

iPhone User Interface
Design Projects

■ ■ ■

Dave Mark, Series Editor
David Barnard
Joachim Bondo
Dan Burcaw
David Kaneda
Craig Kemper
Tim Novikoff

Chris Parrish and Brad Ellis
Keith Peters
Jürgen Siebert
Eddie Wilson

iPHONE USER INTERFACE DESIGN PROJECTS

Copyright © 2009 by David Barnard, Joachim Bondo, Dan Burcaw, David Kaneda, Craig Kemper, Tim Novikoff,
Chris Parrish, Brad Ellis, Keith Peters, Jürgen Siebert, Eddie Wilson

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2359-7

ISBN-13 (electronic): 978-1-4302-2360-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a
trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with
no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editor: Clay Andres Matthew Moodie
Developmental Editor: Matthew Moodie
Lead Author and Technical Reviewer: Joachim Bondo
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann, Ben Renow-
Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Kelly Moritz
Copy Editor: Heather Lang
Compositor: MacPS, LLC
Indexer: John Collin
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York,
NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit

http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–
eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has
been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

To my wife and family for being so incredibly supportive

—David Barnard

To my wife, Malena, who once again gave me the support I hadn’t earned

—Joachim Bondo

To Mom, Dad, and Zach

—Dan Burcaw

To Lindi and our kids, for being cool, hip, and weird. And to Brandy, for always keeping me on task.

— Craig Kemper

To all the people who helped me get started and to Oana for supporting me all the way.

—Tim Novikoff

To my family, Liz, Sovereignty, and Aidan; thanks for all the patience and support

—Chris Parrish

To all my colleagues of the FontShop network

—Jürgen Siebert

To my wife Jenna and daughters Cana and Mia

—Eddie Wilson

Contents at a Glance

■Contents at a Glance ..iv
■Contents ..v
■Foreword ..xi
■About the Technical Reviewer...xii
■Introduction..xiii
David Barnard...1
■Chapter 1: App Cubby..3
Joachim Bondo...21
■Chapter 1:Yet Another Google Reader...23
Dan Burcaw ..41
■Chapter 1:Brightkite for the iPhone ..43
David Kaneda..59
■Chapter 1:Outpost ...61
Craig Kemper..77
■Chapter 1:TanZen and Zentomino..79
Tim Novikoff ...111
■Chapter 1:Flash of Genius: SAT Vocab ..113
Chris Parrish and Brad Ellis ...127
■Chapter 1:Postage...129
Keith Peters ..161
■Chapter 1:Falling Balls and Gravity Pods..163
Jürgen Siebert..181
■Chapter 1:FontShuffle..183
Eddie Wilson ...209
■Chapter 1:Snow Reports for the iPhone ..211
■Epilogue: Reactive Music and Invisible Interfaces..235
■Index ...239

 v

Contents

■Contents at a Glance .. iv
■Contents .. v
■Foreword.. xi
■About the Technical Reviewer .. xii
■Introduction ... xiii

What’s in This Book ...xiii

David Barnard ..1
■CHAPTER 1: App Cubby ...3

From Fanboy to Developer... 3
Learning from Apple .. 4
To Tap or Not to Tap? .. 10
Usability Testing on the Cheap .. 14

Finding Users.. 14
Testing Done Right ... 14

Walking Through a User’s Test .. 15
Learning from Usability Testing .. 17

Fit and Finish ... 18
Summary ... 20

Joachim Bondo ..21
■CHAPTER 2: Yet Another Google Reader..23

Choosing to Develop a Newsreader... 23
Identifying Pitfalls of Current Newsreaders... 24

Exploring the Google Reader Experience.. 25
Lack of Overview and Cumbersome Navigation... 29
Lack of Data Control ... 30

Improving the Newsreader Experience ... 31
Defining the Application Definition Statement.. 32
Making the Application Native.. 33

■ CONTENTS

 vi

Making the Navigation More Effective ... 33
Giving a Better Overview .. 36

Studying the User’s Reading Pattern... 37
Presenting the Information.. 37

Outlining the Next Steps.. 39
Summary ... 40

Dan Burcaw..41
■CHAPTER 3: Brightkite for the iPhone ...43

Introducing the Brightkite Location-Aware Social Network .. 43
Introducing Double Encore .. 44
Moving From Web to Mobile.. 44

The Rise of Native Applications, to the Web’s Despair... 46
A Creative Paradigm Shift... 48

Designing for the First-Time User ... 51
Creating Virtually Infinite Drill-Down ... 54
Summary ... 57

David Kaneda ...59
■CHAPTER 4: Outpost ..61

Establishing Outpost.. 61
Wireframing Outpost ... 62
Designing Outpost ... 66

Two Screens, One Application.. 66
First Attempt.. 68
Second Attempt ... 68

Fitting In .. 70
Working in a Small Team... 72
Designing with HTML... 72
All That Glitters. 73
Summary ... 75

Craig Kemper ...77
■CHAPTER 5: TanZen and Zentomino ..79

Finding the Elusive Application Idea.. 79
Creating a Design Document ... 81
Diving into the Code .. 82

Creating the Piece UI .. 83
Pieces, Pieces Everywhere... 84
Being Deceived by the Simulator ... 85
Playing to the Emotions of Your Customers ... 86
Words? We Don’t Need No Stinking Words! ... 87
How Many Buttons Does It Take?... 88

When Is a Game Not a Game? ... 89
The Eureka Moment ... 89
I’m Not an Artist, But I Play One on the App Store.. 89
Vital, Yet Invisible ... 91
Racing to the Finish Line? .. 93
Building a Better Rotation... 93

■ CONTENTS

 vii

Finally Testing on a Device.. 96
Going Back to the Drawing Board... 96
The Perils of Being 95 Percent Finished... 98

The App Store Arrives!... 99
Recalling the First Days on the App Store .. 100
Responding to Rotation Issues ... 101
When to Say “Yes” and When to Say “Thanks, I’ll think about it.” .. 103
Surviving on the App Store ... 105

Creating a Second Game Without Starting Over.. 106
Repurposing a Popular Interface .. 107
Making Interface Modifications to Fit the New Game Rules... 107
Designing Around Limitations in Screen Size... 108
Colors, Colors Everywhere.. 108
Putting on the Finishing Touches ... 109

Summary ... 110

Tim Novikoff ...111
■CHAPTER 6: Flash of Genius: SAT Vocab ...113

Checking Out the Competition... 114
Mental Model Inconsistency... 116
Inappropriate Orientations.. 116
Small Buttons ... 117

Starting Development.. 118
Designing the Flashcards .. 121
Designing the Buttons ... 122
Testing the Application.. 124
Launching the Application ... 125
Summary ... 126

Chris Parrish and Brad Ellis ...127
■CHAPTER 7: Postage..129

Keeping the Application Focused .. 130
Selecting Font Styles.. 132
Selecting Font Colors.. 132
Using Image Effects.. 133
Setting Preferences and Configuring the Application... 133
Separating Tasks.. 136

Analyzing the Context.. 140
Considering Context in Postage.. 141
Facing Potential Problems with Context... 143
Using Familiar Controls in Postage... 144

Creating the Application Flow.. 146
Giving Hints About Flow.. 147
Showing Instead of Telling ... 148
Avoiding Icon Overload ... 150
Tuning Responsiveness and Feedback .. 151

Exploring the Postage Development Technique .. 152
Creating Prototypes and Mock-ups .. 152
Writing Specifications... 154

■ CONTENTS

 viii

Considering Art ... 157
Tuning the Touch.. 158

Summary ... 160

Keith Peters..161
■CHAPTER 8: Falling Balls and Gravity Pods...163

Creating Falling Balls... 164
Building the Game .. 166

Creating Gravity Pods .. 171
Building the HUD... 174

Summary ... 179

Jürgen Siebert..181
■CHAPTER 9: FontShuffle ..183

Introducing FontShuffle ... 183
Entering the World of Typefaces ... 184

Understanding Fonts .. 185
Characters and Glyphs ... 186
The Anatomy of Letters .. 187

Choosing the Right Typeface for Screens ... 190
Identifying Typefaces .. 192

Serif vs. Sans Serif ... 192
Explosion of Type Styles... 193
Classification of Typefaces... 194

Exploring FontBook and FontShuffle ... 195
FontShop’s Typeface Categorization .. 197
Classes and Orders of Typefaces ... 198
FontShuffle Step by Step.. 199

Getting Started: Search Level 1 ... 200
Searching by Typeface Name: Search Level 1, version 1.1 ... 201
Displaying Classes: Search Level 2 ... 202
Displaying Families: Search Level 3 .. 203
Shuffle or List View: Search Level 3, version 1.1 .. 205
Displaying the Font: Search Level 4 .. 206

Summary ... 208

Eddie Wilson...209
■CHAPTER 10: Snow Reports for the iPhone...211

So You Like to Design, Huh?.. 212
Why Design for the iPhone? .. 212
Isn’t Programming for Programmers?... 213
Why Snow Reports? .. 214
Why Learn iPhone Programming? ... 215
My Design Process .. 216

Defining the Project .. 216
Acquiring Third-Party Resources.. 218

Finding a Good Data Provider .. 218
Creating a Flowchart .. 219
Creating Wireframes... 221

■ CONTENTS

 ix

Skinning the Design ... 222
Developing and Programming .. 223
Testing and Deploying .. 225

Beta Testing... 225
Deploying Your Application ... 225

Details of the UI ... 225
The Shape of Things... 226
Colors ... 226
Sign of the Times.. 226
Buttons ... 227
Typefaces ... 228
Loading vs. Splash Screen ... 229
Reporting the Day... 230

Coming from a Web Design Background... 230
Designing an Icon .. 231
Summary ... 233

Epilogue: Reactive Music and Invisible Interfaces...235
How we got here and why we're doing it.. 235
Using sensors as reactive music interfaces .. 237

■ CONTENTS

 xi

Foreword

Dear Readers,
When we hatched the idea for a series of project-oriented books featuring the work of leading iPhone

developers and their apps, there were very few people we could really turn to as recognized experts in the field. We
were all beginners of one sort or another: first using Objective-C, first trying out Xcode, learning to write for a
mobile device, or perhaps developing our first app for fun. Whatever differentiating baggage we each brought with
us, we were sharing the experience of learning Cocoa Touch, the iPhone OS SDK, and an enthusiasm for this new
thing.

About a year later, it’s a much more sophisticated iPhone world that is receiving this fourth in the iPhone
Projects series published by Apress. Not only are there more and better apps but there are many more experienced,
truly creative developers and designers. And since interface design and usability become more important as
differentiating factors for the most successful apps, we’re featuring some of the most creative designers in this
book.

iPhone User Interface Design Projects is unique within the series for being design, rather than code,
focused. All of those hard-core developer topics that dominated our earlier books needed to be written, because
there really is no other place to start. But the really successful apps, the ones you never get tired of using and
remain popular on Apple’s iTunes App Store for a long time, have great code and great design.

It’s not enough to have a unique feature or great performance. Too many other apps will either be copying
your unique feature or came out a week before yours. You’ve got to make great-looking apps, and this book has
some key examples of putting a professional polish on your work. But it’s really more than applying a simple shine,
because as you’ll see in these chapters, good design requires plenty of thought right from the start of the
development process. And that may be the most important lesson you’ll get from this book. You have to think
about every aspect of your app if you expect to be one of the shining lights among over 100,000 apps.

Once again, I have worked with Dave Mark, the series editor and author of several best-selling Apress
books, including Beginning iPhone 3 Development, to find developers who produce efficient and bug-free code,
design usable and attractive interfaces, and push the limits of the technology. Dave’s common-man touch, tell-it-
like-it-is sense of reality, and delight at apps that look great can be felt throughout the series.

This brings us back to the code, or in the case of user interface design, the lack of code. As developers, we
all take comfort in the language of code. This book is about the visual presentation of your code. Most of your users
have no idea what beautiful code is, but every user can take pleasure when you present the inner workings of your
endeavors as a truly beautiful, useful app. It’s something every iPhone developer should show off with pride.

We hope you’ll find the apps presented in these chapters and the stories of how they came to be
interesting as both human drama and as well-designed as the iPhone and iPod Touch technology. Happy
adventuring, and send us a postcard!

Clay Andres
Apress Acquisitions Editor, iPhone and Mac OS X

clayandres@apress.com

■ CONTENTS

 xii

About the Technical Reviewer

Joachim Bondo has developed software for three decades, from programmable calculators in
the late ’70s before computers were commonly available to now the iPhone.

After releasing Deep Green, his critically acclaimed chess application, on the App Store,
Joachim has contributed his excellent taste and insight on good user interface design to
several Apress titles: iPhone Games Projects, iPhone Advanced Projects, and now iPhone UI
Projects.

■ PREFACE

 xiii

Introduction

By the time you read this, the number applications on the App Store will have crossed the 100,000 mark. Chances
are that if you come up with an idea for an app, it’s already on the Store and in abundance. In order to catch users’
interest, you’ll have to differentiate yours.

Most developers seem to take the easy route by simply lowering their price. The problem is that it’s so easy
to do that everybody can do it. And if they do, you’ve gained nothing. On the contrary, you’ve lost an income that
could possibly motivate you to keep improving and updating your app and thereby sustain your name as a reliable
developer users can trust their investment to.

If you choose to take the difficult route, however, and differentiate on quality—the route that not
everybody can take—you’ll not only become a better developer but also earn the respect from other developers and
users who’ll be willing to spend real time and money on your app.

The ten authors of this book have all released successful apps and can testify to how going that extra mile,
or ten, has paid off in many aspects of their lives as iPhone developers. By reading their takes on how to make an
app stand out from the rest, you’ll gain some of the inspiration and insight that could make your app the one in its
category that users will want.

If you’re not going to differentiate your app on quality, this book is probably not for you. Instead, just go to
iTunes Connect, and lower your price.

What’s in This Book
This is a book about user interface design. As a consequence, you’ll find lots of screenshots and only very

little code. Several of the authors don’t even have a programming background, but they all share the same passion
for the iPhone and for developing apps of the highest standards in terms of user experience.

David Barnard of App Cubby is one such person; he has created a suite of essential utilities that enjoy
great popularity on the App Store. In Chapter 1, he takes you through the process of perfecting entry views and
presenting data, which both play central roles in his apps. And he explains how learning from Apple’s UI
conventions and usability testing can improve your final result.

In Chapter 2, I make an attempt to enhance the user experience and power of the navigation bar and
present a relevant subset of large amounts of data in an exciting way. I bring you along on the same journey I took
myself, as I actually came up with the design while I was writing the chapter.

Former Apple employee and Yellow Dog Linux distributor, Dan Burcaw talks on going native with his
social networking app, Brightkite, in Chapter 3. He covers how that move made it possible to add the extra umph
with CoreLocation, Camera, and Address Book integration that web apps just don’t have. And, equally importantly,
he explains how he tailored the user interface to match his target group.

■ INTRODUCTION

 xiv

Chapter 4 is devoted to Web and iPhone developer, David Kaneda, and the creation of his Basecamp
project management client, Outpost. He starts with no idea and a blank piece of paper, continues over various
attempts to creating the central dashboard screen, and finally settles on a version that manages to present a lot of
information in a clear way.

Craig Kemper doesn’t leave out any details when telling the tale about how he created his two award-
winning puzzle games, TanZen and Zentomino. After reading Chapter 5, you’ll understand why the two apps have
been downloaded more than 150,000 times combined.

In Chapter 6 Tim Novikoff, a graduate student in applied math with no prior software programming
experience, goes through his methodical process of creating Flash of Genius: SAT Vocab, an app for learning
vocabulary words that made it to the Top 20 Paid Educational Apps list. His chapter is a fine example of how much
you need to consider even when developing a seemingly simple user interface.

Long-time Mac developer, Chris Parrish, goes into depth on creating the perfect balance between
simplicity, beauty, and features. If you dream about being the one on stage at the Apple Design Award one day, be
sure to read Chapter 7. Chris must have eaten his own dog food as his app for sending digital postcards, Postage,
won the award in 2009.

Keith Peters comes from the Flash world and delivers, in Chapter 8, concrete solutions to real-world
challenges when porting games that were designed for the big screen of a desktop computer to our favorite device
with no keyboard and a small, touch-sensitive screen. You’ll realize that essential code doesn’t have to be
complicated.

If you’re even the least interested in typography, you’ll want to jump directly to Jürgen Siebert’s Chapter 9
about FontShuffle, the application that lets you browse through 500 years of type design. You’ll learn about the
anatomy of letters and gain the knowledge to choose the right fonts for your programming projects and how to get
maximum readability on screen or paper.

In Chapter 10, you’ll see another example of how not having a programming background can pave the way
for creating beautiful and well-designed iPhone apps that are so much more joyful to use than their large-screen
Web counterparts. Snow Reports is one such app, and it’s hard to believe Eddie Wilson first had to climb the
Objective-C learning curve he found steeper than the slopes his app is reporting from.

There you have it: an array of interesting user interface projects lined up for you. Go ahead and dig in.

1

David Barnard
Company: App Cubby

Location: San Marcos, TX

Former Life As a Developer: Recording engineer/producer

I don’t actually have any specific skills related to iPhone development. I don’t do
the programming and learned everything else along the way.

Life as an iPhone Developer:

Gas Cubby – Utilities - Sensible Car Care.

Trip Cubby – Finance – Mileage Log Made Simple

Health Cubby – Health & Fitness – Social Fitness

 2

What's in This Chapter:

My Journey

Learning From Apple

To Tap or Not to Tap

Usability Testing on the Cheap

Fit and Finish

Key Technologies:

 Touch Input

 Usability Testing

 Data Entry Models

 UI Design

3

3

 Chapter

App Cubby
Creating amazing iPhone applications is quite a bit more involved than it would seem at

first glance. Though many gimmicky applications have made money in the App Store,

building an elegant, easy-to-use application that solves a real problem or provides

meaningful entertainment is the best way to guarantee long-term success. This chapter

explores my journey in founding an iPhone development company and building several

well-respected, profitable applications.

From Fanboy to Developer
I came to the iPhone platform not as an experienced developer, seasoned entrepreneur,

or even programming hobbyist but as a rabid fan. I happened to be traveling in China in

January of 2007 and vividly remember sitting in a Beijing hotel lobby, paying way too

much for subpar Internet access and trying desperately to get news on the Macworld

keynote. Did Apple actually announce a phone? What does it look like? Is it a real Apple

device, not like the terrible ROKR I bought and quickly returned?

Fast-forward six months. I’d been watching and rewatching that keynote, reading every

blog post, and listening to every podcast. I couldn’t wait to purchase an iPhone. My

brother called me up late in the afternoon on June 28 and asks me to meet him at the

Apple Store. We waited almost 24 hours in line, and I ended up being the first person in

San Antonio, Texas to purchase an iPhone. After just a few minutes using the device,

it became quite apparent to me that Apple had delivered on the promise of

revolutionizing the mobile phone. Being an intellectually curious person, I started

thinking quite a bit about this little touch screen device and what made it so compelling.

Why was I grabbing it instead of my laptop for certain tasks? How in the world did my

Baby Boomer father take to it like a duck to water when he had struggled for years

with computers?

That curiosity and the successes of burgeoning jailbreak development community got

me thinking about what I might want to create if I were to develop an application for the

iPhone. Web applications for the iPhone were functional, but they lacked the power and

finesse of Apple’s native applications. Rumors started floating around that Apple might

actually be announcing an official SDK for native iPhone application development. My

1

CHAPTER 1: App Cubby 4

casual ideas about iPhone development slowly started forming into real thoughts of

starting a business. I had just gotten married and was quickly realizing that my career as

a recording engineer, working late into the night for weeks on end, wasn’t congruent

with my desire to start a family.

In March 2008, Steve Jobs took the stage and laid out a very compelling opportunity.

For a very small fee, anyone could start developing iPhone applications and soon sell

those applications to a rapidly growing install base. I was sold. My last scheduled

project had just wrapped up in the recording studio, so there was no better time to jump

head first into iPhone development.

Having spent the better part of a year casually studying the iPhone and thinking about

potential applications, I knew that I would need to start working on this full time if I were

going to build anything polished enough to match Apple’s default applications. It didn’t

take much to convince my father and uncle, who are partners in a small business, to

help me finance this new venture.

With bootstrap-level funding in the bank and my schedule completely open, I dove into

the iPhone SDK. Because I have very little programming experience, the coding was

challenging, but I was making progress. After about a week, I had a fully functional, but

unpolished, tip calculator! As it turns out, a few tip calculators have made lots of money

in the App Store, but at that point, I didn’t want to risk my family’s money on what I

perceived to be a trinket application. My plan was to build a series of highly functional

data management applications under the App Cubby brand, starting with a business

mileage log called Trip Cubby. I quickly realized that to do this I would need an

experienced coder.

Contracting out the coding turned out to be one of the best decisions I made in building

App Cubby. Doing so freed me up to focus on the business and, more importantly,

designing the applications without having to worry about the code. My informal curiosity

about the stellar user experience of the iPhone turned into a systematic study. The

multitouch interface we now take for granted was a fundamental shift in the way users

interact with computers. Designing an application to fully leverage this amazing new

technology was not something I took lightly.

Learning from Apple
As I started thinking about the user interface (UI) for the App Cubby applications and

reading various books about UI design, I developed this grand vision of revolutionizing

the touch screen interface—until I realized that the iPhone had already done just that.

Apple has some of the best UI engineers in the world. Studying how Apple solved

various UI challenges in their own applications is the absolute best place for any iPhone

developer to start planning a UI.

In an attempt to create a distinct look, many iPhone developers consciously choose to

ignore the UI conventions established by Apple in the iPhone’s default applications

(Phone, Messages Mail, Maps, Photos, etc.). There are definitely some interesting and

innovative UI implementations that don’t conform to Apple’s UI conventions, but for

CHAPTER 3: App Cubby 5

most developers, sticking to Apple’s published iPhone Human Interface Guidelines will

take you a long way in making a more user friendly application. Speaking of the iPhone
Human Interface Guidelines, I think that every iPhone developer should read that

document cover to cover (multiple times even). My copy is the digital equivalent of a

well-worn book, complete with highlights and notes all over the PDF.

After a couple times reading through the iPhone Human Interface Guidelines, it really

sank in that the default applications created by Apple are some of the most frequently

used on the iPhone and therefore the most familiar to the average iPhone user. Breaking

from Apple’s UI conventions forces the user to relearn certain actions and creates a bit

of cognitive dissonance as the user switches among various applications with

contradictory UI implementation. Apple’s applications are not completely consistent,

but they do contain certain patterns and methodologies that, if implemented, make it

easier and more natural for users to quickly and effectively grasp the functionality of

any application.

Let’s look at data entry for a minute. Since I was planning to build a series of data

management applications, I spent quite a bit of time studying how Apple addressed the

challenge of entering lots of data into an iPhone application. The Calendar application

provides a great example of Apple’s hierarchical data entry paradigm.

The first level is what I’ll call the main view (see Figure 1-1). This view aggregates

multiple entries into a bird’s eye view and allows the user to quickly scan a lot of

information and easily find the information of interest.

Figure 1-1. The main view

Tapping on a summary row (i.e., the Farmer’s Market row in Figure 1-1) in the main

view takes you to the detail view (see Figure 1-2). Here, all the relevant data is displayed

in detail.

CHAPTER 1: App Cubby 6

Figure 1-2. The detail view

Tapping the Edit button in the top-right corner (or creating a new record from the main

view) takes you to the data entry overview in the Edit screen, shown in Figure 1-3.

Figure 1-3. The data entry overview

In Figure 1-3, all available fields are presented in a grouped table view. Tapping a field

takes you to a data entry view, which is shown in Figure 1-4.

CHAPTER 3: App Cubby 7

Figure 1-4. The data entry view

This is where the magic happens: a keyboard, keypad, picker, or list pops up, and the

user actually enters data.

In an attempt to streamline data entry, I’ve seen a lot of developers skip the view shown

in Figure 1-4 in favor of allowing the keyboard to pop up over a long list of fields. Figure

1-5 shows what that shortcut might look like in Gas Cubby.

Figure 1-5. An alternative, “streamlined” data entry screen

CHAPTER 1: App Cubby 8

At first glance, this shortcut might seem more efficient than Apple’s approach, but in my

experience, it causes quite a few accidental taps. While attempting to scroll, users can

quite easily accidentally activate a field or tap a button. Combining the data entry

overview and the data entry view in a single view takes focus away from the task of

actually entering data and makes the user cognizant of the need to tap and swipe

carefully.

Focus is the beauty of Apple’s data entry paradigm. Because the keyboard takes up so

much space on the screen, it’s best to have data entry focused on a single field or small

group of fields that fit above the keyboard.

Even the Mail application (see Figure 1-6) doesn’t hide data entry fields. The Mail data

entry view does scroll, and you can access additional data entry fields by tapping on

the Cc/Bcc, From row. Even so, when you first create a new mail message, every

immediately editable field is contained within the view. None are hidden behind the

keyboard.

Figure 1-6. The data entry view in Mail

Figures 1-7 through 1-10 show how I implemented what I learned about data entry into

Gas Cubby.

CHAPTER 3: App Cubby 9

Figure 1-7. The Gas Cubby main view Figure 1-8. The Gas Cubby detail view

Figure 1-9. The Gas Cubby data entry overview Figure 1-10. The Gas Cubby data entry view

The UI is distinct but also uses the Apple UI conventions any iPhone user will find easy

to use.

You may notice that the Gas Cubby data entry view (see Figure 1-10) has an extra

toolbar not used in the Calendar application. At times, a user might want to quickly enter

data into all available data fields. In this case, navigating back and forth to the data entry

CHAPTER 1: App Cubby 10

overview (see Figure 1-9) wastes time. Rather than breaking from Apple’s conventions, I

decided to mesh the standard hierarchical data entry model with the shortcut toolbar

from Safari, shown in Figure 1-11. This toolbar allows users to quickly fill in every

available field using the Previous and Next buttons or use the hierarchical navigation to

more efficiently enter data only in certain fields.

Figure 1-11. The data entry shortcut toolbar in Safari

Exploring Apple’s data entry paradigm and implementing my own version challenged me

to think deeply about why Apple chose this particular implementation and what designs

may have been left on the cutting room floor. Some people complain about the

perceived inefficiency of Apple’s data entry paradigm, but for most users an intuitive

interface actually outperforms a potentially faster, but more ambiguous interface.

Efficiency is defined as “achieving maximum productivity with minimum wasted effort or

expense.” There are lots of ways for an iPhone UI to waste user effort, but wasting taps

seems to be the focus of most left-brained iPhone developers.

To Tap or Not to Tap?
When I first started mocking up UI elements for Trip Cubby, every feature was measured

by the number of taps required to accomplish a specific result. My thought was that by

minimizing the number of taps, I was creating a more efficient application. But as I

continued studying design and started actually using the early builds of Trip Cubby, my

initial ideas and assumptions about what makes a truly efficient UI on the iPhone were

thrown out the window.

CHAPTER 3: App Cubby 11

One of the keys to creating great UI on the iPhone is taking a step back and thinking a

bit about how users actually interact with the iPhone—with their fingers. Yes, that’s

incredibly obvious, but something so obvious generally caries significance that few

people take the time to explore.

The finger is an incredibly efficient pointing device, far more efficient than the mouse.

When the mouse was first introduced, it revolutionized human interaction with

computers. I would argue that Apple’s multitouch interface will, in time, prove to be even

more revolutionary.

A mouse manifests an unnatural disconnect between the motion of the user’s hand and

the action on screen. Most people these days have used a computer enough to be

somewhat accustomed to the mouse, but if you watch someone use a computer for the

first time, you’ll see a definite learning curve to using a mouse! I’ve even noticed a bit of

a learning curve when using a new mouse or tracking settings with which I’m unfamiliar.

But the human finger, that’s something just about every human being in the world is

quite accustomed to using. We’ve learned since birth how to control our fingers with an

amazing level of precision and speed. Imagine if you were to attempt playing the piano

with a mouse. Your tune would be choppy and unmusical at best. A touch-screen piano,

however, would be playable, even if it didn’t match a real piano for feel and accuracy.

The more I thought about the finger as a means of interaction the more intrigued I was

by how drastic the shift was from the mouse to multitouch. That’s when it finally hit me.

Taps are cheap!

If the appropriate action is obvious to the user, the time actually required for that user to

tap the proper spot on the screen is miniscule. Confusion about where to tap wastes far

more time than an extra tap.

Again, this conclusion may seem quite obvious. After all, ambiguity has been a challenge

in all human computer interfaces, and reducing ambiguity has been one of the pillars of

good interface design. But the iPhone is the first graphical computer interface where the

speed and precision of the pointing device makes the physical action of pointing almost

irrelevant when considering the time it takes to accomplish a specific result. Let that sink

in for a minute—taps are cheap.

Understanding the finger as an input device is key in the process of making good

interface decisions for the iPhone.

Here’s quick example: Let’s say you are designing a simple yes/no questionnaire. Each

participant will be asked a series of questions verbally and should respond by selecting

“yes” or “no.” Some will be responding using a computer and mouse; others will be

responding using an iPhone. To make the interface as intuitive as possible, you quickly

decide that the Yes button should be green and the No button red (assuming a US

audience and ignoring for a moment other cultural interpretations of color). Both buttons

should have very easy-to-read text that is visually isolated from the background. Figure

1-12 shows what these buttons might look like on the iPhone (if you didn’t hire a graphic

artist).

CHAPTER 1: App Cubby 12

Figure 1-12. A sample survey application

Since the buttons have already been created, it’s easy enough to just use the same

buttons on the computer. Now, you start administering the survey and observe the

action and thought required for users to select an answer.

On the computer, the user first must decide what button corresponds to the correct

answer (identification). With clearly labeled, color-coded buttons, the process of

identification is quite quick. Next, the user must navigate the mouse to the appropriate

position on the screen (positioning). Depending on the size of the button, the time it

takes to visually locate the mouse pointer on the screen, the tracking precision and

speed of the mouse, the position of the mouse on the tracking surface, and even the

experience of the user, getting the mouse to the appropriate position on the screen can

actually take significantly longer than the process of identification. Finally, the user has

to click the mouse button (action). With a mouse, clicking is generally instinctual, but

inexperienced computer users may still need a split second to decide whether to right-

click or left-click.

On the iPhone, the user decides which button corresponds to the correct answer

(identification) and then moves a finger into contact with the appropriate button on the

screen (positioning and action).

In this scenario, the buttons on the iPhone and computer are exactly the same and

should both be very easy to properly identify. Positioning and action are where the

rubber meets the road. I haven’t actually done this test and don’t have any hard data,

but it should be pretty obvious that moving from a mouse to a finger as a pointing

device is a fundamental shift in the use of graphical interfaces.

CHAPTER 3: App Cubby 13

At this point, some of you may be thinking that this was an unfair comparison, as the

keyboard would obviously have been the best way for the computer user to interact with

this survey by pressing Y for “yes” and N for “no.” That’s just the kind of logic-driven,

computer-geek thinking that must be put aside when designing UI for the iPhone.

Shortcuts are nice, but the average computer user can barely remember the keyboard

shortcuts for copy and paste, much less the long list of shortcuts available for most

modern applications.

To use the keyboard in the survey scenario, the users would first have to be told to

press Y for “yes” and N for “no.” Each time a question was asked, they would have to

make the proper decision and then think “press Y for ‘yes’ and N for ‘no’” before

pressing the proper key. Eventually, the user would be accustomed to the interaction

and become more efficient. But that’s why the mouse was so revolutionary in its time

and why the multitouch interface is an even bigger leap: each smoothes out the learning

curve and mitigates steps from thought to outcome.

A physical keyboard can be quite efficient in the positioning and action phase (if the user

is a touch typist), but the time it takes to identify the proper action is where the

slowdown occurs. The user must first learn the commands and then remember and

properly execute them. The mouse and graphical interface have generally made

improvements in the speed of identification; it’s easier to identify the symbol or actual

name of an action than it is to remember a key command for that action, but this

improvement in identification came at the expense of having to position the cursor

before taking action.

The multitouch interface has the potential to combine the strengths of both traditional

forms of user input. As a graphical interface, iPhone UI can use names and symbols to

help users quickly identify the appropriate action. As a touch screen, the iPhone benefits

from the speed and intuitive nature of using a finger as an input device.

The potential benefits of the multitouch interface are, however, easily squandered with a

bad UI. That’s where counting taps, which I would imagine is the gut instinct of most

developers coming from the world of costly mouse clicks, can be dangerous. If actions

are ambiguous, the physical speed of tapping is completely negated by the time it takes

the user to identify the proper action. Using a confusing interface to save a few taps is

the iPhone equivalent of keyboard shortcuts. Sure, some users will read your 50-page

manual and end up a bit more efficient, but the learning curve is steep, and average user

will continue to struggle.

Creating a user-friendly iPhone application is about striking a balance between

efficiency of identification and efficiency of tapping. Because tapping is quick and

intuitive, finding that balance generally leans in the direction of additional taps. There are

times when counting taps might help make a great UI a bit more efficient, but starting

the design process by counting taps will generally lead you down the wrong path. When

designing for the iPhone, ambiguity is far more costly than taps.

Admitting that taps are cheap doesn’t help UI design unless you also have a good grasp

on ambiguity. Once you’ve spent much time on a project, the UI becomes so obvious to

you it’s hard to be objective about the ambiguous aspects of your application. The best

CHAPTER 1: App Cubby 14

way for a developer to get objective feedback about a particular UI implementation is to

do usability testing.

Usability Testing on the Cheap
Since most iPhone applications are created by individuals or small teams on tight

budgets, I would guess that very few have been subjected to usability testing. And it

shows! Just because you don't have a budget or a formal understanding of the theories

of usability testing doesn’t mean you shouldn’t test your application. Usability testing

can become very time consuming and expensive if done on a large scale in a traditional

way, but there are cheap and free ways to do informal usability testing that will greatly

improve any UI.

Finding Users
First, let me clear up the most common misconception: usability testing is not the same

thing as beta testing. If you don’t test and set a direction for the UI first, beta testers will

generally send you into a death spiral of adding unnecessary features and buttons to an

interface that has no focus. Beta testers are typically more advanced iPhone users who

don’t mind taking a few minutes to learn the ins and outs of an application. They will

quickly see beyond any usability problems and start brain storming new features and

advanced options.

To properly test the usability of an iPhone application, you need to find several

“average” iPhone users. I enlisted the help of family and friends, but you might want to

put out an ad on craigslist and offer free lunch or an iTunes gift certificate. You’re

looking for people who know how to use the iPhone but aren’t power users. The best

way to do usability testing is in person, but it can be done via video conferencing or by

having the user just video tape the testing.

Testing Done Right
If you’re serious about usability testing, I recommend reading up on the theories and

techniques; it’s a fascinating field of study. In case you can’t be bothered with doing

additional research, let me give you a very quick overview to help point you in the right

direction.

The first thing to do is to properly condition your test subjects. They need to understand

that there are no right and wrong answers. Making mistakes is expected and is actually

helpful. Explain that by making a mistake they will actually be helping you find flaws in

your application. Don’t explain how the application works or give any kind of tutorial on

how to use your application. Usability testing is intended to simulate the real-world use

of an application, and contrary to the hope of all software developers, most users will

never read the manual. You can, however, give a basic description of the intent of your

application. In my case, I would say something like, “This is Trip Cubby; it’s an

application designed to help track and report mileage for taxes or reimbursement.”

CHAPTER 3: App Cubby 15

Ideally, your test subject will be somewhat familiar with the scope of your application. In

my case, my wife made the perfect test subject for Trip Cubby. Her job required quite a

bit of driving, and she had been tracking her reimbursable mileage with a convoluted

combination of sticky notes and scribbles in her calendar. Plus, she had been using an

iPhone for a few months but was definitely not a power user.

Next, you need to set up a scenario and ask the test subjects to actually use your

application. The first time I had my wife test Trip Cubby, I handed her the iPhone and

said, “You just drove 33 miles to give a presentation at 123 Main Street. Try entering

that information into Trip Cubby.”

Once your test users are in action, it’s time for you to observe and resist the urge to

intervene. It’s best to have the test subjects vocalize their thoughts as they perform the

actions. By watching people interact with your application and listening to their thoughts

as they walk through various scenarios, you should start seeing potential improvements

in the UI. If no one figures out that your cute little disk icon means “save,” maybe you

should just use the word Save onscreen. If the testers keep tapping the wrong button on

a cramped toolbar, maybe you should leave a couple buttons off and make the

remaining buttons bigger. If users are completely stumped, and you have to intervene

with several minutes of explanation, you should consider a complete overhaul of the UI!

Usability testing is sometimes tough for developers who are attached to a particular UI

implementation, but being flexible and willing to adjust the application to real world

users is incredibly important.

My wife Elizabeth’s first use of Trip Cubby is provided in the following section to give

you an idea of the sorts of things you might hear from users during this process.

Walking Through a User’s Test
Faced with the Trips screen shown in Figure 1-13, Elizabeth, my first usability tester,

said something along the lines of “OK, I want to add some information.”

CHAPTER 1: App Cubby 16

Figure 1-13. The Trip Cubby main view

“Oh, there’s a big plus button,” she said. “That must be for adding data.” She tapped

the button as was presented with the data entry overview shown in Figure 1-14.

Figure 1-14. The Trip Cubby data entry overview

“Hmm, lots of information,” Elizabeth said of the New Trip screen. “What do I do next?

Frequent Trips? Um, I don’t really know what that means. Purpose? I suppose the

CHAPTER 3: App Cubby 17

purpose was that I gave a presentation.” She tapped the Purpose row to open the data

entry view shown in Figure 1-15. “OK, I’ll just type presentation.”

Figure 1-15. The Trip Cubby data entry view

“Well,” she wondered, “should I say what type of presentation? I guess my office

manager doesn’t really care what type of presentation, so I’ll just leave it at that.

Destination? You said 123 Main Street, right? OK, what do I do now? Looks like there

are only two options: Cancel and Save." She tapped Save, and the testing went on

from there.

Ideally, I would have video taped these sessions and studied them at length, but like I

said, you can learn a lot from quick, informal testing. I repeated similar scenarios with

various friends and family members throughout the testing of Trip Cubby. Having spent

so much time studying and mimicking the UIs of Apple’s default applications, I didn’t run

into any major issues while doing my informal usability testing, but I did rename several

features and move a few buttons around.

Learning from Usability Testing
One of the most interesting things I learned by watching users interact with my

applications is that iPhone users expect tactility. Pretty much every touch of the screen

should have some sort of visual reaction, even if it doesn’t actually accomplish anything.

This is something that I should have learned while studying Apple’s own UI interactions,

but it didn’t occur to me until I watched family and friends interact with my applications

for the first time.

I designed the detail view of Trip Cubby to fit quite nicely on a single screen, as shown

in Figure 1-16.

CHAPTER 1: App Cubby 18

Figure 1-16. The Trip Cubby detail view

Because all of the information was visible at once, the screen didn’t actually do

anything. You could tap the Edit button at the top of the screen to update the

information or tap the Trips button to return to the main screen, but the data section of

the detail view was completely static. I noticed that users swiped up and down to see if

there was any additional data. Swiping but not seeing motion was disorienting. They

didn’t necessarily expect more data, but they expected the screen to react to the touch.

The solution to this was twofold. First, I allowed the screen to scroll up and down even if

the data didn’t run off the page. This change also served a practical purpose in that we

allowed the Notes field to expand rather than truncate long notes, but the primary

purpose was psychological. When users swipe, the application responds. Next, I

implemented swipe navigation for the detail views. Instead of having to navigate back to

the main view and select the next record, users can simply swipe to the left or right to

reveal the next or previous record.

Fit and Finish
After diligent study of Apple’s UI conventions, internal iteration, and informal usability

testing, you may think you’re ready for release—you’re not. iPhone users have a very

high expectation for the fit and finish of an application. It’s something that’s experienced

over time, not just shown in screenshots. Users feel and react to subtle details when

interacting with your application, so no detail of the UI should be left to chance.

I literally spent weeks obsessing over the background image used in our applications. I

started with the idea of a very distinct worn paper look, kind of like an old logbook that

had spent a few hot summers in the glove box (see Figure 1-17).

CHAPTER 3: App Cubby 19

Figure 1-17. The Trip Cubby detail view prototype

I quickly realized that a background like this would distract from the data, and data was

the focus of my applications. After trying tons of different backgrounds, I finally settled

on one with a subtle grainy texture (see Figure 1-18). Even then, I used Photoshop to

tone down the texture a bit.

Figure 1-18. The Health Cubby main view

CHAPTER 1: App Cubby 20

If asked, I doubt many users would say that the App Cubby applications have a textured

background (it’s less obvious on the iPhone than it is in print), but I guarantee the

applications would feel less polished if I had just picked a solid-color background.

It may seem like minutia, but getting the little things right goes a long way in how users

perceive an application. Users might not be able to explain why, but they can feel a

polished application.

Summary
The iPhone is a revolutionary device and requires a thoughtful approach to solving the

unique challenges of multitouch UI design. Apple has addressed many of the more

obvious challenges in their own apps, but just copying Apple isn’t enough to create a

beautiful, usable interface. iPhone developers must study existing design patterns, but

also innovate, test, and iterate.

21

Joachim Bondo
Company: Cocoa Stuff (one man shop)

Location: Copenhagen, Denmark, Europe

Former Life As a Developer: 27 years of experience in starting up and running
smaller software development companies and developing software using a wide
range of programming languages such as: BASIC, COMAL 80, Pascal, C, C++,
Objective-C, SQL, NewtonScript, PHP, JavaScript, Bash

…in environments such as: THINK C and TCL (Think Class Library), MPW
(Macintish Programmer’s Workshop), Metrowerks CodeWarrior and PowerPlant,
4th DIMENSION, NTK (Newton Toolkit), Sybase, MySQL, TextMate, Xcode, Cocoa,
Cocoa Touch

…on platforms such as: Mac OS 3–8, Newton OS, Palm OS, UNIX (FreeBSD, Mac
OS X), Linux, Mac OS X Panther–Leopard, iPhone OS

Life as an iPhone Developer: Deep Green, chess game, using the official iPhone
SDK from Apple since the day it was released. Several apps on the App Store
developed for clients.

What's in This Chapter: The design of a Google Reader client for the iPhone

Focusing on two areas of the user interface for my next application, I go through
the iterations of creating and improving user interaction designs that will
hopefully work better than what’s currently available in competing offerings for
the iPhone OS.

 22

Key Technologies covered in this chapter:

 User Interface Design

 Navigation Bar

 Custom Views

23

23

 Chapter

Yet Another Google
Reader
I’m Joachim Bondo, the developer of Deep Green—“without question the best iPhone

chess game” says John Gruber of Daring Fireball.

In this chapter, I’m going to take you through an early design process of my next

application on the App Store, yet another Google Reader client. And I’m going to do it

as I’m designing it for myself. In other words, at the time of this writing, all I have are a

few ideas in my head. I haven’t sketched or coded anything. I’ll do the sketches here

with you, for the first time.

I’ve chosen two areas of the user experience that I’d like to improve compared to what

I’ve seen on the App Store so far. I’ll be racing the book-production process, to see if

my application can make it to the App Store before this book makes it to the brick-and-

mortar stores, so that you can see the result of the design work I started here.

Ready, set, go!

Choosing to Develop a Newsreader
I’m a heavy user of Google’s Reader service (http://reader.google.com). It’s where I

keep informed on what’s going on in my areas of interest, such as technology,

programming, photography, watches, and design, as well as the blogs of friends, peers,

and competitors.

Instead of jumping from web site to web site to see what’s new, I get everything

consolidated in one place where it will appear as it becomes available. Despite my

attempt to limit my consumption, I average between one and two hours per day on

Google Reader.

There are many alternative solutions, on many platforms. Google Reader is just one, but

I like that it provides an API (although currently unofficially) and that it tracks what items

2

CHAPTER 2: Yet Another Google Reader 24

I’ve read regardless of where I access them: it doesn’t matter whether I consume the

news from my home or work computer or my iPhone; it’s all synced.

Another nice feature, from a developer’s perspective—and let’s face it, I am a

developer—is that I don’t have to mess with the many formats and odd implementations

of fetching news feeds. Google has done all that for me and keeps maintaining it even

after my application has shipped. I can concentrate on creating a spectacular user

experience on top of it.

The iPhone-optimized Google Reader web site is currently the best experience on

iPhone operating system—even compared with the many native applications available.

It’s now my proclaimed goal to make “without question, the best iPhone newsreader.”

Identifying Pitfalls of Current Newsreaders
The difficultly in finding an application that could satisfy my newsreader needs on the

iPhone has puzzled me. The perfect application may sit there on an App Store shelf

somewhere, but of the many ones I’ve tried, and even paid for, I’ve not found a suitable

one. The one I keep falling back to is Google’s iPhone-optimized Reader web site

accessed via Mobile Safari (see Figure 2-1). Despite its flaws, I consider it to be the best

newsreader experience on the platform.

Figure 2-1. The iPhone-optimized Google Reader web site in Mobile Safari

I’ll be using the Google Reader web site as the benchmark, because it does a fairly good

job in pretty much the same way as most other newsreader applications, and because I

don’t want to pick on any particular application. But before diving into some of the

usability problems, let me quickly run through the implementation supported by a few

screenshots.

CHAPTER 2: Yet Another Google Reader 25

Exploring the Google Reader Experience
At the core, we’re dealing with news items. A news item is an article or blog post on the

Internet. It has a title, date, author, a body of text, and possibly images. The news item

is the data part of what you see on a web site. Figure 2-2 shows a blog post from my

web site and the corresponding news item in Google Reader on the iPhone.

Figure 2-2. A blog post on my web site and the corresponding Google Reader news item

This example may not be the best, because my web site has only a little extra stuff, such

as logo and navigation, because I took the time to make an iPhone-optimized style

sheet. But if you look at the example in Figure 2-3, you’ll see how nice it is to be

presented with only the item and not all the extra noisy stuff on the web site, especially if

you’re mostly interested in the news contents.

CHAPTER 2: Yet Another Google Reader 26

Figure 2-3. A busy blog post and the corresponding clean news item

News items belong to a feed. A feed is basically a news stream of a web site. You

subscribe to feeds. Finally, feeds can be organized in groups, which can be regarded as

directories in your file system. The Google Reader web site doesn’t currently support

groups within groups. Figure 2-4 shows some of my feed subscriptions containing

unread items at a time where I’m about to subscribe to a new feed.

Figure 2-4. Groups, feeds, and items in Google Reader on the desktop

CHAPTER 2: Yet Another Google Reader 27

Google’s Reader web site is optimized for the iPhone, so there’s no horizontal scrolling,

and the text is displayed in a comfortable size. The main view looks like Figure 2-1, and

in Figure 2-5, I’ve scrolled down so you can see how groups and feeds can be mixed at

the top level.

Figure 2-5. Google Reader’s main view on the iPhone

When you tap a group, it opens, and you see the feeds therein. Figure 2-6 shows the

feeds containing unread items in my iPhone group. Tapping a feed displays its items in a

list as shown in Figure 2-7.

Figure 2-6. The contents of a group—a list of feeds

CHAPTER 2: Yet Another Google Reader 28

Figure 2-7. The contents of a feed—a list of items

Tapping an item in the list displays the full text along with links for sharing, adding a

note, e-mailing, toggling the read/unread state, and finally a link to the original article on

the web. See Figure 2-8.

Figure 2-8. Viewing an item

CHAPTER 2: Yet Another Google Reader 29

I’d like to think I can make this experience better in a number of areas. Let me go

through a few of the biggest problems. It basically boils down to lack of overview,

cumbersome navigation, and lack of data control.

Lack of Overview and Cumbersome Navigation
The cost of the iPhone’s portability is obviously screen size, and there’s only so much

you can show with just 320 × 480 pixels available. This limitation makes it a lot harder to

be a UI designer but also a lot more fun.

In my opinion, one of the best UI designs Apple has made with the iPhone OS is the

navigation view paradigm. They’ve obviously felt challenged by the screen size limitation

and have come up with a great solution. The way they’ve designed the table view and

navigation bar to present and offer navigation in an indefinitely deep hierarchy of data is

simply ingenious. And it’s become the obvious choice for presenting large amounts of

data. Therefore, it comes as no surprise that pretty much all the newsreader applications

I’ve come across use the table view and navigation bar.

Except for not being able to see more than what fits the screen at a time, there’s one

problem in particular with this solution: it’s very inefficient to step through data sideways

(i.e., to go directly to a sibling). Not only do you have to make several taps, you also

have to go up a level just to see if there is something else at that level.

Take, for example, the folder hierarchy shown in Figure 2-9. If you’ve drilled down to the

A/AA path on the iPhone, and you want to go to A/AB, you first have to know there is an

A/AB path, and then you have to go back one step to A before you can move into AB.

