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Preface

This book originally grew out of my notes on the statistical inference courses at the
Department of Statistics, University of Mumbai. I have experienced that reasonably
good M.Sc. (Statistics) students are many a time not able to understand or solve
problems from some available texts on statistical inference. These books are
excellent in terms of content, but the presentation is highly sophisticated. For
instance, proofs of various theorems are given in brief and a few examples are
provided. To overcome this difficulty, I have solved many examples and, wherever
necessary, a program in R is also given. Further, important proofs in this book are
presented in such a manner that they are easy to understand.

Through this book, we expect students to know matrix algebra, calculus,
probability theory, and distribution theory. This book will serve as an excellent tool
for teaching statistical inference courses. The book consists of many solved and
unsolved problems. Instructors can assign homework problems from the exercises
and students will find the solved examples hugely beneficial in solving the exercise
problems.

In “Prerequisite”, we have discussed some basic concepts like distribution
function and order statistics and illustrated them by using interesting examples.
Chapter 1 deals with sufficiency and completeness. In this chapter, we have solved
37 examples. Chapter 2 deals with unbiased estimation. In the last 30 years of my
teaching, I found that students were always confused about the relationship between
sufficiency and unbiasedness. We have explained this relationship with various
examples in this chapter. Chapter 3 is devoted to method of moments and maximum
likelihood. In Chap. 4, we deal with lower bound for the variance of an unbiased
estimator. Popular concepts like Cramer—Rao (1945, 1946) and Bhattacharya
(1946, 1950) lower bound are discussed in detail. Chapter 4 also deals with
Chapman and Robbins (1951) and Kiefer (1952) lower bound for the variance of an
estimate but does not require regularity conditions. In Chap. 5, the concept of
consistency is discussed in detail and illustrated by using different examples. In
Chap. 6, Bayesian estimation is briefly discussed. Chapters 7 and 8 are significantly
large chapters. Testing of hypothesis is studied in Chap. 7, whereas unbiased and
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other tests are studied in Chap. 8. We have given R programs in various chapters.
No originality is claimed except perhaps in the presentation of the material.

It will prove difficult to thank all my friends who have contributed in some or
other way to make this book a reality. I am thankful to Prof. R.B. Bapat for his
valuable suggestions to improve upon the content and presentation of the book.
I also thank Dr. T.V. Ramanathan for making some valuable suggestions. I am
thankful to Shamim Ahmad, senior editor at Springer India for encouraging me to
publish this book through Springer and making it easy to go through the process.
I thank Prof. Seema C. for reading the book for language. I am equally thankful to
Dr. Alok Dabade, Prof. Shailaja Kelkar, Dr. Mehdi Jabbari Nooghabi, Prof.
S. Annapurna and Prof. Mandar Bhanushe for various academic discussions related
to the book and drawing figures. I am also very thankful to my son Anand and
daughter Vaidehi who helped me solve various problems. Further, I am thankful to
my wife Dr. (Mrs.) Vaijayanti for the insightful discussions on our book.

We are grateful to Prof. Y.S. Sathe and Late Prof. M.N. Vartak for the diverse
discussions which were helpful in understanding statistical inference. These dis-
cussions were particularly helpful in solving problems on UMVUE and testing
of hypotheses. We are thankful to Prof. B.V. Dhandra, Dr. D.B. Jadhav, and
Prof. D.T. Jadhav for providing their M.Phil. dissertations.

In spite of my best efforts, there might be some errors and misprints in the
presentation. I owe these mistakes and request the readers to kindly bring them to
my notice.

Ulhas Jayram Dixit
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Prerequisite

General distribution theory and that of order statistics are an inevitable part of
learning theory of estimation and testing of hypothesis. Therefore, we briefly dis-
cuss these two topics with some interesting examples.

Distribution Function

Let F(x) be a real-valued function of the variables x; we denote as

F(o0) = lim F(x),

X—00

F(—o00) = lim F(x),

F(xi)= hli%l+ F(x+h)=F(x+0),
F(x_)= hlir(r)lﬁ F(x+h)=F(x—0),
Definition 1 A function F(x) of a random variable X is called a distribution

function (df) if it satisfies the following three conditions:

1. F(x) is non-decreasing, i.e. F(x+h)>F(x) if h >0
2. F(x) is right continuous, i.e. F(x;) = F(x)
3. F(oco) =1 and F(—o0) = 0.

A point x is called a discontinuity point of the distribution function F(x) if
Flr.) = F(x) # F(x_).

Xiii
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Further, if F(x) = F(x_) then x is called a continuity point of F(x). The quantity
P(x)=F(x;)—F(x_) = F(x) — F(x_) is called the jump of F(x) at the point
x. Hence, jump of a distribution function is positive at its discontinuity points and
zero at its continuity points. An interval is called a continuity for the distribution
function F(x) if both its end points are continuity points of F(x). A point x is called a
point of jump of the df F(x) if F(x+¢) — F(x — &) > 0 for any & > 0.

We discuss some following examples of distribution function.

Example 1 Let the random variable X follow binomial distribution with parameters
n =3 and p = 0.5. Then probability mass function (pmf) is given by,

P(X=x) = ()3C>(0-5)3 ;x=0,1,2,3

0 ; otherwise.
The df F(x) is given by
0 ; x<0
K /3 .
F(x) = Z<x>(0'5)l ; 0<x<3
i=0
1 ;x> 3.

The function F(x) is a df with discontinuity points (0, 1, 2, 3). For the discon-
tinuity point 1, F(1 — 0) = 0.125 and F(1) = F(1 + 0) = 0.5, one can see P[X = x|
and F(x) in Figs. 1 and 2, respectively.

Example 2 Let X be distributed as triangular distribution with probability density
function (pdf):

X ; 0<x<1
fx)=q¢2—x ;1<x<2
0 ; otherwise

Then df of X is the df obtained as follows:

X
tdi+ [(2—1)dr=2x—5—1 ;1<x<2
1
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Fig. 1 Probability mass
function
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Fig. 2 Distribution function
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The df F(x) is a continuous function as there are no jump points, i.e., discon-
tinuity points. Figures 3 and 4 give the graph of fix) and F(x), respectively.

Example 3 The random variable X has the following df

Fx) = 0 ; x<0
Tl 1l—pei ;x>0,0<p<l, >0

The function F(x) is a df with one discontinuity point x = 0; since F(0 — 0) =0
and F(0) = F(0*) = 1 — p. Such a function is called a mixture df, i.e., mixture of
a step function and a continuous function. We can see the graph of F(x) in Fig. 5.

Every df has a countable set of discontinuity points, and it can be decomposed

into two parts as a step function and a continuous function.
Now we consider the Jordan Decomposition Theorem to prove this fact.
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Fig. 3 pdf of triangular
distribution

Fig. 4 df of triangular
distribution

Fig. 5 Distribution Function
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Prerequisite xvii

Theorem 1 Every df F has a countable set of discontinuity points. Moreover,
F(x) = aF4(x) + (1 — @)Fq(x),¥x,0 <a <1, where F;(x) is a step function and
F.(x) is a continuous function. Further, decomposition is unique.

Proof First, we shall prove the first part

Let (a, b] be a finite interval with at least n discontinuity points xi, X, ..., X,
such that a<x; <xp < -+ <x,<b,
Hence,

Fla)<F(x-)<F(x1) <F(x-)<F(x) < -+ <F(x,—) <F(x,) <F(b)

Letpy =P X =x] =F(xx) — F(xi— ), k=1,2,...,n
Now, > pr = F(b) — F(a)
k=1

= The number of points with jump greater than & will be less than or equal to
F(b) — F(a)

= ne = F(b) — F(a).
- = F(b);F(a)_

= The number of points of discontinuity in the interval is finite.

Now, ¥ can be looked upon as a countable union of intervals of the type (a,b].

Therefore, the set of discontinuity points of a df F is countable.

Next, we shall prove the second part.

If « = 1 then F(x) = F4(x) = X is a discrete random variable.

If « = 0 then F(x) = F,(x) = X is a continuous random variable.

If « € (0,1) then F(x) = aFy(x)+ (1 — a)Fc(x)

Let D denote the points of discontinuity of the df F.

Leta =P(X € D)

Since the number points of discontinuity is countable, without loss of generality
we assume them to be x1,x,, ...

Letp(x;)) =P X =x]=F(x;) — F(x;_); i=1,2,...

Let

Now,
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Let x<x

x<x; <x

Fal) ~Fal) = 3 plx) >0

x<x; <x

S

= Fy(x') > Fq(x)

F,(x) is non-decreasing function of x.
Now

Fiem) = Y plx)t

xi<x+h

=Y pat S s

xi <x x<x;<x+h

“F+ Y p)

x<x;<x+h

Taking limit as 7 — 0
Fy(x+) = Fu(x).

F4(x) is right continuous Vx = F,(x) is a df of a discrete random variable.
Now,

F(x) =aF;(x)+ (1 — a)F.(x)

Fula) = 1 [F() — aFa(0)]
F.(—o00) = 1 Eazo
Fuoo) =1—% |
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Since F(x) and F,(x) are right continuous at x, F.(x) is also right continuous.
Let x <«

1

Fe@) = Fe(x) = 1= [F() = F(x) = a(Fu(X') = Fa(x))
=1 i - lF(x’) —F(x) — a{ ZI% _ Zp(;c,-)}]
:lialF(X')—F(x)— Z_p(xi)]zo )

Since ), _. .« p(x;) = sum of the total jumps, in F(x) between points x and x’
> p(x;) <Jump in F(x) between x and x’ i.e. F(x') — F(x)

x<x;i<x
= F.(x') = F.(x) >0

Therefore, if X' > x = F.(x') > F.(x)

= F,(x) is a non-decreasing function of x.

= F(x) is a df.

Now, we shall prove that F,.(x) is left continuous function of x.
From (2),

Fold) = Fuls) = 11— [F() ~ F) — 3 p(xo]
x<x; <x
= [P0 - F@) Y pl) - P(X = x’)}
x<x;<x

Fu(d) — Fulo) = — [m') - F() a< ) ’%) — (F(Y) F<x’>>]

<x;<x

= [F(x'=) = F(x) = a(Fa(x'=) = Fa(x))]

- ! ~[F(Y—) — aFad'—) = F(x) +aFa()

F(¥'—) —aFq(x'=)  [F(x) — aFq(x)]
l—« -«
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= F,(x) is left continuous at any point x.

But F.(x) is also right continuous at all points of x.

Hence, F.(x) is a df of a continuous random variable X.

Therefore F(x) = aFy(x) + (1 — a)F(x).

We shall now prove the third part, i.e., the decomposition is unique.
Suppose that the decomposition is not unique.

F(x) = aFg,(x) + (1 — @)F¢, (x) = aFg, (x) + (1 — @) Fe, (x)
a[Fq (x) = Fay (0)] = (1 = @) [Fe, (x) = Fe, (x)]

= Step function = Continuous function
This cannot be true. Hence, our assumption is wrong and therefore, decompo-
sition is unique.

Example 4 Decompose the following

0 px< —1
x+l s —1<x<2
_J 1z ) >
Fi) =193 L 2<x<3
1—32 :x>3

4x 0

F(—=1.)=0,F(—1) =0= F(—1_) = F(—1). Therefore F(x) is continuous at
x=-1

Now F(2_) =1 F(2) =3 = F(2_) # F(2), which implies that F(x) is dis-
continuous at x = 2. The jump at the point 2 is P[X =2]|=F(2) - F(2_) =
3—2=1 Atthe point 3 F(3_) =3, F(3) =2= F(3_) = F(3) and therefore F
(x) is continuous at x = 3.

Let D be the set of discontinuity points D = {2}.

azP(XGD):P(X:Z):%
Fd(x):ZI%:Z(%) =1

0 ;x<2
Fd(x):{l Cx>2

Therefore,

F(x) = aF (x)+ (1 — a)F.(x)
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where

F.(x)=0,x< — L
For —1 <x<2; F.(x) =
For 2 <x<3; F.(x) = 2[%—1] =1

~—

Forx>3; F(x) =2[1-2 -1 =1-2
Hence
< —1
2l —1<x<?2
_ 6 ) —
Fe() =11 . 2<x<3
l—;—x ;x>3
Example 5 Decompose the following
0 ;x<]
Lyl o 1<x<2
4 2 o=
F)=9, .5 .
Z+T 72§X<3
1 ;x>3
1
F(l_)=0, F(1) :ZéF(l ) £ F(1)

F(x) is discontinuous at x = 1. P(X = 1) =
F2)=1+1=LFQ2)=3=F(2.)#F(2).

F(x) is discontinuous at x = 2 = P(X =2) =

F(3_) =1, F(3) =1 = F(x) is continuous at x = 3.

The set of points of discontinuity is D = {1,2} and & = P(X € D) = 1.

Fal) = ST =237 i)

xi <x xi <x
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Hence
0 ;x<l
F(x) I 1<x<2
1 ;x>2

For x<1; F.(x) =2(0) =0.

For 1 <x<2; F.(x) =2 H_,_ = _} A26_1
For 2 <5< Fi) =2+ 2= = 53
Hence
;x<l
X1
;1<x<?2
_ 6 sy IS
Fe(x) = )%1 . 2<x<3
1 i x>3

If X is discrete random variable then

X
P(X =x)

PO s
NENNS)

If X is continuous random variable then

5 5 1<x<2
flx) =493 ;2<x<3
0 ; otherwise

Example 6 Decompose F(x) and find E(X) and V(X)

; x<0
; 0<x<1
+l1—e ) s x>1

’1'1
—~
=
S—"
Il
D= h— O

Prerequisite

F(0_) =0, F(0) == F(0_) # F(0) = F(x) is discontinuous at x = 0 and
1
3
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XXiii

F(1_) =4, F(1) = F(1_-) # F(1) = F(x) is not continuous at x =1

therefore P[X = 1] :%
D={0,1}and P(X=1)=F(1)—F(1_) =4

Fx) = 3 Fa(0) + 5 Fo(x)

= E[Fd(x) +Fc(x)]

Rt =2|F() - 3 Falo)
For x<0; F.(x) =2[0 — 0] =0. For 0<x<1; F.(x)
e

Forx>1; Fo(x) =21+ 1(1—e 0Dy 1] =1—
Hence

—(x—

1.

_f1—e x>
Fe(x) = {0 ; otherwise

Therefore,
If X is discrete random variable then

X
P(X =x)

wI= O
NI —

If X is continuous random variable then
flx)= e_<x_l); x>1

Let A={0,1} and B = {(1,00)}.
Further, let I and Iy be two indicator functions such that

2 -1 =o0.
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1 ;x€A
Tax) = {0 : otherwise

and

1 ;xeB
I5(x) = {0 ; otherwise

Then the random variable X can be written as

1 1

X =-1 1
3 a(x) + 5 B(x)
1 1

EX =SBy X + 5B X

1 1
EI/\X:OXE—’_IX 5

N —

1 5 11
EX’=- 4 >=
1 t27%
11 25 19

Y =1 1616
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Example 7 Decompose F(x) and find E(X) and V(X).

0 ;x<0
o 0<x<2
_ 4 » VY>>
F(x) 3 2<x<3
1 ;x>3

= F(x) is continuous at x = 0.
F(2) = F(x) is not continuous at x = 2.
2-) =1

=

1

4

)
F(3.)=3F(3)=1=FQ3.)#F(3

Fal) = S — 2 37 )

X <x X <x

Hence
0 ;x<2
Fax) =<4 ;2<x<3
1 ;x>3

For x<0 = F.(x) = 0.

For 0 <x<2; F.(x) = 2[§_0} =%

For 2<x<3; F(x) =22 -1 = 1.

For x>3; F.(x) = 2|1 _%] =1.

Hence,
0 ;x<0

F(x)=¢3% ;0<x<2

1 ;x>2

Therefore,

If X is discrete random variable then

X
P(X = x)

[SIE S
[SIENY
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If X is continuous random variable then

L 0o<x<2
— 2 ) ~
fe®) {0 ; otherwise

Let A ={2,3} and B = {(0,2)}. Further, let I, and I3 be two indicator func-
tions such that

1 ;x€A
; otherwise

)

and

_J1 ;xeB
I5(x) = {0 : otherwise

)

Then the random variable X can be written as

1 1

X = EIA(X) -+ EIB(X)
1 1

EX == EEIAX+ EE]BX

2
X
0
Therefore,
5 1 7
EX=-+-=-
4 + 2 4
Also,
EX? = lEI x>+ lEI X2
2 27
1 13



Prerequisite XX Vil
2
4
2
E[EX = /gdng
0

Therefore,

13 4
EX2 =" 4 -
PR

47
12

Hence,

47 49 41
IR PR T

Examples on pmf and pdf

Before considering the examples, let us consider some theorems which will be used
in subsequent chapters.

Theorem 2 Let X be a rv with the pdf f(x),x € R.
Let Y = g(x) be one-to-one function and differentiable at all x. The pdf of y is

dx

ﬂﬁ=k@”@»5

)

where x = g 1(y).

Theorem 3 Let X be an rv with pdf f(x); x € R.
Suppose Y = g(x) is a many-to-one function. Let A be the set of values of
X. Further, let Aj, A;. .. be the disjoint subsets of A such that Ui:1 A, =A.
Also the transformation Y = g(x) is one-to-one for every X € A;,i = 1,2...
Then the pdf of Y is given as

ﬁwzzﬁﬂyw»—

i=1

Theorem 4 Suppose X is a discrete rv with pmf iX = x). Let Y = g(x).
(a) If Y = g(x) is a one-to-one function then

PlY =) =P[X =g '(v)]
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(b) If Y = g(x) is a many-to-one function then
PlY =y =) PIX =xg(x) =)]

Theorem 5 Let X and Y be the two rvs then EX = EEX|Y

Proof Assume X and Y are continuous rvs.
Consider

I
~—

We can prove similarly, when X and Y are discrete rvs.

Theorem 6 Let X and Y be two rvs then
V(X) = E[V(X|Y)] + V[E(X]Y)]
Proof Consider,
E[V(X|Y)] + V[E(X]Y)]
E[(EX?|Y) — (EX|Y)’] + E[E(X|Y)]* — [E(EX|Y)]®

E[(EX?|Y)] — B[E(X|Y)]" + E[E(X|Y)]" — [E(EX|Y))"

Prerequisite
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Now, by using Theorem 5,
E[(EX?|Y)] = EX? and E(EX|Y) = EX,
Equation (3) becomes
EX? — (EX)* = V(X)

Example 8 Let X be an rv with U (—6,6). Find the distribution of (i) |X| (i) X?
(i) Let Y = |X| By definition

X ;X >0
X_{—X ; X<0

Let
Al ={x: —0<x<0}A; = {x:0<x<06}

In this case Y = |X| is one-to-one function for X € A;(i = 1,2)

fy) = {5 $0<y<6

0 ; otherwise
Note One can use this result in estimating 6 (see Chap. 2)
(i) Now ¥ = X% is many-to-one function.
Let
A ={x: —0<x<0}4; = {x: 0<x<6}

Now Y = X? is one-to-one function for every x € A;(i = 1,2)

() = _i {ﬁrjﬁh


http://dx.doi.org/10.1007/978-981-10-0889-4_2

XXX Prerequisite

1 1 1 1 1
c0<y<@?

@25 2025 @0

Therefore

A= 0<y<@?
— w5
) { 0 ; otherwise

Example 9 Let X be a discrete rv with the following pmf

X) = k ;x=0,+j,j=1,2,...,n
“ 1 0 ; otherwise

Find the pmf of |X| and X?.

We can write as

1
s x=-n,-n+1,....0,1,2,....n

il X n,—n ) ) Uy Ly &y s
I(X ) {0 ; otherwise

Let Y = |X| = Y be one-to-one at x = 0 and many-to-one at x # 0.

PIY =) = P[IX| =]

= P[X =y|+P[X = )]
2
S 2n+1
Hence,
1 cyv=0
i1 oY
P(Y:y): Zna—l ;yzlaza"'7n
0 ; otherwise
Let ¥ = X?
PIY =)] = PIX* =]
=PX = W]+ PX =—-y]
2
= 1,4,9,....n
2n+1’y ) ) ) 7n
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2n+1
Therefore,
1 C oy —
2n+1 y= 0
P(Y:y): 2”2+1 ;y:134393"'
0 ; otherwise

Example 10 Let X be an rv with the following pdf

2
0 ; otherwise

Fx) = {2)( ; O<x<m

Find the cdf of (i) sinx (ii) cosx
(i) Let Y =sinX

= Pl0<X <sin'(y) U(x—sin~'(y)

Y = sinx is a many-to-one function

¥ sin!(y) ; O0<x< 3
m—sin'(y) ;Z<x<m

Let

T

7
A =4{x:0 —JAy = {x:
| ={x:0<x< 2} 2 ={x 3

<x<m}

fo) = {f(x)%'}m +{f(X)|§_;|}Az

C2sinly 1 N 2(m —sinly) 1
IRV w2 I—y
21 O<y<l
== ; 0<y
TL/1 —y2

XXXi
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Hence,

2 1 .
f(y):{”\/@ O]

0 ; otherwise

(i) Y = cosx

Principal value of cos™'y are
0<cos 'y<m when —1<y<1

H(y) = P(cos 'y<X <m) = F(7) — F(cos™y)

(cos™'y)’
=1 —T,—1<y<l7
See Fig. 6.
The pdf is given by

Fig. 6 Distribution function Y
of cos(x) A

1

0 X
-1 p—
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; —l<y<l

; otherwise

Example 11 Let X be an rv with the following pdf

o =15

Find the pdf and df of (i) sinx (ii) cosx

P ={]_ u

Consider

e~ :x>0,0>0
; otherwise

; x<0
;x>0

G(y) = P[Y <y] = P[sinX <)]

For 0 <y<1; (see Fig. 7)

n=1

_ 1— efﬁsin’ly + f: |:ef<9[(Zn—l)7r—sin"y] _ 6—0[211n+sin’1y]:|

n=1

= PX<sin'y|+ Pl —sin"'y <X <27 +sin"y]
+  PBr—sin"ly<X<4m+sin'y] + P57 —sin"ly <X < 6m+sinly] + -

. o0
= 1—e ™4 S P[(2n— 1)asinly < X <2nm +sin~ly]

L o0
= 1—e Y fexp[n+6sin'y] 3 exp|—(26mn)]

n=1

—  exp[—6sin”'y] 3" exp[—207n]

n=1

— 1= 679sin"y 4 (en9+95in"y _ e79sin"y)( e )

lie—an)ie—(/xinflv+e—27r0—0.\i|\71'\'+e—nl)+(l~'m’1yie—2n()—l)~'in v

1_e 2@
@0+ 0sin~ 1 v_g—bsin~ 1y

= 1+ 1_e 2w

e—n9+ﬁsm’1yie—ﬁsin’1y

_J 1+ =
G(y) = 1-e2@
) { 0

Note that for —1 <y <0, the principal value of sin~'y will be negative.

For —1<y<0

; O<y<1
; otherwise

XXXiii
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sin x|

Prerequisite

siny

/\R sy x4ty /\ Im—sin y Ar+sin 'y /-

—f

DX A /.

Fig. 7 Graph of sin(x)

Plsin X <y]

= Pl —sin"'y <X <27 4 sin~'y] + P37 — sin"'y <X <4m +sin"'y] + - -

[0 0]
ZP[(Zn — D)7 — sin” 'y <X <2nm 4 sin~1y]
1

n

I
NgE

{C—O[Qn—l)n—sin’ly] _ e—@[Znn +sin~1y] }

e—2710
76+ 6sin~ly —6sin~ly
e —e N ———=
1 — e 270

e—rre +6sin”ly _ e—2n0—95in"y>

B
I

/N N

1 —e—270

From (4) and (5)

—n6+6sin~ Ly _ a—2r6-6sin~ 1y
e y_e )

1—e 20 5 _1<y<0
GO =11+ —67”()*0?1’5570“"71’ ; 0<y<l1
0 ; otherwise
The pdf of Y is as follows:
ge-or [easirrlv +e—n9—95in71v] .
=y ; —1<y<0
g(y) — ole" osin— 1y +e—9>in71y] : 0 <y< 1

(1-e72)/1-y2
0

; otherwise
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1
\% . _\% 29 ﬁ% Jn ?% A7 9% 5n

(AVER SR

Fig. 8 Graph of cos(x)

(ii) G(y) = P[Y <]
— Plcos X <y] = P[X <cos'y]

For —1 <y<1 for 0 <x<oo Principal value of cos™'y are
O<cos 'y<m, —1<y<1; (see Fig. 8)

G(y) = Plcos 'y <X <2 — cos™ 'y, 2w +cos 'y<X <dm+cosy,..

P[(2n — 2)m 4 cos ™'y <X <2nm — cos1y]

I
NgE

3
Il
—

I
gk

{1 _ 670[2rmfcos’1y] _ 1_~_679[(2n72)n+cos’1y]:|

n=1

00 00
— chos’]y § 672n9ﬂ + efﬂcos’]y § 679ﬂ(2n72)
n=1 n=1

where

6727r9

00
—2n0m __
Z © - (1 _ 672719)

n=1

e—@cos’ly _ e(@cos"y—Zn@)
Gly) = e ;i —1<y<0

Note that the same is true for 0 <y <1, therefore

e—teos™!y _ a(bcos™!y—26)
G(y) = [~ o2  —l<y<l1

]

XXXV
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1 eefecos’ly 9e72n9+0005"y

80) =1 = + >
V1—y V1—y

0 [e—ﬁcosly e—27r0+0c03‘f|

Tl e | 1= — + M-y

Example 12 A probability distribution is not uniquely determined by its moments.

Let X be an rv with lognormal distribution

Flx) = {ﬁexp[— Llogx)’] ;x>0
0 ; otherwise

Consider another random variable Y as

() = {14 bsin(2rlogy)}f(y) ;¥y>0,—-1<b<1
V=0 ; otherwise

BV = [ rt)dy+b [ ¥ sinf2mtognfo)as
0 0

oo
b 1 1 2

=EX"+ —/ " sin(2rlog y) —e 2108 g
G J ¥ sin( gy)y y

Letlogy=z=y=¢€°

b 2
=EX"+ — / e"*"7sin(27z)dz
2

(=r)?

b o2 [
=EX"+ ez / e” 2 sin(2nz)dz

Since z—r =t = sin(2nz) = sin(2nr+2nt) = sin2xt, r being a positive
integer

ﬁ o0

e’ésin 27t)dt
V2 / (271)

—00
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The integral is an odd function of 7. Therefore the value of the integral is zero.
EX" =EY"

Hence, we have two different distributions and their moments are same. We can
conclude that moments cannot determine the distribution uniquely.

Note If the moments of the specified order exist, then all the lower order
moments automatically exist. However, the converse is not true. See the following
example.

Example 13 Consider the following pdf

2
5 x>1
flx) = {0 ; otherwise
EX =2 and EX> = 0
Example 14 Let
r+1)g

EX" = (r+1)0"'8(r+1,1)

[o.¢]

EXr+1 r+19r+1/
0

r+l

+9 r+2

In this example moments up to rth order exist and higher order moments do not
exist.

Example 15 A continuous distribution need not be symmetric even though all its
central odd moments vanish.

Let

1
f(x) = ggexp(= )1 — ksin |x[{]; —o00 <x< o0

where
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In this case EX>¥ ! =0
Hence f(x) is asymmetric, but all its odd moments are zero, see Churchill (1946).

Example 16 If X; and X, are independent then

bx, +x, (1) = @y, (1) X Py, (1),

where ¢ is a characteristic function. But converse is not true.

®

I 1
f(x) :;m7 —o0<Xx<00
¢, (1) ="

Let X; = X, almost surely = P(X; = X;) =1

— I

bx,1) =©

bx, 4+ x, (1) = e = bx, (1) X ¢y, (1)

But X; and X, are not independent.
(ii) Consider the joint density of (X, X2)

Hl+xxn(? —x3)} ;5 jal<land |x|<1
) 1% ;
Florn, xo) {0 ; otherwise

Marginal pdf of X;(i = 1,2)

Lol
— 2 1>
g(x1) {O ; otherwise

L nl<l1
—J2 2=
g(x2) {O ; otherwise

it —it

1
. dx; e’ —e sin ¢
_ —itx: _ _
¢xl(f)—/e 17—7.——
-1

2it t
¢)X2 (t) = Sl_nt
t
PR P L

t2



Prerequisite XXXIX

Next, Z = X; + X, then

= /f(u,z — u)du

= %/[1 +u(z — u){i? — (z — u)*})du

1
= Z/ [1+32%u* — 2z’ — Zuldu

Since X =uand X, =z—u
The limits of integration for u in terms of z is given by —1 <u<z-+1; u<0
and z— 1<u<l; u>0

z+1
1 2
h(z)ZZ/ [1+3z2u2—2zu3—z3u]du=i; —2<z<0

I
2
/ (143220 — 2z — Zujdu ==—=; 0<z<2
1

-lkl»—*

=

2

by, o xal) = / € (2)dz

-2

0 2
247 4 /2—Z»

— ld —ltzd
2 + 2 edz

2
_ R 2 — .
Ze—ltzdZ + / 4 Zettzdz

0

o\m o\m b
S}

. 2=
(efttz + eltZ) 4 ZdZ

2
/ — z)cos (1z)dz
0

_ 2 —2cos (21) 1 —cos(21) (sin t) :

l\)l»—

472 212 Tt
= ¢y, (1) X ¢x, (1)
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But f(x1,x2) # g(x1) X g(x2)

Example 17 If Xy, X, X3, X4 are independent N (0, 1) random variables, show
that

(a) Z = |X1X» + X5X4| had exponential pdf e~ for x > 0.
b) Z, = % has Cauchy distribution.

ro7 exp(mxx 1
MX1X2 / / p ! 2 |:— 5 (X% +X%):| dxldx2
o0 o0
1 1 X3
exp — exp [txy — —=|dxy | dx
27_[ / p ( > \/E / p|: 142 2:| 2 1

Now,

1 1 2 tzx%
exp —5( —2tx1xz+tx1 —tx) = exp —E(xz—txl) +

Hence

1
Vs
Similarly,
M 1
3%, (1) Wipars
Hence
1
MX1X2 +X3Xy (t)
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This is the mgf of Z with Laplace distribution.
1
f(x) = 5exp(=|xl); —o0 <x <00

To verify this

- 1
Mx(t) = 3 / e'e™dx + 3 / e “e”dx =
—00 0

X

fX1X2 +X3X4(x) =e ;x> 0

(b) Let Z; = %, L =X, =X\ =241

(X1, X>) _
Ay N L2
0(Z1,2)
f(Z2,2,) =f(X1,X2) 2, :LexP _1{22124_;}_ 2 =Zexp —é(1+z2)
’ ’ 27 g Rz n 27 2 !
r 22 Z% N
f(Zl) = / Eexp[—z(l-l—zl)_ dZZ
OOZZ Z% 2 ]
—2/2—exp[—5(l+zl)_dz2
0
I 11
= [ Zexp[-w(1+22)]dw =
| pesplonti ldw =
0

Hence Z; has a Cauchy distribution.

Example 18 1If the rv X ~ B(n,p) and the rv Y has negative binomial distribution
with parameters r and p, prove that

PX<r—1]=P[Y >n—7]

Now,

= y+r—1
PY>n—r= > (},_1 >p’q”
y=n—r+1



xlii

LletZ=y—-(mn—-r+1)

Now

k=0 =r—1—k
Lett=z—(r—1—k)
r—1 00 1
r n—r+1 n I+r— 1 k) t+r—1—k
e 2 (3) 2

A n\ & t+r—1-k\ ]
vy | () 3 )
=l /n < i —1—k\ |
:p’q”ZKk)q_kZ(t )61'
k=0 =0 J
r—1 n 7r—_
=p'q" Kk)q"(l—Q)( o
k=0 -

_ i K:)I%q"—k} —PX<r—1]

Example 19 Let X be an rv with B(n, p). Prove that

Fuy1(y) = pFu(y — 1) +qF,(y),

where,

Prerequisite



Prerequisite xliii

wazpmsﬂzy Cvﬂfﬁ

Consider F,, +1(y) = pF,(y — 1)+ gF,(y)

:Z<>HMH+Z<>XHH
R i e

e (e (o e (e

G -Gl ) O
)l

0 O (B e O

y
N n+1 X _Nn—Xx
P"H[XSY]—Z( )pq = Fa(y)

X
x=0

Example 20 Let X be an rv with B(n, p). Prove that

PIX <k] = ( )/r" k=1 — o)

Now,
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_in n—1 ron—r—1 __ n—1 r—=1_n—r
= . )P 1 )P

Example 21 If the rv X has B(n,p) and Y has Beta distribution with parameters
k and (n-k-1) then prove that

PIY <p] = PX > K]
Now, P[X > k| = Xn: ( >p’q” r

dP[X >k n—1
g =nTy_1,where T, = ( )prq”_'_l

r

n—1
_ k=1 _n—k
() )t

On integrating both sides
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Example 22 Let X be a Poisson Distribution with parameter A, prove that

[ e
A

Let

oo

1
Ix :/—'eittxdl‘
X

A
0

_! [—e”f‘];o+/xt)"le”dt

x!
A
e AT 1 r
=" 4+ - [ lear
x! (x—1)!
A
)\x67A
=
e—A)Lx e—}\)hxfl
T + (x—1)! 2
ef)»)\‘x efl)\x—l ef)»)\'x—Z
= I g—
A o T i
e et e A .
:T+m+"‘+T+C
X e_)\)\,i
= g = PiX <A
i=0 .

Example 23 Let X1, X, be the iid rvs with N(0, 1).
Find the pdf of Z; = \/X] + X3 and Z, = tan™" ().

X
Z=X{+X3, a2y = 3= 2} = Xi(n Zo)’ +X]
2

S S/ |
27 1+tan2Z, sec?Z,

Z

X, ==+
sec Z,

= ZEZICOSZZ,XI = :I:leinZz

xlv
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xlvi

Therefore X; = Z;sinZ, or —Z;sinZ,
X, = ZicosZp or —Z1cos”Zp

+sinz, +zic0szp

= | £coszy Fzsinz | = Z1$ill222 +210082Z2 =2

(X1, X7)
0(Z,,2)

V| =2 +2Z =27
1 x%—i—x%
flxr,x2) —Zexp{—<T

1 2

flz1,22) = ﬂe_%(zzl)
TP
T p 2

X, € (—00,00) and X, € (—00,00)
then Z; € (0,00) and Z; € (-5 ,3)

1 . b b1
sy = {3 i i<e<i
0; ; otherwise

Example 24 Let X,,X,,...,X, be iid rvs from B(1,p). Find the distribution of

82 =5 (X — X).

§? = Z X — X)* = ng_n > x) _ ZX;_ > x)°
! f n2 i n

Since X; =0or 1 fori=1,2,...,n, Y. X?~B(n,p) and > X; ~B(n,p)
Let Y =YX =YX,
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n—1
P<52 -— > =Py=1)+Py=n—1)=npg" " +np"'q
= npq(q" +p"7?)

P<52 = @) =P(y=2)+PQy=n-2)= (n) P2 +p" ]

2
n
= ( 5 )p2q2 [g"* +p"

Sqn73 +pn73q3j|

~
N\
|9)
8]
Il
w
—
K
S
o/
~
Il
Jac]
~<
Il
w
S—
+
-
e
~
Il
S
|
w
~—
Il
VR
N
~_
S

In general

P(S2 = @) —Py=i)+P(y=n—i) = (:’) Pd + 0]

= (n>piqi[q"2i+pn2i}; i=0,1,2,....n

i

Example 25 Let X1,X5,...,X, be independent rvs with exponential distribution
having mean one. Prove that the following rvs have the same distribution.

Z = max(Xl,Xz, .. .,Xn)

X; X3
W=Xi+Z5+5+ -+

Letu=1—-e“=du=e“dzand e” = (1 —u)”’

z=0=>u=0,z=00=>u=1
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1
= /nu"71(1 —u)"'du=nB(n,1 —1)
0

a1 —1)  nl(—1)!
 T(n+1—1) (n—1)
B nl(—1)!

S n=tn—t—1)...2—=0)(1 —1)(—1)!

n!

m—tn—t-1)---2-0(1 -1

M, (1) = Mx, (t) X Mx,(£) X ... X Mx(¢)
2 n
1 2 n
=——X——X -+ X
1—t 2-—1¢ n—t
n!

m=t)n—t—1)...2-1)(1 —1)

Hence, Z and W have the same distribution.

Mz(t) =

Example 26 Let X; and X; be independent rvs with U (0,6;),i = 1,2 respectively.
Let Z; = min(X;, X,) and

_J0 s Zi=X4
Z2_{1 121 =Xa

Show that Z; and Z, are independent rvs.
@ 01 <6,
P|Z) <z1,Z; = 0] = Plmin(X;, X,) <z1,Z, = 0]

= P[(X; <z1,X1 <X;]

71 6y
—dxd.
//992 e
1 22
6 O0<z1 <6
9102 (Zl h — 2) 21 1 (7)

/1 /6

h — X1

= | — d.

/91< ) )XI
0

21 21
Y (g 7_)
9192< 270
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6 6
P[Z, =0] = _
2 //eezdxldxz
[ 7
01
=— Oy —x)dx; | =1 —— 8
616> /( 2 = x1)dx 20, (8)

0
PZ, <z1,Z, = 1] = Plmin(X,,X;) <z1,Z, = 1]

= P[XQSZl,X2<X1]

71 6

/ / dxldx2
6,6,

0, —
:/del
0,0,

0

6, 6,
= dxd
0//9102 e
1 T
= 091 —)C2)d)€2
6,6 /(
192 o
1 x2 o
610, [ e 2]0
_ L[ 2 0%]
0,60, 2
01
2—02; 01 <6, (10)

From (7) and (9)
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2 01+ 6, Z%
Pz, < L6146, —z1] = -
asal=gg bt —al =G 5
01+6, 2z
= —— O<zy <0 11
flz1) 6.0, 016, 21 <61 (11)
01
PlZ,=0=1—-— 12
(2, = 0] 26, (12)
01
Pz, =1 =— 13
(2, = 1] 20, (13)
>ii) 6, > 6,
Similarly, as before
01+ 6, 27
= ——: 0 0 14
f(z1) 0.6, 0.0, <z1 <0, (14)
02
PlZ,=0=1—--— 15
=0 =1-52 (15)
0,
PlZ, =1 =— 16
Z=1]=5; (16)
(iii) 6; = 6, = 6
Similarly, as before
2 2
flz1) :é—g; 0<z1 <0 (17)
1
1
Pl=1]=; (19)

From (7), (9), (11), (13), (14), (15), (17), (18) and (19), Z; and Z, are inde-
pendent rvs.

Order Statistics

Many functions of random variable of interest, in practice, depend on the relative
magnitude of the observed variables. For instance, we may be interested in the
fastest time in an automobile race or the heaviest mouse among those found on a
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certain diet. Thus we often order observed random variables according to their
magnitudes. The resulting ordered variables are called order statistics.

Definition 2 If the random variables X;, X5, - - -, X, are arranged in ascending order
of magnitude and then written as Xy <X <o X S Xpr ) S S Xy X
is called the rth order statistic (r = 1, 2,..., n) and (X(1),X2), ..., X(»)) is called the
set of order statistics.

Let X1,X5,- -+, X, be n independent random variables. Let F,(x) be the distri-
bution function (df) of the rth order statistic X,).
Hence,

Fr(x) = P[X(;) <]

= P[Atleast r of X; are less than or equal to x|

- Z (;’) Fi(x)[1 — F(x)]"™", (20)

where F(x) = df of X = P[X <x].

Theorem 7 The distribution of rth order statistic is

Pl - FOP ) xeR (1)

fio® = T

Proof Differentiating (20) with respect to x, let F(x) = 1 — F(x)

e, =3

i=r

1 1

7)%*%wF"%nﬂm-—g;(?)Fvwn—nF"f%nﬂm

n

- nz (?‘11 >F”(x>F""<x)f<x) -ny (” ! )F"(x)F"”(x)ﬂx)

i=r

Let A; = (? ! >Fi () F" (x)f (x).

Therefore, f,, (x) = n Z (Ai1 —A) =n(A,-1 — A))

ButA, =0
fx(,-) (X) =nA,

(7 )P WP
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Corollary 1 The distribution of X,y = max;X; is

fx,y () = nF" ' (x)f (x); x €R (22)
Proof
fX(n) (x) = P[X(n) SX]
= P[All X s < x]
_T PIX;<x] = F"(x) (X s areiid)
i=1
Hence

fr (¥) = nF" ()f (x); x €R (23)

Corollary 2 The distribution of X() = min;X; is

froy (@) =n[l = FX)I""'f(x); x€R (24)
Proof
Fx, (x) = P[X(1) <]

=1-P[Xy) > x|

=1-PAllX's > x]

=1- ﬁP[Xz > X}

i=1

=1—[1-F@)]" (Xs are iid)

Hence

Jx,, (¥) =n[l — F(x)]" 'f(x); xeR

Theorem 8 The joint pdf of (X(1), X(),- .., X(n)) is given by

I ) 5 Xy <X < <Xa
g(X1), X@), - X)) = {o ® ; iy (- (25)
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Corollary 3 The marginal pdf of X,y from (25) is given by (21).
Proof

o ) =) [ [ [ ]
—00 —00 —00  Xr Xryl Xn—1 (26)
X Hf(X(i))dxld)Q. . .d)C(,._l)dX(r+ 1) - .dx,
i#r
Consider
/ F)dx, =1 — F(x,-1)
[ el = Pl lds =5 (1 - Fln,)
Hence
/ / /f(xn)f(xn,l)--~f(xr+1)dxndxn71"'dxr+1
= ! 1-F nr 27
_(n_r)|[ - ('xr)] ( )
Next,
/f(xl)dxl = F(x;)
X3 )
/ F(Xz)f(Xz)dXz = F (2X3)

—00

/ FOoo1)F 2 (% ),y = % (28)
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Hence, from (25), (26), (27), and (28), we get the distribution of X, as given

in (21).

Theorem 9 The joint distribution of X, and X, (r<s), is given as

| —1 s—r—1
) = {WF (6 [F) = Pl )11 -

0; otherwise

FOe)]"f (or)f ()5 X <2

(29)
Proof Note that
=00 <X <X X X <Xy, <Xy <X <Xy <Xgpp...<X, <00
Consider three parts
(a) Omitting x,,
—00 <X <X, —00 <Xy <X3, —00<X3<Xg, ", —00<Xp_2<Xp_|,
— <00 <X < Xr (30)
(b) Omitting x;,
Xp <Xpp ] <Xgy Xpp 1 <Xp2 <Xgy Xp 42 <Xp 43 <Xgp ooy Xg—3 <Xy <Xy,
Xgon <Xg_1 <X (31)
(©
Xg <X 1 <OO, Xy ] <Xg42 <00, X542 <Xg43<O0, ..., X2 <X;—1 <00,
X1 <X, <O (32)

Consider (a) omitting x,

] s =i | e

x4

2 X 3 X.
[ pan -2

—00

F2(x3)
2
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In general,

Consider (b) omitting x;

/ Flo)dxt = F(x) — Flx_a)

s—r—2
f (X, + Z)dxr +2 = [F (xs )(;_Fr(.x:+21))l] y

/“ F(x) — Flx, )]
(s —r—23)!

[F(x) = Flx s )™ _[F(x) — F(x)] !
/ ( fOer)dx, 1 = Gor—1) ,

Consider (c)

oo

/ FOm)dx, =1 —F(x,-1)

Kn—1

r 1-F n— :
/ xnl xnldxnlfw

[ 1= Flx )] = )]
/ ff(xn72)dxn72 = T

Xn-3
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/OC — F(xs+2)]11_S_2f(xs+z)dxs+2 = - F(X‘YH)]”_FI

) (n—s—2)! (n—s—1)
2 AP .5

Xs

Hence from (a)

/ / / /fxl f(2) -+ f (1 )dxrdxy -+ - dx—y :?;_l(if;') (35)

—00 —00 —00

From (b)
/ / / /fx‘ Df (Xs—2) = - F e 4 2)f (4 1)dXs—1dXg—p - - - dXy 4 2dXp 41
SECs
From (c)
]O/OC"'/oo/oof(xn)f(xnl)f(xnz)"'f(xs+1)dx,,dx,,1---dxs+1
:% (37)
Therefore
v [ [ [J]JJTT ]

OO TO0 TOO A Hr4l Xr42 X5 st Yoz Xl (38)

X n! Hf x;)dxydxy - - - dx,ydx, ydx, o dxg dxg g dx,
i#r,s
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By using (35), (36), and (37), the joint distribution of X, and X;, (r<s), is given
as
Crdf (o) P (6 [F () = F o)™ 1 = Fa)]"F (), (39)

| B
where ¢ = = TG

Distribution of Range

Let W,s = X; — X,

(o]

f(Wr.v) = Crs / f(x)Fril(x) [F(x+ Wis) — F(x)]s_r_l [l - F(x+ Wr.\')]n_sf(x”' Wi )dx,

—0o0

Put r = 1, s = n, then call w,;, = w,

[o¢]

fWOZMn—U”/f®VU+W%4%m“7@+WMX (40)

—00

The cdf of w is more simpler

F(w)=n / fx) / (n— D[F(x+w) — F(x)]" *dwdx
—00 0
—n [ FOF W) - PP e

Example 27 Let X, Xo,..., X, are U(0, 1)
(i) Distribution of rth order statistic.

X1 =x)""

M) = g —r+ 1)

; O<x<1

(ii) Joint distribution of rth and sth order statistics.

futiyy = {1 02 xgys
0 ; otherwise
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(iii) Distribution of W,.

Wsiril(l . W)nferr
Fun () B(s—rn—s+r+1) v

(iv) Distribution of range (s = n, » = 1 in (iii)).

wi2(1 — w)

; O<w<l

Prerequisite



Chapter 1
Sufficiency and Completeness

1.1 Introduction

Suppose that a random variable (rv) X is known to have a Gamma distribution
G(p, o) but we do not know one of the parameters, say, o. Suppose further that a
sample X, X5, ..., X, is taken on X. The problem of point estimation is to pick a
(one dimensional) Statistic 7 (X, X», ..., X,) that best estimates the parameter o.
The numerical value of T when the realization is x1, x», . . ., X,, 1S known as estimate
of . From the Wikipedia, we quote the difference between the estimator and the
estimate. In statistics, an estimator is a rule for calculating an estimate of a given
quantity based on observed data. Hence rule is an estimator and result is the estimate.
Here, we will use the same word “estimate” for both the function of T and its
numerical value. If both p and ¢ are unknown, we find a joint Statistic 7 = (W}, W)
as an estimate of (p, o).

Let X be a random variable with a distribution function (df) F which depends on
a set of parameters. Suppose further that the functional form of F is known except
perhaps for a finite number of these parameters. Let 6 be the vector of (unknown)
parameters associated with F.

Definition 1.1.1 The set of all admissible values of the parameters of a distribution
function F is called the parameter space.

Let F(x,6) = df of X if 6 is the vector of parameter associated with the df
of X. Denote the parameter set as ®. Then § € ©. Hence the set {F(x, ) :
0 € ©,x € N} is called the family of df of X.

Example 1.1.1 Let the rv X have Poisson distribution with parameter A denoted as
P()) where \ is unknown. Then ® = {\ : A > 0} and {P () : A\ > 0} is the family
of probability mass function’s (pmf) of X.

Example 1.1.2 Let the rv X have a binomial distribution with parameters n and p.
Then it is denoted as X ~ B(n, p). Note that only p is unknown.

© Springer Science+Business Media Singapore 2016 1
U.J. Dixit, Examples in Parametric Inference with R,
DOI 10.1007/978-981-10-0889-4_1



2 1 Sufficiency and Completeness

Hence, ® = {p : 0 < p < 1} and {B(n, p),0 < p < 1} is the family of pmf’s
of X.

Example 1.1.3 Let the rv X have a normal distribution with mean p and variance
o?. It is denoted as X ~ N(u o?). Assume that y and o are unknown. Then
O = {(u, 0% : —00 < jt < 00, & > 0}.

If 4 = pp and o is unknown,

® = {(o, o)} : 0 > 0}
If 0 = 0¢ and p is unknown
®:{(u,a§):—oo < i < 00}

Definition 1.1.2 Let X, X,, ..., X, be iid rvs from F(x, ), where 6 = (6, 6,,
..., 0,) is the vector of unknown parameters. Also § € ©® C 3%,, where %, is the
set of real numbers. A Statistic T (X1, X», ... X,) is said to be a point estimate of 0
if T maps 9, into O, i.e.,

T:9N, —> 6.

Example 1.1.4 Let X, X,, ... X, beasample from N (6, 1), where 6 is an unknown
parameter. Then we get several estimators for 6. Let T be

(1) T = X, where X =n~'>"" | X; an estimator for 6.
1
(2) T=———>",iX, is an estimate of 6.

nn+1)
(3) Any X; is an estimate of 6.

Itimplies7T = X; (i =1,2,...,n).

Example 1.1.5 Let X|, X», ... X, be a sample from B(1, p), where p is unknown.
Here also we get several estimators

L 7=2%
1
2. T =~
3
X
3. 7=21
n
X X X
4 7o TS

3n
are all estimates of p.

From these examples, it is clear that we need some criterion to choose among all
possible estimates.
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1.2 Sufficient Statistics

Why do we require sufficient statistics?

The answer is in the meaning of sufficiency. One of the important objectives in the
primary stage of statistical analysis is to process the observed data and transform it
to a form most suitable for decision-making. The primary data processing generally
reduces the dimensionality of the original sets of variables. It is desired, that no infor-
mation relevant to the decision process will be lost in this primary data reduction.
As shown later in the chapter, not all families of distribution function allow such a
reduction without losing information. On the other hand, there are families of df for
which all set of sample values can give a real-valued statistics. The theory of suffi-
cient statistics enables us to characterize families of df and provides corresponding
transformation, which yields sufficient statistics.

A sufficient statistic, for a parameter 6 is a statistic that, in a certain sense, captures
all the information about 6 contained in the sample. Any additional information
in the sample, besides the value of sufficient statistics, does not contain any more
information about §. These considerations lead to the data reduction technique known
as the sufficient principle.

We start with a heuristic definition of a sufficient statistic. We say T is a sufficient
statistic if the statistician who knows the value of 7' can do just a good job of
estimating the unknown parameter 6 as the statistician who knows the entire random
sample.

Definition 1.2.1 Let X = (X, X», ..., X,) be a sample from {F (x,0) : § € ©O}.
A statistic T = T (X) is sufficient for 6 if and only if the conditional distribution of
the sample X, given 7 (X) = t does not depend on 6.

To motivate the mathematical definition, we consider the following experiment.
Let T(X) be a sufficient statistics. There are two statisticians; we will call them
A and B. Statistician A knows the entire random sample X;, X5, ..., X,,, but Sta-
tistician B only knows the value of T, call it ¢. Since conditional distribution of
X1, X2, ..., X, given T does not depend on 0, statistician B knows this conditional
distribution. So he can use computer to generate a random sample X7, X5, ..., X/,
which has this conditional distribution. But then his random sample has the same
distribution as a random sample drawn from the population (with its unknown value
of 0). So statistician B can use his random sample X/, X, ..., X, to compute what-
ever statistician A computes using his random sample X, X5, ..., X,,, and he will
(on average) do as well as statistician A.

Definition 1.2.2 Let X = (X, X5, ..., X,,) be a sample from {F(x,0) : § € O}.
A statistic T = T (X) is sufficient for 6 if and only if the conditional distribution of
X;(i=1,2,...,n), given the value T (X) = ¢ does not depend on 6.

Example 1.2.1 (normal population, unknown mean and known variance) Let the rvs
X;,i =1,2,...,n have normal distribution with mean y and variance 2. Now o2
is known, say aé.
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Now we say that T = > X; is sufficient for .

/( ) L [ 1 > >2}
X1, X2, ... Xy, = —eXp| — X; — .
1, X2 % " p 2072 Iz

Distribution of T is N (nu, no}),

f@ =

1 1
exp | — (t—n )2:|
ooV 27N P |: 2no 3 a
Using Definition 1.2.1,

fxi,x, ..., T =1)

fxr,x0,...x,|T =1t) = 0

Note that {X = x} is a subset of {T(X) =t}

_ SO x)
£
(onl/ﬁ)n eXp I:_z%.-% Z:’lzl (xi - N’)z]

1 _ 1 _ 2
ooV 2mn CXp[ 2n(r% (t l’l,LL) ]

Consider
1
— xi =2 X;i+n
oo (z oSenid)]
1 n 2ut n/ﬂ
= ex _— x. -
P 20(2) — ! 20(2) 20%
Next
exp | — (t—np?|=exp|— i 2npit — np
P12 ol W= e 2no3  2noy  2no}
Then

1 - 12 wtoopt onp
x| T=t)=cexp| ——= -+ -5 - = 40
fxl ) p|: 20(2) (i: ! n) 0(2) 08 20(2)

where c is a constant, x = (x1, X2, ..., X,)

(1.2.1)

(1.2.2)

(1.2.3)

(1.2.4)

(1.2.5)
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1 (< 2
f(x|T =t)=cexp [—T‘z (2 x? — :7)] (1.2.6)
0 \i=1

We can see that (1.2.6) does not involve .
Therefore, f(x | T = t) does not depend on p. Using Definition 1.2.1, we can
claim that T is sufficient for u.

Example 1.2.2 Let the random variables X and X, have Poisson distribution with
parameter \. Find sufficient statistic for \.

e*/\>\x1 e*/\>\x2
fXi=x,Xo=x0,| )= ——— (1.2.7)
xl! le

LetT = X; + X, and T has P(2\).

e AN em A\ t!

X =)C,X =X T =1) =
fXi=x1,X=x| ) o ml By

_t!l

x1lxp! 207

xi <t(i=1,2) (1.2.8)
Therefore, f(x | T = t) does not depend on .
Using Definition 1.2.1, we can claim that T is sufficient for \.

Example 1.2.3 Consider the Example 1.2.1 with oy = 1. In this example, we can
say that (X | T = ¢) is multivariate normal with mean vector 61, and covariance
matrix [, where 1,, = (1,1, ..., 1) and I, is an identity matrix of order n.

Consider the transformation ¥ = H X, where H is an orthogonal matrix such that

Y, = /nx,

kX — (x4 )

Y = k=1,2,...,n—1 1.2.9
g kk+ 1D (1:29)
-1 € 0 0..0 0
V2 V2 )
—L —L 20..0 0
NG NG N
H = ’ , (1.2.10)
1 1 T 0
1«/n(n—l) 1«/n(n—l) : o »,/ln(n—l)

The transformation H : X — Y is known in a particular form as the Helmert
transformation.
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E(Y)=HE(X)= H0I1, (1.2.11)
VY)=HHVX)=1, (1.2.12)

0

0

H1, = ’
N
Hence Y1, >, ... Y,_; are iid rvs having N (0, 1) distribution independent of Y,,.

Hence, the conditional distribution of Y7, Ys, ..., Y, | given ¥, = ./nx is

N(O, I,_1). Using Definition 1.2.1, we can claim that Y, is sufficient for p.

Example 1.2.4 Consider the Example 1.2.2 with T = X| + 2X>.

PXi=1,X =1
PXi=1,Xo=D+PX;=3,X=0)

PX,=1,X,=1|T =3) =

(e N (e )N
PN+ %e—x
e A \? 1

- - (1.2.13)
— » By
e[\ + X1 1+3

Equation (1.2.13) depends on A. Hence we cannot say that T is sufficient for \.
Note that the distribution of X; + 2X, is not P(3)).

Example 1.2.5 Let X, X5, ... X,, be arandom sample from B(n, p). Then the dis-
tribution of 7' = >""" | X; has B(nm, p). Hence we will find the distribution of

L f(alT)
2. f(x1,x|T)
3. flxr,x2, .., x| T)(r < m)

X1 =x1,T =1t—x1)
P(T =1)

OfX =0T =1) =

(;’])pxlqn—xl (ngni;ll))pt_xlqn(m—l)—t+x1
(") ptgqrm=

ny (nm—1)

WD o (1.2.15)

(")

fXi=x1IT =1)= (1.2.14)
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(i) As in (i), we can write f (X1, X2|T =1t)

() ()0 D)

fxi, x|t = —————=
(")

r n (m—r)
Hi:l (x,) (zfgle x,-)
(")

We can see that (1.2.15), (1.2.16) and (1.2.17) are free from the parameter p. Hence

by Definition 1.2.2 we can conclude that, T is sufficient for p.

X1 x5t (1.2.16)

(iii) f(x1, X2, ..o x| T = 1) = ;in <t (1.2.17)
i=1

Example 1.2.6 Let X1, X», ..., X, be iid rvs from an exponential distribution with
mean 6. Then the distribution of 7 = >, x; is gamma with mean n6, where n is a
shape parameter. The distribution of 7' is gamma and denoted as G (n, %). Now we
will find the distribution of

L. f(X1|T)
2. f(Xy, X2|T)
3. f(X1, X2, ... XalT).

(i) Let

1 _x
f()ci):§e’7 x;>0,0>0,i=1,2,...,n

e !
f(t): 9111"(}1) ’ t>0, 0>0
faln) = % ; where T, = ;xi
_ _ n—2
_ @ 1)::71 x1) O<ux <t (1.2.18)

(n—1n—2)1t —x; —x)"?
tnfl

(i) f(x1, x20t) =

; 0< x4+ x <1(1.2.19)

(i) f(x1, 32, 0o l) = l;n(fl) : Ex,- <1 (1.2.20)

Using Definitions 1.2.1 and 1.2.2, we can conclude that 7 is sufficient.

Example 1.2.7 Let Xy, X5, ..., X, be iid random sample from U (0, #). Then we
will find the distribution of
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L f(lT)
2. fxi, x| T =1)i#]
3. f(x1,x2,...x,|T =1t), where T = Max(Xy, Xa,...Xy)

1
1) f(xilr) = " ; 0<x;<t,i=1,2,...,n (1.2.21)
. 1 .,
(i1) f()c,-,xj|t)=t—2 ;0<xi<t,0<x;<t,i#] (1.2.22)

1 0<xi<t,i=1,2,...,n (1.223)

(i) [ (61, 2. oy |0) = s

In all the above examples, T is sufficient for 6.

Lemma 1.2.1 Let Xy, X», ... X,, be iid discrete rvs with df F (x). Suppose X,y =
Max(Xl, Xz, . Xn)

h(t) = P[Xqmy =] = H(t) — H(t — 1). (1.2.24)

where H(t) = [F(t)]"

Proof
H(t) = P[X(m) <t]
= P[All Xs < 1]
HP[X/s <t1=[F®OI"
h(t) = P[X(m) =t]=[FOI" —[F@t—D]"
=[H@®)]—-[H( - D]
Lemma 1.2.2
LY = Xo] IP(X =iy =0,1,2,...1 -1, (12.25)
i =TrAml = G (s
P(X; = )’M‘,; =1,
where

h()=F@O)" ' = F@— 1"}

hy(t) = F(t)"!
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Proof Let
Tmax = Max(X], Xz, PR Xi—ly Xi-‘rlv e Xm)

PXi=rTox =10 . — () 1.2 P
P(Xom = L 1,2, ,
PIXi=r/Xawl =1 p S5 200 i (1.2.26)
T PXm =0 r=ti#j=12,...,n

r=t.

P(X;=r)5r=012..1-1
= (1.2.27)
iP(X" =N

One can see further details from Dixit and Kelkar (2011).

Note 1: Let X, X, ..., X,, be iid Binomial or Poisson rvs with df F(x) and G(x)
respectively. Then P[X; = r|X )] depends on parameters of Binomial or Poisson
distribution. Hence X, is not sufficient for the parameters of Binomial or Poisson
distribution.

Note 2: In Example 1.2.7, we have shown that X,) = Max(X;, X2, ..., X,) is
sufficient for #. Moreover, we can show that order statistics are sufficient statistics but
we should not expect more with so little information about the density f. However,
even if we do specify more about the density we still may not be able to get much of
sufficiency reduction. For example, suppose that f is a Cauchy pdf

1
)= —F—"—5-: N, 0 e N
fx16) T —y x € €
the logistic pdf
—(x—0
faloy= PO g gem

T [L4exp(x — )2

For details see Lehman and Casella (1998) or Casella and Berger (2002).

Note 3: Definitions 1.2.1 and 1.2.2 are not very useful because we have to guess
statistic 7 and check to see whether T is sufficient. Moreover, the procedure for
checking that T is sufficient is quite time consuming. Hence, using the next theo-
rem due to Halmos and Savage (1949), we can find a sufficient statistics by simple
inspection of the pdf or pmf of the sample.

Theorem 1.2.1 (Factorization Theorem) Let X, X», ..., X,, be a random sample
with joint density f(x1, x2, ..., x,|0). A statistics T (X) is sufficient if and only if the
Jjoint density can be factored as follows:

fxr,x2, .00y x, | 0) = h(xy, x2, ..., x)g[T(X) | 6] (1.2.28)

We give proof only for the discrete distributions.



10 1 Sufficiency and Completeness
Proof Assume T (X) is sufficient. Using definition, we can use
h(x1, X0, ..., x,) = f(x1,X%2,...,%, | T =1) (1.2.29)

because /(x) does not depend on 6.

fx, %2, .0, %, 10) = f(x1,x2,...,x,and T = 1)
Zf(x17~x27"'?'xn|T=t)g(t|0)
= h(xi,x2,...,X,)g(t | 0)

Now assume that factorization (1.2.28) holds.

fIT=16101=> f(X=x|0)

T=ty

= > g(t10)hx1. x2. ... xy)
T=ty

= g(to]60) D h(x1, X2, ..., X)

T=t
Suppose that f[T = #,|0] > O for some 6 > 0,

fIX=xT=1n] [f(X=x)
fT=1) — f(T=1n)

_ g@lO)h(x1, x2, ..., Xy)

9(0l0) X h(xi,x2, - xa)

_ h(xy, X2, ..., X)

N Do O, X2, X))

_ h)

B ZT:zOh(x)

JFX=xIT =1) =

Since the ratio does not depend on 6. By Definition 1.2.1, T (X) is sufficient for 6.

