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Preface

Driven by the need of reducing the defective circuits to a minimum,
present-day fabrication technologies require design techniques been comple-
mented by effective test procedures. In the case of digital ICs, there are many
procedures to cope with test problems in an effective manner. However, ana-
log integrated circuits or the analog part of a mixed-signal integrated circuit
bring enormeous difficulties when dealing with the problem of how to test
them adequately.

Analog circuits are difficult to test because there is a wide variety of analog
building blocks, their specifications are very broad, and there is a strong
dependency of circuit parameters on component variations. For mixed-signal
ICs, where analog circuits must coexist with digital components, testing
difficulties increase substantially because the access to both analog and digital
blocks is severely restricted. The consequences are a reduced fault coverage, a
higher test application time and a longer test development time.

In mixed-signal IC’s, the most difficult components to test are the analog
cores, since analog test is based on checking functional specifications, what
can be conflicting when test time has to be kept small, the number of available
pins is reduced and full access to input/output core terminals can not be
granted. Furthermore, functional test techniques greatly differ depending on
the involved analog components and/or their application field, turning almost
impossible to define a general (functional) test methodology applicable to any
analog block.

Experience forged from the test of digital circuits encourages researchers
to try structural or fault-driven test methods for analog components and
explore Built-In Self-Test (BIST) alternatives as well. This has to be done in a

Xiii



Xiv Preface

manner that increases accessibility to provide core isolation and test resources
access, but it might have a high cost in terms of area overhead, power wasting,
performance degradation and/or noise and parasitic penalties. But neither
moving from functional to structural testing nor incorporating BIST are trivial
issues in what analog circuitry is concerned, and are still far from a wide
acceptance by the designer community. This acceptance will depend on
several factors like compatibility with functional test approaches, test
efficiency, test confidentiality and additional design effort.

Among the emerging structural test solutions, the so-called Oscillation-
Based Test (OBT) technique is very appealing. It is conceptually simple, does
not demand strong circuit modifications during testing and can handle BIST
(called in this case OBIST) without the penalty of dedicated, additional on-
chip signal generation hardware. In broad terms, when OBT is employed no
external test stimuli are required, some few simple measurements are used,
and can be combined with a multiplexing scheme to probe internal nodes, thus
complying with some of the factors above.

The purpose of this book is to provide the reader with a deep
understanding of OBT and OBIST. The basic concepts underlying OBT/
OBIST are presented, as well as the principles for applying this test
methodology to complex integrated circuits. Detailed examples and practical
implementation details are provided throughout the book in order to help the
interested engineer to evaluate whether this technique may or may not be used
for a particular appliaction. Our aim is to provide the reader with an overview
of the lights and shadows this test technique offers nowadays.

Chapter 1 focuses attention on a mixed-signal structural testing method-
ology called Oscillation-Based Test (OBT). The state-of-the-art is reviewed,
given an overview of the past, the present and the future expectations of this
test method. The goal of this Chapter is to define the basics of a new improved
OBT concept and overcome some of its main limitations.

Chapter 2 describes a simple, practical and intuitive mathematical
approach to model the oscillators required in the OBT strategy: the Describing-
Function (DF) technique. The aim of this Chapter is to provide an acceptable
theoretical OBT solution which allows us to accurately predict the oscillation
parameters.

Chapter 3 discusses a systematic way to apply the OBT approach to dis-
crete-time filters. A particular discrete-time filter structure (the Fleischer and
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Laker (FL) biquad) is studied in detail. The objective of this Chapter is to
extrapolate the obtained conclusions in order to establish general guidelines
for employing OBT to generic discrete-time filter structures.

Chapter 4 discusses a systematic way of applying the OBT approach to
discrete-time Sigma-Delta (£A) modulators. The goal of this Chapter is to
establish conclusions defining a general OBT procedure for generic discrete-time
YA modulators.

Chapter 5 reviews the OBT implementation in some practical discrete-time
filter examples. A generic biquadratic filter is studied using both, symbolic
expressions and specific numerical data. The aim of this Chapter is to extract
conclusions on the establishment of the test parameters, the validation of the
oscillator model, the fault coverage, the test quality, etc.

Chapter 6 presents some practical considerations for the application of the
Oscillation-Based Built-In-Self-Test (OBIST) to a Dual-Tone Multi-Frequency
(DTMF) embedded macrocell. The objective of this Chapter is to describe an
example of the integration of the OBT-OBIST technique into the frame of
analog-core-based design of complex mixed-signal ICs.

Chapter 7 reports experimental results extracted by two circuit demon-
strators in which the OBT/OBIST approach has been implemented. The aim
of this Chapter is to experimentally validate the OBT/OBIST methodology in
mixed-signal ICs.

J.L. HUERTAS DiAz
Instituto de Microelectronica de Sevilla



Chapter 1

Oscillation-Based Test Methodology

Basic concepts and state of art

IN MIXED-SIGNAL ICs, where analog blocks coexist with digi-

tal components and where there is a restricted access to both analog and
digital parts, an efficient testing of the entire mixed-signal circuit is currently
considered as a challenging task, specially as the complexity of the analog
portion of the chip increases. Consequently, testing is a determining factor in
the final product cost, and may compromise the economical feasibility of
future System-on-Chip markets. These last years, analog testing methods
have been object of study for many researchers [1]-[98], [130], in such a way
that different types of test techniques and strategies have been proposed and
diverse Design-for-Testability (DfT) procedures (in conjunction with these
mentioned test techniques) have been employed.

This Chapter focus its attention on an analog testing methodology called
Oscillation-Based Test (OBT). In particular, the first part of the Chapter
reviews the beginnings of the OBT concept, highlighting its main advantages
and shortcomings. Then, a second part is devoted to define a more general and
practical OBT approach which can be successfully applied to a large number
of systems and then, accepted as a good test solution by the test community.

1.1 LINKING OSCILLATION WITH TESTING

1.1.1 Point of origin: Early OBT

The idea of using built-in self-oscillations to determine faulty behaviours
in systems is a relatively new test strategy dating from 1995 [1]-[3], when
Karim Arabi and Bozena Kaminska established the basic definitions of a test
methodology they called “Oscillation-Based-Test” or simply OBT. Since
then, the OBT concept has been interpreted in different manners in such a way
that several Oscillation-Based-Test Methologies can be found in the literature
[1]-[31, [5], [8]-[11], [13]-[15], [21], [25]-[41], [49]-[53], [96]-[98].



2 OBT in Mixed-Signal Circuits

Fig. 1.1 displays a graphical description of the OBT method presented in
[1] and Table 1.1 reviews its basic principles, summing up the main steps to
apply this technique. Basically, this approach can be applied to analog and
mixed-signal circuits and is based on splitting any (complex) System Under
Test (SUT) in simpler functional building blocks which are separately tested
(Step_1). During the test mode, each of these Blocks Under Test (BUTs) is
converted in an oscillator (Step_2). When there is no fault in the BUT, the
oscillator inherently produces a test output signal whose oscillation frequency
is related to the fault-free structure of the specific BUT, in a way that its value
(within a tolerance margin) may be considered as the test parameter (Step 3).
So, a fault in a component of such a block could be detected by measuring the
oscillation frequency and by checking out whether it deviates from its
expected nominal value (Step_4). That means, discrepancies between the
measured oscillation frequency of a BUT and its previously estimated nominal
value indicate potential faults.

Step_1:

| BUT #1 ‘ ‘ BUT #5 ‘

SUT BUT #2
BUT #4
BUT #3 o o BUT #N

|BUT #(N-1)

BUT #6
BUT #j

Step_2: Step_3:
hl AVAVAVAY: AVAVAYAY
g I:> Oscillatorj4> Oscillatorjib
Test Information: fosc‘.
]
f Step_4:

osc‘.
]

experimental

e

Block to compare | Fault or Faulty!!
(on-chip or off-chip) >

f
osc‘.

]

theoretical

Figure 1.1: OBT Approach
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Step 1  Rearranging the SUT into BUTs easier to test.

Step 2 Transforming each BUT (or a combination of these BUTSs) into an oscillator producing an
oscillatory output signal whose frequency value, f,, is related to the BUT internal structure.

Step 3 Measuring the oscillation frequency.

Step 4  Detecting a fault when the measured oscillation frequency deviates from the nominal fre-
quency.

Table 1.1: Steps to apply the Arabi and Kaminska OBT approach [1]

The idea behind Arabi and
Kaminska’s OBT technique
involves the operation of

converting the structure of

every BUT into an oscillator

by modifying its internal cir-

cuitry. Arabi and Kaminska
Lo _ propose several mechanisms
to do that. Among them, one

Figure 1.2: Converting a BUT in an oscillator )
of the most efficient meth-

ods! employs a feedback loop including a transfer function F loop and an

adder (Fig. 1.2). The resulting closed-loop system is an oscillator, Fg.,

[100], [104]. However, this scheme only can be successfully applied to
convert second-order active filters into oscillators by making the quality
factor, Q, infinite. That is -from a mathematical point of view- shifting the
system poles to the imaginary axis [100].

On the other hand, the oscillation test strategy presented by Arabi and
Kaminska, introduces, likewise, a test structure at system level as a general
solution for the application of the OBT concept as a DfT technique [1], [7]. In
the test mode, analog multiplexers sort out the oscillatory output of the BUTs
and their involved frequencies are evaluated and interpreted either externally,
using a suitable test equipment, or internally using, for example, a frequency
to number converter.

1. Another solution proposed by Arabi and Kaminska was, for example, to use heuristic circuit techniques

to build up an oscillator from the original BUT.



4 OBT in Mixed-Signal Circuits

Fig. 1.3 displays a version of the OBT structure proposed by Arabi and
Kaminska [1], [7]. In this proposal, the Control Test Mode Signals configure
the system in its test mode, but before starting the test procedure, the test cir-
cuitry is checked out by activating the Control Self-Test Mode Signals. Other
Control Signals are introduced, if necessary, to regulate the Evaluation and
Interpretation Unit. Such a unit either consists of an external block or is
embedded into the on-chip test circuitry. In any case, the Control Logic Block
is fed by the corresponding output of this unit.

Basically, the Evaluation and Interpretation Unit converts the oscillation
frequency of each test output signal into a representative number. Then, the
Control Logic Block compares such a representative number to a previously
calculated nominal number. A fault occurs when the representative number
deviates from the given, nominal number. Obviously, a very delicate issue
here is the accurate establishment of the frequency nominal number and its
tolerance.

_ SYSTEM UNDER TEST

T
— Outputs
e— — — — -| Building Block #N —

v
Inputs — —
——»| Building Block #1 Building Block #2

,,,,,,,,,,,,,,,, CONTROL LOGIC BLOCK
Control Test Mode Signali v v .
Lgl 1
Additional Analog Command . Test Result
Control Self-Test Mode Signali ' Cireuitry Multiplexer Logic < - 1
» - - 777777777777“
Control Signali : Frequency External ‘ I
g to Number Test Equipment || |
' Converter

EVALUATION AND INTERPRETATION UNIT
Figure 1.3: Basic OBIST structure

The OBT methodology is very appealing to ease the testing problems
mainly due to four reasons:

1.- Test Signal Generation: the test signals are internally generated. It
avoids specific hardware from a tester or dedicated resources on chip, eluding
the problem of generating the test vectors. Moreover, this property is more
important as the effectiveness of many testing methods is severely based on
the choice of appropriate test vectors. Mainly, as the complexity of the SUT
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increases, the problem of producing suitable test vectors (guaranteeing a high
fault coverage) even becomes more crucial. The time employed in the process
of selecting a satisfactory set of excitation signals has to be added to the
whole test time. Therefore, this vector-less test method represents an
improvement not only because eliminates the problem associated with the
complexity of the test vector generation but also because the time savings
implicit in this test generation process.

2.- Test Evaluation: a simple measurement is used, the oscillation
frequency. In this case, the test reference value is a frequency which can be
easily transformed to a number, minimizing the accuracy degradation, making
easier the test signature evaluation, and removing, likewise, the error sources
in the testing process related to the determination of voltage references and
signatures. Consequently, due to the digital nature of the oscillation frequency,
it can be easily interfaced to boundary scan devices and additionally, can be
combined with a multiplexing scheme to probe internal nodes.

3.- Test Time: the test time is reduced due to the fact that only a limited
number of oscillation frequencies has to be evaluated for each BUT (at least
as might seem at a first glance, if the start-up time is not taken into account).

4.- Extension to BIST: the OBT approach can be easily extended to BIST
since this method does not require specific external test stimuli generators and
application procedures and, as any digital output test strategy, it can be simply
integrated with test methods dedicated to the digital part of the chip.

But in spite of the above advantages, there are several practical drawbacks
limiting the OBT applicability. These shortcomings refer, mostly, to the prac-
tical modifications needed for obtaining feasible OBT results (well-
established and sustained oscillations, more than a test oscillation parameter,
high fault coverage, reduced test time, etc...). Thus, all these issues will be
studied in this Chapter. But, apart from them, other two basic problems can be
pointed out when dealing with OBT. One is related to the application of this
technique to complex circuits, where a unified decomposition scheme is still
lacking. In fact, it has been applied to small building blocks (biquadratic fil-
ters, ADC blocks) [1]-[3], [5], [8]-[11], [13]-[15], [21], [49]-[53], [96]-[98];
just only recently, an example has been discussed on its application to a higher
complexity level [25]-[28], [30]-[31], [37]. The other difficulty refers to both
the access to different internal nodes and the conversion of the significant test
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information into a single-digit signal. For the sake of convenience, these two
weaknesses will be studied in Chapter 6.

1.1.2 Evolution of the OBT concept

With the aim of setting this thesis within a framework, we summarize all
the main references dealing with the OBT strategy published in the last years
[11-[3], [5], [8]-[11], [13]-[15], [21], [25]-[41], [49]-[53], [96]-[98]. Our goal
herein is to outline the different versions of the OBT concept which forms the
backdrop of this book.

Let us thus distinguish three stages in the evolution of the OBT concept:

First stage: the prior-art of the OBT concept

From 1995 to 1997 the OBT concept emerges [1]-[3], [5], [8]-[10], [49]-
[51]. Basically, in this stage the SUT is converted in a linear sinusoidal oscil-
lator and, therefore, only a single oscillation frequency (whose nominal value
is determined by linear mathematical analysis) is measured. Moreover, the
only documented results are obtained by simulation or discrete circuit realiza-
tions. In this stage, researchers overlook some important practical
considerations, oscillatory behavior is made strongly dependent on the extra
elements added for test purposes, and the only used test parameter is the oscil-
lation frequency.

Second stage: the state-off- art of the OBT concept

In subsequent years, some authors [11], [13]-[15], [52]-[53] continue with
the same philosophy and the same line of reasoning than before. However, a
new trend emerges as well. Another authors wonder whether only one test
parameter (the oscillation frequency) is or not enough to both identify the
fault locations and to obtain a high fault coverage [25]-[31], [96]-[97]. There-
fore, a new OBT concept arises where the SUT is transformed in a non-linear
oscillator which guarantees robust oscillations providing the control over
other test parameters (such as the amplitude of the oscillations). Such a new
OBT concept successfully solves most of the problems set out in the first
stage of the OBT concept.

Different OBT approaches for digital and analog circuits were proposed
during this second stage [11], [13]-[15], [25]-[31], [52]-[53], [96]-[97]. Some
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of the proposals affirmed that this technique could be considered as a general
test solution, applicable to most of the basic blocks composing typical com-
plex analog and mixed-signal circuits (amplifier, operational amplifier,
comparator, schmitt trigger, filter, voltage reference, oscillator, phase-lock
loop, analog-to-digital converters, etc...) or to a combination of these blocks.
However, a more detailed study of the existing OBT strategies -examining all
their difficulties and shortcomings- guides us to point out, at that time, there
was not a general approach of the OBT methodology to be employed for a
majority of the analog and mixed-signal systems. This last assertion was
based mainly on three reasons:

1.- First of all because, if the related literature is reviewed, we find out that
only some kinds of circuits were considered (several types of filters, opera-
tional amplifiers, and even analog-to-digital converters). Moreover, for every
case, the employed algorithm and the required mechanism to force oscillations
were different, and strongly determined by the explicit features of the specific
Circuit Under Test (CUT).

2.- A second reason is that there were not enough works regarding the
problems of the OBT technique when applied to an embedded complex
system. Only some references [36]-[37] can be considered as a first attempt to
overcome the mentioned practical system-level problems. In these works, a
complex SUT was considered and the difficulties related to the implementation
of the OBT strategy were studied.

3.- A third reason, and possibly the most important, is that there was not
enough experimental support to postulate that the OBT technique guaranteed
a high fault coverage for the studied examples. Furthermore, it was unclear
that it could be applied in any situation, with the exception of those works
reported elsewhere [33]. Only some practical discrete realizations were
described, trying to confirm the robustness of a specific OBT strategy [7].

Third stage: the general OBT concept

All the above-mentioned issues led us to work out an OBT generalization,
aiming to deal with different mixed-signal circuits. This relies on measuring
frequency but may also use other oscillation parameters for more accurate and
relaxed testing. Oscillator robustness is addressed during the test design of the
SUT, and non-linear analysis techniques are employed to get an accurate
model of the oscillator behavior [25]-[41]. This extended concept is what will
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be further developed in this book. Table 1.2 outlines the features of the new
OBT concept.

Year 1999, 2000, 2001, 2002
Authors G. Huertas, et al.
SC Filters

Practical Examples
Mixed-Signal Macrocells

SUTs
Oversampling A/D Converters
OBT
Transforming the SUT in an oscillator with amplitude control by limitation
Mechanism
Additional Circuitry to convert the SUT into an oscillator
Area

Extra Circuitry to implement the test process and the test evaluation and its
Overhead interpretation (Analog Multiplexer, Frequency-to-number Converter, Control
Logic, Swopamps)

Required
Oscillation Frequency and Other Oscillation Parameters
Test Measurements

Determining
Nominal By non-linear mathematical analysis and more accurate non-linear simulation

Test Parameters

Test Results By simulation and integrated prototypes, including experimental data

Sustained oscillations
Practical
High Fault Coverage
Considerations
Accuracy of the theoretical oscillation parameters

Table 1.2: The new OBT concept

1.1.3 Critical analysis of the OBT concept

One of the first incentives to begin this wok was to resolve the drawbacks
arose by the first versions of the OBT method. Our goal was to develop some
improvements to convert the OBT method in a more efficient test strategy.
Let us focus on how the OBT basics have to be modified in order to increase
its efficiency in analog testing. Obviously, the original points are the same
premises as the first versions of OBT. The same objective is pursued: to trans-
form a mixed-signal SUT (or a part of it) in an oscillator and then to use the
achieved oscillations as the test information to detect faults.
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We agree with the first versions of OBT in three main points:

1.- The necessity of splitting the whole SUT into meaningful simpler
blocks under test. It is essential in the case of having a complex high-order
macrocell. Handling a high-order oscillator could be quite complex [100] and
thus, the analytical design of the resulting oscillator may be quite difficult. Of
course, the overall SUT may oscillate but then, relating the oscillatory behav-
iour to specific faults would be a very difficult task and, even sometimes, an
unmanageable problem, making test interpretation very complex as well.

The step of dividing the SUT into BUTs will be dealt with in next chap-
ters. Different solutions at system level will be proposed and the reasons that
made us opt for them will be explained.

2.- The consideration of, at least, two operation modes for the SUT: a nor-
mal mode where the system performs in its regular way, and a test mode where
all the BUTs and the remaining elements of the whole SUT (such as switches,
buffers, control circuitry....) may be tested simultaneously and/or sequentially.

3.- The requirement that the mechanism to carry out the OBT methodology
must involve no significant changes in the SUT structure. That is, changes in
the SUT have to be reduced to a minimum in order to prevent significant
degradation in the normal operation mode.

But, observing the main features of the prior-art of the OBT concept, we
have to reconsider the following issues:

1.- According to the Arabi and Kaminska‘s approach, any system can be
reconfigured as an oscillator by only adding to its structure a linear feedback
mechanism that compensates poles. It is, from a mathematical viewpoint,
placing at least one pair of complex poles on the imaginary axis (for continu-
ous-time circuits). Apparently, it is enough to adjust the linear feedback
elements to establish and sustain oscillations. However, in this Chapter, we
will demonstrate the need for imposing some additional restrictions on: the
feedback type, the number of feedback elements and the location of the extra
components. The required conditions to obtain robust and well-characterized
oscillations from the proposed closed-loop system (see Fig. 1.2) will be
studied.

2.- On the other hand, it will be shown (herein and in other Chapters), that
for most cases only the frequency deviation does not enable the full detection
of all catastrophic and/or all parametric faults and does not ensure a high fault
coverage. Other measurements may and must be performed.
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3.- It will be also described in next chapters, how to relate the frequency
(and/or other oscillation parameters) to the elements and/or the specifications
of the BUT and how to obtain an accurate nominal value. It is very important
to define a good mathematical oscillator model. Moreover, in some particular
cases, it will be neccesary to complement the mathematical analysis with

some additional simulations or some previous experimental results” that help
to predict the oscillation parameters with accuracy.

4.- At system level, it will be studied in Chapter 6, a systematic way to
apply OBT to a complex macrocell. It will be shown that it is feasible to
divide a complex system into simpler building blocks, even if its structure
relies on a core whose components are firmly embedded. We will examine
what it really means (using switches and/or analog multiplexers) in terms of
impact over the system nominal performance and area overhead.

5.- Finally, issues about the test application time will be also analysed in
Chapter 6. In the previous versions of OBT, authors did not consider any
start-up condition. Moreover, the proposed system-level manner to analyze
the different achieved frequencies was to sequencially multiplex the results,
and it was a very time consuming strategy. On the other hand, no approach
about the time required for the test evaluation and interpretation has been
made up to date.

In short, we have questioned in this book the basis of OBT. The goal is to
give another outlook on the OBT approach. We will keep the idea of modifying
the SUT structure to generate an output (oscillatory) test signal, reflecting the
SUT performance. However, we will try to do so by solving all the drawbacks
explained above.

1.2 THE OBT OSCILLATOR

Let us consider, first of all, some weak points in the previous OBT con-
cept. That is, those points dealing with the means in what the SUT is
transformed in an oscillator. In this Section, RC oscillators will be studied.
The goal is to refute some ideas behind the OBT concept and to point out
some details which must be taken into account when the OBT strategy is

2 In the validation or prototyping phase.
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applied. In particular, some features of the so-called Wien-bridge oscillator
will be discussed, demonstrating that it is not enough to build up a linear sinu-
soidal oscillator (as was presented in some references [1]-[3]) to achieve an
“acceptable” OBT solution. On the contrary, any non-linear mechanism for
stabilizing the amplitude of the oscillations is mandatory not only to fulfil the
oscillation conditions, but also to maintain steady oscillations and then, to
establish another valuable test oscillation parameters apart from the oscillation
frequency.

1.2.1 Direct approach: classical linear oscillator

In general, a linear sinusoidal oscillator can be defined as any structure
with a pair of imaginary-axis poles (in what the s-domain is being considered).
But the poles of any RC-active network can be effortlessly placed on the
imaginary axis by, for example, adjusting a coefficient or a gain of the network
component.

Let us consider, for the sake of simplicity, the very popular linear KRC
oscillator (so-known as the Wien-bridge oscillator) depicted in Fig. 1.4. Many
authors who have dealt with the OBT concept have employed modified ver-
sions of this structure [1]-[3], [96]-[97] to test either operational amplifiers or
RC filters. Even such devices have been considered as benchmark circuits in
many references. However, let us point out in this book some important issues
that must be carefully analysed.

Let us formulate two preliminary questions:

Oscillator Linear Model:
Q1. Does it allow testing both Operational Amplifiers and/or RC Networks?

Q2. Does it allow predicting the values of the oscillation parameters?

In Fig. 1.4-(a) the operational amplifier (whose gain is supposed infinite so

far) in conjunction with the feedback resistors R, and R, plays the role of the

K amplifier (Fig. 1.4-(b)). The feedback to the positive terminal is by means
of the RC network. On the other hand, Fig. 1.4-(c) shows the Wien-bridge
oscillator equivalent circuit.

In order to determine the pole placement, the loop-gain (which is called
here, G(K)) must be calculated first (Fig. 1.4-(b)). Breaking the loop in the
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point (1) (Fig. 1.4-(a) and inspecting the resulting circuit, the obtained loop-gain
will be a band-pass function of s, given by

S

K
R,C
G(K) = - 1 271 (L.1)

s+s( I 1)+ !
RiC; RyCy RyCY RiR,C\Cy

with its magnitude peak at o, =

1
NRIR,C, Gy '

G(K) Vo

Closed-loop system

(b) (c)
Figure 1.4: The Wien-bridge Oscillator

However, the network has poor selectivity (low quality factor). This can
be seen by calculating the 3-dB bandwidth of the loop gain

R,C, R,C, R,C,
BW = + + ®, (1.2)
R,C, R,C, R,C,

The R’s and C’s are normally fixed equal, and thus, BW = 3w, .There-

fore, the BW is more than twice the center frequency.
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The poles of the oscillator are the roots of the characteristic equation of the
closed-loop system in Fig. 1.4-(c).

1-G(K) =0
2 ( 1 1 ) 1 (1.3)
+ + + 1-K)]+ ——— =0
s R,C; R,C, RZCI( ) R|R,C,\C,
It can also be written as
s*+b(K)s +og = 0 (1.4)
where
1 1 1
b(K) = + + 1-K
© R\ C, RyC, chl( )
(1.5)
2 1
0y, = —————
R\R,)C\ G,y
And the two pole solutions will come given by
[2 2
_ b"-4o
S0 = —biTo = ReFjImg
2 (1.6)

Re = :2l—) Img = J40)3—b2

To place the poles on the imaginary axis the coefficient of the s-term must
be zero in (1.4). This is controlled by setting the gain K to the critical value,
K

c

K =1+=+— (1.7)

Notice that (1.7) corresponds to the oscillation condition.

We have, then, that when K = K the poles are located at jm,, and the

system will oscillate with the frequency o, . Notice that this frequency, ®,, is

explicitly defined only by the values of the RC elements and does not depend
on any element of the involved amplifier. Therefore, at least as might seem at
a first glance, the answer to Q1 is:

Al. An oscillator linear model, considering an ideal opamp, does not relate the test parameter
(the oscillation frequency) with the operational amplifier structure.
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Nevertheless, if a more realistic model of the operational amplifier is used,
the oscillation frequency becomes a function of the opamp characteristic as
will be discussed later (see also [49]). However, evaluating such a depen-
dency shows that the sensitivity of the test parameter with the RC elements is
always very high. An undesirable fact if we are interested in testing only the
operational amplifier.

On the other hand, from this linear analysis and considering an ideal
opamp, the oscillation magnitude is unknown (although indirectly determined
by the nonlinear properties of the amplifier. That is, limited by the saturation
levels of the amplifier). Therefore,

A2. An oscillator linear model does not predict the value of the oscillation amplitude.

On the other hand, let us formulate a third question:

Oscillator Linear Model:
Q3. Does it really allow testing RC Filters?

We have considered the operational amplifier as ideal. Then, the Wien-
bridge Oscillator in Fig. 1.4, under the oscillation condition (1.7), will
oscillate with an oscillation frequency given by o, = 1/,/R,R,C,C,.
Observe that all the RC elements exert the same influence on this parameter

(frequency). If we calculate the deviation of the frequency for a +X % devia-
tion in any RC element, we have always a value given by the following

expression:
A
®o _ ( 10 _ 1) 100 % (1.8)
®9 100 £ X

It means that regardless of the nominal value of the oscillation frequency,
a deviation window of £10 % in any RC element causes a deviation window

of [-4.6, +5.4]% in the oscillation frequency (observe Fig. 1.5-(a)).
On the other hand, Fig. 1.5-(b) shows that, depending on the specific nom-

inal value of ®, the value in hertz of the such a frequency deviation is higher
or smaller. Notice, for example, from Fig. 1.5-(b), that as the nominal value of

o, increases, the value in hertz to be discriminated, increases as well. How-
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ever, for small values of the oscillation frequency, the value in hertz of its
deviation, under a deviation in any RC element, is also small. The detection of
this deviation is determined by the precision of the involved tester. It leads us
to assert that:

A3. Depending on the value range of the RC elements, the single oscillation frequency, ®,

could not be sufficient to detect a deviation of the such elements.
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Figure 1.5: Frequency Deviations depending on the RC elements

Let us formulate a fourth question:

Amplifier Model:

Q4. Does it change the oscillation condition and the estimated oscillation frequency?

The goal now is to reveal how the oscillation frequency and the critical
value of the gain K_ are significantly altered if, for example, a one-pole

model is used for the operational amplifier. The answer of this question
highlights the consequent problem: how accurate must be the amplifier model
in order to obtain a good estimation of the oscillation mode, a key point when
the OBT concept is being applied (a similar problem was also formulated in
[49] and [125]).

To solve this question let us assume again that the R’s and the C’s are
equal. In this case, the closed-loop characteristic equation when the amplifier
is ideal, (1.3), is transformed into

2.8 1 _
S +R——C—(3_K)+I-\,2_(:2_O (19)
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Now, the gain of the non-inverting amplifier, when a one-pole roll-off

model’ is used for the operational amplifier would be

K = (1.10)

R,
where K, = 1+I—€—'

a
Thus, we obtain a modified characteristic equation

3, 2(GB | 3 GB( 3 1 GB 1
+ (——+——)+ [—(———1)+———}+— =0
PPk, "rd TUlRC\K, 20 K R

(1.11)

3 2 _ 0
N +(,12S +(,11S+LZO =

Then, to produce imaginary-axis poles, a; coefficients must fulfil*

aa, = a,. Therefore
(GB-RC)*(3-K,) +3K,(GB-RC)(3-K,) + 3K, = 0 (1.12)
Let K, = 3+ AK and sirnplify5
(GB - RC)’AK +3K,(GB - RC)AK -3(3 + AK)” = 0 (1.13)
When GB - RC » 9 and AK « 3, the last equation can be approximated by

(GB - RC)ZAK— 27 = 0, resulting in:

0 2
AK = — 2T _ 27(—0) (1.14)
(GB - RC) GB

Notice, from this last equation, that the critical value of the gain to sustain
oscillations must be set higher than for the ideal case. And, therefore, the

The amplifier one-pole model is a,(s) = (-a,0,)/(®,+ ), where o, represents the open-loop band-
width, a, is the dc-gain, and GB is the gain-bandwidth product that is related to ®,, a, in such a way
that GB = a,0, .

In this case, the third-order polynomial could be also written as (s +p,) - (s2 + coim) = 0, where p,

will be the real remaining pole due to the amplifier. By equating terms in both expressions, this condition
is achieved. Moreover, if we check the location of p, , it is always placed on the left half of the s-plane.
5 Ky = Ko+AK = 3+AK.
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higher the oscillation frequency, the higher the required gain for oscillations.
Consequently, unless additional circuitry is used, the oscillator will drop out
of oscillation as the frequency has a higher value. Therefore:

A4. An accurate operational amplifier model is needed to achieve a good approximation of
the gain critical value and a good estimation of the oscillation frequency.

On the other hand, to obtain the modified oscillation frequency, we have
that o,,, = .ay,/a, = a,. That is (assuming that K, is adjusted to the

critical value)

Do =

(1.15)

And then

— (1.16)

Therefore, the higher the ®,/GB ratio, the lower becomes the modified

oscillation frequency, »,,, compared to its ideal value, ®, and the higher

m
becomes the error of considering an ideal operational amplifier.
Notice, moreover, that a new oscillation condition can be deduced from

(1.15), it is that GB > gmo to guarantee a correct estimation of the oscillation

frequency.
If

GB = 0o (1.17)

is considered (of course, fulfilling o > g ), then the error of supposing the

ideal frequency value, ®
be (according to (1.15))

instead of the modified frequency value, o, will

[

]Em = —9&- 100 (1.18)

o
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This relationship is graphically
| shown in Fig. 1.6. As can be
a5y . observed, if o > 500, then the
] error made in estimating the
oscillation frequency is less

Error, Ex in %
w
o

: | than 1%. In this range of a, it
s} ] can be considered than the
12 K |  oscillation frequency is inde-

o —————————— | pendent of the amplifier gain-

Parameter o .
. . h B. B
Figure 1.6: Error in the nominal frequency bandwidth product, G ut,

it is no advisable when the
OBT strategy is applied to an operational amplifier. In this case, it is neces-
sary that the characteristics of the amplifier appear explicitly in the oscillation

frequency expression®. Nevertheless, in this last case, a very accurate opera-
tional amplifier model is required in order to obtain a good estimation of the
nominal frequency, a critical point because this nominal value must be sup-
posed as the reference value for evaluating the test output.

Let us, then, formulate a fifth question:

Amplifier Model:
Q5. Does a more complex amplifier model allow testing operational amplifiers?

In practice, there exists a clear dependence between the modified oscilla-
tion frequency and the important characteristics of the operational amplifier
under test. But, it is only reflected when a non-ideal operational amplifier
model is considered. Specifically, those features implicitly contained in the

GB expression (such as the amplifier pole placement, o, and the amplifier

dc-gain, a, ). However, from (1.15) it can be observed that the modified oscil-

lation frequency depends on both the ideal oscillation frequency (exclusively
related to the RC-network whose circuitry is included only for reconfiguring

the amplifier), and the amplifier GB (whose value deviation must be detected

6 However, if the OBT strategy is being applied, for example, to a filter stage (given by the RC-network)
the condition o > 500 is a good choice for the amplifier characteristics in order to detect faults only fo-
cused on the RC-filter components (that is, resistors, capacitors, connections and amplifiers but at high

level) ignoring the actual implementation of the amplifier.
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for testing the amplifier). But deviations in each one of these parameters do
not cause the same impact in the new nominal frequency value.
For example, for a  4g

+10% deviation range 80 N :
of the ideal frequency, 60 Lo
®, (which depends on ¢ 40f>
the RC- network compo- 20
nents) and varying the 0
o parameter (defined in -20f - -
(1.17)) from 5 to 500,

the changes in the actual

-40

60} - -

Actual Frequency Deviation, Awgp, in %

freql.lency are displayed — g s —————————1o
m Flg. 1.7. It should be Ideal Frequency Deviation, Aoy, in %
clear from that when o Figure 1.7: Frequency Deviations in relation to o
exceeds the limit of 500, a deviation of the ideal frequency translates into a
similar deviation of the actual frequency, regardless of the value of o .

On the other hand, for any given ideal oscillation frequency, if parameter
o is deviated around a +10% range for a wide area of nominal values

(sweeping these nominal values from 5.1, to verify the oscillation condition

o> g , until 459, in order not to exceed the upper limit of 500). Then, it can

be seen from Fig. 1.8 that as a is regarded smaller, a deviation of its value
translates into a higher deviation of the actual frequency and, of course, it
occurs independently the value of the ideal frequency value.
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Finally, the objective is
to find a trade-off
between these two pos-
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Figure 1.8: Actual Frequency Deviation versus « characteristics) but, in

this case, the actual
oscillation frequency also depends severely on the ideal oscillation frequency
(that is, on the RC-network components). On the other hand, if o is defined
very high, then the relation between the actual oscillation frequency and the
operational amplifier characteristics disappears. But this fact must be avoided
if we need to obtain some information about the operational amplifier to be
capable of testing it. In this case, we only can say that a visible deviation in
the oscillation frequency can be owing to either the value of o is under 500
(see again Fig. 1.7) or the extra RC elements contain any fault. The conclu-
sion is that:

AS. Depending on both the amplifier model and the specific value of the RC elements an
operational amplifier can or cannot be tested using a classical sinusoidal oscillator.

Let us finally formulate a last question:

Oscillation Linear Model:
Q6. Does it allow achieving more than a test parameter?

Observe, considering again the closed-loop system of Fig. 1.4 and a
simplified amplifier model, that if K < K_, the poles are always in the left
half-plane, and thus, once initiated, oscillations cannot be sustained. The sine-

wave amplitude decays exponentially. Whereas, if K> K_, the poles are in

the right half-plane, and thus oscillations grow exponentially in amplitude
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until going beyond the linear dynamic range of the amplifier (observe
Fig. 1.9).

An illustrative case is when the R‘s and C*s are identical. In this particular
case, the output takes the form

1
EAKC\)OI .
V,(t)y=V, e sin(wyf + ) (1.19)
where AK is the deviation of the gain K from the critical value, that for

this case is K, = 3. Due to term AK, the pole placement is not exactly at

*jo,, but approximately at %AK(DO *jo,. As seen in Fig. 1.9, when

AK = 0, the output is a sine wave of amplitude V,,, when AK > 0, the out-

put waveform is an overdamped sinusoid and, finally, when AK <0, the

output response is a underdamped sinusoid. The time constant associated with
the growth or decay of the two last cases is

t= 2 =T

AKo, wAK

(1.20)

where T is the period of the sine waveform. For example, if K decreases

o .. T _ 100 -
by 0.01% compared to the critical value, then 7= Tx3x001" 1000 .

This means that after 1000 periods, the amplitude of oscillations decreases
to 37% of its initial value. But this fact is not very significant if OBT approach
only requires the frequency as test parameter [1]. However, more recent stud-
ies show that the oscillation amplitude is also necessary to achieve high fault
coverage and/or increase the observability of the fault locations [25]-[41],
[96]-[97]. Thus, in general, robust oscillations are required for test purposes.

Because the network is not driven, (1.19) expresses the natural response of
the network. Any disturbance, such as the application of the dc sources to
activate the amplifier, excites this response. But, in this point, a significant
problem comes out:

Is it really feasible to design this kind of oscillators (classical linear oscillators)?

Is it possible to maintain this response with AK = 0 and V, constant?
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Figure 1.10: Poles Behavior

From Fig. 1.10, the answer to
this question can be inferred’.
It is clear that if the value of
the gain K turns a little off the
the
evolves to a non-oscillatory

critical value, system
response without finding, in
theory, any mechanism that
forces it to return to the oscil-
latory state.

In order to keep always

AK = 0, the amplifier gain
must be held precisely at the
critical value given by (1.7).
But this is impossible to
achieve in practice (at least
from a theoretical viewpoint,
using a completely linear anal-

7. Fig. 1.10 displays the behavior of the involved pair of complex poles responsible for oscillations in the

closed-loop system of Fig. 1.4.
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ysis) and thus, additional circuitry must be used to perpetuate oscillations.
Thus, the network oscillates with w,, only if K = K. But it involves that

in the physical implementation, the resistor and capacitor ratios must be accu-
rately the required ones. If these ratios vary slightly, the system will not have
any way to compensate that effect and, depending on the initial condition, the
system will be unstable or stable and the response will be overdamped or
underdamped (see Fig. 1.9).

From a practical viewpoint, this linear analysis should be complemented
with some additional consideration regarding the oscillation maintenance.
This is traditionally done assuming a nonlinear amplifier model which takes
into account the inherent non-linearities of the operational amplifier when it is
working in the saturation region [125]. Indeed, if a non-linear amplifier is
considered, the previous study is not valid and another results can be
extracted. Only one important conclusion can be derived from all the previous
classical linear analysis:

A6. Some form of nonlinearity (inherent or intentionally introduced to the structure) has to
be employed in order to guarantee the stability of the output signal amplitude.

That is, the nonlinearity allows adjusting the non-oscillatory behavior

(Fig. 1.11) in such a way that if K turns off the critical value K, the own sys-

tem is able to return the poles to the imaginary axis through the nonlinear
mechanism.

Im
If K <K, — amplitude decreased If K> K — amplitude increases

N\ O\

Re

N
K=KC

Non-linear Mechanism — Returning poles to the imaginary-axis

Figure 1.11: Magnitude stabilization phenomenon
In fact, if we use a completely linear analysis of the operational amplifier,
this oscillation magnitude stabilization phenomenon shown in Fig. 1.11 is
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disguised, and, likewise, the oscillation magnitude value cannot be calculated
[125]. Otherwise, only a nonlinear analysis allows the entire study of the
oscillation magnitude stabilization phenomenon and the calculation of the
oscillation magnitude value as well. But there is an intrinsic difficulty in
achieving the required sustained oscillators by only considering the non-linear
behavior of the operational amplifier and it is, that the accurate mathematical
analysis of a non-linear system is very complex and most of the times imprac-
ticable. Even designers when are designing amplifiers do not pay attention to
the non-linear region of the circuit because no reliable information can be
obtained when that region is examined and, exclusively, they focus attention on
the linear region where the system must operate. In fact, there are written
evidences of this problem: for a similar oscillator structure if one uses two differ-
ent amplifiers (either OTA-based or CFOA-based), the circuit have not the
same behavior (see [125]). For one of them, the amplifier inherent nonlinearity
can stabilize the magnitude of the oscillations whereas, for the other one, the
amplifier inherent nonlinearity forestall the stabilization phenomenon.
Therefore,

Additional non-linear techniques are required not only to provide control of the oscillation
amplitude (allowing to employ the amplitude as a test parameter) but also to predict accurate
oscillation parameters.

That is, a non-linear amplitude stabilization mechanism is needed. Two
schemes are traditionally employed to sustain oscillations at constant ampli-
tude. One scheme introduces a controllable nonlinearity in the amplifier’s
gain characteristic. The other scheme provides for an automatic adjustment of
the gain characteristic. Next, these schemes will be briefly reviewed.

1.2.2 Second approach: oscillator using non-linear methods

From the above Section a main issue has been concluded: the necessity of
a non-linear oscillator with well-characterized response and whose model pro-
vides accurate information about some other appealing oscillation parameters
such as the oscillation amplitude. Let us introduce the problem of how to
achieve robust oscillators. As was already discussed, the only safe way to
assure sustained oscillations would be a mechanism with a non-linear part
(placed on purpose in the system) whose functionality can be well-controlled
and analysed theoretically.
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If the existing bibliography is reviewed, two methods can be first reported
to obtain robust oscillations. These are either oscillators with non-linear
amplifier gain or oscillators with automatic gain control [100]. In both cases,
the stabilization of the oscillation signal is not attained in the saturation range
of the amplifier because other factors determine this phenomenon. As men-
tioned before, by introducing an extra nonlinear mechanism, we have two
parameters to play with. Two test parameters would be available to distin-
guish if a fault is in the amplifier or in the added circuitry, for example.
Nevertheless, these nonlinear mechanisms require to handle complex nonlin-
ear analysis techniques to establish with precision the steady-state output
[100]. And the more complex the amplifier model is, the more complicated
these techniques are. This is an important point, which makes these tech-
niques not appealing for OBT. Obviously, researchers look for test methods
which do not demand a lot of design effort. Therefore, for OBT, a third non-
linear robust oscillator is then proposed in this thesis, whose oscillations can
be described by a linearized model.

-Automatic gain control oscillator:

A better control of poles is attained through automatic gain control where
the output amplitude is continuously supervised and compared to a fixed
nominal level [100]. If for any reason a change in amplitude takes place, the
amplifier gain is compensated until it is returned to its expected nominal
value. Under equilibrium conditions, operation is in the linear range of the
amplifier, and therefore, distortion is very low.

Then, automatic gain control is extensively exploited in the design of
oscillators in order to obtain constant oscillation amplitude with low distor-
tion. In this case, the amplifier gain is governed by the oscillation amplitude
and the non-oscillatory behavior becomes as illustrates Fig. 1.12.
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Poles responsible for the oscillations

Non-linear Mechanism — Returning poles to the imaginary-axis
Figure 1.12: Amplitude Stabilization Phenomenon

This gain (see Fig. 1.13) is forced to be high enough to start the oscilla-
tions either through the natural system evolution or through a start-up
technique. As the oscillation amplitude grows up, the gain is automatically
reduced to the necessary value to sustain oscillations. Fig. 1.13 shows the
required amplifier characteristic to achieve it.

v, =V ___sin(ot Vmo
a ma (@) v_=V__sin(ot) 4 Oscillation  amplitude
° BA 0 mo small; large gain
—®
- A/
line 2
Rb
W ‘K >y
— ma
RalRa = f(Via)
Larger oscillation
J__ amplitude;
N line 1 smaller gain

Figure 1.13: Amplifier with automatic gain adjustment
If the amplifier gainis 1 + R,/R,,, it can be modified by changing either
R, or R,. In Fig. 1.13, R, is made a function of the input signal amplitude.

The practical dependence is such that the larger V, ,, the larger R, and thus,

the smaller the gain. Therefore, the gain characteristic displayed in Fig. 1.13
is achieved. When the peak values of the input signal are small (low-ampli-
tude input signals) the amplifier operation goes along line I (high gain),
whereas when the peak values of the input signal are large (high-amplitude
input signals) the amplifier operation goes along line 2 (low-gain). As a
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result, the amplifier gain is adjusted according to the oscillation amplitude
behavior. Besides, as V,,, is gradually increased, amplifier operation moves
from line 1 to line 2 in a continuous manner.

When inserting this amplifier in the equal-R, equal-C Wien-bridge net-
work, R, and R, are selected in such a way that the gain is 3 (oscillation
condition) for the pursued oscillation amplitude. If for any reason the oscilla-
tion amplitude declines slightly from its nominal value, then it also reduces
the value of R,. Consequently, the gain is increased and the reduction of the
oscillation amplitude is, thus, counteracted. On the contrary, if the oscillation
amplitude increases, then R, increases too, reducing the gain and counteract-
ing again the effect of the original change. In fact, the technique to control the

oscillation amplitude is accomplished since R, changes automatically to pro-

duce the neccesary critical gain to force oscillations®. As far as the steady-
state operation is along a straight line (see Fig. 1.13), there is no significant
distortion in the output.

-Oscillator with non-linear amplifier gain (see [100] for details):

A second non-linear method would be to employ an amplifier with a set-
tled but nonlinear gain characteristic instead of the linear gain K considered
above (see Fig. 1.14). For small amplitudes of the output signal, the gain, now

called m |, is higher than the critical value, to guarantee the starting and the

growing of oscillations. Whereas, for larger levels of the output signal, the

incremental gain (Av,/Av, = m,) is smaller. As a result, the oscillation

amplitude is finally stabilized. Therefore, this procedure forces the system
evolution to a steady oscillation when it starts from a non-oscillatory state.

8 Such a value may be altered with the operation frequency (due to imperfect tracking of capacitors or due

to other reasons).
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Figure 1.14: Non-linear amplifier gain

A practical circuit for an oscillator based on an amplifier with non-linear
gain characteristic is shown in Fig. 1.15 ( see [100]). The back-to-back zeners
are used to achieve a break-point in the gain characteristic.

C The amplifier gain
H N@» m; = 1+R,/R, is chosen
slightly greater than 3 to guar-

Va 3 antee that the output builds up
OA >———eVy exponentially (and no addi-

R% 1 c 2 R tional mechanism is required to
J\/\?\, start up the oscillations) until

R% R, the amplifier is driven into the

1 m, range of operation (near the

Figure 1.15: Oscillator with nonlinear gain peak swing of the output). As a

result, both v, and v, grow

into nonsinusoidal, periodic signals. A quantitative analysis can be only made
assuming low output distortion and, therefore, considering v, perfectly sinu-
soidal. As (1.1) shows, the RC-feedback network at the noninverting terminal
of the amplifier is a band-pass network that performs a reasonable filtering
action. As was debated in the previous section, provided that the amplifier can
be regarded ideal, the oscillation frequency coincides with the peak response

(thatis, o, = 1/RC). Thus, the selective filtering action of the RC-network

results in a signal at v, (see Fig. 1.15) which is somewhat more nearly sinusoidal
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than the signal at v . Therefore, to a first-order approximation, the signal at

v, may be considered sinusoidal. When this sinusoidal signal passes through

the amplifier, its top portion is distorted symmetrically about the peak value
(indicating the presence of odd harmonics only), according to the gain charac-
teristic displayed in Fig. 1.14 (which can be interpreted graphically as is

shown in Fig. 1.16)°.
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Figure 1.16: Non-linear gain amplifier effects
Assuming v, = V, sin(wt), and then finding the fundamental compo-
nent of the resulting output, v, . we can calculate v, which is then expanded

in its Fourier series to achieve the fundamental component,

Vor = Vo sin(wt) . If it is worked out, the following expression for the gain

of the fundamental component is achieved

% In practice, because Vv, is not in fact sinusoidal, a slight skewing is also present in the top portion of the

output waveform.
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If (1.21) is examined and drawn for two start-up values of gain m; consid-
ering m, as a parameter, Fig. 1.17 is obtained. Obviously, as was remarked

above, the gain m, has to be chosen somewhat higher than 3 in order to guar-

antee the start of oscillations. As is shown in Fig. 1.17, as long as the peak

valueof v, V,

ma?

is less than the break-point voltage in the amplifier charac-

teristic, O, the gain at the fundamental frequency is m; > 3 and, therefore, the
system operates in such a way that keeps oscillations growing. But this effect
is counteracted when V,,  exceeds its limit value, &, and the amplifier goes in
the m, region. Then, provided that the selected value of m, is under 3, the

amplitude of oscillations tends to diminish until the effective gain is reduced
to 3.
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Figure 1.17: The gain at the fundamental frequency
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Notice from Fig. 1.17, that depending on the exact value of gain m, , for
each value of m |, equilibrium establishes at a different point. But, certainly,
the higher m, , the smaller the distortion in the output (see Fig. 1.16). On the
other hand, if K. decreases from 3 to 2.98 (due to, for example, imperfect
capacitor matching), the operation stabilizes at points Q' | , rather than at
0y, 1,2 - Consequently, in this case, the output amplitude will be larger than
before. Clearly, this result may be minimized if m, is reduced. Finally, as the
start-up gain m, is selected larger than 3, the output must spend a likewise

longer time in the m, region, until reaching the equilibrium state where the

gain is 3 for the fundamental component. In this case, the oscillation ampli-
tude is higher, and the output exhibits more distortion.

From the above analysis we may conclude that the selection of m, and

m, could be conflictive because, as the amplifier-gain characteristic is more

abrupt, the output signal distortion becomes higher. However, in the test
framework, the distortion can be wisely used as test parameter. In practice, for
test purposes, low-distorsion is not strictly needed. Furthermore, frequency
sensitivity and time to build-up the oscillation are much more important for
testing.

With this simplified non-linear study, only the amplitude of the oscilla-
tions is examined since the operational amplifier is considered ideal. In this
case, the oscillation frequency is only regulated by the RC-network compo-
nents and does not depend on the non-linear amplifier characteristic. This just
an approximation, which can be improved by using a more complex amplifier
model, althought in this latter case all analytical results must be corrected,
leading to expressions of a higher complexity [125].

1.2.3 Proposed approach: amplitude controlled by limitation

As was discussed, with the above-mentioned non-linear oscillation meth-
odologies, at least a new oscillation parameter is gained for testing purposes
due to the fact that, in this case, the oscillation amplitude can be accurately
estimated. However, observing the results of the two previous sections, we can
assert that neither of the two described non-linear methods can be considered
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a feasible OBT scheme. A significant reason can be emphasized: a complex
non-linear mathematical theory would have to be handled.

In short, a non-linear method is needed which allows not only to place cor-
rectly the poles of the SUT and to implement a mechanism to stabilize the
oscillations, but also to handle easily the oscillation expressions. As was said,
oscillations can be forced by either of the nonlinearities existing in any block
of the oscillator architecture. Therefore, all the nonlinearities must be under
control in such a way that we can disregard those we are not interested in.
Moreover, the proposed strategy must not be limited by the precision of the
additional circuitry.

Vi V2 . . . .

o— G(K) be to built an oscillator with ampli-
tude control by limitation. Let us

A simpler method to proceed would

modify the closed-loop system of

Nonlinear Fig. 1.4-(c), obtaining the new closed-
Block /\/ loop system shown in Fig. 1.18. This

Figure 1.18: Non-Linear Oscillator scheme is the base of such a kind of

oscillators.
The characteristic equation would be now

1+NA)G(K) =0 (1.22)

being N(A) an equivalent linearized transfer function of the nonlinear ele-
ment with respect to the first harmonic amplitude, A, of its output (providing
that one employs the so-called describing-function approachlo) and G(K) the

loop gain of the Wien-bridge oscillator of Fig. 1.4-(a).
Because of this nonlinear mechanism, if the oscillation conditions are ful-

filled '! the system oscillates with a frequency, o, and an amplitude, A,

satisfying the following expressions

N(A,) = —L =2 (1.23)

10-The reader is encouraged to go to Chapter 2 for an in-depth treatment of the describing-function
approach.

1. Chapter 2 is again referred for the way to determine the oscillation conditions.



Chapter 1. Oscillation-Based Test Methodology 33

being K, = 1+Ijé.
Ra
Two test parameters are now available to test the RC elements. Again,
supposing an ideal model for the amplifier, the oscillation parameters do not
reflect any influence from it. And, if we assume that the R’s and the C’s are
equal, then

L N(Ao) = ‘3-

= — 1.24
®0 = ®e K, (129

Moreover, if again we suppose K, = 3, then we are in the same situation

than in the case of Fig. 1.4-(c) but with the proviso that now we have an
(almost) perfect control of the oscillation amplitude and the stabilization
mechanism.

Observe that unlike the frequency, the amplitude gain, N(A,) does not
depend on all the RC elements in the same way (see (1.23)). If we calculate

the deviation of the equivalent linearized gain, N(A,)) for a +X % deviation in

the RC elements (R, R,, C,,C, ), we obtain Table 1.3.

A[N(A)] A[N(A)] A[N(A)] A[N(A()]
0 R 0 C 0 R 0 C
2 1 1 2
N(Ag) N(Ag) N(Ag) N(Ag)
R c R, _ c,, -
N
| c, R, 100 %X C,\100£X
R o R % R %
1+_2+_1 1+_2+-—1 1+—-% ! 1+—2 1
R G R G R G R G

Table 1.3: Deviation of the equivalent linearized gain for a deviation of a RC element

It means that depending on the nominal value of the oscillation gain (that
is, depending on the specific values of R, R,, C,, C, ), a deviation window of
+10 % in one of the RC elements causes a deviation window in the oscillation
gain larger or smaller. Let us study, as an illustrative example, the case of a

deviation in the element R, . It can be seen from Fig. 1.19 that the value of the

gain deviation is strongly determined by the value of the remaining elements
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(R;, Cy, Cy). And something similar results when deviations in the other ele-

ments are considered. A main fact can then be emphasized: N(A,) (and in

fact, the oscillation amplitude) exhibits a great versatility to detect faults
under certain conditions whereas the frequency only allows to cover faults
depending on the required accuracy.

Clearly, the dependencies of the oscillation amplitude with respect to the
RC elements have the peculiar feature of being determined by all those ele-
ments whereas the oscillation frequency only depends on a specific element at
the same time. Therefore, we can take advantage of the oscillation amplitude
for testing.
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Figure 1.19: Equivalent Linearized Gain Deviation
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Assuming, for example, a very specific case R, = R, = R = 10kQ and

C,=C,=C-= 100¢”"F , we would have the situation shown in Fig. 1.20-(a).

Therefore, the oscillation frequency measurement would provide more
information than the oscillation amplitude measurement under a deviation of
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any RC element (for example, a deviation in R, ). However, simply moving
the value of one of the other RC elements (for example, R, under and over

10k€2) this situation changes (observe Fig. 1.20-(b)). If R, >20kC) the

amplitude measurement begins to provide more flexibility than the frequency
measurement.
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Figure 1.20: Amplitude Deviation Considerations
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The above-discussed results were obtained by using a completely ideal
model of the amplifier. However, if a more realistic model of the amplifier is
used (one-pole model, for example), the characteristic equation is transformed

to (considering R, = R, = Rand C; = C, = C)

542 3 - Ny |+ ]
s+—| RC
KO

=0 (1.25)

The oscillation parameters are now



36 OBT in Mixed-Signal Circuits

1
() = =
Om 0 | ik ™
2 RoGs
(1.26)
N(4,,) = N(A,)| 1 K
= +
om 0 GB\2 GB
Z2)" 43K, ==
® ®q
And, assuming that K|, is adjusted again to 3
9 ®g
Con > @0\ =555
0 (1.27)
N(A = NA)| 1 + ————
( Om) ( 0) (GB)z GB
_ + 9_
®q ®q

Now, we have two parameters depending on both the amplifier character-
istic and the RC elements. However, by directly observing (1.27) the
dependence on the amplitude with the amplifier GB is, in fact, smaller than
its dependence on the frequency. But, both parameters, frequency and ampli-
tude can be simultaneously used to also identify faults in the amplifier.The
steps to test the amplifier are the following:

1.- Measuring the frequency and the amplitude of oscillations in the test

output. Two data would be, thus, obtained: data, = o, and
measured

data, = N(A,,,)| /N(Ay)|

measured expected

2.- Solving the involved two equations ((1.27)) with two unknown factors

9
data, = (l——)
ata, = x >y

(1.28)
9 2
data, = (1"" - )
1+9y
' ~ - _0
belngx = @ measured andy - GB measured
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We would have a way to distinguish if the fault is in the amplifier or in the

added circuitry (related to ). That is, if both parameters deviate in the same

proportion from their nominal values, then we can suspect that the fault is in
the extra circuitry. On the contrary, if only the factor y deviates we have
sufficient evidence to affirm that the fault is in the amplifier.

This result is valid provided that we can consider N(A) does not deviate

practically under slight variations of the RC elements. That is, N(A,) and the

RC elements are practically uncorrelated whereas the relationship between

o, and the RC elements is stronger. This is the case we are considering, when
Ri=R,=Rand C, = C, = C,and R, «R, or C; «C,.

Something is clear: the non-linear oscillator shown in Fig. 1.18 provides
more flexibility than its linear version (Fig. 1.4) because other oscillation
parameters are straightforwardly achieved.

Hence, our proposal for the OBT oscillator is the scheme shown in
Fig. 1.18 can guarantee three important points:

1.- Maximum insensitivity of the oscillation parameters with the extra cir-
cuitry added for test purposes. As will be seen, this issue has been ignored or
at least overlooked in many references [1]-[3].

2.- Accuracy in estimating the reference values of the oscillation parame-
ters. As will be seen this issue is related to both the model chosen to describe
the test oscillator and the selected analysis method to study it.

3.- High fault coverage. This issue is related to the number of the involved
oscillation parameters and as will be seen it is closely linked to the features of
the selected oscillator designed for test purposes.

On the other hand, we can observe that there is not a good and simple
mechanism to test exclusively the amplifier. Even supposing more than one
test parameter, the dependence on such test parameters respect to the ampli-
fier features is disguised with the dependence respect to other elements of the
oscillator. Therefore, from our viewpoint, the first level of applicability of
OBT are blocks with a functionality more complex than an amplifier [129].
Moreover, the OBT technique must not only rely on the possible existing
inherent nonlinearities in the structure. The OBT technique must involve an
additional nonlinear mechanism.
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1.3 THE OBT CONCEPT REVISITED: PROPOSAL FOR
ROBUST OBT

In this section, the principles of a new OBT concept will be lay down.
Some of the different aspects pointed above such as the characteristics of the
OBT oscillator and the general circuit modifications (type of feedback, added
or removed components, number and kind of extra components, etc), the start-
up problem, the measurements that must be carried out, and the fault cover-
age, will be at length considered in this Chapter whereas, for the sake of
convenience, other issues such as the system partitioning, the application cost,
the required test support at system/subsystem level, the compatibility with
functional approaches, etc..., will be studied in other chapters.

1.3.1 The oscillator

As was discussed above, self-starting and self-sustained oscillations are
required. It forces us to carefully thinking on a general feedback mechanism
valid in any case. That is, on how to make any system oscillating indepen-
dently of its transfer function and (if possible) using a common feedback
element. That mechanism cannot be linear in practical circuits and must also
take into account those non-linearities inherent to the operation (fault-free and
faulty) of active components. A type of nonlinear feedback element has to be
selected capable of generating robust oscillations. This problem has been
extensively considered in [25]-[41], where a general and practical solution for
building up the OBT oscillator was proposed (Fig. 1.21). When this is the case
self-maintained oscillations can be guaranteed although conditions for starting
up oscillations need a separate consideration. The so-called start-up problem
will be discussed in coming sections.

In general, the block diagram of
Fig. 1.21 is portraying a har-

5 Non-Linear/\/
Block

1( ) monic oscillator with amplitude
n(x

AVAVAVAY y(H) = n(x(t)

x(t) = a4 cos(ot) HBUT b

control by limitation, provided

that Hp, is representing a lin-

ear block and n(x) the
nonlinear element responsible
for the amplitude control. Some non-linear devices used to obtain these

Figure 1.21: Generic OBT oscillator
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controllable characteristics will be studied in Chapter 2, where the techniques
and tools used to analyze this kind of oscillator structures will be reviewed.

Many different types of non-linearities can be considered. They can be
inherent in the feedback loop as well as deliberately inserted within. For the
sake of convenience, only inherent non-linearities will be studied in this the-
sis. Examples of such non-linearities are, among others, saturation, dead
space, hysteresis and relay (Fig. 1.22).

ya y;/ ya / ya
Mt -- M ML M

> T >
X X

xv

Figure 1.22: Different kinds of non-linearities

However, let us put the emphasis on finding a universal nonlinear feed-
back element, which can be shared by any circuit no matter which would be
its transfer function. In this thesis, we are interested in an oscillator which can
be standardized.

1.3.2 General circuit modifications

Fig. 1.21 is applicable provided that the BUT meets certain requirements
and thus, the closed-loop system satisfies the oscillation conditions. For
instance, for most second-order band-pass filters it can be possible to find out
a feedback loop that, during the test mode, makes the quality factor of the fil-
ter very high or equivalently, moves a pair of poles to the imaginary axis (at
least from a theoretical viewpoint). However, not all BUT can fulfil the oscil-
lation conditions by only connecting a nonlinear feedback loop to the BUT
function. So, it can also be required to modify the circuit structure by either
adding or removing some passive components (see Fig. 1.23). Clearly, in this
strategy it has to be distinguished two operational modes: a normal mode,
when the system is connected to its regular input, all the additional compo-
nents needed for testing are removed, and that circuitry took off for test
purposes enabled again, and a test mode, where the feedback loop is closed
around the BUT and the regular input is disconnected. Obviously, adding
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extra elements to the BUT must be made carefully in order to prevent prob-
lems in the operational mode (taking care of not affecting critical nodes and/
or critical components). Moreover, the option of removing parts of the BUT
circuitry must be avoided in order to guarantee that the maximum number of
BUT components are covered in the test mode.

In broad terms, the proposal is to achieve oscillators formed by the block
under test (or a part of it) plus or minus a set of components followed by a
feedback loop also formed by additional components. Fig. 1.23 shows a gen-
eral block diagram corresponding to a system modified to apply the OBT
concept. The only modification affecting the signal path is a switching mech-
anism to separate operational and test modes. During the test mode, a
feedback loop and some extra elements (either within the loop or within the
BUT) are added to produce self-sustained and well- established oscilla-
tions. The purpose is to establish the basics of doing the extra circuit more or
less fixed and more or less independent on the particular BUT and extensible
to many kinds of BUTs.

Designers must view implementing the system and added circuitry as a
global design problem. Besides achieving the system‘s functional specifica-
tions, they must strive to build a robust yet precise oscillator that exists around
the system when the feedback loop is closed.

