute is optional if it’s the same as the name attribute, or so says the ExtJS
documentation. However, I had trouble with the code working if I left it out, so I included
it. Also note that the value of the mapping attribute depends on what underlying Ext.
data.Reader implementation is creating the Record. For example, if you were using the
Ext.data.JsonReader, it’s a JavaScript expression to reference the data, whereas for the
Ext.data.XmlReader, it’s an Ext.DomQuery path to the element to map to the Record field. An
example would be E[foo=bar], which matches an attribute foo that equals bar (see the Ext JS
documentation for full details).

The other three Record types are pretty redundant, aside from differing in the fields they
contain, so take a look on your own and let’s move on to some other things.

Populating the Data Stores

Populating the data stores from the Gears database, done once at startup, is a pretty trivial
task, as you can see for yourself:

var retrievedNotes = dao.retrieveNotes();
for (var i = 0; i < retrievedNotes.length; i++) {
organizerExt.notesStore.add(
new organizerExt.NoteRecord({
id : retrievedNotes[i].id,
category : retrievedNotes[i].category, type : "Note",
content : retrievedNotes[i].content
b
)5
}

A call to one of the retrieval methods in the DAQ, retrieveNotes() in this case, gets us all
the data there is to get. Remember that we get back an array of simple objects here, so the next
step is to iterate over that array. For each item we create the appropriate Record, a NoteRecord
here, and pass that Record to the add() method of the corresponding data store. This is all done
as one statement, just because it felt natural to me to do it this way. (The alternative would
have been to create a NoteRecord, assign it to a variable, and pass it along to the add() method,
but it’s purely a style choice.) The other four data stores are similarly populated, so again we’ll
save some space and move on to some other things.

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

The “New Note” (and, Indirectly, the “New Task”) Dialog

The next method we run into as we walk through this class is the createNewNoteDialog()
method, which does precisely what its name implies it does:

var createNewNoteDialog = function() {

var createNoteFormPane = new Ext.FormPanel({
id : "createNoteFormPane", monitorValid : true,
frame : true, labelWidth : 70, width : 400, autoheight : true,
items : [
{
xtype : "combo", fieldlLabel : "Category", name : "category",
width : 280, allowBlank : false, editable : false,
triggerAction : "all",
mode : "local", store : organizerExt.categorylList, typeAhead : false

}

{
xtype : "textarea", fieldlLabel : "Content",

name : "content", width : 280, height : 230,
allowBlank : false
}
]
D

createNoteFormPane.addButton({ text : "Create", formBind : true},
function() {
var vals = Ext.getCmp("createNoteFormPane").getForm().getValues();
var newNoteRecord = new organizerExt.NoteRecord({
category : vals.category, content : vals.content, type : "Note",
id : 0
b;
organizerExt.notesStore.add(newNoteRecord);
Ext.getCmp("dialogCreateNote").hide();
}
)5
createNoteFormPane.addButton("Cancel”, function() {
Ext.getCmp("dialogCreateNote").hide();

1

new Ext.Window({
title : "Create Note", closable : true, modal : true,
width : 400, height : 340, minimizable : false, resizable : false,
draggable : true, shadowOffset : 8, items : [createNoteFormPane],
closeAction : "hide", id : "dialogCreateNote"

};

163

164

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

In the case of previous Windows, we created the Window and immediately showed it, but in
this example we're creating the Window for later. This is a good technique when you know the
Window (or other UI widget) is something you’ll need over and over again. It’s better to avoid
the overhead of creation if you can by only creating it once and reusing it. That’s precisely
what we’re doing here. We create a new Window, which starts off not visible.

Before we create the Window itself, though, we’re creating a FormPanel. This is a widget that
houses a form. On its own, a FormPanel, a descendant of the Panel class, doesn’t do much. It
has to be a child of some other widget to do much good. Here it’s going to be a child of our
Window.

Creating a FormPanel, and by extension a form, is not too tough. We start by instantiating
an Ext.FormPanel object, passing into its constructor a configuration object. This object con-
tains a number of fields, starting with id, which is pretty self-describing. Next is monitorValid,
which is a neat option that tells the form to monitor itself to determine if it’s “valid,” whatever
valid means in this context. This causes a looping event to occur whenever the valid state of
the form changes. We can react to this state if we wish. More importantly, though, is that we
can have other form elements tied to this state for free! Look down a bit in the code to where
the Create button is created and note the formBind:true configuration option. This instructs
the button to take part in that looping event so that whenever the form is not valid, the but-
ton is disabled, and when the form is valid, the button is enabled. This is precisely what you'd
want to happen from a user interface perspective, and we got it without writing a lick of code.
Very sweet!

Returning to the configuration of the FormPanel, we see the width and height speci-
fied, sized to fit nicely in our Window. We also see the frame:true attribute, which puts a nice
frame border around the FormPanel, which just makes it look a little better within the Window.
We also inform the FormPanel to set its height automatically (autoHeight:true) based on its
contents. We also include a setting that specifies how wide the labels of our fields should be
(labelWidth:70).

Following that is an array assigned to the items attribute. This will be the fields on our
form. Each element of the array is an object that describes a given field. We start with the
Category field. The xtype attribute tells us what kind of field this is going to be, a combo box in
this case. We specify a label for the field via the fieldlLabel attribute, and we assign a name to
the field to retrieve its value later. The width attribute tells us how wide the field itself will be,
minus the width of the label. (You'll notice the field is 280 pixels wide, and the label is 70 pixels
wide, leaving 50 pixels in the width of the FormPanel and Window, which is enough to display the
error icon when a field is invalid.) The allowBlank attribute, when set to false, indicates that
this field is required in order for the form to be valid. This is how the mechanism enabled by
monitorValid, and by extension the formBind attribute of the Create button, knows whether or
not a given field is valid at a given point in time.

Setting the editable attribute to false indicates that the user should not be able to type a
value into the combo box, which makes it work more like a traditional <select>.

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

Note | encountered a problem while writing this code where once you select a value, the list of values
no longer appeared. A user in the support forums on the Ext JS web site came to the rescue, indicating that
the solution was to set triggerAction to all, as you see here. This essentially tells the combo box to re-
query the data that is used to populate it any time the field is triggered—in this case, when the down arrow
is clicked.

The mode attribute indicates whether the data for the combo box is coming from a remote
source—a server in other words—or from local JavaScript. Here we have no server and a set
list of options, so it’s local. We also need to tell the ComboBox where the store of data is by
specifying the store attribute. Here, it’s simply pointing at the simple array referenced by the
categorylist attribute of the OrganizerExt class.

A TextArea is next created for users to type their note into, which is where the xtype of
textarea comes into play. Its attributes are obvious, given that we’ve seen them all already.

The FormPanel now has all the fields the user can enter, so all that remains is adding some
buttons to it, one for actually creating the note and one for canceling, if the user changes his or
her mind (after all, creating a note is a lifelong commitment, no?). The addButton() method of
the FormPanel is made especially for this purpose. First the Create button is created. The first
argument to this method is a configuration object, here specifying the text on the button and
that formBind attribute discussed earlier.

The second argument of the addButton() method is a function to execute when the but-
ton is clicked. Here, this function doesn’t have to do a whole lot: it gets a reference to the
FormPanel via the Ext.getCmp() function, then gets the form contained within that FormPanel.
It then calls the getValues() method of that form, which returns a simple object where the
attributes correspond to the form fields, with their corresponding values assigned to the attri-
butes. This object, reference by the vals variable, is used to create a NoteRecord object, which
is then passed to the add() method of the notes data store. As we saw previously, this triggers
the add event, which calls our DAO. createNote() method, which in turn writes the data to the
Gears database. Did you notice how relatively little code we had to write to get the connection
between the database, DAO, data store, and form? It probably amounts to 20 lines of code or so
all totaled, which isn’t much at all!

The cancel button is created similarly, and its function simply calls the hide() method on
the Window. Remember, we’re going to reuse this Window; hence we don’t want to destroy it but
just hide it.

The final step in this method is to create the actual Window. You've seen that a few times
now, so it’s nothing new. This time around, though, we specify the closeAction attribute,
which is what will happen if the user clicks the close X icon on the Window. Again, we just want
to hide it. One difference in the way this Window is created is that previously we saw how to cre-
ate a Window based on some existing HTML, but this time around we’re building it completely
via code. So, the items attribute is used to attach various UI widgets to the Window, in this case
our FormPanel, which contains all the content. Likewise, we have to explicitly specify a title
for the Window.

165

166

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

In Figure 3-15 you can see the results of all this effort.

%9 OrganizerExt - Mozilla Firefox

file Edit View History Bookmarks Tools Help i
L9 ot Ix] i
1 NewNotz @i MewTask 4 New Contact %' New Appointment) AboutOrganizerExt] Icon View
Categories <«| | Appointments =
Appoiniments | [

\ppointment , 067 2001
2 T4
ilter X X
U o= | =
@ Show All ~ testt
Create Note X
| | 3
AppointmentD:tai Eategon: 2, l
Content:
i ‘D
g
e e]

Motes
Tasks
Contacts
Sa (@) [file:///G/OrganizerExt/indexhtms 26.6MB /27 MB (| 482MB/488MB & B vSlow 0755 @ 1337 »

Figure 3-15. The New Note window

In Figure 3-16 you can see what happens when a form is not valid. The tooltip you see is a
result of me hovering the mouse over the red exclamation bubble next to the field. Also notice
that the Create button has been disabled. Again, note that we accomplished that with just
some configuration options—we didn’t have to write any code to do it.

If you play with the contacts creation Window, you’ll notice that some other types of valida-
tions are present. For example, the e-mail address value must be a valid e-mail address. This
too is something we can get automatically, like so:

{
xtype : "textfield", fieldlLabel : "eMail Address",
name : "email", width : 250, vtype : "email"

This is the object in the items array that is specified for the FormPanel in the create contact
Window. That vtype attribute, short for validation type, specifies a type of validation to occur for
that field. Table 3-1 lists the other vtypes built into Ext JS.

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

) OrganizerExt - Mozilla Firefox

File Edit View History Bookmarks

Tools Help

;J (] Organizerext

1]

11 New Note
Categories

Appointments

Filter

®@ Show Al

MNotes
Tasks
Contacts

55 @ & oone

o NewTask A4 New Contact %

New Appointment

«| | Appointments

=
testt

Appointment ngmi

L=) 1=
test2 Mest with client Teeth cleaning

& About OrganizerExt 7] Tcon View

Create Task

Category:

Content:

@ This fieldis required

|

266MB/27MB | 482MB/488MB 4 FB vslow o07ss @ 1337 -

Figure 3-16. The New Task window, with a validation failure and the associated tooltip

Table 3-1. Vtypes Available by Default in Ext JS

Viype Description

email Ensures the field’s value is a valid e-mail format (i.e., user@domain.com)

url Ensures the field’s value is a valid URL format (i.e., http://www.domain. com)
alpha Ensures the field’s value only contains letters and the underscore character
alphanum Ensures the field’s value only contains letters, numbers, and the underscore

character

It is also possible to create your own validation types, or extend these to meet your needs.
You'll see an example of that in later chapters.

The New Appointment Dialog

Even though there’s not much more to it than you've seen already, let’s take a quick look at the
New Appointment Window:

167

168 CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

var createNewAppointmentDialog = function() {

var createAppointmentFormPane = new Ext.FormPanel({
id : "createAppointmentFormPane",
frame : true, labelWidth : 100, width : 400, autoheight : true,
monitorValid : true,
items : [
{
xtype : "textfield", fieldLabel : "Title",
name : "title", width : 250, allowBlank : false
b
{

xtype : "combo", fieldlLabel : "Category", name : "category",
width : 250, allowBlank : false, editable : false,
triggerAction : "all",
mode : "local", store : organizerExt.categorylist

1

{
xtype : "datefield", fieldlLabel : "When",

name : "whendt", width : 250, allowBlank : false
b

{
xtype : "textfield", fieldlLabel : "Location",

name : "location", width : 250
b

{
xtype : "textarea", fieldlLabel : "Note",

name : "note", width : 250, height : 152
}
]
bs

createAppointmentFormPane.addButton({ text : "Create", formBind : true},
function() {

var vals = Ext.getCmp("createAppointmentFormPane").getForm().getValues();

vals.whendt = Date.parseDate(vals.whendt, "m/d/Y");

var newAppointmentRecord = new organizerExt.AppointmentRecord({
title : vals.title, category : vals.category, whendt : vals.whendt,
location : vals.location, note : vals.note, type : "Appointment",
id : 0

1;

organizerExt.appointmentsStore.add(newAppointmentRecord);

Ext.getCmp("dialogCreateAppointment”).hide();

)5

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

createAppointmentFormPane.addButton("Cancel”, function() {
Ext.getCmp("dialogCreateAppointment™).hide();

};

new Ext.Window({
title : "Create Appointment", closable : true, modal : true,
width : 400, height : 340, minimizable : false, resizable : false,
draggable : true, shadowOffset : 8, items : [createAppointmentFormPane],
closeAction : "hide", id : "dialogCreateAppointment”

};

The only thing really different here is the introduction of two new xtype values: datefield
and textfield. The former creates a field with a calendar icon that, when clicked, presents a
full calendar from which to choose a date. The textfield xtype is just like textarea except it is
a single-line place for the user to type a value.

You can also here see the use of the Date.parseDate() method when getting the value of
the When field. Because I wanted the data type of the whendt field in the AppointmentRecord to
be a true JavaScript Date object, and since using getValues() on a form like this only gets you
strings, I needed to parse that string into a Date object. That is exactly what parseDate() does
for us. The second argument to this function indicates what the format of the input date string
is, and gives us back a true Date object. Very nice!

Note The call to getForm() on the FormPanel gives us back an Ext.form.BasicForm, which has a
number of neat methods, getValues() among them. This is very much like an HTML form with all sorts of
handy utility methods hanging off it, and | suggest you spend a few minutes with the Ext JS API documenta-
tion on the BasicForm class to become familiar with what it has to offer.

In Figure 3-17 you can see what the New Appointment Window looks like. I've even clicked
the calendar icon next to the When field to show the calendar in all its glory.

169

170

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

% OrganizerExt - Mozilla Firefox

File Edit View History Bookmarks Tools Help
(L9 ermnea]
| NewNote ! NewTask A New Contact 4! New Appointment § About OrganizerExt 7] Tcon View
Categories «| | Appointments A
Appointments - e .
507 _ 2007 7005 500
Filt F= ¥ I = o
ilter 4
4l 14l 4 (4 |
B L L
@ show Al testt test2 Mest with client Teeth cleaning
Jach Create Appointment %
|
Appomtmentl)ztai Title: i
Category: 2
! When:]
[[EE
Location: 4 October 2008 ~
‘ Note:
| — |
— |
Hates
Tasks
Contacts
= (@ [Z file:///C/organizerExt/indexhtms 266MB/27MB | 482MB/488MB 4 JB vslow o755 @ 1337 -

Figure 3-17. The New Appointment dialog

Building the User Interface: The buildUl() Method

As it happens, building the Ul pretty well boils down to one massive JavaScript statement!
You can take one of three approaches to building a UI with Ext JS. The first is what we’ll

see in this application: one giant statement. The second is to create a whole bunch of com-
ponents programmatically and then stitch them together via code. The third is more of a
declarative approach where you do as much as possible in markup, which is then used as the
templates for the widgets created via code (which we’ve seen some of here). The bottom line

is you're going to be writing code one way or another—it’s just a question of how much and
in what form.

Creating the Viewport

The first step is typically creating a Viewport. There is exactly one Viewport per page that

takes up the entire browser window, and inside the Viewport goes various other Container
components (usually Panel objects). Let’s see how that Viewport is created first. Note that this
begins that giant statement I mentioned, and all the code snippets that follow are parts of that
statement.

var vp = new Ext.Viewport({
layout : "border",
items : [{

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

The Ext.Viewport class is instantiated and passed a configuration object. The layout attri-
bute specifies how the Viewport will organize its child components. A number of layouts are
available, as you can see in Table 3-2. Note that these don’t only apply to the Viewport; they
can also in most cases be applied to children of the Viewport.

Table 3-2. Layouts Available to the Viewport and Child Panels

Layout Attribute Value Description

absolute This layout inherits the anchoring of Ext.layout.AnchorLayout and adds
the ability for x/y positioning using the standard x and y component con-
fig options.

accordion This layout contains multiple panels in an expandable accordion style so
that only one panel can be open at any given time. Each panel has built-in
support for expanding and collapsing.

anchor This layout enables anchoring of contained elements relative to the
container’s dimensions. If the container is resized, all anchored items are
automatically rerendered according to their anchor rules.

border This is a multipane, application-oriented UI layout style that supports
multiple nested panels, automatic split bars between regions and built-in
expanding and collapsing of regions.

card This layout contains multiple panels, each fit to the container, where only
a single panel can be visible at any given time. This layout style is most
commonly used for wizards, tab implementations, or other Ul interfaces
where multiple “pages” are present in the same area but only one is visible
atatime.

column This is the layout style of choice for creating structural layouts in a multi-
column format where the width of each column can be specified as a
percentage or fixed width but the height is allowed to vary based on the
content.

fit This layout contains a single item that automatically expands to fill the
layout’s container.

form This layout is specifically designed for creating forms. Typically you'll use
the FormPanel instead.

table This layout allows you to easily render content into an HTML table. The
total number of columns can be specified, and rowspan and colspan can
be used to create complex layouts within the table.

There is also a basic Container layout, which is what you'll get for the Viewport if you
supply no value for the layout attribute. In this case we're using a Border layout, since the
structure of the application fits that model nicely: there’s something on the top (the toolbar),
something on the left (our Accordion category selector), and something in the middle (both
the icon/list views and the details section). Note that you do not have to use all of the areas
allowed for with a Border layout, you can skip any you like.

Creating the Accordion Pane

Once the Viewport is created and configured, we can start adding children to it, starting with
the Accordion on the left where the user can flip between categories and filter listings. The
code that begins creation of the Accordion looks like this:

17

172

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

region : "west", id : "categoriesArea", title : "Categories",
split : true, width : 260, minSize : 10, maxSize : 260,
collapsible : true, layout : "accordion",

defaults: { bodyStyle : "overflow:auto;padding:10px;" },
layoutConfig : { animate : true },

items : [

The region attribute specifies in what position of the Border layout this child should live
in—in this example, the left side, or west area. An id can be assigned to this Accordion if you
want to, as I've done here. You can set the title attribute to have a title bar present. The split
attribute, when true, indicates that there is a split bar that the user can drag to resize this
area. The width attribute specifies the starting width of the Accordion, and the minSize and
maxSize attribute specify the minimum and maximum width the Accordion can have when
the user resizes it. The collapsible attribute set to true includes the little arrow in the title
bar of the Accordion that allows the user to quickly collapse this section of the layout. The
defaults attribute specifies attributes to be applied to any component added to this Container.
Here it applies some padding to the body of the content in each of the Accordion panes. The
layoutConfig attribute is an object whose properties set attributes specific to the component
being created. So here, for example, we're specifying that the Accordion should animate itself
whenever the user flips between panes.

Once you have the Accordion all set up, you can begin to add components to it, and in this
case I've done so using the items attribute.

The Appointments Accordion Pane

Each element of the items attribute array is an object that defines a component to be added to
the Accordion, creating another pane in the Accordion. The first one here is creating the pane
for appointments:

{
listeners : {
"expand" : {
fn : function() { organizerExt.changeCategory("appointments"); }
}
b
id : "appointmentsArea", title : "Appointments"”,
items : [

{ xtype : "label", text : "Filter:" },
{ xtype : "label", html : "

" },
{
xtype : "radiogroup", columns : 1,
items : [

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

{ boxLabel : "Show All", name : "appointmentsFilterType",
inputValue : 1, checked : true,
listeners : {
"check" : function(inCheckbox, inChecked) {
if (inChecked) {
organizerExt.appointmentsStore.filterBy(
function(inRecord, inIndex) {
return true;
}
)s
}
}
}
b
{ boxLabel : "Show Date:",
name : "appointmentsFilterType", inputValue : 2,
listeners : {
"check" : function(inCheckbox, inChecked) {
var afcDatePicker =
Ext.getCmp("appointmentsDatePicker");
if (inChecked) {
afcDatePicker.enable();
} else {
afcDatePicker.disable();
afcDatePicker.setValue(new Date());

xtype : "datepicker", id : "appointmentsDatePicker",
disabled : true,

listeners : {
"select" : function(inPicker, inDate) {
organizerExt.appointmentsStore.filterBy(
function(inRecord, inIndex) {
var whendt = inRecord.get("whendt");
if (whendt.getMonth() == inDate.getMonth() 8&&
whendt.getDate() == inDate.getDate() &%

whendt.getFullYear() == inDate.getFullYear()) {
return true;

} else {

173

174 CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

return false;
}
}
)5
}
}
}
1

border : false, cls : "cssDefault"

b

The first thing we see is that an event handler is defined by passing an array as the value
of the listeners attribute. Each element in the array is an object with attributes named
after events, as we've previously seen. Here, we call the changeCategory() method of the
OrganizerExt class any time this pane is expanded.

After that we give an id and title to this particular pane, and then it’s time to add some
content to the pane. For that we use the items array once again.

The first two items added are xtype:label, which is just a simple string of text. Note that
you can have HTML as the value here, and that renders as you'd expect it to. Following that is
the addition of an xtype:radiogroup. This is some number of Radio buttons grouped together
so that they function as mutually exclusive selections, just like Radio buttons should.

The columns attribute specifies how many columns should be used to render the Radio
buttons, and this allows you to have matrixes of Radio buttons rather than just running right
down the page vertically, as is the case here. Within the RadioGroup we again see an items
array (this is a common thread if you haven’t noticed by now!) where each element is a Radio
button. Each Radio button has a boxLabel attribute, which is a fancy way of saying it’s the text
accompanying the Radio button, and a name attribute.

Note The name attribute must match all the other Radio buttons in the RadioGroup; otherwise, they
don’t function in the expected way (i.e., only one selection allowed). This was frankly a little surprising to me;
| expected that making the Radio buttons part of a RadioGroup made the name not matter, but that isn’t
the case.

The inputValue attribute allows you to assign a value to each Radio button, and the
checked attribute determines which of the options is selected upon creation. Finally, we see
another use of the listeners attribute to define some code to execute when the Radio button
is selected by responding to the check event. In the case of the first Radio button, we filter the
list currently being shown (although since this Radio button is the Show All option, “filtering”
here means selecting all items from the store). Note that the check event fires when the item
is checked or when it is unchecked, hence the reason the inChecked argument is taken into
account: we only want this code to execute when the Radio button has been selected, not when
it’s been unselected.

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

Note You may at first find the attribute checked, and the event named check, to be strange for a Radio
button, since they don’t really get “checked.” However, a quick look at the Ext JS API docs clears it up:
Radios extend from the Checkbox widget, and it inherits these items, among others. Remember, Ext JS is
built based on a rich 00P foundation, and that shines through frequently like this.

In the case of the second Radio button, we need to enable the DatePicker if the Radio but-
ton has been checked, or disable the DatePicker if the Radio button has been unchecked. The
call to Ext.getCmp("appointmentsDatePicker"); gets us a reference to the DatePicker, which
we can then call enable() or disable() on as appropriate. Also, when the DatePicker is dis-
abled, its date is set to today’s date so that it’s ready for the next time it’s needed.

The DatePicker itself is the next item added to this Accordion pane using an xtype of
datepicker. It starts out disabled (disabled:true) since the Show All Radio button is by default
selected.

When the select event fires on the DatePicker, we execute some code to again filter the
items shown in the list. The filterBy method of the target data store is used to filter the items.
Recall that this method accepts a reference to a callback function that will be called for every
Record in the store. The function returns true if the Record should be included, False if not.
Because the appointments DataView objects are bound to the data store, they are updated
automatically.

The Notes Accordion Pane

The Accordion pane for notes is conceptually very similar to the one for appointments, and
the same is true for contacts and tasks. So, while I'll show the code for the notes pane here, I'm
going to skip over much of it on the basis that you’ve already seen most of it, and I'll only be
pointing out some differences for tasks and contacts.

{
listeners : {
"expand" : {
fn : function() { organizerExt.changeCategory("notes"); }
}
1

id : "notesArea", title : "Notes", border : false,
cls : "cssDefault",
items : [
{ xtype : "label", text : "Filter:" },
{ xtype : "label", html : "

" },
{
xtype : "radiogroup", columns : 1,
items : [

175

176 CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

{ boxLabel : "Show All", name : "notesFilterType",
inputValue : 1, checked : true,
listeners : {
"check" : function(inCheckbox, inChecked) {
if (inChecked) {
organizerExt.notesStore.filterBy(
function(inRecord, inIndex) {
return true;

}
)s
}
}
}

b
{ boxLabel : "Show Category:",

name : "notesFilterType", inputValue : 2,
listeners : {
"check" : function(inCheckbox, inChecked) {
var nfcCombo = Ext.getCmp("notesFilterCategory");
if (inChecked) {
nfcCombo.enable();
} else {
nfcCombo.disable();
nfcCombo.reset();

xtype : "combo", id : "notesFilterCategory", editable : false,
mode : "local", store : organizerExt.categorylist,
disabled : true, triggerAction : "all",
width : 150, listWidth : 168,
listeners : {
"select" : function(inComboBox, inRecord, inIndex) {
organizerExt.notesStore.filterBy(
function(inRecord, inIndex) {
if (inRecord.get("category") ==
Ext.getCmp("notesFilterCategory").getValue()) {
return true;
} else {

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

return false;
}
}
)5

The primary difference between this and what we just looked at for appointments is that

instead of a DatePicker we have a ComboBox for the user to choose a category to filter by. This
uses an xtype of combo and is nearly the same as the ComboBox creations we saw earlier in the
item creation dialogs. In fact, it is bound to the same basic array of data as those others were.
Here, though, we have the addition of an event handler for the select event. The callback
defined kicks off a call to filterBy() on the data store for notes, just as you’'d expect. A simple

comparison is all it takes to implement the required filtering logic.
In Figure 3-18 you can see what the ComboBox looks like in action.

) OrganizerExt - Mozilla Firefox

File Edit View History Bookmarks Tools Help
@ | L9 | () organizerext ||
T | NewNote g NewTask 4 New Contact %! New Appointment | () About Organizerext | 7] Tcon View
{k Categories /| | Notes
@ Appointments s
— | Notes -
é} Filter:
e Inventadev... Finish wrii
| © show Al
* @ Show Category:
f] !
L Competi|# Note Details
Q Famity
||—| |Favortte:
P 8| o
= | Gostror
Holiday
%zi, Home
Hot Coni
i @' Ideas
| |intemati
Key Cust Category
Medical Content
Meeting
Miscelan
Other [
Tasks +
Contacts +
[N @ & pene 264MB/27MB [483MB/48.8MB & [& vslow o.987s & 1337 ¢

Figure 3-18. The category being used to filter notes

As you can seg, it’s basically the same as in the creation dialogs, just as you’d expect.

177

178 CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

Filtering Tasks by Status

Within the configuration for the tasks pane is the callback executed in response to the check
event of the Show Active Radio button. I'd like to point that out here:

{ boxLabel : "Show Active", name : "tasksFilterType",
inputValue : 2,
listeners : {
"check" : function(inCheckbox, inChecked) {
if (inChecked) {
organizerExt.tasksStore.filterBy(
function(inRecord, inIndex) {
if (inRecord.get("status") ==
DAO.TASK_STATUS ACTIVE) {
return true;
} else {
return false;
}
}
)5
}
}
}
b

This code uses one of the pseudo-constants from the DAO class in the comparison, but
aside from that it’s just like what we’ve seen already.

Filtering Contacts by Last Name

Like the active task filtering, contacts have a slightly different filtering capability, which is the
ability to filter by last name:

{ boxLabel : "Show last nams starting with A-C",
name : "contactsFilterType", inputValue : 2,
listeners : {
"check" : function(inCheckbox, inChecked) {
if (inChecked) {
organizerExt.contactsStore.filterBy(
function(inRecord, inIndex) {

var firstletter = inRecord.get(
"lastname").charAt(0).toUpperCase();

if (firstletter >= 'A' 8& firstletter <= 'C') {
return true;

} else {

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

return false;
}
}
)5
}
}
}
b

This is the definition for just one of a number of Radio buttons, each corresponding to
a group of letters (A-C here, the next is D-F, and so forth). When one of these is selected,
the check event fires, and for each Record in the data store we check if the first letter of the
lastname field starts with one of the letters in the selected group. If so, true is returned; if not,
false is returned, and that gives us filtering by last name.

The Main Region

The main, or center region of the BorderLayout, is where you find the icon/grid views and the
detail section for a given category. You can generally split up a given Container as many times
as you wish using various layouts, so here we have the center Container split into multiple
regions by using a BorderLayout again within it:

{

id : "mainArea", region : "center", layout : "border",
items : [

This means we have a BorderLayout nester inside the center region of another
BorderLayout. That also means that we could have up to five Containers (north, south, east,
west, and center) as part of the inner BorderLayout. As it turns out, we’ll only need two,
though.

The Icon and Grid Lists

The north region of this inner BorderLayout is where we’ll put a series of Panels, eight of them:
four Panels for the icon view of each of the four categories, and four Panels for the list view of
each of the four categories. To achieve this we’ll use a CardLayout in this region:

{
xtype : "panel", region : "north", split : true,
collapsible : true, id : "listingCard", layout : "card",
activelItem : 0, title : "Appointments",
height : 175, autoScroll : true,
items : [

Again, all it takes is setting the layout attribute to card and we have what we want. A
CardLayout stacks a number of Panels on top of one another so that only one is visible at a
time. The activeItem attribute indicates which of the Panels is active to begin with using
a simple 0-based index value. The autoScroll attribute set to true indicates that content
larger than the area occupied by the CardLayout will be allowed to scroll. The region attribute

179

180

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

tells the component that contains this CardLayout (the inner BorderLayout) what region this
CardLayout should be rendered to—the north region in this case.

Now that we have a CardLayout, let’s see how an icon view is created. We'll just look at one
since—you guessed it—they are all virtually identical!

An Icon View

Anicon view is a DataView, defined by using an xtype of dataview:

{
xtype : "dataview", id : "dvAppointmentsIconView",
store : organizerExt.appointmentsStore,
tpl : new Ext.XTemplate(
"<tpl for=\".\">",
"<div class=\"thumb-wrap\">",
"<div class=\"thumb\">" +
"</div>",
"{title}</div>",
"</tpl>",
"<div class=\"x-clear\"></div>"
)J
singleSelect : true, overClass : "x-view-over",
itemSelector : "div.thumb-wrap",
listeners: {
selectionchange : {
fn : function(inDataView, inNodes) {
var selectedRecord = inDataView.getSelectedRecords()[0];
organizerExt.showAppointmentDetails(selectedRecord);
}
}
}
b

A DataView allows us to display items however we choose by specifying a template to use
to render each item. The tpl attribute specifies the Ext.XTemplate object to use for this pur-
pose, and here we’re creating a new one inline. As you can see, it consists of some basic HTML
with the addition of some replacement tokens in it and some special processing tags. For
example, the {title} token will be replaced with the title of a given appointment as entered by
the user.

In addition to these tokens are some simple processing tags that can be used as part of the
template. One such tagis <tpl for="."> (the quotation marks are escaped in the code, but this
is the underlying statement). This special tag is equivalent to saying, “This template should be
applied to all Records in the data store.” More precisely, the template should never be applied
to Records matched by the filterBy() method currently in effect, because the user could have
chosen to filter the data based on some selected criteria from the Accordion panes.

After the template we find a few more configuration options. The singleSelect attri-
bute, when true, indicates that only a single item in the DataView can be selected at a given
time. The overClass attribute specifies the style class to apply to an item when the mouse is

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

hovering over it. The itemSelector attribute indicates the style class to apply to the selected
item. There is also the 1isteners attribute, as we’ve seen plenty of already. This time, we
react to the selectionchange event, which results in the selected Record being retrieved via a
call to inDataView.getSelectedRecords (). This method returns an array, but since we know
only one item can be selected, it’s the item at array index 0 that we’re interested in. A call to
organizerExt.showAppointmentDetails() is then made, passing along the Record object that
was just retrieved. We'll see how those details are displayed soon, but first we need to look at
a list view.

A List View

Creating a list view means creating a Grid, as you can see here:

{
xtype : "grid", id : "gdAppointmentsListView",
autoExpandColumn : "colTitle", minColumnWidth : 10,
autoExpandMin : 10, autoExpandMax : 5000,
store : organizerExt.appointmentsStore,
columns : [
{
header : "Category", width : 50,
sortable : true, datalndex : "category"

})
{
header : "Title", id : "colTitle",
sortable : true, datalndex : "title"
})
{
header : "When", width : 90,
sortable : true, dataIndex : "whendt"
}

B

viewConfig : { forceFit : true }, stripeRows : true,
sm : new Ext.grid.RowSelectionModel({ singleSelect : true }),
listeners: {
rowclick : {
fn : function(inGrid, inRowIndex, inEventObject) {
organizerExt.showAppointmentDetails(
inGrid.getSelectionModel().getSelected()
)5
}
}
}
b

The grid xtype does the basic work for us, and then it’s a matter of setting configuration
options and defining the columns. The options are autoExpandColumn, which names the col-
umn that will expand to take up all the space in the grid; minColumnWidth, which is the smallest

181

182

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

the user can make a column by dragging to resize it; autoExpandMin, which is the minimum
space the column named by autoExpandColumn can take; and autoExpandMax, which is the
maximum width of the column named by autoExpandColumn. The store attribute is the same
as we’ve seen earlier: it binds the Grid to a particular data store, the one for appointments in
this case.

After that is the columns attribute, which is an array of objects where each object defines
a column in the Grid. Each object has a header attribute, which is the text to show in the col-
umn header; a width attribute, which is the initial width of the column; a sortable attribute,
which indicates whether the user can click the column header to sort the data (true) or not
(false); and dataIndex, which is the name of the field in a Record taken from the data store that
we want displayed in that column.

Following the columns attribute are a few more configuration options (I probably should
have grouped them all together, but Ext JS doesn’t care, so it’s purely a question of style).

The first is viewConfig, which contains options that will be applied to the Grid’s UI The lone
attribute within that object, forceFit, when true indicates that we want the Grid columns
automatically expanded to fit the Grid in order to avoid horizontal scrolling. Next we see the
stripeRows attribute set to true, and that does some color striping of the row to make it easier
to read across its rows.

After that is the sm attribute, whose value should be (and is in this case) an instance of
Ext.grid.RowSelectionModel. This defines how the user is allowed to select rows. Here, users
can select only one at a time, so the singleSelect attribute of the config object passed to the
constructor is set to true.

Finally, we have our friendly listeners attribute, and this time it’s the rowclick event
we’re interested in. When a row is clicked, we need to show the details of the selected
appointment via a call to organizerExt.showAppointmentDetails(). Passed to the callback
for the event is inGrid, a reference to the Grid object; inRowIndex, literally the index number
of the row that was clicked; and inEventObject, an object describing the event. The one
we're interested in here is inGrid, because we can call the getSelectionModel() method to
return the SelectionModel object we attached to the Grid, which contains a method for get-
ting the Record associated with the clicked row via a call to getSelected(). That’s all that is
involved, aside from showing the details, which is coming up just a little later. For now, let’s
see how the areas where the details are shown are created, since that’s obviously necessary
before we can show details!

Item Details Panes

The details sections create another CardLayout, just like the Panel where the icon and list views
are housed, one card for each category for which we might want to show details. Each of the
four detail sections is defined by an object in the items array:

{

xtype : "panel", region : "center", id : "detailsCard",
layout : "card", activeItem : 0, autoScroll : true,
title : "Appointment Details",

items : [

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

{

autoScroll : true, xtype : "panel",

html : Ext.getDom("divAppointmentDetails").innerHTML
b
{

autoScroll : true, xtype : "panel",

html : Ext.getDom("divNoteDetails").innerHTML
b
{

autoScroll : true, xtype : "panel",

html : Ext.getDom("divTaskDetails").innerHTML
b
{

autoScroll : true, xtype : "panel",
html : Ext.getDom("divContactDetails").innerHTML

Each of the detail sections is defined in index.htm as we saw earlier, and here we’re setting
the HTML that is to be displayed in a Panel. You see, it’s not necessary to create Ext JS widgets
and add them to a Panel; you can insert plain old HTML if you want via the html attribute.
Since we already have the HTML we want to insert sitting on index.htm, all we need to do is get
a reference to the appropriate <div> with a call to Ext.getDom() and get the innerHTML prop-
erty. That becomes the value of the html attribute for the Panel, and voila, we have content in
the Panel!

Defining the Toolbar

Only one thing remains for us to define in our Viewport: the toolbar area up at the top. This is
the closing section of that giant statement defining the Viewport that we started with, so let’s
dive right into it:

{

id : "toolbarArea", autoHeight : true, border : false,
region : "north",
items : [{
xtype : "toolbar", items : [
{
text : "New Note",
handler : function() {
Ext.getCmp("createNoteFormPane").getForm().reset();
Ext.getCmp("dialogCreateNote").show(Ext.getDom("divSource"));
}, icon : "img/toolbarNote.gif", cls : "x-btn-text-icon"

1

183

184 CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

{ xtype : "tbspacer" }, { xtype : "tbspacer" },

Thus begins the Toolbar definition. It lives in the north region of the main BorderLayout
and has no border (it looks a little weird with the border present). The first item on the tool-
bar is the New Note button. When you click that button, the handler function is executed.

Its job is to clear the form where the user enters note information. This requires a call to
Ext.getCmp("createNoteFormPane") to get a reference to the FormPanel, followed by a call to
getForm() to get a reference to the underlying form. Finally, reset() is called to do the actual
dirty work of resetting the form. Once that’s done, we can go ahead and show the Create Note
Window.

{

text : "About OrganizerExt",
handler : function() {
var dialogAbout = new Ext.Window({
applyTo : "dialogAbout", closable : true, modal : true,
width : 400, height : 320, minimizable : false,
resizable : false, draggable : false, shadowOffset : 8,
closeAction : "hide", buttons : [{
text : "0k",
handler : function() {
dialogAbout.hide();
}
}]

D;
dialogAbout.show(Ext.getDom("divSource"));

}, icon : "img/toolbarAbout.gif", cls : "x-btn-text-icon"
1
{ xtype : "tbspacer" },
{ xtype : "tbseparator" },
{ xtype : "tbspacer" },

We’re putting the toolbar at the top of our BorderlLayout, so we set the region attribute
to north. The autoHeight attribute allows this Panel to set its height according to its contents,
which is necessary for the toolbar to appear at all. We also indicate we don’t want a border via
border:false, since that would just look a bit wrong.

Next, the items array contains an object with an xtype of toolbar, and that’s all it takes
essentially to create a toolbar. The items array in that object then contains an object for each
button to add, as well as spacers. For example, we see here how the New Note button is cre-
ated. The text attribute is what you see on the screen. The handler attribute is the code to
execute what the button is clicked. Here that’s simply to get a reference to the form contained
within the createNoteFormPane that we created earlier, resetting it via a call to its reset ()
method, and then showing the dialogCreateNote. Remember that this dialog Window was cre-
ated but initially not shown, so we can use the Ext.getCmp(), which returns a reference to an
existing Ext JS widget (Component, technically). We then just call show() on it, giving it a refer-
ence to our animation source <div>.

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

The icon attribute points to the image file to use as the icon for our button. This is
optional, but we do want one because it spices up the toolbar a bit. Finally, the cls attribute is
the style class to apply to the button, which here is supplied by Ext JS itself.

You'll also notice a number of objects with an xtype of tbspacer. These are just blank
spaces you can use to spread things out a bit. Likewise, the tbseparator xtype puts a vertical
line on the toolbar to break things up into logical groups, as you can see in Figure 3-19.

[0 mewmoe oo Mew Task S tew Consact T va@tnnum
Categuries 4 Appointments - %
Aunruaiments - 5
BehciBci
Filter a a a | a
L e ¥ = = U ——
s b |3 2
Show Al et Iest] Ueelwilh checd Tewlh cianig
% Show Date:
_ummnq:-h
(]
| Title
| Category
(e | When
- | | Location
Hote
Mabes + L —
Tasks +
Conkacts

Figure 3-19. An example of the tbseparator xtype

The rest of the buttons are pretty similar to what we just saw. The button for switching
between icon view and list view has a little more meat to it, so let’s take a look at it:

{
text : "Icon View", id : "tbViewMode",
handler : function() {
this.setText(this.getText().toggle("Icon View", "List View"));
var iconImage = "url(img/toolbarIconView.gif)";
if (this.getText() == "List View") {
iconImage = "url(img/toolbarListView.gif)";
}
this.getEl().child("button:first").dom.style.backgroundImage =
iconImage;
organizerExt.changeViewMode(this.getText());
}, icon : "img/toolbarIconView.gif", cls : "x-btn-text-icon"
}
]
1]
}

185

186

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

While the button itself is defined in the same way, the click event handler has a bit more
going on. First, we toggle the text shown on the button between icon view and list view. To
do this we use the handy toggle() method that Ext JS added to the String class. This avoids
an if statement or a trinary logic statement. Next we need to toggle the icon on the button as
well. To do this we call this.getText(), which gives us the text currently on the button (which
remember, we just changed!). Using this, we set the appropriate value for the image file to use.
We do this by altering the background-image style attribute (backgroundImage in JavaScript)
of the first child of the button. You see, the icon is placed on the button by setting it as the
background-image of the <div> the button is contained within. By using this.getEl(), which
returns the underlying Ext.Element object that represents this widget in the DOM, we can then
call the child("button:first") method to get a reference to the appropriate DOM node. Then
we simply set its backgroundImage style attribute to point to the new image. Finally, a call to
organizerExt.changeViewMode(), a method we’ll see soon, does the actual switch between icon
view and list view in the rest of the UL

Note This switching of the icon involved trial and error and looking at Ext JS example code. | couldn’t find
any documentation that explicitly spelled this out, but it's a testament to the quality of the Ext JS API docu-
mentation, along with the example code and support forums, that | was able to figure it out without too much
trouble.

Adding Buttons to the Detail Panes

Now that the UI has been largely constructed, there are a few loose ends to tie up to com-
plete the UL Recall that when we created the sections where item details are displayed, we
left placeholders for the buttons, but we didn’t create the buttons. Well, now it’s time to turn
around and do just that! All the detail panes have a Delete button, so let’s look at just one as a
representative example:

new Ext.Button({
text : "Delete Appointment", renderTo: "tdAppointmentDetailsDeleteButton",
handler : function() {
var viewMode = "IconView";
if (Ext.getCmp("tbviewMode").getText() == "List View") {
viewMode = "ListView";
}
organizerExt.appointmentsStore.remove(
Ext.getCmp("dvAppointments” + viewMode).getSelectedRecords()[0]
)s
}, disabled : true, id : "btnAppointmentDeleteButton"
D;

We instantiate the Ext.Button() class, passing it a configuration object during construc-
tion. This object has a couple of attributes. First, text is literally the text to display on the
button. Second, renderTo gives the ID of a DOM node to put the button into; if you look back,
you'll see that tdAppointmentDetailsDeleteButton is the ID of the placeholder <td> we created

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

(remember that the Window was created from existing markup, which contained a table struc-
ture). The handler attribute gives a reference to a function, inline in this case, to execute when
the button is clicked. The first thing we need to do in this handler is to determine whether the
user currently sees the icon view or the list view. We do this by interrogating the text of the
view switch toolbar button, just as we saw previously. This is necessary because we can then
construct the proper ID of the DataView to reference, which we must do in order to ask it for a
reference to the selected Record from the data store. With that Record in hand, it can be passed
to the remove () method of the appointmentsStore for removal.

We also define the disabled attribute with a value of true so that the button begins dis-
abled and remains so until we enable it (when an item is selected).

The tasks detail section also includes a button to mark a task as complete, and that’s a bit
different from the Delete buttons:

new Ext.Button({
text : "Complete Task", renderTo: "tdTaskDetailsCompleteButton",
handler : function() {
var viewMode = "IconView";
if (Ext.getCmp("tbViewMode").getText() == "List View") {
viewMode = "ListView";
}
var record = Ext.getCmp("dvTasks" + viewMode).getSelectedRecords()[0];
record.set("status", DAO.TASK STATUS COMPLETE);
}, disabled : true, id : "btnTaskCompleteButton"
1)

It is only different in the code of the handler, and then it’s only different in that at the end
we call the set() method of the Record to set the status field. This causes the update event to
fire on the data store, and the data is saved via a call to the DAO.

Note At the end of the builduI() method you'll also notice this statement: vp.doLayout();. This
instructs the viewport essentially to draw itself. Typically you don’t need to do this; it happens automatically.
However, | noticed an issue in the latest version of Firefox (3.0.3 at the time of this writing) where the titles
of the icon view and the Accordion pane wouldn’t show up unless | issued this statement. It does no harm
to do so generally, although it's probably inefficient and certainly redundant even if Ext JS is smart enough
to not do any extra work it doesn’t have to do. Just remember, you shouldn’t usually have to do this, but |
wanted to point out the reason | did.

Making the Accordion Work: Changing Categories

We’re very nearly at the end of the code of this application. We’ve seen how the data stores
and Record descriptors are created, and we’ve seen how the dialog Windows for creating new
items are created. In addition, we’ve seen how the Ul is built and how most of it works. Along
the way, we saw calls to a few methods of the OrganizerExt class, and those methods are what
remain to look at.

187

188 CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

First, recall that when the user clicks a pane in the Accordion, the changeCategory()
method is called:

this.changeCategory = function(inCategory) {
organizerExt.currentCategory = inCategory;

var newActiveItem = null;
var listingTitle = null;
var detailsTitle = null;
switch (inCategory) {
case "appointments":
newActiveltem = 0;
listingTitle = "Appointments";
detailsTitle = "Appointment Details";
break;
case "notes":
newActiveltem = 1;
listingTitle = "Notes";
detailsTitle = "Note Details";

break;

case "tasks":
newActiveltem = 2;
listingTitle = "Tasks";
detailsTitle = "Task Details";

break;

case "contacts":
newActiveltem = 3;
listingTitle = "Contacts";
detailsTitle = "Contact Details";
break;

}

var listingCard = Ext.getCmp("listingCard");
listingCard.setTitle(listingTitle);
listingCard.getlayout().setActiveItem(newActiveItem);

var detailsCard = Ext.getCmp("detailsCard");
detailsCard.setTitle(detailsTitle);
detailsCard.getlLayout().setActiveItem(newActiveItem);
organizerExt.changeViewMode (Ext.getCmp("tbViewMode").getText());

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

Switching between categories entails switching the icon or list view, whichever mode the
application is currently in, to the appropriate data store. That’s what this method does, by and
large. The inCategory argument is a string naming the category to switch to. The first thing we
do is store the inCategory value in the currentCategory field of organizerExt, because we're
going to need that value elsewhere.

So after that, we have a switch statement based on that argument. For each of the four
possible values, we set three variables. The first, newActiveItem, will be the value of the
activeItem attribute of the 1istingCard, the CardLayout containing the icon and list views.

(If you're thinking ahead, you’'ll recall that there are eight cards in that CardLayout: four icon
views followed by four list views... yet we only have four values here! Don’t worry grasshopper,
all will be revealed!)

The second variable is 1istingTitle, which is the text that will be displayed in the title bar
above the listing section. Likewise, detailsTitle is the text to display in the title bar above the
details section.

Once those variables are set, we move on to the common block of code following the
switch block. First, we use the Ext.getCmp() method to get a reference to the listingCard,
which is the CardLayout containing all four icon views and all four grid views. With that refer-
ence, we call setTitle() to set the title bar text. Next, we call the getLayout() method, which
gives us a reference to the underlying ContainerLayout object for that Panel. This object
exposes a setActiveItem() method, to which we pass the newActiveItem variable. This flips
us over to the appropriate icon view for the category selected.

Next, we get a reference to the detailsCard, and likewise set its title and active item.

Now, at this point you've got to be saying to yourself, “Wait, what if we’re currently in list
view mode? Haven’t we just flipped to an icon view?” Indeed we have, but that’s where the call
to organizerExt.changeViewMode() comes into play, which is our next destination.

Switching Between Icon View and List View

When users switch categories, or when they switch view modes, the changeViewMode () method
gets called. In Figure 3-20 you can see an example of a switch to list view.

189

190

CHAPTER 3

) OrganizerExt - Mozilla Firefox
File Edit View History Bookmarks

Tools Help

EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

Tasks +
Contacts +
[55 @ & oone

Category
Content

26.6MB/27MB | 482MB/488MB 4 EB vslow

orss @ 1337 ¢

1 NewNote 3 MewTask 4l New Contact 3! New) About t |S)ilistview}|
Categories </ | Notes 2
Appointments 141 | category Content
Notes ideas invent a device to create matter
Filter- Work Finish wriing this chapter ASAPE
® Show Al
© show Category:

-

Note Details

Figure 3-20. The list view mode

The code for this method is not terribly long, nor is it complex, as you can see for yourself:

this.changeViewMode

var baseCardIndex

switch (organizerExt.currentCategory) {

= function(inMode) {

= null;

case "appointments":

baseCardIndex
break;
case "notes":
baseCardIndex
break;
case "tasks":
baseCardIndex
break;
case "contacts":
baseCardIndex
break;

=0;

=1;

=2;

= 3;

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

var newActiveItem = null;
if (inMode == "List View") {
newActiveItem = baseCardIndex + 4;
} else {
newActiveItem = baseCardIndex;

}

var listingCard = Ext.getCmp("listingCard");
listingCard.getlayout().setActiveItem(newActiveItem);

Here, we're being passed a string that tells us what mode we’re in. It happens to be
one of the two text strings displayed on the mode switch button, so either List View or
Icon View. The code begins by doing a switch based on the currentCategory, set back in the
changeCategory() method. We do this to determine the index of the card in the CardLayout
that is currently selected and store that in baseCardIndex. Since all four of the icon views were
added first, we know that at this point the index value is either 0, 1, 2, or 3 (remember that in
changeCategory() we always switched to an icon view, never a list view).

Next, we examine what view mode we’re in. If we’re currently in list view, we add four to
the value of baseCardIndex. Think about that for a moment. The four icon views have an index
value of 0, 1, 2, or 3. For example, the appointments icon view is index 0. The list views were
added to the CardLayout right after the icon views, so that means they begin at index 4. So the
appointments list view is at index 4. So by adding four to the baseCardIndex value, we now
have the correct index for the list view associated with the current category. Of course, if we're
in icon view mode, then baseCardIndex is the proper value already. In either case, the variable
newActiveItemis set to the appropriate value.

Then, we set the active item in the CardLayout to the value of newActiveItem. If we are in
icon view mode, then this effectively does nothing. But if we are in list view mode, we switch to
the list view. The user only sees a single switch because it happens so fast.

Showing Details of a Selected Item

The very last thing we need to look at is how the details of a selected item are displayed. I'm
definitely sounding like a broken record now, and I know it, but because all four of these meth-
ods (one each for notes, appointments, contacts, and tasks) are very similar, we only need to
examine one. I'll pick on appointments one last time for this:

this.showAppointmentDetails = function(inRecord) {

if (inRecord) {
Ext.getCmp("btnAppointmentDeleteButton").enable();
} else {
Ext.getCmp("btnAppointmentDeleteButton").disable();
inRecord = new organizerExt.AppointmentRecord({
category : "", title : "", whendt : "", location : "", note :
D;
}

191

192 CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

Ext.getDom("appointment category").innerHTML
inRecord.get("category");

Ext.getDom("appointment location").innerHTML
inRecord.get("location");

Ext.getDom("appointment note").innerHTML =
inRecord.get("note");

Ext.getDom("appointment title").innerHTML =
inRecord.get("title");

var wdt = inRecord.get("whendt");

Ext.getDom("appointment whendt").innerHTML =
Ext.isDate(wdt) ? inRecord.get("whendt").format("m/d/y") : "";

}

First, the code checks to see if the inRecord argument was null or not. This is to cover the
case where the user clicks a blank section of the icon or list view, deselecting all items. In that
case, the else branch would kick in. This disables the Delete button and creates a new Record
of the appropriate type with all blank fields.

Then, it’s a simple matter of setting the innerHTML attribute of each of the detail fields,
which we get via calls to Ext.getDom() to the applicable fields from the Record object. If
inRecord is null, it effectively clears all the fields since we set all the fields to blank.

The whendt field is slightly different. We want to display the value as mm/dd/yyyy, but
that can only be done (with the Date.format () method at least) if it’s a Date. If no record is
available, however, it’s a string. So, we get its value, and then use the Ext.isDate() method to
determine if it’s a Date. If it is, we can go ahead and format it (using the m/d/y specification,
which outputs a value such as 10/21/2008); otherwise we just output an empty string.

And with that, our exploration of this code is complete!

Suggested Exercises

I hope you found this application a fun one to dissect! I also hope you found it at least a little
useful. It’s obvious that Microsoft shouldn’t be worried about competition with Outlook here!
Clearly features are missing that would be nice to have, and with that in mind here’s a list of
suggested exercises that I believe will not only make the application more useful but more
importantly will get you some good experience with ExtJS:

e First and foremost, implement the ability to modify existing items. I purposely left this
capability out because I think if you did no other exercises, this would be a worthwhile
one to do. Should you reuse the create dialogs to do maintenance as well? Should the
detail sections be forms that are editable? Or is there another option? It’s up to you, but
any choice will lead to a good learning experience.

¢ Add a time component to appointments, and then have the application pop up an alert
an hour before a given appointment.

e Add a web site field for contacts and allow the user to click on it and open the site in
aWindow (an Ext JS Window, that is, not a new browser window). Related to this, make
the e-mail field clickable so that a new message can be composed (use a simple mailto:
link).

CHAPTER 3 EXT JS FOR A BUSY LIFESTYLE: ORGANIZEREXT

* Do something a little different for the detail views. Perhaps allow multiple items to be
opened at once by opening each in an Ext JS Window that is bound to the detail area.

¢ Allow the user to maintain his or her own list of categories for an item. Allow users to
add and remove what they wish and update the combo boxes accordingly.

* Add some other view filtering capabilities, such as contacts by company or appoint-
ments for a specified range of dates.

Summary

In this chapter we saw how to construct a relatively complex Ext JS-based user interface.
We saw a number of widgets in action, including the Viewport, BorderLayout, CardLayout,
Accordion, Grid, DataView, DatePicker, FormPanel, and more. You saw how we can easily have
validations on forms with little work on our part. You also learned how to create stores of data
and have Ext JS automatically bind those to widgets. We explored a few utility-type functions
from Ext JS in action, too. You also saw how Gears can be used as the underlying data store
and can be integrated seamlessly into an Ext JS application.

In the next chapter we’ll create another personal information management (PIM)-type
application, a project timekeeping application. We'll see a couple of new widgets in action,
more work with Gears and data stores, and a few more utility functions too.

193

CHAPTER 4

Making Project Management
Cool: TimekeeperExt

I don’t like to mince words, so here goes: I hate project management! To me, it’s a rather

dull endeavor. It’s a lot of time spent bugging people on the phone, asking them what they’ve
accomplished since the last time I bugged them. It’s a lot of time writing status reports for
stakeholders and explaining why this is late or why that is taking longer than anticipated.
Given that, project management is an absolutely necessary evil, and I respect those who do the
job—itisn’t easy and requires great skill to do well. Still, project management, for me at least,
isn’t the most exciting job imaginable, but I see no reason not to make the chore as fun and
sexy as possible! So, the goal of this chapter is to create a basic project management and time-
tracking application using Ext JS (so we know it’ll be fairly sexy automatically). As we develop
this application, you'll see another approach to structuring an Ext JS application, and you’ll
meet a few more Ul widgets in real usage. You'll see a few Ext JS utility functions in play, gain
more experience with the data subsystem, and play with the database component of Gears a
little more. In the end you’ll wind up with a useful tool, albeit not quite on par with Microsoft
Project, for tracking the status of a project.

What’s This Application Do Anyway?

As I mentioned in the opening paragraph, Microsoft Project is one of the top tools in use
today for project management. This feature-rich program tracks projects, tasks that are part
of that project, resources assigned to the project, and much more. It provides numerous
views of the project, including Gantt charts.! It allows you to perform resource leveling? and

1 A Gantt chart is a specialized type of bar chart that graphically describes a project’s schedule. It pro-
vides an at-a-glance summary of a project’s status in a visual way (for those that can make sense of
them!).

2 Resource leveling is a project management task focused on resolving conflicts that arise from tasks
running in parallel that may contend for resources, or resources that are overallocated, or other sorts
of resource allocation imbalances that can occur during project planning.

195

196

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

create critical path schedules?® as well as critical chain? and event chain methodology® (by
way of add-ons).

If all of this is foreign to you, count your blessings! Project management is actually an
expansive area and a study that requires lots of, well, study, to master. I am in no way, shape,
or form an accomplished project manager (PM for short), although I know the basics.

Fortunately, for the purposes of this book, the basics are all we need to worry about, and
in fact we’ll only be dealing with the most basic of basics. Managing a project boils down
to three things: the project itself (obviously), tasks that make up the project, and resources
(people, usually) assigned to the tasks. With these basics in mind, we can begin to outline what
this application needs to do:

* The user should be able to create any number of projects. For each we should be able
to specify a name, description, a starting date, an ending date, a number of hours allo-
cated to the project, and the PM.

We should be able to create tasks and allocate them to projects. To make things simple
to implement, any given task can only be associated with a single project. (In real life,
you might have tasks that are associated with multiple projects, but as far as using this
application goes, it’s not such a burden to have to create two copies of the same under-
lying task to manage, even if that strategy isn’t quite ideal.) For each task we should be
able to specify a name, description, a starting date, ending date, and number of hours
allocated to the task.

e We should be able to create resources and assign them to tasks. Let’s make another
simplifying assumption here: a task can only be worked on by a single resource. This
again isn’t ideal or necessarily reflective of the real world, although I'd point out that
some PMs believe this should in fact be the way it’s done! For a resource we can specify
a name and description and designate the resource as a PM (so they can be the PM of
projects being tracked).

e We should be able to delete projects, resources, and tasks, subject to certain rules (such
as not being able to delete a project that has tasks allocated to it).

* We should be able to modify projects, tasks, and resources as well. Pretty much every-
thing can be modified except for the name, which we’ll be using as a key for all three
items.

* We should be able to book time against a task for a given resource. This will allow us
to determine if a task is over its allocated hours, or close to it (within 10 percent of the
allocated hours).

¢ We should be able to specify a completion percentage for tasks. We’ll use this to show a
graphical representation of how far along a task is.

3 The critical path is a mathematical algorithm used to schedule a set of tasks within a project. More
often than not, though, you hear people talk about the critical path of a project in the context of the
linear set of tasks that must be completed for a project to reach a successful conclusion.

4 The critical chain approach puts more of an emphasis on resources than on tasks and rigid schedules,
as is the case with the critical path approach.