Example 1.2.8 For normal model described in Example 1.2.1 consider

D= =D —E+x—p)’

=D (i =D +n@E@ - p)’
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n —1
FGxelp) = @rod) T exp [g > -2 +ni - u)z}]

2
0

_ L 7)2 - 2
M] exp [_M} (1230)

PNEA
f(x|:u) = (2770'0) 2 exp|: 20_(% 20_3

Using factorization theorem,

— > (xi — X)?

0o 1S given
202 :| (00 is given)

h(x) = (271'0%)77" exp [

which does not depend on the unknown parameter p. The factor contained in (1.2.30)
is a function of 7" and . In this case T = x. Therefore,

—n(x — u)z}

t =€
g(t|p) Xp[ 2072

Thus, By factorization theorem, 7' (X) = X is sufficient for W

Example 1.2.9 Consider a Binomial distribution described in Example 1.2.5

m

n mo _Nm X
r&im =11 (x)pz”*'q’"” Mhrg=1-p

i=1

mn— - n
= pfq t E (xi)

= g(t|p)h(x)

where T = 3", x;.
Using factorization theorem, we can say that T is sufficient for p.

Example 1.2.10 Let X1, X», ..., X,, be independent identically distributed as dis-
crete uniform random variables.

1 .
1= ﬁ;x,-=1,2,...N,l:1,2,...,n
SIXi =xil [O ; otherwise
1
=—; x;=1,2,...,N
Nn

] n
< L] 14 G s (e,

i=1
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Let X(;y = minX; and X(,) = max X; where A = {1 < Xy < N}and B =
{Xu) < N < oo} where

1 s Xi € A
Talxi) = [O ; otherwise

1 ; Xi €B
Ig(xi) = [0 : otherwise

SXINY =[] 1aGoN" ] 1 0x0),
i=1 i=1

= h(x)g(t|N)

where T = X(,) = max X;. Hence X, is sufficient for N.
Example 1.2.11 Let X, X», ..., X, be a sample from the following pdf
1. [ 0

g —2=%<3
fx10) [0 ; otherwise

The joint pdf of X, X5, ..., X, is given by
F(x10) =07"15(x)
where

% %
A= (x):_ESX(I)SX(n)EE

= h(x)g(t]0)

where A(x) = 1 and g(¢|0) = 07" Tx(x).
By factorization theorem (X iy, X(,) are sufficient for 6.

Example 1.2.12 Consider the Example 1.2.1, where ¢ is unknown.

n

_n 1
famwzmﬁwwp792m—w}

_n i 1
= 2no?) 2 exp 352 (inz - Z,uin ~|—nu2)i|
'_Zxﬂ D Xi ”Nz]

202 o2 2072

= (27702)_% exp

In this case h(x) = L and T (x) = (3 x;, > x;%) is jointly sufficient for (1, o).
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Note 1: An equivalent sufficient statistic that is frequently used is 7' (x) = (X, §2),
where §? =3 (X; — )_()2.

Note 2: X is not sufficient for 4 if o is unknown and $? is not sufficient for o2 if ;1
is unknown.

Note 3: If, however, o is known, X is sufficient for . If 1 = i is known then
> (x; — po)? is sufficient for 2.

Note 4: Theorem 1.2.1 holds if 6 is a vector of parameters and T is a random vector,
and we say that T is jointly sufficient for 6. Further even if @ is a scalar, 7', may be
a vector, still sufficiency holds (see Example 1.2.11).

Remark: If 7 is sufficient for 6, any one to one function of T is also sufficient.
In Example 1.2.1, X is sufficient for . but X is not sufficient for ;i>. Further X is
sufficient for 4% or any other function of . Theorem 1.2.1 can not be used to show
that a given statistic 7' is not sufficient. Mostly, we can use Definition 1.2.1 or 1.2.2.

Stigler (1972) had given some theorems to show that the given statistics is not
sufficient.

1.3 Minimal Sufficiency

We will start with an example so that our idea on Minimal sufficiency will be clear.

Example 1.3.1 (Zacks 1971) Consider the case of n independent Bernoulli experi-
ments. Let

1 if ith experiment is successful
X, = .
0 ; otherwise
The sample space €2 is a discrete one and contains the 2" points (X, X», ..., X,).
The joint density of (X, X5, ..., X,,) is

=) X =011, =30, Xi, 0<p<1
f(X19X25'~'aXl‘l5 p)_ <O , Otherwlse

(i) According to factorization theorem, the sample point S} = (X, X5, ..., X;,) is
a sufficient statistic for p.

(ii) According to same theorem S, = (X| + X2, X3,..., X,), $3 = (X1 + X» +
X3, X400, X)), S =X+ X0+ -+ X o, X and S, = Z?:l X; are all
sufficient for p.

The Statistic S; partitions €2 into 2" disjoint exhaustive sets, each of which contains
one of the original points (X, X5, ... X,).

The Statistic S, partitions © into 3 x 2”72 sets; The number 3 we can get
from X; + X, = 0, X; + X, = 1, X1 + X, = 2, i.e., we get three points
of the form {(0, 0, x3, x4, ..., x,)}, {(0, 1, x3, x4, ...x,), (1,0, x3, x4, ... x,)} and
{(1, 1, x3,...x)}.
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We remark that S is a function of S; say 7' (S;) which adds the first components
of S and leaves the other components unchanged. We further notice that each set of
the partitions induced by S; is included in one of the sets of the partitions induced
by S, but not vice versa.

In a similar manner S; = 7'(S,) partitions 2 into 4 x 2"=3 sets. The number 4
wecangetfromX1+X2+X3 =O, X1+X2+X3 = 1,X1+X2+X3 = 2,
X+ X, + X3 =3. ' '

The partitions associated with S; is (i +1)2"7" and S; is (j + 1)2"7/ for (i < j).
For every n > 2, we have (j + 1)2"7/ < (i + 1)2"~'. Thus we have the following:

Statistics |[Number of sets
Sl on

S 3 x 22

S3 4 x 2" 3

Si (i+1)x2""
S G+ x2nJ
Sn n+1

We can say that S, contains minimum number of sets. S, is a function of S,_;
and S,,_, is a function of S,,_,, etc. Therefore, the statistics S, is considered minimal
sufficient statistic in the sense that the number of sets it forms is minimal and it is a
function of any other sufficient statistics.

Definition 1.3.1 7 (X) is a minimal sufficient statistic for 8 € © if

1. T(X) is a sufficient statistic
2. T(X) is a function of any other sufficient statistic.

Sampson and Spencer (1976) had extensively discussed the technique that in a par-
ticular statistical model a given statistic is not sufficient or that a given sufficient
statistic is not minimal.

Lemma 1.3.1 Let K()\) and Q()\) be the functions (possibly vector valued) defined
on the same domain D. A necessary and sufficient condition for Q to be a function
of K, i.e., for any A\, A\, € D satisfying K(\) = K(\y), it follows that Q(\;) =
0(N).

Definition 1.3.2 The points x, y € Q are said to be likelihood equivalent if there
exists i(x, y) > O such that for all 8 € ®, f(x|0) = h(x, y) f(y]6).

Lemma 1.3.2 In order that x, y € Q be likelihood equivalent, it is necessary and
sufficient that for all 01, 6, € ©, f(x|0,)f(y|62) = f(x|62) f(y]61)

Lemma 1.3.3 Let T (X) be any sufficient statistic for 0. If x, y € Q are any points
such that T (x) = T (y), then x and y are likelihood equivalent.
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Theorem 1.3.1 Suppose T (X) is sufficient statistic for 0. T (X) is minimal sufficient
if for any x, y that are likelihood equivalent, it follows that T (x) = T ().

Proof Let S(X) be a sufficient statistic for 6. Suppose that x, y € € satisfying the
condition S(x) = S(y). Now by Lemma 1.3.3, it follows that X and Y are likelihood
equivalent. Given that 7'(x) = T (y), using Lemma 1.3.1, we get T7'(X) is a function
of S(X). By Definition 1.3.1, we say that 7 (X) is a minimal sufficient.

Theorem 1.3.2 Let T (X) be any statistic, if there exists some 0,0, € @ andx, y €
Q, such that

1. T(x)=T()
2. fx100) f(y102) # f(x162) f (y161)

Then T (X) is not a sufficient statistic.

Proof Let T'(X) be a sufficient for 6.
For any x, y € @, we have from 1 T'(x) = T (y). From Lemma 1.3.3, x and y are
likelihood equivalent. From Lemma 1.3.2,

f(x101) f(¥162) = f(x]62) f (¥161),
which is a contradiction to the condition 2. Therefore, T (X) is not a sufficient statistic.

Theorem 1.3.3 Let S(X) be a statistic. Suppose T(X) is a minimal sufficient sta-
tistics. If there exists x, y € Q such that S(x) = S(y) and T (x) # T (y) then S(X)
is not a sufficient statistic.

Proof Let, if possible, S(X) is a sufficient statistic. For any x, y € €, we have
S(x) = S(y).Now T (X) is aminimal sufficient statistic, we have, by Definition 1.3.1,
T (x) = T(y), which is a contradiction.

Therefore, S(X) is not a sufficient statistic.

Theorem 1.3.4 Let T (X) and S(X) be sufficient statistics. If there exists x,y € ,
such that

I T #T()
2. S() =5

then S(X) is not a minimal sufficient statistic.

Proof Let, if possible, S(X) is a minimal sufficient statistics. For x,y € , we
have S(x) = S(y). Since S(X) is a minimal sufficient statistic, therefore by Defini-
tion 1.3.1, it is a function of T (X), T (X) is a sufficient statistic.

By Lemma 1.3.1 T'(x) = T (y), which is a contradiction to 1. Therefore, S(X) is
not a minimal sufficient statistic.

Example 1.3.2 Consider the normal model described in (1.2.1), where ;1 and o? are
both unknown.
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Suppose X is likelihood equivalent to Y, i.e., there exists h(x, y) > 0, such that
Vo,

fxlp, o?)
I hx,
T S

flp, o) Qro?) 2 exp[— gz {n(x — )? + (n — 1)S2}]
fOlo® — @rod) T exp[—5k (05 — )2 + (n — 1)52)]

This ratio will be constant if and only if ¥ = y and S} = S;.
Hence, by Theorem 1.3.1, (x, Sf) is minimal sufficient for x and o2,

Example 1.3.3 Suppose (Xi, X, ..., X,) are iid uniform rvs on the interval
@,0+1), —oc0 <0 <o0.
Then the joint pdf of X is

1;0<x;<0+1,i=1,2,...,n
0 ; otherwise

f(XI9)=[

This is same as
s xe — 1 <x < xq
f(x10) = [0 ; otherwise
fx10) _ IO —x@ + DI(xaq) —0)
f&xl0) 10— ym+ DI(ya —0)

This ratio will be constant if and only if x(,) = y¢, and x1y) = y().
Hence, by Theorem 1.3.1, T (X) = (x(1), X()) is a minimal sufficient statistic.

Example 1.3.4 Let X1, X», X3, X4 are iid rvs having the following pmf:

X1 Xy X3 (n—x1—X2—X3)

n!'  py'py’p3'py

fXi=x,Xo0=0x0,X3=x3) =
xilxlxsl(n — x1 — xp — x3)!

where py =1 — p; — p2» — p3, 23:1 X;i<n
Consider

Xp o Xy X3 (n—x)—X2—x3)

n! pi'py 5oy
FXi =x1, X2 = x2, X3 = x3) _ xibobu!l(n = x — x — x3)!
Jhi =y, Y2=y,Y3=1y3) nl ph i pi pl T

yilyalysl(n — yr — y2 — y3)!

This ratio is independent of p;(i = 1,2,3,4)if X; =Y, X, =Y, and X3 = V3.
By Theorem 1.3.1 (X, X, X3) is minimal sufficient.
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Example 1.3.5 Consider the normal model described in Example 1.2.1, where p and
o2 are both unknown and o2 = p.
As before,

Fa o CrmTexp [—%L’Z" +3x —n,u]
PO @mn? exp[ -2 + X - nu]

This ratio will be independent of y if and only if > xi2 => yl.z. Hence, By Theo-
rem 1.3.1, > xiz is minimal sufficient statistic for p.

Remark 1: In a normal model described in Example 1.2.1, where o2 = /ﬂ,
(3" xi. > x}?) is minimal sufficient in N (u, 4i2).

Example 1.3.6 Let X1, X», ... X, beiid rvs with the following pmf having the den-
sity function:

fX=x)=01-0)"" ;x=ppu+1...,0<0<1 (1.3.1)
To find the minimal sufficient statistic if © and 6 are unknown.

P(xq1y, X@)s -+ s X(n) OLim1 X —nxytnxa —npl

P(Y(1)s Y@y -2 Yy Qim0 —myartnya —npl

9[2721 (x(i)—xu))-&-n(X(l)—M)]

- G[Z:lzl(,VU)_Y(I)>+7'(,V(I)—H)]

The ratio is independent of § and p if

2o () — xy) = 25 ey — yay) and xay = yay

Hence D", (x4 — X (1)) and x(j) are jointly sufficient for (6, ).

Example 1.3.7 LetY;(i = 1,2, ..., n) are iid with N(a + 0X;, o), where —oo <
«, B < 00, 0 > 0 are unknown parameters and (X, X», ..., X,) are known.

f(yla, B,0%)  €XP [fﬁ {Z yi2 —2a> yi — 2B xiyi + na? +2a8> x; +[J’22x,-2}]

fla, B.o?) exp [—ﬁ{Zz? —2a> z; — 28> xizi + na? +2a6> x; +522xi2}]

This ratio is independent if and only if > y? = > z2, > yi = >.z; and X x;y; =
Z XiZi.
Therefore, (z Xis D, yiz, > xi y,—) is minimal sufficient.

Example 1.3.8 (Sampson and Spencer (1976)): Let (X1, X», ..., X,) be iid rvs
according to f(x|6), where

7z 3 0<x<¥
fxl) =122 0<x<260

0 ; otherwise
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Here we will show that for n > 5, median X; and max X; are not jointly sufficient.

Let 6, = % and 6, = 1
Consider

<

I
/4N
B
=
NGV
N W
—_

—_

:_.
v

13
Y=z 11...,1
22

max X = %, Median X = 1, maxY = % and Median ¥ =1

9 %x ;O<x<§
0 ; otherwise
X ;0<x <1
fxIHh=12—x;1<x<2
0 ; otherwise

(64 1) (64 1) (16 ) (16 ) (64)"_4
— X = l=x-)|=x4)|=x3)| ==
81 4 81 4 81 81 81
n—1
(%)
9\ _ (64)"!
() = (S )
3
faln = (@)
1
FOm = (Z)

9 ©H-1 3
f (x|§) FOID = ( T Z)

((9)(64)”‘1 )
817

)

Therefore,

and

ramy (vig)
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9 9
f (XIg) JOID # f&IDf (ylg)

By Theorem 1.3.4, Median X; and Max X; are not jointly sufficient.

Example 1.3.9 Let (X1, X5, ..., X,) beiid rvs with left truncated exponential dis-
tribution.
e e !

; otherwise

1
Fxilen B) = [ge"p[

This model is used in systems reliability theory. Suppose we have n independent
and identical systems. Let the random variable X be represents the failure time of a
system. The data consist of order statistics Xy < --- < X, where the ith order
statistic X ;) represent the failure time of a system which is failed at ith time point,
i=12,...,n).

n! [ > (i) — @)
f(x11x2y--~,xn)=—exp =
(1)» A(2) (n) 3 ] 3
= li + )
= e&Xp|—=% X@) — Xa X() — &
ﬁn ] ﬂ[:l (i) (1) (1)
_n! N n(xgy — )
= o SXP ——E(xi—x1)+—
/Bn ] ﬂi:1 (i) (1) ﬁ j|

Next,

1N L n(ym—a)
O, Y2y, - Yl B) exp[ 5 2i=1 Vo — y) + =5 ]

F&xay, x@), - oy Xy, B) exp [_% S (- X)) + w]

i

This ratio will be independent of « and § if and only if >/, (ys) — ya1)) =
z:lzl (X(i) —X(l)) and Yy = X1)- This 1mphes that [)C(l), Z?:l ()C(i) —X(l)] 1s minimal
sufficient for («, 3).

Remark A minimal sufficient statistics is not unique. Any one-to-one function of
a minimal sufficient statistic is also a minimal sufficient statistic. For example, in

X -X 1 X + X 1
U@, 0+ 1), (Xay, X)), Xy — Xy, Xy + X(1))s ( - )),

2 ’ 2
etc., are all minimal sufficient statistics.
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1.4 Ancillary Statistics

Fisher had introduced the term ancillary statistics. Many statisticians had given the
definition of ancillary statistics, this include Basu (1959), Cox and Hinkley (1996)
etc.

Definition 1.4.1 A statistic 7 (X) whose distribution does not depend on the para-
meter 6, is called an ancillary statistic.

Here, we will consider some examples of ancillary statistics.

Example 1.4.1 Letthervs X and X, are distributed as N (6, 1). Then the distribution
of W = X, — X, is N(0, 2), which does not depend on 6. Hence W is a ancillary
statistics.

Example 1.4.2 Let X1X,, ..., X, are iid rvs with U (6 — 1,0 + 1). Then

f(x|9) = Hl[g_%yg_'_%]x,‘ = 1(9_%,00)}6(])I(_oo,9+%))€(,1) (1.4.1)

i=1

By Theorem 1.3.1, T = (T, T») = (x(,,), Xn) — x(l)) is minimal sufficient.
xn="T1—T
0—%<T1—T2<T1<(9+%

0—%<T1—T2andT1<9+%

9—%+T2<T1andT1<9+%
=0-14n<ni <041

Now, the joint pdf of 7} and T5 is
[, 1)0) =nn — 1)13_21[0,1](lz)l[g_%+t2,9+%]l1
The marginal density of 7 is
f(Bl) =nn—D > (1—10); 0<h <1 (1.4.2)

This does not depend on 6.

Hence 75 is ancillary. Further, we can say that the statistic 7, does not give any
information about 6.

But interestingly, conditional density of 7} given 7, is

1
ftiln, 0) = qlw,%ﬂzyﬂéltl, (1.4.3)

which depends on 6.
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Example 1.4.3 Suppose X and X, are iid observations from the pdf
fxla) = ax“lexp[—x“],x > 0,a > 0

log X
We will show that lOg

1. . .
is an ancillary statistic.
2

Let W, = log X; and W, = log X,. Since X; and X, are iid rvs then W; + W,
are also iid rvs. Suppose W = W, + W,
Hence,

fwla) = aexplaw — e™], —o0 < w < 0.
Let Z = aW, then
f(@) =explz—€], 2>0

Hence Z; and Z; are iid rvs with f(z]a = 1).
Then

logX, Wi zi/a _zi

logX, Wo /a2

Since the distribution of z is independent of «, then the distribution i does not
dependent on «.

log X; - . ..
Thus 2L is an ancillary statistic.
og X»

Example 1.4.4 Consider the normal model in Example 1.2.1, where or=1.
Define T(X) = (n — 1)S?> = >7_ (X, — X)?
The distribution of 7' (X) is X121—1- Thus 7T (X) is independent of p. Hence T (X)
is an ancillary statistic.

Note: In Example 1.2.1, u = 0, the distribution of Xis N (0, ”72)

Hence X is not ancillary.

1.5 Completeness

Definition 1.5.1 Let {fy(x) : § € ©®} be a family of pdf’s (or pmf’s). We say that
the family is complete if

Eg(x) =0 ¥V 0 c® (1.5.1)

then Plg(x) =0]=1 V 0e®
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Definition 1.5.2 A Statistics T (X) is said to be complete if the family of distribution
of T is complete.

Example 1.5.1 Let X;(i =1,2,...,m) beiidrvs as B(n, p). Then the distribution
of T =", X;is B(nm, p).

Now, we will show that T is complete. Let g(¢) be a function of ¢.

Eg(t) = Zg(t)(mtn)p’(l -pm
t=0

Since Eg(t) =0
Therefore,

mn mn ) t_
>on(7)(£5) =0

Letr = 2, then
-

mn mn
Zg(r)( , )r' =0

t=0

Hence, RHS of the above expression is a polynomial of degree mn in r.
Since LHS is zero then each term is zero. Therefore, g(t) (”:”) r' =0.
But ("")r" 3 0. Therefore, g(#) = 0 with probability 1.

Examplg 1.5.2 Consider the rv X, where each_ X;(i = 1,2,...,n) has N(u, 1).
Hence X has N(u, %). Now we will show that X is complete.

Let Y = X. Consider the function g(y). Since Eg(y) = 0. This implies

n 1 n
/ 9O (5-)2 exp [——(y - u)z] dy =0
27 2
By removing nonzero constants and ny = S

o0

/ h(y)e T e dy =0

—00

ny? .
This equation states that the Laplace transform of the function h(y)e™ = is zero
identically.
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But the function zero also has the transform which is zero identically. Hence

by uniqueness property of Laplace transform it follows that h(y)e’& = 0. This
implies i (y) = 0 with probability 1 for all p.

Example 1.5.3 Let X be the rv from the pmf

0 [x]
f(x|9)=(§) 1—-0 x=-1,0,1, 0<6<1

EX = 9+0
T2 02

But X = 0 is not with probability 1. Hence X is not complete. But | X| is complete
and its distribution is Bernoulli.

In Example 1.5.1, we have shown that Binomial family is complete. Bernoulli is
a particular case of Binomial. Hence | X | is a complete statistics.

Example 1.5.4 Let X1, X2,..., X, be iid_N(H, ah?), where a > 0, a known con-
stant and § > 0. We can easily show that (X, $?) is minimal sufficient statistic Using
the Theorem 1.3.1 for fixed o > O.

In this example (n — 1)S% = > (X; — X)2 Therefore, ¢ ')S has x2 with (n — 1)
df and a = ab?. Hence E(Sz) = a@z, E[X?] = (n+n_a)92

[ ] = #% and E[(n_m)]

Consider T(X) = Zin - = > then E[T(X)] =0 V 6. But T(X) is not identically
zero. Hence (X, §?) is not complete.

Example 1.5.5 Stigler (1972) had given an interesting example of an incomplete
family. If we remove one probability distribution (say P,) then the family o — P, is
not a complete, where g is a family of discrete uniform probability distributions.

Consider a function
0 ; x=1,2,....n—1,n+2,n+3,...
gx)=3a ;x=n

—a; x=n+1

where a is nonzero constant.
Consider the following case:
AN <n

Elg(X)] = Zg(x)— =

because g(x) =0forx =1,2,...,n—1
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()N >n
=g
E[g(X)] = ZT
1
=N[g(1)+g(2)+--~+g(n—1)+g(n)+g(n+1)+g(n+2)+~-~]

=%[o+a+(—a)+01=0

(i) N =n
)
E[g(xn—; N
1
=¥ [g(1) +g(2) + - - + g(n)]
_ [0+a] =
__;7 a]__ —
Therefore,
O VN#n
Elg001 =y 2,

Therefore, we conclude that the family ¢ — P, is not complete.
Example 1.5.6 Consider the family of distributions:

xefA
P=P[X=x|\]=

' ;x=0,1,2,... and A=1or2
x!

Ifa=1
Elg(X)] =e"'g(0) + e iﬂ
= x!

Let g(0) = 0 and 2,0(0:1 @ = 0 then E[g(x)] = 0 but g(x) # 0 because g(1) =1,
g(2) =—-2,and g(0) =0ifx > 2
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IfA=2

_ e 9W)
Elg(X)] =90 +¢7 3 =05

x=1

By the above argument E[¢g(X)] = 0 and g(x) # O identically.
Hence, the Poisson family with )\ restricted is not complete.

Example 1.5.7 Let X1, X», ..., X, be iid rvs having the following uniform distrib-
utions

1 .
(i>f1<x|9)=|9’ 0<x<6

0 ; otherwise

. _lib<x<b+1
(i) f2(x|0) = [0 ; otherwise

Log - x <20
.

(iii) f3(x]0) = [0 ; otherwise

. L. g x <30
— 12>

(iv) fa(x|0) = [() ; otherwise

.p_ 1 1
(V)fs(x|9)zi(1)v‘9 2<X<9+2

; otherwise

(1) In this example, we have to show that X,y is minimal sufficient. Let 7 = X ;).
Then the pdf of T is

nt"!

- 0<t<@
h(t|0) =1 0" °
(t16) HO ; otherwise

Let g(T') be a function such that E[¢g(T)] = 0 V 6. Since E[¢g(T)] is constant as a
function of @, its derivative is zero.

n—1

dt =0

; nt
E[g(T)]=/g(t) o
0

[4
:>/g(t)t”‘1dt =0 (1.5.2)
0
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(4
d 1
— D" dt =0
:de/go
0

Using the following rule, if range is not independent of ¢ and f is zero at the extremes
of the range, i.e., f(a,0) =0 = f(b, 0) then

b b
9 of da ob
%/fdx_ %dx—f(a,e)%—}—f(b,&)%

From (1.5.2),
=g ' =0

Therefore, g(d) =0 V 6 > 0.

Hence T is complete.

(i) Using Theorem 1.3.1, we can show that (X (1), X)) is minimal sufficient.
The joint distribution of (X (1), X)) is given by

_ nn—DGy—x)"2;0<x<y<0+1
fGx.y10) = [O ; otherwise

Let Ty IX(,,)—X(U and T, = m

- Xy = 2T22—Tl and X,y = %anﬂﬂ =10<Xy<Xu<0+1
0<2T22—_T‘and2TzT+T‘<9+l

29<2T2—T1 and2T2+T1 <29+2

29+T1 <2T2and2T2<29+2—Tl

9+%<T2andT2<9+1—%

S0+ <n<o0+1-14

Trivially, 0 < 77 < 1

nn—Dn""2%; 0<t; <1, O+5 <n<0+1—

n
B 2
h(11, ]0) = [0 ; otherwise

h(t0) =nn— D" 2(1—1); O0<n <1

n—

E(T1)=n+1

’

n—1

Considerthe T(X,Y) =y —x — 1
n
Therefore, E[T (X, Y)] = 0but T (X, Y) is not identically zero.
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We can conclude that R is ancillary but (X (1), X(,)) is not complete.

The reader should show that if a function of a sufficient statistics is ancillary, then
the sufficient statistics is not complete.

(iii) Using Theorem 1.3.1, we can show that (X 1y, X(,)) is minimal sufficient statis-
tics.

Let W, =% i=12...,n

Then the joint distribution of Wy, W5, ..., W, is given as

1,1 <w;<2,i=1,2,...,n

Wi, Wa, ..., W) = )
fwr,w, n) 0 ; otherwise

X X
Let W(l) = % and W(n) = 0( )
X 14
So =0 — ﬂ, which is free from 6.
Xw W

X
Hence, — 2 is ancillary and a function of sufficient statistic. Therefore, (X (1), X))
(n)
is not complete.

In (iv) and (v) we can easily show using the same argument by (ii) and (iii).
(X(1y, X(ny) is not complete. Similarly, we can find ancillary statistic for (iv) and (v).

Example 1.5.8 Let P[X = —11 =60, P[X =x] = (1 —0)%6°, x =0,1, ...
Using Theorem 1.3.1

P[X=x] (1—-0)*"
P[X =yl (1-6)2

This is independent of 6 if X =Y.

Hence X is minimal sufficient.

But X is not complete, because

E(X) = -0+ Zx(l — )20
x=0

=—0+0—-60)%0+20>+30>+---]
=—0+60(1—0)°[14+20+30>+---]
6(1 — 6)?

=—9+m=0

But X # 0 identically.

Example 1.5.9 Dahiya and Kleyle (1975) have studied the estimation of parameters
of this mixed failure time distribution (MFTD)
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l—pe i;x>0,60>0, 0<p<1

F(x) = [0 i Zo (1.5.3)

from Type I censored data.

It may be noted that the parameter 6 cannot be estimated when all the observations
in the sample come from degenerate distributions. In such a situation, they have
modified the form of the estimator and studied the properties of modified estimator.
The corresponding pdf of (1.5.3) can be written as

(1 —p)l(")[ge’ﬁ]l”(” i x>0, >0, 0<p<l

fxlp,0) = 0 ; otherwise (1.5.4)
where
1o ={p 120
The joint distribution of (X, X, ..., X,) is given as

VECI TR I Xnlp, 0) )
; otherwise

_ [ (1= it IO [ (2™ T 1160 550, 050, 0<p<1
0
(1.5.5)
Letr =n—>"_, I(x;),r denotes the number of positive observations in the sample.

Then (1.5.5) can be written as

n—rP\r _Zu . X
F@ X xlp.0) =4 U =P (e 6 =0 (1.5.6)
0 ; otherwise
One can easily see that by Theorem 1.2.1, (r, z,) is sufficient for (p, §), where
z, = ».i_, x;. For details, see Dixit (1993).
Next lemma is given by Dixit (1993).

Lemma 1.5.1 Let (X, X») be a rv having a joint distribution with parameters
(61, 02). Further, (X1, X») may be vectors. Suppose the marginal distribution of X,
is discrete which depends on 0 only and belongs to a complete family of distributions.
Further suppose the conditional distribution of X, given X depends only on 0, and
belongs to a complete family of distributions, then the family of joint distribution
(X1, X») is complete.

Proof Let S; be the support of X;. Since X is discrete, S} is at most countable. Let
h be a function such that

E[h(Xl, Xz)] =0V (0],92) )
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That is,

//h(xl,X2)dF(X1,X2)=O v (91,92)6@

S P =) [ G xdFlaln) =0 ¥ (6,6 € ©

X1€Sl

We are given that marginal distribution of X belongs to a complete family.

D k) PIXi=x) =0

X[ESl

where
k(x1) = / hxr, x)d F(xalx)

It may be noted that S} is a Py, -null set for all §; and 6,.

Now, for each fixed x; € Sy, k(x;) =0,

it implies that [ h(xy, x2)d F(x2|x1) = 0.

Again given that conditional distribution of X, given X; = x; is complete for each
X1 € S1, we get that

h(xl,xz) =0V Xy € N;,

where Py, (N,,) =0 V x; € §.
Now since S is countable, N = UN,, is a Py,-null set and we get that

h(xl,)Cz) =0V Xy € N¢ and V X1 € S1
Hence,
Py g, [h(x1,x2) =0] =1 V 61,0,

Now, we consider the completeness about the family in (1.5.4).
The marginal distribution of  is binomial with(n, p), which is a complete family
of distribution and the conditional distribution of z giver r

e byl
f(zlr):[ rfr)e, 72>0,r>0,0>0
0

) (1.5.7)
; otherwise

Which depends only on 6 and is a complete family of distribution. Hence, from
Lemma 1.5.1, (r, z) is complete for (P, ).
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Theorem 1.5.1 (Basu’s Theorem) In a complete family every ancillary statistic is
independent of the minimal sufficient statistic.

Proof Let T be a complete sufficient statistic.

Let S be an ancillary statistic.

By definition, for any event A, P{S € A} does not depend on 6. Further, P{S €
A|T = t} also does not depend on 6 because T is sufficient.

Consider a function

g(T) = P[S € A] — P[S € A|T =1t]

Elg(T)]= P[S€ A]—EP[Se€ AIT =t]=0V 0
By the assumption of completeness P[g(T) = 0] =1
= P[S € Al = P[S € A|IT =1]
This implies S and T are independent. Thus
P[Se€ A, T € Bl = P[S € A]P[T € B]

Hence, for any sets A and B, S and T are independent.

Definition 1.5.3 A family of distributions {F (¢|f) : 6§ € ®} is boundedly com-
plete if

E[¢(T)] = / GO Ot =0 Y 0

and real statistics g(t) satisfying |g(¢)| < M, then g(¢) = 0.
Theorem 1.5.2 [fa family of distributions is complete then it is boundedly complete.
Remark The converse of the theorem is not true.
Example 1.5.10 Let T be a random variable with the following probability distrib-
ution:

PIT=0]=q and P[T=i+1]1=p*q', i=0,1,2,....,0<p<1,g=1—p
Let E[¢g(T)] = O then

9(0)g +g()p* + 92 p*q + 9B)p’q* +--- =0

g(D) + g(2)q + g3)g* + -+ = —g(0)gp~2
= —g(0)g(1 —¢)?
= —9O0)g +2¢"+3¢> + -]
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This implies that g(1) = 0, g(2) = —g(0), g(3) = —24(0), etc.
Hence,

9() = =@ —1)g(0)

If g(0) = 0 then g(¢#) = 0 at all nonnegative integers. Otherwise, the function g(¢)
is unbounded.

Therefore, there are nondegenerate unbiased estimates of zero but they are none
that are bounded. Hence, we conclude that the family of distributions is boundedly
complete but not complete.

1.6 Exponential Class Representation: Exponential Family

Let X be a vector valued random variable with pdf/pmf { f(x|6), 6 € ®} and 6 is a
vector of parameters. We say that X belongs to the exponential family

1. O contains an open rectangle.
2. x: f(x | 0) > 0is independent of 6.
3. log f(x,0) = 3, wi (D T;(x) + v(0) + w(x).

4. The partial derivatives g%(i =1,2,...,n,j =1,2,..., k) are continuous and
the jacobian
8(“17 u25 MR ] un)
| J|=|——F——#0
061,60z, ...,6)

5. {Ti(x), Tr(x), ..., T,(x), 1} are linearly independent.

Example 1.6.1 Let Xy, X», ..., X, be independent random variables each having
distribution G (p, ).

Let

xPle=s
f(X|P,a)=m;x>0,p>0,U>0 (1.6.1)

n
-1 i—1 Xi
[1_ ™ expl- ==
a

The joint pdf of X, Xo, ..., X, 1S f(x1, x2, ..., Xn | p.o) = BT
" (I'p

n 1 n
log f(x | p, @) = —nlog'(p) —nplogo +(p — 1) D logxi = — > x;
i=1 i=1

(1.6.2)
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1. ® ={(o, p)|lo, p > 0} contains an open rectangle.

2. {(x1,x2, ..., x))x; > 0,x2 > 0,...,x, > 0} is independent of parameters o
and p.

3. Ti(x) = X0, logxi, Ta(x) = X, xiy ur(p) = p — Land us(p) = —1.

J=\ 5 &
9p 9o
_(to)y_. L
“\0% )7 2
and |J| >0

4. Linear Independence: {7}, T, 1}
aZlogxi+bei+c=0 (1.6.3)
i=1 i=1

Consider X = (e*, I, 1,1..., 1) fora #0

ac+bEe*+n—-1)+c=0

(c+nb)+(a+b)a+b|:z%j| =

r=2

This implies that c+nb =0,a4+b=0andc =0

Thena =0,b=0and c = 0.

Thus, gamma distribution defined in (1.6.1) belongs to exponential family.

If a probability distribution belongs to an exponential family then one can get com-
plete sufficient statistics. Here, we will give a proof which is within the scope of this
book. General proof is given by Lehman and Casella (1998).

Theorem 1.6.1 Let {f(x|0), 0 € O} be a k-parameter exponential family given by

k
F(x10) = expl D" ui(O)T; (x) + v(6) + w(x)] (1.6.4)

i=1

ThenT = (T\(X), To(X), ..., Ty(X)) is a complete sufficient statistic, where u(6) =
(ulv Uz, o.v, Mk)
Proof This is given by Rohatagi and Saleh (2001) for k = 1.

Let X be a discrete random variable. By factorization theorem, we can show that T
is sufficient.



1.6 Exponential Class Representation: Exponential Family
Letk =1and u(d) = 6 in (1.6.4).

Eg(T) =Y g)PIT(X) =1]

=> g expl0r + v(0) + w )] =0V >0

where P(T (X) = t) = exp[0t + v(0) + w*(¢)]
Now, we have to show g(r) =0 V 6
Let
+_Jx; x>0
r= [0 cx <0

and
- _)J=x;x<0
Y Tlo ;x>0
Then g(t) = g™ (t) — g~ (1).

Further, g* and g~ are both nonnegative functions.
From (1.6.5),

ElgM]=0= E[¢g" ()] =E[g (D]

Therefore,

33

(1.6.5)

(1.6.6)

D gt @ explfr +v(0) + w* ()] = D" g (1) explbr + v(0) + w*(t)] Y 0

For fixed § = 6y € («, 3)

gt (1) explOot + w*(1)]
> gt (@) explor + w*(1)]
g~ (t) exp[bot + w*(1)]
> g~ (1) expl[ot + w*(1)]

PT(t) =

P (1) =

From (1.6.7), (1.6.8) and (1.6.9),

> P [Z g* (1) exp(fot + w* (1))

f |
|

=> P [Z g™ (O exp(or +w* (1)

exp(0 — Op)t

exp(0 — Op)t

(1.6.7)

(1.6.8)

(1.6.9)
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Nowa <O <f=a—0y<0—0, <[ — 0, we get,

D Pty =D"P(1) ¥ 5 € (a—0o. B ) (1.6.10)

By uniqueness of MGF if it exists, (1.6.10) implies that, P™(t) = P~ (¢) V ¢
Then gt (1) =g (1) = g(t) =0 V 0

Remark 1 From Example 1.6.1, we can see that (3" log X;, > X;) is complete suf-
ficient statistic for (p, o). But one should not conclude that > log X; and >_ X; are
individually complete sufficient for p and o respectively.

Example 1.6.2 Let X, X5, ..., X, are iid with N (i, 0%). The joint pdf of X, X,
X, 08

. 1 n _L n o )
falp,o®) = (Um) exp[ 57 g(x, u)}

:( 1 )nexp[—ﬁ(Zx,-z—Z,uin—i-n;f)]

o2

1 n i2 ; 2
_ exp _2NT N
o 21 202 o2 202

This belongs to exponential family.
Thus, from Theorem 1.6.1, we can conclude that (77, T>) is complete sufficient
statistic for (u, 0?) where T) = > X; and T» = > X?.

Remark 2: If 0> = y then in Example 1.6.2, > X? is complete sufficient statistic
for p.

1.7 Exercise 1

1. Let X, X5, ..., X, be the independent rvs having the following uniform distrib-
ution
() 1
—i—0<x<0
— 120>
fx10) [ 0 ; otherwise

Show that Y(,) = max |X;| is sufficient statistic.
1
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Further, find the distribution of ¥; given Y.
(ii)
1
s:0<x <@
— 0
fx10) = [O ; otherwise
Show that X, is sufficient statistic.
(iii)
1
—— 0 <x < b,
01,0,) = =0 .
fx161,62) [0 ; otherwise
Show that (X (1), X)) is jointly sufficient statistic.
(iv)
1;0<x<6+1
f(x16) = [0 .

; otherwise
Show that (X 1y, X)) is jointly sufficient statistic.
(v) 1
10y — 5510 —1) <x; <i(@+1)
fxil6) [ Ol : otherwise
Prove that (%, M) is jointly sufficient statistic.
2.Let (X, Y1), (X3, Y2),..., (X,, Y,) be iid rvs with uniform bivariate rvs as follows

1

_— b

’ Boab) = (ﬂia)(bia),a<x<ﬂ,a<y<
fx,yle, B, a,b) [O ; otherwise
Prove that (X 1y, X(n), Y(1y, Yy) is jointly sufficient for (v, 3, a, b).
3. Therandom variable X, X5, ..., X, beiidrvs withacommon Laplace distribution
with density
1 Ixlq .
_ @exp[—g] T—0 <X <00,0>0
fx10) [0 ; otherwise

Prove that T = >"!_, |X;| is complete sufficient statistic.
4.Let X1, X», ..., X, beiid rvs having the following distribution

—A )X

(@) PX=x]\) =2 x=0,1,2,....,A>0

(b) P(X =x|p) = (n)p"q”x;xzo, 1,2,...,n,0 < p <1 and nis known
X

Find (i) P[X| = x|T = 1] (i) P[X; = x1, X, = x2|T = 1], where T = 3_ X;
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S5.Let{Y;;},i=1,2,...,p,j=1,2,..., g beindependent rvs and
Yi=pt+a+egi=1,2,...,p,j=12,...,q,

where o, ay, ..., o are iid rvs with N (0, af) and ¢;; ~ N(0, o). The parameters
u, o1 and o are unknown. Show that (7', T,, T, ) is jointly sufficient, where

1P‘1 IPlI

T=—2">Yj.Te=—> > ¥-Y) V.=

q p
D Vi Ta=q > (Y;.—T)°
j=1 i=1

Q| =

Remark: In linear model, it is called as one-way analysis.
6. Let X, X», ..., X, be iid rvs having the following pdf as

2
_|7#0-x);0=<x=<0
fx16) = [O ; otherwise
Find the minimal sufficient statistic.
7.Let Xy, X», ..., X, beiid rvs with the following uniform distribution

1
—— . x=N+1,..., N,
Ni, Np) =1 o= .
SN N2) HO ; otherwise

Find the sufficient statistics for (N, N>).

8. From the problem 1(iii) find the distribution of f (X, X», X3|T), where T =
Xy, Xy)-

9. From the problem 8, find the distribution of (X;, X5, ..., X,,|T), where T =
(X(1), X(ny). Further find f(X|7T) if it exists.

10. Find the sufficient statistics from the following distribution based on a sample of
size n.

fxl) =a@2 7;x=06,0+1,...,0 >0,

where a(6) is constant.

Further find the distribution of (X, X,, ..., X, |T), and (X;|T), where i = 1,2,
...,nand T is a sufficient statistics.

11. Let X1, X, ..., X, beiidrvs from U@ — 1,0+ 1), 0 € ©, T = (X(1), X(n)
is sufficient for 6. By using ancillary statistic, show that it is not complete.

12. Let X, X5, ..., X, be arandom sample from the inverse Gaussian distribution
with the following pdf:
: 00 — 1)’
X —
fx|u, 0) = exp A Te ;s x>0, u>0, A>0,
2mx3 2x 2
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Prove that the statistics X and T = are sufficient and complete.

(=%
13. Let X1, X5, ..., X,, be arandom sample from the pdf

F&xlp) =exp[—(x — @] x > p, pef

(i) Prove that Xy is a complete sufficient statistic.

(ii) Using Basu’s Theorem prove that X(;) and $*> = (3 X; — X )2 are independent.
(Hint: Let Z; = X; — u, then §? = > (Z; — 7).

14. Let X1, X5, ..., X,, be arandom sample from the following Pareto distribution

[e%

0
f&xla, 0) = a i x>0,0>0 a>0

xa+l ’

For known 6, prove that ['_, X; is complete sufficient statistic for c.

15. Let X1, X5, ..., X, be iid rvs with N (u, 1). Prove that X2 is not sufficient for

1

16. Let Xy, X5, ..., X,, be iid rvs with (i) U(#, 20) (ii) U@, 30)
Show that (X (1), X)) is not complete.
17. Let X1, X5, ..., X, be a random sample from the pdf f(x|60)

0x 1. 0<x <1
fx10) = [O ; otherwise

Find sufficient and complete statistic for 6.
18. (Zacks 1971) Let X; and X, be random variables having the density function

(1+0v2m) expl—25] 5x <0
fxlo) =1 A +ov2m)"! ;0<x <0
(1 +0v2m " expl- 2] 1 < x

Find the minimal sufficient statistic for o.
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Chapter 2
Unbiased Estimation

If the average estimate of several random samples is equal to the population parameter
then the estimate is unbiased. For example, if credit card holders in a city were
repetitively random sampled and questioned what their account balances were as
of a specific date, the average of the results across all samples would equal the
population parameter. If, however, only credit card holders in one specific business
were sampled, the average of the sample estimates would be biased estimator of all
account balances for the city and would not equal the population parameter.

If the mean value of an estimator in a sample equals the true value of the population
mean then itis called an unbiased estimator. If the mean value of an estimator is either
less than or greater than the true value of the quantity it estimates, then the estimator
is called a biased estimator. For example, suppose you decide to choose the smallest
or largest observation in a sample to be the estimator of the population mean. Such an
estimator would be biased because the average of the values of this estimator would
be always less or more than the true population mean.

2.1 Unbiased Estimates and Mean Square Error

Definition 2.1.1 A statistics 7'(X) is called an unbiased estimator for a function of
the parameter g(6), provided that for every choice of 6,

ET(X) = g(0) (2.1.1)
Any estimator that is not unbiased is called biased. The bias is denoted by b(6).

b(0) = ET(X) — g(0) (2.1.2)

© Springer Science+Business Media Singapore 2016 39
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We will now define mean square error (mse)

MSE[T (X)] = E[T(X) — g(0)]?
= E[T(X) — ET(X) + b(O)]?
= E[T(X) — ET(X)]* + 2b())E[T(X) — ET(X)] + b*(9)
= V[T(X)] + b*()
= Variance of [T (X)] + [bias of T(X)]2

Example 2.1.1 Let (X1, Xa, ..., X,) be Bernoulli rvs with parameter ¢, where 6 is
unknown. X is an estimator for 6. Is it unbiased ?

_ 1 < no
EX = - Xi=—=90

Thus, X is an unbiased estimator for 6.

We denote it as 6 = X.

- 1 < 01 -0 01 -0
Vm(X)z;ZV(X,-)zn(nz ) <n )
i=1

Example 2.1.2 LetX;(i =1,2, ..., n)beiid rvs from N(u, o2), where 1 and o2 are
unknown.

Define nS? = 3% (X; — X)? and no? = >0 (X; — p)?
Consider

DK== X —X+X—p)’
i=1 i=1

=D X=X 42D X~ & — ) +nX — p?

i=1 i=1

= > X —X)* +nX — )

i=1

Therefore,

DX =X =D (X — ) —nX — p)?
i=1 i=1
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E [Z(X,- - 502} =E [Z(Xi - u)z} — nE[X — p)*]
i=1 i=1

2
> no

= no ——=n02—02
n

Hence,

2 —1
E$) =0 - = =0 (” )
n

Thus, S? is a biased estimator of o2.

Hence
2 2
o o
(o) =0 - — -0 = ——
n n
Further 7 is an unbiased estimator of o?

Example 2.1.3 Further, if (n — 1)S? = > (X; — X)2, then * I)S has x? with
(n — 1) df. Here, we examine whether S is an unbiased estimator of o.

2
Lot 1=D5 _,,

Then
o0 1 woon=l_ g
E(J/w) = / e
) T ()25
o r(p2 rpe
O CY
. (n—1):8 _2%1‘(;)
o T (%
Hence
2:T (2 Pr(s
B =26 —( ’ ) G,
reg) e-n: \n=1) T(3)
Therefore,
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Therefore,

Bias(S) = o [(n i 1)5 Fr(g) _ 1]

Example 2.1.4 For the family (1.5.4), p is U-estimable and 6 is not U-estimable. For
(p, 0), it can be easily seen that p = = and Ep = p. Next, we will show 6 is not
U-estimable.

Suppose there exist a function 4(r, z) such that
Eh(r,2)=6 VY (p,0) € ©.
Since
EE[h(r, 2)|r] =0

We get

r=1

= (n T e iz ldz
r_n—r h - Ilho 0 :9
Z(r)l’q /(r,z) 7Ty Th0.0)
0

Substituting .= W, and dividing ¢" on both sides

n ® - rfld
> \y(”) /h(r, 28 E L h0,0) = (1 + )", Since g = (1 + W)~
pn r ) 0T (r)

Comparing the coefficients of W” in both sides, we get, #(0,0) = 6, which is a
contradiction.
Hence, there does not exist any unbiased estimator of #. Thus € is not U-estimable.

Example 2.1.5 Let X is N(0, o) and assume that we have one observation. What is

the unbiased estimator of o2?

E(X) =0

V(X) = EX? — (EX)? = ¢*
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Therefore,
EX?) = o2

Hence X? is an unbiased estimator of o2.
Example 2.1.6 Sometimes an unbiased estimator may be absurd.

Let the rv X be P()\) and we want to estimate W (\), where
V(A =exp[—kAl; k>0
LetTX) =[—(k— D] k> 1

N e M\

BITCO] =2 =Gk = DI'—

x=0 ’
00
S k= DA
- ¢ Z x!
x=0
— e—)\e[—(k—l)/\]

— efk/\

T(x) = [-(k— 1] > 0; xisevenand k > 1
T [-(k—=D] <0; xisoddand k > 1
which is absurd since W () is always positive.
Example 2.1.7 Unbiased estimator is not unique.

Letthervs X; and X, are N(0, 1). X1, X5, and X + (1 — )X, are unbiased estimators
of 0,0 <a<1.

Example 2.1.8 LetX;, X5, ..., X, beiid rvs from Cauchy distribution with parame-
ter 0. Find an unbiased estimator of 6.

Let

—00 <X <00, —00 < b < o0

TW0 = o

X

_ dy
F0) = / l+ (v — 6)]

—0Q

1 1
=—+—tan '(x—0)
2 7

Let g(x(»)) be the pdf of X(,), where X, is the rth order statistics.
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9(xn) = () IF o)1 1= Flxp)1™™"

(n—r)(r—1!

___n 1 Db ta o] T Dt — o |
pRTEr Tl Ereensnyrerd | R Rael B R Gl

o0

! 1 -0 1 1 =1
E(X() —0) . i [ ]

_ 1 [ )
C m=nr=D'7 [+ Gy — 0)2] |2 + - tan~"' (x(r) — 0)

1 1
X |:§ - tan*l(x(,) - Q)nfr:| dxr

Let (x(y —0) =y

[o¢]
E(X 9) C 1 / y 1 + 1 ¢ 1 r—1 1 1 . . n—rd
r)y — =LCm— = — an — — — tan s
® pl e y 5= y| dy

—00

!
where Crn = m
Let

r 1 IO
u=—-+—tan " y=u— - =—tan "y
2 7 2 7

1 1
:>(u—§)w=tan1y:>y=tan(u—§)7r:>y=—cot7m

sin? u sin 7ru

dy = |:(cos mu)(cos ) 4 sin 7rui| du
= 7lcot? Tu + 1] = n[y* + 11du
1

/u’_l (1 — w)* " cot mudu

0

n!
EXo =0 == =

1

= —Cm/u’_l(l — )" cot Tudu
0
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Replace rbyn —r + 1

1

!
EXpri1 —0) = —m/cot(ﬂ'u)u”_’(l —u)" " Ydu
0

Letl —u=w

B m/( 1) cot[m(1 —w)I(1 —w)""w''dw

1
n' / n—r_ . r—1
=————— [ cot(mw)(1 —w)" "W dw
—nlr—1)!
(n—n)l(r )0
Now

1 1

/u”l(l —u)"" cot mudu = /cot(ww)(l —w)" W dw

0 0

E[(x(r) - 0)+ (x(nfrJrl) -0]=0

ElX¢) + Xo—r+1] = 260

X(r) + Xn—r+1)

0 =
2

X4l s . )
Zn=—rD js an unbiased estimator of 6.

Therefore,

45

Note: Moments of Cauchy distribution does not exist but still we get an unbiased

estimator of 6.

Example 2.1.9 Let X be rv with B(1, p). We examine whether p? is U-estimable.

Let T'(x) be an unbiased estimator of p2

1
D T =p'=p?

TO)(1 —p) +T(Dp = p?
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plT(1) —=TO)]+T(0) =

Coefficient of p*> does not exist.

Hence, an unbiased estimator of p2 does not exist.

Empirical Distribution Function

Let X1, X5, ..., X, be arandom sample from a continuous population with df F and
pdf f. Then the order statistics X1y < X) < --- < Xy is a sufficient statistics.

Define F x) = w, same thing can be written in terms of order statistics as,
0 5 X(]) > X
Fx)= 1% Xp <x < Xgsn)
L x> Xp
1 n
=- > Ix—X;
. Z ( o)
j=1
where
I;y>0
I=1.,"7 .
o) [ 0; otherwise

Example 2.1.10 Show that empirical distribution function is an unbiased estimator
of F(x)

R 1 <
F(x) = - Zl(x — X))

EF(x)

1 n
= > PIXj < x]
n )

- Z Z ( ) [FOOTF[L = F)1"* (see (Eq. 20 in “Prerequisite”))

JlkJ

=- Z Z ( )[F(x)] [1—F)"™*

j]kl
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:_Z( )[F( [ — F(o)]"™ "Z(l)

j=1
—2}()wm [ —Fe1r*

—[nF(x)] = F(x)
n

Note: One can see that I(x — X;)) is a Bernoulli random variable. Then EI(x — X)) =
F(x), so that EF (x) = F(x). We observe that F (x) has a Binomial distribution with
mean F(x) and variance w Using central limit theorem, for iid rvs, we can
show that as n — o0

Fo) - F)

2.2 Unbiasedness and Sufficiency

Let X;, X5, ..., X,, be a random sample from a Poisson distribution with parameter
A. Then T = > X; is sufficient for A. Also E(X;) = A then X; is unbiased for A but
it is not based on 7. Moreover, we can say that it is not a function of 7.

(1) Let T} = E(X|T). We will prove that T} is better than X, as an estimate of \. The
distribution of X; given T as

fXIT =1) = [ () G (=) 0 =012, 00 2.2.1)

otherwise

E[X||T =] = L and distribution of T is P(n\)
T 1 nx A
vi=)==ovin="2=2
n n? n? n
T
VX)) >V (—) (2.2.2)
n

n—1
(i) Let T, = (X,,, > X,-) is also sufficient for \.
i=1



48 2 Unbiased Estimation

n—1
To = > X;. We have to find the distribution of X; given T
i=1
PIX) =x1,T, = 1]
P[T, = 1]
_ PIX) = x1, Xy = xp, Z?;;Xi =1y — x1]
PIX, = Xy, 20 X; = 1o]

PIX,|T] =

e e N e D (n — )A]OT x! fo!
Tox!l xy! (to — x1)! e AN\ e~ =DA[(n — DA]?
1! (n —2)—™

xi!(to —xp)! (m—Dh

(o) (n=2\"( 1 \"
-\ n—1 n—2
11 1 X1 ] fo—x1
2()2) (n—l) (:ll—l) ;01 =0,1,2,...,1 (2.2.3)

Now X, given T, has B(t, ﬁ)

lo Z?: Xi

E[X,|T>] =
[X|T>] p— —

V[n—l]_(n—m_n—l (2.2.4)

n-l i . .
We conclude that Z":'IX‘ is unbiased for A and has smaller variance than X;. Com-

n—

- n—1y.
paring the variance of X, X, and Z}ff‘lx, we have
n—1
- X -
V(X)) > V(Z:—ll) > V(X)
n—
This implies A > ﬁ > %

n—1
- -1y
Hence, we prefer X to ZH*T‘I and X;.

Note:

1. One should remember that E(X;|T = t) and E(X,|T, = t,) are the unbiased
estimators for \.

2. Even though sufficient statistic reduce the data most we have to search for the
minimal sufficient statistic.
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Let 71 (X, Xa, ..., Xy) and T> (X1, Xa, ..., X;,) be two unbiased estimates of a para-
meter 6. Further, suppose that 7' (X, X», ..., X,,) be sufficient for 6. Let T} = f(¢)
for some function f. If sufficiency of T for 0 is #, have any meaning, we should
expect T to perform better than 75 in the sense that V(7}) < V(7). More generally,
given an unbiased estimate / for 0, is it possible to improve upon % using a sufficient
statistics for #? We have seen in the above example that the estimator is improved.
Therefore, the answer is “Yes.”

If T is sufficient for 6 then by definition, the conditional distribution of (X;, X5, ...,
X,) given T does not depend on 6.

Consider E{h(X1, X5, ..., X)|T(X1,X,,...,X,)}. Since T is sufficient then this
expected value does not depend on 6.

Set Ty = E{h(X1, X5, ..., X)|T(X1, Xz, ..., X,)} is itself an estimate of 6.

Using Theorem 5 in “Prerequisite”, we can get ET

E(T)) = E[E{h(X1, Xo, ... . X)IT(Xy, Xa, ..., Xi)}]

=EB{h(X1, Xz, ..., X))} =0

Since A is unbiased for 8, hence E(T)) is also unbiased for 6.

Thus, we have found out another unbiased estimate of 6 that is a function of the
sufficient statistic. What about the variance of 7' ?

Using Theorem 6 in “Prerequisite”

VIh(X1, Xa, ..., X)] = E{V((X1, Xo, ... . XDIT X1, Xo, ..., X))
+ VIER(X1, X, .., X)IT (X1, Xa, ..o, X))

=E{V(h(Xi, Xa, ..., X)ITX1, X2, ..., X))} + V(T)) (2.2.5)

Since V(h|T) > 0 so that E[V(h|T)] > 0

From (2.2.5), V(T}) < V[h(X)]

If T(X) is minimal sufficient for 6 then T is the best unbiased estimate of . Some-
times we face the problem of computations of expectation of & given 7.

The procedure for finding unbiased estimates with smaller variance can now be
summarized.

1. Find the minimal sufficient statistic.
2. Find a function of this sufficient statistic that is unbiased for the parameter.

Remark If you have a minimal sufficient statistic then your unbiased estimate will
have the least variance. If not, the unbiased estimate you construct will not be the
best possible but you have the assurance that it is based on a sufficient statistic.
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Theorem 2.2.1 Let h(X) be an unbiased estimator of g(0). Let T(X) be a suf-
ficient statistics for 0. Define W(T) = E(h|T). Then E[V(T)] = g() and
VIV(T)] < V(h) YV 0. Then Y(T) is uniformly minimum variance unbiased esti-
mator (UMVUE) of g(8).

This theorem is known as Rao—Blackwell Theorem.

Proof Using Theorem 5 in “Prerequisite”,
E[A(X)] = E[ER(X)|T = 1] = E[W(T)] = g(0) (2.2.0)

Hence W (7)) is unbiased estimator of g(6)
Using Theorem 6 in “Prerequisite”,

VI[a(X)] = VIE(hX)|T(X)] + E[V(h(X)|T (X))]

= VIW(I)] + E[V(h(X)|T(X))]

Since V[A(X)|T(X)] > 0 and E[V(A(X)|T(X))] > 0
Therefore,

VIW(T)] = V[h(X)] (2.2.7)

We have to show that W (7T') is an estimator,

i.e., W(7T) is a function of sample only and independent of 6.

From the definition of sufficiency, we can conclude that the distribution of 4(X) given
T'(X) is independent of §. Hence W(T') is an estimator.

Therefore, ¥ (T') is UMVUE of ¢g(0).

Note: We should remember that conditioning on anything will not result in improving
the estimator.

Example 2.2.1 Let X1, X; beiid N(6, 1).
Let

X1 +X

hx) =X ===,

Eh(X) =0 and V[h(X)]= %,

Now conditioning on X, which is not sufficient. Let ¥ (X;) = E(X) 1X1).

Using Theorem 5 in “Prerequisite”, E[W (X))] = EX = 6. Using Theorem 6 in
“Prerequisite”, V[W(X;)] < V(X). Hence W (X)) is better than X. But question is
whether W (X,) is an estimator?
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¥ (X)) = E(XIX))

X1 +X> 1 1
=E 5 X1 ) = EE(XI X)) + EE(X2|X1)

1 1
—X; + EE(Xz) (X1 and X, are independent)

2
1 1
= —X, + -0
PR

Hence W (X)) is not an estimator. This imply that we cannot say that W (X;) is better
than X.

Theorem 2.2.2 (Lehmann—Scheffe Theorem) If T is a complete sufficient statistic
and there exists an unbiased estimate h of g(0), there exists a unique UMVUE of 0,
which is given by Eh|T.

Proof Let hy and h, be two unbiased estimators of g(#) Rao-Blackwell theorem,
E(1|T) and E(hy|T) are both UMVUE of g(6).

Hence E[E(h|T) — E(h2|T)] =0

But T is complete therefore

[E(hi|T) = E(h2|T)] =0

This implies E(1|T) = E(h|T).

Hence, UMVUE is unique.

Even if we cannot obtain sufficient and complete statistic for a parameter, still we
can get UMVUE for a parameter. Therefore, we can see the following theorem:

Theorem 2.2.3 Let Ty be the UMVUE of g(0) and vy be the unbiased estimator of
0. Then Ty is UMVUE if and only if EvgTy =0 V 6 € ©. Assume that the second
moment exists for all unbiased estimators of g(0).

Proof (i) Suppose Ty is UMVUE and Evy Ty # 0 for some 6y and vy where Evy = 0.
Then Ty + awvy is unbiased for all real «. If Ev% = 0 then vy is degenerate rv. Hence
EvyTp = 0. This implies P[vy = 0] = 1.

Let Evé >0

E[To + avg — g(0)]* = E(Tp + avy)? — 2g(0)E(Ty + av) + ¢* ()
= E(Ty + avy)? — ¢*(0)
= E(Ty)? + 2aE(Tyvp) + o*Ev] — ¢*(6) (2.2.8)

Choose « such that (2.2.8) is equal to zero, then differentiating (2.2.8) with respect
to o, we get

= 2E(Tovo) + 20Ev =0
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Hence

_ E(Towo)
Ev(z)

= (2.2.9)

E(Ty 4 avy)? = E(T,)* + 2aE(Tyvy) + o’Ev}
(E(Tovp))?
Evg

< E(Ty)? (2.2.10)

= E(Ty)’ -

2 .
Because % > 0 (our assumption E(Tpvg) # 0)

Then we can 0conclude that
V(T + avy) < E(Tp)?
which is a contradiction, because Ty is UMVUE.
Hence EvTy) =0
(i1) Suppose that
Evlp=0 V 6 € ® (2.2.11)
Let T be an another unbiased estimator of 8, then E(T — Ty) = 0.
Now Ty is unbiased estimator and (T — Tj) is unbiased estimator of O, then by

(2.2.11),

ETo(T —Ty) =0

ET,T — ET,> =0

This implies ETy*> = ET,T
Using Cauchy—Schwarz’s inequality

ETyT < (ET,®)? (ET?)?
Therefore,

ET? < (ET,%)? (ET?)?

(ETy?)? < (ET?) (2.2.12)
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Now if ETp? = 0 then P[Tp = 0] = 1
Then (2.2.12) is true.

Next, if ETy? > 0 then also (2.2.12) is true
Hence V(Ty) < V(T) = T, is UMVUE.

Remark We would like to mention the comment made by Casella and Berger (2002).
“An unbiased estimator of 0 is nothing more than random noise; that is there is no
information in an estimator of 0. It makes sense that most sensible way to estimate
0 is with 0, not with random noise. Therefore, if an estimator could be improved by
adding random noise to it, the estimator probably is defective.”

Casella and Berger (2002) gave an interesting characterization of best unbiased esti-
mators.

Example 2.2.2 Let X be an rv with U(0, 6 + 1), EX = 6 + 1, then (X — 1) is an
unbiased estimator of @ and its variance is % For this pdf, unbiased estimators of
zero are periodic functions with period 1.

