THE EXPERT'S VOICE® IN OPEN SOURCE

Practical e

Eclipse Rich
Client Platform

Projects

Delivers all the tools you need to build commercial-quality
applications with the Eclipse Rich Client Platform

Vladimir Silva

APIess:

Practical Eclipse Rich
Client Platform Projects

Vladimir Silva

APIess®

Practical Eclipse Rich Client Platform Projects
Copyright © 2009 by Viadimir Silva

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1827-2
ISBN-13 (electronic): 978-1-4302-1828-9
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was writ-
ten without endorsement from Sun Microsystems, Inc.

Lead Editor: Tom Welsh

Technical Reviewer: Sumit Pal

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,
Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Managers: Douglas Sulenta, Susannah Davidson Pfalzer

Senior Copy Editor: Marilyn Smith

Associate Production Director: Kari Brooks-Copony

Production Editor: Ellie Fountain

Compositor: Molly Sharp

Proofreader: Linda Seifert

Indexer: Broccoli Information Management

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.
apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

Contents at a Glance

About the AUNOT.o Xi
About the Technical Reviewer Xiii
IMtrOdUCHION XV
CHAPTER 1 Foundations of Eclipse RCP...................................... 1
CHAPTER 2 Plug-ins: AFirstGlimpse i il 21
CHAPTER 3 RCPBASIiCScooiiii e 53
CHAPTER 4 User Interface Concepts....................... 77
CHAPTER 5 Forms API and Presentation Framework........................ 107
CHAPTER 6 Help Support......... 141
CHAPTER 7 2D Graphics withGEFand Zest 173
CHAPTER 8 3D Graphics for RCP with OpenGL.............................. 209
CHAPTER 9 Professional Reports with the Business Intelligence and
Report Toolkit. i 261
CHAPTER 10 AutomatedUpdates..................... 291
INDEX .. 325

Contents

Aboutthe AUTNOT.o Xi
About the Technical Reviewer Xii
IMtrOdUCHION XV
CHAPTER 1 Foundations of Eclipse RCP 1
Benefits of Eclipse. ... 1

How Is RCP Different from the Eclipse Workbench?................... 2

Eclipse RCP Architecture 2

EqQuinox OSGio 3

Core Platform 3

Standard Widget Toolkit, 4

JRace 5

The Eclipse Workbench. 6

Hands-on Exercise: Getting Your Feet Wet with the 0SGi Console. 6

Starting a New Plug-in Project. 6

Creatingthe Plug-in............... ... i 9

Testingthe Plug-in. 12

Using 0SGi Console Commands 15

Using Logging Services.c..oovviiiiiiiian. 16

SUMMANY. ... 19

CHAPTER2 Plug-ins: AFirstGlimpse 21
Introducing the Eclipse Plug-in Model 21

The Plug-in Class and BundleContext 22

Manifests. 23

Plug-in Fragments and Features.............................. 24

Adding Extension Points.............. ... 24

Perspectives 25

VWS 28

ViewActions. ... 29

Editors ..o 31

Pop-upMenus 33

ComMMANAS . ..o 35

vi

CONTENTS

CHAPTER 3

CHAPTER 4

Hands-on Exercise: Fun with a Web Browser Plug-in................. 38
Adding a Perspective Extension Point 39
Adding a Perspective Factory. 40
Adding Viewsand Content................................... 41
Testingthe Plug-in............. i i 48
Enhancing the Web Browser 49

SUMMANY. ... 50

RCPBasics ... 53

Components of an RCP Application 53
Extension Points for an RCP Application 55
O0SGiManifest..............c 59
Plug-in Manifest. 60
Advisor Classes ... 61
Plug-in Class.o 63

Defining and Branding Products.................. 65

Using Features. 67

Product Testing and Packaging.ooi... 67

Hands-on Exercise: An RCP Application for the Web Browser Plug-in. . . 68
Adding an Application Extension Point......................... 68
Changing the Default Perspective............................. 70
Modifying Advisor Classescooiiiiiiiin... 70
Adding Menu and Toolbar Extension Points 72
Adding Commands, Key Bindings, and Handlers................ 73
Creating the Product Configuration File........................ 75

SUMMArY. 76

User Interface Concepts 77

Hierarchical Navigation with the Common Navigator Framework. 77
CNF BASICSo 78
Using CNFWithin RCP............. 79

Concurrency Infrastructurel 83
JODSAPIBASICSo 84
Using the Concurrency Infrastructure. 86

Hands-on Exercise: A CNF File System Navigator.................... 93
Creating an RCP Project Template 93
Adding CNF Extension Points. 94
Implementation Classes ..., 96

SUMMANY. ... 106

CHAPTER 5

CHAPTER 6

CONTENTS
Forms API and Presentation Framework 107
Forms APIBasiCS.o 107
CommonControls 109
FormLookand Feel...............o il 11
CustomlLayouts.................o i 115
Complex Controls.coi i 115
Complex FOrmS 124
Managed FOrms..............oo 124
Master/Details Forml 125
Multipage Editors. 125
Hands-on Exercise: A Web Look for the Mail Template 127
Customizing the Workbench Window. 128
Customizing the Window Contents........................... 129
Modifying the Navigation View 132
Modifying the Mail View 134
SUMMANY. .. 138
Help Support. 141
Configuring a Product to Use the Help System...................... 141
Adding the Dependency Plug-insooo... 142
Updatingthe MenuBar..................................... 142
AddingHelpContent............ 144
Help System Extension Points............................... 146
TOCFile.o 147
Index File. o 148
Internationalization 150
Adding Context Help Support. 150
Product Plug-in Modifications 151
Help Plug-in Modifications.................................. 152
Customizingthe Help System 154
Hands-on Exercise: Create an Infocenter from Custom Documentation. .. 156
Splitting the Documentation into Topic HTML/XHTML Files. 156
Creating the Help Contents Plug-in........................... 157
Creating the Infocenter Plug-in.............................. 158
Adding a Product Configuration File to the Infocenter Plug-in. .. .159
Adding a TOC to the Help Contents Plug-in.................... 160
Adding a Help Menu to the Infocenter Plug-in 162

Adding Help System Dependencies to the Product Configuration ... 163
Testing the Infocenter Plug-in............................... 164

vii

viii

CONTENTS

CHAPTER 7

CHAPTER 8

Deploying the Infocenter Plug-in............................. 166
Starting the Infocenter from the Command Line 166
Customizing the Infocenter. 168
SUMMANY. ... 170
2D Graphics with GEFand Zest 173
Draw2d—The Big Picture il 173
UsiNg GEF 175
Displaying Figureso i 176
Exploring the GEF Shapes Example 176
Adding EditPolicies 185
AddingaPalette.................... .. 187
UsiNg Zest.o 190
ZestComponents. i 191
ZestLayouts o 193
Hands-on Exercise: Build Your Own Advanced 2D Graphics Editor195
Creatingthe RCP Product................................... 196
Buildinga ZestPlug-in 200
Testing the Final Product 206
SUMMArY. 207
3D Graphics for RCP withOpenGL 209
OpenGLand SWT 209
The Device-Independent Package 210
OpenGL Bindings for SWT, 211
Creating OpenGL Scenes with JOGLand SWT...................... 211
Setting Up for the OpenGL Scenes 212
Creating the Wire Cubes Scene.............................. 220
Creatingthe 3D ChartScene................................ 228
Rotating and Movingthe Scene. 236
Refreshingthe Scene il 241
Putting the Scene intoan RCP View.......................... 241
Hands-on Exercise: Build a Powerful 3D Earth Navigator............. 242
WWJBaSICS ... 242
Setting Up the Earth Navigator Project........................ 245
Creating the Earth Navigator View 248
Flying to a Location Withina Globe. 250
Finding Latitude and Longitude with the Yahoo Geocoding API. . . 251
Creating the Layer Navigator View with Geocoding............. 256

SUMMAY. 258

CHAPTER 9

CHAPTER 10

CONTENTS

Professional Reports with the Business Intelligence

and Report Toolkit ... 261
Using the Report Designer Within the Eclipse IDE................... 261
Installing BIRT Using the Software Updates Manager........... 262
Report Anatomy ... 263
Getting Your Feet Wet with the Report Designer 263
Using BIRT Within a Servlet Container............................. 269
Deploying the BIRT Runtime iit 269
Using the Report Viewer Servlet 270
Usingthe JSP Tag Library 272
Using the Report Engine APl it 275
Configuring and Creating a Report Engine..................... 276
What Kinds of Operations Can Be Done with the Report Engine?. .. 277
Hands-on Exercise: Report Generation from the 0SGi Console. 283
Extending the OSGi Console.....................coiiiiiit. 283
Generatingthe Report............. 285
Running the Report Generator Plug-in........................ 289
SUMMANY. ... 290
Automated Updates.. 291
Updating and Installing Software the Eclipse Way................... 291
Defining and Configuringa Product 292
Grouping Plug-insinFeatures............................... 295
Grouping Plug-ins Within Fragments 296
Building an Update Site Project.............................. 296
Software Update UL TOOIS. ... 296
Using the Software Updates and Add-ons Dialog............... 297
Installing Software from the Command Line................... 298
Product Build Automation with the Headless Build System........... 300
Build Configuration, 302
BuildPhases...............o i 304
Hands-on Exercise: Automated Updates and Builds for RCP.......... 305
CreatingaFeature.............. 305
Creatingan Update Siteciiilt. 306
Testing and Publishing 308
Building the Product Headless. 314
Building the Product Headless from a CVS Repository 318
SUMMAY. ... 323

ix

About the Author

VLADIMIR SILVA was born in Quito, Ecuador. He received a System’s Analyst degree from the
Polytechnic Institute of the Army in 1994. In the same year, he came to the United States as an
exchange student pursuing a Master’s degree in Computer Science at Middle Tennessee State
University. After graduation, he joined IBM’s Web-Ahead technology think tank. His interests
include grid computing, neural nets, and artificial intelligence. Vladimir also holds numerous
IT certifications, including Oracle Certified Professional (OCP), Microsoft Certified Solution
Developer (MCSD), and Microsoft Certified Professional (MCP).

Xi

About the Technical Reviewer

SUMIT PAL has about 15 years of experience with software design and
development and architecture on a variety of platforms, including Java
and J2EE. Sumit worked in the Microsoft SQL Server Replication group
for 2 years, and with Oracle’s OLAP Server group for 7 years.

Currently, he works as an OLAP architect for LeapFrogRx, which
provides advanced analytics to pharmaceutical companies.

Along with certifications like IEEE Certified Software Development
Professional (CDSP) and J2EE Architect, Sumit has a Master’s degree in
Computer Science.

Sumit has a keen interest in search engine internals, data mining,
database internals, and algorithms. He has invented some basic gen-
eralized algorithms to find divisibility between numbers and also to find divisibility rules for
prime numbers less than 100.

In his spare time, Sumit loves to play badminton and swim, and also help organizations
like Akshaya Patra Foundation (http://foodforeducation.org/) raise funds.

xiii

Introduction

Eclipse Rich Client Platform (RCP) has become the leading open development platform,
capturing close to 70% of the open integrated development environment (IDE) market. I
wrote this book to give you a clear and technical guide to Eclipse development, and to help
you achieve your goals quickly. If you use Eclipse, you must become familiar with RCP. It
gives you all the tools you need to build commercial-quality applications and deploy them
quickly, thus saving time and increasing the return on investment.

In Practical Eclipse Rich Client Platform Projects, I explain the necessary technical concepts
approachably, with plenty of source code and images, in a detailed and engaging (I hope) way.
This book will show you how to apply modern graphical user interface (GUI) concepts to your
applications using real-world examples. Each chapter explains the concepts carefully, and then
puts them to the test with a hands-on exercise.

We start with the architecture and foundations of Eclipse RCP, taking a tour of Equinox,
the core platform, Standard Widget Toolkit (SWT), and the Eclipse IDE workbench. Next, you
learn about the details of the plug-in architecture, always with a focus on RCP components:
perspectives, advisor classes, basic branding, and product configuration. In Chapter 4, we look
at common concurrency concepts used in modern GUI development with the Jobs API: job
classes, scheduling rules, resource management, and more.

In Chapter 5, you learn how to spice up your GUI with the powerful Forms API. Among the
areas covered are look and feel, form controls, and advanced topics—in short, everything you
need to improve the look of your RCP application.

A good help system is an important component of any application. Chapter 6 tackles
this subject with detailed descriptions of how to build your help files, required help plug-ins,
dependencies, and configuration.

If you ever work on graphics-enabled applications, you will find Chapters 7 and 8 of spe-
cial interest. They cover 2D and 3D graphics in depth. In the 2D arena, you learn how to use
Draw2D, Graphical Editing Framework (GEF), and the Zest visualization toolkit. If 3D is your
thing, you’ll want to take a look at how OpenGL can be used to build a powerful Earth naviga-
tor (Google style) in a snap.

Chapter 9 shows you how to create powerful reports using the Business Intelligence and
Report Toolkit (BIRT), which you will find particularly useful if your application is targeted to a
business environment.

Finally, Chapter 10 explains how to pack your work and deploy it automatically to an
update site using the automated build system.

Practical Eclipse Rich Client Projects covers all the major needs of a modern application.

It will help you get things done. If you are interested in the source code, you can download it
from this book’s details page at the Apress web site (http://www.apress.com).

Xv

CHAPTER 1

Foundations of Eclipse RCP

The Eclipse philosophy is simple and has been critical to its success. The Eclipse Platform
was designed from the ground up as an integration framework for development tools. Eclipse
also enables developers to easily extend products built on it with the latest object-oriented
technologies.

Although Eclipse was designed to serve as an open development platform, it is architected
so that its components can be used to build just about any client application. The minimal set
of modules needed to build a rich client is collectively known as the Rich Client Platform (RCP).

This chapter focuses on the foundations of RCP. It begins with a summary of the benefits
of Eclipse, and then discusses the architecture of RCP. Finally, you’ll work through a practical
exercise that demonstrates the power of this dynamic modular technology.

Benefits of Eclipse

Eclipse is an integrated development environment (IDE) written primarily in Java. However, it
goes well beyond a Java development platform in the following ways:

e Itis open and extensible. Extensible software can function as a component of a larger
system. Eclipse’s openness permits greater interoperability, opportunity, and choice.

e It provides multilanguage support. Eclipse supports an army of programming lan-
guages, including Java, Java Platform, Enterprise Edition (Java EE), Aspect], C/C++,
Ruby, Perl, COBOL, and many others.

¢ It provides a consistent feature set across all platforms. This allows developers to con-
centrate on the problem rather than the specific platform. More important, it functions
the same way on each of these platforms.

e It provides a native look and feel, which is required by today’s professional applications.

e Avery active community is willing to help with any problem. Moreover, since Eclipse
is the foundation for a number of commercial software products, many vendors offer
additional support.

¢ Eclipse is at the forefront of the software tools industry. This means that you can
depend on it as a viable, industrial-strength tool for the foreseeable future.

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP

The bottom line is that Eclipse is extensible, configurable, free, and fully supported. It
is so well designed for these purposes that many developers find it a pleasure to work with.
Newcomers from other languages, especially C/C++ on Unix, will discover this after learning
the basics.

How Is RCP Different from the Eclipse Workbench?

Many people struggle to understand the difference between the Eclipse IDE workbench and
RCP. The answer is simple: there is no difference—well almost no difference. Both are based
on a dynamic plug-in model, and the user interface (UI) for the workbench and RCP is built
using the same toolkits and extension points. However, RCP has the following distinguishing
features:

¢ In RCP, the layout and function of the Eclipse IDE workbench is under fine-grained
control of the plug-in developer. In fact, the Eclipse IDE workbench itself is an RCP
application for software development. Here is where the line between these two
becomes thin.

¢ In RCP, the developer is responsible for defining the application and customizing the
look and feel of the Eclipse IDE workbench to fit the needs of the application.

e In RCP, the platform application needs only the plug-ins org.eclipse.ui and
org.eclipse.core runtime to run. However, RCP applications are free to use any
platform plug-ins they need to provide their feature set.

Eclipse RCP Architecture

RCP employs a lightweight software component framework based on plug-ins. This architec-
ture provides extensibility and seamless integration. Everything in RCP (and Eclipse, for that
matter), with the exception of the runtime kernel, is a plug-in. It could be said that all features
are created equal, as each plug-in integrates with Eclipse in exactly the same way. A plug-in
can be anything: a dialog, a view, a web browser, a database explorer, a project explorer, and
so forth.

RCP is architected so that its components can be put together to build just about any cli-
ent application using a dynamic plug-in model, toolkits, and extension points. The layout and
function of the workbench is under the fine-grained control of the plug-in developer. Under
the covers, the following components constitute RCP:

e Equinox

¢ Core platform

¢ Standard Widget Toolkit
¢ JFace

¢ Eclipse IDE workbench

Let’s take a closer look at each of these components.

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP

Equinox OSGi

According to its developers, OSGi! is a dynamic module system for Java. OSGi was designed as
a technology to tackle software complexity created by monolithic software products. Its focus
is the development of new software, as well as the integration of existing software into new
systems. By providing standards for the integration of software, the OSGi framework improves
reusability and reliability, and reduces development costs.

At its core, OSGi provides a software framework that allows applications to be con-
structed from small, reusable, and collaborative components. These components, in turn,
can be included in a bigger application and deployed.

Equinox is Eclipse’s implementation of the OSGi framework. It defines an application life-
cycle management model, a service registry, an execution environment, and modules. On top
of this framework, a large number of OSGi layers, application program interfaces (APIs), and
services have been defined.

An important concept in the OSGi framework is the bundle. A bundle is a dynamic com-
ponent that can be remotely installed, started, stopped, updated, and uninstalled without
requiring a reboot.

Life-cycle management is done via APIs, which allow for remote downloading of manage-
ment policies. Such a dynamic component model is missing from today’s stand-alone Java
Virtual Machine JVM) environments.

OSGi provides a powerful dynamic component model, which is why the Eclipse Founda-
tion selected it as the underlying runtime for Eclipse RCP and the IDE.

Core Platform

The core platform includes a runtime engine that starts the platform base and dynamically
discovers and runs plug-ins.

Core Platform Responsibilities

The core platform is responsible for the following:

¢ Defining a structure for plug-ins and the implementation details: bundles and class-
loaders

¢ Finding and executing the main application, and maintaining a registry of plug-ins,
their extensions, and extension points

¢ Providing miscellaneous utilities, such as logging, debug trace options, adapters, a
preference store, and a concurrency infrastructure

The runtime is defined by the plug-ins org.eclipse.osgi and org.eclipse.core.runtime
on which all other plug-ins depend. It effectively holds all the pieces together.

1. OSGi originally stood for Open Services Gateway initiative, but that name is now obsolete. Visit
http://www.osgi.org for more information about OSGi.

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP

Note Because plug-ins are implemented using the 0SGi framework, a plug-in is essentially the same
thing as an 0SGi bundle. | will use these terms interchangeably, unless discussing particular framework
classes.

Runtime Plug-in Model

The plug-in model is structured around the following concepts:

Plug-in: A plug-in is a structured bundle of code and/or data that contributes functional-
ity to the system. Some plug-ins can contribute to the UI using an extension point model.
Others supply class libraries that can be used to implement system extensions.

Extension points: An extension point is a well-defined place where other plug-ins can add
functionality. Plug-ins can add extensions to the platform by implementing an extension
point. Defining an extension point can be thought of as defining an API, with the differ-
ence that the extension point is declared in Extensible Markup Language (XML) instead
of code.

OSGi manifest and plug-in manifest: These manifests allow the plug-in to describe itself to
the system. The extensions and extension points are declared in the plug-in manifest file,
which is called plugin.xml. The platform maintains a registry of installed plug-ins and the
functions they provide in the MANIFEST.MF file.

Dynamic loading: In the OSGi services model, software bundles do not pay a memory or
performance penalty for components that are installed but not used. A plug-in can be
installed and added to the registry, but it will not be activated unless a function that it
provides is requested at runtime.

Resource management: Resources within the user’s workspace are managed by the plug-

in org.eclipse.core.resources. This plug-in provides services for accessing the projects,
folders, and files stored in the user’s workspace or alternate file systems, such as network
file systems or a database. This plug-in is most useful for Eclipse IDE applications.

The overall philosophy of the core platform revolves around the idea of building plug-ins
to extend the system. For example, the Eclipse Software Development Kit (SDK) includes the
basic platform plus two major tools: the full-featured Java development tools (JDT) and a
Plug-in Developer Environment (PDE) to facilitate the development of plug-ins and exten-
sions. These tools provide an example of how new tools can be composed by building plug-ins
that extend the system.

Standard Widget Toolkit

The Standard Widget Toolkit (SWT) is the graphical widget toolkit used by Eclipse. Originally
developed by IBM, it was created to overcome the limitations of the Swing graphical user
interface (GUI) toolkit introduced by Sun. Swing is 100% Java and employs a lowest common

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP

denominator to draw its components by using Java 2D to call low-level operating system prim-
itives. SWT, on the other hand, implements a common widget layer with fast native access to
multiple platforms.

SWT’s goal is to provide a common API, but avoid the lowest common denominator prob-
lem typical of other portable GUI toolkits. SWT was designed for the following:

Performance: SWT claims higher performance and responsiveness, and lower system
resource usage than Swing.?

Native look and feel: Because SWT is a wrapper around native window systems such as
GTK+ and Motif, SWT widgets have the exact same look and feel as native ones. This is in
contrast to the Swing toolkit, where widgets are close copies of native ones. This is clearly
evident just by looking at Swing applications.

Extensibility: Critics of SWT may claim that the use of native code does not allow for easy
inheritance and hurts extensibility. However, both Swing and SWT support writing new
widgets using Java code only.

Perhaps a shortcoming is that, unlike Swing, SWT requires manual object deallocation, as
opposed to the standard automatic garbage collection of Swing. SWT objects must be explic-
itly disposed of; otherwise, memory leaks or other unintended behavior may result. This is due
to the native nature of SWT, as widgets are not tracked by the JVM, which is unable to garbage-
collect them. Some claim that this increases development time and costs for the average Java
developer. But the truth of the matter is that the only SWT objects a developer must explicitly
dispose of are the subclasses of Image, Color, and Font objects.

JFace

JFace is a window-system-independent GUI toolkit for handling many common programming
tasks. JFace is designed to work with SWT without hiding it, and implements a model-view-
controller (MVC) architecture.

The following are some of the UI components in JFace:

¢ Image and font registries
e Text, dialog, preference, and wizard frameworks
e Viewers
e Actions
Viewers are used to simplify the interaction between an underlying data model and the
widgets used to present that model. Table and tree viewers are the most typical examples.
Actions are essential for the developer. They may fire when a toolbar button or a menu

item is clicked or when a defined key sequence is invoked. They are most useful when contrib-
uted to the workbench declaratively in plugin.xml.

2. See “Why I choose SWT against Swing” (November 19, 2004), on Ozgur Akan’s blog. (http://weblogs.
java.net/blog/aiqa/archive/2004/11/why_i_choose_sw.html).

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP

The Eclipse Workbench

The Eclipse IDE workbench is the basic development environment in Eclipse. It is built around
the following concepts:

Perspectives: A perspective defines the initial set and layout of the views in your work-
bench window. Perspectives are focused on a specific development task, such as Java,
Java EE, plug-in, and so on.

Views: Views are the small windows and sidebars around the edges of the workbench.
Views are used to navigate the workbench and present information in different ways.

Editors: Editors are used to do the actual coding. For example, you might use editors
to code in Java, JavaScript, Hypertext Markup Language (HTML), or Cascading Style
Sheets (CSS).

Workspaces: A workspace is the disk folder where the actual work will be stored.

Projects: A project is a container used by the workbench to group associated folders
and files.

Note All the exercises in this book were written using Eclipse 3.4 (Ganymede). This is important, as the Ul
is somewhat different from that of version 3.3.

Hands-on Exercise: Getting Your Feet Wet with the
0SGi Console

Programming with Eclipse can be thought of as a game. The more you practice, the better you
get at it. The goal of this exercise is to get you started by building a plug-in project that uses the
OSGi console. We'll go beyond of the typical Hello World example.

In this exercise, you will write a plug-in to embed a tiny Jetty web server that uses Equinox
to define a simple servlet class that returns the headers of the HTTP request. This plug-in will use
the extension point org.eclipse.equinox.http.registry.servlets to define the servlet alias
/servlet1, which will be accessed through the browser as http://localhost:8080/servlet1.

Starting a New Plug-in Project

Starting a new plug-in project is easy with the Plug-in Project wizard.

1. From the Eclipse IDE main menu, select File » New Project (or click the New Project
icon on the toolbar) and choose Plug-in Project, as shown in Figure 1-1. Then click Next.

2. Enter a project name and use the default target platform, as shown in Figure 1-2. Click
Next to continue.

CHAPTER 1

New

[Elx]

Select a wizard

Create a Plug-in Project

Wizards:

e

[ype filter text]

& Class
& Interface
2% Java Project

% Plug-in Project

% Java Project from Existing Ant Buildfile

b = General

[= Connection Profiles

P =cvs

I = Eclipse Modeling Framework:

b =EB

@ | < Back ” Mext =] | Einish

| [Cancel

Figure 1-1. Selecting to create a plug-in project

New Plug-in Project

BE

Plug-in Project

Create a new plug-in project

Project name: Ichﬂl

Use default location

Loc

-Project Setting

Create a Java project

Source folder: Isrc

Output folder: Ibin

Target Platform

This plug-in is targeted to run with:

@ Eclipse version:

S

) an 0SGi framework: ‘E-:p,unc-x o

“Working set

] Add project to working sets

Working sets:

@ l < Back " Next > l|

Finish

H cancel]

Figure 1-2. Naming and targeting the plug-in project

FOUNDATIONS OF ECLIPSE RCP

7

8

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP

3. Enter the plug-in information. The plug-in ID uniquely identifies the plug-in within

the core runtime. In the Plug-in Options section, you need to choose to generate an
activator class to control the plug-in life cycle. Leave the option “This plug-in will make
contributions to the UI” unchecked, as the plug-in will not display a UL You do not

want to create a rich client application, so leave the final option set to No, as shown in
Figure 1-3. Click Finish to create the plug-in project.

New Plug-in Project

Plug-in Content

"=rf -
Enter the data required to generate the plug-in. /

Plug-in Properties

Execution Environment: |JavaSE-1.6

Plug-in ID: [ch01]
Plug-in Version: [1.0.0]
Plug-in Narme: [cho1 Plug-in |
Plug-in Provider: []

)

2 |Enyironments..

Plug-in Options

Generate an activator, a Java class that controls the plug-in's life cycle

Activator: [chOl.Activator

[[] This plug-in will make contributions to the UI
[7] Enable API Analysis

Rich Client Application

Would you like to create a rich client application? O

‘ = Back ” Next = H Finish H Cancel |:

Figure 1-3. Specifying plug-in content

The wizard builds the project, and then presents the plug-in manifest editor, as shown in
Figure 1-4. The two most important files are Activator.java and MANIFEST.MF.

[} 2 [% Packag = O

=

B &
v chol
P =4 RE System Library [JavaSt-
b = Plug-in Dependencies
v @ src
~ B chol
b [Activatorjava
(= META-INF
OO 1 - |
[ob build properties
P = Servers

CHAPTER 1

Ak chol 22

4 Overview

General Information
This section describes general information about this plug-in.

ID: cho1
version: 1.0.0
Name: Chol Plug-in
Provider:

Platform Filter:

Activator: ch0 1 Activator Browse. ..
Activate this plug-in when one of its classes is loaded

() This plug-in is a singleton

Execution Environments
Specify the minimum execution environments required to run
this plug-in.

=i JavasE-1.6 Add...

Configure |RE associations...

Update the classpath settings

ot %o @

Plug-in Content

The content of the plug-in is made up of two sections:

4 Dependencies: lists all the plug-ins required on this plug-
in's classpath to compile and run,

[Runtime: lists the libraries that make up this plug-in's
runtime.
Extension / Extension Point Content

This plug-in may define extensions and extension points:

Extensions: declares contributions this plug-in makes to
the platform.

[/ Extension Points: declares new function points this plug-
in adds to the platform

Testing
Test this plug-in by launching a separate Eclipse application:
2 Launch an Eclipse application
%5 Launch an Eclipse application in Debug mode
Exporting

To package and export the plug-in

-

. Organize the plug-in using the Organize Manifests Wizard

N

. Externalize the strings within the plug-in using the
Externalize Strings Wizard

specify what needs to be packaged in the deployable
plug-in on the Build Configuration page

4. Export the plug-in in & format suitable for deployment

@

Overview | Dependencies| Runtime Extensions Extension Points| Build| MANIFEST.MF | build properties

[Problerns | Tasks = Properties | 4 Servers | ¥ Data Source Explorer | & Snippets El Console 52

Mo consoles to display at this time.

Figure 1-4. Plug-in manifest editor for this exercise

Creating the Plug-in

The activator class controls the life-cycle aspects and overall semantics of a plug-in. A plug-in
can implement specialized functions for the start and stop aspects of its life cycle. Each life-
cycle method includes a reference to a BundleContext, as follows:

public void start(BundleContext context) throws Exception {
super.start(context);

plugin = this;

log.info("Activator Start");

public void stop(BundleContext context) throws Exception {

plugin = null;

super.stop(context);

log.info("Activator Stop");

FOUNDATIONS OF ECLIPSE RCP

=0O|gou

=l

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP

BundleContext is a reference that contains information related to the plug-in and other
bundles/plug-ins in the system. Chapter 2 provides more information about the BundleContext
methods.

The Dependencies tab of the plug-in manifest editor is used to add references to other

bundles. You also need to add an extension point and implement the servlet, which you can
do through the Extensions tab of the editor.

1. To add references to other bundles, click the Dependencies tab, and then click the Add
button in the Required Plug-ins section. This displays the Plug-in Selection dialog, as
shown in Figure 1-5. For this exercise, add the following references, which are required
by the servlet extension point:

* javax.servlet
e org.eclipse.equinox.http.jetty
e org.eclipse.equinox.http.registry

e org.eclipse.equinox.http.servlet

n = = 8| 5= outlit
% Dependencies 0% 2O
Required Plug-ins 2 Imported Packages

Specify the list of plug-ins required for the operation of

Specify packages on which this plug-in depends without
this plug-in. explicitly identifying their originating plug-in.
% org.eclipse.core.runtime Add.. ‘ Add.. |
e javax.servlet (2.4.0) — \
% org.eclipse.equinox http jetty (1.1.0) |w| c
B B i
org.eclipse.equinax.hittp.reg [uw | E B
|Proper‘t\es..‘|
=] Plug-in Selection ol[x

Select a Plug-in:

lcrg.echpse‘equm]

- org.eclipse.equinox.app.source (1,1,0,v200804214 E
£ org.eclipse.eguinex.common source (3.4‘0‘v2008(IE|
- org.eclipse equinox.frameworkadmin (1.0.0.v2008
¥ org.eclipse equinox frameworkadmin.equinox (1.0
%= org.eclipse equinox frameworkadmin.equinox.sour
%= org.eclipse equinox.frameworkadmin.source (1.0.0
%= org.eclipse equinox http jetty.source (1,1.0.v2008(

=] = mB| - org.eclipse equinex http.registry.seurce (1.0.100.v
5

» Automated Management of Depend)|

% org.eclipse equinox.http.serviet source (1.0,100.v]

% org.eclipse equinox.jsp jasper [1.0.100.v20080427
Ovenview | Dependencies Runtime Extensicn; ?‘burg.echpae‘equmux‘

jspjasperregistry (1.0.0.v200¢
U T S SRR S SR 2

[&! Problems | ¥ Tasks = Properties | 4 servt [u [B

No consoles to display at this time. |

Figure 1-5. Adding dependencies

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP

2. Click the Extensions tab. Click the Add button and select the extension point
org.eclipse.equinox.http.registry.servlets. A servlet class name and alias will be
inserted automatically. The servlet alias (/servlet1) will be used to reference the serv-
let from a web browser. Internally, the XML for this extension point looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.2"?>
<plugin>
<extension

point="org.eclipse.equinox.http.registry.servlets">
<servlet

alias="/servlet1"

class="cho1.Servlet1">
</servlet>
</extension>

</plugin>

3. To implement the servlet class, click the class label link in the Extensions tab, as shown
in Figure 1-6. This launches the New Java Class wizard.

Note You can also implement a new class manually by adding the class name (cho1.Servlet1 in this

example) to the plug-in manifest editor, and then right-clicking the plug-in project folder and selecting New
» Java Class.

& % =8
% Extensions O % %@
All Extensions 4 B Extension Element Details

Define extensions for this plug-in in the following Set the properties of "servlet". Required fields are
section, denoted by "+,

type filter text

class*:

chol.sendetl iBrowse..‘ |
: [addo. | aliase:
+ <= org.eclipse.equinox.http.registrys - alias*: [servietl

@ y y \Re_r'r;;él httpecontextid:

load-on-startup:

Figure 1-6. Servlet extension point details

1

12 CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP

4. Enter the class information, select javax.servlet.http.HttpServlet as the superclass,
and click Finish. The Java class will be created automatically.

5. Use the plug-in manifest editor to override the doGet method to return the headers of
the HTTP request to the browser, as follows:

@0verride
protected void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException
{
resp.setContentType("text/html");
dumpHttpHeaders(req, resp.getWriter());

}

@SuppressWarnings("unchecked")
private void dumpHttpHeaders(HttpServletRequest req, PrintWriter out)

{
out.printIn("URI:" + req.getRequestURI() + "
");
Enumeration<String> names = req.getHeaderNames();
while (names.hasMoreElements()) {
final String name = names.nextElement();
out.println(name + "=" + req.getHeader(name) + "
");
}
}

Testing the Plug-in

Now that you've created the plug-in, you can test it. You'll see that the OSGi console is very
useful for examining the OSGi framework and debugging missing dependencies.

1. From the main menu, select Run » Configurations to open the Run Configurations
dialog.

2. To create a new configuration under the OSGi framework, right-click and select New.
Make sure your plug-in is selected in the Bundles list, under Workspace, as shown in
Figure 1-7. You must also select all required bundles under Target Platform. To make
sure all required bundles are selected, unselect all bundles under Target Platform, and
then click Add Required Bundles. This will ensure only the required dependencies are
used at runtime. Then click Run.

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP

Create, manage, and run configurations %
Create a configuration to launch the 0SGi framework, KV-)JJ
S =
2 % = ﬂame:lch 01]
[:] i Bundles = Arguments | 27| Settings | & Tracing @ Environment | 1 Common
< [Apache Tomcat Framewaork: | Equinox 2 Default Start level: EE| Default Auto-Start: ‘true G ‘
f Torncat vs .5 Server at lo
@ Eclipse Application [tYPE filer text]
Ecl Data Tool F
&5 Eclipse Data Tools Bundles Start Level Auto-Start H Select Al
[Generic Server
[Generic server(External L ~ 6 ¥l Workspace Deselect All
 Generic Server(External Lar &
- <= cho1 (1.0.0) default default
[HTTP Preview

B J2EE Preview
i Java Applet

I Java Application
Ju JUnit

< [=] %] Target Platform
[0 %= corn.ibrm.icu (3.8.1.v20080530)
%= corm.ibrm.icu.source (3.8.1.v200808
f” | [1%= corn jeraft jsch (0.1.37 w200B03061
Ju JUnit Plug-in Test
vl i g [] %= javax.activation (1.1.0 v200804101
< & 0SGi Framework N
[] = javax.mail (1.4.0 v200804091730)

S T ——] %> javax.servlet (2.4.0v20080603160. default default O Only show selected bundles

[~] 19 out of 655 selected

Add Required Bundles

| |
| |
«o cho1_fragment (1.0.0) default false | Addworking Set.. |
| |
| |

Restore Defaults

[¥ imvaw sandat isn (2 0 0 w20NRAAN2"

Include optional dependencies when computing required bundles

Add new workspace bundles to this launch configuration autormatically

[validate bundles automatically prior to launching walidate Bundles
R ——r— B
Filter matched 14 of 14 items
@ l Run] ‘ Close |

Figure 1-7. Run configuration dialog showing both the exercise plug-in (ch01) and the logging
fragment (ch01_fragment) discussed later in this chapter

3. Click the Arguments tab. Note the runtime arguments:
e os ${target.os}: The target operating system
e ws ${target.ws}: The target window system
e arch ${target.arch}: The target architecture
e nl ${target.nl}: Thelocale
* Console: Start the OSGi console; handy for investigating the state of the system
Also note the VM argument:

e 0sgi.noShutdown: If true, the VM will not exit after the Eclipse application has
ended; useful for examining the OSGi framework after the application has ended

When the plug-in runs, the console starts and is ready to receive user commands. This
is a handy tool to inspect the state of the system. From the following output, you can
see that Jetty started on port 80, which is the default in Windows.

13

14 CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP

Note Under Linux environments, Jetty may fail to start on port 80, as ports lower than 1024 require
sysadmin access. In that case, add the VM argument -Dorg.eclipse.equinox.http.jetty.http.
port=8080 to start Jetty on port 8080.

osgi> Jun 21, 2008 6:21:10 PM choi.Activator start

INFO: Activator Start

Jun 21, 2008 6:21:10 PM org.mortbay.http.HttpServer doStart
INFO: Version Jetty/5.1.x

Jun 21, 2008 6:21:11 PM org.mortbay.util.Container start
INFO: Started org.eclipse.equinox.http.jetty.internal.Servlet25Handler@1a99561
Jun 21, 2008 6:21:11 PM org.mortbay.util.Container start
INFO: Started HttpContext[/,/]

Jun 21, 2008 6:21:11 PM org.mortbay.http.SocketlListener start
INFO: Started Socketlistener on 0.0.0.0:80

Jun 21, 2008 6:21:11 PM org.mortbay.util.Container start
INFO: Started org.mortbay.http.HttpServer@iea0252

osgi>

4. Point the browser to http://localhost/servlet1. You should see the output shown in

Figure 1-8.
/2 http:/ /localhost/servlet1 - Windows Internet Explorer =10 x|
@ v |¢1 http:;‘,l'lotalhost,l'sewbtlj 21X I'::.'L'=!|L' P~
| File Edit View Favorites Tools Help
e ke (& httpifflocalhostjserviet | |J - B - G @
URI/servletl
Accept="'%
Accept-Language=en-us
UA-CPU=x86

Accept-Encoding=gzip, deflate

User-Agent=Mozilla 4 0 (compatible; MSIE 7.0; Windows NT 5.1; NET CLR
2.0.30727; NET CLR 3.0.04506.648; NET CLR 3.5.21022)

Host=localhost

Connection=keep-alive

| [T T T T I3 meret % -

Figure 1-8. Output of the exercise

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP

Using OSGi Console Commands

The console is a handy tool to inspect your plug-in and identify problems. The following are
some of the most useful commands:

start [<id>|<name>]: Starts a bundle given an ID or symbolic name

stop [<id>|<name>]: Stops a bundle given an ID or symbolic name

install {URL}: Adds a bundle given a URL for the current instance

uninstall [<id>|<name>]: Removes a bundle given a URL for the current instance
ss: Lists a short status of all the bundles registered in the current instance

help: Shows information about all available commands

For example, to look at all the registered bundles, use the ss command, as follows:

0sgi> ss

Framework is launched.

Id State Bundle

0 ACTIVE org.eclipse.osgi 3.4.0.v20080605-1900

1 ACTIVE org.eclipse.osgi.services 3.1.200.v20071203

2 ACTIVE org.eclipse.core.jobs 3.4.0.v20080512

3 RESOLVED cho1_fragment 1.0.0
Master=12

4 ACTIVE org.mortbay.jetty 5.1.14.v200806031611

5 ACTIVE org.eclipse.core.runtime.compatibility.auth 3.2.100.v20070502

6 ACTIVE org.eclipse.equinox.http.servlet 1.0.100.v20080427-0830

7 ACTIVE org.eclipse.equinox.registry 3.4.0.v20080516-0950
Fragments=16

8 ACTIVE org.apache.commons.logging 1.0.4.v20080605-1930

9 ACTIVE org.eclipse.core.runtime_3.4.0.v20080512

10 ACTIVE org.eclipse.equinox.http.registry 1.0.100.v20080427-0830

11 ACTIVE org.eclipse.core.contenttype 3.3.0.v20080604-1400

12 ACTIVE org.apache.log4j 1.2.13.v200806030600
Fragments=3

13 ACTIVE javax.servlet 2.4.0.v200806031604

14 ACTIVE org.eclipse.equinox.common_3.4.0.v20080421-2006

15 ACTIVE cho1_1.0.0

16 RESOLVED org.eclipse.core.runtime.compatibility.registry 3.2.200.v20070717
Master=7

17 ACTIVE org.eclipse.equinox.preferences 3.2.200.v20080421-2006

18 ACTIVE org.eclipse.equinox.app_1.1.0.v20080421-2006

19 ACTIVE org.eclipse.equinox.http.jetty 1.1.0.v20080425

0sgi>

15

16

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP

To start and stop your plug-in, simply use the bundle ID. (The bundle name can also be
used, but who wants to type such long names?)

osgi> stop 15

271770 [0SGi Console] INFO chol.Activator - Activator Stop
Jun 21, 2008 6:25:42 PM chol.Activator stop

INFO: Activator Stop

osgi> start 15

Jun 21, 2008 6:25:47 PM cho1.Activator start

INFO: Activator Start

277188 [0SGi Console] INFO choi.Activator - Activator Start

Using Logging Services

Enabling a logging service within a plug-in is somewhat different from logging in a traditional

Java application. It is a bit trickier because of the dynamic component nature of the runtime.
To enable log4j in a traditional Java application, for example, the developer would create a

log47j.properties file in the project classpath, and then use statements such as the following:

// Log4] Logger
private static final Logger logger = Logger.getlogger(Activator.class);

public void start(BundleContext context) throws Exception {
super.start(context);
plugin = this;

logger.info("Activator Start");

However, putting log4j.properties in the plug-in class will not work, because the OSGi
framework manages a per-bundle classpath. It returns this message:

log4j:WARN No appenders could be found for logger (choil.Activator).
log4j:WARN Please initialize the log4j system properly.

The solution is to have the plug-in find log4j.properties in the classpath at runtime and
use it. However, this is a little tricky. One way to handle this is to create a plug-in fragment and
set the host plug-in ID to org.apache.log4j, as shown in Figure 1-9. This fragment will have a
log4j.properties file at the main level. Then, at runtime, the fragment will attach itself to the
log4j bundle classpath, thus finding the required log4j.properties file. The fragment must
also be included in the run configuration for the plug-in.

Note Fragments are separately packaged files whose contents are treated as if they were in the original
plug-in archive file. They are useful for adding plug-in functionality, such as additional language translations,
to an existing plug-in after it has been installed. Fragments are discussed further in Chapter 2.

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP

= New Fragment Project o [x
Fragment Content e
Enter the data required to generate the fragment. L
Fragment Properties

Fragment ID: IchOl_fragment
Fragment YVersion: Il.O‘O

Fragment Provider: I

Fragment Name: [ChOl_fragment Fragment]
Execution Environment: |javaSE—l.6 g ‘

o | ‘Eny\runments.‘

Host Plug-in

Plug-in ID: [org‘apache‘logﬂj H Browse...]

Minimum ‘Version: [1‘2.13 I ‘\ncluslve 3 ‘

Maximum Version: [I ‘ Exclusive 3 ‘

@ ‘ < Back ‘ | Finish H Cancel ‘

Figure 1-9. Attaching a log4j.properties to the log4j bundle at runtime using a fragment

Here is the procedure to create the fragment for this example:

1. From the Eclipse IDE main menu, select File » New » Other » Plug-in Development
» Plug-in Fragment.

. In the New Fragment Project dialog, enter the plug-in information as shown in
Figure 1-9. Make sure the host plug-in points to org.apache.log4j. You can click the
Browse button to find and select that plug-in ID. Then click Finish.

In the fragment folder, add a 1log4j.properties file with the log configuration shown
in the following fragment. To add a text file, right-click the fragment folder and select
New » File. Make sure the file name is 1log4j.properties.

Set root logger level to debug and its only appender to default.
log4j.rootLogger=debug, default

default is set to be a ConsoleAppender.
log4j.appender.default=org.apache.log4j.ConsoleAppender

default uses PatternLayout.

log4j.appender.default.layout=org.apache.log4j.PatternLayout
logaj.appender.default.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %mkn

17

18

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP

This technique should enable the log4j logging service in your plug-in. However, if this
seems too complicated, a simpler way is to use the Commons Logging service within the main
plug-in, using this code:

// Commons Log
private static final Log log = LogFactory.getlLog(Activator.class);

public void start(BundleContext context) throws Exception {
super.start(context);
plugin = this;
log.info("Activator Start");

This fragment is much simpler; however, it will use the default Java logging service, which
I personally dislike. It is up to you to choose the logging service that best fits your needs.

USING THE ECLIPSE 3.4 SOFTWARE UPDATE MANAGER

The Eclipse 3.4 (Ganymede) distribution does not ship with a log service such as Apache log4j or Commons
Logging. However, the new Software Update Manager can be used to quickly discover and install software,
including logging plug-ins.

To use the Software Update Manager, from the Eclipse IDE main menu, select Help » Software
Updates. In the Software Updates and Add-ons dialog, click the Available Software tab. From here, you can
search for and install the Jakarta log4j and Commons Logging plug-ins.

& Software Updates and Add-ons

Installed Softwars

|I0g

Mame ‘Wersi
E | Garymeds Update Site
[=l [J V00 Testing and Perfarmance
=/ TPTP Log and Trace Analyzer 4.5.0
El Ul Uncategorized
=+ Apache commons logging 4.4.0
<+ Apache Jakarta log4j 4.4.0
[0/ Generic Log Adapter Authoring 4.5.0
[0/ Generic Log Adapter Authoring - Extension Point 1 4.5.0
D =[» Generic Log Adapter Runtime 4.5.0
[O=/* Log Analysis Core 4.3.2
[=)* Log Support 4.5.0
M1 =0 1 an Sinnnet - Frkensinn Point Tnstanres 4.5

This concludes the exercise in this chapter. The goal of this exercise has been to provide
an introduction to the power of the OSGi console and the basic plug-in life cycle, using a sim-
ple Jetty servlet extension point to listen for HTTP requests.

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP

Summary

This chapter introduced Eclipse RCP. The following are the important points to take away
from this chapter:

In today’s heterogeneous software world, there is a quest for openness and extensibil-
ity. A platform that addresses interoperability challenges and supports collaboration is
of critical importance.

Eclipse provides a consistent feature set on multiple platforms. It allows developers to
concentrate on the problem at hand, rather than the details of the specific platform.

The plug-in architecture makes it possible for Eclipse to support many programming
languages and development paradigms.

Eclipse is open source, free, and fully supported.
Eclipse is designed to be extensible and configurable.

Eclipse is at the forefront of the software tools industry. This means that you can
depend on it as a viable, industrial-strength tool for the foreseeable future.

The foundation of RCP includes Equinox, the core platform, SWT, JFace, and the
Eclipse workbench.

e Equinox is an implementation of the OSGi framework, a dynamic component
model for remote component management. This is something that is missing in
stand-alone JVM environments.

¢ The core runtime implements the basic plug-in model based on extension points
declared in XML in a manifest file (plugin.xml). The extension model provides a
structured way for plug-ins to describe the ways they can be extended, and for cli-
ent plug-ins to describe the extensions they supply.

e SWT is a GUI toolkit with fast native access to multiple platform widget sets, pro-
viding a common API. It is designed for performance, native look and feel, and
extensibility.

¢ JFace is a window-system-independent GUI toolkit for handling many common
programming tasks. It implements text, dialog, preference, and wizard frameworks,
as well as actions and data viewers.

¢ The workbench is the basic development environment in the Eclipse universe. It is
divided into perspectives, viewers, editors, workspaces, and projects.

19

CHAPTER 2

Plug-ins: A First Glimpse

As you learned in Chapter 1, the RCP framework is based on plug-ins; nearly everything in
Eclipse is a plug-in. Obviously, RCP developers need to understand the Eclipse plug-in model,
as well as the extensions and extension points that are used to work with plug-ins. This chap-
ter will explain these concepts and then demonstrate them with a hands-on web browser
plug-in project.

Introducing the Eclipse Plug-in Model

The Eclipse Platform runtime plug-in model is a structured component that contributes
code or data to the system. Plug-ins are the perfect mechanism for lightweight software com-
ponent development because they provide seamless integration, extensibility, and a broad
range of tools.

Plug-ins let your application use other developers’ functionality or extend existing func-
tionality. As noted in Chapter 1, an extension point is a well-defined place where other plug-ins
can add functionality. The Eclipse workbench Ul is an example of a plug-in that defines a
number of extension points where other plug-ins can contribute menu and toolbar actions,
drag-and-drop operations, dialogs, wizards, views, and editors.

Asyou learned in Chapter 1, all information about a plug-in is described in its manifest
(plugin.xml). The declarative nature of this model provides a small memory footprint and fast
performance, as the runtime can determine which extension points and extensions are sup-
plied, without running the plug-in. Thus, many plug-ins may be installed, but none will be
activated until a function is requested by the user. This is a critical feature for scalability and
robustness.

With the Eclipse plug-in model, you get a number of tools, including the following:

* A workbench with every imaginable component required by today’s applications:
menus, toolbars, editors, wizards, and more

¢ Aresource management framework for the manipulation of projects, folders, and files,
and for organizing and storing development artifacts on disk

e Team support for programming, repository access, and versioning

21

22

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

¢ Debug support for other plug-ins to implement language-specific program launchers
and debuggers

¢ Ahelp system with an optimized web server and document-integration facility to con-
tribute documentation as viewable books

¢ Multilanguage development tools for languages such as Java and C/C++

But perhaps the most compelling reason to use the Eclipse plug-in model is the market
share Eclipse has captured. One study by BZ Research! found that Eclipse gained significant
market share in 2005 with steady growth. Eclipse usage grew 9% in 2005, and at the time of writ-
ing, it had captured 65.1% of the open source IDE market. In another study by QA Systems,?
among more than 1,400 developers—software architects and software managers worldwide—
Eclipse was found to be the Java IDE with the largest market share (see Figure 2-1).

eclipse jbuilder IntelliJ Other naong jdeveloper ph

Countofldel
700
500 —
500 +—
400 +—
300 +— Ba7
200 +—
100 +— 207

m 1 24 8 72

Figure 2-1. Eclipse market share (from Java IDE Market Share Survey by QA Systems)

The Plug-in Class and BundleContext

The plug-in class usually extends the class AbstractUIPlugin, which supplies the structure for
managing Ul resources. AbstractUIPlugin is an abstract class that provides default implemen-
tations to manage images, dialog settings, and a preference store during the plug-in’s lifetime.

1. “Java Use and Awareness” by BZ Research (publishers of SD Times and Eclipse Review), available
online at http://ianskerrett.wordpress.com/2006/03/11/eclipse-gains-market-share-in-2005/.

2. Java IDE Market Share Survey by QA Systems, available online at http://www.qa-systems.com/
products/qstudioforjava/ide_marketshare.html.

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

The plug-in class centralizes the life-cycle aspects and overall semantics of a plug-in. Two
methods, start and stop, define this life cycle, each receiving a reference to a BundleContext
with additional information about the runtime.

BundleContext provides the bundle with execution context used to grant access to the
framework. BundleContext is a reference that contains information related to the plug-in
and other bundles/plug-ins in the system. BundleContext methods allow a bundle to do the
following:

¢ Subscribe to events published by the framework.

* Register service objects with the service registry.

¢ Retrieve service references from the framework service registry.
e Install new bundles in the framework.

* Get the list of bundles installed.

¢ Get the Bundle object for a bundle.

 Create files in a persistent storage area provided for the bundle.

The plug-in class’s start method is best used to initialize and register objects, but it
must be used with care. Registration activities such as adding listeners or starting back-
ground threads are appropriate if they can be done quickly; otherwise, it is better to trigger
these actions when the data is accessed. Data initialization should be done lazily (when first
accessed), rather than at bundle startup. This ensures that large data structures are created
when needed.

Caution Beware of premature initialization! It is important to look closely at your plug-in’s initialization
tasks and consider alternatives, as premature initialization can cause your plug-in’s code and data to be
loaded long before it is necessary.

Manifests

As explained in Chapter 1, a plug-in is described by the files MANIFEST.MF and plugin.xml. The
sample MANIFEST.MF definition shown in Listing 2-1 includes information such as the bundle
name, symbolic name (or plug-in ID), version, vendor, bundle dependencies, and classpath.

Listing 2-1. Sample MANIFEST.MF File

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: My Plug-in

Bundle-SymbolicName: org.eclipse.ui.examples.mytool; singleton:=true
Bundle-Version: 3.3.0.qualifier

23

24

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

Bundle-ClassPath: readmetool.jar
Bundle-Activator: org.eclipse.ui.examples.mytool.MyPlugin
Bundle-Vendor: ACME
Bundle-Localization: plugin
Require-Bundle: org.eclipse.ui,
org.eclipse.core.resources,
org.eclipse.core.runtime,
org.eclipse.ui.views,
org.eclipse.ui.ide,
Eclipse-AutoStart: true
Eclipse-AutoStart-comment:

The format of MANIFEST.MF consists of key/value pairs separated by semicolons, as
in Bundle-Name: My Plug-in. Multiple values are separated by commas (as in bundle
dependencies).

Most of the file information is self-describing; however, some values are obscure. For
example, Eclipse-AutoStart: true tells the runtime to start the plug-in at boot time, and
Eclipse-AutoStart-comment displays descriptive text for the plug-in when started within the
OSGi console.

Plug-in Fragments and Features

A plug-in fragment is a component that provides extra functionality to an existing, installed
plug-in. For example, a fragment might provide localization for different languages; add fea-
tures incrementally, so a full release of the plug-in isn’t necessary; or supply platform-specific
functionality, such as native code.

At runtime, the fragment attaches itself to the host plug-in. The main difference between
a fragment and a plug-in is that a fragment does not have a plug-in class, and its life cycle is
managed by its target plug-in. Otherwise, they are essentially the same.

A feature, on the other hand, is the packaging of a group of related plug-ins into a product,
and it is described by a file called feature.xml. It includes information such as references to the
plug-ins, copyright, and licensing. Chapters 3 and 9 include more details on using features.

Adding Extension Points

The workbench defines extension points that allow plug-ins to contribute behaviors to existing
views and editors or to provide implementations for new views and editors.

The easiest way to add extension points to your plug-in is to use the plug-in manifest edi-
tor. Click the Extensions tab, and then click the Add button to start the New Extension wizard,
as shown in Figure 2-2. You can select to add an existing extension point using the Extension
Points tab or create a new extension using the Extension Wizards tab. All extension points are
described with XML in the plug-in manifest (plugin.xml).

SRS R ECE

i

. Extensions

All Extensions 12

Diefine extensions For this plug-in in the Fallawing seckion.
type filker kext

[#-<= org.eclipse ui,views

<= org.eclipse ui.perspectiveExtensions
9 _D PErsp: Remove

<= org.eclipse help. contexts

#l-<= org.eclipse,ui.perspectives

“= prg.eclipse ui,perspectives

<= org.eclipse Ui, perspectiveExtensions Up

[+l-<= org.eclipse. ui.viewActions
Down

Crveryiem |DEpendenciEs |Runtime {Extensiuns I Extension Points | Eiuild | MANIFES

l_;_ Problems (@ Jawadoc (@) Declaration [OJ Y5 Repositories 5

| ipserver:anonymous@dev edipse, org:/ovsraotfeclipse

_ia1x

Extension Point Selection

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

of
Create a new Yiews extension, ')

Extension Paints IExtension wizards I

Extension Poink: filter: |

=i org.eclipse ui.splashHandlers ;I
= org.eclipse.ui.startup

={ org.eclipse. ui.statusHandlers

={ org.eclipse.ui.systemSummarySections

=i org.eclipse ui.themes

= org eclipse i, viewactions

= org.eclipse.ui.workingSets j
-

[V Show only extension points From the required plug-ns

Extension Poink Description: Yiews

This extension paintis used to define additional views for the waorkbench. Aview |
is avisual component within a workbench page. Itis typically used to navigate a
higrarchy of information (like the werkspace), epen an editor, or display

properties for the active editor. The user can make a view visible from the

Window = Sh iew menu or close itfrom the view local title bar. LI

Available templates for views:

<= Sample Yiew

) = Back | [exk = | Einish I Cancel

Figure 2-2. Adding an extension point through the manifest editor

Let’s take a look at some of the most commonly used extension points:

e org.eclipse.ui.perspectives
e org.eclipse.ui.views

e org.eclipse.ui.viewActions
e org.eclipse.ui.editors

e org.eclipse.ui.popupMenus

e org.eclipse.ui.commands

Perspectives

A perspective is a visual container for a set of views and editors. A view is typically used to navi-
gate a hierarchy of information, open an editor, or display properties for the active editor.
The Eclipse designers compare a perspective to a page within a book. Like a page, only

one perspective is visible at any time.

25

26

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

To open a user-defined perspective, launch a separate Eclipse application (from the Over-
view tab of the manifest editor, click Launch Eclipse Application) and select Window » Open
Perspective » Other. This brings up the Open Perspective dialog, as shown in Figure 2-3.

Note To display a user-defined perspective—a perspective created in your plug-in—you must first click
Launch Eclipse Application from the Overview tab of the manifest editor. This will start a new Eclipse IDE
workbench with your plug-in installed. From the main menu of this new workbench, select Window » Open
Perspective » Other. This can be confusing for new Eclipse users, who may try to open their perspective
in the development workbench. Since the development workbench does not have the user-defined plug-in

installed, it cannot display it.

Open Perspective of|x
Iy Resource E]
‘!) ! T
£9 Team Synchronizing |E|

i \ieh v

oK H Cancel |

Figure 2-3. Opening a perspective

A perspective can be easily created using the Extension wizard, but behind the scenes,
itis described by the plug-in xml. For example, the Sample Perspective shown in Figure 2-3
(sample.Perspectivel) is defined as shown in Listing 2-2.

Listing 2-2. Sample Perspective Extension (in plugin.xml)

<extension
point="org.eclipse.ui.perspectives">
<perspective
class="sample.Perspectivel”
icon="icons/sample.gif"
id="sample.Perspective1"”
name="Sample Perspective">
</perspective>
</extension>

In this definition, the class attribute is the perspective implementation class, which can
be used to programmatically add views, action sets, wizard shortcuts, and so on. The id attri-
bute uniquely identifies the perspective within the workbench. The name and icon attributes
define the visual layout.

The org.eclipse.ui.perspectives extension point allows plug-ins to add perspec-
tives to the workbench. As an example, you could create a new perspective extension to

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

the perspective sample.Perspectivel with two views: the Sample view and the JDT Package
Explorer view, as shown in Figure 2-4. The XML for this example is shown in Listing 2-3.

Listing 2-3. Perspective Extension Point to Add Package Explorer and Sample Views (in plugin.xml)

<extension
point="org.eclipse.ui.perspectiveExtensions">
<perspectiveExtension
targetID="sample.Perspectivel">

<view
id="org.eclipse.jdt.ui.PackageExplorer"
minimized="false"
ratio="0.5"
relationship="left"
relative="sample.views.SampleView">

</view>

<view
id="sample.views.SampleView"
minimized="false"
ratio="0.5"
relationship="right"
relative="org.eclipse.jdt.ui.PackageExplorer">

</view>

</perspectiveExtension>
</extension>

Project Bun Window Help
E_‘i »
2 52 = O | @ sample View 2 = [l

S|P I

&% One

|&| Three

|| Two

a P FH %

Figure 2-4. The Sample Perspective extended with the Package Explorer and Sample views
The most important attribute of this perspective extension is targetID, which is the

unique identifier of the perspective. This ID can be used to reference the perspective
programmatically.

27

28

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

The perspective in Listing 2-3 contains the view org.eclipse.jdt.ui.PackageExplorer
(which is the built-in Java Package Explorer) and the user-defined view sample.views.
SampleView. Each view is identified by a unique id attribute, followed by these attributes:

e minimized: Indicates whether or not the view is minimized.
e ratio: Sets the percentage of the relative view area for this view extension.
e relationship: Indicates the placement of the view (left or right).

¢ relative: Indicates positioning (stacking) relative to an existing view.

Views

The org.eclipse.ui.views extension point allows plug-ins to add views to the workbench. A
view is a workbench part that performs a visual task such as navigating a hierarchy of infor-
mation or displaying properties for an object. Listing 2-4 shows the XML for the Sample view
shown in Figure 2-5.

Listing 2-4. Sample View Extension (in plugin.xml)

<extension
point="org.eclipse.ui.views">

<category
name="Sample Category"
id="Sample">

</category>

<view
name="Sample View"
icon="icons/sample.gif"
category="Sample"
class="sample.views.SampleView'
id="sample.views.SampleView">

I

</view>
</extension>
= »
& sample View 2 =8
b L
[& one
& Three
ETWO
L= - L

Figure 2-5. Sample view

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

The category element’s name attribute is used to group the view within the workbench
view registry (accessible through the main menu Window » Show View » Other). The
implementation class method createPartControl (Composite parent) is used to add visual
components, as follows:

public class SampleView extends ViewPart {

public void createPartControl(Composite parent) {

/**
* Layout the user interface
*/
}
}
View Actions

View actions contribute behavior to views that already exist in the workbench. The org.
eclipse.ui.view extension point allows plug-ins to contribute menu items, submenus, and
toolbar icons to an existing view’s local pull-down menu and local toolbar. Listing 2-5 shows
the XML for a sample view action.

Listing 2-5. Sample View Action Extension (in plugin.xml)

<extension
point="org.eclipse.ui.viewActions">
<viewContribution

id="sample.view.Contribution1"
targetID="org.eclipse.jdt.ui.PackageExplorer">
<action
class="sample.actions.ViewActionDelegate1"
icon="icons/releng_gears.gif"
id="sample.Action1"
label="Sample Action 1"
menubarPath="additions"
style="push"
toolbarPath="additions"
tooltip="Sample Action1">
</action>
</viewContribution>
</extension>

The view to which you are adding the action is specified in the targetID. In this case, a
new action is contributed to the JDT Package Explorer. The action will display as an addition
to the view’s menu and toolbar.

29

30

CHAPTER 2 © PLUG-INS: A FIRST GLIMPSE

To provide the action behavior, the implementation class sample.actions.ViewActionDelegatel
must implement the IViewActionDelegate interface, as shown in Listing 2-6.

Listing 2-6. Sample Action Class to Display an Information Message Dialog

public class ViewActionDelegatel implements IViewActionDelegate {

@0verride
public void init(IViewPart view) {

}

@0verride
public void run(IAction action) {
MessageDialog.openInformation(
PlatformUI.getWorkbench(). getActiveWorkbenchWindow().getShell()
, "Sample View"
, "Sample Message");

}

@0verride
public void selectionChanged(IAction action, ISelection selection) {
}

}

Figure 2-6 shows the view contribution added to the toolbar of the Package Explorer with
the associated action delegate. The view’s menu can be accessed by clicking the down arrow
on the right side of the view’s toolbar.

Sample View

o

Figure 2-6. View action added to the Java Package Explorer

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

Editors

The org.eclipse.ui.editors extension point allows plug-ins to add editors to the workbench.
An editor is a workbench part that allows a user to edit an object (often a file). Editors operate
in a manner similar to file system editing tools, except that they are tightly integrated into the
platform UL Only one editor can be open for any particular object type in a workbench page.
(You can open another editor on the same file from another window or perspective.)

Listing 2-7 shows an example of a the XML for the multipage editor extension shown in
Figure 2-7.

Listing 2-7. Sample Multipage Editor Extension (in plugin.xml)

<extension
point="org.eclipse.ui.editors">
<editor
name="Sample Multi-page Editor"
extensions="mpe"
icon="icons/sample.gif"

contributorClass="editorsample.editors.MultiPageEditorContributor"
class="editorsample.editors.MultiPageEditor"

id="editorsample.editors.MultiPageEditor">
</editor>

</extension>

& Sample Perspective - foo,/new_File.mpe - Eclipse SDK

- o [=[
File Edit Mavigate Search Project Job Component Example Field Assist Run Editor Menu ‘Window Help
Ale+Shift+h » S e 2 J = < LR - [| @ Sample Persp,
Open File... R 3
[Example... 3} Java
Close Chrl+ - - =5
Close Al Chrl+Shift+w & 5ample Multi-page Editor £3
This is the initial file contents for *.mpe ;I
s et cbrits | file that should bhe word-sorted in
-|D|i| the Preview page of the multi-page editor
Select a wizard J—y
‘Wizards:
Itype Filker text
#-(= Plug-in Development B
(= sample 'Wizards
B & ulti-page Edicor file |
* (= Team Logical Model Example
-5 1 lsar Assichanra =l
() < Back I Mext = I Eiish | Cancel | LI LI—I
new_file.mpe] Properties | Preview |

Figure 2-7. Multipage editor with a wizard

32

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

The contributorClass attribute is responsible for providing editor-related actions and
global action handlers. For example, the following code adds global action handlers to add
cut/copy functionality to the editor within the contributor class:

IActionBars actionBars = getActionBars();
actionBars.setGlobalActionHandler(
ActionFactory.DELETE.getId(),
getAction(editor, ITextEditorActionConstants.CUT));
actionBars.setGlobalActionHandler(
ActionFactory.UNDO.getId(),
getAction(editor, ITextEditorActionConstants.COPY));

Listing 2-8 shows the skeleton and UI of a multipage editor.

Listing 2-8. Multipage Editor Sample Class

public class MultiPageEditor extends MultiPageEditorPart
implements IResourceChangelistener

{

/** The text editor used in page 0. */
private TextEditor editor;

Vaki
* Creates a multi-page editor example.
*/
public MultiPageEditor() {
super();

// Listen for resource change events
ResourcesPlugin.getWorkspace().addResourceChangelistener(this);

}

Vaki
* Creates the pages of the multi-page editor.
*/
protected void createPages() {
// Create pages here

}

public void resourceChanged(final IResourceChangeEvent event){
// Fires on resource change
// Could be used to close all project files on project close.

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

Pop-up Menus

The org.eclipse.ui.popupMenus extension point allows a plug-in to contribute to the pop-up
menus of other views and editors. Pop-up menus belong to two different categories:

e objectContribution: The menu item will appear in pop-up menus for views or editors
where objects of the specified type are selected (for example, an object of type IFile,
which is a regular file).

e viewerContribution: The menu item will appear in the pop-up menu of a view or editor
specified by ID.

Listing 2-9 shows the XML for a pop-up with the label New Submenu for all viewers where
an object of type IFile is selected.

Listing 2-9. Sample Pop-up Menu Extension (in plugin.xml)

<extension
point="org.eclipse.ui.popupMenus">
<objectContribution

objectClass="org.eclipse.core.resources.IFile"
nameFilter="*.txt"
id="SamplePopupMenu.contribution1">
<menu
label="New Submenu"
path="additions"
id="SamplePopupMenu.menu1">
<separator
name="group1">
</separator>
</menu>
<action
label="New Action"
class="popupmenu.popup.actions.NewAction"
menubarPath="SamplePopupMenu.menul/group1”
id="SamplePopupMenu.newAction">
</action>
</objectContribution>
</extension>

The action "New Action" is contributed for the object class IFile. This means that any
view containing IFile objects will show the contribution if IFile objects are selected. The
selection criteria can be further restricted with a name filter (nameFilter="*.txt") and for
single selections (enablesFor="1").

The registration of this menu does not run any code from your plug-in until the menu
item is actually selected. When the menu item is selected, the workbench will run the specified
action class. Listing 2-10 shows the NewAction class for the extension point in Listing 2-9.

33

34 CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

Listing 2-10. Action Class for the Action Extension Point

public class NewAction implements IObjectActionDelegate

{
public NewAction() {

super ();

public void run(IAction action) {
Shell shell = new Shell();
MessageDialog.openInformation(shell,
"SamplePopUp Plug-in",
"New Action was executed.");

Figure 2-8 shows the pop-up menu New Submenu showing when an object file is selected
within any view. When it is selected, the specified action class will fire.

[% Package Explar 72 Tg Hierarchy | — O || 5] bar.txt 52

BEE| e~
= 12 fon
[sre
B JRE System Library [jrel.6.0_06]

Mew 3
Open F3
Open With 4
Show In Alt+Shift+ 4

|| Copy Chrl+C

(= Paste Chrl+y

¥ Delete Delete

& SamplePopUp Plug-in

\E) Mew Action was executed,

Validate 9 Javadoc | 2 Decl
Run As

Debug As
Team

nfos

Compare With
Replace With
Mew Submenu

3
3
3
3
3
3
3

Source

Properties Alt+Enter

Figure 2-8. Pop-up menu contribution object and related action class

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

Commands

Command contributions can be used to add custom menus to the menu bar and buttons to
the toolbar. Both items can then invoke a custom action. The following extension points are
used to implement commands:

e org.eclipse.ui.commands: Describes the command and associated category.

e org.eclipse.ui.handlers: Describes the handler that will fire when the command is
invoked.

e org.eclipse.ui.bindings: Used to bind a character sequence to the command.

e org.eclipse.ui.menus: Used to add menus to the main menu bar, toolbar, or pop-up
menus.

Let’s take a look at each of these extension points.

Commands

The org.eclipse.ui.commands: extension point allows a plug-in to contribute the command
name and category. Listing 2-11 shows an example of the XML for a category and command.

Listing 2-11. Sample Command and Category Extension (in plugin.xml)

<extension
point="org.eclipse.ui.commands">
<category
name="Sample Category"
id="SampleCommand.commands.category">
</category>
<command
name="Sample Command"
categoryId="SampleCommand.commands.category"
id="SampleCommand.commands.sampleCommand">
</command>
</extension>

The name attribute defines the category or command name for display in the UL
(Command names typically use an imperative verb.) The id attribute is a unique identifier
for the category or command. Related commands are usually grouped by categories.