Figure 2-9. A simple, illustrative folder hierarchy on Mac OS X and the iPhone OS

CHAPTER 2: Yet Another Google Reader 30

“But that’s just two quick taps,” you say. You’re right, but again, it’s not just the two

seemingly easy taps. It’s mainly that you can’t see what’s in the parent, only its name—if

that name fits on the back button, that is.

In other words, when you’re in folder AA you can’t see there’s a folder AB. Depending

on the context, this can cause a feeling of tunnel vision by narrowing the user’s

perception of the data being presented. An example of this problem is the popular

demand for a unified inbox in the Mail application.

The navigation view paradigm is great for looking forward, not so much sideways or

upward. All newsreaders that rely exclusively on navigation views will inherit these

problems, and Google Reader is no exception.

Google Reader is further taxed by living inside Mobile Safari’s chrome. In Figure 2-10,

you’ll see the worst-case scenario with the address/search bar visible. In real-world

usage, this bar is most often not shown, but the toolbar is, and in Mobile Safari, the

toolbar’s visibility has nothing to do with the Google Reader functionality.

Figure 2-10. Google Reader confined to the area between address/search bar and toolbar

In the newsreader applications I’ve used so far, I’ve spent a proportionally large portion

of my time navigating up and down between groups and feeds. I’d like to do more

reading instead.

Lack of Data Control
“Lack of data control” is a very broad term, and I use it as such. So let me dig a little

deeper. We’re living in the information age, and that doesn’t seem likely to change

anytime soon. With all the information available to us everywhere, it becomes

CHAPTER 2: Yet Another Google Reader 31

increasingly important to be able to filter information and to make it available to us when

we want to consume, or discard, it.

As the screenshots have revealed, I can have thousands of unread items at any given

time. I usually catch up once or twice a month when I have the time for it. When I glance

through news items, I may read some right away and save some for later, but I often

don’t know which I’ll save until I view the individual items.

Even what currently seems to be the most polished and popular Google Reader

application on the App Store doesn’t support all these use cases. If you tap an item, for

example, it gets marked as read, and there’s no way to mark it back to unread;

therefore, you lose track of the item and can’t easily find it again if you’ve chosen not to

have read items displayed in the application. With so much information available, I bet

many users have chosen this option.

You can star an item and review it later, yes, but you may want to use the star in a

different way. When we software developers put these kinds of constraints on our users,

we may limit them severely in their productivity.

Google Reader lets you toggle the read status, but it requires you to scroll all the way to

the bottom of the article, which can often be quite a travel—especially if you want to

read it later because it’s a lengthy article.

Another and possibly even more important issue, to which I haven’t seen a solution

anywhere, is the ability to prioritize your feeds and the items therein. I can make no

distinction in the applications between what I must read and what can wait. As you saw

in Figure 2-6, I subscribe to various related feeds that I’ve grouped in the iPhone folder

(only feeds with unread items are shown). But some of these are more important to me

than others.

Instead of grouping my feeds they way I have, I could group them by importance, but I

would lose the current grouping and have unrelated feeds mixed together, which is not

what I want. That would be like having a newspaper with sports and politics mixed

together, and who could even imagine such a thing? Besides, the importance is also

likely to change from time to time, depending on the things I’m currently working on or

active within.

In other words, neither Google Reader nor any other newsreader application I’ve used

lets me give a hint as to what’s important to me and what my reading patterns are, let

alone automatically adapting to them. Every feed, every item is treated the same.

Improving the Newsreader Experience
There’s no single way of using a newsreader. I’m sure there are countless different

ways. When developing a newsreader, or any other application for that matter, the

common assumption is that you should have a pretty good idea about how your users

work and think in order to be able to give them what they want.

It may be my progressive age or pure arrogance, I don’t know, but I’ve never

programmed for other users’ expectations. I truly believe in the success of developing

CHAPTER 2: Yet Another Google Reader 32

applications for oneself, and not for some potential user. You’ll end up with a better

result for everybody, because you’re more likely to put more passion into it if you do it

for yourself, and in any case, users are going to look at your application and determine

whether it’s for them. So the users who end up using your application will be getting a

better product.

I once gave a presentation on how I envisaged developing and implementing a fairly

large workflow solution for Denmark’s then-largest advertising agency. I had been

briefed by the man in charge, and during the whole presentation, he was shaking his

head and looking rather discontented. When I was done, he said, “This is not at all what

we asked for, but it’s exactly what we want!”

That doesn’t mean you shouldn’t listen to your users. On the contrary, you can’t think of

everything—users see things and come up with ideas you didn’t think of yourself, and

that’s a great resource that you should definitely tap into.

Defining the Application Definition Statement
Here’s a thing we have to do before starting any application design: formulate the

product statement, or the Application Definition Statement as I noticed Apple started

calling it at WWDC ’09. It will help us making the right design decisions along the way,

and it should have the following format:

<Your differentiator> <your solution> for <your audience>

In my case, I’ve chosen to formulate it as follows: an effective Google Reader client for

the aesthetically aware news consumer.

My differentiator is “effective”, the solution is “Google Reader client,” and my audience

is “the aesthetically aware news consumer.”

By stating that the application is effective, I’m addressing all my complaints about the

existing applications in one word. It’s a little bit generic and very subjective, though.

Being effective will mean different things to different users. But I still find “effective” to

be the best descriptor, because that’s the goal I’m trying to achieve, and it allows each

user to attach individual emotions or values to being effective—and hopefully, I’ve

achieved that too.

The target audience is the news consumer (i.e., people who read news). Online news

feeds are implied by the saying this is a Google Reader client. And by targeting the

aesthetically aware news consumer, I’m also saying that it’s a tasteful and beautiful

application.

Cumbersome navigation and lack of overview are the two main areas of problems. To

me, those are big productivity killers, and I’d like to make my application more effective

by addressing these two issues. That’s exactly what I’m going to spend the remainder of

this chapter trying to do.

CHAPTER 2: Yet Another Google Reader 33

Making the Application Native
Let me first get this out of the way. It really goes without saying, but I am anyway,

because the Google Reader client is an iPhone-optimized web site, and making a native

application is an important aspect of creating a superb user experience.

A native application allows me to implement features such as animations to help

visualize and understand the connection between data and gestures to let the user

navigate using the most intuitive user interface imaginable on an electronic device.

Making an application native doesn’t necessarily make it faster, however, because I’m

getting data over the Internet, and there’s quite a lot of it. In fact, a this native

application may even be slower, because I’ll have to do a lot of local processing on the

device, such as parsing and caching, while the web client gets the heavy lifting done by

Google’s server farm. I can, however, do things to create the perception of increased

speed by displaying data as soon as it starts becoming available and other little tricks

like that.

Making the Navigation More Effective
I pointed out some of the problems with the navigation view paradigm as Apple has

implemented it. I’m not going to totally abandon the paradigm, because it’s generally a

very good design, and users have come to know it very well.

I’ll just see if I can improve on the two aspects that don’t work so well: improving the

sideways navigation (i.e., going from one feed to a sibling without first having to go one

step up) and giving the user a better indication of the current location in the navigation

hierarchy.

If I can make a navigation bar on steroids by adding these two features, it sounds like

that would make for a more effective navigation.

The navigation bar will be shown in the following four types of views, or screens, and

should offer the following navigational options:

 Top (shows list of groups/feeds): There is no navigation.

 Group (shows list of feeds): Navigation can move up and perhaps to

neighbors or siblings.

 Feed (shows list of items): Navigation can move up and to neighbors

and siblings.

 Item (shows item detail): Navigation can move up and to neighbors.

The Top and Group views are the same, except that Group view will only show feeds

because it can’t contain other groups. When the user is at the Top view, there won’t be

any siblings to navigate to, so the navigation bar will contain no such options. When in

Group view, the navigation bar might offer direct navigation to other groups, or possibly

feeds.

CHAPTER 2: Yet Another Google Reader 34

The user will spend the most time in the Feed view when browsing news items and in

the Item view when reading the news. When dealing with my navigation bar on steroids,

I’ll concentrate on the Feed navigation bar, because it will contain the most options.

Here’s why: When in Item view, the user should be able to navigate to only the next and

previous items, because visualizing several sibling news items in the navigation bar is

not viable. News items don’t have a clear and simple visual representation, such as an

icon. They have only data, such as a date, author, or title, and none of these are suitable

for mass representation in the navigation bar. A news item may contain images that I

could use, but these are often photos, which don’t typically scale well to very small sizes

(despite the iPod application’s display of the album cover in the navigation bar), and the

user wouldn’t know what the image represented anyway. Therefore, in Item view, I’ll

have to provide simple navigational options such as next/previous arrows.

A feed, on the other hand, has an icon that clearly identifies it and distinguishes it from

other feeds. The most common thing to use is the site’s favicon.ico file. This is the icon

you see in your web browser’s address bar. It’s small, most often 16 × 16 pixels, but I

don’t want it to take up too much space anyway. As an alternative, as the iPhone OS

keeps gaining market share on the mobile browser market, more and more sites are

providing a higher-resolution icon file, the apple-touch-icon.png file, which is typically

57 × 57 pixels in size. This is the icon that’s used when you make a home screen

bookmark from Mobile Safari on your iPhone or iPod touch.

That said, let’s see what kind of steroids I can inject into the navigation bar. If I just used

the standard implementation, it would look something like Figure 2-11.

Figure 2-11. Group/feed navigation bar the standard way

CHAPTER 2: Yet Another Google Reader 35

Again, all you see here is the feed’s title and its parent’s name, or the portion of it that

fits the back button. So if I want to display the siblings, I could simply line them up in the

navigation bar as shown in Figure 2-12.

Figure 2-12. A first attempt at a multifunctional navigation bar

Tapping the feed icon next to the feed title would take us back to the Feed view, just as

if it were a regular back button. This behavior is nice, because that’s where the user is

accustomed to finding it.

The user would tap an icon in the row to activate that feed or drag horizontally to scroll

for more feed icons, and when the finger is lifted, the feed in focus would be loaded. The

arrows indicate that there are more icons in both directions. I probably wouldn’t want to

display them.

While scrolling, I could display the icon and name of the feed in focus in the area below

the icons, although the user’s finger would obscure that (see Figure 2-13)—not a good

solution, but I won’t completely write it off either.

The bar looks a little bit busy, which I’m not too keen on, but that might be solved by

making the icons grayscale, which could look good in a black header. And the icon for

the currently displayed feed could be shown in color. But I’m getting ahead of myself.

For now, we’re just working on the high-level UI design, not fine-tuning the graphic

design.

Figure 2-13. The user’s finger obscures the feed name while dragging.

Swapping the elements, so that the row of feed icons would be displayed underneath

the current feed title as shown in Figure 2-14, is not desirable, because this layout would

imply that the sibling feeds where children of the current feed.

Figure 2-14. The wrong way to represent siblings

CHAPTER 2: Yet Another Google Reader 36

A third possibility, shown in Figure 2-15, could be to display the name of the feed in

focus above the icon row, much like the dock in Mac OS X. But this layout is a little bit

busy, takes up more vertical space, duplicates information, and is perhaps not very

pretty. This solution isn’t good either.

Figure 2-15. Showing the name of the feed in focus above the icon isn’t a good solution either.

I haven’t found a solution I’m happy with yet, but I have a model I can keep improving

until I am. The purpose of this chapter isn’t to come up with the perfect result but to

illustrate my iterative process.

And, even at this early point, I’ve achieved the goal—deriving a solution that lets us

navigate sideways with a single tap and at the same time gives a better indication of

where we are in the hierarchy. I’ve even managed to do it with the same UI elements,

icons in this case, by giving them multiple roles: command and display.

Giving a Better Overview
When faced with news items, possibly by the thousands, it becomes increasingly hard

to find the ones that are the most important to you at any particular moment. Even

though you’ve subscribed to all feeds yourself, you don’t necessarily want to read

everything as it becomes available. Sometimes, you may just want to see what’s new;

other times, just read one or two lengthy items that you marked earlier, and yet other

times, perhaps catch up on some of those low-priority items. Ultimately, only you know

what’s important, but what if the application could assist you along the way?

There are two aspects of this assistance: the logic behind finding out what’s important

right now and the presentation of it in the user interface. With regard to the latter, the

user interface in general should always allow you to quickly find what’s the most

important. But I’d like to see if there’s a way to have the application itself present the

news in a way that allows you to discover what you might like to read here and now.

This is much like opening a newspaper and being presented with the news in an

exciting, unexpected way. But where the newspaper looks the same for every one of the

hundreds of thousands of readers, I’d like my newsreader application to adapt to every

single one of its hundreds of thousands of users.

In other words, based on the user’s reading pattern, and whatever other logic I can

come up with, I’d like to be able to figure out what’s most important to the user right

now and present that in an exciting way.

CHAPTER 2: Yet Another Google Reader 37

Studying the User’s Reading Pattern
I love applications that successfully adapt to my personal behavior all by themselves.

Just as much as I hate when they try and fail (remember Microsoft Office’s office

assistant, Clippit?) So not only should the user be able to turn this adaptive feature off, it

should also be implemented in such a way that it doesn’t annoy the user if the logic isn’t

perfect for the given situation.

In a way, this feature should be invisible. It works under the hood and affects only what

data is being shown. It doesn’t actually show the information. But it has everything to do

with user interface design and user experience.

I’m not going into details with how to implement this feature, first because I don’t exactly

know at this point, and second because it’s a huge subject that deserves much more

space than I can give it here. But I’ll go through some of the parameters I’ll weigh in and,

in the next section, talk about how this data could be presented:

 The order in which groups and feeds are visited (15%)

 The order in which feeds are read (25%)

 The < read items count> / <available items count> ratio per feed

(20%)

 An application-provided user feed rating (40%)

The number in parenthesis is the weight I could give each, and these are

unsubstantiated figures based on my gut feel. This list will allow me to rank every group

and feed. The user’s own rating would weigh the most, because it’s an explicit rating,

but I need to handle a feed that may not be rated at all but is also visited first thing most

of the time. Obviously, this feature requires a lot more research, but you get the idea.

You could argue that newer items should weigh more than older ones, but I speculate

that this varies from user to user as well as from feed to feed, so I’ve chosen to leave

it out.

The essential thing is to end up with a figure on each feed that is the perceived

importance of a feed and its items. This importance figure will be used when presenting

news items to the user in the overview that I’m going to create next.

Presenting the Information
Independently from the group/feed/item view hierarchy, which the user has set up via

Google Reader, I’d like to offer a nice overview (a separate UIView) of news items. Just

like you don’t know what’s coming next when you’re about to flip a page in a newspaper

or what song iTunes will play next when shuffling, I’d like my application to make the

decision about what to present—in my case, based on the importance.

So what’s a good way of giving an overview? The immediate solution might be to

display a table view sorted by importance so that the user, in theory, could just read all

items starting from the top. It’s not much of an overview, and it’s a little bit ordinary.

CHAPTER 2: Yet Another Google Reader 38

I’d like something where you could just sit back and let the news scroll by—like a news

ticker but a little bit more clever. And if you see something you’d like to read roll past,

you just tap it to go to that item, perhaps something like Figure 2-16.

Figure 2-16. An idea for an overview of random news

Let’s see if the idea in Figure 2-16 works. You’d see the news scrolling in from the right,

eventually leaving the screen on the left side, and I’m already getting stressed just

imagining this. The biggest problem is that all titles have the same weight and are

competing against each other. You’d spend the time trying to catch up with the news

stream. Although this might be what’s happening in the real world, it’s not the

experience I want to give.

Somehow, the overview should differentiate the presentation of the items, based on

some of the metadata available, so that the user’s attention would be directed by

whatever his or her mind was open to at the moment. After brief consideration, I’ve

come up with Figure 2-17.

Figure 2-17. Another idea for an overview of random news—this time using metadata to differentiate them

CHAPTER 2: Yet Another Google Reader 39

In Figure 2-17, I’m using four pieces of information: two are displayed, and two are used

to place and highlight the items. The central element is still the news title itself, and the

feed icon next to it helps identify where it comes from and what type of news it is.

The importance is used to vertically position the item, so that the more important the

item is, the higher in the view it’s positioned. I’d also consider adjusting the horizontal

scrolling speed, so that less-important items scroll by faster.

Finally, I’ll use the date of the item to tint the title so newer items appear brighter. Older

items would blend in more with the background. I find this a better way of dealing with

the timeliness of an item than using the date in the calculation of the importance.

At this point, I think overview feature will work. I could try to improve it further, but I’m

quite happy, so I won’t do more at this point. The next obvious thing is to implement it

and try it out. This might lead to further iterations. Time will tell.

Outlining the Next Steps
So far, I’ve concentrated on two specific design elements to which I wanted to create

some effective and user-friendly solutions. The navigation bar still needs some work,

while the overview could make the cut. But there’s obviously much, much more to

making an application destined for the top lists on the App Store.

Before leaving it to my fellow authors, I’ll just add a few remarks on the work that’s

ahead of me at this point:

 Overall UI: As mentioned, I’ve only treated two specific user interface

elements. Before even being able to do that, I should have settled on

the overall user interface. And I have, even though I haven’t shared it

explicitly here, because it’s going to be very similar to that of Google

Reader and many of the other newsreader applications.

 Architecting the application: I also need to figure out how the model

layer should be built and what API it should expose to the controller

layer. With this type of application, I need to put extra care into

designing it so that everything takes place asynchronously.

 User testing: As you’ve seen, a lot of iterations are involved in coming

up with a good design. That’s not to say my design is good, but

bringing in users as you modify your design can provide you with

valuable input and save you a lot of time.

 Graphic design: Once the user interface design is finalized, I’ll go

ahead and engage the graphics designers. Because this is such a text-

heavy application, I’ll probably hire a person with experience within

newspaper or magazine design. I’d like to draw strong references to

the newspaper world.

CHAPTER 2: Yet Another Google Reader 40

Summary
In this chapter, I’ve treated two design elements: the navigation bar and the overview for

my next application, an effective Google Reader client for the aesthetically aware news
consumer. If done right, these elements will help differentiate my application a little bit

from the rest. Being different might not be a quality by itself, but in this case, I choose to

see it as an improvement over the competition.

The overview seems like a simple, almost screensaver-like view, but underneath it

lies some complicated logic that could turn out to be a great feature not seen

anywhere else.

By the time you read this, I hope you can find my application on the App Store,

download it, and enjoy the result. I don’t even have a name for it yet, but you should be

able to find it on my home page at http://cocoastuff.com/products/.

41

Dan Burcaw
Company: Founder and CEO of Double Encore, Inc.
Co-Founder of Push IO LLC

Location: Denver, CO

Former Life As a Developer: Development background primarily focused in Linux
and open source in the 1990s. Co-founded Terra Soft Solutions, the developers
of Yellow Dog Linux for Apple’s PowerPC product line. While at Terra Soft I led
all development efforts from python based apps to Linux kernel enhancements.

Life as an iPhone Developer: Double Encore was an early mover in the iPhone
consulting spacing as I founded the company on the eve of the App Store launch.
Since then we have shipped more than 20 app releases including:

 91st PGA Championship (Sports)

 Brightkite (Social Networking)

 PencilBot ESL 1 Green (Education)

 PencilBot ESL 1 Blue (Education)

 PencilBot ESL 1 Red (Education)

 PencilBot ESL 2 Green (Education)

 PencilBot Test 1 Green (Education)

 PencilBot Test 1 Blue (Education)

 PencilBot Test 1 Red (Education)

 Tango Card (Lifestyle)

 PublicEarth (Navigation)

 42

 Bad Decision Blocker (Utilities)

 Tint Color (Productivity)

 Pirate Glossary (Entertainment)

What's in This Chapter:

 Brightkite: A Location-based Social Network

 Double Encore: An iPhone Development Agency

 Why Build a Native Application?

 Using TabBar Navigation for Complex Apps

 The Importance of First Use

 Virtually Infinite Drill-Down with Navigation Controllers

 Best Practices for Address Book Integration

Key Technologies:

 Navigation Controller and Tab Bar Controller

 Address Book

 Core Location

 Memory Management

43

43

 Chapter

Brightkite for the iPhone
“We don’t want to release something that’s not rock solid. And, by rock solid, we don’t

mean crashing, but rock solid from a usability standpoint,” said Martin May, cofounder

of Brightkite. “The app should be as easy to use as possible. We have some very

ambitious goals concerning the user interface, but getting it just right takes time.” So

began my company’s first major iPhone project—building Brightkite’s native iPhone

application. This challenging and energizing project set a bar for quality that, while still

rare on the App Store, is one we strive to emulate or exceed with every application to

which we lend our name. The Brightkite iPhone project was successful because of not

only unprecedented focus on design and usability but the close collaboration between

Brightkite and my company, Double Encore, Inc. There were many challenges during the

process, but the lessons learned during that first major project contributed to Double

Encore’s continued presence in this niche industry.

Introducing the Brightkite Location-Aware Social
Network
Brightkite, a location-aware social network founded by Martin May and Brady Becker in

2007, was for a member of the inaugural class of TechStars, a seed capital and

mentorship program for start-ups. Brightkite can be used to locate friends and find out

what they are doing in real time and to meet new people nearby.

Here’s a simple explanation of the service: Brightkite users post geotagged notes and

photos for others to see. Depending on user-selected privacy settings, a location may

be as specific as “Brightkite HQ, 2911 Walnut Street, Denver, CO 80205” or as

approximate as “Denver, CO.” Brightkite offers a variety of activity streams that show

posts from nearby users, people you are following, or even the entire Brightkite

community.

3

CHAPTER 3: Brightkite for the iPHone 44

The Brightkite web site went into private beta in April 2008, and an invitation into the

service was a hot ticket throughout the summer. Martin and Brady understood that

mobile was vitally important to the success of their service. Even the first release in

April had SMS support, which allowed mobile phone users to interact with the service

through simple text messages.

Introducing Double Encore
A conviction that iPhone SDK would profoundly change the mobile space compelled my

resignation, in June 2008, from a nearly four-year tenure at Apple, Inc. I then launched

Double Encore, one of the first iPhone development agencies, in anticipation of a shift

that would place powerful software at the center of the mobile universe. I had witnessed

such a shift in the 1990s, during my involvement in the Linux space, when I experienced

the nascent and eventual domination of software technology in the enterprise computing

space.

In 1999, I cofounded Terra Soft Solutions, the company that developed Yellow Dog, a

commercial flavor of Linux, for Apple’s PowerPC product. Terra Soft Solutions also

developed software that allowed scientists to harness the collective computing power of

many Apple machines clustered together to accelerate research. Terra Soft’s products

were at the core of mission critical systems, including a sonar platform that shipped

onboard each vessel in the U.S. Navy submarine fleet.

Martin May contacted me shortly after I founded Double Encore. I knew of Brightkite

from the buzz generated earlier that spring when it launched a private beta release of its

location-aware social networking service. May was familiar with Yellow Dog Linux and

asked if my team would be interested in building the Brightkite native iPhone

application. While we had started working on a few smaller iPhone applications, the

opportunity to build Brightkite’s native application was a welcome challenge that I

believed would lead to a more significant Double Encore presence in the application

development market.

Moving From Web to Mobile
Released in the spring of 2008, Brightkite’s iPhone-optimized web application met with

great enthusiasm. Yet, with the launch of the iPhone App Store looming, a native

Brightkite application could obviously offer a significantly more remarkable experience.

To put the native application in perspective, it is important to understand both the

feature set and user interface of the web application (see Figure 3-1).

CHAPTER 3: Brightkite for the iPHone 45

Figure 3-1. The Brightkite iPhone-optimized web application

The Brightkite web application incorporates three fundamental activities: checking in,

viewing activity streams, and posting notes or photos. Let’s explore each of these

activities further.

First, a user can search for a place and check in at that place. “Checking in” is Brightkite

parlance for associating oneself with a particular place. Second, activity streams offer a

real-time view of check-ins, notes, or photos from friends or from anyone using the

service. Third, posts (of notes or photos) are geotagged to a user’s check-in location.

For example, I could post a note about writing this chapter at my current location,

“Double Encore, Inc.” (see Figure 3-2).

Figure 3-2. Posting a note via the Brightkite iPhone-optimized web application

CHAPTER 3: Brightkite for the iPHone 46

The Brightkite iPhone-optimized web application was well received by Brightkite users

as a superior way to utilize the service via a touch interface versus sending SMS

commands. The simple, iPhone-like interface offered many features found on the

standard Brightkite web site. However, despite being impressed by the web application,

users noted a few shortcomings with two of the major functions of the service: checking

in and posting a photo.

For example, the process of location selection could be time consuming. Although

placemarks (one of Brightkite’s shortcuts) enabled users to bookmark places for future

posting, the initial process of searching for and choosing a place to check in or post a

note was a lengthy affair. Posting a photo was even more difficult and involved multiple

iPhone applications plus the Brightkite web application. A user would first take a picture

with the Camera application and then use Mail to send the photo to a special e-mail

address provided by Brightkite (via the web application), where the Brightkite backend

would associate it with a specific post.

Earlier, I mentioned another major activity on Brightkite: the activity streams. From a

user experience perspective, activity streams worked fairly well with the web application.

There were a few tricks and challenges to overcome in implementing the streams in the

native application, but I’ll explain more about that later.

In March 2008, Apple announced the iPhone SDK, which allowed developers to build

native iPhone applications with the same tools and frameworks that Apple used with

their built-in ones. The SDK’s feature set provided Brightkite with the means to improve

the overall experience of core functionality, such as checking in and posting photos, as

well as to develop further innovations to drive the service forward.

The Rise of Native Applications, to the Web’s Despair
The iPhone SDK was providential to iPhone users and developers. Following the launch

of the iPhone in 2007, developers hungrily pursued a vision of creating applications as

speedy and powerful as Apple’s built-in iPhone applications. With the arrival of iPhone

SDK, their dream was realized. SDK provided the tools to build stunning applications

with major access to iPhone functionality. For example, developers could include the

Camera or Safari browser in their applications and utilize most of the user interface

elements found in Apple’s built-in applications.

At Double Encore, the iPhone SDK was eagerly anticipated and welcomed as the

impetus to enhance the Brightkite application and, consequently, the user experience.

Certain key features of the SDK appeared ideal for improving a few of the quirky aspects

of the web application.

For example, reverse geocoding, provided by Core Location, converts the latitude

and longitude pair into a list of human-readable intersections, addresses, or even

specific places. Therefore, Core Location made it possible to use reverse geocoding to

suggest check-in or post-to locations based on the latitude and longitude reported by

the iPhone.

CHAPTER 3: Brightkite for the iPHone 47

Moreover, a native Brightkite application could eliminate the tedious workflow involved

in photo posting by offering built-in Camera functionality.

Address Book was another SDK feature used in the initial App Store release of the

Brightkite iPhone application. We decided to use Address Book to simplify inviting

friends to the Brightkite service via email or SMS. Address Book integration also allows

users to discover friends already using the service. We did have some special concerns

about integrating Address Book, which will be discussed later in this chapter.

With all of the rich capabilities afforded by the iPhone SDK, we anticipated the

complexity of developing the Brightkite application. We also welcomed the challenge,

because we understood that optimizing user experience was key to the application’s

success.

IT’S ALL ABOUT LOCATION

Core Location is a framework included in the iPhone SDK that gives developers access to the device’s
current location. Before discussing how we used Core Location in Brightkite, it is worth discussing how a
location fix may differ depending on what type of device is being used.

An iPod Touch has only Wi-Fi network connectivity, so the device determines a location fix by querying a
database of Wi-Fi access points, which are mapped to physical locations. I wouldn’t want to drive around
the world mapping Wi-Fi access points, but it has been done, and the database is impressively accurate.
On the original iPhone, Wi-Fi can be supplemented with cellular telephone tower triangulation data.
Triangulation is less precise than Wi-Fi, but it’s adequate when Wi-Fi data is not available. A GPS radio
integrated with the iPhone 3G lets Core Location provide a much more accurate location fix.

Core Location is now widely used in thousands of iPhone applications. Typically, you might find the
framework used in an applications such as an ATM finder, which offers a sorted list of ATMs with the
closest location displayed at the top and the rest in descending order.

Brightkite’s use of location is a bit more sophisticated because the service revolves around a specific
place, rather than geographical coordinates. To provide the precision expected by users, the correct place
is displayed on the I am screen shown in the following illustration, which is the main tab used to perform
check-ins or posts.

CHAPTER 3: Brightkite for the iPHone 48

In experimenting with Core Location, we discovered some interesting challenges. First, because Core
Location’s data comes from a system-level process, it sometimes reports old or stale location data. This
anomaly was particularly frustrating for early Brightkite iPhone application beta testers, as a location
across town might show briefly before the application updated to a more accurate value. We found that we
had to check the time of the Core Location value and establish that it came after the Brightkite iPhone
application launched.

Additionally, on iPhones with built-in GPS modules, the time necessary for Core Location to determine an
accurate location fix could be as long as 5-10 seconds. This necessitated an engineering decision to leave
the GPS radio on for the duration of the Brightkite application launch, therefore ensuring a constant stream
of location data and optimum accuracy. Although this approach does affect battery performance, the
typical mobile application user jumps in and out of an application rather than leaving it running for a
significant period of time.

Once we were getting fresh, accurate location data, we added a snap feature that unquestionably
improved the overall Brightkite experience. On the service side, Brightkite not only links geographical
coordinates to a specific check-in place but it also recognizes the frequency of visits to that particular
location. This allows the Brightkite native application to automatically snap to a frequently visited place as
the user approaches. This place-snapping functionality is one of the most widely touted, user-gratifying
features of the native iPhone application. This snap feature just wouldn’t have been possible in the web
application.

It should be noted that, in iPhone OS 3.0, a web application can request Core Location data via a
JavaScript call. Had this been available a year earlier, Brightkite may have not moved as aggressively into
native iPhone application development.

A Creative Paradigm Shift
Initially, the wireframes for the Brightkite native iPhone application mirrored the look and

feel of the web application but with the addition of the Camera and Core Location

integration previously discussed. The web application mimicked aspects of the iPhone

user interface design but ultimately flowed much like web applications in which users

drill down into content and navigate to and from pages with back and forward arrows

and hyperlinks.

Shortly before Double Encore was brought onboard to develop the native application,

Martin and Brady began to have second thoughts about the native application user

interface strategy. They wanted to design a user interface that would include most of the

features available on the Brightkite service, with room to add more in the future.

However, it was vital that the application be simple for first-time users to learn.

We also needed to respect the diverse Brightkite community, whose members use the

service in a variety of ways. For example, some use Brightkite as their main social

networking tool, while others use it to post to their Twitter or Facebook accounts.

Options and customization had to be critical design considerations.

Our analysis indicated that a tab bar interface would allow scaling as features were

added to the iPhone application, handle the first time use case, streamline the check-in

and posting process, and provide a way for users to customize the application (the

alternative was to use the drill-down navigation approach that Brightkite had already

CHAPTER 3: Brightkite for the iPHone 49

utilized with the iPhone-optimized web application). The tab bar, shown in Figure 3-3, is

a user interface element in the Phone and iPod applications. However, at that time, the

tab bar was not widely used outside of Apple’s applications, and very little sample code

existed with an implementation.

Figure 3-3. The tab bar user interface element

Moving to a tab bar meant replacing the drill-down menu system found in the iPhone-

optimized web application with top level functionality that was only a tap away,

regardless of how deep the user navigated through the interface of a given top level

function.

The iPhone SDK’s tab bar controller offers a nice benefit that gave us a way to scale the

application’s features over time. When a tab bar has more than five items, a More tab is

provided on the right most side of the tab bar. Tapping More provides a standard

UITableView of other tabs (presented in a list) that the user can navigate to. In version

1.0 of the Brightkite native application, we ended up having nine tabs in addition to

More: I am, Friends, Nearby, Universe, Messages, Placemarks, Requests, Search, and

Settings. Brightkite users love to customize their experience, so we turned on the tab

bar controller’s edit mode, which allows a user to rearrange what tabs go where in an

application’s tab bar. The only exception to this was I am. We didn’t allow users to move

I am from its location as the first (leftmost) tab of the tab bar, since checking-in is vital to

participation on Brightkite.

CHAPTER 3: Brightkite for the iPHone 50

BRIGHTKITE SHARES

Brightkite is a great Twitter client. Say what? It turns out that Brightkite check-ins, notes, and photos can
be cross-posted to a variety of other services. For example, Brightkite posts often show up in Twitter
streams. Since Brightkite notes are limited to 140 characters, there is an intuitive correspondence between
the two services. With Twitter integration turned on under Account Settings ➤ Sharing at
www.Brightkite.com, the Brightkite iPhone application is a handy way to post to Brightkite and Twitter
at the same time (see the following screenshot).

What’s more, this feature doesn’t stop with Twitter. Brightkite also integrates with other services such as
Facebook, and users can post photos to Flickr, an easy way to publish pictures to the Web. As a bonus,
since Brightkite is location-based, photos are geotagged before they are sent to Flickr by the Brightkite
service.

CHAPTER 3: Brightkite for the iPHone 51

Geotagged photos (and posts) have been one of the most compelling features of Brightkite. In fact, the
company has been covered in the mainstream media because of the citizen journalism coming from
Brightkite users. For example, Brightkite users were on the scene posting photos at President
Obama’s Inauguration. They also posted some of the first photos of the US Airways crash into
the Hudson River in New York. Be sure to read Brightkite’s blog post on citizen journalism at
http://blog.brightkite.com/2009/01/17/citizen-journalism-at-the-presidential-
inauguration/.

Designing for the First-Time User
Throughout the development of the Brightkite native application, the first-time user

experience was an unwavering consideration. From a business perspective, a native

iPhone application offered Brightkite an opportunity to grow and expand. Critical to this

objective were the first-time users who would ultimately download the Brightkite iPhone

application but had no previous exposure to the service. Our job was to ensure the

fewest possible entry barriers for first timers.

The sign-up process represents the greatest hurdle for a successful first-time user

experience, and we erroneously began engineering a cumbersome, multiscreen process.

After selecting a username and password, the user would be stepped through the

various configuration options of Brightkite—everything from setting up a user profile to

CHAPTER 3: Brightkite for the iPHone 52

turning on mobile notifications to deliver SMS messages for Brightkite activity, such as a

nearby check-in.

Late one night at Brightkite headquarters, we tested the first prototype of this sign-up

flow. I remember handing Martin May my iPhone and the latest build. Martin ran through

the sign-up process by creating a test account. We looked at each other, and I got the

feeling plans were about to change.

A moment later, Martin firmly stated, “This is too complex.” With that, the sign-up

process quickly changed to the final shipping implementation (see Figure 3-4), which

launched a first time user right into the application after completing a very simple one-

page screen. The new sign-up process minimized the number of fields requiring data

input to the bare necessities needed for authentication purposes, such as username and

password. Helpful text hints inform the user about the information we are asking for, and

the text content and color changes if necessary as the user types, for example, if the

provided e-mail address is not a valid format or the password is too short. By reducing

the number of screens, keeping data input to a minimum, and adapting the sign-up

screen’s messaging as the user interacts with the application, the shipping

implementation vastly reduced the barriers preventing someone from trying Brightkite.

We still exposed all of the original features of the initial signup process in the

application’s Settings tab. This was very easy to do because of a technical design

decision we made in building the Settings tab. Brightkite’s web site is full of

customization options and settings. Martin and Brady wanted to expose as many of

these as possible via the iPhone application, with a simple means to add more over

time. We built the Settings tab to construct itself from a hierarchy defined in a property

list similar to an iPhone application’s Info.plist file. From a code maintenance

perspective, this gave Brightkite the ability to add or remove items from the Settings tab

with relative ease.

Figure 3-4. Sign-up made easy

CHAPTER 3: Brightkite for the iPHone 53

Now that we’d reduced the sign-up impediment, what came next? Brightkite is a social

network, which implies a collaborative experience. A first-time user doesn’t have any

friends in the friend’s list, so we had to find a way to encourage first-timers to explore

Brightkite anyway. The solution was to show a new user the Nearby tab, expanded out

to a 100 kilometer radius. This meant that many first timers would see a busy activity

stream of Brightkite user posts within their general geographic location (see Figure 3-5).

A sample of the Brightkite experience might entice them to participate and to invite their

friends to join too.

What about checking in, you might ask? After all, wouldn’t a first-time user be

encouraged to check in first? The I am tab in the Brightkite application is the first tab all

users are brought to after sign-up. On this screen, they are shown their current locations

and given the opportunity to check in or post a note. Many first-time users will do this

first thing. Others will tap around the application and see what Brightkite is all about

before getting involved—hence the importance of providing a good first-time user

experience in the various activity streams, any one of which may be the reason a user

decided whether or not to check in. Moreover, just getting someone to check in doesn’t

mean we suddenly have an active Brightkite user. In my experience, if there is a lot of

activity in the streams—among friends, people nearby, and the universe—I am more

likely to want to check in and post a note or photo.

In some areas of the country, Brightkite isn’t as widely used. I have had friends come to

Denver that weren’t active Brightkite users in their hometowns but really enjoyed

Brightkite in Denver because of the amount of activity. Making the I am tab the first

screen the user sees after sign-up (and subsequent application launches) is important

given the typical smart phone application usage patterns of quick in-and-out behavior.

Yet, usage is really driven by the streams.

Since, again, the first-time user doesn’t have any friends in the Friends stream, so we

also encourage making friends. In this case, the placeholder graphic on the Friends tab

has two action buttons: one to discover friends who are already on the service and

another to invite friends to the service via their Address Book (more on this can be found

in the “Best Practices for Address Book Integration” sidebar).

CHAPTER 3: Brightkite for the iPHone 54

Figure 3-5. The expansive Brightkite is a whole universe.

Creating Virtually Infinite Drill-Down
The Brightkite service has three types of pages accessible through the activity streams:

posts, places, and people. Posts are check-ins, notes, or photos from a person at a

specific place. From a post, a user may navigate to a place or person. From that place

or person, a user may navigate to another post, and, thus, to another place or person,

and so on.

Figure 3-6. From a place, users can choose to add a placemark, navigate to another place, find people nearby, or
check in; drill-down is essentially infinite.

CHAPTER 3: Brightkite for the iPHone 55

Navigation controllers for our tab-bar-controller–based user interface represented

another critical design component. We realized that the interconnectedness of posts,

people, and places would potentially allow users to drill down, virtually forever, but

would require a careful implementation to avoid excess memory consumption.

In simple terms, my team needed to create a drill-down function. In a typical navigation

controller, each view controller is retained in memory. In Instruments, the performance

and memory optimization tool that ships as part of Xcode, a navigation controller drill-

down typically shows an increase in memory usage over time. As a user backtracks the

navigation stack, memory usage declines in proportion to freed, unneeded view

controllers.

Managing memory so well that the iPhone’s memory watchdog process would never kill

the application presented an ambitious goal, considering the resource-constrained

nature of the iPhone and the watchdog’s aggressive tendencies. For those not familiar,

the iPhone operating system has a background watchdog process that looks for

memory use by sampling the system at frequent intervals. Among other tasks, the

watchdog is intended to protect the system’s core phone functionality from third-party

applications. Should the watchdog identify a problem, the offending application receives

several warnings before the system ultimately performs a shutdown.

The Brightkite drill-down among posts, people, and places signaled that our design

would excessively consume memory. Initially, we brainstormed ways to avoid the

problem altogether. For example, we considered limiting the allowable drill-down. We

finally decided that any artificial limit was not intuitive to the user and, therefore,

unacceptable in our product.

In an infinite drill-down scenario, the memory curve continually increases until the

iPhone operating system issues one or more memory warnings. Our testing revealed

that freeing unused application data at the time of the warning, through the

didReceiveMemoryWarning method, failed to prevent memory shutdowns. This is a key

user experience point: a user can’t tell the difference between a crash caused by a code

defect and one that occurred at the hand of the memory watchdog. We concluded that

preventing the system from issuing an initial memory warning would substantially

decrease the possibility of a memory shutdown.

We readily solved the memory problem by implementing a grandfather strategy. In other

words, as the user drills down, the tab bar controller frees the view controller on the

grandparent stack rather than on the previous (parent stack) view controller. Essentially,

our tab bar controller must retain just enough data about the freed view controllers to

rebuild the state, as the user taps the back button and traverses back up the stack. After

implementation, the memory graph in Instruments revealed a static memory footprint

instead of a steady climb. Memory was allocated for a new view as the user tapped on a

post, person, or place and, concurrently, the tab bar freed the grandparent view

controller.

You might wonder why we went to such lengths for the Brightkite application. As noted,

we believed that any artificial limit intended to reduce the memory footprint would

confuse the user. We also discovered that, given the iPhone environmental conditions,

CHAPTER 3: Brightkite for the iPHone 56

in some cases, even minimum drill-down could trip the operating system’s watchdog.

Our solution to virtually infinite drill-down also proved serviceable in our tab bar

controller for switching between tabs. When we realized that the memory patterns of the

tab bar were similar to the navigation controller, we implemented the grandparent

strategy for tab switching as well.

BEST PRACTICES FOR ADDRESS BOOK INTEGRATION

The Brightkite native application included Address Book integration as the basis for the Discover and Invite
feature. The feature allows users to easily locate existing friends on the Brightkite service and to invite
friends to the service as well. Unlike using Core Location, accessing the Address Book from a native
iPhone application does not require user permission. However, to protect potentially sensitive information
in a user’s Address Book, we made several design choices to better inform the user.

First, Discover and Invite contains complex descriptive text (see the following illustration), which details the
exact process to the user. Additionally, the Discover and Invite workflow requires the user to conduct
several actions, such as selecting specific Brightkite-serviced friends to locate or inviting specific friends to
join the service. The workflow includes button labels, such as Next and Send, which precisely describe
immanent activity to the user.

From a development perspective, be sure to test Address Book integration with large address books that
contain contacts from Outlook, Gmail, and other services. We had to do a fair amount of optimization to
speed up the process, and we discovered several crashes after running the code against Address Book
data populated from mail programs other than Apple’s Mail. In particular, Outlook and Gmail appear to
structure some information a bit differently, for which our code was originally not prepared.

CHAPTER 3: Brightkite for the iPHone 57

Summary
The Brightkite iPhone application resulted from an intense collaboration between

Brightkite and Double Encore. The joint team collectively designed and delivered a

world-class iPhone application by paying meticulous attention to detail and considering

the user experience above all else. As a result, the application received an enthusiastic

reception from Brightkite users as well as from the media when it premiered in October

2008.

Of course, with any large-scale project, we might have done things differently if we

could go back and do them again. In particular, the visual design iteration of the native

application required major effort to get just right, compared to the original Brightkite web

application that achieved a similar visual design with less effort due to the power of

HTML, CSS, and JavaScript.

With over a year creating of native applications under our belt, we’ve begun to apply a

hybrid approach to our current efforts. Native applications are important for their access

to iPhone’s unique features and the general performance versus a pure web application.

Yet, designing certain elements with web technology and embedding into a UIWebView is

a pragmatic way to achieve the power of a native application, with the rapid design

iteration that is possible via HTML/CSS. This hybrid approach isn’t ideal for everything,

as web technology is typically slower to render and not as smooth on the iPhone as

native code, though it makes a lot of sense for read-only content where the user is not

interacting with the application.

59

David Kaneda
Company: Morfunk

Location: Philadelphia, PA

Former Life As a Developer: Frontend web design and development

Blogger, www.webkitbits.com, www.davidkaneda.com,

Open source developer, www.jqtouch.com.

Life as an iPhone Developer: Outpost, productivity

What's in This Chapter: Outpost:

Wireframing, designing complex structures, creating graphics within context,
working with a small team.

 60

61

61

 Chapter

Outpost
In this chapter, I’ll introduce you to my process for designing an intuitive project

management interface application within a small team. I created my iPhone

development company, Morfunk, shortly after attending SEED 3, a conference in

Chicago about design and entrepreneurship. The theme of the conference was taking

control of your work, doing what you love, and other general inspiration. Coincidentally,

this event took place just a few months before Apple announced the first iPhone beta

SDK. Flush with confidence and inspiration from the conference, I concluded that an

iPhone application would be the most logical, and most fun, way to get into the business

of designing software.

Up until that point, I had always been a web designer and developer. At the time, I was

working as senior web designer at a local design office that focused on educational and

architectural web sites. I also had a fair amount of experience creating web applications

and was very curious about native Mac software, but I was too intimidated to dive into

Objective-C and Cocoa. I was particularly excited to design the user interface within the

context of the operating system. I knew I wanted to make the application—now, I just

needed to know what it did.

In this chapter, I’ll take you through my process of figuring out what my application

should do and how it was designed to match the context of the iPhone.

Establishing Outpost
I spent a few days thinking about what kind of application I would make. I’m a big

productivity and Getting Things Done (GTD) enthusiast, so I wanted to create something

useful, especially to small businesses and professionals. I considered time-trackers,

invoicing tools, and similar applications (most of which have since been made in one

way or another). Then, I remembered—my primary tool for managing projects,

Basecamp, had a public API that I could use to work with their data from an iPhone

application.

Basecamp is a web application by 37signals, coincidentally, one of the primary speakers

and organizers of SEED. 37signals has written extensively on the subject of productivity,

4

CHAPTER 4: Outpost 62

design, and building software. One of my favorite books when learning web design was

Defensive Design for the Web, written by them about five years ago. Basecamp, their

flagship application, has been acclaimed by publications like Newsweek for its simplicity

and usability. Basecamp is a simple project management application built specifically to

ease collaboration. Its primary features revolve around creating and sharing messages,

milestones, to-do lists, and files. Users can leave comments throughout the application.

Additionally, Basecamp can help manage time tracking, copy writing, and online

discussions. Creating a Basecamp iPhone application seemed perfect, and my only fear

was that 37signals already had similar plans underway.

I remember being nervous the first time I e-mailed Jason Fried, founder of 37signals and

the one I saw speak at SEED. I asked if he was planning an application and, if not, if he

would mind me making one. I also ran the name “Outpost” by him. He wrote me back

fairly soon, saying he heard a few were in the works, but they had no immediate plans to

do one. He concluded, “We’d love to see you put one together.” That was all the go-

ahead I needed.

I wanted the application to be fairly comprehensive. This wasn’t entirely possible due to

limitations of the API offered by Basecamp, but there was still a lot of information to

show. We needed to incorporate the ability to add, edit, view, and delete things like

messages, to-do lists, and milestones. I was also very concerned with giving users

dashboard screens, which Basecamp provided as a means to traverse specific types of

data across all projects.

I was less concerned with allowing comments and was unsure if this feature would make

it into the application. Similarly, I was not very concerned at all with features like time

tracking (typically offered on higher-level Basecamp plans).

At first, I had hoped to create the application on my own. Three books on Objective-C

and two very long days later, I quickly realized I was spinning my wheels. One of the

biggest lessons I took away from SEED was to not get in your own way. I wanted to

make this application quickly, and I realized my primary interest was planning and

designing an iPhone application, not necessarily programming it.

I took two days off of work from my day job and started making calls. My basic

approach was simple: I Googled, texted, and searched jobs sites. In those two days, I

talked with developers in India, the Czech Republic, Kentucky, California, and Canada.

Ultimately, it was Jim Dovey, in Toronto, who expressed the most enthusiasm for the

project and was willing to work in a relaxed, equity-based environment. I offered him a

small advance to help him clear time for the application, and he declined it, telling me to

save it for the lawyers when we formed the company and trademarked the name.

Thankfully, I listened.

Wireframing Outpost
I wanted to get the ball rolling quickly. The first, basic thing I needed to get to Jim was

an overall concept of how the application would work. Though excited about the

application, he wasn’t a Basecamp user himself. I developed the initial concept over

CHAPTER 4: Outpost 63

about a week, creating countless sketches by pen and notebook. I treated it like a

puzzle: Sometimes, I sketched a deep-level screen, like the screen used for editing a

message and then worked my way up. Sometimes, I started with the dashboard and

worked down. This process gave me a clear idea of problem spots and areas where I

would have to compromise. I created a sketch in a matter of seconds and quickly

compiled those ideas that had potential and trashed the rest.

I considered scanning these sketches to send to Jim, but they were very loose, and I

didn’t know for certain that they would really work on-screen. I was also eager to get

designing. I decided that making wireframes would ensure the designs were practical,

allow me to start seeing the design challenges, and provide the clearest direction

for Jim.

I tried quite a few wireframing tools. A wide set of tools is available to assist in designing

or laying out an iPhone application; some of the most common I saw were template kits

for OmniGraffle and Illustrator. Aside from this, I saw a few people working by hand with

pen, stencil, and watercolor. I found OmniGraffle helpful in creating quick outlines of

what screens could be, but these images lacked any sort of polish or refinement. I had

an Illustrator stencil set, as well, with a few great elements, but I didn’t know the best

way for incorporating it with the OmniGraffle sets. Likewise, the native Developer Tools

Interface Builder was helpful in quickly creating elements like tab bars and table rows. I

came to the conclusion that Photoshop would provide the best means for bringing all of

the pieces together and providing a pixel-accurate preview of what we were making,

and it is still my choice in iPhone UI design and wireframing. Photoshop makes it easy to

pull elements from a variety of sources, combine them, and refine with as much or as

little detail as I’d like. A side benefit of the Photoshop wireframes is that elements are

easy to export and implement in the final design.