If h(x) satisfies [} ' h(x) = 0

0+1

d
E/h(x)zo
[

hO+1) —h®) =0 ¥ 0

Such a function is h(x) = sin 27x.
Now,

0+1
1
Cov |:X — 3 sin 27er| = Cov[X, sin27X] = / x sin 27xdx

@+ 1)cos2m(@+ 1) cos 2w
- +6
2w 2w
n sin27(@+1)  sin276
472 472

Since sin 27w (6 + 1) = sin 276

cos 2w (6 + 1) = cos 27 cos 2w — sin 27w sin 27

=cos2mf (cos2m =1, sin2w = 0)

cos 27
2

Cov[X, sin27X] = —



54 2 Unbiased Estimation

Hence (X — 1) is correlated with an unbiased estimator of zero. Therefore, (X — 1)

cannot be the best unbiased estimator of 6.
Example 2.2.3 Sometimes UMVUE is not sensible.

LetX;, X5, ..., X, be N(u, 1). Now X is unbiased estimator for ;1 and Xis complete
sufficient statistic for p then E(X; |X) is UMVUE. We will show that E(X;|X) = X.
See (ii) of Example 2.2.11

Note that X is N(u, %)

1
1
=;mﬂﬁ+ﬂﬁ&%%~+Eamm

1
i L G T

_ 1 2 1
Cov(X;,X) = tn —,u2 = -
n n
_ Cov(X1, X) - _
EX:|X) = EX; + ———————[X — EX]
V(X)
1 -
= p+ —n[X — pu]
n
=pu+X-p=X

(X1, X) is a bivariate rv with mean

and covariance matrix

1L
(11)

In this example, we want to estimate d(;) = p> then ()_(2 — %) is UMVUE for p2.
One can easily see that EX* = 1 4 12,



2.2 Unbiasedness and Sufficiency 55

Hence E (X? — 1) = 1% and X? is sufficient and complete for /2.

Now g2 is always positive but sometimes ()_(2 - }l) may be negative. Therefore,
UMVUE for uz is not sensible, see (2.2.56).
Now, we will find UMVUE for different estimators for different distributions.

Example 2.2.4 Let Xy, X», ..., X, are iid rvs with B(n, p), 0 < p < 1. In this case,
we have to find the UMVUE of p"¢*, g =1 —p, r, s # 0 and P[X < c]. Assume
n is known.

Binomial distribution belongs to exponential family. So that >"_| X; is sufficient
and complete for p.

(i) The distribution of T is B(mn, p).

Let U(¢) be unbiased estimator for p"g*.

nm nm
Zu(t)( . )p’q”’”" =p'q (2.2.13)
=0

nm

nm —r nm—it—s
Zu(t)( . )p q =1

=0

R (”;”) nm-—=s8="r\ , , un—t—s _

R |G
Then

(Ilﬂ1)
u(t) nmjsfr =1
( t—r )
Hence sy
M(t):[%;t:r,r+1,r~|—2,...,nm—s 2.2.14)
0 ; otherwise

Note: Form =n =1, r = 2, and s = 0, the unbiased estimator of p2 does not exist,
see Example 2.1.9

(ii) To find UMVUE of P[X < c]

Now
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Then UMVUE of

Hence UMVUE of P[X < c]

. > (j’c) (‘;})) st=x,x+1,x+2,...,nm—n+x, c¢<min(t,n)
— 1) x=0 !
1 ; otherwise
(2.2.15)
Note: UMVUE of P[X = x] = (")p*q" ™ is ()((_) Xx=01,2,. ...t
Particular cases: r
(@) r=1,s = 0. From (2.2.14), we will get UMVUE of p,
nm—1
t
(") nm
(b) r =0, s = 1. From (2.2.14), we will get UMVUE of ¢,
("mt_l) nm —t t
u(t) = —(——= = =1-— (2.2.17)
( ' ) nm nm

(c)r =1,s = 1. From (2.2.14), we will get UMVUE of pq,

u() = (i) (”m - t) (2.2.18)
nm nm — 1

Remark We have seen that in (2.2.16), (2.2.17), and (2.2.18),

~ r o, t - t nm—t
p=—;q=1——andpq=(—)( )
nm nm nm nm — 1

Hence, UMVUE of pq # (UMVUE of p) (UMVUE of g).

Example 2.2.5 Let Xy, X, ..., X, are iid rvs with P(\). In this case we have to find
UMVUE of (i) e~ (i) P[X < ]

Poisson distribution belongs to exponential family. So that T = >, X; is sufficient
and complete for \.

(i) The distribution of T is P(mA\).

Let U () be unbiased estimator for \"e~*

o0

—mA A t
D u(t)# — e\ (2.2.19)
=0 :
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o e—(m—s))\mt)\t—r
Sy
Py t

< t _ —(m—s)\ _ t—r
z u(t) m § (t—r)e [(m — s)A] _ 1
— (m—s)—" (t—r)!

Then

m' (t—n!
(m — s)\=r 1! -

=" ], s <m

u(t)

= m =) 2.2.20
u(®) [O ; otherwise ( )
(ii) To find UMVUE of P[X < c]
c 7)\)\x
PX<c=>°
= x!

Now, UMVUE of e \\¥ is ¢=D2 1
UMVUE of P[X < c]

_Z“: 1! (m—1)f( 1 )*
_xzo(t—x)!x! m m—1

:[ o () () (= T e < 2.2.21)

; otherwise
Remark UMVUE of P[X = x] = < is () (1) (=)™ x =0,1,....¢
Particular cases:
@)s=0,r=1
From (2.2.20), we will get the UMVUE of A,
m' 1 t
ut) = —— = — (2.2.22)

mit—1) m

®d)s=1,r=0
From (2.2.20), we will get the UMVUE of e

s

u(t) = (mT_l) (2.2.23)
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©s=1,r=1
From (2.2.20), we will get the UMVUE of e
— ' —-1\" ¢
up = Mo Dt (m (2.2.24)
mi(t — 1)! m m—1

Remark UMVUE of Ae™ # (UMVUE of \)(UMVUE of e)

Example 2.2.6 Let X, Xo, ..., X, areiid rvs with NB(k, p). In this case we have to
find UMVUE of

L. p'g*(r,s #0)
2. P[X <]

P[X = x] = Probability of getting kth successes at the xth trial

k+x—1\ ,
= P'g; x=0,1,2,...,0<p<l1l,g=1—p (2225
X

Negative Binomial distribution belongs to exponential family.

Therefore, T = Z:"Zl X; is complete and sufficient for p. Distribution of T is
NB(mk, p).

Let U(¢) be unbiased estimator for p”g*

> k+1—1
> u) (m ) )p’"kq’ =p'q
=0
o0
Zu(l‘) (mk + — l)pmk—rqt—s -1
=0 !
o0 mk+1—1
( ) mk—r—s+1t—1\ i s
Zu(Z)W( o )pk 4= 1
s=0 t—s
Then
(kartf 1)
M(I)W =1
t—s
Hence,

(mk — rl—_s“v-k t— l)
(mk +lt — 1)

u(t) =
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(mk—r[:.;ﬂ—l ) _
M(Z) — (mktt—l) ’ t —_— S, N + 11 ceey r S mk (2226)
0 ; otherwise
(i1) To find UMVUE of P[X < c]
" (k+x—1 N
PIX <cl=> ( )p"q
X
x=0
k (nxk—k—xﬂ
Now UMVUE of p“¢* = W
UMVUE of P[X < ¢]
¢ (k+i—l)(mk—llizx+f ) .
_ ) 2oy =t L (2.2.27)
1 ; otherwise.

k+x—1Y\ (mk—k—x+t
Remark UMVUE of P[X = x] = (Iﬂ'i_l)pkq)C is %
Particular cases: I
@r=1,5s=0
From (2.2.26), we will get UMVUE of p,

u(t) = (") _ k1 (2.2.28)
() T ki1 -

®r=0,s=1
From (2.2.26), we will get UMVUE of g,
(nlk+f—2) ¢
1) = —1 — 2.2.29
u(®) (") T omk -1 (2:2:29)
©r=1,s=1
From (2.2.26), we will get UMVUE of pgq,
mk+t—3)
(" t(mk — 1)
H=-—1’_ 2.2.30
u() (Y T Gmk + 1 — 1) (mk + 1 2) (8230
Remark UMVUE of pg # (UMVUE of p)(UMVUE of ¢q)
Example 2.2.7 LetXi, X5, ..., X, beiid discrete uniform rvs with parameter N (N >

1). We have to find UMVUE of N°(s # 0).
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Then joint distribution of (X1, Xp, ..., X)) is
1
f 2, ) = S I (N = X)Xy = 1)

1;9y>0
0 ; otherwise

I(y)=[

By factorization theorem, X, is sufficient for N.
Now, we will find the distribution of X,).

mn m

Z
P =2l =[Pl =21 =

i=1
P[X(m) = Z] = P[X(m) =< Z] - P[X(m) <z7- 1]

" B z—D™

= . z=1.2,....N 2231
Nm om0 C (2230

We have to show that this distribution is complete, i.e., we have to show if Eh(z) = 0
then /(z) = 0 with probability 1.

Eh() = Zh()[m Z_—”m] 0

Now (”"71(\+1)m) is always positive then i(z) = 0 with probability 1.
Therefore, X, is sufficient and complete for N.
Let u(z) be unbiased estimator of N*

Then
—
Zu( ) [ —Ge-D } N
—1ym
> o [T -
N . )
Zm _ (Z _ 1)m Zm-'m _ (Z _ 1)m+s _
;M(Z) |:Zm+s —(z— 1)m+sj| |: Nmts ] =1
Hence,

M= (z— 1Hm B
u(z) [Zm+.v —(z— 1)m+s] -
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m+s __ _ m—+s
u() = [z z—-1 }

Zm _ (Z _ l)m
Therefore,
X”,lrj_s - (X m) 1)m+s
UXgy) = | —o (2.2.32)
X(m) _ (X(m) _ l)m
Then u(X()) in (2.2.32) is UMVUE of N°.
Particular cases:
(a)s=1
From (2.2.32), we get UMVUE of N,
R Xm+1 _ (Xm _ 1)m+l
N=|Zm 0 (2.2.33)
X(m) - (X(m) - l)m
b)ys=5
From (2.2.33), we get UMVUE of N°
o [ X = Xy — DM
NS = |Zm =@ (2.2.34)
Xy — Ky — D™
(c) To find UMVUE of eV
Now -
NI
N=> — (2.2.35)
— j!
j=0
Using (2.2.32), UMVUE of ¢V is
. 00 1 Xm+j — KXo — 1)m+j
N — Z — | L (m)
=0 .]' Xz:ln) - (X(m) - l)m
Remark UMVUE of &V # &'
Example 2.2.8 Let X1, Xa, ..., Xy, be iid rvs with power series distribution.
a(x)6*
PX =x) = x=0,1,2,... (2.2.36)
c(0)

where c(0) = > 22 a(x)6".
This distribution belongs to exponential family.
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Therefore, T = >_X; is sufficient and complete for 6. In this case, we will find
UMVUE of %6;)];(& s #0).
This distribution of T is again a power series distribution, see Roy and Mitra (1957),

and Patil (1962)

P(T=1) = A([’—m)et, (2.2.37)
[c(O)]™

where A(t,m) = > ﬁ a(x;)

(X1,X2,50 0052 ) 1=1

Let U(t) be an unbiased estimator of

_o0

[eO))

oo

A(t, m)6" 0"
= 2.2.38
2 Oy = @r (2239

o0

A(t,m)o"—"
S |
2 M0 gy

o0

A(t, m) At —r,m—s)0""
> ) - =1
At —r,m—ys) [c(O)]r—s

=0
Now
A(t, m)
u(t)————— =1
At —r,m—y5s)
This implies
U@ M1z, m=s (2.2.39)
“]o ; otherwise -
Example 2.2.9 Let Xy, X», ..., X, beiid rvs with G (p, é).
Let
e ixP~!
f(x,0) = T () ;x>0,p>0,0>0 (2.2.40)

Now gamma distribution belongs to an exponential family. 7 = > X; is sufficient
and complete for 6.

The distribution of T is
e~ 5 =1

1O ot

1 t>0,p>0,0>0 (2.2.41)

We have to find UMVUE of (i) e ior (i) {’(X > k)
(i) Let u(¢) be an unbiased estimator of e~ 76"
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e o™
t =e 0"

/“()emm )~ ¢
0

T P |

f)——— =
/ “O Gt )
0

i o (mp 1)\ (€T @ — Ryl
/ (u(t) (t — k)ymptr=1 F(mp)) P+ (mp 4 r) =1
k

"7~ (mp + 1) _
(t — by =1T (mp)

Then,

u(t)

u(t) =

T L2 (22.42)

=k D mp)
; otherwise

(i1) We have to find UMVUE of P[X > k]. Note that

C>oe’§xp’1
P[X > k] =/ T ) dx

k

Let
Yy — 1; X1 >k
| 0 ; otherwise

Hence Y is unbiased estimator for P[X; > k]. We have seen in Sect.2.2 that [EY|T =
t] is an estimator and has minimum variance.
SoE[Y|T = t] = P[X; > k|T = t]. Now we will require the distribution of X;|T = ¢

t m
P[X1|T=t]:fm’ where T} :ZX,
J(@) i=2
Distribution of (T} = ;) = f(t;)
e,%t](m—l)p—l

~ T —nper w120
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I TN G X ' Uik

F(p)@l’ I'((im— 1)p)9(m—l)p e—étmpfl
x\P—1 x ) (m—Dp—1

_ (T) (1 — Tl) . X1

;o 0= —
13(p, (m — 1)p) ot

PIX\|T =1] =

<1 (2.2.43)

(z _aynbp!

E[Y|T = 1] = P[X, > k|T = 1] )
Wit =r="rx=H ’/ rﬂ(p(m—l)p)

k

dx 1

1
Wpfl(l _ W)(mfl)pfl

B(p. (m —1)p)

; wp_'(l _ W)(m—l)p—l
=1- d 2.2.44
G m—1p) (2249

1—ILi(p,mp—p); O0<k <t
P[Xlzkw:t]:[o Hpompmpy 0 <!

Now
> £ y 1
— P

PIX > k] = )

1-1 k (p) = Incomplete Gamma function. (2.2.45)

Hence UMVUE of 1 —1 k (p) is given by incomplete Beta function 1 —/ k (p, mp—p).
Note: Student should usé R or Minitab software to calculate UMVUE.

Example 2.2.10 Let X1, X5, ..., X,, be iid rvs with the following pdfs.

SO = gt x>0

fxID) = /\x’\ 1, O<x<1, A>0
fxN) = eA; x>0, A>0

CfEIN) = e’%; x>0, A>0, a>0
fxIN) = e %, x>0, A>0

S N T
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(i) Let Y =log(1 4+ x) then f(y|\) = Xe™; y>0, A >0
The UMVUE of X" is given as

_'Tm) |

Consider r = 1 then we will get UMVUE of A,

A m—1
A= —— 2.2.47
T ( )

(i) Let Y = —log X then f(y|\) = Xe™; y>0, A>0

We will get the UMVUE of X\ in (2.2.46) and for » = 1, UMVUE of \ is given in
(2.2.47)

(iii) Let |x| = y then f(y|\) = de™™; y>0, A>0

In the same way as (i) and (ii) we can obtain the UMVUE of A™".

(iv) Let x* = y then f(y|\) = %e‘ﬁ; y>0, A>0

In the same way as (i) and (ii), we can obtain the UMVUE of X" (here 8 = \).

(M Let =ythenf(y|\) = <251 y>0, A>0
r(;)\

In this case p = % and 0 = .

Similarly, we can obtain the UMVUE of \".

|

Example 2.2.11 LetX;, X, ..., X, beiidrvs with N (u, 0?). We will consider three
cases
(i) p known, o> unknown

(if) p unknown, o> known
(iii) p and o2 both unknown

(1) Normal distribution belongs to exponential family.
T =" (X; — w? is complete and sufficient for 2.

"X — w)?
z':‘(—zu) has x? with m df (2.2.48)
[
Hence, EL = m. This implies that UMVUE of 02 is 02 = Z%—10"
Leto? =fandY =1
Then

P P
Y)=Sos Y=
T (3)

To find the unbiased estimator of §”. Let u#(y) be an unbiased estimator of 6”.
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66
7 ef%y%fl r
— dy=0" =
[ =t =5
0
° LMy
/u(ry)e ik _gy=1
s ! 2%T (%)
o m y m
W) T (3 +7) 25\ ettt
/ m 7 dy=1
1 2:T (%) 2°7T (% +7)
0
Now

u(y) = rr (%) cor=1,2,... (2.2.49)
2'r (% + r)
Particular cases: r = 1
T (%) ot
“0 = op I @(2) m
N2
_2X&Xi—p” (2.2.50)
m

Therefore, Z(X’Tw is the UMVUE of o2.
Next, we will find the UMVUE of P[X; > k]

k—p
g

X, — k —
:1_P[1_ﬂ<_ﬂ}
g

X_
P[Xlzk]zp[l—’“‘z
g

ag
= @[k_“] (2.2.51)

g

Define
le[l;xlik

0 ; otherwise

EY, = P[X| = k]
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According to Rao—Blackwell theorem, we have to find P[X; > k|T = t].

For this we will have to find the distribution of X; given T = ¢. Then it is necessary
to find the joint distribution of X; and 7' = ¢

LetT = (X; — > +Zand 5 has x%. S0 Z = T — (X; — p)* then 4 has x2,_,. Let
y = 5. Then

_y o m=l_q
e 2y 2
FO ==
25T (25
eizn%zmTil_l
f@) = =5 1 ;2>0 (2.2.52)
2% T (m; )O-m—l
flx, 1) =fo)f(2)
7(11—;1) lz (n /L)] m—1
e 7 e [t—(x1 w27 !

(VIR (551 o

_ et [t — (1 — ) ]m ! (2.2.53)

25T (21 1)amf

[ = —e Gl
25T (§) o™

O] (T
f@IT=0=1"r ey o H Vim<ptd 054
0

; otherwise

Note that /7 =T ()
Consider
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PX, Z kT =1] =

Hence

N
_% 1 — m=1_1
WPIX, > kT =1]=1— / ved-v =
0

PIX, > KT =1 =+ — 11 Lom-1
1= =H=3 2(7)2

k_
UMVUEof P[X; > k]=1—® (—“) is P[X; > k|T = 1]
g

%_%I(A}u)z(%’m;]) Pp—Vi<k<pt+ii
PIX, kT =11= 1, Ck<p— i (2.2.55)
0 s k> 4N/t

(ii) For ¢ known, 3 X; or X is complete and sufficient for . The distribution of
< 2
X~N(n2).
Y — v2 2 o2
Now, EX = pand EX® = p~ + %~

Hence,

2
()’(2 - U—) is UMVUE for 12 (2.2.56)

m

For (2.2.56), see Example 2.2.3.
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o0
E(X") = / X e w1 g%
g vy
—00
Letw = SV o 5 =y 4 22
o0
/( N wa)r 1 2
= — e w
") on
—00

Since odd moments of w are 0

J[E O -0

o" r\o ! r\ o2 2
=—mt T Hr—1H g M2
m?2 1 m 2 2 mz2

_]0 ; risodd
Fr=1G—-1D@=3)...1; riseven

Particular cases: (a) r =3 (b) r =4

(ayr=3
_ 3 3 2 3 2
EX?) = 0—3u3+( )U “2“+( )J‘“l’l 4l
m?2 1 m 2 m?2
2
:324_”3
m
3 o’y
UMVUE of ji* = X* —3——
m
byr=4

3

69

(2.2.57)

o4 ot 4\ o’ 4\ o2 > 4\ o 3 4
E(X)=ﬁﬂ4+ 1 gl&(ﬂ)‘i‘ ) ;Nz(u) + 3 Em(u) +u

pa=@—-1@4=3)=3, u3=0, pp =1

- 30 602 2 4
E(X)=W+7(H) +u
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UMVUE of 4 is

B 3 4 6 2 2
_wh "2 _ o (-2 _ "_) (2.2.58)
m m m

Similarly, we can find UMVUE of i/ (r > 1)
Next, find the UMVUE of P[X; > k]
Again define

Y, — 1; X1 >k
"= 10 ; otherwise

EY, = P[X; > k]

According to Rao—-Blackwell theorem, we have to find P[X; > k|T = t] where T =
ST . Xiand Ty=>",X;.. T~N(mu,mo®)andT; ~N ((m — Dy, (m— 1)02)

Sl t) =fx)f (1)

1 -2 1 Iy —m=1y?
X|, 1) = ———e 27 ————¢ 2mDo?
fea.n o 2m o/2m(m —1)
)= — [ L )2]
= exp | — —
o/2mm P 2mo? H
1 — (= L)?
f(x1 |T = l‘) = ¢ 2m-1)o? m

(2.2.59)
o/2m /=t

Therefore, (X;|T = t) has N (%v _(m_ry,z)
To find P[X, > k|T = 1]

[l
|
o
Q| =
|
§|§|_ 3|~
SN————

k—x
—1-® ) (2.2.60)
m—1

We conclude that ® ( ki ) is UMVUE of & (k;—”)

o m—1
m
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(iii) Both i and o are unknown

(%, 8%) is jointly sufficient and complete for (1, 0?) because normal distribution
belongs to exponentlal family where S? = > (x; — X).

Now, 52 has x? distribution with m — 1 df.

Leti—z =ythenEY" = re +r)2’

r(eh)
Hence
r
E(S%) = (- — )(205’ (2.2.61)
(T)
m=1Y¢2
Therefore, % is UMVUE of o
Particular case: (a) r = % br=1
() 1
r(z=)s
5_ — ( 2 ) 1
(5 +5)22
(b) —1 2 2
N e/ L
r(et+3)2 m-1
2
EXY) =2+ =
Then
Elx?_ S? _ Mz
m(m — 1)
So that
_ S2
UMVUE of ji? is X* — ——— (2.2.62)
m(m — 1)
Next,

_ 302
EX?) =’ + —n

- 3x8?
e

m(m — 1)

. 3xs* . 3
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Similarly, one can obtain UMVUE of p/(r > 1)
©r=-1

1 —
UMVUE of - = o2
o

r(zt) s2
- r (1112—1 _ 1) 2—1
- mS_z 3. m=3 (2.2.64)

Next, we will find the UMVUE of P[X; > k]

P[Xlzk]zl—d)(k_—u)
g

As usual
1; X1 >k
Y= [ 0 ; otherwise (2.2.65)
k —
EY = P[X, zk]zl_q)(_“)
o2
As we have done earlier,
E(Y|X, $*) = P[X; > k|X, 5]
We need to find the distribution of (X;, X, $2).
Consider the following orthogonal transformation:
L ) = E
= —@ +x2+ -+ x,) =/mx
21 ﬁ 1 2
[( 1 ) X X i| m
Zz = 1 —_—— xl ....... JE— —_—
m m m m—1
Zi=cuXi+cepxat o+ CipXm 1 =3,4,...,m
where 37" ¢ =0,i=3,4,...,mand 3" ¢;* =1
21 ~ N(/myp, 0?) (2.2.66)

2 ~N(@,0%) r=2,3,...,n
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Let Z = PX, where P is an orthogonal matrix
77 =XPPX=XX

Hence,

m m
St =D (2.2.67)
i=1 i=1
m m
ZZi2 = in2 - Z12 - Z22
i=3 i=1

m
E —m)C — 22 =S2—Z22

Let v = 5% — 2,2,

where v = > 1" . 72

Letz; = /mx, 70 = \/%(xl —%), v=25>—2°

0(z1, 22, )
=50 550
O(x1, X, §%)
611 611 Ozl
(9)(1 Dx 052
9 0 0On
- Ox; Ox 0S?
v OJv v
0x1 f)}? OSZ
0 Jm 0
m
m m
J = m—1 A\ m—1 0
m—1
0 0 1
Therefore,
m
|| =
m—1
_ G =mm fﬂ)z @2 m=2_q
e 27 e 7z 2y 2
Sz, z22,0) = = |7 (2.2.68)

-2

0«/_ Jx/ﬁF(mT)2
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Note that % ~ x2_5
f(z1,22,v)

&, 8%

2
eXpI:(Zl —/m)? _Z_z_#:l e Wi «/27T2 T oI (mT)

202 202
" il
exp [~ (5 — w2 = 51 | ”m(%)r (n52) 27 ()=

fxilx, $%) =

= |/

Consider

m2i T (250) [$2 — 2y — D)2
VL /m T (252) (8 ym

2 _m_ — 2157
ym 187 = oG = 0] (2.2.69)

N e = S
S Vm—1T (3T (2%2) ()"

= —m —1 )(i)z 152 — m(x — )27 !

m=2 1

m 1 o1 m xl—)_cz *
— - 2 - 2.2.
m—15(5)") [1 m—l( s )] e

(m—1)8?
m

Now
> (x; — X)?




2.2 Unbiasedness and Sufficiency 75

This implies that |x; — | < s\/@

Hence,
_ m—1
X — ,/ 5 <x+S8/—— (2.2.71)

x+S,/ = m=2_

_z\2] 2
N e e I
k QT

_3)? _ 2
Let —m'fl—(x‘szx) =, 2 & ")dxl =dt,and dx; = =L 5"_gr

> m—1 2m  (x1—X)
1
/ ) [1—" Y 2dr (2.2.72)
(3 T)
m_ (ki)
m— I S
UMVUE of P[X, > k] is
0 Dk>x4s /ol

s 345,/ ol
P[X, Zle,S 1= f f(xll)_fgsz)dxl S x-S /mTfl <x <i+S$ /mm;l (2273)
k

1 ;k>i—S\/§

Further, if X — S\/@ <x X487

=4S m—1 ]

filx, sP)dxy = % [1 ~La iy (l m_—2)j| (2.2.74)

k

where I is an incomplete Beta distribution.

2.3 UMVUE in Nonexponential Families

This section is devoted to find UMVUE from right, left, and both truncation families.
One can see Tate (1959), Guenther (1978), and Jadhav (1996).

Example 2.3.1 Let Xi, X», ..., X, beiid rvs from the following pdf:

Ql(G)Ml(x) a<x<®6
; otherwise

f&xl0) = (2.3.1)
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where M| (x) is nonnegative and absolutely continuous over (a, ) and Q,(f) =
-1
[ fa "M 1 (x)dx] , 01(0) is differentiable everywhere.

The joint pdf of X}, X5, ..., X, is

O, xa, o0 xnl6) = [01()]" HMI )0 — xu)X(xay — a)

i=1

where
1;9y>0

I@)ZHO;ySO

By factorization theorem, X, is sufficient for 6. The distribution of X, is w(x|0),
where

wx|0) = m[F (0"~ ) (232)
Now
0
/Ql(e)M1(X)dx =1
This implies
)
1
o= 5o
Then )
1
/Ml()C)dx = Ql(x) (233)
This implies F(x) = gll_((z;
From (2.3.2)

w(x|f) = <x<#@ 2.3.4)

TG

Let h(x) be a function X,,). Now, we will show that X,,) is complete.

[Q1(9)]”‘M1(X)d _
———————dx

0
Elh =1|h =0 2.3.5
[7(0)] / =5 o (2.3.5)

a
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Consider the following result
Letf = f(x]0). a = a(9). b = b(0)

" |:/fdx:| =/—d +f(b|9)— —f(a|0)— (2.3.6)

Now,
h M (x)
h P k=0 23.7
/ 10T [Q1(x)]m! ( )
Using (2.3.6),
dh(x) [Qﬂ?g)]?" ‘
@ 2.3.
10 0 (2.3.8)

Differentiating (2.3.7) with respect to ¢
hOM ) _
(Gl

Hence h(f) =0 fora < x < 6.
This implies A(x) = 0 fora < x < 0.
We will find UMVUE of ¢g(#). Let U(x) be an unbiased estimator of g(6).

0 and, M;(f) and Q,(0) #0

mlQ1 ()" M, (x)
— Zdx=qg(0
/() (01 (01" 90
My () 9(0)
= 239
/ YOG T T i @1 239)

Differentiating (2.3.9) with respect to 0

wOM©) _ 1| 9VO) g0 O))=m)
(O m 2@ (@)

M (1
. % [ gV©O)  mg©)0! @} (2.3.10)

(01O [Q1(O)!
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where g1 (0) = First derivative of g()
(' (9) = First derivative of Q; ()

Now
; 1
M, (x)dx =
/ N
Differentiating (2.3.11) with respect to 6
01" ()
M(0) = —
: 0 (0)

Substitute (2.3.12) in (2.3.10),

u@M (0 _ 1 [ gV ®) | mgO)M, (9)}
(01O m [IQ7(O]  [Q1(O)]!

g @ QO gOM©) [

0) =
“(0) m[OQT(O)]  M(0) dl—[Ql(ﬁ')]”‘_1 M (0)
g )
=2 7 0) V6
mo @y T
Therefore, o
9" (Xam))
m)) — + m
(X)) mQ1 (X)) M (X)) 9Gtm)

We can conclude that U (x(y) is UMVUE of g(6).
Particular cases:

(@) 1

s 0<x<0
— 0’
fx10) = 0 ; otherwise

Comparing (2.3.14) with (2.3.1), 0;(0) = é and M (x) =1
In this case we will find UMVUE of 8" (r > 0).

(2.3.11)

(2.3.12)

(2.3.13)

(2.3.14)

Then g(§) = 6. Using (2.3.13), g(xem) = [xm]s 9P Cwm) = rlxm] ™,

O1(xgmy) = ﬁ,Ml(x(m)) =1

(X)) !
m-(1)

X(m)

u(X(my) = + (xm)”

w7 +1]
= X —_
m |

(2.3.15)
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If r =1, then
m+1
u(Xmy) = X(m)
is UMVUE of 6.
(b)
0
P (0 a)x2 ra<x<
F(x10) = ; otherwise
In comparing (2.3.17) with (2.3.1), Q1(0) = (9 a) and M (x) =
Let g(0) = 6" (r > 0), ¢gV(@) =ro!
Using (2.3.13),
FXZ;)] r
M(.X(m)) =~ 7 - +-x(m)
geaey
xm—a ) \x3,

r V(X(m) - a)

Putr = 11in (2.3.19)

. X(m) —a
M(X(m)) = X(m) = +1

is UMVUE of 6
(c)

2

3x
f(xl@):F; O<x<?@

In this case M; (x) = 3x%, Q1(0) = 7, g(6) = 0"

r—l

M(X(m)) = T +x (m)

x(m ) (m)

. [r+3m
=X | T3

3m

Put r = 1in (2.3.22) then U (X)) = X(m) ( ) is UMVUE of 0.

(d .
fx|0) = 5; —0<x<0

79

(2.3.16)

(2.3.17)

(2.3.18)

(2.3.19)

(2.3.20)

(2.3.21)

(2.3.22)

(2.3.23)
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Let
Yi=|Xil,i=1,2,...,m (2.3.24)

then Y1, V>, ..., Y, are iid rvs with U(0, 0).
From (2.3.15), UMVUE of 6" is u(y(m)), hence

Lorr
UG = Yo [ +1] (2.3.25)

Example 2.3.2 Let X, X», Ildots, X, be iid rvs from the following pdf:

O (OMr(x) ;0 <x < b

fx10) = {O ; otherwise (2.3.26)

where M, (x) is nonnegative and absolutely continuous over (6, b) and Q,(0) =
-1
[ f : M, (x)dx] , 0»(0) is differentiable everywhere.

The joint pdf of X}, X5, ..., X, is

m

O, xa, o0 xml6) = [02(0)]" HMz(Xi)I(9 — xa I — b)

i=1

By factorization theorem, X(;y is sufficient for 6. The distribution of X(y, is w(x|0),
where

w(x|0) = m[1 — Fe)I™ 'f(x) (2.3.27)

Now

b
1
0/M2(x)dx = 0,0

This implies then

b
1
/ M (x)dx = o (2.3.28)

b
1 -F(x)=Px>x]= / 02 (0)M> (x)dx

_ 0(0)
0>(x)

(2.3.29)
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wirlf) = m2OIM
[Q2(0)]"!
Using (2.3.6), we can get
h(0)M,(6)

@t = 0 2nd M0, 0,(0) #£0

Hence h(#) =0forf <x < b

This implies A(x) =0for 6 <x <b

We conclude that X is complete.

Let U(x) be an unbiased estimator of g(6).

/ uo)™ m[Q>(0)] mMZ(x)dx_g(Q)

[Q>(0)]!

Using (2.3.6)

u@OM6) 1 [ 9" ®) mg(9)[Q§1)(9)]]
m

[0 m | [QO]  [Q29)]"!
Now,
1
M, (x)dx =
/ = 50)
0
Differentiating (2.3.32) with respect to 6
(2O
M, (0
X0 =500
Substituting (2.3.33) into (2.3.31)
1 (1)(9)
0) = -4
WO =90 G @M 6)
Hence
gV (xy)

Ul = 90 = G

Particular cases:

(a)

81

(2.3.30)

(2.3.31)

(2.3.32)

(2.3.33)

(2.3.34)
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() (&

0
=3

2

~—

Nl

f(x10) =

i B<x<b (2.3.35)

Here 0,(0) = 1% and M, (x) = x 2
b
We wish to find UMVUE of g(0) = 6" using (2.3.31),
r—1
1 X

ux)) = Xy, — w7 N
X -2
(1_(*(;))((1))

’ 1 r(b—x(l))

m b
Forr=1 b
— X
= 1-— 2.3.36
u(x1y) = xq) |: v :| ( )
(b) )
< - f<x<b
JO) = et . 2.3.37
S, 0) [O ; otherwise ( )
Comparing (2.3.37) and (2.3.23)
02(0) = (¢¥ —e™) T and My(x) = e
To find UMVUE of g(f) = 6" using (2.3.31),
r—1, —x —b
o L (e —em)
M) =Xy T T
Put » = 1, then UMVUE of 0
1 X —X —b
u(xay) = xq) — n_1€ (™0 — 7% (2.3.38)

In the following example, we will find UMV UE from two-point truncation parameter
families. This technique was introduced by Hogg and Craig (1972) and developed
by Karakostas (1985).

Example 2.3.3 Let X1, Xa, ..., X), be iid rvs from the following pdf:

001, 0)M(x) ;01 <x < 0,

fx]01,02) = [ 0 - otherwise (2.3.39)

where M (x) is an absolutely continuous function and Q(#,, 6,) is differentiable
everywhere.
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The joint pdf of X1, X5, ..., X, is

fOe,x, .0, %001, 62) = [Q6,, 62)] HM(Xi)I(X(l) — 0DI(0r — x4my) (2.3.40)
i=1

By factorization theorem, (x(1y, X(»)) is jointly sufficient for (61, 6,). Suppose we are
looking for UMVUE of g(6;, 6,) is such that % O;}‘(’(;T"“’ ) and dg();(;c:’f(m) both exists.
Thejoint pdf of ()C(l), )C(m)) is

_ [mn = DIFQ) = FOOI"f0f 0) 3 6 <x <y <6
Ty o (65 ¥) = [() ; otherwise

(2.3.41)
Now,
/ M(x)dx = ot 917 ~ (2.3.42)
Hence
/M(t)dt _ (2.3.43)
0@, y) "
y
FO) - Fx) = / 00, OM(1)di
_ 201,60, (2.3.44)
O(x,y)
| m(im — 1)%M(x)M(y) 0 <x<y<b,
fGx, 101, 02) = [ 0 (@] ! otherwise (2.3.45)

Assume that & Ef ) and & Eg ) poth exists.
To prove the completeness of f (x, y|0, 6), let

Y
R(y. 01) =/h(x,y)[Q(x, VI P M (x)dx
0,
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where h(x, y) is any continuous function of (x, y) and

0,
R(01, 6») =/M(y)R(y, 0))dy

0,

0y

R(O), 05) = / / W VIO N " OMOM)drdy =0 (2.3.46)
6, 6,

Hence to prove h(x, y) = 0, i.e., to prove h(6;, 6,) =0

th
OR(0,, 0 o
—(351 2 / —h(01, y)[QB1, )]~ "D M(6,)M (y)dy (2.3.47)
o
OR(6;, 6
80(161_022) = —h(01, 02)[Q(01, 0)1" " PM(O)M(0,) = 0 (2.3.48)

which implies that (6, #,) = 0. Hence A(x,y) = 0.
Completeness of f(x, y|f;, 6,) implies that a UMVUE u(x, y) for some function of
0’s, g(01, 6>), say, will be found by solving the integral equation.

g(01, 02) = Elu(x, y)]

That is,
P ©®,, 61"
961, 0) = 9/ / u(x, yymm — 1>M(x)M<y)£@j+y)]2m],2dx .
7 ? uGe, M)
= [0, 61" H/ m(m—l)M(x)[X ;Q);?)Tnzzdyldx (2.3.49)

Now, we will have to find the solution of the integral equation (2.3.49).
Since

0,
1
— = | M(x)d.
001, 0) ! (e}

00(0,,02)
06,

o0 6P - MO
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00(0,, 0
% = [Q(6), )’ M (6)) (2.3.50)
!
Let
01(61, 62) = Q° (01, 62)M (6)), (2.3.51)
where Q; (0, 6,) = %&;02)
Next,
_00(81.6»)
00,
R V)
00,6,
00(0,, 0
SO 0201, 0 M0
b
Let
0>(61, 62) = —Q*(0y, 0,)M (6>) (2.3.52)
where (01, 6,) = %&;92)
d*0(0,, 0
%(9—11922) = Q12(91’ 0) = _2Q3(91, 0,)M (0,)M (6,) (2.3.53)

Differentiating (2.3.49) with respect to 6,

0
. u(@, y)M(y)
01,6r) = 01,6 — — 1M @6 — " d
g1(01,02) = [Q01, 02)]" [-m(m — 1)M (61)] L/ (001, )2 ]
1

92 92
el - u(x, )M ()
+mQ"1(01,62)01 (01, 62) 6]/ m(m I)M(X)'x [Q(x,y)]mzdy’dx
1

where g, (01, 6;) = 5—5’1
Using (2.3.51)

0, 0,
. B u(x, )M ()
= mQ (91,92)M(91)€/m(m DM (x) ‘/ [Q(x,y)]’"_zdy] dx

0>
ul. MG ’ 7 (2.3.54)

— Q0™(0,,0 — DM
Q" (01, 62)[m(m — DM (6))] L 00 =
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Using (2.3.49)

9101, 02) = mQ(0y, 0,)M (0,)g(01, 0>)

0,
u(®y, y)M(y)

— m(m — 1)Q" (01, )M (6)) L 1061, »1"2

dy:| (2.3.55)

This equation can be written as

0>
u(li, YM©y) . g1(01,62) — mQ(6y, 0:)M(61)g(01. 6>)

/ [0, »))m—2 v —m(m — D[Q(0,, 02) "M (0)

g(01, 6») g1(01, 6>)
_ _ 2356
(m —DIQ®, )"t m(m — DM (BO)[Q(0, 62)]" ( )

Differentiating with respect to 65,
u(01, 02)M(6,) _ g(01, 0)[—(m — D]OI(0,, 02)1~ "= D=10,(6,, 62)
(0O, 02)1m2(6,, 6) m—1
92001, 62)
(m — D[Q(b, 62)]"!
91001, 0) (=m)[Q (61, 017"V 0, (64, 6)

m(m — 1)M(6;)

g12(01, 62) }
2.3.57
m(m — 1)[Q(6,, 02)]"M (01) ( )

u(6y, 0,)M(0,) _ g0y, 0)[—(m — 1)]0» (01, 62)
(06, 6)]m2 (m — DO, 62)]™
92(01, 6)
(m — D[Q(b,, 6,)]"!
B [ 9101, 02) (=m) Q> (61, ) i|
m(m — 1)Q"+1(0;, 6,)M (6,)

g12(01, 62) (2.3.58)

~ m(m— 1)Q"(0y, 62)M (6;)
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u(@r, )M (6>)  g(61, 0)M (6>)
0"2(0,,6,)  [Q(, 0,)]m 2
_ g1(61, 02)M (6>)
(m — D[OO1, )11 M (6))
g2(01, 02)
(m — D[OO,, O) ]!
g12(01, 62)
m(m — 1)[Q(01, 02)]"M (01)

9101, 62)
WO 0 =900 ) = 0, oM By
g2(01, 02)
(m — DM (02)Q(01, 0)
g12(01, 62)

m(m — DM (01)M (02)[Q(0, 0)1*

Replacing 6; by X1y and 6, by X,

Xy Xom) = 9Xay, Xom) = . Zon)
(m — DOX 1y, Xwm)M (X))
" 92Xy, Ximy)
(m — DM (X)) Q(X(1y, X(my)
912Xy, Xmy)

—m(m — DM X)) M X)) [OX 1y, Xom) 2

is UMVUE of 9(91 s 92)

Particular cases:

(2)

10 <x <6,

_1
f(x|0y, 0,) = [ 0>=0)

0 ; otherwise

Comparing (2.3.62) and (2.3.39), Q(61, 62) = 515, M(x) = 1

To find UMVUE of (i) 81, (ii) 6>, (iii) 5% and (iv) 22

(i) g(01, 62) = 01, gX 1y, Xomy) = X1y» 91 X1y, Xmy) = 1,
92Xy, Xom) = 0 and g2 (X(1), X(m)) =0
M(X(])) = M(X(m)) = 1, Q(X(l), X(m)) = ;. USiIlg (2361),

Xom—Xq)

Xy — Xy

u(Xay, Xomy) = Xy — =1

87

(2.3.59)

(2.3.60)

(2.3.61)

(2.3.62)
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_ mXa — X — Xem + X

(m—1)
_ X = Xom (2.3.63)
(m—1) o

Hence, "= is UMVUE of 6,

(ii) g(01, 02) = 02, g(X (1), Xomy) = Ximy» 51Xy, X)) = 0, 2 X1y, X)) =1
and g2 (X1), X(m)) =0 1

MXay) =MXem) = 1, 0Xay, Xom) = =3

Xom) — X

u(Xay, Xomy) = Xomy + =1

_ mXy — Xony + Xy — X

(m—1)
Xom — X,
= M — 2 (2.3.64)
(m—1)
Hence, % is UMVUE of 6,
(iii) UMVUE of #5%
_ mXqy = Xy — mXemy + Xy
- 2(m—1)
(m+1)
= — X — X 2.3.65
2(m—1)[ (m) m] ( )
(iv) UMVUE of 2%
_ L mXa) — X | mXem — X
20 m-=D (m—1)
1
=——[m— DXy + (m — DX
m— 1) [(m — DXy + (m — DX ]
_ w (2.3.66)

(b)
00 =2~y < 0,

[ 23.67
f(x, 01,6, [02 ', otherwise ( :
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Comparing (2.3.67) to (2.3.39)

0,0,

M(x) =x7?
8,6, x)=x

001, 0,) =

To find UMVUE of (0,0,)™

9X 1y, Xom) = [XyXom1™s 91Xy, Xomy) = mIX X 1™ Xim)
9 Xy, Xom) = mlXn X" Xy,

912X 1ys Xomy) = m(m — DXy X 1™ 2X 1y Xmy + mIX X m ™™

X)Xom

) )
MXqy) =Xy, MXm) = X, QX 1), Ximy) = m

mIX )Xo 1"~ Xom [Xon — Xl
(m — DXy X X5
mXXon ™' X [Xon — X!
(m — DX XX
—mOm = DX Xen "Xy Xow + mX X"

—2y—2v2 v2
m(m = DXy X X Xim)

UX1y, Xmy) = X Xm)" —

_|._

[Xm) — X(l)]2

M Xy — X)Xy Xom 1"!

= X Xem)" — —
" (m— DX,
n mX )Xo 1™ X — X1 B Xy Xom ™ Xy — X1y
(m— DX} 1

(m)
B m Xy X 1" [ X — Xa)I?

—2v—2v2 y2
m(m = DX X Xy Xim

m
m—1

m m—1 m—1 2
+ mX(m)[X(m) — X)X Xm1" ™ — X)X 1™ Xon — X1yl

= XyXem)" — X[ Xom = Xy IX )y X 1"

XX X — Xy 1P
(m—1)
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m _
= X Xem)" + m[x(m) — Xy PIX ) X 1™
X1y X 1" Xy — X2
m—1

— Xy Xom " X — X)I* —

m 1
= X Xm)" + X — Xy PIX X" | —— =1 — ——
X Xm)"™ + Xomy = X)Xy Xom] |:m—l m—li|

= X Xm)" (2.3.68)

Hence, (X(\X(n))™ is UMVUE of (6,6,)™. One should note that MLE of (6,6,)™ is
again the same.
Stigler (1972) had obtained an UMVUE for an incomplete family.

Example 2.3.4 Consider the Example 1.5.5.
Further, consider a single observation X ~ Py.

1
~: k=1,2,...,N
— — N? b 9 9
PIX =kl = [O ; otherwise

Now X is sufficient and complete.

N+1
EX:T and E[2X — 1] =N

Then, ®;(X) = (2X — 1) is UMVUE of N.

N2 —1
Vi®,(X)] = 3 (2.3.69)
Now the family g — P, is not complete, see Example 1.5.5.
We will show that for this family the UMVUE of N is
| 2k—=1;k#nk#n+1
D, (k) = {Zn Ck=non+1 (2.3.70)

According to Theorem 2.2.3, we have to show that ®, (k) is UMVUE iff it is uncor-
related with all unbiased estimates of zero.
In Example 1.5.5, we have shown that g(X) is an unbiased estimator of zero, where

0 ; x=1,2,....n—1,n+2,n+3...
gx)y=3a ; x=n (2.3.71)

—a; x=n+1

where a is nonzero constant.


http://dx.doi.org/10.1007/978-981-10-0889-4_1
http://dx.doi.org/10.1007/978-981-10-0889-4_1
http://dx.doi.org/10.1007/978-981-10-0889-4_1
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Case Q)N <n
al 1
Eg(X) = Zg(x)ﬁ =0
k=1

Case (i) N > n

N

1
Bg(X) =2 ~9)

k=1

1
=N[0+~~+0+(—a)+(a)+0]=0

Case (i) N =n

al 1
Bg(¥) = > g0
k=1

— Lo ros@=2

0 ; N=n
Eg(X)Z[ai
N,N:}’l

Thus we see that g(x) is an unbiased estimate of zero for the family ¢ — P, and
therefore the family is not complete.

Remark: Completeness is a property of a family of distribution rather than the
random variable or the parametric form, that the statistical definition of “complete”
is related to every day usage, and that removing even one point from a parameter set
may alter the completeness of the family, see Stigler (1972).

Now, we know that the family ¢ — {P, } is not complete. Hence @ (X) isnot UMVUE
of N for the family g — {P,}. For this family consider the UMVUE of N as &,(X),
where

¢2(X)=[§z lii’;ﬁf“ (2.3.72)
According to Theorem 2.2.3, &, (X) is UMVUE iff it is uncorrelated with all unbiased
estimates of zero.

Already, we have shown that g(x) is an unbiased estimator of zero for the family
» — {Pn}~

Since Eg(x) = 0for N # n

Now, we have to show that Cov[g(x), ®,(X)] = 0.
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Covlg(x), P2(X)] = E[g(x)P2(X)]

Case ()N >n
1 N
Bly@) @201 = > 90 P2(k)
k=1
1
= [O@k = 1) + @@ + (~a)@n)] =0
Case (i) N < n

1
Elgx) (X)) = = [(0)(2k —1)] =0

Thus, ®,(X) is UMVUE of N for the family g — {P,}.
Note that E®,(X) = N. We can compute the variance of ®;(X)
Case ()N <n

N

1

Edy(x) = > (2x — Dy
x=1

_ ! [M _N} _N
N 2
Ed,2(x) = 1 ﬁ:(Zx — 1)21
N & N
1 N
_ 2 _
=3 [;(4)5 4x + 1)]
_ 1 [4N(N+ DEN+1) 4NN+ 1) +N]
N 6 2
_ 2(N+1)3(2N+1) AN 4D 41
_4N? -1
-3
4N? — 1 5
Var[®,(X)] = -N

N1
-3
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Case ii)) N > n

1 N
v | 2 22
x=1

1
ﬁ[Cbz(l) + P22) + -+ Po(n— 1) + Do) + P2(n+ 1)
+ P(n+2)+ -+ P2(N)]

E[®3(x)]

1
= ﬁ[l—|—3+4--+2n—3+2n+2n+2n+3+2n+5+‘--+2N—1]

1
A3+ k2 =3+ @n = T+ 21+ 1)+ 20434+ 2N — 1

+2n+2n—2n—1+2n+1)]
1

= Nl 2N—-1)+0[=N
—N[E(-f— )+:|—

1
Edy2(x) = N[cbf(l) F 022 4+ 02— 1)+ 0% (n)
+ D2+ D)+ P2 +2) 4+ D2V
= %[12+32+52~--+(2n—3>2+{<2n—1>2+(2n+1>2}

TP+ -+ N = D2+ + )% —{2n— DT+ 13

N
:11’|:Z(2k—1)2+4n2+4n2—4n2+4n—1—4n2—4n—1i|
k=1
4Nt 1 2
-3 3 N
4N? 1 2 N>—1 2
Var[®,(X)] = — — = — — — N* = - =
3 3 N 3 N

(2.3.73)

wmmh[5

Thus ®,(X) is UMVUE for g — {P,} but ®,(X) is not unbiased for the family .
Note that for N = n,

1 N
Bl20] =~ > &)
x=1

1
= ;[d)z(l) + F+ Qo(n— 1) + P2(n)]

1
=—[1+3+--+2n—3+2n]
n

n
x=1

N 2
— % |:Z(2x — 12420 — 2n— 1)} e
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N
E[®,2(X)] = % |:Z(2x — D>+ 2n)?*-2n-— 1)2}

x=1
4n? — 1 dn—1
= +
3 n

Var[©,(X)] =

4n2—1+4n—1 n?+1 2
3 n

n

Example 2.3.5 Let X1, X, ..., X, be iid discrete rvs with following pmf f (x|N).
Find the UMVUE of g(N).

d(NM(x) ; a <X <N

FEIN) = {O ; otherwise (2.3.75)

N _ 1
where >0 M(x) = 555
According to Example 2.2.7, we can show that X, is sufficient and complete for N.

o) T”
P Xy <zl=|——
[Xm <71 |:¢(Z)]
[ T
oy =2 = 11= Lﬁ(z— 1>}

PlXm =21 =¢"(N)[o™"(@) — ¢ "z — 1]

Let u(X(y)) is UMVUE of g(N)

N
D u@¢" NI ™"(@) — 6"z — D] = g(N)
N
G"(N) .
m _ m _1 =1
;u@ ) 9@ =@ =)

Let )(N) = 5
v g7 (N)

N
D u@y" NI @) — ¢ "z - D] =1

Z=a
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N —m —m
3 u@le™@ —¢ "z -1

)] - -
m N m _ m _ 1 — 1’
") — oz — D] VN[ (R) — (@ = 1]

Hence
u@le™ @ - ¢ = DI _
[v™(z) —yp~(z — 1)] '
This implies
u(z) = [v™"() =™ (z—1)]
[p7"(2) —p(z— D]’
Therefore,
U (X)) = (V7" X)) — ™" Xy — D]

(07" Km) — ¢ Ky — D]

We conclude that U (X(,,) is UMVUE of g(N).
Particular cases:

(a) g(N) = N¥, s is areal number.

According to (2.3.75), p(N) = N~', M(x) = 1,

_ (stm) — (otm)

YIN) =N~ X)) =Xy 6Xim) = X,

U(Xmy) X' = Ko = D™
(m)) =
" X0 — Xy — D™

)

which is same as (2.2.32).
(b) g(N) =&V

X

YN) = N7'e™ = §(Xim) = Xhe ™ *

Hence u(X(y)) is UMVUE of V.
Hence,

Xm

X m X m—1
erm — (Xgyy — 1)"etm
(m) (m)
uXmy) = —

X(mm) — (X(m) — 1)m

)

Reader should show that the above UMVUE of ¢ is same as in Example 2.2.7.
Now, we will consider some examples which can be solved using R software.

Example 2.3.6 2,5,7, 3,4, 2,5, 4 is a sample of size 8 drawn from binomial
distribution B(10,p). Obtain UMVUE of p, P, pzq, px <2), p(x > 6).
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a=function (r,s)

{

m<-8

n<-10
x<-c(2,5,7,3,4,2,5,4)
t<-sum(x)

umvue= (choose (m*n-r-s, t-r) /choose (m*n, t))
print (umvue)

}

a(l,0) #UMVUE of p
a(2,0) #UMVUE of p”"2
a(2,1) #UMVUE of p~"2*qg
b=function(c)

{

m<-8

n<-10
x<-c(2,5,7,3,4,2,5,4)
t<-sum(x)
g<-array(,c(l,c+1))
for (1 in 1:c¢)

{
gli]l=((choose(n,i)*choose (m*n-n,t-1))/choose(m*n,t))
}
glc+l]=((choose(n,0) *choose(m*n-n, t))/choose(m*n, t))

umvue=sum (g)

print (umvue)

}

b(2)#UMVUE of P(X<=2)

1-b(6) #UMVUE of P(X<=6) & P(X>6)

Example 2.3.7 0,3, 1,5,5,3,2,4,5, 4 is a sample of size 10 from the Poisson
distribution P(\). Obtain UMVUE of A, A2, Ae ™, and P(x > 4).

d=function (s,r) {
m<-10
x<-c(0,3,1,5,5,3,2,4,5,4)
t<-sum(x)
umvue= ( (m-s) "~ (t-r)*factorial (t))/(m"t*factorial (t-r))
print (umvue) } d(0,1) #UMVUE of lamda d(0,2) #UMVUE of
lamda”2 d(1,1) #UMVUE of lamda*e” (-lamda) f=function (c) {
m<-10
x<-c(0,3,1,5,5,3,2,4,5,4)
t<-sum(x)
g<-array(,c(l,c+1))
for (i in 1:c)
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{

glil<-(choose(t,i)*(1/m) i*(1-(1/m)) " (t-1i))

}

glc+l]=choose(t,0)*(1-(1/m))"t

umvue=sum (g)

print (umvue) } 1-f(3) #UMVUE of P(X<4) & P(X>=4)

Example 2.3.8 8,4,6,2,9,10,5,8, 10, 8, 3, 10, 1, 6, 2 is a sample of size 15 from
the following distribution:

1
~:k=1,2,...,N
= = N’ ’ ’ ’
PIX =kl [O ; otherwise

Obtain UMVUE of N°.

h<-function (s) {

n<-15
x<-c(8,4,6,2,9,10,5,8,10,8,3,10,1,6,2)
z<-max (x)

umvue=(z” (n+s) - (z-1) " (n+s) )/ ((z"n)-(z-1) "n)
print (umvue) } h(5) #UMVUE of N5

Example 2.3.9 Lots of manufactured articles are made up of items each of which
is an independent trial with probability p of it being defective. Suppose that four
such lots are sent to a consumer, who inspects a sample of size 50 from each lot. If
the observed number of defectives in the ith lot is 0, 1, or 2, the consumer accepts
this lot. The observed numbers of defectives are 0, 0, 0, 3. Obtain UMVUE of the
probability that a given lot will be accepted.

j=function (c) {
m<-4

n<-50

t<-3
g<-array(,c(l,c+1))
for (i in 1:c)

{

g[i]<-(choose(50,1) *choose((m*n)-n,t-1))/ (choose(m*n,t))
}

glc+l]<-(choose(m*n-n,t))/ (choose(m*n,t))

umvue=sum(g)

print (umvue) } j(2) #UMVUE of P (X<=2)
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Example 2.3.10 Let X;, X, ...X, be a sample from NB(1, 6).
Find the UMVUE of d(0) = P(X = 0), for the data 3,4,3,1,6,2, 1,8

k=function (r,s) {

m<-8

k<-1

x<-c(3,4,3,1,6,2,1,8)

t=sum(x)

umvue=choose (t-s+m*k-r-1,m*k-r-1) /choose (t+m*k-1, t)
print (umvue) } k(1,0) #UMVUE of P(X=0), i.e., p

Example 2.3.11 The following observations were recorded on a random variable X
having pdf:

p—1,—%
Foo =1 g x>0, 0>0p=4
0 ; otherwise

7.89, 10.88, 17.09, 16.17, 11.32, 18.44, 3.32, 19.51, 6.45, 6.22.
Find UMVUE of o3

xl<-function (k,r) {

p<-4

n<-10
y<-c(7.89,10.88,17.09,16.17,11.32,18.44,3.32,19.51,6.45,6.22)
t<-sum(y)

umvue= ( (gamma (n*p) ) * (t-k) " (n*p-r-1)) / ( (gamma (n*p-r) ) *t" (n*p-1))
print (umvue) } x1(0,-3) #UMVUE of sigma”3

Example 2.3.12 A random sample of size 10 is drawn from the following pdf:
1. ;
T S 0,6>0
, 9 — (1+X)l)+l ;X > k]
f.6) [ 0 ; otherwise
Data: 0.10, 0.34, 0.35, 0.08, 0.03, 2.88, 0.45, 0.49, 0.86, 3.88
Ox0-1. 0<x<1

fx, 0) = [0 ; otherwise

Data: 0.52, 0.79, 0.77, 0.76, 0.71, 0.76, 0.47, 0.35, 0.55,0.63

=

f(xH)—[éeH; —00 <X <00
20

; otherwise
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Data: 9.97, 0.64, 3.17, 1.48, 0.81, 0.61, 0.62, 0.72, 3.14,2.99
Find UMVUE of ¢ in (i), (ii), and (iii).

®

x2<-function (k,r) {

n<-10
y<-c(0.10,0.34,0.35,0.08,0.03,2.88,0.45,0.49,0.86,3.88)
x<-array(,c(1,10))

for (i in 1:10)

{

x[i]l=log(1+y[il)

}

t<-sum(x)

umvue=( ( (t-k) " (n-r-1)) *gamma (n) )/ ((t" (n-1)) *gamma (n-r) )
print (umvue) } x2(0,1) #UMVUE of theta

(ii)

x3<-function (k,r) {
n<-10
y<-c(0.52,0.79,0.77,0.76,0.71,0.76,0.47,0.35,0.55,0.63)
x<-array(,c(1,10))
for (i in 1:10)
{
x[il=-log(y[i]
}
t<-sum(x)
umvue=( ( (t-k) " (n-r-1)) *gamma (n) )/ ((t" (n-1)) *gamma (n-r) )
print (umvue) } x3(0,1) #UMVUE of theta

i)
x4<-function (k,r) {
n<-10
y<-c(9.97,0.64,3.17,1.48,0.81,0.61,0.62,0.72,3.14,2.99)
t<-sum(y)
umvue=( ((t-k) " (n-r-1))*gamma (n) )/ ((t” (n-1)) *gamma (n-r) )

print (umvue) } x4(0,-1) #UMVUE of theta

Example 2.3.13 The following observations were obtained on an rv X following:

1. N@, %)
Data: 5.77, 3.81, 5.24, 8.81, 0.98, 8.44, 3.16, 11.27, 4.40, 4.87, 7.28, 8.48, 6.43,
—0.00, 9.67, 12.04, —5.06, 13.71, 6.12, 4.76
Find UMVUE of 6, 6%, 9 and P(x < 2)
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2.

3.

®

N(6, 0?)

Data: 7.26, —0.23, 7.55, 3.09, 7.62, 16.79, 5.27, 8.46, 5.16, —0.66.
Find UMVUE of 1, 0, 0%, P(X > 2)

N@®, o)

Data: 10.59, —1.50, 6.40, 7.55, 4.70, 1.63, 0.04, 2.96, 6.47, 6.42
Find UMVUE of 6, 62, 6 + 20,

x5<-function (sigsq,n,k)
{x<-c(5.77,3.81,5.24,8.81,0.98,8.44,3.16,11.27,4.4,4.87,7.28,
8.48,6.43,0,9.67,12.04,-5.06,13.71,6.12,4.76)
umvuel=mean (x)
umvue2=umvuel " 2- (sigsqg/n)
umvue3=umvuel "3- (3*sigsg*umvuel/n)
umvued=pnorm( (k- (mean (x)))/ (sgrt((sigsg*((n-1)/n)))))
( ) #UMVUE of theta
print (umvue2) #UMVUE of theta”2
(umvue3) #UMVUE of theta”3
( ) #UMVUE of P(X<=2) } x5(4,20,2)

print (umvuel
print

print (umvued

(i)

x6<-function (n,r) {
x<-c(7.26,-0.23,7.55,3.09,7.62,16.79,5.27,8.46,5.16,-0.66)
t<-sum( (x-6)"2)

umvue=( ((t"r) *gamma (n/2) )/ ((2"r) *gamma ( (n/2) +r)))

print (umvue) } x6 (10,-0.5) #UMVUE of 1/sigma x6 (10,0.5)
#UMVUE of sigma x6 (10,1) #UMVUE of sigma”2

x7<-function (n,k) {
x<-c(7.26,-0.23,7.55,3.09,7.62,16.79,5.27,8.46,5.16,-0.66)
t<-sum( (x-6)"2)

umvue<- (1l-pbeta(((k-6)/sqgrt(t))”2,0.5, ((n-1)/2)))*0.5
print (umvue) } x7(10,2) #UMVUE of P(X>=2)

(iii)

x8<-function(n,r) {
x<-c(10.59,-1.5,6.4,7.55,4.7,1.63,0.04,2.96,6.47,6.42)
s<-sum( (x-mean (x)) "2)

umvuel<-mean (x) #UMVUE of theta

umvue2<-((s” (r))*gamma ((n-1)/2))/(gamma(((n-1)/2)+r)*(2"°r))
#UMVUE of sigma”2
print (umvuel)
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(umvue?2)

((umvuel”2) - (umvue2/n) ) #UMVUE of theta”2

print (umvuel+2*sqgrt (umvue2) ) #UMVUE of theta+2*sigma }
x8(10,1)

print
print

Example 2.3.14 1f rv X is drawn from U (6, 6,). Find the UMVUE of 6, and 6,
from the following data:
3.67,2.65,4.41,3.48,2.07,291,2.77,4.82, 2.73,2.98.

x<-c(3.67,2.65,4.41,3.48,2.07,2.91,2.77,4.82,2.73,2.98)
umvuel<- (max (x) -length (x) *min (x) )/ (1-length(x)) umvuel #UMVUE
of thetal umvue2<- (length(x)*max(x)-min(x))/(length(x)-1)
umvue2 #UMVUE of thetal

Example 2.3.15 If rv X is drawn from U(0, ) Find the UMVUE of 6, #?, and é
from the following data:
1.60, 1.91, 3.68, 0.78, 2.52, 4.34, 1.15, 4.69, 1.53, 4.53

x9<-function (n,r) {
x<-c(1.6,1.91,3.68,0.78,2.52,4.34,1.15,4.69,1.53,4.53)
umvue<- ( (max (x) "r) * ( (n+r) /n))

print (umvue) } x9(10,1) #UMVUE of theta x9(10,2) #UMVUE of
theta”2 x9(10,-1)#UMVUE of (1/theta)

2.4 Exercise 2

1. For the geometric distribution,
fx)=01—0""x=1,2,3,...,0<0 <1

Obtain an unbiased estimator of % for a sample of size n. Calculate it for given
data: 6,1,1,14,1,1,6,5, 2, 2.