Handlers

Handlers describe the custom action that fires when the command is selected. Listing 2-12
shows an example of an org.eclipse.ui.handlers extension point.

35

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

Listing 2-12. Sample Handler Extension (in plugin.xml)

<extension
point="org.eclipse.ui.handlers">
<handler
commandId="SampleCommand.commands.sampleCommand"
class="command.handlers.SampleHandler">
</handler>
</extension>

The most important attributes are commandID and class. The commandID attribute is the id
of the command to associate with the handler implementation. The class attribute defines
a class that implements org.eclipse.core.commands or extends org.eclipse.core.command.
AbstractHandler

The basic handler implementation is shown in Listing 2-13.

Listing 2-13. SampleHandler Class

public class SampleHandler extends AbstractHandler

{
public Object execute(ExecutionEvent event)
throws ExecutionException

{
IWorkbenchWindow window = HandlerUtil.getActiveWorkbenchWindowChecked(event);
MessageDialog.openInformation(window.getShell(),
"SampleCommand Plug-in",
"Hello, World");
return null;
}
}
Bindings

Key bindings bind a character sequence with a command. Listing 2-14 shows an example of an

org.eclipse.ui.bindings extension point.

Listing 2-14. Sample Binding Extension (in plugin.xml)

<extension
point="org.eclipse.ui.bindings">
<key
commandId="SampleCommand.commands.sampleCommand"
contextId="org.eclipse.ui.contexts.window"
sequence="CTRL+6"
schemeId="org.eclipse.ui.defaultAcceleratorConfiguration">
</key>
</extension>

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

The following are the most important attributes:

e commandIld: The ID of the command to be executed when this binding is triggered.

¢ sequence: The character sequence for the binding. Keys are separated by +. Examples of
sequences are CTRL+6, ALT+F1, SHIFT+1, and M1.

e contextId: Identifier for the context where the binding is active.

e schemeld: Identifier for the scheme where the binding is active.

Menus

Menu contributions add menus to the menu bar or toolbar, or create pop-up menus.
Listing 2-15 shows an example of an org.eclipse.ui.menus extension point, which adds
the menu and toolbar item shown in Figure 2-9.

Listing 2-15. Sample Menu Extension (in plugin.xml)

<extension
point="org.eclipse.ui.menus">
<menuContribution
locationURI="menu:org.eclipse.ui.main.menu?after=additions">
<menu
label="Sample Menu"
mnemonic="M"
id="SampleCommand.menus.sampleMenu">
<command
commandId="SampleCommand.commands.sampleCommand"
mnemonic="S"
id="SampleCommand.menus.sampleCommand">
</command>
</menu>
</menuContribution>
<menuContribution
locationURI="toolbar:org.eclipse.ui.main.toolbar?after=additions">
<toolbar
id="SampleCommand.toolbars.sampleToolbar">
<command
commandId="SampleCommand.commands.sampleCommand"
icon="icons/sample.gif"
tooltip="Say hello world"
id="SampleCommand.toolbars.sampleCommand">
</command>
</toolbar>
</menuContribution>

</extension>

37

38 CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

& Java - Eclipse SDK]

= | i#
J It - #

B =0~

ES e
£ sampleCommand Plug-in 4 5]

\i) Hello, World

Figure 2-9. Command implementation with menu and toolbar contributions

The locationURI attribute defines the URI of the insertion point for the menu addition.
The format is as follows:

<scheme>:<id>?<placement>=<id>
where:

e scheme is the type of manager used to handle the contribution: menu, popup, or toolbar.
¢ idis the identifier of an existing menu, view, or editor.

¢ placement is either before or after.

We have covered the most common extension points used to contribute to the workbench
UL There are plenty more, which you can explore at your leisure.

Hands-on Exercise: Fun with a Web Browser
Plug-in

Now it is time to put your newly acquired skills to use. The goal of this exercise is to build a
perspective that includes two views: a Web Browser view and a Bookmarks view, as shown in
Figure 2-10.

The Web Browser view has a toolbar and menu to enter a URL, as well as the typical
Home, Back, Forward, and Add Bookmark buttons. When the Add Bookmark button is clicked,
an action will be triggered to add the target URL to the Bookmarks view. The Bookmarks view
will listen for double-clicks and browse to the specific URL. It will also include an action to
delete a bookmark.

CHAPTER 2 © PLUG-INS: A FIRST GLIMPSE

Web Browser - Eclipse SDK

faim s L T e A e s

Figure 2-10. Web browser plug-in showing the browser, bookmarks, and perspective selection
components

You'll use two extensions for this exercise: org.eclipse.ui.perspectives and org.
eclipse.ui.views.

To begin, from the OSGi console, create a new plug-in project (File » New » Project »
Plug-in Development » Plug-in Project) with the default settings, as described in Chapter 1.
Give it aname such as Web Browser. Make sure the “This plug-in will make contributions to the
UI” option is checked and the “Would you like to create a rich client application?” option is set
to No. (Chapter 3 discusses the Plug-in Project wizard options in more detail.)

Adding a Perspective Extension Point

As explained earlier in the chapter, a perspective is a critical container for visual elements such
as views and toolbars. In this case, the perspective defines two views: Web Browser and Book-
marks. Create this extension point with the manifest editor as shown in Listing 2-16.

39

40 CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

Listing 2-16. Perspective Extension Point for the Web Browser Plug-in

<extension
point="org.eclipse.ui.perspectives">
<perspective

class="cho2.browser.perspective.PerspectiveFactory"
icon="icons/16-earth.png"
id="Web.Browser.Perspective"
name="Web Browser">
</perspective>
</extension>
<extension
point="org.eclipse.ui.views">
<category
id="WebBrowser"
name="Web Browsing">
</category>
<view
category="WebBrowser"
class="cho2.browser.views.BookMarksView"
icon="icons/16-earth.png"
id="cho2.browser.views.BookMarksView"
name="Bookmarks">
</view>
<view
category="WebBrowser"
class="cho2.browser.views.WebBrowserView"
icon="icons/16-earth.png"
id="cho2.browser.views.WebBrowserView"
name="Web Browser"
restorable="true">
</view>
</extension>

Listing 2-16 creates the perspective Web Browser with the views Web Browser and Book-
marks. Theses views will be accessible from the Window » Open Perspective » Other menu
of the workbench when the plug-in is started. Notice that the extension point requires
three implementation classes for the perspective factory and the two views: ch02.browser.
perspective.PerspectiveFactory, ch02.browser.views.BookMarksView, and cho2.browser.
views.WebBrowserView. The next sections explain these in more detail.

Adding a Perspective Factory

The job of the perspective factory class is to lay out the views in the workbench window. The
fragment shown in Listing 2-17 lays out the Bookmarks view on the left, taking 20% of the
real estate, and the Web Browser view on the right, taking the other 80%. Insert the code in
Listing 2-17 into the perspective factory class of your project (ch02.browser.perspective.
PerspectiveFactory.java).

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

Listing 2-17. Perspective Factory for the Exercise in (ch02.browser.perspective.
PerspectiveFactory.java)

public class PerspectiveFactory implements IPerspectiveFactory
{
public void createInitiallayout(IPagelayout layout) {
String editorArea = layout.getEditorArea();
layout.setEditorAreaVisible(false);

layout.addView(BookMarksView.ID, IPagelayout.LEFT, 0.2f, editorArea);
layout.addView(WebBrowserView.ID, IPagelayout.LEFT, 0.8f, editorArea);

Adding Views and Content

Listing 2-18 shows the layout of the Web Browser view for the plug-in. The view contains the
SWT Browser widget, as well as a combo box where URLs can be typed. The view also has a
local toolbar with Home, Back, and Forward buttons, and a simple menu to add bookmarks.
The code in this listing is a bit long as it implements a custom web browser with toolbars and
menus. Insert this code in the ch02.browser.views.WebBrowserView. java file of your project.

Listing 2-18. Web Browser View (in ch02.browser.views.WebBrowserView.java)

public class WebBrowserView extends ViewPart {
static public String ID = WebBrowserView.class.getName();

// View widgets
private Combo urlCombo;
private Browser browser;

// Local view actions

private Action actionBack;
private Action actionForward;
private Action actionHome;
private Action actionAddBookmark;

// Start URL
private final String startUrl = "http://www.google.com/";

// View icon
public static ImageDescriptor ICON HOME = BrowserActivator

.getImageDescriptor("icons/16x16-home.gif");

private IStatusLineManager statusline;

4

42 CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

// Create view controls

public void createPartControl(Composite parent) {
Composite comp = new Composite(parent, SWT.NONE);
comp.setlayout(new GridlLayout(1, true));

CoolBar coolbar = new CoolBar(comp, SWT.NONE);
coolbar.setlayoutData(new GridData(GridData.FILL HORIZONTAL));

// Create a cool item with a URL combo

CoolItem item = new CoolItem(coolbar, SWT.NONE);

item.setControl(createComboView(coolbar, new GridData(
GridData.FILL HORIZONTAL))); // gridData));

calcSize(item);

/*
* Web browser widget
*/
try {
browser = new Browser(comp, SWT.BORDER); // MOZILLA);
} catch (SWTError e) {
BrowserActivator.showErrorMessage(getViewSite().getShell(),
"Error creating browser:" + e);
return;

}

browser.setLayoutData(new GridData(GridData.FILL BOTH));
browser.setUrl(startUrl);

browser.addLocationlListener(new LocationListener() {
public void changed(LocationEvent event) {
locChanged(event);
}

public void changing(LocationEvent event) {
locChanging(event);
}
1;

// Progress listener
browser.addProgressListener(new ProgressListener() {
public void changed(ProgressEvent event) {
onProgress(event);

}

public void completed(ProgressEvent event) {
}
D;

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

makeActions();
contributeToActionBars();

// Status line
statusLine = getViewSite().getActionBars().getStatusLineManager();

}

@0verride
public void setFocus() {
browser.setFocus();

}

Vil

* Creates the urlCombo box view

*/

private Control createComboView(Composite parent, Object layoutData) {
urlCombo = new Combo(parent, SWT.NONE);
urlCombo.setlayoutData(layoutData);
urlCombo.addSelectionListener(new SelectionlListener() {

public void widgetDefaultSelected(SelectionEvent e) {

final String url = ((Combo) e.getSource()).getText();
browser.setUrl(url);
urlCombo.add(url);

}

public void widgetSelected(SelectionEvent e) {
browser.setUrl(((Combo) e.getSource()).getText());

}
};

return urlCombo;

}

/**
* Helper method to calculate the size of the cool item
*/
private void calcSize(CoolItem item) {
Control control = item.getControl();
org.eclipse.swt.graphics.Point pt = control.computeSize(
SWT.DEFAULT, SWT.DEFAULT);
pt = item.computeSize(pt.x, pt.y);
item.setSize(pt);

43

44 CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

// Create local actions
private void makeActions() {
actionBack = new Action() {
public void run() {
browser.back();
}
15
actionBack.setText("Back");
actionBack.setToolTipText("Back");
actionBack.setImageDescriptor(PlatformUI.getWorkbench()
.getSharedImages().getImageDescriptor(
ISharedImages.IMG _TOOL BACK));

actionForward = new Action() {
public void run() {
browser.forward();
}
};
actionForward.setText("Forward");
actionForward.setToolTipText("Forward");
actionForward.setImageDescriptor(PlatformUI.getWorkbench()
.getSharedImages().getImageDescriptor(
ISharedImages.IMG_TOOL_FORWARD));

actionHome = new Action() {

public void run() {

browser.setUrl(startUrl);

}
};
actionHome.setText("Home");
actionHome.setToolTipText("Home");
actionHome.setImageDescriptor (ICON_HOME);

actionAddBookmark = new Action() {
public void run() {
addBookmark (urlCombo.getText());
}
};
actionAddBookmark.setText("Add Bookmark");
actionAddBookmark.setToolTipText("Add Bookmark");
actionAddBookmark.setImageDescriptor (PlatformUI.getWorkbench()
.getSharedImages().getImageDescriptor(
ISharedImages.IMG OBJ FILE));

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

private void contributeToActionBars() {
TActionBars bars = getViewSite().getActionBars();
filllocalPullDown(bars.getMenuManager());
filllocalToolBar(bars.getToolBarManager());

}

private void filllocalToolBar(IToolBarManager manager) {
// Fill local toobar
manager .add(actionHome);
manager .add(actionBack);
manager .add(actionForward);

// Other plugins can add actions here
manager.add(new Separator(IWorkbenchActionConstants.MB ADDITIONS));

}

private void fillLocalPullDown(IMenuManager manager) {
manager .add(actionAddBookmark);

// Other plugins can add actions here
manager.add(new Separator(IWorkbenchActionConstants.MB ADDITIONS));

}

Vass
* Add bookmark
*
* @param url
*/
private void addBookmark(final String url) {
BookMarksView v = (BookMarksView) BrowserActivator.getView(
getViewSite().getWorkbenchiWindow(), BookMarksView.ID);
if (v != null)
v.addBookmark(url);

}

Vs

* Fires after the web browser location has changed

*/

void locChanged(LocationEvent event) {
urlCombo.setText(event.location);

}

45

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

/**
* Fires on load progress
*/
private void onProgress(ProgressEvent event) {
if (event.total == 0)
return;
int ratio = event.current * 100 / event.total;

// Status line
statusLine.getProgressMonitor().worked(ratio);

}

public void navigateTo(String url) {
browser.setUrl(url);

}
Let’s look at some of the important parts of the code in Listing 2-18 in more detail.

Adding the Web Browser Widget

The SWT Browser widget allows the user to visualize and navigate through HTML documents.
Adding a browser to your application and listening for events is very simple. The following
fragment creates a browser and sets the starting URL:

try {
Browser browser = new Browser(parentcomp, SWT.BORDER);
}
catch (SWTError e) {
System.err.printl(getViewSite().getShell() ,
"Error creating browser:" + e);
return;

}

browser.setlLayoutData(new GridData(GridData.FILL BOTH));
browser.setUrl(startUrl);

The Browser widget is capable of listening for progress events to display information on
the status line:

// Web Browser progress event listener
browser.addProgressListener(new ProgressListener() {
public void changed(ProgressEvent event) {

onProgress(event);
}
public void completed(ProgressEvent event) {
}

};

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

// fires on progress change
private void onProgress (ProgressEvent event) {
if (event.total == 0) return;
int ratio = event.current * 100 / event.total;

statusLine.getProgressMonitor().worked(ratio);

if (ratio == 100)
getViewSite().
getActionBars().
getStatusLineManager().
getProgressMonitor().
done();

}

The ProgressListener interface implements the methods: changed, when progress is made
during the loading of the current location, and completed, which is called when the current
location has been completely loaded. The method onProgress in the previous fragment sim-
ply displays the ratio of the load operation in the status line progress bar, and it hides it when
complete.

Filling a View Toolbar

Each view should fill the local toolbar and pull-down menu with local actions:

private void filllocalToolBar(IToolBarManager manager) {
// Fill local toobar
manager .add(actionHome);
manager.add(actionBack);
manager.add(actionForward);

// Other plugins can add actions here
manager.add(new Separator(IWorkbenchActionConstants.MB ADDITIONS));

}
private void filllocalPullDown(IMenuManager manager)
{ manager .add(actionAddBookmark);
// Other plugins can add actions here
manager.add(new Separator(IWorkbenchActionConstants.MB ADDITIONS));
}

The action separator, new Separator(IWorkbenchActionConstants.MB ADDITIONS), allows
other plug-ins to contribute actions to the view’s toolbar and pull-down menu.

47

48

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

Invoking Methods in Other Views

Finally, to invoke a public method in another view, the view registry from the workbench can
be used to get a reference to the target view, and a cast be done. For example, the next two
fragments define two utility functions: addBookmark and getView.
Vak
* Add a bookmark to the Bookmarks view.
* This function goes in ch02.browser.views.WebBrowserView.java
* @param url
*/
private void addBookmark(final String url)
{
BookMarksView v = (BookMarksView)BrowserActivator.
getView(getViewSite().getWorkbenchiWindow()
,BookMarksView.ID);
if (v != null) v.addBookmark(url);

}

// Get a view from the registry
// This function goes in the plug-in activator class cho2.WebBrowserActivator.java
public static IViewPart getView (IWorkbenchWindow window, String ViewID)

{

IViewReference[] refs = window.getActivePage().getViewReferences();

for (IViewReference viewReference : refs) {
f (viewReference.getId().equals(ViewID))
return viewReference.getView(true);

}

return null;

The addBokmark function adds a string URL to the Bookmarks view (the same way you
save bookmarks from the web browser). To do this, addBookmark calls getView to load the Book-
marks view (BookMarksView.ID) from the Eclipse view registry. It then calls the BookMarksView.
addBookmark () method. Note that getView is a global utility function that should go in the plug-
in activator (cho2.WebBrowserActivator.java), but it can be placed anywhere.

Testing the Plug-in

To start the plug-in, click the Launch as Eclipse application link from the manifest editor.
A new workbench will be started. Then, from the main menu, select Window » Open
Perspective » Other » Web Browser. The resulting perspective should appear as shown
earlier in Figure 2-10.

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

Enhancing the Web Browser

If you have used the Eclipse Web Tools Platform (WTP), which is a subcomponent of Eclipse and
bundles a built-in web browser, you may wonder why you need a web browser in the first place.
One reason is to get finer control over the browser itself. For example, you could trap content and
perform a custom action. In this section, I'll describe how to enhance the browser by trapping the
HTTP response when a link is clicked and detecting its content. If the content is a Google Earth
XML document, the browser will print information about the HTTP response to the console.

Trapping the HTTP Response Content

Trapping the response content is useful if you wish to perform custom actions when a link is
clicked—for example, open an XML editor when an XML document is detected. A technique to
trap the response content type is to use the changing event of the LocationlListener to get the doc-
ument content. The code in Listing 2-19 can be used in WebBrowserView. java to perform this task.

Listing 2-19. Code to Trap the HTTP Response Content from the Web Browser Widget
(in WebBrowserView.java)

* Trap requests content types Fires when the location in the web
* browser is changing
* Don't forget to add a location listener to the browser widget
* as follows:
* browser.addLocationlListener(new LocationListener() {
* public void changing(LocationEvent event) {
* locChanging(event);
)
1

*/
void locChanging(LocationEvent evt) {

String location = evt.location;

if (!location.startsWith("http")) {
return;

}

// handle custom content type

try {
// Note: this is a custom HTTP client (available from the book source)
SimpleHTTPClient client = new SimpleHTTPClient(location);
String response = client.doGet();

if (client.isContentTypeKML() || client.isContentTypeKMZ()) {
evt.doit = false;

// handle kml/kmz
// handleKmlKmz(location);

49

50

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

System.out.println(response);

}
} catch (IOException e) {

}

Caution The code in Listing 2-19 is used to trap Google Earth KML/KMZ content for further processing,
but has the unfortunate side effect of opening a duplicate HTTP connection (using a custom HTTP client),
which makes the browser behave slower. A duplicate connection is opened because the SWT Browser
widget does not provide access to the HTTP request object. Perhaps a better technique would be to use
JavaXPCOM with the Browser as explained in the Eclipse SWT FAQ page (http://www.eclipse.org/swt/
faq.phpithowusejavaxpcom). Feel free to investigate this approach.

Saving URL Bookmarks on Exit

URL bookmarks can be easily saved by adding a dispose listener to the Web Browser view’s
createPartControl method and writing the contents of the Bookmarks view viewer to the local
file system, as shown in Listing 2-20.

Listing 2-20. Code to Save Bookmarks When the Web Browser View Is Closed (in
WebBrowserView.java)

public void createPartControl(Composite parent)

{

parent.addDisposelistener(new DisposeListener() {
public void widgetDisposed(DisposeEvent arg0) {
// Save bookmarks to the user's home directory?
saveBookmarks();

});

Summary

This chapter introduced the Eclipse plug-in model and demonstrated how to add extension
points. The following are the important points to take away from this chapter:

¢ Aplug-in is a mechanism for the lightweight software component development. It
provides seamless integration, extensibility, and a broad range of tools.

¢ The declarative nature of the plug-in model provides a small memory footprint and
fast performance, as plug-ins are activated/deactivated on demand (when requested
by the user).

CHAPTER 2 PLUG-INS: A FIRST GLIMPSE

The plug-in class centralizes the life-cycle aspects and overall semantics of a plug-
in. The methods start and stop define this life cycle, each receiving a reference to a
BundleContext with additional information.

The class AbstractUIPlugin provides the structure for managing Ul resources and is
usually extended by a user’s plug-in.

BundleContext provides the bundle with execution context, including event subscrip-
tion/registration, bundle retrieval/installation/removal, and persistent storage access.

A plug-in fragment is a component that provides extra functionality to a host plug-in.

A feature is the packaging of a group of related plug-ins into a product, and it is
described by a file called feature.xml.

The platform plug-in model can be extended via extension points. Extension points are
declared in plugin.xml.

The most important extension points provided by the workbench are perspectives,
views, actions, editors, editor actions, pop-up menus, and commands.

¢ A perspective is a container for visual elements like views, editors, and actions for
task-oriented interaction with resources.

e Aview is a workbench part to perform a visual task, such as navigating a hierarchy
of information or displaying properties for an object.

¢ View actions contribute behavior to views that already exist in the workbench.
¢ An editor is a workbench part that allows a user to edit an object (usually a file).

¢ The pop-up menus extension point allows a plug-in to contribute to the pop-up
menus of other views and editors.

e Command contributions are used to add custom menus to the menu bar and but-
tons to the toolbar. An action can then be invoked.

51

CHAPTER 3

RCP Basics

Today’s Java programmers may be reluctant to admit that their favorite language is not the
best for high-quality client-side applications. Even industry visionary Steve Jobs, founder of
Apple, said in a New York Times interview, “Java’s not worth building in. Nobody uses Java
anymore.”! Eclipse RCP aims to change this perception by providing the technologies to create
your own commercial-quality programs.

When Eclipse introduced RCP in version 3.0, it created a refactoring of the fundamental
parts of Eclipse’s U, allowing RCP to be used for non-IDE applications. Eclipse has succeeded
in building a serious platform for high-quality clients—so much so that its competitors have
been forced to create their own Java-based rich client platforms. Some important commercial
IDEs are built on RCP, including IBM’s WebSphere Studio, CodeGear’s JBuilder, and collabo-
ration tools such as IBM’s Lotus Notes.

RCP applications are built on the plug-in architecture; therefore, the main program must
be a plug-in. This chapter covers the basics of creating RCP applications.

Components of an RCP Application

The best way to understand the components of an RCP application is to use the code-generation
facilities of the PDE to build a simple template from which to start your application. Let’s set up
a sample project for writing Java code and generating the default plug-in manifest files.

Start the Plug-in Project wizard by selecting File » New » Project » Plug-in Project. Enter
a project name and click Next.

In the Plug-in Content page, enter the following information (see Figure 3-1 for the entries
used for this example):

Plug-in ID: A mandatory unique ID for the plug-in. It is recommended that the ID match
the plug-in project name.

Plug-in Version: A mandatory version of the form major.minor.micro.qualifier (e.g., 1.0.0).
The qualifier is an optional segment used to indicate changes between builds. Eclipse
uses the date as a qualifier, formatted as YYYYMMDD (year, month, and day).

Plug-in Name: A descriptive name for the plug-in, which should be translatable to other
languages depending on the locale. This field is required.

1. “Ultimate iPhone FAQs List, Part 2,” New York Times Technology, available online at http://pogue.
blogs.nytimes.com/2007/01/13/ultimate-iphone-faqs-list-part-2/.

53

54

CHAPTER 3 RCP BASICS

Plug-in Provider: An optional, translatable name for the provider.

Execution Environment: The symbolic representation of a Java Runtime Environment

(JRE). By default, the workbench will detect your installed JRE and define an execution
environment. However, it can be configured to use the JRE of your choice. This field is
optional, but setting it is recommended.

Generate an activator: An activator is a Java class that controls the life cycle of the plug-in.
It is necessary only if your application needs to do work upon startup or shutdown.

This plug-in will make contributions to the UL Affects the code of the activator class, as follows:

e If the plug-in is a UI plug-in, the activator class extends org.eclipse.ui.plugin.
AbstractUIPlugin.

e If the plug-in is not a UI plug-in (headless), the activator class extends org.
eclipse.core.runtime.Plugin.

o If the plug-in is targeted for the OSGi framework, the activator class implements
the org.osgi.framework.BundleActivator interface.

Enable API Analysis: Enables static analysis of API usage from the new project. Static API
analysis allows automatic detection of common bugs, confusing code (likely to cause
bugs), bad practices, and syntax errors.

Would you like to create a rich client application?: If you select Yes, you will see a set
of sample templates in the next page, and you can choose a sample RCP application.
Figure 3-2 shows the sample templates available for RCP.

o

Plug-in Content >
Enter the data required to generate the plug-in

Plug-in Prop — —

H rep.example. MalApplication
Plug-in 10 p.exampl DI:___’)
Plug-in Yersion: 1.0.0

Plug-in Name: |Mailﬂppicati:n Plug-in

Plug-in Provider; |

Exscution i |ravase-1.6 =l Enﬁfmnatsl

i -2
Erate an activator, a Java class thak controls the plug-in's life cycle
bor: | ch3.ma)l. application. Activator

Rich Client Appl
(Mml@bomeheﬂdldﬂqﬂcaﬂm? \@ ol ™ |

@ < Back I Mext = I st I Cancel I

Figure 3-1. Plug-in content wizard page for the sample Mail Application plug-in

& New Plug-in Project i

Templates

Select one of the available templates to generate a Fully-functioning plug-in.

=0l x|

[~

¥ | Create a plug-in using one of the templates

Available Templates:

¥ Hello RCP
@RCP application with a view

@RCP application with an intro * 5dd top-level menu and toolbar with actions

® create views that can't be closed and
multiple instances of the same view

Figure 3-2. Sample RCP templates

This wizard creates a standalone RCP
application that shows how ko:

* add keybindings to actions

create perspectives with placeholders For

CHAPTER 3

RCP BASICS

After setting the Plug-in Content page options, select the RCP Mail Template from the

Templates page.

On the final page of the wizard, enter a product name, package name, and application
class, and then click Finish. The skeleton of the application and the plug-in manifest editor

will be displayed.

Extension Points for an RCP Application

Figure 3-3 shows the Extension tab of the plug-in manifest editor, which lists the extension
points required by an RCP application. You can edit extension points visually using the Exten-
sions tab of the editor, or edit them manually using the plugin.xml tab.

5] Package Explorer E3 ™ $Plug-ins i

B S T

= ILpJ MMail Application
G- JRE System Library [Javase-1.6]
[-E Plug-in Dependencies
EIIS S
2 rop.example.internal.mail
=8} rop.example.mai
m ApplicationActionBarAdvisor, java
m ApplicationWorkbenchadvisor java
m ApplicationWorkbenchwindowadvisor
m ICommandlds. java
+ m Mailapplication. java
m Perspective,java
=8} rep.example.mail.actions
m MessagePopupiction.java
m Opentiewdction, java
I'_—'lﬁa rep.example. mail, views
m MavigationView, java
m View, java
- icons
El-= META-INF
Hk MANIFEST MF
----- |n:j build. properties
----- @ plugin.xml
----- @ product_lg.gif

@ —

% Extensions

All Extensions

Define extensions For this plug-in in the following section,

|type filker bext

@ {application)

[H-4= org.eclipse.ui.perspectives

[H-= arg.eclipse.ui.views

Message (view)

B4 Mailboxes (view)

[H-4= arg.eclipse.ui.commands

@ Mail {category)

@ Opens a mailbox {command)

------ @ Open a message dialog {command}
[H-4= arg.eclipse.ui.bindings

@ rep.example, Mailapplication.open (key)

@ org.eclipse,ui.file, exit (key)
I'_—'|=3== org.eclipse,core,runtime, products
@ Mail Product {product)

1

@ rep.example. Mailapplication. openiMessage (key)

----- |ﬂ splash.bmp

Figure 3-3. RCP mail template file structure

55

56 CHAPTER 3 RCP BASICS

Application and Product Extensions

Among the most important extension points for an RCP application are org.eclipse.
core.runtime.products and org.eclipse.core.runtime.applications, which are shown
in Listing 3-1. The application extension point describes the name of the main program.
A product is the Eclipse unit of branding.

Listing 3-1. Application and Product Extensions for the Mail Application (in plugin.xml)

<extension
id="Mail Application"
point="org.eclipse.core.runtime.applications">
<application>
<run
class="rcp.example.mail.MailApplication">
</run>
</application>
</extension>

<extension
id="Mail Product"
point="org.eclipse.core.runtime.products">
<product
application="rcp.example.MailApplication.application”
name="Mail Product">
<property
name="aboutText"
value="RCP Mail template created by PDE">
</property>
<property
name="windowImages"
value="icons/sample2.gif">
</property>
<property
name="aboutImage"
value="product_lg.gif">
</property>
</product>
</extension>

This XML defines an application (Mail Application) thatis bound to the class rcp.example.
mail.MailApplication. It also defines a product (Mail Product), with the application ID asso-
ciated with the product, custom properties to set the text and image to appear in the about

CHAPTER 3 RCP BASICS

dialog, and the window icon. Products are discussed in more detail in the “Defining and
Branding Products” section later in the chapter.

Main Program

The org.eclipse.core.runtime.applications extension point defines the main program, as
shown in Listing 3-2.

Listing 3-2. Runtime Applications Extension for the Mail Application (in plugin.xml)

<extension
id="application"
point="org.eclipse.core.runtime.applications">
<application>
<run
class="rcp.example.mail.MailApplication">
</run>
</application>
</extension>

The rcp.example.mail.MailApplication class represents an executable entry point into an
application and implements org.eclipse.equinox.app.IApplication, as shown in Listing 3-3.

Listing 3-3. Basic Skeleton for the Mail Template RCP Application

public class MailApplication implements IApplication

{

/* (non-Javadoc)
* @see org.eclipse.equinox.app.IApplication#fstart()

*/
public Object start(IApplicationContext context)
{
Display display = PlatformUI.createDisplay();
try {
int returnCode = PlatformUI.
createAndRuniWorkbench(display, new ApplicationWorkbenchAdvisor());
if (returnCode == PlatformUI.RETURN RESTART) {
return IApplication.EXIT RESTART;
}
return IApplication.EXIT OK;
} finally {
display.dispose();
}

}

57

58 CHAPTER 3 RCP BASICS

/* (non-Javadoc)
* @see org.eclipse.equinox.app.IApplication#stop()
*/
public void stop() {
final IWorkbench workbench = PlatformUI.getWorkbench();
if (workbench == null)
return;
final Display display = workbench.getDisplay();
display.syncExec(new Runnable() {
public void run() {
if (!display.isDisposed())
workbench.close();
}
bs

In Listing 3-3, the start method uses org.eclipse.ui.PlatformUI as the central class for
access to the Eclipse Platform UI This class cannot be instantiated and provides static meth-
ods to create, access, and close the workbench.

Default Perspective

As discussed in Chapter 2, all RCP applications should define a default perspective with the
org.eclipse.ui.perspectives extension point. Listing 3-4 shows the perspective for the Mail
Application plug-in.

Listing 3-4. Perspective Extension for the Mail Application (in plugin.xml)

<extension
point="org.eclipse.ui.perspectives">
<perspective

name="RCP Perspective"
class="rcp.example.mail.Perspective"
id="rcp.example.MailApplication.perspective">
</perspective>
</extension>

The Perspective class is used to define the initial layout for a perspective within a page
in a workbench window. When a perspective is opened, a new page layout with an editor area
is created. This layout is then passed to the default perspective implementation, where addi-
tional views and other content can be added. Listing 3-5 shows an example of populating a
layout with standard workbench views.

CHAPTER 3 RCP BASICS

Listing 3-5. Perpective Implementation for the Extension Point in Listing 3-4

public class Perspective implements IPerspectiveFactory

{

public void createInitiallayout(IPagelLayout layout)

{

// Get the editor area.
String editorArea = layout.getEditorArea();

// Top left: Resource Navigator view and
// Bookmarks view placeholder
IFolderLayout toplLeft = layout.
createFolder("topLeft", IPagelayout.LEFT, 0.25f, editorArea);

topleft.addView(IPagelayout.ID RES NAV);
toplLeft.addPlaceholder(IPageLayout.ID BOOKMARKS);

// Bottom left: Outline view and Property Sheet view
IFolderLayout bottomLeft = layout.
createFolder("bottomLeft", IPagelayout.BOTTOM, 0.50f, "topLeft");

bottomLeft.addView(IPageLayout.ID OUTLINE);
bottomLeft.addView(IPagelayout.ID PROP_SHEET);

// Bottom right: Task List view
layout.addView(IPagelayout.ID TASK LIST
, IPagelayout.BOTTOM, 0.66f, editorArea);

0OSGi Manifest

As you've learned, a plug-in is described by the MANIFEST.MF and plugin.xml files. MANIFEST.MF
(also known as the OSGi manifest) describes bundle information, such as the following:

Version and name
Activator class, to control the life cycle
Bundle dependencies

Activation policies, to define a mechanism for activating bundles upon the first
class load

An execution environment

This information can be edited visually from the editor’s Overview tab, as shown in
Figure 3-4, or manually from the MANIFEST.MF tab.

59

60 CHAPTER 3 RCP BASICS

& o e

I Overview OB E® T

General Information Plug-in Content

This section describes general information about. this plug-in,
The content of the plug-in is made up of two sections:

I0: |é|‘f Dependencies: lists all the plug-ins required on this plug-
Wersion: 1.0.0 in's classpath to compile and run,

Marne: Mail Application Plug-in [Runtime: lists the libraries that make up this plug-in's
Provider: ruritime.

Platform Filker:

Activabor: [rep.example.internal mail Mailac Extension / Extension Point Content

activate this plug-in when one of its classes is loaded This plug-in may define extensions and extension points:
i -in i i |é|‘f Extensions: declares contributions this plug-in makes to
This plug-in is & singleton

the platform,
|é|‘f Extension Points : declares new function points this plug-

Execution Environments in adds ko the platform,
Specify the minimum execution environments required to run
this plug-in.
Testing
B JavasE-1.6 add

Test this plug-in by launching a separate Eclipse application:
Femaye 0 Launch an Eclipse application
3&% Launch an Eclipse application in Debug mode

IR

(el Exporting

Configure JRE associations. .. To package and export the plugen:

Overview]Dependencies|Runtime|Extensions|Extension Points|BuiId|MANIFEST.MF plugin.zml | build. properties

Figure 3-4. Plug-in manifest editor

Listing 3-6 shows the OSGi manifest for the Mail Application plug-in.

Listing 3-6. OSGi Manifest for the Mail Application (MANIFEST.MF)

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Mail Application Plug-in

Bundle-SymbolicName: rcp.example.MailApplication; singleton:=true
Bundle-Version: 1.0.0

Bundle-Activator: rcp.example.internal.mail.MailActivator
Require-Bundle: org.eclipse.ui,

org.eclipse.core.runtime

Bundle-ActivationPolicy: lazy
Bundle-RequiredExecutionEnvironment: JavaSE-1.6

The manifest in Listing 3-6 sets lazy as the activation policy. In lazy activation, bundles
are not activated until they are needed. Using this model, the application can be started with
as few active bundles as possible and activate other bundles on demand, thus reducing its
memory footprint.

Plug-in Manifest

The plugin.xml file describes information about the RCP application, including the following:

CHAPTER 3 RCP BASICS

General information: This section describes general information about the plug-in, such
as its ID, name, version, activator class, execution environments, and so on.

Dependencies: This section describes plug-in dependencies (packages on which the plug-
in depends) and development classpath dependencies.

Runtime: This section describes the packages the plug-in exposes to clients, package vis-
ibility, and the plug-in classpath.

Extension points: This section describes the extension points.

Build options: This section describes the folders and files to be included in the source,
binary builds, and custom libraries to be built.

As with the OSGi manifest, the plug-in manifest (plugin.xml) can be edited through the
Overview tab of the editor (see Figure 3-4) or manually.

Advisor Classes

Advisor classes are used to configure the workbench, the workbench window, and the
action bar. The process is started within the main program with a call to PlatformuI.
createAndRunWorkbench(Display, ApplicationWorkbenchAdvisor). The advisor classes are
WorkbenchAdvisor, WorkbenchWindowAdvisor, and ActionBarAdvisor.

Workbench Advisor

An application should declare a subclass of WorkbenchAdvisor and override methods to config-
ure the workbench for a particular application and define a default perspective, as shown in
Listing 3-7.

Listing 3-7. Basic Skeleton for an RCP Application Workbench Window

public class ApplicationWorkbenchAdvisor extends WorkbenchAdvisor

{

private static final String PERSPECTIVE ID =
"rcp.example.MailApplication.perspective";

// Define an application workbench window
public WorkbenchWindowAdvisor createWorkbenchWindowAdvisor(
IWorkbenchWindowConfigurer configurer)

return new ApplicationWorkbenchWindowAdvisor(configurer);

}

// Define a default perspective
public String getInitialWindowPerspectiveId() {
return PERSPECTIVE ID;

}

61

62

CHAPTER 3 RCP BASICS

Workbench Window Advisor

The workbench window advisor is created once for a workbench window, and it is used to
configure the window. An application should declare a subclass of WorkbenchWindowAdvisor
and override methods to configure the workbench for the particular application. The following
methods provide default implementations; however, they can be overridden to configure the
workbench window:

e prelWindowOpen: Called as the window is being opened. Use it to configure aspects of the
window other than action bars.

¢ postWindowRestore: Called after the window has been re-created from a previously
saved state. Use it to adjust the restored window.

* postWindowCreate: Called after the window has been created, either from an initial state
or from a restored state. Use it to adjust the window.

e openIntro: Called immediately before the window is opened in order to create the
introduction component, if any.

¢ postWindowOpen: Called after the window has been opened. Use it to hook up window
listeners. For example, you could add a listener to load configuration data when the
application starts.

e preWindowShellClose: Called when the window is closed by the user. Use it to prescreen
window closings.

Listing 3-8 shows an example of using the preWindowOpen method to set the initial size of
the window and have it display a toolbar and status line.

Listing 3-8. Application Workbench Class Used to Configure the Main Application Window

public class ApplicationWorkbenchWindowAdvisor extends WorkbenchWindowAdvisor

{

public ApplicationWorkbenchWindowAdvisor (IWorkbenchWindowConfigurer configurer)

{

super (configurer);

}

public ActionBarAdvisor createActionBarAdvisor(IActionBarConfigurer configurer)

{

return new ApplicationActionBarAdvisor(configurer);

}

public void preWindowOpen() {
IWorkbenchWindowConfigurer configurer = getWindowConfigurer();
configurer.setInitialSize(new Point(600, 400));
configurer.setShowCoolBar(true);
configurer.setShowStatusLine(false);

CHAPTER 3 RCP BASICS

Action Bar Advisor

The action bar advisor is responsible for creating, adding, and disposing of the actions added
to a workbench window. This class is useful for allocating global actions, as well as filling the
menu bar, toolbar (known as the cool bar), and status line.

Actions have a label, tool tip, and image, as well as code associated with them. They dis-
play as menu options or buttons in a toolbar.

Actions can be classified as local or global. Local actions may perform tasks within a local
context, such as a view. Global actions are commonly used to open and close dialogs, files, and
so on. They are usually bound to a key sequence (Ctrl+O to open a file, for example). Any cor-
responding command key bindings are defined in the plugin.xml file.

Figure 3-5 shows the actions added to the Mail Application plug-in, represented as menu
options and toolbar buttons.

~iix]
Menu Bar

< Message £3 | =
Subject: This is a message about the cool Eclipse RCP!

From: picole@mail.org
Date: 10:34 am

= other@aol.com

This RCP Application was generated from the PDE Plug-in Project wizard, This sample
n shows how to:
Left View - add a top-level menu and toolbar with actions
- add keybindings to actions
- create views that can't be closed and
multiple instances of the same view
- perspectives with placeholders for new views
- use the default about dislog
- create a product definition

Content View

Figure 3-5. Mail Application RCP template

Plug-in Class

As explained in Chapter 2, the plug-in class controls the life cycle for plug-ins that integrate
with the Eclipse Platform UI. It provides the following:

¢ Support for plug-in preferences and conversion from the older JFace preference API
¢ Access to the JFace preference store, which returns a core runtime preferences object

* Ability to set up default values for either preferences using the JFace API
(initializeDefaultPreferences) or the core runtime API (initializeDefaultPlugin-
Preferences)

¢ A dialog store to manipulate dialog settings

¢ Animage registry to store common images

63

64

CHAPTER 3 RCP BASICS

The plug-in class overrides the appropriate life cycle methods in order to react to the
life-cycle requests automatically issued by the platform. Instances of the plug-in class are
automatically created by the platform in the course of the plug-in activation.

Clients must never instantiate a plug-in class. The singleton pattern can be used to obtain
an instance of the plug-in by declaring a static variable in your plug-in class for the singleton.
Store the only instance of the plug-in class in the singleton when it is created. Then access the
singleton when needed through a static getDefault() method. Listing 3-9 shows the plug-in
class for the Mail template with the method getDefault() used to obtain a shared instance of
its plug-in. If other plug-ins need to reference the Mail plug-in, a reference can be obtained by
calling MailActivator.getDefault().

Listing 3-9. Plug-in Class for the Mail Template with a Method to Get a Shared Instance

public class MailActivator extends AbstractUIPlugin {

// The plug-in ID
public static final String PLUGIN ID = "rcp.example.MailApplication";

// The shared instance (singleton pattern)
private static MailActivator plugin;

Vi

* The constructor

*/

public MailActivator() {
}

/*

* (non-Javadoc)

*

* @see org.eclipse.ui.plugin.AbstractUIPlugin#start

*/

public void start(BundleContext context) throws Exception {
super.start(context);
plugin = this;

}

/*

* (non-Javadoc)

*

* @see org.eclipse.ui.plugin.AbstractUIPlugin#stop

*/

public void stop(BundleContext context) throws Exception {
plugin = null;
super.stop(context);

CHAPTER 3 © RCP BASICS

/**
* Returns the shared instance (singleton pattern)
*
* @return the shared instance
*/
public static MailActivator getDefault() {
return plugin;

}

Defining and Branding Products

A product definition describes information about the application, and it is required if you wish
to distribute your application as a stand-alone product. To create a product, your plug-in must
define application and product extension points within the main application, as discussed
earlier in this chapter.

To add a Production Definition, from the OSGi console, select File » New » Product Con-
figuration to start the New Product Configuration wizard. Enter a product name, and select
the product name defined by your plug-in, as shown in Figure 3-6. Click Finish to bring up the
product editor, as shown in Figure 3-7.

Plug-in Development - Eclipse SDK

R

Figure 3-6. Choosing to configure a product

65

66 CHAPTER 3 RCP BASICS

L@” - g; =5
Product Definition -

This section describes general information about the product,

Specify the name that appears in the title bar of the application,
Marme: [Mail Product |

Specify the product identifier,

1o |rcp.example.MaiIAppIication.product B

Specify the product version,
Wersion: | 1.0.0 |

Specify the application to run when launching this product,

Application: |rcp.example.MaiIAppIication.application |z|
The product configuration is based on: ® plug-ins O features
Testing Exporting

1. Svnchronize this configuration with the product's Use the 'gcligse Product export wizard to package and

defining plug-in. export the product defined in this configuration,
2. Test the product by launching a runtime instance

of it: To export the produck to multiple platforms:
D Launch an Edlipse application 1. Install the RCP delka pack in the target platform,
3@? Launch an Eclipse application in Debug mode 2, List all the required fragments on the _

Configuration page. =

Overview] Configuration | Launching | Splash | Branding |

Figure 3-7. Product editor

Branding gives a unique flavor to your RCP. If the goal is to distribute the plug-in as a
stand-alone application, branding is critical to set your plug-in apart from the default Eclipse
look and feel.

Branding is defined within the product configuration file. The following is the most
important information to customize in this file:

IDs: Product and application IDs defined within the main plug-in extension points.

Configuration: The plug-ins and fragments required to run the application. By default, this
information is stored in a configuration file called config.ini, which contains properties
that are read by the runtime upon startup. This file can be generated by default, or an
existing file could be used. Use the Configuration tab of the product editor (see Figure 3-7).

Launching: This describes the JRE for a given operating system. It also describes the name
of the program launcher or executable, including icons and launching arguments. All
these values may be different, depending on the operating system.

Splash: Defines the splash screen that appears when the product launches. By default, the
file splash.bmp in the current folder will be used. The splash screen can display a progress
bar and message, which may be customized from the product editor.

Window images: Defines the images associated with the application window.

About dialog: Standard text and image for the About dialog. The image is typically located
in the product plug-in, and its size must not exceed 500X330 pixels. The text is not shown
if the size exceeds 250X330 pixels.

CHAPTER 3 RCP BASICS

Using Features

As mentioned in Chapter 2, a feature is a collection of plug-ins that perform a common func-
tion. Consider using features if your application includes many plug-ins for distribution.
Features are useful for the following reasons:

» Features help package and manage sets of related plug-ins into logical contributions.

¢ Features help products that require automatic updates or Java Web Start support.

Features will be discussed in more detail in Chapter 9.

Product Testing and Packaging

Once you've defined the product and branding, you can easily test your application. From the
product editor, click the Synchronize link (to publish your changes), and then click the Launch
an Eclipse application link (see Figure 3-7).

Avery useful tool for deploying the application to a specific location is the Product Export
wizard. From the product editor, simply click the Eclipse Product export wizard link (see
Figure 3-7). Then enter a destination directory and choose export options, as shown in Figure 3-8.

-1l

Eclipse product

Use an existing Eclipse praduct confiquration ko export the praduct in one of the
available Formats, T

Browse. .. |

r~ Product Configuration

Configuration:

Rook direckary: | eclipse

~Synchronization

Synchronization of the product configuration with the product's defining plug-in ensures that
the plug-in does not contain stale data.

¥ Synchronize before exporting

- Destination

+ Direckory: |c:1tmplexport j Browse, .. |
("'Arghivefile:l j E = |

~ Expott Options

™ Include source code

™ Generate metadata teposikary

¥ Export for multiple platforms

(7) = Back | Mext = | Einish I Cancel |

Figure 3-8. Exporting a product for multiple platforms

You can even build products for multiple platforms using the Eclipse delta pack. Note that
this pack is not distributed with Eclipse by default. You will need to download the delta pack
from the Eclipse web site and then install it.

67

68 CHAPTER 3 RCP BASICS

MULTIPLATFORM EXPORT WITH THE DELTA PACK

The Eclipse delta pack is a very useful tool for multiplatform export. However, it is not included by default in
the Eclipse download, which means you need to download and install it if you wish to deploy your product on
multiple platforms. Here are the steps for installing the delta pack and then using it for a multiplatform export.

1. Download Eclipse Delta Pack 3.4 (Ganymede) from the product download page. To do so, from the main
Eclipse downloads page, select By Project » Eclipse Platform » Latest release (3.4) » Delta Pack.

2. Unpack the zip file within your Eclipse installation. When prompted, do not overwrite existing files; oth-
erwise, your Eclipse installation may fail to start.

3. Return to the product editor and click the Eclipse Product export wizard link (see Figure 3-7).
4. Enter a destination folder and check Export for multiple platforms (see Figure 3-8). Then click Next.

5. In the next wizard page, select the target platforms, and then click Finish. The destination folder now
contains all the required plug-ins and binaries.

Hands-on Exercise: An RCP Application for the
Web Browser Plug-in

Now you will apply the concepts discussed in this chapter by wrapping the web browser plug-
in from Chapter 2 into a stand-alone RCP application. The following UI components must be
added:

¢ An application extension point

* Advisor classes for the application

¢ Asimple menu and toolbar to spawn multiple web browser views

¢ Aset of commands, key bindings, and associated handler classes for the menus
¢ A product definition

¢ Branding elements, including icons, splash screen, and about dialog

Adding an Application Extension Point

You can add the application extension point by defining another plug-in to host the main
program.

1. From the main menu, select File » New » Project » Plug-in Project and enter a project
name (ch03.WebBrowser). Click Next.

2. Inthe Plug-in Content page, make sure the “This plug-in will make contributions to
the UI” option is checked. Set the “Would you like to create a rich client application?”
option to Yes. Click Finish. The plug-in manifest editor will open.

CHAPTER 3 RCP BASICS

3. In the plug-in manifest editor, click the Dependencies tab. Then add a reference to
the web browser plug-in you created in Chapter 2. You should now see an application
extension point, as well as skeleton advisor classes, as shown in Listing 3-10.

Listing 3-10. Extension Point for the Web Browser Plug-in (in plugin.xml) and Implementation Class

<extension
id="application"
point="org.eclipse.core.runtime.applications">
<application>
<run
class="cho3.browser.BrowserApplication">
</run>
</application>
</extension>

Vak

* This class controls all aspects of the application's execution
*/

public class BrowserApplication implements IApplication {

/%
* (non-Javadoc)
*/
public Object start(IApplicationContext context) throws Exception {
Display display = PlatformUI.createDisplay();
try {
int returnCode = PlatformUI.createAndRunWorkbench(display,
new ApplicationWorkbenchAdvisor());
if (returnCode == PlatformUI.RETURN RESTART)
return IApplication.EXIT RESTART;

else
return IApplication.EXIT OK;
} finally {
display.dispose();
}
}
/*
* (non-Javadoc)
*/

public void stop() {
final IWorkbench workbench = PlatformUI.getWorkbench();
if (workbench == null)
return;
final Display display = workbench.getDisplay();

69

70

CHAPTER 3 RCP BASICS

display.syncExec(new Runnable() {
public void run() {
if (!display.isDisposed())
workbench.close();

};

Changing the Default Perspective

The default perspective needs to point to the web browser plug-in perspective from Chapter 2.
In the plug-in manifest editor, click the Extensions tab, and then expand the org.eclipse.
ui.perspectives Web Browser. Click the Browse button for the perspective class, and then
select the WebBrowserPerspective class name from Chapter 2.

Tip If you don’t see an org.eclipse.ui.perspectives extension point, that probably means you failed
to select it to create a rich client application when creating the plug-in project. Fortunately, you can use the
manifest editor to fix it. Just click the Add button in the All Extensions section. In the New Extension Point
dialog, select org.eclipse.ui.perspectives, and then click Finish. Finally, add the perspective informa-
tion, including the ID (cho2.browser.perspective.WebBrowserPerspective), name (Web Browser
Perspective), and class (cho2.browser.perspective.WebBrowserPerspective). Remember that the
perspective is located in Chapter 2.

Modifying Advisor Classes

The next step is to modify the advisor classes to configure the main window of the appli-
cation. These classes should have been created by the Plug-in Project wizard. By default,
they are named ApplicationWorkbenchAdvisor, ApplicationhWorkbenchWindowAdvisor, and
ApplicationActionBarAdvisor.

Tip When creating a new RCP plug-in project, remember to choose Yes for the “Would you like to create
arich client application? option. This will ensure that an application extension point and advisor classes are
added to the project automatically.

The workbench advisor (ApplicationhWorkbenchAdvisor) creates a new workbench window
advisor (ApplicationWorkbenchiWindowAdvisor), which configures the main window and returns a
reference to the default perspective—in this case, the WebBrowserPerspective from the Chapter 2
plug-in. Listing 3-11 shows the required modifications to the ApplicationWorkbenchAdvisor class.

CHAPTER 3 RCP BASICS

Listing 3-11. ApplicationWorkbenchAdvisor Class Used to Create a Main Window and Default
Perspective

public class ApplicationWorkbenchAdvisor extends WorkbenchAdvisor
{
public WorkbenchWindowAdvisor
createlorkbenchWindowAdvisor (IWorkbenchWindowConfigurer configurer)
{
// Create a window
return new ApplicationWorkbenchWindowAdvisor(configurer);

}

// Get a default perspective
public String getInitialWindowPerspectiveId() {
return WebBrowserPerspective.ID;
}
}

The ApplicationWorkbenchWindowAdvisor class configures the main window
menu, toolbar, and status line. It also creates an instance of the action bar advi-
sor (ApplicationActionBarAdvisor) to set up local menu and toolbar actions. In this
case, the main plug-in will not define any local actions, so the action bar advisor will
not need to be modified. Listing 3-12 shows the ApplicationWorkbenchWindowAdvisor
class which enables a main menu, toolbar, and status line. It also creates an instance of
ApplicationActionBarAdvisor.

Listing 3-12. ApplicationWorkbenchWindowAdvisor Class for the Exercise

public class ApplicationWorkbenchWindowAdvisor extends WorkbenchWindowAdvisor

{

public ApplicationWorkbenchWindowAdvisor(IWorkbenchWindowConfigurer configurer)

{
}

super (configurer);

public ActionBarAdvisor createActionBarAdvisor(IActionBarConfigurer configurer)

{
}

return new ApplicationActionBarAdvisor(configurer);

public void preWindowOpen() {
IWorkbenchWindowConfigurer configurer = getWindowConfigurer();
configurer.setShowMenuBar(true);
configurer.setShowCoolBar(true);
configurer.setShowStatusLine(true);

4

72 CHAPTER 3 RCP BASICS

Adding Menu and Toolbar Extension Points

The web browser plug-in should define a toolbar contribution to fire the open web browser
command (ch02.WebBrowser.commands.newBrowser), as shown in Listing 3-13.

Listing 3-13. Menu Contribution to Open a Web Browser (in plugin.xml)

<menuContribution
locationURI="toolbar:org.eclipse.ui.main.toolbar?after=additions">
<toolbar
id="cho2.WebBrowser.toolbars.sampleToolbar">
<command

commandId="ch02.WebBrowser.commands.newBrowser"
icon="icons/16-earth.png"
id="ch02.WebBrowser.toolbars.newBrowserCommand"
tooltip="Open Web Browser ">
</command>
</toolbar>

</menuContribution>

Notice the locationURI attribute toolbar:org.eclipse.ui.main.toolbar?after=additions
It places a new push button as an addition to the main UI toolbar.

The main application’s plug-in is in charge of declaring the main menu using the location
URImenu:org.eclipse.ui.main.menu?after=additions. The fragment in Listing 3-14 creates a
File menu contribution with two actions—New Browser and Exit—and a Help menu with an
About action.

Listing 3-14. Main Menu Contribution for the Web Browser Plug-in (in plugin.xml)

<extension
point="org.eclipse.ui.menus">
<menuContribution
locationURI="menu:org.eclipse.ui.main.menu?after=additions">
<menu
id="ch02.WebBrowser.menus.File"
label="File"
mnemonic="F">
<command
commandId="ch02.WebBrowser.commands.newBrowser"
mnemonic="S"
style="push">
</command>
<separator
name="cho02.separator1"
visible="true">
</separator>
<command
commandId="org.eclipse.ui.file.exit"
mnemonic="X"

CHAPTER 3 RCP BASICS

style="push">
</command>
</menu>
</menuContribution>
<menuContribution
locationURI="menu:org.eclipse.ui.main.menu?after=additions">
<menu
label="Help"
mnemonic="H">
<command
commandId="org.eclipse.ui.help.aboutAction"
style="push">
</command>
</menu>
</menuContribution>
</extension>

Notice the newBrowser command, which is defined in Chapter 2, and the factory com-
mands org.eclipse.ui.file.exit and org.eclipse.ui.help.aboutAction to exit and open the
About dialog, respectively.

Adding Commands, Key Bindings, and Handlers

Listing 3-15 shows the command New Browser (defined in Chapter 2) and corresponding key
binding (CTRL+6). Note the category extension, which is used to group related commands. The
main plug-in (see Chapter 3), on the other hand, defines the factory commands File » Exit and
Help » About with associated key bindings (see Listing 3-14), which are not shown here.

Listing 3-15. Command Extension Point to Open a New Web Browser (in plugin.xml)

<extension
point="org.eclipse.ui.commands">

<category
id="cho02.WebBrowser.commands.category"
name="Web Category">

</category>

<command
categoryId="cho2.WebBrowser.commands.category"
id="cho2.WebBrowser.commands.newBrowser"
name="New Browser">

</command>

</extension>

<extension
point="org.eclipse.ui.bindings">
<key
commandId="cho2.WebBrowser.commands.newBrowser"
contextId="org.eclipse.ui.contexts.window"

73

74

CHAPTER 3 RCP BASICS

schemeId="org.eclipse.ui.defaultAcceleratorConfiguration”
sequence="CTRL+6">

</key>

</extension>

You need to add a new handler extension point to the browser plug-in to associate the
New Browser command with its handler class, which will be triggered when the command
is executed. Listing 3-16 shows the new handler extension point, and Listing 3-17 shows the
NewBrowserHandler class.

Listing 3-16. Extension Point for the Open Web Browser Command Handler (in plugin.xml)

<extension
point="org.eclipse.ui.handlers">
<handler
class="ch02.webbrowser.handlers.NewBrowserHandler"
commandId="ch02.WebBrowser.commands.newBrowser">
</handler>
</extension>

Listing 3-17. Handler Class for the Extension Point in Listing 3-16

public class NewBrowserHandler extends AbstractHandler {
private int instanceNum = 0;

/x*

* The command has been executed

* from the application context.

*/

public Object execute(ExecutionEvent event)
throws ExecutionException

{
IWorkbenchWindow window = HandlerUtil.
getActivelWorkbenchWindowChecked(event);
try {
window.getActivePage().showView(WebBrowserView.ID
, Integer.toString(instanceNum++)
, IWorkbenchPage.VIEW ACTIVATE);
}
catch (PartInitException e) {
MessageDialog.openError (
window.getShell(),
"WebBrowser Plug-in",
e.getMessage());
¥
return null;
}

CHAPTER 3 RCP BASICS

Notice the window.getActivePage().showView() method in Listing 3-17, which allows
multiple instances of a particular view ID to be created. They are disambiguated using
an instance counter (or secondary ID) as the second argument. The third argument,
IWorkbenchPage.VIEW ACTIVATE, indicates the view should be immediately displayed. Note
that if a secondary ID is given, then the view must allow multiple instances by having speci-
fied allowMultiple="true" in its extension point.

Creating the Product Configuration File

Finally, create a product configuration file, as follows:

1. Right-click the project folder name and select New » Product Configuration.

2. Enter a file name (for example, WebBrowser.product) and select the product created by
the wizard (ch3.WebBrowser.product).

3. In the Overview tab, define general information for the product, including a name (Web
Browser) and version.

4. In the Configuration tab, check “Include optional dependencies when computing
required plug-ins,” and then click “Add Required Plug-ins.” This will ensure that all
required dependencies are included. (Otherwise, the application may fail to start.)

5. From the Overview tab, click Synchronize to publish the changes. Then click the
Launch an Eclipse application link to test the product.

Figure 3-9 shows the completed Web Browser RCP application.

Sweboronserree e
File Help

Mew Browser Chrl+6

S “http:,l’,l’www.google.com,l’

=] http: iy, google, com - -
2] hittp: fwnaw. goagle..com Web |mages Maps MNews Shopping Gmail more v =4

iGoogle | Sign in
1ol
- :

‘Web Browser Aplication,

Copyright ACME 2008

I'm Feeling Lucky |

Plug-in Details | Configuration Details | K i

Advertising Programs - Business Solutions - About Google
_>l_I

‘| | _’I <| |

htkp: Sy, google, com)

Figure 3-9. The Web Browser RCP application

76 CHAPTER 3 RCP BASICS

Summary

This chapter covered the fundamentals of RCP. Here are the main points to keep in mind:

RCP is essentially a refactoring of the fundamental parts of Eclipse’s UI, allowing it
to be used for non-IDE applications. It provides the technology to create your own
commercial-quality programs.

The main components of an RCP application are application, workbench, and work-
bench window classes. These classes are typically known as advisor classes.

The application class represents an executable entry point and implements org.
eclipse.equinox.app.IApplication. It uses the class org.eclipse.ui.PlatformUI to
access the Eclipse Platform UI.

Applications should define a default perspective extension point and associated class.
The perspective class is used to define the initial layout of the workbench window.

The application workbench advisor class extends WorkbenchAdvisor. It is responsible
for defining a default perspective and configuring the workbench (by creating a work-
bench window advisor).

The application workbench window advisor class extends WorkbenchWindowAdvisor. It
is responsible for configuring the main window (set window size, show menu bar, tool-
bar, status line, and so on), and creating an ActionBarAdvisor class.

The application action bar advisor class extends ActionBarAdvisor and is responsible
for creating, adding, and disposing of the actions added to a workbench window. It also
fills the menu bar, cool bar, and status line, among other Ul elements.

The plug-in class controls the life cycle for a plug-in and provides support for plug-in
preferences, access to the JFace preference store with runtime preferences, a dialog
store, and an image registry.

A product configuration file describes information about the application. It is required
if you wish to distribute your application as a stand-alone product.

A product includes branding, which gives the unique flavor to your stand-alone RCP
application.

A product may be described using plug-ins or features. A feature is a collection of
plug-ins that perform a common function. Consider using features if your application
includes many plug-ins for distribution.

When exporting the product for multiple platforms, use the Eclipse delta pack.

CHAPTER 4

User Interface Concepts

As you know, an application’s UI provides the interaction between the user and the com-
puter. Because the Ul affects the amount of effort the user must expend to perform a given
task, it has a big impact of an application’s usability.

This chapter explores two useful Eclipse APIs for Uls: the Common Navigator Framework
(CNF) and the concurrency infrastructure (Jobs API). The goal of CNF is to provide a general-
purpose, configurable navigator that presents an integrated view of resources to the user. The
concurrency infrastructure provides the means to perform simultaneous tasks using shared
resources. This allows the application to remain responsive while tasks are performed.

Hierarchical Navigation with the Common
Navigator Framework

CNF provides a general-purpose navigator view for applications. You can use it to implement
all kinds of resource viewers. As just one example, the Eclipse IDE’s Project Explorer view is
implemented with CNF.

CNF viewers can be shared by many applications working with the same set of resources
or other objects, presenting an integrated view to the end user. CNF instances are declared by
extension points. CNF content, filters, wizards, and action providers (described shortly) are
also declared as extensions, thus maximizing shareability among multiple views.

CNF viewers are highly extensible. You can define one or more CNF viewers and associate
each viewer with content extensions, filters, wizards, and sets of actions. You can also use the
org.eclipse.ui.navigator.resources plug-in to provide reusable components for clients that
need to expand on the capabilities of CNF. These resources include actions to open, save, cut,
paste, and add filters for resource types (files or custom user objects). Visually, these actions
display as menu options in the navigator pop-up menu.

Furthermore, CNF allows for drag-and-drop (DnD) functionality. DnD uses drop assis-
tants associated with a content extension.

Let’s look at the basic components of CNF, and then explore the ways of integrating CNF
into your RCP applications.

77

78

CHAPTER 4 USER INTERFACE CONCEPTS

Tip For a good introduction to CNF, see the RCP Quickstart “Common Navigator Tutorial 1: Hello
World,” available online at http://rcpquickstart.com/2007/04/25/common-navigator-tutorial-w
1-hello-world/.

CNF Basics

Using the CNF classes and configuration elements, you can create navigation systems for your
applications. Figure 4-1 shows an example of a CNF viewer in an RCP application.

BE%°

- E] Foo. bt
Mew r

£2g Import. ..
£ Export...

& | Refresh ES

Figure 4-1. CNF in action within RCP

CNF Classes

The backbone of CNF is the class org.eclipse.ui.navigator.CommonNavigator, which uses the
following classes:

¢ CommonViewer to render an extensible tree. Content and labels of the tree are provided
by an instance of INavigatorContentService.

¢ NavigatorActionService to provide actions from extensions for menu and IActionBars
contributions.

e INavigatorContentService to manage content extensions for extensible viewers and
provide reusable services for filters, sorting, activation of content extensions, and DnD.

Clients are not expected to subclass CommonNavigator for traditional tasks such as work-
space navigation. However, some RCP applications, such as file managers, may wish to
override this behavior. By default, CNF will let you navigate only workspace resources, which
is fine for the IDE, but not enough for an application such as an FTP client. The “Using CNF by
Extending the Common Navigator” section later in this chapter discusses ways to overcome
this limitation.

CHAPTER 4 USER INTERFACE CONCEPTS

CNF Configuration

CNF defines the following for navigator configuration:

Content extensions: CNF uses content extensions to include resources of any type. These
extensions provide the following:

e Means of associating objects with appropriate icons, labels, and menu items
 Invocation based on expressions defined within the extension point

¢ A priority to indicate the category of importance of the extension related to other
extensions, which is useful when more than one content extension is enabled for a
given object and situation

Filters: Users can specify which resources or objects to exclude.

Wizards: Users can use wizards to create new resources or import/export resources from
a CNF viewer.

Action providers: Action providers allow users to programmatically configure the pop-
up menu in a CNF viewer. Action providers may be associated with content extensions.
This association is useful for enabling cut/copy/paste operations when a file is selected,
for example. Action providers are also useful for performing computations to determine
which items are added to the pop-up menu.

Using CNF Within RCP

You can use CNF within RCP in two ways:

Contribute to the Common Navigator: You can contribute to the org.eclipse.ui.navigator.
CommonNavigator view to manipulate workspace resources (see Figure 4-1). This is a bit cum-
bersome, as the navigator is designed to manipulate workspace resources, not file system
resources, by default. However, you can fake file system access by creating a project in the
navigator and link the target to a file system location. For example, you could create a proj-
ect called home and point the location to your home directory, thus giving the viewer access
to files in your home directory. This option does not give you a lot of control, but is it very
simple and quick to implement.

Extend the Common Navigator: You can extend org.eclipse.ui.navigator.CommonNavigator
to control the mechanism that discovers a navigator’s root node. This requires more work
than contributing, but it gives you a higher degree of control over the navigator. You might
want to use this approach for applications such as file explorers and FTP clients, for example.

Whichever way you use CNF within your RCP application, the following plug-ins are
required to get started:

e org.eclipse.ui.navigator
e org.eclipse.ui.navigator.resources
e org.eclipse.ui.ide

e org.eclipse.core.resources

80

CHAPTER 4 USER INTERFACE CONCEPTS

Using CNF by Contributing to the Common Navigator

As I mentioned, contributing to the org.eclipse.ui.navigator.CommonNavigator view is the
easiest and quickest way to get CNF working within RCP, but gives you a low degree of control,
as you must create projects within a workspace to manipulate resources. On the bright side, it
bundles a lot of built-in actions to manipulate resources.

The following example demonstrates the steps for contributing to the Common Navigator
view. It creates the simple navigator shown earlier in Figure 4-1.

1. Make sure the CNF dependencies are included. As noted, these are org.eclipse.
ui.navigator, org.eclipse.ui.navigator.resources, org.eclipse.ui.ide, and org.
eclipse.core.resources.

2. Add an extension point for the Common Navigator view to your plug-in manifest.
Use a custom name and ID, but make sure the class is org.eclipse.ui.navigator.
CommonNavigator. The following fragment creates a Common Navigator view (within
your plug-in) called Eclipse Navigator, with the ID eclipse.navigator.view (which
can be used to reference the view from your main perspective) and a custom icon. Note
that the class org.eclipse.ui.navigator.CommonNavigator is part of CNF.

<extension
point="org.eclipse.ui.views">
<view
class="org.eclipse.ui.navigator.CommonNavigator"
icon="icons/alt window 16.gif"
id="eclipse.navigator.view"
name="Eclipse Navigator">
</view>
</extension>

3. Add action and content bindings extension points to the plug-in manifest. Action bind-
ings attach built-in actions to a Common Navigator view ID (eclipse.navigator.view
in this case). This includes all actions under org.eclipse.ui.navigator.resources.
Content bindings define the navigator content types, filters, and other resources that
will be visible. They should include the following:

e org.eclipse.ui.navigator.resources

e org.eclipse.ui.navigator.resourceContent

e org.eclipse.ui.navigator.resources.filters

e org.eclipse.ui.navigator.resources.linkHelper

e org.eclipse.ui.navigator.resources.workingSets

<extension point="org.eclipse.ui.navigator.viewer">

<viewerActionBinding
viewerId="eclipse.navigator.view">
<includes>
<actionExtension pattern="org.eclipse.ui.navigator.resources.*" />
</includes>

</viewerActionBinding>

CHAPTER 4 USER INTERFACE CONCEPTS

<viewerContentBinding viewerId="eclipse.navigator.view">
<includes>
<contentExtension
pattern="org.eclipse.ui.navigator.resourceContent" />
<contentExtension
pattern="org.eclipse.ui.navigator.resources.filters.*"/>
<contentExtension
pattern="org.eclipse.ui.navigator.resources.linkHelper"/>
<contentExtension
pattern="org.eclipse.ui.navigator.resources.workingSets"/>
</includes>
</viewerContentBinding>
</extension>

This fragment binds all navigator actions (org.eclipse.ui.navigator.resources.*)
to the Common Navigator view (eclipse.navigator.view). The actions will display as
menu options in the navigator context menu.

This fragment also defines viewerContentBinding elements to describe which con-

tent extensions and common filters are visible to the viewer. A content extension or
common filter is visible if the ID of the content extension or common filter matches

an includes statement under a viewerContentBinding. In this case, the content exten-
sion org.eclipse.ui.navigator.resourceContent—that is, any resource in the user’s
workspace—is bound to a viewer matching the ID eclipse.navigator.view. The con-
tent extension org.eclipse.ui.navigator.resources.filters.* indicates that the
content filter for that viewer will be available in the navigator filters dialog. The content
extension org.eclipse.ui.navigator.resources.linkHelper tells the viewer to provide
a link with editor support to the navigator.