BLOCK UNDER TEST Removed Circuitry from
¥ the BUT in test mode.
//
From Vin(t) Vout(t To
other > \;4 » i " “other
Cores 1 Cores

I
't

Added Circuitry in test mode

y(t) o x(t)
(Added) Feedback Circuitry <4——

AVAVTAY

Figure 1.23: Converting any BUT into an oscillator
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1.3.3 Start-up problem

The core of the OBT approach is the adaptation of the system circuitry to
transform it in an oscillator and then, to measure the oscillation parameters.
Therefore, it should be obvious that the OBT viability can be seriously com-
promised if a fast and safe start-up is not ensured.

In fact, two main problems can be clearly emphasized when an OBT
scheme is examined:

-First, it may occur that under certain conditions (initial state, offset val-
ues...) oscillations may either start very slowly or even not to start at all [102].
In this sense, we have to provide a mechanism that guarantees safe start-up.

-Second, the oscillation parameter measurements have to be performed
once the steady-state has been reached. Therefore, a short test time is a
requirement of vital importance. Consequently, OBT requires also a start-up
strategy which may reduce the transient time as much as possible.

In summary, in most cases we have to provide a fast and safe start-up
strategy which ensures oscillations. We will come back to this problem in dif-
ferent parts of this thesis.

1.3.4 Requiring more test information

The frequency-only measurements were postulated as sufficient in [1], but
our experience shows that, in many cases, they lead to relatively poor fault
coverage rates [25]-[41]. From a rigorous defect-driven viewpoint, it has been
demonstrated elsewhere [25]-[41] and discussed in previous sections that
measuring the oscillation frequency may not be enough to achieve a reason-
able fault coverage.

In fact, there is also a clear evidence of this matter in Arabi and Kaminska
references [2], where authors set out that a single oscillation frequency is not
enough to cover all target faults. They even propose a solution: implementing
a programmable feedback element capable to generate different oscillation
frequencies because with only a test mode configuration one can not guaran-
tee a high fault coverage. But, obviously, the use of more than one oscillation
mode has a big impact in the test area overhead (needs of employing extra
control circuitry) and in the test time cost.

One of the main objectives of the new OBT concept is to increase the fault
coverage with only one test configuration for each BUT. As was explained,
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the idea is to measure also another oscillation parameters as amplitude, signal
distortion, DC-level, etc... Many positive results were shown in [25]-[41]
where the fault coverage given by the oscillation frequency measurements is
dramatically increased by measuring the oscillation amplitude. In fact,
although amplitude measurements would require additional dedicated effort,
it has been shown that the accuracy needed in the measurements can be
relaxed if both parameters, frequency and amplitude, are considered. Further-
more, measuring more than one oscillator parameters increases the capability
of identifying fault locations [25]-[41], [96]-[97].

However, it is not straightforward to extend the OBT strategy to incorpo-
rate other measurements. Fortunately, the own nature of the nonlinear
oscillator scheme in our proposal (Fig. 1.21) eliminates this problem.

1.3.5 Characterizing the test oscillator

It is very important to model in detail the resulting oscillator. One of the
difficulties of the OBT approach relies on that the oscillation parameters have
to be accurately predicted either by analytical calculations or by simulations.
Otherwise the test interpretation (basically, a comparison between the fault-
free oscillation waveforms and those of a faulty circuit) could not be success-
fully performed. So, a key point of the new OBT concept is to define a robust
non-linear model sufficiently accurate for predicting the nominal values of the
test output signals. An efficient OBT concept must pay special attention to
express the oscillation parameters as a function of the BUT elements and/or
its performance.

There is not a general method to deal with any non-linear system. Non-
linear differential equations can not be studied by a general methodology.
Accurate solutions can be only given in certain kind of (relatively) simple
non-linear differential equations. But, most practical non-linear differential
equations can only be solved with a rough estimate.

In this way, if we can not apply a general method, we have to take individ-
ually each non-linear equation and then, try to develop a method of analysis
for that particular equation.

One way to study a non-linear system where the degree of non-linearity is
small, is to use techniques of equivalent linearization and solve the resulting
linear problem. The describing-function method is one of these equivalent lin-
earization methods. In many practical cases, the main interest is the stability
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of the system, and analytical solutions of the non-linear differential equations
are not needed (settling down stability criteria is normally much more feasible
than obtaining analytical solutions). The describing-function method allows
us to study the stability of non-linear systems from the viewpoint of the fre-
quency domain., but it does not give the exact information about the
characteristics of the time response.

Other methods to study non-linear systems with strong non-linearities are
the phase-plane technique and other techniques based on the second Liapunov
method. The phase-plane method gives information about the stability as well
as about the time response, but it is limited to first and second-order systems
[100]. The second Liapunov method can be applied to stability analysis of any
non-linear system, but it can be difficult to find Liapunov functions for many
non-linear systems [100].

As the kind of oscillators proposed herein consists of a non-linear part, its
description is not generally trivial and some of the mathematical techniques
discussed above could be required to study its oscillatory behavior. So, in the
next chapter practical possibilities will be explored in order to examine the
features of the test oscillators for different types of systems (filters, modula-
tors,...). The aim of this analysis is to accurately determine the oscillation
parameters used for testing the SUT.

1.3.6 Characterizing the test interpretation

In the OBT approach, a SUT is accepted as fault-free if the measured
oscillation parameters lie close to their nominal values (i.e. within an accept-
able range corresponding to the required specifications). Therefore, the goal is
not only to obtain accurate values of the oscillation parameters to compare
them with experimental measurements, but also to accurately define the place
where all the good circuits must lie, that is, the acceptability region.

The ideal situation would be to devise a well-based procedure that attains
two objectives:

1.- any component of the SUT must be closely related to at least one of the
involved oscillation parameters in order to be sure that any fault can be
observed (high fault coverage and high capability of identifying the fault
location).

2.- the sensitivity of any oscillation parameter with respect to the devia-
tions of any element must be high enough to guarantee that all parametric or
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catastrophic faults can be detectable. This is strongly linked to the fact that not
only the test information given by the oscillation parameters but also the toler-
ance bands are accurately determined.

Finally, another crucial point is how to give support to frequency and
amplitude measurements. Obviously, it would be preferable to encode them
into a single digital signal. Unfortunately, although frequency information is
easily coded to digital, it is not the same for amplitude. For example, to solve
this problem, Roh and Abraham recently proposed the use of a Time-division
Multiplexing comparator [69]. On the other hand, a solution based on over-
sampling data converters has been proposed by our group in [85]-[90]. In this
way, the generated waves are coded to digital and, thus, can be processed
either internally or externally by a purely-digital tester. The work in [90]

discusses the problem of accessing internal nodes and gives some ideas about

possible procedures for on-chip decision mechanisms'?.

1.3.7 The test process

As can be seen in the literature [1]-[3], [5], [8]-[11], [13]-[15], [21], [25]-
[41], [49]-[53], [96]-[98], in spite of the fact that some OBT methods have
been proposed by several researchers for digital and mixed-signal systems,
devising a completely general OBT strategy that can be employed to all the
analog and mixed-signal circuits is a task still unfeasible. Nevertheless, this
work is aimed at establishing a, more or less general, yet standard OBT tech-
nique applicable to many kinds of mixed-signal systems no matter how
complex they are.

However, the way to convert a circuit in an oscillator and the choice of the
oscillation parameters obviously depend on the involved fault-detection
procedure. The general oscillator scheme in Fig. 1.21 (a harmonic oscillator
with amplitude control by limitation) has been proposed as a general alterna-
tive to apply OBT. However, up to now, this approach has not considered a
practical oscillator scheme oriented to the subsequent fault-detection.

Regarding fault-detection, this can be performed by a built-in self tester or
in the frame of an external tester. In the former case, the original circuit is
modified by inserting some test control logic which provides for the oscilla-
tion during the test mode. In the second case, the oscillation is achieved by an

12. All these issues will be studied in Chapter 6 where an application example of OBT is described.
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external feedback loop network which is normally implemented as part of a
dedicated tester. But, obviously, one of the objectives pursued in any OBT
strategy must be that the main work of the fault-detection can be achieved on-
chip. In fact, an intrinsic feature of the OBT concept is that the part of the
fault-detection dedicated to obtain the test outputs (in this case, the oscillatory
test outputs) can be made internally. It is so as long as an oscillator structure
can be derived for the given BUTs and the impact of implementing it embed-
ded in the system circuitry is minimum. In fact, the OBT strategy described in
this thesis is basically intended for both, reconfiguring the BUT in the test
mode and achieving the test outputs, all on-chip.

As was saw in the first section, Arabi and Kaminska proposed in [1] a gen-
eral OBT-based test scheme at system level. Among other features, such a
structure involved the use of many additional switches to provide the required
programmability. Such switches are placed in the normal signal path.
Obviously, all these switches may affect the normal functionality of the SUT
and cause serious performance degradation. Therefore, many practical consid-
erations must be made about how to manage such switches to be transparent
in the SUT and not to degrade its performance [14].

Therefore, a goal in this thesis has been to devise an improved OBT-based
test solution at system level which avoids many of the drawbacks of the Arabi
and Kaminska‘s scheme, specially those involving the use of switches and
other elements which could alter the normal performance of the system. See
Chapter 6 where we explain how to implement our OBT approach into an
embedded macrocell (OBIST scheme).

However, for the second part of the fault-detection which is devoted to
measure, evaluate and interpret the oscillatory test outputs, different
approaches have also been performed in Chapter 6 and Chapter 7. For
instance, the oscillation experimental measurements were made with an oscil-
loscope, a counter, or any other designed procedure of measurement (on-chip
or off-chip) such as a first order XA modulator. Apart from that, an evaluation
and interpretation tester (internal or external) must be connected to the BUT
output in order to process the oscillation features and thus determine the BUT
malfunction. In this context, many considerations about the type of tester, the
cost of the tester, the requirements of the tester, and so on, were made. Fig. 1.24
summarizes the main features of the general scheme proposed in Chapter 6
and Chapter 7 as a feasible OBIST solution.
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Figure 1.24: Example of an general OBIST scheme

1.4 SUMMARIZING THE NEW OBT CONCEPT

We are in a position to underline briefly the principles of the OBT strategy

proposed in this Chapter. The basic idea is to implement the feedback loop

shown in Fig. 1.25 for:

-converting the SUT into a Stable Self-starting Oscillator
-relating the system specifications to the so-called indirect parameters (the

oscillation frequency and the oscillation amplitude)13 .

-avoiding essential modifications in the normal signal path.

-ensuring that all system components are tested by the technique.

13- The indirect parameters are not of interest in the normal mode of the SUT but are of vital importance in

its test mode
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But it is necessary to carefully
Feedback think about the possible practical
SUT I::> Loop implementations as well. There

are several alternatives to per-

SUT 0q form the approach shown in Fig.

1.25. We have to consider five
Figure 1.25: OBT strategy points: granularity, local “manip-
ulations”, previous calculations,
measurements and processing. In relation to the first point, we must select an
implementation based on hierarchically splitting the entire SUT in lower-
order subsystems because a meaningful/practical analysis to obtain the design
relationships can not be handled for a complex/high-order system.

Another choice must be to add a “external” feedback loop instead of mod-
ifying the SUT transfer function. There are two main reasons, if we change
the transfer functions, the actual circuit may not be tested in full. In any case,
we must avoid to get anything out of the original SUT and only some essential
extra test circuitry could be included if it were completely neccesary. More-
over, we reject the use of classical linear sinusoidal oscillator. Therefore, we
need to guarantee a robust oscillation with a limiting mechanism (a nonlinear
feedback block). This nonlinear feedback loop is preferred to be the same for
any structure and its implementation must be as easy as possible. We will pur-
sue to use, for any kind of SUT, only extra elements more or less “fixed” in
advance.

On the other hand, both design equations and simulations have to be used
as previous calculations because combining both is more flexible and helps to
predict fault-free and faulty behaviours.

A test based only on the oscillation frequency measurement may not be
practical when either a high precision is required or not all faults are related to
the frequency. Other test parameters must be considered not only to improve
the fault coverage but also to relax (if possible) the necessary accuracy of the
measurements. In conclusion, we have to perform frequency and other mea-
surements (i.e. amplitude) for achieving high fault coverage.

Finally, in the test process nothing is, in fact, determined. Reading digital
signals should be preferred, just one test pin is ideal and, depending on the
application, the measurement and its interpretation may be internal or external,
but performing this on-chip is much more appealing.
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As will be proven in next chapters, OBT seems a promising, yet effective
test technique. However, using this strategy in practice shows there is no
systematic way to apply it to complex circuits. Many decisions must be taken
during the design process. In summary, for each practical application, we
have two different problem levels:

1.-At Block level:

1.1.- Partitioning the SUT into components (BUTs) in an efficient
decomposition.

1.2.- Providing a mechanism to isolate every BUT.

1.3.- Providing a (nonlinear) feedback path to convert every BUT in an
self-starting and robust oscillator.

1.4.- Getting a valid and meaningful model for self-sustained oscillations
(connected with the BUT design equations)14.

2.-At System Level:

2.1.- Devising a straightforward method for reading the test outcome from
every BUT.

2.2.- Interpreting the test results for the whole system.

These problems might be adequately solved for every specific example.
Nevertheless, this thesis pursues to provide some guidelines useful to apply
the basic ideas underlying the OBT/OBIST concept to any particular
structure.

14 The oscillator analysis may lead to quite accurate results, evaluating the oscillation conditions and the

expected oscillation parameters.



Chapter 2

Mathematical Review of Non-linear Oscillators
Mathematical background

A GENERAL METHOD OF STUDYING systems contain-
ing nonlinear elements is perhaps impossible. However, a lot of work has
been made [99], [104], [109]-[112], [114], [123] to develop mathematical
techniques that can be applied to restricted classes of nonlinearities as well as
to extend the application of known methods to a wider range of nonlinear
systems.

In the first chapter we have revisited the basics of the Oscillation-Based
Test (OBT) concept. The OBT approach, as introduced therein, requires to
convert the System Under Test (SUT) in an oscillator structure by incorporat-
ing a nonlinear feedback loop. The requirement of this nonlinear block makes
the study of such an oscillator very complex. Therefore, we are very inter-
ested in finding a practical model which can be straightforwardly used to
design such an oscillator.

A possible solution would consist in employing the Describing-Function
(DF) approach [99], [109]-[112], [114]. It is a simple and widely used
method, easy to handle, intuitive, although restricted to systems fulfilling
some conditions. The goal in this Chapter is to study under what conditions
the DF approach provides an acceptable solution to model the oscillators used
for OBT and when a more accurate mathematical approach is required in
order to obtain a satisfactory oscillation solution.

This Chapter and its Appendix are included for the sake of completeness, to
offer the reader a consistent, yet understandable presentation of the mathemat-
ical background required for dealing with the nonlinear oscillatiors handled
for OBT. Most of this material is based on the work from Alistair I. Mees et
al. (references [109]-[112])

49
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2.1 FRAMEWORK

We are interested in closed-loop systems incorporating at least a nonlinear
element. We intentionally disregard linear oscillators in order to avoid prob-

lems associated with the stabilization phenomenonl. In fact, we have opted
for converting the SUT in a nonlinear oscillator. Particularly, an autonomous
oscillator as shown in Fig. 2.1. This mechanism will be used as a standardized
method to guarantee a self-maintaining, yet robust oscillator from any SUT.
Studying this kind of nonlinear sys-
NN\/\/\,; | Nonlinear tems and its stability requires
Element \ﬁ probably a lot of effort. Even more,
sometimes an exhaustive and accu-

rate analysis is impracticable. Only
E a rough calculation of the oscillation
solution is possible. However, to

successfully apply the OBT tech-
nique we need not only to detect
whether the system may finally oscillate and to calculate the frequency and
amplitude of the output signal, but also to check out its stability requirements
(at least approximately). This Chapter will address the way to model the class
of systems displayed in Fig. 2.1 in order to provide a valid analytical oscilla-
tion solution.

Many methods of analysis of this type of nonlinear systems have been pro-
posed [99], [104], [109]-[112], [114], [123]. A lot of them are now widely
used and there is a wealth of literature on them. Among these methods the DF
technique emerges as one of the most important contributions. This method
(or the simplest form of the method of harmonic balance) is a way for settling
approximations to periodic solutions of non-linear systems by replacing the
non-linear parts by a pseudo-linear representation of their effect on the funda-
mental harmonic. Our interest herein is to offer a straightforward
methodology which provides insight and gives accurate information about the
quantities defining the oscillations (amplitude, frequency, start-up,
stability,...)

v

Figure 2.1: Basic OBT system

1 See Chapter 1 to go in depth in the stabilization phenomenon concept.
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But such a methodology must be accompanied by an estimation on how
accurate its solutions are since the DF approach is just approximated. In fact,
when we started to develop the ideas and concepts of this work, we made use
of the DF approach and the results were “good” or “acceptable”. However, as
the work advanced we spotted some contradictory results between the theoret-
ical predictions given by the DF method and the outcomes from some more
exact non-linear simulation tools.

In short, three different situations were found out:

1.- In most of the examples, the DF approach was valid not only to estab-
lish the oscillation conditions but also to calculate the oscillation parameters
(such as amplitude and frequency) with very good accuracy.

2.- In some other examples, however, discrepancies were observed

between the theoretical predictions and more accurate non-linear

simulations?.

3.- And finally, there were a few examples where (for some operation
ranges) the DF approach gives results which significantly deviated from those

obtained by simulations”.

These last two cases (although corresponding to a relatively small number
of practical cases) question whether the DF approach is an acceptable elec-
tion. For them the proposed DF method sets up some limitations which force
us to calculate the error bounds linked to this approach and, when this is not
possible, to employ a more exact method of evaluation [99], [104], [109]-
[112], [114], [123]. Therefore, two techniques for the estimation of error
bounds in the results obtained by the DF approach are also included in this
Chapter. Unfortunately, as will be seen, these techniques are cumbersome and
do not often lead to intuitive solutions, requiring complex graphical methods.

2.2 THE DESCRIBING FUNCTION METHOD

The DF method is relatively practical in settling the stability of a nonlinear
system but may not be directly applied to the optimization of the system
design. The approach is usually classified as a frequency-response method

2 In Chapter 3, we will go in depth in these cases.

3 We will postpone until Chapter 4 more details about these cases.
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rather than a time-domain technique and it is based on a study which neglects
the effect of higher harmonics in the system. Therefore, this approach will be
most successful in a system containing sufficient low-pass filtering.

The DF method is the first-order version of the method of harmonic bal-
ance, which pursues to find periodic solutions for nonlinear systems by
adapting a truncated Fourier series. Basically, the DF method substitutes a
Non-Linear Block (NLB) by a quasi-linear function, N, which represents the
transfer function for the first Fourier component of the output generated by a
pure sinusoidal input; one can then attempt to balance the first harmonic com-
ponents in the system. If the linear part of the system is such that manages to
attenuate higher harmonics, it seems reasonable that any balance found (in
frequency and amplitude) will be “near” to an actual periodic solution of the
system equation.

Let us assume the single-loop system with only a single nonlinearity as
displayed in Fig. 2.2. The linear block has a transfer function, G, which is a
frequency-sensitive function but it does not depend on the input signal ampli-
tude. The nonlinear element has a transfer function, N which depends only on

the input signal amplitude and is frequency-insensitive.

" oY o N M G s

Relay or any other Linear element
nonlinear element

Figure 2.2: General nonlinear feedback system: division
of the system into its linear and its nonlinear portions

In general, the nonlinear transfer function can be represented by the input-
output equation

m = f(y) 2.0

However, for the sake of convenience, we can rewrite this expression as a

new one consisting of two parts: a quasilinear gain and a distortion term

mENeqy +£,(3) 2.2)
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If the input, y, to the nonlinear block is sinusoidal (y = a;sin(wt)), the
first term on the right represents the fundamental component of the output,
whereas the second term represents the distortion component due to high-

order harmonics. The quantity N, is the equivalent linear gain and will be a

function of the input-signal amplitude4. This is the describing-function (DF)

associated to the nonlinearity f(y).

It may be proved that with a proper selection of N, , and under certain

conditions, the distortion terms may be quite often neglected. In short, if we

desire to minimize f,(y) using a mean-square criterion, the right election of

N,, is the Fourier-series coefficient of the fundamental harmonic of the out-

put waveform. Let us apply this approach, first to a relay system and then to
other more complex forms of nonlinearities.

Depending on the specific relay characteristics, different hypotheses can
be made. We can consider the ideal relay characteristic (Fig. 2.3-(a)) or a
relay with a deadband, A (Fig. 2.3-(b)) or a more physically-realistic charac-

teristic including also hysteresis, # (Fig. 2.3-(c)).

m, ma Mae h
M M M i
v
e E— > >
y . y L‘r : y
1M Y \ =™
A A
(a) Ideal (b) With Dead Zone (c) Including both Dead Zone

and Hysteresis
Figure 2.3: Relay models
In general, the fundamental harmonic of the output of the nonlinear ele-
ment N for a sinusoidal input will exhibit an amplitude and a phase shift

which will depend on the amplitude of the input signal. That is, when the
input is a sinusoidal wave

y = a;sin(wt) = a,;sin(0) (2.3)

4 Explicitly we should write N, (a;),being y = a;sin(o?).
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The output can be represented by a Fourier series
m = fla,;sin(0)] = h;sin(0) + h,cos(0) + ... 2.4
We can normalize these coefficients
M b(a)= 2 25
g(a1)=a1 (a1)=a1 (25)

And these normalized Fourier coefficients can be found in the usual man-
ner [114]

i

ga,) = %al.ff[alsin(e)]sin(e)de
2‘; 2.6)
b(a,) = n—l—%jﬂalsin(e)]cos(e)dﬁ
0
Note, therefore, that the describing-function N, q is?
N,, = g(a)) +jb(a,) 2.7)

As a simple and practical example, we can find the describing function for
the ideal relay shown in Fig. 2.3-(a). Its output will be a square wave whose
zero crossings occur exactly at the same instants than those of the input wave
(see Fig. 2.4).

y A

"t
ma

.

Figure 2.4: Input and output waves (ideal relay)

I+ h3 hy
~——=and y = atan(——z) .
a, h

5. : _ v -
In complex number notation, N, = |Neq|e] where |N,,| =
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That is, there will be no phase shift between the fundamental component

of the output and the input sine wave®. Then
b(a;) =0 (2.8)

The function f(a,sin(0)) is, in this case, a symmetrical square wave’,

hence
T 2n
1 . 1 .
ga)) = mlesm(e)aze—M1 stm(e)de
0

" (2.9)

T

_ 2 (s _ 4M
g(a)) = Mlesm(e)de =
0

2.2.1 A General Describing-Function for Piecewise-linear
Elements

Concerning the possible nonlinearities to be used in the feedback loop of
Fig. 2.1, some restrictions must be made, otherwise the study of the oscilla-
tion mode by the DF methodology is unfeasible. We will exclusively focus on
relays or Piecewise-Linear (PL) elements. A main motivation to consider only
this kind of nonlinear elements when OBT is being applied comes from the
fact that most of the nonlinearities we may find in practical circuits can be
either represented or approximated by PL functions.

Then, we are mainly interested in a relay or at most a PL element. There-
fore, it may be practical to analyze a general nonlinearity to obtain a
describing-function that includes all those cases of interest in this thesis.

Let us study the general form of the nonlinearity shown in Fig. 2.5, [114].
In this general case several parameters are involved: a, b, ¢, d, e, F, D, M, n;,
n, and n3. So, the general expression of the describing-function may seem

complex. However, in all the cases of interest for this thesis, the resulting
expression can be simplified because not all the parameters will be present.

6 In fact, for any symmetric single-valued nonlinearity there will be no phase shift in the output fundamen-

tal component. That means that b(a,) will be zero. However, when a nonlinearity with memory is con-
sidered (that is, when a double-valued function is considered, see Fig. 2.3-(c)), there will be a phase shift
associated with the describing function.

This DF expression will be used during the thesis in many different contexts.
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Slope n, o

_______

Slope ny —

A
N

Figure 2.5: Generic nonlinearity

An equivalent form for (2.7) may be found by using the complex exponen-
tial form of (2.6)
2n

_ I : -0
N, = - jf[alsm(e)]e do 2.10)
0

From [114] the real and the imaginary parts of N, q(.) can be derived as

n
1
g(al) = Ea—;[al(—el +292 + 93 —94—95)]+

n a
+n—all[71(sir1261 —2sin20, — sin26, + sin26, + sinZGS)}-

n
1
+— _ _ B N .
na1[2a( cosB +2c0s0, — cosbs) + 2d(cosb; - cosh)] (2.11)
"2 aq ,
+na1[a1(95—93)+—2—(sm293—sm295)+2k1(c0s65—c0s63):|+

n

3 .
+;a[a1(n - 292) +a; '51n292 - 4k200s92]
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and
"1
b(al) = n——a1|:7(00s291 + c0s293— c0s294— 005295)}r
"1
JrTE—al[Qa(sin()1 - sin95)+2d(sin93— sin94)]+ (2.12)
"2 1%
+n—al[7(— cos263+005295)+2k1(sin95—sin63)J
where
kl _ Dc—Fe k2=b—£
D—a1 ny
0, = asint 0, = asini’— 0, = asin=
1 7 2 7 3 7 (2.13)
1 1 1
64 = asini 65 = asin<
4 4

Therefore, (2.11) and (2.12) give the generic describing-function for the
type of proposed nonlinearity. From this general result, we can derive every
special case as needed in next chapters. These special cases fall into two gen-
eral categories: single-valued nonlinearities and multivalued or memory-type
nonlinearities. In Table 2.1 the equations of some of the most interesting
describing-functions are given.

Non-Linear Characteristic Describing-Function
ng o aM
1 " gla)) = ?(292 —sin26,) + n—alcose2
b
b(al) =0
n3

4M
_______ g(al) = n3+n—a—

ba;) = 0

Table 2.1: Describing-Functions for the nonlinear elements of interest
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Non-Linear Characteristic
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Describing-Function

aM
gla)) = M
ma,
b(al) =0

2M
g(al) = TE——al(COSG1 +c0563)

2M, . .
b(al) = n—al(smel—sm63)

Jm

b

4M
g(al) = Tt—alcose2

—4M .
b(al) = Tr—alsme2

Table 2.1: Describing-Functions for the nonlinear elements of interest

2.2.2 On the use of the DF method in oscillators

m

-N

G

A

X = -y

Figure 2.6: Generic oscillator

Let us now apply the DF approxima-
tion for the analysis of the existence of
a self-sustained oscillation in the
autonomous system displayed in Fig.
2.6 (a simple version of the general
nonlinear feedback system in Fig. 2.2).
As said above, we employ this type of
closed-loop systems as instruments to

apply the OBT strategy. Therefore, different versions of this closed-loop sys-
tem will be object of study in the book.

Let us assume that the system in Fig. 2.6 oscillates, that is, a limit cycle
exists (we will find later, in general terms, the sufficient conditions for this).

Due to the nonlinear block, N, the periodic signal m is, in fact, nonsinusoi-

dal. On the other hand, let us consider that the linear transfer function G has
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an attenuation which increases with frequency. Then, as a first approximation,
we can assume that only the fundamental component of m is transferred to
the output of G . Then the input y to N may be assumed to be sinusoidal. We
can thus conclude that the output of N is related to its input through the
describing-function as

m = —Neqy (2.14)

that is, the distortion term is neglected.

Since exclusively the fundamental component of the limit cycle is retained
in this first approximation, it will be enough to employ the steady-state form
of the linear transfer function

2O _ G(jw) 2.15)
m(jw)

Therefore, a sufficient condition for the existence of sustained oscillations
is the simultaneous fulfilment of these two requirements, (2.14) and (2.15), on
the system. Solving both equations simultaneously yields the basic equation

of the DF analysis8

1
GG =N, (2.16)

The derivation of the above equation is based on three main assumptions:

-the system must be autonomous (i.e. unforced and time invariant).

-the nonlinearity must be separable and frequency independent.

-the linear transfer function must perform enough low-pass filtering action
to guarantee the exclusion of the higher harmonics in the input of N.

Doubtless, the most convenient way of analysing (2.16) is a polar plot
of the two functions and a check for an intersection of the two curves (see
Fig. 2.7-(a)). It could facilitate a more complete study of the stability
requirements. In any case, this plot involves drawing in the complex plane

the —-1/G(jo) locus as @ changes and the N,, locus as a, changes (see
Fig. 2.28-(a)).

8. Strictly we should write N, (ay), being x = a;sin(wt).
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Im
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(a) Evolution of -1/G(jot) and Ngq (b) An oscillatory solution in the Root Locus

Figure 2.7: Two different representations of the oscillation solution for (2.16)

Let us suppose that, when plotting the —1/G(jw) and the N, q loci in the

complex plane, an intersection point is obtained (this intersection point also
corresponds to a pair of complex poles on the imaginary axis of the so-called

Root Locus’, see Fig. 2.7). Then, an oscillation may exist at the frequency and
amplitude given by the intersection. But, however, it might happen that the
oscillation corresponds to an unstable limit circle. If the system is in unstable
equilibrium, the oscillation will break into either a destructive growth in mag-
nitude or a decay to zero. We refer again to the stabilization phenomenon
discussed in the previous chapter.

Let us now investigate the sinusoidal operation mode with a constant
amplitude at an intersection of the amplitude locus and the frequency locus.
We can define a convergent equilibrium as the oscillation mode when the
system is stable under small perturbations, and a divergent equilibrium as the
oscillation mode when the system is unstable. In a convergent equilibrium, a
small positive or negative perturbation displaces the operation point in such a
way that its own evolution forces the system to return to its equilibrium point
(see Fig. 2.8). In a divergent equilibrium, a perturbation of the system causes
it to reinforce the instability or discourage oscillation completely. So, a point
of divergent equilibrium does not support sustained oscillations. Obviously
we are particularly interested in building oscillators whose oscillation mode

% The Root Locus of the closed-loop system in Fig. 2.6 is the collection of curves in the complex plane that
show the possible positions of the roots of the characteristic equation, i.e, 1 — N,,G(s) =0 for all pos-

sible values of Neq .
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be a convergent equilibrium. In short, we desire to establish the stability crite-
ria in terms of the DF approach in order to be capable to determine when the
OBT system (analysed by this linearized method) supports oscillations
satisfactorily.

In broad terms, the criteria for convergent and divergent equilibrium con-
ditions are [114]:

-A condition of convergent equilibrium exists if the amplitude of oscilla-
tion decreases as the operating point on the —1/G(jw) locus moves within
the N,, locus.

-A condition of divergent equilibrium exists if the amplitude of oscillation
increases as the operating point on the —1/G(jo) locus moves within the
N,, locus.

These general criteria apply only to single-loop single-nonlinearity sys-
tems, it is, the class of systems we are interested in when OBT is applied. In
next chapters we will shape and establish these conditions in a more explicit
and intuitive way when we analyze several particular cases.

2.2.3 Convergent Equilibrium: Steady Oscillation Mode

As was already said any oscillation mode requires a mechanism to force a
displacement of, at least, a pair of complex poles onto the imaginary axis.
However, it is in practice unfeasible to locate exactly (and permanently) a pair
of poles onto the imaginary axis. Instead, what can be done is to achieve a
convergent equilibrium where a pair of system poles are moving periodically
to the right and the left of the imaginary axis (observe Fig. 2.8).

In broad terms, the oscillation mechanism shown in Fig. 2.8 consists of
displacing all poles, even the more remote poles to the left of the imaginary
axis (stable half-plane) with the exception of a pair of complex conjugate
poles. This pair, responsible of the oscillation, will be always placed in the
neighbourhood of the imaginary axis (but in the unstable half-plane). Initially,
these two poles move towards such imaginary axis, cross it and after a while
reverse its movement crossing back to the unstable half-plane. This move-
ment is perpetually repeated, forth and back, in the so-called steady
oscillation mode.
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All poles, with the exception of the pair of
complex poles responsible of oscillations must be
located into the stable half-plane after step_4

Figure 2.8: Oscillation Strategy

In short, this steady oscillation mode is a state which fulfils the condition
of having a pair of complex conjugate poles moving continually to the right
and the left of the imaginary axis, while the remainder poles are situated into
the stable half-plane.

Obviously, there is a transient ending when the steady-state oscillation is
reached. The transient duration is what is usually called the start-up time of
the oscillator, and any mechanism involving the process of building the oscil-
lation is called a start-up strategy.
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2.3 APPLYING THE DF APPROACH

2.3.1 Determining the oscillation parameters

Let us suppose that the first-order

An(x) o . .
vV describing-function equation for
the closed-loop system of Fig. 2.6
> 1
N -— =0 2.17
_V X (a;) Gl (2.17)

AX(t) = aA ; cos(c:)t) has a oscillation solution

a4 (co,al)lo, being ® the oscilla-

/\ /\ \ /\ /\> tion frequency and a; the
\/V \_/ \/ t oscillation amplitude.

-a; On the other hand, let us study,

Figure 2.9: Nonlinearity of interest ~ for the sake of illustration, the
nonlinearity shown in Fig. 2.9,

n(x) = Vsign(x). The DF function will be in this case (see Table 2.1)

N(a,) = ;:—V (2.18)

a;

If the linear element in Fig. 2.6 has the following generic biquadratic
transfer function

2 ®o 2

G(s) = (2.19)

2 O 2

0

where o is the resonant frequency and Q is the quality factor of its
poles, then we can rewrite the characteristic equation (2.17) as

2+(% 1—k1N(alD 2 1—kON(a1) _

0 T kN " TNy 220

. 2 2
that can also be writtenas s  +bs+®” = 0

10- 1y what follows, x will be used for a solution point corresponding to a specific value of the parameter x .
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where
o, 1-kN(a)) 2 2 1—kyN(a,))
= — 0 =0y (2.21)
Q 1-k,N(ay) 1 -k,N(a,)
The two-pole solutions are given by
2 2
-b b"—4w
S12 = Efj:___i___ (2.22)

Graphically, we can see in Fig. 2.10 the two different possibilities of
(2.22): a) a pair of complex conjugate poles or b) a pair of real poles.

A Im A Im

«/40)2—b2
2 " m —_b+ /40)2—b2

> 3 2 2
> —& - >
Re Re
b¥
2 - - ——«/40)2—b2
2
(@) bs<2o (b) b>20

Figure 2.10: Poles Location of the closed-loop system shown in Fig. 2.6

As was explained in previous sections, in the so-called Steady Oscillation
Mode the solution of (2.22) is a pair of complex conjugate poles placed just

on the imaginary axis'!. That means b(aAl) = 0 (see Fig. 2.11-(a)). On the

other hand, if the system suffers a small perturbation in such a way that

a,# c; | (with b(a,) # 0), then, the oscillation strategy is capable of returning

the involved pair of complex poles to the imaginary axis (see Fig. 2.11-(b)).

That is, reversing the trend of a, . Accordingly, if at any time a, grows, the

oscillation mechanism forces the complex poles to cross the imaginary axis
and to turn back to the stable half-plane (Fig. 2.11-(b)). Otherwise, if at any

time a, falls, the oscillation mechanism makes the poles to come back to the

U1 Then, the output of the closed-loop system in Fig. 2.6, x, will be an oscillatory signal (with amplitude

a, and frequency (;) ).
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unstable half-plane (Fig. 2.11-(b)). In fact, the final achieved state will be a
pair of complex conjugate poles moving, forth and back, in the vicinity of the

imaginary axis.

Im alm
A a v .a
o(aq) et
» N
» T T~ »
Re ~b(ay) x ' 4 —b(@y) Re
' 2 iy 2
—0)(31) - m--]--m -
Stable Half-Plane Unstable Half-Plane
b(a;) = 0
(a) . b
o(ay) = ig (b) b(ay)=0

Figure 2.11: Poles in the oscillation mode
of the closed-loop system shown in Fig. 2.6

To ensure that the system will oscillate the following requirements are
needed:

1.- Start-up:

Initially, if no signal is present (a; = 0), the poles should be (safely)

located in the right side of the plane (unstable system) to increase the value of
the signal. Note that N(0) — oo and the closed-loop system characteristic

equation is reduced to the equation for G(s) zero locations
®
kys” +ky EOS +koop = 0 (2.23)

Then, the start-up condition is guaranteed if and only if G(s) has some
zeros in the right side of the plane.
2.- Oscillation Frequency:

When the poles are on the imaginary axis, b(aAl) = 0, the system will

oscillate with a frequency given by

~ ~ 1-k -
w = Q)(a ) = W/ - ___M = O/ - ]il__lfg (224)
1 0 0 ko —k
1 -k,N(a,) 1752
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Then, in the case ko = ky, the oscillation frequency, ® is independent on

the oscillation amplitude, a 1

3.- Oscillation Amplitude:

Once the steady state is achieved, the amplitude a | can be determined
because the poles-placement has to be just on the imaginary axis. That is

o, 1—kN(a -
Qo LZEN@) o Ny = kl (2.25)

b , =
(@ =7 1 - kyN(a,) i

Then, substituting N(a,) (see Table 2.1)

A

Considering also that a, has to be positive, we immediately have from
(2.26) two new oscillation conditions. That is
ky#0

(2.27)
sign(V) = sign(k;)

4.- Amplitude Control Stability:
The amplitude control will be stable when [Ref]

0
—b >0 2.28
2a, (ay) (2.28)

The above expression may be further developed

ib(a ): i( M
da; V" Bay | 1-kyN(ay)

1-k{N(a,)
__ 0 |70
B Wal) {1 —k2N(a1)}EN(“1) (2.29)

ky—k
= —4_‘2’.2—12>0
Tdy [1-kyN(ay)]
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Consequently, an additional oscillation condition would be
V(ky—k;)<0—sign(V)#sign(k,—ky) (2.30)

Summarizing for the particular N(a,) function in Fig. 2.9, it can be shown

that all the oscillation conditions are accomplished if
ky#0

2.31)
sign(V) = sign(k,) #sign(k,-k,)
and
" ki —kq
17 K2
(2.32)

~ 4V
a, = _T['kl = f(V, k)

Consequently, when k, = k, the oscillation frequency found by the DF
method is the resonant frequency, ®,, and the oscillation amplitude is
4-_‘/k‘l .
T

al—

2.3.2 Describing-Function limitations

Let us suppose for this study the simple

BandPass example of an oscillator consisting of a
Filter bandpass filter and a comparator as
shown in Fig. 2.12. We are interested in

Ivi .
app }./mg tl.le DF approach to the aflalys1s
of this oscillator, and then comparing the

outcome with the results obtained by
another analytical mathematical method
[116]-[117]. The results derived from this section will help us to outline the
weak and strong points of the DF method.

Figure 2.12: Sine-wave Oscillator



.29 2
values for which s~ + ES +

For the sake of simplicity, let us
now set up the case of a second-order
bandpass filter and a comparator with
saturation levels 0 and 1 (Fig. 2.13).
This closed-loop system verifies the
premises postulated above: the system
is autonomous, the nonlinearity is sepa-
rable and frequency-independent, and
the linear transfer function contains
enough low-pass filtering to neglect the

2 0
ST+

higher harmonics at the comparator output.

OBT in Mixed-Signal Circuits

Figure 2.13: Using a second-
order bandpass filter

Before studying the dynamic involved in the system of Fig. 2.13, we turn

our attention to the s-plane location for poles of G(s). Such poles are the

0, where Q is the quality factor and o, is

the resonant frequency. Let their s-plane placement be — o £ j, so that

§s+mé = s2+20cs+((12+B2) (2.33)
We find then (see Fig. 2.14) that
®
o= —2 B = o, oL (2.34)
20 4Q2
Im
NI
: B=0w,1-—
y = acos(z—lé) . 0 4Q2
v\
E ® Re
o= % —
B2

Figure 2.14: Definitions of parameters related to pole positions
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Applying directly the DF method, (2.16), to solve the closed-loop system
of Fig. 2.13, we obtain that the system produces a near-sinusoidal signal with
high spectral purity whose oscillation frequency is the filter resonant fre-

quency, ®,,. = ®, (regardless of the filter quality factor) and the oscillation
amplitude is A, = %k.

An alternative method to study the circuit in Fig. 2.13 was given by Shan-
thi in [116]-[117]. Following this latter, the step response of the filter is
calculated, resulting in an underdamped sine

“o

——1
_[G(s)] . 2% 20 [ B J
s(t) = L = e sin| o, |1 — —=1|u(t) (2.35)
[ s J /4Q2—1 0 140°

where u(t) is the unit step function.

Then, using this result and examining in detail the Total Harmonic Distor-
tion (THD) of the output waveform, the method obtains an exact oscillatory
distorted waveform whose frequency, calculated through the zero crossings,
depends also on the filter quality factor

Oy = O |1 —— (2.36)

This last expression reveals that the deviation between the resulting oscil-
lation frequency given by the DF approach and the resulting oscillation
frequency given by this last method is

%1
A(Dosc 4Q2

= (2.37)
CO()SC 1 _ L
2

40
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Expression (2.36) is drawn in
Fig. 2.15 as a function of Q.
We can observe from this
Figure that two asymptotes
exist. One shows when the

deviation of with

osc

respect to , is high (for

small values of Q) and the

other one when this deviation

535 & 45 5 g small (for high values of
Figure 2.15: w, respect to Q Q). As an example, if 0 <1

then oy» ®,,. whereas if

Q>5 then o, = 0.
The fact is that there is a dependency between the oscillation frequency

o,,. of the closed-loop system and the filter quality factor, Q. This depen-
dency is not observed by the DF method, but may be completely negligible
when Q exceeds the value of 10.

On the other hand, assuming steady-state response and calculating the
amplitude peak by the method proposed in [116]-[117] for the special case
when the filter quality factor is high, one obtains that it depends on k£ and Q

according to

Ao ® 2k 0O»1 (2.38)
{1 - exp[—LHAMQz ~1
40° -1
As can be seen this expression practically coincides with the expression
obtained by the DF approach (A,,, = %k)lz.
2k 2
2 Q >0, A~ zT—Ek.

ey

407 -1
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In Fig. 2.16 we have
plotted the expres-
sion (2.38) as well
as the amplitude pre-
dicted by the DF
approach (dotted
line). Observe from
this  Figure that

£ o n @

Oscillator Amplitude (Vpp)

N
T

when Q increases

< the oscillation
7 Amplit ict the DF meth .
p y mplitude predicted by the method amphtude curve

T2 5 4 5 6 7 & 9 10 matches up with the
Figure 2.16: Oscillation Amplitude as a function of k 1ine predicted by the
DF method. How-

ever, if Q is not large enough, as k increases both methods of analysis

=y
T

g

present significant disagreements between their predicted results. Neverthe-
less, it can be shown by simulation that this prediction of the amplitude given

by (2.38), is even less accurate than the DF method for k » 1. Therefore, more
accurate simulations show that for £ » 1 the DF method is more appropriate

compared to the method proposed in [116]-[117] (provided that O » 1 as
well).

Once reflected that the oscillation parameters predicted by other mathe-
matical method [116]-[117], under some conditions, differ from the results
given by the DF approach, let us think about our specific problems. In fact, we
are mainly interested in:

1) determining a range of the quality factor, O, and the parameter k£ where
we can successfully apply the DF method.

2) establishing the limitations of this technique in order to understand why
in some examples (found out in the context of this book) the DF approach is
not entirely valid.

From an intuitive point of view the requirements to successfully apply the
DF method to an oscillator such as the one in Fig. 2.12 are:

-A highly selective filter (O » 1).

-Sufficient gain at the oscillation frequency (k » 1).
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ok |F-------- X Smaller Q, Higher BW

. 0

/ 0
BW = -2

> Q

High Q, small BW

®o

Figure 2.17: Illustration of a high-Q
and a smaller-Q Banpass Function

assumptions of the DF method are fulfille
However, let us now show in Fig. 2.

OBT in Mixed-Signal Circuits

The reason behind these conditions
can be explained by considering the
Bode diagram of the bandpass func-
tion (Fig. 2.17). It should be clear
that as Q increases the transfer
function is more selective around

the filter resonant frequency, ),
avoiding thus the flow of higher
harmonics. This effect is improved
as k» 1. Therefore, the basic

d as both Q and k increase.
18 the different results obtained by

three different methods: a) the DF approach, b) the method by Shanthi ([116]-
[117]) and c¢) simulations achieved by Matlab-Simulink. From this Figure a
significant issue is reinforced by simulation: the results obtained by the three

methods match up as both Q and k increase.

120 T T T T T T T T T T T T T T
' 1 @ @) @
100} i
Q=100 . Q=10 Q=1
80 k=10, 5, 0.1 . k=10, 5, 0.1 . k=10, 5, 0.1 _

Parameter Deviation
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o
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o
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(1) [ ] DF Approach vs Simulations

(Frequency Deviation (%))

(2) &Y shanthi Approach vs Simulations (Frequency Deviation (%))

3) DF Approach vs Simulations

(Amplitude Deviation (%))

(4) MW Shanthi Approach vs Simulations (Amplitude Deviation (%))

Figure 2.18: Summary of results
obtained by the three different methods
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In addition, it can be observed by simulation that as Q increases the start-
up transient time also increases (we need more simulation time to establish

completely the oscillations). In [116]-[117] it is demonstrated that as Q — o,
the time taken to reach the steady-state tends to co. However, this behavior is
not shown explicitly if the DF method is used.

But, observe from Fig. 2.18 that, regardless of the value of Q and the
value of &, the solution for the amplitude given by the DF approach is always
closer to the solution given by the simulations than the solution obtained by
Shanthi. Notice that even with Q = 1, the deviation between the amplitude
given by simulation and the amplitude obtained by the DF approach is accept-
able (~3.7%). Moreover, the restriction of high Q is not strict for the
oscillation frequency either. See, for example, Fig. 2.15. This Figure shows
that with Q = 2,5 (an intermediate value of Q ), the frequency given by the
DF approach differs from the solution given by Shanthi (close to the actual
frequency obtained by simulation) less than a 2% .

In summary, a very interesting result comes out from Fig. 2.18: even for
(relatively) small values of Q and k, the DF method provides quite a reason-
able agreement with simulations.

All this can be seen in the numerical

G(s) = *0-03529232*22203" 1-6574678 example shown in Fig. 2.19. This is
S *2243s+7.163¢ the case of a biquad which will be
one of the main block-under-test in

1 next chapters (actually is the circuit
J called HG #1 in the fifth chapter). In
this example the filter quality factor

Figure 2.19: Example where

. Q is 3.77 and the corresponding k
the DF approach is acceptable

parameter is 0.99. Therefore, as we
explained above, such values would
be within the limits where the DF approach is almost valid. Notice, however,
that all the above conclusions were extracted considering a bandpass function.
But now, we have another type of function. Nevertheless, examining the
accuracy of the model given by the DF method, we obtain that the predicted
oscillations for HG #1 have a good agreement with more exact nonlinear
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simulations. Specifically, a neglected deviation in the frequency and a 1.20%
of deviation in the amplitude.

On the other hand, all these assumptions seen above depend not only on
the filter transfer function but also on the nonlinear element employed in the
feedback loop (see Fig. 2.20). For instance, let us suppose, from a very simpli-
fied viewpoint, the dynamic of the closed-loop system proposed in Fig. 2.13.
Notice from Fig. 2.20 that by changing slightly the nonlinear block, we could
relax the characteristics of the bandpass function and the DF approach still is
valid. It is because less harmonics are involved in the output of the nonlinear
element.

High Q,
L P small BW ) T
0 3mp Sog

o Ty

; Smaller Q,
Higher BW
L 3 _—P h [a%)

0 [o%) -

AN < ot

J_H

Figure 2.20: Dynamic of the closed-loop system of Fig. 2.13

The above described analysis is for the specific case of second-order band-
pass filters and for very simple nonlinear feedback blocks. However, these
results are illustrative for a more general case. In this sense, the DF approach
could not always be accurate enough to model the OBT oscillator. It depends
on both the linear transfer function and the nonlinear feedback element which
determine the characteristics of the input and output signals. There may be
cases in which we must correct the DF results with some kind of error analy-
sis or with more exact non-linear simulations.
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In next sections we will try to delimit from a more general point of view
when the DF approach is completely valid and when, otherwise, their results
must be corrected by a more useful method of analysis.

2.4 ERROR BOUND CALCULATION FOR THE DF
APPROACH
2.4.1 First proposed method

Any error analysis is a point of vital importance in any approximate

method as the DF approach. To verify that (®, a,) (oscillation solution given

()

A PRl . ~ Set Q
.".‘.'..'.'.\" A
WS, aj)

|
a4

Figure 2.21: Confidence interval, Q

by the DF approach) corresponds to a true oscillatory solution of the involved
closed-loop system, we also have to find a “confidence interval” containing
this fundamental frequency and amplitude (see Fig. 2.21). Such an interval,

Q, is formed by points in the space (w,a;) around ((:J, a;). Q is found

defining several error functions called p, ¢, and r (see Appendix 2.A
extracted from [99] and [110]). Such error functions allow us to state a key
inequality at all points in Q. If, under certain conditions, the inequality is ful-
filled, then, we can assert that an oscillatory solution exists and such a

solution is into the set €2, it is, near to the calculated solution point (®, a,).

The more we can confine Q, the better we can settled the oscillation solution
and the more accurate will be the result given by the DF method.

A revisited DF method is proposed and justified in Appendix 2.A ([99],
[110]). In summary, this modified DF approach does not only regard the point
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of intersection given by the basic equation of the DF analysis (that is, (2.16))
but also takes into account some other features in the vicinity of such point
and the implicated loci. This improved semi-graphical method involves solv-
ing various steps (see Appendix 2.A). The first step (Step 0) coincides with
the first-order DF approach and the rest of the steps will correspond to the
revised DF approach.

For the sake of clarity, let us summarize the different steps of the method
presented in Appendix 2.A ([99], [110]):

Assuming that the non-linearity, n, is a single-valued odd function and is

monotone increasing or decreasing; we only look for solutions composed of
odd harmonics

Step 0: Find (o, Zzl) satisfying N(Ztl) + 1A = 0. Check that the N
G(jo)

and —1/G loci are not parallel where they intersect at ((;3, a).

Step 1: Find p(). That is, the error function which estimates how well
G(jw) filters out high-order undesired harmonics. Small values of p(w) are
desirable; the smaller p is, the smaller the eventual error.

Step 2: Find p(a,). That is the DF output error or the error assuming that

the output of n is sinusoidal when its input is sinusoidal.

Step 3: Find g(a,, €). That is, the function that measures the error intro-

duced by neglecting high harmonics at the input of n.

Step 4: Choose ¢ such that for all (w,a;) near ((:),al),
e2p(o)p(a;)+q(ay, e)].

Step 5: Find the set Q of (w,a;) values near (m,&l) such that

1 ‘ < q(al’ 8)
G(jjo)l a
Check that Q is bounded.

‘N (a))+ . (This can be done graphically: see Appendix 2.A).

Step 6: Check that Q) contains the DF solution, ((:J, a).

Step 7: Then, there is at least one true periodic solution with (®, a,) € Q

and |x*| <e.
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2.4.1.1 Example #1: Oscillator with bandpass functions of different Q

Let us thus reintroduce the problem highlighted in previous sections where
we can observe that the DF method on its own was incapable of determining a
difference between the oscillator (given in Fig. 2.13) obtained with a band-
pass of high O and with a bandpass of small Q . Therefore, we will see in this
section how the modified DF method described in Appendix 2.A is already
capable of finding these discrepancies.

Suppose again the example of Fig. 2.13 but now considering two kind of

: . ® 2 % 2 ,
bandpass functions (that is, G(s)= k;—s/s" + —s+ mo): one with a small

0 0
Q (Case #I) and the other one with a high Q (Case #2), both cases with

k,>1 (see the specific values in Table 2.2 with k; = 1.1).

Case #1 Case #2

(0] w
0 - 10006 wp = 10008° | 2 =108  wp = 1000’
0 0 0

Table 2.2: Values for Example #1

As was discussed above, the result given by the simpler version of the DF
method is only valid for the second case. Let us justify by means of the pro-
posed semi-graphical method why it is so.

Step 0: That is, applying (2.32). Regardless of the case (considering V = 1 V)13

a, = 2k, = 14006V
T

) - (2.39)
O = 0 H50 = 1000%49(159.155 Hz)
k, -k, s

Check that the N(a;) and —1/G(jo) loci are not parallel where they

intersect at (o, a;) (see Fig. 2.22).
Notice an important difference between both sets of loci in Fig. 22214
despite the fact that in both cases we have covered the same range of frequencies,

13- Notice that for a bandpass function kO = kz =0.

14. Remark how different are the units in the vertical axis of both cases.
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[100, 10000], in Case #I such a range takes up the range [-0.009, 0.009] in the
imaginary axis whereas in Case #2 it takes up [-0.9, 0.9].

A |m
0-01 T T T T T T T T T
I i Case #1
0.008} 1 . .
0.006 « G(jo) : 1
0.004| Z .
0.002} N(a,) ; :
>/ ' Range of frequencies:
0 ® >, [100,10000]rad/s |
Re:
-0.002} ' i
-0.004} Point of intersection ' E
Solution of the first-order DF equation
-0.006 . .
-0.008} ' E
B v._.
VO —F5 T %5 5 25 5 35 4 45 5
A m
1 T T T T T T T T T
. Case #2
0.8 1 A ]
G(jo :
ool v G(jo) , _
0.4f ; -
0.2t N(a,) : .
/ : Range of frequencies:
0 \ 4 a [100,10000]rad/s
Re
02 : 1
-0.4+ Point of intersection : 4
Solution of the first-order DF equation :
0.6 | ]
0.8 : _
L. \
Ao —05 1 15 2 25 3 35 4 45 5

Figure 2.22: Loci of interest
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Step 1: We have (see Appendix 2.A)

p(o) = (2.40)

Observe that as Q — o, then p(w) — 0. This fact explains why the DF
solution is more precise as Q — 0.
Step 2: We have (see Appendix 2.A)

2

;8] = 0,62V (2.41)

play) =V 2(”

T

Step 3: We have (see Appendix 2.A)

16\/2{ n( g)} . 16nV2_s_

q(al,s) = — — (2.42)
4 4
Step 4: Let us take a 0.001% error, it is for instance, € = 0.001 .
Step 5: Find the set Q of (o, al) values near (c:), a,) such that
‘N(al) + Glo )‘ <o(o,a;)
1 L
qlay.e(0.a)) 661 (164 ) 2
c)'(co,al) = p . I B B T (2.43)
1 V4
1
= 3
2 —_=
’N(a1)+ (16V2 ] 12
G(jo)

This can be done graphically in Fig. 2.23. Notice how different are the
units in the vertical axis of both cases.
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0.05
Case #1
0.04f
0.03¢
0.02}
0.01- A Range of frequencies:
+  [100,10000]rad/s
0 »
' Re
-0.01F y
-0.02
-0.03
-0.04- RN 1
0035 0.85 0.9 0.95 i 1.05
Am
1 . . . .
..................... Case #2
0.8 ‘
0.6 __] :
' ¥G(jo) .
0.4+ Tin . .
. ange of frrequencies:
0ol N(@1) o | o~ on » [100,10000]rad/s
0(a1mm, £)[®min o, aq, N(@y,ax) '
0 —V— —>
. Re
0.2 N(a1mm) | :
0.4 1
-0.6- 1!
0.8 4
..................... v
s 0.85 09 0.95 ] 7.05
Figure 2.23: Error discs used in locating the set Q,

in which the exact solution lies

We have to check that Q is bounded. Intuitively, it can be observed from

Fig. 2.23 that in Case #/ it is more difficult to establish the set of frequencies

which form Q because there is only a very short stretch in the imaginary axis
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which corresponds to the [ 100, 10000] rad range of frequencies. Therefore, a
s
small deviation in defining the values of points where the discs are tangential

to the —

1, locus increases significantly the frequency in the rectangle
G(jo)
Q= [®,,;,, ®
(Case #2 in Fig. 2.23).

If we consider, for example, in Case #I that the discs are tangential to the

maxd X L1 min» @1 may] - Notice that this fact minimizes as Q » 1

-1/G(jo) locus in the point on the imaginary axis £0.001, then,

[0,,in @ max] = [1691.27, 591.27]%[. However, simply supposing that
such a point is in £0.002, the rectangle [®,,, ®,,.] enlarges a lot:

[2586.61, 386.61 ]%’. Alternatively, if in Case #2 we assume that the discs

are tangential to the -1/G(jo) locus in £0.001, then,

[® ® = [1005.52, 994.52]%1 (very close to the DF solution, ®).

min> max]

Similarly, if we assume that the point is in Z0.002, the rectangle

rad

[©,,in @] hardly changes: [1011.06, 989.06]T .

On the other hand, it must be clear from Fig. 2.23 that both cases (Case #I
and Case #2) give the same range of amplitude values. Doing the correspond-
ing calculations such a range is: [ 1.3325, 1.4655]V or likewise [an1 +4.6%].
It is consistent with the results obtained in previous sections where we studied
the example of Fig. 2.13. We conclude the DF approach was poor in deter-
mining the value of the frequency if Q was not large enough but, however, it
was not equal for the amplitude. The accuracy in the amplitude did not depend
on the value of Q.

Step 6. Check that Q contains the DF  solution

(:),21 = —, 1. . It can be shown that as Q » 1 we can fence
| 1000”;‘1140061/ It can be shown that as O » 1 fi

in the rectangle [® ] to the DF solution.

min® (Dmax] X [almin’ A max
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Step 7: There is at least one true periodic solution with (®, a;) € Q and

||x*|| <eg. It is the actual solution is in the close neighbourhood of the calcu-

lated one, ((;3, a;) and the residual part of the solution due to the higher

harmonics is smaller than €.

2.4.1.2

Example #2: (Example of Fig. 2.19)

Let us again study the following linear transfer function!?

2 -8
G(s)= —0.0392s —2220.015 + 1.654¢

52 + 22435+ 7.163e7

Step 0: Applying (2.32), then we have

Checking that the N(a,) and —

intersect at (

30

25}
b

20

.y
a1=-;[—k1

o=y |10

= 0) |7
ky—ky

®, a,) (see Fig. 2.24).

= 1.2602V

rad

= 8294.157°5(1320.0Hz)

1
L+ G(jo)

Point of intersection
Solution of the first-order
DF equation

(0, 3y)

YT

Alm )

.
0 0.5 1

Figure 2.24: Loci of interest

13- This example corresponds to a biquad which is one of main BUTS in next chapters (Fig. 2.19).

(2.44)

(2.45)

) loci are not parallel where they
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Step 1: We have (see Appendix 2.A)

2
p(o) = (2.46)

2
_ 4 Q)
k=35, ... k4(o —k2m2[2m 0] + cog

2
2.4 4 2902 2 2 4
kzk [0 —[2k 0@ —k1 ko +k0mO

SN
|

Step 2:We have likewise: p(a;) = 0,62V.

16V

T

Step 3: We have likewise: q(ay, 8)2 ~ ai .
1

Step 4: Let us fix, for example, ¢ = 0.001.

Step 5: Find the set Q of (o, a;) values near ((:), a,) such that

1

= 3

2 -=

16> ] 2

—¢E a .
T

1
‘N(al) + Glo) <o(w,a))~ [ 1 (2.47)
This can be done graphically in Fig. 2.25.
A Im
0-/1 T T T . .
o Figure 2.25: Error

Twhich the exact
| solution lies

0.2t / min N(a,) J discs used in locat-
v ing the set Q, in
Fa 3 » .........
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Check that Q is bounded. That is right, o € [8289, 8309]%4 and

a, € [1.195,1.322] V.
Step 6. Check that Q contains the DF  solution

(@,a,) = 8294.15, 1.2602..

Step 7: There is at least one true periodic solution within (®, a;) € Q and

x| <&

Observe that now we can state that the actual frequency and amplitude of

the oscillations are in the range (~(:), a, £5%). It agrees with the simulation

results shown in previous sections, where the actual frequency and amplitude

was in the range (~(:J, a; =1.2%).

2.4.2 A graphical method for a particular type of
nonlinearities

Let us recommend a modification of the revisited semi-graphical DF strat-
egy (see the previous Section) in order to provide a reliable method for
predicting whether or not certain types of closed-loop systems with certain
kinds of nonlinear feedback loops (see [99], [104], [109]-[112], [114], [123])
can really oscillate. As will be seen, this alternative method is easy to apply
and evaluates the usual intuitive ideas about the DF reliability. The goal is not
to find a definite analytical oscillation solution, rather it is to find whether
there is an oscillation in the system and to fence in the oscillation parameters
(frequency and amplitude) within ranges. The idea is to draw a band which
measures the amount of uncertainty introduced by the approximations inher-
ent in the DF approach. Therefore, the method gives error bounds for
oscillation predictions, as well as ranges of frequency and amplitude over
which oscillation is possible. A particular restriction is that the nonlinear ele-
ment must be single-valued and has bounded slope. Fortunately, most of our
cases of interest are included in this kind of nonlinearities.

2.4.2.1 Proposed Strategy
Let us again study the autonomous feedback system shown in Fig. 2.6. As

was said, this closed-loop system splits into a linear, time-invariant part, G
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and a nonlinear part, n . Assume now that the characteristic of n has odd sym-
metry, is single-valued and has a slope between o and j3, i.e.

o(x; —xy) Snx;—nx, <P(x; —x,) (2.48)

for all real numbers x; and x, <x,.
We are mainly interested in determining whether the system will oscillate.
As was explained in previous sections, the DF approach establishes that if

N(a,)+1/G(jo) = 0 (2.17) has a solution (c:), a,), there is “probably” a

7 — symmetric oscillation (see Appendix 2.A) in the system with frequency

A

and amplitude, at the input to the nonlinearity, close to (:) and a, . Contrarily,
if the previous equation has no solutions, the system “probably” cannot sus-
tain a 7 — symmetric oscillation. Let us explain how to replace “probably”
with “certainly”.

As was discussed, (2.17) can be graphically solved plotting the loci in the

complex plane of N(a,;) as a; varies and of — as o varies. Every

(o)
intersection of the loci is a solution of (2.17).

On the other hand, in [99], [110], [112] it is shown that (2.17) is an
approximate version of an exact equation

1
G(jo)

F(-,-) cannot be found exactly but can often be bounded. If the errors

N(a,) +

= F(w,a,) (2.49)

introduced by neglecting this function are small enough, then solutions of
(2.17) should be close to those of (2.49). The purpose of this section is to

show that the bound on F' can be used to define an uncertainly band around
the —1/G(jo) locus in such a way that the presence or absence of intersec-
tions between this band and the N(a,) locus guarantees the presence or

absence of corresponding oscillations in the system of Fig. 2.6.
Let us determine the uncertainty band:
Let first p(®) be again a quantity which estimates how well G(j®) filters

out higher harmonics.
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On the other hand, let us proceed as follows: call the point on the

—-1/G(jo) locus corresponding to ®, P, ; then, that corresponding to 3w,
P, and so on. Draw a circle with the interval [a, B] on the real axis as diam-
eter'©. Obviously, the N(a;) locus is placed inside this circle!”. Now
consider an ® such that every P, (k# 1, k odd) lies outside this critical cir-

cle, as is shown in Fig. 2.26, and let Pk0 be the point closest to the circle.
Then p(o) is the distance from P, to the center of the critical circle, i.e.
0

pto, T

- (2.50)
2 G(jko)

p(®) = min

k>1
k odd

Observe that we have only define p(w) for certain values of ®, specifi-
cally those in the set [' = {m: p(®)> (—&—;—a—)}

On the other hand, let us define a positive function 6(®) on any subset of

B;Oﬂ 2
o(0) = —( 2 ) 2:51)

(p(@)-£52)

We can obtain this value calculating straightforwardly, but also we can
give it a geometrical interpretation which is useful when one is drawing the

diagrams by hand. Referring to Fig. 2.26, draw the line segment from P ky to

C [the length p(w)], and erect a perpendicular at C. Draw a square which
determines the point C*. The point Q is defined in Fig. 2.26 as the positive

quantity o(®). In our case we note that as ® increases o(®) decreases,

16 This circle will be named critical circle from this point forward.

17 1t can be shown, in this case, N/ (al) is a real-valued function for which oo < N (al) <B.
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while as @ decreases () increases until it diverges as P approaches the
0

critical circle.

