

Practical Eclipse Rich
Client Platform Projects

Vladimir Silva

Practical Eclipse Rich Client Platform Projects

Copyright © 2009 by Vladimir Silva

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1827-2

ISBN-13 (electronic): 978-1-4302-1828-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was writ-
ten without endorsement from Sun Microsystems, Inc.

Lead Editor: Tom Welsh
Technical Reviewer: Sumit Pal
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Managers: Douglas Sulenta, Susannah Davidson Pfalzer
Senior Copy Editor: Marilyn Smith
Associate Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Molly Sharp
Proofreader: Linda Seifert
Indexer: Broccoli Information Management
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail , or
visit .

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail , or visit

.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at .

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at .

iii

Contents at a Glance

About the Author .xi

About the Technical Reviewer . xiii

Introduction . xv

CHAPTER 1 Foundations of Eclipse RCP . 1

CHAPTER 2 Plug-ins: A First Glimpse . 21

CHAPTER 3 RCP Basics . 53

CHAPTER 4 User Interface Concepts . 77

CHAPTER 5 Forms API and Presentation Framework . 107

CHAPTER 6 Help Support . 141

CHAPTER 7 2D Graphics with GEF and Zest . 173

CHAPTER 8 3D Graphics for RCP with OpenGL . 209

CHAPTER 9 Professional Reports with the Business Intelligence and
 Report Toolkit . 261

CHAPTER 10 Automated Updates . 291

INDEX . 325

v

Contents

About the Author .xi

About the Technical Reviewer . xii

Introduction . xv

CHAPTER 1 Foundations of Eclipse RCP . 1

Benefits of Eclipse . 1

How Is RCP Different from the Eclipse Workbench? 2

Eclipse RCP Architecture . 2

Equinox OSGi . 3

Core Platform . 3

Standard Widget Toolkit . 4

JFace . 5

The Eclipse Workbench . 6

Hands-on Exercise: Getting Your Feet Wet with the OSGi Console 6

Starting a New Plug-in Project . 6

Creating the Plug-in . 9

Testing the Plug-in . 12

Using OSGi Console Commands . 15

Using Logging Services . 16

Summary . 19

CHAPTER 2 Plug-ins: A First Glimpse . 21

Introducing the Eclipse Plug-in Model . 21

The Plug-in Class and BundleContext . 22

Manifests . 23

Plug-in Fragments and Features . 24

Adding Extension Points . 24

Perspectives . 25

Views . 28

View Actions . 29

Editors . 31

Pop-up Menus . 33

Commands . 35

CONTENTSvi

Hands-on Exercise: Fun with a Web Browser Plug-in 38

Adding a Perspective Extension Point . 39

Adding a Perspective Factory . 40

Adding Views and Content . 41

Testing the Plug-in . 48

Enhancing the Web Browser . 49

Summary . 50

CHAPTER 3 RCP Basics . 53

Components of an RCP Application . 53

Extension Points for an RCP Application . 55

OSGi Manifest . 59

Plug-in Manifest . 60

Advisor Classes . 61

Plug-in Class . 63

Defining and Branding Products . 65

Using Features . 67

Product Testing and Packaging . 67

Hands-on Exercise: An RCP Application for the Web Browser Plug-in . . . 68

Adding an Application Extension Point . 68

Changing the Default Perspective . 70

Modifying Advisor Classes . 70

Adding Menu and Toolbar Extension Points . 72

Adding Commands, Key Bindings, and Handlers 73

Creating the Product Configuration File . 75

Summary . 76

CHAPTER 4 User Interface Concepts . 77

Hierarchical Navigation with the Common Navigator Framework 77

CNF Basics . 78

Using CNF Within RCP . 79

Concurrency Infrastructure . 83

Jobs API Basics . 84

Using the Concurrency Infrastructure . 86

Hands-on Exercise: A CNF File System Navigator . 93

Creating an RCP Project Template . 93

Adding CNF Extension Points . 94

Implementation Classes . 96

Summary . 106

CONTENTS vii

CHAPTER 5 Forms API and Presentation Framework 107

Forms API Basics . 107

Common Controls . 109

Form Look and Feel . 111

Custom Layouts . 115

Complex Controls . 115

Complex Forms . 124

Managed Forms . 124

Master/Details Form . 125

Multipage Editors . 125

Hands-on Exercise: A Web Look for the Mail Template 127

Customizing the Workbench Window . 128

Customizing the Window Contents . 129

Modifying the Navigation View . 132

Modifying the Mail View . 134

Summary . 138

CHAPTER 6 Help Support . 141

Configuring a Product to Use the Help System . 141

Adding the Dependency Plug-ins . 142

Updating the Menu Bar . 142

Adding Help Content . 144

Help System Extension Points . 146

TOC File . 147

Index File . 148

Internationalization . 150

Adding Context Help Support . 150

Product Plug-in Modifications . 151

Help Plug-in Modifications . 152

Customizing the Help System . 154

Hands-on Exercise: Create an Infocenter from Custom Documentation . . . 156

Splitting the Documentation into Topic HTML/XHTML Files 156

Creating the Help Contents Plug-in . 157

Creating the Infocenter Plug-in . 158

Adding a Product Configuration File to the Infocenter Plug-in 159

Adding a TOC to the Help Contents Plug-in . 160

Adding a Help Menu to the Infocenter Plug-in 162

Adding Help System Dependencies to the Product Configuration . . . 163

Testing the Infocenter Plug-in . 164

CONTENTSviii

Deploying the Infocenter Plug-in . 166

Starting the Infocenter from the Command Line 166

Customizing the Infocenter . 168

Summary . 170

CHAPTER 7 2D Graphics with GEF and Zest . 173

Draw2d—The Big Picture . 173

Using GEF . 175

Displaying Figures . 176

Exploring the GEF Shapes Example . 176

Adding EditPolicies . 185

Adding a Palette . 187

Using Zest . 190

Zest Components . 191

Zest Layouts . 193

Hands-on Exercise: Build Your Own Advanced 2D Graphics Editor 195

Creating the RCP Product . 196

Building a Zest Plug-in . 200

Testing the Final Product . 206

Summary . 207

CHAPTER 8 3D Graphics for RCP with OpenGL . 209

OpenGL and SWT . 209

The Device-Independent Package . 210

OpenGL Bindings for SWT . 211

Creating OpenGL Scenes with JOGL and SWT . 211

Setting Up for the OpenGL Scenes . 212

Creating the Wire Cubes Scene . 220

Creating the 3D Chart Scene . 228

Rotating and Moving the Scene . 236

Refreshing the Scene . 241

Putting the Scene into an RCP View . 241

Hands-on Exercise: Build a Powerful 3D Earth Navigator. 242

WWJ Basics . 242

Setting Up the Earth Navigator Project . 245

Creating the Earth Navigator View . 248

Flying to a Location Within a Globe . 250

Finding Latitude and Longitude with the Yahoo Geocoding API . . . 251

Creating the Layer Navigator View with Geocoding 256

Summary . 258

CONTENTS ix

CHAPTER 9 Professional Reports with the Business Intelligence
and Report Toolkit . 261

Using the Report Designer Within the Eclipse IDE 261

Installing BIRT Using the Software Updates Manager 262

Report Anatomy . 263

Getting Your Feet Wet with the Report Designer 263

Using BIRT Within a Servlet Container . 269

Deploying the BIRT Runtime . 269

Using the Report Viewer Servlet . 270

Using the JSP Tag Library . 272

Using the Report Engine API . 275

Configuring and Creating a Report Engine . 276

What Kinds of Operations Can Be Done with the Report Engine? . . . 277

Hands-on Exercise: Report Generation from the OSGi Console 283

Extending the OSGi Console . 283

Generating the Report . 285

Running the Report Generator Plug-in . 289

Summary . 290

CHAPTER 10 Automated Updates . 291

Updating and Installing Software the Eclipse Way 291

Defining and Configuring a Product . 292

Grouping Plug-ins in Features . 295

Grouping Plug-ins Within Fragments . 296

Building an Update Site Project . 296

Software Update UI Tools . 296

Using the Software Updates and Add-ons Dialog 297

Installing Software from the Command Line 298

Product Build Automation with the Headless Build System 300

Build Configuration . 302

Build Phases . 304

Hands-on Exercise: Automated Updates and Builds for RCP 305

Creating a Feature . 305

Creating an Update Site . 306

Testing and Publishing . 308

Building the Product Headless . 314

Building the Product Headless from a CVS Repository 318

Summary . 323

INDEX . 325

xi

About the Author

VLADIMIR SILVA was born in Quito, Ecuador. He received a System’s Analyst degree from the
Polytechnic Institute of the Army in 1994. In the same year, he came to the United States as an
exchange student pursuing a Master’s degree in Computer Science at Middle Tennessee State
University. After graduation, he joined IBM’s Web-Ahead technology think tank. His interests
include grid computing, neural nets, and artificial intelligence. Vladimir also holds numerous
IT certifications, including Oracle Certified Professional (OCP), Microsoft Certified Solution
Developer (MCSD), and Microsoft Certified Professional (MCP).

xiii

About the Technical Reviewer

SUMIT PAL has about 15 years of experience with software design and
development and architecture on a variety of platforms, including Java
and J2EE. Sumit worked in the Microsoft SQL Server Replication group
for 2 years, and with Oracle’s OLAP Server group for 7 years.

Currently, he works as an OLAP architect for LeapFrogRx, which
provides advanced analytics to pharmaceutical companies.

Along with certifications like IEEE Certified Software Development
Professional (CDSP) and J2EE Architect, Sumit has a Master’s degree in
Computer Science.

Sumit has a keen interest in search engine internals, data mining,
database internals, and algorithms. He has invented some basic gen-

eralized algorithms to find divisibility between numbers and also to find divisibility rules for
prime numbers less than 100.

In his spare time, Sumit loves to play badminton and swim, and also help organizations
like Akshaya Patra Foundation () raise funds.

xv

Introduction

Eclipse Rich Client Platform (RCP) has become the leading open development platform,
capturing close to 70% of the open integrated development environment (IDE) market. I
wrote this book to give you a clear and technical guide to Eclipse development, and to help
you achieve your goals quickly. If you use Eclipse, you must become familiar with RCP. It
gives you all the tools you need to build commercial-quality applications and deploy them
quickly, thus saving time and increasing the return on investment.

In Practical Eclipse Rich Client Platform Projects, I explain the necessary technical concepts
approachably, with plenty of source code and images, in a detailed and engaging (I hope) way.
This book will show you how to apply modern graphical user interface (GUI) concepts to your
applications using real-world examples. Each chapter explains the concepts carefully, and then
puts them to the test with a hands-on exercise.

We start with the architecture and foundations of Eclipse RCP, taking a tour of Equinox,
the core platform, Standard Widget Toolkit (SWT), and the Eclipse IDE workbench. Next, you
learn about the details of the plug-in architecture, always with a focus on RCP components:
perspectives, advisor classes, basic branding, and product configuration. In Chapter 4, we look
at common concurrency concepts used in modern GUI development with the Jobs API: job
classes, scheduling rules, resource management, and more.

In Chapter 5, you learn how to spice up your GUI with the powerful Forms API. Among the
areas covered are look and feel, form controls, and advanced topics—in short, everything you
need to improve the look of your RCP application.

A good help system is an important component of any application. Chapter 6 tackles
this subject with detailed descriptions of how to build your help files, required help plug-ins,
dependencies, and configuration.

If you ever work on graphics-enabled applications, you will find Chapters 7 and 8 of spe-
cial interest. They cover 2D and 3D graphics in depth. In the 2D arena, you learn how to use
Draw2D, Graphical Editing Framework (GEF), and the Zest visualization toolkit. If 3D is your
thing, you’ll want to take a look at how OpenGL can be used to build a powerful Earth naviga-
tor (Google style) in a snap.

Chapter 9 shows you how to create powerful reports using the Business Intelligence and
Report Toolkit (BIRT), which you will find particularly useful if your application is targeted to a
business environment.

Finally, Chapter 10 explains how to pack your work and deploy it automatically to an
update site using the automated build system.

Practical Eclipse Rich Client Projects covers all the major needs of a modern application.
It will help you get things done. If you are interested in the source code, you can download it
from this book’s details page at the Apress web site ().

C H A P T E R 1

Foundations of Eclipse RCP

The Eclipse philosophy is simple and has been critical to its success. The Eclipse Platform
was designed from the ground up as an integration framework for development tools. Eclipse
also enables developers to easily extend products built on it with the latest object-oriented
technologies.

Although Eclipse was designed to serve as an open development platform, it is architected
so that its components can be used to build just about any client application. The minimal set
of modules needed to build a rich client is collectively known as the Rich Client Platform (RCP).

This chapter focuses on the foundations of RCP. It begins with a summary of the benefits
of Eclipse, and then discusses the architecture of RCP. Finally, you’ll work through a practical
exercise that demonstrates the power of this dynamic modular technology.

Benefits of Eclipse
Eclipse is an integrated development environment (IDE) written primarily in Java. However, it
goes well beyond a Java development platform in the following ways:

system. Eclipse’s openness permits greater interoperability, opportunity, and choice.

-
guages, including Java, Java Platform, Enterprise Edition (Java EE), AspectJ, C/C++,
Ruby, Perl, COBOL, and many others.

-
centrate on the problem rather than the specific platform. More important, it functions
the same way on each of these platforms.

is the foundation for a number of commercial software products, many vendors offer
additional support.

depend on it as a viable, industrial-strength tool for the foreseeable future.

1

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP2

The bottom line is that Eclipse is extensible, configurable, free, and fully supported. It
is so well designed for these purposes that many developers find it a pleasure to work with.
Newcomers from other languages, especially C/C++ on Unix, will discover this after learning
the basics.

How Is RCP Different from the Eclipse Workbench?
Many people struggle to understand the difference between the Eclipse IDE workbench and
RCP. The answer is simple: there is no difference—well almost no difference. Both are based
on a dynamic plug-in model, and the user interface (UI) for the workbench and RCP is built
using the same toolkits and extension points. However, RCP has the following distinguishing
features:

control of the plug-in developer. In fact, the Eclipse IDE workbench itself is an RCP
application for software development. Here is where the line between these two
becomes thin.

look and feel of the Eclipse IDE workbench to fit the needs of the application.

 and
 to run. However, RCP applications are free to use any

platform plug-ins they need to provide their feature set.

Eclipse RCP Architecture
RCP employs a lightweight software component framework based on plug-ins. This architec-
ture provides extensibility and seamless integration. Everything in RCP (and Eclipse, for that
matter), with the exception of the runtime kernel, is a plug-in. It could be said that all features

can be anything: a dialog, a view, a web browser, a database explorer, a project explorer, and
so forth.

RCP is architected so that its components can be put together to build just about any cli-
ent application using a dynamic plug-in model, toolkits, and extension points. The layout and
function of the workbench is under the fine-grained control of the plug-in developer. Under
the covers, the following components constitute RCP:

Let’s take a closer look at each of these components.

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP 3

Equinox OSGi
According to 1

a technology to tackle software complexity created by monolithic software products. Its focus
is the development of new software, as well as the integration of existing software into new

reusability and reliability, and reduces development costs.
-

structed from small, reusable, and collaborative components. These components, in turn,
can be included in a bigger application and deployed.

cycle management model, a service registry, an execution environment, and modules. On top
, and

services have been defined.
bundle. A bundle is a dynamic com-

ponent that can be remotely installed, started, stopped, updated, and uninstalled without

Life-cycle management is done via APIs, which allow for remote downloading of manage-

Virtual Machine (JVM) environments.
-

tion selected it as the underlying runtime for Eclipse RCP and the IDE.

Core Platform
The core platform includes a runtime engine that starts the platform base and dynamically
discovers and runs plug-ins.

Core Platform Responsibilities
The core platform is responsible for the following:

-
loaders

their extensions, and extension points

preference store, and a concurrency infrastructure

The runtime is defined by the plug-ins and
on which all other plug-ins depend. It effectively holds all the pieces together.

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP4

Note Because plug-ins are implemented using the OSGi framework, a plug-in is essentially the same
thing as an OSGi bundle. I will use these terms interchangeably, unless discussing particular framework
classes.

Runtime Plug-in Model
The plug-in model is structured around the following concepts:

Plug-in: A plug-in is a structured bundle of code and/or data that contributes functional-

Others supply class libraries that can be used to implement system extensions.

Extension points: An extension point is a well-defined place where other plug-ins can add
functionality. Plug-ins can add extensions to the platform by implementing an extension
point. Defining an extension point can be thought of as defining an API, with the differ-
ence that the extension point is declared in Extensible Markup Language (XML) instead
of code.

OSGi manifest and plug-in manifest: These manifests allow the plug-in to describe itself to
the system. The extensions and extension points are declared in the plug-in manifest file,
which is called . The platform maintains a registry of installed plug-ins and the
functions they provide in the file.

Dynamic loading
performance penalty for components that are installed but not used. A plug-in can be
installed and added to the registry, but it will not be activated unless a function that it

Resource management: Resources within the user’s workspace are managed by the plug-
in . This plug-in provides services for accessing the projects,
folders, and files stored in the user’s workspace or alternate file systems, such as network
file systems or a database. This plug-in is most useful for Eclipse IDE applications.

The overall philosophy of the core platform revolves around the idea of building plug-ins
 includes the

basic platform plus two major tools: the full-featured Java development tools (JDT) and a
Plug-in Developer Environment (PDE) to facilitate the development of plug-ins and exten-
sions. These tools provide an example of how new tools can be composed by building plug-ins
that extend the system.

Standard Widget Toolkit
 the graphical widget toolkit used by Eclipse. Originally

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP 5

denominator to draw its components by using Java 2D to call low-level operating system prim-

multiple platforms.
-

Performance
2

Native look and feel

Extensibility

widgets using Java code only.

-
itly disposed of; otherwise, memory leaks or other unintended behavior may result. This is due

dispose of are the subclasses of , , and objects.

JFace
JFace is a

controller (MVC) architecture.
The following are some of the UI components in JFace:

Viewers are used to simplify the interaction between an underlying data model and the
widgets used to present that model. Table and tree viewers are the most typical examples.

Actions are essential for the developer. They may fire when a toolbar button or a menu
-

uted to the workbench declaratively in .

).

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP6

The Eclipse Workbench
The Eclipse IDE workbench is the basic development environment in Eclipse. It is built around
the following concepts:

Perspectives: A perspective defines the initial set and layout of the views in your work-
bench window. Perspectives are focused on a specific development task, such as Java,
Java EE, plug-in, and so on.

Views: Views are the small windows and sidebars around the edges of the workbench.
Views are used to navigate the workbench and present information in different ways.

Editors: Editors are used to do the actual coding. For example, you might use editors

.

Workspaces: A workspace is the disk folder where the actual work will be stored.

Projects: A project is a container used by the workbench to group associated folders
and files.

Note All the exercises in this book were written using Eclipse 3.4 (Ganymede). This is important, as the UI
is somewhat different from that of version 3.3.

Hands-on Exercise: Getting Your Feet Wet with the
OSGi Console
Programming with Eclipse can be thought of as a game. The more you practice, the better you
get at it. The goal of this exercise is to get you started by building a plug-in project that uses the

the extension point to define the servlet alias
, which will be accessed through the browser as .

Starting a New Plug-in Project
.

 1. From the Eclipse IDE main menu, select File New Project (or click the New Project
icon on the toolbar) and choose Plug-in Project, as shown in Figure 1-1. Then click Next.

 2. Enter a project name and use the default target platform, as shown in Figure 1-2. Click
Next to continue.

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP 7

Figure 1-1. Selecting to create a plug-in project

Figure 1-2. Naming and targeting the plug-in project

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP8

 3.
the core runtime. In the Plug-in Options section, you need to choose to generate an

want to create a rich client application, so leave the final option set to No, as shown in
Figure 1-3. Click Finish to create the plug-in project.

Figure 1-3. Specifying plug-in content

 the plug-in manifest editor, as shown in
 and .

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP 9

Figure 1-4. Plug-in manifest editor for this exercise

Creating the Plug-in
The activator class controls the life-cycle aspects and overall semantics of a plug-in. A plug-in

cycle method includes a reference to a , as follows:

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP10

 is a reference that contains information related to the plug-in and other
bundles/plug-ins in the system. Chapter 2 provides more information about the
methods.

The Dependencies tab of the plug-in manifest editor is used to add references to other

do through the Extensions tab of the editor.

 1. To add references to other bundles, click the Dependencies tab, and then click the Add

by the servlet extension point:

Figure 1-5. Adding dependencies

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP 11

 2. Click the Extensions tab. Click the Add button and select the extension point
. A servlet class name and alias will be

inserted automatically. The servlet alias () will be used to reference the serv-
let from a web browser. Internally, the XML for this extension point looks like this:

 3. To implement the servlet class, click the class label link in the Extensions tab, as shown

Note You can also implement a new class manually by adding the class name (in this
example) to the plug-in manifest editor, and then right-clicking the plug-in project folder and selecting New

 Java Class.

Figure 1-6. Servlet extension point details

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP12

 4. Enter the class information, select as the superclass,
and click Finish. The Java class will be created automatically.

 5. Use the plug-in manifest editor to override the method to return the headers of

Testing the Plug-in
Now that you’ve

 1. From the main menu, select Run Configurations to open the Run Configurations
dialog.

 2.

. To make

used at runtime. Then click Run.

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP 13

Figure 1-7. Run configuration dialog showing both the exercise plug-in (ch01) and the logging
fragment (ch01_fragment) discussed later in this chapter

 3. Click the Arguments tab. Note the runtime arguments:

: The target operating system

: The target window system

: The target architecture

: The locale

 Also note the VM argument:

: If , the VM will not exit after the Eclipse application has

 This
is a handy tool to inspect the state of the system. From the following output, you can

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP14

Note Under Linux environments, Jetty may fail to start on port 80, as ports lower than 1024 require
 access. In that case, add the VM argument
 to start Jetty on port 8080.

 4. Point the browser to the output shown in
Figure 1-8.

Figure 1-8. Output of the exercise

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP 15

Using OSGi Console Commands
The console is a handy tool to inspect your plug-in and identify problems. The following are
some of the most useful commands:

: Adds a bundle given a URL for the current instance

: Removes a bundle given a URL for the current instance

: Lists a short status of all the bundles registered in the current instance

For example, to look at all the registered bundles, use the command, as follows:

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP16

To start and stop your plug-in, simply use the bundle ID. (The bundle name can also be
used, but who wants to type such long names?)

Using Logging Services
Enabling a logging service within a plug-in is somewhat different from logging in a traditional
Java application. It is a bit trickier because of the dynamic component nature of the runtime.

 file in the project classpath, and then use statements such as the following:

However, putting
framework manages a per-bundle classpath. It returns this message:

The solution is to have the plug-in find in the classpath at runtime and
use it. However, this is a little tricky. One way to handle this is to create a plug-in fragment and
set the host plug-in ID to

 file at the main level. Then, at runtime, the fragment will attach itself to the
 file. The fragment must

also be included in the run configuration for the plug-in.

Note Fragments are separately packaged files whose contents are treated as if they were in the original
plug-in archive file. They are useful for adding plug-in functionality, such as additional language translations,
to an existing plug-in after it has been installed. Fragments are discussed further in Chapter 2.

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP 17

Figure 1-9. Attaching a log4j.properties to the log4j bundle at runtime using a fragment

Here is the procedure to create the fragment for this example:

 1. From the Eclipse IDE main menu, select File New Other Plug-in Development
 Plug-in Fragment.

 2. In the New Fragment Project dialog, enter the plug-in information as shown in

Browse button to find and select that plug-in ID. Then click Finish.

 3. In the fragment folder, add a file with the log configuration shown
in the following fragment. To add a text file, right-click the fragment folder and select
New File. Make sure the file name is .

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP18

seems too complicated, a simpler way is to use the Commons Logging service within the main
plug-in, using this code:

This fragment is much simpler; however, it will use the default Java logging service, which
I personally dislike. It is up to you to choose the logging service that best fits your needs.

This concludes the exercise in this chapter. The goal of this exercise has been to provide
-

ple Jetty servlet extension point to listen

CHAPTER 1 FOUNDATIONS OF ECLIPSE RCP 19

Summary
This chapter introduced Eclipse RCP. The following are the important points to take away
from this chapter:

-
ity. A platform that addresses interoperability challenges and supports collaboration is
of critical importance.

concentrate on the problem at hand, rather than the details of the specific platform.

languages and development paradigms.

depend on it as a viable, industrial-strength tool for the foreseeable future.

Eclipse workbench.

model for remote component management. This is something that is missing in
stand-alone JVM environments.

declared in XML in a manifest file (). The extension model provides a
structured way for plug-ins to describe the ways they can be extended, and for cli-
ent plug-ins to describe the extensions they supply.

-
viding a common API. It is designed for performance, native look and feel, and
extensibility.

as well as actions and data viewers.

 environment in the Eclipse universe. It is
divided into perspectives, viewers, editors, workspaces, and projects.

C H A P T E R 2

Plug-ins: A First Glimpse

As you learned in Chapter 1, the RCP framework is based on plug-ins; nearly everything in
Eclipse is a plug-in. Obviously, RCP developers need to understand the Eclipse plug-in model,
as well as the extensions and extension points that are used to work with plug-ins. This chap-
ter will explain these concepts and then demonstrate them with a hands-on web browser
plug-in project.

Introducing the Eclipse Plug-in Model
The Eclipse Platform runtime plug-in model is a structured component that contributes
code or data to the system. Plug-ins are the perfect mechanism for lightweight software com-
ponent development because they provide seamless integration, extensibility, and a broad
range of tools.

Plug-ins let your application use other developers’ functionality or extend existing func-
tionality. As noted in Chapter 1, an extension point is a well-defined place where other plug-ins
can add functionality. The Eclipse workbench UI is an example of a plug-in that defines a
number of extension points where other plug-ins can contribute menu and toolbar actions,
drag-and-drop operations, dialogs, wizards, views, and editors.

As you learned in Chapter 1, all information about a plug-in is described in its manifest
(). The declarative nature of this model provides a small memory footprint and fast
performance, as the runtime can determine which extension points and extensions are sup-
plied, without running the plug-in. Thus, many plug-ins may be installed, but none will be
activated until a function is requested by the user. This is a critical feature for scalability and
robustness.

With the Eclipse plug-in model, you get a number of tools, including the following:

menus, toolbars, editors, wizards, and more

and for organizing and storing development artifacts on disk

21

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE22

and debuggers

-
tribute documentation as viewable books

But perhaps the most compelling reason to use the Eclipse plug-in model is the market
share Eclipse has captured. One study by BZ Research1 found that Eclipse gained significant
market share in 2005 with steady growth. Eclipse usage grew 9% in 2005, and at the time of writ-

2
among more than 1,400 developers—software architects and software managers worldwide—

 share (see Figure 2-1).

Figure 2-1. Eclipse market share (from Java IDE Market Share Survey by QA Systems)

The Plug-in Class and BundleContext
The plug-in class usually extends the class , which supplies the structure for
managing UI resources. is an abstract class that provides default implemen-
tations to manage images, dialog settings, and a preference store during the plug-in’s lifetime.

SD Times and Eclipse Review), available
online at .

.

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE 23

The plug-in class centralizes the life-cycle aspects and overall semantics of a plug-in. Two
methods, and , define this life cycle, each receiving a reference to a
with additional information about the runtime.

 provides the bundle with execution context used to grant access to the
framework. is a reference that contains information related to the plug-in

 methods allow a bundle to do the
 following:

 object for a bundle.

The plug-in class’s method is best used to initialize and register objects, but it
must be used with care. Registration activities such as adding listeners or starting back-
ground threads are appropriate if they can be done quickly; otherwise, it is better to trigger

accessed), rather than at bundle startup. This ensures that large data structures are created
when needed.

Caution Beware of premature initialization! It is important to look closely at your plug-in’s initialization
tasks and consider alternatives, as premature initialization can cause your plug-in’s code and data to be
loaded long before it is necessary.

Manifests
As explained in Chapter 1, a plug-in is described by the files and . The
sample definition shown in Listing 2-1 includes information such as the bundle

Listing 2-1. Sample MANIFEST.MF File

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE24

The format of
in
dependencies).

example, tells the runtime to start the plug-in at boot time, and
 displays descriptive text for the plug-in when started within the

Plug-in Fragments and Features
A plug-in fragment is a component that provides extra functionality to an existing, installed
plug-in. For example, a fragment might provide localization for different languages; add fea-
tures incrementally, so a full release of the plug-in isn’t necessary; or supply platform-specific
functionality, such as native code.

At runtime, the fragment attaches itself to the host plug-in. The main difference between
a fragment and a plug-in is that a fragment does not have a plug-in class, and its life cycle is
managed by its target plug-in. Otherwise, they are essentially the same.

A feature, on the other hand, is the packaging of a group of related plug-ins into a product,
and it is described by a file called . It includes information such as references to the
plug-ins, copyright, and licensing. Chapters 3 and 9 include more details on using features.

Adding Extension Points
The workbench defines extension points that allow plug-ins to contribute behaviors to existing
views and editors or to provide implementations for new views and editors.

The easiest way to add extension points to your plug-in is to use the plug-in manifest edi-
tor. Click the Extensions tab, and then click the Add button to start the New Extension wizard,
as shown in Figure 2-2. You can select to add an existing extension point using the Extension
Points tab or create a new extension using the Extension Wizards tab. All extension points are

).

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE 25

Figure 2-2. Adding an extension point through the manifest editor

Let’s take a look at some of the most commonly used extension points:

Perspectives
A perspective is a visual container for a set of views and editors. A view is typically used to navi-
gate a hierarchy of information, open an editor, or display properties for the active editor.

The Eclipse designers compare a perspective to a page within a book. Like a page, only
one perspective is visible at any time.

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE26

To open a user-defined perspective, launch a separate Eclipse application (from the Over-
view tab of the manifest editor, click Launch Eclipse Application) and select Window Open
Perspective Other. This brings up the Open Perspective dialog, as shown in Figure 2-3.

Note To display a user-defined perspective—a perspective created in your plug-in—you must first click
Launch Eclipse Application from the Overview tab of the manifest editor. This will start a new Eclipse IDE
workbench with your plug-in installed. From the main menu of this new workbench, select Window Open
Perspective Other. This can be confusing for new Eclipse users, who may try to open their perspective
in the development workbench. Since the development workbench does not have the user-defined plug-in
installed, it cannot display it.

Figure 2-3. Opening a perspective

A perspective can be easily created using the Extension wizard, but behind the scenes,
it is described by the
() is defined as shown in Listing 2-2.

Listing 2-2. Sample Perspective Extension (in plugin.xml)

In this definition, the attribute is the perspective implementation class, which can
be used to programmatically add views, action sets, wizard shortcuts, and so on. The attri-
bute uniquely identifies the perspective within the workbench. The and attributes
define the visual layout.