5 The event chain methodology focuses more on the events that occur during the lifetime of a project
more so than on tasks and resources. This approach allows for a less rigid schedule that provides more
flexibility to deal with uncertainty and the inevitable changes that occur as a project progresses.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

» For projects, tasks, and resources, there will be a summary view that gives us the most
pertinent information about each entity at a glance. We’ll show some graphics to spec-
ify when a task is overdue, over hours, and so forth. We’ll do the same for a project.

e We'll use a tree to show our projects, tasks, and resources all nicely nested so we can
quickly see what tasks belong to what project and who is working on a given task. We’ll
have three different views, one each for projects, tasks, and resources.

As you can see, the basics are covered fairly well, and you can actually track work with this
application, although it admittedly doesn’t hold a candle to Microsoft Project. Before we begin
tearing into the code, let’s take a quick look at the application, starting with Figure 4-1, which
shows the welcome screen.

réxt - Mozllla Flrefox
e A% View legtory [ookmarks Jesb lelp
9 |) Tmekeepertxt x| -8
Pt Tiake Basswce pe
& projact view
O Task view
© mesource View
roject Verw
3 3Practs

Welcome to TimeheepeiExt!
To hagin, select a propect 1o werk on, or ciaate

@ new ang, Youll of course need some tasks
and somé restwrces as wall

325 Cresie & tme machine

1] sene Comsce
Ext JS even makes project managerent funl
[Fa Images:0/0 Losded: KB Speed 114TKB/s Time 2886 () 0 Done -] S7AME |64 HE rIme IsHE R vSew ¢ &0 uv . =

Figure 4-1. The TimekeeperExt welcome screen

On the top we have a menu, and each of the main objects the application deals with: proj-
ects, resources, and tasks, each its own menu item. On the left is a tree view, and above it some
radio buttons that allow us to switch the view. Here we’re in the Project view, so the tree shows
all the projects that have been created, with the tasks associated with each nested underneath
them, and the resources assigned to each task below that. In the main portion of the page is
the welcome message and application title, and that’s also where we’ll see those summary
views I mentioned.

Speaking of those summary views, in Figure 4-2 you can see the Resource Summary of a
resource I've selected out of the Resource view tree.

197

198

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

réxt - Mozllla Firefox
Bhe [View ligtory Qookmarks Jook Melp
9| | Tewekeeperit B - B
Pt Tiake Basswce pe
O projact view
O Task view

Resource Summary

E Resource View

Mo Ve Hesource Details
=3 Rescurces . A Prajact Managar? | Daacrpnss

Frank Zammesi Ves ¥ame

Projects this resource is involved with
Harme [r—
Husbandiy Dutes The thisgs | s 33 do or my wife kils me

et B o Trings 102 ot or e s 84

Tasks this resource is assignd 1o

Percent Camgieted states Hame Ceacrgton Dacked Time Project
e P Woshthe dabes et du it s Fusbardly Duties
I ™ () Esrsotgmets Becausemise skinsy () ¢ Just e tam

[Imeges: 810 Loaded KB Speck 114TKBs Tewe 2866 (3 [T @ - wEHB[eaME | MIHE[TSHE & [VSlow & &A@ ur . =@

Figure 4-2. The TimekeeperExt Resource Summary

As you can see, three Grids are present in this summary view. The first contains some
basic details about the resource. Below that is another Grid that lists the projects this resource
is involved in (meaning they are assigned to work on a task allocated to the project). Finally,
the third Grid shows all the tasks that the resource is currently working on. For each we see a
bar graph that displays the task’s percentage of completion, as well as an icon that tells us at
a glance if the task is past due, under or over its allocated hours, or in danger of going over its
allocated hours.

We’ll see more of the application as we progress through the code, and you can play with
it any time you like (now would be a good time!).

Overall Structure and Files

Let’s begin by looking at the overall directory structure and the files involved in this applica-
tion. By and large it’s similar to the project in the previous chapter, and it’s very similar to all
the applications to come. Figure 4-3 shows the directory structure.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

= [C:\timekeeper
B4 oss

["E styles.css
- ext
=7 img
----- h;_J statusDanger.gif
----- h;_J statusDangerPastDue. gif
..... &) statusoK. gif
) statusOKPastDue. gif
statusOver.gif
statusOverPastDue. gif
----- h;_J welcome., gif
SRy]
..... '?_ DAQ.js
----- 5«, DeleteProjectDialog.js
----- 5«, DeleteResourceDialog. js
----- 5«, DeleteTaskDialog.js
----- 5«, gears_init.js
----- 5«, Menu.js
----- 5«, ModifyProjectDialog. js
----- 5«, ModifyResourceDialog.js
----- 5«, ModifyTaskDialog.js
----- % | NewProjectDialog.js
----- 5«, MewResourceDialog. js
----- 5«, MewTaskDialog.js
----- 5«, ProjectsTree.js
----- 5«, ProjectSummary. js
----- 5«, ResourcesTree, js
----- 5«, ResourceSummary.js
----- 5«, StoresAndRecords.js
----- 5«, TasksTree.js
----- 5«, TaskSummary.js
----- 5«_, TimekeeperExt.js
----- & index.him
----- [Z] license. tut

Figure 4-3. The application’s directory structure and constituent files

In the root directory we have index.htm, the starting point for the application. The css
directory contains the style sheet, styles.css, specific to this application. The ext directory
is where Ext JS itself is—I haven’t expanded it because it’s rather large and at this point you
should be fairly familiar with its contents. The img directory contains a bunch of images used
in the application. The files project.gif, resource.gif, and task.gif are the icons seen in
the tree views. The file welcome.gif is the image seen on the welcome screen. The remaining
images, the ones beginning with status, are the status icons seen on the various summary
views. Three types are present: the green check mark (representing under the allocated
hours), the yellow warning sign (10 percent of allocated hours remaining), and the red stop
sign (over the allocated hours). Each icon also has a version that has “PastDue” added to the
end. These are the same icons but are animated GIFs so that the icon flashes to indicate the
item is past due.

In the js directory are all our JavaScript files. In this application I've taken a fundamen-
tally different approach than in the previous project. Recall in that project that there was
a single monolithic JavaScript file (plus the DAO class in a separate file, but the majority of
the code was in a single file). You'll also recall there that to build the UIT used a single huge
JavaScript statement. This is far from the only way you can structure your code with ExtJS,
and in this project we see another. Here, each of the unique Ul objects is in its own file. The

199

200 CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

menu code is in menu. js, the code for the New Project dialog is in NewProjectDialog. js, the
code for the projects tree is in ProjectsTree. js, and so on. We also find a TimekeeperExt. js
file that contains some more general code that the application uses. As was the case with the
previous project, there is also a DAO. js file where the database access code lives. The familiar
gears_init.js file is also present.

Note Wnhich architecture you prefer is largely a matter of personal preference. Some argue that breaking
up the code like this makes it easier to comprehend, while others argue that the mental gymnastics of jump-
ing between multiple files negates that benefit. | personally have mixed feelings, so | generally try for a mixed
solution: | tend to break things up to a certain extent, but | don’t go overboard making things too granular.
What you decide to do is neither right nor wrong—it’s simply a design decision you have to make. | felt it
was important to demonstrate both approaches in this book.

The Markup

The markup for this application, housed in index.htm, is actually fewer than 100 lines of
code once you remove comments! Not much at all. Let’s start by looking at the <head> of the
document:

<head>
<title>TimekeeperExt</title>
<link rel="stylesheet" type="text/css" href="ext/resources/css/ext-all.css">
<script type="text/javascript" src="ext/adapter/ext/ext-base.js"></script>
<script type="text/javascript" src="ext/ext-all.js"></script>
<script src="js/gears_init.js"></script>
<link rel="stylesheet" type="text/css" href="css/styles.css">
<script type="text/javascript" src="js/DAO.js"></script>
<script type="text/javascript" src="js/StoresAndRecords.js"></script>
<script type="text/javascript" src="js/TimekeeperExt.js"></script>
<script type="text/javascript" src="js/Menu.js"></script>
<script type="text/javascript" src="js/ProjectsTree.js"></script>
<script type="text/javascript" src="js/ResourcesTree.js"></script>
<script type="text/javascript" src="js/TasksTree.js"></script>
<script type="text/javascript" src="js/NewProjectDialog.js"></script>
<script type="text/javascript" src="js/NewTaskDialog.js"></script>
<script type="text/javascript" src="js/NewResourceDialog.js"></script>
<script type="text/javascript" src="js/DeleteProjectDialog.js"></script>
<script type="text/javascript" src="js/DeleteTaskDialog.js"></script>
<script type="text/javascript" src="js/DeleteResourceDialog.js"></script>
<script type="text/javascript" src="js/ModifyProjectDialog.js"></script>
<script type="text/javascript" src="js/ModifyTaskDialog.js"></script>
<script type="text/javascript" src="js/ModifyResourceDialog.js"></script>

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

<script type="text/javascript" src="js/ResourceSummary.js"></script>
<script type="text/javascript" src="js/ProjectSummary.js"></script>
<script type="text/javascript" src="js/TaskSummary.js"></script>
<script>Ext.onReady(init);</script>

</head>

Most of this is old hat® by now. We begin by importing the usual Ext JS style sheet and
base JavaScript files.

After the Ext JS-specific imports is a long line of JavaScript file imports. These are the
JavaScript files containing the code for the application itself. We’ll be looking at each of these
individually. In addition there is the import of the main application style sheet, styles.css, as
well as gears_init.js.

After that is the usual Ext.onReady() call, this time referencing a function named init.

As it turns out, this function is nearly identical to what we saw in the OrganizerExt project, but
don’t worry—we’ll be looking at it here shortly anyway.

With the <head> section concluded, we can move on to the body. The first thing you'll find
is a <div> with an ID of divSource. (I won’t show the <div> here because that would be redun-
dant given that we saw it in the previous project.) This is the source element on the page to be
used for animation of windows.

After that is a <div> with the ID dialogPleaseWait, which is the Window seen when the
application starts up and is initializing. This too is just copied over from the previous chapter’s
project, so I'll save a little space here by not printing it. In fact, I won’t even discuss it on the
grounds that it would be redundant. Please do refer back to the previous chapter if you need
arefresher.

Just like that dialogPleaseWait <div>, nextis a <div> with the ID dialogNoGears. This
again is just copied from the previous project; it specifies the contents of the Window to be dis-
played if Gears is not available.

Finally, we have one last <div>, this one with the ID dialogAbout. This specifies the con-
tents of the About Window, and is just some plain text in a <table> (and, not to sound like a
broken record, but it’s just like in the last project!).

Note Because of its inherent length, | condensed the source code as much as possible. This mostly
amounts to removing all comments and blank lines, but | also reformatted some lines where possible.
The actual executable code is unchanged, however.

The Style Sheet

Just like index.htm, the styles.css file for this project is particularly simple. In fact, here’s the
entire style sheet, minus the comment block at the top:

6 In case you're unfamiliar with the saying, “old hat” means something that is repeated too often, or is
something very familiar.

201

202

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

.cssAbout { font-size : 11pt; font-family : tahoma,arial,verdana,sans-serif; }
.cssSource { position : absolute; left: 1px; top : 1px; width : 1px; height : 1px; }
.cssSummaryTitle {
width : 100%;
text-align : center;
font-size : 18pt;
font-family : tahoma,arial,verdana,sans-serif;
}
.cssSummaryTableHeader {
background-color : #3f4d61;
color : #ffffff;
font-size : 11pt;
font-weight : bold;
font-family : tahoma,arial,verdana,sans-serif;
padding-left : 2px;
}
.cssProgressBarFill {
background : #3f4d61;
border-bottom : 1px solid #3f4d61;
border-right : 1px solid #3f4d61;
border-top : 1px solid #3f4d61;
float : left;
height : 18px;

The cssAbout selector styles the text on the About Window, the cssPleaselWait selector styles
the text on the Window seen during application initialization, and the cssSouzrce selector styles
the <div> used for the animation source for Window expand and collapse. We've seen all of this
before, so I won’t repeat the detailed explanations.

The next selector we find is cssSummaryTitle. This is used to style the title seen on the
three summary views. It just gives us a nice, large, centered title. It’s applied to a <div>, so set-
ting width to 100% and text-align to center ensures the title text will wind up centered on the
page, or more precisely within the center region of the BorderLayout that’s the basic layout
applied to the page.

The cssSummaryTableHeader selector is next, and it is the style applied to the text seen
above each of the Grids in each of the summary views. It gives us a black(ish) bar across the
page with medium-sized (relative to other text on the page) white text on it. It also adds some
padding to the left so that it isn’t bumping right up against the edge of the bar.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

Finally, the cssProgressBarFill selector is, really, the only interesting style. As you saw in
the earlier screenshots, a simple progress bar reveals the completion percentage of tasks. This
style is used to help provide that progress bar. I think it makes more sense to discuss it in the
context of understanding how the progress bars are done, so for now just remember this selec-
tor is here and we’ll refer back to it when the time comes.

Now that we’ve gotten the markup and style sheet out of the way, let’s get to some code!

The Code

The code for this application is organized into a number of JavaScript files that logically break
the application down into pieces that we can digest more easily. I'm going to tackle these in a
logical order, but there will necessarily have to be some jumping around and some “we’ll get
to this later” type of deferments. Let’s start with the DAO. js file.

Note As we examine this code, you will frequently see me add something like “This code is just like the
others, so we’re not going to look at all three.” In fact, | suspect I'll sound like a broken record by the time
this chapter is done! The reason for this is that large chunks of the code in this application are extremely
similar to other chunks. In fact, when | wrote the code, | generally wrote the parts pertaining to projects, and
then copied that code and modified it slightly to work for tasks and resources because conceptually they
were identical, just with some relatively minor differences. In most cases it is sufficient to just examine the
code for projects and have you look at the code for tasks and resources on your own. This saves space in
what is already a fairly long chapter, and | don’t believe you will miss anything by doing this—which ulti-
mately to me is what truly matters!

DAOQ.js

If you’ve read this book in order, and I kind of make the assumption you have, then the DAO
class isn’t anything new or exciting. Because of this, I'll go through this very quickly. If by
chance you jumped ahead to this chapter and skipped the previous OrganizerExt chapter, I
suggest putting a bookmark on this page and going back to read that chapter.

If you're ready to move ahead, though, let’s start by taking a look at the UML class dia-
gram for the DAO class housed in the DAO. js file, seen in Figure 4-4.

203

204 CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

C DAO
FdatabaseName : String
-sqlCreateProjectsTable : String
-sqlCreateProject : String
-sqlRetrieveProjects : String
-sqlUpdateProject : String
-sqlDeleteProject : String
-sqlCreateTasksTable : String
-sqlCreateTask : String
-sqlRetrieveTasks : String
-sqlUpdateTask : String
-sqlDeleteTask : String
-sqlCreateResourcesTable : String
-sqlCreateResource : String
-sqlRetrieveResources : String
-sqlUpdateResource : String
:sqlDeleteResource : String
Ginit() : boolean
+createProject()
+retrieveProjects() : array
+updateProject()
+deleteProject()

+createTask()

+retrieveTasks() : array
+updateTask()

+deleteTask()
+createResource()
+retrieveResources() : array
+updateResource()
+deleteResource() Y,

AN

AN

Figure 4-4. UML class diagram of the DAO class

The class starts out with the databaseName field that names the Gears database we’ll be
using. The value in this case is TimekeeperExt. Following that we find 15 fields, the value of
each of which is an SQL statement. There are three types of entities this application deals with:
projects, tasks, and resources. The database schema is simple, as you can see in Figure 4-5,
Figure 4-6, and Figure 4-7—one for each of the three tables corresponding to the three entities
involved.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT 205

Information from Master table
TABLE : projects
Associated with table/view: projects Rootpage: 3
sQL t that 1 this object:
CREATE TABLE projects (name TEXT, description TEXT, projectmanager TEXT, startdate TEXT, enddate TEXT,
allocatedhours INT)

More Info
[Hn.nff' 6 No. of Ind o No. of R d 2

Hame Type P.Key HNotNull Default

| description | [Tex | [noe | [prop Column | [Alter Column |
|pmjectmanager ||'I'EXT | |H.I.I. | [Dmp(nlumn] [Nter(nlumn]
| startdate | [Texr | [noe | [prop Column | [Alter Column |
|endllate ||'I'EXT | |H.I.I. | [Dmp(nlumn] [Nter(nlumn]
| allocatedhours | [| [noe | [prop Column | [Alter Column |
| || o | ' (Add Column

Figure 4-5. Table structure of the projects table

Information from Master table
TABLE : tasks
Associated with table/view: tasks Rootpage: 4
s0L t that 1 this object:
CREATE TABLE tasks (name TEXT, description TEXT, startdate TEXT, enddate TEXT, allocatedhours INT, resource
TEXT, project TEXT, bookedtime INT, percentcomplete INT)

More Info
[Hn.nfl" [] no.ofmd [0 | no.ofRecords: [5 |

Name Type P.Key NotNull Default

[name | [TexT | [noe | [prop column | [Alter Column |
description	[Tex	[noe	[prop Column	[Alter Column
startdate	[Tex	[noe	[prop Column	[Alter Column
enddate	[Tex	[noe	[prop Column	[Alter Column
allocatedhours	[[noe	[prop Column	[Alter Column
[resource	[Texr	[noe	[prop Column	[Alter Column
[project	[Tex	[noe	[prop Column	[Alter Column
bookedtime NEC	[woe	[prop Column	[Alter Column	
percentcomplete	[[noe	[prop Column	[Alter Column
I 0 [asecoem]				

Figure 4-6. Table structure of the tasks table

206

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

~ Information from Master table

TABLE : resources

Associated with table/view: resources Rootpage: 5

SQL t that 1 this object:

CREATE TABLE resources (name TEXT, description TEXT, isaprojectmanager TEXT)

~ More Info

No. of Col 3 No. of Ind o No. of R d 4

~ Coll

Name Type P.Key HNotNull Default

|name | |'I'EXT | |H.l.l. | [Drop(nlumn] [Nter(nlumn]
| description | | TEXT | | HULL | [Drop Column] [Alter Column]
| isaprojectmanager | | TEXT | | HULL | [Drop Column] [Alter Column]

| L Mo o [[rdcom]

Figure 4-7. Table structure of the resources table

For each of the entities there are five SQL statements: one to create the associated
table and one for each of the CRUD (Create, Retrieve, Update, and Delete) operations. So
for example, there are sqlCreateProjectsTable, sqlCreateProject, sqlRetrieveProjects,
sqlUpdateProject, and sqlDeleteProject fields, and there are five fields for tasks and five for
resources. The statements are about as you would expect. For example, here are the state-
ments pertaining to projects:

var sqlCreateProjectsTable = "CREATE TABLE IF NOT EXISTS projects (" +
"name TEXT, description TEXT, projectmanager TEXT, " +
"startdate TEXT, enddate TEXT, allocatedhours INT)"

var sqlCreateProject =
"INSERT INTO projects (name, description, projectmanager, " +
"startdate, enddate, allocatedhours) VALUES (?, ?, 2, 2, 2, 2)";

var sqlRetrieveProjects = "SELECT * FROM projects";

var sqlUpdateProject = "UPDATE projects SET description=?, " +
"projectmanager=?, startdate=?, enddate=?, allocatedhours=? " +
"WHERE name=?";

var sqlDeleteProject = "DELETE FROM projects WHERE name=?";

The statements for tasks and resources look very much the same, with different fields in
the statements.

Moving on to the methods of the class, we first find the init() method. It is called once
one the application start ups, and its code is as follows:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

this.init = function() {
if (!window.google || !google.gears) { return false; }
var db = google.gears.factory.create("beta.database");
db.open(databaseName);
db.execute(sqlCreateProjectsTable);
db.execute(sqlCreateTasksTable);
db.execute(sqlCreateResourcesTable);
db.close();
return true;

As you can see, it first checks to be sure Gears is available and returns false if not. Once
that is done, the three table creation statements are executed. They will only do something if
the tables do not already exist. The method returns true when done, unless an exception is
thrown by one of the database function calls.

After init() we find that there are four methods for each of the three entities we’re work-
ing with, and each of the methods corresponds to one of the CRUD operations. Since each of
these methods is just like its counterpart for the other two entities, let’s just look at the four
methods pertaining to projects because the ones for tasks and resources are just like them.
Let’s begin with the createProject() method:

this.createProject = function(inRecord) {
var db = google.gears.factory.create("beta.database");
db.open(databaseName);
db.execute(sglCreateProject, [
inRecord.get("name"), inRecord.get("description"),
inRecord.get("projectmanager"), inRecord.get("startdate"),
inRecord.get("enddate"), parseInt(inRecord.get("allocatedhours"))
1;
db.close();
}

In the OrganizerExt project you may recall that the methods of the DAO class took plain-
old JavaScript objects, but here they are accepting Record objects—the Record objects used
in an Ext JS data store. I did it that way because it keeps the DAO abstracter from Ext JS. If we
decided to rewrite that project with, say, Dojo, then we wouldn’t have to touch the DAO classes
because they don’t care that they are being called from an application based on Dojo or Ext
JS or anything else. Here, however, the DAO essentially “knows” it’s being used from an Ext JS
application. This approach is conceptually perhaps a little simpler because it’s more direct:
there’s never any transferring of data between objects; it’s just always Record objects from end
to end. The approach you prefer is a decision you’ll have to make for yourself. Usually I tend to
want to keep things abstracted, and most people feel that’s a better approach architecturally,
but I wanted to show you the alternative here.

The actual code of the method is pretty simple. Open the database and execute the appro-
priate SQL statement, passing in the replacement values as an array via the second argument
of the call to db.execute(). Because we received a Record object, we have to use the get()
method to get the values of the fields in the Record.

207

208

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

The retrieveProjects() method is next, and it too is pretty simple:

this.retrieveProjects = function() {
var db = google.gears.factory.create("beta.database");
db.open(databaseName);
var rs = db.execute(sqlRetrieveProjects);
var results = [];
while (rs.isValidRow()) {
results.push(new ProjectRecord({
name : rs.fieldByName("name"),
description : rs.fieldByName("description"),
projectmanager : rs.fieldByName("projectmanager"),
startdate : rs.fieldByName("startdate"),
enddate : rs.fieldByName("enddate"),
allocatedhours : parseInt(rs.fieldByName("allocatedhours"))
}, rs.fieldByName("name")));
rs.next();
}

rs.close(); db.close(); return results;

}

Executing the sqlRetrieveProjects statement gets us all the projects currently in the data-
base. So, we iterate over the ResultSet and for each we create a new ProjectRecord and push()
it onto the results array. Finally, that array is returned to the caller. Nothing to it!

Updating a project is also a simple matter:

this.updateProject = function(inRecord) {
var db = google.gears.factory.create("beta.database");
db.open(databaseName);
db.execute(sqlUpdateProject, [
inRecord.get("description"), inRecord.get("projectmanager"),
inRecord.get("startdate"), inRecord.get("enddate"),
inRecord.get("allocatedhours"), inRecord.get("name"
1;
db.close();
}

The inRecord argument is a ProjectRecord, so all that’s needed is to execute the
sqlUpdateProject statement and pass to db.execute() as the second argument array the fields
that could have been changed.

Last is deleting a project, which is implemented in the deleteProject() method:

this.deleteProject = function(inProjectName) {
var db = google.gears.factory.create("beta.database");
db.open(databaseName);
db.execute(sqlDeleteProject, [inProjectName]);
db.close();

}

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

The name of a project is effectively its key (ditto for tasks and resources), so that’s the
argument to this method. Executing sqlDeleteProject is all it takes, the name passed into the
method is inserted into the SQL and we're off to the races.

I'll remind you again that the four methods for tasks and the four for resources are nearly
identical to these, but please do check the downloaded code nonetheless. Aside from the fields
dealt with, the methods are pretty much carbon copies.

StoresAndRecords.js

The next piece of the puzzle to look at is the record types and data stores used in this applica-
tion, which you'll find in the StoresAndRecords. js file. There are quite a few stores but only
three types of records: ProjectRecord, TaskRecord, and ResourceRecord. These types are shown
in Figure 4-8.

TaskRecord

ResourceRecord

-name : string
-description : string
-startdate : datetime
-enddate : datetime
-allocatedhours : int
-project : string
-resource : string
-bookedtime : int
-percentcomplete : int
-status : string

-name : string
-description : string
-isaprojectmanager : string

ProjectRecord

-name : string
-description : string
-projectmanager : string

-startdate : datetime
-enddate : datetime

-allocatedhours : int
-status : int

Figure 4-8. The record descriptors in all their glory

The status fields of the TaskRecord and ProjectRecord do not correspond to any field in
the database tables; they are values that are calculated when a record is read and the value set
on the Record. This is the Record field that is used to display the appropriate status icon in the
summary view grids. All the other fields correspond to database table fields.

As I mentioned, there are quite a few stores in this application. Three are probably
pretty obvious to you: a ProjectsStore, a TasksStore, and a ResourcesStore. These stores are
populated from the corresponding database tables and literally just mimic the tables—all
the records in the table have corresponding Records in the stores. These stores are populated
when the application starts up, as we’ll see, and any changes to them are replicated to the
database.

209

210 CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

This replication is an event-driven model, as you can see here:

var projectsStore = new Ext.data.Store({
listeners : {

"add" : { fn : function(inStore, inRecords, inIndex) {
if (Ext.getCmp("dialogPleaseWait")) { return; }
dao.createProject(inRecords[0]);

Pl

"remove" : { fn : function(inStore, inRecord, inIndex) {

dao.deleteProject(inRecord.get("name"));
P
"update" : { fn : function(inStore, inRecord, inOperation) {
dao.updateProject(inRecord);
b
}
1)

I'm again picking on the code pertaining to projects, but you'll find that the TasksStore and
ResourcesStore is very much similar to this, so seeing the ProjectsStore pretty much describes
the other two. As you can see, three events are hooked: add, which fires when a Record is added
to the store; remove, which fires when a Record is removed from the store; and update, which fires
when a Record obtained from the store is modified. Each of these events calls the appropriate DAO
method. Note the check in the add event handler to see if the dialogPleaseWait Window is shown.
Ifitis, then this event is firing as a result of the initial population of the store, in which case it
would be a mistake to call the DAO method.

Those three stores are the main ones in this application, but as I mentioned there are
quite a few others. All of them are derived from those three main stores, meaning they are
populated from some subset of data from those three. These other stores are transitory in
nature and are used as sources of data bound to Ul elements. Table 4-1 runs down the other
stores and describes their purpose. Note that all of them are created like so:

var projectManagersStore = new Ext.data.Store({});

They are empty and have no events hooked. Since anything done to them is meant to only
be temporary, there are no events that need to be handled.

Table 4-1. The Temporary Data Stores Used in This Application

Store Name Description

projectManagersStore Project managers data store. This stores the ResourceRecords
representing resources who are project managers. Although I
group this store in with all the other temporary stores, it is in
fact not quite temporary; it has data in it all along (assuming
there are resources designated as project managers). But it is
still derived from the ResourcesStore, so in that regard it’s simi-
lar to the rest of the temporary stores.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT
Store Name Description
availableTasksStore Available tasks data store. This stores TaskRecords not asso-

tempAvailableTasksStore
tempAllocatedTasksStore
tempAssignedTasksStore
tempResourceSummaryDetails
tempResourceSummaryProjects
tempResourceSummaryTasks
tempTaskSummaryDetails
tempResourceSummaryResource
tempProjectSummaryDetails
tempProjectSummaryTasks

tempProjectSummaryResources

ciated with a project. The comment about not being a truly
temporary store that applies to the projectManagersStore
also applies to this one for the same reasons (although this one
derives from the TasksStore instead of the ResourcesStore as
projectManagersStore does).

This is a temporary store that will be a copy of the available
TasksStore when the Modify Project dialog is shown.

This is a temporary store used in the Modify Project dialog to
show the tasks the project is using.

This is a temporary store used on the Modify Resource dialog to
show the tasks assigned to the resource.

This is a temporary store used in the Resource Summary view to
show the details for the selected resource.

This is a temporary store used in the Resource Summary view to
show the projects the selected resource is involved with.

This is a temporary store used in the Resource Summary view to
show the tasks the selected resource is assigned to.

This is a temporary store used in the Task Summary view to
show the details for the selected task.

This is a temporary store used in the Task Summary view to
show the details for the resource assigned to the task.

This is a temporary store used in the Project Summary view to
show the details for the selected project.

This is a temporary store used in the Project Summary view to
show the tasks allocated to this project.

This is a temporary store used in the Project Summary view to
show the resources involved with this project.

As we explore the rest of the code, you'll see how and when these stores get loaded with
data, and when and how they are bound to UI elements.

TimekeeperExt.js

Within the TimekeeperExt. js file is most of what I would call the “core” code of the applica-
tion. It contains the code run to initialize the application, which includes loading data from
the database and constructing the UI, as well as a number of functions that handle things like
refreshing the various trees and displaying the various summary views.

A Custom RowSelectionModel

The first code we encounter is something we haven’t seen before, but before we get to the
code, let’s take a look at another screenshot from the application (see Figure 4-9).

211

212 CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

e L View Mgtory fookmarks Jeok Melp

9| Temekeeperixt B - B
Eropcte Taate Bassces Mape
& Brofact View
2 Tagk v H
e Project Summary
C Resource View
Project Details
Sute | e [ot anagar | St Dt e ue Abseamaneus | osked Tess
a st feetun Tunga I 20 st fee i o ot SeoaCowel 1120808 113008 n vz

Tasks allocated to this prof

Percert Cemaienss States Hame Desereten Bozked Trme

| o a Lt $00 donuts Diacauns mtss skiney (1 [}
[= [x] -
_ m Covate 8 me mach Cveryone shousd bave ooe &

[Fa Images: 8/0 Loaded KB Speck 1147KB/s Tewc 2866 (D [T Done @ - wEHB[eaME | MIHE[TSHE & [VSlow & &A@ ury . =3

Figure 4-9. The Project Summary view

In Figure 4-9, the Project Summary view is shown. What'’s displayed here isn’t too impor-
tant just yet, except for one detail: the percent complete progress bars in the middle Grid
showing the tasks allocated to this project. These progress bars give the user a visual represen-
tation of how far along a given task is. When we’ve seen Grids before, the cells have had just
plain text in them. However, that’s not a requirement of a Grid. We can put other widgets in
them as well.

Doing this introduces a new concept, that of custom RowSelectionModels. A
RowSelectionModel defines how data can be selected in a Grid, but more than that it allows
us to determine how the contents of a given cell will be rendered. You can create a custom
RowSelectionModel type by extending existing ones, as the code here shows:

Ext.grid.ProgressBarSelectionModel = Ext.extend(Ext.grid.RowSelectionModel, {
header : "", sortable : true, fixed : true, dataIndex : ""
baseCls : "x-progress", width : 150, renderer : function(inValue) {
var textToDisplay = ["", ""];
if (invalue <= 50) {
textToDisplay[1] = inValue + "%";
} else {
textToDisplay[0]
}
return String.format(
"<div class=\"x-progress-wrap\"><div class=\"x-progress-inner\">" +
"<div class=\"cssProgressBarFill\" style=\"width:{0}%;\">" +
"<div class=\"x-progress-text\" " +

nn

inValue + "%";

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

"style=\"color:#ff6060;font-size:11pt;width:100%;margin-top:2px;\">" +
"{1}</div></div>" + "<div class=\"x-progress-text\" " +
"style=\"color:#ff6060;font-size:11pt;width:100%;margin-top:2px;\">" +

"{2}</div></div></div>", inValue, textToDisplay[0], textToDisplay[1]

1);

The Ext.grid.RowSelectionModel is the default selection model for a Grid, so that makes
it a good starting point. The Ext.extend() function provides a way to extend the existing Ext.
grid.RowSelectionModel class, and we're adding the new type to Ext.grid so we can use it
later. I'll jump the gun a bit and tell you that when you see this in use you'll find that the
definition of the Percent Complete column of the Grid specifies a new instance of Ext.grid.
ProgressBarSelectionModel, so many of the options you would typically specify on the column
definition are defined here within the new class. For example, by default, a column using the
Ext.grid.ProgressBarSelectionModel will be sortable (sortable : true) and cannot be resized
by the user (fixed : true). It will also have a width of 150 pixels. You'll note that the header
and dataIndex values, both of which we’re familiar with, are empty strings. The reason they are
empty strings is that the code creating an instance of this class is expected to populate them
with values, whereas the other fields, while they could be overwritten, don’t have to be. Since
we have a specific use case here, and we know the values of most of these fields beforehand,
setting their values as part of the class definition makes sense.

Now we come to the renderer attribute. This attribute references a function that
will be called for every value in each row of the Grid in the column using the Ext.grid.
ProgressBarSelectionModel. This allows us essentially to do whatever we want to render the
contents of the cell. The value from the field in the Record being used to populate the Grid is
passed in as inValue. The job of this code now is to create the markup for the progress bar.

The way this works is basically that the markup constructed uses the same basic structure
as an Ext JS progress bar, and in fact you can see that many of the same styles are used. We
have a template string with some replacement tokens present in it, three to be precise: the
value (which is the percent complete in this case), plus two versions of the same value. If the
value is less than or equal to 50 then the value, which has had a percent sign appended to it,
needs to be styled differently and placed in a different <div> than if it’s greater than 50. So,
the value is put into an array as either the first or second element in the array, and the other
element is a blank string. This is done so that there isn’t any conditional logic in the markup
template; it simply inserts the values from the array using the String.format() function that
ExtJS provides.

The generated markup is returned, and will be inserted into the table cell. We could do
whatever we wanted in this renderer function, which makes the model concept seen here
extremely flexible and allows us to do much more in a Grid than you can by default.

Note The original code that | derived this from was posted by an Ext JS user named EvilTed in the Ext JS
support forums. I'd like to thank that user for sharing this code (although he informs me that his work was
based on the work of someone else, so thanks to anyone else who had a hand in it too!).

213

214

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

A Few Variables for Good Measure

After that we find four global variables, which are summarized in Table 4-2.

Table 4-2. Global Variables Defined in TimekeeperExt.js

Variable Description

currentProject This is a reference to the ProjectRecord from the projectsStore that is
currently selected, if any.

currentResource This is a reference to the ResourceRecord from the resourcesStore that
is currently selected, if any.

currentTask This is a reference to the TaskRecord from the tasksStore that is cur-
rently selected, if any.

currentSummaryView This contains the card index number of the currently visible summary
view, or 0 for the welcome view.

Initializing the Application

Following that are two methods, init() and initMain(). They more or less work the same as in
the OrganizerExt project, but they are structurally a little different, so let’s have a look, starting
with init():

function init() {
new Ext.Window({
applyTo : "dialogPleaseWait", closable : false, modal : true,
width : 200, height : 100, minimizable : false, resizable : false,
draggable : false, shadowOffset : 8, id : "dialogPleaseWait"
}).show(Ext.getDom("divSource"));
setTimeout("initMain()", 500);

}

Just like in OrganizerExt, this function is called via Ext.onReady(), as seen in index.htm.
This displays the Please Wait Window and then fires off a timeout() that executes initMain(),
which is this code:

function initMain() {
if (!dao.init()) {
Ext.getCmp("dialogPleaseWait").destroy();
var dialogNoGears = new Ext.Window({
applyTo : "dialogNoGears", closable : false, modal : true,
width : 400, height : 220, minimizable : false, resizable : false,
draggable : false, shadowOffset : 8, closeAction : "hide",

buttons : [{
text : "Ok",
handler : function() { dialogNoGears.hide(); }
}]
bs

dialogNoGears.show(Ext.getDom("divSource"));

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

return;
}
loadData();
Ext.QuickTips.init(); Ext.form.Field.prototype.msgTarget = "side";
buildUI();
Ext.getCmp("dialogPleaseWait").destroy();

First, a call to dao.init() is made, and if false is returned then the No Gears Window is
shown and application startup is aborted.

Assuming dao.init() returns true, initialization continues, beginning with a call to
loadData(), which is responsible for loading all the data from the database for projects, tasks,
and resources.

Loading the Data

The loadData() function is as follows:

function loadData() {
var projects = dao.retrieveProjects();
for (var i = 0; i < projects.length; i++) { projectsStore.add(projects[i]); }
var tasks = dao.retrieveTasks();
for (var i = 0; i < tasks.length; i++) { tasksStore.add(tasks[i]); }
var resources = dao.retrieveResources();
for (var i = 0; i < resources.length; i++) {
resourcesStore.add(resources[i]);

}
populateProjectManagers(); populateAvailableTasks();

As you can see, a call is made to each of the retrieval methods in the DAO for the three
entity types: projects, tasks, and resources. For each, the returned array is iterated over.
These arrays contain ProjectRecord objects, TaskRecord objects, or ResourceRecord objects,
depending on the type being worked on. For every element in the array a call to the add()
method of the appropriate store is made. Finally, a call to populateProjectManagers() and
a call to populateAvailableTasks() is made, which populates those two semi-temporary
derived stores we saw earlier.

Populating the projectManagersStore
Here is the populateProjectManagers() function:
function populateProjectManagers() {

projectManagersStore.removeAll();
resourcesStore.each(function(inRecord) {

if (inRecord.get("isaprojectmanager") == "Yes") {
projectManagersStore.add(inRecord.copy());
}
Ds

}

215

216

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

First, we use the removeAll() method of the projectManagersStore to clear it out. This
is necessary because this function will be used at other times, and we always need the
store to be empty to begin with because the next step is to iterate over all the Records in the
resourcesStore via the each() method. The function passed to each() is called for every
Record, and that record is passed into the function as inRecord. The task here is to check the
value of the isaprojectmanager field in the Record. If its value is Yes, then we add a copy of the
Record to the projectManagersStore by calling the copy() method of the Record, which returns
an identical copy of the Record it is called on.

Note | had a nasty situation where originally | was simply calling add() on the projectManagersStore
and adding the existing Record form the resourcesStore. The problem | discovered is that the update
event would never fire for the Record after that, and the reason is that a Record can be associated with one
and only one Store at any time in order for events to work properly. So, the simple solution was to use the
copy () method of the Record object to add a copy to the projectManagersStore instead. The bad news
is that changes to the resource now require updating the projectManagersStore as well, which is why |
said this function will be called at other times. So remember, don’t ever put the same Record in more than
one Store if you expect events to work as expected! Learn from my hours of pounding my head on the desk!

Populating the AvailableTasksStore and Getting Back to initMain()
The populateAvailableTasks() is extremely similar and also pretty simple:
function populateAvailableTasks() {

availableTasksStore.removeAll();
tasksStore.each(function(inRecord) {

if (inRecord.get("project") == "") {
availableTasksStore.add(inRecord.copy());
}
D;

}

The only real difference is that this time the project field is what we’re interested in
checking, and simply stated, if the field has no value then the task isn’t assigned to a project,
and thus is available to be added to a project.

Getting back into initMain(), after the call to loadData() returns, we initialize QuickTips
as we saw in the last project so that we can have those pretty little validation error icons next
to fields in our forms. After that, a call to buildUI() is made, which as the name implies, builds
the user interface. Finally, the Please Wait Window is hidden.

Building the Ul

The next thing to look at is that buildUI() function, and in stark contrast to the buildUI()
method in the OrganizerExt project, which you'll recall was pretty darned lengthy, the one in
this project is considerably smaller:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

function buildUI() {
new Ext.Toolbar(uioMenubar);
new Ext.tree.TreePanel(uioProjectsTree);
new Ext.tree.TreePanel(uioTasksTree);
new Ext.tree.TreePanel(uioResourcesTree);
var vp = new Ext.Viewport({
layout : "border", items : [
Ext.getCmp("mainMenu"),
{ region : "center", layout : "card", activeItem : 0, id : "mainCard",
items : [
{ html :
"<table width=\"100%\" height=\"100%\" border=\"o\" " +
"cellpadding=\"0\" cellspacing=\"0\"><tr>" +
"<td align=\"center\" valign=\"middle\">" +
"</td></tr></table>" },
new Ext.Panel(uioProjectSummary),
new Ext.Panel(uioTaskSummary),
new Ext.Panel(uioResourceSummary)

]

1
{ region : "west", layout : "border", width : 250, split : true,
items : [
{ region : "north", height : 84, bodyStyle : "padding:4px",
items : [
{ xtype : "radiogroup", columns : 1,
items : [

{ boxLabel : "Project View", name : "viewMode",
inputValue : 1, checked : true,
listeners : {
"check" : function(inCheckbox, inChecked) {
if (inChecked) {
Ext.getCmp("vmCard").getLayout().setActiveItem(0);
}
}
}
}J

{ boxLabel : "Task View", name : "viewMode",
inputValue : 2, checked : false,
listeners : {
"check" : function(inCheckbox, inChecked) {
if (inChecked) {
Ext.getCmp("vmCard").getLayout().setActiveltem(1);
}
}
}
})

217

218 CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

{ boxLabel : "Resource View", name : "viewMode",
inputValue : 3, checked : false,
listeners : {
"check" : function(inCheckbox, inChecked) {
if (inChecked) {
Ext.getCmp("vmCard").getlLayout().setActiveltem(2);

}

{ region : "center", layout : "card", activeltem : 0, id : "vmCard",
items : [
Ext.getCmp("projectsTree"), Ext.getCmp("tasksTree"),
Ext.getCmp("resourcesTree")

D;
populateProjectsTree();

populateTasksTree();
populateResourcesTree();

The reason it is so much shorter is that instead of defining the entire UI within one single
statement, only the basic layout is defined while most of the components that go into it are
defined in separate source files. For example, in the OrganizerExt project, recall that the menu
was defined right there in buildUI(), so that was a hundred or so lines of code right there.
Here, however, it’s a single statement:

new Ext.Toolbar(uioMenubar);

The JSON that is fed to this constructor is contained in the Menu. js file, which we’ll look
at shortly, and which declares the variable uioMenubar, which is the configuration object, in
JSON form, passed into the Ext.Toolbar constructor. This is a common theme repeated in
this function a couple more times, for example, to construct the three view Trees seen on the
left of the screen:

new Ext.tree.TreePanel(uioProjectsTree);
new Ext.tree.TreePanel(uioTasksTree);
new Ext.tree.TreePanel(uioResourcesTree);

Of course, there is some UI definition going on here, beginning with the Viewport defi-
nition. A BorderlLayout is employed here to lay things out. The first item in the items array
nested within the Viewport is the menu. The statement we just saw that instantiates the

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

Ext.Toolbar contains a region specification of north, which is where the menu bar should be
in the BorderLayout, and it also defines an ID of mainMenu. So, the first item in the items array is
simply a call to Ext.getCmp("mainMenu"), which effectively means that the menu bar is the first
item (remember that you can create widgets and not render them immediately, but Ext JS still
knows how to give you a reference to it by ID, assuming you gave the component an ID).

The next item in the items array is bound to the center region and is a Panel using the
CardLayout type with the ID mainCard. The items array for it creates four nested items within
this CardLayout, the first being some plain-old HTML for the welcome splash screen. The last
three items are the three summary views, the configuration of which we’ll look at later.

The next nested element in the BorderLayout is itself a BorderLayout in the west region.
This is where the view selection Radio buttons and the trees are shown. Remember that you
aren’t obligated to use all the regions of a BorderLayout, and here only the north and center
regions are used. In the north region we create the Radio buttons for selecting the view. This
is just a RadioGroup, as we've seen before, and for each of the Radio buttons a check event
handler is defined. The card showing in the vmCard component, which is created below the
code for the view Radio buttons, is updated to show the appropriate Tree (each Tree is a card in
the CardLayout shown in the center region of the BorderLayout in the west region of the main
BorderLayout in use by the ViewPort).

As mentioned, the Trees themselves are each a card in a CardLayout, and this is defined
below the Radio buttons.

Populating the Trees

Next up are three functions that have the responsibility of populating the three view trees.
These functions are aptly named populateProjectsTree(), populateTasksTree(), and
populateResourcesTree().

If by chance you’ve forgotten what a Tree looks like, take a gander at Figure 4-10.

%3 TimekeeperExt - Mozllia Firefox

Bhe [View Mgtory fookmarks Jeok Melp

L9)) Tmekeeperixt B - &
Proscts Tuke Basowca® pe

O projact view

@ Task

o Tk Task Summary

& Resource View

Tash Ve

33 Tasks Parcant Comphiss Staten i Dascrpten Start ute ra te Ascattmsus Destsd Tems Fromet Faacurcs
255 Wash e smtes |

Feeamessy |surpeselshoul 11282008 N2E0E "w 5 Hasbandly Duses By Beb Brutack

= Seo i Towe 3613 (D BT We)//C entbook /b timeheeperfeode_. @ - sBAMB/6aHE | 73Me/75He & B vsen 3605 § 4 @ uw . =

Figure 4-10. The tree in the Task View

219

220 CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

Because of the similarities in these three functions, let’s just take a look at one of them,
populateProjectsTree(). This one is more complex and verbose than the other two, which
is good because the other two are effectively a subset of this one, so understanding how
populateProjectsTree() works means you'll understand the other two. Here’s the code we're
talking about:

function populateProjectsTree() {
var newProjectNode = null; var newTaskNode = null;
var pRootNode = Ext.getCmp("projectsTree").getRootNode();
var delNode;
if (pRootNode) {
while (delNode = pRootNode.childNodes[0]) {
pRootNode.removeChild(delNode);
}
}
var assureUnique = 1;
projectsStore.each(function(inProjectRecord) {
newProjectNode = pRootNode.appendChild(new Ext.tree.TreeNode({
id : "project~@" + inProjectRecord.get("name"),
text : inProjectRecord.get("name"
N);
tasksStore.each(function(inTaskRecord) {
if (inTaskRecord.get("project") == inProjectRecord.get("name")) {
newTaskNode = newProjectNode.appendChild(new Ext.tree.TreeNode({
id : "task~@>" + inTaskRecord.get("name"),
text : inTaskRecord.get("name"
N);
resourcesStore.each(function(inResourceRecord) {
if (inTaskRecord.get("resource") == inResourceRecord.get("name")) {
var newID = "resource™@" + assureUnique + "~@" +
inResourceRecord.get("name");
newTaskNode.appendChild(new Ext.tree.TreeNode({
id : newID, text : inResourceRecord.get("name"

1)

assureUnique = assureUnique + 1;

1
}
1
1);
pRootNode.expand();

}

The first task is to clear the Tree, which we do by using the Ext.getCmp() method to look
up the Tree with the ID projectTree. Then the getRootNode () method is called to retrieve a ref-
erence to the root node. Then, we enter a while loop that keeps going until the root node has
no more children. For each child node found, we call the removeChild() method on the root

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

node, passing it a reference to the child node. I could find no single method to call to clear an
existing Tree, and I also could find no simpler way to do it than this.

Once that’s done, it is time to populate the Tree with the new data. The Project View Tree
lists projects, with tasks nested below each, and resources nested below the tasks. So, we
begin by iterating over all the projects in the projectsStore using its each() method. For each
ProjectRecord in the store, we append a new Ext.tree.TreeNode to the Tree. A TreeNode has an
id attribute and a text attribute, among other things. The id is a unique identifier, while text
is what is seen in the tree by the user. The value for both of these comes from the name field
of the ProjectRecord, but for the id the code prepends the string project~@~. The reasoning
behind this will be explained in more detail when we look at the code behind the Tree itself,
but simply stated, it allows other code to determine whether a project, task, or resource was
clicked, and it also ensures all nodes in the Tree have a unique ID, which is a requirement.

The TreeNode also has an icon attribute that allows us to set the image seen next to the
node. I have different icons for projects, tasks, and resources, so it is easy to differentiate them
when looking at the tree.

Moving on, recall that tasks are nested beneath projects. Therefore, for each
ProjectRecord, we also iterate over the TaskRecord objects in the tasksStore, and for each we
check to see if its project field value matches the name field of the ProjectRecord. If it does, we
add a TreeNode as a child of the newly created TreeNode for the project.

Likewise, for each task we need to nest resources underneath it, so again we iterate over
the Records in a store, this time the resourcesStore. For each we check to see if the resource
field on the TaskRecord object matches the name field of the ResourceRecord, and if so, a
TreeNode is appended as a child to the new task TreeNode. For projects and tasks, since no two
projects can have the same name, and the same goes for tasks, there is no risk of a conflicting
id value for the TreeNode. However, this is not the case for resources, since the same resource
could be assigned to multiple tasks. So, to ensure a unique id value, the value has a number
appended to it that is incremented with each resource TreeNode added. As I mentioned, this
will be explained a bit more shortly, but that gives you most of the information you need.

As alast step, the root node is expanded via a call to its expand() method. This just ensures
that all projects are seen after the Tree is populated (by default, the root node would have been
collapsed, and there’s no point making users expand it when that’s probably what they’d want
to happen automatically anyway).

At this point I suggest looking at the populateTasksTree() and populateResourcesTree()
functions, because going through them yourself is worth the time. However, as I previously
mentioned, they are essentially just a subset of what we just looked at, so even if you don't,
you won’t be missing anything.

Showing Project, Task, and Resource Status

You may at this point have guessed how I wrote this code: I wrote a given function for projects,
say the populateProjectsTree(), then took that function and modified it to work for tasks and
resources. That’s why I've said a few times now that seeing a single version of a given func-
tion is pretty well sufficient to understanding all three versions. Well, I'm about to say the
same thing again! We're going to look at the three functions for displaying the project, task, or
resource summary views. Once again, we’ll take the showProjectSummary() function and look
at it, leaving showTaskSummary () and showResourceSummary() for you to review on your own, or
to skip entirely, since the two we won’t look at here are similar to the one we will look at.

221

222 CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

Speaking of the one we will look at, here it is:

function showProjectSummary() {
if (currentProject) {
Ext.getCmp("mainCard").getlLayout().setActiveItem(1);
currentSummaryView = 1;
} else {
Ext.getCmp("mainCard").getlLayout().setActiveItem(0);
return;
¥
var projectBookedTime = 0;
tempProjectSummaryTasks.removeAll();
tasksStore.each(function(inRecord) {
if (inRecord.get("project") == currentProject.get("name")) {
var newRecord = inRecord.copy();
newRecord.set("status", calculateStatus(inRecord.get("bookedtime"),
inRecord.get("allocatedhours"), inRecord.get("enddate")));
tempProjectSummaryTasks.add(newRecord);
projectBookedTime = projectBookedTime + inRecord.get("bookedtime");

}
};

tempProjectSummaryDetails.removeAll();
var newRecord = currentProject.copy();
newRecord.set("bookedtime", projectBookedTime);
newRecord.set("status", calculateStatus(
projectBookedTime, currentProject.get("allocatedhours"),
currentProject.get("enddate")));
tempProjectSummaryDetails.add(newRecord);
tempProjectSummaryResources.removeAll();
tempProjectSummaryTasks.each(function(inRecord) {
var resourceRecord = resourcesStore.getById(inRecord.get("resource"));
if (resourceRecord &8
Ext.isEmpty(tempProjectSummaryResources.getById(resourceRecord.id))) {
tempProjectSummaryResources.add(resourceRecord.copy());

}
};
}

The first check is to ensure that currentProject has a value, meaning it points to a
ProjectRecord. If it’s null, then the first card in the CardLayout mainCard is shown. As you’ll
recall, this is the CardLayout nested in the center region of the BorderLayout applied to the
Viewport. The first card is the welcome screen, so this situation covers if the user clicks the
root node of the projects Tree, in which case there is no active project, but this function will
still be called because this function is called from the click event handlers on the Tree, as
you'll see shortly.

If a project is selected, though, the second card is shown, which happens to be the Project
Summary view card.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

If you look at the Project Summary view, you'll see there are three Grids, the second of
which shows all the tasks allocated to this project, so it needs to be populated first (and no, it’s
not a mistake, I skipped the first Grid on purpose... more to come). To do this, we need to pop-
ulate a temporary store, appropriately named tempProjectSummaryTasks. Before this store can
be populated, though, it needs to be cleared, which we accomplish with a call to removeAll().
Then, we begin to iterate over the TaskRecords in the tasksStore. For each, we see if its project
field matches the name of the selectedProject, and if so, then a new Record is created that is
a copy of the TaskRecord currently being examined. This gives us nearly all the data that we’ll
need to display in the Grid, except for one piece of information: the current status of the task.
To fulfill that requirement, we use a function named calculateStatus(). The code for that
function is present in TimekeeperExt. js as well, and here it is:

function calculateStatus(inBookedTime, inAllocatedHours, inEndDate) {
var status = 0;
var statusImage = "";
if (inBookedTime < inAllocatedHours 8&
inBookedTime >= (inAllocatedHours * .9)) {

status = 1;

} else if (inBookedTime > inAllocatedHours) {
status = 2;

}

var endDate = Date.parseDate(inEndDate, "m/d/Y");
if (new Date() > endDate) {
if (status == 0) {
statusImage = "";
} else if (status == 1) {
statusImage = "";
} else if (status == 2) {
statusImage = "";
}
} else {
if (status == 1) {
statusImage = "";
} else if (status == 2) {
statusImage = "";
}
}

return statusImage;

This function is used to calculate the status of both projects and tasks, and essentially it
winds up returning a snippet of HTML for displaying the appropriate image in the Status col-
umn of a Grid. This function accepts three arguments: the total time booked to the project or
task in hours, the number of hours allocated to the project or task, and the date the project or
task was due to be completed.

The first task is to determine if the project or task is over its allocated hours, within
10 percent of its allocated hours, or has had less than that booked against it. The code begins

223

224

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

by assuming that the project or task has had less than 90 percent of its allocated time booked
again it, signified by the status variable having a value of 0 to begin with. Next, an if check
is performed to determine if it is within 10 percent of the allocated hours, and if so, status is
set to 1. If inBookedTime is greater than inAllocatedHours, then status is set to 2 to indicate an
overage.

After that, it’s time to determine whether the project or task is late. Before we go any
further, I should explain that there are six images that can be displayed as a result of using
this function. A green check mark indicates the project or task has had less than 90 percent
of its allocated hours booked. A yellow warning sign indicates danger of going over hours (10
percent of allocated hours remaining), and a red X symbol indicates an overage. In addition,
any one of these three can be blinking, indicating the project or task is past due. So, before the
second if statement executes we know which of the three nonblinking images to display. The
second if statement will then determine if one of the blinking versions needs to be returned.

So, the check is performed to see if the current date is greater than the inEndDate value.
To do this comparison, we need to create a true Date object from a passed-in string, and the
Date.parseDate() function that Ext JS provides is just the tonic for that! If the if branch is
activated, then it examines the value of the status variable and selects the appropriate image
based on it and creates the appropriate tag markup. Likewise, if the project or task is
not past due, then the else branch hits, and there we check if the project or task is in danger
or is over hours, and select the appropriate blinking image there. (By default, the assump-
tion is made that the project or task is both under hours/not in danger and is also not past
due— that’s why only two cases are checked for in the else branch: the third condition is the
default.)

Getting back to the showProjectSummary() code, we've just completed population of the
store for the middle task’s Grid, save for one last detail. Note the line:

projectBookedTime = projectBookedTime + inRecord.get("bookedtime");

This line is the reason the Grids are not populated in the order they appear on the screen.
In order to show a status for the project as a whole, we need to know how much time has been
booked against it. Since that information is stored at the task level, we have to calculate it as
we iterate over the tasks during population of that Grid.

Once we have that value, populating the project details Grid (the first one in the Project
Summary view) is a pretty trivial matter. First, the tempProjectSummaryDetails store is cleared
by a call to removeAll(). Then the currentProject Record is copied using its copy() method.
Next, the bookedtime field of that Record is set to the value that was just calculated, and the
status field is populated by making another call to calculateStatus().

Finally, the copy of the currentProject ProjectRecord is added to
tempProjectSummaryDetails. The Grid automatically refreshes because it has been bound to
that particular store (the same is true of all the Grids in all the summary views).

The last step is to populate the Grid showing resources working on this project.

Since the only way to know this is by examining the tasks associated with this project,
we use the each() method on the tempProjectSummaryTasks store (yet another reason it
had to be done first) to iterate over its Records. For each we retrieve the ResourceRecord
from the resourcesStore by looking it up based on the value of the resource field of
the current TaskRecord being examined. Finally, a copy of the ResourceRecord is added
to tempProjectSummaryResources, but only if the resource wasn’t previously added. We

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

determined this by using the Ext.isEmpty() function. Simply put, the code tries to look up
the resource in tempProjectSummaryResources, and if Ext.isEmpty() returns true, then the
resource hasn’t been added yet and can be added now.

ProjectSummary.js, ResourceSummary.js, and
TaskSummary.js

The three summary views, one each for project, task, and resource, are each housed in their
own source file and are pretty simple config objects fed into an Ext.Panel constructor, as we
saw in TimekeeperExt.js. As usual for this chapter, we’ll just look at the ProjectSummary. js
since the other two are simply variations on a theme. The code begins with this snippet:

var uioProjectSummary = {
bodyStyle : "padding-left:40px;padding-right:40px;padding-top:30px;",
autoScroll : true, items : [

The uioProjectSummary variable holds the JSON config information that defines the Panel.
We have a bodyStyle that specifies some padding on the left, right, and top of the contents of
the Panel, just to avoid bumping up against borders.

Next we have a chunk that describes the title:

{ border : false, html :
"<div class="cssSummaryTitle'>Project Summary</div>" },

This winds up being a simple Panel that has some HTML displayed in it. We also remove
the border so that it looks like a title and not a box with text in it!
Now we come to the first Grid, but before that is the header you see above the Grid:

{ border: false, bodyStyle : "padding-top:30px", html :
"<div class="cssSummaryTableHeader'>Project Details</div>" },

This is again just a plain-old Panel with some plain-old HTML in it. The bodyStyle gives
some padding on the top of the header and Grid so that there is space between it and whatever
content is above it (the title in this case). Following that is the definition of the Grid itself:

{ xtype : "grid", id : "gdProjectSummaryDetails", trackMouseOver : false,
store : tempProjectSummaryDetails, autoHeight : true, stripeRows : true,
disableSelection : true, autoExpandColumn : "colDescription”,
columns : [

{ header : "Status", sortable : false, dataIndex : "status",
align : "center" },
{ header : "Name", sortable : false, datalndex : "name" },
{ header : "Description", sortable : false, datalndex : "description”,
id : "colDescription" },
{ header : "Project Manager", sortable : false,
datalndex : "projectmanager" },
{ header : "Start Date", sortable : false, dataIndex : "startdate" },
{ header : "End Date", sortable : false, dataIndex : "enddate" },

225

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

{ header : "Allocated Hours", sortable : false,
dataIndex : "allocatedhours" },
{ header : "Booked Time", sortable : true, dataIndex : "bookedtime" }
]
b

This Grid is bound to the tempProjectSummaryDetails Store, which may be empty or
may have data in it, depending on whether a project is currently selected. Data binding
works either way, of course! For this Grid (and in fact all the Grids on all three summary
views), the trackMouseOver attribute is set to false, which means the rows of the Grid
won’t highlight when hovered over. Since these Grids aren’t meant to be interactive—they
are just a method for displaying read-only data—this is a necessary setting. By extension,
disableSelection makes sure the user can’t select a row. The definition of the columns is, I
suspect, pretty straightforward based on our previous experience with Grids, as are the rest
of the config options.