2. X1, X5, ..., X, is a random sample from an exponential distribution with mean
0. Find an UMVUE of exp(—é) when t > 1, where T = >} X; for the given
data: 0.60, 8.71, 15.71, 2.32, 0.02, 6.22, 8.79, 2.05, 2.96, 3.33

3. Let

(x —p)
ag

1
f(XIu,U)Z—eXp[— i|;x2ueRanda>0
g

For a sample of size n, obtain

(a) an unbiased estimate of ; when ¢ is known,

(b) an unbiased estimate of o when p is known,

(¢) Ten unbiased estimators of o> when 1 is known.
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4.Let Xy, Xs, ..., X, be arandom sample of size n from N (u, o?), where 1 is known
and if T = % > 1Xi — pul, examine if 7 is unbiased for o and if not obtain an
unbiased estimator of o.

5.If X, X5, ..., X, is a random sample from the population

fxH) =@+ Dx"; 0<x<1,0>—1

Prove that [~ £l — 1] is an UMVUE of 6,

6. Suppose X has a truncated Poisson distribution with pmf

exp[—016" . x=1,2

f@xlo) = [ [=eht

0 ; otherwise

Prove that the only unbiased estimator of [1 — e~%] based on X is the statistic T(X),

TG = 0 ; when x is odd
=12 : when x is even
00 02){ —0 (4
Hin S — =< ¢ _q
= 2x)! 2
7. Let X1, X5, ..., X, beiid rvs from f (x|6),
| expli —x]; x> i0
f(x|9)_[0 D x < if
Prove that
. X
T = min[ =]

1

is minimal sufficient statistic for 6. If possible obtain the distribution of X; given 7.
Can you find an unbiased estimator of 0? If “Yes,” find and if “No,” explain.
8. Let X1, Xa, ..., X, be iid rvs with f(x|u),

1 . ;
55 —i(p—1 <x; <i(up+1)

_ | i(p i

S Gy 0 ; otherwise

where 1 > 0. Find the sufficient statistic for p. If T is sufficient for p then find the

distribution of X, X, given T If possible, find an unbiased estimator of .

9.If X|, X», and X3 are iid rvs with the following pmfs:

(a)

efA X

J&IN) = ; x=0,1,2,...,A>0

x!

(b)
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oy = (”)/\xa "N 0<A<l.x=0,1,2....n
X

(©

faxN)=10-=-M)N; x=0,1,2,...A>0
Prove that X; + 2X5, X, 4+ 3X3, and X; + 2X, + X3 are not sufficient for \ in (a), (b),
and (c). Further, prove that 2(X; + X, + X3) is sufficient for A in (a), (b), and (c).
10. Let X, X, ..., X, beiid rvs having U(0, 36), 6 > 0. Then prove that (X(1y, X))

is jointly minimal sufficient statistic.

11.Let{(X;, Y)),i = 1,2, ..., n} be nindependent random vectors having a bivariate
distribution

2
N:((el),( 7] palzaz));—oo<¢91,¢92<oo,01,02>0,—15;151.
0 po1oy 05

Prove that

IEDEDRIDADNG
is jointly sufficient (0, oy, p, 62, 02).
12. Let the rv X, is B(n, 0) and X, is P(f) where n is known and 0 < 6 < 1. Obtain

four unbiased estimators of 6.
13. Let Xy, Xo, ..., X, are iid rvs with U(6, 6 + 1).

(i) Find sufficient statistic for 6
(i) Show that the sufficient statistic is not complete
(iii) Find an unbiased estimator of
(iv) Find the distribution of X; given T, where T is sufficient for ¢

(v) Can you find UMVUE of 0 ? If “No,” give reasons.
14. Let X be a rv with pmf

|x] )
fap=(5) a=p™x=-1.010<p<1
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(i) Show that X is not complete.

(i) Show that |X| is sufficient and complete.

15. Let X, X», ..., X,, are iid rvs from the following pdf:

(1)
= a ; 0 0
f(xla)—m, x>0,a>
(ii)
(In a)*
fxla) = —1, O<x<oo,a>1
(iii)
fx|a) = exp[—(x — a)]exp[—e’(x’“)]; —00 <X <00, —00 << 00
(iv)
3€7§
fxla) = —F3 x>0,a>0
(v)
k-1
fle) = ——; 0<x<a,a>0
o

Find a complete sufficient statistic or show that it does not exist.

Further if it exists, then find the distribution of X; given T, where T is sufficient
statistic. Further, find UMVUE of o', whenever it exists.

16. Let X4, X5, ..., Xy are iid rvs with B(1, p), where N is also a random variable
taking values 1, 2,...with known probabilities py, pa, ..., >.p; = 1.

(1) Prove that the pair (X, N) is minimal sufficient and N is ancillary for p.

(ii) Prove that the estimator % is unbiased for p and has variance p(1 — p)E}V.

17. In a normal distribution N (u, u?), prove that (3 X;, > X?) is not complete in a
sample of size n.

18. Let X, X», ..., X,, be iid rvs from the following pdf:

(1)
fx) =0x""10<x<1,0>0

1+6
Find UMVUE of (a) e~ (b) 9+—1( 0)—— +
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(ii)

1
f(x|0y,0,) = m;al <x<0,0,,0,>0

Find minimal sufficient statistic and show that it is complete, further if possible, find
the the distribution of X; given T, where T is sufficient statistic. Find UMVUE of
0,
exp(6, — 1) 9 , sin(f; — 6,), and cos(6; — 6,)
2
19. Let T, T, be two unbiased estimates having common variances ac’(a > 1),
where o2 is the variance of the UMVUE. Prove that the correlation coefficient
between T
20. Let X, X5, ..., X, are iid rvs from discrete uniform distribution

f&INL, No) =

i x=N+1,Ni+2,...,N
Ny —N, 1 1 2

Find the sufficient statistic for Ny and N,.

If exists, find UMVUE for Ny and N-.

21. Let X1, Xz, ..., X, are iid rvs from P(X). Let g(\) = X2, ¢; A" be a parametric
function. Find the UMVUE for g()\). In particular, find the UMVUE for (i)g(\) =
(I =X () g\ =N (> 0)

22.Let X1, Xa, ..., X, are iid rvs with N (@, 1). Show that S2 is ancillary.

X X X1
X, X2 X,

24. Let X1, X, are iid rvs with N (0, o2). Prove that is ancillary.

25. Let X1, X5, ..., X, are iid rvs with (i) N(u, o 2) (ii)N (11, 4?). Examine T =
((%) , (XzT_X) R ()%)) is ancillary in (i) and (ii).

26. Let X1, X5, ..., X,, are iid rvs with B(n, p), 0 < p < 1 and n is known. Find the
UMVUE of P[X =x] = (!)p*q"™ x=0,1,2,...,n, g=1—p

27. Let X1 , X5, ..., X, are iid rvs from Poisson (\). Find the UMVUE of P[X =

23. In scale parameter family, prove that ( ) are ancillary.

Xl = <A x=0.1.2..... A>0
28. Let Xy, X5, ..., X, are 1id rvs from gamma distribution with parameters p and
o. Then find the UMVUE of &2 — T forp known, x > 0, o > 0.

“o'T(p)
29. Let X1, Xp, ..., X, are iid rvs from N (y, o?), w € R, o > 0.Find UMVUE of

P[X; <k],k > 0.
30. Let X1, X5, ..., X, are iid rvs with pdf,

—f<x<¥6
20 °
F16) = [ ; otherwise
Prove that 7'(X) = max [—X(1), X» | is a complete sufficient statistic. Find UMVUE
of 0"(r > 0). If Y = |X|, then find UMVUE of
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1. 0"
2. ——
146

3. sin(9)

based on Y.

31. Let X1, X», ..., X, are iid rvs from the pdf,
1 _

f@&xlp, 0%) = = exp [—(x M)} ;x> p,0 >0

o o

(i) Prove that [X(y), 27:1 (Xj — X(1))] is a complete sufficient statistic for (u, o).
(ii) Prove that UMVUE of p and o are given by

(f=Xqu)) — (ni D Z(Xj - Xm)
=1

32. Let X, X5, ..., X, are iid rvs from U(6, 6,) or U(f; + 1,6, + 1). Find the
UMVUE of ¢g(6,, 8,) without using the general result from Example 2.3.3. Further,
find the UMVUE of 0{65(r, s > 0).

33.Let Xy, Xs, ..., X, beiid rvs from U(—k#, k0), k, 6 > 0. Show that the UMVUE
of g(0) is

Yo g Gom)
Uy = gOm) + —
where y(,) = maxY;, Y; = % ci=1,2,...,n
34. Let Xi, X5, ..., X,, be iid rvs from discrete uniform distribution where
1
_ x=-N,-N+1,...,—-1,1,2,...,N
S&IN) [ 0 ; otherwise

Find UMVUE of (i) sin N (ii) cos N (iii) €V (iv) (,ﬂN
35. Let X1, X, ..., X, be iid rvs from f (x| N)

M= 2 . 12N
@ FOIN) = g ¥ =12
2
(b) FGIN) = Ox A= 1.2, N

NN+ DN+ 1)
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N

Find UMVUE of (i) sin N (ii) cos N (iii) €V (iv) eﬂ,v v) SienNN Vi) =%
36. Let X1, Xo, ..., X, beiid rvs from f (x|N;, N>)

f&IN, No) = x=N,N +1,...,N;

N, — Ny + l;
Find UMVUE of (i) N, (i) N, (iii) (N, N,)?
37. Let X1, X5, ..., X, be iid rvs with U(0, 6).
Then find UMVUE of (i) ¢’ (ii) sin @ (iii) o
38. Let X, X5, ..., X, be iid rvs with f(x|6),

4x3
f(x|9)=ﬁ; 0<x<@,

2

1+63

Find UMVUE of (i) 6° (ii) (iii) cos 6.
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Chapter 3
Moment and Maximum Likelihood
Estimators

In the previous chapters, we have seen that unbiased estimators are not unique.
Using Rao—Blackwell and Lehman—Scheffe theorem, we could find the best estimator
among the class of unbiased estimators which has minimum variance. Generally, such
estimators are called UMVUE. Is it possible for us to get a biased estimator which
is better than UMVUE with respect to MSE? We cannot say ‘Yes’ with probability
one. But sometimes we may get a better estimator than UMV UE. In this chapter, our
effort will be to find an alternative estimator which may be better than UMVUE in
some cases.

It is an easy work to estimate a parameter in some cases. For example, the sample
mean is a good estimate for the population mean. Method of moments (MM) is, the
oldest method of finding point estimator. It is very simple to use and always yields
some sort of estimate. According to Fisher, MM produces the estimators with large
variance.

3.1 Method of Moments

Let X1, X2, ..., X, be iid rvs with pdf f(x|f). Here, we have to equate the first
r(r = 1) sample moments to the corresponding r population moments. Then by
solving the resulting system of equations, we can obtain the moment estimators.
Let

Elg(X)] = h(61, 05,05, ...,6k) 3.1.1)

Suppose g(X) = X then p) = E(X).

The corresponding sample moments m/ = ﬁ > X

© Springer Science+Business Media Singapore 2016 109
U.J. Dixit, Examples in Parametric Inference with R,
DOI 10.1007/978-981-10-0889-4_3
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Similarly,
1 n

L,=E(X*) and mh=->» X;

iy = E(X?) my =~ ; ;

’ E(Xr) d / 1 i Xr

= and m, = — .

Hoy r=0 - i

One should note that the population moments g, i, .. ., p. are the functions of

(61, 0,, 05, ..., 0).Accordingto (3.1.1), we call this function as &, (6, 62, 0, . .., O).
Therefore,

my =hi(01,62,03,..., O), mh = ha(01,0,,0, ..., O) ... m, =he(01,02,03,..., Or)

After solving the Eq. (3.1.2), we get the estimators of 6;, (i = 1,2, ..., k).

Example 3.1.1 Let X, X5, ..., X, be iid rvs with P()\). Using MM, we will find
the estimator of .

Population moment: 1 = E(X) = A and Sample moment m} = 1 3" X;
Hence,

>
I
S|

> X (3.1.3)
i=1
But 1y = iy — 1’
Now, X?> = X(X — 1) 4+ X. Hence,
E[X(X—=1D]=X and E(X) =\
Population moments:
py =M+ and pp =\

sample moments: m, = 1 3" (X; — X)2.
Hence,

R _ l n o _ 2
= - Z(X, X) (3.1.4)

i=1

The reader should think which estimator from (3.1.3) to (3.1.4) should be selected.
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Example 3.1.2 Let X1, X5, ..., X,, beiid rvs with B(n, p)
P[X=x|n,p]=(n)px(l—p)”_x; x=0,1,2,...n, O<p<1,g=1-—p.
X

Here, we assume that both the parameters are unknown. Now, we will estimate n
and p.
Equating the sample moments to population moments,

X =np (3.1.5)
1 N2
- Z(X,- —X)? =npq (3.1.6)
m
After solving (3.1.5) and (3.1.6),
X - X — X)? X2
p= 2. " ad = _ (.1.7)
mX mX — > (X; — X)?

In(3.1.7),if p > OthenmX > > X} — mX>.
=X+ X2 >m)
=X+ ?>mh+1

If X + 5| < /m)+ § then
—1—/mi+1 < X < /m,+ 1 — L In such situation p is negative. Then

the value of p is not admissible. Hence, value of X has to lie outside of (—% —
Jma b yfms 44— ),

In other words, we can say that if sample mean is smaller than the sample variance
then it suggests that there is a large degree of variability in the data. Same argument
is true for the estimate of n. One needs to reduce the difference between sample mean
and variance then we can get the better estimate of n and p.

For more details, see Hamedani and Walter (1988), Draper and Guttman (1971),
Feldman and Fox (1968).

Example 3.1.3 Let X1, X5, ..., X, be iid rvs with G(p, o). Here, we will try to
find the moment estimators of p and o.

X = po (3.1.8)

%Z(Xi ~ X = po? (3.1.9)
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After some algebra,
-1 zm X _ )‘( 2
m i=1 (X; )
X
)_(2

p = —, 3.1.11
P =% GLID

(3.1.10)

o=

One should see Dixit (1982).

Example 3.1.4 Method of moment estimators may not be functions of sufficient or
complete statistics.

For example,

1. _
Fxlfy, o) = 2 =< X <Oi46 6:>0 (3.1.12)
0 ; otherwise

Moment estimator for (6, 6,) are ()_(, \/3 SU(Xi — )_()2).
But sufficient and complete statistics for (01, 6>) is (X (1), X(n))-

3.2 Method of Maximum Likelihood

So far we have considered the problem of finding an estimator on the basis of the
criteria of unbiasedness and minimum variance. Another more popular principle
which is very often used is that of method of maximum likelihood.

Let Xy, X», ..., X,, be iid rvs with pdf f(x|6), 0 € ©. Consider the joint pdf of
X1, Xa, ..., X,. Treating the X’s as if they were constants and looking at this joint
pdf as a function of 6, we denote it by L(6|xy, x2, ..., x,,) and this is known as the
likelihood function. It is defined as

LO1X) =L(01,0a,...,0cx1, X2, ..., %) =Hf(xi|91,92,.--,9n)

i=1

One should note that for likelihood X, X», ..., X, need not be iid. For example,
let X1, X», X3 are three rvs such that any one has a pdf g(x|f) and remaining two
rvs have a pdf f(x|6). The joint density of (X1, X5, X3) is

> g(xi10)

— f(xil0)

1 3
h(x, %2, 5300) = 2 [ ] f)
i=1
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This can be written as

3

3
1 g(x;10)
L(Olx1, x2, x3) = 5 | | f(xi) (3.2.1)
3 1} = f(x,10)
For details see Dixit (1987, 1989)
0 = 0(x1, x2,...,x,) is called maximum. Hence, we can obtain MLE of 6 if a
sample X is given.
Note

1. Intuitively, MLE is a reasonable choice for an estimator.

2. To find a global maximum, one has to verify it.

3. Since the function y = logx x > 0, is strictly increasing, in order to maximize
with respect to 6, it is much more convenient to work with log function.

Remark:

1. Suppose that the X’s are discrete. Then,
L(9|X],X2, ~~yxn) = P@[Xl = X1, X7 = x2, ~~aXn =xn]

This implies, L(0]x) is the probability of observing the X’s which were actually
observed. Then one should select the estimate of § which maximizes the prob-
ability of observing the X’s, which were actually observed if such a 6 exists. A
similar argument holds true for the continuous case.

2. Generally, MLE is obtained by differentiating the likelihood with respect to § and
equating to zero.

3. Sometimes, it is not differentiable or the derivative tends to get messy and some-
times it is even harder to implement, then one should evaluate the likelihood
function for all possible values of parameter and find MLE. The general tech-
nique is to find a global upper bound on the likelihood function and then establish
that there is a unique point (s) for which the upper bound is attained.

4. Over all, one should remember that we have to maximize the likelihood func-
tion with respect to € by any method. Differentiation is one method while other
methods are also there.

5. MLE is often shown to have several desirable properties, We will consider the
properties later on.

Example 3.2.1 Let X1, X», ..., X, beiid rvs with P()\).

Then

L(Alxy, x2, ... Xn) = (3.2.2)
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Next,
log L(A\|x) = —long,-! —nA\+ (in)log)\
i=1 i=1

Therefore the likelihood equation

dlog L(Alx) 0

dX

Hence,

4 2% _ 0 (3.2.3)

A
which gives A=1x
Next,
d*log L _ 2 “0
d\? A2

Thus, \ = & is the MLE of \.
Example 3.2.2 Let Xy, X», ..., X, be multinomially distributed rv with parameters

0 = (p1, p2,.--, Pn) € O, where O is the (n — 1)-dimensional hyperplane in R"
defined by

O=10=(p1,p2.-...pn) ER", 0<p;i <1, i=1,2,..., n and Zp,-:

Then
X1 X2 Xn
n'p'py’ ... p;
T, !
| i=1"""
n! X

=WP1 Py Py = pr—pa— o = pu ™,

i=1""

L@|x1,x2,...,%,) =

where n = >""_| x;. Then

log L(0|x) = logn! — long,-! +xlog py +x2log pp + -+ 4+ x,—1 log py—1
i=1

+ xp,log(l = p1r —p2— -+ — pu1) (3.2.4)
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Differentiating with respectto p; =i = 1,2, ...,n — 1 and equating it to zero
X *n —0,i=1,2,....n—1 (3.2.5)
pi l—=pi—pr—-—pua

Since p, =1—p1—p2— -+ — pa_1

X _ M
Di Pn
A S I T T (3.2.6)
Pi Pn
Hence
X X Xp— X
M2 Al (3.2.7)
P1 D2 Pn—1 Pn

and this common value is equal to

X1 +x24+--+x, _n
P1+P2+"'+Pn 1

Therefore
X; X
Z=noand pi=—",i=12,....n
Di n

We can say that these values of p;’s actually maximize the likelihood function,
and therefore, p; = 7-,i = 1,2, ..., n are the MLE’s of the p;’s.

Example 3.2.3 Let X1, Xa, ..., X,, be iid rvs with (i) N (u, 02) (i) N(u, p) (i)
N(p, pi?)
()©®=1{0 = (u,0%),ueR,0>0)

The likelihood function is given by

1\ 1 <
LO|x) = (W) exp [_ﬁ Z(xi - M)2:|
i=1

_n , N - 5
logL_—Eloga —Elog2ﬁ—ﬁgl“(xi—u)

OlogL _ ”(x;“) —0 (3.2.8)

on o
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dlogL  —n 1 < 5
oL _ T S h— )’ =0 3.2.9
0o 202 + 204 E(X 2 ( )

After solving (3.2.8) and (3.2.9), we get,

N
f=% and 2=~ > (x; — ) 3.2.10
f=x and o nZ(x X) ( )

It can be shown that /i and o2 actually maximize the likelihood function and
therefore i = X and 02 = n~! >"7_, (x; — ¥)? are the MLE of y and o respectively.

Remark:

1. If we assume that o is known then we get /i = x as the MLE of p.

2. If we assume that x4 is known then we get o2 =n! > (xi — w)? is the MLE
of o2. A

3. When both x and ¢ are unknown, /i is unbiased estimator of x and o2 is not
unbiased for o2

Comment on MLE and UMVUE of (i, o).
Since i = X and 02 = 1 3 (X; — X)?
Now, E(X) = prand V(X) = ..

Now the distribution of M is x2_,
R 2 n Xi _ )_( 2 -1 2
Ee)="FE [Z’=‘( ! ) } _-lo
n g n
. 4 "X =X)? | 2m— Dot
vy =Ty [2;1( 72— Do (3.2.11)
n g n
UMVUE of st = ji = X and UMVUE of ¢ = o2 = Za®i—X"
Vim—1! Zn:(x —0?| = 20" (3.2.12)
> == 2.

It may be noted that when we have to compare more than one estimator for two
methods, then consider the determinant of the covariance matrix in both methods.
Covariance matrix for (i, ©2) in MLE

L}
M = ( 5 e ) (3.2.13)
nZ
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Covariance matrix for (i, crAz) in UMVUE

U=(
n—1

o=
|q"’ =)
.

v

det|M| = |M| =

200

det|U|=|U| = ———
iU = U] = s

We get,

2(n — 1)o® 20°
<
n3 nin—1)

(n—1)°
n2

= =<1

’

2(n — 1)o®

117

(3.2.14)

(3.2.15)

(3.2.16)

which is always true. Therefore, in this case MLE are more efficient than the,

UMVUE.
(i) ©® = {0 : (u, ), p > 0},

In this case, mean = variance = p, then the likelihood function is given by

1y 1 «
L(0|x) = (ﬁ) exp [_@ Z(Xi - M)2]
i=1

n

n n 1
log L(O|x) = -3 log2m — Elog,u - — Z(xi — u)?

2p

i=l1

n n 1 . )
= —Elog27r— Elog,u— Z |:izllxi —2u

i
2 24

dlogL n+z7:lxi2 n_
dp 2 212 2

After some algebra,

pr+p—mh =0, where m) =

2
n

Zn:xi + ”M2:|

_n n . npy
_—Elog27r——10g,u——~|—§x,~—7

(3.2.17)
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Hence
—-1£J1+4
b= # (3.2.18)
Here we get two MLEs for p.
We have to select ji = Ity Itdm V21+4”’2. Reader should think why we have to select

this value of .
(i) © = {6 : (u, p?), p > 0}
The likelihood function is given by

1y 1<
L@x) = (—— - i — )’
©lx) (M m) exp{ T l;(x ) }

n 1 <
log L(O|x) = —nlogu — 5 log2m — 2—u2 Z(xi — w)?
i=1

1 n
= —nlogu — E log2m — Z_;ﬂ |:le2 —2npx +nu2:|
i=1

2
n 2 =
iz X nk _n

=—nlogu—§log27r— 22 P

Therefore,

dlogL n " xr onx
SL_ 1y ZmX M
dp jz 7 p

Hence, after some algebra,
i —mh =0,

which implies

—x £ /x> + 4m)
2

/’:L:

—h /T4

Since, p1 > 0 then 1 = 5

Example 3.2.4 Let X1, X5, ..., X, beiid rvs from B(n, p), where p is known and
n is unknown.



3.2 Method of Maximum Likelihood 119

The likelihood function is given by

m
Lol p)=]] (;Z)pq‘

i=1 !
m
-T1 (” ) SR
X
Since n is an integer,
L(n|i, P) =0if n < X(m) (3.2.19)

Hence, MLE is an integer n > x(,, that satisfies

L(n|x, L 1|x,
_Lulvp) g ROl (3.2.20)
L(n—1|x, p) L(n|x, p)
Then
L = mel — m
(nlx,_p) _ nm( D) . (3.221)
Lo —1%.p) [0 —x)
and
L 1|x D™ - p)*
(n+1lx,p)  (n+ 1" —p) (3.2.22)

Lz, p)  [ILn+1—x)

From (3.2.21) to (3.2.22),

n"(1=p)" =[] —x) and 4+ D"A=p)" <[]or+1-x)

i=1 i=1

Dividing n” and letting z = 1

A=p" =[]0 -x2
i=1

Then we have to solve

(=p =0 —x2) for 0=z<— (3.223)

i=1 Xm)
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1
Let g(z) = H;“:l(l — x;2). Then g(0) = 1 and g(—) = 0. Further g is monotone
X

m
1 R .
and convex on [0, —:| Thus there is a unique z (say z) that solves the equation. The
Xom
quantity z = % may not be an integer but the integer 71 that satisfies the inequalities
and is the MLE, is the smallest integer greater than or equal to x,.
For example, p = %, p= %,p = %,m =2,X,=20,X,=25
From (3.2.23),

p |Quadratic equation (from 3.2.23)|Roots (n) = max(Root)™!
2[8000z2 — 720z + 15 0.0572, 0.0327|31
54500z — 405z + 8 0.0607, 0.0292[34
71200022 — 180z + 3 0.0679, 0.0220(45

The description of the MLE for n was found by Feldman and Fox (1968), Draper
and Guttman (1971). Further see Dixit and Kelkar (2011, 2012). Reader should refer
Casella and Berger (2002). Note that for a binomial distribution in the presence of
outliers, Dixit and Kelkar (2011) have shown that MM estimator of p is better than
MLE of p.

Example 3.2.5 Let X and X, be independent exponential random variables with
mean A; and A\, respectively.

Let Z; = min(X4, X») and

_ O;leXl
Zz [1;21:X2

Find the MLE of \; and ), in a sample of size m.
We will have to find the distribution of (Z;, Z;)

PlZy <z21,Z, =0] = P[min(Xl,Xz) <z21,.Z,=0]= P[X| < z1, X1 < X;]

//—e by —e A2alx1dx2

Since

il
/)\—ze Aza')cz—e %
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Next,
21 21
1 _= 0
/e o —e Mdx :/ gy,
0 : 0 !
1
— 1 —z1012
A1bh2 ¢ |
where
1 1
0, = — + —
12 N + e
Hence
PlZ <z21,Z,=0]= [1 — e 1%2) (3.2.24)
A0z
Similarly,

PlZy < z1,Z, = 1] = P[min(Xy, X,) < z1,Z, = 1] = P[X, < 21, X5 < Xi]
1 1

=/ )\—]e = )\—ze *2dx1dx2

/—e Aze i dx,
1
=/>\—2679‘2x2dx2

0
1

Abin

Z1 o0

[1— e 2] (3.2.25)

Now

(3.2.26)
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Similarly,
P(Z,=1]= ! (3.2.27)
/\2912
From (3.2.24), (3.2.25), (3.2.26) and (3.2.27),
PIZi<zl=1-e"" ;2,>0
and
f(z1) = 0pe ™ 72,>0,01 >0 (3.2.28)

This implies that Z; and Z, are independent.

If we have a sample of size m, let Z, takes value zero r times and one (m — r)
times. Hence the likelihood function is given by

L\, Aalziz2) = (012)" exp|: 012 ZZ11:| ()\ 012) " (A1)~ ")

L = const + exp |:—912 ZZ”:| (Al)*r()\z)*(mfr)

i=1

log L = const — exp |:—912 ZZ“:| —rlogA; — (m —r)log )\,

i=I

dlogL >,z r

e U 3.2.29
o SYERDY (5:2:29)
dlogL >,z m—r
= =1t 3.2.30
28 ¥ " (3.2.30)
From (3.2.29), \; = 1 37 | z;; and
From (3.2.30), \, = er Sz

Example 3.2.6 Let X; X, and X3 be independent exponential random variables with
mean \;(i =1, 2, 3).

Let Z; = min(X4, X5, X3) and
0 5 Zl = X1

Zz: 1;Z1=X2
2 5 21=X3



3.2 Method of Maximum Likelihood 123
Find the MLE of \;, A, and A3 in a sample of size m.
1 1 1. ]
Leteijliz/\—il‘f‘/\—j-i-/\—k,l £j £k
Oij=x+x i#]
To find P[Z < z1, Z, = 0]

Z, = Oindicates that Z; = min(Xy, X», X3) = X,
We have two cases (1) X| < X, < X3 (il)) X| < X3 < X

Case (i)

—/1 ~Ndx /Ool % 71 “Ndxs | d (3.2.31)
= b\ N )\36 3dX3 X2 L.
0 2

Consider

o]

1 s 1 » e~ 0nx1
. *S - H d e tnxyg ,
A2 ¢ e 2= / )\ 2= A3

X1
Equation (3.2.31) becomes
Z

_/‘ o0 1 —exp(—0i23z1)

L g = (3.2.32)
AAobys At X20230123

Case (ii)

00

1 _x 1 _=
/ e ) / i / — e Ndx, | dxs (3.2.33)
0 1

e fmn 1 —exp(—012321)
_ dxy = L0z (3.2.34)
/ Azl A1 30230123
Hence from (3.2.32) and (3.2.34),
I — exp(—0i2321) [ 1 1 :|
PIZ) <21,Z,=0] = — 2 222 _ 4
= 122 =01 A10236123 A A3
1-— —0
_LmewChma) - (3.2.35)

A1b123 '



124

Similarly,

1 —exp(—012321)
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PlZ, <z21,Z,=1] = , 21>0 (3.2.36)
Aa0123
1-— —0
PIZy < 21, 2> = 2] = L= PCE02) = (3.2.37)
A30123
Now, we shall find the P[Z, = z5]
(Z, =0) implies (1) X; < X» < X3 (i) X; < X3 < X»
In case (i)
o0 o0 o0
= — 1 — 2 — 3
>\1€ X1 )\26 )\36 X3 X2
0 1 2
o0
[ exp(=bizx))dx; 1
) A1 A2023 A1 20230123
In case (ii)
o0 o0 o0
/ 1 _%d / 1 -3 1 2 J d
= —e Mdx —e M —e 2dXx X
N 1 by » 2 3
0 1 X3
_ 1
C AiA0030103
P(Z, =0] = ! + ! ! (3.2.38)
2T MA2023013  AiX30s0i3 Mo o
Similarly,
P[Z,=1]= (3.2.39)
: A20123
1
P[Z, =2] = (3.2.40)
: A30123
From (3.2.35) to (3.2.40), Z, and Z, are independent random variables.
Hence,
@) =0ze "™ 71 >0 (3.2.41)

If we have a sample of size m, assume Z, takes value zero r; times, Z, takes value

one r, times and Z, takes value two (m — ry

— rp) times.



3.2 Method of Maximum Likelihood 125

The likelihood function is given by

L, A2, A31Z) = (B123)" e ™01 23, (A 0123) ™1 (Aaf123) 2 (Aabig3) ~ 117"

(3.2.42)
m!
where Crm = P r—
IOgL = —9123 ZZU — I log)\l — rzlog)\g — (m —ry — rg)log)\3
i=1
Olog L Zl-n_l 21i r
= == - — 3.243
N IYERDY (3243
810g L Z{n_l Z21i 2
= == - = 3.2.44
O X n (5249
Olog L I —r -
o8~ _ Z;;m _nThTh (3.2.45)
8/\3 )\3 /\3
From (3.2.43),
§y = 2Ll (3.2.46)
r
From (3.2.44),
Sy = Zim (3.2.47)
r
From (3.2.45),
Sy = Zimi T (3.2.48)
m—ry—rnr
Remark: Let X, X, ..., X,, be independent exponential rvs with means \;(i =
1,2,...,n) respectively, let Z; = min(X{, X», ... X,).
Let
0 Z, =X,
1 Z =X,
7, = 2 Z1 = X3
n—1 Z] = Xn
1
PlZ,=i—1]= s i=1,2,...,n (3.2.49)

Aif123..n
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f(z1) =013 nlexp —(z1Aibi23.0)] 5 21 >0 (3.2.50)

where 0123, = >, /\i
MLE Of)\l, )\2, ey >\n is

A 1 N
/\1=—ZZ11', A== D Zireeos Aot =
2

Example 3.2.7 Let Xy, X», ..., X, be iid rvs satisfying the following regression
equation

X,-:ozz,-—i—e,-,i:l,Z,...,n

where 71, 22, ..., 2, are fixed and ey, ea, . .., e, are iid rvs N (0, 02), o unknown.
We will find the MLE of «.

The log likelihood function is given by

n 2
2 . n n o 1 2 &% . o 2
log L(a, o )|X)_—§log(27r)—§a = 5.2 E X; +§i_21(x,z,)—ﬁ E Z;

For fixed o2,
dlogL o 2
da o2 Z(X'Zl 202 ZZ,- =0
Then
~ Z{l_l (x;zi) d? log L
= = 0
Q > Z,»z an o2 <

MLE of a is & = % Reader can show that & is unbiased for «. Further
find the MLE of 2.

Example 3.2.8 Let X1, X», ..., X, be iid rvs with the following uniform pdf

U(0, )

u(, 20)

U@ —1,0+1)
U@, 0+ 1)

.
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(i) The pdf of X is given by

f(x|0)=[9 0 =x =0

0 ; otherwise (3.2.51)

and the corresponding likelihood function is
LOxX)=0";0<x;<06,i=1,2,...,n
Consider the order statistics Xy < X¢2) < --- < X¢y. Hence 0 < X1y < X2y <
- < X < 6 < oo. Note that the support of 8 is X,y < 6 < o0

We have to maximize L(6|x) which is equivalent to finding the minimum value of
0, and it is given by 0 = X ;. Thus,

MLE of  is X (3.2.52)
(ii) The pdf is given by
1
0 <x <20
— 9 9 b
fx10) = [O ; otherwise

and the corresponding likelihood function is given by

0T <Xy <Xy <20,i=1,2,...,n
L(x10) = [O ; otherwise

0<X(1)and% <0
= % < 9 < X(l)
Maximizing L(f|x) occurs at minimum value of 6

That is,

X
2

6=

(3.2.53)

(iii) The pdf and its corresponding likelihood functions are given by

L 1<x<0+1
— 12> J
f(x|9)_[0 ; otherwise

L(9|x)=[2i" ;6—1<X(1)<X(H)<9+1,

0 ; otherwise
The support of 0 is Xy — 1 <0 < Xy + 1.

Here any value of 6 is MLE.
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Therefore,
0=aXu—1D+0—-a) Xy + D), (3.2.54)
where « € [0, 1]
(iv) In this case
L09= {0 coemne |

and

1;0<Xuy<Xu<0+1,
0 ; otherwise

L(Olx) = i
The support of 8 is X,y — 1 < 6 < X(1). Here also, any value of 6 is MLE,

0=aXm—1)+(1-m)Xq (3.2.55)

Remark:

1. In (iii) and (iv), from (3.2.54) and (3.2.55), we can conclude that MLE is not a
function of sufficient statistics, if « = 0 or 1.
2. From (3.2.54) and (3.2.55), we can say that MLE is not unique.

Example 3.2.9 Let X be arv with B(1, p), p € [%. 72| . b > a. The likelihood
function is given by

L(plx) = [(I;X(l o )(;tl1:e:r()v;ilse
Therefore,

logL = xlogp + (1 —x)log(l — p)
and

dlogL x (1—x)_0
dp p (-p)

From this, p = x. This value does not lie in © = |
L(p|x) is maximized, if we select

a b
@t aip ) Here,

. | s x=0
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Hence

. (b—ax+a

= 3.2.56

P b ( )

Now,
. b—-a)p+1
E = ,
(p) b

which is a biased estimator of p.

N b—-—a)X+a 2
MSE(p) = E [T _ }
= arppllb-aXta — pla+b)
= g [0~ ECO) 420~ @aEX) + @ + pla+ b7

—2p(a+b)(b—a)EX —2p(a + b)a]
Now E(X))=EX)=p

- [ —a)?p +2ab —a)p +a* + p*(a+b)* —2p*(a + b)(b — a) — 2pa(a + b)]

(a+ b)?
= m [a* + p* {a® + b* + 2ab — 2b* +2a*} + p {b* — 2ab + a® + 2ab — 2a* — 2a* — 2ab)}]
=G J:b)z [a® + p* (3a* + 2ab — b*) + p {b* — 2ab — 3a°}]
= m [@® + p2Ga — b)(@+b) + p(b — 3a)(a + b)]
__a p*Ga—b) . pb—3a)
T (a+b)? + (a+b) T +b) (3.2.57)

In particular if (i) a =2,b =3 and p = %
E(p — p)* =0.016
In particular if i) a =2,b =3 and p = %
E(p — p)* =0.016 (3.2.58)

(1) d(x) = % and p = %, where §(x) is any trivial estimator of p.

1 2
E (5 — p) < 0.016 = 0.01 <0.016 (3.2.59)
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(i) 5(x) = L and p = 2

1 2
E (5 - p) <0.016

In the sense of the MSE, the MLE is worse than the trivial estimator §(x) = =
Remark: We can conclude that MLE can be worst estimator than the trivial estimator
(See Rohatagi and Saleh (2001)).

Example 3.2.10 Consider the following example where MLE does not exist.

Let X1, X2, ..., X, beiid rvs with b(1, p). Suppose p € (0, 1). If (0,0, ..., 0),
(1,1,...,1)is observed. Then p = X, i.e., x = 0, 1, which is not admissible value
of p. Hence MLE does not exist.

Example 3.2.11 Let X, X», ..., X, be iid rvs from double exponential pdf as fol-
lows:

flxlp) = —exp[ |x — pl|]; —00 < x < 00, —00 < i < 00

Then the likelihood function is given by

n

1
L(ul) = [ ] 5 expl=lx, =

r=1

L(plx) = 27" expl~ > [x, — ul] (3.2.60)
r=1

In this case we have to maximize, L(u|x), which is equivalent to minimize
>, |xr — ul, where x(, = rth order statistics, 1 <r <n.
For x(y < p < X(41)>

lei—ul Z(M—x)-i- Z(x, )

i=r+1
=pj—(—rjp— Zx(z) + z X(i)
i=r+1
= pu@r —n) — Zx(,) + Z X (3.2.61)

i=r+1

Equation (3.2.61) is a linear function of ; which decreases if » < 5 and increases if
r>1,
2

Ifniseventhenr:%i.e.,Zr—n:n—n:O.
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Then (3.2.60) or (3.2.61) is a constant function between x(n) and X(2)41 and any
value in this interval is an MLE of p.

In general median is the MLE. If n is odd then i = X(nt1) and if n is even then
A1
i=1xe +aem)|

Example 3.2.12 Due to Basu (1955), MLE of 6 is an inconsistent estimator of 6.
Let X, X5, ... be a sequence of iid rvs with a probability density where 0 < 6 < 1,

Pix == {1y e,
Further,
PolX; =0] =1— Py[X; = 1],
Hence,

_[6r@—6)'=; 6 is rational
f(x10) = I (1 - 9)"‘01*" ;@ is irrational,

The MLE of 8 based on first n observations is 0;, = ZTX since én is rational for all
n=1,2,...
But

4 N 0 ;0 is rational
" (1—0) ; 0 is irrational,

Hence 6, is an inconsistent estimator of 6.

Example 3.2.13 Let X, X5, ..., X, be a sample from the following pmf

f(sz):[%;":“"-"N

0 ; otherwise

1

—:1<X,, <N
[ N = (n) =
(N =x) [0 ; otherwise

We have to maximize L (N |x) then to find the minimum value of N. The support of
NiS.X(,,) <N < o0.

Hence MLE of N = N = x(, (3.2.62)
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Example 3.2.14 Let the rv X have the hypergeometric distribution

o) — [;T)((I;f,)i” ; max(0,n — N + M) < x < min(n, M)

; otherwise

We have to find the MLE of N where M and n is known.

MLE is N if,
P(N | x) ~ 1 and P(N—i—ll)c)S
P(N —1]x) P(N | x)
Consider,
P(N
Ay = P10
P(N—-1|x
@O0 O
) eheEM
_N—n N-—-M
N N—-—M-n+x
if
AN) > 1 < nM > Nx
<:>n >
— >x
N =
& N=<— (@)
similarly,
N+1-— N+1-M
AN +1) =~ " -
N+1 N4+1—-M-—-n+x
Therefore,

AMN+1)<1&nM<Nx+x
nM

N>—-1 (b)
X

From (a) and (b) we get,

nM nM
N<— and N> ——1
X X



3.2 Method of Maximum Likelihood 133

) . LM . nM . )
Now N is an integer, if — is an integer then — — 1 is also an integer. Therefore,
X X
nM nM

MLEof N = N = — or — — 1.
X X
If — is not an integer then MLE of N is |:—i| . (3.2.63)
X X

Theorem 3.2.1 Let T be a sufficient statistics for the family of pdfipmf) f(x10, 0 €
®). If an MLE of 0 exists and it is unique then it is a function of T.

Proof 1t is given that T is sufficient, from the factorization theorem,
f(x10) = h(x)g(T|0)

Maximization of the likelihood function with respect to @ is therefore equivalent to
the maximization of g(7|6), which is a function of T alone. O

Remark: This theorem does not say that a MLE is itself a sufficient statistics.
In Example 3.2.8, we have shown that MLE need not be a function of sufficient
statistics (see Remark 1).

Example 3.2.15 Find the MLE of the parameter p and o of the following pdf

1 P
f&x|p, o) = 5(5) eil7x‘”71; x>0, p, o0>0

For large value of p, one should use W(p),

1

1 , 1
W(p)=logp—— and W' (p)=—+ —,
2p P 2p

where W(p) and W’(p) are known as digamma and trigamma functions,

dlogl av

i " V' (p) (3.2.64)

For details see, Abramowitz and Stegun (1972), Dixit (1989).
The corresponding likelihood function is given by,

1 . n *fixi _
L(p’glx):(r—p) (g) pe = Hxipl

N
=
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Let G be the geometric mean of x, x5, ..., x,, then

1}1 n
logG =~ » logx; = nlogG = » logx;
og nZogx nlog Zng

i=1 i=1

logL = —nlogT'p + npllog p —logo] — Py +(p—DnlogG
o

Olog L X

L LN
oo o o?

OlogL
op

np nx
= —nV¥(p)+nllogp —logo]+ — — — +nlogG
4 p
= [—nlogp—i—zi] +nllogp —logo+ 1] —n+nlogG =0
p

1
= ——logx+1—-14+1ogG =0

2p
| _
— —log - 0
2p G
1
p = . 3.2.65
P 2log & ( .
Hence, MLE of p and o are
. 1 A -
p= — and 0=x (3.2.66)
2log &

Example 3.2.16 Consider a power series distribution with pmf

X

a,f
;x=0,1,2...

0) = ;
f(x10) )

where g(0) = X2 a.0*, a, may be nonzero in a sample space of size n.

For some x, we will show that MLE of 6 is the root of the equation:

- g'(0)
X =022 = \(H),
g(0) ©

where A(f) = E X. The likelihood function is given by,
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Hzr'lzl Ay; 0"
g"(0)

0" 117, ax,
= = 7 3.2.67
) (3:2.67)

L(O|x) =

where T = >, x;

log L = tlogh+ Y a, —nlogg(®).
i=1

Therefore,
dlogL t ng(®) _
e 0 g
0g'(0) t _
- = - =1x.
g n
Hence,
_ g'(0)
X =G0 (3.2.68)
g(0)
Thus, MLE of 6 is the root of the equation (3.2.67)
Consider
_ >\ ayxb”
= 9
Now,
o0
> a0 = g(0) (3.2.69)
x=0

Differentiate (3.2.68) with respect to 6;

i ax* "' = ¢ )

x=0

= Zxa)ﬁx =04 (0)
x=0

Dasoxa  0g'(0)
9@ g®)
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Hence,

E(X) = \0) = X. (3.2.70)

Example 3.2.17 We will find the MLE of 6 in N (6, 1) in a sample of size n, where

0 is an integer.
1\ 1
L(Ox) = (E) exp [—5 > i — 9)2}
= (2m) "2 exp [—%{52 +n(x — 9)2}]

where $? = > (x; — X)%.

In this case, we have to minimize (x — )2 with respectto =0, £1,+2, ...
Letx = [x] + 6, where 0 < § < 1, and [x] = integer part of x
Minimize A = [[X] + 0 — 0] with respectto § = £1, £2, ...

If0=[x] = A=94
=xl+r=A=0C—-68if r>2

=[xl-r=A=0+0§*>4§

Note that (r — §)? > 6> then we require the condition r > 2.

Forr = 1 then A = (1 — §)?

Consider 62 and (1 — §)?2

Ifo > %then(l -6 <

If § < 1 then (1 — 6)? > §?

If § =  then (1 — 0)? = §?

Therefore, MLiE of 0 is

If § = J then § = [X] or [X] + 1

If§ < { then § =[]

If§ > 1 thend = [¥]+ 1

Invariance Property of Estimator in Case of MLE
Invariance estimator in case of an MLE is a very useful property. Suppose for some

pdf f with parameter 6, X is the MLE of #. Then the MLE of h(f) = % is

h(é) = % Here we will give a procedure due to Zehna (1966). In other words for
a density function f, we are finding MLE for /(). If § — h(0) is one-to-one, there
is no problem. In this case, it is easy to see that it makes no difference whether we
maximize the likelihood as a function of # or as a function of 4 (#), in each case we
get the same answer.

LetW = h(0) then the inverse function § = A~ (¥) is well defined. The likelihood
function of /4 (#), written as a function of W, is given as
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L*(h@)|X) = L*(¥]0) = [ | f (xil6)

=[] r@in ") =L (¥)X)

i=1

sup = L*(h(#)|X) = sup L(h~'W|X) = sup L(A|X)
h [ 0

Hence, the maximum of L*(h(0)|X) is attained at ¥ = h(é), showing the MLE of
h(0) is h(d).

If h(0) is one-to-one, then it is quite possible that # may take more than one value
which satisfies 4 () = W. We may say that h(é) is also not unique, see Casella and
Berger (2002). We state the theorems without proof.

Theorem 3.2.2 (Invariance property of MLE):
If@ is the MLE of 6, then h(@) is the MLE of h(6), where h(0) is any continuous
function of 0.

Further, we state the following theorems on MLE without proof.

Theorem 3.2.3 Let Xy, X», ..., X, be iid rvs having common pdf f(x|6), 0 € ©.
Assumption:

1. The derivative M i = 1,2, 3 existfor almost all x and for every 0 belong-

ing to a non-degenerate interval in ®

2. There extstsfunctzons H,(x), H>(x) and H;3(x) such that | | < Hi(x), | 067 | <
H>(x), |W| < Hi(x), V0 € O, [Hi(x)dx < oo, sz(x)dx < 00,
[ Hy(x)dx < oo,

3.

dlog f(x1)
/ [T} f(x|0)dx

is finite and positive for every 0 € ©.

If assumptions (a)—(c) are satisfied and true parameter point 0y is an inner point
then for sufficiently large n,

- dloe flt) o,
00 -

Jj=1

has at least one root 8,, which converges in probability to 6.
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2. Jn (§n — 0o) converges in distribution to N (0, I~'(0)), where

2
1(0) = / (W) f(x|0)dx.

which is the Fisher information contained in the sample size n.
Theorem 3.2.4 Huzurbazar (1948): The consistent root is unique.

Theorem 3.2.5 Wald (1949): The estimate which maximizes the likelihood
absolutely is a consistent estimate.

3.3 MLE in Censored Samples

In this section, we assume that the life times X;(i = 1, 2, ..., n) are iid rvs. We dis-
cuss, two types of censoring mechanisms and describe their corresponding likelihood
functions.

Let X be a non-negative rvs representing the lifetime of an individual in some
populations. Let X be observed upto time ¢ then cdf of X is F(¢),where

F(1) = P[X =1] =/f(X)dx
0

The probability of an individual surviving to time 7 is given by the survivor function
F (1), where

F(t) = P[X >1t]= / f(x)dx

In some contexts, involving systems or lifetimes of manufactured items, F(f) is a
monotone decreasing continuous function. This function exhibits the complementary
properties of F (). Some authors denote F(t) as S(1).

Suppose that n individuals have lifetimes represented by rvs X, X», ..., X,.
Consider a time #; which we know is either the lifetime or censoring time. Define a
variable §; = I (X; = t;), where,

5 = 1; Xi=¢
! 0 ; X,‘ > 1

This is called censoring or status indicator for ¢#;. It implies that if #; is an observed
lifetime, then 6; = 1 and censoring time then §; = 0. The observed data consist of
(ti,é,»),i =1,2,...,n.
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I. Type-I Censoring

A type-I censoring mechanism is said to apply when each individual has a fixed
potential censoring time C; > 0 such that X; is observed if X; < C;; otherwise we
know only that X; > C;. Type-I censoring often arises when a study is conducted over
a specified time period. For example, termination of a life test on electrical insulation
specimens after 100 minutes would mean that C; = 100 for each item. In another
example of clinical trials, there is often staggered entry of individuals to the study
combined with a specified end of study date. Consider the problem of estimation
in the presence of excess of loss reinsurance. Suppose that the claims record shows
only the net claims paid by the insurer. A typical claims record might be

X1, X2, M, x3, M, x4, x5, ... 3.3.1)
and an estimate of the underlying gross claims distribution is required.

The sample in (3.3.1) is censored. In general, a censored sample occurs when
some values are recorded exactly and the remaining values are known only to exceed
a particular value, here the retention level is M.

Let t; = Min(X;, C;), §; = I (X; < C;) for type-I censoring.
Since C; are fixed constants and that #; can take values < C; with

Plt; =C;, 6 =0] = P[X; = (]

Plt;, 6; = 1] = f(t;) when X; < C;

Assuming that the lifetimes X;, X5, ..., X, are stochastically independent, then
likelihood function will be

L=]]treor Fen' ™
i=1
If C; = M, then

n

L®) = [ J1f 1" [F ()1
i=1
If Z?:l 5,‘ =r,

LO) = [ JLf GllF ()=

i=1
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Example 3.3.1 Claims in portfolio are believed to arise as a gamma distribution with
shape and scale parameter 2 and A respectively. There is a retention limit of 1000
in force, and claims in excess of 1200 are paid by the insurer. The insurer, wishing
to estimate A, observes a random sample of 120 claims, and finds that the average
amount of the 100 claims that do not exceed is 85. There are 20 claims that do exceed
the retention limit. Find the MLE of A. Note that r = 100,

FxIN) =xe™XN; x>0, A>0

P[X > 1000] = e~ '%°*[1000) + 1]

The likelihood function is

100
L) = [T e [¢79 (1 + 10000)] ™

i=1

100 100 2
— 200 (H )Ci)e_)\ 2ini x'e_ZOOOO’\(l + 1000)\)

i=1
Now 3% x; = 100 x 85 = 8500

100 100
log L(Alx) = 2001log A + Zlogx,- -A Zx; — 20000\ + 2010g(1000X + 1)
i=1 i=1

100

dlog L(Ax) 200 20000
GO 2 ST —20000 4 ——— =
N ; * * 10008+ 1
Hence,
200 20000
28500 4 ———— =
N * 1000x + 1

= 285000\ — 1915A =2 =0

A1 = 0.00763806, A\, = —0.00091876

II. Type-II Censoring

Type-II censoring refers to the situation where only the r(< n) smallest lifetimes
(x1 < xp < -+ < x,|r < n) in a random sample of n are observed. Here, by
censoring at the right, we may be able to obtain reasonable good estimates of the
parameters much sooner than by waiting for all times to fail.

With Type-II censoring the value of r is chosen before the data are collected and the
data consists of the » smallest lifetimes in a random sample xy, x7, ..., X,.

The problem considered is: Given the values of x(j), x(2), . .., X¢- and n, to find the
MLE of the parameter(s) as follows;
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The joint distribution of the order statistics x(y, X(2), . . . , X() in a sample of size
n is given as:

F Gy x@), oo xn10) = ” r), |:H f(x(z)):| [1— F(xe)]"™

Wilk (1962) derived the MLE of the parameters of gamma distribution based on the
order statistics (x(;y < Xy < -+ < X(n|r < n).

Example 3.3.2 Consider the exponential distribution with parameter A but lifetimes
are type-II censored.

The likelihood function is,

| .
L(\|x) = v N e A izt X6y g~ (1=r)x) A
(n—r)!

log L(Alx) = Const + rlog A — A > xq) — (n — 1)x) A

i=1

Therefore,

810gL r
=5 Zxa) — (= r)xe

and hence

r

A= —
D1 X@ + (= r)xp

For details, see Lawless (2003), Dixit and Nooghabi Jabbavi (2011).

3.4 Newton—-Raphson Method

The Newton—Raphson method is a powerful technique for solving equations numer-
ically. Like so much of the differential calculus, it is based on the simple idea of
linear approximation.

Let f(x) be a well-behaved function. Let x* be a root of the equation f(x) = 0
which we want to find. To find let us start with an initial estimate xy. From x,
we produce to an improved estimate x; (if possible) then from x; to x; and so on.
Continue the procedure until two consecutive values x; and x;; in ith and (i + 1)th
steps are very close or it is clear that two consecutive values are away from each
other. This style of proceeding is called ‘iterative procedure’.
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Consider the equation f(x) = 0 with root x*. Let x( be a initial estimate. Let

= xo9 + h then h = x™ — xq, the number 4 measures how far the estimate x, is

from the truth. Since £ is small, we can use linear approximation to conclude that

x*
0= f(x*) = fxo+h) > f(xo) + hf'(x0)

and therefore, unless f’(xg) is close to 0,
- Jxo)

S (x0)

S (x0)
S (x0)

This implies,
x*=xg+h>~xy—

Our new improved estimate x; of x* is given by
S (x0)

S(x1)

Next estimate x; is obtained from x; in exactly the same way as x; was obtained

from x
I G

f ('xﬂ)

)

Continuing in this way, if x,, is the current estimate,then next estimate x,, 11 is given by

Xn+1 = Xn

See Kale (1962).
Example 3.4.1 Consider the Example 3.2.15
npx
logL = —nlogT'p +npllog p —logo] — — +n(p — 1)logG
o

Olog L %

&2@ np_x :>(A)'=)E

(90' g 0‘2
np nx

n¥(p) +nllogp —logo] + — — — +nlogG
p o

Q|><|

dlog L
dp
= logp — V(p) =log
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Let log % =C
Hence log p — W(p) = C. By Newton—Raphson iteration method gives
b= p log(pr—1) — W (pr—1) — C
k = Pk—1— - =
(Pr-1)"" = W' (Pr-1)
. . o . , dv(p)
Dk denotes the kth iterate starting with initial trial value py and W'(p) = P
4

The function W (p) and W'(p) are tabulated in Abramowitz and Stegun (1972) in
the form of digamma and trigamma functions and can be expressed in power series as

W(y) =lo —L+i@ D
y) =logy 7 TR
i=1

10
1 —2i ;
~logy — 2y + E ayy “(=1)

i=1

where ay = 22 fori =1,2,3,..., 10.
1 691
2= 2T 3760
1 7
“=T0 MT
1 3617
9% =555 57 8160
1 43867
ag = —— alg = ———
240 14364
E 174611
M=660 T 76600

10
1 1 .
V() =—+ -+ 2iayy 2
y 2 i=1

where B,; are Bernoulli numbers. These numbers are obtained from Abramowitz
and Stegun (1972, p.810).

Here when y is less than or equal to 2, the values of W(y) and W’'(y) are accurate
upto 4 decimals and when y is greater than 2, they are accurate upto 7 decimals as
compared to Pairman’s (1919) table. For details, see Dixit (1989).
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Example 3.4.2 Gross and Clark (1975) consider a gamma model following random
sample of 20 survival times (in weeks) of male mice exposed to 240 rads of gamma
radiation.

152, 152, 115, 109, 137, 88, 94, 77, 160, 83, 165, 125, 40, 128, 123, 136, 101, 62,
153, 69 1

x=113.45G = ([}, x;))" = 107.0680

S2=m-1" Zle(x,» — ¥)? = 1280.8921

Moment estimators

B X

b= =10.0484

6= =11.2904
)4

Consider the moment estimators as initial solutions.
By Newton—Raphson method,

n p—1 _ X3
[licix e

L(p’ U|x) = (Fp)”a"P

logL(p,olx) = (p — I)ZIngi - & —nlogl'p —nplogo
i=1 g

ZXi — g :0 = 6’ = ZXi

o np

| =

Zlogx,- —n¥(p) —nlogo=0

i=1
1 n _
~ > logx; — W(p) — (logx — log p) =0
n
i=1

logG —logx +logp —W¥(p) =0

X
1 —W(p) =log =
ogp (p) = log G

The following program in R is given to estimate the parameters.

# Given data
x <- c¢(152,152,115,109,137,88,94,77,160,83,165,125,40,128,123,136,101,62,
153,69) # given observations
n <- length(x) # number of observations.
# to find arithmetic mean, variance and geometric mean.
mn <- mean(x) # arithmetic mean
gm <- prod(x)”(1l/n) # geometric mean.
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s2 <- var(x) # variance
# To initialise parameters.
sigma <- s2/mn;p <- mn/sigma;
# To define required variables.
diff <- 1; eps <- 0.0001; p_val <- rep(0,5); p_val[l] <- p; 1 <- 2;

e

Newton-Raphson method.
while(diff > eps)
{

gp <- log(p) - digamma(p) - log(mn/gm); # function g(p).
der_gp <- 1/p - trigamma(p); # derivative of g(p).
p_new <- p - (gp/der_gp); # iteration

diff <- abs(p_new - p);
p <- p_new; p_val[i] <- p; 1 <- 1i+1;
}

sig <- mn/p_val;

OUTPUT

p_val; sig;

£

Dk—1 | Ok—1
10.0484{11.2904
8.6831 [13.0656
8.8413 [12.8318
8.8442 [12.8276
8.8445 [12.8275

N[ | W | —| =

I1. Scoring Method

As we have said earlier, the MLE equations are usually complicated so that the
solutions cannot be obtained directly. Here also, we have to assume a trial solu-
tion and derive the linear equations for small additive corrections. The process can
be repeated until the corrections become negligible. A nice mechanization is intro-
duced by adopting the method known as the scoring method for obtaining the linear
equations for the additive corrections.

The quantity dlogL is defined as the efficient score for 8. The MLE is the value of

a0
0 for which the efficient score vanishes. If 6 is the trial value of the estimate, then

expanding dl;’gL and retaining only the first power of A = 6 — 6, leads to
dlogL  dloglL d*log L
o~ - A)——— |y
70 70 lo=0, + 10 =6,
dlogL
= Twzeo + AL (0)]p=0,
where I () is the fisher information of @, i.e., the expected value of — & ;g?L .

In large samples the difference between —1(6y) and dz;gfL lo=g, Will be 0(%),

where n is the number of observations, so that the above approximations holds to the
first order of small quantities. The correction A# is obtained from the equation
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dlogL
ABI(6y) = 0
(6o) 70 lo=6,
dlogL
A = —g, ~ 1 (6
70 lo=6, (0o)

Example 3.4.3 Consider the Example 3.4.2

This method is given by the following iteration scheme

P _ ( Pr— " Var(pi—1)  Cov(pr—1, x—1) \ { m(Pr—1, Ok—1)
Ok Ok—1 Cov(pr—1,6x—1)  Var(6x—1) h(pr—1, Gk—1)
where

. Pi—1
Var(py—1) = ——F—
Pk—1¥ (Pr-1) — 1

—0k—1
PV (pr—1) — 1

i1 W (Pr—1)

Cov(pr—1, 6k—1) =

Var(a—k—l) = X A <
D1V (pr-1) — 1
n ~ —npr_1 nx
m(Pr-1, Ok-1) = — )
Ok—1 01

.. 1 < . .
h(pr—1, Ok—1) = — E logx; — W(pr—1) — log 031
n

i=1
k=1, po = 10.0484, Gy = 11.2904

ML scoring method

Tterations k| pr—1 Ok—1

1 10.0484| 11.2904
8.6211| 13.1596
8.7955( 12.8986
8.7993| 12.8931
8.7994(12.89312

| & W[
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3.5 Exercise 3

1. Let X4, X5, ..., X, beiid rvs with U(a, a + |a|),a € ©.

(i) Find the MLE of a when a € (—o0, 0)
(ii) If possible, find UMVUE of a if a € (—o0, 0)
(iii) Which estimator is more efficient? Why?
(iv) If a € (0, 00), then show that there does not exist UMVUE of 6.
(iv) Find the MLE of a if a € (0, co) and further, find an unbiased estimator of a.

2. If the rv X has the following Bernoulli distribution as follows:

Ix|
P(X =x) = (g) (1=6)'W.x=-1,0,1
Find the MLE of 6.

3. Let Xy, X5, ..., X, areiid rvs (i) B(n, p) (ii) P(N\)

(i) Find the MLE of p?g® and compare with the UMVUE estimator of p?>q>. Which
is more efficient for p = 0.3, n = 5, m = 10 and 20?

(ii) Find the MLE of \?> and compare with the UMVUE estimator of A2. Which is
more efficient for A = 2, 3andm = 10, 20?

4. Let Xy, X2, -+, X, beiid rvs with G(p, A). Find the MLE of %
5.Let X1, X5, ..., X, be a sample from inverse Gaussian pdf
: A = )’
X —p
f(x“lv A) = (27‘()63) exp [—W] , x>0, w > 0, \>0

Show that MLE of zz and A are /i = X and A = ﬁ
i=1 % %

6. Find the estimator of a and b by the method of moments for 3(a, b) for a sample
of size n.

7. For the Problem 7 in Exercise 2, find the MLE of \.
8. For the Example 3.2.5, find the moment estimator of \; and \;.

9. For the Problem 6 in Exercise 2, find the moment estimator of 6 in explicit
form. (Hint: See Dixit and Nasiri (2008).)

