

James Bennett

Practical Django
Projects

Practical Django Projects

Copyright © 2008 by James Bennett

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-996-9

ISBN-10 (pbk): 1-59059-996-9

ISBN-13 (electronic): 978-1-4302-0868-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in
the US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was
written without endorsement from Sun Microsystems, Inc.

Lead Editors: Steve Anglin, Tom Welsh
Technical Reviewer: Russell Keith-Magee
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto
Copy Editors: Kim Benbow, Nicole Abramowitz
Associate Production Director: Kari Brooks-Copony
Production Editor: Kelly Gunther
Compositor: Dina Quan
Proofreader: Nancy Sixsmith
Indexer: Carol Burbo
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You may need to answer
questions pertaining to this book in order to successfully download the code.

This book would not have been possible without the huge and supportive community
that has grown up around Django in the past three years. The willingness of people

all around the world to freely contribute their code, their ideas, and their time to
improving the state of our art never ceases to amaze me.

This book also would not have been possible without Mr. Morgan, who instilled in me
both the craft and the joy of writing. For that he has my deepest thanks.

Contents at a Glance

About the Author . xiii

About the Technical Reviewer. xv

Introduction . xvii

■CHAPTER 1 Welcome to Django . 1

■CHAPTER 2 Your First Django Site: A Simple CMS . 9

■CHAPTER 3 Customizing the Simple CMS. 23

■CHAPTER 4 A Django-Powered Weblog . 43

■CHAPTER 5 Expanding the Weblog . 77

■CHAPTER 6 Templates for the Weblog . 97

■CHAPTER 7 Finishing the Weblog . 123

■CHAPTER 8 A Social Code-Sharing Site . 147

■CHAPTER 9 Form Processing in the Code-Sharing Application 165

■CHAPTER 10 Finishing the Code-Sharing Application . 187

■CHAPTER 11 Writing Reusable Django Applications . 205

■INDEX . 225

v

Contents

About the Author . xiii

About the Technical Reviewer. xv

Introduction . xvii

■CHAPTER 1 Welcome to Django . 1

What’s a Web Framework and Why Should I Want One? 1

Say Hello to Django . 2

Say Hello to Python . 3

Installing Django . 4

Your First Steps with Django . 5

Exploring Your Django Project . 7

Looking Ahead . 8

■CHAPTER 2 Your First Django Site: A Simple CMS . 9

Configuring Your First Django Project . 9

Putting Together the CMS . 12

A Quick Introduction to the Django Template System. 18

Looking Ahead . 21

■CHAPTER 3 Customizing the Simple CMS . 23

Adding Rich-Text Editing . 23

Adding a Search System to the CMS . 26

Improving the Search View . 31

Improving the Search Function with Keywords . 33

Looking Ahead . 40

■CHAPTER 4 A Django-Powered Weblog . 43

Feature Checklist. 43

Writing a Django Application . 44

Projects vs. Applications. 44

Standalone and Coupled Applications . 45
vii

■CONTENTSviii

Creating the Weblog Application. 45

Designing the Models . 47

The Entry Model. 52

Basic Fields. 53

Slugs, Useful Defaults, and Uniqueness Constraints 54

Authors, Comments, and Featured Entries . 55

Different Types of Entries . 56

Categorizing and Tagging Entries . 58

Writing Entries Without Writing HTML . 59

Finishing Touches . 61

The Weblog Models So Far . 62

Writing the First Views . 65

Using Django's Generic Views. 69

How Did Django Do That? . 70

Decoupling the URLs. 72

Looking Ahead . 75

■CHAPTER 5 Expanding the Weblog . 77

Writing the Link Model . 77

Views for the Link Model . 83

Setting Up Views for Categories . 84

Using Generic Views (Again) . 86

Views for Tags . 87

Cleaning Up the URLConf . 89

Handling Live Entries . 93

Looking Ahead . 95

■CHAPTER 6 Templates for the Weblog . 97

Dealing with Repetitive Elements: The Power of Inheritance. 97

How Template Inheritance Works . 99

Limits of Template Inheritance . 100

Defining the Base Template for the Blog. 100

Section Templates. 103

Archives of Entries. 104

Entry Index . 104

Yearly Archive. 105

Monthly and Daily Archives . 106

Entry Detail . 107

Templates for Other Types of Content . 110

Extending the Template System with Custom Tags 111

How a Django Template Works . 112

A Simple Custom Tag . 113

Writing a More Flexible Tag with Arguments 116

Writing the Compilation Function . 116

Writing the LatestContentNode . 119

Registering and Using the New Tag . 120

Looking Ahead . 122

■CHAPTER 7 Finishing the Weblog . 123

Comments and django.contrib.comments . 123

Installing the Comments Application . 123

Basic Setup. 124

Retrieving Lists of Comments for Display . 128

Comment Moderation . 129

Signals and the Django Dispatcher. 130

Building the Automatic Comment Moderator 131

Adding Akismet Support . 132

E-mail Notification of Comments . 135

Dealing with Moderated Comments in Public-Facing
Templates . 137

Adding Feeds . 138

LatestEntriesFeed . 139

Entries by Category: A More Complex Feed Example 142

Looking Ahead . 146

■CHAPTER 8 A Social Code-Sharing Site. 147

Feature Checklist. 147

Setting Up the Application . 148

Building the Initial Models . 148

The Language Model. 149

The Snippet Model. 151

Testing the Snippets Application. 154

■CONTENTS ix

ix

Initial Views for Snippets and Languages . 155

CSS for pygments Syntax Highlighting. 156

Views for Languages. 157

An Advanced View: Top Authors . 158

Improving the View of Top Authors. 159

Adding a top_languages View . 162

Looking Ahead . 163

■CHAPTER 9 Form Processing in the Code-Sharing Application 165

A Brief Tour of Django’s Form System. 165

A Simple Example . 166

Validating the Username. 168

Validating the Password . 169

Creating the New User . 169

How Form Validation Works . 171

Processing the Form . 173

A Form for Adding Code Snippets. 175

Writing a View to Process the Form . 178

Automatically Generating a Form for Adding Snippets 180

Simplifying Templates That Display Forms. 183

Editing Snippets. 184

Looking Ahead . 186

■CHAPTER 10 Finishing the Code-Sharing Application. 187

Bookmarking Snippets . 187

Basic Bookmark Views . 188

A New Template Tag: {% if_bookmarked %} . 192

Parsing Ahead in a Django Template . 193

Resolving Variables Inside a Template Node 194

Using RequestContext to Automatically Populate Template
Variables . 196

Adding the User Rating System . 198

Rating Snippets . 201

Adding an {% if_rated %} Template Tag . 202

Retrieving a User’s Rating . 203

Looking Ahead . 204

■CONTENTSx

■CHAPTER 11 Writing Reusable Django Applications 205

One Thing at a Time . 206

Staying Focused. 206

Advantages of Tightly Focused Applications. 207

Developing Multiple Applications . 208

Drawing the Lines Between Applications . 209

Splitting Up the Snippets Application . 210

Building for Flexibility . 210

Flexible Form Handling . 211

Flexible Template Handling . 212

Flexible Post-Form Processing . 213

Flexible URL Handling . 214

Taking Advantage of Django’s APIs . 215

Staying Generic . 215

Distributing Django Applications. 217

Python Packaging Tools . 217

Writing a setup.py Script with distutils. 218

Standard Files to Include in a Package . 219

Documenting an Application . 220

Looking Ahead . 224

■INDEX . 225

■CONTENTS xi

About the Author

■JAMES BENNETT is a web developer at the Lawrence Journal-World in
Lawrence, Kansas, where Django was originally developed. He is both a
regular contributor to and the release manager for the open source
Django project.

xiii

About the Technical Reviewer

■DR. RUSSELL KEITH-MAGEE has been a core developer on the Django proj-
ect since January 2006. He is a cofounder of Django Evolution, a schema
evolution framework for Django. He is an active participant on the Django
Users and Django Developers mailing lists and is a mentor in the Google
Summer of Code 2008.

In addition to his work with Django, Russell has worked at two
startup companies—one very successful and one still in development. In
those jobs, he has used his passion for good design, powerful tools, and

automated testing to find elegant solutions to real-world problems faced by real-world users.
Russell lives with his wife, son, and two cats in Perth, Western Australia.

xv

Introduction

The past few years have seen an explosion in the development of dynamic, database-driven
web sites. Where many sites were once built using nothing but handwritten HTML, or a few
CGI scripts or server-side includes, today database-backed web applications have become the
norm for everything from personal blogs to online stores to the social networking sites that
have revolutionized the way many people use the Web.

But this has come at a cost. Developing these applications, even for relatively simple
uses, involves a significant amount of complex work, and much of that work ends up being
repeated for each new application. Although web developers have always had access to
libraries of code that could automate certain tasks, such as HTML templating or database
querying, the process of bringing together all the necessary pieces for a fully polished appli-
cation has largely remained difficult and tedious.

This has led to the recent development, and subsequent popularity, of “web frameworks,”
reusable collections of components that handle many of the common and repetitive tasks of
application development in an integrated fashion. Instead of requiring you to obtain disparate
libraries of code and find ways to make them work together, web frameworks provide all the
necessary components in a single package and take care of the integration work for you.

Django is one of the most recent crop of web frameworks, growing out of the needs of a
fast-paced online news operation. Django's original developers needed a set of tools that
would not only help them quickly develop new and highly dynamic web applications in
response to the rapidly evolving requirements of the news industry, but would also let them
save time and effort by reusing pieces of code, and even entire applications, whenever possible.

In this book, you'll see how Django can help you achieve both of these goals—rapid appli-
cation development and flexible, reusable code—through the tools it provides to you directly
and the development practices that it makes possible. I'll guide you through the development
of several example applications and show you how the various components and applications
bundled with Django can help you to write less code at each stage of the development
process. You'll also see firsthand a number of best practices for reusable code and learn how
you can apply them in your own applications, as well as see how to integrate existing third-
party libraries into Django-powered applications to minimize the amount of code you'll need
to write from scratch.

I've written this book from a pragmatic viewpoint. The sample applications are all
intended to be useful in real-world situations, and once you've worked through them, you'll
have more than just a technical understanding of Django and its components. You'll have a
clear understanding of how Django can help you become a more productive and more effec-
tive developer.

xvii

Welcome to Django

Web development is hard, and don’t let anybody tell you otherwise. Building a fully func-
tional dynamic web application with all the features users will want is a daunting task with
a seemingly endless list of things you have to get just right. And before you can even start
thinking about most of them, there’s a huge amount of up-front work: you have to set up a
database, create all the tables to store your data, plan out all the relationships and queries,
come up with a solution for dynamically generating the HTML, work out how to map specific
URLs to different bits of the code, and the list goes on. Just getting to the point where you can
add features your users will see or care about is a vast and largely thankless job.

But it doesn’t have to be that way.
This book will teach you how to use Django, a “web framework” that will significantly ease

the pain of embarking on new development projects. You’ll be able to follow along and build
real applications—code you can actually use in the real world—and at every step you’ll see
how Django is there to help you out. And at the end, you’ll come to a wonderful realization—
that web development is fun again.

What’s a Web Framework and Why Should
I Want One?
The biggest downside of web development is the sheer amount of tedium it involves. All those
things I’ve listed previously—database creation and querying, HTML generation, URL map-
ping—and dozens more are lurking behind every new application you develop, and they
quickly suck all the joy out of even the most exciting projects. Web frameworks like Django
aim to take all that tedium away by providing an organized, reusable set of common libraries
and components that can do the heavy lifting, freeing you up to work on the things that make
your project unique.

This idea of standardizing a set of common libraries to deal with common tasks is far
from new. In fact, in most areas of programming it’s such an established practice that you’d get
strange looks if you suggested somebody should just start writing code from scratch. And in
enterprise web development, frameworks of various sorts have been in use for years. Most
companies that routinely need to develop large-scale applications rely heavily on frameworks
to provide common functionality and speed up their development processes.

But in the world of web development, frameworks have traditionally been, almost out of
necessity, just as heavyweight as the applications they’re used in. They tend to be written in
Java or C#, targeted at large corporate development projects, and sometimes come with a
price tag that only a Fortune 500 company could love. Django is part of a new generation of 1

C H A P T E R 1

frameworks targeted at a broader audience: developers who don’t necessarily have the weight
of a multinational conglomerate’s needs bearing down on their shoulders, but who still need
to get things done quickly. Not to put too fine a point on it, developers like you and me.

The past couple of years have seen a number of these new web frameworks burst onto the
scene, written in and for programming languages that are much more accessible to the aver-
age web developer (and, just as importantly, to the average web host): PHP, Perl, Python, and
Ruby. Each one has a slightly different philosophy when it comes to things like code organiza-
tion and how many “extras” should be bundled directly in the framework, but they all share a
common baseline goal: provide an integrated, easy-to-use set of components that handle the
tedious, repetitive tasks of web development with as little fuss as possible.

Say Hello to Django
Django began life as a simple set of tools used by the in-house web team of a newspaper com-
pany in a small college town in Kansas. Like anybody who spends enough time doing web
development, they quickly got tired of writing the same kinds of code—database queries, tem-
plates, and the whole nine yards—over and over again, and extremely quickly, in fact, because
they had the pressure of a newsroom schedule to keep up with. It wasn’t (and still isn’t)
unusual to need custom code to go with a big story or feature, and the development timelines
needed to be measurable in days, or even hours, in order to keep pace with the news.

In the space of a couple of years, they developed a set of libraries that worked extremely
well together and, by automating or simplifying the common tasks of web development,
helped them get their work done quickly and efficiently. In the summer of 2005, they got per-
mission from the newspaper’s management to release those libraries publicly, for free, and
under an open source license so that anyone could use and improve them. They also gave it a
snappy name, “Django,” in honor of the famous gypsy jazz guitarist Django Reinhardt.

As befits its newsroom heritage, Django bills itself as “the web framework for perfection-
ists with deadlines.” At its core is a set of solid, well-tested libraries covering all of the
repetitive aspects of web development:

• An object-relational mapper, a library that knows what your database looks like, what
your code looks like, and how to bridge the gap between them with as little hand-
written SQL as possible.

• A set of HTTP libraries that knows how to parse incoming web requests and hand them
to you in a standard, easy-to-use format and turns the results of your code into well-
formed responses.

• A URL routing library that lets you define exactly the URLs you want and map them
onto the appropriate parts of your code.

• A validation library for displaying forms in web pages and processing user-submitted
data.

• A templating system that lets even nonprogrammers write HTML mixed with data
generated by your code and just the right amount of presentational logic.

And that’s just scratching the surface. Django’s core libraries include a wealth of other fea-
tures you’ll come to love. A number of useful applications that build on Django’s features are

CHAPTER 1 ■ WELCOME TO DJANGO2

also bundled with it and provide out-of-the-box solutions for specific needs like administra-
tive interfaces and user authentication. In the example applications used in this book, you’ll
see all of these features, and more, in action. So let’s dive in.

Say Hello to Python
Django is written in a programming language called Python, so the applications you develop
with it will also be written in Python. That also means you’ll need to have Python installed on
your computer before you can get started with Django. Python can be downloaded for free
from http://python.org/download/ and is available for all major operating systems. It’s best to
install the latest version of Python—Python 2.5.1 at the time of this writing—in order to have
the latest features and bug fixes for the Python language.

ADMONITION: LEARNING PYTHON

If you don’t know any Python, or even if you’ve never done any programming before, don’t worry. Python is
easy to learn (when I first started with Python, I learned the basics in a weekend by reading online tutorials),
and you don’t need to know much of it to get started with Django. In fact, many first-time Django users learn
Python and Django at the same time.

Throughout this book, I’ll call attention to important Python concepts when needed, but it would be a
good idea to look at a Python tutorial before going very far into this book. The Python documentation index
(available online at http://python.org/doc/) has a good list of tutorials and books (several of which are
available for free online) to help you learn the basics of Python. (I’d recommend knowing at least how Python
functions and classes work.) You’ll be able to pick up the rest as you go along.

If you’re looking for a good reference to keep handy as you’re learning Django, Beginning Python: From
Novice to Professional by Magnus Lie Hetland, and Dive Into Python by Mark Pilgrim (both from Apress) are
good options.

Once you’ve installed Python, you should be able to open a command prompt (Command
Prompt on Windows, Terminal on Mac OS X, or any terminal emulator on Linux) and enter the
Python interactive interpreter by typing the command python. Normally, you’ll be saving your
Python code into files to be run as part of your applications, but the interactive interpreter will
let you explore Python—and, once it’s installed, Django—in a more freeform way: the inter-
preter lets you type in Python code, a line at a time, and see the results immediately. You can
also use it to access and interact with code in your own Python files or in the Python standard
libraries and any third-party libraries you’ve installed, which makes it a powerful learning and
debugging tool.

When you first fire up the Python interpreter, you’ll see something like this:

Python 2.5.1 (r251:54869, Apr 18 2007, 22:08:04)
[GCC 4.0.1 (Apple Computer, Inc. build 5367)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

CHAPTER 1 ■ WELCOME TO DJANGO 3

The >>> is Python’s command prompt. You can type a line of Python code and press Enter,
and if that code returns a result, you’ll see it immediately. Let’s test this with a simple line that
just prints a line of text. At the Python interpreter prompt, type the following and press Enter:

>>> print "Hello, world!"

You’ll see the result appear on the next line:

Hello, world!
>>>

Anything you can type into a file as part of a Python program can be typed directly into
the interpreter, and there’s also a full help system built in, which you can access at any time by
typing help() and pressing Enter. When you’re ready to exit the Python interpreter, press
Ctrl+D, and it will shut down.

Installing Django
Now that you’ve got Python installed and working, it’s time to install Django and start explor-
ing its features. You can get a copy from the official Django web site; just visit
www.djangoproject.com/download/ and follow the instructions for downloading the “develop-
ment version” of Django.

ADMONITION: PACKAGED RELEASES VS. DEVELOPMENT CODE

Django is always being worked on and improved and, in addition to the official release, the current in-
development code is available for download. The Django web site has instructions for installing this code
on your computer, and you can follow that to obtain the development version of Django.

The advantage of using the development version is that new features are available as soon as they’re
added, so you can begin using them immediately instead of waiting for the next official release. In this book,
I'll be assuming that you've installed the development version of Django, and several of the features we'll use
are only available in the development version. This code will, in the near future, become Django's packaged
1.0 release, so starting out with it will minimize the amount of work you'll need to do to upgrade when that
takes place. So when you download Django, be sure to follow the specific instructions for the development
version found at www.djangoproject.com/documentation/install/#installing-the-development-version.

Once you’ve downloaded the Django code onto your computer, you can install it by typ-
ing a single command. On Linux or Mac OS X, open a terminal, navigate to the directory
Django downloaded into, and you should see a file named setup.py. Type the following com-
mand, and enter your password when prompted:

sudo python setup.py install

CHAPTER 1 ■ WELCOME TO DJANGO4

On Windows, you’ll need to open a command prompt with administrative privileges; then
you can navigate to the Django directory and type the following:

python setup.py install

The setup.py script is a standard installation procedure for Python modules, and takes
care of installing all of the relevant Django code into the correct locations for your operating
system. If you’re curious, Table 1-1 summarizes where the Django code will end up on various
systems.

Table 1-1. Django Installation Locations

Operating system Django location

Linux /usr/local/lib/python2.5/site-packages/django

Mac OS X /Library/Frameworks/Python.framework/Versions/2.5/lib/python2.5/
site-packages/django

Windows C:\Python\site-packages\django

Your First Steps with Django
You should now be able to verify that Django installed correctly on your computer. Next, start
the interactive Python interpreter and type in the following:

>>> import django
>>> print django.VERSION

The result of this should be a set of numbers in parentheses, which represents the version
of Django you’re using. The Django 0.96 release, for example, will show (0, 96). Python software
typically uses a tuple—a parenthesized, comma-separated list of numbers and/or words—to
represent version numbers internally (which makes it easy for Python programs to automati-
cally parse otherwise complex version numbers like “1.0 beta 3” or “2.4 prerelease”).

Now you’re ready to create your first Django project. A Django project is a wrapper of
sorts, which contains settings for one or more Django-powered applications and a list of
which applications it uses. Later on, when you’re deploying your Django applications behind
a real web server, you’ll use projects to organize and configure them.

To set up your first project, create a directory on your computer where you’ll keep your in-
progress Django projects, and then navigate to it in a terminal or at a command prompt. It’s
often a good idea to have a single directory where you keep all of your own custom Python
code. As you’ll see a bit later on, doing so will simplify the process of telling Python how to
find and use that code.

Now you can use the built-in Django management script, django-admin.py, to create your
project. django-admin.py lives in the bin/ subdirectory of the directory Django was installed
into, and it knows how to handle various management tasks involving Django projects. The
one you’re interested in is called startproject, and it will create a new, empty Django project.
In the directory where you want to create your project, type the following (refer to Table 1-1 for
the correct path for your operating system):

/usr/local/lib/python2.5/site-packages/django/bin/django-admin.py startproject cms

CHAPTER 1 ■ WELCOME TO DJANGO 5

This will create a new subdirectory called cms (you’ll see why it’s named that in the next
chapter, when you start to work with this project) and populate it with the basic files needed
by any Django project.

ADMONITION: PERMISSION ERRORS

If you’re using Linux or Mac OS X, you may see an error message saying “permission denied.” If this hap-
pens, you need to tell your operating system that the django-admin.py script is safe to run as a program.
You can do this by navigating to the directory that django-admin.py is in and typing the command chmod
+x django-admin.py. Then you can run the django-admin.py script as previously shown.

In the next section you’ll see what each of the files in the project directory is for, but for
now the most important one is called manage.py. Like django-admin.py, it’s there to take care of
common project and application management tasks for you. The manage.py script can start a
simple web server that will host your project for testing purposes, and you can start it by going
into your project directory and typing the following:

python manage.py runserver

Then you should be able to open up a web browser and visit the address http://
127.0.0.1:8000/. The development web server, by default, runs on your computer’s local
“loopback” network address, which is always 127.0.0.1 and binds to port 8000. When you visit
that address, you should see a simple page saying “It worked!” with some basic instructions
for customizing your project (see Figure 1-1).

Figure 1-1. Django welcome screen

CHAPTER 1 ■ WELCOME TO DJANGO6

ADMONITION: CHANGING THE ADDRESS AND PORT

If something else is already using port 8000 on your computer, if you’re not allowed to run programs that
bind to that port, or if you want to view pages served by Django’s development server from another com-
puter, you’ll need to manually specify the address and port to use when you launch the development server.
The syntax for this is python manage.py runserver ip_address:port_number. So, for example, to
listen on all of your computer’s available IP addresses (so that other computers can view pages from the
development server) and bind to port 9000 instead of 8000, you could type python manage.py
runserver 0.0.0.0:9000.

You can stop the server by pressing Ctrl+C at the command prompt.

Exploring Your Django Project
The startproject command of django-admin.py created your project directory for you and
automatically filled in a few files. Each one serves a specific purpose, and in future chapters
you’ll see what each one does, but for now here’s a quick primer:

__init__.py: This will be an empty file. For now you don’t need to put anything into it
(and in fact, most of the time you won’t need to). It’s used to tell Python that this directory
contains executable code. Python can treat any directory containing an __init__.py file
as a Python module.

manage.py: As explained previously, this is a helper script that knows how to handle com-
mon management tasks. It knows how to start the built-in development web server,
create new application modules, set up your database, and numerous other things that
you’ll see as you build your first Django applications.

settings.py: This is a Django settings module, which holds the configuration for your
Django project. Over the next few chapters, you’ll see some of the most common settings
and how to edit them to suit your projects.

urls.py: This file contains your project’s master URL configuration. Unlike some lan-
guages and frameworks that simply mimic HTML by letting you place code into the web
server’s public directory and access it directly by file name, Django uses an explicit config-
uration file to lay out which URLs point to which parts of your code, and this file defines
the set of “root” URLs for an entire project.

You may notice that, after you started the built-in web server, one or more new files
appeared in the project directory with the same names as those in the preceding list but with a
.pyc extension instead of .py. Python can read the code directly out of your .py files, but it also
can, and often does, automatically compile code into a form that’s faster to load when a pro-
gram starts up. This bytecode, as it’s called, is then stored in identically named .pyc files, and if
the original file hasn’t changed since the last time a program used it, Python will load from the
bytecode file to gain a speed boost.

CHAPTER 1 ■ WELCOME TO DJANGO 7

Looking Ahead
In the next chapter, you’ll walk through setting up your first real Django project, which will
provide a simple content management system, or CMS. If you’re ready to dive in, keep read-
ing, but you should also feel free to pause and explore Python or Django a bit more on your
own. Both the django-admin.py and manage.py scripts accept a help command, which will list
all of the things they can do; and the Python interpreter’s built-in help system can also auto-
matically extract documentation from most Python modules on your computer, including the
ones inside Django. There’s also a special shell command to manage.py that you may find use-
ful because it will launch a Python interpreter with a fully configured Django environment
(based on your project’s settings module) you can explore.

If you’d like, you can also take this opportunity to set up a database to use with Django.
If you installed Python 2.5 or any later version, you won’t have to do this right away. As of ver-
sion 2.5, Python includes the lightweight SQLite database system directly, which you’ll be able
to use that throughout this book as you develop your first applications. However, Django also
supports MySQL, PostgreSQL, and Oracle databases, so if you’d prefer to work with one of
those, go ahead and set it up.

CHAPTER 1 ■ WELCOME TO DJANGO8

Your First Django Site:
A Simple CMS

One extremely common task in web development is building a simple content management
system (CMS), which lets users create and edit pages on a site dynamically through a web-
based interface. Sometimes called brochureware sites because they tend to be used in the
same fashion as traditional printed brochures handed out by businesses, they’re usually fairly
simple feature-wise, but can be tedious to code over and over again.

In this chapter, you’ll see how Django makes these sorts of sites almost trivially easy to
build: I’ll walk you through the setup of a simple CMS, and then in the next chapter, you’ll see
how to add a few extra features and provide room to expand it in the future.

Configuring Your First Django Project
In the last chapter, you created a Django project called cms. But before you can do much with
it you’ll need to do some basic configuration, so launch your favorite code editing program
and use it to open up the settings.py file in your project.

ADMONITION: WRITING PYTHON

From here to the end of this book, you’ll be writing Python code and the occasional template. If you haven’t
already looked at a Python tutorial to get a feel for the basics, now would be a good time. I’ll explain some of
the most important concepts as we go, but that’s no substitute for a dedicated Python tutorial, which will
cover them in depth.

And if you don’t have an editing program suitable for working with programming code, you’ll want to
get one. Nearly all programmers’ editors have support for Python (and other popular languages) built in, and
this will make the process of writing code much easier.

Don’t be daunted by the size of this file or the number of things you’ll find in it.
django-admin.py automatically filled in default values for a lot of them, and for now most of
the defaults will be fine. Near the top of the file is a group of settings whose names all start
with DATABASE. These settings tell Django what type of database to use and how to connect to
it, and right now that’s all you’ll need to fill in.

9

C H A P T E R 2

Assuming you installed the latest version of Python, you’ll already have a database
adapter module that can talk to SQLite databases (Python 2.5 and later include this module
in the standard Python library). SQLite stores the entire database in a single file on your com-
puter and doesn’t require any of the complex server or permissions setup of other database
systems, so it’s a great system to use when you’re just starting out or exploring Django.

To use SQLite, you’ll only need to change two settings. First, find the DATABASE_ENGINE
setting and change it from this:

DATABASE_ENGINE = ''

to this:

DATABASE_ENGINE = 'sqlite3'

Now you’ll need to tell Django where to find the SQLite database file. This goes into the
DATABASE_NAME setting and can be anywhere on your computer’s hard drive where you have
permission to read and write files. You can even fill in a nonexistent file name, and the SQLite
database engine will create the file for you automatically. Keeping the database file inside your
project folder isn’t a bad idea in this case, so go ahead and do that. I keep all of my Django
projects in a folder called django-projects inside my home directory (on a laptop running
Mac OS X), so I’ll fill it in like so:

DATABASE_NAME = '/Users/jbennett/django-projects/cms/cms.db'

On other operating systems this will look a bit different, of course. On Windows it might
be C:\Documents and Settings\jbennett\django-projects\cms\cms.db, for example, while on
a Linux system it might be /home/jbennett/django-projects/cms/cmd.db.

I’m telling Django the SQLite database file should live inside the cms project directory
and be named cms.db. The .db file extension isn’t required, but it helps me to remember what
that file is for, and so I’d recommend you use something similar.

ADMONITION: USING A DIFFERENT DATABASE

If you’d like to set up a MySQL, PostgreSQL, or Oracle database instead of using SQLite, consult the Django
settings documentation online at www.djangoproject.com/documentation/settings/ to see the
correct values for the database settings. However, bear in mind that you will also need to install a Python
adapter module for the database you’re using—as of Python 2.5, SQLite is the only database system directly
supported in the standard Python library.

If you’re using a version of Python prior to 2.5, you’ll need to install an adapter module for your
database no matter which database you use. See the Django installation instructions for details at
www.djangoproject.com/documentation/install/#get-your-database-running.

Finally, you’ll probably want to change the TIME_ZONE setting. This tells Django which time
zone to use when displaying dates and times from your database (which are typically stored in
your database as UTC timestamps—Universal Time, Coordinated, which is the “base” time
zone formerly known as Greenwich Mean Time, or GMT). Rather than using a country-specific
time-zone name (like US Central Time) or a confusing UTC offset (like UTC-6), this setting

CHAPTER 2 ■ YOUR FIRST DJANGO SITE: A SIMPLE CMS10

uses names in zoneinfo format; zoneinfo is a standard format used by many computer operat-
ing systems and is also easy for humans to read. The default setting is

TIME_ZONE = "America/Chicago"

which is equivalent to the US Central time zone, six hours behind UTC. Full lists of zoneinfo
time zone names are available online, and the official Django settings documentation at
www.djangoproject.com/documentation/settings/ includes a link to one such list. You should
change your TIME_ZONE setting to the zone in which you live.

ADMONITION: TIME ZONES ON WINDOWS

If you’re using Microsoft Windows, you’ll want to be careful with the TIME_ZONE setting. Because of quirks
in Windows’ operating environment, it’s not possible to reliably use a time zone other than the one the com-
puter as a whole is currently using. So for best results you’ll want to specify TIME_ZONE to be the same as
the time zone Windows is using.

You won’t need to change it yet, but you’ll also want to scroll down to the bottom of the
settings file, where you’ll see a setting called INSTALLED_APPS. As mentioned previously, a
Django project is made up of one or more Django-powered applications, and this setting is
how Django knows which applications are used by your project. The default value looks like
this:

INSTALLED_APPS = (
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.sites',

)

Each of these is an application bundled with Django itself, and each one provides a useful
piece of common functionality; django.contrib.auth, for example, provides a mechanism for
storing data about users and for authenticating them, while django.contrib.sites provides
an easy way to run multiple web sites from a single Django project and to specify which items
in your database should be accessible to each site.

In time, you’ll see examples of these applications in action, but for now it’s best to leave
the defaults as they are. They provide a “quick start” to your project by taking care of a lot of
tasks right away, and you’ll be building on their functionality in just a moment.

Now that you’ve provided some basic configuration data to Django, you can tell it to set
up your database. Open up a terminal or command prompt, navigate to your project’s direc-
tory, and type this command:

python manage.py syncdb

This command will create the database file if needed and then create the database tables
for each application listed in the INSTALLED_APPS setting. You’ll see several lines of output
scroll by, and then, because the bundled user authentication application is being installed,

CHAPTER 2 ■ YOUR FIRST DJANGO SITE: A SIMPLE CMS 11

Django will ask if you’d like to create a “superuser” account for web-based administration.
Type yes, and then enter a username, e-mail address, and password when prompted. You’ll
see shortly how you can use this account to log in to a Django administrative interface.

ADMONITION: WHAT GOES ON DURING SYNCDB

When you run manage.py syncdb, Django actually does several things in order, and the output on your
screen shows each step. First, Django looks in each application module listed in INSTALLED_APPS and finds
the data models. These are Python classes that define the different types of data the application uses, and
Django knows how to automatically generate appropriate CREATE TABLE SQL statements from them. In
Chapter 3, you’ll write your first data model and see how Django generates the SQL for it.

Once the database tables have been created, Django looks for, and runs, any application-specific initial-
ization code for each application. In this case, django.contrib.auth includes code that prompts you to
create a user account.

Finally, Django finishes the database setup and installs any initial data you’ve provided. The default set
of bundled applications doesn’t use this feature, but later on you’ll see how to supply an initial data file that
can kick-start an application by giving it data to work with right away. You won't be providing any initial data
with this application, but some of Django's bundled applications do provide data which will be inserted into
the database when installed.

Putting Together the CMS
Most of the applications you’ll build with Django will require you to write a fair amount of
code on your own. Django will take care of the heavy lifting and the repetitive tasks, but it’ll
still be up to you to handle features unique to each specific application. Sometimes, though,
features built in to Django or applications bundled with it will provide most or all of what you
need. Django’s contrib applications are designed with just this aim in mind: some types of
applications are so common and so repetitive that it’s best to just provide a single customiz-
able version and reuse it from project to project.

A simple brochureware CMS is a good example of this, and you’ll build it by relying heav-
ily on two applications bundled with Django: django.contrib.flatpages and django.contrib.
admin.

The first of these, django.contrib.flatpages, provides a data model for a simple page,
with a title, content, and a few configurable options, such as custom templates or authentica-
tion. The other, django.contrib.admin, provides a powerful administrative interface that can
work with any Django data model, letting you create a more or less “instant” web-based inter-
face to administer a site.

The first step here is to add these applications to the INSTALLED_APPS setting. You’ll
remember that by default four applications were placed in the list, and now you can add two
more:

INSTALLED_APPS = (
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',

CHAPTER 2 ■ YOUR FIRST DJANGO SITE: A SIMPLE CMS12

'django.contrib.sites',
'django.contrib.admin',
'django.contrib.flatpages',

)

Once you’ve made that change and saved your settings file, run syncdb again:

python manage.py syncdb

You’ll see the output scroll by as Django creates database tables for the data models
defined in these applications. Now, open up the urls.py file in your project, which—as you
saw in the previous chapter—contains the root URL configuration for your project. There’s a
line that says, “Uncomment this for admin:” followed by this line (the hash mark at the begin-
ning indicates a Python comment and means the line will not be executed as code):

(r'^admin/', include('django.contrib.admin.urls')),

Uncomment that line and save the file. This will add a set of URLs, included in
django.contrib.admin, to your project’s URL configuration.

ADMONITION: HOW DJANGO URL CONFIGURATION WORKS

A Django URL configuration file, or URLConf, defines a list of URL patterns and indicates how they map to
parts of your code. Each URL pattern has at least two parts: a regular expression that describes what the URL
looks like and either a view (a Python function that can respond to HTTP requests) to map that URL to or an
include, which points to a different URLConf module. The ability to include other URLConf modules makes
it easy to define reusable and “pluggable” sets of URLs, which can be dropped into any point in your project’s
URL hierarchy.

A regular expression, in case you’ve never encountered that term before, is a common way to represent
a particular pattern of text, and most programming languages have support for checking whether a given
piece of text matches the pattern specified in a regular expression. Most introductory programming books
cover regular expressions. Dive Into Python by Mark Pilgrim (Apress, 2004) has a good chapter that covers
the basics.

Also, note that regular expressions are quite strict about matching. Ordinarily, a web server will be
somewhat lax and treat, for example, /admin and /admin/ as the same URL, returning the same result
either way. But if you specify a regular expression that ends in a slash—as I’m doing here—you must
include the slash on the end when you visit that address in your browser, or the pattern will not match and
you’ll get a “Page not found” error.

Now you’ll be able to launch the built-in web server again and see the administrative
interface:

python manage.py runserver

The URL pattern for the admin application is ^admin/, which means that if you visit
http://127.0.0.1:8000/admin/ in your web browser, you’ll see the login page. Enter the user-
name and password you used when syncdb prompted you to create a user account, and you’ll

CHAPTER 2 ■ YOUR FIRST DJANGO SITE: A SIMPLE CMS 13

see the main admin index page, as shown in Figure 2-1. But note that URLs beginning with
admin/ are the only ones that will work right now; you haven’t set up any other URLs yet.

Figure 2-1. Home page of the Django administrative interface

Each item listed on the index page corresponds to a data model in one of the installed
applications. They’re grouped according to which application they belong to. The auth appli-
cation, django.contrib.auth, provides models for users and groups; the sites application,
django.contrib.sites, provides a model to represent a web site; and the flatpages applica-
tion you just installed provides a “flat page” model. To the right of this list is a sidebar, which
will report actions you’ve taken recently in the admin interface. Since you haven’t done any-
thing yet, it’s empty, but as soon as you start making changes to site content it will show a
summary of your actions. As a first step, click on the Sites link. You’ll see a listing like the one
shown in Figure 2-2.

As part of its initialization, django.contrib.sites created an example site “object” for you,
which you can click to edit. Since the built-in web server is running on your computer’s local
loopback interface at port 8000, change the Domain Name field to 127.0.0.1:8000, and change
the Display Name field to localhost. Then click the Save button at the bottom right, and your
changes will be saved to the database. If you go back to the main index of the admin interface,
you’ll see the sidebar now has an entry for that site, showing that you’ve changed it recently.

CHAPTER 2 ■ YOUR FIRST DJANGO SITE: A SIMPLE CMS14

Figure 2-2. The default site object created by Django

You’ll notice that the main admin page, next to each type of item, displays an Add link
and a Change link; let’s add a new flat page by clicking the Add link next to the Flat Page link.
This will bring up a blank form, automatically generated from the appropriate data model.
Enter the following values:

• In the URL field, enter /first-page/.

• In the Title field, enter My first page.

• In the Content field, enter This is my first Django flat page.

Then scroll down and click the Save and Continue Editing button. The new flat page will
be saved into your database, and then the form will be redisplayed so you can edit the page.
You’ll also notice that two buttons have appeared above the form: History and View on Site.
The History button will show a simplified history of this flat page (right now, nothing but the
initial entry for it has been created). The View on Site button will let you see the flat page at its
public URL. Click it, and you’ll be redirected to http://127.0.0.1:8000/first-page/, which
will, for the moment, display an error message like the one shown in Figure 2-3.

CHAPTER 2 ■ YOUR FIRST DJANGO SITE: A SIMPLE CMS 15

Figure 2-3. A Django “Page not found” error

This is a 404 “Page not found” error, but with a twist—every new Django project starts out
in a debugging mode, which displays more helpful error messages to help you get up and run-
ning. In this case, Django shows you the URL patterns it found in your project’s URLConf, and
explains that the URL you tried to visit didn’t match any of them, which makes sense because
you haven’t yet added anything that looks like the URL /first-page/. So let’s fix that. Open up
the urls.py file again and add the following line right below the one for the admin interface:

(r'', include('django.contrib.flatpages.urls')),

The pattern part of this is simply an empty string (''), which means it will actually match
any URL. You could, if you wanted, go into urls.py and add a new line each time you add a flat
page. In applications you’ll develop later on, you’ll mostly be defining individual URLs, but
because django.contrib.flatpages lets you specify anything for the URL of a page, it’s easiest
in this case to simply place a “catch-all” URL pattern to handle it.

ADMONITION: ORDER OF URL PATTERNS

When Django is trying to match a URL, it starts at the top of the list of URL patterns and works its way down
until it finds a match. This means that it’s better to have more specific patterns like the ^admin/ line come
first, and more general patterns like the catch-all for flat pages come last; otherwise, something like the
catch-all might match a URL before Django gets to the more specific pattern you actually wanted.

CHAPTER 2 ■ YOUR FIRST DJANGO SITE: A SIMPLE CMS16

This pattern, like the previous one for the admin, takes advantage of the “pluggable” URLs
the include directive provides and says to use another URLConf module, django.contrib.
flatpages.urls, for anything that matches the pattern. Save your urls.py and either refresh
the page in your browser or navigate again to http://127.0.0.1:8000/first-page/. It’s still
going to display an error, but now you’re closer to having the simple CMS working (see
Figure 2-4).

Figure 2-4. A Django server error page

This page looks a little scary, but it’s actually not. Once again, Django’s debugging mode is
trying to give you as much information as it can. The top of the page shows a short summary
of the error, followed by more detailed information, including a full stack trace (a copy of
everything Python and Django were doing when the error happened), a listing of the incom-
ing HTTP request, and your Django project’s settings (with any sensitive settings, such as
database passwords, blanked out for security reasons).

The problem here is that a flat page, like most output from Django, expects to be dis-
played using a template that will generate the correct HTML. django.contrib.flatpages, by
default, looks for a template file named flatpages/default.html, and you haven’t created that
yet. The editing form in the admin interface will, if you go back and look for it, also show a
field where you can input a different template file name on a per-page basis. So let’s pause for
a moment and take care of that.

CHAPTER 2 ■ YOUR FIRST DJANGO SITE: A SIMPLE CMS 17

A Quick Introduction to the Django
Template System
Django includes a templating system (in the module django.template, if you’ve been explor-
ing the Django codebase and want to take a look at it), which has two major design goals:

• Provide an easy way to express the logic needed for your application’s presentation.

• As much as possible, avoid restricting the types of output you can generate.

Some template languages allow you to embed nearly any form of programming code
directly in the templates. While this is sometimes handy, it also creates a tendency for your
application’s core programming logic to migrate slowly out of other parts of the code and into
the templates, which really ought to confine themselves to the presentational aspects. And
some templating languages force you to write XML or other specific types of markup, even if
what you want to produce isn’t XML at all. Django’s template system does its best to avoid
both of these pitfalls by keeping the allowed programming to a minimum and by not con-
straining you to specific markup languages. (I’ve used the Django template system to generate
content for e-mail messages and even Excel spreadsheets, for example.)

Ultimately, a Django template file for a web page—in other words, a template whose out-
put is HTML—doesn’t end up looking all that different from a normal hand-written web page.
The biggest distinction is in two features that the Django template system provides:

• Variables: Fed to the template by a view—the actual Python function that responds to
an HTTP request—and are wrapped in double curly braces, like so: {{ variable_
name_here }}. These are simply replaced with the actual value of the variable.

• Tags: Wrapped in a single curly braces and a percent sign, like this: {% tag_name_here
%}. Tags can do almost anything, and the exact effect depends on the particular tag. You
can also write and use your own custom tags in Django templates, so if there’s some-
thing you need that isn’t provided out of the box, you can add it.

Whenever Django needs a template file, it can look in any of several places, defined by
configurable modules called template loaders. By default, Django looks in the following
places:

• Inside any directories specified in your settings module by the setting TEMPLATE_DIRS

• Inside your installed applications, if any of them include a directory named templates/

This lets you provide a set of default templates with any given application, but also gives
you the power to override those on a project-by-project basis by listing specific directories
you’ll put customized templates into. The administrative interface, for example, uses this to
great effect: django.contrib.admin contains a templates/ directory with the default templates,
but if you need to customize the admin interface you can add your own templates in a
project-specific template directory.

Go ahead and choose a directory where you’d like to keep the templates for the simple
CMS application. The exact location doesn’t matter, so long as it’s someplace where you’re
allowed to create and read files on your computer. Next open up your project’s settings.py
file, scroll down until you see the TEMPLATE_DIRS setting, and add that directory to the list.
Here’s mine:

CHAPTER 2 ■ YOUR FIRST DJANGO SITE: A SIMPLE CMS18

TEMPLATE_DIRS = (
'/Users/jbennett/html/django-templates/cms/',

)

You’ll note that I’m specifying a completely different directory from the one where the
project’s code is kept. This is often a good idea because it reinforces the idea that the particu-
lar presentation—in the form of a set of HTML templates—can and should be decoupled from
the back-end code whenever possible. It’s also a useful practice for any application you might
end up reusing across multiple web sites. Different sites will obviously have different sets of
templates, and so being able to switch them at will without needing to move lots of files in and
out of a project-specific location is extremely handy.

ADMONITION: TRAILING COMMAS

As you may have already learned from a tutorial, Python offers two simple ways to represent sequences
of items: lists and tuples. A tuple is usually wrapped in parentheses, as you’ve seen so far with the
INSTALLED_APPS and now the TEMPLATE_DIRS settings, both of which accept tuples as legal values. But
Python tuples require a comma after every item, even if there’s only one item in the tuple, and leaving off the
comma is a common annoyance for users who are getting used to the language. I’ve been writing Python for
several years now, and I still sometimes forget to do that. Generally, I find it helpful to remember that in
Python, the comma—and not parentheses, which technically aren’t required—is what makes a tuple.

Now, inside the template directory you chose, create a subdirectory called flatpages/,
and in that subdirectory create a new file called default.html. Refresh the flat page in your
web browser, and you should see a blank white page. Now you have a template directory spec-
ified in your settings, and the file flatpages/default.html exists inside it, so there’s no longer
an error. But the template file is empty, and so it doesn’t produce any output. Let’s fix that by
opening up the default.html file and adding some content:

<html>
<head>

<title>{{ flatpage.title }}</title>
</head>
<body>

<h1>{{ flatpage.title }}</h1>
{{ flatpage.content }}

</body>
</html>

Now save the file and refresh the page in your web browser again. You should see some-
thing like what’s shown in Figure 2-5.

CHAPTER 2 ■ YOUR FIRST DJANGO SITE: A SIMPLE CMS 19

Figure 2-5. Your first Django flat page

You’ll see that this template uses two variables—flatpage.title and flatpage.content—
and no tags. Those variables actually come from a single source: a variable flatpage, which
was passed to the template by a Python view function defined inside django.contrib.
flatpages. The value of this variable is a FlatPage object, an instance of the data model for flat
pages. This was created by querying the database for a row with a URL column that matched
the URL /first-page/. It then used the data from that row to create a Python object with
attributes named title and content, matching what you entered in the admin interface (along
with other attributes—for example, url—which aren’t as important for the presentational
aspect of things).

ADMONITION: HOW DID DJANGO DO THAT?

Django includes a library called an object-relational mapper, or ORM. The ORM understands the structure of
your data models (which are defined as simple Python classes) and the corresponding structure of your data-
base. It provides a straightforward syntax for translating between rows and tables in your database and live
Python objects in your code, usually without you having to write your own SQL queries. Throughout this book,
you’ll see examples of the Django ORM in action and get a feel for all of its features. You’ll also see how you
can bypass it in situations where you really want or need to roll your own query by hand.

CHAPTER 2 ■ YOUR FIRST DJANGO SITE: A SIMPLE CMS20

With this template in place, you now have—literally—a simple dynamic content manage-
ment system that will let you define as many pages as you’d like, title them, fill in content, and
place them at any URL (except for URLs starting with admin/ because they’ll be matched by
the URL pattern for the admin interface). You could, if you wanted to, dress up the template
with fancier HTML and a nice cascading style sheet (CSS), create a few more user accounts
through the administrative interface, and deploy this onto a live web server for real-world use.
But so far, you’ve only written a couple of lines of actual code: the URL pattern for the pages in
your urls.py file, a few Django settings, and a little HTML.

Obviously, it won’t always be quite this easy to get an application up and running with
Django, but hopefully you’ve seen that taking advantage of Django’s components can signifi-
cantly cut down the amount of work you have to do.

Looking Ahead
Pause here for a few moments to play with the simple CMS and explore the Django adminis-
trative interface. Take particular note of the Documentation link that appears in the upper-
right corner of each page in the admin. It provides automatically generated documentation
for all of the data models, URL patterns, and template tags available in your Django project.
Not all of it will be immediately understandable at this point, but click around in the docu-
mentation area and get a feel for what’s in there. When you’re developing or working with
more complex applications, the admin documentation system will be an important resource
for learning about and understanding the code you’re using.

When you’re ready to get back to work, the next chapter will be waiting for you with a
guide to customizing this simple CMS and adding some useful features, including a search
function.

CHAPTER 2 ■ YOUR FIRST DJANGO SITE: A SIMPLE CMS 21

Customizing the Simple CMS

The simple CMS you put together in the last chapter is already in pretty good shape; it’s
something that most developers wouldn’t mind showing to clients as an initial prototype, for
example. But so far it’s just using a few stock applications bundled with Django and hasn’t
added any extra features on top of that. In this chapter, you’ll see how to take this simple proj-
ect as a foundation and start adding your own customizations, like rich-text editing in the
admin and a search system for quickly finding particular pages.

Adding Rich-Text Editing
The default administrative interface Django provides for the flatpages application is already
production quality. Many Django-based sites already use it as is to provide an easy way to
manage the occasional simple About page or to handle similar tasks. But it would be nice to
make it just a little bit friendlier by adding a rich-text interface to it so that users of the web-
based administrative interface don’t have to type in raw HTML.

There are a number of JavaScript-based rich-text editors (RTEs), available with different
features and configurations, but I’ll be using one called TinyMCE. It’s one of the most popular
options and has roughly the best cross-browser support of any of the existing RTEs. (Due to
differences in the APIs implemented by web browsers, there’s no truly consistent cross-platform
RTE at the moment.) TinyMCE is also free and released under an open source license. You can
download a copy of the latest stable version from http://tinymce.moxiecode.com/.

Once you’ve unpacked TinyMCE, you’ll see it contains a jscripts/ directory, inside which
is a tiny_mce directory containing all the TinyMCE code. Make a note of where that directory
is, and go to the project’s urls.py file. In urls.py, add a new line so that it looks like the
following:

from django.conf.urls.defaults import *

urlpatterns = patterns('',
Example:
(r'^foo/', include('foo.foo.urls')),

Uncomment this for admin:
(r'^admin/', include('django.contrib.admin.urls')),
(r'^tiny_mce/(?P<path>.*)$', 'django.views.static.serve',

{ 'document_root': '/path/to/tiny_mce' },
) 23

C H A P T E R 3

Replace the /path/to/tiny_mce part with the actual location on your computer of the
tiny_mce directory. For example, if it’s at /Users/jbennett/javascript/TinyMCE/jscripts/
tiny_mce, you’d use that value.

ADMONITION: MEDIA FILES IN PRODUCTION VS. DEVELOPMENT

In production, you’ll usually want to avoid having the same web server handle both Django and static media
files, like style sheets or JavaScript. Because the web server process needs to keep a copy of Django’s code
and your applications in memory, it’s a waste of resources to use that same process for the simple task of
serving a file off the disk.

For now I’m using a helper function built into Django that can serve static files, but keep in mind this
should only be used for development on your own computer. Using it on a live, deployed site will severely
impact your site’s performance. When you deploy a Django application to a live web server, consult the offi-
cial Django documentation at www.djangoproject.com/documentation/ to see instructions for your
specific server setup.

Now you just need to add the appropriate JavaScript calls to the template used for adding
and editing flat pages. In the last chapter, when you filled in the TEMPLATE_DIRS setting, I men-
tioned that Django can also look directly inside an application for templates and that this lets
an application author provide default templates while still allowing individual projects to use
their own. That’s precisely what we’re going to take advantage of here. The admin application is
not only designed to use its own templates as a fallback, but it also lets you provide your own
if you’d like to customize it.

By default, the admin application will look for a template in several places, using the first
one it finds. The template names it looks for are as follows, in order:

1. admin/flatpages/flatpage/change_form.html

2. admin/flatpages/change_form.html

3. admin/change_form.html

ADMONITION: CHOOSING FROM MULTIPLE TEMPLATES

Normally, when you write a Django view—the function that actually responds to an HTTP request—you’ll set
it up to use a single template for its output, and the applications you’ll write in this book will typically only
need to specify one template for each view. However, there is a helper function, django.template.
loader.select_template, which takes a list of template names, searches for template files matching
those names, and uses the first one it finds. The admin application makes use of this helper function to pre-
cisely enable the sort of customization we’re making here. If you’re ever writing an application where you
need to do the same, keep that function in mind.

CHAPTER 3 ■ CUSTOMIZING THE SIMPLE CMS24

The admin application only provides the last template in this list—admin/change_form.
html—and uses that for all adding and editing of items if you don’t supply a custom template.
But as you can see, there are a couple of other options. By using a list of possible template
names, rather than a single prebuilt template, the admin application lets you override the
interface for a specific application (in this case, the flatpages application, by supplying the
template admin/flatpages/change_form.html) or for a specific data model (by supplying the
template admin/flatpages/flatpage/change_form.html). Right now you only want to cus-
tomize the interface for one specific model. So inside your templates directory, create an
admin subdirectory. Then create a flatpages subdirectory inside of admin and a flatpage
subdirectory inside of flatpages. Finally, copy the change_form template from django/
contrib/admin/templates/admin/change_form.html in your copy of Django into the
admin/flatpages/flatpage/ directory you just created.

Now you can open up the change_form.html template in your template directory and edit
it to add the appropriate JavaScript for TinyMCE. This template is going to look fairly com-
plex—and it is, because the admin application has to adapt itself to provide appropriate forms
for any data model—but the change you’ll be making is pretty simple. On line 4 of the tem-
plate, you’ll see the following:

<script type="text/javascript" src="../../../jsi18n/"></script>

Immediately below that, add the following:

<script type="text/javascript" src="/tiny_mce/tiny_mce.js"></script>
<script type="text/javascript">
tinyMCE.init({
mode: "textareas",
theme: "simple"

});
</script>

This will make use of the URL you set up to serve the TinyMCE files. Now save the file and
go back to your web browser. The form displayed for adding and editing flat pages will now
have the basic TinyMCE editor attached to the text area for the page’s content, as shown in
Figure 3-1.

TinyMCE is extremely customizable. You can rearrange the editing toolbar, choose which
of the many built-in controls should appear on it, add your own controls, and write new
themes to change the way it looks. And if you’d like to use another rich-text editor or make
other customizations to the admin interface, you can follow the same process.

CHAPTER 3 ■ CUSTOMIZING THE SIMPLE CMS 25

Figure 3-1. The flat pages admin form with rich-text editor

Adding a Search System to the CMS
So far you’ve just been using the applications bundled with Django itself and making small
customizations to the templates they use. Up to now that’s accomplished a lot, but for most of
your projects, you’ll be writing your own applications in Python. So let’s add a new feature—
written in Python—to the simple CMS: a simple search system that will let users type in a
query and get back a list of any pages whose titles or contents match.

It would be possible to add this directly to the flatpages application bundled with
Django, but that’s not really a good idea, for two reasons:

• It makes upgrading Django a hassle. You have extra Python code that didn’t come with
Django and the code needs to be preserved across the upgrade.

• A useful feature like a search system might need to be expanded later on to work with
other types of content, in which case it wouldn’t make sense to have it be part of the
flatpages application.

CHAPTER 3 ■ CUSTOMIZING THE SIMPLE CMS26

So let’s make this into its own application. Go to your project directory and type the fol-
lowing command:

python manage.py startapp search

Just as the startproject command to django-admin.py created a new, empty project
directory, the startapp command to manage.py creates a new, empty application module. It
will set up the search/ directory inside your project and add the following files to it:

• __init__.py: Just like the one in the project directory, this __init__.py file starts out
empty. Its job is to indicate that the directory is also a Python module.

• models.py: This file will contain any data models defined for the application. A little
later in this chapter, you’ll write your first model in this file.

• views.py: This is where the view functions, which respond to HTTP requests and do
most of the work of user interaction, will go.

For now you’ll just be writing a simple view, so open up the views.py file. The first step is
to import the things you’ll be using. Part of Python’s (and Django’s) design philosophy is that
you should be able to clearly see what’s happening with as little implicit “magic” as possible.
So each file needs to contain Python import statements for things it wants to reference from
other Python modules. To start with, you’ll need three import statements:

from django.http import HttpResponse
from django.template import loader, Context
from django.contrib.flatpages.models import FlatPage

This gives you a solid foundation for writing your search view:

• HttpResponse is the class Django uses to represent an HTTP response. When an
HttpResponse is given as the return value of a view, Django will automatically convert
it into the correct response format for the web server it’s running under.

• The loader module in django.template provides functions for specifying the name
of a template file, which will be located (assuming it’s in a directory specified in
TEMPLATE_DIRS), read from disk, and parsed for rendering.