Next we find the second of the three Grids, this one listing the tasks allocated to this
project:

{ border: false, bodyStyle : "padding-top:30px", html :
"<div class='cssSummaryTableHeader'>" +
"Tasks allocated to this project</div>" },

{ xtype : "grid", id : "gdProjectSummaryTasks", trackMouseOver : false,
store : tempProjectSummaryTasks, autoHeight : true, stripeRows : true,
disableSelection : true, autoExpandColumn : "colDescription”,
columns : [

new Ext.grid.ProgressBarSelectionModel({
header : "Percent Completed", datalndex : "percentcomplete”,
align : "center" }),
{ header : "Status", sortable : false, datalndex : "status",
align : "center" },
{ header : "Name", sortable : true, dataIndex : "name" },
{ header : "Description", sortable : true, datalndex : "description",
id : "colDescription" },
{ header : "Booked Time", sortable : true, dataIndex : "bookedtime" }
]
b

In this case I've listed the header and Grid definition together, since you now know what
that header is all about from the last Grid. In fact, the Grid definition is pretty unremark-
able too, except for one detail: within the columns array, the first column is an instance of
Ext.grid.ProgressBarSelectionModel, which we saw defined in TimekeeperExt. js. This takes
the value of the percentcomplete field of the ProjectRecord for each row in the Grid, plus
the column header and an align value of center, and renders the progress bar as previously
described.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

The final Grid shows all resources involved with the project:

{ border: false, bodyStyle : "padding-top:30px", html :
"<div class='cssSummaryTableHeader'>" +
"Resources involved with this project</div>" },

{ xtype : "grid", id : "gdProjectSummaryResources”, trackMouseOver : false,
store : tempProjectSummaryResources, autoHeight : true, stripeRows : true,
disableSelection : true, autoExpandColumn : "colDescription",
columns : [

{ header : "Name", sortable : true, datalndex : "name" },
{ header : "Description”, sortable : true, datalndex : "description”,
id : "colDescription” }

};
At this point, that bit of code should be nothing new at all!

ProjectsTree.js, TasksTree.js, and ResourcesTree.js

Each of the trees that you see when you select Project View, Task View, or Resource View is
housed in its own source file. The Project View tree, for example, is in the ProjectsTree. js file.
The code you find in this file looks like this:

var uioProjectsTree = {
layout : "fit", id : "projectsTree", title : "Project View",
root : new Ext.tree.TreeNode({ id : "root", text : "Projects" }),
listeners : {
click : function(inNode, inEvent) {
if (inNode.id == "root") {
Ext.getCmp("mainCard").getlLayout().setActiveItem(0);
} else {
var splitVals = inNode.id.split("~@~");
switch (splitvals[o]) {
case "project":
currentProject = projectsStore.getById(splitvals[1]);
showProjectSummary();

break;

case "task":
currentTask = tasksStore.getById(splitVals[1]);
showTaskSummary();

break;

case "resource":
currentResource = resourcesStore.getById(splitVals[2]);
showResourceSummary();

break;

};

227

228 CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

var typeInCaps = Ext.util.Format.capitalize(splitvals[o0]);
Ext.getCmp("menu" + typeInCaps + "Delete" + typeInCaps).enable();
Ext.getCmp("menu" + typeInCaps + "Modify" + typeInCaps).enable();
}
}
}
};

Because each of these source files is so similar, just looking at this one will suffice.

I suggest taking a look at them on your own, but you'll find that the TasksTree. js and
ResourcesTree.js code are both a bit simpler and smaller than the ProjectsTree. js code
because they in effect are a subset of what is in the code shown here.

Asyou can see, it’s really just some JSON assigned to a variable named uioProjectsTree
(uio stands for User Interface Object—just a prefix I invented). In TimekeeperExt. js you saw
that this variable is passed to an Ext.tree.TreePanel constructor, so this JSON is defining that
TreePanel. It specifies a fit layout so that the tree takes up the entire space allocated to its par-
ent. It is given an ID of projectsTree so that we can address it later, and it has a title as well
so that there is something between the view switch radio buttons and the tree itself.

Any time you construct a tree in Ext JS, it has to have a root node, even if you don’t have
data to put in it yet. This is a requirement during construction, so here we use the root attri-
bute, the value of which is a new Ext.tree.TreeNode. The root node is no different from any
other nodes—they are always TreeNode instances. We give the root a very uncreative ID of
root and make the text that will be displayed next to the node Projects, since this is the Proj-
ect View tree.

After that, event listeners are defined. In this case it’s just a single one: the click event,
which fires any time a node is clicked. Every time this event fires, the callback function is
passed a reference to the node that was clicked as well as information about the event that
occurred. The second argument is an instance of Ext.EventObject that provides information
about the event such as X and Y location on the page of the event, character codes of pressed
keys involved, and more.

For our purposes, however, it’s only the first argument that matters to us, and that’s a
reference to the TreeNode object that was clicked. Most important is the id attribute of that
object, which is the ID assigned to the clicked node. The first thing we do is see if the clicked
node is the root node. If that is the case, the welcome screen is immediately shown by flip-
ping to the first element in the list of cards underneath the CardLayout component with the ID
mainCard, which we know is the CardLayout in the center region of the main BorderLayout that
organizes the Viewport contents.

Once we determine that it wasn’t the root node that was clicked, the next chore is to
determine the type of node that was clicked, and the ID associated with the item the node
represents. In the Project View tree, there are projects, there are tasks, and there are resources.
However, to the tree itself, they are all just TreeNode objects; the tree doesn’t know or care what
they represent to the rest of our code. To give extra meaning to each node, I used a special
string format for the ID. That format is xxx~@~yyy or xxx~@~yyy~@~zzz. The first format is used
for projects and tasks, while the second is used for resources. The substring ~@~ is nothing
but a delimiter. I used this instead of a comma or something more typical because I needed
something that I could safely assume wouldn’t naturally occur in entered data. This particular
combination seemed to me pretty safe. In both formats, the xxx portion is the type of node,

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

so the value is either project, task, or resource. For projects and tasks, the yyy portion is then
the actual ID of the project or task. (Remember that the ID is really the name of the item, but it
serves as a unique ID here.) In the case of resources, yyy is instead a unique value constructed
based on the time the node was added, as you saw in TimekeeperExt.js, and zzz is the ID. This
is necessary because a single resource can appear more than once in the tree since a resource
can be assigned to more than one task. If all nodes in the tree don’t have unique IDs, you'll
find that the tree breaks, and things like hovering and selection don’t quite work right. Doing
this ensures those problems are avoided.

So, the ID of the clicked node is tokenized and broken into an array named splitVals that
has either two or three elements. The first element of the array, which is the type of node, is
used as the branch condition in a switch statement. Whatever the type is, the appropriate vari-
able is set. For projects, the currentProject variable is set to the Record in the projectsStore
associated with the clicked node. For tasks, the Record from the tasksStore is pointed to by
the currentTask variable, and for resources the Record comes from the resourcesStore and
is pointed to by the currentResource variable. This allows the summary views to know what
Record to draw their displayed data from, and it allows the application to know what project,
resource, or task should be dealt with when using the Modify or Delete menu items.

Speaking of Modify and Delete, the next task performed is to enable those menu items
as appropriate. To do this, the first element in the splitVals array is capitalized using the
Ext.util.format.capitalize() function, yielding one of the strings “Project”, “Task”, or
“Resource”, depending on the type of node that was clicked. With this string we are then able
to construct the ID of the menu items that need to be enabled. For a project node, for example,
the menu items with the IDs menuProjectDeleteProject and menuProjectModifyProject need
to be enabled, so those IDs are constructed. We use the Ext.getCmp() function to get a refer-
ence to the menu item, and then its enable() method is called to activate it.

As I mentioned, the code found in TasksTree. js and ResourcesTree. js is nearly identi-
cal to this, but since in the Task View tree there can only be tasks and resources shown, there
is one less case statement. In the case of tasks and resources, clicking on the root node does
nothing, so there is a simple check that effectively ignores clicks on that node. Also, in the case
of the Resource View tree, there’s no need to do any of the mucking around with node types
and IDs. Because there are only resources shown in that tree, and since resources must always
have a unique name anyway, and since the name is effectively the ID of the nodes in the tree,
there is no need to ensure uniqueness manually. It’s already ensured naturally, so the code
there has none of the branching involved. Have a look to verify I'm not making any of this up!

Menu.js

The main menu is how most of the functionality of TimekeeperExt is accessed. There is a
menu item for each entity we deal with. For instance, there is a Project menu, as shown in
Figure 4-11.

229

230

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

e [A% View legtory fookmarks Jesk lelp
@ |) Tiekoeeperiixt B

|Broeas | Tak = Basserce® Wap

Hew el

Pa— Resource Summary
Modfy Prajact
e ——
23 Tasks

a3 Wash the sshes

Hesource Details
aere A Prct Mansger? | Daacronon
s Bay Bor Brseet My gkt quand
Frarm Zoreoets
25 B 520 Berats
B Frant Zammnars Projects this resource is involved with
2 C3reed the dog
arme [
] By B2b Brutack L
3 Tab tver B wetrty Hussanciy Dutes The tings | nave 33 do or my wife ks me
] $iven Gt
25 Craate » e mactine
& John Consor

Percert Cerpieiet Sk Mame Deserpten e
- h, Feed 1) # st o
= & vea e o surpine | stou sbary Dutes
~ Spo 0 Time3613 () DT Hey//C/entbook/cht timcheeperfeade_. @ - SAMB[64HE | TIHE[75HE [vSlew 605 f & @ uw o 3

Figure 4-11. The Project menu

Likewise, there is a Task menu, which you can see in Figure 4-12. Each of the first three
menus has three items: one to create a new project, task, or resource; one to delete the cur-

rently selected project, task or resource; and one to modify the currently selected project, task,
or resource.

[he [View iigtory [fookmarks Jeok Melp
9 | () Tiwekeepertat I | - B
T T E—
@ projel Mew Task
O Task | .
s W) T Project Summary
R0l esny s
T Bl it
Praject Verw Project Details
=3 Projects Staten Mars Dwacrpton Frogd Mansgat Shat Date (a2 Date Ascates Heurs Bosked Tims
o bty it [Moshandly Duses The I8ings | have in 2 or my wite kil me FraskZimmeti 11012003 11a020e 1000 "
T Weat e oabes
] Frant Farmets
Sras meseg
5 oty Beb Brutack asks allocated to this project
&3 Just dar fun Percent Camelenes Stntes. Mame Desereten Bosked Time
E1SEw 360 ety = 2\ AR 4 dahas et de @
5 e Zeeeans 58 &
25 Tak over the workt o #\ [R T p— 4
5 simen Cowed | =
23 Create 8t mazhine
I om conecr Resources involved with this project
Hame Cescrpnon
Frack Zameti Kool
Uy Bt Dt Eghe guan
~ Spo 0 Time3613 () DT Hey/iC/entbook/cht timeheeperfeade_. @ - SBAMB[64HE | TMIHB[75HE & [vSlew 605 f & @ uw o 3

Figure 4-12. The Task menu

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

Before an item is selected, the Delete and Modify options are disabled, as you can see in
Figure 4-13 where the Resources menu is shown.

© Thmekee

e [View Mgtory fookmarks Jeok Melp

9| | Tewekeeperit B - B
Propets Task+ [Basdercas | Wt
@ project View| New Resnsce
O Task view
C Resource vie
23 Praects
il (] Hustany Detes
0) o o Welcome to TimeheepeiExt!
To bugin, select 3 prejact 1o werk on, er creale
@ new ang, Youll of course need some tasks
and soma resowces as wall
Ext JS even makes project managerent funl
[Imeges: 8/0 Loaded KB Speck 1135KB/s Tewe 3034 (D [T #ey//C/entbookided timeheeperfosde_. @ - sBaMB/eans | r3ne/rsHe & Bvser 300% ¢ £ @ uw - 9

Figure 4-13. The Resource menu

The final menu, the Help menu, contains a single option that shows an About dialog,
similar to what we saw in the OrganizerExt project. To save some space [haven’t shown a
screenshot of that menu here, nor have I shown the About dialog or explained its code. Except
for the text, it’s the same as in OrganizerExt, so feel free to go back to that chapter and check it
out if you need to.

The code behind the menu, how it is created, and how it reacts when clicked are all
housed in the Menu. js file. This code is about 200 lines long, but a lot of very similar parts are
repeated. So, let’s look at just a small portion of it, that dealing with projects:

var uioMenubar = {
id : "mainMenu", region : "north", height : 26,
items : [{
text : "Project”, menu : {
items : [{
text : "New Project",
handler : function() {
var dialogNewProject = Ext.getCmp("dialogNewProject");
if (!dialogNewProject) {
dialogNewProject = new Ext.Window(uioNewProjectWindow);
}
dialogNewProject.show(Ext.getDom("divSource"));
}
}J

231

232

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

)
{ text : "Delete Project", disabled : true,
id : "menuProjectDeleteProject",
handler : function() {
var dialogDeleteProject = Ext.getCmp("dialogDeleteProject");
if (!dialogDeleteProject) {
dialogDeleteProject = new Ext.Window(uioDeleteProjectWindow);
}
dialogDeleteProject.show(Ext.getDom("divSource"));
}
1

{ text : "Modify Project", disabled : true,
id : "menuProjectModifyProject",
handler : function() {
var dialogModifyProject = Ext.getCmp("dialogModifyProject");
if (!dialogModifyProject) {
dialogModifyProject = new Ext.Window(uioModifyProjectWindow);
}
dialogModifyProject.show(Ext.getDom("divSource"));
}
}
]
})
listeners : {
"render" : function(b) {
b.el.child(b.menuClassTarget).removeClass("x-btn-with-menu");

}
}
b
..Code for the other three menus is here..
]
b

Recall in the buildUI() function that the uioMenubar variable is fed to the constructor of
an Ext.Toolbar () object. However, the reference to the created component was not stored.
Instead, in the config object for the Viewport we used the ID of the menu, mainMenu, to retrieve
areference to the widget, and that was used in the items array of the Viewport. Now in the
definition of the menu you can see that the region attribute is set to north, because we used a
BorderlLayout on the Viewport, so this attribute tells the BorderLayout where to put the menu.

The items array of the menu contains our top-level menus. The first one has a text value
of Project. The menu attribute then defines the menu itself, the child elements of the top-level
menu element. The value of the menu attribute is an object which, in this case, has a single
attribute: items. This is an array of the children that are part of that menu.

The first item is the New Project item, so that’s the value of the text attribute. The handler
attribute defines the function that will be called when the item is clicked. You'll notice as
you scan down the code that the handler function is nearly identical to the handler function

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

for the other two menu items; the only difference is the dialog that is shown. A reference

to the appropriate dialog is gotten by a call to Ext.getCmp(), in this case the ID we're look-

ing for is dialogNewProject. Then, if the component wasn’t found, a new Ext.Window object

is created, passing it the config object defined that describes the Window for that dialog,
uioNewProjectWindow in this case. This will only occur if this is the first time the dialog Window is
being shown. The Windows for all the pop-up dialogs are never destroyed; they are only hidden,
so the only time we won’t get a reference to an existing component is the first time it is used.
Finally, the show() method of the Window is called, passing it a reference to the divSource <div>
where our animation starts from.

You'll also notice that between each of the three menu items is a single item that appears
to be a plain-old string: a dash character. This is a special cue to Ext JS to put a divider line on
the menu.

The other menus all have extremely similar code behind them, so we can move on to
something a bit more exciting.

NewProjectDialog.js, NewTaskDialog.js, and
NewResourceDialog.js

The New Project, New Task, and New Resource dialogs are all fairly similar, so we’ll just look
at the NewProjectDialog. js file here. Before that, let’s take a look at the dialog itself, shown in
Figure 4-14.

Resource Summary

Hespurce Details
Harra WA Praat Managar? | Dapcrgmes

Frark Zammes: e .
* Wew Project Wizard £l

Step 113

Wekume 1o the N Prusect wersnd

|| track wath Tosskeaparict.

el description of i,

Propect Rame: A niew peopect
Desertion: This s & v cnel

[Fa Images: 8/0 Loaded KB Speck 1135KB/s Tewe 3034 (D [T Done @ - MAME[GAME | TAIME/TSHE O 1bvor B VSkew 100% § £ @ uv . =

Figure 4-14. Page 1 of the New Project Wizard

The New Project and New Task dialogs are wizard-type dialogs, which Ext JS doesn’t pro-
vide out of the box, but fortunately it’s not difficult to implement at all. The first page of the
wizard allows the user to enter a name and description of the project. We'll see the other two
pages as we chug through the code.

233

234 CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

Note The New Resource dialog isn’t a wizard flow because a single set of input fields is all it takes to
define a resource.

Let’s now look at the code behind the New Project dialog. I'll break this up into easily
digestible pieces, in order:

var uioNewProjectWindow = {
title : "New Project Wizard", closable : true, modal : true,
width : 400, height : 340, minimizable : false, resizable : false,
draggable : true, shadowOffset : 8, closeAction : "hide",
id : "dialogNewProject",

Here we see the config information for a pretty ordinary Window. It has a width of 400
pixels and a height of 340 pixels. It cannot be minimized (minimizable:false), resized
(resizable:false), or dragged (draggable:false), and it has slightly larger shadow than
usual (shadowOffset:8). It is also modal (modal:true), so it acts like a lightbox. It has an id of
dialogNewProject and a title of New Project Wizard.Itis closable (closable:true), and when
the close X is clicked it will be hidden (closeAction:hide) rather than destroyed.

Attached to this Window is a listeners object defining some event handlers:

listeners : {
beforeshow : function() {
Ext.getCmp("0OnewProject").getForm().reset();
Ext.getCmp("1newProject").getForm().reset();
Ext.getCmp("2newProject").getForm().reset();
Ext.getCmp("dialogNewProjectCard").getlayout().setActiveItem(0);
Ext.getCmp("newProjectNext").disable();
Ext.getCmp("newProjectBack").disable();
Ext.getCmp("newProjectFinish").disable();
}
b

Well, it’s actually a single event handler, beforeshow, which fires before the Window is
shown but after it is constructed. This event handler resets three forms, which are the forms
for each step of the wizard flow. We get a reference to the FormPanel by ID (OnewProject,
for example) and then get the underling form by calling getForm() on it. Then reset() is
called on the form to reset it. At this point we also show the first step of the wizard by calling
setActiveItem() on the Layout returned by getlLayout() called on the CardLayout that will be
used to construct the wizard. Also at this point the Next, Back, and Finish buttons are disabled.

Speaking of those buttons, they are defined next, starting with Cancel:

buttons : [
{ text : "Cancel", handler : function() {
Ext.getCmp("dialogNewProject").hide(); }
b

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

When Cancel is clicked, all that needs to be done is to hide this Window, so that’s all you see
here. The Window is hidden rather than destroyed so that when it’s shown later we don’t have to
incur the overhead of creation a second time.

The Back button is defined next:

{ text : "< Back", disabled : true, id : "newProjectBack",
handler : function() {
var dialogCardLayout =
Ext.getCmp("dialogNewProjectCard").getLayout();
var currentStep =
parseInt(dialogCardLayout.activeItem.getId().substr(0, 1));
if (currentStep > 0) { dialogCardlLayout.setActiveItem(currentStep - 1); }
if (currentStep == 1) { this.disable(); }
}
})

As I mentioned earlier, Ext JS doesn’t provide a wizard by default; we have to build it
ourselves. To do so, we use the handy CardLayout. Each step of the wizard is a card in that
CardLayout, and we provide the functionality behind the Next and Back buttons that are typi-
cal of a wizard dialog. For the Back button, we begin by getting a handle to the CardLayout.
Unfortunately, there is no easy way to ask a CardLayout which item is active, so you either have
to keep track of that information yourself or figure it out dynamically. I wanted to minimize
the number of “status tracking” variables used in this application, so I decided to get the value
dynamically. We do this by getting the active item, which is available via the activeItem attri-
bute of the CardLayout. We then get the ID of that item by calling getId(). The cards have IDs
that begin with a number, 0-2, so we do a simple substr() to get the first character, and then
use parseInt() to get it as a number. We now have a variable named currentStep with the
value 0, 1, or 2, depending on which step of the wizard flow the user is on.

Next, if the currentStep is greater than 0, meaning users are on the second or third step,
then moving back is a valid operation, and it’s just a matter of calling setActiveItem() on the
CardlLayout and passing it the value of currentStep minus 1, which puts us on the previous
step. If currentStep is 1, then the Back button is disabled at this point, which handles the situ-
ation where the user clicked Back and we just moved to the first step.

The Next button is, er, next...

{

text : "Next >", disabled : true, id : "newProjectNext",
handler : function() {
Ext.getCmp("newProjectBack").enable();
var dialogCardLayout =
Ext.getCmp("dialogNewProjectCard").getLayout();
var currentStep =
parselnt(dialogCardlayout.activeItem.getId().substr(0, 1));
if (currentStep < 2) { dialogCardlLayout.setActiveItem(currentStep + 1); }
}
})

235

236 CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

This is very much along the lines of the Back button’s code, except that here we need to
ensure currentStep is less than 2, because Next doesn’t work if we’re on the final step.
The last button is the Finish button, which clearly has the most work to do:

{
text : "Finish", disabled : true, id : "newProjectFinish",
handler : function() {
var valso = Ext.getCmp("OnewProject").getForm().getValues();
var valsl = Ext.getCmp("1inewProject").getForm().getValues();
var vals2 = Ext.getCmp("2newProject").getForm().getValues();
var doAdd = true;
if (projectsStore.getById(vals0.newProjectName)) {
alert("Project WAS NOT created " +
"because a project already exists with that name");
doAdd = false;
}
if (doAdd) {
var newID = valsO.newProjectName;
var newRecord = new ProjectRecord({
name : valsO.newProjectName,
description : valsO.newProjectDescription,
projectmanager : valsl.newProjectPM,
startdate : vals2.newProjectStartDate,
enddate : vals2.newProjectEndDate,
allocatedhours : vals2.newProjectAllocatedHours
}, newID);
projectsStore.add(newRecord);
var rootNode = Ext.getCmp("projectsTree").getRootNode();
rootNode.appendChild(
new Ext.tree.TreeNode({
id : "project~@" + newID, text : valso.newProjectName
s
rootNode.expand();
}
Ext.getCmp("dialogNewProject").hide();
}
}
B

The handler defined for the Finish button begins by getting a reference to all three of the
forms, one on each page of the wizard flow. It then uses the getValues() method of the form to
get an object for each that has fields corresponding to the values entered in the form. The next
step is a check to ensure that no project currently exists in the projectsStore with the name
that was entered. If that is the case, then a message is displayed via alert() to inform the user
the project could not be added. Next, if the add is OK to continue, a new ProjectRecord is cre-
ated, taking values from all three of the forms. The ID of the record is set to the same value as
the name The ProjectRecord constructor, any Record constructor actually, takes two arguments.
The first is an object that the DataReader reads to populate the ProjectRecord, and the second,

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

which is optional, is the ID to assign to the ProjectRecord. Note that an id field on the Record
is different from the ID the store knows the Record as. Supplying this second argument to the
constructor gives each Record in the Store a unique ID that you can then use to retrieve the
Record by later. Without an ID, you are left to scanning through all the Records to find what you
want, which is inefficient and requires more work on your part.

Next, the new ProjectRecord is added to the projectsStore. This triggers the add event on
the store, which calls the DAO’s createProject () method to save the project to the database.

You might think that’s the end of the story, but you’d be mistaken! Next, we need to add
the project to the Project View Tree. To do this, we must get a handle to the root node, which
we do by calling getRootNode() on the Tree itself. Next, we call appendChild() on that root
node and pass it a new Ext.tree.TreeNode object. The TreeNode has two fields: text, which is
the text seen in the Tree, and id, which is the internal ID the TreeNode is known by. We also
pass a value for icon to specify the image to display next to the node. At this point we also call
expand() on the root node so that all the projects are again visible.

Finally, the New Project Window is hidden and we’re all done.

Moving on, we now come to this code:

items : [{
layout : "card", activeltem : 0, id : "dialogNewProjectCard",
items : [

{

This is the definition of the CardLayout that houses the cards, each one of which is a step
in the wizard. The first item in the items array looks like this:

xtype : "form", title : "Step 1/3", width : 400, height : 340,
id : "onewProject", bodyStyle : "padding:5px", monitorValid : true,
frame : true, labelWidth : 100, hideMode : "offsets",
items : [
{ html : "Welcome to the New Project wizard!

" +
"This wizard will walk you through creating a new project " +
"to track with TimekeeperExt.

" +
"Please begin by entering a name for your project, as " +
"well as a brief description of it.

" 1},
{ xtype : "textfield", fieldlabel : "Project Name",
name : "newProjectName", width : 220, allowBlank : false },
{ xtype : "textarea", fieldlLabel : "Description”,
name : "newProjectDescription”, width : 220, height : 80,
allowBlank : false }
])
listeners : {
clientvalidation : function(inFomPanel, invalid) {
var dialogCardlayout =
Ext.getCmp("dialogNewProjectCard").getLayout();
var currentStep =
parseInt(dialogCardLayout.activeItem.getId().substr(0, 1));

237

238

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

if (currentStep == 0) {
if (invalid) {
Ext.getCmp("newProjectNext").enable();
} else {
Ext.getCmp("newProjectNext").disable();
}
}
}
}
b

That’s the definition for the first page of the wizard. It doesn’t look much different than
the previous FormPanels we’ve look at; however, there is one new attribute: hideMode. When
set to offsets, as it is here, the FormPanel will be hidden by moving it off screen, rather than
setting visible or display style attribute on it. This was necessary because without it the
ComboBox on the second step didn’t display right (the drop-down portion wasn’t the same
width as the text box portion). This has to do with Ext JS needing to get width values of various
components, and that doesn’t work if the element isn’t visible. Fortunately, even if the ele-
ment is positioned to, say, —1000 pixels to the left, which pushes it off the left side of the page,
the browser considers it to still be visible even if the user can’t see it, and those calculations
work properly.

The first element in the items array is just some instructions to the user. After that are
two form elements: a TextField for entering the project’s name and a TextArea for entering
a description.

Notice that both are defined as required (allowBlank:false). Also notice that the
monitorValid config option was set to true. In the past, we’ve seen how we can have a button
that enables and disables depending on the validity of the form. Here, we’d want the Finish
button to work that way. Unfortunately, it doesn’t seem to be possible to tie a button to the
state of multiple forms, as we’d also need to do here. So instead, we use the listeners list
and handle the clientvalidation event. This fires any time the validation state of the form
changes. In this function, the code gets a reference to the currently active card, and if it’s the
first step and if the inValid argument was true, then the Next button is enabled. Notice that
the Finish button isn’t dealt with here. That’s because the Finish button can only be activated
on the last step of the wizard, and to get there the Next button would have to have been
enabled on this step first.

Moving on, the second step of the wizard is shown in Figure 4-15.

CHAPTER 4

MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

e L View Mgtory fookmarks Jeok Melp

i Resource Summary

Hespurce Details

e . Praiet Managar? | Dancrpnss

FraskZimeens Yes —
| Mew Project Wizard

al
, | Step 2z
Projects this resource is

Dencripne

for your praject.

nate hare,
|| aevignsted a project mansger.

Progast Managan -
Feank Zarsrmetti
Smon Cowel
Cancel laca
[Tmages: 0/0 Losded TUME Speed 1135KB/s Tewe20M () EZ Done @ - smaAME[EAHE | MIHE/TSHE O 1Bvor B VSkew 302% § £ @ uw . =

Figure 4-15. Page 2 of the New Project Wizard

All available PMs are presented in a ComboBox, which works well since only a single PM can
be assigned to a project. Once the PM has been chosen, the user can move on to the third page

of the wizard, where the user will select a start and end date for the project and declare how
many hours are allocated to the project.

{

xtype : "form", title : "Step 2/3", width : 400, height : 340,
bodyStyle : "padding:5px", id : "inewProject", monitorValid : true,
frame : true, labelWidth : 100, hideMode : "offsets",

items : [

{ html : "Please select a resource that will serve as the "
"project manager for your project.

Note that if " +
"there are no options here, you may need to create at least " +
"one resource, and ensure at least one resource is "
"designated a project manager.

" },

{ xtype : "combo", fieldLabel : "Project Manager",

name : "newProjectPM", allowBlank : false,
editable : false, triggerAction : "all",

mode : "local", store : projectManagersStore,
valueField : "name", displayField : "name"

+

+

1,

listeners : {

clientvalidation : function(inFomPanel, inValid) {
var dialogCardLayout =

Ext.getCmp("dialogNewProjectCard").getLayout();
var currentStep =

parseInt(dialogCardLayout.activeItem.getId().substr(0, 1));

239

240

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

if (currentStep == 1) {
if (invalid) {
Ext.getCmp("newProjectNext").enable();
} else {
Ext.getCmp("newProjectNext").disable();
}
}
}
}
b

It is largely defined in the same way as the first step; the only difference is that there is a
ComboBox on this step. That ComboBox is bound to the projectManagersStore, so only PMs are
available for selection. The ComboBox is set up to work like a regular <select>, so the user can’t
type anything in. This field is required, and the clientvalidation event is again handled and
again activates the Next button, if appropriate.

The final step of the wizard is shown in Figure 4-16. This is where the user selects a start
and end date for the project, as well as the number of hours allocated to the project.

Resource Summary

Respurce Details

=3 Resources Harra i Prspect Manager? | Daacrpnos

] Frank 2

Frark Zammesi Ves -
e Project Wizard »

Step 313

ieasr enter the datr o which the pragect began (or wil begin], |
aned the date it Is expected to conclude. Then eater the tatal |
erombcr of hours

Start Date; 1008 3

||

End Date: 1172872008 3 Dackes Time. Project
Alecated Hows: | 23
| |
Cancel < lack Foan
[Fa Images: 8/0 Loaded KB Speed: 1135KB[s Teme 34 () BT Done @ - saAME[EAHE | MIHE/TSHE O 6o R VSkew 302% § £ @ uv . =

Figure 4-16. Page 3 of the New Project Wizard

Once again, the definition of this step doesn’t deviate too much from the previous step,
nor does the clientvalidation handler code:

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT 241

xtype : "form", title : "Step 3/3", width : 400, height : 340,
bodyStyle : "padding:5px", id : "2newProject", monitorValid : true,
frame : true, labelWidth : 100, hideMode : "offsets",

items : [

{ html : "Please enter the date on which the project began (or " +
"will begin), and the date it is expected to conclude. Then " +
"enter the total number of hours allocated to this project." +
"

When you are done, click Finish to create " +
"the project.

" },

{ xtype : "datefield", fieldlLabel : "Start Date",

name : "newProjectStartDate", allowBlank : false },
{ xtype : "datefield", fieldlLabel : "End Date",
name : "newProjectEndDate", allowBlank : false },
{ xtype : "numberfield", fieldlLabel : "Allocated Hours",
name : "newProjectAllocatedHours", width : 75, allowBlank : false }
1,
listeners : {
clientvalidation : function(inFomPanel, inValid) {
var dialogCardlayout =
Ext.getCmp("dialogNewProjectCard").getlLayout();
var currentStep =
parseInt(dialogCardlayout.activeItem.getId().substr(0, 1));
if (currentStep == 2) {
Ext.getCmp("newProjectNext").disable();
if (invalid) {
Ext.getCmp("newProjectFinish").enable();
} else {
Ext.getCmp("newProjectFinish").disable();

Here, we have two DateFields for the user to choose a start and end date. The Allocated
Hours field is a NumberField, so we know users are entering a valid numeric value by default. In
the clientvalidation handler, it’s time to enable the Finish button now, assuming the form on
the step is valid. Also, we know at this point that the Next button can be disabled, so we do that
as well.

Take some time now to look at the New Task and New Resource dialogs’ code; they follow
the same general model as this one. We will move on now to the dialogs for modifying existing
entities (and because each of them is fairly different, we’ll look at all three for a change!).

242

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

ModifyProjectDialog.js

Now that we’ve seen how new projects are created, it’s time to see how existing ones are modi-
fied. The Modify Project dialog is not a wizard paradigm like the dialog for creating a new
project; instead, it uses a simple tab-based UI metaphor. Take a look at Figure 4-17, which
shows the Details tab of the Modify Project dialog.

Resource Summary

Hespurce Details

e i Prspect Managar? | Dascrpnos

Frank Zammesi Yes ¥ame

*
|

Tasks this resource is assign (TETET U LT =
[— Statell | ceare Data: 111272008 3

End Datm: 11/30/2008 7§

| o \2 Alocated Mours: | 80

Cancel || Zave Changes

[Fa Images:8/0 Losded M4ME Speed 1135KB[s Tewe20 () [Z Done @ - sAME[EAHE | MIHE/TSHE O 1bvor R VSkew 302% § £ @ uw . =

Figure 4-17. The Modify Project dialog’s Details tab

There is also a Tasks tab where tasks are assigned to the project. Before we see that,
though, let’s get to the start of the code found in ModifyProjectDialog. js:

var uioModifyProjectWindow = {
title : "", closable : true, modal : true, id : "dialogModifyProject",
width : 360, height : 300, minimizable : false, resizable : false,
draggable : true, shadowOffset : 8, closeAction : "hide",

This is the same sort of Window configuration we saw previously. A beforeshow event han-
dler is defined in the 1listeners object, as you can see here:

listeners : {
beforeshow : function() {

this.setTitle("Modify project + currentProject.get("name") + "'");

var detailsForm = Ext.getCmp("modifyProjectDetails").getForm();

detailsForm.setValues({
"modifyProjectDescription” : currentProject.get("description"),
"modifyProjectStartDate" : currentProject.get("startdate"),
"modifyProjectEndDate" : currentProject.get("enddate"),
"modifyProjectPM" : currentProject.get("projectmanager"),
"modifyProjectAllocatedHours" : currentProject.get("allocatedhours")

};

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

tempAvailableTasksStore.removeAll();

availableTasksStore.each(function(inRecord) {
tempAvailableTasksStore.add(inRecord.copy());

1

tempAllocatedTasksStore.removeAll();

tasksStore.each(function(inRecord) {
if (inRecord.get("project") == currentProject.get("name")) {

tempAllocatedTasksStore.add(inRecord.copy());

}

1

}
b

The job of this event handler is to first set the title of the Window to indicate the project
being modified. Then, it populates the form that is present on the Details tab. To do so, we call
Ext.getCmp("modifyProjectDetails") to get a handle to the FormPanel, and then call getForm()
to get the underlying form. Ext JS provides us with a handy convenience method hanging off
the form: setValues(), which takes as an argument a simple object. This object has fields with
names matching the fields in the form. The setValues() method iterates over the fields in the
form and sets the values from the fields in the object, if a matching field is found. That makes
life a lot easier! Since we have currentProject pointing to the appropriate ProjectRecord, it’s
a simple matter to pull the data from that and put it in the object passed to setValues().

Once that’s done we need to populate the tempAvailableTasksStore and the
tempAllocatedTasksStore, which are used on the Tasks tab to populate the ComboBoxes. The
former is the list of tasks not yet assigned to a project, and the latter is the list of tasks assigned
to this project (if any). The removeAll() method is used first to clear each of the stores. Then,
to populate tempAvailableTasksStore, we use the each() method of the availableTasksStore
to iterate over its members. For each we create a copy of the Record and add it to
tempAvailableTasksStore. For the tempAllocatedTasksStore, we iterate over the collection of
Records in tasksStore. For each we see if its project field matches the name of currentProject.
If so, a copy is added to tempAllocatedTasksStore.

Next we come to the definition of the buttons seen on the dialog, beginning with the
Cancel button:

buttons : [
{ text : "Cancel", handler : function() {
Ext.getCmp("dialogModifyProject").hide(); } },

Just like on the New Project dialog, all this button does is hide the dialog. The Save
Changes button does a little more, as you can see for yourself:

{ text : "Save Changes", disabled : false, id : "modifyProjectSaveChanges",
handler : function() {
var valsDetails =
Ext.getCmp("modifyProjectDetails").getForm().getValues();

currentProject.beginEdit();
currentProject.set("description"”, valsDetails.modifyProjectDescription);
currentProject.set("projectmanager", valsDetails.modifyProjectPM);
currentProject.set("startdate", valsDetails.modifyProjectStartDate);

243

244 CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

currentProject.set("enddate", valsDetails.modifyProjectEndDate);

currentProject.set("allocatedhours",
valsDetails.modifyProjectAllocatedHours);

currentProject.endEdit();

tempAvailableTasksStore.each(function(inRecord) {
var record = tasksStore.getById(inRecord.get("name"));
record.set("project”, "");

}s

tempAllocatedTasksStore.each(function(inRecord) {
var record = tasksStore.getById(inRecord.get("name"));
record.set("project”, currentProject.get("name"));

}s

populateProjectsTree();

populateAvailableTasks();

if (currentSummaryView == 1) { showProjectSummary(); }

Ext.getCmp("dialogModifyProject").hide();

}
}
|

First, the values from the form named modifyProjectDetails are retrieved. Next, we call
beginEdit() on currentProject. This is something we haven’t seen before. As you'll recall,
when you edit a Record, it fires an update event, and if you’'ve written an event handler for
it, your code will execute. That would be bad in this case because the update event handler
calls a DAO method to save the updated data to the database. It would be inefficient to do
that every time a single field was updated, which is precisely what would happen here. By
calling beginEdit() on the ProjectRecord, the update event will not fire until the endEdit()
method is called. You can think of it as batching of updates. Only a single update event will fire
now, and therefore the DAO will only be called once, regardless of how much we modify the
ProjectRecord

Each of the fields that can be modified is updated, and the code is a little stupid to the
extent that it doesn’t do any “has this field changed?” sort of logic. Because we’re batching
all these updates it doesn’t matter; it’s a single hit on the database so it’ll do no harm. It also
seems that ExtJS is smart enough to not mark a field as changed that has been updated with
the same value it currently has, so that’s definitely good.

Once endEdit() is called, the update event fires, the DAO is called, and the modified data
is written to the database. That’s not all we need to have happen here, though. We also
need to mark any tasks that are now allocated to this project as no longer available, and
likewise we have to mark as available any task that was previously allocated this project but
no longer is. To do this we iterate over the Records in the two temporary stores, beginning
with tempAvailableTasksStore. For each TaskRecord in that store, we look up the TaskRecord
in the tasksStore with the same name (remember, we only have a copy of that record in
tempAvailableTasksStore) and set its project field to a blank string, which makes it available
again. Similarly, we iterate over the TaskRecords in tempAllocatedTasksStore and for each,
look up the TaskRecord with the same name in tasksStore and set its project field to the name of
currentProject. The update event will fire for any modified TaskRecord and the change will be
written to the database.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

The other things we need to do here are update the Project View Tree and update the
list of available tasks. The Tree needs to be updated to reflect changes in task allocations for
currentProject. The availableTasksStore needs to be updated so that if the user tries to
use the Modify Project dialog again, the list of available tasks accurately reflects these latest
changes.

Also, if currentSummaryView’s value is 1, which means the Project Summary view is show-
ing, we need to call showProjectSummary() as well so that task allocation changes are reflected
there immediately as well. That wraps up the Save Changes button!

Now we can look at the configuration that defines the UT of the Window:

items : [{
xtype : "tabpanel", activeTab : 0, width : 360, height : 300, items : [

As mentioned earlier, a tabbed interface is used here, which means an xtype of tabpanel.
The first tab is defined like so:

{ title : "Details", xtype : "form",
id : "modifyProjectDetails", bodyStyle : "padding:5px",
monitorValid : true, frame : true, labelWidth : 100,
items : [
{ xtype : "textarea", fieldlLabel : "Description”,
name : "modifyProjectDescription”, width : 220, height : 80,
allowBlank : false },
{ xtype : "combo", fieldlLabel : "Project Manager”,
name : "modifyProjectPM", allowBlank : false, editable : false,
triggerAction : "all", mode : "local", store : projectManagersStore,
valueField : "name", displayField : "name" },
{ xtype : "datefield", fieldlLabel : "Start Date",
name : "modifyProjectStartDate", allowBlank : false },
{ xtype : "datefield", fieldlLabel : "End Date",
name : "modifyProjectEndDate", allowBlank : false },
{ xtype : "numberfield", fieldlLabel : "Allocated Hours",
name : "modifyProjectAllocatedHours"”, width : 75, allowBlank : false }
])
listeners : {
clientvalidation : function(inFomPanel, inValid) {
if (invalid) {
Ext.getCmp("modifyProjectSaveChanges").enable();
} else{
Ext.getCmp("modifyProjectSaveChanges").disable();
}
}
}
}J

This is all very much along the lines of what you've explored before. You can see again
that the clientvalidation event is handled to enable and disable the Save Changes button as
appropriate. This ensures that all required fields are filled in, and that those fields that have
other types of validations are valid too.

245

246

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

Note In this case it probably would have been fine to bind the Save Changes button to the state of the
modifyProjectDetails button, similar to what you saw in the OrganizerExt project. There isn’t any master
plan behind why | didn’t do it that way here other than | was following the same pattern I'd used in the code
for the New Project dialog. Take it as a demonstration of an alternative approach with no deeper meaning!

The second tab is where tasks are assigned to the project. Figure 4-18 shows what this tab
looks like. You can see where I've expanded the Allocated Tasks (the tasks allocated to this
project).

[he [View iigtory [fookmarks Jeok Help
x| -8

Resource Summary

Hara B A Propct Managar? Dascrghion
Frank Zammesi] ¥ e

Hodify praject *Just for fun®
Delads | Tasks

Projects this resource is invo!

Toadd a task to this project,

Huszanchy Dutes T

St o e Aadable Tasks:

Tasks this resource is assigno
Parcart Camakeses Stata

.
[o 2

Remove.

Aloced Taks: ||
Eat 500 denuts.
| Take over the world

Cancel || Zawt Couat & time maching

[52 Images: 8/0 Losded T4ME Speed 1135KB/s Tewe20M () EZ Done @ - saAME[EAHE | MIHE/TSHE O 6o R VSkew 302% & £ @ uw . =

Figure 4-18. The Modify Project dialog’s Tasks tab

The code that creates this tab’s content is a little more complex than the Details tab, but is
little more than an extension of things we’ve seen before:

{ title : "Tasks", xtype : "form", id : "modifyProjectTasks",
bodyStyle : "padding:5px", frame : true, labelWidth : 100, items : [
{ html : "To add a task to this project, select it below and " +
"click Add.

" },
{ xtype : "combo", fieldlLabel : "Available Tasks",
name : "modifyProjectAvailableTasks", allowBlank : true,
editable : false, triggerAction : "all", mode : "local",
store : tempAvailableTasksStore, valueField : "name",
displayField : "name", id : "modifyProjectAvailableTasks",
listeners : {
select : function(inComboBox, inRecord, inIndex) {
Ext.getCmp("modifyProjectAddTaskButton").enable();

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

}
}

b
{ xtype : "button", text : "Add", disabled : true,

id : "modifyProjectAddTaskButton", handler : function() {
var cb = Ext.getCmp("modifyProjectAvailableTasks");
var taskName = cb.getValue();
var taskRecord = tempAvailableTasksStore.getById(taskName);
tempAllocatedTasksStore.add(taskRecord);
tempAvailableTasksStore.remove(taskRecord);
cb.clearValue();
Ext.getCmp("modifyProjectAllocatedTasks").clearValue();
this.disable();

}

b

{ html : "

To remove a task from this project, select it " +
"below and click Remove.

" },
{ xtype : "combo", fieldlLabel : "Allocated Tasks",
name : "modifyProjectAllocatedTasks", allowBlank : true,
editable : false, triggerAction : "all", mode : "local",
store : tempAllocatedTasksStore, valueField : "name",
displayField : "name", id : "modifyProjectAllocatedTasks",
listeners : {
select : function(inComboBox, inRecord, inIndex) {
Ext.getCmp("modifyProjectRemoveTaskButton").enable();
}
}

b
{ xtype : "button", text : "Remove", disabled : true,

id : "modifyProjectRemoveTaskButton", handler : function() {
var cb = Ext.getCmp("modifyProjectAllocatedTasks");
var taskName = cb.getValue();
var taskRecord = tempAllocatedTasksStore.getById(taskName);
tempAvailableTasksStore.add(taskRecord);
tempAllocatedTasksStore.remove(taskRecord);
cb.clearValue();
Ext.getCmp("modifyProjectAvailableTasks").clearValue();
this.disable();

247

248

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

This code is interesting because the plain text sections are interspersed with
the ComboBoxes as well as the buttons. The first ComboBox, which is bound to the
tempAvailableTasksStore, lists all tasks that aren’t currently allocated to a project. Remember
that a task can be allocated to only a single project, so a ComboBox is a good choice here. The
user can select one of the tasks and click the Add button, which removes it from this ComboBox
and adds it to the second Allocated Tasks ComboBox.

Notice that the two ComboBoxes have a select event handler defined that enables the asso-
ciated button. So, when an item is selected in the Available Tasks ComboBox, the Add button is
enabled, and when an item is selected in the Allocated Tasks ComboBox, the Remove button is
enabled. Then, each button has a handler defined, which is the function that is executed when
it is clicked. For the Add button, that code gets a reference to the modifyProjectAvailableTasks
ComboBox and calls its getValue() method. This gives us the name of the task being added to
this project. The TaskRecord with that name is then added to the tempAllocatedTasksStore.

It is then removed from the tempAvailableTasksStore. Finally, the value selected in both
ComboBoxes is cleared by calling clearValue() on each, and the Add button is disabled.

Similarly, the Remove button’s handler removes the TaskRecord from the
tempAllocatedTasksStore and adds it to the tempAvailableTasksStore. It then clears both
ComboBoxes and disabled the Remove button.

Note that none of these operations triggers any database modifications. That’s the point
of using copies of the Records in these temporary stores: none of these changes hits the data-
base, or even the canonical data stores, until Save Changes is clicked. If the user clicks Cancel,
or clicks the Window’s X close icon, there is no harm; these temporary changes simply go away.
No harm, no foul, as they say in basketball!

ModifyResourceDialog.js

I think it makes sense to look at some of the code for the Modify Resource dialog. While much
of the code is similar to the Modify Project dialog, there are a few parts that are different. I'll
cut out the really redundant parts and only look at the delta between them. First, though, let’s
get a glimpse of this dialog (see Figure 4-19).

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

Erepere Tasxe Gassurces b
3 Projact View

AR Resource Summary

Hespurce Details

Hara T - —
By Bok Brusask Ma Fughe quart

Modify resource ‘Tadly Bob Brubsck’ x

Projects this resource is inve |l it

=13 Feed the dog
T]eay Bk Bruack

a5y

B Imapes:0j0 Loaded KB Speed: 1135KB/s Teme 30 () BT Done @ - mAME[EAHE | MIHE/TSHE O 6o R VSkew 302% & £ @ uw . =

Figure 4-19. The Modify Resource dialog’s Details tab

As with the Modify Project dialog, a tabbed interface is used. First, let’s look at the
beforeshow event handler for this dialog:

listeners : {
beforeshow : function() {
this.setTitle("Modify resource '" + currentResource.get("name") + "'");
var detailsForm = Ext.getCmp("modifyResourceDetails").getForm();
detailsForm.setValues({
"modifyResourceDescription” : currentResource.get("description"),
"modifyResourceIsAPM" :
(currentResource.get("isaprojectmanager") == "Yes" ? true : false)
D;
var modifyResourceHoursUsed = Ext.getCmp("modifyResourceHoursUsed");
modifyResourceHoursUsed.setValue("");
modifyResourceHoursUsed.disable();
Ext.getCmp("modifyResourceBookButton").disable();
tempAssignedTasksStore.removeAll();
tasksStore.each(function(inRecord) {
if (inRecord.get("resource") == currentResource.get("name")) {
tempAssignedTasksStore.add(inRecord.copy());

}

D;
Ext.getCmp("modifyResourceAssignedTasks").setValue("");

1

249

250 CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

This code does the same sort of tasks as that of the Modify Project dialog. The title of
the Window is set, and then the form on the Details tab is populated from the values in the
ResourceRecord referenced by currentResource. Note the modifyResourceIsAPM form field,
which I'll jump the gun a little and tell you is a check box. To set its value, we need to supply
a Boolean, but the value stored in the isaprojectmanager field of the ResourceRecord is the
string “Yes” or “No” (and it’s one of those rather than a real Boolean because it made display-
ing this value easier on the summary views).

Next, on the Time Booking tab (Figure 4-20, a few pages hence) you'll find there is a
TextField where the number of hours booked to a given task can be entered. This field is
cleared, and disabled, and the associated Book button is disabled. The ComboBox where the task
is selected will be cleared when the store to which it is bound is repopulated (more on that
soon!). Therefore, these three fields are in a consistent state—that is, users can’t enter a num-
ber for booked time until they’ve selected a task, and the Book button can’t be enabled until
a booked time value has been entered.

Next, the store to which the Assigned Tasks ComboBox is bound on the Time Booking tab is
populated. This is done by iterating over the TaskRecords in the tasksStore. For each task that
this resource is assigned to work on, a copy is added to tempAssignedTasksStore.

Next we come to the Save Changes button:

{ text : "Save Changes", disabled : false, id : "modifyResourceSaveChanges",
handler : function() {
var valsDetails =
Ext.getCmp("modifyResourceDetails").getForm().getValues();
var doSave = true;
if (!valsDetails.modifyResourceIsAPM) {
var resourceName = currentResource.get("name");
projectsStore.each(function(inRecord) {
if (inRecord.get("projectmanager") == resourceName) {
alert("Resource WAS NOT modified " +
"because PM designation cannot be changed while resource " +
"is PM of a project");
doSave = false;
}
b;

}
if (doSave) {

currentResource.beginEdit();
currentResource.set("description”,
valsDetails.modifyResourceDescription);
currentResource.set("isaprojectmanager”,
valsDetails.modifyResourceIsAPM ? "Yes" : "No");
currentResource.endEdit();
tempAssignedTasksStore.each(function(inRecord) {
if (inRecord.dirty) {
var taskRecord = tasksStore.getById(inRecord.id);
taskRecord.set("bookedtime", inRecord.get("bookedtime"));

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

}
D;
if (currentSummaryView == 3) { showResourceSummary(); }
}
Ext.getCmp("dialogModifyResource").hide();

}
}
1

First, all of the values on the form on the details are gotten, and the value of the
modifyResourceIsAPM field is checked. This is a check box, which means it has a Boolean
value, so if it isn’t checked, the code checks to see if any project in the projectsStore has this
resource assigned as its PM. If so, then the change is aborted because we can no longer make
aresource a PM if they're assigned as PM on a project. A message is shown via alert() to indi-
cate the failure and that’s it; nothing else is done after that in this case.

If the change is going to proceed, we see the same sort of beginEdit () being called on the
currentResource as we saw with Modify Project. The fields that can be updated are. Special
care is taken with the isaprojectmanager field to translate from a simple Boolean to a string
“Yes” for true and “No” for false. The endEdit() is called, and the changes trigger the update
event and a call to the DAO.

Next, we use the each() method to iterate over the TaskRecords in the tempAssigned
TasksStore. For each we look at the dirty field. This is a field—every Record has one—that will
be set to true if the data in the TaskRecord has been modified. If it has, then we look up the
canonical TaskRecord matching this task’s name in tasksStore and set its bookedtime field to the
value of the bookedtime field in the TaskRecord from tempAssignedTasksStore.

Next, if the Resource Summary is currently showing, it is refreshed to show any changes.

Let’s now look at the definition for the first tab, Details:

{ title : "Details", xtype : "form",
id : "modifyResourceDetails", bodyStyle : "padding:5px",
monitorValid : true, frame : true, labelWidth : 100,
items : [{
xtype : "textarea", fieldLabel : "Description”,
name : "modifyResourceDescription", width : 220, height : 80,
allowBlank : false },
{ xtype : "checkbox", fieldlLabel : "Designate PM",
name : "modifyResourceIsAPM", allowBlank : false }
1,
listeners : {
clientvalidation : function(inFomPanel, inValid) {
if (invalid) {
Ext.getCmp("modifyResourceSaveChanges").enable();
} else{
Ext.getCmp("modifyResourceSaveChanges").disable();
}
}
}
b

251

252 CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

I suspect this is very much as you’d expect. The clientvalidation event is used again to
enable or disable the Save Changes button. Again, it is done this way just to follow a consistent
approach throughout this project.

The Time Booking tab has a bit more meat on its bones, as you can see:

{ title : "Time Booking", xtype : "form",
id : "modifyResourceTimeBooking", bodyStyle : "padding:5px",
frame : true, labelWidth : 100, items : [
{ xtype : "combo", fieldlLabel : "Assigned Tasks", editable : false,
name : "modifyResourceAssignedTasks", allowBlank : true,
id : "modifyResourceAssignedTasks",
triggerAction : "all", mode : "local",
store : tempAssignedTasksStore, valueField : "name",
displayField : "name", listeners : {
select : function(inComboBox, inRecord, inIndex) {
Ext.getCmp("modifyResourceHoursUsed").enable();
¥
}
}J
{ xtype : "numberfield", fieldlLabel : "Hours Used", disabled : true,
name : "modifyResourceHoursUsed", width : 75, allowBlank : true,
id : "modifyResourceHoursUsed", enableKeyEvents : true,
listeners : {
keyup : function(inNumberField, inEventObject) {
if (inNumberField.getValue() != "") {
Ext.getCmp("modifyResourceBookButton").enable();
} else {
Ext.getCmp("modifyResourceBookButton").disable();
}
}
}
}
{ xtype : "button", text : "Book", id : "modifyResourceBookButton",
disabled : true, handler : function() {
var modifyResourceHoursUsed =
Ext.getCmp("modifyResourceHoursUsed");
var taskRecord = tempAssignedTasksStore.getById(
Ext.getCmp("modifyResourceAssignedTasks").getValue());
taskRecord.set("bookedtime", modifyResourceHoursUsed.getValue());
modifyResourceHoursUsed.setValue("");
modifyResourceHoursUsed.disable();
Ext.getCmp("modifyResourceBookButton").disable();

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

First we see the modifyResourceAssignedTasks ComboBox, bound to the tempAssigned
TasksStore, which lists the task this resource is assigned to. Below that is a NumberField for
entering time booked against the selected task. The select event handler on the ComboBox
enables the modifyResourceHoursUsed NumberField when a task is selected. A keyup event
handler is then tied to the modifyResourceHoursUsed NumberField. Every time a key is pressed
the value of the field is examined. If it isn’t empty, then the Book button is enabled; otherwise
it is disabled. This gives us a nice Ul where as soon as a number is entered the Book button
becomes available. But if the users backspace and delete their entry, it becomes disabled. In
Figure 4-20 you can see how the Book button is enabled when a value has been entered.

sozl o
fhe [View ligtory Qookmarks Jook Melp i
G| Tewekeeperit I | - B

Resource Summary

Hespurce Details

Harra i Prspect Manager? | Daacrpnas

By Bok Brusas Mg Fight guard

X

[Fa Images: 8/0 Losded TAME Speed 1135KB/s Tewe20 () [Z Done @ - maAME[EAHE | MIHE/TSHE O 6o R VSkew 302% § £ @ uw . =

Figure 4-20. The Modify Resource dialog’s Time Booking tab

Finally, the Book button has a handler defined. When clicked, it gets the value from
modifyResourceHoursUsed, and then looks up the TaskRecord from tempAssignedTasksStore
based on the value of the modifyResourceAssignedTasks ComboBox. It sets the bookedtime field
of that TaskRecord, and then clears the NumberField and ComboBox. Finally, it disables itself.

253

254

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

ModifyTaskDialog.js

The code in ModifyTaskDialog. js is similar to the previous two dialogs and thus it’s probably
not necessary to go over it here. The only real difference is that it’s a bit simpler: as you can see
in Figure 4-21, this dialog does not use a tab-based interface.

%) ThmekeeperExt - Mozilia Firefox
e AR View legtory fookmarks Jesb lelp
L9) Timekeepertxt (x| -8
Proets Taake Baaserces Wape

Projact View

D Tack Vit Resource Summary

Resource View
Theak Vi Hespurce Details
T Harra . Praect Managar? | Dancrpnss

Frank Zammes,] ¥ame

Assigned Resowrce: | Blly Bob Bnback -

[Tasks this resource i assign | [RST Ti7at5008 I8
Parcart Campised Siata
ok tmpred s T 11/20/20%8 [0

. O awaate s 10

| 1| Percont Compiete: | 0

Cancat || Sawn Changes

[Images: 8/0 Loaded KB Speck 1135KB/s Tewc 3034 (D [T Done @ - AME[GAME | TAIME/TSHE O 1bvor B vSew 100% § £ @ uv . =

Figure 4-21. The Modify Task dialog

Since there’s not as much information for a task that can be modified, a single Panel does
the trick just fine. Everything we’ve seen before applies to this dialog. For example, there is a
beforeshow event handler that populates the form in exactly the same way as the previous two
dialogs. There is a temporary Store populated that the Project Manager ComboBox is bound to,
and this Store is generated by copying records out of the projectManagersStore.

A clientvalidation event handler is attached to the form to enable the Save Changes but-
ton if all required form fields are filled in and if all fields are valid. Otherwise, it disables them.

The TaskRecord is updated in the same way as we’ve seen before, and the Task Sum-
mary view is refreshed if it is currently showing. Also, the Task View Tree and the Project
View Tree are both refreshed because changes in this dialog could impact what should be
displayed in them.

As usual, I suggest looking over the code in the download package. I wouldn’t expect it
would take more than a few minutes if you've read our discussion on the previous two dialogs.

DeleteProjectDialog.js, DeleteResourceDialog.js, and
DeleteTaskDialog.js

The DeleteProjectDialog. js, DeleteResourceDialog.js, and DeleteTaskDialog. js files con-
tain the configuration object for the three dialog Windows displayed when you want to delete
a project, resource, or task. As with so much of the rest of this project, the task and resource
code was created by copying the code for the project and making the appropriate changes.