. Modify the application WorkbenchAdvisor class to do the following:
* Get the workspace root as input by overriding the method getDefaultPageInput

* Load the built-in project opened and closed icons used by CNF by overriding the
initialize method (see the next fragment)

@0verride
// Override this method to return the workspace root
public IAdaptable getDefaultPageInput() {
IWorkspace workspace = ResourcesPlugin.getWorkspace();
return workspace.getRoot();

@verride
// Override to initialize the Workbench for CNF: Load project icons
public void initialize(IWorkbenchConfigurer configurer) {
// Required to load icons
WorkbenchAdapterBuilder.registerAdapters();

final String ICONS PATH = "icons/full/";
final String PATH OBJECT = ICONS PATH + "obj16/";

81

82

CHAPTER 4 USER INTERFACE CONCEPTS

// Get the workbench plug-in
Bundle ideBundle = Platform
.getBundle(IDEWorkbenchPlugin.IDE WORKBENCH);

// Load the built-in project opened/closed icons from the plug-in
declareWorkbenchImage(configurer, ideBundle,
IDE.SharedImages.IMG OBJ_PROJECT, PATH OBJECT
+ "prj_obj.gif", true);
declareWorkbenchImage(configurer, ideBundle,
IDE.SharedImages.IMG OBJ PROJECT CLOSED, PATH OBJECT
+ "cprj_obj.gif", true);
}

// Declare an image with the workbench
private void declareWorkbenchImage(IWorkbenchConfigurer configurer p,
Bundle ideBundle, String symbolicName, String path,
boolean shared) {
URL url = ideBundle.getEntry(path);
ImageDescriptor desc = ImageDescriptor.createFromURL(url);
configurer p.declareImage(symbolicName, desc, shared);

}

5. Finally, add the Common Navigator view to the default perspective factory of your RCP
application.

public void createInitiallayout(IPagelLayout layout) {
String editorArea = layout.getEditorArea();
layout.setEditorAreaVisible(false);
layout.setFixed(true);

layout.addStandaloneView("eclipse.navigator.view", true,
IPagelayout.LEFT, 0.5f, editorArea);

}

Now, when the application starts, you should see an empty navigator. To add a file sys-
tem location, right-click and select New » Project, enter a project name in the wizard, select a
target location, and then click Finish. The files in the target location should display in the navi-
gator (see Figure 4-1).

Using CNF by Extending the Common Navigator

Extending the Common Navigator involves more coding, but it gives you a higher degree

of control over the behavior of the navigator than can be achieved by contributing to the
Common Navigator. An FTP client is a good example of an RCP application that should extend
the Common Navigator.

CHAPTER 4 USER INTERFACE CONCEPTS

Here are the steps required to extend the Common Navigator:

1.
2,
3.

10.

Create an RCP template (using the PDE wizard), if you don’t have one.
Add the CNF dependencies using the plug-in manifest editor’s Dependencies tab.

Add aview (org.eclipse.ui.views) extension point to the plug-in. Enter an ID, name,
and class name for the view. For example, you might use navigator.view, File System
Navigator, and cho4.navigator.view.FileSystemNavigator, respectively. This dif-

fers from contributing to the Common Navigator, which requires org.eclipse.
ui.navigator.CommonNavigator as the class.

. Create the view class. Make sure it extends org.eclipse.ui.navigator.CommonNavigator.

. Add the view to a perspective, either programmatically or through a perspective exten-

sion. At this point, you could run the application to see an empty CNF view.

. Create content classes to serve as the root node in your navigator. The children of

the root node will be the first to appear in the navigator tree. These classes are com-
monly referred as the model of the navigator. The root node class should extend
PlatformObject to provide the required IAdaptable interface. These classes are
described in detail in the hands-on exercise.

. Declare an org.eclipse.ui.navigator.navigatorContent extension point to define

content, filters, and actions. The content element includes classes for content and label
providers.

. Add trigger points that cause the label and content providers to be called.

. Bind content to the navigator using the org.eclipse.ui.navigator.viewer extension.

This extension point registers the view as a navigator and binds content and actions
using the viewerContentBinding and viewerActionBinding elements.

Run and test the application.

As you can see, there are quite a few steps required and plenty of code to be written. These
steps are described in detail in the exercise at the end of this chapter.

Concurrency Infrastructure

The Eclipse Jobs API (org.eclipse.core.runtime. jobs) provides a concurrency infrastructure,
which allows your application to perform simultaneous tasks, yet remain responsive while
these tasks are performed. Obviously, this enhances the usability of your application.

The Jobs API provides the means to do the following:

* Schedule jobs for immediate execution or for execution after a specified delay

¢ Query, cancel, or suspend scheduled jobs

e Attach rules to jobs to indicate when they can run and whether they can run simultane-

ously with other jobs

e Acquire and release locks, and also detect and respond to deadlocks

83

84

CHAPTER 4 USER INTERFACE CONCEPTS

Jobs API Basics

A job is an asynchronous task that runs concurrently with other tasks. You create a class that
extends the Job class, and then schedule it somewhere within your application. Once a job is
scheduled, it is added to a job queue managed by the Eclipse Platform runtime.

The Eclipse Platform runtime manages pending jobs using a background thread. When
a job becomes active, the runtime invokes its run() method. When a job completes, it is
removed from the queue, and then the runtime decides which job to run next.

Job States

The state of the job changes as the Eclipse Platform runs and completes the job. The following
are lifetime states:

e WAITING: Indicates that the job has been scheduled to run, but is not running yet.
¢ RUNNING: Indicates that the job is running.

e SLEEPING: Indicates that the job is sleeping due to a sleep request or because it was
scheduled to run after a certain delay.

¢ NONE: Indicates that the job is not waiting, running, or sleeping. A job is in this state
when it has been created but is not yet scheduled.

Job Operations

You can do many interesting things with jobs by invoking the following methods:

¢ schedule(): This method starts the job immediately or at a specified interval.

¢ join(): This method will block the caller until the job has completed, or until the call-
ing thread is interrupted.

e cancel(): This method allows canceling the job. It is up to the job to respond to the
cancellation if it has already started. It is a good idea to wait for the job to complete
after the job has been canceled: if (!job.cancel()) job.join().If the cancellation
does not take effect immediately, then cancel() will return false, and the caller will
use join() to wait for the job to be canceled.

¢ sleep(): This method will cause the job to be put on hold indefinitely if the job has not
yet started running.

¢ wakeUp(): This method will cause the job to be added to the wait queue, where it even-
tually will be executed.

Tip To make sure the job completes, use the join() method. It will block the caller until the job has
completed or until the calling thread is interrupted. Keep in mind that it is not useful to call join() after
scheduling a job, since you get no concurrency by doing so. You might as well do the work from the caller.

CHAPTER 4 USER INTERFACE CONCEPTS 85

Scheduling Rules

A scheduling rule acts as a mutex (semaphore) that prevents a race condition between two
jobs running concurrently. Consider the next fragment:

class Job1 extends Job {
public Job1() {
super("Job 1");

}
}

class Job2 extends Job {
public Job2() {
super("Job 2");

}
}
Job1 jobl = new Job1();
Job2 job2 = new Job1();

job1.schedule();
job2.schedule();

Because job1 and job2 run concurrently, we do not know which one will execute first.
Even though the order is job1, job2, there is a possibility that job2 will execute first. This race
condition can be fixed by adding a scheduling rule to both jobs.

The interface org.eclipse.core.runtime.jobs.ISchedulingRule is used to indicate the need
for exclusive access to a resource. This interface defines the methods contains(ISchedulingRule
rule) and isConflicting(ISchedulingRule rule), which test if this scheduling rule completely
contains or is compatible with another scheduling rule, respectively. If we rewrite the previous
fragment as:

final Mutext rule = new Mutex();
class Mutex implements ISchedulingRule {
public boolean isConflicting(ISchedulingRule rule) {
return rule == this;
}
public boolean contains(ISchedulingRule rule) {
return rule == this;
}
}

class Job1 extends Job {
public Job1() {

super("Job 1");

setRule(rule);

86

CHAPTER 4 USER INTERFACE CONCEPTS

class Job2 extends Job {
public Job2() {
super("Job 2");
setRule(rule);
}

Job1job1l = newJob1();
Job2job2 = newJob1();

job1.schedule();
job2.schedule();

}

When a job has a scheduling rule, the isConflicting() method is used to determine if
the rule conflicts with the rules of any jobs currently running. Thus, your implementation
of isConflicting() can define exactly when it is safe to execute the job. If two jobs have the
identical rule, they will not be run concurrently. In this example, the same rule will ensure the
execution order of the job is always preserved: job1 always runs first.

Locks

Alock defines protocol for granting exclusive access to a shared object. When a job needs
access to the shared object, it acquires a lock for that object. When it is finished manipulating
the object, it releases the lock.

IJobManager jobMan = Job.getJobManager();
ILock lock = jobMan.newLock();

try {
lock.acquire();
// Update object

} finally {
lock.release();

}

Tip A lock should be created when the shared object is created or first accessed; that is, code that has a
reference to the shared object should also have a reference to its lock.

Using the Concurrency Infrastructure

Let’s look at a simple program that demonstrates these concurrency concepts. Our example
is a virtual race in which runners compete. The race will take place in the workbench and will
be shown in the built-in progress view. We will have six runners, split into three teams of two.
Each runner will be a job that uses the run() method to advance through the course. We will
also need a referee (another job) to monitor the race, as well as a racetrack.

CHAPTER 4 USER INTERFACE CONCEPTS

The Job Class

The RaceRunner object is shown in Listing 4-1.

Listing 4-1. Sample Job Class Using the Concurrency Infrastructure

public class RaceRunner extends Job {
int maxDistance = 1000;
private String team;
private String name;

// Constructor: takes a runner and team names
public RaceRunner(final String name, String team) {
super(name);
this.team = team;
this.name = name;

}

// Listen to job changes
public void register(JobChangeAdapter adapter) {
addJobChangelListener(adapter);

}

@verride
public boolean belongsTo(Object family) {
return family == team;

}

@verride
protected IStatus run(IProgressMonitor monitor) {
int count = 0;

// Perform background work and report progress

try {
monitor.beginTask("From team

n

+ team, maxDistance);

while (count++ < maxDistance) {
if (monitor.isCanceled())
return Status.CANCEL STATUS;

int stamina = (int) (Math.random() * 100) + 1;

final long sleep = (long) (Math.random() * 1000) / stamina;
"+ count + "/"
+ stamina);

monitor.subTask("Elapsed distance
+ maxDistance + " stamina

87

88 CHAPTER 4 USER INTERFACE CONCEPTS

// ... do some work ...
monitor.worked(1);
Thread.sleep(sleep);

}

} catch (InterruptedException e) {
System.err.println(e);

} finally {
monitor.done();

}
return Status.OK_STATUS;
}
public void race() {
schedule();
}
@0verride

public String toString() {
return name + " from team

n

+ team;

}

The RaceRunner class extends Job and takes a runner and team names as arguments to the
constructor. The team name is used to identify the runner within a job family. We’ll explore
job families in more detail after taking a look at job progress reporting and change listeners.

Progress Reporting

A runner uses the IProgressMonitor.beginTask() to report progress. On each loop interaction,
arandom sleep value is calculated, and feedback is provided to the monitor. When the num-
ber of interactions reaches the maximum distance, the loop completes and Status.0K_STATUS
is returned. If the user clicks the Cancel button, monitor.isCanceled() will return false, and
the thread will return Status.CANCEL_STATUS (which means the runner has dropped out of the
race). Listing 4-2 demonstrates this technique, including a random sleep value to simulate a
race. The progress of each runner can be seen in the standard progress view.

Listing 4-2. Reporting Progress Within the Job Loop

@0verride
protected IStatus run(IProgressMonitor monitor) {
int count = 0;

try {
monitor.beginTask("From team " + team, maxDistance);

CHAPTER 4 USER INTERFACE CONCEPTS

while (count++ < maxDistance) {
if (monitor.isCanceled())
return Status.CANCEL_STATUS;

final int stamina = (int) (Math.random() * 100) + 1;

final long sleep = (long) (Math.random() * 1000) / stamina;
"+ count + "/"
+ stamina);

monitor.subTask("Elapsed distance
+ maxDistance + " stamina "
// ... do some work ...
monitor.worked(1);
Thread.sleep(sleep);

}

} catch (InterruptedException e) {
System.err.println(e);

} finally {
monitor.done();

}
return Status.OK STATUS;

Job Change Listeners

Each runner will register for a race by adding a job change listener (see the register method
in Listing 4-1). The listener takes a JobChangeAdapter as an argument, which provides default
implementations for the methods described by the IJobChangelListener interface. The goal is
to listen for status changes on the runners, such as cancel() or done().

Job Families

Job families make it easy to work with a group of related jobs as a single unit. In this example, a
runner declares that it belongs to a team (family) by overriding the belongsTo method:

public boolean belongsTo(Object family) {
return family == team;

}

The Race Class

Now we need a racetrack where the runners compete. We also need a referee to monitor the
race and a race results container (a java.util.ArraylList should do). Listing 4-3 shows the
Race class.

89

90

CHAPTER 4 USER INTERFACE CONCEPTS

Listing 4-3. Race Class to Demonstrate Concurrency Concepts

/ k%
* Simple Race class to demonstrate concurrency concepts
*/

public class Race {

static Arraylist<RaceRunner> results = new Arraylist<RaceRunner>();

/**
* The Referee monitors the race
*/
static class Referee extends Job {
int numRunners = 6;
boolean done = false;

public Referee(String name) {
super(name);

}

@0verride
protected IStatus run(IProgressMonitor monitor) {
while (!done) {
if (results.size() >= numRunners)
done = true;
try {
Thread.sleep(2000);
} catch (Exception e) {
System.err.println(e);
}
}

System.out.println("Race results");

// Print race results

int place = 1;

for (int i = 0; i < results.size(); i++) {
RaceRunner runner = results.get(i);

// If the runner completes successfully
if (runner.getResult().getCode() == IStatus.OK)
System.out.println((place++) + " " + runner);

}
return Status.OK STATUS;

CHAPTER 4 USER INTERFACE CONCEPTS

public Race() {
}

/**

* Start the race

*/

public void start() {
RaceRunner bob = new RaceRunner("Bob", "US");
RaceRunner john = new RaceRunner("John", "US");
RaceRunner hans = new RaceRunner("Hans", "GER");
RaceRunner lars = new RaceRunner("Lars", "GER");
RaceRunner harry = new RaceRunner("Harry", "UK");
RaceRunner ron = new RaceRunner("Ron", "UK");

// Race referee...monitors results
Referee ref = new Referee("Referee");
ref.setSystem(true);

ref.schedule();

// This job change simulates a race name
JobChangeAdapter oneKatNY = new JobChangeAdapter() {
@0verride
// When the job completes, runners are added to a results array
public synchronized void done(IJobChangeEvent event) {
results.add((RaceRunner) event.getJob());
}
};

// Register runners
bob.register(oneKatNY);
john.register(oneKatNY);
hans.register(oneKatNY);
lars.register(oneKatNY);
harry.register(oneKatNY);
ron.register(oneKatNY);

// Start
bob.race();
john.race();
hans.race();
lars.race();
harry.race();
ron.race();

91

92 CHAPTER 4 USER INTERFACE CONCEPTS

Notice the race referee is another job. It simply monitors the results array list and then
prints the winners. The referee is set as a system job. Jobs can be classified in two categories:

User jobs: A user job will appear in a modal progress dialog that provides a button for
moving the dialog into the background. By defining your job as a user job, the progress
feedback will automatically conform to the user preference for progress viewing.

System jobs: A system job is just like any other job, except the corresponding UI support
will not set up a progress view or show any other UI elements. System jobs are used for
low-level implementation details that you don’t want to show to users.

Thus we have six runners: Bob, John, Hans, Lars, Harry, and Ron. They are split into three
teams: US, GER, and UK. Each runner registers for a race (oneKatNY in this case) to provide for
status updates:

JobChangeAdapter oneKatNY = new JobChangeAdapter() {
@0verride
public synchronized void done(IJobChangeEvent event) {
results.add((RaceRunner) event.getJob());
}
1

bob.register(oneKatNY);
john.register(oneKatNY);

The runners start racing by calling race(), which simply calls the job’s schedule()
method. When all runners either complete the race or drop out, the referee will detect a
finish and print the results to the console. Finally, to view the race in the workbench, the
WorkbenchWindowAdvisor.postWindowOpen event can be overridden to start the race:

public class ApplicationWorkbenchWindowAdvisor extends
WorkbenchWindowAdvisor

{
/...
@0verride
public void postWindowOpen() {
super.postWindowOpen();
new Race().start();
}
}

Figure 4-2 shows the virtual workbench race. When the race completes, the referee will
print the results:

Race results

1 John from team US
2 Bob from team US

3 Hans from team GER
4 Ron from team UK

5 Lars from team GER
6 Harry from team UK

CHAPTER 4 USER INTERFACE CONCEPTS

[Progress view 3 & ~ —0
-

From keam UK: Elapsed distance 6771000 stamina 10

=l

Figure 4-2. Virtual track race to demonstrate concurrency concepts

Hands-on Exercise: A CNF File System Navigator

The best way to get started with CNF is to build a real application. In this exercise, you’ll build
a simple file system navigator. You'll extend the org.eclipse.ui.navigator.CommonNavigator
class to obtain a higher degree of control over the resource discovery. The exercise demon-
strates using CNF extension points, content and label providers, content binding, resource
encapsulation, and perspectives.

Creating an RCP Project Template

The first task is to create an RCP application project, as follows:

1.

From the Eclipse IDE main menu, select New » Project » Plug-in Project. Enter a
name for the project (such as File Navigator), and then click Next.

. Make sure the “This plug-in will make contributions to the UI” option is checked and

the “Would you like to create a rich client application?” option is set to Yes. Click Next.

. On the Templates page, select the RCP application with a view template. Click Next.

. Make sure the Add branding option is selected. This will add a default product exten-

sion to the project (otherwise, you must add it to the manifest manually). Click Finish
to open the manifest editor.

. Add a product configuration file by selecting New » Other » Plug-in Development »

Product Configuration. Enter a name and select the plug-in product. Click Finish.

. Test the template by clicking the Launch an Eclipse application link in the product

editor.

93

94 CHAPTER 4 USER INTERFACE CONCEPTS

7. With the template in place, add the CNF dependencies. To add dependencies from the
plug-in manifest editor, click the Dependencies tab, and then click the Add button and
select the required packages, as highlighted in the following manifest file:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Cho4 Plug-in

Bundle-SymbolicName: cho4; singleton:=true
Bundle-Version: 1.0.0

Bundle-Activator: cho4.Activator

Require-Bundle: org.eclipse.ui,
org.eclipse.core.runtime,
org.eclipse.ui.navigator;bundle-version="3.3.100",
org.eclipse.ui.navigator.resources;bundle-version="3.3.100",
org.eclipse.ui.ide;bundle-version="3.4.0",
org.eclipse.core.resources;bundle-version="3.4.0"
Bundle-ActivationPolicy: lazy
Bundle-RequiredExecutionEnvironment: JavaSE-1.6

Adding CNF Extension Points

Now, you need some CNF extension points. These include a view, navigator content, and
content bindings. The fastest way to add these extension points is to use the plug-in manifest
editor’s Extensions tab. For example, to add the view extension point, click Add, select org.
eclipse.ui.views, and then enter the view attributes. The Extension wizard also provides
some extension templates.

View

The view should include the following required attributes:
¢ id: A unique identifier for the view (navigator.view).
¢ name: A descriptive name (File System Navigator).

¢ class: The implementation class name (cho4.navigator.view.FileSystemNavigator).
You can create the class by clicking the Class label and using the wizard. Make sure the
class extends org.eclipse.ui.navigator.CommonNavigator.

Listing 4-4 shows the view extension point for the file system navigator.

Listing 4-4. View Extension Point for the File System Navigator

<extension
point="org.eclipse.ui.views">
<view
class="cho4.navigator.view.FileSystemNavigator"
icon="icons/alt _window 16.gif"

CHAPTER 4 USER INTERFACE CONCEPTS

id="navigator.view"
name="FileSystem Navigator">
</view>
</extension>

Navigator Content

The navigator content extension defines the content and label providers, which populate the
internal tree widget of the navigator with information. The following are the most important
attributes:

e id: Aunique ID to identify this extension (ch04.navigatorContent).
 name: The display name for the content extension (ch04.navigatorContent).

e contentProvider: The name of the class that implements a tree content provider.
The content provider will be consulted when adding children to the tree. Use an
enablement or triggerPoints clause to indicate which kinds of content should trig-
ger a request to this content provider. This example uses the class ch04.navigator.
model.NavigatorRoot as the content trigger. This class must be an IAdaptable. This
can be achieved by extending org.eclipse.core.runtime.PlatformObject. The con-
tent provider is described in further detail a little later in this chapter, when we look at
implementing the classes for the example.

e labelProvider: Supplies the name of the class to provide label and image information
to the internal tree. Clients may implement the following:

e IlabelProvider to provide labels and images
e ICommonLabelProvider for more advanced functionality
e IStyledlLabelProvider to provide styled text labels for version 3.4

Listing 4-5 shows the navigator content extension point for the file system navigator.

Listing 4-5. Navigator Content Extension Point for the File System Navigator

<extension
point="org.eclipse.ui.navigator.navigatorContent">
<navigatorContent

contentProvider="cho4.navigator.view.TreeContentProvider"
id="cho4.navigatorContent"
labelProvider="cho4.navigator.view.LabelProvider"
name="cho4.navigatorContent">

<triggerPoints>

<instanceof
value="ch04.navigator.model.NavigatorRoot">
</instanceof></triggerPoints>
</navigatorContent>
</extension>

95

96

CHAPTER 4 USER INTERFACE CONCEPTS

Content Binding

Finally, you need to bind the navigator view (navigator.view) with the content extension
(cho4.navigatorContent) by using the includes clause of the content binding. A content exten-
sion may be selected by the exact extension ID. Clients may also use a regular expression
pattern to select any content extensions that match the pattern.

Listing 4-6 shows the content binding for the file system navigator.

Listing 4-6. Content Binding for the File System Navigator

<extension
point="org.eclipse.ui.navigator.viewer">
<viewer
viewerId="navigator.view">
</viewer>

<viewerContentBinding
viewerId="navigator.view">
<includes>
<contentExtension
pattern="cho4.navigatorContent">
</contentExtension>

</includes>
</viewerContentBinding>
</extension>

At this point, you have all the extension points in place. Now, let’s proceed to the class
implementation steps.

Implementation Classes

The implementation classes can be categorized as follows:

o Content trigger (NavigatorRoot): Serves as the root node of the navigator. Its children
will be the first to appear in the tree.

* Resource encapsulator (FileBean): Encapsulates files to be shown in the navigator.

e Content provider classes (TreeContentProvider and LabelProvider): Add children to the
tree, and add labels and images for the node elements.

* Navigator class (FileSystemNavigator): The main CNF class. It extends the Common
Navigator to provide initial input to populate the data tree.

¢ Perspective factory (Perspective): Needs to be modified to display the default views
when the application starts.

CHAPTER 4 USER INTERFACE CONCEPTS

All of these classes are new and must be created, except for Perspective, which is
created by the Plug-in Project wizard and only needs modifications.

To create these classes, right-click the plug-in project folder and select New
» Class. Then enter the names and package locations. NavigatorRoot, FileBean,
and FileSystemNavigator should be created in the package cho4.navigator.model.
TreeContentProvider. LabelContentProvider should go in the package cho4.navigator.view.

Tip Al of the pieces in this puzzle are bound together by the extension points (in plugin.xml) from
Listing 4-4 (describing the view class), Listing 4-5 (describing the navigator content, which references
TreeContentProvider, LabelProvider, and NavigatorRoot), and Listing 4-6 (describing the content
binding, which binds the navigator content with the view).

The next sections provide more details on the implementation of these classes.

Navigator Root

Listing 4-7 shows the class that serves as the root node of the navigator. It will not appear in
the navigator; however, its children will be the first to appear.
Listing 4-7. Root Node Class for the File System Navigator

package cho4.navigator.model;
import java.io.File;
import org.eclipse.core.runtime.PlatformObject;

public class NavigatorRoot extends PlatformObject {
private final String OSNAME = System.getProperty("os.name");
private final boolean isWindows = OSNAME.indexOf("Windows") != -1;

public FileBean[] getParentBeans() {
File f = isWindows ? new File("c:/") : new File("/");

FileBean top = new FileBean(f);
return top.getChildren();

This class extends PlatformObject, which in turn implements the IAdaptable interface
(nodes of a CNF viewer must implement this interface). The class uses the getParentBeans()
method to return the top elements. Notice that the top elements will be file beans from c:\ or /,
depending on the operating system: Windows or Linux.

97

98

CHAPTER 4 USER INTERFACE CONCEPTS

Resource Encapsulator: File Bean

Listing 4-8 shows the FileBean class to encapsulate a file within the file system.

Listing 4-8. Resource Encapsulator Class for the File System Navigator

package cho4.navigator.model;
import java.io.File;

public class FileBean {
File file;

public FileBean(File file) {
this.file = file;
}

@0verride
public String toString() {
return file.getName();

}

public boolean isDirectory() {
return file.isDirectory();

}

public boolean hasChildren() {
return file.list() != null;

}

public FileBean[] getChildren() {
File[] files = file.listFiles();

FileBean[] fileBeans = new FileBean[files.length];

for (int i = 0; i < files.length; i++) {
fileBeans[i] = new FileBean(files[i]);

}

return fileBeans;

The class constructs an instance from a java.io.File object and has the following
methods:

e toString(): Returns the name to be used as the label within the tree.

e isDirectory(): Returns true if the current instance is a directory.

CHAPTER 4 USER INTERFACE CONCEPTS

e hasChildren(): Returns true if the current instance has children.

e getChildren(): Returns children file beans for the current instance.

These methods will be useful for the tree and label content provider implementations.

Navigator Class

The navigator class is responsible for getting the initial input to populate the data tree, as well
as creating other visual components such as a context menu and action bars. Listing 4-9 shows
the navigator class for the file system navigator.

Listing 4-9. Navigator Class for the File System Navigator

import cho4.navigator.model.NavigatorRoot;

public class FileSystemNavigator extends CommonNavigator {
private Action actioni;

@0verride
protected IAdaptable getInitiallInput() {
return new NavigatorRoot();

}

@verride
public void createPartControl(Composite parent) {
super.createPartControl(parent);

makeActions();
hookContextMenu();
contributeToActionBars();

}

private void makeActions() {
action1 = new Action() {
public void run() {
showMessage("Action 1 executed");
}
};
actioni.setText("Action 1");
actioni.setToolTipText("Action 1 tooltip");
actioni.setImageDescriptor(PlatformUI.getWorkbench()
.getSharedImages().getImageDescriptor(
ISharedImages.IMG _0BIS INFO TSK));

99

100 CHAPTER 4 USER INTERFACE CONCEPTS

private void showMessage(String message) {
MessageDialog.openInformation(getCommonViewer().getControl()
.getShell(), "Sample View", message);

}

private void hookContextMenu() {

MenuManager menuMgr = new MenuManager ("#PopupMenu");

menuMgz . setRemoveAlllWhenShown(true);

menuMgr .addMenuListener(new IMenuListener() {
public void menuAboutToShow(IMenuManager manager) {

FileSystemNavigator.this.fillContextMenu(manager);

}

b;

Menu menu = menuMgr.createContextMenu(getCommonViewer ()
.getControl());

getCommonViewer().getControl().setMenu(menu);

getSite().registerContextMenu(menuMgr, getCommonViewer());

}

private void contributeToActionBars() {
TActionBars bars = getViewSite().getActionBars();
filllocalPullDown(bars.getMenuManager());
filllocalToolBar(bars.getToolBarManager());

}

private void fillContextMenu(IMenuManager manager) {
manager.add(actionl);
manager.add(new Separator());

// Other plug-ins can contribute their actions here
manager.add(new Separator(IWorkbenchActionConstants.MB ADDITIONS));

}

private void fillLocalToolBar(IToolBarManager manager) {
manager.add(actionl);
manager.add(new Separator());

}

private void fillLocalPullDown(IMenuManager manager) {
manager.add(action1);
manager.add(new Separator());

The navigator class overrides the getInitialInput() method and simply returns a new
instance of NavigatorRoot. The createPartControl() method can also be overridden to add

CHAPTER 4 USER INTERFACE CONCEPTS

custom actions. Here, we add a simple action to display a message box. Then we hook the
action to the context menu and local toolbar and pull-down menu.

Content Providers

Content providers will be consulted when adding children to the tree and requesting labels
and images for the node elements. CNF defines tree and label content providers.
Listing 4-10 shows the tree content provider for the file system navigator.

Listing 4-10. Tree Content Provider for the File System Navigator

package cho4.navigator.view;

import org.eclipse.jface.viewers.ITreeContentProvider;
import org.eclipse.jface.viewers.Viewer;

import cho4.navigator.model.FileBean;
import cho4.navigator.model.NavigatorRoot;

public class TreeContentProvider implements ITreeContentProvider {

@verride

public Object[] getChildren(Object parentElement) {
FileBean parent = (FileBean) parentElement;
return parent.getChildren();

}

@0verride
public Object getParent(Object element) {
return null;

}

@verride

public boolean hasChildren(Object element) {
FileBean file = (FileBean) element;
return file.hasChildren();

}
@verride
public Object[] getElements(Object inputElement) {

NavigatorRoot root = ((NavigatorRoot) inputElement);

return root.getParentBeans();

101

102

CHAPTER 4 USER INTERFACE CONCEPTS

@0verride
public void dispose() {

}

@0verride
public void inputChanged(Viewer viewer, Object oldInput,

}

Object newInput) {

The tree content provider overrides the following methods:

getChildren(): Returns the child elements of the given parent element. This method
differs from getElements() in that getElements() is called to obtain the tree viewer’s
root elements, whereas getChildren() is used to obtain the children of a given parent
element in the tree (including a root).

getElements(): Returns the elements to display in the viewer when its input is set to the
given element. These elements can be presented as rows in a table, items in a list, and
so on. The result is not modified by the viewer.

getParent(): Returns the parent for the given element or null, indicating that the par-
ent cannot be computed.

hasChildren(): Returns whether the given element has children.

inputChanged(): Notifies this content provider that the given viewer’s input has been
switched to a different element. A typical use for this method is to register the content
provider as a listener for changes on the new input (using model-specific means), and
to deregister the viewer from the old input. In response to these change notifications,
the content provider should update the viewer.

Notice that the FileBean class methods match the methods of the tree content provider.
The method TreeContentProvider.getElements is used to return the files of the top file system
using NavigatorRoot.getParentBeans.

The label content provider for the file system navigator is shown in Listing 4-11.

Listing 4-11. Label Content Provider for the File System Navigator

package cho4.navigator.view;

import

import
import
import
import
import
import

java.util.Hashtable;

org.eclipse.jface.viewers.ILabelProvider;
org.eclipse.jface.viewers.ILabelProviderListener;
org.eclipse.swt.graphics.Image;
org.eclipse.swt.graphics.ImageData;
org.eclipse.swt.program.Program;
org.eclipse.ui.ISharedImages;

CHAPTER 4 USER INTERFACE CONCEPTS 103

import cho4.Activator;
import cho4.NavigatorApplication;
import cho4.navigator.model.FileBean;

public class LabelProvider implements ILabelProvider {
// Cached icons
private Hashtable<Program, Image> iconCache
= new Hashtable<Program, Image>();

@0verride

public Image getImage(Object element) {
FileBean file = (FileBean) element;
String nameString = file.toString();
Image image = null;

int dot = nameString.lastIndexOf('.");

// Get icon from the file system

if (dot != -1) {
// Find the program using the file extension
String extension = nameString.substring(dot);
Program program = Program.findProgram(extension);

// Get icon based on extension
if (program != null) {
image = getIconFromProgram(program);
}
}

if (image == null)
image = Activator.getSharedImage(ISharedImages.IMG OBJ_FILE);

return file.isDirectory() ? Activator
.getSharedImage(ISharedImages.IMG OBJ FOLDER) : image;

}

@0verride
public String getText(Object element) {
return element.toString();

}

@0verride
public void addListener(ILabelProviderlListener listener) {

}

104

CHAPTER 4 USER INTERFACE CONCEPTS

@0verride
public void dispose() {
}

@0verride
public boolean islLabelProperty(Object element, String property) {
return false;

}

@0verride
public void removelistener(ILabelProviderListener listener) {

}

/x*
* Gets an image for a file associated with a given program
*
* @param program
* the Program
*/
public Image getIconFromProgram(Program program) {
Image image = (Image) iconCache.get(program);
if (image == null) {
ImageData imageData = program.getImageData();
if (imageData != null) {
image = new Image(NavigatorApplication.getDefault()
.getDisplay(), imageData);
iconCache.put(program, image);
}
}

return image;

The label content provider returns the text of the object (the file name in this case), but
it also uses a neat trick from the SWT to return the icon associated with a specific program. It
uses the class org.eclipse.swt.program.Program to find the program that is associated with an
extension. Note that a Display object must already exist to guarantee that this method returns
an appropriate result. Program.getImageData is used to return the receiver’s image data. This is
the icon that is associated with the receiver in the operating system. The result is a neat display
of files and associated operating system icons in the tree.

Default Perspective

We are almost finished building the file system navigator. The final step is to add the view to
the default perspective factory, as shown in Listing 4-12.

CHAPTER 4 USER INTERFACE CONCEPTS

Listing 4-12. Default Perspective for the File System Navigator

public class Perspective implements IPerspectiveFactory {
public static final String ID = Perspective.class.getName();

public void createInitiallayout(IPagelayout layout) {
String editorArea = layout.getEditorArea();
layout.setEditorAreaVisible(false);
layout.setFixed(true);

layout.addStandaloneView("navigator.view", true, IPagelayout.LEFT,
0.33f, editorArea);

The IPagelayout.addStandaloneView adds a stand-alone view with the given ID to this
page layout. A stand-alone view cannot be docked together with other views.

The first argument (navigator.view) is the ID of the view contributed as a workbench’s
view extension point.

Figure 4-3 shows the final result of this exercise, as well as the example earlier in this
chapter. You now have two resource navigators: one built by extending the Common Naviga-
tor and the second built by contributing to it. As you saw, extending the Common Navigator is
quite a bit of work, but it gives you more control over the content of the navigator.

= FileSystem MNavigator <fg> i ¥ || &= Edi i <f{> e
: Hlee =
(= apress_author_download0S0205
(= cdl
- edz
-2 share (= eclipse.examples.wks
B Google B edlipse.junk
B Instalishield Installation Informa (= http_console_1.0.0
(= Intel - junk
(= Internet Explorer - mp3
B Intervideo b (> optimal
- iPod {2 runtime-Mail. product
(= iTunes (& tabs
B Java H-E ve
B JavaiD B whiare
B jdk1.5.0_12 B Warldwind |
E-E=bin) |=| apress_author_download0s0205
----- 2 copvRIGHT [avery.jng
M- demo [}) barrios.pdf
M- indude [} [Z] bootxt
E-Ege {1 |#| Bream_EstudioBrillante. way
&b |#| Cesardmaro_DanzaParaguaya.w
----- 2 L1cense (2] chalotte. bt
- | TCENSE. rtF ClientExecuteDirect. java
----- =] PATCH.ERR E] ClientFormLogin. java
----- & README htm = --{= DMSetun, exe b
d 1 o ol

Figure 4-3. The file system navigator and Common Navigator views side by side

105

106

CHAPTER 4 USER INTERFACE CONCEPTS

Summary

This chapter covered the Eclipse CNF and Jobs API. Here are the important points to keep
in mind:

CNF provides a general-purpose navigator view for applications with pluggable con-
tent, filters, sorting, and much more.

CNF has the following benefits: it’s shareable, highly extensible, and declarative (using
extension points). It also has DnD support and built-in resources support.

CNF uses content extensions, filters, wizards, and action providers for configuration.

¢ Content extensions are used to associate objects with appropriate icons, labels,
and menu items.

e Filters are used to define objects to exclude.
e Wizards are used to import, export, or create resources.

* Action providers allow the user to programmatically configure the pop-up menu in
a CNF viewer.

The concurrency infrastructure provides an API for scheduling jobs in the back-
ground, an API for attaching rules to indicate when they can run and whether they
can run simultaneously, and a generic locking facility for detecting and responding to
deadlocks.

Job states are WAITING, RUNNING, SLEEPING, and NONE (not yet scheduled).

The IProgressMonitor.beginTask() method can be used to report progress on the job.
A job change listener can be used to listen for job status updates.

Job families make it easy to work with a group of related jobs as a single unit.

Jobs can be categorized as user and system jobs. A user job will appear in a modal
progress dialog that provides a button for moving the dialog into the background. A
system job is like any other job, except it has no UI support; it will not set up a progress
view or show any other Ul elements.

Alock defines a protocol for granting exclusive access to a shared object. When a job
needs access to the shared object, it acquires a lock for that object. When it is finished
manipulating the object, it releases the lock.

CHAPTER 5

Forms APl and Presentation
Framework

The Eclipse Forms API is an optional RCP feature that allows you to create portable, web-style
Uls. Since its inception, the Forms API’s popularity has continued to grow, due to its sophis-
ticated functionality and small footprint. This API gives developers a powerful tool for spicing
up their rich client interfaces—without using an embedded browser. Forms allow you to retain
full control of the widgets in the UI and to maintain portability across platforms.

This chapter describes how to use the Forms API. In the exercise at the end of the chapter,
you’'ll modify the standard Eclipse Mail template to use forms.

Forms API Basics

The Forms API provides custom widgets, layouts, and support classes to achieve a web look
inside your desktop applications, so you don’t need to resort to an embedded browser. It is
portable across all the platforms where SWT is supported. In fact, as you'll learn in this chap-
ter, it expands the possibilities of the UI well beyond traditional SWT widgets.

The goal of the Eclipse Forms API is to make web-style Uls possible by providing the
following:

e A Forms object that can be included in content areas such as views and editors.

¢ Atoolkit (FormToolkit) that serves as a factory for SWT controls and manages colors as
well as other aspects of the form

¢ New layout managers: TableWraplLayout, and ColumnLayout

¢ Complex web-style controls, including text hyperlink, image hyperlink, expandable
composite, section, and form text

¢ Multipage forms or editors, like the plug-in manifest editor itself (see Figure 5-5 later in
this chapter)

The Forms API can be easily integrated within an Eclipse view, as shown in Listing 5-1.

107

108 CHAPTER 5 FORMS APl AND PRESENTATION FRAMEWORK

Listing 5-1. Sample View Class Showing Basic Forms API Integration

public class View extends ViewPart

{
public static final String ID = View.class.getName();

/**

* Eclipse forms support. Requires the plug-in org.eclipse.ui.forms
*/

private FormToolkit toolkit;

private ScrolledForm scrolledForm;

private ImageDescriptor FORM_ICON = Activator
.getImageDescriptor("icons/alt_window_16.gif");

/**
* This is a callback that will allow us to create the viewer and
* initialize it
*/
public void createPartControl(Composite parent)
{
// Create a Form API toolkit
toolkit = new FormToolkit(getFormColors(parent.getDisplay()));

/**

* Create a scrolled form widget in the provided parent. If you do
* not require scrolling because there is already a scrolled

* composite up the parent chain, use 'createForm' instead

*/

scrolledForm = toolkit.createScrolledForm(parent);

// Form title and image

scrolledForm.setFont(new Font(null, "Times", 18, SWT.BOLD
| SWT.ITALIC));

scrolledForm.setText("Form Title");

scrolledForm.setImage (FORM ICON.createImage());

/**
* Takes advantage of the gradients and other capabilities to
* decorate the form heading using colors computed based on the
* current skin and operating system.
*/
toolkit.decorateFormHeading(scrolledForm.getForm());

Vs
* Add controls
*/

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK

Vaks
* Passing the focus request to the viewer's control.
*/
public void setFocus() {
scrolledForm.setFocus();

}

The first step is to create a FormToolkit within the view’s createPartControl() callback.
The FormToolkit will accept either a Display object or a set of colors (FormColors) to be applied
to forms and form widgets. The toolkit can then be used as a factory to create the form and the
child widgets.

In Listing 5-1, ScrolledForm is the first control created. It provides scrolling for the instance
of the Form class. The ScrolledForm control is created in a parent composite that will allow it to
use all the available area.

Common Controls

Child widgets of the form should typically be created using FormToolkit so they match the
appearance and behavior of the form and each other. Among the most basic controls are label,
text box, and button.

A form label is created as follows:

toolkit.createlabel(scrolledForm.getBody(), "Label");
A form text box is created as follows:
Text text = toolkit.createText(scrolledForm.getBody(), "", SWT.FILL);

By default, borders will not be painted for a text box in a form if the global border style is
SWT.BORDER. Thus, you should call the method toolkit.paintBordersFor(text.getParent()) to
paint flat borders for widgets created by the toolkit, as shown in Listing 5-1.

You can create check boxes and push buttons as follows:

Button bl = toolkit.createButton(scrolledForm.getBody(), "Check Box", SWT.CHECK);
Button b2 = toolkit.createButton(scrolledForm.getBody(), "Push Button", SWT.PUSH);

Listing 5-2 shows an example of creating these common controls.

Listing 5-2. Forms API Common Controls Along with Event Listeners

private void addCommonControls()
{
// Label
toolkit.createlabel(scrolledForm.getBody(), "Label");

// Text box
Text text = toolkit.createText(scrolledForm.getBody(), "",
SWT.FILL);

109

110 CHAPTER 5 FORMS APl AND PRESENTATION FRAMEWORK

}

// Make the text box grab all available horizontal space
text.setlayoutData(new TableWrapData(TableWrapData.FILL GRAB));

// Paint borders for the text box
toolkit.paintBordersFor(text.getParent());

// Check box and push buttons

Button bl = toolkit.createButton(scrolledForm.getBody(),
"Check Box", SWT.CHECK);

Button b2 = toolkit.createButton(scrolledForm.getBody(),
"Push Button", SWT.PUSH);

// Event listeners: The container class must implement the interface
// org.eclipse.swt.widgets.Listener
bi.addListener(SWT.Selection, this);
b2.addListener (SWT.Selection, this);

@0verride
public void handleEvent(Event event) {

}

System.out.println(event);

Tip To have the background of controls match the background of the form, use toolkit.

createlabel(form.getBody(), "Label") instead of Label label = new Label(form.getBody(),
SWT.NULL).

RCP application =10l x|

Figure 5-1 shows the form generated by Listing 5-2.

e Form Title ~ ~

O check Box

Figure 5-1. Common form controls

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK

Form Look and Feel

You can easily customize the look and feel of the form, including the form colors, font, icons,
toolbar, and drop-down menu, as shown in Figure 5-2.

RCP application] -0l x|

File

i Menu option 1 & 4

Menu option 2

Label
Text Box
[check Box

Figure 5-2. Customized form toolbar, drop-down menu, and gradient colors

Form Toolbar

Use the getToolBarManager () method from the Form class to access the toolbar manager to
manage tool items in the form’s title area. The toolbar manager uses the add() method to add
an action as a contribution item to this manager. In turn, the action describes the text, tool tip,
image, and a default implementation. Listing 5-3 defines a toolbar with two actions, which dis-
play simple messages in the form header (see Figure 5-2).

Listing 5-3. Creating a Forms Toolbar
/**
* Create a form toolbar
*/
private void createToolBar() {
// Two toolbar icons
ImageDescriptor TB_ICON 1 = Activator
.getImageDescriptor("icons/alt_window_16.gif");
ImageDescriptor TB_ICON 2 = Activator
.getImageDescriptor("icons/sample3.gif");

Form form = scrolledForm.getForm();

// Toolbar action #1:
Action toolBtni = new Action() {
public void run() {
// Show a message in the form header
setFormMessage("Tool button 1", IMessageProvider.INFORMATION);

};

1

112 CHAPTER 5 FORMS APl AND PRESENTATION FRAMEWORK

// Tool button #1
toolBtnl.setToolTipText("Tool button 1");
toolBtni.setText("Tool button 1");
toolBtnl.setImageDescriptor(TB_ICON 1);

// Toolbar action #2
Action toolBtn2 = new Action() {
public void run() {
// Show a message in the form header
setFormMessage("Tool button 2", IMessageProvider.WARNING);
}
b
// Tool button #2
toolBtn2.setToolTipText("Tool button 2");
toolBtn2.setText("Tool button 2");
toolBtn2.setImageDescriptor(TB_ICON 2);

// Add toolbar actions
form.getToolBarManager().add(toolBtn1);
form.getToolBarManager().add(toolBtn2);
form.getToolBarManager().add(new Separator());

// Refresh the toolbar after adding buttons
form.getToolBarManager().update(true);

// Sets the toolbar vertical alignment relative to the header.
// Can be useful when there is more free space at the second row
form.setToolBarVerticalAlignment (SWT.LEFT);

Tip Don’t forget to bring the toolbar manager’s underlying widgets up-to-date with any changes by calling
the form.getToolBarManager().update(true) method. This will refresh the toolbar when the state of a
contribution item (such as a button) changes.

Form Drop-Down Menu

Contributing to the drop-down menu is similar to contributing to the toolbar. The main differ-
ence is that you must use the method form.getMenuManager () .add(IAction) instead of form.
getToolBarManager.add(IAction) to return the menu manager used to access the form’s title
area and drop-down menu items. Listing 5-4 adds the two menu options shown in Figure 5-2.

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK

Listing 5-4. Creating a Form Drop-Down Menu
/**
* Form drop-down menus
*/
private void addFromDropDownMenu() {
// Drop-down menu icon
ImageDescriptor DD ICON 1 = Activator
.getImageDescriptor("icons/sample3.gif");

// The inner form from the scrolled form instance variable
Form form = scrolledForm.getForm();

// Drop-down menu action #1 with icon and message
form.getMenuManager().add(new Action("Menu option 1", DD _ICON 1) {

@0verride

public void run() {

setFormMessage("Menu option1”,
IMessageProvider.INFORMATION);

}

D

// Drop-down action 2, no icon or message
form.getMenuManager().add(new Action("Menu option 2") {

b

Form Messages

Form messages are presented with text between the title and the toolbar in the form head-
ing, as shown in Listing 5-5. In addition to the text message, an image icon will be displayed,
depending on the message type (defined in org.eclipse. jface.dialogs.IMessageProvider).

Listing 5-5. Displaying a Form Message
/ k%

* Form message handling
* @param text

* Message to display

* @param type

* One of ERROR, NONE, WARNING, or INFORMATION
*/

private void setFormMessage(String text, int type) {
Form form = scrolledForm.getForm();

113

114 CHAPTER 5 FORMS APl AND PRESENTATION FRAMEWORK

Vaks

* Adds a message hyperlink listener. Messages will be rendered as
* hyperlinks

*/

form.addMessageHyperlinkListener(new HyperlinkAdapter());
form.setMessage(text, type);

Messages are rendered as static text by default. However, if at least one hyperlink listener
is present, messages will be rendered as hyperlinks.

Form Gradient Colors

A form displays a horizontal background gradient whose background and font colors can be
manipulated with the class FormColors by using the following constants:

e IFormColors.H GRADIENT START:Key for the form header gradient start color.

e IFormColors.H GRADIENT END: Key for the form header gradient end color.

e IFormColors.H BOTTOM KEYLINE1: Key for the form header bottom keyline 1 color.
e IFormColors.H BOTTOM KEYLINE2: Key for the form header bottom keyline 2 color.

e IFormColors.TITLE: Key for the form title foreground color.

Listing 5-6 defines the custom gradient colors used for the form shown in Figure 5-2.

Listing 5-6. Defining Custom Gradient Colors for a Form

public void createPartControl(Composite parent) {
// Create a Form API toolkit with custom gradient colors
toolkit = new FormToolkit(getFormColors(parent.getDisplay()));

}

// Toolkit color management

public FormColors getFormColors(final Display display) {
// Gradient colors: start, end
final Color COLOR START = new Color(null, 128, 128, 128);
final Color COLOR END = new Color(null, 255, 255, 255);

// Title color
final Color COLOR HEADING = new Color(null, 102, 102, 102);

FormColors formColors;

formColors = new FormColors(display);

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK

// Set gradient colors
formColors.createColor(IFormColors.H GRADIENT START
, COLOR_START.getRGB());
formColors.createColor(IFormColors.H GRADIENT END
, COLOR_END.getRGB());
formColors.createColor(IFormColors.H BOTTOM _KEYLINE1
, COLOR_END.getRGB());
formColors.createColor(IFormColors.H BOTTOM KEYLINE2
, COLOR_START.getRGB());
// Set title color
formColors.createColor(IFormColors.TITLE, COLOR HEADING.getRGB());
return formColors;

The method getFormColors() from Listing 5-6 changes the header color values, as well
as the title foreground color, using custom RGB. getFormColors() is called when creating the
form toolkit with toolkit = new FormToolkit(getFormColors(Display)).An SWT Display is
required for this customization.

Custom Layouts

Two new custom layouts are provided by the Forms API: TableWraplayout and ColumnLayout.
The TableWraplayout layout manager attempts to position controls in the composite using
a two-pass HTML table, as recommended by the HTML World Wide Web Consortium (W3C)
specification.! The main difference from GridLayout is that it makes two passes (meaning it
parses the HTML layout twice), and the width and height are not calculated in the same pass.
For example, to apply a two-column HTML table layout to a scrollable form, use the following:

TableWraplLayout layout = new TableWraplLayout();
layout.numColumns = 2;

scrolledForm.getBody().setLayout(layout);

The ColumnLayout layout manager arranges children of the parent in vertical columns. All
the columns are identically sized, and children are stretched horizontally to fill the column
width. The goal is to give the layout a range of column numbers to allow it to handle various
parent widths. This is useful in complex forms where the number of columns changes depend-
ing on the width of the form. The number of columns drops when the width decreases and
grows when allowed by the parent width.

Complex Controls

Complex controls allow your application to use a web-style look without requiring an
embedded and bulky web browser. These controls include text hyperlinks, image hyperlinks,
expandable composites, sections, and form text, as shown in Figure 5-3.

1. The W3C HTML specification is available online at http://www.w3.0rg/html/wg/.

115

116

CHAPTER 5 FORMS APl AND PRESENTATION FRAMEWORK

Ercp application 1ol x|

File:

e Form Title~ &

Label
Text Box
O check Box

Push Buttan

Hypetlink,

= E :
This composite is capable of expanding or collapsing a single client

that is its direct child, The composite renders an expansion toggle
affordance {according to the chosen style), and a title that also acts

+ Expandable Section 1

This is an expandable Section with a table viewer
EOne
|| Twa
|5 Three

Here is some HTML text for the Fform to render including this image

® List item
® List item

Figure 5-3. Complex form controls: hyperlink, expandable composite, section, and form text

Hyperlinks

A form hyperlink mirrors its HTML counterpart. Behind the scenes, it simply draws text in
the client area. This text can be wrapped and underlined, just like an HTML hyperlink. Each
hyperlink has text, a tool tip, and an activation listener that fires when the link is clicked.
Listing 5-7 creates the text hyperlink and image hyperlink shown in Figure 5-3.

Listing 5-7. Creating a Hyperlink Widget and Related Click Listener

private void createHyperLink() {
// Hyperlink with listener

Hyperlink link = toolkit.createHyperlink(scrolledForm.getBody(),
"Hyperlink.", SWT.WRAP);

link.addHyperlinkListener(new HyperlinkAdapter() {
@verride

public void linkActivated(HyperlinkEvent e) {
System.out.println(e);
}

b

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK

// Create a second image hyperlink with icon, text, and click listener

// Image hyperlink icon

ImageDescriptor ICON = Activator
.getImageDescriptor("icons/alt window 32.gif");

// Create image hyperlink

ImageHyperlink ihl = toolkit.createImageHyperlink(scrolledForm
.getBody (), SWT.WRAP);

ihl.setImage(ICON.createImage());
ihl.setToolTipText("Image Hyperlink");
ihl.addHyperlinkListener(new HyperlinkAdapter() {
@0verride
public void linkActivated(HyperlinkEvent e) {
System.out.println(e);
}
1);

You can use the addHyperlinkListener (IHyperlinkListener) method to listen for click
events from the hyperlink. The class org.eclipse.ui.forms.events.HyperlinkAdapter provides
the default implementations for the methods described by the IHyperlinklListener interface.

Tip When the hyperlink has a focus rectangle painted around it, it means the widget has the keyboard
focus. Therefore, simply pressing the Enter key will activate it.

Expandable Composite

The expandable composite control is capable of expanding or collapsing a single child label
composite. The composite renders a title that also acts as a hyperlink. The left and right arrow
keys can be used to control the expansion state. If several expandable composites are created
in the same parent, the up and down arrow keys can be used to traverse between them. The
expandable text accepts mnemonics, and mnemonic activation will toggle the expansion state.
Listing 5-8 creates the expandable composite shown in Figure 5-3.

Listing 5-8. Creating an Expandable Composite

private void createExpandableComposite() {
ExpandableComposite ec = toolkit.createExpandableComposite(
scrolledForm.getBody() // Parent widget
, ExpandableComposite.TREE_NODE // Use a tree
// Use a tree with indentation
| ExpandableComposite.CLIENT INDENT);

ec.setText("Expandable Composite");

117

118 CHAPTER 5 FORMS APl AND PRESENTATION FRAMEWORK

// Text displayed when the control is expanded/collapsed

String text = "This composite is capable of expanding or collapsing "
+ "a single client that is its direct child. "
+ "The composite renders an expansion toggle
+ "affordance (according to the chosen style), "
+ "and a title that also acts as a hyperlink.";

n

// Create a label for the composite and bind it to the control
Label client = toolkit.createlabel(ec, text, SWT.WRAP);
ec.setClient(client);

// Lay out the control in a 1 column table style
TableWrapData td = new TableWrapData();
td.colspan = 1;

ec.setlayoutData(td);

ec.addExpansionListener(new ExpansionAdapter() {
@0verride
public void expansionStateChanged(ExpansionEvent e) {
scrolledForm.reflow(true);
}
D;

Listing 5-8 creates an expandable composite with a tree node style and indented text
(ExpandableComposite.TREE_NODE and ExpandableComposite.CLIENT_INDENT), in which the plus
(+) or minus (-) sign will be used to render the expand/collapse toggle with a single label as
child (client).

Notice that overriding the expansion event is required to refresh the UI whenever the user
expands or collapses the widget. Use ExpandableComposite.addExpansionlListener to override
the method expansionStateChanged, and call scrolledForm.reflow(true) (reflow refreshes the
body layout and the scrollbars of the form).

Sections

A section is a variation of the expandable composite with an optional description below the
title. The section is often used as a basic building block in forms because it provides for logical
grouping of information.

The style and colors of the section are supplied by the toolkit, and initialized based on the
system colors. For this reason, it is recommended that you create the section with the toolkit,
instead of through its own constructor. Listing 5-9 shows a utility method to create a section
and set its title, description, style, and the column span of the layout.

Listing 5-9. Creating an Expandable Section Using an HTMLTableLayout

Vak
* Create an expandable form section. It uses a Layout data in
* conjunction with HTMLTablelayout.

*/

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK

private Section createSection(String title, String description

{

, int style, int colSpan)

Section section = toolkit.createSection(scrolledForm.getBody(),
style);

// Refresh the section
section.addExpansionListener(new ExpansionAdapter() {
public void expansionStateChanged(ExpansionEvent e) {
scrolledForm.reflow(true);
}
bs

if (title != null)
section.setText(title);

if (description != null)
section.setDescription(description);

TableWrapData td = new TableWrapData(TableWrapData.FILL_GRAB);
td.colspan = colSpan;
section.setlLayoutData(td);

return section;

Tip Since Eclipse 3.1, it is possible to use a control for the section’s description. A typical way to do this
is to use an instance of FormText to provide for hyperlinks and images in the description area. If a control is
used for the description, the DESCRIPTION style should not be set.

{

Listing 5-10 demonstrates a utility method to create a section with a client and inner table.
The section client uses a two-column table wrap layout. The inner table then grabs the avail-
able horizontal space with a column span of 2.

Listing 5-10. Creating an Expandable Section with an Inner HTML-Style Table

private TableViewer createExpandableSectionWithTable(String title

, String description, int style, int colSpan)

/**

* Create an expandable section with title, description, style
* (expanded) and column span
*/

119

120 CHAPTER 5 FORMS APl AND PRESENTATION FRAMEWORK

Section section = createSection(title, description, style, colSpan);

// Create the composite as a part of the form.
Composite sectionClient = toolkit.createComposite(section);

Vaki
* Give the widgets a flat look
*/
sectionClient.setData(FormToolkit.KEY DRAW BORDER,
FormToolkit.TEXT BORDER);
toolkit.paintBordersFor(sectionClient);

Vioio
* Use the forms HTML like table layout for the contents of the
* expandable section
*/
TableWraplLayout layout = new TableWraplLayout();
layout.numColumns = 2;

sectionClient.setlayout(layout);

Vak

* Add contents to the section client. A table is wrapped on a
* table viewer to use label and content providers

*/

Table table = toolkit.createTable(sectionClient, SWT.FILL);

// The table will grab all excess horizontal space with a minimum height
// of 100 pixels. Each table cell will have a span of 2 columns
TableWrapData td = new TableWrapData(TableWrapData.FILL GRAB);
td.colspan = 2;

td.heightHint = 100;

table.setlayoutData(td);

J¥k

* Sets the client of this expandable composite. The client must
* not be null and must be a direct child of this container

*/

section.setClient(sectionClient);

return new TableViewer(table);

The subroutine in Listing 5-10 can be called using a custom style and column span. The
returned viewer can then set content and label providers, as well as the input, as shown in
Listing 5-11. You can see the final expandable section with a table in Figure 5-3.

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK

Listing 5-11. Adding a Content and Label Provider to an Expandable Section

/**
* SECTIONS
*/
private void addExpandableSectionWithTable() {
/**
* Add an expandable section with a table viewer with an expanded
* style and column span of 1
*/
int expanded = Section.DESCRIPTION | Section.TITLE BAR
| Section.TWISTIE | Section.EXPANDED;
int colSpan = 1;
// Viewer is an instance variable of type TableViewer
viewer = createExpandableSectionWithTable("Expandable Section 1",
"This is an expandable section with a table viewer",
expanded, colSpan);
// Add content and label providers:
// ViewContentProvider and ViewlabelProvider
// These are user-defined classes
viewer.setContentProvider(new ViewContentProvider());
viewer.setlabelProvider(new ViewlLabelProvider());
// Set initial input
viewer.setInput(getViewSite());
}

The style Section.DESCRIPTION | Section.TITLE BAR | Section.TWISTIE| Section.
EXPANDED displays a section with a description, title bar, and expanded state. Section.TWISTIE
displays a twistie (right- or down-pointing arrow) as the expand/collapse toggle. The section
contains a custom TableViewer control, which uses a content provider (ViewContentProvider)
to provide objects to the view, and a label provider (ViewLabelProvider) to provide labels
and images. These two classes should implement the interface org.eclipse, jface.viewers.
IContentProvider and must be defined by the user.

Form Text Control

As shown in Figure 5-4, a form text control is capable of rendering the following:
e Wrapped text
¢ Text that starts with http:// converted into hyperlinks on the fly
¢ Formatted XML tags

121

122 CHAPTER 5 FORMS APl AND PRESENTATION FRAMEWORK

Here is some HTML text for the form to render including this image

® List item
® List item
(-4 1bem with image

Figure 5-4. Form text control

When configured to use formatted XML, the form text control requires the root element
<form> to be used. The <p> and <1i> tags can be children of the <form> element, with the attri-
butes shown in Table 5-1. Table 5-2 lists the tags that can appear as children of the <p> and
 tags.

Table 5-1. Tags That Can Be Children of the <form> Element

Tag Description Attributes

<p> For paragraphs vspace: If set to false, no vertical space will be added (default
is true).

 For list items vspace: Same as <p>.

style: One of bullet (default), text, or image.

value: For text, it is the value of the text that is rendered as a
bullet. For an image, it is the href of the image to be rendered as
abullet. Not used for bullet style.

indent: Number of pixels to indent the text in the list item.

bindent: Number of pixels to indent the bullet itself.

Table 5-2. Tags That Can Appear As Children of <p> and Elements

Tag Description Attributes

 For images href: A key to the image set using the setImage method.
Required.

<A> For hyperlinks href: A key that will be provided to the hyperlink listeners via the

HyperlinkEvent object. Required.

nowrap: When set to true, the hyperlink will not be wrapped.
Default is false. Optional.

 For bold font

 For line breaks

 For enclosed text, Color: A key to the Color object set by the setColor method to
with color and set the color. Optional.
font specified .
in the element font: A key to the Font object set by the setFont method to set
attributes the font. Optional.

nowrap: When set to true, blocks wrapping. The default is false.
Optional.

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK

Tag

Description Attributes

<control> Foracontrolthat href:Akey to the Control object set using the setControl

is a child of the method. Required.

text control (new
in3.1) (fill: When set to true, makes the control fill the entire width

of the text. The default is false. Optional.

width and height: Force the dimensions of the control.
Optional.

align: To set the vertical position of the control. Optional.

Tip Since Eclipse 3.1, it is possible to select text. Text selection can be programmatically accessed and
also copied to the clipboard. Nontextual objects (images, controls, and so on.) in the selection are ignored.

Listing 5-12 shows a form text control with HTML-style formatting. Note that the HTML

must be well formed (in reality, it is XML). The XML contains a <form> element with a hyperlink
embedded in the first paragraph, and a bulleted item list with text and image elements. The form
text also defines a hyperlink listener, where the href attribute can be extracted from the event.

Listing 5-12. Adding a FormText Control to a Form

private void addFormTextControl() {

ImageDescriptor ICON = Activator
.getImageDescriptor("icons/sample3.gif");

FormText formText = toolkit.createFormText(scrolledForm.getBody(),
true);

formText.setLayoutData(new TableWrapData(TableWrapData.FILL));

StringBuffer html = new StringBuffer(
"<form><p>Here is some HTML text for the form to render
+ "including this image . "
+ "For more information see: http://www.eclipse.org</p>");

html.append("List item</1i>");
html.append("List item</1i>");
html
.append("<1i style=\"image\" value=\"image\">Item with image</1i>");
html.append("</form>");

// If parseTags is true, formatting tags will be parsed.

// Otherwise, text will be rendered as is.

// If expandURLs is true, URLs found in the untagged text will be
// converted into hyperlinks.

123

124 CHAPTER 5 FORMS APl AND PRESENTATION FRAMEWORK

boolean parseTags = true;
boolean expandURLs = true;

!/
formText.setText(html.toString(), parseTags, expandURLs);
formText.setImage("image", ICON.createImage());

formText.addHyperlinkListener(new HyperlinkAdapter() {
@0verride
public void linkActivated(HyperlinkEvent e) {
System.out.println(e.getHref());
}
;s

Note The form text control was designed to render children controls defined with XML tags. However, it
is not responsible for creating or disposing of those controls; it only places them relative to the surrounding
text. Moreover, none of the elements can be nested. For example, you cannot have a inside a or
two nested lists.

Form text is not meant to be an HTML browser. Compared with a web browser, it has the
following limitations:

¢ Aform text control supports only a subset of the HTML tags. For example, bold is sup-
ported, but not italic. Attributes for vertical alignment of text with respect to images are
missing. List support is poor.

e For the sake of simplicity, elements cannot be nested. For example, you cannot have
 inside a . Note that an exception has been made to this rule to allow nesting
of images and text inside the hyperlink.

If you need complex formatting capabilities, use the SWT Browser widget instead. If you
need editing capabilities with font and color styles of text, use the SWT StyledText widget. If
you need to wrap text, use the SWT Label widget with an SWT.WRAP style.

Complex Forms

The Forms API provides advanced editors customized to manipulate content that is hard to
display and edit by hand. These include managed forms, master/details forms, and multipage
editors.

Managed Forms

A managed form is a form wrapper that adds life-cycle management and notification to its mem-
bers. The life-cycle management includes save, commit, focus, selection, dirty state, and others.

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK

Tip The FormManaged Form relationship is similar to the one between a Table and TableViewer in JFace.

Master/Details Form

A master/details form follows a common pattern that consists of a tree or table (master) and a
list (details) driven by the master’s selection. Creating a master/details form involves three steps:

1. Create the master part to drive the details.

2. Contribute actions to the form toolbar. For example, you might add actions to change
the master/details orientation between horizontal and vertical.

3. Register details pages for each distinct input from the master. Details pages can con-
tain any number of controls.

Multipage Editors

The goal of a multipage editor is to provide a high-quality GUI to manipulate complex XML
documents. Multipage editors are arguably the most powerful feature of the Forms API, and
they are used intensively by the plug-in manifest editor itself.

The plug-in manifest editor shown in Figure 5-5 is an example of all the complex form
types—managed, master/details, and multipage editor forms—used together.

1] MavigationWiew, java (|J_| Mailview. java (#{],f chos &3 = [m]
i+ Overview 0% L@
General Information Plug-in Content
This section describes general information about this plug-
in. The content of the plug-in is made up of two sections:
D Lhas = Dependencies: lists all the plug-ins required on this

plug-in's classpath to compile and run,

Version: 1.0.0 Runtime : lists the ibraries that make up this plug-in's
Marme: Mail Plug-in runitime,
Provider:

Flatform Filker:

Activator: mail. Activator

Activate this plug-in when one of its classes is loaded

Extension / Extension Point Content

This plug-in may define extensions and extension points:

 Extensions: declares contributions this plug-in makes
This plug-in is a singleton to the platform,

- Extension Paints : declares new Function paints this
plug-in adds to the platform,
Execution Environments

Specify the minimum execution environments required to -
run this plug-in, Testing

Bl JavasE-1.6 Test this plug-in by launching a separate Eclipse
application:
@ Launch an Eclipse application
ifﬁ Launch an Eclipse application in Debug mode

Exporting
mFi e IDFE

e iz
Overview]Dependencies|Runtime|Extensions|Extension Points|BuiId|MANIFEST.MF plugin.zml | build. properties

Figure 5-5. Multipage plug-in manifest editor

125

126

CHAPTER 5 FORMS APl AND PRESENTATION FRAMEWORK

To build a multipage editor, your class should extend FormEditor and add pages by over-
riding the addPages () method. In turn, each page should implement FormPage and override
createFormContent() to add custom content to the page, as shown in Listing 5-13.

Listing 5-13. Skeleton for a Multipage Form Editor

// Multi-page form editor
public class MyEditor extends FormEditor {

public MyEditor() {
}

protected FormToolkit createToolkit(Display display) {
// Create a toolkit that shares colors between editors.
return new FormToolkit(display);

}

protected void addPages() {

try {
addPage(new FirstPage(this));
addPage(new SecondPage(this));

}

catch (PartInitException e) {
// Handle exception

}

}

public void doSave(IProgressMonitor monitor) {

}

public void doSaveAs() {
}

public boolean isSaveAsAllowed() {
return false;

}

}

// Editor page
public class FirstPage implements FormPage
{
protected void createFormContent(IManagedForm managedForm) {
// add page content here
}
}

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK

Hands-on Exercise: A Web Look for the Mail
Template

The Mail Template is the built-in application bundled with RCP. It simulates a basic mail
client with navigation and details views. The goal of this exercise is to give a web look to the
standard Mail template provided by the Plug-in Project wizard, which is shown in Figure 5-6.
You'll do this using the Forms API. The changes are simple, yet they have a powerful effect.
Here are the modifications you’ll make:

¢ Hide the main menu, cool bar, and status line
¢ Replace the main menu and cool bar with an image header with a custom toolbar
e Convert each view into a form with a heading and toolbar

ol

File Help

E? Subject: This is a message about the cool Eclipse RCP!
F-[= other@acl.com From: picole@mail.org
Date: 10034 am

This RCP Application was generated from the PDE Plug-in Project wizard, This sample
shows how to:
- add a top-level menu and toolbar with actions
- add keybindings ko actions
- create views that can't be closed and
multiple instances of the same view
- perspectives with placeholders for new views
- use the default about: dialog
- create a product definition

Figure 5-6. RCP Mail template

To begin, use the Plug-in Project wizard to create a mail RCP template. Here is how:

1. From the main menu, click File » New » Other » Plug-in Development » Plug-in
Project. Click Next.

. Enter a project name (ch05.Mail). Click Next.
. In the Plug-in Content page, set Rich Client application to yes. Click Next.

2

3

4. In the Templates page, select the RCP Mail Template. Click Next.

5. In the Mail Template details page, set the product name and click Finish.
6

. Create a product configuration for the application. Right-click the project folder and
select New » Other » Plug-in Development » Product Configuration. Click Next.

7. Enter a file name (Mail.product). Make sure the product ID is selected under Use an
existing product. Click Finish.

127

128

CHAPTER 5 FORMS APl AND PRESENTATION FRAMEWORK

8. Test the product. From the product editor, click synchronize to publish and launch an
Eclipse application to run it.

9. Use this template to customize the application for this exercise.

Customizing the Workbench Window

The first class to be modified is the workbench window advisor (ApplicationWorkbenchWindow-
Advisor), which configures the main window. This is done by overloading the preWindowOpen()
and createWindowContents() methods.

The prelWindowOpen() method is called before the window’s controls have been cre-
ated. Typical clients will use the window configurer to tweak the workbench window in
an application-specific way. For this exercise, set up the initial size and use the setShow*
methods on IWorkbenchWindowConfigurer to hide the cool bar, status line, and menu bars,
as follows:

configurer.setShowCoolBar(false);
configurer.setShowStatusLine(false);
configurer.setShowMenuBar(false);

The createWindowContents() method creates the contents of the window and is used to
define custom window contents and layout.

The basic skeleton of the window advisor is shown in Listing 5-14. Note the private com-
posite for the header and two custom images to draw a header and background fill.