Re

Critical Circle defined by N(a4)

Figure 2.26: Finding p(®) and o(w) . Here P3 is the closest point to the
circle, so kg=3 and p in (2.50) is CP3
Now draw error circles centered on —1/G(jo) with radius o(®) (see
Fig. 2.27). The enveloped of all such circles over a connected subset I'" of I

is an uncertainty band. The reason for choosing a subset of I is that as P,
0

approaches the critical circle, the error circles become arbitrarily large and
cease to give any useful information. The choice of subset I'' is best made
while the band is being drawn and is chosen with the objective of drawing a
narrow band. If G(jo) is low pass, the band can be quite narrow over I''. In
any case let us assume that we have fixed I'' and drawn the corresponding
band.

We can highlight two cases for which we can make a definitive statements
regarding the solution of (2.49):

Case a: No part of the band intersects the N(a,) locus.
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Case b: The band inter-
sects the locus completely
as in Fig. 2.27.

Roughly speaking, in Case a

,
/

|| N Envelope of

error circles

there is no solution of
(2.49) while in Case b
there is one. This is in
accordance with practical
experience when using the
DF method, since only a
complete  (nonglancing)

p INtersection or noninter-
Re section is treated with
confidence, and then only
when there is good reason

to believe that higher har-

Figure 2.27: How finding Q ~ monics are unimportant.
The latter requirement is

c(w,)

satisfied when the band is narrow, so all we are really doing is quantifying the
low-pass hypothesis.
In Case b we can find error bounds by examining the intersection and

reading off 1) the amplitudes a,;;, and a,, corresponding to the intersections
of the boundary of the uncertainty band with the N(a,) locus, and 2) the fre-
quencies ®; and ®, corresponding to the error circles (of radii () and
c(®,) ) which are tangent to the N(a;) locus on either side of it.

On the basis of these numbers we can define a rectangle Q in the (, a,)

plane, containing the point (o, a;) for which the two loci intersect
Q= {(0,a): 0, <O<O,,a;;<a;<a,} (2.52)
Therefore, a complete intersection between the uncertainty band and the
N(a,) locus can be now defined as taking place when the —1/G(jw) locus

itself intersects the N(a,) locus and a finite 2 can be defined as above, on
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which N(a,) and G(jo) are regular18 and the loci are never parallel (see Ref
for details).

Summarizing, I' was the set on which p(w) could be define and I'" was
that subset of I for which we chose to draw the uncertainty band. Let I'” be
the subset of I for which all harmonics (including the first) have the corre-

sponding —1/G point outside the critical point. That is

o= deBre, L [ B-a (2.53)
2 G(jo) 2
k=1,3,5, ...

Therefore, we can affirm that the system in Fig. 2.6 (with a single-valued
nonlinear element which has a bounded slope):

Theorem I: can not have a ™ — symmetric oscillation of any fundamental
frequency o € I'".

Theorem 2: can not have a m — symmetric oscillation of any fundamental
frequency o € I’ if there is no intersection of any part of the uncertainty
band with the N(a,) locus.

Theorem 3: can not have a m — symmetric oscillation of any fundamental
frequency o € I' and fundamental amplitude a, if the corresponding error
circle does not contain the point N(a,).

Theorem 4: for each complete intersection of the uncertainty band with

the N(a;) locus, there is at least one m —symmetric oscillation with fre-

quency and amplitude contained in the corresponding Q.

18. N(a,) is regular in Q if diN(al);tO for all a; € Q and —1/G(jo) is regular in Q if
a
4 G(jw)#0 forall @ € Q.
do
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2.4.2.2

-
o

Functions

\
o & & A b o v A o o

100 80 -60 40 -20 9 20 40 60

80 100

Figure 2.28: Example of Nonlinear
Function
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Example #3: Non oscillatory solution

Consider the following non-lin-
function:

nx = (signx)(J1+x=1). If

we draw this expression we

ear

obtain two parabolic segments
joined to give a smooth odd
function (in red in Fig. 2.28).

Then, the values of o and B are
0 and 1/2, respectively and the
locus of N(a) must be on the
real axis between these limits.
The diagram for the case where

G(S) = é gs_—l) iS ShOWn
2 (s+1)
in Fig. 2.29.
In this case,
1 _ 2 [ 200yt | (ko) - (ko))
GU =_'[ (m)2+j 2 } (2.54)
GUko) 3 [14 (ko) ~ 1+ (ko)
So, we have
4 5 3
Som = 3 [P (2.55)
G(jo) 3 |]4+62 I+
Then we define
B+ a
p(w) = min B + :
2 G(]k(;)) k>1
k odd
(2.56)
R R E e e
4 3 11 + (ko) | + (ko) .
>
k odd

An initial guess may be k = 3
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p(w) =

12 [ 230)° .((303)5—(3@)3)}
1_Z. (2.57)
4 3 L+(3w)2+] 1+ (o)

And the set

r= {co: p(w)> ;‘*)}:

2 2 (2.58)
o (1_2. 2@@)“} +{((3wf—<3mf>} 1
4 3 1+3o) 1+(30) 4

l'={ow: ®>030}

But if we choose I'' = {®: ® > 0.48} , we have then the radius of the error

circle centered in ————— when ® = 0.48
(o)
@
n
c(048) = —— ——
(p(o.48)—1

(2.59)

p(0.48) =

12 { 23)" +j((303)5— (300)3)}
4 3 [1+Go) 1+(Go)

o = 0.48
p(0.48) = 1.7586
5(0.48) = 0.0414

If we define a set of error circles over I'' = {m: ® > 0.48} , the envelope
of all such circles will be an uncertainty band (in magenta Fig. 2.29). So, we
can observe that this system cannot oscillate with an angular frequency
greater than 0.48 because there is no intersection of any part of the uncertainty

band with the N(a,) locus (Theorem 2).
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0.25

0.2 |
0151

R
1
o
L—@
1
NI—

-0.05 ‘k o AN 1

_ , G(jo)
OB 8= 048 N

Critical Circle

S
a
T

o
N
T

1 1 1 1 1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 2.29: Band and locus for first example

2.4.2.3 Example #4: Existence of an oscillatory solution

Consider the following non-linear function (saturation nonlinearity):

<1
nx = * b sothat o = 0 and B = 1. The locus of N(a) must
signx x| > 1

be on the real axis between these limits. The diagram for the case where

G(s) = 289=L) s shown in Fig. 2.30.
s(s+1)
1 1] 20k0)! | (ko) - (ko))
In this case, —— = 1| 2ko) +j > . So, we have
GUko) 2|1 4 (ko) 1 + (ko)

- 2 +] :

1 _ 1] 20" | (0’ -0’
G(jo) 2|14’ l+o
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Then we define

_ . Bp+a 1 _
p(®) = min > +G(jk(o) .
k odd
—min 1_1{ ko)t j«kco)s—(kc;f)}
2 2|14 (ko) |+ (ko) .
k odd

If we impose, for example, k = 3:

1_1{ 200) j<(3oo)5—<3m>3)}
2 214 (30) 1+(3o)

p(o) =

The situation is as shown in Fig. 2.30, with [®,, ®,] = [0.94, 1.03] and
[a;;,a,] = [2.25,2.90]. We have then Q = {(®,a):0.94 <w <1.03,
2.25<a;<2.90}. We can assert that there is an oscillation solution whose

frequency and first harmonic amplitude, (o, a;) € Q.

0.08[
1
0.06 - ‘/G(J(D)
04 ®, = 1.03
0.02f
0 a; =290
o = =1
0 = . \ B—P
= 2.25
N(a4) 2
oo (o, a4)
o, = 0.94
0.04
0.06 1 L 1 1 1 1 1 ]
0 0.1 02 03 0.4 05 0.6 0.7 0.8 0.9

Figure 2.30: Band and locus for the second example
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These last examples revealed two important issues:

-when the nonlinear element is single-valued and has bounded slope, there
is a way to graphically find if an oscillation solution exists without having to
calculate the specific describing-function. This method also allow us to define
error bounds of the solution.

- the existence of an oscillation solution in the scheme of Fig. 2.1
depends not only on the involved linear block but also on the features of
the non-linear element. Notice, for instance, that when we change the
linear block of the Example #4 by the one from the Example #3 (although
they look like very similar) the resulting system has no an oscillatory solu-
tion. Therefore, we can find very different results with systems composed
of the same non-linear element and very similar transfer functions and
vice versa.

2.5 SUMMARY

Experience coined from the study of many cases allows us to assert that
the DF approach is the simplest and intuitive method to study the proposed
scheme of OBT (Fig. 2.1). However, we can find some particular examples
where the predictions extracted by the most basic version of this method are
not completely satisfactory. Therefore, we have discussed in this Chapter how
to get the best out of the DF approach introducing two modified versions of it.
Both versions allow us not only to find an analytical oscillation solution and
error bounds for this solution, but also to measure the amount of uncertainty
introduced by the approximations in the DF approach. The value of this
uncertainty allow us to determine if the result will be a “good” or “accept-
able” prediction.

But, problems concerning the accuracy of the oscillation solution
obtained by the DF approach appear in different contexts throughout the
thesis. Most of them can be studied by employing the modified versions of
the DF strategy presented in this Chapter. These methods do not give a
solution as only one point. Instead, a set of points is obtained. Therefore,
we will work with a set of solutions and the actual oscillation will be
within this set. Smaller we can define this set, more accurate our results
will be.
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However, as will be shown in later chapters, we can observe that there are
some cases where even working with a set of DF approach solutions does not
guarantee a “valid” result. These examples force us to examine our linearized

models (DF approaches) and even, sometimes, to define a new way to go on:

that is, complementing the DF results with simulations'®.

19-1n Chapter 4, we will go in depth in this case.



Chapter 3

OBT Methodology for Discrete-Time Filters

Principles and architecture

IN ORDER TO EVALUATE the feasibility and applicability of

the new general OBT approach proposed and studied mathematically in previ-
ous chapters, the particular case of discrete-time filters will be herein
considered. In practice, the Arabi and Kaminska‘s OBT concept [1]-[15], was
especially tailored for active filters that may be divided into second-order sec-
tions. In fact, its application to continuous-time filters implemented by off-
the-shelf components was reported elsewhere [14]. Now, considering many
other references of our own [36]-[37], it may be reinforced that this methodol-
ogy seem especially appealing for active filters. In all these cases, [36]-[37],
discrete-time filters were studied, although the technique is not limited to
them.

This Chapter aims to exhaustively review the essential points of the previ-
ously presented OBT technique for discrete-time filters, discussing the
practical modifications needed for obtaining economical and viable test
results. In particular, we will describe a pragmatical approach for applying
OBT to discrete-time active filters. A rather general, yet simple to implement,
mechanism will be proposed to guarantee oscillations without almost modify-
ing the SUT. As was seen in Chapter 1, such a mechanism has to be nonlinear
in order to force robust oscillations. However, it will be shown that the result-
ing oscillator is quite predictable in terms of both frequency and amplitude,
making it feasible to use these two parameters to obtain very high fault cover-
ages when typical faults are considered.

3.1 FEASIBLE OBT STRATEGY IN DISCRETE-TIME
FILTERS

Converting a discrete-time system under test (and more specifically a dis-
crete-time filter) into an oscillator requires a mechanism to force a
displacement of, at least, a pair of poles onto the unit circle. In fact, the

97
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oscillation mechanism illustrated in Fig. 3.1 consists in reaching, after a tran-
sient state, a steady state where a pair of complex conjugate poles is
continually moving in and out the unit circle, while the remaining poles are
placed into the unit circle to avoid the system to become unstable.

L

Im(z)

Unit Circle - —
(radius = 1)

T s

P
"~/

>
Re(z)

. Moving perpetually a
x pair of complex poles in

and out the unit circle
* after a transient state.

All poles, with the exception of the pair of complex
poles responsible for oscillations must be placed R
into the unit circle after a transient state.

Figure 3.1: Robust oscillation strategy in a discrete-time SUT

As was demonstrated elsewhere [100] il
L

H(z) L

<

and postulated in previous chapters, a

basic means to enforce this proposed

oscillation strategy lies in closing a loop NorLinear y

around the involved SUT. The introduced —EF Block A <

feedback must be a non-linear block with

. . . Non-linear feedback
a series of required features which allow ) .
. Figure 3.2: Oscillator
to govern the magnitude of the pole
radius. Accordingly, this approach builds up an oscillator with amplitude con-

trol by limitation. A simplified z -domain scheme serving this proposal is

displayed in Fig. 3.2, where H(z) represents the filter transfer function (of the

filter under test) in the z-domain and (z ") stands for the possible extra delays
that a real circuitry may insert in the system.

A linearized model for this closed-loop system formed by a generic trans-
fer function and a non-linear block can be derived using the DF approach (see
Chapter 2). Provided that the discrete-time linear part of the system filters out
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the highest harmonics of its input, and the nonlinear block accomplishes some
conditions, the system will have a pair of complex poles on the unit circle and

a sinusoidal discrete-time signal with general form y(7) ~ Acos(0¢) will be
obtained!, where 6 = 27f i gnar’ Fsampiing (01N fyppmpiing the sampling fre-
quency of the system and f;,,,, the frequency of the output signal).

The closed-loop system in Fig. 3.2 is characterized in the z-domain by
1-7"N(A)H(z) = 0 G.1)
where N(A) is the describing-function of the non-linear block as a func-

tion of the amplitude (A) of the first harmonic of its input2 (signal called y in
Fig. 3.2).

Consequently, the pole placements is determined by the roots of the equa-
tion (3.1). But, obviously, depending on the value of n (number of delays in
the feedback loop) and on the order of the filter transfer function, several
types of oscillation solutions can be found.

Expression (3.1) formulates the mathematical basis of the proposed OBT
strategy. Next sections aim to solve this mathematical problem but in such a
way that feasible oscillation solutions can be easily obtained for every partic-
ular case.

3.1.1 Oscillation solutions for a generic filter

The general mathematical procedure to extract viable oscillation solutions,
efficient for the OBT approach, involves: 1) establish (3.1) (that is, determine
the pole placements of the SUT reconfigured as an oscillator) in a suitable
way, 2) check the conditions for robust and sustained oscillations and 3)
express the oscillation parameters and the oscillation conditions as a function
of the coefficients of the system transfer function.

I Considering the relation between continuous and discrete-time frequency —domains

sT joT

zZ=re =re . A pair of complex poles in the unit circle (r = 1) will be placed in
fsi
jor j2n signal
1= s _ v sampling )

2 See Chapter 2 for details.
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The main goal of this mathematical procedure is to find out the oscillation
parameters. Such oscillation parameters have to be related to all the elements
of the SUT as well as the restrictions of the steady oscillation mode have to be
established.

Consider the most general case when the filter transfer function in Fig. 3.2
presents the following expression

Jji (32
12 +...+b

where indexes i and j would be, respectively, the numerator and the
denominator order of the filter transfer function.
Thus, the characteristic equation (3.1), would now turn into
Q(z)-N(A)P(z) =0
P(z) = kizi+ki712i_l+...+k0 (3.3)
0(z) = AR bj_le"*l +.. 4+ by

Depending on the order of (3.3), the number of the poles vary, but if we
are interested in an oscillatory solution, we have to impose, as minimum, a
pair of complex conjugate poles (obviously, such poles have to be located,
after a transient mode, onto the unit circle). For the sake of clarity, (3.3) may
be rewritten as

(z2—2r cos0z + rz)[Remaining Poles] = 0 (3.4

where those poles responsible for an oscillatory result® have been sepa-
rated from the remaining poles. Notice that » and 0 are functions of N(A)

and the coefficients of H(z). Observe, on the other hand, that the solutions of
the remaining poles must be located into the unit circle in order to guarantee
the consistent stability of the closed-loop system.

Handling an expression as (3.4) from an abstract viewpoint and deriving
practical conclusions can be an arduous and most of times an impossible task.
In fact, the roots of (3.4) can be either generic pairs of complex conjugate
poles, or real poles or/and pairs of pure imaginary poles. But, regardless of the
other existing poles, let us focus our attention on the pairs of complex

3 For convenience, the polar form has been used to express the pair of complex poles of interest.
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conjugate poles which control the oscillations. As was said, the expression of

such poles is, in polar form, z2—2rcose + r2, where, as is shown in Fig. 3.3,
r represents the corresponding radius and 0 the respective angle for an
instantaneous amplitude condition (that is an instantaneous A4). Such an

angle is related to the frequency of the non-linear block input signal (signal y
in Fig. 3.2) as well as with the sampling ratio of the discrete-time system in

such a way that 6 = 2nf ;. .1/ fsampling -

Mm@ 1= f(A) Mm@ =
J J
6 = g(A) eosc
'Re z — 'Re z
@) 0,sc REE@
L3 X
Establishing Mode: Oscillation Solution:
While A is not equal to Ay When A is equal to Ay

Figure 3.3: Pair of complex poles ruling oscillations

On the other hand, let us illustrate in Fig. 3.4 the pole reorganization (the
evolution of the complex poles responsible for oscillations as well as the
behaviour of the remaining poles) in the so-called steady oscillation mode.

4 Observe again (from (3.3) and (3.4)) that both, 7 and 0, depend on A , that is, the amplitude of the first

harmonic of the non-linear block input signal.
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Im(z) ' = f(A?,w*

L
o | om0 =fA
| . Re(z)

X
Remaining Poles \‘*

(a) Initial Situation

Unit Circle
(r=1)

OBT in Mixed-Signal Circuits

Unit Circle
(r=1)

X

Remaining Poles ~ ~—
into the Unit Circle ose

(b) Oscillation Strategy

Im(z)

Remaining Poles
into the Unit Circle

(c) Oscillation Solution

Figure 3.4: Description of the closed-loop system pole reorganization

The problem will have an oscillation solution as long as A

osc and 0, can

be found, satisfying the following oscillation conditions:
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C1.- Start-up condition. Initially, if no signal is present (A = 0), at least
one pole should be moved out of the unit circle in order to convert the system
to an unstable system and thus, increasing the value of the signal.

C2.- The pair of complex conjugate poles commanding the oscillations

must be placed just in the unit circle. That is, +(4,,,) = 1.

C3.- Amplitude control stability. That is, at the end of the oscillation
strategy process, a pair of complex poles have to be continually moving out

and into the unit circle as illustrated in Fig. 3.4-(b). To fulfil it, if A increases,

: or _ Or 0

must decrease and viceversa. That means: — = ——-_——N(A)<0.

' oA = aNA) oA
C4.- The solution must be one and only one. That is, only a value of
A, and O and f,..(0

can be found. Then, A ose
amplitude and the frequency of the oscillations.

sc ) are respectively the

c c osc

CS.- The remaining poles must be placed into the unit circle in order to
guarantee the stability of the system as shown in Fig. 3.4-(c).

According to this, some oscillation conditions can be derived for all the
cases proposed in Table 3.1 (only the types of poles shown in Table 3.1 will
be considered because more complex solutions are a combination of them).

For instance, let us assume the case of having in (3.4) a pair of complex
poles plus a real pole (named p,) (first row of Table 3.1). Then, (3.4) is

reduced to
2 2 3 2
(z72rcosOz+7r)[z+p] =2 +az —a;2+ay, =0 (3.5)

where the coefficients a; are related to N(A) and consequently to A

(first-harmonic amplitude) as well as the coefficients of the filter transfer

function. Then, when we impose the oscillation mode (r(A,,.) = 1), the

derived oscillation condition is p; = ay[A . ]<1.
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Main part of the characteristic equation ((3.4))

Existing .
Oscillation
Poles Polar General
Solution(r = 1)
Form Form
a
Pair cosO -1
) osc 2
complex poles 2 2rcos0z + 12 Z-a z+a ag = 1
. a, —a,
Pair complex poles cos6 =20
osc 2
+ 2 2 3 2 1+2p, cosO =a
(z7-2rcosz+17)(z+p;) z tayz —ajzta, 1 0sc 1
Real pole Py =2,
Pair 2cos = a3
complex poles _
1+ ‘pz‘ a,
+
2cos6 =a
) o 2, e+2(2+ ) 4, 3.2 [Pal =2
Pair pure imaginary (z"-2rcosbz+17)| z ‘pz‘ z tayz tayz -ajzta, ‘p2| =4,

poles

Table 3.1: Summary of the simplest pole placements for oscillations

In the same way, if a pair of complex poles plus a pair of pure imaginary

poles (&j|p,|) is considered, the oscillation condition would be

|p2| = aylA, J<1.
On the other hand, another evident oscillation condition would be
-1<cos(6

) < 1. Even more, the result cos(0, _.) > £1 is not desirable

osc osc

either due to the fact that, regardless of the filter coefficient values, 0. tends

to m or 2 (poles on the real axis) and consequently, f,

osc

tends always to

or /2, respectively. In such a case no information for test

fmmpling sampling
purpose could be obtained from the frequency parameter. Clearly, this fact
halves the efficiency of the test strategy. Moreover, when this solution is
obtained it would be needed a faster sampling frequency to find out and eval-

uate the oscillation frequency.
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But, in general, another hypothetical situations must be, most of the times,

avoided not only those associated with the result cos(6 ..) — £1. Also, the

osc
result 0,,. — *(n/2) (when poles are on the imaginary axis) must be
rejected for test purposes because under this condition the oscillation fre-
/4.

Consequently, in most cases, the closed-loop system would not behave as an
efficient oscillator for testing (see Chapter 4 for details). Therefore, the four

quency cosine is virtually zero and, likewise, f,.. 1S fimpiing

rejected situations associated with 0, . are those where that angle is placed

c
near to the axes: either the imaginary or the real one.
To go right away, we must aim to achieve the following oscillation condi-

tion for finding accurate values with the DF approach as well as for test

purposes: f, . <« foampiing- We are interested in f, . = fi,piing/M With
2n
M » 1. That means that 0 . = i —0.
M)) 1

Consequently, a trade-off between this condition and the aforementioned

condition where we had to circumvent that cos(6_ .) — £1 is required. This

osc
condition allows us to use the system sampling frequency to measure and
evaluate the oscillation frequency. However, this point is important mainly
when we are interested in on-chip interpretation. In an off-chip strategy we
could have a tester with a faster sampling frequency and, then, this condition
may not be essential. All these issues will be separately considered for spe-
cific examples in next sections.

To end this section, let us regard the case of a generic filter. Normally,
under this circumstance, a more complex combination of oscillation results is
found. However, although a more complicated case is being considered, the
critical points to be taken into account are essentially the same than those
above-mentioned.

3.1.2 Oscillation solutions for the biquadratic case

As can be deduced from the previous section, splitting the whole SUT into
simpler components is necessary. Otherwise predicting the fulfilment of the
oscillation conditions and the main oscillation parameters, is no trivial
and most of the times an impracticable task. So, a first approach to test a
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high-order filter should be to convert the complete system into an oscillator
and then to solve the general case, (3.3), where the transfer function, H(z),
has the order of the complete SUT. But in this case, as can be seen from (3.3),
a lot of poles have to be handled and thus it would be very difficult to control
the specific pair originating the oscillation, especially when all these poles
differ by a relatively small value and lie very close to each other. Further-
more, relating the oscillatory behaviour to specific faults is much more
difficult, making test interpretation very complex as well. Since each oscilla-
tory mode is associated with a pair of complex poles, the minimum order to
achieve an oscillation is two. For this reason, we focus on decomposing the
SUT into biquadratic components.

Let us consider the case of generic second-order structures (biquads)
whose transfer function in the z-domain can then be expressed by

2
k k k
H(z) = )LZ) = w (3.6)

¥(2) z2+blz+b0

where the coefficients k; and b; are related to the particular circuit

implementation.
For this particular case, the characteristic equation, (3.1), can be rewritten
as

n

+2 +
b4 +blz"

"t by -N(A) [y +kyz+ ko] = 0 37
being n the number of delays existing in the closed-loop oscillator.
Let us, likewise, isolate the pair of complex poles responsible for oscilla-
tions. That means, (3.7) is rewritten as

(12—21’ cos0z + rz)[Remaining Poles] = 0 (3.3)

being r and O are, respectively, the radius and the angle of the complex
poles of interest. Notice that the number of remaining poles depends on the
number of delays (‘n’).

Several types of oscillation solutions for (3.7) will be described in next
sections. All these solutions will depend on both the number of existing
delays, n, and the specific non-linear block selected to close the feedback
loop. Thus, let us, first, sort the solutions for different values of ‘n’.
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3.1.2.1 Type a: Delay-free loop oscillator (n=0)

Let us consider that there are no delays in the feedback loop. Expanding
(3.7) the following equation is obtained

Z+bz+by—N(A) - [kyz +k;z+ky] = 0 (3.9)
whose result is only a pair of complex poles. (3.9) can also be rewritten as
(polar form)
z2—2rcos62 +r7 =0 (3.10)
by—kyN(A b, -k N(A
_ b0k NA) 4 2 rcoss = L1z RN
1 -k,N(A) 1 -k,N(A)
Notice that the placement of the poles (the radius and the angle in polar

where r

form) will depend on the particular form of the non-linear block describing-
function.
In this case, considering the oscillation conditions C2 and C3, a simple
system of equations is obtained
by — koN(A )
1 -k,N(A

OSC)

1 bl - klN(Aosc):|

cos0,,. = 5[ 1 _K,N(A (3.11)

OSC)

dr dr kyby -k

=2 = 0
AN(A). T dAN(A) [1—k2N(A)]2<

Then, the oscillation parameters are related to the biquadratic function
coefficients by

by—1
N(A,,.) =
ko =k,
(3.12)
cosO _ l (ko_kZ)bl_kl(bo—l)
osc — 2|: ko—k2b0 :|
fulfilling, at least, the following conditions
Sign(Aosc) >0
ko—ky)by —ki(bg—1 (3.13)
—1<coseosc<1:>_2<(0 )b, = k(b )<2

kO - kZbO
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On the other hand, as was explained earlier, the result cos(0, ) = 1

osc
has to be avoided. This is the reason why the second obtained oscillation con-
dition is a strict inequality. Otherwise, no effective information from the
oscillation frequency can be extracted since it would be simply the sampling
frequency or half of the sampling frequency. Even the case in that

cos0,,. —> =1 must be avoided in order to have perfectly characterized the

oscillation frequency and be able to faultlessly distinguish this one from the
sampling frequency.

3.1.2.2 Type b: Single-delay loop oscillator (n=1)

Let us consider that there is a unit delay in the feedback loop. Expanding
(3.7) the following relation is obtained

2 +7°[by - kyN(A)] + 2[by — k;N(A)] - kyN(A) = 0 (3.14)
whose result is a pair of complex poles and also a real pole.
(3.14) can also be rewritten as
(z +pl)<z2—2rcos62+r2) =0 (3.15)
where p, represents the real pole.
The solution is given by the following set of equations
rzp1 = —kyN(A)
—2p,rcos® +r° = by—k,N(A) (3.16)
-2rcosO+p, = b,—k,N(A)
In this case, considering the oscillation conditions (C2), we have
P, = —koN(A
—2p,cos0,,.+ 1 =by—k N(A,,,) (3.17)
—2cos0,,.+p, = b;—k,N(A

OSC)

OSC)
Depending on the explicit expression of the non-linear block describing-
function, N(A), this set of equations will have one solution or another and

consequently, the oscillation conditions which satisfy sign(A_..)>0 and

osc

-1 <cos0,,.<1 will adopt a particular form. But, independently of the
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specific N(A), a requirement has to be guaranteed in order to finally attain an
equilibrium state: the real pole, p,, must be placed into the unit circle when
the steady-state is reached. That means, then, that we have to impose:

[koN(A,)| <1 (C5).

osc

3.1.2.3 Type c: Two-delay loop oscillator (n=2)

Let us consider that there are two unit delays in the feedback loop.
Expanding (3.7) the following relation is obtained

24 2by + 2 by - kyN(A)—2[k N(A)] - kN(A) = 0 (.18)
that can also be expressed as follows
(2" +az+b)(z"=2rcos0z + 1) = 0 (3.19)
where
br' = —kyN(A)
—2racos® + r° + b = by—k,N(A) 20
~2rcosOb +ar’ = —k,N(A)
-2rcosO+a = b,
In this case, considering the oscillation conditions (C2), we have
b = —koN(A,y.)
—2acosO+ 1+b =b,—k,N(A
—2cos0b+a = —k;N(A

-2cosO+a = b,

OSC)

(3.21)

OSC)

Again, depending on the explicit expression of the non-linear block
describing-function, N(A), this set of equations will have one solution or

another and the oscillation conditions which satisfy sign(A_  .)>0 and

osc
-1 <cos0,,. <1 will adopt a determined form. But, in addition, a require-

ment has to be forced in order to attain an equilibrium state: the pole which is
. —_— L [2
not responsible for the oscillations whose expression is z = — g T ANa —4b

must be located into the unit circle. That is, the values of a(4,,.) and »@4,,,)
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must be such that their poles associated are into the unit circle. That condition

is also determined by the involved N(A).
3.1.3 A simple Non-Linear Block

As can be seen from all the above considerations, it would be convenient
to select a specific non-linear feedback element capable of generating robust
oscillation for any biquadratic section. Although many non-linear blocks are
possible it is important from a practical viewpoint to ease it as much as possi-
ble taking into account not only the required hardware for its implementation
(area&power) but also its simplicity (robustness) as well as the particular
involved analytical expressions obtained from (3.7).

The first issue to be considered when the OBT strategy is applied to a sys-
tem in general (discrete-time filter or whatever other system) is the circuitry
available into the core in order to reuse any part of it to implement the OBT
technique. It was one of the main reasons why, in some papers, [26], [36], a
low-resolution quantizer was used as the non-linear element to feed the sys-
tem under test input when it was reconfigured as an oscillator.

For the sake of simplicity, let us consider the non-linear function shown in
Fig. 3.5 which implements a saturation function. This non-linear functionality
was studied in many preliminary works [25]-[28], [30]-[37]. As was men-
tioned in previous chapters, this is very important to perfectly characterize the
test oscillator and to achieve general expressions giving accurate nominal val-
ues for fault-free oscillations. So, the main advantage of using such a
nonlinearity is that it allows to simplify the theoretical analysis and easily
establish, in most of the cases, closed-form expressions for the estimation of
the oscillation features by analytical computations. That means, closed-form
oscillation conditions can be effortlessly derived as well as good approxima-
tions for the frequency and the amplitude of the resulting oscillation.
Moreover, this non-linear block is very straightforward and the additional
required hardware for its implementation is very reduced.

In a first approach, the feedback element is formed by an analog compara-
tor providing one of two voltage levels, V, or Vg to connect or disconnect
one of two switches, as depicted in Fig. 3.5-(b). Obviously, more complex
versions of this non-linear block can be regarded. However, in this scheme,
the nonlinear block can be formally described by a 1-bit ADC followed by a
1-bit DAC, and implemented by an analog comparator and some switches.
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Va
Non-Linear Block I
y(®) y(®)
A A
v v x(t) y(t)
A » A .
x(t) x(t) L
I VB VB — I
Positive Feedback Negative Feedback N(A) VB
(a) Non-linear Behavior (b) Very simple implementation

Figure 3.5: A very simple Non-Linear Block

It was shown in Chapter 2 that the describing- function, N(A), for the case
of a non-linearity given by a saturation function is

2’Vref
N(A) = — (3.22)

being V., = V, - Vpg.

An important fact derived of (3.22) is that the describing-function does not
only depend on the value of the first harmonic amplitude but also can be con-
trolled by the voltage V,, . (whose exact value must be fixed by the designer).
So, this voltage can further be exploited as a valuable parameter to select the
best set of values for the amplitude and the frequency of the oscillations. That
is, V,,, 1s a practical parameter to place the oscillation features in the zone of

the space, amplitude versus frequency, where the detection of faults could be
more clear. This issue will be studied in detail in next section.

3.1.4 Oscillation Conditions

Once the non-linear block has been selected, N(A) is known, and the
oscillation equations can further be developed to obtain practical oscillation
conditions. In what follows, these conditions will be derived for the so-called

delay-free oscillator (Type a, n=0), using the simple nonlinear block proposed

in the previous section.’

3 For the other types of oscillator (Type b and Type c), only a symbolic set of equations is found and no

important conclusions can be extracted from the general case.
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1.- Start-up conditions:

As was seen, initially, if no signal is present (A = 0), at least one pole

should be out of the unit circle. Note that in this case N(0) — o and then, the
closed-loop system characteristic equation (3.7) is reduced to the equation for

H(z) zero locations: kzz2 +kiz+ky=0.
In view of above, we have that the start-up condition is guaranteed if and

only if H(z) has some zeros out of the unit circle.
2.- Oscillation Frequency:

When the poles are on the unit circle, the system oscillates with a fre-

quency given by (3.12) (but now replacing 0,,. = 2nf,

OSC)
b~k N(A

— .acos—_l.—osc):
osc — 2nT 2 1-k,yN(A_ )
s 2 osc

. S[l.bl(kz—k0)+kl(b0—l)}
2nT, 2 kg~ boks

(3.23)

being 7, the sampling period of the discrete-time system.

3.- Oscillation Amplitude:

Once the steady state is reached, the amplitude A _. will be determined by

osc
imposing the pole-placements to be just onto the unit circle. That is, substitut-
ing A, into (3.12)

2V,.r ky—kg

= 24
e = T T Thy (3.24)

Considering also that A . has to be positive, it can immediately be
deduced from (3.24) two new oscillation conditions (supposing, without loss
of generality, that 1 >b5,>0)

ky # kg
(3.25)
sign(V,,p) = sign(ky —kg)
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(3.25) shows the influence of Vier on the oscillation conditions and the

flexibility that this factor can add to our OBT approach.
4.- Amplitude Control Stability:

As was discussed, the amplitude control mechanism imposes

a%r(A) <0 (3.26)

As r(A) > 0, the above expression may be further written by

aiArZ(A) - 2r(A)aiAr(A)<o (3.27)

Then, using (3.11) and (3.22), we obtain

by—kyN(A by—kyN(A

il’z(A) = i —O 0 ( ) = L —O 0 ( ) iN(A)

0A 0A| 1-k,N(A) ON(A)| 1 —k,N(A) [0A
2V kybo -k (29

Sty g 2o
A" [1-k,N(A)]
Consequently
Vref(kzbo—k0)>0—)sign(Vref) = sign(k,by—kg) (3.29)

This last expression points out an important fact, the factor V., is vital to

carry out the required strategy of establishing the oscillation amplitude. Since

ko, ky and b, are coefficients fixed by the biquad characteristic, the coeffi-
cient V, . has to be modified in order to attain the amplitude control stability.

The importance of this parameter, V,,,

relies mainly on the case where the
existing relationship between the biquad coefficients is not suitable to support
oscillations. In this case, an additional limitation element is required in the

feedback loop.

Concluding for this particular N(A) function and the Type a structure®, it

can be shown that oscillation conditions are all accomplished if the biquad
coefficients fulfil

6. Assuming that 1> b, >0 without loss of generality.
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ky # kg
(3.30)
sign(V,.p) = sign(k,—ky) = sign(k,by-ky)

and then the oscillation parameters according to such coefficients will be

_ 2Vier Kk~ ko
osc T[ l_bo
(3.31)
. 'acos[l.bl(kz—k0)+k1(b0—l)
osc ZTETS 2 ko—b0k2

For the general case, it can be seen from (3.31) that the oscillation ampli-

tude only depends on the coefficients k,, k, and b, whereas the oscillation

frequency depends on all coefficients. Obviously, at a first glance, it may
seem that the frequency is enough to discriminate any deviation of any coeffi-
cient. Accordingly, frequency may serve as the only test parameter to detect
faults and the amplitude may be just a complement. But, observing in detail
(3.31) two considerations can be made:

a) The frequency expression contains all the needed information, whereas
the amplitude expression only cover a part of the needed information (the
information associated with three of the biquad coefficients). Consequently,
the amplitude measurement would be not enough to achieve a high fault cov-
erage. However, to be sure that the frequency measurement would be enough
to obtain a high fault coverage, (3.31) must be carefully examined in order to
study also the sensitivity of the frequency with respect to the variations of
every coefficient. It could occur that though all coefficients appear in the fre-
quency expression, the observability of a fault due to a coefficient deviation
can be insufficient because the sensitivity of the frequency respect to that
deviation is too small. So, an exhaustive analysis of (3.31) leads to advance
that both oscillation parameters are required if a high fault coverage is
pursued.

In view of (3.31), if the case k, = k; = 0 is carefully examined, f,,.

becomes independent of the oscillation amplitude, A .. This is a very illus-

trative case because reveals a situation where the expressions of the
oscillation frequency and the oscillation amplitude are mathematically discon-
nected. In this example, at least from a theoretical perspective, both
oscillation parameters are strictly required to cover all the biquad coefficients.
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This mathematical result is a proof of that, both parameters, frequency and
amplitude, must be evaluated to obtain a high fault coverage.
b) On the other hand, another point to be taken into account in (3.31) is the

usefulness of the parameter V, . which is only present in the amplitude
expression. This parameter helps to adjust the amplitude value. Thus, the
amplitude can be chosen to achieve the best testing conditions. This is a way
to control the sensitivity of our measurements and, thus, the test quality. Fur-
thermore, (3.31) paves the way for the potential use of distortion

measurements, which, in turn, can be controlled by the actual value of V.

5.- Amplitude Sensitivities and Frequency Cosine Sensitivities:

Once we have defined the oscillation parameters (frequency and ampli-
tude) in relation to the biquad coefficients, we are in a position to calculate the
corresponding sensitivities. Table 3.2 shows the respective expressions as

functions of the filter coefficients (k,, k;, k¢, by, by)).

From Table 3.2, we can again observe that the oscillation amplitude does
not depend on the coefficients k; and b, of the biquadratic transfer function.
Therefore, if these coefficients are present in the biquad structure, we can

never use the oscillation amplitude to detect possible deviations (or faults)
in them. However, the study of the oscillation amplitude sensitivity with

respect to the coefficients k, and k, reveals that they are correlated and,
depending on their actual values, the amplitude value deviations will be

higher or lesser. Fig. 3.6-(a), for example, shows the case when k, = 0.
The smaller k,, the higher the amplitude sensitivity. However, the main
result in this sense is displayed in Fig. 3.6-(b) where we can observe that
such sensitivity changes depending on the particular value of k. Finally,
we can also note from Table 3.2 that the value of oscillation amplitude
sensitivity with respect to the coefficient b, is exclusively subject to the
own value of bj.

On the other hand, from the general expressions of the frequency cosine
sensitivities shown in Table 3.2, we can not extract useful conclusions
because they involve all the biquad coefficients. To study the importance of
the coefficient deviations we must particularize for each specific case. Next
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sections will deal with this point, but starting from simpler expressions of the

sensitivities.
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Figure 3.6: Example of amplitude sensitivity

dA d
0oSscC —
A ao. cos(0 ) dp.cos(eOSC)
g 95 100. P; S 08¢~ 100 —4——n—
; Aosc p; cos(eosc)
N [b, (ky —kq) +k; (by ~ 1)Ib,
osc _ _100 cos(0 ) byt k. —b k
Sk Tk —k osc’ _ 0 "072
2 270 k R ey s
2 1( 27 0) 1( 0~ )
SAosc -0 scos(eosc) - 10 [by-11
k) Ky by (ky —kg) +k; (by—1)
[ . bl(k2k0)+k1(bol)}
osc 100 e _
Sk0 T Tk Zk COS(eosc) = 100 k0 b0k2
270 ko by (ky — k) + K; (b~ 1)
[b, (ky —k) +K; (b = 1)1k,
osc 100 cos(0 ) Ky kn—byk
st T 1o, S 05¢” _ 100 0 "072
0 b, by (ky — ko) +k; (by— 1)
SAosc -0 scos(eosc) - 100 (k) — k)
b b by (ky —kg) +k; (by—1)

Table 3.2: Sensitivities as functions of biquad coefficients
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3.2 APPLICATION TO A PARTICULAR BIQUAD
STRUCTURE

The OBT methodology considering the Type a (n=0) structure and the sug-
gested N(A) will be applied to a family of active switched capacitor biquads
[101], [103] proposed by P.E. Fleischer and K.R. Laker (1979, FL-biquad).
They presented two active switched capacitor filter topologies. Each of these
circuits comprises two operational amplifiers and at most nine capacitors.
Most commonly used transfer functions can be made with any of these
topologies.

The general SC FL topology is shown in Fig. 3.7. The circuit consists of
two integrators, the first stage being inverting while the second stage is nonin-
verting. Damping is provided by the capacitors E and F. In any particular
application, only one of these capacitors need to be present, leaving a total of
nine capacitors, but for analysis purposes it is convenient to handle the two
cases together.

When the input signal is held over the full clock period, the equivalent cir-
cuit given in Fig. 3.7-(b) is obtained for the circuit in Fig. 3.7-(a). By means of
this z-domain equivalent circuit, the transfer functions can be drawn out by
directly using straightforward nodal analysis

V{)1(Z)_
vin(z)

H()l(z) =

2
_ (C+IE—GF-GB)z” +(FH+BH+BG-JC—JE—IE)z+(EJ - BH)

2
D(F +B)z” + (AC+AE—DF -2DB)z + (DB - AE)

V()Z(Z):
Vin(z)

(3.32)

H()Z(Z) =

2
_ DIz” +(AG—DI—-DJ)z +(DJ - AH)
2
D(F +B)z” +(AC+AE—DF -2DB)z + (DB - AE)

Some conflicting degrees of freedom can be eliminated if, it is arbitrarily
chosen B =1 and D =1 (each one of the two groups of capacitors
(C,D,E,G,H) and (A, B, F,1,J) may be arbitrarily and independently
scaled without changing the transfer functions).
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Figure 3.7: General SC FL-topology

In view of the above, B = D = 1 is taken and therefore, (3.32) can be
reduced to the following simpler expressions

(IC+1E—GF—G)z> +(FH+H+G-JC—JE—IE)z + (EJ — H)

Hol(z) =

2
(F+1)z +(AC+AE-F-2)z+(1-AE) (3.33)

122+ (AG — [ J)z + (J — AH)

H02(Z) = 2
(F+1)z +(AC+AE-F-2)z+(1-AE)

These expressions have to be related to the generic transfer function of
second-order structures (3.6). The relationships are shown in Table 3.3.
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k k k b

2 1 0 b

1 0

Hl(z) IC+IE-GF-G |FH+H+G-JC-JE-IE | EJ-H | AC+AE-F-2| 1-AE
o

1+F 1+F 1+F 1+F 1+F
-1 I1+J-AG AH-J | AC+AE-F-2| 1-AE

H 2(Z) i LTIz AN
o 1+F 1+F 1+F 1+F 1+F

Table 3.3: Transfer function coefficients in relation to Fleischer and Laker elements

3.2.1 Properties of the FL-Biquad

3.2.1.1 The E- and F-circuits

Let us introduce, for the sake of simplicity, another representation of the
FL-biquad given by Fig. 3.8 where it is possible to see that the two available
outputs, V,, and V,,, are always correlated’.

C+E(1—z_1)

Figure 3.8: FL-biquad implementation

One final simplification that can be made to the general biquad in Fig. 3.8,
involves the elements £ and F. These elements are redundant in the sense
that they both provide damping. It is, therefore, convenient to define an “E-
circuit” in which E#0 and F = 0, and an “F-circuit” in which F'# 0 and
E=0.

Accordingly, the transfer functions for these two types of circuits in

relation to the elements of the generic biquad structure are summarized in
Table 3.4.

7. This detail will be very important hereinafter because this feature will allow us to replace, if needed, an

output by the other one to close the required OBT feedback loop.
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ky ky ko by bo
Ho1@|g | IC+IE-G | H+G-JC-JE-IE | EJ-H | AC+AE-2 | 1-AE
Ho» (@) -1 1+J-AG AH-J | AC+AE-2 | 1-AE
Hy, () IC-GF-G| FH+H+G-JC “H AC—_F_2 1
oI*™IF 1+F T+F T+F 1+F 1+F
H . (2) I 1+]-AG AH-J| AC-F-2 1
02®g — —

1+F 1+F 1+F 1+F 1+F

Table 3.4: Transfer function coefficients for the FL-biquad

3.2.1.2 Pole placement
For any pair of complex conjugate poles in the z-domain, one can write the
denominator as

2
D(z) = 2 +byz+b, (3.34)

At this point, it would be appropriate to consider simultaneously the oscil-
lation conditions of the proposed OBT configuration with the stability and the
realizability of the proposed E-circuit and F-circuit in order to establish some
guidelines and criteria of DfT. It is mandatory to realize all stable pole posi-
tions. Stability for a biquad can be conveniently expressed [101], [103] in the

b,, b, parameter space as the area within the shaded triangle shown in Fig.
3.9. The upper parabolic area of the triangle (in red) represents the b, b,
values for stable complex poles. On the other hand, the zone under the parab-
ola where b, >0, corresponds to the real pole pairs which lie to the left or
right of z = 0, whereas the lower triangular portion where b, <0, corre-
sponds to the real poles which lie on alternate sides of z = 0. Observe that,
clearly, the upper area of the triangle (where b,>0) depicts most of the

useful pole locations for frequency selective filters.
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bO
REAL POLES LEFT OF z=0
1
COMPLEX POLES 4
! ’ - ! >
-2 ’
, N 2 m
¥ /
REAL POLES RIGHT OF z=0 N
REAL POLES ON ALTERNATE SIDES OF z=0
A1

Figure 3.9: Triangle of stable pole positions for D(z) = z2 +bz+ b,

Let us consider firstly the E-circuit realizability properties. From Table

3.4,Wehaweb1 = AC+AE-2,b,=1-AE and,thusbl+b =AC-1.

0 0

Since A>0, E>0 and C>0, it would be by >-2;by<1 and
b1 + bO >-1.
Consequently, the b, , b, values realizable with the E-circuit are confined

within the wedge-like area shown in Fig. 3.9. This area includes the whole
stable region as well as a portion of the remaining unstable area. E-circuits
which are unstable must have real poles.

Similarly, it can be derived the F-circuit realizability conditions from the
. _AC-F-2, 1
Table 3.4.b1 =—T1+F cbo=1Tm

Since A>0, F>0 and C>0, it would immediately be0 < bo <1 and

b1+b0>—1.
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Graphically, the regions of the realizable poles are as shown in Fig. 3.10.

Abg abg
1 1
T T ¢ REALIZABLE F-CIRCUIT POLES
I " » 1 n »
2 2 by 2 2 b1
i REALIZABLE AT
E-CIRCUIT POLES

Figure 3.10: Realizable Circuit Poles

3.2.1.3 Zero Placement

Table 3.5 and Table 3.6 list all possible zero placement functions that can
be implemented by the FL-structure. They are named, low-pass (LP), high-
pass (HP), bandpass (BP), low-pass notch (LPN), high-pass notch (HPN), and
all-pass (AP). Such a table will allow us, in next sections, to establish in
which FL-structure it is possible to implement the OBT strategy from a theo-
retical viewpoint. The method is to replace the values of the biquad

coefficients (k,, k; and k, responsible for the zero placements)® into the

oscillation conditions given by (3.30) as well as into the expressions of the
oscillation parameters (3.31).

8 Note we have replaced in Table 3.5 the biquad coefficients by the simplest solution associated to each

possible generic form.
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Numerator k2 k 1 ko
Generic Form H(z)
N(z) ; i
Simple Solution
LP 20 2 2
" . K(1+7 Y wa ! K 2K *
(bilinear transform) Z°+bjz+b,
) | K(z+1)
LP11 3 : K K
Kz (1+z ) 22+b]Z+b0 ’
. K(z+ 1)z
LP10 :
K(l+z ) 2 b z+b, LK °
X K
LP02 -~
Kz 22 +b,z+b 0 0 «
1 0
1 Kz
LPO1 2
0 Kz b 24D 0 * °
1 0
K22
LP00 K 2 koo 0
z + bl z+ bO
BP10 2
_ — K -1
bil ; ka+ha-h 2L k0
(bilinear transform) z"+bz+ b0

Table 3.5: Generic transfer functions in the z-domain (I)
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Numerator 2 1 0
Generic Form H(z)
N(z) . .
Simple Solution
X X K(z-1)
3 —_z K -K
BPO1 Kz (1-z ) 22+b z+b 0
1 0
| K(z-1)z
BP —_z K -K
00 K(l-z ) 22+b 24+b 0
1 0
2 K(22-22+1)
HP K(1-z 1 ;;Z K 2K K
z +blz+b0
K(1+£z_1+z_2)
b 2
LPN e>—L.b,>0 K§Z+—‘SZ“) K K K
b
0 z +blz+bO
K(1+az’1+z’2)
b 2
HPN e<—L.by>0 K;Z+—€Z“) K &K K
b
0 z +blz+b0
1 2 K(Bzz+az+l)
AP K(B+az +z ) — PK ak K
z +blz+b0
xzz+gz+6
GENERAL T 5 ¥ € 8
z -%—blz+b0

Table 3.6: Generic transfer functions in the z-domain (II)
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3.2.1.4 Design Equations
For the sake of clarity, let us summarize in Table 3.7 all the results
obtained in the last sections. This Table will be used in next sections to set up

some DfT rules.

Zero Placement Formulas for H oF

Pole Placement Formulas
and H oF

Realizability Conditions Synthesis Equations
q q q q Depending on the Generic Biqua-
oE oF oE oF dratic Transfer Function
1-b (LP20, LP11, LP10, LPO2, LPO1,
by>-2 AE - 1-b F = b_o LP00, BP10, BPO1, BPOO, HP, LPN,
by <1 0<by<1 0 0 AP, General) as shown in Table 3.5
AC=1+b0+b1 l+b1+b0
b1+b0>—l b]+b0>—l AC=——b———

Table 3.7: Design Equations for the FL-biquad

3.2.2 Applying the OBT technique to the FL-biquad

The objective herein is to implement, starting from the FL-biquad, the

oscillator with amplitude control by limitation shown in Fig. 3.11.
1
C+E(1-z )

G-Hz
vin
e
\Y k 2+k +k
H(z)= Q= 22 “%177 0
f Vin 22+b12+b0
Vin Vo1 or Voo
» H(z) /

2v
1-H@N(A) = 0 N(A) = n—/&ef

Figure 3.11: SC Oscillator from the FL-biquad
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If we choose the scheme displayed in Fig. 3.11, the oscillation equations
will be those in (3.30) and (3.31) with k,, k, k, by, b, given by Table 3.4.
Any FL-biquad must verify these oscillation equations to be tested by this
OBT technique. For the sake of clarity, let us summarize the expressions in
Table 3.8.

Amplitude Oscillation Conditions Oscillation Amplitude
2%k T
sign(V . p) = sign(kybg—kg) = sign(k, —kg) osc¢ kg 1-b,
Frequency Oscillation Condition Oscillation Frequency
by (ky — k) +k; (by~ 1) B | by(ky—kg) +ky(by 1)
2= Ky~ bk <2 fose = 27 20%| 3 ko~ bk
0~ %2 2nTy 0~ 20k2

Table 3.8: Oscillation equations for the FL-biquad reconfigured as an oscillator (k;.k;.kq,b;
and b are given in Table 3.4)

We can distinguish from Table 3.8 two kinds of oscillation conditions.
One is related to the oscillation amplitude and the other one to the oscillation
frequency. Observe that the amplitude oscillation conditions are only related

to k, and k, (parameters which define the zero placement) whereas the fie-
quency oscillation condition is related to both the parameters which define

the zero placement (k,, k;, k) and the parameters which define the pole

placement (b, b, ).

On the other hand, if we particularize for each specific generic second-
order function which can be obtained from the FL-structure (Table 3.5), we
obtain Table 3.9 containing the particular oscillation conditions for each case
as well as whether a start-up strategy is needed or not.
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Generic Form

Oscillation Conditions

Amplitude Oscillation Condition

Frequency Oscillation Condition

Zeros H(z) (Start-up)

LP 20 kz = ko ==NO
z = -1 e(rzz 1)
IFF sign(V ign(K by by -1
LP 11 sign(V . p) # sign(K) IFF -1 < <1 2y = ooc(r2> 1
NO NEEDED
z = -1 e(rzzl)
) ) ~by—by +1
LP 10 IFF sign(V .¢) = sign(K) IFF -1 < <1 )
2b0 ZZ:OC(r <1)
NEEDED
- z = oCc (r2 >1)
LP 02 IFF sign(V__¢) #sign(K) IFF -1 < —L <1 1,2
NO NEEDED
LPO1 ky, =k, =NO
b _ 2
LP 00 sign(V,.p) = sign(K) IFF -1 <%l<1 2,2 =0 <D
0
NEEDED
™1 z =zle (r2 =1)
BP 10 sign(V ¢ = sign(K) IFF -1 < e <1 L2~
0
NEEDED
z) = le (r2 =1)
. o b, —b, +1
BP 01 sign(V_,p) = sign(K) IFF -1 <20 21 <1 2 - w2
NO NEEDED
Z1 5 = 1e(r2:1)
(V) sien(K by—b; -1 ’
BP 00 sign(V ¢ = sign(K) IFF -1 < by <1 2, - veel<n
NEEDED
HP k2 = ko =NO
LPN Iy =k =NO e e
HPN Iy =k =NO e e
. . IFF
sign(V ¢ = sign(y-98)= b (y—5)+e(ba—1) 5
GENERAL i oal 0 IFF 2, ,c ("> 1)
= 51gn(yb0—8) 2(57}30},) 5

Table 3.9: Structures which can be converted in oscillators with the nonlinear mechanism
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Observe from Table 3.9 that there are some functions where it is not possi-
ble to implement an oscillator. It is because the oscillation amplitude
condition is not fulfilled. The remaining functions must additionally satisfy
some particular oscillation conditions to perform an oscillator.

Notice as well, that in Table 3.9 the frequency oscillation condition has
been uncorrelated (following the simple solution given in Table 3.4) from the

parameters k,, k; and k, responsible for the zero placement.

Summing up, Table 3.10 contains the sign of the feedback loop required to
achieve the oscillations for the different types of the biquad.

IFF
sign(V g = sign(y-98)= IFF IFF
sign(Vref)¢sign(K) sign(Vref) = sign(K)
= sign(ybO—S)
GENERAL LP11 LP10
LP02 LP0O
BP10
BPO1
BP00

Table 3.10: Feedback Sign for the types of biquads convertible in an oscillator

Finally, the oscillation parameters and the oscillation conditions for each
type of biquad configuration convertible in an oscillator are shown in Table
3.11
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Generic L L .
Oscillation Parameters Oscillation Conditions
Form
2V
ref -K . .
AOSC = W mgn(Vref)::sngn(K)
LP11 by-b, -1
I by—b; -1 <0 o
f = acos | ————— 2
os¢  2xT [ 2 }
2V
ref K . .
Aosc - T —bO Slgn(vref) = sign(K)
LP10 ~by-b, +1
~b,-b, +1 Al <e—_ <1
_ 1 . 0 1 b
= acos | ——— 0
osc ~ 2aT 2b,
s
2V
ref -K . .
A0 il m 51gn(Vref)¢s1gn(K)
LP02 b,
S W ege
osc ZnTS [ 2 }
2V
_ ref K . o
AO T 7b0 mgn(Vref) sign(K)
LP0O b,
—b -1 <%.<|
osc  2aT aco{%‘} 0
4v
_ ref K . o
A0 = t% sngn(Vref) sign(K)
BP10 1 {_bl } _I<1—bé y
f .. = acos +bg
osc Z“Ts 1 +b0
2V
_ ref K . o
Ay = = 1o, 7b0 mgn(Vref) = sign(K)
BPO1 -b,—-b, +1
by —byt1 S e
=_1 acos| ———— 2
os¢  2xT 2
2V
ref K . o
AO - T —bO s1gn(Vref) = sign(K)
BP00O by—by -1
b,-b, -1 < —<1
SN T el 7,
os¢c 27T 2b,
2V
A, = —tef y=8 sign(V,p) = sign(y-3) = sign(yby ~3)
0 m l—bO r
GENERAL b (y-8)+e(by—1)
b, (y-8)+e(b,—1) e 70 Ty
1 1. 0
f = acos| = b ——————— 2(3-byy)
0s¢  2nT 2 3-bgy

Table 3.11: Oscillation equations for the types of biquads convertible in an oscillator
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Non-Linear Block model

Figure 3.12: Oscillator Description
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It can be deduced from Table 3.9
that the proposed OBT non-lin-
technique is valid in
principle for all cases except for
the LP20, LPOlI, HP and
NOTCH ones. However, it does
not mean that the proposed non-
linear block can not be applied in

such cases. To see this, it has to

car

be considered the real imple-

mentation of the involved

oscillators. Since the FL-circuit has two workable outputs that can be used

interchangeably depending on the transfer function, the general model for

forcing oscillations is given in Fig. 3.12, where any of the biquad outputs is

assumed to be connected once to the nonlinear feedback block.

Table 3.12 shows the existing correlation between V; and V_, depend-

ing on the implemented function for the cases LP20, LPO1, HP and NOTCH
where oscillations can not be achieved. Fortunately, as can be seen, always

one of the two available outputs belong to the valid set of functions. So it

demonstrates that the oscillator can normally be built just selecting properly

the output used as the input of the proposed non-linear block.

E-TYPE F-TYPE
Vol Vo2 Vol Vo2
LP20 GENERAL LP20 BPO1
GENERAL LP20 GENERAL LP20
LPO1 GENERAL LPO1 BPO1
BP0O LPO1 GENERAL LPO1
HP BPO1 HP BPO1
GENERAL HP GENERAL HP
NOTCH GENERAL NOTCH GENERAL
GENERAL NOTCH GENERAL NOTCH

Table 3.12: Correlation between Vol and Vo2



Chapter 3: OBT Methodology for Discrete-Time Filters 131

3.2.2.1 Regions of interest in the plane by, b;

On the other hand, let us study
in detail Table 3.8 in order to

o define the different b,b,
RS
3 P

eoé regions associated with the FL
O

Abg

1 topologies where it is feasible to
T A o apply the OBT strategy (obvi-
& | ! ously, we refer exclusively to
the types LP11, LP10, LP02,
LP00, BP10, BPO1 and BP0O).

We have to consider separately

4

each case. If, for example, we
bear in mind the case LP11, we
Figure 3.13: b, b, region satisfying the can specify the region for b,
frequency oscillation condition (case LP11)
and b, that fulfils the frequency
oscillation condition’ by simply solving these corresponding implicit inequal-
ities. Graphically this region is as displayed in Fig. 3.13.

We can combine all requirements in order to compose the acceptable
region satisfying both the realizability conditions as well as the frequency
oscillation condition. Then, a set of graphics are obtained as shown in Fig.
3.14.

bO <1 0< by < 1
by +bg>—1 bo by+bp=-1
-1<b,-b
-1< bO - b1 0 1
\_ 2 A
N |
by J/ by
Realizable E-CirX\Qﬂes Realizable F-Circuits Poles
+ +
Oscillation Conditions Oscillation Conditions

Figure 3.14: b, b, regions satisfying both the frequency oscillation
conditions and the realizable pole conditions (case LP11)

by—b, -1
<0771

9. _
! 2

<1
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In the same way, we can define graphically all b, b, regions satisfying

the frequency oscillation conditions for every case. The results are displayed
in Fig. 3.15.

Abo Abo
OSCILATION CONDITIONS
- - — - —-»> “ -|- >
,,,,,,,,,,,,,,, %
"""" g 4 2 |E 2
t =) -
AT, T g b1
\\ ;
o]
5
3
Case LP10 o) Case LP02
bo bo
OSCILATION|CONDITIONS
OSCILATION GONDITIONS > R S
- f -
b >\ by
/ ¢
Case LP00O A
Case BP10

A”
OSCILATION CONDITIONS

“« -t —-- » @

Case BP0O1

Case BP0O

Figure 3.15: b ,b, regions satisfying the frequency oscillation conditions
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In summary, all regions where oscillations are possible from a mathemati-
cal point of view are represented in Fig. 3.16 and Fig. 3.17.

boa boa
S S~ ' — — =
L > »
N by b4
AN
Realizable E-Circuits:Poles LP10 Realizable F-Circuits Poles
N
+ +
Oscillation Conditions Oscillation Conditions
boa boa
X T/ T — = < T |\ — =
/ > >
\ o1 s
AN LPO2
Realizable E-CircuitsPoles Realizable F-Circuits Poles
N
+ +
Oscillation Conditions Oscillation Conditions
bos bOAL
~ [ = = s~ = T =
| > »
N by b4
AN
Realizable E-Gircuits Pole LPO0  Realizable F-Circuits Poles

N
+ +

Oscillation Conditions Oscillation Conditions

Figure 3.16: b, and b, regions satisfying both the frequency
oscillation conditions and the realizable pole conditions
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/
LA
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N
+
Oscillation Conditions
N
bog
S
h X
\T N
NN
\ . by
AN
Realizable E-Circuits Poé
N
+ N
Oscillation Conditions
boa
N
AN ) i
ST e T -
AN
»
= by
AN
N
Realizable E-Circuits Poled
N

+
Oscillation Conditions

BP10

BPO1
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boa
N 7
AN S
N
N \ >
b4
N
7
7/
e
Realizable F-Circuits Poles
+
Oscillation Conditions
AN
“bog
N N
N\ \
N T
| »
b4
N
\ \,
AN
Realizable F-Circuits Poles™
+ AN
Oscillation Conditions
boa
\
AN T
Nemmmbim=—" . T
— - [
_ AN "o,
N\
»N

X
Realizable F-Circuits Poles
+
Oscillation Conditions

N

Figure 3.17: b, b, regions satisfying both the frequency oscillation
conditions and the realizable pole conditions
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We can gather in Table 3.13 the results of all these previous graphics.

Generic Form E_CIRCUIT F_CIRCUIT
by<1 0<bj<1
LP11 b1+b0>—1 by +by>-1
-1<by-b; -1<by-b;
by<1
LP10 by —by<1
3bytby>1
by<1 0<bj<1
LP02 b, +by>-1 by +by>-1
by <2 b, <2
by<1
LP0OO 2by,-b; >0
2by+by >0
by<1 0<bjy<1
BP10 b, +tby>-1 by +by>-1
by—b;>1 by—by>1
b,<1 0<b,<1
0 0
BPO01 3
-1<b; +b)< -1<b; +b;<3
by<1
BP00 by +by>-1
3by-b;>1

Table 3.13: by, b, regions of interest

Comparing all the b, b, regions, we can conclude that the BPO1 config-

uration has a b,,, b, region (where both, the realizable pole condition and the
frequency oscillation condition, are fulfilled) much larger than the rest of FL-
topologies. Accordingly, since b, and b, depends on capacitors A, C, E, F
(responsible for the pole placement), this BPO1configuration makes it possi-

ble to expand the range of values of the A, C, E, F parameters where we can
apply the OBT strategy.



136 OBT in Mixed-Signal Circuits

But, obviously, we have also to take into account the elements G, H, I, J
(the elements which define the oscillation amplitude condition) to determine
which FL-topologies we are dealt with and whether the OBT method can be
applied to it.