Figures 4-1 and 4-2 are my initial Photoshop mockups for the Settings, Dashboard,

Projects, and global To-do screens. The Dashboard screen in Figure 4-2 shows buttons

to refresh the view and change settings, though these were later moved.

CHAPTER 4: Outpost 64

Figure 4-1. The early Outpost startup screen

Figure 4-2. Early Outpost Dashboard, Projects, and To-do screens

CHAPTER 4: Outpost 65

Some would argue that these aren’t true wireframes, because they are in color and

certainly contain more detail than traditional wireframes—and they’re probably right.

They were not perfectly designed, however, and Jim knew it. We had several

discussions leading up to this point about what was possible in regard to customization

for iPhone applications. I knew we would have control over color in various places, like

the title bar and row headers, and I knew certain graphics, like the arrows, could be

easily replaced.

Certain structural elements shifted. For example, the original primary dashboard had a

refresh icon at the top-left corner to represent syncing with Basecamp. Later, we wanted

to add more information and control over the sync process, so we gave the sync

operation its own tab and removed the time-tracking feature for the first version.

These wireframes were also extremely easy to make. Being a web designer, sketching in

Photoshop becomes second nature. While still rough, the Photoshop sketches

communicated loads of information that would have been impossible to describe over

the phone or with a basic visual outline. The primary dashboard, for example, had a

specific layout for primary and secondary information and labels. Completed to-do items

were presented in a strike-through font, to mimic Basecamp and provide a quick visual

cue for the row.

I wanted to send notes along with the screenshots. I thought this was a particularly

important point to effectively communicate certain ideas, some not even visual, so I

ended up throwing together a web page with everything on it. After sketching everything

in Photoshop, I rendered all of the screens as JPEGs, and took down as many notes,

questions, and ideas as I could think of.

Figure 4-3 shows a series of shots from a single screen for viewing a message. I wanted

to replicate the look of Mail in the way it displayed metainformation (the Title, From, Date

and Category fields) and a styled message. I also found it important to show comments

directly beneath the messages, as they were so closely related, and to provide a quick

mechanism for adding a comment. One detail that I stressed in my notes was to show

the most recent comment when adding a new one; this way, users had a reminder of the

most recent context of the discussion.

CHAPTER 4: Outpost 66

Figure 4-3. Early Outpost Message screens

Designing Outpost
The Outpost application had to contain a lot of information. Basecamp is a project

management system that people use in very different ways, to hold different amounts of

data. At its core, though, the web application provides users the ability to track

messages, milestones, and to-do items. Therefore, our application had to preserve this

basic functionality, and we had to accommodate for a variety of usage possibilities.

Two Screens, One Application
One of the main features that Basecamp offers is the ability to view project data in

a granular, project-specific, way, as well in a comprehensive dashboard view. As

Figure 4-4 shows, Basecamp’s dashboard view allows users to view a stream of recent

activity across their projects, as well as a global to-do list and milestone calendar. It

allows users to quickly see what’s going on across all projects.

CHAPTER 4: Outpost 67

Figure 4-4. Basecamp’s dashboard view

Clicking a project name or specific item from the Dashboard tab takes the user to the

project view, which has tabs specifically for that project. In Figure 4-5, you can see the

project-side Overview screen. This shows primarily shows upcoming milestones and,

below that, recent activity. The user can then select Return to Dashboard or switch to a

different project (both options are in the top-left of Figure 4-5).

Figure 4-5. Basecamp’s project view

CHAPTER 4: Outpost 68

I thought it was extremely important to include both of these views in the iPhone

application, but doing so presented a huge challenge. With limited screen real estate, we

had to be careful not to overwhelm the user with buttons and links and, at the same

time, make the distinction between the two interfaces clear. As you can see from Figures

4-4 and 4-5, both screens share similar language for referencing to-do items and

milestones.

First Attempt
My first idea was to have a tab bar across the bottom of the application on both screens

and differentiate them by adding a row above that of the project view with the project’s

name and client (see Figure 4-6). I figured we could switch the view away from the

dashboard when someone tapped a project name or specific item, akin to Basecamp’s

interface, and then provide a new tab bar on the project side that had a button for

switching back.

Figure 4-6. The original dual-screen tab bar concept

After giving this some consideration, though, we decided against this design for two

reasons. First, having a tab bar in both states made them look too similar, even with the

extra client and project labels appended on the project side. Second, we were using a

tab bar button for switching between states (including the tab bar itself). This was the

real deal breaker for me. Visually, tabs indicate multiple views that are quickly switched

between. Using a tab to alter the overall state of the application just didn’t make sense.

I went back to the drawing board.

Second Attempt
Ultimately, we realized we didn’t need the tab bar on the project view at all (see Figure

4-7). This side of the application could simply be a series of hierarchical list views, with

the top-tier menu consisting of just the parts of the project (messages, milestones, and

to-do lists).

CHAPTER 4: Outpost 69

Figure 4-7. Project-side screens without toolbar

We still needed a way to quickly get back to the dashboard side, so we created a full-

width button at the bottom of these screens for switching back. While a back button is

typically placed top-left within an application’s design, this back button was different.

The user wasn’t moving back within the structural flow but was navigating between the

two sides of the application. Another reason for my decision to place the button at the

bottom of the screen was that it corresponded with the tab bar on its alternate side (see

Figure 4-8).

I designed the button to look very different from the default tab bar by using a light blue.

I found this color difference important, because my button was functionally different

than a typical tab bar and better suited to be a custom UI element. I also used this area

to show the project and client name, in that order. There were extra benefits from the

switch as well, which we soon discovered. As the tab bar is restricted to five items, our

custom element meant projects could hold more than five items, which was useful when

we added project-specific Recent Items and began considering to add time tracking (a

feature of higher level Basecamp plans).

To polish off the button, we also added a flip animation when going between the two

states. In regard to user experience, I think this animation really helped explain the

alternating state of the application. We also modified the header color for projects to be

a tinge lighter than that of dashboard screens.

CHAPTER 4: Outpost 70

Figure 4-8. Final Outpost dashboard-side Milestones screen

Fitting In
As our application was business-centric, I thought it was important to create as clean a

design as possible and adhere strictly to Apple’s Human Interface Guidelines (HIG).

Because I wanted Outpost to be as straightforward and native-feeling as possible, I

looked for much of my inspiration in native applications. I spent many hours reviewing

applications like iPod and Mail to look for trends and design patterns to apply to

Outpost.

While the majority of the application uses default iPhone styles, with elements like

navigation lists and tab bars, many elements were created specifically for Outpost. By

doing this, we ensured Outpost had a clear, unique style in a very subtle way. This

would help us eventually differentiate ourselves from the competition for being distinct

while still having a native feel. For example, I wanted to make buttons throughout the

application, like the arrow within a circle that denotes jumping to a specific item, as

custom UI element, as this button was a common user interface element. Using

screenshots from the application, I made the drop shadow and stroke to match the

native element but altered the color to teal blue to match the rest of our theme, and

slightly modified the arrow to be a bit bolder (to match our brand and web site design).

Likewise, row labels, like those denoting the types of items on the dashboard, were

created as custom elements and color-coded to match Basecamp’s conventions.

Traditionally, information capsules like this are shown in a light blue bar with rounded

sides, but we wanted to embellish with a slight bevel and drop shadow, so they related

CHAPTER 4: Outpost 71

to the arrow button. The colors were taken directly from Basecamp, so users would

have an immediate association with each row. You can see an example of these custom

IU elements in Figure 4-9.

I believe details like this went a long way in establishing recognition in the Basecamp

user base. We originally posted an early promotional site, to start an e-mail list of

potential customers, and posted some of the early concepts as a sample—the response

was fantastic.

Figure 4-9. The final Outpost Dashboard screen

Technically, to create certain elements, I took several screenshots of buttons from native

applications that I would be emulating. I then brought these into Photoshop and re-

created them using purely vector shapes and layer effects, like drop shadows, strokes,

beveling, and embossing. The result was a set of reusable looks that could be

transferred to new elements, if necessary, or further customized. You can see some of

these styles in Figure 4-10.

Figure 4-10. Custom buttons used throughout Outpost

CHAPTER 4: Outpost 72

Certain areas that held limited functionality had a stronger opportunity for branding and

design. The sync screen, for example, required a very simple interface, so we

strengthened it with our icon’s image, a tent.

Working in a Small Team
One of the biggest benefits of working in a two-person team with one designer and one

developer is how facile we can be in implementing and modifying the design. If Jim

needed me to revise a graphic, he would leave me a message (on Basecamp, of course),

and I would reply within a few hours with the graphic. Certain elements could not be

built in Xcode (the primary iPhone development environment) the same way I would craft

them in Photoshop. We wanted to use a custom header color, for example, but the

gloss is applied automatically in Xcode. For this situation, Jim quickly came up with

something close, and I helped refine, through iChat, using requests like, “Could it be just

a tad more saturated and a little lighter?” Altogether, we were able to get the right look

in about 10 minutes.

Designing with HTML
One of the components which I particularly enjoyed creating was the Message

view screen (see Figure 4-11). Messages in Basecamp are processed with a

small script called Textile, which essentially gives users certain shortcuts to

basic HTML. For example, to italicize text, you can put underscores around it:

like this. I thought it was important to show the text in its styled form, so we

embedded the HTML form of the message in a WebView. This allowed us to style

the text directly with traditional web Cascading Style Sheets (CSS). Being a web

designer, I jumped at the chance to help with the application’s development and

programmed the style sheet for this view myself.

CHAPTER 4: Outpost 73

Figure 4-11. Final Outpost project-specific Message screen

All That Glitters. . .
As a platform, the iPhone is still incredibly young, and certain elements lack predefined

standards. This was the case when we began to design the check boxes for to-do lists

within the application. At the time (in the original iPhone operating system), no native

application included a check box mechanism. The closest item, functionally, was the

on/off switch in settings panes, which wasn’t appropriate.

We ended up taking the look of the check box in Mobile Safari and customizing that to

match the height of our rows and to add a bit more texture and definition. While this was

still stylized, we felt using a Safari check box would also improve the association with

the Basecamp web application.

Since then, the iPhone OS has changed significantly, one difference being the ability to

select multiple e-mail messages for editing or deleting. Now, we have a standard

defined by Apple of what check boxes should look like: a gray outlined circle that

changes to be filled with red and a checkmark once selected (see Figure 4-12). We have

yet to modify the check boxes in Outpost, though, as I remain unconvinced.

CHAPTER 4: Outpost 74

Figure 4-12. The check box style used in Mail, which connotes multiple selections

Technically, within Mail (and a few other places these checkmarks are used), these

check boxes represent the selection of a row, semantically very different than toggling or

editing the state of the row. When this element is available in other applications, for

example, the user can click the entire row to alter the state. In ours, I believe the user

should be specifically clicking the check box to mark a to-do list item as complete or

incomplete, whereas clicking the row itself leads to a window with more information. For

these reasons, I’m leaving our square little boxes (shown in Figure 4-13) in place until

the right inspiration comes along.

CHAPTER 4: Outpost 75

Figure 4-13. To-do check boxes in Outpost

Summary
Ultimately, designers have the luxury of making iPhone applications look however they

choose. The challenge of this is finding a balance between using default controls, like

navigation lists, and completely customized designs that can alienate the user. As

illustrated in this chapter, we created many conventions within Outpost. Some were

structural, like using a flip transition to switch between two exclusive modes of the

application. Some were purely cosmetic, like changing the button styles. Throughout our

application design process, though, our primary goal was very straightforward—create

an application that felt native and custom at the same time, had the features we wanted,

and stayed out of the way of the user.

77

Craig Kemper
Company: Little White Bear Studios

Location: Oregon

Former Life As a Developer: Tens years of experience creating educational
desktop software in C and C++, using Microsoft Visual Studio, CodeWarrior, and
Xcode.

Life as an iPhone Developer:

TanZen Category: Games-Puzzle Toolset: Xcode and Photoshop

Zentomino Category: Games-Puzzle Toolset: Xcode and Photoshop

What's in This Chapter:

 Finding the Elusive App Idea

 Creating a Design Document

 Diving Into the Code

 When is a Game Not a Game?

 The Heaven and Hell of Finally Getting on a Device

 The App Store Arrives!

 78

 Creating a Second Game

 Conclusion

 Tools/techniques:

 Photoshop

 iPhone Simulator

 Design documents

79

79

 Chapter

TanZen and Zentomino
I’m Craig Kemper, the developer behind Little White Bear Studios, which makes the
popular games TanZen and Zentomino (see Figures 5-1 and 5-2). At the time of this
writing, these two games have been bought over 150,000 times combined and have
received rave reviews by users, peers, and professional review sites.

Figure 5-1. The TanZen icon Figure 5-2. The Zentomino icon

In this chapter, you’ll learn how I along with the help of my talented wife, Lindi, designed
a successful user interface (UI) that takes advantage of the unique size and feature set
of the iPhone. By focusing on UI design, I hope to convey the importance of creating an
immersive user experience with your app. The UI may determine if you have a life-
changing runaway hit, or a complete flop, so concentrating on a good presentation is
just as important as how great your code is. I am neither a master programmer nor any
sort of artist, so please don’t feel like this chapter couldn’t possibly apply to you. I’m an
average software developer with a day job, a wife, and three kids. I just took a chance
on the iPhone, by investing many late nights for a few months, with the hope of
improving the life of my family. And about a year and a half ago, I was just starting out
with iPhone programming—like you.

Finding the Elusive Application Idea
 In March of 2008, Apple opened the door to you and I, by introducing the iPhone
software development kit (SDK). We’ve been granted access to a device that offers a
wealth of possibilities. The iPhone is a miniature computer in your pocket. It’s a blank
canvas, with the potential to be a useful tool and entertainment device to millions of
people around the world. That kind of compact power is Star Trek stuff. And thanks to

5

CHAPTER 5: TanZen and Zentomino 80

Apple’s App Store, we get those keys to the kingdom at nearly zero cost. All you have to
do is come up with the idea for your application.

If you’re not sure where to start, consider how my wife, Lindi, and I came up with our
applications: As soon as the SDK was announced, I signed up for the developer
program. Although, I was immediately put on a wait list, Apple did allow us to download
the SDK and give it a go on the simulator. I played around with the SDK for a couple
weeks and learned a lot about Objective C and the iPhone operating system (OS). I
didn’t own an iPhone at that time, but fortunately, through my masterful powers of
persuasion, I managed to convince Lindi that I needed one for development. Since I was
on the waiting list, I could not put applications on the phone, but at least I could use it
on a daily basis and hopefully come up with a winning application idea.

Finding the perfect application idea was the next step. I decided quickly that I wanted to
try my hand at creating a game. Coming up empty on an idea for days, the idea found
me one day in the form of a tangram puzzle game, which was sitting on a large meeting
table at my day job.

Tangrams are Chinese puzzles, where you have the task of using the seven geometric
shapes shown in Figure 5-3 to reproduce a larger shape. The puzzle game has been
popular for hundreds of years, and schools around the world use tangrams to teach
spatial reasoning to young children. Every aspect of the game was suited for a touch
screen device, and the sheer number of puzzles involved guaranteed an ever-expanding
game that could keep players involved for a very long time.

Figure 5-3. The seven tangram shapes

I researched tangrams obsessively and studied what made the game a joy to play. I
noted all the different ways the computer versions of the game chose to implement their
UIs. Some were better than others, but most failed in one way or another to capture the
joy of the physical version of the game. Mouse clicks, shift keys, arrow buttons, and a lot

CHAPTER 5: TanZen and Zentomino 81

of computer-assisted shape placement permeated these games. Most of them used
plainly colored pieces that made me feel like I was stuck in geometry class learning
about angles. Real tangrams involve touching pieces and spinning them with your
fingers; they’re all about tactile feedback and being free to move pieces wherever you
want. The computer tangram games felt nothing like this. They felt, well, like computer
games. And that’s the moment I decided to buck the trend and try to create a computer
version of the game that felt more like the real thing. The iPhone seemed like a perfect
platform to do just that. The average iPhone user isn't a gaming expert. It’s our job as
developers to make them feel at home, even though the playing surface is completely
void of physical feedback.

Creating a Design Document
I'm a big supporter of the theory that you should spend a great deal of time designing an
application before you ever write a single line of code. If you just start coding away,
you’re going to discover things that are wrong and then have to recode, or worse, you’ll
code yourself into a corner that hurts you down the line. A good design is the backbone
of your application and will help you make vital decisions quickly and cheaply, before
they become too expensive to fix later.

The design document for my tangram game (see Figure 5-4 for excerpts) started very
simply. I began by creating an outline of all the things I wanted the game to include, and
the things I absolutely didn’t want. It’s important to know the personality of a game, as
strange as that idea may sound. What is the goal, and how should the players feel when
they play it? Is this a quick, pick-up-and-play sort of game? Or is it an involved,
multihour experience? You need to know the answers to these questions before you
start, or you’ll run into feature creep, in which your game slowly gains features that really
aren’t needed.

I created several sections about the various interface elements needed in the game and
detailed many scenarios, even those I knew I didn’t want. I also gathered several ideas
from Lindi, who served as a sounding board, idea editor, and therapist throughout the
entire development process. With her assistance, I created lists of advantages and
disadvantages for each feature, noting the various strengths and weaknesses, and how
a decision would affect game play. These lists helped to eliminate the obvious poor
choices before I ever started coding. Be careful not to go into too much detail at this
point in the design, however, as things that sound good on paper will sometimes fall
apart completely once they’re actually tried in the real world.

CHAPTER 5: TanZen and Zentomino 82

Figure 5-4. Excerpts from the design document for TanZen

The design document shown in Figure 5-4 became the go-to guide for TanZen
development and acted as a reminder of what was important when decisions needed to
be made. The design document is not law, as you’re always free to add to it or modify it
at any time. But overall, it provides the information necessary to get started and helps
guide you through to the very end of the project.

Diving into the Code
After coding up a very quick proof-of-concept application, where I drew simple tangram
shapes on the screen and moved them around with my finger, I was ready to begin the
real coding. However, before I began, I wrote yet another small document, this time
detailing the object-oriented design structure of the code. This document broke the
game into modular pieces, so I could tackle each part individually, without affecting

CHAPTER 5: TanZen and Zentomino 83

everything else. Each tangram piece became a class, with a general parent class to
control common functions. The game board had it’s own class, which could contain any
number of piece classes. Additionally, each separate view in the game was a class.

Objective-C uses objects, and TanZen is all about moving objects on the screen, so
coming up with a generic yet versatile object-oriented design was going to aid in
development, as well as make it easy to execute large changes in the interface, without
disturbing the basic way the game pieces worked behind the scenes. The more modular
the code was at the beginning, the better coding would be in the future. And if you can
maintain that modularity through the end of the project, you’ll probably even end up with
code you could reuse for a future game. This is precisely how my second game was
created in one-fifth the time of the first.

Creating the Piece UI
After creating the seven basic pieces in the game (see Figure 5-5), I went to work on
implementing the interface design for manipulating those pieces. I wanted to take
advantage of the iPhone’s features but not overwhelm players with token uses of those
features. Since I was trying to emulate physical tangrams, I tried to re-create those
movements in the code. Obviously, the most frequent thing done in tangrams is the
movement of pieces, and simply tracking finger touches on a particular piece gave the
perfect control.

Figure 5-5. The seven tangram shapes in TanZen

The second most frequent action in tangrams is turning the pieces. My design document
stated that rotation of pieces should be done with a twisting motion, which is what you
would do in the real game. By placing one finger on each side of a piece, I could twist

CHAPTER 5: TanZen and Zentomino 84

them, and the piece would turn in any direction. This took a very long time to get right
on the simulator, since I couldn’t use actual fingers to test it! As soon as you’re able,
start working on a real device. There’s a bit longer turnaround time to load, but you’ll
save countless hours in the long run.

Next up was flipping. I had a hard time trying to keep this motion the same as its real life
counterpart. There just wasn’t a gesture for it, other than a pinching action, which would
be much too similar to rotation. Eventually, I decided to implement flipping via a simple
double-tap. Flipping isn’t used extensively in tangrams, so I decided it wasn’t as vital to
match the movement of the real-world game. Working with the iPhone, you learn quickly
that compromises like this are a daily occurrence. Coming up with the perfect iPhone UI
is a blend of inspiration and bitter reality checks.

Pieces, Pieces Everywhere

One of the really head-scratching design challenges involved where the heck to place all
these pieces at the start of each puzzle. Various computer tangram games solved this
problem in different ways. Some used a hidden tray, while others just threw them all
around the puzzle area. I didn’t like any of the examples I found. I knew I wanted the
pieces to be visible at all times, but I was having trouble visualizing how to place them
on the screen. So I spent at least a day with a physical set of tangrams, trying all sorts of
combinations, before finally coming up with the simple yet clean placement that
ultimately appears in the game (see Figure 5-6). If you find yourself stuck on a UI issue,
try moving the problem to a different, and perhaps easier to iterate on, medium.

Figure 5-6. The default piece positions

CHAPTER 5: TanZen and Zentomino 85

Being Deceived by the Simulator
At this point in the game’s development, Apple showed no signs of letting new people
into the developer’s program, which would’ve allowed me to develop on a device. Now
on month two with the simulator, that little tool was my best friend during late nights of
programming. It seductively reproduced my designs, asking for nothing in return.

But here’s something every new iPhone developer needs to know: The simulator is not
your friend. It will lie to you, right in front of your face. What’s that you say? “The
simulator accurately displays the 320 × 480 iPhone screen.” Yes, you are absolutely
correct. But, guess what? The iPhone has many more pixels per inch than your average
computer screen, so your trusty simulator is displaying everything several times larger
than the actual device will (see Figures 5-7 and 5-8). Go ahead; put your iPhone against
your screen, and bring up the simulator next to it. Notice anything? All those fancy little
doodads you made to control things will be microscopic on the iPhone. Don’t feel bad.
Many people made the same mistake, including us!

Figure 5-7. The simulator screen size, as depicted on a 19-inch monitor, is quite large.

I

Figure 5-8. The iPhone screen size is tiny.

CHAPTER 5: TanZen and Zentomino 86

After my terrible moment of realization about screen sizes, I quickly found that my
wonderfully simple yet natural method of piece rotation was not going to work at all.
Even with the larger pieces, there was simply no way to comfortably get two fingers
around a piece and perform a twisting action. What could I do to fix this? At that point, I
had no idea. The rather nebulous App Store deadline of June or July was fast
approaching, so I did the only thing I had time for: I mapped rotation to a simple tap.
Each tap rotated the piece 45 degrees in a clockwise direction. I didn’t like the solution.
The gesture felt unnatural, and it didn’t jive with my concept for the feel of the game. But
it solved the problem, and I needed to move on to other coding tasks. Did I mention that
you will need to make compromises yet? Luckily, this was one compromise I was able
to take back later in development.

Playing to the Emotions of Your Customers

A user interface is not just about widgets and buttons. It’s also about the emotions it
creates in the player. Most video games are all about getting to the next level.
Personally, I stop playing a video game once I can’t get past a level after several tries. I
put it down and never pick it up again. A tangram game could have thousands of
puzzles. Some of them are easy, and some hard. I didn’t want people to get stuck and
quit my game, so I decided to go with a rather open feel, allowing players to choose any
of the puzzles they wanted (see Figure 5-9).

The decision to make a frustration-free game led to other choices geared toward
minimizing stress. I decided to record all current piece locations, in every puzzle, so
players would never have to worry about losing their progress. Since the piece locations
consisted of just a few numbers each, storing tens of thousands of locations would take
only a small amount of space on the device. Along with that, I added the minor, yet vital,
feature of including the iPhone’s status bar in the game. If you’re playing a game while
waiting for a bus, for example, you’ll want to know what time it is or when to stop
playing the game because of low battery power. Yes, including the status bar costs you
some screen real estate, but you might gain much more in user experience.

Since TanZen was going to give players a vast array of puzzles to choose from, how
could you stop them from choosing only the puzzles that fit their perceived skill levels?
Remove all difficulty levels from the game! There aren’t easy, medium, or hard puzzles;
there are just puzzles, with no order to them at all. The player is free to pick any puzzle
at random, without the emotional baggage of how hard it’s supposed to be, as shown in
Figure 5-9. Perhaps if more games broke away from the standard mold of conquering
increasingly more difficult levels, they could capture a wider audience of gamers.

CHAPTER 5: TanZen and Zentomino 87

Figure 5-9. The puzzle selection screen allows the player to choose any puzzle to play.

The final, and probably one of the most emotionally satisfying features of TanZen, was
the progress tracking. Every time a player completes a puzzle, the game marks that
success in the puzzle selection screen by showing the pieces they used to solve it (see
Figure 5-10). This simple feature was designed to play into users’ emotions, making
them want to complete another puzzle, then a page of puzzles, and ultimately, the entire
game. The puzzle-selection screen doubles as a trophy case!

Figure 5-10. Tracking the player’s progress gives a sense of accomplishment.

Words? We Don’t Need No Stinking Words!
TanZen uses very little text for a few reasons. For one thing, text doesn’t help players
solve puzzles. Also, it takes up space on an already-limited screen. Finally, the App
Store is available all over the world. Could I possibly create a game that is universally
understood without written language? I decided to try—having no text in the main

CHAPTER 5: TanZen and Zentomino 88

portions of the game! This decision led to the elimination of puzzle titles and all textual
notifications of any kind.

Given the limited space of the device, and the worldwide market it’s sold in, are there
ways you can simplify your interface, so that it can be attractive to everyone?

How Many Buttons Does It Take?

As I was developing the game, I was coding in a bubble. The App Store didn’t exist yet,
so I had no idea what the proper interface for an iPhone game should be. Apple’s only
advice to developers was to make simplified versions of what we’d make on the
computer. Well, to me, that meant fewer features. Fewer features meant fewer buttons.
For my game, I knew I needed a few options on the game screen. Also, all the standard
iPhone applications had an Info button to get to settings and such, so that button
seemed required. I also needed to offer players a way to get to the puzzle selection
screen. Did I need anything else?

My oldest daughter suggested that the game needed a reset button to send the pieces
back to the default locations. I nixed the idea, as it didn’t seem vital to the game
experience, and having three buttons would create an uneven interface. I considered
having a single button that brought up a sublist of button choices, as well as mapping
the same sort of thing to a double-tap action on the game surface, but both had
drawbacks. The single-button version sounded a little complicated, as it would add
another subwindow to the screen. I wanted to keep things simple. The double-tap idea
ran the risk of being confusing and hidden from the player. When in doubt, keep it
simple, and keep it clear. Two buttons it is, one in each lower corner of the screen (see
Figure 5-11).

If you’re having trouble deciding which features to include in your application, try making
a list. Separate the required features from the unnecessary ones. Then decide which
required features will be used the most. Those are the features you need to include in
the primary interface, so they’re always easy to find.

Figure 5-11. A simple two-button layout

CHAPTER 5: TanZen and Zentomino 89

When Is a Game Not a Game?
By this point, it was about a month before what most people considered the first
possible App Store opening date—the week of Apple’s Worldwide Developers
Conference (WWDC) in the middle of June 2008. I now had the basic workings of the
game done. There were buttons, pieces, a puzzle selection screen, and a reasonable, if
not perfect, way to manipulate pieces. It was certainly a playable game. To be honest
though, the game was not even close to something I would’ve wanted to present to the
public for sale at that point. It just looked like a standard tangram game, similar to what
you could play for free on the Web. What would make people pay for this game?

We all know when we’re playing a good game. But what makes it a good game? Is it the
rules or the obstacles you have to overcome? Yes, but that’s only half of it. The other
half is the presentation. Think of your favorite World War II shooter game. Would it be
nearly as much fun if your weapon were a simple, single colored, stick shape? Would
you play the game for hours on end if the goal was to shoot fifty cardboard cutout
shapes of people floating around the screen at random? Of course not! Presentation is
just as important as the game play itself. Players want to be immersed in the game and
forget the world around them. Give them a theme to grab hold of, so they can form an
emotional bond and fall in love with your creation.

The Eureka Moment
I took a break from coding and started thinking about a theme for the game. I went back
to my design document to see what the goal of the game was. According to the original
concept, this game was supposed to be stress free. The goal was to be challenging, yet
calming, so Lindi and I started brainstorming ideas for accomplishing that goal. We
tossed around a few possibilities but always came back to the notion that we wanted
the players to have a calm and enjoyable game that they looked forward to playing
every day. We almost wanted players to think of the game as a calming, meditative,
Zen escape. That was it! A Zen garden! Rocks! Sand! What could be more calming
than that?

We decided to create a sand background and make all the buttons into rocks. And the
pieces themselves could resemble chiseled rock shapes. The puzzle game could be a
meditative challenge, with each tangram bringing you one step further on your path to
enlightenment. TanZen was born!

I’m Not an Artist, But I Play One on the App Store

I now had a catchy name and a great idea for a theme but no graphics to back it up. I
had been using Photoshop for years, mainly for simple image editing, a few school
projects, and a bit of digital coloring. I had never created actual art with it, let alone a
game interface. I am not an artist, but I am a perfectionist and so is my wife. We know
when something looks wrong and when it looks right.

CHAPTER 5: TanZen and Zentomino 90

I scoured the Web for Photoshop tutorials on how to realize our theme. Within a day, I
had the basic game background completed. The idea was to create a subtle sand
background that would look good but not distract from the game pieces or the puzzles
themselves.

The buttons took a few days to get just right. I used black rocks for the main game
screen buttons, so they wouldn’t distract from the game pieces. For the Info screen, I
used a couple different colored rocks for its buttons. And to reinforce the Zen garden
idea on both screens, I added raked circles around the rocks.

The game pieces were a week in the making. I first created some rather plain, stone-
looking shapes. They looked cool to me, but Lindi felt they were missing that something
special. I tried various kinds of textures and colors, giving each piece its own unique
look. While cool looking, that design was much too busy. I needed something peaceful
that would fit the theme.

Lindi started researching Zen colors, and we immediately gravitated toward a green
color. I tried it with a few of the 3-D textures I’d created and came up with a very
organic-looking result. The pieces didn’t look like stone anymore; they looked alive, like
green bamboo. How Zen! With a little custom shading and a few transparency and layer
tricks, I suddenly had seven unique game pieces. All of them were slightly different, but
they looked great together. I was extremely happy with the way the pieces turned out.
They were downright touchable! Adding them to the rest of the interface created a
wonderfully cohesive Zen experience (see Figures 5-12 through 5-14).

Figure 5-12. The main game screen with buttons and pieces

CHAPTER 5: TanZen and Zentomino 91

Figure 5-13. A sand-themed puzzle selection screen

Figure 5-14. The Info screen, complete with rules

After many days of constant creating, tweaking, and a little bit of constructive arguing,
Lindi and I had created the interface and transformed a simple puzzle game into an
immersive experience. We had no idea if this would be good enough for the App Store,
but it was our baby, and we loved it.

Vital, Yet Invisible

The look of the TanZen interface is something I am very proud of. But there’s one
feature of the game that I’m equally thrilled about, and it’s something that no player has
ever even noticed: the sizes of the pieces change, depending on the overall size of the
puzzle. A large triangle in one puzzle may be quite a bit bigger or smaller in a different
puzzle, as they are designed to scale proportionately to the size of the given puzzle (see
Figures 5-15 and 5-16).

CHAPTER 5: TanZen and Zentomino 92

I realized pretty early on in the design process that having enough space to maneuver
the pieces was vital to the gaming experience. Since tangram puzzles vary greatly in
height and width, and the iPhone has a limited screen area, many of the classic puzzles
were not going to fit on the screen. I decided that I wanted every puzzle to look
spectacular, fitting perfectly in the given space. And this meant scaling the puzzles, and
the pieces, to fit. The solution ended up working flawlessly. And like any truly great
design, it solved a huge problem without bringing attention to itself.

Figure 5-15. Larger pieces are used for puzzles that are short in height, as these puzzles can be enlarged to fill
up the screen space.

Figure 5-16. When a puzzle is taller, it must be reduced in size to fit, and the pieces must scale down to match.

CHAPTER 5: TanZen and Zentomino 93

Racing to the Finish Line?

By the time the art was finished, only two weeks were left before WWDC and the
possible opening of the App Store. And if the App Store didn’t open, I was positive that
Apple was finally going to let the rest of the developers into the program, allowing them
to finally test on the iPhone, instead of their dubious friend the simulator.

With everything else completed, I spent the next few days adding over a hundred
puzzles to the game. This seemed like a reasonable number to include, and completing
them all would probably take most people several days or weeks.

With that done, it was finally time for testing. I had been doing a lot of personal testing
during the creation of the game, but now I needed outside help. Beyond basic
functionality testing, it’s always best to get someone else to test for you. You’ve been in
your code for a long time and have unconsciously trained yourself to avoid the sticky
areas. A fresh set of eyes will find the stuff you’re ignoring. Luckily, my house was filled
with testers of all ages! I had testers ranging from age five to thirteen, plus my wife.

My family tested the game for a couple days. Surprisingly, the kids really enjoyed it. And
better yet, nobody found any bugs! I had tried to design a very simple game under the
hood, so it was nice to know that the plan worked. The only negative feedback I got was
that the tap to rotate was consistently causing the pieces to be overrotated. The method
was functionally flawless, but in their zeal to complete a rotation, each tester would
always tap one too many times. But with no other solution and running out of time, I
kept that implementation.

Building a Better Rotation

WWDC had finally arrived, and we found out that the App Store wasn’t opening until
early July. With about a month left before the store opened, I found myself with some
extra time on my hands. For the past month, I had been working until 3 a.m. nearly every
night and then heading to my day job a few hours later. I was running on fumes and
should’ve just taken a much-needed break from the whole thing while waiting for Apple
to get around to letting me test on a device, but I didn’t. I liked TanZen at this point, but
the tap-to-rotate problem couldn’t be ignored any longer. It was just wrong. I was willing
to let it go when WWDC started, as I thought the App Store was opening, but once I had
some time to experiment, I was determined to make rotation work better.

I already knew that using a pinch-and-twist motion would not work, due to the size of
the screen. And tapping to rotate was just plain annoying, as players would have to tap
eight times to make a complete rotation. So, what to do? After a bit of brainstorming,
I came up with the idea to create a rotation mode that, once activated, would map
finger movement to a rotation. The solution sounded simple enough, so that’s what I
tried next.

CHAPTER 5: TanZen and Zentomino 94

I quickly added some code to enter rotation mode if the player tapped a piece once.
Since the player would need to know which piece is in rotation mode, I added a simple
outline around the piece (see Figure 5-17). Once in rotation mode, any movement of a
finger on the screen would cause a rotation to happen, in the direction the finger moved.

Figure 5-17. Simple outlined piece selection

Now, I had a much better form of rotation, which didn’t involve constant tapping and
allowed use of the entire screen to adjust the angle. But I still wasn’t satisfied. The
simple outline around the piece, showing which piece was in the rotation mode, just
wasn’t enough feedback. I needed something that showed the player which piece could
be rotated, as well as representing the fact that they could now rotate. Rotation involves
making circles in two possible directions, so I put a little circle with arrows on the piece
the player was rotating (see Figure 5-18).

Figure 5-18. Selection using a small circle with arrows

CHAPTER 5: TanZen and Zentomino 95

That could work, but I actually wanted an image that would make the player move his or
her finger in a circle around the piece, not on it. What about a bigger circle, like the one
shown in Figure 5-19?

Figure 5-19. A larger selection circle suggests movement around the piece, instead of on it.

The circle in Figure 5-19 is not bad but not quite right. It definitely gives the rotation clue,
but artistically, it’s a bit too harsh. I needed something special that fit the game’s Zen
theme, so I spent a few hours in Photoshop, trying to find a solution that screamed,
“Rotate me!” in a subtle and classy way. After much experimentation, I found it (see
Figure 5-20). Add a little translucency for a subtle feel, and there you have it!

Figure 5-20. A ring that suggests rotation around the piece, yet is subtle enough to fit the theme of the game.

CHAPTER 5: TanZen and Zentomino 96

Finally Testing on a Device
As chance had it, one of my coworkers had attended WWDC, and when he returned, he
revealed that he was actually one of the few thousand people allowed to develop on an
actual device! He had no idea the program was so limited, and before the conference,
neither of us knew the other one was going to develop applications for the iPhone. For
the next thing that happened, I owe him my eternal gratitude: he very kindly offered to
compile my code, so I could try it on a device! I was finally going to see how my game
played on the touch screen. The very next day, I had TanZen on my iPhone.

Seeing TanZen on a device was an exciting moment after spending months getting to
that point. The graphics were crisp, clear, and bright. The pieces moved as expected,
and everything worked. I was so relieved. I then took the game home for Lindi to play
with it, and that’s when everything went to hell.

Lindi immediately found the game unplayable. She moved pieces around, trying to place
them, and failed most of the time. She had never really used an iPhone much at all, so
she had no experience using her fingers to manipulate small items on the touch screen.
After she struggled for a few minutes, we figured out the problem—her fingernails. My
wife has completely average-length fingernails for a woman, but the simple fact that she
had them meant she had to use the flat part of her finger to move pieces, instead of the
tip. This caused her to lose the tangram pieces under her fingers on every move, and
she constantly needed to reposition them. Arrrgh! I had never even considered that
fingers would cover up the pieces, as I was having zero trouble manipulating pieces with
the mouse. The evil simulator strikes again!

When you’re designing your interface, always remember that the user’s only pointing
device is a large blunt instrument, which can easily cover a large portion of your screen.
If they need to see what they’re manipulating, you need to design around that obstacle.

Going Back to the Drawing Board

Less than a month remained before the App Store opening. And what did I have? A
beautiful-looking game rendered nearly unplayable because of the limitations of the
device. The first order of business was to figure out how to make the game playable for
people with longer fingernails. I mulled the options over in my head.

I couldn’t make the pieces bigger, as the puzzles wouldn’t fit on the screen. What I
needed was a way to grow the control scheme outside the visible piece area. What if I
expanded movement to include an invisible area around the piece? Then Lindi would be
able to move a piece without actually having her fingertip directly on the piece. Sounds a
bit like the rotation scheme, doesn’t it? In rotation mode, any movement on the screen
would rotate the piece. Could the same solution work for movement? Seemed
reasonable, but how would I distinguish between a move and rotation and still allow new
pieces to be manipulated? A rotation mode and a movement mode were needed. Yikes,
this could get confusing to players. I needed to simplify the situation.

CHAPTER 5: TanZen and Zentomino 97

The rotation mode idea needed to morph into something new. Maybe tapping once
would now put the piece into selection mode. A selected piece could then have various
kinds of manipulations applied to it, without worrying about disturbing other pieces. But
how would I allow users to move, rotate, or flip a selected piece?

Flipping was obvious—just double-tap the active piece. And there’s no need to see the
piece while you’re doing that. However, moving and rotating need visibility to work
correctly. Maybe it needed screen elements that could be activated, so a player could
decide between a move and a rotate. Perhaps the rotation ring could be used for
movement, allowing the player to grab the ring instead of the piece. Then additional
knobs could be tapped to initiate rotation (see Figure 5-21).

Figure 5-21. Selection ring with rotation knobs

That solution certainly worked but wasn’t very elegant, and I didn’t want TanZen to have
a complicated heads up display. There had to be some way to solve the problem using
the unique capabilities of the iPhone. That’s when I brought multitouch into the
equation.

What if I repurposed the rotation ring into a selection ring? Then movement and rotation
modes would be determined by the number of fingers being used: select the piece you
want to adjust, and use one finger for movement or two fingers for rotation. That
sounded like an ideal iPhone solution to the problem!

After coding up this new idea, I had Lindi give it a try. She really liked that she could see
the pieces now, yet still rotate them. Using two fingers to rotate was a bit harder than
before, but if she used two hands, it was fairly easy to use a steering-wheel-style motion
with her thumbs to turn a piece. Even my five-year-old daughter and seven-year-old son
had no trouble doing it. This seemed like a workable solution! There was still something
wrong, though.

Both my wife and my coworker found that they were trying to move nonselected pieces
after they were finished with a selected piece. They’d start dragging a piece without
tapping it first to select it, which moved the previously selected piece instead, since any
movement was still mapped to it. Perhaps using the whole screen for manipulating a

CHAPTER 5: TanZen and Zentomino 98

single piece wasn’t the best solution. It would probably be better to limit the control
scheme to just the immediate area of the selected piece. But how could the player be
told where it’s OK to move or rotate?

I went back to the trusty selection ring, and simply made it bigger (see Figure 5-22). I
made it just large enough to allow Lindi to grab the ring, without covering up the piece. I
then limited the movement and rotation finger motions to the ring area, instead of the
entire screen. This allows selection and dragging of nonselected pieces outside the ring,
yet still maintains the same movement and rotation logic for the selected piece. After
much testing, Lindi and our kids gave TanZen their seal of approval. Whew!

Figure 5-22. The ultimate selection ring

The Perils of Being 95 Percent Finished

Mere days before the opening of the App Store, most everyone was still on the waiting
list, including me. TanZen was complete and included a fairly simple piece-manipulation
scheme. But I was worried players were not going to understand it. With three possible
things you could do to each piece, as well as the somewhat complicated nature of
tangram puzzles themselves, I felt like I needed a way to show people how to solve a
puzzle— I needed a tutorial.

I decided to spend a little time creating an animated tutorial, which would cover
everything that could be done in the game, by walking players through completing one
of the puzzles. I wanted to use minimal text, so it would be understood by anyone in the
world. I figured I could code it up in an evening with no problems. Right as I was about
to start, the App Store finally arrived.

CHAPTER 5: TanZen and Zentomino 99

The App Store Arrives!
On July 11, the App Store opened with about 500 applications, all from people involved
in the beta program. My reaction to this event was mixed: I was very excited that the
store was finally open but extremely annoyed that I was never allowed a chance to be a
part of it. I had spent months of late nights getting TanZen ready in time for launch, and
to see that goal unfulfilled through no fault of my own was, well, a bit of a downer. I
moped through the rest of the day.

But at the end of the day, like a ray of sunshine, I got the magic e-mail from Apple
saying, “Congratulations, you will now be allowed to pay your $99 to develop on a real
device and submit applications to the App Store!” After over four months of waiting, the
sheer joy I felt reading that email was beyond words. Then the real work began.

With the end in sight, I threw myself into my work. Not only did I have the tutorial to do,
I still had a web site and an application icon to make. I knew I couldn’t get everything
done at the same time, so I enlisted the help of an artist friend, Jim MacQuarrie, who
took some of the load off by creating the web site and helping to design the icon, shown
in Figure 5-1. For the icon, I knew I wanted to use the actual pieces from the game to
create the classic square tangram shape. However, all the versions I created looked dull
and uninviting. After going through many iterations, I finally decided to combine my
square-shaped art with my friend’s idea of adding an orange border to bring a bit of
brightness to the icon, which proved to be just the right balance of realism and eye-
catching color.

While coordinating with Jim, I was also busily trying to finish that piece-of-cake tutorial.
Boy, did I underestimate that task! The tutorial was probably one of the dullest, most
annoying, and time-consuming things I’d had ever done as a developer. But after many
days of coding carefully timed animations, dang if it didn’t turn out to be one fantastic
piece of work (see Figure 5-23). A few art tweaks to the Info screen (see Figure 5-24) to
include the new tutorial, and my work was done, and my worries about people not
understanding the game were over.

Figure 5-23. The animated tutorial

CHAPTER 5: TanZen and Zentomino 100

Figure 5-24. The Info screen modified to include the new tutorial

By the time the tutorial was finished, the App Store had been open for a week, and I was
in a state of panic as I watched the list of games for the iPhone grow from a little over a
hundred games to over two hundred. I felt like I was going to miss my opportunity to
make some money off all my hard work. Everything was finished except for final testing.
Rushing through the testing at this point could’ve been fatal, so despite my anxiety, I
took a day or so to give the game a complete run-through. Good thing I did, as a couple
new bugs were found!

Nearly a week and a half after the App Store opened, I finally submitted TanZen to
Apple. The process went off without a hitch. I then waited and slept. The relief of finally
being finished was replaced with nervousness. Would Apple reject the game? Was it
good enough to be in the App Store? You have to remember that this was long before
everyone realized that Apple lets nearly everything into the store. I was completely
under the impression that Apple would judge the game based on some sort of quality
standard.

Eight days later, I was sitting at work when the e-mail arrived to say that my application
was ready for sale! I sprinted over to the office of the coworker who had helped me with
TanZen before. Without comment, I revealed the e-mail to him. I think he might’ve been
almost as excited as I was. I called Lindi, and she started screaming in excitement. It
was a good day.

Recalling the First Days on the App Store

The first day that TanZen was available on the App Store, I saw only half a day’s sales,
since the game went up late in the day. But when the numbers came in, I was shocked. I
had sold a whopping 66 copies! On day two, it sold twice that. I was amazed at how
well it was selling, and I spent the next couple days obsessively watching the rankings
change on iTunes as TanZen slowly moved up the list of puzzle games and into the Top
100 Games list. Reviews started coming in, and most of them were very positive. But

CHAPTER 5: TanZen and Zentomino 101

there was a disturbing trend developing—some people were complaining about the two-
finger rotation.

Responding to Rotation Issues

I was a little bewildered by the trouble two-finger rotation was causing people. I figured
if all my kids could do it, so could everyone else. The tutorial emphasized using two
thumbs to rotate, but a lot of people either didn’t watch the tutorial and were trying to
use a one-handed pinching maneuver or simply felt using two hands was too much
work. So, to combat the problem of people skipping, or misunderstanding, the tutorial,
I released a YouTube video detailing exactly how to rotate and included it on my
support site.

After about a week, sales started to slump (I learned much later that this sales cycle was
perfectly normal for any new application). I released a free Lite version of TanZen hoping
that it would grab new buyers. It worked like a charm. Sales were better than ever!

And then the most wonderful thing happened. Apple decided to feature TanZen in the
New listings, which is the best possible spot on the iPhone. Nobody really knew it at the
time, but being featured was like winning the lottery. TanZen sales went through the
roof, and within two days, the application was number 12 in the entire App Store! Lindi
and I watched our credit card debt melt away as each day went by, and knowing that all
the work we did was actually going to change our lives—wow.

I also felt a little nervous. I thought someone was going to figure out that I was just some
guy with no gaming experience who bluffed his way to the top of the App Store.

Even though TanZen was highly ranked, the fact that the game’s reviews were peppered
with players complaining about the two-finger rotation was starting to bug me, so I
decided to revisit the issue. I needed to design a single-finger rotation scheme that
closely resembled the old scheme, so I could please old and new players.

Lindi and I really liked the move and rotate controls in TanZen. They were clean,
fingernail-proof, and best of all, didn’t involve a bunch of buttons and interface doodads.
Plus, accidentally activating a move instead of a rotate was impossible. So, how could I
take this nearly perfect solution and make it perfect for everyone?

The solution had to satisfy a set of conditions: Piece movement had to be fingernail
friendly. Rotation feedback had to remain the same. And most importantly, Lindi had to
like it.

Being the wise (lazy) programmer that I am, I decided to modify what I already had
instead of creating something new. What would happen if I eliminated the second finger
requirement, mapped movement to touches inside the selection ring, and mapped
rotation to touches directly on the ring? I quickly coded up that idea and gave it to Lindi
to try.

She hated it. She kept accidentally rotating a shape, when she meant to move it. The
problem was that she had always moved pieces by dragging with the ring itself, never
inside it. Now, I knew that not everyone was playing that way; instead, some were

CHAPTER 5: TanZen and Zentomino 102

moving their fingers directly on top of the pieces. But I still had to satisfy the players my
wife represented.

My next idea was to make the ring bigger, offering more room around the piece to
activate a move without being on top of it. It was a little better, but Lindi was still making
mistakes. So I made the ring even bigger. This process repeated a few times, until finally
the ring was big enough to grab pieces the way she wanted to, yet still rotate without
making mistakes.

Amazingly, with just a few simple tweaks, I managed to cover all the required conditions,
keep the exact same interface look (see Figures 5-25 and 5-26), and still eliminate the
evil second finger. Mission accomplished! But would current players accept it?

Figure 5-25. The original selection ring was compact and allowed movement or rotation based on the number of
fingers being used.

Figure 5-26. The new and improved selection ring requires only one finger, with a move action mapped to the
area inside the ring and rotation mapped along the edge.

CHAPTER 5: TanZen and Zentomino 103

Users loved the new scheme. All hail single-finger rotation! Yes, a couple of people
wanted the old method back, but not many did. Based on some of the video reviews
and technical support e-mails I’ve read, many people didn’t even realize the two-finger
rotation was gone. They went along their merry way, placing that second finger, none
the wiser that it didn’t really do anything at all anymore. I'm going to call that a
successful transition!

When to Say “Yes” and When to Say “Thanks, I’ll think
about it.”