Listing 5-14. Workbench Window Advisor Class for the Forms Mail Template

public class ApplicationWorkbenchWindowAdvisor
extends WorkbenchWindowAdvisor
{

// Main window header

private Composite header;

// Custom page control
private Control page;

// Main window banner image
private static Image bannerMain = Activator
.imageDescriptorFromPlugin(Activator.PLUGIN ID,
"icons/banner.png").createImage(); //$NON-NLS-1$

// Window fill image
private static Image bannerFill = Activator.imageDescriptorFromPlugin(
Activator.PLUGIN ID, "icons/fill.jpg").createImage();

public ApplicationWorkbenchWindowAdvisor(
IWorkbenchWindowConfigurer configurer) {
super (configurer);

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK

public ActionBarAdvisor createActionBarAdvisor(
IActionBarConfigurer configurer) {
return new ApplicationActionBarAdvisor(configurer);

}

public void preWindowOpen() {
IWorkbenchWindowConfigurer configurer = getWindowConfigurer();
configurer.setInitialSize(new Point(700, 500));

// Hide cool bar, status line, and menu bar
configurer.setShowCoolBar(false);
configurer.setShowStatusLine(false);
configurer.setShowMenuBar (false);

}

@0verride
public void createWindowContents(Shell shell) {
// Add custom window contents

}

The most important method is createWindowContents(), which is where the elements and
layout are defined.

Customizing the Window Contents

The default implementation of createWindowContents() adds a menu bar, cool bar, status line,
perspective bar, and a fast view bar to the main window. Listing 5-15 shows how to customize
the window contents for this example.

Listing 5-15. Adding Window Contents to the Mail Template

public void createWindowContents(Shell shell) {
Vs
* Define custom window contents
*/
final IWorkbenchWindowConfigurer configurer = getWindowConfigurer();

// Control the position and size of the children of a composite
// control by using FormAttachments to optionally configure the
// left, top, right and bottom edges of each child.

final FormLayout layout = new FormlLayout();

layout.marginWidth = 0;

layout.marginHeight = 0;

shell.setlLayout(layout);

129

130 CHAPTER 5 FORMS APl AND PRESENTATION FRAMEWORK

// Create a top header in the main window. Set the background to white

this.header = new Composite(shell, SWT.NONE);

this.header.setBackground(Display.getDefault().getSystemColox (
SWT.COLOR_WHITE));

// Create a 2 column grid layout for the main header
final GridlLayout glayout = new GridlLayout(2, false);
glayout.horizontalSpacing = 0;

glayout.marginHeight = 0;

glayout.marginWidth = 0;

glayout.marginWidth = 0;

glayout.verticalSpacing = 0;

this.header.setlLayout(glayout);

// The 1st composite in the header is a toolbar
final Composite toolbar = new Composite(this.header, SWT.NONE);

// Fill the background of the toolbar with a fill image (bannerFill)
toolbar.setBackgroundImage(bannerFill);

// Lay out the toolbar in a 1 column grid
toolbar.setlayout(new GridlLayout(1, false));

GridData gd = new GridData(SWT.BEGINNING, SWT.CENTER, true, true);
gd.horizontalIndent = 0;

// Create a toolbar manager for the toolbar
// The main toolbar has 2 actions: Open View, and about
final ToolBarManager tbm = new ToolBarManager(new ToolBar(toolbar,
SWT.FLAT));
tbm.getControl().setBackgroundImage(bannerFill);
tbm.getControl().setlayoutData(gd);

// Add toolbar actions

// Open View action

tbm.add(new OpenViewAction(configurer.getWindow(),
"Open Another Message MailView", MailView.ID));

// About action (from the Eclipse factory)
tbm.add(new Action("About", Activator
.getImageDescriptor("icons/about32.png")) {
@verride
public void run() {
ActionFactory.ABOUT.create(
PlatformUI.getWorkbench()
.getActiveWorkbenchiWindow()).run();

};

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK

// Refresh toolbar
tbm.update(true);

gd = new GridData(SWT.FILL, SWT.FILL, true, true);
toolbar.setlayoutData(gd);

// Main header image
final Label mainImage = new Label(this.header, SWT.NONE);
mainImage.setImage(bannerMain);

// Lay out the header image
gd = new GridData(SWT.END, SWT.BEGINNING, false, false);
mainImage.setlayoutData(gd);

Vak
* Create the page composite, in which the window's pages,
* and their views and editors, appear
*/

this.page = configurer.createPageComposite(shell);

doLayout();

Listing 5-15 starts by creating a window shell. It uses the form layout and size of the chil-
dren (via FormAttachments) to configure the left, top, right, and bottom edges.

It then creates a two-column header composite to hold a toolbar and header image. This
composite lays out children in a two-column grid, as shown in Figure 5-7.

¥4 Mail Product 3 =]

@ﬂ Mail RCP

Figure 5-7. Header composite with two-column grid layout displaying a toolbar on the left and
an image on the right

On the left of the header, a toolbar and associated manager are created with two actions:
open view, to open the mail message view, and the factory About dialog. Note that the toolbar

and manager set a background fill image, as shown in Figure 5-8.

¥4 Mail Product b =]

@ﬂ‘ Mail RCP

Figure 5-8. Header composite with background fill applied

131

132

CHAPTER 5 FORMS APl AND PRESENTATION FRAMEWORK

On the right, a main image banner is constructed. A very important step before layout is
configurer.createPageComposite(shell), which creates the page composite, in which the win-
dow’s pages and their views and editors appear.

The final step in window customization is to lay out the children by using FormAttachments
to configure the left, top, right, and bottom edges of the header and page composites, as shown
in Listing 5-16.

Listing 5-16. Configuring the Edges of the Main Window for the Mail Template

private void dolayout() {
// Lay out header on top of the page
FormData data = new FormData();
data.top = new FormAttachment(0, 0);
data.left = new FormAttachment(o, 0);
data.right = new FormAttachment(100, 0);
this.header.setlayoutData(data);

// Lay out custom page below the header

data = new FormData();

data.top = new FormAttachment(this.header, 0, SWT.BOTTOM);
data.left = new FormAttachment(o, 0);

data.right = new FormAttachment(100, 0);

data.bottom = new FormAttachment(100, 0);
this.page.setlayoutData(data);

// Refresh
getWindowConfigurer().getWindow().getShell().layout(true);
if (this.page != null) {

((Composite) this.page).layout(true);
}

FormAttachment can take two arguments: a numerator, which is the percentage of the
form, and an offset of the side from the (0, 0) position. Here, the window header is laid out on
top by setting the top-left attachment to (0, 0) and the right attachment to 100% of the width
of the window. The content page is laid out below the header by attaching the top side of the
page to the bottom side of the header:

data.top = new FormAttachment(this.header, 0, SWT.BOTTOM)

Here, FormAttachment takes three arguments. The bottom-right edge is attached to 100%
of the window size.

Modifying the Navigation View

The navigation view contains a sample navigation tree with e-mail addresses. This setup
requires the following simple changes to the createPartControl method:

¢ Create a form toolkit and associated form

e Use a column TableWrap layout for the form’s body to lay out the navigation tree using
a one-column table

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK

¢ Change the navigation tree to use toolkit.createTree()

e Have the navigation tree set the layout data used in conjunction with HTMLTablelayout
with a call to tree.setlLayoutData()

These changes are outlined in Listing 5-17.

Listing 5-17. Navigation View for the Mail Template

public class NavigationView extends ViewPart {
public static final String ID = "Mail.navigationView";
private TreeViewer viewer;

private ImageDescriptor FORM_ICON = mail.Activator
.getImageDescriptor("icons/sample2.gif");

Vak

* Eclipse forms support.

*/

private FormToolkit toolkit;
private Form form;

// Template code has been removed for simplicity

Vioio
* This is a callback that will allow us to create the viewer and
* initialize it.
*/
public void createPartControl(Composite parent) {
// Create a Form API toolkit
toolkit = new FormToolkit(parent.getDisplay());
/**
* Create a scrolled form widget in the provided parent. If you do
* not require scrolling because there is already a scrolled
* composite up the parent chain, use 'createForm' instead
*/
form = toolkit.createForm(parent);
form.setText("Navigator");
form.setImage(FORM ICON.createImage());

toolkit.decorateFormHeading(form);

/**

* Flat look

*/
toolkit.paintBordersFor(form.getBody());

// Add a 1 column layout to the scrolled form contents
TableWraplLayout layout = new TableWraplLayout();
layout.numColumns = 1;

133

134 CHAPTER 5 FORMS APl AND PRESENTATION FRAMEWORK

form.getBody().setLayout(layout);

Tree tree = toolkit.createTree(form.getBody(), SWT.MULTI
| SWT.H SCROLL | SWT.V_SCROLL | SWT.FILL);

TableWrapData td = new TableWrapData(TablelWrapData.FILL GRAB);
td.colspan = 1;
td.heightHint = 300;

tree.setlayoutData(td);

viewer = new TreeViewer(tree);
viewer.setContentProvider(new ViewContentProvider());
viewer.setlabelProvider(new ViewlLabelProvider());
viewer.setInput(createDummyModel());

viewer.setData(FormToolkit.KEY DRAW BORDER,
FormToolkit.TEXT BORDER);

}

// Template code has been removed for simplicity...

Modifying the Mail View

The final step is converting the mail view into a form. This view displays a header with a sub-
ject, sender e-mail address, and date labels. It also has a text control with the actual e-mail
message. This requires the following additions:

¢ Aform header and icon to display the sender’s e-mail address
¢ A toolbar with a button to close the message

Also, the layout needs to be changed from a GridLayout to a TableWraplLayout, and the wid-
gets must be created using the toolkit. The changes are shown in Listing 5-18.

Listing 5-18. Contents View for the Mail Template

public class MailView extends ViewPart {

Vs
* Eclipse forms support

*/

private FormToolkit toolkit;
private Form form;

// Unique ID of this view
public static final String ID = "Mail.view";

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK

// Form header icon: getImageDescriptor is defined

// in the Activator plugin class

private final ImageDescriptor FORM ICON = Activator
.getImageDescriptor("icons/sample3.gif");

Vioio
* Create the SWT controls for this workbench part
*/
public void createPartControl(Composite parent) {
// Create a Form API toolkit
toolkit = new FormToolkit(parent.getDisplay());

Vak
* Create a form widget in the provided parent. Note that this

* widget does not scroll its content. If you require scrolling,
* use 'createScrolledForm' instead

*/

form = toolkit.createForm(parent);

form.setText("user@aol.com");

form.setImage(FORM ICON.createImage());

// Takes advantage of the gradients and other capabilities
// to decorate the form heading
toolkit.decorateFormHeading(form);

// Flat look
toolkit.paintBordersFor(form.getBody());

// Add a 1 column layout to the scrolled form contents
TableWraplLayout layout = new TableWraplLayout();
layout.numColumns = 1;

form.getBody().setLayout(layout);

// Form toolbar
createToolBar();

Composite body = form.getBody();

// Message subject label
toolkit.createlLabel(body, "Subject:");

// Subject text
toolkit.createlabel(body,
"This is a message about the cool Eclipse RCP!");
// Sender label
toolkit.createlLabel(body, "From:");

135

136 CHAPTER 5 FORMS APl AND PRESENTATION FRAMEWORK

// Sender text as hyperlink with listener
Hyperlink link = toolkit.createHyperlink(body, "user@aol.com",
SWT.WRAP) ;

link.addHyperlinkListener(new HyperlinkAdapter() {
@0verride
public void linkActivated(
org.eclipse.ui.forms.events.HyperlinkEvent e) {
MessageDialog.openInformation(getSite().getShell(),
"Not Implemented",
"Open the address book or a new message being created.");

}
};

// Date
toolkit.createlabel(body, "Date:");
toolkit.createlLabel(body, new Date().toString());

// Text widget with sample message
Text text = new Text(body, SWT.MULTI | SWT.WRAP);
text.setText("This RCP Application was generated from the PDE
+ "Plug-in Project wizard. This sample shows how to:\n"
- add a top-level menu and toolbar with actions\n"
- add key bindings to actions\n"
- create views that can't be closed and\n"
multiple instances of the same view\n"
- perspectives with placeholders for new views\n"
"- use the default about dialog\n"
- create a product definition\n");

n

+ o+ + o+ o+ + o+

text.setlayoutData(new TableWrapData(TableWrapData.FILL GRAB));
}

Vioio
* Create a form toolbar
*/
private void createToolBar() {
// Toolbar icons
ImageDescriptor TB_ICON 1 = Activator
.getImageDescriptor("icons/closel6.png");

// Action #1: Hide view
Action toolBtnl = new Action() {
public void run() {
MailView.this.getViewSite().getPage().hideView(
MailView.this);

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK

}
¥
toolBtnl.setToolTipText("Hide this View");
toolBtni.setText("Hide this View");
toolBtnl.setImageDescriptor(TB_ICON 1);

// Add toolbar actions
form.getToolBarManager().add(toolBtn1);
form.getToolBarManager().add(new Separator());

form.getToolBarManager().update(true);

// Sets the toolbar vertical alignment relative to the header.
// Can be useful when there is more free space at the second row
form.setToolBarVerticalAlignment (SWT.LEFT);

}

public void setFocus() {
form.setFocus();

}

Jkk

* Form message handling
*

* @param text

* Message to display

* @param type

* One of IMessageProvider.ERROR, NONE, WRNING, INFORMATION
*/

@SuppressWarnings("unused")

private void setFormMessage(String text, int type) {
Vioio
* Adds a message hyperlink listener. Messages will be rendered as
* hyperlinks
*/
form.addMessageHyperlinkListener(new HyperlinkAdapter());
form.setMessage(text, type);

The view’s createPartControl () method creates a form using a one-column
TableWraplayout, with a subject, sender, date, and sample message text. It also calls
createToolBar() to fill the form toolbar with an action to hide the view. Note that the
form icons are created with the following method:

ImageDescriptor FORM _ICON = Activator.getImageDescriptor("icons/icon.gif")

137

138

CHAPTER 5 FORMS APl AND PRESENTATION FRAMEWORK

This is a static method in the plug-in activator class returning an image descriptor for
a file within the specified plug-in. Activator.getImageDescriptor () simply calls the parent
AbstractUIPlugin.imageDescriptorFromPlugin(PLUGIN ID, icon_path), where PLUGIN ID is the
unique ID of the mail plug-in.

The form has a toolbar for the custom actions, and all messages will be displayed as form
messages.

Figure 5-9 shows the revised Mail application. Compare it with the standard template,
shown earlier in Figure 5-6.

=1
@ B Mail RCP
<+ Navigator &4 user@aol.com
(SRS rme@this, com] Subject:
[#-= other@aolcom This is & message about the cool Eclipse RCP!
From:
user@aol.com
Date:

Sun Jul 27 10:25:02 EDT 2008

This RCP Application was generated from the PDE Plug-in Project wizard. This sample shows how to:
- add a top-level menu and toalbar with actions
- add kevbindings to actions
- create views that can't be dosed and
multiple instances of the same view
- perspectives with placehalders for new views
- use the default about dialog
- create a product definition

Figure 5-9. A web look for the RCP Mail template, created with the Forms API

Summary

This chapter covered the Eclipse Forms API. The following are the important points to keep
in mind:

¢ The Eclipse Forms API lets you spice up your application with a web look without using

an embedded browser.

* The Forms API provides custom widgets, layouts, and support classes to achieve the
web look.

¢ Forms are portable and expand the possibilities of the UI well beyond traditional SWT
controls.

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK

A Form object can be included in content areas such as views and editors.
The Forms API provides two new layout managers: TableWrapLayout and ColumnLayout.
* TableWraplayout positions controls in the composite using a two-pass HTML table.

e ColumnLayout arranges children of the parent in vertical columns. All the columns
are identical in size, and children are stretched horizontally to fill the column
width. ColumnLayout is useful for complex forms where the number of columns
changes depending on the width of the form.

The Forms API provides custom web-style controls, as well as multipage forms and
editors.

You can convert a view into a form within the createPartControl() method:

public void createPartControl(Composite parent) {
// Create a Form API toolkit
FormToolkit toolkit = new FormToolkit(parent.getDisplay());
ScrolledForm scrolledForm = toolkit.createScrolledForm(parent);

// Form title
scrolledForm.setText("Form Title");

}

Call toolkit.paintBordersFor(text.getParent()) to paint flat borders for widgets cre-
ated by the toolkit. Borders will not be painted if the global border style is SWT.BORDER.

Create form controls using FormToolkit.

e Forlabels, use toolkit.createlabel(scrolledForm.getBody(), "Label").

 For text boxes, use Text text = toolkit.createText(scrolledForm.getBody(), "",
SWT.FILL).

 For buttons, use Button b1 = toolkit.createButton(scrolledForm.getBody(),
"Check Box", SWT.CHECK).

You can control the look and feel of a form by using a custom toolbar, drop-down
menu, fonts, and gradient colors.

Add actions to the form toolbar with form.getToolBarManager().add(Action). Add
actions to the form drop-down menu with form.getMenuManager () .add(Action).

Form messages are presented with text between the title and the toolbar of

the heading. Set the form message with an indication of the message type with
form.setMessage(Text, MessageType). Messages can be rendered as static text or
hyperlinks.

Complex controls include text/image hyperlinks, expandable composites, sections,
and form text.

Create a hyperlink and listen for click events with the following:

Hyperlink link = toolkit.createHyperlink(scrolledForm.getBody()
, "Hyperlink.", SWT.WRAP);

139

140 CHAPTER 5 FORMS APl AND PRESENTATION FRAMEWORK

link.addHyperlinkListener(new HyperlinkAdapter() {
@0verride
public void linkActivated(HyperlinkEvent e) {
System.out.println(e);
}
1;

¢ The expandable composite control is capable of expanding or collapsing a single child
label composite. The composite renders a title that also acts as a hyperlink, and the left
and right arrow keys can be used to control the expansion state. Create an expandable
composite with a tree node style with the following:

ExpandableComposite ec = toolkit.createExpandableComposite(form.getBody()
, ExpandableComposite.TREE_NODE | ExpandableComposite.CLIENT INDENT);

ec.setText("Expandable Composite");

Label client = toolkit.createlabel(ec, "Label", SWT.WRAP);
ec.setClient(client);

¢ Asection is a variation of the expandable composite with an optional description
below the title. Sections provide for logical grouping of information and are often used
as basic building blocks in forms.

¢ The form text control is capable of rendering wrapped text, hyperlinks converted on
the fly from text that starts with http://, and formatted XML tags.

* When using formatted XML, the form text control requires the root element <form> to
be used.

e Child tags of <form> can be <p> for paragraphs and <1i> for lists.

e Child tags of <p> and <1i> can be for images, <a> for hyperlinks, for bold,

 for line breaks, for enclosed text, and <control> for custom controls.

¢ The form text control has limitations. It is not meant to replace the HTML browser. It
supports only a subset of HTML tags, and elements cannot be nested. If you need com-
plex formatting capabilities, use the SWT Browser widget instead of a form text control.

CHAPTER 6

Help Support

Eclipse provides a powerful help system that can be used to add documentation to your RCP
applications quickly and with minimal effort. The help system has the following characteristics:

¢ Browser-based presentation, with full HTML support
¢ Supported on all of the Eclipse platforms!

¢ Powerful built-in search capabilities

¢ Localization for additional languages

¢ Support for context help and a keyword index, provided the appropriate content files
are used

¢ Support for a web-based information center to host the documentation on the Internet

¢ Programmatic extension points for content producers to generate dynamic help,
including the table of contents, keyword index, and content, which can be useful for
document format conversion

The help system is a robust, feature-rich, and extensible component, which continues to
improve in terms of quality and features. It is the easiest and fastest way to add documentation
support to your RCP applications.

This chapter describes the steps required to enable help for your applications, including
configuring your products, adding help content, adding context help support, and custom-
izing the help system UI. You'll then put what you've learned into practice by building an
information center using the text of this chapter.

Configuring a Product to Use the Help System

Configuring your RCP product to use the help system is a two-step process:

e Add the required help system plug-in dependencies to the product.

¢ Update the code (the menu bar, for example) to display actions to start the help system.

Let’s look at each of these steps in detail.

1. Alist of all the platforms supported by release build 3.4.1 is available online at http://download.
eclipse.org/eclipse/downloads/drops/R-3.4.1-200809111700/index. php.

141

142 CHAPTER 6 HELP SUPPORT

Adding the Dependency Plug-ins

The help system requires several plug-ins. To add them to your product, open the product
editor (.product), click the Configuration tab, and go to the Plug-ins and Fragments section.
Choose to add the following plug-ins (see Figure 6-1):

e org.eclipse.help.appserver

e org.eclipse.help.base

e org.eclipse.help.ui

e org.eclipse.help.webapp
PR s
4+ Configuration OB E® —
Plug-ins and Frag: I [5]

List all the plug-ins =

Select a Plug-in:

“=arg.eclipse. core I —— Add...
=i org. eclipse, core org-ecipse.nelp

“J=org.ecipse.equ | <J-org.edlipse.help.appserver ridd Working Set...

“Jrorg.edipse.equ | <J=org.eclipse. help. appserver. source @I
“J=org.eclipse.equ “J=arg.eclipse.help.base

“J=org.edipse.equ | <J=org.eclipse.help.base.source Remave
“J=org. eclipse. help =J=org.eclipse.help.source

“=org.edipse.ifac | <=org.edipse.help.ui Remove Al

“Jorg.edipse.fac | 4= org.eclipse. help.ui.source

“J=org.ecipse.osgi | <=org.eclipse.help. webapp MNew Plug-in...
@’UFQ-ECEDSE-SWt «Jr=org.eclipse.help.webapp.source New Fragmento.
=i org.eclipse, swk

=J=arg.eclipse. i
“J=arg.eclipse. Ui

Al 21
[Include optional 4 | | _>|
Configuration File (%) oK I Cancel |
Aproduct canbe o re read by the
runkime upon startupere Ty T T T
lirz |macosx |solaris L2 winzz -

Overview lConFiguration Launching | Splash | Branding |

Figure 6-1. Adding the required help system plug-in through the product editor Configuration tab

To make sure you've added all the required dependencies, check “Include optional depen-
dencies when computing required plug-ins,” and then click Add Required Plug-ins. This will
ensure all required plug-ins are included. Missing dependencies will cause the help system to
fail at startup.

Updating the Menu Bar

The product should include actions to start the help system from the main menu. Listing 6-1
shows the changes required to the ActionBarAdvisor class from the plug-in product to add the
Eclipse factory actions for the help system. The actions are inserted by overriding the method
makeActions of the ActionBarAdvisor.

CHAPTER 6 HELP SUPPORT

Listing 6-1. ActionBarAdvisor with Factory Help Menus

public class ApplicationActionBarAdvisor extends ActionBarAdvisor {
/1 ...

// Help actions

private IWorkbenchAction showHelpAction;
private IWorkbenchAction searchHelpAction;
private IWorkbenchAction dynamicHelpAction;

// Override this method to insert global menu actions
protected void makeActions(final IWorkbenchWindow window) {
/...

// Help contents
showHelpAction = ActionFactory.HELP CONTENTS.create(window);
register(showHelpAction);

// Help search
searchHelpAction = ActionFactory.HELP SEARCH.create(window);
register(searchHelpAction);

// Dynamic help
dynamicHelpAction = ActionFactory.DYNAMIC HELP.create(window);
register(dynamicHelpAction);

protected void fillMenuBar(IMenuManager menuBar) {
/] ...

MenuManager helpMenu = new MenuManager("8Help",
IWorkbenchActionConstants.M HELP);

// Help menu options
helpMenu.add(showHelpAction);
helpMenu.add(searchHelpAction);
helpMenu.add(dynamicHelpAction);
helpMenu.add(new Separator());

/7 ...

143

144 CHAPTER 6 HELP SUPPORT

The class org.eclipse.ui.actions.ActionFactory gives access to standard actions pro-

vided by the workbench. The help system has three factory actions:

e HELP_CONTENTS: Opens the help contents in a separate window.

e HELP_SEARCH: Opens the help keyword search as a view within the product’s main

window.

e DYNAMIC HELP: Opens the dynamic help within a view. Dynamic help can change auto-
matically as the user selects a different UI widget. This happens without forcing the

user to press F1 again.

The Help menu actions and help view are shown in Figure 6-2.

%= RCP Product]

Filz | Help
J = (%) Help Conterts

& 17 Search
.. Dynamic Help

About RCP Produck

=10l x|

ject: This is a message about the cool Eclipse R

m: nicole@mail.org
{H 10034 am

T
[=

his RCP Application was generated from the PDE
lug-in Project wizard, This sample shows how to:

- add a top-level menu and toolbar with actions
- add keybindings ko actions
- create views that can't be closed and

multiple instances of the same view

- perspectives with placeholders for new views
- use the default about: dialog
- create a product definition

(D Help &2 =g
Bl e [N

% Search

b Search expression:

(]

b Search scope Default

*, Related Topics
Eﬂ] Eookmarks [Index

Figure 6-2. RCP Mail template showing the standard help actions and help view

Adding Help Content

You should create the help content for your product in its own plug-in project. Fortunately,
the Plug-in Project wizard already provides a startup template to build a basic table of con-

tents (TOC). Here is how:

1. From the Eclipse IDE main menu, select File » New » Project » Plug-in Project, and

then enter a project name (MailHelp, for example).

2. On the Plug-in Content page, uncheck the “Generate an activator” option (as the plug-
in will not contribute any code). Make sure the “This plug-in will make contributions to
the UI” option is checked, and the “Would you like to create a rich client application?”

option is set to No. Figure 6-3 shows these settings. Click Next.

3. On the Templates page, select “Plug-in with sample help content,” as shown in

Figure 6-4, and then click Next.

& New Plug-in Project 3

Plug-in Content

Enter the data required to generate the plug-in.

7~ Plug-in Properties

Plug-in ID: | MaiHelp

Plug-in Yersion: I 1.0.0

Plug-in Mame: I MailHelp Plug-in
Flug-in Provider: |

Execution Environment: IJavaSE-l i)

d En¥ironments |

I~ Plug-in Options

[~ Generate an activator, a Java class that controls the plug-in's life cycle

Bckivator: ImailheID.Activator
v This plug-in will make: contributions ko the: 1T
[~ Enable API Analysis

Rich Client Application
(Would wou like to create a rich client application?

(7) < Back |

Mexk = | Einish I

Cancel

Figure 6-3. Creating a help plug-in

& New Plug-in Project]

Templates

Select ane of the available templates to generate a fully-Functioning plug-in.

v Create a plug-in using one of the kemplates

Available Templates:

" Custom plug-in wizard

¥ Hella, World

¥ Hello, wWorld Command

“¥Plug-in with a multi-page editor

¥ Plug-in with a popup menu

“¥Plug-in with a property page

EPlug-in with a view

I Plug-in with an editor

¥ Plugrin with an incremental project builder
¥ Plug-in with sample help content

This wizard creates a plugin with a sample
skandalone or integrated kable of contents,

Extensions Used

* org.eclipse.help.toc

Mext = | Fi I

Cancel |

Figure 6-4. Choosing the template for a sample help plug-in

CHAPTER 6

HELP SUPPORT

145

146

CHAPTER 6 HELP SUPPORT

4. Finally, enter a label for the TOC, check Primary (which will generate a primary, or
main, table), and leave the Generate ‘Getting Started’ category option checked. Click
Finish.

Figure 6-5 shows the typical layout of a help plug-in. At the top, you see the plug-in
manifest (plugin.xml), and one or more TOC XML files, as well as an index file (index.xml).
The actual help contents (in HTML format) are created in the html folder.

=% MailHelp
[#-E4, JRE System Library [JavasE-1.6]
[#-=8, Plug-in Dependencies

(= html
[#-[= META-INF
Bl

2] tocgettingstarted. xml
""" |mb build. properties

""" |= indes.xml

""" 1 plugin.sml

""" 2 toceml

""" 2] tocgettingstarted. xml

Figure 6-5. Typical help content layout

Tip As a convenience, to reduce file size, the documentation files can be packed in a ZIP file called
doc.zip in the root folder of the plug-in. This is useful if the plug-in is not packed when deployed.

Help System Extension Points

The plug-in manifest defines the help system extension points. There are two main help exten-
sion points:

e org.eclipse.help.toc: In general, a plug-in that needs to provide online help will
define one or more TOC files.

e org.eclipse.help.index: This extension point defines the name of the index file that
contains a list of keywords and related topics of the help content.

Listing 6-2 shows a plug-in manifest with two TOC files—a primary (master) and a
secondary—as well as an index file.

Listing 6-2. Help System Extension Points (in plugin.xml)

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.2"?>
<plugin>
<extension
point="org.eclipse.help.toc">

CHAPTER 6 HELP SUPPORT

<toc
file="toc.xml"
primary="true">
</toc>
<toc
file="tocgettingstarted.xml">
</toc>
</extension>
<extension
point="org.eclipse.help.index">
<index
file="index.xml">
</index>
</extension>
</plugin>

The <toc> element in Listing 6-2 has the file and primary attributes. The file attribute
defines the name of the TOC file that contains the TOC or section for the plug-in online help.
The primary attribute specifies whether the TOC file is a primary TOC and meant to be the
master. A nonprimary TOC file is meant to be integrated into another TOC.

Other <toc> attributes include extradir and category. The extradir defines a relative
path to a directory containing additional documents. All documents in this directory, and
all subdirectories, will be indexed and accessible through the documentation search. The
category attribute defines a unique string used to group related sections together. For exam-
ple, chapter 6 would be the category for all of the sections in this chapter.

TOC File

A TOC file consists of a root <toc> element with a required label attribute. The topic attribute
provides a link to a documentation file, which is usually an HTML file. The TOC will be shown
as a hierarchical navigation tree within the help UI

The <topic> element is the basic element of a TOC file. Topics can be nested within
other topics. The most important attributes of a <topic> element are label, which provides a
required label for the topic element, and href, which specifies a link to a documentation file,
usually in HTML format.

Topics can act as containers for other topics, or they can specify an anchor ID that pro-
vides a point where other TOCs can embed their contents. Listing 6-3 shows two XML TOC
files (toc.xml and toc1.xml). The first TOC uses an anchor to define a point that will allow link-
ing other TOC files to this navigation.

Listing 6-3. Two XML TOC files (toc.xml and tocl.xml) Linked with an Anchor

<?xml version="1.0" encoding="UTF-8"?>
<INLS TYPE="org.eclipse.help.toc"?>

<toc label="Mail Help" topic="html/toc.html">
<topic label="Getting Started">
<anchor id="gettingstarted"/>

147

148

CHAPTER 6 HELP SUPPORT

</topic>
</toc>

<?xml version="1.0" encoding="UTF-8"?>
<?NLS TYPE="org.eclipse.help.toc"?>

<toc label="Getting Started" link to="toc.xml#igettingstarted">
<topic label="Welcome to RCP Mail" href="html/gettingstarted/maintopic.html">
<topic label="Mail" href="html/gettingstarted/subtopic.html" />
</topic>
<topic label="Mail User Interface">
<topic label="Main Window" href="html/gettingstarted/subtopic2.html" />
</topic>
</toc>

The <1ink> element allows embedding other TOC files into the parent, similar to the
<anchor> element. For example, the following XML includes the TOC file cho1toc.xml within
its parent:

<topic label="Chapter 1" >
<link toc="choiltoc.xml" />
</topic>

Index File

The index file is a keyword index for contributed help content in XML format. It contains a list
of keywords and related topics of the content. The XML fragment in Listing 6-4 shows a typical
index file.

Listing 6-4. An Index File (index.xml)

<index>
<entry keyword="Vehicle">
<topic href="inventory of wheel.html"/>
<entry keyword="Car"»>
<topic href="car.html"/>
</entry>
<entry keyword="Ship">
<topic href="ship.html"/>
</entry>
<entry keyword="Airplane">
<topic href="airplane.html" title="History of aviation"/>
<topic href="jet.html" title="Jet engine"/>
</entry>
</entry>

<entry keyword="Engine">
<entry keyword="Horse">
<topic href="horse.html"/>
</entry>
<entry keyword="Steamer">
<topic href="steamer.html"/>
</entry>
<entry keyword="Wankel engine">
<topic href="wankel.html"/>
</entry>
<entry keyword="Jet engine">
<topic href="jet.html"/>
</entry>
</entry>
<entry keyword="Electricity">
<topic href="electricity.html"/>
</entry>
</index>

CHAPTER 6

HELP SUPPORT

The index consists of a series of entries. Each entry may contain several links to help top-
ics associated with the keyword. An entry can also be a container for other entries (subentries)
to form a hierarchy of keywords. An entry can embed entries or topics simultaneously.

The <topic> element provides reference to help content related to the keyword using the
href attribute. To access a file in another plug-in, use the following syntax:

<topic label="External Topic" href="../plugin.id/html/other file.html"/>

The title attribute of a topic is used to name the link when multiple topics are contained
within an entry. Figure 6-6 shows the index contents displaying within the help view. When a
keyword is clicked, the topic contents (from href) will be displayed in the view. The view also

implements a powerful search interface.

@Help%l —|<:3 ¥ =8

= Index

Type in the word o find:

Go Ta:)
all Topics &7 search

*7, Related Topics Eﬂ] Biookmarks

Figure 6-6. Help view showing index contents

149

150 CHAPTER 6 HELP SUPPORT

Internationalization

The help system supports internationalization for TOC and index files. To do this, the XML
files must be translated, and the resulting copies must be placed under a directory named
nl/<language>/<country> or nl/<language> within the plug-in root directory. The <language>
and <country> are two-letter language and country locale codes.? For example, Spanish trans-
lations must be placed under nl/es. Figure 6-5, shown earlier in the chapter, includes the
folder layout for internationalization. Translated versions of the content documents should be
placed here as well.

Tip The locale search priority order goes as follows (from highest): n1/<language>/<country>,
nl/<language>, and then the root directory of the plug-in.

Adding Context Help Support

Context help information is provided when the user presses F1 while a specific widget is
active. Figure 6-7 shows an example of context help that appears when the user presses F1
while the mail view from the Mail template is active.

4 RCP Product il =10] x|
File Help
B me@t|| 55 Message 3 | =0 DHep 2 | o ¥ =0
#-(= otherg % .
Subject: This is a message about the cool Ecli | - Related Topics
From: npicole@mail.org
Date: 10:3tam = Mail User Interface
This RCP Application was generated from the The Mail Yiew context help description.
PDE Plug-in Project wizard, This sample shows See also;
how to: ee also!
- add a top-level menu and tloolbar with actions L Welcome
- add keybindings to actions r)
- create views that can't be closed and "] Qverview
multiple instances of the same view 15 Mail U1
- perspectives with placeholders For new views
- use the default about dialog » Dynamic Help
- create a product definition
Go To! g N
all Topics % search L[]l Bookmarks
| Ll = Index

Figure 6-7. Mail template showing context-sensitive help

2. 1SO language and country codes are available online at http://www.iso.ch/iso/en/prods-services/

1503166ma/02is0-3166-code-1lists/list-en1.html.

CHAPTER 6 HELP SUPPORT

Adding context-sensitive help to a product is a multistep process that can be a bit confus-
ing the first time. Assuming you have two separate plug-ins (product and help), the following
steps are required:

1. In the product plug-in, modify the UI classes to add a help context ID for a given
control.

2. In the help plug-in, create a context help file (contexts.xml) using a User Assistance
wizard (Context Help), and populate it with some help documentation.

3. Modify the plugin.xml file for the help plug-in to add the org.eclipse.help.contexts
extension point for the context help file you created.

Let’s take a closer look at each of these steps.

Product Plug-in Modifications

The first step is to set a help context ID on the UI controls. Listing 6-5 adds the context ID
Mail.viewer to the Mail view of the Mail template from the “Adding Help Content” section
earlier in this chapter.

Listing 6-5. Adding Context Help Support to a View

public class MailView extends ViewPart {

public static final String ID = "Mail.view";
private Composite top;

public void createPartControl(Composite parent) {
top = new Composite(parent, SWT.NONE);

PlatformUI.getWorkbench().getHelpSystem().setHelp(top, "Mail.viewer");

public void setFocus() {
if (top != null)
top.setFocus();

The help context ID of the view in Listing 6-5 should include the plug-in ID and a string
identifier by calling getHelpSystem().setHelp(top, "PLUG IN ID.CONTEXT ID").Otherwise, the
help topic may not be found at runtime. This is because a context ID is uniquely identified by
pluginID.contextID in memory.

151

152

CHAPTER 6 HELP SUPPORT

Help Plug-in Modifications

Within the help plug-in project, you need to add a context help file and also add the extension
point org.eclipse.help.contexts to the plugin.xml file.

Creating the Context Help File

Add a contexts.xml file to the help plug-in by selecting File » New » Other. On the Select a
Wizard page, expand User Assistance and select Context Help, as shown in Figure 6-8. Eclipse
provides a powerful editor for help context files, as shown in Figure 6-9.

_ioix

Select a wizard

Create a Context Help file

‘Wizards:

Itype filker text

; - package d
-5 Source Folder

-1 Java RunfDebug

ERESR T

H-(=- Person

[Plug-in Development
H = SN

H-(= Tasks
=

- F-E

(= Team Logical Model Example
== User Assistance
B Cheat Sheet

m

" [Help Table of Contents

El-[= Examples

== Example Creation Wizards

¢ Lend Readme File

(= dava hd|
7 = Back I Mext = I Einish | Cancel

Figure 6-8. Choosing the Context Help wizard
Listing 6-6 shows the structure of a contexts.xml file.

Listing 6-6. Structure of a Help Context File (contexts.xml)

<?xml version="1.0” encoding="UTF-8”?>
<contexts>
<context id="viewer” title="Mail User Interface”>
<description>Context from Help plugin</description>
<topic href="html/gettingstarted/subtopic2.html” label="Mail UI”/>
</context>
</contexts>

The id attribute is passed by the Eclipse Platform runtime to the help system to identify
the currently active context.

CHAPTER 6 HELP SUPPORT

1] Mailview java 12| contexts.xml &3 4+ MailHelp 1 4 Mail 1 =g
i» Context Help

Reqister this contesxt help file (7)

Context Help Context Details

Edit the structure of the context help file in this

Specify the help contesxt id:
section.

I wigwer
bype filker bext
Specify the context description that will be

= L;ﬂ c Add Context displayed to the user:
E,%_;—:‘) 1 Description: | Contesxt from Help plugin ;I
o Add Topic
[
Add Command
Override the default title by specifying one here:
Title: Mail User Interface

i— 0
Definition | Source |

Figure 6-9. Help context file editor

Caution The IDs in the manifest file must not contain the period character, since the IDs are uniquely
identified by pluginID.contextID.

Adding the Help Contexts Extension Point

The final step is to add the extension point org.eclipse.help.contexts to the help plug-in
manifest. Listing 6-7 shows an example.

Listing 6-7. The Help Contexts Extension Point (in plugin.xml)

<extension
point="org.eclipse.help.contexts">
<contexts
file="contexts.xml"
plugin="Mail">
</contexts>
</extension>

The file attribute defines the name of the manifest file that contains the context-sensitive
help for this plug-in. The plugin attribute defines the plug-in ID to which the context belongs.
In this case, the MailHelp plug-in will contribute context to the Mail plug-in.

153

154

CHAPTER 6 HELP SUPPORT

Figure 6-7, shown earlier, shows the final result of the modifications to the product and
help plug-ins.

Tip The article “Adding Help Support to a Rich Client Platform (RCP) Application,” available online at
http://www.eclipse.org/articles/article.php?file=Article-AddingHelpToRCP/index.html,
includes a tutorial that demonstrates adding help support to an RCP application.

Customizing the Help System

You can configure and brand the Eclipse help system to suit your product. Figure 6-10 shows
an example of a customized help system.

ol
Mail RCP Application

Search: l:l m Search scope: All topics

Content (=~ | o ‘5 O G oo fy | % oe]l @ O

“Guaner | Welcome to RCP Mail

= [welcome to RCP Mail

Bl mai This RCP Application was generated from the PDE
= [Mail User Interface Plug-in Project wizard. This sample shows how to:
1= Main Window

+ add a top-level menn and toolbar with actions
+ add kevbindings to actions

s create views that can't be closed and multiple
instances of the same view

+ perspectives with placeholders for new views
¢ use the default about dialog

+ create a product definition

Figure 6-10. Customized help for the RCP Mail template

You can customize help by specifying custom defaults for a number of help preferences.
The help preferences are specified in the plugin _customization.ini file within the product
plug-in. Customizing the help system is a two-step process:

1. Add a property to the plug-in manifest with the plug-in customization file name
(plugin_customization.ini), as shown in Listing 6-8.

2. Add preferences to plugin _customization.ini to customize the help system, as shown
in Listing 6-9.

CHAPTER 6 HELP SUPPORT

Listing 6-8. Adding a Property with the Plug-in Customization File Name (in plugin.xml)

<extension
id="product"
point="org.eclipse.core.runtime.products">
<product
application="Mail.application”
name="RCP Product">
<property
name="preferenceCustomization"
value="plugin customization.ini">
</property>

</product>
</extension>

Listing 6-9. Adding Preferences to Customize the Help System (in plugin_customization.ini)

org.eclipse.help/HELP_DATA = helpData.xml
org.eclipse.help.base/help home = /MailHelp/html/toc.html
org.eclipse.help.base/banner = /MailHelp/html/banner.html
org.eclipse.help.base/banner height = 60

The HELP_DATA property in plugin_customization.ini allows you to control the order in
which contributed parts of the TOC are displayed for your product or to hide parts of the TOC
that some of your plug-ins contribute. The helpData.xml file shown in Listing 6-10 sets the
TOC display order to toc.xml, followed by toc1.xml. The file toctest.xml will be hidden (this is
useful for testing purposes).

Listing 6-10. Setting the TOC Display Order (in helpData.xml)

<extensions>
<tocOrder>
<toc id="/MailHelp/toc.xml"/>
<toc id="/MailHelp/toc1.xml"/>
</tocOrder>
<hidden>
<toc id="/MailHelp/toctest.xml"/>
</hidden>
</extensions>

155

156 CHAPTER 6 HELP SUPPORT

The following are other interesting properties that you can set in the plugin_customization.ini
file (Listing 6-9):

e org.eclipse.help.base/help home: Defines the page to show in the content area when
opening help. The format is /PLUGIN_ID/path/to/file.html.

e org.eclipse.help.base/banner: Defines the location of the banner page to display
in the top frame—for example, org.eclipse.help.base/banner = /MailHelp/html/
banner.html.

e org.eclipse.help.base/banner_height: Defines the height of the banner frame.

Now that we have reviewed the basics of providing help information for an RCP applica-
tion, let’s work through an example.

Hands-on Exercise: Create an Infocenter from
Custom Documentation

The goal of this exercise is to build a documentation server, known as an infocenter, from a set
of user-defined documents. The infocenter is meant to be an online documentation reposi-
tory. In this example, you will use the Word document for this chapter.

The following are the general steps to follow:

1. Split the source documentation into a set of topics in HTML/XHTML format.

2. Create two plug-ins: Content and Infocenter. You will build the Infocenter plug-in as
an RCP application to let Eclipse lay the foundation required to start the infocenter
from the command line.

. Add a TOC with references to the topics created in step 1.

3
4. Configure the plug-ins, including dependencies and extension points.
5. Deploy and start the Infocenter plug-in from the command line.

6

. Customize the Infocenter plug-in’s look and feel to fit your needs.

Splitting the Documentation into Topic HTML/XHTML Files

Depending on the format of the documentation, a word processor can be used to split this
chapter into HTML topic files. Each topic file will represent a section in this chapter. So, you
should split this chapter into five topic HTML files (not including this exercise):

¢ Configuring a Product to Use the Help System
¢ Adding Help Content

¢ Adding Context Help Support

¢ Customizing the Help System

CHAPTER 6 HELP SUPPORT

Save the files in a temporary folder. Later on, they will be added to the help content plug-in.

Tip In the real world, documentation writers would work with custom data formats such as DITA, a
popular XML-based architecture for authoring, producing, and delivering technical information.

USING CUSTOM HELP AUTHORING TOOLS

You can use third-party tools to generate Eclipse help from your source material (FrameMaker, Microsoft
Word, and so on). One such tool is DITA Open Toolkit (http://dita-ot.sourceforge.net/). DITA
provides content divided into small, self-contained topics that can be reused in different deliverables. Fur-
thermore, the extensibility of DITA permits organizations to define specific information structures and still use
standard tools to work with them. All these features enable DITA to support content reuse and reduce infor-
mation redundancy.

An example of a commercial authoring tool is Mif2Go (http://www.omsys.com/dcl/omni.htm),
which can produce Eclipse help from FrameMaker files.

For example, consider the following Unix script to generate a help plug-in from a set of DITA source files:

#!/bin/bash
B e]

Shell script to create Eclipse Help using DITA-0T1.4.2.1

Ak ARk Ak o ke Ak okt ok A Aok et Al ok sk ek o Ak ok ek o ke Ak ok At ok e Aok et sk ok Ak ke ek e ke Ak ok ek o ok
export ditaroot=/path/to/DITA TOOLKIT

export input=/path/to/dita/map

export output=/output/folder

ant -Dtranstype=eclipsehelp
-Ddita.dir=$ditaroot
-Dargs.input=$input
-Doutput.dir=$output -f $ditaroot/conductor.xml

Creating the Help Contents Plug-in

The Content plug-in will contain the help documentation and TOC files. Use the Plug-in
Project wizard to create it. Give it an ID like ch06.help.content. On the Plug-in Content page,
uncheck the “Generate an activator” and “This plug-in will make contributions to the UT”
options, and set “Would you like to create a rich client application?” to No. Figure 6-11 shows
these settings.

157

158

CHAPTER 6 HELP SUPPORT

Plug-in Content s
Enter the data required to generate the plug-in.

Plug-in Properties

Plug-in 1D: [chOG.heIp.content
Plug-in Wersion: [1.0.0

Plug-in Provider: [

l
|
Plug-in Mame: [Content Plug-in l
|
y

Execution Environment: |JavaSE-1.6 = | |Engironments..

Plug-in Options

[] Generate an activator, a Java class that controls the plug-in's life cycle

[71 This plug-in will make contributions to the LI
[Enable API Analysis

Rich Client Application

Would you like to create a rich client application?) Yes @ Mo

@ | < Back ” Next > H Finish || Cancel |

Figure 6-11. Creating the Content plug-in

Creating the Infocenter Plug-in

The Infocenter plug-in will be an RCP application used to host the help contents and handle
the configuration required to resolve the help system dependencies. Again, use the Plug-in
Project wizard to create it, giving it an ID like ch06.infocenter, for example. On the Plug-in
Content page, check the “Generate an activator” and “This plug-in will make contributions to
the UI” options, and set “Would you like to create a rich client application?” to Yes. Figure 6-12
shows these settings. On the Templates page, select the first RCP template.

Tip The plug-in should be an RCP application so the PDE will create product and application extension
points (required by the product configuration file), even though the Infocenter plug-in itself will not have a Ul.

CHAPTER 6 HELP SUPPORT

Plug-in Content p— l .
Enter the data required to generate the plug-in.

Plug-in Properties

Plug-in 1D: [chOG.Infocenter |
Plug-in Wersion: [1.0.0 ‘
Plug-in Mame: [Infocenter Plug-in |

Plug-in Provider: [

Execution Environment: | JavaSE-1.6 2 | | Environments...

Plug-in Options

Generate an activator, a Java class that controls the plug-in's life cycle

Activator: |ch0&.infocenter.Activator

This plug-in will make contributions to the LI
[Enable API Analysis

Rich Client Application

Would you like to create a rich client application? @ Yes (0 No

@ < Back Cancel

Figure 6-12. Creating the Infocenter plug-in

You will be presented with the plug-in manifest editor. Now you can proceed to add a
product configuration file.

Adding a Product Configuration File to the Infocenter Plug-in

The product configuration (.product) file is used to build a product around the Infocenter
and Content plug-ins. The product will include all of the files necessary to start the Infocenter
plug-in from the command line.

To create the product configuration file, from the project navigator, right-click the
Infocenter folder, and then select New » Product Configuration. Enter a file name for the
product, such as InfoCenter.product. In the “Initialize the file content” section, select to
“Use an existing product” and choose ch06.Infocenter.product. Figure 6-13 shows these
settings.

159

160

CHAPTER 6 HELP SUPPORT

Product Configuration

Create a new product configuration and initialize its content. J

Enter or selact the parent folder:

[chOG.Infocenter]

&
b 1= chos.help.content

File name: |InfoCenter.product]

Initialize the file content

() Create a configuration file with basic settings

@ Use an existing product: | choé.Infocenter.product <

) Use a launch configuration:

[Finish H Cancel |

Figure 6-13. Creating a product configuration for the Infocenter plug-in

The product editor will open, showing the product information. Close this file and pro-
ceed to add a TOC to the Content plug-in.

Adding a TOC to the Help Contents Plug-in

As you've learned, the TOC is an XML file that maps a series of topic names to their respective
HTML content files. To create a TOC file, from the project navigator view, follow these steps:

1. Right-click the help content folder (cho6.help.content) and select New » File » Other.

2. On the Select a Wizard page, expand User Assistance and select Help Table of Con-
tents. Then click Next.

3. Enter a file name for the TOC (toc.xml), as shown in Figure 6-14, and then click Finish.

4, Open the TOC file. It will be displayed in the PDE TOC editor, where you can use
an intuitive Ul to add topics that point to the documentation files, as shown in
Figure 6-15. Each topic is described by a label and a content file. Topics can be
nested within other topics.

Table of contents

Create & new table of contents.

Enter or select the parent folder:

CHAPTER 6

{;d:)@j

[chDS.heIp.content

]

o
v B choé help.content

b = chos.infocenter

File name: [toc.xml

@ [< Back “ Mext = H Finish

| =

Figure 6-14. Creating a TOC XML file using the wizard

HELP SUPPORT

&l InfoCenter.product (@ ch06 Infocenter (@ ch06.help.content [tocxml &8

= =

Chapter 6

Table of Contents

o]

Edit the structure of this table of contents in the following
section.

type filter text

Help System Benefits
Product Configuration
Adding Help Content

Add Link

Adding Context Help Support

Customizing the Help System

Definition Source|

Reqister this table of contents ()

Book Details
Specify the display name of this table of contents:

Mame* Chapter &

Specify an anchor to embed this table of contents into
another table of contents:

Anchor:

Specify the location of an HTML file to provide content:

Location: htmljchosjoverviewhtml

Figure 6-15. TOC file displayed within the PDE editor

161

162

CHAPTER 6 HELP SUPPORT

5. Add a TOC extension point to the plug-in manifest. You can use the editor to add the
org.eclipse.help.toc extension point with a child <toc> element, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.2"?>

<plugin>
<extension
point="org.eclipse.help.toc">
<toc
file="toc.xml"
primary="true">
</toc>
</extension>
</plugin>

The TOC file should be set as primary.

6. In the plug-in manifest editor, click the Build tab. Under Binary Build, include toc.xml
and the html content directories. This is required in order to pack the table and help
content files for deployment.

Caution I you fail to add toc.xml and help.content in the Binary Build section of the plug-in mani-
fest, the TOC will not display when the Infocenter plug-in is deployed.

Adding a Help Menu to the Infocenter Plug-in

Adding a Help menu to the Infocenter plug-in is an optional step, but it’s very helpful to
make sure everything works as desired. Because the Infocenter plug-in is an RCP applica-
tion, you can add a Help menu with the help system factory actions. To do so, modify the
ApplicationActionBarAdvisor class to add the factory Help menu as shown in Listing 6-11.

Listing 6-11. ActionBarAdvisor with Help Menu Options

public class ApplicationActionBarAdvisor extends ActionBarAdvisor {
// Help actions
private IWorkbenchAction showHelpAction;
private IWorkbenchAction searchHelpAction;
private IWorkbenchAction dynamicHelpAction;

public ApplicationActionBarAdvisor(IActionBarConfigurer configurer) {
super(configurer);

}

protected void makeActions(IWorkbenchWindow window) {
// Help contents
showHelpAction = ActionFactory.HELP_CONTENTS.create(window);
register(showHelpAction);

CHAPTER 6 HELP SUPPORT

// Help search
searchHelpAction = ActionFactory.HELP SEARCH.create(window);
register(searchHelpAction);

// Dynamic help
dynamicHelpAction = ActionFactory.DYNAMIC HELP.create(window);
register(dynamicHelpAction);

}

protected void fillMenuBar(IMenuManager menuBar) {
MenuManager helpMenu = new MenuManager("8Help",
IWorkbenchActionConstants.M HELP);

// Help menu options
helpMenu.add(showHelpAction);
helpMenu.add(searchHelpAction);
helpMenu.add(dynamicHelpAction);
helpMenu.add(new Separator());

menuBar.add(helpMenu);

Make sure the help system plug-in dependencies are included in plugin.xml. They are
required to start the help system. Open the plug-in manifest editor, and under the Dependen-
cies tab, add the following:

e org.eclipse.help.ui

e org.eclipse.help.webapp

Adding Help System Dependencies to the Product Configuration

The final step is to add all the required dependencies to the product configuration. If you don’t
do this, the product will fail to start.

Open the product configuration file (Infocenter.product), and click the Configuration
tab, as shown in Figure 6-16. Make sure the “Include optional dependencies when computing
required plug-ins” option is checked. Add the following plug-ins:

e ch06.help.content

e org.eclipse.help.base

e org.eclipse.help.appserver
e org.eclipse.help.ui

e org.eclipse.help.webapp

163

164 CHAPTER 6 HELP SUPPORT

B toc.xml =l 53

§ Configuration

Plug-ins and Fragments
List all the plug-ins and fragments that constitute the product.

4 ch06.help.content

<= cho6 Infocenter

<= com.ibm.icu

4= org.eclipse.core commands

<= org.eclipse.core contenttype

<= org.eclipse.core databinding

<= org eclipse.core expressions

= org eclipse.core jobs

<= org.eclipse.core runtime

== org.eclipse.core runtime.compatibility.registry
<= org.eclipse.equinox.app

<= org.eclipse.equinox.common
= org eclipse .equinox.preferences
<= org.eclipse.equinox.registry

<= org.eclipse.help

<= org eclipse jface

e mrn aclinea ifara datashindina

[Include optional dependencies when computing required plug-ins

Configuration File

(<]

| Add Working Set... |
|Add Required Plug-\ns|
| Rermove |

| Rermove All |

| MNew Plug-in... |

| Mew Fragment... |

Total: 22

A product can be configured by setting properties in a config.ini file. These properties are read by the runtime upon

startup and customization can vary per platform.
L& linux| macosx| solaris| win32

@ Generate a default config.ini file

() Use an existing config.ini file

File:

Overview | Configuration | Launching | Splash | Branding

Figure 6-16. Infocenter product configuration showing plug-in dependencies

Click the Add Required Plug-ins button. The dependencies list should now include all of

the required plug-ins.

Caution Missing dependencies can be a major headache for developers. This is actually the most

common error in RCP application development.

Testing the Infocenter Plug-in

To test the Infocenter plug-in, open the product configuration (Infocenter.product) file.
In the Overview tab, click Synchronize, and then click Launch Eclipse application to run the
application. Then from the Help menu, select Help Contents. The Help window should open

and display the TOCs.

If the Help window fails to appear, it is probably due to missing plug-in dependencies.
The next fragment shows the full dependency list from Infocenter.product.

CHAPTER 6

<?xml version="1.0" encoding="UTF-8"?>
<?pde version="3.4"?>

<product name="Hello RCP" id="cho06.Infocenter.product"

application="cho6.Infocenter.application"” version="1.0.0" useFeatures="false">

<configIni use="default">

</configIni>

<plugins>
<plugin
<plugin
<plugin
<plugin
<plugin
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.
<plugin id="org.

<plugin

id="cho6.Infocenter"/>
id="cho6.help.content"/>
id="com.ibm.icu"/>
id="javax.servlet"/>
id="javax.servlet.jsp"/>

id="org.

apache.ant"/>

apache.commons.el"/>
apache.commons.logging"/>
apache.jasper"/>
apache.lucene"/>
apache.lucene.analysis"/>
ant.core"/>

eclipse.
eclipse.
eclipse.
eclipse.
eclipse.
eclipse.
eclipse.
eclipse.
eclipse.
eclipse.
eclipse.
eclipse.
eclipse.
eclipse.
eclipse.
eclipse.
eclipse.
eclipse.
eclipse.
eclipse.
eclipse.
eclipse.
eclipse.
eclipse.

core.
core.
core.
core.
core.
core.
core.
core.
core.

commands"/>

contenttype"/>

databinding"/>

expressions"/>

jobs"/>

runtime"/>
runtime.compatibility.auth"/>

runtime.compatibility.registry" fragment="true"/>

variables"/>

equinox.app"/>
equinox.common"/>
equinox.http.jetty"/>
equinox.http.registry"/>
equinox.http.servlet"/>
equinox.jsp.jasper"/>
equinox.jsp.jasper.registry"/>
equinox.preferences"/>
equinox.registry"/>

help"/>

help.
help.
help.
help.

appserver"/>
base"/>
ui"/>
webapp"/>

HELP SUPPORT

165

166

CHAPTER 6 HELP SUPPORT

<plugin id="org.eclipse.jface"/>
<plugin id="org.eclipse.jface.databinding"/>
<plugin id="org.eclipse.osgi"/>
<plugin id="org.eclipse.osgi.services"/>
<plugin id="org.eclipse.swt"/>
<plugin id="org.eclipse.swt.gtk.linux.x86" fragment="true"/>
<plugin id="org.eclipse.ui"/>
<plugin id="org.eclipse.ui.forms"/>
<plugin id="org.eclipse.ui.workbench"/>
<plugin id="org.mortbay.jetty"/>
</plugins>
</product>

If the TOC fails to display, it probably means that you have not included the required
extension points in plugin.xml for the cho6.help.contents project. Also, review the
MANIFEST.MF file and make sure it points to toc.xml. Keep in mind that the TOC must be
set to primary.

Deploying the Infocenter Plug-in

Deploying the Infocenter plug-in requires the Eclipse delta pack (for multiplatforms), which is
not included in the default Eclipse download. To deploy the plug-in, follow these steps:

1. Install the delta pack from the Eclipse downloads site, if you have not done so already
(see Chapter 3 for details on installing and downloading the delta pack).

2. Open the product configuration (Infocenter.product) file.

3. Click Eclipse Product export wizard to start the deployment wizard. Enter a destination
directory, click Export for multiple platforms, and then click Next.

4. Select your target operating system, and then click Finish.

5. Inspect the destination folder for an Eclipse executable, as well as the plug-ins and
features folders.

You can test the Infocenter RCP application by double-clicking the Eclipse binary and
opening the Help menu. However, the Infocenter plug-in is meant to be started from the com-
mand line and accessed from a web browser.

Tip If the TOC fails to display from the Help menu, that is probably because you forgot to add the help
content files in the Build tab of the plug-in manifest editor for cho6.help.content.

Starting the Infocenter from the Command Line

Listing 6-11 is a shell script that starts the Infocenter plug-in from the command line. The
script runs the help system class org.eclipse.help.standalone.Infocenter on port 8080. The

CHAPTER 6 HELP SUPPORT

version of your Eclipse help system JAR file (org.eclipse.help.base 3.3.100.v20080617.jar)
may be different, depending on your installation

Listing 6-11. Script to Start Infocenter from the Command Line

#!/bin/bash

Eclipse Home is required
ehome=${ECLIPSE_HOME : - $HOME/Documents/InfoCenterApp/eclipse}

if [-z $ehome] ; then
echo "ECLIPSE_HOME is required"
exit -1

fi

java -classpath $ehome/plugins/org.eclipse.help.base 3.3.100.v20080617.jar \
org.eclipse.help.standalone.Infocenter \
-eclipsehome $ehome \
-port 8080 \
-data $ehome/workspace \
-configuration $ehome/configuration \
-debug -consolelog -clean \
-command start

The output of Listing 6-11 is as follows:

Debugging is on.
Lock obtained.
isApplicationRunning? false
Using workspace /home/vladimirs/Documents/linux.gtk.x86/eclipse/workspace
Ensured old .connection file is deleted. Launching Eclipse.
isApplicationRunning? false
Launch command 1is:
/home/vladimirs/Documents/linux.gtk.x86/eclipse/eclipse
-vm
/usr/1lib/jvm/jdk1.6.0 06/jre/bin/java
-nosplash
-application
org.eclipse.help.base.infocenterApplication
-data
/home/vladimirs/Documents/linux.gtk.x86/eclipse/workspace
-configuration
/home/vladimirs/Documents/linux.gtk.x86/eclipse/configuration
-debug
-consolelog
-clean
-vmargs
-Dserver_port=8080

167

168

CHAPTER 6 HELP SUPPORT

Configuration location:
file:/home/vladimirs/Documents/linux.gtk.x86/eclipse/configuration/

Configuration file:
file:/home/vladimirs/Documents/linux.gtk.x86/eclipse/configuration/config.ini

Install location:
file:/home/vladimirs/Documents/linux.gtk.x86/eclipse/

Framework located:
file:/home/vladimirs/Documents/linux.gtk.x86/eclipse/plugins/

org.eclipse.osgi 3.4.0.v20080605-1900.jar

Framework classpath:

file:/home/vladimirs/Documents/linux.gtk.x86/eclipse/plugins/
org.eclipse.osgi 3.4.0.v20080605-1900.jar

isApplicationRunning? false

Debug options:
file:/home/vladimirs/Documents/linux.gtk.x86/eclipse/.options not found

isApplicationRunning? false

isApplicationRunning? false

Time to load bundles: 267

isApplicationRunning? false

isApplicationRunning? false

Starting application: 1193

isApplicationRunning? false

isApplicationRunning? true

Eclipse launched

Lock released.

To access the Infocenter plug-in, open a browser to http://localhost:8080/help/index. jsp.

Customizing the Infocenter

The Infocenter can be customized to fit the needs of your organization. For example, you
might add a banner to the main web page or specify a configuration XML file to set the order-
ing of multiple TOCs. As explained earlier in the chapter, you can customize a plug-in’s help
system by adding a plugin_customization.ini file with custom help system properties.

For this example, customize the Infocenter plug-in as follows:

1. Right-click the Infocenter plug-in and select New » File. Name the file
plugin customization.ini.

2. Open the Infocenter plug-in manifest editor. On the Extensions tab, expand
org.eclipse.core.runtime.products.

3. Right-click the RCP product name and select New » Property.

4. Set the name of the property to preferenceCustomization and the value to
plugin customization.ini.

CHAPTER 6 HELP SUPPORT 169

5. Add custom help system properties to plugin_customization.ini. The following prop-
erties will add a custom banner to the main page, set the banner height to 60 pixels,
and set the main contents page to the chapter overview.

org.eclipse.help.base/banner = /ch06.help.content/html/banner.html
org.eclipse.help.base/banner height = 60
org.eclipse.help.base/help home = /cho6.help.content/html/cho6/overview.html

Note Be sure to add plugin_customization.ini to the Binary Build list of the plug-in manifest editor’s
Build tab. Otherwise, the customizations won’t take effect when you deploy the Infocenter plug-in.

6. Test the customization by redeploying the Infocenter RCP project, restarting the
startup script (Listing 6-11), and opening a browser to http://localhost:8080/help/
index. jsp. The results should look something like Figure 6-17.

/2 Help - Hello RCP - Windows Internet Explorer f N [=] S|
@A - Ié‘ httn:,i,l’lZIU.D.l:33?4ihelp,l’|nde><.]sp?tup\c=ich06.help‘chtentihtmI,l’chDﬁJ‘topch‘rj | X IGoogIE P
J File Edit ‘iew Favorites Tools Help J @ -
WF 4 @Heb - Helo ReP | | J - B - oo e [G @ e
Chapter 6 Banner

Search: E Search scope: Al topics

Contents =S-|B & A G fi @ el @A
Chapter 6 Chapter & » =

- adensriep Conten: Configuring a Product to Use the Help System

[adding Context Help Suppart

B Customizing the Help System
Configuring vour RCP product to use the help svstem is a two step process: add the

required help svstem plug-in dependencies to the product; and update the code (the
memu bar for example) to displav actions to start the help.

Adding the Dependency Plug-ins

To add dependency plug-ins. open the product configuration editor { product) and add
the following phig-ins under Plig-ins and Fragments of the Configuration tab (see
Figure 6.1):

* org.eclipse help. appserver

* org.eclipse help base

* org.eclipse help.w

* org.eclipse help webapp

3, ¢ aption L " Bquired piug-

This will ensure all required plug =sing

Al B
e [lw [d pen i A o s :
hittp:if127.0,0.1:3374/helpftopicjch0s. help, content/htmifchas topic2 html T [3] mntermnst [®10w -~

-

Figure 6-17. Infocenter displayed within a web browser

170

CHAPTER 6 HELP SUPPORT

Summary

This chapter explained how to add help support to your RCP applications. The following are
the important points to keep in mind:

The Eclipse help system offers a powerful and easy way to add documentation with full
HTML support to your RCP applications.

The help system includes functionality such as built-in search facilities, localization for
additional languages, context help, a keyword index, and a web-based infocenter.

The help system provides programmatic extension points for content producers to
generate dynamic help, including TOCs, keyword indexes, and content.

The help system uses its own help server to provide web pages from within your docu-
mentation plug-in. A help server allows your RCP application to handle a wide variety
of web browsers in a browser-independent way, while also providing plug-in-aware
support.

The Eclipse Platform’s help server allows the documentation to also be packaged in a
Z1P file called doc.zip, in the plug-in root directory, maintaining the directory structure
underneath.

Configuring your RCP product to use the help system requires adding help system
plug-in dependencies to the product and code updates to start the help.

The help dependency plug-ins include org.eclipse.help.appserver, org.eclipse.
help.appserver, org.eclipse.help.base, org.eclipse.help.ui, and org.eclipse.help.
webapp.

Code changes include updates to ActionBarAdvisor to add the Eclipse factory actions
for the help system.

The factory help actions include HELP_CONTENTS to open the help window, HELP_SEARCH
to open the keyword search as a view, and DYNAMIC_HELP for dynamic help within a view.

The help content for the product should be created in its own plug-in project.

The help system extension points are TOC (org.eclipse.help.toc) and index file
(org.eclipse.help.index).

The TOC is an XML file with a set of child topic elements.

¢ Topic is the basic element of the TOC. It defines a label and a link (href) to a docu-
mentation file in HTML format.

* Topics may have anchors, which act as containers for other topics and provide a
point where other TOCs can embed their contents.

» Topics may also have links, which allow embedding other TOC files into the parent.

The index file is a keyword index for contributed help content in XML format. It con-
tains a list of keywords and related topics of the content.

Context help is provided when a user requests context-sensitive help by pressing F1
when a widget is active.

CHAPTER 6 HELP SUPPORT 1

¢ Adding context help requires making changes to the UI classes to add a help context ID
for a given control, creating a help context XML file with documentation, and adding
the extension point org.eclipse.help.contexts to plugin.xml.

* The Eclipse help system can be configured and branded to suit your product by speci-
fying custom defaults for a number of help preferences.

e To customize the help system, add custom properties to plugin customization.ini
within the product.

* Some custom properties include HELP_DATA, help home, banner, and banner_height.

e The HELP_DATA property allows you to control the order in which contributed parts
of the TOC are displayed for your product or to hide parts of the TOC.

CHAPTER 7

2D Graphics with GEF and Zest

The Eclipse Graphical Editing Framework (GEF) is a powerful 2D graphics framework for
building rich GUIs. GEF provides a layer of abstraction for native 2D graphics on the Eclipse
Platform. Most of the operations provided by GEF can be extended by developers, thus reduc-
ing development time and maximizing reusability.

The 2D framework is made of two components (plug-ins): Draw2d, which provides a
layout and rendering toolkit for displaying 2D graphics, and GEF, which is an intuitive MVC
framework built on top of Draw2d. The MVC architecture separates the UI from the underly-
ing structure (model), so that implementation changes in one part of the application do not
require changes to another part. This means you can more easily prototype your work. For
example, you might create a prototype application, change the application in response to
user feedback, and then implement production-level programs on the same or other operat-
ing systems. Outside the work you do on the programs themselves, your only adjustments are
to the presentation layer, leaving the model layer intact. Along with ease of modification and
maintenance (due to the cleaner separation of tasks), the MVC architecture better supports
scalability for bigger applications.

This chapter covers Draw2d and GEF, as well as the Zest visualization toolkit for Eclipse,
which is designed to make graph-based programming easy. In the exercise at the end of the
chapter, you will build an advanced graph editor using GEF and Zest.

Draw2d—The Big Picture

Draw2d (also known as org.eclipse.draw2d) is a neat component that allows developers to
create all kinds of 2D graphs. These graphs are usually accompanied by a tools palette. Behind
the scenes, Draw2d provides the core interfaces for this purpose.

A fundamental concept in Draw2d is the figure. A figure is a low-footprint Java object (an
object that does not use any operating system resources). Here are some facts about figures:

Figures can have children.
Each figure, and its children, is painted within a bounding rectangle.
A layout manager can place figures within a bounding rectangle based on an index.

Figures can be connected with lines (and arrowheads) displayed above their drawing
surface. A connection always has a router (the connection line), and at least two points
on the connection: the source and target endpoints. The endpoints are anchored to a
specific figure.
173

174

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

Consider Figure 7-1, which shows a shapes graph from the GEF/Draw2d org.eclipse.
gef.examples.shapes plug-in, available from Eclipse. On the left side is a palette that offers two
shapes (Ellipse and Rectangle), which can be dragged to the canvas on the right and manipu-
lated as desired. We'll take a closer look at the org.eclipse.gef.examples.shapes plug-in in the
“Exploring the GEF Shapes Example” section, later in this chapter.