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

Therefore, we’ll just look at DeleteProjectDialog. js, secure in the knowledge that it is repre-
sentative of the other two.

var uioDeleteProjectWindow = {
title : "", closable : true, modal : true,
width : 450, height : 200, minimizable : false, resizable : false,
draggable : false, shadowOffset : 8, closeAction : "hide",
id : "dialogDeleteProject"”, listeners : {
beforeshow : function() {
this.setTitle("Confirm deletion of project '" +
currentProject.get("name") + "'");
}
}J
buttons : [
{ text : "No", handler : function() {
Ext.getCmp("dialogDeleteProject").hide(); } },
{ text : "Yes",
handler : function() {
var doDelete = true;
var projectName = currentProject.get("name");
tasksStore.each(function(inRecord) {
if (inRecord.get("project") == projectName) {
alert("Project WAS NOT deleted " +
"because it has tasks allocated to it");
doDelete = false;
}
D;
if (doDelete) {
projectsStore.remove(currentProject);
Ext.getCmp("projectsTree").getNodeById(
"project~@" + currentProject.get("name")).remove();
currentProject = null;
showProjectSummary();
Ext.getCmp("menuProjectDeleteProject").disable();
Ext.getCmp("menuProjectModifyProject").disable();
}
Ext.getCmp("dialogDeleteProject").hide();
}
}
1,
items : [{
html :
"<table width=\"100%\" height=\"100%\" border=\"o\" cellpadding=\"0O\" " +
"cellspacing=\"0\"><tr><td class=\"cssAbout\" align=\"center\" " +
"valign=\"middle\">Are you sure you want to delete the " +
"selected project?</td></tr></table>"

};

255

256 CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

In Figure 4-22 you can see what this dialog (indeed, all three of these dialogs) looks like.

L9 () Tmekeeperixt (%} - @

Eregets Taake Gatsersas hape

%) projact View

LR Project Summary

O mesource View

Fraject Ve Project Details

23 Projects St nare

il (] Husbansy Datea o for
vt a

Bt Wpng

ol Sman Cowel

Resources involved wit r i

Hame Descrpsos |

Ty

Mears

[Fa Images:8/0 Loaded KB Speck 1135KB/s Tewc 3034 (D [T Done @ - AME[GAME | TAIME/TSHE O 1bvor B vSew 102% § £ @ uv . =

Figure 4-22. The Delete Project dialog

The code is pretty straightforward. The Window is defined as having an id of dialog
DeleteProject. It is defined as being closable (closable:true), modal (modal:true)—
so that it is effectively a lightbox—not minimizable, not resizable, and not draggable
(minimizable:false, resizable:false, and draggable:false). The Window is given a size of
450X200 (width:450 and height:200), and we make the shadow a little bigger by specifying
shadowOffset:8. Finally, the closeAction is set to hide so that when the user clicks the X to
close the Window, it will be hidden and not destroyed.

Also note that the title attribute is a blank string. This will be populated dynamically,
and in fact that’s what we see next as part of the listeners object. The beforeshow event fires
before the Window is shown, and here we call the setTitle() method on the Window to set the
title to the value of the name field of the ProjectRecord pointed to by currentProject.

After that we find the buttons array, which defines the Yes and No buttons you see at the
bottom. The Window knows how and where to place these buttons; we only have to tell it what
kind of buttons we have. Each button has a text attribute and a handler attribute. The handler
attribute points to a function that is executed when the button is clicked. For the No button,
that’s simply a call to the hide() method of the Window, once we get a handle to it by calling
Ext.getCmp().

The Yes button has a little more work to do, though. First, some validations must be
performed. For a project, that validation is simply to ensure the project doesn’t have any
tasks allocated to it. While it would have been nicer if the application set the resource field
of all TaskRecords associated with the project to a blank string to make them available for

CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

assignment again, this validation frankly makes the code simpler and shorter (but feel free
to enhance the application in this regard as an exercise!). The validation requires the code to
iterate over all TaskRecords in the tasksStore and look for any that have a project field value
matching the name field of currentProject. If any are found, we use the alert() function to
display a message saying the project cannot be deleted and why.

Note Delete validations are one of the few differences between this and the resource and task delete
dialogs. For resources, the validation is required to ensure the resource being deleted isn’t assigned as the
PM of a project, and to ensure the resource is not assigned to any tasks. Either situation causes the deletion
to be aborted. For deletion of a task, the task cannot be deleted if it is assigned to a project. This is the only
substantive differences between these three source files.

Once we confirm the project can be deleted, a couple of tasks are required. First, the proj-
ect is removed from the projectsStore via the remove () method. You pass this a reference to
the Record to be removed, which we have by virtue of currentProject pointing to it. Next, the
node in the Projects Tree for the project has to be removed. This requires us to get a reference
to the Tree itself, and then call its getNodeById() method to get a reference to the TreeNode.
Remember that the ID of the node has the type appended to the front of it, so we need to do
that here. Once we have a reference to that TreeNode, we have only to call the remove () method
on it and the Tree is automatically updated.

Next, we set currentProject to null to indicate no project is currently selected, and we
call showProjectSummary (), which will wind up showing the welcome screen again because
currentProject is null.

Finally, the Delete Project and Modify Project menu items are disabled and the Delete
Project dialog itself is hidden (but not destroyed).

The other part of this dialog’s definition is what is displayed in the Window’s main content
area, and that’s done using the items array. It contains a single element that is just some plain-
old HTML.

Now, if you replace the word project with task or resource everywhere in this code, you
effectively have the Delete Task and Delete Resource dialogs’ code, save for the validations we
previously discussed. Take a look at them now just to be sure, but trust me: there are no sur-
prises to be found!

Suggested Exercises

TimekeeperExt is a pretty useful little application. However, as I said in the beginning, it’s
certainly not on par with Microsoft Project or any number of other project management tools.
There are plenty of features you could implement that would make it even better. I will list
some of those to you as suggested exercises:

257

258 CHAPTER 4 MAKING PROJECT MANAGEMENT COOL: TIMEKEEPEREXT

* Did you notice that the project itself doesn’t have a percent complete indicator? That
would be a nice addition, I think. You should be able to determine an overall percent-
age based on the percentages of all the constituent tasks.

e Here’s a relatively quick and (probably) easy one: add a validation on start and end
dates throughout the application to ensure the end date is after the start date. As it
stands now, the application would allow that rather illogical situation (barring time-
traveling visitors from Gallifrey” anyway!)

* Modify the application to allow more than one resource to be assigned to a given task,
and also allow a given task to be associated with more than one project. Both of those
are fairly significant changes, although they sound simple on the surface. You'll have
to toy with the database structure, the UI, the core logic throughout, and more. This
would be a challenge, but I believe you’d learn a ton by doing it.

* One key concept in project management is the idea of dependencies—that is, task B
can’t begin until task A has been completed. TimekeeperExt doesn’t have any notion
of dependencies at all, so it might be a good idea to add that! It might be as simple as
being able to specify what task(s) a new task depends on, not allowing a start date that
is before the end date of any of those tasks, and not allowing time to be booked against
a task that cannot have started yet. You also probably would want to make the start
date not required for a task that is dependent on another.

» The Ext]S tree supports drag-and-drop operations. How cool would it be to be able to
drag tasks and resources around to assign them to projects and tasks correspondingly?
As Eric Cartman® once said, HELLA-COOL! This is another fairly intensive suggestion,
although it wouldn’t require anywhere near the degree of code change as the previous
suggestion, but it would require a fair bit of research on your part to figure out how to
pull it off.

Summary

In this chapter we took a task that many people, including myself, find it hard to get too
excited about, and we created an application that makes it just a little more fun than usual—
and we have Ext JS to thank for that! We saw some new UI widgets in action, including the
TreePanel, and we saw some others used a bit more, such as the Grid. We saw a different way
to structure an Ext JS application, and a different approach to organizing our code. We saw
some more action with Gears, focusing on its database component. You also probably learned
more project management terminology than you ever wanted to know!

In the next chapter we’ll create another handy application that will provide even more
exposure to many of the UI capabilities of Ext JS. That project, a code cabinet, will provide a
utility where we can stash snippets of code, retrieve them, search for them, and so on.

7 Gallifrey is the home world of the Doctor from the long-running British sci-fi show Dr. Who, a mem-
ber of the now-extinct Time Lord race. If you don’t know the show, or couldn’t guess from the name of
his race, the Doctor is a time traveler!

8 Eric Cartman is the obnoxious, overweight, and also hysterically funny kid from the long-running
show South Park. In one early episode, Cartman uses the term “hella-cool” to describe something that
is extremely cool. I'm not able to confirm if the term existed before Cartman uttered it, but it certainly
came to prominence after that.

CHAPTER 5

A Place for Your Stuff:
Code Cabinet Ext

In this chapter, we’ll fulfill the need of our obsessive-compulsive personalities and develop an
application to store our code snippets in.

As good developers, we quickly learn that “stealing” is better than creating. That is, the
more you can find code that does what you need rather than writing it yourself, the better. This
doesn’t always mean stealing from others (and stealing is just an attempt at humor; it’s not
actually stealing, of course!). Especially after you do this programming thing for a while, you
begin to steal from yourself more and more because you remember that you wrote that func-
tion to encrypt passwords a couple of projects ago, or you remember that algorithm you put
together for processing account numbers, or whatever else.

Being able to find those snippets of code is a challenge, but it’s a challenge we’re here to
meet! With the help of Ext JS and Gears, we’ll create an application that lets us store our snip-
pets, organize them, and even search for them. That’s what this chapter is all about. In the
process, you'll get some good experience with some new pieces of Ext JS that I think you'll find
very interesting indeed!

Let’s begin by looking at what we want to accomplish and what we want this application
to be able to do.

259

260

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

What’s This Application Do, Anyway?

A code cabinet, a virtual filing cabinet for our code snippets, should in many ways model an
actual file cabinet. But what does that mean? Here are the bullet points:

Like a real file cabinet, ours needs drawers. We'll call them categories here. We should

be able to create categories with any name so we then have a mechanism with which to
categorize our snippets. Being a virtual file cabinet, it will be allowed an unlimited num-
ber of drawers. In terms of user interface, let’s use a Tree widget to display the categories
(although we’ll use it essentially like a list in that we won’t allow for subcategories—and if
you think that sounds like a hint for a suggested enhancement, you're right!).

Within each category, we can add snippets of code. Each snippet will have pieces of
information stored about it, including name, description, author, e-mail address (of
the author, presumably!), and URL reference (that is, if we found the snippet online
and want to remember the site we got it from). We’ll also be able to store notes about
the snippet and associated keywords with the snippet to make searching possible. We
should also let the code and notes be entered in a rich way, not just in plain text.

Speaking of searching, we want to be able to search for snippets based on several crite-
ria, and in any combination of criteria. We'll include things like being able to search by
name, description, author, keywords, and actual code content.

Clearly the snippets need to be stored in a persistent way, so let’s use Gears for this as
we’ll do throughout this book.

We’ll need to be able to delete categories and snippets because, hey, we’re human and
we screw up sometimes!

By now we have seen two different approaches to architecting an Ext JS application,
but why stop with just two? Let’s look at a third way to structure things, a way that I for
one feel is probably the best of the bunch.

The entire user interface should be flexible—that is, we should be able to resize sec-
tions of it as we wish. Let’s also allow the user to collapse and expand most sections.
Finally, let’s use Ext JS’s state-saving capabilities so that the sizes they set persist across
executions of the application.

All right, I think we’ve got enough here to get going, so off we go (if you're a child of the
'80s feel free to start singing the theme to The Great Space Coaster' right about now!) Before we
dive into the code, though, let’s get an initial glimpse of Code Cabinet Ext, shown in Figure 5-1.

1 The Great Space Coaster (http://en.wikipedia.org/wiki/The_Great_Space Coaster) was a children’s
television show from the early '80s that many of us in our mid-thirties grew up with. Most people tend
to remember two things: Knock-Knock the bird, who naturally enough told knock-knock jokes, and
Gary Gnu, who did the fake news reports (“No gnews is good gnews with Gary Gnu”). Of course, the
theme song tends to stick in our heads too: “...get onboard, step inside, slowly for a magic ride... roar-
ing towards the other side where only rainbows hide...” Ah, the memories!

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 261

% Code Cabinet Ext - Mozilla Firefox

File Edit View History Bookmarks Tools Help
EJ (] Code Cabinet Ext [x]| - B8
S Add Category & Delete Categary 4dd Snippet EDslete Snippet
Categories «/| | Details %
=43 Code Snippets || st | Hinra|eeas | s Feswee
e i ikt (o ¥ vl Rl
[E] Visual Basic
=] JavaScript
Select a category to view the snippets in it
v
b |_lrdsave |
Search For Snippets <« | Search Results
Keywords:
Code:
Mame: Search results will appear here
(select a category to do a search)
Description:
Author:
Hotes:
| bdsearch || @cear |
[Sa] Images:0/0 Loaded: 16 KB Speed:13.18KB/s Time:1215 (b [@ - 6L.7MB/64MB || 7SMB/75MB & B VSlow 1.054s

Figure 5-1. Code Cabinet Ext, in all its (initial) glory

See, just as described! You'll find the code to be fairly terse, again owing to the power Ext
JS provides. In fact, there are number of new capabilities that add to the lack of verbosity of the
code... but not, apparently, to the lack of verbosity of my writing, so enough setup, let’s get to
it, shall we?

Overall Structure and Files

With this project I decided to go with a different architectural approach, which will be dis-
cussed as we look at the code. At this point I want to emphasize that this approach is an
extension of the previous project. That means we’ll see a number of source files for individual
Ul elements, but there are fewer here, partially because the application itself is simply less
complex but also as a result of the architecture. Figure 5-2 shows the breakdown of the appli-
cation’s directory structure.

262

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

= @‘ C:'codecabinetext
EI@‘ =8
L5 styles.css

!} icon_category_add.gif
icon_category_delete. gif
icon_save.gif
icon_search.gif
icon_snippet_add. gif
----- h;_] icon_snippet_delete. gif
B s

----- ? CodeCabinetExt.js

..... T DAC.js

----- %) Details.js

----- % | gears_init.js

----- % | SearchForm.js

----- % | SearchResults.js

----- %| StoresAndRecords.js
----- 5«, Toolbar.js

..... 5_; Tree.js

----- 5«_; Viewport.js

----- @ index.htm

----- E] license. txt

Figure 5-2. The application’s directory structure and constituent files

We have the usual css directory with the single styles.css file in it, and as you'll see
shortly, there’s not much to that file. The ext directory is naturally still present, and in this
application it is unmodified—that is, no theme or anything has been added as we did in the
previous project. The img directory contains a couple of GIF files, all of them icons used on
the toolbar and the buttons throughout the application, just to spice them up a little. In the
js directory resides all our JavaScript source code. We have the gears_init.js file that we’d
expect given that this application uses Gears (like all the others). CodeCabinetExt.js is our
“main” source file, but as you'll see, it’s fairly sparse. The DAO. js file is our data access object,
and StoresAndRecords. js contains the definitions of all the Records and Data Stores we’ll
need. Each remaining file contains some configuration object that defines an element of the
UL The names I suspect are completely obvious, but if not have no fear; we’ll be looking at
each individually.

In the root directory we have index.htm, which is where we’ll begin our exploration of the
code.

Note | may not have mentioned this previously, but all of the projects in this book are licensed under the
GPL open source license. This fulfills the Ext JS licensing requirements, but | point it out because that’s the
reason you find the 1icense.txt file in the root of all the projects and why the GPL license header is pres-
ent in all the source files.

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

The Markup

The index.htmfile in this application is a fair bit smaller than any of the others we’ve seen
so far:

<html>
<head>
<title>Code Cabinet Ext</title>

<link rel="stylesheet" type="text/css" href="ext/resources/css/ext-all.css">
<script type="text/javascript" src="ext/adapter/ext/ext-base.js"></script>
<script type="text/javascript" src="ext/ext-all.js"></script>

<script src="js/gears init.js"></script>

<link rel="stylesheet" type="text/css" href="css/styles.css">

<script type="text/javascript" src="js/CodeCabinetExt.js"></script>
<script type="text/javascript" src="js/StoresAndRecords.js"></script>
<script type="text/javascript" src="js/DAO.js"></script>

<script type="text/javascript" src="js/Viewport.js"></script>

<script type="text/javascript" src="js/Toolbar.js"></script>

<script type="text/javascript" src="js/Tree.js"></script>

<script type="text/javascript" src="js/Details.js"></script>

<script type="text/javascript" src="js/SearchForm.js"></script>
<script type="text/javascript" src="js/SearchResults.js"></script>

</head>
<body onLoad="CodeCabinetExt.init();">

<div id="divSource" class="cssSource"></div>
</body>

</html>

I'd be willing to wager a minute’s salary (because I'm clearly not a Las Vegas high-roller!)
that this is probably pretty mundane by now. In fact, the only thing that may surprise you
is the fact that I've used the plain-old onLoad event handler to call the init() method of
the CodeCabinetExt object, which is the one and only instance of the object defined in the
CodeCabinetExt. js file, and init() is what kicks off the application. The reason I did this is
because, frankly, I couldn’t get Ext.onReady () to work! I know we authors are supposed to have
all the answers, but the fact is that part of what makes a “practical” book worth something, in
my opinion anyway, is that you can read about the problems the author encountered writing
the example code and learn how they got around them. This saves you time later because you
don’t have to spend that time figuring out what we’ve already figured out.

263

264

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

In this case, [am not sure why Ext.onReady() didn’t work. As far as I can tell, it absolutely
should have. The application never gets past the Please Wait Window when using it, though,
and I'm not sure why. Falling back to onLoad works just fine, however. Keep in mind that the
primary reason for using Ext.onReady () is to start your application’s code executing as soon as
possible and not have to wait for all resources to load first, as is the case with onLoad. Because
of that, you can usually use the two approaches interchangeably, but Ext.onReady () will also
usually give the appearance of better application performance. Here it probably isn’t a big deal
either way.

Note too that the only markup present here is the familiar divSource <div> for our Window
animations. Because of some new functions used that we’ll see soon, there isn’t any need to
define Windows in markup or anything else.

The Style Sheet

The style sheet in this application, like the markup in index.htm, is very limited. This is at least
in part due to the way this application is constructed.

.cssPleaseWait {
font-size : 12pt;
font-weight : bold;
font-family : tahoma,arial,verdana,sans-serif;
color : #000000;

}

.cssSource {
position : absolute;
left: 1px;
top : 1px;
width : 100%;
height : 1px;

The cssPleaselait selector styles the text seen in the Please Wait pop-up during application
startup. The cssSource selector is applied to the divSource <div>. Here, however, notice that it is
different than in previous applications. Here, the width is 100%, whereas in previous applications
it was 1 pixel, like the other attributes. This changes the effect you see when Windows appear.
Instead of appearing to expand into view from the upper-left corner, they appear to “shrink into
view,” so to speak. In other words, the Windows fly in from the top, but they seem to shrink from
awidth across the entire page to their actual size. Check out the application in action to see this.
It’s a fairly subtle change, but one that I think looks quite a bit cooler!

The Code

Well, getting through the style sheet, markup, and directory structure didn’t take very long,
which means it’s now time to jump right into the code! Let’s begin with the DAO class, since
that’s largely something that stands on its own.

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

DAOQ.js

Recall in the previous application that I decided to feed Record objects to the DAO directly and
to have the DAO return Records directly. I again decided to go with this approach because even
though the argument against this—that the DAO code is in a sense tied to Ext JS—is valid, the
simplicity of the code that results from this approach is highly compelling. With that in mind,
take alook at the UML class diagram in Figure 5-3.

DAO)
(databaseName : String N
-sqlCreateCategoriesTable : String
-sqlCreateCategory : String
-sqlRetrieveCategories : String
-sqlDeleteCategory : String
-sqlCreateSnippetsTable : String
-sqlCreateSnippet : String
-sqlRetrieveSnippetsinCategory : String
-sqlRetrieveAllSnippets : String
-sqlUpdateSnippet : String
-sqlDeleteSnippet : String
\:sqlDeleteSnippetsinCategory : String
(init()
+createCategory()
+retrieveCategories : CategoryRecord[]()
+deleteCategory()
+createSnippet()
+retrieveSnippetsinCategory : SnippetRecord[]()
+retrieveAllSnippets : SnippetRecord[]()
+updateSnippet()
\+deleteSnippet())

AN

Figure 5-3. UML class diagram of the DAO class

The diagram shows that the structure of the DAO is very much along the lines we’ve previ-
ously seen, and there’s little surprise there: the structure makes a lot of sense, so why not stick
with what works?

As we get into the code, however, we're immediately faced with something new and, pre-
sumably, exciting:

CodeCabinetExt.Data.DAO = new function() {
Previously we saw the DAO code beginning simply with:
function DAO() {

Later on, an instance of this class is created. Here, however, something else is going on.
That something else is called “namespaces.” I'm going to hold back on a full explanation at
this point because it’s easier to understand what’s going on by looking at one particular line
of code in CodeCabinetExt. js. At this point I'll simply tell you that the way this DAO code opens
up is creating a DAO instance as well, but where that instance lives, so to speak, is quite a bit
different.

Let’s move on to the next thing we find in the DAO code:

var databaseName = "CodeCabinetExt";

265

266 CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

As usual, we need a Gears database in which to store our application’s data, and this field
holds that name.

Next up we find a series of four SQL statements for dealing with categories:

var sqlCreateCategoriesTable = "CREATE TABLE IF NOT EXISTS categories (" +
"name TEXT)"

var sqlCreateCategory = "INSERT INTO categories (name) VALUES (?)";

var sqlRetrieveCategories = "SELECT * FROM categories";

var sqlDeleteCategory = "DELETE FROM categories WHERE name=?";

This application deals with two entities: categories and snippets. A snippet is a child of
a category at all times, but other than that we essentially have two simple tables to deal with,
categories being the first. It’s so simple that it only has a single name field (see Figure 5-4).
I suspect the four SQL statements need no explanation.

- Information from Master table

TABLE : categories

Associated with table/view: categories Rootpage: 3
SQL t that 1 this object:

CREATE TABLE categories (name TEXT)

More Info
‘ No. of Col 1 No. of Ind o No. of R d 5
-~ Col

Name Type P.Key HNotNull Default

TEXT | |||uu |[Drop(nlumn] [Alter Column

|
| L Mo o [[rdecom]

Figure 5-4. Table structure of the categories table

Dealing with snippets is a little more complicated, so we find that there are a few more
SQL statements to look at:

var sqlCreateSnippetsTable = "CREATE TABLE IF NOT EXISTS snippets (" +
"id TEXT, categoryname TEXT, name TEXT, description TEXT, author TEXT, " +
"email TEXT, weblink TEXT, code TEXT, notes TEXT, keywordl TEXT, " +
"keyword2 TEXT, keyword3 TEXT, keyword4 TEXT, keyword5 TEXT)"
var sqlCreateSnippet = "INSERT INTO snippets (id, categoryname, name, " +
"description, author, email, weblink, code, notes, keywordi, keyword2, " +
"keyword3, keyword4, keyword5) VALUES (?, 2, 2, 2, 2, 2, 2, 2, 2,2, 2, " +
", N
var sqlRetrieveSnippetsInCategory =
"SELECT * FROM snippets where categoryname=?";

var sqlRetrieveAllSnippets = "SELECT * FROM snippets";

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

"UPDATE snippets SET name=?, description=?, " +
"author=?, email=?, weblink=?, code=?, notes=?, keywordi=?,
"keyword3=?, keyword4=?, keyword5=? WHERE id=?";

var sqlDeleteSnippet = "DELETE FROM snippets WHERE id=?";

var sqlDeleteSnippetsInCategory = "DELETE FROM snippets WHERE categoryname=?";

var sqlUpdateSnippet =

keyword2=?, " +

Even still, they are each individually pretty simple. There is more information to store
about a snippet, however, and Figure 5-5 shows all of the fields involved. Note that the
categorynanme field is a foreign key to the name field of the categories table; other than that,
the fields in the snippets table describe the snippet itself.

~ Information from Master table
TABLE : snippets
Associated with table/view: snippets Rootpage: 4
SQL t that 1 this object:
CREATE TABLE snippets (id TEXT, l:ategurynaneTEXT name TEXT, do.'amphonTE)ﬂ' aul:l’mrTEXl’ email TEXT,
weblink TEXT, code TEXT, notes TEXT, keyword1 TEXT, keyword2 TEXT, keyword3 TEXT, keyword4 TEXT, keywords
TEXT)
~ More Info
PO —
-~ Col
Name Type P.Key NotNull Default
[id | [Texr | [noe | [prop Column | [Alter Column |
|categnr\mame | |TEXT | ||luu | [prop Column | [Alter Column |
[name | [Tex | [noe | [prop Column | [Alter Column |
|d5cript'|nn ||TEXT | ||luu | [prop Column | [Alter Column |
| author | [Tex | [noe | [prop Column | [Alter Column |
[email | [Texr | [noe | [prop Column | [Alter Column |
| weblink | [Texr | [noe | [prop Column | [Alter Column |
[code | [Texr | [noe | [prop Column | [Alter Column |
nnt5		TEXT			luu	prop Column	[Alter Column
keyword1	[Tex	[noe	[prop Column	[Alter Column			
keyword2	[Texr	[noe	[prop Column	[Alter Column			
keyword3	[Texr	[noe	[prop Column	[Alter Column			
keywords	[Texr	[noe	[prop Column	[Alter Column			
keywords	[Texr	[noe	[prop Column	[Alter Column			
C B0 0 [)							

Figure 5-5. Table structure of the snippets table

Notice that there are two different retrieval statements. The sqlRetrieveSnippetsIn
Category statement retrieves snippets in a given category and is used when a category is
selected and we want to see the snippets within it. The sqlRetrieveAllSnippets statement
returns all snippets across all categories and is used to perform searches. This hints at a slight

267

268

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

architectural difference in this application as compared to the previous ones. In the others, all
the data from the database is loaded at startup, and it’s only updates (or deletes) that cause
database access to occur again. Here, however, because of how the data is organized and how
the application works, it makes more sense to do retrievals when necessary.

For instance, you could envision loading all the snippets at startup and them filtering
down to the ones you need when a category is selected. However, why waste the memory
doing that? It’s more efficient to just read them in when needed. Since no network access is
involved, there’s no real concern about performance that might make you take a different
approach.

Next up is the init() method. This serves the same purpose as all the other init() meth-
ods we've seen: it ensures that Gears is available, and creates the table structure if necessary:

this.init = function() {

var initReturn = "ok";
try {
if (!window.google || !google.gears) {
initReturn = "no_gears";
} else {
var db = google.gears.factory.create("beta.database");
db.open(databaseName);
db.execute(sqlCreateCategoriesTable);
db.execute(sglCreateSnippetsTable);
db.close();
}
} catch (e) {
initReturn = e;
}

return initReturn;

Here, I've modified the code to be slightly more helpful to its caller. In previous appli-
cations, a failure of any sort—either because Gears wasn’t available or because a problem
occurred trying to create the tables—was indistinguishable by the caller. Now the return type
isn’t just a simple Boolean—it’s a string that tells us what happened. If Gears truly isn’t avail-
able, then this method sends back “no_gears”. If an exception of any sort occurs, then the text
of the exception is sent back (and in the case of this application, is displayed to the user).

The next method we find is for creating a new category:

this.createCategory = function(inRecord) {

var db = google.gears.factory.create("beta.database");
db.open(databaseName);

db.execute(sqlCreateCategory, [inRecord.get("name")]);
db.close();

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

The inRecord argument is of type CategoryRecord. We’ll see the definition of this shortly,
but as I think you can surmise, it contains a single name field, and that’s it.

Retrieving categories is a simple matter, and unlike snippets there’s only a single retrieval
method to get all of them:

this.retrieveCategories = function() {

var db = google.gears.factory.create("beta.database");
db.open(databaseName);
var rs = db.execute(sqlRetrieveCategories);
var results = [];
while (rs.isValidRow()) {
results.push(new CodeCabinetExt.Data.CategoryRecord({
name : rs.fieldByName("name")
}, rs.fieldByName("name")));
rs.next();
}
rs.close();
db.close();
return results;

This is just like the retrieval methods in the DAO from the previous project. All it takes is
executing the appropriate SQL statement, then iterating over the returned items and creating a
CategoryRecord for each. Throw them all in an array, wrap it in a bow, and return it, good to go!

We can also delete a category, which is somewhat interesting:

this.deleteCategory = function(inCategoryName) {

var db = google.gears.factory.create("beta.database");
db.open(databaseName);

db.execute(sqlDeleteCategory, [inCategoryName]);
db.execute(sqlDeleteSnippetsInCategory, [inCategoryName]);
db.close();

It’s interesting because deleting a category also means deleting all the snippets within it,
which arguably is not the way you’d want this application to work in an ideal world, but hey,
feel free to enhance it! So, there are two SQL statements to execute, but otherwise this method
works just like any other we’ve seen. In Figure 5-6 you can see where we nicely inform users of
this when they try to delete a category.

269

270

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

9 Code Cabinet Ext - Mozilla Firefox
File Edit View History Bookmarks Tools Help

<2 Are you sure you want to delete the selected category? Note that all snippets within the
\"‘/ category will also be deleted!

5 | Bes | om0 |
Search For Snippets «| | Search Results
Keywords:
Code:
N Search results will appear here
(select a category to do a search)
Description:
Author:

Mates:

HSsarch ai‘.lear

[Sa] Images:0/0 loaded: 16KB Speed: 14.23KBfs Time:1126 ([(- 61L7MB/64MB || 75MB/75MB @ 1Error [YSlow

[0 [codecabinetext g =
.;-Aﬂﬂ Category % Delete Category Add Snippst BDEIE'IE Snippet
Categories «| | Details #
= Code Snippets Srippets || Info || Code || Notes | Keywords
Keyword 1: class
Keyword 2: tostring
=] Javascript Keyword 3: debug
Keywaord 4: java
k Keyword 5: utility
v
Confirm Category Deletion *

0

Figure 5-6. The Confirm Category Deletion dialog

Now we can move on to the methods for dealing with snippets, beginning with the ability
to create a new snippet:

this.createSnippet = function(inRecord) {

var db = google.gears.factory.create("beta.database");

db.open(databaseName);

db.execute(sqlCreateSnippet, [
new Date().getTime().toString(), inRecord.get("categoryname"),
inRecord.get("name"), inRecord.get("description"),
inRecord.get("author"), inRecord.get("email"), inRecord.get("weblink"),
inRecord.get("code"), inRecord.get("notes"), inRecord.get("keywordi"),
inRecord.get("keyword2"), inRecord.get("keyword3"),
inRecord.get("keyword4"), inRecord.get("keywords")

D;
db.close();

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 2n

The inRecord argument is a SnippetRecord. It obviously has more fields than a Category
Record, but is an ordinary Ext JS Record nonetheless. Note that when a snippet is created it is
assigned an ID using the current time. This ensures uniqueness and also keeps our application
code from having to generate its own key value for the snippet (the ID is the unique key of the
table).

Retrieving snippets comes in two flavors, but both of them are implemented as part of the
same method:

this.retrieveSnippets = function(inCategoryName) {

var db = google.gears.factory.create("beta.database");
db.open(databaseName);
var rs = null;

if (inCategoryName) {

rs = db.execute(sqlRetrieveSnippetsInCategory, [inCategoryName]);
} else {

rs = db.execute(sqlRetrieveAllSnippets);
}

var results = [];
while (rs.isValidRow()) {
results.push(new CodeCabinetExt.Data.SnippetRecord({
name : rs.fieldByName("name"), author : rs.fieldByName("author"),
categoryname : rs.fieldByName("categoryname"),
description : rs.fieldByName("description"),
email : rs.fieldByName("email"), code : rs.fieldByName("code"),
weblink : rs.fieldByName("weblink"), notes : rs.fieldByName('notes"),
keywordl : rs.fieldByName("keyword1i"),
keyword2 : rs.fieldByName("keyword2"),
keyword3 : rs.fieldByName("keyword3"),
keyword4 : rs.fieldByName("keyword4"),
keywords : rs.fieldByName("keywords")
}, rs.fieldByName("id")));
rs.next();
}
rs.close();
db.close();
return results;

Here, the inCategoryName argument names the category we want snippets for. However,
that argument can be null, which means we want all snippets across all categories. The
queries executed in both cases differ in that the one for retrieving queries from a category,

272

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

sqlRetrieveSnippetsInCategory, requires the category name be dynamically inserted into it,
while the sqlRetrieveAllSnippets does not. So, a little bit of conditional logic takes care of
that, and the appropriate query is executed. In other cases we simply get back all available data
and return an array of created SnippetRecord objects, so after that little bit of logic the code is
identical. Note that each SnippetRecord is provided with the unique id value, but it is not one
of the fields of the SnippetRecord itself—it is a separate property of the Record interface that
ExtJS knows about.

Snippets can also be updated, and because each snippet has a unique ID—as opposed to
previous projects, or even the categories in this one where the name is the key—the name field
of a snippet can be updated as well, as you can see here:

this.updateSnippet = function(inRecord) {

var db = google.gears.factory.create("beta.database");
db.open(databaseName);
db.execute(sqlUpdateSnippet, [
inRecord.get("name"), inRecord.get("description"), inRecord.get("author"),
inRecord.get("email"), inRecord.get("weblink"), inRecord.get("code"),
inRecord.get("notes"), inRecord.get("keywordi"),
inRecord.get("keyword2"), inRecord.get("keyword3"),
inRecord.get("keyword4"), inRecord.get("keywords"),
inRecord.id

D;
db.close();

Finally, snippets can be deleted too:
this.deleteSnippet = function(inID) {
var db = google.gears.factory.create("beta.database");
db.open(databaseName);

db.execute(sqlDeleteSnippet, [inID]);
db.close();

No surprises there!

StoresAndRecords.js

Now that we’ve seen the DAO code, it makes sense to see the Records and Stores involved in this
application. The Records can be seen in Figure 5-7.

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT
CategoryRecord SnippetRecord
-name : string -categoryname : string
-name : string

-description : string
-author : string
-email : string
-weblink : string
-code : string
-notes : string
-keyword1 : string
-keyword2 : string
-keyword3 : string
-keyword4 : string
-keyword> : string

Figure 5-7. The record descriptors in all their glory

These Records are very simple animals, but let’s see their definition anyway, starting with
the CategoryRecord:

CodeCabinetExt.Data.CategoryRecord = Ext.data.Record.create([
{ name : "name", mapping : "name" }

D;

Yes, a single field, name, is all we need to make this whole rigamarole work! The
SnippetRecord has a few more, though:

CodeCabinetExt.Data.SnippetRecord = Ext.data.Record.create(][

{ name : categoryname , mapplng "categoryname" },
{ name : "name", mapping : "name" },

{ name : "description", mapping : "description" },
{ name : "author", mapping : "author" },

{ name : "email", mapping : "email" },

{ name : "weblink", mapping : "weblink" },

{ name : "code", mapping : "code" },

{ name : "notes", mapping : "notes" },

{ name : "keyword1", mapping : "keywordi" },

{ name : "keyword2", mapping : "keyword2" },

{ name : "keyword3", mapping : "keyword3" },

{ name : "keyword4", mapping : "keyword4" },

{ name : "keywords", mapping : "keywords" }

[—
~
-

By the way, you can see here the same sort of “namespacing” going on as we saw with the
DAO, so hold tight to your questions about that because we're nearly to that explanation. (I just
hope I haven’t built it up so much that it’s a disappointment!)

273

274

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

With the Records out of the way, we can see the Stores that are involved in this appli-
cation. As it turns out there are only three: one for categories, one for the snippets in the
currently selected category, and one for any search results that may exist. The first of these
is the CategoriesStore:

CodeCabinetExt.Data.CategoriesStore = new Ext.data.Store({
listeners : {
"add" : {
fn : function(inStore, inRecords, inIndex) {
if (Ext.MessageBox.isVisible()) { return; }
CodeCabinetExt.Data.DAO.createCategory(inRecords[0]);

}
})
"remove" : {
fn : function(inStore, inRecord, inIndex) {
CodeCabinetExt.Data.DAO.deleteCategory(inRecord.get("name"));
}
}
}
1

This is where we store all the categories that currently exist. This Store is populated from
the database once at startup and then all adds and deletes of categories are executed against it.
As such we have an add and remove event handler defined to call the appropriate DAO method in
each case.

In the add event handler we find something new: Ext.MessageBox.1isVisible(). Recall that
in previous applications we had some code to determine if the Please Wait Window was show-
ing to avoid the add event firing during initial Store loading. Well, the same situation has to be
accounted for here, but in this application there is no Please Wait Window. Instead, we're going
to be using the Ext.MessageBox () feature. This allows us to display various sorts of dialogs
without having to construct the Windows ourselves. We'll see the code for this a little later, but
for now it’s important to understand that using Ext.MessageBox () means we can have a single
Window at a time opened, which means we can ask Ext JS if the Window is currently open by
calling Ext.MessageBox.isVisible(). So, effectively, this serves the exact same purpose as the
similar code seen in previous applications.

The SnippetsStore is next, and it is virtually identical to the CategoriesStore:

CodeCabinetExt.Data.SnippetsStore = new Ext.data.Store({
listeners : {
"add" : {
fn : function(inStore, inRecords, inIndex) {
if (CodeCabinetExt.populatingSnippetsStore) { return; }
CodeCabinetExt.Data.DAO.createSnippet(inRecords[0]);
}
})

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

"remove" : {
fn : function(inStore, inRecord, inIndex) {
if (CodeCabinetExt.populatingSnippetsStore) { return; }
CodeCabinetExt.Data.DAO.deleteSnippet(inRecord.id);

}
b
"update" : {
fn : function(inStore, inRecord, inIndex) {
CodeCabinetExt.Data.DAO.updateSnippet(inRecord);
}
}
}
D;

The only real difference is that the SnippetsStore has an update event handler as well
since snippets can be updated, while categories cannot.
Finally, we find SearchResultsStore:

CodeCabinetExt.Data.SearchResultsStore = new Ext.data.Store({});

This is a temporary Store that is loaded with SnippetRecords matching the entered search
criteria when the user wants to perform a search. At the start, though, it’s just an empty Store,
but defining it allows us to bind widgets to it, even though it's empty, so we can stick with a
more declarative approach to defining our widgets that way.

CodeCabinetExt.js

All right then, now we find ourselves staring face to face with the CodeCabinetExt. js file,
which I've described as the “main” source file. Each of the previous applications had a

single JavaScript file that contained what you could call the “core” of the application. The
CodeCabinetExt. js file is similar, but in this situation it’s also quite a bit different. Let’s begin
by looking at the UML diagram for it, shown in Figure 5-8.

275

276

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

C CodeCabinetExt
4Data.0ategoryRecord : Ext.data.Record
+Data.SnippetRecord : Ext.data.Record
+Data.CategoriesStore : Ext.data.Store
+Data.SnippetsStore : Ext.data.Store
+Data.SearchResultsStore : Ext.data.Store
+populatingSnippetsStore : boolean
+UIObjects.Viewport : Ext.Viewport
+UlObjects.Toolbar : Ext.Toolbar
+UlObjects.Tree : Ext.tree.TreePanel
+UlObjects.Details : Ext.TabPanel
+UlObjects.SearchForm : Ext.form.FormPanel
\+UlObjects.SearchResults : Ext.Panel
(init()

+buildUl()
+UIEventHandlers.AddCategory()
+UIEventHandlers.DeleteCategory()
+UIEventHandlers.AddSnippet()
+UIEventHandlers.DeleteSnippet()
+UIEventHandlers.TreeClick()
+UIEventHandlers.RowClick()
+UIEventHandlers.SaveClick()
+UIEventHandlers.SearchClick()
\+UIEventHandlers.ClearClick() Y,

N

AN

Figure 5-8. UML class diagram of the CodeCabinetEx, and its sub-namespaces class

So, we can deduce that we’re looking at a class here, and that’s nothing we haven’t seen
before. What is new is how the class is defined. The answer happens to be the first line of
executable code in this file, and it also happens to be what I've hinted at before: namespaces.

Ext.namespace("CodeCabinetExt", "CodeCabinetExt.UIObjects",
"CodeCabinetExt.UIEventHandlers", "CodeCabinetExt.Data");

The Ext.namespace() function is something we haven’t seen in action before. Here’s what
the Ext JS documentation has to say about it: “Creates namespaces to be used for scoping
variables and classes so that they are not global.” Here’s what I have to say about it: it creates
classes!

Remember that in JavaScript, a class is a function. Every function you create, because you
can later create a new instance of it, is what you’d call a class in other languages such as Java.
But you also hear this term “namespace” a lot in JavaScript circles. It’s is really just another
name for a function.

You can create functions within functions in JavaScript—there’s no problem there. Each
time you create a member of a function, it is local to that function; its scope is the function, in
other words. That’s what namespacing is all about: keeping elements out of global scope and
instead putting them into some more private scope.

The Ext.namespace() function simply allows you to create these namespaces, these
functions, these classes, whatever term you’d like to use, without having to write the associ-
ated JavaScript code yourself. It’s a very handy function that takes any number of arguments
you care to throw at it, and it creates the namespaces in that list. You can create nested
namespaces, stand-alone namespaces, whatever you prefer.

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

So, in the call we see here, there is one namespace at the top of the heap: CodeCabinetExt.
Then, it adds some namespaces within that namespace, namely CodeCabinetExt.UIObjects,
which is where we’ll put the configuration objects for all of user interface elements; Code
CabinetExt.UIEventHandler, which is where we’ll put the event handlers that are triggered by
user interactions with various UI elements; and CodeCabinetExt.Data, which is where we’ll put
all our data-related items such as Records, Stores, and our DAO instance.

Speaking of the DAO, we saw this a little earlier in that code:

CodeCabinetExt.Data.DAO = new function() {

Now, that makes sense to me: in JavaScript remember that you can attach attributes
to existing objects any time you wish, and that’s exactly what’s happening here. The call
to Ext.namespace() created the CodeCabinetExt namespace, and then the Data namespace
underneath it. Under the covers that means we have a function (Data) nested within another
(CodeCabinetExt), and now in the DAO we’re adding a DAO attribute to the Data function, which
happens to be a reference to the function that is our DAO.

This is nice because it means the only thing we have in global scope in this application is
the CodeCabinetExt object itself, regardless of all the source files we load (which foreshadows
what you'll see: each of the JavaScript source files contains code that attaches new attributes
to the namespaces created here). So we can bring in other libraries or code if we wish and be
pretty well assured it won't conflict with ours.

Now that we know all about namespaces, let’s see some of the attributes added to the
CodeCabinetExt namespace:

CodeCabinetExt.currentCategory = null;

This is a reference to the currently selected CategoryRecord, if any.
CodeCabinetExt.currentSnippet = null;

This is similarly a reference to the currently selected SnippetRecord, if any.
CodeCabinetExt.populatingSnippetsStore = false;

This is a flag that tells us when the SnippetsStore is in the process of being populated.
We’ll see a bit later why this is important, but for now just remember this flag and that it indi-
cates that Store is being populated.

The init()method that we saw called in response to the page’s onLoad event is next:

CodeCabinetExt.init = function() {

Ext.MessageBox.show({
title : "Please Wait",
msg : "... Initializing ...",
buttons : false, closable : false, animEl : "divSource"

};

217

278

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

(function() {
var daoInitResult = CodeCabinetExt.Data.DAO0.init();
switch (daoInitResult) {
case "ok":
Ext.state.Manager.setProvider(new Ext.state.CookieProvider());
CodeCabinetExt.buildUI();
Ext.MessageBox.hide();
break;
case "no_gears":
Ext.MessageBox.show({
title : "Gears Not Available", buttons : Ext.MessageBox.OK,
msg : "
" +
"I'm sorry but Google Gears is not installed on your computer, " +
"or is unavailable for some reason (like you disabled the " +
"browser plugin for example)." +
"

" +
"If you do not have Gears installed, please visit " +
"" +
"the Gears home page to install it." +
"

" +
"If you do have it installed, please try enabling the plugin in " +
"whatever fashion is applicable in the browser you are using, " +
"and reload this application."
1;
break;
default:
Ext.MessageBox.alert("DAO Initialization Failed",
"Data access could not be initialized. Reason: " + daoInitResult);
break;
}
}).defer(500);

};

First, as with the other applications in this book, we want to show a Please Wait mes-
sage while the application initializes. In the previous projects we created our own Window and
showed it. Here we’re saving some time and effort and instead using the Ext.MessageBox()
function. This function allows us to create a variety of pop-up dialog message windows, some
that accept input, some with progress bars on them, and so on. Here we just want a simple
text-only message similar to a plain-old alert () message.

There are a number of ways to get a message displayed, but one of the most flexible is to
use the show() method. This method accepts an object that provides configuration informa-
tion describing what you want to show. In this case we specify the title attribute to set the
title of the Window, the msg attribute to set the message seen (and notice that you can include
markup here, which is how the cssPleaselait selector is applied to the text), the buttons attri-
bute (set to false) to indicate we don’t want any buttons for the user to click, closable (set to
false) to indicate that the message can’t be dismissed by clicking the close X icon, and finally

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

the animEl attribute, which specifies the element on the page to use as the animation source
for showing and hiding the message.

Next is something else new. We've seen these five init() methods before, but this one
is structured quite a bit differently. We are defining an anonymous function. This function
contains all our initialization logic. Once that function is defined, we immediately call the
defer() method on it. The defer() method is an embellishment that Ext JS adds to the proto-
type of JavaScript’s function, meaning every function we create has this method available to
it. All it does is say “wait some period of time (500 milliseconds in this case) and then execute
the function defer () is called on.” So, this is implementing the same sort of delay to give the
Please Wait message time to appear that we’ve seen in other applications implemented with
timeout (). This, I think you'll agree, is a bit more elegant.

MORE INFO ON PROTOTYPE THAN YOU EVER WANTED TO KNOW!

Functions in JavaScript are first-class citizens, meaning they are proper objects, extending directly from the
Object class, and they have properties and methods like any object does. Because of this, they also all have
common methods such as apply() and call() and properties such as length and constructor.

One other such property is prototype. Initially, its value is an empty object, so it’s as if you wrote:

function foo() { };
foo.prototype = { };

The properties and methods of the object prototype points to have no impact on foo itself; they are
not a part of it (directly at least; more on this shortly), but they will have an impact if you instantiate a new
instance of foo. They will become a part of the new object directly. Take this code, for example:

function foo() { };
foo.prototype = {
name : "test",
sayName : function() { alert(this.name); }
b
var f = new foo();
try { foo.sayName(); } catch (e) { alert("no"); }
f.sayName();

The result will be two alert () pop-ups, one that says “no,” and another that says “test.” As you
can see, the property name was added to the instance of foo pointed to by the variable f. However, the
attempt to call sayName () on foo will fail, which is why it’s in the try. . .catch block, because it isn’t
a part of foo.

Now, there is a way you can access the name property in foo, and here it is:

alert(foo.prototype.name);

Since the object prototype points to is a member of foo, you can still dig down through the hierarchy
like that to get to it. However, the idea of prototype isn't to store data, as other properties of foo would be,
but to define properties and methods that will become a part of any new instance of foo. It provides some-
thing of an inheritance mechanism in JavaScript.

279

280

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

The initialization logic itself is very much like we’ve seen before. First, the DAO’s init()
method is called. Remember that in this version of DAO.init(), it returns a string indicating
what happened. So, the next step is to switch on that return value. If the value is ok, then we
can continue initialization. Let’s come back to that.

If the return is no_gears, then we know Gears wasn’t available. So, we again use the
Ext.MessageBox.show() function to display the same sort of message as seen in other applica-
tions. In those other applications the Window was defined in markup in index.htm, but here it’s
defined entirely in code. Note that the buttons attribute is not set here, nor is closable, as seen
on the Please Wait pop-up. That means there will be a single OK button, which is the default
state of Ext.MessageBox.show(), and the close X icon can be used. The message seen in this
case is shown in Figure 5-9.

%3 Code Cabinet Ext - Mozilla Firefox

File Edit View History Bookmarks Tools Help :
{9 | Jcode CabinetExt &| | =
~
B Gears Not Available X
v
I'm sorry but Google Gears is not installed on your computer, or is unavaiable for some reason (lke you
disabled the browser plugin for example).
If you do not have Gears installed, please visit the Gears home page to install it. 1
If you do have it installed, please try enabling the plugin in whatever fashion is applicable in the
- browser you are using, and reload this application.
[ok |
v
sl i | 2l
[5% Images:0/0 Loaded: 16 KB Speed: 13.99 KB/s Tme: 1145 () E @ 61L7MB/64MB | 75MB/75MB #° BB vslow 0.997s

Figure 5-9. Oops, gotta go install Gears I guess!

The other possible outcome is some sort of exception. In that case, Ext.MessageBox.
alert() is used. As it happens, Ext.MessageBox.alert() doesn’t look a whole lot different than
the Window seen in the “No Gears” pop-up, as you can see for yourself in Figure 5-10.

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 281

2 Code Cabinet Ext - Mozilla Firefox
File Edit View History Bookmarks Tools Help

£ 9 |.(] Gode cabinetExt x| |- (B

DAO Initialization Failed X
Data access could not be initialized. Reason: Error: SQLite prepare() failed. ERROR: SQL logic error or

missing database DETAILS: near "CREATE_ERR™: syntax error EXPRESSION: CREATE_ERR TABLE IF
NOT EXISTS categories (name TEXT)

¢ [ok |

"
[1l | [

[S% Images:0/0 Loaded: 16 KB Speed: 14.25KB/s Time:1124 (% [@ - 617MB/64MB || 75MB/75MB & W& YSlow 0.573s

Figure 5-10. Some unknown error occurred.

Going back to the initialization that occurs when DAO initialization is successful, the first
step is to set up for state saving. Remember the requirement for the user to be able to resize
sections of the application and have the sizes persist across application executions? Well, to
do that we need to tell Ext JS what kind of provider to use to store the information. We will
use cookies, and so it’s the Ext.state.CookieProvider () we want. No further information is
needed; once the Manager is handed the provider instance to use, we're done.

The next step is to build the UI, and for that we need a call to the buildUI() method:

CodeCabinetExt.buildUI = function() {
new Ext.Toolbar(CodeCabinetExt.UIObjects.Toolbar());
new Ext.tree.TreePanel(CodeCabinetExt.UIObjects.Tree());
new Ext.TabPanel(CodeCabinetExt.UIObjects.Details());
new Ext.form.FormPanel(CodeCabinetExt.UIObjects.SearchForm());
new Ext.Panel(CodeCabinetExt.UIObjects.SearchResults());
new Ext.Viewport(CodeCabinetExt.UIObjects.Viewport());

var rootNode = Ext.getCmp("Tree").getRootNode();

282 CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

var categories = CodeCabinetExt.Data.DAO.retrieveCategories();
for (var i = 0; i < categories.length; i++) {
CodeCabinetExt.Data.CategoriesStore.add(categories[i]);
var categoryName = categories[i].get("name");
rootNode.appendChild(new Ext.tree.TreeNode(
{ id : categoryName, text : categoryName }
));
}

rootNode.expand();

Well now, that certainly is a bit different, and in a couple of ways! First, we clearly aren’t
defining the entire UI in one giant JSON object—it’s more like the TimekeeperExt project
where things are broken up, individually constructed, and then put together. Let’s see, we have
a Toolbar being created, a Tree for our categories, a TabPanel where the tabs for our snippet
details and snippets Grid will go, a FormPanel for our search form, a plain-old Panel where our
search results Grid will live, and of course a Viewport to make it all work. What'’s a bit bizarre
here, though, is we seem to be calling functions that must be returning configuration objects
to use to construct each of those elements. As we’ll see, that’s precisely what’s happening.

After all that, we're also loading up categories from the database and populating the Tree
that was just constructed. That code looks fairly familiar to us, having seen it a couple of times
in TimekeeperExt. The root node of the tree is expanded so that we can see all the categories,
and buildUI() is done. Back in the calling code (that anonymous function from earlier whose
execution was deferred) the Please Wait message box is hidden, and application initialization
is complete.

Now, we should probably look in more detail and find out what those functions that were
called to get the configuration objects for the UI elements are all about, and maybe under-
stand why it’s done that way (yes, hard to believe, but there is absolutely a method behind
my madness!)

Viewport.js

A Viewport contains our UI, so defining one is obviously necessary in this appli-

cation. In the init() method we just discussed, we saw that a call is made to
CodeCabinetExt.UIObjects.Viewport(), which we surmised must be returning a configura-
tion object describing the Viewport. Well, that function can be found in the aptly named
Viewport.js file, and consists of this bit of code:

CodeCabinetExt.UIObjects.Viewport = function() { return ({
layout : "border", items : [
{ region : "north", height : 28, items : [Ext.getCmp("Toolbar")] },
{ region : "west", layout : "fit", border : false, width : 300,
split : true, title : "Categories", collapsible : true,
items : [Ext.getCmp("Tree")] },

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

{ region : "center", layout : "border", items : [

{ region : "north", layout : "fit", border : false, height : 300,
split : true, title : "Details", collapsible : true,
items : [Ext.getCmp("Details")] },

{ region : "west", width : 300, split : true,
title : "Search For Snippets", collapsible : true,
items : [Ext.getCmp("SearchForm")]

b

{ region : "center", layout : "fit",
title : "Search Results", items : [Ext.getCmp("SearchResults")] }

IDHBS

This isn’t a whole lot different than anything we’ve previously seen, and there aren’t any
new attributes to describe, so I'd like to spend our time talking about the approach rather than
the details.

You'll notice right away that many parts of the Ul are obtained via calls to Ext.getCmp(),
which is a technique we’ve seen before. As long as those elements are constructed before the
Viewport, which is the case as we saw in the init() method a short while ago, then everything
works as we expect.

However, what'’s the thinking behind this being a function call? Why not just have
CodeCabinetExt.UIObjects.Viewport be an object definition? That way, you could do what you
see in Listing 5-1 instead.

Listing 5-1. The Viewport Defined As a JSON Object Not Wrapped in a Function Call

CodeCabinetExt.UIObjects.Viewport = {
layout : "border", items : [
{ region : "north", height : 28, items : [Ext.getCmp("Toolbar")] },
{ region : "west", layout : "fit", border : false, width : 300,
split : true, title : "Categories", collapsible : true,
items : [Ext.getCmp("Tree")] },
{ region : "center", layout : "border", items : [
{ region : "north", layout : "fit", border : false, height : 300,
split : true, title : "Details", collapsible : true,
items : [Ext.getCmp("Details")] },
{ region : "west", width : 300, layout : "fit", split : true,
title : "Search For Snippets", collapsible : true,
items : [Ext.getCmp("SearchForm")]
}J
{ region : "center", layout : "fit",
title : "Search Results", items : [Ext.getCmp("SearchResults")] }
1}

};

283

284

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

Well, here’s the problem with doing that: the object definition is interpreted at the time
this file is imported into index.htm, which means that the order in which files are imported
becomes important. For example, if we have a Grid that’s bound to a Store, then we have to
ensure that the code that defines the Store is imported before the file containing the Grid
definition. This isn’t a huge problem in a relatively small application such as this one, or
TimekeeperExt, which suffers from this import order problem, but in a larger project it can
quickly become a big hassle.

By wrapping the configuration object in a function call, however, the JSON won’t be inter-
preted until the function is called. Assuming we only allow that to happen when the page is
loaded, we can ensure that import order doesn’t matter and our application is therefore much
easier to maintain.

Note In my first attempt, this code, and the other source files that we’ll see, were implemented as a
string. In other words, | used what you see in Listing 5-1, except that each line of the JSON was wrapped
in quotes, so a giant string of JSON was constructed. Then, instead of function calls to get the JSON |
instead fed the string to Ext.util.json.decode() to get back the actual object to pass to the Viewport
constructor. This approach also gets around the problem of ordering of imports because the string won’t
be interpreted (into a JSON object, | mean) until the Viewport is constructed. However, it has a number
of drawbacks. First, you have to worry about escaping the JSON so as to not break the string construc-
tion, which can be a hassle. More importantly, though, code editors that do coloring and brace matching
can’t work in that situation, which means development can be more difficult. All in all, | like the function
call-wrapping approach seen in this application. You don’t have to worry about import order, you can define
elements in separate files, and you can continue to use your editor of choice most effectively. FTW!?

As you'll see, the configuration objects for all the other Ul elements are similarly defined
this way, and I think you'll find the rest of the projects in this book will use the same structure
because I believe it is the best approach (at least, the best I've found!).

One other plus is that if you wanted to, you could replace the function calls with Ajax calls
that retrieved the configuration objects from the server. This would allow you to change your
Ul structure pretty much on the fly (which could be a recipe for disaster as much as a really
cool capability). I'm not sure you'd ever want to do this, if for no other reason than the fact
that the extra round-trips involved from client to server would hurt performance, but it’s nice
to know the possibility exists. This approach of breaking up the Ul elements into separate
source files and then returning the configuration JSON from a function call allows you that
flexibility.

2 FTWis one of many Internet abbreviations (see www.netlingo.com/emailsh.cfmfor more details)
which stands for “for the win.” This can frequently be seen at the end of argument threads where
someone is comparing a number of things and is making the argument that one of them is superior.
FTW can also have another—less kind—meaning. I will leave you to find out what that is on your own,
if you wish!

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 285

Toolbar.js

The next thing we’ll look at is the definition of the Toolbar. You can see the Toolbar here in
Figure 5-11, which also shows the Info details tab.

¥ Code Cabinet Ext - Mozilla Firefox

File Edit View History Bookmarks Tools Help <
L 8 || (] Code Cabinet Ext [x]| |- B
f‘_:ZlAdd Category *,Debe’le Category = ©- Add Snippet aDelete Snippet
Categories «| | Details &}
43 Code Snippets I| Snippets . Info II Code -fi Notes | Keywords |
= ava Eekiadal | | Seoaiictc) Sosin) Widthiediisy)
=] visual Basic Name: Reflection-based toString()
Hrne Description: This is an implementation of toStrir| |
Elce 7 |
[JavaScript Author: Frank W. Zammetti
eMail: frammetti@omnytex.com
k ‘Web Link: I nfa
v
; L bedsave | \
Search For Snippets < | Search Results
Keywords:
Code:
e Search results will appear here
(select a category to do a search)
Description:
Author:
Motes:
| keldlsearcn || Edciear |
[5%] 1mages:0/0 Loaded: 16 KB Speed: 14.25 KB/s Time:1125 () [@ - 617MB/6aMB || 7SMB/75MB @ 1Error PR vSlow o

Figure 5-11. The Toolbar (bask in its majesty!) and the Info details tab, as an added bonus!

The configuration object for the Toolbar looks like this:

CodeCabinetExt.UIObjects.Toolbar = function() { return ({
id : "Toolbar", items : [

{
text : "Add Category",
handler : function() {

CodeCabinetExt.UIEventHandlers.AddCategory();

}, icon : "img/icon_category add.gif", cls : "x-btn-text-icon"

b

{
text : "Delete Category", id : "DeleteCategory", disabled : true,

handler : function() {
CodeCabinetExt.UIEventHandlers.DeleteCategory();
}, icon : "img/icon_category delete.gif", cls : "x-btn-text-icon"

b

286 CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

{ xtype : "tbseparator" },

{
text : "Add Snippet", id : "AddSnippet", disabled : true,
handler : function() {
CodeCabinetExt.UIEventHandlers.AddSnippet();
}, icon : "img/icon snippet add.gif", cls : "x-btn-text-icon"
b
{
text : "Delete Snippet", id : "DeleteSnippet", disabled : true,
handler : function() {
CodeCabinetExt.UIEventHandlers.DeleteSnippet();
}, icon : "img/icon snippet delete.gif", cls : "x-btn-text-icon"
}
]
Db

As far as Toolbar definitions go, there’s nothing special here. A couple of buttons, a
tbseparator, and we're all set. Note that all but the Add Category button is defined as disabled
to start; the others are enabled as contextually logical (i.e., when you select a snippet, only
then does Delete Snippet become enabled).