The extension point allows plug-ins to add perspec-
tives to the workbench. As an example, you could create a new perspective extension to

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE 27

the perspective

Listing 2-3. Perspective Extension Point to Add Package Explorer and Sample Views (in plugin.xml)

Figure 2-4. The Sample Perspective extended with the Package Explorer and Sample views

The most important attribute of this perspective extension is , which is the

 programmatically.

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE28

The perspective in Listing 2-3 contains the view

. Each view is identified by a unique attribute, followed by these attributes:

: Indicates whether or not the view is minimized.

: Indicates the placement of the view (left or right).

: Indicates positioning (stacking) relative to an existing view.

Views
The extension point allows plug-ins to add views to the workbench. A
view is a workbench part that performs a visual task such as navigating a hierarchy of infor-

shown in Figure 2-5.

Listing 2-4. Sample View Extension (in plugin.xml)

Figure 2-5. Sample view

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE 29

The element’s attribute is used to group the view within the workbench
view registry (accessible through the main menu Window Other). The
implementation class method is used to add visual
components, as follows:

View Actions
 contribute behavior to views that already exist in the workbench. The

 extension point allows plug-ins to contribute menu items, submenus, and
toolbar icons to an existing view’s local pull-down menu and local toolbar. Listing 2-5 shows

Listing 2-5. Sample View Action Extension (in plugin.xml)

The view to which you are adding the action is specified in the . In this case, a

to the view’s menu and toolbar.

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE30

To provide the action behavior, the implementation class
must implement the interface, as shown in Listing 2-6.

Listing 2-6. Sample Action Class to Display an Information Message Dialog

Figure 2-6 shows the view contribution added to the toolbar of the Package Explorer with
the associated action delegate. The view’s menu can be accessed by clicking the down arrow
on the right side of the view’s toolbar.

Figure 2-6. View action added to the Java Package Explorer

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE 31

Editors
The extension point allows plug-ins to add editors to the workbench.
An editor is a workbench part that allows a user to edit an object (often a file). Editors operate
in a manner similar to file system editing tools, except that they are tightly integrated into the
platform UI. Only one editor can be open for any particular object type in a workbench page.
(You can open another editor on the same file from another window or perspective.)

Figure 2-7.

Listing 2-7. Sample Multipage Editor Extension (in plugin.xml)

Figure 2-7. Multipage editor with a wizard

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE32

The attribute is responsible for providing editor-related actions and
global action handlers. For example, the following code adds global action handlers to add

Listing 2-8 shows the skeleton and UI of a multipage editor.

Listing 2-8. Multipage Editor Sample Class

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE 33

Pop-up Menus
The extension point allows a plug-in to contribute to the pop-up
menus of other views and editors. Pop-up menus belong to two different categories:

: The menu item will appear in pop-up menus for views or editors
where objects of the specified type are selected (for example, an object of type ,
which is a regular file).

: The menu item will appear in the pop-up menu of a view or editor

an object of type is selected.

Listing 2-9. Sample Pop-up Menu Extension (in plugin.xml)

The action is contributed for the object class . This means that any
view containing objects will show the contribution if objects are selected. The
selection criteria can be further restricted with a name filter () and for
single selections ().

The registration of this menu does not run any code from your plug-in until the menu
item is actually selected. When the menu item is selected, the workbench will run the specified
action class. Listing 2-10 shows the class for the extension point in Listing 2-9.

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE34

Listing 2-10. Action Class for the Action Extension Point

within any view. When it is selected, the specified action class will fire.

Figure 2-8. Pop-up menu contribution object and related action class

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE 35

Commands
Command contributions can be used to add custom menus to the menu bar and buttons to
the toolbar. Both items can then invoke a custom action. The following extension points are
used to implement commands:

invoked.

: Used to bind a character sequence to the command.

: Used to add menus to the main menu bar, toolbar, or pop-up
menus.

Let’s take a look at each of these extension points.

Commands
The extension point allows a plug-in to contribute the command

Listing 2-11. Sample Command and Category Extension (in plugin.xml)

The attribute defines the category or command name for display in the UI.
(Command names typically use an imperative verb.) The attribute is a unique identifier
for the category or command. Related commands are usually grouped by categories.

Handlers
Handlers describe the custom action that fires when the command is selected. Listing 2-12
shows an example of an extension point.

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE36

Listing 2-12. Sample Handler Extension (in plugin.xml)

The most important attributes are and . The attribute is the
of the command to associate with the handler implementation. The attribute defines
a class that implements or extends

.
The basic handler implementation is shown in Listing 2-13.

Listing 2-13. SampleHandler Class

Bindings
Key bindings bind a character sequence with a command. Listing 2-14 shows an example of an

 extension point.

Listing 2-14. Sample Binding Extension (in plugin.xml)

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE 37

The following are the most important attributes:

: The character sequence for the binding. Keys are separated by . Examples of
sequences are , , , and .

: Identifier for the context where the binding is active.

: Identifier for the scheme where the binding is active.

Menus
 add menus to the menu bar or toolbar, or create pop-up menus.

 Listing 2-15 shows an example of an extension point, which adds
the menu and toolbar item shown in Figure 2-9.

Listing 2-15. Sample Menu Extension (in plugin.xml)

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE38

Figure 2-9. Command implementation with menu and toolbar contributions

The attribute defines the URI of the insertion point for the menu addition.
The format is as follows:

where:

 is the type of manager used to handle the contribution: , , or .

 is the identifier of an existing menu, view, or editor.

 is either or .

We have covered the most common extension points used to contribute to the workbench
UI. There are plenty more, which you can explore at your leisure.

Hands-on Exercise: Fun with a Web Browser
Plug-in
Now it is time to put your newly acquired skills to use. The goal of this exercise is to build a
perspective that includes two views: a Web Browser view and a Bookmarks view, as shown in
Figure 2-10.

The Web Browser view has a toolbar and menu to enter a URL, as well as the typical
Home, Back, Forward, and Add Bookmark buttons. When the Add Bookmark button is clicked,
an action will be triggered to add the target URL to the Bookmarks view. The Bookmarks view
will listen for double-clicks and browse to the specific URL. It will also include an action to
delete a bookmark.

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE 39

Figure 2-10. Web browser plug-in showing the browser, bookmarks, and perspective selection
components

You’ll use two extensions for this exercise: and
.

 New Project
 Plug-in Project) with the default settings, as described in Chapter 1.

to No. (Chapter 3 discusses the Plug-in Project wizard options in more detail.)

Adding a Perspective Extension Point
As explained earlier in the chapter, a perspective is a critical container for visual elements such
as views and toolbars. In this case, the perspective defines two views: Web Browser and Book-
marks. Create this extension point with the manifest editor as shown in Listing 2-16.

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE40

Listing 2-16. Perspective Extension Point for the Web Browser Plug-in

Listing 2-16 creates the perspective with the views Web Browser and Book-
marks. Theses views will be accessible from the Window Open Perspective Other menu
of the workbench when the plug-in is started. Notice that the extension point requires
three implementation classes for the perspective factory and the two views:

, , and
. The next sections explain these in more detail.

Adding a Perspective Factory
The job of the perspective factory class is to lay out the views in the workbench window. The
fragment shown in Listing 2-17 lays out the Bookmarks view on the left, taking 20% of the
real estate, and the Web Browser view on the right, taking the other 80%. Insert the code in
 Listing 2-17 into the perspective factory class of your project (

).

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE 41

Listing 2-17. Perspective Factory for the Exercise in (ch02.browser.perspective.
PerspectiveFactory.java)

Adding Views and Content
Listing 2-18 shows the layout of the Web Browser view for the plug-in. The view contains the

local toolbar with Home, Back, and Forward buttons, and a simple menu to add bookmarks.
The code in this listing is a bit long as it implements a custom web browser with toolbars and
menus. Insert this code in the file of your project.

Listing 2-18. Web Browser View (in ch02.browser.views.WebBrowserView.java)

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE42

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE 43

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE44

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE 45

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE46

Let’s look at some of the important parts of the code in Listing 2-18 in more detail.

Adding the Web Browser Widget

Adding a browser to your application and listening for events is very simple. The following
fragment creates a browser and sets the starting URL:

The Browser widget is capable of listening for progress events to display information on
the status line:

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE 47

The interface implements the methods: , when progress is made
during the loading of the current location, and , which is called when the current
location has been completely loaded. The method in the previous fragment sim-
ply displays the ratio of the load operation in the status line progress bar, and it hides it when
complete.

Filling a View Toolbar
Each view should fill the local toolbar and pull-down menu with local actions:

The action separator, , allows
other plug-ins to contribute actions to the view’s toolbar and pull-down menu.

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE48

Invoking Methods in Other Views
Finally, to invoke a public method in another view, the view registry from the workbench can
be used to get a reference to the target view, and a cast be done. For example, the next two
fragments define two utility functions: and .

The function adds a string URL to the Bookmarks view (the same way you
save bookmarks from the web browser). To do this, calls to load the Book-
marks view () from the Eclipse view registry. It then calls the

 method. Note that is a global utility function that should go in the plug-
in activator (), but it can be placed anywhere.

Testing the Plug-in
To start the plug-in, click the Launch as Eclipse application link from the manifest editor.
A new workbench will be started. Then, from the main menu, select Window Open
 Perspective Other Web Browser. The resulting perspective should appear as shown
 earlier in Figure 2-10.

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE 49

Enhancing the Web Browser
If you have used the Eclipse Web Tools Platform (WTP), which is a subcomponent of Eclipse and
bundles a built-in web browser, you may wonder why you need a web browser in the first place.
One reason is to get finer control over the browser itself. For example, you could trap content and
perform a custom action. In this section, I’ll describe how to enhance the browser by trapping the

 the console.

Trapping the HTTP Response Content
Trapping the response content is useful if you wish to perform custom actions when a link is

trap the response content type is to use the event of the to get the doc-
ument content. The code in Listing 2-19 can be used in to perform this task.

Listing 2-19. Code to Trap the HTTP Response Content from the Web Browser Widget
(in WebBrowserView.java)

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE50

Caution The code in Listing 2-19 is used to trap Google Earth KML/KMZ content for further processing,
but has the unfortunate side effect of opening a duplicate HTTP connection (using a custom HTTP client),
which makes the browser behave slower. A duplicate connection is opened because the SWT Browser
widget does not provide access to the HTTP request object. Perhaps a better technique would be to use
JavaXPCOM with the Browser as explained in the Eclipse SWT FAQ page (

). Feel free to investigate this approach.

Saving URL Bookmarks on Exit
URL bookmarks can be easily saved by adding a dispose listener to the Web Browser view’s

 method and writing the contents of the Bookmarks view viewer to the local
file system, as shown in Listing 2-20.

Listing 2-20. Code to Save Bookmarks When the Web Browser View Is Closed (in
 WebBrowserView.java)

Summary
This chapter introduced the Eclipse plug-in model and demonstrated how to add extension
points. The following are the important points to take away from this chapter:

 provides seamless integration, extensibility, and a broad range of tools.

by the user).

CHAPTER 2 PLUG- INS: A F IRST GL IMPSE 51

in. The methods start and stop define this life cycle, each receiving a reference to a
 with additional information.

 provides the structure for managing UI resources and is
usually extended by a user’s plug-in.

 provides the bundle with execution context, including event subscrip-

described by a file called .

declared in .

views, actions, editors, editor actions, pop-up menus, and commands.

task-oriented interaction with resources.

of information or displaying properties for an object.

menus of other views and editors.

-
tons to the toolbar. An action can then be invoked.

C H A P T E R 3

RCP Basics

Today’s Java programmers may be reluctant to admit that their favorite language is not the
best for high-quality client-side applications. Even industry visionary Steve Jobs, founder of
Apple, said in a New York Times interview, “Java’s not worth building in. Nobody uses Java
anymore.”1 Eclipse RCP aims to change this perception by providing the technologies to create
your own commercial-quality programs.

When Eclipse introduced RCP in version 3.0, it created a refactoring of the fundamental
parts of Eclipse’s UI, allowing RCP to be used for non-IDE applications. Eclipse has succeeded
in building a serious platform for high-quality clients—so much so that its competitors have
been forced to create their own Java-based rich client platforms. Some important commercial
IDEs are built on RCP, including IBM’s WebSphere Studio, CodeGear’s JBuilder, and collabo-
ration tools such as IBM’s Lotus Notes.

RCP applications are built on the plug-in architecture; therefore, the main program must
be a plug-in. This chapter covers the basics of creating RCP applications.

Components of an RCP Application
The best way to understand the components of an RCP application is to use the code-generation
facilities of the PDE to build a simple template from which to start your application. Let’s set up
a sample project for writing Java code and generating the default plug-in manifest files.

Start the Plug-in Project wizard by selecting File New Project Plug-in Project. Enter
a project name and click Next.

In the Plug-in Content page, enter the following information (see Figure 3-1 for the entries
used for this example):

Plug-in ID: A mandatory unique ID for the plug-in. It is recommended that the ID match
the plug-in project name.

Plug-in Version: A mandatory version of the form major.minor.micro.qualifier (e.g., 1.0.0).
The qualifier is an optional segment used to indicate changes between builds. Eclipse
uses the date as a qualifier, formatted as YYYYMMDD (year, month, and day).

Plug-in Name: A descriptive name for the plug-in, which should be translatable to other
languages depending on the locale. This field is required.

1. “Ultimate iPhone FAQs List, Part 2,” New York Times Technology, available online at
.

53

CHAPTER 3 RCP BASICS54

Plug-in Provider: An optional, translatable name for the provider.

Execution Environment: The symbolic representation of a Java Runtime Environment
(JRE). By default, the workbench will detect your installed JRE and define an execution
environment. However, it can be configured to use the JRE of your choice. This field is
optional, but setting it is recommended.

Generate an activator: An activator is a Java class that controls the life cycle of the plug-in.
It is necessary only if your application needs to do work upon startup or shutdown.

This plug-in will make contributions to the UI: Affects the code of the activator class, as follows:

.

.

the interface.

Enable API Analysis: Enables static analysis of API usage from the new project. Static API
analysis allows automatic detection of common bugs, confusing code (likely to cause
bugs), bad practices, and syntax errors.

Would you like to create a rich client application?: If you select Yes, you will see a set
of sample templates in the next page, and you can choose a sample RCP application.
 Figure 3-2 shows the sample templates available for RCP.

Figure 3-1. Plug-in content wizard page for the sample Mail Application plug-in

CHAPTER 3 RCP BASICS 55

Figure 3-2. Sample RCP templates

After setting the Plug-in Content page options, select the RCP Mail Template from the
Templates page.

class, and then click Finish. The skeleton of the application and the plug-in manifest editor
will be displayed.

Extension Points for an RCP Application
Figure 3-3 shows the Extension tab of the plug-in manifest editor, which lists the extension
points required by an RCP application. You can edit extension points visually using the Exten-
sions tab of the editor, or edit them manually using the plugin.xml tab.

Figure 3-3. RCP mail template file structure

CHAPTER 3 RCP BASICS56

Application and Product Extensions
Among the most important extension points for an RCP application are

 and , which are shown
in Listing 3-1. The application extension point describes the name of the main program.
A product is the Eclipse unit of branding.

Listing 3-1. Application and Product Extensions for the Mail Application (in plugin.xml)

This XML defines an application () that is bound to the class
. It also defines a product (), with the application ID asso-

ciated with the product, custom properties to set the text and image to appear in the about

CHAPTER 3 RCP BASICS 57

dialog, and the window icon. Products are discussed in more detail in the “Defining and
Branding Products” section later in the chapter.

Main Program
The extension point defines the main program, as
shown in Listing 3-2.

Listing 3-2. Runtime Applications Extension for the Mail Application (in plugin.xml)

The class represents an executable entry point into an
application and implements , as shown in Listing 3-3.

Listing 3-3. Basic Skeleton for the Mail Template RCP Application

CHAPTER 3 RCP BASICS58

In Listing 3-3, the method uses as the central class for
access to the Eclipse Platform UI. This class cannot be instantiated and provides static meth-
ods to create, access, and close the workbench.

Default Perspective
As discussed in Chapter 2, all RCP applications should define a default perspective with the

 extension point. Listing 3-4 shows the perspective for the Mail
Application plug-in.

Listing 3-4. Perspective Extension for the Mail Application (in plugin.xml)

The class is used to define the initial layout for a perspective within a page
in a workbench window. When a perspective is opened, a new page layout with an editor area
is created. This layout is then passed to the default perspective implementation, where addi-
tional views and other content can be added. Listing 3-5 shows an example of populating a
layout with standard workbench views.

CHAPTER 3 RCP BASICS 59

Listing 3-5. Perpective Implementation for the Extension Point in Listing 3-4

OSGi Manifest
As you’ve learned, a plug-in is described by the and files.
(also known as the OSGi manifest) describes bundle information, such as the following:

class load

Figure 3-4, or manually from the MANIFEST.MF tab.

CHAPTER 3 RCP BASICS60

Figure 3-4. Plug-in manifest editor

Listing 3-6. OSGi Manifest for the Mail Application (MANIFEST.MF)

The manifest in Listing 3-6 sets as the activation policy. In lazy activation, bundles
are not activated until they are needed. Using this model, the application can be started with
as few active bundles as possible and activate other bundles on demand, thus reducing its
memory footprint.

Plug-in Manifest
The file describes information about the RCP application, including the following:

CHAPTER 3 RCP BASICS 61

General information: This section describes general information about the plug-in, such
as its ID, name, version, activator class, execution environments, and so on.

Dependencies: This section describes plug-in dependencies (packages on which the plug-
in depends) and development classpath dependencies.

Runtime: This section describes the packages the plug-in exposes to clients, package vis-
ibility, and the plug-in classpath.

Extension points: This section describes the extension points.

Build options: This section describes the folders and files to be included in the source,
binary builds, and custom libraries to be built.

) can be edited through the
 manually.

Advisor Classes
Advisor classes are used to configure the workbench, the workbench window, and the
action bar. The process is started within the main program with a call to

. The advisor classes are
, , and .

Workbench Advisor
An application should declare a subclass of and override methods to config-
ure the workbench for a particular application and define a default perspective, as shown in
Listing 3-7.

Listing 3-7. Basic Skeleton for an RCP Application Workbench Window

CHAPTER 3 RCP BASICS62

Workbench Window Advisor
The workbench window advisor is created once for a workbench window, and it is used to
configure the window. An application should declare a subclass of
and override methods to configure the workbench for the particular application. The following
methods provide default implementations; however, they can be overridden to configure the
workbench window:

: Called as the window is being opened. Use it to configure aspects of the
window other than action bars.

: Called after the window has been re-created from a previously
saved state. Use it to adjust the restored window.

: Called after the window has been created, either from an initial state
or from a restored state. Use it to adjust the window.

: Called immediately before the window is opened in order to create the
introduction component, if any.

: Called after the window has been opened. Use it to hook up window
listeners. For example, you could add a listener to load configuration data when the
application starts.

: Called when the window is closed by the user. Use it to prescreen
window closings.

Listing 3-8 shows an example of using the method to set the initial size of
the window and have it display a toolbar and status line.

Listing 3-8. Application Workbench Class Used to Configure the Main Application Window

CHAPTER 3 RCP BASICS 63

Action Bar Advisor
The action bar advisor is responsible for creating, adding, and disposing of the actions added
to a workbench window. This class is useful for allocating global actions, as well as filling the
menu bar, toolbar (known as the cool bar), and status line.

Actions have a label, tool tip, and image, as well as code associated with them. They dis-
play as menu options or buttons in a toolbar.

Actions can be classified as local or global. Local actions may perform tasks within a local
context, such as a view. Global actions are commonly used to open and close dialogs, files, and

-
responding command key bindings are defined in the file.

Figure 3-5 shows the actions added to the Mail Application plug-in, represented as menu
options and toolbar buttons.

Figure 3-5. Mail Application RCP template

Plug-in Class
As explained in Chapter 2, the plug-in class controls the life cycle for plug-ins that integrate
with the Eclipse Platform UI. It provides the following:

() or the core runtime API (

)

CHAPTER 3 RCP BASICS64

The plug-in class overrides the appropriate life cycle methods in order to react to the
life-cycle requests automatically issued by the platform. Instances of the plug-in class are
automatically created by the platform in the course of the plug-in activation.

Clients must never instantiate a plug-in class. The singleton pattern can be used to obtain
an instance of the plug-in by declaring a static variable in your plug-in class for the singleton.
Store the only instance of the plug-in class in the singleton when it is created. Then access the
singleton when needed through a static method. Listing 3-9 shows the plug-in
class for the Mail template with the method used to obtain a shared instance of
its plug-in. If other plug-ins need to reference the Mail plug-in, a reference can be obtained by
calling .

Listing 3-9. Plug-in Class for the Mail Template with a Method to Get a Shared Instance

CHAPTER 3 RCP BASICS 65

Defining and Branding Products
A product definition describes information about the application, and it is required if you wish
to distribute your application as a stand-alone product. To create a product, your plug-in must
define application and product extension points within the main application, as discussed
earlier in this chapter.

 New Product Con-
figuration to start the New Product Configuration wizard. Enter a product name, and select
the product name defined by your plug-in, as shown in Figure 3-6. Click Finish to bring up the
product editor, as shown in Figure 3-7.

Figure 3-6. Choosing to configure a product

CHAPTER 3 RCP BASICS66

Figure 3-7. Product editor

Branding gives a unique flavor to your RCP. If the goal is to distribute the plug-in as a
stand-alone application, branding is critical to set your plug-in apart from the default Eclipse
look and feel.

Branding is defined within the product configuration file. The following is the most
important information to customize in this file:

IDs: Product and application IDs defined within the main plug-in extension points.

Configuration: The plug-ins and fragments required to run the application. By default, this
information is stored in a configuration file called , which contains properties
that are read by the runtime upon startup. This file can be generated by default, or an
existing file could be used. Use the Configuration tab of the product editor (see Figure 3-7).

Launching: This describes the JRE for a given operating system. It also describes the name
of the program launcher or executable, including icons and launching arguments. All
these values may be different, depending on the operating system.

Splash: Defines the splash screen that appears when the product launches. By default, the
file in the current folder will be used. The splash screen can display a progress
bar and message, which may be customized from the product editor.

Window images: Defines the images associated with the application window.

About dialog: Standard text and image for the About dialog. The image is typically located
in the product plug-in, and its size must not exceed 500 330 pixels. The text is not shown
if the size exceeds 250 330 pixels.

CHAPTER 3 RCP BASICS 67

Using Features
As mentioned in Chapter 2, a feature is a collection of plug-ins that perform a common func-
tion. Consider using features if your application includes many plug-ins for distribution.
Features are useful for the following reasons:

Features will be discussed in more detail in Chapter 9.

Product Testing and Packaging
 defined the product and branding, you can easily test your application. From the

product editor, click the Synchronize link (to publish your changes), and then click the Launch
an Eclipse application link (see Figure 3-7).

A very useful tool for deploying the application to a specific location is the Product Export
wizard. From the product editor, simply click the Eclipse Product export wizard link (see
 Figure 3-7). Then enter a destination directory and choose export options, as shown in Figure 3-8.

Figure 3-8. Exporting a product for multiple platforms

You can even build products for multiple platforms using the Eclipse delta pack. Note that
this pack is not distributed with Eclipse by default. You will need to download the delta pack
from the Eclipse web site and then install it.

CHAPTER 3 RCP BASICS68

MULTIPLATFORM EXPORT WITH THE DELTA PACK

The Eclipse delta pack is a very useful tool for multiplatform export. However, it is not included by default in
the Eclipse download, which means you need to download and install it if you wish to deploy your product on
multiple platforms. Here are the steps for installing the delta pack and then using it for a multiplatform export.

 1. Download Eclipse Delta Pack 3.4 (Ganymede) from the product download page. To do so, from the main
Eclipse downloads page, select By Project Eclipse Platform Latest release (3.4) Delta Pack.

 2. Unpack the zip file within your Eclipse installation. When prompted, do not overwrite existing files; oth-
erwise, your Eclipse installation may fail to start.

 3. Return to the product editor and click the Eclipse Product export wizard link (see Figure 3-7).

 4. Enter a destination folder and check Export for multiple platforms (see Figure 3-8). Then click Next.

 5. In the next wizard page, select the target platforms, and then click Finish. The destination folder now
contains all the required plug-ins and binaries.

Hands-on Exercise: An RCP Application for the
Web Browser Plug-in
Now you will apply the concepts discussed in this chapter by wrapping the web browser plug-
in from Chapter 2 into a stand-alone RCP application. The following UI components must be
added:

 icons, splash screen, and about dialog

Adding an Application Extension Point
You can add the application extension point by defining another plug-in to host the main
program.

 1. From the main menu, select File New Project Plug-in Project and enter a project
name (). Click Next.

 2. In the Plug-in Content page, make sure the “This plug-in will make contributions to
the UI” option is checked. Set the “Would you like to create a rich client application?”
option to Yes. Click Finish. The plug-in manifest editor will open.

CHAPTER 3 RCP BASICS 69

 3. In the plug-in manifest editor, click the Dependencies tab. Then add a reference to
the web browser plug-in you created in Chapter 2. You should now see an application
extension point, as well as skeleton advisor classes, as shown in Listing 3-10.

Listing 3-10. Extension Point for the Web Browser Plug-in (in plugin.xml) and Implementation Class

CHAPTER 3 RCP BASICS70

Changing the Default Perspective
The default perspective needs to point to the web browser plug-in perspective from Chapter 2.
In the plug-in manifest editor, click the Extensions tab, and then expand the

 Web Browser. Click the Browse button for the perspective class, and then
select the class name from Chapter 2.

Tip If you don’t see an extension point, that probably means you failed
to select it to create a rich client application when creating the plug-in project. Fortunately, you can use the
manifest editor to fix it. Just click the Add button in the All Extensions section. In the New Extension Point
dialog, select , and then click Finish. Finally, add the perspective informa-
tion, including the ID (), name (

), and class (). Remember that the
perspective is located in Chapter 2.

Modifying Advisor Classes
The next step is to modify the advisor classes to configure the main window of the appli-
cation. These classes should have been created by the Plug-in Project wizard. By default,
they are named , , and

.

Tip When creating a new RCP plug-in project, remember to choose Yes for the “Would you like to create
a rich client application? option. This will ensure that an application extension point and advisor classes are
added to the project automatically.

The workbench advisor () creates a new workbench window
advisor (), which configures the main window and returns a
reference to the default perspective—in this case, the from the Chapter 2
plug-in. Listing 3-11 shows the required modifications to the class.

CHAPTER 3 RCP BASICS 71

Listing 3-11. ApplicationWorkbenchAdvisor Class Used to Create a Main Window and Default
Perspective

The class configures the main window
menu, toolbar, and status line. It also creates an instance of the action bar advi-
sor () to set up local menu and toolbar actions. In this
case, the main plug-in will not define any local actions, so the action bar advisor will
not need to be modified. Listing 3-12 shows the
class which enables a main menu, toolbar, and status line. It also creates an instance of
 .

Listing 3-12. ApplicationWorkbenchWindowAdvisor Class for the Exercise

CHAPTER 3 RCP BASICS72

Adding Menu and Toolbar Extension Points
The web browser plug-in should define a toolbar contribution to fire the open web browser
command (), as shown in Listing 3-13.

Listing 3-13. Menu Contribution to Open a Web Browser (in plugin.xml)

Notice the attribute .
It places a new push button as an addition to the main UI toolbar.

The main application’s plug-in is in charge of declaring the main menu using the location
URI . The fragment in Listing 3-14 creates a
File menu contribution with two actions—New Browser and Exit—and a Help menu with an
About action.

Listing 3-14. Main Menu Contribution for the Web Browser Plug-in (in plugin.xml)

CHAPTER 3 RCP BASICS 73

Notice the command, which is defined in Chapter 2, and the factory com-
mands and to exit and open the
About dialog, respectively.

Adding Commands, Key Bindings, and Handlers
Listing 3-15 shows the command New Browser (defined in Chapter 2) and corresponding key
binding (). Note the extension, which is used to group related commands. The
main plug-in (see Chapter 3), on the other hand, defines the factory commands File Exit and
Help About with associated key bindings (see Listing 3-14), which are not shown here.

Listing 3-15. Command Extension Point to Open a New Web Browser (in plugin.xml)

CHAPTER 3 RCP BASICS74

You need to add a new handler extension point to the browser plug-in to associate the
New Browser command with its handler class, which will be triggered when the command
is executed. Listing 3-16 shows the new handler extension point, and Listing 3-17 shows the
 class.

Listing 3-16. Extension Point for the Open Web Browser Command Handler (in plugin.xml)

Listing 3-17. Handler Class for the Extension Point in Listing 3-16

CHAPTER 3 RCP BASICS 75

Notice the . method in Listing 3-17, which allows
multiple instances of a particular view ID to be created. They are disambiguated using
an instance counter (or secondary ID) as the second argument. The third argument,
 , indicates the view should be immediately displayed. Note
that if a secondary ID is given, then the view must allow multiple instances by having speci-
fied in its extension point.

Creating the Product Configuration File
Finally, create a product configuration file, as follows:

 1. Right-click the project folder name and select New Product Configuration.

 2. Enter a file name (for example,) and select the product created by
the wizard ().

 3.
) and version.

 4. In the Configuration tab, check “Include optional dependencies when computing
required plug-ins,” and then click “Add Required Plug-ins.” This will ensure that all

 5.
Launch an Eclipse application link to test the product.

Figure 3-9 shows the completed Web Browser RCP application.

Figure 3-9. The Web Browser RCP application

CHAPTER 3 RCP BASICS76

Summary
This chapter covered the fundamentals of RCP. Here are the main points to keep in mind:

to be used for non-IDE applications. It provides the technology to create your own
commercial-quality programs.

-
bench window classes. These classes are typically known as advisor classes.

. It uses the class to
access the Eclipse Platform UI.

The perspective class is used to define the initial layout of the workbench window.

. It is responsible
for defining a default perspective and configuring the workbench (by creating a work-
bench window advisor).

. It
is responsible for configuring the main window (set window size, show menu bar, tool-
bar, status line, and so on), and creating an class.

 and is responsible
for creating, adding, and disposing of the actions added to a workbench window. It also
fills the menu bar, cool bar, and status line, among other UI elements.

preferences, access to the JFace preference store with runtime preferences, a dialog
store, and an image registry.

if you wish to distribute your application as a stand-alone product.

application.

plug-ins that perform a common function. Consider using features if your application
includes many plug-ins for distribution.

 platforms, use the Eclipse delta pack.

C H A P T E R 4

User Interface Concepts

As you know, an application’s UI provides the interaction between the user and the com-
puter. Because the UI affects the amount of effort the user must expend to perform a given
task, it has a big impact of an application’s usability.