About a month after TanZen appeared on the App Store, I had gathered a ton of e-mail
suggestions from players of the game. Many of the requests involved additions to the
interface. I weighed each suggestion carefully, considering the possible added value to
the game against how much it would compromise the interface. I also based some of
my decisions on how long the feature would take to implement. If a feature is going to
take a long time to complete, you need to decide if it will actually improve your sales, or
if your time would be better spent doing something else.

The number one thing to remember about user requests is that you aren’t required to
implement any of them. You should give users what they need, not everything they
want. If you add everything, your game will lose its focus and become a convoluted
mess of features that only a few players will ever even look at.

You also need to be careful that your original intention isn’t lost in user-induced feature
creep. A lot of people wanted a little timer in the corner of the screen to add pressure to
the game. And they wanted their best times displayed on the puzzle selection screen.
While these features seem interesting, and potentially fun, they certainly didn’t fit the
Zen theme of this game.

Also, some players were disturbed by the lack of titles for the puzzles. They wanted to
know which puzzle is a bunny and which is a bird. Usually, the puzzle forms were fairly
obvious, and I considered the lack of text one of the defining aspects of the game, so I
wasn’t about to add titles.

Making the pieces go back to their default positions in the middle of a game was also
highly requested. I should have listened to my daughter, as she had requested this
feature months before. I had vetoed it back then, because I didn’t want to add more
buttons to the game. My opinion about extra buttons hadn’t changed, but I did find a
solution using the iPhone’s accelerometer. Since I had been on the simulator for so long,
I’d never even considered it. Within a couple hours, I added a fully functional feature that
allowed users to shake the iPhone to reset a puzzle. The shake soon became one of the
most talked about features: it’s simple, handy, and completely invisible!

Players who were already familiar with tangrams wanted the game to be more like the
classic version, where the puzzle is much smaller than the pieces, which makes the
game much more challenging. I had considered this interesting idea as far back as my
design document. I kept this suggestion in the back of my head and eventually added
this advanced mode, called Masters Mode, to the game several months later (see Figure

CHAPTER 5: TanZen and Zentomino 104

5-27). And as you’ve probably guessed, Masters Mode integrated smoothly into the
existing interface!

Figure 5-27. An advanced puzzle mode for expert players

A lot of players also asked for help in solving the puzzles. Some people pick up
tangrams right away, and some really have to work at them. Because I received a lot of
e-mail requesting hints and tips, I wanted to put them in the game somehow, but I didn’t
want to add any buttons. I examined all the touch interfaces I had already used in the
game to see if there were any gaps that I could squeeze hints into. Fairly quickly, I
figured out the answer: I had been using a double-tap for flipping pieces but not for
anything else. Double-tapping anywhere other than on top of a piece did nothing.

I decided to assign hints to the double-tap, and I wanted the hints to be subtle, just like
the rest of the game. Eventually, I decided to show a darkened shadow version of a
random piece when a player double-tapped the game surface (see Figure 5-28). Yet
again, a major feature was added to the game without cluttering up the interface.

Figure 5-28. A hidden hint system that only appears when users double-tap the playing area

CHAPTER 5: TanZen and Zentomino 105

Surviving on the App Store

The first six months of the App Store were very much like the Wild West. Like a well-
publicized gold rush, the App Store saw a lot of questionable developer activity, as
Apple struggled to get hold of this wildly successful venture. The store was filled with
fierce competition. Falsified reviews, both good and bad, were everywhere. Bogus
updates clogged the submission process, as each update brought newly revived sales.
Some developers made a ton of money, but most made little, if any at all. Application
developers all lived and died by their rank on the store. As TanZen was featured right out
of the gate, I was one of the lucky ones.

As the number of applications on the store increased so did the quality. Games from
larger companies emerged at prices below $5. Suddenly, TanZen seemed vastly
overpriced at $2.99, and its rank started to fall. I lowered the price to $0.99 in the hopes
of becoming a low-priced hit. The gamble paid off, and TanZen made a second run
at the top, and this time peaked at number 27 in the store, three months after it first
came out.

There’s a lot of discussion among developers about application pricing. Some people
feel you should price your application at what you think it’s worth. Some want to price
based on a calculated return on investment. Others use rock bottom pricing to attract
impulse buyers. Everyone has an opinion, but one thing is very clear. Given the current
way the App Store rankings work, a lower price tends to sell more copies. In turn, selling
more copies gets you higher on the rankings lists, as they are mostly based on the
number of daily sales.

Visibility is everything on the iPhone. If you’re not on a ranked list, you aren’t making
very much money at all. So in deciding your price, I would recommend examining the
store, and pricing your app similarly to your competition. Yes, you put months of effort
into your app, and pricing it low doesn’t seem to make any sense. But, I’ve seen a lot of
good apps fail, simply because the developer refused to lower their price.

An app is worth whatever people will pay for it. Originally, shoppers felt TanZen was
easily worth $2.99. A year later, they feel $0.99 is the correct price. It’s all about
perception of value. If I tried to release TanZen today at the original price, it’d sell less
than twenty copies per day, and drop down to zero sales very quickly.

Five months after TanZen’s initial release, it finally fell out of the Top 100 Games list for
the first time. Since then, it has become a permanent fixture in the Top 100 Puzzles list
and has enjoyed a steady influx of new players every day. Even though U.S. sales
account for most of TanZen’s revenue, the game has enjoyed an incredible amount of
sales in other countries as well—nearly 50 percent of all TanZen sales have come from
outside the United States. I truly believe my decision to not include text in the main
portions of the game and taking the time to create an animated tutorial are the prime
reasons the game has been so well received worldwide. At the time of this writing, over
one million people have tried TanZen, via the free or paid versions. Both Lindi and I are
in awe when we think about it. All those late nights of coding, agonizing over every
detail, and forcing ourselves to make the nicest looking game possible were worth it!

CHAPTER 5: TanZen and Zentomino 106

Creating a Second Game Without Starting Over
When TanZen was completed in late July of 2008, I was ready for a much-needed
vacation. I had been working twenty-hour days for the final month or two of the project.
During TanZen’s first five months on the App Store, I continued at my day job, all the
while enjoying all the extra income. I kept busy making updates to the game, but I
wasn’t finding time to create anything new. The App Store was not a steady source of
income, as sales varied wildly from week to week. It was time to make a new game to
bring in some more cash and spread out the risk.

When talking to people about the App Store, I liken the medium to the music industry.
Applications generally become popular quickly or not at all. Most of the money is made
in the first month an application is available on the store, and then the application falls
into obscurity. The majority of the money is made by the top five percent of the
applications. Sounds just like Top 40 radio, doesn’t it? TanZen managed to buck that
trend, through carefully timed updates and tremendous word of mouth support. I
wanted our second effort to have the same amount of success.

If you follow the music industry analogy a bit more, you know that sophomore efforts by
musicians are typically the make-or-break moment in their careers. If they make the
same record twice, they risk being labeled as lazy. If they become too inventive, they
risk alienating their original audience and could fail completely. I needed a game that
would be similar enough to TanZen to please the existing players, yet different enough
to make new people want to buy it.

I wanted to do another puzzle game, one that I could add to over time. I also knew I
couldn’t handle another several months of late-night coding. I searched the Web for
popular puzzle games to get some ideas and came across the game of pentominoes,
which had been around for at least a hundred years. Pentominoes is a puzzle game that
uses twelve defined shapes (see Figure 5-29) that you must rotate and flip to create a
larger shape. The game has been used for years in schools to teach spatial reasoning.
Sounds a lot like tangrams!

Figure 5-29. The twelve standard pentomino shapes

CHAPTER 5: TanZen and Zentomino 107

To complement TanZen and appeal to its existing audience, I had to change the rules a
bit. Instead of endlessly filling rectangles in different ways, as the traditional game has
you do, I decided to create fun puzzle shapes that you’d only have to complete once.
Additionally, since solving traditional pentomino puzzles is pretty difficult, I decided to
include some puzzles that didn’t require all twelve pieces, as a way to keep players from
getting discouraged too quickly. These changes to the basic game concept would
hopefully make the game more appealing to a broader spectrum of players.

Repurposing a Popular Interface

The similarities between pentominoes and tangrams are many, but there are a few key
differences. Because pentomino games have twelve pieces as opposed to seven, I
needed to modify the game to display a larger number of pieces. Since my code was
modular, I simply created a modified version of the existing piece class and placed it in
the game. Twelve subversions of that class later, I had all the shapes in the game (see
Figure 5-30). I could move, rotate, and flip them. I placed a grid on the screen and had a
working prototype of the new game based on the original one—all in about a day!

Figure 5-30. A quick prototype to explore the game possibilities

Making Interface Modifications to Fit the New Game Rules

With a working prototype, I could play the game and analyze what would and wouldn’t
work with the TanZen interface. For the new game, I needed pieces to interlock. Since
pentomino pieces are based on squares, the puzzles are always grid based. Given these
facts, a computer-assisted snapping feature would be a requirement.

After playing with the prototype, I decided that the large TanZen selection ring obviously
wasn’t the right interface for small, interlocking pieces. The pieces were all very close
together, so too many pieces would be inside the ring, which would cause a lot of
selection problems. So goodbye ring! Instead, I went back to the old standby of tapping
to rotate. Pentominoes rotate at 90-degree angles, which meant users needed only four

CHAPTER 5: TanZen and Zentomino 108

taps to make a complete rotation. Tapping actually worked well as an interface for this
game, even though it failed for TanZen.

After a few days of trial and error, Lindi and I came up with piece sizes that were big
enough to allow users to position them without fingers completely covering up the
pieces. These larger sizes, along with the snapping feature, allowed them to accurately
place pieces 100 percent of the time. We had a complete piece manipulation interface in
no time at all!

Designing Around Limitations in Screen Size

Yet again, the limited screen size of the device would determine the UI. Given that a
large portion of the screen would be taken up by the puzzle area, there wasn’t a lot of
space left to store the unused pieces. Simply tucking them away off screen was not an
option. This type of game requires that you can see all the shapes at once, so you can
form solutions in your mind. To fit all 12 pentomino pieces on the screen without
encroaching on the puzzle area, I decided to put trays along both sides of the screen to
hold miniature versions of the pieces (see Figure 5-31). This way, the player could grab
one piece at any time and move it into the grid area, causing the piece to grow to full
size. Even better, when a user didn’t need a piece anymore, the piece could be moved
off the grid, and it’d shrink back to the tray.

Figure 5-31. Trays keep pieces out of the way, yet still in full view.

Colors, Colors Everywhere

Game creation had been going exceptionally well so far. Reusing code and sticking with
the TanZen art style saved months of development time. With the help of my wife, we
had the entire game working, including a large list of puzzles, after only a month of late-
night work. However, we had yet to design the exact look of the pieces. From
experience with TanZen, I knew that the pieces’ look was one of the most important
decisions to be made.

CHAPTER 5: TanZen and Zentomino 109

Taking several cues from nature, I spent a few days creating sample piece textures in
Photoshop. After nixing several wonderful samples, Lindi and I finally agreed on one of
them: it had just the amount of randomness and imperfection that we were looking for.
That left choosing the colors. Sounds easy right? Not so much.

I had found that using a single color for all the pieces was not an option, as all the
pieces started to mix together, and confusion became a problem. We experimented with
many looks—pastels, muted colors, earth tones, dark colors, light colors—but couldn’t
agree on the perfect look.

If you’re ever looking for a way to send your marriage into divorce territory, try choosing
a bunch of colors with your spouse. Imagine picking a color to paint your house. Now
imagine picking the colors for all the houses on your street. And imagine that the
choices you make will be judged by millions of people around the world. But in the end,
we came up with a winning combination that we both loved (see Figure 5-32), and we
didn’t even have to involve any lawyers!

Figure 5-32. Final piece colors

Putting on the Finishing Touches

The game was now complete. Lindi and I came up with the name Zentomino, taking a
cue from TanZen. I wanted the icon to have a similar look to TanZen’s icon, so people
browsing the App Store would immediately recognize it as a sister game. Using
multicolor pieces in the icon looked a little busy, so I chose a single color instead; I
created a square out of the shapes and slapped the TanZen icon’s orange border
around it. An icon family was born!

The game was now truly ready to be sold. In just a matter of weeks, we created an
entirely new game, based on the code and general interface of our previous game. I
quickly submitted the game to Apple, and it was approved in less than a week. After
only a few months, Zentomino has sold nearly 30,000 copies. And the sales outside the
United States have exceeded even TanZen’s early days. By all accounts, the game has
been a success!

CHAPTER 5: TanZen and Zentomino 110

Summary
It’s been a year and a half since the iPhone SDK was first introduced, and boy, what a
ride it’s been! In that period, I went from a guy with an idea and a lot of credit card debt
to a highly respected developer, with zero debt and a large fan base that is itching for
even more games to play. None of this could have been possible if I hadn’t taken the
time to concentrate on interface design and all the fine little details that make up a great
game. The games my wife and I create aren’t fancy, nor are they complicated. But
they’re beautiful in their simplicity, and that’s why people love them.

Hopefully, my story has given you some fresh ideas on interface design and maybe a
little bit of inspiration. If you have a great idea for an iPhone application, by all means,
create it! But don’t forget: a great idea is only the beginning. A great iPhone application
is 10 percent idea and 90 percent execution. The right user interface can make the
difference between making $100 and $100,000. Take the time to make your application
functional, beautiful, and memorable. Good luck!

111

Tim Novikoff
Company: Flash of Genius LLC

Location: Ithaca, NY

Life as an iPhone Developer: Flash of Genius: SAT Vocab

What's in This Chapter: This chapter describes my adventure developing an
iPhone app while having no prior development experience. I focus mainly on the
user interface design issues that came up along the way as I developed and
tested Flash of Genius: SAT Vocab.

Key Technologies:

 UIWebView

 UIButton

 UIAlertView

 112

113

113

 Chapter

Flash of Genius: SAT
Vocab
When I began developing Flash of Genius: SAT Vocab, I had virtually none of the
technical skills that would eventually be required of me. I had never developed software
for the iPhone, a Mac, or any device at all. I had never programmed in C, Objective-C, or
any C language whatsoever. I was just a graduate student in applied math. My best
markup language was LaTeX, a language for preparing mathematical documents, and
my best scripting language was Matlab, a language for scientific computing. I had also
never owned a business, been a member of a startup, or worked in any sort of
entrepreneurial environment. Prior to becoming a graduate student, I had been a high
school math teacher, and prior to that, I had worked as a voice-over actor and done
various other odd jobs in show business.

This is all to serve as a warning: I’m not giving expert advice. More advanced
programmers would surely have found more elegant solutions to the problems I’ve
faced. Serial entrepreneurs would certainly not follow my way of going about starting a
business. Experienced designers would find ample room for criticism in Flash of Genius:
SAT Vocab.

Nevertheless, this chapter has a purpose. In fact, it has a few.

First, I want amateurs and first-time developers to come away from this chapter thinking,
“Well if this guy can do it, I can too!” It’s true. If you’ve got a general sense for
programming, passion for what you’re doing, and a modicum of grit, you can do it. You
may not produce a number-one hit, but don’t be surprised to see your application
somewhere on a best-seller list. When I got my first e-mail from a customer, I asked him
how he had heard of Flash of Genius. He said he noticed it at number 39 on the Top
Paid Educational Apps list. I was stunned. Then, I watched it climb into the Top 20,
which was a real thrill. Creating a successful application is not out of anyone’s reach.

 I’ll also write about some technical things pertaining to design and implementation. I
eventually came to be relatively well-versed in the aspects of the API that were relevant
to Flash of Genius. Because it’s a flashcard application that displays each vocabulary

6

CHAPTER 6: Flash of Genius: SAT Vocab 114

word along with its definition, Latin roots, and a sample sentence, a lot of text markup is
involved. I’ll discuss some of the design limitations of the API, and the decision to use
UIWebView in conjunction with UIButton to display flashcards as they had originally been
imagined in the design phase when implementation was not being considered.

I’ll also discuss some of the user interface issues that came up in the course of
designing the application. I’d like to say that the decisions I eventually made were really
no-brainers. For example, the decision to have the flashcard application be in landscape
mode seems pretty obvious. After all, only in landscape mode does the iPhone feel like,
um, a flashcard. Incredibly, though, many other flashcard applications botched even this
simple UI decision, as well as others. So I’ll fight the urge to skip the obvious and
discuss simple decisions as well as more subtle ones.

Even though I think Flash of Genius: SAT Vocab eventually came out looking pretty
good, I still urge you—no matter how inexperienced—to keep in mind that this isn’t
expert advice. It’s just advice from a dude who managed to put out a successful iPhone
application despite his own inexperience.

Checking Out the Competition
The basic idea behind a vocabulary flashcard application is to automate the usual
process for studying vocabulary words. The usual process goes something like this:
Take a stack of index cards, and on each one, write a vocabulary word on the front and
its definition on the back. Then, study the words by looking at the cards one at a time,
starting with the one on top. Try to recall the definition of the word on the front before
looking at the back to check yourself, if necessary. After doing this for one card, put it
back in the stack somewhere; put it far back if you don’t want to see it again for a while,
and not so far back if you’re still shaky on the definition and want to test yourself again
soon on that word. Then go on to the next card. Continue studying like this until you
know all the definitions.

Most flashcard applications automate this process in roughly the same way. First, show
the user the front of a virtual flashcard, like the one from Flash of Genius shown in Figure
7-1. Allow the user to indicate either that they know the word or that they want to see
the definition. If they opt to see the definition, flip the flashcard over to reveal the
definition and maybe some other useful information about the word (see Figure 7-2).
Next, allow the user to indicate whether or not he or she had correctly recalled this
definition before seeing it. Either way, continue by then showing the user another virtual
flashcard. All of the user input is passed to an algorithm which dictates which flashcards
get seen by the user and when.

CHAPTER 6: Flash of Genius: SAT Vocab 115

Figure 7-1. This is the front of a flashcard in Flash of Genius. If the user taps the question mark, the card flips
over to reveal the back of the flashcard, shown in Figure 7-2. If the user taps the check, the front of the next
flashcard is revealed.

Figure 7-2. This is the back of a flashcard in Flash of Genius. If the user taps either the “X” or the check, the front
of the next flashcard is revealed.

Literally hundreds of flashcard applications are available from the App Store, and many
of them are quite slick. When I started, though, there were only a few, and most of them
had clearly been developed in haste without much thought to UI. This gave me hope

CHAPTER 6: Flash of Genius: SAT Vocab 116

that maybe I wasn’t too late; I could still make the first good SAT flashcard application.
The following sections explain some of the more brutal UI flaws that I noticed in early
flashcard applications before I began developing.

Mental Model Inconsistency
Most flashcard applications these days use a flip animation to go from the front of a
flashcard to its back and use a different type of transition to go to the next flashcard
(with a different front and back).

Some flashcard applications, though, used to make the mind-boggling decision to
simply use a flip animation for every single transition. Thus the user could be looking at
the front of one flashcard and then after two “flips” be looking at a different flashcard!
That’s not how real flashcards work. If you turn a real flashcard over and then back
again, you end up looking at the same thing as when you started. That’s how virtual
flashcards should work too.

Applications that made this design error were messing with the mental model that the
user has about how the application works under the hood. The idea of a mental model is
to me the single most important notion when thinking about how people interact with
technology. You could write a whole book about it. In fact, someone did write a whole
book about it. The book is called The Design of Everyday Things (Basic Books, 2002).
It’s written by Donald Norman, a professor of cognitive science who’s also a former
Apple employee. It helped me think about UI design more than anything else I’ve ever
read, and I recommend it very strongly.

Inappropriate Orientations
Another bizarre choice that many developers made was to have the entire application be
in portrait mode. Making a watertight case against this decision is hard, but here are my
thoughts. For one, portrait mode is not very reminiscent of flashcards. It also makes it
difficult to display a bunch of information without making it look like a list, which is not
an effective format for this type of material. Applications that chose to use only portrait
mode would often also center all of the text, too. That layout looks fine for the
vocabulary word itself, which occupies only one line of text, but the sample sentences
generally look ridiculous. To me, center-aligned sentences remind me of sloppy fliers put
up by high school kids running for senior class president.

There is also the question of hand placement. With a flashcards application, you
basically need two buttons showing all the time: one to indicate that the user knows the
definition, and another to flip the flashcard if the answer isn’t known (see Figures 7-1
and 7-2). Every transition is prompted by one of these two buttons, so they should be
very handy. Putting the application in landscape mode and then placing the buttons
where I did presents the user with an intuitive way to hold the device and use the
application—with two hands, using thumbs to control the application (like for a PSP or
an Xbox controller).

CHAPTER 6: Flash of Genius: SAT Vocab 117

It’s a good idea to make the most common functionality of an application very
suggestive of a particular way to hold the device. This way, you have a good idea of how
the user is likely to hold the device when using your application, and you can plan your
UI accordingly.

Small Buttons
Another all-too-common UI flaw among early flashcard applications, as well as
applications in every category on the App Store, were unnecessarily small buttons. My
feeling is that if an application has buttons that need to be pressed very often, these
buttons should have a big fat target area so that the user never misses them. Figure 7-3
illustrates the size of the check button in Flash of Genius.

Figure 7-3. A screen-capture from Interface Builder showing the target area of the check button.
You can’t miss it!

This goes for the little Info button that comes with the iPhone API, too. The area of this
button is just too small for many users by default. Luckily, there is a simple remedy
for this: put a big clear UIButton on top of it in Interface Builder. I think this is widely
done now.

Before making an iPhone application, it’s obviously a good idea to check out what else
is already in the App Store and make sure that you’re making a new contribution. My
own experience tells me that even if you see others going for the same functionality, if
they don’t get the UI right, the market is still there for the taking. Apple knows this quite
well too, as it was not the first ones to make a phone with a built-in browser and music
player, but it was the first to make a really slick one. (sorry Treo.)

CHAPTER 6: Flash of Genius: SAT Vocab 118

Starting Development
Getting started was very hard. I wish I could say that I just buckled down and holed up
until I learned everything I needed to know about iPhone development, but that’s not
how it happened. I was a full-time graduate student and could barely devote a few hours
a week to the project. I actually paid someone to help me get started with Xcode and
programming in C and Objective-C, and I paid a law school student to help me get the
business started. All that went quite smoothly and was a great use of money saved up
from my previous life as a high school math teacher. I’m very happy to have the
knowledge and skills I picked up from these people, not to mention a couple more
contacts for the future. Those contacts might come in handy if I ever decide to really
make an effort at building a software company. Getting help with programming and
starting a business was a success.

Getting help with designing the application and the icon was another story. I eventually
found a great person to work with, but at first, I tried my luck with craigslist. Oops. I
won’t go into all the details, but I was severely disappointed when the first mock-up of
the icon came back. We had agreed on an icon design over the phone that would
involve little flashcards, but instead of index cards, the icon mock-up showed flash
digital storage cards, like the MicroSD cards that used to come with digital cameras (see
Figure 7-4). It turns out that the charming and well-spoken American guy I had talked to
on the phone was just a front for an operation based in the Philippines, and something
had gotten lost in translation on the way to the artist in Manila. After a similar incident
with the phrase “idea light bulb,” I realized it wasn’t going to work. I had paid up front,
and that was $100 down the drain.

Figure 7-4. The wrong type of “flashcard” is really only the beginning of what’s wrong with this icon. It would
never even scale down to the size of an icon on the iPhone. What a disaster!

CHAPTER 6: Flash of Genius: SAT Vocab 119

I eventually hired a professional named Jan Tedder to do the icon. She is a friend of a
friend and very talented, and she did a great job.

I wanted a few things from the icon. First of all, I wanted anybody looking at the icon to
be able to figure out that Flash of Genius was a flashcard application for studying SAT
vocabulary words. Second, I wanted the icon to grab the attention of anyone with the
SAT on their mind and certainly be attention-grabbing to anyone searching the App
Store for “SAT” or “SAT flashcards.” I also wanted the icon, and eventually the design of
the entire application, to convey intelligence and professionalism. I wanted potential
customers to see the icon and assume that this application was not just thrown together
without thought, and that they could count on the definitions and sample sentences in
the application to be top quality, which they were. I think that’s what students look for in
SAT study materials, so that’s what I told Jan I was looking for in a design. You can see
what she came up with in Figure 7-5.

Figure 7-5. This is the first icon that Jan made for Flash of Genius: SAT Vocab.

The College Board, the company that writes and administers the actual SAT, wasn’t
thrilled with the icon. Their lawyers are eternally concerned that people might think that
any product with “SAT” in the name was made in conjunction with their enterprise, and
they have trademarked the term “SAT”. They asked me to have an icon made that
included the full name of the application, Flash of Genius: SAT Vocab, and included an
asterisk after “SAT” corresponding to a footnote on the iTunes product description
page. So Jan made a new icon, shown in Figure 7-6. The College Board was happy with
it, so was I, and that was that.

CHAPTER 6: Flash of Genius: SAT Vocab 120

Figure 7-6. This is the final icon that Jan made.

One of the first things I turned my attention toward in this whole project was the icon,
and it was one of the last things that finally fell into place. I’d say I spent a total of 40
hours thinking about the icon. This is absurdly long, and now that I've gone through the
process once I think that next time it will go much quicker, but I do think it was worth
every minute.

The fact is that without a decent icon, nobody will ever look at your application. The icon
is to the application what a resume is to a job applicant; without a good one, you don’t
get noticed. It will also inform your users what to expect of the application, including
how they expect to be able to interact with it. I think it’s worth spending as much time
on the icon as you need to get it right. For me it was a long time, but maybe for you it
will be less.

For your entertainment, I’ve included some of the icon design ideas that didn’t go
anywhere (see Figure 7-7). In general, the stupider the icon here, the more I had a hand
in its design. The biggest lesson I learned from the whole process was this: find a
talented professional, tell them all about the application you’re making, and then get out
of their way!

Figure 7-7. Here are some of the icons that didn’t make the cut along with the final one (bottom-right).

CHAPTER 6: Flash of Genius: SAT Vocab 121

Designing the Flashcards
The main feature of Flash of Genius: SAT Vocab is the study mode, where users interact
with flashcards. On the front of the flashcard (see Figure 7-1) is a vocabulary word. If a
user knows the definition of the word, I want that user to tap the checkmark. Otherwise,
the user should tap the question mark to see the back of the card.

On the back of the flashcard (see Figure 7-2) are the definition, the part of speech, the
roots of the word if they are helpful, and a sample sentence. Users who flip over the
card and discover that the definition they had in mind was correct should tap the
checkmark. Users who didn’t know the definition, or thought they did but in fact had it
wrong, should tap the “X” button.

Almost all flashcard programs have roughly this functionality at their core, yet they are
often implemented very differently. In my case, I used the UIWebView class to display all
of the text and the UIButton class with a custom image for each button.

I didn’t want to go with this implementation originally because there are a lot of
downsides to it. For one, the resource files and code that govern the look and feel of the
flashcards become highly nonlocalized: HTML and CSS files in one place, XIB files
elsewhere, and Objective-C code scattered about as well. Another downside is that
particular care needs to be taken to make sure that the resulting flashcard doesn’t look
like a messy mash-up of web design and iPhone API elements.

Despite this, the alternatives are worse. What was so bad about “going native” and
forgoing the UIWebView class altogether? One word, really: typography.

The backs of the flashcards vary depending on their corresponding vocabulary words
(Figure 7-2 shows one example). Some words have two roots, like “circumspect” (from
“circum” meaning “around” and “spec” meaning “to look”), and some have one root, like
“placid” (from “plac” meaning “to please”). Others have no root that would be of use to
the average user, like “cloying” (whose tenuous relationship to the French word for “nail”
just isn’t useful to the average 15-year-old cramming for the SAT). The definitions of the
words vary in length enough that some require one line of text, whereas others require
three. And the sample sentences vary from two lines to four.

In addition to the varying lengths of things, the content of the flashcards also called for
several different font styles. In the sample sentences, I wanted to emphasize the
vocabulary word by putting it in boldface. I also wanted the ability to italicize foreign
words in the sample sentences.

All these things meant that UITextView, UILabel, and other built-in objects were not
really for me. The main problem with these classes was the lack of ability to vary font
styles within a particular instance. That meant having to forgo any use of italics or
boldface within sentences, which I wasn’t keen to do.

CHAPTER 6: Flash of Genius: SAT Vocab 122

Even if I could accept a uniform font style, the problem of varying sentence length would
still have been an issue. Leaving room for three lines of text looks silly when only one is
being used (see Figure 7-8). In theory, I could have varied the height of a UITextView
according to the length of the text to go inside, and varied the placement based on the
heights of the other UITextViews above it, but why bother if the font style was still going
to be a problem?

Figure 7-8. This is how Flash of Genius may have looked had I gone with UITextViews instead of UIWebView and
just generally not cared about user interface design at all.

In the end, I decided to go with UIWebView for the markup of all the text. Besides giving
me the ability to carefully manage the style and placement of the text on the flashcard,
this approach had another benefit. By relegating the markup to a UIWebView instance, I
would have the option of working with web design and HTML people to design and
implement the flashcards. As it turned out, that’s exactly what happened.

Designing the Buttons
In theory, I could have just used UIWebView and forgone the UIButton class altogether. If
you hack hard enough, you can actually get the click of a hyperlink in a UIWebView to
prompt a method call in the UIViewController class. Using such a technique, I could
have had my buttons displayed as images embedded in the web view. But that comes
with a downside too: lack of visual feedback.

CHAPTER 6: Flash of Genius: SAT Vocab 123

Apple takes visual feedback very seriously when making their own software, and it
shows in all the built-in applications for the iPhone. Consider the way the keys on the
number pad turn bright blue as soon as they’re touched (not to mention the tone they
produce if the sound is on). Or consider the way any application icon darkens slightly
when you tap it. These features all let the user know that the phone has registered the
intended touch.

One of the great things about the UIButton class is the ability to supply different images
for different states of the button. For example, if a button has a checkmark as its image
for UIControlStateNormal, then image for UIControlStateHighlighted for that same
button could be a slightly darker checkmark, or a checkmark with some shading around
it, or whatever else I wanted. There would have been no comparable freedom had I used
images within the UIWebView instead of instances of UIButton.

I went with shading around the checkmark, instead of just a darker checkmark, because
thumbs are big. That is, the buttons were placed to coax the user to hold the device with
two hands and use thumbs for pressing buttons. But when a thumb touches the
checkmark button, it typically completely obscures the checkmark image. With shading
for the highlighted state, a user can get the visual feedback that the button is being
pressed from the area right around the thumb. I experimented with just making the
checkmark bigger than the average thumb, and then using a darker checkmark for the
highlighted state, but that just looked goofy, so I went with shading instead.

Figure 7-9. These are the images for the default and highligted control states of the check button, respectively.

As for the design of the actual checkmark and “X,” here are Jan’s thoughts in her own
words: “I was going for buttons that were clean but still friendly and with a human,
almost hand-written touch to them. The final product was sort of Web2.0y, which I think
still resonates with the intended audience of high school kids, at least for now.”

A couple of issues remained regarding the little omnipresent Info button on the top-right
of the screen. First of all, I knew I wanted it to be a lowercase “i” because iPhone users
already know that touching a lowercase “i” generally takes them to a settings page. But I
also wanted it to look like it was part of the sleek flashcard design. The white glow that
often accompanies the Info button when it is pressed (in the built-in Weather and Stocks
applications, for example) is also really cool but only comes in white, which, of course, is
no good on the white background of Flash of Genius. So I asked Jan to make an “i”
specifically for Flash of Genius and to make another one with a dark glow of some sort
for UIControlStateHighlighted. I liked how they came out, so I went with this instead of
the dark version of the Info button that comes in the API.

Figure 7-10. These are the images for the default and highlighted control states of the Info button, respectively.

CHAPTER 6: Flash of Genius: SAT Vocab 124

Testing the Application
With the buttons looking good and the markup looking the way it should on the back of
the flashcard, I thought I had a complete application. I certainly felt like I had created a
useful tool for learning vocabulary words. There was something I had been ignoring from
the very beginning though: how does anybody figure out how the darn thing works?

No problem, I thought. I’ll just write an FAQ and slap it onto my settings page! After I
wrote a 2,000 word FAQ for my dinky little flashcard application, I realized this may not
be the way to go. Besides, I was coming to realize, the truth is that if users need to go to
a FAQ, I’ve already lost. Why should anybody ever have to go to one of those? This is
the iPhone! Things should be totally intuitive!

Unfortunately, there are some unintuitive things about Flash of Genius. At the core of the
application is an algorithm that determines which flashcards the user sees and when the
user sees them. If the user gets a particular word wrong, that word will appear again in
the near future, and so the user will get drilled on it until the definition sticks. If a user
gets a word like “placid” right but then gets “placate” wrong, a lesson card pops up
comparing the two words, emphasizing that they both come from the same root, “plac.”
There are some more sophisticated AI elements to the algorithm too, but I won’t
describe them here.

The whole idea behind Flash of Genius is that the users shouldn’t have to worry about
what cards they study, organizing them into virtual stacks, or any of that sort of thing.
They just need to trust the algorithm that governs study mode. While that may make
perfect sense to a programmer, it’s pretty foreign to most nontechnical people. When I
was showing early prototypes to people during development, I was surprised to see how
few people even knew what “algorithm” meant.

My solution to this wasn’t novel or subtle, but it did get the job done. I just showed a
UIAlertView every time something potentially confusing happened for the first time. For
example, the first time a checkmark or “X” button is tapped in study mode, a
UIAlertView pops up to let the users know that Flash of Genius is going to take care of
them (see Figure 7-11).

Figure 7-11. I found one-time-use alert views like this one to be a decent way to get the user to understand how
to use Flash of Genius.

CHAPTER 6: Flash of Genius: SAT Vocab 125

I watched a lot of people interact with my application without knowing what it was, and I
found that this message was enough to get people to understand how the application
works. I think something about the repeated use of the word “genius” calls to mind the
Genius feature of iTunes. It signals to people that they’re using some sort of “smart”
technology. (Incidentally, iTunes’s Genius feature came out before usability testing for
the application, but well after I had named the application and formed Flash of Genius
LLC. It was just a nice bit of good luck for me.)

It’s important not to overdo it with these UIAlertViews, of course, but using just a few is
OK in my opinion. I have four total.

I think one of the most important things when developing an application is to observe
other people interacting with it, learning how it works in real time. When observing
people, it’s important to just watch quietly and resist the temptation to help them figure
things out. After all, real users won’t have you next to them when they start using your
application.

A lot of changes were prompted by Flash of Genius’s usability testing, and many were of
the same character: making the application more resistant to bizarre user behavior. For
example, after realizing that they could flip a flashcard by swiping the screen, many
people decided to see if they could flip them very fast repeatedly. Why? I don’t know.
But that got me to disable user interaction during animations in a hurry! I would never
have known that so many users would act this way with my application unless I had
witnessed a lot of people doing so.

In addition to watching people use the application, I also periodically tried to get into the
mindset of a first-time user and do usability testing myself. This process is useful too,
but there’s just no replacement for seeing a large sample of your audience interact with
your application.

Launching the Application
Launching the application was very exciting. I wasn’t expecting to get any feedback
from users, but I did get some via e-mails, blogs that have mentioned Flash of Genius,
and comments left on iTunes. Happily, almost all of it has been positive. Most
comments just address the content itself— people like the quirky sample sentences, for
example— but some users have complimented the application on the concept too,
which of course feels great. I’m glad these could shine through. It’s sad when users
can’t appreciate the content or concept of an application because of silly and avoidable
UI issues. I’m happy to say that I haven’t gotten a single comment critical of the design
or usability of the application, and nothing along the lines of “I don’t get how this works.”

The only negative feedback so far, really, has been requests for more features. Some
people asked for audio pronunciations, which I’ve now added. Others asked for more
words, which I’ve added as well.

CHAPTER 6: Flash of Genius: SAT Vocab 126

Unbelievably, Flash of Genius: SAT Vocab became the top-selling iPhone application
devoted to SAT preparation after just a few months on sale. I still can’t believe that!

I thought that once I launched the application it would be out of my mind, but it hasn’t
turned out that way at all. The application is my baby now, and I want to nurture it and
help it grow up to be big and strong. My mind often races with ideas for new features,
and I often look forward to finishing my graduate school work and spending more time
on development. I thought the process ended with the launch, but it doesn’t at all. When
does it end? I don’t know yet.

Summary
My biggest advice to first-time developers is this:

 Take user interface design issues seriously.

 Watch lots of different people interact with your application, and go
back to the drawing board until you’re happy with the learning
experience that you’re providing first-time users.

 Don’t underestimate how good professional artists and designers are
at what they do. You may not be able to imagine what they can do that
you can’t, but that will change after you work with a good one!

Developing Flash of Genius was an adventure for me, and I relished every minute of it. I
went into the process as an entrepreneur but came out an iPhone application developer.
I thought more than I ever imagined I would about UI issues. The iPhone’s built-in
functionality is very intuitive, so the bar is set high for developers. That said, you know
as a developer that you’re dealing with a savvy user base that will appreciate carefully
crafted UI, cute design flourishes, and helpful visual feedback. You know that the time
you spend on these things won’t be wasted. For iPhone application developers more
than others, spending time on user interface design is important, so don’t ignore the
details. Your users will thank you!

127

Chris Parrish and
Brad Ellis

Company: RogueSheep Incorporated

Location: Seattle, WA USA

Former Life As a Developer:
Chris :

Formerly I was a developer at Adobe Systems working on print publishing applications
such as PageMaker, InDesign and InCopy. I’ve been a long-time Macintosh programmer,
reaching back to the early days when programming a Mac included pressing the magic
programmer’s switch on the side.

Over my career I’ve worked at the low-level coding with a variety of processor specific
assembly language variants as well as the standard tour of the popular high-level
languages such as Pascal, C, C++, Java and Action Script. I’ve toiled away in a variety of
programming environments and IDEs including Think C, MPW, CodeWarrior, Visual
Studio, Eclipse, Flex Builder and Xcode. I have been working with Cocoa and Objective-C
since the introduction of Mac OS X and it is my platform and tool chain of choice.

I have a deep interest in graphics, imaging and audio and find the Mac and iPhone the
premiere platforms to explore these technologies. I also have an academic background in
signal processing and data compression where I spent some time doing research on audio
waveform and satellite image coding techniques.

These days almost all of my programming is done using Xcode on a Mac. I also regularly
rely on other Apple tools such as Interface Builder, Pixie, Shark and Instruments. I
supplement Apple’s tool chain with some great third party applications as well. TextMate
and TextWrangler are frequently running in my dock as alternate text editors. We use
Perforce almost exclusively for version control and I rely on simple GUI front-end
RogueSheep created for it many years ago called P4Cocoa. I keep all my important notes
and design work in Flying Meat’s VoodooPad. I love prototyping and experimenting with
graphics techniques in Quartz Composer and Core Image.

Brad :

Somehow I've crammed in over ten years of Adobe Photoshop and Illustrator experience
into my short time on this earth. I was "that guy who knows Photoshop" most of the time,
before I discovered interface design. My time spent in the Art department during college

 128

assisted me with learning how to manage time effectively while being simultaneously
engaged in different projects.

I spend most of my time in Photoshop and have amassed a vast array of actions and
shortcuts to enhance my productivity and final products. Occasionally I switch over to
Adobe Illustrator for its vector tools. I also use Apple Motion explore movement and bring
life to mockups.

When walking by my carefully-lit workstation you'll often find me using the Mac OSX zoom
shortcut to analyze pixels, casually sipping a grande soy mocha, or tidying my pen cup.

Life as an iPhone Developer: Chris is the President, co-founder and one of several
developers at RogueSheep. Brad works as RogueSheep’s artist, designer and user
interface expert. We regularly design and implement a variety of iPhone applications for
clients as well craft our own creations for the iPhone and iPod touch.

Our most well-known application on the App Store is Postage, a digital postcard
application in the Photography section. Postage won and Apple Design Award in the
iPhone Showcase at the 2009 World Wide Developer’s Conference.

In addition to a suite of postcard applications based on Postage we
also have published a novel word game based on an award-winning
toy called Word Spin. We also have a variety of applications developed
on contract for our clients in the store or in progress.

What's in This Chapter: This chapter will guide you through what
we think are the most important topics relevant to designing intuitive,
natural and elegant iPhone applications. Along the way we’ll tell you about the techniques
we used to design Postage and give you examples of how we applied the theory
presented to our application.

Topics include:

 Focus

 Flow

 Context

 Technique

Tools Discussed :

 Photoshop

 Motion

 Core Animation

Key Technologies:

 Tuning responsiveness and feedback

 Specifications and Mock-ups

 Preferences and configuration

 UIScrollView

129

129

 Chapter

Postage
The idea for our application Postage was born at Apple’s Worldwide Developer

Conference in the early summer of 2008. The iPhone SDK had just become available,

and our small crew of four longtime Mac developers was anxious to find an application

with which to begin exploring this exciting new mobile platform. One colleague, Jeff,

was using his iPhone to take pictures of San Francisco, where we had traveled for the

conference, when he hit on the idea for a virtual postcard application. Jeff wanted to be

able use the images he was capturing while on the road in a custom postcard that he

could send digitally to his family back home. Ten months later, Postage for the iPhone

(see Figure 7-1) finally saw its introduction on the App Store.

When we started to work on the design and features of Postage, we knew from the

beginning that we would need to focus on several key areas. Being experienced Mac

developers as well as users, we wanted to bring our expertise and knowledge from

desktop development to create something for the phone that would rival what Apple

itself would produce. First, we knew that the output would have to be top-notch and

suitably high resolution. We had to wow our users and the recipients of their postcards

with the capabilities of the iPhone. We also knew that we wanted our user interface to

be ultra-intuitive and simple to use. Finally, we realized it was paramount to ensure that

our application was focused and streamlined.

This last point, the focused nature of the application, became the central piece around

which the rest of the design was anchored. Early on, we set a goal that a user would be

able to launch the application and send a complete postcard as quickly as possible. If

someone could spend one minute or less in our application and end up creating a

beautiful and personal postcard, we would have succeeded.

To achieve that focus required designing a user interface that was not only intuitive and

engaging, but one that also did not overwhelm the user. Following the lead that Apple

has established for years with their own applications, we worked hard to make sure to

present the user with just enough choices, at just the right times. We also found it

important to conceive of a flow through the application that was natural for the task at

hand. We did not want the user guessing at what to do next or how to achieve the

desired result.

7

CHAPTER 7: Postage 130

A critical component in our desire to create an intuitive user interface was to ensure that

we chose and maintained a familiar mental context for the user. Our design for Postage

demanded that the users feel as if they were working on a real postcard throughout. We

made sure that the card was the focus from step to step and used animations and

scripted motions to maintain that mental framework or context. In Postage, the interface

animates around the card, which is always the central focus. To enhance the feeling of

the context, we also made sure to provide user interface elements that supported the

theme.

Finally, to turn our design into an experience that was visually engaging and seamless

with the user’s expectations for an iPhone application, we had to employ a variety of art,

design, interface and programming techniques. Consistency in art design and lighting,

reuse of familiar user interface elements in the proper locations, and leveraging the

powerful frameworks provided by the iPhone OS were all instrumental in realizing the

potential of the application we all had envisioned.

Figure 7-1. Our application, Postage

Keeping the Application Focused
Well-known blogger and Apple follower John Gruber said, on designing iPhone

applications, “Figure out the absolute least you need to do to implement the idea, do

just that, and then polish the hell out of the experience” (http://daringfireball.net/
2008/11/iphone_likeness).

Designing for a mobile application is really quite a bit different than for desktop software.

Limitations of the device itself, including screen real estate and user input methods,

force us to make different choices. But beyond the specifics of the device interactions,

it’s important to consider when and how a mobile application is used.

CHAPTER 7: Postage 131

A typical nongame iPhone application is going to be activated when the user is on the

go and usually for only a few moments at a time. Because of this, it is critical to make

sure that your application is responsive and allows the users to accomplish their goals

with a minimum amount of fuss and time invested. The best way to achieve this is to

make sure your application is well focused.

On the desktop, we are accustomed to applications that create new content being

based around the idea of a document. Word processors, spreadsheets, image editors,

and the like all typically operate with a motif of the user opening one or more documents

and providing a variety of tools and menu commands with which to create and

manipulate the content in those documents. Users can switch modes rapidly and jump

between tasks easily. Often, interfaces on the desktop strive to present the user with

many, many options for any choice to be made.

The open-ended nature of desktop applications does not translate well to the iPhone. In

fact, it often opposes our goal to focus the application. One of the best ways to focus

our application is to be thoughtful in the amount of choices offered to your user and how

you present them.

Anyone who has spent much time building software applications knows that users

frequently request to be presented with more choices and more features. It seems to be

human nature to always conclude that more choice is always better. Although we all will

say more choice is better when asked directly, the truth is that, for some tasks, more

choice is really just a barrier to accomplishing the final goal. An application that

overloads the interface with choices can easily overwhelm users and can even tempt

them to give up before actually completing their tasks. Just remember this when

designing an iPhone application: more is not always better.

For some great thoughts on how too much choice leads to paralysis and unhappiness see the
works of Swarthmore College professor, Barry Schwartz. His book, The Paradox of Choice
(Ecco, ISBN-10: 0060005688) has some thought-provoking insights into the problems of
overwhelming choices.

In many ways, our application is just like a content creation application where the user is

working on a document; in our case, that document is a postcard. On the desktop, we

might have chosen to allow the user freedom to work on any task in the steps required

to create a postcard at any time. Following the typical desktop metaphor, we would

likely offer the user a variety of tools with which to work on the different parts of the

postcard in any random order. Photos would be added and edited with a photo tool

anytime the user selected that tool. Text would follow in a similar fashion, with the user

adding and editing text by selecting the text tool and applying it to the postcard. We

would also likely have allowed the user to choose from a variety of fonts, colors, and

positions for text and images, as well as effects and other design choices. Doing all of

this on the phone would have lead to an application that was overwhelming with choice

and difficult to approach. Most users would be stuck wondering how to even get started

CHAPTER 7: Postage 132

with such a variety of choices presented within the confines of an iPhone-sized screen

and a touch-based interface.

Selecting Font Styles
When designing Postage, we instead decided to be very frugal in the choices and

customizations offered to the user in many places. For instance, consider selecting the

font for the message; we could have presented an interface that listed every

combination of font and style available on the device. Instead, we carefully preselected a

list of fonts that gave the user a variety of type styles that also matched our postcard

designs well. Figure 7-2 shows how this careful preselection of fonts allowed us to

present a variety of choices in a pleasant and compact interface in the application. We

did the same for font color and image effects as well, which are covered in the next

couple of sections.

Figure 7-2. Frugal font controls in Postage

Despite all this apparent limitation of functionality by limiting the choices available to the

user, we have never had complaints about the lack customization in our application. In

return, we have a streamlined and approachable interface that doesn’t overwhelm the

user yet still allows plenty of creative expression.

Selecting Font Colors
Selection of font color in Postage works in a similar manner to font selection. We could

have crafted an intricate new color-picker control to allow the selection from the millions

of possible colors the device is capable of displaying. Instead, we chose to present the

CHAPTER 7: Postage 133

user with a choice of around ten hand-selected colors. This design decision also had

another beneficial consequence: by limiting the colors that can be used, we could now

carefully select colors that we knew would look good for the particular postcard design

the user was working with. Each postcard template in Postage comes with a specific list

of colors matched to that design, and these are the only choices presented to the user.

We made it intentionally difficult for the user to make a choice that resulted in a postcard

that would look bad. By limiting the choices, we helped to ensure that the users’ content

looked great and therefore increased their satisfaction with the end result.

Using Image Effects
Image effects in Postage also work in a similar manner. Users can select from a variety

of common image effects to enhance the photo placed on each of their postcards.

Photos can be made grayscale or sepia, enhanced for contrast, or stylized with a glow

or softening. In each of these cases, the underlying code has a variety of parameters

that control the application of the effect to the users photo. It would have been possible

to expose each of these parameters in the interface and allow the user complete

creative control over the result. Image processing, though, was not the central activity of

our application and therefore this level of exposure to controls was not within our stated

mission to focus the application. Instead, for each effect, we carefully selected values

that made a pleasing result on a variety of images. The user was presented with one

choice for each effect. As Figure 7-3 shows, all a user has to do to apply a photo effect

is to tap a single button. As before, this allowed the task to be efficient and

approachable while still offering a variety of creative options.

Figure 7-3. A single button press applies image effects and fonts.

Setting Preferences and Configuring the Application
Preferences and configuration represent another important opportunity to focus your

application. If you study Apple’s applications on both the desktop and the iPhone, you

will often find a relatively sparse selection of preferences exposed to the user.

Conversely, on other mobile or desktop platforms that are not known for their ease of

CHAPTER 7: Postage 134

use and approachability, you will find applications full of preferences and configuration

choices.