One interesting thing here is that each of the buttons has an event handler attached that
calls a function defined in the CodeCabinetExt.UIEventHandlers namespace. You might expect
to find a separate file where all those event handlers live, but you'd be wrong. In fact, they are
grouped logically with the definition objects themselves, so they're in this very file!

In fact, if you look out the right side of the aircraft you’ll see one of them now, the
AddCategory() button:

CodeCabinetExt.UIEventHandlers.AddCategory = function() {

Ext.Msg.prompt("Add Category", "Please enter a name for the new category:",
function(inButtonClicked, inTextEntered) {
if (inButtonClicked == "ok") {
if (CodeCabinetExt.Data.CategoriesStore.getById(inTextEntered)) {
Ext.Msg.alert("Name not allowed",
"A category with that name already exists. " +
"Please choose another."
)
return;
}
var categoryRecord = new CodeCabinetExt.Data.CategoryRecord(
{ name : inTextEntered }, inTextEntered
)
CodeCabinetExt.Data.CategoriesStore.add(categoryRecord);
var rootNode = Ext.getCmp("Tree").getRootNode();

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

rootNode.appendChild(
new Ext.tree.TreeNode({ id : inTextEntered, text : inTextEntered })
)5
rootNode.expand();
}
}
)5

};

This code is called when the Add Category button is clicked. I think it’s nice to be able
to have this code right alongside the Toolbar definition, and the namespaces allow us to do
that (or at least, makes it easier to do so). The function of adding a category begins with a
new method of Ext.Msg. Whoa, wait, Ext.Msg? What’s that? Simply stated, it’s a pseudonym of
Ext.MessageBox; they can be used interchangeably. This time, it’s the prompt () method we’'re
interested in. This works just like the plain JavaScript prompt () function, it allows us to get
some input from the user. The first argument is the title of the pop-up, and the second is the
prompt text. Just as with the plain prompt () function, you can optionally pass a default value
as well.

Unlike with the plain prompt () function, though, you can also pass a callback function
that will be executed when the pop-up is closed. This function is passed the text of the button
that was clicked as well as the data that was entered. So, the code then checks to see what but-
ton was clicked. It’s either going to be OK or Cancel, as you can see in Figure 5-12.

% Code Cabinet Ext - Mozilla Firefox

File Edit View History Bookmarks Tools Help
8 | () Code Cabinet Ext: x| |- (&
ateqory % Delete Category Add Snippet €3 Delete Snippet
Categories «| | Details A
=4 Code Snippets Snippets || Info || Code | Notes | Keywords
= ava
Keyword 1: chss
Keyword 2: tostring
ﬁnmstnm Keyword 3: debug
Keyword 4: java
k Keyword 5: utility
! Add Category E3
Please enter a name for the new category:
\ |
|~ oK. || Ca;cel |
R A G
Search For Snippets «|| Search Results
Keywords:
Code:
Name: Search results will appear here
(select a category to do a search)
Description:
Author:
Hotes:
Hiearch oclear
[5% Images:0/0 Loaded: 16 KB Speed: 14.25 KB/s Tme: 1125 () @ @ 6L7MB/64MB [75MB/75MB @ 1frror [YSlow o

Figure 5-12. The Add Category prompt

287

288

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

Interestingly, it is always passed in all lowercase, so we don’t have to do any converting
here. If the value is ok, only then do we do some work, and that work begins with trying to
retrieve the CategoryRecord from the CategoriesStore with the name that the user entered.
Ifit is found, the addition is not allowed because the name must be unique. In that case,
Ext.Msg.alert() is used to inform the user.

Assuming the name proves to be unique, it’s a simple matter of creating a new Category
Store with the entered name, adding the CategoryRecord to the CategoriesStore, which trig-
gers the add event. The add event in turn calls the DAO. createCategory() method, which adds
the category to the Tree. The details of this code are nothing new.

Next we find the Delete Category button’s event handler:

CodeCabinetExt.UIEventHandlers.DeleteCategory = function() {

Ext.MessageBox.confirm("Confirm Category Deletion",
"Are you sure you want to delete the selected catalog? " +
"Note that all snippets within the category will also be deleted!",
function(inButtonClicked) {
if (inButtonClicked == "yes") {

var rootNode = Ext.getCmp("Tree").getRootNode();

var categoryTreeNode = Ext.getCmp("Tree").getNodeById(
CodeCabinetExt.currentCategory.get("name"));

rootNode.removeChild(categoryTreeNode);

CodeCabinetExt.Data.CategoriesStore.remove(
CodeCabinetExt.currentCategory);
CodeCabinetExt.currentCategory = null;

CodeCabinetExt.Data.SnippetsStore.removeAll();

Ext.getCmp("DeleteCategory").setDisabled(true);
Ext.getCmp("AddSnippet").setDisabled(true);
Ext.getCmp("DeleteSnippet").setDisabled(true);

Ext.getCmp("Details").setActiveTab(0);
Ext.getCmp("tabSnippets").getlLayout().setActiveItem(0);
Ext.getCmp("tabInfo").setDisabled(true);
Ext.getCmp("tabCode").setDisabled(true);
Ext.getCmp("tabNotes").setDisabled(true);
Ext.getCmp("tabKeywords").setDisabled(true);

Ext.getCmp("SearchForm").getForm().reset();
CodeCabinetExt.Data.SearchResultsStore.removeAll();

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

);
};

While deleting a category isn’t too hard, there are a number of steps that have to be
accomplished. First, we get the root node of the Tree and then use its getNodeById() method.
We feed this method the name of the currently selected category (whose CategoryRecord the
CodeCabinetExt.currentCategory field now points to) to get the TreeNode representing the
category. Then we call removeChild() on the root node, passing it the TreeNode to remove. That
takes care of our Tree.

Next, we call remove() on the CategoriesStore to remove the category. This triggers
the remove event on the CategoriesStore, which calls the DAO. deleteCategory() method, so
now the store and the underlying database is taken care of. We also set CodeCabinetExt.
currentCategory to null to indicate no category is currently selected.

Next, we clear the SnippetsStore since there are no longer snippets to show.

After that, the Delete Category, Add Snippet, and Delete Snippet Toolbar buttons are
disabled since they only become available when a category and/or snippet is selected, which
obviously can’t be the case if we just deleted the selected category!

Then, the details section is taken care of. This amounts to switching to the first tab, and
then switching to the first card in the CardLayout that houses the content of that tab. This
shows the “Select a category to view the snippets in it” message again, just like when the appli-
cation starts up and no category is selected. Finally, all the other detail tabs are disabled, and
at that point we’re done.

The search form and results are cleared, just in case there were results from this category
showing. It would be a Very Bad Thing™ if the user clicked a result and the category didn’t
exist any longer!

The Add Snippet button also has an event handler, shown here:

CodeCabinetExt.UIEventHandlers.AddSnippet = function() {

if (!CodeCabinetExt.Data.SnippetsStore.getById("New Snippet")) {
CodeCabinetExt.Data.SnippetsStore.add(
new CodeCabinetExt.Data.SnippetRecord({
categoryname : CodeCabinetExt.currentCategory.get("name"),

name : "New Snippet", author : "",
description : "A new snippet", email : "", code : "", weblink : "",
notes : "", keywordl : "", keyword2 : "", keyword3 : "", keyword4 : "",
keywords : ""

}, "New Snippet")

)s
}

};

289

290

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

Adding a snippet is nothing more than adding a new SnippetRecord to the SnippetsStore.
However, since we only want to allow one new snippet at a time, we first try to retrieve the
snippet with the name “New Snippet.” If it’s not found, the addition can go ahead.

Finally, here’s the Delete Snippet button’s event handler:

CodeCabinetExt.UIEventHandlers.DeleteSnippet = function() {

Ext.MessageBox.confirm("Confirm Snippet Deletion",
"Are you sure you want to delete the selected snippet?",
function(inButtonClicked) {
if (inButtonClicked == "yes") {
CodeCabinetExt.Data.SnippetsStore.remove(CodeCabinetExt.currentSnippet);
CodeCabinetExt.currentSnippet = null;
Ext.getCmp("DeleteSnippet").setDisabled(true);
Ext.getCmp("Details").setActiveTab(0);
Ext.getCmp("tabInfo").setDisabled(true);
Ext.getCmp("tabCode").setDisabled(true);
Ext.getCmp("tabNotes").setDisabled(true);
Ext.getCmp("tabKeywords").setDisabled(true);
¥
}
);

};

Here we see yet another Ext.MessageBox (we're back to that instead of Ext.Msg, but
remember, they're the same thing!). This time it’s the Ext.MessageBox.confirm() function.
This gives us a display like what you see in Figure 5-13.

This provides a nice Yes/No-type question to the user. Just as with the prompt () method,
we get back the text of the clicked button, so we can branch accordingly. Only when the
user clicks Yes do we have something to do, and it begins by deleting the snippet from
the SnippetsStore. Once again, this triggers the delete event on the store, which calls the
DAO.deleteSnippet () method to take care of the database.

The CodeCabinetExt.currentSnippet field is set to null, and then the Delete Snippet
Toolbar button is disabled. All the other Toolbar buttons can remain as is, though, so the
Toolbar is done.

Finally, the Details section needs to be updated, which involves switching to the first tab,
which means we’ll be looking at the (now updated) list of snippets in the category again. The
other tabs are disabled, and that does it.

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

% Code Cabinet Ext - Mozilla Firefox
File Edit View History Bookmarks Tools Help

=1 i
\F Add Category % Delete Category Add Snippet €3 Delete Snippet
Categories «“| | Details £
= Code Snippets tnfo || Code || Motes || Keywords
=]Java
=] visual Basic Keyword 1: class
=l Keyword 2: tostring
=l
=] Javascript Keyword 3: debug
Keyword 4: java
k Keyword 5: utilioy
v
Confirm Snippet Deletion x|
<9 Are you sure you want to delete the selected snippet?
1)
3 [
Search For Snippets «| Search Results
Keywords:
Code:
e Search results will appear here
(select a category to do a search)
Description:
Author:
Hotes:
H Search a[‘.lear
[Sa] Images:0/0 loaded: 16 KB Speed: 14.25KB/s Time:1125 (b [(- 617MB/64MB || 75MB/75MB @ 1Error [YSlow o

Figure 5-13. The Delete Snippet prompt

Tree.js

The code for the categories Tree is not much more than a small configuration object along
with a single event handler. Let’s look at that configuration object first:

CodeCabinetExt.UIObjects.Tree = function() { return ({
id : "Tree", root : new Ext.tree.TreeNode(
{ id : "root", text : "Code Snippets" }
)5
listeners : {
click : function(inNode, inEvent) {
CodeCabinetExt.UIEventHandlers.TreeClick(inNode, inEvent);
}
}
s b

Here we have a simple Tree definition with the single required root TreeNode present. It
has a click handler attached to react to its nodes being clicked. That handler, which is where
the more interesting stuff can be found, looks like this:

292 CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

CodeCabinetExt.UIEventHandlers.TreeClick = function(inNode, inEvent) {

var categoryRecord = CodeCabinetExt.Data.CategoriesStore.getById(inNode.id);
CodeCabinetExt.currentCategory = categoryRecord;

Ext.getCmp("DeleteCategory").setDisabled(false);
Ext.getCmp("AddSnippet").setDisabled(false);

Ext.getCmp("tabInfo").setDisabled(true);
Ext.getCmp("tabCode").setDisabled(true);
Ext.getCmp("tabNotes").setDisabled(true);
Ext.getCmp("tabKeywords").setDisabled(true);
CodeCabinetExt.currentSnippet = false;

CodeCabinetExt.populatingSnippetsStore = true;

CodeCabinetExt.Data.SnippetsStore.removeAll();

var snippets = CodeCabinetExt.Data.DAO.retrieveSnippets(inNode.id);

for (var i = 0; i < snippets.length; i++) {
CodeCabinetExt.Data.SnippetsStore.add(snippets[i], snippets[i].id);

}
CodeCabinetExt.populatingSnippetsStore = false;

Ext.getCmp("Details").getlayout().setActiveItem(0);
var ts = Ext.getCmp("tabSnippets");
ts.getlayout().setActiveItem(1);

ts.show();

};

When a node in the Tree is clicked, the required action is to display the snippets in that
category in the Grid found on the Snippets tab of the Details section, as seen in Figure 5-14.
This requires a couple of steps.

First, the CategoryRecord associated with the clicked TreeNode is retrieved from the
CategoriesStore via its getById() method. The ID being searched for is retrieved from the
clicked node and passed into the handler function as the inNode argument by getting its id
property. Next, CodeCabinetExt.currentCategory is set to the CategoryRecord.

Next, we enable the Toolbar Delete Category and Add Snippet buttons. Following that, the
details section is set up. This means disabling all the tabs other than the Snippets tab (because
no snippet is selected at this point). We also set CodeCabinetExt.currentSnippet to false at
this point.

The next step is to populate the SnippetsStore with the snippets for this category. First,
the CodeCabinetExt.populatingSnippetsStore field is set to true. Did you stash that in your
memory as I suggested earlier? Good! Now we can see why this is necessary: the add and remove
events of the SnippetsStore should not execute while the store is being populated, and that’s
where this variable comes in. When set to true, those two handlers do nothing. Once they are
set to true, the removeAll() method can be called on the SnippetsStore to clear it. Next, a call
to the DAO’s retrieveSnippets() method is made, passing it the name of the category to get
snippets for (remember that the ID of the TreeNode clicked is in fact the name of the category).

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT 293

Once that method returns, we iterate over the array of SnippetRecords. We add each to
the SnippetsStore, ensuring that we give it the appropriate ID as well. At the end of this loop
we set CodeCabinetExt.populatingSnippetsStore to false so that the events on that Store can
once again fire.

%3 Code Cabinet Ext - Mozilla Firefox

File Edit View History Bookmarks Tools Help
o b - | —
£ | Code Cabinet Ext Ix] -8
P Add Category % Delele Cstegory ©= Add Snippet (D) Delete Snippet
Categories <«| | Details R
;|-Sllippels " 5af
Snippet Name Description
Reflection-based toString() This is an implementation of toString
=] JavaSeript
v
i | bedsave |
Search For Snippets 4| | Search Results
Keywords:
Code:
e Search results will appear here
(select a category to do a search)
Description:
Author:
Notes:
| ke search 1 Dceear J
[5%] 1Images:0/0 Loaded: 16 KB Speed: 13.82 KB/s Time:1159 () @ @@ - er7mB/6amB || 75MB/75MB & JB vSlow Lo1s

Figure 5-14. With a category selected, the snippets within it can now be seen.

The last thing to do is to switch to the snippets Grid on the Snippets tab by setting the
active item of the TabPanel to 0 to ensure we’re on the right tab, and then setting the active
item of the CardLayout within that tab to 1 to show the Grid.

Note | encountered an issue where the Grid wouldn’t show up all the time. My solution was to call the
show() method on the Snippets tab, which shouldn’t be necessary, but seemed to do the trick in this case.
It's good to know you can impose your will a bit and make Ext JS show something it has decided it wouldn’t!

Details.js

The Details. js file is where we’ll find the largest chunk of code in this application, and none
of it is rocket science by any stretch of the imagination! This file contains all the code pertain-
ing to the snippet detail tabbed section. I'll break this up into some smaller chunks, beginning
with the configuration object for the first tab, the Snippets tab:

294 CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

CodeCabinetExt.UIObjects.Details = function() { return ({
buttons : [
{ xtype : "button", text : "Save",
icon : "img/icon_save.gif", cls : "x-btn-text-icon",
handler : CodeCabinetExt.UIEventHandlers.SaveClick
}
1,
id : "Details", activeTab : 0, items : [
{ title : "Snippets", id : "tabSnippets", layout : "card",
activeltem : 0, items : [
{ id : "SnippetsMessage", border : false,
bodyStyle : "text-align:center;padding-top:75px;",
html : "Select a category to view the snippets in it" },
{ id : "SnippetsGrid", xtype : "grid", border : false,
autoExpandColumn : "colDescription", stripeRows : true,
sm : new Ext.grid.RowSelectionModel({ singleSelect : true }),
listeners: {
rowclick : {
fn : function(inGrid, inRowIndex, inEventObject) {
CodeCabinetExt.UIEventHandlers.RowClick(
inGrid.getSelectionModel().getSelected()
)5
}
}
})
store : CodeCabinetExt.Data.SnippetsStore, columns : [
{ header : "Snippet Name", sortable : true,
dataIndex : "name", width : 200 },
{ header : "Description", sortable : true,
datalndex : "description", id : "colDescription" }
]
}
]
})

A single button is placed at the bottom for saving. This button remains visible on each of
the tabs; that way, users can save their changes at any time from any tab. The handler for this
button is called on the CodeCabinetExt.UIEventHandlers.SaveClick() method, which we will
get to shortly as well.

This is where the snippets in the selected category are displayed in a Grid, or where the
message telling the user to select a category is. This tab therefore contains a CardLayout within
it, as you can see. The first card is the one containing the message. The value for the bodyStyle
attribute uses some plain CSS to center the text horizontally and to push it down 75 pixels
from the top.

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

The second card is where the Grid is, so it’s a GridPanel (xtype:grid). This Grid is bound
to the CodeCabinetExt.Data.SnippetsStore, which we know is populated when a node in the
Tree is clicked. Row striping is turned on for visual appeal, and the Description column is set
to auto-expand to fill up the space in the Grid. We define a RowSelectionModel so that only a
single row can be selected at a time. Finally, a rowclick event handler is attached. This handler
gets the selected row via the SelectionModel. It passes this row to the CodeCabinetExt.
UIEventHandlers.RowClick() function, which we’ll look at a bit later.

The code for the Info tab definition is next:

{ disabled : true, title : "Info", layout : "fit", id : "tabInfo",
bodyStyle : "padding:4px", items : [
{ xtype : "form", id : "InfoForm", labelWidth : 100,
border : false, items : [
{ xtype : "textfield", fieldlLabel : "Name",
id : "info_name", name : "name", width : 200 },
{ xtype : "textfield", fieldlLabel : "Description”,
id : "info_description”, name : "description”, width : 200 },
{ xtype : "textfield", fieldlLabel : "Author",
id : "info_author", name : "author", width : 200 },
{ xtype : "textfield", fieldlLabel : "eMail",
id : "info_email"”, name : "email", width : 200 },
{ xtype : "textfield", fieldlLabel : "Web Link",
id : "info_weblink", name : "weblink", width : 200 }
]
}
]
b

This is just a plain-old FormPanel with a batch of TextFields. The layout of the tab itself is
set to it so that the content stretches to fill it (which you can’t really tell with this particular tab
anyway). This is in fact the case for all the rest of the tabs. Each field is given a unique id as well.

Note During technical review, it was discovered that adding and updating snippets had, shall we say,
issues? The solution that | came up with was to assign each form field a unique ID and then not use the
typical setValues() and getValues() method on the BasicForm they are a part of. After some research,
| found that it seems to be a known bug in Ext JS that is being corrected in a future release. This was the
simplest workaround | could find, but that’s why there’s still a name attribute as well: while it's not necessary
now, it was there for using setValues() and getValues().

295

296 CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

The next bit of code defines the Code tab:

{ disabled : true, title : "Code", layout : "fit", id : "tabCode",
bodyStyle : "padding:4px", items : [
{ xtype : "form", id : "CodeForm", layout : "fit",
items : [
{ xtype : "htmleditor", name : "code", hidelabel : true,
id : "code_code" }
]
}
]
})

In Figure 5-15 you can see this tab for yourself.

¥ Code Cabinet Ext - Mozilla Firefox

File Edit View History Bookmarks Tools Help £
jj [Code Cabinet Ext %] =
-';_:ZlAdd Category 3, Delete Category | = Add Snippet oDelete Snippet
Categories «| | Details &)
33 Code Snippets Enippg_;_ I[code || Nows | Ke_vwords |
| Tahoma | @ == B
*¥ ~
= * Overiden toString method.
=] JavaScript * 3
* @return A reflexively-buitt string representation of this bean. 1
-
public String toString() { i |
v
String str = nul;
StringBuffer sb = new StringBuffer(1000);
sb.append("[").append(super.toString()).append("1={");
boolean firstPropertyDisplayed = false;
try { ~
; \ J
Search For Snippets <« | | Search Results
Keywords:
Code:
Marmia: Search results will appear here
: (select a category to do a search)
Description:
Author;
HNotes:
| kellssaren | | Eciear |
[%&] 1mages:0/0 Loaded: 0KB Speed: 0 KB/s Time:0.011 (Y [@ - 61.7MB/64MB || 75MB/75MB @ 1frror [vSlow 1

Figure 5-15. The Code tab

The interesting thing here is that instead of just a plain-old TextArea, which is what you
would probably at first think is the appropriate widget here, I've used the HtmlEditor widget.
This is a rich-text editor that allows users to format their text in a variety of ways, including
colors, bold, and italics. I felt this was a good choice because as a developer it can be helpful to
highlight parts of the code, or color-code things, and so on.

The hidelabel attribute is set to true on this widget. As its name implies, this attribute
is used to hide the label that would otherwise be present on all form fields. Without this you
would have seen whitespace to the left of the HtmlEditor, plus a colon, because the fieldLabel

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

attribute by default is empty. So Ext JS displays it and then appends the colon. All of that is just
ugly and entirely unnecessary given the existence of the hidelLabel attribute!
The Notes tab is nearly identical to the Code tab, but just to prove it, here’s the code:

{ disabled : true, title : "Notes", layout : "fit", id : "tabNotes",
bodyStyle : "padding:4px", items : [
{ xtype : "form", id : "NotesForm", layout : "fit",
items : [
{ xtype : "htmleditor", name : "notes", hidelabel : true,
id : "notes note" }
]
}
]
})

And, as if that wasn’t enough, Figure 5-16 shows you what it looks like, which is to say, just
like the Code tab!

¥ Code Cabinet Ext - Mozilla Firefox

File Edit View History Bookmarks Tools Help
(@ |\() code cabinet xt x| E
-{:ZlAdd Category gﬂebe'le Category | = Add Snippet aDelete Snippet
Categories &
=3 Code Snippsts i ade_ll-ﬂota K?vwoas“
Sliava | R | Sabnshade
[Visual Basic [Tahoma B o AL AP IE==@ == B
'.EIPHP Just add it to a class and off you go!
o
=] JavaScript
8
; | J
Search For Snippets <« | | Search Results
Keywords:
Code:
Namia: Search results will appear here
(select a category to do a search)
Description:
Author;
Hotes:
Isesrch || @ cear J
[5a] 1mages: 21/21 Loaded: 2 KB Speed:46.51kB/s Time:0.043 () [@ 61.7MB/64MB [} 749MB/75MB @ 1error B YSlow

Figure 5-16. The Notes tab (which could just as easily be the Code tab)

The final tab to be defined is the Keywords tab, and it is very similar to the Info tab:

{ disabled : true, title : "Keywords", layout : "fit",
id : "tabKeywords", items : [
{ xtype : "form", id : "KeywordsForm", labelWidth : 100,
border : false, bodyStyle : "padding:4px", items : [

297

298 CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

{ xtype : "textfield", name : "keyword1", id : "keywords_keyword1",
fieldlLabel : "Keyword 1", width : 200 },

{ xtype : "textfield", name : "keyword2", id : "keywords keyword2",
fieldlLabel : "Keyword 2", width : 200 },

{ xtype : "textfield", name : "keyword3", id : "keywords keyword3",
fieldlLabel : "Keyword 3", width : 200 },

{ xtype : "textfield", name : "keyword4", id : "keywords keyword4",
fieldlLabel : "Keyword 4", width : 200 },

{ xtype : "textfield", name : "keywords", id : "keywords keywords",
fieldLabel : "Keyword 5", width : 200 }

IDHBS

Once again we have just a simple form with five TextFields on it, one for each keyword.
I felt five keywords would likely be sufficient in most cases, but feel free to disagree and modify
the application to allow for more if desired. Figure 5-17 shows what this tab looks like.

¥ Code Cabinet Ext - Mozilla Firefox

File Edit View History Bookmarks Tools Help
EJ (] Code Cabinet Ext I B
P Add Category % Delete Category | = Add Snippet €3 Delete Snippet
Eotegunes «| | Details 2|
5439 Code Snippets || snippets | mmfo | Code MrNutEs | Keywords |
=Java —_— e L
[=] visual Basic Keyword 1: class
Sl Keyword 2: tostring |
Elce
=] JavaScript Keyword 3: debug ‘
Keyword 4: java ‘
Keyword 5: utility
| |
|
|
1 | |
Search For Snippets «| Search Results
Keywords:
Code:
Hame: Search results will appear here
(select a category to do a search)
Description:
Author:
Hotes:
IHsearcn | | Dciear J
[S8 Images: 21/21 Loaded: 2 KB Speed:46.51KBfs Tme:0.0a3 (HIE [| @ - 617mMB/eamB [745MB/75MB @ 1E

Figure 5-17. The Keywords tab

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

Now that we have the UI defined, we can go ahead and look those event handler functions
we saw being called, starting with the SaveClick() method:

CodeCabinetExt.UIEventHandlers.SaveClick = function() {

CodeCabinetExt.currentSnippet.beginEdit();
CodeCabinetExt.currentSnippet.set("name", Ext.getCmp("info name").getValue());
CodeCabinetExt.currentSnippet.set("description”,
Ext.getCmp("info_description").getValue());
CodeCabinetExt.currentSnippet.set("author",
Ext.getCmp("info_author").getValue());
CodeCabinetExt.currentSnippet.set("email",
Ext.getCmp("info_email").getValue());
CodeCabinetExt.currentSnippet.set("weblink",
Ext.getCmp("info weblink").getValue());
CodeCabinetExt.currentSnippet.set("code", Ext.getCmp("code code").getValue());
CodeCabinetExt.currentSnippet.set("notes",
Ext.getCmp("notes _note").getValue());
CodeCabinetExt.currentSnippet.set("keyword1",
Ext.getCmp("keywords keyword1").getValue());
CodeCabinetExt.currentSnippet.set("keyword2",
Ext.getCmp("keywords keyword2").getValue());
CodeCabinetExt.currentSnippet.set("keyword3",
Ext.getCmp("keywords keyword3").getValue());
CodeCabinetExt.currentSnippet.set("keywords",
Ext.getCmp("keywords keyword4").getValue());
CodeCabinetExt.currentSnippet.set("keywords",
Ext.getCmp("keywords keywords").getValue());
CodeCabinetExt.currentSnippet.endEdit();

};

Since we’ll be updating multiple fields on the SnippetRecord we need to call beginEdit()
on the currentSnippet. That way, we conveniently have a reference to it and can update each
of the fields. The values are retrieved from the individual fields (see the note a few pages back
about why I didn’t use getValues() here). Finally, endEdit() is called on the SnippetRecord,
triggering a call to DAO.updateSnippet(), and we're done. Saving couldn’t be easier!

The last bit of code to look at is the RowClick() method. It’s fairly long in comparison to
most of the others in this application but isn’t any tougher to follow:

CodeCabinetExt.UIEventHandlers.RowClick = function(inRecord,
inFromSearchResults) {

if (inFromSearchResults) {
var tree = Ext.getCmp("Tree");
var node = tree.getNodeById(inRecord.get("categoryname"));
node.select();
tree.fireEvent("click", node, null);

}

299

300 CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

CodeCabinetExt.currentSnippet = inRecord;
Ext.getCmp("DeleteSnippet").setDisabled(false);

Ext.getCmp("tabInfo").setDisabled(false);
Ext.getCmp("tabCode").setDisabled(false);
Ext.getCmp("tabNotes").setDisabled(false);
Ext.getCmp("tabKeywords").setDisabled(false);

Ext.getCmp("keywords keyword1").setValue(inRecord.get("keywordi"));
Ext.getCmp("keywords keyword2").setValue(inRecord.get("keyword2"));
Ext.getCmp("keywords keyword3").setValue(inRecord.get("keyword3"));
Ext.getCmp("keywords keyword4").setValue(inRecord.get("keyword4"));
Ext.getCmp("keywords keywords").setValue(inRecord.get("keywords"));

Ext.getCmp("notes note").setValue(inRecord.get("notes"));
Ext.getCmp("code code").setValue(inRecord.get("code"));

Ext.getCmp("info name").setValue(inRecord.get("name"));
Ext.getCmp("info description").setValue(inRecord.get("description"));
Ext.getCmp("info_author").setValue(inRecord.get("author"));
Ext.getCmp("info_email").setValue(inRecord.get("email"));
Ext.getCmp("info weblink").setValue(inRecord.get("weblink"));

Ext.getCmp("Details").getlayout().setActiveItem(1);
Ext.getCmp("tabInfo").show();

};

This method is called from two different places: clicking a snippet in the snippets Grid, or
clicking a snippet from the search results Grid (which we’ll be looking at next). That’s the rea-
son for the first little if statement: the inFromSearchResults argument will only be true when
this is called from the search results Grid. In that situation, since we aren’t sure the category
of the selected snippet is selected, we need to ensure it is. To do so we're going to simulate the
user clicking on the appropriate Tree node. So naturally, the first step is to find the node in the
Tree by getting a reference to the Tree and then using its getNodeById() method. Once we have
the TreeNode, we call its select () method. Once that’s done we can simulate the click by call-
ing the fireEvent() method on the Tree, passing it the name of the event to fire, click in this
case, as well as a reference to the node itself. This then causes all the Ul setup and such that
we previously saw.

After that, or if we're dealing with a click of a row in the snippets Grid and not the search
results Grid, then we need to record the SnippetRecord as current by setting CodeCabinetExt.
currentSnippet to point to it. The appropriate Toolbar items are then enabled.

Next, we have to populate all four of the detail tabs. So, for each, we get a reference to the
fields on them using our dear friend Mr. Ext.getCmp(), and then the setValues() of the indi-
vidual fields to set the value retrieved from the SnippetRecord.

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

Once all four of the tabs have been populated, a call is made to flip to the Info tab, and
then we call the show() method on the tab. This again shouldn’t be necessary, but without it
the details didn’t always appear.

SearchForm.js

The final two source files relate to the search capability. The first file, SearchForm. js, imple-
ments the form where you enter search criteria, beginning with the UI definition:

CodeCabinetExt.UIObjects.SearchForm = function () { return ({
id : "SearchForm", labelWidth : 100, border : false,
bodyStyle : "padding:4px", items : [

{ xtype : "textfield", fieldlLabel : "Keywords",
name : "keywords" },
{ xtype : "textfield", fieldlLabel : "Code",
name : "code" },
{ xtype : "textfield", fieldLabel : "Name",
name : "name" },
{ xtype : "textfield", fieldlLabel : "Description”,
name : "description" },
{ xtype : "textfield", fieldlLabel : "Author",
name : "author" },
{ xtype : "textfield", fieldlLabel : "Notes",
name : "notes" }
], buttons : [
{ xtype : "button", text : "Search",
icon : "img/icon_save.gif", cls : "x-btn-text-icon",
handler : CodeCabinetExt.UIEventHandlers.SearchClick },
{ xtype : "button", text : "Clear",
icon : "img/icon_snippet delete.gif", cls : "x-btn-text-icon",
handler : CodeCabinetExt.UIEventHandlers.ClearClick }

IDHBS

The definition of the form is straightforward; there are no new fields to explain! One thing
that is new, however, is that these buttons are jazzed up a little by placing icons on them. We
do this using the icon and cls attributes. The icon attribute points to an image that we want to
put on the Button, and the cls attribute is what makes that button show up. The x-btn-text-
icon value is a style class supplied by Ext JS’s base style sheet that makes the Button show the
image along with a text label next to it.

The next method, SearchClick(), is by far the meatiest piece from the search feature. This
method implements the logic behind the search itself. Because it’s fairly lengthy, I'll break it
down into small, more easily digestible chunks, starting with this one:

301

302 CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

CodeCabinetExt.UIEventHandlers.SearchClick = function() {

var searchVals = Ext.getCmp("SearchForm").getForm().getValues();
searchVals.keywords = Ext.util.Format.trim(
Ext.util.Format.lowercase(searchVals.keywords));
searchVals.code = Ext.util.Format.trim(
Ext.util.Format.lowercase(searchVals.code));
searchVals.name = Ext.util.Format.trim(
Ext.util.Format.lowercase(searchVals.name));
searchVals.author = Ext.util.Format.trim(
Ext.util.Format.lowercase(searchVals.author));
searchVals.description = Ext.util.Format.trim(
Ext.util.Format.lowercase(searchVals.description));
searchVals.notes = Ext.util.Format.trim(
Ext.util.Format.lowercase(searchVals.notes));

Here we’re getting the values of each of the search criteria TextFields. This is done by get-
ting a reference to the form via Ext.getCmp("SearchForm").getForm(), a construct we've seen
numerous times, and then calling its getValues() method. The values are trimmed and con-
verted to lowercase using the Ext.util.Format class and its trim() and lowercase() methods,
respectively, so all our searches will be case-insensitive and there’s no chance of not find-
ing matches due to wayward whitespace around values. (This assumes that the fields of the
SnippetRecords objects in which we try to find matches are similarly trimmed and lowercased,
but that assumption is correct, as you'll see shortly.)

Once we have the values we can begin our work. Let’s start with some validation to ensure
only valid searches are attempted:

if (searchVals.keywords == "" 8&& searchVals.code == "" 8&
searchVals.name == "" && searchVals.author == "" &&
searchVals.description == "" 8&& searchVals.notes == "") {

Ext.MessageBox.show({
title : "Unable to perform search", buttons : Ext.MessageBox.OK,
animel : "divSource",
msg : "I'm sorry but you must enter at least one search criterion " +
"in order to perform a search."

};

return;

}

The validation amounts to nothing more than assuring at least one of the search criteria
has been entered. If not, we use our friend the Ext.MessageBox.show() method to show a fan-
cier, Ext JS-based alert() pop-up.

Here’s the next bit of code we encounter:

CodeCabinetExt.Data.SearchResultsStore.removeAll();
var snippets = CodeCabinetExt.Data.DAO.retrieveSnippets();

To find matches we need the snippets to search through, so a quick call to the DAO’s
retrieveSnippets() method does the trick. Note that no category name is passed to this

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

method, so that argument is effectively null, which you’ll recall from looking at the DAO code
means all snippets in the database will be returned.
With those snippets in hand, we can go ahead and start trying to find matches:

var matchesFound = false;
for (var i = 0; i < snippets.length; i++) {

We then begin to iterate over the array of SnippetRecord objects returned from
DAO.retrieveSnippets(). We have a variable matchesFound set to false initially. This will be set
to true when we find that we have one or more matches. So, the next step is to process all the
fields in the next SnippetRecord and do the same sort of trimming and case conversion that we
did with the search criteria to ensure that we’ll get matches, if there legitimately are any:

var snippetKeywordl = Ext.util.Format. trim(
Ext.util.Format.lowercase(snippets[i].get("keywordi")));
var snippetKeyword2 = Ext.util.Format. trlm(
Ext.util.Format.lowercase(snippets[i].get("keyword2")));
var snippetKeyword3 = Ext.util.Format. trlm(
Ext.util.Format.lowercase(snippets[i].get("keyword3")));
var snippetKeyword4 = Ext.util.Format. trlm(
Ext.util.Format.lowercase(snippets[i].get("keywords")));
var snippetKeyword5 = Ext.util.Format. trlm(
Ext.util.Format.lowercase(snippets[i].get("keywords")));
var snippetCode = Ext.util.Format. trlm(
Ext.util.Format.lowercase(snippets[i].get("code")));
var snippetName = Ext.util.Format. trlm(
Ext.util.Format.lowercase(snippets[i].get("name")));
var snippetAuthor = Ext.util.Format. trlm(
Ext.util.Format.lowercase(snippets[i].get("author")));
var snippetDescription = Ext.util. Format trim(
Ext.util.Format.lowercase(snippets[i].get("description")));
var snippetNotes = Ext.util.Format. trlm(
Ext.util.Format.lowercase(snippets[i].get("notes")));

With the fields of the next SnippetRecord to check suitably converted to lowercase and
trimmed, we can begin looking for matches. Because we can enter multiple search criteria,
that means we need to look for matches with whatever combination of criteria were entered.
If the user enters a value in the Name field and enters a value in the Keywords field, it means
we're looking for all snippets that have the name value in its Name field as well as the keywords
specified. To do that, we have a variable named matched:

var matched = "";
if (searchvals.name != "") {
if (snippetName.indexOf(searchVals.name) != -1) {
matched += "T";
} else {
matched += "F";
}

}

303

304

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

We'll then check each possible criterion in turn. Anytime a search criterion is in play, and
anytime a match is found based on those criteria, we’ll add a T to matched. If a given criterion
is in play but there is no match, we’ll add an F. That way, when we get to the end, if we have no
Fs in the matched string, that means the snippet is a match on all criteria requested. Not only
is this a simple approach, but it also enables us to extend the search facility by adding new
criteria, without having to redesign the underlying matching mechanism.

You can see the first criterion being checked: the name. If searchVals.name, which is
the value the user entered, is not a blank string, that criterion is in play. So, we do a simple
index0f () search to see whether the entered value appears anywhere in the name field of the
SnippetRecord. If it does, we consider that a match; otherwise, it’s not a match.

The code, author, description, and notes search criteria are all essentially identical to the
name code, so just have a look at them; I won’t bore you by describing them:

if (searchVals.code != "") {
if (snippetCode.indexOf(searchVals.code) != -1) {
matched += "T";

} else {
matched += "F";
}
}
if (searchvals.author != "") {
if (snippetAuthor.indexOf(searchvals.author) != -1) {
matched += "T";
} else {
matched += "F";
}
}
if (searchVals.description != "") {
if (snippetDescription.indexOf(searchVals.description) != -1) {
matched += "T";
} else {
matched += "F";
}
}
if (searchvals.notes != "") {
if (snippetNotes.indexOf(searchVals.notes) != -1) {
matched += "T";
} else {
matched += "F";
}

}

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

Now, the keywords are just slightly different:

if (searchVals.keywords != "") {
var a = searchVals.keywords.split(",");
var foundAny = false;
for (var j = 0; j < a.length; j++) {
var nextKeyword = Ext.util.Format.trim(a[j]);
if (nextKeyword != "") {
if (snippetKeywordl == nextKeyword ||
snippetKeyword2 == nextKeyword || snippetKeyword3 == nextKeyword ||
snippetKeyword4 == nextKeyword || snippetKeywords == nextKeyword) {
foundAny = true;
}
}
}
if (foundAny) {
matched += "T";
} else {
matched += "F";
}
}

Here we split() the keywords the user entered. We then iterate over the resultant array.
The next token from the string is trimmed, and as long as it’s not blank, we see whether that
value appears anywhere in the keyword fields of the SnippetRecord. If so, we again have a
match on this search criterion.

Finally, all the search criteria that are in play having been checked, we now see whether
there are any Fs in the matched string. If there aren’t, we have ourselves a match!

if (matched.indexOf("F") == -1) {
matchesFound = true;
CodeCabinetExt.Data.SearchResultsStore.add(snippets[i]);
}

The SnippetRecord is added to the SearchResultsStore, which is bound to the Grid in the
search results area. Only one task remains at this point:

if (matchesFound) {
Ext.getCmp("SearchResults").getlayout().setActiveItem(2);
} else {
Ext.getCmp("SearchResults").getlayout().setActiveItem(1);
}

};

305

306

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

If there were any matches at all found, then the third card in the CardLayout in the search
results area needs to be shown, which contains the Grid; otherwise, the second card is shown,
the one that informs the user that no matches were found.

One last method can be found in this source file, and it’s a simple one:

CodeCabinetExt.UIEventHandlers.ClearClick = function() {

Ext.getCmp("SearchForm").getForm().reset();

};

I think it’s obvious to you that this one is called when the clear button is clicked. A simple
reset() call on the search form is all it takes.

SearchResults.js

We saw how the search form is put together, so now it would probably be a good idea to see
how the results are put together. Before that, though, it’s been a while since our last screen-
shot, so take a gander at Figure 5-18, where you can see the search form and some results that
have been pulled up based on my search criteria.

%3 Code Cabinet Ext - Mozilla Firefox

File Edit View History Bookmarks Tools Help
L@ | (] Code Cabinet Ext H|
[Add Category % Delele Cstegory ©~ Add Snippet (D) Delete Snippet
Categories <«| | Details R
543 Code Snippets Enlp_pets_.j Info || Code || Notes | vaords
=iava F = = 2
=] visual Basic [Tshoma e oA SlA P B & == E
Sewe T
Elc+ * Overriden toString method.
=] JavaSeript x
* @return A reflexively-built string representation of this bean.
*
public String tostring() { 1
it String str = nul;
StringBuffer sb = new StringBuffer(1000);
sh.append("[").append(super.tostrina(}).append("1={"Y;
boolean firstPropertyDisplayed = false;
try { .
; | kedsave |
Search For Snippets 4| | Search Results
Keywords: Snippet Name: Description
Code: i string Reflection-based toString() This is an implementatic
Name:
Description:
Author: frank
Notes:
| ke search Il Dceear |
[5% Images:21/21 Loaded: 2 KB Speed: 46.51 KB/s Tme:0.043 () @ @ 6L7MB/64MB [749MB/75MB @ 1trror BB YSlow

Figure 5-18. A search, having been executed, has returned results (just one, but it still counts!).

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

The code behind the results section is this:

CodeCabinetExt.UIObjects.SearchResults = function() { return ({
id : "SearchResults", layout : "card", activeltem : 0,
deferredRender : false, items : [
{ border : false, bodyStyle : "text-align:center;padding-top:50px;",
html : "Search results will appear here
" +
"(select a category to do a search)" },
{ border : false, bodyStyle : "text-align:center;padding-top:50px;",
html : "No snippets were found matching your search criteria" },
{ border : false, store : CodeCabinetExt.Data.SearchResultsStore,
xtype : "grid", autoExpandColumn : "colDescription",
stripeRows : true,
sm : new Ext.grid.RowSelectionModel({ singleSelect : true }),
columns : [
{ header : "Snippet Name", sortable : true, width : 200,
datalndex : "name" },
{ header : "Description”, sortable : true,
id : "colDescription”, datalndex : "description” }
]J
listeners: {
rowclick : {
fn : function(inGrid, inRowIndex, inEventObject) {
CodeCabinetExt.UIEventHandlers.RowClick(
inGrid.getSelectionModel().getSelected(), true

)s

}
}
}
]
DB

So, we’ve got ourselves another CardLayout, similar to the Snippets tab in the Details sec-
tion, because there is a message when there are no search results, and also a message when no
matches are found, and finally a Grid for displaying the matches.

The first two cards are the messages, and they are just like what you saw on the Snippets
tab. The third card is the Grid, and it isn’t much different either from the snippets Grid on the
Snippets tab. It even uses the save RowClick handler, which we explored earlier.

In fact, this whole chunk of code, taken as a whole, is kind of like the episode “Mirror,
Mirror” of Star Trek: The Original Series. You know, the one when Kirk gets accidentally sent
to a mirror version of the universe, except everyone is evil? There’s evil Spock, evil Sulu, and
so forth. Now, I'm not sure which bit of code is the evil twin, but the point is they are mirror
images of one another, with just some minor differences. And yes, I am officially the master
of stretched analogies here!

And with that one last pop-culture reference we’ve officially completed our exploration of
this project and its code!

307

308

CHAPTER 5 A PLACE FOR YOUR STUFF: CODE CABINET EXT

Suggested Exercises

I think the code cabinet as it is presented in this chapter is pretty useful, but as usual I've left
some things out. Here are just a few suggestions, all of which would make it a more useful
application, not to mention giving you a lot of good experience working with Ext JS:

Allow for subcategories. Say I want to have a Java category, and below that I want to
have a category for string-related snippets, one for math-related snippets, and one for
Ul-related snippets. As it stands today, I'd have to create three separate Java categories,
all at the same level in the tree hierarchy. Allowing for subcategories would make the
organizational capabilities of the application that much more robust.

How about adding a field to the Info tab for the date the snippet was added? For bonus
points, use the DatePicker widget, and for even more bonus points, add it to the search
function.

This one’s a little bigger but would really make the application nice: history capabili-
ties. In other words, every time you make a change to a snippet, record the state of the
snippet before the change. Whether you simply duplicate the entire snippet record or
try to do a fancy-pants diff mechanism is up to you. Add a tab that lists all the history
records and allow one to be clicked so you can see the state of the snippet at that point.
This would give this application a source control system type of feel to it.

Add a Copy button below the code editor that when clicked copies the code to the
clipboard maintained by the operating system (there is JavaScript code to do this; just
Google for it). This is just a minor enhancement but could be a fairly significant conve-
nience for the user. (To be honest, I thought of this only after this chapter was nearly all
wrapped up. I feel a little silly for not thinking of it earlier, but hey, it gives me a chance
to offer another suggested exercise to you, my dear reader!)

Here’s a fun one: remember how the Windows “shrink into view” from the top? How
about adding a different source <div> for each Window in the application, each with its
own style selector so that one “shrinks in” from the top, one from the left, one from the
right, and one from the bottom. The selector you’d need for the bottom and right are
tricky because you only know some of their positional values at runtime, you’d have

to calculate them on the fly, and you’d also have to recalculate them if the Window is
resized. The results would look pretty cool, though!

I suspect those suggestions will keep you busy for a while. They will not only make the
application more useful but will definitely sharpen your skills in the process, so a definite win-
win situation! What are you doing still reading? Get to work!

Summary

In this chapter, we developed an application for coding code snippets. We used a few new
widgets and features in the process, got some further experience with the Ext.data package,
and even played with Gears a bit more. We saw a whole new way to architect our applications,
one that is probably the best and cleanest that we’ve seen so far. In the process, we created an
application that we can use for a real purpose!

In the next chapter we’ll introduce a server-side component in the form of JSON-P Web
Services, and we’ll see how Ext JS allows us to do that with incredible ease.

CHAPTER 6

When the Yellow Pages
Just Isn’t Cool Enough:
Local Business Search

Sit right back and you'll hear a tale, a tale of a big yellow book...I know, it doesn’t quite fit
the melody of the Gilligan’s Island theme, but work with me here!

You kids today (hey, get off my lawn!) with your Internets and your iPhones' and your
Tellmes,? you don’t know what it was like! Back in the day, if you wanted to find a business
in your hometown, you either asked a neighbor or pulled out this huge yellow book called,
very creatively, the Yellow Pages. In this book, you could flip through an alphabetically sorted
listing of all sorts of businesses in your vicinity. It was a manual process: you actually had to
turn pages! You couldn’t just type something into a computer and have it spit out a list of busi-
nesses; you had to burn some calories and expend some mental effort.

Ah, but I like progress as much as the next guy, so now I get to play the part of the old
curmudgeon and tell these stories about how we used to walk to school in the snow, uphill,
both ways, and use the Yellow Pages. I also get to write books and show how the world is much
better now that we can write an application to save us from all that work, which is something
I strive to avoid every chance I get!

That’s precisely what this chapter is all about: we’ll be writing an application that enables
us to search for local businesses. We'll be able to see a map of where the business is located,
along with some details about it. We’ll also have the ability to store a business as one of our
favorites so that, if you can believe it, we’ll be able to expend even less energy next time to find
it again! Ext JS will make all of this a piece of cake, of course, and we’ll have a pretty useful little
application by the time we’re finished.

1 During the 2000 United States presidential campaign, George W. Bush uttered the term “Internets.”
Clearly, the Internet should never be pluralized like that; it was a typical Bushism, as it’s known,
which is why people now use this phrase in a humorous context (and sometimes in an insulting way,
depending on how it’s used).

2 Tellme (www.tellme.com) is a voice-activated service that enables you to call a 1-800 number and get
information such as weather, sports scores, business listings, and more, all just by speaking into the
phone. It’s a very handy service to have at the ready in your cell phone’s contact list.

309

310

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

What’s This Application Do Anyway?

Let’s get the silly terminology out of the way first, shall we? What we’re actually creating here
is called a mashup. A mashup, as these types of web apps have come to be known, is basically
a web site or application that takes content from multiple sources (usually via some sort of
public programmatic interface—a remote AP], in other words), and integrates it all into a new
experience—that is, a new application.

The term mashup might sound a bit silly (it does to me!), but it’s the term that’s been
applied to what is at its core an extremely powerful vision: people provide various services and
data over the Internet via a well-defined programmatic interface, and anyone can come along
and combine them to create applications. In other words, we’re talking about a relatively
simple, open, platform-agnostic service-oriented architecture (SOA).

MORE ON SOA

The idea of SOA has been gaining steam over the past few years. Most notably, the concept of web services
has been evolving rapidly over that time. However, the meaning of that term has been evolving as well. Peo-
ple now often consider things such as the Yahoo! services, which will be used in this application, to be web
services, even though they don’t use the full web services stack (that is, SOAP, WS-Security, and all the other
specifications that can go along with it).

Whatever line of demarcation you choose to use, the bottom line is that you’re developing using a SOA,
which means you have loosely coupled components that expose a remote service interface that, usually, is
platform- and language-agnostic and can therefore be married together in nearly limitless ways.

The benefits of this approach are numerous. The simple fact that you aren’t generally tied to any par-
ticular technology or language is a big one. The ease with which updates can be done, assuming the interface
doesn’t change, is another big one (this is the same reason people love web apps in general). The ability to
use all sorts of automated tools to both create and consume services is another (although this isn’t always
a good thing, if those tools become a crutch that allows you to not understand what you’re doing). Realizing
the goal of building your application on top of established standards is another. Reusing existing assets and
therefore increasing the speed with which solutions can be delivered is another (some would argue this is the
biggest benefit). There are plenty more; these are just some that come to mind immediately.

You've almost certainly heard the term web services before too. Web services are some-
times involved in mashups. However, web services, as most people mean when they use the
term, can be pretty complicated beasts! SOAP; Universal Description, Discovery, and Integra-
tion (UDDI) directories; Web Services Description Language (WSDL) documents—not to
mention a whole host of other specifications—are the types of things you deal with in working
with web services. Although there’s nothing that says that stuff can’t be involved when writing
a mashup, typically they aren’t. There are other techniques available for writing mashups, as
we’ll soon see.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

Today, the term mashup can also refer to a web app that, by and large, runs within your
browser. In fact, for many people, mashup implies a JavaScript-based application that can
run locally with no server interaction (aside from loading it in the first place, which is actu-
ally optional too) and calling on remote servers. The term mashup has generally come to
mean browser-based JavaScript clients aggregating content through public APIs from vari-
ous companies and vendors to form new applications. These APIs are often referred to as
web services, and even though they may not truly be web services in the sense of using the
full technology stack—the whole alphabet soup of terms I threw around in the preceding
paragraph—they still fulfill the same basic goal as those types of web services. They provide
services and function over a network (specifically, the Web), so calling them web services
isn’t too far-fetched anyway.

Many companies are getting into the API business, including companies you've certainly
heard of: Google, Yahoo!, Amazon, and eBay, just to name a few. Google and Yahoo! have led
the charge, and Yahoo!, in particular, originated a neat trick that will be central to the applica-
tion we’ll build in this chapter: the dynamic <script> tag trick, or <script> injection trick (it’s
sometimes referred to both ways). Now with the preliminaries out of the way, let’s go ahead
and spell out what this application is going to do:

* By using a remote service, we will be able to perform a search for businesses given an
address or some components of a location. We'll be able to see a list of search results,
page through large result sets, and select one to view in more detail, including the
address, phone number, web site, and average user ratings.

e We'll also be able to view a map of the location around the business and be able to
zoom in and out of that map.

* We can save a selected business as a favorite so that we can quickly call up its details
later. These favorites will naturally be stored in a local database via Gears.

* The application will need something like a toolbar at the top, but we’ve seen that a
bunch of times before so let’s see if we can use some of the visual effect functions Ext JS
provides to do something a little cooler, roughly emulating the Mac OS doc.

¢ The address used for a search can be saved as the default location to save time later,
and we’ll do this via cookies, just for something different.

Let’s kick things off with Figure 6-1, depicting the application as it’s seen at startup.

Here you can see that I have some favorites already stored, and the search form is cleared,
all ready to receive my search criteria to look up more pizza parlors to feed my face at!

Now let’s have a look at the web services we’ll use to pull this off, and look at how we’re
going to be calling on them.

311

312

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

%3 Local Business Search - Mozilla Firefox A
Lie [dit Wiew Migtory [ookmarks Tooks felp 2
9 iocal Busmess search. x| | =
4 \ J When the Yallow Pages just fen cool sncught
Search Cetas]
Keyward: = *
Sort By: v |
MiTum Ratng: - |
Strest:
22
[l state: -
Zp Code:
Ridhas:
(k) Soee bocation s Dttt
@ Padarmo Pizza
@ Big Daddy's Pizza
@ Mike's Brick Oven Pizza
% & E ZIMBSITME |4 4RTHE[4REHE & R vSew 075 @ 007 .

Figure 6-1. The Local Business Search application as it appears at startup

The <script> Tag Injection Technique and JSON-P

Yahoo! did something very cool a little while ago, and it is this one cool thing that makes the
application in this chapter possible. Before we can explore that, though, we have to discuss
what was going on before the coolness occurred.

For a while now, many companies, Yahoo! among them, have been exposing public APIs
for people to use. For instance, you could perform a Yahoo! search remotely, or you could get
a Yahoo! map from your own application, and so on. These APIs, these “web services,” if you
will, typically used XML as their data transport mechanism. You would post some XML to a
given URL, and you would get an XML response back. It was (and still is) as simple as that.
These types of services don’t require all the web service technologies such as SOAP, UDD],
WSDL, and the like. It’s a simple HTTP POST operation where the result returned by the server
just happens to be XML.

If you wanted to use these APIs from a JavaScript-based client running in a browser,
you quickly ran into a major stumbling block, though. Ajax, using the XMLHttpRequest object,
has what’s known as the same-domain security restriction in place. This means that the
XMLHttpRequest object will not allow a request to a domain other than the domain from
which the document the object is a part of was served. For instance, if you have a page
named pagel.htmlocated at http://www.omnytex.com, you can make requests to any URL at
www . omnytex. com. However, if you try to make a request to something at www. yahoo. com, the
XMLHttpRequest object won’t allow it. This means that the APIs Yahoo! exposed aren’t of much
use to you if you try to access them directly from a browser. Because Ajax is the only way
(apparently!) to make an asynchronous call from a browser that doesn’t result in the full page

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

being reloaded, it seems we’re up a stream of feces without a means of locomotion! Even if
you use a library such as Ext JS, it can’t work around the limitations imposed by the underlying
browser technology, so there’s no relief to be had there.

There are ways around this same-domain restriction. Probably the most common is to
write a server-side component on your own server that acts as a proxy. This enables your code
to make requests via XMLHttpRequest to something like www.omnytex.com/proxy, which makes
arequest to something at www.yahoo.com on behalf of the calling code and returns the results.
This is very cool, but it requires your own server in the mix, which is limiting.

Wouldn’t it be so much more useful if the JavaScript running in the browser could make
the request directly to Yahoo! and not need a server-side component? Yes, indeed it would be!
And as you probably have guessed, there is a clever way to do it. Take a look at the following bit
of plain-old JavaScript:

var scriptTag = document.createElement("script");
scriptTag.setAttribute("src", "www.yahoo.com/someAPI");
scriptTag.setAttribute("type", "text/javascript");

var headTag = document.getElementsByTagName("head").item(0);
headTag.appendChild(scriptTag);

So, what we have here is a new <script> tag being created. We set the src attribute to
point to some API at Yahoo! (which at the end of the day is just a specific URL), and finally
we append that new tag to the <head> of the document. The browser will go off and retrieve
the resource at the specified URL, and then evaluate it, just as it does for any imported
JavaScript file.

To understand this fully, keep in mind that anytime the browser encounters a <script>
tag in the HTML document that it is parsing, it stops, retrieves the code at the URL specified
by the src attribute of the <script> tag, and evaluates it, right then and there, meaning any
global-scope code is executed immediately. Fortunately, if you create a <script> tag and insert
it into the <head> as this code does, the browser does the same thing: it goes off and retrieves
the JavaScript resource and evaluates it.

Now, in and of itself, that isn’t too useful, for our purposes anyway. As I said, the Yahoo!
APIs return XML and XML being evaluated by the browser won’t do much. (Some browsers
may generate a DOM object from the XML, but even still, that on its own isn’t of much use.)
Unlike with the XMLHttpRequest object, you don’t get any events to work with, callback func-
tions that can act on what was returned, and so on.

Now we come to the bit of coolness that Yahoo! came up with that I mentioned before.
Let’s say we have some XML being returned by a Yahoo! service, like so:

<name>Frank</name>

It may not be very interesting, but it’s perfectly valid XML. Now let’s ask the probing ques-
tion: what is the JSON equivalent to that XML? It’s nothing more than this:

{ "name" : "Frank" }
Okay, now suppose that we pass that JSON to a JavaScript function, like so:

someFunction({ "name" : "Frank" });

313

314 CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

What is the parameter passed to someFunction()? As it turns out, it’s an object constructed
from the JSON. (Remember that JSON stands for JavaScript Object Notation: it is literally a
notation format that defines an object.) This means that if someFunction() looks like:

function someFunction(obj) {
alert(obj.name);

}

...the result is an alert () pop-up that reads “Frank”.
Are you starting to see what Yahoo! might have done? If you are thinking that the service
returns something like this:

someFunction({ "name" : "Frank" });

...then give yourself a big round of applause because you just came to the same wonderful
discovery that Yahoo! did a while ago!

What Yahoo! came up with is the idea of returning JSON in place of XML from an API
service call, and wrapping the JSON in a function call. When you call the API function, you tell
it what the callback function is. In other words, you tell the remote service what JavaScript
function on your page you want passed the JSON that is returned. So let’s say you wanted to
interact with some Yahoo! API that returns a person’s name. Your page might look something
like this:

<html>
<head>
<title>Dummy Yahoo API Test</title>
<script>
function makeRequest() {
var scriptTag = document.createElement("script");
scriptTag.setAttribute("src", "www.yahoo.com/someAPI?callback=w
myCallback8output=json");
scriptTag.setAttribute("type", "text/javascript");
var headTag = document.getElementsByTagName("head").item(0);
headTag.appendChild(scriptTag);
}
function myCallback(inJSON) {
alert(inJSON.name);
}
</script>
</head>
<body>
<input type="button" value="Test" onClick="makeRequest();">
</body>
</html>

When you click the button, makeRequest () is called, and it uses that dynamic <script> tag
trick to call the Yahoo! API function. Notice the URL, which specifies the name of the callback
function and also specifies that we want to get back JSON instead of the usual XML. Now,

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

when the response comes back, the browser evaluates what was inserted into the document
via the <script> tag, which would be this:

myCallback({ "name" : "Frank" });

myCallback() is called at that point, with the object resulting from evaluation of the JSON
being passed to it. You can load this page from any domain, and it will work. Hence, we’'ve
done what the XMLHttpRequest object does (in a basic sense, anyway), and we’ve gotten around
the same-domain limitation. Sweet!