3.2.2.2 OBT routine

In this point, we are in a position to establish a set of steps which, one
designer interested in applying OBT to a particular biquad, can use as a sort of
guide. The steps are the following:

-Step_1: Determining the biquad type for V,, and V ,. If one of the out-

puts belongs to the groups HP, AP, LPN, HPN, LP0O1 or LP20, you must
immediately reject it to close the corresponding OBT feedback loop (see
Table 3.9). But, as was seen in Table 3.12, the other output will belong to the
group LP11, LP10, LP02, LP00, BP0O, BP10, BPO1 or GENERAL where,
otherwise, it can be feasible to close the OBT feedback loop (see Table 3.9).
-Step_2: Using Table 3.13 to decide if oscillations are really possible for

such a particular case. The way is to carefully check the involved b, b,

region (where both the realizable pole condition and the frequency oscillation
condition are fulfilled).
-Step_3: Using Table 3.11 to determine the oscillation parameters (ampli-

tude, A and frequency, f,..) by substituting the specific values of the

osc?
biquad coefficients (k, k|, k, ) in the corresponding expressions.

There is, however, an underlying question: what happen if the chosen
biquad does not oscillate using either of its outputs?. In this case, there are
two possible paths to follow. One is focused on employing extra delays in the
feedback block (2ype b or type c) as was said above. Then, the oscillation
expressions become more complicated and there is not a general way to pro-
ceed as well (that is, no general tables can be deduced). But, in this case,
however, you can solve the oscillation equations by replacing the particular
biquad elements. Some examples will be studied in next chapters. The other
way is to slightly transform, during the test mode, the internal biquad struc-
ture, building a modified biquad structure where it is feasible to achieve the
required oscillations (as shown in Fig. 3.18). Therefore, the goal in the next
section will be to define the aforementioned modified biquad structure which
allows us to design a generic oscillator scheme useful for OBT.
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Vo1
Ho1(2) —>0
Vi .
s v -+ OBT Scheme No Oscillations
Ho2(2) —’02
BIQUAD UNDER TEST

Vo1

V,
Ho1@) ——Pp H >°1
Vin Some Extra Vin ottest(2)
> + Elements > Voo
Hoo(2) b——p» Hoztest@) F——P>
BIQUAD UNDER TEST @ MODIFIED BIQUAD STRUCTURE
Ho1test(2) —lm
Vin . .
LN Vey -+ OBT Scheme Oscillations!!
Hoztest(2) —>0

MODIFIED BIQUAD STRUCTURE

Generic OBT oscillator

Figure 3.18: Means to satisfactorily apply OBT

3.3 A GENERIC OBT OSCILLATOR

In the last section, we set up the possibility of finding a general oscillator
scheme to apply OBT, starting from any generic biquad structure. The idea in
this Section is to study every specific FL-biquad in order to define such a
generic oscillator. Several requirements have to be considered:

1.- The number of involved members of the generic oscillator structure has
to be high (the objective is to include in the generic OBT biquad structure the
maximum number of FL-topologies).

2.- The involved b, b, region (zone satisfying both the realizability con-

ditions as well as the frequency oscillation condition) has to be large enough
(to be sure to accommodate a wide range of applications).
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3.- A good fault coverage is required. It means that the sensitivities of the
oscillation parameters in relation to the biquad elements must allow it.

4.- It is convenient that our linearized model (DF approach, see Chapter 2)
can be exact and/or at least “acceptable”.

For the sake of clarity, some other conflicting degrees of freedom can also
be eliminated in the FL-structure if it is arbitrarily assumed A = 1 (it may be
shown that the net effect of this choice is to remove our ability to control the
gain constants associated with H,,; and H,, simultaneously). Then, Table 3.4

is automatically converted into Table 3.14.

ky K ko °y %
Ho @) IC+IE-G H+G-JC-JE-IE | EJ-H
C+E-2 1-E
Ho»,@)|g -1 1+1-G H-J
H (Z)‘ IC-GF-G FH+H+G-JC -H
ol F
1+F 1+F I+F | ¢_fp_» |
e -1 141-G H-y | UFF beE
02XIF 1+F 1+F 1+F

Table 3.14: Transfer function coefficients

In general terms, the proposed OBT structure for the FL biquad is as
shown in Fig. 3.19. Observe that any hypothetical fault in the elements
(G,H,1,J,C, E, F) (design elements of the FL-device) has to be covered.
Therefore, the oscillation parameters have to be defined as a function of such
coefficients in order to determine not only if a certain fault can be detected but
also the sensitivity of oscillations to such a fault.

To extract reasonable conclusions, let us study, from this point forward,
the proposed OBT implementation for every FL-topology.



Chapter 3: OBT Methodology for Discrete-Time Filters 139

C+E(1-z 1

Figure 3.19: OBT structure for the FL- biquad

3.3.1 Conclusions extracted by the simplified results

Let us, firstly, obtain the simplified versions of the oscillation parameters
for every FL-topology (Table 3.15). In these simplified expressions the

involved biquad elements, (G, H, I, J, C, E, F), are reduced to four: |K|, C, E
and F for all the cases. As can be seen from Table 3.15, the oscillation ampli-
tude only depends on |K|, and E or F whereas the oscillation frequency only

depends on C, and E or F. Therefore, both oscillation parameters will be
necessary to obtain a good fault coverage.

From a simplified viewpoint, Table 3.15 shows the simplest expressions of
the oscillation parameters for all the FL-biquads of interest. The simplest form
of the zero placement for every FL-configuration has been employed (see
Table 3.5). However, these expressions are exclusively valid when the ele-
ments responsible for the zero placement (/, J, G and H) are built in such a
way that their values are correlated. That basically means that a deviation or
fault in one of them is perceived by all them in the same direction and magni-
tude. Then and only then, we can assert that these simplified oscillation
parameters can be employed to extract conclusions. And then and only then,
Table 3.15 can be considered as valuable.
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. Oscillation Parameters
Generic
E-Circuit F-Circuit
Form
Voo | Vol Vo2 Vol
2|V 2|V 2|V
A _ ‘ refﬁ@ A _ ‘ ret#(l-%—F!\K\ A _ ‘ reﬂ_@
osc T E osc T F osc T F
LP11
=1 acos[z—————fcsz} - acos[————27C }
osc ZT[TS 2 osc ZnTs 2(F+1)
AT 0 Ve aemikg |, Vel I
osc p E osc P F osc T F
LP10
_ 1 aCOS[2—CJ _ 1 aCOS[Z—CJrZF}
osc  2p 2-2E osc  2x 2
Vet [ Vel 0Pk _ Vet kg
A = s A - Lrelf (LT E)IR A — L rell N
osc T E osc T F osc T F
LP02
= acos[z_C_E] f = ;acos[z_c-*—l:}
os¢  2xT 2 osc  2nT 2(F+1)
2|V 2|V 2|V
A _ ‘ refﬁ@ A _ ‘ ret#(l-%—F!\K\ A _ ‘ reﬂ K|
osc T E osc T F osc T F
LP00
_ 1 aCOS[Z—C E} _ 1 acos[z C+F
0s¢  2xnT 2(1-E) os¢  2xT 2 }
A _ z‘vref( 2[K]| A _ Z‘Vref( 2[K]|
osc T E osc T F
BP10
= ::1cos[2 C_E] = acos[z_C+F
0sc 21T 2-E osc T F+2 }
Vet [ _ Ve 0Bk Vet kg
A = s A - Lrelf (T E)IR A — L rell N
osc T E osc T F osc T F
BPO1
_ 1 acosl:4—C—2EJ ¢ _ ;acos[4—c+2F]
osc  2xT 2 osc  2xT 2(F+1)
A _ Z‘Vreﬁ'@ A _ Z‘Vreﬂ'(l+F!\K\ A _ 2‘Vreﬂ_@
osc T E osc T F osc T F
BP00
f =1 _acos 2-C-2E f =1 acos 2-C
osc ZT[TS 2(1-E) osc ZT[TS 2

Table 3.15: Simplified oscillation parameters for each kind of oscillator

From this last table, there would be no difference between implementing
one or other biquad structure. The resulting oscillators seem equivalent. The

oscillation parameters depend on the involved elements (K, C, E and F') in a
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similar way. However, with the simplified expressions of the oscillation
parameters shown in Table 3.15 a lot of basic information is hidden. In fact,
we have to study each FL structure but for a more general zero placement
solution and then establish which structure is preferable to be used within the
generic OBT scheme.

3.3.2 Conclusions extracted by the no-simplified results

One of the key points which must satisfy a generic OBT scheme is that it
has to involve all the particular FL structures or, at least, the maximum num-
ber of them. From Table 3.16, (table including all the elements required in
each kind of FL-biquad), we can deduce that the more general case is the type
BP10. If we use the second output to build an oscillator we can test the ele-
ments I, G, H, C, E or F whereas if we use the first output we can test the

elements 1, J, G, C, E or F. Therefore, the BP10 structure seems to be the
best candidate to be employed within the generic oscillator scheme.

Involved Elements with the more general solution (Seven Elements: 1, J, G, H, C, E, F

Generic
E-Circuit F-Circuit
Form
Vo2 Vol Vo2 Vol
1,G,C,E L1,G,C.E 1,G,C.F JLH CF
LP11
(4 Elements) (5 Elements) (4Elements) (4 Elements)
LG,CE I.G,C,E LG,CF 1,G,C,F
LP10
(4 Elements) (4 Elements) (4 Elements) (4 Elements)
H CE LJ,G,CE H,CF LHCF
LP02
(3 Elements) (5 Elements) (3 Elements) (4 Elements)
LG,CE IG,C,E LG,CF LCF
LP00
(4 Elements) (4 Elements) (4 Elements) (3 Elements)
G, H,C,E LJ,G,C,E LG, H,CF LILHCF
BP10
(5 Elements) (5 Elements) (5 Elements) (5 Elements)
J1,CE H,CE J,C,F LHCF
BPO1
(3 Elements) (3 Elements) (3 Elements) (4 Elements)
LC,E G,C.E LCF L1 CF
BP00
(3 Elements) (3 Elements) (3 Elements) (4 Elements)

Table 3.16: Number of elements involved in each type of oscillator
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3.3.3 Selected Generic Oscillator: Case BP10

As demonstrated, the biquadratic type called BP10 allows us to cover the
maximum number of FL structures. And even more, it must be clear from
Table 3.16, that the two potential oscillators obtained from this configuration
allow us to test all the possible involved elements.

The idea is, starting from

v
—-_H, @ o .
Vin + Some Extra the biquad under test and
Vo2

—P Elements

always adding (never tak-
BIQUAD UNDER TEST lng away) the
v Q corresponding extra ele-

o1 Vo1 .
Vi, v, 4|:|—> ments, to build a

—» v, or/and Ty v .
4|:|_> 02 °2  programmable  biquad
PROGRAMMABLE BIQUAD PROGRAMMABLE BIQUAD (type BP1 0) Then, the

Figure 3.20: Standard Biquad biquad can be converted

in one of the two possible
oscillators in the test phase (Fig. 3.20). One or the other output will be
employed depending on the existing elements in the original biquad under

test. If I, G, H, C, E or F are involved, then, we must employ the second out-
put (see Table 3.16). On the contrary, if 1, J, G, C, E or F are involved, then,
we must use the first output. Obviously, this strategy supposes an additional

effort of design. However, in next section, we will give some guidelines to
make this work easier.

3.3.4 Guidelines to implement a generic OBT scheme

3.3.4.1 Conclusions related to K, b, and b;

Observe again Table 3.11 where the simplified oscillation equations for
every FL-structure are shown. Let us pay attention in the expressions of the
BP10 configuration. These expressions allowed us to define the acceptable

by, b, region satisfying both the oscillation frequency condition and the real-
izable pole condition. The acceptable regions are related to the elements
A, C, E, F and, due to the nature of the case BP10, such regions include a
wide range of values for such elements. In fact, the first requirement when
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designing the generic BP10 oscillator is that the particular values of

A, C, E, F make b,,b, values belong to the acceptable region.

3.3.4.2 Conclusions related to the zero placement formulas (I,J,G,H)

Table 3.17 shows again the zero placement formulas in the case BP10.
Keeping this table in mind, we will study each particular point in order to
build the adequate OBT oscillator.

Transfer Function  Hgop  Hiop H g H g
1=K I(E+C)-G = £[K]| GF+G-1C = |K|(1+F)
Zero Placement Go1-1-0 H+G_IE_J(E+C) = 0 n e s
Formulas JIC-FH-H-G = 0
J-H = -K| EJ-H = K| o= [KI(1+F)
- Kl i _ KO+ F)
I= [K| ‘E‘ C
Simple Solution - _ Kl A 2
p u J=0 J 5 J:|K|(]+F)
G = Il G - KIQE+C) ¢
H = K| E G=0
H=0 H = [K|(1 +F)

Table 3.17: General Design Equations for BP10

Four oscillators are derived from the case BP10 (Table 3.17). Only two
branches must be adapted to transform the original biquad under test in the
BP10 structure. These branches are displayed in dotted lines in Fig. 3.21. On

the other hand, the £ and C elements would have to be also modified when

their associated b, b, regions do not satisfy the required conditions.
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C+E(1-zh

E_Type BP10_Vo2
A\

in

1/
K[ - K|z 1 |ver ! L [V
D o—@—>1_z4

F_Type BP10_Vo2

K| - |Kjz"

- >(H—>

Vin

Vrier=Va-Va
Va §
ve [
C+E(1-z"
E_Type BP10_Vol
KI(2E + C)
E -1 Jv -1 -1 v,
ol —Z 02
Vio o - - M(H)—H1_ o—><1:>—>1,z—1
IKI_IK],-1 '
=z
E E
Vrer=Va-Vp
Va Y
Vg
C
F_Type BP10_Vol
KI(1+F)z

Vin

iiiiiiiiiii B \

KLt +F) [KI(1+F)? -1
C C

Figure 3.21: Possible oscillators from the case BP10
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However, we have to consider the generic form BP10 (Table 3.18) to
obtain no-simplified oscillation parameters where a higher number of ele-
ments are involved and more complex terms are obtained containing a more

exhaustive test information.

02E 02F olE olF
BP10_Vo2 BP10_Vol
-1 1
k, = —— k. = J1C_
2 2
Ky = -1 I+F k, = IC+IE-G I+F
- 1-G  _ FHtH-IC
k, =1-G 1~ 1+F k, = G-JC-JE-IE 1 T+F
k,=H - " k, = EJ-H - -H
0 K= 177 0 k0 = ToF
b, = C+E-2 b, = C+E-2
1 bl_C—F—Z 1 bl:C—F—2
by = 1-E F+1 by = 1-E *
b, = L P
0 F+1 0 F+1

Table 3.18: Generic Form BP10. No-simplified Versions

Let us compare then the no-simplified oscillation parameters with the sim-
plified ones (Table 3.19 and Table 3.20, case BP10_ Vo2 for the sake of

clarity).

Oscillation Parameters

Generic Form E-Circuit
Vo2
A _ 2Vref -2|K]
osc g E
BP10 Simplified
1 (C+E—-2)
0s¢ ~ 2nT acos[ 2-F }
s
A _ _zvrefvl-%—H
BP10 No Simplified osc n E
_ 1 [(2-C-2E)-H(C+E-2)+GE
osc 2nTSac°S[ 20+ 1(1_E)) }

Table 3.19: Oscillation Equations (E-Circuit)
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Oscillation Parameters

Generic Form F-Circuit
Vo2

A -~ 2Vref -2|K]

osc g F

BP10 Simplified
_ —(C-F-2)
osc T acos|: TT }

A _ _2Vref I+H

BP10 No Simplified osc n F

1 aCOS[I(Z—C)—H(C—F—Z)ﬁ—GF}

osc  2nT 2H(1L+F)+1)

S

Table 3.20: Oscillation Equations (F_Circuit)

Notice that when I, H and G (which have to be designed as |K]| in order
to carry out the BP10 biquad, see Table 3.17) are actually implemented in
such a way that a deviation of AK in, for example, the I element, is observed
by H and G in the same manner (that means, H = |K| + AK and similarly
G = |K| + AK). Then, the oscillation frequency will be dissociated from
these elements and only will be useful to detect faults in C and E . In this case
the oscillation amplitude will cover the coefficient |K| (apart from E as pre-
dicted the simplified expressions given in Table 3.19).

Note, however, that if no-simplified expressions for the oscillation param-
eters are studied, different considerations can be made. In short, if deviations

in one of the elements (I, H or G) are uncorrelated with deviations in the rest
of the elements, then, the role of the oscillation frequency is crucial to identify
a faultin I, H or G because in this case, the expression of the oscillation fre-

quency contains all the biquad elements.
If no-simplified expressions of BP10_ Vo2 are considered, then the sensi-
tivities also change (see Table 3.21 and Table 3.22).
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E-Circuit (%)
SAosc _ 100 SCOS(Gosc) 00 E[H(C+E-1)+G(1 -E)]
I I[+H I [(C=2+2E)I+H(C+E-2)-GE][H+I(l -E)]
sAosc _ 100 SCOS(G)OSC) _ 0 EI(C+E-1)-GE
H [+H H [(C=2+2E)I+H(C+E-2)-GE][H+I(1 -E)]
SAosc _ 100 SCOS(GOSC) - 100 H(I+H-G+IC)+I1(IC-G)
E E E [(C-2+2E)I+H(C+E-2)-GE][H+I(1 -E)]
A cos(® )
s~ ¢ Se ¢ =100 £
G G [(C=2+2E)I+H(C+E-2)-GE]
SAOsc o Scos(®osc) oo I+H
C C [(C-=2+2E)I+H(C+E-2)-GE]

Table 3.21: Sensitivities in frequency and amplitude (case BP10_Vo2)

F-Circuit (%)
sAosc _ 100 SCOS(®OSC) _ 100 F[HC-H+G]
I I+H I [(C=2)I+H(C-F-2)-GF][H(l +F)+1]
SAosc _ 100 c0s(Og50) 100 F[I(C - 1) - G(1 +F)]
H I+H H [(C-2)I+H(C-F-2)-GF][H(1+F)+I]
g tose _ 100 ¢ @ose) H[-H+CH-1+G+CI]+GlI
F F F [(C=2)I+H(C-F-2)—GF][H(1 +F)+1]
Aosc cos(@osc) ~ F
S -0 = -100
G G [(C-2)I+H(C-F-2)-GF]
Aosc COS(@OSC) _ 1+H
S =0 S 100
C C [(C-2)I+H(C-F-2)-GF]

Table 3.22: Sensitivities in frequency and amplitude (case BP10_Vo2)
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Figure 3.22: Sensitivity with respect to |

but varying C and E

when £ = 1 and C is varying (Fig. 3.22-(b)).

OBT in Mixed-Signal Circuits

As an example suppose the

cos(@osc) . .
case S, . This sensi-

tivity depends not only on the
coefficients £ and C but
also on the rest of the coeffi-
cients /, H and G in such a
way that the graphics in Fig.
3.22 can be drawn. In these
graphics it is reflected that
when I changes its value (for

a fixed value of H and G),
its deviation is observed rea-
sonably well by the
oscillation frequency depend-
ing on the particular values
of E or C. When C =1

and E € [0, 1.5] (Fig. 3.22-
(a)), the sensitivity is higher
as E increases. However, if
E € [-1.5,0], as E increases
the sensitivity is smaller.
Something similar occurs

Another way to see this is to study the simple solution I = |K|, J = 0,

G = |K| ,H = |K| and then define the oscillation parameters when a devia-
tion of one of these elements occurs (Table 3.23 and Table 3.24).
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Oscillation Parameters
Deviations E-Circuit
Vo2
A = PVier 2Kl 2Vref Al
0sc n E m E
I = |K|+Al
N T [—Z\K\(C+E—2)+Al(2—C—2E)}
ose  2xT, 2(K[(Z—E) + Al(1 - E))
A = Veer 21K 2Vrer an
osc n E n E
H = [K|+AH
. 1aws[fz\m(cwfz)wﬁ(c+Efz)}
osc  2aT 2(IK|(2-E) + AH)
_ 72vref 2|K|
A = Io 2
0sc n E
G = |[K|+AG
_ 1 acos[leKl(C+E72)+AGE}
os¢  2xT 2[K[(2-E)

149

Table 3.23: Oscillation parameters in function of a deviation of the I, G, H elements

Oscillation Parameters
Deviations F-Circuit
Vo2
A _ 72Vref' mizvref_ Al
osc T F T F
I = [K|+AI
C 1 aces22KI(C=F-2) + A2 -C)
osc 2,-5"1-S [ 2(|K|(2 +F) + AI) ]
A _ 72vref_ mizvreﬂ AH
0sc T F T F
H = |K| +AH
~ 1 eos[Z2IKI(C - F-2) + AH(C - F-2)
s 2aT [ 2(K[(2 +F) + AH(F + 1)) J
A _ “2Vier 2|K]|
osc  n© E
G = |[K|+AG
_ 1 os[22IKI(C +E-2) + AGE
osc n [ 2|K[(2-E) ]

Table 3.24: Oscillation parameters in function of a deviation of the I, G, H elements
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Let us compare as well the no-simplified oscillation parameters with the

simplified ones for the case BP10 Vol (Table 3.25).

Oscillation Parameters
Generic
E-Circuit
Form
Vol
A _ 2Vref -2[K]
BP10 osem E
Simplified _ _
implifie = 1 acos[ (C+E 2!}
ZnTs 2-E
BP10 N “2Vief (E+C)-G-EJ
0sc T E
No-Simplified
1 (G-IE)(2-C—-2E)+IC(C+E-2) +2EJ(1 —E)
fose 2nTSaCOS[ EI+[GI(E+C)](I-E) ]
Table 3.25: Oscillation Equations
Oscillation Parameters
Generic
F-Circuit
Form
Vol
A _ 2V et -2[K]
BP10 os¢m F
Simplified o ~(C-F-2)
osc acos[ 2+F ]
2V
BP10 A _ refA IC+H
osc P F
No-Simplified
_ 1 =(H+IC)(C-F-2)+FHU+F)-IC)
fosc znTsacos[ H(1+F)+IC ]

Table 3.26: Oscillation Equations

Then, a similar reasoning as the case BP10_Vo2 can be made. Because of
its similitude, we do not go through this case in detail.
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3.3.4.3 Applying the generic OBT scheme

Suppose a simple example: the case LPO1 E_circuit obtained by the sec-
ond output. In this case, we would have Table 3.27 and the corresponding
Table 3.28.

Transfer Function Zero Placement Formulas Simple Solution
1=0
1=0 -0
H ~1-7=#K R
02E G-1-7 = K| G - Kl
J-H=0
H=0

Table 3.27: General Design Equations for LPO1

LPO1_Vo2 BP00_Vol
ky =0 ky = -IK|
K, = Ik K, = K]
kp = 0 ky = 0
b1=C+E—2 b1=C+E—2
by = 1 -E by = 1 -E

Table 3.28: Generic Form LP01 E_Circuit

We saw that it is not possible to fulfil the amplitude oscillation condition if
we feed the second output back. But imagine now that for the first output
(with BPOO structure, see Table 3.12) the oscillation conditions are not ful-
filled either. Then as an option, we can turn to the proposed generic OBT
scheme.

In fact, we have here two possibilities. Let us describe both of them in
what follows.

-First approach: the simplest option will be to modify the BP0OO struc-
ture also adding some extra elements (E,,;, and C,,,,) until achieving the

frequency oscillation condition as shown in Fig. 3.23.
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In this case, you have a very simple oscillator with the following oscilla-

2
tion parameters (see Table 3.15): a4 = 2Weed &1 and

osc
T E+Etest

_ 1 4- C_Ctest_z(E+Etest)
Sose = AT acos 5 .
s

C+E(1-zh

/ -1 Vo1 2_1 -1 Vo2

Vin —

K
1
Q C"'Ctest"'(E"'IEtest)(17Z )
K / -1 Vo1 _2_1 -1 Vo2

V., K|

LP10_E

Vrer~Va-Ve
P

Figure 3.23: First manner to transform the LP10_E circuit to a
feasible OBT scheme

To design this oscillator for test purposes, you would have to consider,

apart from the feedback sign condition (sign(Vref) = sign(ﬂ—lb:———)) and the
tes

start-up requirements, other three important points:
1.- The b, b, region. That is:

by+b;>-1 C+C,,,>0

(3.35)
3b0—b1>l 4(E+E[est)+C+CZest<4

2.- The corresponding sensitivities of the oscillation parameters in func-

tion of E and C It means to resort again to Table 3.18 but now

and C with C' = C+C

3.- The accuracy of our linearized model (DF approach). It involves to
simulate, with a simulation tool, the oscillator proposed in Fig. 3.23-(b) for

test test*

replacing E with E' = E+E,,, test*

different ranges of values of E' and C', and then, compare with the
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theoretical results obtained by the describing-function method. Use always

these analytical results as a starting point and choose always an area of E’ and
C' values where the linearized model matches up with accurate simulations.

Such an area of E' and C' values must be compatible with the choice of the
by, b, region and the conclusions about the sensitivities made above.

This last point may seem very complicated. However, we will study, in
next chapters, particular examples and through them, it will be shown that it is
feasible to simultaneously satisfy all the mentioned requirements. For
instance, in Chapter 4, a similar problem is set out. In that chapter, a generic
oscillator is proposed for testing sigma- delta modulators and some guidelines
are presented to optimize the design of the obtained OBT scheme.

-Second approach: a second mean to solve the problem of testing the
LPO1 E circuit would be to employ the generic OBT scheme. In fact, we
could use the previous proposed OBT scheme. However, we are interested in
characterizing other cases where the available output performs as a GEN-
ERAL biquad. It could happen that not only the oscillation condition
associated with the frequency is not satisfied but also the oscillation condition
associated with the amplitude. Then we would have to turn out to the generic
OBT scheme using the BP10 structure. But as it would be very difficult to
obtain conclusions for a general case, let us, for the sake of clarity, consider
the following simple example.

3.3.44 Designing the oscillator

Several points must be taken into account:

1.- Checking the 1, J, G, H, C, E or F elements. That is, how they must be
changed in the original structure in order to design one of the oscillators asso-
ciated with the BP10 structure (Fig. 3.21).

As H =0 and J = 0 in LPOl _E, we can choose both configurations,
BP10_Vol E _circuit and BP10_Vo2 E _circuit to build the required oscillator
(see Table 3.16). If we observe Fig. 3.21, we can use the first or the third
oscillator shown in this Figure. Obviously, in principle, we need only to mod-
ify two branches of the LP10_E circuit until finding the BP10_E feasible
structures (see Fig. 3.24).
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Figure 3.24: Second manner to transform the LP10_E circuit in
a feasible OBT scheme

Choosing, because of its simplicity, the oscillator structure shown in
Fig. 3.24-(b), we can repeat all the points explained in the previous approach.

Obviously, now /,, ., and H,, , have a different role than / and H .

test test
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2.- Adding E,,, and C

the oscillation frequency condition.

to E and C respectively in order to guarantee

test test

3.- Proposing a set of values of E,, . and C,, . considering the corre-

test test

sponding b, b, region. That is, checking the b,,b, region to choose the

conditions for the E and C values:

test test

by<1 E+E 0

>
test
by+tby>-1 —  C+Cp>-2 (3.36)

bO_b1>l 2E+E,, )+C, <3

4.- Delimiting the set of values of E,, , and C,, , considering the sensitiv-

test test
ities of the oscillation parameters in function of the values of such elements. It

is, to examine the sensitivities in order to choose another conditions for the
E and C

test test

values. Use again Table 3.22 but now replacing E with

E' =FE+E,,,and CwithC' = C+C

test test*

5.- Defining exactly the set of values of E., . and C,, . considering the

test test

accuracy of our linearized model (DF approach). It is, to check the accuracy

to choose the specific values of the E,, , and C,,, parameters.

test tes

3.4 SUMMARY

This Chapter presents an exhaustive study showing how to systemati-
cally apply the OBT strategy to active discrete-time filters. The discussion
begins analysing a generic filter structure and, finishes concluding many
analytical details about an efficient implementation of the OBT approach
to a particular filter topology, the so-called Fleischer and Laker biquad.
However, this filter topology covers most filter configurations. Therefore,
the inferred practical conclusions can be easily translated into fundamen-
tal DfT guidelines, at low level, useful to apply OBT to any kind of
discrete-time filters.

Many tables are obtained throughout the Chapter in order to establish steps
or rules to follow when applying the OBT technique to a specific discrete-
time filter. All these tables may be helpful to scan them when one reads the
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Chapter and to consult them later when one is working out his/her own exam-
ples. In general lines, this Chapter has been conceived as a kind of cook-book
to be considered when a designer is employing the OBT method to discrete-

time filters.



Chapter 4

OBT Methodology for discrete-time XA Modulators

Principles and architectures

IN THE LAST FEW YEARS, attention to testing ADCs and

DAC:s circuits has been paid for, leading to new methods for increasing test
application speed and/or test quality, as well as for Design for Test (DfT) and
Built-In-Self Test (BIST) strategies [6], [16], [22], [42], [47]-[48], [64]-[65],
[73], [76], [91], [130]. In broad terms, testing data converters is nowadays
recognized as a hot research topic. This is so because of their almost ubiqui-
tous presence in mixed-signal systems, for which they can be considered a
cornerstone.

A main feature for ADCs is the variety of circuit architectures and tech-
niques in use. The need to manage a wide range of applications, from low to
high frequencies and from low to high resolution, has encouraged engineers to
develop a constellation of design techniques and has forced to consider their
test methodologies. An important problem when dealing with data converters
-especially with high-accuracy ones- is the long time required to characterize
these circuits. Traditional test procedures rely on the acquisition of large
amounts of data to determine parameters such as INL, DNL, and SNR. This
effort is unavoidable for prototype testing or even for production test, where
functional characterization is requested.

Traditionally, the so-called specification-based test techniques have been
used when testing data converters. However, structural testing is emerging as
an alternative since it can be less costly and the introduction of test methodol-
ogies based on this concept can be of great importance for efficient, yet fast
testing of ADCs, specially those embedded in SoCs. Therefore, structural test-
ing is very appealing since a fault-driven approach promises a high reduction
in test cost. It is in this context where we consider OBT is worth attention.

There is a strong difference regarding the application of the OBT concept
to filters and to converters. In the former case, the associated test technique is
truly structural and only a couple of measurements (amplitude and frequency
of a quasi-sinusoidal signal) is enough to gather information on defects. On
the other hand, concerning data converters, OBT and OBIST have been

157
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scarcely applied in practice for testing actual converters; and when done, it
was as a variation of the classical servo approach to characterize data convert-
ers [2]. In this case, oscillations are forced for every converter code, in order
to obtain an accurate analog measurement for it. Then, the test process is very
time-consuming.

However, an alternative concept can be developed to force oscillations in
just one shot. In particular, the so-called oversampling converters are good
candidates to extend the OBT concept coming up from filters, since they are
essentially a quasi-stable nonlinear filter. This kind of converters are widely
used in many applications and are difficult to test by conventional methods
[106]-[107], [115], [118], [127].

This Chapter aims to illustrate how the OBT/OBIST technique can be
extended to XA modulators, forming the analog core of oversampling convert-
ers. The new approach is based on the previous methodology developed for
discrete-time filters and is intended for a fast validation of the converter.
Instead of using the OBT implementation of the servo method, a single oscil-
lator is formed, from whose frequency and amplitude can be discriminated
whether the modulator is or not fault-free. The forthcoming sections will first
describe a method to transform a second-order modulator into an oscillator.
Later, the validity of the introduced method will be discussed and modified to
increase its efficiency. Afterwards, to provide an idea of the existing possibil-
ities, a few examples based on well-known modulator architectures are
presented, just to illustrate how they can be split and how the basic method
can be extended.

4.1 OBT CONCEPT IN LOW-PASS DISCRETE-TIME ZA
MODULATORS

4.1.1 Basic approach: forcing oscillations using local extra
feedback loops

2 A modulators are used for analog-to-digital and digital-to-analog conver-
sion in a wide and increasing range of applications [118], [127]. The
robustness and simplicity of this conversion method make it the preferred

2nd

choice in many contexts. A typical discrete-time 2"“-order lowpass ZA modulator
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is shown in Fig. 4.1 where parameters 6, and 8, are chosen to optimize the

(normal) modulator operation without endangering it because of unwanted
oscillations. Mainly, this second-order modulator structure consists of two
integrators and a feedback loop which is composed of a comparator and
diverse local gains responsible for completing the desired system operation.

Xin_mod Xout_mod

<
-

Z-1 —O—}j

Xin_comp

o 4

Figure 4.1: A second-order low-pass 2A modulator

The work in previous chapters inspires us to devise a simple way to apply
OBT to the modulator. It is based on disconnecting the ordinary modulator

input (X, o4 10 Fig. 4.1) and then, adding a new feedback loop to force sys-

tem oscillations in an almost sinusoidal regime. This added loop is depicted in
Fig. 4.2 by dotted red lines. It must be clear to recognize that the proposed
system structure is formally similar to the oscillator scheme shown in Fig.
4.2-(b): there is a linear network (in the case of this figure, a second-order
function) and a nonlinear block in a closed-form feedback.

_____ — - - — - -7
%53 % 8y | Xin_comp
Xin mod : ]
! 1 1 (
z-1 % » z-1
Al A !
T Xoutﬁmod
0O)
(a)
all, il
LR
H(z) >
Oscillations
Xout_mod j Xin_comp

(b)

Figure 4.2: Oscillator scheme
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If we calculate the resultant transfer function for the linear part, H(z), we

obtain
2
X kyZm+kiz+k
H(Z) — Xm comp _ 22 1 0 (4.1)
out_mod 7+ blz + bO
That is
2
G Oy + G(2)d
H(z) = (j) 0 (2) 1 @2)
1 -G (2)85-G(2)9,
1
where G(z) = —.
z—1

Then, the global transfer function for the closed-loop system displayed in
Fig. 4.2-(b) can be expressed as

H(z)
1-N(A) -H(z) “3)
or

G*(2)8, + G(2)8,

1 - G*(2)85-G(2)8, - N(A) - [G*(2)8, + G(2)8,]

4.4

where N(A) represents again the comparator describing function which,
as was explained in the previous chapter, depends on the first harmonic ampli-
tude, A, of the signal called X;, ..., (the output signal of the H(z) block or
the input signal to the comparator)

Determining the oscillation condition as predicted by the DF approach can
be performed following the concepts given in previous chapters for filters,
i.e., equating the denominator of (4.3) to zero

1 - G*(2)85-G(2)8, - N(A) - [G*(2)8, + G(2)8,] = 0 (4.5)
or, equivalently
Z—2(2+8,+N(A)S,)+1+8,-8,—~ N(A)[5,-8,] = 0 (4.6)

Notice that the poles placement will depend on the particular comparator
describing function. Different options can be considered depending on how
the actual circuit is implemented: the particular model of the non-linear
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feedback element and the different values of the parameters 8 ;- The proce-

dure to solve the corresponding oscillation mode (when the pole placement is
on the unit circle) is similar to the procedure established in previous chapters
when we dealt with discrete filters.

For example, when a simple comparator is studied, clearly a pair of com-
plex poles are the roots of the characteristic function (4.6) when oscillation
exists. For the sake of simplicity, we can rewrite (4.6) in polar form

z2—2rcos9z + r2 =0 4.7

where r and 6 symbolize the instantaneous pole position.
Comparing (4.6) and (4.7), we have
2rcos® = 2+06,+N(A)Y,

5 (4.8)
P = 148,-8;— N(A)[5,-5,]

2V
Replacing the specific expression1 NA,.) = —A—’fif, the oscillation
s

osc

mode equations will be (forcing r = 1 and solving for 0 .., A .)

8y(2 +8,) —8(2+8;)

cos0,,. =
2(89-8y)
(4.9)
2’Vref 80_81
A = —re 0 1

Observe that, in this particular case, both oscillation parameters (fre-

quency and amplitude) are related to all the &, coefficients, those one which
control the modulator behaviour (3, 8 ), and those one which are introduced

for test purposes (8,, 65). The idea is simply to illustrate how feasible is to
apply the OBT method to £A modulators. Therefore, for the sake of explana-
tion, some specific values for 8, have been selected. That is, the number of
parameters has been reduced to two: 6, and 6, . Despite it is not a practical

situation, it allows us to extract some significant conclusions.

1 Being Vier the sum of the saturation levels of the comparator.
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In this case, the oscillation parameters are reduced to?
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osc
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Figure 4.3: Normalized Oscillation

Parameters

2+82)
2

(4.10)

a) Both values, frequency and

amplitude of oscillations can
be selected by using the set of
curves shown in Fig. 4.3. Val-
ues lying in the corner of Fig.
4.3-(a), and corresponding to

a range of values of 9,

between -0.1 and -0.01 can be
a good choice for the normal-
ized oscillation amplitude.
Then, a plot similar to that in
Fig. 4.3-(b) should be used to
determine the expected (fault-
free) oscillation frequency.
Measuring both parameters
have been proven efficient
(Chapter 3) to detect faults in
a discrete-time filter as the
one in which the modulator
has been converted to. Fur-
thermore, a method similar to
that reported in [29] can be
employed to encoding the

measured amplitude and frequency into digital bitstreams.

2. Being Ts the system sampling period.
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into account. As

discussed in previous chapters, a key issue for applying OBT is the ability to
accurately predict the oscillation parameters as well as the impact of any
change in a given component in terms of these parameters. Unfortunately,
when the simple models introduced above are applied without any restriction,
there can be significant disparities between what is predicted by the linearized
model and what is actually observed. Fig. 4.4 depicts a more accurate (nonlin-
ear) simulation of the oscillatory behaviour of a modulator for a particular

feedback condition (in this case, 8, = —2). As can be seen from this figure,
there are discrete frequency variations instead of a continuous evolution as
predicted by the describing function (see (4.10)). In addition, for values of
d, < -2, chaotic behaviours can be observed that are not predicted by the lin-
earized model.

This effect can be minimized by changing 6, (as illustrated in Fig. 4.5-(a)
where the ideal line is split in more stretches), However, its existence is
unavoidable since there is an intrinsic modelling inaccuracy due to a violation
of the basic assumptions for the validity of this approximated method. This is

due to an incomplete filtering action that does not eliminate higher-order
tones.
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Figure 4.5: Oscillations and limit cycles in other example

We can also observe this phenomenon from the study of the involved limit
cycles (see Fig. 4.5-(b)). The limit cycle obtained by simulation in Region I is
a clear example of an oscillatory behaviour given an almost pure sinusoidal
signal. As can be seen, in this zone the oscillator practically satisfies the
model obtained by the DF approach. However, in Region 2 and Region 3,
where we find out really some strong discrepancies between the DF approach
and the simulations, the achieved limit cycles present a non-sinusoidal oscilla-
tory behaviour.

In fact, assuming negligible all other harmonics than the fundamental is an
important error source, since in conventional XA modulators the open-loop
transfer function of its linear part does not filter out most harmonics. Instead,
nonlinear oscillation modes can be easily excited as has been extensively
proven in the literature [118]. It is true that these nonlinear modes are usually
more robust than almost-linear ones, but their robustness lead to an insensitiv-
ity against some faults that may not be simple to investigate. The best way to
cope with this problem is to resort to a different feedback strategy, which has
to be used when the system parameters lead to this nonlinear mode.
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4.1.2 Practical OBT scheme in low-pass 2nd-order A
modulators

As was explained in previous chapters an essential feature of the OBT
technique must be to guarantee the spectral purity of the oscillator output
(X

in_comp in Fig. 4.2) at least to an extent that the fundamental clearly domi-

nates the output signal. Since we are dealing with a nonlinear system, the
associated dynamics can be very complex unless we can ensure that high-
order harmonics of the basic oscillator frequency are filtered out. Doing this, a
secondary advantage is that simplified, quasi-linear analysis methods (like the
DF approach) can be used to model the oscillator response.

The basic idea herein is to change the feedback path in order to provide the
resulting linear transfer function with adequate properties to perform a filter
action upon the undesired tones. Let us consider the oscillator shown in Fig.
4.6, where the solid lines give an equivalent representation of a conventional
low-pass modulator and the dashed lines correspond to the extra feedback that
is proposes to force oscillations without spurious harmonics. Observe that the
feedback path has been split in two. The result is a modified linear system
which allows to increase the filtering action and thus prevent nonlinear oscil-
lation modes as much as possible. Notice that the nonlinear components
required for the modulator normal operation have been re-used and only some
linear extra elements have been added but no circuitry has been removed

We are taking advantage in Fig. 4.6 that, in the case of XA modulators, the
nonlinear block is already available and connected in the SUT feedback loop,
suggesting us to use the modulator structure without any extra nonlinear com-
ponent [34]. In summary, the conclusions drawn in [41] were two-fold. First
of all, in a low-pass XA modulator, the required nonlinear block is in place
within the SUT, turning unnecessary to add this block. Second, the filtering
action we require for forcing pure sinusoidal oscillations can not be, in gen-
eral, provided by the linear block existing in the modulator, thus suggesting a
modification of this linear part is needed to apply OBT. Using a similar view,
we will analyse in next sections a similar strategy for bandpass modulators.
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Figure 4.6: a) Low-pass second-order modulator (solid lines only) and b)
the oscillator for OBT application (solid and dashed lines)

The transfer function coefficients of the linear part in Fig. 4.6 are related to
those in (4.1) through the following linear transformations

ky =0 ky = 8, =98, ky = 89—9,
bl = Ctest+Etest_2 bO =1-E

(4.11)

test
There are several possibilities to select the new parameters to force oscilla-
tions; however, for the sake of simplicity and accuracy in the obtained
oscillation, only the structure shown in Fig. 4.6 will be introduced herein with

0 = 9, . Observe that, in this case, the linear part of the OBT structure cor-

test

responds to a BPOIE transfer function when 6,,,, = 6, (see Chapter 3for

test
more details). Then, the oscillation parameters and conditions are as given in

Table 4.1, where the 6, and 6, parameters come from the modulator struc-

ture, while E,,, and C,,, form the extra circuitry added for test purposes.
Oscillation Parameters Oscillation Conditions
_ 2Vrer{ 1= 8, -8, 0
ose T Eiest
- sign(V,¢) = sign(8; - 0)
_ 1 ~ “test
osc™ 57 acos[ 3 } 0<Ctest<4

S

Table 4.1: Simple Solution

The expressions in Table 4.1 have been derived assuming the extra loop

test coefficient 5,,,, = O, . In the case where there is not an absolute matching

test
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between these elements, the expressions become slightly different in the oscil-

lation frequency. This fact will be studied in detail in Sections 4.3.
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g O8p - R chapters. Obviously, since
gogp ”””””””””” the devised oscillator is

B 4533 similar to one of the oscil-

Figure 4.7: Examplcéesilsing the alternative  Lators proposed in Chapter

technique 3, no additional consider-

ation has to be made in this
sense. However, studying the oscillators obtained from the XA modulator
structure, the phenomenon found in Fig. 4.5 shows up as well, a fact which
stayed hidden in Chapter 3. Fig. 4.7 represents the oscillation frequency as a

function of parameter C,, , for values fulfilling the conditions in Table 4.1.

test
We can again observe here that there exist certain disparities between the lin-
earized DF approach theoretical results (Table 4.1) and the non-linear
simulation results. However, it is important to remark that such disparities are
now smaller compared to those obtained in Fig. 4.5.

4.1.3 Fault Analysis

As in filters, the effect of most faults translates into a change in either the
frequency or the amplitude of the oscillator. Even in some cases both exhibit a
significant variation. Additional work remains to be done yet to qualify the
use of OBIST in the case of modulators, however it can be confirmed that a
judicious election of the extra parameters (i.e., those not present in the ori-
ginal modulator structure) provides enough freedom to force oscillations
which can be worthwhile for testing purposes.
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To illustrate how faults @)
are modifying the oscilla-
tion parameters, and how
such a modification
depends on the selected
coefficients, let us consider

the case of a variation in the

integrator gains. If the 9,

Normalized Oscillation Amplitude, Agse/V et

and 9§, values are fixed

(they are imposed by the
modulator design) it has to
be studied how to choose
the value of the remaining
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affect both the oscillation Figure 4.8: Changes in Oscillation Parame-
amplitude and the oscilla-  ters for a 10% change in one integrator gain
tion frequency as well. Fig. 4.8-(a) depicts the movement of the normalized
amplitude curves for this variation, and Fig. 4.8-(b) shows the corresponding
curves for the normalized frequency. In both figures, the central curves corre-

spond to the nominal case and the predicted changes depend on the value
selected for E,, . and C

test test*

4.1.4 Fault Detection

Let us finally define an acceptability region. Such a region reports the
zone in the oscillation parameter space where the fault-free circuits are
located. To do this, let us consider small random deviations in the values of

9y and 6, and include small random deviations in the integrator gains as

well. Then, depending on the allowed maximum deviations in 6, , &, and the
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gains of the integrators, different acceptability regions can be defined. For
example:
Region#1: Normal Random Distribution with:

6 = Nominal Value - 0.333 - 10
Region #2: Normal Random Distribution with:

6 = Nominal Value - 0.500 - 10
Region #3: Normal Random Distribution with:

o = Nominal Value - 1.000 - 10~

The nominal values of the involved parameters are shown in Table 4.2 as
well as the deviations which determine the corresponding acceptability

regions (Fig. 4.9). Notice that the values of E,,, and C,,;, were chosen very

test
small. As will be explained in next sections this is an important requirement to
obtain not only a good accuracy in our predictions (given by the DF approach)
but also an optimum value of the oscillation frequency from the test viewpoint
(sufficiently small in relation to the sample frequency of the system).

Parameter Nominal Value Region #1 Region #2 Region #3
Fsampling 182107 s
fose 1259.8 Hz ~0% >+0.10% | >+0,15%
Aose 5.098 Vv >+0,10% | >%0,18% | >+0,32%
3 -0.5
3 —0.1 Random
Integrator Gain 1 Deviations
Integrator Pole 1
Eiest 0.01
Ctest 0.02 Fixed
Btest -2

Table 4.2: Parameters for the example modulator

Observe from Fig. 4.9 and Table 4.2 that the oscillation frequencies devi-
ates a little from its nominal values. However, the frequency expression
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(Table 4.1) indicates that the oscillation frequency does not depend on 5, or

0, . But this discrepancy, somewhat negligible (>%0.15 % even in the most

unfavourable case, Region #3), could be owing to two reasons: either due to
certain amount of inaccuracy linked to the DF approach or due to that the fre-

quency expression in Table 4.1 was obtained considering §,,,, = 8, and the

test
gains of the integrator exactly equal to 1. These considerations allow us to
simplify the involved expressions.

5.115 . . . . . .

c1f  Region#1 Region#3  Region #2 |
s
> 5108 i
[72]
Q
<
g

*

3 st * -
g . * *
£ S R A
§ 5.00¢ ) * §
A I
2
o * *

504 * -

g
*

5.084- -

5.0 1 1 1 1 1 1

15575 1268 12585 1259 12595 1260  \ 12605 1261

Oscillation Frequency, fosc (Hz)
Nominal Oscillation Parameters

Figure 4.9: Involved Acceptability Regions
To finish this Section, let us also consider small random deviations in the

elements incorporated for the test strategy, E,, ., and C

Then, the accept-

test test*

ability regions slightly enlarge. For example, the largest region (Region #3)
extends in both dimensions (frequency up to +0.37% and amplitude
+0.58 %) (see Fig. 4.10).
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Figure 4.10: Acceptability Region incorporating random deviations
inE, , and C
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4.1.5 Extension to High-order Architectures

After paying attention to second-order structures, other architectures can
be examined. As it has been pointed out by the authors in previous chapters,
decomposing high-order filters (and hence, modulators) is the best way to
guarantee a reasonable testability at system level. Following the same ration-
ale, decomposing more complex modulator architectures seems to be a
promising manner of coping with such architectures in what OBT is con-
cerned. The contents of this section is exploratory, and only has to be
considered as a way to illustrate the many avenues opened by the OBT con-
cept when applied to modulators. In that sense, Figure 4.11 aims to show an
example on how a 4th-order modulator can be split for testing as a combina-
tion of second-order cells. This requires to add a few extra components, but
leads to obtain extra observability and thus enhanced testability. The linear
part can be divided into second-order functions, and then, an extra feedback
loop added to convert sequentially every second-order element into an oscilla-
tor similar to that in Fig. 4.6, as is illustrated in Figure 4.11-(b), which gives
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an example of the starting configuration, while in the bottom parts of Figure

4.11 a sequence of the remaining configurations are illustrated>.

1 1 1 1
So1 3 ) 312
(@)
................ -
833(2) !
1
1 T L]l
71 1 [P 1 I

IBI\'\'!S

1

e e e e e e e e e — T
831(2) 812(2) 833(2) i
LA S e o T
lalml%rvis“' st I e K’ ) ~5? Dsz
: 1

(b)

Figure 4.11: OBIST modification for a 4-th order single-loop
low-pass modulator

Furthermore, in Chapter 6 a general methodology has been described for
applying OBT/OBIST to filters of order higher than two and for reading the

3 In Fig. 4.11-(b) we represent the loops by 85;(z) whichare E,, (1 -2z) - C,,,,;z justas in Fig. 4.6.
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test output using a simple XA modulator. An extension of this technique can
be also used in the generic high-order modulator in Fig. 4.11-(a). Then, part of
the remaining blocks can be also used as a reduced-order modulator to gener-
ate a bit-stream version of the test output signal that can be interpreted as was
suggested in [85], [87]-[90]. A smart re-structuring of the converter compo-
nents can lead to obtain a meaningful information of the operational state of
the modulator as well as to encode the test outcoming data. The key issue is to
re-organize the overall converter in such a way that an oscillator followed by
a simpler modulator can be always formed (during any test phase). This gives
information about the functionality of any block as well as a digital encoding
of that information. Of course, this will impose some constraints on the actual
modulator design.

Fig. 4.12 illustrates how the 4th-order modulator in Fig. 4.11-(a) can be
split into two lower-order modulators. The one at the upper part of Fig. 4.12 is
re-organized as an oscillator and the one below is for encoding the test out-
comes. It should be evident from this figure that an additional comparator
needs to be introduced and that, depending on the modulator to test, the divi-
sion into second-order cells can be more or less complex.

33(z)
1 1
71 ' 71 >
~78test o1 M
v
» D » zl-l »D—p zl-l _> Counter

802 812

Figure 4.12: OBIST architecture for a 4-th order single-
loop low-pass modulator with on-chip test interpretation
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) _ Extensions to other low-pass and
band-pass architectures may also be

(a)

> targeted. Interpolative and cas-
caded modulator structures can be

(b)  Oscillator — wisely reduced to a few second-

order oscillators and their oscilla-
Modulator

SN S tion parameters can give a good

| idea about how the overall modula-

— tor is working. Furthermore, in

(©)

> complex structures, part of the sys-

Oscillator tem can be tested using totally or

9
Modulator partially the remaining part of the
1 modulators. Of course, the way to
Modulator - .
proceed depends on every particular
N structure what means that develop-
(d) Oscillator ing guidelines for dealing with any

architecture is worthwhile. This

opens many new testing possibili-
Figure 4.13: Examples of decomposi-

i X i ties, let us consider the 2-2-1
tion for a generic cascaded architecture

modulator in Fig. 4.13-(a). In this
case, a sequence of configurations
can be defined to test one-by-one the different cells forming the linear part of
the converter. Examples of some of the test configurations for this converter
can be seen in Fig. 4.13-(b), -(¢) and -(d).

4.2 OBT CONCEPT IN BANDPASS DISCRETE-TIME XA
MODULATORS

4.2.1 Background

Besides the many applications of low-pass modulators, XA bandpass mod-
ulators are deserving a great interest since they offer efficient signal
processing for appealing applications like digital wireless devices. A primary
motivation for the development of bandpass converters is their ability to deal
with narrow-band signals. In particular, for communication systems, bandpass
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converters allow early conversion to digital, resulting in more robust devices
and pushing the IF filters to the digital domain.
A bandpass XA modula- v
. BandPass output
tor [106}{107], [115] is o > f Ly
basically formed by a reso- Darioor

input

nator (i.e. a bandpass filter),
1-bit DAC

a low-resolution quantizer

trical two-level
(a symmetrical - two-leve Figure 4.14: A bandpass A modulator
comparator, for example),

and a 1-bit DAC connected in a feedback loop with gain d, as shown in Fig.

4.14. Feedback allows to shape noise away from an arbitrary passband; then,
quantization noise can be filtered out and its contribution to the passband of
interest can be made very small. The bandpass filter in Fig. 4.14 is built
around one or several resonators, and the input signal can be shaped in differ-
ent manners.

Most of the design process for bandpass modulators can be derived
straightforward from the low-pass case. Approximate linear models can be
borrowed from the latter, providing methods to select convenient Signal and
Noise Transfer Functions (STF and NTF, respectively). However, there are
some characteristic features coming up from the passband nature of the modu-

lator. One of this is the central frequency for the noise notch filtering, f,

0’
which is usually selected to be an integer fraction of the sampling frequency,

[, - Typical numbers are 2 and 4, leading to simplified implementations [105]-

[106]. For bandpass modulators, the oversampling ratio, OSR, is defined as

OSR = Zig} , where Af represents the notch bandwidth.

The interest herein is in discrete-time versions of this modulator, specifi-
cally on how to apply to this kind of circuit the basic principles of OBT as an
extension of the ideas presented in [34] for switched-capacitor low-pass
modulators.
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4.2.2 Basic OBT approach: forcing oscillations around the
notch frequency

This section is intended to introduce the basic way to force oscillations in
bandpass modulators, discussing the pros and cons of this alternative and
leading to a more practical solution. We will start by considering the transla-
tion of the OBT concept to this bandpass case and then we will prove that
some changes have to be devised in terms of proposing a manner to apply
OBT to bandpass modulators.

Xin_mod 2—2 X2
- —O—p| |

2
3o

Let us consider the dis-

X
out_mod .
» crete-time second-

z 7+ 1 X4 order bandpass XA

modulator shown in
Fig. 4.15. This is the
simplest structure we

Figure 4.15: Discrete-time second-order

bandpass XA modulator
can devise. A second-

order resonator is used as the loop filter, which has poles at z = 1j, i.e., reso-

nates at o, = *m/2. Then, the transfer function seen by the input signal has

f . . .
poles located at ZY , whereas the associated noise transfer function has zeros at

the same locations, giving the desired notch at the same frequency.

Since 6, is selected by design to prevent the modulator to become unsta-
ble, we need to add at least an extra loop when OBT is applied. To investigate
how this system can be forced to oscillate in an almost sinusoidal regime, two

general feedback loops are added in Fig. 4.16-(a). The scheme depicted in
Fig. 4.16-(b) is a simplified description of the system displayed in Fig. 4.16-

(a), where H(z) represents the involved transfer function of the circuit linear

part. For the sake of generality we use this scheme, which includes as particu-
lar cases the two configurations with only one loop (feeding back to the input

either x, or x, only).
As we discussed above, parameter 6, is usually chosen to optimize the

normal modulator operation as well as to prevent instability; on the other
hand, the additional elements, G(z) and F(z) are chosen to sustain oscilla-
tions when modulator is tested (dotted lines in Fig. 4.16-(a)). The problem is
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how G(z) and F(z) have to be selected; in particular, which are the simplest
linear functions which can lead to a satisfactory implementation of OBT.

. ez @
G(2) ! X1 1+224G(2)

+1 _VVA
2 x—> H@) X2
o
Sanseanse o Fz) [«------
2V
@) b) Ny = —ref

A
Figure 4.16: a) A bandpass Z-A modulators OBT scheme.

b) Oscillator built around a bandpass Z—A modulator

An exact analysis of the system presented in Fig. 4.16 would require a
nonlinear study. However, as was explained a linearized analysis can be
carried out using the DF method, where the comparator is replaced by an
“equivalent” linear function, N(A). This is a useful means to:

-derive the oscillation conditions to guarantee sustained and stable
oscillations, as a function of 3, G(z), and F(z).

-estimate the main oscillation parameters (essentially, oscillation
frequency and amplitude).

The characteristic function for the closed-loop feedback system in Fig.
4.16-(b) is 1 -N(A)H(z) = 0. And this expression can be rewritten in terms
of Fig. 4.16 as

12 +G(2)+1+[8;+F(z)]N(A) = 0 4.12)

Since we are interested in simple solutions, only G(z) and/or F(z)
formed by either constants or first-order delays are considered. Then, (4.12)
can be replaced, in the most general of these cases, (identifying terms cor-
rectly) by

(Z2—2rcos(6)z+r2)(z +pp) =0 (4.13)
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obtaining a pair of complex poles z; , = rcos(6) jrsin(0), (that obvi-
ously depend on N(A) and §), and a real pole, p, . For oscillation (r = 1,

poles have to be on the unit circle) this characteristic function can be solved

for the oscillation phase, 0,,. and gain, N(A,,.). The resulting pole

osc

equations are summarized in Table 4.3.

Local
Case Pole Equations
Feedback Loops
Py does not exist
G(z) = 62
A Pair of complex poles given by:
F(z) = 84
2
z = (1+8,+ [80 +8,IN(A))
63 p1—2rcos(6) =0
G(z) = =+, ’
B z r —2rcos(6)p1 = 62+1+(80+84)N(A)
3
==+
Fz) = >+8 r2p1 — 8, +85N(A)

Table 4.3: Two different choices for the local feedback loops

Now, all possible modes of oscillation for both cases can be computed.
The resulting values for the oscillation parameters are summarized in Table

4.4 (being f, . the oscillation frequency and f, the sampling frequency of this

closed-loop discrete system).
Observe that the predicted oscillation frequency for case A4 results to be

either f;/2 or f,/4 (depending on the modulator design parameters, see Fig.

4.17), since these are the values selected to place the modulator notch.
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0
Case Oscillation Mode |p1| 0,sc £ = 2oscfv
T
lz2l =1
Poles in *j 1 £
-5 2 1
N(A_ )= 2
A 0sc §g+0s |
Polesin *+ 1
f
-2-9 n S
N(Aosc) - - 2
RN

r=1

—2cos(0,..) =0

" o ]p1] <1 acos(gl-) &acos(&)
—2008(0,,.)p; = 05+ (Og+ 04)N(A,.) b P P

p; = 83 +3sN(A

OSC)

Table 4.4: Oscillation Mode Solutions

Experiments performed by simulation prove a reasonable agreement with
predictions from the linearized model. However, there are a few problems
related to this structure. First of all, the oscillation frequency is insensitive to
the passive components in the feedback path; only the amplitude exhibits a
significant deviation with these components. Additionally, the high values
achieved for the oscillation frequency are not so convenient for OBT for dif-
ferent reasons:

a) Since the oscillation frequency is so near to the Nyquist limit, the num-
ber of points available for analysing the test outcome is too small.

b) Equivalently, dealing with high-frequency signals (near the maximum
signal frequency for which the modulator was designed) is not so convenient
for test.

¢) For the same reason, the resonator bandpass action does not guarantee
the validity of the describing function method.
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148, + [ +8,IN(A)>0

Im(z)

: 148, +[5+5,IN(A) <0
)
Y. V. V. .V v v v v 4’
3 Re(2)
: 0=Zorn
2

(a)

Y
Unit Circle Oosc =5 0™
(b)

Figure 4.17: Pole placements for case A in Table 4.4

Concerning the case B in the lower row of Table 4.4, the oscillation fre-
quency value can (apparently) be controlled by means of the real pole p,.
However, this is not valid either. Decreasing the oscillation frequency

requires increasing the absolute value of p,, but p, isrelated to 0, in such

a way that cos(0,,.) = p,/2 (Table 4.4). It is simple to prove that trying to

force oscillations fulfilling f, » leads to acos(p,/2) — 0, or equiva-

osc

lently,

p1|/ 2 — 1. Then, the real pole moves out of the unit circle (p, > 1,

approaching » = 2) and, the closed-loop system becomes unstable.
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Notice from all these oscillation results that the idea of employing the type
of global feedback loops proposed in Fig. 4.16-(a), must be disregarded. The
SUT oscillates, but there are no efficient ways to relate variations in the
expected oscillation signal with modulator parameters. Of course, this strat-

egy (Fig. 4.16) may be explored using more complex functions G(z) and

F(z), but this would not be a satisfactory manner to apply OBT. In conclu-
sion, mechanisms to achieve sustained oscillations must be devised by
considering the detailed resonator structure in order to introduce partial feed-
back loops.

4.2.3 Practical OBT scheme: downsizing the oscillation
frequency

The previous section has shown that a global feedback does not allow sim-
ple OBT solutions. Therefore, we have to set up a new means to convert the
bandpass ZA modulator in an effective oscillator. The idea is to turn to the
actual implementation of the second-order resonator in Fig. 4.16-(a) and then,
consider how we can inject other local feedback signals to convert the SUT
into an oscillator. For example, we can consider the particular second-order
resonator structure shown in Fig. 4.18-(a), where the resonator is built as
shown in Fig. 4.18-(b).

Xin_mod -2 Xout_mod
! X |
e F
272+1 X4 Xin_mod 1 |_ X2 Xout_mod
—Pp O Q
z-1 X
1

3o

(a) (b)

Figure 4.18: a) A bandpass XA modulators OBT scheme. b) The
same scheme for a given resonator structure
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Forcing this closed-loop system to oscillate can be carried out by using
various local extra loops (displayed in dotted red lines in Fig. 4.19).

Xout_mod

Figure 4.19: A bandpass XA modulators OBT scheme
Establishing again the closed-loop characteristic equation, we obtain the
following result
2, (F—E+N(A)81
¢ I-F

)z+1iF(1+N(A)[80—81]) =0 (4.14)

Notice that, in this case, the z-term is present. It makes us suspicious that
oscillations valid for OBT are possible. If that is really the case, we can
achieve an oscillation mode where OBT is feasible. This mode is given by the
subsequent system of equations

F(26,-8,)—E(3,-6,)
(1-F)(8;-3)
_ F
osc) - 61 _ 60

—2cos ( eosc) =
(4.15)
N(A

However, there are a set of problems related to this proposed oscillation
strategy if we want to apply the OBT technique. Observe from (4.15) that at
least the loop called F' is required (on the contrary, the oscillation amplitude
would be zero). But, if we study in detail the difficulties associated with this
structure in itself, we find that merely to implement the local loops Ez and

Fz is not possible unless you change the system structure. On the other hand,
the second-order resonator circuit in Fig. 4.18-(b) is only a very particular
case which does not summarize all the problems that may appear when one is
trying to develop an OBT methodology suitable to a wide range of bandpass
A modulators.
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According to this, after searching among the many different implementa-
tion structures available in the literature, we found out that those based on a
cascade-of- LDI-phased resonators [106]-[107] are very appealing. The sim-
plest modulator from this class is the one shown in Fig. 4.20-(a),
corresponding to a second-order bandpass. Our interest relies in the fact that
the core of the modulator in Fig. 4.20-(a) is rather similar to that used in previ-
ous sections for the lowpass case [34]. Forcing oscillations in this modulator
can be done by adding the dotted feedback loops in Fig. 4.20-(b). There are
two different actions involved. First, the feedback paths existing in the SUT
—zR

are modified by adding some branches (parameters E and

test> test>

29,,5,)- Second, the regular input is disconnected and X, is also injected

through a, and a;. Although it may look complex in the block diagram of

Fig. 4.20, the implementation in a switched-capacitor modulator is simply
performed by adding a few capacitors and switches. The only difficulty is the
connection and disconnection of the input, which can be done by the method
we will discuss in the next Section.