Presenting the user with many preferences and options for configuration makes your

application seem unnecessarily complicated to the typical user. When presented with an

interface that forces them to make many choices, most users will feel confused and

decide that the application is too difficult to use. Often, poorly designed applications

present an abundance of user interface elements for preferences and configuration or

create flows through an application that force users to make frequent but relatively

unimportant decisions.

Often, the problem is that many of these forced decisions are not what the user really

cares about when using the application. These unnecessary decisions just get in the

way of what the user really wants to accomplish with the software. While many

hobbyists and computer professionals crave complete control over their software, most

consumers would rather have an application that just works how they expect without the

need to make changes to the application behavior. The iPhone OS even obfuscates

preference setting by stashing user preferences for an application in a location that few

people even realize exists (see Figure 7-4).

Figure 7-4. The somewhat hidden application-level preferences on the iPhone OS

The best application interfaces are those that keep preferences to a minimum and make

sure that the choices exposed to the user are really those that matter to them. It was

once said that every application preference represents a point where the development

team could not make a tough choice. It’s up to you to make those tough choices on

behalf of your users. It’s true that sometimes the choices you make will not please

everyone. You will, however, make your users (outside that small minority) big fans of

your application without them ever realizing why. When you design your application,

CHAPTER 7: Postage 135

make an effort to envision the average user in your market, and anytime you come

across a fork in the flow of your application that might be solved by a preference,

instead make the choice to have it work in the manner that will satisfy the majority of

your users.

Sometimes, despite your best efforts, allowing users to set a preference is unavoidable.

Originally, we shipped Postage with no application-level preferences at all, which was

just what we had desired. Over time, though, Apple updated the iPhone OS and added a

feature that many users wanted but fundamentally changed the output of our

application. With the new iPhone OS, it is now possible to send an e-mail with an

attachment using the owner’s e-mail configured in the standard Mail application.

Previous to this change, if a developer wanted to send an e-mail with an image

attachment, it was necessary to use your own server or have the user reenter e-mail

account information. We knew that entering all the details of an e-mail account would be

a barrier for our users, so we choose to send our e-mails directly from Postage to our

own servers. This allowed us to create and send a beautiful HTML e-mail with

embedded image attachments.

With the new OS, it was now possible to send an e-mail with an attachment via the

user’s existing e-mail configuration. In addition, these e-mails could be sent as a

background task, rather than forcing the user to wait for the e-mail to finish sending, as

required when sending an e-mail with our own methods. Finally, this change meant that

the users were sending the postcards directly from their own accounts rather than

through our special account. A handful of vocal customers had been upset about

privacy concerns and spam filtering caused by using a RogueSheep e-mail account

rather than their own. Clearly, using this new operating system feature seemed like the

perfect choice to satisfy our users and to enhance the experience of our application.

Unfortunately, we soon discovered a consequence of this change; it was no longer

possible compose an e-mail using HTML with an embedded image attachment if we

used the iPhone SDK interfaces to send the e-mail. Suddenly, our beautiful postcard

output that thousands of users had come to expect from our application was a little bit

less cool than before. Making this change in functionality with its many benefits would

be taking away a feature in the output that some unknown number of our customers

may have come to expect. We were left pondering which path to take.

We eventually caved and enabled the choice of e-mail sending methods as an

application preference. If that new functionality had existed before we shipped our

application, we would have just used it and never created a situation that required a

preference to satisfy new and existing users at the same time. Over time, we will slowly

phase out the old way of sending the e-mail through our servers, starting with changing

the default to new method. By giving our users a gradual change, we will bring them all

over to the new method without any disappointment or shock.

Configuration can be thought of in a similar manner as preferences. Do everything you

can to reduce or eliminate the configuration required by a user to start enjoying your

application. The last thing you want is for someone to launch your application and give

up before really experiencing the joy of it because of a barrier presented by

configuration UI. This is especially true on the iPhone, where so many applications need

CHAPTER 7: Postage 136

to connect to some network-based service. Do everything you can to delay or prevent

having the user enter account or similar credentials when using your application for the

first time. We can’t even count the number of times each of us has quit an application,

never to return, when the first thing we are asked for on launch is to create or enter an

account.

In our application, the primary form of sharing a postcard is by sending it as an

attachment in an e-mail. As mentioned before, we built the application before Apple

exposed the ability to send an e-mail with an attachment directly from your own

application using the owner’s already configured e-mail account. We knew that requiring

the users to enter an e-mail account, one that they probably have already set up on the

iPhone once before, would be seen as at best an inconvenience and at worst a reason

to trash the application with a one-star review. Average users have no idea what

information on the iPhone that developers are and are not allowed access to; they only

know that they already send e-mail from the iPhone and can’t understand why they

would need to configure it again for your use.

For Postage, we chose to send the postcard through our own servers to eliminate the

need for any configuration or account credentials. This created a slight burden for us in

managing that service. It also costs us a few users who are concerned about an

intermediate service involved in their communications. These concerns, though, are far

outweighed by the benefit. Users are able to install our application, create a postcard,

and send it just a few steps—with no configuration required.

Separating Tasks
Finally, focus can play an important role in the design of the individual screens of your

application. All but the most simple of iPhone applications require several separate

screens with distinct controls and data presented to the user. With the iPhone OS, Apple

has provided us with a few standard controls to help us conceptually break up these

separate screens (see Figure 7-5). The navigation bar provides a way for a user to step

through a hierarchy of tasks or choices and is often coupled with one or more list views.

A tab bar sits at the bottom of a screen and is appropriate for presenting separate

subtasks or views on the data of an application. Finally, an application can present a

modal view or alert that takes over interaction and demands immediate attention.

Figure 7-5. Standard iPhone SDK controls for separating tasks or views of data

CHAPTER 7: Postage 137

You should use these standard controls to separate the presentation of your interface as

appropriate for your application. When considering how to create these dividing lines

among all the tasks that your application is capable of and what should be visible at any

one time, you must be mindful of focus once again. Only display what is necessary for

the task at hand on each screen associated with a navigation step or tab. Strive to have

only a single item as the focus of the screen, and reduce the number of UI elements

present to the minimum needed to manipulate that item. First, this strategy will help to

ensure that the controls you present to the user are large enough to easily be targeted

on the somewhat constrained real estate of the device. More importantly, it will help to

keep your interface simple and welcoming. Consider that none of Apple’s stock iPhone

applications ship with anything resembling a menu bar or a menu full of actions that can

be taken at a single time (pickers are always reserved for selecting from data to use, not

actions to take).

Figure 7-6 shows two possible designs for a postcard application like Postage. On the

left, the different aspects of the postcard are captured as items in a table view. The user

could potentially work any the feature of the postcard by selecting that item from the

table view and then drilling down to further details. While using a table view is a very

familiar concept for anyone that has experience with the iPhone, there is one glaring

problem with this design. There is no way for the user to see how all the different

choices for the style and customization of the postcard are affecting the final product.

There is no preview of the fruits of the user’s labor. In addition, there is no suggestion of

what to do next to complete the task.

On the right is another approach where the user can do a whole slew of tasks from this

one screen. Using the tools from the toolbar, new photos and text can be added at any

time. The user can tap an item on the postcard to select it as the item that has focus

and is manipulated by changing any of the style controls. Other controls are available to

send the postcard by e-mail and to a social networking site. Finally, a menu gives the

user access to a variety of additional tasks.

Figure 7-6. The wrong way to present a variety tasks in an iPhone application

CHAPTER 7: Postage 138

So what’s wrong with Figure 7-6? To begin with, there are simply too many controls on

each of these screens. How does the user even know where to start? The always-

present Share button is just begging the user to accidentally send off an incomplete

postcard. The idea of the selection itself is potentially poor as well. While common on

the desktop, the iPhone OS rarely introduces the notion of a selected item outside of a

picker. Finally, all these controls are scrunched on one 320 × 480 screen, making each

control hard to see and almost impossible to target with a fingertip. While this

application design might imply a lot power, it likely to scare off most casual users before

they get too far.

While both of these examples are somewhat contrived, its not too uncommon to see

applications in the App Store that make many of these same sort of mistakes. These

examples work to demonstrate the sort of thinking you must apply to create a

streamlined user experience on the iPhone.

In the final design for our application, we decided to divide the subtasks of creating a

postcard into separate steps and to use a navigation bar as the method for moving

between these steps, as shown in Figure 7-7. Using the navigation bar allowed us to

focus the controls present on each screen to just those relevant for the current task:

pick a postcard, pick the photo, enter the message, style the message, and share the

card.

 Figure 7-7. Navigation of postcard creation steps in Postage

When necessary, we further segregated the visible controls using a control that toggles

the choices present in custom horizontal button bar. For example, when on the Pick

Photo task, we divided the controls present between choosing a photo and applying

effects to the photo, as shown in Figure 7-8. When the user is choosing a photo, the

horizontal button bar displays buttons for sources that the photo can come from. When

the user applies effects to a photo, the horizontal button bar changes to display buttons

that apply effects to the current photo.

Figure 7-8. Dividing the photo picking task into subscreens with a custom tab bar

In the Postage design that we shipped, each navigation step in the creation of a

postcard is somewhat modal, allowing only the manipulation of one aspect of the

postcard at a time. Each of these steps is scripted in a specific sequence as well. For

instance, choosing a postcard design is the first step, followed by placing a photo, and

CHAPTER 7: Postage 139

finally, choosing and styling the message. At each step, the user is focused on that

single task—whether that is picking a photo, styling the message, or sharing the

postcard—and is not permitted to jump to any arbitrary step in the process, though

movement between the previous and next step is allowed at will.

In our some of our early mock-ups, like the one show in Figure 7-9, we had attempted

more of a modeless approach with each subtask as a tab in a tab bar. We soon felt that

this approach would work against our goal of a user creating a postcard in just a few

minutes. It created too many choices and too many opportunities to generate an

incomplete postcard. For instance, what would happen if the user tapped the Mail

button before any of the others? Should that be an error or warning, or should the

application send a blank postcard?

With Figure 7-9’s design, we also felt like we were forcing the user into a more

complicated discovery process in learning the application. By instead choosing to step

the user intentionally through each task, we could ensure they didn’t miss a step and

only had to focus on a small amount of user interface detail at a single time.

Figure 7-9. Rejected navigation and flow for postcard creation in Postage

 MODAL VS. MODELESS

User interface experts long ago identified two different styles of interaction with a user. In a modal
interaction, the user is not permitted to do any other action or task until the current interaction has been
completed. In a modeless interaction, the user is permitted to continue other tasks or interactions and
to deal with the modeless interaction at their leisure.

CHAPTER 7: Postage 140

The classic example of this distinction is dialogs. A modal dialog will stop the user from any further
interactions until the dialog is dismissed. This is typically reserved for an alert or similar dialog that is an
indication that the user must make a choice before continuing because of current conditions. A modeless
dialog, however, will float around without demanding that it be handled. Floating tool palettes and many
spell-checking dialogs are common examples of modeless windows that do not demand the focus of the
user’s interactions while present.

When we had finished our preliminary specification, we felt that our design for Postage

did well in focusing the interface for a killer mobile application experience. We

acknowledged that the central task for this application was creating a digital postcard

and thoughtfully separated those tasks into discrete steps that allowed that allowed us

to create carefully crafted interface elements for each specific task.

Because each task was so focused, we had room in the visual design of those separate

views to make sure the interface was uncluttered and easy to understand. We had

space to create clear interface elements, while still showing off much of the users

content and the postcard that was being created.

We still had an important element left to address before our design work was done. We

had not yet completed the flow and description of interface behaviors between each

task. Where should the user start in the process of creating a postcard? How would we

transition between each step in the process? The answers to these questions about

sequence and flow came from measured analysis of the mental map, or context, we

wanted to create for the user in our application.

Analyzing the Context
Context is extremely important when designing any application interface. So what is

context? When we talk about context, we mean the setting or mental model of the

application or portions of the application. Context has been used throughout the modern

exploration of graphical user interfaces to help guide users into the use of software

applications.

The classic example of an application context is the desktop metaphor ubiquitous on

personal computing platforms. Most operating systems provide the user with a desktop

that serves as a mental model for the content of their computer. The desktop contains

folders and files that represent the data and the hierarchal organization of that data.

Often, the desktop contains a trash can, or similar object, used to dispose of files. Hard

disks, CDs, or DVDs also appear on the desktop to allow the user access to these

storage media. Frequently, the context is enhanced by representing physical objects the

user may be familiar with separate from their computer. Files look like paper documents,

and folders look like common filing folders.

Context has been used to great effect on the desktop for many years. iTunes, DVD

Player, and other media-playing applications style their interfaces to similar to real-world

music and video players. The Mac desktop application Delicious Library allows users to

catalog all of their physical media such as books, CDs, DVDs, and games. Delicious

CHAPTER 7: Postage 141

Library uses the metaphor of a bookshelf as the interface motif, which is immediately

recognizable.

This same notion of context is applied in a variety of applications on the iPhone as well.

Consider the Messages application that presents text messages as word bubbles or the

Maps application that uses pushpins to represent points of interest on the current map

view. Eucalyptus is an excellent iPhone OS book-reading application that uses a

bookshelf metaphor for browsing books and a graphically rich representation of turning

a real page when flipping between pages of a digital book. All of these uses of context

help a user quickly understand how to interact with your application and aid in setting

the proper expectations for how your interface behaves.

All developers should consider the mental model their users will develop when using

their application. It’s important to maintain this context with consistency throughout your

application. This mental model that you build for your users will allow them to quickly

become comfortable and fluent in your application. When you meet the users’

expectations for that mental model, they will perceive your application as natural,

intuitive, and a pleasure to use.

When possible, presenting and maintaining this context visually within your application

can be of great benefit. Several of Apple’s applications have an immediately visible

presentation of the context. The Camera, Compass, and Voice Memos applications that

ship with the iPhone all provide elements of real and familiar physical objects to set the

stage in the user’s mind. The Notes application looks like a familiar pad of legal paper.

When you launch Notes, your mental model of the application begins to instantly

develop around your notions of a pad of paper. Many times, the small visual details

make a big difference in maintaining your context. In Delicious Library, deleting a book

results in an animation that burns the book up into smoke, but deleting a DVD shatters it

into pieces. These little details help reinforce the model of books and DVDs in the

application.

Be careful not to break the context you have developed for your user. Few things are

more jarring when using an application than sudden, unexpected behavior. If you set up

a mental model of a real-world object in your application, you must strive to maintain the

behaviors of that object, or you risk disappointing your user.

Considering Context in Postage
Early on in the design of Postage, we knew that we wanted to present a mental model of

a physical card. Throughout the application, we designed the user interface so that the

postcard was always the central focus, and the interface animated in, out, and around it.

From the moment after you pick up the postcard design until you send the card to its

recipient, each intermediate step always has the postcard you are creating as the thing

focused in the view. The key to maintaining this context through each step is animating

the view of the postcard to zoom in and out of the area that is the focus. Picking the

photo zooms in on the area of the postcard where the photo is placed. Styling the

message zooms the view of the card to the text area. Preparing to send the card zooms

to a full preview. In each individual step, the interface elements animate away and build

CHAPTER 7: Postage 142

up around the card by sliding up and down (see Figure 7-10). In this way, the interface

feels secondary to or separate from the postcard. The card becomes the permanent

context, and the controls present at any point are just the tools used to manipulate the

card for the current task.

Figure 7-10. The user interface animating around the postcard

The context of working on a postcard that feels separate from the user interface is one

of most unique aspects of our user experience and, we think, one of the most critical

components to its success. Apple provides us, as developers, with an incredibly

powerful tool in Core Animation. While it may be easy to dismiss Core Animation as a

means to provide eye candy, we feel that Postage demonstrates an example of how an

animating user interface actually enhances the usability and pleasure of using an

application.

We also employed the use of themed elements in the design of our application to

continue to support the context. When sharing a postcard, we present an animated

envelope that the card slides into. The card sliding into the envelope helps to maintain

the illusion of the card as a separate physical object while also supporting the motif of

postal mail associated with postcards. Sending success and failure messages are

presented as stamps on the envelope mimicking postal practices in the physical world.

All of these simple embellishments add to the context and delight the users.

CHAPTER 7: Postage 143

Facing Potential Problems with Context
Not all applications lend themselves to an emulated physical model to build a mental

image around. Sometimes even when they do, the models are contrived or overused, or

perhaps the disparity between the physical and virtual objects is too great to be effective

in placing the user in a familiar context. These limitations don’t mean, though, that your

application doesn’t have context and would not benefit from consistency. Sometimes,

the context simply is the consistency you develop in the way you present your data,

controls, and application behaviors.

Make sure to use familiar controls and gestures for user interaction in your application.

iPhone users are already trained in many interactions and user models by the

consistency deployed in the built-in and most third-party applications. Most importantly,

do not change the behavior of a familiar button, control, or gesture. For instance, you

may be tempted to use the default search button icon (a magnifying glass, tilted to the

left) to change the zoom or magnification of the current view. The problem is that even

though the magnifying glass maps well to the action of changing the scale of what is

viewed, it has already been established in many places on the iPhone to mean “search.”

You risk confusing the user when you reuse this standard button for a different, even if

logical, action in your application. If you develop your own controls be sure to apply

them with consistency throughout your interface as well.

Don’t suddenly change the meaning of a button without changing its visual appearance

significantly to match. Similarly, be careful not to overload the meaning of a button that

users already have expectations for. A button with a triangle pointing to the right might

be a tempting proposition to use for advancing through a list of items. However, a

triangle pointing to the right inside a round button is universally accepted to be a control

that starts media playing. If you use this button in an application to step through a list of

songs (see Figure 7-11), you run a high risk of confusing your users, who might

mistakenly assume the button means that the current song should start playing.

Figure 7-11. Trying to assign a new meaning to a familiar button causes confusion.

Broken metaphors can be worse than using no metaphor at all. For instance, imagine an

audio application that had a vertical slider and a small knob that turns left to right. Both

of these controls are metaphors for physical input devices found on many audio

devices. Because of previous experience with these sorts of real world controls, most

users are going to expect that turning the knob in your interface to the right will increase

the value associated with the control. Similarly, they will assume that raising the slider to

a higher position will increase its value. If your application reversed either of these

CHAPTER 7: Postage 144

expectations, users will consistently find themselves manipulating the control to get an

unexpected result.

These same concepts apply to gestures on touch devices like the iPhone. The touch

interface of the iPhone OS lends itself to manipulation of photos by grabbing, pinching,

sliding, and rotating. In Postage, we wanted to allow the users to rotate their photos to

fit perfectly on their postcards. Apple doesn’t provide a standard way to rotate with a

gesture, so this is a behavior we needed to implement ourselves. When you create your

own behavior, you potentially have a lot of freedom in how you map the user’s finger

movements to the rotation of the photo. The natural gesture for most users is to place

two fingers on the photo and twist them to rotate. We found it was very important to

make sure that points where the user touched the photo originally remained exactly

under the fingertips as the user moved around. If you think about it, this is exactly how

rotating a real photo on your desktop by twisting your fingers would behave. This

attempt to emulate the laws of physics makes the mental model of how your interface

works immediately meet your users expectations. Every attempt we made in Postage to

map the finger-twisting to rotation in a manner inconsistent with the metaphor of

spinning a real photo with your fingers always felt wrong.

Using Familiar Controls in Postage
In Postage, we employed many standard Apple controls and gestures:

 Selecting a postcard design operates with a standard scroll view that

pages with the familiar swiping gesture.

 A standard page control conveys how many postcard templates are in

a category just like Safari or the Stocks application.

 We used a standard navigation bar to implement the means to step

through each task in creating a postcard.

Our navigation was somewhat unique in that we allowed movement forward through the

steps in the navigation bar. Most applications use the navigation bar item on the left to

step back to the previous navigation step but drill down further into the hierarchy using a

list of table in the main view. We wanted to advance forward using the navigation bar, so

we developed the custom button shown in Figure 7-12 that carries the user forward in

the same style as the right side navigation buttons (this same technique is used by the

iPod application for navigation back to the Now Playing track). We made sure to maintain

this navigation bar behavior throughout the application. Once you discover that you tap

the right navigation button to move forward in the application, the behavior is consistent

throughout.

Figure 7-12. The Postage navigation bar with forward and backward navigation steps

CHAPTER 7: Postage 145

The sending screen of Postage also employs familiar controls for sharing a postcard

with e-mail, as shown in Figure 7-13. Our e-mail–sending screen uses a layout of fields

very similar to the standard Apple Mail application. We also developed custom controls

to tokenize the recipients in the To field and to add contacts from the address book just

like the standard Mail application. It took a lot of work to add all these behaviors to our

e-mail–sending screen, but the result is that users are instantly familiar with how to use

this part of our application if they have used e-mail on the iPhone already. Fortunately

with iPhone OS 3.0 and later, you can now do almost all e-mail–sending tasks, including

attaching files to an e-mail using Apple’s standard controls, without having to leave your

application. The sort of custom controls we had to employ in Postage are likely no

longer necessary for e-mail, but the lesson still applies if you find yourself needing to

emulate an existing action common to other applications on the iPhone within you own

code.

Figure 7-13. Recreating a familiar set of controls to send email

As noted before, we designed and developed a custom tab bar and horizontal button

bar controls for many of the task-specific screens in Postage. We took great care to

make sure to reuse this paradigm throughout the application. The horizontal button bar

may be an unfamiliar control when you first encounter it. Once you learn what to expect

from it and how it interacts with the main view and the tab bar controls though, it is

consistent throughout the entire application. This reduces the learning curve of our

application greatly.

After you arrive at the mental model you want your users to have when using your

application, you will be able to choose your user interface controls and their visual styles

to help support that context. In Postage, we used animation, familiar controls, and a

consistency from screen to screen to develop and maintain the postcard as the focused

CHAPTER 7: Postage 146

element of each screen. Our animations helped to establish which visual elements are

user interface controls and which elements are the content the user is working on. By

animating the interface control elements around the postcard, we established its

permanency and gave the postcard some substance in the Postage application model.

We now had a great postcard model visually represented in the interface, but we still

needed to consider how we would place controls on the screen and in which order and

what physical locality. These decisions would create the flow of our application as the

user moved from starting a postcard to completing it.

Creating the Application Flow
Every application has a natural flow of the user interface. Often, the flow is concerned

with locality of controls and groups of controls and the order of operations or tasks. On

the desktop, many applications are designed so that controls that are less specific in

their effect are grouped together and placed in an area that is the first place a user will

naturally look. Controls with effects that are more detailed or reduced in scope are then

also grouped together and placed at a natural spot for the user to move to after using

the first group. Popular Mac OS X programs, such as iTunes and iPhoto, employ a

source list on the left that lets the user select from groups of music or photos. After

selecting from this source list, the controls to the right reflect the selection on the left

and allow more detailed manipulation, viewing, or listening. On the iPhone, we often see

a similar flow with table views and navigation bars. Selecting from a table view often

narrows the data the user is working on from a large choice in a list. Each selection

burrows further into more specific selections of the data, moving from left to right in the

interface. All well-designed applications are careful to make this flow as natural and

consistent as possible.

One of the most natural flows (at least for Western societies!) is a left-to-right flow that

follows the reading order. In Postage, we used a left-to-right flow to naturally progress

from one step to the next. We also employed a control hierarchy that flows from top to

bottom. Controls at the top of the screen in the navigation bar make big changes and

switch tasks: moving between steps, sending a finished postcard, and starting a new

postcard. Controls at the bottom have effects local to the current screen or task:

changing the font, applying a color, or choosing an effect to apply to a photo.

Sometimes, you may find you need to guide the user in the flow of your application. You

may want to employ some form of hint to give your user an idea of what they can do

next. This is a special concern on the iPhone where the number of pixels available on

the screen, while fantastic for a mobile device, is far less than what we have grown

accustomed to on the desktop. We just don’t always have room for labels, titles, and

other descriptive instructions.

CHAPTER 7: Postage 147

Giving Hints About Flow
While testing Postage, we found that new users sometimes double-tapped a postcard

design on our first screen to select it. Our design actually called for using the navigation

bar to move to the next step. We contemplated having both a double-tap of the

postcard as well as tapping the right navigation button carry the user on to the next

step. In the end, we decided against dual controls for two reasons:

 First, we would have a hard time supporting the same double-tap in

later stages of the interface. We felt this would have broken our

context or expectations of our users when the same behavior would

vary in result from screen to screen.

 Second, we knew that most all steps after the first one would require

tapping the right navigation button to move to the next step. We felt

that, at some point, the user would have to learn that the right

navigation button is how to move on.

In the end, we decided to have double-tapping that first screen present a small pop-up

hint that momentarily indicated that the right navigation button would advance to the

next step. At that point, we felt we had trained the users who did not naturally see the

right navigation button to begin to look there to advance through the application.

Figure 7-14. Giving the users a hint

We also deployed similar hints in other locations in the interface. The photo-picking

screen allows the user to scale, position, and rotate the image. While the scale and

position actions might be familiar to the user from the built-in Photos application,

rotation was potentially a new concept. We also felt it was possible that the user might

not think to touch the photo to manipulate it. To resolve this problem without

permanently sacrificing valuable pixels, we choose to once again momentary display a

textual hint when a photo has been picked.

Postage also uses another important form of hinting. Our horizontal button bar was a

fairly novel control that many users might not be familiar with. We needed to give the

users some indication that the control would scroll with more choices if swiped left or

right. To solve this dilemma, we borrowed a technique that is employed throughout the

iPhone user interface whenever a vertical list or table is displayed. All of Apple’s

applications, and most third-party ones, are careful to make sure that at least one

partially obscured cell or item is visible in any list or table view. In other words, the

CHAPTER 7: Postage 148

height of the entire table is never a whole multiple of the height of the table cells. When

users see this partially hidden item, they are naturally compelled to swipe to make the

cell visible.

We used the same technique for our horizontal button bars. We took great care to size

our buttons so that half of a button is always shown when the bar is scrolled completely

left or right. This gives the user an immediate hint that more exciting buttons are just

waiting to be scrolled into view! We also added a small technique to further guide the

user into exploring the choices available by scrolling the button bars. When an obscured

button is tapped, the whole button bar automatically is scrolled so that more of the

hidden controls are made visible. This quickly shows the user that more awaits them

with a simple swipe.

Unfortunately, even Apple doesn’t always follow it’s own lead in UI design. The Stocks

application that comes with the iPhone is a perfect example of how not to implement a

scrolling list (see Figure 7-15). The table view that lists each security you are tracking is

sized so that it is exactly an even multiple of the height of the cells in the table. When

there are more rows in the table than can be shown at once, there is no indication that

any content is being clipped by the view. On the desktop, this design would not be a

problem, because a scroll bar would be used to indicate the content was bigger than the

view. On the phone, scroll bars are only visible when scrolling, so there is no indication

that anything is missing. How will you know it’s time to cash in on that APPL you bought

four years ago for a vacation home in Hawaii if the tricky Stocks application hides that

data from you?

Figure 7-15. Which one is a scrollable list?

Showing Instead of Telling
You can improve the flow of your application by helping your user more quickly

ascertain the meaning of your controls. An effective technique in for this is the “show;

don’t tell” principle. The old cliché that a picture can tell a thousand words may be

overused, but it still holds true. We are all used to the fact that a well-conceived and

familiar icon can more succinctly convey the meaning of a button than a simple label.

CHAPTER 7: Postage 149

Sometimes, you can carry the notion of showing instead of telling one step further than

a good icon and graphically depict a sample of a button or control’s action directly on

the control. Our design for Postage used this technique repeatedly when presenting the

user with a stylistic or creative choice. Figure 7-16 shows the buttons that apply image

effects to a postcard’s photo. Each button uses the same icon image on the button to

give a sample of the exact effect that the button will apply. Even though each button is

labeled with text, we could not really rely on that description to convey the nature of

each expressive effect. By showing a sample of the effect on each button it was

possible for us to convey much more meaning in the same amount of screen real estate

as an effective finger-sized target.

It’s important to note that the effectiveness was increased by using the same source

image (in this case, a beachside palm tree) for each button. In this way, the user can

quickly see the original image on the Normal effect button while each successive effect

button such as Sepia or Contrast is applied to the same reference image for comparison.

A further refinement of this idea would have been to use the user’s actual photo as the

image on each button. In this case, the users would be seeing an even clearer

representation of the effect on their own photos. While this choice might have been even

better, we decided not to do so because of the performance implications. A few of the

image effects in Postage require a decent amount of pixel processing. On first-

generation iPhone and iPod Touch hardware, the creation of the button images could

have delayed the responsiveness of the interface, so we choose to work with a static

prerendered image instead.

Figure 7-16. Buttons that show their actions

CHAPTER 7: Postage 150

We repeated this same technique for the font and color buttons that apply text styling in

our application. We crafted our font buttons such that each shows a sample of the letter

“A” with the font and style associated with the button applied. This is similar to the

technique of showing a font’s name in the same font in a menu item but more

compressed for the constrained space available on the mobile device screen. Our color

buttons follow the same pattern by simply showing the exact color each button will

apply. In both of these cases, we were able to forgo placing a label on the buttons and

thus reclaim valuable screen space.

Avoiding Icon Overload
Having made the case for more pictures and fewer words, let’s take just a moment to

swing the other direction and caution you from going icon crazy. Designing an effective

icon, especially for a small control, can be a real challenge. When we have a chance to

use a preestablished icon, we do. For instance, the play button represented by a triangle

pointing right is nearly universal and a great choice when you have a button that starts

something playing. Many of the icons Apple provides in the iPhone SDK are also very

familiar to your users.

 When you find you need a custom icon, consider if you might be better served with a

text label on your button instead. In Postage, we used button with no icon and just text

labels in several places. In many of the screens, there were two or three sets of

horizontal button bars we wanted to have available to the user on a single screen. We

added label-only buttons next to the button bar to switch the content of the bar (see

Figure 7-8). Effective icons for these conceptual actions would have been nearly

impossible to convey without the assistance of a text label or repeated exploration by

the user. Knowing we needed the label either way, we opted to increase the size of the

label for clarity and drop the icon entirely. We also made use of labels in the navigation

buttons that move the user back and forth between steps. The shape of the button tells

the users the direction they are stepping, forward or back, and the text is related to the

title of the previous or next navigation step helping to maintain context between tasks.

Be careful when using Apple’s provided icons. If you use one of these icons, or even one you
create yourself that is close in appearance to a stock SDK icon, to mean something different
from the way Apple uses the icon, you risk having your application rejected when you submit it
to the App Store for review. Make sure you only use these stock icons to mean the exact same
action that Apple uses in its applications. Using the icons as they’re intended is a good idea
anyway, because it helps maintain the context, or mental map, that makes our user’s feel so
happy

CHAPTER 7: Postage 151

Tuning Responsiveness and Feedback
One last area you can tune the flow of your application is in the responsiveness and

feedback of your interface. Whenever possible, you should make sure that a user’s

action is greeted with some visible reaction. A user will quickly become confused or

frustrated when an application fails to visually or audibly respond swiftly to a gesture.

This can quickly lead to the user accidentally repeating actions or prematurely quitting a

task or your application altogether.

Despite their tiny size, the iPhone and the iPod Touch are fairly powerful devices. The

iPhone OS and the CocoaTouch frameworks provide the means to easily thread actions

for concurrent execution. Although the constraints of memory size and bandwidth, as

well as processor throughput, prevent massive concurrency, its more than reasonable to

be able to update your user interface to indicate progress or even allow a user to carry

on with other actions while engaged in a lengthy computing task. Depending on your

application and the tasks you are engaging in, you will have to be cautious of memory

limitations and judge the proper course for each case in your own application.

Many iPhone applications fail this issue of responsiveness when working with the photo

picker control that allows users to take a new photo. It’s very easy to code your

application so that you begin to perform a potentially slow operation with the user’s new

photo image before the photo picker view is dismissed. When this happens, your

application will appear to have frozen almost immediately after the user has taken the

new photo. An impatient user may quit in this circumstance before realizing that your

application is working hard on the next step, not locked in an unresponsive state.

In Postage, we defer use of the newly acquired image until the photo picker view has

been completely dismissed. Because our processing of the image can take a second or

two after choosing a new high-resolution snapshot fresh from the camera, we also make

sure to display a standard indeterminate activity indicator (the spinning wheel) where the

newly processed photo will appear in the postcard design.

Pace your progress or activity indicators at the location on the screen that your users are most
likely focusing their attention. It is very tempting to place a progress indicator in an out-of-the-
way location, but for many situations, this placement will make it easy for the users to overlook
the indicator entirely.

We also had to take on some extra programming work in Postage to make sure that we

used threaded background tasks when appropriate. Applying an effect, especially blur-

like effects, to a full-resolution photo from the camera can take several seconds. In order

to keep our application responsive during this processing, it was necessary to process

the image using a background thread and to indicate the progress with an activity

indicator on the main thread in the user interface. Similar situations arise frequently

when accessing network resources as well.

CHAPTER 7: Postage 152

Make sure you test your application on a device, and on something besides the top-of-the-line
device, to understand the responsiveness of your interface. Although extremely useful, the
iPhone simulator included with Xcode will fool you into thinking that your iPhone is as fast as
the 8-core Mac Pro you do your development on. At the time of this writing, the top-end iPhone
is the 3GS, which is significantly faster and has much more memory than the previous-
generations of iPhone and iPod Touch. The 3GS effectively runs circles around its siblings, and
if it’s your only development device, you run the risk of creating an application that has serious
problems with responsiveness for owners of older hardware.

By applying all of the concepts we have discussed here related to flow, we managed to

create an application interface that users have almost universally found intuitive. Our

attempts to give the users hints and provide them with controls and metaphors make

Postage feel very natural to use. By carefully devising the flow through the application

and guiding the user through the major tasks of creating a postcard, we made sure that

a user didn’t have to wonder what to do next. As often as possible, we tried to visually

show the user what to do or what would happen rather than explaining with instructive

text. We were careful to be consistent with how the user navigates through each step of

the application and created a top to bottom flow with navigation steps at the top and

controls that manipulate the user’s content at the bottom. The result was an application

that doesn’t require prior instruction or explanation for use and a very happy population

of customers that rarely ask for support or have difficulties achieving their tasks.

Exploring the Postage Development Technique
We used a variety of techniques during the design and implementation phases when

building Postage; these allowed us to leverage the design concepts we have discussed

so far to create the final polished application. Some of the same tools and methods we

applied will undoubtedly help you create an outstanding application of your own.

Creating Prototypes and Mock-ups
One of the most important techniques you can employ when designing the next killer

iPhone application is to make judicious use of prototypes. It is often impossible, or very

nearly so, to determine the effectiveness of a particular design decision, interface control

or application layout without some hands-on experience, even if it is simulated.

Create wireframes or mock-ups of your user interface before you start coding. Try your

ideas and early designs in a medium that provides some level of interaction. Many

application designers and developers prefer to construct a paper or cardboard

simulation of the interface. Sometimes, coding a simple prototype of a particular control

in isolation in a separate application serves as the mock-up. There are also a variety of

software tools that can assist in designing your mockups.

CHAPTER 7: Postage 153

Photoshop is the go-to tool for any designer working on interface designs. Judicious use

of layers in Photoshop documents will allow you adjust your designs and try different

approaches by placing controls on separate layers that can be disabled and enabled as

needed. Another interesting tool for creating wireframes for application design is

Balsamiq Mockups (http://www.balsamiq.com/). Balsamiq has a variety of iPhone

controls and icons built in.

Modeling interaction with mock-ups and prototypes is also an important technique.

Doing these before you lay down a bunch of code can increase your efficiency and

result in less code you have to throw away. Apple’s graphics tool, Motion is a great way

to try out animations, timing curves, and pacing. Briefs (http://giveabrief.com/) is a

great new tool that lets you create interactive prototypes that run on your iPhone with no

programming required. Finally, if you have more of a development background, Interface

Builder (part of the Xcode’s suite of tools) is a great way to try out designs using Apple’s

standard controls. You can easily drop in buttons, images, table views, and the like and

even try them out with some limited capability directly in Interface Builder without writing

any code.

We often employed real-world objects to stage animations and transitions in Postage.

For instance, we used real envelopes and slips of paper to prototype the animation

when sending a postcard in the application. We also leaned heavily on Photoshop and

Motion to do many rounds of initial mock-ups before the first line of code hit the

compiler. Figure 7-17 shows an example of how we used Motion to try on of a variety of

possible transition animations in Postage. Motion allowed us to try several ideas quickly,

which encouraged experimentation. If we had tried to do this in code first, we would

have been far less likely to explore new options and push our creativity because of the

overhead in making the required changes.

Figure 7-17 Using Motion to prototype animations

CHAPTER 7: Postage 154

Photoshop was an essential tool in the creation of the array of mock-ups for our

interface design. Leveraging layers and embracing the spirit of experimentation, our

designer was able to explore many different layouts and styles before we settled on our

final design. Figure 7-18 shows a variety control styles we considered for the buttons

that switch the category of postcard designs. In the end, we settled on using icons

rather than words, but this early prototyping helped us find our visual style in addition to

leading us to the more friendly design we finally used.

Figure 7-18. Trying buttons styles in Photoshop

Everyone prefers a different set of tools and techniques for prototypes, so experiment to

find what works best for you.

Writing Specifications
Many application developers tend to leap directly to writing code without any sort of

specification of how the application will look or behave. We would argue that even a

lone developer can benefit from creating a specification before getting too deep into the

actual nuts and bolts of crafting a new application. When working on a team, some

specification, even a simple one, is almost a necessity to coordinate and communicate

among the designers and engineers.

There are many benefits to generating a specification early in your project. Describing

the exact behaviors of your application in a specification before beginning

implementation helps by forcing you to think about the complicated interactions and

issues before running down a rabbit hole that is hard to dig out of when you have

thousands of lines of code and pixels committed down the wrong path.

CHAPTER 7: Postage 155

A specification is also a good medium to communicate animations, specific visual

effects, and complicated behaviors and interactions between designers and engineers.

Although our specification for Postage was not necessarily exhaustive, its existence

before we started slinging code allowed a number of developers to quickly jump into the

project on an ongoing basis with a common direction and consistent theme to work

from. Our specification called out specific pixel distances, exact colors, and desired

transitions and animations. It allowed our engineers to quickly capture the vision of the

application crafted by our designer and bring the application he had in his head to life

with fewer iterations and false starts than if we had not started with the specification.

Another interesting benefit of creating a specification is that it can give your design

some time to bake. Several months passed between the first iteration of our application

design and the final specification we used to build what we delivered to the App Store.

This long, if not necessarily planned, baking time allowed for thoughtful consideration of

many of the critical design choices we had made. Sometimes, the perfect solution looks

a lot less appealing after a few days pass or new information is obtained. We had plenty

of time to iterate through different designs without committing engineering effort that

would have been wasted on code that ultimately went unused. Figure 7-19 contains a

sampling of the variety of designs we looked at over the course of the design phase for

the template-browsing screen in Postage. What we ended up with in the end is

drastically different than these mock-ups. The value of exploring the designs cheaply

before we started implementation was a key component in creating an application that

was as easy to use and visually compelling as Postage became.

Figure 7-19. Early design iterations for browsing postcards in Postage

It’s hard not to push the edges of the hardware capabilities of the device when

designing sophisticated user interfaces for iPhone OS applications. Our early

specification for Postage called for a visual effect of overlapping turn edges for the

backgrounds of each postcard design. As the user browsed through the available

designs, left-to-right swipes of the horizontally scrolling to view a new postcard design

CHAPTER 7: Postage 156

would show the turned vertical edge of the current postcard overlapping the

background of the next card that was coming into view. Figure 7-20 shows the detail of

how we wanted this to look in the application.

Our initial implementation of this on the iPhone worked easily and looked amazing. The

problem was that, at the early stages, we only had a handful of Postcard design

templates to choose from. Once we started adding more and more design templates

(we eventually shipped with over 50 designs), we discovered that we frequently

slammed up against the limit of available memory on the device, and our application

was forcibly terminated. To combat this problem, we had to start loading the foreground

and background image elements of our postcard designs in a more lazy manner, making

sure to purge art assets we didn’t immediately need based on the design that was

currently visible.

Figure 20. Overlapping background images in our first implementation

While this looked so simple on the whiteboard, the actual realization of this turned out to

be a protracted development nightmare. We found that, despite our best efforts, we

could not create a browsing experience that loaded the art assets we needed on

demand for browsing without causing one of two ugly problems. Either the application

would become unresponsive for moments at a time while scrolling through designs, or

we would be forced to display a low-resolution proxy or placeholder of a postcard

design before it was completely loaded from storage to display. Both experiences left

the act of browsing our beautiful postcard designs feeling somewhat second-rate.

CHAPTER 7: Postage 157

In the end, we found our solution, though it came with a price. Our postcard art assets

started life in the PNG file format. PNG is the preferred native format for iPhone UI

resources, and it supports the transparency we needed to make our cool overlapped

edges. What we discovered, though, was that loading our PNG files specifically was

what caused our momentary hiccup, which resulted in our unresponsivenes or the need

to display a low-resolution proxy while waiting for the image to finish loading. If we

switched to using a JPEG file format, the load of the art assets for each newly visible

postcard template was no longer causing interruptions in our applications. Sadly, the

change to JPEG meant that we had to sacrifice transparency in our background images,

thereby eliminating our ability to have overlapping edges.

What is the lesson you can take from this? Specifications are a great way to plan out

your application, but you have to allow for knowledge that you gain when turning that

specification into real-running code that will inevitably lead to unanticipated changes. If

you go wild with your design ideas, there will be places where the limitations of the real

world will force you to rein in your interface ambitions some. Spend some time exploring

the more complicated aspects of your intended design, and see if the device and SDK

are capable of your intent.

Postage contains over 40,000 lines of code! We spent approximately 35 person-weeks of
development with as many as 5 engineers and 1 designer building the application over a 2-
month period before shipping the first version.

Considering Art
Many art techniques can be used to support our design goals of focus and flow in an

iPhone application. For instance, it is important to focus the user’s attention to the

proper portions of your interface. Postage is a creative application where the primary

focus of the interface should be the user’s content. To support this, application interface

elements such as the navigation bar and tab bar controls are intentionally colored with

gray tones in order to be neutral against the color and vibrant postcard designs (see

Figure 7-21). Subtle gradient drop shadows are used at the boundaries between the

interface elements and the postcard to enhance the separation between interface and

content.

CHAPTER 7: Postage 158

Figure 7-21. Using neutral interface colors and shadows to highlight the content

Consistency in art is also effective in maintaining context and enhancing the cohesive

feel of an application. Users may not be able to point out exactly why, but

subconsciously, they will sense this consistency and perceive the higher quality of

design. An application with art that is consistent with itself and the iPhone OS will simply

feel more correct or Apple-like.

Note that all lighting on the iPhone is from the top of the screen down. Make sure all

your gradients, highlights, and drop shadows maintain this lighting for normal user

interface elements. Strive to use consistent button styles as well. Pay careful attention to

the pressed and highlighted states of your buttons. If you are creating custom buttons,

you will likely want to include your own highlighted and selected states as well.

Tuning the Touch
One of the most unique and prominent properties of the iPhone is its touch screen

interface. Using the iPhone OS is an inherently tactile experience, and touch-based

gestures require thoughtful tuning so that an application feels right. In many cases, your

application will rely on standard SDK controls, such as the UIScrollView, that have been

well tuned by Apple for its complicated interactions. For this reason alone, you should

try to base your interface on Apple’s control classes when possible. If you hunt around,

you will find there are a variety of applications in the App Store that have decided to

CHAPTER 7: Postage 159

implement their own scrolling. While many of these attempt to mimic the feel and

response of the regular SDK control, few get it correct. Its truly a difficult problem and

requires more work than you want to spend when you can almost always get the

behavior you want from the SDK control. The difference in responsiveness to the touch

is noticeable and makes these applications feel wrong to users accustomed to the

scrolling behavior in most other applications.

In some cases, though, you may find yourself with a legitimate need to implement a new

control with sophisticated reactions to gestures from the user. In Postage, the user is

allowed to scale, position, and rotate a photo image placed into a postcard design. The

rotation behavior by twisting two fingers on the screen is a custom behavior and not

present in any of the standard Apple controls or supported gestures. Early

implementations of our rotation felt squirrelly or imprecise. We went through many

different iterations of how this rotation gesture was implemented before we found the

final behavior that felt natural and gave the expected results.

Animations will require fine-tuning when used in your application’s interface. For many

simple transitions between sets of controls the default parameters controlling an

animation are usually sufficient. In Postage, we used Core Animation to provide several

custom animation sequences in our user interface. One of the more interesting

animations is the effect that is applied when a new category of postcard is selected in

the design browser. The new postcard design that appears when selecting a new

category animates onto the screen by dropping in from the top. The animation ends with

the postcard bouncing as it comes to rest from its drop. This bounce helps to make the

postcards feel more like real objects in the application. Getting the bounce to behave

realistically and at a speed that kept the application from feeling unresponsive required

many iterations. To help the process, we even used a motion graphics application

(Motion from Apple’s Final Cut Studio suite) to model the animation timing. Apple’s

visual graphics programming tool Quartz Composer, which comes with Mac OS X, is

another great way to tryout animations.

Our animated transition between steps that changes the focus of the visible area of the

postcard the user is creating also required fine-tuning. Each of these transitions is a

fairly complicated animation that swaps out user interface elements and moves the view

and scale of the current postcard to highlight the area of the design being manipulated

at the new step. We went through several iterations of the timing of these animations

before the pace felt correct for the balance between responsiveness of the application

and providing our goal of providing visual cues that established the postcard as

something more tangible in the user interface.

CHAPTER 7: Postage 160

THE TOOLS

We used a fairly large list of developer, media, and graphics applications to design and build Postage,
including these:

 Photoshop

 Illustrator

 LiveView for iPhone

 Final Cut

 Motion

 Perforce

 SimFinger

 Xcode

 iPhone Simulator

 iPhoto

 Mail

 Snapz Pro

 Digital Color Meter

Summary
Pulling all of these ideas together to create and implement your iPhone application is a

lot of hard work. You have to care about each and every pixel on our screen, the timing

of each animation, and the exact characters in the label on each button. You have to

think hard about your users’ expectations and their preconceived notions. Sometimes,

you have to push the boundaries of the technology you are developing with. You have to

be willing to throw away what you created and start over and even lop off your personal

favorite idea or feature. In the end though, you’ll be proud of your work, and your users

will appreciate all the blood, sweat, and tears.

For my team and I, the hours of agonizing over all the small details resulted in much

critical acclaim from the community and media that culminated in a coveted Apple

Design Award in 2009. We hope the tips and guidelines presented here will help you

create the next award-winning user experience on the iPhone. We can’t wait to see what

you come up with.

161

Keith Peters
Company: Infrared5

Location: Wellseley, MA

Former Life As a Developer: Flash Developer for several years, developing games
and rich Internet applications. For the last couple of years working at Infrared5 in
Boston.

Life as an iPhone Developer: Currently working on several high profile iPhone
apps with Infrared5, and have pushed out a bunch of apps and games on my
own. Most notable is Falling Balls, which rose to number on on the free
applications list.

 Falling Balls

 Vector Blocks

 Bug Out!

 162

 Wire Draw

 Dust

 iAttractor

What's in This Chapter: Deconstructions of two games: Falling Balls, and Gravity
Pods, both of which started out as Flash games, some of the UI challenges
encountered in porting them to the iPhone, and how those were overcome.

Key Technologies:

 Touches vs. Accelerometer for UI control

 Creating an onscreen keyboard replacement for fine control

 Drag and drop onscreen UI elements

163

163

 Chapter

Falling Balls and Gravity Pods

I’m a Flash developer from way back and a somewhat recent convert to the religion of

Cocoa and iPhone programming. In Flash, I’ve always gravitated toward game

programming or applications with creative user interfaces and interaction. I was never a

huge fan of laying out rows and columns of generic user interface controls and wiring

them together to move data around. That’s just boring to me.

Naturally, when I started on iPhone development, my first few projects were attempts to

re-create the kinds of things that I’d done in Flash. Now, most of the tutorials you find

out there on iPhone development show you how to use Interface Builder to lay out

various UI components and how hook them up to display some data, so I figured I’d use

this chapter to talk about the more unique interfaces that I’ve always found much more

interesting. In particular, I’m going to use examples from two games that I originally

created in Flash and later ported over to the iPhone.

If you’re not coming from the Flash world, don’t worry; this chapter is not about porting

Flash games to the iPhone. It is about the challenges involved in creating nonstandard

user interfaces on the iPhone, some of the problems you might run into, and some ideas

on how you might go about solving them.

These challenges can be seen as falling into three broad areas:

 The first challenge area has to do with the hardware that the iPhone

lacks, notably the keyboard and mouse. Yes, you can call up a

software keyboard, but that is strictly for entering characters into a text

field. You are not going to use the W, A, S, and D keys on that

keyboard to move a character around the screen, as you would in

many desktop and web games. And yes, taps and touch screen

gestures can fill in for a lot of mouse functionality, but as you will see,

there are some big differences there too.