This chapter explores two useful Eclipse APIs for UIs: the Common Navigator Framework
(CNF) and the concurrency infrastructure (Jobs API). The goal of CNF is to provide a general-
purpose, configurable navigator that presents an integrated view of resources to the user. The
concurrency infrastructure provides the means to perform simultaneous tasks using shared
resources. This allows the application to remain responsive while tasks are performed.

Hierarchical Navigation with the Common
 Navigator Framework
CNF provides a general-purpose navigator view for applications. You can use it to implement
all kinds of resource viewers. As just one example, the Eclipse IDE’s Project Explorer view is
implemented with CNF.

CNF viewers can be shared by many applications working with the same set of resources
or other objects, presenting an integrated view to the end user. CNF instances are declared by
extension points. CNF content, filters, wizards, and action providers (described shortly) are
also declared as extensions, thus maximizing shareability among multiple views.

CNF viewers are highly extensible. You can define one or more CNF viewers and associate
each viewer with content extensions, filters, wizards, and sets of actions. You can also use the

 plug-in to provide reusable components for clients that
need to expand on the capabilities of CNF. These resources include actions to open, save, cut,
paste, and add filters for resource types (files or custom user objects). Visually, these actions
display as menu options in the navigator pop-up menu.

Furthermore, CNF allows for drag-and-drop (DnD) functionality. DnD uses drop assis-
tants associated with a content extension.

Let’s look at the basic components of CNF, and then explore the ways of integrating CNF
into your RCP applications.

77

CHAPTER 4 USER INTERFACE CONCEPTS78

Tip For a good introduction to CNF, see the RCP Quickstart “Common Navigator Tutorial 1: Hello
World,” available online at

.

CNF Basics
Using the CNF classes and configuration elements, you can create navigation systems for your
applications. Figure 4-1 shows an example of a CNF viewer in an RCP application.

Figure 4-1. CNF in action within RCP

CNF Classes
The backbone of CNF is the class , which uses the
following classes:

 to render an extensible tree. Content and labels of the tree are provided
by an instance of .

 to provide actions from extensions for menu and
contributions.

 to manage content extensions for extensible viewers and
provide reusable services for filters, sorting, activation of content extensions, and DnD.

Clients are not expected to subclass for traditional tasks such as work-
space navigation. However, some RCP applications, such as file managers, may wish to
override this behavior. By default, CNF will let you navigate only workspace resources, which
is fine for the IDE, but not enough for an application such as an FTP client. The “Using CNF by
Extending the Common Navigator” section later in this chapter discusses ways to overcome
this limitation.

CHAPTER 4 USER INTERFACE CONCEPTS 79

CNF Configuration
CNF defines the following for navigator configuration:

Content extensions: CNF uses content extensions to include resources of any type. These
extensions provide the following:

extensions, which is useful when more than one content extension is enabled for a
given object and situation

Filters: Users can specify which resources or objects to exclude.

Wizards: Users can use wizards to create new resources or import/export resources from
a CNF viewer.

Action providers: Action providers allow users to programmatically configure the pop-
up menu in a CNF viewer. Action providers may be associated with content extensions.
This association is useful for enabling cut/copy/paste operations when a file is selected,
for example. Action providers are also useful for performing computations to determine
which items are added to the pop-up menu.

Using CNF Within RCP
You can use CNF within RCP in two ways:

Contribute to the Common Navigator: You can contribute to the
 view to manipulate workspace resources (see Figure 4-1). This is a bit cum-

bersome, as the navigator is designed to manipulate workspace resources, not file system
resources, by default. However, you can fake file system access by creating a project in the
navigator and link the target to a file system location. For example, you could create a proj-
ect called and point the location to your home directory, thus giving the viewer access
to files in your home directory. This option does not give you a lot of control, but is it very
simple and quick to implement.

Extend the Common Navigator: You can extend
to control the mechanism that discovers a navigator’s root node. This requires more work
than contributing, but it gives you a higher degree of control over the navigator. You might
want to use this approach for applications such as file explorers and FTP clients, for example.

Whichever way you use CNF within your RCP application, the following plug-ins are
required to get started:

CHAPTER 4 USER INTERFACE CONCEPTS80

Using CNF by Contributing to the Common Navigator
As I mentioned, contributing to the view is the
easiest and quickest way to get CNF working within RCP, but gives you a low degree of control,
as you must create projects within a workspace to manipulate resources. On the bright side, it
bundles a lot of built-in actions to manipulate resources.

The following example demonstrates the steps for contributing to the Common Navigator
view. It creates the simple navigator shown earlier in Figure 4-1.

 1.
, , , and

.

 2. Add an extension point for the Common Navigator view to your plug-in manifest.
Use a custom name and ID, but make sure the class is

. The following fragment creates a Common Navigator view (within
your plug-in) called , with the ID (which
can be used to reference the view from your main perspective) and a custom icon. Note
that the class is part of CNF.

 3. Add action and content bindings extension points to the plug-in manifest. Action bind-
ings attach built-in actions to a Common Navigator view ID (
in this case). This includes all actions under .
Content bindings define the navigator content types, filters, and other resources that
will be visible. They should include the following:

CHAPTER 4 USER INTERFACE CONCEPTS 81

 This fragment binds all navigator actions ()
to the Common Navigator view (). The actions will display as
menu options in the navigator context menu.

 This fragment also defines elements to describe which con-
tent extensions and common filters are visible to the viewer. A content extension or
common filter is visible if the ID of the content extension or common filter matches
an statement under a . In this case, the content exten-
sion —that is, any resource in the user’s
 workspace—is bound to a viewer matching the ID . The con-
tent extension indicates that the
content filter for that viewer will be available in the navigator filters dialog. The content
extension tells the viewer to provide
a link with editor support to the navigator.

 4. class to do the following:

 method (see the next fragment)

CHAPTER 4 USER INTERFACE CONCEPTS82

 5. Finally, add the Common Navigator view to the default perspective factory of your RCP
application.

Now, when the application starts, you should see an empty navigator. To add a file sys-
tem location, right-click and select New Project, enter a project name in the wizard, select a
target location, and then click Finish. The files in the target location should display in the navi-
gator (see Figure 4-1).

Using CNF by Extending the Common Navigator
Extending the Common Navigator involves more coding, but it gives you a higher degree
of control over the behavior of the navigator than can be achieved by contributing to the
 Common Navigator. An FTP client is a good example of an RCP application that should extend
the Common Navigator.

CHAPTER 4 USER INTERFACE CONCEPTS 83

Here are the steps required to extend the Common Navigator:

 1. Create an RCP template (using the PDE wizard), if you don’t have one.

 2. Add the CNF dependencies using the plug-in manifest editor’s Dependencies tab.

 3. Add a view () extension point to the plug-in. Enter an ID, name,
and class name for the view. For example, you might use ,

, and , respectively. This dif-
fers from contributing to the Common Navigator, which requires

 as the class.

 4. .

 5. Add the view to a perspective, either programmatically or through a perspective exten-
sion. At this point, you could run the application to see an empty CNF view.

 6. Create content classes to serve as the root node in your navigator. The children of
the root node will be the first to appear in the navigator tree. These classes are com-
monly referred as the model of the navigator. The root node class should extend
 to provide the required interface. These classes are
described in detail in the hands-on exercise.

 7. Declare an extension point to define
content, filters, and actions. The content element includes classes for content and label
providers.

 8. Add trigger points that cause the label and content providers to be called.

 9. Bind content to the navigator using the extension.
This extension point registers the view as a navigator and binds content and actions
using the and elements.

 10. Run and test the application.

As you can see, there are quite a few steps required and plenty of code to be written. These
steps are described in detail in the exercise at the end of this chapter.

Concurrency Infrastructure
The Eclipse Jobs API () provides a concurrency infrastructure,
which allows your application to perform simultaneous tasks, yet remain responsive while
these tasks are performed. Obviously, this enhances the usability of your application.

The Jobs API provides the means to do the following:

-
ously with other jobs

 detect and respond to deadlocks

CHAPTER 4 USER INTERFACE CONCEPTS84

Jobs API Basics
A job is an asynchronous task that runs concurrently with other tasks. You create a class that
extends the class, and then schedule it somewhere within your application. Once a job is
scheduled, it is added to a job queue managed by the Eclipse Platform runtime.

The Eclipse Platform runtime manages pending jobs using a background thread. When
a job becomes active, the runtime invokes its method. When a job completes, it is
removed from the queue, and then the runtime decides which job to run next.

Job States
The state of the job changes as the Eclipse Platform runs and completes the job. The following
are lifetime states:

: Indicates that the job has been scheduled to run, but is not running yet.

: Indicates that the job is running.

: Indicates that the job is sleeping due to a sleep request or because it was
scheduled to run after a certain delay.

: Indicates that the job is not waiting, running, or sleeping. A job is in this state
when it has been created but is not yet scheduled.

Job Operations
You can do many interesting things with jobs by invoking the following methods:

: This method starts the job immediately or at a specified interval.

: This method will block the caller until the job has completed, or until the call-
ing thread is interrupted.

: This method allows canceling the job. It is up to the job to respond to the
cancellation if it has already started. It is a good idea to wait for the job to complete
after the job has been canceled: . If the cancellation
does not take effect immediately, then will return , and the caller will
use to wait for the job to be canceled.

: This method will cause the job to be put on hold indefinitely if the job has not
yet started running.

: This method will cause the job to be added to the wait queue, where it even-
tually will be executed.

Tip To make sure the job completes, use the method. It will block the caller until the job has
completed or until the calling thread is interrupted. Keep in mind that it is not useful to call after
scheduling a job, since you get no concurrency by doing so. You might as well do the work from the caller.

CHAPTER 4 USER INTERFACE CONCEPTS 85

Scheduling Rules
A scheduling rule acts as a mutex (semaphore) that prevents a race condition between two
jobs running concurrently. Consider the next fragment:

Because and run concurrently, we do not know which one will execute first.
Even though the order is , , there is a possibility that will execute first. This race
condition can be fixed by adding a scheduling rule to both jobs.

The interface is used to indicate the need
for exclusive access to a resource. This interface defines the methods

 and , which test if this scheduling rule completely
contains or is compatible with another scheduling rule, respectively. If we rewrite the previous
fragment as:

CHAPTER 4 USER INTERFACE CONCEPTS86

When a job has a scheduling rule, the method is used to determine if
the rule conflicts with the rules of any jobs currently running. Thus, your implementation
of can define exactly when it is safe to execute the job. If two jobs have the
identical rule, they will not be run concurrently. In this example, the same rule will ensure the
execution order of the job is always preserved: always runs first.

Locks
A lock defines protocol for granting exclusive access to a shared object. When a job needs
access to the shared object, it acquires a lock for that object. When it is finished manipulating
the object, it releases the lock.

Tip A lock should be created when the shared object is created or first accessed; that is, code that has a
reference to the shared object should also have a reference to its lock.

Using the Concurrency Infrastructure
Let’s look at a simple program that demonstrates these concurrency concepts. Our example
is a virtual race in which runners compete. The race will take place in the workbench and will
be shown in the built-in progress view. We will have six runners, split into three teams of two.
Each runner will be a job that uses the method to advance through the course. We will
also need a referee (another job) to monitor the race, as well as a racetrack.

CHAPTER 4 USER INTERFACE CONCEPTS 87

The Job Class
The object is shown in Listing 4-1.

Listing 4-1. Sample Job Class Using the Concurrency Infrastructure

CHAPTER 4 USER INTERFACE CONCEPTS88

The class extends and takes a runner and team names as arguments to the
constructor. The team name is used to identify the runner within a job family. We’ll explore
job families in more detail after taking a look at job progress reporting and change listeners.

Progress Reporting
A runner uses the to report progress. On each loop interaction,
a random value is calculated, and feedback is provided to the monitor. When the num-
ber of interactions reaches the maximum distance, the loop completes and
is returned. If the user clicks the Cancel button, will return , and
the thread will return (which means the runner has dropped out of the
race). Listing 4-2 demonstrates this technique, including a random value to simulate a
race. The progress of each runner can be seen in the standard progress view.

Listing 4-2. Reporting Progress Within the Job Loop

CHAPTER 4 USER INTERFACE CONCEPTS 89

Job Change Listeners
Each runner will register for a race by adding a job change listener (see the method
in Listing 4-1). The listener takes a as an argument, which provides default
implementations for the methods described by the interface. The goal is
to listen for status changes on the runners, such as or .

Job Families
Job families make it easy to work with a group of related jobs as a single unit. In this example, a
runner declares that it belongs to a team (family) by overriding the method:

The Race Class
Now we need a racetrack where the runners compete. We also need a referee to monitor the
race and a race results container (a should do). Listing 4-3 shows the

 class.

CHAPTER 4 USER INTERFACE CONCEPTS90

Listing 4-3. Race Class to Demonstrate Concurrency Concepts

CHAPTER 4 USER INTERFACE CONCEPTS 91

CHAPTER 4 USER INTERFACE CONCEPTS92

Notice the race referee is another job. It simply monitors the results array list and then
prints the winners. The referee is set as a system job. Jobs can be classified in two categories:

User jobs: A user job will appear in a modal progress dialog that provides a button for
moving the dialog into the background. By defining your job as a user job, the progress
feedback will automatically conform to the user preference for progress viewing.

System jobs: A system job is just like any other job, except the corresponding UI support

low-level implementation details that you don’t want to show to users.

Thus we have six runners: Bob, John, Hans, Lars, Harry, and Ron. They are split into three
 in this case) to provide for

status updates:

The runners start racing by calling , which simply calls the job’s
method. When all runners either complete the race or drop out, the referee will detect a
finish and print the results to the console. Finally, to view the race in the workbench, the
 event can be overridden to start the race:

Figure 4-2 shows the virtual workbench race. When the race completes, the referee will
print the results:

CHAPTER 4 USER INTERFACE CONCEPTS 93

Figure 4-2. Virtual track race to demonstrate concurrency concepts

Hands-on Exercise: A CNF File System Navigator
The best way to get started with CNF is to build a real application. In this exercise, you’ll build
a simple file system navigator. You’ll extend the
class to obtain a higher degree of control over the resource discovery. The exercise demon-
strates using CNF extension points, content and label providers, content binding, resource
encapsulation, and perspectives.

Creating an RCP Project Template
The first task is to create an RCP application project, as follows:

 1. From the Eclipse IDE main menu, select New Project Plug-in Project. Enter a
name for the project (such as), and then click Next.

 2.
the “Would you like to create a rich client application?” option is set to Yes. Click Next.

 3. On the Templates page, select the RCP application with a view template. Click Next.

 4. -
sion to the project (otherwise, you must add it to the manifest manually). Click Finish
to open the manifest editor.

 5. Add a product configuration file by selecting New Other Plug-in Development
Product Configuration. Enter a name and select the plug-in product. Click Finish.

 6. Test the template by clicking the Launch an Eclipse application link in the product
 editor.

CHAPTER 4 USER INTERFACE CONCEPTS94

 7. With the template in place, add the CNF dependencies. To add dependencies from the
plug-in manifest editor, click the Dependencies tab, and then click the Add button and
select the required packages, as highlighted in the following manifest file:

Adding CNF Extension Points
Now, you need some CNF extension points. These include a view, navigator content, and
content bindings. The fastest way to add these extension points is to use the plug-in manifest
editor’s Extensions tab. For example, to add the view extension point, click Add, select

, and then enter the view attributes. The Extension wizard also provides
some extension templates.

View
The view should include the following required attributes:

: A unique identifier for the view ().

: A descriptive name ().

: The implementation class name ().

class extends .

Listing 4-4 shows the view extension point for the file system navigator.

Listing 4-4. View Extension Point for the File System Navigator

CHAPTER 4 USER INTERFACE CONCEPTS 95

Navigator Content
The navigator content extension defines the content and label providers, which populate the
internal tree widget of the navigator with information. The following are the most important
attributes:

: A unique ID to identify this extension ().

: The display name for the content extension ().

: The name of the class that implements a tree content provider.
The content provider will be consulted when adding children to the tree. Use an

 or clause to indicate which kinds of content should trig-
ger a request to this content provider. This example uses the class

 as the content trigger. This class must be an . This
can be achieved by extending . The con-
tent provider is described in further detail a little later in this chapter, when we look at
implementing the classes for the example.

to the internal tree. Clients may implement the following:

 to provide labels and images

 for more advanced functionality

 to provide styled text labels for version 3.4

Listing 4-5 shows the navigator content extension point for the file system navigator.

Listing 4-5. Navigator Content Extension Point for the File System Navigator

CHAPTER 4 USER INTERFACE CONCEPTS96

Content Binding
Finally, you need to bind the navigator view () with the content extension
() by using the clause of the content binding. A content exten-
sion may be selected by the exact extension ID. Clients may also use a regular expression
pattern to select any content extensions that match the pattern.

Listing 4-6 shows the content binding for the file system navigator.

Listing 4-6. Content Binding for the File System Navigator

At this point, you have all the extension points in place. Now, let’s proceed to the class
implementation steps.

Implementation Classes
The implementation classes can be categorized as follows:

Content trigger ()
will be the first to appear in the tree.

Resource encapsulator (): Encapsulates files to be shown in the navigator.

Content provider classes (and): Add children to the
tree, and add labels and images for the node elements.

Navigator class (): The main CNF class. It extends the Common
Navigator to provide initial input to populate the data tree.

Perspective factory (): Needs to be modified to display the default views
when the application starts.

CHAPTER 4 USER INTERFACE CONCEPTS 97

All of these classes are new and must be created, except for , which is
created by the Plug-in Project wizard and only needs modifications.

To create these classes, right-click the plug-in project folder and select New
 Class. Then enter the names and package locations. , ,

and should be created in the package
 . should go in the package .

Tip All of the pieces in this puzzle are bound together by the extension points (in) from
Listing 4-4 (describing the view class), Listing 4-5 (describing the navigator content, which references

, , and) , and Listing 4-6 (describing the content
binding, which binds the navigator content with the view).

The next sections provide more details on the implementation of these classes.

Navigator Root
Listing 4-7 shows the class that serves as the root node of the navigator. It will not appear in
the navigator; however, its children will be the first to appear.

Listing 4-7. Root Node Class for the File System Navigator

This class extends , which in turn implements the interface
(nodes of a CNF viewer must implement this interface). The class uses the
method to return the top elements. Notice that the top elements will be file beans from or ,
depending on the operating system: Windows or Linux.

CHAPTER 4 USER INTERFACE CONCEPTS98

Resource Encapsulator: File Bean
Listing 4-8 shows the class to encapsulate a file within the file system.

Listing 4-8. Resource Encapsulator Class for the File System Navigator

The class constructs an instance from a object and has the following
 methods:

: Returns the name to be used as the label within the tree.

: Returns if the current instance is a directory.

CHAPTER 4 USER INTERFACE CONCEPTS 99

: Returns if the current instance has children.

: Returns children file beans for the current instance.

These methods will be useful for the tree and label content provider implementations.

Navigator Class
The navigator class is responsible for getting the initial input to populate the data tree, as well
as creating other visual components such as a context menu and action bars. Listing 4-9 shows
the navigator class for the file system navigator.

Listing 4-9. Navigator Class for the File System Navigator

CHAPTER 4 USER INTERFACE CONCEPTS100

The navigator class overrides the method and simply returns a new
instance of . The method can also be overridden to add

CHAPTER 4 USER INTERFACE CONCEPTS 101

custom actions. Here, we add a simple action to display a message box. Then we hook the
action to the context menu and local toolbar and pull-down menu.

Content Providers
Content providers will be consulted when adding children to the tree and requesting labels
and images for the node elements. CNF defines tree and label content providers.

Listing 4-10 shows the tree content provider for the file system navigator.

Listing 4-10. Tree Content Provider for the File System Navigator

CHAPTER 4 USER INTERFACE CONCEPTS102

The tree content provider overrides the following methods:

: Returns the child elements of the given parent element. This method
differs from in that is called to obtain the tree viewer’s
root elements, whereas is used to obtain the children of a given parent
element in the tree (including a root).

: Returns the elements to display in the viewer when its input is set to the
given element. These elements can be presented as rows in a table, items in a list, and
so on. The result is not modified by the viewer.

: Returns the parent for the given element or , indicating that the par-
ent cannot be computed.

: Returns whether the given element has children.

: Notifies this content provider that the given viewer’s input has been
switched to a different element. A typical use for this method is to register the content
provider as a listener for changes on the new input (using model-specific means), and
to deregister the viewer from the old input. In response to these change notifications,
the content provider should update the viewer.

Notice that the class methods match the methods of the tree content provider.
The method is used to return the files of the top file system
using .

The label content provider for the file system navigator is shown in Listing 4-11.

Listing 4-11. Label Content Provider for the File System Navigator

CHAPTER 4 USER INTERFACE CONCEPTS 103

CHAPTER 4 USER INTERFACE CONCEPTS104

The label content provider returns the text of the object (the file name in this case), but

uses the class to find the program that is associated with an
extension. Note that a object must already exist to guarantee that this method returns
an appropriate result. is used to return the receiver’s image data. This is
the icon that is associated with the receiver in the operating system. The result is a neat display
of files and associated operating system icons in the tree.

Default Perspective
We are almost finished building the file system navigator. The final step is to add the view to
the default perspective factory, as shown in Listing 4-12.

CHAPTER 4 USER INTERFACE CONCEPTS 105

Listing 4-12. Default Perspective for the File System Navigator

The adds a stand-alone view with the given ID to this
page layout. A stand-alone view cannot be docked together with other views.

The first argument () is the ID of the view contributed as a workbench’s
view extension point.

Figure 4-3 shows the final result of this exercise, as well as the example earlier in this
chapter. You now have two resource navigators: one built by extending the Common Naviga-
tor and the second built by contributing to it. As you saw, extending the Common Navigator is
quite a bit of work, but it gives you more control over the content of the navigator.

Figure 4-3. The file system navigator and Common Navigator views side by side

CHAPTER 4 USER INTERFACE CONCEPTS106

Summary
This chapter covered the Eclipse CNF and Jobs API. Here are the important points to keep
in mind:

-
tent, filters, sorting, and much more.

extension points). It also has DnD support and built-in resources support.

and menu items.

a CNF viewer.

-
ground, an API for attaching rules to indicate when they can run and whether they
can run simultaneously, and a generic locking facility for detecting and responding to
 deadlocks.

, , , and (not yet scheduled).

 method can be used to report progress on the job.

progress dialog that provides a button for moving the dialog into the background. A
system job is like any other job, except it has no UI support; it will not set up a progress
view or show any other UI elements.

needs access to the shared object, it acquires a lock for that object. When it is finished
manipulating the object, it releases the lock.

C H A P T E R 5

Forms API and Presentation
Framework

The Eclipse Forms API is an optional RCP feature that allows you to create portable, web-style
UIs. Since its inception, the Forms API’s popularity has continued to grow, due to its sophis-
ticated functionality and small footprint. This API gives developers a powerful tool for spicing
up their rich client interfaces—without using an embedded browser. Forms allow you to retain
full control of the widgets in the UI and to maintain portability across platforms.

This chapter describes how to use the Forms API. In the exercise at the end of the chapter,
you’ll modify the standard Eclipse Mail template to use forms.

Forms API Basics
The Forms API provides custom widgets, layouts, and support classes to achieve a web look
inside your desktop applications, so you don’t need to resort to an embedded browser. It is
portable across all the platforms where SWT is supported. In fact, as you’ll learn in this chap-
ter, it expands the possibilities of the UI well beyond traditional SWT widgets.

The goal of the Eclipse Forms API is to make web-style UIs possible by providing the
 following:

 object that can be included in content areas such as views and editors.

) that serves as a factory for SWT controls and manages colors as
well as other aspects of the form

, and

composite, section, and form text

this chapter)

107

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK108

Listing 5-1. Sample View Class Showing Basic Forms API Integration

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK 109

The first step is to create a within the view’s callback.
The will accept either a object) to be applied
to forms and form widgets. The toolkit can then be used as a factory to create the form and the
child widgets.

 is the first control created. It provides scrolling for the instance
of the class. The control is created in a parent composite that will allow it to
use all the available area.

Common Controls
Child widgets of the form should typically be created using so they match the
appearance and behavior of the form and each other. Among the most basic controls are label,
text box, and button.

A form label is created as follows:

A form text box is created as follows:

By default, borders will not be painted for a text box in a form if the global border style is
. Thus, you should call the method to

You can create check boxes and push buttons as follows:

Listing 5-2. Forms API Common Controls Along with Event Listeners

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK110

Tip To have the background of controls match the background of the form, use
 instead of

.

Figure 5-1. Common form controls

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK 111

Form Look and Feel
You can easily customize the look and feel of the form, including the form colors, font, icons,

Figure 5-2. Customized form toolbar, drop-down menu, and gradient colors

Form Toolbar
Use the method from the class to access the toolbar manager to
manage tool items in the form’s title area. The toolbar manager uses the method to add
an action as a contribution item to this manager. In turn, the action describes the text, tool tip,

-

Listing 5-3. Creating a Forms Toolbar

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK112

Tip Don’t forget to bring the toolbar manager’s underlying widgets up-to-date with any changes by calling
the method. This will refresh the toolbar when the state of a
contribution item (such as a button) changes.

Form Drop-Down Menu
Contributing to the drop-down menu is similar to contributing to the toolbar. The main differ-
ence is that you must use the method instead of

 to return the menu manager used to access the form’s title

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK 113

Listing 5-4. Creating a Form Drop-Down Menu

Form Messages
Form messages are presented with text between the title and the toolbar in the form head-

).

Listing 5-5. Displaying a Form Message

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK114

Messages are rendered as static text by default. However, if at least one hyperlink listener
is present, messages will be rendered as hyperlinks.

Form Gradient Colors
A form displays a horizontal background gradient whose background and font colors can be
manipulated with the class by using the following constants:

: Key for the form header gradient start color.

: Key for the form header gradient end color.

: Key for the form title foreground color.

Listing 5-6. Defining Custom Gradient Colors for a Form

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK 115

The method
as the title foreground color, using custom RGB. is called when creating the
form toolkit with . An SWT is
required for this customization.

Custom Layouts
Two new custom layouts are provided by the Forms API: and .

The layout manager attempts to position controls in the composite using

specification. The main difference from
parses the HTML layout twice), and the width and height are not calculated in the same pass.
For example, to apply a two-column HTML table layout to a scrollable form, use the following:

The layout manager arranges children of the parent in vertical columns. All
the columns are identically sized, and children are stretched horizontally to fill the column
width. The goal is to give the layout a range of column numbers to allow it to handle various
parent widths. This is useful in complex forms where the number of columns changes depend-
ing on the width of the form. The number of columns drops when the width decreases and
grows when allowed by the parent width.

Complex Controls
Complex controls allow your application to use a web-style look without requiring an
 embedded and bulky web browser. These controls include text hyperlinks, image hyperlinks,
expandable composites, sections, and form text, as

.

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK116

Figure 5-3. Complex form controls: hyperlink, expandable composite, section, and form text

Hyperlinks
A form hyperlink mirrors its HTML counterpart. Behind the scenes, it simply draws text in
the client area. This text can be wrapped and underlined, just like an HTML hyperlink. Each
hyperlink has text, a tool tip, and an activation listener that fires when the link is clicked.

Listing 5-7. Creating a Hyperlink Widget and Related Click Listener

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK 117

You can use the method to listen for click
events from the hyperlink. The class provides
the default implementations for the methods described by the interface.

Tip When the hyperlink has a focus rectangle painted around it, it means the widget has the keyboard
focus. Therefore, simply pressing the Enter key will activate it.

Expandable Composite
The expandable composite control is capable of expanding or collapsing a single child label
composite. The composite renders a title that also acts as a hyperlink. The left and right arrow
keys can be used to control the expansion state. If several expandable composites are created
in the same parent, the up and down arrow keys can be used to traverse between them. The
expandable text accepts mnemonics, and mnemonic activation will toggle the expansion state.

Listing 5-8. Creating an Expandable Composite

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK118

 and), in which the plus

expands or collapses the widget. Use to override
the method , and call refreshes the
body layout and the scrollbars of the form).

Sections
A section is a variation of the expandable composite with an optional description below the
title. The section is often used as a basic building block in forms because it provides for logical
grouping of information.

The style and colors of the section are supplied by the toolkit, and initialized based on the
system colors. For this reason, it is recommended that you create the section with the toolkit,

and set its title, description, style, and the column span of the layout.

Listing 5-9. Creating an Expandable Section Using an HTMLTableLayout

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK 119

Tip Since Eclipse 3.1, it is possible to use a control for the section’s description. A typical way to do this
is to use an instance of to provide for hyperlinks and images in the description area. If a control is
used for the description, the style should not be set.

The section client uses a two-column table wrap layout. The inner table then grabs the avail-

Listing 5-10. Creating an Expandable Section with an Inner HTML-Style Table

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK120

returned viewer can then set content and label providers, as well as the input, as shown in

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK 121

Listing 5-11. Adding a Content and Label Provider to an Expandable Section

The style
 displays a section with a description, title bar, and expanded state.

contains a custom)
) to provide labels

and images. These two classes should implement the interface
 and must be defined by the user.

Form Text Control
As shown

 converted into hyperlinks on the fly

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK122

Figure 5-4. Form text control

 to be used. The and tags can be children of the element, with the attri-
 and

 tags.

Table 5-1. Tags That Can Be Children of the <form> Element

Tag Description Attributes

For paragraphs : If set to
is).

For list items : Same as .

: One of , or .

 : For text, it is the value of the text that is rendered as a
 bullet. For an image, it is the of the image to be rendered as

 style.

Table 5-2. Tags That Can Appear As Children of <p> and Elements

Tag Description Attributes

For images : A key to the image set using the method.
Required.

For hyperlinks : A key that will be provided to the hyperlink listeners via the
 object. Required.

: When set to , the hyperlink will not be wrapped.
Default is . Optional.

For bold font

For line breaks

For enclosed text,
with color and
font specified
in the element
 attributes

: A key to the object set by the method to
set the color. Optional.

: A key to the object set by the method to set
the font. Optional.

: When set to , blocks wrapping. The default is .
Optional.

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK 123

Tag Description Attributes

For a control that
is a child of the

: A key to the object set using the
method. Required.

: When set to , makes the control fill the entire width
of the text. The default is . Optional.

 and : Force the dimensions of the control.
Optional.

: To set the vertical position of the control. Optional.

Tip Since Eclipse 3.1, it is possible to select text. Text selection can be programmatically accessed and
also copied to the clipboard. Nontextual objects (images, controls, and so on.) in the selection are ignored.

 element with a hyperlink
embedded in the first paragraph, and a bulleted item list with text and image elements. The form
text also defines a hyperlink listener, where the attribute can be extracted from the event.

Listing 5-12. Adding a FormText Control to a Form

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK124

Note The form text control was designed to render children controls defined with XML tags. However, it
is not responsible for creating or disposing of those controls; it only places them relative to the surrounding
text. Moreover, none of the elements can be nested. For example, you cannot have a inside a or
two nested lists.