Yahoo! was the first to use this hack (that I am aware of), but many others, such as Google,
have begun to follow suit because what this allows is purely client-side mashups and API
utilization. No longer do you need a server-side proxy. You can now make the requests across
domains directly. This is an extremely powerful capability that leads to some cool possibilities,
such as the type of application in this chapter.

Note While this technique is useful because it allows you to make direct requests to any server you want,
it also has the potential for malicious code to be introduced. Remember that what is being returned is script
that winds up executing with the same privileges as any other script on the page. This provides a potential
for scams including stealing cookies, spoofing, phishing, and so on. You therefore want to take care in your
choice of services and organizations. Accessing APIs from Yahoo! or Google, for instance, isn't likely to pres-
ent any security issues, but less-well-known companies may not be quite as safe.

The approach to web services where JSON is returned wrapped in a JavaScript function
call has come to be known as JSON with Padding, or JSON-P. It is also sometimes referred to as
JSON-based web services. Whatever the term, it all means the same thing.

The example we just looked at is nice, and not too complicated code-wise, but as I'm sure
you can guess, Ext JS makes it even easier. Ext JS provides the Ext.data.ScriptTagProxy for this
purpose:

new Ext.data.ScriptTagProxy(
{ url : "http://www.yahoo.com/someAPI" }
).load(
{ output : "json" },
new (Ext.extend(new Function(), Ext.data.DataReader, {
readRecords : function(inObject) {
return inObject;

}

MO,
function(inObject) {

alert(inObject);
}
)5

315

316

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

We’ll get into the details of this later, but essentially you create an instance of Ext.data.
ScriptTagProxy and pass its constructor an object that provides the URL of the remote ser-
vice. Then, you call its 1oad() method. The first argument to this method is an object that
contains parameters to pass to the service, in this case the output parameter specifying json.
The second argument is an instance of Ext.data.DataReader; here a custom descendent of it
created right then and there, because a DataProxy, which ScriptTagProxy is a type of, needs a
DataReader to do something with the response from the server. Typically this would be pars-
ing inObject, which is the JSON returned from the server, and generating Record objects and
returning them. Here, however, we just literally return the object resulting from evaluating
the JSON returned by the server. Finally, the third argument is the callback method, which is
passed what the DataReader.readRecords () method returns. Note that Ext JS takes care of the
details of the callback, meaning you don’t explicitly tell the remote service the name of the
callback; it’s generated by Ext JS and passed to the service under the covers. Very clean, very
simple, typical Ext JS!

JSON-P AND ERROR HANDLING—THAT IS, THE LACK THEREOF!

JSON-P is a really handy technique. However, to call it anything other than a trick, even a hack, would mean
we aren’t being quite honest! It's most definitely thinking outside the box, that’s for sure!

As neat a trick as it is, it has one significant flaw: error handling. That is to say, there really is none.
There is no error callback as with a typical Ajax request, no interrogating HTTP status codes, or any of that.
Your script simply doesn’t do something you expected it to do. Oh, you may well see a failed outbound
request in a debug tool such as Firebug, but that’s about it, and that won’t generally help your end users.

I’'m talking here about “hard” errors—in other words, HTTP errors. Anything the remote service can
handle is okay because the service will usually define some sort of error element(s) in the JSON for you to
check for. But for the “hard” failures, it's a whole different ballgame.

There is one way you can get at least some degree of “hard” error handling: use a time-out. In other
words, you fire off a request, and you start a JavaScript time-out, say to fire some function in 5 seconds. In
the callback to the JSON-P request, you cancel the time-out. So, if the request takes longer than 5 seconds to
execute, you take that to mean that the call failed, and the function the time-out fires is essentially your error
handler. (If the response comes back in less than 5 seconds, that function will never fire because the timeout
is canceled first.) This clearly isn’t ideal: who's to say the request didn’t just go long and is taking a little more
than 5 seconds to complete? In fact, you could arguably make matters worse because you might flash an
error message and then a short time later process a completed request that you just told the user had failed!
You could code for this possibility too and avoid it with a system of status flags, but hopefully you see that in
any case, this simply isn’t a robust error-handling mechanism.

Even with Ext JS in the mix, it can’t overcome the underlying limitation of the <script> tag injection
technique that underlies ScriptTagProxy. So, as an FYI, in this application | took the tact that because the
error-handling scheme is pretty poor anyway, | simply went with none at all—no timer tricks, nothing. If a
service call hangs, the application hangs with the Please Wait dialog box showing. Not great by any stretch of
the imagination, but such is the difficulty with the <script> injection technique underlying this all.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

Meet the Yahoo! Web Services

Before you go looking at the web services we’ll use to build this application, you need to get
some paperwork out of the way first.

Most API services require you to register to use their APIs, and Yahoo! is no exception.
Every time you make a Yahoo! service call, you need to pass an appid parameter. The value of
this parameter is a unique identifier assigned to your application. Not passing this value, or
passing an invalid value, will result in the call failing. Before you can play with the application
in this chapter, you will have to register and get your own appid. It’s a painless process that you
can go through by accessing the following page:

http://api.search.yahoo.com/webservices/register application

You should plug your own appid into the LocalBusinessSearch. js file (in the aptly
named appID field) before you spend time with the application, just so you are playing nice
with Yahoo!. I'll use XXX in the following sections when referencing appid to indicate that you
should plug your ID in there.

There are some limitations associated with using the APIs in terms of request volume, but
the upper limit is so high as to not be a realistic concern for your adventures with this applica-
tion. In any case, the limits are based on requests made from a given IP address over a 24-hour
period, so even if you run over the limit just try again tomorrow and you should be good to go.
If you are intent on building a production-level application by using these services, you will
need to consult with Yahoo! for other registration options that allow for high volumes. Again,
for our purposes, the number of requests allowed is more than sufficient.

The Yahoo! Local Search Service

Yahoo! offers some very nice search services that you can play with, and one of them is the
Yahoo! Local search service. It enables you to search for businesses in a given geographic
location. For each search result, the service provides a plethora of information, including the
business location, contact information (phone number, web site, and so forth), and user rating
information.

Using this service requires you to access a given URL, for example:

http://local.yahooapis.com/LocalSearchService/V3/localSearch?appid=XXX&w>
query=pizza8zip=943068results=2

The query parameter enables you to specify a keyword to search for, zip is just a US zip
code to center the search around, and results is the maximum number of results you want to
return. The appid is an ID you get when you register for the services, as discussed in the previ-
ous section. If you go ahead and paste that into the address bar of your web browser, assuming
you replace the XXX appid with a valid ID, you'll see the following response:

<?xml version="1.0"?>w

<ResultSet xmlns:xsi=http://www.w3.0rg/2001/XMLSchema-instancew
xmlns="urn:yahoo:1cl" xsi:schemalocation="urn:yahoo:1lclw
http://api.local.yahoo.com/LocalSearchService/V3/w
LocalSearchResponse.xsd" totalResultsAvailable="459"ws

317

318

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

totalResultsReturned="1" firstResultPosition="1"><ResultSetMapUrl>ws
http://maps.yahoo.com/broadband/?q1=Palo+Alto=
%2C+CA+943068amp; tt=pizza&tp=1</ResultSetMapUrlw
><Result id="28734629"><Title>w

Patxi's Chicago Pizza</Title><Address>w»

441 Emerson St</Address><City>Palo Alto</City>ws
<State>CA</State><Phone>(650) 473-9999</Phone><Latitude>w
37.445242</Latitude><longitude>-122.163427</Longitude><Rating>w
<AverageRating>4.5¢</AverageRating><TotalRatings>w
30</TotalRatings><TotalReviews>21</TotalReviews>w
<LastReviewDate>1203959693</LastRevienDate>w
<LastReviewIntro>I'd give this place 4.5 Stars, butws
since I can't tie goes to the Restaurant. This isws

a good alternative to the legendary Zachary's withws

the benefit that there isn't usually a wait. Inwes

many ways I like this place better than Zachary'sw
since it seems to have figured out a way to dows

Chicago deep dish without the heaviness of thews

oils, It could be the sauce being more of a pureew
instead of chopped tomatoes balances the oils out.ws
While I am mostly a NY Thin Crust kind of guy, thisws

is top notch pizza.</LastReviewIntro></Rating>ws
<Distance>2.67</Distance><Url>w
http://local.yahoo.com/details?id=28734629& ;=
stx=pizza&csz=Palo+Alto+CA&w
ed=5Ft25a160SwgYwogEsXfvFF62jUOrNK1trfxXbRawD4ACILtws
Hub4 iH GpomidnTfCwCqIBK</Url><ClickUrl>ws
http://local.yahoo.com/details?id=28734629& ;=
stx=pizza&csz=Palo+Alto+CA&ed=5Ft25a160w=
SwgYwogEsXfvFF62jUOrNK1tr fxXbRawD4ACILtHUb4 iH s
GpomidnTfCwCqIBK</ClickUrl><MapUrl>ws
http://maps.yahoo.com/maps_result?ws
name=Patxi%27s+Chicago+Pizza&desc=6504739999w
8amp;csz=Palo+Alto+CA&qty=9&cs=9& =
g1d1=28734629</MapUrl><BusinessUrl>w
http://www.patxispizza.com/</BusinessUrl>w
<BusinessClickUrl>http://www.patxispizza.com/=
</BusinessClickUrl><Categories><Category id="96926243">w=
Pizza</Category><Category id="96926236">Restaurantsw=
</Category><Category 1d="96926237">=

American Restaurants</Category>ws

<Category id="96926190">Italian Restaurants</Category>ws
</Categories></Result></ResultSet>

<!-- ws02.search.re2.yahoo.com compressed/?
chunked Fri Jul 25 22:45:33 PDT 2008 -->

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

To turn this into a JSON-P request, we have only to add two parameters to the request:
output, with a value of json, and callback, with a value of the name of the function to call.
So, if we do this:

http://local.yahooapis.com/LocalSearchService/V3/localSearch?appid=XXX&w>
query=pizza8zip=943068results=18output=jsondcallback=myCallback

...the response we get is now this:

myCallback({"ResultSet":{"totalResultsAvailable":"459", =
"totalResultsReturned":"1","firstResultPosition":"1", =
"ResultSetMapUrl":"http:\/\/maps.yahoo.com\/broadband\ /=
?q1=Palo+Alt0%2C+CA+94306&tt=pizzad&tp=1","Result" : =
"id":"28734629","Title":"Patxi's Chicago Pizza",w

"Address":"441 Emerson St","City":"Palo Alto","State":"CA","Phone":w
"(650) 473-9999","Latitude":"37.445242" =

"Longitude":"-122.163427","Rating": {"AverageRating":"4.5" =
"TotalRatings":"30","TotalReviews":"21",w»
"LastReviewDate":"1203959693", "LastReviewIntro" :w

"I'd give this place 4.5 Stars, but since I can'tw

tie goes to the Restaurant. This is a good alternativew
to the legendary Zachary's with the benefit that therew
isn't usually a wait. In many ways I like this placews
better than Zachary's since it seems to have figured outws
a way to do Chicago deep dish without the heaviness ofws
the oils, It could be the sauce being more of a pureew
instead of chopped tomatoes balances the oils out. Whilews
I am mostly a NY Thin Crust kind of guy, this is top notchws
pizza."},"Distance":"2.67","Url":"http:\/\/=
local.yahoo.com\/details?id=287346298stx=pizzalw
csz=Palo+Alto+CA8ed=5Ft25a160SwgYwogEsXfvFF62jUOr=
NK1trfxXbRawD4AC1LtHub4 iH GpomidnTfCwCqIBK" ,ws
"ClickUrl":"http:\/\/local.yahoo.com\/details?=
1d=287346298stx=pizza8csz=Palo+Alto+CA8ed=5Ft25w
a160SwgYwogEsXfvFF62jUOrNK1trfxXbRawD4ACILtHubw

_iH GpomidnTfCwCqIBK","MapUrl":"http:\/\/w
maps.yahoo.com\/maps_result?name=Patxi%27s+w
Chicago+Pizza&desc=65047399998csz=Palo+Alto+=
CABqty=98cs=98gid1=28734629", "BusinessUrl" :ws

non

"http:\/\/www.patxispizza.com\/","BusinessClickUr]l" :w»
"http:\/\/www.patxispizza.com\/","Categories" : =
{"Category":[{"id":"96926243","content":"Pizza"},=

"id":"96926236", "content":"Restaurants"},w
{"1d":"96926237","content" :"American Restaurants"},{"id":"96926190" =

"content":"Italian Restaurants"}]}}}});

It’s not much to look at on the page, I admit, but it’s golden in the code: if we called this
by using the <script> injection trick, myCallback() would get called and passed an object with

319

320

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

a bunch of data fields we can reference. For instance, the Latitude and Longitude fields tell
us where this business is located, Rating tells us the average user rating, and Distance tells
us how far away the business is. The set of data returned by the service is pretty large, and
alot of it won’t be used in this application, but if you cruise on over to http://developer.
yahoo.com/search/local/V3/localSearch.html, you can get all those details, plus a lot more,
about this particular service.

The Yahoo! Map Image Service

Yahoo! is also going to be providing the maps that you can see on the Map pane of the applica-
tion (yes, take a break and go play with the application a bit now!). Yahoo! Maps is a service
that has been around for a while, even before a public JSON-P interface was provided for it.

It enables you to get maps for a given address, as well as access other features, such as traffic
and local places of interest. The API Yahoo! provides a number of different services, but for our
purposes, we'll be focusing on the Map Image service.

The Yahoo! Maps Map Image API enables you to get a reference to a graphic of a map
generated according to the parameters you specify in your request. You may specify latitude
and longitude or address in your request (we’ll be specifying longitude and latitude in the
application itself, but in this discussion it’ll just be an address, more precisely, a component
of an address).

This service is referenced via a simple HTTP request, such as the following:

http://local.yahooapis.com/MapsService/Vi/mapImage?appid=XXX8location=11719

The location parameter specified is just a US zip code, and the appid is once again your
registered application ID. If you go ahead and paste that into the address bar of your web
browser, you'll see the following response:

<?xml version="1.0"?>w

<Result xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >w
http://gws.maps.yahoo.com/mapimage?MAPDATA=n60ehud6wXUJUYM_tJcfOwsQpGoIUAZuPgw=
gORTTce9N8zspONMdiDVuUVXTcOkIcBUZXUo1GqZulnHzcPOkjcpYTF82 DXtJgf4ISRYS8gqVHaw
BiWhmY30qSK9C9PR4 . k. HNxwaJJ02UQqoOexH6& ;mvt=m?cltype=onnetwork& .=
intl=us</Result><!-- ws01l.search.re2.yahoo.com compressed/chunkedws

Fri Jul 25 10:32:36 PDT 2008 -->

What you've gotten back includes a reference to an image now sitting on Yahoo's servers.
If you pluck out the following URL:

http://gws.maps.yahoo.com/mapimage?MAPDATA=n60ehud6wXUJUYM tJcfOwes
sQpG9JUAZuPggQRTTce9N8zspONMdiDVuUVXTcOkIcBUZXUo1GgZulnHzcPOkjcpYTw
F82_DXtJgf4ISRYS8gqVHaBiWhmY30gSK9CIPR4 . k.HNxwaJJ02UQqo0exH6& ;=
mvt=m?cltype=onnetwork&.intl=us

...and put that in the address bar of a web browser, you'll see an image that is a map of the
Bellport/Mastic Beach area of Long Island, New York, as shown in Figure 6-2.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 321

Yaphank
SIEGFIELD PARK 7]

Bellport
Bay

South Bay
Atlantic
Ocean

Figure 6-2. The map resulting from assessing the URL in the example

You can also add some parameters to the original request. For instance, you can specify
that you want a GIF back (by default, you get a PNG file), and you can specify that instead of
XML, you want JSON back. The URL would then look like this:

http://local.yahooapis.com/MapsService/Vi/mapImage?appid=XXX&w
location=11719&image type=gif&output=json&callback=myCallback

Now the response you get is this:

myCallback({"ResultSet":{"Result":"http:\/\/gws.maps.yahoo.com\/mapimage?w=>
MAPDATA=cxsuGud6wXXyiBI69MPrKK. . 1HUkskIsw71ifulcFkwxzQ40jwIp.wHqkuSEws
pCroRhHUtwr TtNO. b4WNTkBNid1D6TAblazXIF8ang5PqbaLlIF5iAmHGbbh8LZtPjnvses
LP8Ndkoiu1gWNWduAGHC8mvt=m?cltype=onnetwork&.intl=us"}});

A few other parameters are used in the application, and these are summarized in
Table 6-1.

322

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

Table 6-1. Some Yahoo! Map Image Service Parameters Used in This Application

Parameter Meaning

latitude The latitude that is the center of the map.

longitude The longitude that is the center of the map.

image width The width of the map image.

image height The height of the map image.

zoom The zoom factor to apply to the map. This is a value in the range 1-12, where 1
f:\[l)erlf)zsents street level and 12 represents regional level (a little wider than state

As with the local search service, I encourage you to examine the Yahoo! Maps APIs
(http://developer.yahoo.com/maps/rest/V1) because they can definitely do more than this
application demonstrates. This is about all we need for the purposes of this chapter, though,
so you're now armed with all the knowledge you need to go forth and dissect this application!

Overall Structure and Files

This project uses the same basic architectural structure as the Code Cabinet project in
Chapter 5. That decision means we’ll see a number of source files for individual UI elements.
Figure 6-3 shows the breakdown of the application’s directory structure.

B =7 C:\ocalbusinesssearch
El@‘ css
W et
=7 img
----- i) AddToFavorites.gif
----- i)) ClearFavorites.gif
----- i) DeleteFavorite, gif
----- i) favorite.gif
----- & icon_save.gif
----- Q icon_search.gif
----- 1)) LocalBusinessSearch, gif
----- i) NewSearch.gif
----- &) Printltem, gif
----- i) SavedFavorites.gif
B
..... i*__._ DAQ.js
----- %) Details. js
----- m_«_ Favorites.js
----- T2 gears_init.js
Header.js
LocalBusinessSearch.js
----- E) Search.js

=% StoresAndRecords.js
| Viewport.js
index.htm
----- [Z] license. txt

Figure 6-3. The application’s directory structure and constituent files

The css directory, as with all the other applications so far, contains the lone styles.css
file in it, and like the Chapter 5 project, it’s pretty minimal. Our old friend the ext directory is
still there obviously. The img directory contains a couple of GIF files which, in no particular

CHAPTER 6

WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 323

order, are as follows: LocalBusinessSearch.gif, which is the logo you see in the upper-right
corner of the application; icon_search.gif and icon_save.gif, which are icons used on the
buttons on the search form; and favorite.gif, which is the heart icon shown next to my saved
favorites. The remaining images are the images for the toolbar icons at the top. In the js direc-
tory is all our JavaScript source code. We have the gears_init. js file that we’d expect given
that this application uses Gears like all the others. The LocalBusinessSearch.js is our “main”
source file. The DAO. js file is our data access object, and StoresAndRecords. js contains the
definitions of all the Records and Data Stores we’ll need. The Details. js file contains the code
pertaining to the detail Accordion pane. The Favorites. js file contains the code for dealing
with the favorites list. The Header . js file contains the UI definition code for the top of the page,
the toolbar and logo, plus the code that makes the icons actually do things when clicked. The
Search. js file, which is where most of the action in this application is, deals with the search
form and results and all the code related to that. Finally, the Viewport. js file contains the Ul
definition for the Ext JS Viewport.
In the root directory we have index.htm, which is where we’ll begin our exploration of the

code.

The Markup

The index.htm file is the customary place to kick off the application, and as in past projects
there’s not a whole lot in it, as you can see for yourself:

<html>
<head>

<title>Local Business Search</title>

<link rel="stylesheet" type="text/css" href="ext/resources/css/ext-all.css">
<script type="text/javascript" src="ext/adapter/ext/ext-base.js"></script>
<script type="text/javascript" src="ext/ext-all.js"></script>

<script src="js/gears init.js"></script>

<link rel="stylesheet" type="text/css" href="css/styles.css">

<script
<script
<script
<script
<script
<script
<script
<script

type="text/javascript"
type="text/javascript"
type="text/javascript"
type="text/javascript"
type="text/javascript"
type="text/javascript"
type="text/javascript"
type="text/javascript"

src="js/LocalBusinessSearch.js"></script>
src="js/StoresAndRecords.js"></script>
src="js/DA0.js"></script>
src="js/Viewport.js"></script>
src="js/Search.js"></script>
src="js/Favorites.js"></script>
src="js/Details.js"></script>
src="js/Header.js"></script>

<script>Ext.onReady(LocalBusinessSearch.init);</script>

</head>

324

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

<body>
<div id="divSource" class="cssSource"></div>
<div id="dialogPrint" class="x-hidden">

<div class="x-window-header">Local Business Search Ext</div>
<div class="x-window-body" style="background-color:#ffffff;padding:10px;">

Title:

Longitude:

Latitude:

Distance:

Phone:8nbsp;

Rating:

Address:8

City:

State:

Business Web Site:

</div>
</div>

</body>

</html>

We have the usual Ext JS imports, plus the Gears initialization JavaScript file. Following
that is the import of the application style sheet and all the JavaScript files that make up the
application itself. We again see Ext.onReady() being used to call the init() method of the
LocalBusinessSearch object to kick-start the application.

The actual markup begins with the <div> that we’ve by now become used to, the source of
our Window animations. Following that is some plain-old HTML that, based on the style classes
that are applied, we can surmise is used to form a Window at some point. As it happens, this is
the only Window in the application, and it is the one you see when you want to print a business,
both its details and the currently showing map. In Figure 6-4 you can see what this window
looks like.

Well, that’s not entirely true. What Figure 6-4 shows is the Window with a MessageBox over
it. This will become clear when we see how printing works, but for now let’s take a look at
Figure 6-5.

Now, that is what the print Window actually looks like, the Window defined by the markup in
index.htm. It’s simply maximized to take up the entire browser area, but it is still a Window. The
markup itself is no big deal; most important are the elements, which will be populated
with the data about a selected business, with the map image mixed in.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

-W_uiattylgﬂ " You an now prn. and remember T cose this maxmaed daiog when you are done to retum to the

T

Longtude: -72.293%)
Latiude: 471064

Datance: 2.48

Pronet (31} 561624
R 5

Addiress: 36 Lvon Bhvd
Cityi West lddo

State: bt
Busiress Web Sae:

[@ X oone S O2IMBIIIMB [ARBHE[4REME 4 H vSlew 0715 @ 1337

Figure 6-4. Telling users they can print

Lengrtude: 71, 293451
Latiude: 4071064

Distance: 2.4

Phone: (E31) 6616246
Rtz 5

Adgress: §34 Unon Bhvd
ity Weest ise

State: Kt
Buginezs Web Site:

[~ @ [vooe © FAIMB[ITME | ARAHB[4REHE 4 [vSew 071 @ 137 o

Figure 6-5. What the user will see printed

325

326

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

The Style Sheet

Let’s now move on to the application style sheet housed in styles.css, which, similar to
index.htm, is very simple. The first style class encountered is cssSource, which is one we’'ve
seen many times before so I'll skip an explanation here. I won’t, however, skip the next two
selectors for styling the text seen on the Details pane of the Accordion:

.cssDetaillabel {
font-weight : bold;
font-size : 12pt;
font-family : arial;

}

The cssDetaillabel style is applied to the field label, so it’s bolded to set it off from the
data itself. Speaking of the data:

.cssDetailData {
font-size : 12pt;
font-family : arial;

}

As you can see, the only different is that the data itself isn’t bold; otherwise it’s the same.
The next style is also something involved in the display of details:

.cssAIltRow {
background-color : #eaeaea;

}

Simply stated, this is applied to the rows in the table that holds all the detail fields, or
more precisely, every other row in the table, so we get some striping going on.
The last style is something entirely new:

.x-table-layout {
width : 100%;

}

As a quick experiment, try deleting this style and then reload the application. You'll see
that the top header section doesn’t stretch across the entire screen; it’s all scrunched up on
the left side only. That’s because a TablelLayout is used for the header, and a table with two
cells is generated. The toolbar icons are in the first, and the logo is in the other. The toolbar
icons should be left-aligned while the logo should be right-aligned, because I wanted them up
against the edges of the screen. However, that won’t happen by default because the table will
be sized to its contents, not the page width. So, this style overrides one of Ext JS’s built-in styles
that is applied to the table generated by a TableLayout. Setting the width to 100% gets the table
to stretch across the entire page, and then those alighments work as expected and everything
looks as it should in the header.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

The Code

As we’ve done in the past, we’ll begin our exploration of the JavaScript portion of our show by
looking at the DAO class.

DAOQ.js

You know the saying: if you've seen one DAO class, you've seen 'em all! This is very true here:
this DAO is no different than any of the others we’ve looked at, so I won’t go over every single
detail here. But a high-level view is warranted, so let’s start with Figure 6-6.

DAO)
(-databaseName : String N
-sqlCreateFavoritesTable : String
-sqlCreateFavorite : String
-sqlRetrieveFavorites : String
-sqlDeleteFavorite : String

\ -sqlDeleteAllFavorites : String)
(+init() N
+createFavorite()
+retrieveFavorites()
\ +deleteFavorite() Y,

Figure 6-6. UML class diagram of the DAO class
As you can see, we’ve got all the typical fields and methods, starting with databaseName,
which in this application is LocalBusinessSearch. Then we have a couple of fields for the SQL

queries. Table 6-2 summarizes everything.

Table 6-2. The SQL Queries Contained in the DAO Class

Field Name Query Description

sqlCreateFavoritesTable = CREATE TABLE IF NOT EXISTS Creates the favorites table
favorites (id TEXT, title TEXT,
distance TEXT, phone TEXT, rating
TEXT, address TEXT, city TEXT,
state TEXT, latitude TEXT,
longitude TEXT, businessurl TEXT)

sqlCreateFavorite INSERT INTO favorites (id, title, Creates a record in the
distance, phone, rating, address, favorites table
city, state, latitude, 1ong1tude,

businessurl) VALUES (?, ?, ?, ?,
2,2, 2,2, 2,2, 2)

2, 7, 7,2, ?,
sqlRetrieveFavorites SELECT * FROM favorites Retrieves all favorites
sqlDeleteFavorite DELETE FROM favorites WHERE id=? Deletes a given favorite

sqlDeleteAllFavorites DELETE FROM favorites Deletes all favorites

327

328 CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

That’s right, there is only a single table in the database, favorites, because that’s all this
application needs to store. This one table appears in the database, as seen in Figure 6-7.

~ Information from Master table
TABLE : favorites
Associated with table/view: favorites Rootpage: 3

SQL t that 1 this object:

CREATE TABLE favorites (id TEXT, title TEXT, distance TEXT, phone TEXT, rating TEXT, address TEXT, city TEXT, state
TEXT, latitude TEXT, longitude TEXT, businessurl TEXT)

~ More Info
‘nn_ofr' [11] no.ofmd [0] no.ofRecords: [2 |

- Col

id	[Tex	[noe	[prop Column	[Alter Column				
t'rtle		TEXT			luu	[prop Column	[Alter Column	
distance	[Texr	[noe	[prop Column	[Alter Column				
phone	[Texr	[noe	[prop Column	[Alter Column				
rating		TEXT			luu	[prop Column	[Alter Column	
address	[Texr	[noe	[prop Column	[Alter Column				
c'r	:v		TEXT			luu	[prop Column	[Alter Column
state		TEXT			luu	[prop Column	[Alter Column	
latitude	[Tex	[noe	[prop Column	[Alter Column				
longitude	[Texr	[noe	[prop Column	[Alter Column				
businessurl	[Texr	[noe	[prop Column	[Alter Column				
CBo 0 [)								

Figure 6-7. Table structure of the favorites table

The remainder of the methods in the DAO class—init(), createFavorite(),
retrieveFavorites(), and deleteFavorite()—are virtual copies of every other similarly named
DAO method we’ve looked at. So let’s move on to bigger and better things, although I do suggest
taking a moment to peek at the code from this chapter’s download nonetheless.

StoresAndRecords.js

This application also has a StoresAndRecords. js file containing... wait for it... DataStores and
Records! To be more precise, there’s a single Record, and it is the BusinessRecord, whose defini-
tion looks like this:

LocalBusinessSearch.Data.BusinessRecord = Ext.data.Record.create(]
{ name : "title", mapping : "title" },
{ name : "distance", mapping : "distance" },
{ name : "phone", mapping : "phone" },
{ name : "rating", mapping : "rating" },
{ name : "address", mapping : "address" },

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

name

P Nt W et W e W e

D;

name :
name :
name :

name :

"city", mapping : "city" },

"state", mapping : "state" },
"latitude", mapping : "latitude" },

: "longitude", mapping : "longitude" },
"businessurl", mapping : "businessurl" }

Pretty boring, eh? Perhaps seeing it graphically would be a little more exciting? Let’s give
that a shot in Figure 6-8.

BusinessRecord

-distance

-latitude :

-title : string

: string
-phone : string
-rating : string
-address :
-city : string
-state : string

-longitude : string
-businessurl : string

string

string

Figure 6-8. Say hello to the BusinessRecord descriptor!

Okay, yeah, you're right, not really any more exciting! We’ve seen a bunch of Records
before this, so it isn’t exactly earth-shattering at this point. However, what’s coming next very
well may be—the DataStore for storing search results:

LocalBus
listen

inessSearch.Data.ResultsStore = new Ext.data.Store({
ers : {

beforeload : function(inStore, inOptions) {

in
}
b

proxy

Store.baseParams = LocalBusinessSearch.searchParams;

: new Ext.data.ScriptTagProxy(

{ url : LocalBusinessSearch.searchWebServiceURL }

)s

reader :

new (Ext.extend(new Function(), Ext.data.DataReader, {

readRecords : function(inObject) {

if (inObject.Error) {
LocalBusinessSearch.resultsTitle = inObject.Error.title;
LocalBusinessSearch.resultsMessage = inObject.Error.Message[0];
return { success : true, records : new Array(), totalRecords : 0 };

}

var totalResultsAvailable =
parseInt(inObject.ResultSet.totalResultsAvailable);

329

330 CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

if (totalResultsAvailable == 0) {
LocalBusinessSearch.resultsTitle = "No results";
LocalBusinessSearch.resultsMessage =
"The search criteria you provided returned no matches.";
return { success : true, records : new Array(), totalRecords : 0 };
}
if (totalResultsAvailable > 200) {
LocalBusinessSearch.resultsTitle = "Too many results";
LocalBusinessSearch.resultsMessage =
"The search criteria you provided returned more than 200 " +
"matches. Please narrow your search.";
return { success : true, records : new Array(), totalRecords : 0 };
}
var recs = new Array();
for (var i = 0; i < inObject.ResultSet.Result.length; i++) {
var ratingVal = inObject.ResultSet.Result[i].Rating.AverageRating;
recs.push(new LocalBusinessSearch.Data.BusinessRecord({
title : inObject.ResultSet.Result[i].Title,
distance : inObject.ResultSet.Result[i].Distance,
phone : inObject.ResultSet.Result[i].Phone,
rating : (isNaN(ratingval) ? 0 : ratingVal),
address : inObject.ResultSet.Result[i].Address,
city : inObject.ResultSet.Result[i].City,
state : inObject.ResultSet.Result[i].State,
latitude : inObject.ResultSet.Result[i].Latitude,
longitude : inObject.ResultSet.Result[i].Longitude,
businessurl : inObject.ResultSet.Result[i].BusinessUrl
}, inObject.ResultSet.Result[i].id));

}
return {
success : true, records : recs, totalRecords : totalResultsAvailable
b
}
1)
1

Wow, there’s definitely some new stuff going on there! Even though the data that will pop-
ulate this DataStore will be coming from a call to the Yahoo! search service (which is drastically
different from the other applications we’ve seen so far), we still want to be able to use the same
basic ExtJS data mechanisms. That means having a DataStore with events and being able to
bind widgets to it. That’s what all the code here is about: making this DataStore work just as
any other even though it’s calling a remote server.

Recall that a DataStore uses a DataProxy to retrieve data from some source, and then
uses a DataReader to read that data to produce Records. So, skipping over the listeners ele-
ment for just a moment, we see the proxy element pointing to an instance of an Ext.data.
ScriptTagProxy. We talked about that briefly earlier, but generally it’s a pretty simple animal:

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

construct an instance of it with a config object that includes a url attribute defining the URL
to call to get a JSON-P response from, and that’s about it. In the previous example we called
its load() method to make the remote call and process the response. When it’s the proxy for
aDataStore, though, that all happens in the background, under control of the DataStore, so
there’s a bit less work here than we saw earlier.

The DataReader is next, and here we’ve got some funky syntax to deal with. The Ext.
extend() method is used to extend a given class based on another. So, the line

reader : new (Ext.extend(new Function(),
Ext.data.DataReader, { readRecords : { } });

creates a new instance of Function, extends it, adds the elements from Ext.data.DataReader to
it, and then also overrides any elements, with the elements defined in the object passed as the
third argument. The reader attribute is assigned to that new class. So in this case, a plain-old
Function is extended, adding in all the fields and methods from Ext.data.DataReader, and then
the readRecords () method is overridden.

The readRecords () method is called after the DataProxy retrieves the data. The response
from that call—the object created by the JSON returned by the server—is passed into
readRecords(). Its job is to produce an array of BusinessRecords (plus some other stuff) and
return it. It’s not conceptually complex, but there’s a fair bit of work to do.

The first step is to determine if a “soft” error has occurred, things like “no matches
found.” To do so, we examine the Error element of the incoming object. If that element is
present, then we need to cut things short! We grab the Error.title and Error.Message[0]
elements for display, and we then return an object containing three elements: success, which
indicates if the conversion to BusinessRecords was successful; records, which is an array of
BusinessRecords; and totalRecords, which indicates the number of BusinessRecords. It may
seem odd to set success to true in this case, but it is in fact the correct thing to do because as
far as the rest of the DataStore code is concerned, readRecords () worked as expected, even in
the case of a “soft” error. Therefore, we don’t want any error-related events to fire, and success
does that for us.

Note Presumably you can get more than one error back at a time, given that Error.Message is an array.
In practice | never saw this situation arise, and | can’t imagine a scenario where it would happen given this
application. So | think it’s safe to just grab the first element of the array.

The error title and message are set on fields of the LocalBusinessSearch object, so essen-
tially the work of readRecords() is done at this point.

Now, what happens if no errors were returned? In that case we need to do some process-
ing. However, we must check for two other conditions first. I said earlier that an example
of a “soft” error is “no matches found,” but I actually lied there (consider it practice for my
future political career!) because that is in fact not a “soft” error condition. Finding no matches
is a perfectly valid response from the server, but we still need to handle it differently. So,
we grab the ResultSet.totalResultsAvailable element from the returned object, and use
parselnt() to get a number from it. If that number is 0, then we do a similar short-circuit end

331

332

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

to readRecords() and return the same sort of object as we saw earlier. We set an error title and
message on LocalBusinessSearch that reflects the fact that no matches were found. As I'm
sure you can guess, we'll see some code later that knows how and when to display these error
messages.

The other condition to check for is if there are more than 200 matches to the request
search query. This is a problem because this application provides paging of large result sets. In
other words, the user sees 10 matches at a time but can retrieve another 10 at any time. When
dealing with the Yahoo! search service, you need to tell it what the number of the lowest search
result you want is. So, if you want items 30-39 out of the 100 matches, then you tell it the
lowest number you want is 30. The problem is that it won’t accept a number higher than 250
here, even though it will happily find more than 250 matches! So, effectively, we’re limited to
250 matches for any query because there’s no way to display the matches above 250. I backed
down to 200 instead of 250 to improve performance a little (fewer results to process means less
time overall) and also to avoid any weird conditions that might occur if the numbers were off
by one at any point. Besides, if you need more than 200 pizza parlors in an area, you're prob-
ably on your way to the hospital with a massive coronary anyway!

Once we pass through both those conditions, it is time to produce those BusinessRecords
we need. Doing so is trivial: iterate over the ResultSet.Result array in the returned object
and for each instantiate a new BusinessRecord object, populating its fields with the data from
the returned object. Finally, an object is returned that now includes a populated array of
BusinessRecords, plus the number returned.

Now we’ve seen how the DataStore for search results is put together. Later on we’ll see
how the loading of data (the remote service call, in this case) is triggered, but frankly, the truly
interesting stuff is what we’ve just seen. It means we now have a DataStore, like any other, that
we can bind to widgets, have events fire on, and so on. Speaking of events, we need to jump
back to the listeners array for just a moment. You'll notice there that the beforeload event
is handled. This event, as its name implies, fires just before the DataStore tries to load data,
before it asks the DataProxy to get some data. To call on the Yahoo! search service, we’re obvi-
ously going to need to pass the search criteria to use. Every time we ask the DataStore to load
data, it passes the parameters stored in its baseParams field to the DataProxy, which will pass
them along as HTTP request parameters (assuming the DataProxy is one that makes a request
to aremote source). This is the mechanism used to pass the search criteria, which are stored
between searches on the LocalBusinessSearch object. This is necessary because when we
discuss how paging of data works, you'll see that this information isn’t maintained automati-
cally between paging requests. The Yahoo! web service requires it, so we have to get it to the
DataProxy, and the beforeload event is perfect for that.

Note Using baseParams for this seems a little wrong to me, but | couldn’t get it to work any other way.
It seemed to me that the DataProxy should use the same parameters as it did the last time it was called,
which the Ext JS documentation seemed to indicate it should. In practice, though, that didn’t work. So, by
using baseParams in this way | was able to get everything to work as expected, and it didn’t take much
effort. It's not that big of a hack as far as | can tell, so I'm okay with it!

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

Next up we have another DataStore, but a considerably simpler one:

LocalBusinessSearch.Data.searchSortStore = new Ext.data.Store({});
var sortByVals = ["Distance", "Relevance", "Title", "Rating" 1;
for (var i = 0; i < sortByVals.length; i++) {
LocalBusinessSearch.Data.searchSortStore.add
(new Ext.data.Record({ optVal : sortByVals[i] })
)5
}

searchSortStore is used to populate the Sort By ComboBox on the search form and provides
some options. A ComboBox must be bound to a DataStore, so we can’t just simply add elements
to it manually. That’s where this DataStore comes in. Here we see something new: since we
know all the possible options for this DataStore up front, we can populate it right at the time
itis created, and that’s what we have here. The sortByVals array is iterated over, and for each
element, a call to the add() method of the searchSortStore is made. Now, we can bind this
DataStore to the ComboBox and we’re good to go—it will be populated with the appropriate
options, just like that!

There is also a searchMinimumRatingStore that is bound to the Minimum Rating ComboBox,
and a searchStateStore that is bound to the State ComboBox. Aside from the data they are
loaded with, they are the same as searchSortStore, so we’ll skip looking at them here. Instead,
let’s look at the one remaining DataStore: FavoritesStore.

LocalBusinessSearch.Data.FavoritesStore = new Ext.data.Store({
listeners : {
"add" : {
fn : function(inStore, inRecords, inIndex) {
if (LocalBusinessSearch.skipFavoritesStoreEvents) { return; }
LocalBusinessSearch.Data.DAO.createFavorite(inRecords[0]);

}
})
"remove" : {
fn : function(inStore, inRecord, inIndex) {
LocalBusinessSearch.Data.DAO.deleteFavorite(inRecord.id);
}
})
"clear" : {
fn : function(inStore, inRecord, inIndex) {
LocalBusinessSearch.Data.DAO.deleteFavorite();
}
}
}
1)

This too doesn’t differ much from the DataStores we’ve seen in other applications. Here,
we have our usual three events to deal with: add, which fires when a Record is added to this
DataStore; remove, which is called when a Record is deleted; and clear, which fires when

333

334

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

the removeAll() method is called on the DataStore. Each of these calls the appropriate DAO
method, and only in the add event handler do we need to avoid doing anything in certain situ-
ations (for example, when the Ul is being built, which you’ll see in LocalBusinessSearch. js,
the next stop on our code dissection train).

LocalBusinessSearch.js

The LocalBusinessSearch. js file contains the definition of the LocalBusinessSearch class. You
can see the class outline in Figure 6-9.

C LocalBusinessSearch

(+applD : String
+searchWebServiceURL : String
+mapWebServiceURL : String
+currentBusiness : Data.BusinessRecord
+currentisFavorite : Boolean
+zoomLevel : Integer
+searchParams : Object
+resultsTitle : String
+resultsMessage : String
+skipFavoritesStoreEvents : Boolean
+cookieProvider : Ext.state.CookieProvider
+Data.DAO : Object
+Data.BusinessRecord : Ext.data.Record
+Data.ResultsStore : Ext.data.Store
+Data.searchSortStore : Ext.data.Store
+Data.searchMinimumRatingStore : Ext.data.Store
+Data.searchStateStore : Ext.data.Store

\ +Data.FavoritesStore : Ext.data.Store

(+init()
+buildUl()
+populateDetails()
+getMap()
+loadDefaults()
+showFavorites()
+favoriteClicked()
+generateActionimgTag : String()
+attachlconTooltips()
+UIObjects.Viewport : Ext.Viewport()
+UlObjects.DetailsPanel : Ext.Panel()
+UlObjects.FavoritesPanel : Ext.Panel()
+UlObjects.HeaderPanel : Ext.Panel()
+UlObjects.SearchTabPanel : Ext.Panel()
+UIEventHandlers.NewSearchClick()
+UIEventHandlers.PrintltemClick()
+UIEventHandlers.AddToFavoritesClick()
+UlEventHandlers.DeleteFavoriteClick()
+UIEventHandlers.ClearFavoritesClick ()
+UIEventHandlers.executeSearch()

\ +UIEventHandlers.saveLocationAsDefault())

N

AN

Figure 6-9. UML diagram of the LocalBusinessSearch class

CHAPTER 6

WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

As with the previous application, the LocalBusinessSsearch. js file doesn’t contain all the
members you see in the UML diagram; many of them—most of them, in fact, in this appli-
cation—are in other source files. But the basis for this class is constructed here, and it begins

with this code:

Ext.namespace("LocalBusinessSearch", "LocalBusinessSearch.UIObjects",
"LocalBusinessSearch.UIEventHandlers", "LocalBusinessSearch.Data");

As we’ve seen before, this code creates a top-level namespace (class),
LocalBusinessSearch, with three nested namespaces within it: UIObjects, UIEventHandlers,

and Data.

A number of fields are present in this class, and they are summarized in Table 6-3.

Table 6-3. The Fields of the LocalBusinessSearch Class

Field Initial Value Description
appID You tell me! This stores the application ID for the
Yahoo! web services (don’t forget to
register for one or you won'’t be able
to play with this application).
searchWebServiceURL http://local.yahooapis. This specifies the URL for the
com/LocalSearchService/ business search API.
V3/localSearch
mapWebServiceURL http://local.yahooapis. This specifies the URL for the map
com/MapsService/V1/ image retrieval service.
mapImage
currentBusiness null This is where the reference to the
BusinessRecord currently being
viewed is stored.
currentIsFavorite false This is a flag that tells whether the
BusinessRecord currently being
viewed is a favorite (because there’s
nothing about the BusinessRecord
that can tell us this).
zoomLevel null This tracks the zoom level at which
the map is currently being viewed.
searchParams null This stores the search parameters
last used when calling the search
service (needed for paging).
resultsTitle null This contains the MessageBox title
for displaying errors occurring dur-
ing a call to the web services.
resultsMessage null This contains the MessageBox mes-
sage for displaying errors occurring
during a call to the web services.
skipFavoritesStoreEvents false When set to true, this indicates that

events on the FavoritesStore (add
specifically) should not fire.

335

336

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

One more field is present, but I want to discuss it separately here:

LocalBusinessSearch.cookieProvider = new Ext.state.CookieProvider({
expires : new Date(new Date().getTime() + (1000 * 60 * 60 * 24 * 365))

1;

You've seen the Ext.state.CookieProvider before in previous projects with regard to
storing the widget state. What I didn’t tell you, however, is that you can use such an object to
store arbitrary data in cookies as well! In this application I wanted to be able to store certain
location-related fields from a search and make them default values. For instance, making
your zip code a default value makes a lot of sense and saves time. Normally you would just
instantiate Ext.state.CookieProvider and accept its default settings, but in this case I wanted
those default values to persist for longer than the default of seven days. I wanted them to
stick around for a year, and that’s precisely what this does. It does so by specifying a value for
the expires config attribute and setting its value to the current date (by getting its value in
milliseconds via its getTime() method) and then adding one year’s worth of milliseconds (cal-
culated here rather than just plugging in the magic number of 31,536,000,000).

To set and retrieve cookies, you use the set() and get() methods of the CookieProvider.
But let’s not get ahead of ourselves—we’ll see them in action soon enough!

Note You might be wondering why this default location information is stored in a cookie rather than in the
Gears database. The answer is this: | wanted to demonstrate using the Ext JS cookie functions to you! You
have already seen plenty of Gears interaction in this application and others, so | took this opportunity to go
in a different direction and show off more of Ext JS. Feel free to rewrite the code to store it in the database
if you wish; that wouldn’t be a bad exercise.

The init()method is next, and this too is something we're quite familiar with. There are a
few new parts in here to make it interesting:

LocalBusinessSearch.init = function() {

var daoInitResult = LocalBusinessSearch.Data.DAO.init();
switch (daoInitResult) {
case "ok":

Ext.form.VTypes["zipcode"] = /"\d{5}$/;
Ext.form.VTypes["zipcodeMask"] = /[\d-]/;
Ext.form.VTypes["zipcodeText"] = "Zip Code must be in the format of #itti#";

Ext.QuickTips.init();
Ext.form.Field.prototype.msgTarget = "side";
Ext.state.Manager.setProvider(LocalBusinessSearch.cookieProvider);
LocalBusinessSearch.buildUI();
LocalBusinessSearch.loadDefaults();
Ext.getDom("divFavorites").style.height = (Ext.getBody().getHeight() -
110 - 300 - 58) + "px";
break;

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

case "no_gears":
Ext.MessageBox.show({
title : "Gears Not Available", buttons : Ext.MessageBox.OK,
msg : "
" +
"I'm sorry but Google Gears is not installed on your computer, " +
"or is unavailable for some reason (like you disabled the " +
"browser plugin for example)." +
"

" +
"If you do not have Gears installed, please visit " +
"" +
“"the Gears home page to install it." +
"

" +
"If you do have it installed, please try enabling the plugin in " +
"whatever fashion is applicable in the browser you are using, " +
"and reload this application.", animEl : "divSource"
1;
break;
default:
Ext.MessageBox.alert("DAO Initialization Failed",
"Data access could not be initialized. Reason: " + daoInitResult);

break;

}
};

Before we discuss what’s new, let’s discuss what’s missing: this code isn’t being deferred
as we've seen earlier, and there’s no mention of a Please Wait message. These are interrelated
and are not present for the same reason: I was experiencing some sort of timing issue with the
Please Wait message that made the lightbox effect occasionally fail to go away when initializa-
tion was complete. I wasn’t able to find the root cause (there’s those darned deadlines again!),
so I decided the better option was to remove all that entirely. Fortunately, initialization is very
quick here so it’s not a big loss.

Most of this code is just like what we’ve seen before, but there are some new things going
on in the case "ok" code of the switch statement. The first thing is the definition of a custom
vtype. The issue here is that when a user enters a value in the Zip Code field, we want to
ensure it’s in a valid format. It’s always nice to use Ext JS’s built-in form validation logic, but
alas, there is no vtype out of the box for a zip code. Therefore, we have to create our own. In
Chapter 2 you saw an example of creating a custom vtype, but there is an even simpler way, as
you can see in this code. At least for types that only require a simple regex and no actual code
behind it, all you need to do is add three elements to the VTypes array of the Ext.form object.
The first element is named for the vtype you're creating, so we use zipcode. The other two then
take that value as a base and append Mask and Text, so you get zipcodeMask and zipcodeText.
The first element defines the regex to run against the entered value to determine whether it’s
valid, the zipcodeMask regex masks off the value for display, and the zipcodeText is the valida-
tion failure message seen when the value is not in a valid form.

The QuickTips and validation message location are then initialized, as seen previously,
and the provider for the Ext.state.Manager is also set to the CookieProvider created earlier.

337

338

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

Next, buildUI() is called, which we'll skip for just a moment so we can finish looking through
the init() code. Next, a call to loadDefaults() is made, which loads the stored default values, if
any, from cookies and populates the search forms. We’ll skip that for just a moment as well.

The final task is to size the area below the search form and results, where the users’ stored
favorites appear. This is necessary because there doesn’t seem to be a way to have ExtJS do it
automatically. The problem is that as the list grows, the area doesn’t scroll. In order to have it
scroll as you'd expect it to, we need to set the overflow style attribute to auto on it and the area
the favorites are in needs to be sized so that its height is the height of the browser content area,
minus the header, and minus the search area. We also subtract a few more pixels to account
for borders and padding and such. That’s what the final line in the case "ok" code does: it gets
areference to the <div> named divFavorites and sets its height style attribute. The body of
the document is gotten via a call to Ext.getBody(), which, because it’s an Ext.Element object,
includes some utility methods, most importantly, getHeight (). This method gives us the
total height of the browser content area. We take that value and subtract 110 (the height of
the header) from it. Then we subtract 300 (the height of the search form and results area) and
finally subtract 58 (a “magic number” reached by trial and error that accounts for the borders
and padding and such). The result is that the <div> now fits in the area it is supposed to, and
scrolling works as expected. As you'll see later, this same code executes whenever the browser
is resized so that the <div> is always sized properly.

Note Magic numbers are a code smell, that is, something that most programmers consider bad form. A
magic number is a “naked” number statically present in code whose meaning and derivation isn’t immedi-
ately obvious from the code. Generally, constants and/or variables are a better choice because they give the
numbers some semantic meaning. For instance, | could have had a variable named paddingAndBorders
and then used that in the expression to calculate the height. This arguably would have made the code more
readable, but this was a good opportunity to point out what a magic number is. Magic numbers usually do
make code harder to read, and you should therefore take this as an example of what you should not do in
your own code! (Of course, there are always exceptions.)

Next up is buildUI(), which we skipped over a little while ago:
LocalBusinessSearch.buildUI = function() {
new Ext.Viewport(LocalBusinessSearch.UIObjects.Viewport());
LocalBusinessSearch.attachIconTooltips();
LocalBusinessSearch.skipFavoritesStoreEvents = true;
LocalBusinessSearch.Data.FavoritesStore.add(
LocalBusinessSearch.Data.DAO.retrieveFavorites());

LocalBusinessSearch.skipFavoritesStoreEvents = false;
LocalBusinessSearch.showFavorites();

};

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

As is the case with much of the code here, this is just like what was in previous applica-
tions. The Viewport is first built, and again we’re using the pattern of having methods that
return the objects’ config information. One thing that makes this different, however, is that
the Viewport is all there is; in previous applications we’ve seen more than one object built
here, such as toolbars and Accordions and the like. How is this possible? Well, it will be obvious
when we look at Viewport. js, but in short, the calls to the methods to create the other objects
are inlined with the Viewport code. This is a further enhancement to the architecture we’ve
been slowly evolving with each project. (I don’t know if there will be further evolutions... writ-
ing a book is as much an adventure as reading one!)

Once the Viewport is formed, which means all the subcomponents of it are as well, a
call to attachIconTooltips() is made. If you play with the application you'll notice that the
icons in the header have tooltips over them, text to tell you what they do when you hover over
them. This isn’t something you get for free; there is work involved in making that happen, and
attachIconTooltips() is where that work is done. However, as that is part of the Header . js file,
let’s put aside those details for now and continue.

The next step is to load the favorites from the database. As the add() method is used
to do that, we have the same situation as in other applications: the add event will be firing
multiple times here, and we don’t want that. So, the skipFavoritesStoreEvents flag is set to
true, and the add event handler checks that and skips its work when it’s true. A call to the
DAO’s retrieveFavorites() gets us an array of BusinessRecords, which is passed along to the
FavoritesStore’s add() method. Finally, the skipFavoritesStoreEvents flag is set to false,
because from that point on we want that add event to fire. Finally the showFavorites() method
is called, which is more code we’ll defer looking at a little longer, but in short it generates the
markup for the list of favorites seen in the bottom-left corner of the page.

The final method in this file is that loadDefaults() method I said we’d look at later.

(See, I may put things off, but I get back around to them eventually!) Here’s the code for that
method:

LocalBusinessSearch.loadDefaults = function() {

Ext.getCmp("searchStreet").setValue(
LocalBusinessSearch.cookieProvider.get("defaultLocation_street"));
Ext.getCmp("searchCity").setValue(
LocalBusinessSearch.cookieProvider.get("defaultLocation_city"));
Ext.getCmp("searchState").setValue(
LocalBusinessSearch.cookieProvider.get("defaultLocation_state"));
Ext.getCmp("searchZip").setValue(
LocalBusinessSearch.cookieProvider.get("defaultLocation_zip"));

};

As I hinted at earlier, all it takes to retrieve a cookie is a call to the get () method of the
cookieProvider. You pass in the key, or name, of the cookie, and it is retrieved (assuming it
exists of course—you get a blank string if it doesn’t). Then, each of the search form fields is set
to the returned value, and that’s how we see the saved default values in the form at application
startup.

339

340

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

Viewport.js
Now we come to the Viewport.js file, which is something I said we’d get to soon... is this soon
enough for you? Well, ready or not, here comes the code:

LocalBusinessSearch.UIObjects.Viewport = function() { return ({
layout : "border", items : [
{ region : "north", height : 110, items : [
new Ext.Panel(LocalBusinessSearch.UIObjects.HeaderPanel())
15}
{ region : "west", width : 440, items : [
new Ext.TabPanel(LocalBusinessSearch.UIObjects.SearchTabPanel()),
new Ext.Panel(LocalBusinessSearch.UIObjects.FavoritesPanel())
15}
{ region : "center", layout : "fit", items : [
new Ext.Panel(LocalBusinessSearch.UIObjects.DetailsPanel())
1}
]J
listeners : {
resize : function(inViewport, inAdjWidth, inAdjHeight, inWidth, inHeight) {
var df = Ext.getDom("divFavorites");
if (df) {
df.style.height = (Ext.getBody().getHeight() - 110 - 300 - 58) + "px";
}
}
}
IIH ¥

As far as Viewports go, there are no surprises here. Once again we have our friend Mr.
BorderlLayout to thank for all the wonderfulness. In the north region is the header area, which
contains the toolbar (well, not a real Ext JS toolbar, but still) and the application logo. In the
west is a TabPanel that contains the Search and Results tabs, and below that is a plain-old
Panel where our favorites are shown. In the center is where the details are, and it’s a Panel as
well, one using an Accordion layout. Notice that the center region has a layout of fit, so that
the Accordion takes up the whole center region.

Of course, there is something exciting a new here: the fact that each of the components in
the three regions is instantiated inline. This is that architectural evolution I talked about ear-
lier. This lets the actual UI code be embedded in the Viewport definition, which I think makes
more sense than instantiating an object and then including Ext.getCmp() in the Viewport defi-
nition, as we’ve seen previously. This way, even more ordering concerns are removed because
we no longer have to ensure that all the components get created before creating the Viewport.
It’s a relatively minor change, but it makes things even cleaner than before.

There is also the small matter of the 1isteners array, and the one event handler contained
within it, resize. Recall our earlier discussion when we looked at how the favorites section
was sized properly during initialization. Well, this resizing needs to occur when the browser
window is resized as well, and that’s precisely the time at which the resize event fires. So, in it
we do the same sort of math that we saw earlier. However, one problem exists: it turns out the

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

resize event fires during initialization as well, and unfortunately it occurs before divFavorites
is created. So, to avoid a nasty little error we need to check for its existence before resizing
anything.

Header.js

The Header. js contains a lot of the code behind the functionality in this application, but the
first part of it is pure eye candy (which there’s nothing wrong with in my book, which this is, so
eye candy it is!).

Have you ever used Mac OS? Or, have you ever seen a Fisheye list from libraries like Dojo?
If not, I'll briefly explain. Picture a row of icons. As you mouse over an icon, it expands gradu-
ally (but rapidly). As you mouse off it, it contracts. The Mac OS doc is where this interface
metaphor originated (to the best of my knowledge, and even if not, then certainly it's what
made the effect famous). The Dojo toolkit has the Fisheye list as part of it, which provides this
widget, but Ext JS does not. Fortunately, it’s easy to replicate (at least roughly) and that’s what
I've done in the header, as you can see in Figure 6-10 (sort of). Of course, we're talking about
animation here, so obviously this is something you need to play with the application to get a
full appreciation for.

Lile [dit Wiew MHigtory Pockmarks Jock ielp
2) Local Busmess Search x|
L ® % F
- < Pont e et ofthe s o b v

Scarch

Keyword: =

Sort By: *

M Ratng: -

Strest:

oty
| state: -

Zip Code: 18464

Radis:

(k) e Location s Dttt

@ Padarmo Pizza

@ Big Daddy's Pizza

@ Mike's Brick Oven Pizza

[%& @& [pone FAIMBIITME [4RTHB[4BAHE 4 BB YSew 075 @ 137 o

Figure 6-10. The header with one of the toolbar icons being hovered over

In this screenshot, my mouse is hovering over the print icon, which has expanded, and
is also showing me a tooltip. So, how is this magic pulled off? Well, let’s look at some code,
shall we?

3

342 CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

LocalBusinessSearch.UIObjects.HeaderPanel = function() { return ({
layout : "table", border : false, layoutConfig : { columns : 2 }, items : [
{ border : false, bodyStyle : "padding-left:100px",
html :
LocalBusinessSearch.generateActionImgTag("NewSearch") +
LocalBusinessSearch.generateActionImgTag("PrintItem") +
LocalBusinessSearch.generateActionImgTag("AddToFavorites")
LocalBusinessSearch.generateActionImgTag("DeleteFavorite")
LocalBusinessSearch.generateActionImgTag("ClearFavorites")

+
+

b
{ border : false, bodyStyle : "text-align:right",

html : "" }

IDHBS

This block of code is the UI definition for the HeaderPanel, and it contains two elements,
the first being this Mac OS-like toolbar. (I'll simply be referring to it as the toolbar from
now on... no sense giving Steve Jobs more credit than he deserves!) This HeaderPanel uses a
Tablelayout to organize its children, which we haven’t seen in action yet, although we had an
introduction to it in Chapter 2. In short, the TableLayout allows us to create an HTML table
structure without all that pedantic messing about with HTML that is otherwise required.

In this case it’s a simple table structure with two columns, one containing the toolbar
and one containing the application logo. The layoutConfig element allows us to specify the
number of columns, and the items array is essentially an array of table cells. If there were more
than two elements in the items array, the table would flow onto a second row, but here we only
have the two so it’s a table with a single row and two columns.