8

CHAPTER 8: Falling Balls and Gravity Pods 164

 The second challenge is keeping in mind the capabilities the iPhone

does have that your usual desktop computer doesn’t. This includes

the multitouch screen and accelerometer, as well as things like touch

gestures—swipes, pinches, and so on. While gestures with the mouse

have been attempted now and then over the years, they’ve never really

caught on. Perhaps it’s the coordination required to move, press,

make a gesture, and release. A finger swipe on the iPhone’s touch

screen, however, is the most natural thing in the world. It’s important

to keep all these new features in mind when building your user

interface.

 The third, and perhaps most challenging, area is in not misusing what

you do have to make up for what you lack. You need to avoid things

like the overused shaking gesture when the gesture makes no sense

for the function it is performing or using actions the user would never

dream of doing, like a three-finger double-tap (yes, I’ve seen it done).

The whole idea behind these new, more physical and tangible input methods is to use

them to make a user interface that works in the same way that real-world objects work.

You might need to explain how to do a particular action one time, but this should result

in an exclamation of “Ah! Of course!” and never “Hmm . . . OK, I better write that down.”

In this chapter, we’ll look at how some of these challenges presented themselves while

developing my Falling Balls and Gravity Pods games and look at some of the solutions I

attempted and finally settled on.

Creating Falling Balls
The first iPhone game I created was called Falling Balls. It was based on an unnamed

game I did in Flash back in 2001. The premise of the game was utterly simple. As you

pressed the left or right cursor keys, a little stick-figure man ran back and forth at the

bottom of the screen. From the top-left corner of the screen, round spiky objects fell

down and bounced their way left to right. For each spiky ball that made it to the right

side of the screen without hitting the stick man, you got one point. If any did hit him, he

died, and the game was over. You can see the original game in Figure 8-1.

CHAPTER 8: Falling Balls and Gravity Pods 165

Figure 8-1. The original Falling Balls game from 2001

This was more a quick proof of concept than a very polished game. I put it up on my

site, www.bit-101.com along with the FLA file, the Flash source file that contains both the

code and graphics for anyone to play around with.

A couple of years later, someone grabbed the source code and graphics for this game

and created a Facebook game called Tangerine Panic. They changed the spiky balls into

orange circles, added some music, and gave the stick figure some commentary. They

also have the stick man following the mouse rather than being controlled by the cursor

keys. Figure 8-2 shows a shot of Tangerine Panic.

Figure 8-2. The Tangerine Panic game

CHAPTER 8: Falling Balls and Gravity Pods 166

When I started delving into iPhone development, one of the first things I did was to get a

circle to move around the screen and bounce off the sides. When I had that working, I

tried to think of some compelling game that could be built on top of that. I remembered

my old Flash game, and Falling Balls was born. A few weeks later, inexplicably, it was

the number one free game in the App Store!

Building the Game
The graphics and audio for the game are extremely simple. Graphically, the game

contains a stick figure that runs back and forth and balls that fall down and bounce. I

also added a blood spatter that displays when the stick man is hit and some sound

effects that consisted of a funny boing sound and the Wilhelm scream (check

http://en.wikipedia.org/wiki/Wilhelm_Scream).

In this chapter, however, we’ll just be rebuilding one piece of the Falling Balls game, the

stick figure that runs back and forth, as this mechanism is the key to the whole game

and is what took the most amount of time to sort out.

To start with, create a new application in Xcode, choose View Based Application, and

name it FallingBallsRemake, or just download the files from this book’s Source

Code/Downloads page at www.apress.com. To get the running stick figure, I went right

back to the original Flash file, copied each frame of the running sequence I had made

back in 2001, and saved each of these as an individual PNG file. These images are very

simple, and there are only six of them. I’ve supplied these for you as files named

run1.png through run6.png.

In your project, right-click the resources folder, and choose to Add Existing Items. Select

all six images at once, and click OK. You’ll then want to make sure you copy these

images into the chosen folder and add them to your project’s target, as shown in

Figure 8-3.

Figure 8-3. Adding resources to your project

CHAPTER 8: Falling Balls and Gravity Pods 167

These six images form one half of the run cycle, so after displaying all six, you have to

display the fifth image again and then move back down to the second one to make a

smooth loop. You can do all this in the view controller. The interface code will look

like this:

#import <UIKit/UIKit.h>

@interface FallingBallsRemakeViewController : UIViewController {
 UIImageView *stickman;
}
@end

And the implementation looks like this:

#import "FallingBallsRemakeViewController.h"

@implementation FallingBallsRemakeViewController
- (void)viewDidLoad {
 [super viewDidLoad];
 stickman = [[UIImageView alloc]
 initWithFrame:CGRectMake(225, 270, 30, 30)];
 stickman.animationImages = [NSArray arrayWithObjects:
 [UIImage imageNamed:@"run1.png"],
 [UIImage imageNamed:@"run2.png"],
 [UIImage imageNamed:@"run3.png"],
 [UIImage imageNamed:@"run4.png"],
 [UIImage imageNamed:@"run5.png"],
 [UIImage imageNamed:@"run6.png"],
 [UIImage imageNamed:@"run5.png"],
 [UIImage imageNamed:@"run4.png"],
 [UIImage imageNamed:@"run3.png"],
 [UIImage imageNamed:@"run2.png"],
 nil];
 stickman.animationDuration = 0.7;
 [stickman startAnimating];
 [self.view addSubview:stickman];
}

- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation {
 // Return YES for supported orientations
 return (interfaceOrientation ==
 UIInterfaceOrientationLandscapeRight);
}

 - (void)dealloc {
 [stickman release];
 [super dealloc];
}

@end

The variable, stickman, is declared in the interface as a pointer to a UIImageView. In

the viewDidLoad method in the implementation, we allocate the UIImageView and call

initWithFrame, passing in a CGRect of its initial location. Then, we assign its

animationImages property an array of UIImages. These are created using the static

imageNamed method of UIImage. Make sure that you have added these images to your

CHAPTER 8: Falling Balls and Gravity Pods 168

project first. Also make sure to set the last element to nil, which signals the end of

the array.

The final steps are telling the UIImageView how fast to play the animation, telling it to

start animating, and adding it to the view. The speed of the animation is controlled with

the animationDuration property. This value represents the time it takes to play a single

cycle of the animation. With some experimentation, I found that 0.7 seconds seemed to

look about right.

Next, we call startAnimating and pass stickman as a parameter to addSubview for the

view controller’s view. This will make the stick man visible as a part of that view. Also

note that we implemented the shouldAutoRotateToInterfaceOrientation method to

force the game into landscape mode. You should wind up with something that looks like

Figure 8-4 when you run it in the simulator.

Figure 8-4. The game in the iPhone simulator

Adding the Game Controls

In the original Flash-based game, the stick man was controlled with the left and right

cursor keys. Since we don’t have a hardware keyboard on the iPhone, this wasn’t an

option. I considered following the cue of Tangerine Panic and having the character just

track the x position of the user’s finger. This task is really easy; just add this method to

your view controller:

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 UITouch *touch = [touches anyObject];
 CGPoint point = [touch locationInView:self.view];
 if(point.x < stickman.center.x)
 {
 stickman.transform = CGAffineTransformMakeScale(-1.0, 1.0);
 }
 else
 {
 stickman.transform = CGAffineTransformMakeScale(1.0, 1.0);
 }
 stickman.center = CGPointMake(point.x, 285);
}

CHAPTER 8: Falling Balls and Gravity Pods 169

This code is assuming a single touch and grabbing a pointer to that UITouch object

through [touches anyObject]. It then converts this UITouch into a CGPoint by calling

locationInView, passing in the view. The conditional statement checks to see if the

touch is to the left or the right of the stick man. If it’s to the left, you want to flip the stick

man on the x axis, so he appears to be running to the left. Otherwise, keep him facing to

the right. Finally, we make a new CGPoint with a fixed y position and set the stick man’s

center to that new point.

This actually seems to work pretty well on the simulator, but if you try it out on a real

iPhone or iPod Touch, you’ll find it pretty unusable for one important reason: a finger is

many times larger than a mouse cursor. In other words, the stick man will almost always

be completely hidden behind your finger.

I knew simply following the user’s finger was over before I even started. My next thought

was to use touches in a more general sense: If the user touched the left side of the

screen, the man would run to the left. If the right side of the screen was touched, he

would run that way. This proved to be a bit more complex than I thought it would be due

to the way touches work. You only get notified when you touch down, move, or touch

up. There is no built-in concept of holding a touch on a particular point. Again, this

solution worked fine in the simulator where you have to release the mouse before

touching another location. But things were not so clean on a device with real multitouch

capabilities.

Then, it dawned on me that I could simply use two large, hidden buttons—one covering

the right side of the screen and one covering the left. When the left button is pressed,

the man runs left; the right button makes him run to the right. This proved to be a whole

lot simpler than trying to track touches, and it worked perfectly the first time around. The

moral of that story is to avoid getting fancy when you have a ready-made solution.

At this point, all the elements of the game were in place, but it still lacked something.

Touching the screen to move this way or that left me feeling kind of flat. I was just about

to release it anyway when I had a startling realization (or at least a startling recollection)

that the iPhone has an accelerometer. It was exactly what the game needed. Tilting the

device to the left or the right to make the stick man run that way gave the game a

physical reality; you felt like there really was a little guy in there that you were

influencing. Using the accelerometer draws you into the game in a way that simply

touching the screen does not. Remember that the user interface is how the user

interacts with your application—it’s not just screen layout of controls. Thus your control

scheme, even if it is not visible, is a huge part of the UI.

Accessing the accelerometer is pretty easy but requires a few specific steps. First, we

need to tell the compiler that the view controller wants to implement the

UIAccelerometerDelegate protocol. This is done in the header file, by adding the name

of the protocol in angle brackets:

CHAPTER 8: Falling Balls and Gravity Pods 170

#import <UIKit/UIKit.h>
@interface FallingBallsRemakeViewController : UIViewController
 <UIAccelerometerDelegate> {
 UIImageView *stickman;
}
@end

Next, in the implementation file, we need to set the view controller as a delegate to the

accelerometer, which tells the accelerometer to call a specific method in the view

controller when accelerometer events occur. We can do this in the top of the

viewDidLoad method. I won’t show the rest of the method, which includes setting up the

images and does not change:

- (void)viewDidLoad {
 [super viewDidLoad];
 [[UIAccelerometer sharedAccelerometer] setDelegate:self];
 …

After that, we need to create the method that the accelerometer will call:

- (void)accelerometer:(UIAccelerometer *)accelerometer
 didAccelerate:(UIAcceleration *)acceleration
{
 NSLog(@"x:%f, y:%f, z:%f", acceleration.x,
 acceleration.y,
 acceleration.z);
}

This method gets passed two pointers. The first is a pointer to the accelerometer object

itself, and the next is to a UIAcceleration object that contains information about how

the device is oriented in 3-D space. For now, we’re just logging the x, y, and z properties

of that acceleration object. Note that, from this point on, you’ll actually need to run the

game on a real iPhone or iPod Touch, because at the time of this writing, the simulator

does not simulate the accelerometer. When you get it up and running on your device,

you should see a long list of output statements like this (they’re all on a single line if

there is space in the console):

2009-04-05 17:28:06.883 FallingBallsRemake[1123:20b] x:0.145349,
y:-0.036337, z:-0.981105

I usually start by throwing in a log statement in my accelerometer functions and make

sure it’s working before I go writing my actual accelerometer code, as it’s really easy to

make a small error and that causes the code to fail silently. Once you’ve got those log

statements firing off like they should be, you’ll be ready for the real code.

You’ll notice, as you tilt the device back and forth, that the acceleration.y value will

range from 1.0 when the device is tilted 90 degrees to the left (from the default

landscape orientation) to –1.0 when the device is tilted 90 degrees to the right. We can

use that value to control the direction and speed that the stick man will run in. The

accelerometer:didAccelerate method becomes the following:

- (void)accelerometer:(UIAccelerometer *)accelerometer
 didAccelerate:(UIAcceleration *)acceleration
{
 if(acceleration.y > 0)

CHAPTER 8: Falling Balls and Gravity Pods 171

 {
 stickman.transform = CGAffineTransformMakeScale(-1.0, 1.0);
 }
 else
 {
 stickman.transform = CGAffineTransformMakeScale(1.0, 1.0);
 }
 float newX = stickman.center.x - acceleration.y * 30.0;
 if(newX < 10)
 {
 newX = 10;
 else if(newX > 470)
 {
 newX = 470;
 }
 stickman.center = CGPointMake(newX, stickman.center.y);
}

First of all, don’t forget to remove or comment out the touchesBegan method if you

created it. We’re not using that anymore. Here, in this accelerometer method, we’re

going to do something similar in terms of flipping the stick man so that he faces the

direction he’s running in. If the device is tilted to the left, we make him face left and run

left, and the opposite occurs if the device is tilted to the right.

After that, we can just subtract the acceleration.y value from the current center to

establish a value for the new x position. Actually, the values from 1.0 to –1.0 will make

the stick man move pretty slowly, so we first multiply it by a figure like 30.0 to get him to

run a bit faster. You can play with this value to get a motion you like. Before applying

this value to the stick man’s center x position, we clamp it to a minimum of 10 and

maximum of 470, to keep him from running totally off the screen.

If you’ve followed along, you should be able to tilt your device one way or the other and

have the stick man run the way you are tilting. While relatively simple, this is the exact

type of code that can be used as the start of any number of games. Change the stick

man graphics into a rolling ball and implement some vertical motion as well as

horizontal, and you’re well on your way to creating the next rolling-ball-in-a-maze game!

Creating Gravity Pods
The second major game I worked on for the iPhone is called Gravity Pods. In truth, at

the time of this writing, I am still putting the finishing touches on the iPhone version. The

original Gravity Pods was created in 2007 and was quite successful. I followed it up with

Gravity Pods 2 in late 2008. While creating that sequel, I realized it would make a great

iPhone game, and in fact, this realization that drove me to learn Objective-C and iPhone

programming.

CHAPTER 8: Falling Balls and Gravity Pods 172

The basic premise of the game is to aim a gun, shoot a projectile, and hit a target.

However, various fixed, moving, and even rotating walls block the way. Also, there are

the gravity pods for which the game is named. These warp the path of the projectile,

allowing it to go around corners, and so forth. Judicious placement of these pods by the

player, as well as placing additional items such as repellers, bouncers, and black holes,

help meet the goal on each level. Figure 8-5 shows the original Flash-based Gravity

Pods game.

Figure 8-5. The original Gravity Pods game

The first version of the game was almost completely mouse driven. This caused a bit of

frustration in some cases, as the difference of just a pixel or two in the location of a

gravity pod could result in a major difference in the overall path of a projectile. So in

version 2, I added more keyboard support, allowing the user to finely position the

location of a pod using the cursor keys, as well as dragging and dropping with the

mouse.

I knew that dragging and dropping with any degree of accuracy on the iPhone would be

even tougher than with a mouse, so a similar kind of supplemental, fine-tuning control

was going to be a necessity. But how could I do this without cursor keys?

It didn’t take long to realize that the accelerometer was out. No way could it be used for

pixel-precise control. I thought about gestures like sliding up, down, or sideways to

move a pixel in any direction. The problem, though, was that I still needed drag-and-

drop functionality to move the pods large distances, and it was difficult to disambiguate

a drag-and-drop gesture from a slide indicating pixel-precise adjustment.

I finally came up with the concept of on-screen buttons to move the pods one pixel in

each direction. In other words, making my own custom on-screen keyboard. You can

see a current development screenshot of this in Figure 8-6.

CHAPTER 8: Falling Balls and Gravity Pods 173

Figure 8-6. Gravity Pods on the iPhone

Now, keep in mind that on-screen navigation keys are probably not the kind of thing you

want to use all the time. For instance, moving a character around in real time would not

be very workable with virtual buttons like this. Because the buttons are images only, with

no tactile feedback, it’s all too easy to let your fingers stray slightly in the heat of game

play, and the results would be quite frustrating. But for a situation where you require

minute control of the position an object, this solution works out pretty well.

The next challenge was to decide where to put these buttons. Another challenge of

developing for the iPhone is the limited screen real estate available. If you start filling it

up with on-screen controls, you have no room left for the game itself. Yet the buttons

have to be big enough that the user can hit them without trying too hard. I tried putting

them across the bottom and along the sides, but I felt they just took up too much space.

Additionally, I wanted these buttons to be laid out in kind of a cross pattern as shown in

Figure 8-6. Laying out buttons in a horizontal or vertical strip saves more screen space

but is less intuitive to the user.

What I finally came up with is a kind of heads-up display (HUD) that is only on-screen

when you need it. Essentially, when you select one of the positionable items the HUD

pops up, allowing you to use the buttons to position the item. When the item no longer

has focus, the controls go away.

While the HUD solved most of the problem, I was still stuck with the decision of where

to place this panel so that it wouldn’t be in the way of the draggable pods. I went

through various iterations, trying to dynamically and intelligently place the control panel

in a part of the screen away from the currently selected pod. For example, if the pod

was near the bottom of the screen, the HUD should be near the top. If the pod was near

the left edge of the screen, the HUD was on the right side. Coding that behavior took a

lot of logic and wound up not working too well. Even if the HUD was not covering the

selected pod, it might be covering some part of the screen the user was interested in,

and there was no way to tell what part of the screen that might be. In the end, I just

decided to make the panel draggable too, letting the user place it in the best place at

any given time. Again, simplicity was the best answer.

CHAPTER 8: Falling Balls and Gravity Pods 174

Building the HUD
The example for this section is in the project named HUD. To make it as simple as

possible, I did as much as I could in Interface Builder. Figure 8-7 shows the layout of the

view in HUDViewController.xib.

Figure 8-7. The layout of the main view

Three UIImageViews are set to display an image called pod.png, which is just a red circle.

These are all set to have their alpha values at 50 percent, and you’ll see why shortly.

They also have a tag of 1. This is set in the View Attributes panel in Interface Builder. In

the center is the HUD, which is a UIView. It has a UIImageView with hud.png for the

background (the rounded rectangle) and four custom UIButtons with images showing

left, right, up, and down arrows. These four buttons will be connected to four IBAction

methods in the view controller, and the HUD will be connected to an IBOutlet in the

same class. The HUD’s alpha value is set to 0.0, causing it to be invisible when the

program first launches.

All of our custom code for this example will be in the HUDViewController class. Here is

the interface for that class:

#import <UIKit/UIKit.h>

@interface HUDViewController : UIViewController {
 UIImageView *selectedPod;
 UIView *hud;
 CGPoint dragOffset;
 BOOL hudIsDragging;
}

CHAPTER 8: Falling Balls and Gravity Pods 175

@property (nonatomic, retain) IBOutlet UIView *hud;

- (IBAction)moveLeft;
- (IBAction)moveRight;
- (IBAction)moveUp;
- (IBAction)moveDown;

@end

Here, we have a variable for the selected pod, which can be any one of those three

UIImageViews. Then come the HUD itself, a UIView, and a couple of variables that we’ll

use for dragging the HUD. The hud variable also has a property declaration. Finally, you

can see the IBAction methods I just mentioned. Don’t forget to go into Interface Builder

and connect the buttons to the IBActions and the HUD itself to the hud IBOutlet.

The implementation follows. I’ll give it to you all at once, and then we will go through it in

more detail.

#import "HUDViewController.h"

@implementation HUDViewController
@synthesize hud;

- (void)viewDidLoad {
 [super viewDidLoad];
}

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 hudIsDragging = NO;
 UITouch *touch = [touches anyObject];
 UIView *touchView = [touch view];
 if([touchView tag] == 1)
 {
 [UIView beginAnimations:nil context:nil];
 [hud setAlpha:1.0];
 [UIView commitAnimations];
 [selectedPod setAlpha:0.5];
 selectedPod = (UIImageView *)[touch view];
 [selectedPod setAlpha:1.0];
 }
 else if(touchView == hud)
 {
 hudIsDragging = YES;
 CGPoint touchPoint = [touch locationInView:self.view];
 dragOffset = CGPointMake(hud.center.x - touchPoint.x,
 hud.center.y - touchPoint.y);

 }
 else
 {
 [UIView beginAnimations:nil context:nil];
 [hud setAlpha:0.0];
 [UIView commitAnimations];
 [selectedPod setAlpha:0.5];
 selectedPod = nil;

CHAPTER 8: Falling Balls and Gravity Pods 176

 }
}

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 UITouch *touch = [touches anyObject];
 CGPoint touchPoint = [touch locationInView:self.view];
 if(hudIsDragging)
 {
 [hud setCenter:CGPointMake(touchPoint.x + dragOffset.x,
 touchPoint.y + dragOffset.y)];
 }
 else
 {
 [selectedPod setCenter:touchPoint];
 }
}

- (void)moveLeft
{
 [selectedPod setCenter:CGPointMake(selectedPod.center.x - 1,
 selectedPod.center.y)];
}

- (void)moveRight
{
 [selectedPod setCenter:CGPointMake(selectedPod.center.x + 1,
 selectedPod.center.y)];
}

- (void)moveUp
{
 [selectedPod setCenter:CGPointMake(selectedPod.center.x,
 selectedPod.center.y - 1)];
}

- (void)moveDown
{
 [selectedPod setCenter:CGPointMake(selectedPod.center.x,
 selectedPod.center.y + 1)];
}

- (void)dealloc {
 [hud release];
 [super dealloc];
}

@end

Let’s begin with the first part of the touchesBegan method. This method is called when

the user touches the screen. We initially want to know if the user has touched one of the

pods. If so, we want to set that pod as the selected pod and indicate visually its

selected state. Earlier, I mentioned that all the pods had an alpha of 50 percent. We’ll

indicate a selected pod by increasing its alpha to 100 percent. You might want to add a

glow or drop shadow or swap the graphic with something that makes it look more

selected.

CHAPTER 8: Falling Balls and Gravity Pods 177

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 hudIsDragging = NO;
 UITouch *touch = [touches anyObject];
 UIView *touchView = [touch view];
 if([touchView tag] == 1)
 {
 [UIView beginAnimations:nil context:nil];
 [hud setAlpha:1.0];
 [UIView commitAnimations];
 [selectedPod setAlpha:0.5];
 selectedPod = (UIImageView *)[touch view];
 [selectedPod setAlpha:1.0];
 }
 else if(touchView == hud)
 {
 hudIsDragging = YES;
 CGPoint touchPoint = [touch locationInView:self.view];
 dragOffset = CGPointMake(hud.center.x - touchPoint.x,
 hud.center.y - touchPoint.y);

 }
 else
 {
 [UIView beginAnimations:nil context:nil];
 [hud setAlpha:0.0];
 [UIView commitAnimations];
 [selectedPod setAlpha:0.5];
 selectedPod = nil;
 }
}

 We get the single touch from the NSSet, touches, and find out what view that touch

originated in. Remember we tagged all the pods with a tag of 1. By default, objects have

a tag of 0, so we know if the tag is 1, the object’s a pod and we need to do a few things.

First, we want to show the HUD. We do that by setting its alpha to 1.0. Wrapping that

line inside the pair of beginAnimations and commitAnimations calls causes the HUD to

fade into view, rather than instantaneously appearing.

Next, we set the currently selected pod’s alpha to 50 percent. Then we set the

selectedPod variable to the pod that was just touched and set its alpha to 1.0 (100

percent).

If it wasn’t a pod that was touched, we check to see if it was the HUD. We’ll cover that

chunk of code shortly. Finally, neither a pod nor the HUD was touched, the user just

touched an empty area of the screen. In this case, we again set the selected pod’s alpha

back to 0.5 and set selectedPod to nil, meaning no pods are selected.

 Before we move on to the HUD itself, let’s finish up with the pods:

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 UITouch *touch = [touches anyObject];
 CGPoint touchPoint = [touch locationInView:self.view];
 if(hudIsDragging)

CHAPTER 8: Falling Balls and Gravity Pods 178

 {
 [hud setCenter:CGPointMake(touchPoint.x + dragOffset.x,
 touchPoint.y + dragOffset.y)];
 }
 else
 {
 [selectedPod setCenter:touchPoint];
 }
}

Here, we get the location of the single touch in the view. If the HUD is not being

dragged, the pod moves to the point being touched. This code assumes a pod is

selected of course. But it doesn’t really matter. If no pod is selected then selectedPod

will be nil. Sending methods to nil is no problem in Objective-C and is more efficient

than an unnecessary check to see whether or not it is nil. There you go—drag-and-

drop pods!

Now, let’s move on to look at the HUD. In touchesBegan, if the view that was touched

was not a UIImageView, we check to see if it was the HUD itself that was touched. If so,

we run the following code:

hudIsDragging = YES;
CGPoint touchPoint = [touch locationInView:self.view];
dragOffset = CGPointMake(hud.center.x - touchPoint.x,
 hud.center.y - touchPoint.y);

This sets the hudIsDragging Boolean variable to true. You saw where we used that in

touchesMoved. Then it gets the (x, y) point that was touched and creates a new CGPoint

that is the difference between that and the center of the HUD. In the case of dragging a

pod, we simply snapped the pod’s centers to the point that was being touched.

Because the HUD is much larger, that behavior wouldn’t look natural at all. So we save

this offset point and use it in the touchesMoved method when the HUD is being dragged:

if(hudIsDragging)
{
 hud.center = CGPointMake(touchPoint.x + dragOffset.x,
 touchPoint.y + dragOffset.y);
}

The final bit of code is just the four move methods. As you recall, these were connected

to the four buttons and simply move the selected pod a single pixel in the specified

direction.

Now, you can select or deselect any pod by tapping on it and draging it around

manually. When a pod is selected, the HUD will appear, enabling you to position the

selected pod in any direction, pixel by pixel. When no pods are selected, the HUD

disappears, freeing up the screen real estate. Furthermore, the HUD is draggable,

allowing the user to position it wherever is convenient.

CHAPTER 8: Falling Balls and Gravity Pods 179

Summary
The goal of this chapter was to show you some nonstandard user interfaces, some of

the challenges associated with creating them, and a couple of examples of how these

challenges can be overcome, for example, trying out different input methods likes

touches and the accelerometer and exploring the idea of an onscreen keyboard for fine

control of game objects. I hope this chapter has, at least, sparked some ideas of things

you can try on your own.

181

Jürgen Siebert
Company: FontShop AG

Location: Berlin, Germany

Former Life As a Developer: Jürgen Siebert (54) studied physics and became a
scientific journalist and book author in 1984. Two years later he founded
Germany’s leading design magazine PAGE in Hamburg and was editor in chief
since 1991. After that he joined FontShop in Berlin to develop typographical
projects like FUSE, FontBook, the design conference TYPO Berlin and the
FontFont typeface library. Since 2001 he is CMO of FontShop AG and responsible
for market communication (Fontblog) and new business tools like FontShuffle.

Life as an iPhone Developer: FontShuffle was the first app that opens the world
of typefaces on a mobile device. It is a reference tool, developed by Jürgen
Siebered and programmed by software architect Jonas Witt (Metaquark, Berlin)

What's in This Chapter:

 Understanding the world of typefaces

 The anatomy of letters

 Fonts for screen design

 Identifying typefaces

 Typographical classifications

 Font inspirations via FontShuffle

 182

Key Technologies:

 User interface

 Font rendering

 Customized font samples

 Classifying references

183

183

 Chapter

FontShuffle
In this chapter, you’ll see how FontShop released FontShuffle and put the world of type

under a simple user interface so that you can browse through 500 years of type design

with a fingertip. During the discussion, you will also learn how to differentiate and

describe typefaces. Finally, you’ll gain the knowledge to choose the right fonts for

your publishing or programming projects and how to get maximum readability on screen

or paper.

FontShuffle is a typeface reference tool for print and media designers, but it’s also

handy for typography novices. Compared to printed catalogs, it delivers search results

faster and generates custom text samples of every typeface it offers. While most

professional references require previous knowledge of the history of type design or

typeface anatomy, FontShuffle uses an intuitive visual interface. Hundreds of font

families are sorted by formal similarity, so anyone can browse and compare related

typefaces.

Introducing FontShuffle
Since its start in 1989, FontShop produced printed typeface catalogs. After some years,

formerly slim catalogs have grown into the well-respected FontBook, which is still the

only independent typeface catalog showing the most popular fonts of more than 90 type

foundries.

The latest issue of FontBook weights 6.6 pounds and contains 1,760 pages. It is heavy,

hard to handle, and expensive. Only professionals can afford the “yellow bible,” as they

like to call it. The editorial team is very conscious of the fact that FontBook is reaching

its limits. For example, binding 1,760 pages is a real challenge. The alternative would be

a two-volume issue that might be even more difficult to handle.

Creating a PDF for reference purposes is fine. But, we all know that browsing a book on

the monitor of a desktop computer is unedifying. Additionally, comparing items on

distant pages is nearly impossible. The mobile momentum of printed books is

inestimably valuable. That’s the reason why a complete industry believes in the success

of e-book–reading devices.

9

CHAPTER 9: FontShuffle 184

When the iPhone came out and we saw the first applications, it was suddenly clear that

FontShop has to join that new mobile platform. One of the reasons was, of course, that

selling special fonts for the iPhone might be a future business. The iPhone operating

system in its current version doesn’t allow the installation of third-party fonts. Nobody

knows at the moment when and how that will happen.

By accident, FontShop Germany was working on its new web site at that time. One of

the brand new features for it was a visual search function with the working title

FontShuffle. The concept and the technical structure of that application were finished.

And as an isolated application with a playful approach, it seemed to be ideal for an

iPhone transfer—and so it came to be.

Although we are all confronted with printed text every day, and a lot of readers have

sympathy for well-designed pages, not everybody is aware of what is happening behind

the scenes of typeset words. Therefore, in this chapter, I will first dip into the

terminology of typography and the art and techniques of arranging type. This will help

understanding the functionality of and the skills required to develop (and use)

FontShuffle.

Entering the World of Typefaces
The terms “typeface” and “font” had more clearly differentiated meanings before the

advent of desktop publishing. A typeface usually comprises an alphabet of letters,

numerals, and punctuation marks—all designed in a matching appearance by a type

designer. Usually, typefaces build a family with members such as Roman, Bold, Italic, or

Small Caps. Like every family, type families have names. An example of a very popular

type family name is Helvetica. Helvetica is used for the iPhone operating system.

Helvetica Book and Helvetica Bold are two members of that family (see Figure 9-1).

Figure 9-1. Four members of the typeface family Helvetica: Regular, Italic, Bold, and Bold Italic

CHAPTER 9: FontShuffle 185

Understanding Fonts
To understand why a font is not a typeface, it’s useful to know where the term came

from. “Font” (or previously, “fount”) is derived from the Middle French word fonte,

meaning something that has been melted. In type founding, metal was melted then

poured into a hand mould with a matrix to cast each individual piece of movable type.

“Font” is a word that describes a (technical) variant of a typeface: every time a specific

variant of a typeface was cast at a specific size, a font was created. Therefore, a font is

a particular casting of a typeface belonging to that type family.

In electronic publishing nothing is cast, but fonts are digitized from the design created

by a type designer. Size doesn’t matter anymore because digital (vectorized) fonts are

scalable. For example, digital fonts are files named helvetica_book.ttf or

helvetica_bold.ttf where helvetica indicates the name of the represented typeface

family; bold describes the weight (i.e., member) of that family, and .ttf tags the digital

format, in the case of Helvetica, TrueType.

Figure 9-2 shows the depictive representation (icons) of such font files and their

nomenclature. The .otf tag stands for OpenType font.

Figure 9-02. Digital fonts on computers are managed by their operating systems (e.g., Windows Vista or Mac OS
X) and contain the glyphs and the metrics of a typeface.

Why is this stuff important? Well, compared to world peace, it’s not. However,

nomenclature is important because being understood is important. The term “font” is

omnipresent in print and media design but often used in an inexplicit way.

CHAPTER 9: FontShuffle 186

NOTE: Everybody who understands the definitions of “typeface” and “font” will come to the
conclusion that the name FontShuffle is not properly chosen, because the application is a
typeface reference. Exactly. The reason for using this name is the name of its publisher
(FontShop, which is a correct name because we are selling fonts) and the underlying
technology that is provided by fonts on our servers.

Characters and Glyphs
A font stores the image (glyph) of each character of a typeface. This could either happen

as a bitmap in a bitmap font or by mathematical description of lines and curves in an

outline font, also called a vector font. Bitmap fonts are found in the operating systems of

many mobile devices and in computer games. In print and publishing, vector fonts are

the standard.

Computer systems and many applications use outline fonts too. The system’s rasterizer

renders the character outline to decide which pixels should be black and which ones

white. Rasterization is straightforward at high resolutions, such as those used by

desktop printers and in prepress publishing systems. For computer screens, where each

individual pixel can mean the difference between legible and illegible characters, some

digital fonts use hinting algorithms to make readable bitmaps at small sizes. Font sizes

are measured either by pixel or the traditional point units.

Let’s have a look into the glyph set (see Figure 9-3), which is the inventory of letters and

symbols that defines a font. Besides the uppercase and lowercase characters (2 × 26),

the figures (10), and the punctuation marks, a digital font carries at least 100 more

glyphs, like accented letters, ligatures, and letter-like symbols (e.g., currency symbols).

Figure 9-3. Fonts contain many more characters than 26 letters. A minimum glyph set is the ACSII standard,
which has 256 characters.

CHAPTER 9: FontShuffle 187

Digital fonts may also contain data representing the metrics used for composition,

including kerning pairs, component creation data for accented characters, and glyph

substitution rules for Arabic typography and connecting script faces and for simple

everyday ligatures like “ ”.

Common font formats include Metafont, PostScript Type 1, TrueType, and OpenType

(here, these are sorted in chronological order with OpenType being the latest and most

advanced format). Applications using these font formats, including the rasterizers,

appear in Windows and Macintosh operating systems, Adobe Systems products and

those of several other companies. Digital fonts are created with font editors such as

Fontographer, FontLab, TypeTool, or DTL FontMaster.

The Anatomy of Letters
It’s not necessary for most font users to know the precise difference between a counter

and an eye or a tail and a shoulder, but knowing is fun and can make you feel smart.

Instead of resorting to a term such as “that curvy connector bit in the middle of the

funny-looking g,” you can use a real term like “the link in a double-story g.” It is

important to speak precisely if you have to defend a font decision you made for print

or GUIs.

There is a standard set of terms to describe the geometry around letters and the parts of

a letter. These metrics and parts are often referred to as letter anatomy or typeface
anatomy. By breaking down letters into parts, a designer can better understand how

type is created and altered and how to compare typefaces effectively.

In Figure 9-4, the most important parts of the character being discussed are labeled or

circled. A few extra terms, such as baseline and x-height, are included to help

understand and describe the geometry around the letterforms.

Figure 9-4. The design components of Serif and Sans Serif letters

The baseline is the invisible line on which characters sit. Every font has a baseline.

Interestingly enough, it’s the only property of a digital typeface that is interpreted in a

common way (e. g., if you type a ten-letter word and set every letter in a different

typeface, all the letters will sit on the same baseline).

CHAPTER 9: FontShuffle 188

All other metrics, like the x-height or the cap height, may differ from typeface to

typeface. What might be hard to understand, even for people who are mathematically

talented, is that there is no fixed start (zero point) in the world of typefaces; on the

contrary, every typeface comes with its own coordinate system.

Luckily, the metrics are consistent within a typeface. Rounded letters, such as “e,” and

acute-angled letters, like “v,” may extend slightly below the baseline. That is purely for

optical reasons to tell our eyes that curves and pikes are sitting on the same base level

as “m,” “x,” and “l.” Without such an overshoot, they would appear to hover above the

baseline.

You will find the same phenomenon at the x-height, which is the line that falls at the top

of many lowercase letters and also at the curve of letters like “h” and “d.” That line,

which some call the meanline, is referred to as the x-height, because it is the height of a

lowercase “x.” This height can vary greatly between typefaces and is responsible for the

optical size of an alphabet. The formula goes like this: the larger the x-height, the bigger

the writing. For better understanding, compare it with an all capitals setting, and imagine

lowercase letters as high as uppercase (i.e., maximum x-height).

The cap height (see Figure 9-5) is the distance from the baseline to the top of

uppercase letters like “H” and “J”. The cap height is a fixed distance within one font, but

it might be different among the members of one type family (e.g., Regular, Bold, or

Black), and it is certainly different between two typefaces because it cannot be

standardized.

Figure 9-5. The height of a capital letter (cap height) in digital typography is not an absolute value, meaning that
the uppercase “H” of miscellaneous typecaces has differing heights.

The reason for this deviation is that there is always an imaginary space around letters

that is needed for accents, ascenders, and descenders. The amount of space that has

to be reserved for that purposes depends on the design of a typeface. The total (square)

area for any letter of a typeface, including the nonprinting space around it has been

called em-squad since hot metal times. In metal type, the em was the height of the

metal body from which the letter rises. It is comparable to the bounding box from digital

type design.

The part of a lowercase letter that extends above the main body of the letter is called the

ascender. Letters with ascenders are “b,” “d,” “f,” “h,” “k,” “l,” and “t.” Some fonts have

very long ascenders and descenders in comparison with the letter bodies, giving them

an airy, elegant feel but cutting back readability. Fonts with short ascenders and

descenders look more compact and sturdier. Note that the ascender might end beyond

the cap height. This is very common in classical sans serif text typefaces.

CHAPTER 9: FontShuffle 189

A descender is the part of a lowercase letter that extends below the baseline. Letters

with descenders are “g,” “j,” “p,” “q,” and “y.” Note that this is similar as extending

above the x-height.

OPTICAL SIZE AND READABILITY

Font users often wonder why some typefaces look larger than others at the same point size on their
computers. Two variables are responsible for that effect:

 The real cap height: Although two fonts are set with the same point size, their cap
heights might be different. The reason for that difference is that type designers have
some degree of freedom to decide how large they define an uppercase letter within a
fixed letter design area, which is called the bounding box.

 The x-height: Although some fonts have the same cap height (like in the following
illustration) one might appear larger (and thus better readable) than another. The
simple reason for that is the bigger x-height that results in larger lowercase letters.
The illustration includes two extreme examples for the optical size of a typeface.
Verdana on the one hand, made for maximum readability on computer screens, and
on the other hand, the geometric Futura made in the 1930s for elegant hot metal
printing. You can also see that Apple’s decision in choosing Helvetica as the iPhone’s
system fonts was, from the point of readability, not so bad, although Helvetica is not
an ideal screen font (like Lucida Grande, Verdana, or Georgia) due to its geometrical
design (see also Figure 9-6).

CHAPTER 9: FontShuffle 190

Choosing the Right Typeface for Screens
Since you’ve already learned a lot in this chapter about the properties of typefaces and

the consequences of readability, you are well prepared for a delicate question: what is

the right typeface for a graphical user interface?

I’d like to answer with a fictional scenario on the iPhone. Let’s assume the iPhone

operating system offers a free-type world. It doesn’t, and both the application UI

elements and your data are rendered in Helvetica. I do not criticize Apple’s decision to

use Helvetica as the overall system font family, but it is less unique and harder to read

than Lucida Grande on Mac, as explained in the sidebar on distinctive glyph features.

I respect Apple’s decision to jump on the current type fashion trend of a neutral, static

typeface. However, I would appreciate the choice of some alternative fonts in some

applications like Notes or Contacts. Why Notes? Marker Felt is a nuisance—ugly, hard

to read, and space wasting. I often import magazine articles that I like to carry with me

into Notes. Such text is unreadable in Marker Felt. Fortunately, I found a way to display

them in Helvetica.

The problem with Helvetica in Contacts is the similar letterforms. In text where we read

complete words, it doesn’t matter if uppercase “I” and lowercase “l” and “i” look nearly

the same. But if you are browsing through international names, alphanumeric postal

codes, or weird Skype and Buddy names, Helvetica is not an ideal typeface for such a

purpose (see Figure 9-6).

I did some experiments in Adobe Photoshop to test alternative screen fonts for the

Contacts application. After a series of alternatives, I ended up with a typeface called FF

Unit that was designed by Erik Spiekermann and Christian Schwartz in 2004. FF Unit

has two merits compared with Helvetica: it runs narrower (without losing legibility), which

is good for long family and company names, and it has more distinguishable glyphs (see

Figure 9-6).

CHAPTER 9: FontShuffle 191

Figure 9-6. Compare the original Contacts typography, Helvetica (on the left) with an alternate typography with
increased readability, FF Unit (on the right): FF Unit was developed with distinguishable and space-saving letter
forms in mind. Note the dancing pleasent-reading semi-old-style figures.

DISTINCTIVE GLYPH FEATURES

What makes a typeface good to read on screens? Two conditions are responsible for comfortable on-
screen reading:

 Hinting: Although screen resolution has increased over the years, it’s still a low-
resolution output device, where each individual pixel can mean the difference between
a proper (legible) or a destroyed (illegible) text-sized character. Because of that risk,
digital fonts for screens use hinting algorithms to make readable bitmaps at small
sizes.

 Glyph design: Typefaces that are meant for screens should be checked against the
following properties:

 Simple letter forms (e.g., Sans Serif)

 Large counters and eyes (e.g., “d,” “b,” “o,” and “e,”)

 Open counters (e.g., “c,” “e,” “C,” and “G”)

 Distinctive features in homologous forms (e.g., “i,” “l,” and “I”)

 Tabular figures (e.g., |1|2|3|4|)

 At least two weights with marked contrast (e.g., Regular and Bold)

The following figure shows three typefaces with increasing legibility (from left to right):

 Helvetica: Geometric with poor readability

CHAPTER 9: FontShuffle 192

 Lucida Grande: Open design and good readability

 FF Unit: Distinctive characters and perfect readability

Identifying Typefaces
This is not the appropriate book to dive deeply into the history of type. Much has been

written about the evolution of letters: how their forms took shape, from the Roman

capitals to the Carolingian minuscules, and how the Latin alphabet was used by the first

printing presses of the Renaissance age.

Looking back from where we stand now, we could say that the original forms of our

uppercase letters are around 2,000 years old, while those of the lowercase letters would

be over 1,000 years old. In the last 500 years, neither case has changed in its basic

forms. What has constantly changed are the outlines of the letters, influenced by new

inventions in reproduction and by the unique spirit of each epoch. Since the invention of

sans serif typefaces over a century ago, many new stylistic forms have already emerged.

Serif vs. Sans Serif
Although the classification of typefaces is a tool for experts, the digitization of visual

communication has brought more people in contact with typefaces than ever before.

Nearly every computer user knows some fonts of his or her operation system and likely

used fonts like Helvetica, Times, Verdana, Georgia, or Comic Sans.

The most familiar classification of typefaces for text setting is dividing them into the two

groups of sans serifs and serifs. Serifs are semistructural details on the ends of some of

the strokes that make up a letter. A typeface without serifs is called sans serif, from the

French sans, meaning “without.” Some typography sources refer to sans-serif typefaces

as Grotesque (in German Grotesk) or Gothic, and serif types as Roman.

Serifs are thought to have originated in the Roman alphabet with inscriptional lettering,

words carved into stone in Roman antiquity. The Roman letter outlines were first

brushed onto stone, after that the carvers followed the brush marks which flared at

stroke ends and corners, creating serifs. Because serifs originated in inscription, they

are generally not used in handwriting.

CHAPTER 9: FontShuffle 193

The first sans serif font appeared in 1816 in a type sample book by William Caslon.

Actually, it is amazing that the simple idea of dropping the serifs at the ends of strokes

didn’t occur earlier. But the biggest part of the serif persistence was, of course, due to

plain habit. When more examples of sans serif fonts appeared, they seemed so

controversial that the first name given to them was “grotesque,” and they were very

rarely used except in advertising.

Some years later, bold and slender weights of this type could be found everywhere in

newspaper headlines, on posters, and in brochures. The new typeface style caught on

quickly and began to appear all over Europe and the United States.

The use of sans serif typefaces was limited almost exclusively to typesetting for titles

and headlines. The body text remained intact, true to the classic form of roman type.

This situation would endure for nearly 100 years. Not until after World War II did sans

serif fonts truly revolutionize the world of text publishing.

Explosion of Type Styles
During the golden age of advertising in the second half of the 20th century, with the

advent of mass magazines, TV, and photo typesetting, the variety of type styles

exploded. This wave was surpassed in the 1990s when type design programs like Ikarus

M, Fontstudio, and Fontographer became designers’ favorite toys.

After 500 years, the expert chain of type design, type cutting, type casting, type-setting,

and preparing to print was unified in one person on one single machine that fits on

everybody’s desktop. As a consequence, the variety of type designs for digital

applications increased tremendously. Most of the new type designs are based on exiting

forms or derived from geometrical constructions. Some foundries (like FontShop’s

FontFont label) develop contemporary designs; others (like The Font Bureau, Inc.) do

beautiful revivals of former hot metal typeface families.

To most typeface users, the huge variety of typefaces is confusing. Sometimes, the

question arises, “How many typefaces do we need?” The great type designer Adrian

Frutiger used to answer, “How many sorts of wine do we need?” And the answer is,

“There is no limit!”

Other people might ask, “Will there be an end to type design?” No, there will never be

an end, like there is no end in literature and pop music. The limited number of items from

which all these arts and crafts are made allow unlimited variations that always seem new

to our ears and eyes.

Classification, though, provides the solution for getting rid of chaotic opulence caused

by a base stock plus continuously new publications. Let’s again compare type design

with popular music. The annual Grammy award trophies are given in 110 categories.

These categories are similar to music styles. If a music fan has a favorite style, let’s say

jazz, the options to shop in music stores or to select a radio station decrease

dramatically. Suddenly, a confusingly vast medium gets simple for everyone. The same

is true with typefaces.

CHAPTER 9: FontShuffle 194

Classification of Typefaces
Several classification systems may give us support in grouping the large number of

typefaces available. Obviously, each of them will not be discussed within this book.

Rather, we will look at a system that includes the groups most commonly mentioned in

classification systems.

In the recent years, design universities and typographers have followed two approaches

in type classification:

 Historical developments

 Formal principles

The first approach is comparable to art history and worked fine for centuries, when type

design developed continuously and was the job of specialized experts.

A first historical type classification scheme suggested in 1954 by the French

typographer Maximilien Vox offers 11 categories:

 Humanist

 Garald

 Transitional

 Didone

 Mechanistic

 Lineal

 Grotesque

 Neogrotesque

 Geometric

 Humanist

 Glyphic

 Script

 Graphic

 Black letter

 Non-Latin

The “Vox-System” was adopted in 1962 by the Association Typographique

Internationale (ATypI) and in 1967 as British Standards Classification of Typefaces.

Three years before, the German Standard Association DIN (Deutsches Institut für
Normung) developed a similar system called DIN 16518.

CHAPTER 9: FontShuffle 195

The disadvantage of all these models is that they work fine for scientists but are

laborious in everyday use. With the advent of desktop publishing, a lot of type users

joined the revolution from adjacent disciplines like architecture, marketing, and

journalism. Suddenly, a new generation of students had to deal with a lot of fresh

software and hardware challenges that moved the focus of interests from history to the

present.

Around 2001, the German design teacher and typographer Hans Peter Willberg

published a small booklet called “Type Signpost” (Wegweiser Schrift) in which he

suggested a new visual way to sort typefaces without any historic reference. His two

basic elements are form and style.

Forms are as follows:

 Serif

 Sans serif

 Slab serif

 Script

 Black letter

Every form is supported by the following styles:

 Dynamic

 Static

 Geometric

 Decorative

This simple matrix is an easy-to-use method not only for understanding the world of

type but also for finding and mixing appropriate type styles for a project.

FontShuffle uses a mixture of both classification systems.

Exploring FontBook and FontShuffle
The subject of type classification is not new to FontShop, the publisher of FontShuffle.

Since its start as an independent font mail order house in 1989, the FontShop network

has had to deal with a large number of multifaceted fonts from various type libraries. In

the beginning of our business, these fonts were simply ordered alphabetically in

catalogs, according to their family name. Such a system of sorting was sufficient for

experienced professionals.

During the first half of the 1990s, when thousands of career changers entered desktop

publishing, an alphabetical reference book spaced out long-time type lovers and new

talent, who did not know hundreds of typeface by their names. For that reason, we

started FontBook (see Figure 9-7), not to be confused with the font management

component called Font Book that came out with Mac OS X 10.3.

CHAPTER 9: FontShuffle 196

Figure 9-7. In 1993, the first edition of FontBook profiled 8,000 typefaces in alphabetical order, each marked with
a classification number from 1 through 9.

The first FontBook was published in 1993, had 600 pages, and was accompanied with a

separate 60-page “StyleFinder” brochure. It referenced over 8,000 fonts (including

Eastern European and non-Roman letterforms) and 15,000 symbols and ornaments from

30 international type developers.

All Latin fonts were sorted in alphabetical order, making 26 chapters from “A” to “Z.”

Alphabet displays and text patches for all weights and families, together with

comprehensive historical and technical data, made the FontBook indispensable for

anyone working with type. Each typeface family was marked with a classification

number between 1 and 9, representing the styles sans serif, serif, slab serif, script,

graphic, display, black letter, symbol, and ornaments and non-Latin or special accents.