Form text is not meant to be an HTML browser. Compared with a web browser, it has the
following limitations:

-
ported, but not italic. Attributes for vertical alignment of text with respect to images are
missing. List support is poor.

 inside a
of images and text inside the hyperlink.

If you need complex formatting capabilities, use the SWT Browser widget instead. If you
need editing capabilities with font and color styles of text, use the SWT StyledText widget. If
you need to wrap text, use the SWT Label widget with an style.

Complex Forms
The Forms API provides advanced editors customized to manipulate content that is hard to

editors.

Managed Forms
A managed form is a form wrapper that adds life-cycle management and notification to its mem-
bers. The life-cycle management includes save, commit, focus, selection, dirty state, and others.

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK 125

Tip The / relationship is similar to the one between a and in JFace.

Master/Details Form

 1. Create the master part to drive the details.

 2. Contribute actions to the form toolbar. For example, you might add actions to change

 3. Register details pages for each distinct input from the master. Details pages can con-
tain any number of controls.

Multipage Editors
The goal of
documents. Multipage editors are arguably the most powerful feature of the Forms API, and
they are used intensively by the plug-in manifest editor itself.

Figure 5-5. Multipage plug-in manifest editor

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK126

To build a multipage editor, your class should extend and add pages by over-
riding the method. In turn, each page should implement and override

Listing 5-13. Skeleton for a Multipage Form Editor

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK 127

Hands-on Exercise: A Web Look for the Mail
 Template
The Mail Template is the built-in application bundled with RCP. It simulates a basic mail
client with navigation and details views. The goal of this exercise is to give a web look to the
standard Mail template
You’ll do this using the Forms API. The changes are simple, yet they have a powerful effect.
Here are the modifications you’ll make:

Figure 5-6. RCP Mail template

To begin, use the Plug-in Project wizard to create a mail RCP template. Here is how:

 1. From the main menu, click File Other Plug-in Development Plug-in

 2.

 3.

 4.

 5. In the Mail Template details page, set the product name and click Finish.

 6. Create a product configuration for the application. Right-click the project folder and
 Other Plug-in Development

 7.
existing product. Click Finish.

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK128

 8. Test the product. From the product editor, click synchronize to publish and launch an
Eclipse application to run it.

 9. Use this template to customize the application for this exercise.

Customizing the Workbench Window
The first

), which configures the main window. This is done by overloading the
and methods.

The method is called before the window’s controls have been cre-
ated. Typical clients will use the window configurer to tweak the workbench window in
an application-specific way. For this exercise, set up the initial size and use the
methods on to hide the cool bar, status line, and menu bars,
as follows:

The method creates the contents of the window and is used to
define custom window contents and layout.

-
posite for the header and two custom images to draw a header and background fill.

Listing 5-14. Workbench Window Advisor Class for the Forms Mail Template

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK 129

The most important method is , which is where the elements and
layout are defined.

Customizing the Window Contents
The default implementation of adds a menu bar, cool bar, status line,

the window contents for this example.

Listing 5-15. Adding Window Contents to the Mail Template

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK130

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK 131

-
) to configure the left, top, right, and bottom edges.

It then creates a two-column header composite to hold a toolbar and header image. This

Figure 5-7. Header composite with two-column grid layout displaying a toolbar on the left and
an image on the right

On the left of the header, a toolbar and associated manager are created with two actions:

Figure 5-8. Header composite with background fill applied

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK132

On the right, a main image banner is constructed. A very important step before layout is
, which creates the page composite, in which the win-

dow’s pages and their views and editors appear.
The final step in window customization is to lay out the children by using

to configure the left, top, right, and bottom edges of the header and page composites, as shown

Listing 5-16. Configuring the Edges of the Main Window for the Mail Template

 can take two arguments: a numerator, which is the percentage of the

of the window. The content page is laid out below the header by attaching the top side of the
page to the bottom side of the header:

Here,
of the window size.

Modifying the Navigation View
The navigation view contains a sample navigation tree with e-mail addresses. This setup
requires the following simple changes to the method:

 layout for the form’s body to lay out the navigation tree using
a one-column table

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK 133

with a call to

Listing 5-17. Navigation View for the Mail Template

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK134

Modifying the Mail View
The final step is converting the mail view into a form. This view displays a header with a sub-
ject, sender e-mail address, and date labels. It also has a text control with the actual e-mail
message. This requires the following additions:

Also, the layout needs to be changed from a to a , and the wid-

Listing 5-18. Contents View for the Mail Template

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK 135

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK136

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK 137

The view’s method creates a form using a one-column
 , with a subject, sender, date, and sample message text. It also calls

form icons are created with the following method:

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK138

This is a static method in the plug-in activator class returning an image descriptor for
a file within the specified plug-in. simply calls the parent

, where is the
unique ID of the mail plug-in.

The form has a toolbar for the custom actions, and all messages will be displayed as form
messages.

 standard template,
shown earlier

Figure 5-9. A web look for the RCP Mail template, created with the Forms API

Summary
This chapter covered the Eclipse Forms API. The following are the important points to keep
in mind:

an embedded browser.

web look.

controls.

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK 139

 object can be included in content areas such as views and editors.

 and .

 positions controls in the composite using a two-pass HTML table.

 arranges children of the parent in vertical columns. All the columns
are identical in size, and children are stretched horizontally to fill the column
width. is useful for complex forms where the number of columns
changes depending on the width of the form.

 editors.

 method:

 to paint flat borders for widgets cre-
ated by the toolkit. Borders will not be painted if the global border style is .

.

.

.

.

menu, fonts, and gradient colors.

. Add
actions to the form drop-down menu with .

the heading. Set the form message with an indication of the message type with

. Messages can be rendered as static text or
hyperlinks.

and form text.

CHAPTER 5 FORMS API AND PRESENTATION FRAMEWORK140

label composite. The composite renders a title that also acts as a hyperlink, and the left
and right arrow keys can be used to control the expansion state. Create an expandable
composite with a tree node style with the following:

below the title. Sections provide for logical grouping of information and are often used
as basic building blocks in forms.

the fly from text that starts with

 to
be used.

 can be for paragraphs and for lists.

 and can be for images, for hyperlinks, for bold,
 for line breaks, for enclosed text, and for custom controls.

supports only a subset of HTML tags, and elements cannot be nested. If you need com-
plex formatting capabilities, use the SWT Browser widget instead of a form text control.

C H A P T E R 6

Help Support

Eclipse provides a powerful help system that can be used to add documentation to your RCP
applications quickly and with minimal effort. The help system has the following characteristics:

1

are used

document format conversion

support to your RCP applications.

 of this chapter.

Configuring a Product to Use the Help System
Configuring your RCP product to use the help system is a

 steps in detail.

.

141

CHAPTER 6 HELP SUPPORT142

Adding the Dependency Plug-ins
The help
editor .

Figure 6-1. Adding the required help system plug-in through the product editor Configuration tab

fail at startup.

Updating the Menu Bar
The product
shows the changes required to the class

 of the .

CHAPTER 6 HELP SUPPORT 143

Listing 6-1. ActionBarAdvisor with Factory Help Menus

CHAPTER 6 HELP SUPPORT144

The class gives access to standard actions pro
vided by the workbench. The help system has three factory actions:

: Opens the help contents in a separate window.

 window.

: Opens the dynamic help within a view. Dynamic help can change auto

 menu actions and help view are shown

Figure 6-2. RCP Mail template showing the standard help actions and help view

Adding Help Content

 already provides a startup template to build a basic table of con

 1. New Project

 2.

 3. On the Templates page

CHAPTER 6 HELP SUPPORT 145

Figure 6-3. Creating a help plug-in

Figure 6-4. Choosing the template for a sample help plug-in

CHAPTER 6 HELP SUPPORT146

 4.

 in the folder.

Figure 6-5. Typical help content layout

Tip As a convenience, to reduce file size, the documentation files can be packed in a ZIP file called
 in the root folder of the plug-in. This is useful if the plug-in is not packed when deployed.

Help System Extension Points

sion points:

define one or more TOC files.

contains a list of keywords and related topics of the help content.

Listing 6-2. Help System Extension Points (in plugin.xml)

CHAPTER 6 HELP SUPPORT 147

The and attributes. The attribute

The attribute specifies whether the TOC file is a primary TOC and meant to be the

Other attributes include and . The defines a relative

 would be the category for all of the sections in this chapter.

TOC File
 consists of a root element with a required attribute. The attribute

The element is the basic element of a TOC file. Topics can be nested within
other topics. The most important attributes of a element are

 and
ing other TOC files to this navigation.

Listing 6-3. Two XML TOC files (toc.xml and toc1.xml) Linked with an Anchor

CHAPTER 6 HELP SUPPORT148

The element
 element TOC file within

its parent:

Index File

Listing 6-4. An Index File (index.xml)

CHAPTER 6 HELP SUPPORT 149

The element provides reference to help content related to the keyword using the
 attribute

The attribute of a topic is used to name the link when multiple topics are contained

implements a powerful search interface.

Figure 6-6. Help view showing index contents

CHAPTER 6 HELP SUPPORT150

Internationalization
The help

 or
and
lations must be placed under

 should be
placed here as well.

Tip The locale search priority order goes as follows (from highest): ,
, and then the root directory of the plug-in.

Adding Context Help Support
 specific widget is

Figure 6-7. Mail template showing context-sensitive help

.

CHAPTER 6 HELP SUPPORT 151

steps are required:

 1.
control .

 2.

 3. file

 of these steps.

Product Plug-in Modifications
The first step

 earlier in this chapter.

Listing 6-5. Adding Context Help Support to a View

identifier by calling

 in memory.

CHAPTER 6 HELP SUPPORT152

Help Plug-in Modifications

point to the file.

Creating the Context Help File
 file to New

Figure 6-8. Choosing the Context Help wizard

 file.

Listing 6-6. Structure of a Help Context File (contexts.xml)

The to the help system to identify
the currently

CHAPTER 6 HELP SUPPORT 153

Figure 6-9. Help context file editor

Caution The IDs in the manifest file must not contain the period character, since the IDs are uniquely
identified by .

Adding the Help Contexts Extension Point
The final step

Listing 6-7. The Help Contexts Extension Point (in plugin.xml)

The attribute
 attribute

CHAPTER 6 HELP SUPPORT154

 product and
help

Tip The article “Adding Help Support to a Rich Client Platform (RCP) Application,” available online at
,

includes a tutorial that demonstrates adding help support to an RCP application.

Customizing the Help System

Figure 6-10. Customized help for the RCP Mail template

The help preferences are specified in the file within the product

 1.

 2.

CHAPTER 6 HELP SUPPORT 155

Listing 6-8. Adding a Property with the Plug-in Customization File Name (in plugin.xml)

Listing 6-9. Adding Preferences to Customize the Help System (in plugin_customization.ini)

The property in allows you to control the order in
which contributed parts of the TOC are displayed for your product or to hide parts of the TOC

 file
TOC display order to . The file

Listing 6-10. Setting the TOC Display Order (in helpData.xml)

CHAPTER 6 HELP SUPPORT156

The following are other interesting properties that you can set in the
file

: Defines the page to show in the content area when
opening help. The format is .

: Defines the location of the banner page to display

.

: Defines the height of the banner frame.

Now that we have reviewed the basics of providing help information for an RCP applica

Hands-on Exercise: Create an Infocenter from
Custom Documentation
The goal infocenter

The following are the general steps to follow:

 1.

 2.

from the command line.

 3.

 4.

 5.

 6. look and feel to fit your needs.

Splitting the Documentation into Topic HTML/XHTML Files
Depending on

CHAPTER 6 HELP SUPPORT 157

Tip In the real world, documentation writers would work with custom data formats such as DITA, a
 popular XML-based architecture for authoring, producing, and delivering technical information.

USING CUSTOM HELP AUTHORING TOOLS

You can use third-party tools to generate Eclipse help from your source material (FrameMaker, Microsoft
Word, and so on). One such tool is DITA Open Toolkit (). DITA
provides content divided into small, self-contained topics that can be reused in different deliverables. Fur-
thermore, the extensibility of DITA permits organizations to define specific information structures and still use
standard tools to work with them. All these features enable DITA to support content reuse and reduce infor-
mation redundancy.

An example of a commercial authoring tool is Mif2Go (),
which can produce Eclipse help from FrameMaker files.

For example, consider the following Unix script to generate a help plug-in from a set of DITA source files:

Creating the Help Contents Plug-in
The Content

these settings.

CHAPTER 6 HELP SUPPORT158

Figure 6-11. Creating the Content plug-in

Creating the Infocenter Plug-in
 will be an RCP application used to host the help contents and handle

Tip The plug-in should be an RCP application so the PDE will create product and application extension
points (required by the product configuration file), even though the Infocenter plug-in itself will not have a UI.

CHAPTER 6 HELP SUPPORT 159

Figure 6-12. Creating the Infocenter plug-in

product configuration file.

Adding a Product Configuration File to the Infocenter Plug-in
The product

 folder

settings.

CHAPTER 6 HELP SUPPORT160

Figure 6-13. Creating a product configuration for the Infocenter plug-in

ceed to add a TOC to the

Adding a TOC to the Help Contents Plug-in

 1. Other.

 2.

 3.

 4.

nested within other topics.

CHAPTER 6 HELP SUPPORT 161

Figure 6-14. Creating a TOC XML file using the wizard

Figure 6-15. TOC file displayed within the PDE editor

CHAPTER 6 HELP SUPPORT162

 5.
 with a child element

 The TOC file should be set as primary.

 6.
and the directories. This is required in order to pack the table and help
content files for deployment.

Caution If you fail to add and in the Binary Build section of the plug-in mani-
fest, the TOC will not display when the Infocenter plug-in is deployed.

Adding a Help Menu to the Infocenter Plug-in

 class

Listing 6-11. ActionBarAdvisor with Help Menu Options

CHAPTER 6 HELP SUPPORT 163

. They are

 the following:

Adding Help System Dependencies to the Product Configuration
The final

CHAPTER 6 HELP SUPPORT164

Figure 6-16. Infocenter product configuration showing plug-in dependencies

the required

Caution Missing dependencies can be a major headache for developers. This is actually the most
 common error in RCP application development.

Testing the Infocenter Plug-in
To test the

and display the TOCs.

CHAPTER 6 HELP SUPPORT 165

.

CHAPTER 6 HELP SUPPORT166

 for the project
 file and make sure it points to . Keep in mind that the TOC must be
set to primary.

Deploying the Infocenter Plug-in
Deploying the

 1.

 2.

 3.

 4.

 5.
 features folders.

mand line and accessed from a web browser.

Tip If the TOC fails to display from the Help menu, that is probably because you forgot to add the help
content files in the Build tab of the plug-in manifest editor for .

Starting the Infocenter from the Command Line

script runs the help system class

CHAPTER 6 HELP SUPPORT 167

Listing 6-11. Script to Start Infocenter from the Command Line

CHAPTER 6 HELP SUPPORT168

 browser to .

Customizing the Infocenter

system by adding a file with custom help system properties.

 1.
.

 2.
.

 3. Property.

 4. and the value to
.

CHAPTER 6 HELP SUPPORT 169

 5. . The following prop

and set the main contents page to the chapter overview.

Note Be sure to add to the Binary Build list of the plug-in manifest editor’s
Build tab. Otherwise, the customizations won’t take effect when you deploy the Infocenter plug-in.

 6.
 browser to

Figure 6-17. Infocenter displayed within a web browser

CHAPTER 6 HELP SUPPORT170

Summary

the important points to keep in mind:

support.

underneath.

.

for the help system.

 for dynamic help within a view.

point where other TOCs can embed their contents.

tains a list of keywords and related topics of the content.

when a widget is active.

CHAPTER 6 HELP SUPPORT 171

 to .

fying custom defaults for a number of help preferences.

within the product.

.

 property allows you to control the order in which contributed parts
of the TOC are displayed for your product or to hide parts of the TOC.

C H A P T E R 7

2D Graphics with GEF and Zest

The Eclipse Graphical Editing Framework (GEF) is a powerful 2D graphics framework for
building rich GUIs. GEF provides a layer of abstraction for native 2D graphics on the Eclipse
Platform. Most of the operations provided by GEF can be extended by developers, thus reduc-
ing development time and maximizing reusability.

The 2D framework is made of two components (plug-ins): Draw2d, which provides a
layout and rendering toolkit for displaying 2D graphics, and GEF, which is an intuitive MVC
framework built on top of Draw2d. The MVC architecture separates the UI from the underly-
ing structure (model), so that implementation changes in one part of the application do not
require changes to another part. This means you can more easily prototype your work. For
example, you might create a prototype application, change the application in response to
user feedback, and then implement production-level programs on the same or other operat-
ing systems. Outside the work you do on the programs themselves, your only adjustments are
to the presentation layer, leaving the model layer intact. Along with ease of modification and
maintenance (due to the cleaner separation of tasks), the MVC architecture better supports
scalability for bigger applications.

This chapter covers Draw2d and GEF, as well as the Zest visualization toolkit for Eclipse,
which is designed to make graph-based programming easy. In the exercise at the end of the
chapter, you will build an advanced graph editor using GEF and Zest.

Draw2d—The Big Picture
Draw2d (also known as) is a neat component that allows developers to
create all kinds of 2D graphs. These graphs are usually accompanied by a tools palette. Behind
the scenes, Draw2d provides the core interfaces for this purpose.

A fundamental concept in Draw2d is the figure. A figure is a low-footprint Java object (an
object that does not use any operating system resources). Here are some facts about figures:

surface. A connection always has a router (the connection line), and at least two points
on the connection: the source and target endpoints. The endpoints are anchored to a
specific figure.

173

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST174

Consider Figure 7-1, which shows a shapes graph from the GEF/Draw2d
 plug-in, available from Eclipse. On the left side is a palette that offers two

shapes (Ellipse and Rectangle), which can be dragged to the canvas on the right and manipu-
lated as desired. We’ll take a closer look at the plug-in in the
“Exploring the GEF Shapes Example” section, later in this chapter.

Figure 7-1. Shapes graph from the org.eclipse.gef.examples plug-in

Figures can be composed to create complex graphics. They are encapsulated by the
 and must obey the following rules:

Use the SWT Graphics Context (GC): Figures must be painted using the GC for extended
functionality and to optimize performance. This makes perfect sense, since SWT is the
foundation that provides access to the native hardware. The GC encapsulates all of the
drawing API, including how to draw lines shapes, text, images, and fill shapes.

Follow the layout manager’s layout process: Figures must follow a layout process that is
delegated to a layout manager. The layout is a top-down process done in two steps. In
the first step, a collection of figures (or images) is invalidated. In the second step, the
branches of figures that are invalid are validated. This process is performed by the layout
manager, which will call a method for each figure. The figure then will mark
itself as valid and perform its layout. After this, the figure will validate its children.

Use the Draw2d coordinate system: Figures must obey a coordinate system used for adjust-
ments required when painting children, such as when panning or zooming a figure.
Draw2d defines two coordinate systems:

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST 175

absolute coordinate system, all figures paint in the same coordinates. It is
mostly used when determining the bounds of a parent based on the bounds of the
children.

relative coordinate system, the bounds of children are relative to the client area
of their parent. When a figure with relative coordinates is moved, the children come
along automatically. It is mostly used when translating or moving a figure, or when
only the figure’s bounds must be updated, and the children should move as well.

The painting process of a figure can be overridden by the developer using the following
methods of the interface:

: This starts the painting process by setting a set of graphics properties, includ-
ing the font, background, and foreground color. These properties are inherited by the
children.

: Using this method, the figure paints itself. This is an optional method,
as figures are not required to paint themselves. For example, you might use it to draw a
bounding rectangle filled with a background color.

: This paints the client area where the figure appears. This method
applies changes, such as coordinate system modifications, to the children’s graphics.
This method also clips the graphics region where children will appear.

 : This paints the children. This method does not override the inherited
graphics settings from the parent.

: This paints decorations that should appear on top of the children,
including the border if set on the figure.

To check for figure collisions, Draw2d performs hit testing. Hit testing is used to figure out
when figures overlap each other and perform appropriate actions. The interface pro-
vides the following methods for hit testing:

: Finds the topmost figure at coordinates.

: Finds the topmost figure at .

: Finds the topmost figure
for the given coordinates that is not in the exclusion set or contained by a figure in the
exclusion set. This is used for ignoring a figure being dragged, or for ignoring transpar-
ent layers or figures that are not involved in an interaction.

: All of the previous methods call this
method. is a helper that is used to quickly prune branches that should not
be searched, and to accept the final candidate figure.

Using GEF
GEF (refers to both Draw2d and GEF) is the MVC wrapper around Draw2d that ensures a clean
separation of the presentation from the model layer. While Draw2d focuses on efficient paint-
ing and layout of figures, GEF adds editing capabilities on top. It provides for the display of any

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST176

model graphically using Draw2d figures, as well as for interactions with the mouse, keyboard,
and workbench. A GEF-enabled widget consists of the following components:1

Model: The model is any data that is persisted and has some sort of notification mecha-
nism. Commands are commonly used to modify the model in a way that can be undone
and redone by the user. As a rule of thumb, commands should work only on the model
itself.

View: The view consists of elements visible to the user, including figures and tree items.

Controller: The controller is responsible for maintaining the view, and for interpreting UI
events and turning them into operations on the model. The controller is also called an
EditPart. The EditPart is responsible for editing using EditPolicies, which handle much of
the editing task.

Viewer: The viewer, also called the EditPartViewer, is where EditParts display their view.
GEF provides two types of viewers: a graphical viewer, which hosts figures, and a tree
viewer, which displays native tree items.

Displaying Figures
Displaying a graphical view of figures involves creating a series of EditParts to piece the model
and figures together. EditParts associate their view and model, but they also form their own
structure. An EditPart maintains children. Usually, this corresponds to a similar containment
found in the model.

A graphical view consists of one or more of the following EditParts:

Root EditPart: The root is not part of the model. Its purpose is to set up the viewer and
provide a uniform context for all of the application’s real EditParts.

Content EditPart: Content refers to the base model object that seeds the viewer with the
graphical diagram being displayed. The viewer’s EditPart factory is responsible for tak-
ing the contents and constructing the appropriate EditPart, which is then set on the root
EditPart. At that point, the content EditPart will construct its children, reusing the viewer’s
factory, which in turn creates their children and/or connections, and so on. The process
repeats until all of the EditParts and their views have been created.

Child EditPart: The children display information to the user, such as a figure or a com-
position of multiple figures. For example, a child may be a that creates
instances for or figures.

Connection EditPart: A connection simply connects any two EditParts in a diagram.

Exploring the GEF Shapes Example
Earlier, you saw a shapes graph from the GEF/Draw2d
plug-in (Figure 7-1). Now, let’s look at this plug-in in more detail. (To follow along with the

1. From GEF Programmer’s Guide, “Overview,” at
.

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST 177

discussion, download this plug-in from the Eclipse repository, following the instructions in
the “Downloading GEF Samples from the Eclipse Repository” section of the hands-on exercise
later in this chapter.)

The plug-in has the following major components:

Shapes EditPart factory: The role of this factory is to construct the appropriate EditPart
based on the model element.

Shape EditPart: This EditPart encapsulates common behavior for all shape EditParts.

Connection EditPart: This EditPart encapsulates connections between two shapes.

EditPolicies: These define the types of operations that can be performed on shapes, such
as copy, paste, and delete.

Palette factory: This factory creates an instance of the palette used by the application. It
contains tools to draw the shapes on the canvas.

Figures 7-2 and 7-3 show a UML class diagram depicting partial relationships between
the major shape EditParts of the sample. The model (or data of the sample) consists of two
shape classes: and . These classes, in turn, inherit from the
abstract class , which provides a prototype for the model.

Figure 7-2. Partial class diagram for the Shapes package of the org.eclipse.gef.examples plug-in

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST178

Figure 7-3. Partial class diagram for the EditParts package of the org.eclipse.gef.examples plug-in

The class is in charge of creating new instances of or
figures, depending on the type of model (or). A factory
class, , is used to map model elements (a diagram, shape, or connec-
tion) to their respective EditParts (, , or).

 and have the corresponding and
 , which are used by in the outline view of the shapes editor to dis-
play information about the shape being created (such as a label and an icon).

Everything is finally put together by a wizard and shapes editor extension points (defined
in), as shown in the next fragment.

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST 179

The first extension point defines the editor named GEF Shapes Example. The
attribute specifies that files with the extension will be automatically opened with
this editor. Its implementation is defined by the class

, and it also contributes actions to a toolbar (defined by). The
 attribute uniquely identifies the editor.

The extension point is used to create a new shapes diagram from the File New
main menu of the workbench or the context menu of the project, navigator, or package explorer
views (which are built-in workbench views). The wizard is grouped by the category
and implemented by the class . The element indicates the
wizard is capable of selecting workbench resources such as files or directories. The attribute
uniquely identifies this wizard.

The next sections explain some of the major components of this shapes editor, starting
with the Shapes EditPart factory.

Shapes EditPart Factory
The Shapes EditPart factory recognizes the contents model and constructs its EditPart. This
factory doesn’t need to paint, but you still need to choose the layout manager and the figure
type based on the root EditPart. Listing 7-1 shows an example of an EditPart factory for a
Shapes model.

Listing 7-1. EditPart Factory for a Shapes Model (from org.eclipse.gef.examples)

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST180

The constructs the appropriate EditPart— , , or
—based on the root EditPart object type.

Shape EditParts
As noted, the children’s role is to display some information to the user. They may use one of
the provided figures, a custom figure, or a composition of multiple figures.

When the viewer is populated, the method is called for each EditPart
to show the model’s properties in the view. EditParts must override this method based on the
model and figure with which they work. Listing 7-2 shows an example of a class to create rect-
angular or elliptical EditParts for a Shapes model factory.

Listing 7-2. Base Class to Create Rectangular or Elliptical Shape EditParts for the Shapes Model
Factory (from org.eclipse.gef.examples)

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST 181

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST182

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST 183

 is the parent class used for instances (or
 in this example). Figure 7-4 shows sample elliptical and rectangular
shapes that inherit from .

Figure 7-4. Custom edit view showing circle and rectangle EditParts

 implements the interface, so it can be notified of
property changes in the corresponding model element. Upon activation, the model element is
attached as a property change. The method is overridden to notify the par-
ent container of the changed position and location. Otherwise, the used by
the parent container will not know the bounds of this figure and will not draw it correctly.

Connection EditParts
Connections are special EditParts that connect any two EditParts in a diagram. The connec-
tions are created and managed in a shared way by the source and target nodes. Each node in
the diagram must override and to
return the model object representing the connection, as shown in Listing 7-3. GEF then checks
to see if the connection EditPart has already been created (by the other node at the other end),
and if not, it asks the factory to create the connection EditPart. The source node is responsible
for activating and adding the connection figure to the diagram.

Listing 7-3. Connection EditPart for the Shapes Model (from org.eclipse.gef.examples)

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST184

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST 185

Adding EditPolicies
Editing is the most complex task for an EditPart and involves making changes to the model, as
well as showing graphical feedback during interactions with the view. Editing is done by creat-
ing requests and then calling the various API methods on EditPart based on the interaction.
Editing also involves the manipulation of EditPolicies and commands.

EditParts handle editing through EditPolicies. This allows editing behavior to be reused
across different implementations. Also, behavior can change dynamically, such as when the
layouts or routing methods change. Each EditPolicy is able to focus on a single editing task or
group of related tasks.

Commands are used to encapsulate and combine changes to the application’s model.
Commands are grouped and executed by applications in stacks, which dictate the order in
which commends are executed. Stacks process elements in a last-in/first-out (LIFO) sequence.

Listing 7-4 defines , a command to create a connection
between two shapes. The command supports undo/redo and is designed to be used together
with a .

Listing 7-4. Command to Create Connections Between Shapes

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST186

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST 187

To use the command in Listing 7-4 properly, the following steps are necessary:

 1. Create a subclass of .

 2. Override the method to create a new instance of this
class and put it into the .

 3. Override the method to obtain the command from
the , call to set the target endpoint of the connection,
and return this command instance.

Adding a Palette
GEF provides a selection tool and a palette for your custom figures (EditParts). The selec-
tion tool is the primary tool used in GEF and is often the default for an application. Ironically,
the selection tool doesn’t select EditParts, but rather delegates drag events to a class called
 . All mouse clicks are handled as drags.

The palette is an SWT control that allows the user to select which tool is active. It can also
be a drag source for dragging objects from the palette directly into the diagram. The palette
can be placed anywhere, including inside the editor. GEF provides a workbench view for host-
ing the palette.

Tip The palette provides several display modes, such as icon-only. You can also provide a customizer to
allow the user to modify or create palette content. For more information about this topic, see the GEF Tools
and Palette Guide at

.

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST188

Listing 7-5 creates a GEF palette with a shapes drawer. A drawer is a container for tools
that perform a common function. In this case, we have a drawer for an elliptical and rectangu-
lar shapes, as shown in Figure 7-5.

Listing 7-5. Palette for the Shapes Model

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST 189

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST190

Figure 7-5. Shapes palette

The method creates a new palette (with all palette elements) for your
graphical editor. The class also creates the tools group with solid and dashed connections.

Note Check out the Eclipse GEF Project page at for
more examples and tips on using GEF.

Using Zest
Zest is a visualization toolkit for Eclipse,2 designed to facilitate graph-based programming.
It provides the following benefits:

allows developers to use Zest the same way they use JFace tables, trees, and lists.

2. The Zest visualization toolkit is available online at .

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST 191

-
ers used within existing applications can be leveraged within Zest.

 package that can be used within existing
Java applications (SWT or AWT).

Zest Components
Zest has the following basic components:

: Extends (a canvas that contains figures) and holds the nodes and
connections for the graph.

: Simple node class that has properties such as color, size, location, and a
label. It also has a list of connections and anchors.

: The graph connection model that stores the source and destination
nodes and the properties of this connection (color, line width, and so on).

Listing 7-6 shows an example of using these Zest components to display a hierarchical
tree graph. The result is shown in Figure 7-6.

Listing 7-6. Sample Tree Graph Using Zest

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST192

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST 193

Figure 7-6. Tree graph from Listing 7-6

Zest Layouts
Zest lays out objects using an , which handles common elements in
all layout algorithms. The following are some of the most interesting layouts:

: Arranges graph nodes in a layered vertical tree-like layout (see
Figure 7-6).

: Arranges graph nodes in a column/row-based grid (see
 Figure 7-7).

: Arranges graph nodes in a layered horizontal tree-like
layout.

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST194

Figure 7-7. Graph displaying nodes using a grid layout

: A complex layout that has its own data repository and relation
repository. A user can populate the repository, specify the layout conditions, do the
computation, and query the computed results. Figure 7-8 shows an example.

Figure 7-8. Graph displaying undirected nodes using the Spring layout

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST 195

Note The has no relationship to the Spring Framework.