• Context is a class used to represent the variables for a template. You pass it a Python
dictionary containing the names of the variables and their values. (If you’re familiar
with other programming languages, a Python dictionary is similar to what some lan-
guages call a hash table or associative array.)

• FlatPage is the model class that represents the pages in the CMS.

CHAPTER 3 ■ CUSTOMIZING THE SIMPLE CMS 27

ADMONITION: PYTHON NAMING STYLE

Every programming language has a set of standard conventions for how to name things. Java, for example,
tends to use camel case, where things are given NamesThatLookLikeThis, while PHP tends to favor
underscores, or names_that_look_like_this.

The standard practice in Python is that classes should have capitalized names—hence Context—and
use the camel-case style for multiword names like HttpResponse or FlatPage. Modules, functions, and
normal variables use lowercase names and underscores to separate multiple words in a name. Following this
convention will help Python programmers—including you—quickly understand a new piece of code when
reading it for the first time.

If you’re interested in learning more about standard Python style, you can read the official Python style
guide online at www.python.org/dev/peps/pep-0008/.

Now you’re ready to write a view function that will perform a basic search. Here’s the
code, which will go into views.py below the import statements you added:

def search(request):
query = request.GET['q']
results = FlatPage.objects.filter(content__icontains=query)
template = loader.get_template('search/search.html')
context = Context({ 'query': query, 'results': results })
response = template.render(context)
return HttpResponse(response)

Let’s break this down line by line. First, you’re defining a Python function using the key-
word def. The function’s name is search, and it takes one argument named request. This will
be an HTTP request (an instance of the class django.http.HttpRequest), and Django will
ensure that it’s passed to the view function when needed.

Next, look at the HTTP GET variable q to see what the user searched for. Django automati-
cally parsed the URL, so a URL like this:

http://www.example.com/search?q=foo

results in an HttpRequest whose GET attribute is a dictionary containing the name q and
the value foo. Then you can read that value out of it just as you would access any Python
dictionary.

The next line does the actual search. The FlatPage class, like nearly all Django data mod-
els, has an attribute named objects that can be used to perform queries on that model. In this
case, you want to filter through all of the flat pages looking for those whose contents contain
the search term, so you use the filter method and the argument content__icontains=query,
storing the results in a variable named results. This will provide a list of FlatPage objects that
matched the query.

CHAPTER 3 ■ CUSTOMIZING THE SIMPLE CMS28

ADMONITION: DJANGO DATABASE LOOKUP SYNTAX

As you’ll see shortly, a Django data model has special attributes called fields, which usually correspond to the
names of the columns in the database. When you use Django’s object-relational mapper (ORM) to run a
query, each argument in the query is made up of a combination of a field name and a lookup operator, sepa-
rated by double underscores.

In this case, the field name is content because that’s the field on the FlatPage model that repre-
sents the page’s contents (each FlatPage also has fields named title, url, and so on). The lookup
operator is icontains, which checks to see whether the value in that column contains the string you’ve
passed to it. The “i” at the front means it’s case-insensitive, so, for example, a query for “hello” would match
both “hello” and “Hello”. The Django ORM supports a large number of other lookup operators, many of which
you’ll see in action throughout this book.

Now that you have the query and the results, you need to produce some HTML and return
a response; so the next line uses the get_template function of the loader module you imported
to load a template named search/search.html. Next you need to give the template some data
to work with, so create a Context containing two variables: query is the search query, and
results contains the search results.

Next you use the template’s render method, passing in the Context you created, to gener-
ate the HTML for the response. And finally, you’ll return an HttpResponse containing the
rendered HTML.

Now save the views.py file. You’ll come back to it in a moment and make some improve-
ments, but for now you need to create a template so that the search view can generate its
HTML. Go into your templates directory, create a new subdirectory search, and create a file,
search.html, inside it. Next you’ll open up the search.html file and add the following to it:

<html>
<head>
<title>Search</title>

</head>
<body>
<p>You searched for "{{ query }}"; the results are listed below.</p>

{% for page in results %}
{{ page.title }}

{% endfor %}

</body>
</html>

This makes use of both the variables passed to it. It uses {{ query }} to display the query
(remember, variables in Django templates can be output directly by wrapping their names in
double curly braces), and loops over the results to display them in an unordered list.

CHAPTER 3 ■ CUSTOMIZING THE SIMPLE CMS 29

Notice that I’ve also used a Django template tag, for, which lets you loop over a sequence
of things and do something with each one. The syntax is pretty simple. In effect, it says, “for
each page in the results variable, display the following HTML, filled in with the values from
that page.” You can probably guess that, within the for loop, {{ page.title }} refers to the
title field of the current page in the loop, but {{ page.get_absolute_url }} is new. It’s stan-
dard practice for a Django model class to define a method called get_absolute_url(), which
will output a URL to be used for referring to the object, and the FlatPage model does so. (Its
get_absolute_url() method simply returns the value of its url field; other models can and will
have more complex ways of working out their URLs.)

ADMONITION: CALLING AN OBJECT’S METHODS IN A DJANGO TEMPLATE

The Django template system lets you access methods on Python objects in just the same way you access
any other attributes: using a dot (.), {{ page.get_absolute_url }} calls the get_absolute_url()
method. But note that in a template you don’t use parentheses when calling a method, and you can’t pass
arguments to a method called in this way. This goes back to Django’s philosophy of not allowing too much
“programming” in templates—something that’s complex enough to need arguments passed to it probably
isn’t purely presentational. The Django template system also forbids access to methods that alter the data in
your database. Calls to those methods definitely belong in a view function and not in a template.

You can also access values from a dictionary by using the same dot syntax. As with the lack of paren-
theses in method calls, this is different from how you would do it in Python code (where dictionary access
uses brackets, as in request.GET['q']); but it has the advantage of making the Django template syntax
extremely uniform and serves as a reminder that Django templates are not simply Python code and don’t
offer a full programming language.

Also, note that the for tag needs a matching endfor tag when you’re done telling it what to
do inside the loop. Most Django template tags that span over a section of the template will
need an explicit end tag to declare when you’re done with them.

Now open up your flatpages/default.html template and somewhere in it place the fol-
lowing HTML:

<form method="get" action="/search/">
<p><label for="id_q">Search:</label>
<input type="text" name="q" id="id_q" />
<input type="submit" value="Submit" /></p>

</form>

This adds a search box that will submit to the correct URL with the correct GET variable (q)
for the search query.

Finally, open up your project’s urls.py, and—after the lines for the admin and the
TinyMCE JavaScript, but before the catch-all pattern for the flat pages—add the following:

(r'^search/$', 'cms.search.views.search'),

Remember that since this regular expression ends in a slash, you’ll need to include it
when you type the address into your browser. Unlike the URL patterns you’ve set up

CHAPTER 3 ■ CUSTOMIZING THE SIMPLE CMS30

previously, which used the include directive to pull in other URLConf modules, this one maps
the URL search/ to a single specific view: the search view you just wrote. Save the urls.py file,
and now you should be able to type in a search query on any page in your CMS and get back a
list of matching pages.

Improving the Search View
The search view works pretty well for something so short: it’s only about a half dozen lines of
code, plus a few import statements. But you can make it shorter, and it’s a good idea to do so.

You’ll notice that of the six lines of actual code in the search view, four are dedicated to
loading the template, creating a Context, rendering the HTML, and returning the response.
That’s a series of steps you’ll need to walk through on nearly every view you write, so Django
provides a shortcut function, django.shortcuts.render_to_response, which handles that
process all in one step. So edit the views.py file to look like the following:

from django.shortcuts import render_to_response
from django.contrib.flatpages.models import FlatPage

def search(request):
query = request.GET['q']
return render_to_response('search/search.html',

{ 'query': query,
'results': FlatPage.objects.filter(➥

content__icontains=query) })

The render_to_response function gets two arguments here:

1. The name of the template file, search/search.html.

2. The dictionary to use for the template’s context.

Given that information, it handles the entire process of loading the template, rendering
the output, and creating the HttpResponse. Notice also that you’re no longer using a separate
line to fetch the results. They’re only needed for the template context, so you can do the query
right there inside the dictionary, trusting that its result will be assigned properly to the results
variable. You’ve also broken up the arguments, including the dictionary, over several lines.
Python allows you to do this any time you’re constructing a list or dictionary (as well as in
several other situations), and it makes the code much easier to read than if all of this was
sprawled out over one long line.

Save the views.py file, and then go back and search again. You’ll notice that it works
exactly the same way, only now the search view is much shorter and simpler and, importantly,
doesn’t have the repetitive “boilerplate” of the template loading and rendering process. There
will be times when you’ll want to do that manually (for example, if you wanted to insert some
extra processing before returning the response), but in general you should be using the
render_to_response shortcut whenever possible.

Another simple improvement would be to have the search view handle situations where
it’s accessed directly. Right now, if you just visit the URL /search/ instead of accessing it
through the search box on another page, you’ll see an ugly error complaining that the key q
wasn’t found in the request.GET dictionary (because the q variable comes from performing a

CHAPTER 3 ■ CUSTOMIZING THE SIMPLE CMS 31

search). It would be much more helpful to simply display an empty search form, so let’s
rewrite the view to do the following:

def search(request):
query = request.GET.get('q', '')
results = []
if query:

results = FlatPage.objects.filter(content__icontains=query)
return render_to_response('search/search.html',

{ 'query': query,
'results': results })

Now you’re using request.GET.get('q', '') to read the q variable. get() is a method
available on any Python dictionary that lets you ask for the value for a particular key and
specify a default to fall back to if the key doesn’t exist. The default in this case is just an empty
string, and then you can check the result to see whether there’s a search query. If there isn’t,
you set results to an empty list to start with, and that won’t be changed. This means you can
rewrite the template like so:

<html>
<head>
<title>Search</title>

</head>
<body>
<form method="get" action="/search/">
<p><label for="id_q">Search:</label>
<input type="text" name="q" id="id_q" value="{{ query }}" />
<input type="submit" value="Submit" /></p>

</form>
{% if results %}
<p>You searched for "{{ query }}"; the results are listed below.</p>

{% for page in results %}

{{ page.title }}
{% endfor %}

{% else %}
{% if query %}
<p>No results found.</p>

{% else %}
<p>Type a search query into the box above, and press "Submit"

to search.</p>
{% endif %}

{% endif %}
</body>

</html>

Now the search.html template will show a search box the same as all the other pages in
the CMS, and you’ll notice that a value attribute has also been added to the HTML for the

CHAPTER 3 ■ CUSTOMIZING THE SIMPLE CMS32

search input box. This way, if there was a query, it will be filled in as a reminder of what the
user searched for.

I’m also using another new template tag: if. The if tag works similarly to the if statement
in Python, letting you test whether something is true or not, and then do something based on
the result. It also takes an optional else clause, which I’m using to show a different message if
the user hasn’t searched for anything yet. Also, just as the for tag needed an endfor tag, if
needs an endif. And, finally, notice that the if tag can be nested: inside the else clause I’m
using another if tag to differentiate between the results being empty because there was no
query and the results being empty because no pages matched the query.

ADMONITION: SECURITY CONSIDERATIONS

One of the most common types of security problems with web applications is vulnerability to a cross-site
scripting attack, or XSS. This sort of vulnerability occurs when you blindly accept input from a user and dis-
play it in a page on your site, as I’m doing with the search query. The problem is that a hacker can send a
search query that contains HTML and JavaScript, then lure someone into visiting a page for that query. The
JavaScript will be executed as if it were part of your site and could be used to hijack a user’s account.

There’s also a risk of another form of attack, called SQL injection, where a hacker relies on a web site to
include user input directly in a database query. For example, a hacker might send a search query containing
the text “DROP DATABASE;” which could—if blindly executed—delete the entire database for the site.

Django provides some built-in protection from these types of attacks, however. Django templates auto-
matically “escape” the contents of any variables you display (so that, for example, the < character becomes
<, removing the ability for a variable to end up as HTML that’s rendered by a web browser), and Django
carefully constructs database queries so that SQL injection isn’t possible.

However, you shouldn’t let these mechanisms lull you into a false sense of invincibility. Any time you’re
dealing with user-submitted data, you need to carefully ensure that you’re taking appropriate steps to pre-
serve your site’s security.

Improving the Search Function with Keywords
The search function you’ve just added to the CMS is pretty handy, but you can make it a little
bit better by adding the ability to recognize specific keywords and automatically pull up par-
ticular pages in response. This will let the site’s administrators provide helpful hints for users
who are searching and also creates useful metadata that you might want to take advantage of
later on.

To add this feature, you’ll need to create a Django data model; models go in the models.py
file, so open that up. You’ll see that it already has an import statement at the top:

from django.db import models

This imports the module that contains all of the necessary classes for creating Django
data models, and the startapp command automatically added it to the models.py file to help
you get started. Below that line, add the following:

CHAPTER 3 ■ CUSTOMIZING THE SIMPLE CMS 33

from django.contrib.flatpages.models import FlatPage

class SearchKeyword(models.Model):
keyword = models.CharField(max_length=50)
page = models.ForeignKey(FlatPage)

class Admin:
pass

def __unicode__(self):
return self.keyword

This is a simple Django model with two fields:

• keyword: This is a CharField, which means it will accept short strings. I’ve specified a
max_length of 50, which means that up to 50 characters can go into this field. In the
database, Django will turn this into a column declared as VARCHAR(50).

• page: This is a foreign key pointing at the FlatPage model, meaning that each
SearchKeyword is tied to a specific page. Django will turn this into a foreign-key column
referencing the table the flat pages are stored in.

There’s also that short class Admin: declaration, which tells Django that you want the
admin application to display an interface for adding and editing the keywords. The pass state-
ment is Python’s way of saying “don’t do anything special here,” and Django interprets that
as indicating that the admin interface should use all of the default settings. You could add
some statements here to configure the admin interface for keywords, but for now the defaults
are fine.

Finally, there’s one method on this model: __unicode__(). This is a standard method that
all Django model classes should define, and it’s used whenever a (Unicode) string representa-
tion of a SearchKeyword is needed. If you’ve ever worked with Java, this is like the toString()
method on a Java class. The __unicode__() method should return something that can sensibly
be used as a representation of the SearchKeyword, so it’s defined to return the value of the
keyword field.

ADMONITION: PYTHON’S TWO TYPES OF STRINGS

Python actually has two different classes that represent strings: str and unicode. (There’s also a parent
class, basestring, which can’t be instantiated directly but does provide a useful way to check whether
something is a string type.) Instances of str are sometimes called bytestrings because each one corre-
sponds to a specific series of bytes in a specific character encoding. (The default for Python is ASCII, but you
can easily create strings in other encodings.) Instances of unicode, meanwhile, are strings of Unicode char-
acters, and need to be converted to a byte-based encoding, such as UTF-8 or UTF-16—Unicode itself is not
an “encoding”—before being output.

CHAPTER 3 ■ CUSTOMIZING THE SIMPLE CMS34

Because of this, Python classes can define either of two specially named methods, __str__() or
__unicode()__, to provide string representations of themselves or, if necessary, they can define both. All of
Django’s internals are built to work with unicode strings, so it’s best simply to define __unicode__().
Strings stored by Django models will be converted to unicode strings when they’re retrieved from your
database, and Django will automatically convert to appropriately encoded bytestrings when producing output
for an HTTP response.

Be aware that not all Python software is written to handle unicode strings (or even non-ASCII-encoded
bytestrings) properly. When you write applications that rely on third-party software, you will sometimes have
to work around this by manually converting a string. Django provides a set of utility functions to make this
easier, and in later chapters you’ll see them in action.

Save the file, then open up the project’s settings.py, and scroll down to the INSTALLED_
APPS setting. Add cms.search to the list, and save the file. This will tell Django that the search
application inside the cms project directory is now part of the project and that its data model
should be installed. Next, run python manage.py syncdb, and Django will create the new table
for the SearchKeyword model.

ADMONITION: WHY DID THE SEARCH VIEW WORK BEFORE?

You’ve probably noticed that I used the search view already without adding the search application to
INSTALLED_APPS. This worked because you can take advantage of any Python code on your computer
when routing URLs to view functions, regardless of whether they’re in an application that’s listed in
INSTALLED_APPS or not. In fact, they don’t have to be part of a Django application module at all. This
means, if you really want or need to, you can keep standalone libraries of code on your computer and call on
them from your Django projects.

Django does need to know exactly which applications to install data models for, however. So now that
you’ve got a model, it’s necessary to add the search application to INSTALLED_APPS so that Django will
create the database table for it. There are some other features that require you to have an application and list
it in INSTALLED_APPS. Most of the time you’ll want to do that, regardless of whether it’s strictly necessary
(if for no other reason than to provide a quick reminder of what your project is using), but it’s useful some-
times to know what requires this and what doesn’t.

If you manually connect to your database and look at the table layout (consult the docu-
mentation for the specific database system you’re using to see how to do this), you’ll see that
the new table was created with two columns corresponding to the fields on the SearchKeyword
model. It also has a third column, id, which is declared as the primary key and is an auto-
incrementing integer. If you don’t explicitly mark any of the fields in a model to serve as a
primary key, Django will do this for you automatically. Now you can fire up the development
web server again, and you’ll see the new model appear in the index. You can add and edit key-
words just as you can add and edit instances of any of the models from the other installed
applications. Unfortunately, this interface is a little bit clunky: the keywords are added on a

CHAPTER 3 ■ CUSTOMIZING THE SIMPLE CMS 35

separate page, and you have to explicitly choose which page to associate each keyword with,
as shown in Figure 3-2.

Figure 3-2. The default admin form for a search keyword

What you’d really like is to have the interface for the search keywords appear on the same
page as the form for adding and editing pages. You can do that by making a small change to
the SearchKeyword class so that it looks like this:

class SearchKeyword(models.Model):
keyword = models.CharField(maxlength=50, core=True)
page = models.ForeignKey(FlatPage, edit_inline=models.STACKED,

min_num_in_admin=3, num_extra_on_change=1)

Notice that I’ve added a couple of extra arguments to each field: keyword now has
core=True, and page gained the edit_inline, min_num_in_admin, and num_extra_on_change
arguments. Also, the class Admin: portion of the model has been removed.

Now save the models.py file. You’ll notice that keywords no longer show up as their own
item on the admin index page, but if you click to add or edit a flat page, you’ll see something
new, as shown in Figure 3-3.

CHAPTER 3 ■ CUSTOMIZING THE SIMPLE CMS36

Figure 3-3. Search keywords being edited inline, alongside a flat page

The edit_inline argument means that the SearchKeyword model now gets displayed on
the same page as the FlatPage model in the admin, and the arguments you've added control
its presentation:

• edit_inline=models.STACKED means that multiple keywords will be displayed in a
stacked interface. There’s another option, models.TABULAR, which would instead display
them in a table.

• min_num_in_admin=3 and num_extra_on_change=1 mean that form fields for at least three
keywords will be displayed. And even if they’re all filled in, at least one extra blank key-
word will be displayed so that you can add more.

• The core=True argument on keyword solves an important problem. When this model
had its own standalone pages in the admin, each one had a Delete button, but when
editing inline, that’s not displayed. Instead you can declare the core fields of the model,
and if they’re all left blank, Django will take that as a sign to delete that instance. In this
case, if you clear the field for an existing keyword, it will be deleted when you click the
Save button for its page.

Go ahead and add some keywords to the pages in your database; you’ll want them to be
available when you try out the improved keyword-based search.

CHAPTER 3 ■ CUSTOMIZING THE SIMPLE CMS 37

Adding support for keywords in the search view is pretty easy. Just edit the view so that it
looks like the following:

def search(request):
query = request.GET.get('q', '')
keyword_results = results = []
if query:

keyword_results = FlatPage.objects.filter(➥

searchkeyword__keyword__in=query.split()).distinct()
results = FlatPage.objects.filter(content__icontains=query)

return render_to_response('search/search.html',
{ 'query': query,
'keyword_results': keyword_results,
'results': results })

You’ve added a second query in the preceding code, which looks up pages whose associ-
ated search keywords match the query. Though it may look daunting at first, it’s actually pretty
simple.

First you’re using a call to filter, just as in the other query. This one, though, is interest-
ing. It’s actually reaching “across” the foreign key from the SearchKeyword model and looking
in the keyword field there. Any time you have a relationship like this between models, you can
chain lookups across the relationship by using double underscores: searchkeyword__keyword
translates to “the keyword field on the related SearchKeyword model.” The lookup operator
here is __in, which takes a list of things to match against. You’re feeding it query.split(). The
query variable, at this point, is a string, and Python provides a split() method which, by
default, splits on spaces. This is exactly what you want—to be able to handle queries that
contain multiple words.

Next, the call to filter is followed by distinct(). The nature of this query means that, if a
single page has multiple keywords that match the search, multiple copies of that page will
show up in the results. You only want one copy of each page, so you use the distinct()
method, which adds the SQL keyword DISTINCT to the database query.

Finally, you add the keyword_results to the context you’ll be using with the template. The
template will need to update. Though it’s getting a little bit more complex because of the mul-
tiple cases it has to handle, it’s still fairly straightforward to follow:

<html>
<head>
<title>Search</title>

</head>
<body>
<form method="get" action="/search/">
<p><label for="id_q">Search:</label>
<input type="text" name="q" id="id_q" value="{{ query }}" />
<input type="submit" value="Submit" /></p>

</form>
{% if keyword_results or results %}
<p>You searched for "{{ query }}".</p>
{% if keyword_results %}
<p>Recommended pages:</p>

CHAPTER 3 ■ CUSTOMIZING THE SIMPLE CMS38

{% for page in keyword_results %}

{{ page.title }}
{% endfor %}

{% endif %}
{% if results %}
<p>Search results:</p>

{% for page in results %}

{{ page.title }}
{% endfor %}

{% endif %}

{% endif %}
{% if query and not keyword_results and not results %}
<p>No results found.</p>

{% else %}
<p>Type a search query into the box above, and press "Submit"

to search.</p>
{% endif %}

</body>
</html>

The complexity really comes from the nested if tags to deal with the various cases, but
this lets you cover every possibility. Also, notice the line that reads {% if keyword_results or
results %}: the if tag lets you do some simple logic to test whether any or all of a set of condi-
tions are met. In this case, it provides an easy way to handle the situation where there’s some
type of result, and then it tackles the different cases individually, as needed. If you’ve added
some keywords to the pages in your database, try searching for those keywords now, and you’ll
see the appropriate pages show up in the search results.

Before I wrap up, let’s add one more useful feature to the search view. If there’s only one
result that precisely matches a keyword, you’ll redirect straight to that page and save the user
a mouse click. You can accomplish this by using HttpResponseRedirect, a subclass of the
HttpResponse class, which issues an HTTP redirect to a URL you specify. Open up views.py
and add the following line at the top:

from django.http import HttpResponseRedirect

This is necessary because, again, Python requires you to explicitly import anything you
plan to use. Now edit the search view like so:

def search(request):
query = request.GET.get('q', '')
keyword_results = results = []
if query:

keyword_results = FlatPage.objects.filter(➥

searchkeyword__keyword__in=query.split()).distinct()
if keyword_results.count() == 1:

CHAPTER 3 ■ CUSTOMIZING THE SIMPLE CMS 39

return HttpResponseRedirect(keyword_results[0].get_absolute_url())
results = FlatPage.objects.filter(content__icontains=query)

return render_to_response('search/search.html',
{ 'query': query,
'keyword_results': keyword_results,
'results': results })

Up until now, you’ve been treating the results of database queries like normal Python lists,
and, although they can be used like that, they’re actually a special type of object called a
QuerySet. QuerySet is a class Django uses to represent a database query. Each QuerySet has the
methods you’ve seen so far—filter() and distinct()—plus several others, which you can
“chain” together to build a progressively more complex query. A QuerySet also has a count()
method, which will tell you how many rows in the database matched the query. (It does a
SELECT COUNT to find this out, though for efficiency reasons, it can also take advantage of some
other methods that don’t require an extra query.)

ADMONITION: WHEN DOES DJANGO EXECUTE THE QUERY?

The single most important feature of QuerySet is that it’s “lazy.” Initially, it doesn’t do anything except make
a note of what query it’s eventually supposed to execute in the database, which is why you can keep chain-
ing extra things onto it to add filtering, a DISTINCT clause, or other conditions. The actual database query
won’t be executed until you do something that forces it to happen, like (in this case) counting or looping over
the results.

By using count(), you can see whether a keyword search returned exactly one result and
then issue a redirect. The URL you redirect to is keyword_results[0].get_absolute_url(),
which pulls out the first (and, in this case, only) page in the results and calls its get_absolute_
url() method to get the URL.

Go ahead and try this out. Add a new search keyword that’s unique to one page, and then
search for it. If you’ve set up the view as previously described, you’ll immediately be redirected
to that page.

Looking Ahead
In the last two chapters, you’ve gone from literally nothing to building a useful, functional
content management system with an easy web-based administrative interface, adding rich-
text editing to avoid the need to write raw HTML, and a search system that allows admin-
istrators to set up keyword-based results. Along the way, you’ve written fewer than a hundred
lines of actual code. Django did most of the heavy lifting, and you just supplied the templates
and a little bit of code to enable the search function.

Best of all, you now have a simple, reusable solution for a common web-development
task: a brochureware-style CMS. Any time you need it, you can set up Django and walk
through these same easy steps (or even just make a copy of the project, changing the appro-
priate settings in the process) to re-create it, saving you time and freeing you from the tedium
of a fairly repetitive situation.

CHAPTER 3 ■ CUSTOMIZING THE SIMPLE CMS40

Feel free to spend some time playing around with the CMS: add some style to the tem-
plates, customize the admin pages a bit more, or—if you’re feeling really adventurous—even
try adding a few features of your own. If you’d like a homework assignment of sorts, check out
the Django database API documentation (online at www.djangoproject.com/documentation/
db-api/) and see if you can work out how to add an index view that lists all of the pages in the
database.

When you’re ready for a new project, start reading the next chapter, where you’ll be start-
ing on your first application from scratch: a Django-powered weblog.

CHAPTER 3 ■ CUSTOMIZING THE SIMPLE CMS 41

A Django-Powered Weblog

The simple CMS you built in the last two chapters was a good example of how Django’s bun-
dled applications can help you get a project off the ground quickly and without much code;
but most of the time you’ll probably be developing things that aren’t covered quite so neatly by
prebuilt applications included with Django itself. Django still has a lot to offer in these situa-
tions, mostly by taking the bulk of repetitive work off your shoulders. Over the rest of this book
you’ll be writing applications from scratch and seeing how Django’s components can make
that a much easier and much less painful process. Let’s start with something that’s quickly
becoming a necessity for any organization that goes online: a weblog.

Feature Checklist
Real-world applications usually start with at least a rough specification of what they’ll need to
do, and I’ll follow the same process here. Before you sit down and write the weblog applica-
tion, you’ll need to decide up-front what you want it to do. When I wrote a weblog app for my
own personal use, this was the feature list I had in mind:

• It needs to provide an easy way to add and edit entries without writing raw HTML.

• It should support multiple authors and provide a way to separate entries according to
author.

• Each entry should allow an optional short excerpt to be displayed when a summary is
needed.

• The weblog’s authors should be able to create categories and assign entries to them.

• Authors should be able to decide which entries will be displayed publicly and which
will not (in order to, for example, mark an unfinished entry as a draft and come back to
it later).

• Entries should be able to be “featured,” and these entries should be easily retrievable
(for display on the weblog’s home page, for example).

• A link log should be provided, as well, to allow posting of interesting or notable links.

• Both entries and links should support tagging—adding arbitrary descriptive words to
provide extra metadata or organization.

43

C H A P T E R 4

• The link log should integrate with del.icio.us or other popular link-sharing services so
that links posted to the weblog automatically show up at the service as well.

• Visitors should be able to browse entries and links by date, by tag, or (in the case of
entries) by category.

• Visitors to the blog should be able to leave comments on entries and links.

• Comments should be subject to some sort of moderation in order to avoid comment
spam.

There are more features you could add here, but this list is enough to keep you busy for a
while; it will make use of a broad range of Django’s features. So let’s get started.

Writing a Django Application
In the last chapter, when you added the search function and SearchKeyword model to the sim-
ple CMS, you built a simple Django application—initially created with the manage.py startapp
command—to hold them. At the time I didn’t spend much time detailing just what goes into a
Django application. However, now that you’re going to start doing more complex things, it’s
worth pausing for a moment to go over it, to understand how individual Django applications
differ from a Django project.

Projects vs. Applications
As you’ve seen already, a Django project is configured by its settings module, which—among
other things—specifies the database it will connect to and the list of applications it uses. In a
way, the defining quality of a project is that it’s the “thing” that holds the settings (including
both the settings module and the root URLConf module, which specifies the project’s base
URL configuration).

A project can also contain other code if it makes sense for that code to be part of the proj-
ect directly, but it’s fairly rare for this to be needed. Generally, a project exists to provide a
“container” for a set of Django applications to work together, and most projects won’t ever
need anything beyond the initial files created by django-admin.py startproject.

A Django application, on the other hand, is responsible for actually providing some piece
of functionality and should try to focus on that functionality as much as possible. An applica-
tion doesn’t have a settings module—that’s the job of any projects that use it—but it does
provide several other things:

• An application can (and often does) provide one or more data models.

• An application usually provides one or more view functions, often related in some way
to its data models.

• An application can provide libraries of custom template tags, which extend Django’s
template system with extra, application-specific features.

• An application can (and usually should) provide a URLConf module suitable for being
“plugged in” to a project (via the include directive, as you’ve already seen in the case of
the administrative interface and flatpages applications bundled with Django).

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG44

And, of course, an application should also provide any extra “utility” code needed to
support itself, or it should have clear dependencies on other applications or on third-party
Python modules, which provide that support.

Standalone and Coupled Applications
It is important to be aware of the distinction between two different ways of developing Django
applications. One method, which I used in the last chapter, uses the manage.py startapp com-
mand to create an application module inside the project’s directory. While this is easy and
convenient, it does have some drawbacks, most notably in the fact that it “couples” the appli-
cation to the project. Any other Python code that wants to access that application needs to
know that it “lives” inside that particular project. (For example, to import the SearchKeyword
model from a separate piece of code, you’d have to import it from cms.search.models instead
of just search.models.) Any time you want to reuse the application, you need to either make
a copy of the project or create a set of empty directories to emulate the project's directory
structure.

The alternative is to develop a standalone application, which acts as an independent, self-
contained Python module and doesn’t need to be kept inside a project directory in order to
work correctly. A standalone application is much easier to reuse and distribute, but it does
involve a bit more work initially to set up: the manage.py startapp command can’t create
things automatically for you unless you’re developing an application that’s coupled to a par-
ticular project.

While there are cases where you’ll develop one-off applications that don’t need to be
reusable or distributable (and in those cases, it’s perfectly fine to develop them inside of, and
coupled to, a particular project), in general, you’ll get more benefit from developing stand-
alone applications that can be reused in many different projects. That’s how you’ll be working
for the rest of this book.

Creating the Weblog Application
Because this is going to be a standalone application, you’ll need to create a Python module for
it manually instead of relying on manage.py startapp, but that’s not too hard. You may remem-
ber that all the startapp command really did was create a directory and put three files into it,
and that’s all you’ll need to do to get started.

There are only two things you need to worry about when manually setting up a new appli-
cation module: what to call it and where to put it. You can call an application by any name
that’s legal for a Python module. Python allows module names to be made up of any combina-
tion of letters and numbers and, optionally, underscores to separate words in the name
(though the name must start with a letter). Because Django is named after a jazz musician,
some developers like to continue the pattern by naming applications after famous jazz figures.
(For example, the company I work for sells a CMS called Ellington—named for Duke Elling-
ton—and there’s a popular open source e-commerce application named Satchmo in honor of
Louis Armstrong.) This isn’t required, but it’s something I like to do whenever there’s not a
more obvious name. So when I wrote my own weblog application, I named it Coltrane after
John Coltrane. That seemed appropriate, given that Coltrane was known for composition and
improvisation, two skills that also make a good blogger.

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG 45

Where to put the application’s code is a slightly trickier question to answer. So far you
haven’t run into this problem because Django’s manage.py script, in order to make initial setup
and development easier, somewhat obscures an important requirement for Python code: it
has to be placed in a directory that’s on the Python path. The Python path is simply a list of
directories where Python will search whenever it encounters an import statement. So code
that’s meant to be imported (as your application will be, in order to be used as part of a
Django project) needs to be on the Python path.

When you installed Python, a default Python path was set up for you, which included a
directory called site-packages. When you installed Django, the setup.py installer script placed
all of Django’s code inside that directory. You can place your own code in site-packages if you
like, but it’s generally not a good idea to do so. The site-packages directory is almost always
set up in a part of your computer’s file system that requires administrative access to write to,
and having to constantly jump through the hoop of authenticating to place things there isn’t
much fun. Instead, most Python programmers create a directory where they’ll keep their own
code and add it to the Python path, so let’s do that. Since you’ve already created a directory to
hold your Django projects, go ahead and add it to your Python path and place your stand-
alone applications in it as well. This way you’ll only need to add one directory to the Python
path, and you won’t be scattering code into multiple locations on your computer.

ADMONITION: HOW TO CHANGE YOUR PYTHON PATH

On Mac OS X, as well as most UNIX- or Linux-based systems, changing the Python path is easy. You can type
a command like the following to add directories to the path:

export PYTHONPATH=/home/myuser/my-python-code:$PYTHONPATH

To avoid needing to type that over and over again, you can usually add it to a file called .profile or
.bash_profile in your home directory. That way, it will be executed each time you open up a command
line (but you may also need to add it to a .shrc or .bashrc file).

On Windows, the setup is a bit more involved, largely because Windows, unlike UNIX-based systems,
isn’t as friendly to command-line–based programs. In the Control Panel’s System area, under the Advanced
tab, you can set environment variables. The PYTHONPATH variable should already be set up with the initial
value Python provided, and you can add new directories to it (directories in the list should be separated with
semicolons).

Now, in the same directory where you created the cms project (in other words, alongside
cms, not inside cms), create a new directory named coltrane. Inside that, create three empty
files:

• __init__.py

• models.py

• views.py

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG46

This is all you’ll need for now: the __init__.py file will tell Python that the coltrane direc-
tory is a Python module, and the models.py and views.py files will hold the initial code for the
weblog application.

Designing the Models
You’re going to need several models to implement all of the features in your list, and a couple
of them will be moderately complex. However, you can start with a simple one: the model
that will represent categories for entries to be assigned to. Open up the weblog application’s
models.py file, and add the following:

from django.db import models

class Category(models.Model):
title = models.CharField(max_length=250)
slug = models.SlugField(unique=True)
description = models.TextField()

class Admin:
pass

def __unicode__(self):
return self.title

Most of this should be familiar after your first foray into Django models in the last chap-
ter. The import statement pulls in Django’s models package, which includes the base Model
class and definitions for the different types of fields to represent data. You’ve already seen the
CharField (this one has a longer max_length in order to allow for long category names), the
Admin class declaration to activate the admin interface, and the __unicode__() method (which,
for this model, returns the value of the title field). But there are two new field types here:
SlugField and TextField.

The meaning of TextField is pretty intuitive. It’s meant to store a larger amount of text
(in the database, it will become a TEXT column), and will be used here to provide a useful
description of the category.

SlugField is a bit more interesting. It’s meant to store a slug: a short, meaningful piece of
text, composed entirely of characters that are safe to use in a URL and to be used in generating
the URL for a particular object. This means, for example, that instead of having a URL like
/categories?category_id=47, you could have /categories/programming/. This is useful to your
site’s visitors (because it makes the URL meaningful and easier to remember) and for search
engine indexing. URLs that have a relevant word in the URL often rank higher in Google and
other search engines than URLs that don’t. The term slug, as befits Django’s heritage, comes
from the newspaper industry, where it is used in preprint production and sometimes in wire
formats as a shorter identifier for a news story. Note that I’ve added an extra argument to
SlugField: unique=True. Since the slug is going to be used in the URL and the same URL can’t
refer to two different categories, it needs to be unique. Django’s administrative interface will

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG 47

enforce uniqueness for this field, and manage.py syncdb will create the database table with a
UNIQUE constraint for that column.

It’s useful when developing an application to stop every once in a while and actually try it
out. So go back to the cms project, open up its settings file, and add coltrane—the new
weblog application—to its INSTALLED_APPS setting:

INSTALLED_APPS = (
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.sites',
'django.contrib.admin',
'django.contrib.flatpages',
'cms.search',
'coltrane',

)

Because it’s directly on the Python path, just adding coltrane will work. Next run python
manage.py syncdb to install the table for the Category model and launch the development
server. The admin index page will look like that shown in Figure 4-1.

Figure 4-1. The Django admin interface with the Category model

You can see that the Category model shows up, but it’s labeled “Categorys.” That’s no
good. Django’s admin interface generates that label from the name of the model class and
tries to pluralize it by adding an “s,” which works most of the time. It doesn’t always work,

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG48

though, and when it doesn’t Django lets you specify the correct plural name. Go back to the
weblog’s models.py file and edit the Category model class to look like the following:

class Category(models.Model):
title = models.CharField(max_length=250)
slug = models.SlugField(unique=True)
description = models.TextField()

class Meta:
verbose_name_plural = "Categories"

class Admin:
pass

def __unicode__(self):
return self.title

Once you save the file and refresh the admin index page in your browser, you should see
something similar to what’s shown in Figure 4-2.

Figure 4-2. The correct pluralization of the Category model

Because you often need to provide extra meta-information about a model, Django lets
you add an inner class, named Meta, which can specify a large number of common options. In
this case, you’re using an option called verbose_name_plural, which will return a pluralized
name for the model class whenever it’s needed. (There’s also a verbose_name option, which can
specify a singular version if it differs significantly from the class name, but you don’t need it

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG 49

here.) You’ll see a number of other useful options for the inner Meta class as you flesh out the
weblog’s models.

If you click in the admin interface to add a category, you’ll see the appropriate fields in a
nice form: title, slug, and description. But adding a category this way will reveal another
shortcoming. Most of the time, the value for the slug field will probably be similar or even
identical to the value for the title field (for example, a Programming category should proba-
bly have a slug like “programming”). Having to manually type the slug every time would be
tedious, so why not have it automatically generated from the title, and then let the user manu-
ally change it if necessary? This is easy enough to do. Just change the definition of the slug
field to look like this:

slug = models.SlugField(prepopulate_from=['title'], unique=True)

Then save the models.py file and add a category. The prepopulate_from argument will turn
on a helpful piece of JavaScript in Django’s administrative interface, and it will automatically
fill in a suggested slug as you type a value into the title field. Note that prepopulate_from gets
a list: this means you could specify multiple fields to try to draw the slug value from, which
isn’t common but is sometimes useful. The JavaScript that generates slugs is also smart
enough to recognize, and omit, words like a, an, the, and so on. These are called stop words
and generally aren’t useful to have in a slug.

Also, note that when Django creates the database table for this model, it will add an index
to the slug column. You can manually tell Django to do this with any field (by using the option
db_index=True for the field), but SlugField will get one automatically, providing a perform-
ance boost in the common case of using a slug from a URL to perform database queries.

ADMONITION: SLUGS AND NORMALIZATION

If you’re familiar with theories of database normalization—guidelines for designing relational databases so
as to avoid duplicated information—you may be wondering why the slug gets its own column if it’s just going
to be generated from the title. This smells suspiciously like needless duplication, doesn’t it?

The slug gets its own column mostly because it doesn’t necessarily depend on the title. For some long
category titles, for example, the slug might differ significantly in order to stay short and memorable. Also,
normalized tables aren’t an absolute rule. Deliberately denormalizing—so long as it’s done carefully—can
often yield important performance improvements, as you’ll see when you write the model for entries.

While you’re looking at categories in the admin interface, let’s pause and add another use-
ful feature—helpful hints that give the weblog application’s users more information as they fill
in the data. So edit the definition of the title field like so:

title = models.CharField(max_length=250, help_text='Maximum 250 characters.')

Next, save the models.py file and look at the admin form again (see Figure 4-3).

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG50

Figure 4-3. The admin form for adding a category

The string given in the help_text argument shows up underneath the text box for the
title field, providing a useful hint about what can be entered there. You can add help_text to
any field in your model, and it’s generally a good idea to do so whenever there’s something
users should know while entering data. So let’s add it for the slug field as well:

slug = models.SlugField(prepopulate_from=['title'], unique=True,
help_text="Suggested value automatically generated from➥

title. Must be unique.")

Next save the models.py file and refresh the admin form again. You’ll see that text show up
under the slug field’s text box, notifying users that a suggested value will be filled in and
reminding them that the slug must be unique.

Before I move on, let’s add one more improvement. If you try adding a couple of cate-
gories, you might notice that the admin page, which lists all of the categories, doesn’t
necessarily keep them in any order. It would be nice to have them displayed in an alphabetical
list so that a user can scan through them quickly. Again, this is easy enough to do. The inner
Meta class accepts an option to specify a default ordering for the model:

class Meta:
ordering = ['title']
verbose_name_plural = "Categories"

Save the models.py file, and the categories will be alphabetized. Unless you specifically
override it on a per-query basis, Django will now append the clause ORDER BY title ASC to
any database query for the categories table, which will get categories back in the correct

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG 51

alphabetical order. Notice that the value for ordering is a list. You can specify multiple fields
here, and they’ll be correctly placed into an ORDER BY clause for most queries. (The admin
application only uses the first field in the ordering option when retrieving lists of objects.)

One more useful thing you can add is a special method called get_absolute_url(). In
Chapter 2, you saw that this is the standard practice for a Django model that wants to specify
its own URL, and every model that is intended to be used in a public-facing view should have
a get_absolute_url() method. So let’s add one:

def get_absolute_url(self):
return "/categories/%s/" % self.slug

For now, just put this method at the bottom of the Category class (remember that it needs
to be indented to be part of the class). You’ll see a bit later on how to keep all the parts of a
Django model class organized.

This will return a string with the value of the category’s slug field interpolated into the
correct place. Adding this method will also cause the admin interface to show a View on Site
button for each category, though for now it won’t be very useful because you haven’t yet set up
any URLs or views to actually display them.

ADMONITION: PYTHON STRING FORMATTING

While it’s possible to create a string by concatenation—building up the pieces one at a time and using the
plus sign (+) operator to join them together—that becomes extremely tedious if you need to include multiple
variables or generated values in the final result. So most languages, Python included, provide a simpler way
to interpolate variables and values into a string using special formatting characters.

The formatting characters (and, in many languages, the names of functions that build up strings in this
fashion) come from the printf family of functions in the standard library of the C programming language.
But Python doesn’t use a function for this. Instead, you simply write out the string with the appropriate for-
matting characters, then follow it with a percent sign (%) and any values to be interpolated into the result.

The full specification of Python’s string-formatting syntax, including a list of the formatting characters, is
available in the Python documentation online at http://docs.python.org/lib/typesseq-strings.
html.

The Entry Model
Now that you have categories to assign entries to, it’s time to build the model for the weblog
entries. Because it will really be the center of attention for this application, it’ll also be the
most complex model you’ll need to build, so let’s take it a bit at a time.

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG52

Basic Fields
First off, you need to have a few core fields to hold the title of the entry, the optional excerpt,
the text of the entry, and the date the entry was published. So let’s start with those. Open up
the models.py file and, below the Category model class, start adding the new Entry model.
(Don’t run manage.py syncdb yet. You’ll be adding more fields to this model, and it’s best to
wait until that’s done before having Django create the database tables.)

class Entry(models.Model):
title = models.CharField(max_length=250)
excerpt = models.TextField(blank=True)
body = models.TextField()
pub_date = models.DateTimeField()

The first three fields are all of types you’ve seen before, but the last one—which will repre-
sent the entry’s publication date—is new: DateTimeField. Compared to the field types you’ve
seen so far, it’s unique in several ways:

• When you store entries into or retrieve them from the database, this field will have as
its value a Python datetime object (the datetime class is found in the datetime module,
which is a standard part of Python), regardless of how it’s actually stored in the data-
base (different databases will, internally, handle it in slightly different ways). Django
also provides separate field types, which store only a date or only a time, but
DateTimeField handles both. This means you can track not only the date the entry
was published, but also the time (so you can eventually display something like
“Published on October 7 at 10:00 P.M.”).

• The exact type of database column created for this field will vary from database to
database. Up until now, you’ve seen fields that consistently become the same type of
column (VARCHAR for CharField, for example) no matter what type of database you’re
using. However, because of variations in column types, Django will use different
options as appropriate (on SQLite, this will become a DATETIME column while, in
contrast, it will become a TIMESTAMP column in PostgreSQL).

• So far, each type of field you’ve worked with has translated directly into one form input
in the administrative interface, usually a text box. A DateTimeField, however, becomes
two form inputs: one for the date and one for the time. You’ll see this when you start
working with entries in the administrative interface.

There’s also an option on the excerpt field that you haven’t seen before: blank=True. So far
the question of required fields hasn’t really come up. You’ve been working with simple models
where there’s no need to have some things be optional, and so Django’s default behavior—to
make the field required when entering data through a form in the admin interface and to cre-
ate a NOT NULL column in the database—has been fine. In this case, though, you need to make
the excerpt field optional, and the blank=True option tells Django that it’s okay not to enter
anything for this field. You can add blank=True to any type of field in a Django model.

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG 53

ADMONITION: BLANK FIELDS VS. NULL FIELDS

Django actually uses two separate options to handle required and nonrequired fields on models: blank and
null. The blank option only affects forms displayed to users of a Django-powered application and will pre-
vent the form from displaying a validation error if no value is entered. The null option, on the other hand,
will set up the database to accept a NULL value. If you need to allow users to leave a field blank and have a
NULL inserted into its column in the database, you’ll need to specify both options.

If this seems strange, keep in mind that there are very common cases where you’ll want to allow a user
to leave a field blank in a form (or even hide a field entirely) but still prevent a NULL value from going to the
database (by generating a value for that field if the user doesn’t supply one). You’ll see an example later in
this chapter.

Also, it’s important to note that for text-based field types (CharField, TextField, and others) Django
will never insert a NULL. For these field types, a blank value will be inserted as an empty string. This is to
avoid a situation where there are potentially two different blank values for the field (either an empty string or
a NULL) and to ensure that code that checks for blank values can be kept simple. Because of this, you should
generally avoid specifying null=True on text-based field types.

Slugs, Useful Defaults, and Uniqueness Constraints
Just as you added a slug for categories, it’s a good idea to add one for entries and to set it up to
populate a default from the entry’s title. So add the following to the Entry model:

slug = models.SlugField(prepopulate_from=['title'])

With the Category model, you added unique=True to force the slug to be unique, but for
entries it would be nice to have something slightly different. Most good weblog software
builds URLs that include the publication dates of entries (so that they look like /2007/10/09/
entry-title/), which means that all you really need is for the combination of the slug and the
publication date to be unique. Django provides an easy way to specify this, through an option
called unique_for_date:

slug = models.SlugField(prepopulate_from=['title'],
unique_for_date='pub_date')

This will tell Django to allow a particular slug to be used only once on each date. The
unique_for_date constraint is one of three date-based constraints supported by Django. The
other two are unique_for_month and unique_for_year. Where unique_for_date allows a given
value to be used only once per day, the other two constrain values to being used once per
month and once per year, respectively.

It would also be nice to provide a sensible default value for the pub_date field. Most of the
time, entries will be “published” on the same day they’re entered, so defaulting to the current
date and time would be convenient for the weblog’s authors. Django allows you to specify a
default value for any type of field by using the default option. The only question is how to
specify a default of “right now.”

The answer lies in Python’s standard datetime module. This provides a function,
datetime.datetime.now(), for obtaining the current date and time and returns the correct

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG54

type of object (a Python datetime, as previously described) for filling in a DateTimeField. So at
the top of the models.py file, add an import statement to make the datetime module available:

import datetime

and then edit the pub_date field to add the default:

pub_date = models.DateTimeField(default=datetime.datetime.now)

Notice that there aren’t any parentheses there—it’s datetime.datetime.now, not datetime.
datetime.now(). When you’re specifying a default, Django lets you supply either an appropri-
ate value or a function, which will generate the appropriate value on demand. In this case,
you’re supplying a function, and Django will call it whenever the default value is needed. This
ensures that the correct current datetime is generated each time.

ADMONITION: FUNCTIONS VS. RETURN VALUES

Python lets you refer to functions directly and pass them around as “first-class” objects the same way you
can pass around any other type of value. The difference is simply that you leave off the parentheses, as
you’ve done with the default value for the pub_date field. Understanding the difference between the func-
tion and the return value from calling the function is critical to using many parts of Django effectively. In this
case, if the default had been specified as datetime.datetime.now(), it would have been called once—
when the model was first loaded—and then never again, creating an apparently unchanging default value.

In general, Python programmers refer to this as passing a callable, a value that can be called as a func-
tion (though in some advanced uses of Python, you can encounter things that are callable but are not actually
functions).

There are some other cases, some of which you’ll see later in this book, where this distinction is impor-
tant and can lead to unexpected and subtle bugs in your applications, so always be careful to leave off the
parentheses in a situation where you want to pass a function and have it repeatedly called.

Authors, Comments, and Featured Entries
Because the weblog needs to support multiple authors, you need a way to mark the author of
each entry. In the last chapter, when you implemented search keywords, you saw that Django
provides the ForeignKey field for relating one model to another (and translates it into a foreign
key in the database). The obvious solution is to have a model representing authors and a for-
eign key on each entry tying it to an author.

This is a case where Django will help you out immensely. The bundled application
django.contrib.auth provides a User model. (This is the user account you created when run-
ning manage.py syncdb for the first time, which is stored in the database as an instance of the
User model.) This model lives in the module django.contrib.auth.models, so you’ll need to
add an import statement in the weblog’s models.py file. From django.contrib.auth.models,
import User, and then add the foreign key to the Entry model:

author = models.ForeignKey(User)

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG 55

ADMONITION: WHY NOT SPECIFY THE CURRENT USER AS A DEFAULT?

After going to the trouble of setting up slugs to automatically populate and the pub_date field to default to
the current date and time, you might be wondering why I’m not using a default here to fill in the current user
when an entry is being written. The primary reason is that, in the administrative interface, Django assumes
you’ll only grant access to people you trust and, therefore, that they’ll fill in this sort of field correctly. Under-
lying this is a technical issue: Django’s components are deliberately designed to require as little knowledge of
each other as possible (a concept known as loose coupling) in order to make it easy to use them individually
or, if necessary, to replace them with other components. Because of this, the Django object-relational mapper
(ORM) has no knowledge of who the current user is in the authentication component.

Another feature that’s easy to add is a per-entry way to allow or disallow comments. You
haven’t yet seen the code that will actually handle user-submitted comments (that will come a
bit later); however, you will need something on the Entry model that allows you to check
whether comments should be allowed. So let’s add a field for it:

enable_comments = models.BooleanField(default=True)

A BooleanField has only two possible values—True or False—and in web-based forms
will be represented by a check box. I give it a default value of True because most people will
probably want comments on by default, but an entry’s author will be able to uncheck the box
in the admin interface to turn it off.

While you’re looking at BooleanField, remember that one of the features on your list is the
ability to mark entries as “featured” so that they can be singled out for special presentation.
That’s also easy to do with a BooleanField:

featured = models.BooleanField(default=False)

This time set the default to False, because only a few specific entries should be featured.

Different Types of Entries
You also need to support entries that are marked as “drafts,” which aren’t meant to be shown
publicly. This means you’ll need some way of recording an entry’s status. One way would be to
use another BooleanField, with a name like is_draft or, perhaps, is_public. Then you could
just query for entries with the appropriate value, and authors could check or uncheck the box
to control whether an entry shows up publicly.

But it would be better to have something that can be extended later on. If there’s ever a
need for even one more possible value, the BooleanField won’t work. The ideal solution would
be some way to specify a list of choices and allow the user to select from them; then if there’s
ever a need for more choices, they can simply be added to the list. Django provides an easy
way to do this via an option called choices. Here’s how you’ll implement it:

STATUS_CHOICES = (
(1, 'Live'),
(2, 'Draft'),

)
status = models.IntegerField(choices=STATUS_CHOICES, default=1)

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG56

Here you’re using IntegerField, which, as its name implies, stores a number—an integer—
in the database. But you’ve used the choices option and defined a set of choices for it to use.
The value passed to the choices option needs to be a list or a tuple, and each item in it also
needs to be a list or a tuple with the following two items:

• The actual value to store in the database

• A human-readable name to represent the choice

You’ve also specified a default value: the value associated with the Live status, which will
denote entries to be displayed live on the site using the weblog application.

You can use choices with any of Django’s model field types, but generally it’s most useful
with IntegerField (where it can be used to provide meaningful names for a list of numeric
choices) and CharField (where, for example, you can use it to store short abbreviations in the
database, but still keep track of the full words or phrases they represent).

If you’ve used other programming languages that support enumerations, this is a similar
concept. In fact, you could (and probably should) make it look a little bit more similar. Edit the
Entry model so that it begins like so:

class Entry(models.Model):
LIVE_STATUS = 1
DRAFT_STATUS = 2
STATUS_CHOICES = (

(LIVE_STATUS, 'Live'),
(DRAFT_STATUS, 'Draft'),

)

Now instead of having to hard-code the integer values anywhere you’re doing queries for
specific types of entries, you can instead refer to Entry.LIVE_STATUS or Entry.DRAFT_STATUS
and know that it’ll be the right value. The status field can also be updated:

status = models.IntegerField(choices=STATUS_CHOICES, default=LIVE_STATUS)

And, just to show how easy it is to add new choices, let’s throw in a third option: hidden.
This is a common option offered by popular weblogging packages and covers situations where
an entry isn’t really a draft but also shouldn’t be shown publicly. Now the relevant part of the
Entry model looks like this:

LIVE_STATUS = 1
DRAFT_STATUS = 2
HIDDEN_STATUS = 3
STATUS_CHOICES = (

(LIVE_STATUS, 'Live'),
(DRAFT_STATUS, 'Draft'),
(HIDDEN_STATUS, 'Hidden'),

)

And just as you can refer to Entry.LIVE_STATUS and Entry.DRAFT_STATUS, now you can also
refer to Entry.HIDDEN_STATUS.

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG 57

ADMONITION: BE CAREFUL WITH “MAGIC NUMBERS”

In general, any time you find yourself writing code that relies on a specific fixed value, like the status values
for the Entry class, it’s a good idea instead to create a variable that holds it and refer to that variable. (This
is sometimes referred to as a constant, though Python doesn’t have any special semantics for such a thing.)
Then if the value (many programmers call these sorts of values “magic numbers”) ever needs to be updated,
you’ll only need to make a single change in your code.

It’s conventional in Python (and in many other programming languages) for these sorts of constants to
be given names that are entirely uppercase in order to indicate that they have a meaning different from other
variables. (You’ve already seen that Django’s settings all use uppercase names; this is why.)

Categorizing and Tagging Entries
You’ll remember that your feature list calls for two ways of grouping entries: categories (which
you’ve already laid some groundwork for in the form of the Category model) and tags. Setting
up the Entry model to use categories is easy:

categories = models.ManyToManyField(Category)

ManyToManyField is another way of relating two models to each other. Where a foreign key
only allows you to relate to one specific object of the other model class, a ManyToManyField
allows you to relate to as many of them as you’d like. In the admin interface, this will be repre-
sented as a list of categories presented in an HTML <select multiple> element.

ADMONITION: HOW MANY-TO-MANY RELATIONSHIPS WORK

At the database level, a ManyToManyField is actually represented by a separate join table. Each row in that
table consists of two foreign keys: one to each side of the relationship. In this case, the table will be called
coltrane_entry_categories, and each row will have one foreign key pointing to the entries table and
one pointing to the categories table.

You probably won’t ever need to refer to this join table explicitly. However, it’s a good idea to know it’s
there and have an idea of how it works, if only to have a reminder that selecting or filtering on aspects of a
many-to-many relationship will always involve joining the extra table (whereas queries based on a foreign
key—depending on the exact parameters you’re using to do the query—sometimes don’t need to perform a
join at all).