10. For the Problem 6 in Exercise 2, find the estimate of 6 using method of moment
and MLE. Which estimator is more efficient? Why?
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11. For the Problem 20 in Exercise 2, find the MLE of N; and N,.
12. For the Problem 30 in Exercise 2 find the MLE of 6.

13. The weight of ball bearing is assumed to be normally distributed with mean
and variance 0. Fifteen bearings are weighted are found to have weighs satisfying

D xi = 145.104g, > x7 = 140744147
i=1 i=1
Find MLE of

(i) oif u=10
(i) o and p
(iii) Probability that weight of the ball bearing is greater than 12.

14. For a particular experiment the following frequencies were observed for four
mutually exclusive and exhaustive classes. Find the MLE of a.

Sr. No 1 2 3 4
Frequency | 10 | 12 | 15 | 30

ye 2 A2 A2 2
Probability —ztf‘ 1o = 1o = 1a” =

15. The crushing strength of concrete samples in kilograms per square centimeter
is modeled as gamma distributed rvs with pdf

_x
0

fxlo) =22

7 :x>0,0>0

(i) Find the MLE of 6 based on the observations
54,7.1,5.6,62,49,5.8,6.3,5.5,4.8.
(ii) Find the MLE of P(X > 3).

16. The following is a sample of size 10 from a normal distribution with mean =
variance = 0:
6.18, 5.96, 3.60, 3.76, 0.0, 5.92, 5.94, 6.22, —0.38, 4.04.

(i) Obtain the MLE of 6
(i1) Find MLE of P(X > 2)

17. The distribution of length of life in hours of electronic tubes is assumed to
have the pdf of the type

e 3;t>0,9>0

f@) =

| =
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A sample of 30 tubes was tested for life until 5 tubes failed. The observed failure
times were 780, 820, 850, 900, and 980 h.

Estimate 6 by maximum likelihood method.

18. Following table gives the probabilities and the observed frequencies in four
phenotypic classes AB, Ab, aB, and ab in a genetic experiment. Estimate 6 by the
maximum likelihood method and its standard error.

Phenotypic class|Probability | Observed frequency
AB L 100

Ab 22 20

aB 22 25

ab g 6

19. Let Xy, X», ..., X, be iid rvs from the pdf

| (x —0)
f(x|9,)\)=xe A x>0, 2>0

(i) Find MLE of (4, \)
(ii) Find the MLE of P[X > 2].

20. Let Xy, X5, ..., X, beiid rvs with N (0, 1). If there are m(<n) observations
which are less than zero but these observations are not available. Find the MLE of 6.

21. The following is a sample of size 10 from a normal distribution with
mean = variance = 6
6.18,5.96, 3.6, 3.76, 0, 5.92, 5.94, 6.22, —0.38, 4.04
Obtain the MLE of 6 and P[X > 3].

22. A potato manufacturer buys potatoes which are either too large or too small.
He accepts potatoes which have width between 3 and 8 cm. The width of potato is
assumed to follow a normal distribution with mean g and variance 0. From a lot
of 100 potatoes, 20 were rejected because their width was less than 3 cm, 40 were
rejected because their width was greater than 8 cm and remaining 40 were accepted.
Obtain the maximum likelihood estimator of  and ¢ (Hint: Use Example 3.2.3).

23. The distribution of length of life in hours of electronic tubes is assumed to
have the pdf of the type éexp(—é) :1>0,0>0.
A sample of 30 tubes were tested for life until 5 bulbs failed. The observed failure
times were 780, 820, 850, 900, 980 h.
Estimate # by MLE (Hint: Use Example 3.3.1)

24. Let X and X, be independent rvs with U(0, 6;); i = 1, 2 respectively.
Let z; = min(X, X»,) and
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_ 0 s Zl=X1
Zz_[l ;ZIZXZ

Find the MLE of 6, and 6, in a sample of size n.
25. Let the rvs X and X, be distributed as exponential with mean 6 and N (6, 1)
respectively. Find the MLE of 6.

26. Let the rvs X and X, be distributed as B(n, /) and N B(r, 0) respectively,
0 < 6 < 1. Find MLE of 6 if n and r are known.

27. If the rv X has the following probability distribution as follows
PX=-2)=4 PX=-1D)=4 PX=0=1-0
PX=D=9% PX=2=4§

In a sample of size n, find the MLE of 6.

28. Letthe rv X is U(0, #), X, be G(1, é) and X3 is U(0, #). Find the MLE of 6.
Assume X, X, and X3 are independent rvs.

29. Let the rv X, X5, ..., X,, be independently distributed as G(p, Ul); (i =
1,2,...,n). For p known, find the MLE of 0;; (i = 1,2,...,n).

30. Let the rv Xy, Xo, ..., X be distributed as P(\y), X1, Xoygo, .o ijn be
distributed as P (\,) and X%H, X%H, ... X, bedistributed as P ()\3). Find the MLE
of A1, A\, and A\;. Note that X, X», ..., X, are independent rvs. Assume 7 is divisi-
ble by four.

31.Let Xi, Xa, ..., X, are iid rvs with (i) U(0, 6?) (ii) U0, 6%), 6 > 1. Find the
MLE of 6.
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Chapter 4
Bound for the Variance

The history of the lower bounds on the variance of the estimators is long and has many
contributors. The widely known bound, and the basis of this theory is the so-called
Cramer—Rao bound (Cramer 1946; Rao 1945). It is equal to the inverted value of
Fisher’s information quantity. It is important to know that Frechet (1943) has given
the inequality which is now known as the Cramer—Rao inequality in the statistical lit-
erature, after its explicit and independent publication by Cramer (1946), Rao (1945).
Specifically, Rohatagi and Saleh (2001) called this bound Frechet-Cramer-Rao (FCR)
lower bound. But we call this inequality as Cramer—Rao (CR) lower bound, as it is
popularly known. Bhattacharya (1946, 1950) generalized Rao’s results, under some
additional conditions, to give a sequence of sharper bounds. Chapman and Robbins
(1951), Kiefer (1952) gave a lower bound for the variance of an estimate which does
not require regularity conditions of the CR lower bound. Detailed review is done by
Jadhav (1983).

Before considering the lower bound, we will have to consider the Cauchy—
Schwarz inequality. Now, the variance is invariant under translation. Therefore, we
expect the bound also to be invariant under translation.

4.1 Cramme-Rao Lower Bound

Theorem 4.1.1 The C-S inequality, which is translation invariant, is given by

Cov(U,V)

Theorem 4.1.2 (Frechet 1943, Rao 1945, Cramer 1946)

We call this inequality as CR inequality.
Let X1, X», ..., X, be a sample with pdf f(x|0).

© Springer Science+Business Media Singapore 2016 153
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Let T(X) = T(X1, X2, ..., X,) be any unbiased estimator of g(0). It satisfies
the following conditions

% Tx)f(x|0)dx = / T(x)%f(xl@)dx if f(x|0)isa pdf “4.1.2)

% Z T(x) f(x]0)dx = Z T(x)%f()d@)dx if f(x|0)isapmf (4.13)

Then

[g' ()]
E[{ log f(x]6)}2]

Var(T(X)) > 4.1.4)

If equality holds in (4.1.4), then there exists a real number c(0y) % 0, such that

d log f(x]6)

T(X) ~ET(X) = c(bo)—

4.1.5)

with probability 1, provided T (X) is not constant.

Proof The proof is very simple and it is an application of Theorem 4.1.1, i.e., C-S
inequality.
From (4.1.1), replace U by T'(X) and V by H°eLC10

Now
Cov(U. V) = Cov |:T(X), W} (4.1.6)
Since /f(x|9)dx =1= / de =0
R R
1 9f o) B
:>/f(x|9) 59 f(x|0)dx =0

R
- / W}‘(MG) —0 4.17)

R

E [w} =0 (4.1.8)
26



4.1 Cramme-Rao Lower Bound

Hence

Cov |:T(X),

a6 a6

Differentiating (4.1.7) with respect to 6,

9 log f(XIé’)} _E [T(X)Blog J(x10)

0 log f(x10) Of (x16) |

/ 3% log f(x|0)

o (l)dx +/

00 a6

s 2
/“()g—]wf(x|9)dx+/(w> f(x|0)dx =0

90? a0

Therefore

Eiazlogf(x|9) n (alog f(xl&))z] _0
002 a6

Hence,

B (810gf(x|9))2 _ .k [azlog f<x|9>]
a0 062

Hence, from (4.1.7),

v (alogf<x|9>) & (810gf(x|9))2
200 20

_ |:8210gf(x|9)i|
002
E[T(X)] = / T(x)f(x|0)dx = g(8)

Differentiating (4.1.12) with respect to 6,

af (x|0
/T(x) f;);| )dx = ¢'0)

0l 0
/ T(x)%fmmdx —¢®)

155

4.1.9)

(4.1.10)

4.1.11)

(4.1.12)
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01 0
= 160 D TED f v = g 0)

Using (4.1.1), (4.1.8), (4.1.9), (4.1.11) and (4.1.13)

[g' ()]
V(T(X) = —o
E[{31 gafg( |9)}2]
Remark:
1.If Xy, X5, ..., X, are iid rvs then
a1 X16) > a1 :16)1?
g|l2Moe /X7 _ g fdlog fCal ™y,
20 20

where X = (X1, Xo, ..., X,)

FX10) = fx1, x2, ..., x,10) = [ ] £ (xi16)
i=1

log f(X|0) = > log f(x;|0)

dlog f(X|0) _ <~ dlog f(xi|0)
30 =2 30

i=I

2
dlog f(X10)\* [~ dlog f(x;16)
( 20 ) _(Z 00 )

i=1

$ (8logf<x,|9>) = dlog f(x;10) 9 log f(x;]0)
= Z +2
00 00

i#]j

From (4.1.7), E [
00

9 log f(xiwq .y

2 2
E(alogf(Xlé)) _ nE(alogf(xile))
36 36

(4.1.13)

(4.1.14)
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since X, X5, ..., X, are iid rvs
. 2
2. E (W) is called Fisher information

3. We will consider (4.1.5) when equality holds in (4.1.4)
If there exist a(6) such that

dlog f(X|9)

59 a@)[T(X) — ET(X)]

V[P S 0] _ viroon

00
Hence
\V4 dlog f(X]0)
a2(9) — Q
VIT(X)]
From (4.1.4),
dlog £(X[0)1%]
VT (X)]E “%] =[O
01l X10)]
= VIT(XOIV [% — g OF
From (4.1.16) and (4.1.17),
V[Blog f(X\O)]
al) = ————
g0

From (4.1.15), since ET (X) = g(0)

dlog f(X10) _ Ve X9
36 g'©)

[T(X) — g(0)]

g'©®)  dlog f(X|0)
V[alogéfe(Xla)] 90

T(X) = g(©) +

E (a log f<X|0>)2 _E (82 log f(X|9))
20 062

157

(4.1.15)

(4.1.16)

4.1.17)

(4.1.18)

(4.1.19)
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Example 4.1.1 Let Xy, X», ..., X, beiidrvs with N (0, 1). We will obtain the lower
bound for the variance of an unbiased estimator of 6.

1 n
log f(xy, x2, ..., x,|0) = const — 3 Z(x,- —0)?

i=1

dlog f(x1, X2, ..., X4l0)
= . —0 4.1.20
o ;u ) (4.1.20)

9?log f(x1, %2, ... X4|0)
362 N

91 X2y X0
V[ 08 (X1, X2, - -, il )} =n (see4.1.11)

a6

Hence, a(f) = n(Since g’(6) = 1)
From (4.1.15) and (4.1.20),

dlog f(x1, x2, ..., x,00)

39 =—n(x —0) 4.1.21)
Since T(X) = X and V(X) = 1
From (4.1.4),
- 1
V(X) = -
n
Moreover,

T(;{ﬁﬂwzg

It attains lower bound and it is the unbiased estimator of 6. Therefore, X is UMVUE
for 6.

Further, we will obtain the lower bound for the unbiased estimator of 62.

Let T(X) = X2

i _ 1
V(X) =EX?—-6%*=—

S

Hence,

E (xz _ l) — 6% wd V (xz - 1) — V(&) (4.1.22)
n n
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V(X?) = E(X* —EX)?

Now, E(X —6) =0

E(X?) — 3(E[X?])0 + 30*E(X) — 6> =0

E(X3) =3 (92 + 1) 6 —36%(0) + 6°
n

Since in standard normal distribution,

Hence,

X : — - 3
E(X*) — 4E(X*)6 + 6E(X)6> — 4E(X)6° + 0% = =

E(X* =

Therefore,

36 3
=40
n
Ha _ 2_3
,32=M—3=3=>M4—3Mz—n—2
- 4 3
EX-6)"=—=
n

n2

3 30 1
= +46 [— + 93} — 662 [92 + —] +46°(0) — 0*
n n n

3012607 662
=+ +40* — 60* — — +40* —0*
n n n
3 662
=S +60'+ —
n
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(4.1.23)

(4.1.24)

(4.1.25)

(4.1.26)
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2 492
-+ (4.1.27)
n n
Next, by usin_g CR lower bound, i.e. (4.1.4),
T(X)= X2 g(0) =6% g (0) =20
9l X16)1? 9l X0
g | 2log f(XI0) | = _ [ dlog f(XIO) | _ (4.1.28)
90 90
_ 4p?
V(X% > — (4.1.29)
n
From (4.1.27) and (4.1.29)
2 407 492
R + —_ >
n2 n — n

In this, ()_( 2 %) does not attain CR bound. Moreover, we can say that the estimator

. . 402 .
with variance = - may not exist.

Example 4.1.2 Let X1, X, ..., X, are iid rvs with U(0, 0).
Can you obtain CR lower bound for any unbiased estimator of 6?

It does not satisfy the condition as mentioned in (4.1.2).

0 0

0 ad
— | T(x)f(x]|0)dx = 8_9/
0

T(x)dx

00 0

0

In this case, we cannot apply CR lower bound.

Example 4.1.3 Let X1, X», ..., X, be iid rvs with P(}).

7AAx

fxI2) =

;o x=0,1,2,...,A>0.
x!
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In this case, we will find the CR lower bound for e~

Define

1;: x=0,
0 ; otherwise

e(x) = [

Ee(x) = P(X=0)=¢"
€(x) is an unbiased estimator of e,

Ve =e*—e =1 —e)

Now, let us compute CR lower bound for et

Letf = e = A =—logf = log 1
0 (log 1)*
x!

f(xl0) =

1
log f(x|0) = x log (log 5) + log6 — log x!

dlog f(xI0) _ —x
36 ~ Ologi 0

X 1

= ologd 0

g ((log £ (x16) 2_E x2 N 1 N 2x
30 T 7 62(ogh)? T 02 T 62(logh)?

A+ A 1 22

= 2200207 2 T 82006y

Substitute § = ¢~

AA+1D) 1 2
o232 | g=2h -2\

1
22
I1+-+1-2
el:—i-)\—i- ]

62)‘

A

161

(4.1.30)
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. (alog £ (x10)

2 ne2
= (see Remark 1)
a0 A

—2A
re ™"

From (4.1.4), CR lower bound for any unbiased estimator of e~ is —

)\,672)»

VIT(X)] = (4.1.31)

But actual variance of € (x), which is unbiased estimator of e~ is e *(1 — e™*)
et —e™) > e ? (4.1.32)

Hence, variance of €(x) is greater than CR lower bound. Here also, we can say that
—21
e

the estimator with variance may not exist.

Note: Without reparametrization, one can get CR lower bound.

Since
9l S|
g (e Y _ 1
oA A
Ae—Z}»
VIT (X)] =
Example 4.1.4 Let Xy, X», ..., X, be iid rvs with exponential distribution having

mean 6. What is the CR lower bound for the variance of an unbiased estimator of
g(0) = exp(—1)? Does the variance of the UMVUE of g(6) attain this lower bound?

LetX - (Xla X27 "'7XI‘L)

f(X1]6) = (@) "exp (—é), where = in
i=1

t
logL = —nlogf — g

we want to obtain CR lower bound for an unbiased estimator of ¢~ #
1
LetA =e ¢ = —é = log A

log f(X|A) = n[log(—logA)] + ¢ log A
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810gf(X|A)_1 . n
EN A log A

al S| 2nt 2
p(dloesy _ 1 |glay 2t
oA A2 logh  (logh)?

Now E(T2) = n(n + 1)62 and E(T) = nf

— et [n(n + 1)0% — 21202 + n%0?]

= ei (n6?)

If T (X) is an unbiased estimator of e v
Then,

2

e o
V(T(X)) > Py} (4.1.33)

Note: Without reparametrization,

dlog f n t
E{— ) =—"—-+—=
( a6 ) 9+92

Ny 2= "
30 62

Since g’'(0) = %e‘el.

2 2
-2 2 _2

e
VIT(X)] > —_ = —
[()]_94Xn n6?

The reader can see from (4.1.19) that it does not attain CR lower bound.

Example 4.1.5 Let X1, X, ..., X, are iid rvs with B(n, p). We will show here that
variance of % attains the CR lower bound.

m

f(le) = H ()’:.)p./ﬁqn—x[; q = 1 — p

i=1
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log f = const + ¢t log p 4+ (mn — t) log g

ap p q

dlogf t mn—t

azlogf_ t mn —t

ap? p? q?

B _leogf _ mnp n mn — mnp
ap? p? q*

mn mn mn

P 4 pq

Therefore,
01
V[ og f ] _ra
ap mn

From (4.1.15) and (4.1.18), g(p) = p

dlog f pq[fi }
———==|==p

ap mn | n

By using (4.1.4),

v [{} _ P 1 pg
n E(alogL)2 memn
Sp
Hence, < attains CR lower bound.
Theorem 4.1.3 (i) A necessary condition for V = w to give an inequality of

CR lower bound is that V depends on X only through the minimal sufficient statistics.
(ii) The above condition is also sufficient when the minimal sufficient statistics is
complete.

A detailed proof of this theorem is given by Blyth and Roberts (1972).

Here we have given a counter-example where V depends on X only through the
minimal sufficient statistics but it does not give an inequality of CR as the minimal
sufficient statistics is not complete.
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Example 4.1.6 Let X, X5, ..., X, beiid rvs with N (6, 62).

0 1 <
i) = @m) 20" exp [_ﬁ > - ef]
i=1

Then (3'_, X;, >, X7) is minimal sufficient statistics. Since (X, S?) is one-to-
one function of (3°7_; X;, X1 X7), it is also minimal sufficient.

Now, X has N (6, ). Also w = LS (X; — )_()2 has X2 distribution
n 0 0 i=1

with (n — 1) degrees of freedom.
Hence E(S?) = 6. Similarly, E(X?) = 292,

Then E (% — S2) = 0, but ;’—ﬁ — 52 # 0 for some X, which implies that
(X, §?) is not complete.
52

LetT) = %’ T (X) = S2 and V(X,0) = Tl(X)z-gfz(X)

Then E[T,(X)] = E[T>(X)] = 62
Cov[T\, Ti + T1] = E{T\ (T, + T5)} — E(T)E(T|, + T>)

= E(T?) + E(T\T») — [ET\]* — ET{ET,

= V(T1) + Cov(Ty, T) = V(T1)

Because (X, S?) is independent, then Cov(Ty, T») =0

V(T}) = 204

V= n—+1

Now,
1
Cov[T, V] = ﬁCOU[Tl, T+ T1]

1

T n+1
Similarly,

20%
Cov[D>, Ti + To] = V(1) = -
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1
= Cov[T,, V] = ——
n—1
Hence, we do not get CR inequality.
Joshi (1976) shows that CR lower bound may be attained in cases where the
underlying densities do not belong to one parameter exponential family.

Example 4.1.7 Select any number Ae(0, 1) and for this determine B from the
equation

B

2
/(t2 — 1)exp [—%] dt =0 (4.1.34)
A
Define
Cf2s A<=
Al = [ 1 ; otherwise
Let
02
f(x|9)=CA(|x—9|)exp[—¥], —00 < X < 00 (4.1.35)
where
1 —1
c= [(2;1)5{1 +2¢(8) —2¢(,\)}] (4.1.36)

It is clear that f(x]0) is not a member of the exponential class of densities.

Since 6 is a location parameter, EX exists and the density is symmetric about
6,EX = 6. Thus, T (X) = X is an unbiased estimator of 8, V8 €©®.

Therefore,

Var[T(X)] = E(X — 6)?

oo

)2
=c/(x—9)2A(|x—e|)exp(—%]dx (4.1.37)

—00

Lett=x—16
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o0

2 2
=C/t A(|tDhe” zdt
—0o0
o0

r2
= 2C/z2A(z)e*7dz
0

- 5
2 2
=C /tze_Tdt—l—Z/tze_?dt
A

B
=C|V2r + 2/t2e—%dz (4.1.38)
A

Thus, X is an unbiased estimator of # with unit variance.
Now, we obtain CR lower bound for the variance of an unbiased estimator of 6.
From (4.1.37),

log f(x]6) =1log C +log A(|x — 6]) — @
Therefore,
because C is independent of 6 and W = 0 for all x and for all 6 except at

x—pB,x—A,x+Aand x + B, where A|x — 0] is not differentiable with respect to 6.

E [—8 logf(xm)} —E(x—6)=0
96
and
2
(ML LEY gy
96

Hence, by (4.1.19), V(T (X)) = A(0) which is the CR lower bound.

This shows that a density for which the CR lower bound A(6) is attained is not
necessarily exponential.

Hence, in the proofs of usually stated result the CR lower bound is attained if and
only if the underlying density is a member of exponential family, the fact that the
linear relation between 7 (X) and % (see 4.1.19) may fail to hold on a null
set which may depend on 6 is ignored.
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Therefore, Wijsman (1973) stated the necessary and sufficient condition for the
attainment of CR lower bound and gave a rigorous proof of the result. We will only
state his theorem without proof. First, we state here the regularity conditions of
Wijsman. Suppose that

(i) ® is an open interval
(i) f(x|0) > O for every 0e®, xeR and f(x|0) is continuously differentiable
function of 6 for every xe R
(iii) 0 < Var(22LED) < 50V 9e®
>iv) ffooo f(x]60)dx is differentiable under the integral sign with respect to 6
) ffooo T (X) f(x]|0)dx is finite and can be differentiated under the integral sign
with respect to 6.
(vi) There is a linear relation between 7 (X) and w, see (4.1.19)

Theorem 4.1.4 Let g be a real valued function on ®, not identically constant; let
T (X) be an unbiased estimator of g(0) and the above regularity conditions from (i)
to (vi) are satisfied. Then the inequality in (4.1.4) is an equality for all 0€® if and
only if Vx and for every 0€©,

f(x|0) = explU(O)T(X) — V() + W(x)],

as given in Sect. (1.6).

Remark: From the Theorem 1.6.1, T'(X) is sufficient and complete and 7 (X) is
the unbiased estimator of g(8). Then T'(X) is UMVUE of g(6).

In the Theorem 2.2.3, we have shown that a necessary and sufficient condition for
an estimator to be UMVUE of its expectation is that, it must have zero covariance
with every finite variance, unbiased estimator of zero.

We now prove an interesting result similar to Theorem 2.2.3, which is due to Blyth
(1974), and provides a necessary and sufficient condition for w to give an
inequality of CR type.

Theorem 4.1.5 The variance V = w, with 0 < Var(V) < oo, gives an
inequality of Cramer—Rao type if and only if V has zero covariance with every finite
variance unbiased estimator of zero.

Proof Necessity: Assume that V gives an inequality of Cramer—Rao type.
If T} and T, are any two unbiased estimators of g(6) then

Cov(Ty, V) = Cov(T», V)
Now,

ET(X) = E{T(X) + To(X)},


http://dx.doi.org/10.1007/978-981-10-0889-4_1
http://dx.doi.org/10.1007/978-981-10-0889-4_2
http://dx.doi.org/10.1007/978-981-10-0889-4_2
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T,(X) being any unbiased estimator of zero with finite variance. Therefore,

Cov(T,V) =Cov(T + Ty, V)
= Cov(T, V) + Cov(Tp, V)

which implies that Cov(Tp, V) =0

Sufficiency:Here, we have Cov(Tp, V) = 0.Let 71 (X) and 7, (X) be two unbiased
estimators with finite variance.

Then E(Ty — T3) = 0, which implies Cov(T} — T», V) = 0 = Cov(T}, V) —
Cov(T,, V) = 0 which means Cov(T;, V) = Cov(T», V). Therefore, V gives an
equality of Cramer—Rao type.

Theorem 4.1.6 A necessary and sufficient condition for the existence of an achiev-
able Cramer—Rao type bound (4.1.4) for the variance of an estimator T (X) having
a specified expectation g(0) is that g(0) possess UMVUE with positive variance.

Proof Let the variance of an unbiased estimator 7 = T* achieve equality in (4.1.4)
if V of that inequality is almost surely linearly related to 7*. From (4.1.15) and
(4.1.19),

_ Var(V) X) — Var(V)g(6)
Q) g'©)

= dO)T*(X) + c(6),

where c(6) and d(0) being independent of X. The bound given by (4.1.4) is invariant
under linear transformations. Therefore, the bound given by d(0)T*(X) + c(0) will
be the same as that given by 7*(X). Therefore, to achieve equality in (4.1.4), we can
write V = T*. Then according to Theorem 4.1.5, we get an CR inequality, we must
have zero covariance with every finite variance unbiased estimator of zero. Therefore,
T* must be UMVUE of g(0) since this is a necessary and sufficient condition for an
estimator to be UMVUE of its expectation (see Theorem 2.2.3).

4.2 Bhattacharya Bound

Theorem 4.2.1 Let S1, S2,...,8 and Ty, T», ..., T; be the two sets of random
variables such that with probability one S;’s are linearly independent, i.e.,

Pla;S i +aSH+ - +a Sy =0]=1 “4.2.1)


http://dx.doi.org/10.1007/978-981-10-0889-4_2
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Further,
A = Covariance matrix of S;,i =1,2,...,k

M = Covariance matrix of T;, j =1,2,...,k
N = Covariance matrix of S; and T;,i # j
Then the matrix (M — N/A’lN) > 0 is positive semi-definite, i.e.,
V(M —N'A"'N)v >0
This is also known as Hodge’s Lemma.

Proof Without loss of generality, assume that ES; = 0, ET; = 0 and if ES; and
ET; # 0, then let S;* = 8; —ES; and Tj* = T, — ET;, then Var(S;) = Var(S,*)
and Var(T;) = Var(Tj*).

Using Cauchy—Schwarz inequality,

Cov?W'S,v'T) < VarW's)Var(v'T) (4.2.2)

[u'Cou(S, T)V)]* < [u'Var(S)ul[v'Var(T)v]

(u'Nv)?> < (' Au)(v' Mv)
Suppose Au = Nv =>u = A~'Nv

[(A'Nv)Nv)? < [(A~'Nv)Y AAT'Nv][vMv]
[WN'AT'Nv? < [vN'A'AA'Nv][v' M)
[V'N'AT'Nv]* < [v'N'A'Nv][v'Mv]
[v'N'A™'Nv] < [v'Mv]
Therefore,

V(M —NA"NYy >0 (4.2.3)

Theorem 4.2.2 Let X1, X3, ..., X, be iid rvs with joint pdf f(x1,x2,...,%,|0)
satisfying the regularity conditions.
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Let
1 dfle)
YTf(x1e) 90
thenES; =0,i =1,2,....k
A = Covariance matrix of S;,i =1,2,...,k
N'=[g0©).870).....s0 O] where V) = 859(9 i

u(xy, xa, ..., Xx,) is an unbiased estimator of g(0), then
V(u(x)) > L, where Ly =N'A"'N

(4.2.4) is called Bhattacharya bound.

Proof Let u(x) be an unbiased estimator of g(6)

Hence,
//'-~/M(X)f(x|9)dx:g(9)

M(x) 8f(x|9) o

//-~-/u(x)51f(XI9)dx ()

Elu(x)Si]1 =g ®)

In general,

L[ @) 30 .
// /f(x|9) 901 f(x10)dx = g (8)

Elu(x)Si]1 =g ()

We know that ES; = 0 = Cov[u(x), S;1 = g?(0)

=12,...

171

Jk

(4.2.4)
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By using Hodge’s Lemma (Theorem 4.2.1),
M—-NAT'N>0
In this case M = Var[u(x)]
Var[u(x)] = N'A™'N >0

Let Ly = N'A~'N then Var[U (x)] > Ly
Varlu(x)] = L

HenceL; > L;_y > ---> L. “4.2.5)

Note
Fork =1, Var[u(x)] > L,

_8VOP
" Var(s)

1 9f(x|9)  dlog f(x|6)
o f(xle) 88 90

1

Var(s)) = Var [w}

a0

CR bound becomes a particular case of Bhattacharya bound for k = 1.
Steps to find Bhattacharya bound.:

1. To get N’, differentiate the given parametric function g(6).

i r_ | 3e® °26) ¥*g(0)
1.e.,N _[W’W”W]
2. Find §; = 7 5012 i = 1,2, ... k and verify ES; = 0

3. Find Var(S;) = E(S;)? and Cov(S;, S;) = E(SiS;)(i # j). Then obtain the
covariance matrix of (§;, S;), (i # j),i.e., A.
4. Calculate N'A~!N.

Example 4.2.1 Let X1, X»,..., X, be iid rvs with N(0, 1). We will obtain the
Bhattacharya bound for g(6) = 62

N =[g7©).8?®).....sP®)]=120.2,0,....0] (4.2.6)
Here, we can take N’ = [26, 2].
_n I —
f(x]10) = 2m) 2 exp |:—§ ;(xi _ 9)2:|
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of o) _ L P
2 = @m) inG e)exp[ 2;@, 9)}

si= O g 427

T Fx10) 00

Then ES; =0

_% Z]:(xi h 9)2:| ] +n?(% —6)% exp |:_; > i - 9)2i|i|

i=1

2 n
2250

= (27) % exp —% Z(x,» — 9)2} [—n +n*(x — 6)%]

i=1

1 3% f(x]6) _ 9 )
Sy = 1) T —n+n“(x —6) 4.2.8)

Similarly, one can find S3, Sy, ..., Sk.

ES, =-n+n=0
Var(S)) =ES;> =n’E(x —0)> =n (4.2.9)
Var($,) = E[n*(x — 0)* — n]?
=n’En(x — 0)> — 1 (4.2.10)

=n?E[n’G —0)* = 2n(x — 0)> + 1]
Now,

.3
EG -0 ==
n

3 1
= nz[nz—2 —2n—+1]
n n



174 4 Bound for the Variance
=n?[3 -2+ 1] = 2n?
Cov(S;, S») =ES; S,
= E[{n(x — 0)}{n*(x — 6)* — n}]

=ER*E —0)>1—Enr*x—-6)]1=0 (4.2.11)

_(n O 0 (E0
v= () =)

L,=NA"'N=(202) (

Hence

=—+= (4.2.12)

and L, = 4%2 = CR lower bound
Therefore L, < L».

Example 4.2.2 Let the rv X have a geometric distribution with parameter p. We will
find a Bhattacharya bound for g(p) = p.

PIX=x]=pg"5x=0,1,2....0<p<l,g=1-p

0P (x
a( ) =q" +xpq
)4

- [[P(x) —xP(x — 1)] (—1)0}
p

3*P(x) o .
oy = 2 "+ x(x = Dpg*?

- [[w —x(x— DP(x — 2)] (—1)‘]

x—1 1

(=1) =¢" —xpg™”
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3P (x) . |:3x(x —DPkx —2) B

x(x = Dx =2)P(x — 3)] (—1)?
ap3 p

3" P(x) _ [ix(x71)‘..(xfi+2)P(x7i+l)

—x(x—=D(x=2)...x =i+ DHPx — i)i| (=it
ap! )4

Si

1 9Pk B [ix(x—l)-~-(x—i+2) 7x(x—1)(x—2)--~(x—i+1)](71)i_1

TP opi pg'~! q'
(4.2.13)
We will find L and L,
(EXG-D  Ex® -
ES; = pgi-l - g (=1
Note that EX® = jth factorial moment.
EX? = [ﬂ}
pl
. . _ 1 ! l—l .! l .
Esl:[l(’. Da l.q.](—n'—l
(pg'= (P~ q'p
it ,
= [—, — —} (-DHi7'=0 (4.2.14)
pp
Now,
1 q 1 7\’
Sp=—— (x - —) and S} = — (x — —) (4.2.15)
q P q P
E($%) = —
Y gp?
2
— +1
5 = (-1) [—ﬁ et D )} (4.2.16)
q rq
5 x4 xz(q + 1)2 2x3(q +1)
=1 2.4 4
q Pq rq
1 1+4 2 11g% + 11¢° + ¢*
E(Xz)zq( ﬁ:q)’ EX3=q( + q+q)’ gyt — 4t e +1lg"+q

P} p?
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49°(@+1) Mg+ 1)

2y __
E(S3) = plgt T pig? 4.2.17)
3 xX g+ 1 x* x(g+1
5.5, — [__3 _ (‘1_3) L1 (__2 " (‘1_2))} 1) (4.2.18)
q rq P\ ¢ rq
2
ESiS) = —— (4.2.19)
P’q
g(p)=p, N =(1,0)
ES? ESlSz) e
A= I N q 4.2.20
(155152 ES? —f i) (4220
L, = N'A~'N, where
6.3 41+ 2
Al P4 ( g’ qu) (4.2.21)
4\ v v
6,3 4d+q) 2
N/A‘lN:(lO)pq v P (1)
4\ 5 o J\O
4(1+q) p°q®
=TT T _ 2+ g) (4.2.22)
PYq 4
Similarly
Ly=p’q(1+q+q°) (4.2.23)
In general,

Le=p*q(l+q+¢°+---+4"
If T (X) is an unbiased estimator of p, then
Var(T(x)) = p*q(1 +q+¢* + - +4")

Remark: If k is tending to infinity, then V(T (X)) > pgq.
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177
Example 4.2.3 Let X1, X», ..., X,, are iid rvs with Bernoulli distribution
P(X=x)=pq"™ x=01
PXi=x,X2=x2,..., X, =x,) =p'q"""; wheret = in
i=1
p t
P(X =x) = (—) q"
q
AP (X) (p)’ [ t n:|
= —_ q _———
op q rq  q
32P(X) ! t t n ! t nl?
O () [t n]e () o [L-
op q ar>  pq* q q qar  q
1 aP(X t
= X)_+t _n (4.2.24)
P(x) dp rqg q
1 ?P(X) —t t n 1 5
y=E———— = — 4+ — — — 4+ ——(t —np) (4.2.25)
P(x) dp? ar*  rg*  q*  pq?
Now
Es; =L 2o
rqa  q
np ~np n  npq
ES) = ——— 4+ — — — 4 —L
ar*  pg*  q*  p*q?
n n n n
=-——+t5-5+t_ =0
ar  q* q* pq
Note the result:

K; = ith cumulant

Ky =ET =np, K,=npq, Kz=npq(l—2p)

S8 (t n)[t(—l+ 1) n+ 1 ¢ )2]
1SH=—-- —+—)—-=+—5C—np
Pqg  q ap*  pq* 9> p*q®
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1 -1 1 n 1 2
= —Jt — np] t — + — )~ 3 + ﬁ([ — np) (4226)
rq qp pPq q pPq
Note that

E[t(t —np)] = E(t — np + np)(t —np) = E(t — np)* + npE(t — np) = npq

13 = K3 = E(t — np)* = npq(q — p)

Et(t —n -1 1 n E(t—-n E(t — np)?
E5152=M|:_2+_2:|__2 ( p)+ ( %317)
Pq ap®>  pq*] q Pq P
n —q + n —
zﬂ[ a zp}_OJr patg —p)
pg L pq P3¢
_ n(@—p)  nlg—p)
T g2 g
=0
1\2
ST = (—) (t —np)®
pPq
2 Ly . npg _ n
ES] =\ E(l‘—np) = 3 = —
rq (rq) rq
Next,

2

t n pP—q n

s, = (L -" +t(—)__
? (pq q) p2q? q*
1 pP—q n
e (20)
(pq)? u P’q® q*
(pg)*S; = [(t —np)* +1(p — q) — np*?

=@t —np)* +12(p —q)* +n?p* +2(p — Qt(t — np)* = 2np*(p — gt — 2np*(t — np)*

(pg)*ES; = np’q[10g + ng + 4np] — np*2np* + np —2)
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n

2 4(2np2+np_2)
p=q

n
ES; = W(mq +ng + 4np) —

g(p)=p, N =(1,0)

LetES? = b

- (20) () -2

Example 4.2.4 Let X, X,, ..., X, be iid rvs with exponential distribution having
mean o. We will obtain Bhattacharya bound for the unbiased estimator of o.

X

1
fx)=—e°; x>0,0>0
o

|
fOi, X, Xlo) = —e 751> 0
O—n

where T = >, x;

Note that t has G (n, ol)

E(S) =0
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E(S?) = n;‘z -
! o* o2

1 2 f . (t —no)> (2t —no)
=598 T o

E(S;) =0
1 3 1
S8 = —6(t —no)” — —S(I —no)(2t — no)
o o
1 3 1
ES: S, = ;E(l —no)’ — ;E(r —no)(t+t—no)

= %E(r —no)’ — 0i5 {E(t —no)* + Et(t — no)}

2no® 1
= nz — —5{n02+E(t—no +na)(t—na)}
o o
2no? 1
— 0—6 —_ ;{naz—i-naz}
2n  2n
=R Rl
(t —no) (2t —no)? 2
(83) = — + - — —(t —no)*(2t —no)
o o o
K:(t)=(G—Dno'; i=1,23,4
us = Kg +3K;

E(t — no)* = 6no* + 3n%c* = 30*n(n + 2)

EQ2r — no)2 = naz(n +4)

E(r — no)*(2t — no) = n(n + 4)o>
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3n(n+2)0* nm+4o> 2nn+4)o3

2y
E(Sy) = o8 of o’
3n(n+2) nmn+4) 2nn+4)
= 4 + VI 4
o o o
3nn+2) nn+4)
= o4 T gt

n 2n+2)n  2n(n+1)
;[3n~|—6—n—4]= o = g

Hence

o2
At 2
0 —2
2n(n+1)

Bhattacharya bound for the unbiased estimator of o is ‘;—7

4.3 Chapman-Robbins-Kiefer Bound

Theorem 4.3.1 Let the random vector X have a pdfipmf) f(x|0). Let T (X) be an
unbiased estimator g(0), where g(0) defined on ®. Further, assume that ET? < 00
for all 0e®. If 0 # «, then assume that f(x|0) and f(x|«) are different. Assume
that S(0) = {f(x]0) > 0}, S(@) = {f (x|a) > 0} and S(a) C S(6).

Then,

-~ 2
Var[T(X)] > sup %

V 00 @3.1)
S(@)CS®), a0 Var{f(XW)}
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Proof Under f(x|0) and f(x|x)

ET(X) = / T(X) f (x|0)dx = g(0)

ET(X) = / T(X) f (xla)dx = g(@)

_ J(xlo) — f(x]0)
gla) —g(0) = / T(X)—f(x|0) f(x|0)dx

- fale)
_/T(X) [f(xIG) 1] J(x0)dx

fale)
Fxl6)

Cov [T(X), 1} =g(a) — g®)

Using Cauchy-Schwarz inequality,

fxle)
F(x10)

Cov? [T(X),

1} < Var[T(X)]Var [f(xla) 1}

fxl6)

= VarT(X)Var [f(”“)}

f(x10)

Therefore,

lg(@) — g(O)> < VarT(X)Var [f (x'“)}

f(x10)

[g(e) — g(O))

7Gle)
Var{ G}

Var[T(X)] > Y 0e® 43.2)

Then, (4.3.1) follows immediately.
Chapman and Robbins (1951) had given the same above-mentioned theorem in
different form.

Theorem 4.3.2 Let the random vector X = (X, Xo, ..., X,) have a pdfipmf)
f(x]0),0€0. Let T(X) be an unbiased estimator of 0. Suppose, 0 + h(h # 0)
be any two distinct values in ® such that

S +h) C S©@)
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Then,

Var(T) > ———
ar(T) = infE(/[6)’

where

2
sz(e,h)=hl—2[[%} _1]

Proof Note that

/ f(x|0+h)dx=/f(x|9)dx=1

S(6+h) S(9)
Letr =t(x),
/ tf(x|0)dx =6
S(0)
tf(x|0 +h)dx =6 +h
S(0+h)
Consider
1
. / (t —0) f(x10 + h)dx = 1
S(6+h)
and
1
A / t—0)f(x|0)dx =0
S(0+h)
Therefore,

0+ h)— 6
/(t—O)\/f(xIO)f(x| =) = 9 i = 1

hf (x]0)

S

183
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By using Cauchy—Schwarz inequality,

2
{/(r—mzﬂxwwx}/[f(x'“h)_f(x'e)} Fxlo)dx = 1
S S

hf(x10)

2
:Var(rle)%/[f(xle J;Zc)lg)f(x'e)} fxlO)dx =1 (43.3)
S

Since

f(x16 + h) 2 B P+ T
/[W”} f(x'e)dx—/[[w} —1}f(x|9)dx

Let

2
]:J(@,h)=%[|:%i| _1}

Var(t|0)E(J10) > 1

Hence,
Var(t|0) > 434
ar(t| )_E(JIG) ( )
= Var(t|0) > ! (4.3.5)
r eresns—— D
“ = infE(J/10)

Example 4.3.1 To find CRK lower bound of an unbiased estimator of the mean of a
normal distribution based on a random sample of size n

f(x10) =

1 1
exp|——— x,~—92 ;
o2 p|: 202( )]

2
|J|:LHM} _1}
h? f(x16)



4.3 Chapman-Robbins-Kiefer Bound 185

1 1 <
= ﬁ[exp [—;Z[(xi —0—h)? —(x; —0)2]] — 1]

i=1

1 nh?>  2h <
i=1

Letk = " then h = £
— " -
- U?kz {exp[—K* +2ku] — 1}, where u = Zl:(lf(;«/ﬁ)

Now,

nE[eszJeru _ 1]

EJ|H = e

2

Since uis N(0, 1) and B¢’ = e

E[efk2+2ku _ 1] — €7k2+2k2 — 1= ekz -1

n(ek — 1)
EJ|0 = Y
K
inf E(J|0) = %1_1}1(1) % = % (use L"Hospital’s rule)

Hence, if T is any unbiased estimator of 6, it follows from

2
v > =
n

Since the sample mean X is UMVUE of # with Var(x|9) = %, it follows that X
has the minimum variance among the class of unbiased estimators.

Example 4.3.2 Unbiased estimator of the variance when the mean is known. Wlog,
we assume that mean is zero,

+/’l 2 2n _;2 2
At i[(a W27 " expl— o1 le]_1] (4.3.6)

T oR? (0v/2m)2 exp[— 25 D" x7]
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- |(5) o [Z -l

1 o\ , [ 2420k
zﬁ[(a—i—h) exp[in [02(0+h)2]i|_1}

2 Z“:‘2
Let 24291 — ¢ then to find Ee® o2

@+h? =~ )
Since%is xf,letu=z(,fi,

Ee™ = (1 —2s)" 2

PR | (LA PP

_h2 o-+h A

Lethk= =, —%  —(1+k"",
_l_
| 2)_1—2k—k2
VT Tkt 1y

1 —n 2\—2
El_m[(l—i-k) (1 — 2%k — k) -—1]

infEJ =1lim EJ
k—0

A4+ T1=2k—k)"1 -1
lim
k—0 o2k?

Use L’Hospital’s rule,

i —n(l4+k)" N1 =2k =k +n(1+ k)"t (1 =2k — k227!
m
k—0 2](0‘2

P S 3 _ _n_1 _ _n_q _ -
iy CPI= DA 2B, 2 +nA"B 2 1+nl(—n+ DA"B, > +A"B, 2 (n+2)]
k=0 202
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where Ay = (1 + k) and By = 1 — 2k — k?

(== +D+nl+nl(=n+1)+n+2] (=n)[-1]+3n 4n 2n

202 202 T 202 o2

Remark Cramer—Rao lower bound yields precisely the same bound.

Example 4.3.3 Unbiased estimation of the standard deviation of a normal distribu-
tion with known mean

A+k)™"(1 -2k —k¥"7 —1
o2k?

E(J|o) =

Now, the minimum value of E(J|o) is not approached in the neighborhood of & =
k=0
Consider n = 2,
Fork = %, (k+1) > 0and 1 —2k—k?> > 0, wefindthat —1 < k < \/5—1, k #0.
Set p=1+k, then0 < p < /2

p2—-p -1

E(J|o) =

o*(p—1)?
_ (1—p*?
P22 - pHoi(p—1)?
_ (p+1y?
-~ P2~ pHo?

For p = 0.729 = E(J|o) = 3.82(;394

Hence, CRK lower bound = (0.2610)c>
Consider the UMVUE if o from (2.2.49) with u = 0

i (s)

SIS

TX)=6= 2,
2:T (3 +1)
where T = > X?
Now, we will find the variance of 7.
3
L2 pn
T—g=ol@ o
rG+0v2
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e - () ()
- (n 1)
VarT = o n (L%))z -1
2\r¢+1

For n = 2 and note 1"(%) =
2[4 2
=022 1] =(02732)0
T

which is greater than 0.261002, the CRK bound.

Example 4.3.4 Unbiased estimation of the mean of an exponential distribution

1 .
fxlo)=—e 7; x>0,0>0
o

1 [(o + h) ™2 exp{—-2;} }
J=— —1
h* | (o) 2mexp(—%

where t = >0 x;

e 2ht X
=5 (1+7) erleeiml-

Let 2 =k then (1 4+ 2)7" = (1 + k)" and 2 =
Note that 7 ~ G (n, o)

1 Zon 2kt _

To find E exp (d(i’:f )

2k _
Let m =S

Hence, E[exp(st)] = (1 — so)™"

1 —2n —n 1
EJ:W[(H—k) (1—s0)" —1]
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1—k
Now, 1 —s0 = ——
1+k

BJ = [(1 + k)7 (ﬂ)_ - 1}
o 2k> 1+k
=%k[(1+k)‘"(1 ™ —1]
= Lk [(1—&kH™" —1]
Next,

infEJ = 11m 11—k —1]

il

— k)™ (=20)]

.1 Cne
gt 4=

One should note that Crammer-Rao lower bound yields the same bound.

Example 4.3.5 Let X1, X5, ..., X,, be iid with U(0, 6). We will find CRK lower
bound for any unbiased estimate of 6, see Kiefer (1952)

] -0 <h<0

) -
< ) |

Let’é:k:;ﬁz(l+k)’lthen—l<k<0,

1
EJ = W[(l + il ]
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Forn=1

1
0%+ 1)

Then we have to maximize —k(k + 1).

4 1

infEJ = —, for k=—=
02 2

In this case, Var(T) > and Variance of UMVUE of T = (512) is %

n=2

1
B/ = s [A+b7 1],

1 [—k3 —3k% — 3k]

EJ = ’
022 (1+k)?
1 _ .3 _ 2
inf EJ = inf [k 3k 3k],
k k022 (1+k)3

ri = (—k-3-3)a+n
d{lik):( 1+3)(1+k) Sy (_k_3_§)( (1 +k) =

This implies

(_1+ 3)(1+k)+(k+3+3)(3)—0

(—=k* +3)(1 + k) + (3k> + 9> + 9k) = 0

It implies that we have to solve the equation 2k> + 8k*> + 12k +3 =0
Roots of the equations are (—0.308586, —1.8557 £ 1.20592i).
Hence, k = —0.308586

infEJ = 22298 Vo) = i
in = r
p 02 i) = 512698

ooI >

Variance of UMVUE of T forn =2 =
It does not attend the lower bound.
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Remark: In U(0, 0), X is sufficient and complete statistics. 2X is unbiased for 6.
So that T(X) = 2X is UMVUE. In this case, CRK attains the lower bound.

Example 4.3.6 Let Xy, X5, ..., X, are iid with B(n,p). We will find CRK lower
bound for any unbiased estimator of p.

J_i pAIN\T (1—p—h 2(N—T)_1
k2 p 1—p

where T = > X;, N =mn

U e (1=p =R\ X
|t \Ti=p ) T
— q(p+h)

where s = vig—h 4= 1—p

1 _h 2N
EJ=—|(2=2) Es_1],
h? q

Es* = (ps®+¢q)" and letk = 2

P
1 q*p(1+k)* N N 2N
E(J)) = TS [ ¢ — ph? +q} q " (q—pk)™ -1
1
= {q‘N [ap(1 + 6 + (g — pb)*]" — 1}

1
pee) {a Vg +kp)N —1}

g Vg +KpN -1
p2k2

inf EJ = lim
k—0

Use L'Hospital’s rule,

-N

2kp?

[(q + K p)"~"2kp]

= lim
k—0

. Ng™" 2 \N—1 N
—lim “ L[+ )" = —
k—0 p [ ] pq
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Hence

. N
infEJ = —
pPq

In this case, Var(T;) > ’]’V—", where T is any other unbiased estimator of p.

Example 4.3.7 Let X1, X», ..., X,, beiid with P (A). We will find CRK lower bound
for any unbiased estimator of A

1 [ R\T expl=2(k + hym] <
J_ﬁ[( A ) exp[—2Am] -1 T_ZXi

i=1
1| (r+n\T
J = n [(%) exp[—2hm] — li|

EJ = % [exp(—2hm)E(s") — 1]
Es” = [expmA(s — 1)]

EJ = [exp(—th) exp[mAi(s — 1)] — 1]

2

2
5 |:exp(—2hm) exp |:mk (% + %)] — 1]

()

= = T

Let _h) - k
fEJ - 11111 ey |exp(”l)\,k ) - 1|
m X 27.2

Use L'Hospital’s rule,
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—~EJ ="
T

If T} is any unbiased estimator of A then Var(T;) > %

4.4 Exercise 4

1. Find CR, Bhattacharya and CRK lower bound for the variance of any unbiased
estimator of the parameter in a sample of size n, wherever possible.

1) fx19) =06(1-60);x=0,1,2...;0<6 <1

Q) f(x|p) = (Hk_l)pkq";x =0,1,2...,0< p<1,g=1- p, k known.

X

3) f(xlo) = «/ﬁ p[—z’;—zz];—oo<x<oo,o>0

@) fxlp) = exp[ = M)Z:I —00 <X <00,—00 < U < OO

%) fxlo) = %, x > 0,0 > 0pisknown
6) fxla) = w,x >1
(7)f(x|9)—9x 1T0<x<1,06>0
®) f(x10) = 100%?9*;0<x <1,0>0
2.Let Xy, X,, ..., X, beiid rvs with N(0, 6%), 6 > 0. Find CR and CRK lower
bound for any unbiased estimator of 9.

3.Let X;, X5, ..., X, beiid rvs from the pmf,

[x]
f(x0) = (g) (1= x=—-1,0,1

Find CRK lower bound for an unbiased estimator of 6.
4. A sample of n observations is taken from the pdf f(x6) where
exp[—(x—0)] ; x>0
fx10) = [ ;  otherwise

Find CRK lower bound for 6.

5. Let Xy, X5, ..., X, be iid rvs with B(n,p).Find CR, Bhattacharya and CRK
lower bound for p?

6. Let X1, X5, ..., X, be iid rvs with P(}). Find CR, Bhattacharya and CRK
lower bound for (i) A? (ii) re™*

7. Obtain CRR lower bound for 6 in (i) U(6,0 + 1) (ii)) U@ — 1,6 + 1) (iii)
U, 26)

8. Let the rv X have the following pmf

e "m*
PIX=x]=———— x=1,2,..., m>0
(1 —e™)x!
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Obtain CRK lower bound for m.
9. Let X be a rv with the following pdf

3% ca<x<3,a>0

f) = ‘0 ‘ ; otherwise

Obtain CRK lower bound for a.
10. Obtain CRK lower bound of 6 in (i) U(—8, 8) (ii) U(0, 20) (iii) U(8, 6?)
11. The probability density function of the rv X has the following pdf

Fx) = %exp[—%] oo <x <00, 0>0
0 ; otherwise

Find CR and CRK lower bound for 6.

12. Obtain CRK lower bound for e~ = if X1, X, < ..., X, are iid rvs from an
exponential distribution with mean o.

13. Let Xy, X», ..., X, be iid rvs with N B(r, ). Find CRK lower bound for an
unbiased estimator 0, 62 and ¢?. Assume r known.

14. Let Xy, X5, ..., X, be iid rvs with f(x, ) and g(x, ). If m is even, then
Xok—1 has f(x,60) and Xy has g(x,0), wherek =1,2,..., %

Assume f(x,0) = (’;)9)‘(1 —-60)"*;x=0,1,2,...,nand

gx,0) = (" era -0y x=0,1,2,...

Find CR and CRK lower bound for the variance of an unbiased estimator of 6, é,

0

63, and %. |

15. Let The rv X has exponential distribution with mean P and the rv X, has

S (x16),
fxlo)=0x""" 0<x<1,0>0

Assume that X; and X, are independent rvs.

Find CR, CRK, and Bhattacharya lower bound for the variance of any unbiased
estimator of @ and 6.

16. Let the rv X has U(0, ) and X, has U(8, 6 + 1). Find CRK lower bound for
0. Assume X and X, are independent rvs.

17. Assume that the rvs X and X, are distributed as U(0, ) and exponential with
mean 6, respectively. Find CRK lower bound for 62.

18. As in problem 14,

1.
f(x10) =5e™? 5x>0,60>0
g(x|0) =6x""' ;0<x<1,60>0

Find CR and CRK lower bound for # and 62 in a sample of size m.



4.4 Exercise 4 195

19. Let Xy, X5, ..., X,, be iid rvs with N (0, 1). Find CR and CRK lower bound

0
for (i) 52 (if) B¢’ (iii) ;+ T | | |
20. Let X, X5, ..., X, be iid rvs with exponential and mean 6. Find CR, CRK,
and Bhattacharya lower bound for ¢?. Further, find UMVUE of ¢ . Whether it attains

CR lower bound? Justify.
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Chapter 5
Consistent Estimator

In the previous chapters, we have seen various methods of estimation. Among the
class of unbiased estimators, UMVUE is the best estimator in the sense that it has
minimum variance. According to Lehmann—Scheffe theorem, if a complete sufficient
statistic 7" exists, all we need to find is a function of 7" which is unbiased. One should
note that if a complete sufficient statistics does not exist, an UMV UE may still exist.
Similarly, we have considered moment and maximum likelihood estimators. These
estimators may be biased or unbiased. In some cases moment or maximum likelihood
estimators may be more efficient than UMVUE in the sense of mse. If n is large,
what happens about all these estimators? It is quite possible that for a large n all these
estimators may be equally efficient. Hence in this chapter, we will consider the large
sample properties of estimators. This property of sequence of estimators is called
consistency. Initially, we will consider some theorems on modes of convergence.

5.1 Prerequisite Theorems

Definition 5.1.1 A sequence of rvs {X,} is said to converge to X in probability,

denoted as X, —P> X, if forevery € > 0, as n — o0
P[IX, — X[ = €] = 0. (5.1.1)
Equivalently, X, Lox , if for every € > 0,as n — 00
Pl1X, — X[ <€e] = 1. (5.1.2)

Now we will state the theorem without proof.
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Theorem 5.1.1 Let X, LN X,and Y, BN Y. Then
(i) kX, = kX, (k is real)

(ii) X, +Y, — X +Y.

(iii) X, Y, —> XY.

P

(iv) 3+ — % if P[Y, =01=0, Vnand P[Y =0] =0.

Definition 5.1.2 The sequence of rvs {X,,} is said to converge to X almost surely

(a.s.) or almost certainly, denoted as X, 25 Xiff X, (w) — X (w) for all w, except
those belonging to a null set N.

Thus,
Xy == X iff X,(w) — X (w) < 00, for weN*,

where P(N) = 0. Hence we can write as

P [n’{n X, = X] S (5.1.3)

Theorem 5.1.2 X, INX = X, —P> X
The reader can see the proof of Theorems 5.1.1 and 5.1.2 in Rohatagi and Saleh
(2001), and Bhat (2004).

One should note that the converse of Theorem 5.1.2 is not true.

Definition 5.1.3 Let F,,(x) be the df of arv X,, and F (x), the df of X. Let C(F) be
the set of points of continuity of F. Then {X,} is said to converge to X in distribution

or in law or weakly, denoted as X, i> X and/or F, L F, for every x € C(F).
It may be written as X, L Xor F, L F

Theorem 5.1.3 Let X, —L> X, Y, —L> ¢ then

(i) X, +7Y, - X +c
(ii) X,Y, - Xc.
(iii) %o 5 X if P[Y, = 0] = 0and ¢ # 0.

Theorem 5.1.4 Let X, LN X = X, L X.

Theorem 5.1.5 Let k be a constant, X, N ke X, N k.

But in Theorem 5.1.4, we cannot say that X, LN k= X, LN k

Definition 5.1.4 A sequence of rvs {X,,} is said to converge to X in the rth mean if
E|X, — X|" — 0asn — oo. Itis denoted as X, - X.
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For r = 2, it is called convergence in quadratic mean or mean square.

Theorem 5.1.6 X, — X = E|X,|” — E|X[".

Theorem 5.1.7 X, X = X, LN X.

If X s are a.s. bounded, conversely,
X, 2> X = X, 2> X, forall r

The above relationship between these convergence is explained in the following
diagram:

convergence a.s. <= convergence in probability < convergence in distribution

convergence in probability < convergence in the rth mean 5.1.4)

The proofs of the above theorems are available in any text book on probability theory.
See Serfling (1980), Billingsley (2012), Athreya and Lahiri (2006), Feller (1970),
Rohatagi and Saleh (2001), and Bhat (2004). The reader should refer to different
types of examples on the above theorems in Stoyanov (1997).

Next, we will study the limiting behavior of sums of independent rvs.

Definition 5.1.5 Let {X,,} be a sequence of rvs. Let S, = Z;’zl Xi,n=1,2,....
We say that {X,,} is said to be stable in probability or it obeys the weak law of large
numbers (WLLN) with respect to numerical sequences {A,} and {B,}, B, > 0,
B, 1 oo if B;'(S, — A,) — 0 in probability as n — oo.

Theorem 5.1.8 Let{X;} be a sequence of pair-wise uncorrelated rvs withEX; = p;
and EX; 1,1=1,2, nllela — oo asn — 00, we can choose
A, = Zi:l wi and B, = lel o? such that

ZZ L0 asn— o0 (5.1.5)

i=1 U
Note:
2

1. If X;'s are iid rvs, then A, = ny and B, = no”.
2. Choose B, = n provided that n=2 > 052 — Qasn — oo.

.. . 2 P
3. Iniid case, choose A, = nu, B, = n, since 2% — 0 as n — oo then & — 4.
n H> B n n H

Theorem 5.1.9 Let {X;} be a sequence of rvs. Set Y, = n~' >_'_, X;. A necessary
and sufficient condition for the sequence {X,} to satisfy the WLLN is that

Y2
E L — Qasn — o0 (5.1.6)
1472
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Theorem 5.1.10 WLLN holds if and only if the three following conditions hold;

(i) im Y P[|X;| > n] =1lim X P[|X;| # X}] — 0,
k=1 k=1

1 n
(ii) — > EX} —0,
n =1
1 n
(iii) — > Var(X}) — 0,
n= =1
where
X — Xe 5|1 Xl =n
k=10 :otherwise

Definition 5.1.6 Let {X,} be a sequence of rvs. Let §,, = Z:’Zl Xion=1,2,...,.
We say that {X,} is said to be stable for a.s. probability or it obeys the strong law of
large numbers (SLLN) with respect to numerical sequences {A,} and {B,}, B, > 0,

B, 1 ooif B'(S, — A) =5 Oasn — oo.

Theorem 5.1.11 If {X;} are independent and Var(X;) = a,f < oo, B, 1 o0,
A, =ES,and B, = >";_, Z—E < 00, then
k

Sn - An a.s.
(—) 2500 (5.1.7)
B,

The proofs of WLLN and SLLN are available in any text book of probability.
Chebychev’s Inequality

Theorem 5.1.12 Let X be a rvwithEX = pand VarX = 02 < oo, foranyk > 0
1
PlIX — pl = ko] = 2 (5.1.8)
or equivalently,

1
PIX —pl <kol = 1= 5 (5.1.9)

Note: The distribution of X is not specified.

5.2 Definition and Examples

If we collect a large number of observations then we have a lot of information about
any unknown parameter ¢, and thus we can construct an estimator with a very small
mse. We call an estimator consistent if
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lim MSE(T (X)) =0 (5.2.1)

which means that as the number of observations increase, the mse decreases to
zero. For example, if X, X5,...,X, ~ N(,1), then MSE(X) = % Hence
lim MSE(X) = 0, X is consistent estimator of 6.

n—oo

Definition 5.2.1 Let X, X», ..., X, be asequence of iid rvs with pdf(pmf) f(x|6).
A sequence of point estimates T is called consistent estimator of 6, where T =
T(Xy, X2, ..., X,) ifforagiven ¢, § > 0, there exists ny(e, J, ) such that V0 € ©

P[IT -0l <el>1—06,V n>ny (5.2.2)

. .. P
or, using the Definition 5.1.1, we can say that T — 6 as n — oo.
Moreover, we can say that

PlIT —0] <€l —> 1 (5.2.3)

Note: Some authors (5.2.3) define as a weak consistency and if we use a Defini-
tion 5.1.2 then they define it as a strong consistency.

X
Example 5.2.1 Let{X;}}]' beiid B(n, p), then — is consistent estimator for p, where
n

2ici Xi

m

X =
Now,MSE(%) = %,q: 1—p.Asm — oo:>MSE(§) -0
Example 5.2.2 Let{X;}] beiidrvs with P(A\) A > 0 then X is a consistent estimator
of \, X =n"'3" | X;.
Now, EX = Aand MSE(X) = 2 — 0asn — oo.

Example 5.2.3 Let {X;}] be iid rvs with U(0, 0), 0 > 0.
X is not an consistent estimator of 6.

3n+1)0? 3n+1)6* 2
MSE(X) = D% and lim, oo 220E = 0 £ 0
But X, is an con51stent estimator.