Using the involves the following steps:

 1. Instantiate a object.

 2. Populate the data repository using .

 3. Populate the relation repository using .

 4. Execute .

 5. Execute .

 6. Query the computed results (node size and node position).

Tip The layout should be chosen based on the requirements of your graph. Some applications may need
to display objects in a grid or tree. Complex layouts like the are useful for visualizing undi-
rected networks.

Hands-on Exercise: Build Your Own Advanced 2D
Graphics Editor
The goal of this exercise is to build an advanced graphics editor using some GEF examples
 provided by Eclipse, plus some brand-new Zest code. The editor will be capable of creating
four types of 2D graphs:

-
tors, and other parts

Each graph type may be saved into a file. The application will also feature a wizard to
 create graphs and a navigator to browse or create projects or graph files. The graph files may
be saved on disk for later use.

This exercise will use the following extension points:

: Defines the plug-in product.

: Defines the main entry point for the plat-
form runtime.

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST196

: Defines a default workbench perspective.

: Defines workbench views (visual components) for the work-
bench.

: Defines the configuration for a project and diagram
common viewer.

: Defines custom wizards for all graph types.

The application will use a project navigator view, which includes a custom pop-up menu
to add projects and open wizards.

Additionally, the example will use the following plug-ins:

: GEF example plug-in for creating flow diagrams.

: GEF example plug-in for creating logic diagrams.

: GEF example plug-in for creating shape (ellipse and
rectangle) diagrams.

: Custom plug-in to create a tree or icon graph.

Creating the RCP Product
The first task is to create an RCP product to host the GEF and Zest plug-ins.

 1. From the Eclipse IDE main menu, select File New Project Plug-in Project. Name
the new plug-in project .

 2. On the Plug-in Content page, make sure the “This plug-in will make contributions to
the UI” option is checked, and the “Would you like to create a rich client application?”
option is set to Yes. Click Next.

 3. On the Templates page, select the Hello RCP template, and then click Next.

 4. Check Add branding, and then click Finish.

 5. Right-click the plug-in project and select New Other.

 6. Select Product Configuration under Plug-in Development. Click Next.

 7. Enter a product file name. Make sure is selected under “Initialize
the file content.” Click Finish.

 8. Test the application from the product editor by clicking Synchronize, then Launch
Eclipse application.

Downloading GEF Samples from the Eclipse Repository
Now you need some plug-ins for your graph editor. The fastest way to get things going is
to download the GEF samples from the Eclipse CVS repository. These examples provide an

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST 197

excellent starting point for understanding GEF’s capabilities and building your own graph-
ics editors.

 1. Open the CVS Repositories view. To do this, select Window Show View Other, type
CVS in the text box, and select CVS Repositories, as shown in Figure 7-9. Then click OK.

Figure 7-9. Accessing the CVS Repositories view from the Eclipse IDE

 2. Add a new repository by right-clicking the view and selecting New Repository
 Location.

 3. For the CVS repository host, enter . For the path, enter .
For the user, enter , as shown in Figure 7-10. Check Save password, and then
click Finish.

 4. Under , check out the projects
, , and .

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST198

Figure 7-10. Using the CVS Repository wizard to access the GEF samples from the Eclipse tools
repository

Adding the Plug-ins to the Product Configuration
The plug-ins must be added to the product by updating the plug-in manifest of the
project.

 1. Open the plug-in manifest editor.

 2. From the Dependencies tab, add the plug-ins ,
, , and

.

 3. Add a Common Navigator extension point to create graph editor projects or open the
graph wizards provided by the plug-ins. Listing 7-7 shows this extension point.

Listing 7-7. Extension Points for the Eclipse Common Navigator View (in plugin.xml)

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST 199

 4. Add and to the Depen-
dencies tab. These are required for the Common Navigator view to display properly.

Creating a Default Perspective
The last thing you need to do before testing the GEF samples is to create a default perspective.
The perspective will show the Common Navigator and the palette views, which are needed
when working with graphs. Listing 7-8 shows this perspective.

Listing 7-8. Default Perspective for the GEF Samples Project

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST200

Testing the Product
Open the product configuration file and click Synchronize, then Launch Eclipse application.
Your RCP Graph Editor window should look similar to Figure 7-1.

To create a graph, right-click in the project navigator and select New Other. You should
see a list of examples defined by the plug-ins, as shown in Figure 7-11. Select a graph type, and
then click Finish.

Figure 7-11. Sample plug-in wizard pages

Building a Zest Plug-in
You are making good progress so far. You have a product with some graph editors, but let’s go
further and build a Zest sample plug-in with some graphs.

Create a new plug-in project with the ID . Make sure the “This
plug-in will make contributions to the UI” is checked and “Would you like to create a rich cli-
ent application?” is set to No.

The plug-in will define two graph-creation wizards and their corresponding views, as
shown in Listing 7-9.

Listing 7-9. Extension Points for the Graph Wizards and Views

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST 201

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST202

Listing 7-9 defines two wizards, Graph with Icons and Tree Graph with Icons, with their
corresponding views, and . Each wizard node points to a graph-
 creation class, which in turn shows the corresponding view, as shown in Listing 7-10.

Listing 7-10. Wizard Class to Create a Tree Graph

Listing 7-10 creates multiple instances of , which in turn displays the graph
in the workbench by making this call:

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST 203

The class , which draws the actual tree graph, is shown in Listing 7-11.

Listing 7-11. View to Display the Tree Graph

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST204

Listing 7-11 starts by setting a fill layout of the parent widget:

Next, a object (to host the actual graph) is created:

The object allows you to set many graph properties, such as the connection style.

Tip To inspect all methods available in the class within the Eclipse IDE, simply place the cursor in
the class and press F3 to open its source code.

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST 205

Now, it is simply a matter of adding nodes to the tree, with a call such as the following:

If the nodes are to be connected, then each connection must be created, as follows:

Note that a graph, a source, and target nodes are required for each connection. Finally, lay
out the graph in a tree mode:

The layout constant indicates that the layout algorithm should
not resize any of the nodes. The class arranges graph nodes in a layered,
vertical tree-like layout. Note that Listing 7-11 uses a filter to separate nodes from connections:

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST206

Once the filter is implemented, interested parties can ask this filter whether a specific
object is filtered, with this callback:

For example, in a visualization tool, only unfiltered objects should be displayed. Before
displaying an object, the display can ask this filter if the object is filtered. In this case, removing
the filter will line up all the nodes vertically in the same line (the default behavior), as opposed
to aligning them in a neat, evenly spaced tree style.

Testing the Final Product
At this point, you should have a graph editor with some neat GEF and Zest functionality. Before
testing the final product, do the following:

 1. Open the Graph Editor product file (). Click the Configuration tab
and check “Include optional dependencies” Click the Add button and enter the
name of the recently created Zest plug-in (). Then click Add
Required Plug-ins. This will ensure all dependencies are included.

 2. Click the Overview tab of the product editor. Click Synchronize to refresh the changes,
and then click Launch an Eclipse application.

Run the product and test the different graph types and wizards. The final application is
shown in Figure 7-12.

Figure 7-12. Final RCP Graph Editor product

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST 207

Summary
This chapter covered creating 2D graphics with Eclipse GEF. Here are the main points:

figures, which are painted using
the SWT GC.

the locations of figures in a drawing.

a figure on the canvas) and is done in exactly the same way as painting.

-
points of a connection are each defined using a . A connection always
has a router that sets at least two points on the connection: the source and target.

Draw2d (usually when translating or zooming graphics). Coordinate systems can be
absolute or relative (local).

absolute coordinate system when determining the bounds of a parent based on the
bounds of the children.

area of their parent. When a figure is moved, the children come along automati-
cally, without any changes to their bounds. Use a relative coordinate system when
translating or moving a figure and the figure’s bounds must be updated.

-
ics (Draw2d). It is application-neutral and provides the foundation for building many
types of applications, such as activity diagrams, GUI builders, class diagram editors,
state machines, and WYSIWYG editors.

-
ture to provide separation of the presentation and logic layers.

-
ard page, and so on. GEF requires the Eclipse RCP and the views plug-in (

), which provides property sheet support.

performs the following functions:

object(s) with which it is associated

CHAPTER 7 2D GRAPHICS WITH GEF AND ZEST208

 and override the following meth-
ods based on each part’s model:

: This method creates the EditPart’s view, or figure. This method
does not reflect the model’s state in the figure. That is done in .

: This method reflects model attributes in the view. Complex
EditParts may further decompose this method into several helper methods.

: This method is called to determine if there are model ele-
ments for which children EditParts should be created.

(content or connection).

of multiple figures.

editing behavior to be reused across different implementations. Commands are used
to encapsulate and combine changes to the application’s model.

-
ming easy.

-
dard JFace viewers. This allows developers to use Zest in the same way that they use
JFace tables, trees, and lists.

, , and .

 extends (a canvas that contains figures) and holds the nodes
and connections for the graph.

 has properties such as color, size, location, and a label. It also has a list of
connections and anchors.

 stores the source and destination nodes and the properties of this
connection such as color, line width, and so on.

, which handles common ele-
ments. The most interesting layouts are (a column/row-based
grid) (a layered vertical tree),
(a layered horizontal tree), and (a complex layout with its own
data repository and relation repository).

C H A P T E R 8

3D Graphics for RCP with
OpenGL

OpenGL is the de facto standard environment for developing portable, interactive 3D
 graphics applications. OpenGL has become one of the most widely used and supported
3D graphics APIs, bringing thousands of applications to a wide variety of computer platforms.

This chapter introduces OpenGL development for Eclipse, without going into much detail
about the intricacies of OpenGL itself. The goal is to give you a taste of the power of OpenGL
targeted to the RCP platform.

We will start with an overview of how RCP interacts with OpenGL. Then we’ll move on to
some scene development—first, a simple 3D scene to render basic shapes, and then a more
complex scene that draws a 3D chart and demonstrates some advanced concepts. Finally, the
exercise at the end of the chapter shows how easy it is to build a powerful 3D Earth navigator
with Eclipse and OpenGL.

OpenGL and SWT
Before we dig into the 3D scenes, you should understand how RCP interacts with OpenGL.
This interaction is done through SWT with two fundamental APIs:

A device-independent package: The package provides platform-
independent OpenGL support with two basic classes: and . It also provides
the integration between SWT applications and OpenGL graphics.

An OpenGL binding: This is the layer that implements the OpenGL specification and inter-
acts with the machine hardware. The binding uses the Java Native Interface (JNI) to perform
native calls, and it is in charge of accessing the hardware, such as the graphics card.

Let’s take a closer look at the device-independent package and the OpenGL bindings that
SWT supports.

209

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL210

The Device-Independent Package
The package integrates SWT and OpenGL graphics by providing
 platform-independent OpenGL support through the following classes:

: A widget to display OpenGL content.

: A device-independent description of the pixel format
attributes of a GL drawable. A GL drawable is simply a 3D rendering surface. Pixel for-
mat attributes are a set of properties that define the OpenGL state in preparation for
drawing. The most useful pixel attributes are listed in Table 8-1. For a complete list of
attributes, see the class reference.1

Table 8-1. Some Pixel Attributes Used to Configure the OpenGL State

Property Description

 Specifies a double-buffered surface. Graphics operations that require
multiple complex painting operations can cause the rendered images
to appear to flicker or have an otherwise unacceptable appearance.
Double-buffering uses a memory buffer to address the flicker problems
associated with multiple paint operations. When double-buffering is
enabled, all paint operations are first rendered to a memory buffer,
instead of to the drawing surface on the screen. After all paint opera-
tions are completed, the memory buffer is copied directly to the draw-
ing surface associated with it. Because only one graphics operation is
performed on the screen, the image flickering is eliminated.

 Specifies a stereo surface. A stereo surface provides the visual percep-
tion of depth.

 Specifies the minimum number of bits per pixel to use for the red
channel. The default value is 0. Red, green, and blue channels are used
to describe the RGB color model with extra information, and have an
effect on the color resolution.

 Specifies the minimum number of bits per pixel to use for the green
channel. The default value is 0.

 Specifies the minimum number of bits per pixel to use for the blue
channel. The default value is 0.

 Specifies the minimum number of bits per pixel to use for the alpha
channel. The default value is 0. The alpha channel is useful for alpha
compositing, which is the process of combining an image with a back-
ground to create the appearance of partial transparency.

 Specifies the desired number of stencil bit planes. A stencil buffer
is used to limit the area of rendering (stenciling). In more advanced
uses, the stencil buffer interacts with the depth buffer in the rendering
pipeline to make a vast number of effects possible (shadows, outline
drawing, and highlighting). The quintessential application of the stencil
and depth buffers is to add shadows or planar reflections to 3D applica-
tions. Note that they often require several rendering passes, which can
put a heavy load on the graphics hardware.

1. The class reference is available from
.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 211

OpenGL Bindings for SWT
SWT 3.2 and later provide a thin layer above the window-system specific API (WGL for win-
dows; GLX for Unix). This enables applications to use their Java OpenGL binding of choice.
SWT supports three popular OpenGL bindings:

Lightweight Java Game Library (LWJGL): LWJGL is targeted to commercial games.2 It pro-
vides access to the Open Audio Library (OpenAL) for state-of-the-art 3D games and sound.

Java OpenGL (JOGL): JOGL is a binding designed to provide hardware-supported access
to the OpenGL 2.0 specification, as well as nearly all vendor extensions.3 JOGL integrates
with the Abstract Window Toolkit (AWT) and Swing widget sets. This becomes an issue
when developing for SWT, but as you’ll see in this chapter’s hands-on exercise, SWT has
created a clever solution.

gljava: gljava is specifically aimed at game development.4 Its design goal is to be as simple
and thin as possible. gljava does not force you to use a widget toolkit such as AWT or Swing.

All of the code in this chapter has been written for JOGL.

Creating OpenGL Scenes with JOGL and SWT
Now it’s time to get our feet wet with two OpenGL scenes. First, we’ll create the wire cubes
scene, which simply draws three wire cubes (red, green, and blue) on top of a white rectangle.
Then we’ll create the more complex 3D chart scene, which draws a series of cylinders (bar
values) over two planar axes (x and y). The scene uses some GL tricks (such as display lists) to
increase performance, as well as a GL utility library to draw quadrics (cylinders). Both scenes
allow for user interaction by using mouse and keyboard listeners for panning, zooming, and
tilting. The scenes will be displayed within two RCP views.

The following classes will be created for the scenes:

: This is the base class for both scenes and encapsulates common functionality.
Its role is to bind a GL canvas with an SWT component for drawing. It also initializes
the GL drawing attributes (pixel format attributes) and parent control listeners to resize
or dispose of the canvas when the parent requests.

: This is the class that actually draws the wire cubes. It inherits from .

: This is the class that draws a 3D chart, and it also inherits from . It
is more complex than . This class uses OpenGL display lists for fast drawing
of a series of cylinders () and planar x and y axes.

The following utility classes will also be created:

: This class is used to rotate and move the scene by using mouse and key-
board listeners.

: This is a thread that renders the scene in the background many times per
second. Its job is to refresh the scene whenever the user changes something.

2. LWJGL is available from .
3. JOGL binding for OpenGL is available from .
4. gljava is available from .

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL212

: This is a simple helper class to draw a wire cube. It is used by .

: This class provides the OpenGL display lists used to increase perfor-
mance whenever the same object must be rendered multiple times. It is used to draw
the cylinders and axis planes from .

: This class represents a bar value (cylinder) in the chart. It extends
for performance. It also uses the OpenGL Utility Library (GLU) to draw the cylinder
shapes.

Setting Up for the OpenGL Scenes
Before we get started on the scenes, we need to do some setup. We will create an RCP applica-
tion with two views, and add the JOGL dependencies.

Creating the RCP Application
Follow these steps to create the RCP application for the scenes:

 1. From the main Eclipse menu, select File New Project Plug-in Development
Plug-in Project, as shown in Figure 8-1. Click Next.

Figure 8-1. Choosing to create a new plug-in project

Tip Use the filter text box on the Select a Wizard page for fast access to the wizard. Simply type a few
characters, such as “plug-.”

 2. Enter a project name (such as), as shown in Figure 8-2. Click Next.

 3. On the Plug-in Content page, make sure “This plug-in will make contributions to the
UI” is selected and “Would you like to create a rich client application?” is set to Yes, as
shown in Figure 8-3. Then click Next.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 213

Figure 8-2. Naming the new plug-in project

Figure 8-3. Filling in the Plug-in Content page

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL214

 4. Select the Hello RCP template, as shown in Figure 8-4, and then click Next.

Figure 8-4. Choosing the Hello RCP template

 5. On the Basic RCP Application page, set the title of your choice and check the Add
branding option (this is required to create a product extension point), as shown in
 Figure 8-5. Click Finish.

Figure 8-5. Setting the application window title and adding branding

Creating a Production Configuration
Follow these steps to add a product configuration to the project:

 1. Right-click the new project folder (in this example) and select New
Other Plug-in Development Product Configuration, as shown in Figure 8-6.
Click Next.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 215

Figure 8-6. Choosing to add a product configuration

 2. Enter a name for the product file (in this example). Make sure the
correct product is selected under “Use an existing product,” as shown in Figure 8-7.
Click Finish.

Figure 8-7. Configuring a new product

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL216

 3. From the product editor, shown in Figure 8-8, click Synchronize to publish changes,
and then click Launch an Eclipse application to test the skeleton.

Figure 8-8. The GLScenes product editor

Creating the Views
You must also create two views—let’s call them and —to host the scenes.
This is easy using the plug-in editor. Here is how:

 1. Open the plug-in editor ().

 2. In the Extensions tab, click Add. Then select the extension point.
From the available templates, select Sample View, as shown in Figure 8-9. Click Next.

 3. In the next wizard page, set both the view’s ID and class name to
, and the name to , as shown in Figure 8-10. Uncheck

the “Add the view to the java perspective” and “Add context help to the view” options.
Click Finish.

Note The wizard will create Java classes for the views with default code to display a table viewer. Make
sure you remove this code to get empty views for the OpenGL scenes.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 217

Figure 8-9. Adding a view extension point

Figure 8-10. Specifying the main view settings

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL218

 4. Repeat steps 2 and 3 for the chart view. Set the ID, class name, and view name to
, , and ,

 respectively.

 5. Both views must be added to the main perspective of the RCP application. Edit the
 class and insert a reference to each view, as shown in the next
 fragment:

This method hides the default editor area of the main window. It then adds both views.
The first argument to is the view’s ID (as defined in steps 3 and 4). The
second argument is a Boolean indicating if the view’s title and related controls should be
shown. If you set this value to , the view cannot be closed or dragged around the main
window. The third and fourth arguments indicate the position of the view and the per-
centage of real estate they use. The last argument is a reference to the default workbench
editor.

Test the RCP from the plug-in editor by clicking Synchronize to publish the changes,
and then clicking Launch an Eclipse application. When the application starts, it should
display two empty views. If it doesn’t, make sure the view IDs from the previous fragment
match the IDs defined in .

Adding JOGL Dependencies
Before we start writing the scene code, we must add JOGL to the plug-in classpath, as follows:

 1. Download JOGL (from) and place the JAR files in a folder
called within the plug-in root folder. The JARs call native libraries to access the
graphics hardware, which must be placed in the plug-in root folder. Your file system
should look like Figure 8-11.

 2. Open the project and click the Runtime tab. Under Classpath, add the JOGL
JARs to the plug-in classpath, as shown in Figure 8-12.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 219

Figure 8-11. GLScenes file system

Figure 8-12. Classpath dependencies for the GLScenes project

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL220

Creating the Wire Cubes Scene
Our first example is the simple wire cubes scene shown in Figure 8-13. This requires a base
class (), which encapsulates common behavior, and a child scene class (),
which draws the actual wire cubes.

Figure 8-13. Wire cubes scene

Creating the Base Scene Class (GLScene)
 is the base scene class from which both OpenGL scenes inherit. Its role is to encapsu-

late common behavior and to get things rolling with basic initialization. We first need to create
a new scene owned by the specified parent component, as follows:

Within the constructor, we first initialize the pixel format attributes of the GL
drawable using (see Table 8-1, earlier in the chapter).

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 221

Next, we add a listener to receive notifications when the control is resized or moved by
using the method:

We also add a listener to receive notifications when the control is disposed of, using the
 method:

Next, we initialize the scene by calling the methods and :

The method creates a drawing context, , which is an abstraction for
all drawing operations. It is the critical object that provides access to the entire OpenGL specifica-
tion. To create a , we use ,
which provides a virtual machine and a mechanism for creating GL drawables that is indepen-
dent of the operating system.

The method initializes OpenGL. It is commonly used to set a background color and
shading model.

Note that all OpenGL functions use the following naming convention:

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL222

For example, the previous snippet includes the function to set the GL canvas background:

Here, refers to an OpenGL function. OpenGL Utility Toolkit (GLUT) functions will be
prefixed with , and GLU functions are prefixed with . The function name is .
Following the name are the number and types of arguments. The complete scene class is
shown in Listing 8-1.

Listing 8-1. OpenGL Scene Base Class

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 223

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL224

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 225

Creating the Wire Cubes Scene Class
Listing 8-2 shows the actual wire cube scene (). This scene inherits from
and overrides the method to create three wire cubes (red, green, and blue) over a
white line loop floor (see Figure 8-13). also overrides to define a line type
and blending operations.

Listing 8-2. Wire Cube OpenGL Scene Class

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL226

Look at the constructor carefully. The first line initializes the base class , which
in turn creates a (using the parent composite) and a . The helper class
 is used to move the scene around using the keyboard or mouse (see the “Rotating
and Moving the Scene” section later in this chapter for details). Finally, listeners for the key-
board and mouse are added with .

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 227

To draw the actual wire cubes, the helper class uses a series of line loops
to draw the front and back faces plus four connecting lines, as shown in Listing 8-3. (Note that

 has nothing to do with the GL GLUT library; it simply defines a class with a
similar name.)

Note GLUT is the OpenGL Utility Toolkit and provides support for: multiple windows for OpenGL rendering,
callback-driven events, input devices, timers, and utility routines to generate various solid and wire frame
objects. GLUT is not used in the sample scenes of this chapter.

Listing 8-3. Helper Class to Draw a Wire Cube

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL228

The wire cube is created by drawing front and back squares using a line loop
(). Then both squares are joined by lines through the vertices. A size
factor is used to compute the positions of the vertices.

Creating the 3D Chart Scene
Next, let’s create a more complex scene to draw a 3D chart with a series of cylinder bars and
axis panels, as shown in Figure 8-14. For the 3D chart scene, we will use display lists and GLU
functions.

Figure 8-14. 3D chart OpenGL scene

Increasing Performance with Display Lists
Display lists are all about performance. They provide a simple way of enhancing your OpenGL
application to make it run faster. Similar to an ordinary function in a computer program, a
display list is defined once, and then you can use it as many times as you want. A display list
stores a group of OpenGL commands so that they can be used repeatedly just by calling the
display list.

Display lists are created with . All subsequent commands are placed in the dis-
play list, in the order issued, until is called. has two arguments:

: A positive integer that becomes the unique name for the display list. Names can
be created and reserved with and tested for uniqueness with .

: A symbolic constant that can assume one of two values: , so com-
mands are merely compiled, or , so commands are executed as
they are compiled into the display list.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 229

The 3D chart scene uses display lists to increase performance by creating a
class to encapsulate a display list, as shown in Listing 8-4. This compiled shape will make ren-
dering much faster the next time it is requested.

Listing 8-4. The CompiledShape Class Using Display Lists for Better Performance

When the display list needs to be called, the method is invoked. To delete
the display list, invoke . Listing 8-5 shows the class, and Figure 8-15 shows the
 rendered image.

Listing 8-5. 3D Chart Axis Class

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL230

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 231

Figure 8-15. Axis panels for the 3D chart

Using GLU
GLU consists of a number of functions that use the base OpenGL library to provide higher-
level drawing routines than the more primitive routines that OpenGL provides, generally in
more human-friendly terms than the routines supplied by OpenGL. GLU is usually distributed
with the base OpenGL package. It includes functions to perform the following:

mipmaps, which are precalculated, optimized collections of bitmap
images that accompany a main texture, and are intended to increase rendering speed

quadrics, which are n-dimensional surfaces described by a polynomial such as a
cylinder, sphere, or paraboloid

model used in graphics for generating and representing curves and surfaces

Note In GLU, these functions can be easily recognized because they all have as a prefix.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL232

GLU also provides additional primitives for use in OpenGL applications, including
spheres, cylinders, and disks.

Creating the BarValue Class
The class, shown in Listing 8-6, represents an element in the 3D chart. It uses the
 display list functionality provided by and utilities from GLU.

Listing 8-6. The BarValue Class for the 3D Chart Scene

Each bar value is a 3D cylinder along the z axis drawn using . The base of the
cylinder is placed at z = 0, and the top at z = height. Like a sphere, a cylinder is subdivided
around the z axis into slices, and along the z axis into stacks. The parameters of
are as follows:

: Specifies the quadrics object ().

: Specifies the radius of the cylinder at z = 0.

: Specifies the radius of the cylinder at z = height.

: Specifies the height of the cylinder.

: Specifies the number of subdivisions around the z axis.

: Specifies the number of subdivisions along the z axis.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 233

Creating the ChartScene Class
The class is shown in Listing 8-7. Its job is to draw the axis and the bar values.

Listing 8-7. The ChartScene Class for the 3D Chart Scene

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL234

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 235

 extends to perform the following tasks:

.

.

.
 is the default; one normal is generated for every vertex of a quadric.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL236

, which has the parameters of light number
and light name. Lights are identified by symbolic names of the form , where
ranges from 0 to the value of – 1. The light name specifies a light source
parameter. The following are common values:

: Used to define four integer or floating-point values that specify the
ambient RGBA intensity of the light.

: Used to define four integer or floating-point values that specify the dif-
fuse RGBA intensity of the light.

: Used to define four integer or floating-point values that specify the
position of the light in homogeneous object coordinates.

Tip Lighting is initially disabled. To enable and disable lighting calculation, call and
with the argument .

.

The final 3D chart scene is shown in Figure 8-16.

Figure 8-16. 3D cylinders drawn using gluQuadric

Rotating and Moving the Scene
With the scene created, the next step is to allow some user interaction—moving and rotat-
ing the scene with the mouse or keyboard. This is accomplished with the class.
 extends to deal with , and

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 237

 override the methods and to deal with the events generated as mouse but-
tons are pressed. also implements the following listeners:

: Provides the method to deal with the events that are
generated as the mouse pointer moves.

: Provides the methods and to deal with the events
that are generated as keys on the keyboard are pressed.

The next fragment is taken from the class in Listing 8-7 and demonstrates how
to add mouse and key listeners. starts by creating an instance of with a
GL context as an argument. Because inherits from (which initializes the

 and creates a), it can get the instance, which in turn is used to
add mouse and key listeners with a as an argument.

As the mouse moves, the method in will be invoked, and when a
key is pressed or released, the appropriate method will be invoked.

Note also listens for mouse wheel events using
and implements the method to deal with the mouse and key events.

Listing 8-8 shows a class capable of moving or rotating the scene with the
mouse or keyboard.

Listing 8-8. SceneGrip.java, to Control Mouse and Keyboard Movement of a GL Scene

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL238

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 239

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL240

Let’s look at the public methods of in more detail:

: Translates the scene to its initial x, y, z offsets, thus centering it when the pro-
gram starts. It also rotates the scene to the x, y values. The method will be called
many times by the scene refresher to update the scene’s coordinates.

: Listens for the arrow keys and updates the x, y offsets of the scene. It also
updates the z offset when the PageUp and PageDown keys are pressed. When Home is
pressed, the scene is reinitialized.

: Changes the mouse cursor to a hand and saves the x, y coordinates for the
next refresh.

: Updates the x, y, z coordinates based on the pointer position.

: Returns the cursor shape to the arrow.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 241

Refreshing the Scene
The last piece of this puzzle is a class used to refresh the scene. is a thread that
 renders the scene in the background based on a delay interval. takes a in
its constructor and calls within its method, as shown in Listing 8-9.

Listing 8-9. The Scene Refresher Class

Within the method, fires a timer interval to call itself, thus effectively
refreshing the scene at the specified times—every 100 milliseconds in this example.

Putting the Scene into an RCP View
To render a in RCP, you need to use a view. As you saw in the previous section,

 takes an SWT composite as the parent control. Thus, you just need to override the
 method of the class to add the , as shown in Listing 8-10.

Listing 8-10. Adding GLScene to an RCP View

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL242

Notice how the thread fits into the big picture. Without it, the scene won’t be
repainted, and nothing will work as expected.

So far, I have attempted to explain in the simplest terms the complexities of OpenGL with-
out going into too much detail. The next section puts some of these concepts to the test with a
real-life application.

Note OpenGL can be a daunting subject. Check out the tutorials at
 for both beginner and seasoned developers.

Hands-on Exercise: Build a Powerful 3D Earth
Navigator
In this exercise, you will build a powerful, real-life application using JOGL and the National
Aeronautics and Space Administration (NASA) World Wind SDK. The application is a 3D Earth
navigator, similar to Google Earth. It uses the following components:

 SDK, which allows developers to embed World Wind’s
geospatial visualization technology (which uses NASA’s geospatial data) in their own
applications5

 The Yahoo! Geocoding API, which allows you to find the specific latitude and longitude
for an address6

Before we start building the application, we need to review some WWJ basics.

WWJ Basics
The WWJ SDK is a 3D graphics globe built on top of JOGL. WWJ uses a map tiling system and a
Cartesian coordinate system to divide the sphere in rectangular sections and display textures
(images) on top.7 Each section has a latitude/longitude bounding box.

5. The World Wind Java SDK is available from .
6. Yahoo! Maps Web Services – Geocoding API is available from

.
7. For more information about the World Wind tiling system, see

. For more information about the WWJ coordinate system, see
.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 243

Behind the scenes, WWJ fetches images from NASA dataset servers and projects them
onto the sphere. When the user zooms in, the number of tiles quadruples based on a com-
puted zoom level. Because the number of tiles at high resolutions can be huge, each tile is
cached on disk for performance.

The most important dataset in WWJ is called the Blue Marble, which displays NASA’s
imagery of the Earth as a whole, provided by the Earth Observatory (with a resolution of
1 kilometer per pixel). Figure 8-17 shows an example of a World Wind Earth view image. Other
datasets include the following:

 Institute for Advanced Computer Studies (resolution of 15 meters per pixel)

 National Geospatial-Intelligence Agency

Figure 8-17. World Wind Earth view

World Wind System Architecture
The World Wind API is defined primarily by interfaces. This allows third-party developers to
selectively replace components with alternative components. At the core of the WWJ class
hierarchy is , which is a subclass of , an AWT component. The
following are the major interfaces:

: Represents the highest level interface with the OpenGL canvas provided
for Swing/AWT.