In the first column is the toolbar, and for each icon a call to the LocalBusinessSearch.
generateActionImgTag() method is called. This method looks like this:

LocalBusinessSearch.generateActionImgTag = function(inIconID) {

return String.format(
"<img id=\"{0}\" src=\"img/{0}.gif\" hspace=\"20\" " +
"onMouseOver=\"Ext.get('{0}").scale(120, 100, { duration : .25 });\" " +
"onMouseOut=\"Ext.get('{0}"').scale(64, 64, { duration : .25 });\" " +
"onClick=\"LocalBusinessSearch.UIEventHandlers.{0}Click()\">",
inIconID);

};

Asyou can see, each icon requires that an tag be generated. To do so, this method
uses the String.format() method that Ext JS adds to the String class. This allows us to use
token replacements to insert some dynamic data into static text. In this case, the dynamic data
is the ID of the icon, passed into the generateActionImgTag() method, and if you look back at
the HeaderPanel definition you’ll see those values being passed in.

The actual markup returned by this method contains some new stuff for us. The
onMouseOver event makes use of the Ext JS’s visual effect (or FX as it is sometimes written)

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 343

capabilities. What happens is that in the onMouseOver event handler, Ext.get() is used to
retrieve the Ext.Element representing the tag. Ext JS wraps all DOM elements in its own
Ext.Element class that provides additional capabilities, and one of those capabilities is the
scale() method (this method and all other animations are provided by the Ext.Fx class, but
this is applied to the Ext.Element class, so effectively they become members of the Ext.Element
class). This performs an animated scaling of the Ext.Element. The arguments to this method
are the new width of the image, the new height, and an options object that here contains a sin-
gle attribute, duration, which specifies the numbers of seconds the full animation should take.
So here we're saying that the image should expand from its default size of 64 X 64 to 120 X 100
in a quarter second. Likewise, in the onMouseOut event handler, we scale the image back down
to its original size. That’s all it takes to fairly accurately emulate the Mac OS doc!

In the previous screenshot you can also see that each toolbar icon has a tooltip attached
to it that shows up when you hover over it, but so far we haven’t seen how that’s done. Recall
that in the init() method the LocalBusinessSearch.attachIconTooltips() was called after
nearly everything else was done? Well, that’s what does the deed, and now it’s time to come
face to face with that method:

LocalBusinessSearch.attachIconTooltips = function() {

new Ext.ToolTip({

target:"NewSearch", showDelay : 0, hideDelay : 0,

html : "Start a new search”
D;
new Ext.ToolTip({

target:"PrintItem", showDelay : 0, hideDelay : 0,

html : "Print the details of the business now being viewed"
D;
new Ext.ToolTip({

target:"AddToFavorites", showDelay : 0, hideDelay : O,

html : "Add the business now being viewed to your favorites"
D;
new Ext.ToolTip({

target:"DeleteFavorite", showDelay : 0, hideDelay : O,

html : "Remove the currently selected favorite from your favorites"
1;
new Ext.ToolTip({

target:"ClearFavorites", showDelay : 0, hideDelay : O,

html : "Clear your list of favorites"”

};
};

For each toolbar icon we create a new Ext.ToolTip object. This is a widget that is very easy
to use: you simply feed a configuration object to the constructor containing a couple of ele-
ments, the first of which is target. This is the ID of the DOM node to attach the ToolTip to. You
also supply the html attribute, which is the text of the ToolTip. You can also supply a number of

344

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

other attributes; for this example the only two we’re interested in are showDelay and hideDelay,
which is the amount of time to take before a ToolTip is shown or hidden, respectively (here we
want them to show up immediately, so 0 is the appropriate value).

The remaining methods in Header . js are the functions that are called when each of the
toolbar icons is clicked. The first of these corresponds to the first toolbar icon, the one for
starting a new search:

LocalBusinessSearch.UIEventHandlers.NewSearchClick = function() {

Ext.getCmp("SearchForm").getForm().reset();
LocalBusinessSearch.loadDefaults();
LocalBusinessSearch.Data.ResultsStore.removeAll();
Ext.getCmp("tabResults").disable();
Ext.getCmp("SearchTabs").setActiveTab("tabSearch");
Ext.getCmp("DetailsPane").collapse();
Ext.getCmp("MapPane").collapse();

};

Just a couple of relatively simple tasks are required to accomplish this. First, the
SearchFormis cleared in the usual manner. Next, the default values are loaded again, just like
during initialization. Then, the ResultsStore is cleared and the Results tab is disabled. In addi-
tion, by calling setActiveTab("tabSearch") on the retrieved SearchTabs TabPanel, the Search
tab is made current. Finally, both the Details and Map panes of the Accordion are collapsed.
All of this sets up the UI just like it was when the application began (unless the user saved new
default search values, in which case it'll be a little different).

The Print toolbar icon is next, and clicking it results in a call to PrintItemClick():

LocalBusinessSearch.UIEventHandlers.PrintItemClick = function() {
if (LocalBusinessSearch.currentBusiness) {

Ext.getDom("print title").innerHTML =
LocalBusinessSearch.currentBusiness.get("title");
Ext.getDom("print longitude").innerHTML =
LocalBusinessSearch.currentBusiness.get("longitude");
Ext.getDom("print latitude").innerHTML =
LocalBusinessSearch.currentBusiness.get("latitude");
Ext.getDom("print distance").innerHTML =
LocalBusinessSearch.currentBusiness.get("distance");
Ext.getDom("print phone").innerHTML =
LocalBusinessSearch.currentBusiness.get("phone");
Ext.getDom("print rating").innerHTML =
LocalBusinessSearch.currentBusiness.get("rating");
Ext.getDom("print address").innerHTML =
LocalBusinessSearch.currentBusiness.get("address");

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

Ext.getDom("print city").innerHTML =
LocalBusinessSearch.currentBusiness.get("city");
Ext.getDom("print state").innerHTML =
LocalBusinessSearch.currentBusiness.get("state");
Ext.getDom("print businessurl").innerHTML =
LocalBusinessSearch.currentBusiness.get("businessurl");
Ext.getDom("print map").src = Ext.getDom("imgMap").src;

var dialogPrint = new Ext.Window({
applyTo : "dialogPrint", closable : true, modal : true,
minimizable : false, constrain : true,
resizable : false, draggable : false, shadow : false,
autoScroll : true

}s

dialogPrint.show();

dialogPrint.maximize();

Ext.MessageBox.show({
title : "Ready To Print", buttons : Ext.MessageBox.OK,
msg : "You can now print, and remember to close this maximized dialog " +
"when you are done to return to the application",
animgl : "divSource"

1);

};

If no business is currently selected, then this method just ends and nothing is done. If a
business is selected, however, the first task is to populate all of the fields that we saw in the
markup in index.htm with the details from the current BusinessRecord. Next, a new Ext.Window
is created, based on dialogPrint from index.htm. We define this Window as not being minimiz-
able, resizable, or draggable (although it is closable); as not having a shadow; and as being
constrained to the Viewport (constrain:true, which means that even if the Window was dragga-
ble you wouldn’t be able to have part of it hanging off the screen... this is redundant given that
the Window can’t be dragged, but I thought you’d like to know about the constrain attribute,
and it certainly doesn’t hurt anything being there). Finally, the Window’s autoScroll attribute is
set to true so that we’ll get scrollbars as necessary.

Once the Window is created, it’s shown and then immediately maximized via its maximize()
method. What you have at this point is a Window that overlays everything else on the page and
takes up the entire browser content area. Finally, a MessageBox is shown telling users they can
now print and to close the Window when they finish. It’s the user’s responsibility to print by
clicking the browser’s Print icon or menu option, and then to close the Window when done.

The next method we find lurking about is the AddToFavoritesClick() method, called when
the Add to Favorites toolbar icon is clicked:

345

346 CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

LocalBusinessSearch.UIEventHandlers.AddToFavoritesClick = function() {

if (LocalBusinessSearch.currentBusiness &&
ILocalBusinessSearch.currentIsFavorite) {

LocalBusinessSearch.Data.FavoritesStore.add(
LocalBusinessSearch.currentBusiness);

LocalBusinessSearch.currentIsFavorite = true;
LocalBusinessSearch.showFavorites();

Ext.get("fav_" + LocalBusinessSearch.currentBusiness.id).highlight(
"#ffffoo", { attr : "background-color", endColor : "ffffff",
duration : 1}

)s

var tr = Ext.getCmp("tabResults");

var sm = tr.getSelectionModel();

if (sm.getCount() != 0) {
sm.clearSelections();

}

};

The job of this method is to add the current BusinessRecord, assuming it is selected
and assuming it isn’t already a favorite (which happens to be the first check performed
here) to the saved favorites. The add() method of the FavoritesStore is called, passing it the
LocalBusinessSearch.currentBusiness, which triggers the call to the DAQO’s createFavorite()
method. After that, LocalBusinessSearch.currentIsFavorite is set to true, since the business
being viewed is in fact now a favorite, and a call to LocalBusinessSearch.showFavorites() is
called, which updates the list of favorites on the screen. Now we use a little more Ext.Fx: a
reference to the newly added favorite is obtained, and the highlight() method is used to do
a Yellow Fade Effect.® This is an effect whereby you highlight a changed piece of information
in yellow and then slowly fade it back to the nonhighlighted state. Of course, it does not have
to be yellow, and it does not have to fade, but the underlying concept is the same: highlight
changed information to provide a visual cue that something has happened (remember that
changes caused by Ajax or other Ul interactions can sometimes be subtle, so anything you can
do to help people notice them will be appreciated). The highlight() method accepts as its first
argument an RGB value specifying the color to highlight the item in. As its second argument,
the method accepts an object that configures the item, including specifying the style attribute

3 The term “Yellow Fade Effect” seems to have originated with a company called 37signals, as seen in
this article: waw. 37signals.com/svn/archives/000558. php.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

to modify via the attr attribute, the ending color to fade to from the highlight color via the
endColor attribute, and the duration in seconds the fade should take via the duration attribute.
So here we’re highlighting the new favorite in yellow (#ffff00), modifying its background-color
style attribute, and fading from yellow to white (#ffffff) in one second’s time. The effect can
(sort of) be seen in Figure 6-11. Of course, like the toolbar, you have to see it in action for your-
self, so fire up that browser and have a peek!

3 tocal Business Search - Mazilla Firefox
ile [dit View Migtory Qookmarks Jools felp
B ocal s search

re ¥ es

J Whanne Yallow Pages fust lent ol anaught

o ch Resalis

I ey L] Title: Lirte Traly
d . Longitude: 73293493
o ! Latitude: 4071064
2 5 Distance: 248
e Phone: (631) 661-6246
e) Rating: 5
< Address: 636 Union Bid
an 5 City: West Isip

= g State: NY

287 Business Web Site:

H A gy ofs F H & Desplayng resuts 21 - M of 81

@ Padarmo Pizza

@ Big Daddy's Pizza
@ Mike's Brick Oven Pizza
@ Litte Italy

[@ E oone F33MB | 37 HB ARTHE[4paHE 3 R vSew o075 @ 1007 o

Figure 6-11. A favorite has been added; notice it’s fading in yellow? (What? All you see is black
and white? Well, trust me, that’s what it does!)

Since we can add a favorite, it seems only reasonable to be able to delete one too, and
that’s what the next method is for:

LocalBusinessSearch.UIEventHandlers.DeleteFavoriteClick = function() {
if (LocalBusinessSearch.currentIsFavorite) {

Ext.MessageBox.confirm("Confirm Favorite Deletion",
"Are you sure you want to delete the favorite '" +
LocalBusinessSearch.currentBusiness.get("title") + "'?",
function(inButtonClicked) {

if (inButtonClicked == "yes") {

347

348

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

LocalBusinessSearch.Data.FavoritesStore.remove(
LocalBusinessSearch.currentBusiness);
LocalBusinessSearch.currentBusiness = null;
LocalBusinessSearch.currentIsFavorite = false;
LocalBusinessSearch.showFavorites();
LocalBusinessSearch.populateDetails();
Ext.getCmp("DetailsPane").collapse();
Ext.getCmp("MapPane").collapse();
LocalBusinessSearch.getMap();

)s

};

First we confirm the currently selected BusinessRecord is in fact a favorite; otherwise
there’s nothing to do. If it is, we then confirm that the user really wants to delete it using the
MessageBox.confirm() function that we looked at earlier. Note that the text of the MessageBox
contains the title of the favorite being deleted, rather than a generic message, which is gen-
erally better if for no other reason than convincing the user that the program knows what
it’s doing! If the user clicks yes, then the remove() method of the FavoritesStore is called,
which fires off the deleteFavorite() DAO method. The currentBusiness reference is cleared,
and the currentIsFavorite flagis set to false. Then, as with adding a favorite, we call on
showFavorites() once more to update the list on the screen. There’s no highlighting to do
here, though, so there’s none of that code. Then, a call to populateDetails() is made. This has
the effect of clearing all the detail fields, since that method is smart enough to deal with the
case where there is no BusinessRecord, as you'll see later. Then, the two Accordion panes are
collapsed, and finally getMap() is called, which, like the call to populateDetails(), effectively
clears out the Map pane of the Accordion. The confirmation dialog is shown in Figure 6-12.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

2 Local Business Search - Mazilta Firefox

Lile [dit Wiew MHigtory Pockmarks Jock |ielp

| Confirm Favorits Dekstion £
\zj- Are you sre you want to delote the favante Big Daddy's Paza'?
gmera Santra Pz
=l) m
rage 1 ofe ¢ W 2 .--.-mrv:-o..\.-.-.-.-:-v{___ e
Saned Fameritns,
@ Pedomo Pizza
@ Big Daddy's Piza
@ Miks's Brick Oven Pizza
" @& £ pone 233MB/27MB [J 4a7HE 488HE & R vSew 075 @ 1037 .

_ @ 3y LOZAL %I&ESSMSE%E}H ..

Figure 6-12. Confirm Favorite Deletion prompt

The final method we have to look at handles the case of users wanting to clear all their
favorites in one go, and it’s the aptly named ClearFavoritesClick() method:

LocalBusinessSearch.UIEventHandlers.ClearFavoritesClick = function() {

Ext.MessageBox.confirm("Confirm All Favorites Deletion”,
"Are you sure you want to delete all your favorites?",
function(inButtonClicked) {

if (inButtonClicked == "yes") {
LocalBusinessSearch.Data.FavoritesStore.removeAll();
if (LocalBusinessSearch.currentIsFavorite) {
LocalBusinessSearch.currentBusiness = null;
LocalBusinessSearch.currentIsFavorite = false;
Ext.getCmp("DetailsPane").collapse();
Ext.getCmp("MapPane").collapse();
LocalBusinessSearch.populateDetails();
LocalBusinessSearch.getMap();
}
LocalBusinessSearch.showFavorites();
}
}
);

};

349

350

CHAPTER 6

WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

This is very much like deleting a single favorite except that this time the removeAll()
method of the FavoritesStore is called, which fires the clear event. This results in the
deleteFavorites() method of the DAO being called with no favorite ID passed in, caus-
ing the sqlDeleteAllFavorites query to be executed. Otherwise, it works just like the

DeleteFavoriteClick() method.

Details.js

The Details. js file contains the definition and code related to the center region of our
Viewport’s BorderLayout and is where details and the map for the currently selected business
are shown, as seen in Figure 6-13.

LSAL | v
| Whan the Yallow Pages just lent cool sncughl

4

Search
Keyword:
Sort By: b
Mnrmum Ratng: -
Street;
Oy

| State: »
Zp Code: 19464
Radus:
[kl e Location s Dttt
Saved Fawertees

@ Padarmo Pizza

@ Big Daddy's Pizza
@ Mike's Brick Oven Pizza

"% @ E Done

Title:

Longltude:
Latitude:

Distance:

Phone:

Rating:

Address:

City:

State:

Business Web Site:

Big Daddy's Pizza
75627448

40 265495
0.82

(510) 323-8055
5

1300 N Charlotte St
Pottstown
PA

4R7HE[4REHE & B vSew 075 @ 1007 .

Figure 6-13. The details of a business are displayed.

This screen shows the details for a business and it is organized via an Accordion layout,
so the details for the business are on a different pane than the map, which you can see in

Figure 6-14.

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

9|] tocal busmess Search x|

IS @ & Done

v

Search
Kepwond: T
sotoy: & =] @ EH & G
Mrimum Ratng: > Yaroo! P ILE
Street;
Doiglase Twp
oy @D
: State: -
2p Code: 18464
Radus:
| [l Sem bocntion s Dot
@ Padarmo Pizza
@ Big Daddy's Pizza
@ Mike's Brick Oven Pizza

FRIMBSITME | anTHB[aRAHE & R vSew 075%s @ 1037 o

Figure 6-14. A map is displayed.

Let’s first look at the UI configuration object:

LocalBusinessSearch.UIObjects.DetailsPanel = function() { return ({
layout : "accordion", layoutConfig : { animate : true }, id : "Details",
defaults: { bodyStyle : "overflow:auto;padding:10px;" }, items : [
{ title : "Details", id : "DetailsPane", collapsed : true, html :

"<table width=\"100%\">" +
"okt +

" <td width=\"20%\" class=\"cssDetaillabel\">Title: </td>" +
" <td class=\"cssDetailData\" id=\"details title\"></td>" +

</tr" +

<tr class=\"cssAltRow\">" +

" <td class=\"cssDetaillabel\">Longitude: </td>" +
" <td class=\"cssDetailData\" id=\"details longitude\"></td>" +

</tr" +
<tr>" +

" <td class=\"cssDetaillabel\">Latitude: </td>" +
" <td class=\"cssDetailData\" id=\"details latitude\"></td>" +

</trs" o+

<tr class=\"cssAltRow\">" +

" <td class=\"cssDetaillabel\">Distance: </td>" +
" <td class=\"cssDetailData\" id=\"details distance\"></td>" +

</trs" o+

351

352 CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

<tr>" o+
" <td class=\"cssDetaillabel\">Phone: </td>" +
" <td class=\"cssDetailData\" id=\"details phone\"></td>" +
</t o+
<tr class=\"cssAltRow\">" +
" <td class=\"cssDetaillabel\">Rating: </td>" +
" <td class=\"cssDetailData\" id=\"details_rating\"></td>" +
</tr" o+
<tr>" +
" <td class=\"cssDetaillabel\">Address:8nbsp;</td>" +
" <td class=\"cssDetailData\" id=\"details address\"></td>" +
</t o+
<tr class=\"cssAltRow\">" +
" <td class=\"cssDetaillabel\">City: </td>" +
" <td class=\"cssDetailData\" id=\"details city\"></td>" +
</t o+
<" +
" <td class=\"cssDetaillabel\">State: </td>" +
" <td class=\"cssDetailData\" id=\"details state\"></td>" +
Jtr>" +
" <tr class=\"cssALtRow\">" +
" <td class=\"cssDetaillabel\">Business Web Site: </td>" +
" <td class=\"cssDetailData\" id=\"details businessurl\"></td>" +
"o/t o+
"</table>"
2
{ title : "Map", id : "MapPane", collapsed : true, items : [
{ xtype : "panel", layout : "table", border : false,
layoutConfig : { columns : 12 }, items : [
{ id : "btnZoom1", xtype : "button", text : "Street",
handler : function() { LocalBusinessSearch.getMap(1); }
b
{ id : "btnZoom2", xtype : "button", text : "2",
handler : function() { LocalBusinessSearch.getMap(2); }
})
{ id : "btnZoom3", xtype : "button", text : "3",
handler : function() { LocalBusinessSearch.getMap(3); }
})
{ id : "btnZoom4", xtype : "button", text : "4",
handler : function() { LocalBusinessSearch.getMap(4); }
})
{ id : "btnZoom5", xtype : "button", text : "5",
handler : function() { LocalBusinessSearch.getMap(5); }
})
{ id : "btnZoom6", xtype : "button", text : "6",
handler : function() { LocalBusinessSearch.getMap(6); }

b

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

{ id : "btnZoom7", xtype : "button", text : "7",
handler : function() { LocalBusinessSearch.getMap(7); }
b
{ id : "btnZoom8", xtype : "button", text : "8",
handler : function() { LocalBusinessSearch.getMap(8); }
b
{ id : "btnZoom9", xtype : "button", text : "9",
handler : function() { LocalBusinessSearch.getMap(9); }
b
{ id : "btnZoom10", xtype : "button", text : "10",
handler : function() { LocalBusinessSearch.getMap(10); }
b
{ id : "btnZoom11", xtype : "button", text : "11",
handler : function() { LocalBusinessSearch.getMap(11); }
b
{ id : "btnZoom12", xtype : "button", text : "Country",
handler : function() { LocalBusinessSearch.getMap(12); }
}
]

b
{ border : false, bodyStyle : "text-align:center", html :

non

"<img id=\"imgMap\" vspace=\"6\ +
"style=\"border:1px solid #000000;display:none;\">"

As expected, accordion is the layout value, and we specify that we want flipping between
the panes to be animated by setting the layoutConfig object’s animate attribute to true. I
wanted there to be some padding around the content of all panes in the Accordion, so the
defaults attribute comes into play, and the bodyStyle attribute within that object sets a pad-
ding style of 10 pixels. It also sets overflow to auto so that any scrolling, which can happen
easily on the Map pane, kicks in as needed.

The items array contains two elements, one for each pane. The first pane is the Details
pane, and it is defined using the html attribute and a giant constructed string. The markup
itself is an unremarkable HTML table—nothing special there. Each cell in the table in the sec-
ond column has an ID because that’s where the detail information will be plugged in.

The second element in the items array is the Map pane, and it’s slightly more interest-
ing. It has an items array as well, and the first element in that array is a Panel that, once
again, uses the TablelLayout. This time, however, there are 12 columns, and there happens
to be 12 Buttons created for the map-zooming functionality, so all the buttons are in a single
row. This was necessary because if hadn’t used a TablelLayout, the Buttons would render
one under another, running down the screen, so that wouldn’t work. A TablelLayout was the
simplest way to avoid that problem. The Buttons themselves are pretty simple—they just
have a handler defined that calls the LocalBusinessSearch.getMap() method, passing what is
basically a zoom factor.

353

354

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

The second element in the Map pane’s items array is where the map itself goes, and it
too is a plain Panel. All that’s required here is to use the html attribute to create an tag.
The bodyStyle attribute on the Panel sets the text-align style attribute to center to center the
 tag. The tag isn’t initially loaded with any image, so it is effectively empty. I put a
border around the image and initially hide it.

That’s it for the configuration; it is for the most part straightforward HTML wrapped by
some Ext JS components.

The first method we find, populateDetails(), is called to show the details for a selected
business:

LocalBusinessSearch.populateDetails = function() {

var record = LocalBusinessSearch.currentBusiness ||
new LocalBusinessSearch.Data.BusinessRecord({});

Ext.getDom("details title").innerHTML =
Ext.util.Format.defaultValue(record.get("title"), "");
Ext.getDom("details distance").innerHTML =
Ext.util.Format.defaultValue(record.get("distance"), "");
Ext.getDom("details phone").innerHTML =
Ext.util.Format.defaultValue(record.get("phone"), "");
Ext.getDom("details rating").innerHTML =
Ext.util.Format.defaultValue(record.get("rating"), "");
Ext.getDom("details address").innerHTML =
Ext.util.Format.defaultValue(record.get("address"), "");
Ext.getDom("details city").innerHTML =
Ext.util.Format.defaultValue(record.get("city"), "");
Ext.getDom("details state").innerHTML =
Ext.util.Format.defaultValue(record.get("state"), "");
Ext.getDom("details latitude").innerHTML =
Ext.util.Format.defaultValue(record.get("latitude"), "");
Ext.getDom("details longitude").innerHTML =
Ext.util.Format.defaultValue(record.get("longitude"), "");
Ext.getDom("details businessurl").innerHTML =
Ext.util.Format.defaultValue(record.get("businessurl"), "");

};

The first line ensures that we always have a BusinessRecord, whether it’s the currently
selected one referenced by LocalBusinessSearch.currentBusiness or a new empty one. This
is required because, as you may recall, this method can be called at some points where the
intent is to clear the detail fields. Rather than code special logic for that, I decided it was easier
to just ensure I always had a BusinessRecord, and then I could use the Ext.util.Format.
defaultValue() method during field population. So, for each detail field, a reference to it is
retrieved via Ext.getDom(), and then its innerHTML property is set. The value set is determined
by a call to Ext.util.Format.defaultValue(). If the first argument to that method is empty,
meaning the field retrieved from the BusinessRecord is empty (which it would be if there is no
current record), then a blank string is returned and set in the field on the screen. This not only

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

covers the situation of clearing the detail fields but it also nicely deals with any missing fields
returned by the web service (for instance, businessurl will frequently come back as null, and
we wouldn’t want to display null on the screen, which is what happens without Ext.util.
Format.defaultValue() in there to effectively say “null means empty, so here’s a blank string
for ya” instead).

As mentioned before, the getMap () method accepts a zoom factor as an argument to it.
This results in a new web service request being made and the map tag updated to point
to a map at the new zoom level. For example, if you zoom to country level, you’ll get some-
thing that looks like Figure 6-15.

L s irefo

thh.

T Distance: Ratng
Doming's Pz o0]
Papa Jehi's o (]
Fie ai Sabvatere’s oz]
Dock Puza s]
Reego's Azzs & Restaurent LE] 5
Fredy's Pizza & Festaurant ot 3
Jow's Puza an s
Amcre Puzena am £
Sbarme o e
Mamma Santna Pizze LEs 5
A racelt Jofs| koM & Dislaying results 1- 1007 B1

.“ ; Been
@ 8 = riy
@ Big Daddy's Pizza
@ Mike's Brick Oven Pizza

[%& @ [Done C 233MBJITMB [4R7HB[4BAME 4 R vilew o7ses @ 117

Figure 6-15. The map, zoomed to country level

The getMap() method looks like this:

LocalBusinessSearch.getMap = function(inZoomLevel) {

if (!LocalBusinessSearch.currentBusiness) {
var mapTag = Ext.getDom("imgMap");
mapTag.style.display = "none";
return;

}

if (inZoomlLevel) {
LocalBusinessSearch.zoomLevel = inZoomlLevel;

} else {
LocalBusinessSearch.zoomLevel

}

6;

355

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

for (var i = 1; i < 13; i++) {
var b = Ext.getCmp("btnZoom" + i);
if (i == LocalBusinessSearch.zoomlLevel) {
b.disable();
} else {
b.enable();
}
}

new Ext.data.ScriptTagProxy(
{ url : LocalBusinessSearch.mapWebServiceURL }

). load(
{
appid : LocalBusinessSearch.appID, output : "json",
"longitude" : LocalBusinessSearch.currentBusiness.get("longitude"),
"latitude" : LocalBusinessSearch.currentBusiness.get("latitude"),

image width : 480, image height : 460,
zoom : LocalBusinessSearch.zoomLevel
b
new (Ext.extend(new Function(), Ext.data.DataReader, {
readRecords : function(inObject) {
return inObject;
}

MO,
function(inObject) {
var mapTag = Ext.getDom("imgMap");
mapTag.style.display = "";
mapTag.src = inObject.ResultSet.Result;
}

);
};

Just like getDetails(), getMap() is also used to clear the Map pane. So, the first check done
is to see if LocalBusinessSearch.currentBusiness is null, and if it is then the map tag is
hidden.

Next, we see if there was a zoom-level argument, and if not we set the default zoom level
to 6, midway in the zoom range. Related to this is the task of resetting the buttons. So, we iter-
ate over the buttons, and for each we check to see if it matches the zoom level. If it does, the
button is disabled; otherwise it is enabled (no sense making the button for the current zoom
level clickable).

After that comes the interesting bit: the web service call to get the new map image. Earlier
we saw how the ScriptTagProxy can be tied to a DataStore to get data, but nothing says you
have to use a ScriptTagProxy within the context of a DataStore. In this case, that’s exactly what
we need to do! So, a new ScriptTagProxy is instantiated, and the URL to the map service is
passed via the config object’s url attribute. Chained to that instantiation is a call to the load()

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

method. The load() method recall accepts an object that defines the parameters to pass to the
service. So, we have our appid, which is needed for the service to accept our request, followed
by the output specification of json, so we’ll get a JSON-P response. Then we have longitude
and latitude, pulled from the current BusinessRecord. The image_width and image_height
attributes specify the size of the image we want back, and zoom is the zoom level.

The second argument to load() is an instance of a new DataReader, and this is similar-
looking to what we saw earlier in terms of extending Function to include the methods of
DataReader.

The third argument is the callback function, here inlined. So, the DataReader’s
readRecords () method fires, and here we're not doing anything with the response—we’re
simply returning it. Because this isn’t in the context of a DataStore, there’s no need to parse
for Records or any of that, and while there is some error handling that could be done, as we
did in ResultsStore, I decided to make things simple. We assume if a search result got a valid
response, then so too would an image request. (This could be a favorite, which means the
search service wouldn’t have been previously called, but like I said, I went for simplicity here,
not necessarily extreme robustness.)

Anyway, the callback executes and is passed the result of the call to readRecords (),
which is just the object resulting from the JSON returned by the service. From it we grab the
ResultsSet.Result element, which happens to be a URL to the image we requested. So we
point the src attribute of the map tag to it, and lo and behold, we have a zoomed image
displayed, perhaps similar to what you see in Figure 6-16.

3 Local Business Search - Mozilla Firefox
ile [dit View Migtory pookmarks Jooks felp
2) tocal busmess search)
y LY 7]
e | po W
| = Y 4
P oeach | Resaits | Detabs -
T Tmlance atnng | Mao
A Pz 2 " 1 = — =
o resrn ' : e EE e @ @
" ! T
Lithe baly 24 5 YAHoO! =
Valentnos Paza as Ll -
Dno's Pizze Restaurant 1%
-} Anthy 4 Pasin 287 4
Pauls Pz 283
Cafe tercea an]
Victoro 1 Pzza an 45
Doming's Pze 5
| Fhnave o
H A Pages ofs F H & Dseygreis2i-2efmt | 0000 p— W\ temek :r' :‘;l
- X
Samed Faveritas, ' " e W t
[— —— - -
@ Pearmo Pizza 1 I + Homating
{4
@ Big Daddy's Pizza %
@ Mike's Brick Oven Pizza 5{ g
A
1
O
R
Zat
" @ £ pone 233MB/27MB | 4ATHE 488H8 & R vSew o075 @ 007 .

Figure 6-16. The map, zoomed to street level

357

358

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

Favorites.js

The next file to examine, Favorites.js, is a fairly small one compared to some of the others.
This is where the functionality related to the favorites list is located, beginning with the con-
figuration object for the FavoritesPanel, the area right below the search TabPanel:

LocalBusinessSearch.UIObjects.FavoritesPanel = function() { return ({
border : false, bodyStyle : "padding-top:8px;", items : [
{ border : false,
html : "<center></center>
" },
{ border: false, bodyStyle : "overflow:scroll”,
html : "<div id=\"divFavorites\"></div>" }

s b

Here we’re simply defining two Panels, which will lay out horizontally (the default way
Panels lay out). The first Panel contains some HTML for the Saved Favorites image. The second
Panel houses the <div> where the generated list of favorites will go. Note that the bodyStyle
of this Panel is set to scroll, so there will always be scrollbars, even when they aren’t, strictly
speaking, necessary. I felt this gave a more consistent look to the UI, especially considering the
automatic height calculations we saw earlier.

The method that generates the list of favorites is up next, and its name is showFavorites():

LocalBusinessSearch.showFavorites = function() {

Ext.getDom("divFavorites").innerHTML = "";

LocalBusinessSearch.Data.FavoritesStore.each(function(inRecord) {
Ext.DomHelper.append("divFavorites"”,
{ tag : "div", id : "fav_" + inRecord.id,
style : "width:100%;margin-bottom:10px;cursor:pointer;",

onclick : "LocalBusinessSearch.favoriteClicked(\"" +
inRecord.id + "\");",
onmouseover : "this.style.backgroundColor = \"#ffffoo\";",
onmouseout : "this.style.backgroundColor = \"\";",
children : [
{ tag : "img", src : "img/favorite.gif", hspace : "4",
align : "absmiddle" },
{ tag : "span", html : inRecord.get("title") }
]
}
)5
Ds

};

For each BusinessRecord in the ResultsStore, some code is executed, and within it are
a few new tricks. First, the Ext.DomHelper.append() method is used to generate the markup.
This method allows you to append some new HTML to an existing element, but it does so

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

without you having to directly write that HTML. Think of this in comparison to the details
code we looked at earlier where there was that giant string construction that built up some
HTML. Here, we don’t have to do that; we can take a more object-oriented approach and let
ExtJS worry about the details. The first argument this method takes is the ID of the DOM node
to insert the created element under. The second argument can be a straight string of HTML,
so you can still do that if you prefer. You can also, as we’ve done here, pass in an object that
defines the element to be inserted. You can also pass in an array of such elements if you're cre-
ating multiple things. Since we only have a single thing to create here, a single object it is! This
object has only one required attribute: tag, which names the HTML tag you want to create.
Here we're creating a <div>. Beyond that, the attributes you include depend on the tag you're
creating and what you want to do with it.

So for instance, we saw earlier that after a favorite is added, this method will be called,
and then the new item is highlighted. To do that highlighting, we need the items to have IDs
associated with them, so id is one of the attributes. There’s also some style setting to be done
here, such as cursor:pointer, so that when the favorite is hovered over the user will get an
indication via cursor change that it is clickable. There’s also an onclick handler defined so that
something happens when it is clicked, and ditto for onmouseover and onmouseout, which is how
the background color is changed to yellow when the favorite is hovered over as well.

Another attribute that you can have is the children attribute. This allows you to create fur-
ther elements as children of the new element. Here I'm creating an tag for the little heart
icon next to the favorite, as well as a element where the title of the favorite is inserted
from the BusinessRecord that is being operated on. Notice how the attributes for the tag
and the tag are all different from the <div> tag being created, supporting what I said
earlier about the attributes beyond the tag attribute, which is always present, being dynamic.

Now, when a favorite is clicked, we just saw that the favoriteClicked() method is called,
and that’s what we’re looking at next:

LocalBusinessSearch.favoriteClicked = function(inID) {

LocalBusinessSearch.currentBusiness =
LocalBusinessSearch.Data.FavoritesStore.getById(inID);
LocalBusinessSearch.currentIsFavorite = true;
LocalBusinessSearch.populateDetails();
Ext.getCmp("DetailsPane").expand();
LocalBusinessSearch.getMap();

var tr = Ext.getCmp("tabResults");

var sm = tr.getSelectionModel();

if (sm.getCount() != 0) {
sm.clearSelections();

}
};

Clicking a favorite requires a couple of things be done. First, the BusinessRecord for the
favorite is pulled out of the FavoritesStore by ID using the getById() DataStore method.
Next, we set the currentIsFavorite flag to true since we’'ve seen where that’s necessary
to know. Then the details are populated, which we’ve also seen already. Next, the details

359

360 CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

Accordion pane is expanded and the map is shown (remember that the default zoom level of 6
will be used here as per the getMap() method’s logic when no zoom factor is passed in).

The last task that needs to be performed is to deselect any items in the search results
Grid that might be selected. We do this just to make the Ul consistent: when an item is
selected from the Grid it is highlighted in the Grid, but here the business being shown isn’t
any that might be selected in the Grid, so it makes sense to clear those selections. Doing so
requires that we get a reference to the Grid by using Ext.getCmp(), then get a reference to its
SelectionModel via its getSelectionModel() method. Then, the getCount() method tells us if
there are any selections they are cleared via a call to clearSelections().

Note The call to clearSelections() is wrapped in the check of getCount () because if we fail to do
S0, and there are no items selected, then the call to clearSelections () results in an error. Figuring that
one out had me running in circles for a good 20 minutes or so!

Search.js

The final source file we have to look at, Search. js, is one of the largest (although still not too
large... thank you, ExtJS!). It’s also where a good portion of the work of this application is
done. Let’s begin by looking at the UT configuration object. I'll split it in half to make it a little
easier to digest, beginning with the part that defines the Search tab and form:

LocalBusinessSearch.UIObjects.SearchTabPanel = function() { return ({
id : "SearchTabs", activeTab : 0, height : 300, items : [
{ title : "Search", 1id : "tabSearch",
bodyStyle : "padding:4px", items : [
{ xtype : "form", id : "SearchForm", labelWidth : 100,
border : false, monitorValid : true, items : [

{ xtype : "textfield", fieldlLabel : "Keyword",
name : "query", width : 250, allowBlank : false },

{ xtype : "combo", fieldLabel : "Sort By", width : 90,
name : "sort", editable : false, triggerAction : "all",
mode : "local", valueField : "optVal", displayField : "optVal",
store : LocalBusinessSearch.Data.searchSortStore },

{ xtype : "combo", fieldLabel : "Minimum Rating", width : 4o,
name : "minimum_rating", editable : false, triggerAction : "all",
mode : "local", valueField : "optVal", displayField : "optval",
store : LocalBusinessSearch.Data.searchMinimumRatingStore },

{ xtype : "textfield", fieldlLabel : "Street",
name : "street", id : "searchStreet", width : 200 },

{ xtype : "textfield", fieldlLabel : "City",
name : "city", id : "searchCity", width : 175 },

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

{ xtype : "combo", fieldlLabel : "State", width : 125,
name : "state", editable : false, triggerAction : "all",
mode : "local", valueField : "optVal", displayField : "optval",
store : LocalBusinessSearch.Data.searchStateStore,
id : "searchState" },
{ xtype : "textfield", fieldlLabel : "Zip Code", vtype : "zipcode",
name : "zip", id : "searchzZip", width : 50 },
{ xtype : "numberfield", fieldlLabel : "Radius", width : 175,
name : "radius", minValue : 5, maxValue : 1000, width : 50 }
1
buttons : [
{ text : "Execute Search", formBind : true,
icon : "img/icon_search.gif",
cls : "x-btn-text-icon", handler : function() {
LocalBusinessSearch.UIEventHandlers.executeSearch();
}

b
{ text : "Save Location As Default",

icon : "img/icon_save.gif", cls : "x-btn-text-icon",
handler :
LocalBusinessSearch.UIEventHandlers.savelocationAsDefault

Now, in other applications we’ve had tabs, and we’ve had forms, and there’s nothing
here that we haven'’t seen before. The form uses validation to check a few things: that the
Keyword field has a value and that the Zip Code field is in the appropriate format. Note the
Zip Code field’s use of the zipcode vtype that we saw defined early on. Speaking of that vtype,
in Figure 6-17 you can see the result of that particular validation failing (it also shows the Key-
word field as invalid since it has no value entered).

A number of the fields here are NumberFields, such as the Radius field, which allows us to
ensure they too are in a proper format (a number of course!) and are in a valid range. Note that
blank is in fact a valid value in those fields, so they don’t have allowBlank set to false as the
Keyword field does.

We have a couple of ComboBox fields as well. They are tied to the various DataStores we saw
defined earlier.

Finally, two Buttons are attached to the form: Execute Search and Save Location As
Default. The former is tied to the form’s validation so it will be disabled when the form is not
in a valid state. Both have icons on them, just to make them a little prettier, so the cls attribute
has the value x-btn-text-icon to allow for that (and to still allow for text and to make sure it all
looks right).

361

362

CHAPTER 6

WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

3 Local Business Search - Mozilla Firefos

ble L4t View Migtory Pookmarks lsols el 5
9 bocal Business Search x| -
— . LOGAL BURINESR 2 Hi
4 | @ J Wnenina Yallow Pages fusiient cool snaught
' 4
Scarch | Rewils Detads. =
Keyword; I Title; Lirde Traly
Soet By: - Longitude: 73293493
Mnmum Batng: - Latitude: 40.71064
Strest: andro road Distance: 248
oy Phone: (631) 661-6246
I " Rating: 5
o >/ Address: 36 Limon Bhd
Zip Code: 13 L] City: West Ishp
Radhas: Eozccw—mxrn*y-unf-nu] State: NY
Busi Web Site:
| [l S koo s Dot
@ Padarmo Pizza
@ Big Daddy's Pizza
@ Mike's Brick Oven Pizza
@ Little Italy
Lo - -
[@ E oone F33MB [27 HB 4RTHE[4paHE 3 B vSew o075 @ 1237 o

Figure 6-17. The custom vtype in action

Now let’s move on to the Results tab, which has a few interesting and new things to talk

about:

{ title :
xtype :

"Results", id : "tabResults", layout : "fit", disabled : true,
"grid", autoExpandColumn : "colTitle", stripeRows : true,

sm : new Ext.grid.RowSelectionModel({ singleSelect : true }),
listeners: {
rowclick : {

fn

¥
}
1

store :

{ he

: function(inGrid, inRowIndex, inEventObject) {
LocalBusinessSearch.currentBusiness =

inGrid.getSelectionModel().getSelected();
LocalBusinessSearch.currentIsFavorite = false;
LocalBusinessSearch.populateDetails();
Ext.getCmp("DetailsPane").expand();
LocalBusinessSearch.getMap();

LocalBusinessSearch.Data.ResultsStore, columns : [
ader : "Title", sortable : true,

datalndex : "title", id : "colTitle" },

{ he
{ he
|

ader : "Distance", sortable : true, dataIndex : "distance" },
ader : "Rating", sortable : true, datalndex : "rating" }

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

bbar : new Ext.PagingToolbar({
pageSize : 10, paramNames : { start : "start", limit : "results" },
store : LocalBusinessSearch.Data.ResultsStore,
displayInfo : true, id : "bbar",
displayMsg : "Displaying results {0} - {1} of {2}",
emptyMsg : "No data to display”
H
}
]
IS

Before we get into the code, though, have a look at Figure 6-18, where you can see some
search results.

3 Local Business Search - Moz fox

ile [dit Wiew Migtory pookmarks Jools felp

2 iocal Busmess Search x|
K

Sewch | Resalts ! Detas A

T Ditance Ratng | o

Ooming's Pizza 008
Papa John's LR 8
Pre ol Sakvater oar §
Dock 05 L]
Fenzy's Pzze & Restaurant 058

| Fredy's Pizzs & Restaurant LR/
Jo's Pizzs orn
Amcre Fzzena os s
Sbarms o
Mamma Santne Fizza 085

o el ofel b oHo2 Dusglarrg resuls 1~ 190fB1 |
@ Padarmo Pizza
@ Big Daddy's Pizza

@ Mike's Brick Oven Pizza

[(@ [T e/ fC:fextbok ché- localfcode (index htma Pk H!}.?! MB M?Il.rﬂ.n.l.ﬂ .o' n.m arses @ 17

Figure 6-18. Some search results, with the mouse hovering over a row

First, this tab is disabled initially so that users can only flip to this tab when they’ve per-
formed a search. This is to avoid a problem with the PagingToolbar that I'll talk about shortly
(the PagingToolbar as well as the issue!).

The Grid is defined much like the others we’ve seen. It has a rowclick event handler that
does the work that is similar to the work of the favoriteClicked() method we looked at in the
previous section. This is no accident: the work necessary in this situation is basically the same
as when a favorite is clicked, except that currentIsFavorite is set to false.

The new thing here is the bbar attribute, which we haven’t seen on a Grid before. The bbar
attribute defines a Toolbar to be placed at the bottom of the Grid (in fact, at the bottom of any
Panel, of which GridPanel is one). The element defined by the object that is the value of bbar

363

364

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

must be an Ext.Toolbar, or a descendant. One such descendant is the PagingToolbar. This is
a specialized Toolbar that allows for paging through large result sets. To use it, you tie it to the
same DataStore as the Grid using the store attribute, and then define a few other attributes.
These attributes are as follows:

* pageSize, which determines how many results to show at a time in the Grid

e displayInfo, which when true, as it is here, displays information about what items are
being shown

e displayMsg, which is the message to be displayed (this string is formatted using the
braced numbers 0-2 as tokens that are replaced by the values for start, end, and total,
respectively)

* emptyMsg, which is what will be displayed if there are no items to display

These messages are displayed in the PagingToolbar itself on the right.

There is one other attribute: paramNames. This attribute maps parameter names for load
calls. Let me explain: whenever one of the paging buttons on the PagingToolbar is clicked, a
call to the load() method of the associated DataStore is made. The PagingToolbar will pass
along to it some parameters that define where in the results it is, and what elements it wants
to display. For example, say there are 100 results and you have a pageSize of 10 and you're
currently viewing items 1-10. If you click the Next Page button, the PagingToolbar will request
the next 10 items; it will do so by specifying a starting position of 11, as well as the pageSize of
10. By default, the names of the parameters passed to the DataStore will be start and 1imit.
These two will be passed as HTTP parameters to the server fulfilling the request for data that
the DataStore will wind up making. In the case of the Yahoo! search service, it uses the start
parameter, but it does not use a parameter named 1imit. Instead, it uses one named results.
Therefore, the paramNames allows us to map 1imit, the name of the parameter internal to the
PagingToolbar, to results, the parameter name the web service will understand.

I'hope you realize at this point that something fairly complex, paging through result sets,
was just implemented with nothing but some JSON configuration information! Well, nothing
but that and the code we wrote in the DataStore... but still' I mean, every time you click one of
the buttons on the PagingToolbar, Ext JS is handling all the behind-the-scenes work of figuring
out what results to request and asking the DataStore to get the data. Data binding means the
Grid is updated automatically once the DataStore, and the web service by extension, fulfills the
request. If you've ever hand-coded something like that yourself, then you surely realize how
much work this saves you (and yes, I'll stop calling you “Shirley*”).

4 Ifyou’ve never seen the movies Airplane and Airplane 111 would say, first, what have you been doing
all this time? Go out and rent or buy the DVDs now! If you have seen them, then you recognize the
joke where someone says “Surely you can’t be serious” and the reply comes back “Yes, I am serious,
and stop calling me Shirley.” This was used a couple of times in both movies to great comic effect, and
most of us who have seen the movies use the line in real life every chance we get!

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

When the Execute Search button is clicked, I'll give you just one guess what method is
executed! That's right, it’s executeSearch(), and I'm going to break this into some chunks as
well, starting with this one:

LocalBusinessSearch.UIEventHandlers.executeSearch = function() {

LocalBusinessSearch.searchParams =
Ext.getCmp("SearchForm").getForm().getValues();

if (LocalBusinessSearch.searchParams.street == "" 8&
LocalBusinessSearch.searchParams.city == "" &&
LocalBusinessSearch.searchParams.state == "" &&
LocalBusinessSearch.searchParams.zip == "") {

Ext.MessageBox.show({
title : "Search Criteria Error", buttons : Ext.MessageBox.OK,
msg : "You must enter a location to search around " +
"(just zip code at a minimum)", animEl : "divSource"

1
return;
}
if (LocalBusinessSearch.searchParams.street != "" 8&
(LocalBusinessSearch.searchParams.city == "" ||
LocalBusinessSearch.searchParams.state == "")) {

Ext.MessageBox.show({
title : "Search Criteria Error", buttons : Ext.MessageBox.OK,
msg : "When street is entered you must also enter city and state",
animgl : "divSource"

1);

return;

}

First, the values of the form are retrieved into searchParams, and then a couple of valida-
tions are performed (they could have been coded into the form, but I felt it was simply easier
to implement them this way). The first check is to ensure some component of a location, Zip
Code at a minimum, has been entered. A valid search can’t be performed otherwise. If that
test passes, then we need to ensure that if a Street Address is entered, so too is a City and State.
While Zip Code alone is a sufficient location to perform a search, all of the other three must be
entered in concert to be able to search. In Figure 6-19 you can see the results of a validation
failure at this point.

365

366

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

3 Local Business Search - Mazilla Firefox ~
fle [di View figtory Dookmarks looks lelp ¥
2) Local Busaness Search) -
— — = - © LOCAL EURINESZ BEARGH
4 E 'g @ ® @ \Whan tha Yallow Pages just jenT eosl ancugh!
Search Durtads
Kayword; oum Title: Lirde Iraby
X Longitude: 732923493
¥ Latitude: 40.71064
. o Distance: 248
Phone: (631) B61-6246
i Rating: 5
= Address: 636 Union Bivd
2o Code: e it .
i When strect i entered you must sk enter cty and state
- 5£||_-£n.l- | H Saee Lotabon MDv'_\)IJ
Sooed Faverftes,
@ Padormo Piza
@ Biz Daddy's Pizza
e Miks's Brick Oven Pizza
@ Liths Ttaly
Hag
[%& @ [pone ZAIMB/ITMB | 4RTHE[4REHE & R YSew o075k @ 007 .

Figure 6-19. Oops, gotta enter the right thing, dude!

Next, a MessageBox is shown to indicate a search is in progress:

Ext.MessageBox. show({
title : "Please Wait",
msg : "... Searching ...",
buttons : false, closable : false

D;
Ext.getCmp("tabResults").disable();

Also at this point, the Results tab is disabled. This is to account for the case where a previ-
ous set of search results is sitting there, and at this point I'll mention that problem with paging
that I saw. This seems to be a known issue with the PagingToolbar, but there doesn’t appear to
be any simple way to reset the PagingToolbar or clear it, even if the DataStore is cleared. While
researching this I came across a solution that, frankly, seemed like a whole lot more work than
I'd like and seemed to me rather “hacky” in nature. Now, me and hacky solutions are good
friends to be sure, but in this case there was a far easier solution: just disable the Results tab!
As it turns out, loading the DataStore with new data resets the PagingToolbar, so when the next
set of results comes in, everything will work as expected. Sometimes, hiding a problem is a
perfectly valid solution!

Anyway, once the Please Wait window is showing, it’s time to deal with some default
search value issues:

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

if (Ext.isEmpty(LocalBusinessSearch.searchParams.sort)) {
LocalBusinessSearch.searchParams.sort = "distance";

}

if (Ext.isEmpty(LocalBusinessSearch.searchParams.radius)) {
LocalBusinessSearch.searchParams.radius = 5;

}

if (Ext.isEmpty(LocalBusinessSearch.searchParams.minimum rating)) {
LocalBusinessSearch.searchParams.minimum_rating = 0;

}

blank is a valid value in the Sort, Radius, and Minimum Rating fields because we're setting
some default values for them. In addition to default values, there’s some other static values to
set:

LocalBusinessSearch.searchParams.appid = LocalBusinessSearch.appID;

LocalBusinessSearch.searchParams.output = "json";

LocalBusinessSearch.searchParams.sort =
Ext.util.Format.lowercase(LocalBusinessSearch.searchParams.sort);

The appID is set on the searchParams, as is the output parameter. These are fed to the
web service and, as you'll recall, are required to make the request work and to ensure we
get aJSON-P response. Also, the sort parameter is set to lowercase using Ext.util.Format.
lowercase() because the values in the ComboBox have capital letters in them so they look nice
on the screen, but the web service doesn’t take too kindly to the values not being all lowercase.
Once that’s done, it’s time to get some search results! Unlike with the paging toolbar
where the 1load() method of the ResultsStore will be called automatically, there is no such
automatic trigger here, so we have to do it ourselves, like so:

LocalBusinessSearch.Data.ResultsStore.load({
params : { start : 0, results : 10 },
callback : function(inRecords, inOptions, inSuccess) {
if (inRecords.length == 0) {
Ext.MessageBox.show({
title : LocalBusinessSearch.resultsTitle, buttons : Ext.MessageBox.OK,
msg : LocalBusinessSearch.resultsMessage, closable : true,
animel : "divSource"
1)
return;
}
Ext.getCmp("tabResults").enable();
Ext.getCmp("SearchTabs").setActiveTab("tabResults");
Ext.MessageBox.hide();

};
};

367

368

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

The first argument to this method is an object that sets some options for the load. Here we
have only two: start and results, which you should recognize are the parameter names we
specified in the paramNames attribute passed into the PagingToolbar’s definition. To begin with,
we want the first 10 records, so we start with item 0, and we want 10 results at a time.

The second argument to the load() method is a callback function to be called after
the DataProxy fetches the data from the server and the DataReader has parsed the response
into BusinessRecords. The first thing done in this callback is to see if we actually got any
BusinessRecords back. If not, that means one of those “soft” error conditions we discussed
earlier occurred, so in that situation we need to display the message using Ext.MessageBox.
show(), and using the LocalBusinessSearch.resultsTitle and LocalBusinessSearch.
resultsMessage attributes that we set in code in ResultsStore.

If we got results back, though, all we need to do now is enable that Results tab and flip
over to it, and of course hide the MessageBox, which remember is the Please Wait message. The
magic of data binding means the Grid now has the results showing, and paging is all ready to
go!

The last method to look at is the method called when that Save Location As Default button
is clicked:

LocalBusinessSearch.UIEventHandlers.savelocationAsDefault = function() {

var formVals = Ext.getCmp("SearchForm").getForm().getValues();
LocalBusinessSearch.cookieProvider.set(

"defaultlLocation street", formvVals.street);
LocalBusinessSearch.cookieProvider.set(

"defaultlocation city", formVals.city);
LocalBusinessSearch.cookieProvider.set(

"defaultlLocation state", formVals.state);
LocalBusinessSearch.cookieProvider.set(

"defaultLocation_zip", formvals.zip);

Ext.MessageBox.show({
title : "Default Location Saved", buttons : Ext.MessageBox.OK,
msg : "This location has been saved and will be used automatically " +
"next time you start the application", animkl : "divSource"

};
};

Saving the default location isn’t too tough: get the values of the search form and set some
cookies. The cookieProvider we created earlier exposes a simple set() method that accepts a
key, or name for the cookie, and the value of the cookie to set. Once all the location fields have
been stored (whether they are blank or not doesn’t matter), then a MessageBox is thrown up to
indicate the location has been successfully saved. That’s it!

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 369

Suggested Exercises

This is now my fifth book, and each one was an Apress “practical” book, which means I've
written a whole lot of mini-applications over the past few years! I refer back to them when I
have questions or need to remember how to do something. This application, however, is the
first that I've found myself using on a pretty regular basis! I find it to be genuinely useful in my
day-to-day life.

That being said, I think there are some things that could be added to make it even more
useful, and I think they would be good learning exercises for you to undertake as well. So here
are a few ideas:

¢ Add a link to the Yahoo! page with the details for the selected business. Look through
the documentation for the local search service and you’ll find that such a link is part of
the data returned. This will enable you to see things like user ratings and reviews.

¢ Add a Google search pane to the Accordion. This will enable you to see a list of search
hits for a given business as provided by Google. I say Google for two reasons: first, as for
most of the planet, it is my search engine of choice because I find the results are gen-
erally better than other engines, and second, I want to prove that there’s no inherent
limitation on mashing up services from two sources. Google provides web APIs just like
Yahoo! does, and while you could use Yahoo!’s web search services it might be fun to
play with Google a little too.

* Store the last, say, three searches in the Gears database and provide a way to quickly
pull them up. Store the search results, not just the search criteria. No sense pinging
Yahoo!’s servers if you can avoid it!

¢ Ifyou select an item in the search results Grid, you can then use the arrow keys to move
up and down, but nothing changes on the right. It probably should, so how about you
fix that?

* Add the ability to get directions to a selected business. You may have to look around for
a service that gives you this capability; I'd check into what else Yahoo! offers first, and
then perhaps Google’s web API offerings.

* Use aslider in place of the zoom buttons on the Map pane. I wrote a version of this
application for my last book on Dojo, and that’s exactly what I did there. I ran into
some issues with making it work with Ext JS, so time being tight I had to drop back and
punt, and so using buttons was the answer. However, as an exercise, and heck, even if
you can’t make it work 100 percent, switching to a slider is a good exercise. The slider
itself works just fine, but there were some relatively minor rendering issues I ran into
that, while you could live with them as a result of an exercise like this, you wouldn’t
want to ship a book with them!

370

CHAPTER 6 WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH

Summary

In this chapter, we looked at the concept of a mashup and saw how Ext JS provides some very
nice functions for being able to call on remote web services, allowing you to develop a com-
pletely client-side mashup. We developed such an application and saw some of the services
Yahoo! provides. We also learned about JSON-P, the technique underlying the functions Ext JS
provides. We got to play with some more widgets and saw some more utility functions in
action. We saw more of Ext JS’s data subsystem than ever before. Plus, we wound up with what
I think is a pretty useful application, which is definitely a win in my book!

In the next chapter we’ll develop a tool that works with the Gears database, a very handy
thing to have in your toolbox for sure!

CHAPTER 7

Your Dad Had a Workbench,
Now So Do You: SQL Workbench

When I'was a kid, I'd go into my dad’s tool closet and take out a bunch of his tools, find the
nearest electronic device, and proceed to take it apart. This didn’t always make my parents
too happy but at least they can rejoice in the fact that my son and daughter are doing the same
thing on occasion to me! Looking inside something and figuring out what makes it tick is part
and parcel of what we do as software developers, and just plain human beings. High-level
abstractions and descriptions are often all we need, but diving into the nitty-gritty details is at
other times exactly what we need.

We’ve been using Gears throughout this book, the database portion of it at least, but being
able to peer into the databases themselves, unless you use the SQLite Manager add-on for
Firefox, isn’t something within our power. In this chapter we’ll create an application that aims
to alleviate that shortcoming!

We’ll build ourselves an application called SQLWorkbench, and in the process we’ll see a
few new things in Ext JS. By the end of this chapter we’ll have a handy tool that will prove valu-
able when we’re using Gears for local database storage.

What’s This Application Do Anyway?

If you use the Firefox browser—and you do in all probability if you're a (smart) developer—
then I suggest getting familiar with the SQLite Manager add-on (http://code.google.com/p/
sqlite-manager/). This is an especially great tool if you are doing Gears development, as we are
in this book. This add-on is a utility for peeking directly into the SQLite databases that Firefox
uses under the covers to store user data, as well as the databases created by Gears—in fact, any
SQLite database you can name.

SQLite Manager was created by developer Mrinal Kant. It is a fabulous piece of work that
makes dealing with SQLite vastly easier than it otherwise would be. You have already seen
it in action without realizing it: all those screenshots where table structures have appeared
throughout this book are a result of taking a snapshot of the table structure browser the add-
on provides. Let’s take a look at the full UI, though, shown in Figure 7-1.