20?
i) EX,) = and MSE (X, — > 0asn— o0
O EXw = 32 o) = G D+

(ii) Use the Definition (5.1.1) and assume ¢ < 6, from (5.1.2)

P[|X(n)—0| <€] =P[9—€<X(n) <0+€]

)
nxl 0 —e\"
= dx=1-— 7 —1asn—> o0

0"

0—e¢
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(iii) Consider a df of Xy, letit be H,(x, 6)

0 s x <0
H,=P[Xum <x]=1(F";0=<x<0
1 x>0

lim H,(x,0) = H(x,0),

where
0;x<0

H(x,0) = 1 x>0

In (5.1.4), we have explained the relationship between convergence, using this rela-
tionship,

X —> 0 & H, - H
In this case H (x, 0) is a df of a singular random variable, i.e., P[X = 0] = 1, then

d P
X(n) — X = X(n) — 0.

Example 5.2.4 Consider {X;}] are iid rvs as Cauchy distribution with location para-
meter 6.

1 1

then X is not a consistent estimator for 6.

The distribution of X is Cauchy with parameter 6.
Using the Definition 5.1.1,

P[|IX—0]l<el=Pl0—e< X <0+ (5.2.4)
O+e
/1 dx 2
= — | ——————= | = —tan
714+ (x—0)>2 T ‘
O—e¢

This does not tends to 1.
Hence X is not a consistent estimator.

Example 5.2.5 Let X1, X5,...,X, beiid N (u, 02) rvs. We have to find the con-
sistent estimator for o2.

>(xi—%)?

—1)8? 2 2
We know that (”0—2) ~ X1y where §° = pa—
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From Chebychev’s Inequality, i.e., from Theorem 5.1.12
ko=e= k= i

Var(§?) _ 20*

= —0as n—> o0
& n— e "

P[|S2 — azl > €] <

Hence S2 is consistent estimator for o2.

Theorem 5.2.1 Let T be a consistent estimator for 6 and let g be a continuous
function then g(t) is consistent for g(6).

Proof Given any € > 0, there exist a § > 0, such that, |g(¢) — g(0)| < € whenever
IT —0| <6

Therefore,
{x[ 1T = 0] < 6} S {x|lg(t) — g(O)| < €}
Then
Plx||g(t) — g@)] < €} = P{x|IT — 0] <6},
Hence,
Plxl1g@®) —g@)] < et — 1
Because
P{x||T —0| <o} > 1
g(t) is consistent for g(6). O

Example 5.2.6 Let X1, X, ..., Xﬂ be iid p(\) rvs. To find the consistent estimator
for g(\) = e **\". We know that X is consistent for \.

Using the Theorem 5.2.1, g (X) = e X ()_()’ is consistent for g(\) = e\

X

Example 5.2.7 Let X1, X5, ..., X,, beiid B(n, p) rvs. We know that — = (mn)~!
n

>, X; is consistent for p.

Now, using Theorem 5.2.1, () X* (1 — )_()nfx is consistent for (") p*¢q"~*, when
m — 0o.

Example 5.2.8 Let Xy, X5, ..., X, be iid B(n, p) rvs, where p is a function of 6,

in Bioassay problem, p(#) = lj_’;‘;ﬁye)v), where y > 0 is a given dose level.
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Now % is consistent for p.
X 0 .1 £ DS D¢
X exp(0y) I P SN i
n 1+expdy) y 1= X n

Example 5.2.9 Let X1, X», ..., X, beiid with f(x|6),
Fx|) =6x""1; 0<x<1, >0
Lety = —logx
g(y0) = Ge= 0 ; y>0, >0

One can easily see that Zl is consistent for 6.

Now we will define populatlon quantiles.
Definition 5.2.2 Let X be a rv with its df F(x|6), 0e© then population quantile g,
is defined as

P[X <gyl=p, O0<p<l

See David and Nagaraja (2003).
Ifp= 1 then q1 is median.

If p =75 (=123),then q: is called as ith Quartile. In many textbooks,
Quartﬂes such as Q1, 0, and Q3 are defined.

If D, = 10 (i=1,2,...,9),then q: is called as ith Decile. In many textbooks,
it is defined as (D, D», ..., Do).

Definition 5.2.3 Let the rv X have exponential distribution with mean 6, then to find
01, 02, 03, Dy, D3, and Dy:

fx|0) = —e i x>0,0>0

By Definition 5.2.2,



5.2 Definition and Examples 205

Similarly,

0, =-01 ! d Qs=-"1 !
— —flog — an — —log —
2 g2 3 g1

9 7 2
D, = —flog 10 D3 = —Glogm and Dg = —log o

Lemma 5.2.1 Let X be a random variable with its df F (x). The distribution of F (x)
is U, 1)

Proof Then
PIF(X)<z]=P[X<F'@]=F[F '] =z

Hence F(x) is U(0, 1). (I

Theorem 5.2.2 Sample quantiles are consistent estimators of population quantiles.
Let X ) be the rth order statistics of the sample and q,, is the pth quantiles. Hence

Xy > qp- Ifr = [np] + 1, then Xiupye1 —> F~'(p).

Proof Let{X, X(2), ..., X~} be the order statistics of a sample of size n from the
population. O

Let Z(,y = F(X() has the same distribution as that of rth order statistic for a sample
of size n from U(0, 1), see Lemma 5.2.1.

n‘

° r—1 1_ nfr; 0 1
= Din—ry~ 7 =t

fz,(x) =

r 2 rir+1)
EZ,) =EF (X)) = —, EZ(r) =
n+1 n+1Dn+2)

Let r = [np] 4 1, where [a] = integer part of a.
Consider

r(r+1) 2pr
E(Z, — p)? = _ 2
R L Ty Ry
r=[npl+1l=np<r<np+1
np___r <np+1
n+1 " n4+1" n+1

lim lim < lim
n—oon + 1 n—oon + 1 n—oo n 4+ 1

IA

< i
P sl =
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Hence

lim
n—oon + 1

=p

Similarly,np +1 <r+1<np+2

np+1 <r+1 <np+2
n+2 " n+27 n+42

Then

li r+1
m =
n—oon 4+ 2 p

Hence lim,,_, o E(Z()) = p and E(Z,,) — p)? — 0.

Then F (X)) —> p.
Now F~! is continuous (which holds if fi—f = f(x) > 0),

We have F’lF(X(,)) = X¢ L F~(p)
This implies that X ) — g, = Xpupi11 —> qp-

Example 5.2.10 Let X, X», ..., X, are iid rvs with Pareto distribution

f&ID) = ; x>1, A>0

Fu)=PX<ul=1-u"; u>1

M

For0 < p < 1,¢q,()\) is givenby F(g,) = p
Then 1 — (qp)”\ =p

_ log(1 — p)
qp = €Xp —f )

By Theorem 5.2.2, Xp,p141 N qp-

Therefore, X141 is consistent for exp[— —1°g<1\"’) ].

Let W(M) = exp |- 2242

Now ‘fl—‘f\’ # 0 and W~! exist.

Therefore, 1 — (g,) * =p = A= %;;p)
Now X[,+1 is consistent for g,,.

Then \ = —€U=P) s consistent for .
log Xpy+1



5.2 Definition and Examples 207

Note:

oo

XA A
1

FA>1,X 5 25
Hence, =X

7X 4
Then A — A in probability if A > 1

Further, if A < 1 then EX does not exist and X is not consistent for A T and
therefore ) is not consistent for \.
Example 5.2.11 Let X, X5, ..., X, be Weibull distribution with pdf given by
fx]o) = axlexp[—x?]; x >0, a > 0
In this case, F(u) = 1 — exp[—u“]
Hence,
1 —expl—¢,"1=p
gp" = —log(l — p)
- log[log(1 — p)”']
logg,
Now X{,,1+1 is consistent for g,
- _ log[log(1 —p)']
log X141
Therefore, & —P> @, i.e., consistent estimator for « is given by %
5.3 Consistent Estimator for Multiparameter
In this section, we consider the case when 6 is vector valued parameter.
Definition 5.3.1 Let § = (61, 6,, ..., 0,). Then the consistency of a vector valued
statistic T = (Ty, T, ..., T,)) can be defined in two ways
(i) Marginal consistency: 7; —P> 0;i=1,2,...,n)

(ii) Joint consistency
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lim P[||T —0|]| <e]l=1,Ve>0,V0 >0
n—oo

where ||x|| is a suitable norm for n-dimensional Euclidean space R,,,
||x]| = max ||x;||, which is equivalent to ~/x’x

-0 =[x —or]

Theorem 5.3.1 T is marginally consistent if and only if it is jointly consistent.

Proof (1) Assume that T is jointly consistent.
Let A; = {x| |T; — 0;] < ¢}

Let A = {x|max; |T; —0;] < ¢}

It implies that A = (}_, A;

Since T is jointly consistent then P(A) — lasn — ocoand A C A;.
Hence P(A;) > P(A)

Therefore, P(A;) — 1 asn — o0,

Thus, T is marginally consistent.

(i1) Assume that 7" is marginally consistent.
P(A;)) —» 1 =lim,,o P(A;) =1

lim,,_, oo P(A?) = 0 for each i

Using De’Morgan’s Law, A¢ = [JI_ AY

P(A) <30 P (AS) =0
= PA)—>0
= PA)—>1

This implies that 7 is jointly consistent for 6. O

Example 5.3.1 Kale (1999) had given a consistent estimator for a location and scale
parameter for f(x|yu,0), x € R, pe R, 0 >0

Let

1 _
fxlp, o) = ;fo (x M)

g

Now

dp

F(g,) = 1 X — _
qp) = ;fo > dx=p

I
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Let Z = X=#

a

qp—H
T

F(‘];;): / f@dz=p

0

Letc, =2+ = g, = u+oc,
Consider0 < p; < pp <---px < 1,thenq, =p+oc,,, r=1,2,...,k,
We know that X[, 141 is consistent for g,

Hence, Xpp 141 = p+oc,;r=1,2,...,k
We have k equations and we can estimate parameters by the method of least

squares:

Cov [Xpnp, 141, ¢p, ]

o =
Var[cp,]
k k k
k2 Xip, 141 Cp, — 20 Xinp1+1 2. Cp,
r=1 r=1 r=1
= 2
kZC%, - (Z Cpr)
k Lk
2 Xinp 141 — G 2 ¢p,
~ 1=l r=I1
K k

Since Xp,p, 141 —> p + ocp, in probability as n — oo.
. -~ P A P A Ay .
We can easily show that & — ¢ and i —> pu. Hence (jt, 0) is consistent for
(w, 0).

Example 5.3.2 Let X1, X5, ..., X, beiid

N (u, %) rvs

Using Theorem 5.1.8,

2 X
S

n

- P
m); =X — p, where m| =

N}

mh —> 12 + 02, where m} =
mly — (m})? LGP

Let 7y = X and T» = m) — (m})?,

Using Theorem 5.3.1, (77, T3) are jointly consistent for (u, 02).
Note: If T, = m,, then ,/m, — o in probability,
thus (X + ZyJ/m2) — p+ Z,o in probability, where Z, is 100« % point of the
normal distribution.
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Example 5.3.3 Consider the two-parameter gamma family:

e oxP!

f&xlp, o) = W

;x>0,p>0,0>0
EX = po, EX? = p(p + 1)o% V(X) = po?

v ;P P 2

X =m| — poand my — po

my

P (m))> P
2 —gand - — p
ml my

Using Theorem 5.3.1, (’”—2 M) is jointly consistent for (o, p).

my’ my
Example 5.3.4 {X;}}_, are iid exponential rvs with location and scale parameter 1
and o respectively.

EX =p+o0, Var(X) = o?
my —P> 02 and N2UP) —P> g
x5 ,u—i—gand)?—sz LN L.
Hence, (X — /m», \/m>) is jointly consistent for (i, o).
Alternatively, we can find consistent estimators for (i, o) based on order statistics.

Let X1y < X(2) < -+ < X(» be the order statistics.
The distribution of X(j) is exponential with location and scale parameter y and

o .
—, respectively.
n

n n
gm,)(xlu,a)=;exr){—;(x—u)} ; x>p, 0>0

EX(l) = + % and Var(X(l)) = Z—;
One can easily verify that

X(l) —P> M and )_( —P> M + 0. Then % Z(X(i)) —P> g
i=2
Hence, by Theorem 5.2.1,
n
P
[Xay. 5 2 X))l — (0.

i=2

5.4 Selection Between Consistent Estimators

Let T} and T, be the two consistent estimators for 8. Assume 7 and 7, converges in
quadratic mean to € (see the Definition 5.1.4), i.e., T; — 6 in quadratic. We prefer
T, to T, if for sufficiently large n (say n > ng) and VO € O,

MSE(T|0) < MSE(T>|0). (5.4.1)
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Examplg 54.1 Let Xy, X», ..., X, areiid U(0, ) rvs. We know that T} = X,, and
T, = 2X are both consistent estimators for # (Reader can show this).

MSE(T)|0) = % and MSE(T»|0) = &

In this case MSE(T;|0) — Oasn — o0

From (5.4.1), we choose T) to T if M SE(T;|0) converges to zero at a faster rate
than that of MSE (T,|0).

Now, MSE(T|0) — O at the rate of n]—z

and M SE(T>|0) — 0 at the rate of %
Thus, M SE(T;|0) converges to zero at a faster rate than that of M SE (T5|6). We
prefer Ty for 6. In such a situation, we will say 7 is faster than 7.

Example 5.4.2 Let X1, X», ..., X, are iid rvs with f(x|w),
fxlp) =exp[—(x — )] x > p
Let T| = X(]) and T2 = 2)_( +1

MSE(Ty) = 2, MSE(T») = 1.
Here, also, T is faster than 7>.

Example 5.4.3 {X;}{""" are iid rvs with U(u — 1, p + 1).

Let T; = Median = X 41y and T, = )_(2n+| = 2n+1 ZZ"H ; = sample mean

Here E(T]) = E(TQ) = W, Var(Tl) 3(2n+1) and VClVX(n+1) 2n1+3 .

-1
Var(T)) = o (1 + 23n)
L)
2n 2 n
1 3 1
-2t (n_z) (5.42)
Var(T;) = i (1 + i) 1
6n 2n
1

! ! + ! (5.4.3)
=————+4o|— 4.
6n 12n? n?
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Hence T, is more efficient than T7. Therefore, sample mean is preferable than median
for p. Further, taking the ratios of MSE and then taking the limit as n — oo, we
conclude that

MSE[X (nt1)]

—————— —> 3 as n — oo.
MSE[X 2u41)]

The sample mean is three times more efficient than the median.
Example 5.4.4 Let X1, X5, ..., X, areiid N (u, 02) Ivs.

LetT) = 572 where $> = > (x; —x)?and T, = - 1
Note that 5 ~ x2_, E(5%) = (n — 1)o® and Var(§?) = 2(n — 1)o*.

52 ?
MSE(T)) =E (— — 02)
n

52 52 ?
= Var(—) + [Bias (— — 02)i|
n n

_ 2(n —21)04 n [(n — 1o? _ 02)]2
n n

— oS - (5.4.4)

Similarly,

204 20 !
MSE(Ty) = ~ = (1--=
n

()]
CEe)] e

By observing (5.4.4) and (5.4.5)

(a) Coefficient of l is same in both (5.4.4) and (5.4.5)
(b) Coefficient of 5 in (5.4.4)is —1 and in (5.4.5) is 2.

Hence, M SE(T) is smaller than M SE(T3).
We prefer T; than T, as a consistent estimator for o2
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5.5 Determination of n

Kale (1999) has explained the method of determination of ng in a very interesting
way. In some examples, we will require the following Cramer and Fisz theorem; see
Serfling (1980, p. 77)

Theorem 5.5.1 Let g, be the 100p % point of F and let X,p)41 be the sample
100p % point then under regularity conditions

p(l—p)]

y ———— 5.5.1
P Al @ ©3.1)

X[np]+1 ~ AN |:q

Using the Definition 5.1.4 and Theorem 5.1.12, we can write if T 2, 0 then

MSE(T
P[IT -0l <e]l>1-— # 5.5.2)
€
In (e, 0) terminology, suppose we want that
P[IT -0l <e]>1—6 Vn=>ny (5.5.3)

then using (5.5.2) if 1 — % > 1 — 4, the desired level of accuracy specified by
(€, §) is achieved if n( is determined by

MSE(T) < ¢ (5.5.4)

Example 5.5.1 Consider the Example 5.4.3,

MSE (Xop11) = m (5.5.5)
MSE(X 1) = 5- = (5.5.6)
Using (5.5.4) and (5.5.5)
G =

1( 1
—np = [5 (@ - 1)} +1 (5.5.7)
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Table 5.1 ng for mean X,

0\e 0.2 0.1 0.01 0.001

0.2 21 83 8333 833,333
0.1 42 167 16,667 16,666,667
0.01 417 1667 16,667 16,666,667
0.001 4167 16,667 1,666,667 166,666,667

Table 5.2 n¢ for median X (,41)

O\e 0.2 0.1 0.01 0.001
0.2 62 250 25 x 10* 25 x 10°
0.1 125 500 5 x 10* 5 % 10°
0.01 1250 5000 5% 103 5% 107
0.001 12,500 5 x 10* 5 % 10° 5% 108

Similarly, using (5.5.4) and (5.5.6)

The

#

1 2
2n+3 =0
=>n > l (L — 3)
— 2 \ b2
1/1
=ng = |:§ (@ — 3)] +1 (5.5.8)

Tables 5.1 and 5.2 give the values for n( using R,

To enter epsilon (eps) and delta (del).
eps <- ¢(0.2,0.1,0.01,0.001); del <- ¢(0.2,0.1,0.01,0.001);
1d <- length(del); # length of delta
le <- length(eps); # length of epsilon
declaring matrics for nOt and nOt2.
nl0tl <- matrix(data=0,nrow=1d,ncol=le); nl0t2 <- matrix(data=0,nrow=1d,ncol=1le)
To find n0 for T1=X(n+l)
for(i in 1:14d)
{
for(j in 1l:le) { n0tl[i,j] <- (((1/(dell[il*(eps[j]1”2)))-3)/2)+1 }
}
colnames (n0Otl) <- c("[0.2]","[0.1]","[0.01]","[0.001]")
rownames (n0Otl) <- c("[0.2]","[0.1]","[0.01]","[0.001]")
To find n0 for T2=X_bar (2n+1) .
for(i in 1:1d)
{
for(j in 1:le) { mn0t2[i,j] <- (((1/(3*dell[il*(eps[j]1”2)))-1)/2)+1 }
}
colnames (n0t2) <- c("[0.2]","[0.1]","[0.02]","[0.001]")
rownames (n0t2) <- c("[0.2]","[0.1]","[0.01]","[0.001]")
OUTPUT
print ("n0 for T1"); nOtl; print("n0 for T2"); nOt2

Here e =0.2, 0.1, 0.01 and 0.001, and 6 = 0.2, 0.1, 0.01 and 0.001
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It is interesting to see that ng is increasing faster in row-wise than in column wise.
Hence, we will have to be more careful in selecting € than ¢. Hence, one should select
0 smaller than e.

The above analysis of determination of n( and the minimum sample size required
to attain a given level of accuracy specified by (e, 9) is the basic idea underlying the
concept of efficiency or asymptotic relative efficiency. In this case, we can define
relative efficiency of 7 and T, as we prefer T to T if no(T7) < no(T2) V 0 € ©.

Since this efficiency depends on Chebychev’s inequality and it gives a very crude
lower bound to the probability. Therefore, no(7) determined by this inequality may
actually be an overestimate.

The CLT plays an important role in statistical theory. We generally make the
assumption that underlying observations follow normal distribution at least approx-
imately. The theory of errors used by physicists or astronomers can be justified on
the basis of CLT.

Theorem 5.5.2 Let Xy, Xo, ..., X, be iid rvs with EX; = pand VarX; = 0* <
oo. Let Y, = \/ﬁ(x—;&), where X =n~' 3"_ X;. Then Y, converges to a standard
normal variate.

Note:

1. CLT gives the probability bound for | X — |, while WLLN gives only the limiting
value.
2. Reader should refer Bhat (2004), where CLT’s are given with different conditions.

Example 5.5.2 Consider the Example 5.5.1
Let T, = 5(2,,4_1 and T, = X(VL-H)
By Theorem 5.1.1
V3@ + 1) (Xans1 — ) == N(O, 1) (5.5.9)

Thus

P[|Xons1 —pul <e]=P [—e\/3(2n T 1) <320+ D)(Xons1 — 1) < /320 + 1)]

= @lev/3(2n + D] — ®[—€ey/3(2n + D],

where

y
1 2
O (y) :/ e 7dx
i V2w

Using (5.5.3)

Dle/32n 4+ 1)] — ®[—e/32n+ 1] =1-6
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By symmetry,

20 I:ew/3(2n n 1)] —1>1-4
e/32n+1) > o7 [1 - g}

e (-9)] -
n>—|o ' (1-2)] - =
6¢? 2 2
I S\* 1
no(T) = | =5 | @ (1—5) -5 |+ (5.5.10)

Consider the estimator 75 = X (,11)

Thus

pite

1 yopt N () ympt 1) dy

PUX (1) — = ) 2

X)) =l <€l = G015 /( 2 ) ( 2 ?
n—e

(5.5.11)

Substitute w =y — @
_ 1 /6 I+w\" (1—w\"dw
T B+ 1l,n+1) 2 2 2

1 €
— 1— 211d
ﬂ(n+1,n+1)22"/( W) dw
0

Letw? =1

(2
= : /(1 z)”t‘%dz
228+ 1,n+ 1)

0

This is an incomplete Beta type distribution. In such a situation, it is difficult to
find ng. Now, we will use Cramer—Fisz theorem, i.e., Theorem 5.5.1 to find the
distribution of X,41y. In this case, p = %, qp =, f(qp) = % and n is replaced by
2n+ 1.

1
Xty ~ AN |:H, m}
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1
Xty ~ AN | pp, ——
= K@+ [M 2n+1}

= V2n+ 1[ Xy —pul ~ANQ, 1)
Therefore

P[|Xasn = n < e = @ [ev2n 1] = & [~ev/2u+1]

Similarly as before,

n = _l_ -1 — é 2._ l
o) =| 55107 (1-3 +1 (5.5.12)

Tables5.4 and 5.5 give the values of ng using R

# To enter epsilon (eps) and delta (del).
eps <- ¢(0.2,0.1,0.01,0.001); del <- ¢(0.2,0.1,0.01,0.001);
1d <- length(del); # length of delta
le <- length(eps); # length of epsilon
# declaring matrices for nOtl and nOt2.
n0tl <- matrix(data=0,nrow=1d,ncol=le); n0t2 <- matrix(data=0,nrow=1d,ncol=1le)
# To fnd n0 for TI1.
for(i in 1:1d)
{
for(j in 1:1le)
{
x <- 1-(del[il/2); y <- gnorm(x,0,1);
notl(i,j] <- ((y"2/(6*eps[j]172))-2)+1 }
}
colnames (n0tl) <- c("[0.2]","[0.2]","[0.01]","[0.001]")
rownames (n0Otl) <- c("[0.2]","[0.1]","[0.01]","[0.001]")
To fnd n0 for T2.
for(i in 1:14d)
{
for(j in 1:1le)
{
x <- 1-(dell[il/2); y <- gnorm(x,0,1);
n0t2[i,j] <- ((y"2/(2*eps[j]172))-0.5)+1 }

B

}

colnames (n0t2) <- c("[0.2]","[0.2]","[0.01]","[0.001]")

rownames (n0t2) <- c("[0.2]","[0.1]","[0.01]","[0.001]")
# OUTPUT

print ("n0 for T1"); nOtl

print ("n0 for T2"); nOt2

Here ¢ =0.2, 0.1, 0.01, and 0.001, and 6 = 0.2, 0.1, 0.01, and 0.001. One can use
these following values to find no(7}) and no(7>), if you are not using R. If we have
to calculate no(77) and ny(73) without using R, then one can use Table 5.3.

In view of the asymptotic normality of both X on+1 and X 41y, ithas been observed
that ng(T1) < no(T3). The relative efficiency of T is better than 7>.
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Table 5.3 Percentile points of standard normal distribution

5 Consistent Estimator

1 0.2 0.1 0.01 0.001
o1 - %) 1.28155 1.64485 2.57583 3.29053
Table 5.4 ng for )_(2,,+1 (by using CLT)

O\e 0.2 0.1 0.01 0.001

0.2 6 27 273 273,728
0.1 11 45 4509 450,921
0.01 27 110 11,058 1,105,816
0.001 44 179 18,044 1,804,596
Table 5.5 ng for X1y (by using Theorem 5.5.1)

o\e 0.2 0.1 0.01 0.001

0.2 21 82 8212 821,185
0.1 34 135 13,528 1,352,766
0.01 83 332 33,175 3,317,450
0.001 135 541 54,138 5,413,794

Example 5.5.3 For double exponential distribution with mean = median = 6. Use
CLT to obtain asymptomatic distribution of X,,. Use Theorem 5.5.1 to obtain asymp-
totic distribution of Median = M,,. Determine ny(e, 8, 8) for X, and M,, for the given
€ =0.01,0.1 and 6 = 0.01, 0.1.

In this case,

f(x10) =

1
E(X") = 2 /(Z +0) e ldz, where z = |x — 0]

1

Lexpl—|x — 0] ;
0

T2
o k=0

1

k:O

otherwise

—o<x <00, §>0

00 r
/ z (;)zkﬁr_ke_'zldz, where z = |x — 0|

( )e’ k[/( Dk Zdz—l—/z e %dz]
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| F
52(}()0 FI(=D*k! + k1]

k=0

r

-
- 0" kI 4+ (=X
2 ()

py =0, ph=06>+2,V(X) =2,EX, = fand V(X,) = 2.
The exact distribution of median is very complicated. Hence using Cramer—Fisz
theorem

—_

p(l—p))

R =

In this case, p =
flgp) = fO) =5
Median = M, ~ AN(6, 1)
— EM, =0 and V(M,) — Oasn — oo M, —> 6
To find nyg,
Consider P[|[M,, — 0] <e]>1—6

’qp:0

|t

P(IM, — 0] <e]>1—6

:>¢[eﬁ]zl—g

1] N\T
~rz g (-3)]
[1 [ . 5\*
=no(T) =| 510 (1——)] + 1 see Table 5.6
€ 2

Consider the another estimator X,,, EX,, = ¢ and lim V (X,,) = 0.

n—oo

Hence X, %) 0
Using CLT X,, ~ N (6, 2
Hence,

P[|X,—0] <€e]l>1-4

n n
P[—e\/;<z <e\/;i| >1—6, where z~ N(,1)
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Table 5.6 ng for median

Table 5.7 ng for mean

S\e 0.1 0.01

0.1 271 664
0.01 27,061 66,307
S\e 0.1 0.01

0.1 542 1327
0.01 54,121 132,613

Therefore,

27 . 5T
=>nz€—2[¢ ‘(1—5>]

2 5\’
= no(Ty) = = [gbl (1 - z)] + 1 see Table5.7

no fore = 0.1,0.01 and § = 0.1, 0.01

Tables 5.6 and 5.7 give the values of ny using R

# To enter epsilon (eps) and delta (del).
eps <- ¢(0.1,0.01); del <- c(0.1,0.01);
1d <- length(del); # length of delta
le <- length(eps); # length of epsilon

# declaring matrices for nOtl

# To find n0 for T1.
for(i in 1:1d)
{
for(j in 1:1le)
{

x <- 1-(del[i1/2); y <- gnorm(x,0,1);
notl[i,jl <- ((y"2)/(eps[jl172))+1

}
}

colnames (n0tl) <- c("[0.1]1","[0.01]")
rownames (n0tl) <- c("[0.1]","[0.01]")

# To fnd n0 for T2.
for(i in 1:14d)
{

= median and n0Ot2 = mean.
n0tl <- matrix(data=0,nrow=1d,ncol=1le)
n0t2 <- matrix(data=0,nrow=1d,ncol=1le)
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for(j in 1:le)
{
X <- 1-(dellil/2); y <- gnorm(x,0,1);
not2[i,j] <- (2*(y"2)/(eps[j]"2))+1
}
}

colnames (n0t2) <- c("[0.1]","[0.01]™")

rownames (n0t2) <- c("[0.1]","[0.01]1")
# OUTPUT

print ("n0 for T1"); nOtl

print ("n0 for T2"); n0t2

Note: In the above examples, no(T) is independent of s.

Practical advantage of no(T") being independent of 6 is that the minimum sample
size required to achieve (e, ¢) level accuracy does not depend on the unknown para-
meter #, then such a minimum sample size cannot be determined as 6 is unknown.
We can take Ny = supycq no(T) if such Ny is finite, which is usually the case if ® is
bounded or closed compact set and ny(e, d, 0) for a given T is a continuous function
of 6.

Example 5.5.4 Let X1, X5, ..., X, are iid U(0, @) rvs.

Let T1 = X, be a consistent estimator of 6.

_ (0=eyn .
P[IX(,,>—9|<€]=[(1) ()5 e <0

i e>0
If € < 6 then
6—6 n
1— >1-46,
SHE
Then
> log 6 :
log(1 — 3)
Thus
log o
—— | +1;e<@
no(Ty) = loo(] — < ’ (5.5.13)
og( 9)
1 ;e>0

Let T, = 2X be a consistenzt estimator of 6.
By CLT, 2X ~ AN(0, &),

> 3n
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Then Y32 (2X — 6) ~ AN(0, 1)

PI2X — 0] 1= @ e/3n ® e/ 3n
— 0l <e¢] = — —
0 0
2% ev/3n 1
0
no(T3) is given by
T Al PP}
0
02 . 5\
no(Ts) = §§i¢ (1—5)} +1 (5.5.14)

The following table gives the values of n((7}) and n¢(75) fora given 6, ¢ = 6§ = 0.1
using R

# Given data
eps <- 0.1; del <- 0.1; theta <- c(0.5,1,2,4);
1t <- length(theta);
# Declaring vectors for n0 for Tl, T and T2.
n0tl <- rep(0,1t); nOt <- rep(0,1lt); n0t2 <- rep(0,1lt);
To fnd nO(T1).
for(i in 1:1t)
{
x <- 1l-(eps/thetalil]);
n0tl[i] <- log(del)/log(x) +1;
}
To fnd nO(T).
for(i in 1:1t)
{
x <- thetalil/eps;
n0t[i] <- -x*log(del) +1;
}
To fnd n0(T2) .
for(i in 1:1t)
{
x <- 1-(del/2); y <- gnorm(x,0,1);
not2([i] <- ((theta[i]"2)*(y"2)/(3*eps”2))+1
}

e

=

=

# OUTPUT
print ("n0 for T1 using Eg.\,5.5.13"); nOtl
print ("n0 for T1"); nOt;

print ("n0 for T2"); n0t2
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Note: We will show that Y, = n(6 — X)) —d> Y, where Y has exponential distrib-

ution with mean 6.
H,(y) =P[n(0 — X)) <yl

=P [x(,l) >0 X]
n

ntnfl

9}1

=

lim Hy(y) = lim 1 — (1 _ —)" —l—e
n—oo n—oo

= Y has exponential distribution with mean 6.
Therefore,

P[n(@ — X)) < nel = P[Y, < ne]
This tend to
PlY, <nel=1-e7,
Then

—ne

l—e? >1-9

0
= no(T) = [E(—10g5)j| +1

(5.5.15)

From the following Table5.9, we will get almost same value of n¢(7T) as in the

Table5.8.
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Table 5.8 n( for X, and 2X

0 3 1 2 4
no(T1) 11 22 45 91
no(T») 23 90 359 1435

Table 5.9 ng for X,
9 ! I 2 4
no(T) 12 24 47 %3

5.6 Exercise 5

1. Let Xy, X5, ..., X, are iid rvs with U(0, ). Show that T(X) = (]_L"l=1 X,~)nl is
consistent estimator for g.

2.Let X1, X, ..., X, areiid rvs with the pdf f(x|@), where f(x|0) = 0x%~!; 0 <
x < 1. Find the consistent estimator for  and ¢”. Further obtain ng for both the
estimators.

3.Let X, X5, ..., X, areiid rvs with EX; = p and EXi2 < 00. Show that T(X) =
ﬁ > '_,iX; is a consistent estimator for .

4. If Xy, X5, ..., X, are random observations on a Bernoulli variate X such that
PX=1)=pand P(X=0)=1—p, 0 < p < 1. Show that (i) X is consistent
estimator of p.

(ii) X (1 — X) is a consistent estimator of p(1 — p). Find if possible ng in both cases.
5.Let Xy, X5, ..., X, are iid rvs with geometric distribution as,

P[X =x]=pg*, x=0,1,2...

1

Find the consistent estimator for p~' and Z Further, find ng for both estimators.

6.Let X, X», ..., X, areiid rvs with U(0, §). Prove or disprove X ;) is a consistent
estimator of 6.
7.1f Xy, X5, ..., X, is arandom sample obtained from the density function:

1;0<x<0+1
fx16) = 0 ; otherwise

Show that X is a consistent estimator of  + % Find ng for 0 = 2, 3.
8. Show that in sampling from Cauchy distribution

Jxlp) =

m; —OO<X<OO,/L>0,
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(i) Sample mean X is not a consistent estimator of 6.
(i) Sample median is a consistent estimator of 6.

9.If Ty and T are consistent estimators of g(6), prove that o; Ty + a; T3, such that
a1 + ap = 1, is also consistent for g(6).

10. For a Poisson distribution with mean ), show that X is a consistent estimator
for \. Find ng. Further prove that % is consistent estimator of % Can you find ng in
case of an estimator %? Give reasons.

11. Let Xy, X5, ..., X,, be arandom sample from a population with pdf

f(x|9):%; —f<x<0,60>0

Find, if exists, a sufficient consistent estimator of # and its corresponding .
(Hint: Consider max; | X;|)
12. Let Xy, X», ..., X, be independent random sample with pdf

1
fxi10) = % —i0-1) <x;<i(@+1), 0>0,
i

Find a sufficient consistent estimator of 8. Further, if exists, find ny.
13. Let Xy, X», ..., X, be iid rvs with the pdf

u—m]
—|; x> u,0>0,
o

1
fx|p, o) = —exp |:—
o

Find the sufficient and consistent estimator for p and o. If possible, find n( for both
consistent estimators of x4 and o.

14. Let X4, X», ..., X,, be iid rvs with B(n, p). Find the consistent estimator of p
and the minimum sample size.

15. Let X1, X», ..., X, be iid exponential rvs with mean \. Find a consistent esti-
mator for A and its ny.

16. Let X{, X5, ..., X, beiid rvs with N B(r, 8). Find the consistent estimator of 6,
62 and €’

17. Lettherv X be B(n, ) andrvs X,, X5 ..., X, be exponentially distributed with
mean 6. Find the consistent estimator of 6, 6, § and e’.

18.Let Xy, X», ..., X, are iid rvs with () U(—#, 0), 6 > 0 (ii) U0, 6%), 6 > 1 (iii)
u(0, 6%)

Find the consistent estimator of 8. Further, find its ng.
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Chapter 6
Bayes Estimator

In all the previous chapters, we have considered the moment, maximum likelihood
and uniformly minimum variance unbiased estimators. Generally, mle are better
than moment estimators with reference to their mse. More recently, Dixit and Kelkar
(2011) had shown that for a binomial distribution, moment estimators are better than
mle with reference to the generalized variance in the presence of outliers. In general,
it is not possible to decide which estimation procedure is better among mle and
UMVUE.

Strictly speaking, there is no such thing as an unconditional probability. However,
it often happens that many probability statements are made conditional on everything
that is part of an individual’s knowledge at a particular time. When many statements
are to be made conditional on the same event, it makes for cumbersome notation to
refer to this same conditioning event every time.

The Bayesian philosophy involves a completely different approach to statistics.
The Bayesian version of estimation is considered here for the basic situation con-
cerning the estimation of a parameter, given a random sample from a particular
distribution.

The fundamental difference between Bayesian and classical methods is that the
parameter 6 is a fixed unknown quantity. This leads to difficulties such as interpreting
the classical confidence intervals, because the interval is random in Bayesian interval
estimation. For example, if we have a random sample of sizen from N (u, 1) then 95 %

confidence interval is, (_ -1 96 X 41 96 . We can interpret in classical

methods but if 4 is random then it is dlfﬁcult to mterpret Once the data are observed
then one can give the confidence interval for 6, because probability is not involved
in such a situation.

In the beginning, we will consider some examples based on Bayes theorem.

1. In 2011, there are three candidates for the position of vice-chancellor Dr. Joshi,
Dr. Sawant and Dr. Rege whose chances of getting the appointment are in the
proportions 5:6:9 respectively. The probability that Dr.Joshi if selected would
introduce credit system in the university is 0.6. The probabilities of Dr. Sawant
and Dr. Rege doing the same are respectively 0.5 and 0.4.

© Springer Science+Business Media Singapore 2016 227
U.J. Dixit, Examples in Parametric Inference with R,
DOI 10.1007/978-981-10-0889-4_6
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If credit system has been introduced, what is the probability that Dr. Joshi, Dr.
Sawant and Dr. Rege is the vice-chancellor?
Here, we are not solving the problem.
If c=credit system, given probabilities are p(c|J), p(c|S) and p(c|R), where J, S,
and R denotes for Joshi, Sawant and Rege. But we want to find the probability
p(J1c), p(S|c) and p(Rc).

2. Lee (1997) had given the following interesting example.
A case of alleged discrimination on the basis of a test to determine eligibility for
promotion was considered. It turned out that, of those taking the test, 48 were
Black(B) and 259 were White(W), so that if we consider the test

(B) = B 016 (W)—259—084

Of the Blacks taking the test, 26 passed(P) and the rest failed(F), whereas of the

Whites, 206 passed and the rest failed, so that altogether 232 people passed.

Hence p(B|P) = 26 =0.11 (W|P)—206—089
p T b T3

One may think that these figures indicate the possibility of discrimination. But

26
instead of the figures that should be considered are p(P|B) = T =0.54,p(P|W) =

206
759 = 0.80.
One should see the fact that p(B|P) is less than p(W|P) is irrelevant to the real

question as to whether p(P|B) is less than p(P|W). Therefore, it might or might not
be depending on the rest of the relevant information, that is, p(B) and p(W).

It is easily checked that the probabilities are related by Bayes theorem in both the
examples. In the first example, given probabilities were p(c|J), p(c|S), and p(c|R).

5 6 9

Further, p(J) = 20’ p(S) = 20" and p(R) = 20" these probabilities of becoming
vice-chancellor are given. In this case, posterior probabilities are p(J|c), p(S|c), and
p(R|c). Similarly, from p(B|P) and p(W|P), the figures indicate serious discrimi-
nation. But from the figures p(P|B) and p(P|W), moderate discrimination may be
there.

6.1 Bayes Theorem

Bayes theorem was given by a British mathematician Thomas Bayes in 1763. Given
the new information, he updated the prior probabilities by calculating revised prob-
abilities and referred to them as posterior probabilities.

Theorem 6.1.1 (Bayes Theorem) IfE|, E,, ..., E, are mutually disjoint events with

P(E;) > 0(G=1,2,...,n)then for any arbitrary event H which is a subset of U?_ | E;
such that P(H) > 0, we have

P(E)P(HI|E)  P(E)P(H|E))

P(Ei|H)=ZP(Ei)P(H|E,-)_ P i=1,2,...,n 6.1.1)
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E2 Es E4 Es | H
E1
En

Fig. 6.1 Partition of events

Proof See Fig.6.1.

Since
HCU_Ei=H=HN(L_E)=U_HNE)

This is true to distributive law. Since H N E;(i = 1, 2, ..., n) are mutually disjoint

events, using addition theorem of probability
P(H) = PIUL,(H NE)] = > P(HNE;) =Y P(E)P(H|E;)
i=1 i=1
Now P(H NE;) = P(H)P(E;|H)

P(HNE)  P(H)P(E|H)
P(H) Y P(E)PH|E)

P(E; |H) =

Remark 1. The probabilities P(E;),i = 1,2, ..., n are called as the prior probabili-
ties, because they exist before we gain any information from the experiment itself.
2. The probabilities P(H|E;),i = 1,2, ..., n are called likelihoods because they
indicate how likely the event H under consideration is to occur, given each and every
prior probability E;(i = 1,2, ..., n).
3. The probabilities P(E;|H),i = 1,2,...,n are called posterior probabilities,
because they are determined after the results of the experiments are known.
4. From the figure, we can conclude:

If the events Ey, E», ..., E, constitute a disjoint partition of the sample space 2
and P(E;) > 0,i=1,2,...,nthen for every event H in €2, we have

P(H) =) P(HNE) =Y PE)PHIE)
i=1 i=1

5. Bayes theorem is extensively used in statistical inference, and by business and
management executives in arriving at valid decisions in the face of uncertainty.
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6.2 Bayes Theorem for Random Variables

Theorem 6.2.1 Let the rvs X1, Xz, ..., X, given Y be iid with f(x1, x2, ..., Xu|Y),
where y is distributed as 7 (y). Then

FOlx1, x2, ooy X)) X T (X1, X2, - ., X0 |Y) (6.2.1)

Proof Since the relative size of probability distribution of (X, Y) will remain same
in the conditional probability of ¥ given X or X given Y.

Since f(X|Y) > 0, [f(X|Y)dx =1

Similarly f(Y|X) > 0, [f(Y|X)dy = 1

Hence, f(X, Y) = f(X|Y)7(y)

f@) = [fX,Vdy = [fXIV)7()dy,

m(y) is the pdf ofarvy

It is clear that

X, Y XY
v L) XINT0)
FX FX

This implies that
fNX) o fX|Y)T(y) (6.2.2)

Note: 1. If we replace y for 6 then we have our density function f(x|#). In this case,
pdf or pmf of 6 is called prior density of 6.

2. The conditional distribution of 6 is given as X i.e., f(6]|X) is called the posterior
probability distribution of 6, given the sample.

6.3 Bayesian Decision Theory

In statistical inference, decision about the population parameter is taken from the
sample data. Consider the following example:

A statistician is told that a coin has either a head on one side and a tail on the
other side or it has two heads.

A statistician cannot inspect the coin but can observe a single toss of the coin and
see whether it shows a head or tail. The statistician must then decide whether or not
the coin is two-headed. If the statistician makes the wrong decision there is a penalty
of Rs. 1 and otherwise there is no penalty.

Ignoring the fact that the statistician can observe the toss of coin, the problem
could be regarded as follows:
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Statistician
(Player A)
ap|a
Nature 0,101
(Player B)|6,| 1

0, =The state of nature is that the coin is two-headed.

0, =The state of nature is that the coin is balanced.

a; =statistician’s decision is that the coin is two-headed.

a, = Statistician’s decision is that the coin is balanced.

Let X be a random variable taking values O (heads) and 1 (tails). Consider the
following decision function

| a;; when X=0
& (X) = [az; when X=1
one can write d;(0) = a; and d; (1) = a,.
Note that if head occurs, then X = 0 and if tail occurs then X = 1. Other decision
functions are
dr(0) =ay,dr(1) = ay

It implies that choose a; whatever may be outcome of the experiment.
d3(0) = az, d3(1) = a2 ds(0) = az, du(1) = a

Some of the decision functions may not be very sensible in practice.
Consider the loss function in the table

Statistician (Player A)
aj a

Nature 91 L(a1,91) L(az, 9])
(Player B) |6, |L(a,, 6»)|L(az, 6>)

Our option is to choose a; when X = 0 and a, when X = 1.
Consider the risk function as R(d;, 0;),i =1,2,3,4andj =1, 2

R(d;, 0;) = E[L(d;, 0))]
Under 0, P[X =0]=1and P[X = 1] = 0.
Note that the coin is two-headed, i.e., the toss resulting out in head is certain event.
Under 6, P[X = 0] = 3, and P[X = 1] = 3.
This gives

R(dy, 01) = 1L(a1, 01) + OL(az, 6,) = 1(0) + 0(1) = 0

1 1 1 1 1
R(dy, ) = yLtar, 02) + yL(az, 02) = ;D +70)=7
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R(d>, 01) = 1L(a1, 1) + OL(ay, 6,) = 1(0) + 0(0) = 0

1 1 1 1 1
R(d, ) = 5 Ltar, 02) + yL(az, 02) = ;D +70)=7

R(ds, 0,) = 1L(az, 01) + 0L(az, ;) = 1(1) + 0(0) =1

1 1 1 1
R(d3, 62) = yLtar, 02) + L(az, 02) = ;O +70)=0

R(ds4, 0,) = 1L(az, 01) + 0L(ay, 6;) = 1(1) + 0(0) =1

R(ds, 02) = %L(az, 6>) + %L(al, 02) = %(0) + %(1) = %
The Minimax criteria

We are assuming the minimax criteria, i.e., each player chooses the strategy that
minimizes their maximum loss or it otherwise maximizes their minimum gain. We
can say that each player will consider the worst possible outcome they could get for
each move they make and then select the move for which this works out to be the

least worst.
i R(d;, 01) R(d;, 62) Maxg,g, R(d;, 6)

1 0 3 :
2 0 %
301 0 1
4 1 3 1

1
Min; Maxg, ¢, R(d;, 0) = 5 The minimax solution is,

a; X=0
or
a; X=0

If 6 is regarded as a random variable, under the Bayes criterion, the decision function
chosen is that for which E[R(d, 6)] is minimum where the expectation is taken with
respect to 6.
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Different Loss Functions

Loss function is a function that maps an event into a real number intuitively repre-
senting some “cost” associated with the event. According to the earlier examples, a
statistician will suffer loss of L(6, a) if he takes action ‘a’ when the true state nature

is . If we use the decision function d(x), when L is the loss function and € is the true
parameter value, the loss is the r.v. L(6, d(x)) for all loss function, § € ©, a € A.

1. Quadratic Loss Function
L, a) = (0 —a)?, (6.3.1)
2. Weighted Quadratic Loss Function
L, a) = w(®) (O — a)* (6.3.2)
3. Absolute Loss Function
L, a) =10 —a| (6.3.3)
4. Zero-One Loss Function

0;10—al<e

L@, a) = 1;10—al>c¢

(6.34)

On the basis of data, the statistician chooses an action d(X) € A, resulting in a
random loss L(#, d(x)). Then the risk function R(0, d) is defined as

R(9,d) =EL(0, d(x))

- / L0, d(x))f (x|0)dx (6.3.5)

Let the prior density of 6 is p(8). The Bayes risk r(d) of the decision rule d can be
defined as ER(0, d) over all possible values of 6, where 8 and X are continuous rvs.

r(d) = ER(0, d) = / RO, d)p(0)do
- / [ / L, d(x))f(x|0)dxi| p(0)do
- / / L0, d(x0))f (x, 0)dxd

- / { / L, d(x))f(9|x)d0}f(x)dx (6.3.6)
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Note that £ (x) = [ f(x|#)p(8)d6 and h(x) = [ L(8, d(x))f (8]x)db.

r(d) =/h(x)f(x)dx

Then the Bayes risk is minimized if the decision rule d* is chosen such that r(d) is
minimum for all x.
If 6 and X are discrete rvs, then

r(d) = > > LO.dx)f(x,0) (6.3.7)
0 X

Definition 6.3.1 A decision rule d* is known as a Bayes rule if it minimizes r(d) or
(6.3.6) or (6.3.7)

r(d) = ir}f r(d) (6.3.8)

Theorem 6.3.1 Consider a problem of estimation of a parameter 6 € ® with respect
to a quadratic loss function L(0,d) = (0 — d)*. A bayes rule is given by d*(x) =
E(0|X = x), where d* (x) is known as an Bayes estimate.

Proof From (6.3.6), we have to minimize

RO, d) = / L9, d)f (0]x)d0
= / 0 — d)*f(0|x)db

= / (0% — 260d + d*)f (0|x)d6b (6.3.9)

Differentiating (6.3.9) with respect to d and put it equal to zero, then
/(—29 +2d)f (8]x)d6 =0

= / df 0lx)d6 = / 0f (01x)d0

= d* = E@0|X) (6.3.10)

Theorem 6.3.2 In Theorem 6.3.1, if the loss function is weighted quadratic then
L0, d) = W(0)(0 — d)*. A Bayes rule is given by

.o EOW@)IX
d*(X) = EWOX (6.3.11)
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Proof From (6.3.6), we have to minimize
R0, d) = /L(G, dX))f (01x)do
_ / WO)(6 — dyf (Blx)do
= / W () (0> — 20d + d*)f (0)x)d0o (6.3.12)
Differentiating (6.3.12) with respect to d and equating it to zero, then
/ W(0)(—20 + 2d)f (0]1x)dd =0

= / OW (0)f (0]x)dO = d / W (0)f (0]x)dO

. f@W(Q)f(Glx)dG
~ [WOF Olx)do
EOW (0)|X
EWO)X

%

= d*(X) =

Theorem 6.3.3 In Theorem 6.3.1, if the loss function is absolute error loss function
then L(0,d) = |0 — d|. A Bayes rule is given by

d*(X) = Median of the posterior distribution of 0 given X. (6.3.13)

Proof Let M be the median of the posterior distribution given X.
Hence P(6 < M|X) > 1 and P(6 > M|X) > 1.
Let d, be any rule and for definiteness, d; > M for some particular value of X.

There are three cases: (1) 0 <M < d; ()M <0 <d, (i)M <d; <6
In case (i)
LO,M)=—(0—M) and
L©O,d) =—(0 —dy)

In case (ii)
L@, M) = (0 —M) and

L, d) =—(0—d))

In case (iii)
L, M) = (0 — M) and
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L0,d)) = (0—dp)

M—d1 ;9<M<d1
LO,M)—LO,d)=1320—M+dy); M <0 <d
d—M M <d <0
ForM < 0 < d;
29—(M+d1)<9—M<d1—M
So that
M—d ; 0<M
Hence

E[L(0,M) — L(0,d\)] < (M — d)P() < M|X) + (di — M)P(0 > M|X)
=M —d)P@O =M|X) + (d — M)[1 — P(§ = M|X)]

= (di — M){1 =2P(0 < M|X)]}
Hence,
E[L(O,M)—L0O,d)] <0

Similarly, we can show that if d; < M.
Hence, we can conclude that posterior median is the approximate Bayes rule for
this loss function.

Note: For zero-one loss function, EL(0, a) = P[|0 —a| > €] =1 — P[]0 — a| < €]
A modal interval of length 2¢ is defined as (a — €, a + €), where a is mode of the
observation, which has the highest probability for given ¢. Then the mid point of
Mode(X) of this interval is a Bayes estimate for this loss function. For details, see
Lee (1997).

Bayes Risk

In calculation of Bayes risk d*, one can use the following procedure:
First procedure

1. Find

/L(G, d*(x))f (x|@)dx ;if X is continuous

ZL(@, d*(x))f(x|0) ;if X is discrete (6.3.14)
X
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2. Let
q9) = /L(Q, d*(x))f (x|@)dx; if X is continuous
X
q0) = ZL(G, d*(x))f (x]0); if X is discrete
X
Then

r(d*) = /q(@)p(Q)d@; if 6 is continuous

r(d") = Z q(@)p(0); if 0 is discrete
9

Second procedure
1. Find h(x), where

h(x) =/L(0, d*(x))f (8]x)dO ; if 6 is continuous
)

h(x) = ZL(G, d*(x)f (0]x); if 0 is discrete rv
6

r(d*) = /h(x)f(x)dx; if X is continuous
X

r(d*) =D h@)f(x) 1if X is discrete rv
X

6.4 Limit Superior and Limit Inferior

237

(6.3.15)

(6.3.16)

(6.3.17)

If {x,}32 , is a convergent sequence, then lim,_, x,, measures, roughly, “the size of

X, when n is large”. In this section, we introduce the concepts of limit superior and

limit inferior which can be applied to all sequences.

Definition 6.4.1 Let {x,}>, be a sequence of real numbers that is bounded above

and let M, =Least upper bound (L.u.b) {x,,, X,+1, Xy42, .- .}

(i) If {M,,}°2 | converges, we define

lim sup,,_, o, X, to be lim,,_, oo M,
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(ii) If {M,};2, diverges to —oo, then we write

lim sup x,, = —o0
n—oo

For example, x,, = (—1)" then M,, = 1
Hence hm M, =1 = limsup(—1)" =

n—oo

Definition 6.4.2 If {x,}°2, be a sequence of real numbers that is not bounded above,
we write

limsupx, = oo
n—oo

Theorem 6.4.1 If {x,}2 | is a convergent sequence of real numbers, then

lim supx, = l1m Xy
n— o0

Definition 6.4.3 Let {x,}>>, be a sequence of real numbers that is bounded below
and let m,, = greatest lower bound {x,,, x,+1, Xp42, - . .}
(1) If {m,};2 | converges, we define

hm g.}f X, to be hm M,

(i) If {xn}o2 dlverges to oo then we write

liminf x, = 00
n—oo

For example, if x, = (—1)" then m,, = —1
liminf(—1)" = —1

Theorem 6.4.2 If {x,}>2, is a convergent sequence of real numbers, then

liminf x, = lim x,
n— 00 n— o0

Theorem 6.4.3 If {x,}°2, is a sequence of real numbers, then

liminf x,, < lim sup x,
n— o0

n—oo
Remark
1. For a sequence {x,}2, of real numbers
lim sup x, = 1nf sup x (6.4.1)
k>n
lim inf x,, = sup inf x; (6.4.2)

nz]kin
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2. From the Theorem 6.4.3

sup inf x; < 1nf sup xi (6.4.3)

n>1 kzn Lk>n

Theorem 6.4.4 Let {f (x|0); 0 € ®} be afamily of pdf(pmf). Suppose that an estimate
d* of 0 is a Bayes estimate corresponding to a priori distribution w(#), 6 € ©. If
the risk function R(0, d*) is constant on ©, then d* is a minimax estimate for 0 (see
Berger (1985)).

Proof Since d* is the Bayes estimator of 6 with constant risk r* (free of ), we have

P = R, d*) = / R0, d*)m(0)do

-0
Using Definition (6.3.1), or (6.3.8)

r*=R(m,d*) = ir(}fR(w, d)
Using (6.3.5)
= inf/R(G, d)m(0)do
deD

< sup inf R(0, d)
geo d€D

Using (6.4.3)

< inf supR(0, d)
deD 968

Since r* = R(0, d*) V0 € ©

= supR(#, d*) > inf supR(0, d)
0c® deD gep

Together, we have,

supR(9, d*) = 1nf supR(6, d)
0c® deD gee

which means d* is minimax.

Example 6.4.1 LetthervX ~ B(n, p) and L(p, d(x)) = [p — d(x)]z. We will obtain
the Bayes estimate for p, where p is U(0, 1).
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Letm(p) =10 <p <1

f) = / f(xlp)m(p)dp
0

1

= / (”)pan—xdp = (n)ﬁ(x +1L,n—x4+1)
X X
0

1

= (6.4.4)
_fG,p) _ fGlp)T(p)
T == ="
Ora

- (;')ﬁ(x+ I,n—x+1)
Bayes estimate of of p

1

EMMZ/W@MW

x+l
d
/ﬁ@+1n—x+Dp

6(x+2n—x+1) x+1
T Bx+1l,n—x+1) n+2

From (6.3.10),

x+1
n+2

d*(x) =
Bayes Risk = r(d*)
Using the first procedure

n

hp) = > (") —p)*f(xlp)

x=0
_Z x+1 ? MY x n—x
n—|—2 qu

1\’ <
T
x=0
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1 2 n
N (n n 2) Sla—mp)+a-2p)] (Z)pan_x

x=0

= (n+2) [Z[x—np] ( ) g (1 —2p>2x2(;(x)p"q"‘*

n
+2(1-2p) Z(x - np)( )p*q“}
x=0 X
1 —2p)?
= M (since other terms are zero)
(n+2)?

1
1 —2p)?
0

1

1
n 1 —4p +4p?
= 1 —p)d — 4
/(n+2)2p( p) p+/ 127 p
0

0

npR2)  1-2+% 1
42?2 (n+2?2  6(n+2)

Second procedure

1

h(x) = / (p ! )f(plx)dp

0

( _x+1)2 P @+ D—x+1)
P n+2) Bx+1l,n—x+Ddp  (n+2)>2n+3)

o—__

Reader should note that it is the variance of a Beta distribution with parameters (x+ 1)
and (n — x + 1).
Next step is to find r(d*)

e D —x+1)
= § w223

1
where f(x) = ?; x=0,1,...,n, which is given in (6.4.4)
n

kY 1 . 42
r(d)—(n+1)(n+2)2(n+3)§[nx+(n+1) x]
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_ 1 n?(n+1)
i+ D +2>(n+3) [ 2 6
n+1Hn+2)(n+3) 1

T 6+ D(n+22m+3)  6(n+2)

12— nin+1)2n + 1)i|

Example 6.4.2 Let X1,X>, ..., X, be iid rvs with N(u, 1) and p is N(0, 1). Find
Bayes estimate of  and its risk.

. 1 n
fr,x, oo x0|p) = 2m) " 2 exp |:—§ Z(x[ — u)z] ,
i=1

m(u) = ! ex [—M—Z]
W=7 "2

i 1<
Fex, .. xn)—/<27r>< >exp[—§[2(xi—u)2+u2”du
i=1

Consider

i=1

1 n
-3 [Z(X? — 2+ 11%) + /f}

1

=-5 |:Z:xl2 — 2nxp 4 ny? +,u2j|

i=1

Z 2 (n+1) 2n/u_c
2

1 (n+ 1) 2nux
-yt e )

n+1

1 3 (4 DT o 2k n’x? n*x?
= —— X5 — — —
! 2 n+1 ((m+1)2 2(n+ 1)
=2

1 2 n%x (n+1) nx 7
_zzxf+2(n+1)_ S

Therefore,

n+l 1 1 1 nz)_cz
fana, ) =Cn (enm+ D7 exp [—5 inz + —}
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=(27r)(3)(n+1)5exp[ 52Nt 2(Zi1)}

fOo,xa, o0, X, 1)
f(xlyx29""xn)

2\ +1 F\2
f(ﬂ|x1,xz,...,xn)=(n_:1) exp[—(n2 )(M_nrj—cl)]

In this case (u|x) is N (n+l’ ,,Jlrl)
Therefore, Bayes estimate d*(x) = %
Now & ~ N (i, ).

Using first procedure

= [ (-2 s
(H)—/(?—#) S xlpwydx

fFlulxr, xo, o0 x,) =

Consider

- 2
nx npy m
= - + -
(n+1 n+1 n+1 M)

2 2
B n o o n - o
_(n—i-l) *x “)+( 1 “) +2(n+1)(x “)(n+1 “)

Since the third term is zero after expectation

n \*. _ 1>
hw =\ V(X)Jr(n+1)2

2 2 2
n 1 +n
hw=(——) -+ K 5 = a 3
n+1) n m+1 n+1)

Bayes Risk = r(d*)

S B L S
rd*) = (n+1)2mexp( 2)du (6.4.5)

—00

_ n+Ep?
T (n+1)?

and Ep? = 1
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r(d) = (6.4.6)

n+1

Using second procedure

nx \2 n+1 nt \?
h(xp, X2, ..., %) = — — - d
(x1, X2 Xn) /(u n+l) eXp’ > (u n+1)] 1%

1
(plX) p——

Bayes Risk = r(d*)

« ( ) 1 2 I12)_(32
r(d)_/ / Qm)y~\22m+ 1)~ 2exp Zin +2(n+1) dxy ... dxy,

1
d) = ——
r(d”) .

Note:

In both the examples, we get the same Bayes risk. Reader should select one procedure
according to simplicity of integral or summation.

Example 6.4.3 Let Xi, Xa, ..., X, be iid rvs with pdf
f&xl0) =exp[-(x—0)]; x>0

Consider the prior distribution of § is 7 = ¢~?; > 0. Find the Bayes estimator
of 6 under quadratic loss. In this problem range of # is very important.

fOay,x@), ...,

X |0) = n! exp[ (Z;':]x(i) —9)] ;0 <x) <X2) <t <Xy < OO
Q) ; otherwise

r=e?0>0
-9

_ n! eXp [— (Z?:lx(i) - n@)] e ; 0<0 < X(1)
f@ayx@, - X, 0) = [ 0 ; otherwise

n X
fxay, X@), - - -, Xmy) = nlexp |:Zx(i):| /em*nd@
0

i=1

x(l)(n 1 _ 1

= nlexp |: ZX(,):|
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(n— 1)6(9(1171)

fOW =1

5 0<0<X(1)

In this case Bayes estimator is d*(x)

E@0|X) = d*(x)

X(1) =1 1
@@ = - 4.
) (n - l) (exm(ﬂl) -1 (n—1)?2 (6.4.7)

Example 6.4.4 Let Xy, X, ..., X, beiid U(0, #). Suppose that the prior distribution
of 6 is a Pareto with pdf

o

abt g > 8
— 9(1+1 ’
() [ 0 ; otherwise

Using the quadratic loss function find the Bayes estimator of 6.

n!

7o 0<xa)y <x@) < - xm <40
X ez [0 F o 1) <X )
f(xay, X w10) IO ; otherwise

g(k .
a@y = 1 0>0
0 ; otherwise
nlag® | X ) <0 < 0o
X(1)s X(2)s -+ s Xy 0) = 1 77077 ; max (B, Xg)
TG, %o - 6) {0 ; otherwise

Case (1) Xy < B <0 <00

o0

nlaf® nla
f(x(l)s X@2)s + v e x(")) = gntatl df = n+ O()ﬁn
&
Case (2) B <X <0 < 00
o0
£ )= [ e o
X(1)s X@2)5 -+ -5 X)) = 1 = +
X(n) gree (n+ a)x?ﬂ)a
—(nJra)‘d]W ;0 <6 <00
ot s
f(6|X(1), X(2)s oo vs x(n)) = (ni(y)xf:;"
gt X < 6 < 00

Bayes estimate of § = d*(x)

(n+ )x@w)

n+a)f .
d (o) = | pragl WS B (6.4.8)
Traot s B <X
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Example 6.4.5 Let X1, X5, ..., X, be iid rvs from an exponential distribution with
mean % Let the prior distribution of ¢ is m(0) = exp(—o), ¢ > 0. Find the Bayes
estimate of ¢ and its risk using squared error loss function.

fx1,x2, ..., xy|0) = 0" exp [—UZX[]; x>0

i=1

—0

wo)=¢7 >0

f(xlvx%'-'vxn)z/anexp[_a(t+1)]d0, l:in
0 i=1
_ T+ 1)
C (4 D!