BB RCP Graph Editor i [S

File
<
2 Palette EX] = B || k@ *shapesExamplet shapes EX] = [ml
= 7
L 33
= Shapes 40
@ Elipse
M Rectangle

J=v

Figure 7-1. Shapes graph from the org.eclipse.gef.examples plug-in

Figures can be composed to create complex graphics. They are encapsulated by the
interface org.eclipse.draw2d.IFigure and must obey the following rules:

Use the SWT Graphics Context (GC): Figures must be painted using the GC for extended
functionality and to optimize performance. This makes perfect sense, since SWT is the

foundation that provides access to the native hardware. The GC encapsulates all of the

drawing AP], including how to draw lines shapes, text, images, and fill shapes.

Follow the layout manager’s layout process: Figures must follow a layout process that is
delegated to a layout manager. The layout is a top-down process done in two steps. In
the first step, a collection of figures (or images) is invalidated. In the second step, the
branches of figures that are invalid are validated. This process is performed by the layout
manager, which will call a validate() method for each figure. The figure then will mark
itself as valid and perform its layout. After this, the figure will validate its children.

Use the Draw2d coordinate system: Figures must obey a coordinate system used for adjust-
ments required when painting children, such as when panning or zooming a figure.
Draw2d defines two coordinate systems:

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

 In an absolute coordinate system, all figures paint in the same coordinates. It is
mostly used when determining the bounds of a parent based on the bounds of the
children.

e In arelative coordinate system, the bounds of children are relative to the client area
of their parent. When a figure with relative coordinates is moved, the children come
along automatically. It is mostly used when translating or moving a figure, or when
only the figure’s bounds must be updated, and the children should move as well.

The painting process of a figure can be overridden by the developer using the following
methods of the IFigure interface:

paint(): This starts the painting process by setting a set of graphics properties, includ-
ing the font, background, and foreground color. These properties are inherited by the
children.

paintFigure(): Using this method, the figure paints itself. This is an optional method,
as figures are not required to paint themselves. For example, you might use it to draw a
bounding rectangle filled with a background color.

paintClientArea(): This paints the client area where the figure appears. This method
applies changes, such as coordinate system modifications, to the children’s graphics.
This method also clips the graphics region where children will appear.

paintChildren(): This paints the children. This method does not override the inherited
graphics settings from the parent.

paintBorder(): This paints decorations that should appear on top of the children,
including the border if set on the figure.

To check for figure collisions, Draw2d performs hit festing. Hit testing is used to figure out
when figures overlap each other and perform appropriate actions. The IFigure interface pro-
vides the following methods for hit testing:

findFigureAt(x, y):Finds the topmost figure at x, y coordinates.
findFigureAt(Point p): Finds the topmost figure at Point p.

findFigureAtExcluding(int x, int y, Collection exclude): Finds the topmost figure
for the given coordinates that is not in the exclusion set or contained by a figure in the
exclusion set. This is used for ignoring a figure being dragged, or for ignoring transpar-
ent layers or figures that are not involved in an interaction.

findFigureAt(int x, int y, TreeSearch): All of the previous methods call this
method. TreeSearch is a helper that is used to quickly prune branches that should not
be searched, and to accept the final candidate figure.

Using GEF

GEF (refers to both Draw2d and GEF) is the MVC wrapper around Draw2d that ensures a clean
separation of the presentation from the model layer. While Draw2d focuses on efficient paint-
ing and layout of figures, GEF adds editing capabilities on top. It provides for the display of any

175

176 CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

model graphically using Draw2d figures, as well as for interactions with the mouse, keyboard,
and workbench. A GEF-enabled widget consists of the following components:!

Model: The model is any data that is persisted and has some sort of notification mecha-
nism. Commands are commonly used to modify the model in a way that can be undone
and redone by the user. As a rule of thumb, commands should work only on the model
itself.

View: The view consists of elements visible to the user, including figures and tree items.

Controller: The controller is responsible for maintaining the view, and for interpreting Ul
events and turning them into operations on the model. The controller is also called an
EditPart. The EditPart is responsible for editing using EditPolicies, which handle much of
the editing task.

Viewer: The viewer, also called the EditPartViewer, is where EditParts display their view.
GEF provides two types of viewers: a graphical viewer, which hosts figures, and a tree
viewer, which displays native tree items.

Displaying Figures
Displaying a graphical view of figures involves creating a series of EditParts to piece the model
and figures together. EditParts associate their view and model, but they also form their own
structure. An EditPart maintains children. Usually, this corresponds to a similar containment
found in the model.

A graphical view consists of one or more of the following EditParts:

Root EditPart: The root is not part of the model. Its purpose is to set up the viewer and
provide a uniform context for all of the application’s real EditParts.

Content EditPart: Content refers to the base model object that seeds the viewer with the
graphical diagram being displayed. The viewer’s EditPart factory is responsible for tak-
ing the contents and constructing the appropriate EditPart, which is then set on the root
EditPart. At that point, the content EditPart will construct its children, reusing the viewer’s
factory, which in turn creates their children and/or connections, and so on. The process
repeats until all of the EditParts and their views have been created.

Child EditPart: The children display information to the user, such as a figure or a com-
position of multiple figures. For example, a child may be a ShapeEditPart that creates
instances for E11ipticalShape or RectangularShape figures.

Connection EditPart: A connection simply connects any two EditParts in a diagram.

Exploring the GEF Shapes Example

Earlier, you saw a shapes graph from the GEF/Draw2d org.eclipse.gef.examples.shapes
plug-in (Figure 7-1). Now, let’s look at this plug-in in more detail. (To follow along with the

1. From GEF Programmer’s Guide, “Overview,” at http://help.eclipse.org/stable/index.jsp?topic=/
org.eclipse.draw2d.doc.isv/guide/guide.html.

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

discussion, download this plug-in from the Eclipse repository, following the instructions in
the “Downloading GEF Samples from the Eclipse Repository” section of the hands-on exercise

later in this chapter.)

The org.eclipse.gef.examples.shapes plug-in has the following major components:

Shapes EditPart factory: The role of this factory is to construct the appropriate EditPart
based on the model element.

Shape EditPart: This EditPart encapsulates common behavior for all shape EditParts.

Connection EditPart. This EditPart encapsulates connections between two shapes.

EditPolicies: These define the types of operations that can be performed on shapes, such
as copy, paste, and delete.

Palette factory: This factory creates an instance of the palette used by the application. It
contains tools to draw the shapes on the canvas.

Figures 7-2 and 7-3 show a UML class diagram depicting partial relationships between
the major shape EditParts of the sample. The model (or data of the sample) consists of two
shape classes: RectangularShape and EllipticalShape. These classes, in turn, inherit from the
abstract class Shape, which provides a prototype for the model.

100

200

200

= ENlipticalShape

400

2 getloon)
£ toStringl()

é@ ShapesClassDiagram.ucd &3 =g

['mA =2 EB-BE |« - - AN-g- o> B FA|S - Feer B

H ! 100] 200] 300] 400] 0]] Vi
< Shape

535 createlmage)

i addConnection)

if}\ getlcon()

3 getlocation()

{ii getPropertyDescriptors()
£ getPropertyValue()

£ getSize()

"ii getSourceConnections()
i oetTargetConnection=()
2 removeConnection()

- 3 setlocation()

£ setPropertyvalue()

3 setSize()

«hutoDetected, Abstraction » wAutoDetected, Abstraction »

= RectangularShape

£ getlooni)
£ toStringl()

Figure 7-2. Partial class diagram for the Shapes package of the org.eclipse.gef.examples plug-in

177

178

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

41 *{default package)Classbiagram.ucd &2

mABE-BE|e - - AR G- o >3 B-TFA| S-S -F -2y
¥ 7 ;

Lon 200 ! 00 ! A0 ! 200 !) ! 200 !) ! L

wooess, AuaDetested »
| ShapeComponentEditPolicy |= ShapesDiagram

afcoess, AutoDetected 5
& cresteDeleteCommanc()

i

shutoDetected »

- | Shape
! ShapeTreeEditPart
o 5 ShapeTreeEditPan()
™ & activate()
4 cresteEditPoliciest)
= ShapesEditPartFactory ClassDiagram (default package)ClassCiagram

- 3 deactivate()

&5 getCastedModel()
& oetimage)

£ oetTed()

& propertyChange)

6 cresteEditPart()
&3 getPartForElement()

00

=] ShapeEditPart

(= anchar

i)

@& activater)

;ﬂ. cresteEditPolicies) whccess, AutoDetected »

- & cresteFigurer) = RectangularShape A

@ createFigursFortiodel(1 QShapesT;eeEdi(Par...
&3 deactivate() «AutoDetected » | 1
3 getCastedMadel()

& wetConnectionfnchor()

% oetModelSourceConnections()

i oetModelTargetConnections() sMccess, AutoDetected »
ﬁ} getSourceConnectionanchar) Q Ellip(icalshape
ﬁ} getSourceConnectionanchar)

43 wetTargetConnectionAnchor()

@ get TargetConnectionAnchor)

- &3 propertyChange()

& refreshiisuals()

Eii

zinterface »

[GraphicalEditPart & createEdiPart()

&0

Figure 7-3. Partial class diagram for the EditParts package of the org.eclipse.gef.examples plug-in

The class ShapeEditPart is in charge of creating new instances of E1lipse or Rectangle
figures, depending on the type of model (RectangularShape or EllipticalShape). A factory
class, ShapesEditPartFactory, is used to map model elements (a diagram, shape, or connec-
tion) to their respective EditParts (DiagramEditPart, ShapeEditPart, or ConnectionEditPart).
ShapeEditPart and ShapeEditPartFactory have the corresponding ShapeTreeEditPart and
ShapeTreeEditPartFactory, which are used by in the outline view of the shapes editor to dis-
play information about the shape being created (such as a label and an icon).

Everything is finally put together by a wizard and shapes editor extension points (defined
in plug-in.xml), as shown in the next fragment.

<plugin>
<extension point="org.eclipse.ui.editors">

<editor name="GEF Shapes Example"
extensions="shapes"
icon="shapes.gif"
class="org.eclipse.gef.examples.shapes.ShapesEditor"
contributorClass="org.eclipse.gef.examples.shapes.

ShapesEditorActionBarContributor"
id="GEF Shapes Editor">
</editor>
</extension>

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

<extension point="org.eclipse.ui.newWizards">
<category name="Examples"
parentCategory="org.eclipse.ui.Examples"
id="org.eclipse.gef.examples"/>
<wizard name="Shapes Diagram"
icon="shapes.gif"
category="org.eclipse.ui.Examples/org.eclipse.gef.examples"
class="org.eclipse.gef.examples.shapes.ShapesCreationWizard"
id="org.eclipse.gef.examples.shapes.ShapesCreationhWizard">
<selection class="org.eclipse.core.resources.IResource"/>
</wizard>
</extension>
</plugin>

The first extension point defines the editor named GEF Shapes Example. The extensions
attribute specifies that files with the extension .shapes will be automatically opened with
this editor. Its implementation is defined by the class org.eclipse.gef.examples.shapes.
ShapesEditor, and it also contributes actions to a toolbar (defined by contributorClass). The
id attribute uniquely identifies the editor.

The wizard extension point is used to create a new shapes diagram from the File » New
main menu of the workbench or the context menu of the project, navigator, or package explorer
views (which are built-in workbench views). The wizard is grouped by the category Examples
and implemented by the class ShapesCreationWizard. The <selection> element indicates the
wizard is capable of selecting workbench resources such as files or directories. The id attribute
uniquely identifies this wizard.

The next sections explain some of the major components of this shapes editor, starting
with the Shapes EditPart factory.

Shapes EditPart Factory

The Shapes EditPart factory recognizes the contents model and constructs its EditPart. This
factory doesn’t need to paint, but you still need to choose the layout manager and the figure
type based on the root EditPart. Listing 7-1 shows an example of an EditPart factory for a
Shapes model.

Listing 7-1. EditPart Factory for a Shapes Model (from org.eclipse.gef.examples)
Vak

* Factory that maps model elements to EditParts.

*/

public class ShapestEditPartFactory implements EditPartFactory {

public EditPart createEditPart(EditPart context, Object modelElement) {
// Get EditPart for model element
EditPart part = getPartForElement(modelElement);
// Store model element in EditPart
part.setModel(modelElement);
return part;

179

180

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

/**
* Map an object to an EditPart.
*
* @throws RuntimeException
* if no match was found (programming error)
*/
private EditPart getPartForElement(Object modelElement) {
if (modelElement instanceof ShapesDiagram) {
return new DiagramEditPart();
}
if (modelElement instanceof Shape) {
return new ShapeEditPart();
}
if (modelElement instanceof Connection) {
return new ConnectionEditPart();
}
throw new RuntimeException("Can't create part for model element:
+ ((modelElement != null) ? modelElement.getClass()
.getName() : "null"));

"

The getPartForElement() constructs the appropriate EditPart—ShapesDiagram, Shape, or
Connection—based on the root EditPart object type.

Shape EditParts

As noted, the children’s role is to display some information to the user. They may use one of
the provided figures, a custom figure, or a composition of multiple figures.

When the viewer is populated, the refreshVisuals() method is called for each EditPart
to show the model’s properties in the view. EditParts must override this method based on the
model and figure with which they work. Listing 7-2 shows an example of a class to create rect-
angular or elliptical EditParts for a Shapes model factory.

Listing 7-2. Base Class to Create Rectangular or Elliptical Shape EditParts for the Shapes Model
Factory (from org.eclipse.gef.examples)

class ShapeEditPart extends AbstractGraphicalEditPart implements
PropertyChangelistener, NodeEditPart {

private ConnectionAnchor anchor;

Vak
* Upon activation, attach to the model element as a property change
* listener.

*/

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

public void activate() {
if (lisActive()) {
super.activate();
((ModelElement) getModel()).addPropertyChangelistener(this);

}

protected void createEditPolicies() {
// Allow removal of the associated model element
installEditPolicy(EditPolicy.COMPONENT_ROLE,
new ShapeComponentEditPolicy());

// Add EditPolicies here
// They allow the creation of connections and
// the reconnection of connections between Shape instances

}

protected IFigure createFigure() {
IFigure f = createFigureForModel();
f.setOpaque(true); // non-transparent figure
f.setBackgroundColor(ColorConstants.green);
return f;

}

/**
* Return an IFigure depending on the instance of the current model
* element. This allows this EditPart to be used for both subclasses of
* Shape.
*/
private IFigure createFigureForModel() {
if (getModel() instanceof EllipticalShape) {
return new Ellipse();
} else if (getModel() instanceof RectangularShape) {
return new RectangleFigure();
} else {
// If Shapes gets extended, the conditions above must be updated
throw new IllegalArgumentException();

}

J¥*

* Upon deactivation, detach from the model element as a property
* change listener.
*/

181

182 CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

public void deactivate() {
if (isActive()) {
super.deactivate();
((ModelElement) getModel()).removePropertyChangelistener(this);

}

private Shape getCastedModel() {
return (Shape) getModel();
}

protected ConnectionAnchor getConnectionAnchor() {
if (anchor == null) {
if (getModel() instanceof EllipticalShape)
anchor = new EllipseAnchor(getFigure());
else if (getModel() instanceof RectangularShape)
anchor = new ChopboxAnchor(getFigure());

else
// If Shapes gets extended, the conditions above must be
// updated
throw new IllegalArgumentException("unexpected model");
}
return anchor;
}
/*
* getModelSourceConnections()
*/

protected List getModelSourceConnections() {
return getCastedModel().getSourceConnections();

}

* Methods deleted for simplicity:getModelTargetConnections()
* getSourceConnectionAnchor

* getSourceConnectionAnchor (Request request)

* getTargetConnectionAnchor

* propertyChange(PropertyChangeEvent evt)

protected void refreshVisuals() {
Rectangle bounds = new Rectangle(getCastedModel().getLocation(),
getCastedModel().getSize());
((GraphicalkditPart) getParent()).setlLayoutConstraint(this,
getFigure(), bounds);

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

ShapeEditPart is the parent class used for Shape instances (E11ipticalShape or
RectangularShape in this example). Figure 7-4 shows sample elliptical and rectangular
shapes that inherit from ShapeEditPart.

I *shapesExamplel shapes 532 l = [ml

Figure 7-4. Custom edit view showing circle and rectangle EditParts

ShapeEditPart implements the PropertyChangelistener interface, so it can be notified of
property changes in the corresponding model element. Upon activation, the model element is
attached as a property change. The method refreshVisuals() is overridden to notify the par-
ent container of the changed position and location. Otherwise, the XYLayoutManager used by
the parent container will not know the bounds of this figure and will not draw it correctly.

Connection EditParts

Connections are special EditParts that connect any two EditParts in a diagram. The connec-
tions are created and managed in a shared way by the source and target nodes. Each node in
the diagram must override getModelSourceConnections() and getModelTargetConnections() to
return the model object representing the connection, as shown in Listing 7-3. GEF then checks
to see if the connection EditPart has already been created (by the other node at the other end),
and if not, it asks the factory to create the connection EditPart. The source node is responsible
for activating and adding the connection figure to the diagram.

Listing 7-3. Connection EditPart for the Shapes Model (from org.eclipse.gef.examples)

class ConnectionEditPart extends AbstractConnectionEditPart implements
PropertyChangelistener {

/¥
* Upon activation, attach to the model element as a property change

* listener.
*/

183

184 CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

public void activate() {
if (lisActive()) {
super.activate();
((ModelElement) getModel()).addPropertyChangelistener(this);

}

protected void createEditPolicies() {
// Selection handle edit policy.
// Makes the connection show a feedback, when selected by the user.
installEditPolicy(EditPolicy.CONNECTION ENDPOINTS ROLE,
new ConnectionEndpointEditPolicy());

// Allows the removal of the connection model element
installEditPolicy(EditPolicy.CONNECTION_ROLE,
new ConnectionEditPolicy() {
protected Command getDeleteCommand(GroupRequest request) {
return new ConnectionDeleteCommand(
getCastedModel());
}
1)
}

protected IFigure createFigure() {
PolylineConnection connection = (PolylineConnection) super
.createFigure();

// Arrow at target endpoint
connection.setTargetDecoration(new PolygonDecoration());

// Line drawing style
connection.setlineStyle(getCastedModel().getLineStyle());
return connection;

}

/**
* Upon deactivation, detach from the model element as a property
* change listener.
*/
public void deactivate() {
if (isActive()) {
super.deactivate();
((ModelElement) getModel()).removePropertyChangelistener(this);

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

private Connection getCastedModel() {
return (Connection) getModel();

}

public void propertyChange(PropertyChangeEvent event) {
String property = event.getPropertyName();
if (Connection.LINESTYLE_PROP.equals(property)) {
((PolylineConnection) getFigure())
.setLineStyle(getCastedModel().getLineStyle());

Adding EditPolicies

Editing is the most complex task for an EditPart and involves making changes to the model, as
well as showing graphical feedback during interactions with the view. Editing is done by creat-
ing requests and then calling the various API methods on EditPart based on the interaction.
Editing also involves the manipulation of EditPolicies and commands.

EditParts handle editing through EditPolicies. This allows editing behavior to be reused
across different implementations. Also, behavior can change dynamically, such as when the
layouts or routing methods change. Each EditPolicy is able to focus on a single editing task or
group of related tasks.

Commands are used to encapsulate and combine changes to the application’s model.
Commands are grouped and executed by applications in stacks, which dictate the order in
which commends are executed. Stacks process elements in a last-in/first-out (LIFO) sequence.

Listing 7-4 defines ConnectionCreateCommand.java, a command to create a connection
between two shapes. The command supports undo/redo and is designed to be used together
with a GraphicalNodeEditPolicy.

Listing 7-4. Command to Create Connections Between Shapes

public class ConnectionCreateCommand extends Command {
/** The connection instance. */
private Connection connection;
/** The desired line style for the connection (dashed or solid). */
private final int lineStyle;

/** Start endpoint for the connection. */
private final Shape source;

/** Target endpoint for the connection. */
private Shape target;

Vak
* Instantiate a command that can create a connection between two

* shapes.
*

185

186 CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

* @param source

* the source endpoint (a non-null Shape instance)

* @param lineStyle

* the desired line style. See Connection#tsetLineStyle(int)
* for details

* @throws IllegalArgumentException

* if source is null

* @see Connection#fsetLineStyle(int)

*/

public ConnectionCreateCommand(Shape source, int lineStyle) {
if (source == null) {
throw new IllegalArgumentException();
}
setLabel("connection creation");
this.source = source;
this.lineStyle = lineStyle;
}

public boolean canExecute() {
// Disallow source -> source connections
if (source.equals(target)) {
return false;
}
// Return false, if the source -> target connection exists already
for (Iterator iter = source.getSourceConnections().iterator(); iter
chasNext();) {
Connection conn = (Connection) iter.next();
if (conn.getTarget().equals(target)) {
return false;
}
}

return true;

}

public void execute() {
// Create a new connection between source and target
connection = new Connection(source, target);
// Use the supplied line style
connection.setlineStyle(lineStyle);

}

public void redo() {
connection.reconnect();

}

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

/%K

* Set the target endpoint for the connection.
*

* @param target

* that target endpoint (a non-null Shape instance)
* @throws IllegalArgumentException

* if target is null

*/

public void setTarget(Shape target) {
if (target == null) {
throw new IllegalArgumentException();
}
this.target = target;
}

public void undo() {
connection.disconnect();

}

To use the command in Listing 7-4 properly, the following steps are necessary:

1. Create a subclass of GraphicalNodeEditPolicy.

2. Override the getConnectionCreateCommand() method to create a new instance of this
class and put it into the CreateConnectionRequest.

3. Override the getConnectionCompleteCommand() method to obtain the command from
the ConnectionRequest, call setTarget() to set the target endpoint of the connection,
and return this command instance.

Adding a Palette

GEF provides a selection tool and a palette for your custom figures (EditParts). The selec-
tion tool is the primary tool used in GEF and is often the default for an application. Ironically,
the selection tool doesn’t select EditParts, but rather delegates drag events to a class called
DragTracker. All mouse clicks are handled as drags.

The palette is an SWT control that allows the user to select which tool is active. It can also
be a drag source for dragging objects from the palette directly into the diagram. The palette
can be placed anywhere, including inside the editor. GEF provides a workbench view for host-
ing the palette.

Tip The palette provides several display modes, such as icon-only. You can also provide a customizer to
allow the user to modify or create palette content. For more information about this topic, see the GEF Tools
and Palette Guide at http://help.eclipse.org/stable/index.jsp?topic=/org.eclipse.draw2d.
doc.isv/guide/guide.html.

187

188 CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

Listing 7-5 creates a GEF palette with a shapes drawer. A drawer is a container for tools
that perform a common function. In this case, we have a drawer for an elliptical and rectangu-
lar shapes, as shown in Figure 7-5.

Listing 7-5. Palette for the Shapes Model

final class ShapesEditorPaletteFactory {

/** Create the "Shapes" drawer. */
private static PaletteContainer createShapesDrawer() {
// Shapes drawer
PaletteDrawer componentsDrawer = new PaletteDrawer("Shapes");

// Add elliptical shape to the drawer
CombinedTemplateCreationEntry component =
new CombinedTemplateCreationEntry(
"Ellipse", "Create an elliptical shape",
EllipticalShape.class, new SimpleFactory(
EllipticalShape.class), ImageDescriptor
.createFromFile(ShapesPlugin.class,
"icons/ellipse16.gif"), ImageDescriptor
.createFromFile(ShapesPlugin.class,
"icons/ellipse24.gif"));
componentsDrawer.add(component);

// Add rectangular shape
component = new CombinedTemplateCreationEntry("Rectangle",
"Create a rectangular shape", RectangularShape.class,
new SimpleFactory(RectangularShape.class), ImageDescriptor
.createFromFile(ShapesPlugin.class,
"icons/rectangle16.gif"), ImageDescriptor
.createFromFile(ShapesPlugin.class,
"icons/rectangle24.gif"));
componentsDrawer.add(component);

return componentsDrawer;

}

/**
* Creates the PaletteRoot and adds all palette elements. Use this
* factory method to create a new palette for your graphical editor.
*/
static PaletteRoot createPalette() {
PaletteRoot palette = new PaletteRoot();
palette.add(createToolsGroup(palette));
palette.add(createShapesDrawer());
return palette;

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

/** Create the "Tools" group. */
private static PaletteContainer createToolsGroup(PaletteRoot palette) {
PaletteToolbar toolbar = new PaletteToolbar("Tools");

// Add a selection tool to the group

ToolEntry tool = new PanningSelectionToolEntry();
toolbar.add(tool);

palette.setDefaultEntry(tool);

// Add a marquee tool to the group
toolbar.add(new MarqueeToolEntry());

// Add (solid-line) connection tool
tool = new ConnectionCreationToolEntry("Solid connection”,
"Create a solid-line connection", new CreationFactory() {
public Object getNewObject() {
return null;

}

// See ShapeEditPart#createEditPolicies()
// This is used to transmit the desired line style
public Object getObjectType() {
return Connection.SOLID_CONNECTION;
}

}, ImageDescriptor.createFromFile(ShapesPlugin.class,
"icons/connection s16.gif"), ImageDescriptor
.createFromFile(ShapesPlugin.class,

"icons/connection s24.gif"));
toolbar.add(tool);

// Add (dashed-1ine) connection tool
tool = new ConnectionCreationToolEntry("Dashed connection”,
"Create a dashed-line connection", new CreationFactory() {
public Object getNewObject() {
return null;

}

// See ShapeEditPart#createEditPolicies()
// This is used to transmit the desired line style
public Object getObjectType() {
return Connection.DASHED_CONNECTION;
}

}, ImageDescriptor.createFromFile(ShapesPlugin.class,
"icons/connection_d16.gif"), ImageDescriptor
.createFromFile(ShapesPlugin.class,

"icons/connection_d24.gif"));
toolbar.add(tool);

189

190

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

return toolbar;

}

/** Utility class. */
private ShapesEditorPaletteFactory() {
}

.2 Palette £2 | = =
I 3[4 ¢
[= Shapes £
@ Elipse
B Rectangle

Figure 7-5. Shapes palette

The createPalette() method creates a new palette (with all palette elements) for your
graphical editor. The class also creates the tools group with solid and dashed connections.

Note Check out the Eclipse GEF Project page at http://www.eclipse.org/gef/overview.html for
more examples and tips on using GEF.

Using Zest

Zest is a visualization toolkit for Eclipse,? designed to facilitate graph-based programming.
It provides the following benefits:

¢ Zest was developed using SWT/Draw2d, and it integrates seamlessly within Eclipse.

¢ Graphs in Zest are SWT components that have been wrapped using JFace viewers. This
allows developers to use Zest the same way they use JFace tables, trees, and lists.

2. The Zest visualization toolkit is available online at http://www.eclipse.org/gef/zest/.

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

¢ Zest integrates well with Eclipse views. This means that providers, actions, and listen-
ers used within existing applications can be leveraged within Zest.

e Zest includes an independent graph layout package that can be used within existing
Java applications (SWT or AWT).

Zest Components

Zest has the following basic components:

e Graph: Extends FigureCanvas (a canvas that contains figures) and holds the nodes and
connections for the graph.

¢ GraphNode: Simple node class that has properties such as color, size, location, and a
label. It also has a list of connections and anchors.

e GraphConnection: The graph connection model that stores the source and destination
nodes and the properties of this connection (color, line width, and so on).

Listing 7-6 shows an example of using these Zest components to display a hierarchical
tree graph. The result is shown in Figure 7-6.
Listing 7-6. Sample Tree Graph Using Zest
public class TreeGraph {

/**

* @param args

*/

public static void main(String[] args) {
Display display = new Display();

Image imgInfo = Display.getDefault().getSystemImage(
SWT.ICON_INFORMATION);

Shell shell = new Shell(display);
shell.setText("Tree Graph");

shell.setlayout(new Filllayout());
shell.setSize (400, 400);

final Graph graph = new Graph(shell, SWT.NONE);

GraphNode a
GraphNode b

new GraphNode(graph, SWT.NONE, "Root", imgInfo);
new GraphNode(graph, SWT.NONE, "B");

GraphNode ¢ = new GraphNode(graph, SWT.NONE, "C");

GraphNode d = new GraphNode(graph, SWT.NONE, "D");

// Code removed for simplicity...

191

192 CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

GraphConnection connection = new GraphConnection(graph, SWT.NONE,
a, b);
connection.setData(Boolean.FALSE);

connection = new GraphConnection(graph, SWT.NONE, a, c);
connection.setData(Boolean.FALSE);

connection = new GraphConnection(graph, SWT.NONE, a, d);
connection.setData(Boolean.FALSE);

connection = new GraphConnection(graph, SWT.NONE, b, e);
connection.setData(Boolean.FALSE);

// Code removed for simplicity...

connection = new GraphConnection(graph,
ZestStyles.CONNECTIONS DIRECTED, b, c);

connection.setlLineColor(ColorConstants.red);

connection.setlLineWidth(3);

connection = new GraphConnection(graph,
ZestStyles.CONNECTIONS DIRECTED, c, d);

connection.setlLineColor(ColorConstants.red);

connection.setlLineWidth(3);

TreelayoutAlgorithm treelLayoutAlgorithm = new TreelayoutAlgorithm(
LayoutStyles.NO_LAYOUT NODE_RESIZING);
Filter filter = new Filter() {
public boolean isObjectFiltered(LayoutItem item) {

// Get the "Connection" from the Layout Item
// and use this connection to get the "Graph Data"
Object object = item.getGraphData();
if (object instanceof GraphConnection) {
GraphConnection connection = (GraphConnection) object;
if (connection.getData() != null
88 connection.getData() instanceof Boolean) {
// If the data is false, don't filter, otherwise,
// filter.
return ((Boolean) connection.getData())
.booleanvalue();

}

return true;

}

return false;

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST 193

¥
treelayoutAlgorithm.setFilter(filter);
graph.setLayoutAlgorithm(treeLayoutAlgorithm, true);

shell.open();
while (!shell.isDisposed()) {
while (!display.readAndDispatch()) {
display.sleep();
}

REE
\l‘)Root

Figure 7-6. Tree graph from Listing 7-6

Zest Layouts
Zest lays out objects using an AbstractLayoutAlgorithm, which handles common elements in
all layout algorithms. The following are some of the most interesting layouts:
e TreelayoutAlgorithm: Arranges graph nodes in a layered vertical tree-like layout (see
Figure 7-6).
e GridlLayoutAlgorithm: Arranges graph nodes in a column/row-based grid (see
Figure 7-7).

e HorizontalTreelayoutAlgorithm: Arranges graph nodes in a layered horizontal tree-like
layout.

194 CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

il

€ B B E
E & k& B
o & B B
€ B B E
E & k& B

"

(%)
%
b=
(%)

L<]

Figure 7-7. Graph displaying nodes using a grid layout

e SpringlayoutAlgorithm: A complex layout that has its own data repository and relation
repository. A user can populate the repository, specify the layout conditions, do the
computation, and query the computed results. Figure 7-8 shows an example.

=lolx|

Scissars

Paper

Rack.

Figure 7-8. Graph displaying undirected nodes using the Spring layout

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST 195

Note The SpringlayoutAlgorithm has no relationship to the Spring Framework.

Using the SpringlayoutAlgorithminvolves the following steps:

1. Instantiate a Springlayout object.
. Populate the data repository using addEntity().

. Populate the relation repository using addRelationship().

2

3

4. Execute compute().

5. Execute fitWithinBounds().
6.

. Query the computed results (node size and node position).

Tip The layout should be chosen based on the requirements of your graph. Some applications may need
to display objects in a grid or tree. Complex layouts like the SpringLayout are useful for visualizing undi-
rected networks.

Hands-on Exercise: Build Your Own Advanced 2D
Graphics Editor

The goal of this exercise is to build an advanced graphics editor using some GEF examples
provided by Eclipse, plus some brand-new Zest code. The editor will be capable of creating
four types of 2D graphs:

¢ An electronics logic diagram, complete with flow containers, gates, circuits, connec-
tors, and other parts

¢ A shapes diagram, with rectangular and elliptical shapes plus a palette
¢ An activity flow diagram, with sequential or parallel activities and a palette

e A Zest hierarchical tree diagram, with nodes, icons, and connectors

Each graph type may be saved into a file. The application will also feature a wizard to
create graphs and a navigator to browse or create projects or graph files. The graph files may
be saved on disk for later use.

This exercise will use the following extension points:

e org.eclipse.core.runtime.products: Defines the plug-in product.

e org.eclipse.core.runtime.applications: Defines the main entry point for the plat-
form runtime.

196

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

org.eclipse.ui.perspectives: Defines a default workbench perspective.

org.eclipse.ui.views: Defines workbench views (visual components) for the work-
bench.

org.eclipse.ui.navigator.viewer: Defines the configuration for a project and diagram
common viewer.

org.eclipse.ui.newhWizards: Defines custom wizards for all graph types.

The application will use a project navigator view, which includes a custom pop-up menu
to add projects and open wizards.
Additionally, the example will use the following plug-ins:

org.eclipse.gef.examples.flow: GEF example plug-in for creating flow diagrams.
org.eclipse.gef.examples.logic: GEF example plug-in for creating logic diagrams.

org.eclipse.gef.examples.shapes: GEF example plug-in for creating shape (ellipse and
rectangle) diagrams.

org.eclipse.zest.examples: Custom plug-in to create a tree or icon graph.

Creating the RCP Product

The first task is to create an RCP product to host the GEF and Zest plug-ins.

1.

N o a &

From the Eclipse IDE main menu, select File » New » Project » Plug-in Project. Name
the new plug-in project GraphEditor.

On the Plug-in Content page, make sure the “This plug-in will make contributions to
the UT” option is checked, and the “Would you like to create a rich client application?”
option is set to Yes. Click Next.

On the Templates page, select the Hello RCP template, and then click Next.
Check Add branding, and then click Finish.

Right-click the plug-in project and select New » Other.

Select Product Configuration under Plug-in Development. Click Next.

Enter a product file name. Make sure GraphEditor.product is selected under “Initialize
the file content.” Click Finish.

Test the application from the product editor by clicking Synchronize, then Launch
Eclipse application.

Downloading GEF Samples from the Eclipse Repository

Now you need some plug-ins for your graph editor. The fastest way to get things going is
to download the GEF samples from the Eclipse CVS repository. These examples provide an

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST 197

excellent starting point for understanding GEF’s capabilities and building your own graph-
ics editors.

1. Open the CVS Repositories view. To do this, select Window » Show View » Other, type
CVS in the text box, and select CVS Repositories, as shown in Figure 7-9. Then click OK.

& Plug-in Development - Eclipse SDK E =1of =]

File Edit Mavigate Search Project Run Field Assist | Window Help

| W [& % 0-q - | S | ® 7 (4 Pugineval. >

Idevs Editar:
J J b e e 4 Report Design
Open Perspective 3
: . =
% Packa |5 Plug-in | L Projec. £3 = d @ Error Log Ashittg, L |2
= O= N .
—| <'===(> | W Customize Perspective. .. o= Outline Ale+5hift+0, O

Save Perspective As... [# Package Explorer Alt+Shift+G, P

= cho1-fragment Reset Perspective... fﬁ; Plug-ins

]b_—j =chiz. webBrowser [localhost] Close Perspective [2 Problems Alb+Shift+0, %

H| bd ch03. WebBrowser & Show Yiew = ||:||1| || P it Bl

H-1y= chO4 FileMavigator Y 2 Tasks

=% ch0S.FormCantrals Jevs x | = VEH

]:7J chds. MailFarms
]bd choé.help.content
H-= chit. InfaCenter
]bd ch07. GraphEditar

£
£
£
£
£
£
£
E B = oS
£

£

1= cho8.GLScenes
£

£

£

£

£

£

£

£

£

£

£

ol cvs Editors

H-loy =ch8.Openal [localhc
H-1z7 chid.Openal. Natives [
H-l=> ch09.Reports

#-1=* chi0.Local.Build

H-1=f ch10.0penGl.Feature

H-1=F ch10,0penGl, Updatesit A & q 0.-. ST @ ﬂ & PT », =5
H-lzf =ch10.RelEng [localho:
org.eclipse.gef . example] u;| = I o
org.eclipse.gef . example ;I

= org.eclipse. gef example
bd org.eclipse, zest, example

Use F2 to display the description For a selected view, _ILI
4

Chrl Contrib) W oK I Cancel |

Figure 7-9. Accessing the CVS Repositories view from the Eclipse IDE

2. Add a new repository by right-clicking the view and selecting New » Repository
Location.

3. For the CVS repository host, enter dev.eclipse.org. For the path, enter /cvsroot/tools.
For the user, enter anonymous, as shown in Figure 7-10. Check Save password, and then
click Finish.

4. Under org.eclipse.gef/examples, check out the projects org.eclipse.gef.examples.
flow, org.eclipse.gef.examples.logic, and org.eclipse.gef.examples.shapes.

198 CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

& add C¥S Repository g _1al =l
Add a new CYS Repository
CVs
i~ Location
Hosk: I dev.eclipse.org j
Repository path: I Jowsrootftools j
~ Authentication
User: anonymous| j
Password: |
[~ Connection
Conneckion type: Ipserver j
' Use default port
" Use pork: |
v walidate connection on Finish
[save password (could trigger secure storage loging
Configure connection preferences. ..
(7) Einiish I Cancel |

Figure 7-10. Using the CVS Repository wizard to access the GEF samples from the Eclipse tools
repository

Adding the Plug-ins to the Product Configuration

The plug-ins must be added to the product by updating the plug-in manifest of the GraphEditor
project.

1. Open the GraphEditor plug-in manifest editor.

2. From the Dependencies tab, add the plug-ins orgeclipse.gef, org.eclipse.gef.
examples.flow, org.eclipse.gef.examples.logic, and org.eclipse.gef.examples.
shapes.

3. Add a Common Navigator extension point to create graph editor projects or open the
graph wizards provided by the plug-ins. Listing 7-7 shows this extension point.

Listing 7-7. Extension Points for the Eclipse Common Navigator View (in plugin.xml)

<extension
point="org.eclipse.ui.views">
<view
class="org.eclipse.ui.navigator.CommonNavigator"
icon="icons/alt window 16.gif"
id="eclipse.navigator.view"
name="Project Navigator">
</view>
</extension>

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

<extension
point="org.eclipse.ui.navigator.viewer">
<viewerActionBinding
viewerId="eclipse.navigator.view">
<includes>
<actionExtension pattern="org.eclipse.ui.navigator.resources.*" />
</includes>

</viewerActionBinding>
<viewerContentBinding
viewerId="eclipse.navigator.view">

<includes>
<contentExtension pattern="org.eclipse.ui.navigator.resourceContent" />
<contentExtension
pattern="org.eclipse.ui.navigator.resources.filters.*"/>
<contentExtension

pattern="org.eclipse.ui.navigator.resources.linkHelper"/>
<contentExtension \
pattern="org.eclipse.ui.navigator.resources.workingSets"/>
</includes>
</viewerContentBinding>
</extension>

4. Add org.eclipse.ui.navigator and org.eclipse.ui.navigator.resources to the Depen-
dencies tab. These are required for the Common Navigator view to display properly.

Creating a Default Perspective

The last thing you need to do before testing the GEF samples is to create a default perspective.
The perspective will show the Common Navigator and the palette views, which are needed
when working with graphs. Listing 7-8 shows this perspective.

Listing 7-8. Default Perspective for the GEF Samples Project

public class Perspective implements IPerspectiveFactory {

public void createInitiallayout(IPagelLayout layout) {
String editorArea = layout.getEditorArea();
layout.setEditorAreaVisible(false);

IFolderLayout toplLeft = layout.createFolder("topLeft",
IPagelayout.LEFT, 0.5f, editorArea);
toplLeft.addView("eclipse.navigator.view");

IFolderlLayout botlLeft = layout.createFolder("bottomLeft",
IPagelayout.BOTTOM, 0.5f, "toplLeft");
botLeft.addView(PaletteView.ID);

199

200 CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

Testing the Product

Open the product configuration file and click Synchronize, then Launch Eclipse application.
Your RCP Graph Editor window should look similar to Figure 7-1.

To create a graph, right-click in the project navigator and select New » Other. You should
see a list of examples defined by the plug-ins, as shown in Figure 7-11. Select a graph type, and
then click Finish.

Snew 3 =10/ x|

Select a wizard

‘Wizards:
|type Filter text

Lo L Project
=l (= Examples
(== GEF (Graphical Editing Framework)
i 4" Flow Diagram
T Logic Diagram
] I Shapes Diagram
== Zest (Eclipse Yisualization Toolkit)
"?- Graph with Icons
@ Tree Graph with Icons

= Back | Idext = | Finish I Cancel

Figure 7-11. Sample plug-in wizard pages

Building a Zest Plug-in

You are making good progress so far. You have a product with some graph editors, but let’s go
further and build a Zest sample plug-in with some graphs.

Create a new plug-in project with the ID org.eclipse.zest.examples. Make sure the “This
plug-in will make contributions to the UI” is checked and “Would you like to create a rich cli-
ent application?” is set to No.

The plug-in will define two graph-creation wizards and their corresponding views, as
shown in Listing 7-9.

Listing 7-9. Extension Points for the Graph Wizards and Views

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.2"?>
<plugin>

<extension

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

point="org.eclipse.ui.newWizards">
<category

name="Zest (Eclipse Visualization Toolkit)"
parentCategory="org.eclipse.ui.Examples"
id="org.eclipse.zest.examples">

</category>
<wizard

canFinishEarly="true"
category="org.eclipse.ui.Examples/org.eclipse.zest.examples"
class="org.eclipse.zest.examples.ui.GraphCreationWizard"
hasPages="false"

icon="view.gif"
id="org.eclipse.gef.examples.flow.wizard.new.file"
name="Graph with Icons">

</wizard>
<wizard

canFinishEarly="true"
category="org.eclipse.ui.Examples/org.eclipse.zest.examples"
class="org.eclipse.zest.examples.ui.TreeGraphCreationWizard"
hasPages="false"

icon="icons/sample.gif"
id="org.eclipse.gef.examples.flow.wizard.new.file"
name="Tree Graph with Icons">

</wizard>

</extension>
<extension
point="org.eclipse.ui.views">
<category

id="org.eclipse.zest.examples"
name="Zest">

</category>

<view

allowMultiple="true"
category="org.eclipse.zest.examples"
class="org.eclipse.zest.examples.views.Graph1View"
icon="view.gif"
id="org.eclipse.zest.examples.views.GraphiView"
name="Zest Graph with Icons">

</view>

<view

allowMultiple="true"
category="org.eclipse.zest.examples"
class="org.eclipse.zest.examples.views.TreeGraphView"
icon="icons/sample.gif"
id="org.eclipse.zest.examples.views.TreeGraphView"
name="Tree Graph with Icons"

201

202 CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

restorable="true">
</view>
</extension>
</plugin>

Listing 7-9 defines two wizards, Graph with Icons and Tree Graph with Icons, with their
corresponding views, Graph1View and TreeGraphView. Each wizard node points to a graph-
creation class, which in turn shows the corresponding view, as shown in Listing 7-10.

Listing 7-10. Wizard Class to Create a Tree Graph

public class TreeGraphCreationWizard extends Wizard implements INewWizard {

private static int fileCount = 1;
private IWorkbench workbench;

public void init(IWorkbench workbench, IStructuredSelection selection) {
this.workbench = workbench;

}

@0verride
public boolean canFinish() {
return true;

}

@0verride

public boolean performFinish() {
// Create a new file, result != null if successful
fileCount++;

// Open newly created file in the editor
IWorkbenchPage page = workbench.getActiveWorkbenchiWindow()
.getActivePage();
try {
page.showView(TreeGraphView.ID, "treeView" + fileCount,
IWorkbenchPage.VIEW CREATE);

} catch (PartInitException e) {
e.printStackTrace();
return false;

}

return true;

Listing 7-10 creates multiple instances of TreeGraphView, which in turn displays the graph
in the workbench by making this call:

showView(TreeGraphView.ID, "treeView" + fileCount, IWorkbenchPage.VIEW CREATE)

CHAPTER 7

2D GRAPHICS WITH GEF AND ZEST

The class TreeGraphView, which draws the actual tree graph, is shown in Listing 7-11.

Listing 7-11. View to D

public class TreeGr

isplay the Tree Graph

aphView extends ViewPart {

public static final String ID = TreeGraphView.class.getName();

public TreeGrap

// TODO Auto-generated constructor stub

}

@0verride

hview() {

public void createPartControl(Composite parent) {

Image imgIn
SWT

parent.setl

fo =
.ICON_INFORMATION);

ayout(new Filllayout());

Graph graph = new Graph(parent, SWT.NONE);
graph.setConnectionStyle(ZestStyles.CONNECTIONS DIRECTED);

GraphNode
GraphNode
GraphNode
GraphNode
GraphNode
GraphNode
GraphNode
GraphNode

> 0a +~® QN o v

GraphConnection connection =

a,
connection.

connection
connection.

connection
connection.

connection
connection.

connection
connection.

connection
connection.

SWT.
SWT.
SWT.
SWT.
SWT.
SWT.
SWT.
SWT.

= new
= new
= new
= new
= new
= new
= new
= new

GraphNode(graph,
GraphNode(graph,
GraphNode(graph,
GraphNode(graph,
GraphNode(graph,
GraphNode(graph,
GraphNode(graph,
GraphNode(graph,

b);
setData(Boolean.FALSE);

= new GraphConnection(graph,
setData(Boolean.FALSE);

= new GraphConnection(graph,
setData(Boolean.FALSE);

= new GraphConnection(graph,
setData(Boolean.FALSE);

= new GraphConnection(graph,
setData(Boolean.FALSE);

= new GraphConnection(graph,
setData(Boolean.FALSE);

Display.getDefault().getSystemImage(

NONE, "Root", imgInfo);
NONE, "B");
NONE, "C");
NONE, "D");
NONE, "E");
NONE, "F");
NONE, "G");
NONE, "H");

new GraphConnection(graph,

SWT.NONE,

SWT.NONE,

SWT.NONE,

SWT.NONE,

SWT.NONE,

SWT.NONE,

a,

a,

a,

203

204 CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

TreelayoutAlgorithm treelLayoutAlgorithm = new TreelayoutAlgorithm(
LayoutStyles.NO LAYOUT NODE RESIZING);
Filter filter = new Filter() {
public boolean isObjectFiltered(LayoutItem item) {

// Get the "Connection" from the Layout Item
// and use this connection to get the "Graph Data"
Object object = item.getGraphData();
if (object instanceof GraphConnection) {
GraphConnection connection = (GraphConnection) object;
if (connection.getData() != null
88 connection.getData() instanceof Boolean) {
// If the data is false, don't filter; otherwise,
// filter.
return ((Boolean) connection.getData())
.booleanvalue();

}

return true;

}

return false;

1
treeLayoutAlgorithm.setFilter(filter);
graph.setlLayoutAlgorithm(treeLayoutAlgorithm, true);

}

@0verride
public void setFocus() {

}

Listing 7-11 starts by setting a fill layout of the parent widget:
parent.setlayout(new Filllayout())

Next, a Graph object (to host the actual graph) is created:
Graph graph = new Graph(parent, SWT.NONE)

The Graph object allows you to set many graph properties, such as the connection style.

Tip Toinspect all methods available in the Graph class within the Eclipse IDE, simply place the cursor in
the Graph class and press F3 to open its source code.

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

Now, it is simply a matter of adding nodes to the tree, with a call such as the following:
GraphNode Nodel = new GraphNode(graph, SWT.NONE, "Root")

If the nodes are to be connected, then each connection must be created, as follows:
GraphConnection connection = new GraphConnection(graph, SWT.NONE, Nodel, Node2)

Note that a graph, a source, and target nodes are required for each connection. Finally, lay
out the graph in a tree mode:

graph.setLayoutAlgorithm(
new TreelayoutAlgorithm(LayoutStyles.NO LAYOUT NODE RESIZING)
, true)

The layout constant NO_LAYOUT _NODE_RESIZING indicates that the layout algorithm should
not resize any of the nodes. The TreeLayoutAlgorithm class arranges graph nodes in a layered,
vertical tree-like layout. Note that Listing 7-11 uses a filter to separate nodes from connections:

connection = new GraphConnection(graph, SWT.NONE, a, c);
connection.setData(Boolean.FALSE);

Filter filter = new Filter() {
public boolean isObjectFiltered(LayoutItem item) {

// Get the "Connection" from the Layout Item
// and use this connection to get the "Graph Data"
Object object = item.getGraphData();

// If a connection is detected
if (object instanceof GraphConnection) {
GraphConnection connection = (GraphConnection) object;

if (connection.getData() != null
88 connection.getData() instanceof Boolean) {
// If the data is false, don't filter, otherwise,
// filter.
return ((Boolean) connection.getData())
.booleanvalue();

}

return true;

}

return false;
b

treeLayoutAlgorithm.setFilter(filter);

205

206

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

Once the filter is implemented, interested parties can ask this filter whether a specific
object is filtered, with this callback:

public boolean isObjectFiltered(LayoutItem item)

For example, in a visualization tool, only unfiltered objects should be displayed. Before
displaying an object, the display can ask this filter if the object is filtered. In this case, removing
the filter will line up all the nodes vertically in the same line (the default behavior), as opposed
to aligning them in a neat, evenly spaced tree style.

Testing the Final Product

At this point, you should have a graph editor with some neat GEF and Zest functionality. Before
testing the final product, do the following:

1. Open the Graph Editor product file (GraphEditor.product). Click the Configuration tab
and check “Include optional dependencies” Click the Add button and enter the
name of the recently created Zest plug-in (org.eclipse.zest.examples). Then click Add
Required Plug-ins. This will ensure all dependencies are included.

2. Click the Overview tab of the product editor. Click Synchronize to refresh the changes,
and then click Launch an Eclipse application.

Run the product and test the different graph types and wizards. The final application is
shown in Figure 7-12.

[RRCP Graph Editor E =10] x|
Elle
| R | | ||
£ Project Navigator | & Tree Graphwith ... 52 | = O || %" GEF Flow Example 52 I = (m
[Select =
I Jroot 7 Marquee ok sleep....
| Connection o3
Creation (G Marmin
5 (= Components <
B — /) Activity —
G 8 sequential Activity Hit snooze button

5 Paralel Activity -~
{0} Go back ta sleep

L5} Turn off alarm

G
F5% et ot of herd =
&4 *emptyMadell logic 2
} i: i =
E

2 Palette £% I =8
[Select 1=

» [} Marquee

5% Cannection

= Companents <
[B¥] Flow Conttainer
1 Cincait =

= Caned Parts 0
% Half Adder hdl hdl

=

Figure 7-12. Final RCP Graph Editor product

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

Summary

This chapter covered creating 2D graphics with Eclipse GEF. Here are the main points:

Draw2d is a set of lightweight Java objects called figures, which are painted using
the SWT GC.

Draw2d uses a deferred layout strategy integrated with native painting to determine
the locations of figures in a drawing.

Hit testing is the process of finding a figure in a mouse location (for example, dragging
a figure on the canvas) and is done in exactly the same way as painting.

Connections are used to display a line between two points. The source and target end-
points of a connection are each defined using a ConnectionAnchor. A connection always
has a router that sets at least two points on the connection: the source and target.

Coordinate systems are used by certain optimizations and features provided by
Draw2d (usually when translating or zooming graphics). Coordinate systems can be
absolute or relative (local).

* In an absolute coordinate system, all figures paint in the same coordinates. Use an
absolute coordinate system when determining the bounds of a parent based on the
bounds of the children.

¢ In arelative coordinate system, the bounds of children are relative to the client
area of their parent. When a figure is moved, the children come along automati-
cally, without any changes to their bounds. Use a relative coordinate system when
translating or moving a figure and the figure’s bounds must be updated.

GEF is a powerful framework designed for building rich GUIs using native 2D graph-
ics (Draw2d). It is application-neutral and provides the foundation for building many
types of applications, such as activity diagrams, GUI builders, class diagram editors,
state machines, and WYSIWYG editors.

GEF is an MVC wrapper on top of Draw2d. GEF is extensible and uses MVC architec-
ture to provide separation of the presentation and logic layers.

GEF can be used anywhere where an SWT control can be used: an editor, a view, a wiz-
ard page, and so on. GEF requires the Eclipse RCP and the views plug-in (org.eclipse.
ui.views), which provides property sheet support.

GEF viewers are similar to JFace viewers in that they manage an SWT control.

GEF graphical views use EditParts to piece the model and figures together. An EditPart
performs the following functions:

* Creates and maintains a view (figure or tree item) listening directly to the model
object(s) with which it is associated

¢ Creates and maintains children EditParts
¢ Creates and maintains connection EditParts

¢ Provides support for model editing

207

208 CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST

¢ Graphical views extend AbstractGraphicalEditPart and override the following meth-
ods based on each part’s model:

e createFigure(): This method creates the EditPart’s view, or figure. This method
does not reflect the model’s state in the figure. That is done in refreshVisuals().

e refreshVisuals(): This method reflects model attributes in the view. Complex
EditParts may further decompose this method into several helper methods.

e getModelChildren(): This method is called to determine if there are model ele-
ments for which children EditParts should be created.

o EditParts can be content, children, and connection EditParts.

* Content EditParts use an EditPartFactory for constructing the appropriate EditPart
(content or connection).

e Children EditParts display information to the user, such as figures or a composition
of multiple figures.

e Connection EditParts connect any two EditParts in a diagram.

EditParts handle editing through EditPolicies and commands. EditPolicies allow for
editing behavior to be reused across different implementations. Commands are used
to encapsulate and combine changes to the application’s model.

e Zest is a visualization toolkit for Eclipse. Its goal is to make graph-based program-
ming easy.

¢ In Zest, graphs are considered SWT components that have been wrapped using stan-
dard JFace viewers. This allows developers to use Zest in the same way that they use
JFace tables, trees, and lists.

¢ The main objects in Zest are Graph, GraphNode, and GraphConnection.

* Graph extends FigureCanvas (a canvas that contains figures) and holds the nodes
and connections for the graph.

» GraphNode has properties such as color, size, location, and a label. It also has a list of
connections and anchors.

e GraphConnection stores the source and destination nodes and the properties of this
connection such as color, line width, and so on.

e Zest lays out objects using an AbstractLayoutAlgorithm, which handles common ele-
ments. The most interesting layouts are GridLayoutAlgorithm (a column/row-based
grid) TreelayoutAlgorithm (a layered vertical tree), HorizontalTreelLayoutAlgorithm
(alayered horizontal tree), and SpringlLayoutAlgorithm (a complex layout with its own
data repository and relation repository).

CHAPTER 8

3D Graphics for RCP with
OpenGL

OpenGL is the de facto standard environment for developing portable, interactive 3D
graphics applications. OpenGL has become one of the most widely used and supported
3D graphics APIs, bringing thousands of applications to a wide variety of computer platforms.

This chapter introduces OpenGL development for Eclipse, without going into much detail
about the intricacies of OpenGL itself. The goal is to give you a taste of the power of OpenGL
targeted to the RCP platform.

We will start with an overview of how RCP interacts with OpenGL. Then we’ll move on to
some scene development—first, a simple 3D scene to render basic shapes, and then a more
complex scene that draws a 3D chart and demonstrates some advanced concepts. Finally, the
exercise at the end of the chapter shows how easy it is to build a powerful 3D Earth navigator
with Eclipse and OpenGL.

OpenGL and SWT

Before we dig into the 3D scenes, you should understand how RCP interacts with OpenGL.
This interaction is done through SWT with two fundamental APIs:

A device-independent package: The org.eclipse.swt.opengl package provides platform-
independent OpenGL support with two basic classes: GLCanvas and GLData. It also provides
the integration between SWT applications and OpenGL graphics.

An OpenGL binding: This is the layer that implements the OpenGL specification and inter-
acts with the machine hardware. The binding uses the Java Native Interface (JNI) to perform
native calls, and it is in charge of accessing the hardware, such as the graphics card.

Let’s take a closer look at the device-independent package and the OpenGL bindings that
SWT supports.

209

210

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

The Device-Independent Package

The org.eclipse.swt.opengl package integrates SWT and OpenGL graphics by providing
platform-independent OpenGL support through the following classes:

e org.eclipse.opengl.GLCanvas: A widget to display OpenGL content.

e org.eclipse.opengl.GLData: A device-independent description of the pixel format
attributes of a GL drawable. A GL drawable is simply a 3D rendering surface. Pixel for-
mat attributes are a set of properties that define the OpenGL state in preparation for
drawing. The most useful pixel attributes are listed in Table 8-1. For a complete list of
attributes, see the org.eclipse.swt.opengl.GLData class reference.!

Table 8-1. Some Pixel Attributes Used to Configure the OpenGL State

Property Description

boolean doubleBuffer Specifies a double-buffered surface. Graphics operations that require
multiple complex painting operations can cause the rendered images
to appear to flicker or have an otherwise unacceptable appearance.
Double-buffering uses a memory buffer to address the flicker problems
associated with multiple paint operations. When double-buffering is
enabled, all paint operations are first rendered to a memory buffer,
instead of to the drawing surface on the screen. After all paint opera-
tions are completed, the memory buffer is copied directly to the draw-
ing surface associated with it. Because only one graphics operation is
performed on the screen, the image flickering is eliminated.

boolean stereo Specifies a stereo surface. A stereo surface provides the visual percep-
tion of depth.
int redSize Specifies the minimum number of bits per pixel to use for the red

channel. The default value is 0. Red, green, and blue channels are used
to describe the RGB color model with extra information, and have an
effect on the color resolution.

int greenSize Specifies the minimum number of bits per pixel to use for the green
channel. The default value is 0.

int blueSize Specifies the minimum number of bits per pixel to use for the blue
channel. The default value is 0.

int alphaSize Specifies the minimum number of bits per pixel to use for the alpha
channel. The default value is 0. The alpha channel is useful for alpha
compositing, which is the process of combining an image with a back-
ground to create the appearance of partial transparency.

int stencilSize Specifies the desired number of stencil bit planes. A stencil buffer
is used to limit the area of rendering (stenciling). In more advanced
uses, the stencil buffer interacts with the depth buffer in the rendering
pipeline to make a vast number of effects possible (shadows, outline
drawing, and highlighting). The quintessential application of the stencil
and depth buffers is to add shadows or planar reflections to 3D applica-
tions. Note that they often require several rendering passes, which can
put a heavy load on the graphics hardware.

1. The GLData class reference is available from http://help.eclipse.org/stable/index. jsp?topic=/org.
eclipse.platform.doc.isv/reference/api/org/eclipse/swt/opengl/GLData.html.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

OpenGL Bindings for SWT

SWT 3.2 and later provide a thin layer above the window-system specific API (WGL for win-
dows; GLX for Unix). This enables applications to use their Java OpenGL binding of choice.
SWT supports three popular OpenGL bindings:

Lightweight Java Game Library (LWJGL): LWJGL is targeted to commercial games.? It pro-
vides access to the Open Audio Library (OpenAL) for state-of-the-art 3D games and sound.

Java OpenGL (JOGL): JOGL is a binding designed to provide hardware-supported access
to the OpenGL 2.0 specification, as well as nearly all vendor extensions.? JOGL integrates
with the Abstract Window Toolkit (AWT) and Swing widget sets. This becomes an issue
when developing for SWT, but as you’ll see in this chapter’s hands-on exercise, SWT has
created a clever solution.

gljava: gljava is specifically aimed at game development.* Its design goal is to be as simple
and thin as possible. gljava does not force you to use a widget toolkit such as AWT or Swing.

All of the code in this chapter has been written for JOGL.

Creating OpenGL Scenes with JOGL and SWT

Now it’s time to get our feet wet with two OpenGL scenes. First, we’ll create the wire cubes
scene, which simply draws three wire cubes (red, green, and blue) on top of a white rectangle.
Then we’ll create the more complex 3D chart scene, which draws a series of cylinders (bar
values) over two planar axes (x and y). The scene uses some GL tricks (such as display lists) to
increase performance, as well as a GL utility library to draw quadrics (cylinders). Both scenes
allow for user interaction by using mouse and keyboard listeners for panning, zooming, and
tilting. The scenes will be displayed within two RCP views.

The following classes will be created for the scenes:

e GLScene: This is the base class for both scenes and encapsulates common functionality.
Its role is to bind a GL canvas with an SWT component for drawing. It also initializes
the GL drawing attributes (pixel format attributes) and parent control listeners to resize
or dispose of the canvas when the parent requests.

e CubeScene: This is the class that actually draws the wire cubes. It inherits from GLScene.

e ChartScene: This is the class that draws a 3D chart, and it also inherits from GLScene. It
is more complex than CubeScene. This class uses OpenGL display lists for fast drawing
of a series of cylinders (BarValue) and planar x and y axes.

The following utility classes will also be created:

e SceneGrip: This class is used to rotate and move the scene by using mouse and key-
board listeners.

e Refresher: This is a thread that renders the scene in the background many times per
second. Its job is to refresh the scene whenever the user changes something.

2. LWJGLis available from http://1wjgl.org/index.php.
3. JOGL binding for OpenGL is available from https://jogl.dev.java.net/.
4. gljavais available from http://gljava.sourceforge.net/.

211

212 CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

e GLUT: This is a simple helper class to draw a wire cube. It is used by CubeScene.

e CompiledShape: This class provides the OpenGL display lists used to increase perfor-
mance whenever the same object must be rendered multiple times. It is used to draw
the cylinders and axis planes from ChartScene.

e BarValue: This class represents a bar value (cylinder) in the chart. It extends CompiledShape
for performance. It also uses the OpenGL Utility Library (GLU) to draw the cylinder
shapes.

Setting Up for the OpenGL Scenes

Before we get started on the scenes, we need to do some setup. We will create an RCP applica-
tion with two views, and add the JOGL dependencies.

Creating the RCP Application
Follow these steps to create the RCP application for the scenes:

1. From the main Eclipse menu, select File » New » Project » Plug-in Development »
Plug-in Project, as shown in Figure 8-1. Click Next.

=

Select a wizard

Create a Plug-in Project

‘Wizards:
[Plug- %

L) En:l‘
[Plug-in Development
L?z Plug-in fram existing JAR. archives
2 Plugein Project

@) < Back I Mext = I Eiiist | Cancel |

Figure 8-1. Choosing to create a new plug-in project

Tip Use the filter text box on the Select a Wizard page for fast access to the wizard. Simply type a few
characters, such as “plug-.”

2. Enter a project name (such as ch08.GLScenes), as shown in Figure 8-2. Click Next.

3. On the Plug-in Content page, make sure “This plug-in will make contributions to the
UI” is selected and “Would you like to create a rich client application?” is set to Yes, as
shown in Figure 8-3. Then click Next.

CHAPTER 8

=lofx]

in Project k

Plug-in Project

Create a new plug-in project

3D GRAPHICS FOR RCP WITH OPENGL

Project name: |ch08‘GLScenes

¥ Use default location

Location: |C:ltemp\workspace\chﬂs‘GLScenes

Choose file system: I\:lEFault d

[~ Project Settings
¥ Create a Java project

Source folder: I src

Cutput Folder: | bin

~Target PlakForm
This plug-in is targeted ko run with:

Eclipse version: |3.4 -
" an O5Gi framework: IEquwnox 'I

—Working sets

™ add project to working sets

j Select,,,

Working sets;

< Back I et > I Eimish | Cancel
Figure 8-2. Naming the new plug-in project
I [=]

Plug-in Content
Enter the data required ko generate the plug-in.

Plug-in Propetties

Plug-in ID: | ch& GL3cenes

Plug-in Wersion: | 1.0.0

Plug-in Mame: I GLScenes Flug-in

Plug-in Provider: |

Execution Environment: IJavaSE-l B

j Enxironments. ..
[~ Plug-in Options

¥ Generate an activator, a Java class that controls the plug-in's Iife cycle

Activator: | ch08.glscenes . Activator
¥ This plug-in will make contributions to the LT

I Enable &FT analysis

Rich Client Application
(Would wau like to create a rich client application?

Firish | Cancel

< Back I Mext = I

Figure 8-3. Filling in the Plug-in Content page

213

214 CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

4. Select the Hello RCP template, as shown in Figure 8-4, and then click Next.

& New Plug-in Project =1of x|

Templates J—
g 3
Select one of the available templates to generate a fully-functioning plug-

n.

¥ | Greate & plug-in using one of the bemplates

Available Templates:

“H P This wizard creates a minimal standalone
RCP application that consists of an

FHIRCP application with a view
application windaw with a title,

AHRCP application with an intro

WY RCP Mail Template Extensions Used

® org.eclipse.care.runtime. applications

® org.eclipse.ui.perspectives

L4 | o

7 < Back | Mesk > | Finish I Cancel

Figure 8-4. Choosing the Hello RCP template

5. On the Basic RCP Application page, set the title of your choice and check the Add
branding option (this is required to create a product extension point), as shown in

Figure 8-5. Click Finish.

& New Hello RCP Project =10l =]

Basic RCP application -
‘] y=

This template creates a minimal standalone RCP
application that consists of an application windaw with a

Application window kitle: | GL Scenes

Package name: I chi&.glsenes

Application dass: I Application

2) < Back | et = | Finish I Cancel |

Figure 8-5. Serting the application window title and adding branding

Creating a Production Configuration
Follow these steps to add a product configuration to the project:
1. Right-click the new project folder (ch08.GLScenes in this example) and select New »
Other » Plug-in Development » Product Configuration, as shown in Figure 8-6.
Click Next.

([Praject Explorer £2 = O |(& chos.aLscenss 2 ==
= £ 0 _. [
&l izt Overview OB LA
o R — -l
N = o £ New 1 —(Ol x|
g £ Project...
Show In Alt+shift+w [, select a wizard —
Create a new Edlipse product canfiguration
" ke (7 Felder
v Qualfied Name [5L File
b b 2 paste Chriy (@ Annotation Wizards:
4k B 3¢ pelete Delete @ Clss Jprodu X
0 .
> Remove from Gortext LA STEDIAT |G Enum 5 = Plugn Development
Buid Fath Ol e s e
Refactor Ble+Sht+T 9 packos
g Import... {7 Source Folder
A
B4 Expart... [Example...
2 Refresh F5 =
@] Refres| £ Other... cn [
Tlose Praject
Close Uneelated Projects o
Jaiidate I:Remm
Run As 3
Debug As » Up.
Profile As 3 I:
Banm
Team »
Compare With vl
Restors from Local Histary. . b L
b Development Taols 3
PDE Tools 3 @ < Back | Mext = | Finish Cancel LI
e » ptime | Extensians | Extension Peints | Bu
Saurce b 5] = Properties | 45 Servers] [pata Source Exp\urer] = Sn\ppeﬂ
Properties AliHEnter
T DS |'Resource ['path | Location | Tvpe |

Figure 8-6. Choosing to add a product configuration

2. Enter a name for the product file (GLScenes.product in this example). Make sure the
correct product is selected under “Use an existing product,” as shown in Figure 8-7.

Click Finish.

& New Product Configuration

Product Configuration

Create a new product configuration and initialize its content.

Enter or seleck the parent folder:

| chog.GLScenes

i - o

= chog.GlL5cenes

File name: | GLScenes. praduct

i~ Initialize the File content
" Create a configuration file with basic settings

o« Use an existing product: IchDS.GLScenes.product

€~ Use alaunch configuratian: I

Ll L«

@ < Back | s | Finish I

Caneel

Figure 8-7. Configuring a new product

216 CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

3. From the product editor, shown in Figure 8-8, click Synchronize to publish changes,
and then click Launch an Eclipse application to test the skeleton.

I Project: Explorer &3 = (= «lF chOB.GLScenes (ﬂ GLScenes.product £5 = =

05 | = Overview OB B® —

=] bJ ch0g. GLScenes
[H-E, IRE System Library [Javase-1 Product Definition
E Plug-in Dependencies This section describes general information about the product.

B icans Specify the name that appears in the kitle bar of the application.

(= META-INF Mame: Gl Scenes
1 build, properties
5] GLScenes product Specify the product identifier,

sl plugin.ml 10 ch0g,GL5cenes, product Iz‘

1"l splash, brp

Specify the product version,
Wersion: i.0.0

Specify the application to run when launching this product,

Application: | chid,GLScenes, application Iz‘
The product configuration is based on: @© plug-ins O features
Testing Exporting
1. gx"ncﬁr'ﬁﬁi;eé this configuration with the praduct's Use the Edlipse Product export wizard to package and export
defining plug-in. the product defined in this configuration.
2. Test the product by launching a runtime instance of it:
@ Launch an Eclipse application Ta export the product ta multiple platforms:
% Launch an Eclipse application in Debug mode 1. Install the RCP delca pack in the target platform,
2. List all the required Fragments on the Configuration e
page. LI

Overview] Configuration | Launching ‘ Splash | Branding ‘

Figure 8-8. The GLScenes product editor

Creating the Views

You must also create two views—Ilet’s call them CubesView and ChartView—to host the scenes.
This is easy using the plug-in editor. Here is how:

1. Open the plug-in editor (plugin.xml).

2. Inthe Extensions tab, click Add. Then select the org.eclipse.ui.views extension point.
From the available templates, select Sample View, as shown in Figure 8-9. Click Next.

3. In the next wizard page, set both the view’s ID and class name to ch08.glscenes.
views.CubesView, and the name to GL Cubes View, as shown in Figure 8-10. Uncheck
the “Add the view to the java perspective” and “Add context help to the view” options.
Click Finish.

Note The wizard will create Java classes for the views with default code to display a table viewer. Make
sure you remove this code to get empty views for the OpenGL scenes.

CHAPTER 8 3

D GRAPHICS FOR RCP WITH OPENGL 217

=8

| -

L Project Explarer £5
05

=l 1= chi.GlScenes
[+l-Eh IRE System Library [JavasE-1
B Plug-in Dependencies
[sre
= icans
(= META-INF
[buid,properties
@ GLScenes, produck
‘ -@: plugin.xml
.j splash.bmp

4% chos.GLScenes 52

= Extensions

All Extensions

type filker text

= org.eclipse.ui.perspectives
~4= org.eclipse. core.runtime. products

Define extensions for this plug-in in the Follawing section.