Tagging is a bit trickier because tags ultimately need to be applied to two different mod-
els: the Entry model you’re writing now and the Link model you’ll write (in the next chapter) to
represent a link log. You could define two Tag models—one for entries and one for links—or
set up multiple many-to-many relationships to allow a single Tag model to suffice for both, but
Django provides a simpler solution in the form of a generic relation.

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG58

Generic relations actually involve two special field types (GenericForeignKey and
GenericRelation), which allow one model to have relationships with any other model installed
in your project. Because of the complexity necessary to make this work, they can be a bit
tricky to set up and use. In this particular case you’re lucky: there’s an open source Django
application available that implements tags via generic relations and has already done all the
hard work.

The application is called django-tagging and can be downloaded at http://code.google.
com/p/django-tagging/. Grab a copy and unpack it so that the tagging module it provides is
on your Python path, then add tagging to your INSTALLED_APPS setting. To add tags to your
Entry model, you’ll need to import a custom field type defined in django-tagging, so add the
following import statement in the weblog’s models.py:

from tagging.fields import TagField

Next, add the following to the Entry model:

tags = TagField()

This may feel a bit strange, but actually it’s the right way to handle tagging, for two
reasons:

• Django provides a lot of built-in field types you can add to your models, but there’s no
way it could cover everything you might need to represent in a model class. So in addi-
tion to the built-in fields, Django also provides an API for writing your own custom field
types. The TagField provided by django-tagging is simply an example of this.

• Encapsulating common types of functionality into reusable, “pluggable” applications is
precisely what Django tries to encourage. The fact that, in this case, the application was
written by someone else and isn’t bundled in django.contrib shouldn’t be a deterrent.
As you work more with Django, you’ll find that there’s a large ecosystem of third-party
applications you can take advantage of and will save you from having to reinvent the
wheel with your own implementations of a lot of common functions.

ADMONITION: LEARNING MORE ABOUT GENERIC RELATIONS

I’ve intentionally left out the details of how generic relations work because they’re somewhat complex and
require a slightly deeper understanding of Django than you’ve developed so far. If you would like to find out
more about them, the relevant code is in the django.contrib.contenttypes application bundled with
Django and full details are available in the official Django documentation online at www.djangoproject.
com/documentation/contenttypes/.

Writing Entries Without Writing HTML
The last important feature for the Entry model is the ability to write entries without having to
compose them in raw HTML. Most popular weblogging applications allow users to write
entries using a simpler syntax that will be automatically converted into HTML as needed.

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG 59

There are a number of widely used systems that can take plain text with a little bit of special
syntax and perform the conversion. Textile, Markdown, BBCode, and reStructuredText are the
most popular.

One way you could handle this is with template filters. As you saw in the last chapter,
Django’s template system allows you to apply filters to variables in your templates (as you did
when you used the escape filter to prevent cross-site scripting attacks). Django includes
ready-made template filters for applying Textile, Markdown, and reStructuredText to any piece
of text in a template, and that would be an easy solution. Unfortunately, it’s also an expensive
solution. Running a text-to-HTML converter every time you display an entry will needlessly
eat up CPU cycles on your server, especially since the resulting HTML will be the same each
time. A better solution would be to generate the HTML once—when the entry is saved to the
database—and then retrieve it directly for display.

You could just store the generated HTML in the body and excerpt fields, but that would
remove the benefit of using a simpler syntax for writing entries. As soon as you went back to
edit an entry, you’d be presented with the HTML instead of the plain text it was generated
from. So what you really need is a separate pair of fields that will store the HTML, as well as a
bit of code to generate it whenever an entry is saved. If you were worried earlier about data-
base normalization—the principle that information shouldn’t be needlessly duplicated—this
is a good example of where deliberate denormalization is useful. On most consumer-level web
hosting, disk space is far more abundant than processor time, so accepting a bit of redun-
dancy in the database in return for less processing on each page view is a good trade-off to
make.

First, let’s add the fields:

excerpt_html = models.TextField(editable=False, blank=True)
body_html = models.TextField(editable=False, blank=True)

Like their plain-text counterparts, these both use TextField. Both of them also use the
blank option because you don’t want users to have to enter anything in these fields. They also
add the option editable=False. This tells Django not to bother displaying these fields when it
generates forms for the Entry model, since you’ll be automatically generating the HTML to
put into them.

Generating the HTML whenever an entry is saved is actually fairly easy. The base Model
class that all Django models inherit from defines a method named save(), and individual
models can override that method to provide custom behavior. The only hard part is choosing
a text-to-HTML converter to use. I like Markdown, so that’s what I’ll go with. There’s an
open source Python Markdown converter available, which you can download at https://
sourceforge.net/projects/python-markdown/. It provides a module named markdown, which
contains the markdown function for doing text-to-HTML conversion. This means you use one
more import statement:

from markdown import markdown

The actual save() method inside the Entry model is fairly short:

def save(self):
self.body_html = markdown(self.body)
if self.excerpt:

self.excerpt_html = markdown(self.excerpt)
super(Entry, self).save()

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG60

This runs Markdown over the body field and stores the resulting HTML in body_HTML. It
also does a similar conversion for the excerpt field (after checking to see if an excerpt was
entered; remember that it’s optional), and then saves the entry.

ADMONITION: USING super

Object-oriented languages that use subclassing typically need to provide a way to access features of a parent
class, even if those features are being overridden. Conventions for this vary from language to language, but in
Python the standard practice is to use super, as shown in the preceding code.

Finishing Touches
Now you have all the fields you’ll need to handle your feature list for entries. It’s taken a little
while to cover the full list, but if you have a look at the Entry model, you’ll notice that it’s only
around 30 lines of actual code. Django manages to pack a lot of functionality into a very small
amount of code. Before moving on, though, let’s add a few extra touches to this model to make
it a bit easier to work with.

You’ve already seen with the Category model that Django will try to pluralize the name of
the model when displaying it in the admin interface, sometimes with incorrect results. So let’s
add a plural name for the Entry model as well:

class Meta:
verbose_name_plural = "Entries"

While you’re at it, you can also add default ordering for the model. In this case, you want
them ordered by date with the newest entries coming first, so you’ll add an ordering option
inside the inner Meta class:

ordering = ['-pub_date']

Now Django will use ORDER BY pub_date DESC when retrieving lists of entries.
Let’s also go ahead and activate the default admin interface, adding a __unicode__()

method so you can get a simple string representation of an entry:

class Admin:
pass

def __unicode__(self):
return self.title

It’s also a good idea to add help_text to most of the fields. Use your judgment to decide
which fields need it, but feel free to compare with and borrow from the full version of the
Entry model included in this book.

Finally, let’s add one more method: get_absolute_url(). Remember from Chapter 2 that it
is standard convention in Django for a model to specify its own URL. In this case, you’ll return
a URL that includes the entry’s publication date and its slug:

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG 61

def get_absolute_url(self):
return "/weblog/%s/%s/" % ➥

(self.pub_date.strftime("%Y/%b/%d").lower(), self.slug)

Once again, you’re using Python’s standard string formatting. In this case, you’re interpo-
lating two values: the entry’s pub_date (with a little extra formatting provided by the strftime()
method available on Python datetime objects) and the entry’s slug. This particular formatting
string will result in a URL like /weblog/2007/oct/09/my-entry/. The %b character in strftime()
produces a three-letter abbreviation of the month (which you force into lowercase with the
lower() method in order to ensure consistently lowercase URLs). In general, I prefer that to
numeric representations because it’s a bit more readable. If you’d prefer the month to be rep-
resented numerically, use %m instead of %b.

The Weblog Models So Far
You’ve now got two of the three models you’ll need. Only the Link model still needs to be writ-
ten, and you’ll deal with it in the next chapter. The rest of this chapter will cover the views and
URLs for entries in the weblog. But before you move on to that, let’s pause to organize the
models.py file so it’ll be easier to understand and edit later on.

I’ve mentioned previously that Python has an official style guide. It’s a good idea to follow
that whenever you’re writing Python code because it will make your code clearer and more
understandable to anyone who needs to read it (including you). There’s also a (much shorter)
style guide for Django, which also provides some useful conventions for keeping your code
readable. The guideline for model classes is to lay them out in this order:

1. Any constants and/or lists of choices

2. The full list of fields

3. The Meta class, if present

4. The Admin class, if present

5. The __unicode__() method

6. The save() method, if it’s being overridden

7. The get_absolute_url() method, if present

8. Any additional custom methods

For complex models, I also like to break up the field list into logical groups, with a short
comment explaining what each group is. In general, it’s easier to find things if you keep field
names and options alphabetized whenever possible. So with that in mind, here’s the full
models.py file so far, organized and formatted so that it’s clear and readable:

import datetime

from django.db import models
from django.contrib.auth.models import User

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG62

from markdown import markdown
from tagging.fields import TagField

class Category(models.Model):
description = models.TextField()
slug = models.SlugField(prepopulate_from=['title'], unique=True,

help_text='Suggested value automatically generated ➥

from title. Must be unique.')
title = models.CharField(max_length=250,

help_text='Maximum 250 characters.')

class Meta:
ordering = ['title']
verbose_name_plural = "Categories"

class Admin:
pass

def __unicode__(self):
return self.title

def get_absolute_url(self):
return "/categories/%s/" % self.slug

class Entry(models.Model):
LIVE_STATUS = 1
DRAFT_STATUS = 2
HIDDEN_STATUS = 3
STATUS_CHOICES = (

(LIVE_STATUS, 'Live'),
(DRAFT_STATUS, 'Draft'),
(HIDDEN_STATUS, 'Hidden'),

)

Core fields.
title = models.CharField(max_length=250,

help_text="Maximum 250 characters.")
excerpt = models.TextField(blank=True,

help_text="A short summary of the entry.➥

Optional.")
body = models.TextField()
pub_date = models.DateTimeField(default=datetime.datetime.now)

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG 63

Fields to store generated HTML.
body_html = models.TextField(editable=False, blank=True)
excerpt_html = models.TextField(editable=False, blank=True)

Metadata.
author = models.ForeignKey(User)
enable_comments = models.BooleanField(default=True)
featured = models.BooleanField(default=False)
slug = models.SlugField(prepopulate_from=['title'],

unique_for_date='pub_date',
help_text="Suggested value automatically generated➥

from title.")
status = models.IntegerField(choices=STATUS_CHOICES,

default=LIVE_STATUS,
help_text="Only entries with 'Live' status ➥

will be publicly displayed.")

Categorization.
categories = models.ManyToManyField(Category)
tags = TagField(help_text="Separate tags with spaces.")

class Meta:
ordering = ['-pub_date']
verbose_name_plural = "Entries"

class Admin:
pass

def __unicode__(self):
return self.title

def save(self):
self.body_html = markdown(self.body)
if self.excerpt:

self.excerpt_html = markdown(self.excerpt)
super(Entry, self).save()

def get_absolute_url(self):
return "/weblog/%s/%s/" % (self.pub_date.strftime("%Y/%b/%d").lower(),

self.slug)

Go ahead and run manage.py syncdb in the project directory. It’ll add the new Entry
model’s table (and the join table for its many-to-many relationship to the Category model)
and also a couple of tables for models from the tagging application you’re using. Next use the
administrative interface to add a couple of test entries to the weblog; you’re about to start
writing views for them, so you’ll need some entries to work with.

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG64

Writing the First Views
Open up the views.py file you created inside the coltrane directory and add a couple of
import statements at the top to include things that you’ll need for these views:

from django.shortcuts import render_to_response
from coltrane.models import Entry

The first line you’ve seen already: render_to_response() is the shortcuts function that
handles loading and rendering a template, as well as returning an HttpResponse. The second
line imports the Entry model you just created, so you’ll be able to retrieve entries from the
database for display.

For your first view, start with a simple index that displays all of the “live” entries. Here’s
the code:

def entries_index(request):
return render_to_response('coltrane/entry_index.html',

{ 'entry_list': Entry.objects.all() })

Next create a coltrane directory in your templates directory (the directory you set up for
the cms project’s templates), and in it place an entry_index.html file. Add the following HTML
in it:

<html>
<head>

<title>Entries index</title>
</head>
<body>

<h1>Entries index</h1>
{% for entry in entry_list %}

<h2>{{ entry.title }}</h2>
<p>Published on {{ entry.pub_date|date:"F j, Y" }}</p>
{% if entry.excerpt_html %}
{{ entry.excerpt_html|safe }}

{% else %}
{{ entry.body_html|truncatewords_html:"50"|safe }}

{% endif %}
<p>Read full entry</p>

{% endfor %}
</body>

</html>

Note that you’re using a filter to show the excerpt here. You’ll remember that Django’s
template system automatically “escapes” the contents of variables to prevent cross-site
scripting attacks. While you want to have that protection most of the time, you know that the
contents of these variables are safe because they come from data that was entered into the
admin interface by a trusted user. The safe filter lets you tell Django that you trust a particular
variable and that it doesn’t need any escaping.

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG 65

Finally, you’ll need to set up a URL. Open up the urls.py in the cms directory and, in the
list of URL patterns, add the following before the catch-all pattern for the flat pages:

(r'^weblog/$', 'coltrane.views.entries_index'),

At that point, you should be able to visit http://127.0.0.1:8000/weblog/. You’ll see all the
entries you’ve created so far, displayed using the template you just created. There are a few
things worth noting about the template:

• You’re using a new filter: date. It’s the first one you’ve seen that takes an argument, in
this case a formatting string describing how to present a date. The syntax for this is sim-
ilar to the syntax for the strftime() method, except that it doesn’t use percent signs to
mark formatting characters. This formatting string will produce a result like “October
10, 2007”.

• You’re using the if tag to test whether there’s an excerpt on each entry. If there is, it’s
displayed. If not, the first 50 words of the entry’s body will be displayed.

• When there is no excerpt, the entry’s body is cut off using the truncatewords_html filter.
This filter’s argument tells it how many words to allow. When it’s reached the limit, it
ends the text fragment with ellipses (. . .), indicating to the reader that there’s more
text in the full entry. As the name implies, the truncatewords_html filter knows how
to recognize HTML tags and doesn’t count them as words. It also will keep track of
open tags and close them if it cuts off the text before a closing tag. (A separate filter,
truncatewords, simply cuts off at the specified number of words and pays no attention
to HTML.)

Displaying an index of all the entries is a nice first step, but it’s only the beginning. You’ll
also need to be able to display individual entries, and you’ll need to query for them based on
information you can read from the URL. In this case, the get_absolute_url() method on the
Entry model will give a URL that contains the (formatted) pub_date and the slug of the entry.
Before you write the view that retrieves the entry, let’s take a look at the URL pattern for it. This
gives a clue to how you’ll get that information out of the URL:

(r'^weblog/(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/(P?<slug>[-\w]+)/$',
'coltrane.views.entry_detail'),

This is quite a bit more complicated than the URL patterns you’ve seen so far. The regular
expression is looking for several things and includes the strange ?P construct several times. So
let’s walk through it step by step.

First of all, in Python’s regular-expression syntax, a set of parentheses whose contents
begin with ?P, followed by a name in brackets and a pattern, matches a “named group”; any
text that matches one of these parts of the URL will go into a dictionary, where the keys are the
bracketed names and the values are the parts of the text that matched. This URL is looking for
four named groups, then: year, month, day, and slug.

The actual patterns used in these named groups are fairly simple once that hurdle is
cleared:

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG66

• The \d{4} for year will match four consecutive digits.

• The \w{3} for month will match three consecutive letters: the %b formatter you used in
the get_absolute_url() method will return the month as a three-letter string like “oct”
or “jun.”

• The \d{2} for day will match two consecutive digits.

• The [-\w]+ for slug is somewhat tricky. It will match any sequence of consecutive char-
acters where each character is either a letter or number, or a hyphen. This is precisely
the same set of characters Django allows in a SlugField.

When a URL matches this pattern, Django will pass the named groups to the specified
view function as keyword arguments. This means the entry_detail view will receive keyword
arguments called year, month, day, and slug, which will make the process of looking up the
entry much simpler. Let’s look at how that works by writing the entry_detail view:

def entry_detail(request, year, month, day, slug):
import datetime, time
date_stamp = time.strptime(year+month+day, "%Y%b%d")
pub_date = datetime.date(*date_stamp[:3])
return render_to_response('coltrane/entry_detail.html',

{ 'entry': Entry.objects.get(pub_date__year=➥

pub_date.year,
pub_date__month=pub_date.month,
pub_date__day=pub_date.day,

slug=slug) })

The only complex bit here is parsing the date. First you use the strptime function in
Python’s standard time module, which takes a string representing a date or time, as well as a
format string like the one passed to strftime(), and parses the result into a time tuple. All you
need to do, then, is concatenate the year, month, and day together and supply the same for-
mat string used: get_absolute_url(). Then you can pass the first three items of that result into
datetime.date to get a date object.

ADMONITION: UNDERSTANDING PYTHON FUNCTION ARGUMENTS

Functions and methods in Python can pass and receive arguments in two forms: positional arguments, where
the meaning is determined by the order in which the arguments are passed, and keyword arguments, whose
names are included directly with the values.

This corresponds quite neatly to Python’s built-in list and dictionary types, and so two shortcuts are pro-
vided to make argument passing easier. Passing a list as an argument and prefixing it with a single asterisk
(*) will cause each item of the list, in order, to be used as a separate positional argument. Passing a diction-
ary and prefixing it with two asterisks (**) will cause the keys of the dictionary to be used as names for
separate keyword arguments and the dictionary’s values to become the values of these arguments.

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG 67

When a Python function needs to accept arbitrary sets of optional arguments, or to accept many differ-
ent arguments based on different situations, it’s common to define it like so:

def my_func(*args, **kwargs):

The function will then have access to a list named args containing all the positional arguments passed
to it and a dictionary named kwargs containing all the keyword arguments passed to it. The function can
then look at those variables to work out what it needs to do.

This is how the Django ORM is able to accept lookup arguments based on your model’s fields. Its meth-
ods don’t have fixed argument signatures, and instead accept arbitrary sets of keyword arguments defined
as **kwargs, and then look at those arguments to work out which fields to query on.

Finally, you return a response where the template context will be the entry. The entry is
retrieved using the lookup arguments, which look for entries matching the year, month, day,
and slug from the URL.

Because you used unique_for_date on the slug field, this combination is enough to
uniquely identify any entry in the database. The get method you’re using here is also new.
filter returns a QuerySet representing the set of all objects that match the query, but get tries
to return one, and only one, object. (If no objects match your query, or if more than one object
matches, it will raise an exception.)

Go ahead and create the template coltrane/entry_detail.html and fill it in any way you’d
like. Next add the new URL pattern to the project’s urls.py if you haven’t already, reload the
entries index page in your browser, and click the link to one of them to see the new view in
action.

It’s not perfect, though. If you try a properly formatted URL for a nonexistent entry (say,
/weblog/1946/sep/12/no-entry-here/), you’ll get an error message and a traceback. The
exception is Entry.DoesNotExist, which is Django’s way of telling you that there wasn’t an
entry matching your criteria. It would be nice to return an HTTP 404“Page Not Found” error
in this case. You could do that manually by wrapping the query in a try block, catching the
DoesNotExist exception, and then returning an appropriate response. But that would be repet-
itive work. Trying to retrieve something that may or may not exist, and returning a 404 if it
doesn’t, is something you need to do a lot in web development. So instead of doing it manu-
ally, you can use a helper function Django provides for this exact purpose: get_object_or_
404(). First, change the import statement at the top of views.py like so:

from django.shortcuts import get_object_or_404, render_to_response

Then you can rewrite the view like this:

def entry_detail(request, year, month, day, slug):
import datetime, time
date_stamp = time.strptime(year+month+day, "%Y%b%d")
pub_date = datetime.date(*date_stamp[:3])
entry = get_object_or_404(Entry, pub_date__year=pub_date.year,

pub_date__month=pub_date.month,
pub_date__day=pub_date.day,
slug=slug)

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG68

return render_to_response('coltrane/entry_detail.html',
{ 'entry': entry })

The get_object_or_404() shortcut will use the same get() lookup you just tried, but it
will catch the DoesNotExist exception and re-raise the exception django.http.Http404.
Django’s HTTP-processing code recognizes this exception and will turn it into an HTTP 404
response.

Using Django's Generic Views
So far you’ve only written two views—an index of entries and a detail view for them—but
already it looks like this could get tedious and boring. You’re going to need views for the latest
entries; for browsing them by day, month, and year; and for browsing them by categories and
tags. And, worse, a lot of it will be awfully repetitive: doing a query based on a date and return-
ing one or more entries as a result. Wouldn’t it be nice if you could avoid doing all that work by
hand?

As it turns out, you can, by using Django’s built-in generic views. There are several
extremely common patterns of views that web applications need, regardless of the type of
content they’re presenting. So Django includes several sets of views, which are designed to
work with any model and which take care of these common tasks. Broadly speaking, these
tasks break down into four groups:

• Performing simple redirects and just rendering a template based on a URL

• Displaying lists of objects and individual objects

• Date-based archives

• Creation, updating, and deletion (sometimes called CRUD) of objects

The weblog will rely heavily on date-based archives, so I’ll show you how that works. Go
into the urls.py file and remove the pattern that routes to your entry_detail view. Replace it
with this:

(r'^weblog/(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/(?<slug>[-\w]+)/$,
'django.views.generic.date_based.object_detail', entry_info_dict),

This makes use of a variable named entry_info_dict, which you haven’t defined. So
above the list of URL patterns (but below the import statements), define it like this:

entry_info_dict = {
'queryset': Entry.objects.all(),
'date_field': 'pub_date',

}

Now, make one change to the entry_detail.html template. Anywhere there’s a reference
to the variable entry (which your view was supplying), change it to object. You can also delete
the entry_detail view you previously wrote because it’s no longer needed. Next go back and
click through to an entry’s URL in your browser. It will be retrieved properly from the database
and displayed as specified in your template. URLs for nonexistent entries will return a 404,
just as your entry_detail view did once you started using get_object_or_404().

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG 69

How Did Django Do That?
The answer is actually pretty simple. The generic view wants to receive a couple of arguments
that tell it what it needs to do, and from there it can rely on the fact that the Django database
API and template system work the same way in all situations.

The queryset argument is the key here because (as you’ll remember from Chapter 3)
many of Django’s database-querying methods actually return a special type of object called a
QuerySet, which can be further filtered and modified before it performs its actual query. In this
case, you pass it Entry.objects.all(), which is a QuerySet representing all the entries in the
database. You also give it the argument date_field, which tells the generic view which field on
the model represents the date you want to filter on. The remainder of the required arguments
are all in the URL: year, month, day, and slug are received by the generic view the same way
they were received by the entry_detail view, and it performs the same database query you
were doing.

But since the generic view can be reused with different sets of arguments (particularly,
with a different value for the queryset argument and possibly date_field and/or slug_field—
used if the model’s slug field isn’t named slug—as needed), it can be used to create date-
based archives for any model, saving you from writing all the repetitive code over and over. All
you need to do is set up the right URL pattern and hand it the necessary set of arguments in a
dictionary.

The date-based generic views all live in the module django.views.generic.date_based,
and while there are seven of them total, you’ll only need to use five for your weblog
functionality:

• object_detail: As you’ve already seen, provides a view of an individual object.

• archive_day: Provides a view of all the objects on a given day.

• archive_month: Provides a view of all the objects in a given month.

• archive_year: Provides a list of all the months that have objects in them in a given year
and, optionally, a full list of all the objects in that year. (This is optional because it might
be an extremely large list.)

• archive_index: Provides a list of the latest objects.

So let’s rewrite the urls.py file to use generic views for entries. It’ll end up looking like
the following code (but for simplicity’s sake, I’m still using the cms project that’s already been
created):

from django.conf.urls.defaults import *

from coltrane.models import Entry

entry_info_dict = {
'queryset': Entry.objects.all(),
'date_field': 'pub_date',
}

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG70

urlpatterns = patterns('',
(r'^admin/', include('django.contrib.admin.urls')),
(r'^search/$', 'cms.search.views.search'),
(r'^weblog/$', 'django.views.generic.date_based.archive_index',
entry_info_dict),
(r'^weblog/(?P<year>\d{4}/$',
'django.views.generic.date_based.archive_year',
entry_info_dict),
(r'^weblog/(?P<year>\d{4}/(?P<month>\w{3})/$',
'django.views.generic.date_based.archive_month',
entry_info_dict),
(r'^weblog/(?P<year>\d{4}/(?P<month>\w{3})/(?P<day>\d{2})/$',
'django.views.generic.date_based.archive_day',
entry_info_dict),
(r'^weblog/(?P<year>\d{4}/(?P<month>\w{3})/(?P<day>\d{2})/➥

(?P<slug>[-\w]+)/$',
'django.views.generic.date_based.object_detail',
entry_info_dict),
(r'', include('django.contrib.flatpages.urls')),

)

You’ll need to create templates for each view. All of the generic views accept an optional
argument to specify a custom template name to use (the argument, appropriately enough, is
called template_name), but by default they’ll use the following:

• archive_index will use coltrane/entry_archive.html.

• archive_year will use coltrane/entry_archive_year.html.

• archive_month will use coltrane/entry_archive_month.html.

• archive_day will use coltrane/entry_archive_day.html.

• object_detail will use coltrane/entry_detail.html.

ADMONITION: HOW THE TEMPLATE NAMES ARE DETERMINED

The default template names used by Django’s generic views are all based on two pieces of information: the
model the generic view is working with and the application that model lives in. In this case, the model is the
Entry class, and the application is coltrane. For consistency purposes, Django lowercases both when
generating the default template name.

The object_detail view, as you’ve already seen, makes the entry available in a variable
named object. In the daily and monthly archive views, you’ll get a list of entries as the variable
object_list. In both cases, this is customizable by an optional argument called template_
object_name. The yearly archive will—as previously explained—default to simply giving you a
list of months in which entries have been published. This will be the variable date_list in the

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG 71

template. The archive_index view will supply its template with a variable called latest, which
will contain the latest entries (up to a maximum of 15). You can use the for tag in the appro-
priate templates (just as you did previously in your hand-rolled entry index) to loop through
these lists.

The daily, monthly, and yearly archives also give the template an extra variable represent-
ing the date or date range they’re working with: day, month, and year, respectively. As you’ve
seen already in the templates for the entry views you wrote by hand, you can use the date tem-
plate filter to format them however you’d like.

ADMONITION: FILLING OUT THE ENTRY TEMPLATES

If you’re interested in seeing a full set of (simple) example templates, they're included in the sample code you
can download from the Apress web site for this book. Be aware that they do make use of some features that
haven’t been introduced yet, but enough has been covered that you should be able to understand most of
what’s going on in them.

Decoupling the URLs
At this point, between the models you’ve defined, Django’s administrative interface, and the
date-based generic views, you’ve got a pretty good weblog application. But already there’s a
big problem: it’s really not reusable because its URLs are “coupled” to the particular setup
you’ve put together:

• The set of URL patterns for the entries are sitting in the project’s urls.py, which means
you would need to copy them into any other project that needs a weblog.

• The URL patterns, and the Entry and Category models’ get_absolute_url() methods
(though you haven’t set up views for categories yet) are all hard-coded and assume a
particular URL layout for the site. It’s a fairly sensible layout, but some users might want
a different setup (for example, /blog/ as the weblog root instead of /weblog/).

Let’s fix that. First of all, you’ve already seen that Django offers the include() function for
plugging in a set of URLs at a specific point in a project (as you’ve done with the administra-
tive application). So let’s create a reusable set of URLs that lives inside the weblog application.
Go into its directory and create a file named urls.py, then copy the appropriate import state-
ments and URL patterns into it:

from django.conf.urls.defaults import *

from coltrane.models import Entry

entry_info_dict = {
'queryset': Entry.objects.all(),
'date_field': 'pub_date',
}

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG72

urlpatterns = patterns('',
(r'^$', 'django.views.generic.date_based.archive_index', entry_info_dict),
(r'^(?P<year>\d{4}/$', 'django.views.generic.date_based.archive_year',
entry_info_dict),
(r'^(?P<year>\d{4}/(?P<month>\w{3})/$',
'django.views.generic.date_based.archive_month',
entry_info_dict),
(r'^(?P<year>\d{4}/(?P<month>\w{3})/(?P<day>\d{2})/$',
'django.views.generic.date_based.archive_day',
entry_info_dict),
(r'^(?P<year>\d{4}/(?P<month>\w{3})/(?P<day>\d{2})/➥

(?P<slug>[-\w]+)/$',
'django.views.generic.date_based.object_detail',
entry_info_dict),

)

In the project’s urls.py, you can remove the import of the Entry model and the entry_
info_dict variable, as well as the URL patterns for the entries (the ones starting with
^weblog/). They can all be replaced with one URL pattern:

(r'^weblog/', include('coltrane.urls')),

Notice that the URLConf module inside the weblog application doesn’t include the
weblog/ prefix on any of its URL patterns. It’s relying on the project to decide where to put this
set of URLs.

You can also cut down on some repetitive typing here: all the views used in the weblog’s
URLConf start with django.views.generic.date_based, which isn’t fun to type out over and
over again. Meanwhile, there’s a conspicuous empty string as the first thing in the list. That
empty string isn’t a URL. It’s a special parameter that lets you specify a view prefix, in case all
the view functions have identical module paths. Let’s take advantage of that:

urlpatterns = patterns('django.views.generic.date_based',
(r'^$', 'archive_index', entry_info_dict).
(r'^(?P<year>\d{4}/$', 'archive_year', entry_info_dict),
(r'^(?P<year>\d{4}/(?P<month>\w{3})/$', 'archive_month', entry_info_dict),
(r'^(?P<year>\d{4}/(?P<month>\w{3})/(?P<day>\d{2})/$',
'archive_day',
entry_info_dict),
(r'^(?P<year>\d{4}/(?P<month>\w{3})/(?P<day>\d{2})/(?P<slug>[-\w]+)/$',
'object_detail',
entry_info_dict),

)

Now Django will automatically prepend django.views.generic.date_based to all of these
view function names before it tries to load them, which is much nicer.

Now you need to deal with the problem of the get_absolute_url() methods. On the Entry
model, get_absolute_url() returns a URL with /weblog/ hard-coded into it, and that’s no
good. Somebody might plug these URLs into a different part of their site’s URL layout. The
solution is a pair of features in Django that let you give names to your URL patterns, and then

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG 73

specify that a function like get_absolute_url() should actually return a value by looking for
URL patterns with particular names.

First, you need to make one more change to the weblog URLConf:

urlpatterns = patterns('django.views.generic.date_based',
(r'^$', 'archive_index', entry_info_dict, 'coltrane_entry_archive_index'),
(r'^(?P<year>\d{4}/$', 'archive_year', entry_info_dict, ➥

'coltrane_entry_archive_year'),
(r'^(?P<year>\d{4}/(?P<month>\w{3})/$', 'archive_month', entry_info_dict, ➥

'coltrane_entry_archive_month'),
(r'^(?P<year>\d{4}/(?P<month>\w{3})/(?P<day>\d{2}/)$', 'archive_day', ➥

entry_info_dict, 'coltrane_entry_archive_day'),
(r'^(?P<year>\d{4}/(?P<month>\w{3})/(?P<day>\d{2})/(?P<slug>[-\w]+)/$', ➥

'object_detail', entry_info_dict, 'coltrane_entry_detail'),
)

You’ve added a name to each one of these URL patterns. The names are made up of your
application’s name (so as to avoid name collisions with URL patterns in other applications)
and a description of what the view is for.

Now you can rewrite the get_absolute_url() method on the Entry model:

def get_absolute_url(self):
return ('coltrane_entry_detail', (), { 'year': self.pub_date.strftime("%Y"),

'month': self.pub_date. ➥

strftime("%b").lower(),
'day': self.pub_date.strftime("%d"),
'slug': self.slug })

get_absolute_url = models.permalink(get_absolute_url)

The get_absolute_url() method now returns a tuple, whose elements are as follows:

• The name of the URL pattern you want to use.

• A tuple of any positional arguments to be included in the URL (in this case, there
aren’t any).

• A dictionary of any keyword arguments to be included in the URL.

The last line is a new concept: a decorator. Decorators are special functions that do
nothing on their own but can be used to change the behavior of other functions. The
permalink decorator you’re using here (which lives in django.db.models) will actually rewrite
the get_absolute_url() function to do a reverse URL lookup. It will scan the project’s URLConf
looking for the URL pattern with the specified name, then use that pattern’s regular expression
to create the correct URL string and fill in the proper values for any arguments that need to be
embedded in the URL.

Based on the URLConf you’ve set up for this project, it will find the /weblog/ prefix, then
follow the include() to coltrane.urls, where it will find the pattern named coltrane_entry_
detail and fill in the regular expression with the correct values. For an entry published on
October 10, 2007, with the slug test-entry, this will generate the URL /weblog/2007/oct/10/
test-entry/. If you changed the root URLConf to include the weblog URLs under blogs/
instead, it would generate /blogs/2007/oct/10/test-entry/.

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG74

ADMONITION: PYTHON DECORATOR SYNTAX

It’s also possible to use a slightly different syntax for decorators in Python. They can be placed directly above
the function or method’s definition and prefixed with an at (@) symbol. In this case, that would have meant
placing @models.permalink directly above:

def get_absolute_url(self):

This syntax was introduced in Python 2.4, so if you’re using 2.4 or a later version, it will work. I gener-
ally avoid it in my Django applications, though, because Django also works with Python 2.3, where the only
available syntax is to call the decorator below the function or method definition. In general, it’s a good idea to
write your code so that it’s compatible with the largest possible number of Python versions.

And now you’ve completely decoupled the entry URLs from the project and from any
assumptions about particular site URL layouts. These URLs can be plugged in to any project
at any point in its URL hierarchy, and between include() and the permalink() decorator, the
generated URLs will always be correct.

Looking Ahead
Once again, you’ve accomplished a lot without writing much actual code. The biggest hurdle
in the weblog application so far has simply been getting a handle on the layout of a first “real”
Django application and all of the assorted options Django provides to cut down on tedious
and repetitive code. And it is flexible enough to be reused in any project where you need a
blog.

At this point, you’ve got a large number of Django’s most important concepts under your
belt—the basic model/URL/view/template architecture, the syntax of each component, and
the general principles of decoupling and code reuse (sometimes called DRY, short for “Don’t
Repeat Yourself,” a software development guideline that says whenever possible you should
have one, and only one, authoritative version of a piece of data or functionality). You might
want to pause here and review what you’ve written so far because you’re going to start picking
up the pace and writing code much more quickly. Once you feel comfortable with the con-
cepts and features introduced up to this point, move on to the next chapter. There you’ll finish
up the weblog models by writing the Link class, and then fill in the rest of the basic views. After
that, you’ll delve a bit deeper into Django’s templating system and some more advanced
features.

CHAPTER 4 ■ A DJANGO-POWERED WEBLOG 75

Expanding the Weblog

So far for your weblog you’ve written two models—Category and Entry—and set up views
that will display the entries in the weblog. You still have some work to do to set up all the dif-
ferent views you’ll want for the entries; however, before you do that, let’s go back and finish up
the weblog’s data models by adding the final model class.

Writing the Link Model
Just as the fields on the Entry model logically broke down into groups according to how they
would be used, the model you’ll use to represent links—a class called Link—will need fields for
several different purposes:

• Core fields representing the link: A title, a description and, of course, the URL to link to.

• Metadata: This includes the date the link was posted and the user who posted it as well
as whether to allow comments for the link.

• Categorization: You’ll accomplish this with tags.

• Integration with an external link-posting service: In this case, del.icio.us.

Let’s begin with the basic core fields for the model (as with the Category and Entry models,
this code goes in coltrane/models.py). Just as before, you’ll build it up incrementally (so don’t
run syncdb yet):

class Link(models.Model):
title = models.CharField(max_length=250)
description = models.TextField(blank=True)
description_html = models.TextField(blank=True)
url = models.URLField(unique=True)

There’s one new field type here: URLField. As the name suggests, it’s meant to store a URL.
In the database, it will simply be a VARCHAR column like most other text-based field types, but
in automatically generated forms (like the ones displayed by the admin interface), additional
validation will be performed for this field:

77

C H A P T E R 5

• The value entered will be checked against the syntax of an HTTP URL, so, for example,
it must start with http:// or https://.

• You won’t be able to enter a nonexistent or “broken” URL. By default, Django will issue
an HTTP request to the URL during validation and will refuse to accept the URL if it
returns an HTTP error status (such as “404 Not Found” or “500 Internal Server Error”).
This can be disabled by using the keyword argument verify_exists=False when setting
up the URLField.

Also, note the keyword argument unique=True. As mentioned in Chapter 4, this will gener-
ate a UNIQUE constraint at the database level and will be enforced by Django as well. This will
prevent the same link from being posted repeatedly.

Finally, the link description is optional—you might not always want to enter one—and
uses two fields, just as the excerpt and body on the Entry model did. In a moment, you’ll add
a customized save() method to apply text-to-HTML conversion.

You already saw on the Entry model how to add a foreign key to a user to represent the
person who posted an entry, and you can do the same with the Link model:

posted_by = models.ForeignKey(User)

Similarly, you can add a publication date and a slug:

pub_date = models.DateTimeField(default=datetime.datetime.now)
slug = models.SlugField(prepopulate_from=('title',), unique_for_date='pub_date')

You can add tagging just as you did with the Entry model:

tags = TagField()

and two Boolean fields: one for determining whether comments should be allowed and one
for determining whether to post the link to an external service. In both cases, you’ll default
them to True:

enable_comments = models.BooleanField(default=True)
post_elsewhere = models.BooleanField('Post to del.icio.us', default=True)

I use del.icio.us as my link-aggregation service, so I’ve put that into the field’s label; but
later on, if you decide you want to use a different service, you should feel free to change it.
When you write the custom save() method for this model, you’ll see how to send the link to
del.icio.us.

Finally, let’s add a couple of more fields to get a little bit of extra metadata. It’s fairly com-
mon to make a note of where you spotted a useful link, and you could use the description for
that (e.g., you might enter “Link found via Slashdot”), but it’s often handier to model that
directly. So you’ll add two more fields; one for storing the name of the person or site who
pointed you to the link and one for storing the URL where you spotted the link. (Both of these
are optional so that they don’t have to be filled in when they’re not applicable.)

via_name = models.CharField('Via', max_length=250, blank=True,
help_text='The name of the person whose site you➥

spotted the link on. Optional.')
via_url = models.URLField('Via URL', blank=True,

CHAPTER 5 ■ EXPANDING THE WEBLOG78

help_text='The URL of the site where you spotted the➥

link. Optional.')

You can also add a default ordering by the pub_date field and activate the admin interface

class Meta:
ordering = ['-pub_date']

class Admin:
pass

and a __unicode__() method so that each Link will have a useful string representation. Just as
with entries, you’ll use the title field for this:

def __unicode__(self):
return self.title

And finally, you’ll add a customized save() method, which needs to do two things:

• If anything was filled in for the description field, run Markdown over it and store the
result in the description_html field.

• If the post_elsewhere field is True and this is the first time the link is being saved, post it
to del.icio.us as well.

The first part is easy, and you can handle it in much the same way as you did the optional
excerpt on entries:

def save(self):
if self.description:

self.description_html = markdown(self.description)
super(Link, self).save()

The second part is a bit trickier. You’ll need some way of communicating with the public
link-posting API del.icio.us provides. Fortunately, there’s an open source Python module avail-
able that can do this. It’s called pydelicious and can be downloaded at http://code.google.
com/p/pydelicious/.

ADMONITION: INSTALLING THIRD-PARTY PYTHON MODULES

Python provides a mechanism for packaging and installing modules so they can be easily distributed and
reused. Most third-party Python modules and Django applications you’ll encounter will work this way, so
you’ll be able to download a package, open it up, and, inside the resulting directory, type python setup.py
install to install it.

The pydelicious module actually implements quite a few useful methods from the
del.icio.us API, but the only one you need here is the one to publish a link. This is imple-
mented in pydelicious as a function called add(), and that function takes five arguments:

CHAPTER 5 ■ EXPANDING THE WEBLOG 79

• The del.icio.us username of the account to post the link to

• The del.icio.us password of the account to post the link to

• The URL of the link

• The title of the link

• The tags for the link, as a string with tags separated by spaces

It would be tempting to simply hard-code your own account information for the user-
name and password parts, but that would cause problems down the line: you couldn’t share
the blog application with others (since they would get your username and password in the
code), and you wouldn’t be able to reuse the application with multiple blogs that post to dif-
ferent del.icio.us accounts.

One good solution to that problem is to require a del.icio.us username and password to
be placed in the Django settings file. This way, each site that uses the blog application can
specify a different username and password and—since you won’t be distributing your settings
file anyway (because it has other sensitive information, like your database credentials)—
there’s no security fear. You’ll call these settings DELICIOUS_USER and DELICIOUS_PASSWORD to
make it clear what they mean.

So let’s add a line at the top of models.py to import the Django settings you’re using:

from django.conf import settings

ADMONITION: ACCESSING SETTINGS

You can access your Django settings file the same way you would access any other Python module by
importing it from its location on your computer (e.g., import cms.settings). However, it’s generally a
better idea to use from django.conf import settings. This will enable a feature in Django that auto-
matically supplies default values for many settings if you haven’t filled them in.

If it feels weird to be making up new settings, don’t worry. Defining and making use of
additional settings is a perfectly normal and encouraged practice for Django applications (so
long as each application documents any additional settings it requires); and keeping all con-
figuration for a Django project in one place—the settings file—makes it easier to understand
and manage a project than having “Django” settings and “application” settings spread out over
multiple locations.

There’s just one more thing I need to cover before you can write the finished save()
method. The URL, title, and tags will be represented by Django as Unicode strings. Ordinarily,
Django’s practice of ensuring that strings stored in model fields are Unicode is a good thing:
it removes a lot of the headaches of dealing with character encodings. But in this case, it’s
slightly problematic as well because Unicode strings don’t translate directly into a series of
binary bytes, so they aren’t suitable to be sent out “over the wire” in a web-based API call.

So you’ll need to convert the values of these fields into byte-based strings before passing
them to the del.icio.us API. Django provides a helper function, django.utils.encoding.
smart_str(), which will do this. In a lot of cases, you could probably also use Python’s built-in

CHAPTER 5 ■ EXPANDING THE WEBLOG80

str() and get away with it. However, Django’s smart_str() can handle some situations that
str() can’t and also defaults to encoding the result in UTF-8 instead of ASCII (which is the
default for most Python installations).

So now you can add the appropriate code to the save() method, and you’re done:

def save(self):
if self.description:

self.description_html = markdown(self.description)
if not self.id and self.post_elsewhere:

import pydelicious
from django.utils.encoding import smart_str
pydelicious.add(settings.DELICIOUS_USER, settings.DELICIOUS_PASSWORD,

smart_str(self.url), smart_str(self.title),
smart_str(self.tags))

super(Link, self).save()

The if not self.id and self.post_elsewhere are important to note because they work
out all the logic to determine whether the link should be posted externally. The check for
self.id is the key because that tells you whether the link is being saved for the first time or not
(reposting the link over and over again every time it’s saved wouldn’t be useful). Remember
that if you don’t specify a primary key for a model, Django adds one automatically in a field
named id, so if that field doesn’t have a value, it must not have been saved to the database yet.

As a finishing touch to the Link model, you’ll add a get_absolute_url() method. Just as
you did with the Entry model, you’ll use the permalink decorator to enable it to do a reverse
look up in the project URLConf:

def get_absolute_url(self):
return ('coltrane_link_detail', (), { 'year': self.pub_date.strftime('%Y'),

'month': self.pub_date.strftime('%b')➥

.lower(),
'day': self.pub_date.strftime('%d'),
'slug': self.slug })

get_absolute_url = models.permalink(get_absolute_url)

You haven’t yet defined any URL patterns for links, so there isn’t a pattern named
coltrane_link_detail. You’ll add that in a moment.

At this point, you’ve got the Link model fully written, and you can run manage.py syncdb
to install its database table. For reference, here’s the full model definition with the fields neatly
organized and some additional help_text mixed in, just as for the Entry model:

class Link(models.Model):
Metadata.
enable_comments = models.BooleanField(default=True)
post_elsewhere = models.BooleanField('Post to del.icio.us',

default=True,
help_text='If checked, this link will➥

be posted both to your weblog and to your del.icio.us account.')
posted_by = models.ForeignKey(User)
pub_date = models.DateTimeField(default=datetime.datetime.now)

CHAPTER 5 ■ EXPANDING THE WEBLOG 81

slug = models.SlugField(prepopulate_from=('title',),
unique_for_date='pub_date',
help_text='Must be unique for the publication

date.')
title = models.CharField(max_length=250)

The actual link bits.
description = models.TextField(blank=True)
description_html = models.TextField(editable=False, blank=True)
via_name = models.CharField('Via', max_length=250, blank=True,

help_text='The name of the person whose site you➥

spotted the link on. Optional.')
via_url = models.URLField('Via URL', verify_exists=False, blank=True,

help_text='The URL of the site where you spotted➥

the link. Optional.')
tags = TagField()
url = models.URLField('URL', unique=True)

class Meta:
ordering = ['-pub_date']

class Admin:
pass

def __unicode__(self):
return self.title

def save(self):
if not self.id and self.post_elsewhere:

import pydelicious
pydelicious.add(settings.DELICIOUS_USER,

settings.DELICIOUS_PASSWORD,
smart_str(self.url),
smart_str(self.title),
smart_str(self.tags))

if self.description:
self.description_html = markdown(self.description)

super(Link, self).save()

def get_absolute_url(self):
return ('coltrane_link_detail', (),

{ 'year': self.pub_date.strftime('%Y'),
'month': self.pub_date.strftime('%b').lower(),
'day': self.pub_date.strftime('%d'),
'slug': self.slug })

get_absolute_url = models.permalink(get_absolute_url)

CHAPTER 5 ■ EXPANDING THE WEBLOG82

Views for the Link Model
You saw in the last chapter that Django’s built-in generic views provide an easy way to handle
common types of views. By passing the right parameters into a generic view, you can often
save quite a bit of time and code when all you want is, for example, to display a list of model
objects or a detail of a single object.

The situation is no different with the Link model. You want to have a detail view of each
individual link and a date-based archive for browsing through all of the links in the database.
So open up the urls.py file inside the weblog application, and change this line

from coltrane.models import Entry

to read

from coltrane.models import Entry, Link

Then, just as with the Entry model, you’ll need to define a dictionary with arguments for
the generic views:

link_info_dict = {
'queryset': Link.objects.all(),
'date_field': 'pub_date',
}

Next you can add a new set of URL patterns to the existing list:

(r'^links/$',
'archive_index', link_info_dict,
'coltrane_link_archive_index'),

(r'^links/(?P<year>\d{4})/$',
'archive_year', link_info_dict,
'coltrane_link_archive_year'),
(r'^links/(?P<year>\d{4})/(?P<month>\w{3})/$',
'archive_month', link_info_dict,
'coltrane_link_archive_month'),
(r'^links/(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/$',
'archive_day', link_info_dict,
'coltrane_link_archive_day'),
(r'^links/(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/➥

(?P<slug>[-\w]+)/$',
'object_detail', link_info_dict,
'coltrane_link_detail'),

When you used them for the Entry model, the template names for the views were (in
order):

• coltrane/entry_archive.html

• coltrane/entry_archive_year.html

• coltrane/entry_archive_month.html

CHAPTER 5 ■ EXPANDING THE WEBLOG 83

• coltrane/entry_archive_day.html

• coltrane/entry_detail.html

Now that you’re also using generic views for the Link model, you’ll need a slightly differ-
ent set of templates:

• coltrane/link_archive.html

• coltrane/link_archive_year.html

• coltrane/link_archive_month.html

• coltrane/link_archive_day.html

• coltrane/link_detail.html

The variable names available in these templates will be the same as before, so it should be
easy to work with them. For example, in the detail view, the Link object will be available in a
variable named object. If you’d like to, go ahead and set up the templates for now, but in the
next chapter you’ll be taking a more detailed look at Django’s template system and how it can
greatly reduce the amount of repetitive work involved in writing templates.

Setting Up Views for Categories
At this point, you’ve got most of the weblog’s features set up. The models are written, and
thanks to generic views, you have an easy way to view date-based archives of entries and links,
as well as individual Entry and Link objects on their own detail pages. But there are still two
groups of views you need to handle:

• Views for browsing entries by categories

• Views for browsing entries and links by tags

Let’s start with categories. You’ll need two views for categories: one to display a list of all
the categories in use and another to display the list of entries in a specific category. So open
up the views.py file in the weblog application and add the following at the top, after the
import statements that are already there:

from coltrane.models import Category

Writing the view that shows a list of categories is pretty easy. All you have to do is retrieve
the list from the database and hand it off to the template. For the sake of consistency with
how the generic views do things, you’ll pass the list of categories to the template in a variable
named object_list, and you’ll use the template name coltrane/category_list.html (for
reasons that will become clear in a few minutes):

def category_list(request):
return render_to_response('coltrane/category_list.html',

{ 'object_list': Category.objects.all() })

CHAPTER 5 ■ EXPANDING THE WEBLOG84

Displaying a list of entries in a particular category is only slightly more complex. Since
each category has a SlugField suitable for use in a URL, you’ll assume that the URL matches
an argument called slug. You’ll use that to look up the category (using get_object_or_404() to
return a “404 Not Found” error if there isn’t a category matching the slug given in the URL).

And once you have the Category object, accessing the list of entries is easy. Django knows
about the relationship set up by the ManyToManyField on Entry, and it will ensure that each
Category will have an attribute called entry_set, which can be used to access the entries that
have been assigned to it. This attribute behaves much like the objects attribute on the Entry
model. It has all the same methods—all() and filter(), for example—as Entry.objects,
except it only returns entries assigned to that particular Category.

Following is the view, using coltrane/category_detail as the template name and, again,
using the name object_list for the variable that holds the list of entries:

def category_detail(request, slug):
category = get_object_or_404(Category, slug=slug)
return render_to_response('coltrane/category_detail.html',

{ 'object_list': category.entry_set.all(),
'category': category })

Next you can just add a couple of more patterns in the weblog application’s urls.py file.
The only tricky thing here is that you’ve already specified a prefix of django.views.generic.
date_based for the URL patterns there, and these two views live in coltrane.views. You could
remove the prefix and manually add django.views.generic.date_based to all those views
again, but there’s an easier way to solve this problem. Notice how the list of patterns begins:

urlpatterns = patterns('django.views.generic.date_based',

This is calling a function named patterns() (which, if you look up at the top of the file, is
imported from django.conf.urls.defaults), which parses each pattern passed into it, and
then returns a list of URL patterns in a standardized format Django can work with. That list
ends up in a variable named urlpatterns. Since the end result is just an ordinary Python list,
you can continue working with it. In this case, you’re going to take advantage of the fact that
Python lists can be added together with the plus sign (+) operator. You simply call patterns() a
second time and add the result onto the urlpatterns variable you already have. However, this
time you’ll use a different prefix: coltrane.views.

So add the following code at the bottom of urls.py (you’re actually using += instead of just
+ because it means a slightly shorter piece of code):

urlpatterns += patterns('coltrane.views',
(r'^categories/$', 'category_list'),
(r'^categories/(?P<slug>[-\w]+)/$', 'category_detail'),

)

Now you have views and URLs set up. You’ll deal with templates for them in the next
chapter. For now, let’s focus on some ways you can improve what you’ve got here.

CHAPTER 5 ■ EXPANDING THE WEBLOG 85

Using Generic Views (Again)
This is really more work than you need to do. You’ve already seen how generic views make it
easy to set up date-based archives, and they’re also pretty handy at handling non-date-based
lists of objects. The module django.views.generic.list_detail contains two views, which
produce non-date-based results:

• object_list simply takes the queryset argument you’ve already seen and fetches a list
of objects.

• object_detail (which you won’t be using in this application but is worth mentioning)
takes the queryset argument, and either an object_id argument corresponding to an
object’s primary key or a combination of slug_field and slug arguments, and returns a
detail view of a single object.

So you don’t actually need the category_list view. The object_list generic view will do
the same thing. Go back to the urls.py file and make one more change to the import state-
ment that pulls in the weblog models. Change it from

from coltrane.models import Entry, Link

to

from coltrane.models import Category, Entry, Link

Then go back to the extra set of patterns you just added for the categories and change it
to this:

urlpatterns += patterns('',
(r'^categories/$',
'django.views.generic.list_detail.object_list',
{ 'queryset': Category.objects.all() }),
(r'^categories/(?P<slug>[-\w]+)/$',
'coltrane.views.category_detail'),

)

The object_list generic view, by default, will use a template name of coltrane/category_
list.html (which is why it was a good idea to choose that from the start for the original
category_list view) and pass in the list of categories in a variable named object_list. This
has the same effect as your manually written view (which can now be deleted).

You might be wondering at this point whether it’s possible to use a generic view for the list
of entries in a category. It doesn’t seem as if there’s any way to tell the generic view to also filter
the entries based on the categories they belong to, since the exact filtering that needs to be
done will vary according to which category you’re looking at.

But there is a way to use a generic view here. The trick is to remember that, in Django, a
view is simply a Python function that accepts an HttpRequest object (and potentially a set of
additional arguments) and returns an HttpResponse object. This means that it’s possible to
write one view that imports and calls another view, as well as returns its response.

If that sounds confusing, here’s how you could write a variation of the category_detail
view that uses the object_list generic view:

CHAPTER 5 ■ EXPANDING THE WEBLOG86

from django.views.generic.list_detail import object_list

def category_detail(request, slug):
category = get_object_or_404(Category, slug=slug)
return object_list(request, queryset=category.entry_set.all(),

extra_context={ 'category': category }))

Let’s break down what’s happening here:

1. You import the object_list generic view from django.views.generic.list_detail
(the other things you’ll be using, like the Category model and the get_object_or_404()
shortcut, have already been imported inside the views.py file).

2. You define your view function, category_detail, to accept the HTTP request and
a slug.

3. You use get_object_or_404() to either get the Category corresponding to the slug
argument or return a “404 Not Found” error.

4. You call the object_list generic view directly, passing along the HTTP request and set-
ting its queryset argument to the set of entries in this specific category, and return the
response directly.

5. You pass an extra argument, extra_context. Most of Django’s generic views accept this
argument, and it lets you specify extra variables and values to make available to the
template. In this case, you’re adding the Category object.

In effect, you’re “wrapping” the generic view up inside another view function that does
some preliminary work to filter the eventual QuerySet it will use.

Given how simple the original category_detail view was, this may seem like a strange
way of doing things, and for this specific case it’s probably not worth the effort of wrapping a
generic view. But this is an extremely powerful pattern to keep in the back of your mind. There
will be many times when you’ll need something like a generic view, but with a little bit of extra
filtering or processing. Using this sort of wrapper can, in more complex cases, often lead to a
significant reduction in the amount of code you have to write by hand.

Views for Tags
You still need a set of views to handle browsing of entries and links by tags. As it turns out,
though, you don’t have to write them. The tagging application you’re using provides a model,
called Tag, to represent the tags, and you can simply use the object_list generic view to show
a list of them.

Add one more import statement at the top of the urls.py file:

from tagging.models import Tag

And you’ll add another set of URL patterns at the bottom:

CHAPTER 5 ■ EXPANDING THE WEBLOG 87

urlpatterns += patterns('',
(r'^tags/$',
'django.views.generic.list_detail.object_list',
{ 'queryset': Tag.objects.all() }),

)

The tagging application also provides one view—written in the same general style as
Django’s built-in generic views—for showing all the objects from a particular model that have
a particular tag. This view is tagging.views.tagged_object_list, and you need to give it three
arguments:

• queryset_or_model: This will be the model class or QuerySet whose objects you want to
view, and you’ll pass it in directly in the URL pattern.

• tag: This can be either a Tag object or the name of a tag, and you’ll set up the pattern so
that it’s read out of the URL.

• template_name: This is the name of the template the view will use. If it’s not specified, it
will default to tagging/tag_list.html, so you’ll use something descriptive to make it
easier to keep track of what’s going on.