Xinﬁmod
3o % a1 zR

) 4 X2 X1
1 Y 1
z-1 '\‘{ > z-1 j
bo %m
(a)

— T ZRiest |
I - <}<' 7
I
zR !

(b)

Figure 4.20: a) Cascade-of-resonator YA modulator b)
Oscillator for the OBT method proposed in this book
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Let us now analyse the basic quadratic structure in Fig. 4.20, since as was
discussed above is the basic oscillation element after decomposing any modu-
lator filter. Handling the characteristic equation and replacing the expression
of the comparator describing-function N(A), it can be solved for the oscilla-
tion conditions

d

a,—ay+b,—by#0

rest — a0+b0

sign(V,p)= sign(a, —ay+b; —by) (4.16)

2+R+ Etest B Rtest

-1 1
< > <

and for the oscillation parameters

A - 2V,ef‘(a1—a0+bl—b0)
o n EZESZ‘ (4 17)
_Js 2+R+ Etest — Rtest
fose = 5, acos >

where V, . corresponds to the comparator reference voltage (if the com-
parator has two saturation levels given by +V/, then V. = 2V).
Since ay, a;, by, and b, are fixed by design, the oscillation amplitude

can be controlled by the additional parameter £ Similarly, R is also fixed

test*

and R gives enough freedom to control the oscillation frequency.

test

Although it is hidden in this approximate linear analysis, both f, . and A

osc osc
depend on the resonator and comparator parameters as well. An important
result is that (4.17) indicates that the oscillation frequency can be moved to

lower values than f; by playing with the parameter R This means we can

test*
move downwards this frequency avoiding most of the inconveniences dis-
cussed in the previous Section.

4.2.4 Structural Test and Fault Analysis

Two kind of experiments have to be done in terms of validating our
results. First of all, the accuracy of the describing-function model has to be
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proven. Second, the quality of the OBT technique has to be demonstrated
through fault simulation experiments.

In any practical situation all parameters are fixed by the modulator design
and R

These parameters can fix the most suitable oscillation condition (that is, an
acceptable oscillation range for test purposes). To prevent amplitude values

[106]-[107] except, of course, those used for test purposes, E

test test*

too high, small values of E are demanded. On the other hand, we are

test
mainly interested in frequency values much smaller than the clock frequency
because the larger the oscillation frequency, the less accurate the linearized
model and the more difficult to achieve measurements to confirm the
expected value.

A detailed simulation

study (performed by SIM- . o : S Vl'ef=:-0-2V : @)
ULINK and using FFT to ;Lg) e AR R E .i._*'_'!'
determine the oscillation fre- § °°[| | ;'1.""" T
quency) confirms that the g o2 ERERRREEE.
validity of our linearized g Rl N e i i
model based on the describ- & 015 1
ing-function method [29], § o1}|-- 5 ---- R R ALEEEEEE
[34] also demands small val- § 0.051 1 |- - - - S -- - -
ues of the E,, , parameter. 0 : 15 5
To illustrate the model, sim- o | Eou=0.01 and Vref=-0.2V

ulations have been carried NI o '* ) F B |0
out for a second-order modu- S 44| oL ool L]
lator using E,,, fixed to %13*_“* i :fur*{ ;;‘:‘.;,i.‘;‘.i.‘,'
0.01 (Fig. 421) or 0.1 (Fig. <, [[ | .
4.22), while R,,,, is sweep- ‘=§ £ 1 N e §
ing all possible values OZ'Z' I e
fulfilling the oscillation con- oall o e ]
ditions (4.16). Under these 06 . : i : : l*
assumptions, the different i e

Figure 4.21: Oscillation Parameters
sweeping Ryegt (Eqes~0.01)

achieved oscillations must
have the same amplitude
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although cover all the possible frequency values (see (4.17)).
In Fig. 4.21 and Fig. 4.22 the theoretical data (given by (4.17)) are repre-
sented by dots while the simulation results are drawn with stars. It should be

clear from Fig. 4.21-(a) and Fig. 4.22-(a) that a good choice for E,,., can be

test
found around 0.01 (avoiding a degradation in the oscillation frequency), while
Rtest
amplitude) (see Fig. 4.21-(b) and Fig. 4.22-(b)). In fact, the main effect of

increasing E

can be taken not higher than -1 (avoiding a degradation in the oscillation

1es; 18 the reduction on the region where the linearized model is

valid. Increasing R,,,, above -1 leads to undesired nonlinear modes and

t

decreasing below -1.5 causes the oscillation to disappear.

0.4

On the other hand, to Ejest=0.1 and Vref=-1V
T T T T T

illustrate how faults are mod- (@)

o
w
5

ifying the oscillation

o
w

parameters and how such a

o
N
3

modification depends on the
selected coefficients (those

Normalized Oscillation Frequency, fos/fs
o
N

. 0.15
ones coming from the modu-
lator structure and the 01
remaining ones used exclu- 3 %%
sively for testing), let us 45 1 05 0 - 05 1 15 2
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. . . . 15 Etest'”o-“ and Vref=-1V (b)
tion in the integrator gains. . Tx I
17 S S
1 1 | *
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. . . 05 n 1 L 1 I
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test

both the oscillation ampli-
tude and the oscillation
frequency as well. The devi-

Figure 4.22: Oscillation Parameters
sweeping Ryeg (Eqegr~0.1)

ation range is approximately
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a £5 % change in the frequency and more than a £30 % change in the ampli-
tude. Regarding this, and depending on the discrimination rank for the
experimental test measurements, a good fault coverage can be achieved.
Another issue to be borne in mind is that due to the right choice of the remain-

ing coefficients E,,,, and R,,,, added for test purposes, the theoretical curves

(dots) match up practically with the simulations (stars).

oo24— 0000 Depending on the parameter,
Foowd 0+ . . .t ecither amplitude or frequency can
g S ,:' be preferential for test. For exam-
S 0023} - o o oa- vl n ol gt X .

g o 1’1:;?‘ o ple, if one of the modulator
Sooz2d . . a et . . .
g002% - -r -t m oo o1 coefficients, a; or b, is varied
f 0022} - | ;"J Lo

: | et ool ool producing a £10% change in its
N T ' ' ' ' ' ' ' . o e .
Tt ~-t------1 nominal value, a variation is
S L noticed in the amplitude but never

: 9 092094 096 098 1 1.02 1.04 1.06 1.08 1.1 .

is First Integrator Gain in the frequency. Examples where

- T T T T T T .

‘ ' only the frequency is changed can
S it vt be given; both situations are just
- ' | | ! ! ' S A ..
a5l o . .+ _,e" | the limit cases for the OBT
= ! [ | ' i e | f '
[=3 1 1 1 1 a 1 1 1
E L technique.
P e
o .
% ! I’. ! ' I 1 1 1
% : 1 ." 1 1 1 1 1 [ .
g2t - - a0 w4 4.2.5 Fault Detection
“ 1 1 1 1 1 1 1 1

R LR SRR EED R PR In order to assess on the validity

P N R of this approach for detecting

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

First Integrator Gain . faults, two experiments were
Figure 4.23: A £10% change in

. ) finally carried out for a modulator
one Integrator gain

with the parameters listed in
Table 4.5. Firstly, small deviations were randomly injected for all the feed-
back coefficients relating to the modulator. Let us consider slight random

deviations in the values of 6, and &, and include slight random deviations in
the integrator gains as well. Then, depending on the allowed maximum devia-
tion in §,, 6, and the gains of the integrators, different acceptability regions

can be defined. Examples of such acceptability regions are described as
follow:
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Region#1: Normal Random Distribution with:

o = Nominal Value - 0.333 - 10
Region #2: Normal Random Distribution with:

6 = Nominal Value - 0.500 - 10
Region #3: Normal Random Distribution with:

o = Nominal Value - 1.000 - 10~

The nominal values of all the involved parameters are shown in Table 4.5
as well as the deviations which determine the corresponding acceptability

regions (Fig. 4.24). Observe that the values of E,, , and R,, , were chosen in

test test
such a way that we may guarantee that it is obtained not only a good accuracy
in our predictions (given by the DF approach) but also an optimum value of
the oscillation frequency (sufficiently small in relation to the sample fre-

quency of the system, see (4.17)).

Parameter Nominal Value Region #1 Region #2 Region #3
f 55 kHz
foec 1.259 kHz >+2.25 % >+4.90 % >+5.60 %
Agee 3.164V >+1.30 % >42.20 % >+2.80 %
a, -0.1701
b, -0.1576
Random
a; -0.2388 L
Deviations
b, -0.0149
R -1.3940
Eiest 0.0149
Biest 0.3277
Riest -1.3591 Fixed
Integrator 1
Gain
Integrator 1
Pole

Table 4.5: Parameters for the example modulator
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Again, any of the above acceptability regions illustrates how to proceed
for determining the actual acceptability region as a function of the required
accuracy of the modulator specifications and its performance. It is not
straightforward to relate the modulator gains and other coefficients at system
level with the technological parameters and their tolerances in the specific
technology. In fact, we would have to select an implementation at transistor
level to define an acceptability region which contemplates the transistor

mismatches.
3.22 , . . . : . , . .
' ' ' Region #3 !
s [
S R S S S A,
s " | | _ Region#1'
(o] | '
3 * ke L 7 ‘ ' :
< 318 - - - - PR R ] - - - - 1 - - - oo - ]
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Figure 4.24: Involved Acceptability Regions
Also, some larger changes were injected for all the feedback coefficients
as well as for the integrators gain and the integrator pole positions (Table 4.6).

Parameter Typical Value Variation (Small) Variation (Large)
f 55 kHz
fose 1.25kHz 150-250 Hz 100-800 Hz
Agge 32V <08V >08V
a -0.1701 1-5% >20%
by -0.1576 1-5% >20%

Table 4.6: Parameters for the example modulator
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Parameter Typical Value Variation (Small) Variation (Large)

a -0.2388 1-5% >20%

b, -0.0149 1-5% >20%

R -1.3940 0.5-3% 8-10%

Eiest 0.0149 <10% >20%
Biest 0.3277 <10% >20%
Riest -1.3591 <10% >20%
Integrator Gain 1 1-5% >10%
Integrator Pole 1 0.1-0.5% >5%

Table 4.6: Parameters for the example modulator

The results are shown in Fig. 4.25 where two possible faulty regions (as
well as the called Region #3) have been plotted. One of these regions is the
rectangle formed by intersecting the lower and higher limits for both the
amplitude and the frequency. The discrimination is not difficult since these
regions ranges from 1.1 to 1.4 kHz (frequency measurements) and from 2.5 to
4 Volts (amplitude measurements). There is some dissymmetry in Fig. 4.25
because the fault-free modulator does not lie midway in both coordinates.

The width and height of these regions will depend on the desired test accu-
racy and the intended yield, and are illustrative in this example. In this case,
for instance, points inside Region #3 correspond to “good” modulators, points
in blue define a tolerance window corresponding to “acceptable” modulators,
and points outside this window define the faulty region corresponding to
modulators that should be rejected. The distribution of the points is of no sig-
nificance since its shape is due to the manner we have performed the
experiment. Good circuits are clusterized around the nominal and large
changes move the circuits far away from the acceptability region.
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Figure 4.25: Example of two Faulty Regions obtained by simulation

4.2.6 Extension to Higher order structures

To illustrate the feasibility of this approach for higher-order modulators,
we will consider in what follows the fourth-order structure whose detailed
implementation is given in Fig. 4.26. As was discussed in [25]-[28], [30]-[37],
it is difficult to determine the oscillation conditions as well as to predict the
oscillation parameters if a high-order structure has to be handled. For this rea-
son the OBT concept is applied by splitting up the overall fourth-order
structure into smaller blocks (second-order subsystems). Oscillations can be
separately forced in every second-order block by adding the dotted feedback
loops in Fig. 4.27. Then, using a multiplexed sequential testing or/and swo-
pamps [82]-[83] to bypass signals from a point to another point of the system
[37], both subsystems should be tested.
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1 7 X22 Xy

Buffer _’®_’ Buffer _EZ’IT ;

X

Buffer —’@—’ Buffer

Figure 4.27: OBT method applied to a fourth-order structure

4.3 PRACTICAL OBT SCHEME FOR ANY TYPE OF
MODULATORS

First of all, notice that practical schemes for both kinds of XA modulators
(low-pass and band-pass) considered in previous sections can be represented
by the generic oscillator shown in Fig. 4.28. If the CUT is a low-pass modula-

tor, then R = 0, whereas if the CUT is a band-pass modulator, R # 0.
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Observe again that this proposed OBT structure has been inspired by
Chapter 3 and its linear part is a BPO1E transfer function. The oscillation
parameters and conditions obtained by the DF approach are given in Table

4.7, where the 6, , 6, and R parameters come from the modulator structure,

whereas E,, . and C,, . from the extra circuitry added for test purposes. For

3.

test test

the sake of clarity, let us suppose the specific case when 6,,,, =

%83(2) = Etest[EtesttCrestlZ '
' Vrier=Va-Ve

: / < ! X
1 1 A ‘\ xin_osc
-¥ z-1 z-1 J:B

e out_osc|

ézStest 8o 81

Figure 4.28: Generic Oscillator for YA modulators

Oscillation Parameters Oscillation Conditions
N _ Vref.[SI_SOJ 61—60¢0
o8¢ n Efest sign(V_ ) = sign(8; -3)
2+R-C
. 1 test 2 +R_Ctest
foscf (ZnTS acos[ 2 D -1< - 2 <1

Table 4.7: Oscillator features

Practical guidelines for the OBT irnplementation4 (Fig. 4.28) were given
in Chapter 3. These guidelines include: a) feedback sign condition, b) start-up
requirements, c¢) choosing the adequate ranges of the values of the extra
and C

In what follows, these two last issues (¢ and d) are further developed.

parameters, E and d) fault coverage considerations.

test test

=C, +E

test test test *

4 Observe that Fig. 4.28 is similar to Fig. 4.20-(b), but now considering R



194 OBT in Mixed-Signal Circuits

4.3.1 Theoretical Normalized Oscillation Parameters

Let us define the oscillation amplitude normalized with respect to both the
gain of the comparator and the coefficients of the modulator:

Aosc 2 1

A = 0S¢ -z, — .
osc‘norm |Vrefi |8] — 80| T Etest (4.18)

N

The purpose is to obtain an expres-
sion only related to the extra

s P

element, £ In principle, for real-

test*

w
w s

izability reasons, the E,,, parameter

tes

o N

has to be positive and its value has

-

no influence in the oscillation condi-
tions (see Table 4.7).
Graphically, (4.18) is plotted in Fig.

=y

o

Normalized Oscillation Amplitude, Agsclnorm

=]
o

[
=

b ) C
U0z U3 0z U5 0% U7 U

Etesl
Figure 4.29: Theoretical Normalized 4.29. Observe, for example, that an
Oscillation Amplitude oscillation amplitude of around

L5V with |V, [|8; =8| = 1 can
be obtained by choosing E,,, € [0.8, 0.9].

On the other hand, the oscillation frequency is defined with respect to the

sampling frequency, f|

(4.19)

-f;) SC
2
N

—_— = —acos[

2+R-C,,,
osc‘m)rm f. 27 j|
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o
33}

Notice that, in this case, the

0451 normalized oscillation fre-

04

quency depends only on the R
and C

see that, in order to fulfil the
oscillation conditions, we have

035fF - -

03} parameters. We can

test
0.25

0.2 |

0.15

01l to impose that C,,,,— R varies

Normalized Oscillation Frequency , fosclnorm

0.05 in the interval [0,4]. Observe,

0

0 05 1 15 é R2'-5 35 4 however, that our interest
test™

Figure 4.30: Normalized Oscillation  herein is that f, . «f; not only

Frequenc . S
q y to achieve a good discrimina-

tion between both frequencies but also to simply use f; in the test

interpretation. Since this last expression reports the relationship between the
oscillation frequency and the sampling frequency, it will be object of study in
the next lines.

Considering simultaneously the above-mentioned four guidelines, we
have to select the solution (i.e a set of frequency-amplitude) which seems
more appropriate.

Observe from the theoretical expression of the normalized oscillation

amplitude (4.18) that its value is determinate by only the E,,,, parameter.

Therefore, when the DF linearized model is considered valid, if E,,, remains

a fixed value, the normalized amplitude has to remain a fixed value. On the
other hand, likewise, the normalized oscillation frequency evolution, regard-

less of the fixed value of E must vary according to the values of C

test? test

and R.

We can exhaustively evaluate the ranges of E,, . and C,,_.— R where the

test test

linearized model is valid for specific values of &, and 6, . Supposing, for

example,

89| = 1 and |3,| = 2, we will study the behaviour of the system

by a more accurate nonlinear simulation and we will compare such results
with the theoretical results predicted by the describing-function approach.
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Firstly, we will consider four cases where the E,, ., parameter is fixed to

test

various values while the C,, ,— R value is changed sweeping the proposed

test

significant range [0,0.3] (see Table 4.8). These cases provide sufficient evi-
dence (see Table 4.8 and Fig. 4.31) to state that we have to select the E

test
parameter in the interval [0,0.01] and then, the C
the interval [0,0.04].

res: — R parameter must be in

<--Cies-R-—> Efest Frequency Validity Amplitude Validity

Good agreement mainly in

Case #1 0.001 the interval [0,0.05]

Good agreement The simulation results fol-

Case #2 0.01 low theoretical predictions
only in the interval [0,~0.04]

Case #3 0.05 The simulation results follow theoreti- No very good agreement

cal predictions only in discrete intervals

Case #4 0.1 Very bad agreement

Table 4.8: Oscillation parameters validity (I)

But returning to Fig. 4.29, we can observe that when the E,, , parameter is

test
in the interval [0, 0.01], the normalized oscillation amplitude is very high.

However, fortunately, we can control its value by the V,,, parameter. Notice,

on the other hand, that we are interested in a small value of the normalized

oscillation frequency. Then, if the C,, ., — R value is in the interval [0, 0.04],

test

the required result of the normalized oscillation frequency is carried out.

Next Fig. 4.31 illustrates the facts shown in Table 4.8. When E,, . is cho-

test
sen too high, the simulation oscillation frequency results follow the
theoretical predictions only in discrete intervals, independently on the value

of C.,_.— R ; and the theoretical oscillation amplitude is not valid any more.

test

But as E,,, goes smaller, then a good agreement in the oscillation frequency

is found and when C,, ,— R is small enough, then a good agreement in the

test

oscillation amplitude is found as well.
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A parallel study can be made by considering four cases where the
C
changed sweeping the proposed significant range [0,0.3] (see Table 4.9). We

can seen from Fig. 4.31 that for the proposed values of these parameters the
oscillation amplitude is the expected by the linearized model whereas the

st — R coefficient is fixed to various values while the E,, , parameter is

oscillation frequency deviates as the E,, , increases. Again these cases pro-

test

vide sufficient evidence (see Table 4.9 and Fig. 4.31) to state that the
C,..,— R coefficient has to be selected not higher than 0.01 while the E

parameter must be also small.

test test

Theoretical

<"Elest"> Ctest'R f
0scC

Frequency Amplitude Valid-

‘norm Validity ity

The simulation results follow
Case #1 0.01 0.0160 theoretical predictions only in
the interval [0,0.025]

The simulation results follow
Case #2 0.05 0.0357 theoretical predictions only in
the interval [0,0.006] Good agreement

The simulation results follow
Case #3 0.10 0.2341 theoretical predictions only in
the interval [0,0.005]

The simulation results follow
Case #4 0.20 0.2180 theoretical predictions only in
the interval [0,0.002]

Table 4.9: Oscillation parameters validity (II)
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4.3.2 Fault Coverage considerations

The above expressions (Table 4.7) were derived assuming the extra loop

coefficient 6 to be exactly equal to 6,. However, if there is not an abso-

test?

lute matching between these elements, (4.19) (the case of the oscillation

frequency) becomes slightly different. Specifically, if 6,,,, is 8, + AS,,,, we

test

can prove:

l;t st
+AS,,, 5 _“81 (4.20)

= cos (271#)
sampling

sampling

cos (271

actual ideal

This error term gives us an opportunity to tune the sensitivity of the
expected frequency variations when testing. Therefore, for a given value of

the sum §, — 8, , the larger the value of £ the bigger the influence of the

test>

additional element, o In fact, this point is very significant because shows

test*

that we must not underestimate the role of the 6., . parameter in the definitive

test

value of the oscillation frequency.
On the other hand, suppose a deviation in 6, or 6, (thatis, Ad, or Ad,).

Then we obtain a new oscillation amplitude given by:

2 Vi8S,

A
ideal TU E

osc

= =0,1 4.21
actual osc ’ ¢ )
test

Observe, from this last expression, that the value of the E,,;, parameter
controls the importance of a 6; deviation in the oscillation amplitude. How-

ever, this importance also depends on the exact value of the A osc which
ideal

is governed, not only by the parameters 8, and V., but also by the E

test*
Therefore, a good estimation of the influence of a 6, deviation is better given
by the calculation of the corresponding sensitivities.

Likewise, we can study the influence of a deviation of R in the oscillation
frequency. In this case we have

f;SC

sampling

AR
+—= 4.22
> (4.22)

ideal

cos (275——]?1&—) = cos (275

sampling

actual



Chapter 4. OBT Methodology for XA Modulators 201

Therefore, Table 4.10 gives an exhaustive information about the behavior
of the oscillation parameters versus the oscillator coefficients. To consider all
the possibilities we can calculate the amplitude sensitivity as well as the fre-
quency sensitivity (see Table 4.10).

AOSC 100 COS(@osc)
S5, =55 5 =
1 ’ 1 0| 1
AOSC -100 COS(@OSC)
S6 =53 5 =
0 ’ 1 0| 0
Aose _ _100 cos(®, )
SE = SE =
test  E; g test
ose COS(@osc) ~100
s -0 Sk = -0
R -2-R+ Cte”
Aosc COS(@osc) 100
SC =0 SC =
test test —2-R+ Ctest

Table 4.10: Sensitivities in frequency and amplitude

A last consideration
refers to the importance
of the oscillation fre-

33(2)

IR N S | o quency as a test

z-1 z-1
ot onc parameter. Observe from
%_Zsm % i . Table 4.10 that the oscil-
T lation frequency is not a
Figure 4.33: Oscillator Scheme function of the modulator

gains, at least in the case
of a low-pass modulator (R = 0) where it exclusively depends on the extra

parameter C,, , added to built the test oscillator (see Table 4.7). In fact, from

test
expressions in Table 4.7, the oscillation frequency may seem a secondary test
parameter. However, the expressions in Table 4.7 were deduced without con-
sidering some issues. They were derived regarding the integrators of the
modulators as ideal. Let us now suppose, for example, that the gains of the
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integrators are taken into account (G, and G, in Fig. 4.33). Then, the actual

expressions of the oscillation parameters are

_ 2Vref' (61 - GISO)
T G E

osc
test

[2 + Gl G2(R - Ctest):|
- acos )

(4.23)

1
Jose = 2a7

N

We can observe how G, only influences the oscillation frequency. There-

fore, this parameter will be necessary to detect deviations (or faults) in the
second integrator gain. In fact, it was indirectly studied in the sections con-
cerning to the fault analysis where some graphics showing this situation were
displayed (Fig. 4.8 and Fig. 4.23).

4.4 SUMMARY

In this Chapter an extension of the OBT/OBIST concept has been pre-
sented to be applied to Oversampled £A modulators, exploiting previous
experience coined through the implementation of OBT/OBIST in SC inte-
grated filters. This approach is based on the analogy between a filter and the
linear part of the analog modulator core. After presenting some problems
related to the OBT strategy, when global feedback loops are used to design
the required oscillator, a basic method and its associated equations have been
discussed, and the outcome seems to be appealing for future development.
Analytical and simulation results demonstrate that it is always feasible to find
out an OBT scheme for a typical discrete-time second-order modulator struc-
ture without adding any substantial extra circuitry, but only resorting to local
feedback loops. A feedback strategy can be chosen providing enough freedom
to force oscillations, which can be worthwhile for testing purposes. The con-
version of a second-order modulator into an oscillator allows to use the
existing knowledge on OBIST as was coined for filters.

The technique has been presented and illustrated through some particular
second-order structures at block level. Initial fault analysis shows that an
interesting difference in this case is the availability of extra freedom through
the selection of the added components in order to increase the sensitivity of
(oscillator) frequency and amplitude to faults. More detailed experiments at a
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circuit level must be carried out to fully validate this technique. Much work
has to be done before qualifying this technique both in terms of its practical
fault coverage and of its validity for any kind of oversampling modulator, but
the initial results as well as the simplicity of the method make it promising.

Since this test methodology is not strongly correlated to the converter‘s
performance parameters we should complement in the time being the above
analysis taking into account the following points: more realistic test threshold
for the CUT measurements, potential test escapes and possible decrease in
yield. Furthermore, like most defect-oriented approaches, future work has to
be devoted to connect this defect-driven test method with the conventional
specification-driven test measurements required to characterize analog and
mixed-signal circuits.

The basic concept is applicable to modulators of higher order and with
more complex structure. The main result for second-order can thus be com-
bined with extensions on partitioning and re-use, such as it was introduced by
the authors in previous papers (see [34], for instance), in order to apply the
concept reported herein to test any modulator.

Finally, in the last part of the Chapter, critical points of the proposed OBT
solution have been considered in order to establish some guidelines useful to
define a systematic way to implement this test approach for any kind of XA
modulators.



Chapter 5

OBT Implementation in Discrete-Time Filters
Circuits and Examples

IN THIS CHAPTER different low-order filters forming the filter

banks of a Dual-Tone Multifrequency (DTMF) receiver will be used as exam-
ples to theoretically validate the basis of the OBT methodology itself and the
test proposals developed in previous chapters. Likewise, this particular sys-

tem! will be employed in next chapters to demonstrate experimentally all the
theoretical results obtained in this Chapter.

5.1 A SPECIFIC CIRCUIT

Let us study in detail a particular example of an OBT application. Until
now, in this book, only the FL-topology has been considered at component
level but never at capacitor level (see Chapter 3). Fig. 5.1 displays the generic
Switched-Capacitor (SC) biquad that will be employed in the following sec-
tions to implement the second-order functions which will be tested by the
OBT approach. The purpose is to link the OBT analysis discussed in Chapter
3 with the involved capacitors of the proposed biquad structure. The biquad
shown in Fig. 5.1 can be customized to operate as required for any filter stage
by adequately sizing (or even removing) the existent capacitors. This circuit is
an integrator-based second-order biquadratic section with two available out-
puts (one per integrator). It is possible to implement a given function

employing V,, or V_, as the circuit output. Then, taking advantage of this

feature, both the normal output, V , as well as the secondary output, V,, can

be used to implement the required oscillators to exploit the OBT approach.
This last mentioned issue is very valuable owing to the fact that forcing oscil-
lations in some biquad configurations is not feasible whereas in other biquad
configurations is relatively straightforward.

1 The DTMF receiver will be describe in detail in Chapter 6 and Chapter 7.

205
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Co7
o | Cos
—o—|
Cos clk2 clk1
= 3
Cos3
k2 C k2
Vin C 01 C e C()2
clk1 clk1 j’_{
j? i‘ Vo1 clkﬂ; i Vo2
Cos
A= ke
o—]

Figure 5.1: SC Structure

For the sake of clarity, let us simplify this structure with a z-domain equiv-
alent circuit shown in Fig. 5.2 where, now, the drawn capacitors are

normalized with respect to Cy; or C,, respectively, in such a way that

c, - Coy _Cn _ Cos
Coz Cos Cos
Cyp = =3 c, = S _ Cos _ So
CO4 C03 C03 CO4
C,+Cg(1-2 ")
CQ
Vi, Cq -1 -Cpz! -1

1

1-z V,, / 1-z Vo,

Cg+Cog(1-2 1)

Figure 5.2: Biquad z-domain equivalent circuit

If we compare this z-domain equivalent circuit shown in Fig. 5.2 with
the z-domain equivalent circuit of the FL implementation used in Chapter 3
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(Fig. 5.3), we observe that the first one is simply a modified version of the

second one. We just have to impose the following constraints?
H=0 G=C  A=C,
1=Ci+Csy J=Cs C=0C,

E=C;, B=D=1 F=¢,

C+E(1-z 1

-1
I-Jz
Figure 5.3: FL implementation

The generic transfer functions at each output are shown in Table 5.1. The
coefficients in both numerator and denominator are related to the normalized
capacitors.

2 2
- Vo1 KpZ Tkyyztkg, _ Voo kgpz tkppztky,
OI(Z) Va2 H02(Z) “Ym 2
mn +b,z+b m Z +b,z+b
z 1 0 1 0
(C5+C56)(C7+C8) 7(C5+C56)
177" 1+C k» = —77¢
9 9
. €}~ Cg(Cs+2Cs0) ~Cs(Cy o Cs+2C5,~C,C,
11 | e p—
+C, +C,
_ Cs6Cg _ Cs6
o1 = T5C 2 = T3¢
9 9
) | —2-CyHCy(Cy+Cy) L 1-C,Cq
1 0~ TTc
1+ G, 1+Cy

Table 5.1: Biquad coefficients in relation to the involved capacitors

2 Observe that, in this case, we do not consider A = 1 as in Chapter 3.
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: Let us consider again the proposed scheme of
Biquad Under Test . . . .
H(Z) OBT shown in Fig. 5.4. That is, closing a non-

linear feedback loop around the biquad under

test by using a comparator with two level of sat-

\%
_VBI A uration, V, and -Vg. In this case, the
Non-linear feedback loop oscillation parameters in function to the biquad
Figure 5.4: OBT Scheme coefficients extracted by the DF approach are
given by (see Chapter 3)
L W hako
osc T 1 _ b()
5.1)
;o o[ ke~ k) + Ky by - 1)
os¢ = onT, [2 ko — boks }
being T, the system sampling period and V,,, = V, + Vp.
On the other hand, the oscillation conditions are (see Chapter 3)
ky # kg
(5.2)

sign(V, 0 = sign(ky, —kg)=sign(kyby— k)

Let us study the general case where all capacitors are present. Table 5.2
shows the dependency of the oscillation parameters with respect to all the
involved capacitors. An important fact can be derived from it: depending on
the selected output for establishing the feedback loop, the oscillation parame-
ters give more or less test information and the oscillation conditions are more

or less restrictive. For instance, the parameter A .[H ,] is not a function of

osc

the capacitors C; and C,. It would reduce, in a general case, the fault cover-

Hol] and fosc[Hol]

because both parameters are function of all normalized capacitors involved in

age. Notice, however, this is not the same for A [
the structure. It can be very positive in order to efficiently apply the OBT
strategy. On the other hand, notice that for H ,, the requirements imposed by
the oscillation conditions are stronger because they involve less coefficients.
Moreover, if Cs is not present, then, the structure can not oscillate.

From (5.1) and (5.2), it must be clear that examining the general case is

not straightforward. Moreover, the general case does not allow us to deduce
practical conclusions. Therefore, for the sake of convenience, let us consider
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some particular examples which will be employed in next chapters as vehicles
to experimentally demonstrate the feasibility of the OBT approach.

Aee fose Oscillation Conditions

LG5 (GG Cs6Cy

H £(C,,Cs, Cr, Cry Cg, Cg ,Cr) < 1+C #0
ol 1 €2 €5 €7 Cgr €9 .Csg 9
sign(V, ) = f(C,, Cy, Cs, Co. Cg. Cg o)
7C5 #0
Hy | (Cy Cs, Cy, Cy Csg) | (€}, Cy, Cg, € Cy, Cg C) 1+Cy
sign(V,,p) = f(C,. Cy. Cg. Co )

Table 5.2: Dependences of the oscillation parameters with the involved capacitors

5.2 SOME PRACTICAL EXAMPLES

Let us now consider the two filter banks shown in Fig. 5.5. They consist of

a cascade of several second-order functions or biquads3 (called in Fig. 5.5
Not#l, Not#2, LG#1, LG#2, LG#3, HG#I, HG#2 and HG#3). Each filter bank
is a high-order filter whose properties make this kind of filters very suitable
not only to be used as a benchmark for the OBT technique but also to extract
conclusions that can be extended to other applications with the same
characteristics.

As can be seen in Fig. 5.5, three groups of filters are involved: the Dialing
Filter, the Low-Band Filter and the High-Band Filter. In our actual example,
all the biquads are implemented using the generic topology shown in Fig. 5.1.

Low-Band Filter

- . LG#1 = LG#2 = LG#3 |—- >
Dialing Filter

- —> Not #1 P Not #2

HG#1 > HG#2 > HG#3 |— >

High-Band Filter
Figure 5.5: Analog Filter Banks of a DTMF

3 As will be detailed in next chapters, the analog core of a Dual-Tone Multi-Frequency (DTMF) receiver

is essentially composed of this dual structure.
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Let us show in Table 5.3 the involved capacitors for each biquad group.

Group

Biquad

Co1

Coz

Cos

Co7

Cosg

Coo

Cse

Dialing Filter

Not #1

Not #2

Low-Band Filter

LG #1

LG #2

LG #3

High-Band Filter

HG #1

HG #2

HG #3

Table 5.3: Capacitors present in every type of biquad. Shadow squares mean that the capacitor
is deleted from the actual filter (Fig. 5.1)

Additionally, let us derive the specific transfer function coefficients in
relation to the capacitor values (see Table 5.4 and Table 5.5).

Biquad ky ky kg b by
LG #1, HG #1 - o 0 =2+C,(Cy+Cq) | 1-C,Cq
Not £1 +C56C7 C,-C54C4 . —2-Cg+C,Cy 1

1+Cy 1+Cy 1+C 1+Cy
LG #2, HG #2,
—Cp+Cse(Co+Cg) | Cy=Cy(C1+2Cg) | CgeCq | —2+C,(Cq+Cg) | 1-CyCq
Not #2
HG #3 Cy+Cy) “Cq(Cy+2Ce) | CgeCq| —2+C,(Co+Co) | 1-C,Cq
LG #3 C5(C7+C8) _C5C8 0 —2+C2<C7+C8> l—C2C8

Table 5.4: Biquad coefficients for Hol
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Biquad kz k] ko bl b0
LG #1, HG #1 0 -C,C, 0 S24Cy(C,+Cy | 1-C,Cq
Not #1 1_526 2C516+_CC] % l‘fscﬁ o2 1C2 ;C2C7 L

9 9 9 9 9

LG’i?;fi(;’#z’ Cs6 | 2Cs56-C1C | “Csg | ~21C(CCy 1 1-CyC
HG #3 —Cs6 2Cs6 Cse | ~2FC(Cy7C | 1-CCg
LG#3 —Cq Cs 0 —2+C,(Cy+Cy) 1-C,Cq

Table 5.5: Biquad coefficients for Ho2

We can recognize several types of biquads existing in the DTMF core as
shown in Table 5.6.

Group Biquad Ho 1 HO 2
Not #1 GENERAL HP-Notch
Dialing Filter
Not #2 GENERAL HP-Notch
LG#1 BP0O LPO1
Low-Band Filter LG #2 GENERAL LP-Notch
LG #3 GENERAL BP00
HG #1 BP00 LPO1
High-Band Filter HG #2 GENERAL HP-Notch
HG #3 GENERAL HP

Table 5.6: Types of transfer functions present in the filter banks

Analysing every specific second-order block into the filter banks, we can
establish which output can be used to implement every oscillator and under
which conditions oscillations can be sustained. Table 5.7-Table 5.9 show the
results. Notice we have studied for every biquad (every row), the two possible

cases: the H, transfer function and the H , transfer function.
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Oscillation Oscillation
Biquad Hy Lo
Conditions Conditions
IFF
sign(V,p) = sign(~C, (1 +Cg) + C54C-) HP-
Not#1 | GENERAL 5 5 Notch
42 C165-CoCoC (1 +Cg) + CyCiCsq
- 1+Cg)—C..C NO
C1(1+Cg)-Cs6Cq
OSCILLATIONS
IFF
GENERAL sign(V, ) = sign(-C, + Cs,C.) HP-
re Notch
(CC(C -C56Cy)
Not #2 =I< ¢
(C=C56C7(CyCe—1) - CyCgCsq

Table 5.7: Oscillations for the Dialing Filter Group

Oscillation Oscillation
Biquad Hol . H02 .
Conditions Conditions
sign(Vref)<0
LG#1 BP00 IFF —C2C7 LPO1
—4< <0
1-CyCq NO
IFF OSCILLATIONS
sign(Vref) = sign(—C1 +C56C7) i
LG #2 ENERAL )
G#2 | GEN i (CC7)(€1 ~Cs6C9) <o| Notch
B 2
(C1=C5C7)(C,Ce = 1) ~CyCeCsq
. IFF
51gn(Vref)>0 ey <o
sign( ref)
IFF 2
& -C,C
LG#3 | GENERAL D BPOO | ,_ 9% |
(C;+Cg)(C,Cq—1) IR

Table 5.8: Oscillations for the Low-Band Filter Group
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Oscillation Oscillation
Biquad Ho 1 Ho 2
Conditions Conditions

sign(Vref) <0

HG #1 BP00 IFF -C,C, LPO1
-4 < <0
1 _CZCS

IFF
sign(Vref) = sign(—C1 +C56C7)

HP-
HG# | GENERAL (C1C7)(C ~CsCo)

NO
<0 Notch

2
(C1=Cs56C(CCq = 1) = C,CaCyq OSCILLATIONS

sign(V__ 0)>0

ref’
IFF c.c?

HG#3 | GENERAL 4277 HP
(C5+Cg)(C,Cq—1)

Table 5.9: Oscillations for the High-Band Filter Group

From Table 5.7-Table 5.9, it can be observed that V _, is not normally use-
ful for implementing the closed-loop system required in the OBT technique
excepting the biquad named LG #3. It is due to the fact that the capacitor Cs
is not present in the structure of all biquads excluding LG #3 (see Table 5.4).
It is the determining factor which causes that all the biquads present an inade-
quate transfer function in the second output. This issue could be considered as

a DfT rule. For example, the required transfer functions could be designed
taking from the constellation of possible solutions, those ones involving the

use of Cs.

In summary, Fig. 5.6 shows in thick line the biquad outputs that can be
employed to build the oscillators.

> — 4 - — 4
LPO1, LP-NOTCH, BPooI
| |
— »
HP-NOTCH HP-NOTCH
(LG #1) | BPOO (LG #2) |GENERAL (LG #3) |GENERAL
A DDl
- — 5 - — 4 - —
LPOT, HP-NOTCH| HP,
(Not #1) |GENERAL (Not #2) |GENERAL | | )
— »
(HG #1)| BPOO (HG #2)| GENERAL (HG #3)| GENERAL

Figure 5.6: Outputs useful to build all the oscillators
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5.3 FAULT COVERAGE CONSIDERATIONS

Table 5.10 and Table 5.11 show for every oscillator of the DTMF core
how a £10% deviation in each individual capacitor influences each oscilla-
tion parameter (these tables outline all the results extracted from a graphical
analysis made in Appendix 5.A).

Deviation Not #1 Not #2 LG #1 LG #2
Freq. ~0% 3.4%, 1.8% ~0% 0%, 0.8%
+10% C1
Amp. ~£10% 18%, 15% ~£10% 22%, 28%
Freq. 6%, 6.5% 6.5%, 7.4% ~14.5% 4.6%,5.1%
+10% C2
Amp. ~0% 9%, 10% ~£10% 9%, 10%
Freq.
+10% C5
Amp.
Freq. 6%, 4% 1.7%, 0% ~1+4.5% 4.0%, 5.1%
+10% C7
Amp. 16%, 20% 22%, 28% ~0% 18%, 15%
Freq. 3.4%, 3.6% ~0% 0.8%, 0%
+10% C8
Amp. 9%, 10% ~£10% 9%, 10%
Freq. ~0%
+10% C9
Amp. ~+10%
Freq. ~0% 1.8%, 3.4% 0.8%, 0%
+10% C56
Amp. 16%, 20% 22%, 28% 18%, 15%

Table 5.10: Impact of the capacitor deviations in the oscillation parameters (I)
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Deviation LG #3 HG #1 HG#2 HG#3
Freq. ~0% ~0%
+10% C1
Amp. ~£10% 14.5%, 16.9%
Freq. 4%, 6.5% ~*4.5% 52%,4.7% 5%, 5.5%
+10% C2
Amp. 9%, 10% ~£10% 9%, 10% 9%, 10%
Freq. ~0%
+10% C5
Amp. 9%, 10%
Freq. 4%, 6.5% ~*4.5% ~*4.5% ~0%
+10% C7
Amp. ~0% ~0% 21%, 27% 9%, 10%
Freq. ~0% ~0% ~0% 4.5%, 5%
+10% C8
Amp. 9%, 10% ~£10% 9%, 10% 9%, 10%
Freq.
+10% C9
Amp.
Freq. ~0% 16%, 20%
+10% C56
Amp. 21%,27% 9%, 10%

Table 5.11: Impact of the capacitor deviations in the oscillation parameters (II)

For the sake of clarity, Table 5.12, a summary of Table 5.10 and Table

5.11, is included as well.

+10 % in a capacitor

Frequency Deviation

(Total: 36 cases)

<2%

2% to 9%

"> 10%

Amplitude Deviation

Cases Number /Total Cases

17/36

18/36

1/36

Cases Number/Amplitude Devi

ation Cases

<2% 4/36 0/4 4/4 0/4
2% to 9% 0/36 0/0 0/0 0/0
"">10% 32/36 17/32 14/32 1/32

Table 5.12: Summary of the impact in the oscillation parameters
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From Table 5.10, Table 5.11 and Table 5.12, it is simple to see that if only
one of the oscillation parameters is measured we can not detect all £10%

capacitor deviations for all the biquads. When only the oscillation frequency
is measured, 47.22% of the cases (17 of 36 cases) do not show up, while for

amplitude-only measurements the percentage of undetected cases is 11.1 1%,
Fortunately, there is no overlapping between the cases undetected by fre-

quency-only and amplitude-only measurements> giving a high fault coverage
(almost 90% for a measurement accuracy of 10% and 100% for an accuracy
0f 2-9%).

On the other hand, let us also outline in Table 5.13 the results extracted
from the analysis of the Bode Diagrams obtained for every biquad. From such
graphics we can compare the resulting oscillation frequencies with the peak
frequencies of the biquads (see Apendix 5.A). From Table 5.13 it should be
clear that in most cases the oscillation frequency is close to the involved peak
frequency. But if we study Table 5.13 thoroughly, we can observe that Not #1
(which may seem equal to Not #2, LG #2 and HG #2) presents, however, an
oscillation frequency very different from its peak frequencies. It is, perhaps,

due to the effect of the capacitor C,, which is present in Not #1 but not in Not
#2, LG #2 and HG #2 (see Table 5.7-Table 5.9).

f f
FEEDBACK peak\v peak!\, fose
BIQUAD TYPE ol 02 Distance (%)
OUTPUT (Hz)
(Hz) (Hz)
LG #1 846.42 821.98 816.00 3.60 0.73
BP00-LPO1
HG #1 1350.34 1320.99 1363.00 0.93 3.08
Not #1 35221 313.21 504.00 30.12 37.86
Not #2 GENERAL- Voi 567.61 430.62 666.00 14.82 35.38
LG #2 HPNOTCH 978.53 968.75 975.68 0.36 0.64
HG #2 1169.33 929.61 1188.00 1.57 21.75
616.00 0.71 3.09
LG #3 GENERAL- 611.62 596.95
BP00 Voo 218.00 64.36 63.48
HG #3 GENIEII}AL' Vo1 1683.06 1702.63 1728.00 2.60 1.47

Table 5.13: Involved frequencies in the different obtained oscillators

Let us remark that, in this case, the amplitude covers more capacitor deviations than the frequency.
Observing Table 5.12 we have that the four capacitor deviations where the amplitude deviation is zero

can be detected by using the frequency if it can be measured with a 2-9% of precision.
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5.4 OSCILLATOR MODELLING ACCURACY

A first step is validating the accuracy of the oscillation parameters as pre-
dicted by the DF approach. Observing all the Figures obtained in Appendix
5.B we can make a first determination about how accurate is the linearized
model given by the DF approach with regard to a more meticulous simulation
approach (see the corresponding Table 5.14).

Frequency Amplitude | Amplitude
Frequency Frequency Amplitude
Group | Biquad (Hz) (Hz) % %)
Deviation Deviation
(DF approach) | (Matlab) (DF approach) | (Matlab)

Dialing | Not#1 503.66 503.66 | ~0.00% 6.523 6.545 0.34%

Filter | Not#2 666.34 629.62 5.51% 1.378 1532 | 10.03%

LG#1 816.19 796.51 2.41% 1272 1.276 0.31%

L"I‘:’Viiz?“d LG #2 975.68 967.51 0.84% 1.927 1.926 | 0.06%

LG #3 616.89 603.90 2.11% 5.064 5.072 0.17%

HG #1 1363.12 134549 | 1.29% 1.306 1.310 0.31%

H‘ilh'grand HG #2 1188.59 1181.89 | 0.56% 1.526 1.533 0.45%

HG #3 1728.93 171038 | 1.07% 7.130 7.228 1.36%

Table 5.14: Comparison between the oscillation parameters given by Matlab/Simulink and
those obtained by the DF approach

The DF approach usually yields an accurate approximation to any oscilla-
tion‘s analytical description with the evident exception of the biquad called
Not #2. In this case, simulation results given by Simulink [124] differ appre-
ciably from the theoretical predictions using such a DF method. However, for
other similar cases as LG #2 and HG #2, the theoretical oscillation parameters
practically match up with the simulation results. This is a clear example of a
case where the results given by the DF approach are contradictory for the
same type of biquad. These biquads present the same type of transfer func-
tion, but however, the order the magnitude of their involved capacitor values
are different. When the DF approach was revisited in Chapter 2, it was found
that depending on the specific values of the transfer function coefficients, the
error bounds of this method can vary a lot for a same type transfer function.
That means that although apparently we have the same situation with Not
#2, LG #2 and HG #2, the accuracy of the DF method is not enough for
Not #2. As a curiosity, if the three involved Bode Diagrams are observed
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(see Fig. 5.7), for the Not #2, around the oscillation frequency value the sys-
tem does not behave as a bandpass while it happens in the other two cases.

Not #2 Not #2
sinusoidal steady state analysis sinusoidal steady state analysis fosc ~666Hz
10.0 10.0 =57 5VA >
. Z\ .|
- N
-10.0 - 2 T~y
] 71# il
EARN
2300 g ™
A z \<' ™~
9 g,-10.0 —- 646-F5Hz
8 g T\ ]
3 -50.0 3 .
> > - ’
]
-20.0 ——
70.0 L.t U
430.62Hz — [~
900 0 100 1000 o000 0G4g5 1000
frequency (Hz) frequency (Hz)
LG #2 LG #2
50.0 sinusoidal steady state analysis 100 sinusoidal steady state analysis  978.53Hz
- = ]
968.75Hz~ L fOSC=975Hz
00 __-100
el Q pum—
: il \
[} N~ [o)
(=} j=2)
S £
© ©
> 500 > .30.0 /
1 —?'
10004 1 10 100 1000 10000 *%o 1208.47Hz—, -~ 000
frequency (Hz) . frequency (Hz)
HG #2 HG #2 1179.11Hz
sinusoidal steady state analysis sinusoidal steady state analysi}s fosc ~1188Hz
T 20.0
1/169.33Hz ' . ’
g g
3 8 -20.0
2 kol l—
S -60.0 5 —
>
-40.0
920.61Hz | o
-110.0 5 0 W) 000 -60.0 1000
frequency (Hz) frequency (Hz)
—vdb(Vo1) . .
—vdb(Vo2) Figure 5.7: Not#2, LG#2 and HG #2 Bode Diagrams

In short, a first-order DF analysis predicts that the studied closed-loop sys-
tems oscillate at a frequency very close to the filter pole frequency. All the
studied biquads of the DTMF core (with the exception of the biquad called
Not #2) are examples where the predicted oscillations have a good agreement
with the simulation results, and the DF approach is valid. However, we could
confirm that, in cases such as Not #2 (see Chapter 2), we would need a
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readjustment mechanism. Then, the strategy would be to use the DF result as
a first seed for further simulations. But problems could appear when even the
simulations were not useful (see Chapter 4 where we find some oscillator
examples in which, under some conditions, their oscillation results predicted
by simulation deviate substantially from the oscillation results predicted by
the DF method). Then, a higher order DF analysis or a more accurate nonlin-
ear theory would be required to get close to the exact oscillation signal.

5.5 DTMF BIQUAD VALIDATION

The next step would be the
validation of the DF model when
the DTMF biquadratic cells are
used to build oscillators but from

a more practical viewpoint. For

this purpose, the setup block dia- i Ix(t)
gram of Fig. 5.8 has been —l
employed. Notice it differs 4-1—
slightly from that considered in :f\/\[\/\/

previous sections. However, this L

. . " 7 Non-Linear Block model
new scheme is more generic and

realistic because it takes into Figure 5.8: Realistic oscillator model
account important factors that have an impact on the idealized model pro-
posed in former sections. It considers the existence of a certain hysteresis in
the comparators used in the non-linear feedback element as well as possible
delays in the feedback loop. In fact, Fig. 5.8 takes into account the existing
zero crossing detectors in the DTMF core. As will be seen in next chapters,
these zero crossing detectors will be re-used to build the OBT oscillators.

When a comparator with hysteresis is considered the describing-function

is then: N(A) = (4 V/An)e_]e , where O = asin(A/A), representing A
the value of the hysteresis window. In this case, analytical equations involving
amplitude and frequency become more complex.

With the exception of the case where no delay is present in the structure
(case in which practical analytical oscillation equations are possible), for the
other cases, the resulting system of equations makes very difficult to cope
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with symbolic yet generic calculations to obtain the oscillation parameters.
For this reason, calculations for every biquad have been made numerically
using the Matlab software tool [126].

The validation has been performed in two steps. First of all, the resulting
oscillator has been computed using the linearized model of the non-linear
block but considering different extra delays (n=0, 1 and 2). Although it may
(to some extent) inaccurate, it can give us an approximated idea about the
behaviour of the corresponding oscillator. The results in Table 5.15 corre-
spond to the use of Vol as the feedback signal and in Table 5.16 to the Vo2
case.

extra delays (z™)
Biquad Fee('iback n=0 n=1 n=2
Sign
A fosc A fosc A fosc

+ 0.67 837 0.72 790 0.77 751
Not #1

+ 1.57 623 1.66 612 1.73 604
Not #2

- 0.33 27966 0.32 13838

+ 0.04 9477
LG #1

- 1.27 853 1.27 840 1.26 828

+ 0.03 7271 0.04 4681
LG #2

- 1.88 974 1.84 968 1.78 963

+ 1.42 267
LG #3

- 0.03 8212

+ 0.05 9528
HG #1

- 1.27 1360 1.27 1333 1.24 1307

+ 1.49 1187 1.54 1179 1.57 1172
HG #2

- 0.04 12994

+ 7.13 I 1727 7.37 I 1697 7.34 1669
HG #3

- 0.38 12290

\% I Hz \% | Hz \% Hz

Table 5.15: Amplitude and frequency parameters using linear analysis when Vol is used as the
feedback signal. An empty box indicates no oscillation. The amplitude (A) is relative to the out-
put levels (V) of the non-linear function in Fig. 5.8
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extra delays (z™)
. Feedback

Biquad Si n=0 n=1 n=2

ign

A fosc A fosc A fosc

+ 1.30 27967 1.30 14143
Not #1

- 1.28 2418 1.30 27967

+ 1.24 27967 1.24 14020
Not #2

- 1.33 1276 1.41 981

+ 0.12 1760 0.24 13732
LG #1

+ 0.33 27967 0.33 14006
LG #2

+ 0.08 9425
LG #3

- 4.16 614 4.16 608 4.14 602

+ 0.19 2217 0.37 1819
HG #1

+ 0.38 27967 0.38 14010
HG #2

- 0.58 1517 0.76 1351

+ 1.30 27967 1.31 14058
HG #3

- 2.63 2325 3.86 2016

\Y Hz A" Hz \% Hz

Table 5.16: Amplitude and frequency parameters using linear analysis when Vo2 is used as the
feedback signal. An empty box indicates no oscillation. The amplitude (A) is relative to the out-
put levels (V) of the non-linear function in Fig. 5.8

It is important to re-use the original circuitry in order to avoid extra area
and power overhead. That is, it would be convenient that all oscillators use the
same circuitry in the feedback path. Moreover, many of the possible oscilla-
tors require extra delays in the feedback path to work properly (see Table 5.15
and Table 5.16). However, it is not a problem because the SC comparators,
that are normally used to implement the zero crossing detectors, introduce it
(this is what really happens in the DTMF demonstrator). In addition, it was
shown in other sections that the OBT was successful if the oscillation fre-
quencies are close to the biquad pole frequencies. On the other hand, the final
configurations should facilitate their implementation in the whole system.
Consequently, those configurations that not fulfil the above points have been
discarded from a second validation step consisting on an accurate computation
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of the oscillation parameters. Therefore, non-linear analysis has been
performed using Matlab and the complete model of Fig. 5.8. The hysteresis
levels of the comparator have been also used to study the robustness of the
oscillators showing that, under realistic variations (deduced from Monte Carlo
analysis of a typical SC comparator), the oscillation parameters are very
stable (they are not significantly altered).

The results obtained for the selected configurations are in Table 5.17. In
this, the amplitude (A,q) corresponds to the peak-voltage of the output.

Concerning the frequency, it has been measured in two ways. The first one
has been computed using the FFT (Fast-Fourier-Transform) of the output,
while the second one corresponds to measurements over several periods of the
squared-wave output once it is settled (for this reason a maximum, mean and
minimum values appear). Both types of measurement make sense depending
on how the test is evaluated. Of course, if an external evaluation is performed,
both types of measurements can be performed. However, the second type
seems, although with some loss of information, more appropriate if internal
evaluation is performed (OBIST), because of the simplicity of the measure-
ments. Again, from a more realistic oscillator scheme (Fig. 5.8), it can be
inferred from the results using the linear and non-linear models, that a linear
model of the oscillator is not usually enough to calculate the oscillation
parameters.

extra delays
Output / — —

Biquad Fe;(ii;rz:ck rl 2

Aose | Fose fose (1/Tsquare-wave) Ao | oo fose (1T quareowave)

(Vp) (FFT) max mean min V) (FT) max mean min
Not #1 Vol /+ 0.85 710 717 717 717 0.85 710 699 699 699
Not #2 Vol /+ 1.83 601 589 589 589 1.83 574 583 583 583
LG #1 Vol /- 1.27 819 835 829 823 1.27 819 823 823 823
LG #2 Vol /- 1.83 956 981 966 964 1.81 956 964 964 964
LG #3 Vo2 /- 4.17 601 608 605 601 4.15 601 601 595 599
HG #1 Vol /- 1.27 1338 1332 1332 1332 1.25 1311 1300 1300 1300
HG #2 Vol / + 1.55 1174 1190 1165 1179 1.57 1174 1190 1172 1165
HG #3 Vo2/- 3.63 2048 2071 1998 2046 4.00 1939 1928 1928 1928

\% Hz \% Hz

Table 5.17: Amplitude and frequency parameters using non-linear analysis. The amplitude (A)
is relative to the output levels (V) of the non-linear function in Fig. 5.8
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5.1 Fault coverage considerations

Another issue to consider is the magnitude to measure during the test
phase. It has been discussed in Chapter 1 and extensively proven not only in
several references [25]-[41], but also in previous sections, that frequency-only
measurements may lead to insufficient fault coverage, thus rendering the OBT
technique of little use. As was said, the alternative is the combined measurement
of both frequency and amplitude. In our case, we have validated how OBT
can be applied to the DTMF cell by extensive fault simulation [36]. For the
most common faults affecting any of its biquads we can summarize the results
obtained, when frequency and amplitude of the first harmonic of the oscillations
have been measured. Results are displayed in Table 5.18, where the percentage of
faults detected is compared when only the frequency or amplitude are mea-
sured (first row in Table 5.18) and when both are simultaneously measured
(second row). In either case, a test accuracy of 5% was assumed. From this
table, it should be clear that considering two test measurements is advantageous.
Then, we can clearly postulate again that evaluating both, the frequency and
amplitude of oscillations, is required to obtain high fault coverage.

Detected Faults (%)

Biquad Not #1 Not#2 | LG #l LG#2 | LG#3 | HG#I HG#2 | HG#3

Only frequency or

amplitude measured 86.7 80.0 71.7 76.7 81.6 83.4 88.3 78.3

Both frequency and

. 98.3 100 98.3 100 100 100 100 98.3
amplitude measured

Table 5.18: Fault coverage for every biquad in the DTMF core

5.2 Test Quality

On the other hand, an estimation of the overall test quality of the OBT
technique is required to support its use. In terms of fault coverage, there is a
lack of a widely accepted criterion. Alternatively, we try to give an assess-
ment by injecting meaningful faults into every biquad and proving that all of
these faults can be detected. This assessment is complemented by showing
that a fault-free biquad is not graded as faulty by using this approach.
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As a first step, an acceptability region has to be defined as the place where
all the good circuits must lie. During the design process of an analog IC,
designers use the worst-case processing parameters given by the silicon
foundry, to find a robust solution which optimizes production yield. If a filter
is well-designed and correctly centered in the technology, the influence of
worst-case electrical parameters should be minimized. On the other hand,
capacitor mismatchings may have an important influence, too. In practice,
centering a design is equivalent to defining a region in the design space which
must be within the test acceptability region for the application specifications.
For OBT we need to map such an inner zone into our test space, where the
coordinates are deviations in the oscillation parameters with respect to the
nominal ones. To determine where the fault-free circuits are within this test space,
a Monte Carlo analysis was performed for each biquad considering process
parameter variations and a 0.2% mismatching in capacitor ratios. The black box in the
lower-left corner of the plot in Figure 5.9 shows a typical situation corre-
sponding to Not #1. Although Monte Carlo’s predictions are always
pessimistic, all fault-free circuits exhibit a rather small deviation in the oscilla-
tion parameters. The results for all of the biquads are shown in Table 5.19. It can be
seen from this Table that the frequency is very stable in all the cases, while the
amplitude varies slightly more. These values will be used as the minimum tol-
erance margin allowed to decide whether a fault may or may not be detected,
and to define an inner region within the acceptability region of the SUT.

NOT #1 | NOT#2 | LG#l LG #2 LG #3 HG #1 HG#2 | HG#3

AA 5 (%) 4.7 43 1.7 39 1.9 22 3.4 4.4

Afose (%) 2.5 0.7 0.8 0.8 0.9 1.1 0.9 1.2

Table 5.19: Maximum parameter deviations for a 0.2% of mismatch in capacitor ratios and
process parameter variations

For all of the biquads in the above Table, we undertook an exhaustive val-
idation of the OBT technique. We have considered small parametric changes
which can potentially take the circuit out of specs and cause great changes or
even change the circuit topologies. Fault simulations have been carried out
with SWITTEST [59] for every biquad. Shorts and opens for switches and
capacitors have been considered, as well as the influence of a permanent
stuck-at ON of switches. Additionally, deviations from 5% up to 50% in



Chapter 5: OBT Implementation in Discrete-Time Filters 225

capacitor values have also been injected. Therefore, both hard and soft faults

have been considered in order to cover a wide range of possibilities6. From
the simulator results, both the frequency and amplitude of the first harmonic
of the oscillations have been measured. All these results are shown in
Fig. 5.10 to Fig. 5.12 (and in Fig. 5.9 for the particular case, Not #1), where
only those faults causing a deviation below 50% have been displayed.

A more complex issue is dealing with the test yield. The “gray” zone
between the acceptability region and the space where the faulty circuits lie
corresponds to circuits slightly out of specs. The ability to adjust test measure-
ments will determine a higher or lower yield. But this is common to any test
procedure and must be handled similarly for both a conventional functional
test and for OBT. The tighter the measurements are, the higher is the risk, of
rejecting good circuits, and vice versa.

Going back to Figure 5.9, a tolerance window has been drawn in gray
illustrating where we place the acceptability region. The selected window
allows us to discriminate all faulty circuits in this example. Similar results are
shown for the remaining biquads in Fig. 5.10 to Fig. 5.13.

From all these Figures it should be clear that only one single frequency
measurement is not always enough for an exhaustive testing. It can be seen
from the figures that there are faults very close to the horizontal axis. They
correspond to faults causing an oscillation frequency nearly identical to that
of the fault-free biquad. In fact, only with an extremely precise measurement
can some faults be detected. In reality, many of the above-mentioned faults
could coincide with the deviations allowed by the Monte Carlo analysis.
Therefore, if only the oscillation frequency is estimated, we could not note the
differences between those faults and a tolerated deviation. Something similar
happens when only amplitudes are measured. However, when both frequency
and amplitude are considered, most of the injected faults are easily detected.
Even in the most pessimistic situation, an accuracy of around 5% in frequency
and 10% in amplitude is required for separating good from bad circuits. When
this is the case, the percentage of detected faults (from those injected by
simulation) ranges from 98.3 to 100% (depending on the biquad).

6 The fault models are described in Appendix 5.C.
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Figure 5.9: Typical amplitude vs frequency errors (%) in a biquad.
For clarity, only faults causing deviations below 50% are displayed
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5.6 SUMMARY

A generic biquadratic filter has been studied using both symbolic expres-
sions and specific numerical data as well. The goal was to comprehensively
evaluate the practical implementation of the OBT scheme proposed in Chap-
ter 3 for a particular filter structure. Many conclusions about the OBT
implementation in discrete-time filters, such as establishment of the test
parameters, validation of the oscillator model, fault coverage, test quality, etc.
have been extracted.

Summing up, the main conclusions are:

-the accuracy of the DF approach in this specific case is high. Only a few
examples deviate slightly from the predicted theoretical results. In these
cases, a more accurate solution can be extracted by using the DF result as first
seed in a re-iteration simulation process.

-the defect coverage is high using both, amplitude and frequency tests,
although is strongly dependent on measurement accuracy.

-the possibility of using other oscillation parameter (i.e. harmonic distor-
tion) as a third parameter to detect faults may be explored to improve the OBT
approach.



Chapter 6

Practical regards for OBT-OBIST implementation

Simulation Prototypes

THE OBT CONCEPT is an analog and mixed-signal testing tech-
nique which can be used in conventional off-line testing or as the core of the
so-called Oscillation-Based Built-In-Self-Test (OBIST). In high-complexity
analog and mixed-signal systems, where the accessibility to the system inter-
nal nodes is critically restricted and where there is a extremely limited number
of test pins, the best option is to implement OBT by means of a BIST
approach. Therefore, an OBIST solution would allow, not only to minimize
the number of external test pins, but also to enhance the observability of the
faults and the controllability of the test procedure.

The main goal of this Chapter is to describe an example of the integration
of the OBT-OBIST technique into the frame of analog-core-based design of
complex mixed-signal ICs. A Dual-Tone Multi-Frequency (DTMF) embed-
ded macrocell will be used to illustrate the potentiality of applying OBIST in
a complex industrial circuit. As a result, a complete and viable OBIST strat-
egy will be reported.

In particular, we pursue to find an OBIST test solution satisfying four
main objectives:

-an on-chip stimulus generation.

-an on-chip control of the test strategy (test circuitry, test configurations,
test facilities, etc.)

-a digitally encoded test outcome.

-an on-chip test interpretation.