If any user wanted to search by style, the separate “StyleFinder” was the perfect tool,

delivering all fonts sorted with the nine classifications.

Two years later, the amount of new fonts had increased greatly, so that FontShop

decided to publish a second volume of FontBook in spring 1995. It was also delivered

with a separate “StyleFinder” brochure that showed all of the typefaces (over 10,000) of

both volumes alphabetically in one-line listings according to seven different style

categories, plus pi and symbol. Because the “StyleFinder” showed in which of the two

books a particular font could be found, it served as the central search engine.

CHAPTER 9: FontShuffle 197

The “StyleFinder” from 1995 (see Figure 9-8) shows on its cover exactly the same basic

type style categories of today’s “StyleFinder.” In the following years, that rough

classification has continued unchanged through the recent fourth edition of FontBook,

published in August 2006.

Figure 9-8. This clipping of the “StyleFinder” cover from 1995 shows the first appearance of the FontShuffle
categories.

FontShop’s Typeface Categorization
During its 20 years of existence, FontShop never thought about a second level of

classification for its customers, (i.e., subdividing the sans serif section into Humanist,

Static, Geometric, Gothic, and so on). In print, such a detailed offer might cause

problems. For example, not every type friend knows that the serif-family Jenson is

Venetian styled and not French or baroque, so readers might require three or more

searches before finding this typeface specimen.

Browsing through categories on a digital platform is far faster. Plus, if you don’t have

any clue what a typeface named Ergo looks like, you can start a text search.

When FontShop Germany developed the concept for its new web site, one of its

programmers, Rainer Pleyer, had the idea to offer a visual search for fonts in addition to

the font name search. He scribbled a basic structure and named it FontShuffle, because

it was constructed like a game. Then, it was my turn to realize that feature.

Naturally, my starting point was FontBook’s structure, or rather the original “StyleFinder”

structure just slightly modified: sans serif, serif, slab serif, script, black letter, and

display.

CHAPTER 9: FontShuffle 198

At that point, I thought about the correct naming for the categories and the

subcategories since using just “category” is too general: “category” is the generic term

for words like species, order, class, or kingdom. Because the term “family” is well

established in the world of typefaces, I just took a closer look into biology and borrowed

its nomenclature. For example, Helvetica Italic’s classification follows:

 Class: Sans Serif

 Order: Static

 Family: Helvetica

 Genus: Italics

After the nomenclature was settled, I concentrated on the orders, since the classes are

well defined. I’ll cover orders in the next section.

Although I am not interested in doing so, the biological model is expandable upward and

downward. The species might be the weight of some Helvetica Italic (e.g., Helvetica

Italic Bold), and the phylum of a Helvetica might be the Roman letter space, belonging to

the kingdom of phonographic scripts, and so on.

Maybe it is because I’m a physicist that I decided to give each of the six FontShuffle

classes exactly six orders: I love simple and symmetrical models. I did tried using nine

orders, but that was far too fine.

Classes and Orders of Typefaces
The FontShuffle orders are a mixture between the historical model and Willberg’s form-

style matrix, in which form equals class and style equals order. For the huge class of

Serif typefaces, I decided to stay primarily with the historical classification, partly

because of the roots of these typefaces’ designs and partly because of their stable

design principles that outlast decades or centuries.

For the younger classes, like sans or slab serif, I’ve chosen mainly the style order. The

script class carries attributes, like handwritten or simple, that only work in that class.

Black letter is a special case with less elbow room not only in usage but also in

classification: I left it with the traditional naming.

The display section is a very special thing: it’s a catalog of its own, with some order

names that are actually used for classes (sans, serif, slab, and script) as well as two

style orders (decorative and experimental). What is a display typeface? It is more or less

a lettering design, made for advertisements, posters, headlines, initials, catch lines, and

so on. One half of the display typefaces are single weights, and the other half is

organized as families, like text typefaces usually are.

 The treatment of the display typefaces is the result of 15 years of FontBook experience,

seeing the display section increasing from edition to edition. That area is growing

disproportionally, because a lot of young type designers are producing typefaces

entirely using the display approach.

The FontShuffle classes and orders since version 1.1 are shown in Figure 9-9.

CHAPTER 9: FontShuffle 199

Figure 9-9. FontShuffle structures the world of type into six classes, each with six orders

FontShuffle Step by Step
FontShuffle is an intuitive travel guide through the world of typefaces, developed for

iPhone and iPod Touch. Although the application is aimed at beginners, professional

users will also love its simplicity. The program opens the empire of type via a

hierarchical system, arranging typefaces by similarity.

With just two fingertips, any user is able to head for a type design visually, without any

previous knowledge: you don’t need to know the name or style of any desired font, but

you will learn names and styles as you use FontShuffle.

CHAPTER 9: FontShuffle 200

Getting Started: Search Level 1
The starting screen of FontShuffle serves as search level 1 (see Figure 9-10). It offers the

following six common typographic classes: sans serif, serif, slab serif, script, blackletter,

and display. The name of each class is set in an appropriate typeface to give visual

support.

Figure 9-10. Direct doorway to the world of typefaces: FontShuffle’s start screen

Choosing the right typeface for this display is typographically delicate. At one extreme,

the terms should speak for themselves, meaning they should appear equally balanced.

Presenting them in different typefaces causes noise—in positive words, typographic

staging will give these equal weighted search terms different impressions in the users’

eyes. The solution for this problem is finding a typeface superfamily that covers almost

all type design styles. Surprisingly, only one typeface that complies with that condition:

Lucida.

Lucida is an extended set of related typefaces designed by Charles Bigelow and Kris

Holmes (B&H) between 1983 and 1994, and it includes a variety of styles: serif and sans

serif, Roman and italic, normal and bold weights, scripts, black letter, icons, and

symbols. This extra-large family of type styles is often called a superfamily, or clan,

because it extends beyond the usual font family that contains just Roman, italic, normal

and bold. Because of the richness and variety of its different styles, Lucida allows new

forms of typography for electronic communication, printing, and publishing.

CHAPTER 9: FontShuffle 201

Between all the different Lucida styles, the capital heights, x-heights, and main stem

weights are coordinated. Lucida makes it easy for users to achieve variety and harmony

by mixing and matching different fonts in the same text and page. The designed

coordination of so many different styles means that, when different Lucida fonts are

used together, the effect is lively and interesting but without the confusion of randomly

mingled and uncoordinated fonts.

NOTE: Lucida Sans Demibold (which has identical outlines to Lucida Grande Bold but with
tighter kerning on numerals) is used in Apple’s Mac OS X operating system, as well as many
programs, including Front Row. A fact not widely recognized is that the icons, symbols, arrows,
asterisks, and geometric glyphs in Microsoft’s Wingdings fonts were originally designed as
Lucida icons, arrows, and stars, so the characters harmonize with Lucida Sans and Lucida
Bright designs. Those three Lucida symbol fonts were purchased by Microsoft, who remapped
the keyboard layouts and changed the names to Wingdings, but the symbols still harmonize
with Lucida fonts.

Finally, the directory of FontShuffle is set in Lucida Sans, Lucida Serif, Lucida

Typewriter, Lucida Handwriting, and Lucida Blackletter. Only the last category, Display,

could not be served by Lucida, because no typical display version is available (i.e., a

version with shadows, flourishes, or other decoration). We’ve chosen FF Bokka Shadow

instead. It embodies perfectly the sixth class representing decorative headline fonts.

Searching by Typeface Name: Search Level 1, version 1.1
When FontShuffle 1.0 came out in December 2008, it was loved from the first minute by

professional typographers. However, what they missed became request number one in

our update feature list: a typeface name search. We’ve included that in version 1.1

directly at the top of the opening screen. The search is equipped with an automatic

suggestion feature. So if you are not sure where to find Oranda, Letter Gothic, or Serifa,

just type the first letters, and FontShuffle will present possible search results you can

jump to directly (see Figure 9-11).

CHAPTER 9: FontShuffle 202

Figure 9-11. Additional automatic suggestion font name search added in FontShuffle version 1.1

Displaying Classes: Search Level 2
The second level of FontShuffle is six rooms (i.e., classes) each filled with six orders;

that means 36 (6 × 6) stylistic pigeonholes, as discussed earlier. Thus, the application

offers a finer classification than any known type specimen books or catalogs, including

FontBook, which offers alphabetical sorting within its six classes.

FontShuffle, therefore, combines the historical classification with the much simpler

formal Willberg classification. Some classes offer a mixture of both (e.g., serif), and

others deal with pure formal features (e.g., sans serif).

As in search level 1, each of the six orders is set in an adequate typeface (see Figure 9-

12). But while the classes-entry screen endeavors to keep the typographic exuberance

modest, the orders screens strive for maximum differentiation. As a matter of fact, the

typography dominates the wording all over level 2—that’s the basic principle of a visual

typographic search.

CHAPTER 9: FontShuffle 203

Figure 9-12. The typeface orders (e. g., sans serif) are set in their adequate typeface styles.

Displaying Families: Search Level 3
When you arrive at level 3, after two taps, you’re at the final straight: the font family

plane. And you’re close to a desired type design. Six closely related typefaces are

presented with the same sample word: Hamburgefontis (see Figure 9-13).

What is the significance of that term? First, it’s an isogram, a word without a repeating

letter. Second, this test word contains most of the various shapes and strokes found in a

typeface (e.g., cap height, ascender, and descender). When designing your own fonts, it

is often recommended that you begin your work by creating the characters that spell out

Hamburgefontis. By concentrating on designing and fine-tuning these characters first,

the bits and pieces can then be applied to most of the other characters in the font.

When submitting new designs or design ideas to a type foundry for consideration,

designers often submit (or are asked to submit) the test word Hamburgefontis set in

both mixed case and all caps as a printout or PDF or as a digital font. If you try to

protect your type design, some patent offices request that sample in Word too.

CHAPTER 9: FontShuffle 204

Figure 9-13. The font family plane uses the common typeface sample word “Hamburgefont.”

It is essential for level 3 to deal with a uniform sample word for all typefaces. An

alternative would be to present each typeface with its name. In that case, fonts with

short names (e.g., Meta) won’t have much chance to express their characteristics. Then

too, the differences between the remaining fonts are very small after two filtering

processes. Dealing with a uniform specimen word helps the user’s eye to focus

completely on the design attributes of each typeface. The name of each typeface (family)

stands below the sample word in a decent gray for reference.

If none of the presented six fonts meet the user’s needs, it is time to shuffle by pushing

the red Shuffle button or just shaking the iPhone or iPod Touch. Both operations have

the same result: fonts that haven’t been shown until now will be thrown among a new

search result sextet. Now, the user can compare and judge from a new mixture of similar

typefaces.

FontShuffle 1.0 offered a selection of exactly 12 different variants for every class in level

3. This selection could be extended without distributing a new version of FontShuffle.

That happened for the first time in January 2009, when FontShop added another 200

fonts to the basic 432 (6 × 6 × 12).

The basis for such remote controlled additions is FontShuffle’s clever organization.

The “Hamburgefontis” sample words are generated on a FontShop server as PNG

images and delivered into FontShuffle’s cache when it starts the first time and connects

with the server via Wi-Fi or G3. No fonts will be transferred to or installed on the iPhone

or iPod Touch, just images. After that initial query, the application works up to level 3

without being connected to the Internet.

CHAPTER 9: FontShuffle 205

This infrastructure allows secret updates (e.g., expanding the typeface catalog). Adding

new fonts to the FontShuffle directory is simple. We put them onto the FontShop server

and add the corresponding “Hamburgefontis” to the inventory. When FontShuffle

queries the server the next time it asks for updates, any new font sample words will be

downloaded.

Shuffle or List View: Search Level 3, version 1.1
Soon after the premiere of FontShuffle, some users expressed the request for an

alternative to the display that gave the application its name: the shuffle mode. Type

friends do not want to play around but want to get the full view, especially when they are

experienced or under time pressure. For that reason, FontShuffle 1.1 offers a more

professional list mode in parallel to the playful shuffle mode. Users decide, via a toggle

button, which mode they prefer (see Figure 9-14).

Additionally, the list mode allows users to mark up to five favorite fonts. After switching

back to the shuffle mode, these marked typefaces will be fixed. That way, it is possible

to research other alternatives without losing sight of two or three bookmarked favorites.

Also new in version 1.1: “Hamburgefontis” changed to “Ramburgefonstiv” (see Figure

9-14). Why? Well, let’s analyze the changes step by step. First, the new test word has

one more glyph; 15 glyphs instead of 14 means (at least mathematically) 7 percent more

information.

The “H” is very important for type designers, because it is always the exact caps height

of a font, and caps height is a basic metric—often not just for a single font but for a

complete family. The “R” does not deliver a 100 percent exact cap height, because for

optical reasons, its upper loop has an overshoot beyond the caps height. But for the

evaluation of a type design, it is more valuable because it carries more design

information than the “H or “E,” (e.g., curves, a counter, contrast, an angle, and a

connection).

The additional letter “v” contains hints on the treatment of acute angles like in “w,” “x,”

“z,” and “V.” Finally, the letter quartet “stiv” is composed of the two pairs “st” and “iv,”

which are very common in the everyday writing in English and many additional

languages.

CHAPTER 9: FontShuffle 206

Figure 9-14. New since FontShuffle 1.1: toggle between list and shuffle mode

Displaying the Font: Search Level 4
With level 4, we’ve reached the terminus. It opens after your third tap, or maybe after a

session of passionate shuffling or back and forth browsing. Now, it’s time to choose a

typeface. As a default, the well-known sample sentence “The quick brown fox jumps

over the lazy dog” appears. That text is editable or expandable up to 100 glyphs. After a

tap, the standard keyboard appears for typing, or deleting, sample text.

NOTE: While levels 1 through 3 are available without any Internet connection, level 4 definitely
needs a Wi-Fi or 3G connection for the dialog with FontShop’s font server. The customized
specimens are generated in real time on FontShop’s server after the Done button has been
tapped, and an image is sent to the iPhone—not font data. That image could be then stored in
the camera roll or sent via e-mail.

Any customized sample text will be stored in FontShuffle until you next change the text.

If you want to go back to the default text, just click the Reset button on the keyboard

interface, which is shown in Figure 9-15, left.

CHAPTER 9: FontShuffle 207

Figure 9-15. Individual font samples can be mailed or “printed” (that is, stored in the camera roll)

You can type sample text with a maximum of 100 letters. Tap Done to request the font

sample from the FontShop servers. If a type specimen becomes important to a user or

project, you might want to keep it. That’s no problem: just tap the camera icon at the

bottom of the sample page (see Figure 9-15, right) to send the current type sample as

an image into the iPhone’s camera roll, and it will be stored to your desktop computer

with your next synchronization. Or sent it immediately via e-mail to your computer or

a friend.

A somewhat hidden feature appears when the iPhone or iPod Touch is turned to

landscape position: the character set of the currently selected typeface appears on four

lines (see Figure 9-16).

Figure 9-16. A wide-screen character set appears when you topple the iPhone

CHAPTER 9: FontShuffle 208

Summary
FontShuffle is a multipurpose tool for type enthusiasts. First, it unfolds the world of

typefaces across a hierarchical simple-to-understand classification system. Alternatively,

it offers a font name search. Also, it allows exploring a desired font with individual

sample texts up to 100 characters. Such a typeface sample could be stored into the

iPhone’s camera roll or mailed to friends and clients.

209

Eddie Wilson
Company: Eddit Incorporated

Location: Midlothian, Virginia

Former Life As a Developer: I provide UI design for web, desktop and mobile
applications. I also teach web design at Virginia Commonwealth University. Top 5
pieces of software: Photoshop, Illustrator, LiveView, Textmate, and Safari.

Life as an iPhone Developer:

Snow Reports

 Category: Sports

 Provided: Design, development

 URL: http://bit.ly/snow_reports

Streaks

 Category: Productivity

 Provided: Design

 URL: http://bit.ly/streaksmi

What's in This Chapter:

Snow Reports for the iPhone

 Why Design for the iPhone?

 Programming? That’s for Programmers

 My Process

 Details of the UI

 210

 Coming from a Web Design Background

 Icon Design

Key Technologies:

 Standard and Custom UI objects

 Project Planning

 Moving from web to mobile design

211

211

 Chapter

Snow Reports for the
iPhone

Surfing has been a passion of mine since my first successful ride. It’s one of the rare
things in life where I can forget everything else and just enjoy the moment. I skipped my
ten-year high school reunion because it landed on the weekend of a surf trip. I spend
almost half the year going on four-day surf trips every other week. My accomplice on
these trips is a longtime friend who got me into the sport. Since we go so often, we like
to keep it simple, and cheap. It’s a three-hour drive to the coast, at which point we set
up at a state-run campground for $20 a night. We each have a tent, small bag for
clothes, our boards, and a cooler. These may sound like the bare essentials, but it’s still
a lot to put into the back of an SUV, so we’re always looking for ways to lighten the load.

We have our favorite breaks, but we’re usually chasing the waves wherever they are that
day. The only problem is that it’s tough to drive around looking for the perfect
conditions; before you know it, lunchtime rolls around, and you haven’t even touched
the water. We would start the morning out by calling the local surf report to see where
the waves were hiding. As the day went on, more calls were made to local surf shops,
friends, and so forth. Everyone always had a hunch that waves were better down the
road. The pursuit of the perfect day ensued.

Fast-forward a few years; true mobile access to the Internet became a reality. I picked
up an iPhone and voilà! I was able to see all the surf report data I wanted via
Surfline.com. It was great, but it still took a little longer than I thought it should to click,
load, click, load, check this spot; and click, load, click, load, check that spot. If only I
had an application on the iPhone, like the Weather application; I could have a list of
tracked spots and just pick the best one—problem solved. And the application would be
on my phone, which went great with the whole living-out-of-a-truck-for-four-days thing.

Three months later, I released my first iPhone application, Snow Reports, which allows
you to create a personalized report from all of your favorite ski resorts, worldwide—wait
a second. I don’t ski or snowboard. How did that happen?

10

CHAPTER 10: Snow Reports for the iPhone 212

So You Like to Design, Huh?
Did I mention that I am a designer? It’s my other passion, and sometimes, the two
collide (“The deadline is Monday? Ugh. I’ll be out of town on ‘business’ for a few days,
so . . .”). Add on top of that the fact that I am now happily married and the father of two
wonderful daughters, and you can see exactly how much spare time I have to develop
iPhone applications.

Anyway, I am what many would call a graphic designer. To be more specific, I’m an
interactive designer, which means I focus my talents in the realm of web and desktop
application UI design. I have the good fortune of being able to work out of my home,
under my company eddit, inc. It’s just me, my home-office, and my clients. I love what I
do, but there’s just one tiny catch; I’ve always been a service provider for others. A client
comes a knocking; we form a working relationship, and many projects ensue. It’s
wonderful to help someone else in leveraging design for their organization, but the work
I do is always for others. I needed to develop a product—something that was 100
percent my own creation.

Why Design for the iPhone?
I knew I wanted to design for the iPhone the second Steve Jobs held it up at Macworld
in 2007. I didn’t even know if you could develop applications, but the rumor mills were
buzzing with the potential. As you well know, the iPhone is a revolutionary device, driven
by a revolutionary platform. Regardless of all the upcoming devices that claim to have
nicer features, they all must pay homage to the iPhone for inventing the market and the
concepts that these upcoming devices are based on. So far, none of them do it better,
as a total package, than the iPhone, if you ask me.

Before the iPhone, I didn’t think much of mobile design or devices. I’ve had clients that
needed portions of their websites to be mobile-friendly, but I always considered it an
extension or port of their standard web site. I didn’t know anything about applications
for the Blackberry and was altogether turned off by the design of most smart phones
previous to recent models. My own phone was a candy bar Sony Ericsson that I was not
willing to give up. For me, a cell phone was a phone, and that was that. I didn’t want it
pretending to be an e-mail client, trying to connect to a useless WAP weather service, or
taking pictures that I will never use because they are all 320 × 240.

So what exactly was it that sold me on the iPhone? It all comes down to the fact that it’s
a device that runs a mobile platform allowing it to make phone calls, check e-mail,
browse the Web, and more. It is not a cell phone with these features implemented on
top. This shift in model allows the iPhone to integrate almost perfectly with its desktop
equivalent and become a true mobile platform for development. And if you’re going to
have developers, you will definitely need designers!

The iPhone was also a completely new medium, and at the time, I was itching for
something to explore. The following summer, I stumbled on my first idea, so all I needed
to do was knock it out, right?

CHAPTER 10: Snow Reports for the iPhone 213

NOTE: In any situation like mine, there are always small, random circumstances that propel
things along. When the iPhone was announced, I could not conceive of paying $500 for it, and
the drop to $400 a few months later didn’t make me any more comfortable. A week after
Macworld 08, the day that I was purchasing an updated Macbook Pro, a good friend happened
to spot a post about AT&T selling refurbished iPhones for $250. Since I was already spending a
few grand, I felt like it should just be an Apple day and picked up one.

Isn’t Programming for Programmers?
I am not a programmer. Please read that sentence again, and hopefully, you will find
some comfort in it. I enjoy programming but would never give myself that title, as my
mind is just not able to grasp concepts at the level that a professional programmer
must. I’d like to think I’m a smart person, and I understand the basics, but when a
discussion about programming starts up (yes, I hang out with programmers), I quickly
become an observer and not a participant. Still, over the course of my career as a
freelancer, I have had to wear many hats, and the programmer hat is one of them.

For my web projects, I’ve become very fluent in standards-based markup (that is,
learning XHMTL and CSS and leveraging JavaScript libraries). In addition to this, when
needed, I’ve built low-level CMS features into client projects (by learning PHP and
MySQL and working in the server environment—yuck). For my clients that have
promotional-oriented projects, I use Flash to provide a robust interactive experience
(which means learning Flash ActionScript). All in all, it has made me a well rounded
contractor and brings me to one of my key principles:

All professional designers must know a bit about programming for the environments that
they design for.

In my opinion, this is a requirement if you want to design for the Web, desktop, or
mobile devices. Knowing the capabilities and limitations of the environment I am
working in enhances my design work. I can foresee, to some extent, how a programmer
will work with my designs to implement them effectively. During the implementation
process, I am able to talk to the programmers and understand and diagnose issues
they run into. Much of what we consider “design” lies in programming the flow and
interactions of a web site or application. As an interactive designer, my job truly
begins when I finish a Photoshop document. This is never truer than when designing for
the iPhone.

Exactly how comfortable am I with the concepts of programming? Before I developed
Snow Reports, I knew a lot about variables, loops, functions, and if statements. I knew
nothing about objects, classes, controllers, views, threads, or anything else in between.
Memory management? You might have well just asked me how to walk to the moon, as
all of this was well above my head, and it looked like I needed to know a lot about all of
it to make this application a reality. So why even bother?

CHAPTER 10: Snow Reports for the iPhone 214

Why Snow Reports?
As I mentioned before, my initial idea was to develop a surf-reporting application. I
wanted to launch it quickly, as I figure it was only a matter of time before another group
developed one. As Harry Callahan said, “A man’s got to know his limitations.” So I
decided to present the idea to a good friend and associate of mine who was a talented
programmer. He loved it, was quick to start picking up the environment, and had a great
idea: I love to surf, and he loves to go snowboarding, so let’s make two applications,
hence the birth of Surf Reports and Snow Reports.

That day, we documented both applications—what we wanted to achieve, ideas for
future updates—and split up responsibilities between the two of us. While my partner
was getting himself familiar with Xcode and Objective-C, I started looking into potential
data providers. For Surf Reports, I wanted data from Surfline.com, and after some
research, we decided to go with OnTheSnow.com (see Figure 10-1) for Snow Reports.

Figure 10-1. OnTheSnow.com, the data provider for Snow Reports

We didn’t want to invest any money, so we agreed to offer complete branding of each
application under the name of the data provider in return for access to their data and
100 percent of the sales revenue. We needed an angle that made this look like a win-win
for both sides.

Our pitch to the data providers was that sales profits would never amount to much more
than the costs for these companies to develop the applications themselves (in most
cases, costs far exceed potential profits). They would have to hire designers,
programmers, and assign project managers, in addition to promoting and supporting the
final application. If they worked with us, they would enter the iPhone market with zero
costs. We could just hear their responses, “You want to develop an iPhone application
that uses our data, put our logo on it, and as far as the public knows it’s ours? For free?
Where do I sign?”

CHAPTER 10: Snow Reports for the iPhone 215

Sounds like a win-win, doesn’t it? I proceeded to e-mail, call, e-mail, and call until I got
the address or number of a decision maker for each of these companies. Shortly
thereafter, three events changed the course of my initial application idea:

 OnTheSnow.com was very interested in our proposal and wanted to
get started right away.

 Surfline.com was not interested. I discovered why a few months later
when they released Surf Report in partnership with Oakley—talk about
brand recognition.

 My programming partner had a day job, and right about the time we
were getting started, he landed a nice promotion. While I was happy
for him, it meant that he would have to pull out of our side project.

Why Learn iPhone Programming?
I was sitting in my office, a little on edge, looking at the situation:

In my favor, I had these things:

 What I thought was a pretty good application idea

 A signed usage agreement from OnTheSnow.com for their data and
brand

 Complete flowcharts, architecture, and UI designs for the application

 Total personal investment to see this through to the end

But theses were the problems:

 No programmer

 Complete panic

Still, I wanted to design for this platform, so I needed to roll up my sleeves and learn
Objective-C. It was definitely the steepest slope I have ever tried to climb. I enjoy a
challenge, but most challenges push your talents and skills to their limits and beyond.
This one required learning a whole new set of skills just to get in the door.

Altogether, version 1.0 took me a month to get out the door. That may sound quick, but
during that time, there was an abundant amount of frustration, endless Googling,
extreme lack of sleep, a growing pile of delayed client work, and a wonderful wife who
was growing more and more curious and irritated about what her husband seemed so
intent on learning to do. A little later in the chapter, I’ll point out some great techniques I
learned to climb the steep learning curve, but first I’d like to walk through my process
from initial idea to submission to the App Store. Without a solid submission process,
that month could have turned into three months, and Snow Reports might not have
made it out the door.

CHAPTER 10: Snow Reports for the iPhone 216

My Design Process
As you may or may not already know, designing an interactive project (like an iPhone
application) is much more about what your application achieves and how it behaves
than how it looks. To manage these layers of complexity, a solid design process is
necessary to carry you through all of the steps. The process I work with not only keeps
me organized and on track, it protects me from making mistakes that won’t get noticed
until further down the line, resulting it a lot of wasted work.

TIP: Looks are not what matters, as much as I hate to admit that sometimes. Have you ever
thought to yourself, “Man this web site is impossible to use but it looks so sweet, so I’ll keep
using it”? I didn’t think so, but you may have found yourself thinking, “This web site is really
great to use; I just wish they would make it a look a little better.” Spend your time worrying
about how your application behaves rather than the way it looks. Ease-of-use is paramount
over visual appeal. It may not win you a design award, but it will result in happy users, and you
can always hire a designer to skin your application later.

The basic steps in my iPhone development process are to define the project (goals,
requirements, budget, timeline), acquire third-party resources, create a flowchart for the
applications’s main functionality, wireframe each view, skin the design, develop and
program the application, and finally, test, test, test and deploy.

Defining the Project
I always start a project, whether for a client or myself, in a text document: Pages, Word,
TextEdit whatever you like. Even projects I do internally are treated as professional
projects. I call the document the Project Planner, and it contains the following:

Project name: Write down the name of the application. If I don’t have a name yet, I’ll
write some keywords here and later on maybe they will inspire me.

 Snow Reports

Project definition: Write one sentence that explains exactly what the application
does. Why only one sentence? If someone walked up to me on the street and asked,
“I heard you have an iPhone application for sale, what is it?” this would be my
answer.

 Snow Reports gives you the ability to create a personalized
report of all your favorite ski resorts worldwide.

CHAPTER 10: Snow Reports for the iPhone 217

Project goals and features: Forgive me for being bossy but set goals, goals, goals.
You must define your goals. Goals give you a foundation for the structure and
features of your application. Without a good list of goals, you can end up with an
application that has no clear purpose and no defining qualities. A list of goals also
gives you boundaries that put a stop to feature creep, the natural ability for any
project to grow out of control with new features and changes that prevent it from
ever seeing the light of day.

 Provide users with snow report data from OnTheSnow.com.

 Allow users to create a list of ski resorts they wish to track.

 Each report will provide resort and conditions data

 Each report will allow the user to further access information
about the weather for that resort and any available resort images
and cameras.

 Each report will also allow the user to call the resort and visit the
resort’s web site.

I know telling you to choose application features seems obvious, just like saying that
every business needs a business plan is obvious. So make sure you do it! Making
the plan ahead of time doesn’t mean you can’t change it later on, but at least it’s all
in a document that can be easily referenced. Keeping something in your head is the
same thing as keeping it in flux. If you write it down, it’s out of your head, and you
can move onto the next step (basic premise of the GTD philosophy). Once these
goals are achieved in your application, you’re done (at least with a beta version)!
Sorry about the rant; I’m done now.

The goals I had for Snow Reports are pretty simple. You might find yourself going to
a second next page in your document with all the goals and features you want to
cram into your application. If this is the case, you need to put them in order of
importance. Once you have them all down and sorted, cut the list in half. Save any
features that are not 100 percent necessary to achieving your application’s key
goals for a list for version 1.1. All of your thoughts up to this point are just guesses
at what potential users might want, so your 1.0 release should be as skinny as
possible without being limited. As people use your application, you will start to get
e-mails that start with “Love your application, but would be better if I could…” or
“would be a five-star app if it had an XYZ feature.” Once you’ve gotten plenty of
feedback, you can compare user requests with those features you put off and see
what is worth implementing. This process of delaying some implementation details
does a few things: version 1.0 of your application will be easier to develop and
launch, you’re able to make decisions based on user feedback not guesswork, and
you’ll have plenty of updates to push out in the future. Updates let users know that
the lights are on and someone is home and working to make the application better,
which is always a good thing.

CHAPTER 10: Snow Reports for the iPhone 218

Third-party resources: I list out all the third-party resources I’ll need to complete the
application. These are skills or assets that I cannot create or provide myself but that
I need to beg, bribe, or (god forbid) pay to acquire:

 Draft a data usage agreement, and have OnTheSnow.com
sign it.

 Acquire a vector version of the OnTheSnow.com logo and brand
guidelines.

 Get documentation on working with their API.

Acquiring Third-Party Resources
Once everything was documented for Snow Reports, I needed to make sure that I had a
signed data usage agreement from OnTheSnow.com. I can only imagine the state of
insanity that would occur if I were halfway through development only to find that the
folks at OnTheSnow.com had changed their minds before signing. Likewise, I
recommend that you identify and acquire your third-party resources up front.

Do you need data for your application? You will need to find a data provider, contact
that company, and negotiate to gain access to its data. Do you need to purchase or
have sound effects created? Do you need to purchase any stock icons or graphics? List
all of these requirements, especially if they have costs attached to them. Three sound
effects might be cheap, but if you need fifty of them for a game, the costs can quickly
add up. It’s no use worrying over the development of an application if you can’t get the
data or the media it needs to function.

Finding a Good Data Provider
While I can’t speak much about sound effects, I do know a little about finding a good
data provider. In choosing a provider, you can look at statistics, or you can put your ear
to the ground by talking to people who actually use the data providers. For statistics, I
prefer to use http://compete.com/ (a close second is http://trends.google.com).
Compete.com’s data may not be detailed (see Figure 10-2), but it’s free, and when
comparing one site to the other, it’s perfect for gauging general popularity.

Still, numbers of visits don’t tell the whole tale, so it’s important to get on some forums
or chat rooms and get the feel from the community. A popular site may have all the
traffic today, but the community might be onto a new and better data provider that just
recently launched. After talking to friends who ski and snowboard, checking forums
and looking at statistics, I found that OnTheSnow.com was the most popular site for
ski reports.

CHAPTER 10: Snow Reports for the iPhone 219

Figure 10-2. OnTheSnow.com is the clear winner when it comes to monthly traffic, according to Compete.com.

As I mentioned before, I proceeded to e-mail and call nonstop until I found a contact at
the parent company of OnTheSnow.com, Mountain News. After I explained the concept
to him, he was very interested in it, so I drafted up a quick data usage agreement. He
ran it by his team, and I had a signed agreement a few days later. Now, it was time for
the real fun to begin!

Tip Remember that companies are run by people, and people always want to be part of a win-
win situation. I was able to launch a great application, and OnTheSnow.com got its brand into a
new market with zero costs. Just because you’re 25 and don’t have five zeroes at the end of
your salary doesn’t mean that your idea isn’t good or that large companies won’t want to hear
it. Just make sure you protect your ideas!

Creating a Flowchart
I needed to lay out the process, or flow, for how people would interact with my
application. What is the first view a user will see? Should all of the information appear on
one view, or should a teaser list lead to an expanded view? What happens when a user
clicks the Info button? Will it be a subview, or will the entire screen animate to a new
view altogether? All of these questions are answered by flowcharts. A flowchart is a
great, quick way to decide how an application will behave moving from state to state. I
like to use Illustrator to create these charts, but any type of design or layout software will
work, even doing them on paper.

To create the flowchart, start with the home screen, as shown in Figure 10-3.

CHAPTER 10: Snow Reports for the iPhone 220

Figure 10-3. The home screen is the starting point for the application design flowchart.

Next, branch out. Each one of these branches is an action that a user can take that will
lead to a new view within Snow Reports. This keeps going on and on until you have a
completed flowchart, like the one shown in Figure 10-4.

Figure 10-4. The completed flowchart for Snow Reports

CHAPTER 10: Snow Reports for the iPhone 221

Now, I don’t get into much detail on these charts. I just want to know the views I’ll need
and to have them linked up. This way, I can make major decisions, like the hierarchy of
views, without having to move sixty Photoshop layers around.

TIP: As you may have guessed, I found a lot of help simply by looking at the native Weather
application. In fact, that application was part of the inspiration for mine. Since it’s a pattern that
most people are used to, why reinvent the wheel?

Creating Wireframes
Next, I needed to take a closer look at each one of the views in my flowchart and design
some wireframes. Wireframes provide the layout of all the objects within a view, without
having to deal with the specifics of stylization, much like blueprints for a home.

I always like to start my wireframes in a sketchbook (see Figure 10-5). Sketching
wireframes by hand before I move into Photoshop saves a lot of time. It’s easier to
sketch down 10 layouts on a piece of paper than to build them in Photoshop. On the flip
side, it’s way easier to decide on the color of a button in Photoshop than on paper. For
me, the paper wireframes are all about getting the bad ideas out, so I can clear room in
my head for the good ones.

Figure 10-5. Sketched wireframe concepts

CHAPTER 10: Snow Reports for the iPhone 222

Try to avoid making major style decisions in these wireframe; they’re just a lot of
information architecture work. As Figure 10-5 shows, I do try to have some fun with my
sketches (because wireframe work can get a little boring) but nothing’s too detailed, just
some doodling to keep myself entertained.

These are the questions I tried to work out in the Snow Reports wireframes: How will I
organize all of the snowfall measurements? Should all the buttons be together, or can
they be broken up into smaller groups? Where does the Open or Closed sign go?
Sometimes, if very detailed work is necessary (or if it’s for a larger project like a web
site), I’ll move from here to Illustrator to create more exact wireframes, but for Snow
Reports, the real estate and number of views was so small that sketches worked
just fine.

Skinning the Design
Now, I was able to get to the really fun part, designing the final interface. Why is that
part so much fun? Well, I’m a designer, so it’s kind of my thing, but also because it’s all
creative stylization at this point; most of the planning is done. I completed the flowchart
(I knew all the views and how they related), and I knocked out some wireframes (I knew
what should go into the interfaces and where), so now I just needed to make the
application look sharp. Since I believe that all of the previous steps fall into the design of
the UI, I really think this step should be called stylization or skinning.

I’ll dive a bit deeper into the decisions I made with the design in the “Details of the UI”
section, but for now, take a look at the final results in Figure 10-6.

Figure 10-6. The final UI design

CHAPTER 10: Snow Reports for the iPhone 223

But wait—shouldn’t I prototype the application before I design it? There are many
schools of thought on the need to prototype before you design, and for large-scale
projects, I think developing a prototype first is a must. But for small projects like Snow
Reports, I design before I develop. Another iPhone development company, TapTapTap
wrote a really good article on the subject (http://www.taptaptap.com/blog/the-design-
session/), but here are my thoughts on designing small projects before creating a
prototype:

 Benefits

 When I get a really strong design solution going, it keeps me inspired.

 I can skin as I develop, instead of making extra work by skinning
afterward.

 I have fewer decisions to make when developing; I already know
dimensions and coordinates of everything.

 Drawbacks

 Making UI interaction decisions in Photoshop is hard.

 I may need to redesign a few small aspects to reflect discoveries made
once I had a beta version to touch and feel.

When it comes to small projects, you’re not going to lose out going either way; just
figure out whatever keeps you motivated, and go with that!

Developing and Programming
How did I learn to program for the iPhone? Did I pay for night courses? Did I read a
bunch of books? Neither—I learned under trial by fire.

Have you ever taken a clock or some other electronic device apart to see how it works?
I bet you were able to put it back together with a morsel of confidence once you knew
why everything was where it was. It’s the same with programming to some extent.
Breaking apart an existing program and looking at the code is the best way to learn, if
you ask me. Maybe you like how-to books, but they always seem to put me to sleep. I
like tutorials and example files. Sitting in a class does me no good either: it’s all in one
ear and out the other.

The iPhone developer community was almost nonexistent at the time, since the NDA
was still alive and kicking, so there were only a handful of blog-posted tutorials and one
unofficial forum. Luckily, Apple was kind enough to publish a library of sample code
files; little how-to articles that were perfect for learning specific techniques.
Programming Snow Reports as a whole was a very daunting task for me, so I decided
instead to break my application down into numerous miniature applications. These little
applications were easier to tackle, and this way, I had a good milestone system to keep
me going:

CHAPTER 10: Snow Reports for the iPhone 224

 I needed two main views: one to view resort data and the other for
managing the resorts I wanted to track. I also wanted these two views
to flip, just like the native Weather application. For this, I used the
Xcode utility template as a starting point.

 To view tracked resorts I needed a scroll view that handled multiple
subviews, and luckily, Apple provided a sample PageControl
application that did just this.

 I need to connect to a web service, which after a good bit of Googling,
I found a great code sample for on a random blog.

 I needed to store data on the phone, holding a list of IDs for the resorts
a user would want to track. This also came from a great code sample
on a random blog.

At this point, I had four simple little applications, each one of them did one thing well. I
used the first application as my primary one and just started bringing in code from the
other miniature applications until everything was together in one: hook this up to that;
plug that into this, and voilà!

Now, hooking these together took a bit of tinkering and didn’t always go so smoothly,
but doing it this way got me not only a complete application quickly but some real
experience with code, not just with a book, giving me the confidence to code the rest on
my own.

TIP: Version control will save your life one day, so I recommend you start using it now. I know
for a fact that one or two weeks of backtracking and shouting “why doesn’t this work today!”
would have occurred if I didn’t have good version control in place for Snow Reports.

I’ve used Subversion before when working with a larger agency, and I have never been pleased
with it, so I roll with Git. Git is super lightweight, easy for a designer to understand, and doesn’t
require a complex server-repository thingy to use, unless you have multiple people working on
your application at the same time.

Once you install Git, using it is as easy as initializing a Git repository right in your projects
directory, adding any files you create to the repository, and making commits whenever you
want to log a point that you might need to come back to.

Version control really will save you, so please look into it, or have a friend who knows it help
you with it.

CHAPTER 10: Snow Reports for the iPhone 225

Testing and Deploying
I won’t spend long explaining testing and deployment, as other higher minds could
speak more about this than I, but I will make a few points.

Beta Testing
When testing your application, don’t simply send it out to ten people and ask them to let
you know what they think. Send it to the people who would be potential customers. For
example, I sent Snow Reports to people I knew were into winter sports, people who
would understand the point of the application and have incentive to test it. Simply
sending your application to someone who has no frame of reference is just asking for all
kinds of misleading results. For example, I would give horrible reviews for an application
that tracks football statistics, since I know next to nothing about the sport and don’t
watch it at all. So why would I test a football application?

If you do have to send your application to people who are not potential users, at least
give them a few use cases. For anyone that I sent Snow Reports to who wasn’t into
winter sports, I usually put a disclaimer in the e-mail such as, “Pretend you are a
snowboarder living in Virginia and want to track all Virginia resorts, and maybe those in
some surrounding states.” You don’t want to lead your beta testers, but at the same
time, you have to give uninformed users some direction.

Deploying Your Application
If you know anyone who has successfully submitted an application to the App Store,
offer them a few pints in exchange for some hand-holding when you submit your
application. If you don’t get deployment right, it will turn into your worst nightmare
because once you submit, you don’t get a response from Apple for a few days or weeks.
You don’t want to wait all that time only to find that your provisioning file wasn’t right or
some other tiny text value wasn’t filled in correctly. Find a friend or associate and have
them give your project the once over before you send it off.

Details of the UI
Now that we’ve gone through the process I used to develop Snow Reports, let’s take a
closer look at the UI and some of the decisions I made there, for better or for worse.

CHAPTER 10: Snow Reports for the iPhone 226

The Shape of Things
Since the main interface allows users to swipe from resort to resort, I wanted each one
to have a self-contained feel. I decided to go with the floating box, as I like to call it,
much like the default Weather application or any Dashboard application, for each
resort’s view. The OnTheSnow.com logo definitely had to be in there, and it fit very well,
using the shape of the background mountain artwork, when I attached it to the top of
the frame.

Colors
The background has a rough snow and ice feel but nothing too detailed or with too
much contrast. I want it to support, not compete with, the data that sits on top. I didn’t
want to go for photo-realistic, just an artistic texture that fit the theme.

For text colors, I used two tones of blue-grey, a darker tone for data values and a lighter
tone for labels. For buttons or other interface element that a user could touch, I decided
to go with the maroon link color from OnTheSnow.com. Most other colors are darker or
lighter shades of what was used in the background, so they do not stand out so much.
It’s a limited palette, but I knew I had a splash of color coming.

Sign of the Times
While I was happy with the UI so far, I think that every little interface, especially a
custom-designed iPhone interface, needs a bit of flair, something small that gives it a
splash of color and depth. For Snow Reports, this was the Open/Closed sign (see
Figure 10-7).

OnTheSnow.com provides three states for the status of a resort: open, closed, and temporarily
closed (which usually means it’s closed for maintenance). I settled on green, red and yellow
respectively to signify the differences to a user without having to make them read the sign
(anything that can be recognized at a glance in an application is

Figure 10-7. Different status signs for a resort.

CHAPTER 10: Snow Reports for the iPhone 227

I definitely wanted the 3-D top-lit feel shared by any good OS X icon. It needed to sit just
slightly off of the interface, so I had to figure out how it should stick. Should I nail it
down or hang it from some elaborate rope and hook? Call me OCD, but I decided that,
since these reports move from left to right, a rope-hung sign would reveal itself for the
fake that it was, as it should swing a bit when moved. I went with a single nail to hold the
sign firmly in place. To further enhance the feel, I manually made the drop shadow and
skewed it a bit to give the impression that the ends of the sign curl up a bit, since the
nail pulls the middle tight.

Buttons
Since the Info button is a standard provided by the iPhone SDK, I didn’t want to mess
with it except to change the color. For my other buttons, however, I wanted 3-D buttons
but nothing too flashy—no reflections or gloss effects, just a subtle gradient to signify a
rounded shape and a bit of drop shadow to offset it from the background (see Figure
10-8). For the Call and Web buttons (the Map button was not implemented in the initial
launch of Snow Reports), I got lucky. I had limited space, so type would have to be to
small, but since both of these features are iPhone applications themselves, why not use
their icons?

Figure 10-8. The various buttons in Snow Reports

I knew I would need a disabled state for the buttons, since not all resorts have a web
site or provide weather reports. I also decided on using a highlighted state since the
buttons were large enough that a full finger didn’t cover them up. Also, when a
processor-intensive event is fired, like loading a new view when you tap the weather
button, there is a pause while the hardware chugs away at the request. The highlighted
state of the button is held until that process is complete. It’s a small thing, but it
provides a visual confirmation to the user that “Yes, you did press me, as you can see
I’m still pressed; give me a second, while I’m doing what you asked.” Without this visual
cue, users could easily thing that they missed the button and keep trying to tap it.

CHAPTER 10: Snow Reports for the iPhone 228

Typefaces
Since Helvetica is used through most of the Apple standard UI objects, I saw no reason
to break that convention for majority of the type. I did run into space limitation for some
of the labels, especially since the UI is localized and the Swedish word for Lifts got a
little long (see Figure 10-9).

Figure 10-9. Labels set in Silkscreen typeface

I ended up using Silkscreen by Jason Kottke (http://kottke.org/plus/type/
silkscreen/) for a few reasons (see Figure 10-10):

 Antialiased typefaces get fuzzy below 9-point, so I needed a pixel font.

 Silkscreen is about as small as you can get and remain legible. There
are many other pixel fonts, but Silkscreen is the only one that has a bit
of personality to it with rounded corners on the bowls, loops, and
shoulders of each character.

 Most importantly, I knew that these labels wouldn’t be read every time.
Once users knew where the lift data was, they wouldn’t need to read
the label each time; they would just look at the data. Silkscreen is
great when it comes to labels and small bits of text, but for general
reading, pixel fonts are too small in my opinion.

 I used text shadows on pretty much every bit of text, but in the reverse
sense (see Figure 10-10). I used a color lighter than the background to
represent the highlighted edge at the bottom of an embossed
character, enhancing the impression of the background texture.

CHAPTER 10: Snow Reports for the iPhone 229

Figure 10-10. Close-up of text-shadow embossed technique.

Loading vs. Splash Screen
Now, you will find many schools of thought on whether to present users with a loading
screen or a splash screen. I’ve always found loading screens to be useful, while splash
screens tend to irritate me.

What is the difference in the two screens? A loading screen (see Figure 10-11) indicates
that something is going on behind the scenes, whether the application is gathering data
from the server or just loading all of its assets into memory. The user isn’t left
wondering what is going on, the loading screen tells them via an actual loading bar, a
simple activity indicator, or just a Loading. . . label.

Figure 10-11. The Snow Reports loading screen

CHAPTER 10: Snow Reports for the iPhone 230

Splash screens mostly consist of an elaborate graphic surrounding the name or logo of
the application. A splash screen serves no purpose to the users; it’s usually used in the
belief that it will create brand awareness or something like that. Most of the time, splash
screens are used as loading screens, but fail to notify the users of their purpose,
resulting in the sense that the screen is an ad of sorts, being displayed before a user
gets to the actual application.

In the end, I recommend that you stay away from splash screens and only use loading
screens if necessary.

Reporting the Day
One final touch was the custom formatting for the date of the report. I’m a huge fan of
the little human touches that Apple implements throughout its desktop, and one my
favorites is the use of “Today” and “Yesterday” for e-mail dates. I decided to do the
same for the report date.

Coming from a Web Design Background
As I mentioned, the majority of the design work I do is for the Web. Since both a web
site and an iPhone application are based on user interaction, they share many design
principles. At the same time, some differences change the game completely. I’d like to
share a few key points that I’ve discovered and always try to keep in mind.

Apple already provides majority of the UI objects you will need for your application. Take
great care in creating new design patterns for interaction; this isn’t the Wild West of UI
design like the Web can be sometimes. Respect the fact that your users have become
familiar with the common objects in iPhone applications, and they will expect your
application to behave the same way. A table is a table is a table, and you shouldn’t go
reinventing it just because you don’t want to do things same as everyone else.
Convention is your friend, not a hindrance to your design ego. In Snow Reports, I
designed a very custom UI for reading reports, but I used the standard UI objects when
it came to searching and managing tracked resorts (see Figure 10-12).

Figure 10-12. The standard UI objects used in the resort management areas of the application

CHAPTER 10: Snow Reports for the iPhone 231

NOTE: Apple provides the iPhone Human Interface Guidelines document specifically for the
iPhone, and it’s a great tool for anyone new to iPhone design and development. I won’t
reiterate what’s in that document; I just recommend that you take an evening and review it.

Use cases go well beyond how a user will interact with your application: You have to
take into consideration where the user will be (if you can) and how long your average use
case is (I think it’s safe to assume that iPhone applications have much shorter use cases
than web sites). If your application uses dynamic data, you will also need to test with 2G
and 3G connections to see how things perform. These are all very hard use cases to
predict, so take them all with a grain of salt—but take them just the same.

Users are touching your application, not clicking with the frequency and control of a
mouse. Buttons should be large enough that a user can easily tap them and maybe still
see a part of what is being pressed. Spacing between buttons is key to avoid misses.