So all you need to do is add two more patterns: one for browsing entries by tag and one
for browsing links by tag. You start with the pattern you already set up for the tag list:

urlpatterns += patterns('',
(r'^tags/$',
'django.views.generic.list_detail.object_list',
{ 'queryset': Tag.objects.all() }),

)

and add the two new patterns:

urlpatterns += patterns('',
(r'^tags/$',
'django.views.generic.list_detail.object_list',
{ 'queryset': Tag.objects.all() }),
(r'^tags/entries/(?P<tag>[-\w]+)/$',
'tagging.views.tagged_object_list',
{ 'queryset_or_model': Entry,
'template_name': 'coltrane/entries_by_tag.html' }),

(r'^tags/links/(?P<tag>[-\w]+)/$',
'tagging.views.tagged_object_list',
{ 'queryset_or_model': Link,
'template_name': 'coltrane/links_by_tag.html' }),

)

The tagged_object_list view is actually a wrapper around the object_list generic view,
like the one you saw previously for the category_detail view but slightly more complex.
(This is a case where wrapping a generic view does significantly reduce the amount of code.)
Because of this, it will provide the list of objects to the template in a variable named
object_list, making it nice and consistent with all of your other views.

CHAPTER 5 ■ EXPANDING THE WEBLOG88

Cleaning Up the URLConf
By this point, the urls.py file in the weblog application is starting to get unwieldy. Currently, it
looks like the following:

from django.conf.urls.defaults import *

from coltrane.models import Category, Entry, Link
from tagging.models import Tag

entry_info_dict = {
'queryset': Entry.objects.all(),
'date_field': 'pub_date',
}

link_info_dict = {
'queryset': Link.objects.all(),
'date_field': 'pub_date',
}

urlpatterns = patterns('django.views.generic.date_based',
(r'^$', 'archive_index', entry_info_dict, 'coltrane_entry_archive_index'),
(r'^(?P<year>\d{4})/$', 'archive_year',
entry_info_dict,
'coltrane_entry_archive_year'),
(r'^(?P<year>\d{4})/(?P<month>\w{3})/$',
'archive_month', entry_info_dict,
'coltrane_entry_archive_month'),
(r'^(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/$',
'archive_day',
entry_info_dict,
'coltrane_entry_archive_day'),
(r'^(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/(?P<slug>[-\w]+)/$',
'object_detail',
entry_info_dict,
'coltrane_entry_detail'),
(r'^links/$',
'archive_index',
link_info_dict,
'coltrane_link_archive_index'),
(r'^links/(?P<year>\d{4})/$',
'archive_year',
link_info_dict,
'coltrane_link_archive_year'),
(r'^links/(?P<year>\d{4})/(?P<month>\w{3})/$',
'archive_month', link_info_dict, 'coltrane_link_archive_month'),
(r'^links/(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/$',
'archive_day', link_info_dict, 'coltrane_link_archive_day'),

CHAPTER 5 ■ EXPANDING THE WEBLOG 89

(r'^links/(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/➥

(?P<slug>[-\w]+)/$',
'object_detail',
link_info_dict,
'coltrane_link_detail'),

)

urlpatterns += patterns('',
(r'^categories/$',
'django.views.generic.list_detail.object_list',
{ 'queryset': Category.objects.all() }),
(r'^categories/(?P<slug>[-\w]+)/$',
'coltrane.views.category_detail'),

)

urlpatterns += patterns('',
(r'^tags/$', 'django.views.generic.list_detail.object_list',
{ 'queryset': Tag.objects.all() }),
(r'^tags/entries/(?P<tag>[-\w]+)/$',
'tagging.views.tagged_object_list',
{ 'queryset_or model': Entry,
'template_name': 'coltrane/entries_by_tag.html' }),

(r'^tags/links/(?P<tag>[-\w]+)/$',
'tagging.views.tagged_object_list',
{ 'queryset_or_model': Link,
'template_name': 'coltrane/links_by_tag.html' }),

)

All together, you’ve got four models, two dictionaries of keyword arguments for generic
views and three sets of URL patterns that get added together to make up the final set. This
makes it a bit tricky to follow exactly what’s going on, so let’s reorganize a bit.

Inside the weblog application’s directory, create a directory called urls, and inside it
create five files:

• __init__.py (to signify that this will be a Python module)

• categories.py

• entries.py

• links.py

• tags.py

What you’re going to do is break up the mess you currently have into four logical groups
of URL patterns, each inside its own file. From there, you’ll be able to use include() directives
to add any or all of these URL patterns to any site that happens to be using the weblog appli-
cation. Let’s look at how this breaks down in each file.

CHAPTER 5 ■ EXPANDING THE WEBLOG90

In categories.py:

from django.conf.urls.defaults import *

from coltrane.models import Category

urlpatterns = patterns('',
(r'^$', 'django.views.generic.list_detail.object_list',
{ 'queryset': Category.objects.all() }),
(r'^(?P<slug>[-\w]+)/$', 'coltrane.views.category_detail'),

)

Note that it’s urlpatterns = patterns('', not urlpatterns += patterns(''.There will be
only one set of patterns per file, so you don’t need to add patterns together as you did when
they were all in one file. Also, the URLs no longer have "categories/" in them. Because this is
now intended to be accessed by an include() directive somewhere else, you can gain a little
more flexibility by not requiring that the URLs contain the string "categories/".

In entries.py:

from django.conf.urls.defaults import *

from coltrane.models import Entry

entry_info_dict = {
'queryset': Entry.objects.all(),
'date_field': 'pub_date',
}

urlpatterns = patterns('django.views.generic.date_based',
(r'^$', 'archive_index', entry_info_dict, 'coltrane_entry_archive_index'),
(r'^(?P<year>\d{4})/$',
'archive_year', entry_info_dict,
'coltrane_entry_archive_year'),
(r'^(?P<year>\d{4})/(?P<month>\w{3})/$',
'archive_month',
entry_info_dict,
'coltrane_entry_archive_month'),
(r'^(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/$',
'archive_day',
entry_info_dict,
'coltrane_entry_archive_day'),
(r'^(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/(?P<slug>[-\w]+)/$',
'object_detail',
entry_info_dict,
'coltrane_entry_detail'),

)

CHAPTER 5 ■ EXPANDING THE WEBLOG 91

In links.py:

from django.conf.urls.defaults import *

from coltrane.models import Link

link_info_dict = {
'queryset': Link.objects.all(),
'date_field': 'pub_date',
}

urlpatterns = patterns('django.views.generic.date_based',
(r'^$', 'archive_index', link_info_dict, 'coltrane_link_archive_index'),
(r'^(?P<year>\d{4})/$',
'archive_year',
link_info_dict,
'coltrane_link_archive_year'),
(r'^(?P<year>\d{4})/(?P<month>\w{3})/$',
'archive_month', link_info_dict,
'coltrane_link_archive_month'),
(r'^(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/$', 'archive_day',
link_info_dict,
'coltrane_link_archive_day'),
(r'^(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/(?P<slug>[-\w]+)/$',
'object_detail',
link_info_dict,
'coltrane_link_detail'),

)

Just as with the category URLs, you’ve removed the "links/" bit from these patterns.
And in tags.py:

from django.conf.urls.defaults import *
from coltrane.models import Entry, Link
from tagging.models import Tag

urlpatterns = patterns('',
(r'^$',
'django.views.generic.list_detail.object_list',
{ 'queryset': Tag.objects.all() }),
(r'^entries/(?P<tag>[-\w]+)/$',
'tagging.views.tagged_object_list',
{ 'queryset_or_model': Entry,
'template_name': 'coltrane/entries_by_tag.html' }),

(r'^links/(?P<tag>[-\w]+)/$',
'tagging.views.tagged_object_list',
{ 'queryset_or_model': Link,
'template_name': 'coltrane/links_by_tag.html' }),

)

CHAPTER 5 ■ EXPANDING THE WEBLOG92

Again, as with categories and links, the "tags/" bit has gone away.
Once you’ve set up these files, you should delete the original urls.py from the weblog

application’s folder.
Now you can go back to the project’s root URLConf, which had a pattern like this:

(r'^weblog/', include('coltrane.urls')),

and then pull in the individual bits where you want them:

(r'^weblog/categories/', include('coltrane.urls.categories')),
(r'^weblog/links/', include('coltrane.urls.links')),
(r'^weblog/tags/', include('coltrane.urls.tags')),
(r'^weblog/', include('coltrane.urls.entries')),

Although you now have several URLConf files inside the weblog application, and you need
multiple include() directives to use them all, you’ve gained two big advantages.

• The weblog URLs are now much more manageable because they’re broken up into
small units that only contain sets of URLs that logically belong together.

• Because they’re no longer jumbled together into one file, it’s easy to use include() to
put a specific group of patterns at any spot in a site’s URL hierarchy. This means you’re
no longer tied to specific prefixes like "links/" or "tags/" if you don’t want them.

As a general rule, any application whose URL patterns logically fall into related groups
like these should have them broken up into multiple separate files for precisely these reasons.
The benefits far outweigh the downside of having to deal with several files.

Handling Live Entries
Before you move on to the last part of the weblog—templating and comments, which I’ll cover
in the next chapter—let’s solve one more missing feature.

You’ll recall that when you set up the Entry model, you gave it a field called status, which
allows entries to be marked as Live, Draft, or Hidden. At the moment, none of your views are
taking that into account. If you add an entry with a status other than Live, you’ll notice that it
still shows up in all of the archive and detail views.

You’ve already seen that you can use the filter() method to get only the objects that
match certain specific criteria. At first, that seems like an easy way to handle this. Anywhere
you’re using this:

Entry.objects.all()

you could just replace it with this:

Entry.objects.filter(status=Entry.LIVE_STATUS)

Remember that you defined named constants for the different status values to make
these kinds of queries easier. But this is going to involve an awful lot of typing. You’ll need to
remember to type that extra query argument anywhere you’re querying for entries. It would be
much nicer if you could have a separate way of querying entries that only returns objects with

CHAPTER 5 ■ EXPANDING THE WEBLOG 93

the status field set to Live, maybe something like Entry.live.all() instead of Entry.objects.
all(). This is actually pretty easy to do, but it requires the introduction of one more major fea-
ture of Django’s model system: managers.

Up until now, I’ve been glossing over how Django actually does database queries. I’ve just
been discussing things like Entry.objects.all() or FlatPage.objects.filter() without really
talking about that special attribute called objects or where it comes from.

The objects attribute is an instance of a special class (django.db.models.Manager),
which is meant to be “attached” to a particular model class, and which knows how to perform
all sorts of database queries. In addition to the methods you’ve already seen—all() and
filter()—it has a large number of other methods that can return single specific objects,
return lists of objects, return other data structures corresponding to data stored by a model,
change the ordering used to return results, and handle a variety of other useful tasks. Full
documentation of the database API and all of its methods and options is available online at
www.djangoproject.com/documentation/db-api/.

If you don’t specify a manager for your model, Django adds one and calls it objects (this
happens automatically for any class that subclasses django.db.models.Model). However, you’re
free to attach a manager with any name you like, and if you do, Django won’t bother with the
automatic default objects manager. For example, you could define a model like so:

class MyModel(models.Model):
name = models.CharField(max_length=50)

object_fetcher = models.Manager()

Then, instead of using, say, MyModel.objects.all(), you would use MyModel.object_
fetcher.all(). All of the standard querying methods will be there, just in an attribute with
the name you’ve specified.

The most important thing about managers, however, is that you can easily define your
own manager classes and give them customized behavior by writing a subclass of django.db.
models.Manager and overriding the methods you want to customize. In this case you want to
write a manager that, when attached to the Entry model, will only return entries whose
status is Live. You can do this by writing a subclass of Manager and overriding one method,
get_query_set(), which returns the initial QuerySet object that all(), filter(), and all the
other querying methods will use. Doing this is surprisingly easy:

class LiveEntryManager(models.Manager):
def get_query_set(self):

return super(LiveEntryManager, self).get_query_set().filter(➥

status=self.model.LIVE_STATUS)

The only tricky bit here is that you’re using self.model.LIVE_STATUS as the value to filter
on. Every Manager that’s been attached to a model can access that model class through the
attribute self.model.

Place the preceding code in the weblog application’s models.py file, somewhere above the
definition of the Entry model. Then add the following lines inside the Entry model:

live = LiveEntryManager()
objects = models.Manager()

CHAPTER 5 ■ EXPANDING THE WEBLOG94

This gives the Entry model two managers. One is called objects and is just the standard
manager every model normally gets. The other is an instance of the LiveEntryManager, which
means you can now write

Entry.live.all()

and it will do precisely what you want it to do. Note that you have to define objects manually.
When a model has a custom manager, Django doesn’t automatically set up the objects man-
ager for you.

Now you can simply perform a search and replace on the weblog code, changing any use
of Entry.objects to Entry.live, and that will take care of any situations where you’re querying
for entries (only one so far, but if you had gone much further it could easily have been more).

There are two other places, though, where you’ll need to worry about filtering for only live
entries—when you retrieve entries for a specific category or tag. For categories, you can solve
this fairly easily by adding a method on the Category model:

def live_entry_set(self):
from coltrane.models import Entry
return self.entry_set.filter(status=Entry.LIVE_STATUS)

And now, anywhere you used the entry_set attribute of a Category, you can simply
replace it with a call to live_entry_set(). So, for example, the category_detail view will now
look like this:

def category_detail(request, slug):
category = get_object_or_404(Category, slug=slug)
return render_to_response('coltrane/category_detail.html',

{ 'object_list': category.live_entry_set() })

With tags it’s a bit trickier, but you can still make it work. Remember that the argument
the tagged_object_list view receives is called queryset_or_model. This means you can pass it
either a model class, like Link, or a QuerySet. So where you're using the tagged_object_list
view with the Entry model as an argument, change it to use Entry.live.all() instead.

Looking Ahead
The weblog application is almost complete now. There are only a couple of features left to add,
and for them you’ll be using applications bundled with Django plus a few customizations. I’ll
cover those in Chapter 7, but in the next chapter you’ll take a much more detailed look at
Django’s template system, writing templates for the blog, and even writing a couple of custom
template tags.

If you’d like to pause for a little while and play with the weblog application before moving
on to Chapter 6, feel free to do so. Even without the comment system and template techniques
you’ll cover in the next chapter, this weblog application is already a pretty solid piece of soft-
ware and offers a significant subset of the functionality of popular off-the-shelf weblog
systems like Wordpress (but with significantly less code).

CHAPTER 5 ■ EXPANDING THE WEBLOG 95

Templates for the Weblog

Your weblog application is almost complete. Over the last two chapters, you’ve imple-
mented entries, links, and nearly all the attendant functionality you wanted to have with
them. There are only two features left to implement—a comment system and syndication
feeds—and Django is going to give you quite a bit of help with those, as you’ll see in the
next chapter.

But so far you’ve focused pretty exclusively on the “back end” of the site—the Python
code that models your data, retrieves it from the database, lays out your URL structure, and so
on—to the expense of the “front end,” or the actual HTML you’ll show to your site’s visitors.
You’ve seen how Django’s generic views expose your database objects for use in templates
(e.g., the object_list variable in the date-based archives). However, it’s a big step from that to
an attractive and usable weblog. Let’s take a deeper look at Django’s template system, and how
you can use it to make the front end as easy as the back.

Dealing with Repetitive Elements:
The Power of Inheritance
You’re using Django’s generic views to show both entries and links. Whether you’re looking at
the detail view of an Entry or of a Link, the actual Python code involved is the date-based
object_detail generic view, which provides a variable named object to the template and rep-
resents the database object it retrieved. The biggest difference is that, for an Entry, the generic
view will use a template named coltrane/entry_detail.html and for a Link it will use
coltrane/link_detail.html.

Because the contexts are so similar, the templates will end up looking very much alike; for
example, a simple entry_detail template might look like the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>Weblog: {{ object.title }}</title>
</head>
<body>
<h1>{{ object.title }}</h1>

97

C H A P T E R 6

{{ object.body_html|safe }}
</body>
</html>

And a simple link_detail might look like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>Weblog: {{ object.title }}</title>
</head>
<body>
<h1>{{ object.title }}</h1>
{{ object.description_html|safe }}
<p>Visit site</p>
</body>
</html>

Of course, for a finished site you’d want to do quite a bit more, but already it’s apparent
that there’s a lot of repetition. There’s all sorts of HTML boilerplate, which is the same in both
templates, and even things like the <title> element and the <h1> heading have the same con-
tents. Typing all of that over and over again is going to be awfully tedious, especially as the
HTML gets more complex; and if you ever make changes to the HTML structure of a site, you’ll
have to make them in every single template. Django’s been great so far at helping you avoid
this sort of tedious and repetitive work on the Python side of things, so naturally it would be
nice if it could do the same on the HTML side as well.

And it can. Django’s template system supports a concept of template inheritance, which
works in a way that’s reminiscent of how subclassing works in normal Python code. Essen-
tially, the Django template system lets you write a template with placeholders (called blocks)
for sections of a page. These will vary from one template to the next, and then you’ll write tem-
plates to “extend” that template and fill in the placeholders.

To see it in action, let’s work through a simple example. Create a file in the root template
directory for the project and name it base.html. This name isn’t required, but it’s a common
practice and will help others to understand its purpose. In that file, put the following code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>Weblog: {{ object.title }}</title>
</head>
<body>
<h1>{{ object.title }}</h1>
{% block content %}
{% endblock %}
</body>
</html>

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG98

Now, edit the coltrane/entry_detail.html template so that it contains nothing but this:

{% extends "base.html" %}

{% block content %}
{{ object.body_html|safe }}
{% endblock %}

Next, edit coltrane/link_detail.html so that it contains nothing but this:

{% extends "base.html" %}

{% block content %}
{{ object.description_html|safe }}
<p>Visit site</p>
{% endblock %}

Finally, fire up the development server and visit a link or entry in the weblog, and then
view the HTML source of the page. You’ll see all the HTML boilerplate that’s in base.html, and
the area where base.html had an empty “content” block will be filled in by the appropriate
results, according to whether you’re looking at an entry or a link.

This is just a simple example. As your templates get more complex, the ability to factor
out repetitive pieces like this is going to become a lifesaver. It’ll cut down on both the time
needed to put templates together and the time needed to change them later (since a change
in a single “base” template will automatically show up in any templates that extend it).

How Template Inheritance Works
Template inheritance revolves around the two new tags seen in the previous example:
{% block %} and {% extends %}. Essentially, the {% block %} tag lets you carve out a section of
a template and give it a name, and possibly even some default content. The {% extends %} tag
lets you specify the name of another template—which should contain one or more blocks—
and then just fill in content for any blocks you want to use. The rest of the content, including
default content from any blocks you didn’t override, will automatically be filled in from the
template you’re extending. Additionally, within a block, you’ll have access to the content that
would have gone there if you weren’t supplying your own. This is stored in a special variable
named block.super. So if you had a base template that contained this:

{% block title %}My weblog:{% endblock %}

you could write a template that extended it, and fill in your own content:

{% block title %}My page{% endblock %}

Using block.super, you could access the default content from the parent block to get a
final value of My weblog: My page:

{% block title %}{{ block.super }} My page{% endblock%}

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG 99

Limits of Template Inheritance
As you start to work with inheritance in templates, there are a few caveats you’ll want to keep
in mind:

• If you use the {% extends %} tag, it must be the first thing in the template. Django needs
to know up front that you’re going to be extending another template.

• Each named block, if used, can appear only once in a given template. Just as HTML
only permits you to have a single element with a given ID inside a single page, Django’s
template system only permits you to have a single block with a given name inside a
single template.

• A template can only directly extend one other template—multiple uses of {% extends
%} in the same template are invalid. However, the template being extended can, in turn,
extend another template, leading to a chain of inheritance down through multiple
templates.

This ability to “chain” inherited templates is key to a common pattern in template devel-
opment. Often, a site will have multiple sections or areas that don’t vary much from one
another, so the templates end up forming a three-layered structure:

1. A single base template containing the common HTML of all pages.

2. Section-specific base templates that fill in appropriate navigation and/or theming,
which extend the base template.

3. The “actual” templates that will be loaded and rendered by the views, which extend the
appropriate template for their section.

In fact, this pattern is so common and so useful that you’re going to use it for your blog’s
templates. Let’s get started.

Defining the Base Template for the Blog
Building up a useful base template for a site largely consists of determining what the site’s
overall look and feel will be, writing out the appropriate HTML to support it, and then deter-
mining which areas will need to vary from page to page and turning them into blocks.

For this blog, let’s go with a common visual layout—a header at the top of the page with
room for a site logo, and two columns below it. One column will contain the main content of
the page, the other a sidebar with navigation, metadata, and other useful information.

In HTML terms, this works out to three div elements: one for the header area, then one
each for the content area and the sidebar. The structure looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<title></title>

</head>
<body>

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG100

<div id="header"></div>
<div id="content"></div>
<div id="sidebar"></div>

</body>
</html>

Note that I’ve gone ahead and filled in some HTML id attributes on these div tags so that
it’ll be easy to set up the layout with cascading style sheets (CSS).

Now, one thing that jumps out is the fact that the title element is empty. This is definitely
something that will vary, according to which part of the site you’re in and what you’re looking
at, so let’s go ahead and put a block there:

<title>My weblog {% block title %}{% endblock %}</title>

When you extend this template, you’ll add more things here. The final effect will be to get
a title like My weblog | Entries | February 2008, as you’ll see in a moment.

Now, let’s fill in the header. It’s not something that’s likely to change a lot, so you don’t
need a block here:

<div id="header">
<h1 id="branding">My weblog</h1>

</div>

Again, I’ve added an id attribute to make it easy to style it later with CSS. For example,
you could use an image-replacement technique to replace the text of the h1 with a logo.

Since the main content will vary quite a bit, you’ll make it a block:

<div id="content">
{% block content %}
{% endblock %}

</div>

All that’s left is the sidebar. The first thing you’ll need there is a list of links to different
things so that visitors can easily navigate around the site. You can do that easily enough
(again, using id attributes to make it easy to come back later and style this):

<div id="sidebar">
<h2>Navigation</h2>
<ul id="main-nav">
<li id="main-nav-entries">
Entries

<li id="main-nav-links">
Links

<li id="main-nav-categories">
Categories

<li id="main-nav-tags">Tags

</div>

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG 101

But one thing stands out: you have hard-coded URLs here. They match what you’ve set up
in your URLConf. But after you went to all the trouble to modularize and decouple them on the
Python side, it would be a shame to just turn around and hard-code things in your templates.

A better solution is to use the {% url %} template tag, which—like the permalink decora-
tor you used on the get_absolute_url() methods of your models—can perform a reverse
lookup in your URLConf to determine the appropriate URL. This tag has quite a few options,
but the one you care about right now is pretty simple: you can feed it the name of a URL pat-
tern, and it will output the correct URL.

Using the {% url %} tag, you can rewrite your navigation list like so:

<ul id="main-nav">
<li id="main-nav-entries">
Entries

<li id="main-nav-links">
Links

<li id="main-nav-categories">
Categories

<li id="main-nav-tags">
Tags

Now you won’t have to make changes to your templates if you decide to shuffle some
URLs around later.

While you’re dealing with the navigation, let’s add a block inside the body tag:

<body class="{% block bodyclass %}{% endblock %}">

A common technique in CSS-based web design is to use a class attribute on the body tag
to trigger changes to a page’s style. For example, you’ll have a list of navigation options in the
sidebar, representing different parts of the blog—entries, links, and so forth—and it would be
nice to highlight the part a visitor is currently looking at. By changing the class of the body tag
in different parts of the site, you can easily use CSS to highlight the correct item in the naviga-
tion list.

For the rest of the sidebar’s content, it would be nice to have a little explanation of what a
visitor is looking at, something like “An entry in my blog, published on February 7, 2008” or
“A list of entries in the category ‘Django.’” You can add a block for that as well:

<h2>What is this?</h2>
{% block whatis %}
{% endblock %}

You’re done with the base template—for now. (You’ll add a few things to it later on.) Here’s
what it looks like:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG102

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>My weblog {% block title %}{% endblock %}</title>

</head>
<body class="{% block bodyclass %}{% endblock %}">
<div id="header">
<h1 id="branding">My weblog</h1>

</div>
<div id="content">
{% block content %}
{% endblock %}

</div>
<div id="sidebar">
<h2>Navigation</h2>
<ul id="main-nav">
<li id="main-nav-entries">
Entries

<li id="main-nav-links">
Links

<li id="main-nav-categories">
Categories

<li id="main-nav-tags">
Tags

<h2>What is this?</h2>
{% block whatis %}
{% endblock %}

</div>
</body>
</html>

Section Templates
Now let’s set up some templates that will handle the different main areas of the blog. You’ll
want one each for entries, links, tags, and categories. You’ll call the template for entries
base_entries.html, and all you really need to do is extend the base template and fill in a
couple of blocks:

{% extends "base.html" %}

{% block title %}| Entries{% endblock %}

{% block bodyclass %}entries{% endblock %}

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG 103

If you just used this template all by itself, you’d get the output from base.html, but with
two changes:

• The title tag’s contents would be My weblog | Entries.

• The body tag’s class attribute would have a value of entries, which means it would be
easy to cause the Entries item in the navigation to be highlighted.

The rest of the section templates are pretty easy to fill in. For example, you can write a
base_links.html like so:

{% extends "base.html" %}

{% block title %}| Links{% endblock %}

{% block bodyclass %}Links{% endblock %}

You’ll also need a base_tags.html and a base_categories.html, but you can just fill them
in using the same pattern as described previously. These templates are slightly repetitive, and
probably always will be, but the use of template inheritance means you’ve boiled down the
repetitive bits to a bare minimum—you’re only specifying the things that change, not the
things that stay the same.

Archives of Entries
For displaying entries, you need five templates:

• The main, or home, page showing the latest entries

• A yearly archive

• A monthly archive

• A daily archive

• An individual entry

These correspond directly to the generic views you’re using.

Entry Index
Let’s start with the main index of entries. You’ll recall that the generic view will look for the
template coltrane/entry_archive.html and will provide a variable named latest containing a
list of the latest entries. So you can fill in the template coltrane/entry_archive.html as follows
(remembering to extend base_entries.html instead of base.html):

{% extends "base_entries.html" %}

{% block title %}{{ block.super }} | Latest entries{% endblock %}

{% block content %}
{% for entry in latest %}

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG104

<h2>{{ entry.title }}</h2>
<p>Published on {{ entry.pub_date|date:"F j, Y" }}</p>
{% if entry.excerpt_html %}
{{ entry.excerpt_html|safe }}

{% else %}
{{ entry.body_html|truncatewords_html:"50"|safe }}

{% endif %}
<p>Read full entry. . .</p>

{% endfor %}
{% endblock %}

{% block whatis %}
<p>This is a list of the latest {{ latest.count }} entries published in
my blog.</p>
{% endblock %}

Most of this should be pretty familiar. You’re using the {% for %} tag to loop over the
entries and display each one. And in the sidebar, you just have a short paragraph describing
what’s being shown on this page. It relies on the count() method of a Django QuerySet to find
out how many entries were passed to the template in the latest variable.

There are a couple of new things here worth noting, though:

• The use of the date filter to format each entry’s pub_date. This accepts a formatting
string, similar to the strftime() method you’ve already seen, and outputs the date
accordingly. In this case, it will print out in the form February 6, 2008.

• The use of the truncatewords_html filter. This filter takes a number as its argument and
outputs that number of words from the variable it’s applied to, adding an ellipsis (. . .)
to the end. This is useful for generating a short excerpt when the entry doesn’t have its
excerpt field filled in.

Yearly Archive
The generic view that generates the yearly archive will provide two variables:

• year: The year being displayed.

• date_list: A list of Python datetime objects representing months in that year that have
entries.

This generic view is going to look for the template coltrane/entry_archive_year.html,
which you can fill in as follows:

{% extends "base_entries.html" %}

{% block title %}{{ block.super }} | {{ year }}{% endblock %}

{% block content %}

{% for month in date_list %}

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG 105

{{ month|➥

date:"F" }}

{% endfor %}

{% endblock %}

{% block whatis %}
<p>This is a list of months in {{ year }} in which I published entries in
my blog.</p>
{% endblock %}

Here you’re looping over the date_list and, for each month, showing a link to the archive
for that month.

But there’s a problem here: you can build up the URLs by using Django’s built-in date
filter, but once again you’re hard-coding a URL. Previously, you got around that by using the
{% url %} tag with the name of a URL pattern. You can do that again, but this time you’ll need
to supply some extra data: the year and month needed to generate the correct URL for a
monthly archive. All you have to do is pass a second argument to the {% url %} tag, contain-
ing a comma-separated list of the values it needs, and you can even use filters to make sure
they’re correctly formatted:

{{ month|date:"F" }}

With the current URL setup, this will correctly output URLs like /weblog/2008/jan/,
/weblog/2008/feb/, and so on.

Monthly and Daily Archives
The generic views that generate the monthly and daily archives are extremely similar. Both
will provide a list of entries in a variable named object_list, and the only real difference is
that one will have a variable called month (representing the month for a monthly archive) and
the other will have a variable called day (representing the day for a daily archive).

Here’s the monthly archive template, which will be coltrane/entry_archive_month.html:

{% extends "base_entries.html" %}

{% block title %}
{{ block.super }} | Entries in {{ month|date:"F, Y" }}
{% endblock %}

{% block content %}
{% for entry in object_list %}
<h2>{{ entry.title }}</h2>
<p>Published on {{ entry.pub_date|date:"F j, Y" }}</p>
{% if entry.excerpt_html %}

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG106

{{ entry.excerpt_html|safe }}
{% else %}
{{ entry.body_html|truncatewords_html:"50"|safe }}
{% endif %}
<p>Read full entry. . .</p>

{% endfor %}
{% endblock %}

{% block whatis %}
<p>This is a list of entries published in my blog in
{{ month|date:"F, Y" }}.</p>
{% endblock %}

Except for a couple of changes to variable names and the use of the date filter to format
the month (it will print in the form February, 2008), this isn’t too different from what you’ve
already seen. The daily archive template (coltrane/entry_archive_day.html) will be almost
identical except for the use of the variable day and the appropriate formatting, so go ahead
and fill that in. (You can find a full list of available date formatting options in the Django tem-
plate documentation online at www.djangoproject.com/documentation/templates/.)

Entry Detail
The generic view that shows a single entry uses the template coltrane/entry_detail.html and
provides one variable, object, which will be the entry. The first part of this template is easy:

{% extends "base_entries.html" %}

{% block title %}{{ block.super }} | {{ object.title }}{% endblock %}

{% block content %}
<h2>{{ object.title }}</h2>
{{ object.body_html|safe }}
{% endblock %}

The sidebar is a bit trickier. You can start out by showing the entry’s pub_date:

{% block whatis %}
<p>This is an entry posted to my blog on
{{ object.pub_date|date:"F j, Y" }}.</p>

Now, it would be nice to show the categories by saying something like, “This entry is part
of the categories ‘Django’ and ‘Python.’” But there are several things to take into account here:

• For an entry with one category you want to say “part of the category.” But for an entry
with more than one, it needs to be “part of the categories,” and for an entry with no cat-
egories, you need to say, “This entry isn’t part of any categories.”

• For an entry with more than two categories, you’ll need commas between category
names and the word “and” before the final category. But for an entry with two cate-
gories, you don’t need the commas, and for an entry with only one category, you don’t
need commas or the “and.”

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG 107

If there aren’t any categories for an entry, {{ object.categories.count }} will be 0, which
is False inside an {% if %} tag, so you can start with a test for that:

{% if object.categories.count %}
. . .you'll fill this in momentarily. . .
{% else %}
<p>This entry isn't part of any categories.</p>
{% endif %}

Now you need to handle the difference between “category” and “categories.” Since this is
a common problem, Django includes a filter, called pluralize, which can take care of it. The
pluralize filter, by default, outputs nothing if applied to a variable that evaluates to the num-
ber 1, but outputs an “s” otherwise. It also accepts an argument that lets you specify other text
to output. In this case, you want a “y” for the singular case and “ies” for the plural, so you can
write:

{% if object.categories.count %}
<p>This entry is part of the
category{{ object.categories.count|pluralize:"y,ies" }}

You’ll get “category” when there’s only one category and “categories” otherwise.
Finally, you need to loop over the categories. One option would be to join the list of cate-

gories using commas. In Python code, you’d write:

', '.join(object.categories.all())

And Django’s template system provides a join filter, which works the same way:

{{ object.categories.all|join:", " }}

But you want to have the word “and” inserted before the final category in the list, and join
can’t do that. The solution is to use the {% for %} tag and to take advantage of some useful
variables it makes available. Within the {% for %} loop, the following variables will automati-
cally be available:

• forloop.counter: The current iteration of the loop, counting from 1. The fourth time
through the loop, for example, this will be the number 4.

• forloop.counter0: Same as forloop.counter, but starts counting at 0 instead of 1. The
fourth time through the loop, for example, this will be the number 3.

• forloop.revcounter: The number of iterations left until the end of the loop, counting
down to 1. When there are four iterations left to go, for example, this will be the
number 4.

• forloop.revcounter0: Same as forloop.revcounter, but counts down to 0 instead of 1.

• forloop.first: A boolean value—it will be True the first time through the loop and
False the rest of the time.

• forloop.last: Another boolean—this one is True the last time through the loop and
False the rest of the time.

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG108

Using these variables, you can work out the proper presentation. Expressed in English,
the logic works like this:

1. Display a link to the category.

2. If this is the last time through the loop, don’t display anything else.

3. If this is the next-to-last time through the loop, display the word “and.”

4. Otherwise, display a comma.

And here it is in template code:

{% for category in object.categories.all %}
{{ category.title }}
{% if forloop.last %}{% else %}
{% ifequal forloop.revcounter0 1 %}and {% else %}, {% endifequal %}
{% endif %}

s {% endfor %}

There are really two important bits here:

• {% if forloop.last %}{% else %}: This does absolutely nothing if you’re in the last trip
through the loop.

• {% ifequal forloop.revcounter0 1 %}: This determines whether you’re in the next-to-
last trip through the loop in order to print the “and” before the final category.

Here’s the full sidebar block so far:

{% block whatis %}
<p>This is an entry posted to my blog on
{{ object.pub_date|date:"F j, Y" }}.</p>

{% if object.categories.count %}
<p>This entry is part of the
category{{ object.categories.count|pluralize:"y,ies" }}
{% for category in object.categories.all %}
{{ category.title }}
{% if forloop.last %}{% else %}
{% ifequal forloop.revcounter0 1 %}and {% else %}, {% endifequal %}
{% endif %}

{% endfor %}
</p>

{% else %}
<p>This entry isn't part of any categories.</p>

{% endif %}
{% endblock %}

Handling tags will work much the same way. {{ object.tags }} will return the tags for
the Entry, and a similar bit of template code can handle them. And with that, you have a pretty
good entry detail template:

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG 109

{% extends "base_entries.html" %}

{% block title %}{{ block.super }} | {{ object.title }}{% endblock %}

{% block content %}
<h2>{{ object.title }}</h2>
{{ object.body_html }}
{% endblock %}

{% block whatis %}
<p>This is an entry posted to my blog on
{{ object.pub_date|date:"F j, Y" }}.</p>

{% if object.categories.count %}
<p>This entry is part of the
category{{ object.categories.count|pluralize:"y,ies" }}
{% for category in object.categories.all %}
{{ category.title }}
{% if forloop.last %}{% else %}
{% ifequal forloop.revcounter0 1 %}and {% else %}, {% endifequal %}
{% endif %}

{% endfor %}
</p>

{% else %}
<p>This entry isn't part of any categories.</p>

{% endif %}
{% endblock %}

Templates for Other Types of Content
The templates for displaying links in the blog aren’t much different. They’ll extend
base_links.html, of course, but the variable names available in the various templates will be
the same. The only difference is that the templates will have access to Link objects and so
should display them based on the fields you’ve defined on the Link model. Here’s an example
of what coltrane/link_detail.html might look like:

{% extends "base_links.html" %}

{% block title %}{{ block.super }} | {{ object.title }}{% endblock %}

{% block content %}
<h2>{{ object.title }}</h2>
{{ object.description_html }}
<p>Visit site</p>
{% endblock %}

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG110

{% block whatis %}
<p>This is a link posted to my blog on {{ object.pub_date|date:"F j, Y" }}.</p>

{% if object.tags.count %}
<p>This link is tagged with
{% for tag in object.categories.all %}
{{ tag.title }}
{% if forloop.last %}{% else %}
{% ifequal forloop.revcounter0 1 %}and {% else %}, {% endifequal %}
{% endif %}

{% endfor %}
</p>

{% else %}
<p>This link doesn't have any tags.</p>

{% endif %}
{% endblock %}

Note that since links only have tags, not categories, this template just loops through the
tags the same way coltrane/entry_detail.html loops through categories.

Similarly, the category and tag templates are easy to set up at this point. They just need to
extend the correct template for the part of the site they represent and use the correct fields
from the Category and Tag models, respectively (though remember that the detail view of cate-
gories and tags will actually return lists of Entry or Link objects for a particular Category or
Tag). Full examples can be found in the sample code available from the Apress web site for this
book.

Extending the Template System with Custom Tags
Right now, the only thing in the sidebar of your blog will be the list of navigation links and the
short “What is this?” blurb for each page. While this is simple and usable, it would be nice to
emulate what a lot of popular prebuilt blogging packages do and also display a list of, say,
recent entries and recent links farther down in the sidebar so that visitors can quickly find
fresh content.

But that poses a dilemma: it seems like you’d need to go back and rewrite every one of
your views to also query for, say, the latest five entries and the latest five links, and then make
them available to the template. That would be awfully cumbersome and repetitive, and it
would get even worse if you ever wanted to change the number of recent items displayed or
add new types of content to your blog. Once again, it feels like Django should provide some
easy way to handle this without lots of repetitive code.

And it does. In fact, Django provides two easy ways to do this. One is a mechanism for
writing a function—called a context processor—which can add extra variables to any tem-
plate’s context. The other way is to extend Django’s template system to add the ability to fetch
recent content using a custom template tag. Using this, you could simply use the appropriate
tag in the base.html template, and all the other templates would have that automatic courtesy
of template inheritance.

For this situation, let’s go ahead and use a custom template tag to get a feel for how you
can extend Django’s template system when you need to add new features to it.

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG 111

ADMONITION: SEPARATION OF CONCERNS

What you’re about to do—write a template tag that retrieves items from the database for display—may feel
strange, considering how cleanly Django separates major functions like data retrieval and HTML display from
each other. However, it’s not always a bad thing to blur that distinction a bit.

In this case, you want to retrieve these items solely for presentational purposes. You also want them to
appear everywhere, so writing the functionality as an extension of Django’s template system—which handles
presentation of content—and taking advantage of template inheritance is a good way to handle it. Not every-
thing is best done as an extension to the template system, though, so be careful to evaluate decisions like
this one on a case-by-case basis as you’re developing.

How a Django Template Works
Before you can dive into writing your own custom extensions to the template system, it’s
important to understand the actual mechanism behind Django’s template system. Knowing
how things work “under the hood” makes the process of writing custom template functional-
ity much simpler.

The process Django goes through when loading a template works—roughly—like this:

1. Read the actual template contents: Most often this means reading out of a template
file on disk, but that’s not always the case. Django can work with anything that hands
over a string containing the contents you want it to treat as a template.

2. Parse through looking for tags and variables: Each tag in the template, including all of
Django’s built-in tags, will correspond to a particular Python function defined some-
where (inside django/template/defaulttags.py in the case of the built-in tags). You’ll
see in a moment how to tell Django that a particular tag maps to a particular function.
Typically this is referred to as the tag’s compilation function because it’s called while
Django is compiling a list of the eventual template contents.

3. For each tag, call the appropriate function, passing in two arguments: One is the
parsing class that is reading the template (useful for doing tricky things with the way
the template gets processed), and the other is a string containing the contents of the
tag. So, for example, the tag {% if foo %} results in a function (called do_if(), in
Django’s default tag library) being passed an object that holds the tag contents “if foo.”

4. Make a note of the return value of the Python function called for each tag: Each
function is required to return an instance of a special class—django.template.Node—
or a subclass of it, and choosing an appropriate Node subclass based on the particular
tag is primarily what these functions do.

The result is an instance of the class django.template.Template, and it contains a list of
Node instances (or instances of Node subclasses). This is the actual “thing” that will be rendered
to produce the output. Each Node is required to have a method named render(), which
accepts a copy of the current template context (the dictionary of variables available to the
template) and returns a string. The output of the template comes from concatenating those
strings together.

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG112

A Simple Custom Tag
This can be a bit tricky to get the hang of at first, so let’s start simply. You’ll write a tag that
fetches the latest five entries and puts them into a template variable named latest_entries.

To start with, you’ll need to create a place for this tag’s code to live. In the coltrane appli-
cation directory, add a new directory called templatetags. In that, create two empty files:
__init__.py (remember, this is necessary to tell Python that a directory contains loadable
Python code) and coltrane_tags.py, which will be the file where your library of custom tem-
plate tags lives. Next, inside coltrane_tags.py, add a couple of import statements at the top:

from django import template
from coltrane.models import Entry

Writing the Compilation Function
The custom tag is going to be called get_latest_entries—so that in templates you’ll eventu-
ally be able to do {% get_latest_entries %}—but its compilation function (and its Node class)
can be called by any name you like. It’s generally a good idea to give the function a meaningful
name for the tag it goes with, though, so call it do_latest_entries():

def do_latest_entries(parser, token):

The two arguments to this function are the template parser (which you won’t be using
here, but in a later chapter you’ll write a tag that uses the template parser to implement more
advanced features) and a token. This is an object representing part of the template that’s being
parsed. You also won’t need that just yet, but later in this chapter when you expand this tag’s
functionality, you’ll use it to work out the arguments passed to the tag from the template.

The only thing this function is required to do is return an instance of django.template.
Node, or a subclass of Node. You’ll define the Node for this tag in a moment, but it’s going to be
called LatestEntriesNode, so go ahead and fill that in:

def do_latest_entries(parser, token):
return LatestEntriesNode()

Writing the Node
Next, you need to write the LatestEntriesNode class. This must be a subclass of django.
template.Node, and it must have a method named render(). Django places two requirements
on this method:

• It must accept a template context—the dictionary of variables available to the
template—as an argument.

• It must return a string, even if the string doesn’t contain anything. For tags that produce
their output directly, the returned string is how their output gets into the final template
output.

So you can start writing your Node as follows:

class LatestEntriesNode(template.Node):
def render(self, context):

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG 113

This tag will simply fetch the five latest entries and add them to the context as the variable
latest_entries, so it doesn’t have any direct output. All it does is add the new item to the con-
text dictionary, then return an empty string (even when a tag doesn’t directly output anything,
the render() method of its Node must return a string):

class LatestEntriesNode(template.Node):
def render(self, context):

context['latest_entries'] = Entry.live.all()[:5]
return ''

Registering the New Tag
Finally, you need to tell Django that the compilation function should be used when the {%
get_latest_entries %} tag is encountered in a template. To do this, you create a new library
of template tags and register your function with it, like so:

register = template.Library()
register.tag('get_latest_entries', do_latest_entries)

The syntax for this is simple. Once you create a new Library, you just call its tag()
method and pass in the name you want to give your tag and the function that will handle it.

Here’s what the full coltrane_tags.py file looks like now:

from django import template
from coltrane.models import Entry

def do_latest_entries(parser, token):
return LatestEntriesNode()

class LatestEntriesNode(template.Node):
def render(self, context):

context['latest_entries'] = Entry.live.all()[:5]
return ''

register = template.Library()
register.tag('get_latest_entries', do_latest_entries)

Using the New Tag
Now your new tag is ready for use. Open up the base.html template and go to the sidebar por-
tion of it, which still looks like this:

<div id="sidebar">
<h2>Navigation</h2>
<ul id="main-nav">
<li id="main-nav-entries">
Entries

<li id="main-nav-links">

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG114

Links

<li id="main-nav-categories">
Categories

<li id="main-nav-tags">
Tags

<h2>What is this?</h2>
{% block whatis %}
{% endblock %}

</div>

You’re going to add the list of latest entries just below the “What is this?” block, and you
do it like so:

{% load coltrane_tags %}
<h2>Latest entries in the weblog</h2>

{% get_latest_entries %}
{% for entry in latest_entries %}

{{ entry.title }},
posted {{ entry.pub_date|timesince }} ago.

{% endfor %}

Here’s what’s going on:

• The {% load coltrane_tags %} tag tells Django you want to load a custom template tag
library named coltrane_tags. When it sees this, Django will go looking through all of
your installed applications for a templatetags directory containing a file named
coltrane_tags.py, and it will load any tags defined there.

• Once your tag library has been loaded, the {% get_latest_entries %} tag can be called,
and it creates the new template variable, latest_entries, containing the five latest
entries.

• Then you just loop through latest_entries using the {% for %} tag, displaying a link to
each and showing when it was posted. You’re using a new filter here, called timesince,
which is built in to Django and formats a date and time according to how long ago it
was. The result (with the word “ago” added afterward) will be something like “3 days,
10 hours ago,” and will give a visitor an idea of how recently the blog has been updated.

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG 115

Writing a More Flexible Tag with Arguments
Now, you also want to show the latest links posted in the blog. You could do this by writing a
new {% get_latest_links %} tag and having it add a latest_links variable to the template
context. However, that’s the start of a long and tedious path of writing a new tag every time
you add a new type of content to your site, so it would be better to turn your existing {%
get_latest_entries %} tag into a slightly more generic {% get_latest_content %} tag, which
can fetch any of several types of content.

And while you’re at it, it would be nice to add a bit more flexibility to the tag by letting it
take arguments to specify how many items to retrieve, as well as the name of the variable to
put them in. That way, you could have several lists of recent content that don’t trample all over
each other’s variables. What you’re going to end up with is a tag that works like this:

{% get_latest_content coltrane.link 5 as latest_links %}

which will, as the syntax indicates, fetch the five most recently published Link objects in the
coltrane application and place them in a template variable named latest_links.

Writing the Compilation Function
You can start out the same as before, by defining a compilation function for your tag:

def do_latest_content(parser, token):

But now you’ll need to read some arguments out of the tag. The full contents will be in
token.contents and will be a string of the form get_latest_content coltrane.link 5 as
latest_links. So you can use Python’s built-in string-splitting function, which defaults to
splitting on spaces, to turn this into a list of arguments:

def do_latest_content(parser, token):
bits = token.contents.split()

Now the variable bits contains a list that looks like ["get_latest_content",
"coltrane.link", "5", "as", "latest_links"]. If the tag was called properly (that’s five
items in all), you can check this and raise a template syntax error if you don’t find the right
number of arguments:

def do_latest_content(parser, token):
bits = token.contents.split()
if len(bits) != 5:

raise template.TemplateSyntaxError("'get_latest_content'➥

tag takes exactly four arguments")

This ensures that you never try to render a malformed use of the tag. Note that it says
“four arguments,” not “five arguments.” Though bits has five items in it, the first item is the
name the tag was called with, not an argument. (Sometimes it’s useful to write a single compi-
lation function and register multiple times under different names, allowing it to represent a
family of similar tags and tell them apart by the tag name it receives.)

Next you want to return a Node. It will be called LatestContentNode, and you’ll need to pass
some information to it: the model to retrieve content from, the number of items to retrieve,

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG116

and the variable name to store the results in. When you write LatestContentNode in a moment,
you’ll set up its constructor to accept this information:

def do_latest_content(parser, token):
bits = token.contents.split()
if len(bits) != 5:

raise template.TemplateSyntaxError("'get_latest_content'➥

tag takes exactly four arguments")
return LatestContentNode(bits[1], bits[2], bits[4])

Note that because Python lists have indexes starting at 0, the model name—though it’s
the second item in bits—is bits[1], the number of items is bits[2], and so on.

ADMONITION: HOW MUCH ERROR CHECKING IS TOO MUCH?

You could also add a test to ensure that the fourth item in bits is the word “as,” and raise a syntax error if
you don’t see it. But in this case, it’s okay not to. For a simple tag like this, just checking the number of argu-
ments is usually fine, and checking for the “as” would just add more code that probably won’t be needed. For
more complex tags, however, it’s a good idea to write your compilation function to ensure the tag was used
properly before trying to return anything from it.

Determining the Model to Retrieve Content From
In the original {% get_latest_entries %} tag, you simply imported the Entry model and refer-
enced it directly. Your new tag, however, is going to get an argument like coltrane.link or
coltrane.entry, and so you will need to import the correct model class dynamically.

Python provides a way to do this (through a special built-in function named
__import__(), which takes strings as arguments), but loading a model class dynamically is a
common enough need that Django provides a helper function to handle it more concisely. The
function is django.db.models.get_model(), and it takes two arguments:

• The name of the application the model is defined in, as a string.

• The name of the model class, as a string.

It’s customary to make both of these strings entirely lowercase because Django maintains
a registry of installed models with the names normalized to lowercase. If you want to, you can
pass mixed-case names to get_model(), but since they’ll just be lowercased anyway, it’s often
easier to start with them that way.

To see how get_model() works, go to your project directory and run the command python
manage.py shell. This will start a Python interpreter. In it, type the following:

>>> from django.db.models import get_model
>>> entry_model = get_model('coltrane', 'entry')

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG 117

The get_model() function will go and retrieve the Entry model from the coltrane applica-
tion and assign it to the variable entry_model. From there, you can query against it just the
same as if you’d imported it normally. To verify this, type in the following:

>>> entry_model.live.all()[:5]

You’ll see that it returns the latest five live entries.
Let’s go ahead and change the compilation function to use this and retrieve the model

class. One obvious way to do this would be as follows:

from django.db.models import get_model

def do_latest_content(parser, token):
bits = token.contents.split()
if len(bits) != 5:

raise template.TemplateSyntaxError("'get_latest_content'➥

tag takes exactly four arguments")
model_args = bits[1].split('.')
model = get_model(model_args[0], model_args[1])
return LatestContentNode(model, bits[2], bits[4])

This has a couple of problems, though:

• If the first argument isn’t an application name/model name pair separated by a dot (.),
or if it has too few or too many parts, this might get the wrong model or no model at all.

• If the arguments you pass to get_model() don’t actually correspond to any model class,
it will return the value None, and that will trip up the LatestContentNode when it tries to
retrieve the content.

So you need a little bit of error checking. You want to verify the following:

• When split on the dot (.) character, the first argument becomes a list of exactly two
items.

• That these items, when passed to get_model(), do indeed return a model class.

You can do that in only a few lines of code:

model_args = bits[1].split('.')
if len(model_args) != 2:

raise template.TemplateSyntaxError("First argument to➥

'get_latest_content' must be an 'application name'.'model name' string")
model = get_model(*model_args)
if model is None:

raise template.TemplateSyntaxError("'get_latest_content'➥

tag got an invalid model: %s" % bits[1])

If you’re wondering about this line:

model = get_model(*args)

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG118

remember that the asterisk (*) is special Python syntax for taking a list (the result of calling
split()) and turning in a set of arguments to a function. Here’s the finished compilation
function:

def do_latest_content(parser, token):
bits = token.contents.split()
if len(bits) != 5:

raise template.TemplateSyntaxError("'get_latest_content'➥

tag takes exactly four arguments")
model_args = bits[1].split('.')
if len(model_args) != 2:

raise template.TemplateSyntaxError("First argument to➥

'get_latest_content' must be an 'application name'.'model name' string")
model = get_model(*model_args)
if model is None:

raise template.TemplateSyntaxError("'get_latest_content'➥

tag got an invalid model: %s" % bits[1])
return LatestContentNode(model, bits[2], bits[4])

Writing the LatestContentNode
You already know that LatestContentNode needs to accept three arguments in its constructor:

• The model to retrieve items from

• The number of items to retrieve

• The name of a variable to store the items in

So you can start by writing its constructor (remember that a Python object’s constructor is
always called __init__()) and simply storing those arguments as instance variables:

class LatestContentNode(template.Node):
def __init__(self, model, num, varname):

self.model = model
self.num = int(num)
self.varname = varname

Notice that you force num to be an int here. All the arguments to the tag came in as strings,
so before you can use this to control the number of items to retrieve, it needs to be converted
to an actual number. Here’s a simple way the render() method could be written:

def render(self, context):
context[self.varname] = self.model.objects.all()[:self.num]
return ''

At first, this looks fine, but it’s got a hidden problem. When you call it like so:

{% get_latest_content coltrane.entry 5 as latest_entries %}

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG 119

the query it performs will be the equivalent of

Entry.objects.all()[:5]

which isn’t what you want. This will return any entry, including entries that aren’t meant to be
publicly displayed. What you want is for it to do the equivalent of the following:

Entry.live.all()[:5]

You could write special-case code to see when you’re working with the Entry model, but
that’s not good practice. If you later need to use this tag on other models with similar needs,
you’ll have to keep adding new pieces of special-case code.

The solution is to ask Django to use the model’s default manager. The first manager
defined in a model class is given special status. It becomes the default manager for that model,
in addition to the name it was defined with. It will also be available as the attribute
_default_manager, so you can actually write this as:

def render(self, context):
context[self.varname] = self.model._default_manager.all()[:self.num]
return ''

Because the live manager was defined first in the Entry model, this will do the right
thing.

ADMONITION: USING DEFAULT MANAGERS

Whenever you don’t know in advance which model you’ll be working with (as in this case, and in most cases
when you’re using get_model()), it’s a good idea to use _default_manager. When a model has multiple
managers, or defines a single custom manager that’s not named objects, trying to query through the
objects attribute can be dangerous. That might not be the manager queries should go through (as in the
case of Entry with its special live manager), and, in fact, objects might not even exist. Remember that
when a model has a custom manager, Django doesn’t automatically set up the objects manager on it, so
trying to access objects may raise an exception.

Registering and Using the New Tag
Now you can simply register your new tag, and it’s ready to go. The final coltrane_tags.py file
looks like this:

from django.db.models import get_model
from django import template

def do_latest_content(parser, token):
bits = token.contents.split()
if len(bits) != 5:

raise template.TemplateSyntaxError("'get_latest_content'➥

tag takes exactly four arguments")

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG120

model_args = bits[1].split('.')
if len(model_args) != 2:

raise template.TemplateSyntaxError("First argument to➥

'get_latest_content' must be an 'application name'.'model name' string")
model = get_model(*model_args)
if model is None:

raise template.TemplateSyntaxError("'get_latest_content'➥

tag got an invalid model: %s" % bits[1])
return LatestContentNode(model, bits[2], bits[4])

class LatestContentNode(template.Node):
def __init__(self, model, num, varname):

self.model = model
self.num = int(num)
self.varname = varname

def render(self, context):
context[self.varname] = self.model._default_manager.all()[:self.num]
return ''

register = template.Library()
register.tag('get_latest_content', do_latest_content)

And so you can rewrite the sidebar in the base.html template, like so:

<div id="sidebar">
<h2>Navigation</h2>
<ul id="main-nav">
<li id="main-nav-entries">
Entries

<li id="main-nav-links">
Links

<li id="main-nav-categories">
Categories

<li id="main-nav-tags">
Tags

<h2>What is this?</h2>
{% block whatis %}
{% endblock %}
{% load coltrane_tags %}
<h2>Latest entries in the weblog</h2>

{% get_latest_content coltrane.entry 5 as latest_entries %}

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG 121

{% for entry in latest_entries %}

{{ entry.title }},
posted {{ entry.pub_date|timesince }} ago.

{% endfor %}

<h2>Latest links in the weblog</h2>

{% get_latest_content coltrane.link 5 as latest_links %}
{% for link in latest_links %}

{{ link.title }},
posted {{ link.pub_date|timesince }} ago.

{% endfor %}

</div>

This will ensure that every page has the list of the latest five entries and links, and it offers
two big advantages over the original {% get_latest_entries %} tag:

• When you add new types of content to the blog (in the next chapter you’ll add com-
ments), you don’t have to write a new tag. You can just reuse get_latest_content with
different arguments.

• If you decide to change the number of entries or links to show, or the variables
you want to use for them, it’s just a matter of sending different arguments to the
{% get_latest_content %} tag. You won’t have to rewrite the tag to change this.