: Represents a planet’s shape and terrain.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL244

: Applies imagery or information to a globe.

: Aggregates a globe and the layers to apply to it. The application typically inter-
acts with the model to create a globe of the Earth, Mars, or whatever the model needs
to be. It can even be the universe.

: Controls the rendering of a model. It is also responsible for giving the
scene update, timing, and events, as well as for mapping user actions.

: Controls the user’s view of the model.

In a typical usage, a developer would associate a object and several custom
objects with a object. The object is then passed to a object, which
displays the globe and its layers in a . The subsequently manages
the display of the globe and its layers in conjunction with an interactive interface that
defines the user’s view of the planet. The next fragment demonstrates this technique:

All data is persisted to the local computer by the file cache. The file cache manages
 multiple disk storage locations and is accessible through the World Wind singleton.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 245

Embedding WWJ into Eclipse
As noted earlier, WWJ’s is a subclass of , which is an AWT com-
ponent. The Swing/AWT nature of WWJ is a problem for Eclipse applications because Eclipse
uses the SWT, which is incompatible with AWT. Furthermore, AWT and JOGL are tightly inte-
grated, making a port of the AWT interfaces to SWT very difficult.

To overcome this problem, the folks at the Eclipse foundation developed the SWT/AWT
Bridge, which allows you to embed AWT/Swing components into SWT. The bridge has been
part of SWT since version 3.0, and it is a very simple API located in the package

.
The SWT/AWT Bridge is the key component required to embed the AWT-based World

Wind 3D globe into an Eclipse application via SWT.

Setting Up the Earth Navigator Project
We’re now ready to start building our 3D Earth navigator. The first thing we need is an RCP
application and product skeleton to host the following views:

) contains a list of available WWJ layers and a simple UI to perform
location searches using the Yahoo Geocoding interface.

) displays the WWJ 3D Earth.

These views can be seen in Figure 8-18.

Figure 8-18. Navigator and globe views

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL246

Creating the RCP Application
Follow these steps to create the skeleton project:

 1. From the main Eclipse menu, select File New Project Plug-in Development
Plug-in Project. Click Next.

 2. Enter a project name (). Click Next.

 3. On the Plug-in Content page, make sure “This plug-in will make contributions to the
UI” is selected and “Would you like to create a rich client application?” is set to Yes.

 4. Select the Hello RCP template, and then click Next.

 5. On the Basic RCP Application page, set the title to and check the Add
branding option. Then click Finish.

Creating a Production Configuration
Now create a product configuration to launch the RCP application:

 1. Right-click the new project folder () and select New Other Plug-in
Development Product Configuration. Click Next.

 2. Enter a file name for the product file (). Make sure the correct product is selected
under “Use an existing product.” Click Finish.

 3. From the product editor, click Synchronize to publish the changes, and then click
Launch an Eclipse application to test the skeleton.

Tip When you launch an Eclipse application created with the wizard from the product editor, the default,
the window size will be 400 by 400 pixels. You can remove the line

 in the class for a bigger window.

Creating the Navigator and Earth View Skeletons
The layer navigator and Earth views must be created using extension points, as follows:

 1. Open the plug-in editor ().

 2. On the Extensions tab, click Add. Then select the extension
point. From the available templates, select Sample View. Click Next.

 3. Set the view’s ID to , the class name to
, and the name to . Uncheck the “Add the view to the java per-

spective” and “Add context help to the view” options. Click Finish.

 4. Repeat steps 2 and 3 for the navigator view. Set the ID to ,
class to , and view name to .

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 247

With the skeleton views created, the default perspective must be updated to display them.
Edit the class to insert the views, as shown in the next fragment.

Refresh the product configuration and launch the application. You should now have an
RCP with two views to host the WWJ layers and 3D Earth. Before we create these views, we
need to include the WWJ dependencies in the project.

Adding WWJ Dependencies
World Wind JARs and native libraries must be added to the project so the 3D globes can be
used. First, add the JARs to the classpath, as follows:

 1. Create a folder called within the main project folder to host the WWJ JAR archives.
To do this, right-click the main folder and select New Folder. Enter as the name,
and then click Finish.

 2. Download the World Wind Java SDK from NASA (
). Unzip the SDK and copy the JARs (, , and

) to the folder you just created.

 3. Open the project . Click the Runtime tab. Under Classpath, add the JARs you
downloaded to the classpath. This is required so the plug-in will be able to see the WWJ
archives.

This will add WWJ to the classpath of the plug-in. However, WWJ includes native libraries,
which must be included to the plug-in classpath via a fragment, as follows:

 1. Create a fragment project to host WWJ native libraries. To do this, from the main
Eclipse menu, select File New Project Plug-in Development Plug-in Project.
Click Next.

 2. Enter a name (). Click Next.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL248

 3. On the Fragment Content page, set the host plug-in ID to . Click Finish.

 4. Copy all the native libraries (DLLs in windows; SOs in Linux) to the fragment folder.

Tip The host plug-in ID indicates the plug-in to which the fragment will attach its classpath at runtime.
Thus, the fragment native libraries will be included to the plug-in classpath at runtime.

At this point, all the required WWJ dependencies should be in place for the RCP application.

Creating the Earth Navigator View
With the SWT/AWT Bridge already in SWT, embedding a WWJ 3D Earth globe within your view
is a snap. Listing 8-11 demonstrates a basic Eclipse view to perform this task.

Listing 8-11. Eclipse View for the WWJ Earth Globe

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 249

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL250

The method starts by creating a top SWT component, which will use
the bridge to embed the WWJ Swing OpenGL canvas:

Next, within the top SWT component, a child AWT frame is created, using the bridge, to
host the Swing required by the WWJ OpenGL canvas:

Finally, the WWJ is added to the Swing :

Flying to a Location Within a Globe
To fly to specific latitude/longitude, three objects are required:

 that provides a coordinate transformation from model coordinates to eye
 coordinates, following the OpenGL convention of a left-handed coordinate system.
(Note that this object is not related to the RCP concept of a view.)

 representing the 3D ellipsoidal sphere of the world you are viewing.

-
tion includes angles for heading and pitch, and altitude in meters.

Listing 8-12 shows the method.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 251

Listing 8-12. The flyTo Method to Fly to a Specific Latitude/Longitude Point on the Globe

The method of the class pans or zooms the globe, producing a
smooth “fly to” or an instantaneous “zoom” effect on the globe’s target coordinates.

To make good use of the method, we need the means to find locations by latitude
and longitude. The Yahoo Geocoding API can help.

Finding Latitude and Longitude with the Yahoo Geocoding API
The Yahoo Geocoding API is a great way to find the specific latitude and longitude for a spe-
cific address. This service works by sending an HTTP request to the URL

. The following are the most important parameters of
the request:

: The application ID.

: Street name. The number is optional.

: City name.

: The U.S. state. You can spell out the full state name or use the two-letter
 abbreviation.

: The five-digit ZIP code or the five-digit code plus four-digit extension. If this loca-
tion contradicts the city and state specified, the ZIP code will be used for determining
the location, and the city and state will be ignored.

: A free-form field that lets users enter just the ZIP code or combinations of the
other location information, such as the street, city, and state.

: The format for the output, either or . If is requested, the results will
be returned in serialized PHP format.

For example, enter the following URL in your browser to find the latitude and longitude of
Paris, France:

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL252

You should see the following:

Try typing any address, place, or ZIP code for the parameter. You’ll see that this
API is very powerful, and it will provide what we need for the Earth navigator example. All we
need now is a class to send the request and parse the response XML. Listing 8-13 shows the
class to perform this task.

Listing 8-13. YGeoSearch, to Find the Latitude and Longitude for a Given Location Using the
Yahoo Geocoding API

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 253

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL254

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 255

To fetch the latitude/longitude of a given location, simply use this fragment:

The Earth navigator will wrap this search logic in a navigator view.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL256

Creating the Layer Navigator View with Geocoding
The navigator view for the Earth navigator will do two things:

The navigator has two table viewers: one for the search results and one for the globe
 layers, as shown in Listing 8-14.

Listing 8-14. Navigator View Skeleton

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 257

When the view initializes, it loads the World Wind layers from the globe view, and adds
them to the layers table viewer. To get a reference to the globe view, you use the Eclipse view
registry, as shown in Listing 8-15.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL258

Listing 8-15. Loading World Wind Layers from the Globe View

Our cool Earth navigator is now complete. As you’ve seen, World Wind is a Java tech-
nology component that you can integrate into your applications to incorporate 3D Earth
modeling. More data on the planets, moons, stars, weather, satellites, and time series is
becoming available all the time. Soon more data formats will be natively supported. The use-
ful components coming are a layer manager, animation player, drag-and-drop functionality,
and UI helpers. Additionally, World Wind will include RSS feed support and APIs for scripting
extensions.

Summary
This chapter covered developing 3D graphics applications with OpenGL. Here are the impor-
tant points to keep in mind:

applications. Java provides a wealth of tools and APIs to abstract the complexities of
OpenGL.

screen. It is called a left-handed coordinate system.

CHAPTER 8 3D GRAPHICS FOR RCP WITH OPENGL 259

OpenGL (JOGL), and gljava.

 and
. is a widget capable of displaying OpenGL content. is a device-

 independent description of the pixel format attributes of a GL drawable.

. This class is abstraction for an OpenGL rendering
 context.

it run faster. A display list stores a group of OpenGL commands so that they can be
used repeatedly just by calling the display list.

base OpenGL library to provide higher-level drawing routines than the more primi-
tive routines that OpenGL provides. GLU also provides additional primitives for use in
OpenGL applications, including spheres, cylinders, and disks.

C H A P T E R 9

Professional Reports with
the Business Intelligence and
Report Toolkit

The Business Intelligence and Report Toolkit (BIRT) is a powerful open source reporting
system for RCP, stand-alone, or web applications. You can use it to create a variety of report
types, including the following:

 spreadsheets

BIRT can be used in two ways. One way is as a full-fledged application, using the BIRT

other is as a web application, by deploying the BIRT viewer into a Java EE container.
At its core, BIRT consists of three main components:

In this chapter, we’ll look at the various ways to use BIRT, beginning with creating reports
with the Report

Using the Report Designer Within the Eclipse IDE

shows a compound report that uses data from the sample database that comes with BIRT.

261

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT262

Figure 9-1. Compound report of car revenue sales from the BIRT Classic Models database

 Window Open Perspective

as

Installing BIRT Using the Software Updates Manager
BIRT can be easily installed within Eclipse, as follows:

 1.

 2. Charting and
 Reporting.

 3.

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT 263

, Web Standard Tools (WST) Rhino (for scripting), and
others.

Report Anatomy
A report usually consists of four main parts:

Data source: A data source provides access to many kinds of tabular data. A single report
can include any number of data sources, or disparate data sources can be combined into
virtual data sources. BIRT supports the following:

required)

Data transforms

Business logic: The business logic provides the means to convert raw data into information
useful for the users.

Presentation: BIRT provides a wide range of options for displaying data, such as tables,

Three basic things are needed by all reports: a data source, a query against the source, and
-

els, which we will use for the

Getting Your Feet Wet with the Report Designer

of four views:

Data Explorer
you can set up the following for your report:

entire product inventory by city over time

display invoice data

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT264

Palette: The Palette view

 usually bound to a data element from a dataset.

Property Editor: This view displays properties of the various report elements.

Layout
and preview.

Figure 9-2. Report Designer showing the Data Explorer, Palette, Property Editor, and Layout views

Creating a Simple Report
To get started, we’ll

 1. , select File New Other Report Project.

 2.

 3.

 4.

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT 265

 5.
(from the table) sorted by name and price:

 6.

Figure 9-3. Data Explorer SQL query editor

 7. Now you need to create a new blank report layout. To do so, select File New
Report. Enter a name, and then click Finish. The layout should be displayed in the

 templates.)

 8. to add a data table that
will display data from the query. Then simply drag and drop elements from the dataset

 to the first
column, to the second column, and so on, until you are satisfied
with the presentation.

 9.

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT266

 10.
Report from the main menu. BIRT provides many preview format types, including

Figure 9-4. Previewing a report as a PDF document

Now that you’ve tried a simple report, let’s create one that

Creating a Complex Report
In this section, we will create a report to show a pie chart of total sales by product line from

. The backbone of any report is the data, which usually

product line:

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT 267

This query selects the and the sum of the (labeled
as) of the and tables, grouped by . With this
query, we can easily build a total sales by product line report, shown as a pie chart.

 1. To create a new report, select File New Report, enter a file name, and click Finish.

 2. -

 3.
-

Figure 9-5. Query results for the total sales by product line query

 4. .

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT268

 5.

 6.
-

view area.

 7. Bind the query data by dragging the column header into the pie chart’s

Figure 9-6. Data properties for the Sales by Product Line chart

 8. Click the Format Chart tab. Change the data series label, chart title, and other format
items, as desired. Then click Finish.

 9. Select the Preview tab to inspect

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT 269

Figure 9-7. Sales by Product Line chart from the sample database

Using BIRT Within a Servlet Container
BIRT can also be used as a report server within a servlet container such as Apache Tomcat, or
a Java EE server such as JBoss. To do this, you must deploy the BIRT Runtime into the servlet
container, and then copy your reports to a server folder. With the server in place, you can use
the report viewer servlet to display your reports, or you can create custom reports using BIRT’s
JSP tag library
server, display your reports using the report viewer servlet, and build a custom report viewer
using the JSP tag library.

Deploying the BIRT Runtime
This section shows how to build a report server by deploying the BIRT Runtime within the
Tomcat servlet container. Here are the steps:

 1.
 (the file name should be).

 2.

.

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT270

 3. Copy the WAR archive () to the folder.

 4. Start the Tomcat server and open a browser to .

 5. to make sure things work.

 6. Copy your user-defined report files (or) to
.

 7.
the report from the sample database (assuming the report
design has been copied to

Using the Report Viewer Servlet
The report viewer servlet is used to display reports from the web browser. Its format is as
follows:

where:

 can be one of the following:

 renders the report in the viewer with a toolbar, navigation bar, and table
of contents. It also creates a report document from the report design file to support

-

underscores (

(which makes sense, because you cannot view order details without an order number,

You configure the report viewer servlet within the file.
Some of the most important parameters 4

.

.

.

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT 271

Table 9-1. Some Report Viewer Servlet Parameters

Parameter Description

 A bookmark within the report to load. The page with the bookmark will be
loaded automatically.

 The name for the report document. It can be an absolute path or a path rela-
tive to the working folder.

or).

 Output format (such as , , , , or).

 Specifies that a report parameter is .

 The locale (by default).

 Whether the report master page should be used (or).

 Whether the navigation bar appears in the frameset viewer (by default).

 or
). Overrides the setting in . (By default, overwriting takes places

whenever the report design is changed.)

 A specific page to render.

 A specific page range to render.

 The name of the report design to process. It can be an absolute path or a
path relative to the working folder.

 The resource folder (used to contain libraries, images, and resource files) to
use. Overrides the default setting in .

 Whether to show the report in right-to-left format (by default).

 The report title.

 Whether the report toolbar appears in the frameset viewer (by default).

Table 9-2. Some Report Viewer web.xml Configuration Parameters

Parameter Description Default

Resource location directory

 documents

.

from a dataset

Continued

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT272

Parameter Description Default

(can be an absolute or relative path; if
relative, the path will be prepended to
the report name)

Whether reports will be searched rela-
tive to the working folder; a setting of

 prevents users from entering full
paths to reports

Using the JSP Tag Library
BIRT provides even
when writing custom report JSPs within your web application. The library is composed of five
major JSP tags:

 or / mapping (described in the previous section).

uses the mapping without creating a report document. This tag takes most of

of this tag.

parameters.

Table 9-3. Some <birt:viewer> JSP Tag Attributes

Attribute Description

 The mapping: or (by default).

 may
contain a value such as .

 The output format, such as , , or .

 When , the viewer tag will occupy the entire page; when (the
default), multiple reports can be contained in one JSP page.

.

Table 9-2. Continued

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT 273

Attribute Description

, , or .a

toolbar: , , , or .a

a

a

a

 a

 The name of the report design file. This can be relative, set to a full path, or

 The name of the report document file. This can be relative, set to a full path,

 The page number you wish to display (for multipage reports).

 Whether the parameter page is displayed.

 The title for the report container page.

a If is , these values are ignored.

Note Most of the attributes in Table 9-3 also apply to the tag. The exceptions are
 , , and .

Table 9-4. Some <birt:report> JSP Tag Attributes

Attribute Description

 The resource folder (which stores libraries and images). It overrides the
value specified in .

 Specifies whether the report parameter page is displayed. (Report

Table 9-5. Some <birt:param> JSP Tag Attributes

Attribute Description

 Report parameter name. This must match the report design file.

 Whether the report parameter value is a locale/format-related string
(or).

 The value for the report parameter. If not supplied, the default value for
the parameter is used.

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT274

 1. Copy the file to your directory.

 2. Copy , , , , and
 from to the new directory.

 3. Add the following reference to your file:

 tag to process the report using the
mapping. The report will prompt for an order number as an argument and set the output to

 shown

Listing 9-1. A Report Viewer JSP Using the BIRT Tag Library (SalesInvoice.jsp)

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT 275

Figure 9-8. Sales report using the JSP tag library

Using the Report Engine API
There is another way of using BIRT
Engine API is a tool for developers to use BIRT within a stand-alone Java application, a servlet,
or an RCP application.

 1. Set report engine configuration values, such as the engine home directory and log
 configuration (not required within RCP), with .

 2. For a stand-alone application or servlet, set the report engine home and start the
Eclipse Platform.

 3. Create an instance of the report engine to perform multiple tasks.

 4. Open a report design document using one of the methods of the report
engine.

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT276

 5. Set report parameters using the and the interfaces, or
. This is

necessary only if your report has input parameters and you are building an input
parameter page.

 6. Run and render a report using or and .

 7. Call .

The following sections look at these steps in more detail.

Configuring and Creating a Report Engine
The class wraps configuration settings for the report engine. The configuration
includes the following:

and font handling

application using the class.

Listing 9-2. Setting Report Engine Configuration Values

. Here

 the factory class .

.

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT 277

Listing 9-3. Creating a Report Engine

What Kinds of Operations Can Be Done with the Report Engine?
The report engine provides the developer a high degree of control over reports. BIRT
reports are classified using two public interfaces: for a report document
() or for a report design (). The method for opening
a report document is , and the method for opening a
report design is .

 is capable of creating five different types of operations, also known as tasks:

These tasks are discussed in more detail in the following sections.

Creating a Data Extraction Task
The , created with , allows

You can also use the method to get metadata for each result set and use that to
further manipulate the data returned.

set of a document.

Listing 9-4. Data Extraction Task

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT278

Creating a Parameter Definition Task
The task, created with

, retrieves parameter definitions, default values, and dynamic selection lists
from a report. Parameter definitions provide access to the parameter definition information
entered at design time.

parameters and parameter groups.

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT 279

Listing 9-5. Report Parameter Definition Task

Creating a Render Task
The task, created with , renders a report doc-
ument to one of the output formats supported by the report engine. It can render just a page
or range of pages, or the entire report (if no page is specified).

The report engine uses an emitter to generate the output. You use the or
 class

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT280

, you need to be sure that images are han-
dled properly. There are two ways to handle images: with or with

. (the default) writes images to disk when
rendering a report:

this handler within web applications:

 defines options for rendering a report to an output format, such as

(vector or bitmap), font embedding, and others.

Note Custom emitters for other output formats can be created by implementing the interface
. In fact, this is how the PDF and HTML renderers are

implemented. However, this could be a fairly complex task.

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT 281

Listing 9-6. Report Render Task (HTML and PDF)

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT282

Creating a Run Task
 task, created with , to run a report and gen-

erate a report document, which is saved to disk. The report document can then be used with
the
run task.

Listing 9-7. Run Task, Used to Create a Report Document

Creating a Run and Render Task
The task, created with , com-
bines the previous two tasks to run and render a report. This task does not create a report

Listing 9-8. Run and Render Report As PDF Task

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT 283

the BIRT engine. The these concepts with

Hands-on Exercise: Report Generation from the
OSGi Console
As you’ve learned, BIRT provides a powerful

console. The idea is to type a simple console command with arguments such as report design,
output format, and report parameters, and have an output document on disk.

-
mands, as well as how to create a report generator class using the BIRT Runtime API.

Extending the OSGi Console
To begin, create
something like

user to type custom commands when running in console mode. When an object wants
to provide a number of commands to the console, it must implement the interface

, and define the commands as meth-
ods starting with a character and taking a as argument. At runtime,

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT284

command :

Note When implementing the interface, the plug-in class must override public
 to return help text that explains the command.

The goal is to add a report command to generate a report document using the BIRT
 Runtime. Open the plug-in class () and insert a report command,

Listing 9-9. Plug-in Activator with a Report Command

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT 285

 command, which will render
a report from the command line. This class also registers the service (within
the method), with the specified properties, with the framework:

Generating the Report
The plug-in needs a report generator to use the BIRT Runtime to create a document based on
command arguments. This requires two additions to the plug-in:

 Java class to generate the actual document(s)

Add the following BIRT dependencies within the plug-in manifest:

To render charts within a document, add four packages:

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT286

To support multiple output formats, add five more packages:

, a class that uses a report engine ()
to provide reporting functionalities. This class uses to run and render a
report to one of the output formats supported by the engine. This task supports report param-
eters sent through the command line, and output options such as format or file name defined
through the interface.

Listing 9-10. ReportGenerator.java: A Class to Generate a Report Document Using the BIRT
 Runtime

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT 287

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT288

The class

: This is the constructor. Its role is to create a
report engine factory (), which is used to create a report engine
().

: This method opens a report document specified by . It
then creates an task and sets report parameters, if any. It sets the
render options output file name () and format (

). Finally, it starts the task to generate the output report.

Note Report parameters are sent in a string, such as , which must be
split into a Java object for the engine to process.

: This method cleans up by destroying the engine and releasing resources.

: This is a utility method to split the user parameter
string into a Java that can be understood by the engine.

All the pieces are now in place. The final step is to add logic to the class to call

Listing 9-11. Plug-in Activator _report Command Subroutine

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT 289

report generator, which will create a report output file. In this case, the input arguments are a
report design document (

Note that is a report created using the built-in templates from the

Running the Report Generator Plug-in
To run the report
follows:

 1. Select Run Run Configurations.

 2.

 3. Enter a descriptive name, such as .

 4. plug-in. Click Add Required Bundles, and then

 5. Click Apply and Run.

 6. At the console prompt, type to see the command arguments. To render a report
design, use the following format:

CHAPTER 9 PROFESSIONAL REPORTS WITH THE BUSINESS INTELLIGENCE AND REPORT TOOLKIT290

Summary
This chapter covered using BIRT. The following are the important points:

 from the report runtime to the
 folder, and then simply browse to .

your web application reports folder, and then simply browse to
.

a toolbar and report document), (to create a report without a navigation bar), and
 (to create a report without toolbars).

of five major tags:

 to display a complete viewer with a navigation bar and toolbars

 to define parameters

 to create a custom parameter page

, used within a

.

within Java EE.

 to perform multiple tasks.

 methods of .

 and the interfaces,
.

 using or and
 .

.

C H A P T E R 1 0

Automated Updates

The Eclipse update manager is a powerful framework to publish bundles of plug-ins (known
as features) to an update site so that clients can download and install them directly into an
RCP application. Couple this with the possibility of building plug-ins automatically outside the
workbench (also known as a headless build), and you have a complete solution to automate
distribution of your RCP application.

In this chapter, you will learn how to build a feature and update site project to provide
web updates to an RCP application, as well as how to build RCP plug-ins outside the work-
bench using the headless build system.

Updating and Installing Software the Eclipse Way
Eclipse provides facilities for adding new software to the platform or updating software in the
system, thus providing a convenient way to deliver updates to your users. The install update
process usually involves the following steps:

Define and configure a product: This is the first step when packaging and delivering an
RCP application. Eclipse provides a standard for packaging, configuring, and installing
using the product extension point (). This exten-
sion point describes information such as application name and startup class, as well as
custom properties such as window images, splash screen, and About dialog information.
The product configuration also defines the plug-ins that compose the product, as well as
dependencies, information about the binary launcher, and runtime configuration data.

Build a feature project: A feature is a way of grouping and describing different function-
ality that makes up a product. Grouping plug-ins into features allows the product to be
installed and updated using the Eclipse update system. Features may also include frag-
ments that are useful for packaging locale translations.

Build an update site project: An update site allows users to discover and install updated
versions of products and features. In addition, the platform update UI allows users to
maintain a list of update servers that can be searched for new features.

The following sections describe these steps in more detail.

291

CHAPTER 10 AUTOMATED UPDATES292

Defining and Configuring a Product
A product is usually packaged and delivered as one or more features that include all the code
and plug-ins needed to run them. After the product is installed, the user launches it and is pre-
sented with a workbench configured specifically for the purpose supported by the product.

Note Product providers are free to use the JRE and installation tool of their choice when building an
RCP product.

The typical disk layout of a product is shown in Table 10-1.

Table 10-1. Typical Disk Layout of an RCP Application

Name Type Description

. File Marker file used to mark a directory into which an Eclipse-based
product has been installed.

 File Bundle pool contents. It is used to avoid duplication of software
and other artifacts when multiple Eclipse-based applications are
installed on the same computer.

 File Application launcher (its name can be customized).

 File Launch arguments. The file name must be the same as the
launcher, with the extension .

 Folder Runtime configuration data.

 Folder Installed features.

 Folder Installed plug-ins.

 Folder Files for Eclipse 3.4’s new provisioning system, dubbed p2
(described in more detail in the “Software Update UI Tools”
 section later in this chapter).

Describing a Product
The preferred mechanism to describe a product is the
extension point. You commonly define this extension point in the master plug-in that con-
figures the workbench. For example, the web browser product created with plug-ins in
Chapters 2 and 3 is shown in Listing 10-1 and Figure 10-1.

Listing 10-1. Product Extension Point for the Web Browser RCP

CHAPTER 10 AUTOMATED UPDATES 293

Figure 10-1. Web Browser RCP showing window images and About dialog settings

CHAPTER 10 AUTOMATED UPDATES294

The extension point defines the properties shown in
Table 10-2.

Table 10-2. Properties of the org.eclipse.core.runtime.products Extension Point

Name Description

 The fully qualified name of a class that implements
, which represents the executable entry

point to the application.

 The path to two comma-separated images (16 16 and 32 32
pixels) used as window icons. Paths can be relative to the plug-in
or absolute to another plug-in using the format

.

 The name of the product.

 The font color of messages displayed on the splash screen.

 The bounding box for messages within the splash screen.

 The bounding box for the splash screen progress bar. This box is
defined by comma-separated numbers that specify the top-left
point, width, and height of the progress bar. The same applies to
the .

 The name of a properties file containing default preference values
for the product. This file should be placed in the master plug-in
(the plug-in that defines the GUI of your RCP).

 The About dialog image.

 The About dialog text.

Using Your Own Splash Screen
You can customize your application’s splash screen by creating a file named and
locating it in the plug-in declaring the product. If you wish to add a progress bar showing the
plug-in load sequence, create the file in the same location, and add
the following property:

Tip The step of adding a custom splash screen can be automated by selecting the Add branding option
from the Plug-in Project wizard when creating your RCP plug-in. Also, if you need a locale-specific image,
put it in the directory beneath the plug-in’s directory. For example, a splash screen for the Japanese
locale () should be placed in the plug-in’s directory .

CHAPTER 10 AUTOMATED UPDATES 295

Grouping Plug-ins in Features
In the real world, an RCP application can be composed of many plug-ins working together
to perform a useful function. For example, BIRT (described in the previous chapter) consists
of more than 50 plug-ins. To isolate this kind of common functionality, Eclipse groups plug-
ins into features. Thus, instead of installing 50 plug-ins to do reports, users need to install or
update only the BIRT feature.

Features do not contain code. They contain only a list of plug-ins for the product, pack-
aged in a archive and described using a manifest file (). This fragment shows the
basic syntax of a feature:

All features are described by a required unique ID and label. Version and provider are
optional information. Other tags include the following:1

: Specifies your license text with an optional URL.

: An optional tag that defines zero or more URLs specifying site(s) containing
 feature updates or new features.

: Defines the URL and label to go to for updates to this feature.

1. For a complete list of tags and attributes, as well as the feature document DTD, see the feature refer-
ence guide at

.

CHAPTER 10 AUTOMATED UPDATES296

: Defines the URL and label to go to for new features. You can use this
 element to reference your own site or a site with complementary features.

: Identifies the plug-ins that compose the feature (multiple plug-ins will
require multiple tags). Plug-ins are identified by a required ID and version. Optional
attributes include download and install size. The optional attribute specifies
that the plug-in is run from a JAR.

Grouping Plug-ins Within Fragments
Fragments are ideal for shipping extra functionality without repackaging or reinstalling the
original plug-in, and for packing language translations.

Fragments are described using a fragment manifest file, . Fragments attach
themselves to a host plug-in, and their contents are included to the host classpath at runtime.

If you are packing translations, you should use the following:

Platform core mechanism: This mechanism defines a directory structure that uses locale-
specific subdirectories for files that differ by locale. Translated files are placed in a folder
called beneath the plug-in. For example, French translations will be placed under
or for France and for Canadian French.

Java resource bundles: This is the standard Java approach to handling property resource
bundles. Translated files are contained in a JAR file and given a locale-specific name (for
example,). The files are in package-specific subdirectories
and may appear in the plug-in itself or in one of its fragments.

 mechanism: provides translations for strings in the
plug-in manifest files (which are and). must
be located in the root of the plug-in or in the root of a fragment of this plug-in.

Building an Update Site Project
An update site can be used to make your project available on a web server so that users can
download and install it directly into Eclipse using the update manager. Creating an update site
involves defining an update site project, which packs all features and plug-ins into JARs along
with a site map (). Eclipse provides powerful tools for this task. You’ll learn how to
create an update site project in this chapter’s hands-on exercise.

Caution Updating software from a remote, nontrusted server may be a security risk. Be careful when
connecting to an unknown update site and examining its content.

Software Update UI Tools
Since Eclipse 3.4, the update manager has been rewritten to a completely new provisioning
platform dubbed p2. p2 was created for two main reasons:

CHAPTER 10 AUTOMATED UPDATES 297

streamlined to use (hence the term provisioning updates)

installations, thus eliminating duplicates (very helpful if you have multiple Eclipse
installations)

The internals of p2 are transparent to the user. However, new applications and update
sites can be optimized for use with p2 for managing code repositories.

Note Eclipse recommends using the new update manager, rather than the legacy update manager
(before version 3.4). The problem with the new update manager is that p2 needs a new disk layout, which
will require changes for legacy applications.

You can also use a command-line tool provided by p2 to completely automate software
installations or updates (commonly used from a scheduled script).