<= grg.eclipse. core.runtime. applications

OBEO

Extension Details

=lolx|

Extension Point Selection

Create a new extansion from the Sample Yiew template.

Owerview |Dependencles ‘Runtlme lExtensmns] Extension Points | Build | MAMIFE!

) Tasks] = Properties | 4 Sarvers] [pata source Fx

FE_ Problems 23

0 ikems.

Figure 8-9. Adding a view extension point

Main View Settings

Chooge the way the new view will be added to the plug-in.

=10l x]

Java Package Mame:
Wiew Class Mame:
Yiew Mame:

Wiew Cateqgory ID:

| chi& glscenes views

I Cubeshiew

| GL Cubes View

| chog, GLScenes

Yigw Category Mame: | il Scenes Category

Select the viewer bvpe that should be hosted in the view:

Table viswer (can also be used For lists)

I~ Add the view to the java perspective

I~ Add context help to the view

™ Tres viewer

< Back |

Text = | Finish I

Cancel

Figure 8-10. Specifying the main view settings

Extension Points I Extension Wizards

Extension Paint filter: |

= org.eclipse. Ui themes
={l org.eclipse. ui. viewActions
=i arg.edlipse. ui views

=l avm aclines i warbinaSake

[show anly extension points From the required plug-ins

Extension Point Description: org.eclipse. ui.views
ino description available)

Available templates For org, eclipse.ui,views:

This template creates a workbench &
viem, The view is contributed bo th
workbench by creating a category.

The view can be opened by selectin +
L] 3

Cancel

0 < Back I Mext = I

Eimishy

~

218

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

4. Repeat steps 2 and 3 for the chart view. Set the ID, class name, and view name to
cho8.glscenes.views.ChartView, cho8.glscenes.views.ChartView, and 3D Chart,
respectively.

5. Both views must be added to the main perspective of the RCP application. Edit the
Perspective.java class and insert a reference to each view, as shown in the next
fragment:

public class Perspective implements IPerspectiveFactory {

public void createInitiallayout(IPagelLayout layout) {
String editorArea = layout.getEditorArea();
layout.setEditorAreaVisible(false);
layout.setFixed(true);

// Cubes scene
layout.addStandaloneView("cho8.glscenes.views.CubesView", true,
IPagelayout.LEFT, 0.5f, editorArea);

// 3D chart scene
layout.addStandaloneView("cho8.glscenes.views.ChartView", true,
IPagelayout.RICHT, 0.5f, editorArea);

}

This method hides the default editor area of the main window. It then adds both views.
The first argument to addStandaloneView is the view’s ID (as defined in steps 3 and 4). The
second argument is a Boolean indicating if the view’s title and related controls should be
shown. If you set this value to false, the view cannot be closed or dragged around the main
window. The third and fourth arguments indicate the position of the view and the per-
centage of real estate they use. The last argument is a reference to the default workbench
editor.

Test the RCP from the plug-in editor by clicking Synchronize to publish the changes,
and then clicking Launch an Eclipse application. When the application starts, it should
display two empty views. If it doesn’t, make sure the view IDs from the previous fragment
match the IDs defined in plugin.xml.

Adding JOGL Dependencies

Before we start writing the scene code, we must add JOGL to the plug-in classpath, as follows:

1. Download JOGL (from https://jogl.dev.java.net/) and place the JAR files in a folder
called 1ib within the plug-in root folder. The JARs call native libraries to access the
graphics hardware, which must be placed in the plug-in root folder. Your file system
should look like Figure 8-11.

2. Open the project plugin.xml and click the Runtime tab. Under Classpath, add the JOGL
JARs to the plug-in classpath, as shown in Figure 8-12.

B2 cho8.GLScenes

[#[ma gluegen-rt.jar

loa jogl, jar

los worldwind-050,jar
B, JRE System Library [JavasE-1.6]
B4, Plug-in Dependencies
[sre

“[=- icons

= lib

= META-INF

---- | build, properties

""" 5| GLScenes. product

""" gluegen-rt.dl

""" jogl_awt. dil

""" jogl_cg.dl

""" jogl.dil

----- libgluegen-rt.so

---- libjogl_awt.so

----- libjogl_cg.so

---- libjogl.sa

e T - T
(2 S E A E S b E g K

Figure 8-11. GLScenes file system

4 chD8.GLScenes &4

CHAPTER 8

=0

3D GRAPHICS FOR RCP WITH OPENGL

= Runtime

Exported Packages

times.

Enumerate all the packages that this plug-in exposes to
clients, all other packages will be hidden from clients at all

Remayve
Properties...

Calculate Uses

Total: 0

OHLHE®

Package Yisibility (Eclipse 3.1 or later)

‘Wwhen the runtime is in strick mode, the
selected package is:

O visible to downstream plug-ins

O hidden from all plug-ins except:

Classpath

Specify the libraries and folders that
constitute the plug-in classpath, I
unspecified, the classes and resources are
assumed to be at the root of the plug-in,

verview |Dependencies | Runtime | Extensions | Extension Points | Bui JMF | plugin.xml | build. properties
o] i D dencies | Runti Extensi Extension Points | Build | MANIFEST.MF | plugi || build i

Figure 8-12. Classpath dependencies for the GLScenes project

219

220

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

Creating the Wire Cubes Scene

Our first example is the simple wire cubes scene shown in Figure 8-13. This requires a base
class (GLScene), which encapsulates common behavior, and a child scene class (CubeScene),
which draws the actual wire cubes.

] OpentlL Cubes

Figure 8-13. Wire cubes scene

Creating the Base Scene Class (GLScene)

GLScene is the base scene class from which both OpenGL scenes inherit. Its role is to encapsu-
late common behavior and to get things rolling with basic initialization. We first need to create
anew scene owned by the specified parent component, as follows:

public class GLScene {

private GLCanvas canvas;

public GLScene(Composite parent) {
GLData data = new GlLData();

this.canvas = new GLCanvas(parent, SWT.NO BACKGROUND, data);

Within the GLScene constructor, we first initialize the pixel format attributes of the GL
drawable using GLData (see Table 8-1, earlier in the chapter).

GLData data = new GlLData();
data.depthSize = 1;
data.doubleBuffer = true;

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

Next, we add a listener to receive notifications when the control is resized or moved by
using the GLCanvas addControllListener method:

this.canvas.addControlListener(new ControlAdapter() {

};

public void controlResized(ControlEvent e) {
resizeScene();

}

We also add a listener to receive notifications when the control is disposed of, using the
GLCanvas addDisposelistener method:

this.canvas.addDisposelistener(new Disposelistener() {

};

public void widgetDisposed(DisposeEvent e) {
dispose();
}

Next, we initialize the scene by calling the methods initGLContext and initGL:

protected void initGLContext() {
this.canvas.setCurrent(); // Activate the rendering context
context = GLDrawableFactory.getFactory().createExternalGLContext();

}

protected void initGL() {

GL
//

gl.
gl.
gl.

//

gl.
gl.

}

gl = context.getGL ();

Black background

glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glClearDepth(1.0f);
glDepthFunc(GL.GL_LESS);

Enable depth test and shading model
glEnable(GL.GL_DEPTH_TEST);
glShadeModel (GL.GL_SMOOTH);

The initGLContext method creates a drawing context, GLContext, which is an abstraction for
all drawing operations. It is the critical object that provides access to the entire OpenGL specifica-
tion. To create a GLContext, we use GLDrawableFactory.getFactory.createExternalGLContext(),
which provides a virtual machine and a mechanism for creating GL drawables that is indepen-
dent of the operating system.

The initGL method initializes OpenGL. It is commonly used to set a background color and
shading model.

Note that all OpenGL functions use the following naming convention:

<library><function name><number of arguments><type of arguments>

221

222

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

For example, the previous snippet includes the function to set the GL canvas background:
gl.glClearColor(o.0f, 0.0f, 0.0f, 0.0f);

Here, gl refers to an OpenGL function. OpenGL Utility Toolkit (GLUT) functions will be
prefixed with glut, and GLU functions are prefixed with glu. The function name is ClearColor.
Following the name are the number and types of arguments. The complete scene class is
shown in Listing 8-1.

Listing 8-1. OpenGL Scene Base Class

public class GLScene {

private GLCanvas canvas;
private GLContext context;

/**
* Creates a new scene owned by the specified parent component.
*/
public GLScene(Composite parent) {
GlLData data = new GlLData();
data.depthSize = 1;
data.doubleBuffer = true;
this.canvas = new GLCanvas(parent, SWT.NO BACKGROUND, data);

this.canvas.addControllListener(new ControlAdapter() {
public void controlResized(ControlEvent e) {
resizeScene();
}
b;
this.canvas.addDisposelistener(new Disposelistener() {
public void widgetDisposed(DisposeEvent e) {
dispose();
}
Ds
this.init();
Rectangle clientArea = parent.getClientArea();
this.canvas.setSize(clientArea.width, clientArea.height);

}

Vak
* Initializes this scene, by calling the initGLContext
* and initGL methods.
*/
protected void init() {
this.initGLContext();
this.initGL();

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

Vaks

* Disposes of the GLContext. This method is called when the canvas is
* disposed.

*/

protected void dispose() {

}

Vass
* Returns whether or not this scene is disposed.
*/
public boolean isDisposed() {
return this.canvas.isDisposed();

}

Vass
* Causes the receiver to have the keyboard focus.
*/
public boolean setFocus() {
return this.canvas.setFocus();

}

Vak
* Provides direct access to this GLContext.
*/
public GLContext getGLContext() {
return this.context;

}

Vak
* Returns the drawable used by the GLContext to render GL scenes.
*/
protected Canvas getCanvas() {
return this.canvas;

}

public Display getDisplay() {
return this.canvas.getDisplay();

}

/**
* Renders the next scene.
*/
public void render() {
if (!this.canvas.isCurrent()) {
this.canvas.setCurrent();

}

223

224 CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

this.drawScene();
this.canvas.swapBuffers();

}

protected void initGLContext() {
this.canvas.setCurrent(); // Activate the rendering context
context = GLDrawableFactory.getFactory().createExternalGLContext();

}

/**
* Initializes OpenGL by creating a context, setting background,
* shading model, and such.
*/
protected void initGL() {
GL gl = context.getGL();
gl.glClearColor(o.0f, 0.0f, 0.0f, 0.0f);
gl.glClearDepth(1.0f);
gl.glDepthFunc(GL.GL_LESS);
gl.glEnable(GL.GL_DEPTH TEST);
gl.glShadeModel (GL.GL_SMOOTH);
gl.glHint(GL.GL_PERSPECTIVE CORRECTION HINT, GL.GL NICEST);
}

/**

* Corrects the size of the GL scene.

*/

protected void resizeScene() {
Rectangle rect = this.canvas.getClientArea();
context.makeCurrent();
GL gl = context.getGL();

gl.glviewport(0, 0, rect.width, rect.height);
gl.glMatrixMode(GL.GL_PROJECTION);
gl.glloadIdentity();
GLU glu = new GLU();
glu.gluPerspective(45.0f,
(float) rect.width / (float) rect.height, 0.1f, 100.0f);
gl.glMatrixMode(GL.GL_MODELVIEW);
gl.glloadIdentity();

context.release();

}

J¥*

* Draws the GL scene. The default implementation clears the scene and
* resets the view.
*/

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

protected void drawScene() {

GL gl = context.getGL();

gl.glClear(GL.GL_COLOR BUFFER BIT | GL.GL DEPTH BUFFER BIT);
gl.glloadIdentity();

Creating the Wire Cubes Scene Class

Listing 8-2 shows the actual wire cube scene (CubeScene). This scene inherits from GLScene
and overrides the method drawScene() to create three wire cubes (red, green, and blue) over a
white line loop floor (see Figure 8-13). CubeScene also overrides initGL() to define a line type
and blending operations.

Listing 8-2. Wire Cube OpenGL Scene Class

public class CubeScene extends GLScene {
private SceneGrip grip;

public CubeScene(Composite parent) {

}

super(parent);

this.grip = new SceneGrip(context);
this.grip.setOffsets(0.0f, 0.0f, -15.0f);
this.grip.setRotation(45.0f, -30.0f);

// Listen for mouse and keyboard events
this.getCanvas().addMouselistener(this.grip);
this.getCanvas().addMouseMovelistener(this.grip);
this.getCanvas().addListener (SWT.MouselWheel, this.grip);
this.getCanvas().addKeyListener(this.grip);

protected void initGL() {

super.initGL();
context.makeCurrent();
GL gl = context.getGL();

// Specify implementation specific hints

// GL_LINE_SMOOTH HINT: Indicates the sampling quality of lines.
// GL_NICEST: highest quality option.
gl.glEnable(GL.GL_LINE_SMOOTH);
gl.glHint(GL.GL_LINE SMOOTH HINT, GL.GL NICEST);
gl.glEnable(GL.GL_BLEND);

225

226 CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

// Define the operation of blending when it is enabled
gl.glBlendFunc(GL.GL SRC_ALPHA, GL.GL ONE MINUS SRC ALPHA);

context.release();

}

protected void drawScene() {
context.makeCurrent();
GL gl = context.getGL();

super.drawScene();
this.grip.adjust();

// Draw a white floor square
gl.glColor3f(1.0f, 1.0f, 1.0f);

gl.glBegin(GL.GL_LINE_LOOP);
gl.glvertex3f(-6.0f, -1.0f, -9.0f);
gl.glvertex3f(6.0f, -1.0f, -9.0f);
gl.glvertex3f(6.0f, -1.0f, 3.0f);
gl.glvertex3f(-6.0f, -1.0f, 3.0f);
gl.glEnd();

// Red wire cube
gl.glTranslatef(-3.0f, 0.0f, -6.0f);
gl.glColor3f(1.0f, 0.0f, 0.0f);
GLUT.wireCube(gl, 2.0f);

// Green wire cube
gl.glTranslatef(3.0f, 0.0f, 6.0f);
gl.glColor3f(o.0f, 1.0f, 0.0f);
GLUT.wireCube(gl, 2.0f);

// Blue wire cube
gl.glTranslatef(3.0f, 0.0f, -6.0f);
gl.glColor3f(o.0f, 0.0f, 1.0f);
GLUT.wireCube(gl, 2.0f);

context.release();

Look at the constructor carefully. The first line initializes the base class GLScene, which
in turn creates a GLCanvas (using the parent composite) and a GLContext. The helper class
SceneGrip is used to move the scene around using the keyboard or mouse (see the “Rotating
and Moving the Scene” section later in this chapter for details). Finally, listeners for the key-
board and mouse are added with SceneGrip.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

To draw the actual wire cubes, the helper class GLUT.wireCube() uses a series of line loops
to draw the front and back faces plus four connecting lines, as shown in Listing 8-3. (Note that
GLUT.wireCube has nothing to do with the GL GLUT library; it simply defines a class with a
similar name.)

Note GLUT is the OpenGL Utility Toolkit and provides support for: multiple windows for OpenGL rendering,
callback-driven events, input devices, timers, and utility routines to generate various solid and wire frame
objects. GLUT is not used in the sample scenes of this chapter.

Listing 8-3. Helper Class to Draw a Wire Cube

public class GLUT {
public static final void wireCube(GL gl, float size) {
float neg = -0.5f * size;
float pos = 0.5f * size;

// Front face
gl.glBegin(GL.GL_LINE_LOOP);
gl.glVertex3f(neg, neg, neg);
gl.glVertex3f(pos, neg, neg);
gl.glVertex3f(pos, pos, neg);
gl.glVertex3f(neg, pos, neg);
gl.glEnd();

// Back face
gl.glBegin(GL.GL_LINE LOOP);
gl.glVertex3f(neg, neg, pos);
gl.glVertex3f(pos, neg, pos);
gl.glVertex3f(pos, pos, pos);
gl.glVertex3f(neg, pos, pos);
gl.glEnd();

gl.glBegin(GL.GL_LINES);
gl.glvertex3f(neg, neg, neg);
gl.glvertex3f(neg, neg, pos);

gl.glvertex3f(pos, neg, neg);
gl.glvertex3f(pos, neg, pos);

gl.glvertex3f(pos, pos, neg);
gl.glvertex3f(pos, pos, pos);

gl.glvertex3f(neg, pos, neg);
gl.glvertex3f(neg, pos, pos);
gl.glEnd();

227

228

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

The wire cube is created by drawing front and back squares using a line loop
(GL.GL_LINE_LOOP). Then both squares are joined by lines through the vertices. A size
factor is used to compute the positions of the vertices.

Creating the 3D Chart Scene

Next, let’s create a more complex scene to draw a 3D chart with a series of cylinder bars and
axis panels, as shown in Figure 8-14. For the 3D chart scene, we will use display lists and GLU
functions.

OpenGL Chart |

Figure 8-14. 3D chart OpenGL scene

Increasing Performance with Display Lists

Display lists are all about performance. They provide a simple way of enhancing your OpenGL
application to make it run faster. Similar to an ordinary function in a computer program, a
display list is defined once, and then you can use it as many times as you want. A display list
stores a group of OpenGL commands so that they can be used repeatedly just by calling the
display list.

Display lists are created with glNewList. All subsequent commands are placed in the dis-
play list, in the order issued, until glEndList is called. glNewList has two arguments:

e list: A positive integer that becomes the unique name for the display list. Names can
be created and reserved with glGenLists and tested for uniqueness with glIslList.

¢ mode: A symbolic constant that can assume one of two values: GL_COMPILE, so com-
mands are merely compiled, or GL_COMPILE _AND EXECUTE, so commands are executed as
they are compiled into the display list.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 229

The 3D chart scene uses display lists to increase performance by creating a CompiledShape
class to encapsulate a display list, as shown in Listing 8-4. This compiled shape will make ren-
dering much faster the next time it is requested.

Listing 8-4. The CompiledShape Class Using Display Lists for Better Performance

public abstract class CompiledShape {
private int listIndex;
private GL gl;

public CompiledShape(GL gl) {
this.listIndex = gl.glGenLists(1);
this.gl = gl;

}

public int getlListIndex() {
return this.listIndex;

}

public void draw() {
gl.glCalllist(this.getlListIndex());
}

public void dispose() {
gl.glDeletelists(this.getlListIndex(), 1);
}

When the display list needs to be called, the draw() method is invoked. To delete
the display list, invoke dispose(). Listing 8-5 shows the Axis class, and Figure 8-15 shows the
rendered image.

Listing 8-5. 3D Chart Axis Class

private static class Axis extends CompiledShape {
private static float[] COLOR1 = new float[] { 0.6f, 0.6f, 0.6f,

0.3f };

private static float[] COLOR2 = new float[] { 1.0f, 1.0f, 1.0f,
1.0f };

private static float[] COLOR3 = new float[] { 0.6f, 0.0f, 0.0f,
1.0f };

public Axis(GL gl, float x, float y, float z) {
super(gl);

230 CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

New display list

.glNewList(this.getlListIndex(), GL.GL COMPILE);

.glBegin(GL.GL_QUADS);
.glColor4afv(FloatBuffer.wrap(COLORL));

Two intersecting four-sided polygons (GRAY)

.glvertex3f(o.of, vy, z);
.glvertex3f(o.of, -1.0f, z);
.glvertex3f(o.of, -1.0f, -1.0f);
.glvertex3f(o.of, y, -1.0f);

Second polygon

.glvertex3f(-1.0f, y, 0.0f);
.glvertex3f(-1.0f, -1.0f, 0.0f);
.glvertex3f(x, -1.0f, 0.0f);
.glvertex3f(x, y, 0.0f);
.glEnd();

Polygon panel divider lines (WHITE)

.glColor4afv(FloatBuffer.wrap(COLOR2));

for (float a = 1.0f; a < y; a += 1.0f) {

gl.glBegin(GL.GL_LINE_STRIP);
gl.glvertex3f(0.1f, a, z);
gl.glvertex3f(0.1f, a, 0.1f);
gl.glvertex3f(x, a, 0.1f);
gl.glEnd();

X, Y, Z axis lines (RED)

.glColor4afv(FloatBuffer.wrap(COLOR3));
.g1Begin(GL.GL_LINE STRIP);
.glvertex3f(0.1f, 0.0f, z);
.glvertex3f(0.1f, 0.0f, 0.1f);
.glvertex3f(x, 0.0f, 0.1f);

.glEnd();

.glBegin(GL.GL_LINES);
.glvertex3f(o.1f, -1.0f, 0.1f);
.glvertex3f(o.1f, y, 0.1f);
.glEnd();

.glEndList();

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

OpenGL Chart

Figure 8-15. Axis panels for the 3D chart

Using GLU

GLU consists of a number of functions that use the base OpenGL library to provide higher-
level drawing routines than the more primitive routines that OpenGL provides, generally in
more human-friendly terms than the routines supplied by OpenGL. GLU is usually distributed
with the base OpenGL package. It includes functions to perform the following:

* Map between screen and world coordinates

¢ Generate texture mipmaps, which are precalculated, optimized collections of bitmap
images that accompany a main texture, and are intended to increase rendering speed

e Draw quadrics, which are n-dimensional surfaces described by a polynomial such as a
cylinder, sphere, or paraboloid

¢ NURBS, which stands for nonuniform rational basis spline and is a mathematical
model used in graphics for generating and representing curves and surfaces

¢ Tessellate polygonal primitives
¢ Interpret OpenGL error codes

¢ Extend transformation routines

Note In GLU, these functions can be easily recognized because they all have glu as a prefix.

231

232

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

GLU also provides additional primitives for use in OpenGL applications, including
spheres, cylinders, and disks.

Creating the BarValue Class

The BarValue class, shown in Listing 8-6, represents an element in the 3D chart. It uses the
display list functionality provided by CompiledShape and utilities from GLU.

Listing 8-6. The BarValue Class for the 3D Chart Scene

private static class BarValue extends CompiledShape {

public static final float RADIUS = 1.0f;
public static GLUquadric QUADRIC;

public BarValue(GL gl, float value) {
super(gl);

gl.glNewList(this.getlListIndex(), GL.GL COMPILE);
gl.glRotatef(-90.0f, 1.0f, 0.0f, 0.0f);

glu.gluCylinder(BarValue.QUADRIC, RADIUS, RADIUS, value,
32, 1);
glu.gluDisk(BarValue.QUADRIC, 0.0, RADIUS, 32, 32);

gl.glTranslatef(0.0f, 0.0f, value);
glu.gluDisk(BarValue.QUADRIC, 0.0, RADIUS, 32, 32);

gl.glTranslatef(0.0f, 0.0f, -value);
gl.glRotatef(90.0f, 1.0f, 0.0f, 0.0f);
gl.glEndList();

Each bar value is a 3D cylinder along the z axis drawn using gluCylinder. The base of the
cylinder is placed at z = 0, and the top at z = height. Like a sphere, a cylinder is subdivided
around the z axis into slices, and along the z axis into stacks. The parameters of gluCylinder
are as follows:

quad: Specifies the quadrics object (GLUquadric).

base: Specifies the radius of the cylinder at z = 0.

top: Specifies the radius of the cylinder at z = height.

height: Specifies the height of the cylinder.

slices: Specifies the number of subdivisions around the z axis.

stacks: Specifies the number of subdivisions along the z axis.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

Creating the ChartScene Class

The ChartScene class is shown in Listing 8-7. Its job is to draw the axis and the bar values.

Listing 8-7. The ChartScene Class for the 3D Chart Scene
Vs
* A 3D cylinder chart.
*/
public class ChartScene extends GLScene {
public static final int ROW_LENGTH = 6;
public static final int CHART COUNT = 4;

private static final float[][] COLOR = { { 1.0f, 1.0f, 0.0f, 0.7f },
{ 0.0of, 1.0f, o.0f, 0.7f }, { o0.0f, o.0f, 1.0f, 0.7 },
{ 1.0f, o.0f, 1.0f, 0.7f }, };

private BarValue[][] chart;
private Axis axis;
private SceneGrip grip;

static GLU glu = new GLU();

public ChartScene(Composite parent) {
super(parent);

this.grip = new SceneGrip(context);
this.grip.setOffsets(-3.25f, 3.25f, -30.5f);
this.grip.setRotation(45.0f, -30.0f);

this.getCanvas().addMouselistener(this.grip);
this.getCanvas().addMouseMovelistener(this.grip);
this.getCanvas().addListener (SWT.Mouselheel, this.grip);
this.getCanvas().addKeyListener(this.grip);

}

protected void initGL() {
super.initGL();

context.makeCurrent();
GL gl = context.getGL();

BarValue.QUADRIC = glu.gluNewQuadric();
gl.glBlendFunc(GL.GL SRC_ALPHA, GL.GL ONE MINUS SRC ALPHA);
gl.glEnable(GL.GL_BLEND);

gl.glEnable(GL.GL_LINE_SMOOTH);
glu.gluQuadricNormals(BarValue.QUADRIC, GLU.GLU SMOOTH);

233

234 CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

gl.gllightfv(GL.GL_LIGHT1, GL.GL DIFFUSE, new float[] { 1.0f,
1.0f, 1.0f, 1.0f }, 0);

gl.gllightfv(GL.GL_LICHT1, GL.GL_AMBIENT, new float[] { 0.5f,
0.5f, 0.5f, 1.0f }, 0);

gl.gllightfv(GL.GL_LICHT1, GL.GL_POSITION, new float[] { -50.f,
50.0f, 100.0f, 1.0f }, 0);

gl.glEnable(GL.GL_LIGHT1);

gl.glEnable(GL.GL_LIGHTING);
gl.glEnable(GL.GL COLOR MATERIAL);
gl.glColorMaterial(GL.GL_FRONT, GL.GL AMBIENT AND DIFFUSE);

this.axis = new Axis(context.getGL(), 15.0f, 9.0f, 11.0f);
this.chart = new BarValue[CHART COUNT][ROW_LENGTH];
double slice = Math.PI / ROW_LENGTH;

// Initialize chart values

for (int i = 0; i < this.chart.length; ++i) {
BarValue[] value = this.chart[i];
double shift = i * Math.PI / 4.0;

for (int j = 1; j <= value.length; ++j) {
value[j - 1] = new BarValue(context.getGL(),
(float) (8.0 * Math.abs(
Math.sin(slice * j - shift))));
}
}

context.release();

}

protected void drawScene() {
context.makeCurrent();
GL gl = context.getGL();

super.drawScene();
this.grip.adjust();

gl.gllineWidth(1.0f);

// Draw axis
this.axis.draw();

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

gl.glTranslatef(BarValue.RADIUS, 0.0f, BarValue.RADIUS);

// Draw bar values

for (int i = 0; i < this.chart.length; ++i) {
BarValue[] value = this.chart[i];
gl.glColor4fv(COLOR[i % COLOR.length], 0);

for (int j = 0; j < value.length; ++j) {
value[j].draw();
gl.glTranslatef(2.0f * BarValue.RADIUS, 0.0f, 0.0f);
}

gl.glTranslatef(-2.0f * BarValue.RADIUS * value.length
, 0.0f ,2.0f * BarValue.RADIUS + 0.5f);

}

context.release();

}

public void dispose() {
glu.gluDeleteQuadric(BarValue.QUADRIC);

for (int i = 0; i < this.chart.length; ++i) {
BarValue[] value = this.chart[i];

for (int j = 0; j < value.length; ++j) {
value[j].dispose();
value[j] = null;

}

this.axis.dispose();
super.dispose();

ChartScene extends GLScene to perform the following tasks:

e Create a quadrics object using gluNewQuadric.
¢ Define the operation of blending glBlendFunc.

¢ Specify what kind of normals are desired for quadrics rendered with gluQuadricNormals.
GLU_SMOOTH is the default; one normal is generated for every vertex of a quadric.

235

236

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

¢ Set light source parameters with glLightfv, which has the parameters of light number
and light name. Lights are identified by symbolic names of the form GL_LIGHTn, where n
ranges from 0 to the value of GL_MAX_LIGHTS - 1. The light name specifies a light source
parameter. The following are common values:

e GL_AMBIENT: Used to define four integer or floating-point values that specify the
ambient RGBA intensity of the light.

e GL_DIFFUSE: Used to define four integer or floating-point values that specify the dif-
fuse RGBA intensity of the light.

e GL_POSITION: Used to define four integer or floating-point values that specify the
position of the light in homogeneous object coordinates.

Tip Lighting is initially disabled. To enable and disable lighting calculation, call glEnable and glDisable
with the argument GL_LIGHTING.

¢ Specify which material parameters track the current color using glColorMaterial.

The final 3D chart scene is shown in Figure 8-16.

OpenGlL Chart

Figure 8-16. 3D cylinders drawn using gluQuadric

Rotating and Moving the Scene

With the scene created, the next step is to allow some user interaction—moving and rotat-
ing the scene with the mouse or keyboard. This is accomplished with the SceneGrip class.
SceneGrip extends org.eclipse.swt.events.MouseAdapter to deal with MouseEvents, and

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

override the methods mouseDown and mouseUp to deal with the events generated as mouse but-
tons are pressed. SceneGrip also implements the following listeners:

e MouseMovelistener: Provides the method mouseMove to deal with the events that are
generated as the mouse pointer moves.

e KeylListener: Provides the methods keyPressed and keyReleased to deal with the events
that are generated as keys on the keyboard are pressed.

The next fragment is taken from the CubeScene class in Listing 8-7 and demonstrates how
to add mouse and key listeners. ChartScene starts by creating an instance of SceneGrip with a
GL context as an argument. Because ChartScene inherits from GLScene (which initializes the
GLContext and creates a GLCanvas), it can get the GLCanvas instance, which in turn is used to
add mouse and key listeners with a SceneGrip as an argument.

public ChartScene(Composite parent) {
super(parent);

this.grip = new SceneGrip(context);
this.grip.setOffsets(-3.25f, 3.25f, -30.5f);
this.grip.setRotation(45.0f, -30.0f);

this.getCanvas(
this.getCanvas(
this.getCanvas(
this.getCanvas(

) .addMouseListener(this.grip);

) .addMouseMovelistener(this.grip);
).addListener (SWT.MouseWheel, this.grip);
).addKeylListener(this.grip);

}

As the mouse moves, the mouseMove () method in SceneGrip will be invoked, and when a
key is pressed or released, the appropriate method will be invoked.

Note sceneGrip also listens for mouse wheel events using addListener (SWT.MouseWheel, Listener)
and implements the Listener.handleEvent(Event) method to deal with the mouse and key events.

Listing 8-8 shows a SceneGrip class capable of moving or rotating the scene with the
mouse or keyboard.

Listing 8-8. SceneGrip.java, to Control Mouse and Keyboard Movement of a GL Scene

public class SceneGrip extends MouseAdapter
implements MouseMovelistener, Listener, KeyListener {
private float xrot;
private float yrot;
private float zoff;
private float xoff;
private float yoff;
private float xcpy;

237

238 CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

private float ycpy;
private boolean move;
private int xdown;
private int ydown;
private int mouseDown;

private GLContext context;

public SceneGrip(final GLContext context) {
this.init();
this.context = context;

}

protected void init() {
this.xrot = this.yrot = 0.0f;
this.xoff = this.yoff = 0.0f;
this.zoff = -8.0f;

}

public void mouseDown(MouseEvent e) {
if (++this.mouseDown == 1) {
if ((this.move = e.button == 3)) {
this.xcpy = xoff;
this.ycpy = yoff;
((Control) e.widget).setCursor(e.widget.getDisplay()
.getSystemCursor (SWT.CURSOR_HAND));
} else {
this.xcpy = xrot;
this.ycpy = yrot;
((Control) e.widget).setCursor(e.widget.getDisplay()
.getSystemCursor (SWT.CURSOR SIZEALL));

}

this.xdown = e.x;
this.ydown = e.y;

}

public void mouseUp(MouseEvent e) {
if (--this.mouseDown == 0) {
((Control) e.widget).setCursor(e.widget.getDisplay()
.getSystemCursor (SWT.CURSOR_ARROW)) ;

}

public void mouseMove(MouseEvent e) {
Point p = ((Control) e.widget).getSize();

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 239

if (this.mouseDown > 0) {
int dx = e.x - this.xdown;
int dy = e.y - this.ydown;

if (this.move) {
yoff = this.ycpy + ((zoff + 1.0f) * dy) / (2.0f * p.y);
xoff = this.xcpy - ((zoff + 1.0f) * dx) / (2.0f * p.x);
} else {
xrot = this.xcpy + dy / 2.0f;
yrot = this.ycpy + dx / 2.0f;

}

public void handleEvent(Event event) {
this.zoff += event.count / 6.0f;

}

public void keyPressed(KeyEvent e) {
switch (e.keyCode) {
case SWT.ARROW_UP:
if ((e.stateMask & SWT.CTRL) != 0) {
this.xrot -= 0.5f;
} else {
this.yoff += 0.05f;
}
break;
case SWT.ARROW_DOWN:
if ((e.stateMask & SWT.CTRL) != 0) {
this.xrot += 0.5f;
} else {
this.yoff -= 0.05f;
}
break;
case SWT.ARROW_LEFT:
if ((e.stateMask & SWT.CTRL) != 0) {
this.yrot -= 0.5f;
} else {
this.xoff -= 0.05f;
}
break;
case SWT.ARROW RIGHT:
if ((e.stateMask & SWT.CTRL) != 0) {
this.yrot += 0.5f;
} else {
this.xoff += 0.05f;
}

240 CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

break;

case SWT.PAGE_UP:
this.zoff += 0.05f;
break;

case SWT.PAGE_DOWN:
this.zoff -= 0.05f;
break;

case SWT.HOME:
this.init();
break;

}

public void keyReleased(KeyEvent e) {
}

public void adjust() {
GL gl = context.getGL();
gl.glTranslatef(this.xoff, this.yoff, this.zoff);
gl.glRotatef(this.xrot, 1.0f, 0.0f, 0.0f);
gl.glRotatef(this.yrot, 0.0f, 1.0f, 0.0f);

}

public void setOffsets(float x, float y, float z) {
this.xoff = x;
this.yoff = y;
this.zoff = z;

}

public void setRotation(float x, float y) {
this.xrot = x;
this.yrot = y;

Let’s look at the public methods of SceneGrip in more detail:

e adjust: Translates the scene to its initial x, y, z offsets, thus centering it when the pro-
gram starts. It also rotates the scene to the x, y values. The adjust method will be called
many times by the scene refresher to update the scene’s coordinates.

¢ keyPressed: Listens for the arrow keys and updates the x, y offsets of the scene. It also
updates the z offset when the PageUp and PageDown keys are pressed. When Home is
pressed, the scene is reinitialized.

* mouseDown: Changes the mouse cursor to a hand and saves the x, y coordinates for the
next refresh.

* mouseMove: Updates the x, y, z coordinates based on the pointer position.

* mouseUp: Returns the cursor shape to the arrow.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

Refreshing the Scene

The last piece of this puzzle is a class used to refresh the scene. Refresher is a thread that
renders the scene in the background based on a delay interval. Refresher takes a GLScene in
its constructor and calls render () within its run() method, as shown in Listing 8-9.

Listing 8-9. The Scene Refresher Class

public class Refresher implements Runnable {
public static final int DELAY = 100;

private GLScene scene;

public Refresher(GLScene canvas) {
this.scene = canvas;

}

public void run() {
if (this.scene != null 8& !this.scene.isDisposed()) {
this.scene.render();
this.scene.getDisplay().timerExec(DELAY, this);

Within the run() method, Refresher fires a timer interval to call itself, thus effectively
refreshing the scene at the specified times—every 100 milliseconds in this example.

Putting the Scene into an RCP View

To render a GLScene in RCP, you need to use a view. As you saw in the previous section,
GLScene takes an SWT composite as the parent control. Thus, you just need to override the
createPartControl() method of the View class to add the GLScene, as shown in Listing 8-10.

Listing 8-10. Adding GLScene to an RCP View

public class GLCubesView extends ViewPart {
public static final String ID = GLCubesView.class.getName();

private GLScene scene;

/**
* This is a callback that will allow us to create the viewer and
* initialize it.
*/
public void createPartControl(Composite parent) {
this.scene = new CubeScene(parent);
new Refresher(this.scene).run();

24

242

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

Vaks
* Passing the focus request to the viewer's control.
*/
public void setFocus() {
this.scene.setFocus();

}

Notice how the Refresher thread fits into the big picture. Without it, the scene won'’t be
repainted, and nothing will work as expected.

So far, I have attempted to explain in the simplest terms the complexities of OpenGL with-
out going into too much detail. The next section puts some of these concepts to the test with a
real-life application.

Note OpenGL can be a daunting subject. Check out the tutorials at http://opengl.j3d.org/tutorials/
index.html for both beginner and seasoned developers.

Hands-on Exercise: Build a Powerful 3D Earth
Navigator

In this exercise, you will build a powerful, real-life application using JOGL and the National
Aeronautics and Space Administration (NASA) World Wind SDK. The application is a 3D Earth
navigator, similar to Google Earth. It uses the following components:

¢ The World Wind Java (WWJ) SDK, which allows developers to embed World Wind’s
geospatial visualization technology (which uses NASA’s geospatial data) in their own
applications®

® The Yahoo! Geocoding API, which allows you to find the specific latitude and longitude
for an address®

Before we start building the application, we need to review some WW] basics.

WW] Basics

The WWJ SDK is a 3D graphics globe built on top of JOGL. WWJ uses a map tiling system and a
Cartesian coordinate system to divide the sphere in rectangular sections and display textures
(images) on top.” Each section has a latitude/longitude bounding box.

5. The World Wind Java SDK is available from http://worldwind.arc.nasa.gov/java/index.html.

6. Yahoo! Maps Web Services — Geocoding API is available from http://developer.yahoo.com/maps/rest/
Vi/geocode.html.

7. For more information about the World Wind tiling system, see http://www.worldwindcentral.com/
wiki/Tiling System. For more information about the WW]J coordinate system, see http://waw.
worldwindcentral.com/wiki/Coordinate System.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

Behind the scenes, WWJ fetches images from NASA dataset servers and projects them
onto the sphere. When the user zooms in, the number of tiles quadruples based on a com-
puted zoom level. Because the number of tiles at high resolutions can be huge, each tile is
cached on disk for performance.

The most important dataset in WW]J is called the Blue Marble, which displays NASA’s
imagery of the Earth as a whole, provided by the Earth Observatory (with a resolution of
1 kilometer per pixel). Figure 8-17 shows an example of a World Wind Earth view image. Other
datasets include the following:

¢ I-cubed Landsat 7, a global land cover facility from the University of Maryland,
Institute for Advanced Computer Studies (resolution of 15 meters per pixel)

¢ U.S. place names from the USGS Geographic Names Information System (GNIS)

* World place names from the National Geospatial-Intelligence Agency

1 Earth View

Charlatte

200 Km

[E— |

min-62m max 348m

Figure 8-17. World Wind Earth view

World Wind System Architecture

The World Wind API is defined primarily by interfaces. This allows third-party developers to
selectively replace components with alternative components. At the core of the WW]J class
hierarchy is WorldWindowGLCanvas, which is a subclass of GLCanvas, an AWT component. The
following are the major interfaces:

e WorldWindow: Represents the highest level interface with the OpenGL canvas provided
for Swing/AWT.

¢ Globe: Represents a planet’s shape and terrain.

243

244

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

e Layer: Applies imagery or information to a globe.

e Model: Aggregates a globe and the layers to apply to it. The application typically inter-
acts with the model to create a globe of the Earth, Mars, or whatever the model needs
to be. It can even be the universe.

¢ SceneController: Controls the rendering of a model. It is also responsible for giving the
scene update, timing, and events, as well as for mapping user actions.

¢ View: Controls the user’s view of the model.

In a typical usage, a developer would associate a Globe object and several custom Layer
objects with a Model object. The Model object is then passed to a SceneController object, which
displays the globe and its layers in a WorldWindow. The SceneController subsequently manages
the display of the globe and its layers in conjunction with an interactive View interface that
defines the user’s view of the planet. The next fragment demonstrates this technique:

private static final WorldWindowGLCanvas world =
new WorldWindowGLCanvas();

/**
* Initialize the default WW layers
*/
static {
Model m = (Model) Worldwind
.createConfigurationComponent (AVKey.MODEL CLASS NAME);

m.setShowWireframeExterior(false);
m.setShowWireframeInterior(false);
m.setShowTessellationBoundingVolumes(false);

world.setModel(m);

// Add Terrain Profiler Layer
TerrainProfilelayer tp = new TerrainProfilelayer();

tp.setEventSource(world);
tp.setStartLatlon(LatLon.fromDegrees(0, -10));
tp.setEndLatLon(LatLon.fromDegrees(0, 65));
tp.setFollow(TerrainProfileLayer.FOLLOW CURSOR);

world.getModel().getlLayers().add(tp);

All data is persisted to the local computer by the file cache. The file cache manages
multiple disk storage locations and is accessible through the World Wind singleton.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

Embedding WWJ into Eclipse

As noted earlier, WW]J’s WorldWindowGLCanvas is a subclass of GLCanvas, which is an AWT com-
ponent. The Swing/AWT nature of WWJ is a problem for Eclipse applications because Eclipse
uses the SWT, which is incompatible with AWT. Furthermore, AWT and JOGL are tightly inte-
grated, making a port of the AWT interfaces to SWT very difficult.

To overcome this problem, the folks at the Eclipse foundation developed the SWT/AWT
Bridge, which allows you to embed AWT/Swing components into SWT. The bridge has been
part of SWT since version 3.0, and it is a very simple API located in the package org.eclipse.
swt.awt.

The SWT/AWT Bridge is the key component required to embed the AWT-based World
Wind 3D globe into an Eclipse application via SWT.

Setting Up the Earth Navigator Project

We’'re now ready to start building our 3D Earth navigator. The first thing we need is an RCP
application and product skeleton to host the following views:

¢ Navigator (NavView) contains a list of available WW]J layers and a simple UI to perform
location searches using the Yahoo Geocoding interface.

¢ Earth (GlobeView) displays the WWJ 3D Earth.

These views can be seen in Figure 8-18.

[Mavigator Yiew [Earth view

¥! GeoSearch

Paris France |

Paris {Paris), France, FR

Globe Lavers (Detroftal, -,

Stars

Atmosphere

Fog

MASA Blue Marble Image
ElusMarble (WS 05/2004
i-cubed Landsat

MAIF California

USES Urban Area Ortha
Place Mames

wWoaorld Map

Scale bar

Compass

O Terrain profile graph

Indianapolis Columbus

Nashyille

200 Km

Figure 8-18. Navigator and globe views

245

246 CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

Creating the RCP Application

Follow these steps to create the skeleton project:

1. From the main Eclipse menu, select File » New » Project » Plug-in Development »
Plug-in Project. Click Next.

2. Enter a project name (ch08.0penGL). Click Next.

3. On the Plug-in Content page, make sure “This plug-in will make contributions to the
UT” is selected and “Would you like to create a rich client application?” is set to Yes.

4. Select the Hello RCP template, and then click Next.

5. On the Basic RCP Application page, set the title to Earth navigator and check the Add
branding option. Then click Finish.

Creating a Production Configuration

Now create a product configuration to launch the RCP application:

1. Right-click the new project folder (ch08.0penGL) and select New » Other » Plug-in
Development » Product Configuration. Click Next.

2. Enter a file name for the product file (OpenGL). Make sure the correct product is selected
under “Use an existing product.” Click Finish.

3. From the product editor, click Synchronize to publish the changes, and then click
Launch an Eclipse application to test the skeleton.

Tip When you launch an Eclipse application created with the wizard from the product editor, the default,
the window size will be 400 by 400 pixels. You can remove the line configurer.setInitialSize(new
Point(400, 300)) inthe ApplicationWorkbenchiWindowAdvisor class for a bigger window.

Creating the Navigator and Earth View Skeletons
The layer navigator and Earth views must be created using extension points, as follows:
1. Open the plug-in editor (plugin.xml).

2. On the Extensions tab, click Add. Then select the org.eclipse.ui.views extension
point. From the available templates, select Sample View. Click Next.

3. Set the view’s ID to ch08.opengl.views.GlobeView, the class name to ch08.opengl.
views.GlobeView, and the name to Earth. Uncheck the “Add the view to the java per-
spective” and “Add context help to the view” options. Click Finish.

4, Repeat steps 2 and 3 for the navigator view. Set the ID to ch08.opengl.views.NavView,
class to ch08.opengl.views.NavView, and view name to Layer Navigator.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

With the skeleton views created, the default perspective must be updated to display them.
Edit the class ch08.opengl.Perspective to insert the views, as shown in the next fragment.

public class Perspective implements IPerspectiveFactory {

public void createInitiallayout(IPagelayout layout) {
String editorArea = layout.getEditorArea();
layout.setEditorAreaVisible(false);
layout.setFixed(true);

IFolderLayout toplLeft = layout.createFolder("toplLeft",
IPagelayout.LEFT, 0.22f, editorArea);

toplLeft.addView("cho8.opengl.views.NavView");

IFolderlLayout topRight = layout.createFolder("topRight",
IPagelayout.RICHT, 0.3f, editorArea);
topRight.addView("cho8.opengl.views.GlobeView");

Refresh the product configuration and launch the application. You should now have an
RCP with two views to host the WW]J layers and 3D Earth. Before we create these views, we
need to include the WWJ dependencies in the project.

Adding WWJ Dependencies

World Wind JARs and native libraries must be added to the project so the 3D globes can be
used. First, add the JARs to the classpath, as follows:

1. Create a folder called 1ib within the main project folder to host the WWJ JAR archives.
To do this, right-click the main folder and select New » Folder. Enter 1ib as the name,
and then click Finish.

2. Download the World Wind Java SDK from NASA (http://worldwind.arc.nasa.gov/
java/index.htm). Unzip the SDK and copy the JARs (gluegen-rt.jar, jogl.jar, and
worldwind.jar) to the 1ib folder you just created.

3. Open the project plugin.xml. Click the Runtime tab. Under Classpath, add the JARs you
downloaded to the classpath. This is required so the plug-in will be able to see the WW]J
archives.

This will add WW]J to the classpath of the plug-in. However, WW] includes native libraries,
which must be included to the plug-in classpath via a fragment, as follows:

1. Create a fragment project to host WW]J native libraries. To do this, from the main
Eclipse menu, select File » New » Project » Plug-in Development » Plug-in Project.
Click Next.

2. Enter a name (ch08.0penGL.Natives). Click Next.

247

248

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

3. On the Fragment Content page, set the host plug-in ID to cho8.0penGL. Click Finish.

4, Copy all the native libraries (DLLs in windows; SOs in Linux) to the fragment folder.

Tip The host plug-in ID indicates the plug-in to which the fragment will attach its classpath at runtime.
Thus, the fragment native libraries will be included to the cho8.0penGL plug-in classpath at runtime.

At this point, all the required WWJ dependencies should be in place for the RCP application.

Creating the Earth Navigator View

With the SWT/AWT Bridge already in SWT, embedding a WW]J 3D Earth globe within your view
is a snap. Listing 8-11 demonstrates a basic Eclipse view to perform this task.

Listing 8-11. Eclipse View for the WWJ Earth Globe

public class GlobeView extends ViewPart {
public static final String ID = GlobeView.class.getName();

private static final WorldWindowGLCanvas world = new WorldWindowGLCanvas();

Vass
* Initialize the default WW layers
*/
static {
initWorldWindLayerModel();
}

/**
* This is a callback that will allow us to create the viewer and
* initialize it.
*/
public void createPartControl(Composite parent) {
// Build GUI:
/7 top(SWT)->Frame(AWT)->Panel (AWT)->WorldWindowGLCanvas (AWT)
Composite top = new Composite(parent, SWT.EMBEDDED);
top.setlayoutData(new GridData(GridData.FILL BOTH));

java.awt.Frame worldFrame = SWT_AWT.new_Frame(top);
java.awt.Panel panel = new java.awt.Panel(
new java.awt.Borderlayout());

}

/*
* Initialize WW model with default layers

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

worldFrame.add(panel);
panel.add(world, BorderLayout.CENTER);

// Max parent widget
parent.setlayoutData(new GridData(GridData.FILL BOTH));

static void initWorldWindLayerModel() {

}

/%K

Model m = (Model) WorldWind
.createConfigurationComponent (AvVKey .MODEL CLASS NAME);

m.setShowWireframeExterior(false);
m.setShowWireframeInterior(false);
m.setShowTessellationBoundingVolumes(false);

world.setModel(m);

// Add Terrain Profiler
TerrainProfilelayer tp = new TerrainProfilelayer();

tp.setEventSource(world);
tp.setStartlLatlon(LatLon.fromDegrees(0, -10));
tp.setEndLatlon(LatLon.fromDegrees(0, 65));
tp.setFollow(TerrainProfilelLayer.FOLLOW _CURSOR);

world.getModel().getLayers().add(tp);

* Passing the focus request to the viewer's control.

public void setFocus() {

}

public void repaint() {

}

world.repaint();

@0verride
public void dispose() {

}

super.dispose();

249

250

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

public void flyTo(Latlon latlon) {
View view = world.getView();
Globe globe = world.getModel().getGlobe();

view.applyStateIterator(FlyToOrbitViewStateIterator
.createPanToIterator((OrbitView) view, globe,
new Position(latlon, 0) // bbox
, Angle.ZERO // Heading
, Angle.ZERO // Pitch
, 3e3) // Altitude/Zoom (m) Angle.ZERO.degrees)
)5
}

public Layerlist getlayers() {
return world.getModel().getlayers();
}

The createPartControl() method starts by creating a top SWT component, which will use
the bridge to embed the WWJ Swing OpenGL canvas:

Composite top = new Composite(parent, SWT.EMBEDDED);
top.setlayoutData(new GridData(GridData.FILL BOTH));

Next, within the top SWT component, a child AWT frame is created, using the bridge, to
host the Swing Panel required by the WWJ OpenGL canvas:

java.awt.Frame worldFrame = SWT_AWT.new Frame(top);
java.awt.Panel panel = new java.awt.Panel(new java.awt.BorderLayout());

Finally, the WWJ GLCanvas is added to the Swing Panel:

WorldWindowGLCanvas world = new WorldWindowGLCanvas();
panel.add(world, BorderLayout.CENTER);

Flying to a Location Within a Globe

To fly to specific latitude/longitude, three objects are required:

e AView that provides a coordinate transformation from model coordinates to eye
coordinates, following the OpenGL convention of a left-handed coordinate system.
(Note that this View object is not related to the RCP concept of a view.)

¢ A Globe representing the 3D ellipsoidal sphere of the world you are viewing.

¢ The latitude/longitude coordinates of the point you wish to reach. Optional informa-
tion includes angles for heading and pitch, and altitude in meters.

Listing 8-12 shows the flyTo() method.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

Listing 8-12. The flyTo Method to Fly to a Specific Latitude/Longitude Point on the Globe

public void flyTo (LatLon latlon)

{

View view = world.getView();
Globe globe = world.getModel().getGlobe();

view.applyStateIterator(FlyToOrbitViewStateIterator.createPanToIterator(

(OrbitView)view

, globe

, latlon // Bounding box

, Angle.ZERO // Heading

, Angle.ZERO // Pitch

, 3e3) // Altitude/Zoom (m)

)5

The applyStateIterator() method of the View class pans or zooms the globe, producing a
smooth “fly to” or an instantaneous “zoom” effect on the globe’s target coordinates.

To make good use of the flyTo() method, we need the means to find locations by latitude
and longitude. The Yahoo Geocoding API can help.

Finding Latitude and Longitude with the Yahoo Geocoding API

The Yahoo Geocoding API is a great way to find the specific latitude and longitude for a spe-
cific address. This service works by sending an HTTP GET request to the URL http://local.
yahooapis.com/MapsService/Vi/geocode. The following are the most important parameters of
the request:

appid: The application ID.
street: Street name. The number is optional.
city: City name.

state: The U.S. state. You can spell out the full state name or use the two-letter
abbreviation.

zip: The five-digit ZIP code or the five-digit code plus four-digit extension. If this loca-
tion contradicts the city and state specified, the ZIP code will be used for determining
the location, and the city and state will be ignored.

location: A free-form field that lets users enter just the ZIP code or combinations of the
other location information, such as the street, city, and state.

output: The format for the output, either xml or php. If php is requested, the results will
be returned in serialized PHP format.

For example, enter the following URL in your browser to find the latitude and longitude of
Paris, France:

http://local.yahooapis.com/MapsService/Vi/geocode?appid=YD-f7BUYpg_IX25g8v
.EmGtMxpfMhpX2XIz17DeSzXV&location=Paris+France

251

252 CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

You should see the following:

<Result precision="zip">
<Latitude>48.856925¢</Latitude>
<Longitude>2.341210</Longitude>
<Address/>

<City>Paris (Paris)</City>
<State>France</State>

<Zip/>

<Country>FR</Country>

</Result>

</ResultSet>

Try typing any address, place, or ZIP code for the location parameter. You'll see that this
API is very powerful, and it will provide what we need for the Earth navigator example. All we
need now is a class to send the request and parse the response XML. Listing 8-13 shows the
class YGeoSearch to perform this task.

Listing 8-13. YGeoSearch, to Find the Latitude and Longitude for a Given Location Using the
Yahoo Geocoding API

public class YGeoSearch {

private String location;

Vioio

* Yahoo search result object

*/

public static class YResult {
public double latitude, longitude;
public String address, city, state, zip, country;
public String warning;

public String debug() {
return "Y! lat= " + latitude + " lon=" + longitude +

n

city="

+ city + " st=" + state + " zip=" + zip + " c="
+ country;

}

@0verride

public String toString() {

return (warning != null ? warning + ", " : "")

+ (address != null ? address + ", " : "")
+ (city = null ? city + ", " : "")
+ (state != null ? state + ", " : "")
+ (zip !=null ? zip + ", " = "")
+ (country != null ? country : "");

}

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

Vaks
* Search for a place using Yahoo
*
* @param location
*/
public YGeoSearch(String location) {
if (location == null)
throw new IllegalArgumentException("Invalid location");

this.location = location.replaceAll(" ", "+");

}

Vass
* Get search locations

*

* @return array of {@link YResult} objects

* @throws Exception

*/

public YResult[] getlLocations() throws Exception {

final String url = "http://local.yahooapis.com/MapsService/V1i/geocode"”
+ "?appid=YD-f7BUYpg_JX25g8v.EmGtMxpfMhpX2XIz17DeSzXV&location="
+ location;

SimpleHTTPClient client = new SimpleHTTPClient(new URL(url));
final String xml = client.doGet();

if (client.getStatus() == HttpURLConnection.HTTP_OK) {
client.close();
return parseYahooXml(xml);

}

// Handle error
throw new IOException("HTTP request failed " + client.getStatus()

+ + url);

}

/**

* Parse Y! results XML

* @param xml

* @throws Exception

*/

private YResult[] parseYahooXml(String xml) throws Exception {
Document doc = parse(new ByteArrayInputStream(xml.getBytes()));

// KML Doc
NodelList results = doc.getElementsByTagName("Result");

253

254 CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

YResult[] Yresults = new YResult[results.getlLength()];

for (int i = 0; 1 < results.getlength(); i++) {
final Element e = (Element) results.item(i);

YResult Yres

new YResult();

Yres.warning = getAttributeValue(e, "warning");
Yres.address = getNodeValue(e, "Address");
Yres.latitude = Double
.parseDouble(getNodeValue(e, "Latitude"));
Yres.longitude = Double.parseDouble(getNodeValue(e,
"Longitude"));
Yres.city = getNodeValue(e, "City");
Yres.state = getNodeValue(e, "State");
Yres.country = getNodeValue(e, "Country");
Yres.zip = getNodeValue(e, "Zip");

Yresults[i] = Yres;

}
return Yresults;
}
/*
* XML Document Utilities
*/

public static Document parse(InputStream is) throws SAXException,
I0Exception, ParserConfigurationException {

DocumentBuilderFactory docBuilderFactory = DocumentBuilderFactory
.newInstance();

docBuilderFactory.setNamespaceAware(true);

DocumentBuilder docBuilder = docBuilderFactory
.newDocumentBuilder();

return docBuilder.parse(is);

}

Vs

* Extract the value of an XML element

* @param e Document element

* @param name Element name

* @return Value

*/

static public String getNodeValue(Element e, String name) {
NodelList nl = e.getElementsByTagName(name);

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

try {
return (nl != null 8& nl.getlLength() > 0) ? nl.item(0)
.getFirstChild().getNodeValue().trim() : null;

} catch (NullPointerException ex) {
return null;
}
}

static public String getTextContent(Element e, String name) {
NodelList nl = e.getElementsByTagName(name);

try {
return (nl != null 8& nl.getlLength() > 0) ? nl.item(0)

.getTextContent().trim() : null;

} catch (NullPointerException ex) {
return null;
}
}

/**

* Get an attribute value

* @return Attribute value or null

*/

static public String getAttributeValue(Element e, String name) {
Node n = e.getAttributes().getNamedItem(name);
return (n != null) ? n.getNodevValue() : null;

To fetch the latitude/longitude of a given location, simply use this fragment:

YGeoSearch search = new YGeoSearch("My home address");
YResult[] results = search.getlocations();

for (int i = 0 ; i < results.length ; i++) {

System.out.println("Address+" results[i].address
+ " Lat:" + results[i].latitude

+ " Lon:" + results[i].longitude);

The Earth navigator will wrap this search logic in a navigator view.

255

256

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

Creating the Layer Navigator View with Geocoding

The navigator view for the Earth navigator will do two things:

¢ Provide a GUI to find a location on the globe and fly to it when selected

¢ Display the globe’s built-in layers, allowing the user to enable or disable them

The navigator has two table viewers: one for the search results and one for the globe
layers, as shown in Listing 8-14.

Listing 8-14. Navigator View Skeleton

public class NavView extends ViewPart implements Listener {
public static final String ID = NavView.class.getName();

private TableViewer viewer;
private Text searchText;

private CheckboxTableViewer layers;

/**

* This is a callback that will allow us to create the viewer and

* initialize it.

*/

public void createPartControl(Composite parent) {
parent.setlayout(new GridLayout(2, true));

Label 11 = new Label(parent, SWT.NONE);
11.setText("Y! GeoSearch");
11.setlayoutData(new GridData(SWT.FILL, SWT.FILL, true, false, 2,

1));

// Search box

searchText = new Text(parent, SWT.BORDER);

searchText.setlayoutData(new GridData(SWT.FILL, SWT.FILL, true,
false));

// Search button
Button bl = new Button(parent, SWT.PUSH);

b1.setText("Search");
bi.addListener (SWT.Selection, this);
b1.addListener (SWT.DefaultSelection, this);

// Results table viewer
viewer = new TableViewer(parent, SWT.BORDER | SWT.H SCROLL
| SWT.V_SCROLL);

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 257

viewer.getTable().setLayoutData(
new GridData(SWT.FILL, SWT.FILL, true, false, 2, 1));
viewer.getTable().addListener(SWT.Selection, this);

// Layers label

Label 12 = new Label(parent, SWT.NONE);

12.setText("Globe Layers");

12.setlayoutData(new GridData(SWT.FILL, SWT.FILL, true, false, 2,

1));

Table tablelayers = new Table(parent, SWT.CHECK | SWT.BORDER
| SWT.H SCROLL | SWT.V SCROLL);

// Layers table viewer
layers = new CheckboxTableViewer(tablelayers);
layers.getTable().setLayoutData(

new GridData(SWT.FILL, SWT.FILL, true, true, 2, 1));

// Fires when a layer on the table viewer is checked.
layers.addCheckStatelistener(new ICheckStateListener() {
@verride
public void checkStateChanged(CheckStateChangedEvent event) {
// Enable/disable globe layer based on the check status
// of the table
Layer layer = (Layer) event.getElement();
layer.setEnabled(event.getChecked());

// Repaint globe

GlobeView view = (GlobeView) Activator.getView(
getViewSite().getWorkbenchWindow(), GlobeView.ID);

view.repaint();

};

init();

When the view initializes, it loads the World Wind layers from the globe view, and adds
them to the layers table viewer. To get a reference to the globe view, you use the Eclipse view
registry, as shown in Listing 8-15.

258

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

Listing 8-15. Loading World Wind Layers from the Globe View
/**
* Load layers from the globe and add them to the table viewer
*/
private void init() {
GlobeView view = (GlobeView) Activator.getView(getViewSite()
.getWorkbenchiWindow(), GlobeView.ID);
if (view != null) {
LayerList list = view.getlayers();

for (Layer layer : list) {
layers.add(layer);
layers.setChecked(layer, layer.isEnabled());

}

public static IViewPart getView (IWorkbenchWindow window, String ViewID)
{

IViewReference[] refs = window.getActivePage().getViewReferences();

for (IViewReference viewReference : refs) {
if (viewReference.getId().equals(ViewID))
return viewReference.getView(true);

}

return null;

Our cool Earth navigator is now complete. As you've seen, World Wind is a Java tech-
nology component that you can integrate into your applications to incorporate 3D Earth
modeling. More data on the planets, moons, stars, weather, satellites, and time series is
becoming available all the time. Soon more data formats will be natively supported. The use-
ful components coming are a layer manager, animation player, drag-and-drop functionality,
and UT helpers. Additionally, World Wind will include RSS feed support and APIs for scripting
extensions.

Summary

This chapter covered developing 3D graphics applications with OpenGL. Here are the impor-
tant points to keep in mind:

e OpenGLis the de facto environment for developing portable, interactive 3D graphics
applications. Java provides a wealth of tools and APIs to abstract the complexities of
OpenGL.

¢ The OpenGL coordinate system uses X, y, and z axes, where 0, 0, 0 is the middle of the
screen. It is called a left-handed coordinate system.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL

SWT supports three OpenGL bindings: Lightweight Java Game Library (LWGL), Java
OpenGL (JOGL), and gljava.

The platform-independent OpenGL classes provided by SWT are GLCanvas and
GLData. GLCanvas is a widget capable of displaying OpenGL content. GLData is a device-
independent description of the pixel format attributes of a GL drawable.

An OpenGL binding that wishes to interact with SWT should implement the class
javax.media.opengl.GLContext. This class is abstraction for an OpenGL rendering
context.

OpenGL display lists are a simple way of enhancing your OpenGL application to make
it run faster. A display list stores a group of OpenGL commands so that they can be
used repeatedly just by calling the display list.

GLU is the OpenGL Utility Library. It consists of a number of functions that use the
base OpenGL library to provide higher-level drawing routines than the more primi-
tive routines that OpenGL provides. GLU also provides additional primitives for use in
OpenGL applications, including spheres, cylinders, and disks.

259

CHAPTER 9

Professional Reports with
the Business Intelligence and
Report Toolkit

The Business Intelligence and Report Toolkit (BIRT) is a powerful open source reporting
system for RCP, stand-alone, or web applications. You can use it to create a variety of report
types, including the following:

¢ Data lists grouped or ordered with totals, averages, and other summaries
e Interactive 2D and 3D charts

e Various types of documents, such as textual documents, letters, notices, and
spreadsheets

e Compound reports that combine all of the other types

BIRT can be used in two ways. One way is as a full-fledged application, using the BIRT
designer (within the Eclipse IDE) or RCP designer (which is a stand-alone application). The
other is as a web application, by deploying the BIRT viewer into a Java EE container.

At its core, BIRT consists of three main components:

¢ Report Designer, which is the Eclipse UI for creating reports
¢ Runtime, which is a set of APIs to use BIRT within your own Java or Java EE application
e Chart engine, which allows developers to create custom chart types

In this chapter, we’ll look at the various ways to use BIRT, beginning with creating reports
with the Report Designer in the Eclipse IDE.

Using the Report Designer Within the Eclipse IDE

Using the Report Designer, you can create professional-looking reports. For example, Figure 9-1
shows a compound report that uses data from the sample database that comes with BIRT.

261

262

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND

REPORT TOOLKIT

& http://127.0.0.1:54107/ viewer /preview? __report=C%3A%S5CDocuments%SCEooks% S50 - Dlﬂ
B SaveaCopy | Print @J Emisil ﬁ Search |- alle = 1t-'_ Review & Comment = Z Sign -
[O) s - @i & - 1 O[] @100 - @08
& 3.85 z‘
g =
E
S !
& Classic Cars
o 112 Motorcycles
o
= Planes J
E)
2 Ships
o 0.gs Trains
ju 1.80
g ‘ i Trucks and Buses
;. 066 Vintage Cars
g 019 1.02
5
£ Revenue (in Millions)
W
Product Revenue (Best Sellers First)
Product Name Total Revenue
i 1992 Ferari 360 Spider red $276,839.98
E 2001 Ferrari Enzo $190,755.86
§ 1952 Alpine Renauit 1300 $190,017.96
[2003 Harley-Davidson Eagle Drag Bike $170,686.00
1968 Ford Mustang $161,531.48
Sep 8, 2008 6:48 PM
#] &sxiln__ 4| | LI_I
| 106 PRl O O 0 H H

Figure 9-1. Compound report of car revenue sales from the BIRT Classic Models database

The easiest way to start learning BIRT is to use the Report Designer to create a basic
report. However, depending on your Eclipse installation, the Report Designer may not
be installed by default. To see if BIRT is installed, from the Eclipse IDE main menu, select
Window » Open Perspective » Other. If the Report Design perspective is present, then you
are in good shape. Otherwise, you'll need to install BIRT using the Software Updates Manager,

as described next.

Installing BIRT Using the Software Updates Manager

BIRT can be easily installed within Eclipse, as follows:

1. From the main menu of the Eclipse IDE, select Help » Software Updates.

2. Select the Available Software tab, and then expand Ganymede » Charting and

Reporting.
3. Click BIRT Report Designer Framework, and then click Install.

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

Depending on the speed of your network, the installation may take a while, as BIRT has
a lot of dependencies, such as the Data Tools Platform (DTP), Eclipse Modeling Framework
(EMF), Web Standard Tools (WST), iText, Apache Derby, Mozilla Rhino (for scripting), and
others.

Report Anatomy

A report usually consists of four main parts:

Data source: A data source provides access to many kinds of tabular data. A single report
can include any number of data sources, or disparate data sources can be combined into
virtual data sources. BIRT supports the following:

e Flat files (comma-separated value style)
¢ Any database compliant with Java Database Connectivity JDBC)

* Web services (a WSDL descriptor and a SOAP endpoint URL for the web service are
required)

e XML data (an XML file or URL and corresponding schema are required)
Data transforms: Data can be sorted, summarized, filtered, and grouped to fit the users’ needs.

Business logic: The business logic provides the means to convert raw data into information
useful for the users.

Presentation: BIRT provides a wide range of options for displaying data, such as tables,
charts, and text.

Three basic things are needed by all reports: a data source, a query against the source, and
areport layout. To help you get started, BIRT includes a sample database called Classic Mod-
els, which we will use for the examples in this chapter.

Getting Your Feet Wet with the Report Designer

You can access the Report Designer through the Report Design perspective of the workbench.
Figure 9-2 shows an example of the Report Design perspective for creating a report. It consists
of four views:

Data Explorer: Use this view to add data and parameters to your report. From this view,
you can set up the following for your report:

¢ A data source, such as a database or flat file

¢ A dataset, which represents a data query against the data source (invoice data, for
example)

¢ A data cube, which is a structure for fast analysis of data, such a summary of the
entire product inventory by city over time

¢ Report parameters, which are runtime input values, such as an order number to
display invoice data

263

264 CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

Palette: The Palette view contains report Ul elements, such as labels, images, data lists,
tables, charts, and cross-tabs. Elements can be dragged into the Layout view, and are
usually bound to a data element from a dataset.

Property Editor: This view displays properties of the various report elements.

Layout: This is a powerful WYSIWYG editor. It has tabs to display the report layout, source,
and preview.

pﬂmw&nmwmmm_&nwn
- @ V-8 = = 1018 Aot D~

8 cutabpkes I [.]n-nnl: UM = O) chaas 23l ope| = O

=) U Data Rousons (EEEEEERT] [XERE] [RERE] [EEET IXTNREXL [RERL) [RERL] [RERL) =Bd

0 Chnsic Mool g A
= ot st Creation of a Chart and
= l-muo - Listing Report
T OPPRCE_CITY
+ - Intro tior ¥
T eI This Bl B v il & et
H wslc-!mt Classic Models, Inc. e baiing repert using BE:1
¥ '] chs Bogn
I (cmlu:lmlnu(| e . o
T conTACTRRSTRAME s*. Invoice *» Craate o Doie il L
¥ aoeesmae) . » Croshe o Dota Set '
I ACOSESSUNER B e datats the talie 7
L
: s:l‘u K ;e rost edcr, ehd
T rostaLcooe 0 L e Fewn (2 Oxa
¥ oousEwy . P""’"“"““ - eI - o D g, spacity B it
i mw e] e 08 S i) v o bt Rables b
. =l e AT G b ot sawcaTe) .:."..'2:?.":..".";.‘7:7-’.‘&'."
- Nk | S-c\m e =] e iy - [—— Exphrer viewsts the table in the
T . r-rv:!- 1 i o £y b
i Wactangie Seiect o [t £} “

Py Lovgst Mater Page | Joot Iﬂm oo = v
st 2 property Edbor - Repart 5 55 llh_ B SO0, os e et 5
A Tost Pt
aby O Tet o | General
§ Oda e e Pad Clenshen C
i Commrts ety Vewsen 1.0.0 ek
] Gt U Prcem el pah < —

([P T it Mo Saks Invact Pagart
e —— Lt -
o Cpich ocks || Evert Honder T tore Q|
1 - -
I Agpepaan = L I—) | 11—1
s - R

Figure 9-2. Report Designer showing the Data Explorer, Palette, Property Editor, and Layout views

Creating a Simple Report

To get started, we’ll walk through an example of creating a simple report of the inventory of
BIRT’s Classic Models sample database.