Looking Ahead
In the next chapter, you’ll wrap up the weblog by adding comments, moderation, and RSS
feeds. For now, though, feel free to play with the template system and get the blog looking
exactly how you want it. A sample style sheet that implements the two-column layout is
included with the sample code for this book, so feel free to try it out. To get Django to serve
this as a plain file, add the following URL pattern in the root URLConf of the project (once
again using the static file-serving view you saw in Chapter 3):

(r'^media/(?P<path>.*)$',
'django.views.static.serve',
{ 'document_root': '/path/to/stylesheet/directory' }),

Simply fill in the path to the directory where the style sheet file is on your computer, and
Django will serve it. (Though note that for production deployment of Django, it’s best not to
have Django serve static files like this.)

CHAPTER 6 ■ TEMPLATES FOR THE WEBLOG122

Finishing the Weblog

Now that you’ve got a solid set of templates and, more important, a solid understanding of
Django’s template system, it’s time to finish up the weblog with the final two features: a com-
ment system with moderation and syndication feeds for entries and links.

Though Django provides applications—django.contrib.comments and django.contrib.
syndication—that handle the basic functionality for both of these features, you’re going to go
beyond that a bit, customizing and extending their features as you go. This will involve a bit of
Python code and a bit of templating, but as you’ll see, it’s nowhere near as much code as you’d
have to write to implement these features from scratch. So let’s dive right in.

Comments and django.contrib.comments
You’ve already seen that django.contrib contains some useful applications. Both the adminis-
trative interface and the authentication system you’re using come from applications in
contrib, as well as the flat pages application you used in your simple CMS. In general, it’s a
good idea to look there before starting to write something on your own. As I write this,
django.contrib contains 17 applications, and there are plans to expand it to include more
open source applications from the Django community. Even if something in contrib doesn’t
do exactly what you need, you’ll often find something you can build on or that can make a
tricky bit of code simpler.

Commenting is no exception to this. The baseline comment system you’re going to build
on is bundled as django.contrib.comments, and it supports either of two styles of commenting.

• Free comments: These can be posted by anyone, regardless of whether they have a user
account on the site.

• Registered comments: These can only be posted by someone who has an account and
is logged in.

For the weblog, you’ll use the free comments system because you want anyone who reads
the blog to be able to leave a comment.

Installing the Comments Application
Installing the comment system is easy. Open up your Django project’s settings file
(settings.py), and add the following line in the INSTALLED_APPS list:

'django.contrib.comments',
123

C H A P T E R 7

Next run python manage.py syncdb, and Django will install its models. If you fire up the
development server and visit the administrative interface, you’ll see a new Comments section
with two items under it, one for each type of comment. The Comment model handles registered
comments, and FreeComment handles free comments.

In the project’s root URLConf file (urls.py), add one new URL pattern:

(r'^comments/', include('django.contrib.comments.urls.comments')),

You’ve seen this pattern several times now, and, in general, this is the hallmark of a well-
built Django application. Installing it shouldn’t involve any more work than the following:

1. Add it to INSTALLED_APPS and run syncdb.

2. Add a new URL pattern to route to its default URLConf.

3. Set up any needed templates.

Writing an application to work this way out of the box is an extremely powerful technique
because it allows even very complex sites to be built quickly out of reusable applications, with
each supplying one particular piece of functionality. Keeping this pattern in mind as you write
your own applications will help you produce high-quality, useful applications. In Chapter 11,
you’ll look at some techniques for building in configurability and flexibility beyond this style
of basic setup.

Basic Setup
To get started with the comments application, you’ll only need to set up two templates, which
will be used to preview a comment before posting it. But before you can preview a comment,
you need to show a form for visitors to fill out. Let’s start with that.

Open up the entry detail template—coltrane/entry_detail.html—and go to the main
content block, which looks like this:

{% block content %}
<h2>{{ object.title }}</h2>
{{ object.body_html|safe }}
{% endblock %}

Go ahead and add a header that will distinguish the comment form:

{% block content %}
<h2>{{ object.title }}</h2>
{{ object.body_html|safe }}

<h2>Post a comment</h2>

{% endblock %}

Now you just need to display the form. The comments system includes a custom template
tag library which, among other things, can do just that. The tag library is called comments, so
you’ll need to load it with the {% load %} tag:

CHAPTER 7 ■ FINISHING THE WEBLOG124

{% block content %}
<h2>{{ object.title }}</h2>
{{ object.body_html|safe }}

<h2>Post a comment</h2>

{% load comments %}

{% endblock %}

Now, the tag you want is called {% free_comment_form %}, and its syntax looks like this:

{% free_comment_form for app_name.model_name object_id %}

In other words, it wants an application name and model name to identify the model the
comment will be attached to—these will be fed into the get_model() function you saw in
Chapter 6—and the id of the specific object it’s going to be attached to, which will be available
in the entry_detail template as the variable {{ object.id }}. So you can fill in the tag like so:

{% block content %}
<h2>{{ object.title }}</h2>
{{ object.body_html|safe }}

<h2>Post a comment</h2>

{% load comments %}

{% free_comment_form for coltrane.entry object.id %}

{% endblock %}

Note that you don’t put the braces around object.id here. The braces, as in {{ object.id
}}, are only used when you want to output the value of the variable. In a template tag, they’re
not needed and, in fact, will cause an error. Template tags can resolve variables on their own
(as you’ll see in Chapter 10 when you write a few tags that do that).

Now, go visit an entry, and you’ll see the comment form show up. But if you fill in a com-
ment and hit the Preview button, you’ll see an ugly error telling you that the preview template
doesn’t exist. Since this will vary from site to site, Django can’t provide it automatically. You
will have to fill it in.

The template it wants is called comments/free_preview.html. So go to the project’s
template directory and create a new comments directory inside it, then place the following
into a template inside of that called free_preview.html:

{% extends "base.html" %}

{% block title %}| Post a comment{% endblock %}

{% block content %}
<h2>Post a comment</h2>

CHAPTER 7 ■ FINISHING THE WEBLOG 125

<p>Here's how your comment will look:</p>

<p>On {{ comment.submit_date|date:"F j, Y" }}, {{ comment.person_name }} said:</p>

{{ comment.comment }}

<form action="/comments/postfree/" method="post">
<dl id="comment-form">
<dt><label for="id_person_name">Your name:</label>
{% if comment_form.person_name.errors %}
{{ comment_form.person_name.errors|join:", " }}
{% endif %}</dt>
<dd>{{ comment_form.person_name }}</dd>
<dt><label for="id_comment">Your Comment:</label>
{% if comment_form.comment.errors %}
{{ comment_form.comment.errors|join:", " }}
{% endif %}</dt>
<dd>{{ comment_form.comment }}
<input type="hidden" name="options" value="{{ options }}" />
<input type="hidden" name="target" value="{{ target }}" />
<input type="hidden" name="gonzo" value="{{ hash }}" />
</dd>

<dd><input type="submit" name="post" value="Post comment" /></dd>
</dl>
</form>
{% endblock %}

The view that handles this (which lives in django.contrib.comments.views, if you’d like to
have a look at it) is concerned with doing two things: letting users preview their comments
and validating the submitted comment to make sure that, for example, all the required fields
are present. The validation routine makes use of Django’s form-handling system, which I’ll
cover in detail a bit later on, but for now you can probably guess what’s going on in that part of
the template. The remainder is simply showing a preview of the comment (each FreeComment
object has fields named submit_date, person_name, and comment, representing the date the
comment was posted, the name of the commenter, and the actual comment text).

It would be nice to have some safe way to let commenters use some basic HTML so that
they can include things like links or text formatting in their comments. But Django’s template
system will automatically escape the contents of the comment in order to prevent malicious
HTML from being displayed.

To solve this, you need to have some way to allow some basic formatting—say, the Mark-
down style of formatting you’re using for the entries and links in the blog—but forbid any raw
HTML from being passed through. The Python Markdown module supports this through a
“safe mode” that will strip out raw HTML but process Markdown syntax normally, so that
seems like an ideal way to solve it. The only question is how to apply it in the templates.

The answer is to use a template filter. Just as Django lets you define custom template tags,
it will let you define custom filters as well. All you would need, then, is a filter that applies
Markdown formatting, in safe mode, to a variable. The code for it would look like this:

CHAPTER 7 ■ FINISHING THE WEBLOG126

from django import template
from markdown import markdown

def safe_markdown(value):
return markdown(value, safe_mode=True)

register = template.Library()
register.filter(safe_markdown)

Note that this is much simpler than defining a custom tag. A filter is simply a function
that gets passed a value and is expected to return another value, which will become part of the
template's rendered output. Registering a filter uses register.filter(), as opposed to the
register.tag() for custom template tags.

But you don’t actually need to write this filter because a set of text-to-HTML formatting
filters is bundled with Django in the django.contrib.markup application. This application
doesn’t provide any models, but it does include a library of custom template filters that know
how to apply common text-to-HTML formatting systems like Markdown.

To use it, you’ll need to do two things. First, add django.contrib.markup to the INSTALLED_
APPS setting of your project. (There’s no need to run manage.py syncdb, since this application
doesn’t provide any models to be installed in the database.) Next, load its library of custom
filters, which is named markup. Here’s how it will look in the template:

{% load markup %}
<h2>Post a comment</h2>

<p>Here's how your comment will look:</p>

<p>On {{ comment.submit_date|date:"F j, Y" }}, {{ comment.person_name }} said:</p>

{{ comment.comment|markdown:"safe" }}

This will apply Markdown formatting, using the safe mode that strips raw HTML, to the
comment, which is precisely what you want.

One more template is required to complete the process. After a comment is successfully
posted, the comment-submission view will issue an HTTP redirect to a second view, which
uses the template comments/posted.html. This template will receive one variable, object,
which is the content object the comment was attached to and which can be used to show a
link back to that object. For example, you might place something like this in your
comments/posted.html template:

<p>Your comment was posted successfully; you can see it by
returning to the
discussion.</p>

CHAPTER 7 ■ FINISHING THE WEBLOG 127

Retrieving Lists of Comments for Display
All you need to do now is retrieve the comments and display them. And just as it provides a
custom template tag for showing the comment form, django.contrib.comments provides a tag
that can handle comment retrieval. The syntax for it looks like this:

{% get_free_comment_list for app_name.model_name object_id as varname %}

So you can make use of it in your entry_detail.html template like so:

<h2>Comments</h2>
{% load markup %}
{% get_free_comment_list for coltrane.entry object.id as comment_list %}

{% for comment in comment_list %}

<p>On {{ comment.submit_date|date:"F j, Y" }},
{{ comment.person_name }} said:</p>

{{ comment.comment|markdown:"safe" }}
{% endfor %}

So the full content block of your entry_detail.html template now looks like this:

{% block content %}
<h2>{{ object.title }}</h2>
{{ object.body_html }}

<h2>Comments</h2>
{% load comments %}
{% load markup %}
{% get_free_comment_list for coltrane.entry object.id as comment_list %}

{% for comment in comment_list %}

<p>On {{ comment.submit_date|date:"F j, Y" }},
{{ comment.person_name }} said:</p>

{{ comment.comment|markdown:"safe" }}
{% endfor %}

<h2>Post a comment</h2>

{% free_comment_form for coltrane.entry object.id %}

{% endblock %}

If you’d like to add a line in the sidebar to show the number of comments on the entry, the
get_free_comment_count tag will retrieve it for you. You might use it like this:

CHAPTER 7 ■ FINISHING THE WEBLOG128

{% load comments %}
{% get_free_comment_count for coltrane.entry object.id as comment_count %}

<p>So far, there are {{ comment_count }}
comment{{ comment_count|pluralize }} on this entry.</p>

ADMONITION: THE SCOPE OF THE {% load %} TAG

Due to the way Django's template inheritance works, a custom tag or filter library loaded using the {% load
%} tag will only be available in the block in which it was loaded. If you need to reuse the same tag library in a
different block, you'll need to load it again.

Comment Moderation
Out of the box, this covers most of what you want for commenting: an easy way to let visitors
post comments, and then pull out a list of the comments that are “attached” to a particular
object. But given the proliferation of comment spam around the Web in recent years, you’re
still going to want some sort of automatic moderation system to screen incoming comments.
For that, you’ll need to write some code.

Both of the comment models in django.contrib.comments define a BooleanField called
is_public, and that’s what a moderation system should use. Now, there are a couple of very
effective ways to filter comment spam:

• Whenever a comment is posted on an entry that’s more than a certain number of days
old (say, 30), automatically mark it nonpublic. The vast majority of comment spam tar-
gets old content, partly because most content is old and partly because it’s less likely to
be noticed by a site administrator.

• Use a statistical spam detection system. Akismet (http://akismet.com/) is the gold
standard for this, with a history of over five billion spam comments to draw on for
analysis. Best of all, they have a web-based API that will estimate whether a comment
is spam or not.

On my personal blog, I get around six thousand spam comments a month. The combina-
tion of these two methods has, so far, prevented all but one or two of them from ever showing
up publicly.

So you want to find some way to hook into the comment-submission system and auto-
matically apply the two filtering methods previously mentioned to set is_public=False on the
new comment whenever it looks like it’ll be spam. There are a couple of obvious ways to do this:

• Just as you’ve defined a custom save() method on some of our own models, you could
go to the comment models in Django and edit them to include a custom save()
method that does the spam filtering.

• You could edit or replace the view that handles the comment submission and put the
spam filtering there.

CHAPTER 7 ■ FINISHING THE WEBLOG 129

But both of these have major drawbacks. Either you’re editing code that comes with
Django (which will make it harder to upgrade down the road and may cause problems with
debugging because you’ll have a nonstandard Django codebase), or you’re duplicating code
Django has already provided in order to add a small modification.

Wouldn’t it be nice if there was a way you could just write some of your own code, and
then hook into Django somehow to make sure it runs at the right moment?

Signals and the Django Dispatcher
As it turns out, there is a way. Django includes a module—django.dispatch—which provides
two things:

• A way for any piece of code in Django, or in one of your own applications, to advertise
the fact that something happened.

• A way for any other piece of code to “listen” for a specific event happening and take
some action in response.

The way the system works is pretty simple. Inside django.dispatch is a module called
dispatcher, which defines several functions, but the two important ones are called send()
and connect(). Here’s how they work:

• django.dispatch.dispatcher.send(): This is used to send a signal— basically just a
Python object that can be identified by the place it was imported from.

• django.dispatch.dispatcher.connect(): This is used to register a function as listening
for a particular signal. When that signal is sent, the function you registered will be
called.

For a simple example, go to the cms project directory, and start a Python interpreter by
typing python manage.py shell. Then type the following:

>>> from coltrane.models import Entry
>>> from django.dispatch import dispatcher
>>> from django.db.models import signals
>>> def print_save_message(sender, instance):
. . . print "An entry was just saved!"
>>> dispatcher.connect(print_save_message, signal=signals.post_save,➥

sender=Entry)

Now, query for an Entry and save it:

>>> e = Entry.objects.all()[0]
>>> e.save()

Your Python interpreter will suddenly print “An entry was just saved!” Here’s what
happened:

CHAPTER 7 ■ FINISHING THE WEBLOG130

1. You imported the dispatcher and a module in django.db.models, which defines some
signals.

2. You wrote a function that prints the message. The arguments it receives—sender and
instance—will end up being the Entry model class (which is going to “send” the signal
you’re listening for) and the specific Entry object being saved. You’re not doing any-
thing with these arguments, but when you build the comment moderation system
you’ll see how they can be used.

3. You registered it using dispatcher.connect(), to be called when the post_save signal is
sent by the Entry model.

4. When the Entry was saved, code within Django—built into the base Model class all your
models inherit from—used dispatcher.send() to send the post_save signal.

5. The dispatcher called your custom function.

Django defines about a dozen signals you can use immediately, and it’s easy to define and
use your own as well. There are also some more-complex tricks you can do with the dis-
patcher, but what you’ve seen so far is all you’ll actually need to build an effective comment
moderator.

Building the Automatic Comment Moderator
To build your comment moderation system, you’ll write a function that knows how to look at
an incoming comment and figure out whether it’s spam. Then you’ll use the dispatcher to
ensure that function is called each time a new comment is about to be saved. Just as you used
the post_save signal in the previous example, there’s a pre_save signal you can use to run code
before an object is saved.

The first thing you want to do when you get a new comment is look at the entry it’s being
posted to. If that entry is more than, say, 30 days old, you’ll just set its is_public field to False
and not bother with any further checks. This is where the instance argument to your custom
function comes into play. It will be the new comment object that’s about to be saved, and from
that you can get at the entry it’s being posted on. Here’s what the code looks like:

import datetime

def moderate_comment(sender, instance):
if not instance.id:

entry = instance.get_content_object()
delta = datetime.datetime.now() - entry.pub_date
if delta.days > 30:

instance.is_public = False

So far, this function is pretty straightforward. You only check things if the comment—
which will be the object in the instance argument—doesn’t yet have an id, meaning it hasn’t
been saved to the database. If it does have an id, presumably it’s already been checked. Check-
ing it again would make it hard for a site administrator to ever manually approve a comment,
since the comment would keep going through this process, being marked nonpublic on
each save.

CHAPTER 7 ■ FINISHING THE WEBLOG 131

First you use the instance argument to find the entry the comment is being posted on.
Both of Django’s comment models define a method called get_content_object(), which
returns the object the comment pertains to.

Next you subtract the entry’s pub_date from the current date and time. Python’s datetime
class is set up so that this will work, and the result is an instance of a class called timedelta,
which has attributes representing the number of days, hours, and so on between the two
datetime objects involved.

Next you check the days attribute on that timedelta object. If it’s greater than 30, you set
the new comment’s is_public field to False.

At this point you could already hook up the function, and it would do a good job of pre-
venting spam:

from django.contrib.comments.models import FreeComment
from django.dispatch import dispatcher
from django.db.models import signals

dispatcher.connect(moderate_comment, signal=signals.pre_save,
sender=FreeComment)

Adding Akismet Support
Now let’s add in the second layer of spam prevention: statistical spam analysis by the Akismet
web service. The first thing you’ll need is an Akismet API key—all access to Akismet’s service
requires this key. Luckily, it’s free for personal, noncommercial use. Just follow the instructions
on the Akismet web site (http://akismet.com/personal/) to get a key. Once you’ve got it, open
up the Django settings file for the cms project and add the following line to it:

AKISMET_API_KEY = 'your API key goes here'

By making this a custom setting, you’ll be able to reuse the Akismet spam filtering on
other sites, even if they have different API keys.

Akismet is a web-based service. You send information about a comment to the service
using an HTTP request, and it sends back an HTTP response telling you whether Akismet
thinks that comment is spam. You could build up the code necessary to do this, but—as you’ll
often find when working with Python—someone else has already done it and made the code
available for free.

In this case, it’s a module called akismet, which is available from the author, Michael
Foord, at his web site: www.voidspace.org.uk/python/modules.shtml#akismet. Go ahead and
download and unpack it (it should come in a .zip file). This will give you a file named
akismet.py that you can put on your Python import path (ideally, in the same location as
the coltrane directory that holds the weblog application).

The akismet module includes a class called Akismet that handles the API. This class has
two methods you’ll be using: one called verify_key(), which ensures you’re using a valid API
key, and one called comment_check(), which submits a comment to Akismet and returns True if
Akismet thinks the comment is spam.

So the first thing you’ll need to do is import the Akismet class:

from akismet import Akismet

CHAPTER 7 ■ FINISHING THE WEBLOG132

The Akismet API requires both the API key you’ve been assigned and the address of the
site you’re submitting the comment from. You could hard-code the URL of your site in here,
but that would hurt the reusability of the code. A better option is to use Django’s bundled sites
framework (it lives in django.contrib.sites), which provides a model that represents a partic-
ular web site and knows which site is currently active.

You’ll recall that back in Chapter 2, when you set up the simple CMS, you edited a Site
object so it would “know” where you were running the development server. Whenever you’re
running with this database and settings file, you can get that Site object with the following:

from django.contrib.sites.models import Site
current_site = Site.objects.get_current()

This works because the Site model has a custom manager that defines the get_current()
method. The Site object it returns has a field called domain, which you can use to fill in the
information Akismet wants. This information is the keyword argument blog_url when creat-
ing an instance of the API (along with the API key, which comes from your settings file and is
the keyword argument key):

from django.conf import settings
from django.contrib.sites.models import Site

akismet_api = Akismet(key=settings.AKISMET_API_KEY,
blog_url="http:/%s/" %➥

Site.objects.get_current().domain)

Then you can check your API key with the verify_key() method and, if it’s valid, submit a
comment for analysis with the comment_check() method. The comment_check() method is
going to expect three arguments:

• The text of the comment to check.

• Some additional “metadata” about the comment, in a dictionary.

• A boolean (True or False) argument telling it whether to try to work out additional
metadata on its own.

The text of the comment is easy enough to get, since it’s a field on the comment itself. The
dictionary of metadata needs to have at least four values in it, even if some of them are blank
(because you don’t necessarily know what they are). These values are the type of comment
(which, for simple uses like this, is simply the string comment), the HTTP Referer header value,
the IP address from which the comment was sent (also a field on the comment model), and the
HTTP User-Agent of the commenter. Finally, you’ll tell the akismet module to go ahead and
work out any additional metadata it can find. More information means better accuracy, espe-
cially since the akismet module can, under some server setups, find some useful information
automatically. The code looks like this:

from django.utils.encoding import smart_str

if akismet_api.verify_key():
akismet_data = { 'comment_type': 'comment',

'referrer': '',

CHAPTER 7 ■ FINISHING THE WEBLOG 133

'user_ip': instance.ip_address,
'user-agent': '' }

if akismet_api.comment_check(smart_str(instance.comment),
akismet_data,
build_data=True):

instance.is_public = False

Remember that Django uses Unicode strings everywhere, so whenever you use an exter-
nal API, you should convert Unicode strings to bytestrings by using the helper function
django.utils.encoding.smart_str().

And note that since you don’t know what the HTTP Referer and User-Agent headers are—
that information is only available inside the view function that processes the submission,
since it has access to the HTTP request—you simply leave them as empty strings.

Once you put it all together, the complete comment-moderation function, with both age-
based and statistical Akismet filtering, looks like this:

import datetime
from akismet import Akismet
from django.conf import settings
from django.contrib.comments.models import FreeComment
from django.contrib.sites.models import Site
from django.db.models import signals
from django.dispatch import dispatcher
from django.utils.encoding import smart_str

def moderate_comment(sender, instance):
if not instance.id:

entry = instance.get_content_object()
delta = datetime.datetime.now() - entry.pub_date
if delta.days > 30:

instance.is_public = False
else:

akismet_api = Akismet(key=settings.AKISMET_API_KEY,
blog_url="http:/%s/" %➥

Site.objects.get_current().domain)
if akismet_api.verify_key():

akismet_data = { 'comment_type': 'comment',
'referrer': '',
'user_ip': instance.ip_address,
'user-agent': '' }

if akismet_api.comment_check(smart_str(instance.comment),
akismet_data,
build_data=True):

instance.is_public = False

dispatcher.connect(moderate_comment,
signal=signals.pre_save,
sender=FreeComment)

CHAPTER 7 ■ FINISHING THE WEBLOG134

The best place to put this is near the bottom of coltrane/models.py so that the
dispatcher.connect() line will be read and executed when the weblog’s models are imported.
This also does away with the need for at least one of the imports—the import datetime line—
because it’s already been imported in that file.

ADMONITION: IMPORT PATHS AND MULTIPLE IMPORTS OF A SINGLE MODULE

When you import a Python module for the first time, all of the code inside it is parsed and executed. That's
why the dispatcher.connect() line will be run whenever the weblog's models are first imported. But this
opens up a subtle potential bug: Python does this once for each unique import path used to carry out the
import. So, for example, if you were importing the search-oriented models you wrote for the CMS back in
Chapter 3, the code in cms/search/models.py would be evaluated once if you did the import like this:

from cms.search import models

And it would be evaluated again if you later did another import like this:

from search import models

Django's manage.py utility changes your Python import path for convenience, and in so doing, makes
it so that both of the preceding lines will work. So it's not unusual that a project ends up having imports in
both forms like the ones shown. Unfortunately, this means that if you have a piece of code you want to run
only once—like the dispatcher.connect() line, since you only want that function to register once—it
will instead be run once for each different way the module gets imported.

It's best to pick a single style of import and use it consistently. As a general rule, I typically always stick
to the way the application is listed in my INSTALLED_APPS setting. For example, if I have cms.search in
INSTALLED_APPS, I always do the import as from cms.search import models.

E-mail Notification of Comments
A lot of weblogging and CMS systems that allow commenting also include a feature that auto-
matically notifies site administrators whenever a new comment is posted. This is useful
because it lets them keep up with active discussions, and also lets them spot any problems—a
troublemaking commenter, arguments that get out of hand, or just the occasional bit of spam
that slips through the filter. Since you’ve seen how easy it is to use Django’s dispatcher to add
extra functionality when a comment is posted, let’s go ahead and add e-mail notifications as a
finishing touch.

Sending e-mail from within Django is fairly easy to do, and breaks down into a few simple
steps:

1. Fill in, at a minimum, the settings EMAIL_HOST and EMAIL_PORT in the Django settings
file. These will be used to determine the e-mail (SMTP) server Django connects to in
order to send mail. If your mail server requires a username and password to send mail,
fill in EMAIL_HOST_USER and EMAIL_HOST_PASSWORD as well. If your mail server requires a
secure TLS connection, set EMAIL_USE_TLS to True.

CHAPTER 7 ■ FINISHING THE WEBLOG 135

2. Fill in the setting DEFAULT_FROM_EMAIL to be the default From address used for auto-
mated e-mail sending.

3. Import an e-mail sending function from django.core.mail and call it. Most often you’ll
use django.core.mail.send_mail(), which takes a subject, message, From address, and
list of recipients, in that order.

ADMONITION: VERIFYING E-MAIL–RELATED SETTINGS

Typically, your hosting provider or your Internet service provider (depending on who provides your e-mail
service) will be able to give you the correct values to fill in for settings like EMAIL_HOST. To double-check
them, you can use django.core.send_mail() manually in a Python interpreter (launched with python
manage.py shell in your project directory) to send yourself a test message. If the settings are correct,
you'll receive an e-mail. If anything goes wrong, Python will report the error message to you in the inter-
preter.

If you'd like to suppress the reporting of errors, you can pass the keyword argument fail_
silently=True to any of Django's mail-sending functions. Keep in mind, however, that this will completely
silence errors during the sending of the e-mail, which means you'll have no way of knowing whether any
given message was sent successfully.

Now, you could use send_mail() and hard-code one or more recipients for comment noti-
fications. But once again, this would hurt the reusability of your code. Two different sites using
this application might want two different sets of people receiving comment notifications.

Fortunately, there’s an easy solution. In the Django settings file are two settings—ADMINS
and MANAGERS—that exist for dealing with situations like this. The ADMINS setting should be a
list of programmers or other technical people who should receive notifications about prob-
lems with your site. When you deploy in production, Django will automatically e-mail
debugging information to the people listed in ADMINS whenever a server error occurs. The
MANAGERS setting, on the other hand, should be a list of people who aren’t necessarily program-
mers, but who are involved in the management of the site. Each of these settings expects a
format like the following:

MANAGERS = (('Alice Jones', 'alice@example.com'),
('Bob Smith', 'bob@example.com'))

In other words, it’s a tuple, or list of tuples, where each tuple contains a name and an
e-mail address. When these are filled in, two functions in django.core.mail—mail_admins()
and mail_managers()—can be used as a shortcut to send an e-mail to those people.

So to add comment notification you can do something like the following:

from django.core.mail import mail_managers
email_body = "%s posted a new comment on the entry '%s'."
mail_managers("New comment posted",

email_body % (instance.person_name,
instance.get_content_object()))

CHAPTER 7 ■ FINISHING THE WEBLOG136

This will send an e-mail to everyone listed in the MANAGERS setting, notifying them of the
new comment.

And so you have the final version of your function:

from akismet import Akismet
from django.conf import settings
from django.contrib.comments.models import FreeComment
from django.contrib.sites.models import Site
from django.core.mail import mail_managers
from django.db.models import signals
from django.dispatch import dispatcher
from django.utils.encoding import smart_str

def moderate_comment(sender, instance):
if not instance.id:

entry = instance.get_content_object()
delta = datetime.datetime.now() - entry.pub_date
if delta.days > 30:

instance.is_public = False
else:

akismet_api = Akismet(key=settings.AKISMET_API_KEY,
blog_url="http:/%s/" %➥

Site.objects.get_current().domain)
if akismet_api.verify_key():

akismet_data = { 'comment_type': 'comment',
'referrer': '',
'user_ip': instance.ip_address,
'user-agent': '' }

if akismet_api.comment_check(smart_str(instance.comment),
akismet_data,
build_data=True):

instance.is_public = False
email_body = "%s posted a new comment on the entry '%s'."
mail_managers("New comment posted",

email_body % (instance.person_name,
instance.get_content_object()))

dispatcher.connect(moderate_comment,
signal=signals.pre_save,
sender=FreeComment)

Dealing with Moderated Comments in Public-Facing Templates
The only thing left is to work out is how to deal with moderated comments in your templates.
The tag that fetches the list of comments doesn’t take the is_public field into account, and so
it always fetches all the comments for a particular item, even if some of them have is_public

CHAPTER 7 ■ FINISHING THE WEBLOG 137

set to False. The easiest way to deal with this is simply to check whether a comment is public
before displaying it. Where you currently have this:

<h2>Comments</h2>
{% load markup %}
{% get_free_comment_list for coltrane.entry object.id as comment_list %}

{% for comment in comment_list %}

<p>On {{ comment.submit_date|date:"F j, Y" }}, {{
comment.person_name }} said:</p>

{{ comment.comment|markdown:"safe" }}
{% endfor %}

you can change it to this:

<h2>Comments</h2>
{% load markup %}
{% get_free_comment_list for coltrane.entry object.id as comment_list %}

{% for comment in comment_list %}
{% if comment.is_public %}

<p>On {{ comment.submit_date|date:"F j, Y" }}, {{
comment.person_name }} said:</p>

{{ comment.comment|markdown:"safe" }}
{% endif %}
{% endfor %}

And now any comments that aren’t public won’t be displayed.
It’s also possible, if you’re feeling adventurous, to write your own tag that mimics the

behavior of {% get_free_comment_list %} but only retrieves comments with is_public set to
True. If you’d like to study a ready-made version, I maintain an open source Django applica-
tion, called comment_utils, which provides this and a few other comment-related features. You
can browse the code or download it from http://code.google.com/p/django-comment-utils/.

Adding Feeds
The last features you want for your weblog is the ability to have RSS or Atom feeds of your
entries and links. You also want to have custom feeds that handle, for example, entries in a
specific category. Doing this from scratch—by writing view functions that retrieve a list of
entries and render a template that creates the appropriate XML instead of an HTML page—
wouldn’t be too terribly hard. But because this is a common need for web sites, Django again
provides some help to automate the process via the bundled application django.contrib.
syndication. At its core, django.contrib.syndication provides two things:

CHAPTER 7 ■ FINISHING THE WEBLOG138

• A set of classes that represent feeds and that can be subclassed for easy customization

• A view that knows how to work with these classes to generate and serve the appropriate
XML

To see how it works, let’s start by setting up an Atom feed for the latest entries posted to
the weblog.

LatestEntriesFeed
Go into the coltrane directory and create a new empty file, called feeds.py. At the top, add the
following lines:

from django.utils.feedgenerator import Atom1Feed
from django.contrib.sites.models import Site
from django.contrib.syndication.feeds import Feed
from coltrane.models import Entry

current_site = Site.objects.get_current()

Now you can start writing a feed class for the latest entries. Call it LatestEntriesFeed. It
will be a subclass of the django.contrib.syndication.feeds.Feed class you’re importing here.

First you need to fill in some required metadata. This is going to be an Atom feed, so sev-
eral elements are required. (RSS feeds require less metadata, but it’s a good idea to include this
information anyway, since additional metadata is more useful for people who use feeds.)
Here’s an example:

class LatestEntriesFeed(Feed):
author_name = "Bob Smith"
copyright = "http://%s/about/copyright/" % current_site.domain
description = "Latest entries posted to %s" % current_site.name
feed_type = Atom1Feed
item_copyright = "http://%s/about/copyright/" % current_site.domain
item_author_name = "Bob Smith"
item_author_link = "http://%s/" % current_site.domain
link = "/feeds/entries/"
title = "%s: Latest entries" % current_site.name

Go ahead and fill in appropriate information for your own name and relevant metadata.
Note that while most of the items here will automatically vary according to the current site,
I’ve hard-coded values into the two fields for authors and the link field.

For reusability across a wide variety of sites, this feed class can be subclassed to override
only those values; or if you have a function that can determine the correct value for a given
site, you can fill that in. (For example, you might use a reverse URL lookup to get the link
field.) For a complete list of these fields and what you’re allowed to put in each one, check the
full documentation for django.contrib.syndication, which is online at www.djangoproject.
com/documentation/syndication_feeds/.

CHAPTER 7 ■ FINISHING THE WEBLOG 139

Now you need to tell the feed how to find the items it’s supposed to contain. This will be
the latest 15 live entries. You do this by adding a method named items() to the feed class,
which will return those entries:

def items(self):
return Entry.live.all()[:15]

Each item needs to have a date listed in the feed. That’s accomplished by a method called
item_pubdate(), which will receive an object as an argument and should return a date or
datetime object to use for that object. (The Feed class will automatically format this appro-
priately for the type of feed being used.) In the case of an Entry, that’s just the value of the
pub_date field:

def item_pubdate(self, item):
return item.pub_date

Each item also needs to have a unique identifier, called a GUID (short for globally unique
identifier). This can be the id field from the database, but it’s generally better to use something
less transient. If you ever migrated to a new server or a different database, the id values might
change during the transition, and the GUID for a particular entry would change when that
happened.

For a situation like this, the ideal solution is something called a tag URI (uniform resource
identifier). Tag URIs are a standard way of generating a unique identifier for some Internet
resource, in a way that won’t change so long as that Internet resource continues to exist at the
same address. If you’re interested in the full details of the standard, tag URIs are specified by
IETF RFC 4151 (www.faqs.org/rfcs/rfc4151.html), but the basic idea is that a tag URI for an
item consists of three parts:

1. The tag: string.

2. The domain for the item, followed by a comma, followed by a relevant date for the
item, followed by a colon.

3. An identifying string that is unique for that domain and date.

For the date, you’ll use the pub_date field of each entry. For the unique identifying string,
you’ll use the result of its get_absolute_url() method, since that’s required to be unique.

The result, for example, is that the entry at www.example.com/2008/jan/12/example-entry/
would end up with a GUID of

tag:example.com,2008-01-12:/2008/jan/12/example-entry/

This meets all the requirements for a feed GUID. To implement this, you simply define a
method on your feed class called item_guid(). Again, it receives an object as its argument:

def item_guid(self, item):
return "tag:%s,%s:%s" % (current_site.domain,

item.pub_date.strftime('%Y-%m-%d'),
item.get_absolute_url())

CHAPTER 7 ■ FINISHING THE WEBLOG140

One final thing you can add to your feed is a list of categories for each item. This will help
feed aggregators to categorize the items you publish. You can do this by defining a method
called item_categories:

def item_categories(self, item):
return [c.title for c in item.categories.all()]

A full example feed class, then, looks like this:

class LatestEntriesFeed(Feed):
author_name = "Bob Smith"
copyright = "http://%s/about/copyright/" % current_site.domain
description = "Latest entries posted to %s" % current_site.name
feed_type = Atom1Feed
item_copyright = "http://%s/about/copyright/" % current_site.domain
item_author_name = "Bob Smith"
item_author_link = "http://%s/" % current_site.domain
link = "/feeds/entries/"
title = "%s: Latest entries" % current_site.name

def items(self):
return Entry.live.all()[:15]

def item_pubdate(self, item):
return item.pub_date

def item_guid(self, item):
return "tag:%s,%s:%s" % (current_site.domain,

item.pub_date.strftime('%Y-%m-%d'),
item.get_absolute_url())

def item_categories(self, item):
return [c.title for c in item.categories.all()]

Now you can set up a URL for this feed. Go to the urls.py file in the cms project directory,
and add two things. First, near the top of the file (above the list of URL patterns), add the fol-
lowing import statement and dictionary definition:

from coltrane.feeds import LatestEntriesFeed

feeds = { 'entries': LatestEntriesFeed }

Next, add a new pattern to the list of URLs:

(r'^feeds/(?P<url>.*)/$',
'django.contrib.syndication.views.feed',
{ 'feed_dict': feeds }),

This will route any URL beginning with /feeds/ to the view in django.contrib.syndication,
which handles feeds. The dictionary you set up maps between feed slugs, like entries, and
specific feed classes.

CHAPTER 7 ■ FINISHING THE WEBLOG 141

One final thing you need to do is create two templates. django.contrib.syndication uses
the Django template system to render the title and main body of each item in the feed so that
you can decide how you want to present each type of item. So go to the directory where you’ve
been keeping templates for this project, and inside it create a new directory called feeds.
Inside that create two new files, called entries_title.html and entries_description.html.
(The names to use come from the combination of the feed’s slug—in this case, entries—and
whether the template is for the item’s title or its description.) Each of these templates will have
access to two variables:

• obj: This is a specific item being included in the feed.

• site: This is the current Site object, as returned by Site.objects.get_current().

So for item titles, you can simply use each entry’s title. In the entries_title.html tem-
plate, place the following:

{{ obj.title }}

For the description, you’ll use the same trick as the entry archive templates you set up in
the last chapter. Display the excerpt_html field if it has any content; otherwise, display the first
50 words of body_html. So in entries_description.html, fill in the following:

{% if obj.excerpt_html %}
{{ obj.excerpt_html|safe }}
{% else %}
{{ obj.body_html|truncatewords_html:"50"|safe }}
{% endif %}

Remember that Django’s template system automatically escapes HTML in variables, so
you still have to use the safe filter. With the templates in place, you can launch the develop-
ment server and visit the URL /feeds/entries/ to see the feed of latest entries in the weblog.

Writing a feed for the latest links should be easy at this point. Try writing the
LatestLinksFeed class yourself and set it up correctly. (Remember that links don’t have cate-
gories associated with them, so you should either leave out the item_categories() method or
rewrite it to return a list of tags.) A full example is in the sample code you can download for
this book, so refer to it if you get lost.

Entries by Category: A More Complex Feed Example
Now, you’d like to also offer categorized feeds so that readers who are interested in one or two
specific topics can subscribe to feeds that only list entries from the categories they like. But
this is a bit trickier because it raises two problems:

• The list of items in the feed should, of course, know how to figure out which Category
it’s looking at and ensure that it only returns entries from that category.

• Several of the metadata fields—the title of the feed, the link, and so on—will need to
change dynamically based on the category.

CHAPTER 7 ■ FINISHING THE WEBLOG142

Django’s Feed class provides a way to deal with this, though. A Feed subclass can define a
method called get_object(), which will be passed an argument containing the bits of the URL
that came after the slug you registered the feed with, as a list. So, for example, if you registered
a feed with the slug categories and visited the URL /feeds/categories/django/, your feed’s
get_object() would be passed an argument containing the single-item list ["django"]. From
there you can look up the category.

Let’s start by adding two items to the import statements at the top of your feeds.py file so
that now it looks like this:

from django.core.exceptions import ObjectDoesNotExist
from django.utils.feedgenerator import Atom1Feed
from django.contrib.sites.models import Site
from django.contrib.syndication.feeds import Feed
from coltrane.models import Category, Entry

This gives you access to the Category model, as well as to an exception class Django
defines—ObjectDoesNotExist. You can use this if someone tries to visit a URL for a nonexistent
category’s feed. (When you raise ObjectDoesNotExist, Django will return an HTTP 404 “File
Not Found” response.)

Now you can begin writing your feed class. Since a lot of it is similar to the existing
LatestEntriesFeed, you’ll just subclass it and change the parts that need to be changed:

class CategoryFeed(LatestEntriesFeed):
def get_object(self, bits):

if len(bits) != 1:
raise ObjectDoesNotExist

return Category.objects.get(slug__exact=bits[0])

This will either raise ObjectDoesNotExist or return the Category you need to display
entries for. Now you can set up the feed’s title, description, and link, by defining methods with
those names that receive the Category object as an argument (Django’s feed system is smart
enough to recognize that it needs to pass that object when calling them):

def title(self, obj):
return "%s: Latest entries in category '%s'" % (current_site.name,

obj.title)

def description(self, obj):
return "%s: Latest entries in category '%s'" % (current_site.name,

obj.title)

def link(self, obj):
return obj.get_absolute_url()

CHAPTER 7 ■ FINISHING THE WEBLOG 143

"PLAIN" ATTRIBUTES VS. METHODS ON FEEDS

In general, any of the various bits of metadata for a feed—the title, description and link, and metadata for
individual items in the feed—can either be hard-coded by a plain attribute of the correct name or generated
dynamically by defining a method of that name. For feeds like CategoryFeed that need to look up some
object (in this case a Category) through their get_object() method, you can define a method that
expects to receive that object.

Again, for a full list of the different fields you can use on a feed—each of which will work like this—
consult the full documentation for django.contrib.syndication online at
www.djangoproject.com/documentation/syndication_feeds/.

You can change the items() method as well. Again, Django’s feed system is smart enough
to know that it needs to be passed the Category object, and it will make sure that happens:

def items(self, obj):
return obj.live_entry_set()[:15]

Remember that you defined the live_entry_set() method on the Category model so that
it would only return entries with “live” status.

And that’s that. Now your feeds.py file should look like this:

from django.core.exceptions import ObjectDoesNotExist
from django.utils.feedgenerator import Atom1Feed
from django.contrib.sites.models import Site
from django.contrib.syndication.feeds import Feed
from coltrane.models import Category, Entry

current_site = Site.objects.get_current()

class LatestEntriesFeed(Feed):
author_name = "Bob Smith"
copyright = "http://%s/about/copyright/" % current_site.domain
description = "Latest entries posted to %s" % current_site.name
feed_type = Atom1Feed
item_copyright = "http://%s/about/copyright/" % current_site.domain
item_author_name = "Bob Smith"
item_author_link = "http://%s/" % current_site.domain
link = "/feeds/entries/"
title = "%s: Latest entries" % current_site.name

def items(self):
return Entry.live.all()[:15]

def item_pubdate(self, item):
return item.pub_date

CHAPTER 7 ■ FINISHING THE WEBLOG144

def item_guid(self, item):
return "tag:%s,%s:%s" % (current_site.domain,

item.pub_date.strftime('%Y-%m-%d'),
item.get_absolute_url())

def item_categories(self, item):
return [c.title for c in item.categories.all()]

class CategoryFeed(LatestEntriesFeed):
def get_object(self, bits):

if len(bits) != 1:
raise ObjectDoesNotExist

return Category.objects.get(slug__exact=bits[0])

def title(self, obj):
return "%s: Latest entries in category '%s'" % (current_site.name,

obj.title)

def description(self, obj):
return "%s: Latest entries in category '%s'" % (current_site.name,

obj.title)

def link(self, obj):
return obj.get_absolute_url()

def items(self, obj):
return obj.live_entry_set()[:15]

You can register this feed by changing the import line in your project’s urls.py file from

from coltrane.feeds import LatestEntriesFeed

to

from coltrane.feeds import CategoryFeed, LatestEntriesFeed

and by adding one line to the feeds dictionary. Change it from

feeds = { 'entries': LatestEntriesFeed }

to

feeds = { 'entries': LatestEntriesFeed,
'categories': CategoryFeed }

Finally, you’ll want to set up the templates feeds/categories_title.html and feeds/
categories_title.html. Since they’re just displaying entries, feel free to copy and paste the
contents of the two templates you used for the LatestEntriesFeed.

CHAPTER 7 ■ FINISHING THE WEBLOG 145

Writing feed classes that display entries or links by tag will follow the same pattern.
Examples are included in the sample code you can download for this book, but again, I’d
recommend giving it a try yourself before you peek to see how it’s done.

Looking Ahead
And with that, you’ve implemented all the features you set out to have for your weblog. But,
more important, you’ve covered a huge amount of territory within Django: models, views,
URL routing, templating and custom template extensions, comments, and Django’s dis-
patcher and syndication feeds. You should already be feeling a lot more comfortable working
with Django and writing what would—if you were developing from scratch without Django’s
help—be some fairly complex features.

So give yourself a pat on the back because you’ve got a lot of useful Django knowledge
under your belt now. Also take some time to work with the weblog application you’ve devel-
oped. Try to think of a feature or two you’d like to add, and then see if you can work out how to
add them.

When you’re ready, the next chapter will start a brand-new application: a code-sharing
site with some useful social features, which will highlight Django’s form-processing system for
user-submitted content and show off some more advanced uses of the database API.

CHAPTER 7 ■ FINISHING THE WEBLOG146

A Social Code-Sharing Site

So far you’ve been using Django for the sorts of applications that are generally termed con-
tent management—in other words, applications in which an administrator logs in to a special
interface and posts some content, then the system displays that content publicly with little or
no interaction from general site visitors. While that covers a huge amount of common web-
development tasks, it doesn’t cover everything, and it’s not the limit of what Django can do.

So for your third Django application, I’ll show you how to build a user-driven application
with much more interactivity and some social style features—in other words, a community-
based repository of useful, reusable code.

A live version of this type of application, oriented toward Django users, is online at
www.djangosnippets.org/, and in the next few chapters you’ll see how to build a similar appli-
cation that you can deploy any time you need a place for multiple users to share bits of code
with each other.

Feature Checklist
As with the weblog application, the first thing you should do is get a rough idea of what you
want to accomplish. Use this feature list as a starting point:

• Snippets of code with full descriptions of what they do

• Categorization by programming language, and full language-aware syntax highlighting
of the rendered code

• A bookmark feature so that users can easily come back and find their favorite snippets

• A rating feature that lets users indicate whether a particular piece of code was useful to
them

• Tagging for organizing snippets and finding related pieces of code

• Lists of the most popular snippets by overall rating and by the number of times they’ve
been bookmarked

• A list of the most active authors (users who’ve submitted the most snippets)

In keeping with the tradition of naming applications after notable jazz musicians, I’m
going to call this application cab, in honor of the singer/bandleader Cab Calloway. Cab was
known for his skill at scat singing—singing with short syllables of sometimes nonsensical
words—which seems appropriate for an application focused on lots of short bits of code. 147

C H A P T E R 8

Setting Up the Application
Once again, you’ll need to create a new Python module to hold the application code. It should
live directly on the Python import path, in the same directory as the coltrane application you
built for the weblog. Now that you know how to do this manually, let’s take a shortcut. Go into
the directory where you want to create the application and type the following:

django-admin.py startapp cab

Remember that on some systems, you’ll need to type out the full path to the
django-admin.py command.

Previously, you’ve only encountered startapp in the context of a specific project, where it
created a new application directory inside the project’s directory. However, it works just fine
for creating standalone application modules, and it takes some of the tedium out of starting
out with a new application. Using the django-admin.py startapp command creates a new
directory called cab. Populate it with an empty __init__.py and the basic models.py and
views.py files for a new Django application.

In time, you’ll end up replacing the views.py file with a views module containing several
files, but for simpler applications, this setup will be all you’ll need.

Before you go any further, you need to set up one other thing. For syntax highlighting of
the code snippets, you’ll be using a Python library called pygments. Its official site is at http://
pygments.org/, which has documentation and interactive examples, but to download it, visit
http://pypi.python.org/pypi/Pygments, which is the page for the pygments project in the
Python Package Index (formerly known, and sometimes still referred to, as the Python Cheese
Shop, in honor of a famous Monty Python comedy sketch).

The Python Package Index is an incredibly useful resource for Python programmers. Right
now it’s tracking almost 4,000 third-party libraries and applications written in Python, all cate-
gorized and with a full history of releases. Any time you find yourself wondering if Python has
a library for something you need to do, you should try a search there—the odds are good that
someone’s already written at least some of the code you’ll need and listed it in the index.

As I’m writing this, the current version of pygments is 0.9, so you should be able to down-
load a package labeled Pygments-0.9.tar.gz. Once you’ve downloaded the package, open it
up; on most operating systems, you can just double-click on the file. This creates a directory
called Pygments-0.9. On a command line, go into that directory and type:

python setup.py install

This installs the pygments library on your computer. Once it’s done, you should be able to
launch a Python interpreter and type import pygments without seeing any errors.

Building the Initial Models
Now that you’ve got your application module set up and the pygments library installed, you
can start building your models. Logically, you’re going to want a model to represent the snip-
pets of code; let’s call this model Snippet. You’ll also want a model to represent the language in
which a particular code snippet is written. This will make it much easier to store some extra
metadata, handle the syntax highlighting, and sort snippets by language.

CHAPTER 8 ■ A SOCIAL CODE-SHARING SITE148

The Language Model
Open up the models.py file in the cab directory. The django-admin.py script has already filled in
an import statement that pulls in Django’s model classes, so you can start working immedi-
ately. Start with the model—let’s call it Language—that represents the different programming
languages. It’ll need five fields:

• The name of the language

• A unique slug to identify it in URLs

• A language code that pygments can use to load the appropriate syntax-highlighting module

• A file extension to use when offering a snippet in this language for download

• A MIME type to use when sending a snippet file in this language

Based on what you already know about Django’s model system, this is easy to set up:

class Language(models.Model):
name = models.CharField(max_length=100)
slug = models.SlugField(unique=True)
language_code = models.CharField(max_length=50)
mime_type = models.CharField(max_length=100)

Since the values (all strings) that go into these fields won’t be very long, I’ve kept the field
lengths fairly short.

Now, the most logical ordering for languages is alphabetical by name, so you can add that,
activate the admin interface, and go ahead and set up the string representation of a Language
to be its name:

class Meta:
ordering = ['name']

class Admin:
pass

def __unicode__(self):
return self.name

You can also define a get_absolute_url() method, and even though you haven’t yet set up
any views or URLs, go ahead and write it using the permalink decorator, so it’ll do reverse URL
lookup when the time comes. When you do write the URLs, the name for the URL pattern that
corresponds to a specific Language is going to be cab_language_detail, and it’s going to take
the Language’s slug as an argument:

def get_absolute_url(self):
return ('cab_language_detail', (), { 'slug': self.slug })

get_absolute_url = models.permalink(get_absolute_url)

CHAPTER 8 ■ A SOCIAL CODE-SHARING SITE 149

ADMONITION: URL PATTERN NAMING

Technically, the only requirement Django imposes on the name of a URL pattern is that it must be a string and
that it must be unique within a given project. However, as a general convention, I like to have the names of
my URLs follow a predictable pattern based on the name of the application, the name of the model involved,
and the action that the view will take. The detail view of a Language in the cab application, then, is
cab_language_detail, while the view to add a Snippet, for example, is cab_snippet_add.

While you don’t have to do this, I’ve found that it's a great help to other people who need to read the
code, and sometimes even to me as I look back over a piece of my own code that I haven’t worked with
recently.

You’ll want one more method on the Language model to help pygments with the syntax
highlighting. pygments works by reading through a piece of text while using a specialized piece
of code called a lexer, which knows the rules of the particular programming language the text
is written in. The pygments download includes lexers for a large set of languages, each one
identified by a code name, and pygments includes a function that, given the code name of a
language, returns the lexer for that language.

Let’s add a method to the Language model that uses that function to return the appropri-
ate lexer for a given language. The function you want is pygments.lexers.get_lexer_by_
name(), which means you’ll need to add a new import statement at the top of your models.py
file:

from pygments import lexers

Then you can write the method:

def get_lexer(self):
return lexers.get_lexer_by_name(self.language_code)

Now the Language model is done, and your models.py file looks like this:

from django.db import models
from pygments import lexers

class Language(models.Model):
name = models.CharField(max_length=100)
slug = models.SlugField(unique=True)
language_code = models.CharField(max_length=50)
mime_type = models.CharField(max_length=100)

class Meta:
ordering = ['name']

class Admin:
pass

CHAPTER 8 ■ A SOCIAL CODE-SHARING SITE150

def __unicode__(self):
return self.name

def get_absolute_url(self):
return ('cab_language_detail', (), { 'slug': self.slug })

get_absolute_url = models.permalink(get_absolute_url)

def get_lexer(self):
return lexers.get_lexer_by_name(self.language_code)

The Snippet Model
Now you can write the class that represents a snippet of code, which will need to have several
fields:

• A title and description. You’ll set up the description much the same way as the excerpt
and body from the Entry model in your weblog, so that there are two fields: one to store
the raw input, and one to store an HTML version.

• A foreign key pointing at the Language the snippet is written in.

• A foreign key to Django’s User model to represent the snippet’s author.

• A list of tags, for which you’ll use the TagField you saw in the weblog application.

• The actual code, which, again, you’ll store as two fields so that you can keep a rendered,
syntax-highlighted HTML version separate from the original input.

• A bit of metadata that includes the date and time when the snippet was first posted,
and the date and time when it was last updated.

To start, you’ll need to import the TagField you’ve used previously:

from tagging.fields import TagField

You’ll also need Django’s User model:

from django.contrib.auth.models import User

Then you can build out the basic fields:

class Snippet(models.Model):
title = models.CharField(max_length=255)
language = models.ForeignKey(Language)
author = models.ForeignKey(User)
description = models.TextField()
description_html = models.TextField(editable=False)
code = models.TextField()
highlighted_code = models.TextField(editable=False)
tags = TagField()
pub_date = models.DateTimeField(editable=False)
updated_date = models.DateTimeField(editable=False)

CHAPTER 8 ■ A SOCIAL CODE-SHARING SITE 151

Note that you’ve marked several of these as noneditable. They’ll be filled in automatically
by the custom save() method you’ll write in a moment.

The logical ordering for snippets is by the descending order of the pub_date field. You’ll
want to activate the admin interface for the Snippet model and give it a string representation
(which will use the title of the snippet):

class Meta:
ordering = ['-pub_date']

class Admin:
pass

def __unicode__(self):
return self.title

Before you write the save() method, go ahead and add a method that knows how to apply
the syntax highlighting. For this, you’ll need two more items from pygments: the formatters
module, which knows how to output highlighted code in various formats; and the highlight()
function, which puts everything together to produce highlighted output. So change the import
line from this:

from pygments import lexers

to this:

from pygments import formatters, highlight, lexers

The pygments highlight function takes three arguments: the code to highlight, the lexer
to use, and the formatter to generate the output. The code comes from the code field on
the Snippet model, and the lexer comes from the get_lexer() method you defined on the
Language model. Then just use the HTML formatter built into pygments as the output
formatter:

def highlight(self):
return highlight(self.code,

self.language.get_lexer(),
formatters.HtmlFormatter(linenos=True))

The linenos=True argument to the formatter tells pygments to generate the output with
line numbers so that it’s easier to read the code and identify specific lines.

ADMONITION: WHY NOT HIGHLIGHT DIRECTLY IN save()?

It seems strange to be writing such a short method as this, when you could just put this code directly into the
model’s save() method. However, it’s often a good idea to break things like this out into separate methods.
Doing it this way means that you can highlight a Snippet without saving it, and it also reduces the coupling
to a specific method of syntax highlighting. If you ever want to switch to a different syntax-highlighting sys-
tem, for example, you would only have to rewrite this one method instead of potentially tracking down every
place that uses syntax highlighting and changing them all.

CHAPTER 8 ■ A SOCIAL CODE-SHARING SITE152

Before you write the save() method, go ahead and import the Python Markdown module,
and use that for generating the HTML version of the description:

from markdown import markdown

You’re also going to need Python’s datetime module:

import datetime

Now you can write the save() method, which needs to perform the following actions:

• Convert the plain-text description to HTML, and store that in the description_html
field.

• Do the syntax highlighting, and store the resulting HTML in the highlighted_code field.

• Set the pub_date to the current date and time if this is the first time the snippet is being
saved.

• Set the updated_date to the current date and time whenever the snippet is saved.