Many BIST structures need specific test stimulus generators. But, the
implementation of an on-chip stimulus generator normally requires a note-
worthy investment in hardware. This point can become very critical in some
cases, not only because of the involved additional area which can increase sig-
nificantly the production cost, but also because of the risk of the circuit
performance degradation. Consequently, achieving a BIST technique which is
able to operate without a test stimulus generator is a very promising BIST
approach.

233
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Because of the own philosophy of the OBT concept, no test stimulus is
required. Since the SUT is generating its particular test stimuli, the only dif-
ference between OBT and OBIST lies in whether test interpretation is carried
out on or off-chip. In fact, OBT can handle BIST without the penalty of dedi-
cated, additional on-chip signal generation hardware.

The OBIST concept seems very appealing since it allows to make the test
of the SUT relatively independent of external tester. Test signals are internally
generated and test interpretation can be pre-processed using, for example, the
digital circuitry available on-chip. In fact, if we pursue a low-cost, yet effi-
cient OBIST strategy, the main requirement is to reuse the own circuitry of
the SUT and avoid adding extra test elements. But, obviously, it would
require an additional effort of design. Let us show herein that this effort is
minimal and perfectly redeemable.

Our purpose is to devise a structural test approach for a specific demon-
strator macrocell. Because of manipulative limitations or high simulation
times, handling a circuit structure of a complexity higher than second-order
can seem cumbersome. However, it will see herein that the OBIST concept
can be easily applied to certain kind of complex systems.

A practical way to carry out an effective implementation of the OBT-
OBIST will be discussed as well as guidelines for its application will be
given. The practical problems behind the use of such an approximation will be
discussed at length, and principles will be argued in terms of Design Deci-
sions which must be taken during the design process. After presenting a
practical OBIST solution, its compatibility with a functional test approach is
studied as well as a comparison is undertaken considering the common design
practice used for analog and mixed-signal circuits.

Although a particular demonstrator macrocell has been selected as the test
vehicle, the experience acquired with this system can be useful for many other
applications. Therefore, this Chapter must not be understood as a special case
or a specific example. Most of the inferred Design Decisions can be used in a
more general situation.
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6.1 DEMONSTRATOR MACROCELL

High Group Frequencies (Hz) ~ This chapter will deal with a

P 1209 1336 1477 1633 complex macrocell required
{‘_’ti{/ m 697| 1 2 3 Al in many communication
p 77

U .
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i 0 4 o | dialling information in tele-
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Figure 6.1: Telephone keyboard frequencies use for dedicated terminals.
This cell is gaining more and more importance in the world of telecommuni-
cations since it is required in paging systems, repeaters, mobile radio, credit
card systems, remote control, personal computers, telephone answering
machines, etc. This circuit can be found either as a stand-alone, mass-pro-
duced chip or as a core to be embedded in a complex SOC. Then, the test
support around this cell must be flexible enough to allow the user to select a
test strategy as a function of his needs, instead of forcing the use of a fixed test
methodology.

DTMF receivers convert 16 different types of DTMF signals into 4-bit
binary serial data. Its input is an audio signal composed by the superimposi-
tion of two tones which are selected by line-and-column addressing of a
keyboard (Fig. 6.1). The output of the receiver is a digital code carrying infor-
mation on the present signals at the input.
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processed by a bandsplit fil- K-
ter which separates the high
and low frequencies of the
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. . Figure 6.2: Band splitting in a DTMF receiver
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DTMF tone (it verifies both the frequency and duration of the received tones
before passing the resulting 4-bit code to the output bus). The criteria to be
followed by the decoder should be neither too relaxed (to avoid the recogni-
tion of no-DTMF signals as DTMF ones) nor very strong (to cope with
received tone imperfections and noise). So the detection algorithm becomes a
trade-off between:

- Tolerance for the accepted tones, and

- Immunity to tones simulated by speech (talk-off).

In general the DTMF receiver consists of an analog processing part (a two-
channel filter bank), followed by a digital decoding mechanism. Fig. 6.3
illustrates the entire DTMF receiver block diagram which has been used as
the circuit demonstrator.

Analog Processing Part Digital Processing Part TOE
5 5
Low-Groy, = k]
Input P g <
Bugor Fiter [P0 S 3 Qo
< o
VIN ]_’b_' Dial-Tone Zero-Crossing § ig % Q1
C | | [ Filter Detectors § é
100nF B L ] @2
High-Group = [
Fiter P g 3 Q3
= O P
Q .
Tri-State
A + > N Z\ vx Buffers
g[as ” Oscillator Steering EST
TEST[l] freut r & Clock circuit Logic sSTD
5o OSCt 0sCc2 ﬁ E
PD VDD VSS
3.58MHz

Figure 6.3: Block diagram and I/O pins of the
originally conceived DTMF receiver

In the analog part, the square-wave versions of the dialing tones are
obtained and, in the digital part, such waveforms are decoded. For the sake of
completeness, the two off-chip components, a quartz crystal resonator and a
decoupling capacitor are also shown in Fig. 6.3. The I/O pins and their names

are displayed as welll. As can be observed, the full DTMF receiver integrates
both the bandsplit filters and the decoder function into a single 14-pin pack-
age. However, the system only requires 13 pins. But since we are forced to

1 The role of the I/0 pins will be explained in next sections



Chapter 6. Practical Regards for OBT-OBIST Implementation 237

use a 14-pins package, the goal is to employ the free-pin (called TEST in Fig.
6.3) for the application of the OBIST technique and/or other test facilities.

Finally, a more detailed block diagram corresponding exclusively to the
analog processing part is depicted in Fig. 6.4 where two filter paths can be
distinguished, the so-called low-group and high-group to discriminate the low
and the high band frequencies, respectively. Notice, moreover, that both filter
paths are preceded by a built-in dial tone rejection circuit (Dialing Filter)
which is provided to eliminate the need for pre-filtering. Each filter bank is
formed by a cascade of several second-order functions where many typical
transfer function types are employed (LP, BP, HP, LP-notch and HP-notch to
be precise).

Two zero-crossing detectors make the interface to the digital part, which
detects the presence of correct dialling tones and validates a tone accomplish-
ing with the time requirements. This digital part performs a time evaluation of
the upcoming signals and uses digital counting techniques to detect and
decode all the 16 DTMF tone pairs into a 4-bit code. The structure of the
decoder makes this very adequate for implementing a digital BIST as well as
for interpreting the test outcome from the analog subcircuit.

In what follows, only the analog subsystem will be considered, since the
digital part is designed and tested using more conventional techniques. The
implementation of every block for this analog subsystem is briefly described
to understand the consequent modifications that must be include for the
implementation of the OBIST technique.

zero-crossing

Low-Band Fitter detectors
. LP LPNoeh | ol BP |
Input Buffer Dialing Filter ] (LG #1) (LG #2) (LG#3) v x
| HP-Noteh | [HP-Noteh | |* === 77 -7t squared-shaped
P (Not #1) NotE) uared-shap
_______________ : LP LP-Notch BP . ©
P e #) [P He#2) [P HG#3) |

High-Band Filter

Figure 6.4: Block diagram of the band
splitting filter of the DTMF detector
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a) Input Buffer:

Normal Input Buffer The first block in the system

Input R . . .
External (VN . of Fig. 6.4 is an input buffer.
Input_ o This circuit is employed for
/< --- decoupling the DC levels of
E the external input from the

xternal Internal

Capacitor put —internal levels. Fig. 6.5 shows
Figure 6.5: Input buffer schematic its structure. It is no more than

a conventional inverting amplifier that, together with the external decoupling
capacitor, forms a HP first-order section.

b) Band Split Filters:

The bandsplit filters are composed by two paths of cascaded second order
sections (biquads that we will call, from this point forward, Not #1, Not #2,
LG #1, LG #2, LG #3, HG #1, HG #2 and HG #3, see Fig. 6.4). Both paths
share the dialing notch filter (4th-order system) while the band-splitting is
performed by two 6th-order BP filters with passbands adjusted accordingly to
the low and high group of frequencies. Each 6th-order BP filter consists of
three different biquads. Therefore, although each filter path is a 10th-order
system, eight internal subsystems (biquads) can be perfectly distinguished.

Obviously, the analog filters are one of the key point in the DTMF design.
Consequently, several design considerations need to be discussed in order to
achieve a good DTMF receiver performance. But here, however, the points
that arouse the interest are not those regarding the DTMF normal design. On
the contrary, we are exclusively interested in studying those aspects regarding
just the OBIST implementation. Therefore, only those issues related to the
OBIST realization will be considered in this Chapter.

Every second-order section has been carried out using the generic
switched-capacitor (SC) biquad shown in Fig. 6.6. This structure, which has
been largely considered in previous chapters, was chosen to cope with the
accuracy, low power, small area, etc., requirements of the DTMF core.
Accordingly, every DTMF filter stage has been customized to operate as
required by adequately sizing the capacitors from the main biquadratic
structure.
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Figure 6.7: Transfer functions

Clock phases ®, and ®p in Fig. 6.6

are interchanged for sharing-load
considerations between preceding and
succeeding stages. It introduces addi-
tional delays between stages which,
although are not important in the nor-
mal operation mode of the DTMF,
can be a decisive factor in the OBIST
mode. The impact of the possible
existence of additional delays was
previously studied in Chapter 5.

Fig. 6.7 shows the transfer functions
obtained with SWITCAP [74] simula-
tions at the output of each filter path.
The ripple in the passband is 0.3dB

for the low-group and 0.5dB for the high-group, and the minimum stop-band
attenuation is approximately 39dB.
On the other hand, Table 6.1 summarizes the main data for each filter

section.
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(1;;1(:3; Notch Low_Group High Group
Section NOT #1 NOT #2 | LG#l1 LG #2 LG #3 HG #1 HG #2 HG #3
e | wor [ vor [P [wor | Pl o W
CroTAL 80.5 68.5 59.8 41.1 38.2 44.7 61.7 19.4
CSPREAD 25.5 28.0 333 229 15.5 25.5 41.0 5.9
N° CAP 7 7 6 7 6 6 7 6
CrotaL 4139
CsprEAD 41.0
N° CAP 52

Table 6.1: Filter design summary. Values are referred to unit capacitors
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Figure 6.8: Zero-Crossing Detector Block threshold, larger the sensitiv-
ity). But a trade-off is required to avoid interferences of unwanted signals. For
these reasons, it has been designed as a gain amplifier followed by a latched
comparator with hysteresis. Fig. 6.8 shows the block diagram of such a zero-
crossing detector implementation.

6.2 APPLYING THE OBT-OBIST METHODOLOGY TO
THE DTMF MACROCELL

Let us focus first on how to interpret the OBT-OBIST principles for being
effective in the described DTMF cell. In fact, as was discussed above, in order
to increase the efficiency of the OBT method and to implement a practical
BIST solution for this mixed-signal system, the testability must be early con-
sidered during the design process and never completely isolated from it. That
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is the reason why different design decisions will be taken in parallel with the
development of the new chip design, presenting, thus, the modifications
needed for incorporating the different parts of OBIST structure to the original
DTMF design.

Our OBT proposal relies on converting the DTMF (or part of it) in an
oscillator by adding a non-linear feedback path and modifying the circuit
(adding or removing some passive components) [36]. Then, the system splits
operation into two modes:

-operational, in which the system connects to its regular input, and

-test, in which a closed non-linear feedback loop encircles the DTMF and
the regular input is disconnected.

Removing components can render them untestable, leading to the follow-
ing rule:

Design Decision #1

DD#1- Apply OBT without removing components from the normal signal path

A first approach to test the DTMF cell could be converting the complete
SUT into an oscillator. In this case the SUT results in a 10-th order transfer
function, because this is the order of each filter path. However, as was in
detail explained in preceding chapters, the analytical design of a high-order
oscillator is quite complex and must be dismissed. For this reason, breaking
up the whole filter into its component biquads and applying the OBT-OBIST
concept to every second-order structure (biquad) seems more reasonable from
the viewpoint of both, analytical calculations and simulations;

Design Decision #2

DD#2- Applying OBT-OBIST requires splitting the filter into individual
component biquads

Keeping in mind DD#I and DD#2, two complementary problems must be
considered. One is related to the biquad level, it is, how to make any biquad to
oscillate independently of its transfer function and (if possible) using a feed-
back element which can be shared by other biquads. This point must be solved
making use of the results postulated in previous chapters but now regarding
the specific demonstrator features. A second problem concerns the filter level,
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specifically the difficulty of combining the biquad-level test in order to verify
the whole filter.

In order to develop an economic and efficient OBT-OBIST technique,
applicable to a complex system under test, it must be pursued to re-use the
original existing hardware, not only to avoid extra area and power overhead,
but also because this would be a means to re-check more than once the cor-
rectness of the circuitry. Then, re-employing the present circuitry and
avoiding to add extra components must be one of the main objectives. As will
be seen, it is (relatively) simple in cases like the DTMF demonstrator or £A
modulators, where the main required additional circuitry for applying the
OBIST procedure is available within the system.

6.2.1 Biquad-Level Test

As was seen through the analytical results obtained in Chapter 3, band-
pass transfer functions are easily converted into oscillators just adding some
non-linear feedback mechanism. But when this is not the case, it is still feasi-
ble to force oscillations without altering the filter transfer function if the
biquad has (at least) two opamps. In particular, for the structure shown in Fig.

6.6 it is possible to implement a given function taking V,, or V , as the cor-

responding output. Then, either the normal output or the secondary output
(taken at an “internal” node) can be used to force oscillations (see [36]).

a) Non-Linear Block:

One of the essential requirements to convert a biquad into a robust oscilla-
tor is to choose the most suitable non-linear feedback loop. In the case of the
biquads associated with the DTMF demonstrator, it was seen that an adequate
nonlinear block can be formally described by a 1-bit ADC followed by a 1-bit
DAC and realized by an analog comparator. Such as was described in Chapter
3, an important fact derived from this oscillator strategy is that the amplitude
of oscillations can be controlled by the reference voltage of the 1-bit DAC.
Therefore, opamps can be maintained in the linear range avoiding saturation.
A transfer function gain larger than unity is required not only to adjust the
oscillation amplitude, but also, to accomplish the demanded gain in the feed-
back loop to successfully carry the oscillation strategy out. Therefore, if a 1-
bit DAC is used, the amplitude value can be chosen to achieve the best testing
conditions in the demonstrator filter. Apart from that, the DF approach for this
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non-linear block allows to give in many cases a good approximation for the
analytical description (see previous chapters).

Therefore, a third design rule for applying the OBT to the demonstrator
can be proposed:

Design Decision #3

DD#3- Use to force oscillations a non-linear feedback block formed by cascading
a 1-bit ADC and 1-bit DAC

However, the main pursued goal is to fully exploit all the resources avail-
able on a first version of the DTMF demonstrator without including the OBT
technique. Consequently, observing the existent circuitry into the previous
DTMF design it can be re-used the zero-crossing detector as the 1-bit ADC
and only the 1-bit DAC must be incorporated. So, the proposed non-linear
feedback contains two stages as shown in Fig. 6.9. One is the zero-crossing
detector (a gain stage followed by a voltage comparator with hysteresis regu-
lated by the voltage reference A) already present in the DTMF and the other
one is an extra block named voltage limiter acting as an 1-bit DAC and

restricting the highest and the lowest values of the square wave to |V, {.

This value may be adequately fixed for every biquad and plays the same role

than the saturation level V., of the non-linearity considered in Chapter 3.

Now, a non-linearity with hysteresis is being considered and, therefore,
the resulting equations for the oscillation conditions and the oscillation
parameters must be modified. But, as was shown in Chapter 5, in this case the
obtained results slightly differ from those oscillation results predicted in
Chapter 3.

e comparator
stage Dy voltage limiter=1-bit DAC
t . D(y) _ x(t
y( )_> =T 10"A »wEH— h(t) = OV PV et —>( )
0

zero crossing detector=1-bit ADC

Figure 6.9: Modified Non-linear block
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b) Voltage Limiter:

The levels of the square-wave signals must be regulated to appropriate val-
ues not only to provide the satisfactory OBT feedback values but also to
maintain the amplitude of the oscillations into the linear operating ranges of
the opamps. It has been performed with the circuit shown in Fig. 6.10. This
circuit is a modified voltage amplifier with offset and gain compensation. @

and @, represent the two non-overlapped phases of the filter operation. The
positive input of the opamp is switched to V. or to ground during @,
(depending on the signal ®(y) in Fig. 6.10)% in order to generate +V,, . or
—V,.s- In this way, the generated squared signal (called Vsq in Fig. 6.10) is
limited to £V, as needed?. Notice that this is made by using only one volt-

age reference, V.

3%11;0—{ 20
s

D1&D(y)

Cq
o
@1&6()/) (O ‘CDZ
%747 I

Figure 6.10: Voltage Limiter schematic

Vsq

6.2.2 System-Level Test

After finding a unified way to force any particular biquad to oscillate, it
has to be examined how to give an efficient support to the OBT-OBIST

Signal @(y) is the output of the zero crossing detector which is valid during ®; and maintained until
the end of @,.
Depending on the required feedback sign (positive or negative) in the OBT strategy, the control switches

of the voltage limiter are commanded by ®(y) or D(y).
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technique in a filter formed by a cascade of biquadratic filters. Obviously, a
direct way to use OBT on such a cascaded filter, involves “disconnecting”,
during the test mode, each biquadratic section from the filter signal path and
“connecting” it to the non-linear feedback loop.

Two possibilities can be planned for accomplishing these modifications.
One is to simultaneously convert all the biquadratic filters to oscillators as is
shown in Fig. 6.11-(a) (a parallel test). This strategy is based on closing a
feedback loop around each biquad after isolating that biquad from the rest of
the system. Therefore, a non-linear block per biquad would be required, sim-
plifying the routing of comparison signals but increasing the active area. A
simultaneous evaluation can be performed, in this case, reducing the test time
to the maximum settling time of the oscillators plus the evaluation time
required. In spite of the fact that the number of I/O pins are normally very
reduced, we can overcome this problem by adding all the outputs to obtain a
multitone signal (Vmt as is illustrated in Fig. 6.11-(a)).

On the other hand, a second option consists on a multiplexed sequential
testing. That is, converting all the biquadratic filters sequentially, one after the
other (a sequential test), to an oscillator as displayed in Fig. 6.11-b. In this
approach, only one non-linear block is required. Besides the time needed for
connecting and disconnecting the feedback network, the total test time is
higher than the sum of the settling time of all oscillators plus the minimum
time to evaluate each of the oscillation values. Hence, this second method
requires less extra hardware, but spends a longer test time.

From these Figures (Fig. 6.11-(a,b)), it should be clear that there is a
remaining difficulty due to the fact that now several switches are needed to
connect and disconnect all local feedback loops. An effective design for such
switches is a critical point because their insertion could degrade the overall
circuit performance. Therefore, minimizing this problem must be a key objec-
tive. Later on, we will discuss in detail how to overcome this difficulty by
using the so-called Switchable Operational Amplifier (swopamp) concept.
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Figure 6.11: Two possibilities to convert the SUT in an oscillator

To come up with a new Design Decision, it must be considered the poten-
tial performance degradation as well as the area/power penalty of each
approach. In the case of the DTMF demonstrator, there is the possibility of re-
using the existing zero-crossing detectors for testing and employing a global
feedback loop as will be proved later. Then:

Design Decision #4

DD#4- Select a sequential test structure in order to reduce the number of additional
test components to a minimum

The next step is to find a way to implement the sequential test concept
with minimal cost (in terms of area, power, performance, etc). Fortunately, it
can be applied an idea reported a few years ago and successfully brought into
play for DfT [37], [82]-[83]. Fig. 6.12 shows what has been called a swopamp
(from Switchable Opamp) which is an operational amplifier with a config-
urable internal architecture.
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Figure 6.12: SWOPAMP Concept

This device can operate under two different modes, controlled by a logic

signal named @ in Fig. 6.12. In its regular mode (when ®, = 0), the swo-

pamp performs as a conventional opamp, amplifying the difference between
its regular inputs (Fig. 6.12-b). In the test mode, a third signal, Vr, is enabled

by the control signal, @, to be, in fact, passed to the swopamp output (Fig.

6.12-(c)). Therefore, in the test mode, the swopamp operation is similar to that
a unity-gain buffer.

Exploiting the swopamp functionality, we can devise an improved system-
level test scheme which allows us to implement more efficiently the OBT-
OBIST strategy. The new approach is to substitute one or more regular
opamps in every subsystem by swopamps. Two options are possible:

-the first alternative consists in a multiplexed sequential testing where
every stage is sequentially transformed to an oscillator by a proper control of
swopamps and multiplexing switches. The main idea is using swopamps to
consecutively close the oscillation feedback loops (Fig. 6.13) but employing
switches to select every time the specific SUT.

-in the second choice, swopamps are used to bypass signals from their
inputs (see Fig. 6.14). There is just a single feedback loop, but only one stage
is configured as an oscillator at once. Sequential evaluation is then needed.
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Figure 6.13: Multiplexed sequential testing using switches

Therefore, the second opamp of every biquad (the opamp providing the
output to the next stage) can be substituted by one of these swopamp struc-
tures just to provide the stage with a mechanism to select either its regular
input or a signal generated somewhere in the circuit. The specific biquad
under test can be isolated and independently reconfigured as a closed-loop
system regardless of the remainder biquads. The input of every swopamp
which does not form part of the biquad under test, can be connected to its pre-
vious stage. The goal is that each test oscillation signal covers all the filter
paths in such a way that this not be affected by the circuitry which does not
belong to its associated biquad under test (see Fig. 6.14 for more details). A
similar structure was reported by some of the authors in [37]. With this last
alternative the number of extra switches is reduced.

Design Decision #5

DD#5- Employ swopamps to selectively close the feedback loop

Figure 6.14 shows a filter structure after carrying out these changes. This
filter now has a single feedback loop, but only one stage (the j-th stage) can
act as an oscillator every time. The other stages play the role of buffers either
to bypass the feedback signal to the j-th stage input or finally to bypass the
oscillator output to the filter primary output. Notice that these changes also
simplifies the sequential structure in Fig. 6.14 because the filter no longer
requires multiplexing at the feedback block’s input.
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Figure 6.14: Block diagram to convert a SUT in an
oscillator using swopamps
The control is very simple, when the j-th stage is under test, all the swo-
pamps, excluding the swopamp belonging to this particular stage, must have
their control signals high. Therefore, the test control signals are always a bit-
stream of 1s and exclusively 0 in the stage under test position, j. The method
is as follows: just a logic 1 is shifted along a shift-register at a pace depending
on the oscillation frequencies (depending on the specific biquad under test).
An important advantage of this procedure displayed in Fig. 6.14 is that all
the added components are inherently tested during this process. When the j-th
biquadratic filter is under test, the test loop contains all added switches within
an opamp, so the test checks them too. Hence, along the entire test process,
the test checks all the elements. Therefore, our next design rule recommends
this single-loop configuration:

Design Decision #6

DD#6- Transform the OBT sequential structure into a single-loop, complex oscillator

Observing the structure in Fig. 6.14, one immediately wonders which is
the impact of the swopamp chain: the inserted offset. But, this problem will
not be significant because, as will be seen, the swopamp design may include a
mechanism for offset compensation. Moreover, the hysteresis of the zero
crossing detectors will help to eliminate the potential offset in the filter paths
of the DTMF core.
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6.2.3 A modified System Architecture

After stating all of the preceding Design Decisions (DDs), we are in a
position to incorporate them into the core demonstrator. Architectural support
is needed for connecting/disconnecting the feedback paths, connecting/dis-
connecting the remaining circuit (complete filter) and even testing the extra
components. Since there are two paths in this system, the different DDs can
be performed through a double oscillation loop as shown in Fig. 6.15. As can
be seen from this Figure, our first proposal is using the zero-crossing detectors
available in each filter path connected to a single 1-bit D/A (a voltage limiter
as shown in Fig. 6.9). Thus, testing a specific biquad is achieved by closing
the adequate loop. That is, testing the biquads in the upper (alternatively, in
the lower) path is carried out by closing the upper (respectively, the lower)
loop. On the other hand, testing any of two biquads shared by both paths can
be achieved by closing any of the two loops. It is worth noting that this imple-
mentation only requires the addition of a DAC in the common part formed by
the feedback loop, plus a simple extra control circuitry. Therefore, the silicon
area overhead is quite small. In terms of the design of those elements present
in both the “conventional” and the OBT design, they are required to have a
similar performance, which means that the design effort is not increased too
much. Therefore:

Design Decision #7

DD#7- Reduce the OBT cost by wisely reusing every element of the system
structure in the oscillation feedback path

To understand the proposed OBT-DTMF structure, Fig. 6.15-(a) illustrates
how the system must be reconfigured to test, for instance, the low-pass notch
placed in the lower path. The corresponding loop is closed using the associ-
ated comparator and the biquad under test (BUT) is left unaltered. All the
remaining stages (in the loop) emulate a buffer through their swopamps, in
accordance with Fig. 6.14. Therefore, the overall closed-loop system (empha-
sized by thicker lines in the figure) corresponds to the oscillator formed
around this biquad. Blocks located in the upper path are depicted by a dashed
line because in this case they are not part of the oscillation loop. However, as
will be explained next, these upper blocks could be used to read the test signal
from the BUT while its test is being performed.
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Figure 6.15: Modified DTMF receiver showing the test
of a biquad (shaded box)

Similarly, Fig. 6.15-b shows how an upper biquad (to be precise, the low-
pass notch placed in the upper path) can be transformed in an oscillator by
closing the corresponding upper loop. The same procedure is carried out: the
remaining upper stages act as buffers while such a biquad is being tested.

There are practical limitations to this approach. First of all, every buffer in
the chain (during test modes) introduces a delay at the test frequency. Never-
theless, for frequencies much lower than the unity-gain frequency, this delay
is quite small and the accumulated loop delay can be neglected. If this is not
the case, it can be estimated and taken into account for analytical calculations.
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A second problem comes from the accuracy of the DF method and the sig-
nal purity at any point of the global feedback loop. This problem leads to a
distorted oscillator signal, but is not very significant in most cases. As far as
the DTMF demonstrator is concerned, there is enough filtering, but it does not
actually matter since we can model (with a reasonable approximation) the dis-
torted signal at any biquad output.

Another issue is that we have to guarantee that the amplitude of the oscil-
lations must not saturate none of the amplifiers in the filter chain. It is

controlled by the value of the voltage level in the DAC (the value of V, of in

the voltage limiter).

There is another important feature to consider. We must guarantee that
every component, either in the filter or in the feedback network, is tested. It
should be clear from Fig. 6.15 and the test operation described above that
every biquad is tested once along the test procedure. Additionally, all the swo-
pamps are tested in both modes (normal and test). In fact, the test path is
tested n-1 times (being n the number of biquads), which can help in diagnosis,
reducing the impact of the extra components on system testability. Only the
input terminal and its connection to the signal path must be additionally
checked out.

On the other hand, to finish this Section, another point to be contemplated
is how to give support to frequency and amplitude measurements. Reading an
analog signal is feasible, although the measurement accuracy is limited by
noise and even it may impose extra design requirements which are not desir-
able if we wish to avoid an additional design effort. Unfortunately, the
frequency information is easily coded into digital information, but this is not
the case for the oscillation amplitude. However, the only way to obtain a good
fault coverage is to be able to measure with precision both parameters (fre-
quency and amplitude), which means translating all the signal information
into digital data.

A convenient way to achieve such a coding is to use an oversampling
ADC [29], [85], [87]-[90]. For our purposes, a medium-resolution converter
should be enough. Using blocks similar to those necessary for the nonlinear
feedback previously discussed, we can synthesize a X—d modulator capable of
providing a 1-bit digital version of the test output. Looking at the complete
circuit in Fig. 6.4, we have two comparators available. Although this is not
explicitly shown in Fig. 6.4, an extra gain stage is connected between every
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filter channel and the corresponding comparator. Thus, we can again use a
swop-amp instead of a regular buffer. In one of its operational modes such a
swopamp will act as a buffer, and in the other mode it is used to implement a
discrete-time integrator. A local feedback loop shall be closed in this latter
mode to provide a simple XA modulator which generates a digital bitstream,
which can be either read by an external tester or fed into a digital interpreta-
tion circuit. These integrators can be switched at a higher frequency to comply
with the oversampling requirements, although in [87]-[90] it was shown that
in most practical situations using the same sampling rate as in the filter can be
enough. In particular, Fig. 6.16 illustrates the case when one of the biquads in
the lower filter bank is under test (specifically, the same biquad as in Fig.
6.15-(a)). We then use one of the comparators to close the oscillation feed-
back loop and the other one to implement the testing ADC. An equivalent
connection is used when the biquads in the upper filter bank are tested. In
other words, we arrive to a new design rule.

Design Decision #8

DD#8- Around every comparator we can build up a low-accuracy A modulator

for reading-out the test oscillatory outputs

| Digital Control I

O L\ / / Digital Test Output
Input Buffer /
P BUFFERH BUT HBUFFERHBUFFERI;I%

1-BITDIA
—

Figure 6.16: Example: Generating a bit-stream test output

6.2.4 An alternative implementation

In the previous Section, we have proposed a systematic way (a general
idea) to devise an OBIST-DTMF system-level scheme. But, this particular
solution described in Fig. 6.15 does not take fully advantage of the peculiari-
ties existing in the DTMF structure. Therefore, let us design a more detailed
system-level scheme for the DTMF system. Three aims are mainly pursued:
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-to adapt the biquad-level OBT requirements with the possible OBIST sys-
tem-level approaches.

-to make reasonably simple the programming of the test mode and the
extra routing.

-to reduce the test time as much as possible.

As was described, a peculiarity of the FL-biquad is that it has two avail-
able outputs (see Fig. 6.6) to apply the OBT strategy. In the case of the DTMF
filter, choosing the adequate output in the biquads allows to achieve sustained
oscillations. Therefore, the selection shown in Table 6.2 has been taken
because it gives the simplest and more straightforward OBIST configuration
at system-level (see Chapter 5 for details).

NOT #1 | NOT #2 LG #1 LG#2 LG#3 HG #1 HG #2 HG #3

Vol OK OK OK OK OK OK

Voo OK OK

Table 6.2: Selected outputs for each biquad for the system level configuration in Fig. 6.17

An alternative to the generic structure in Fig. 6.15 is the system-level
architecture shown in Fig. 6.17 where, for the sake of simplicity, only the test
inputs of the swopamps are displayed. In this scheme, the opamps of each
biquad as well as the opamps of the input buffer have been substituted by their
corresponding swopamps. Therefore, the test inputs of those swopamps which

provide the oscillator output (V,; except for LG#3 and HG#3) are used to

propagate the oscillator outputs to the inputs of the comparators. The remain-
der swopamps have their test inputs connected to the output of the
comparators and are used to close the feedback paths. Notice as well that the
zero crossing detectors (comparators) existing in the normal design are being
used to implement the non-linear function, thus, avoiding extra hardware. The
way in which the whole filter is tested is described as follows.

As can be deduced from Fig. 6.17, the OBIST-DTMF system-level
scheme has been divided in two parts. The first one is composed by Not #1
and all the Low-Band biquads. The second part is thus composed by the rest
of the components, that is, Not #2 and all the High-Band biquads. Because
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two comparators are available, it is possible to test two biquads

simultaneously4.

Input Buffer (Not#1) ., | - _|-|----- Lo -]-- - - - I I

P> DI bl

(LG #3) —> Low-Band Biquads

(HG'#3) —> High-Band Biquads

oo

(Not#2) - -F--[-[---- N R

Figure 6.17: System level configuration to implement
the OBT strategy in the DTMF filter

Fig. 6.18(a-d) depicts the four possible test configurations of the system
(four test groups with two OBT signals each one), where the emphasized lines
and shadowed blocks designate the activated circuitry. Every test configura-
tion can be selected by properly programming the digital signals that control
the swopamps. The oscillator corresponding to each biquad under test is built
by driving the comparator by the correspondent output of the biquad under
oscillation (propagating its output through the swopamps in the consecutive
sections) and feeding back, through the second swopamp in the previous
biquad. Moreover, notice that the start-up strategy introduced in previous
chapters is also implemented; when all the swopamps are set in the buffer
mode at the same time (activation of the start-up), all the biquads under test
are initialized by the actual output of the correspondent comparator.

In short, we can observe from Fig. 6.18 and Fig. 6.19 that the test opera-
tion sequence is as follows (one biquad of the upper loop is simultaneously
tested together one biquad of the lower loop):

Group #1.- Testing Not #2 and LG #3.

Group #2.- Testing LG #2 and HG #1.

Group #3.- Testing LG #1 and HG #2.

Group #4.- Testing Not #1 and HG #3.

4 Now, each comparator in Fig. 6.17 incorporates a voltage limiter (an 1-bit DAC) as shown in Fig. 6.9.
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Figure 6.18: Configurations to test the whole DTMF Filter
using the OBT technique
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We can also observe from Fig. 6.18(a-d) that the number of swopamps
used for each test group is always five except for the group #3 whose structure
allows to save one swopamp. But, on the other hand, the signal paths involved
in each testing configuration are very diverse because they depend on the
location of the specific biquads under test inside the filter banks. However,
this testing organization was carefully designed in such a way that optimizes
the test time and the required extra hardware for programming all the testing

groups.
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Figure 6.19: Output sequence in the test mode

6.2.5 Cells adaptation for OBIST implementation

According to the test-planning shown in the previous figure, it is necessary
to redesign some circuitry in order to adapt the design to the OBIST facility.
Such cells needing a modification are the Input Buffer and the biquad cells to
implement the multiplexing and the start-up strategies by the use of the swo-
pamp. In addition, the zero-crossing detector outputs can not be used directly
as the feedback signal, and it is necessary to adjust the voltage levels of the
square-wave signal in order to avoid the saturation of the filters.

-New Input Buffer:
Normal The modified version of the
I('(Z/L\'/t) Input Buffer Input Buffer is shown in

e Fig. 6.20. As can be seen,
External R . . .
Input 1 R the main modifications are

o Fo—sA\ the substitution of the nor-
VTesT, 'L mal opamp by a swopamp
External @I intemal and the introduction of a

Capacitor C Input . .
Test . couple of switches in the

Input Digital .

Control normal signal path. The
Figure 6.20: Modified Input Buffer extra input (Vigsy) Ppro-

vides the required feedback
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path while the switches have been introduced to isolate the output of the
buffer from the input (V). Notice that both switches are placed in small sig-

nal paths (virtual ground), thus avoiding the alteration in the behaviour during
normal operation because of the non-linear characteristics of the MOS
transistors.

-New Biquad cells:

Fig. 6.21 shows the modified biquad schematic accordingly to the require-
ments of the OBT application. The change is that the normal opamps have
been substituted by swopamps. Moreover, as will be seen in next sections, a
couple of switches, controlled by the same digital signals than the swopamps,
have to be added to the biquad structure for the star-up process of the

oscillators.
Cr
o o =
Digital
Control: ¢
Normal
Input c
[
v B 1

Test

Input-1 Input-2

swopamps

Figure 6.21: Modified biquad structure schematic

-Opamp and Swopamp Designs:

The design of the opamps / swopamps is an important question to be con-
sidered into the system design and, for this reason, this point must be carefully
handled. First of all, a low voltage supply- as imposed by the DTMF original
design- requires the use of simple structures that must avoid cascoded transis-
tors. On the other hand, they are responsible of major current consumption in
the chip, so a careful design is needed to cope with the low power requirement
of the application. Because the number of opamps is also high, the area
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occupied by them is of vital importance. However, the low-offset require-
ments force the use of not too-small transistor sizes. So, the design of the
opamps must be a trade-off between the factors above mentioned.

Depending on the use of the opamps the requirements also change. For
example, it must be taken into account if they are loaded with capacitors or/
and resistors. In this sense, two types of opamp have been designed, one for
the SC part (capacitance loads) and other for the input buffer and the bias
circuitry (resistance and capacitance loads).

A simple two-stage opamp with RC compensation has been used. Fig.
6.22-(a) shows its schematic and Fig. 6.23-(a) its layout. For opamps with
resistive loads, a buffering output stage was added. This same opamp has
been used in all the SC part except in the gain x10 amplifier, where the output
stage was adjusted to cope with the large gain bandwidth required. Table in
Fig. 6.22 gives the main sizes of the design parameters for a 0.6um CMOS
technology and V,,, = =V = 2.5V.

A specific design alternative of swopamp has been chosen (other types of
swopamp implementations can be found in literature [82]-[83]). It is based on
the partial duplication of the input stage (the input differential pair) and the
incorporation of some internal NMOS switches to disconnect such a duplicate
block from the active load when it is necessary. Its schematic is in Fig. 6.22-b
(and its layout in Fig. 6.23-b). The size of transistors implementing the

additional switches (M) is 10um/0.8um. The operation can be described as

follows. When the swopamp control signal, @, is 0, the switches connect a

normal differential block to the rest of the circuit, and the system works in
opamp mode. On other hand, if the control signal, ®.,is 1, the duplicate
differential block is then connected to the device while the normal block is

isolated from the rest of circuitry. In this case, the swopamp operates in its
buffer mode.



260 OBT in Mixed-Signal Circuits

M1,2 = (140.0/5.0) | M3,4= (30.0/10.0)
M5= (80.0/4.0) M6= (276/1.2)
Vdd
(a) T M7= (82.8/1.2) M8= (6.0/2.2)
ol N ﬂJMS | | M9= (18.0/2.2) M10= (40.0/4.0)
10] | | | M7
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V-
My Mz v+ \
Mg E— o
Cc
G) Ibias {
My ——
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ST,

O
<

L
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Figure 6.22: Opamp (a) and swopamp(b) schematics
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Fig. 6.23 shows both
layouts, the opamp
design is on the right

and the swopamp circuit
on the left. This Figure
is useful to compute the
additional area percent-
age. Both layouts have
the same width but the
swopamp is a little
longer. So, the swop-

amp area is a 26%
larger than the opamp
area. In fact, this means
in the DTMF layout an
increase of 26% in the

@ (6)
Figure 6.23: Swopamp (a) and opamp (b) layouts

global area appointed in
the opamp array. This
extra area comes from the auxiliary switches and from the necessary duplicate
differential stage to design the required swopamps.

On the other hand, Fig. 6.24-(a) shows the frequency responses obtained
with SPECTRE simulations for the opamp and the swopamp. And Fig. 6.24-b
the frequency response of the extracted swopamp. Responses for the opamp

mode with a load capacitor C; = 25pF and a load resistor R, = 1MQ. The
opamp mode operation for the swopamp is very close to the reference in both

cases. As can be observed, phase deviations occur at very high frequencies
but are negligible.
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(b)
Figure 6.24: Magnitude and phase responses from a) both schematics
in Fig. 6.22 (opamp and swopamp) and b) schematic and post-layout
simulations (swopamp)

The main parameters extracted from these curves are summarized in
Table 6.3.

OPAMP SWOPAMP POST-LAYOUT
SCHEMATIC  SCHEMATIC SWOPAMP
Low-Frequency Gain (dB) 86.72 86.66 86.7
Unity- Gain Bandwidth (MHz) 1.201 1.441 1.375
Phase Margin (Deg) 56.65 54.9 58.39

Table 6.3: Comparison between opamp and swopamp main features



Chapter 6. Practical Regards for OBT-OBIST Implementation 263

Other parameters should be considered to measure the impact of the modi-

fications on the original circuit. Among them, offset, settling time (7 ), slew

rate (SR), output swing (OS), and common-mode input range (CMR) are
the most important. The prototypes have been simulated. In general, degrada-
tion is not important and even imperceptible in the values of all parameters.
We can conclude that the extra circuitry has not appreciable impact in the
device performance because it has not special sensitivity to the switches.

In summary, the main characteristics of the designed opamp-swopamp
extracted from electrical simulations at nominal (27 °C) and extreme (-25°C,
85°C) temperatures as well as worst case models and voltage supplies (2.7V
to 5.0V) are in Table 6.4. Although omitted in Fig. 6.3 for clarity, the bias cir-
cuitry (that will be explained later) was included in the simulations. In such
conditions, it is clear that the opamp is well centered in the technology and
fulfills all the requirements for the application.

OPAMP SWOPAMP
Low-Frequency Gain 86.7 dB
Unity- Gain Bandwidth 1.1 MHz
Phase Margin 56 Deg
Offset Voltage 3.8 wr
Current 42 pA
+ 0.62 0.61
Slew Rate Vs
- 0.69 0.70
+ 456 482
Settling Time ns
- 545 551
Area 118x 219 118 x 289 wm?

Table 6.4: Worst case simulation results of the opamp and swopamp using
SPECTRE. CL=25pF. Vsupply=2.7V

-Switches, resistors and capacitors:

Concerning the switches for the SC part, they have been built using com-
plementary transistors of equal size (2.0um/0.6pum) to cancel the first-order
effect of clock feedthrough [121].
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The technology used provides high-linear double-poly capacitors with

O.86fF/;,Lm2 approximately. The unit capacitor for the SC part is ~0.45pF,
which is also composed by three pieces of ~0.15pF each.

Resistors are made by using polysilicon with 24Q) per square. Both, capac-
itors and poly-resistors are placed over n-well to reduce the noise due to the
substrate coupling.

-Bias Circuitry:

The bias cir-
cuitry provides the

bias current for the
BANDGAP
opamps (or swo-

pamps in our :l
- Vgg ~ 1.20V 1K
case), the refer BG R~120KW
ence voltage for ¢ Vss
the zero crossing

detectors and the Figure 6.25: Schematic for the generation of bias current

analog ground voltage. The bias current of the opamps is of crucial impor-
tance if, as desired in the specifications, the circuit must operate properly in
the range from 2.7V to 5.0V of supply voltages but maintaining a low power
consumption. Consequently, it is necessary to consider that the extreme sim-
plicity of the opamps used in the chip helps to cope with these requirements.
The main properties and performance of the opamps can be preserved if a
constant current bias is maintained in all the range of supply voltages. Thus,
the current bias should be as independent as possible from the supply volt-
ages. A circuit coping with this requirement is shown in Fig. 6.25. It uses a
temperature compensated bandgap circuit that provides a constant voltage
(Vgg~ 1.2V) with respect to Vgg in the range of interest of supply voltages
(2.7V to 5V). Transistor Mg is used to feedback the output of the opamp to its

inverting output. Because of the virtual ground property of the opamp, the
voltage at node @ tends to be Vg as well. Thus, current I; is fixed by the

relation 7, = v,,/Rr . Using current mirrors as illustrated in the figure, a scaled
current bias of value 1,5 = K(vy;/R) 1s generated. As said before, the actual

circuitry shown in Fig. 6.25 was included in the simulations of opamps.
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A low-impedance analog

- AGND ground and the voltage refer-
Ve + 'A:abg ences for the zero-crossing
Ri Ground - qetectors and the voltage lim-
i . )
(from a bandgap) VREF1 iters have been obtained from
R the bandgap output voltage as
2 —CO VRrer2 £ap oulp £

shown in Fig. 6.26.

[ O Vrerx
Vss

Figure 6.26: Voltage Reference Schematic

6.2.6 Start-up problem

To study the behaviour of a non-linear oscillator circuit, the start-up issue
has to be consider. It is particularly critical in an oscillator built for testing
purposes because of initialization requirements. And it can be a significant
problem if it is not given special attention to.

The maximum time the oscillator requires to reach stable operation within
specifications has to be taken into account. This time includes the transition
time until the system start (start-up time) as well as the time until the system
settles at the frequency and amplitude which satisfies the specifications (set-

tling time). Both times depend on the initial conditions of the system.

> as much as

It is required to reduce both the start-up and the settling times
possible for test purposes since this extra time influences on the overall test
time. Obviously, the OBT strategy has to be applied once the oscillation is
perfectly established. In fact, one of the most important factors that make a
test approach feasible is the time duration. Therefore, it is necessary to devise
an start-up technique in order to guarantee a fast and reliable start-up (to safe
time not only at practical level but also at simulation level). In practice, it will
be shown below that using swopamp facilitates forcing a start-up condition
and shortening the oscillation buildup time under any situation.

As was explained above, not all biquadratic sections of the DTMF core
reconfigured as oscillators fulfil the mentioned initial conditions [86], [88].
Although, in principle, it is expected that this type of oscillators will be

3 From this point forward, we will refer both parameters (start-up and settling times) as start-up time.
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activated with the only action of the system turn-on, it has been observed by
simulation that under certain conditions of charge feedthrough, dc offset, ini-
tial voltages, or power supply turn-on sequencing, oscillations may not start
and/or the transient time to settle them is too large. This has been verified via
analysis of the transient response of these oscillators. For this reason, it is
required to devise a strategy that guarantees, under any circumstance, the
start-up of the oscillations in a time comparatively short with respect the
complete test time.

Obviously, the start-up problem (safe and short transient-time) can be
solved if the oscillator operation is forced to start from a proper initial state.
The start-up objective is to place the oscillatory system state in the vicinity of
the steady-state. In fact, the closer the initial state to a steady-state point, the
shorter the transient time. In fact, we have to store previously the suitable ini-
tial values in any passive-memory element inside the oscillator.

Accordingly, we have exploited the functionality of the swopamp to
implement a start-up approach in our demonstrator. Fig. 6.27 illustrates how
the start-up strategy is performed using the swopamp concept. As can be seen,
every DTMF biquad is modified in such a way that an additional switch (st-up

Digital te
Control: ®c iw',’ ch Cg P8 @

Input-1

Figure 6.27: Modified biquad structure schematic
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switches) and a swopamp are used instead of the normal opamp. Both, the
switch and the swopamp are controlled by the same digital signal (® ) which
must be synchronized with the biquad master clock (®, 5 ).

The start-up approach works as shown in Fig. 6.28. In the test mode before

the biquad is reconfigured as an oscillator, the logic signal @ is settled to

HIGH during a couple of periods. The swopamp is then working in its buffer
mode and the bottom plate of the capacitor is grounded (Fig. 6.28-b). At the

same time, a voltage V. . is applied to the buffer through the additional input

init

V. It means that the output V,_,, is then set to V;, ;, and, consequently,

ut init
capacitor C is charged to that value. This configuration forces that V, , fol-
lows approximately the equation:
- L
Vo) = V[m.t(t)[l —e GBJ +V,(0)e O ©.1)

where GB is the amplifier gain bandwidth and V,,,(0) represents the

value of V,,, just when the start-up process begins. Since the GB of the

opamps is normally much larger than the circuit maximum operating fre-
quency, the speed of the charging process is very high. In fact, it can be

considered around five times the time constant (~5/GB).
Once the capacitor has been charged, the oscillator mode is settled while

the swopamp is returned to its normal mode (®,. = LOW) (see Fig. 6.28-

(¢)). In this configuration, the st-up switches are open. Therefore, considering
the charge conservation law, and taking into account that the bottom plate of
capacitor C switches between ground and virtual ground, the integrator starts

to operate with an output voltage V,,, = V,,.,. That means that the oscillator

init*

Thus, selecting properly V;

starts then with an initial state given by V. inits

init*
the oscillator can run correctly.

Although the swopamp offset voltage and other factors can cause an error
in the stored charge, this error is usually very small and normally can be

discarded.



268 OBT in Mixed-Signal Circuits

D¢ botvt\om top

v
v* V, e

a_ (Vout)init=V_init
c)
start-up oscillations
| ————— - — >

Figure 6.28: Illustration of the swopamp use for the start-up of the
oscillators. a) New configuration of the integrator. b) Equivalent
situation during charging mode. c¢) Equivalent situation when the
oscillator is turned on. d) Involved waveforms
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Let wus finally

analyse by simula- Vosc_free
Vosc_startup

tion the influence of
the initial condi-
tions on the 2t
oscillatory result as
well as how the

Volts

efficiency of our
presented  start-up
mechanism. In Fig.
6.29 the oscilla-
tions obtained with 0

D¢ (scaled)

0 2 4 6 8 10
time (ms)

up strategy (Wave- Figure 6.29: Generated waves without (Vosc free)

form in red line) and with (Vosc_startup) the proposed start-up strategy

the proposed start-

and the oscillations

achieved freely (waveform in gray line) are displayed for one of the biquad.
Observe that the free oscillations need a response time before they can be
finally considered well-established.

Fig. 6.29 demonstrates the usefulness of the proposed start-up approach.
Signal Vosc_free is obtained by forcing the biquad to oscillate just closing the
feedback loop. Notice that the steady-state is not reached until the fourth
period. Obviously, the value of this transient time depends on the particular
biquad taken into account. But, it is vital to save this transient time because,
otherwise, these four periods must be added to the overall test time. On the
other hand, signal Vosc_startup is obtained when the start-up strategy is acti-
vated (with a delay after closing the feedback loop) as indicated by the high
value of the signal control ®@. In this case, the steady-state is accomplished

immediately.

6.2.7 The DTMF integrated prototype

After going into details describing all the modifications needed in the
DTMF analog part to apply satisfactorily OBT-OBIST approach, let us sum-
marize all those required changes in Table 6.5. This table allows us to get an
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idea of how simple and feasible is to transform the DTMF core in order to
successfully implement our proposed OBIST strategy.

REGULAR DTMF
CHANGES DEVICE OBIST DTMF DEVICE
Opamps Swopamps
Modified Input Buffer
Input Buffer
Re-designed (with swopamp and some extra switches)
Blocks Modified Bias Circuitry
Bias Circuitry
(voltage references)
Digital Circuitry Modified Digital Circuitry
Control OBIST Circuitry
Added
------------------ Voltage Limiter
Blocks -
Some Extra Switches

Table 6.5: Main involved changes

Observe that no essential changes in the DTMF structure are demanded, a
lot of the original system circuitry is reused for the test facilities, nothing is
removed from the primary prototype and the added new blocks are relatively
simple and their incorporation does not mean a substantial increase of area.

Two IC prototypes have been designed (see Fig. 6.30): one of them imple-
menting the DTMF and the second one incorporating the OBIST technique.

Both circuits were built within a research proj ect.b

Observe from Fig. 6.30 that the analog part of the normal prototype occu-
pies an area which is only a ~7% smaller than the prototype incorporating the
OBIST test strategy. Additional area is mainly that one shown within the dot-
ted regions.

Notice as well that the so-called digital part of the normal device is
slightly smaller than the digital part corresponding to device with the OBIST
scheme owing to the fact that the OBIST strategy demands some extra control
digital circuitry.

6 ASTERIS: Advanced Solutions in Test Engineering Research for next generation Integrated Systems.
ESPRIT-CEE, N° 26354-1293/AA. Centro Nacional Microelectronica (IMSE), Lancaster University,
Austria Mikro System (AMS), Dolphin Integration (Francia). 1998-2000.
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Moreover, both systems have the same number of pins (a single 14-pin
package). Pins called PD, TEST and TOE in the first device must not be con-
fused with the pins PD, TEST and TOE in the second device since these three
pins have less functions for the first case. Consequently, despite of the fact
that apparently both systems seem similar, it is not completely exact because
the second device contains, however, more operation modes (it will be studied
in detail in the next section). In the last circuit (Fig. 6.30-b) we have managed
to integrate the OBIST test strategy without increasing the number of pins by
means of an appropriate modification of the peripheral circuitry as well as the
digital part, and optimizing, likewise, the use of the pins called PD, TEST and
TOE (read next sections for details).

Q3 Q, STD 0SC10SC2

| Swopamp Array ':I |

Swopamp Array |

Q3 Q, STD  0SC10SC2

Vop Vinput ,
g ool
Opamp Array |
3
o Capacitor Array
S DIGITAL !
‘&3 Capacitor Array PART I
Opamp Array |
I D D [
|

IR

L. e [ ke _

imiters

Voltage L

(a) Normal DTMF IC (b) DTMF IC incorporating OBIST

Figure 6.30: DTMF Prototypes
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6.3 ON-CHIP EVALUATION OF THE OBT OUTPUT

SIGNALS
x(n) As was seen, the test output
OBT SCHEME waveform coming from OBT
Noevenharmonics!  (see Fig. 6.31) is an oscillatory
BUT > signal (more or less pure)
qE’:) Square Signal which is characterized by its
_D_D_L frequency, amplitude, DC level,
Toe — «— distortion, etc., parameters that

No even harmonics !

are directly related to the sys-
Figure 6.31: OBT output signal features tem performance. Therefore, it
is an essential issue to devise
any kind of mechanism to extract the value of the oscillation parameters.

The most simple and straightforward method to estimate the frequency of
an OBT output signal is to convert the set of uniformly spaced points
(obtained either by simulation or experimentally) from the time domain to the
frequency domain. This is, analysing the achieved output oscillation data by
employing the Fast Fourier Transform (or FFT). However, implementing an
on-chip circuit to evaluate the FFT involves an important additional area.

The final goal of this section will be to propose a general on-chip evalua-
tion scheme. However, regardless of this optimum test interpretation
mechanism we have studied by simulation other possible alternatives to mea-
sure and diagnose the oscillation parameters. Among them, let us present
those two which best exemplify our work: to determine the oscillation fre-
quency we have used a mere counter and to measure the oscillation amplitude
we have used a peak detector.

6.3.1 Using a Frequency Measurement Counter

Let us study an easy way to determine the oscillation frequency. The
employed method is well-known and relatively straightforward. Notice from
Fig. 6.32 that after applying OBT technique we have available the square ver-

sion of the oscillations (output of the zero-crossing detector, called g(n)).
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x(n)OBT SCHEME System ¢
Clock clock
'1_1.] E. .] Trigger

< BUT J Frequency

h am A Counter
e —» I End of an
Tosc l evaluation

period

Frequency Count (N)

Tok Tosc System clock
e — - oy - a(n)
= I
05 HfJK H‘HH ff \‘ﬁ
0____;_'9_____%’3______e_‘_____Hl"_\______ | Tosc < _Tosc
o4 4l r‘f H\E f HH' },/ TCIOCk floo TC|°Ck ceil
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Figure 6.32: Frequency Evaluation Algorithm
Obviously, this square version of the oscillation signal has the same fre-
quency than the sine signal. Thus, it is used to trigger a counter that will
calculate the number of system clock periods within a signal period. Since the
clock frequency is known, the signal frequency will be immediately deduced.
In fact, the counter output will fluctuate between the two integers limiting the
exact value of the oversampling ratio. This means, the state of the counter at

the end of each period of g(n) can be formally expressed as

T T
{ﬂ—l—‘ﬁcount—freq = NS{———Q-S—-C—+ IJ (6.2)
Tclock clock

being T . the oscillation period and T,,,., the sampling period.

Notice that the smaller the clock period compared with the square-wave
period, the higher the precision of the frequency count. That is, the accuracy is

determined by the oversampling ratio (7,,./T,;,.x)- For example, for an

oversampling ratio as low as 30, the accuracy of the frequency measurement
is around 3%, approximately. This precision is large enough for many
applications, like the DTMF example where a typical accuracy can be 10%
[120]-[121].
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6.3.2 Using a Peak Detector to determine the amplitude

Basically, we employ the circuit shown in Fig. 6.33 whose result is dis-
played in Fig. 6.34. This device detects and stores the minimum signal value
of its input. To carry it out successfully the detection of the oscillation ampli-
tude must be made when we are sure that the oscillations are well-established.
An important detail that has to be taken into account in the circuit of Fig. 6.33

is that the reset must be performed during the phase called here ‘phl .

ph1 o
_ cI)reset
Vreset —C Q 10}
b a reset
: Edge-triggerd
777~ Comparator [? flip-ﬁgp
Vopeak JOFS

Vosc Oreset Pppe c Q Pohe
O_._/j_/ D Q

Edge-triggerd ®q

q)reset CO;; Comparator D flip-flop

Figure 6.33: Peak Detector

A f\ \ M|

N ——

Innl

TRVINIEVIR
VT

0.021 0.022 0.023 0.024 0.025
time (s)

voltage (volts)
=}
N
I

Figure 6.34: Example of Peak Detection Strategy
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6.3.3 Using a low-accuracy 2A modulator

Let us underline some features about the OBT output signals. Fig. 6.35
shows again how the BUT is reconfigured to oscillate by means of the OBT
strategy. As was explained, this is obtained by closing a non-linear feedback
loop (e.i. a comparator). The effect of this non-linear feedback loop is to con-
vert its input wave-form into an amplitude limited square-wave which is then
filtered by the BUT. Let us suppose then that a periodic n-symmetric solution
is obtained. That is, the output signals contain only odd harmonics (6.3).
Moreover, only the fundamental harmonic will be important and the rest of
them will remain small (being even negligible). This fact will ease further
developments

x(n) :B+ZAksin(kwoschs+Gk)zB+A0scsin(oo nT, +0) (63)

osc

km/d
On the other clock
hand, the result of l
introducing this dis- x() Y
crete oscillation, BUT ZA Modulator [———»
: q(n) LT
x(n),ina ZAmodu- [ d(n)

lator will be a digital Tox

version of it, called in

Fig. 635 d(n), OBT Scheme
which consists in a

) Figure 6.35: Using a XA modulator
modulated pulse train

containing all the waveform information. Therefore, d(n) is a digitally-coded

version of x(n) . Depending on the modulator features (its order, the sampling
ratio, the quatization levels, etc) such a digital version will have a higher or
lower accuracy.

Let us describe how we can take advantage of the scheme in Fig. 6.35. For
the amplitude evaluation, the idea is basically employing a synchronous inte-
gration: the rising edge of the square wave, g(n), starts the integration (acting
as the integrator trigger). On the other hand, the falling edge inverts the polar-
ity of the integration, which is equivalent to integrate a rectified wave-form
(see Fig. 6.36). At the end of the evaluation period, the output of the integrator
is proportional to the amplitude and the oversampling ratio. Again, as in the
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case of the frequency counter described above, the precision of the measure-
ments depends on the oversampling ratio. As we can see in Fig. 6.36 and
taking into account (6.3) at the end of an evaluation period we would have

V] N
2
Amplitude Count= Zx(n)— Z x(n) = EAN (6.4)
1 N, +1

fclock

being N = , the oversampling ratio.

osc

n=1 n=N; n=N
[

OBT SCHEME J St AV D K
x(n) X(n) 7
- N Triggﬂ T

Amplitude Count
< BUT |« "N Integrator |——»
q(n)

(N mi
i T o

Figure 6.36: Amplitude Evaluation Algorithm

Likewise, for the evaluation of the DC-level we could again use synchro-
nous integration (see Fig. 6.37). Again, the square wave is used to trigger the
integrator, and at the end of an evaluation period, the integrator output will be
the product between the DC-level and the oversampling ratio

vy

DC Count= Z)c(n) ~ BN (6.5)

1

fclock

being again N = , the oversampling ratio.

osc
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OBT SCHEME W am e
x(n)
<t S i
Trigger I DC Count
< BUT Integrator |—»

Tosc

A

Figure 6.37: DC Evaluation Algorithm

But we have to disregard an analog integrator because we are looking for a
digital technique. The proposal would be to employ the OBT scheme fol-
lowed by a first-order sigma delta modulator (just as in Fig. 6.35) and then to
directly integrate the output of such a modulator.

Fig. 6.38 shows the simple model of a first order ZA modulator. The basic
behavioural equation can be deduced. The input waveform has been normal-
ized to the full-scale of the feedback 1-bit DAC of the A modulator. The
term e(n) models the nonlinear error introduced by the comparator and the
DAC (the quantization error) as a noise source. Therefore, the modulator out-
put would be a bit-stream of positive and negative ones given by the
following expression

d(n) = x(n)+e(n)—e(n-1) (6.6)

We can calculate an approximation to the integral by summing up N sam-
ples of the modulator output. This is done by counting the number of 1°s and -
I’s

N N
Zd(n) = Zx(n) +e(N)-e(0) 6.7)
0

0
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Integrator
e(n)
x(n) 7z d(n)
1 —»
1-2z Output bit-stream
Normalized input | — mmm”m_’mﬂ,uﬂﬂmmw

AVAVAVAY, -
A<x(n)<1 High=1

Figure 6.38: First-order YA Model

Notice that if there is not overflow in the integrator, the quantization error
will remain between 1 and —1 (e(N) € [-1, 1]).

Observe, then, that the amplitude evaluation scheme in Fig. 6.36 is con-
ceptually equivalent to the scheme of Fig. 6.39, where the integrator fed by
the OBT signal is replaced by a counter fed by the XA modulator bit-stream
(d(n)). Notice, moreover, that the ZA bit-stream is inverted on the negative
lobe of the OBT output signal. At the end of an evaluation period the result is
the same as (6.4) but with the addition of the quantization noise term

vy N
Amplitude Count = Zd(n) - Z d(n)~ T%Af}IOCk +4 (6.8)
osc
1 N +1

where now A is the waveform amplitude with respect to the modulator
full-scale.

d(”)lmﬂﬂlﬂfﬂlﬂ_ﬂlUHLHﬂﬂﬂlmJﬂﬂl[

xX(n .
\f.\/i ) Tngg{ Amplitude Count
*A Modulator BUT Counter |—»
ML 4

Figure 6.39: Amplitude Evaluation

Likewise, the DC-level evaluation scheme is converted to the scheme in
Fig. 6.40 where the integrator driven by the OBT signal is replaced by a
counter driven by the £A modulator bit-stream. The result is the same as (6.8)
but with the addition of the quantization noise term whose worst case is
expressed as
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DC Count= Zd(n) ~BN+2 (6.9)

1
where B is the DC-level value, with respect to the modulator full-scale,
and N is the oversampling ratio as defined above. It can be seen that the noise
term is higher than in the case of the amplitude because, when the count is

inverted during half of the period, the modulator error can not be cancelled
out.

d(n)lmmnmnﬂjummﬂﬂﬂfmnﬂf

\/\');in) Trigg{ DC Count
AT 4

q(n)
o IR

: Tosc

Figure 6.40: DC Evaluation

In summary, we propose the on-chip evaluation mechanism displayed in
Fig. 6.41. This scheme makes use of a first-order sigma-delta modulator and
some simple counters. The first-order sigma-delta modulator encodes the
oscillation waveform into a digital bitstream, and the non-linear feedback
loop around the BUT provides a digital signal giving its sign. The oscillation
parameters (both the oscillation frequency and the oscillation amplitude) are
entirely characterized in the digital domain by the bitstream and the square
wave, with the corresponding benefits of robustness, ease of implementation
and technology scaling.

The so-called Digital Evaluation Unit (Fig. 6.41) consists of three
counters which provide a coded digital version of the frequency, the ampli-
tude and the DC level of the oscillatory signal, respectively. The counters
work as was explained above. The DC-level and the amplitude counters prin-
ciple of operation is based on a synchronous integration. The square wave

q(n) (which gives the sign of the oscillation waveform) is used to trigger the

counters which perform the sum (integration) of the sigma-delta bitstream. A
“1” increments the counter and a “0” decrements the counter.
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Figure 6.41: Simple on-chip evaluation of test signals

In short, the counter outputs are thus directly proportional to the oscilla-
tion parameters with a precision that is mainly driven by the oversampling
ratio. It has been shown in [90] that it is possible to improve the precision by a
factor of two at a very low cost by averaging out the bitstream values around
the zero crossing instants defined by ¢(n). Then, the interpretation unit
would only consist of a digital comparison with a nominal window stored on-
chip. More details about this strategy are shown in [85], [87]-[90].