1. From the Eclipse IDE main menu, select File » New » Other » Report Project.
2. Switch to the Report Design perspective when prompted.

3. In the Data Explorer view, right-click Data Sources and select New Data Source. Select
the Classic Models sample database. Click Finish.

4, Right-click Data Sets and select New Data Set. Enter a name (for example,
ProductInventory). Make sure the dataset type is SQL query and the data source you
chose in step 3 is selected. Click Next.

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT 265

5. In the Edit Data Set window, enter the following SQL fragment to select inventory data
(from the CLASSICMODELS.PRODUCTS table) sorted by name and price:

select *

from CLASSICMODELS.PRODUCTS

order by CLASSICMODELS.PRODUCTS.PRODUCTNAME
, CLASSICMODELS.PRODUCTS .MSRP

6. Your query should appear as shown in Figure 9-3. Click OK to continue.

& Edit Data Set - Inventory d =lol =l
- Data Source Query i i
- Query
- Qutput Colurnns Available Ttems: 1
- Computed Calumns 0
i Parameters 1= L Data Source
- Filters Q% CLASSICMODELS

Property Binding Q% SGLD

- Settings B svscs_uT

" Preview Results -0 sysiEm
Schema: I-AI\- j
Filker: |
Type: -All- | Apply Filter |
I Use identifier quoting

-

r Show system tables q | | _>|_I

Figure 9-3. Data Explorer SQL query editor

7. Now you need to create a new blank report layout. To do so, select File » New »
Report. Enter a name, and then click Finish. The layout should be displayed in the
WYSIWYG editor. (Alternatively, you could also select one of the built-in report
templates.)

8. Bind data elements to the report layout. Use the Palette view to add a data table that
will display data from the query. Then simply drag and drop elements from the dataset
you created in step 4 to the data table in the Layout view. Drag PRODUCTNAME to the first
column, PRODUCTDESCRIPTION to the second column, and so on, until you are satisfied
with the presentation.

9. Customize the presentation to your liking (add headings or images using the Palette
view, for example). Images can be embedded from files, URIs, and other sources.

266 CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

10. Preview the report from the Layout view’s Preview tab or by selecting Run » View
Report from the main menu. BIRT provides many preview format types, including
Word (DOC), HTML, PDF, PostScript, PowerPoint (PPT), Excel (XLS), and others.
Figure 9-4 shows the sample report previewed in PDF format.

= [l

“ Review & Comment - gsign B

T select Text -

N Bi=]

Classic Models, Inc.

701 Gateway Boulevard,
San Francisco, CA 84107

Product Catalog

PRODUCTNAME PRODUCTDESCRIPTION MSEP

12th Century Vintage Horse Camage Hand crafted discast-like metal horse 104.72
cammiage is re-created i about 1:12
scale of anfique horse camriage. This
anfique style metal Stagecoach is all
hand bled with many different
parts.

l Pages\l Layers\l Signatures \l Bookmarks

This cellectible metal horse camiage
15 painted in classic Fad, and features
tuming steering wheel and is entirsly
hand-finished.

12th century schooner All wood with canvas sails. Many 12289
exas including rigging. long boats,
pilet house, anchors, ete. Comes with
4 masts, all square-rigged.

1800z Vintage Bi-Plane Hand crafted discast-like metal bi- 62.31
plane 15 re-created m about 1:24 scale
of anfique pionser airplans. All hand-
assembled with many different parts.
Hand-painted in classic vellow and
features cormrect markings of original
airplane.

l Comments

] esxitin 4] |
| 10f14 P PO O [ld]

Figure 9-4. Previewing a report as a PDF document

1900z Vintage Tri-Plane Hand crafted diecast-like metal 7245 =

1T

Now that you've tried a simple report, let’s create one that is a bit more complex.

Creating a Complex Report

In this section, we will create a report to show a pie chart of total sales by product line from
the Classic Models sample database. The backbone of any report is the data, which usually

represents a SQL query from a database. Consider the following SQL to extract total sales by
product line:

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

select PRODUCTS.PRODUCTLINE,
SUM(ORDERDETAILS.QUANTITYORDERED * ORDERDETAILS.PRICEEACH)
AS "TOTAL SALES"

from PRODUCTS, ORDERDETAILS

where PRODUCTS.PRODUCTCODE = ORDERDETAILS.PRODUCTCODE

group by PRODUCTS.PRODUCTLINE

This query selects the PRODUCTLINE and the sum of the QUANTITY * PRICEEACH (labeled
as TOTAL SALES) of the PRODUCTS and ORDERDETAILS tables, grouped by PRODUCTLINE. With this
query, we can easily build a total sales by product line report, shown as a pie chart.

1. To create a new report, select File » New » Report, enter a file name, and click Finish.

2. Within the Data Explorer view, create a data source to the Classic Models sample data-
base, as explained in the previous section.

3. To create a new dataset for the total sales by product line, from the Data Explorer view,
right-click Data Sets and select New. Enter the SQL shown at the beginning of this sec-
tion into the editor. You can preview the results of this query, as shown in Figure 9-5.

RI-TEY
- Data Source Preview Results - i
- Query
g”t"”t C;'”mlns PRODUCTLINE [rotaLsaes |
~ Computed Columns iClassic Cars FHE 3922, 4699999565
- Parameters Motorcycles 1121426,1199999999
~Filters Planes 954637, 5400000003
- Property Binding Ships B63995.34
- Settings Trains 1585532.92
.. Preview Results Trucks and Buses 1024113,5693939395
Winkage Cars 1797559, 6299999994

Total 7 recordis) shown,

(7) 0K I Cancel

Figure 9-5. Query results for the total sales by product line query

4. Drag and drop the chart icon from the Palette view into the Layout view.

267

268

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

5. Customize the chart. Double-click the chart within the editor, set the type to Pie and

the Dimension to 2D with Depth.

. Click the Select Data tab. Choose the “Use Data from” option and select the dataset

created in step 3 (Sales by Product Line). The query will be displayed in the pre-
view area.

. Bind the query data by dragging the TOTAL SALES column header into the pie chart’s

Series Definition. Drag the PRODUCTLINE into the Category Definition, as shown in
Figure 9-6.

||| Edit Chart 4 x|
Edit Chart —
Select the data ko display in the chart and bind it to the series. = |
CLL)
[l select Chart Type | B Select Datal e Format Chart
Chart Preview
Sales by Product Line
r 3.853,02249 ﬁ Classic Cars
A e v =
Slice Size Definition: i Motoreyeles
mﬂ ﬁ Planss Optional Grouping:
2 - [rowrotaLsaEs] | | | 112142612 L2IBST g | E
< e 188,53202 —
[0954,63734 : Trai
66399834 W moaine
i Trucks and Bu..
Sales
L Category Definition: | raw"FRODLCTLINE A E| J
Select Data
€~ Inherit Data From Container
% Use Data from |Sales by Product Line j

Data Preview
Use the right-click menu or drag the column inka series Fields,

PROCUCTLIME | TOTAL SALES
Classic Cars 3,853,922.49
Mokarcycles 1,121,426.12

-
Planes 954,637.54 j Filkers... |
Ships 663,995,394 parameters... |
Trains 188,532.92 -
;I » Data Binding. .. |

@ < Back | hext > | Einish | Apply |

Figure 9-6. Data properties for the Sales by Product Line chart

. Click the Format Chart tab. Change the data series label, chart title, and other format

items, as desired. Then click Finish.

9. Select the Preview tab in the Layout view to inspect the results, as shown in Figure 9-7.

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

& http://127.0.0.1:64130, viewer/preview? _ report=C%3A%SC0ocument:
B Save a Copy ‘__“ Prirt e Email ﬁ Search -

%’T‘jﬁ'}saemren -@Ee -] D[@ 1% 'ﬂ‘ 0 ’B‘

Sales by Product Line

i Classic Cars

Iotorcycles
Planes

ﬁ Ships
Traing

i Trucks and Buses
Vintage Cars

1121426 12

I F’ages\l Layers\l Signatures \i Bookmarks

954,637 54—
1,797,559.63

663,998.34
18853292

i Comments

1,024,113.57

Sales in millions .
o EmExnim 4| | i
| 4 4 101 vl | o © ‘ Ll

Figure 9-7. Sales by Product Line chart from the sample database

Using BIRT Within a Servilet Container

BIRT can also be used as a report server within a servlet container such as Apache Tomcat, or
aJava EE server such as JBoss. To do this, you must deploy the BIRT Runtime into the servlet
container, and then copy your reports to a server folder. With the server in place, you can use
the report viewer servlet to display your reports, or you can create custom reports using BIRT’s
JSP tag library within your web application. The next sections explain how to deploy a report
server, display your reports using the report viewer servlet, and build a custom report viewer
using the JSP tag library.

Deploying the BIRT Runtime

This section shows how to build a report server by deploying the BIRT Runtime within the
Tomcat servlet container.! Here are the steps:

1. Download the latest BIRT Runtime from the Eclipse web site, http://download.
eclipse.org/birt/downloads/ (the file name should be birt-runtime-2 3 0.zip).

2. Unzip the folder to a working directory.

1. See “Installing the BIRT Viewer in Tomcat” at http://www.eclipse.org/birt/phoenix/deploy/
viewerSetup.php.

269

270 CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT
. Copy the WAR archive (birt.war) to the TOMCAT HOME/webapps folder.

3
4, Start the Tomcat server and open a browser to http://localhost:8080/birt/.
5. Click the View Example link to make sure things work.

6

. Copy your user-defined report files (. rptdesign or .rptdoc) to TOMCAT _HOME/webapps/
birt/report.

7. View your reports from a browser using the report viewer servlet. For example, to view
the ProductCatalog.rptdesign report from the sample database (assuming the report
design has been copied to TOMCAT_HOME/webapps/birt/report), use this URL:

http://localhost:8080/birt/frameset? report=report/ProductCatalog.rptdesign

Using the Report Viewer Servlet

The report viewer servlet is used to display reports from the web browser.? Its format is as
follows:

http://localhost:8080/birt/<mapping>?<servlet params>&<user params>
where:

e <mapping> can be one of the following:

* frameset renders the report in the viewer with a toolbar, navigation bar, and table
of contents. It also creates a report document from the report design file to support
the Ajax features.

 runrenders the report without toolbar, navigation bar, or table of contents. More-
over, it does not create a report document. It does use Ajax, however.

e preview previews a report design or document in an output format (such as PDF,
DOC, or HTML).

e <servlet params> are the servlet parameters sent in the URL. They start with two
underscores (_). Table 9-1 describes the most important parameters.®

e <user_params> are defined within the report design (for example, the order number
for an order details report). User parameters defined as required in the report design
but not passed in the URL will cause the viewer to display a user parameter entry page
(which makes sense, because you cannot view order details without an order number,
for example).

You configure the report viewer servlet within the ${birt home}/WEB-INF/web.xml file.
Some of the most important parameters are described in Table 9-2.4

2. See “Using the BIRT Report Viewer” at http://www.eclipse.org/birt/phoenix/deploy/
viewerUsage2.2.php.

3. For a complete list of parameters, see the Parameters section of “Using the BIRT Report Viewer” at
http://www.eclipse.org/birt/phoenix/deploy/viewerUsage2.2.php#parameters.

4. For a compete list of parameters, see the Web Viewer Web.xml Settings section of “Using the BIRT
Report Viewer” at http://www.eclipse.org/birt/phoenix/deploy/viewerUsage2.2.php#webxml.

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

Table 9-1. Some Report Viewer Servlet Parameters

Parameter Description

__bookmark A bookmark within the report to load. The page with the bookmark will be
loaded automatically.

__document The name for the report document. It can be an absolute path or a path rela-
tive to the working folder.

_ fittopage Whether a generated PDF should fit the report contents to a page (true
or false).

__ format Output format (such as pdf, html, doc, ppt, or x1s).

_ id Unique viewer ID.

__isnull Specifies that a report parameter is null.

_ locale The locale (en-US by default).

__masterpage Whether the report master page should be used (true or false).

__navigationbar Whether the navigation bar appears in the frameset viewer (true by default).

__overwrite Whether to force an overwrite of the existing report document (true or
false). Overrides the setting in web.xml. (By default, overwriting takes places
whenever the report design is changed.)

__page A specific page to render.

__pagerange A specific page range to render.

__report The name of the report design to process. It can be an absolute path or a
path relative to the working folder.

__resourceFolder The resource folder (used to contain libraries, images, and resource files) to
use. Overrides the default setting in web. xml.

_rtl Whether to show the report in right-to-left format (false by default).

_ title The report title.

_ toolbar Whether the report toolbar appears in the frameset viewer (true by default).

Table 9-2. Some Report Viewer web.xml Configuration Parameters

Parameter

Description Default

BIRT_RESOURCE_PATH

Resource location directory ${birt home}

BIRT VIEWER DOCUMENT FOLDER Directory in which to generate report ${birt home}/webapp/

BIRT VIEWER IMAGE DIR

BIRT VIEWER_LOCALE

BIRT VIEWER LOG DIR
BIRT VIEWER MAX_ROWS

documents documents

Directory for image and chart output ${birt home}/report/
images

Locale en-US
Directory for the engine log directory ${birt home}/logs.

Maximum number of rows to retrieve All
from a dataset

BIRT_VIEWER_SCRIPTLIB_DIR Directory for report script JAR libraries ~ ${birt home}/

scriptlib
Continued

27

272

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

Table 9-2. Continued

Parameter Description Default

BIRT_VIEWER_WORKING_FOLDER Default directory for report designs reports
(can be an absolute or relative path; if
relative, the path will be prepended to
the report name)

WORKING FOLDER ACCESS ONLY Whether reports will be searched rela- false
tive to the working folder; a setting of
true prevents users from entering full
paths to reports

Using the JSP Tag Library

BIRT provides even more flexibility through a JSP tag library. This tag library is most useful
when writing custom report JSPs within your web application. The library is composed of five
major JSP tags:®

e <birt:viewer>: Displays a complete viewer (with a toolbar and navigation bar) within
an IFRAME using the /run or /frameset mapping (described in the previous section).
Table 9-3 shows some of the important attributes of this tag.

e <birt:report>: Displays a preview report (with a toolbar) inside an IFRAME or DIV. It
uses the /preview mapping without creating a report document. This tag takes most of
the attributes listed in Table 9-3, as well as those listed in Table 9-4.

e <birt:param>: Defines parameters within the report tag. Table 9-5 lists some attributes
of this tag.

e <birt:parameterPage>: Used to create a custom parameter page for user-defined report
parameters.

e <birt:paramDef>: Used within a parameterPage tag to retrieve HTML for complex
parameter types, such as radio button, check box, or cascaded parameters.

Table 9-3. Some <birt:viewer> JSP Tag Attributes

Attribute Description

id Unique viewer ID.

pattern The mapping: run or frameset (frameset by default).

baseURL Used to determine the location of the viewer application. Not required if

the tags are used in the same context as the BIRT viewer. When the tags are
used in a separate context but in the same application server, baseURL may
contain a value such as "/ WebViewerExample".

format The output format, such as PDF, HTML, or XLS.

isHostPage When true, the viewer tag will occupy the entire page; when false (the
default), multiple reports can be contained in one JSP page.

5. Tables 9-3, 9-4, and 9-5 show the most important attributes for the JSP tags. For a complete list, see
the Viewer Tag Library section of "Using the BIRT Report Viewer" at http://www.eclipse.org/birt/
phoenix/deploy/viewerUsage2.2.phpi#tags.

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

Attribute Description

scrolling The IFRAME scrolling style: auto, yes, or no.?

position The IFRAME position style when the report viewer has a navigation bar and
toolbar:static, absolute, relative, or fixed.?

height The height of the IFRAME in pixels.?

width The width of the IFRAME in pixels.?

top The top margin of the IFRAME in pixels.?

left The left margin of the IFRAME in pixels. ?

reportDesign The name of the report design file. This can be relative, set to a full path, or
set to a URL.

reportDocument The name of the report document file. This can be relative, set to a full path,
or set to a file URL.

pageNum The page number you wish to display (for multipage reports).

showParameterPage Whether the parameter page is displayed.

title The title for the report container page.

@]fisHostPage is true, these values are ignored.

Note Most of the attributes in Table 9-3 also apply to the <birt: report> tag. The exceptions are
showToolBar, showNavigationBar, and showTitle.

Table 9-4. Some <birt:report> JSP Tag Attributes

Attribute Description

resourceFolder The resource folder (which stores libraries and images). It overrides the
value specified in web. xm1.

reportContainer Defines the report HTML container: an IFRAME or a DIV element.

showParameterPage Specifies whether the report parameter page is displayed. (Report

parameters can be the order ID for an order details report, for example.)

Table 9-5. Some <birt:param> JSP Tag Attributes

Attribute Description

id Unique viewer ID.

name Report parameter name. This must match the report design file.

islocale Whether the report parameter value is a locale/format-related string
(true or false).

value The value for the report parameter. If not supplied, the default value for

displayText

the parameter is used.

The display text for the parameter.

273

274 CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

Using the JSP tag library within your web application is easy. Here is how:

1. Copy the WEB-INF/tlds/birt.tld file to your WEB-INF/tlds directory.

2. Copy coreapi.jar, modelapi,jar, viewerservlets.jar, engineapi. jar, and com.ibm.
icu_3.6.1v*.jar from WEB-INF/1ib to the new WEB-INF/1ib directory.

3. Add the following reference to your web.xml file:

<jsp-config>
<taglib>
<taglib-uri>/birt.tld</taglib-uri>
<taglib-location>/WEB-INF/tlds/birt.tld</taglib-location>
</taglib>
</jsp-config>

Listing 9-1 shows a simple JSP page that uses BIRT’s JSP tag library. The page uses the
<birt:viewer> tag to process the SalesInvoince.rptdesign report using the /frameset URL
mapping. The report will prompt for an order number as an argument and set the output to
HTML. The result is shown in Figure 9-8.

Listing 9-1. A Report Viewer JSP Using the BIRT Tag Library (SalesInvoice.jsp)

<%@ page language="java" contentType="text/html; charset=IS0-8859-1"
pageEncoding="IS0-8859-1"%>

<%@ taglib uri="/birt.tld" prefix="birt" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1">

<title>Sales Invoice Report Viewer</title>

</head>

<body>

<birt:viewer id="birtViewer" reportDesign="report/SalesInvoice.rptdesign”
pattern="frameset"
height="600"
width="800"
format="html">
</birt:viewer>

</body>
</html>

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

¥ Classic Models Sales Invoice Report - Mozilla Firefox] (=]
File Edit Wew History Bookmarks Tools Help
@ - c (a7 I |_L] |http:,i,l’loca\host:8D8D.l’birt,l’Frameset?_\d=birt\fiawer&_report= i I ‘ Google y.

12| Most Wisited |j Custorize Links D Free Hotmail &2 RealMlayer |j windows Marketplace 4/ windows Media m Wfindaws

Classic Models Sales Invoice Report

= B S =
Showing page 1 of 1 dl 4 PP Goto page: u
: =l
Classic Models, Inc.
701 Gateway Boulevard,
San Francisco, CA 84107
Sales Invoice
Customer Details Order Details
Online Diecast Creations Co. Customer Mumber: 363
Dorothy Young Order Number: 10100
2304 Long Airport Avenue Order Date Jan 8, 2003
e YGRS Ship Date: Jan 10, 2003
Ug:« ua, Office: Boston
Sales Representative: Steve Patterson
Code Description Quantity| MSRP Discount Unit| Total ($)
($) Price
S18_1749 1917 Grand Touring 30| 17000 02 13600 408000
Sedan
S18_2248 1911 Ford Town Car S0 8054 |0.08002312520647499 5508 2754450
S18_4409 | 1932 Alfa Romeo 22| 92.03|0.18004998370096714 T546| 166012
82300 Spider Sport hd
‘ Crane v

Figure 9-8. Sales report using the JSP tag library

Using the Report Engine API

There is another way of using BIRT if you do not wish to use the GUIs it provides. The Report
Engine APl is a tool for developers to use BIRT within a stand-alone Java application, a servlet,

or an RCP application.
Using the API usually involves the following steps:

1. Setreport engine configuration values, such as the engine home directory and log

configuration (not required within RCP), with EngineConfig.

2. For astand-alone application or servlet, set the report engine home and start the

Eclipse Platform.

3. Create an instance of the report engine to perform multiple tasks.

4, Open areport design document using one of the openReport methods of the report

engine.

275

276 CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

5. Setreport parameters using the IRunTask and the IRunAndRenderTask interfaces, or
extract report parameter information using IGetParameterDefinitionTask. This is
necessary only if your report has input parameters and you are building an input
parameter page.

6. Run and render a report using IRunAndRenderReportTask or IRunTask and IRenderTask.

7. Call ReportEngine. shutdown().

The following sections look at these steps in more detail.

Configuring and Creating a Report Engine

The class EngineConfig wraps configuration settings for the report engine. The configuration
includes the following:

¢ The directories to search for engine plug-ins and data drivers
¢ The directories in which to write image files
¢ Data-related properties, such as the data engine

e Ways to provide customized implementations for image handling, hyperlink handling,
and font handling

Listing 9-2 shows an example of setting engine configuration values within a stand-alone
application using the EngineConfig class.

Listing 9-2. Setting Report Engine Configuration Values

// Configure the engine and start the Platform
EngineConfig config = new EngineConfig();

// Set the engine home. Not required for RCP
config.setEngineHome("C:/birt-runtime-VERSION/ReportEngine");

// Set the log configuration. Use (null, Level) if you do not want a log file
config.setlogConfig("c:/birt/logs", Level.FINE);

// Start Eclipse. Not required for RCP
Platform.startup(config);

// Create an engine ...

Next, you create a report engine instance using the public interface IReportEngine.5 Here
is where you customize the report generation and rendering process. Through the report
engine, reports can be generated and rendered to different output formats. Queries can also be
executed for preview purposes, without requiring the generation of a full report.

Listing 9-3 shows how to create a report engine using the factory class IReportEngineFactory.

6. See the Report Engine API at http://www.birt-exchange.com/documentation/BIRT 220/EngineJavadoc/
engine/api/org/eclipse/birt/report/engine/api/IReportEngine.html.

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

Listing 9-3. Creating a Report Engine

// Get a report engine factory
IReportEngineFactory factory = (IReportEngineFactory) Platform
.createFactoryObject(IReportEngineFactory.EXTENSION REPORT ENGINE FACTORY);

// Get a report engine
IReportEngine engine = factory.createReportEngine(config);
engine.changelLoglevel(Level.WARNING);

What Kinds of Operations Can Be Done with the Report Engine?

The report engine provides the developer a high degree of control over reports. BIRT
reports are classified using two public interfaces: IReportDocument for a report document
(.rptdocument) or IReportRunnable for a report design (.rptdesign). The method for opening
areport document is IReportEngine.openReportDocument (), and the method for opening a
report design is IReportEngine.openReportDesign().

IReportEngine is capable of creating five different types of operations, also known as tasks:

¢ The data extraction task allows data extraction from a report document.
¢ The get parameter definitions task obtains report parameter definitions.
¢ The render task renders the report to a specific output format.

¢ The run task runs a report to generate a report document.

¢ The run and render task runs and renders a report directly to an output format.

These tasks are discussed in more detail in the following sections.

Creating a Data Extraction Task

The IDataExtractionTask, created with createDataExtractionTask(IReportDocument), allows
the extraction of data from a report document. If you don’t specify a report component ID or
report component instance ID, the extraction will be based on all the data stored in the report.
You can also use the getMetaData() method to get metadata for each result set and use that to
further manipulate the data returned.

Listing 9-4 shows a data extraction task to display the first two columns of the first result
set of a document.

Listing 9-4. Data Extraction Task

// Open report document
IReportDocument iReportDocument = engine.
openReportDocument("c:/report.rptdocument™);

// Create data extraction task
IDataExtractionTask iDataExtract = engine.createDataExtractionTask(iReportDocument);

277

278

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

// Get list of result sets
Arraylist resultSetlist = (Arraylist)iDataExtract.getResultSetlist();

// Choose first result set
IResultSetItem resultItem = (IResultSetItem)resultSetList.get(0);

String dispName = resultItem.getResultSetName();
iDataExtract.selectResultSet(dispName);

IExtractionResults iExtractResults = iDataExtract.extract();
IDatalterator iData = null;

try
{
if (iExtractResults != null)

{

iData = iExtractResults.nextResultIterator();

//Iterate through the results
if (iData != null) {
while (iData.next())

{
Object objColumnil = iData.getValue(0);
Object objColumn2 = iData.getValue(1);
System.out.println(objColumni + " , " + objColumn2);
}
iData.close();
}
}
}
catch(Exception e)
{
e.printStackTrace();
}

iDataExtract.close();

Creating a Parameter Definition Task

The IGetParameterDefinitionTask task, created with createGetParameterDefinitionTask
(IReportRunnable), retrieves parameter definitions, default values, and dynamic selection lists
from a report. Parameter definitions provide access to the parameter definition information
entered at design time.

Listing 9-5 shows an example of a task that opens a report design and iterates through the
parameters and parameter groups.

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

Listing 9-5. Report Parameter Definition Task

// Open a report design
IReportRunnable design = engine.openReportDesign("C:/path/report.rptdesign");

ICetParameterDefinitionTask task = engine.
createCetParameterDefinitionTask(design);
Collection params = task.getParameterDefns(true);

Tterator iter = params.iterator();

// Iterate over parameters
while (iter.hasNext())

{

IParameterDefnBase param = (IParameterDefnBase) iter.next();

// Group section found

if (param instanceof IParameterGroupDefn)

{
// Get group name
IParameterGroupDefn group = (IParameterGroupDefn) param;
System.out.println("Parameter Group: " + group.getName());
// Get the parameters within a group
Tterator i2 = group.getContents().iterator();
while (i2.hasNext()) {

IScalarParameterDefn scalar = (IScalarParameterDefn) i2.next();
System.out.println(" " + scalar.getName());

}

}

Else {
// Parameters are not in a group
IScalarParameterDefn scalar = (IScalarParameterDefn) param;
System.out.println(param);

}
}

task.close();

Creating a Render Task

The IRenderTask task, created with createRenderTask(IReportDocument), renders a report doc-
ument to one of the output formats supported by the report engine. It can render just a page
or range of pages, or the entire report (if no page is specified).

The report engine uses an emitter to generate the output. You use the HTMLRenderOption or
PDFRenderOption class, for HTML or PDF output, respectively.

279

280 CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

When rendering HTML with HTMLRenderOption, you need to be sure that images are han-
dled properly. There are two ways to handle images: with HTMLCompleteImageHandler or with
HTMLServerImageHandler. HTMLCompleteImageHandler (the default) writes images to disk when
rendering a report:

HTMLRenderOption options = new HTMLRenderOption();

options.setOutputFileName("output/report.html");
options.setImageDirectory("output/image");
options.setOutputFormat("html");

HTMLServerImageHandler handles images for a report running in an application server. Use
this handler within web applications:

HTMLRenderOption options = new HTMLRenderOption();
options.setOutputFileName("output/resample/TopNPercent.html");
options.setOutputFormat("html");

// Write images to app server
options.setImageDirectory("C:\apache-tomcat\webapps\birt\reports\images");

// Append http://localhost:8080/birt/reports/images/ to image hyperlinks
options.setBaseImageURL("http://localhost:8080/birt/reports/images/");
options.setImageHandler(new HTMLServerImageHandler());

PDFRenderOption defines output settings for PDF format, as follows:

IRenderOption options = new RenderOption();

// Render as PDF
options.setOutputFormat("pdf");
options.setOutputFileName("output/report.pdf");

// PDF options
PDFRenderOption pdfOptions = new PDFRenderOption(options);
pdfOptions.setOption(IPDFRenderOption.FIT TO PAGE, new Boolean(true));
pdfOptions.setOption(IPDFRenderOption.PAGEBREAK PAGINATION ONLY

, new Boolean(true));

task.setRenderOption(options);

RenderOptionBase defines options for rendering a report to an output format, such as
whether to render HTML with a style sheet. Future options may include image formats in PDF
(vector or bitmap), font embedding, and others.

Note Custom emitters for other output formats can be created by implementing the interface org.
eclipse.birt.report.engine.api.IRenderOption. In fact, this is how the PDF and HTML renderers are
implemented. However, this could be a fairly complex task.

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

Listing 9-6 shows an example of creating a render task to output the report in HTML and
PDF format.

Listing 9-6. Report Render Task (HTML and PDF)

// Open a report document
IReportDocument iReportDocument = engine.openReportDocument("report.rptdocument”);

// Create render task
IRenderTask task = engine.createRenderTask(iReportDocument);

// Set parent classloader report engine
task.getAppContext().put(EngineConstants.APPCONTEXT CLASSLOADER KEY
, RenderTaskExample.class.getClassLoader());

// Render as HTML

IRenderOption options = new RenderOption();
options.setOutputFormat("html");
options.setOutputFileName("output/report.html");

// HTML options

HTMLRenderOption htmlOptions = new HTMLRenderOption(options);
htmlOptions.setImageDirectory("output/image");
htmlOptions.setHtmlPagination(false);

// Create task
IRenderTask task = engine.createRenderTask(document);

task.setRenderOption(options);
task.setPageRange("1-2");
task.render();

// Render as PDF too
options.setOutputFormat("pdf");
options.setOutputFileName("output/report.pdf");

// PDF options
PDFRenderOption pdfOptions = new PDFRenderOption(options);
pdfOptions.setOption(IPDFRenderOption.FIT_TO PAGE, new Boolean(true));
pdfOptions.setOption(IPDFRenderOption.PAGEBREAK PAGINATION_ONLY

, new Boolean(true));

task.setRenderOption(options);
task.render();

iReportDocument.close();

281

282 CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

Creating a Run Task

Use the TRunTask task, created with createRunTask(IReportRunnable), to run a report and gen-
erate a report document, which is saved to disk. The report document can then be used with
the IRenderTask to support features such as paging. Listing 9-7 shows an example of creating a
run task.

Listing 9-7. Run Task, Used to Create a Report Document

// Open document
IReportRunnable design = engine.openReportDesign("report.rptdesign");

// Create task to run the report
// Use the task to execute the report and save to disk.
IRunTask task = engine.createRunTask(design);

// Set parent classloader for engine

task.getAppContext().put(
EngineConstants.APPCONTEXT CLASSLOADER KEY,
RunTaskExample.class.getClassLoader());

// Run the report and destroy the engine
task.run("c:/work/test/report.rptdocument");

// Close task
task.close();

Creating a Run and Render Task

The IRunAndRenderTask task, created with createRunAndRenderTask(IReportRunnable), com-
bines the previous two tasks to run and render a report. This task does not create a report
document. Listing 9-8 shows an example of creating a run and render task.

Listing 9-8. Run and Render Report As PDF Task

// Open the report design
IReportRunnable design = engine.openReportDesign("Reports/SalesInvoice.rptdesign");

// Create task
IRunAndRenderTask task = engine.createRunAndRenderTask(design);

// Set parent classloader for engine
task.getAppContext().put(
EngineConstants.APPCONTEXT CLASSLOADER KEY,
RunAndRenderTaskExample.class.getClassLoader());

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

// Set report parameters and validate
task.setParameterValue("Oredr Number", (new Integer(10100)));;
task.validateParameters();

// Render to PDF
PDFRenderOption options = new PDFRenderOption();

options.setOption(IPDFRenderOption.FIT TO PAGE, new Boolean(true));
options.setOption(IPDFRenderOption.PAGEBREAK PAGINATION ONLY,
new Boolean(true));

options.setOutputFileName("output/resample/SalesInvoice.pdf");
options.setOutputFormat("html");
task.setRenderOption(options);

// Run and render report
task.run();
task.close();

The previous sections have explained the basics of creating programmatic reports using
the BIRT engine. The next section demonstrates these concepts with a practical exercise.

Hands-on Exercise: Report Generation from the
0SGi Console

As you've learned, BIRT provides a powerful set of Ul tools to design and render reports. In
this exercise, let’s try to do something different by building a report generator within the OSGi
console. The idea is to type a simple console command with arguments such as report design,
output format, and report parameters, and have an output document on disk.

In this exercise, you will learn how to extend the OSGi console with custom user com-
mands, as well as how to create a report generator class using the BIRT Runtime API.

Extending the OSGi Console

To begin, create a new plug-in project using the Plug-in Project wizard. Name the new project
something like ch06.Reports. Uncheck the “This plug-in will make contributions to the UT”
option, and set “Would you like to create a rich client application?” to No. (This plug-in will be
run within the OSGi framework (Equinox); thus, it won’t be an RCP.)

The new plug-in must be modified to extend the OSGi console. This will allow the
user to type custom commands when running in console mode. When an object wants
to provide a number of commands to the console, it must implement the interface org.
eclipse.osgi.framework.console.CommandProvider, and define the commands as meth-
ods starting with a _ character and taking a CommandInterpreter as argument. At runtime,

283

284 CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

the console will find all the public commands. For example, the next fragment defines the
command hello:

public Object hello(CommandInterpreter intp) {
return "hello " + intp.nextArgument();

}

Note Wnen implementing the CommandInterpreter interface, the plug-in class must override public
String getHelp() to return help text that explains the command.

The goal is to add a report command to generate a report document using the BIRT
Runtime. Open the plug-in Activator class (Activator.java) and insert a report command,
as shown in Listing 9-9.

Listing 9-9. Plug-in Activator with a Report Command

public class Activator extends Plugin implements CommandProvider {

// The plug-in ID
public static final String PLUGIN_ID = "ch09.Reports";

// The shared instance
private static Activator plugin;

Vi

* The constructor
*/

public Activator() {
}

@SuppressiWarnings("unchecked")

public void start(BundleContext context) throws Exception {
super.start(context);
plugin = this;

Hashtable properties = new Hashtable();
context.registerService(CommandProvider.class.getName(), this,
properties);

}

public void stop(BundleContext context) throws Exception {
plugin = null;
super.stop(context);

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

public static Activator getDefault() {
return plugin;

}

@0verride
public String getHelp() {
return "---BIRT Console Commands---"
+ "\n\treport <input file> <output file> <format> <user params>"
+ "\n\t\tuser params: namel=valuel&name2=value28&...";

}

Jkk

* Report command
*

* @param ci

* @throws Exception

*/

public void report(CommandInterpreter ci) throws Exception {
// Generate report here...

}

Listing 9-9 shows a plug-in activator that defines the report command, which will render
areport from the command line. This class also registers the CommandProvider service (within
the start() method), with the specified properties, with the framework:

context.registerService(CommandProvider.class.getName(), this, properties)

Generating the Report

The plug-in needs a report generator to use the BIRT Runtime to create a document based on
command arguments. This requires two additions to the plug-in:

¢ BIRT dependencies in the plug-in manifest

e AReportGenerator Java class to generate the actual document(s)
Add the following BIRT dependencies within the plug-in manifest:

e org.eclipse.birt.core

e org.eclipse.birt.report.engine
To use the Classic Models sample database, add the following:
eorg.eclipse.birt.report.data.oda.sampledb
To render charts within a document, add four packages:
e org.eclipse.birt.chart.runtime

e org.eclipse.birt.chart.device.pdf

285

286 CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

e org.eclipse.birt.chart.device.svg

e org.eclipse.birt.chart.engine
To support multiple output formats, add five more packages:

e org.eclipse.birt.report.engine.emitter.html

e org.eclipse.birt.report.engine.emitter.pdf

e org.eclipse.birt.report.engine.emitter.postscript
e org.eclipse.birt.report.engine.emitter.ppt

e org.eclipse.birt.report.engine.emitter.prototype.excel

Listing 9-10 shows ReportGenerator. java, a class that uses a report engine (IReportEngine)
to provide reporting functionalities. This class uses IRunAndRenderTask to run and render a
report to one of the output formats supported by the engine. This task supports report param-
eters sent through the command line, and output options such as format or file name defined
through the IRenderOption interface.

Listing 9-10. ReportGenerator.java: A Class to Generate a Report Document Using the BIRT
Runtime

public class ReportGenerator {
IReportEngine engine;

public ReportGenerator() {
final EngineConfig config = new EngineConfig();

IReportEngineFactory factory = (IReportEngineFactory) Platform
.createFactoryObject(
IReportEngineFactory.EXTENSION REPORT ENGINE FACTORY);

engine = factory.createReportEngine(config);

}

/**

* Run and render report task

* @param designDocPath

* Design document

* @param params

* Report params as a query string namel=vali&name2=val2,...
* @param outFormat

* pdf, html, etc.
* @param out
* Output file

* @throws EngineException
*/

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

@SuppressiWarnings("unchecked")

public void runAndRender(String designDocPath, String outFileName
, String outFormat, String params)
throws EngineException

// Open the report design
IReportRunnable design = engine.openReportDesign(designDocPath);

// Create task to run and render the report,
IRunAndRenderTask task = engine.createRunAndRenderTask(design);

// Set parent classloader for engine

task.getAppContext().put(
EngineConstants.APPCONTEXT CLASSLOADER KEY,
ReportGenerator.class.getClassLoader());

if (params != null) {
task.setParameterValues(splitParams(params));
task.validateParameters();

}

// Render options

IRenderOption options = new RenderOption();
options.setOutputFormat(outFormat);
options.setOutputFileName(outFileName);

task.setRenderOption(options);

// Run and render report
task.run();
task.close();

}

public void destroy() {
engine.destroy();

}

Vioio

* Extract report params from a query string. Values must be integer

* @param queryString

* namel=vali&name2=val2&....

* @return

*/

private static HashMap<String, Object> splitParams(String queryString) {
String[] pairs = queryString.split("&");
HashMap<String, Object> params = new HashMap<String, Object>();

287

288

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

if (pairs == null)
return null;

for (int i = 0; i < pairs.length; i++) {
String[] keyval = pairs[i].split("=");

if (keyVal == null)
throw new IllegalArgumentException(
"Invalid params quer string:'
// Values must be integers
params.put(keyVal[o], new Integer(keyval[1]));

+ queryString);

}

return params;

The ReportGenerator. java class in Listing 9-10 has four major methods:

e ReportGenerator(): This is the ReportGenerator constructor. Its role is to create a
report engine factory (IReportEngineFactory), which is used to create a report engine
(IReportEngine).

e runAndRender(String designDocPath, String outFileName, String outFormat,
String params): This method opens a report document specified by designDocPath. It
then creates an IRunAndRenderTask task and sets report parameters, if any. It sets the
render options output file name (outFileName) and format (outFormat; for example,
PDF). Finally, it starts the task to generate the output report.

Note Report parameters are sent in a string, such as name1=vali8name2=val2, ..., which must be
split into a Java HashMap object for the engine to process.

e destroy(): This method cleans up by destroying the engine and releasing resources.

e splitParams(String queryString): This is a utility method to split the user parameter
string into a Java HashMap that can be understood by the engine.

All the pieces are now in place. The final step is to add logic to the Activator class to call
the report generator when the user types a report command, as shown in Listing 9-11.

Listing 9-11. Plug-in Activator _report Command Subroutine

public void report(CommandInterpreter ci) throws Exception {
String in = ci.nextArgument();
String out = ci.nextArgument();
String fmt = ci.nextArgument();
String params = ci.nextArgument();

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

if (in == null) {
ci.println("Invalid arguments.\n" + getHelp());
return;

}

try {
ReportGenerator generator = new ReportGenerator();
generator.runAndRender(in, out, fmt, params);
generator.destory();

ci.println(out);

} catch (Exception e) {
e.printStackTrace();
}

In Listing 9-11, arguments are read from the command interpreter and passed to the
report generator, which will create a report output file. In this case, the input arguments are a
report design document (. rptdesign), an output report document, the output format (PDF),
and report arguments. For example, to render the top 10% selling items (TopNPercent) report
from the Classic Models sample database, use this command:

osgi> report <path to report>/TopNPercent.rptdesign
c:/Documents/TopNPercent.pdf pdf "Top Percentage=10&Top Count=3"

Note that TopNPercent.rptdesign is a report created using the built-in templates from the
Report Designer.

Running the Report Generator Plug-in

To run the report generator plug-in, create an OSGi framework launch configuration, as
follows:

1. Select Run » Run Configurations.

2. Right-click OSGi Framework and select New.

3. Enter a descriptive name, such as Report Generator.
4

. Under Bundles. check the ch09.Reports plug-in. Click Add Required Bundles, and then
click Validate Bundles to make sure all dependencies are selected.

o

Click Apply and Run.

6. At the console prompt, type help to see the command arguments. To render a report
design, use the following format:

report <input_file> <output_file> <format> <user params:nameil=
valuel8name2=value2a...>

289

290 CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT

Summary

This chapter covered using BIRT. The following are the important points:

¢ BIRT is a powerful reporting system for RCP, stand-alone, or web applications.
¢ Reports can be lists of data, charts, spreadsheets, documents, and compound reports.
¢ BIRT consists of the Report Designer UI, a Runtime API, and a Chart engine.

e The Report Designer is the tool of choice to create reports. It consists of Data Explorer,
Palette, Property Editor, and Layout views.

* BIRT can also be used as a report server within a Java EE server such as Tomcat or JBoss.

e To use BIRT within Tomcat, copy the file birt.war from the report runtime to the
TOMCAT_HOME /webapps folder, and then simply browse to http://localhost:8080/birt/.

» To view user reports within the Java EE report servlet, copy any design documents to
your web application reports folder, and then simply browse to http://localhost:
8080/birt/frameset? report=folder/report.rptdesign¶mi=valuel.

¢ The servlet URL mapping can be frameset (to create a report within an IFRAME with
a toolbar and report document), run (to create a report without a navigation bar), and
preview (to create a report without toolbars).

¢ BIRT provides even more flexibility through a JSP tag library. The library is composed
of five major tags:

e viewer to display a complete viewer with a navigation bar and toolbars

e report to display a preview report inside an IFRAME or a DIV without a document
* param to define parameters

* parameterPage to create a custom parameter page

* paramDef, used within a parameterPage to retrieve HTML for complex parameter
types such as radio buttons, check boxes, and cascaded parameters

¢ The Report Engine API is a tool for developers to use BIRT within a stand-alone Java
application, a servlet, or an RCP application. Use the Report Engine API as follows:

* Setreport options with EngineConfig.

¢ Set the engine home and start the Eclipse Platform, if running stand-alone or
within Java EE.

* Create an instance of the ReportEngine to perform multiple tasks.
* Open areport design using one of the openReport methods of ReportEngine.

* Setreport parameters using the IRunTask and the IRunAndRenderTask interfaces,
or extract report parameter information using IGetParameterDefinitionTask.

e Run and render a report using IRunAndRenderReportTask or IRunTask and
IRenderTask.

e Clean up with ReportEngine.shutdown().

CHAPTER 10

Automated Updates

The Eclipse update manager is a powerful framework to publish bundles of plug-ins (known
as features) to an update site so that clients can download and install them directly into an
RCP application. Couple this with the possibility of building plug-ins automatically outside the
workbench (also known as a headless build), and you have a complete solution to automate
distribution of your RCP application.

In this chapter, you will learn how to build a feature and update site project to provide
web updates to an RCP application, as well as how to build RCP plug-ins outside the work-
bench using the headless build system.

Updating and Installing Software the Eclipse Way

Eclipse provides facilities for adding new software to the platform or updating software in the
system, thus providing a convenient way to deliver updates to your users. The install update
process usually involves the following steps:

Define and configure a product: This is the first step when packaging and delivering an
RCP application. Eclipse provides a standard for packaging, configuring, and installing
using the product extension point (org.eclipse.core.runtime.products). This exten-
sion point describes information such as application name and startup class, as well as
custom properties such as window images, splash screen, and About dialog information.
The product configuration also defines the plug-ins that compose the product, as well as
dependencies, information about the binary launcher, and runtime configuration data.

Build a feature project: A feature is a way of grouping and describing different function-
ality that makes up a product. Grouping plug-ins into features allows the product to be
installed and updated using the Eclipse update system. Features may also include frag-
ments that are useful for packaging locale translations.

Build an update site project: An update site allows users to discover and install updated
versions of products and features. In addition, the platform update UT allows users to
maintain a list of update servers that can be searched for new features.

The following sections describe these steps in more detail.

291

292 CHAPTER 10 AUTOMATED UPDATES

Defining and Configuring a Product

A product is usually packaged and delivered as one or more features that include all the code
and plug-ins needed to run them. After the product is installed, the user launches it and is pre-
sented with a workbench configured specifically for the purpose supported by the product.

Note Product providers are free to use the JRE and installation tool of their choice when building an
RCP product.

The typical disk layout of a product is shown in Table 10-1.

Table 10-1. Typical Disk Layout of an RCP Application

Name Type Description

.eclipseproduct File Marker file used to mark a directory into which an Eclipse-based
product has been installed.

artifacts.xml File Bundle pool contents. It is used to avoid duplication of software
and other artifacts when multiple Eclipse-based applications are
installed on the same computer.

eclipse.exe File Application launcher (its name can be customized).

eclipse.ini File Launch arguments. The file name must be the same as the
launcher, with the extension ini.

configuration Folder Runtime configuration data.

features Folder Installed features.

plugins Folder Installed plug-ins.

p2 Folder Files for Eclipse 3.4’s new provisioning system, dubbed p2

(described in more detail in the “Software Update UI Tools”
section later in this chapter).

Describing a Product

The preferred mechanism to describe a product is the org.eclipse.core.runtime .products
extension point. You commonly define this extension point in the master plug-in that con-
figures the workbench. For example, the web browser product created with plug-ins in
Chapters 2 and 3 is shown in Listing 10-1 and Figure 10-1.

Listing 10-1. Product Extension Point for the Web Browser RCP

<extension
id="product"
point="org.eclipse.core.runtime.products">
<product

application="cho03.WebBrowser.application"”
name="Web Browser RCP">

CHAPTER 10 AUTOMATED UPDATES 293

<property
name="windowImages"
value="16-earth.png,32-earth.png">
</property>
<property
name="appName"
value="Web Browser RCP">
</property>
<property
name="startupForegroundColor"
value="000000">
</property>
<property
name="startupMessageRect"
value="7,252,445,20">
</property>
<property
name="startupProgressRect"
value="5,275,445,15">
</property>
<property
name="preferenceCustomization"
value="plugin_customization.ini">
</property>
<property
name="aboutImage"
value="icons/128-earth.png">
</property>
<property
name="aboutText"
value="Web Browser Application
Copyright 2008">
</property>
</product>
</extension>

#. Web Browser RCP B
about Web Browser RCP 4 — 3 x|

- ‘Web Browser Application
Caopyright 2008

Plug-in Details | Configuration Detalls |

W IOV IR

Figure 10-1. Web Browser RCP showing window images and About dialog settings

294

CHAPTER 10 AUTOMATED UPDATES

The org.eclipse.core.runtime.products extension point defines the properties shown in
Table 10-2.

Table 10-2. Properties of the org.eclipse.core.runtime.products Extension Point

Name Description

application The fully qualified name of a class that implements org.eclipse.
equinox.app.IApplication, which represents the executable entry
point to the application.

windowImages The path to two comma-separated images (16X16 and 32X32
pixels) used as window icons. Paths can be relative to the plug-in
or absolute to another plug-in using the format plugin:/
plug-in-name/path/file-name.

appName The name of the product.

startupForegroundColor The font color of messages displayed on the splash screen.
startupMessageRect The bounding box for messages within the splash screen.
startupProgressRect The bounding box for the splash screen progress bar. This box is

defined by comma-separated numbers that specify the top-left
point, width, and height of the progress bar. The same applies to
the startupMessageRect.

preferenceCustomization The name of a properties file containing default preference values
for the product. This file should be placed in the master plug-in
(the plug-in that defines the GUI of your RCP).

aboutImage The About dialog image.
aboutText The About dialog text.

Using Your Own Splash Screen

You can customize your application’s splash screen by creating a file named splash.bmp and
locating it in the plug-in declaring the product. If you wish to add a progress bar showing the
plug-in load sequence, create the file plugin customization.ini in the same location, and add
the following property:

org.eclipse.ui/SHOW_PROGRESS_ON_STARTUP = true

Tip The step of adding a custom splash screen can be automated by selecting the Add branding option
from the Plug-in Project wizard when creating your RCP plug-in. Also, if you need a locale-specific image,
put it in the n1 directory beneath the plug-in’s directory. For example, a splash screen for the Japanese
locale (jp_JA) should be placed in the plug-in’s directory n1/jp/JA/splash.bmp.

CHAPTER 10 AUTOMATED UPDATES

Grouping Plug-ins in Features

In the real world, an RCP application can be composed of many plug-ins working together
to perform a useful function. For example, BIRT (described in the previous chapter) consists
of more than 50 plug-ins. To isolate this kind of common functionality, Eclipse groups plug-
ins into features. Thus, instead of installing 50 plug-ins to do reports, users need to install or
update only the BIRT feature.

Features do not contain code. They contain only a list of plug-ins for the product, pack-
aged in a archive and described using a manifest file (feature.xml). This fragment shows the
basic syntax of a feature:

<?xml version="1.0" encoding="UTF-8"?>
<feature
id="org.eclipse.myfeature"
label="My Feature"
version="1.1.0"
provider-name="ACME Inc."
>

<description>Feature Description</description>
<license url="http://license.com">License Text</license>
<url>
<update label="ACME Update Site" url="http://update.acme.org/updates/3.3"/>

<discovery label="ACME Update Site" url="http://update.acme.org/updates/3.3/">

</url>

<!-- Plug-ins that make the feature -->

<!-- One tag per plug-in -->

<plugin
id="com.plugin1"
download-size="0"
install-size="0"
version="0.1.31"
unpack="false"/>

<!-- more plugins here -->

</feature>

All features are described by a required unique ID and label. Version and provider are
optional information. Other tags include the following:!

e <license>: Specifies your license text with an optional URL.

¢ <url>: An optional tag that defines zero or more URLs specifying site(s) containing
feature updates or new features.

e <update>: Defines the URL and label to go to for updates to this feature.

1. For a complete list of tags and attributes, as well as the feature document DTD, see the feature refer-
ence guide at http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.platform.doc.isv/

reference/misc/feature _manifest.html.

295

296 CHAPTER 10 AUTOMATED UPDATES

e <discovery>: Defines the URL and label to go to for new features. You can use this
element to reference your own site or a site with complementary features.

e <plugin>: Identifies the plug-ins that compose the feature (multiple plug-ins will
require multiple tags). Plug-ins are identified by a required ID and version. Optional
attributes include download and install size. The optional unpack attribute specifies
that the plug-in is run from a JAR.

Grouping Plug-ins Within Fragments

Fragments are ideal for shipping extra functionality without repackaging or reinstalling the
original plug-in, and for packing language translations.
Fragments are described using a fragment manifest file, fragment.xml. Fragments attach
themselves to a host plug-in, and their contents are included to the host classpath at runtime.
If you are packing translations, you should use the following:

Platform core mechanism: This mechanism defines a directory structure that uses locale-
specific subdirectories for files that differ by locale. Translated files are placed in a folder
called nl beneath the plug-in. For example, French translations will be placed under nl/fr
or n/fx/FR for France and n/fr/CA for Canadian French.

Java resource bundles: This is the standard Java approach to handling property resource
bundles. Translated files are contained in a JAR file and given a locale-specific name (for
example, messages_fr FR.properties). The files are in package-specific subdirectories
and may appear in the plug-in itself or in one of its fragments.

plugin.properties mechanism: plugin.properties provides translations for strings in the
plug-in manifest files (which are plugin.xml and MANIFEST.MF). plugin.properties must
be located in the root of the plug-in or in the root of a fragment of this plug-in.

Building an Update Site Project

An update site can be used to make your project available on a web server so that users can
download and install it directly into Eclipse using the update manager. Creating an update site
involves defining an update site project, which packs all features and plug-ins into JARs along
with a site map (site.xml). Eclipse provides powerful tools for this task. You'll learn how to
create an update site project in this chapter’s hands-on exercise.

Caution Updating software from a remote, nontrusted server may be a security risk. Be careful when
connecting to an unknown update site and examining its content.

Software Update Ul Tools

Since Eclipse 3.4, the update manager has been rewritten to a completely new provisioning
platform dubbed p2. p2 was created for two main reasons:

CHAPTER 10 AUTOMATED UPDATES

¢ To simplify the work flow of the update manager, and make it simpler and more
streamlined to use (hence the term provisioning updates)

¢ To provide bundle pooling, which allows you to share plug-ins across multiple Eclipse
installations, thus eliminating duplicates (very helpful if you have multiple Eclipse
installations)

The internals of p2 are transparent to the user. However, new applications and update
sites can be optimized for use with p2 for managing code repositories.

Note Eclipse recommends using the new update manager, rather than the legacy update manager
(before version 3.4). The problem with the new update manager is that p2 needs a new disk layout, which
will require changes for legacy applications.

You can also use a command-line tool provided by p2 to completely automate software
installations or updates (commonly used from a scheduled script).

Using the Software Updates and Add-ons Dialog

The Software Updates and Add-ons dialog provides a UI for performing provisioning opera-
tions using p2, as shown in Figure 10-2. To access this dialog, select Help » Software Updates.

_ioix
Installed Software Awailable Software |
|type filker bext -
ame | ‘ersion - Install...

=0 %) Ganymede
000 € and C++ Development
000 Charting and Reparting Eropetties
000 Callaboration Toals
000 Cammunications
000 Database Development Add Site...
000 Enabling Features
000 Graphical Editars and Framewarks
000 Java Development
000 Maodels and Model Develapment
000 Other Taals
D‘”U Prograrnming Languages =
000 Remate Access and Device Development
000 504 Develapment
000 Testing and Performance

000 Uncategarized A
1| | 3

[V shaw only the latest versions of available software

Manage Sites. .,

414N

Refresh

IV Include items that have already been installed

Open the ‘Automatic Updates' preference page to set up an aukomatic update schedule.,

(7 Close

Figure 10-2. Software Updates and Add-ons dialog

297

298

CHAPTER 10 AUTOMATED UPDATES

The Software Updates and Add-ons dialog has two main tabs:

Installed Software: From this tab, you can update and uninstall features or revert to a
previously installed configuration of the platform. You can also configure automatic
updates by setting an update schedule, download, and notification options.

Available Software: This tab lets you browse the Ganymede code repository for features
or filter names by keyword. It also allows you to add a new local or remote update site, or
manage the sites used to find available software.

Installing Software from the Command Line

p2 provides a director application to perform provisioning operations from the command
line. This application is capable of provisioning a complete installation from scratch or simply
extending your application. Depending on your needs, this application can be executed either
inside or outside the target product being provisioned.

Installing Inside the Target Application

Installing inside the target application allows you to add new components to an existing
product. For example, the next fragment shows the command used to install the C/C++
Development Tools (CDT) into the SDK.

eclipse.exe
-application org.eclipse.equinox.p2.director.app.application
-metadataRepository http://download.eclipse.org/releases/ganymede/
-artifactRepository http://download.eclipse.org/releases/ganymede/
-installIU org.eclipse.cdt.feature.group
-version <version>

The application argument indicates the product to run (the p2 director in this case).
metadataRepository and artifactRepository specify the remote locations from which the
product will be installed. The metadata repository usually contains only information about the
components themselves. The artifact repository stores the component code. installIU defines
the install unit (CDT in this case) and the version you wish to install.

Installing Outside a Target Application

When you install outside a target application, the target product is not started. This approach
has the advantage of being able to both modify an existing installation and create a complete
installation from scratch. It also allows you to perform provisioning operations on any plat-
form for any platform (for example, install Windows plug-ins from Linux and vice versa). For
example, to install the CDT from an SDKlocated in C:\eclipseSDK1 into another SDK located
in D:\eclipseSDK2, use this command:

c:\eclipseSDK1\eclipse.exe
-application org.eclipse.equinox.p2.director.app.application
-metadataRepository http://download.eclipse.org/releases/ganymede/
-artifactRepository http://download.eclipse.org/releases/ganymede/1

CHAPTER 10 AUTOMATED UPDATES

-installIU org.eclipse.cdt.feature.group

-version <version>

-destination d:/eclipseSDK2/

-profile SDKProfile

-Declipse.p2.data.area=d:/eclipseSDK2/p2

Now suppose that you wish to provide multiple-platform Eclipse installations from a
single disk. For example, to install a Linux Eclipse SDK into C:/eclipse-1linux-sdk from a
Windows SDKlocated in C:/eclipse-SDK, use the following command:

c:\eclipse-SDK\eclipse.exe

-application org.eclipse.equinox.p2.director.app.application
-metadataRepository http://download.eclipse.org/eclipse/updates/3.4
-artifactRepository http://download.eclipse.org/eclipse/updates/3.4
-installIU org.eclipse.sdk.ide

-destination c:/eclipse-linux-sdk/

-profile SDKProfile

-profileProperties org.eclipse.update.install.features=true
-bundlepool c:/eclipse-linux-sdk/

-p2.0s linux
-p2.ws gtk
-p2.arch x86
-vmargs

-Declipse.p2.data.area=d:/eclipse-linux-sdk/p2

See Table 10-3 for parameter descriptions.

Table 10-3. p2 Director Command-Line Arguments

Parameter

Description

-application org.
eclipse.equinox.p2.
director.app.application

-metadataRepository

-artifactRepository

-installIU

-version

-destination

The p2 director application ID.

A comma-separated list of metadata repositories where the
installable units to be installed can be found. For example,
the metadata repository for Eclipse Ganymede (3.4) is http://
download.eclipse.org/eclipse/updates/3.4.

A comma-separated list of artifact repositories where the arti-
facts can be found.

The ID (or unique name) of the installable unit (IU) to install.
An installable unit is a component you wish to process. For ex-
ample, the installable unit ID for the entire SDK is org.eclipse.
sdk.ide. The installable unit ID for the CDT is org.eclipse.cdt.
feature.group. If you want to install a feature, the identifier of
the feature must be suffixed with . feature.group.

The version of the installable unit to be installed.

The folder in which the targeted product is located. It may be
anew folder for a new installation or an existing folder for an
update.

Continued

299

300

CHAPTER 10 AUTOMATED UPDATES

Table 10-3. Continued

Parameter

Description

-profile

-Declipse.p2.data.area

-bundlepool

-p2.0s

-p2.ws

-p2.arch

-roaming

The profile ID containing the description of the targeted prod-
uct. This ID is usually found in the eclipse.p2.profile property
contained in the config. ini file of the targeted product. For the
Eclipse SDK, the ID is SDKProfile.

Points to the location of the profile registry containing the
description of the profile set in -profile. Eclipse recommends
setting this to <destination>/p2. This property must be setas a
VM argument.

The location where the plug-ins and features will be stored.
This value is taken into account only when a new profile is
created. For an application where all the bundles are located
in the plugins/ folder of the destination, set this argument to
<destination>.

The operating system to use when the profile is created. This
will be used to filter which operating system-specific installable
units need to be installed.

The windowing system to use when the profile is created; for
example, win32 for Windows or gtk for Linux. This will be used to
filter which windowing system-specific installable units need to
be installed.

The architecture to use when the profile is created. This will be
used to filter which architecture-specific installable units need
to be installed.

Indicates that the product resulting from the installation can be
moved. This property makes sense only when the destination
and bundle pool are in the same location, and eclipse.p2.data.
area is set to <destination>/p2. This value is taken into account
only when the profile is created.

Product Build Automation with the Headless

Build System

When an RCP product is made of many plug-ins, it makes no sense to build it within the IDE.
Clearly, an automated build system is needed. The PDE provides a headless build system to
accomplish this task. In fact, Eclipse uses the org.eclipse.releng.eclipsebuilder plug-in and
a set of control files for the automated build of all parts of its platform.

To use a headless build to build a product, you will need the following:

¢ An Eclipse installation

e CVS client version 1.10 or higher

e Zip and unzip executables

CHAPTER 10 AUTOMATED UPDATES

A builder (org.eclipse.releng.eclipsebuilder) is provided by Eclipse. You can download
it remotely with this command:

cvs -d :pserver:anonymous@dev.eclipse.org:/cvsroot/eclipse
export -r HEAD org.eclipse.releng.eclipsebuilder

You can start a headless build from the command line or an Ant script with a command
such as the following:

set ECLIPSE_HOME=<PATH TO ECLIPSE>

java -cp ZECLIPSE_HOME%\org.eclipse.equinox.launcher <version>.jar
org.eclipse.core.launcher.Main
-application org.eclipse.ant.core.antRunner
-buildfile build.xml
-Dcomponent=<LOCATION OF BUILD FILES>
-Dbaseos=win32
-Dbasews=win32
-Dbasearch=x86
-Djavacfailonerror=true
-Dpde.build.scripts=%#ECLIPSE_HOME%/plugins/org.eclipse.pde.build <version>/scripts
-Dbaselocation=%ECLIPSE_HOME%

The previous fragment defines the basic arguments of a headless build:

ECLIPSE_HOME: The path to your Eclipse installation. An environment variable is
commonly used to store this path.

org.eclipse.equinox.launcher <version>.jar: The JAR that contains the build
launcher (org.eclipse.core.launcher.Main). It must be included in your classpath.
Note that the version changes depending on your installation.

-application: Defines the application to run—in this case, an Ant build script.
-buildfile: The master Ant build script (build.xml) to drive the process.

-DbuildDirectory: The location where the build files will be created (for example,
C:\build\).

-Dbaseos, -Dbasews, and -Dbasearch: The base operating, windowing system, and archi-
tecture (for example, win32, win32, and x86). This is useful to create packs for multiple
operating systems.

-Djavacfailonerror: Tells the build to abort on compilation errors.

-Dpde.build.scripts: The location of the build scripts. These are provided by Eclipse
and are located in ECLIPSE_HOME%/plugins/org.eclipse.pde.build <version>/scripts.

-Dbaselocation: The location of your Eclipse installation.

See Table 10-4 for a list of arguments.

301

302

CHAPTER 10 AUTOMATED UPDATES

It is best to put the build command in a shell script, especially when you have a lot of
arguments.

Tip To run only a particular phase of the build process (after modifications to the build files for

example), simply append the phase name to the -buildfile argument in the command line: java org.
eclipse.core.launcher.Main -application org.eclipse.ant.core.antRunner -buildfile

<BUILD FILE> <PHASE _NAME>. The phase names are preBuild, fetch, generate, process, assemble,
package, and postBuild.

The following sections describe the underpinnings of the build system. We’'ll start with
configuration files and runtime arguments, and then cover the build phases. Understanding
this process is required if you wish to perform custom steps on any of the phases (to create
a binary installer, for example). Otherwise, the build simply packs the required files in a zip
archive.

Build Configuration

The build configuration is driven by series of files for which Eclipse provides templates
located in the folder ECLIPSE_HOME\plugins\org.eclipse.pde.build <version>\templates\
headless-build. This folder contains the following files:

e allElements.xml: An optional file that is primarily useful when you must build multiple
top-level components such as multiple features.

e build.properties: A critical file that defines the parameters describing how and where
to execute the build. These parameters can be specified in the command line; however,
there are so many that is best to put them in this file.

e customAssembly.xml: An optional file to define targets called before and after the binary
files are gathered. It is useful to insert license files or digitally sign the JARs.

e customTargets.xml: An optional file that can be used to control all the phases of the
build. It can also be used to download base build components (such as a build target
platform), check out mabp files from a build repository, clean a build, gather build logs,
test the build, and publish the build to a specific location.

For a basic build, you need only build.properties. Complex builds may use any or all of
these files. They must be edited by the user and stored in the build configuration directory
(specified by the -Dbuilder argument in the command line).

The headless build provides two extra files, located in the $ECLIPSE_HOME/plugins/org.
eclipse.pde.build <version>/scripts folder:

e build.xml: The main Ant build script.

e genericTargets.xml: Used to control the phases of the build process.

CHAPTER 10 AUTOMATED UPDATES

Tip Basic templates for customTargets.xml and build.properties can be found under ECLIPSE
HOME/org.eclipse.pde.build <version>/templates/headless-build.

Table 10-4 describes the most useful build configuration parameters.? See the hands-on
exercise later in this chapter for a real-world example of using them.

Table 10-4. Some Headless Build Command Options

Name Description

buildDirectory The relative path to a directory where the source for the build will be
exported, where scripts will be generated, and where the end products of the
build will be located. On Windows systems, this directory should be close to
the drive root to avoid path-length limitations, particularly at compile time.

baselocation A directory separate from ${buildDirectory} that contains prebuilt plug-ins

baseos, basews,
basearch, basenl

configs

collectingFolder
archivePrefix
buildType
buildId

buildlLabel

timestamp

mapVersionTag

against which to compile. ${baselLocation} must not contain any features,
plug-ins, or fragments that are already or will be located in ${buildDirectory}.

The os, ws, arch, and nl values of the prebuilt Eclipse found in ${baseLocation}.

An ampersand-separated list of configurations to build for an element,
where a configuration is specified as <os>, <ws>, or <arch>; for example,
configs="win32,win32,x86 & linux, motif, x86 & linux, gtk, x86".
It is typically used to build a feature that is os, ws, and arch-specific. A
nonplatform-specific configuration is specified with "*,*,*".

The directory in which build features and plug-ins are gathered. This is typi-
cally set to "eclipse".

The top-level directory in the assembled distribution. This is typically set to
"eclipse”.

A letter used to identify builds: I (integration), N (nightly), S (stable), R
(release), or M (maintenance).

The build name. The default is set to "build" in the template build.
properties.

Refers to the name of the directory that will contain the end result of the
build. It is set to ${buildType}.${buildId} in the template build.properties.
This directory will be created in ${buildDirectory}.

A timestamp used to fill in the value for buildid in about.mappings files. Also
used to name build output directory; for example, I-build-<timestamp>.

Sets the tag attribute in a call to the Ant cvs task to check out the map file
project.

Continued

2. Foracomplete list of build configuration parameters, see the Builder Configuration Properties sec-
tion at http://help.eclipse.org/stable/index.jsp?topic=/org.eclipse.pde.doc.user/reference/
pde builder config.htm.

303

304

CHAPTER 10 AUTOMATED UPDATES

Table 10-4. Continued

Name Description

fetchTag Sets the tag or branch when exporting modules used in the build. For
example, setting fetchTag=HEAD will fetch the HEAD stream of the source for all
features, plug-ins, and fragments listed in the map files, instead of fetching
the tag specified in the map entry for that element. For example, this is used
in the Eclipse build process to produce the nightly build.

bootclasspath Sets the value for the attribute bootclasspath in calls to the Ant javac task in
a plug-in’s build.xml file.

javacDebugInfo Sets the value for the attribute debug in calls to the Ant javac task in a plug-
in’s build.xml file. Determines if debug information is included in the output
JARs. Set to on in the template build.properties.

javacFailOnError Sets the value for the attribute failonerror in calls to the Ant javac task in
a plug-in’s build.xml file. When this is set to false, the build will continue,
even if there are compilation errors.

javacSource Sets the value for the attribute source in calls to the Ant javac task in a plug-
in’s build.xml file. Sets the value of the -source command-line switch for
javac version 1.4. Used when compiling the JARs for the plug-ins. The default
issetto 1.3 in the build.xml file generated for plug-ins and fragments.

JjavacTarget Sets the value for the attribute target in calls to the Ant javac task in a plug-
in’s build.xml file. Sets the value of the -target command-line switch for
javac. Used when compiling the JARs for the plug-ins. The default is set to
1.1in the build.xml file generated for plug-ins and fragments.

javacVerbose Sets the value for the attribute verbose in calls to the Ant javac taskin a
plug-in’s build.xml file. Asks the compiler for verbose output. The default is
set to true.

zipargs Arguments to send to the zip executable. Setting it to -y on Linux systems

preserves symbolic links.

Build Phases

Behind the scenes, the build system is divided in a series of steps or phases. These phases
are useful to customize the build (for example, to fetch files from a server or create a binary
installer) and can be run from the command line. The build phases are as follows:

preBuild and fetch: The most important task of these phases is to fetch the plug-ins that
constitute the product as well as all dependencies. This is accomplished by fetching a
map file. The map file is a Java property file that contains mappings of plug-ins, features,
or fragments to their CVS locations and access methods. Adding a new plug-in or frag-
ment to the product requires updating the map files with the new element. Map files are
described in more detail in the “Creating a Release Engineering Project” section later in
this chapter.

generate: After features and plug-ins have been fetched to the build directory, the build
scripts are generated in the same way as they would be with the PDE GUI.

CHAPTER 10 AUTOMATED UPDATES

process and assemble: These two phases mark the start of the compilation process with

a call to processElement in genericTargets.xml. This, in turn, calls the build. jars target
(which is hidden from the user) in build.xml within the feature directory to start com-
pilation. After compilation, the assembly is started from the assembleElement target in
genericTargets.xml. Most the work is just delegated to the headless build. The assemble
phase creates a series of scripts to drive the process. These scripts are hidden from the user.

Note The assemble script copies all the build results to a temporary subdirectory in the build target direc-
tory and then zips them. The files being collected are feature manifest files (feature.xml), plug-in manifest
files (plugin.xml), and the built JAR files. The inclusion of arbitrary files can be specified with the bin.
includes property of the plug-in’s build.properties file.

package: When the packer is run (by setting runPackager=true in build.properties), this
phase defines targets to run before and after the packer starts. It is helpful if your build
results need to contain binary features and plug-ins that come from the baselocation.

postBuild: This phase allows you to perform actions with the build output, such as build
an operating system-dependent installer.

These concepts can be better understood with a practical exercise. The next section will
get you started with a hands-on example.

Hands-on Exercise: Automated Updates and Builds
for RCP

Let’s put the concepts from the previous sections to the test. The goal of this exercise is to
build an automated update site for the OpenGL product created in Chapter 8. The projects to
be created include a feature project that contains product plug-ins and an update site project
to perform the actual updates locally or remotely.

The exercise will demonstrate how to deploy the product to multiple operating systems
using the IDE, as well as a how to create a headless build.