Here’s the code:

def save(self):
if not self.id:

self.pub_date = datetime.datetime.now()
self.updated_date = datetime.datetime.now()
self.description_html = markdown(self.description)
self.highlighted_code = self.highlight()
super(Snippet, self).save()

Finally, add a get_absolute_url() method. The view that shows a particular Snippet is
called cab_snippet_detail and takes the id of the Snippet as an argument:

def get_absolute_url(self):
return ('cab_snippet_detail', (), { 'object_id': self.id })

get_absolute_url = models.permalink(get_absolute_url)

The finished model looks like this:

class Snippet(models.Model):
title = models.CharField(max_length=255)
language = models.ForeignKey(Language)
author = models.ForeignKey(User)
description = models.TextField()
description_html = models.TextField(editable=False)
code = models.TextField()
highlighted_code = models.TextField(editable=False)
tags = TagField()
pub_date = models.DateTimeField(editable=False)
updated_date = models.DateTimeField(editable=False)

CHAPTER 8 ■ A SOCIAL CODE-SHARING SITE 153

class Meta:
ordering = ['-pub_date']

class Admin:
pass

def __unicode__(self):
return self.title

def save(self):
if not self.id:

self.pub_date = datetime.datetime.now()
self.updated_date = datetime.datetime.now()
self.description_html = markdown(self.description)
self.highlighted_code = self.highlight()
super(Snippet, self).save()

def get_absolute_url(self):
return ('cab_snippet_detail', (), { 'object_id': self.id })

get_absolute_url = models.permalink(get_absolute_url)

def highlight(self):
return highlight(self.code,

self.language.get_lexer(),
formatters.HtmlFormatter(linenos=True))

This handles the core of the application—code snippets organized by language—so now
you can pause and start working on some initial views to get a feel for how things will look.

Testing the Snippets Application
As you build out these views and the rest of this application, I’m going to assume you’ve
already got a Django project set up with a database and a template directory. If you’d like, you
can keep using the existing project you’ve worked with for the two previous applications.
However, this application isn’t really related to either the simple CMS or the weblog, so if you’d
like to start a new project now to work with this application, feel free to do so. In either case,
you’ll need to do three things:

1. Add cab to the INSTALLED_APPS list of the project you’ll use to test and work with
this application: If you’re starting a new project, you’ll also want to add django.
contrib.admin and tagging to the list.

2. Run manage.py syncdb to install the models you’ve written so far: Later, when you
write the rest of the models, you can run it again to install them. syncdb knows how to
figure out which models are already installed and only sets up the new ones.

CHAPTER 8 ■ A SOCIAL CODE-SHARING SITE154

3. Use the admin interface to create some Language objects and fill in some Snippets:
For a list of the languages pygments supports, and the language codes for the lexers,
read pygments’ lexer documentation online at http://pygments.org/docs/lexers/. In
the next chapter, you’ll see how to set up public-facing views that let ordinary users
submit snippets without having to use the admin interface.

Initial Views for Snippets and Languages
As you wrote the weblog application, you relied heavily on Django’s generic views to provide
the date-based archives and detail views of the entries and links. With this application, it
doesn’t make as much sense to use date-based browsing, but you’ve already encountered
non–date-based generic views, and you can turn to them again for this application.

In the cab directory, create a new directory called urls, and in it create three files:

• __init__.py, to mark this directory as a Python module

• snippets.py, which will have the URLs for the snippet-oriented views

• languages.py, which will have the URLs for the language-oriented views

As you did with the weblog’s URLs, you’ll be keeping each group of URLs for this applica-
tion in its own file. This means you’ll have several files in cab/urls, but the benefit in flexibility
and reusability is worth it.

In urls/snippets.py, fill in the following code:

from django.conf.urls.defaults import *
from django.views.generic.list_detail import object_list, object_detail
from cab.models import Snippet

snippet_info = { 'queryset': Snippet.objects.all() }

urlpatterns = patterns('',
url(r'^$',

object_list,
dict(snippet_info, paginate_by=20),
name='cab_snippet_list'),

url(r'^(?P<object_id>\d+)/$',
object_detail,
snippet_info,
name='cab_snippet_detail'),

)

This sets up two things:

• A list of snippets, in the order in which they were posted: Note the extra argument
you’ve passed here: paginate_by. This tells the generic view that you’d like it to show only
20 snippets at a time. You’ll see in a moment how to work with that in the templates.

• A detail view for individual Snippet objects: This is simply the object_detail generic
view.

CHAPTER 8 ■ A SOCIAL CODE-SHARING SITE 155

You should be able to set up the templates for this pretty easily. The list view gets a vari-
able called {{ object_list }}, which is a list of Snippet instances, and the detail view gets a
variable called {{ object }}, which is a specific Snippet. The generic views look for the
cab/snippet_list.html and cab/snippet_detail.html templates.

The only tricky thing is handling the pagination of snippets in the list view. The template
only gets 20 snippets at a time, so you need to display Next and Previous links to navigate
through them.

To handle this, the generic view provides two extra variables:

paginator: This is an instance of django.core.paginator.Paginator. It knows how many
total pages of snippets there are and how many total snippets are involved.

page: This is an instance of django.core.paginator.Page. It knows its own page number
and whether there’s a next or previous page.

In the snippet_list template, you could use something like this:

<p>{{ page }};
{% if page.has_previous %}
Previous page
{% endif %}
{% if page.has_next_page %}
Next page
{% endif %}</p>

You can download a full example in the Source Code/Download area of the Apress web
site (www.apress.com).

The object_list generic view knows to look for the page variable in the URL’s query
string, and it adjusts the snippets it displays accordingly. Meanwhile, the Page object knows
how to print itself smartly; in the template, {{ page }} displays something like “Page 2 of 6.”

To set up these views, add a pattern like this to your project’s root urls.py file:

(r'^snippets/', include('cab.urls.snippets')),

CSS for pygments Syntax Highlighting
You’ll have noticed in the Snippet detail view that the code sample doesn’t actually appear to
be highlighted in any way. This is because pygments, by default, simply generates HTML with
some class names filled in to mark things like language keywords. It expects that you’ll use a
style sheet to change the presentation appropriately.

To get a head start on styling the highlighted code, look through some of the samples in
the online demo of pygments at http://pygments.org/demo/. pygments comes with several
styles built in, and once you’ve found one you like, you can have it output the appropriate
CSS. You can then save that to a file and use it as your style sheet.

Here’s a simple example of how to get the appropriate CSS information from a pygments
style. This assumes that you’ve created a pygments.css file that you’ll write them into, and that
you’ve decided you like the “murphy” style. Open a Python interpreter and type the following:

CHAPTER 8 ■ A SOCIAL CODE-SHARING SITE156

>>> from pygments import formatters, styles
>>> style = styles.get_style_by_name('murphy')
>>> formatter = formatters.HtmlFormatter(style=style)
>>> outfile = open('pygments.css', 'w')
>>> outfile.write(formatter.get_style_defs())
>>> outfile.close()

The pygments.css file now contains a list of CSS style rules for the “murphy” style. You can
tweak them a bit if you like. You can also have pygments automatically add more specific infor-
mation to the CSS selector it uses, if you know that the highlighted blocks will only appear
inside certain elements in a page. Consult the documentation for the pygments HtmlFormatter
class for full details on how the get_style_defs() method works.

Views for Languages
To show a list of the languages that snippets have been submitted in, you can use the object_
list generic view again. However, displaying a list of snippets for a particular Language is
going to require a little bit of code. You’ll need to write a wrapper around a generic view, as
you did in Chapter 5, to show the list of entries in a particular category.

Go ahead and delete the views.py file in the cab application’s directory and create a views
directory. In it, put these two files:

• __init__.py

• languages.py

languages.py is where you’ll put your first handwritten view for this application.
In views/languages.py, add the following code to set up the wrapper around the generic

view:

from django.shortcuts import get_object_or_404
from django.views.generic.list_detail import object_list
from cab.models import Language

def language_detail(request, slug):
language = get_object_or_404(Language, slug=slug)
return object_list(request,

queryset=language.snippet_set.all(),
paginate_by=20,
template_name='cab/language_detail.html',
extra_context={ 'language': language })

This returns a paginated list of snippets for a particular language. Now you can go to
urls/languages.py and fill in a couple of URL patterns:

from django.conf.urls.defaults import *
from django.views.generic.list_detail import object_list
from cab.models import Language
from cab.views.languages import language_detail

CHAPTER 8 ■ A SOCIAL CODE-SHARING SITE 157

language_info = { 'queryset': Language.objects.all(),
'paginate_by': 20 }

urlpatterns = patterns('',
url(r'^$',

object_list,
language_info,
name='cab_language_list'),

url(r'^(?P<slug>[-\w]+)/$',
language_detail,
name='cab_language_detail'),

)

Again, you should have no trouble setting up some basic templates to handle these views.
The template names are cab/language_list.html and cab/language_detail.html.

To see these views in action, add a line like the following to your project’s root urls.py file:

(r'^languages/', include('cab.urls.languages')),

An Advanced View: Top Authors
Since any user of the application will be allowed to submit a snippet of code, you’ll want to
have a way to show the users who’ve submitted the most snippets. Let’s write a view to handle
that.

Inside the cab/views directory, create a new file called popular.py. You’ll use this file for
this view, as well as for some others you’ll write later on to list top-rated and most-often-
bookmarked snippets.

Start the popular.py file with a couple of imports:

from django.contrib.auth.models import User
from django.views.generic.list_detail import object_list

It may seem a bit strange to import a generic view here, because it’s hard to see any way
you can use one for a query like this. In fact, even if you’ve been reading through the Django
database API documentation, it might not be obvious how to do this query. So first, let’s con-
sider how the query will work.

One of the trickier features of Django’s database API is a method called extra(), which
takes several optional parameters. Its job is to provide a way to handle certain SQL constructs
that don’t necessarily fit easily into the standard API methods. It lets you specify custom bits of
SQL to embed into each part of the query. You can add extra items to the SELECT clause and the
WHERE clause, and you can specify extra tables to be joined along with their join conditions.

Using extra, then, you can create a Django QuerySet that queries for users and orders
them by the number of snippets they’ve submitted. The query is going to look like this:

top_authors = User.objects.extra(select={ 'score':➥

"SELECT COUNT(*) from cab_snippet WHERE cab_snippet.author_id =➥

auth_user.id" },
order_by=['score'])

CHAPTER 8 ■ A SOCIAL CODE-SHARING SITE158

This query adds a subquery, which counts the number of snippets users have submitted
and orders the users by that count. As a convenience, each User object returned by the query
also has an additional attribute, score, containing the number of snippets an individual user
has submitted.

Since this is a Django QuerySet, you can pass it to the object_detail view:

def top_authors(request):
top_authors_qs = User.objects.extra(select={ 'score':➥

"SELECT COUNT(*) from cab_snippet WHERE cab_snippet.author_id =➥

auth_user.id" },
order_by=['score'])

return object_list(request, queryset=top_authors_qs,
template_name='cab/top_authors.html',
paginate_by=20)

You’ll end up with a paginated list of users ordered by their snippets. Then you can wire
up a URL for it. Let’s add a new file in the urls directory, popular.py, and use it for all of these
top views. In it, you place the following:

from django.conf.urls.defaults import *
from cab.views import popular

urlpatterns = patterns('',
url(r'^authors/$',

popular.top_authors,
name='cab_top_authors'),

)

Once again, you can wire this up in your project’s root urls.py file:

(r'^popular/', include('cab.urls.popular')),

After you’ve created the cab/top_authors.html template, you’ll see some results. Of
course, right now, it won’t be that impressive, because the application only has one user—you.
However, when deployed live on a site with multiple users, this will be a nice feature.

Improving the View of Top Authors
While this is a nice feature, it would be even better if you could encapsulate that query in a
reusable way. Right now, it’s a bit of a mouthful, and you wouldn’t want to have to type it out
over and over if you ever needed to reuse it.

Let’s write a custom manager for the Snippet model and make this a method on the man-
ager. Because you’re going to end up writing several custom managers for this application,
let’s go ahead and create a file managers.py in the cab directory. Then, inside it, put the follow-
ing code:

CHAPTER 8 ■ A SOCIAL CODE-SHARING SITE 159

from django.db import models
from django.contrib.auth.models import User

class SnippetManager(models.Manager):
def top_authors(self):

return User.objects.extra(select={ 'score':➥

"SELECT COUNT(*) from cab_snippet WHERE cab_snippet.author_id➥

= auth_user.id" },
order_by=['score'])

In cab/models.py, add a new import statement at the top:

from cab import managers

In the definition of the Snippet model, add the custom manager:

objects = managers.SnippetManager()

Now you can rewrite the top_user view like so:

from django.views.generic.list_detail import object_list
from cab.models import Snippet

def top_authors(request):
return object_list(request, queryset=Snippet.objects.top_authors(),

template_name='cab/top_authors.html',
paginate_by=20)

That’s much nicer.
While you’re at it, you can make another improvement. Because Django works with sev-

eral different database engines, it has to know how to handle the appropriate formatting of
things like table and column names for each one. So let Django take care of that for you. The
function you need to use is django.db.connection.ops.quote_name(), so in cab/managers, add
a new import at the top of the file:

from django.db import connection

Now you can rewrite the top_authors() method and make it a bit clearer as well by using
Python string formatting to build the subquery:

def top_authors(self):
subquery = "SELECT COUNT(*) from %(snippets_table)s WHERE➥

%(snippets_table)s.%(author_column)s = auth_user.id"
params = { 'snippets_table': connection.ops.quote_name('cab_snippet'),

'author_column': connection.ops.quote_name('author_id') }
return User.objects.extra(select={ 'score': subquery % params },

order_by=['score'])

CHAPTER 8 ■ A SOCIAL CODE-SHARING SITE160

ADMONITION: DICTIONARY-BASED STRING FORMATTING

So far, you've been using fairly simple string formatting, where you write something like this:

select = "SELECT COUNT(*) FROM %s" % connection.ops.quote_name('cab_snippet')

Technically, the item on the right-hand side of the formatting operator (the % after the string) is a tuple,
often a one-element tuple. But if you're going to be repeating a value multiple times in a string, as you are
here with the table name, you can use an alternate syntax to give names to the formatting placeholders, and
you can use a dictionary instead. The dictionary should have keys with those names, and their values are
inserted into the string.

Let’s make one final improvement. Instead of putting the database table name directly
into the query, you can rely on the fact that each model class knows which database table it
should use. The name of the database table is stored, along with a lot of other metadata, in an
attribute on the class called _meta. (If you’ve been wondering where the things you define in
the class Meta declaration end up, this is the answer.) The database table is in _meta.db_
table. So you can use that and avoid hard-coding the table name into the query at all:

def top_authors(self):
subquery = "SELECT COUNT(*) from %(snippets_table)s WHERE➥

%(snippets_table)s.%(author_column)s = auth_user.id"
params = { 'snippets_table': connection.ops.quote_name(➥

self.model._meta.db_table),
'author_column': connection.ops.quote_name('author_id') }

return User.objects.extra(select={ 'score': subquery % params },
order_by=['score'])

ADMONITION: USING _meta

The _meta attribute on a Django model class is mostly undocumented, because a lot of what it contains is
there for Django’s own internal use. Because of that, you should be careful about using things in _meta
unless you’ve got a good idea of how they work. The best guide for knowing that is the source code; the
_meta attribute is an instance of the class django.db.models.options.Options.

If, after you finish this book, you’re looking for a way to start building a more advanced understanding of
Django, reading through that code would be a good idea. Even if you never use the features available through
_meta (and there are some useful things in there), you’ll come away with a deeper understanding of how
Django models work.

CHAPTER 8 ■ A SOCIAL CODE-SHARING SITE 161

Adding a top_languagesView
While you’re adding these features, go ahead and add the ability to show the most popular
languages. This will be a similar query to the “top authors” view, so it’ll be easy to write now.

One important design decision, though, is where to put the method to do this query. You
could put it on the SnippetManager and probably even rework the top_authors() method into
a top_objects() method, which could return the top authors, the top languages, or (later on
when you’ve built out the models for them) the most-bookmarked or highest-rated snippets
according to an argument passed to it. That would cut down on the number of times you have
to write methods to do this sort of query. However, a disadvantage to this approach is that,
logically, the list of top languages doesn’t “belong” with the Snippet model; it belongs with the
Language model. Since it’s better to present a logical API for your application’s users than to be
lazy about writing code, go ahead and give Language a custom manager and put this query
there.

In cab/managers.py, add the following:

class LanguageManager(models.Manager):
def top_languages(self):

from cab.models import Snippet
subquery = "SELECT COUNT(*) from %(snippets_table)s WHERE➥

%(snippets_table)s.%(language_column)s = cab_language.id"
params = { 'snippets_table': connection.ops.quote_name(➥

Snippet._meta.db_table),
'language_column': connection.ops.quote_name('language_id') }

return self.extra(select={ 'score': subquery % params },
order_by=['score'])

ADMONITION: AVOIDING CIRCULAR DEPENDENCIES

You’ll notice that the import statement for the Snippet model is inside the top_languages() method.
This is necessary because cab/models.py imports from cab/managers.py. If you placed from
cab.models import Snippet at the top of cab/managers.py, you’d get an infinite loop of each file
trying to import the other.

Putting the import statement inside the top_languages method ensures that the import of the
Snippet model waits until the method is actually called, at which point there’s no chance of a loop.

In cab/models.py, you can add the manager in the definition of the Language model:

objects = managers.LanguageManager()

In cab/views/popular.py, you can change the import statement from:

from cab.models import Snippet

to:

from cab.models import Language, Snippet

CHAPTER 8 ■ A SOCIAL CODE-SHARING SITE162

Write this view:

def top_languages(request):
return object_list(request,

queryset=Language.objects.top_languages(),
template_name='cab/top_languages.html',
paginate_by=20)

and change cab/urls/popular.py to the following:

from django.conf.urls.defaults import *
from cab.views import popular

urlpatterns = patterns('',
url(r'^authors/$',

popular.top_authors,
name='cab_top_authors'),

url(r'^languages/$',
popular.top_languages,
name='cab_top_languages'),

)

Now you can create the cab/top_languages.html template and add some snippets in vari-
ous languages to see the results change.

Looking Ahead
Now that you’ve got the core of this application in place, the next chapter will look at some of
the user interactions, including an introduction to Django’s form-processing system, so you
can see how to let users submit snippets without going through the admin interface.

If you’d like a little challenge before moving on to form handling, try writing a view that
lists tags in order by the number of snippets that use them. Take a look in the tagging appli-
cation to see how the tags work, and check out the Django content types framework
documentation (www.djangoproject.com/documentation/contenttypes/) to get a feel for how
to use the generic relations that the tags use. If you get stumped, a working example is in the
Source Code/Download area of the Apress web site (www.apress.com).

CHAPTER 8 ■ A SOCIAL CODE-SHARING SITE 163

Form Processing in the Code-
Sharing Application

All of your Django applications so far—with the exception of the comments system for the
weblog—have been focused exclusively on systems where trusted members of a site’s staff will
enter content through Django’s administrative interface, rather than on interactive features
that let ordinary users submit content to be displayed. For this new application, though,
you’re going to need a way to allow users to submit their snippets of code. You’ll also want
to make sure that their submissions are in a format that works with the data models you’ve
set up.

Fortunately, Django is going to make this fairly easy through the use of a simple but
powerful system for displaying and processing web-based forms. In this chapter you’ll get a
thorough look at the form-handling system and use it to build the forms people will use to
submit and edit their code samples.

A Brief Tour of Django’s Form System
Django’s form-handling code lives in the module django.newforms and provides three key
components that, taken together, cover every aspect of constructing, displaying, and process-
ing a form:

• A set of field classes, similar to the types of fields available for Django data models,
which represent a particular type of data and know how to validate that data.

• A set of widget classes, which know how to render various types of HTML form controls
(text inputs, check boxes, and so on) and read out the corresponding data from an
HTTP form submission.

• A Form class that ties these concepts together and provides a unified interface for defin-
ing the data to be collected and high-level rules for validating it.

165

C H A P T E R 9

ADMONITION: WHY “NEW” FORMS?

If you take a look at the Django codebase, you'll notice two form-oriented packages: newforms and
oldforms. django.oldforms is the original form-handling system Django shipped with at the time of its
first public release, and it has been officially deprecated. The oldforms system worked and has been used
in plenty of production-quality applications. However, it was rather cumbersome to work with and sometimes
resulted in fairly tedious or repetitive code—two things Django aims to eliminate whenever possible.

The django.newforms package is its replacement, and it is a significant improvement in terms of the
ease with which forms can be constructed and handled. By the time Django 1.0 is released, all of Django's
own internal systems and bundled applications will have switched to using it, and eventually the oldforms
package will be removed (at which point django.newforms will simply become django.forms). There-
fore, you should always use django.newforms for new applications.

A Simple Example
To get a feel for how this works, let’s take a look at a simple but common requirement: user
signups.

ADMONITION: WHERE DOES THIS CODE GO?

This specific code doesn't logically belong to the cab application you're developing, and if you ever do
develop code for handling user signups it would be best to place that code in its own separate application.
For now, though, don't worry about saving this code into Python files. It's just a useful example that shows
off as many parts of Django's form-handling system as possible.

If you ever do need to implement a user signup system, however, feel free to refer to this code and
adapt it to suit your needs.

Basic signups will require a registration form that collects three pieces of data:

• A username

• An e-mail address to associate with the new account

• A password the user will use to log in

Additionally, you’ll want to do a little bit of custom validation work:

• You’ll want to make sure that the username isn’t already in use because you can’t have
two users with the same username.

• It’s always a good idea to show two password fields and have the user type the same
password twice. This will catch typos and provide a little extra safety to make sure new
users get the password they’re expecting.

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION166

Logically, this works out to an HTML <form> element with four fields: one each for the
username and e-mail address and two to handle the repeated password. Here’s how you might
start out building the form:

from django import newforms as forms

class SignupForm(forms.Form):
username = forms.CharField(max_length=30)
email = forms.EmailField()
password1 = forms.CharField(max_length=30)
password2 = forms.CharFIeld(max_length=30)

Aside from the use of classes from django.newforms instead of django.db.models, this
starts out looking similar to the way you define model classes in Django: simply subclass the
appropriate base class and add the appropriate fields.

ADMONITION: IMPORTING THE newforms PACKAGE

You'll notice that the import statement that pulls in the django.newforms package is written as from
django import newforms as forms, and you reference everything as being attached to the forms
namespace. This is a good habit to get into because (as previously mentioned) django.newforms will even-
tually become simply django.forms. If you import and reference the newforms package in this fashion,
then when the switch happens, you'll only need to change one line—the import statement—and the rest of
your code will continue to work normally.

But it’s not quite perfect. HTML provides a special form input type for handling
passwords—<input type="password">—and that would be a more appropriate way to
render the password fields. You can do that by changing those two fields slightly:

password1 = forms.CharField(max_length=30,
widget=forms.PasswordInput())

password2 = forms.CharField(max_length=30,
widget=forms.PasswordInput())

The PasswordInput widget will render itself as an <input type="password">, which is
exactly what you want. This also shows off one major strength of the way Django’s form system
separates the validation of data—which is handled by the field—from the presentation of the
form, which is handled by the widgets. It’s fairly common to run into situations where you
have a single underlying validation rule that needs to work with multiple fields that all
become different types of HTML inputs. This separation makes it easy: you can reuse a single
field type and just change the widget.

While you’re at it, let’s make one more change:

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION 167

password1 = forms.CharField(max_length=30,
widget=forms.PasswordInput(render_value=False))

password2 = forms.CharField(max_length=30,
widget=forms.PasswordInput(render_value=False))

The render_value argument to the PasswordInput tells it that even if it has some data, it
shouldn’t show it. An error entering the password should completely clear the field to make
sure the user types it in correctly the next time.

Validating the Username
The fields you’ve specified so far all have some implicit validation rules associated with them.
The username field and the two password fields both have maximum lengths specified, and the
EmailField will check that its input looks like an e-mail address (by applying a regular expres-
sion). But you also need to make sure that the username isn’t already in use, so you’ll need to
define some custom validation for the username field.

You can do this by defining a method on the form called clean_username(). During the
validation process, Django’s form system automatically looks for any method whose name
starts with clean_ and ends in the name of a form on the field, then calls it after the field’s
built-in validation rules have been applied.

Here’s what the clean_username() method looks like (assuming that the Django user
model has already been imported using from django.contrib.auth.models import User):

def clean_username(self):
try:

User.objects.get(username=self.cleaned_data['username'])
except User.DoesNotExist:

return self.cleaned_data['username']
raise forms.ValidationError("This username is already in use.➥

Please choose another.")

This code packs a lot into a few lines. First of all, this method is only called if the username
field has already passed its built-in requirement of being fewer than 30 characters of text. In
that case, the value submitted for the username field is in self.cleaned_data['username']. The
attribute cleaned_data is a dictionary of any submitted data that’s made it through validation
so far.

You query for a user whose username exactly matches the value submitted to the
username field. If there is no such user, Django will raise the exception User.DoesNotExist.
You’ll know that the username isn’t in use and so the value for the username field is valid. In
this case, you simply return that value.

If there is a user with this username, you raise an exception: ValidationError. Django’s
form-handling code will catch this exception and turn it into an error message that you can
display. (You’ll see how to do this in a moment, when you look at the template that shows this
form.)

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION168

Validating the Password
Validating the password is a bit trickier because it involves looking at two fields at once and
making sure they match. You could do this by defining a method for one of the fields and
having it look at the other, like so:

def clean_password2(self):
if self.cleaned_data['password1'] != self.cleaned_data['password2']:

raise forms.ValidationError("You must type the same password each time")
return self.cleaned_data['password2']

But there’s a better way to do this. Django lets you define a validation method—simply
called clean()—which applies to the form as a whole. Here’s how you could write it:

def clean(self):
if 'password1' in self.cleaned_data and 'password2' in self.cleaned_data:

if self.cleaned_data['password1'] != self.cleaned_data['password2']:
raise forms.ValidationError("You must type the same password each time")

return self.cleaned_data

Note that in this case you manually check that there are values in cleaned_data for the
two password fields. If there were any errors raised during individual field validation, cleaned_
data will be empty. So you need to check this before referring to anything you expect to find
in it.

ADMONITION: FORM FIELDS ARE REQUIRED BY DEFAULT

All of the field types built in to Django's form system are required by default and so cannot be left blank. If
either of the password fields was left blank, a ValidationError would be raised before the clean()
method is called, and so you don't need to raise an additional error to require a value.

To mark a form field as optional, pass it the keyword argument required=False.

Creating the New User
At this point you could stop writing form code and move on to a view that processes the form.
You could write the view so that it creates and saves the new User object. But if you ever
needed to reuse this form in other views, you’d have to write out that code again and again. So
it’s better to write a method on the form itself that knows what to do with the valid data. Since
it’s saving a new User object to the database, the obvious name to give this method is save().

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION 169

ADMONITION: save() ISN'T JUST FOR THE DATABASE

Most of the time, forms are used to create and update model objects, in which case save() is the natural
choice. But forms can be used for other purposes (for example, a contact form might send an e-mail mes-
sage instead of saving an object).

The general convention in the Django community is that any time a form class has a method that
"knows" what action to take with the valid data, that method should be called save(), even when it doesn't
save any data to your database. The advantage of giving this type of method a consistent and recognizable
name outweighs any initial confusion it might cause.

In the save() method, you need to create a User object from the username, e-mail, and
password submitted to your form. Assuming you’ve already imported the User model, you can
do it like this:

def save(self):
new_user = User.objects.create_user(username=self.cleaned_data['username'],

email=self.cleaned_data['email'],
password=self.cleaned_data['password1'])

return new_user

ADMONITION: USERS AND PASSWORDS

One big problem with a database of users and passwords is that anyone who can get access to the database
can see all of the passwords. Since many people tend to reuse the same passwords on multiple web sites,
this can pose a significant security risk.

To help you protect your users, Django avoids storing the "plain" password that the user will actually
use to log in. Instead, Django uses a mathematical trick called a hash function, which transforms the pass-
word into a random-looking (but not actually random) string of letters and numbers. That result is then stored
in the database instead of the actual password. The advantage is that a hash function only works one way: if
you know the password, you can apply the hash function and always get the same result, but if you only
know the result you can't work backward to get the password.

This provides a reasonably secure way to store passwords. When you try to log in, Django's authentica-
tion system applies the hash function to the password you've entered and compares the result to the value
in the database. This means that the "plain" password never has to be permanently stored anywhere. But
because this is a bit tricky to work with, Django's User model has a custom manager that defines the
create_user() method you're using here. This method handles the work of applying the hash function
to the password and storing the correct value.

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION170

And here’s the finished form:

from django.contrib.auth.models import User
from django import newforms as forms

class SignupForm(forms.Form):
username = forms.CharField(max_length=30)
email = forms.EmailField()
password1 = forms.CharField(max_length=30,
widget=forms.PasswordInput(render_value=False))
password2 = forms.CharField(max_length=30,
widget=forms.PasswordInput(render_value=False))

def clean_username(self):
try:

User.objects.get(username=self.cleaned_data['username'])
except User.DoesNotExist:

return self.cleaned_data['username']
raise forms.ValidationError("This username is already in use.➥

Please choose another.")

def clean(self):
if 'password1' in self.cleaned_data and 'password2' in self.cleaned_data:

if self.cleaned_data['password1'] != self.cleaned_data['password2']:
raise forms.ValidationError("You must type the same➥

password each time")
return self.cleaned_data

def save(self):
new_user = User.objects.create_user(username=self.cleaned_data['username'],

email=self.cleaned_data['email'],
password=self.cleaned_data['password1'])

return new_user

How Form Validation Works
The method you’ll use in views to determine whether submitted data is valid or not is called
is_valid() and is defined on the base Form class that all Django forms derive from. Inside the
Form class, is_valid() touches off the form’s validation routines, in a specific order, by calling
full_clean() (another method defined in the base Form class in django.newforms; see
Figure 9-1).

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION 171

Figure 9-1. The order in which validation methods are applied to a Django form

The order of validation goes like this:

1. First, full_clean() loops through the fields on the form. Each field class has a method
named clean(), which implements that field’s built-in validation rules, and each of
these methods will either raise a ValidationError or return a value. If a ValidationError
is raised, no further validation is done for that field (since the data is already known to
be invalid). If a value is returned, it goes into the form’s cleaned_data dictionary.

2. If a field’s built-in clean() method didn’t raise a ValidationError, then any available
custom validation method—a method whose name starts with clean_ and ends with
the name of the field—is called. Again, these methods can either raise a ValidationError
or return a value; if they return a value it goes into cleaned_data.

3. Finally, the form’s clean() method is called. It can also raise a ValidationError, albeit
one that’s not associated with any specific field. If clean() finds no new errors, it
should return a complete dictionary of data for the form, usually by doing return
self.cleaned_data.

4. If no validation errors were raised, the form’s cleaned_data dictionary will be fully pop-
ulated with the valid data. If there were validation errors, however, cleaned_data will
not exist, and a dictionary of errors (self.errors) will be filled with validation errors.
Each field knows how to retrieve its own errors from this dictionary, which is why you
can do things like {{ form.username.errors }} in a template.

5. Finally, is_valid() either returns False if there were validation errors or True if there
weren’t.

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION172

Understanding this process is key to getting the most out of Django’s form-handling sys-
tem. It may seem a bit complex at first, but having multiple places where validation rules
can be attached to a form results in a huge amount of flexibility and makes it easier to write
reusable code. For example, if you find yourself needing to use a particular type of validation
over and over again, you’ll notice that writing a custom method on each form gets tedious. It’ll
probably be a good idea to just write your own field class, define a custom clean() method on
it, and then reuse that field.

Similarly, the distinction between methods that go with a specific field, and the “form-
level” clean() method, opens up a lot of useful tricks with validating multiple fields together,
which wouldn’t necessarily make sense if viewed entirely from the perspective of a single field.

Processing the Form
Now, let’s take a look at a view you might use to display and process this form:

from django.http import HttpResponseRedirect
from django.shortcuts import render_to_response

def signup(request):
if request.method == 'POST':

form = SignupForm(data=request.POST)
if form.is_valid():

new_user = form.save()
return HttpResponseRedirect("/accounts/login/")

else:
form = SignupForm()

return render_to_response('signup.html',
{ 'form': form })

Let’s break this down step by step:

1. First you check the method of the incoming HTTP request. Usually, this will be GET or
POST. (Though there are other HTTP methods, they’re not as commonly used, and web
browsers typically only support GET and POST for form submissions.)

2. If, and only if, the request method is POST, you instantiate a SignupForm and pass it
request.POST as its data. Back in Chapter 3, when you wrote a simple search function,
you saw that request.GET is a dictionary of data sent with a GET request, and similarly
request.POST is the dictionary of data (in this case, the form submission) sent along
with a POST request.

3. You check whether the submitted data is valid by calling the form’s is_valid()
method. Under the hood, this matches up the submitted data with the fields on the
form and checks against each field’s validation rules. If the data passes validation,
is_valid() will return True, and the form’s cleaned_data dictionary will be populated
with the correct values. Otherwise, is_valid() will return False, and the cleaned_data
dictionary will not exist.

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION 173

4. If the data was valid, you call the form’s save() method, which you previously defined.
Then you return an HTTP redirect—using django.http.HttpResponseRedirect—to a
new page, which, presumably, would be wired up to a view to let the new user log in.
Whenever you accept data from an HTTP POST, you should always redirect after suc-
cessful processing. By taking the user to a new page, you avoid a common pitfall where
refreshing or clicking the Back button in a web browser accidentally resubmits a form.

5. If the request method was anything other than POST, you instantiate a SignupForm with-
out any data. Technically speaking, this is called an unbound form (one that has no
data to work with), as opposed to a bound form, which does have some data to validate.

6. You render a template, passing the form as a variable into it, and return a response.
Note that because of the way this view is written, you’ll never get to this step if the user
submitted valid data. In that case, the if statements farther up would already have
ensured that a redirect was returned. Also, note that this step is the same regardless of
whether there was invalid data or no data at all—the SignupForm object doesn’t have to
be treated specially according to the different cases.

Finally, let’s take a look at how you might display this in the signup.html template used by
this view:

<html>
<head>
<title>Sign up for an account</title>

</head>
<body>
<h1>Sign up for an account</h1>
<p>Use the form below to register for your new account; all

fields are required.</p>
<form method="post" action="">
{% if form.non_field_errors %}
<p>
{{ form.non_field_errors|join:", " }}
</p>
{% endif %}
<p>{% if form.username.errors %}
{{ form.username.errors|join:", " }}
{% endif %}</p>
<p><label for="id_username">Username:</label>

{{ form.username }}</p>
<p>{% if form.email.errors %}

{{ form.email.errors|join:", " }}

{% endif %}</p>
<p><label for="id_name">Your e-mail address:</label>

{{ form.email }}</p>
<p>{% if form.password1.errors %}

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION174

{{ form.passsword1.errors|join:", " }}

{% endif %}</p>
<p><label for="id_password1">Password:</label>

{{ form.password1 }}</p>
<p>{% if form.password2.errors %}

{{ form.passsword2.errors|join:", " }}

{% endif %}</p>
<p><label for="id_password2">Password (again, to catch

typos): </label>
{{ form.password2 }}</p>

<p><input type="submit" value="Submit"></p>
</form>

</body>
</html>

Most of the HTML here is pretty simple: a standard <form> tag with <label> tags for each
field and a button to submit. But notice how you actually show the fields. Each one is accessed
as an attribute of the {{ form }} variable. You can check each one to see if it had any errors
and display the error messages (which will be in a list, even if there’s only one message—hence
you use the join template filter, which can join a list of items using a specified string as a
separator).

Note, though, that at the top of the form you use {{ form.non_field_errors }}. This is
because the error raised from the clean() method doesn’t “belong” to any one field (since it
comes from comparing two fields to each other). Whenever you have a potential validation
error from the clean() method, you’ll need to check for non_field_errors and display it if
present.

A Form for Adding Code Snippets
So now you have a pretty good idea of how to write a form for adding instances of your Snippet
model. You’ll simply set up fields for the things you want users to fill in, and then give it a
save() method, which creates and saves the new snippet.

But there’s one new thing you have to handle here. The author field on your Snippet
model has to be filled in, and it has to be filled in correctly, but you don’t want to show it to
your users and let them choose a value. If you did that, any user could effectively pretend to be
any other by filling in someone else’s name on a snippet. So you need some way to fill in that
field without making it a public part of the form.

Luckily, this is easy to do: a form is just a Python class. So you can add your own custom
__init__() method to it and trust that the view function that processes the form will pass in
the correct, authenticated user, which you can store and refer back to when it’s time to save
the snippet. So let’s get started.

Go into the cab directory and create a file called forms.py. In it you can start writing your
form as follows:

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION 175

from django import newforms as forms
from cab.models import Snippet

class AddSnippetForm(forms.Form):
def __init__(self, author, *args, **kwargs):

super(AddSnippetForm, self).__init__(*args, **kwargs):
self.author = author

Note that, aside from accepting an extra argument—author, which you store for later
use—you’re doing two important things here:

• In addition to the author argument, you specify that this method accepts *args and
**kwargs. This is a Python shorthand for saying that it will accept any combination of
positional and keyword arguments.

• You use super() to call the parent class’s __init__() method, passing the other argu-
ments your custom __init__() accepted. This ensures that the __init__() from the
base Form class gets called and sets everything else up properly on your form.

Using this form—accepting *args and **kwargs and passing them on to the parent
method—is a useful shorthand when the method you’re overriding accepts a lot of arguments,
especially if a lot of them are optional. The __init__() method of the base Form class actually
accepts up to seven arguments, all of them optional, so this is a handy trick.

Now you can add the fields you care about:

title = forms.CharField(max_length=255)
description = forms.CharField(widget=forms.Textarea())
code = forms.CharField(widget=forms.Textarea())
tags = forms.CharField(max_length=255)

Note that once again you’re relying on the fact that you can change the widget used by a
field to alter its presentation. Where Django’s model system uses two different fields—
CharField and TextField—to represent different sizes of text-based fields (and has to, because
they work out to different data types in the underlying database columns), the form system
only has a CharField. To turn it into a <textarea> in the eventual HTML, you simply change its
widget to a Textarea, in much the same way that you used the PasswordInput widget in the
example user signup form.

And that takes care of everything except the language, which is suddenly looking a little
bit tricky. What you’d like to do is show a drop-down list (an HTML <select> element) of the
available languages and validate that the user picked one of those. But none of the field types
you’ve seen so far can handle that, so you’ll need to turn to something new.

One way you could handle this is with a field type called ChoiceField. It takes a list of
choices (in the same format as a model field that accepts choices—you’ve seen that already in,
for example, the status field on the weblog’s Entry model) and ensures that the submitted
value is one of them. But setting that up properly so that the form queries for the set of lan-
guages each time it’s used (in case an administrator has added new languages to the system)
would require some more hacking in the __init__() method. And representing a model rela-
tionship like this is an awfully common situation, so you’d expect Django to provide an easy
way to handle this.

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION176

As it turns out, Django does provide an easy solution: a special field type called
ModelChoiceField. Where a normal ChoiceField would simply take a list of choices, a
ModelChoiceField takes a Django QuerySet, and dynamically generates its choices from the
result of the query (executed fresh each time). To use it, you’ll need to change the model
import at the top of the file to also bring in the Language model:

from cab.models import Snippet, Language

And then you can simply write:

language = forms.ModelChoiceField(queryset=Language.objects.all())

For this form, you don’t need any special validation beyond what the fields themselves
give you, so you can just write the save() method and be done:

def save(self):
snippet = Snippet(title=self.cleaned_data['title'],

description=self.cleaned_data['description'],
code=self.cleaned_data['code'],
tags=self.cleaned_data['tags'],
language=self.cleaned_data['language'])

snippet.save()
return snippet

Since creating an object and saving it all in one step is a common pattern in Django, you
can actually shorten that a bit. The default manager class Django provides will include a
method called create(), which creates, saves, and returns a new object. Using that, your
save() method is a couple lines shorter:

def save(self):
return Snippet.objects.create(title=self.cleaned_data['title'],

description=self.cleaned_data['description'],
code=self.cleaned_data['code'],
tags=self.cleaned_data['tags'],
language=self.cleaned_data['language'])

And now your form is complete:

from django import newforms as forms
from cab.models import Snippet, Language

class AddSnippetForm(forms.Form):
def __init__(self, author, *args, **kwargs):

super(AddSnippetForm, self).__init__(*args, **kwargs):
self.author = author

title = forms.CharField(max_length=255)
description = forms.CharField(widget=forms.Textarea())
code = forms.CharField(widget=forms.Textarea())

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION 177

tags = forms.CharField(max_length=255)
language = forms.ModelChoiceField(queryset=Language.objects.all())

def save(self):
return Snippet.objects.create(title=self.cleaned_data['title'],

description=self.cleaned_data['description'],
code=self.cleaned_data['code'],
tags=self.cleaned_data['tags'],
language=self.cleaned_data['language'])

Writing a View to Process the Form
Now you can write a short view to handle submissions. In the cab/views directory, create a file
called snippets.py, and in it place the following code:

from django.http import HttpResponseRedirect
from django.shortcuts import render_to_response
from cab.forms import AddSnippetForm

def add_snippet(request):
if request.method == 'POST':

form = AddSnippetForm(author=request.user, data=request.POST)
if form.is_valid():

new_snippet = form.save()
return HttpResponseRedirect(new_snippet.get_absolute_url())

else:
form = AddSnippetForm(author=request.user)

return render_to_response('cab/add_snippet.html',
{ 'form': form })

This will instantiate the form, validate the data, save the new Snippet, and return a redi-
rect (again, always redirect after a successful POST) to the detail view of that snippet.

At first this looks great, but there’s a problem lurking here. You’re referring to request.
user, which will be the currently logged in user (this is automatically set up by Django when
the authentication system has been properly activated). But what happens if the person filling
out this form isn’t logged in?

The answer is that your data won’t really be valid. When the current user isn’t logged in,
request.user is a “dummy” object representing an anonymous user, and it can’t be used as the
value of a snippet’s author field. So what you need is some way to ensure that only logged-in
users can fill out this form.

Fortunately, Django provides an easy way to handle this, via a decorator in the authenti-
cation system called login_required. You can simply import it and apply it to your view
function, and anyone who’s not logged in will be redirected to a login page:

from django.http import HttpResponseRedirect
from django.shortcuts import render_to_response
from django.contrib.auth.decorators import login_required
from cab.forms import AddSnippetForm

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION178

def add_snippet(request):
if request.method == 'POST':

form = AddSnippetForm(author=request.user, data=request.POST)
if form.is_valid():

new_snippet = form.save()
return HttpResponseRedirect(new_snippet.get_absolute_url())

else:
form = AddSnippetForm(author=request.user)

return render_to_response('cab/add_snippet.html',
{ 'form': form })

add_snippet = login_required(add_snippet)

ADMONITION: SETTING UP LOGIN/LOGOUT VIEWS

Django's authentication system, bundled in django.contrib.auth, includes the views and forms you'll
need to properly authenticate users and log them in. So long as you're just testing an application on your own
computer, you can log in through Django's admin interface, and then visit any views you've marked with
login_required. But for a live public deployment, you'll want to set up public-facing login/logout views for
ordinary users.

To see how to use the built-in authentication views, consult the documentation for Django's authentica-
tion system online at www.djangoproject.com/documentation/authentication/.

From here you could write the cab/add_snippet.html template like so:

<html>
<head>
<title>Add a snippet</title>

</head>
<body>
<h1>Add a snippet</h1>
<p>Use the form below to submit your snippet; all fields are

required.</p>
<form method="post" action="">
<p>{% if form.title.errors %}

{{ form.title.errors|join:", " }}

{% endif %}</p>
<p><label for="id_title">Title:</label>
{{ form.title }}</p>
<p>{% if form.language.errors %}

{{ form.language.errors|join:", " }}

{% endif %}</p>

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION 179

<p><label for="id_languages">Language:</label>
{{ form.language }}</p>
<p>{% if form.description.errors %}

{{ form.description.errors|join:", " }}

{% endif %}</p>
<p><label for="id_description">Description:</label></p>
<p>{{ form.description }}</p>
<p>{% if form.code.errors %}

{{ form.code.errors|join:", " }}

{% endif %}</p>
<p><label for="id_code">Code:</label></p>
<p>{{ form.code }}</p>
<p>{% if form.tags.errors %}

{{ form.tags.errors|join:", " }}

{% endif %}</p>
<p><label for="id_tags">Tags:</label>
{{ form.tags }}</p>
<p><input type="submit" value="Submit"></p>

</form>
</body>

</html>

Automatically Generating a Form for
Adding Snippets
Although Django’s form system lets you be pretty concise about writing and using this form,
you still haven’t arrived at an ideal solution. Setting up a form for adding or editing instances
of a model is a pretty common thing, and it would be awfully annoying to have to keep writing
these sorts of boilerplate forms over and over (especially when you’ve already specified most
or all of the relevant information once in the definition of the model class).

Fortunately, there’s a way to drastically reduce the amount of code you have to write.
Provided you don’t need too much in the way of custom behavior from your form, Django
provides a shortcut class, called ModelForm, which can automatically generate a moderately
customizable form from a model definition, including all the relevant fields and the necessary
save() method. At its most basic, here’s how it works:

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION180

from django.newforms import ModelForm
from cab.models import Snippet

class SnippetForm(ModelForm):
class Meta:

model = Snippet

Subclassing ModelForm and supplying an inner Meta class that specifies a model will set up
this form class to automatically derive its fields from the specified model. And ModelForm is
smart enough to ignore any fields in the model defined with editable=False, so fields like the
HTML version of the description won’t show up in this form. The only thing that’s lacking here
is that the author field will show up. Luckily, ModelForm supports some customizations, includ-
ing a list of fields to specifically exclude from the form, so you can simply change the
definition to the following:

class SnippetForm(ModelForm):
class Meta:

model = Snippet
exclude = ['author']

And it’ll leave the author field out. Now you can simply delete cab/forms.py and rewrite
cab/views/snippets.py like so:

from django.http import HttpResponseRedirect
from django.newforms import ModelForm
from django.shortcuts import render_to_response
from django.contrib.auth.decorators import login_required
from cab.models import Snippet

class SnippetForm(ModelForm):
class Meta:

model = Snippet
exclude = ['author']

def add_snippet(request):
if request.method == 'POST':

form = SnippetForm(data=request.POST)
if form.is_valid():

new_snippet = form.save()
return HttpResponseRedirect(new_snippet.get_absolute_url())

else:
form = SnippetForm()

return render_to_response('cab/add_snippet.html',
{ 'form': form })

add_snippet = login_required(add_snippet)

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION 181

However, this isn’t quite right. The Snippet needs to have an author filled in, but you’ve
left that field out of the form. You could go back and define a custom __init__() method
again and pass in request.user, but ModelForm has one more trick up its sleeve. You can have
it create the Snippet object and return it without saving by passing an extra argument—
commit=False—to its save() method. When you do this, save() will still return a new Snippet
object, but it will not save it to the database. This will leave you free to add the user yourself
and manually insert the new Snippet into the database:

from django.http import HttpResponseRedirect
from django.newforms import ModelForm
from django.shortcuts import render_to_response
from django.contrib.auth.decorators import login_required
from cab.models import Snippet

class SnippetForm(ModelForm):
class Meta:

model = Snippet
exclude = ['author']

def add_snippet(request):
if request.method == 'POST':

form = SnippetForm(data=request.POST)
if form.is_valid():

new_snippet = form.save(commit=False)
new_snippet.author = request.user
new_snippet.save()
return HttpResponseRedirect(new_snippet.get_absolute_url())

else:
form = SnippetForm()

return render_to_response('cab/add_snippet.html',
{ 'form': form })

add_snippet = login_required(add_snippet)

ADMONITION: commit=False AND MANY-TO-MANY RELATIONSHIPS

If the model you're working with has a ManyToManyField (which will be represented in a form by a field
type called ModelMultipleChoiceField), you'll need to take one additional step when you use the
save() method of a ModelForm with commit=False. Many-to-many relationships can't be set up until
after the primary object is saved (since they need to know its id in the database). So any time you use
commit=False on a form that had a many-to-many relation, the form will have a method named
save_m2m(), which stores the data for the eventual many-to-many relationships, and you'll need to call
that method manually (with no arguments) after you've saved the primary object.

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION182

Now you can open up cab/urls/snippets.py and add a new import:

from cab.views.snippets import add_snippet

and a new URL pattern:

url(r'^add/$', add_snippet, name='cab_snippet_add'),

Simplifying Templates That Display Forms
The template outlined previously will continue to work because the form’s fields haven’t
changed. But again, it would be nice if Django provided an easy way to show a form in a tem-
plate without having to write out all the repetitive HTML and checks for field errors. You’ve
eliminated the tedium of defining the form class itself, so why not eliminate the tedium of
templating it?

To deal with this, every Django form has a few methods attached to it that know how to
render the form into different types of HTML:

as_ul(): Renders the form as a set of HTML list items (tags), with one item per field.

as_p(): Renders the form as a set of paragraphs (HTML <p> tags), with one item per
paragraph.

as_table(): Renders the form as an HTML table, with one <tr> per field.

So, for example, you could replace the templating you’ve been doing so far (a set of HTML
paragraph elements) with only the following:

{{ form.as_p }}

But there are a few things to note when using these methods:

• None of them output the enclosing <form> and </form> tags because the form doesn’t
“know” how or where you plan to have the form submitted. You’ll need to fill in these
tags yourself, with appropriate action and method attributes.

• None of them output any buttons for submitting the form. Again, the form doesn’t
know how you want it to be submitted, so you’ll need to supply one or more <input
type="submit"> tags yourself.

• The as_li() method doesn’t output the surrounding and tags, and the
as_table() method doesn’t output the surrounding <table> and </table> tags. This is
in case you want to add more HTML yourself (which is a common need for form pres-
entation), so you’ll need to remember to fill in these tags.

• Finally, these methods are not easily customizable. When you just need a basic presen-
tation for a form (especially for rapid prototyping so you can test an application),
they’re extremely handy, but if you need custom presentation you’ll probably want to
switch back to manually templating the form.

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION 183

Editing Snippets
Now you have a system in place for users to submit their code snippets, but what happens if
someone wants to go back and edit one? It’s inevitable that someone will accidentally submit
some code that has a typo or a minor error, or find a better solution, and it would be nice to let
users edit their own snippets in those cases. So let’s go ahead and set up snippet editing.

Fortunately, this is going to be easy. ModelForm also knows how to edit an existing object,
which takes care of most of the heavy lifting. All you have to do, then, is handle two things:

• Figure out which Snippet object to edit.

• Make sure that the user who’s trying to edit the Snippet is its original author.

You can handle the first part fairly easily by having your snippet-editing view receive the
id of the Snippet in the URL, and then looking it up in the database. Then you can compare its
author field to the currently logged-in user to ensure that they match. So let’s start by adding a
couple more imports to cab/views/snippets.py:

from django.shortcuts import get_object_or_404
from django.http import HttpResponseForbidden

The HttpResponseForbidden class represents an HTTP response with the status code 403,
which indicates that the user doesn’t have permission to do whatever they were trying to do.
You’ll use it when someone tries to edit a snippet they didn’t originally submit. Here’s the view:

def edit_snippet(request, snippet_id):
snippet = get_object_or_404(Snippet, pk=snippet_id)
if request.user.id != snippet.author.id:

return HttpResponseForbidden()
if request.method == 'POST':

form = SnippetForm(instance=snippet, data=request.POST)
if form.is_valid():

snippet = form.save()
return HttpResponseRedirect(snippet.get_absolute_url())

else:
form = SnippetForm(instance=snippet)

return render_to_response('cab/edit_snippet.html',
{ 'form': form })

edit_snippet = login_required(edit_snippet)

To tell a ModelForm subclass that you’d like it to edit an existing object, you simply pass
that object as the keyword argument instance; the form will handle the rest. And note that
since the Snippet already has an author, and that value won’t be changing, you don’t need to
use commit=False and then manually save the Snippet. The form won’t change that value, so
you can simply let it save as is.

Now you can add a URL pattern for it. First you change the import line in cab/urls/
snippets.py to also import this view:

from cab.views.snippets import add_snippet, edit_snippet

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION184

and then you add the URL pattern:

url(r'^edit/(?P<snippet_id>\d+)/$', edit_snippet, name='cab_snippet_edit'),

Since the form for both this and the add_snippet view will have the same fields, you can
simplify the templating a bit by using only one template and passing a variable that indicates
whether you’re adding or editing (so that things like the page title can change accordingly). So
let’s change the add_snippet view’s final line to pass an extra variable called add, set its value to
True, and change the template name to cab/snippet_form.html:

return render_to_response('cab/snippet_form.html',
{ 'form': form, 'add': True })

Then you can change the same line in edit_snippet to use cab/snippet_form.html and set
the add variable to False:

return render_to_response('cab/snippet_form.html',
{ 'form': form, 'add': False })

Now you can simply have one template—cab/snippet_form.html—which can look like
this:

<html>
<head>
<title>{% if add %}Add a{% else %}Edit your{% endif %} snippet</title>

</head>
<body>
<h1>{% if add %}Add a{% else %}Edit your{% endif %} snippet</h1>
<p>Use the form below to {% if add %}add{% else %}edit {% endif %}

your snippet; all fields are required</p>
<form method="post" action="">
{{ form.as_p }}
<p><input type="submit" value="Send"></p>

</form>
</body>

</html>

Now you have views, forms, and templates, which let users both add and edit their code
snippets. Here’s the finished cab/views/snippets.py file, for reference:

from django.http import HttpResponseForbidden, HttpResponseRedirect
from django.newforms import ModelForm
from django.shortcuts import get_object_or_404, render_to_response
from django.contrib.auth.decorators import login_required
from cab.models import Snippet

class SnippetForm(ModelForm):
class Meta:

model = Snippet
exclude = ['author']

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION 185

def add_snippet(request):
if request.method == 'POST':

form = SnippetForm(data=request.POST)
if form.is_valid():

new_snippet = form.save(commit=False)
new_snippet.author = request.user
new_snippet.save()
return HttpResponseRedirect(new_snippet.get_absolute_url())

else:
form = SnippetForm()

return render_to_response('cab/snippet_form.html',
{ 'form': form, 'add': True })

add_snippet = login_required(add_snippet)

def edit_snippet(request, snippet_id):
snippet = get_object_or_404(Snippet, pk=snippet_id)
if request.user.id != snippet.author.id:

return HttpResponseForbidden()
if request.method == 'POST':

form = SnippetForm(instance=snippet, data=request.POST)
if form.is_valid():

snippet = form.save()
return HttpResponseRedirect(snippet.get_absolute_url())

else:
form = SnippetForm(instance=snippet)

return render_to_response('cab/snippet_form.html',
{ 'form': form, 'add': False })

edit_snippet = login_required(edit_snippet)

Looking Ahead
Before moving on, I would suggest taking a little time to work with Django’s form system.
Though you should have a good understanding by now of the basics, you’ll probably want
to spend some time looking over the full documentation for the django.newforms package
(online at www.djangoproject.com/documentation/newforms/) to get a feel for all of its features
(including the full range of field types and widgets, as well as some more advanced tricks for
customizing form presentation).

When you’re ready to come back, the next chapter will wrap up this application by adding
the bookmarking and rating features, including lists of the most popular snippets and the nec-
essary template extensions to determine whether a user has already bookmarked or rated a
snippet.

CHAPTER 9 ■ FORM PROCESSING IN THE CODE-SHARING APPLICATION186

Finishing the Code-Sharing
Application

With the addition of the forms for user submissions, your code-sharing application is nearly
complete. Only three features are left to implement from the original list. Then you can wrap
up by rounding out the application with a few final views. Let’s get started.

Bookmarking Snippets
Currently, your application’s users can keep track of their favorite snippets by bookmarking
them in a web browser or posting bookmarks to a service like del.icio.us. However, it would be
nice to give each user the ability to track a personalized list of snippets directly on the site.
This will cut down on the amount of clutter in each user’s general-purpose bookmarks, and it
will provide a useful social metric—most-bookmarked snippets—that you can track and dis-
play publicly.