I think the fold concept applies heavily for iPhone applications, so work to keep key
information above it. Just so we’re all on the same page, the fold refers to the bottom of
the screen, the point at which you can’t view the rest of the content without scrolling.
The term dates back to laying out a newspaper’s content so the main stories were
above the physical fold of the front page (I think it’s about time for a new term that
applies to a screen, but let’s not digress).

For something like a table, scrolling is completely acceptable, and there isn’t much you
can do about the fold with tables. But for custom interfaces, if you have scrolling, you
need to provide some indications that there is more information below the fold, because
the iPhone has no constantly present scrollbar as an indicator. If your application has
paging, like Snow Reports does, be sure to include a UIPageControl, which notifies the
users of the existence of other pages.

One great thing about moving from the web to the iPhone is the controlled environment.
You don’t need to worry about different environments or platforms or creating browser-
specific CSS, and you can use PNG files all day long. You do have to check the
application when Apple updates the iPhone operating system, but this is a walk in the
park compared to what I have to do for every web project.

Designing an Icon
I like to think that the icon is the logo of sorts for your application. It’s the first thing that
someone looks at in the App Store, and it’s the representation of your application on a
user’s phone. I have a few guidelines that I use for icons:

CHAPTER 10: Snow Reports for the iPhone 232

 There should be one focal point; one element in your icon design gets
all of the attention. If you have multiple elements, they should support
this focal element by helping point the eye toward it, instead of to
themselves. In rare cases, I can see the use of more than one focal
point, but only if it’s not possible to convey the purpose of the
application with one. For example, the Maps application icon has two
focal points: a red pin and a highway sign. Each one on its own may
convey the use of the application, but together, the message is
clearer.

 57 × 57 is a tiny space, so keep things simple. I usually stay away from
using photographs or text. It’s an icon, not an interface. You want it to
be memorable, and giving users a lot to look at doesn’t make it
memorable; it makes them forget most of it. If a user can’t figure out
what your icon is within a second or two, it’s not working.

 Make it fun. Icons are fun little things to work on, so I think the content
of an icon should inspire someone to use the application and be
generally uplifting. This is one of the major attractions of OS X icons. If
you look at most of the major titles out there, their icons seem to have
a sense of humor and enjoyment.

When it came to designing the icon for Snow Reports, I was in a bit of a predicament. At
the time of Snow Reports release, there were already two snow condition-reporting
applications, and both of them used a snowflake for their icons. So out went that idea,
and in came the decision between a snowboarder and a skier (see Figure 10-13).

Figure 10-13. Choosing an icon design: skier versus snowboarder

My guess (based on no major research) was that overall skiers outnumber
snowboarders, but would more skiers or snowboarders have iPhones? Who do I
please? Will I offend one or the other?

CHAPTER 10: Snow Reports for the iPhone 233

Instead of doing a bunch of research, I left it to the flip of a coin, and the snowboarders
won. It’s a little ritual I do for every version, and so far the snowboarders just seem to
have the luck. I’ve gotten plenty of reviews that say, “Love the application but can you
please change the icon to a skier or a snowflake?” Inevitably, two reviews later,
someone says, “Great application, and keep the snowboarder icon, because we rule the
slopes!” The saga continues.

One thing I was sure of was that I wanted a different look for the icon, in relation to the
standard gem glossy icon. I wanted a snow texture, so I scrapped the default rendering
and brought in a little bit of background noise combined with some lighting and voilà—a
textured snow icon!

Summary
I hope you enjoyed reading this chapter, and my only wish is that you found at least one
sentence that made you think, “That’s a pretty good idea; maybe I’ll try that next time.” I
definitely enjoyed writing this chapter. I don’t think that anyone can call themselves an
expert in the iPhone development field just yet, as I believe the App Store and even the
iPhone itself are still very much in their infancy. So I can easily admit that developing for
the iPhone has all been a learning experience, sometimes painfully so. A whole new
medium has opened up for designers and developers. Apple has lit the way for a whole
new style of mobile computing, and I can only hope that they keep the innovation
coming.

Thank you for your time. I wish you the best of luck with your applications, and if we
should ever meet, the first pint is on me. Cheers!

235

235

Epilogue: Reactive Music
and Invisible Interfaces
Andie Nordgren, Interactive Design and Product Management RjDj

You are walking along a busy street, music player in your pocket, headphones in your

ears. As you speed up your steps a bit, the deep techno drum beat in your ears speeds

up with them. Noise from the street is transformed to chords as the parts of a melody

fade and grow stronger again. You can't help but hum and sing as your voice is

transformed into an bouncing pitch-shifted echo, cut up and synced with the beat. As

you step inside the silent but echoing halls of a big bank building, the tempo drops and

the music changes state into a more mellow track.

RjDj is a player for reactive music that lets you be a reality jockey - influencing and

creating sound in collaboration with pre-written audio scenes that react to the

environment in different ways. The user interface is not primarily the visuals on screen,

but how the user moves in the world, seeking out or creating interesting sounds to feed

into the RjDj scenes, or moving and interacting with the device itself. These methods of

interacting with the soundscapes created by RjDj are all user interfaces - but they are

invisible and carry some very different affordances and emergent patterns than the

restrictions of visuals on a screen.

I won't go into the details of how RjDj works in this epilog; I'm just going to give you

some food for thought that the interface is much more than the pixels on the screen.

How we got here and why we're doing it
Michael Breidenbruecker is the founder of Reality Jockey Ltd and one of the original

co-founders of Last.fm; I've included a number of his insights in this section. The idea

for RjDj came at a rave in Vienna in 1999 when he realised that some people find drugs

can change the perception of techno beats and thought the same effect could be

accomplished by altering the perception of your accoustic environment by using

real-time music analysis and synthesis.

Epilogue: Reactive Music and Invisible Interfaces 236

"I did the first prototype of RjDj by soldering together pieces of
hardware, and the first software prototype in 2000. But at the time, the
music market wasn't ready for the concept, and there was no widely
distributed player hardware that could support the idea. The project
rested while Last.fm took off.

"The idea of Last.fm was based on RjDj. Both platforms are based on
the concept of personalized music. But Last.fm is actually personalizing
playlists and not music whereas RjDj is personalizing the song itself.
This only became possible because of advances in the technology
sector. It took audio technology almost 10 years after my initial idea to
get into shape for RjDj."

Michael places RjDj in a movement in music where the sound studio has evolved from

an institution, to the home PC and now all the way to the personal mobile device.

Around 2000 he saw music technology researchers shifting from mimicking real

instruments to looking more and more at audio analysis - at having computers listen to,

understand, and react to music and audio.

Miller Puckette, Theodore Apel, and David Zicarelli envisioned in a research paper in

19981 that audio could now take center stage as a control input for real-time computer

music production. Using audio as an interface to control audio, along with a range of

other sensors. This concept is at the core of reactive music and the idea of RjDj.

When the iPhone came out in 2008, it was a music device that could both play music

and had the potential to generate it - it was a sound studio in your pocket. This triggers

a lot of interesting questions, like why we are not distributing original stems och multi

track material to the pocket sound studio instead of just a single recorded version of a

musical composition.

"Or, the most important question, what kind of music can we create
with a totally mobile sound studio which is always with you, is able to
listen, is able to detect if you are moving or not, how you move and
where you are on this planet, and also has a always on network
connection?"

Michael thinks it will be a community effort to explore these new possibilities, and that

the role of RjDj is to provide the infrastructure for that exploration.

1 Miller S. Puckette, Theodore Apel and David D. Zicarelli, Real-time Audio Analysis Tools for

Pd and MSP. In Proc. Int. Computer Music Conf., 1998, pp. 109--112

Epilogue: Reactive Music and Invisible Interfaces 237

"We are opening our doors and invite creatives and coders out there to
get wild with everything."

RjDj started in October 2008 and the mission was to build a solid foundation for reactive

music.

"We did not just want to build yet another iPhone app, our goal was to
build a framework for artists, producers and consumers."

Today RjDj offers a framework consisting of a composition suite, a distribution platform

for RjDj scenes, the RjDj player, recording support, and an RjDj portal centered around

user recordings and scenes.

Using sensors as reactive music interfaces
RjDj as an application is just a runtime environment for reactive music - it presents the

scenes in a standard Cocoa interface. The scenes themselves carry the interesting

interfaces by generating music that reacts to user interactions in one way or another.

When listening to reactive music with RjDj, most of the time users are not even looking

at the screen. They are looking at the world around them, or thinking about what sounds

could be created to enhance their experience. The interface is pervasive in the sense

that the whole world can be used as input, and unexpected sounds and movements

incorporated in a way that neither we as makers of RjDj or the creator of the scene could

have anticipated. The recording feature of RjDj allows the user to capture these

moments of unexpected or trippy delights.

Sensors of all sorts can be incorporated into the invisible user interface - geolocation,

time, and analysis of movement or sound like walk detection or recognition of different

audio environments and patterns. We are creating a tool box of interfaces for scene

creators to use in their musical explorations, and in the same way that the iPhone

touchscreen is a potential blank slate to do anything when it comes to visual user

interfaces, the use of sensor input is huge space of possibilities that often blur the line

between life and interface.

Here are a couple of examples of artists using RjDj:

 Roman Haefeli uses external sounds to compose music. Roman's

scene Worldquantizer is listening and sampling percussive sounds of

the environment of the listener. The scene then re-arranges those

samples in changing beat patterns. When you are in Worldquantizer

and your environment is quiet you can't hear anything. As soon as

something cracks it is sampled and brought into a repeating pattern.

When you use Worldquantizer on the move it feels like memories of

recent events you just passed by keep popping up in your mix.

Epilogue: Reactive Music and Invisible Interfaces 238

 Amaury Hazan uses movement of the device as an interface to a track

of beats and samples in his scene Strike.

For the first time, a mobile music player with a global audience has the computing

power to both generate music in real time, and a powerful array of sensor possibilities.

RjDj is an exploration of what happens to music when it becomes location based,

reactive, context-based and never ending, when there is a sound studio in your pocket.

 239

Index

■ Numerics
37signals, Basecamp, 61

■ A
accelerometer

adding game controls, Falling Balls, 169–

171

additional iPhone capabilities, 164

didAccelerate method, 170

resetting game, TanZen, 103

setting view controller as delegate to,

170

UIAccelerometerDelegate protocol, 169

viewDidLoad method, 170

action, multitouch interface, 12

activity indicators

responsiveness and feedback, 151

activity streams, Brightkite, 45, 46

adaptive feature, Google Reader, 37

Address Book, iPhone SDK, 47

integration, Brightkite, 56

alerts

modal view, iPhone OS, 136

UIAlertView class, 124

animations

animating interface controls, Postage,

146

building the HUD, Gravity Pods, 177

Core Animation tool, 142

Motion graphics tool, 153

Quartz Composer tool, 159

running stick figure, Falling Balls, 168

antialiased typefaces, 228

App Cubby, 1, 2

application developer experiences, 3, 4

contracting out coding, 4

App Store

see also iPhone applications

opening of, 99

submitting applications to, 215

submitting TanZen to, 100

surviving on, 105

Apple

efficiency of extra taps over ambiguity,

10

hierarchical data entry paradigm, 5

iPhone Human Interface Guidelines, 5,

70, 231

Apple iPhone see iPhone

Apple’s multitouch interface see multitouch

interface

application consistency

iPhone Human Interface Guidelines, 5

application context, 140–146

Application Definition Statement, 32

application developer experiences see
developer experiences

application flow

creating, Postage, 146–152

hints about flow, 147–148

left-to-right flow, 146

showing not telling, 148–150

tuning responsiveness and feedback,

151–152

application-level preferences, iPhone OS,

133–136

applications

see also iPhone applications

keeping applications focused, 130

making applications native, 33

art techniques, Postage, 157–158

ascender, letter anatomy, 188

ATM finder, 47

audience, Application Definition Statement,

32

audio pronunciations

Flash of Genius: SAT Vocab, 125

Index 240

■ B
Balsamiq Mockups, 153

Barnard, David, 1

Basecamp, 61

dashboard view, 66, 67

processing messages, 72

project view, 67

baseline, typeface anatomy, 187

beta testing

usability testing compared, 14

bitmap fonts, 186

Bondo, Joachim, 21

Breidenbruecker, Michael, 235, 236

Briefs tool, 153

Brightkite, 43–56

activity streams, 45, 46

Address Book integration, 47, 56

as Facebook client, 50

as Flickr client, 50

as Twitter client, 50

checking in, 45, 46

controlling memory usage, 55

designing for first-time users, 51–53

Discover and Invite feature, 56

Double Encore, 44

drill-down function, 54–56

Friends tab, 53

I am screen, 47, 49

I am tab, 53

location selection, 46, 47–48

location-aware social networking, 43

More tab, 49

moving from web to mobile, 44–51

navigation, 54–56

Nearby tab, 53

posts, 45, 54

reverse geocoding (Core Location), 46

Settings tab, 52

sign-up process, 52, 53

tab bar interface, 48, 49

technologies, 42

wireframes, 48

Brightkite icon, 41

Burcaw, Dan, 41, 44

buttons

coding decisions, TanZen, 88

custom buttons, Outpost, 71

designing, 122–123

efficiency of extra taps over

ambiguity, 12

hidden buttons moving stick

figure, 169

potential problems with context, 143

sizing of, 117

UIButton class, 117, 121

visually confirming user tap, 227

■ C
Calendar application, 5, 6

Camera application, 141

cap height, letter anatomy, 188, 189

CGPoint class

building the HUD, Gravity Pods, 178

converting UITouch into CGPoint, 169

characters, typography, 186

check boxes

Apple, 73

Mail, 74

To-do check boxes, Outpost, 75

checking in, Brightkite, 45, 46

classes

coding decisions, TanZen, 83

FontShuffle, 198, 200–202

typefaces, 198–199

Cocoa Stuff, 21

coding

contracting out coding, 4

Flash of Genius: SAT Vocab, 118

sample code files, 223

version control, 224

coding decisions, TanZen, 82–88

color selection

UI design, Snow Reports, 226

Compass application, 141

compete.com, 218

consistency in applications

iPhone Human Interface Guidelines, 5

Contacts, problem with Helvetica in, 190

context

application context, 140–146

Postage, 141–142

potential problems with, 143–144

user’s mental model, 141

controls

potential problems with context, 143

using familiar controls, Postage, 144–

146

controls, iPhone SDK

separating tasks/data views, 136

Index 241

Core Animation tool, 142

Postage, 159

Core Location, 47–48

iPhone SDK, 46

■ D
Dashboard screen, Outpost, 63, 65, 70, 71

dashboard view, Basecamp, 66, 67

data control, Google Reader, 30

data entry

efficiency of extra taps over ambiguity,

10–14

fingers as pointing device, 96

focus, 8

Gas Cubby, 8, 9

hierarchical data entry paradigm, Apple,

5

Mail application, 8

navigation, 9

Next button, 9, 10

Previous button, 9, 10

shortcut toolbar in Safari, 10

streamlining data entry, 7

data entry view

Calendar application, 6

usability testing, Trip Cubby, 16, 17

data providers

acquiring third-party resources, 62, 218–

219

data views

separating, Postage, 136–140

Deep Green, 21, 23

Delicious Library application, 140, 141

deployment, Snow Reports, 225

descender, letter anatomy, 189

design

design document, TanZen, 81–82

Outpost, 66–72

user iPhone expectations, 230

design process, Snow Reports, 216–225

acquiring third-party resources, 218–219

creating flowchart, 219–221

creating wireframes, 221–222

defining goals, 217

defining project, 216–218

designing small projects before

prototyping, 223

developing and programming, 223–224

Project Planner document, 216

skinning design, 222–223

developer experiences

see also iPhone development; developer

tips/recommendations

App Cubby brand, 3, 4

button sizing, 117

challenges of iPhone development, 163

coming up with ideas, 79

contracting out coding, 4, 62

design professionals, value of, 119, 126

ease-of-use vs. looks, 216

efficiency of extra taps over ambiguity,

10–14

eliminating text, 87

icons, 118–120, 231–233

iPhone Human Interface Guidelines, 5,

231

repurposing existing interface, 107

resetting application, 103

reusing code and ideas, 106

size inconsistency of iPhone simulator,

85–86

starting from non-programming

background, 113, 213

surviving on App Store, 105

TanZen design, 81

user’s iPhone design expectations, 230

using prototypes, 223

working in small team, 72

developer tips/recommendations

avoid icon overload, 150

avoid problems with context, 143–144

choose appropriate orientation, 116

control memory usage, 55

create flowchart for user interaction,

219–221

create prototypes, 152

design for you own expectations, 31

follow design process, 216–225

keep applications focused, 130

make applications native, 33

make apps desirable, not just functional,

89–95

make choices, minimize preferences,

134

one task at a time for users, 138

use hints to indicate flow, 147

use version control, 224

write specifications, 154

developers

Barnard, David, 1

Bondo, Joachim, 21

Index 242

Burcaw, Dan, 41

Ellis, Brad, 127

Kaneda, David, 59

Kemper, Craig, 77

Novikoff, Tim, 111

Parrish, Chris, 127

Peters, Keith, 161

Siebert, Jürgen, 181

Wilson, Eddie, 209

development techniques, Postage, 152–159

creating prototypes and mockups, 152–

154

devices see iPhone

didAccelerate method, accelerometer, 170

didReceiveMemoryWarning method, 55

differentiator, Application Definition

Statement, 32

difficulty levels, TanZen, 86

digital fonts, 185, 187

DIN 16518 (Deutsches Institut für Normung)

classification of typefaces, 194

Discover and Invite feature, Brightkite, 56

Double Encore, 41, 44

Dovey, Jim, 62

dragging and dropping, Gravity Pods, 172,

175, 178

drill-down function, Brightkite, 54–56

dual-screen tab bar, Outpost, 68

■ E
Eddit Incorporated, 209

Edit screen, Calendar, 6

educational applications

Flash of Genius: SAT Vocab, 113

PencilBot ESL, 41

Ellis, Brad, 127, 128

e-mail

sending with attachment, 135, 136

■ F
Facebook client, Brightkite as, 50

Falling Balls, 164–171

accelerometer, 169–171

adding game controls, 168–171

converting UITouch into CGPoint, 169

original game, 164

running stick figure, 166

hidden buttons moving stick figure,

169

Tangerine Panic version of, 165

technologies, 162

Wilhelm scream, 166

Falling Balls icon, 161

families, typefaces

FontShuffle, 203–206

FAQ

importance of intuitive interface, 124

features

additional iPhone capabilities, 164

defining in design process, 217

design decisions, TanZen, 81, 83, 88

design decisions, Trip Cubby, 10, 14

Flash of Genius: SAT Vocab, 125

user-induced feature creep, 103

Feed view, Google Reader navigation, 34,

35

feeds, Google Reader, 26–29

individualizing views, 37

navigational options, 33

FF Bokka Shadow typeface, 201

FF Unit typeface, 190, 191, 192

figures

running stick figure, 166

finger taps

efficiency of extra taps over ambiguity,

10–14

fingers as pointing device, 96

controlling running man, Falling Balls,

169

separating tasks, Postage, 138

Flash

iPhone development from, 162, 163

Flash of Genius: SAT Vocab, 111, 113–126

algorithm determining flashcards, 124

audio pronunciations, 125

button sizing, 117

buttons, designing, 122–123

choosing appropriate orientation, 116

development process, 118

flashcard process, 114

flashcards, 114

designing, 121–122

flipping, 114, 116

Genuis at Work alert, 124

icon development, 118–120

Info button, 123

launching, 125

study mode, 121

Index 243

technologies, 111

testing, 124–125

UIAlertView class, 124

UIButton class, 121, 123

UIWebView class, 121, 122

flashcard applications, 114

choosing appropriate orientation, 116

UI design

button sizing, 117

hand placement, 116

inappropriate orientations, 116

mental model inconsistency, 116

Flickr client, Brightkite as, 50

flipping flashcards

Flash of Genius: SAT Vocab, 114

usability testing, 125

mental model inconsistency, 116

flipping objects, TanZen, 84, 97

flow see application flow

flowchart

design process, Snow Reports, 219–221

focus

data entry paradigm, Apple, 8

font styles

UITextView class, 121

UIWebView class, 121

FontBook, 183, 195–198

fonts, 185

anatomy of letters, 187–189

bitmap fonts, 186

digital fonts, 185, 187

FontShuffle, 206–207

installation of third-party fonts on

iPhone, 184

optical size and readability, 189

outline fonts, 186

pixel fonts, 228

selecting colors/styles, Postage, 132

vector fonts, 186

FontShop AG, 181, 183

categorization of typefaces, 197–198

FontShuffle, 181, 183–184, 199–207

classes and orders of typefaces, 198–

199

derivation of name, 186

search level 1 (classes), 200–202

search level 2 (orders), 202–203

search level 3 (families), 203–206

search level 4 (fonts), 206–207

Shuffle button, 204

technologies, 182

typeface name search, 201

Fried, Jason, 62

Friends tab, Brightkite, 53

■ G
games for iPhones

see also iPhone applications

Bug Out!, 161

building prototype, 107

changing rules of games, 107

Deep Green, 21, 23

Dust, 162

Falling Balls, 161, 164–171

Gravity Pods, 171–178

iAttractor, 162

making desirable, not just functional, 89–

95

pentominoes, 106

sizing games to fit screen, 91, 108

tangrams, 80

TanZen, 79–105

Vector Blocks, 161

Wire Draw, 162

Word Spin, 128

Gas Cubby, 1

data entry, 8, 9

streamlining data entry, 7

Genuis at Work alert

Flash of Genius: SAT Vocab, 124

gestures see touch gestures

Git version control, 224

glyphs, 186

distinctive glyph features, 191

goals, defining in design process, 217

Google Reader iPhone client, 21, 23–39

Application Definition Statement, 32

choosing to develop newsreader, 23

data control, 30

feeds and groups, 27–29

improving newsreader experience, 31–39

individualizing views, 36–39

making applications native, 33

marking items read/unread, 31

navigation, 29–30

improving, 33–36

news items, 25

next steps, 39

pitfalls of current newsreaders, 24–31

testing, 39

toolbar visibility, 30

Index 244

web site access, 24

Google Reader web site

groups of feeds, 26

graphics see animations

Gravity Pods, 171–178

building the HUD, 174–178

dragging and dropping, 172, 175, 178

fine control of pod movement, 172–173

original game, 171, 172

technologies, 162

Grotesque typeface, 192

groups of feeds, Google Reader, 26–29

navigational options, 33

Gruber, John

comment on Deep Green, 21

keeping applications focused, 130

■ H
Haefeli, Roman, 237

Hamburgefontis isogram, 203, 205

Hazan, Amaury, 238

Health Cubby, 1, 19

help

importance of intuitive interface, 124

Helvetica typeface, 191

Helvetica typeface family, 184

iPhone typeface, 190

problem with Helvetica in Contacts, 190

hinting algorithms, 191

hints

application flow, 147–148

importance of intuitive interface, 124

TanZen, 104

horizontal button bar, Postage, 145

hints about flow, 147, 148

HUD (heads-up display)

building, Gravity Pods, 174–178

■ I
I am screen, Brightkite, 47, 49

I am tab, Brightkite, 53

IBAction methods, view controller, 174

icons

avoiding icon overload, 150

designing icons, 231–233

importance of icons, 118–120

potential problems with context, 143

using Apple icons, 150

identification, multitouch interface, 12

Illustrator, 63

image effects, Postage, 133

imageNamed method, UIImage class, 167

Info button

Flash of Genius: SAT Vocab, 123

increasing button size, 117

Snow Reports, 227

Info screen, TanZen, 90, 91

Infrared5, 161

Interface Builder

building the HUD, Gravity Pods, 174,

175

creating elements, Outpost, 63

iPhone development, 163

trying out designs, 153

interface code

running stick figure, Falling Balls, 167

interface design see UI design

interfaces

efficiency of extra taps over ambiguity,

10–14

invisible interfaces, 235, 237

keeping applications focused, 131

intuitive interface

importance of, 126, 164

Flash of Genius: SAT Vocab, 124

Postage, 130

invisible interfaces, 235, 237

iPhone

applications suggesting how to hold, 117

choosing testing devices, 152

importance of testing on, 85, 96–98

installation of third-party fonts, 184

navigation, 29–30

reasons to design for, 212

registering key touches, 123

revolutionizing UI design, 4

tuning responsiveness and feedback,

151–152

iPhone accelerometer see accelerometer

iPhone applications

see also games for iPhones

Brightkite, 43–56

building prototypes, 19, 107

design process, 216–225

ease-of-use vs. looks, 216

Falling Balls, 161, 164–171

fit and finish, 18–20

Flash of Genius: SAT Vocab, 111,

113–126

Index 245

FontShuffle, 183–184, 199–207

Gas Cubby, 1, 7, 8

Google Reader, 21, 23–39

Gravity Pods, 171–178

Health Cubby, 1, 19

keeping applications focused, 130–132

making applications native, 33

Outpost, 61–75

Postage, 128, 129–160

RjDj, 235–238

Snow Reports, 209, 211–233

TanZen, 79–105

Trip Cubby, 1, 15

usability testing, 14–18

user design expectations of, 230

Zentomino, 106–109

iPhone applications (misc)

91st PGA Championship, 41

ATM finder, 47

Bad Decision Blocker, 42

Bug Out!, 161

Calendar, 5

Camera, 141

Compass, 141

Deep Green, 21, 23

Dust, 162

Eucalyptus, 141

iAttractor, 162

Maps, 141

Messages, 141

Notes, 141

PencilBot, 41

Pirate Glossary, 42

PublicEarth, 41

Streaks, 209

Tango Card, 41

Tint Color, 42

Vector Blocks, 161

Voice Memos, 141

Wire Draw, 162

Word Spin, 128

iPhone developer experiences see
developer experiences

iPhone developers see developers

iPhone development

see also developer experiences

additional iPhone features, 164

avoiding overuse of touch gestures, 164

basic steps for Snow Reports, 216

challenges of, 163

Double Encore, 44

Interface Builder, 163

no mouse or keyboard, 163

iPhone Human Interface Guidelines, 5, 70,

231

iPhone OS

alert/modal view, 136

application-level preferences, 133–136

memory watchdog process, 55

navigation bar, 136

requesting Core Location data, 48

selecting multiple e-mail messages, 73

sending e-mail with attachment, 135,

136

tab bar, 136

iPhone programming

reasons for learning, 215

iPhone screen see touch screen

iPhone SDK

Address Book, 47, 56

controls for separating tasks/data views,

136

Core Animation tool, 142

Core Location, 46, 47–48

tab bar interface, 49

using Apple icons, 150

iPhone simulator, size inconsistency of, 85–

86

iPhone status bar, including, 86

iPhone UI

efficiency of extra taps over ambiguity,

10–14

isograms, 203

Item view, Google Reader navigation, 34

■ J
JPEG file format, Postage, 157

■ K
Kaneda, David, 59, 61

Kemper, Craig, 77

keyboard

focused data entry, 8

iPhone development without, 163

registering key touches, 123

streamlining data entry, 7

keyboard shortcuts

efficiency of extra taps over ambiguity,

13

Index 246

■ L
Last.fm, 235, 236

launching

Flash of Genius: SAT Vocab, 125

letters, anatomy of, 187–189

Little White Bear Studios, 77

loading screen, Snow Reports, 229

location selection, Brightkite, 45, 46

Core Location, 47–48

Lucida Grande typeface, 190, 192

Lucida typeface, 200–201

■ M
Mail application

check boxes, 74

data entry, 8

sending screen, 145

Maps application, 141

Marker Felt typeface, 190

Masters Mode, TanZen, 103

May, Martin, 43

meditation, games without stress, 89

memory watchdog process, iPhone OS, 55

mental model see context

Message screen, Outpost, 65, 66, 72, 73

Messages application, 141

Milestones screen, Outpost, 69, 70

mockups see wireframes

modal interaction, 139

modeless interaction, 139

modes

rotating objects, TanZen, 93

modularity, TanZen, 83

More tab, Brightkite, 49

Morfunk, 59, 61

Motion graphics tool, 153

mouse

efficiency of finger taps compared, 11,

12

iPhone development without, 163

moveXyz methods, Interface Builder

building the HUD, Gravity Pods, 174,

178

moving objects

fine control, Gravity Pods, 172–173

TanZen, 83, 96–98

multitouch interface

additional iPhone capabilities, 164

efficiency of extra taps over ambiguity,

10–14

shift from mouse to multitouch, 11

music device/player

RjDj, 235–238

■ N
navigation

data entry, 9

drill-down function, Brightkite, 54–56

Google Reader, 29–30

improving, 33–36

navigational options, 33

sideways/upward navigation, 29, 30,

33–36

navigation bar, iPhone OS, 136

navigation bar, Postage, 144

separating tasks, 137, 138

Nearby tab, Brightkite, 53

networking

social networking, Brightkite, 43–56

news items, Google Reader, 25

newsreaders

Application Definition Statement, 32

choosing to develop newsreader, 23

Google Reader, 21, 23–39

improving newsreader experience, 31–39

individualizing views of news, 36–39

pitfalls of current newsreaders, 24–31

Next button, data entry, 9, 10

Norman, Donald, 116

Notes application, 141

Novikoff, Tim, 111

■ O
Objective-C

coding decisions, TanZen, 83

learning iPhone programming, 215

object-oriented design, TanZen, 82

objects, flipping, TanZen, 84, 97

objects, moving see moving objects

objects, rotating see rotating objects

OmniGraffle, 63

OnTheSnow.com, 214, 215

acquiring third-party resources, 218–219

orders, typefaces, 198–199

FontShuffle, 198, 202–203

orientation, choosing appropriate, 116

Index 247

outline fonts, 186

Outpost, 61–75

Basecamp API, 61, 62

custom buttons, 71

Dashboard screen, 63, 65, 70, 71

designing, 66–72

dual-screen tab bar, 68

experiences of working in small team, 72

Message screen, 65, 66, 72, 73

Milestones screen, 69, 70

preparatory steps, 61–62

project view, 68, 69

Projects screen, 63

Settings screen, 63

To-do check boxes, 75

To-do screen, 63

wireframing, 62–66

overshoot, letter anatomy, 188

overview, Google Reader

individualizing views, 36–39

■ P
paging

UIPageControl, 231

Parrish, Chris, 127, 128

pentominoes, 106

see also Zentomino

Perforce, 127

Peters, Keith, 161, 163

photo picking task, Postage, 138

hints about flow, 147

responsiveness and feedback, 151

Photoshop

creating mockups for interface design,

154

Health Cubby main view, 19

Outpost using, 63, 65, 71, 72

Postage using, 153, 154

screen fonts, 190

Snow Reports using, 221, 223

Tanzen using, 89, 90, 95, 109

pixel fonts, 228

pixels

inconsistency of simulator and iPhone,

85

precise control of object movement, 172

Pleyer, Rainer, 197

PNG file format, Postage, 157

pods see Gravity Pods

positioning, multitouch interface, 12

Postage, 128, 129–160

animating interface controls, 146

application flow, 146–152

hints about flow, 147–148

showing not telling, 148–150

art techniques, 157–158

avoiding icon overload, 150

context, 141–142

Core Animation, 159

development techniques, 152–159

creating prototypes and mockups,

152–154

horizontal button bar, 145, 147, 148

image effects, 133

initial thoughts, 129

keeping applications focused, 130–132

navigation bar, 144

one task at a time, 138

photo picking task, 138, 147

selecting font colors, 132

selecting font styles, 132

sending e-mail with attachment, 135,

136

sending screen, 145

separating tasks/data views, 136–140

setting application preferences, 133–136

tab bar, 145

technologies, 128

tools used to build, 160

touch screen, 158–159

tuning responsiveness and feedback,

151–152

using familiar controls in, 144–146

wireframes, 152

writing specifications, 154–157

postcard applications

Postage, 128, 129–160

posts, Brightkite, 45, 54

preferences

application-level preferences, iPhone

OS, 134

setting preferences, 133–136

Previous button, data entry, 9, 10

pricing

surviving on App Store, 105

productivity applications

Outpost, 61–75

Streaks, 209

programming

learning iPhone programming, 215

non-programming background, 213

Index 248

progress indicators/tracking

coding decisions, TanZen, 87

responsiveness and feedback, 151

project management application

Basecamp, 62

Project Planner document

following design process, 216

project view, Basecamp, 67

project view, Outpost, 68, 69

Projects screen, Outpost, 63

proof-of-concept applications

coding TanZen, 82

prototypes

see also wireframes

Briefs tool, 153

iPhone applications, 19, 107, 223

Postage, 152–154

puzzle games

pentominoes, 106

tangrams, 80

TanZen, 79–105

Zentomino, 106–109

puzzle selection screen, TanZen, 87, 91

■ Q
Quartz Composer tool, 159

■ R
Ramburgefonstiv isogram, 205

rankings

surviving on App Store, 105

rasterization, 186

reactive music

RjDj, 237–238

readers

Eucalyptus, 141

Google Reader, 21, 23–39

recommendations see developer

tips/recommendations

resetting game, TanZen, 88, 103

resources, third-party

acquiring, 62, 218–219

listing, 218

reverse geocoding, 46

reviews

surviving on App Store, 105

RjDj, 235–238

RogueSheep Incorporated, 127

rotating objects

potential problems with context, 144

TanZen, 83, 93–98, 101–103

tutorial screen, 99

using rotation mode, 93

Zentomino, 107

running stick figure, Falling Balls, 166

hidden buttons moving stick figure, 169

■ S
Safari

data entry shortcut toolbar, 10

sales

surviving on App Store, 105

sans serifs

serif vs. sans serif typefaces, 192

SAT Vocab see Flash of Genius: SAT Vocab

screens

see also touch screen

choosing typeface for, 190–192

hinting algorithms, 191

loading vs. splash screens, 229

sizing games to fit, 91, 108

typeface glyph design, 191

scrolling, 231

table view hints about, 147, 148

selection ring, TanZen, 94, 95, 97, 98, 102

sending screen, Postage, 145

serifs

serif vs. sans serif typefaces, 192

Settings screen, Outpost, 63

Settings tab, Brightkite, 52

shaking iPhone

FontShuffle, 204

resetting game, TanZen, 103

shortcuts, keyboard

efficiency of extra taps over ambiguity,

13

shouldAutoRotateToInterfaceOrientation

method

running stick figure, Falling Balls, 168

Shuffle button, FontShuffle, 204

siblings

navigation, Google Reader, 29, 33, 35

Siebert, Jürgen, 181

sign-up process, Brightkite, 52, 53

Silkscreen typeface, 228

simulator, iPhone

size inconsistency of, 85–86

Index 249

skill levels

coding decisions, TanZen, 86

skinning design

designing small projects before

prototyping, 223

Snow Reports, 222–223

Snow Reports, 211–233

basic development steps, 216

buttons, 227

deployment, 225

design process, 216–225

acquiring third-party resources, 218–

219

creating flowchart, 219–221

creating wireframes, 221–222

defining project and goals, 216–218

developing and programming, 223–

224

skinning design, 222–223

designing icons, 231–233

Info button, 227

loading vs. splash screens, 229

OnTheSnow.com, 214

reason for developing, 214

selling a win-win idea, 214

technologies, 210

testing, 225

typefaces, 228

UI design, 225–230

color selection, 226

status of resort, 226

visually confirming user button tap, 227

Snow Reports icon, 209

social networking applications

Brightkite, 43–56

solution, Application Definition Statement,

32

specifications, Postage, 154–157

splash screens, 230

sports applications

Snow Reports, 209, 211–233

statistics

compete.com, 218

status bar

including iPhone status bar, 86

stress, making games without, 89

study mode

Flash of Genius: SAT Vocab, 121

Subversion version control, 224

Surf Reports, 214

Surfline.com, 211, 214, 215

swiping

flipping flashcards, 125

table view hints about scrolling, 147, 148

usability testing, iPhone applications, 18,

125

using familiar controls in Postage, 144

■ T
tab bar interface, Brightkite, 48, 49

More tab, 49

tab bar, iPhone OS, 136

tab bar, Postage, 145

table view hinting about scrolling, 147, 148

tactile interface

tangrams, 81

usability testing, iPhone applications, 17

Tangerine Panic, 165

tangrams, 80

TanZen, 79–105

advanced puzzle mode, 103

App Store experience, 99, 100

buttons, 88

coding decisions, 82–88

coming up with the idea, 79–81

design document, 81–82

eliminating text, 87

flipping objects, 84, 97

hints, 104

importance of testing on iPhone, 85, 96–

98

including iPhone status bar, 86

Info screen, 91, 100

making desirable, not just functional, 89–

95

minimizing stress, 86

moving objects, 83, 96–98

object-oriented design, 82

piece UI, 83–86

progress tracking, 87

puzzle selection screen, 87, 91

resetting game, 88, 103

rotating objects, 83, 93–95, 96–98, 101–

103

tutorial screen, 99

selection ring, 94, 95, 97, 98, 102

skill levels, 86

surviving on App Store, 105

titles for puzzles, 103

toolset, 77

tutorial, 98, 99

Index 250

TanZen icon, 79, 99

tapping for data entry

efficiency of extra taps over ambiguity,

10–14

tasks

separating tasks, Postage, 136–140

testing

beta and usability testing compared, 14

choosing suitable testers, 225

choosing testing devices, 152

Flash of Genius: SAT Vocab, 124–125

Google Reader iPhone client, 39

importance of being thorough, 100

importance of fresh eyes, 93

importance of testing on iPhone, 85, 96

importance of, Tanzen, 85, 96–98

observing user interaction, 125, 126

Snow Reports, 225

usability testing, 14–18, 125

text

eliminating text, 87

UITextView class, 121

Textile script

processing Basecamp messages, 72

third-party resources

acquiring for Outpost, 62

acquiring for Snow Reports, 218–219

listing requirements, 218

tilting iPhone

accelerometer, Falling Balls, 169

didAccelerate method, 170

tips, 104

see also developer

tips/recommendations; hints

To-do check boxes, Outpost, 75

To-do screen, Outpost, 63

toolbar visibility, Google Reader, 30

toolset

TanZen/Zentomino, 77

touch gestures

additional iPhone capabilities, 164

avoiding overuse of, 164

potential problems with context, 143,

144

tuning touch, Postage, 159

touch screen

adding game controls, Falling Balls, 168

choosing typeface for screens, 190–192

coding decisions, TanZen, 83–84

converting UITouch into CGPoint, 169

creating real-life experience, 81

efficiency of extra taps over ambiguity,

10–14

flipping objects, TanZen, 84

importance of testing on, TanZen, 85,

96–98

moving objects, TanZen, 83

Postage, 158–159

revolutionizing interface, 4

rotating objects, TanZen, 83, 93–95

size inconsistency of iPhone simulator,

85–86

usability testing, iPhone applications, 17

touchesBegan method

building the HUD, Gravity Pods, 176,

178

touchesMoved method

building the HUD, Gravity Pods, 178

Trip Cubby, 1

efficiency of extra taps over ambiguity,

10

usability testing, 14–18

turning objects see rotating objects

tutorial, TanZen, 98, 99

rotating objects, 101

Twitter client, Brightkite as, 50

typeface anatomy, 187

typeface catalogs, FontBook, 183

typeface reference tool

FontShuffle, 181, 183–184, 199–207

typefaces, 184

antialiased typefaces, 228

choosing for screens, 190–192

classes and orders of, 198–199

classification of, 194–195

FontShop, 197–198

digital fonts, 185

explosion of type styles, 193

FF Bokka Shadow, 201

FF Unit, 190, 191, 192

glyph design, 191

Grotesque, 192

Helvetica, 184, 190, 191

identifying, 192–195

Lucida, 200–201

Lucida Grande, 190, 192

Marker Felt, 190

optical size and readability, 189

serif vs. sans serif, 192

Silkscreen, 228

Snow Reports, 228

Index 251

typography

characters, 186

fonts, 185

glyphs, 186

letters, anatomy of, 187–189

typefaces, 184

■ U
UI design

Apple iPhone revolutionizing, 4

applications suggesting how to hold

device, 117

button sizing, 117

designing for first-time users, Brightkite,

51–53

efficiency of extra taps over ambiguity,

10–14

flashcard applications, UI flaws in, 116–

117

flipping flashcards, 116

importance of intuitive interface, 126

Flash of Genius: SAT Vocab, 124

iPhone Human Interface Guidelines, 5,

231

making desirable, not just functional, 89–

95

minimizing stress, 86

navigation, Google Reader, 29–30, 33–

36

Outpost, 63, 66–72

reasons to design for iPhone, 212

repurposing existing interface, 107

Snow Reports, 222, 225–230

Tanzen, 83–84

usability testing, 15

user expectations of applications, 230

user-induced feature creep, 103

value of professional designers, 119, 126

UIAccelerometerDelegate protocol, 169

UIAlertView class

Flash of Genius: SAT Vocab, 124

UIButton class

building the HUD, Gravity Pods, 174

Flash of Genius: SAT Vocab, 121, 123

sizing of buttons, 117

UIImageView class

building the HUD, Gravity Pods, 174

running stick figure, Falling Balls, 167

UIPageControl class, 231

UIScrollView class

tuning touch, Postage, 158

UITableView class

tab bar interface, Brightkite, 49

UITextView class, 121

UITouch class

adding game controls, Falling Balls, 169

converting UITouch into CGPoint, 169

UIView class

building the HUD, Gravity Pods, 175

individualizing views, Google Reader, 37

UIWebView class

Flash of Genius: SAT Vocab, 121, 122

universal appeal

eliminating text, 87

usability testing

beta testing compared, 14

Flash of Genius: SAT Vocab, 125

iPhone applications, 14–18

user input see data entry

user interaction

creating flowchart for, 219–221

modal/modeless interaction, 139

user interface design see UI design

user preferences

make choices, minimize preferences,

134

user preferences, iPhone OS, 134

user-induced feature creep, 103

utilities. App Cubby, 1

■ V
vector fonts, 186

version control, 224

Perforce, 127

View Attributes panel, Interface Builder

building the HUD, Gravity Pods, 174

view controller

setting as delegate to accelerometer,

170

viewDidLoad method, accelerometer, 170

vocabulary applications

Flash of Genius: SAT Vocab, 113–126

vocabulary flashcard applications, 114

Voice Memos application, 141

Vox, Maximilien

classification of typefaces, 194

Index 252

■ W
Wilhelm scream, Falling Balls, 166

Willberg, Hans Peter

classification of typefaces, 195

Wilson, Eddie, 209, 211–212, 213

Wire Draw, 162

wireframes

see also prototypes

Balsamiq Mockups, 153

Brightkite, 48

design process, Snow Reports, 221–222

Outpost, 62–66

Postage, 152

wireframing tools, 63

Witt, Jonas, 181

Word Spin, 128

worldwide sales

eliminating text, 88

■ X
Xcode

running stick figure, Falling Balls, 166

x-height, letter anatomy, 188, 189

■ Z
Zen

making games desirable, not just

functional, 89–95

Zentomino, 106–109

changing rules of pentominoes, 107

rotating objects, 107

selecting colors for pieces, 108

toolset, 77

Zentomino icon, 79

	Title Page
	Copyright Page
	Dedication Page
	Contents at a Glance
	Table of Contents
	Foreword
	About the Technical Reviewer
	Introduction
	What’s in This Book

	David Barnard
	CHAPTER 1: App Cubby
	From Fanboy to Developer
	Learning from Apple
	To Tap or Not to Tap?
	Usability Testing on the Cheap
	Finding Users
	Testing Done Right
	Walking Through a User’s Test
	Learning from Usability Testing

	Fit and Finish
	Summary

	Joachim Bondo
	CHAPTER 2: Yet Another Google Reader
	Choosing to Develop a Newsreader
	Identifying Pitfalls of Current Newsreaders
	Exploring the Google Reader Experience
	Lack of Overview and Cumbersome Navigation
	Lack of Data Control

	Improving the Newsreader Experience
	Defining the Application Definition Statement
	Making the Application Native
	Making the Navigation More Effective
	Giving a Better Overview
	Studying the User’s Reading Pattern
	Presenting the Information

	Outlining the Next Steps
	Summary

	Dan Burcaw
	CHAPTER 3: Brightkite for the iPhone
	Introducing the Brightkite Location-Aware Social Network
	Introducing Double Encore
	Moving From Web to Mobile
	The Rise of Native Applications, to the Web’s Despair
	IT’S ALL ABOUT LOCATION
	A Creative Paradigm Shift
	BRIGHTKITE SHARES

	Designing for the First-Time User
	Creating Virtually Infinite Drill-Down
	BEST PRACTICES FOR ADDRESS BOOK INTEGRATION
	Summary

	David Kaneda
	CHAPTER 4: Outpost
	Establishing Outpos
	Wireframing Outpost
	Designing Outpost
	Two Screens, One Application
	First Attempt
	Second Attempt

	Fitting In
	Working in a Small Team
	Designing with HTML
	All That Glitters
	Summary

	Craig Kemper
	CHAPTER 5: TanZen and Zentomino
	Finding the Elusive Application Idea
	Creating a Design Document
	Diving into the Code
	Creating the Piece UI
	Pieces, Pieces Everywhere
	Being Deceived by the Simulator
	Playing to the Emotions of Your Customers
	Words? We Don’t Need No Stinking Words!
	How Many Buttons Does It Take?

	When Is a Game Not a Game?
	The Eureka Moment
	I’m Not an Artist, But I Play One on the App Store
	Vital, Yet Invisible
	Racing to the Finish Line?
	Building a Better Rotation

	Finally Testing on a Device
	Going Back to the Drawing Board
	The Perils of Being 95 Percent Finished

	The App Store Arrives
	Recalling the First Days on the App Store
	Responding to Rotation Issues
	When to Say “Yes” and When to Say “Thanks, I’ll think about it.”
	Surviving on the App Store

	Creating a Second Game Without Starting Over
	Repurposing a Popular Interface
	Making Interface Modifications to Fit the New Game Rules
	Designing Around Limitations in Screen Size
	Colors, Colors Everywhere
	Putting on the Finishing Touches

	Summary

	Tim Novikoff
	CHAPTER 6: Flash of Genius: SAT Vocab
	Checking Out the Competition
	Mental Model Inconsistency
	Inappropriate Orientations
	Small Buttons

	Starting Development
	Designing the Flashcards
	Designing the Buttons
	Testing the Application
	Launching the Application
	Summary

	Chris Parrish and Brad Ellis
	CHAPTER 7: Postage
	Keeping the Application Focused
	Selecting Font Styles
	Selecting Font Colors
	Using Image Effects
	Setting Preferences and Configuring the Application
	Separating Tasks
	MODAL VS. MODELESS

	Analyzing the Context
	Considering Context in Postage
	Facing Potential Problems with Context
	Using Familiar Controls in Postage

	Creating the Application Flow
	Giving Hints About Flow
	Showing Instead of Telling
	Avoiding Icon Overload
	Tuning Responsiveness and Feedback

	Exploring the Postage Development Technique
	Creating Prototypes and Mock-ups
	Writing Specifications
	Considering Art
	Tuning the Touch
	THE TOOLS

	Summary

	Keith Peters
	CHAPTER 8: Falling Balls and Gravity Pods
	Creating Falling Balls
	Building the Game
	Adding the Game Controls

	Creating Gravity Pods
	Building the HUD

	Summary

	Jürgen Siebert
	CHAPTER 9: FontShuffle
	Introducing FontShuffle
	Entering the World of Typefaces
	Understanding Fonts
	Characters and Glyphs
	The Anatomy of Letters
	OPTICAL SIZE AND READABILITY

	Choosing the Right Typeface for Screens
	DISTINCTIVE GLYPH FEATURES
	Identifying Typefaces
	Serif vs. Sans Serif
	Explosion of Type Styles
	Classification of Typefaces

	Exploring FontBook and FontShuffle
	FontShop’s Typeface Categorization
	Classes and Orders of Typefaces
	FontShuffle Step by Step
	Getting Started: Search Level 1
	Searching by Typeface Name: Search Level 1, version 1.1
	Displaying Classes: Search Level 2
	Displaying Families: Search Level 3
	Shuffle or List View: Search Level 3, version 1.1
	Displaying the Font: Search Level 4

	Summary

	Eddie Wilson
	CHAPTER 10: Snow Reports for the iPhone
	So You Like to Design, Huh?
	Why Design for the iPhone?
	Isn’t Programming for Programmers?
	Why Snow Reports?
	Why Learn iPhone Programming?
	My Design Process
	Defining the Project
	Acquiring Third-Party Resources
	Finding a Good Data Provider

	Creating a Flowchart
	Creating Wireframes
	Skinning the Design
	Developing and Programming
	Testing and Deploying
	Beta Testing
	Deploying Your Application

	Details of the UI
	The Shape of Things
	Colors
	Sign of the Times
	Buttons
	Typefaces
	Loading vs. Splash Screen
	Reporting the Day

	Coming from a Web Design Background
	Designing an Icon
	Summary

	Epilogue: Reactive Music and Invisible Interfaces
	How we got here and why we're doing it
	Using sensors as reactive music interfaces

	Index