Using the Software Updates and Add-ons Dialog
The Software Updates and Add-ons dialog provides a UI for performing provisioning opera-
tions using p2, as shown in Figure 10-2. To access this dialog, select Help Software Updates.

Figure 10-2. Software Updates and Add-ons dialog

CHAPTER 10 AUTOMATED UPDATES298

The Software Updates and Add-ons dialog has two main tabs:

Installed Software: From this tab, you can update and uninstall features or revert to a
 previously installed configuration of the platform. You can also configure automatic
updates by setting an update schedule, download, and notification options.

Available Software: This tab lets you browse the Ganymede code repository for features
or filter names by keyword. It also allows you to add a new local or remote update site, or
manage the sites used to find available software.

Installing Software from the Command Line
p2 provides a director application to perform provisioning operations from the command
line. This application is capable of provisioning a complete installation from scratch or simply
extending your application. Depending on your needs, this application can be executed either
inside or outside the target product being provisioned.

Installing Inside the Target Application
Installing inside the target application allows you to add new components to an existing
product. For example, the next fragment shows the command used to install the C/C++
 Development Tools (CDT) into the SDK.

The argument indicates the product to run (the p2 director in this case).
 and specify the remote locations from which the

product will be installed. The metadata repository usually contains only information about the
components themselves. The artifact repository stores the component code. defines
the install unit (CDT in this case) and the you wish to install.

Installing Outside a Target Application
When you install outside a target application, the target product is not started. This approach
has the advantage of being able to both modify an existing installation and create a complete
installation from scratch. It also allows you to perform provisioning operations on any plat-
form for any platform (for example, install Windows plug-ins from Linux and vice versa). For
example, to install the CDT from an SDK located in into another SDK located
in , use this command:

CHAPTER 10 AUTOMATED UPDATES 299

Now suppose that you wish to provide multiple-platform Eclipse installations from a
single disk. For example, to install a Linux Eclipse SDK into from a
 Windows SDK located in , use the following command:

See Table 10-3 for parameter descriptions.

Table 10-3. p2 Director Command-Line Arguments

Parameter Description

 The p2 director application ID.

 A comma-separated list of metadata repositories where the
installable units to be installed can be found. For example,
the metadata repository for Eclipse Ganymede (3.4) is

.

 A comma-separated list of artifact repositories where the arti-
facts can be found.

 The ID (or unique name) of the installable unit (IU) to install.
An installable unit is a component you wish to process. For ex-
ample, the installable unit ID for the entire SDK is

. The installable unit ID for the CDT is
. If you want to install a feature, the identifier of

the feature must be suffixed with .

 The version of the installable unit to be installed.

 The folder in which the targeted product is located. It may be
a new folder for a new installation or an existing folder for an
update.

Continued

CHAPTER 10 AUTOMATED UPDATES300

Table 10-3. Continued

Parameter Description

 The profile ID containing the description of the targeted prod-
uct. This ID is usually found in the property
contained in the file of the targeted product. For the
Eclipse SDK, the ID is .

 Points to the location of the profile registry containing the
description of the profile set in . Eclipse recommends
setting this to . This property must be set as a
VM argument.

 The location where the plug-ins and features will be stored.
This value is taken into account only when a new profile is
created. For an application where all the bundles are located
in the folder of the destination, set this argument to
 .

 The operating system to use when the profile is created. This
will be used to filter which operating system-specific installable
units need to be installed.

 The windowing system to use when the profile is created; for
example, for Windows or for Linux. This will be used to
filter which windowing system-specific installable units need to
be installed.

 The architecture to use when the profile is created. This will be
used to filter which architecture-specific installable units need
to be installed.

 Indicates that the product resulting from the installation can be
moved. This property makes sense only when the destination
and bundle pool are in the same location, and

 is set to . This value is taken into account
only when the profile is created.

Product Build Automation with the Headless
Build System
When an RCP product is made of many plug-ins, it makes no sense to build it within the IDE.
Clearly, an automated build system is needed. The PDE provides a headless build system to
accomplish this task. In fact, Eclipse uses the plug-in and
a set of control files for the automated build of all parts of its platform.

To use a headless build to build a product, you will need the following:

CHAPTER 10 AUTOMATED UPDATES 301

A builder () is provided by Eclipse. You can download
it remotely with this command:

You can start a headless build from the command line or an Ant script with a command
such as the following:

The previous fragment defines the basic arguments of a headless build:

: The path to your Eclipse installation. An environment variable is
 commonly used to store this path.

: The JAR that contains the build
launcher (). It must be included in your classpath.
Note that the version changes depending on your installation.

: Defines the application to run—in this case, an Ant build script.

: The master Ant build script () to drive the process.

: The location where the build files will be created (for example,
).

, , and : The base operating, windowing system, and archi-
tecture (for example, , , and). This is useful to create packs for multiple
operating systems.

: Tells the build to abort on compilation errors.

: The location of the build scripts. These are provided by Eclipse
and are located in .

: The location of your Eclipse installation.

See Table 10-4 for a list of arguments.

CHAPTER 10 AUTOMATED UPDATES302

It is best to put the build command in a shell script, especially when you have a lot of
arguments.

Tip To run only a particular phase of the build process (after modifications to the build files for
example), simply append the phase name to the argument in the command line:

. The phase names are , , , , ,
, and .

The following sections describe the underpinnings of the build system. We’ll start with
configuration files and runtime arguments, and then cover the build phases. Understanding
this process is required if you wish to perform custom steps on any of the phases (to create
a binary installer, for example). Otherwise, the build simply packs the required files in a zip
archive.

Build Configuration
The build configuration is driven by series of files for which Eclipse provides templates
located in the folder

. This folder contains the following files:

: An optional file that is primarily useful when you must build multiple
top-level components such as multiple features.

: A critical file that defines the parameters describing how and where
to execute the build. These parameters can be specified in the command line; however,
there are so many that is best to put them in this file.

: An optional file to define targets called before and after the binary
files are gathered. It is useful to insert license files or digitally sign the JARs.

: An optional file that can be used to control all the phases of the
build. It can also be used to download base build components (such as a build target
platform), check out map files from a build repository, clean a build, gather build logs,
test the build, and publish the build to a specific location.

For a basic build, you need only . Complex builds may use any or all of
these files. They must be edited by the user and stored in the build configuration directory
(specified by the argument in the command line).

The headless build provides two extra files, located in the
 folder:

: The main Ant build script.

: Used to control the phases of the build process.

CHAPTER 10 AUTOMATED UPDATES 303

Tip Basic templates for and can be found under
.

Table 10-4 describes the most useful build configuration parameters.2 See the hands-on
exercise later in this chapter for a real-world example of using them.

Table 10-4. Some Headless Build Command Options

Name Description

 The relative path to a directory where the source for the build will be
 exported, where scripts will be generated, and where the end products of the
build will be located. On Windows systems, this directory should be close to
the drive root to avoid path-length limitations, particularly at compile time.

 A directory separate from that contains prebuilt plug-ins
against which to compile. must not contain any features,
plug-ins, or fragments that are already or will be located in .

, , The , , , and values of the prebuilt Eclipse found in .
,

 An ampersand-separated list of configurations to build for an element,
where a configuration is specified as , , or ; for example,

.
It is typically used to build a feature that is , , and -specific. A
 nonplatform-specific configuration is specified with .

 The directory in which build features and plug-ins are gathered. This is typi-
cally set to .

 The top-level directory in the assembled distribution. This is typically set to
.

 A letter used to identify builds: (integration), (nightly), (stable),
 (release), or (maintenance).

 The build name. The default is set to in the template
.

 Refers to the name of the directory that will contain the end result of the
build. It is set to in the template .
This directory will be created in .

 A timestamp used to fill in the value for in about.mappings files. Also
used to name build output directory; for example, .

 Sets the attribute in a call to the Ant task to check out the map file
project.

Continued

2. For a complete list of build configuration parameters, see the Builder Configuration Properties sec-
tion at

.

CHAPTER 10 AUTOMATED UPDATES304

Table 10-4. Continued

Name Description

 Sets the tag or branch when exporting modules used in the build. For
 example, setting will fetch the stream of the source for all
features, plug-ins, and fragments listed in the map files, instead of fetching
the tag specified in the map entry for that element. For example, this is used
in the Eclipse build process to produce the nightly build.

 Sets the value for the attribute in calls to the Ant task in
a plug-in’s file.

 Sets the value for the attribute in calls to the Ant task in a plug-
in’s file. Determines if debug information is included in the output
JARs. Set to in the template .

 Sets the value for the attribute in calls to the Ant task in
a plug-in’s file. When this is set to , the build will continue,
even if there are compilation errors.

 Sets the value for the attribute in calls to the Ant task in a plug-
in’s file. Sets the value of the command-line switch for

 version 1.4. Used when compiling the JARs for the plug-ins. The default
is set to in the file generated for plug-ins and fragments.

 Sets the value for the attribute in calls to the Ant task in a plug-
in’s file. Sets the value of the command-line switch for

. Used when compiling the JARs for the plug-ins. The default is set to
 in the file generated for plug-ins and fragments.

 Sets the value for the attribute in calls to the Ant task in a
plug-in’s file. Asks the compiler for verbose output. The default is
set to .

 Arguments to send to the zip executable. Setting it to on Linux systems
preserves symbolic links.

Build Phases
Behind the scenes, the build system is divided in a series of steps or phases. These phases
are useful to customize the build (for example, to fetch files from a server or create a binary
installer) and can be run from the command line. The build phases are as follows:

 and : The most important task of these phases is to fetch the plug-ins that
constitute the product as well as all dependencies. This is accomplished by fetching a
map file. The map file is a Java property file that contains mappings of plug-ins, features,
or fragments to their CVS locations and access methods. Adding a new plug-in or frag-
ment to the product requires updating the map files with the new element. Map files are
described in more detail in the “Creating a Release Engineering Project” section later in
this chapter.

: After features and plug-ins have been fetched to the build directory, the build
scripts are generated in the same way as they would be with the PDE GUI.

CHAPTER 10 AUTOMATED UPDATES 305

 and : These two phases mark the start of the compilation process with
a call to in . This, in turn, calls the target
(which is hidden from the user) in within the feature directory to start com-
pilation. After compilation, the assembly is started from the target in

. Most the work is just delegated to the headless build. The
phase creates a series of scripts to drive the process. These scripts are hidden from the user.

Note The assemble script copies all the build results to a temporary subdirectory in the build target direc-
tory and then zips them. The files being collected are feature manifest files (), plug-in manifest
files (), and the built JAR files. The inclusion of arbitrary files can be specified with the

 property of the plug-in’s file.

: When the packer is run (by setting in), this
phase defines targets to run before and after the packer starts. It is helpful if your build
results need to contain binary features and plug-ins that come from the .

: This phase allows you to perform actions with the build output, such as build
an operating system-dependent installer.

These concepts can be better understood with a practical exercise. The next section will
get you started with a hands-on example.

Hands-on Exercise: Automated Updates and Builds
for RCP
Let’s put the concepts from the previous sections to the test. The goal of this exercise is to
build an automated update site for the OpenGL product created in Chapter 8. The projects to
be created include a feature project that contains product plug-ins and an update site project
to perform the actual updates locally or remotely.

The exercise will demonstrate how to deploy the product to multiple operating systems
using the IDE, as well as a how to create a headless build.

Creating a Feature
As mentioned earlier, a feature is a collection of plug-ins that perform a common task. This is
critical for installing or updating products that have many plug-ins, as they can manipulated
as a single entity. A feature project does not contain any code. It merely describes the set of
plug-ins that provide a function.

Follow these steps to create a feature project:

 1. Select File New Project Plug-in Development Feature Project. Click Next.

 2. Enter a project name () and add feature information, as shown in
Figure 10-3. Click Next.

CHAPTER 10 AUTOMATED UPDATES306

Figure 10-3. Defining feature properties

 3. Select the plug-ins that make the feature— and in
this case—as shown in Figure 10-4. Click Finish.

Note Make sure includes the native libraries for deployment. Otherwise, the
native OpenGL code will not be deployed, and the plug-in will fail to start. To ensure that these libraries are
included, open the manifest editor for the project, click the Build tab, and under Binary Build, make sure all
the DLL and SO files are checked.

Creating an Update Site
An update site project allows you to define one or more features to install or update. To create
this project, follow these steps:

 1. Select File New Project Plug-in Development Update Site Project. Click Next.

 2. Enter a project name () and check “Generate a web page listing
all available features within this site,” as shown in Figure 10-5. This will create an index
HTML page for deployment to a web server. Click Finish.

CHAPTER 10 AUTOMATED UPDATES 307

Figure 10-4. Selecting feature project plug-ins

Figure 10-5. Using the Update Site Project wizard

CHAPTER 10 AUTOMATED UPDATES308

 3. The site map editor will be presented. Click New Category and add a new category
called to describe the feature. Below this, add the feature
created in the previous section, as shown in Figure 10-6. Click Build All to generate the
site files.

At this point, the site is ready for testing or deployment.

Testing and Publishing
Before testing the update site, you need to make changes to the plug-in to enable
software updates.

Adding a Software Updates Menu
New extension points are required by the application to create a Help Software Updates
menu. Add them as follows:

 1. Open the plug-in editor. In the Extensions tab, click Add. Select the
 extension point and select the “Hello World” command contribu-

tion template, as shown in Figure 10-7. Click Next.

Figure 10-6. The site map editor

CHAPTER 10 AUTOMATED UPDATES 309

Figure 10-7. Extension wizard showing the command template

 2. Rename the class name to , and then click Finish.

 3. A new sample menu will be added to the menu bar. Using the plug-in editor, rename
 to , and to . Optionally, rename the

 that contains the command to (see Listing 10-2 at
the end of this section for the extension points XML).

 4. Modify the command handler class to remove the sample message
from and start the Updates wizard, as shown in the next
 fragment:

 5. Add the dependency to the Dependencies tab of the plug-in
manifest, as shown in Figure 10-8. This is required for compilation.

CHAPTER 10 AUTOMATED UPDATES310

 6. Test the changes by opening the product descriptor . In the Configura-
tion tab, click Add Required Plug-ins. In the Overview tab, click Synchronize, and then
click Launch an Eclipse application.

Caution You must click Add Required Plug-ins in the Configuration tab of the product editor. Otherwise,
dependencies will not be added, and the product will fail to start.

 7. When the application starts, open Help Software Updates to access the Updates
 wizard, as shown in Figure 10-9.

Listing 10-2 shows the extension points required to add the Help Software Updates
menu to the plug-in.w

Note Make sure the ID of the command is the same for the menu, command, and handler extension
points.

Figure 10-8. ch08.OpenGL plug-in showing the required update UI dependencies

CHAPTER 10 AUTOMATED UPDATES 311

Figure 10-9. The Updates wizard

Listing 10-2. Extension Points to Add the Software Updates Option to the ch08.OpenGL Plug-in’s
Help Menu

CHAPTER 10 AUTOMATED UPDATES312

Now that the RCP product has enabled software updates, the update site can actually
be tested. But first, we need to export the product, along with all required dependencies and
binary files.

Deploying the Product Using the Delta Pack
As mentioned in previous chapters, the delta pack is an Eclipse tool used to export products
for multiple platforms within the IDE. The tricky part is that this tool is not part of the default
installation, which means you must install it manually.

Tip To check for the delta pack within your IDE, open a product configuration file and select the Product
Export wizard. If the export options include “Export for multiple platforms,” this means that the pack is
installed.

If you don’t have a delta pack, download it from the Eclipse site (click Downloads
Eclipse IDE By Project Eclipse Platform Latest Release Delta Pack). Then unzip the
pack in the root folder of your Eclipse installation. Finally, restart the workbench.

CHAPTER 10 AUTOMATED UPDATES 313

Caution When unzipping the pack, do not overwrite existing files. Otherwise, your workbench may fail
to start.

To export the product, open the file and start the Eclipse
 Product Export wizard. Enter a destination directory and check “Export for multiple platforms,”
as shown in Figure 10-10. Click Next. Select your target platforms, and then click Finish.

Figure 10-10. Delta pack export wizard for the OpenGL sample plug-in

The build process will deploy all the required files to run the RCP application. Browse to
the target directory and run the RCP application by double-clicking the binary.

Running and Connecting to the Update Site
It’s now time to try the update site, as follows:

 1. Run the OpenGL RCP application and select Help Software Updates to start the
Updates wizard.

 2. In the wizard, select “Search for new features to install” (see Figure 10-9), and then
click Next.

 3. On the Updates Sites page, click New Local Site, and then browse to the update site
project created in the previous section. Click Finish.

CHAPTER 10 AUTOMATED UPDATES314

 4. The Search Results page will display the features available for install, as shown in
Figure 10-11. Follow the wizard’s instructions, and then restart the workbench. The
features are now up-to-date.

Figure 10-11. Updates wizard search results page

Building the Product Headless
The product can be built headless from the command line. Most of the setup
necessary for such a build can be done through a few modifications to the template

 provided in the PDE build.

Note To build a product headless, an Eclipse installation with the delta pack is required.

To build the product headless, follow these steps:

 1. Create a master build directory, such as .

 2. Create two folders within the root: and . The first folder
will contain the plug-ins to build. The latter will contain the configuration file

.

CHAPTER 10 AUTOMATED UPDATES 315

 3. Beneath , create two folders: and . Copy the product plug-ins
 and to .

 4. Create a build configuration file in , as shown in Listing
10-3. This file defines the build parameters.

 5. Create a batch file named to start the process, as shown in Listing 10-4.

 6. Run . Follow all steps carefully; otherwise, the build will fail. Keep in mind
that an Eclipse installation with the delta pack is required.

 7. After the run completes, a zip archive () will be
 created under . Unzip this archive and run to test
the product.

Listing 10-3 shows the file for this example. Make sure the following
properties are set up correctly (if they are not, the build will fail):

 must point to the product configuration.

 must be set to your Eclipse installation.

 must point to the directory where the build will take place.

 has a name for your product build file name.

Listing 10-3. Headless Build Configuration File (build.properties)

CHAPTER 10 AUTOMATED UPDATES316

CHAPTER 10 AUTOMATED UPDATES 317

CHAPTER 10 AUTOMATED UPDATES318

Listing 10-4. Batch File to Build ch08.OpenGL Headless

Building the Product Headless from a CVS Repository
The previous section showed how to build an RCP application headless assuming that all
plug-ins and features (both to build and prebuilt) referenced by the product file are already
locally available on disk. However, in the real world, organizations mostly use a source code

CHAPTER 10 AUTOMATED UPDATES 319

repository such as CVS. This section focuses on the infrastructure offered by the PDE build to
fetch the source code from a Windows CVS repository as part of the build process.

Installing CVS on a Windows System
The first thing needed for this headless build is a CVS server for Windows. CVSNT is a Windows
version control system licensed under the GNU General Public License, which can be used to
quickly set up a code repository.3

To set up a CVS server in Windows, follow these steps:

 1. Download CVSNT (from) and install it. Then
restart your computer.

 2. Create a new code repository to store the code for the OpenGL product. Run the
CVSNT control panel by choosing Start Programs CVSNT Control Panel.
 Create a repository (, for example) to point to the disk location of your choice,
as shown in Figure 10-12.

Figure 10-12. CVSNT control panel showing a configured repositories

 3. Assuming that CVSNT has been installed in the default location (
), add a CVS user to commit code to the repository by opening a command

prompt and typing the following:

 Note that must be an existing user account on the Windows machine
where CVSNT is installed.

3. CVSNT for Windows is available from .

CHAPTER 10 AUTOMATED UPDATES320

 4. Configure a read-only user () to check out code without a password. This is
necessary because the automated build sends an empty password by default when
fetching code. is the standard name for read-only access. Add to
the file for read-only access and
to to set an empty password. Note that must be
the name of a local Windows user.

Creating a Release Engineering Project
A release engineering (commonly referred as releng) project is the Eclipse naming convention
for the project that hosts configuration files for automated headless builds. In order to know
where to get things, PDE uses map files. A map file is a Java property file that maps feature and
plug-in IDs to a location and a tag in a repository. The format of the map file is as follows:

The various placeholders are as follows:

 can be one of , , or , depending on the type of
 component to fetch from CVS.

 is the unique ID of the component (as defined in the component manifest).

 is an optional version string for the component (also defined in the
manifest).

fetch the component. For example, the string will
fetch from the repository in the local computer using the account.

The map file entries use this format:

The is required only when the module (or directory) containing the
source for the element does not match the or if the directory is not at the root of the
repository.

For example, the next fragment shows the map file required to build the
product.

This fragment describes the product, which is made up of a feature, the
actual OpenGL plug-in, and a fragment containing native libraries for Windows and Unix.

Now, let’s create the release engineering project to host the build configuration:

 1. Select File New Project General Project. Click Next.

 2. Enter a name (), and then click Finish.

CHAPTER 10 AUTOMATED UPDATES 321

 3. Create a folder called and a file within it () with the properties described in
the previous fragment.

 4. Grab the headless build configuration files (and
) from your Eclipse distribution

 and save them in .

 5. Customize the build files. No changes are required to . Listing 10-5
shows the changes to required for fetching code from repositories.
Be extremely careful with , as any mistake will cause the build to fail.

Listing 10-5. Changes to build.properties for Fetching Code from Repositories

Make sure to comment the and properties. The property
defines the connection arguments to the CVS server. The OpenGL product requires Java 1.6.

Committing the Product
Now we can use the CVS client within the Eclipse workbench to commit the OpenGL RCP to
the new repository, as follows:

 1. Select Window Show View Other CVS CVS Repositories.

 2. In the CVS Repositories view, right-click the background and select New Repository
Location. This will display the Add CVS Repository dialog, as shown in Figure 10-13.

CHAPTER 10 AUTOMATED UPDATES322

Figure 10-13. Eclipse IDE CVS Repositories view and Add CVS Repository wizard

 3. Enter the repository information. Set the host to , repository path to , the
user to the previously created user (), and the password to the one set earlier.
Click Finish.

 4. Commit the OpenGL product plug-ins and features. Right-click each project (
, , , and), select Team

Share Project from the context menu, and follow the CVS Commit wizard instructions.

Running the Build
To run the build, we need a batch script (). But first, the product file (

) must be copied to the build directory. Assuming the build directory ,
the Eclipse installation , and the workspace

, Listing 10-6 shows the build script.

Listing 10-6. Headless Build Script for OpenGL.product

CHAPTER 10 AUTOMATED UPDATES 323

Note Do not forget to copy the product file () to the build directory. Otherwise, the build
will fail.

Summary
In this chapter, we have studied the Eclipse build system used to build plug-ins automatically
outside the Eclipse IDE. Eclipse itself is built headless and, since it is a collection of plug-ins,
this functionality is available to any RCP application. Here are the important points to keep
in mind:

 features, fragments, and update sites.

product packs and delivers one or more features, which include all the code and
plug-ins needed to run them. It also lets you customize the presentation and runtime
parameters of the application.

feature describes a grouping of plug-ins that perform a common task. Features are
useful for working with (installing and updating) a lot of plug-ins as a single entity.

Fragments are separately packaged files that attach to a host plug-in. They are useful
for adding functionality missing from the original release, without needing to repack-
age or reinstall, and packaging national language translations.

-
sioning system, including a software updates UI and a command-line tool to perform
provisioning tasks such as installing, updating, and removing software.

CHAPTER 10 AUTOMATED UPDATES324

-
tions with hundreds of plug-ins. Building such applications within an IDE makes no
sense. It includes a plug-in () specifically created
for the task and requires a CVS server for code storage and zip/unzip tools.

, , , , ,
, and . It requires two input files: and

. acts as callback where the user can perform customs
tasks for each phase. describes runtime parameters such as target
location, operating system configuration, compilation arguments, and so on.

 and phases extract the plug-ins that constitute the product as
well as all dependencies. These phases require a bundle map file, which describes
plug-in IDs and the CVS server locations.

 and phases perform the actual code compilation and
assembly of plug-ins and their dependencies.

 phase is used for performing actions with the build output, such as
building an operating system–dependent installer.

325

Numerics
2D graphics

advanced graphics editor exercise
overview, 195–196
RCP product, 196–200
testing, 206
Zest plug-in, 200–206

Draw2d, 173–175
GEF

displaying figures, 176
EditPolicies, 185–187
overview, 175–176
palettes, 187–190
shapes example, 176–185

Zest, 190–195
3D chart scene

BarValue class, 232
ChartScene class, 233–236
display lists, 228–230
GLU, 231–232
overview, 228

3D graphics
Earth navigator project

finding latitude and longitude, 251–255
flying to locations, 250–251
navigator view, 248–250, 256–258
overview, 242
setting up, 245–248
WWJ, 242–245

OpenGL scenes
3D chart scene, 228–236
overview, 209–212
RCP view, 241–242
refreshing, 241
rotating and moving, 236–240
setting up for, 212–219
wire cubes, 220–228

SWT, 209–211

A
<A> tag, 122
About dialog, 66
aboutImage property, 294
aboutText property, 294
absolute coordinate system, 175
AbstractLayoutAlgorithm class, 193
AbstractUIPlugin class, 22, 138
action bar advisor, 63
Action providers, 79
ActionBarAdvisor class, 61, 142
activator class, 54, 138, 284, 288
Activator.java file, 8

add() method, 111
Add branding option, 294
addBookmark() method, 48
addBookmark function, 48
addControlListener method, 221
addDisposeListener method, 221
addEntity() method, 195
addHyperlinkListener(IHyperlinkListener)

method, 117
Add-ons dialog, 297–298
addPages() method, 126
addRelationship()method, 195
addStandaloneView method, 105, 218
adjust method, 240
advisor classes

modifying, 70–71
RCP application, 61–63

allElements.xml file, 302
<anchor> element, 148
Apache Derby application, 263
Apache Tomcat servlet container, 269
APIs (application program interfaces), 3
appid parameter, 251
application argument, 298, 301
-application org.eclipse.equinox.p2.director.app.

application parameter, 299
application program interfaces (APIs), 3
application property, 294
ApplicationActionBarAdvisor class, 70–71, 162
ApplicationWorkbenchAdvisor class, 70
ApplicationWorkbenchWindowAdvisor class,

70–71
applyStateIterator() method, 251
appName property, 294
arch ${target.arch} argument, 13
archivePrefix property, 303, 315
Arguments tab, 13
-artifactRepository parameter, 298, 299
artifacts.xml file, 292
assemble phase, 305
automated updates

automated updates and builds exercise
building product headless, 314–322
features, creating, 305–306
publishing, 308–314
testing, 308–314
update site project, 306–308

Eclipse process
defining product, 292–294
grouping plug-ins, 295–296
overview, 291
update site project, 296

overview, 291

Index

INDEX326

product build automation with headless build
system

build configuration, 302–304
build phases, 304–305
overview, 300–302

Software Update UI tools
Add-ons dialog, 297–298
installing software from command line,

298–299
overview, 296–297

Available Software tab, 18, 298
Axis class, 229

B
 tag, 122
BarValue class, 212, 232
base parameter, 232
basearch command, 303
baseLocation property, 303, 315
basenl command, 303
baseos command, 303
baseURL attribute, 272
basews command, 303
Basic RCP Application page, 214
batch script, 322
beginTask() method, 88
bindings, 36–37, 209
bin.includes property, 305
BIRT (Business Intelligence and Report Toolkit)

OSGi console
extending, 283–285
generating reports, 285–289
report generator plug-in, 289

overview, 261
Report Designer

anatomy of, 263
creating reports, 264–268
installing, 262–263
overview, 261–262

Report Engine API
configuring, 276
IDataExtractionTask task, 277–278
IGetParameterDefinitionTask task, 278–279
IRenderTask task, 279–281
IRunAndRenderTask task, 282–283
IRunTask task, 282
overview, 275–276

servlet containers
deploying runtime, 269–270
JSP tag library, 272–274
overview, 269
report viewer servlet, 270

BIRT_RESOURCE_PATH parameter, 271
BIRT_VIEWER_DOCUMENT_FOLDER parameter,

271
BIRT_VIEWER_IMAGE_DIR parameter, 271
BIRT_VIEWER_LOCALE parameter, 271
BIRT_VIEWER_LOG_DIR parameter, 271
BIRT_VIEWER_MAX_ROWS parameter, 271
BIRT_VIEWER_SCRIPTLIB_DIR parameter, 271
BIRT_VIEWER_WORKING_FOLDER parameter,

272

<birt:param> tag, 272
<birt:paramDef> tag, 272
<birt:parameterPage> tag, 272
<birt:report> tag, 272
<birt:viewer> tag, 272–274
__bookmark parameter, 271
boolean doubleBuffer property, 210
boolean stereo property, 210
bootclasspath command, 304

 tag, 122
branding products, 65–66
build.bat file, 315
buildConfig file, 314–315
buildDir folder, 315
buildDirectory command, 303
buildDirectory folder, 314–315
buildfile argument, 301
buildId command, 303
buildLabel command, 303
build.properties file, 302, 305, 315
build.properties property, 314, 321
buildType command, 303
build.xml file, 302
BundleContext object, 9, 22–23
-bundlepool parameter, 300
bundles, defined, 3
Business Intelligence and Report Toolkit. See BIRT
business logic, 263

C
cancel() method, 84
Cascading Style Sheets (CSS), 6
category attribute, 147
category element, 29
category extension, 73
CDT (C/C++ Development Tools), 298
change listeners, job, 89
ChartScene class, 211, 233–236
ChartView class, 216
child EditParts, 176
city parameter, 251
class attribute, 26, 36, 94
Classic Models sample database, 263, 266
classpath dependencies, 218–219
ClearColor function, 222
CNF (Common Navigator Framework)

classes, 78
Common Navigator view

contributing to, 80–82
extending, 82–83

configuration, 79
file system navigator project

classes, 96–105
extension points, 94–96
project template, 93–94

overview, 77–78
collectingFolder command, 303
Color object, 5
ColumnLayout class, 107, 115
command line

building product headless from, 314–318
installing software from, 298–299

INDEX 327

commanded attribute, 37
commandID attribute, 36
CommandInterpreter interface, 283
command-line tool, 297
commands

plug-in, 35–38
RCP application, 73–75

Common Navigator Framework. See CNF
CommonNavigator class, 78
Commons Logging service, 18
CommonViewer class, 78
CompiledShape class, 212, 232
compute() method, 195
concurrency infrastructure

jobs
locks, 86
operations, 84
overview, 84
scheduling rules, 85–86
states, 84

overview, 83
virtual race example

job change listeners, 89
Job class, 87–88
job families, 89
overview, 86
progress reporting, 88
Race class, 89–92

config.ini file, 66
configs command, 303
configuration folder, 66, 292
configuration parameters, 303
Configuration tab, 142, 310
connection EditParts, 176–177, 183–184
ConnectionCreateCommand.java command, 185
ConnectionRequest class, 187
Console argument, 13
console command, 283
contains(ISchedulingRule rule) method, 85
content binding, 95–96
content EditParts, 176
Content extensions, 79
Content provider classes, 96
content providers, 101–104
Content trigger, 96
contentProvider attribute, 95
Contents plug-in, 157, 160–162
context help information, 150–154
contextId attribute, 37
contexts.xml file, 152
contributorClass attribute, 32
<control> tag, 123
controllers, defined, 176
core platform, 3–4
<country> element, 150
CreateConnectionRequest class, 187
createDataExtractionTask(IReportDocument)

method, 277
createExternalGLContext() method, 221
createFormContent() method, 126
createGetParameterDefinitionTask(IReport-