The first thing you need to support this is, obviously, a model representing a user’s
bookmark. This is a pretty simple model, because all it needs to do is track a few pieces of
information:

• The user the bookmark belongs to

• The snippet the user bookmarked

• The date and time when the user bookmarked the snippet

You can manage this by opening up cab/models.py and adding a new model with three
fields for this information:

class Bookmark(models.Model):
snippet = models.ForeignKey(Snippet)
user = models.ForeignKey(User, related_name='cab_bookmarks')
date = models.DateTimeField(editable=False)

class Meta:
ordering = ['-date']

187

C H A P T E R 1 0

def __unicode__(self):
return "%s bookmarked by %s" % (self.snippet, self.user)

def save(self):
if not self.id:

self.date = datetime.datetime.now()
super(Bookmark, self).save()

There’s only one new feature in use here, and that’s the related_name argument to the for-
eign key pointing at the User model. The fact that you’ve created a foreign key to User means
that Django will add a new attribute to every User object, which you’ll be able to use to access
each user’s bookmarks. By default, this attribute would be named bookmark_set based on the
name of your Bookmark model. For example, you might query for a user’s bookmarks like so:

from django.contrib.auth.models import User

u = User.objects.get(pk=1)
bookmarks = u.bookmark_set.all()

However, this can create a problem: if you ever use any other application with a book-
marking system, and if that application names its model Bookmark, you’ll get a naming
conflict, because the bookmark_set attribute of a User can’t simultaneously refer to two differ-
ent models.

The solution to this is the related_name argument to ForeignKey, which lets you manually
specify the name of the new attribute on User, which you’ll use to access bookmarks. In this
case, you use cab_bookmarks, so once this model is installed and you have some bookmarks in
your database, you’ll be able to run queries like this:

from django.contrib.auth.models import User

u = User.objects.get(pk=1)
bookmarks = u.cab_bookmarks.all()

Generally, it’s a good idea to use related_name any time you’re creating a relationship from
a model with a common name.

Also, note that since users will manage their bookmarks entirely through public-facing
views, you don’t need to activate the admin interface for the Bookmark model, so there is no
inner Admin class here.

Go ahead and run manage.py syncdb to install this model into your database. Again,
syncdb is smart enough to realize that it only needs to create one new table.

Basic Bookmark Views
Now you can add a couple of views to let users bookmark snippets and remove their book-
marks later if they wish. Create a file in cab/views called bookmarks.py, and start with the
add_bookmark view:

CHAPTER 10 ■ FINISHING THE CODE-SHARING APPLICATION188

from django.http import HttpResponseRedirect
from django.shortcuts import get_object_or_404, render_to_response
from django.contrib.auth.decorators import login_required
from cab.models import Bookmark, Snippet

def add_bookmark(request, snippet_id):
snippet = get_object_or_404(Snippet, pk=snippet_id)
try:

Bookmark.objects.get(user__pk=request.user.id,
snippet__pk=snippet.id)

except Bookmark.DoesNotExist:
bookmark = Bookmark.objects.create(user=request.user,

snippet=snippet)
return HttpResponseRedirect(snippet.get_absolute_url())

add_bookmark = login_required(add_bookmark)

The logic here is pretty simple. You look to see if the user already has a bookmark for this
snippet, and if not—in which case the Bookmark.DoesNotExist exception will be raised—you
create one. Either way, you return a redirect back to the snippet, and, of course, you ensure
that the user has to be logged in to do this.

Deleting a bookmark is similarly easy:

def delete_bookmark(request, snippet_id):
if request.method == 'POST':

snippet = get_object_or_404(Snippet, pk=snippet_id)
Bookmark.objects.filter(user__pk=request.user.id,

snippet__pk=snippet.id).delete()
return HttpResponseRedirect(snippet.get_absolute_url())

else:
return render_to_response('cab/confirm_bookmark_delete.html',

{ 'snippet': snippet })
delete_bookmark = login_required(delete_bookmark)

Here you’re using two important techniques:

• Instead of querying to see if the user has a bookmark for this snippet and then deleting
it manually (which incurs the overhead of two database queries), you simply use
filter() to create a QuerySet of any bookmarks that match this user and this snippet.
You then call the delete() method of that QuerySet. This issues only one query—a
DELETE query, whose FROM clause limits it to the correct rows, if any exist.

• You’re requiring that bookmark deletion use an HTTP POST. If the request method isn’t
POST, you display a confirmation page instead.

This last point bears emphasizing, because requiring HTTP POST and a confirmation
screen for anything that deletes content—even trivial-seeming content like a bookmark—is an
extremely important habit to get into. Not only does it prevent accidental deletion by a user
who clicks the wrong link on a page, but it also adds a small measure of security against a
common type of web-based attack: cross-site request forgery (CSRF). In a CSRF attack, a
hacker lures a user of your site to a page that contains a hidden link or form pointing back to

CHAPTER 10 ■ FINISHING THE CODE-SHARING APPLICATION 189

your application. The hacker exploits the fact that because the HTTP requests are coming
from the user, many applications allow modification or deletion of content.

Additionally, it’s generally good practice to require POST for any operation that alerts or
deletes data on the server. The HTTP specification states that certain methods, including GET,
should be considered safe and generally should not have side effects.

ADMONITION: SAFE AND IDEMPOTENT HTTP METHODS

The view you’ve written for adding a bookmark can be accessed via an HTTP GET, which seems to contradict
the idea that this type of view should be safe.

The HTTP specification uses two different but related terms to describe request methods: safe and
idempotent. A safe request is one that has no side effects and simply retrieves some information, while an
idempotent request is one in which the effect of multiple identical requests is the same as the effect of one
request. HTTP requires GET requests to be idempotent, but it doesn’t strictly require them to be safe.

The add_bookmark view is idempotent, because multiple requests from the same user to bookmark
the same snippet don’t create multiple Bookmark objects. The net effect is the same as if there was only one
request, because only one Bookmark object gets created.

The add_bookmark view isn’t safe in this sense, though, because it can have a side effect (creating a
Bookmark object). This doesn’t violate the HTTP specification, but in general, you should be careful when
allowing a GET request to have side effects. In this case, creating a bookmark doesn’t really pose a risk. If
someone were to be tricked into clicking a link to bookmark a snippet, for example, the worst thing that could
happen would be that they’d need to delete the bookmark. So it’s generally acceptable to allow bookmark
creation to happen via a GET request.

Templating the confirmation page is easy enough. You can display some information
about the snippet the user is about to “unbookmark,” and then you can include a simple form
that submits the confirmation via POST:

<form method="post" action="">
<p><input type="submit" value="Delete bookmark"></p>

</form>

ADMONITION: FURTHER PROTECTION AGAINST CSRF

Requiring an HTTP POST helps somewhat against CSRF, because it means that an attacker can’t merely dis-
play a link to a particular page and have that trigger deletion of content. However, for full protection, you’ll
want to refer to and enable django.contrib.csrf, an application bundled with Django that provides
some stronger measures. It automatically inserts and checks for a randomly generated string in an incoming
POST submission, and it returns an HTTP 403 (Forbidden) response if that string is not posted back by the
user’s browser.

You can find full documentation for this system online at www.djangoproject.com/
documentation/csrf/.

CHAPTER 10 ■ FINISHING THE CODE-SHARING APPLICATION190

It’s easy enough to set up URLs for adding and deleting bookmarks. You can create
cab/urls/bookmarks.py and start filling it in:

from django.conf.urls.defaults import *
from cab.views import bookmarks

urlpatterns = patterns('',
url(r'^add/(?P<snippet_id>\d+)/$',

bookmarks.add_bookmark,
name='cab_bookmark_add'),

url(r'^delete/(?P<snippet_id>\d+)/$',
bookmarks.delete_bookmark,
name='cab_bookmark_delete'),

)

Now that you’ve got views in place for managing bookmarks, go ahead and write one to
show a list of the current user’s bookmarks. This is just a wrapper around the object_list
generic view:

from django.views.generic.list_detail import object_list

def user_bookmarks(request):
return object_list(queryset=Bookmark.objects.filter(user__pk=request.user.id),

template_name='cab/user_bookmarks.html',
paginate_by=20)

You can set up a URL for it so that the root of the bookmark URLs simply shows the user’s
bookmarks:

url(r'^$', bookmarks.user_bookmarks, name='cab_user_bookmarks'),

Finally, to round out the bookmark-oriented views, add one that queries for the most-
bookmarked snippets. Since this query returns Snippet objects, place it on the SnippetManager
in cab/managers.py:

def most_bookmarked(self):
from cab.models import Bookmark
subquery = "SELECT COUNT(*) from %(bookmarks_table)s WHERE➥

%(bookmarks_table)s.%(snippet_column)s = snippet.id"
params = { 'bookmarks_table':➥

connection.ops.quote_name(Bookmark._meta.db_table),
'snippet_column': connection.ops.quote_name('snippet_id') }

return self.extra(select={ 'score': subquery % params,
order_by=['-score'])

Write the view in cab/views/popular.py:

def most_bookmarked(request):
return object_list(queryset=Snippet.objects.most_bookmarked(),

template_name='cab/most_bookmarked.html',
paginate_by=20)

CHAPTER 10 ■ FINISHING THE CODE-SHARING APPLICATION 191

Then add the URL pattern in cab/urls/popular.py:

url(r'^bookmarks/$', popular.most_bookmarked, name='cab_most_bookmarked'),

A New Template Tag: {% if_bookmarked %}
To go with the add/delete views, it would be nice when viewing a snippet to have some way of
telling whether a user has already bookmarked it or not. That way, you could either hide any
links to bookmarking views you might otherwise show or switch to showing a link or button to
delete the bookmark.

You could set this up to be part of the detail view of a snippet, but that’s not necessarily
the only place you might want this functionality. If you’re showing a list of snippets, for exam-
ple, you might want a quick and easy way to determine where to show a link for bookmarking
and where not to. The ideal solution would be a template tag, which can tell whether a user
has already bookmarked a specific snippet. Something that works like this would be ideal:

{% if_bookmarked user object %}
<form method="post" action="{% url cab_bookmark_delete object.id %}">
<p><input type="submit" value="Delete bookmark"></p>

</form>
{% else %}

<p>Add bookmark</p>
{% endif_bookmarked %}

ADMONITION: WIRING UP THE URLS

Because you’re using the {% url %} tag to generate the link to the add_bookmark view, you need to add
the URLs for the cab application to your project’s root URLConf module (via include() calls). If you use the
{% url %} tag with a URL name that you haven’t yet set up in your project, it won’t be able to find the cor-
rect URL and will simply return an empty string instead of a URL.

But how can you write this? So far, all of your custom template tags have been pretty
simple. They typically just read their arguments and spit something back out into the context.
Writing this tag requires two new techniques:

• The ability to write a tag that reads ahead a bit in the template to find, for example, the
{% else %} clause and the closing tag, and keeps track of what to display

• The ability to resolve arbitrary variables from the template context, as in the case of a
variable such as object

Fortunately, both of these are easy enough to accomplish.

CHAPTER 10 ■ FINISHING THE CODE-SHARING APPLICATION192

Parsing Ahead in a Django Template
You’ll recall from Chapter 6 when you wrote your first custom template tags that the compila-
tion function for a tag receives two arguments, conventionally called parser and token. At the
time, you were only concerned with the token portion because it contained the arguments you
were interested in. However, now you’re in a situation where parser—which is the actual
object that’s parsing the template—is going to come in handy.

Before diving in too deeply, let’s go ahead and lay out the infrastructure for the custom
tag. In the cab directory, create a new directory called templatetags, and in that directory,
create two new files: __init__.py and snippets.py. Then, open up cab/templatetags/
snippets.py and fill in a couple of necessary imports:

from django import template
from cab.models import Bookmark

Now, you can start writing the compilation function for the {% if_bookmarked %} tag:

def do_if_bookmarked(parser, token):
bits = token.contents.split()
if len(bits) != 3:

raise template.TemplateSyntaxError("%s tag takes two arguments" % bits[0])

This looks at the syntax used to call the tag—which is of the form {% if_bookmarked user
snippet %}—and verifies that it has the right number of arguments, bailing out immediately
with a TemplateSyntaxError if it doesn’t.

Now you can turn your attention to the parser argument and see how it can help you out.
You want to read ahead in the template until you find either an {% else %} or an {% endif_
bookmarked %} tag. You can do just that by calling the parse() method of the parser object and
passing a list of things you’d like it to look for. The result of this parsing will be an instance of
the class django.template.NodeList, which is—as the name implies—a list of template nodes:

nodelist_true = parser.parse(('else', 'endif_bookmarked'))

You’re storing this result in a variable called nodelist_true because—in terms of the
if/else-style behavior of this tag—it corresponds to the output you want to display if the
condition (the user has bookmarked the snippet) is true.

The call to parser.parse() moves ahead in the template to just before the first item in the
list you told it to look for. This means you now want to look at the next token and find out if it’s
an {% else %}. If it is, you’ll need to do a bit more parsing:

token = parser.next_token()
if token.contents == 'else':

nodelist_false = parser.parse(('endif_bookmarked',))
parser.delete_first_token()

else:
nodelist_false = template.NodeList()

If the first thing the parser finds from your list is indeed an {% else %}, then you want
to read ahead again to {% endif_bookmarked %} to get the output to display when the user
hasn’t bookmarked the snippet. This is another NodeList, which you store in the variable
nodelist_false.

CHAPTER 10 ■ FINISHING THE CODE-SHARING APPLICATION 193

If, on the other hand, the parser finds an {% endif_bookmarked %} with no {% else %},
then you simply create an empty NodeList. If the user hasn’t bookmarked the snippet, then
you shouldn’t display anything when there’s no {% else %} clause.

Finally, you return a Node class, passing the two arguments gathered from the tag and the
two NodeList instances. Although you haven’t defined it yet, the Node class you’re going to use
will be called IfBookmarkedNode:

return IfBookmarkedNode(bits[1], bits[2], nodelist_true, nodelist_false)

Resolving Variables Inside a Template Node
Now you can begin writing the IfBookmarkedNode. Obviously, it needs to subclass template.
Node, and it needs to accept four arguments in its __init__() method. You’ll simply store the
two NodeList instances for later use when you render the template:

class IfBookmarkedNode(template.Node):
def __init__(self, user, snippet, nodelist_true, nodelist_false):

self.nodelist_true = nodelist_true
self.nodelist_false = nodelist_false

But what about the user and snippet variables? Right now, they’re the raw strings from the
template, and you don’t yet know what values they’ll actually resolve to when you get a look at
the context. You need some way of saying that these are actually template variables that you
need to resolve later on. Fortunately, that’s easy enough to do:

self.user = template.Variable(user)
self.snippet = template.Variable(snippet)

The Variable class in django.template handles the hard work for you. When given the
template context to work with, it knows how to resolve the variable and gives you back the
actual value it corresponds to.

Now you can start to write the render() method:

def render(self, context):
user = self.user.resolve(context)
snippet = self.snippet.resolve(context)

Each Variable instance has a method called resolve(), which handles the actual business
of resolving the variable. If the variable turns out not to correspond to anything, it’ll even han-
dle raising an exception—django.template.VariableDoesNotExist—automatically for you. Of
course, you’ve seen that it’s usually a good idea for custom template tags to fail silently when
possible, so catch that exception and just have the tag return nothing when one of the vari-
ables is invalid:

def render(self, context):
try:

user = self.user.resolve(context)
snippet = self.snippet.resolve(context)

except template.VariableDoesNotExist:
return ''

CHAPTER 10 ■ FINISHING THE CODE-SHARING APPLICATION194

If you get past this point, then you know that these variables resolved successfully, and
you can use them to query for an existing Bookmark. The only tricky thing now is what to return
in each case. You have two NodeList instances, and you want to render one or the other
according to whether the user has bookmarked the snippet. Fortunately, that’s easy. Just as a
Node must have a render() method that accepts the context and returns a string, so too must
NodeList:

if Bookmark.objects.filter(user__pk=user.id,
snippet__pk=snippet.id):

return self.nodelist_true.render(context)
else:

return self.nodelist_false.render(context)

Now you have a finished tag. After you register it, cab/templatetags/snippets.py looks
like this:

from django import template
from cab.models import Bookmark

def do_if_bookmarked(parser, token):
bits = token.contents.split()
if len(bits) != 3:

raise template.TemplateSyntaxError("%s tag takes two arguments" % bits[0])
nodelist_true = parser.parse(('else', 'endif_bookmarked'))
token = parser.next_token()
if token.contents == 'else':

nodelist_false = parser.parse(('endif_bookmarked',))
parser.delete_first_token()

else:
nodelist_false = template.NodeList()

return IfBookmarkedNode(bits[1], bits[2], nodelist_true, nodelist_false)

class IfBookmarkedNode(template.Node):
def __init__(self, user, snippet, nodelist_true, nodelist_false):

self.nodelist_true = nodelist_true
self.nodelist_false = nodelist_false
self.user = template.Variable(user)
self.snippet = template.Variable(snippet)

def render(self, context):
try:

user = self.user.resolve(context)
snippet = self.snippet.resolve(context)

except template.VariableDoesNotExist:
return ''

if Bookmark.objects.filter(user__pk=user.id,
snippet__pk=snippet.id):

return self.nodelist_true.render(context)

CHAPTER 10 ■ FINISHING THE CODE-SHARING APPLICATION 195

else:
return self.nodelist_false.render(context)

register = template.Library()
register.tag('if_bookmarked', do_if_bookmarked)

Now you can simply do {% load snippets %} in a template and use the {% if_bookmarked
%} tag.

Using RequestContext to Automatically Populate
Template Variables
But you can only use the {% if_bookmarked %} tag if the template you’re using the tag in has an
available variable that represents the currently logged-in user. This is a slightly trickier propo-
sition because so far you haven’t been writing your views to pass the current user as a variable
to the templates they use. Mostly that’s because you haven’t had much need to do so. Every-
thing you’ve been doing with the logged-in user has happened at the view level by accessing
request.user, so you haven’t really run into a case—until now—where you genuinely needed
to have a variable for the user available in templates.

You could simply go back at this point and make the necessary change in all your hand-
written views, but that immediately brings up two disadvantages:

• It’s tedious and repetitive. Generally, Django encourages you to avoid anything that
can be described in that fashion.

• It doesn’t help for views you didn’t write yourself. In a lot of cases, you’re simply wrap-
ping a generic view, and short of manually passing the extra_context argument each
and every time you use a generic view, there doesn’t seem to be any way to solve this.
Plus, this might not help any if you need to use views from someone else’s application.
If that person hasn’t written views to accept an argument similar to extra_context, you
won’t be able to do anything.

Fortunately, there’s an easier solution. As you’ll recall from the first handwritten views
back in Chapter 3, the dictionary of variables and values passed to a template is an instance
of django.template.Context. Because this is an ordinary Python class, you can subclass it to
add customizable behavior. Django includes one very useful subclass of Context—django.
template.RequestContext—which can automatically populate some extra variables each time
it’s used without needing to have those variables explicitly declared and defined in each view.

RequestContext gets its name from the fact that it makes use of functions called context
processors (which I mentioned briefly in Chapter 6). Each context processor is a function that
receives a Django HttpRequest object as an argument and returns a dictionary of variables
based on that HttpRequest. RequestContext then automatically adds those variables to the
context, in addition to any variables explicitly passed to the context during the process of exe-
cuting a view function.

In normal use, RequestContext reads its list of context processor functions from the set-
ting TEMPLATE_CONTEXT_PROCESSORS. The default set happens to include a context processor

CHAPTER 10 ■ FINISHING THE CODE-SHARING APPLICATION196

that reads request.user to get the current user and adds it to the context as the variable
{{ user }}. This just happens to be exactly what you want here. As long as a view uses
RequestContext, its template can rely on the fact that the variable {{ user }} will be available
and will correspond to the currently active user.

Using RequestContext is trivially easy; you simply import it:

from django.template import RequestContext

You can use it anywhere you need a context for a template. The only difference between a
normal Context and RequestContext is that the latter must receive the HttpRequest object as
an argument. For example, in a view, you might write:

context = RequestContext(request, { 'foo': 'bar' })

It works with the render_to_response() shortcut as well, though the usage is slightly dif-
ferent. For example, where you’d normally write this:

return render_to_response('example.html',
{ 'foo': 'bar' })

you instead write this:

return render_to_response('example.html',
{ 'foo': 'bar' },
context_instance=RequestContext(request))

And for cases where you’re wrapping a generic view, you don’t even have to do anything—
Django’s generic views default to using RequestContext. So far, you’ve only written three
views in this application that don’t use generic views—the delete_bookmark, add_snippet,
and edit_snippet views, to be precise—so it’s not too hard to go back and add the use of
RequestContext to them. Because the rest are generic views or wrap generic views, they’re
already using RequestContext.

ADMONITION: USING RequestContext REPETITIVELY

Even though RequestContext obviously makes it a lot easier to handle situations where you want to
have certain variables globally available to your templates, it still feels a little bit repetitive to have to
manually state that you want it each time. And if the generic views use RequestContext automatically,
why shouldn’t a shortcut such as render_to_response() use it as well? In fact, why isn’t it just the
default context class?

One good reason is the fact that RequestContext requires access to the HttpRequest object, and
there’s no way for it to get that access automatically. Unless the HttpRequest is passed to it explicitly,
RequestContext won’t be able to do anything. Another good reason is that in a lot of cases, you’ll want to
render a template independently of any HTTP request being processed. It’s not unusual at all for the Django
template system to be used to generate e-mail messages, files that are written to disk, and all manner of
other things that have little to do directly with the HTTP request/response cycle.

CHAPTER 10 ■ FINISHING THE CODE-SHARING APPLICATION 197

If you do find yourself aching for a shortcut, though, it’s easy to write one like so:

from django.shortcuts import render_to_response
from django.template import RequestContext

def render_response(request, *args, **kwargs):
kwargs['context_instance'] = RequestContext(request)
return render_to_response(*args, **kwargs)

Personally, I tend to avoid doing this, and as a matter of style, I prefer to simply write out the use of
RequestContext each time. I find that doing so serves as a reminder to me that I’m setting up a view to
have the extra variables RequestContext will populate, and the extra bit of code to set it up makes it easy
to spot when I come back later and read over a view function. Handling RequestContext manually also
avoids the problem of writing code that relies heavily on a shortcut function that might not be distributed
along with a particular application, which in turn improves the reusability of your code.

Adding the User Rating System
The only thing left to implement from the feature list is a rating system that lets users mark
particular snippets they found useful (or not useful, as the case may be). Once again, start
with a data model. As with the bookmarking system, it’s fairly simple. You need to collect four
pieces of information:

• The snippet being rated

• The user doing the rating

• The value of the rating—in this case, either a +1 or -1, for a simple “up or down” voting
system

• The date of the rating

You can easily build out the model in cab/models.py:

class Rating(models.Model):
RATING_UP = 1
RATING_DOWN = -1
RATING_CHOICES = ((RATING_UP, 'useful'),

(RATING_DOWN, 'not useful'))
snippet = models.ForeignKey(Snippet)
user = models.ForeignKey(User, related_name='cab_rating')
rating = models.IntegerField(choices=RATING_CHOICES)
date = models.DateTimeField()

CHAPTER 10 ■ FINISHING THE CODE-SHARING APPLICATION198

def __unicode__(self):
return "%s rating %s (%s)" % (self.user, self.snippet,

self.get_rating_display())

def save(self):
if not self.id:

self.date = datetime.datetime.now()
super(Rating, self).save()

As with the Bookmark model, you’re setting related_name explicitly on the relationship to
the User model in order to avoid any potential name clashes with other applications that
might define rating systems. The rating value, meanwhile, uses an integer field, with appropri-
ately named constants, to handle the actual “up” and “down” rating values, in much the same
fashion as the status field on the weblog’s Entry model. There is one new item, though: in the
__unicode__() method, you’re calling a method named get_rating_display(). Any time a
model has a field with choices like this, a method—whose name is derived from the name of
the field—will be automatically added by Django, which will return the human-readable value
for the currently selected value.

While you’re in the cab/models.py file, you can also add a method to the Snippet model
that calculates a snippet’s total score by summing all of the ratings attached to it. If you’ve had
much experience with SQL-based databases, your first instinct will probably be to look for a
way to run a SELECT SUM(rating) query against the ratings table. From a database perspective,
that’s certainly the obvious way to do it. Unfortunately, as of this writing, Django’s object-
relational mapper doesn’t directly support these types of aggregate queries (SUM(), AVG(),
MAX(), and so on), which means that you have two options:

• Run the query manually by writing and executing the SQL yourself.

• Find a different way to run the query.

Doing it manually isn’t terribly hard; you can access the underlying database connection;
use a standardized, lower-level API to run queries directly against your database; and read the
raw results. You’ve already encountered the module django.db.connection in the context of
your various popularity-based queries, though so far you’ve only used it for the ability to for-
mat pieces of a query correctly.

However, manually performing this query is going to be fairly tedious. It would be nicer if
there were some cleaner way to handle it, and as it turns out, there is: Python has a built-in
function, sum(), that returns the sum of the items in a list. All you need to do is get a list of the
rating values for a particular Snippet and call sum() on them. Here’s one way you might
handle it:

def get_score(self):
return sum([r.rating for r in self.rating_set.all()])

This is short and sweet, but unfortunately, it’s also extremely inefficient. Under the hood,
it’s querying the full rows from the ratings table and instantiating a Rating object for each row.

A more efficient way to do this would be to only select the single field you care about—
rating—and sum the results. Django provides an easy way to do this, via a method (which is
available on all default managers and on every QuerySet) called values(). Rather than select
every column and instantiate a model object (which involves a bit of overhead), values()

CHAPTER 10 ■ FINISHING THE CODE-SHARING APPLICATION 199

returns a list of dictionaries. You can pass a list of field names to limit the columns it selects
(and, as a result, the keys in the returned dictionaries). For example, you might see the follow-
ing in a Python interpreter:

>>> from cab.models import Rating
>>> Rating.objects.values('rating')
[{'rating': 1}, {'rating': 1}, {'rating': 1}, {'rating': -1}]

which leads to a slightly better version of the get_score() method:

def get_score(self):
return sum([r['rating'] for r in self.rating_set.values('rating')])

This is more efficient, but having to access the dictionary key each time makes it a bit less
elegant to write. There’s one more way you can do this, though. values() returns a dictionary,
but there’s a similar method named values_list() that returns a list of tuples containing only
the fields you’ve told it to select. This method takes an optional argument—flat=True—
which, if you only select a single field, flattens the result into a single list of the values from
that field. This leads to the following code:

def get_score(self):
return sum(self.rating_set.values_list('rating', flat=True))

This provides a nice balance between efficiency and clean code. It’s slightly slower than
manually running a SELECT SUM() directly against the database, but it’s much shorter and far
more readable than the equivalent code to execute that manual query.

ADMONITION: EXECUTING RAW SQL

Sometimes there won’t be an alternate way to run a query that the Django object-relational mapper doesn’t
support directly. Other times, performance considerations will absolutely require that the query run as raw
SQL that you can hand-tune. In such cases, you’ll want to look at the function django.db.connection.
cursor(), which returns a database cursor object compliant with the standard Python Database API speci-
fied by Python Enhancement Proposal (PEP) 249 (available online at www.python.org/dev/peps/
pep-0249/). You can use this cursor object to execute any query your database is capable of supporting.

Finally, in cab/managers.py, you can add one more method on the SnippetManager for cal-
culating the top-rated snippets:

def top_rated(self):
from cab.models import Rating
subquery = "SELECT SUM(%(rating_column)s) from %(rating_table)s WHERE➥

%(rating_table)s.%(snippet_column)s = snippet.id"
params = { 'rating_column': connection.ops.quote_name('rating'),

'rating_table': connection.ops.quote_name(Rating._meta.db_table),
'snippet_column': connection.ops.quote_name('snippet_id') }

return self.extra(select={ 'score': subquery % params },
order_by=['-score'])

CHAPTER 10 ■ FINISHING THE CODE-SHARING APPLICATION200

This takes care of all the custom queries you’ll need, so go ahead and run manage.py
syncdb to install the Rating model.

Rating Snippets
Letting users rate snippets is pretty easy. All you need is a view that gets a snippet ID and an
“up” or “down” rating, then adds a new Rating object. The view logic is simple. Go ahead and
create one more view file—cab/views/ratings.py—to place this code in:

from django.http import HttpResponseRedirect
from django.shortcuts import get_object_or_404
from django.contrib.auth.decorators import login_required
from cab.models import Rating, Snippet

def rate(request, snippet_id):
snippet = get_object_or_404(Snippet, pk=snippet_id)
if 'rating' not in request.GET or request.GET['rating'] not in ('1', '-1'):

return HttpResponseRedirect(snippet.get_absolute_url())
try:

rating = Rating.objects.get(user__pk=request.user.id,
snippet__pk=snippet.id)

except Rating.DoesNotExist:
rating = Rating(user=request.user,

snippet=snippet)
rating.rating = int(request.GET['rating'])
rating.save()
return HttpResponseRedirect(snippet.get_absolute_url())

rate = login_required(rate)

Only two moderately tricky things are going on here:

• You’re going to expect this view to be accessed with a query string like ?rating=1 or
?rating=-1, so you verify that this is present and has an acceptable value; if not, you
simply redirect back to the snippet.

• To avoid ballot stuffing by a user trying to rate the same snippet over and over, you
ensure that the view simply changes the value of an existing rating if one is found.

Setting up the URL for this should be fairly easy. You can simply add a cab/urls/
ratings.py file and set up the necessary URL pattern:

from django.conf.urls.defaults import *
from cab.views.ratings import rate

urlpatterns = patterns('',
url(r'^(?P<snippet_id>\d+)$', rate, name='cab_snippet_rate'),

)

CHAPTER 10 ■ FINISHING THE CODE-SHARING APPLICATION 201

Adding an {% if_rated %} Template Tag
Go ahead and add an {% if_rated %} template tag similar to the {% if_bookmarked %} tag you
developed earlier in this chapter. The compilation function for it should look familiar (once
again, this goes into cab/templatetags/snippets.py):

def do_if_rated(parser, token):
bits = token.contents.split()
if len(bits) != 3:

raise template.TemplateSyntaxError("%s tag takes two arguments" % bits[0])
nodelist_true = parser.parse(('else', 'endif_rated'))
token = parser.next_token()
if token.contents == 'else':

nodelist_false = parser.parse(('endif_rated',))
parser.delete_first_token()

else:
nodelist_false = template.NodeList()

return IfRatedNode(bits[1], bits[2], nodelist_true, nodelist_false)

Once again, you use the ability to parse ahead in the template to work out the structure of
the if/else possibilities for the tag and store a pair of NodeList instances to pass as arguments
to the Node class, which you can call IfRatedNode. First, you need to change the import state-
ment at the top of the file from:

from cab.models import Bookmark

to:

from cab.models import Bookmark, Rating

Then you can write the IfRatedNode:

class IfRatedNode(template.Node):
def __init__(self, user, snippet, nodelist_true, nodelist_false):

self.nodelist_true = nodelist_true
self.nodelist_false = nodelist_false
self.user = template.Variable(user)
self.snippet = template.Variable(snippet)

def render(self, context):
try:

user = self.user.resolve(context)
snippet = self.snippet.resolve(context)

except template.VariableDoesNotExist:
return ''

if Rating.objects.filter(user__pk=user.id,
snippet__pk=snippet.id):

return self.nodelist_true.render(context)
else:

return self.nodelist_false.render(context)

CHAPTER 10 ■ FINISHING THE CODE-SHARING APPLICATION202

At the bottom of the file, you can register the tag:

register.tag('if_rated', do_if_rated)

Retrieving a User’s Rating
Now that you have the {% if_rated %} tag, you can add a second, complementary tag, to
retrieve the user’s rating for a particular snippet. That lets you set up a template like so:

{% load snippets %}
{% if_rated user snippet %}
{% get_rating user snippet as rating %}
<p>You rated this snippet {{ rating.get_rating_display }}.</p>

{% endif_rated %}

When a user has rated a snippet, this should end up displaying something like, “You rated
this snippet useful.”

The compilation function is straightforward:

def do_get_rating(parser, token):
bits = token.contents.split()
if len(bits) != 5:

raise template.TemplateSyntaxError("%s tag takes four arguments" % bits[0])
if bits[3] != 'as':

raise template.TemplateSyntaxError("Third argument to➥

%s must be 'as'" % bits[0])
return GetRatingNode(bits[1], bits[2], bits[4])

The Node class is also easy. You just need to resolve the two variables, retrieve the Rating,
and put it into the context:

class GetRatingNode(template.Node):
def __init__(self, user, snippet, varname):

self.user = template.Variable(user)
self.snippet = template.Variable(snippet)
self.varname = varname

def render(self, context):
try:

user = self.user.resolve(context)
snippet = self.snippet.resolve(context)

except template.VariableDoesNotExist:
return ''

rating = Rating.objects.get(user__pk=user.id,
snippet__pk=snippet.id)

context[self.varname] = rating
return ''

Next, you register the tag:

register.tag('get_rating', do_get_rating)

CHAPTER 10 ■ FINISHING THE CODE-SHARING APPLICATION 203

Then you can use the tag like so (in the detail view of a snippet, for example):

{% load snippets %}
{% if_rated user object %}
{% get_rating user snippet as rating %}
<p>You rated this snippet {{ rating.get_rating_display }}.</p>

{% else %}
<p>Rate this snippet:

useful or
not useful.</p>

{% endif_rated %}

Looking Ahead
At this point, you’ve implemented everything on your original feature list. You have user-
submittable and user-editable snippets, with tagging and with sorting by language. You also
have bookmarking and rating features as well as some aggregate views to display things like
the top-rated and most-bookmarked snippets and the most-used languages. Along the way,
you’ve learned how to work with Django’s form system, and you’ve picked up some advanced
tricks for working with the object-relational mapper and the template engine.

Of course, you could still add a lot more features at this point:

• Following up on your experiences with the weblog application, you could easily add
comments (with moderation) and feeds.

• You could borrow the content-retrieving template tags you wrote for the weblog and
use them to retrieve the latest snippets or adapt them to perform some of the custom
queries you’ve written for this application.

• You could build out a whole lot of new views and queries; even with the simple set of
models you have here, there’s a lot of room for interesting ways to explore this applica-
tion, and what you’ve set up so far just scratches the surface.

• You could explore ways of integrating this application with some of the others you’ve
written and used (perhaps a code-sharing site with a weblog that points out the site
staff’s favorite snippets).

By now, you’ve reached a point where you can start building out these features on your
own and tailor this application to work precisely the way you want it to. Consider some of
these ideas and think about how you’d implement them, then sit down and write the code.
Then start brainstorming some things you’d like that aren’t listed above, and try your hand at
them too, because if you’ve made it this far, you’re ready to make use of your knowledge and
put Django to work for you.

In recognition of that, I’m not going to dictate any more feature lists or implementations
to you. Instead, in the next (and final) chapter, I’ll change gears a bit and talk about some gen-
eral best practices for developing your Django applications and getting the most out of them.

CHAPTER 10 ■ FINISHING THE CODE-SHARING APPLICATION204

Writing Reusable Django
Applications

So far, this book has mostly been concerned with covering various aspects of Django in the
context of building a set of specific applications. Through the process of writing the code for
those applications, you’ve seen Django’s major components in action and learned how they
can drastically reduce the amount of work needed to build useful web applications. But that’s
really just a small part of what Django can do to help you cut down on the time and effort
needed to build out an application. By encouraging certain best practices and by making it
easier to follow them as you write, Django also helps you to improve the quality, flexibility,
and reusability of your code. And in the long run, that’s a much larger gain.

Time and time again, you’ve seen how components included in Django, or applications
bundled along with it, can help you kick-start the process of developing a new application by
handling common tasks for you. When you’re developing with Django, you don’t need to
worry about writing lots of code to handle your database queries. It’s easy to route specific
URLs to parts of your application or to generate HTML through templating. And when you
use the applications bundled with Django, you can get a lot of functionality for “free.” For
instance, you’ve seen how Django provides features such as user accounts and authentication,
RSS feed generation, user-submitted comments, and even a dynamic administrative interface
for site content.

From there, the natural next step is to consider ways to write new applications that you
can reuse over and over, just the same way you reuse Django’s own components and the
bundled applications in django.contrib. The applications in django.contrib provide good
examples to look at, because—aside from the fact that they’re included in the Django down-
load—there’s nothing special or magical about them. All of them, even the administrative
interface, are simply applications that have been written with flexibility and reusability in
mind, and so are no different from any other well-designed Django application.

As you gain experience with Django and start building up a library of applications you’ve
written on your own, you’ll find that developing your own reusable applications is surprisingly
easy and provides a powerful resource. Instead of reimplementing a particular feature each
time you need it, you can simply write it once and reuse it again and again, giving you an
impressive head start on each new project you work on.

In this chapter, I’ll take an in-depth look at some practical guidelines for developing these
sorts of reusable applications, and I’ll show you some specific techniques that can make the
process easier.

205

C H A P T E R 1 1

One Thing at a Time
A popular adage in software development states that a particular program should “do one
thing, and do it well.” This dates back to the early days of the UNIX operating system, which
consisted, in part, of a collection of small, simple programs that users could chain together to
create powerful effects. Because of this, UNIX is often contrasted with operating systems that
tend to use large, complex applications packed with lots of features.

While complex applications do have their place, the philosophy of building up a system
from a collection of smaller, self-contained parts opens up a lot of flexibility. Instead of having
to make changes to a large and complicated piece of software when you need new features
and keep track of how all of its features interact with each other, you can build up different
arrangements of simpler applications and only write new code when you don’t yet have the
necessary pieces to build what you need.

Although UNIX originally applied this idea to tasks like text processing, this approach
is just as powerful when applied to web development. By keeping a library of small, self-
contained applications that each handle some particular feature, you gain the ability to
reuse them over and over, in different combinations and configurations, as building blocks
for new sites.

Staying Focused
One of the greatest dangers in software development is the process of feature creep or scope
creep. Let’s say you have an idea for an interesting feature that’s at least somewhat related to
what you’re working on, so you go ahead and add it. But once that feature is in place, you start
coming up with ideas for ways to build on it and enhance it with even more features and capa-
bilities, and you start writing more and more code to support these features. Eventually, you
end up with a huge tangled mess that’s strayed significantly from its original purpose.

However, when you’re writing code for a modular system like Django, it’s often a bit easier
to spot the warning signs of feature creep and get back on track. A complex site with a lot of
features but only a small number of applications listed in INSTALLED_APPS often indicates that
one or more of the applications it’s using is trying to do too much.

Similarly, the relatively simple structure of a Django application—models, views, URLs,
and maybe some custom forms or template tags—will quickly start to feel cluttered if you’re
trying to pack too many features into a single application. Sometimes you’ll genuinely need
to maintain a large number of model classes or logical groups of views and URL patterns in a
single application, but often the amount of bookkeeping work you’ll need to do to keep that
much code organized will hint that your application isn’t as tightly focused as it could be.

As a general rule, the easiest way to stay on track is to answer a simple question: “What
does this application do?” Rather than listing out every feature, just try to summarize the
application’s purpose. For example, with the weblog application, the answer to this question
would be, “Give the site staff an easy interface for posting entries and links into a weblog, and
keep these entries organized by using tags and topical categories.” For django.contrib.auth,
the answer would be, “Provide a mechanism for storing user account information and for
authenticating users so they can interact with the site.”

If you find that your answer to this question is getting long—more than a sentence or two,
in a lot of cases—it may be time to step back and evaluate whether your application is trying
to do too many things at once.

CHAPTER 11 ■ WRITING REUSABLE DJANGO APPLICATIONS206

Once you’re in this mindset, you’ll find that you approach new feature ideas with skepti-
cism. Rather than thinking of features solely in terms of how cool they’d be to have on your
site, you’ll also start thinking in terms of how they relate to your application’s purpose. This
makes it a lot easier to weed out things that don’t belong and either reject them or file them
away to be implemented somewhere else.

Advantages of Tightly Focused Applications
Once you’re developing applications with this sort of tight focus, you’ll find that it’s a lot easier
to reuse them. For example, a well-focused application is often a lot simpler to set up and
install, because you usually don’t have to worry about setting up large numbers of templates
or keeping track of (and possibly training your site staff to use) lots of new data models.

You’ll also find that it’s much easier to adapt a tightly focused application when you run
into new situations where you really do need to add a new feature or build in a little bit more
flexibility, because you usually have less code to look through and edit, and it’s usually organ-
ized in a fairly simple fashion. Many extremely useful Django applications consist of only
three or four short files of code.

Finally, you’ll notice that you suddenly have a much easier time dealing with the real,
specific problems your application is trying to solve. When you’re no longer maintaining large
numbers of unrelated features in a single application, you’re free to examine its particular
problem domain in much greater detail and come up with much more thorough and flexible
solutions.

A good real-world example of this would be to expand the simple user-signup system I
used as an example (in Chapter 9) to teach you about Django’s form-processing system. It
would be tempting to simply go from the basic signup form and view you looked at and start
adding features that don’t have as much to do with the process of user signups. For example,
you could add the ability for users to fill out a site-specific user profile or set up preferences to
control how the site is presented to a specific user. However, that’s the beginning of feature
creep. Although user profiles and preference systems are important and useful things to have,
they don’t have a whole lot to do with the user signup process, and just getting that process
right can be complicated enough on its own. Signups should, at least optionally, be able to
require an explicit activation step by sending an e-mail to the new user to confirm the account.
Also, if you need to have user signups on multiple sites, you’ll probably need to specify differ-
ent ways to collect the initial account information. For example, some sites might need new
users to read and agree to terms of service or other policies, while others might have restric-
tions on who can sign up. Finally, many sites also want some way of preventing automated
signups by spambots. Many spambots can navigate automatically through an e-mail–based
activation system, so you might want to add additional wrinkles to the signup process, such as
optionally generating an image with some text in it and requiring the new user to read it and
type the text into a field in the form.

This is a common scenario in application development: even something that seems sim-
ple at first glance can have a lot of complexity lurking just below the surface. Keeping your
applications tightly focused will help you keep your attention on dealing with that complexity,
so you don’t end up with only a partial solution to the problem you originally set out to solve.

CHAPTER 11 ■ WRITING REUSABLE DJANGO APPLICATIONS 207

Developing Multiple Applications
The idea that any given application should do one thing and do it well is only one half of the
process of building complex systems from small, self-contained parts. The other half is the
idea that it’s a good thing to start out from an initial idea and end up developing several appli-
cations that implement different parts of it.

To a certain extent, this is a natural consequence of developing tightly focused applica-
tions. If you don’t let yourself fall into feature creep within a given application, you’ll naturally
end up with a list of features you’d like to have but that don’t logically belong to that applica-
tion. The obvious next step, then, is to develop a separate application with an appropriate
focus for the features you want to implement.

Getting into the habit of “spinning off” new applications whenever you have a new set of
features to implement can be tricky at first, not only because it’s easy to fall victim to feature
creep, but also because it’s extremely tempting to view web development in a way that equates
an application with a web site.

Now, sometimes this isn’t a bad idea. For example, many popular off-the-shelf weblogging
tools take this approach and provide not only basic features like entries and links, but also
their own administrative interfaces, their own user and authentication systems, their own
templating systems, and many other things. For cases in which a particular application is
being developed for nontechnical or only moderately technical users who simply want to
download and install a single package and have their site running immediately, this can be
an extremely useful way to work.

However, when you’re writing applications that are meant to be used and reused by other
developers, or just by you as you work on different projects, this can be a disastrous method of
developing an application. You’ll quickly lose the ability to mix and match specific features as
you build new sites, and typically the only way to compensate is by adding systems that let
you develop plug-ins or other additions to a single large application. This just increases the
complexity of the code and the amount of work you have to do each time you need to add or
reuse a feature.

The alternative—viewing a web site as a collection of tightly focused applications, each
providing some particular feature or set of features—results in far more flexibility and often
encourages better code within each application, as you’ve already seen. Django is designed to
accommodate this style of development:

• Rather than handling everything through a single, monolithic application, Django
has you specify a list of applications to use (the INSTALLED_APPS setting): You can also
designate which applications are responsible for which functionality by setting up the
root URL configuration.

• Instead of forcing all the code for a particular site to exist within a single specific
directory, Django uses the standard Python import path to look for the applications
you list in INSTALLED_APPS: This avoids tying your code to any specific directory struc-
ture, and it lets you reuse a single copy of an application in multiple projects rather
than having to endlessly copy it into new project directories.

CHAPTER 11 ■ WRITING REUSABLE DJANGO APPLICATIONS208

• Through abstractions such as the Site model in django.contrib.sites, Django
encourages you to think in terms of reusing applications across multiple sites, even
when those sites share a database and possibly even a single instance of the adminis-
trative interface: django.contrib.admin can easily provide administration for multiple
sites through a setting called ADMIN_FOR, which lists the settings modules of all the sites
to administer.

The net effect of this is that, although you can do so if you’re really determined, trying to
build all of your features into one large application will often give you the feeling that you’re
swimming against the current. As soon as you start splitting things up logically according to
function, you’ll find development to be a lot easier.

Drawing the Lines Between Applications
Of course, this raises the question of how to tell when you should split off a feature or set of
features and start developing one or more new, separate applications. To some extent, learn-
ing how to recognize the need to spin off new applications is something that comes with
experience, but you can follow some good general guidelines to help with the decision-
making process.

The most obvious sign that you need to start developing a new, separate application is
when you find that there’s a particular feature, or some related features, that you want to have
but that doesn’t logically belong to the application you’re working on. For example, you’d
probably want to have some form of publicly accessible user signup system to accompany the
code-sharing snippets application you developed in the last few chapters, but that system
obviously doesn’t belong in that application, so you should develop it separately.

This gets somewhat trickier when you’re considering sets of features that are at least
somewhat related. The discussion in the previous section of adding user profiles and prefer-
ences along with the signup system is a good example of this, because all of the features
involved relate in some way to handling user accounts. A case can be made for handling them
together, because they’ll almost always be used together. Most of the time, a site that has users
signing up through a public registration system will also have some sort of profile features or
preferences that they can take advantage of.

In these cases, it’s often useful to think in terms of orthogonality. Generally, in software
development, two features are orthogonal if a change to one doesn’t affect the other. User
preferences, then, are orthogonal to user signups, because you could, for example, change the
way the signup process works (say, by adding an explicit activation step or building in meas-
ures to defeat spambots) without changing the way users configure their preferences. When
features are clearly orthogonal to each other like this, they almost always belong in separate
applications.

Finally, reuse can be a good criterion for determining whether some particular feature
deserves to be split out into its own application. If you can imagine a case where you’d want to
use that feature, and just that feature, on another site, the odds are good that it ought to be in
a separate application to make that reuse easier.

CHAPTER 11 ■ WRITING REUSABLE DJANGO APPLICATIONS 209

Splitting Up the Snippets Application
For an instructive example of applying these guidelines, consider the code-sharing applica-
tion you developed over the last few chapters. You developed it as a single application, but you
might have noticed that it contained several features that could just as easily be split out into
separate applications (although they’d be necessary if you were to deploy an actual code-
sharing site publicly).

For example, the rating system you developed was useful and necessary for the social fea-
tures you wanted to have, but under all three of the guidelines listed previously (unrelated
features, orthogonality, and reuse), it would be a strong candidate for becoming its own appli-
cation for these reasons:

• Unrelated features: Providing a mechanism for users to rate code snippets isn’t all that
closely related to the core purpose of the application, which is providing the means for
users to submit and edit the snippets in the first place.

• Orthogonality: The rating system is largely orthogonal to the rest of the application. For
example, you could change it from a simple “up” or “down” rating to a numeric score or
to a system where users give ratings such as “three stars out of four,” without affecting
the way people submit, edit, and bookmark snippets.

• Reuse: It’s easy to imagine other sites or projects where you’d want to have a system for
users to rate content, but where you wouldn’t necessarily want to have the code-snippet
features along with it.

The same is true of the bookmarking system and for almost precisely the same reasons:
it’s not related to the core “purpose” of the application (which, again, is the code-snippet func-
tionality). It’s orthogonal to the other features. Providing the ability for users to bookmark
their favorite pieces of site content is something that’d be useful on a lot of different types of
sites.

Building for Flexibility
Logically splitting functionality up into multiple applications is only part of the process of
making that functionality reusable. As you’ve already seen, it’s easy to imagine a case where
even a seemingly “simple” feature can vary quite a bit from one project to the next. One good
example of this would be a contact form. Many different types of sites need some sort of func-
tion that lets visitors fill out a form and submit some information to site staff, but the use
cases can vary wildly. For example, some sites might want a form that lets visitors send a mes-
sage to the site owner(s) to provide feedback or report problems. Other sites, often business
sites, will probably want to collect more information and might even want different types of
forms for different situations. For example, one form might handle sales inquiries, while
another could handle customer-service requests. Still other sites might want to supplement
the form’s validation rules with spam checks (perhaps by using Akismet or some other form of
automated analysis).

At first it seems like there’d be no way to develop a single application that can handle all
these cases (and this is just a small sample of the use cases for a contact form). You might sus-
pect that you’ll just have to bite the bullet and write a different version of the application each

CHAPTER 11 ■ WRITING REUSABLE DJANGO APPLICATIONS210

time you use it. However, with a bit of planning and a little bit of code, a Django application
can become flexible enough to handle all of these variations on the underlying theme, and
more.

Flexible Form Handling
If you’re going to write a contact-form application, you might start out by defining a simple
contact form like so:

from django import newforms as forms
from django.core.mail import mail_managers

class ContactForm(forms.Form):
name = forms.CharField(max_length=255)
email = forms.EmailField()
message = forms.CharField(widget=forms.Textarea())

def save(self):
message = "%s (%s) wrote:\n\n%s" % (self.cleaned_data['name'],

self.cleaned_data['email'],
self.cleaned_data['message'])

mail_managers(subject="Site feedback", message=message)

A simple view could process this form:

from django.http import HttpResponseRedirect
from django.shortcuts import render_to_response
from django.template import RequestContext

def contact_form(request):
if request.method == 'POST':

form = ContactForm(data=request.POST)
if form.is_valid():

form.save()
return HttpResponseRedirect("/contact/sent/")

else:
form = ContactForm()

return render_to_response('contact_form.html',
{ 'form': form },
context_instance=RequestContext(request))

For the simplest cases, this would be fine. But how could you handle a situation in which
you need to use a different form—one with additional fields, for example, or additional valida-
tion rules?

The easiest solution is to remember that a Django view is simply a function and that you
can define it to take any additional arguments you want to handle. You can add a new argu-
ment to the view that specifies the form class to use, and you can reference that argument
whenever you need to instantiate a form from within the view:

CHAPTER 11 ■ WRITING REUSABLE DJANGO APPLICATIONS 211

def contact_form(request, form_class):
if request.method == 'POST':

form = form_class(data=request.POST)
if form.is_valid():

form.save()
return HttpResponseRedirect("/contact/sent/")

else:
form = form_class()

return render_to_response('contact_form.html',
{ 'form': form },
context_instance=RequestContext(request))

You can improve this slightly by supplying a default value for the new argument:

def contact_form(request, form_class=ContactForm):

This is how many of the optional parameters to Django’s generic views work: the view
function accepts a large number of arguments and supplies sensible default values. Then, if
you need to change the behavior slightly, you simply pass the appropriate argument.

If you’re developing a business site that wants to handle sales inquiries through a form,
you could define a form class to handle that—perhaps called SalesInquiryForm—and then set
up a URL pattern like so:

url(r'^inquiries/sales/$',
contact_form,
{ 'form_class': SalesInquiryForm },
name='sales_inquiry_form'),

The form_class argument you pass here overrides the default in the contact_form view,
and—as long as you remember to define a save() method on your SalesInquiryForm class—it
simply works. If you need multiple forms of different types, you can reuse the contact_form
view multiple times, passing a different form_class argument each time, in much the same
way you previously reused generic views by passing different sets of arguments.

Flexible Template Handling
Of course, simply changing the form class might not help very much, because the view will
always use the same template—contact_form.html—to render it. But once again, you can
make a small change to the view and add some flexibility to the template handling; in this
case, you can directly emulate Django’s generic views, which all accept an argument called
template_name to override the default template they’d use:

def contact_form(request, form_class=ContactForm,
template_name='contact_form.html'):

if request.method == 'POST':
form = form_class(data=request.POST)
if form.is_valid():

form.save()
return HttpResponseRedirect("/contact/sent/")

else:

CHAPTER 11 ■ WRITING REUSABLE DJANGO APPLICATIONS212

form = form_class()
return render_to_response(template_name,

{ 'form': form },
context_instance=RequestContext(request))

Then you can change the URL pattern to specify a different template:

url(r'^inquiries/sales/$',
contact_form,
{ 'form_class': SalesInquiryForm,
'template_name': 'sales_inquiry.html' },

name='sales_inquiry_form'),

Being able to change both the form that the view uses and the template it uses to display
that form gives you a huge amount of flexibility for reusing this view. Now you can easily set
up multiple forms and customize the templates for each one with any specific presentation or
instructions you want to add.

Flexible Post-Form Processing
There’s one more thing missing here: no matter what arguments you pass to the view, it will
always redirect to the URL /contact/sent/ after successful submission. Let’s fix that by adding
one final argument, called success_url:

def contact_form(request, form_class=ContactForm,
template_name='contact_form.html',
success_url='/contact/sent/'):

if request.method == 'POST':
form = form_class(data=request.POST)
if form.is_valid():

form.save()
return HttpResponseRedirect(success_url)

else:
form = form_class()

return render_to_response(template_name,
{ 'form': form },
context_instance=RequestContext(request))

Now you have full control over the entire process of displaying, validating, and processing
the form:

url(r'^inquiries/sales/$',
contact_form,
{ 'form_class': SalesInquiryForm,
'template_name': 'sales_inquiry.html',
'success_url': 'inquiries/sales/sent/' },

name='sales_inquiry_form'),

You can now handle all of the cases listed previously—different combinations of forms,
additional fields, and additional validation—by nothing more complicated than passing the

CHAPTER 11 ■ WRITING REUSABLE DJANGO APPLICATIONS 213

right arguments to the contact_form view, in exactly the same way you’ve been passing argu-
ments to Django’s generic views. You could add even more flexibility to this view by emulating
some other common arguments accepted by generic views. For example, the extra_context
argument would be handy to support so that additional custom template variables could be
made available.

Of course, it’s important not to go overboard and add so many arguments that the view
becomes too complex to use or to write. Supporting large numbers of optional arguments can
be tricky. The right balance between flexibility and complexity will vary from one situation to
the next, but you should try to support at least a few arguments. While you don’t have to use
the following names for them, picking a standard set of argument names and sticking to them
will greatly improve the readability of your code. Also, when you’re writing a view to take a
similar argument, using the same argument names as Django’s generic views is often a good
idea. In my own applications, I generally try to support at least the following arguments:

• form_class, when I’m writing a view that handles a form

• success_url, when I’m writing a view that redirects after successful processing (of a
form, for example)

• template_name, as in generic views

• extra_context, also as in generic views

Also, I always make sure to use RequestContext for template rendering. This enables both
the standard set of context processors, which add things like the currently logged-in user to
the context, as well as any custom context processors that have been added to the site’s
settings.

Flexible URL Handling
In the previous examples, the default value for the success_url argument was a hard-coded
URL. In the applications you’ve developed in this book, though, you’ve worked hard to stay
away from ever doing that. For example, in the models, when you defined get_absolute_
url(), you always used the permalink() decorator to ensure that it uses a reverse URL lookup
based on the current URL configuration. And in your templates, you saw how to use the
{% url %} tag to perform a similar reverse URL lookup and make sure we you always output
the correct URLs for links.

You haven’t encountered this in a view, however, and neither of the solutions you’ve seen
so far will work in this context. However, there is another function that will do what you want:
django.core.urlresolvers.reverse(). This is actually the underlying mechanism for both the
permalink() decorator and the {% url %} tag. Using reverse, you can easily refer to any URL
pattern and have it automatically look up and generate the correct URL. So if you set up a URL
pattern with a name of, say, contact_form_sent, you could rewrite the contact_form view’s
argument list like so (after importing reverse(), of course):

def contact_form(request, form_class=ContactForm,
template_name='contact_form.html',
success_url=reverse('contact_form_sent')):

And the proper URL would be filled in by a reverse lookup at your live URLConf.