3n

372

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

9 squite Manager - C:\Documents and Settings\Administrator\Local Settings\Application Data\Mozilla\Firefox\Profiles\rm96ldas. default\Google Gears ... = 0 & |
Database Table Index View Trigger Tools Help
Refresh [@ [CreateTable [DropTable [[I] CreateIndex [[f DropIndex Directory * |(elect Profile [¥] o
test1#database M Structure | Browse & Search H Execute SQL || DB Settings |
& Master Table (1) [orop_| [empty | [Rename | [Reindex | [copy | [Export |
 Tables (2)
bigTable12 Information from Master table
test TABLE : bigTable12
 Views (0) Associated with table/view: bigTable12 Rootpage: 6
Indexes (3) SQL statement that created this object:
Triggers (0) CREATE TABLE "bigTable12" (“firstNiame” TEXT NOT NULL , “lastName™ TEXT NOT NULL , "gender” CHAR, "age” E
INTEGER, "phoneNumber” TEXT, "address1” VARCHAR, "address2” VARCHAR, "city” VARCHAR, "state”
VARCHAR, “zipCode” INTEGER, ~employer” TEXT NOT NULL , "salary” FLOAT NOT NULL , "spouse” TEXT,
" " INTEGER, "fax * INTEGER, "eMail” VARCHAR, “imMame” TEXT, "webSite” VARCHAR, [v]
¢ More Info il
(PSS U p— — |
- Columns
|| name Type P.Key NotNull Default
4 | [frstname | [1ex | [Wor™] [prop column | [Alter column |
[Institame | [ext | [wore | [prop column | [Alter column |
‘gender Hcmm | |IIU|.L | | prop column | [Alter Column |
[2ge | [| [wore | [prop column | [Alter column | 1
1 | [ohonchumber | [texr | [mnr | [Dropcolumn | [Alter Column |
‘addrﬁsl HVARCHAR | |IIU|.L | [prop Column | [Alter Column |
| address2 | [varcHar | [noL | [prop column | [alter column |
‘citv HVAR(HAR | |IIU|.L | [prop Column | [Alter Column |
[state | [varcHar | [WoL™ | [prop column | [alter Column |
‘zip(ode H]N'IEGER | |IIU|.L | [prop Column | [Alter Column |
| employer | [Tex | [woL ™ [prop column | [Alter Column | L
| salary | [FoaT | [moe | [prop column | [Ater Column |
[spouse | [Tex | [woL ™ [orop column | [alter column |
[celliumber | [wieeer | [Wo | [prop column | [Alter Column |
‘faxﬂumber Hmzcm | |||uu | [prop Column | [Alter Column |
[email | [varcnar | 'mue | [proo column | [Atter Column | (]
SQLite 3.5.9 Gecko 1.9.0.5 0.4.2 Shared Humber of files in selected directory: 10 ET:1

Figure 7-1. The SQLite Manager Firefox add-on in all its glory!

In short, the application we’ll be developing in this chapter is largely modeled after SQLite
Manager. In fact, when I started the project my intention was to use it nearly note for note, as
the expression goes, and mimic what you see here. As I developed the application, though, I
made some fairly large deviations from SQLite Manager, for better or worse, but most of the
functionality is still taken from the add-on.

So, in more specific terms, what features are we going to provide and what tricks will we
use to pull it off? Well, let’s see...

* For this application we’ll use an entirely different UI structure than we’ve previously
used. There will be no master viewport like we’ve always had. Instead, everything will
be a Window (except for the menu bar that we’ll have at the top). In other words, it’s a
desktop metaphor.

» Users should be able to see a list of databases available to them, and they should be
able to add and remove databases. This means not only adding and removing them
from the list but adding and removing them physically from the file system as well.

» For any database selected, a list of the tables within it should be presented and we
should be able to create new tables.

CHAPTER 7

YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

* The application should provide the ability to view the details of a selected table, includ-
ing its structure and the data it contains, in a read-only browse mode.

e Common table operations should be available, including dropping the table, empty-
ing the table of all data (but leaving the table structure intact), renaming the table, and
copying the table (data and structure).

¢ There should be available to users a query tool that allows for arbitrary SQL statements
to be executed against any database they wish.

That’s a fair bit of functionality to implement, and is probably most of what you’d need
in a tool like this. The advantage of building this application—aside from the obvious benefit
of learning more about Ext JS, Gears, and SQLite—is that you can have the same basic capa-
bilities that SQLite Manager provides outside of Firefox, say in Internet Explorer. To be fair,
SQLite Manager is still the better tool overall, and it isn’t my intent to compete with it, but as
learning experiences go, this should be a good one, and the result of the work is a truly useful
tool too. So let’s get to it and build ourselves something useful!

Overall Structure and Files

The overall application structure is the same as that of previous applications, as you can see in
Figure 7-2. Four directories exist in the root of the application: css, ext, img, and js.

=] @‘ Ct\sglworkbench

£

EI@‘ cs8

1107 ext

By img

----- i) About.gif

----- 4} AddDatabase. gif
----- 4| Cancel.gif

..... _‘_J Copy.gif

----- 4} CreateNew.gif
..... ;_J Drop.gif

..... ;_J Empty.if

-----) ExecuteSQL.gif
..... ;_J Help.gif

----- 1)) ListDatabases. gif
.....) Ok.gif

----- ;_J QueryTool.gif

----- /) RemoveDatabase gif
----- 4l Rename. gif

B i

----- ":“ CreateTableWindow.js

»| Databases\Window.js

-,._ gears_init.js
= -_ Help.js
-,._ QueryToolWindow.js
=5 sQLWorkbench.js
----- i«_ StoresAndRecords.js
% TableDetailsWindow.js
z TablesWindow. js
----- @ index.htm

----- [Z] license. txt

Figure 7-2. The application’s directory structure and constituent files

In the root we have the index.htmfile as always, and the license.txt file that puts this
application under the GPL license. In the css directory is the single styles.css file that we’ve

373

374

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

come to expect housing the style sheet information for the application, and ext is Ext JS itself.
Once again, this is a plain-vanilla Ext JS “installation,” with no extra themes or other changes.

The img directory contains a batch of GIF files, all of which are icons used on various but-
tons throughout the application. Without exception, the name of the image file matches the
caption of the button it appears on.

In the js directory we have the usual gears_init. js file that allows us to use Gears, and a
main JavaScript file named after the application, SQLWorkbench. js in this case. This is where
we'll find the init() method that, just like other applications, is essentially the entry point into
the application code, as well as some other general code. There is also a StoresAndRecords. js
file containing the definition of the Records and Stores used in this application.

The rest of the files correspond to individual Windows seen throughout the application and
the code that goes along with them. So, the Window that shows the list of available databases is in
the DatabasesWindow. js file, and the query tool’s Window is in QueryToolWindow. js and so on. The
Help. js file contains the three (sort of, as we’ll see) Windows that you see when viewing help.

The Markup

As we’ve done with other applications, we’ll begin with the basic markup found in index.htm
that forms the basis of the application:

<html>
<head>
<title>SQL Workbench</title>

<link rel="stylesheet" type="text/css" href="ext/resources/css/ext-all.css">
<script type="text/javascript" src="ext/adapter/ext/ext-base.js"></script>
<script type="text/javascript" src="ext/ext-all.js"></script>

<script src="js/gears init.js"></script>

Nothing new here: we obviously need Ext JS to be imported (ext-all. js), along with its
style sheet (ext-all.css) and we’re using Ext JS in stand-alone mode so no third-party librar-
ies are needed, so ext-base. js is the adapter we’ll use.

Next up are the imports of the resources specific to this application:

<link rel="stylesheet" type="text/css" href="css/styles.css">

<script type="text/javascript" src="js/SQLWorkbench.js"></script>
<script type="text/javascript" src="js/StoresAndRecords.js"></script>
<script type="text/javascript" src="js/CreateTableWindow.js"></script>
<script type="text/javascript" src="js/DatabasesWindow.js"></script>
<script type="text/javascript" src="js/TableDetailsWindow.js"></script>
<script type="text/javascript" src="js/TablesWindow.js"></script>
<script type="text/javascript" src="js/QueryToolWindow.js"></script>
<script type="text/javascript" src="js/Help.js"></script>

<script>Ext.onReady(SQLWorkbench.init);</script>

</head>

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

No surprises there either! Ext.onReady () kick-starts the application by calling the init()
method of the SQLWorkbench class—we’ll get to that soon.

Note In fact, SQLWorkbench is a namespace created on our behalf by a call to Ext.namespace(), as
we’ve already seen. Since a namespace is nothing but a JavaScript function, which is how namespacing
of code is generally achieved in JavaScript, it's quite natural to refer to a namespace as a class or even
an object. As it happens, all three terms are correct, in addition to the term function, in this case since a
namespace is a function is a class is an object in JavaScript!

For now, let’s look at the HTML in the <body> of this document:

<body style="overflow:hidden;">
<div id="divSource" class="cssSource"></div>

<div id="divToolbar"
style="width:100%;height:32px;position:absolute;left:0px;top:0px;"></div>

Setting the style attribute overflow to a value of hidden on the <body> tag ensures that
we won'’t have scrollbars in the browser content area, which can happen in some brows-
ers because of the way the Toolbar content is generated by Ext JS within the DOM. The
divSource <div> is present once more for animation sourcing (i.e., where the Windows fly in
from and fly to when closed).

There is also the divToolbar <div>. This is where the Toolbar will be inserted when we
create it later. Note the width is set to 100% to stretch across the entire page, as a Toolbar typi-
cally does. Also note how it’s positioned absolutely at pixel location 0, 0 so it’s right there at the
top of the page. I also set a height on it, although strictly speaking that isn’t necessary since
the <div> will expand to accommodate the content inserted into it. Still, I prefer to specify the
height so that I always can count on the exact size when I try to position other elements rela-
tive to it (such as one particular Window, as we’ll see in a bit).

The markup for the About Window is next:

<div id="dialogAbout" class="x-hidden">
<div class="x-window-header">About SQLWorkbench</div>
<div class="x-window-body">
<table width="100%" height="100%" border="0" cellpadding="0"
cellspacing="0" class="cssAbout">
<tr><td align="center" valign="middle">
SQLWorkbench

Version 1.0

Frank W. Zammetti

Originally appeared in the book

"Practical Ext JS Projects With Gears"

Apress, 2009

375

376 CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

All rights reserved

(Rights?!? What rights, you damned dirty ape?!?)
</td></tr>
</table>
</div>
</div>

</body>

</html>

This is a simple Window definition in HTML, using the Ext JS-provided style classes to mark
up the parts of the Window such as the header (x-window-header) and the body (x-window-body).
Other than that, it’s a simple table-based layout (I know, I'm evil for using a table-based lay-
out...so sue me!).

As I mentioned earlier, one of the things I wanted to use was a whole different UI
design paradigm with this application. Previously, all the applications you've seen used a
BorderLayout to present the Ul in discrete sections. This is a typical layout structure, one
that works extremely well for all sorts of applications, which is why we’ve seen so much of it.
However, it’s far from the only paradigm you can use; another you could choose is the one
employed in this application where everything you interact with is in its own separate Window.

This is essentially the same desktop metaphor your operating system itself uses
(unless you're one of those masochistic personalities who prefer their Unix command
line—I kid!). This is a good paradigm to choose when you have multiple elements to open
and you don’t know beforehand how many there may be. Since we allow a Window for each
database to list its tables, that pretty much screams out “Windows!” In Figure 7-3 you can
see what I'm talking about.

Here you can see we have the Databases Window, of which there is always a single one
(although it can be closed too). Then there are two Table List Windows, one for each database.
Finally, there is another Window opened that shows details of a selected table. I can open as
many of these as I wish, drag them around, resize them or close them, and basically organize
my workspace however I choose. This is fundamentally different from what you’d get with a
Borderlayout, and in fact there is no layout in play here! There is no Viewport either, as you'll
see as we go through the code. As it turns out, while a Viewport typically is used in an ExtJS
application, there is no rule that says it has to be used, and this is such a case.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

-
) sqL workbench - Mozilla Firefox

File Edit View History Bookmarks Tools Help 5t
[@ | (] sqLWorkbench x| =
h.l,hstDatahasEs #% Query Tool | {# Help Bi\bnut
= DB [=11k23
Databases *| z
testdb I J Structure “ Browse |
anotherDB Name | Type | (TP Key? | [Hotnullz | Default
accounthumber INTEGER
balance FLOAT
status CHAR A
v ||
§.) AddDatabase | wes Remove Database
> Drop | &M Empty | .. Rename " Copy
[+
anotherDB : Table List x| testdb : Table List kad
| accounts table1
shareholders
A Create Mew #%, Create New
[S& () [EZ] filez///C/extbook/ch7-sqlfco... (i - 202MB/27MB [487MB/488MB & [YSlow 0931s & 1337 »

Figure 7-3. An example of the multi-Window Ul design this application is based on

The Style Sheet

Next up is the style sheet, and we’ll go through this quickly because it is by and large just
repeating much of what we’ve seen in previous applications. Here’s our constant companion,
the cssSource class, which styles the divSource <div>:

.cssSource {
position : absolute;
left: 1px;
top : 1px;
width : 100%;
height : 1px;

377

378

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

As the Ul is built up, we need the Tablelayouts used to stretch across their container,
which they don’t do by default. So here the x-table-layout, an Ext JS-provided class, is over-
ridden to give the stretching we're after:

.x-table-layout {
width : 100%;

}

In the Table Details Windows you can view the structure of the table, as well as browse its
contents. In the course of constructing those tables, we need to put headers on them. This
cssTableHeader class is what styles those headers. I chose a background color that would
match the ExtJS default theme, and similarly the font styling goes along with Window title
styling (at least roughly):

.cssTableHeader {
color : #15428b;
font-weight : bold;
font-size : 11px;
font-family : tahoma;
padding : 4px;

The data that is displayed in the tables I just mentioned get styled with this cssTableCell
class. The most important point here is that it adds some padding around each data element
so the table doesn’t appear all bunched up:

.cssTableCell {
padding : 4px;
font-size : 11px;
font-family : tahoma;

}

Some of the cells in those same tables, namely the ones with Checkboxes in them, need
to be centered to look right—that’s what the cssTableCentered class is for. As you'll see, the
cssTableCell class is still applied, but the cssTableCentered is added to give the centering.
Keeping these as two separate classes allows for easily making a cell centered versus not cen-
tered while at the same time avoiding adding specific CSS classes for all the cases.

.cssTableCentered {
text-align : center;

}

Finally, cssAbout is the style class applied to the text in the About Window:

.cssAbout {
font-size : 11pt;
font-family : tahoma,arial,verdana,sans-serif;

}

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

The Code

The code for this application is broken out into multiple source files, similarly to how the pre-
vious few applications have been in that each file, generally, relates to a particular UT element.
Naturally, though, the first one we’re looking at doesn’t!

SQLWorkbench.js

Now we start with the true code for this application, beginning with the contents of
SQLWorkbench. js. You can see the UML diagram for this class in Figure 7-4. Its members
include 8 fields and 17 methods. Many of these are not defined in SQLWorkbench. js, so my
intention is to introduce each as they are encountered in whatever source file we happen
to be examining at the time.

SQLWorkbench

(+lastSelectedDatabase : String
+currentHelpPage : int
+helpPagesContent : string[]
+cookieProvider : Ext.state.CookieProvider
+Data.DatabaseRecord : Ext.data.Record
+Data.TableRecord : Ext.data.Record
+Data.databasesStore : Ext.data.Store

\ +Data.columnTypeStore : Ext.data.Store

(+init()
+showAbout()
+showHelp()
+listDatabases()
+addDatabase()
+removeDatabase()
+updateDatabaseCookies()
+listTables()
+listTableDetails()
+showAlIRecords()
+doTableOp() : boolean
+renameCopyTable()
+parseCreateSQL() : Object
+createTable()
+createTableExecute()
+showQueryTool()

\ +executeArbitrarySQL() Y,

N

/
<

Figure 7-4. UML class diagram of the SQLWorkbench class

As I mentioned earlier, this “class” is actually a namespace, which you can see created
with the first executable statement in this file:

Ext.namespace("SQLWorkbench", "SQLWorkbench.UIObjects",
"SQLWorkbench.UIEventHandlers", "SQLWorkbench.Data");

Not only is the SQLWorkbench namespace being created, but so too are some sub-
namespaces nested underneath SQLWorkbench. These mimic what was seen in the previous
applications. To reiterate, the SQLWorkbench.UIObjects namespace contains the config objects

379

380

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

for the various Ul components used in the application, SQLWorkbench.UIEventHandlers con-
tains the JavaScript functions called in response to various Ul events, and SQLWorkbench.Data
is where we find things like Record and Store definitions.

In this application we list available databases that the user can play with, but within the
context of this application it is unfortunately a fact that Gears does not allow you to get such
a list automatically. Therefore, users have to tell us what database(s) they want to work with,
and we probably should store that information somewhere. It felt a little odd to have to main-
tain a database to store a list of databases, though! So, I opted to go with cookies, and so we
need an Ext.state.CookieProvider in this application:

SQLWorkbench.cookieProvider = new Ext.state.CookieProvider ({
expires : new Date(new Date().getTime() + (1000 * 60 * 60 * 24 * 365))

1);

As you saw earlier, this defines a CookieProvider so that the cookies persist for one year.
I suppose it’s not too nice for users to have to reenter the names of all their databases every
year, but it seems like a reasonable period of time (better than having to reenter them once
a week for example, or even worse, every time the application is used).

Next up we have the init() method that we know is called via Ext.onReady() from
index.htm. Its job is to “prime the pump,” so to speak, to get the application up and running
and ready for user interaction:

SQLWorkbench.init = function() {

new Ext.Toolbar({
id : "toolbar", renderTo : "divToolbar", items : [
{
text : "List Databases",
icon : "img/ListDatabases.gif", cls : "x-btn-text-icon",
handler : function() {
SQLWorkbench.listDatabases();

}
1
{
text : "Query Tool",
icon : "img/QueryTool.gif", cls : "x-btn-text-icon",

handler : function() {
SQLWorkbench. showQueryTool();
}
}J

{
text : "Help", icon : "img/Help.gif", cls : "x-btn-text-icon",
handler : function() {
SQLWorkbench. showHelp(0);

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

{
text : "About", icon : "img/About.gif", cls : "x-btn-text-icon",
handler : function() {
SQLWorkbench. showAbout();
}
}
]
b;

SQLWorkbench.listDatabases();

First, the Toolbar is built. The renderTo attribute in the config object tells Ext JS to put this
Toolbar into the divToolbar <div> we saw in index.htm. Again, while most of the applications
in this book take a very Ext JS—specific approach (meaning the Ul is built as an explicit hier-
archy of components in JavaScript code), you can in fact build an entire UI this way instead.

If you, for example, want to have a giant table structure on your page, or a CSS-based layout,
and then simply create Ext JS components and insert them onto the page where you want, you
absolutely can. You will, however, give up some of the power of Ext JS, things like users being
able to dynamically resize page elements and things of that nature. But sometimes you don’t
need any of that, so the choice is often completely up to you.

CONTROVERSY/PHILOSOPHY: CODE-BASED LAYOUTS VS. MARKUP+CSS

Many people find the idea of designing the Ul of an application in code to be controversial. | must admit, | do
to some extent. The argument against it most often heard centers around the idea of page “designers” versus
page “developers.” The thought is that you have graphic artists doing the design, and often that means they
are writing the simple markup and CSS that forms the structure of a page. Then, the developer comes along
and adds the functionality to the layout.

This separation of concerns allows each group to focus on their core competencies. It's a compelling
argument.

However, the reality is that not nearly as many development environments work that way as we might
like. More often than not, it is the developer doing it all. There may still be guidance from a graphic artist, but
it is still left to the developer to implement both the functionality and the layout.

The argument frequently heard is that creating a Ul in code is intermingling things that shouldn’t be
intermingled. After all, markup defines the structure of how some data is presented, and CSS defines what
it all looks like. If you have a database, and you want to display its data, you mark up the data using HTML’s
table features, and then style the table using CSS. The code’s job is to get the data and present it to the HTML
and CSS for display. This too is a pretty compelling argument.

However, using code to do layout allows for a level of dynamic ability that is hard to achieve otherwise.
Markup and CSS are, for the most part, pretty static. JavaScript obviously is not. Therefore, a layout using
JavaScript can allow for things that are difficult or impossible to achieve with just HTML and CSS—things like
reflowing of content on resize events, or manipulation of layout, or dynamic creation of content.

381

382

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

In the end, | won’t try to give you a right or wrong answer here mainly because | don’t believe there is
one. Obviously, writing a book on Ext JS implies | have an affinity for JavaScript-based layouts, and | suppose
that’s a fair supposition, but I've also publicly argued against them in the past. | could give the typical cop-out
answer and simply say use the right tool for the job, and in fact, | think I'll do exactly that! | will say this, how-
ever: doing RIA development with the intent of mimicking desktop app-like functionality pretty well requires
code-based Ul layouts, so take that for what you will!

The About Window shown in Figure 7-5 is a result of executing the showAbout () method,
which contains this code:

SQLWorkbench. showAbout = function() {

var aboutWindow = Ext.getCmp("dialogAbout");
if (aboutWindow) {
aboutWindow.show(Ext.getDom("divSource"));
} else {
new Ext.Window({
applyTo : "dialogAbout", id : "dialogAbout", closable : true,
width : 400, height : 320, minimizable : false,

resizable : false, draggable : false, closeAction : "hide",
buttons : [{
text : "0Ok",

handler : function() {
Ext.getCmp("dialogAbout").hide();
}
}
}) . show(Ext.getDom("divSource"));

}

Recall in index.htm that this Window was described via markup. Of course, that in and of
itself does nothing for us until we create an actual Window from it!

The first step is to see if the Window has already been created, and if it has, we simply call show()
on it, passing it a reference to divSource. If it doesn’t already exist, though, it is created here.

Linking the newly created Window to the markup in index.htmis a simple matter of point-
ing the applyTo config attribute of the Ext.Window constructor to the DOM node where the
Window definition is. The Window is given an id of dialogAbout so that we can reference it later
in the Ok Button’s handler function to hide the Window by calling its hide() method. The Window
is closable (closable:true) and cannot be minimized, resized, or dragged (minimizable:false,
resizable:false and draggable:false correspondingly). Finally, it is given a size of 400 by 320
pixels and is shown immediately upon creation by calling show() and passing it a reference to
the divSource <div> so we get our nice animation effect.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH 383

-
%) sqL workbench - Mozilla Firefox
File Edit View History Bookmarks Tools Help :.I:

_EJI (] SQL Workbench u|

g List Databases | 4 Query Tool | {3 Help 6 About

Databases *| |
testdh
anotherDB

About 5QLWoerkbench

SQLWorkbench
Version 1.0
Frank W. Zammetti

4. AddDatabase | wes Remove Datal

Originally appeared in the book
"Practical Ext JS Projects With Gears" L -
Apress, 2009 -x;l

All rights reserved
(Rights?!? What rights, you damned dirty ape?!?)

#% Create New

[S& () [EZ] filez///C/extbook/ch7-sqlfco... (i - 202MB/27MB [487MB/488MB & [YSlow 0931s & 1337 »

Figure 7-5. The About Window

StoresAndRecords.js

The StoresAndRecords. js file contains a couple of Record and Store definitions, although not
too many in this particular application. In Figure 7-6 you can see the two Record types defined:

DatabaseRecord and TableRecord.

DatabaseRecord TableRecord
-name : string -databasename : string
-tables : Ext.data.Store -name : string

-sql : string
-tableDetails : Object

Figure 7-6. They may not be much to look at, but the Record descriptors hide some
interesting stuff!

The DatabaseRecord describes an SQLite database. All we need is the name of the database
and the tables it contains. The tables field is something new. Previously we’ve seen Record

384

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

fields as simple types like strings and numbers, but here it’s an Ext.data.Store, based on the
diagram at least. There is no limitation on what types a field can be in a Record. A Store doesn’t
especially care, although it may not know what to do with some types, so you may have to
write your own Store that does. In this case, however, these Records are only used with the UI;
they aren’t read from or written to a persistent data store of any kind, so there’s none of that
concern.

The code that creates this Record is as follows:

SQLWorkbench.Data.DatabaseRecord = Ext.data.Record.create([
{ name : "name", mapping : "name" },
{ name : "tables", mapping : "tables" }

1);

Notice that there is no type attached to either field, again supporting the notion that you
can use any type you wish, and in true JavaScript form you could even dynamically change the
“type” of a field (although that’s typically not a smart thing to do, as much with Records as in
JavaScript in general).

The TableRecord is similarly defined for describing a table within a database:

SQLWorkbench.Data.TableRecord = Ext.data.Record.create([
{ name : "databaseName", mapping : "databaseName" },
{ name : "name", mapping : "name" },

{ name : "sql", mapping : "sql" },
{ name : "tableDetails" }

For a table we need to know what database it belongs to, hence the databaseName field,
which maps to a given DatabaseRecord’s name field. The name field itself is the name of the table,
and the sql field is the SQL statement that was used to create the table. As we’ll see later, this
is a bit of information that we can coax out of SQLite and it is the key to making this whole
application worth anything! Finally, the tableDetails field, similar to the tables field in the
DatabaseRecord, isn’t a simple type. It will have a value that is a JavaScript object that will con-
tain information describing the table in detail (information that will be directly derived from
the value of the sql field). There will be more to say on this last field later, but for now that
gives you a good idea of what it and the others are for.

As you probably would have guessed, we need to have a Store for our DatabaseRecords to
which we can bind the Grid used to display them in the Databases Window:

SOLWorkbench.Data.databasesStore = new Ext.data.Store({});

Again, since there’s no requirement to persist these Records, there are no event handlers
that need to be attached, so that single line of code is all we need.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

Note The database names are persisted via cookies, as | mentioned earlier. It would have been possible
to use the event mechanism built into the Store to handle writing the cookies, but | chose to externalize it
because | felt it made the code clearer. You could make the argument that using the events would be more
in keeping with Ext JS best practices, and | wouldn’t argue against that too much.

The final bit of code looks like this:

SQLWorkbench.Data.columnTypeStore = new Ext.data.Store({});
var columnTypeVals = ["INTEGER", "DOUBLE", "FLOAT", "REAL", "CHAR", "TEXT",
"VARCHAR", "BLOB", "NUMERIC", "DATETIME"];
for (var i = 0; i < columnTypeVals.length; i++) {
SOLWorkbench.Data.columnTypeStore.add
(new Ext.data.Record({ optVal : columnTypeVals[i] })
)5
}

This is a Store with some hardcoded values that will be bound to the ComboBoxes used
to select the type of a field when creating a table. The strings listed in the columnTypeValues
array are the valid SQLite data types. That array is iterated over and add() is called on the
columnTypeStore for each string. This all executes immediately when this file is loaded, as part
of loading index.htm. Therefore, this Store is ready to go when the Ul is built (which won’t
happen until the user decides to build a new table), so the ComboBoxes immediately have the
values in them upon creation.

DatabasesWindow.js

Now that we have some of the groundwork laid, let’s look at our first big piece of functionality:
the Databases Window, the code for which is found in the aptly named DatabasesWindow. js file.
This Window is what you see in Figure 7-7. Its job is to list all the databases that SQLWorkbench
knows about that the user can work with and give that user the ability to choose one to work
on, as well as add new ones and remove existing ones.

The first bit of code in this file is simply a field definition:

SQLWorkbench.lastSelectedDatabase = null;

Generally, once users select a database, this Window doesn’t really care which one they
selected. The code will open the Tables Window for the selected database and that’s about the
extent that the code in this file cares about database selection. One important exception is
when the user wants to remove a database. In that case, obviously, the code needs to know
which database was selected, and that’s precisely what this field does: it stores the name of the
last selected database.

385

YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

386 CHAPTER 7

-
%) sqL workbench - Mozilla Firefox
File Edit View History Bookmarks Tools Help
x|

(9 | () soL Workbench
g List Databases | 4 Query Tool | [} Help 6 About
| Databases '>_¢L-_

testdh
anotherDB

§.) AddDatabase | wes Remove Database

% & yslow 08475 @ 1337

~ 202MB/27MB || 487 MB /488 MB

(S @ & file:///Clextbook/ch7-sglfco...

Figure 7-7. The Databases Window
Following that field definition is the 1istDatabases() method, which is called to display
this Window and, you know, list databases!
SQLWorkbench.listDatabases = function() {
var databasesWindow = Ext.getCmp("databasesWindow");

if (databasesWindow) {
databasesWindow.close();

}
First, we check to see if the Window is already open, and if so, it is closed. In this way we
have essentially a poor man’s refresh function, and it means that whatever is displayed in this

Window is current—at least since the last time this method was called.

The method continues thusly:!

1 Thusly? Who talks like that? It’s like the expression “rue the day.” Who talks like that? And yes, that’s a
Real Genius reference for those “in the know” For those “outside the know” (now there’s an expression

to use more often!), see http://www.imdb.com/title/tt0089886/.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

SQLWorkbench.Data.databasesStore. removeAll();
var i = 0;
var nextCookie =
SQLWorkbench. cookieProvider.get("SQLWorkbench db " + i);
while (!Ext.isEmpty(nextCookie)) {
SOLWorkbench.Data.databasesStore.add(
new SQLWorkbench.Data.DatabaseRecord(
{ name : nextCookie, tables : null }, nextCookie
)
)5
i=1+1;
nextCookie =
SQLWorkbench.cookieProvider.get("SQLWorkbench db " + i);

This Window has a Grid within it, and that’s where the databases are listed. So, we need a
Store to contain DatabaseRecords that we can bind to that Grid. To do that, we begin by calling
removeAll() on the databasesStore so we're starting with a clean slate. Next, we try retrieving
a cookie with the name SQLWorkbench_db 0. This name is formed by appending an index value
(starting with 0) to the static string SQLWorkbench_db. We use the Ext.isEmpty() function to see
if the cookie was retrieved. If it was, then a new DatabaseRecord is created and the name field
is set to the value of the retrieved cookie, which is stored in the variable nextCookie. Also, the
id of the record is set to the database name. Then, we bump up the index counter and try to
retrieve the next cookie. The loop continues until a cookie isn’t found, which means we’ve
read in all the previously saved databases from cookies.

Once that’s done, we can go ahead and construct the Window:

new Ext.Window({
title : "Databases", width : 300, height : 200, constrain : true,
animateTarget : "divSource", id : "databasesWindow", maximizable : false,
layout : "fit", x : 5, y : 40,

bbar : [
{ text : "Add Database",
icon : "img/AddDatabase.gif", cls : "x-btn-text-icon",

handler : function() {
SOLWorkbench.addDatabase();

}
1

n n
)

{ text : "Remove Database",
icon : "img/RemoveDatabase.gif", cls : "x-btn-text-icon",
handler : function() {
SQLWorkbench.removeDatabase();
}
}

387

388

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

This is a straightforward Window definition. Note the use of the constrain config attribute,
which ensures that the Window cannot be dragged off the edges of the page. Also note how the x
and y attributes are used to position the Window in the upper-left corner of the page just below
the Toolbar (which is why, if you recall from earlier, I explicitly set the height of the Toolbar
even though I said it wasn’t absolutely necessary... doing that allows me to know how far
down the page I need to position this Window so as to not overlap the Toolbar). We use the bbar
attribute to add some buttons to the bottom Toolbar. The two buttons added are for adding
and removing a database from the list, which also do double duty by allowing the user to cre-
ate or delete databases physically from SQLite. Clicking the Add Database button will add the
database to the list if the database exists, but it will create the database in SQLite automatically
if it doesn’t exist. Likewise, clicking Remove Database not only removes the database from the
list but actually removes it from the SQLite database. (There’s no way to simply remove the
database from the list, a point my diligent technical reviewer correctly made, so maybe that’s
your first enhancement challenge to tackle!)

The next part of the Window definition is the Grid:

items : [
{ xtype : "grid", border : false, stripeRows : true,
store : SQLWorkbench.Data.databasesStore, hideHeaders : true,
autoExpandColumn : "colName",
sm : new Ext.grid.RowSelectionModel({ singleSelect : true }),
columns : [
{ header : "Name", sortable : true, datalndex : "name",
id : "colName" }
])
listeners: {
rowclick : {
fn : function(inCGrid, inRowIndex, inEventObject) {
var databaseName =
inGrid.getSelectionModel().getSelected().get("name");
SQLWorkbench.lastSelectedDatabase = databaseName;
SOLWorkbench.listTables(databaseName);
inGrid.getSelectionModel().clearSelections();
}
}
}
}
]
}).show();

};

We've seen a bunch of Grids before, so there aren’t any surprises in the basic structure
here. The rowclick event handler is different. Here we begin by getting the name of the
selected database by first getting the selection model of the Grid, then calling its getSelected()
method to get the DatabaseRecord for the row that was clicked, and then getting the name
field of that record. Once we have that, we set the lastSelectedDatabase field to the database

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

name so that we know which to remove if the user clicks that button. Then, the listTables()
method is called, which will open a Window listing the tables in the selected database. Finally,
the code clears the selection in this Grid. The purpose of this Window and Grid is for the user to
select a database. However, since more than one database at a time can be open, leaving the
last selected item in the Grid didn’t quite feel right to me, and that’s the reason this clearing of
the selection is done.

Note | can certainly see the argument for not clearing the selection, and in a way it would simplify mat-
ters because you would no longer have to keep track of the last selected database with the 1astSelected
Database field—you could simply interrogate the Grid to see which item was selected at any given time.
| just felt that the Ul interaction didn’t quite feel right going that route. Sometimes there’s definitive right
and wrong answers in Ul design, other times it’s simply a gut feeling, and this is one of those “go with your
gut” times!

When the user clicks the Add Database button, the addDatabase () method is called (bet
you didn’t see that coming!). Here comes that method now:

SQLWorkbench.addDatabase = function() {

Ext.MessageBox.prompt("Add Database",
"Please enter the name of the database you wish to add.

Note that " +
"if the database does not currently exist it will be created.
",
function(inBtnID, inval) {
if (inBtnID == "cancel") { return; }
if (inval != null) { inval = inVal.trim(); }
if (1Ext.isEmpty(inval)) {
var db = google.gears.factory.create("beta.database");
db.open(inval);
db.close();
SQLWorkbench.Data.databasesStore.add(
new SQLWorkbench.Data.DatabaseRecord({
name : inVal
}, inval)
)s
SQLWorkbench.updateDatabaseCookies();
SQLWorkbench.listDatabases();
Ext.MessageBox.hide();

);
};

389

390

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

In Figure 7-8 you can see the result of this code, which starts by asking the user to supply
the name of the database to add. This is done by using the Ext.MessageBox.prompt() method,
similar to JavaScript’s built-in prompt () method. If the user clicks Ok (clicking Cancel or manu-
ally closing the MessageBox aborts), then the name entered is trimmed and we simply open the
database. Gears and SQLite are kind enough to create the database if it doesn’t already exist,
and if it does, no harm is done and we simply close the database right away. Once that’s done,
the only things left to do are to add a DatabaseRecord to the databasesStore for the new data-
base, write out our cookies by calling the updateDatabaseCookies() method (which we’ll look
at shortly), and finally, call listDatabases() to re-create the Databases Window, but now with
the new database listed in it.

%D sqQL Workbench - Mozilla Firefox
File Edit View History Bookmarks Tools Help

[9 | () SQLWorkbench gl B
& List Databases | 4 Query Tool | 3 Help (1] About
Databases *
testdb
anotherDB
8 Add Database x|

Add Datab - R Di
- o SMYEEER please enter the name of the database you wish to add.

Mote that if the database does not currently exist it will be created.

EmyNewDatabase |

[S& () [EE Dpone @ ~ 202MB/27MB || 487MB/48BMB & B vSlow o0.847s & 1337 -

Figure 7-8. The user is asked for the name of a database to add.

The removeDatabase() method is next. It looks a bit complex at first but it isn’t too bad:

SQLWorkbench.removeDatabase = function() {

if (Ext.isEmpty(SQLWorkbench.lastSelectedDatabase)) { return; }
Ext.MessageBox.confirm("Confirm Database Removal",
"This will remove the " + SQLWorkbench.lastSelectedDatabase + " database " +
"from the list of available database AND WILL ALSO physically remove the " +

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

"database from the SQLite directory structure. ALL DATA IN THE DATABASE " +
"WILL BE LOST! Are you absolutely sure about this?",
function(inButtonClicked) {
if (inButtonClicked == "yes") {
var db = google.gears.factory.create("beta.database");
db.open(SQLWorkbench.lastSelectedDatabase);
db.remove();
var tablesWindow =
Ext.getCmp("tablesWindow™" + SQLWorkbench.lastSelectedDatabase);
if (tablesWindow) { tablesWindow.close(); }
var databaseRecord = SQLWorkbench.Data.databasesStore.getById(
SQLWorkbench.lastSelectedDatabase);
var tables = databaseRecord.get("tables");
tables.each(function(nextRecord) {
var tableDetailsWindow = Ext.getCmp("tableWindow " +
nextRecord.get("name")).close();
if (tableDetailsWindow) { tablesDetailWindow.close(); }
IOk
SQLWorkbench.Data.databasesStore. remove(
SQLWorkbench.Data.databasesStore.getById(
SQLWorkbench.lastSelectedDatabase));
SQLWorkbench.updateDatabaseCookies();
SQLWorkbench.lastSelectedDatabase = null;
SQLWorkbench.listDatabases();
Ext.MessageBox.hide();

)s

First, we ensure that a database has been selected and abort if not. Next, we pop a con-
firmation using the Ext.MessageBox.confirm() method, which you can see in Figure 7-9. The
text of the message asks users if they are sure they want to delete the database. If they click Yes,
then we're off to the races. First, the database is opened and then the remove () method on it
is called. This is a Gears-supplied method that takes care of destroying the currently opened
database for us. So, that part is quite easy!

Next, we need to close the Tables Window for the database, if one was open. Ext.getCmp()
is used and is passed the constructed ID of the Window. Assuming it is opened, the close()
method is called on it and it’s history.

Then we have to do the same thing for the Table Detail Windows that might be opened for
the tables in this database, so we retrieve the DatabaseRecord from the databasesStore for the
database being removed. This is done because we need to get at the tables field, which lists
the tables in this database, if any. Once we have a hold of that store, we use its each() method
to iterate over the TableRecords in it (remember that’s the field that is itself a DataStore). For
each we try to get a reference to the Table Details Window for that table, and if found we close it.

391

392

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

Once that’s done we can go ahead and remove the DatabaseRecord from the databases
Store. Then there’s just some housekeeping to do: a call to updateDatabaseCookies () will
cause the cookie for the database to be deleted; lastSelectedDatabase is set to null since the
last selected database was just removed and therefore is no longer a valid value; and finally,
listDatabases() is called to effectively refresh the Databases Window on the screen.

%) sqIL Workbench - Mozilla Firefox =
File Edit View History Bookmarks Tools Help 3E
[9| () sQLWorkbench gl [

& List Databases = 4 Query Tool | {3 Help | {gjp About
Databases *
testdb
anotherDB
.. Add Database | Confirm Database Removal %

9 This will remave the database from the list of available database AND WILL ALSO physically
) remove the database from the SQLite directory structure. ALL DATA IN THE DATABASE WILL
BE LOST! Are you absolutely sure about this?

[5+ () & Dpene {107} 202MB/27MB || 487 MB/488ME & JB vSlow 08475 @ 1337 -

Figure 7-9. The Confirm Database Removal prompt

The last method in this source file is the one you've seen a couple of times now:
updateDatabaseCookies(). As you can see, there’s not much to it:

SQLWorkbench.updateDatabaseCookies = function() {

var i = 0;
var nextCookie =
SQLWorkbench. cookieProvider.get("SQLWorkbench db " + 1i);
while (!Ext.isEmpty(nextCookie)) {
SQLWorkbench. cookieProvider.set("SQLWorkbench db " + i, null);
i=1+1;
nextCookie =
SQLWorkbench. cookieProvider.get("SQLWorkbench db " + 1i);

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

i=0;
SOLWorkbench.Data.databasesStore.each(function(nextRecord) {
SQLWorkbench.cookieProvider.set("SQLWorkbench db " + i,
nextRecord.get("name"));
i=1+1;

};

The values corresponding to databases are stored in cookies named SQLWorkbench_db_x,
where x is a number starting at 0. “Updating” the cookies, whether as a result of adding a
new database or removing one, is a two-step process. First, a loop is entered into that keeps
trying to get the next cookie in sequence. For each one found it is set to a value of null,
which has the effect of removing it from the browser. Then, the databasesStore is iterated
over using its each() method and for each DatabaseRecord a cookie is written out. In other
words, the “update” is a cheat: it’s really just re-creating all the cookies each time! I'm not
sure there are too many alternate ways to pull this off if you're using cookies... you could
just write out a single cookie with something like a comma-separated list of database names,
but this way was more fun!

TablesWindow.js

The TablesWindow. js file contains all the code for the Tables Window (bet you didn’t see that
coming!). This Window, shown in Figure 7-10, is where the tables found in a selected database
are listed.

Any table listed can be clicked to open a Table Details Window for it, and a new table can
be created by clicking the Create New button on the bottom Toolbar. Let’s take a look at the
listTables() method, which is called when a database is selected from the Databases Window:

SOLWorkbench.listTables = function(inDatabaseName) {

var tablesWindow = Ext.getCmp("tablesWindow~" + inDatabaseName);
if (tablesWindow) {
tablesWindow.close();

}

First we check to see if a Tables Window is already opened for the selected database. The
ID of any Tables Window is in the form tablesWindow~<databaseName>, where <databaseName>
is replaced with the name of the selected database. If such a Window is already opened, we go
ahead and close it. This makes clicking a database double as a refresh function.

The next step is to get the list of tables in the selected database. To do that we’ll have to
play with Gears and SQLite a bit:

var db = google.gears.factory.create("beta.database");
db.open(inDatabaseName);

var rs = db.execute (
"SELECT name, sql FROM sqlite master where type='table';"
);

393

394 CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

-
%D sqQL Workbench - Mozilla Firefox
File Edit View History Bookmarks Tools Help i

_EJ (] SQL Workbench m| I_v

g List Databases | 4 Query Tool | {3 Help 6 About

anotherDB : Table List [%
accounts

shareholders

#% Create New

[S& () [EZ] filez///C/extbook/ch7-sqlfco... (i} - 202MB/27MB (| 487MB/488MB & [YSlow 08475 & 1337 -

Figure 7-10. The Tables Window

Every SQLite database has a special read-only table named sqlite master in it. The data
in this table describes the database schema. The structure of this table is always what is shown
in Table 7-1.

Table 7-1. The Structure of the sqlite_master Table

Field Description

type Tells the type of entity the record describes. For our purposes, the only value we care
about is table.

name Gives you the name of the entity the record describes. For our purposes, that means

the name of the table.

tbl name When the value of type is index, the record is describing a table index. In that case,
tbl name gives the name of the table.

rootpage I couldn’t find definitive documentation of what this is anywhere, but I'm putting my
money on it being the code page of the described table.

sql This is the CREATE TABLE or CREATE INDEX query that created the described table
or table index.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

Since sqlite_master isjust a table in the database, we can query it for information, and
that’s exactly what the snippet of code does: it queries for all records from sqlite_master where
the type is table and it returns the name and sql fields, since that’s all we care about here.

The next step is to get the DatabaseRecord associated with the database we just queried
for tables:

var databaseRecord = SQLWorkbench.Data.databasesStore.getById(inDatabaseName);
var foundTables = databaseRecord.get("tables");
if (!foundTables) {
foundTables = new Ext.data.Store({});
}
foundTables.removeAll();

The purpose behind this is that we’re going to populate the tables field of the Record, which
you'll recall from earlier is an Ext JS DataStore, with TableRecord objects. So, we request the
DatabaseRecord from the SQLWorkbench.Data.databaseStores by using its getById() method,
passing in the name of the database we want. Once we have that, we get its tables field. If the
returned value is null, which happens the first time the database is selected from the Data-
bases Window, we create a new Ext.data.Store(). If on the other hand we already have a Store,
then we call removeAll() on it since we’ll be repopulating it next, as you can see here:

while (rs.isValidRow()) {
foundTables.add(new SQLWorkbench.Data.TableRecord({
databaseName : inDatabaseName, name : rs.field(0), sql : rs.field(1)
}, rs.field(0)));
rs.next();
}
rs.close();
db.close();

We iterate over the ResultSet returned by the query of sqlite master and for each row
we create a new SQLWorkbench.Data.TableRecord. The databaseName field is set, as is the name
and sql fields with the values returned by the query. The TableRecord is keyed by the table
name as well so that we can retrieve it by name easily later. This TableRecord is added to the
foundTables DataStore:

databaseRecord.set("tables", foundTables);

Finally, foundTables is added as the value of the tables field in the DatabaseRecord and
we’re good to go.

At this point we have all the information we need ready to go, so now it’s just a matter of
creating the Window:

new Ext.Window({
title : inDatabaseName + " : Table List", width : 300, height : 200,
constrain : true, animateTarget : "divSource", maximizable : false,
layout : "fit", id : "tablesWindow™" + inDatabaseName,
bbar : [

395

396

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

{ text : "Create New",
icon : "img/CreateNew.gif", cls : "x-btn-text-icon",
handler : function() {
SOLWorkbench.createTable(inDatabaseName);
}
}
1,
items : [
{ xtype : "grid", border : false, stripeRows : true,
store : foundTables, hideHeaders : true,
autoExpandColumn : "colName",
sm : new Ext.grid.RowSelectionModel({ singleSelect : true }),
columns : [
{ header : "Name", sortable : true, dataIndex : "name",
id : "colName" }
1,
listeners: {
rowclick : {
fn : function(inGrid, inRowIndex, inEventObject) {
SQLWorkbench.listTableDetails(inDatabaseName,
inGrid.getSelectionModel().getSelected().get("name"));
inGrid.getSelectionModel().clearSelections();

}
}
}
]
}).show();

};

The Window has a bottom Toolbar, courtesy of the bbar attribute, that has a single Create
New button that calls the SQLWorkbench.createTable() method. The name of the database
that was passed in to the 1istTables() method is now passed in to the createTable() method,
which means we have a closure here, as discussed in Chapter 3.

The object in the items array, which winds up being the main content of the Window, is a
GridPanel that is bound to the foundTables Store created previously. That’s how we get the list
of tables to show up. Clicking a row in the Grid results in the rowclick event firing and the han-
dler defined here executing. This handler calls the SQLWorkbench.listTableDetails() method,
passing in the name of the table to display details for, which is derived from the row that was
clicked. We take the inGrid argument passed to the callback and call its getSelectionModel()
method to get a hold of its SelectionModel. From there we can get the selected TableRecord by
calling the getSelected() method, and then we just get the value of the name field to pass along
to the listTableDetails() method.

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

CreateTableWindow.js

When users click the Create New button in the Tables Window, the Create Table Window appears,
where they can enter the details for the new table they want to create. This Window is shown in
Figure 7-11.

.
¥J sqQL Workbench - Mozilla Firefox

=
File Edit View History Bookmarks Tools Help e
(9| (J5qu workbench = |~
g4 LstD @% Query Tool | {3 Help ﬁ&bnut
Create Table o[%
Mew table name: |myMNewTable]
Hame | Type [P.Key? | [Not hull? | Default
field1 INTEGER |+
[fieldz Z [DouBE || & | (2344
m ==
field3 Il | B B
- INTEGER 3
3
DOUBLE . -
FLOAT =] =]
REAL
CHAR N M
TEXT = E
8
- VARCHAR o |
BLOB . -
NUMERIC =]]
DATETIME
r | []
i O O
b [[J
_ M
o Ok x Cancel
[S& () [EE Done @ ~ 202MB/27MB | 487MB/48BMB " B vSlow o084a7s & 1337 -

Figure 7-11. The Create Table Window

As you can see, users enter the name of the table at the top, and then enter details for up
to 20 columns in the table. For each, they enter a name, the data type of the column, whether
the column is the primary key field of the table, whether or not nulls are allowed in the col-
umn, and what the default value should be for that column.

Note Twenty fields is an arbitrary limit; SQLite tables can have more. | limited it to 20 fields for two rea-
sons. First, that way the Window doesn’t take forever to appear, and second, doing so gave me at least one
exercise to suggest at the end of the chapter!

397

398 CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

When the user clicks the Create New button in the Tables Window, the createTable()
method is called. I'll chunk-ify this method a bit so it’s easier to digest:

SQLWorkbench.createTable = function(inDatabaseName) {

var createTableWindow = new Ext.Window({
animateTarget : "divSource", id : "createTableWindow", autoScroll : true,
draggable : true, resizable : true, shadowOffset : 8, width : 700,
height : 500, layout : "fit", constrain : true, title : "Create Table",
maximizable : true,
items : [
{ xtype : "form", labelWidth : 100, id : "createTableForm",
bodyStyle : "padding:4px;overflow:scroll;",
items : [
{ xtype : "textfield", width : 250, fieldlLabel : "New table name",
name : "createTableName" },

The basic Window is constructed first. This one, like all the others, is constrained to the
boundaries of the browser’s content area, but it can be dragged and resized however users like.
It can even be maximized if they wish. Within this Window we create a FormPanel, and the first
field we add is a simple TextField for entering the name.

Note, however, that you do not see the 20 rows corresponding to the column details we
know the user can enter. If you look at the screenshot again, you'll see that this is in some sort
of tabular layout, complete with column headers. We haven'’t seen a form that looks like that
before, so how is that pulled off? The answer begins with this next chunk of code:

{ xtype : "panel”, layout : "table", layoutConfig : { columns : 5 },
id : "createTablePanel", border : false,
items : [
{ html :
"<div style="background-color:#dfe8f6; " '>Name</div>",
cellCls : "cssTableHeader" },
{ html :
"<div style="background-color:#dfe8f6; '>Type</div>",
cellCls : "cssTableHeader" },
{ html :
"<div style="background-color:#dfe8f6; '>P. Key?</dv>",
cellCls : "cssTableHeader cssTableCentered" },
{ html :
"<div style="background-color:#dfe8f6; '>Not Null?</div>",
cellCls : "cssTableHeader cssTableCentered" },
{ html :
"<div style="background-color:#dfe8f6;'>Default</div>",
cellCls : "cssTableHeader" }

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

So, we’re using the TablelLayout to create a table, which makes sense given what you see
in the screenshot. The interesting thing to note is that this Panel using the TableLayout is an
element in the items collection of the FormPanel, so any form-type fields we add here are still
part of the form, even though they are not directly nested under the FormPanel itself (i.e., not
elements in the items array directly, as the TextField for entering the table’s name is).

But even still, all we see here are some header definitions! Now, the header definitions are
interesting because they are just simple elements with some HTML defined. Each is a <div>
with a background-color set and a cssTableHeader CSS class applied to it. Some of them actu-
ally have two classes applied, cssTableHeader and cssTableCentered. If you look back at the
CSS definition you'll see that cssTableCentered is the one with text-align set to center. So, the
data in these columns will be centered, and since they’re CheckBoxes it makes sense because
they look better as centered than using the default left alignment.

So, while that’s interesting, it still doesn’t explain how those 20 rows of data entry fields
get on the screen! I'll pull one of my “we’ll get to that shortly” tricks... and in this case I do
mean shortly, but first we have one more chunk to see:

bbar : [
{ text : "Ok", formBind : true,
icon : "img/Ok.gif", cls : "x-btn-text-icon",
handler : function() {
SOLWorkbench.createTableExecute(inDatabaseName);
}
}J

won
)

{ text : "Cancel", icon : "img/Cancel.gif", cls : "x-btn-text-icon",
handler : function() { Ext.getCmp("createTableWindow").close(); }
}
]
}
]
1

This defines the bottom Toolbar on the Window where our Ok and Cancel buttons appear.
Clicking Ok called the createTableExecute() method, passing it the name of the database this
Window was opened for. We’ll look at that method very soon as well. The Cancel button simply
gets a reference to the Window and closes it.

So now we come to the mythical, magical beast that is responsible for those 20 rows we
just know had to be here somewhere!

var createTablePanel = Ext.getCmp("createTablePanel");
for (var i = 0; 1 < 20; i++) {
createTablePanel.add({ xtype : "textfield", hidelabel : true,
width : 150, ctCls:"cssTableCell",
name : "createTable columnName " + i });
createTablePanel.add({ xtype : "combo", width : 100, editable : false,
triggerAction : "all", mode : "local", valueField : "optval",
displayField : "optVal", store : SQLWorkbench.Data.columnTypeStore,
ctCls : "cssTableCell", name : "createTable columnType " + i });

399

400

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

createTablePanel.add({ xtype : "checkbox", hidelabel : true,
ctCls : "cssTableCell cssTableCentered",
name : "createTable primaryKey " + i });
createTablePanel.add({ xtype : "checkbox", hidelabel : true,
ctCls : "cssTableCell cssTableCentered",
name : "createTable notNull " + i });
createTablePanel.add({ xtype : "textfield", hidelabel : true,
width : 150, ctCls : "cssTableCell",
name : "createTable defaultValue " + i });

The ability to dynamically add elements to an existing FormPanel is something we haven’t
seen before, but that’s precisely what we have here. We have a loop with 20 iterations (ah-ha!)
and within each we’re adding five elements (hey, that's how many columns there are in the
table!) to the createTablePanel Panel (the one using the TablelLayout). The add() method
allows us to add new Ext JS Components to another Component. You simply pass in the config
object for the Component you want to create and it gets added.

The Components added here aren’t too special; they're just basic form elements that we're
already pretty familiar with. A couple of TextFields, a ComboBox, and some CheckBoxes are what
we need. The ComboBox gets bound to the SQLWorkbench.Data.columnTypeStore that contains
the list of valid SQLite data types.

Note that on all of these fields the hideLabel attribute is set to true since the headers of
the table are effectively the field labels. We’ve manually done what Ext JS normally does for
us automatically (the price to pay for a different sort of UI presentation). Also note that each
gets a name value that has the index of the array appended to it. That allows us to easily retrieve
them all later.

Now, these form elements aren’t being added directly to the FormPanel; they're being
added to the Panel with the TablelLayout, which you'll recall was the Component directly under
the FormPanel in its items array. The nice thing here is that these dynamically added Components
still become part of the FormPanel, part of the underlying form, just as if they had been defined
explicitly in the config object of the Window. Doing it this way saves you from having to have a ton
more config information here: imagine 20 groups of five Component definitions statically within
the Window’s config object. Not pretty at all!

Once all the Components have been added, we have only to show the Window:

createTableWindow. show();

At this point users see the Window as they should, all created and ready for their use.
When users click the Ok button, it’s time to create the table:

SOLWorkbench.createTableExecute = function(inDatabaseName) {

var formvVals =
Ext.getCmp("createTableForm").getForm().getValues();

if (Ext.isEmpty(formVals.createTableName)) { return; }

var sql = "CREATE TABLE IF NOT EXISTS " +
formVals.createTableName + " (";

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

First, the form is retrieved and, once we ensure users entered a table name, we begin to
construct the SQL statement to execute, including the name of the table entered.

Note Making sure a table name was entered is the extent of the checking done here. I'm sure that you,
like me (and my technical reviewer who noted this) can point out about a billion ways you could break this
statement, or wreak havoc on the database. This is one of those “Dac, it hurts when | bend my arm,” “Well,
don’t bend your arm!” moments.

Next we can begin to deal with the columns of the table:

var columnCount = 0;
var primaryKeyCount = 0O;
var primaryKeyNotNullFound =
for (var i = 0; 1 < 20; i++)
var columnName = formVals["createTable columnName " + i];
var columnType = formVals["createTable columnType " + i];
var primaryKey = formVals["createTable primaryKey " + i];
var notNull = formVals["createTable notNull " + i];
var defaultValue = formvVals["createTable defaultValue " + i];

false;
{

Since we know the names of the fields in the form used the index numbers, we can easily
construct those names again to pull the appropriate fields out of the formVals object. So, we
grab the values of each of the five fields for the row we’re currently examining. Once we have
them, we can do some checks:

Note In all previous applications we've used code like formvals.fieldName to retrieve the fields’ value.
In JavaScript you can always access the elements of an object using dot notation or array notation, as we
did here. Array notation is necessary when you're dynamically constructing the name of the field to access;
object.field+i would be a syntax error since the plus sign is not a valid character in an object field name.

if (!Ext.isEmpty(columnName) &3 !Ext.isEmpty(columnType)) {

if (1Ext.isEmpty(primaryKey) && !Ext.isEmpty(notNull)) {
primaryKeyNotNullFound = true;
break;

}

if (columnCount > 0) { sql += ", "; }

columnCount++;

sql += "\"" + columnName + "\

+ columnType;

401

402 CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

if (VExt.isEmpty(primaryKey)) {
primaryKeyCount++;
sql += " PRIMARY KEY";

}

if (VExt.isEmpty(notNull)) {
sql += " NOT NULL";

}

if (!Ext.isEmpty(defaultvalue)) {
sql += " DEFAULT '" + defaultValue + "'";

}

}
}

sal += ")

First we ensure that a name has been entered for the column and that a type has been
selected. Those are the two required elements. Next, we check to see if the Primary Key and
Not Null CheckBoxes were both checked, and if so, we set primaryKeyNotNullFound to true and
break out of the loop. This is a simple error check that has to be done.

Next, we bump up the columnCount variable so we know we have enough information for
this column to actually create it. Next, we construct more of the SQL statement. Remember,
the SQL statement will be in the form:

CREATE TABLE IF NOT EXISTS <tableName> ("<fieldName>" <fieldType>);

So, first we see if a column has already been defined, and if so, we append a comma to
the sql value. Next, we construct the "<fieldName>" <fieldType> portion of the string. Next,
we see if the Primary Key CheckBox was checked. If so, the string PRIMARY KEY is appended.
Note too that the primaryKeyCount field is incremented in this case. The same thing is done for
Not Null. Finally, if a default value was supplied, we append it as well with the DEFAULT clause.
All of that completes the definition of this table column.

Next we have some error checking to do:

if (primaryKeyNotNullFound) {
Ext.MessageBox.alert("Error",
"Primary fields cannot be null.");
return;
}
if (columnCount == 0) {
Ext.MessageBox.alert("Error",
"There were no columns to create. Note that Column Name " +
"and Column Type are both required for every column.");
return;
}
if (primaryKeyCount > 1) {
Ext.MessageBox.alert("Error",
"Only a single column can be designated as Primary Key.");
return;

}

CHAPTER 7 YOUR DAD HAD A WORKBENCH, NOW SO DO YOU: SQL WORKBENCH

First, if that primaryKeyNotNullFound flag is set, then we have to tell the user that a pri-
mary key field cannot allow null values and abort creation of the table. Next we ensure that
at least one valid column definition was found, meaning at least one column had a name
and type selected. Finally, we ensure that only a single column is the primary key, which
appears to be a limitation in SQLite.

Once all the validations have passed, we can get to the business of actually creating
the table:

Ext.MessageBox.confirm("Confirm SQL Execution",
"Are you sure you want to execute the following " +
"SQL statement?

" + sql,
function(inButtonClicked) {
if (inButtonClicked == "yes") {
var db = google.gears.factory.create("beta.database");
db.open(inDatabaseName);
try {
db.execute(sql);
db.close();
SOLWorkbench.listTables(inDatabaseName);
Ext.getCmp("createTableWindow").close();
Ext.MessageBox.hide();
} catch (e) {
db.close();
Ext.MessageBox.alert("SQL Execution Error", e);
}
}
}
)5

};

After we confirm that users want to execute the SQL we’ve constructed (and we very nicely
show it to them!), then creating the table is a simple matter of opening the appropriate data-
base, the name of which was passed in as inDatabaseName, and executing the SQL query. We
wrap that all up in try..catch in case anything goes wrong, and if it does, we display the excep-
tion that was thrown. If no exception is thrown, we list the tables in this database again, which
to the user appears as a refresh of the Tables Window, and then we close