Creating a Feature

As mentioned earlier, a feature is a collection of plug-ins that perform a common task. This is
critical for installing or updating products that have many plug-ins, as they can manipulated
as a single entity. A feature project does not contain any code. It merely describes the set of
plug-ins that provide a function.

Follow these steps to create a feature project:

1. Select File » New » Project » Plug-in Development » Feature Project. Click Next.

2. Enter a project name (ch10.0penGL.Feature) and add feature information, as shown in
Figure 10-3. Click Next.

305

306

CHAPTER 10 AUTOMATED UPDATES

_ox
Feature Properties =1 J:'_'

Define properties that will be placed in the Feature, xml file ——

Project name: | ch10.0penil. Feature

IV Use default location

Location: | Ci\DocumentsiBooks\EclipseRCPYWorkspaceich10,.OpenGL. Feature Browse. .. |

Feature properties

Feature ID: | ch10.0penil. Feature
Feature Mame: | Feature Feature
Feature Yersion: | 1.0.0

Feature Provider: | ACME]

Install Handler Library: |

6] < Back. | Mext = | Finish I Canicel

Figure 10-3. Defining feature properties

3. Select the plug-ins that make the feature—cho08.0penGL and ch08.0penGL.Natives in
this case—as shown in Figure 10-4. Click Finish.

Note Make sure cho8.0penGL.Natives includes the native libraries for deployment. Otherwise, the
native OpenGL code will not be deployed, and the plug-in will fail to start. To ensure that these libraries are
included, open the manifest editor for the project, click the Build tab, and under Binary Build, make sure all
the DLL and SO files are checked.

Creating an Update Site

An update site project allows you to define one or more features to install or update. To create
this project, follow these steps:

1. Select File » New » Project » Plug-in Development » Update Site Project. Click Next.

2. Enter a project name (ch10.0penGL.UpdateSite) and check “Generate a web page listing
all available features within this site,” as shown in Figure 10-5. This will create an index
HTML page for deployment to a web server. Click Finish.

CHAPTER 10 AUTOMATED UPDATES 307

ol

Referenced Plug-ins and Fragments o J::_'_'
Select the plug-ins and fragments From your workspace bo package into the new a
feature,

" Initialize from a launch configuration: |ch 01 j

' Initialize from the plug-ins lisk:

O <ichot (1.0,0) f’ Select Al |
O =#=cho1_fragment (1,0.0)

O =¥=choz.WebErowser (1.0.0) Deselect Al |
O ==choz.wWebErowser (1.0.0)

O <= chio4. FileMarvigataor 10,00

O =¥=chos.FormCantrals (1.0.0)

O < chios, MailForms (1,0.0)

O =¥=chos.help. content (1.0.0)

O < chiog. InfoCenter (1,0.0)

O <= cho7. GraphEditor {1.0.00

<= chil Opendl (1.0,00

== chi)d, OpendL Matives (1,0.0)

O <= chos. Reporks (1,0.0)

O E:I*mm.ibm.icu (3.8.1.v20080530)

'_II e i smores (3.8 1.02NNANS3M I _ILI
4 3

2 of 696 selected,

6] < Back. | Tdext = | Finish I Canicel

Figure 10-4. Selecting feature project plug-ins

=TE

Update Site Project

Create a new update site project \i

Project name: | chi0.OpenGl. UpdatesSite

IV Use default location

Location: | Ci\DocumentsiBooks\EclipseRCPYWorkspaceich10,.OpenGL. Update: Brows |

Web Resources

V¥ Gererate a web page listing all available Features within the sitei

‘Web resources location: | web

6] < Back. | Tdext = | Finish I Canicel

Figure 10-5. Using the Update Site Project wizard

308 CHAPTER 10

AUTOMATED UPDATES

3. The site map editor will be presented. Click New Category and add a new category
called OpenGL to describe the feature. Below this, add the ch10.0penGL.Feature feature
created in the previous section, as shown in Figure 10-6. Click Build All to generate the

site files.

[% Packag fﬁ_ Plug-in | [T Project &2 = [l

557

L chit

[#-5=% cho1-fragment
I:I'"H choz.WebBrowser [localhost]
(=% cha3. webBrowser
[#-%== ch04.FileMavigator
[+ ch0S. FormCantrals
522 chos. MaiFarms
- ché. help.content
(=2 chog. InfoCenter
B2 ch07. GraphEditor

[E—‘_Jf ch08.OpenGL [localhost]

I:I'"H ch0&. OpenGL.Matives [localhost]
I:I---b‘J ch09,.Reports

[#-1=F chi0.OpenGlL. Feature

[=1=* ch10.0penGL.Updatesite

[#-[= Features

[#-[= plugins

== web

sike.css

o M) sibe sl
® arkifacts, xml
- [X content,xml
& index.html
i sike,xml
H-l=f =chl0.RelEng [localhost]
u org.eclipse.gef . examples.Flow [dev.eclipse.

arg.eclipse.gef.examples logic [dev. eclipse.
= org.eclipse.gef examples.shapes
8-z org.eclipse, zest. examples

[
E
[
[
[

Figure 10-6. The site map editor

At this point, the site is ready for testing or deployment.

i+ ch10.0OpenGL. Feature i) sikexml E3

= [m]

¥ Update Site Map

Managing the Site

1. Add the features to be published on the site.

2. For easier browsing of the site, categorize the features
by dragaing.

3. Build the Features,

=] = OpenGl New Cakegaory

105l Feature (1.0.0
Add Feature, .,

Synchronize. ..

Ewvild

Euwild Al

< | 2

@ @

Feature Properties

Properties For the selected Feature. "+ denotes a required
field.

LRL*:

[This Feature is a patch For anather Feature

features/ch10.OpenGL. Feature_1.0.0.jar

Feature Environments
Specify the environments in which this feature can be

installed,
Leawve blank if the feature does not contain platform-specific
code,

Cperating Systems:
Window Systems:

Languages:

Architecture:

Site Map] Archives | site. xml |

Testing and Publishing

Before testing the update site, you need to make changes to the ch08.0penGL plug-in to enable

software updates.

Adding a Software Updates Menu

New extension points are required by the application to create a Help » Software Updates
menu. Add them as follows:

1. Open the ch08.0penGL plug-in editor. In the Extensions tab, click Add. Select the org.
eclipse.ui.commands extension point and select the “Hello World” command contribu-

tion template, as shown in Figure 10-7. Click Next.

CHAPTER 10 AUTOMATED UPDATES 309

o
Extension Point Selection

|
Create a new extension From the "Hello, Waorld" command contribution kemplate, 1)

Extension Points I Extension Wizards I

Extension Paint Filker: I org.eclipse. ui.co

=/l org.eclipse. ui.commandImages
=i org. eclipse. ui.commands
=l org eclipse.ui.cantexts

[¥ shaw only extension points From the required plug-ins

Extension Point Description: Commands

and command categories, using the command and category elements. &
command is an abstract representation of some semantic behavieur, but notits
actual implementation. This allows different developers to contribute specific
Rehavinur frr their individnal nats Faravamnle thers minht ke 2 “nacte
Awailable templates For commands:

=
The czg.eclipse.ui. znds extension pointis used to declare commands j

This template creates a simple command
contribution that adds Sample Menu to th
menu bar and & button ta the tool bar, Bat

the menu item in the new menu andthe
4] I 2

) < Back I Mext = I Finish | Cancel |

Figure 10-7. Extension wizard showing the command template

2. Rename the Handler class name to UpdatesHandler, and then click Finish.

3. Anew sample menu will be added to the menu bar. Using the plug-in editor, rename
Sample Menu to Help, and Sample Command to Software Updates. Optionally, rename the
Sample Category that contains the command to Updates Category (see Listing 10-2 at
the end of this section for the extension points XML).

4. Modify the command handler class UpdatesHandler to remove the sample message

from UpdatesHandler.execute and start the Updates wizard, as shown in the next
fragment:

public Object execute(ExecutionEvent event) throws ExecutionException {
IWorkbenchWindow window = HandlerUtil.getActiveWorkbenchiWindowChecked(event);
UpdateManagerUI.openInstaller(window.getShell());

return null;

}

5. Add the org.eclipse.update.ui dependency to the Dependencies tab of the plug-in
manifest, as shown in Figure 10-8. This is required for compilation.

310 CHAPTER 10 AUTOMATED UPDATES

n .
[% Packag fh;PIug-in 1™ Project %@ i site.xml (@ OpenGl. product p@- chi0,opendl, Feature (-‘ﬂ:é chog.openal B3 ™ bt = (=]

= <& = . = =
! 5|7 % Dependencies O T
B JRE System Library [Javase-1.6] +|

B, Plug-in Dependencies Required Plug-ins 12 Imported Packages
- chios.opengl.dl Specify the list of plug-ins required For the operation of Specify packages on which this plug-in depends without
E| Hj - thag.openghhandlers this plug-in. explicitly identifying their originating plug-in.
EE} =pdatesHandier java Ep-arg.edipse.ui

=- =UpdatesHandler :i;]::nrg.eclipse.cnre.runtime

& UpdatesHandier() Hp-org.ecipse.update.ui (3.2,100) Remave
@ execute(ExecutionEyve

. u
4 =ch08 openglinternal

EFJl chi&.opengl.util

Remove

Do
&} chos.opengl.views
- icons Properties, ..
[y lib

-5y =META-TNF
""" o7 build.properties 1.1
""" @ =0pen@L.product 1.1

44 plugin_tustomization.ini 1.1

..... Taotal: 3
id . Total: 0
----- L’] splash.bmp 1.1
&8 i » Automated M. t of Dependencies |a
[k—af =ch0d, OpenGl.Natives [localhost] it 5 b e e
[#-1=% chD9.Reports

1= ch10.0penGL.Feature 1|
¢ build. properties

B S

| 2

Overview [Dependencwes] Runtime | Extensions | Extension Poinks | Build | MAMIFEST.MF | plugin. xml bulld.propertles|

Figure 10-8. ch08.0penGL plug-in showing the required update Ul dependencies

6. Test the changes by opening the product descriptor OpenGL.product. In the Configura-
tion tab, click Add Required Plug-ins. In the Overview tab, click Synchronize, and then
click Launch an Eclipse application.

Caution You must click Add Required Plug-ins in the Configuration tab of the product editor. Otherwise,
dependencies will not be added, and the product will fail to start.

7. When the application starts, open Help » Software Updates to access the Updates
wizard, as shown in Figure 10-9.

Listing 10-2 shows the extension points required to add the Help » Software Updates
menu to the ch08.0penGL plug-in.w

Note Make sure the ID of the command is the same for the menu, command, and handler extension
points.

CHAPTER 10 AUTOMATED UPDATES 311

Install,.-"UpdaI:e
Feature Updates

Choose the way you want ko kearch for features ko inskall

ii:iilﬁg

" Search For updates of the currently installed Features

Select this option if you want ko search For updates of the features you already have installed.

' Sgarch For new features to inskall

Select this option if you want ko install new features from existing or new update sites, Some sites may already be
available, You can add new update site URLs to the search,

= Back I Mext = I Eimish Cancel

Figure 10-9. The Updates wizard

Listing 10-2. Extension Points to Add the Software Updates Option to the ch08.0penGL Plug-in’s
Help Menu

<extension
point="org.eclipse.ui.menus">
<menuContribution
locationURI="menu:org.eclipse.ui.main.menu?after=additions">
<menu
label="Help"
mnemonic="H">

<command
commandId="ch08.0penGL.commands.updatesCommand"
id="cho08.0penGL.menus.sampleCommand"
mnemonic="S">

</command>

<command
commandId="org.eclipse.ui.help.aboutAction"
style="push">

</command>

312

CHAPTER 10 AUTOMATED UPDATES

</menu>
</menuContribution>
</extension>

<extension
point="org.eclipse.ui.commands">
<category
id="cho8.0penGL.commands.category"
name="Updates Category">
</category>
<command
categoryId="ch08.0penGL.commands.category"
id="cho8.0penGL.commands .updatesCommand"
name="Software Updates">
</command>
</extension>

<extension
point="org.eclipse.ui.handlers">
<handler
class="cho8.opengl.handlers.UpdatesHandler"
commandId="ch08.0penGL.commands.updatesCommand">
</handler>
</extension>

Now that the RCP product has enabled software updates, the update site can actually
be tested. But first, we need to export the product, along with all required dependencies and
binary files.

Deploying the Product Using the Delta Pack

As mentioned in previous chapters, the delta pack is an Eclipse tool used to export products
for multiple platforms within the IDE. The tricky part is that this tool is not part of the default
installation, which means you must install it manually.

Tip To check for the delta pack within your IDE, open a product configuration file and select the Product
Export wizard. If the export options include “Export for multiple platforms,” this means that the pack is
installed.

If you don’t have a delta pack, download it from the Eclipse site (click Downloads »
Eclipse IDE » By Project » Eclipse Platform » Latest Release » Delta Pack). Then unzip the
pack in the root folder of your Eclipse installation. Finally, restart the workbench.

CHAPTER 10 AUTOMATED UPDATES

Caution When unzipping the pack, do not overwrite existing files. Otherwise, your workbench may fail
to start.

To export the ch08.0penGL product, open the OpenGL.product file and start the Eclipse
Product Export wizard. Enter a destination directory and check “Export for multiple platforms,”
as shown in Figure 10-10. Click Next. Select your target platforms, and then click Finish.

il

Eclipse product

Use an existing Eclipse product configuration o export the product in one of the available Formats,

1

~Product Configuration

Configuration: I Jch0g, OpenGL{OpenGL. product j Browse. .. |

Root directory: | eclipse

—Synchronization

Synchronization of the product configuration with the product's defining plug-in ensures that the plug-in does
not contain stale data.

V¥ Synchronize before exporting

i~ Destination

' Directory: Ic:,l’tmp,l’opengl j Browse, .. |
o Arghivefile:l j Efowse. .. |

[~ Export Options

™ Include source code

™ Generate metadata repository

v Export For multiple platForms

6] = Back | Mext = | Finish I Canicel |

Figure 10-10. Delta pack export wizard for the OpenGL sample plug-in

The build process will deploy all the required files to run the RCP application. Browse to
the target directory and run the RCP application by double-clicking the eclipse binary.

Running and Connecting to the Update Site

It’s now time to try the update site, as follows:

1. Run the OpenGL RCP application and select Help » Software Updates to start the
Updates wizard.

2. In the wizard, select “Search for new features to install” (see Figure 10-9), and then
click Next.

3. On the Updates Sites page, click New Local Site, and then browse to the update site
project created in the previous section. Click Finish.

313

314 CHAPTER 10 AUTOMATED UPDATES

4. The Search Results page will display the features available for install, as shown in
Figure 10-11. Follow the wizard’s instructions, and then restart the workbench. The
features are now up-to-date.

b

Updates |
Search Results

Select features to install from the search result list,

(8

Select the Features ko install:

Deselect Al

E|D (00 OpenGL Sample Plug-ins

------ D -{Iﬁ OpenGl Samples Feature 1.0.0 are Info

Properties

Select Required

RLLE

Etror Detals, .,

0of 1 selected,
V¥ Show the latest version of a Feature only

[Filter features included in other Features on the list

< Back | [dext = | Eimisty I Cancel

Figure 10-11. Updates wizard search results page

Building the Product Headless

The cho8.0penGL product can be built headless from the command line. Most of the setup
necessary for such a build can be done through a few modifications to the template build.
properties provided in the PDE build.

Note To build a product headless, an Eclipse installation with the delta pack is required.

To build the ch08.0penGL product headless, follow these steps:

1. Create a master build directory, such as C: \tmp\build.

2. Create two folders within the root: buildDirectory and buildConfig. The first folder
will contain the plug-ins to build. The latter will contain the configuration file build.
properties.

CHAPTER 10 AUTOMATED UPDATES

3. Beneath buildDir, create two folders: plugins and features. Copy the product plug-ins
cho8.0penGL and cho8.0penGL.Natives to buildDir/plugins.

4, Create a build configuration file build.properties in buildConfig, as shown in Listing
10-3. This file defines the build parameters.

5. Create a batch file named build.bat to start the process, as shown in Listing 10-4.

6. Run build.bat. Follow all steps carefully; otherwise, the build will fail. Keep in mind
that an Eclipse installation with the delta pack is required.

7. After the run completes, a zip archive (OpenGL.RCP-win32.win32.x86.zip) will be
created under buildDir\I.OpenGL.RCP. Unzip this archive and run launcher.exe to test
the product.

Listing 10-3 shows the build.properties file for this example. Make sure the following
properties are set up correctly (if they are not, the build will fail):

¢ product must point to the product configuration.
¢ baselocation must be set to your Eclipse installation.
e buildDirectory must point to the directory where the build will take place.

e archivePrefix has a name for your product build file name.

Listing 10-3. Headless Build Configuration File (build.properties)

Build configuration
topLevelElementType = feature

The id of the top level element we are building
topLevelElementId = cho08.0penGL

product=/ch08.0penGL/OpenGL.product
runPackager=true

Set the name of the archive that will result from the product build.
#archiveNamePrefix=

The prefix that will be used in the generated archive.
archivePrefix=0penGLRCP

The location under which all of the build output will be collected.
collectingFolder=${archivePrefix}

The list of {os, ws, arch} configurations to build. This

value is a '&' separated list of ',' separate triples. For example,
configs=win32,win32,x86 & linux,motif,x86
configs=win32,win32,x86

315

316 CHAPTER 10 AUTOMATED UPDATES

Arguments to send to the zip executable
zipargs=

Arguments to send to the tar executable
tarargs=

The directory into which the build elements are fetched
buildDirectory=${user.home}/eclipse.build

Type of build. Used in naming the build output. Typically this value is
one of I, N, M, S, ...
buildType=I

ID of the build. Used in naming the build output.
buildId=OpenGL.RCP

Label for the build. Used in naming the build output
buildLabel=${buildType}.${buildId}

Timestamp for the build. Used in naming the build output
timestamp=007

Base location for anything the build needs to compile against. For example,

in most RCP apps or a plug-in, the baselocation should be the location of a

previously installed Eclipse against which the application or plug-in code will be
compiled and the RCP delta pack.

base=<path/to/parent/of/eclipse>

baseLocation=${base}/eclipse

0s/Ws/Arch/nl of the Eclipse specified by baselocation
baseos=win32
basews=win32
basearch=x86

This property indicates whether you want the set of plug-ins and features to be
considered during the build to be limited to the ones reachable from the features
and plug-ins being built

filteredDependencyCheck=false

This property indicates whether the resolution should be done in development mode
(i.e. ignore multiple bundles with singletons)
resolution.devMode=false

skipBase=true
eclipseURL=<url for eclipse download site>

CHAPTER 10 AUTOMATED UPDATES

eclipseBuildId=<Id of Eclipse build to get>
eclipseBaseURL=${eclipseURL}/eclipse-platform-${eclipseBuildId}-win32.zip

This section defines CVS tags to use when fetching the map files from the

repository. If you want to fetch the map file from repository / location, change
the getMapFiles target in the customTargets.xml

skipMaps=true

mapsRepo=:pserver:anonymous@example.com/path/to/repo

mapsRoot=path/to/maps

mapsCheckoutTag=HEAD

#tagMaps=true
mapsTagTag=v${buildId}

it REPOSITORY CONTROL #HH#HHHHHHHHHHH
This section defines properties parameterizing the repositories where plug-ins,
fragments bundles and features are being obtained from.

The tags to use when fetching elements to build.
skipFetch=true

it JAVA COMPILER OPTIONS

Specify the output format of the compiler log when eclipse jdt is used
logExtension=.1log

Whether or not to include debug info in the output jars
javacDebugInfo=false

Whether or not to fail the build if there are compiler errors
javacFailOnError=true

Enable or disable verbose mode of the compiler
javacVerbose=true

Extra arguments for the compiler. These are specific to the Java compiler
being used.
#compilerArg=

Java compiler version
javacSource=1.6
javacTarget=1.6

317

318

CHAPTER 10 AUTOMATED UPDATES

Listing 10-4. Batch File to Build ch08.0OpenGL Headless
@echo off

:: Change this to fit your system
11 Eclipse Installation with delta pack
set ECLIPSE_HOME=C:\eclipse-SDK\eclipse-GANYMEDE

:: Build master folder
set ROOT_BUILD=C:\Documents\Books\EclipseRCP\Workspace\ch10.Local.Build

:: Depending on your Eclipse version you may have to change this...
:: Name of the Equinox launcher plug-in under ECLIPSE HOME/plugins
set LAUNCHER=org.eclipse.equinox.launcher 1.0.100.v20080509-1800.jar

:: Eclipse plug-in that contains the PDE build scripts (depends on Eclipse version)
set PDE_BUILD=org.eclipse.pde.build 3.4.0.v20080604

: Launch class path (no need to change this)
set CP=%ECLIPSE HOME%/plugins/%LAUNCHER%

:: Main Program
set MAIN=org.eclipse.core.launcher.Main
set APP=org.eclipse.ant.core.antRunner

:: Product Build file
set BUILDFILE=%ECLIPSE HOME%/plugins/
%PDE_BUILD%/scripts/productBuild/productBuild.xml

:: Build directory. It must contain the user developed plug-ins and features
set BUILD DIR=%ROOT BUILD%\buildDir

:: Directory that has build.properties
set BUILD CONF=%ROOT BUILD%\buildConfig

:: Run time args: Base location, build directory, etc.
set ARGS=-Dbaselocation=%ECLIPSE HOME%
-DbuildDirectory=%BUILD DIR% -Dbuilder=%BUILD CONF%

java -cp %CP% %MAIN% %ARGS% -application %APP% -buildfile %BUILDFILE%

Building the Product Headless from a CVS Repository

The previous section showed how to build an RCP application headless assuming that all
plug-ins and features (both to build and prebuilt) referenced by the product file are already
locally available on disk. However, in the real world, organizations mostly use a source code

CHAPTER 10 AUTOMATED UPDATES

repository such as CVS. This section focuses on the infrastructure offered by the PDE build to
fetch the source code from a Windows CVS repository as part of the build process.

Installing CVS on a Windows System
The first thing needed for this headless build is a CVS server for Windows. CVSNT is a Windows
version control system licensed under the GNU General Public License, which can be used to
quickly set up a code repository.®

To set up a CVS server in Windows, follow these steps:

1. Download CVSNT (from http://www.march-hare.com/cvspro/) and install it. Then
restart your computer.

2. Create a new code repository to store the code for the OpenGL product. Run the
CVSNT control panel by choosing Start » Programs » CVSNT » Control Panel.
Create a repository (/cvs, for example) to point to the disk location of your choice,
as shown in Figure 10-12.

x

About Fiepository configuration |Server59lt\ngs| Compatibility Dptionsl F’Iuginsl Advancedl

Server Mame TOSHI

Mame | Root | Description |
fows C:ftmpiows

List of available repository roats, The first column is the name of the repository as seen by chents, ©
maching,

A o |

ok I Cancel | Apply |

Figure 10-12. CVSNT control panel showing a configured repositories

3. Assuming that CVSNT has been installed in the default location (C:\Program Files\
CVSNT), add a CVS user to commit code to the repository by opening a command
prompt and typing the following:

C:\"Program Files"\CVSNT\cvs passwd -a -r <LOCAL ACCOUNT> cvsuser
Adding user cvsuser@localhost

New Password:

Verify Password:

Note that LOCAL_ACCOUNT must be an existing user account on the Windows machine
where CVSNT is installed.

3. CVSNT for Windows is available from http://www.march-hare.com/cvspro/.

319

320

CHAPTER 10 AUTOMATED UPDATES

4. Configure a read-only user (anonymous) to check out code without a password. This is
necessary because the automated build sends an empty password by default when
fetching code. anonymous is the standard name for read-only access. Add anonymous to
the $CVSROOT/CVSROOT/readers file for read-only access and anonymous : : <LOCAL_ACCOUNT>
to $CYSROOT/CVSROOT/passwd to set an empty password. Note that LOCAL_ACCOUNT must be
the name of a local Windows user.

Creating a Release Engineering Project

A release engineering (commonly referred as releng) project is the Eclipse naming convention
for the project that hosts configuration files for automated headless builds. In order to know
where to get things, PDE uses map files. A map file is a Java property file that maps feature and
plug-in IDs to a location and a tag in a repository. The format of the map file is as follows:

<elementType>@<elementID>[,<elementVersion>] = <repository-specific content>
The various placeholders are as follows:

e elementType can be one of feature, plugin, or fragment, depending on the type of
component to fetch from CVS.

¢ elementID is the unique ID of the component (as defined in the component manifest).

e elementVersion is an optional version string for the component (also defined in the
manifest).

¢ The repository-specific information is a string that defines CVS information used to
fetch the component. For example, the string :pserver:anonymous@localhost:/cvs will
fetch from the /cvs repository in the local computer using the anonymous account.

The map file entries use this format:

feature|fragment|plugin@elementId =
<cvs tag>,<access method>:<cvsuser>@<cvs repository>,
<cvs password>[,<repository path> (no starting slash)]

The <repository path> is required only when the module (or directory) containing the
source for the element does not match the elementId or if the directory is not at the root of the
repository.

For example, the next fragment shows the map file required to build the cho8.0penGL
product.

feature@ch10.0penGL.Feature=CVS, tag=HEAD, cvsRoot=:pserver:anonymous@localhost:/cvs,
plugin@cho8.0penGL=CVS, tag=HEAD, cvsRoot=:pserver:anonymous@localhost:/cvs,
fragment@cho8.0penGL.Natives=CVS,tag=HEAD, cvsRoot=:pserver:anonymous@localhost:/cvs,

This fragment describes the ch08.0penGL product, which is made up of a feature, the
actual OpenGL plug-in, and a fragment containing native libraries for Windows and Unix.
Now, let’s create the release engineering project to host the build configuration:

1. Select File » New » Project » General » Project. Click Next.

2. Enter a name (ch10.RelEng), and then click Finish.

CHAPTER 10 AUTOMATED UPDATES

3. Create a folder called maps and a file within it (rcp.map) with the properties described in
the previous fragment.

4, Grab the headless build configuration files (build.properties and customTargets.
xml) from your Eclipse distribution ECLIPSE_HOME/plugins/org.eclipse.pde.
build <version>/templates/headless-build and save them in ch10.RelEng.

5. Customize the build files. No changes are required to customTargets.xml. Listing 10-5
shows the changes to build.properties required for fetching code from repositories.
Be extremely careful with build.properties, as any mistake will cause the build to fail.

Listing 10-5. Changes to build.properties for Fetching Code from Repositories

topLevelElementType=feature
toplLevelElementId=ch10.0penGL.Feature

product=0penGL.product
runPackager=true

archivePrefix=0penGLRCP
configs=win32,win32,x86

buildId=OpenGL.RCP

#skipMaps=true
mapsRepo=:pserver:anonymous@localhost/cvs
mapsRoot=ch10.RelEng
mapsCheckoutTag=HEAD

#skipFetch=true

Java 1.6 is required by the OpenGL product
javacSource=1.6
javacTarget=1.6

Make sure to comment the skipFetch and skipMaps properties. The mapsRepo property
defines the connection arguments to the CVS server. The OpenGL product requires Java 1.6.

Committing the Product

Now we can use the CVS client within the Eclipse workbench to commit the OpenGL RCP to
the new repository, as follows:

1. Select Window » Show View » Other » CVS » CVS Repositories.

2. In the CVS Repositories view, right-click the background and select New » Repository
Location. This will display the Add CVS Repository dialog, as shown in Figure 10-13.

321

322 CHAPTER 10 AUTOMATED UPDATES

g_\ Error Log (/L—‘ Tasks ﬂa Prablems (E Properties (E Console M

| :pserver:anonymousi@dey. eclipse.org: fovsrootfeclipse
B[] :pserver:anonymous@dey. eclipse, org: fovsrootftaals
|1 :pserver:vsiva@localhost: fovs

& Add CYS Repository F =13l x|

Add a new CYS Repository

Add a new CY35 Repository to the CyS Repositories view

[~ Location

Host: I localhosk j
=l

Repository path: I frvs

- Authentication

User; I CYSUSEr j

Password: |

i~ Connection

Connection type: Ipservar j
1 Use default port

' Use port: |

¥ validate connection on finish
™ Save password {could trigger secure storage login

Configure connection preferences. ..

2 cus |

Figure 10-13. Eclipse IDE CVS Repositories view and Add CVS Repository wizard

3. Enter the repository information. Set the host to localhost, repository path to /cvs, the
user to the previously created user (cvsuser), and the password to the one set earlier.
Click Finish.

4, Commit the OpenGL product plug-ins and features. Right-click each project (cho8.
OpeGL, ch08.0penGL.Natives, ch10.0penGL.Feature, and ch10.RelEng), select Team »
Share Project from the context menu, and follow the CVS Commit wizard instructions.

Running the Build

To run the build, we need a batch script (build.bat). But first, the product file (cho8.0penGL/

OpenGL.product) must be copied to the build directory. Assuming the build directory C:\tmp,

the Eclipse installation C:\eclipse-SDK\eclipse-GANYMEDE, and the workspace C:\Documents\
EclipseRCP\Workspace, Listing 10-6 shows the build script.

Listing 10-6. Heacdlless Build Script for OpenGL.product
@echo off

:: Eclipse home. Update this to match your versions

set ECLIPSE_HOME=C:\eclipse-SDK\eclipse-GANYMEDE

set LAUNCHER=org.eclipse.equinox.launcher 1.0.100.v20080509-1800.jar
set PDE_BUILD=org.eclipse.pde.build 3.4.0.v20080604

CHAPTER 10 AUTOMATED UPDATES

: Build directory
set BUILD DIR=C:\tmp\build

:: Configuration directory
set BUILD_CONF=C:\Documents\EclipseRCP\Workspace\ch10.RelEng

set MAIN=org.eclipse.core.launcher.Main
set APP=org.eclipse.ant.core.antRunner
set CP=%ECLIPSE HOME%/plugins/%LAUNCHER%

set BUILDFILE=%ECLIPSE HOME%/plugins/
%PDE_BUILD%/scripts/productBuild/productBuild.xml

set ARGS=-Dbaselocation=%ECLIPSE_HOME%
-DbuildDirectory=%BUILD DIR% -Dbuilder=%BUILD CONF%

java -cp %CP% %MAIN% %ARGS% -application %APP% -buildfile %BUILDFILE%

Note Do not forget to copy the product file (OpenGL . product) to the build directory. Otherwise, the build

will fail.

Summary

In this chapter, we have studied the Eclipse build system used to build plug-ins automatically
outside the Eclipse IDE. Eclipse itself is built headless and, since it is a collection of plug-ins,
this functionality is available to any RCP application. Here are the important points to keep
in mind:

Eclipse provides a convenient way to deliver updates to your users using products,
features, fragments, and update sites.

A product packs and delivers one or more features, which include all the code and
plug-ins needed to run them. It also lets you customize the presentation and runtime
parameters of the application.

A feature describes a grouping of plug-ins that perform a common task. Features are
useful for working with (installing and updating) a lot of plug-ins as a single entity.

Fragments are separately packaged files that attach to a host plug-in. They are useful
for adding functionality missing from the original release, without needing to repack-
age or reinstall, and packaging national language translations.

Since Eclipse 3.4, the update manager has been reworked with a brand-new provi-
sioning system, including a software updates UI and a command-line tool to perform
provisioning tasks such as installing, updating, and removing software.

323

324 CHAPTER 10 AUTOMATED UPDATES

¢ The headless build system provides automated build capabilities for complex applica-
tions with hundreds of plug-ins. Building such applications within an IDE makes no
sense. It includes a plug-in (org.eclipse.releng.eclipsebuilder) specifically created
for the task and requires a CVS server for code storage and zip/unzip tools.

e The headless build is divided in phases: preBuild, fetch, generate, process, assemble,
package, and postBuild. It requires two input files: customTargets.xml and build.
properties. customTargets.xml acts as callback where the user can perform customs
tasks for each phase. Build.properties describes runtime parameters such as target
location, operating system configuration, compilation arguments, and so on.

e The prebuild and fetch phases extract the plug-ins that constitute the product as
well as all dependencies. These phases require a bundle map file, which describes
plug-in IDs and the CVS server locations.

* The generate and assemble phases perform the actual code compilation and
assembly of plug-ins and their dependencies.

* The postBuild phase is used for performing actions with the build output, such as
building an operating system—dependent installer.

Index

Numerics
2D graphics
advanced graphics editor exercise
overview, 195-196
RCP product, 196-200
testing, 206
Zest plug-in, 200-206
Draw2d, 173-175
GEF
displaying figures, 176
EditPolicies, 185-187
overview, 175-176
palettes, 187-190
shapes example, 176-185
Zest, 190-195
3D chart scene
BarValue class, 232
ChartScene class, 233-236
display lists, 228-230
GLU, 231-232
overview, 228
3D graphics
Earth navigator project

finding latitude and longitude, 251-255

flying to locations, 250-251

navigator view, 248-250, 256-258

overview, 242
setting up, 245-248
WWJ, 242-245
OpenGL scenes
3D chart scene, 228-236
overview, 209-212
RCP view, 241-242
refreshing, 241
rotating and moving, 236-240
setting up for, 212-219
wire cubes, 220-228
SWT, 209-211

A

<A> tag, 122

About dialog, 66

aboutIlmage property, 294
aboutText property, 294
absolute coordinate system, 175
AbstractLayoutAlgorithm class, 193
AbstractUIPlugin class, 22, 138
action bar advisor, 63

Action providers, 79
ActionBarAdvisor class, 61, 142
activator class, 54, 138, 284, 288
Activator.java file, 8

add() method, 111
Add branding option, 294
addBookmark() method, 48
addBookmark function, 48
addControlListener method, 221
addDisposeListener method, 221
addEntity() method, 195
addHyperlinkListener(IHyperlinkListener)
method, 117

Add-ons dialog, 297-298
addPages() method, 126
addRelationship()method, 195
addStandaloneView method, 105, 218
adjust method, 240
advisor classes

modifying, 70-71

RCP application, 61-63
allElements.xml file, 302
<anchor> element, 148
Apache Derby application, 263
Apache Tomcat servlet container, 269
APIs (application program interfaces), 3
appid parameter, 251
application argument, 298, 301

-application org.eclipse.equinox.p2.director.app.

application parameter, 299
application program interfaces (APIs), 3
application property, 294
ApplicationActionBarAdvisor class, 70-71, 162
ApplicationWorkbenchAdvisor class, 70
ApplicationWorkbenchWindowAdvisor class,

70-71
applyStatelterator() method, 251
appName property, 294
arch ${target.arch} argument, 13
archivePrefix property, 303, 315
Arguments tab, 13
-artifactRepository parameter, 298, 299
artifacts.xml file, 292
assemble phase, 305
automated updates

automated updates and builds exercise
building product headless, 314-322
features, creating, 305-306
publishing, 308-314
testing, 308-314
update site project, 306-308
Eclipse process
defining product, 292-294
grouping plug-ins, 295-296
overview, 291
update site project, 296
overview, 291

325

326

INDEX

product build automation with headless build
system
build configuration, 302-304
build phases, 304-305
overview, 300-302
Software Update Ul tools
Add-ons dialog, 297-298
installing software from command line,
298-299
overview, 296-297
Available Software tab, 18, 298
Axis class, 229

 tag, 122
BarValue class, 212, 232
base parameter, 232
basearch command, 303
baseLocation property, 303, 315
basenl command, 303
baseos command, 303
baseURL attribute, 272
basews command, 303
Basic RCP Application page, 214
batch script, 322
beginTask() method, 88
bindings, 36-37, 209
bin.includes property, 305
BIRT (Business Intelligence and Report Toolkit)
OSGi console
extending, 283-285
generating reports, 285-289
report generator plug-in, 289
overview, 261
Report Designer
anatomy of, 263
creating reports, 264-268
installing, 262-263
overview, 261-262
Report Engine API
configuring, 276
IDataExtractionTask task, 277-278
IGetParameterDefinitionTask task, 278-279
IRenderTask task, 279-281
IRunAndRenderTask task, 282-283
IRunTask task, 282
overview, 275-276
servlet containers
deploying runtime, 269-270
JSP tag library, 272-274
overview, 269
report viewer servlet, 270
BIRT_RESOURCE_PATH parameter, 271
BIRT_VIEWER_DOCUMENT_FOLDER parameter,
271
BIRT_VIEWER_IMAGE_DIR parameter, 271
BIRT_VIEWER_LOCALE parameter, 271
BIRT_VIEWER_LOG_DIR parameter, 271
BIRT_VIEWER_MAX ROWS parameter, 271
BIRT_VIEWER_SCRIPTLIB_DIR parameter, 271
BIRT_VIEWER_WORKING_FOLDER parameter,
272

<birt:param> tag, 272
<birt:paramDef> tag, 272
<birt:parameterPage> tag, 272
<birt:report> tag, 272
<birt:viewer> tag, 272-274
__bookmark parameter, 271
boolean doubleBuffer property, 210
boolean stereo property, 210
bootclasspath command, 304

 tag, 122

branding products, 65-66
build.bat file, 315

buildConfig file, 314-315

buildDir folder, 315
buildDirectory command, 303
buildDirectory folder, 314-315
buildfile argument, 301

buildld command, 303

buildLabel command, 303
build.properties file, 302, 305, 315
build.properties property, 314, 321
buildType command, 303
build.xml file, 302

BundleContext object, 9, 22-23
-bundlepool parameter, 300
bundles, defined, 3

Business Intelligence and Report Toolkit. See BIRT
business logic, 263

H

cancel() method, 84
Cascading Style Sheets (CSS), 6
category attribute, 147
category element, 29
category extension, 73
CDT (C/C++ Development Tools), 298
change listeners, job, 89
ChartScene class, 211, 233-236
ChartView class, 216
child EditParts, 176
city parameter, 251
class attribute, 26, 36, 94
Classic Models sample database, 263, 266
classpath dependencies, 218-219
ClearColor function, 222
CNF (Common Navigator Framework)
classes, 78
Common Navigator view
contributing to, 80-82
extending, 82-83
configuration, 79
file system navigator project
classes, 96-105
extension points, 94-96
project template, 93-94
overview, 77-78
collectingFolder command, 303
Color object, 5
ColumnLayout class, 107, 115
command line
building product headless from, 314-318
installing software from, 298-299

commanded attribute, 37
commandlID attribute, 36
CommandInterpreter interface, 283
command-line tool, 297
commands
plug-in, 35-38
RCP application, 73-75
Common Navigator Framework. See CNF
CommonNavigator class, 78
Commons Logging service, 18
CommonViewer class, 78
CompiledShape class, 212, 232
compute() method, 195
concurrency infrastructure
jobs
locks, 86
operations, 84
overview, 84
scheduling rules, 85-86
states, 84
overview, 83
virtual race example
job change listeners, 89
Job class, 87-88
job families, 89
overview, 86
progress reporting, 88
Race class, 89-92
config.ini file, 66
configs command, 303
configuration folder, 66, 292
configuration parameters, 303
Configuration tab, 142, 310
connection EditParts, 176-177, 183-184
ConnectionCreateCommand.java command, 185
ConnectionRequest class, 187
Console argument, 13
console command, 283
contains(ISchedulingRule rule) method, 85
content binding, 95-96
content EditParts, 176
Content extensions, 79
Content provider classes, 96
content providers, 101-104
Content trigger, 96
contentProvider attribute, 95
Contents plug-in, 157, 160-162
context help information, 150-154
contextld attribute, 37
contexts.xml file, 152
contributorClass attribute, 32
<control> tag, 123
controllers, defined, 176
core platform, 3-4
<country> element, 150
CreateConnectionRequest class, 187
createDataExtractionTask(IReportDocument)
method, 277
createExternal GLContext() method, 221
createFormContent() method, 126
createGetParameterDefinitionTask(IReport-
Runnable) method, 278

INDEX

createPageComposite(shell) method, 132

createPalette() method, 190

createPartControl() method, 29, 50, 100, 109, 132,
137, 241, 250

createRenderTask(IReportDocument) method,
279

createRunAndRenderTask(IReportRunnable)
method, 282

createRunTask(IReportRunnable) method, 282

createToolBar() method, 137

createWindowContents() method, 128-129

CSS (Cascading Style Sheets), 6

CubeScene class, 237

CubesView class, 216

customAssembly.xml file, 302

customTargets.xml file, 302, 321

CVS repository, 318-322

CVSNT, 319

$CVSROOT/CVSROOT/passwd file, 320

$CVSROOT/CVSROOT /readers file, 320

/cvsroot/tools path, 197

D

Data Explorer view, 263-264, 267
data sources, defined, 263
Data Tools Platform (DTP), 263
Data transforms, 263
Dbasearch argument, 301
DbaseLocation argument, 301
Dbaseos argument, 301
Dbasews argument, 301
DbuildDirectory argument, 301
Dbuilder argument, 302
-Declipse.p2.data.area parameter, 300
default perspective

CNF classes, 104-105

GEF, 199

RCP application, 58-59, 70
delta pack, 68, 312-313
Dependencies tab, 10, 198, 309
Derby application, 263
DESCRIPTION style, 119
-destination parameter, 299
destroy()method, 288
<discovery> tag, 296
Display object, 104, 109
displayText attribute, 273
Djavacfailonerror argument, 301
DnD (drag-and-drop) functionality, 77
__document parameter, 271
doc.zip file, 146
doGet method, 12
Dpde.build.scripts argument, 301
drag-and-drop (DnD) functionality, 77
DragTracker class, 187
draw() method, 229
Draw2d, 173-175
drop-down menus, 112-113
DTP (Data Tools Platform), 263
Dynamic loading, 4
DYNAMIC_HELP action, 144

327

328

INDEX

E

Earth navigator project
finding latitude and longitude, 251-255
flying to locations, 250-251
navigator view, 248-250, 256-258
overview, 242
setting up, 245-248
WWJ, 242-245
eclipse binary, 313
Eclipse Forms API. See Forms API
Eclipse IDE main menu, 144, 196, 264
Eclipse Modeling Framework (EMF), 263
Eclipse Rich Client Platform. See RCP
Eclipse Web Tools Platform (WTP), 49
Eclipse workbench, 2-6
ECLIPSE_HOME argument, 301
$ECLIPSE_HOME/plugins/org.eclipse.pde.
build_<version>/scripts folder, 302
ECLIPSE_HOME\plugins\org.eclipse.pde.
build_<version>\templates\headless-
build folder, 302, 321
eclipse.exe file, 292
eclipse.ini file, 292
eclipse-linux-sdk command, 299
eclipse.navigator.view view, 81
.eclipseproduct file, 292
eclipse-SDK command, 299
eclipseSDK1 command, 298
eclipseSDK2 command, 298

eclipse-SDK\eclipse-GANYMEDE command, 322

Edit Data Set window, 265
editors, 6, 31-32
EditPart component, 176-184
EditPartViewer component, 176
EditPolicy component, 176-177, 185-187
elementID placeholder, 320
elementType placeholder, 320
elementVersion placeholder, 320
Ellipse figure, 178
EllipticalShape class, 177
EMF (Eclipse Modeling Framework), 263
emitters, 279
Enable API Analysis check box, 54
EngineConfig class, 276
Equinox OSGi. See OSGi
Execution Environment drop-down menu, 54
expandable composites, 117-118
ExpandableComposite.addExpansionListener
class, 118
expansionStateChanged method, 118
extension points
adding to plug-ins
commands, 35-38
editors, 31-32
overview, 24-25
perspectives, 25-28
pop-up menus, 33-34
view actions, 29-30
views, 28-29
CNF, 94-96
defined, 4, 21
for RCP applications, 55-59
web browser plug-in exercise, 68-70

Extension Wizards tab, 24
extensions attribute, 179
Extensions tab, 10, 55
extradir attribute, 147

F

families, job, 89
features
creating, 305-306
defined, 24, 67, 291
features folder, 292, 315
feature.xml file, 24
fetch phase, 304
fetchTag command, 304
figures, 173
file attribute, 147, 153
FileBean class, 98-99, 102
filters, 79
findFigureAtExcluding(int x, int y, Collection
exclude) method, 175
findFigureAt(intx, int y, TreeSearch) method, 175
findFigureAt(Point p) method, 175
findFigureAt(x, y) method, 175
_fittopage parameter, 271
fitWithinBounds()method, 195
flyTo() method, 250-251
Font object, 5
Form class, 109
form text control, 121-124
<form> element, 122
format attribute, 272
Format Chart tab, 268
__format parameter, 271
FormAttachments class, 132
FormColors class, 114
FormgEditor class, 126
form.getMenuManager().add(IAction) method,
112
form.getToolBarManager.add(IAction) method,
112
Forms API
appearance, 111-115
complex forms, 124-126
controls
common, 109-110
expandable composites, 117-118
form text control, 121-124
hyperlinks, 116-117
overview, 115
sections, 118-121
Mail Template exercise
mail view, 134-138
navigation view, 132-134
overview, 127
window contents, 129-132
workbench window, 128-129
overview, 107-109
Forms object, 107
FormText class, 119
FormToolkit class, 109
fragments, plug-in, 24
fragment.xml file, 296
/frameset URL mapping, 274

G

GEF (Graphical Editing Framework)
EditPolicies, 185-187
figures, displaying, 175-176
overview, 175-176
palettes, 187-190
shapes example
Connection EditParts, 183-184
overview, 176-179
Shape EditParts, 180-183
Shapes EditPart factory, 179-180
generate phase, 304
genericTargets.xml file, 302
Geocoding API
creating layer navigator view with, 256-258
finding latitude and longitude with, 251-255
Geographic Names Information System (GNIS),
243
GET request, 251
getChildren() method, 99, 102
getConnectionCompleteCommand() method, 187
getConnectionCreateCommand() method, 187
getDefault() method, 64
getDefaultPageInput method, 81
getElements() method, 102
getFormColors() method, 115
getlmageData method, 104
getlmageDescriptor() method, 138
getInitiallnput() method, 100
getMetaData() method, 277
getModelSourceConnections()method, 183
getModelTargetConnections()method, 183
getParent() method, 102
getParentBeans() method, 97
getParentBeans method, 102
getPartForElement()method, 180
getToolBarManager() method, 111
getView function, 48
GL Cubes View class, 216
GL drawables, 210
GL_AMBIENT value, 236
GL_DIFFUSE value, 236
GL_POSITION value, 236
glBlendFunc parameter, 235
GLCanvas class, 209
glColorMaterial parameter, 236
GLContext class, 226
GLData class, 209
glEndList class, 228
gljava binding, 211
glLightfv parameter, 236
Global actions, 63
Globe object, 243, 250
GLScene class, 211, 220-224
GLScene constructor, 220
gluNewQuadric parameter, 235
gluQuadricNormals parameter, 235
GLUT (OpenGL Utility Toolkit), 222, 227
GLUT class, 212, 227
GNIS (Geographic Names Information System),
243
GNU General Public License, 319
gradient colors, 114-115

INDEX

Graph Editor product file, 206

Graph object, 191, 204

Graph1View class, 202
GraphConnection component, 191
Graphical Editing Framework. See GEF
graphical user interface (GUI) toolkit, 4
GraphicalNodeEditPolicy class, 185, 187
graphics. See 2D graphics; 3D graphics
GraphNode component, 191
GridLayout class, 134
GridLayoutAlgorithm class, 193

GUI (graphical user interface) toolkit, 4

H

handleEvent(Event) method, 237
Handler class, 309
handlers, 35-36, 73-75
hasChildren() method, 99, 102
headless build system
defined, 291
example
from command line, 314-318
from CVS repository, 318-322
product build automation with, 300-305
build configuration, 302-304
build phases, 304-305
overview, 300-302
height attribute, 273
height parameter, 232
Hello RCP template, 214
Help command, 15, 309
Help menu, 162-163
help system
configuring product to use, 141-144
content, adding, 144-150
context help support, adding, 150-154
customizing, 154-156
infocenters, creating, 156-169
overview, 141
HELP_CONTENTS action, 144
HELP_DATA property, 155
HELP_SEARCH action, 144
helpData.xml file, 155
hit testing, 175
HorizontalTreeLayoutAlgorithm class, 193
href attribute, 123, 147, 149
HTML (Hypertext Markup Language), 6
html content directories, 162
html folder, 146
HTMLCompleteImageHandler class, 280
HTMLRenderOption class, 279
HTMLServerlmageHandler class, 280
HTTP response content, 49
hyperlinks, 116-117
Hypertext Markup Language (HTML), 6

|
[Adaptable interface, 83, 97
icon attribute, 26
id attribute, 26, 28, 35, 38, 94-95, 179, 272-273
__id parameter, 271
IDataExtractionTask task, 277-278
IDE (integrated development environment), 1

329

330

INDEX

IDs drop-down menu, 66
IFigure interface, 175
IFile class, 33
IFormColors.H_BOTTOM_KEYLINEI constant,
114
IFormColors.H_BOTTOM_KEYLINE2 constant,
114
IFormColors.H_GRADIENT_END constant, 114
IFormColors.H_GRADIENT_START constant, 114
IFormColors.TITLE constant, 114
IGetParameterDefinitionTask task, 276, 278-279
IHyperlinkListener interface, 117
IJobChangeListener interface, 89
Image object, 5
 tag, 122
INavigatorContentService class, 78
includes statement, 81, 96
index file, help system, 148-149
infocenter exercise
Contents plug-in, 157-162
customizing, 168-169
help system dependencies, 163-164
Infocenter plug-in
adding Help menu to, 162-163
adding product configuration file to, 159-160
creating, 158-159
deploying, 166
testing, 164-166
overview, 156
splitting documentation into topic HTML/
XHTML files, 156-157
starting from command line, 166-168
Infocenter folder, 159
initGL() method, 221, 225
initGLContext method, 221
initialize method, 81
inputChanged() method, 102
install {URL} command, 15
Installed Software tab, 298
-installlU parameter, 299
int alphaSize property, 210
int blueSize property, 210
int greenSize property, 210
int redSize property, 210
int stencilSize property, 210
integrated development environment (IDE), 1
interface org.eclipse.draw2d.IFigure plug-in, 174
internationalization, help system, 150
IRenderOption interface, 286
IRenderTask interface, 276, 279-281
IReportEngineFactory class, 276
IRunAndRenderReportTask interface, 276
IRunAndRenderTask interface, 276, 282-283, 286
IRunTask interface, 276, 282
isCanceled() method, 88
isConflicting() method, 85-86
isDirectory() method, 98
isHostPage attribute, 272
__isnull parameter, 271
iText application, 263
IViewActionDelegate interface, 30
IWorkbenchPage.VIEW_ACTIVATE argument, 75
IWorkbenchWindowConfigurer class, 128

J

Java development tools (JDT), 4

Java EE server, 269

Java Native Interface (JNI), 209

Java OpenGL (JOGL), 211

Java resource bundles, 296

Java Runtime Environment (JRE), 54

Java Virtual Machine JVM) environment, 3
javacDebugInfo command, 304
javacFailOnError command, 304
javacSource command, 304

javacTarget command, 304

javacVerbose command, 304

java.io.File object, 98
javax.servlet.http.HttpServlet class, 12
JDT (Java development tools), 4

JFace toolkit, 5

JNI (Java Native Interface), 209

Job class, 84, 87-88

JobChangeAdapter argument, 89

jobs, 84-86

JOGL, 211-212, 218-220, 228, 236, 240-242
JOGL (Java OpenGL), 211

join() method, 84

JRE (Java Runtime Environment), 54

JSP tag library, 269, 272-274

JVM (Java Virtual Machine) environment, 3

K
key bindings, 73-75
KeyListener listener, 237
keyPressed method, 240

L

label attribute, 147

labelProvider attribute, 95

<language> element, 150

Launch an Eclipse application link, 67, 200
Layer interface, 244

Layout view, 264-265, 267-268

left attribute, 273

legacy update manager, 297

 tags, 122

<license> tag, 295

Lightweight Java Game Library (LWJGL), 211
<link> element, 148

list argument, 228

local actions, 63

__locale parameter, 271

localhost property, 322

location parameter, 251-252
LocationListener class, 49

locationURI attribute, 38, 72

locks, 86

log4j.properties file, 16

logging services, 16-18

LWJGL (Lightweight Java Game Library), 211

Mail Template exercise
mail view, modifying, 134-138
navigation view, modifying, 132-134

overview, 127
window contents, customizing, 129-132
workbench window, customizing, 128-129
makeActions method, 142
managed forms, 124
MANIFEST.MF file, 4, 8, 23, 59, 166
manifests, 23-24
<mapping> element, 270
mapsRepo property, 321
mapVersionTag command, 303
master/details form, 125
__masterpage parameter, 271
menu bar, updating, 142-144
menu contributions, 37-38
menu extension points, 72-73
messages, 113-114
-metadataRepository parameter, 299
metadataRepository property, 298
minimized attribute, 28
mipmaps, 231
mode argument, 228
model, 83, 176
Model interface, 244
model-view-controller (MVC) architecture, 5, 175
mouseDown method, 237, 240
MouseEvents class, 236
mouseMove() method, 237, 240
MouseMovelListener listener, 237
mouseUp method, 237, 240
moving scenes, 236-240
Mozilla Rhino application, 263
multipage editors, 125-126
MVC (model-view-controller) architecture, 5, 175

name attribute, 26, 29, 35, 94-95, 273
National Geospatial-Intelligence Agency, 243
__navigationbar parameter, 271

navigator class, 96, 99-101

navigator root, 97

navigator view, 132-134, 246-247, 256-258
NavigatorActionService class, 78
NavigatorRoot class, 100, 102

New Extension wizard, 24

New Production Configuration wizard, 65

new Separator(IWorkbenchActionConstants.MB_

ADDITIONS) action separator, 47
NewAction class, 33
newBrowser command, 73
NewBrowserHandler class, 74
nl ${target.nl} argument, 13
nl directory, 294
NO_LAYOUT_NODE_RESIZING constant, 205
NONE state, 84

0

objectContribution menu, 33
Open Perspective dialog, 26
OpenGL scenes
3D chart, 228-236
overview, 209-212
RCP view, 241-242
refreshing, 241

INDEX

rotating and moving, 236-240
setting up for, 212-219
wire cubes, 220-228
OpenGL Utility Toolkit (GLUT), 222, 227
OpenGL.product file, 310, 313
openlntro method, 62
openReport methods, 275
openReportDesign() method, 277
openReportDocument() method, 277
operations, job, 84
ORDERDETAILS tables, 267
org.eclipse,jface.viewers.IContentProvider inter-
face, 121
org.eclipse.birt.chart.device.pdf package, 285
org.eclipse.birt.chart.device.svg package, 286
org.eclipse.birt.chart.engine package, 286
org.eclipse.birt.chart.runtime package, 285
org.eclipse.birt.core package, 285
org.eclipse.birt.report.data.oda.sampledb package,
285
org.eclipse.birt.report.engine package, 285
org.eclipse.birt.report.engine.emitter.html pack-
age, 286
org.eclipse.birt.report.engine.emitter.pdf package,
286
org.eclipse.birt.report.engine.emitter.postscript
package, 286
org.eclipse.birt.report.engine.emitter.ppt package,
286
org.eclipse.birt.report.engine.emitter.prototype.
excel package, 286
org.eclipse.core runtime plug-in, 2
org.eclipse.core.command.AbstractHandler exten-
sion point, 36
org.eclipse.core.runtime plug-in, 3
org.eclipse.core.runtime.applications extension
point, 57, 195
org.eclipse.core.runtime.jobs.ISchedulingRule
interface, 85
org.eclipse.core.runtime.products extension point,
195, 292, 294
org.eclipse.core.runtime.products file, 168
org.eclipse.equinox.app.IApplication class, 57
org.eclipse.equinox.http.registry.servlets extension
point, 6
org.eclipse.equinox.launcher_<version>.jar argu-
ment, 301
org.eclipse.gef.examples.flow extension point, 196
org.eclipse.gef.examples.logic extension point, 196
org.eclipse.gef.examples.shapes plug-in, 174, 176,
196
org.eclipse.gef.examples.shapes.ShapesEditor
class, 179
org.eclipse.help.base/banner property, 156
org.eclipse.help.base/banner_height property, 156
org.eclipse.help.base/help_home property, 156
org.eclipse.help.contexts extension point, 151,
152-153
org.eclipse.help.index extension point, 146
org.eclipse.help.standalone.Infocenter class, 166
org.eclipse.help.toc extension point, 146, 162
org.eclipse.jdt.ui.PackageExplorer view, 28
org.eclipse.opengl.GLCanvas class, 210

331

332

INDEX

org.eclipse.opengl.GLData class, 210
org.eclipse.osgi plug-in, 3
org.eclipse.osgi.framework.console.Command-
Provider interface, 283
org.eclipse.releng.eclipsebuilder plug-in, 300
org.eclipse.swt.awt package, 245
org.eclipse.swt.events.MouseAdapter class, 236
org.eclipse.swt.opengl package, 209
org.eclipse.swt.program.Program class, 104
org.eclipse.ui plug-in, 2
org.eclipse.ui.actions.ActionFactory class, 144
org.eclipse.ui.bindings extension point, 35-36
org.eclipse.ui.commands extension point, 35, 308
org.eclipse.ui.editors extension point, 31
org.eclipse.ui.file.exit command, 73
org.eclipse.ui.forms.events.HyperlinkAdapter
class, 117
org.eclipse.ui.handlers extension point, 35
org.eclipse.ui.help.aboutAction command, 73
org.eclipse.ui.menus extension point, 35, 37
org.eclipse.ui.navigator plug-in, 199
org.eclipse.ui.navigator.CommonNavigator class,
78-80, 83, 93
org.eclipse.ui.navigator.navigatorContent exten-
sion point, 83
org.eclipse.ui.navigator.resourceContent view, 81
org.eclipse.ui.navigator.resources plug-in, 77, 80,
199
org.eclipse.ui.navigator.resources.linkHelper
extension, 81
org.eclipse.ui.navigator.viewer extension point,
83,196
org.eclipse.ui.newWizards extension point, 196
org.eclipse.ui.perspectives extension point, 26, 39,
58, 70, 196
org.eclipse.ui.PlatformUI class, 58
org.eclipse.ui.popupMenus extension point, 33
org.eclipse.ui.views extension point, 28-29, 39, 94,
196, 216
org.eclipse.update.ui dependency, 309
org.eclipse.zest.examples extension point, 196
org.eclipse.zest.examples plug-in, 200
os ${target.os} argument, 13
OSGi
commands, 15-16
creating plug-in, 9-12
logging services, 16-18
overview, 3, 6
report generation from, 283-289
starting plug-in project, 6-8
testing plug-in, 12-14
OSGi manifest, 4, 59-60
osgi.noShutdown argument, 13
output format, 283
output parameter, 251
Overview tab, 310
__overwrite parameter, 271

P
<p>tag, 122
p2 folder, 292
-p2.arch parameter, 300
-p2.0s parameter, 300

-p2.ws parameter, 300
package phase, 305
packaging products, 67-68
__page parameter, 271
pageNum attribute, 273
__pagerange parameter, 271
paint() method, 175
paintBorder() method, 175
paintChildren() method, 175
paintClientArea() method, 175
paintFigure() method, 175
Palette factory, 177
Palette view, 264265, 267
palettes, GEF, 187-190
pattern attribute, 272
PDE (Plug-in Developer Environment), 4
PDFRenderOption class, 279-280
Perspective class, 58, 97
perspective extension point, 39-40
perspective factory, 40, 96
Perspective.java class, 218
perspectives, 6, 25-28
placement attribute, 38
Platform core mechanism, 296
PlatformObiject class, 83, 97
PlatformUI.createAndRunWorkbench(Display,
ApplicationWorkbenchAdvisor) class, 61
plugin attribute, 153
plug-in class, 22-23, 63-65
Plug-in Content page, 53, 144, 196
Plug-in Developer Environment (PDE), 4
plug-in fragments, 24
plug-in manifest, 4, 60-61
Plug-in Name field, 53
Plug-in Options section, 8
Plug-in Project wizard, 6, 144, 157, 294
Plug-in Provider field, 54
Plug-in Version field, 53
plugin_customization.ini file, 154, 156, 168-169, 294
<plugin> tag, 296
plugin.properties mechanism, 296
plug-ins
defined, 4
Eclipse model, 21-24
extension points
commands, 35-38
editors, 31-32
overview, 24-25
perspectives, 25-28
pop-up menus, 33-34
view actions, 29-30
views, 28-29
OSGi console, 9-14
overview, 21
web browser plug-in exercise
content, 41-48
enhancing, 49-50
overview, 38-39
perspective extension point, 39-40
perspective factory, 40
testing, 48
views, 41-48
Plug-ins and Fragments section, 142

plugins folder, 292, 315

plugin.xml file, 23, 59, 63, 151-152, 218, 247
pop-up menus, 33-34

position attribute, 273

postBuild phase, 305
postWindowCreate method, 62
postWindowOpen method, 62
postWindowRestore method, 62
preBuild phase, 304
preferenceCustomization property, 168, 294
preWindowOpen() method, 62, 128
preWindowShellClose method, 62
primary attribute, 147

process phase, 305

product build automation, 300-305
product configuration file, 75, 159-160
product property, 315
ProductCatalog.rptdesign report, 270
production configuration, 214-216, 246
PRODUCTLINE table, 267

PRODUCTS table, 267

-profile parameter, 300

progress reporting, 88

projects, defined, 6

Property Editor view, 264
PropertyChangeListener interface, 183
provisioning updates, 297

Q

quad parameter, 232
quaderics, 231
qualifiers, 53

R

race() method, 92
Race class, 89-92
RaceRunner class, 88
ratio attribute, 28
RCP (Rich Client Platform)
applications
advanced graphics editor exercise, 195-200
advisor classes, 61-63
branding, 65-66
defining, 65-66
Earth navigator project, 246
extension points for, 55-59
features, 67
OpenGL scenes, 212-214
0OSGi manifest, 59-60
overview, 53
packaging, 67-68
plug-in class, 63-65
plug-in manifest, 60-61
testing, 67-68
web browser plug-in exercise, 68-75
architecture
core platform, 34
Eclipse workbench, 6
Equinox OSGi, 3
JFace, 5
overview, 2
SWT, 4-5
benefits of, 1-2

INDEX

versus Eclipse workbench, 2
OSGi console
commands, 15-16
creating plug-in, 9-12
logging services, 16-18
overview, 6
starting plug-in project, 6-8
testing plug-in, 12-14
overview, 1
RCP view, 241-242
rcp.example.mail. MailApplication class, 56-57
Rectangle figure, 178
RectangularShape class, 177
Refresher class, 211
refreshing scenes, 241
refreshVisuals() method, 180, 183
register method, 89
relationship attribute, 28
relative attribute, 28
relative coordinate system, 175
release engineering project, 320-321
render() method, 241
RenderOptionBase class, 280
_report command, 285
report design, 283
Report Designer
anatomy of, 263
creating reports, 264-268
installing BIRT, 262-263
overview, 261-262
Report Engine API
configuring, 276
IDataExtractionTask task, 277-278
IGetParameterDefinitionTask task, 278-279
IRenderTask task, 279-281
IRunAndRenderTask task, 282-283
IRunTask task, 282
overview, 275-276
__report parameter, 271
report viewer servlet, 270
reportContainer attribute, 273
reportDesign attribute, 273
reportDocument attribute, 273
ReportGenerator() method, 288
ReportGenerator.java class, 285-286, 288
<repository path> tag, 320
Resource encapsulator, 96
resource management, 4
resourceFolder attribute, 273
__resourceFolder parameter, 271
Rhino application, 263
Rich Client Platform. See RCP
-roaming parameter, 300
root EditParts, 176
rotating scenes, 236-240
__rtl parameter, 271
run() method, 84, 86, 241
runAndRender(String designDocPath, String
outFileName, String outFormat, String
params) method, 288
RUNNING state, 84
runtime kernel, 2
runtime plug-in model, 4

333

334

INDEX

S

SalesInvoince.rptdesign report, 274
sample.actions.ViewActionDelegatel class, 30
sample.views.SampleView view, 28
SceneController interface, 244
SceneGrip class, 211, 226, 236-237
schedule() method, 84, 92
scheduling rules, 85-86
scheme attribute, 38
schemeld attribute, 37
ScrolledForm control, 109
scrolledForm.reflow(true) method, 118
scrolling attribute, 273
SDK (Software Development Kit), 4
sections, 118-121
Section. TWISTIE state, 121
Select Data tab, 268
<selection> element, 179
sequence attribute, 37
servlet containers, 269-274
<servlet_params> element, 270
setLayoutData() method, 133
setShow* methods, 128
setTarget()method, 187
shape EditParts, 177, 180-183
Shape instances, 183
ShapeEditPart class, 178, 183
Shapes EditPart factory, 177, 179-180
ShapesCreationWizard class, 179
ShapesEditPartFactory class, 178
ShapeTreeEditPart class, 178
ShapeTreeEditPartFactory class, 178
showParameterPage attribute, 273
showView() method, 75
shutdown() method, 276
skipFetch property, 321
skipMaps property, 321
sleep() method, 84
SLEEPING state, 84
slices parameter, 232
Software Development Kit (SDK), 4
Software Update Manager, 18
Software Update Ul tools
Add-ons dialog and, 297-298
installing software from command line, 298-299
overview, 296-297
Software Updates command, 309
Software Updates menu, 308-312
 tag, 122
splash screen, 66, 294
splash.bmp file, 66, 294
splitParams(String queryString) method, 288
SpringLayout object, 195
SpringLayoutAlgorithm class, 194-195
ss command, 15
stacks parameter, 232
Standard Widget Toolkit (SWT), 4-5, 211-212,
218-220, 228, 236, 240-242
start [<id>|<name>] command, 15
start method, 23, 58
startupForegroundColor property, 294
startupMessageRect property, 294
startupProgressRect property, 294

state parameter, 251

states, job, 84

stop [<id>|<name>] command, 15

stop method, 23

street parameter, 251

StyledText widget, 124

SWT (Standard Widget Toolkit), 4-5, 211-212,
218-220, 228, 236, 240-242

SWT graphics context (GC), 174

SWT.WRAP style, 124

system jobs, 92

T

table of contents (TOC), 144-146
TableWrapLayout class, 107, 115, 132, 134, 137
target application, 298-299
Target Platform, 12
targetID view, 27, 29
Templates page, 144, 196
testing
advanced graphics editor exercise, 206
automated updates and builds exercise,
308-314
Infocenter plug-in, 164-166
RCP applications, 67-68
via OSGi console, 12-14
web browser plug-in exercise, 48
timestamp command, 303
title attribute, 149, 273
__title parameter, 271
TOC (table of contents), 144-146
TOC file, 147-148, 160-162
<toc> element, 147, 162
toc.xml file, 166
Tomcat servlet container, 269
TOMCAT_HOME/webapps folder, 270
toolbar extension points, 72-73
__toolbar parameter, 271
toolbars, 111-112
toolkit = new FormToolkit(getFormColors(Dis-
play)) method, 115
toolkit.createTree() method, 133
toolkit.paintBordersFor(text.getParent()) method,
109
top attribute, 273
top parameter, 232
topic attribute, 147
<topic> element, 147
TopNPercent.rptdesign class, 289
toString()method, 98
TOTAL SALES column header, 268
trapping HTTP response content, 49
TreeGraphView class, 202
TreeLayoutAlgorithm class, 193, 205

U

UI (user interface) concepts
CNF
classes, 78
configuration, 79
overview, 77-78
using, 79-83

concurrency infrastructure
jobs, 84-86
overview, 83
using, 86-92
file system navigator project
classes, 96-105
extension points, 94-96
overview, 93
project template, 93-94
overview, 77
uninstall [<id>|<name>] command, 15
unpack attribute, 296
update site, 291, 306-308, 313-314
<update> tag, 295
Updates Category command, 309
UpdatesHandler class, 309
URL bookmarks, 50
<url> tag, 295
user interface concepts. See UI concepts
User jobs, 92
<user_params> element, 270

'}

validate() method, 174
value attribute, 273
-version parameter, 299
view actions, 29-30
View class, 241, 250
View Example link, 270
View interface, 244
View toolbar, 47
viewerActionBinding element, 83
viewerContentBinding element, 81, 83
viewerContribution menu, 33
views

adding, 28-29, 41-48

creating, 216-218

defined, 6

w

W3C (World Wide Web Consortium), 115
WAITING state, 84
wakeUp() method, 84
WAR archive, 270
web browser plug-in exercise
content, 41-48
enhancing, 49-50
overview, 38-39
perspective extension point, 39-40
perspective factory, 40

INDEX

RCP application for, 68-75

testing plug-in, 48

views, 41-48
Web Browser widget, 46-47
Web Standard Tools (WST), 263
Web Tools Platform (WTP), 49
WebBrowserPerspective class, 70
WebBrowserView.java file, 49
WEB-INF/tlds directory, 274
WEB-INF/tlds/birt.tld file, 274
web.xml file, 274
width attribute, 273
windowImages property, 294
wire cubes scene, 220-228
wireCube() method, 227
wizard extension, 179
workbench window advisor, 61-62, 128-129
WorkbenchAdvisor class, 61, 81
WorkbenchWindowAdvisor class, 61-62, 92
WORKING_FOLDER_ACCESS_ONLY parameter,

272

workspaces, defined, 6
World Wide Web Consortium (W3C), 115
World Wind Java (WW]J), 242-248
World Wind SDK, 242
WorldWindow interface, 243
WorldWindowGLCanvas class, 243, 245
ws ${target.ws} argument, 13
WST (Web Standard Tools), 263
WTP (Web Tools Platform), 49
WWJ (World Wind Java), 242-248

X

XYLayoutManager class, 183

Y
Yahoo Geocoding API
creating layer navigator view with, 256-258
finding latitude and longitude with, 251-255
YGeoSearch class, 252

z

Zest
components of, 191-192
layouts, 193-195
overview, 190-191
plug-in, 200-206

zip parameter, 251

zipargs command, 304

335