CHAPTER 11 ■ WRITING REUSABLE DJANGO APPLICATIONS214

Whenever you need to refer to or return a URL, you should always use the reverse lookup
utility that’s appropriate for what you’re writing:

• django.db.models.permalink(): Use this decorator when you’re writing a model’s
get_absolute_url() method or other methods on a model that return a URL.

• {% url %}: Use this tag when you’re writing a template.

• django.core.urlresolvers.reverse(): Use this in any other Python code.

To make the reverse lookups easier to use, any URLConf module included in your applica-
tion should give sensible names to all of its URL patterns (preferably prefixed with the name of
the application to avoid name clashes, as you’ve been doing previously with URL pattern
names like cab_snippet_detail).

Taking Advantage of Django’s APIs
It’s also worth noting that many of Django’s own APIs work the same way, or in extremely simi-
lar ways, with many different types of models. For example, a Django QuerySet has the same
methods—all(), filter(), get(), and so on—regardless of which model it ends up querying
against. This means that you can often write code that accepts a QuerySet as an argument and
simply applies standard methods to it.

ADMONITION: QuerySet EVALUATION

Keep in mind that each individual QuerySet object only evaluates and performs its query once. After that, it
simply stores a copy of its results. In many cases, this won’t be a problem, because your code calls methods
such as filter(), which modify the original QuerySet and force a new query when you ask for results.
However, if you’re not modifying the QuerySet, you’ll want to call its all() method and work with the new
QuerySet object it returns. This will avoid any potential problems from an already evaluated QuerySet with
stale results.

Similarly, you can use the ModelForm helper you saw in Chapter 9 as a way to quickly and
easily generate a form for adding or editing any type of object. Since ModelForm works the
same way for any model (though customizations such as the exclude feature are typically
filled in on a per-model basis), you can use it with any of multiple models, even if you don’t
know in advance what model you’ll be working with.

Staying Generic
In addition to writing views that take optional arguments to customize their behavior, you can
also build flexibility into your nonview code by avoiding tying it to specific models or specific
ideas of how it ought to work. For example, when you added comment moderation features to
your weblog, you made some assumptions that can limit its flexibility. For example, you used
the pub_date field of the Entry model to determine whether a comment was being posted on
an older entry. However, you might want to use comment moderation later on with a different
model that doesn’t have this field. You also hard-coded the moderation rules you wanted:

CHAPTER 11 ■ WRITING REUSABLE DJANGO APPLICATIONS 215

comments on entries older than 30 days are automatically nonpublic, comments on newer
entries go through Akismet, and all new comments generate a notification e-mail. However,
if you ever needed comment moderation somewhere else, you might want a different set of
rules.

Again, for the limited purposes of the weblog application, this was fine. However, since
comment moderation is a useful feature that you might want to deploy later with other types
of sites, a better option might be to write an application that does nothing but moderation,
and write it so that it can allow each different model to specify rules for moderating its
comments.

One common pattern for handling this sort of situation is to write a pair of classes. One
represents a set of rules (which are implemented by reading attributes or calling methods on
the class), and the other is a registry class that keeps track of different sets of rules and knows
how to apply them. For example, you might represent comment moderation by starting with a
class called CommentModerator and defining a set of moderation options:

class CommentModerator(object):
akismet = False
moderate_after = False
moderate_date_field = None
enable_field = None
email_notification = False

Then you could tell users to subclass it and change the options—setting akismet to True
to turn on Akismet filtering, for example, or filling in moderate_after = 30 and moderate_
date_field = "pub_date" to specify that comments go into automatic moderation 30 days
after the date in the pub_date field. Then you could write a second class, called Moderator, that
allows you to register a given model with an associated CommentModerator subclass:

from django.dispatch import dispatcher
from django.db.models import signals
from django.contrib.comments.models import FreeComment

class Moderator(object):
def __init__(self):

self.registry = {}
dispatcher.connect(self.pre_save, sender=FreeComment,

signal=signals.pre_save)
dispatcher.connect(self.post_save, sender=FreeComment,

signal=signals.post_save)

def register(self, model, moderation_class):
self.registry[model] = moderation_class

The pre_save() and post_save() methods on this class (not shown here) would look to
see if a new comment is being posted to a model in the registry. They would then apply the
appropriate moderation rules to it based on the associated CommentModerator subclass.

This system is a bit more complex than the comment moderation feature you wrote for
the weblog, but it pays off in incredible flexibility. You could set up a different set of modera-
tion rules for each model you allow comments on, and if you needed to support custom

CHAPTER 11 ■ WRITING REUSABLE DJANGO APPLICATIONS216

moderation rules that aren’t covered by the code in the Moderator class, you could simply sub-
class it, write the appropriate code for your custom moderation rules, and then use that
subclass to handle your comment moderation.

Distributing Django Applications
Once you’ve written an application so that you can reuse it easily, the final step is to make it
easily distributable. Even if you never intend to publicly release an application you’ve written,
going through this step can still be useful. You’ll end up with a nice, packaged version of your
application that you can easily copy from one computer to another, and a simple mechanism
for installing it, which ensures that the application will end up in a location that’s on the
Python import path.

The first step in creating an easily distributed Django application is to make sure you’re
developing your application as a module that can live directly on the Python import path,
rather than one that needs to be placed inside a project directory. Developing in this fashion
makes it much easier to move a copy of an application from one computer to another, or to
have multiple projects using the same application. You’ll recall that the last two applications
you built in this book have followed this pattern, and in general, you should always develop
standalone applications in this fashion.

ADMONITION: CODE THAT’S TIGHTLY COUPLED TO A PROJECT

Sometimes you will have code that’s tightly coupled to a particular project. For example, it’s somewhat com-
mon to write a view that handles the home page of a site, and have that handle requirements that are so
site-specific that it wouldn’t make sense to reuse that view on other projects.

If you’d like, you can place code like this in an application that’s directly inside the project directory, but
keep in mind that for common cases like this, there’s no need for an application. Django doesn’t require that
view functions be within an application module (Django’s own generic views aren’t, for example). So you can
simply put project-specific views directly inside the project. You only need to create an application if you’re
also defining models or custom template tags.

Python Packaging Tools
Since a Django application is just a collection of Python code, it’s best to simply use standard
Python packaging tools to distribute it. The Python standard library includes the module
distutils, which provides the basic functionality you’ll need, including creating and installing
packages and (if you want to distribute your application to the public) registering with the
Python Package Index.

The primary way you’ll use distutils is by writing a script—conventionally called
setup.py—that contains some information about your package. Then you’ll use that script to
generate the package. In the simplest case, this is a three-step process:

CHAPTER 11 ■ WRITING REUSABLE DJANGO APPLICATIONS 217

1. In a temporary directory (not one on your Python import path), create an empty
setup.py file and a copy of your application’s directory, containing its code.

2. Fill out the setup.py script with the appropriate information.

3. Run python setup.py sdist to generate the package; this creates a directory called
dist that contains the package.

ADMONITION: A SETUP FOR CONTINUOUS PACKAGING

One minor annoyance with this process is that, as the developer of a package, you have to have a copy of the
application code in the same directory as the setup.py file; otherwise, you won’t be able to generate the
package. (If you’re simply installing a package someone else has produced, you don’t need to do this.)

While it’s easy enough to temporarily make a copy of your application’s code so that you can create the
package, this can be tedious to do over and over. Instead, I often maintain a permanent directory structure
that has one directory for each package I maintain. Inside each directory is the setup.py script and any
other files related to the packaging, and the actual application code. Then I place a link (a symlink on UNIX
systems, or a shortcut on Windows) to the application code in a directory on my Python import path.

I’ve found this to be a much easier way to work with an application that evolves over time (and hence
needs to be packaged several times for different versions). You should feel free to use a similar technique or
experiment to find a setup that suits you.

The other common method of distributing Python packages uses a system called
setuptools. Though it has some similarities to distutils (both use a script called setup.py,
and the way you use that script to create and install packages is the same), setuptools adds a
large number of features on top of the standard distutils, including ways to specify depend-
encies between packages and automatically download and install packages and all of their
dependencies. You can learn more about setuptools online at http://peak.telecommunity.
com/DevCenter/setuptools. However, let’s use distutils for the example here, since it’s part of
Python’s standard library and thus doesn’t require you to install any additional tools to gener-
ate packages.

Writing a setup.py Script with distutils
To see how Python’s standard distutils library works, let’s walk through packaging a simple
application. Go to a directory that’s not on your Python import path, and in it place the
following:

• An empty file named setup.py

• An empty file named hello.py

In hello.py, add the following code:

print "Hello! I'm a packaged Python application!"

CHAPTER 11 ■ WRITING REUSABLE DJANGO APPLICATIONS218

Obviously, this isn’t the most useful Python application ever written, but now that you
have a bit of code, you can see how to write the packaging script in setup.py:

from distutils.core import setup

setup(name="hello",
version="0.1",
description="A simple packaged Python application",
author="Your name here",
author_email="Your e-mail address here",
url="Your website URL here",
py_modules=["hello"],
download_url="URL to download this package here")

Now you can run python setup.py sdist, which creates a dist directory containing a file
named hello-0.1.tar.gz. This is a Python package, and you can install it on any computer
that has Python available. The installation process is simple: open up the package (the file is a
standard compressed archive file that most operating systems can unpack), and it will create a
directory called hello-0.1 containing a setup.py script. Running python setup.py install in
that directory installs the package on the Python import path.

Of course, this is a very basic example, but it shows most of what you’ll need to know to
create Python packages. The various arguments to the setup function in your setup.py file
provide information about the package, and distutils does the rest. This only gets tricky if
your application consists of several modules or submodules, or if it also includes non-Python
files (such as documentation files) that need to be included in the package.

To handle multiple modules or submodules, you simply list them in the py_modules argu-
ment. For example, if you have an application named foo, which contains a submodule
foo.templatetags, you’d use this argument to tell distutils to include them:

py_modules=["foo", "foo.templatetags"],

The setup script expects the foo module to be alongside it in the same directory, so it
looks inside foo to find foo.templatetags for inclusion.

Standard Files to Include in a Package
When you created the previous example package, the setup.py script probably complained
about some standard files not being found. Though they’re not technically required, several
files are typically included with a Python package, and distutils warns you when they’re not
present. At a minimum, you should include two files in any package you plan to distribute:

• A file named LICENSE or LICENSE.txt: This should contain copyright information. For
many Python packages, this is simply a copy of a standard open source license with the
author’s name filled in appropriately.

• A file named README or README.txt: This should provide some basic human-
readable information about the package, its contents, and pointers to documentation
or further information.

CHAPTER 11 ■ WRITING REUSABLE DJANGO APPLICATIONS 219

You may also find these other common files in many packages:

• AUTHORS or AUTHORS.txt: For software developed by a team of contributors, this is
often a list of everyone who’s contributed code. For large projects, this can grow to an
impressive size. Django’s AUTHORS file, for example, lists everyone who’s contributed
code to the project and runs several hundred lines long.

• INSTALL or INSTALL.txt: This often contains installation instructions. Even though
Python packages all offer the standard setup.py install mechanism, some packages
may also offer alternate installation methods or include detailed instructions for spe-
cialized cases.

• CHANGELOG or CHANGELOG.txt: This usually includes a brief summary of the appli-
cation’s history, noting the changes between each released version.

Including these sorts of files in a Python package is fairly easy. While the setup.py script
specifies the Python modules to be packaged, additional files like these can be listed in a file
(in the same directory as setup.py) named MANIFEST.in. The format of this file is extremely
simple and often looks something like this:

include LICENSE.txt
include README.txt
include CHANGELOG.txt

Each include statement goes on a separate line and names a file to be included in the
package. For advanced use, such as packaging a directory of documentation files, you can use
a recursive-include statement. For example, if there are documentation files in a directory
called docs, you could use this to include them in the package:

recursive-include docs *

Documenting an Application
Finally, one of the most important parts of a distributable, reusable Django application is
good documentation. I haven’t talked much about documentation so far, because I’ve mostly
been focused on code, but any time you’re writing code that someone else might end up using
(or that you might need to pick up again and use after not looking at it for a while), documen-
tation is essential.

One thing you can and often should do is include some documentation files in your
application’s package. You can generally assume that other developers will know how Python
and Django work, so you don’t need to document things like using setup.py install or
adding the application to the INSTALLED_APPS list of a Django project. However, you should
explain what your application does and how it works, and you should give at least an outline
of each of the following items:

• Any models provided by your application, their intended uses, and any custom man-
agers or useful custom methods you’ve set up for them

• A list of views in your application, along with the template names they expect and any
variables they make available in the template context

CHAPTER 11 ■ WRITING REUSABLE DJANGO APPLICATIONS220

• A list of any custom template tags or filters you’ve provided and what they do

• A list of any custom forms you’ve provided and what purposes they serve

• A list of any third-party Python modules or Django applications your application relies
on and information on how to obtain them

In addition to this or, more often, as a precursor to this, you should also include docu-
mentation directly in your code. Python makes it easy to provide documentation alongside
the code you’re writing by giving docstrings to your Python modules, classes, and functions. A
docstring is simply a literal string of text, included as the first thing in the definition of a mod-
ule, class, or function. To see an example of how this works, launch a Python interpreter and
type:

>>> def add(n1, n2):
... """
... Add two numbers and return the result.
...
... """
... return n1 + n2
...

This defines a simple function and gives it a docstring. You use triple quotes (the """ at
the beginning and end of the docstring) because Python allows triple-quoted strings to run
over multiple lines.

Docstrings end up being useful in three primary ways:

• Anyone who’s reading your code can also see the docstrings and pick up additional
information from them: This is possible because they’re included directly in the code.

• Python’s automated help tool knows how to read a docstring and show you useful
information: In the previous example, you could type help(add) in the interpreter, and
Python would show you the function’s argument signature and print its docstring.

• Other tools can read docstrings and assemble them automatically into documenta-
tion in a variety of formats: Several standard or semistandard tools can read through
an entire application, for example, and print out organized documentation, in HTML
or PDF formats, from the docstrings.

Documentation Displayed Within Django
This last point is particularly important, because Django can read through your code looking
for docstrings and use them to display useful documentation to users. The administrative
interface usually contains a link (in the upper right-hand corner of the main page) labeled
“Documentation”, which (if the necessary Python documentation tools are available; see the
next section for details) takes the user to a page listing all of the documentation Django can
produce. This includes:

CHAPTER 11 ■ WRITING REUSABLE DJANGO APPLICATIONS 221

• A list of all the installed models, organized by the applications they belong to: For
each model, Django shows a table listing the fields defined on the model and any cus-
tom methods, as well as the docstring of the model class.

• A list of all the URL patterns and the views they map to: For each view, Django dis-
plays the docstring.

• Lists of all available template tags and filters, both from Django’s own built-in set and
from any custom tag libraries included in your installed applications: For each tag or
filter, Django shows the docstring.

Finally, giving your code good docstrings gives you a head start on producing standalone
documentation for your application. It’s a good practice to write useful docstrings anyway,
since so many tools in Python make use of them. Once you have them, you can copy them
into files to use as standalone reference documentation to distribute with your applications.

What to Document
In general, you should be liberal about giving docstrings to classes and functions in your code.
It’s better to have documentation when you don’t need it than to need documentation when
you don’t have it. Generally, the only time you shouldn’t worry about giving something a doc-
string is when you’re writing something that’s standard and well known. For example, you
don’t need to supply a docstring for the get_absolute_url() method of a model, because that’s
a standard method to define on models, and you can trust that people reading your code will
know why it’s there and what it’s doing. However, if you’re providing a custom save() method,
you often should document it, because an explanation of any special behavior it provides will
be useful to people reading your code.

Typically, a good docstring provides a short overview of what the associated code is doing.
The docstring for a class should explain what the class represents, for example, and how it’s
intended to be used, while the docstring for a function or method should explain what it does
and mention any constraints on the arguments or the return value.

Additionally, you should keep in mind the following items, which are specific to Django,
when writing docstrings:

• Model classes should include information about any custom managers attached to
the model: However, they don’t need to include a list of fields in their docstrings,
because that’s generated automatically.

• Docstrings for view functions should always mention the template name that will
be used: In addition, they should give a list of variables that are made available to the
template.

• Docstrings for custom template tags should explain the syntax and arguments the
tags expect: Ideally, they should also give at least one example of how the tag works.

Within the admin interface, Django can automatically format much of this documenta-
tion for you if you have the Python docutils module installed (you can obtain it from http://
docutils.sourceforge.net/ if it’s not already installed on your computer). The docutils pack-
age includes a lightweight syntax called reStructuredText (commonly abbreviated as reST),
and Django knows how to transform this into HTML. If you’d like, you can use this syntax in
your docstrings to get nicely formatted documentation.

CHAPTER 11 ■ WRITING REUSABLE DJANGO APPLICATIONS222

Django also makes use of a couple of customized extensions to the reST syntax to allow
you to easily refer to Django-specific things such as model classes or view functions. To see
how this works, consider a simple view that might go into your weblog application:

def latest_entries(request):
return render_to_response('coltrane/entry_archive.html',

{ 'latest': Entry.objects.all()[:15] })

Now, you wouldn’t ever need to write this, because Django provides a generic view to han-
dle it, but you can use it to show off some documentation tricks. Here’s the same view with a
useful docstring:

def latest_entries(request):
"""
View of the latest 15 entries published. This is similar to
the :view:`django.views.generic.date_based.archive_index`
generic view.

Template:'

``coltrane/entry_archive.html``

Context:

``latest``
A list of :model`coltrane.Entry` objects.

"""
return render_to_response('coltrane/entry_archive.html',

{ 'latest': Entry.live.all()[:15] })

A lot of what’s going on here is fairly simple: line breaks become paragraph breaks in the
HTML-formatted documentation, double asterisks become bold text for headings, and the list
of context variables become an HTML definition list, with the variable name latest (sur-
rounded by backticks) in a monospaced font.

ADMONITION: LEARNING reStructuredText

For most uses, you won’t need to know much more about reST syntax than what’s covered in the example. If
you’d like to learn more about it, though, a full primer and extensive documentation (as you’d expect from a
tool that’s designed to make documentation easy) is available online at http://docutils.sourceforge.
net/docs/user/rst/quickstart.html. The docutils package also includes tools for reading files
written using reST syntax and generating nicely formatted output in HTML and other formats. It’s an
extremely useful tool to be familiar with, and it scales up to large documentation projects. For example, I
originally wrote and edited the text of this book in reST syntax before translating it into other formats for
publication.

CHAPTER 11 ■ WRITING REUSABLE DJANGO APPLICATIONS 223

However, two specialized things are going on here: the mention of a generic view and the
mention of the Entry model. These make use of the Django-specific extensions and are trans-
formed into a link to the generic view’s documentation and a link to the Entry model’s
documentation, respectively.

In addition to the :view: and :model: shortcuts shown in the previous example, three
others are available:

• :tag:: This should be followed by the name of a template tag. It links to the tag’s
documentation.

• :filter:: This should be followed by the name of a template filter. It links to the filter’s
documentation.

• :template:: This should be followed by a template name. It links to a page that either
shows locations in your project’s TEMPLATE_DIRS setting where that template can be
found or shows nothing if the template can’t be found.

Looking Ahead
A lot more that can be said about developing Django applications to get the maximum possi-
ble use and reuse out of them, but what I’ve covered here is a good start.

Learning when to apply these general principles to specific applications—and, just as
importantly, when not to apply them (there are no universal rules of software development)—
is best accomplished through the experience of writing and using Django applications.
Consider making up a list of application ideas that interest you, and try your hand at a few of
them, even if you never end up using them in any serious situation. Feel free to go back and
tinker with the applications you’ve built in this book. There’s a lot of room to expand them and
add new features or even to spin off entire new applications from them. Also, keep in mind
that there’s a whole ecosystem of Django applications already written and available online,
providing a large base of code you can study.

Always remember that Django has a large and friendly community of developers and
users who answer questions on mailing lists and in chat rooms, so whenever you get stumped
(and we all get stumped once in a while), you can turn to them for help.

Above all, remember what I mentioned back in Chapter 1, when you got your first look at
Django: Django’s job is to make web development fun again, by relieving you of all the tedium
and repetitive busy work that’s traditionally been part of the process. So find an idea or two
that you like, let Django take care of the heavy lifting for you, and just have fun writing your
code.

CHAPTER 11 ■ WRITING REUSABLE DJANGO APPLICATIONS224

■Numbers and symbols
404 "Page not found" error, in Django, 15–16
500 Internal Server Error, when setting up

URLField, 78
?P construct, 66
>>> command prompt, in Python, 4
+= (plus equal), using in Link model, 85
{% for %} loop, variables available, 108–109
{% free_comment_form %} tag, 125
{% if_bookmarked %} tag,

for checking if view is bookmarked, 192
writing compilation function for, 193

{% if_rated %} tag,
adding to cab/templatetags/snippets.py,

202–203
for retrieving user rating, 203–204

{% load %} tag, scope of, 129
{% url %} template tag, 102, 215
{{user }} variable, 197
{% block %} tag, 99
{% extends %} tag, 99

■A
add() function, implemented in pydelicious,

79–80
add_bookmark view, 188–189, 192
add_snippet view, 185, 197
admin application

adding new flat page to, 15
admin form, for adding a category, 50
admin interface

activating, 79
adding categories to, 50-52

admin/change_form.html template, 25
admin/flatpages/change_form.html

template, 25
admin/flatpages/flatpage/change_form.

html template, 25
administrative interface

home page, 14
launching web server to see, 13
templates/ directory use by, 18

change_form.html template, editing, 25
class Admin, in Django data model, 34
template names it looks for, 24–25
URL pattern for, 13
^admin/URL pattern, for admin

application, 13

ADMINS setting, in Django settings file, 136
advanced view, top authors, 158–159
Akismet

API key, 132
web service, 132–135
web site address, 129, 132

Akismet class, importing, 132
applications

building for flexibility, 210–217
developing multiple self-contained,

208–210
developing reusable, 206–207
distributing Django, 217–224
drawing the lines between, 209
for flexible form handling, 211–212
importance of staying generic, 215–217
reasons to make separate, 210
recognizing need to spin off new, 209
standalone and coupled, 45
tightly focused, 207
vs. projects in Django, 44–45
writing reusable in Django, 205–224

Apress Source Code/Download area, web site
address, 163

archives, of entries, 104–110
archive_day, specifying template to use, 71
archive_index, specifying template to use, 71
archive_month, specifying template to use,

71
archive_year, specifying template to use, 71
arguments

picking standard set of names for, 214
supplying default value for new, 212

as_li() method, and tags for, 183
as_p() method, 183
as_table() method, 183
as_table() method, <table> and </table> tags,

183
as_ul() method, 183
Atom feeds. See also feeds

finding items in, 140
metadata for, 139
setting up, 139–142

authors comments, featured entries and,
55–56

AUTHORS or AUTHORS.txt file, including in
Python package, 220

Index

225

automatic comment moderator.
See comment moderation system;
comment moderator

■B
base template

completed, 102–103
defining for blog, 100–103

base.html template, creating, 98–99
basestring class, 34
base_categories.html template, for blog

entries, 104
base_entries.html template, for blog entries,

103
base_links.html template, for blog entries,

104
base_tags.html template, for blog entries, 104
basic fields, adding in models.py file, 53
Beginning Python: From Novice to Professional,

by Mangus Lie Hetland, 3
blank fields vs. null fields, 54
blank=true option, for excerpt field, 53
block.super variable, 99
blocks, writing template with, 98–99
blog

adding block in body tag, 102
defining base template for, 100–103
displaying links in, 110–111
filling in header for, 101
sidebar block, 109
sidebar for, 101–102

blog_url keyword argument, 133
body templates, for feed items, 142
Bookmark model

querying for user's bookmarks, 188
running queries on, 188

bookmark views, basic, 188–192
bookmarking

basic bookmark views, 188–192
favorite snippets, 187–188

bookmarks
deleting, 189–190
writing view to list current user's, 191

bookmark_set attribute, adding to User
object, 188

BooleanField, possible values for, 56
braces, using in template tag, 125
brochureware sites, building in Django, 9–21
brochureware sites. See content

management systems (cms)
bytecode, Python storage of, 7

■C
cab application, 147–148
cab/add_snippet.html template, writing,

179–180

cab/models.py
adding import statement to, 160
adding manager in Language model

definition, 162
building user rating system in, 198–199
opening and adding a new model,

187–188
cab/snippet_form.html template, 185
cab/templatetags/snippets.py

adding {% if_rated %} template tag to,
202–203

adding import statements to, 193
after registering, 195–196

cab/top_languages.html template, creating,
163

cab/urls/bookmarks.py, creating and filling
in, 191

cab/urls/popular.py
adding URL pattern in, 192
changing, 163

cab/urls/ratings.py, setting up URL pattern
with, 201–202

cab/urls/snippets.py, 183–184
cab/views file, creating bookmarks.py in,

188–189
cab/views/popular.py

changing import statement in, 162
writing most-bookmarked snippets view

in, 191–192
cab/views/ratings.py, creating, 201–202
cab/views/snippets.py file

adding imports for editing snippets, 184
finished, 185–186
rewriting, 181–183

camel case, used by Java, 28
categories

considerations for showing, 107–108
looping over, 108–110
setting up views for, 84–85

categories.py file, breaking down, 90–91
categorization, needed for Link model, 77
categorized feeds, 146. See also feeds

adding items to import statements, 143
entries by category, 142–146
problems associated with, 142
resolving problems with, 146
writing feed class for, 143–144

Category model
adding a method to, 95
installing table for, 48–49
unique_for_date constraint, 54

Category object, 85
category_detail view, variation using

object_list generic view, 86–87
CHANGELOG or CHANGELOG.txt file,

including in Python package, 220
CharField, 57, 176

■INDEX226

checklist, of desirable weblog features, 43–44
choices option, implementing, 56–57
circular dependencies, avoiding in Snippet

model, 162
clean() method, applied to Django form, 172
clean() validation method, writing, 169
cleaned_data dictionary, 172
clean_username() method, defining on a

form, 168
CMS project

adding rich-text editors to, 23–25
adding search system to, 26–31
building in Django, 9–21
configuring, 9–12
customizing, 23–41
improving search function with keywords,

33–40
improving search view, 31–33
putting together, 12–17
security considerations, 33

cms subdirectory, creating, 5–6
code snippets, form for adding, 175–178
code-sharing application, form processing

in, 165–186
coltrane application, adding to

INSTALLED_APPS setting, 48
coltrane directory

creating, 46–47
creating in templates directory, 65

coltrane/entry_archive.html template, filling
in, 104–105

coltrane/entry_archive_month.html,
106–107

coltrane/entry_archive_year.html template,
filling in, 105–106

coltrane/entry_detail.html template,
107–110

adding comment form header to, 124
creating, 68
editing, 99

coltrane/link_detail.html, editing, 99
coltrane/link_detail.html template, for

displaying links in blog, 110–111
coltrane_tags.py file, 114

final code for, 120–121
rewriting sidebar in base.html template,

121–122
Comment model, registered comments

handled by, 124
comment moderation

handling of for flexibility, 215–217
system, 129–132

comment moderator, building automatic,
131–132

comment notifications, verifying e-mail
settings for, 136

comment-moderation function, with
filtering, 134–135

comment-submission system, hooking into,
129–130

comments. See also comment moderation
allowing and disallowing, 56
authors, featured entries and, 55–56
checking if public before displaying, 138
django.contrib.comments and, 123–129
e-mail notification of, 135–137
filtering spam in, 129
moderated, 146
retrieving, 128–129

comments application
basic set up, 124–127
installing, 123–124

comments tag library, loading to display
comments form, 124–127

comments/free_preview.html template,
125–126

comments/posted.html template, 127
comment_check() method, 132–133
comment_utils, web site address, 138
commit=False, and many-to-many

relationships, 182
compilation function

changing to retrieve model class, 118
completed, 119
error checking, 118–119
problems with changing, 118
writing, 116–117
writing for {% if_bookmarked %} tag, 193

confirmation page, templating, 190–191
contact-form application

building for flexibility, 210–211
flexible post-form processing, 213–214
for flexible form handling, 211–212
simple view for processing, 211

contact_form view
effect of passing right arguments to,

213–214
rewriting argument, 214

content management systems (cms).
See CMS project

content types framework documentation,
web site address, 163

Context vs. RequestContext, 197
Context class, 27
context processor

for writing a function, 111
function, 196–197

contrib applications, in Django, 12
conversion programs, converting simple

syntax to HTML with, 60
core fields, needed for Link model, 77–78
core=True argument, 37
count() method, 40

■INDEX 227

coupled and standalone applications, 45
create() method, 177
create_user() method, 170
cross-site request forgery (CSRF), protection

against, 189–190
Ctrl+C, stopping Python server with, 7
custom tags, 113–115. See also tags

■D
data model, creating in Django, 33–34
database

adapter module for talking to SQLite
databases, 10

API documentation web site address, 94
lookup syntax in Django, 29
setting up in Django, 11–12
using different, 10

database queries, handling of by Django,
94–95

DATABASE settings, 9
DATABASE_ENGINE setting, changing, 10
date filter, for weblog application, 66
date-based archives, weblog reliance on, 69
date-based constraints, supported by

Django, 54
datetime module

importing into Snippet model, 153
providing default value for, 54–55

DateTimeField, uniqueness of, 53
.db file extension, 10
decorators, 74

Python syntax for, 75
def keyword, defining Python function with,

28
default.html file, adding content to, 19
_default_manager, using, 120
defaults, slugs, and uniqueness constraints,

54–55
del.icio.us

handling username and password in, 80
integration with, 77

delete_bookmark view, 197
dictionary-based string formatting, 161
dispatch.dispatcher.connect() function, 130
dispatch.dispatcher.send() function, 130
dispatcher module, in django.dispatch,

130–131
distinct() method, in QuerySet, 40
distutils module

for distributing Django applications,
217–218

in Python standard library, 218
writing setup.py script with, 218–219

div tags (elements)
for blog structure, 100–103
HTML id attributes for, 100–101

Dive Into Python, by Mark Pilgrim, 3

Django
accessing settings file, 80
building your first site, 9–21
built-in management script, 5
contrib applications in, 12
creating your first project, 5–7
database lookup syntax, 29
default site object created by, 14
development of, 2–3
documentation displayed within, 221–222
documentation web site address, 59
download web site address, 4
exploring your project, 7
handling of database queries, 94–95
how generic views work, 70–72
include() function, 72
installation locations, 5
installing, 4–5
packaged releases vs. development code, 4
process for loading a template, 112
projects vs. applications, 44–45
query execution by, 40
server error page, 17
setting up database in, 11–12
setting up database to use with, 8
str() vs. smart_str() function, 80
template inheritance support, 98–99
using customized extensions to reST

syntax, 223
welcome to, 1–8
writing an application in, 44–45
writing docstrings specific to, 222–224
writing reusable applications in, 205–224
your first steps with, 5–7

Django APIs, taking advantage of, 215
Django applications, 43–45

distributing, 217–224
importance of documenting, 220–221
what to document in, 222–224

Django authentication system, web site
address for documentation, 179

Django content types framework
documentation, web site address,
163

Django data model, creating, 33–34
Django database API documentation, web

site address, 41
Django dispatcher, signals and, 130–131
Django flat page

example of, 19
variables used by, 20

Django project
changing address and port, 7
configuring your cms, 9–12
creating, 5–7
startproject command, 7
vs. Django application, 44–45

■INDEX228

Django settings file, del.icio.us username and
password in, 80

Django snippets application, web site
address, 147

Django template
calling object's methods in, 30
for categories, 109
how it works, 112
parsing ahead in, 193–194

Django template system, extending with
custom tags, 111–122

Django view, adding new arguments to,
211–212

Django's form system, brief tour of, 165–175
django-admin.py, 9

startproject command, 7
startapp command, 148

django-tagging application, adding tags to
Entry model with, 59

django.contrib, applications in, 123
django.contrib.admin application,

administrative interface provided by,
12

django.contrib.auth, 11
User model provided by, 55

django.contrib.comments
installing the application, 123–124
styles of commenting in, 123
syntax for comment retrieval, 128

django.contrib.contenttypes application,
bundled with Django, 59

django.contrib.flatpages application,
bundled with Django, 12

django.contrib.flatpages.urls, 17
django.contrib.markup application, text-to-

HTML formatting filters in, 127
django.contrib.sites, 11

example site object created by, 14
django.contrib.syndication application, 123

adding feeds with, 138–142
web site address, 139

django.contrib.syndication.feeds.Feed class,
139

django.core.mail, functions to send e-mail,
136–137

django.core.urlresolvers.reverse() function,
215

django.core.urlresolvers.reverse() function,
214–215

django.db.connection.cursor() function, 200
django.db.connection.ops.quote_name()

function, 160
django.db.models.get_model() function, 117
django.db.models.permalink(), 215
django.dispatch module, send() and

connect() functions, 130–131

django.dispatch.dispatcher.connect()
function, 130

django.dispatch.dispatcher.send() function,
130

django.newforms module, 165–166
importing, 167
web site address for documentation, 186
widget classes in, 165

django.shortcuts.render_to_response
function, 31

django.template module
major design goals, 18
templating system in, 18–21

django.template.Context class, adding
customizable behavior in, 196–197

django.template.loader.select_template, 24
django.template.Node, writing subclass of,

113–114
django.template.Template class, 112
django.utils.encoding.smart_str() function,

80
converting Unicode strings with, 134

django.views.generic.date_based module, 70
django.views.generic.list_detail module,

views in, 86
docstrings

providing in-code documentation with,
221

writing specific to Django, 222–224
documentation, importance of for

distributable applications, 220–221
docutils module, web site address, 222

■E
e-mail, sending from within Django, 135–137
edit_inline=models.STACKED, 37
edit_snippet view, 197
entries. See also featured entries

adding list of latest, 115
archives of, 104–110
categorizing and tagging, 58–59
different types of, 56–57
querying with status field set to Live,

93–94
writing without writing HTML, 59–61

entries.py file, breaking down, 91–92
entries_description.html template, creating

in feeds directory, 142
entries_title.html template, creating in feeds

directory, 142
entry detail, 107–110
entry index, 104–105
Entry model

adding default ordering for, 61
adding finishing touches to, 61–62
adding plural name for, 61
adding slug for, 54

■INDEX 229

rewriting get_absolute_url() method on,
74

template used for generic view, 97
Entry model class, 131
entry templates, filling out, 72
Entry.DRAFT_STATUS, 57
Entry.HIDDEN_STATUS, 57
Entry.LIVE_STATUS, 57
Entry.objects.all(), 70
entry_detail template, 97–98
entry_detail view, writing, 67–69
entry_detail.html template, 128
entry_info_dict variable, 69
error checking, how much is too much, 117
excerpt field, blank=true option for, 53
extra() method, in Django's database API,

158–159

■F
feature creep, in software development, 206
featured entries, authors, comments and,

55–56
feed class, full example of, 141
feed GUID, implementing, 140–141
feed items, title and main body templates for,

142
feeds. See also categorized feeds; Atom feeds

adding to weblog application, 138–142
categorized, 142–146
creating files in directory, 142
plain attributes vs. methods of, 144

feeds.py file, 144–145
feeds/categories_title.html template, setting

up, 145
field classes, in django.newforms module,

165
fields

adding for storing HTML, 60
adding in models.py file, 53
adding optional to Link model, 78–79
core needed for Link model, 77–78
in Django, 29, 34
in Snippet model, 151

filter() method
in QuerySet, 40
using for entries, 93

filters. See also template filters
using for templates, 126–127

FlatPage class, 27–28
FlatPage object, 20
flatpage.content variable, used by Django flat

page, 20
flatpage.title variable, used by Django flat

page, 20
flatpages application, 26
flatpages/default.html template, adding

search box HTML to, 30

foo.templatetags submodule, listing in
py_modules argument, 219

Foord, Michael, akismet module by, 132
for/endfor tags, use of, 30
foreign key, adding to Link model, 78
ForeignKey field, relating one model to

another with, 55
<form> and </form> tags, filling in with

action and method attributes, 183
Form class

adding fields to, 176
handling language in, 176–178
in django.newforms module, 165

<form> element, building for user signups,
167

form fields, requirement for, 169
form processing, 173–175

in code-sharing application, 165–186
form system, brief tour of Django's, 165–175
form-handling code, in django.newforms

module, 165
forms

adding custom _init_() method to,
175–176

automatically generating for adding
snippets, 180–183

displaying and processing, 173–175
for adding code snippets, 175–178
rendering into different types of HTML,

183
simplifying templates that display, 183
writing view to process, 178–180

forms.py, creating and writing form in,
175–176

free comments system, 123
FreeComment model, comments handled by,

124
full_clean() method, applied to Django form,

172
functions vs. return values, 55
generic relations, 58–59

■G
generic views

how optional parameters work, 211–212
using, 86–87
using Django's, 69–72

GenericForeignKey, 59
GenericRelation, 59
get_absolute_url() method, 40, 140

adding to admin interface, 61–62
adding to model, 52
adding to Snippet model, 153
defining, 149–150
on Entry model, 66
rewriting on Entry model, 74

get_content_object() method, 132

■INDEX230

get_free_comment_count tag, adding line in
sidebar with, 128

get_lexer() method, 152
get_model(), how it works, 117–118
get_object() method, 143
get_object_or_404() function, using for

weblog application, 68–69
get_rating_display(), calling in __unicode__()

method, 199
get_style_defs() method, 157
get_template function, loading template

with, 29–30
GUID (globally unique identifier), for items,

140–141

■H
help_text, adding to admin interface fields,

61
help_text argument, adding to field in model,

51
Hetland, Mangus Lie, Beginning Python:

From Novice to Professional by, 3
hidden option, 57
highlight function, adding method for, 152
highlighted code, styling, 156
History button, on flat page, 15
HTML, adding fields for storing, 60
HTTP methods, safe and idempotent, 190
HttpResponse class, 27
HttpResponseForbidden class, 184
HttpResponseRedirect, adding to search

view, 39–40

■I
id column, declared as primary key, 35–36
identifiers, unique needed for items, 140–141
IETF RFC 4151 standard, web site address,

140
if not self.id, 81
if tag, using in weblog application, 66
if/endif template tags, 33
IfBookmarkedNode, Node class, 194
IfRatedNode, writing, 202–203
import paths, and multiple imports of a

single module, 135
import statement, changing Rating model’s,

202
include directive, pluggable URLs provided

by, 17
include() directives, multiple in URLConf

files, 93
include() function, 72
index page, items listed on, 14
__init__.py file, 7, 27
<input type="password">, rendering

password fields with, 167–168

<input type="submit"> tags, supplying for
forms, 183

INSTALL or INSTALL.txt file, including in
Python package, 220

INSTALLED_APPS, search view working
without adding to, 35

INSTALLED_APPS setting
adding applications to, 12–13
adding coltrane application to, 48
changing, 11

instance argument, 131
IntegerField, using in choices option, 57
__import__() function, 117
is_public field, setting a comment's, 132
items() method

adding to feed class, 140
changing for catagorized feeds, 144

item_categories method, defining, 141
item_pubdate() method, 140

■J
join table, ManyToManyField represented by,

58
jscripts/ directory, 23

■K
keyword arguments

in Python, 67
unique constraint generated by, 78

keyword field, in Django data model, 34
keywords, improving CMS search function

with, 33–40
keyword_results, updating template for,

38–39
keyword_results[0].get_absolute_url()

method, 40

■L
Language model, 177

adding pygments.lexers.get_lexer_by_
name() method to, 150

building for social code-sharing site,
149–151

completed models.py file, 150–151
languages

logical ordering for, 149
views for, 157–158

LatestContentNode, writing, 119–120
LatestEntriesFeed, setting up, 139–142
lexers, in pygments download, 150
libraries, in Django, 2–3
LICENSE or LICENSE.txt file, including in

Python package, 219
Link class, fields needed for, 77–81

■INDEX 231

Link model
adding customized save() method to, 79
adding foreign key to, 78
adding get_absolute_url() method to, 81
adding more fields to, 78–79
adding more patterns to, 88
adding new set of URL patterns to, 83–84
adding publication date and slug to, 78
adding tagging to, 78
basic core fields for, 77–78
calling patterns() function in, 85
defining dictionary for generic views, 83
full model definition, 81–83
installing database table for, 81
templates for generic views, 84, 97
using permalink decorator in, 81
using _unicode_() method with, 79
views for, 83–84
writing, 77–83
writing for weblog application, 62–64

link-aggregation service, using del.icio.us as,
78

links.py file, breaking down, 92
link_detail template, 98
lists, representing sequences of items with,

19
Live entries, handling, 93–95
loader module, 27
login/logout views, setting up, 179
login_required decorator, importing into

view function, 178–179
loose coupling, 56

■M
magic numbers, using caution with, 58
mail_admins() function, 136
mail_managers() function, 136–137
manage.py file, 7
manage.py script, starting, 6
manage.py syncdb

database tables created by, 13
installing Category model table with,

48–49
running, 12
running to install model into database,

188
Manager, attaching in Django, 94
MANAGERS settings, in Django settings file,

136
managers.py file, creating in cab directory,

159–160
Manifest.in file, listing additional files in, 220
many-to-many relationships

commit=False and, 182
how they work, 58

ManyToManyField, 58
Markdown, text-to-HTML converter, 60–61

Markdown formatting filter, for a variable,
126–127

media files, in production vs. development,
24

meta attribute, using on a Django model
class, 161

Meta class, adding to weblog application, 49
metadata, needed for Link model, 78–79
min_num_in_admin=3 argument, 37
model, determining which to retrieve

content from, 117–119
model classes, layout order guideline for, 62
ModelChoiceField, Django QuerySet taken

by, 176–178
ModelForm class

adding URL pattern for, 185
customization supported by, 181
telling to edit existing object, 184
using, 180–183

ModelForm helper, generating a form with,
215

models
designing for weblog application, 47–52
new field types in weblog application,

47–48
models.py file, 27

adding category to, 50
creating Django data model in, 33–34
partial for weblog application, 62–64

moderated comments, in public-facing
templates, 137–138

moderation rules, setting up, 216
moderation system, for screening incoming

comments, 129–138
modules, import paths and multiple imports

of, 135
monthly and daily archives, 106–107
monthly archive template, 106–107
"murphy" style, for pygments.css file, 156

■N
naming styles, used by Python, 28
newforms package. See django.newforms

package
null fields vs. blank fields, 54
num_extra_on_change=1 argument, 37

■O
object-relational mapper (ORM), in Django,

20
objects attribute, of

django.db.models.Manager class, 94
object_detail, specifying template to use, 71
object_detail generic view, 97

in django.views.generic.list_detail module,
86

object_list generic view, 86–87, 156

■INDEX232

ORDER BY title ASC, 51
ORM. See object-relational mapper (ORM)
orthogonality, 209–210

■P
page field, in Django data model, 34
"Page not found" error, in Django, 15–16
page variable, for Snippet model, 156
paginator variable, for Snippet model, 156
parser argument, for {% if_bookmarked %}

tag, 193–194
password, validating, 169
PasswordInput widget, 167–168
patterns() function, calling in Link model, 85
permalink decorator, using in Link model, 81
permission errors, 6
Pilgrim, Mark, Dive Into Python by, 3
placeholders, writing template with, 98–99
plain attributes vs. methods of feeds, 144
positional arguments, in Python, 67
posted.html template. See comments/

posted.html template
post_save signal, 131
prepopulate_from argument, 50
pre_save signal, 131
pre_save() and post_save() methods, 216
primary key, id column declared as, 35–36
projects vs. applications in Django, 44–45
pub-date field, adding default ordering for,

79
public-facing templates, dealing with

moderated comments in, 137–138
publication date, adding to Link model, 78
pub_date field

providing default value for, 54–55
showing for blog, 107

.pyc extension, 7
pydelicious module, add() function, 79
pygments highlight function, arguments for,

152
pygments Python library, 148
pygments syntax highlighting, CSS for,

156–157
pygments.lexers.get_lexer_by_name()

method, adding to Language model,
150

Python
admonition about learning, 3
changing path in, 46
decorator syntax, 75
Django written in, 3–4
documentation web site address, 52
importance of reading tutorial, 9
installing third-party modules, 79
introduction to, 3–4
naming applications, 45
naming style, 28

regular-expression syntax, 66–67
sequences of items represented in, 19
stopping the server, 7
string formatting in, 52
string types, 34–35
tuple used for version number, 5
understanding function arguments, 67–68

Python Enhancement Proposal (PEP) 249,
web site address, 200

Python interactive interpreter, opening, 3
Python Markdown module

applying to templates, 126–127
importing, 153

Python modules
giving docstrings to, 221
installing third-party, 79

Python package
common files found in, 220
standard files to include in, 219–220

Python Package Index, programmer
resource, 148

Python packaging tools, for distributing
Django applications, 217–218

Python path, 46–47
python setup.py install, installing package

with, 219
python setup.py sdist, for creating dist

directory, 219
py_modules argument, listing multiple

modules in, 219

■Q
queryset argument, in weblog application, 70
QuerySet class, in Django, 40
QuerySet object, evaluation, 215
queryset_or_model argument, tagging.views.

tagged_object_list view, 88

■R
Rating model, installing, 201
Rating object, 201
README or README.txt file, including in

Python package, 219
register.filter() function, 127
registered comments system, 123
registration form, data needed for user

signups, 166
regular expression, 13
Reinhardt, Django, Django named in honor

of, 2
related_name, setting explicitly on User

model relationship, 199
related_name argument, to ForeignKey, 188
render() method, 113

writing, 194–195
render_to_response function, arguments for,

31

■INDEX 233

repetitive elements, dealing with, 97–100
request.GET.get('q', '') method, for reading q

variable, 32
RequestContext

importing, 197
populating template variables with,

196–197
using repetitively, 197–198
vs. Context, 197
writing shortcut for, 198

resolve() method, for Variable instances, 194
reStructuredText (reST), learning, 223
return values vs. functions, 55
rich-text editors (RTEs)

adding to CMS project, 23–25
JavaScript-based, 23

RSS feeds. See feeds
RTEs. See rich-text editors (RTEs)

■S
safe and idempotent HTTP methods, 190
SalesInquiryForm, handling sales inquiries

with, 212
save() method

adding code for Link model to, 81
creating a User object with, 170
in Model class, 60
reason not to highlight in, 152
saving new User object with, 170
to apply text-to-HTML conversion, 78
writing for Snippet model, 153

scope creep, in software development, 206
search keywords, 136
search system, adding to CMS project, 26–31
search template, rewriting, 32–33
search view

adding HttpResponseRedirect to, 39–40
adding keywords support in, 38
adding keyword_results to, 38–39
improving in CMS project, 31–33
rewriting to display empty search form,

31–32
working with without adding to

INSTALLED_APPS, 35
search/ directory, files added to, 27
SearchKeyword class, adding search interface

to form with, 36
SearchKeyword model, importing, 45
section templates, setting up for blog,

103–104
self.id, check for, 81
self.post_elsewhere, 81
send() and connect() functions, using in

Django, 130–131
settings.py file, 7
setup.py script

for continuous packaging, 218

to generate distribution package, 217–218
writing with distutils, 218–219

setuptools system
for distributing Python packages, 218
web site address for information about,

218
shortcuts function, for loading and rendering

a template, 65
sidebar

adding explanations in, 102
adding line to, 128
for blog, 101–102
rewriting in base.html template, 121–122

signals, and Django dispatcher, 130–131
Signup form, finished code for, 171
signup.html template, displaying forms in,

174–175
Site object, getting, 133
slug field, changing definition of, 50
slugs

adding to Link model, 78
and normalization, 50
and useful defaults and uniqueness

constraints, 54–55
Snippet model

adding custom manager to definition of,
160

avoiding circular dependencies, 162
building for social code-sharing site,

151–154
building out basic fields, 151–152
extra variables for snippets, 156
fields in, 151
filling in author field, 175–178
finished, 153–154
finished form for, 177–178
setting up templates for, 156

Snippet objects, detail view of, 155
SnippetManager, adding methods to for

rating snippets, 200–201
snippets

automatically generating form for adding,
180–183

bookmarking favorites, 187–188
calling sum() on, 199–200
editing, 184–186
logical ordering for, 152
rating, 201–202

snippets and languages, initial views for,
155–163

Snippets application
splitting up, 210
testing, 154–155
web site address, 147

snippets.py, writing to process form, 178–180
snippet_list template, downloading full

example of, 156

■INDEX234

social code-sharing site, building in Django,
147–163

software development, 205–224
spam, filtering comments for, 129
SQL

executing raw, 200
injection attacks, 33

SQLite, database adapter module for talking
to, 10

SQLite database file, telling Django where to
find, 10

stack trace, 17
standalone and coupled applications, 45
standalone application, developing, 45
startapp command, creating project

directory with, 27–31
startproject command, of django-admin.py,

7
statistical spam analysis, adding, 132–135
status field, updating, 57
stop words, in slug fields, 50
__str__() method, defined by Python classes,

35
string formatting

dictionary based, 161
in Python, 52

strings, Python's two types of, 34–35
strptime function, in Python standard time

module, 67
success_url argument, 213
Super, using, 61
super(), calling, 176
syncdb. See manage.py syncdb

■T
tag argument, tagging.views.tagged_

object_list view, 88
Tag model, representing tags, 87
tag URI (uniform resource identifier), 140
tag() method, 114
TagField, importing into Snippet model, 151
tagging application, Tag model provided by,

87–88
tagging.views.tagged_object_list view, and

arguments for, 88
tags

adding to Link model, 78
applying to models, 58–59
entry detail template for, 109–110
extending template system with custom,

111–122
provided by Django template system, 18
registering and using new, 120–122
using new, 114–115
views for, 87–88
writing compilation function for, 116–117
writing flexible with arguments, 116

tags.py file, breaking down, 92–93
template files, where Django looks for them,

18
template filters

applying, 60
using, 126–127

template inheritance
Django support for, 98–99
how it works, 99
limits of, 100

template loaders, 18
template names, determining, 71
template variables, using RequestContext to

populate, 196–198
template.Node, resolving variables in,

194–196
templates

chaining inherited, 100
choosing from multiple, 24
creating for each weblog view, 71–72
creating to generate HTML, 29–30
defining base for blog, 100–103
flexible handling of, 212–213
for displaying entries, 104–110
for Link model generic views, 84
for other types of content, 110
how inheritance works, 99
how names are determined, 71
power of inheritance, 97–100
rendering title and body for feed items,

142
templates/ directory

creating subdirectory in, 19
for template files, 18

TemplateSyntaxError, 193
templatetags directory, creating in cab

directory, 193
TEMPLATE_CONTEXT_PROCESSORS

setting, 196
TEMPLATE_DIRS, setting, 18
template_name argument,

tagging.views.tagged_object_list
view, 88

template_object_name argument, 72
templating system, in Django, 18–21
text-to-HTML converter

Markdown as, 60–61
save() method to apply, 78

text-to-HTML formatting filters, in
django.contrib.markup application,
127

TextField, 176
timedelta class instance, 132
TIME_ZONE setting

changing, 10–11
problems in Windows, 11

TinyMCE, JavaScript-based RTE, 23

■INDEX 235

title element, adding block for, 101
title templates, rendering for feed items, 142
top authors

advanced view of, 158–159
improving view of, 159–162

top_authors() method, rewriting using string
formatting, 160–161

top_languages view, adding to Snippet
model, 162–163

top_user view, rewriting, 160
trailing commas, using in Python, 19
truncatewords_html filter, 66
tuples

representing sequences of items with, 19
used by Python for version number, 5

■U
__unicode_() method, 34

adding to admin interface, 61
calling get_rating_display() in, 199
defined by Python classes, 35
using with Link model, 79

unique identifier, for items, 140–141
uniqueness constraints, and slugs and useful

defaults, 54–55
unique_for_date constraint

supported by Django, 54
used on slug field, 68

unique_for_month constraint, supported by
Django, 54

unique_for_year constraint, supported by
Django, 54

URL patterns
adding new to Link model, 83–84
changing to specify different templates,

213
order of, 16
replacing, 73
setting up for Rating model, 201–202

URLConf
cleaning up, 89–93
file (urls.py), adding new URL pattern to,

124
in weblog application, 89–90
making change to weblog's, 74
provided by Django application, 44
pulling individual bits into, 93

URLField, in Link model, 77–79
URLs

decoupling, 72–75
flexible handling of, 214–215
how configuration works, 13
requirement for pattern naming, 150
setting up for adding and deleting

bookmarks, 191
setting up for LatestEntriesFeed, 141

setting up to show user's bookmarks, 191
wiring up, 192

urls directory, creating in cab directory, 155
urls.py file, 7, 13

adding more patterns to, 85
adding new line to, 23–24
copying import statements and URL

patterns into, 72–73
fixing "Page not found" error in, 16
rewriting to use generic views for entries,

70–71
setting up in cms directory, 66

urls/snippets.py
adding code in, 155
detail view of Snippet objects, 155
list of snippets in, 155

user, not specifying current as default, 56
User model, importing into Snippet model,

151
user object, creating new user with, 169

user rating system, 203–204
adding, 198–204
building out in cab/models.py, 198–199
information needed for, 198

user signups
data needed for registration form, 166
example, 166–168
validation work needed for, 166–167

User.DoesNotExist exception, 168
username and password, handling of in

del.icio.us, 80
username field, validating, 168
users, creating new, 169
users and passwords, cautions about, 170

■V
validation

custom for registration forms, 166–167
order of, 172–173

validation form, displaying and processing,
173–175

ValidationError exception, 168
Variable class, in django.template, 194
variables, provided by Django template

system, 18
verbose_name option, 49
verbose_name_plural option, 49
verify_key() method, 133

in akismet module, 132
view function, for performing basic search,

28
View on Site button, on flat page, 15
views

adding new arguments to Django's,
211–212

adding top_languages to Snippet model,
162–163

■INDEX236

creating file for rating snippets, 201–202
disadvantages of changing handwritten,

196
for displaying particular category, 85
for HttpResponseForbidden class, 184
for languages, 157–158
for listing current user's bookmarks, 191
for showing list of categories, 84–85
for tags, 87–88
handling project specific, 217
how Django's generic work, 70–72
improving of top authors, 159–162
querying for most-bookmarked snippets,

191–192
setting up for categories, 84–85
setting up for Snippet model, 156
specifying prefix for, 73
starting with simple index, 65
staying generic with, 215–217
using coltrane/category_detail, 85
using Django's generic, 69–72
using generic, 86–87
writing for weblog application, 65–69
writing to process form, 178–180

views.py file, adding import statements to,
27, 65

■W
web applications, security considerations, 33
web development

biggest downside of, 1
developing multiple applications for,

208–210
simplified with web frameworks, 1–2

web framework, using Django as, 1–8
web page, Django vs. hand-written, 18
web server, launching to see administrative

interface, 13
web site, as collection of tightly focused

applications, 208–209
web site address

Akismet web service, 129, 132
Apress Source Code/Download area, 163
comment_utils, 138
content types framework documentation,

163
Django authentication system

documentation, 179
Django database API documentation, 41,

94

Django snippets application, 147
django-tagging application, 59
django.contrib.syndication application,

139
django.newforms documentation, 186
docutils module, 222
for downloading Django, 4
for downloading Python, 3
IETF RFC 4151 standard, 140
pydelicious, 79
pygments Python library, 148
Python documentation, 52
Python Enhancement Proposal (PEP) 249,

200
Python style guide online, 28
setuptools system information, 218
snippets application, 147
TinyMCE RTE, 23

weblog application
basic fields in, 53
building model for entries, 52–62
creating files in, 90
creating standalone, 45–47
creating templates for each view, 71–72
creating urls directory in, 90
Django-powered, 43–75
expanding, 77–95
feature checklist, 43–44
finishing, 123–146
finishing touches for, 61–62
generic view tasks, 69
installing django.contrib.comments,

123–124
new field types in, 47–48
section templates for, 103–104
templates for, 97–122
using free comments in, 123
viewing index of all entries created in, 66
writing Link model for, 62–64
writing the first views for, 65–69

weblog application. See blog
widget classes, in django.newforms module,

165

■XYZ
yearly archive, 105–106

■INDEX 237

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