Finally, we can go a step farther when taking into account some features of
our demonstrator. In particular, we have studied a two-channel filter and we
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have described (Fig. 6.18) an OBIST strategy which simultaneously provides
two sine-waves (one for each channel). Then, to jointly codify both test sig-
nals we propose, for instance, adding a Premodulation Block which allows us
to obtain only a digital test output signal (see Fig. 6.42). Such a premodulation
block involves the use of separate product modulators that are supplied with
one of the waveforms coming from the OBIST scheme and the other one but
differing in phase by —90 degrees (using a Hilbert transformer which causes a

phase shift of —90 degrees). The resulting signal consists of the sum of these

two product modulator outputs as shown in Fig. 6.42. In short, it is the scheme
of a quadrature multiplexing.

Digital
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Figure 6.42: Premodulation Block to jointly codify the two test
output signal

The digital signal resulting of the premodulation block will be then
inserted in the sigma-delta modulator and likewise, its output will be inserted
in the proposed Digital Evaluation Unit. Moreover, a square-version of the
signal in the output of the premodulation block must be available. Such a
square-version will be the reference signal in the counters of the Digital Eval-
uation Unit (Fig. 6.43).
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Figure 6.43: Proposed on-chip evaluation scheme
A problem derived from this scheme (Fig. 6.43) is that the Decision Mech-
anism will detect if there is a deviation in the output signal of the
premodulation block, but it will be impossible to determine where the fault is.
Therefore, with this evaluation scheme we lost the observability of the fault
locations.

6.4 ELECTRICAL SIMULATION RESULTS IN THE
OBIST MODE

In previous sections the design of different parts of our OBIST structure
was described. The required modifications for the main blocks of the macro-
cell were also reported. Now, simulation results utilizing the prototype
implemented using a CMOS 0.6 um technology are also presented.

The entire analog circuitry has been used to perform electrical simulations
using SPECTRE. Bearing in mind the simulations, the expected results for the
oscillation parameters are those given in Table 6.6 where we have compiled
all the data coming from different means of decision. For example, to deter-
mine the oscillation amplitude we have used the proposed peak detector.
However, to determine the frequency basically two ways have been used: 1)
FFT and 2) number of pulses (frequency counter).
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Therefore, the first row of Table 6.6 reports the feedback gain (that is, the
reference level of the voltage limiter, V,,,) required for each biquad reconfig-

ured as an oscillator. On the other hand, the second and the third rows collect
the amplitude results obtained with the peak detector for both available
biquad outputs. Finally, the remaining rows include many oscillation fre-
quency results obtained by different mathematical methods (different
windows have been used for evaluating the FFT).

Theoretical Results Not #1 Not#2 | LG#l LG #2 LG #3 HG #1 HG#2 | HG#3
Feedback Gain (V¢ ) 0.532 0.367 | -0355 | -0.246 | -0.109 | -0.519 | 0420 | -0.162
Aose_Vol peak detector | -0450 | -0.650 | -0.451 | -0451 | -0.450 | -0.650 | -0.650 | -0.734
Aose_Vo2_peak detector | -1.086 | -0.998 | -0.448 | -0.511 | -0450 | -0.649 | -0.775 | -0.650

fosc FFTI 699.1 586.7 822.5 | 966.9 5949 | 13007 | 1177.5 | 1928.6

FFT fosc FFT2 710.1 573.6 819.4 | 955.9 600.9 | 1311.0 | 1174.4 | 1939.1

n pulse 78.8 97.5 68.3 58.5 93.1 42.7 47.6 28.9
n pulse 80 95.3 68 57.813 94 43 475 29
Counter
fose 699.2 586.9 822.6 | 967.5 595.1 1300.8 | 1177.6 | 1928.8

Table 6.6: Simulation OBIST results (fosc in Hz and Aosc in V)

All the oscillations were defined in such a way that the amplitude values
of the OBT output signals (V , for all the biquad with the exception of HG

ol

#3) were very similar: either 0.45 V or 0.65 V (see Table 6.6).This is
achieved by adequately adjusting the reference levels. Obviously, this tries to
make the test interpretation process easier. On the other hand, we have to con-

sider the remaining output signals (V,, for all the biquad with the exception

of HG #3) as well. We have to guarantee that the amplitude of such signals are
below the saturation levels of the involved operational amplifiers in the
biquad structures.

All these theoretical results (Table 6.6) will be used in Chapter 7 to vali-
date the experimental results obtained by the IC prototype used as a circuit
demonstrator.
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6.5 DIGITAL PROCESSING PART OF THE DTMF

Although the digital algorithm is complex, the resulting circuitry is very
conventional. It means that any of the well-accepted DfT strategies developed
for digital circuits can be applied. However, they have not been considered in
this case. Only a very simple programming of the existing circuitry has been
introduced to cope with the frequency measurements of the oscillation waves.

6.5.1 Digital Detection algorithm

The detection algo-

» fntcheck1 . . .
= rithm is responsible

Inout — i valid fn f f t 1
o % — Enicheck:B AND —» or requen.cy (?er'
— ance specifications
é > f—grlicheckg concerning  maxi-

mum accepted
frequency offset and
minimum  rejected
frequency offset. Also, both the talk-off and noise immunity performance

Figure 6.44: Digital Detection Algorithm for a given
nominal frequency f,

depend on the implemented detection algorithm. It receives the low frequency
input and the high frequency input coming from the zero-crossing detectors,
and processes the two signals separately by means of two similar subsystems.
Each one determines whether one of the four DTMF frequencies is being
received and, if so, which one. Frequency discrimination is performed by dig-
ital counting techniques which calculate the number of cycles of a given
reference clock contained in a period of the input signal. A sophisticated
detection algorithm involving many periods of the input signal is actually
applied in order to tolerate frequency deviations required by DTMF specifica-
tion and frequency variations resulting from the presence of interference
frequencies and noise (jitter of the zero-crossing). A signal called EST is
active while a valid frequency is being detected. In order to maintain EST
high, the algorithm performs three different checks involving frequency mea-
surements over one period, over three periods and over nine periods as it is
sketched in Fig. 6.44. Algorithm design parameters checkl, check? and
check3 have been chosen in order to achieve a good talk-off and SNR perfor-
mance while satisfying frequency tolerance and timing specifications.
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6.5.2 Steering logic

On the other hand, the steering logic must satisfy the timing specifications
concerning minimum accepted tone length (fzzz), maximum rejected tone
length (tgg), pause time (¢;p) and tone interrupt (zp). It activates DST when
a valid tone pair has been present for a minimum amount of time and deacti-
vates this after this is absent for given time. That is, it controls that a) too short
(duration less than tzzz) DTMF signals are never accepted, b) enough long

(duration equal or greater than ¢3z~) DTMF signals are always detected, c) a
DTMF signal with a too short interruption (interruption smaller than #j)) are

never validated as two distinct signals, and d) two DTMF signals with an
enough long pause between them (interruption equal or greater than #;,) are

always accepted as two distinct signals. Steering logic measures the valid tone
pair duration and pause duration and compares then to parameters REC and
GTA respectively. These numbers are mainly constrained by the performance
of the analogue part.

The digital part has been synthesized from a VHDL description. The lay-
out has been generated using place and route automatic tools.

6.5.3 Simple Frequency Measurement Counter Block

Because there are many counters in the digital part whose mission is to
check the frequency of the present tones, it is easy to understand that such
counters can be re-used for the frequency measurements of the generated
oscillation waves during BIST modes. So, a minor change in the digital algo-
rithm have been introduced to adjust the counters during BIST modes in order
to provide an internal measurement of such a parameter.

The module responsible for the frequency measurements is represented in
Fig. 6.45. Basically, this system performs as a counter where one has stored
two count numbers for every test configuration (for every involved
frequency).
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Figure 6.45: Frequency Counter Block (reference clock, f,cx)

The count numbers are called N and N in Fig. 6.46 (with the j

cmin cmax
subscript if we are referring to the j-th group of oscillators). They correspond
to a minimum value and a maximum value, respectively, what shows the tol-
erance margin for every obtained frequency. This tolerance margin must be
determined by an exhaustive simulation (Monte Carlo analysis and fault sim-
ulations) and its fixing is very important for a correct fault detection.

Fig. 6.46 illustrates the counter operation. The idea was to design a mech-
anism which provides a go/no-go decision. Therefore, the counter measures
the number of clock frequencies existing in the square-version of an obtained

oscillation frequency. Such a number is called N in Fig. 6.46. If the cor-

count

responding N

count

belongs to the interval [N, N

cmax

], then, the output
N

signal of the counter circuit activates. Otherwise, if N emaxl >

count

¢ [N

cmin’®
the counter output stays low and we can state that the corresponding biquad-
under-test has failed. Fig. 6.46-(a) shows the case where all the biquads (of a
channel) pass the go/no-go test and Fig. 6.46-(b) displays the case where a
biquad does not go (to be precise a biquad from the Group #2). A significant
fact is that the implementation of this block was completely embedded in the
digital processing part without adding any extra area. Moreover, such a circuit
is very simple and its implementation does not mean a considerable design
effort.
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Figure 6.46: Frequency Counter Block Performance

6.6 DTMF/OBIST OPERATION MODES DESCRIPTION

Fig. 6.47 shows a simplified block diagram where the peripheral circuitry
and the control signals of the different DTMF/OBIST operating modes are
displayed. For the sake of clarity, these operating modes and their use are
summarized in Table 6.7 and Table 6.8 where we have highlighted the partic-
ular case of the OBIST Mode.

The existing control and I/O pins available in the DTMF chip (Fig. 6.47)
have been exploited to be able to set the different circuit operating modes.
Moreover, a simple multiplexing strategy of the analog and the digital output
signals has been applied to be able to read out the internal signals. Tri-state
buffers for the digital signals and analog muxs have been disposed to reach
this objective.
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The extra pin named TEST has been used to change the meaning of the
control signals PD and TOE to generate internally different control signals
(MUX, TOE1, TOE2, PD) to control five different operating modes: a Nor-
mal Mode, three functional test modes (modes called, in Table 6.8, Test
Analog Part, Test Digital Part-I and Test Digital Part-II) and an OBIST
Mode.

In summary, we have 4 configurations where the system performs in its
normal operation. They are: (000, 001, 010, 011). Notice, moreover, that the
analog part is only readable in the Test Analog Part mode (100). In this mode,
the filter outputs and the x10 gain stages as well as the comparators are exter-
nally monitored in parallel. It allows verifying all the analog part of the
system at the same time. On the other hand, in the called OBIST Mode (101),
we have access to the OBIST output signals as well as to the outputs of the
proposed frequency counter. Finally, the test of the digital part is divided in
two: first, an external test pattern is injected (mode 110) while the steering
logic is externally monitored and verified. Once the steering logic has been
activated, PD should change from 0 to 1 (mode 111) so the output of the
decoder as well as the reaction of the steering logic to the injected test pattern
is readable through Q0*-Q3*. Take into account that the change to the read
mode is understood for the digital circuitry as if the input signal ceases.

EXTERNAL
REAL OUTPUTS / INPUTS
SIGNALS
TEST | TOE | PD Qo* Q* | QF Q3* STD* | EST*
0 0 0 Qo Ql Q2 Q3 STD EST
0 0 1 QO Q1 Q2 Q3 STD EST
0 1 0 H H H H STD EST
0 1 1 H H H H STD EST
1 0 0 voflx10 vofl vofh vothx10 vocl voch
1 0 1 COUNT1 vofl vofth | COUNT2 vocl voch
1 1 0 vil H H vih STD EST
1 1 1 Q0 Q1 Q2 Q3 STD EST

Table 6.7: Operating modes summary (I)
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EXTERNAL
OPERATING MODES
SIGNALS
TEST | TOE | PD

0 0 0 Normal Mode. Power Down OFF

0 0 1 Normal Mode. Power Down ON

0 1 0 Normal Mode. Q0-4 in High Impedance Mode. Power Down OFF.

0 1 1 Normal Mode. Q0-4 in High Impedance Mode. Power Down ON.

| 0 0 Test Analog Part- Analog circuitry.

Outputs externally monitored as indicated through Q0*-Q3* and STD,EST.
OBIST Mode - Analog circuitry.

1 0 1 Outputs externally monitored as indicated through Q0*-Q3* and ST D,E.
Positive edges in PD are used to change the configuration (reset is obtained
whith TEST=0)

1 | 0 Test Digital Part-1. Signal injection through QO and Q3 . The steering logic
indicates the recognition and validation (or not) of the test patterns

1 | | Test Digital Part-II. The outputs of the decoder (Q0-Q3) and the steering
logic are all observable through Q0*-Q3* and STD, EST

Table 6.8: Operating modes summary (II)

Of course, pads corresponding to the digital outputs must be analog pads

(only with protection diodes) to allow observing the analog outputs and

injecting (bidirectionally) the test pattern in the test mode of the digital part.

More details about these operation modes as well as their experimental results

will be given in the next chapter. Now let us focus on the OBIST Mode.
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Figure 6.47: Peripheral circuitry and used control strategy

6.6.1 OBIST Mode description

As was said in the previous section, we can configure the DTMF system in
different operation modes. Among them, we can distinguish the OBIST Mode

where we have available the oscillation outputs (labelled V,; and V4 in

Table 6.7), their square versions (labelled V,; and V., in Table 6.7) and the

signals coming from the interpretation circuit called Frequency Measurement
Counter (labelled COUNTI and COUNT? in Table 6.7).
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In this operation mode the control signals TEST, TOE and PD must be 1, 0
and 1 respectively. In fact, the test procedure is as indicated in Table 6.9 and
Fig. 6.48. Notice that the configuration 0 0 0 is used once to start this mode.
Observe, moreover, that when the configuration 1 0 1 is used, only one test
group is activated. To change to another test group, the system has to move
the control signals to 0 1 0 as represented in Fig. 6.48. That means, in fact,
that the signal PD is used to change the involved test configuration whereas
the signal TEST is set to low to reset the OBIST mode.

OBIST Mode
Test
TEST TOE PD
Configuration
0 0 0
1 0 0
1 0 1 Group #1
1 0 0
1 0 1 Group #2
1 0 0
1 0 1 Group #3
1 0 0
1 0 1 Group #4

Table 6.9: OBIST Configuration

101 101 101 101
100 100 100 100 100

. Time of beginning
Total Test Time Time of change between OBIST groups

. Time of measuring

Figure 6.48: OBIST procedure Control.

We can, then, estimate the test time required to this proposed OBIST
approach. Table 6.10 shows the time necessary for measuring each group the
oscillations. We have computed two periods of the signal with minimal fre-
quency for every group (the number of necessary periods depends on the
required measurement accuracy, relative to the number of measured cycles).
The total test time equals the total time of measuring plus the time needed to
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start the OBIST mode and the time required to change the OBIST configura-
tions (this time is governed not only by the interval required to switch the
control signals but also by the space required to interrupt the innate evolution

of oscillations).
Group #1 Group #2 Group #3 Group #4 Total Time
~3.5ms ~2.5ms ~2.5ms ~2.9ms ~11.4ms

Table 6.10: Estimated measurement time

6.6.2 Test Strategy Comparison

To qualify the OBIST approach we need:

a) to compare it with the functional test strategies, and

b) to define a way to use both basic strategies (structural OBIST and func-
tional) in a cooperative way.

Our intention is to discuss how the designer community can take the best
of both for any particular case. To accomplish this task, we need to consider
the testing cost for each approach in terms of required resources and test
application time, as well as its suitability for BIST.

As a first consideration for comparison, we need to describe typical test
routines for the functional testing of a stand-alone DTMF chip. Besides a
complete set of measurements giving the transfer functions associated to the
twin filter channels, there is an extensive characterization test used in industry
[113], based on determining how the 16 tone combinations (high- and low-
band) can be separated by the circuit (Comprehensive Functional Test
described in Appendix 6.A). This is functionally sufficient, but the time
required to apply it renders this test prohibitive for mass-produced ICs (see
Appendix 6.A for details).

For production testing, a simpler alternative consists of detecting the sepa-
ration between a subset of these combinations. A possible subset can be tone
pairs in one of the diagonals in the keyboard, or even a two-tone signal
formed by the highest of the low-frequency group and the lowest of the high-
frequency group. Because of transient effects, a burst of periods is needed; the
burst time duration depends on the settling time of the filter.

As explained earlier, we have two alternatives- parallel and sequential- for
applying OBIST. One is to convert all biquads simultaneously into oscillators
(parallel test) and another is to convert them sequentially (one after the other).
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For the former we will need one comparator per biquad. On the other hand,
the latter approach (sequential test) only requires one comparator, with signif-
icant savings in area overhead. However, test time differs for both cases. In
the parallel case, all measurements are simultaneously carried out as opposed
to the sequential case where the total test time is the sum of the test time for
the eight biquads in the DTMF.

Oscillation start-up might be a problem if no special care is taken. We saw
in previous sections that, in practice, using swopamps it is simple to force a
start-up condition and to shorten the oscillation build-up time. In any case,
this extra time may have an influence on the overall test time. But again, in
the parallel method this time is equal to the larger start-up time of the eight
oscillators, whereas for the sequential method, the oscillation settling is the
sum of the start-up times of every oscillator. The difference between both
cases depends on the frequencies to be measured, the biquad structures, and
the required measurement accuracy (relative to the number of cycles to be
measured).

From the point of view of a practical implementation, it is worth consider-
ing the use of OBT in combination with a simplified functional counterpart.
We should make both options available, so that the designer can choose either
one of them (or a combination) depending on the particular application. The
main limitations from which a trade-off must be established between external
and internal test options are:

a) number of pins,

b) external tester demands,

¢) internal memory,

d) internal (extra) circuitry, and

e) testing time.

. . . Signal

Test Type Coverage Time Signal Generation .
Interpretation

Comprehensive Test Functional Very High Very High External/Complex External

Functionality Test Functional Very High High External/16-tone External
Two-tone Test Functional Reasonable. Medium External/2-tone Ext./Internal
Serial OBT Structural High/Very high Medium Internal Ext./Internal
Parallel OBT Structural High/Very high Low Internal Ext./Internal

Table 6.11: Test feature comparison.



294 OBT in Mixed-Signal Circuits

Concerning tester demands, the situation can vary greatly, but, typically,
there are scenarios in which a mixed-signal tester required for just a small part
of a chip should be avoided. Another important constraint is the number of
available pins. Normally, this is a scarce resource and has to be shared when
several cores are used. The problem is that sharing pins increases test time
proportionally, and then it should be appealing to devise methodologies with
low-cost internal generation of test stimuli. Table 6.11 must be understood as
a complete set of possibilities from which the user can select a test strategy to
apply. Depending on pin availability, intended test time, external equipment
cost, internally existing resources, etc, the system customer can choose one or
combine two procedures.

Therefore, all said previously show that OBT-OBIST is a potential candi-
date to be used in combination with functional test techniques.

6.7 SUMMARY

In this chapter we have established a set of Design Decisions or rules to
follow when a designer is interested in implementing the OBT-OBIST
approach to a complex mixed-signal system. The analog part of a DTMF
receiver has been used as vehicle to show all the requirements necessary to
incorporate the on-chip test facilities.

In summary, let us express the view that the insertion of the OBIST
approach in the DTMF analog core does not mean a lot of design effort. On
the contrary, this test strategy can be easily embedded in the system without
big problems in terms of performance degradation, design cost or area
overhead.

On the other hand, we can use this implementation example (together with
its obtained experimental results compiled in next chapter) not only to try to
convince the mixed-signal community that commercial BIST solutions for
analog circuits are already feasible but, also to encourage designers to adapt
OBIST concept to other complex commercial mixed-signal systems.

Let us highlight some achievements:

-the wise use of a modified opamp (called swopamp) to ensure start-up
and to provide accessing to internal blocks.
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-the smart reuse of the existing zero-crossing detectors (in the original
DTMF core) as the required non-linear feedback blocks in the closed-loop
OBT scheme.

-the existence of several low-cost alternatives for testing the feedback path
(sequential or parallel test) and the easy choice of an optimum solution based
on a sequential-parallel test.

-the possibility of testing the normal signal path as well as the extra cir-
cuitry during the test mode.

-the chance of verifying the functionality of the OBIST structure itself.

-the availability of obtaining a one-pin digital signature, with low cost.

-the feasibility of coding the non-frequency data.

-the minimum cost of such an on-chip test approach: just one extra pin and
an area overhead of around 7%.

-the compatibility of this technique with functional test counterparts.
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OBT-OBIST silicon validation
Experimental Integrated Prototypes

THIS CHAPTER reports experimental results corresponding to the
application of OBT-OBIST to Switched-Capacitor integrated filters. Silicon
prototypes of an universal programmable biquad as well as a Dual Tone Mul-
tifrequency Detector (DTMF) system are used as exploratory examples to
demonstrate the feasibility of the OBT-OBIST approach. This Chapter is, per-
haps, the most complete compendium of empirical results presented until date
on the practical use of OBT-OBIST for mixed-signal and analog ICs.

7.1 INTRODUCTION

All the preceding chapters of this book were conceived to define the frame
of a general OBT-OBIST mathematical theory and to detail the main guide-
lines that must be considered when OBT-OBIST is being applied to a
particular system. However, an exhaustive proof based on a meaningful
empirical evidence on practical integrated circuits was needed. Consequently,
there is a need for providing empirical data confirming both the practicality of
incorporating this new test technique to the regular design flow and the qual-
ity of its results. Consequently, this Chapter aims to fill in this lack through
providing extensive experimental measurements on silicon demonstrators.

In short, all the mathematical results studied in previous chapters pave the
way for employing the OBT-OBIST strategy from a practical point of view.
Therefore, in this moment, we feel willingness to prove OBT-OBIST in prac-
tical and even industrial circuits.

Two ICs have been chosen for this purpose. The first device was specifi-
cally built to justify and give a firm evidence of our previous theoretical
results. It incorporates abundant additional circuitry and numerous access
points to different internal nodes. The idea is to carefully examine the power
and efficiency of the OBT method by checking every step and every critical
feature of this test approach. Basically, the device is a programmable circuit
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capable of performing three different biquadratic filters and/or of including
several potential faults.

On the other hand, the second circuit is an industrial prototype with a well-
defined structure whose main characteristics were described in the previous
chapter. It is, in fact, the DTMF system which allowed us to study OBT-
OBIST in a realistic context. In general lines, the objective with this experi-
mental circuit is to prove that the OBT-OBIST strategy is in such an advanced
developing stage than can be even applied to an industrial system.

7.2 FIRST EXPERIMENTAL DEMONSTRATOR

The first demonstrator used to support experimentally all said until now
concerning the OBT approach, is based on a programmable version of the
biquad displayed in Fig. 7.1. This particular structure was selected in Chapter
3 as a general OBT theoretical validation vehicle since it incorporates most of
the common features in discrete-time analog circuits, allowing to validate
OBT in many alternative filter configurations. An additional motivation for
choosing such a cell was, of course, the experience that has been acquired in
the course of these last years exploiting a similar biquadratic section in com-
plex testable filters [25]-[36].

Co7
o f—o o
—O—|
Cos clk2 ok
e e
Cos

C
V. clk2 01 clk2

in ck1  Co2
clk1 [ clk1
2\ & o

Figure 7.1: Studied SC Biquadratic Structure
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Making use of the programmable nature of the biquad, some compatible
functionality to simulate faults has been added at electrical level. Then, both
soft and hard faults can be programmed (through external electrical variables)
and experiments can be carried out to check the effectiveness of the OBT
technique in this demonstrator. The way we can re-program the set of faults
used for validating the OBT strategy in the programmable device, is also
worthwhile since it resorts to circuit components compatible with the imple-
mentation technique.

Changes in capacitor values, stuck-on and -off for switches, and active
component faults can be experimentally emulated by the circuit and many
measurements on how the OBT architecture reacts to those faults can be per-
formed. In fact, the versatility of this demonstrator allows us to authenticate
the feasibility of the OBT method in an actual circuit.

7.2.1 Programmable biquad and fault programming

From the scheme in Fig. 7.1, a pro-

c q1nqg1 CMOS switches .
_|o: II qi nqi grammable  biquad can  be
ngt q1 _& implemented by substituting every
—f— 4%—‘ o capacitor in this structure by a digi-
- £
Cyi Cory 20 tal programmable capacitor array
%E—&l— m out (DPCA) formed by some capacitors
nq2 q2
q! ;q T and some switches, as shown in Fig.
a3 nas 7.2. Each value of capacitor is con-
@ _c|°é3 () veniently altered to perform an
ng3q3 individual type of biquadratic filter
4%—\? by directly using CMOS switches
(Fig. 7.2-b). After selecting the set
e gc nqc ) )
_|fa"" of different filters that will be real-
nqc qc ized with this biquadratic structure,
N a method to select the minimal
= | PROGRAMMABLE FAULT i
—— ° capacitor  value  (Cy; pominal)
0i_nominal _

required for any filter in this set [25]

Figure 7.2: a) Programmable capacitor . )
8 ) Prog P is used. Then, the increments in

implementation b) CMOS switches
capacitance needed to realize all fil-

ters in the set are calculated. Using the minimal value as a seed, every
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capacitor in the programmable biquad is implemented by adding the incre-

mental capacitors (capacitors Cy;;, Cy;» and C;3) under the command of

switches.
The same principle can be Ceauit = 1446.8020fF
used for implementing soft Z

e

faults. Adding extra capacitors
(or removing of existing ones)

under the control of switches that 55 ¢ i - o (e e T
can be externally manipulated, [} =5 |0t iR EE
allow us to simulate a change in [ [0 L

capacitor ratios that can slightly
modify the overall filter transfer
function. Rather than increasing the silicon area with capacitors, those
dummy capacitors already placed in the filter for compensating layout dis-
symmetries are employed. It is shown in Fig. 7.3, where the extra capacitor

Figure 7.3: Programmable Fault

introduced to emulate a faulty behaviour is represented by Cg, ;.. Moreover,

since these kind of soft faults implementations take advantage of the existing
dummy capacitors, they can be considered relatively realistic. On the other
hand, hard faults are easier to introduce [25], since there are many switches
whose operation can be controlled in order to fix an internal node to a specific
voltage.

7.2.2 Experimental results

Fig. 7.4 shows the general diagram of the implemented chip with the dif-
ferent blocks and the required I/O pins. This circuit is composed of the
programmable biquad, an amplifier stage, a non-linear block which consists
of a feedback comparator with a controllable voltage limiter, a first order A
modulator (for encoding the test outcomes), a digital control block (for com-
manding the different operation modes) and all the necessary current and
voltage reference generators. Moreover, we have added some extra I/O pins in
order to observe many internal system nodes.
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Figure 7.4: Diagram of the different blocks in the chip
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On the other hand, Table 7.1 shows the accessible pines and all their

functions.
Block Pin Name Simbol Explanation
CIN External clock to provide the system clocks: Clk1
and Clk2
Supply VDD
Elements
VSS Supply Voltages
PD
Vinputfsc Primary circuit input
3o Signals to control the programmable biquad configu-
ration
4
v01
Signals to monitor the OBT configuration
Programmable Vo2
Biquad ®
cl
(Dcz
Signals to supervise the use of swopamps
V11
V12
Qcon trol Signal to charge the programmable fault
V. Input to the feedback elements
in_scamp
v Signal to guide the sign or/and the value of the feed-
ref limiter back loop
OBT Feedback Vre £ comp Signal to define the value of the comparator hysteresis
Elements =
Qplus
Qm inus
vsq
Signals to visualize and process the chip outputs
Qplusimodulator
Q. .
SD Modulator minus_modulator
VS$9modulator

Vre f comp_modulator

Signal to define the value of the comparator hysteresis

Table 7.1: Pin Description



Chapter 7. OBT-OBIST Silicon Validation 303

The prototype was designed in a 0.6pum double-poly double-metal technol-
ogy. The active area is 917.70um x 1808.20um , and the complete die size is

1492.10pum x 2404.00um . In fact, two chips were implemented: one includ-

ing only normal opamps and the other one in where the two opamps

belonging to the programmable biquad were replaced by swopamps.

= In Fig. 7.5 a microphotograph of
the second prototype is displayed.
The goal is to compare the results

il

: coming from each one of the chips

= l and to verify experimentally not
only the practicality of the swo-
pamp but also its negligible impact

on the system performance.
We can define different system
configurations allowing the sys-

1 Bias 25 |34 4% . 5 tems ‘to operate. in different
Circuitry £ 5 £ % g operation rn(.)des (glven. by differ-
> § Sm g ent connections of signals and

§ < s S different values of the control sig-

- - - nals). Among them, we can
Figure 7.5: Filter Microphotograph L .
highlight the normal operation
mode and the test operation mode. These operation modes will be studied in
detail in next sections underlining their main features. Experimental results

for both modes will be gathered as well.

-Normal Operation Mode:

In this operation mode the circuit works as a biquad (a second-order filter)
and depending on the considered configuration (the values of the signals
(ay, ay)), a particular input tone will be filtered or not. The programmable
biquad is capable to perform as any of three different filters (a High-Pass and

two Band-Pass, represented in Table 7.2 by BQ1, BQ2 and BQ3, respec-
tively).The device can also incorporate several potential soft faults, managed

by the external signals (Q a, and a, ), as summarized in Table 7.2.

control >
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Configuration ;=0 ay=0 a;=1a¢=0 ;=0 ap=1

Control Qcontrol=0 | Qcontrol=1 | Qcontrol=0 | Qcontrol=1 | Qcontrol=0  Qcontrol=1

BQI BQI_Fault BQ2 BQ2_Fault BQ3 BQ3_Fault
C03 6777.729fF 2566.510fF 10030.995fF
Co3fault™
8224.531fF 4013.312fF 11477.797fF

=C,, +C

03 fault

Deviation 21.4% 56.4% 14.4%

Table 7.2: Programmable Biquad Configuration

For the sake of convenience, the faults are inserted in the capacitor called

C,3; which is situated in the layout next to the dummy capacitors (observe
again Fig. 7.3). This feedback capacitor C; affects the feedback loops

formed by the capacitors C,, C(; and Cyg (red dotted lines in Fig. 7.6).

1
C;+Cg(1-2 )

» _1

1-z

1

-1
Cg+Ceg(1-2 )

Figure 7.6: Programmable biquad z-domain equivalent circuit
Therefore we are, in some way, checking simultaneously different kind of
deviations considering faults in C;: faults in the branch controlled by
C, =
Cq =
only a capacitor is strayed from its nominal value. We are talking, however,

about a capacitor with a strong influence in the biquad structure. Just consider
the z-equivalent circuit for the programmable biquad shown in Fig. 7.6, where

Cy1/Cy3 and faults in the branch controlled by C; = C(;/Cy; and

Cog/ Cy3 - Obviously, we are not talking about a multiple fault because

we can see how two essential branches of the biquad are affected by C

through the capacitors C;, C; and Cg. Therefore, studying faults in this

capacitor is useful to estimate the practicality of the OBT strategy applied to
this device.
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Fig. 7.7 displays the experimental transfer functions corresponding to the
fault-free filters and, overimposed in gray, the corresponding faulty counter-
parts given in Table 7.2.1 At first glance, it could seem that the faults do not
have a prominent impact on the corresponding transfer functions. Notice,
however, from Fig. 7.8, that the effect of the faults is very significant mainly

in the case BQ2 (where 56.4 % deviation in Cy; has been inserted).

TYPE Q1_Vo2 TYPE Q2_Vo2 TYPE Q3_Vo1
20.0 sinusoidal steady state analysis 30.0 sinusoidal steady state analysis 100 sinusoidal steady state analysis
R I R T o oo
10.0 o VT 0.0p - - ¢ - ST oim T
= ,\10-0 MR i < T 1T T T — [ [ T T |
g 00 3 S TT— L 5100k - - 5 NG T T
:'3;-10.0 g-10.0 Y/ R E-Z0.0 Y A L

s g [ T R 8 ! VTV
S 20.0 3 T ocim T st T ooim T i 15300 AV U S U
e >_30_0 [ R S T DR R B R T > [ T T T N T O B
-30.0 [ T T R T T B B B To N0 ] ¥ [ S B S B S D R
R e R S E R B [ T T B R

-40.0 -50.0 -50.0
0 500 1000 1500 2000 2500 0 1000 2000 3000 4000 5000 0 500 1000 1500 2000 2500
frequency (Hz) frequency (Hz) frequency (Hz)

Figure 7.7: Transfer Functions for each SC- second order component
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Figure 7.8: Details of the transfer functions

-Test Operation Mode:

This Test Operation Mode refers to the operation mode in which the OBT
technique is applied to the programmable biquad. In this mode, the circuit
works as an oscillator (since it is reconfigured following the OBT scheme).
Again, depending on the considered configuration (the values of the signals

(ay, ay)), a particular oscillator will be obtained.

I The experimental conditions were VDD=3/2.7V, VSS=0V, PD=0V, VGNDA_SC=0V and
CIN=55.934kHz.
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The main features of this OBT mode are summarized in Table 7.3.

a;=0 ag=0 a;=1 ag=0 a;=0 ag=1
Qcontrol=0 | Qcontrol=1 Qcontrol=0 | Qcontrol=1 | Qcontrol=0  Qcontrol=1
BQl BQI1_Fault BQ2 BQ2_Fault BQ3 BQ3_Fault
Feedback Vo2 Feedback Vo2 Feedback Vol

Vref limiter = 110mV

Vref limiter = 161mV

Vref limiter = 252mV

Table 7.3: SC Programmable Biquad OBT Characteristics.

All experimental results obtained in this Section to validate the OBT meth-
odology were measured making a by-hand evaluation of the oscillation
parameters. We use different strategies to examine the waveforms: an oscillo-
scope and/or a network analizer (Fig. 7.9). Obviously, this is not a good
alternative to be used in production, because it would need a very long test
time. But, the goal herein is to experimentally show the feasibility of OBT, no

matter the required test time.

OBT SCHEME

Evaluation: Experimental Results

Frequency
Measurement

Network Analizer
HP 3589A

VVVV

\ 4
@
°
<
o
o

-

Frequency (Hz)

i2_S10P

Amplitude
Measurement

Oscilloscope
HP 54645D

Figure 7.9: Evaluation of the oscillation parameters
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However, in the next Section, we will work out an on-chip evaluation
solution (see Chapter 6) which uses the involved XA modulator (Fig. 7.4). The
practicality of the proposed on-chip scheme will be demonstrated by means of
the obtained on-chip experimental results.

-Prototype including normal opamp:

Although the impact of the faults on the transfer functions is relatively
small (see again Fig. 7.7), when translated into the oscillation parameters lead
to a simple discrimination, as shown in Fig. 7.10, Fig. 7.11 and Fig. 7.12
where changes in amplitude and frequency for the faulty circuits have been
represented on every sub-figure. The clusterized points (diamonds in green) in
the lower left-side corner correspond to the experimentally measured values
for the fault-free circuits (5 samples were characterized) as well as to the val-
ues predicted by Monte Carlo analysis for the corresponding filter (circles in
black). Notice that, with the exception of the case BQ2, in the cases BQ1 and
BQ3 the fault-free circuits deviates slightly from the Monte Carlo predictions.
The reason is that Monte Carlo evaluations are not completely tuned. We have
not checked all possible component deviations such as, for example, mis-
matching in the operational amplifier elements. On the contrary, only
capacitor deviations in the programmable biquad were considered.

On the other hand, we have also marked off the zone in the frequency and
amplitude space where the circuits with acceptable deviations are placed. This
tolerance window is drawn in the last graphs of Fig. 7.10, Fig. 7.11 and Fig.
7.12. Its shape is a rectangular gray area in the left-side corner.

The starred points (in blue, see again Fig. 7.10, Fig. 7.11 and Fig. 7.12)
correspond to the experimental values obtained for the experimental filters
when oscillating under the influence of the soft faults. And finally, the red
squares depict the simulated hard faults. For the sake of clarity, only faults
which cause deviations smaller than a 50% are displayed. From the referred
figures it should be clear that, assuming a 5% measurement accuracy, faults
like the ones simulated are easily detectable with the exception of BQ2 where
one finds a fault even inside the Monte Carlo region. Such a fault would be an
undetectable fault with this OBT strategy. But it has not a strong repercussion,
it would only mean that the percentage of detected faults (from those injected
by simulation) would be 98.3 instead of 100% (see the third chapter for
details). On the other hand, it can be observed from Fig. 7.10, Fig. 7.11 and
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Fig. 7.12 that for the cases BQ1 and BQ2 (where the introduced soft faults
cause a considerable alteration of their transfer functions, mostly in the case
BQ?2) the faulty points (in blue) are out of the tolerance window, that means
inside the faulty zone determined by simulation. However, some points of the
case BQ3 are borderline to both regions (the fault-free area and the faulty
area). Obviously, a 14.4% deviation in Cy; is not enough to assert that the

circuit is malfunctioning.
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Figure 7.10: Oscillation parameter experimental measurements (BQ1)
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Figure 7.12: Oscillation parameter experimental measurements (BQ3)

To check the accuracy of the OBT method, Fig. 7.13, Fig. 7.14 and Fig.
7.15 show the experimental spectra for the three particular fault-free filter
structures (the three different configuration of the programmable biquad
displayed in black in Fig. 7.7). On every diagram we have represented data
corresponding to the five tested samples. Moreover, all the spectra are
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displayed together in a last subgraphic. From these Figures, it should be clear
that a priori prediction gives a good diagnosis of the experimental oscillation
values.
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Figure 7.13: Experimental frequency results from five different samples

(BQI)
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Figure 7.14: Experimental frequency results from five different samples

(BQ2)



Chapter 7. OBT-OBIST Silicon Validation 313

SPECTRUM SPECTRUM
(dBV) Sample1 (dBV) Sample2
-31.9 322
474 477
62.9 63.1
784 78.6 l
-94.0 -94.1 u
1095 -109.5
-125.0 ; L L L . 125.0 L L L L .
0.0 5195 1039.1 1558.6 2078.1 2597.6 3117.2 0. 5195 1039.1 1558.6 2078.1 2597.6 31172
Frequency (Hz) Frequency (Hz)
SPECTRUM SPECTRUM
(dBV) Sample3 (dBV) Sampled
221 T T T T T 3 T T T T
325

-109.6

1250 L L L " . 1250 L " " L L
0.0 5195 1039.1 15586  2078.1 2597.6 3117.2 0.0 5195 1039.1 1558.6 2078.1 2597.6 3117.2
Frequency (Hz) Frequency (Hz)
SPECTRUM SPECTRUM

(dBV) Sample5 (dBV) All Samples

-109.5

-109.5 |

-125.0 A . - L L -125.0 e " 1
0.0 519.5 1039.1 1558.6 2078.1 2597.6 3117.2 0.0 519.5 1039.1 1558.6

Frequency (Hz) Frequency (Hz)

2078.1 2597.6 3117.2

‘ Prediction: 968.60 Hz | ‘ Peak: 960.94 Hz

Figure 7.15: Experimental frequency results from five different samples
(BQ3)
In addition, Fig. 7.16, Fig. 7.17 and Fig. 7.18 give an overall view of the
actual waveforms as predicted by simulation (MATLAB has been used, since
its results appear to be quite satisfactory) and as obtained empirically on the
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actual silicon. Again, a good agreement has been observed. Notice how the
experimental results (on the lower side) present the typical peaks for a SC cir-
cuit whereas the profile of the simulation waveforms (on the upper side) is
smoother. On the other hand, experimental waves exhibit a DC level given by
the analog ground (provided by the signal called above VGNDA_SC).

MATLAB SIMULATICN
T T T

a2

OSCILLATION
o

&
~

-0.4f

EXPERIMENTAL RESULTS
T T T

OSCILLATION

Figure 7.16: Comparing simulations and experimental measurements (BQ1)
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Figure 7.17: Comparing simulations and experimental measurements (BQ2)
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Figure 7.18: Comparing simulations and experimental measurements (BQ3)

On the other hand, we can also gather together all these data and check at
the same time both the accuracy of the oscillator linearized model and the
fault deviation (see tables in Appendix 7.A). Therefore, Table 7.4 provides
with a summary of the predicted values for both the fault-free biquads and
their corresponding faulty counterparts (considering as accepted values those
coming from the SWITCAP simulations).
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Parameters BQ1 BQI_fault BQ2 BQ2_fault BQ3 BQ3_fault
Amplitude 0912V 1.099 vV 1.475V 1.550 v 0.899 V 0872V
Frequency 595.01 Hz 543.18 Hz | 1928.70 Hz | 1532.40Hz | 966.89 Hz | 901.26 Hz
Amplitude

20.50% 5.08% 3.00%
Deviation
Frequency
8.71% 20.55% 6.79%
Deviation
Fault
21.4% of deviation 56.4% of deviation 14.4% of deviation
Magnitude

Table 7.4: Predicted values for fault-free and corresponding faulty filters

We can observe from Table 7.4 that the value of a fault magnitude is not
translated into exactly the same percentage in the value of the amplitude and
frequency deviations. It depends on the expression of the oscillation parame-
ters as a function of C; (see Chapter 5).

On the other hand, the experimental results from the Tables given in
Appendix 7.A (comparing only with the SWITCAP simulation data) are
shown in Table 7.5.

Parameters BQ1 BQIl fault BQ2 BQ2 fault BQ3 BQ3 fault
Amplitude Deviation 21-23% 4-5% 3-5%
Frequency Deviation 8-9% 19-21% 5-8%

Fault Magnitude 21.4% of deviation 56.4% of deviation 14.4% of deviation

Table 7.5: Experimental values for fault-free and corresponding faulty filters

In conclusion, these experiments (in both the time and frequency domains)
we have performed with this programmable biquad, contribute to reinforce
the results described elsewhere [33],[36] based on fault simulation. We have
emulated physical defects through the use of switches and dummy capacitors.
When these faulty circuits were characterized, all available samples were spot
as “problematic” through the measurement of the oscillation frequency and
amplitude. In this sense, this work can be considered as a point of reference
for OBT in integrated analog circuits.
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-Prototype including swopamps:

Until now only experimental results coming from the experimental IC
without swopamps have been provided. The swopamp device was studied,
from a theoretical viewpoint, in the fifth chapter. No essential disparities, in
term of performance degradation or power consumption, was observed by
simulation comparing the designed swopamp with its corresponding related
opamp.

The main difference between both circuits (swopamp and its related
opamp) is in the occupied area. Obviously, owing to the fact that the swo-
pamp is built replicating several parts of the normal opamp (the differential
pair to be precise), it must be bigger than the opamp. In fact, in our demon-
strator if we estimate the discrepancy of areas between the IC containing
swopamps and the IC containing opamps, we find from the layouts in Fig.
7.19 that the additional area is only the shaded rectangle on the right figure

(approximately 64um x 240um ) which means exclusively a 0.93% of the
active area. This extra area is due to the two swopamps employed in the pro-
grammable biquad.

CE  EEE . CREREEEEE
e et B .
o I | |2 8 A R SO0 | |
i TR TR ol i B WL e
e | L Ll L gl =
el = =

M

i

B

Figure 7.19: Layouts of the both IC used as demonstrators

L]

Notice, likewise, from Fig. 7.19 that the second prototype (that one con-
taining the swopamps) has more external pins than the first one (see area in
dotted black lines). It is because every swopamp requires two extra external

pins (one to control the operation mode, called before @, and the other one
to supply the signal introduced in the buffer mode, called before V). But, the

extra pin V., however, is usually used in the OBT-OBIST strategy to bypass

the test signals from an intermediate point of the circuit to the circuit output or
to the point where they must be interpreted. Therefore, this kind of pin usually
performances without an external connection when OBT-OBIST is being
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applied to a more complex system. For this reason the only inevitable external
pin derived from the use of the swopamp would be @ .

In order to evaluate the impact of the swopamp on the experimental OBT
results, experimental proofs shown above have been repeated. It is: the exper-
imental spectra for the three particular fault-free filter structures and all those
oscillation data given by the oscilloscope and the network analizer, again for
five samples (whose tables are given in Appendix 7.A).

If we compare all the experimental results obtained with both prototypes
(with and without swopamp), we achieve essentially the same. A good agree-
ment is observed in Fig. 7.20, Fig. 7.21, Fig. 7.22 and Fig. 7.23 with the
theoretical predictions.
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Figure 7.20: Experimental frequency results from five different samples
(BQ1_SW)
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Figure 7.21: Experimental frequency results from five different samples
(BQ2_SW)
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Figure 7.22: Experimental frequency results from five different samples
(BQ3_SW)
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Figure 7.23: Oscillation parameter experimental measurements
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7.2.3 On-chip evaluation

As was explained in Fig. 7.4 we have a XA modulator at our disposal
embedded in the circuit. Therefore, we can employ the general scheme of Fig.
7.24 as a practical and low cost digital on-chip evaluation of the OBT output
signals. On the left, one can see the BUT (in this case the programmable
biquad) that has been reconfigured as an oscillator employing a comparator
(the comparator which will give the square version of the sine-signal). The
resulting sine-wave feeds a first order sigma-delta modulator. Finally, on the
rigth, the sigma delta output bit-stream and the square wave signal are digi-
tally processed with very simple hardware to compute the oscillation
parameters: the DC-level, the amplitude and the frequency. We do not need
any precise analog block and the extra area overhead due to the incorporation
of this hardware should be minimum.

GENERAL EVALUATION SCHEME
Digital

) Evaluation
Oscillator " Sigma-Delta Modulator Unit

% d(n)
BUT P integrator [— j—
U | T, | oita

DAC Tester
Module

!

Frequency Amplitude DC Level
Count Count

!

Count

qa(n) /t

Oscillation Measurements «

Figure 7.24: General Evaluation Scheme

In Fig. 7.25 we can see the test setup. On the left, we find the chip. In the
middle of the scheme, we can see a digital tester to acquire the square wave
and the modulator bit-stream, over around 500 signal periods. The results are
processed by a workstation with MATLAB achieving the three different
counts. Notice, however, that the work of the digital tester as well as the
workstation can be perfectly substituted by an on-chip unit evaluation com-
posed of three counters and some simple control circuitry.
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£00)
OBT Slgnal ®

(Modulator Input)

Figure 7.25: Test Set-up

In order to validate the experimental results, we used a clock frequency of
55.934 kHz and the modulator full-scale was set up 900 mV peak to peak. The
OBT signal parameters were measured and shown in Table 7.6 and Table 7.7.

Oscillation Example value
Frequency 598Hz
Amplitude 800 mVpp

3rd harmonic -30dB
Sth harmonic -40 dB

Table 7.6: Experimental Oscillation Parameters

count-freq [93;94]

count-amp 53 £ 4 =[49;57]

Table 7.7: Count results

The frequency is 598 Hz. So, the oversampling ratio is 93.5 and the fre-

quency counter varies between 93 and 94 (N =f,, . /f . = count_freq). The

osc

amplitude is 800mV,, so the normalized value is 0.89 which gives an ampli-

Afclock

tude counter value between 49 and 57 (2= +4 = count amp ).

osc
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In Fig. 7.26 we can see the experimental results for the frequency. The
expected count_freq result is [93:94] ~ 598Hz. It is clearly observed that
they perfectly match predictions. Moreover, we can see that the mean counter

value (93.43) tends to converge to the exact value of the oversampling ratio.
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Experimental count_freq

A sample measured in 50 periods with 10 different initial conditions
Figure 7.26: Experimental Frequency Results

On the other hand in Fig. 7.27 we can see the amplitude results. The
expected count_amp result is [49:57] ~ 800mV. Again the experimental
results are in good agreement with predictions. Notice, moreover, that the
extreme count values are hardly reached. This is because the worst-case quan-
tization noise is unlikely. Observe also that the mean value of these results
(52.9, ~802mV) converges towards the exact value of the experimental
oscillation amplitude (see Table 7.6).

In summary, we have an experimental basis which shows the feasibility
and robustness of the proposed on-chip technique to measure and interprete
the oscillation frequency and amplitude of the OBT output signals. We simply
use a first-order sigma-delta modulator and several digital counters. The pre-
cision of these measurements is mostly driven by the oversampling ratio.
However, other simple extraction algorithms have been developed that can
double this precision [90].
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Figure 7.27: Experimental Amplitude Results

7.3 SECOND CIRCUIT DEMONSTRATOR: DTMF
RECEIVER

Again, this part of the chapter focus on the validation of the OBT-OBIST
technique proposed in previous chapters but now applying it to the SC filter
macrocell used in the DTMF demonstrator considered in Chapter 6 [25]-[36],
[121]-[122]. This silicon demonstrator, that will be described herein, is a two-
channel filter bank. As was explained, it is an integrated SC circuit to which
OBT-OBIST has been applied through minimal modifications and wise re-use
of available components on chip. In fact, this filter structure was the complex
core where we incorporated an elaborate OBIST strategy which was widely
explained throughout Chapter 6.

The main goal of this section is to illustrate how the overall filter bank per-
formance can be tested under many operating conditions. OBIST approach
will be also reported comparing the design data obtained through extensive
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Monte Carlo simulations and the test experimental results under different
OBIST test configurations.

7.3.1 Floor-Planning and Chip

Fig. 7.28 shows
the chip micropho-
tograph of the
DTMF  receiver.
All the cells of the
chip were
designed in a
0.6pum double-
poly technology. It

1 2 { swopamps toniriee | © has 14 pins and the
LT 3 ------- total occupied area
Buff [E=a . .

o I'E is of approxi-
& |=. BAND-SPLITFILTERS | DISITAL
Bias | PART 2
Circuitry |1 8 ! mately 1x3mm~ .
[ .
% ISR TS From Fig. 7.28,
L A the extra area

overhead (this area
Figure 7.28: DTMF chip demonstrator microphotograph is only due to the
area took up by the voltage limiters and the additional area due to the increase
caused by the swopamp implementation) is very small, and can be quantified
about 7%, which is a pretty good result. Consequently, it can be concluded
that the re-use of the existing circuitry has been done efficiently. Moreover,
power consumption is not penalized because all the extra circuitry for testing
purpose is powered-off during normal mode.
Fig. 7.29 shows the general scheme displaying the chip blocks and the
required 1/O pins. We have 14 I/O pins, however, as explained in Chapter 6,
only the pin called TEST is incorporated for test purposes.
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PIN DESCRIPTION
Vin = > main circuit input
0SC1,0SC2 = > to provide the system clocks

Q0,Q1,Q2,Q3,EST,STD = > to visualize and process the chip output
VSS,VDD = > to supply the system
PD,TOE,TEST = > to control the different system configurations

Figure 7.29: Block diagram of the DTMF receiver

7.3.2 DTMF Operation Modes

As was discussed in other chapters, the OBT-OBIST concept requires to
divide the operation of the system under test in, at least, two operation modes.
That is, at least, in a normal operation mode and a test operation mode. This is
the case of the implemented DTMF system where we have introduced, by
means of many control signals, programmable connections and some multi-
plexers, the possibility of working in several ways. In reality, more than the
two basic operation modes has been incorporated in order to prove the feasi-
bility and practicality of not only the DTMF prototype designed by us, but
also the OBT-OBIST test technique proposed in previous chapters. In fact,
five different operation modes can be distinguished. The values of their con-
trol signals are shown in Table 7.8.
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Test Mode
Normal Analog Test Mode Digital Test Mode
Control .
Sienals Operation
£ Mode Test Analog OBIST Test Digital Test Digital
Part Mode Part-1 Part-11
TOE 0 0 0 1 1
TEST 0 1 1 1 1
PD 1 0 1 0 1

Table 7.8: DTMF/OBIST Operation Modes

For the sake of simplicity, the peripheral circuitry has been omitted in Fig.
7.29. We already gave a detailed description of it in Chapter 6 where we high-
lighted the basic usefulness of this circuitry and its involvement in the DTMF

performance.

-Normal Operation Mode:

When the pin called TEST=LOW, the system is set to digital normal oper-
ation mode. Table 7.9 describes the meaning of each 1/O pin while Table 7.10
explains briefly how the circuit works. Obviously, in this mode, the extra cir-

cuitry for testing purposes is not active.

Pin Name Digital Normal Operation Mode (TEST="0")

VIN DTMEF input. Signal must be AC coupled via 100nF capacitor.
Oscillator Input and Output respectively. A crystal or ceramic oscillator (3.58MHz)

OSCl1&2 . . .
connected between them completes the internal oscillator circuit.

VDD, VSS | Positive and Negative Power Supply respectively.

TOE Tri-State Output Enable.

Q0-3 Tri-State Coded output. When enabled by TOE, provide the last valid tone pair
received. Otherwise are high-Impedance nodes.

EST Early Steering. A logic high means that the digital algorithm has detected a valid tone-
pair.

STD Delayed Steering. A logic high means that a new tone-pair has been registered and
latched.

PD Power-Down mode select. It powers down the analog part and inhibits the oscillator.

Table 7.9: Pin description
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RECp: @ > REC ¢ Dy ptpo @

Vinput [_| DTI\%IF DTMF DTMF
I_I Tone #X Tone #(X+1) Tone #(X+1)
L

P €1 » <l

EST M I I S
L ' ) 7 !
Qo-3 DECODED TONE _ #(X-1) X L #X ! K HX+1)
torp b, € P toTa : :
STD i L0 |
| I
ToE I
SIMBOL EXPLANATION
Vinput DTMF input signal
EST Early steering. Indicates detection of valid tone
Q0-3 4-bit decoded output
STD Delayed steering. Indicates that valid tones have

been latched

Tone output enable. Shifts Q0-3 to high impedance

TOE @)

tREC Minimum tone duration required

tip Minimum time between valid tones

tbo Maximum allowable drop out during valid tone
tpp Time to detect the presence of valid tones

tpA Time to detect the absence of valid tones

taTp Guard time, tone present

tGTA Guard time, tone absent

Table 7.10: Explanation of events in the normal operating mode of the circuit
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-Digital Test Mode:

The characterization of the circuit in its digital normal mode has been per-
formed by applying in the lab the industrial audio test tape [113]. To illustrate
the behaviour of the circuit, the obtained experimental oscillograms corre-
sponding to the recognition and validation of the DTMF different tones
whenever the time schedule is accomplished are shown in Fig. 7.30. The test
executed is called Decoder Check (see the previous chapter for more details)
where all pairs associated with standard 4x4 keypad digits are pulsed sequen-
tially using 50ms bursts at 100mV per frequency. Each tone pair is pulsed
once and a group of four pairs are sent consecutively. The receiver should
respond to all tone pairs. Therefore, STD is activated only once per group of
tones as expected whereas EST must be activated once each change of tone
pairs.

Table 7.11 summarizes the main characteristics of the DTMF receiver as
the result of testing 10 samples. As can be seen, they correspond to a high per-
formance DTMF receiver, with only 5 hits in the speech testing.

Current Consumption Operating 1 mA
Current Consumption Power-Down ON | <lpA
Valid Input Signal levels <10mV to 350 mV
accept +1.5%* 2Hz
Freq. deviation
reject +3.5%
accept 40ms
Tone duration
reject 20ms
accept 40ms
Tone pause
reject 20ms
Talk-off test 5 Hits
Voltage Supply 2.7V to 5.0V

Table 7.11: Main characteristics of the receiver
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-Analog Test Modes:

-Analog Mode (TEST=1 TOE=0 PD=0):

In this operating mode, the digital circuitry and the extra one for testing
purpose in BIST mode is not active. The available outputs at the I/O pins cor-
respond to the main outputs for the analog filter banks as described in Table
7.12. It means that the filtering section can be fully characterized.

Pin

Name Analog Mode (TEST="1" and PD="0")

Q0-3 Output waveforms. QO = VolxlO’ Q1 = Vol’ Q2 = VohxlO and Q3 = Voh

EST Zero crossing detector output for the high filter group

STD Zero crossing detector output for the low filter group

Table 7.12: Output Pin Description

The following criteria and strategies have been used for the characteriza-
tion of the filtering sections (Table 7.13 and Table 7.14).

IDDQA-ON Operating Supply Current for the ANALOG Circuitry when PWDN mode is NOT
ACTIVE (PWDN=GND)
Operating Supply Current for the ANALOG Circuitry when PWDN mode is
IDDQA-OFF | 11vE (PWDN=VDD)
VOFF-L Offset voltage measured at the output of the Low-Group Filter (Vol)
VOFF-H Offset voltage measured at the output of the High-Group Filter (Vof)

Table 7.13: DC Electrical Characterization

Ainl Minimum rejection in the lower stop-band
Ainh Minimum rejection in the higher stop-band
Aax Maximum ripple in the passband

1 Lower stop-band frequency

fon Higher stop-band frequency

fo1 Lower passband frequency

fon Higher passband frequency

Table 7.14: AC Electrical Characterization
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The experimental results are shown in Table 7.15-Table 7.18 for 5V and
2.7V, respectively. It can be seen how both, the offset voltage and the current

consumption have been kept as low as the application requires.

Current Supply LOW-GROUP
IddqA | IddqA
Voff-L Amninl Aminh Amax fsl fPl fPh fSh
-ON -OFF

M1 600 0.900 4 0.29

M2 620 0.914 4 0.29

M3 682 0.897 3 0.28

M4 682 0.908 5 0.27

M5 661 0.901 4 0.29

40.8 38.8 452 635 | 963 1172

Mo 636 0.887 3 0.29

M7 600 0.923 1 0.28

M8 585 0.909 3 0.27

M9 616 0.895 2 0.26

Mo 701 0.880 5 0.29

Max 701 0.923 5 0.29 648 | 964
Min 585 0.880 1 0.27 646 | 963
Units uA mV dB

Vin=GND Vin(AC) = 15dBm
Test PWDN
Cond =
VDD

Table 7.15: DC and AC electrical characteristics (VDD @5V)
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Current Supply HIGH-GROUP
1<_1gqNA Iglg;} Voft-H | Apin | Amax | f4 £ fon | fan
M1 600 0.900 -1 0.44
M2 620 0914 -1 0.37
M3 682 0.897 -1 0.42
M4 682 0.908 -1 0.39
M5 661 0.901 -1 0.38
38.8 963 1188 1662 | 1172
M6 636 0.887 2 0.35
M7 600 0.923 1 0.40
M8 585 0.909 -1 0.41
M9 616 0.895 -3 0.40
MO 701 0.880 2 0.40
Max 701 0.923 2 0.44 1187 | 1664
Min 585 0.880 -3 0.35 1188 | 1668
Units uA mV dB Hz
Vin=GND Vin(AC) = 15dBm
A e
VI_)D

Table 7.16: DC and AC electrical characteristics (VDD @5V)
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Current Supply LOW-GROUP
I(_igqNA I?SFA Voff-L | Apinl | Aminh | Amax | fa for | fon fon
M1 488 0.207 -0 0.30
M2 477 0.210 -1 0.32
M3 549 0.204 -1 0.30
M4 544 0.208 0 0.28
M5 547 0.204 1 40.8 38.7 031 452 | 635 | 963 | 1172
Mé6 527 0.200 -1 0.30
M7 470 0.216 -3 0.30
M8 437 0.209 -1 0.30
M9 502 0.199 2 0.30
MO 558 0.197 0 0.31
Max 558 0.209 0 0.31 635 | 963
Min 437 0.197 -3 0.28 634 | 962
Units uA mV dB Hz
Test Vin=GND Vin(AC) = 15dBm
Cond.
PWDN
VDD

Table 7.17: DC and AC electrical characteristics (VDD @2.7V)
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Current Supply HIGH-GROUP
I(.ig(;lA I_(glbg? Voft-H | Amin | Amax | 4 fr | fon
M1 488 0.207 -2 0.44
M2 477 0.210 -2 0.39
M3 549 0.204 2 0.44
M4 544 0.208 -2 0.41
M5 547 0.204 -1 38.8 0.41 963 1188 1662
M6 527 0.200 3 0.37
M7 470 0.216 1 0.42
M8 437 0.209 -1 0.43
M9 502 0.199 -4 0.42
MO0 558 0.197 0 0.41
Max 558 0.209 1 0.44 1188 1662
Min 437 0.197 -4 0.37 1187 1661
Units uA mV dB Hz
Test Vin=GND Vin(AC) = 15dBm
Cond.
PWDN=
VDD

Table 7.18: DC and AC electrical characteristics (VDD @2.7V)

On the other hand, the corresponding magnitude frequency response,

given by a network analyzer, for the ten samples are shown in Fig. 7.31 with
VDD=5V and Fig. 7.32 with VDD=2.7V. On the left-side of these figures, the
entire experimental Bode‘s plots are represented whereas on the right-side
details on the ripples of the corresponding passbands are displayed.
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Figure 7.31: Bode diagrams (magnitude) of the filter paths for VDD=5.0V
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dB High Group Filter (2.7V)
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Figure 7.32: Bode diagrams (magnitude) of the filter paths for VDD=2.7V

Observe from this Figures, all measurements agree with the simulations
and specifications at least at room temperature (27 °C.). Despite of the fact
that only ten samples have been used, the circuit shows a very stable behav-
iour (critical frequency points, ripple, magnitude of the rejection, current
supply, etc....).

Finally, and to illustrate the time-domain behaviour of the filtering section,
Fig. 7.33 shows the response at the output of the zero-crossing detector when
the input is a composite signal of 1300HZ and 835Hz (one dial tone). It can be
seen that the frequency of the square-shaped signal agrees very well with the
expected one. The screen of a digital oscilloscope has been captured to dis-
play the resulting signals.
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Figure 7.33: Time-domain response at the output of the
zero-crossing detector for a composite signal of 835Hz
and 1300Hz and equal amplitude
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-OBIST Mode (TEST=1 TOE=0 PD=1):

In the BIST mode both the digital circuitry and the extra elements added
for testing purpose are active. As explained in Chapter 6, our DfT goal was to
split the filter bank into biquads and feeding-back each one until achieving the
sustained oscillations needed for applying the OBT technique. The available
outputs at the I/O pins correspond to the oscillation outputs. It was seen in
Chapter 6 that in the test mode only two biquads can be simultaneously tested

(Fig. 7.34).
Input Buffer | [(Notch#1) | | 1 |
_ D> DT >

(LG #1) (LG #2) (LG #3)

(HG #1) (HG #2) (HG #3)

DDl P

|
a) Group #1: Testing Not#2 and LG#3

Input Buffer | (Notch #1)

(Notch #2) | |

mot#2) ||

[ |
S S I e
(LG #1) (LG #2) (LG #3)
(HG #1) (HG #2) (HG #3)

DDy bl PP
b) Group #2: Testing LG#2 and HG#1

B e e

(LG #1) (LG #2) (LG #3)
(HG #1) (HG #2) (HG #3)

DA DL M P

c) Group #3: Testing LG#1 and HG#2

input Buffer | [ (Noteh#1) | | || |
| DA DT>

(LG #1) (LG#) G #3)

Vil

v

\4

(HG #1) (HG #2) (HG #3)

1 P by

| |(Notch#2) | |

d) Group #4: Testing Not#1 and HG#3

Figure 7.34: Configurations to test the whole DTMF Filter
using the OBIST technique
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Each configuration is realized changing the external pin called PD which
is used to multiplex the corresponding outputs. Therefore, it is possible to find
four different groups of oscillators depending on those biquads which are
oscillating. The Group #1 is formed by the biquads called Not #2 and LG #3,
the Group #2 by the biquads called LG #2 and HG #1, the Group #3 by the
biquads called LG#1 and HG#2 and, finally, the Group #4 by the biquads
called Not #1 and HG #3. Hence, the whole filter is tested in four phases (see
Fig. 7.34). The corresponding theoretical results for each oscillation group are
displayed in Tables 7.19 and 7.20 where the feedback sign and the extra exist-
ing delays (n) are also shown.

extra delay

Output / n=1
Biquad Feed-
back Sign A fosc fosc (1/ quuare—wave)
(Vp) | (FFT) | g ‘ mean | min
Group #1

LG#3 Vo2 /-
Not #2 Vol / + 1.83 ‘ 601 ‘ 589 ‘ 589 | 589
Group #2

HG #3 Vo2 /-
Not #1 Vol /+

Group #3

LG #1 Vol /-
HG #2 Vol /+ 1.55 ‘ 1174 ‘ 1190 ‘ 1165 | 1179

Group #4
LG #2 Vol /- 1.83 ‘ 956 ‘ 981 ‘ 966 | 964
HG #1 Vol /-

V‘ Hz

Table 7.19: Groups of obtained oscillations
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extra delay
Output / n=2
Biquad Feed-
back Sign A fosc fosc (1/Tsquare-wave)
Vp) | (FFT) | g | mean ‘ min
Group #1
LG#3 Vo2 /- 4.15 ‘ 601 ‘ 601 | 595 ‘ 599
Not #2 Vol /+
Group #2

HG #3 Vo2 /- 4.00 1939 1928 | 1928 1928
Not #1 Vol /+ 0.85 710 699 699 699

Group #3
LG #1 Vol /- 1.27 ‘ 819 ‘ 823 | 823 ‘ 823
HG #2 Vol /+
Group #4
LG #2 Vol /-
HG #1 Vol /- 1.25 1311 ‘ 1300 | 1300 ‘ 1300
v Hz

Table 7.20: Groups of obtained oscillations

For one experimental sample, making use of a digital oscilloscope, the
waveforms of the groups of oscillators obtained in the laboratory are shown in
Fig. 7.35 and Fig. 7.36. Other experimental measurements were made for five
samples using a network analyzer (for the FFT, see Fig. 7.37, Fig. 7.38 , Fig.
7.39 and Fig. 7.40). In these Figures, five subgraphics separately display the
results of the five samples and a sixth subgraphic shows all the information
together. Data coming from a virtual oscilloscope are also displayed in Fig.
7.41. Finally, we have collected all the experimental results obtained in this
OBIST Mode in the second section of the Appendix 7.A.
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Figure 7.35: Waveforms of the groups #1 and #2 of the oscillators.
Digital Oscilloscope
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Figure 7.36: Waveforms of the groups # 3 and #4 of the oscillators.
Digital Oscilloscope
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Figure 7.37: Experimental Spectra for the group #1 of oscillators.