F(n+1)

dxldx2 1
= / / 0T )n+1 ZE (6.4.9)

0l = V" o+ 1] 0> 0
fax_r(n+1)aexp o ;0>

Note that

Bayes estimate is

1
d*(x) = E(olx) = ’:% (6.4.10)
n—+1

Vel =

Using second procedure
1 (1!
(o) :/ ( ntl 0) G+ D™ o414,
t+1 'n+1)

_ n+1
T+ 1)

= V(olx)
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Bayes risk = r(d*)

o n+1 TI'h+1)
r(d)—//.../(t+1)2(t+1)n+ldx1dx2...dx,,

+1F( +1 // /dxld)Q
=+ DT+ 1) o

_ m+DI'(n+1) . (n+ Dn! 1

Fn+3) — (m+2)! n+2

Using (6.4.9)

Reader should obtain the above risk using the first procedure. Generally, it is felt that
the first procedure is more complicated than the second. Therefore, reader should
select the procedure according to his understanding.

Following steps should be remembered to obtain Bayes estimator and its risk.

1. Find the joint distribution of X and 6.

ie, f(x,0) =f(x|0)m(0)

2. Find the marginal distribution of X from f (x, #). Denote it by g(x).
3. Find the posterior distribution of 6 given X.

ie.,f(0x) = fggxf)

4. According to loss function, find mean or median of 6 given X.

5. Use procedure I or II to find Bayes risk.

One should note that it is not always easy to go through these steps in practice.

Definition 6.4.4 Let X be arv with f(x|6) and € be a rv with 7(6). Then 7 is said to
be conjugate prior family, if the corresponding posterior distribution f(6|x) belongs
to the same family as 7 (6).

Example 6.4.6 Let the rv X be N (i1, 0%) and the v p is N (6, b?)

1
f&lp, 0%) = —=exp [——(x - u)ﬂ
o g
[, uloz)— [ (—u)} Wb [ 2b2(u— )]

— (=26 + 92):|

_2 _
ba(27r) 72 &~ 2ux ) 2b2

Consider

X2 =2ux+ > ud =240 + 602
a? + b?
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_x2 TR (X 0
satptatr Mty

x2b* + 6%0? 5 0% 4+ b? xb* + 0?
= T ) 2
o2b o2b? o2b?

x2b% 4 620 5 (0P 47 xb? + 0o?
=——5—+tun —2u\ —5—
o2b? o?b? o?b?

(xb* + 00?)? (xb* + 00?)?
o2b2 (o2 +b%)  02b%(0? +b?)

2
. X2 + 667 (xb? + 05%)? (o2 + bz)% xb* + 002
o2h2 o2b2(o2 + b?) o2b2 ob(o? + b2):

2
B0 — 240+ 67) 24\ xb? + 002
T B+ oH)b? o2h? ob(o? + b2)?

TRt o2b2 o2 + b2

1 ox (x — )2 x o 4+ b? xb* + 602 2
bo2m) TP | T2 o2 TP T 20 M T Tt
(x — 0)? :| 5 bo

2y —
8xlo) = o eXp[ 207+ | VT b 1 o)l

__ v [_ﬂ}
T @t L 20 o)

Therefore, posterior distribution of x given x i.e.,

Vo2 4+ b? |: o’ +b? ( xb2+002)2:|

J2mwob P 202b? % + b?

x—6)?2 o2+0? |: _xb2+002]2

[ plo®) =

Sflulx) =

b2 9 2 2b2
In this case 2 is N (0, b*) and p | x is N (xaz—-i'-_ bg ’ 0;:_ bz)

Hence 7(w) is said to be conjugate prior.
Definition 6.4.5 (Minimax estimate) An estimator d : X — 0 is called minimax

with respect to risk function R(6, d) if it achieves the smallest maximum risk among
all estimators, meaning if it satisfies



6.4 Limit Superior and Limit Inferior 249

supR(6, d) = inf supR(0, d)
0e® d 9eo

Note that if a Bayes’ estimator has a constant risk, then it is minimax.
In the following example, we try to find a minimax estimate.

Example 6.4.7 Lettherv X isB(n,p),0 <p < 1.
Find a minimax estimate of p of the form aX + 3, using squared error loss function.

Consider

R(p,d) = E(aX + (3 — p)*
= E[aX + 8+ anp — anp — p]*
= Ela(X —np) + 8+ p(an — DI’
= o?E(X — np)? + 3% + p*(an — 1)? 4+ 2BaEX — np) + 28p(an — 1)
+ 2ap(an — 1)E(X — np)
= V@) + 3 +p*lan — 1> + 26pan — 1)
= o’npq + 3 + p*(an — 1)* +28p(an — 1)
a’np(1 — p) + 3% + p*(an — 1) +20p(an — 1)
= p’l(an — 1)> — &’nl + pla’n + 2B(an — )] + 3

Let d* is a minimax estimator of p if R(p, d) is constant.
Therefore, to find  and /3 such that coefficient of p? and p equal to 0, then R(p, d)
is equal to 3.

(an—1*=a’n=0 (6.4.11)
a’n+2Ban—1)=0 (6.4.12)
From (6.4.11),
1 or 1
o =
Vn(l + /n) Vn(y/n—1)
1 1

B

= or _
2(1+ /n) 2(J/n—1
By omitting second set of roots, we get

1

o X
TR =m0+ v

(6.4.13)
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To show that d*(X) is a Bayes estimate for some prior 7(p), where

_ pa—l(] _p)b—l .

w(p) = O0<p<l1, ab>0

Bla,by T ’
The posterior pdf of p given X is

px+a—1 (l _ p)n—x+b+1

h(plX) = 3(a. b) ; O0<p<1
EplX) = _rta (6.4.14)
n+a+b
Hence
X+a
X)) = — 6.4.15
&X) n+a+b ( )

From (6.4.13) and (6.4.14)

X " 1 _ X . a
n+.yn 2(/n+1) n+a+b n+a+b

1 a
a+b=ﬁandm=m
1
= ¢ __ :>a:\/—ﬁ and b:ﬁ
n+.n 2(Jn+1) 2 2

For this choice of a and b, the estimate d*(X) is minimax with constant risk

1
RO,d*) = 3* = TN SIS (6.4.16)

Now, compare (6.4.16) with the variance of the UMVUE of p.
In this case p = %

_p(1—p)
- n

Var(p) (6.4.17)

From (6.4.16) and (6.4.17) we will see the following table for n = 5(5)50(50)200
and p = 0.2, 0.5.
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n

R, %) Var()(p = 0.2) Var(p)(p = 0.5)

251

5 0.2387 0.320 0.05
10 0.01443 0.0160 0.025
15 0.01053 0.0107 0.0167
20 0.00834 0.008 0.0125
25 0.00694 0.0064 0.01
30 0.00596 0.0053 0.0083
35 0.00523 0.0046 0.0071
40 0.0047 0.0040 0.00625
45 0.0042 0.0036 0.056
50 0.0038 0.0032 0.005
100 0.0021 0.0016 0.0025
200 0.0011 0.0008 0.0012
p(l—p)< 1 i |p— lI ‘/1—}-2\/_ 4
n 41+ n)? 2—2(1+f) !
¢ pd=p _ 1
n T 4(1 + /n)?
) n
=2>p —p+——-—+5<0
PP 0T gy
:>1 ,/1+2f <1+,/1+2\/ﬁ
2 20+ DS 2T 20
= ! <p= ! +
- —ap = = 5 ay
2 P=3
= ! ! +
€|z —an, 7 n
PE|5—n5+a
supV(p) = _on+2n+1
= - =
sup R(P, d*) TEy R n
Asn — oo
sup V(p)
supR(P, d*)

We can numerically see the above result.
We can conclude that one should prefer the minimax estimate if » is small and
would prefer UMVUE if n is large. Moreover, it is simple.
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Example 6.4.8 Letthe rv X is N(0, 1) and the rv 6 is (), where

exp[—(0 — a)]
[1+exp[—( — )]’

w(0) =

where « is the location parameter.

Marginal pdf of X is g(X), where

O x— 9>2

«/_/ [1 4+ e (0-7]2

g(X) = do, (6.4.18)

It is difficult to integrate (6.4.18). Hence the closed form of g(X) is not known.
Then we cannot get the closed form of f(#|x). Due to mathematical convenience,
statisticians use conjugate prior. Naturally, posterior distributions also belong to the
same family.

Example 6.4.9 Consider an urn with N balls, M of which are white and N — M are
red. Suppose that we draw a sample of n balls at random (without replacement) from
the urn. Then the probability of getting k white balls out of n is

() Cd).
G)

Here, we wish to find minimax estimate of M

PX = kM) = k=0,1,2, ... min(n, M)

Note that

nM(N —n)(N — M)
N2(N —-1)

nM
BXO) = — V00 =

We seek a minimax estimator of M of the form aX + [ using squared error loss
function.

RM,d) =E[aX + 3 — M]?

anM anM 2
-M
N N

:E[a( —%)+M(%—1)+5]2

=B (x =) e () o ()

—E|:aX+ﬁ+

N
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(other terms are equal to 0 because EX = %)
a?nM (N — n)(N — M) an 2 an
= +M2(——1) +2M(——1)+ 2
NZ2(N - 1) N p N p
_ n(N—-n)
Let QO = V=D

RM, d) = a?OM(N — M) + M? (% _ 1)2 +28M (% — 1) + 3

—oe (55 -1) =] e mwov 2 (1)

For a minimax estimator, R(M, d) = 3*

N (% _ 1)2 20 =0 (6.4.19)

and

Therefore,

Further, from (6.4.19)

n(N —n)
nt./=g—1

N

N

n(N —n)
nt./ -
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We will consider

N
n I

Next we show that aX + [ is the Bayes estimator corresponding to the prior pmf.

o =

1
N 3 pa—l(l _p)b—l
P(M = m) = / ( )p’"q” " ———dp
b
J \m Ba, b)

_ ()Ba+m,N—m+b)
B Ba, b) ’

m=0,1,2,....N
P(X, M) = P(X|M) x P(M = m)

_ @A™ M) Ba+m, N —m+b)

() B(a, b)
P(X =k) :ka (MO (M) Ba+m, N —m+ b)
m=k ()B(a. b)

The Bayes estimate is given by

SEEm() ™M) Ba +m N —m+ b)
S O () B@+m N —m+b)

m\ (N —m Nn!(N—n)!_ N —n\ (N\ [(n
kJ\n—x)\m)nN—-n!  \m—k)\n)\k
Setmasm+a—a,leti=m—k,ifm=k=i=0andm=N—-n+k =

i=N-—n

d* (k) =

S (V)N +a+i+ DTN +b—k—1i)
SN (V)P +a+ DTN +b—k — i)

L

d* (k) =

Consider

i() (a+m,N—m+b)
A(a, b B

m=0
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N

N _ T(@T BTN +a+b)
Z(m)F(a+m)F(N—m+b)_ Teth

m=0
Using this
N—n

N —n . .
z( ; )F(k+u+1+1)l"(N+b—k—z):
i=0

Fk+a+DIG—k+N)I'(N+a+b+1)
Fae+b+N+1)

Similarly,

N—n
N-—n . . Tk+al(b—k+NI(N+a+b)
;0( l_ )I‘(k+a+t)I‘(N+bfkfz)_ S

Therefore, the Bayes estimator of M is

(k+@W +a+h)

d*(k) =
) a+b+n

6.5 Exercise 6

1. Let Xi, Xo, ..., X,, are iid with B(n, p) and L(p, d(x) = [p — d(x)]?. Obtain the
Bayes estimate for p if p has Beta distribution with parameters a and b. Find the
Bayes estimate of p and its risk.

From the following data, obtain the estimate of p fora = 3 and b = 5.

35,3,4,4,3,4,5,2, 4

Compare the variance of Bayes estimate of p and UMVUE of p.

Further, obtain the Bayes estimate for weighted loss function.

2.LetX;, X, ..., X, areiid rvs from N (u1, 1) and 1 is N (o, 3%). Obtain the Bayes
estimate of y under squared error and weighted quadratic loss function.

From the following data obtain the estimate of y for & =2 and 5 = 3.

0.4384 6.8281 40.0148 29.3679

—10.3823 0.0871 —9.5146 19.8065

12.9548 32.6523 —2.0395 —15.8874

8.9464 —0.2844 11.0987 —10.8222

40.6232 14.3904 —8.7655 —4.4608

Obtain the Bayes risk of /i and compare it with the variance of UMVUE of .
3. In example 2, if p is U(0, 1), then find Bayes estimate of ; under squared error
and weighted quadratic loss function.
4. Let X1, X5, ..., X, are iid rvs with pdf

_Jexpl-x—a)] ; x>«
fxla) = 0 ; otherwise
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Obtain the Bayes estimate of « if

—a p
e aab 1

W(@):W;a>0, a,b>0

and the loss function is squared error and weighted quadratic loss function.
From the following data obtain the Bayes and UMVUE estimate of a.

6.1398 5.5978 6.4957 6.5645 6.2387
10.7251 7.2395 5.0859 5.4681 5.3441
6.1722 6.4479 7.2601 9.0449 8.2572
5.4054 6.9218 7.3457 5.3869 5.7536
6.1015 6.3037 6.9928 6.4762 5.8694

Assume a = 4 and b = 6. Find Bayes risk.
5. Suppose that the vector X = (X, X», X3) has a trinomial distribution depending
on the index n and the parameter P = (pi, p2, p3), where p; +p, + p3 = 1 and
n = x; + xp + x3, that is,

f&lp) = P paps®

X111z !

Obtain the Bayes estimate of p if p; is U(0, 1).
6. Let the rv X is B(n, p). Suppose that your prior for p is % : i mixture of U(0.1, 0.5)
and U(0.3, 0.9). Obtain the Bayes estimate of p, if the data is n = 10, X = 4 under
squared error and weighted quadratic loss function and further obtain the minimax
estimate of p.
7. Let the rv X is NB(r, p), r is known. Suppose that the prior distribution of p is
U(0, 1). Find Bayes estimate of p and its risk.
8. In problem 1, if the prior distribution of p is 7(p), where
ap®! ; 0<p<1

™p) = [ 0 ; otherwise
Obtain the Bayes estimate of p and its risk.

For oo = 3, calculate the Bayes estimate of p (use the data given in problem 1).
9.Let X1, X5, ..., X, is NB(r, p), r is known. Suppose that your prior for p is % : %,
mixture of U(0.2, 0.6) and U(0.3, 0.9). Obtain the Bayes estimate of p and its risk
under squared error loss function from the following data.

14 10 11 25 21 13 16 17 7
16 20 20 16 14 22 17 19 26
14 17

Assume r =5
10. A random sample of size n is taken from N (u, 1). The prior distribution of w is
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|1 pu>0
) = [O ; otherwise
Find the Bayes estimate of x under squared error loss function.
11. Let the rv X be N (u, 1). Suppose that your prior for p is }1 : %, mixture of N(1, 1)
and N(2, 1). Find the posterior probability of u > 2, if the observation from X is
L.5.
12. Let X, X», . .., X,, are iid from f (x|0),

(a+ Dx*

pati i 0<x<¥6

f(x10) =
Find the Bayes estimate of § and its risk using conjugate prior.
13. Let the rv X is B(n, 0) and the rv Y is NB(n, ¢). Suppose the prior distribution of
0 is w(0),

B ea—l(l _9)17—1.

Find the Bayes estimate of € and its risk.
14. Let X1, X5, ..., X, are iid rvs from an exponential distribution with mean é

Let the prior distribution of o is % : %, mixture of exponential with mean « and £.
That is

Find the Bayes estimate of ¢ and its risk using squared error loss function.
15.Let X, Xs, . .., X, beiid U(0, 8). Suppose that the prior distribution of 8 is Pareto
with pdf 7(0),

a3
=t 0> 0
— 90+] E)
m(©) [0 ; otherwise

Using squared error loss function find the risk of the Bayes estimator of 6. Calculate
the Bayes estimator from the following data fora = 2, § = 5.

3.92 044 997 7.68 2.45 2.03 1.34
5.26 3.05 6.46 6.56 3.02 8.73 6.93
7.06 4.51 1.67 0.73 6.13 0.83

16.Let X, X, ..., X, beiid U(, 8+ 1). Suppose that prior distribution of € is Pareto
with pdf 7(0),

.
7T(9) — % 5 9 > 6
0 ; otherwise
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Using quadratic and weighted loss function, find the Bayes estimate of §. Calculate
the Bayes estimator from the following data fora =3 and 5 = 8

3.72 3.56 5.89 3.91 4.27 545 8.12
6.94 2.87 6.72 3.84 8.25 3.70 6.78
5.30 3.38 5.46 5.45 6.69 8.99

17. Let X, X», ..., X, be iid rvs with pdf
fx10) = exp[—(x —O)]; x >0

Find the Bayes risk of estimator if 7(6) = e~ : 0 > 0
18. Let X, X, ..., X, be iid rvs with pdf

f(x10) =exp[-(x—0)]; x>0

Assume squared error loss function and find the Bayes estimator of  if prior distri-
bution of 4 is 7 (6),

1 ¢t
k=1 ,—2

m(0) = W;

0>0, a,k >0

Calculate the Bayes estimator for the following data.

3.03 2.34 2.25 3.07 2.79 2.50
2.08 2.40 2.24 2.26 2.51 3.16
237 3.11 2.25

Assume k =4 and o = 5.
19. In problem 17, if 6 is U(0, 1) then find the Bayes estimator under squared error
and quadratic loss function. Further find its risk. Calculate the Bayes estimator of 6
using the data given in problem 18.
20. Let X1, X5, ..., X, be iid rvs with U(6, 26). Suppose that the prior distribution
of 6 is Pareto with pdf

af®
st 30> 0
— eiH»l E)
() [O ; otherwise

Using quadratic loss function, find Bayes estimator of # and its risk. Calculate Bayes
estimator from the following data for « = 2 and § = 4,

4.16 2.41 4.01 2.52 2.76 2.30 2.89
5.60 5.47 2.85 4.89 5.15 2.71 3.51
3.15

21. Let X1, X5, ..., X, be iid rvs with f(x|6) and g(x|0). If m is even then Xp;_;
has f(x|0) and X5, has g(x|6), where k = 1, 2, ..., 2. Assume f(x|0) = (';)9)‘(1 —
0)":x=0,1,2,....nandg(x|6) = ("*7)0"(1-6)";x = 0,1,2,.... Assuming
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prior distribution of 6 as 3(a, b), find Bayes estimate of # under squared error loss
and weighted quadratic loss function.
22. Let the rv X has exponential distribution with mean 6 and the rv X, has g(x, ),

gx|) =0x"" 0<x<160>0

Find the Bayes estimate of # under squared error and weighted loss function. Assume
that 6 has improper prior distribution.

23. Letthe rv X; has U(0, 0) and X, has U(6, 8+ 1). Suppose that the prior distribution
of 6 is a Pareto distribution with pdf

abt g > 15}
— 9u+] [}
() [ 0 ; otherwise

Using quadratic loss function, find the Bayes estimate of 6.
24. Assume that rvs X; and X, are distributed as U(0, #) and exponential with mean 6,
respectively. Find the Bayes estimate of 6 under the quadratic loss function. Further,
assume that prior distribution of 6 as specified in problem 23 and obtain the Bayes’
estimate of 6.
25. Let X1, X, ..., X, be iid (i) U(—0, 0) (ii) U(0, %) (iii) U, k0), k > 1 (iv)
U(—26, 20).

Suppose the prior distribution of 6 is 7(6)

ar L 0>p
— 90+] E)
() [ 0 ; otherwise

Using the squared error loss function, find the risk of the bayes estimator of 6 (use
the data given in problem 20).
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Chapter 7
Most Powerful Test

Suppose that your parliament is considering a proposal for uniform civil code for all
religions. To gather information, a group surveys 500 randomly selected individuals
from their district and learns that 65 % of these people favor the proposal.

Can the Member of Parliament conclude that a majority of all adults in their
district favor this proposal? Because the result is based on the sample, there is a
possibility that the observed majority might have occurred just by the “Luck of the
draw.” If the majority of the whole population actually opposes the proposal, how
likely is it that 65 % of a random sample would favor the proposal?

In this chapter, we will learn how to use the method of statistical hypothesis testing
to analyze this type of issue. The hypothesis testing method uses data from a sample
to judge whether or not a statement about a population may be true. A hypothesis
test is used to answer questions about particular values for a population parameter,
or particular relationship in a population, based on information in the sample data.
The five steps for any hypothesis test follow.

Step 1: Determine the null and alternative hypothesis.

Step 2: Verify necessary data conditions, and if met summarize the data into an
appropriate test statistics.

Step 3: Assuming the null hypothesis, find the p-value.

Step 4: Decide whether or not the result is statistically significant based on the
p-value.

Step 5: Report the conclusion in the context of the situation.

We shall learn these steps one by one.

7.1 Type-1 and Type-2 Errors

Let (X1, X5, ..., X,) be iid from f (x|0), # € ® and ® C N. Further, we assume that
the functional form of f (x|#) is known except the parameter 6. Also, we assume that
0 contains at least two points.

© Springer Science+Business Media Singapore 2016 261
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Any statement about the population or population parameter from which a given
random sample (xi, xz, ..., x,) may have been drawn is called a null hypothesis.
Further, a parametric hypothesis is an assertion about the unknown parameter 6. It is
denoted by Hy. Moreover, we can say that no statistical significance exists in a set of
given observations. The specific null hypothesis varies from problem to problem, but
generally it can be thought of as the status quo, or no relationship, or no difference.
In many instances, the statistician hopes to disprove or reject the null hypothesis.

The alternative hypothesis is denoted by H;. It is a statement that something is
happening. In most situations, this hypothesis is what the statistician hopes to prove.
It may be a statement that the assumed status quo is false, or that there is arelationship,
or that there is a difference.

Consider the following example of null hypothesis:

Men and women have same 1.Q.
There is no difference between the mean pulse rates of men and women.
e The accused is not guilty.

Some examples of alternative hypothesis

Men and women do not have the same 1.Q.
There is a difference between the mean pulse rates of men and women.
e The accused is guilty.

In notation, we can write:
Hy : 0 € ®g, where ®) C ©
H :0e®,where ® C ©®

Definition 7.1.1 If ®, or ®; contains only one point, we say that @ or © is simple
hypothesis, otherwise it is composite hypothesis.
If the hypothesis is simple, the probability distribution of X is completely specified.

(1) For example, if the rv X is N (i, 1) and Hy : = 4 and H, : p = 5. In this case
under Hy, X is N(4, 1) and under H;, X is N(5, 1). Hence it is a simple hypothesis.

(2) Let the rv X is N (i1, 0%) and both 1 and o2 are unknown.

O ={(u,0?) : —00 < u < 00, 0> > 0}

Let Hy : 1 < pg, 0> > 0, where ji is known constant against H; : 1 > o,
o> 0.

In this case, both null and alternative hypothesis are composite.

Given the sample point X = (x|, xp, . .., X, ), we have to find a decision rule which
will lead to a decision to accept or reject the null hypothesis. Further partition the
n-dimensional Euclidean space ), into two disjoint sets A and A°.

If x € A, reject Hy and x € A°, accept H.

Definition 7.1.2 Let X|, X5, ..., X, are iid rvs from f(x|0), # € ©. The subset ‘A’
of M, such that if x € A then Hj is rejected with probability 1 is called the critical
region or rejection region.
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NN
NG NG

%,

A

A° - Acceptance region

- Rejection region
or
Critical Region

Fig. 7.1 Acceptance and rejection region

In notation, we can write,

A = {x e M, Hy is rejected if x € A}; see Fig.7.1.
We can make two possible types of error:

263

(i) We may reject the hypothesis when we ought to accept it; i.e., when it is true
(ii)) We may accept the hypothesis when we ought to reject it; i.e., when it is false

Decision
Test Reject Hy |Accept Hy
Hy True |Type-1 error|Correct
H False|Correct Type-2 error

Let o = Probability of Type-1 error and

(8 = Probability of Type-2 error.

Choose the critical region so as to minimize both types of errors simultaneously,
but this is, in general, not possible for a sample of fixed size. In fact, decreasing one
type of error may very likely increase the other type. Thus, by deciding to always
accept the hypothesis, we can reduce type-1 error to zero, but in that case 8 would
have its largest value, i.e., 1. In practice, we keep type-1 error fixed at a specified
value and then, out of these critical regions all of which give this type-1 error, we
choose that region which minimizes the type II error. The type-1 error, which is the
same for all these regions, is sometimes called the size of the critical regions.

Definition 7.1.3 The test function ¢ is defined as ¢ : )t — [0, 1]

Examples of test function

1) ¢o(x) =1VxeNR,
(i) ¢(x) =0Vx e N,

(i) p(x) =5,0<86<1,VxeR,

Definition 7.1.4 The test function ¢ is said to be a test of hypothesis Hy : 6 € ©g
against the alternative H; : § € ®; with the error probability « (it is also called level

of significance) if

Epp(x) <a Y e 0

(7.1.1)
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Further, our objective will be to seek a test ¢ for a given o,0 < a < 1, let
B4(0) = Egg(x), such that

sup 5,(0) < « (7.1.2)
9&@()

LHS of (7.1.2) is also known as the size of the test ¢. From (7.1.1) and (7.1.2), we
can conclude that it restricts attention to those tests whose size does not exceed a
given level of significance a.

In the hypothesis testing problems involving discrete distributions, it is usually
not possible to choose a critical region consisting of realizable values of the statistics
of size exactly o, where « is some prescribed value. In simple hypothesis, we can
write o = Probability of type I error,

= P[Reject Hy|H) is true], and
(3 = Probability of type II error,
= P[Accept Hy|H, is false]
For a nonrandomized test with rejection region A, ¢ for a region A is just an

indicator function. That is,
1;x€A
o) = [O;xeA"

We will extend this to allow for some different action (other than reject and accept) if
the outcome X is on the boundary of the critical region. The other action effectively
is performing an auxiliary experiment such as tossing a coin with Plheads] = p; if
head results, reject Hy; if tail results, Hy is accepted. The value of p is chosen to
make P[Reject Hy|H) is true], the desired value.

More formally, for a test with critical region A and a value of X = x; on the
boundary, we may define

1;x<x

Px) =175 x=x0
0 ; otherwise,

where 0 < p < 1.
Such a test is known as “Randomized Test.”

Example 7.1.1 Suppose X has a Poisson distribution with mean A\. A sample of size
n = 10 is used to test Hy : A = 0.1 against H; : A > 0.1.

Note that ¥ = Z}gl X; has a Poisson distribution with mean 10).
The test is to reject Hy for large values of Y. Suppose we wish to have a significance
level of o = 0.05.
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Now, P[Y > 3] = 0.08 and P[Y > 4] = 0.019. The desired level of significance
can be achieved by the test

v

w W A

oY) =

o2~
~ =~
A

P[Reject Hy|H) is true] = 0.05

E¢(y) = 1 x P[Y > 4]+~ x P[Y = 3]+ 0
= 0.019 +4[P(Y > 3) — P(Y > 4)]
= 0.019 +~[0.08 — 0.019]
= 0.019 +~(0.061)

Therefore,
= 0.019 + 7(0.061) = 0.05

31

==

Hence, the randomized test can be written as

1 ;Y>3
o) =13 r=3
0 ;:;Y<3

Example 7.1.2 Let the random variable X has U(6;, 6,). We wish to test Hy : 6; =
2,0, = 5 against H : 6, = 3,6, = 8, using a sample of size 1. Find randomized
test of size o = 0.05.

Clearly any sensible decision rule would include if x € (2,4), Hy should be
accepted, if x € (3, 8), Hy should be rejected. But if x € (4, 5), we will reject Hy
sometimes and accept Hy sometimes (Fig.7.2).

Our ¢ function will be

1:Xe(5,8)
pX)=17:Xe@5)
0;:Xe@2.4
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Fig. 7.2 Acceptance-rejection region

o = P[Reject Hy|H) is true]
005=1xP[X e (58]+~vxPXe4,D5)]

5
1
=0 —d.
+’y/3 Ix
4
7
3
=v=0.15
Our randomized test is
1 1 Xe(5,8
oX)=10.15;X€ 4,5
0 :;Xe,49

% ¥

Definition 7.1.5 Let ¢ be any test function for Hy : § € ©¢ and H; : 6 € ©;. For

every 0 € ®1, define

Bs(0) =Egp(X); 0 € 0O

(7.1.3)
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As a function of 6, 3,(0) is called the power function of the test ¢, for 0 € ©,.
Further in simple hypothesis if 3 is Type II error then power of the test is 1 — 3.
Moreover in composite hypothesis 3,(6) for f € ©, is a power function.

Problem in Testing of Hypothesis

Let X1, X5, ..., X, be iid rvs from f(x|f),0 € ©. Assume 0 < « < 1 be given.
Given a sample point X, find a test ¢(x) such that

sup B4(0) < «
96@0

and 3, (0) for 0 € ©; is maximum.

Evidently, we can find in general many and often even an infinity of subregions
A of the sample space, all satisfying (7.1.2). Which of them should we prefer to the
others? This is the problem of the theory of testing of hypothesis. We can put it in
different words as to which set of observations are to regard as favoring and which
is disfavoring a given hypothesis?

Once the question is put in this way, we are directed to the heart of the problem.
Knowing H, alone, along with the properties of the critical region does not suffice. It
is essential to know the alternative hypothesis also. What happens when some other
hypothesis holds? In other words, we cannot say whether a given body of observations
favors a given hypothesis unless we know to what alternatives this hypothesis is
being compared. The hypothesis being used to study the set of observations should
be meaningful and appropriate hypothesis should be stated. For example, if our
objective is to test the quantity of milk in 500 ml packet, it is obvious that testing
should be done around 500 ml and must not vary from far 500 ml, like say 300 or
600 ml. Mathematically, it may be correct but statistically it is incorrect. The problem
of testing a hypothesis is essentially one of choice between it and some others. It
follows immediately that whether or not we accept the original hypothesis depends
crucially upon the alternatives against which is being tested.

Here, we seek a critical region A such that its power defined in (7.1.3) is as large
as possible. Then, in addition to having controlled the probability of type-1 error
defined in (7.1.1) or (7.1.2), we have to minimize the probability of type-2 error.

Now, we will consider some examples of type-1 and type-2 errors.

Example 7.1.3 Let the rv X is distributed as U(0, §). We are testing the hypothesis
Hy : 6 = 1 against H; : 6 = 2 based on a single observation. Calculate the type-1
and type-2 errors based on the following critical regions. Also obtain the power of
the test.

(1) Ay = {x]0.9 < x}
(i) Ay = {x|]1 <x < 1.5}
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(i) Type-1 error = P[Reject Hy|H) is true]

=P[X > 090 = 1]

1
:/dx:O.lO

0.9

Type-2 error = P[Accept Hy|H| is true]

=Pl0<X <090 =2]

049d
=/i=0%
2
0
Power = P[Reject Hy|H, is true]

— P[X > 0.9]0 = 2]

= P[09 < X < 2]6 =2]

: dx
=/ —=055
2
0.9

(i)A ={x:1<x<1.5}
Type-1 error = P[1 < x < 1.5|60 = 1]

1

Type-2 error = P[Accept Hy|H, is true]

= Plx € A;°|0 = 2]

=1—Plx € Ay0 =2]

7 Most Powerful Test
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1.5

:li/@zﬁﬁ
2
1

Power = P[Reject Hy|H, is true] = P[x € A;|0 = 2] = 0.25

Example 7.1.4 If X > 1 is the critical region for testing Hy : # = 2 against H; : 0 =
1 on the basis of a single observation from the following population

e x>0,0>0
fx10) = 0 ; otherwise

Obtain Type-1 and Type-2 errors. Further obtain the power of this test.
A={xlx>1},A° = {x|x < 1}
We can say that A is the critical region

(i) Type-1 error = P[Reject Hy | H is true]

=Plx > 110 = 2]

o0
:/26’2"dx =¢?
1

Type-2 error = P[Accept Hy|H| is true]

=PX <16=1]

1

=/efxdx= 1—e!

0

Power = P[Reject Hy|H| is true]
=PX=>1=1]=¢"

The probability of Type-1 error o depends on the choice of the critical region A
and on the hypothesis Hy, while probability of Type II error 3 depends on both the
hypothesis Hy and H;. An increase in « results in decrease in 3 and a decrease in «
results in an increase in (3.

Example 7.1.5 Research and development department of a pharmaceutical company
has recently developed a dietary supplement to reduce cholesterol level. Company
applied for license to FDA, a drug regulatory body, to market the drug. The FDA
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authorities asked the company to administer the supplement on 100 people and check
hypothesis.

Hy: The drug does nothing to reduce the cholesterol, i.e., p = 0.10.

H,: The drug reduces the cholesterol in 20 % people, i.e., p = 0.20.

FDA knew from the past experience that in about 10 % of the people cholesterol
declines naturally. FDA decided to issue license for marketing the drug only when
the experiment shows strong evidence that the drug reduces cholesterol 20 % of all
the people. FDA also supplied the decision rule

~ |15 p>0.15
SO =10.5<0.15

where p is observed proportion and p ~ N(p, £2).
Probability of type-I error

P[p > 0.15|H, is true]
= P[p > 0.15|p = 0.10]

p|P=P 0.15-0.10
= >
/pa +/0.0009

= P[z > 1.67], where z~N(©0,1), g=1—p,

= 0.0475,
Probability of type II error = P[Accept Hy|H| is true]

= P[p < 0.15|p = 0.20]

= P[z < —1.25] = 0.1056 (7.1.4)

Example 7.1.6 Let X and Y be two independent rvs with U(0, #). We are testing the
hypothesis Hy : § = 1 against H, : §# = 2. Calculate the probability of type-1 error
and power of the test based on the following critical regions

(i) (X +Y) > 0.75 (i) XY > 0.75 (iii) ¥ > 0.75

X and Y are independent random variables.

1) X ~U,1),Y ~U(@, 1),

To find P(X + Y > 0.75) (ii) P(XY > 0.75) (iii) P (§ > 0.75)
Here X ~ U(0, 1) and Y ~ U(0, 1),
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Also X and Y are independent.

Jxy(x,y) =fx)fy ()

1;0<x<1
Jx@) = [0 ; otherwise
_[1y0<y<1
fr) = i() ; otherwise
_[1ivo<x<to<y<1
Sy, y) = Io ; otherwise

We will find probability of type-1 error in all the three critical regions.

Here, as the value of pdfiis 1, forall 0 < x < 1,0 < y < 1, the probability
required will actually be the area bounded by x +y > 0.75,x < landy < 1,x > O,
y > 0. Required region is A.

Now Area (A) + Area (B) = Area of Squares

3 3

Area (A)=1-Area(B)=1— 3 X 7 X 7 Since B is a right angled triangle.

9 23

32 32
PX+7Y > 0.75) = 0.71875; see Fig.7.3

>ii) P(XY > 0.75) Here, XY = 0.75 is a hyperbola.
Required region is A

Fig. 7.3 Area for Y

X +Y > 0.75 under Hy A x=1
A
N7
0.75
B /
(0,0) 0.75 1 T x
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1 0.75
Area (A) = / (1 — T) dx

%
= [x = 0.75logx]}

3
=({1-0.75logl) — (4_1 —0.751og 0.75) =1-0.9657 = 0.034238

. P(XY > 0.75) = 0.034238; see Fig.7.4

(iii) P (%‘ > 0.75)

X = 3Y. Required region is A.
Area (A) 4+ Area (B) =1
1 3
Area (A) = 1-Area(B) =1 — 3 X 1 x 1
3 5
=1—-=-=0.625
8 8

X
P ¥ > 0.75) = 0.625; see Fig.7.5.

Next we will find power of the test in all the three regions.
Here X ~ U(0, 2) and Y ~ U(O0, 2),
Also X and Y are independent.

Sxy@x,y) =fx@f®)

% ;0<x<?2
0 ; otherwise

fxx) = [

P

; otherwise

Fig. 7.4 Area for
XY > 0.75 under Hy

(0,0) i X
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Fig.7.5 Areafor & > 0.75 Y
under Hy A b'e Iy = 0.75

(3/4,1)

+ -

(0,0) 1 X

1

+:0<x<2,0<y<?2

—la> J
fry@x,y) = [O ; otherwise
Here, value of pdf is j—w forall 0 < x < 2,0 <y < 2. The required probability will
be the area bounded by given lines or curves multiplied by %.
OHPX+Y >0.75
3

1
Area (A) = 4-Area (B) =4 — 3 X 1 X

B w

=4 - i = 3.71875
32

1
PX +Y > 0.75) = 7 x 3.71875 = 0.92968

oo PX+Y > 0.75) = 0.92968; see Fig.7.6
(i) P(XY > 0.75)

2
Area (A) = / (2 - 0x_75) dx

3
8
= [2x - 0.75 log ]

3 3
=4 —-0.75log2) — (4_1 —0.751og g) = 3.480139 — 1.48562 = 1.9945
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Fig. 7.6 Area for
X +Y > 0.75 under H;

7 Most Powerful Test

.". Required probability = }1 x 1.9945 = 0.49863
P(XY > 0.75) = 0.49863; see Fig.7.7

>iii) P X 0.75
1ii) (;> . )

1
Area(A):4—Area(B):4—§ X15x2=4—-15=25

Fig. 7.7 Area for
XY > 0.75 under H;

— = 0.625; see Fig.7.8.

X 2
Pl—>075)=
Y 4

Y
A
A
2 >
3/4
B
>
(0,0)| 374 2 X
Y
X
A
(3/8, 2)
2 5
(3/4,1)
(1,3/4 e
SE—
(0,0) 2 Ty
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Fig.7.8 Areafor & > 0.75 Y
under H /
“@%//m)

-
Y

xly=0.75

10.0) 2 X

7.2 Best Critical Region

A critical region whose power is no smaller than that of any other region of the same
size for testing a hypothesis Hy against the alternative H is called a best critical
region (BCR) and a test based on BCR is called a most powerful (MP) test. We will
illustrate this BCR in notation.

Let A denote a subset of the sample space S. Then A is called a BCR of size
« for testing Hy against H if for every subset C of the sample space S for which
P[(Xi,X5,...,X,) € C] <a.

LetX = (X1, X,,...,X,)

(i) P[X € A|Hy is true] < «

(ii) P[X € A|H, is true] < P[X € C|H, is true] (7.2.1)

A test based on A is called the MP test.

Definition 7.2.1 Let ¢, be the class of all test whose size is a. A test ¢g € ¢, is
said to be most powerful (MP) test against an alternative 6 € ®; if

B () = By(0), Yo € ¢, (7.2.2)

Note: If ®; contains only one point, this definition suffices. If on the other hand
©®, contains at least two points as will usually be the case, we will have a MP test
corresponding to each ®.

Definition 7.2.2 A test ¢y € ¢, for testing Hy : 0 € O against H, : § € ® of size
« is said to be uniformly most powerful (UMP) test if
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Table 7.1 Ratio of probabilities under H; to Hy
X Po(X) P1(X) B

Py (X)
0 T T 1
32 1024 32
1 5 15 3
ky) 1024 32
2 10 90 )
32 1024 32
3 10 270 27
32 1024 32
4 5 405 81
32 1024 32
5 T 243 243
k) 1024 2
By (0) = B4(0), Y ¢ € ¢ uniformly in 6 € ©, (7.2.3)

There will be many critical regions C with size o but suppose one of the critical
regions, say A is such that its power is greater than or equal to the power of any such
critical region C.

Example 7.2.1 LetthervXis B(5, 0). WehavetotestHy : 6 = % againstH; : 0 = ?T

Consider the Table7.1:

Ha=2%

We can have two regions A; = {0}, A, = {5}
One can see

QZPmeWZ%}:PP:ﬂWZ—}

Power (A1) = Py, [Reject Hy|H] is true]

3 1
=Py |X=00=|=—
4 1024
3 243
ower (A,) A2|: 5|60 4:| 004

In this case A, is BCR.
One can observe that the BCR is found by observing the points in Py at which P
is small among other points. Hence, we have two sets A; and A5.

Pi(X) . .
Select BCR, such that 1S maximum.
PiX IPO(X) PiX 243
atx =0, 0 1 dax s B 28
Po(X) 32 Py(X) 32

PIX=0) PPX=5)] 243
PoX=0) Po(X=5]  32°
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Hence, BCR = A, = {X = 5}.
(o=
We can have the following four regions:
A =1{0,1},A, = {4,5}, A3 = {0,4}, A, = {1, 5}

Critical region | Power
A 5
Ar %
A3 e
Ag 25

Power is maximum at A,. In this case BCR is A,.

One can observe that 3 21 has largest and next largest values at X = 4 and X = 5.

Thus, if Hy and H, are both composite, the problem is to find a UMP test ¢ a test
very frequently does not exist. Then we will have to put further restriction on the
class of the tests ¢,,.

Remark: If ¢ and ¢, are both tests and A is a real number, 0 < A < 1, then
Ap1+ (1 =N ¢, is also a test function and it follows that the class of all test functions
Pq 1S convex.

Example 7.2.2 Let Xy, Xs, ..., X, beiid rvs with N (i, 1), where i is unknown. But
it is known that y € ® = {(uo, t1), 41 > po}. We have to find critical regions for
given o under Hy : p = po against Hy @ g = py (g > po)-

Assume that the critical region A = {X > k}. Define the test ¢(X) as

X >k

P(x) = 0 X <k

En,¢(X) = P[Reject Holp = pol
= P[X > k|p = po]
— PIVn(X — o) > /nlk — o)l =

Let Z = /n(X — po) and Z, = /n(k — Ho)
HenceP[Z>Z]—athenk—,u0—|—ﬁ

Hence our test is

1; X>u0+
P(x) = f

In this case X is known as test statistic.
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Power of the test = Ey, ¢(X) = P[Reject Hy|H| is true]

P|X +Z“'|
= > —_— =
Ho ﬁu 22

:p[ﬁo‘f—m>>ﬁ(ﬂo+%‘“l)]

=P [VnX — 1) > Zo — /n(p1 — p10)]

=1—®[za — v/n(u — po)]

Theorem 7.2.1 (Neyman—Pearson Lemma)
Let the rv X have pdfipmf) f (x|6y) and f (x]6;).

(a) Existence: For testing Hy : X ~ f(x|6y)(=fy) against H, : X ~ f(x|0,)(=f1)
and for every 0 < « < 1, there exists a test ¢, k > 0 and y(x) = -y such that

En,0(X) = (7.2.4)
where
L5 fi>k
X)) =17 5 fi =k (7.2.5)
0 A <Ko

and for a = 0, there exists a test ¢(x), k = oo such that

En,0(X) =0, (7.2.6)
where
Px) = [ 0l e (72.7)

(b) Sufficient condition for MP test: Any test of the form (7.2.5) for some k > 0 and
0 < v(x) <1, is most powerful of its size in A, for testing Hy : X ~ fi,

Ao = {9|En,0(X) < o} (7.2.8)
Further, if k = oo the test of the form (7.2.7) is most powerful of size o for testing

H, against H;.
(c) Necessary condition for MP test:
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If ¢* is the MP test of its size in A,, then it has the form as given in (7.2.5) or
(7.2.7) except for a set of X with probability zero under H, against H;.

Proof 1f k = oo then from (7.2.7)
Ep,0(X) =0,ie.a=0

(Note that when k is very large then almost there is no rejection region)
Next, if k = 0, then the test

_J1: /=0
PX) = [0 >0 (7.2.9)
Ep,¢(X) =1

Next, consider 0 < o < 1, let y(x) = v,
From (7.2.5),

Eny@(X) = Py, lft > kfol +vPu,lfi = kfol

= 1= Pylfi < kbl + vPu,lfi = kfol (7.2.10)
LetY = % then Py, [Y < k] is a df, i.e., it is nondecreasing and right continuous.

If, for a fixed «, there exists a ky such that
Py, lY <kl=1—-«
then Ey,¢(X) = , v = 0 and the test is

_ 1 A >k
¢’(X)—[o;f1<kfo

It implies that randomization on the boundary with probability v(x) = < is not
required when the distribution of Y given Hj is continuous. If the above situation is

not met then from (7.2.10),

Ep,p(X) =a and k =k

a=1=PylY < kol + ¥Py,[¥ = ko (7.2.11)
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PLY <kol+ (1 =P [Y =kl =1—-«
It implies
PlY <k <1-—«
and

PlY <kol = (1 —a) +P[Y = ko]

(1 —a) < P[Y < ko]
From (7.2.13) and (7.2.15),
PIY < ko]l = (1 —a) < P[Y < ko]
Hence, from (7.2.14),

_ PylY <kl —(1—0)
B Py, LY = kol

Then the test ¢(X) for k = kg is defined as
Ep,0(X) = «

and

L5 fi>k
oX) =17 ; fi =kh
0 5 f <k

(b) Let the sample space S is divided into three regions

57 = {x e SIhi(x) > kfo ()}

§% = {x € S|fi (%) = kfy(x)}

S” ={x e Slfikx) < kfo(x)}
Let ¢(x) be the test satisfying (7.2.5) and ¢*(x) be any test with

Ep,¢" (X) < Ep,¢(X)

(7.2.12)

(7.2.13)

(7.2.14)

(7.2.15)

(7.2.16)

(7.2.17)

(7.2.18)
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In continuous case,

/wm—wmﬁm—%mw

=/Wm—wmmm—%mm+/wm—wmmm—%mm
St SO
+/Wm—&mmm—%mw
J

Forany x € S, ¢(X) = 1 = ¢(X) — ¢*(X) = 1 — ¢*(X)
= [1 = " XOIlfi (x) — kfo(x)] > 0 (7.2.19)
Next, x € S°
[1 = ¢"QOIfi(x) — kfo(x)] = 0 (7.2.20)
Nextx € §7, ¢(X) = 0 = ¢(X) — ¢*(X) = —¢*(X)
= —¢*X)fi (¥) — kfo(x)] > 0 (7.2.21)

From (7.2.19), (7.2.20) and (7.2.21), the complete integral gives a quantity which is
greater than or equal to zero and we have,

/W&—WDMm—%mm>o
S

= /¢(X)[f1(X) — kfo(x)]dx > /¢*(X)[f1(x) — kfo(x)]dx
= Ep, ¢(X) — kEn,¢(X) > [Ep, ¢*(X) — kEp, 6" (X)]

= Ep, ¢(X) — B, 0" (X) > k[Ex,d(X) — Eg,¢"(X)]
From (7.2.18), LHS is positive.
= Eu, ¢(X) > By, " (X)

i.e., ¢(X) is MP test of size o in A,,.
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Further, consider a test ¢(X) with size 0 that satisfies the Egs. (7.2.6) and (7.2.7).
Let ¢*(X) be any other test in Ay where

Ao = {¢|En,0(X) = 0}

A test ¢* € Ap, which implies that

/¢>* X)fo(x)dx = 0.

This implies that ¢* = 0 with probability 1 on the set {x : fo(x) > 0}.
Consider

En ¢o(X) — By 0" (X) = / [¢(X) — ¢"(X)1fi (x)dx

xifo(x)=0

+ / [6(X) — 6" (X)1fi (0)dx

xifo(x)>0

_ / [1— 6" X1 (dx = 0
xifo(x)=0

Ep, ¢(X) = Ep, ¢*(X)

Hence, the test ¢ in (7.2.7) is MP of size 0.
(c) Necessary condition for MP test
Let ¢(X) be a MP test given in (7.2.4) and (7.2.5). Let ¢*(X) be some other MP
test of size o in A, > 0, for testing Hy : X ~ fy against H; : X ~ fj.
Since S = St US~ U SO,
Assume that the tests ¢ and ¢* takes on different values on S™ and S~
Consider a set

W=S8n{x:filx) # ko)) = {x: filx) # kfo(x)}

Assume that P[W] > 0, consider the integral

/[(b(X) — " QO () — kfo(x)]dx = /[¢(X) — ¢* X (x) — kfo(x)1dx
w

N

+ / [6(X) — 6" O () — Kfo () Idx
S0
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Since ¢(X) and ¢*(X) are both MP test of size « then
En, ¢(X) = Eg,¢*(X) and Ey, ¢(X) = Eg, ¢ (X)

:/wm—&mmm—%mw=o
w

with [¢(X) — ¢*CO1[f1 (x) — kfo(x)] > 0.

It gives P[W] = 0. It is a contradiction to the assumption P[W] > 0. Therefore
P[W] = 0. Let P be such that P(W) = P(W|Hy) + P(W|H;). But P[W] = 0, it
implies that P(W|H,) and P(W|H,) are both zero. Thus the probability on the set W
on which ¢ and ¢* are different, become zero under the Hy and H, hypothesis.

In other words, we can say that ¢(X) # ¢*(X) on the set S° = {x|f; (x) = kfy(x)}.
It implies that ¢ and ¢* are of the same form except on the set S° under Hy and H;.

Let ¢ be a test given in Eqgs. (7.2.6) and (7.2.7). Further, let ¢* be an MP test of
size 0 in A. The test ¢ and ¢* differ on the set

W={x:fox) =0,fi(x) > 0} Ufx:fo(x) > 0,fi(x) > 0}

Assume P(S) > 0. Since [¢ — ¢*]f1(x) > 0 on W and the integral

/w—wmmﬂzo
w

Because Eg, ¢(X) = Ep, ¢*(X). This implies that P(W) = 0.
This shows that MP tests ¢(X) and ¢*(X) have the same form as in Egs. (7.2.6)
and (7.2.7) except perhaps on the set {x : fy(x) > 0} U {x : fi(x) > O}

7.3 P-Value

In many experimental situations and financial decisions, we conveniently use type
I error as 1 or 5%. This is because we do not know how much one could tolerate
the first kind of error. In fact, the choice of significance level should be such that the
power of the test against the alternative must not be low.

Under H,, the distribution of % is continuous. Then, the MP level « test is

nonrandomized and reject if % > k, where k = k() is determined by (7.2.4). For
varying «, the resulting tests provide an example of the typical situation in which

the rejection regions A, are nested in the sense that

A, CAy if (a<d)
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When this is the case, it is a good practice to determine not only whether the hypoth-
esis is accepted or rejected at the given significance level, but also to determine the
smallest significance level, or more formally.

p=pX) =inf{a: X € A}

at which the hypothesis would be rejected for the given observation. This number, the
so-called p-value gives an idea of how strongly the data contradicts the hypothesis. It
also enables others to reach a verdict based on the significance level of their choice.

Example 7.3.1 Suppose that Hy : 1 = p1 against Hy : 0 = p11 > po and a = 0.05.
Suppose our test ¢(X) is defined as

1; X>k
¢<x>=[0§x;

Let k = 1.64. Further, we assume that Z is N(0,1); see Fig.7.9. Let the calculated
value of z from the sample is 1.86. Hence, our test is reject Hy if z > 1.64. In this
case 1.86 is greater than 1.64, so we reject Hy; see Fig.7.10.

Now, we can find p-value

Plz > 1.86] = 0.0314,

Rejection region
P[#>1.64]=0.05

o

Fig. 7.9 5 % upper tail area for standard normal distribution

P - Value #[Z->1.86]=0.0314
0.0314

[} 1.64 1.86

Fig. 7.10 p-value
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In this case p-value is 0.0314 and it is less than 0.05. One should observe that we
reject Hy if p-value < «. Now consider the equivalence between the two methods.
Calculated value from sample of a test statistics is more than the table value of the
distribution of a test statistics is equivalent that p-value less than « in rejecting Hp.
One can see this in the above Fig.7.10. Hence 1.86 > 1.64 < 0.0314 < 0.05.

If Hy : ;0 > po against Hy : o < po. The test is

1; X <—1.64
o(X) = 0: X>—1.64

Plz < —1.64] = 0.05 and P[z < —1.86] = 0.0314.
P-value, i.e., probability of observing the value of z in the sample as small as
—1.86 and 0.0314 < 0.05.

P-value in two-sided test

Determining p-value in the two-sided tests presents a problem. The most common
practice in two-sided test is to report the p-value as twice as the one-sided p-value.

This procedure is satisfactory for cases in which the sampling distribution of test
statistic is symmetric under H.

However, if the distribution is not symmetric under Hy, doubling the p-value may
lead to get p > 1 and other problems. Hence Gibbson and Pratt (1975) suggested
that in the case of two-sided tests, we should report the one-sided p-value and state
the direction of the observed departure from the null hypothesis.

7.4 Illustrative Examples on the MP Test

Example 7.4.1 Let X be a random variable with pmf under H, and H,. Find MP test
of size 0.03 and further find its power.

®

fo(x):/0.01/0.01{0.01/0.01|0.01{0.95
f1(x):/0.05/0.04{0.03/0.02/0.01|0.85

fi).
ok 5 |4 (3 |2 |1 (089

LaMm=%
One can observe that A(x) is decreasing function of X.
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If Eo(X) < 0.03 then MP test of size 0.03,

A =3
¢(X)_[0; AX) <3

1; X<3

Power = Py, (X < 3) =0.05 4 0.004 + 0.03 = 0.12.

One should note that according to NP lemma, if we take any other region of size
0.03, it will have less power.

For example:

1;X=1,4,5
= a(X) = [O ; otherwise
or
1; X=3,4,5
$2(X) = [O ; otherwise

Ex, 61 (X) = Py, (X = 1) 4 Py, (X = 4) + Py, (X = 5) = 0.05 + 0.02 4+ 0.01 = 0.08

Exy ¢2(X) = Pr, (X = 3) + P (X = 4) + Py, (X = 5) = 0.03 +0.02 + 0.01 = 0.06

Example 7.4.2 Consider a random sample of size one and let Hy : X ~ N(0, 1)
against H; : X ~ C(0, 1). We want to obtain MP test of size a for the given H
against H;

_@_ﬁexm%
A(x)_ﬁ, Vrl+a2

2
log A(x) = const + % —log(1 4 x%)

dlog \(x) 2x
o =x— e (7.4.1)
2 2
0°log A(x) 1 2(1 — x7) (7.4.2)

ox2 (1 +x2)2
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From (7.4.1), x[x2 = 1] =0
Hence x =0, or x = 1

9% log A
From (7.4.2), at x = 0, #@ <
Ox
0?log A(x) 0
—_— >
Ox?

12

Therefore, at x = 0, A(x) has a local maximum, i.e., A(0) = 0.7979 =,/ —.
™

O’

E

atx = +1,

Further at x = 1, A(x) has a minimum, i.e., A(£1) = 0.6577 = \/g(g)
We can say that \(x) is decreasing in (0, 1) and increasing in (1, 00).
The horizontal line A(x) = k intersects the graph of A\(x); see Fig.7.11

(i) in two points if k > 0.7979 (points a, b)

(ii) in three points if k = 0.7979 (points c, d, e)
(iii) in four points if k € (0.6577,0.7979) (points f, g, h, 1)
(iv) in two points if k = 0.6577 (points j, k)

(v) inno points if k < 0.6577

A program in R for the function A(x) is written.

f=function(x) sqrt(2/pi)*exp((1/2)*x"2)/(1+x"2)

x=seq(-2,2,0.01) plot(y=f(x),x,type='1",col="solid line’, lwd=4)

abline (h=0.7979,col="dashed line’,lty=2,1lwd=3)

abline (h=0.6577,col="dotted line’,lty=4,1wd=3) legend("top",

c("-lambda (x) ", "-lambda(0) ", "-lambda (+1,-1) "), text.col=c(’solid line’, ‘dashed line’, ‘dotted line’))

(1) if 0 <k < 0.6577, then

Epp(x) =1

Fig. 7.11 Graph of A(x) s

lambda{1-1)

lambdax)
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(ii) if k € (0.6527, 0.7979) then
Epy¢(x) = Py,[—c1 <X < 1] + PpylX < —c2] + P [X > ]
(iii) if £ > 0.7979 then
En,¢(x) = P[X < —di] + PIX > di]
For o = 0.05, the MP test will have critical region |x| > d; provided A(d;) > 0.7979.

From tables, o = 0.05, d; = 1.96 and A(d;) = 1.2124 and A\(d;) > 0.7979.
‘We can write the MP test as

_ 1;|x|>d1
¢“”WOWMsm

For oo = 0.05
1 x> 1.96
“]10; |x| <1.96
Power of the test
1.96
1 1
EHO¢(X) =1- ;]_l_—xzdx
—-1.96
YRR 2tan~'1.96
tan™ " 1.
=1—2/— de=1-2 270 03003
14+ x2 T
0

Example 7.4.3 Let X1, X5, ...,X, be iid B(1, p) rvs and let Hy : p = py against
hi : p = p1 > po. Now, we will find a MP test of size a.

_ il x, . xap)
fo(xlax27 L 7'xl’l|p)

A(x)

pi'(1—p)"! 4
AX)=———"—3 =) X
po' (1 — po)—! ;‘

-(2) (=) (=)
Do I —p1 1 —po
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_ (pl(l—po))’<l—p1)"
po(1 —p1) 1 —po

For p; > pg, A(x) is nondecreasing function of ¢. It implies that A(x) > &,

Ax) >k t>k

(the reader should note that after many algebraic operations, we will call the constant
as k only)
Our MP test is as

1;t>k
PX)=17;t=k
0;t<k

Now, k and y are determined from Ey,¢(x) = o
o = Pyt > k] +vP[t = k]

Now T ~ B(n, p)
In particular n = 5, pg = %,pl = % and o = 0.05

o= 3 ()(5) () 6)

Letk =4

= 0.0312 + 7(0.1562)

0.0188
v = =0.12
0.15620
The MP test of size o = 0.05 is given as
1 >4
PpX)=10.12; r=4
0 <4

Thus the MP size o = 0.05 test is to reject p = %

reject p = % with probability 0.12 if Zle x;i =4.

in favor of p = 3 if >"x; = 5 and
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For this a program in R is also given below.

# Given data

alpha = 0.05; n =5; p0 = 0.5; pl = 3/4.
# To find k such that first term is < alpha

a = seq(from=0,to=(n-1),by=1); # possible values for k

la = length(a)
# to find cumulative probability, i.e., P(tl > k)

cpk <- rep(0,la) # declaring variable to find cumulative probability.

for(i in 1:1a)

{
for(j in (a[i]+1):n)
{
cpk[i] = cpk[i] + dbinom(j,n,p0);
}
}

ind = min(which(cpk < alpha)) # gives cumulative probability < alpha
# To find gamma

k = ind-1; b <- dbinom(k,n,p0) ;

gamma = (alpha-cpk[k+1])/b
# To check the answer

check <- cpk[k+1]+(gamma*dbinom(k,n,p0))

# OUTPUT
print(c("k=",k))
print (c("gamma =", gamma))

print (c("check=", check))

Example 7.4.4 A sample size of 10 is obtained from a Poisson distribution with
parameter m. Obtain a MP test of size &« = 0.01 totest Hy : m = 3 againstH; : m > 3

AQ) A x,xdp) T e () !
foxr, xa, .o xalp)  [Timy e7™omg () !

t n
— e—n(mo—ml) (@) C = in

m
0 i=1

Form; > my, \(x) >k &t >k

The MP test is
1;t>k

pX)=q17;5t=k
0;t<k
Now, Eg,¢(x) = 0.01 and the distribution of T under Hj is P(30).

Py [t > k] + Py, [t = k] = 0.01

Plt > k] <0.01
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For large m T ~ N (30, 30)

=0.01

k—30
P[t>k]=P|:z>—:|

V30

k—30

=2325=k=4274~43
V30

Pyt > 43] + Py, [t = 43] = 0.01

_0.01 = P[r > 43]

T T o =43]
.01 —0.0097
_ 0010009735 _ ) hso1n
0.00508432
Hence MP test is given as

1 ct>43
¢(X) = {0.05212 ; + =43
0 ;<43

Note: If you are using R then the above method of calculation is not required. A pro-
gram in R is also given to calculate k and ~.

=

Given data

n = 10; m = 3; lambda = n*m;

To find k such that P(T <= k) > l-alpha
Defining function

B

fun = function (upper, lambda)
{
alpha = 0.01;
a = seq(from=0, to=(upper-1),by=1); # possible values for k
la = length(a)
# to find cumulative probability, i.e., P(tl <= k)
cpk <- rep(0,la) # declaring variable to find cumulative probability.
for(i in 1:1a)
{
cpkl[i] = ppois(al[i],lambda);

}
if (cpk[la] < (l-alpha))
{ print("increase the value of k") }
if (cpkl[la] > (l-alpha))
{
ind = min(which(cpk > (l-alpha))) # gives cumulative probability > l-alpha
# To find gamma
k = ind-1; b <- dpois(k, lambda) ;
gamma = (cpk[k+1l]-1+alpha)/b;
return (c (k,gamma) ) ;

}
upper = 10; ans = fun(upper, lambda)
"increase the value of k"
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upper = 50;
ans = fun (upper, lambda)
k = ans[1l]; gamma = ans[2];
# To check the answer
check <- (l-ppois((k),lambda))+ (gamma*dpois (k,lambda))

# OUTPUT
print(c("k=",k))
print (c("gamma =", gamma) )

print (c("check=", check))

Example 7.4.5 Let X be a rv with C(1, 8). Obtain a most powerful test of level of
significance of a to test Hy : § = 0 against H; : 0 = 1

T

1+ x2

A =TT

From NP lemma,

142
AW > k= — % Sk
W >k= 1T

= x>(1 —k) 4+ 2kx + (1 —2k) > 0 (7.4.3)

ifk>1

I N (7.4.4)
X D — _— < A
-k 1—k

Letk; = 2 and ky = 1=2¢

—ky £ k> — 4k,
X =
2

Let Ay (k) = 4 [—kl — Vi = 4k2] and A (k) = 1 [—Iq /. 4k2].
From (7.4.4), A (k) < x < M (k) ifk > 1
The MP test is given by

1; Mk <x < k)
0 ; otherwise

P(X) = I
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Ep,0(x) = «
A2 (k)
= h(k) / dx
= —_— = Y
w1 + x2]
A1 (k)

= tan~! My (k) — tan~' N\ (k) = 7o
From (7.4.3)ifk < 1

, 2k 1-2k

—t+——>0
A P
The MP test is given by
s x> Xak) orx < A(k)
P(X) = [O ; otherwise
Ep,¢(x) = «
00 A1 (k)
N / dx n / dx
w1 + x2] w1 + x2]
A2 (k) —00
A2 (k)
dx .
[l +x2]
A1 (k)

= tan"! (k) — tan "' \ (k) = (1 — @)

—k——=k*+3k—1
Mk =
1(k) a—n
and
—k+—=k*+3k—1
Aa(k) =

(I =4k

293

(7.4.5)

(7.4.6)
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Assume (—k? + 3k — 1) is positive.
Ifk > land 355 < k < 35 then | < k < 255 and if k < 1 then

3%6 <k<l1.
7o = 0.314139 if « = 0.10

k X)) [k tan—1 Ay (k) — tan— ! A; (k)
0.3819/—0.618/—0.618 |0
0.50 [0 -2 1.1071
0.60 [0.1583 [—3.5183 |[1.4211541
0.80 0.3589 |—8.3589 [1.7963
0.99 [0.4937 |—198.4937|2.0244
1.50 [5.2361 [0.7639 0.7297
2 3 1 0.4636
22 [2.5598 [1.1069 0.3623
23 (237 [1.1684 0.3086
229 [2.3885 [1.1619 0.31415

k=2.29

UMP test
1; 1.1619 < X < 2.3885

0 ; otherwise

(X)) =

A program is written for the function A(x) in R.
Assume f (k) = tan~! My (k) — tan~! \; (k). If k = 2.29, then f (k) = 0.31
see Fig.7.12. Note: One can use the following formula for (7.4.5) and (7.4.6)

1 - . _,A—B
tan~'(A) —tan~ " (B) = tan
1+ AB

, if A and B are positive.