Runnable) method, 278

createPageComposite(shell) method, 132
createPalette() method, 190
createPartControl() method, 29, 50, 100, 109, 132,

137, 241, 250
createRenderTask(IReportDocument) method,

279
createRunAndRenderTask(IReportRunnable)

method, 282
createRunTask(IReportRunnable) method, 282
createToolBar() method, 137
createWindowContents() method, 128–129
CSS (Cascading Style Sheets), 6
CubeScene class, 237
CubesView class, 216
customAssembly.xml file, 302
customTargets.xml file, 302, 321
CVS repository, 318–322
CVSNT, 319
$CVSROOT/CVSROOT/passwd file, 320
$CVSROOT/CVSROOT/readers file, 320
/cvsroot/tools path, 197

D
Data Explorer view, 263–264, 267
data sources, defined, 263
Data Tools Platform (DTP), 263
Data transforms, 263
Dbasearch argument, 301
DbaseLocation argument, 301
Dbaseos argument, 301
Dbasews argument, 301
DbuildDirectory argument, 301
Dbuilder argument, 302
-Declipse.p2.data.area parameter, 300
default perspective

CNF classes, 104–105
GEF, 199
RCP application, 58–59, 70

delta pack, 68, 312–313
Dependencies tab, 10, 198, 309
Derby application, 263
DESCRIPTION style, 119
-destination parameter, 299
destroy()method, 288
<discovery> tag, 296
Display object, 104, 109
displayText attribute, 273
Djavacfailonerror argument, 301
DnD (drag-and-drop) functionality, 77
__document parameter, 271
doc.zip file, 146
doGet method, 12
Dpde.build.scripts argument, 301
drag-and-drop (DnD) functionality, 77
DragTracker class, 187
draw() method, 229
Draw2d, 173–175
drop-down menus, 112–113
DTP (Data Tools Platform), 263
Dynamic loading, 4
DYNAMIC_HELP action, 144

INDEX328

E
Earth navigator project

finding latitude and longitude, 251–255
flying to locations, 250–251
navigator view, 248–250, 256–258
overview, 242
setting up, 245–248
WWJ, 242–245

eclipse binary, 313
Eclipse Forms API. See Forms API
Eclipse IDE main menu, 144, 196, 264
Eclipse Modeling Framework (EMF), 263
Eclipse Rich Client Platform. See RCP
Eclipse Web Tools Platform (WTP), 49
Eclipse workbench, 2–6
ECLIPSE_HOME argument, 301
$ECLIPSE_HOME/plugins/org.eclipse.pde.

build_<version>/scripts folder, 302
ECLIPSE_HOME\plugins\org.eclipse.pde.

build_<version>\templates\headless-
build folder, 302, 321

eclipse.exe file, 292
eclipse.ini file, 292
eclipse-linux-sdk command, 299
eclipse.navigator.view view, 81
.eclipseproduct file, 292
eclipse-SDK command, 299
eclipseSDK1 command, 298
eclipseSDK2 command, 298
eclipse-SDK\eclipse-GANYMEDE command, 322
Edit Data Set window, 265
editors, 6, 31–32
EditPart component, 176–184
EditPartViewer component, 176
EditPolicy component, 176–177, 185–187
elementID placeholder, 320
elementType placeholder, 320
elementVersion placeholder, 320
Ellipse figure, 178
EllipticalShape class, 177
EMF (Eclipse Modeling Framework), 263
emitters, 279
Enable API Analysis check box, 54
EngineConfig class, 276
Equinox OSGi. See OSGi
Execution Environment drop-down menu, 54
expandable composites, 117–118
ExpandableComposite.addExpansionListener

class, 118
expansionStateChanged method, 118
extension points

adding to plug-ins
commands, 35–38
editors, 31–32
overview, 24–25
perspectives, 25–28
pop-up menus, 33–34
view actions, 29–30
views, 28–29

CNF, 94–96
defined, 4, 21
for RCP applications, 55–59
web browser plug-in exercise, 68–70

Extension Wizards tab, 24
extensions attribute, 179
Extensions tab, 10, 55
extradir attribute, 147

F
families, job, 89
features

creating, 305–306
defined, 24, 67, 291

features folder, 292, 315
feature.xml file, 24
fetch phase, 304
fetchTag command, 304
figures, 173
file attribute, 147, 153
FileBean class, 98–99, 102
filters, 79
findFigureAtExcluding(int x, int y, Collection

exclude) method, 175
findFigureAt(int x, int y, TreeSearch) method, 175
findFigureAt(Point p) method, 175
findFigureAt(x, y) method, 175
__fittopage parameter, 271
fitWithinBounds()method, 195
flyTo() method, 250–251
Font object, 5
Form class, 109
form text control, 121–124
<form> element, 122
format attribute, 272
Format Chart tab, 268
__format parameter, 271
FormAttachments class, 132
FormColors class, 114
FormEditor class, 126
form.getMenuManager().add(IAction) method,

112
form.getToolBarManager.add(IAction) method,

112
Forms API

appearance, 111–115
complex forms, 124–126
controls

common, 109–110
expandable composites, 117–118
form text control, 121–124
hyperlinks, 116–117
overview, 115
sections, 118–121

Mail Template exercise
mail view, 134–138
navigation view, 132–134
overview, 127
window contents, 129–132
workbench window, 128–129

overview, 107–109
Forms object, 107
FormText class, 119
FormToolkit class, 109
fragments, plug-in, 24
fragment.xml file, 296
/frameset URL mapping, 274

INDEX 329

G
GEF (Graphical Editing Framework)

EditPolicies, 185–187
figures, displaying, 175–176
overview, 175–176
palettes, 187–190
shapes example

Connection EditParts, 183–184
overview, 176–179
Shape EditParts, 180–183
Shapes EditPart factory, 179–180

generate phase, 304
genericTargets.xml file, 302
Geocoding API

creating layer navigator view with, 256–258
finding latitude and longitude with, 251–255

Geographic Names Information System (GNIS),
243

GET request, 251
getChildren() method, 99, 102
getConnectionCompleteCommand() method, 187
getConnectionCreateCommand() method, 187
getDefault() method, 64
getDefaultPageInput method, 81
getElements() method, 102
getFormColors() method, 115
getImageData method, 104
getImageDescriptor() method, 138
getInitialInput() method, 100
getMetaData() method, 277
getModelSourceConnections()method, 183
getModelTargetConnections()method, 183
getParent() method, 102
getParentBeans() method, 97
getParentBeans method, 102
getPartForElement()method, 180
getToolBarManager() method, 111
getView function, 48
GL Cubes View class, 216
GL drawables, 210
GL_AMBIENT value, 236
GL_DIFFUSE value, 236
GL_POSITION value, 236
glBlendFunc parameter, 235
GLCanvas class, 209
glColorMaterial parameter, 236
GLContext class, 226
GLData class, 209
glEndList class, 228
gljava binding, 211
glLightfv parameter, 236
Global actions, 63
Globe object, 243, 250
GLScene class, 211, 220–224
GLScene constructor, 220
gluNewQuadric parameter, 235
gluQuadricNormals parameter, 235
GLUT (OpenGL Utility Toolkit), 222, 227
GLUT class, 212, 227
GNIS (Geographic Names Information System),

243
GNU General Public License, 319
gradient colors, 114–115

Graph Editor product file, 206
Graph object, 191, 204
Graph1View class, 202
GraphConnection component, 191
Graphical Editing Framework. See GEF
graphical user interface (GUI) toolkit, 4
GraphicalNodeEditPolicy class, 185, 187
graphics. See 2D graphics; 3D graphics
GraphNode component, 191
GridLayout class, 134
GridLayoutAlgorithm class, 193
GUI (graphical user interface) toolkit, 4

H
handleEvent(Event) method, 237
Handler class, 309
handlers, 35–36, 73–75
hasChildren() method, 99, 102
headless build system

defined, 291
example

from command line, 314–318
from CVS repository, 318–322

product build automation with, 300–305
build configuration, 302–304
build phases, 304–305
overview, 300–302

height attribute, 273
height parameter, 232
Hello RCP template, 214
Help command, 15, 309
Help menu, 162–163
help system

configuring product to use, 141–144
content, adding, 144–150
context help support, adding, 150–154
customizing, 154–156
infocenters, creating, 156–169
overview, 141

HELP_CONTENTS action, 144
HELP_DATA property, 155
HELP_SEARCH action, 144
helpData.xml file, 155
hit testing, 175
HorizontalTreeLayoutAlgorithm class, 193
href attribute, 123, 147, 149
HTML (Hypertext Markup Language), 6
html content directories, 162
html folder, 146
HTMLCompleteImageHandler class, 280
HTMLRenderOption class, 279
HTMLServerImageHandler class, 280
HTTP response content, 49
hyperlinks, 116–117
Hypertext Markup Language (HTML), 6

I
IAdaptable interface, 83, 97
icon attribute, 26
id attribute, 26, 28, 35, 38, 94–95, 179, 272–273
__id parameter, 271
IDataExtractionTask task, 277–278
IDE (integrated development environment), 1

INDEX330

IDs drop-down menu, 66
IFigure interface, 175
IFile class, 33
IFormColors.H_BOTTOM_KEYLINE1 constant,

114
IFormColors.H_BOTTOM_KEYLINE2 constant,

114
IFormColors.H_GRADIENT_END constant, 114
IFormColors.H_GRADIENT_START constant, 114
IFormColors.TITLE constant, 114
IGetParameterDefinitionTask task, 276, 278–279
IHyperlinkListener interface, 117
IJobChangeListener interface, 89
Image object, 5
 tag, 122
INavigatorContentService class, 78
includes statement, 81, 96
index file, help system, 148–149
infocenter exercise

Contents plug-in, 157–162
customizing, 168–169
help system dependencies, 163–164
Infocenter plug-in

adding Help menu to, 162–163
adding product configuration file to, 159–160
creating, 158–159
deploying, 166
testing, 164–166

overview, 156
splitting documentation into topic HTML/

XHTML files, 156–157
starting from command line, 166–168

Infocenter folder, 159
initGL() method, 221, 225
initGLContext method, 221
initialize method, 81
inputChanged() method, 102
install {URL} command, 15
Installed Software tab, 298
-installIU parameter, 299
int alphaSize property, 210
int blueSize property, 210
int greenSize property, 210
int redSize property, 210
int stencilSize property, 210
integrated development environment (IDE), 1
interface org.eclipse.draw2d.IFigure plug-in, 174
internationalization, help system, 150
IRenderOption interface, 286
IRenderTask interface, 276, 279–281
IReportEngineFactory class, 276
IRunAndRenderReportTask interface, 276
IRunAndRenderTask interface, 276, 282–283, 286
IRunTask interface, 276, 282
isCanceled() method, 88
isConflicting() method, 85–86
isDirectory() method, 98
isHostPage attribute, 272
__isnull parameter, 271
iText application, 263
IViewActionDelegate interface, 30
IWorkbenchPage.VIEW_ACTIVATE argument, 75
IWorkbenchWindowConfigurer class, 128

J
Java development tools (JDT), 4
Java EE server, 269
Java Native Interface (JNI), 209
Java OpenGL (JOGL), 211
Java resource bundles, 296
Java Runtime Environment (JRE), 54
Java Virtual Machine (JVM) environment, 3
javacDebugInfo command, 304
javacFailOnError command, 304
javacSource command, 304
javacTarget command, 304
javacVerbose command, 304
java.io.File object, 98
javax.servlet.http.HttpServlet class, 12
JDT (Java development tools), 4
JFace toolkit, 5
JNI (Java Native Interface), 209
Job class, 84, 87–88
JobChangeAdapter argument, 89
jobs, 84–86
JOGL, 211–212, 218–220, 228, 236, 240–242
JOGL (Java OpenGL), 211
join() method, 84
JRE (Java Runtime Environment), 54
JSP tag library, 269, 272–274
JVM (Java Virtual Machine) environment, 3

K
key bindings, 73–75
KeyListener listener, 237
keyPressed method, 240

L
label attribute, 147
labelProvider attribute, 95
<language> element, 150
Launch an Eclipse application link, 67, 200
Layer interface, 244
Layout view, 264–265, 267–268
left attribute, 273
legacy update manager, 297
 tags, 122
<license> tag, 295
Lightweight Java Game Library (LWJGL), 211
<link> element, 148
list argument, 228
local actions, 63
__locale parameter, 271
localhost property, 322
location parameter, 251–252
LocationListener class, 49
locationURI attribute, 38, 72
locks, 86
log4j.properties file, 16
logging services, 16–18
LWJGL (Lightweight Java Game Library), 211

M
Mail Template exercise

mail view, modifying, 134–138
navigation view, modifying, 132–134

INDEX 331

overview, 127
window contents, customizing, 129–132
workbench window, customizing, 128–129

makeActions method, 142
managed forms, 124
MANIFEST.MF file, 4, 8, 23, 59, 166
manifests, 23–24
<mapping> element, 270
mapsRepo property, 321
mapVersionTag command, 303
master/details form, 125
__masterpage parameter, 271
menu bar, updating, 142–144
menu contributions, 37–38
menu extension points, 72–73
messages, 113–114
-metadataRepository parameter, 299
metadataRepository property, 298
minimized attribute, 28
mipmaps, 231
mode argument, 228
model, 83, 176
Model interface, 244
model-view-controller (MVC) architecture, 5, 175
mouseDown method, 237, 240
MouseEvents class, 236
mouseMove() method, 237, 240
MouseMoveListener listener, 237
mouseUp method, 237, 240
moving scenes, 236–240
Mozilla Rhino application, 263
multipage editors, 125–126
MVC (model-view-controller) architecture, 5, 175

N
name attribute, 26, 29, 35, 94–95, 273
National Geospatial-Intelligence Agency, 243
__navigationbar parameter, 271
navigator class, 96, 99–101
navigator root, 97
navigator view, 132–134, 246–247, 256–258
NavigatorActionService class, 78
NavigatorRoot class, 100, 102
New Extension wizard, 24
New Production Configuration wizard, 65
new Separator(IWorkbenchActionConstants.MB_

ADDITIONS) action separator, 47
NewAction class, 33
newBrowser command, 73
NewBrowserHandler class, 74
nl ${target.nl} argument, 13
nl directory, 294
NO_LAYOUT_NODE_RESIZING constant, 205
NONE state, 84

O
objectContribution menu, 33
Open Perspective dialog, 26
OpenGL scenes

3D chart, 228–236
overview, 209–212
RCP view, 241–242
refreshing, 241

rotating and moving, 236–240
setting up for, 212–219
wire cubes, 220–228

OpenGL Utility Toolkit (GLUT), 222, 227
OpenGL.product file, 310, 313
openIntro method, 62
openReport methods, 275
openReportDesign() method, 277
openReportDocument() method, 277
operations, job, 84
ORDERDETAILS tables, 267
org.eclipse,jface.viewers.IContentProvider inter-

face, 121
org.eclipse.birt.chart.device.pdf package, 285
org.eclipse.birt.chart.device.svg package, 286
org.eclipse.birt.chart.engine package, 286
org.eclipse.birt.chart.runtime package, 285
org.eclipse.birt.core package, 285
org.eclipse.birt.report.data.oda.sampledb package,

285
org.eclipse.birt.report.engine package, 285
org.eclipse.birt.report.engine.emitter.html pack-

age, 286
org.eclipse.birt.report.engine.emitter.pdf package,

286
org.eclipse.birt.report.engine.emitter.postscript

package, 286
org.eclipse.birt.report.engine.emitter.ppt package,

286
org.eclipse.birt.report.engine.emitter.prototype.

excel package, 286
org.eclipse.core runtime plug-in, 2
org.eclipse.core.command.AbstractHandler exten-

sion point, 36
org.eclipse.core.runtime plug-in, 3
org.eclipse.core.runtime.applications extension

point, 57, 195
org.eclipse.core.runtime.jobs.ISchedulingRule

interface, 85
org.eclipse.core.runtime.products extension point,

195, 292, 294
org.eclipse.core.runtime.products file, 168
org.eclipse.equinox.app.IApplication class, 57
org.eclipse.equinox.http.registry.servlets extension

point, 6
org.eclipse.equinox.launcher_<version>.jar argu-

ment, 301
org.eclipse.gef.examples.flow extension point, 196
org.eclipse.gef.examples.logic extension point, 196
org.eclipse.gef.examples.shapes plug-in, 174, 176,

196
org.eclipse.gef.examples.shapes.ShapesEditor

class, 179
org.eclipse.help.base/banner property, 156
org.eclipse.help.base/banner_height property, 156
org.eclipse.help.base/help_home property, 156
org.eclipse.help.contexts extension point, 151,

152–153
org.eclipse.help.index extension point, 146
org.eclipse.help.standalone.Infocenter class, 166
org.eclipse.help.toc extension point, 146, 162
org.eclipse.jdt.ui.PackageExplorer view, 28
org.eclipse.opengl.GLCanvas class, 210

INDEX332

org.eclipse.opengl.GLData class, 210
org.eclipse.osgi plug-in, 3
org.eclipse.osgi.framework.console.Command-

Provider interface, 283
org.eclipse.releng.eclipsebuilder plug-in, 300
org.eclipse.swt.awt package, 245
org.eclipse.swt.events.MouseAdapter class, 236
org.eclipse.swt.opengl package, 209
org.eclipse.swt.program.Program class, 104
org.eclipse.ui plug-in, 2
org.eclipse.ui.actions.ActionFactory class, 144
org.eclipse.ui.bindings extension point, 35–36
org.eclipse.ui.commands extension point, 35, 308
org.eclipse.ui.editors extension point, 31
org.eclipse.ui.file.exit command, 73
org.eclipse.ui.forms.events.HyperlinkAdapter

class, 117
org.eclipse.ui.handlers extension point, 35
org.eclipse.ui.help.aboutAction command, 73
org.eclipse.ui.menus extension point, 35, 37
org.eclipse.ui.navigator plug-in, 199
org.eclipse.ui.navigator.CommonNavigator class,

78–80, 83, 93
org.eclipse.ui.navigator.navigatorContent exten-

sion point, 83
org.eclipse.ui.navigator.resourceContent view, 81
org.eclipse.ui.navigator.resources plug-in, 77, 80,

199
org.eclipse.ui.navigator.resources.linkHelper

extension, 81
org.eclipse.ui.navigator.viewer extension point,

83, 196
org.eclipse.ui.newWizards extension point, 196
org.eclipse.ui.perspectives extension point, 26, 39,

58, 70, 196
org.eclipse.ui.PlatformUI class, 58
org.eclipse.ui.popupMenus extension point, 33
org.eclipse.ui.views extension point, 28–29, 39, 94,

196, 216
org.eclipse.update.ui dependency, 309
org.eclipse.zest.examples extension point, 196
org.eclipse.zest.examples plug-in, 200
os ${target.os} argument, 13
OSGi

commands, 15–16
creating plug-in, 9–12
logging services, 16–18
overview, 3, 6
report generation from, 283–289
starting plug-in project, 6–8
testing plug-in, 12–14

OSGi manifest, 4, 59–60
osgi.noShutdown argument, 13
output format, 283
output parameter, 251
Overview tab, 310
__overwrite parameter, 271

P
<p> tag, 122
p2 folder, 292
-p2.arch parameter, 300
-p2.os parameter, 300

-p2.ws parameter, 300
package phase, 305
packaging products, 67–68
__page parameter, 271
pageNum attribute, 273
__pagerange parameter, 271
paint() method, 175
paintBorder() method, 175
paintChildren() method, 175
paintClientArea() method, 175
paintFigure() method, 175
Palette factory, 177
Palette view, 264–265, 267
palettes, GEF, 187–190
pattern attribute, 272
PDE (Plug-in Developer Environment), 4
PDFRenderOption class, 279–280
Perspective class, 58, 97
perspective extension point, 39–40
perspective factory, 40, 96
Perspective.java class, 218
perspectives, 6, 25–28
placement attribute, 38
Platform core mechanism, 296
PlatformObject class, 83, 97
PlatformUI.createAndRunWorkbench(Display,

 ApplicationWorkbenchAdvisor) class, 61
plugin attribute, 153
plug-in class, 22–23, 63–65
Plug-in Content page, 53, 144, 196
Plug-in Developer Environment (PDE), 4
plug-in fragments, 24
plug-in manifest, 4, 60–61
Plug-in Name field, 53
Plug-in Options section, 8
Plug-in Project wizard, 6, 144, 157, 294
Plug-in Provider field, 54
Plug-in Version field, 53
plugin_customization.ini file, 154, 156, 168–169, 294
<plugin> tag, 296
plugin.properties mechanism, 296
plug-ins

defined, 4
Eclipse model, 21–24
extension points

commands, 35–38
editors, 31–32
overview, 24–25
perspectives, 25–28
pop-up menus, 33–34
view actions, 29–30
views, 28–29

OSGi console, 9–14
overview, 21
web browser plug-in exercise

content, 41–48
enhancing, 49–50
overview, 38–39
perspective extension point, 39–40
perspective factory, 40
testing, 48
views, 41–48

Plug-ins and Fragments section, 142

INDEX 333

plugins folder, 292, 315
plugin.xml file, 23, 59, 63, 151–152, 218, 247
pop-up menus, 33–34
position attribute, 273
postBuild phase, 305
postWindowCreate method, 62
postWindowOpen method, 62
postWindowRestore method, 62
preBuild phase, 304
preferenceCustomization property, 168, 294
preWindowOpen() method, 62, 128
preWindowShellClose method, 62
primary attribute, 147
process phase, 305
product build automation, 300–305
product configuration file, 75, 159–160
product property, 315
ProductCatalog.rptdesign report, 270
production configuration, 214–216, 246
PRODUCTLINE table, 267
PRODUCTS table, 267
-profile parameter, 300
progress reporting, 88
projects, defined, 6
Property Editor view, 264
PropertyChangeListener interface, 183
provisioning updates, 297

Q
quad parameter, 232
quadrics, 231
qualifiers, 53

R
race() method, 92
Race class, 89–92
RaceRunner class, 88
ratio attribute, 28
RCP (Rich Client Platform)

applications
advanced graphics editor exercise, 195–200
advisor classes, 61–63
branding, 65–66
defining, 65–66
Earth navigator project, 246
extension points for, 55–59
features, 67
OpenGL scenes, 212–214
OSGi manifest, 59–60
overview, 53
packaging, 67–68
plug-in class, 63–65
plug-in manifest, 60–61
testing, 67–68
web browser plug-in exercise, 68–75

architecture
core platform, 3–4
Eclipse workbench, 6
Equinox OSGi, 3
JFace, 5
overview, 2
SWT, 4–5

benefits of, 1–2

versus Eclipse workbench, 2
OSGi console

commands, 15–16
creating plug-in, 9–12
logging services, 16–18
overview, 6
starting plug-in project, 6–8
testing plug-in, 12–14

overview, 1
RCP view, 241–242
rcp.example.mail.MailApplication class, 56–57
Rectangle figure, 178
RectangularShape class, 177
Refresher class, 211
refreshing scenes, 241
refreshVisuals() method, 180, 183
register method, 89
relationship attribute, 28
relative attribute, 28
relative coordinate system, 175
release engineering project, 320–321
render() method, 241
RenderOptionBase class, 280
_report command, 285
report design, 283
Report Designer

anatomy of, 263
creating reports, 264–268
installing BIRT, 262–263
overview, 261–262

Report Engine API
configuring, 276
IDataExtractionTask task, 277–278
IGetParameterDefinitionTask task, 278–279
IRenderTask task, 279–281
IRunAndRenderTask task, 282–283
IRunTask task, 282
overview, 275–276

__report parameter, 271
report viewer servlet, 270
reportContainer attribute, 273
reportDesign attribute, 273
reportDocument attribute, 273
ReportGenerator() method, 288
ReportGenerator.java class, 285–286, 288
<repository path> tag, 320
Resource encapsulator, 96
resource management, 4
resourceFolder attribute, 273
__resourceFolder parameter, 271
Rhino application, 263
Rich Client Platform. See RCP
-roaming parameter, 300
root EditParts, 176
rotating scenes, 236–240
__rtl parameter, 271
run() method, 84, 86, 241
runAndRender(String designDocPath, String

outFileName, String outFormat, String
params) method, 288

RUNNING state, 84
runtime kernel, 2
runtime plug-in model, 4

INDEX334

S
SalesInvoince.rptdesign report, 274
sample.actions.ViewActionDelegate1 class, 30
sample.views.SampleView view, 28
SceneController interface, 244
SceneGrip class, 211, 226, 236–237
schedule() method, 84, 92
scheduling rules, 85–86
scheme attribute, 38
schemeId attribute, 37
ScrolledForm control, 109
scrolledForm.reflow(true) method, 118
scrolling attribute, 273
SDK (Software Development Kit), 4
sections, 118–121
Section.TWISTIE state, 121
Select Data tab, 268
<selection> element, 179
sequence attribute, 37
servlet containers, 269–274
<servlet_params> element, 270
setLayoutData() method, 133
setShow* methods, 128
setTarget()method, 187
shape EditParts, 177, 180–183
Shape instances, 183
ShapeEditPart class, 178, 183
Shapes EditPart factory, 177, 179–180
ShapesCreationWizard class, 179
ShapesEditPartFactory class, 178
ShapeTreeEditPart class, 178
ShapeTreeEditPartFactory class, 178
showParameterPage attribute, 273
showView() method, 75
shutdown() method, 276
skipFetch property, 321
skipMaps property, 321
sleep() method, 84
SLEEPING state, 84
slices parameter, 232
Software Development Kit (SDK), 4
Software Update Manager, 18
Software Update UI tools

Add-ons dialog and, 297–298
installing software from command line, 298–299
overview, 296–297

Software Updates command, 309
Software Updates menu, 308–312
 tag, 122
splash screen, 66, 294
splash.bmp file, 66, 294
splitParams(String queryString) method, 288
SpringLayout object, 195
SpringLayoutAlgorithm class, 194–195
ss command, 15
stacks parameter, 232
Standard Widget Toolkit (SWT), 4–5, 211–212,

218–220, 228, 236, 240–242
start [<id>|<name>] command, 15
start method, 23, 58
startupForegroundColor property, 294
startupMessageRect property, 294
startupProgressRect property, 294

state parameter, 251
states, job, 84
stop [<id>|<name>] command, 15
stop method, 23
street parameter, 251
StyledText widget, 124
SWT (Standard Widget Toolkit), 4–5, 211–212,

218–220, 228, 236, 240–242
SWT graphics context (GC), 174
SWT.WRAP style, 124
system jobs, 92

T
table of contents (TOC), 144–146
TableWrapLayout class, 107, 115, 132, 134, 137
target application, 298–299
Target Platform, 12
targetID view, 27, 29
Templates page, 144, 196
testing

advanced graphics editor exercise, 206
automated updates and builds exercise,

308–314
Infocenter plug-in, 164–166
RCP applications, 67–68
via OSGi console, 12–14
web browser plug-in exercise, 48

timestamp command, 303
title attribute, 149, 273
__title parameter, 271
TOC (table of contents), 144–146
TOC file, 147–148, 160–162
<toc> element, 147, 162
toc.xml file, 166
Tomcat servlet container, 269
TOMCAT_HOME/webapps folder, 270
toolbar extension points, 72–73
__toolbar parameter, 271
toolbars, 111–112
toolkit = new FormToolkit(getFormColors(Dis-

play)) method, 115
toolkit.createTree() method, 133
toolkit.paintBordersFor(text.getParent()) method,

109
top attribute, 273
top parameter, 232
topic attribute, 147
<topic> element, 147
TopNPercent.rptdesign class, 289
toString()method, 98
TOTAL SALES column header, 268
trapping HTTP response content, 49
TreeGraphView class, 202
TreeLayoutAlgorithm class, 193, 205

U
UI (user interface) concepts

CNF
classes, 78
configuration, 79
overview, 77–78
using, 79–83

INDEX 335

concurrency infrastructure
jobs, 84–86
overview, 83
using, 86–92

file system navigator project
classes, 96–105
extension points, 94–96
overview, 93
project template, 93–94

overview, 77
uninstall [<id>|<name>] command, 15
unpack attribute, 296
update site, 291, 306–308, 313–314
<update> tag, 295
Updates Category command, 309
UpdatesHandler class, 309
URL bookmarks, 50
<url> tag, 295
user interface concepts. See UI concepts
User jobs, 92
<user_params> element, 270

V
validate() method, 174
value attribute, 273
-version parameter, 299
view actions, 29–30
View class, 241, 250
View Example link, 270
View interface, 244
View toolbar, 47
viewerActionBinding element, 83
viewerContentBinding element, 81, 83
viewerContribution menu, 33
views

adding, 28–29, 41–48
creating, 216–218
defined, 6

W
W3C (World Wide Web Consortium), 115
WAITING state, 84
wakeUp() method, 84
WAR archive, 270
web browser plug-in exercise

content, 41–48
enhancing, 49–50
overview, 38–39
perspective extension point, 39–40
perspective factory, 40

RCP application for, 68–75
testing plug-in, 48
views, 41–48

Web Browser widget, 46–47
Web Standard Tools (WST), 263
Web Tools Platform (WTP), 49
WebBrowserPerspective class, 70
WebBrowserView.java file, 49
WEB-INF/tlds directory, 274
WEB-INF/tlds/birt.tld file, 274
web.xml file, 274
width attribute, 273
windowImages property, 294
wire cubes scene, 220–228
wireCube() method, 227
wizard extension, 179
workbench window advisor, 61–62, 128–129
WorkbenchAdvisor class, 61, 81
WorkbenchWindowAdvisor class, 61–62, 92
WORKING_FOLDER_ACCESS_ONLY parameter,

272
workspaces, defined, 6
World Wide Web Consortium (W3C), 115
World Wind Java (WWJ), 242–248
World Wind SDK, 242
WorldWindow interface, 243
WorldWindowGLCanvas class, 243, 245
ws ${target.ws} argument, 13
WST (Web Standard Tools), 263
WTP (Web Tools Platform), 49
WWJ (World Wind Java), 242–248

X
XYLayoutManager class, 183

Y
Yahoo Geocoding API

creating layer navigator view with, 256–258
finding latitude and longitude with, 251–255

YGeoSearch class, 252

Z
Zest

components of, 191–192
layouts, 193–195
overview, 190–191
plug-in, 200–206

zip parameter, 251
zipargs command, 304