Five samples
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Figure 7.38: Experimental Spectra for the group #2 of oscillators.

Five samples
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Figure 7.39: Experimental Spectra for the group #3 of oscillators.
Five samples



350

OBT in Mixed-Signal Circuits

SAMPLE 1 SAMPLE 2 SAMPLE 3
-10.0 0.0 10,0
-30.0 -30.0 -30.0
-50.0 -50.0 -50.0
gm0 g > 700
90,0 -90.0 -90.0
1100 41100 4100
300 1300 1300
1504, 5 x ; 7.2 150G ; X ; 72 150G ; X ; 7.2
Frequency (2) Frequency (Fiz) Frequency (Fiz)
SAMPLE 4 SAMPLE 5 GLOBAL RESULTS
10,0 100 100
300 300 300
-50.0 -50.0 -50.0
3 700 3 700 > 700
3 3
-90.0 -90.0 -90.0
1100 1100 1100
I
1300 1300 130.0
150G 5T 5TO3T T 153 E 207 T 2597 s ITi7.2 1300055 Tudn T e e Zere a2 1500y X X % 7.2
Frequency (2) Frequency (Fi2) Frequency (Fi2)
SAMPLE 1 SAMPLE 2 SAMPLE 3
200 200 200
40,0 0.0 40,0
-60.0 -60.0 60.0
2 ] ]
[ 3 ]
-80.0 -80.0 80.0
-100.0 -100.0 4100.0
1204y, - x - 7.2 1204 ; X » 72 120G - ; » 7.2
Frequency (Fi2) Frequency (Fi2) Frequency (2)
SAMPLE 4 SAMPLE 5 GLOBAL RESULTS
200 200 200
400 400 400
-60.0 -60.0 60.0
2 H ]
3 3 3
-80.0 -80.0 -80.0
100.0 -100.0 +100.0
120, 2 120 2 1209} .

Frequency (Hz)

Frequency (Hz)

Frequency (Hz)

Figure 7.40: Experimental Spectra for the group #4 of oscillators.
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The robustness of the OBIST approach an be also discussed comparing the
design data gathered through extensive Monte Carlo simulations and the test
experimental results under different test configurations. Fig. 7.42, depicts a
typical case for one of the filter biquadratic sections representing the design
acceptability region and several faulty situations in the oscillator parameter

Space.
OBT VALIDATION FOR BIQUAD LG#3
Frequency Vs Amplitude Deviation
50.0 T ! T T
_____ !_>”.'____> UnDetected Faults by frequency ]
' measurement '
40.0—””| fffff - - ‘ Sty
300 - | @A
3 .\, Faulty Ci : it
=~ . | aulty Circuits
[ 2 O P e Ty
g N
<] ! ! ! '
200 F----¢-- - - b S I N - ltsmmm iy
Maximum Window . ,
100 F--/L- - L to detect all faults L o
: ‘ (Mismatching <5%) ' !
C 2 S > N
(@ — .
‘ 1 I 1 1 f'
10.0 20.0 30.0 40.0 &).0
AAosc (%) UnDetected Faults
by amplitude
Experimental Results measurement

Minimum Window obtained by Monte Carlo Analysis
(Mismatching < 0.2%)

Figure 7.42: Details about simulation data and actual experimental data

On the diagram in Fig. 7.42, we have represented (in green diamonds) data
corresponding to the five tested samples for only a biquad (LG#3). From this
Figure it should be clear that a priori simulation prediction give a good esti-
mation of the experimental oscillation values. As it is displayed, data in green
(taken from the experimental results), are placed in or closed to the minimum
window obtained by Monte Carlo Analysis (in the worst case never out of the
maximum window to detect faults). In addition, Fig. 7.43, Fig. 7.44, Fig. 7.45
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y Fig. 7.46 give an overall view of the actual oscillation parameters as pre-
dicted by simulation (SWITCAP has been used, since its results appear to be
quite satisfactory) and as obtained empirically on the actual silicon. A good
agreement has been observed for every biquad.

In general, all the experimental results obtained with this validation dem-
onstrator exhibit a good agreement with the predicted oscillations. Physical
defects were emulated through the use of switches models and changes in the
capacitors. When these fault-free circuits were characterized, all available
samples were spot as “no problematic” through the measurement of the oscil-
lation frequency and amplitude. Likewise, in the lab, all the resulting
experimental data corroborated the predicted theoretical results.
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7.4 SUMMARY

This Chapter provides a clear experimental evidence of the OBT-OBIST
approach feasibility. Many experimental results, extracted from two demon-
strator circuits, reinforce it. All the resulting data obtained herein practically
agree with the theoretical predictions obtained in previous chapters.

Up to day, no experimental proof validated OBT-OBIST in a circuit
implemented in silicon. In this thesis, however, we have designed two explor-
atory devices. One of them is a programmable biquad specifically built to
empirically explore the characteristics of the proposed OBT-OBIST
approach: the accuracy in determining the oscillation parameters, the start-up
strategy, the impact of the swopamp use, the proposed on-chip evaluation
mechanism (use of a ZA modulator to digitally encode the oscillation signal),
etc. On the other hand, the second implemented system is an industrial proto-
type of a DTMF receiver which allows us to prove the feasibility of
integrating OBT-OBIST into the frame of an industrial environment.

In fact, this work can be considered as a benchmark for OBIST in inte-
grated analog circuits which provides empirical data confirming both the
practicality of incorporating this test technique to the regular design flow and
the quality of its results.



Appendix 2.A

Error bound calculation

THE GOAL IN THIS APPENDIX is to introduce a systematic

way to fence in the error bounds of the DF methodology. As discussed, the
DF method is approximate. Then, it is crucial to develop any kind of error
analysis. A lot of work has been made in this sense [99]-[100], [109]-[112],
[114]. However, we have selected a particular reference [99], not only
because the proposed method is relatively easy to use by nonexperts, but also
because that method is not restricted to a particular set of nonlinear elements.
On the contrary, a wide range of nonlinear elements can be included. In this
Appendix we will follow [99], our intention being to facilitate the designer the
practical use of a set of concepts available elsewhere at a rather theoretical
level.

For the sake of clarity, only the

example of Fig. 2.A.1 will be herein k252 N k1%5+ kow(z) AVAVAVAY

>
2, 9%, 2 X(t)
s EOSH”O \

considered. It is a closed-loop system
composed of a generic second-order

iy
structure followed by a comparator. G(S )
Conclusions from this example will
guide us to establish a methodologi-

cal approach to decide when the DF g0 0 2 A 1: Studied Oscillator
approach can be considered valid and

when not.
o We are interested in determining how exact is
Set QO the oscillation result obtained by the DF
l method. The idea is to find a “confidence inter-

Terlet (o, é1 ) val” called Q. This interval (see Fig. 2.A.2) is a

set of fundamental frequency and amplitude

g
’ a, values, (®,a;), containing the fundamental
Figure 2.A.2: Set £2 frequency and amplitude of a true oscillatory

solution, (o, &1) , for the system in Fig. 2.A.1. QQ will be found after defining

several error functions called p, ¢, r and an auxiliary variable, . Such

359
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functions will be needed to state a key inequality at all points in Q. The steps
needed to do it will be described, introducing notation as required [99].

The error functions as well as the auxiliary variable o are related to some
fundamental issues that intuitively may ensure the validity of the hypothesis
supporting the DF approach. In essence, with these functions we try to com-
pare the effect of higher-order harmonics to the effect of the fundamental on
different points of the involved closed-loop system.

Thus, p determines whether or not the effect of the linear block on the
higher-order components is negligible. Function p measures the difference
between the actual output of the non-linear block and the assumed sinusoidal
output (fundamental frequency). Function ¢ is an estimate of the error due to
disregarding non-fundamental harmonics at the input of the non-linear block.
Function r is an upper bound to the nonlinearity output. Finally, with the

variable o, we define error discs around the N(a,) and—1/G(jw) loci which
allow us to find out the set Q.
Step 0: Find (o, a,) satisfying N(a,) + 1/G(j®) = 0 (see Section 2.3.1).

Step 1: Defining the error function, p(®), which measures the effect
of the system's response, G(jo) to high-order undesired harmonics.

Since the non-linear element in Fig. 2.A.1 is an odd function, let us look
for m-symmetric solutions!. We define K = {0,1,2,3,...} and
K* ={0,2,3,...}.

On the other hand, if x(#) is a periodic function of period /®, we can

write:

x(t) = Re Z akeikmt

ke K
and

x*(t) = Re Z akgkoat‘
k € K*

LA n-symmetric solution is one with the property x(w?+ n) = x(®?), and, consequently, containing

only odd harmonics.
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Thus, x* is the part of the solution that is neglected when we use the

describing function to approximate the solution. Therefore, we will assume
reliable results only if x* is sufficiently small.

The filtering effect is the main reason for assuming x* is small. Let us
thus define

p(o) = J T [GGko)
k € K*
Observe that the sum will converge if |G(s)| is o(]1/s|™) with m>1/2, as |1/
s|->0. In practice, G is usually strictly proper and the convergence is very fast,

so only a few terms are needed to get a very good evaluation of p(®). Small

values of p(®) are desirable; the smaller p(w), the better the eventual error
estimate.
On the other hand, we can write

()
W NEE +jk1§0ko) + kyoor

G(jko) =
k + Do kco+co2
- 0)
J = 0 0
And then
4 002 2
24 2 2701,2 2 4
, k2k o) 2k2k kocoo k1 > ko +k0 0
IG(jko)|™ = >
4 0]
k o —kzoa 2@3———0 +oag
Q2

In this case we have

27070 "1

4 ® 2
k k ® —{2k ko k2 Oszco +k 0)3
p(o)) = Z Q 2 ununstep‘l
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It has to be guaranteed that p(w) has a small value in order to obtain a
good solution with the DF approach. Notice that actually, as was discussed

above, if kK, = k, = 0 (filter transfer function, G(s), is a bandpass function)

then
co2
k?—okzwz
Q2
o) = -0
" k 022:3 0)2 0)4
- ’ b ,k20)2—[20)3— g}‘l' 202
(0] ko

when Q — . This means that, in the case of a bandpass transfer function,
the main requirement to successfully apply the DF method is O » 1 as was
discussed in Chapter 2.

However, if G is not strictly proper, p(®) is infinite. One way to circum-
vent this problem is to remove the constant part of G and absorb it into #, i.e,
we poleshift n [99]. We can rewrite
k

2 K19 2
2 @9 2 S +——s+—0
kzs +k1§S+k0m0 k2 Q kz 0
G(s) = =k,
© 2 © 2
s + ES+CDO N +_S+(DO

Instead of the model shown in Fig. 2.A.1, we can use the model shown in

Fig. 2.A.3 where the gain k, is accounted for by the first feedback loop.

o x(t)
—»E——» N[X]

y(t) = n[x(t)]
>

ko

Figure 2.A.3: Poleshifting the nonlinearity to obtain a strictly proper G’(s)
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A simple analysis shows that Fig. 2.A.3 can further be reduced to the
equivalent system of Fig. 2.A.4.

O XM [ ] YW = X

o

G'(s)

Figure 2.A.4: New oscillator scheme

where
2, 0% o 2
ky Q7 ky 0
G'(s) = G(s)—ky = ky ~1
2 % 2
s+ Qs+c00
Q)]
0 2
E(kl —ky)s + oy (ko —ks) AesB
G'(s) = =
[0 2
S +z21s+z31

N +5S+(DO

and n'(x") = n(x)-k,x (Fig. 2.A.5) is the saturation characteristic of
Fig. 2.A 4.
A" n(x)

v v
K,V
>X I >
ly IR ‘-v \ X

nx) = Vsignx) = 10 <90 ik = Yok x=0
I \ x>0 V —KyX x>0

Figure 2.A.5: New nonlinear characteristic

The describing function will be in this case

N'(a,) = —ky+ ¥
T

a;
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And the linear element, G'(j®), has the following generic transfer func-

tion in the frequency domain

®0 2
— (k| —ky)s + (kg — ky)
G'(jo) = L2 00
2 % 2
s + QS+0)0

The aim would be to repeat the Step 0 with these new expressions, the

describing-function N'(a;) as well as the linear element transfer function,

G'(s)
, 1
N(al)_G'_(s) =0
N'(a)) = —k2+;‘—g’l

The new solution will be given by
2 2

s +bs+o =0

with

20

Q
2 2
0" = wgll = (ky-ky)N'(a))]

b= —[1-(k;—kyN'(a))]

Then, the solution will be obtained from

- “0 . 4v 1
b = —[1-(ky —k,)N' =0=ky+— =
(al) Q[ ( 1 2) (al)] = 2+Tta1 (kl_kz)

I 4V{ ky—kq }
=da =

L7 | 1-ky(ky—ky)
ky—k
~2 2 - 2 2
o0 = coo[l—(ko—kz)N’(al)] = mo{l—ktlj_kj

And, after poleshifting the nonlinearity, we would have
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2
©9 2,2 2 4 2

G'(jko)* = £

2
4 ®
k403 — (20)(2) — —O] k2w2 + (Dg
Q2

which is strictly proper.
Step 2: Defining the describing function output error, p(a;).

This value takes into account the error of assuming that the output of the
nonlinear element, 7, is sinusoidal when its input is sinusoidal. Such a func-

tion is
p(ay) = [n(a;cos(on)|; - |a;N(a)|’

where the L, norm on [0,27] is ||°||22 , defined by
2n
fol3 = 2 | si’ar
0
The function p(a,;) can always be calculated explicitly, but if » has a
finite gain B (i.e., |[n(x)| < Blx] for all x in the region of interest) then, with
some loss of accuracy in eventual error estimate, we can replace p(a,) by an
upper bound fSa;. Incidentally, that it is sometimes possible to get by it with-

out calculating p .
In our specific case (if we do not need to poleshift the nonlinearity), we

have
27

Hn(alcost)Hg = %an(alcos(mt))dt -2V
0
since nz(x) =V’ Vx.

Therefore, p(a,) is
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pz(al) = Hn(alcos(oot))Hg—’alN(al)‘z:"”

2 2
pz(al) _ 2V ;16\/2 ) 2V2[n ;8] -
T

T

1:2—8

p(al) =V 2[ 3 JzO.62V Step2
T

Step 3: Defining the function g(a,, €).
A decisive step is to compute a function that measures the error intro-

duced by disregarding high harmonics at the input of n. The function is
defined employing the supreme norm

I, = suplf(nl 1 e[0,2n]

and uses an upper bound € on ||x*||w, the supreme norm of the neglected
(usually higher) harmonics.

This function is defined as

qa;, e) = sup”n(al cos(ot) +x*(1)) - n(a, cos(a)t))H2

el <

Take careful note of the two different norms used here. The actual calcu-
lation of g is by a worst-case analysis of the integral involved in the L, norm.
If n is single-valued, we can define

m(x, &) = supln(y) —n(x)| y-xl<e

where m(x, €) = max{|n(x+¢)—-nx)|, |n(x-¢)—-n(x)|}.

So that

2n
1 2
q(a, €) = - j m(a,cos(wt), &) dt
0
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Now, supposing the proposed nonlinearity, n(x) = Vsign(x) (shown in
the next Fig. 2.A.6), then m(x, €) = 2V when |x| <& and m(x, ¢) = 0 when

x| > €.

Z(b) = a cos(ot) n[x(t)] = Vsign[a, cos(ot)]

AWAN/IWANWANR ﬂ W ﬁ 11,
AVAAVARVARVAR IRER

X(t)+8 = aqcos(ot)+e  px(t)+e] = Vsign[a, cos(ot) + €]

AANAD, 1ﬂmﬂr
A NI

€

Figure 2.A.6: Calculating the function g(a, €)

Analysing the function x(#) we can find the value of g(a,, €) . Thus, let us

draw in Fig. 2.A.7 the signal x with respect to the time.

A Ix(t)| = ‘a,lcos(oat)‘

X <e= |a1 COS(wt)| <g

0| 41 % '3 Y4 2n/0 t

Figure 2.A.7: x with respect to the time
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Then, we have

1 weos( 2] )
t1= — = acos| — | = ——asen| —
® a a
1 1
2 o M
t2=—=———
0] 2 o
X X X
® o ®
X X X
4= 4 n+—2 = 2n——1
® o ®

Finally, we can find the ¢ function for this case

2n
q(a, ) = rlr J m(a cos(w1), s)zdt
0
o ® o
j m(a cos(or), s)zdt = J.4V2dt+ J‘4V2dt ="
0 X X3
(O] (O]

"mo_ 4VZ[M} = 4V2[2n—4x1} = 16V2asen(£)

[0) ® a
1

q(al, g) =4V f%asen(ail) Step3

Steps to find the Set Q:

With p, p and g known, the rest of the process entails resolving an equa-
tion to find an upper bound on the higher harmonic error, ¢, then finding a set
Q of (o, a;) values satisfying a key inequality, and finally checking a non-
degeneracy condition which is nearly always trivially fulfilled. In order to

find an appropriate value of €, we have to satisfy the inequality

p(w)min{q(ay,€)+p(a;),r(a;,€)} <¢

with r(a;, €) = J2supln(y)| y<a +e.
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In our example

2
p(w)min< |4 lasen(i)+ 2(“ _8] V,2Vi<e
T a Tc2

where r(a,, &) = J2V.

This inequality has to be fulfilled for some &(a;,®)>0 for all

(a;, ®) € Q. In fact, we do not know Q yet. All we know at this stage is that

(ay, (:3) e Q, where (L; R (:3) is the DF solution. The method is as following:

Step 4: Find the smallest & which safisfies the inequality for

(a;, 0) = (a), ®):

N 1 ( ne )
p(®)min {4 Lasen VK, +

2
ky—kmn2 [0 k,—k
2.4 4K~ Kg 2 2Wp) 2 2K~ Ky 2 4
k2k (oo(k _kz) —[Zkzkomo—kl—zjk (oo(k —kz) +koo)0
1 0 1
ki — ko2 ki —k o
k=3,5, ... k4o)4(] o) _kzmz(l :)(20)2__0 bl
0 kl_kz 0 kl_k 0 Q2 0

We can then guess a larger value of €, check that it still satisfies the ine-

2(“—;8HV SL2vi<e

p(w) =

quality for (aA 1> (;)) , and later, complete the check when Q is known.
Step 5
Otherwise, we can try to solve the inequality as an implicit equation: for

each given pair of values of ® and a, , we look for the smaller positive ¢ for

which there is an intersection between the line y = ¢ and the curve

2
y = f(e) = p(o)min 4vm+v Z(nn; 8}@‘/
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Since g and r are both monotone increasing functions of ¢, if there are
intersections between the line and the curve, the first intersection will be
found by applying the contraction mapping theorem to find a fixed point of

f(e), starting from € = 0. In this way we can find the smallest ¢ for each ®

and a, .

Because of the term r(a,, €), any nonlinear element that saturates (or,
more generally, any nonlinear element that eventually grows slower than lin-
early) will produce a finite value of €. In general, though, it is possible that no
solution exists to the inequality, either because the linear part is not a good-

enough filter or the nonlinear part is badly behaved. In such a case, we can go
no further with this method. Poleshifting may be employed to reduce the val-

ues of ¢ and p as was discussed in Step 1.

We now try to find a closed bounded set Q that contains (4; 1> 03) and all

nearby points that satisfy the key inequality
1
G(jw)

‘N(al)— <o(w,a;) 8.1

where

Q(ala 8(03’ a]))

o(w,a;) =
a;
with € > 0 satisfying the inequality; the tightest bounds are found using

the smaller values of €. Let us explain two ways of finding Q ; the first one
provides the smaller set, but requires more work than the other one. If no
bounded Q can be found, the error analysis has failed.

Let us evaluate this secondary variable. We start from the error function

g(ay, €)

2
_ 1 € 2 _ 16V g
‘1(01’ g) =4V Easen(a—l) = q(al, g) = = [asen((l—ljJ

Let us suppose a; is large compared with €. We can rewrite

2 2
Cl(al, 8)2 = —16TCV [asen(—g—)J ~ 16V e

(11 T (11
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And then
1 [
g(ap, e(w,a) (16V7 ¢ )% 1 16V2 \2 7
c(w,a;) = & —| = = g] a, (8.2)
al TT al Cll TT
Step 5_1:

We can find Q straightforwardly encircling (c;l, (:)) by a grid of points

and at each point, find € and calculate the ratio

c(w,a)

The boundary of Q) consists of those points where the ratio is 1.
Step 5_2:

We can settle ¢ at some slightly pessimistic (large) value and employ the
previous inequality (8.1). This is easy to implement graphically since it says

that points (o, a,) inside Q must be such that the distance between N(a,)
and —1/G(jw) is at most g(a,, e(®, a;))/a, . Consequently, we can choose
a range of a; values, and draw discs centered on N(a,) and of radius
q(a,, e(®,a,;))/a,. The envelope of the discs cuts off a range of ® values

and the first and last discs to intersect the —1/G(j®) locus define the correct

a, range. (See Fig. 2.A.8). We obtain a rectangle
Q= [0, Opar] % [ay,,;,0 41,,,,] Which will contain the set QO found in

method step 5_1 and we check that the € we fixed is actually big enough over
this rectangle.
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DV
. N(ay)
cy(adlmin’ 8)

Figure 2.A.8: Error discs used in locating the set Q, in
which the exact solution lies

Step 6: Check that Q contains the one describing function solution
((Da 211) .

Step 7: There is atf least one frue oscillation solution in the system
whose frequency and first harmonic amplitude are within the above

ranges and ||x*|| <g.
Step 8: A final step in the error analysis would be to check for nondegen-
erancy of the intersection between the loci of N and —1/G . The meaning of

“nondegenerancy” as well as the way to calculate it are explained in [99],
[109]-[112].

Getting to the point, the values of the involved error functions and
the variable c are

2
2.4 4 2 29|22 24
kzk [0 —(Zkzkowo—klg}k ) +k0c00
(0) = (8.3)
ST k4(o _k2®2£2w3_£]+°’3
Q2
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TE2—8
P(al) =V 2[ ) j
T

_av L (_8.)
q(al,s) =4V nasen a;

1
= 3
Q(alag(maal)):£l6vzej2 _5

G(m,al) =

al T

373

(8.4)



Appendix 5.A

Characterizing the involved oscillators

We can differentiate several groups of oscillators in the DTMF core when
it is reconfigured in the OBT mode. Table 5.A.1 summarizes the existing
groups as well as the types of biquads involved in every group.

Group | BIQUAD TYPE FEEDBACK OUTPUT
LG #1
A BP00-LPO1
HG #1
B Not #1 GENERAL-HPNOTCH
Not #2 Vv ol
C LG#2 GENERAL-HPNOTCH
HG #2
GENERAL-BP00
D LG #3
GENERAL-BP00 Vo2
E HG #3 GENERAL-HP Vo1

Table 5.A.1: Groups of oscillator types

In what follows, we will separately study every oscillator group. The
results achieved in this Appendix are used in Chapter 5 to obtain some main
conclusions. The given steps are the following:

Step #1: we calculate the numerical values of the oscillation parameters
by the theoretical expressions (using the DF approach) as well as by simula-
tion (using Simulink/Matlab).

Step #2: we determine the oscillation frequency in relation to the resonant
frequencies of the biquads. To do that, we draw the corresponding Bode Dia-
grams. We then estimate the value of all the frequencies of interest.

Step #3: we calculate the amplitude and the frequency sensitivities.

Step #4: we plot a set of graphics to show how every individual capacitor
deviation influences on every oscillation parameters. We will remark in every

375
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graphic the deviation (in %) between the value of the involved nominal
oscillation parameters and the value of such an oscillation parameter when a
capacitor deviates a £10 % from its actual value.

-Group A (LG #1 and HG #1 Oscillators):

Starting from the first biquads in the DTMF structure, we examine the
biquads called LG #1 and HG #1 which belong to the same group. Fig. 5.A.1
displays the corresponding oscillators.

____________________________________________

Vier=Va-VB
4

Figure 5.A.1: LG #1 and HG #1 oscillators
Observe from this Figure that the feedback loop is closed by the first out-
put, V,, . For this particular case, the oscillation conditions and the oscillation

parameters are shown in Table 5.A.2. Step #1 is summarized in Table 5.A.3,
Step #2 is represented in Fig. 5.A.2 and Step #3 is given in Table 5.A 4.

Cos = Co9 = Cs6 =0
Oscillation Conditions Sign(vref) = sign(-C;) = sign[-C, (I -C,C)1<0
2-C,(C,+2Cy)
llat _ 1 2756, 72C)
Oscillation Frequency fosc = 5.7 acos {2 ] —C2C8 }
Oscillation Amplitude A _ 2Vi.r €
osc ©n  C,C
2+8

Table 5.A.2: LG #1 and HG #1 reconfigured as an oscillator: Steady Oscillation Mode
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LG #1 (BP0O-LPO1)
sinusoidal steady state analysis

Y

0 0
frequency (Hz)

HG #1 (BP00-LP01)
sinusoidal steady state analysis

&
=g
o

voltage (db)

-80.0

7
-100.0

— vdb(Vo2)
— vdb(Vo1)

0 0
frequency (Hz)

LG #1
10.0 sinusoidal steady state analysis
: 821.98Hz
~. 846.45Hz
s 2
100 7/ \
2:10.0 - <
o g
S \
> 7
f Zg15
osd® 81BHZ
-30.0 7000
frequency (Hz
HG #1
sinusoidal steady state analysis
1320.99H.
s 0\9? i _ 1350.34Hz
o
T
()
j=2)
]
°
>
fosc: 1363Hz
-20.0 T

frequency (Hz)

Figure 5.A.2: LG #1 and HG #1 Bode Diagrams

LG #1 HG #1
Cl = 0.03;C2 = 0.09;C7 = 0.09;C8 =0.32 C1 = O.O4;C2 = 0.15;C7 = O.IS;C8 =0.26
k2 = —0.03;1(1 =0.03 ;kO =0 k2 = —0.04;1(1 = 0.04;1(0 =0
b1 = —1.96;b0 =0.97 b1 = —1.94;b0 =0.96
Negative feedback
sign(kz) <0
iheoretical _ g16.10hz theoretical _ 1363121z
lab > Af=241% lab —->Af=129%
21ad _ 796.51Hz A0 _ 1345 40H,
0scC 0scC
Vref = -1V
A:)I;ioretlcal — 1272V Az)hsioretlcal ~ 1306V
tlab —->AA =031% tlab —>AA=031%
matlia matla
Aosc = 1276V Aosc = 1310V

Table 5.A.3: LG #1 and HG #1 reconfigured as an oscillator: main oscillation results
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Amplitude Sensitivities Frequency Sensitivities (%)
(%)
SAOSC _ 100 Scos(®osc) Y
C1 Cl C1
SAosc 100 SCOS(®osc) — 100 ¢,
L C o _ _
¢, C, 2 (-2+C,C,+2C,Ce)(~ 1+C,Cy)
Aosc 1 cos(® ) C2C
Sc _ _l1oo S os¢’ _ 100 2%7
8 Cq Cg (-2+C,C5+2C,Co) (- 1+C,Cy)
A cos(® ) C
$.0%¢ _ Se. 0% =100 2
C7 7 (—2+C2C7+2C2C8)

Table 5.A.4: Sensitivities for LG #1 and HG #1

From this last table we have, for instance, that the oscillation frequency

does not depend on capacitor C,; and that the oscillation amplitude does not

depend on capacitor C,. Both cases are a clear proof of this statement:

measuring both oscillation parameters is necessary to guarantee a
good fault coverage

Otherwise, if one of the oscillation parameters is not considered, an unac-
ceptable test quality is achieved. But, from the expressions of Table 5.A.4, it
is very complicated to guess how each capacitor deviation affects the oscilla-
tion parameters. Step #4, however, lets us to straightforward determine it.
The involved graphics are Fig. 5.A.3 for LG #1 and Fig. 5.A.4 for HG #I.
Such Figures display, on the left side, the oscillation frequency cosine versus
every capacitor deviation and, on the right side, the oscillation amplitude ver-
sus every capacitor deviation.



Appendix 5.A: Characterizing the Involved Oscillators

379

T T T T T ™ 1
0.9958
- 145 x
£ooess |
H
8 14 E
Jossss ~10%,]
&
8 0.9958| > 135, * ‘
g g ¢ 0% +10% >
S 0958 R B
z P sk - ek ks ks ks sk ke ke ks k- ke k- ke k- k- A < 14 * g
H § *
2 0.9958] £ *
£ o x g
£ 0.9958] 1 Lx
2 x°
© 0958 b 2
0.9958 115
0.0058; s s L n " N N L L L "
0.027 0.028 0.029 0.03 0.031 0.032 0.033 ‘01027 0.028 0.029 0.03 0.031 0.032 0.033
Cy Cy
T T T T T T T 1
- .
3 *
50.99624 ~ 4
o+,
£ *
g *
& *.
7 0996F +4.88 % * 1
g * >
g L Tk g
2 Y % 2
?0.9958 <
H * §
g T 2
T * 2
< B . %" S
£ 0.9956] * 4.85 %
2 *
. - *
0.9954) E
0082 0084 0085 0085 009 0092 0004 0096 0098 0082 0084 008 0085 009 0092 0094 009 0098
2
0.9966— T T T T T T T T T T T T T T T
1.327 E
—?;0 9964 | E
L] 1.3268| 1
H
5 .
3 0.9962 * 4 1.3266 1
8 * >
g Tx g
2 *. £ 1
& . . E
gW% 4.88% *" 1 ‘é L SR EE SR SE SR SE SR SE SE S S ST SF S SF S8 S8 EF £F 1
g T % 5 1.3262] 4
[t Y -10% +10% 2
5 - — - - - — - —»
£ 0.9058] ¢
Sk 1.326 J
.
X -4.45% .
0.9956 k. g
*
*
Sk 1.3256| E
o s N N " s N N L L " . " . . N . . A
0.082 0.084 0.086 0.088 0.09 0.092 0.094 0.096 0.098 0.082 0.084 0.086 0.088 0.09 0.092 0.094 0.096 0.098
C; C7
e T T T T T 155 T T T T T T
A ]
3 “x sr 1
H ' *
g .
8 *
% 0% N E
§ooossH ~0% * 4
H *
¢ Tk
8 10% *, +10% "
goosssf— - - — - - —x R —P
3 *
2 * -10% +10%
< * -
* H
e 0% 13f
y ,
* ~ 125
0.9958| * q
* e
029 03 031 052 033 034 0.5 029 03 031 0.32 0.33 0.34 0.35

Csg

Figure 5.A.3: LG #1 (BP00-LPO1)
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Figure 5.A.4: HG #1 (BP00-LPO1)



Appendix 5.A: Characterizing the Involved Oscillators 381

From Fig. 5.A.3 and Fig. 5.A.4, it can be observed that a £10% deviation
in C, is reflected in a ~ + 10% deviation in the oscillation amplitude, while
oscillation frequency is not affected by this kind of deviation. Similarly, if a

+10% in Cy is being considered, only the oscillation amplitude deviates vis-

ibly from its nominal value (more specifically ~ £ 10% ). On the contrary, if

a £10% deviation in C, is being considered, only the oscillation frequency

deviates from its nominal value (to be precise a ~+4.5% ). Finally, when a

+10% deviation in C, is being considered, both oscillation parameters are

affected (to be precise, a ~ = 4.5% deviation in the frequency anda ~ £+ 10%
in the amplitude). Undoubtedly, in view of these figures (Fig. 5.A.3 and Fig.
5.A.4), we are faced with a particular case where oscillation amplitude is of
vital importance as even provides more fault coverage than oscillation
frequency.

-Group B (Not #1 Oscillator):

Let us, on the other hand, examine the biquad called Not #1. Fig. 5.A.5
shows the corresponding oscillator.

GENERAL

1 Vo1 7C22 !
——>(H—» |
1-2z .

Ceg(1-2")

-1 Vo2

—O- '
1-z HP-NOTCH .

"""""" L .

Figure 5.A.5: Not #1 oscillator

Now, the oscillation conditions and the oscillation parameters are shown
in Table 5.A.5. Step #1 is summarized in Table 5.A.6, Step #2 is represented
in Fig. 5.A.6 and Step #3 is given in Table 5.A.7.
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Cos = Cog = 0
Oscillation sign(Vref) = sign(—Cl(l + C9) + C56C7)
Conditions
2 2
Oscillation |~ _ —2C +2C56C7=C1Cy—2C1 €+ C4C (14 Co) - CyCaCs6
Frequency osc ~ 2xT acos 2[-C,(1+Cy) + C5cC-]
2sc1lllitlzn - zvref [—Cl (1+ C9) + C56C7}
mplitude = :
0sc 11 C9

Table 5.A.5: Not #1 reconfigured as an oscillator: Steady Oscillation Mode

Cy = 0.039:C, = 0.041;C, = 0.077:C¢ = 0.076;C5c = 1.061

7 56

k, = 0.037:k; = -0.040:k ) = 0

0

b, = -1.927;b, = 0.930

1 0

Positive feedback
sign(kz) >0

ftheoretical

oscC = 503.66Hz

—>Af=0%

ff)n:‘c“ab = 503.66Hz

theoretical

Aosc = 6.523V

=1V-> —>AA =034 %
ref matlab ’

A = 6.545V
osc

A%

Table 5.A.6: Not #1 reconfigured as an oscillator: main oscillation results
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Not #1 Not #1
sinusoidal steady state analysis sinusoidal steady state analysis
20.0
6.0 | 35p.2l1Hz |
N -
0.0 o ~
5 5 -14.0 SN /1
° \\ z N 4
§-20.0 y S \
s 8 N ]
] i 3 \ fl s 4
”| 340 313.21Hz
-40.0 ||| AN
6005 1 10 700 1000 10000 54055 000
frequency (Hz) frequency (Hz)
vdb(Vo2)
— vdb(Vo1 0 :
Wot) Figure 5.A.6: Not #1 Bode Diagram
Amplitude Sensitivities (%) Frequency Sensitivities (%)
0s(© 20 o
sAosc ~ 100 1+C9 swh( osc) - 100 (’9(’7L56
c, C,(1+C,)-CC <y . . 2, e ) .
1 1 9)=C7Cs6 [pzcl +C,C,C 0 +cg)fclc9+zc7c567c2c7(‘56][(‘|<1 +Cg)=CyCsl
Agge *@ose) _ o C4(C(1+Cg)-C,Cqp)
S =0 (¢ 2 2
C, 2 (-2C) +C4C,€ )(1+Cg) = C; Cy +2C;C50 - CyCCag
2 2 2 22
Aoge Cs6 cos(0,) c2c1(1+2c9+c9]7c1c56[2c2c7(1+c9)+c9) +C,C3C5,
Sc, TETETE e Sc, = 0 5
1 9756 [HCI +6,C5¢ a1 +cg)fclcg+2c7c567czc7c56}[c1<1 +Cg)=CCsl
(] C,ColC,(2+Cy)-2C,C
Pose oo C176C% Zns osd) o0 1! ;( +C9)-2C, 525]
Co ColC (1 +Cg)~CrCsl ? [(’ch *C2C7C1)“+C9)’Clco*2C7C56’C2C7C56}[C1(1 +Cg) = C5Cs6l
A c 080 o) ¢ ¢ cl
g 08¢ _ 7]00{—7} Se ose’ _ 00 167C
C C,(1+Cy)-C,C 56 ., o2 2. .
56 1 9)=C4C56 [(—2(‘] +C,C,C 01 +c9)7c|c9+2c7c567c2(‘7c56}[c|<1 +Cg)=C;Cs6l

Table 5.A.7: Sensitivities for Not #1

Again, from Table 5.A.7, we can not extract general conclusions except
the necessity of both oscillation parameters to yield an acceptable test quality.
Fig. 5.A.7 and Fig. 5.A.8 show the results of Step #4.
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Figure 5.A.7: Not #1 (GENERAL - HPNOTCH)
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Figure 5.A.8: Not #1 (GENERAL - HPNOTCH)- Cont

-Group C (Not #2, LG #2 and HG #2 Oscillators):
Let us also examine the biquads called Not #2, LG #2 and HG #2.
Fig. 5.A.9 shows the resulting oscillators.

GENERAL
Vo1 —02271

1-z | HP-NOTCH .

f

Figure 5.A.9: Not #2, LG #2 and HG #2 oscillators

The oscillation conditions and the oscillation parameters are shown in
Table 5.A.8. Step #1 is summarized in Table 5.A.9, Step #2 is represented in
Fig. 5.A.10 and Step #3 is given in Table 5.A.10 and Table 5.A.11.
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Cos = Cog =0
8sci(lil.a‘tion sign(V,p) = sign(-C; +C5C5)
onditions
2
Oscillation . _ acos —2C1 +2C56C7+(C2C7+2C2C8)(C1 _C56C7)_2C2C8C56
Frequency ose 2Ty 2
2[(C1_C56C7)(C2C8_ l)_C2C8C56J
Osc111fat10n N - 2V, ¢ [-C1 +Cs6Cy
Amplitude osc g C,Cq

Table 5.A.8: Not #2, LG #2 and HG #2 reconfigured as an oscillator: Steady Oscillation

Mode
Not #2 LG #2 HG #2
Vref: 1v Vref: 1V Vref: 1V
(Hysteresis=1 56’3V)
C, = 0.036; C, = 0.04; C, = 0.024;
C, = 0073; C, = 0.109; C, = 0133;
C, = 00s8; €, = 0.110; Cy = 0.129;
Cg = 0252 Cg = 0.09; Cg = 0.089;
Csq = 0.964; Cs6 = 0.259; Cs6 = 0.296;

ky = 0.264:k; =-0.507:k, = 0.243

bl = —1.977;170 =0.982

ky = 0.009:k; =-0.034;k, = 0.0240

bl = —L978;b0 =0.989

k, = 0.040:k; =-0.067;k,, = 0.0264

bl = —L971;b0 =0.988

Positive feedback
sing(k2 - ko) >0

Negative feedback
sing(k2 - ko) <0

Positive feedback
sing(k2 - ko) >0

teorica

0sc

foo % = 666.34Hz ff)cs‘;”” = 975.68Hz tt"socnca = 1188.59Hz
a SAf= 551% a SAf= 0.84% ab SAf= 056%
AN _ 629 62H2 AN _ 967 51Hz MARAD _ 1181.89H2
osc osc osc
te<0rlca — 1378V Ate<0rlca _ 1927\/ te‘orlca — 1526V
0osc 0osc 0scC
ab S AA = 10.03 % ab - AA = 0.06 % ab S AA = 045 %
A = 1532V AT g6y ATAHEY 533y

0sc

Table 5.A.9: Not #2, LG #2 and HG #2 reconfigured as an oscillator: oscillation results
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Figure 5.A.10: Not #2, HG #2 and LG #2 Bode Diagrams
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Amplitude Sensitivities (%)

Aosc 1
S, = 100{7]
G C1=C1Cs6

sAosc _ 100

C2 C2

A

Sc

osc C56
-0 ETE e
7 17756

Aose _ 100

C8 C8

505 7100{L}
Cs6 C1-C1Cs6

Table 5.A.10: Sensitivities for Not #2, HG #2 and LG #2 ()

OBT in Mixed-Signal Circuits

Frequency Sensitivities (%)
20 24
G €3C,C5Cs6
G [= €+ C7Cs6+ CyCg(C) = CgCsg = CgCs)II2(= € +C7Cs6+ CyCg(C) —CCs6 = CgCsg)) T C2C5(Cy =~ C1C50)]
22
o) C7(C1(’2C7C55+C])+C7C56)
C - ¥ . = - . = .
2 [=C #CyCs6+ CpCRIC) = CgC 5= CgCsl[2(=C + CyCq6 T CCo(Cy = C7C s~ CgCsg)) + €5 Cq(Cy = CrC50)]
2 22 2 2 22 2
s“"*“"nsﬁ oo Cz[CICSG(ZCszCsj 007056+ 26401056+ €] ’2C1C56) ’C7C56’C1]
¢ = 100— - ~ — —— N e : ——
7 [ €y #CyCs6+ CyCglC = CyCs6 = Colsg)I[2(= Cp + CoCs+ Cy CglCy = CqCs4 = Colsg)) + €5 Co(Cy = C7C5¢)]
w0sOp) C5C(C)~C5Cs6-2CeCoe)(C, - CoCs )]
Sc = T = - = - - =
8 [=€; #C3Cs6+ CaCq(C1 ~C7Cs6— Cglsg)l[2(=C )+ CyCs6+ €y CglC = C7Cs6 = CgCis6)) + C3C7(C = C7C56)]
2. 2
SZ"S(Oosc) o C,C5C,Cq
56 [=C #C7Cs6 T CyCQ(C) = C7Cs6— Cglag)I[2(=C) + CqC4+ CyCq(Cy = C7C6 = CgCa)) + CyC4(Cy = CCs¢)]

Table 5.A.11: Sensitivities for Not #2, HG #2 and LG #2 (II)

Finally, Step #4 is carried out in Fig. 5.A.11-Fig. 5.A.16.
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Figure 5.A.11: Not #2 (GENERAL-HP-NOTCH)
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Figure 5.A.13: LG #2 (GENERAL-HP-NOTCH)
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Figure 5.A.15: HG #2 (GENERAL-HP-NOTCH)
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Figure 5.A.16: HG #2 (GENERAL-HP-NOTCH)-Cont

-Group D (LG #3 Oscillators):
Let us also examine the biquad called LG #3. Fig. 5.A.17 shows the result-

ing oscillator.

) 1
' C,+Cg(1-2")

! GENERAL 1 BP00
« Vin —T ] Vo —Cyz 7| Vo2
\ -1

' 1-z |

Vo VaVg .

=
A

—

A

osc

VWV Mose

Figure 5.A.17: LG #3 possible oscillators

The oscillation conditions and the oscillation parameters for this particular
case are shown in Table 5.A.12 and Table 5.A.13. On the other hand, Step #1
is summarized in Table 5.A.14 and Step #2 is represented in Fig. 5.A.18 and

Step #3 is given in Table 5.A.15.
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Cpi= Cyg = Coo = 0 Hol

Oscillation
sign(V._p) = sign(C<(C,+Cyg))
Conditions ref 55T 8
o 2 2

Oscillation _ cos ~2C5-2Cg +C,C5+2C,CC,+2C,C
Frequency osc T 2[(C4+ Cg)(C,Cg - D]
Oscillation a o Vet [Cs(cﬁ Cs)}
Amplitude 0se ! C,Cq

Table 5.A.12: LG #3 reconfigured as an oscillator (I): Steady Oscillation Mode

017 56 ™ oo =0 Ho2
Oscillation
Conditions sign(Vpep) = sign(Cs(C7 +Cy))
Oscillation I 2+C,C,+2C,Cq
Frequency ose  2nT, 2(C,Ce-1)
Oscillation A - Vier { -Cs }
Amplitude os¢ I [C,Cq4

Table 5.A.13: LG #3 reconfigured as an oscillator (II): Steady Oscillation Mode

Although it is theoretically feasible to obtain two kind of oscillators, there
is, however, a problem to do so. If we use the first output, it is very difficult to
force an adequate initial condition that allow to stimulate such an oscillator. A
possible explanation of this is that in this particular case the value of oscilla-
tion frequency is not closed to the biquad resonant frequency, whereas for all
the other cases that requisite is fulfilled (Fig. 5.A.18).

Hol Ho2
(GENERAL) (BP00)
€, = 0.072;C; = 0.065;,C¢ = 0277;C5 = 0.065 €, = 0.072;C; = 0.065;C¢ = 0277;C5 = 0.065
ky = 0.022;k; =-0.018:k, =0 k, = -0.065:k, = 0.065:k; = 0
bI = —I,975;b0 =0.980 b1 = —1,975;b0 =0.980

Positive feedback

Negative feedback

osc

sign(ky) >0 sign(ky) <0
:)hszurencal — 281531y ;hSZ‘”e“C"l = 616.89Hz
. SAf = % b SAf= 211%
atlab _ ) fmatab 03 90k
osc osc
heorctical heoretical
A;Szorctlca — 1420V Alszorctlca = 5.0637V
Viep= 1V 1ab SAA=— % Vieg = 1V Jab —>AA = 0.17%
matlab -, Amatab s o1y

o

NY

Table 5.A.14: LG #3 reconfigured as an oscillator: main oscillation results
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611.62H; N
LG #3 ' LG #3 z fosc~616HZ
20.0 sinusoidal steady state analysis sinusoidal steady state analysis /
0.0 p | . fose =218z l(
—_ . Ay
@-20.0 b § . ’
Q
= S
£ 400 5 g ~ / \\\
> o S 96.95Hz \\‘
-60.0 A /
800 0 000 10455 < 7000
frequency (Hz) frequency (Hz)
= vdb(V02)
_— vdb(Vo1)
Figure 5.A.18: LG #3 Bode Diagram
Amplitude Sensitivities Frequency Sensitivities (%)
%
) Ho2
Ho2
g osc _ 100 SCOS(GOSC) - 100 C;
C, C, C, (- 1+C,Cg)(=2+C,C5+2(C,Cy))
AOSC _ 100 Cos(@osc)
Sc. = c =
5 C5 5
SAosc o cos(O . .) oo C,
c, Cq Z2+C,C,+2(C,Cy)
cos(® ) C2C
5.0%¢ = 10 o8¢’ _ 100 27
8 C8 C8 (-1 +C2C8)(—2+C2C7+2(C2C8))
Table 5.A.15: Sensitivities for LG #3

Finally, Step #4 is carried out in Fig. 5.A.19.
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Figure 5.A.19: LG #3 (GENERAL-BP00)
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-Group E (HG #3 Oscillator):
Let us also examine the biquad called HG #3. This is graphically as shown
in Fig. 5.A.20.

C,+Cg(1-2 ) !
GENERAL ] BP0O| !
-1 Vot ~Cpz~ 1 Voo|
17" . 17" :
I !
Coe(1-2 )| | !
7777777777777 VgVaVe  |C v Tf T T T T T
) ¥ 'osc
=" SV Aose
B

Figure 5.A.20: HG #3 oscillator
The oscillation conditions and the oscillation parameters for this particular
case are shown in Table 5.A.16. On the other hand, Step #1 is summarized in
Table 5.A.17 and Step #2 is represented in Fig. 5.A.21 and Step #3 is given
in Table 5.A.18.

Co1= o5 = Cpo =0
Oscillation Conditions sign(V, o) = sign(C5,Cy)
2 2
) =205 +CyC3+2C,CoCe + C,Cy
Oscillation Frequency fosc = 577 - acos )
s ~C7+C,C;Ce+CyCy
2V C..C
5 5 0 _ ref | 75677
Oscillation Amplitude Agse = 7 [CZCS}

Table 5.A.16: HG #3 reconfigured as an oscillator: Steady Oscillation Mode

C, = 0.191:C, = 0.184:Cg = 0.171:C5¢ = 0.994
ky = 0353k, = 0353k, = 0.170
by = ~1932b = 0.967
Positive feedback
sign(k, k) >0
g;ec‘”e“cal = 1728.93Hz Athecore"”l = 7130V
b DAL= L07T% V= 1V . SAA = 136 %
fmatlab g0 380, Amatab g oogv
0sc osc

Table 5.A.17: HG #3 reconfigured as an oscillator: main oscillation results
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HG #3 HG #3 fosc™ 1728Hz
sinusoidal steady state analysis sinusoidal steady state analysis .~
50.0 25.0 —
11583.0 HE— .y 4 -
0.0 I \:
= By 5 , \
el =l /] =) -
o 50,0 . o 9 - ' \‘
g T A g P I ~~
S = p e LT L7 1702.63Hz
1 //
-100.0 e p
-150.05 10 7001000 10000 250 7000
frequency (Hz) frequency (Hz)

vdb(Vo2)
vdb(Vo1)

Figure 5.A.21: HG #3 Bode Diagram

Amplitude Sensi- Frequency Sensitivities (%)
tivities (%)
C (Cz Cz)
Aose 100 005(9050)7 T\Z77 8
S = _100 S = -100
©2 © © ( 20+ CyC2420,CCut C Cz)( C,+C,C,Ce+C Cz)
T TRy T Aty g Ty (T T oy g T g
CC(ZCCC sc,Cioac +CC2)
Aose 100 c0s(®¢c) 27\"F278 T 28 T AR T 2T
S _100 S 100
c8 c8 C8 (ZC +C C2+2CCC +C Cz)( C,+C,C,Cq+C Cz)
Tty TRty T ek g TRy (T Tt T g
2 2 2 2 3
Aose 100 cos(Op.) Cz(’cs’c7+C2C7C8+2C2C7C8+C2C8)
S = — S = 100
“ & @ [ 20 +C,C2120,C.C 4 C cz)( C,+C,C,Ce+C cz)
TRy T by T Aty g (T TRy g T St
AOSC 100 COS(@OSC)
Scee T c =
56  Csq 56

Table 5.A.18: Sensitivities for HG #3

Finally, Step #4 is carried out in Fig. 5.A.22.
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Appendix 5.B
Modelling Accuracy

All the studied biquads belonging to the DTMF core are examples where
the predicted oscillations have a good agreement with more exact non-linear
simulation results. This is true for the range of values of the involved capaci-
tors at least. To see this, let us display for every biquad the curves obtained by
both ways (Fig. 5.B.1-Fig. 5.B.12). Therefore, we have the evolution of the
oscillation parameters (frequency and amplitude) when every involved capac-
itor is swept a £10 % around its nominal value, as the DF approach predicts
[99], [109]-[112]. And, on the other hand, we have the same evolution but
now as Matlab/Simulink predicts [124], [126].

Observe from all the Figures that the evolution obtained by the DF
approach is quasi-linear whereas, for most cases, the evolution obtained by a
non-linear simulation presents ups and downs or is piece-wise linear. How-
ever, it must be clear from Fig. 5.B.1-Fig. 5.B.12, that the discrepancies
between both methods of analysis are almost negligible for most of these par-
ticular examples.

Notice, on the other hand, we have marked in all the Figures the most sig-
nificant deviation (in %) between the curves obtained by the DF approach and
those obtained by Matlab/Simulink.
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Figure 5.B.2: HG #1 (BP00-LPO1)
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Appendix 5.C
Fault Models

In the switch-level fault analysis of the FL-SC-biquads, we have included
both faults in switches and faults in capacitors. The employed SWITCAP
model [74] for a faulty-free switch is shown in Fig. 5.C.1. Each switch is
modeled as a voltage-controlled resistor with ON and OFF resistance values
which incorporate the second-order effect of the actual ON and OFF resis-
tances of the switch.

S S
CLK
T Con
Resistance Values
1 Fs
RoN~7e, 10, F
4Confs fs is the frequency of the S
R 1 fault simulation clock
OFF ™~ 4C f, C
0's
Fg Fs

Figure 5.C.1: Model for faulty-free switches

On the other one, the used SWITCAP fault modeling approach is dis-
played in Fig. 5.C.2 [74].This model requires the ON and OFF resistance
values of switches, the actual value of a resistive short and the capacitor devi-
ation values.

We have injected the two general classes of analog faults, catastrophic and
parametric faults. Amoung the so-called catastrophic faults we can
distinguish:

a. stuck-on (s_on) and stuck-open (s_open) faults in switches

b. shorts between the analog terminals of a switch (s_short)

c. short in capacitors (c_short)

d. opens in capacitors (c_open).

Likewise, the so-called parametric faults take into account deviations on
the value of the circuit capacitors (¢_dev(D), where D corresponds to a rela-
tive deviation of the capacitor nominal value).

411



412 OBT in Mixed-Signal Circuits

Let us briefly explain how such faults are injected:

1. a s_on fault is injected by keeping the faulty switch permanently ON
(thus equivalent to a resistor modeling the ON resistance of the switch).

2. a s-open fault is injected by keeping the faulty switch permanently OFF
(thus equivalent to a resistor modeling the OFF resistance of the switch).

3. a s_short or c¢_short fault is represented as a resistive impedance
between the shorted lines.

4. a c_open fault is modeled as a resistor in series with the capacitor (the
default value of the switch OFF resistance is used as the value of a resistor
open).

5. a c_dev(.) fault is injected by defining the deviation with respect the
nominal value (e.g. a deviation of 50% is ¢_dev(0.5)). Switch ON and OFF
resistances and voltage source output resistances are also considered.

s_on: switch stuck-on s_short: SWitih short

{T}
T

c_short: short in a capacitor

c_open: open in a capacitor

s_open: switch stuck-open

S T
jl—@ H{L"F:%—@

Fa
s
Figure 5.C.2: Fault Models for switches and capacitors
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The values of the resistance involved in Fig. 5.C.2 are given in Table
5.C.1.

1
ON™ 1. .
4 CON fS

R

RoFg~ ‘ﬁo‘fs f, is the frequency of the fault simulation clock

Table 5.C.1: Resistance Values



Appendix 6.A

DTMF Comprehensive Functional Test description

The DTMF functional test is a serie of tests involving tone bursts with
their parameters varied in a number of different ways. Tests are performed by
sending the tone bursts to the receiver, and counting the number of bursts to
which the receiver responds. The results from these tests provide direct indi-
cations of receiver performance.

The following describes the tests carried out:

Decode Check: All tone pairs associated with standard 4x4 keypad digits
(i.e. L1 H1 through L4 H4)(decode test digits 1 to 16) are pulsed sequentially
using 50ms bursts at 1Vrms per frequency. Each tone pair is pulsed 10 times
consecutively. The receiver should respond to all tone pairs that is designed to
receive. As a whole this test requires 8000ms (4x4x10x50ms).

Recognition Bandwidth and Channel Center Frequency Check: This
test utilizes the tone pairs L1 H1, L2 H2, L3 H3 and L4 H4 (i.e. digits 1, 5, 9 and
16). Each tone pair needs four test to complete the check, making 16 sections

overall. Each section contains 40 pulses of 50ms duration, with an amplitude
of 0.2Vrms per frequency. So, the total time will be 32000ms (16x40x50ms).
The four sections covering the tests for one tone (1 digit) are:
a. H frequency at 0% deviation from center, L frequency at +0.1%. L fre-
quency is then incremented in +0.1% steps up to +4%. The number of tone

bursts is noted and designated N

b. H frequency at 0% deviation, L frequency at 0.1%. L frequency is then
incremented in -0.1% steps, up to -4%. The number of tone bursts is noted and
designated N

¢. The test in (a) is repeated with the L frequency at 0% and the H fre-
quency varied up to +4%.

d. The test in (b) is repeated with the L frequency at 0% and the H fre-
quency varied up to -4%.

Receiver Recognition Bandwidth (RRB(%)) is calculated as follows:

RRB(%)=(N"+N")/10

Receiver Center Frequency Offset (RCFO) is calculated as follows:

RCFO(%)=(N"-N")/20

415



416 OBT in Mixed-Signal Circuits

Acceptable Amplitude Ratio (Twist): This test utilizes the tone pairs L1
HI1, L2 H2, L3 H3 and L4 H4 (i.e. digits 1, 5, 9 and 16). There are eight sec-
tions to the test. Each section contains 200 pulses with a 50ms duration for

each pulse. Initially the amplitude of both tones is 1 Vrms. Then, the total time
will be 80000ms (8x200x50ms).

Two sections to test one tone pair are:

a. Standard Twist: H tone amplitude is maintained at 1Vrms, L tone
amplitude is attenuated gradually until the amplitude ratio L/H is -20dB. Note
the number of responses from the receiver.

b.Reverse Twist: L tone amplitude is maintained at 1Vrms, H tone ampli-
tude is attenuated gradually until the amplitude ratio is 20dB. Note the
number of responses from the receiver.

The Acceptable Amplitude Ratio in dB is equal to the number of responses
registered in (a) or (b), divided by 10.

Dynamic Range: This test utilizes tone pair L1 H1 (digit 1). 35 tone pair
pulses are transmitted, with both frequencies starting at 1 Vrms. The ampli-

tude of each is gradually attenuated to -35dB at a rate of 1dB per pulse. The
Dynamic Range in dB is equal to the number of responses from the receiver
during the test. Then, in this case the time is 1750ms (35x50ms).

Guard Time: This test utilizes tone pair L1 HI (digit 1). Four hundred
pulses are transmitted at an amplitude of 1Vrms per frequency. Pulse duration
starts at 49ms and is gradually reduced to 10ms. Guard time in ms is equal to
(500-number of responses)/10. The time will be 20000ms (400x50ms)

Acceptable Signal to Noise Ration: This test utilizes tone pair L1 H1,
transmitted on a noise background. The test consists of three sections in which
the tone pair is transmitted 1000 times at an amplitude of 1Vrms per fre-
quency, but with a different white noise level for each section. The first level
is -24dBYV, the second -18dBV and the third -12dBV. The Acceptable Signal
to Noise Ratio is the lowest ratio of signal to noise in the test where the
receiver responds to all 1000 pulses. Then, the total time will be 150000ms
(3x1000x50m:s).
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Fig. 6.A.1 summarizes the different tests involved in the conventional
DTMF functional test as well as the employed time.

Test Time (s)

1500 , . . r ' Q
Total Test Time: 2917.5 s §
1000 § .
. N 7/ \\
Test
Description

Decode Check:
Decode test digits 1 to 16 (10 pulses each)

Recognition Bandwidth and Centre Frequency Check:
Digits 1, 5, 9 and 16 +0.1% to +4% and -0.1% to -4% per frequency (40 pulses each)

< Amplitude Ratio:
~77) Digits 1,5, 9 and 16 0 to -20dB and 0 to +20dB (200 pulses each)

Dynamic Range:
Digit 1 -1 to -35dBV/freq (35 pulses)

Guard Time:

% Digit 1 49 to 10ms (400 pulses)
N

{ Signal to Noise:
(1000 pulses each)

Figure 6.A.1: Summary of the conventional DTMF Functional Test

Therefore, the total time required for the conventional DTMF functional
test would be 2917.5s (or 49 minutes). If we compare this result with the max-
imum test time to measure needed in the proposed DTMF OBIST strategy
(that is 11.4 ms), we observe a very significant reduction. Obviously, we are
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talking about two very different types of testing. The functional testing
includes the measurement of a lot of parameters because it pursues to charac-
terize the perfomance of the SUT. However, the OBIST scheme presented in
this chapter tries to be only a structural (or also called Defect-Oriented Test,
DOT) testing approach. Consequently, making a comparison between both
methodologies must be based on a lot of issues and not simply on the differ-
ence between the involved test times.
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7.A.1. Experimental results for the programmable biquad
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7.A.2. Experimental results including swopamp
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7.A.3. Accuracy in predicting the theoretical oscillation parameters

An important factor for evaluating the feasibility of OBT is how accu-
rately we can predict the oscillation parameters (amplitude and frequency) by
using the linearized model (DF approach). From the equations achieved by
the DF approach, we obtain Table 7.A.13 where the theoretical oscillation
results for the three biquads reconfigured as nonlinear closed-loop feedback
systems are compiled. From the previous experimental Tables, it can be seen
that assuming the DF approach entirely valid in the three cases is not always
an “acceptable” alternative. However, these theoretical values can be consid-
ered as a good first estimation of the true oscillations.

Type Frequency (Hz) Amplitude (A)
BQI 602.29 0911
BQ2 2015.70 1.242
BQ3 968.60 0.927

Table 7.A.13: Equation Results (DF Approach)

Table 7.A.13 can be supplemented by a comparison of the simulation val-
ues obtained from different simulators. We have used other simulation tools as
such SWITCAP [74] or SPECTRE [119]. SWITCAP is a switch-level simula-
tor [74] whereas SPECTRE is a transistor-level or circuit-level simulator
[119]. Table 7.A.14 reports these more precise oscillation results. If we com-
pare them for each simulator, we can assert that deviations between them are
not critical. We can conclude that there are no significant differences,
although the electrical-level simulators give (as expected) better accuracy (see
Tables in the previous Sections).

Frequecy Frequency Deviation Amplitude Amplitude Deviation
Type | (Ho) (Hz) (SW-SP) (A) ) (Swsp)
(SWITCAP) | (SPECTRE) (SWITCAP) | (SPECTRE)
BQ1 595.01 595.09 0.01% 0912 0.909 0.33%
BQ2 1928.70 1928.20 0.03% 1.475 1.484 0.6%
BQ3 966.89 961.87 0.52% 0.899 0.865 3.78%

Table 7.A.14: Simulation Results

Notice, however, from Table 7.A.13 and Table 7.A.14, that there is an
error margin between the theoretical data and the simulation data. These
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differences are especially significant in the oscillation amplitude for BQ2.
This filter is a high-pass filter and, therefore, the high-order harmonics may
invalidate the premises of the DF linear model.

If we make a mindful analysis of faults and we draw the achieved Monte-
carlo window (given by the gray squares) in Fig. 7.A.1, the points (in the
frequency and amplitude space) where we have obtained the theoretical
results (diamonds in green) in the Figure and the points where the faulty cir-
cuits are placed (circles in red), we can see that the theoretical data lie (fall)
into the called tolerance window with the exception of the amplitude for the
BQ2 case. All these considerations allow us to assert that the DF linear model
is not always completely satisfactory but however it is always a good starting
point for computing the fault-free oscillation nominal values that, most of the
times, have to be complemented by simulation.
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Figure 7.A.1: Model Validation by simulation
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7.A.4. Experimental results for the DTMF core
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