Fig. 7.12 Graph of f (k)

20

funik)
0
g Y

031 05
1

00

05 10 15 20 22925 30 35
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# TO FIND VALUES OF LAMBDAl AND LAMBDA2.
# To define function lambdal
lambdal = function (k)
{
k1 = 2*k/(1-k); k2 = (1-2*k)/(1-k);
11 = (-kl-sgrt(abs((k172)-(4*k2))))/2;
return(11)
}
# To define function lambda2
lambda2 = function (k)
{
k1 = 2*k/(1-k); k2 = (1-2*k)/(1-k);
12 = (-kl+sqgrt(abs((k1"2)-(4*k2))))/2;
return(12)
}
# To define function h(k)
fun <- function (k)
{ f1 <- atan(lambda2(k))-atan(lambdal(k)); return(fl) }
# To obtain values and to plot h(k)
# Given values of k.
k <- ¢(0.3819,0.50,0.60,0.80,0.99,1.50,2,2.2,2.3,2.29,3.0,3.5)
result <- data.frame(lambdal (k),lambda2 (k), fun(k))
plot (k, fun (k) ,type="1"); points(2.2899,fun(2.2899),pch=19)
axis(1,2.29); axis(2,0.31)
Result
result
# To solve h(k)
# Defining h(k)
f =function (k)
{
alpha <- 0.10; k1 = 2*k/(1-k); k2 = (1-2*k)/(1-k);
11 = (-kl-sart(abs((k172)-(4*k2))))/2; 12 = (-kl+sqgrt(abs((k1"2)-(4*k2))))/2;
fun <- atan(lambda2 (k))-atan(lambdal (k))-pi*alpha;
return (fun)
}
# To solve h(k)
y <- uniroot(f,c(1.01,2.98)) print (y$root)

®

Example 7.4.6 Let X;, X, ..., X, be iid rvs N(u, o), where both y and o>

295

are

unknown. We wish to test Hy : p = jug, 0> = og against Hy : p = puy; > o,

o =0,

((onl/ﬁ) exp [_Tlg 2 (i — ,Ul)z]
I

AX) = -
00\/2771—) €Xp [_Ti% Z?=l(xi - MO)z]
1 " n
=C&Xp| 53 Z(xi - /10)2 - Z(x,' - ,ul)z
204 P o

—

[\®]
R
(=1 )

i=1

=exp| 2in(/u — o) + n(uy — H%)]
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If iy > po = A(x) > kifand only if >\, x; > k.

The distribution of > X; is N (nu, no?).
Now, k is determined such that

$ k—’wo]
a=P E xi>k| =Py, |z> ,
H0|:i=1 ] HO|: o0/n

where
Lo Zimt i 6 )
O'()ﬁ
k —npo
Zy = = k = oov/nZ, + npo
JO\/E
The MP test is 5 i
|1 Xi > oo/NZy + npp
PX) = [O ; otherwise

Similarly, for testing Hy : pt = pig, 0> = 0(2) against Hy : ju = puy < jug, 0> = aé.
The MP test is 5 i
|1 Xi < oo/NZy + npg
P(X) = [O ; otherwise

Note: 1. If 0 = 0y, i.e., o is known, the test determined is independent of 1| as long
as u; > po and it follows that the test is UMP against H; : = p; > po. Similarly
the test is UMP for H; : u = pu; < po. Further, we can say that the test does not
depend on H,.

2. If o is not known and H, is composite hypothesis. Then the test determined
above depends on 0. Hence the above test will not be an MP test.

Example 7.4.7 Let X, X5, ..., X, be iid random sample of size n from exponential
distribution with mean 6. Find MP test for testing Hy : 6 = 0y against H, : = 0; <
o

_ b, xal01)
ﬁ)(-xlaxza LI 7-xn|00)

(@Y oo (- 0)]

A(x)
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By NP lemma, A(x) > k and A(x) is nonincreasing in 7, where t = >__| x; because
91 < 90.

Hence \(x) >k &t <k

The MP test is given by

1;t<k
0 ; otherwise

P(X) = {

Under Hy, T = t has gamma distribution with parameters n and %

3
T 11

¢ 206,50
0T (n) 07

f =

Let V = 2 then V ~ 3,

Ep,d(x) = a = Plt < k] =

RN
— < — | =
b 6| “

2k 0
2 0 2
= XZn,l—a = 9_0 = k = 3X2n,1—a

The MP test is PR
1; T <2y
— ’ 2 A2n,1—«
o(X) [ 0 ; otherwise
Note: 1. This test is UMP because it does not depend on H;.
2. Similarly, one can find a UMP test when H; : 0 = 01 > 6.

Example 7.4.8 Let X1, X3, ..., X, be iid random sample of size n from N (0, o?).
Find MP test for testing Hy : 0 = 0g against H) : 0 = 0] > 0y

According to earlier examples, the MP test is given as

1; Z)clz >k
0 ; otherwise

o(X) = [
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2
Note that, under H, DI X%

2
90

X2 k
SRS =
o 99

k 2 2.2
) = Xn,a = k = UOXn,(y
%0

Hence, the UMP test is given by

_ 15 X > 0.
P(X) = [O ; otherwise
Example 7.4.9 Let X be a rv with pdf f(x|0)
20-9 . 0 <x <0
0) = 0> .
Sx10) [O ; otherwise

Obtain a MP test of size « to test

(i) Hy:0 =06, againstH1 10 =0 >0
(i) Hy:0 =0y against H, : 6 =6, < 6

(i) There are three cases:
@0<x<By(b)by<x<b(c)f) <x <o

02(01—x) |
Bl 0<x <6
A) = 2070 Oy < x < 6
0 9
g 10 <x < o0
62 (6, — 6
Nx) = 05 (01 — o)

—_— >
9% (90 — x)2

Hence A(x) is nondecreasing sequence in x
Hence

Ax) >k x>k
Hence, MP test of size « is given as

1; x>k
0 ; otherwise

P(X) = H

7 Most Powerful Test
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EH0¢(x)_a:>/2(9°_x)dx_a

k—0
0 — +/a
o

k=0y+0/o, 0 <a<1

Since X lies between 0 and 6,
ie,0<x<by=k <6

= k=001-.a)
This test is UMP because it does not depend on H;.

Hence, UMP test of size « is given by

15 x> 601 = o)
PX) = [ 0 ; otherwise

(ii) Hy : 0 = 0y against H, : ) < 6
There are three cases (a) 0 < x < #; (b) 01 <x <6y (c)fy <x < 0
020, —x
Hgiﬂlax; ;0<x <6
/\(-x) = m 91 <x < 90
0 <x <00

0

, (0 — 6o)
A = — <0,
0= (91) G —x?
Hence A(x) is nonincreasing in x

Ax) >k x <k

2
EHO¢(x)=a:>/ﬁ(90—x):oz
200

=k =0+ 001 —

We can take the value of k = 05(1 — /1 — «) because k < 6,



300 7 Most Powerful Test

The UMP test is given as

¢(X):[1;x<90(1—\/1—oz)

0 ; otherwise

Example 7.4.10 Obtain the MP test of size « to test Hy : X ~ fo(x), where

1;0<x<1
fotx) = [0 : otherwise

against H; : X ~ fi(x) where

4x i0<x<i
_ ) 2
fl(x)_<4—4x; 1=<x<1

)\(x):fl(x):[4x ;O<x<%
fo(x)

4 —4x %§x<1

N) = 4 ;0<x<i=Ais 1 in, 1)
* = —4;%§x<1:>/\(x)is¢in(%,1)

A(x) is symmetric about x = 1

Mx) >k ek <x <k

1 1
©§—k<x<§+k

The MP test of size « is given as

1: 2 —k<x<lak
_ ) 2
Px) = [O ; otherwise

3+k
EH0¢(x)=a=>/dx=a=>k=%
1
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1; —lga <x<—1J2r“

ox) = [O ; otherwise
Example 7.4.11 Let X be a rv with pdf f(x|0),

_f20x+20-0)(1—x); 0<x <1, 6€]0,1]
f10) = [O ; otherwise

Find the MP test of size « to test Hy : 6 = 6y against Hy : 0 = 6, > 6

291)6 + 2(1 - 91)(1 —x)

AN = S 120 — b0 —x)

_x[26; — 11+ (1 —6)
T x[20p — 11+ (1 — 6)

01— b

A = L = D+ (=P

(since 8, > 6y)

= A(x) is nondecreasing function in x.
=S AMx) >k x>k
The MP test is

1; X>k
0 ; otherwise

P(X) = H

1
Eg,o(x) =a = /[x(290 -1+ (1 —06p)ldx
k

= (200 — D1 —k*) +2(1 — 6p)(1 — k)
Now

= 20— DA =k +2(1 —0)(1 —k) = a

K200 — 1) +2(1 — )k +a—1=0
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—(1 =69 +,/05 — a6 — 1)

- (200 — 1)

The UMP test of size « is given as

. —(1—00) + 4/ 03 — a(26p—1)
o) =41 X>—m@m-p
0 ; otherwise

This test is UMP because it does not depend on H;.

Example 7.4.12 LetX bearvwith 8(1, b). Find aMP test of size atotest Hy : b = 1
against Hy : b =b; > 1

(1_x)b—l.
f(x):W,O<x<1
A(x) = by (1 —x)2!
Y
A
2
A(x)
A(x) =k
>
0 1/2-k 1/2 1/2+k 1 X

Fig. 7.13 Graph of A(x)
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N@) =bi(by — D1 —x)"2(=1) <0

A(x) is nonincreasing function in x then A(x) > k < x < k. The MP test of size «
is given as

1; X<k

0 ; otherwise

P(X) = l

Egox) =a=>k=«
Hence our UMP test of size « is given as

1; X <a
o(X) = I 0 ; otherwise
This test is UMP because it does not depend on Hj.
See Graph of A\(x) for 3(1, by), (Fig.7.13).

Example 7.4.13 Let Py, P, P, be the probability distributions assigning to the inte-
gers 1, 2, 3,4, 5 and 6 the following probabilities

P 10.03]0.02[0.02]0.01[0 [0.92
P, 10.06/0.05/0.08]0.02(0.01(0.78
P,(0.09]0.05/0.12[/0  0.02/0.72
Pla 2504 2 |o 085

B3 12506 [0 [o 078

Determine whether there exists a a-level test of Hy : P = Py which is UMP
against alternative P; and P, when

(i) a = 0.01 (ii)) @ = 0.05 (iii) « = 0.07

(A)Hy : P =Py against H; : P = P,

o ;X=5
4 ;X =3
P 9
L_125 . x=2
Po 2 :X=1lor4
085; X=6
() a = 0.01
Define
1;X=5

P X)=77;X=3
0 ; otherwise
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Ep,¢1(x) = P(x =5) +vP(x =3) = 0.01

= 0+~(0.02) =0.01 = v =0.5

The MP test is
1 ;X=5
P X)=105; X=3
0 ; otherwise

Power = Ep, ¢;(x) = 0.05
@i1) a = 0.05
Define a MP test
1; X=5,3,2and 4

0 ; otherwise

02(X) = [

Power = Ep, ¢, (x) = 0.16
Define one more MP test of the same size

1; X=5,3,2
X)) =77 X=1
0 ; otherwise

1
Bpy¢3(x) = 0.0240.02 +7(0.03) = 0.05 = 7= &

Hence our test is

1;X=5,3,2
pX)=13:X=1
0 ; otherwise

Power = Ep, ¢3(x) = 0.16

Note: In this case, we have two MP tests, i.e., ¢, and ¢3.

>iii) o = 0.07

Define a MP test

1; X=5,3,2,1
Pa(X) = [O ; otherwise

One can easily see that Ep,¢4(x) = 0.07

Power = Ep, ¢(x) = 0.20

Define one more randomized test

1; X=5,3,2
PpsX)=17; X=1,4
0 ; otherwise
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3
Ep,o(x) =0.07 = v = 1
The MP test ¢5(X) is given as

1 ; X =5,3,2
osX)=30.75; X=1,4
0 ; otherwise

Power = Ep, ¢s(x) = 0.20
Define one more MP test

1;X=5,3,2,4
Pe(X)=17: X=1
0 ; otherwise

2
Erds() = 0.07 = 7 = 3

The MP test ¢(X) is given as

1; X=5,3,2,4
ps(X)=13:X=1
0 ; otherwise

Power = Ep, ¢6(x) = 0.20
One should note that ¢4, ¢s and ¢¢ are MP tests of size 0.07.
(B) Totest Hy : P = Py against H; : P = P,

o ;X=5

6 1 X =3

P, |13 ;X=1

Py |25 :X=

078 ; X =6

0 ;X =4
(i) a=0.01
Define

1; X=

prX)=q17; X=3
0 ; otherwise

Ep,¢7(x) = P(x = 5) + yP(x = 3) = 0.01 = v =0.5

305
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The MP test of size 0.01 is given as

1 ;X=5
»7X)=1305; X=3
0 ; otherwise
Power = Ey, ¢7(x) = 0.08
(i) a = 0.05
The MP test of is given as
1; X=5,3,1

Ps(X) = [O ; otherwise
Power = Ey, ¢g(x) = 0.23

(iii)) o = 0.07

The MP test of is given as

1; X=5,3,1,2
0 ; otherwise

Po(X) = [

Power = Ep,p9(x) = 0.28
(C) To find UMP for Hy : P = Py against H; : P = P or P,

00 ;X =5
max (4, 6) ; X =3
max{ﬂ &}Z max(2, 3) cX=1
Py’ Po max(2.5,2.5) ; X=2
max(2, 0) ;X =4
max(0.85,0.78) ; X =6
o0 ;X=5
6 ;X =3
mx[& 12] 3 ;X=1
Py’ Py 25 ; X=2
2 X =4
08; X=6
(i) a =0.01
To find UMP test
1; X=5

ProX)=17v; X=3
0 ; otherwise
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1
E(ﬁm()&?) =0.01 = Y= E

The UMP test becomes
1;X=5
Pr0X) = %; X=3
0 ; otherwise

Power = Ep, ¢19(x) = 0.05 and Ep, ¢19(x) = 0.08

Power of ¢; and ¢y is same for & = 0.01 under P;.

Similarly Power of ¢7 and ¢ is same for o = 0.01 under P.

Further, one can get class of UMP test such as ¢7(X) = a¢; + (1 — a)¢;o and
$5(X) =bop7+ (1 = b)d19, 0 <a,b <1,

(ii) o = 0.05

The MP test is given as

1; X=5,3,1
onX) = [O ; otherwise

Since Ep0¢1 1 ()C) =0.05
Power (P;) = Ep, ¢11(x) = 0.01 4+ 0.08 + 0.06 = 0.15
Power (P;) = Ep,¢11(x) = 0.02 4+ 0.12 + 0.09 = 0.23
Define one more MP test as

1; X=5,3,2
PnX)=17; X=1
0 ; otherwise

1
Ep,¢12(x) = 0.05 = v = 3

The MP test becomes
1;X=5,3,2
PnX) = % ; X =1
0 ; otherwise

Power (P) = Ep,¢12(x) = (0.01 + 0.08 4- 0.05) + %(0.06) =0.144+0.02 =0.16
Power (P;) = Ep,¢12(x) = (0.02+0.12+0.05)+%(0.09) =0.1940.03 = 0.22
The test depends on P; and P,

Hence UMP test does not exist for P = P; or P,.
(iii) o = 0.07
The MP test is given as

1; X=5,3,2,1
P13(X) = [ 0 ; otherwise
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Since Ep0¢|3(x) =0.07
Power (Pl) = Epld)lg,(x) =0.20
Power (P;) = Ep,¢13(x) = 0.28
Power of ¢13, ¢4, ¢5 and ¢g is same for P = Py
Similarly Power of ¢3 and ¢9 is same under P = P,
Hence the MP test ¢13 does not depend on H.
Therefore ¢35 is UMP test.

Example 7.4.14 Let the distribution of X be given by

X 0 1 2 3

PX): 6 20 09—-20 0.1—96

where 0 < 0 < 1.

For testing Hy : 6 = 0.05 against H; : 6 > 0.05 at « = 0.05, determine which of
the following tests (if any) is UMP?

@ ¢(0) =1,6(1) =92 =¢(3) =0
(i) ¢(1) =0.5,0(0) = ¢(2) = ¢(3) =0
(i) ¢(3) =1,9(0) = ¢(1) = ¢(2) =0

Now, Hy : 8§ = 0.05 against H; : 6 > 0.05

X[o 1 ]2 3
Py[0.05]0.1 0.8 0.05

Py0; |20, [0.9-26, [0.1—6,
£L12001(200; | 1.125 — 36, |2 — 200,

Since 6 < 0.10 = 200 < 2

2 ;X =0
Py 2 X =1
max (FO) T o0875; x=2
0 ;X =3
The MP test is given by
®
1; X=0

$1(X) = [O ; otherwise
We can easily see that E¢; (x) = 0.05
Power = Equbl(X) = (91
(i)
05; X=1
$2(X) = ’O ; otherwise

E¢p>(X) = (0.5)(0.1) = 0.05
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Power = E[-i1 ¢2(X) = (05)(291) = 91
(iii)

0 ; otherwise

¢3<X>=[1 X=3

EHO¢3(X) =0.05
Power = Ey, ¢3(x) = 0.1 — 6,
We can conclude that ¢; and ¢, are UMP test.

Example 7.4.15 Let X1, X5, ..., X, are iid rvs from U(0, #). Find the UMP test for
testing

(A) Hy:0=10pagainst H : 0 > 6
(B) Hy:0 =6yagainstH; : 0 < 0
(C) Hy: 0 =0yagainst H, : 6 #£ 0

(A)Hy : 0 = 0y against H; : 0 > 6,

f,xa, ..o, x,00) = 0710 — X))

where
_ 1 5 X(n) < 0
10 = xe) = [ 0 ; otherwise
There are three cases
(1) 0< X(n) < 90 (11) 90 < X(n) < 91 (111) 91 < X(n) < o0
161 — X
( )nlge(l) XZ;;; ; 0< X(n) < 0()
)\()C) = —6 I(ﬁ(l) Xw) ; 00 < X(n) < 01
g 5 X(n) > 91

A(x) is nondecreasing in X,).
Hence A\(x) > k & X, > k.

nx 0 <X < 9
fX(n) ()C) - [ ; otherwise

The MP test is defined as
(a) Define ¢; as
X(n) >k
« ; otherwise

$1(x) = {

En,p1(x) = a = PXu > k]l 4+ aP[ Xy <kl=«

Ifk > 6y = PHO[X(n) >kl=0andk <0y = PHO[X(n) <6]=1
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We can write ¢ as
1 5 X(n) > 00
a; X <0

P1(x) = {

Hence,
E¢1(x) =1 x P[X(ny > O] + aP[ Xy < Op] =

The test ¢ (x) is UMP as it does not depend on H;.
(b) Define ¢, as
1; Xy > k

h(X) = {O; Xoy < k

0o
n—1
P[X(,,)>k]=oz:>/nxn dx =«
k b
kn
=31—-— =«
%
k= 0,(1 — )

This test does not depend on H;. Hence ¢, is a UMP test.
We can write ¢, as

1: X > 00(1 —a)s
X = 1
P20 [0; X < bo(1 — a)s

We can get class of UMP test by the linear combination of ¢; and ¢,.
Hence ¢ = a¢; + (1 — a)¢, is also a class of UMP tests, where a € [0, 1].
Power of ¢,

7 xn—l b xn—l
EH1¢1(X)=/n o dx—i—a/n p dx

1
9 0
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Power of ¢,

0,

n—1 0" — on(1 — 1
B, (x) = / n— gy = LU m
o o

fo(1—a)

—_— 90 "
(@) oo

One should note that ¢} also has the same power.
(B)Hp : 0 = 0y against Hy : 0 = 6, < 6y
There are three cases
(1) 0< X(n) < 9] (11) 91 < X(n) < 90 (111) 90 < X(n) < o0

(g—?)" ;0 <Xwy <6
0 .
Ax) = T ) 01 < Xy < 0o
3 3 00 < Xy <00

A(x) is nonincreasing in X,).
Hence A\(x) > k & X, < k.
The MP test is given as

_ 1 5 X(n) <k
$3(X) = [0; Xo =k
When k > 0y = P[X(y < k] =1

If £ < 6, then

k
n—1

Eds(1) = 6 = Py [Xy < k] = / s = k= (@)

0
0

This test does not depend on Hy; it is UMP.
The UMP test is given as

1 5 X(n) < 90(0&)%

X = 1

#sX) [0; Xy = Op(a)n
Power of ¢3(x)

fo(a)

nx" ! (90)"
E X) = dc=—) «
H1¢3( ) 0/ 08 01

311
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(C)Hy : 0 = 6y against H; : 0 # 6,
We can write one more UMP test as

1
15 Xoy < Oo(a)n or Xy > o

Palx) = [ 03 Xoy > Oo(@)

We will verify the size of ¢4(X)

Ep, ¢4(X) = P[X(n) < 0p() "]+ P[X(n) > 6]

Power of ¢4(X) if 6, < 6,

En, ¢4(x) = P[X@ny < fo(a)r] + P[X@m > 0]

Power of ¢4(X) if 6, > 6,

Ep, ¢a(x) = P[X(y < 00(a)7 ]+ Py, [Xwy > 0o]

fo(a) 0,

nx”_l nxn—]
= d d
/ 9? x+/ 9,]1 X
0o

0

— 90 !

Power of ¢, ¢, and ¢4 is same for #; > 6, and Power of ¢3 and ¢, is same for
91 < 90.

Example 7.4.16 Let X, X>, ..., X, be arandom sample of size n from the pmf

1
PX=xl=5; x=12. . N.(N=1
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Find the UMP test for testing

(A) Hyp:N = Ny against Hy : N > Ny
(B) Hy:N = Nyagainst Hy : N < Ny
(C) Hy: N = Ny against Hy : N # Ny

We will find a test for (A)
(A)Hp : N = Ny against Hy : N > N

Fx1, X2, .. X IN) = NTI(N — X))

where
_ 1 ) X(n) <N
IN = xa) = 0 : otherwise
There are three cases

(@)0 < X(n) <Ny (b)Ny < X(n) <N;i(c)N; < X(n) < o0

Go" ; Xy = No
Ax) = —;V] I(1\87X(,,)) ; No < X(”) <N;
0 ) X(n) > N1

A(x) is nondecreasing in X).
Hence A\(x) > k & X, > k.

Let X(”) =Y
P[Yzy]z(l)n_ ULl y=12...,N
N N
Define a MP test
()
_ 1 5 X(n) >k
$1(X) = [O : otherwise

To find k such that Ey,¢(X) = «

= PHO[X(n) > k] =

Note thatif k > Ny = P[X(» > k] =0andif k < Ny = P[X(n < Nol =1

313

(7.4.7)
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From (7.4.7), under Hy,

No n W
P[X4y > k]l =P[Y > k] = Z (%O) _(YNO ) _

y=k+1
No
— Z [yn _ (y _ l)n] — aN(l)‘l
y=k+1

= k41" =K+ *k+2"—k+1)"+ - +N' —No— )" = aN}!
= NI — k" = aN]

= k=No(1 - )r

This test does not depend on H;. Hence it is a UMP test.
The UMP test ¢ is given as

1: X > No(1—a)s
0 ; otherwise

P1(X) = [

(ii) Define one more MP test as

1 s X(n) > N()

¢2(X) - [Oé ) X(n) = NO

En,$2(X) = P[Xy > Nol + aP[Xpy < Nol =0+ a =«
Power of ¢y (X) = Eg, ¢ (X)
N n n
_ Z EAN Y;l)
. N] Nl
y=No(1—a)n +1
Let N = No(1 — ) + 1

-2 [() - (5]

y=Ni

1

1 n
=]W[N;1—(N{"—1)]=—[N?—N{}(l—a)]=1—(—) (I—-a)
1

Ny
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Power of ¢, (X)

o= 3 [ - (5 ]S - (5]

y=No+1 y=I

_L[Nn_Nn]_'_iNn
_Nfl 1 0 N{l 0

(MY
()

(B) Hy : N = Ny against Hy : N < Ny
There are three cases
(1) 0< X(n) < N] (11) N1 < X(n) < No (111) N() < X(n) < Q.

Gk ; 0< X <N
0

Ax) = i Ni <Xy = No

Ny "I(Xm)—No)
g 3 No < Xy < 00

0
A(x) is nonincreasing in X).
Then, A(x) > k & X, < k.
The MP test is given as
L Xy <k
$3(X) = { 0 ; otherwise

STy (y-1)'7 &
=01 -(2)]-5
0

y=1
1
= k = Noaur

This test does not depend on H,. Hence it is a UMP test.
The UMP test ¢5 is written as

1; X(n) < N()Oé'll
0 ; otherwise

(X)) = H

Power of ¢3(X) = Eg, ¢3(X), let Noan = N}

)[R OINOR
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(C)Hy : N = Ny against Hy : N # Ny
We can write one more UMP test as

1 Xy < Noa% or X, > No
0 ; otherwise

P4(X) = [
B, 64(X) = P[X(ny < Noar 1+ P[X(y > Nol

S ORC IRN RS

where N = Noavr .
Power of ¢4(X) lle < N()

1
En, ¢4(X) = P[X(n) < Noaw] + P[X() > Nol

-2 1Ge) - () Jeo- ()«

Power of ¢4(X) if N; > Ny

No

o= 3 () - () T2 [G) - ()

y=No+1 y=1

Power of ¢, ¢, and ¢, is same for N; > N, and Power of ¢3 and ¢, is same for
N] < N().

Example 7.4.17 Let X be a rv under H, against H; as follows:
Hy : X ~ fy(x), where

2

CXp[—%}; — <X <X

1
Sox) = Ner
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against H; : X ~ fi(x), where

1
filx) = Ee’m; —00 <X <00

Test Hy against H; based on a single observation.

2~ exp~H

AG) = fi) _ ]
S or)-3 exp [—%2]

By NP lemma, A\(x) > k
S sk
— — x| >
> X

=[x =17 > k

= x|>k+1lor|x]<1—%

Hence we define a MP test as follows:
l; x]>k+1lor|x|<1—k

PX) = HO ; otherwise

E¢(X) =«
= Pllx|>14+k]l+P[x| <1—-kl=«a

= 1—-Plx|>1+k]l—-Pllx|<1—-k]l=1—-«

=S Plx|<k+1]1—Plx| <1 —-kl=1—-«
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1 —«

= O(1+k) -1 -k = >

Given «, k has to be found out by trial and error.
To calculate value of k we can use following R progran.

# To solve the equation phi (1+k)-phi(1l-k) = (l-alpha)/2
# Defining function.
f <- function (k)
{
alpha <- 0.05;
1 = pnorm(1l+k,0,1)-pnorm(1l-k,0,1)-((l-alpha)/2);
return (1)
}
# To solve function using uniroot.
x = uniroot(f,c(0,5))
# OUTPUT
print (xSroot)

# To calculate manually
k <- c(seg(from = 0, to = 0.9, by = 0.1),0.9951,seqg(from = 1, to = 1.5, by = 0.1))
phil <- pnorm(1l+k,0,1); phi2 <- pnorm(1l-k,0,1);
phi <- phil-phi2
output <- data.frame(k,phil,phi2, phi)
alpha <- 0.05; al <- (l-alpha)/2;
a <- min(which(phi>al))
print (c("function has value greater than (l-alpha)/2 at k=",k[a]))

OUTPUT
Using uniroot function in R

0.995046
Calculating manually

k phil phi2 phi

1 0.0000 0.8413447 0.8413447 0.00000000
2 0.1000 0.8643339 0.8159399 0.04839406
3 0.2000 0.8849303 0.7881446 0.09678573
4 0.3000 0.9031995 0.7580363 0.14516317
5 0.4000 0.9192433 0.7257469 0.19349646
6 0.5000 0.9331928 0.6914625 0.24173034
7 0.6000 0.9452007 0.6554217 0.28977897
8 0.7000 0.9554345 0.6179114 0.33752312
9 0.8000 0.9640697 0.5792597 0.38480997
10 0.9000 0.9712834 0.5398278 0.43145560
11 0.9951 0.9769840 0.5019548 0.47502920
12 1.0000 0.9772499 0.5000000 0.47724987
13 1.1000 0.9821356 0.4601722 0.52196342

"function has value greater than (l-alpha)/2 at k=" 0.9951.

Example 7.4.18 Let Xy, X, ..., X, are iid rvs from f (x|9),

% ;0<f<x
X
0 ; otherwise

fx10) =

Find the MP test of size « for testing
(A) Hp:0=20yagainst H, : 0 = 0; > 0y

(B) Hy:0 =0yagainst H, : 0 =6, < 6
(C) Hy:0=0yagainst H, : 6 # 6
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(A)Hy : 0 = 0y against Hy : 0 = 60, > 0y

9”1()((1) — 9)
[T 7

There are three cases: (1) 0 < x(1y < 6y (i) Oy < xq) < 0y (iil) 0 < x(1y < 00

f(xlax27 -"7~xn|0) =

% 0 <X < 90

AM) = %G - e)(l‘l,f %, 0T D Oo = xa) < 61
1 0

( s s 0 =x <00

A(x) is nondecreasing in x(jy.
Hence, A\(x) > k & xq) > k.

n071
0 < X)) < 00
— xhtl 5
fexay) = [O ; otherwise
The MP test is defined as
X(l) >k
o1(x) = I 0 ; otherwise
o0
n90"
E¢1(X)_a=/ dx =«
xn+l
k
0,
= k=
an

This test does not depend on H,. Hence, it is a UMP test.
The UMP test ¢; is written as

X(]) > 900[7%
o1 = [O otherwise

Note that X(;) > 9004_% and Xy > 0, = X1y > max(6,, 90a_%)
Power of ¢ (x)

o0

no}
Eg ¢1(x) = xnﬂdx:l

0
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(B) Hy : 0 = 6 against H; : 0 < 6
There are three cases: (i) 0 < x(1y < 6; (i) 6, < xq) < 0 (iii) Gy < x(1y < 00

;O<X(1)<91

N=ll=}

—n _ n 2\—1
)\(x) = 10 =00 [Ty %) N 91 < Xy < 9()

0
0y \n Iy —01) .
(d)"—m . ; 0o < x(1y < 00

1(x1)—0o)
Now, A(x) is nonincreasing in X(i).

Hence, A\(x) > k & Xy < k.
The MP test is defined as

1; X(]) <k
0 ; otherwise

P3(X) = {

Hence, we can write the MP test as

1: Xq) < 6o(1 —a)~ s
X) — .G 0
30 0 ; otherwise
This test does not depend on H;. Hence, it is a UMP test.

(C) In this case, NP lemma cannot be used to get UMP test for testing Hy : 6 = 6y
against H, : 6 # 0y.

7.5 Families with Monotone Likelihood Ratio

If we wish to test Hy : 0 < 0y against H; : 6 > 0 then it is not possible to find UMP
test. Because the MP test of Hy : 0 < 6 against H : § > 6y depends on Hy, i.e., on
0,. Here, we consider a special case of distributions that is large enough to include
the one parameter exponential family, for which a UMP test of one-sided hypothesis
exists.

When the alternative hypothesis is composite, i.e., H; : § € ©y, then the power
can be different for different alternatives. For each particular alternative 6y, a test
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is MP test of size « for an alternative 6, if the test is most powerful for the simple
alternative H; : 6 = 0.

If aparticular test function ¢* (x) is the MP test of size « for all alternatives § € ®y,
then we say that ¢*(x) is a uniformly most powerful (UMP) test of size .

Definition 7.5.1 Let {fy : 6 € ©®} be a family of pdf(pmf). We say that {fy} has
a monotone likelihood ratio (MLR) in statistics 7'(x) if for 6, > 6,, whenever fj,
and fj, are distinct, i.e., f(x]0;) # f(x|02) V x, the ratio ;g:z:; is a non decreasing
function of T'(x) for the set of values of x for which at least one of f (x|6;) and f (x|6>)

is greater than zero.

Definition 7.5.2 A class of tests ¢,, is defined as

¢a = {9 € D] Gsu'p Epp(x) < o}
€0y

Theorem 7.5.1 The one-parameter exponential family
f(x|0) = exp{Q(O) T (x) + S(x) + D(0)}

where Q(0) is nondecreasing, has MLR in T (x).

Proof Let 6, > 6,

_ f(x]62)

A =
= o

Ax) = exp{Q(02)T (x) + S(x) + D(6,)}
exp{Q(8)T (x) + S(x) + D(61)}

= exp[D(62) — D(61)] explT (){Q(62) — Q(61)}]
Differentiate \(x) with respect to x,
N (x) = [Q(62) — QONIT'(x) expl{Q(62) — Q(O1)}T (x)]exp[D(62) — D(O1)],

where T’ (x) is derivative of T (x).

Given that Q(0) is nondecreasing

= [Q#) — 0] >0 for 6, > 6,

=\Nx >0

Hence A(x) is nondecreasing and f(x|6) has MLR property in 7 (x).
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Theorem 7.5.2 Let X1, Xs, ..., X, be iid rvs from one-parameter exponential fam-
ily. Then a UMP test exist for testing Hy : 0 = 6y against H; : 0 = 6, > 6.

Proof By Theorem 1, A(x) is nondecreasing for 6; > 6. It has MLR property in
T (x).

A(x) = exp |:Z T(x){Q(01) — Q(0o)} + n{D(0) — D(90)}:|

i=1

By NP lemma, A\(x) > k & > T(x;) > k.
The MP test is given by

1; Z?zl T(x;) >k
pr)=17; > Tx) =k

0 ; otherwise

Since ¢, does not depend on any specific values of 8;. Hence ¢; is UMP test of
level a.

Remark: 1. If we are testing Hy : 8 = 6, against H; : § = 6, < 6, similarly we
get UMP test of size « as

Ly 20, Tx) <k
Grx)=17; 2 Tx) =k

0 ; otherwise

2. Theorem 7.5.1 includes Binomial, Poisson, normal, gamma etc.
3. One should note that U(0, 6), which does not belong to exponential family has an
MLR property.

Theorem 7.5.3 Let the rv X has pdfipmf) f (x|0), where f (x|0) has an MLR in T (x).
Consider the one-sided testing problem, Hy : 6 < 0y against Hy : 0 > 0y, 6y € O,
any test of the form

1; Tx) >t
px) =17 T =1 (7.5.1)
0; Tx) <1y

has nondecreasing power function and is UMP of its size o provided that o > 0.

Moreover, for every 0 < a < 1 and every 0y € ©, there exist a ty, —00 < ty < 00
and 0 < v < 1, such that the test described in (7.5.1) is UMP of its size o for testing
Hy against H,.
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Proof Let 01, 6, € O, 0, < 0,.
Consider the testing problem Hy : § = 6, against H; : 0 = 6,.
By using NP lemma, MP test of size « is given as

1; A(x) >k
d(x) =175 Ax) =k (7.5.2)
0; \x) <k

with 0 < k < oo and Egy, ¢(x) = a > 0.
Next, for k = oo, the test

_ )15 fxl6) =0
Px) = 0 F(xlB) = 0 (7.5.3)

is MP of size 0.

Now f(x]6) has MLR in T (x). It implies that A(x) is nondecreasing function in
T(x).
Hence A\(x) > k < T(x) > k, k is chosen such that Eg, ¢(x) = a > 0. Letk = 1

1; Tx) >1n
pX) =17 Tx) =1 (7.5.4)
0; Tx) <t

Now we shall show that the test given in (7.5.4) has a nondecreasing power function.
Consider a test ¢* = a = Ep,¢*(x) = Ey,¢*(x) =
Power of test (7.5.4) is at least «

= EBu, ¢(x) = Bp,(x) > o = Ep,¢" (x)
But o = Eyp, ¢ (x)
= Eg,0(x) > Eg, (%)
= Power function of the test ¢, i.e., Ep, ¢(x) is nondecreasing function of 6, 6, > 6,
provided that its size Eg, ¢(x) > 0.
Let 8; = 6y and 0, > 6y, the testing problem can be written as
Hy:0 =06y against H,:60 > 6, (7.5.5)

The corresponding class of level « tests becomes

{¢|Eg,0(x) < o) (7.5.6)



324 7 Most Powerful Test

in which we shall find out a UMP test for testing problem given in (7.5.5). The test
in (7.5.4) is UMP of size « in the class (7.5.6) since it does not depend on Hj.
Now, consider the testing problem
Hy : 0 < 6y against H; : 6 > 0.
The class of level « tests for testing this problem would be

{¢] sup Eg(x) = o} = {¢[Ep,¢(x) < a, VO < 6o} (1.5.7)

6<6y

The test ¢ in (7.5.1) belongs to the class given in (7.5.7) since its power function is
nondecreasing function of 6 and its size a > 0. Further, class of tests in (7.5.7) is
contained in (7.5.6) because the number of restrictions in (7.5.7) is more than that
of in (7.5.6). Therefore, the UMP of size « test ¢ in the larger class becomes UMP
of size « test in the smaller class because it belongs to a smaller class.

Hence, provided o > 0, the testin (7.5.4) is UMP of size « for testing Hy : 6 < 6y
against H : 6 > 6.

From (7.5.1), we can write as

sup E¢(x) = a = By, ¢(x) = a
9590

= P[T > 1ol + vP[T = o] = a

= 1—P[T > 1] —vPI[T =nl=1—-«

= P[T <t)]—yP[T =nh]l=1—« (7.5.8)
Note that P[T < ty] is adistribution function. Itis nondecreasing and right continuous
function of #;.
IfP[T <th)]=1—atheny =0
If v > 0 then

PIT <to] + (A =PIT =10]=1-«

P[T <p]l<l—-« (7.5.9)
and

P[T < 1] = (1 —a) +P[T = 1]

(I —a) < P[T <10l (7.5.10)
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From (7.5.9) and (7.5.10),

P[T <1] < (1 —a) <P[T < 1]
Hence, from (7.5.8), for v = vy

PIT<p]l—0-a)
= ;0 <1
Yo PIT = 1o] <% =

Next, consider the case oo = 0.
Define the support of f(x|#) under Hy and Hy,

So = {x|f (x]6p) > 0} = {x]a < x < b}

S = {x|f (x]01) > 0} = {x|c <x < d}

then a < ¢. Without loss of generality assume that b < d. Consider a test ¢ of the

form as:
1; T(x) >T(®)

0 ; otherwise (7.5.11)

P(x) = [

sup Ep, ¢(x) = 0 = Eg,¢(x) =0
0<6,

Consider any other test ¢; of size 0.
Then

Eg,01(x) =0 = /¢1(x)f(x|9)dx =0
So

= ¢1(x) =0 on S

Next, consider the power of the test ¢ at any 6 > 6,

E¢(x) =/¢>(X)f(XI9)dXZ /d)l(x)f(xw)dx

x>b x>b

_ / Fx0)dx = / 61 (0)f (x]0)dx

x>b x>b

Since 0 < ¢1(x) < 1.
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Now,

/muymwh=/muymmw+/@uvmww
So So¢

x>b

Now ¢;(x) = 0on Sy

=/¢1(x)f(x|9)dx
So¢
= En, ¢1(x)

Hence Ey, ¢(x) > Eg, ¢1(x).
It implies that ¢(x) is UMP of size 0.

Theorem 7.5.4 For one-parameter exponential family, there exist a UMP test of the
hypothesis Hy : 0 < 6y or 0 > 6, against H, : 0, < 0 < 0,.
The test function is given as

1 5c00<Tkx <c
dp(x) =17 Tx) =ci(i=1,2)
0 ;Tx)<crorT(x) > c

where the ¢’s and ~'s are given by

(i) Eg, p(x) = Eg,¢(x) = @

(ii) The test minimizes Eg¢(x) subject to (i) for all 0 < 0y or 6 > 0,

(iii) For 0 < a < 1, the power function of this test has a maximum at a point 6

between 0, and 0, and decreases strictly as 0 tends away from 0, in either direction,
unless there exist two values ty, ty such that

PylT(x) =t1]+ PylT(x) =] =1V 0§

Example 7.5.1 Which of the following distributions possesses an MLR property.
(1) Binomial (n, p) (ii) Cauchy (1, ) (iii) Gamma (p, %)

(i)f(x|p)=(n)pxq"_x; x=01,2,....,n,0<p<1, g=1-p
X
X
~1 4
q
p
= ( )exp[xln—+n1nq]
q

= ( )GXP[Q(p)T(X) +nD(p)]
= exp[@(P)T (x) + nD(p) + H(x)]

= 3 =% I = S
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where
P n
Op)=In=, Tx) =x, D(p) =Ing, Hx) = ln( )
q X
% > 0, i.e., Q(p) is strictly increasing. This family has MLR property.
e rxP!
i) f(xlo) = ST 0) ;3 x>0,0>0,p>0
X
F(xlo) = exp [—— +(@-Dinx—plno—1In r(p)]
o
For p known
= exp[Q(0)T (x) + H(x) + D(p)]
where

Qo) = —l, Tx)=x, Hx)=(p—1)Inx —Inp, D(p) = —plno
o

Since % >0Vo.
This belongs to exponential family. Hence this family has MLR property.
(iii)

f(x162) _ - 61)?
f&x10) 14+ (x—6,)2

— lasx - +ooor — o0 (7.5.12)

Hence, C(1, 0) does not have an MLR property.
Example 7.5.2 Let the rv X have hypergeometric pmf:

(D0
G)

Find UMP test to test Hy : M < M, against H; : M > M

PIX =x|M] = x=0,1,2,....M

o Px=xm 41 (PHOMTY

M= T = ()

n—x

M+ 1 N—-M-n+x
= X
N-M M+1—x

>0

We see that P[X = x|M] has MLR in x.



328 7 Most Powerful Test

From Theorem 7.5.3, there exist a UMP test of size o and is given as

1; x>k
Ppx) =17 x=k
0; x<k

k and -y are determined from Ey,¢(x) = o

Example 7.5.3 Let X, X, ..., X, be iid rvs with N (u, 1). Find UMP test for Hj :
W= po Or p = gy against Hy @ g < pu < pu.

From the Theorem 7.5.4, the UMP test is given as

. n
;<> xi<c
0 ; otherwise

Px) = {
Determine ¢ and ¢, such that

Euo¢(x) = Em(b(X) =«

= P, [cl < Zx,- < cz] =P, [cl < ZX,- < cz]

ifX;(i=1,2,...,n) ~ N(uo, 1) then D", X; ~ N(npy, n).
Similarly if X;(i = 1,2,...,n) ~ N(uy, 1) then > X; ~ N(nuy, n)
Let Z() = —ZX:/_E'WU and Zl = —in/—ﬁnﬂl

C1 — Ny Cy — nlo Cp —nuy Cy — nly
P'“UI:T <Z()<7i|2pm I:T <Zl <7:|=Oé

Z;~N(@0,1);i=0,1.
Given a, n, po and py,

Cr — Rl C1—nlo |
and
Ccy — Ny CL—npy |

where @ is the df of Z.
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We can solve Egs. (7.5.13) and (7.5.14) simultaneously to get the values ¢; and
¢y using R

P

Given data
n <- 10; mu0 <- 0.2; mul <- 0.3; alpha <- 0.05;
# To find c2 such that Phi((c2-nmu0)/sgrt(n)) > alpha
x <- seq(-4,4,0.1) # possible values for c2
# Standardization
z1 <- (x-(n*mu0))/sqrt(n);
z2 <- (x-(n*mul))/sqgrt(n);
# To find cumulative probability
cdfl <- pnorm(zl,0,1);
cdf2 <- pnorm(z2,0,1);
# To find c2
a <- min(which(cdfl > alpha))
b <- min(which(cdf2 > alpha))
c2 <- max(x[a]l,x[b])
# To find value of cl
Egn2 <- alpha-0.1
while (Egn2 < alpha)
{
z3 <- (c2-(n*mu0))/sqgrt(n);
Egnl <- pnorm(z3,0,1)-alpha;
cl <- gnorm(Egnl, (n*mu0),sgrt(n))
z4 <- (c2-(n*mul))/sgrt(n);
z5 <- (cl-(n*mul))/sqrt(n);
Egn2 <- pnorm(z4,0,1)-pnorm(z5,0,1);
if (Egqn3 <= alpha) { cl_pre <- cl; c2_pre <- c2 }
c2 <- c2+0.1
}
# Check
cl <- cl_pre; c2 <- c2_pre
z1l <- (c2-(n*mu0))/sqgrt(n);
z2 <- (cl-(n*mu0))/sqgrt(n);
z3 <- (c2-(n*mul))/sqrt(n);
z4 <- (cl-(n*mul))/sqrt(n);
Egnl <- pnorm(zl,0,1)-pnorm(z2,0,1)
Egn2 <- pnorm(z3,0,1)-pnorm(z4,0,1)

# OUTPUT
print(c("cl =",cl));
print(c("c2 =",c2));
print ("CHECK")
print("calculated alpha for equation one"); Egnl
print ("calculated alpha for equation two"); Egn2
# RESULT
# OUTPUT
"cl =" "2.29843477913486"
"c2 =" "2.7"
"CHECK"
"calculated alpha for equation one" = 0.05
"calculated alpha for equation two" = 0.04999609

Remark: The UMP test for testing Hy : 6; < 6 < 6, against H, : 0 = 6, for
one-parameter exponential family does not exist.

Example 7.5.4 Let X1, Xs, ..., X, be arandom sample from (0, o?). Find the UMP
test for

(i) Hy:o0 = o0gagainst H; : 0 > 0y
(i) Hp:0 = opagainst Hy : 0 < 0y
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By using the Theorem 7.5.3,
(i) The UMP test is given as

no 2
; Zz 1 'xl > 1
0 ; otherwise

P1(x) = [

Under Hy, Z' L=~ 2

1foz—E¢1(x) PIYL, x5 > cll
then¢; = Uéx,l,a
The UMP test is Zn s )
; i=1%i = 90 Xn,a
$1(0) = [0 otherwise

(ii) Similarly as in (i), we can write UMP test:

0 ; otherwise

n 2 2.2
¢2(X) H ; Zt 1 X <0’0Xn.lfa

Note: ¢; and ¢, are not UMP for testing Hy : 0 = 0 against H; : 0 # 0y.

Example 7.5.5 Let X1, X,, ..., X, be a random sample from N (6, 1), where 6 is
unknown. Show that there is no uniformly most powerful test of Hy : 6 = 6, against

H1:07&90

By NP lemma,

1 1
)‘(x) = eXp [__ Z(-xt - 91) + - Z(-xt - 90) :|
=D (=007 = > (i —01)> >k
= n(0F — 07) +2 D> xi(0) — 60) > k

k n@y +6y) .
i f 0 (%
$2x22(01—60)+ > i ) > bp

4
M
=
A

n k
—(0 %) — if 0 7]
_2(0+ 1)+2(91_90) if 6, <6,
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Consider Hy : 0 =60, =60y + 1

k nRb+1) .
:>in25++ if ;> 0

andifH1:9=91=90—1
:in<ﬁ(290—l)—]i if 6, < 6y
-2 2

Thus a best critical region for testing the simple hypothesis against an alternative
hypothesis H; : 6 = 6; = 6y + 1 will not serve as a BCR for testing H; : 6 = 6, =
0y — 1.

Hence, there is no uniformly MP test for H; : 6 # 6.

Example 7.5.6 Let X1, X3, ..., X, be arandom sample from f(x|0), 0 € ®, where
f(x|0) = a(@)h(x); —oco<x <6,
Show that this family has MLR.
Let6; < 6,

f(-xlv-XZa AR 7xn|02)
)\x =
® fxxa, .0, x0101)

_ [a(@)1" [T, hx)X(02 — X))
[a(@D1* 1) hGeDIO) — X))

There are three cases

(1) X(n) < 91 < 92 (1]) 91 < X(n) < 92
>iii) 0, < 6, < X(n)

0,)1"
ok o< <0
A(x) — [a(62)] gl,‘zl h(x;) : 0] S X(n) < 92
0

0 ; 02 < Xy < 00

A(x) is increasing in X(,). Therefore this family has MLR property.

Example 7.5.7 Show that the double exponential family (known as Laplace distrib-
ution) of distribution

9y — 1 |:_|x—a|j|
Sfxla, )—@CXP 9

has monotone likelihood ratio, when « is unknown and 6 is known.
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Hy:a=ajagainst H) : a = a, > a;

1
Ax) = ;g:z; = exp [5 [x —ap| — |x — a2|]]

There are three cases

1) (x—a)<0fori=1,2

A(x) = exp IM]
0
(i) (x—ay) >0and (x —ay) <0
A(x) = exp {—(2)( — C;I —a) ]

One can observe ) (x) > 0 for a; < a and A\(x) — exp{%} asx 1 ap.
A(x) is nondecreasing in x.
(i) (x —a;) <0and (x —ap) >0
=Sx<a andx > ay
= ap < X < aj, which is not possible
Vvy(x—a) >0,i=1,2.
h(x) = exp [@]

From (i), (ii) and (iv), we can see that x 1 a; in (—00, a;), x 1 a, in (—o0, ay) and
x 1 oo in (ap, 00), A(x) equals at exp {(“‘;%2)} and increases to exp {@} and

becomes constant at exp {% } We can conclude that A(x) is nondecreasing in x

and this family possesses MLR property.

Example 7.5.8 Consider the following problem from Lehman (1986).
Let X be length of life of an electron tube. Assume that X has an exponential
distribution with mean 26. Hence, pdf of X is

1 X
Fx0) = 2 exp (—2—9) S x>0

Let n such tubes be put on test simultaneously, i.e., we draw an independent sample
X1, X, ..., X, from the exponential population. Let X’s be ordered and denoted by
Y <Y, <...<Y,, where Y| be the life of a tube which gets fused first, ¥, be the
life of a tube which gets fused next to it and so on. We may continue this experiment
till we get rth tube fused. This process is known as inverse sampling. Same model
arises in life testing applications where n bulbs are put on testing and this number n
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is held fixed by replacing each burned out bulb with a new one and denoting Y; as
the time at which first burn out bulb is replaced, Y, as the time at which second bulb
is replaced, etc., each measured from some fixed time.

Obtain a UMP test size « for Hy : 0 > 6, against H; : 6 < 6

On the basis of Yy, Y5, ..., Y,.

The joint distribution of (Y1, Y, ..., Y,) is

n
FO1y2 ) = o Ef(yi)[l — F)]
1o .
fO) =57, Fo)=1-e¢"%

n! 1 erz Vi yr(n_r)
fOLY, 0 = =)l 20y exp |:——1i| exp [_T}

n! 1 1 4
f()’l»YZv syr|0) = (I’l _ }")' (29)r exp[_% [;y:-i‘)’r(n— r):|]

This belongs to exponential family. By using Theorem 7.5.3, we can give a UMP
test for testing Hy : 0 < 6y against H; : 6 > 6,

1;T>1

0 ; otherwise (7.5.15)

-]

where T = >\ yi+y,(n —r).
We have to find a distribution of 7,
Note that

SR

1 r
5 21— i+ D0 = i) =
i=1

[Zyﬂr(n—r)yr]

i=1

The joint distribution of (y;, y;—1) is

fOiLyi) = #('n_l). [1 —eXp (_y;_;)]iiz
exp [~ (1= i)] % exp [ 37 ] z%exp 551
Let C = g
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LetU;=Y, - Y1 =Y, =U;+ 7Y

fOiyieD) = & [1 —exp (_y;;)]i_z exp [_(“z‘ +Yi—12);n —i+ 1)] exp [_y;?]

_din
Let W =1 —exp[—%}], dw = %dyi,l

1

_ C _u,(n—l-l-l) i—2 _ n—i+1
fu@) = o5 exp[ g }/w (I —w)™ " dw
0

in—i+1 ) )
=@exp[—%:|ﬁ(1—l,n—l+2)
Now
_ o nl FG-Dl—i+2)
COU=Ln—i+2) =~ Tt 1) =n—itl
_n—i+1 _u(n—i+1)
fu) = =55 eXp[ 20 }

i

ifv; = —("_’;"1)”” then f (v;) = "’727

: 2 r 2
ie.,v; ~ x5 then D, vi ~ X3,

S o= it b~

1 r
=52 vt =y~ G, (7.5.16)

i=1

Hence T = Zle yi+ (mn—r)y, ~ G(r, %) We can write the UMP test as given in
(7.5.15) of size a as
_ 1T =00,
oT) = [0 ; otherwise
For example, r = 4
if 6y = 3 then X%,o.os = 15.5073 then ¢ty = 46.5219

Our UMP test is
1; T > 46.5219

0 ; otherwise

o(T) = [
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Example 7.5.9 Find UMP test for the logistic distribution with location parameter

0 to test Hy : 0 < 6y against H; : 8 > 6, for a size of a.

exp[—(x — 0)

TO0 = T3 el — 0

—00 <X <00, —00 < b <00

Let 0, < 6 and A\(x) = ;g:zg

1 + exp[—(x — t91)]]2

A(x) = exp[f; — 6] [1 Fexpl—(x — 0]

Letx <y = A(x) < A(y), i.e., to prove A(x) — A(y) <0

[1 +exp[—(x — 91)]} - [1 + exp[—(y — 91)]]
1+ exp[—(x — 6»)] 1 +exp[—(y — 62)]

=1+ e*(x*91)][1 + e*@*%)] <[1+ e*(x*(’z)][l _|_e*(y*91)]

=1 4e 0702 4 o= =0D) 4 = =0D) ,=0=02) _ | 4 ,~O=0D) 4 ,—(=02) 4 ,—(x—=02) ,—(—01)

oy o= 0=02) _ = (=02) | (=00 _ = (=01 | =01 = (=02) _ y—(=02) = (=01) _

S 00 gty (t) _ =00 _
(the other term is zero)

=l —e |+l e —e?] <0

= (e —e )" —e™) <0,
which is always true because
0 < b =" <e” = (" —e”) <0
y>Xx=—y<—x
eV <e = (e —-e?)>0

Hence A(x) > A(y) if 0, < 6,.
Therefore, logistic distribution has MLR property.
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By using the Theorem 7.5.3, we can write UMP test as

0 = [ DX > X

0 ; otherwise,

X is determined by Ey, ¢(x) = a.

Hence,
e—@—bo)
/[1+€ (x— 90)]2 =a

Letw =14 ¢ @0 = gy = —e~ @0 jx
Now,x=xg = w=1+e " andx=00= w =1

1+e—(,t—€0)

dw
w @

1

[1+ e*o‘*"f’)]*1 =l-a

1 + e—(x—eo) —

)C()=t90—10g1a

Therefore, UMP test for testing Hy : 8 < 6y against H, : 6 > 6, would be

; x> 6 —log %=
o) = [ 0 ; otherwise, (7.5.17)
Example 7.5.10 Let the rv X has the following pdf f (x|6):
9 .
f(x|9):m, X>O,9>O

Obtain UMP test for testing Hy : 8 < 6y against H, : 6 > 6

01 Oy + x
)\(X) 90 (91 +x)
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0
log A(x) = log 9—1 + 2[log(8y + x) — log(6; + x)]
o

leg )\()C) _ 2|: 1 _ 1 ] _ 2(91 — 90)
dx T G+x O 4+x| By +x)0 +x)

= XN(x) >0 V x = Ithas MLR property.
We can write UMP test as

1; x>k
0 ; otherwise,

P(x) = [

E¢(x)—a=>/mdx—a
k

:>k=90(l—1)=—9°(1_0‘)

Q@ Q@
Hence (7.5.17) becomes

1:ifx > fd=2)

0 ; otherwise '

P(x) = H

7.6 Exercise 7

1. There are two density P;(X), P»(X) to describe a particular experiment which has
record space X = {0, 1, 2, 3, 4, 5}

Hypothesis| X 0 1 2 13 |4 |5
St P1(X)|0.30/0.20{0.05/0.10/0.15{0.20
S P»(X)|0.05/0.15/0.20/0.40{0.10|0.10

Two decision rules are proposed.

Rule 1: If 0 < X < 3 decide for S,, otherwise decide for .S,

Rule 2: If X < 4 decide for Sy, if X > 4 decide for S,

By calculating the liabilities to error for those two decision rules find which is
better. Can you give a reason for your choice? Can you improve on this choice by
reducing the liability to error of the first kind?
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2. The identification of a cell as Type A or Type B is long and expensive, but a recent
series of experiments have shown that the quantity (in certain units) of an easily
quantifiable 1 chemical is well described by a N (15, 3) random variable for type A
and by a N(20, 6) random variable for type B. In future it is decided to classify a
cell as type A if it contains not more than 12 units of the chemical, and as type B
otherwise. Obtain suitable measures of the liabilities to misclassify.

Where should the point of division be drawn if it is required to set the probability
of misclassifying a type A cell equal to 0.06? What then is the probability of the
other kind misclassification?

3. A dispute has arisen between two archeologists over dating of a specimen. A
claims that it is 5000 years old and B that it is 10,000 years old. It is known that such
specimens emit a certain type of radioactive particle, the number of particles emitted
in any one minute being described by a Poisson (1) random variable if A’s claim is
true and by a Poisson (5) random variable if B’s claim is true.

An arbiter suggests that, after a minute counting, he should decide in favor of A
if not more than 2 particles are observed and decide for B otherwise. Investigate the
liabilities to error with this decision rule.

What is the minimum number of complete minutes for which counting should be

recorded if the probability of deciding for A when in fact B is correct is to be less
than 0.06?7 What is the corresponding probability of deciding for B when in fact A
is correct?
4. A person claims to have telepathic power in the sense that he can say which of the
two colored cards is being observed by his partner with probability 0.7 rather than
0.6, which would be the appropriate value for guessing of colors randomly presented
to the partner. As a preliminary test he is asked to state the colors on 8 such cards
randomly presented to his partner. It is decided to accept him for further tests if he
scores at least 7 successes, and otherwise to dismiss him. Evaluate the appropriate
measures of the probabilities to unjustified acceptance and to wrongful dismissal in
such a test.

A person who has passed this preliminary test is now subjected to longer series of
500 cards (again randomly presented). It is agreed to accept him for even more tests
if he scores at least 300 successes, and otherwise to dismiss him. Find the appropriate
measures of liability for this series. (Use the normal approximation to the binomial.)
How many successes should have been demanded if the probability of unjustified
acceptance was to kept to 0.06?

5. For a process which produces components at independent operations and with
lifetimes varying according to the density function p(x) = e~ (x > 0,60 > 0).
Show that the probability that two components having lifetimes greater than a is
e~2%_and the probability that the total lifetime of two components is greater than a
is (1 + Ba)e?.

For process A, 6 is known to be 2 for process B, 6 is known to be 3. Components
from these processes are not easily distinguishable and unfortunately a large batch
of unlabeled components have been discovered.Compare the following rules, for
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deciding, on the results of life testing two components, which process the batch has
come from.

Rule 1: If both lifetimes are greater than % decide that it was process A, otherwise
decide for process B.

Rule 2: If the total lifetime of the two components is greater than 2 decide for A,
otherwise decide for B.

What critical value should replace % in Rule 1 if the probability of deciding for
process B when in fact A was used to be 0.1? What then is the probability of deciding
for process A when in fact B was used?

6. A sample of size 1 is taken from a population distribution P(\). Totest Hy : A = 2
against H, : A\ = 3, consider the nonrandomized test

1; x>3
d(x) = 0:x<3

Find the probabilities of type I and type II errors and the power of the test against
A = 2. If it is required to achieve a size equal to 0.05, how should one modify the
test ¢? Plot the power function for H; : A > 3.

7. A sample of size 1 is taken from exponential pdf with parameter 0,i.e., X ~ G(1, ).

To test Hy : 0 = 2 against H, : 6 > 2, the test to be used is the nonrandomized test

1; x>2
¢(x)_[07 x§2’
Find the size of the test. What is the power function? Plot the power functions.

8. Let X, X, be iid observations from
I .
f(x,@)zée i, 0<x<oo,0>0

Consider the acceptance region as w = {(xy, x2)|x; +x; < 6} for testing Hy : 6 = 2
against H, : § = 4. Determine type I and type II errors.

9. Let X;, X, be random sample drawn from
f(x,0) = o 0<x <1

If we test Hy : & = 1 against H; : 8§ = 2 with the critical region w =

{0, )1 (1 x) > 4.
Find the size and power of the test.

10. Let X1, X5, ..., Xj0 be a random sample from N (i, 02). Find a MP test of the

hypothesis Hy : 1 = 0,0 = 1 against the alternative hypothesis H, : pu = 1,
2

- =4.



340 7 Most Powerful Test

11. Let Xi, X», ..., X, be arandom sample from a normal distribution with mean p
and variance 100. It is designed to test Hy : i = 75 against H; : ;n = 78. Find test
of level of significance 0.05 and with power equal to 0.90 approximately.

12. Let

1
T+ (x = 0%

<X <X

Jfo(x) =

Using a single observation find a most powerful test of size 0.10 to test the hypothesis
Hy : 0 =2 against H; : § = 4. Use R.

13. Let X, X», ..., Xi1o be a random sample of size 10 from a N (0, o?). Find a best
critical region of size o = 0.05 for testing Hy : 0> = 1 against H; : 0> = 2. In this
a best critical region against alternative H : o > 1.

14. Consider the two independent normal distributions N (11, 400) and N (u,, 225).
Find a UMP test to test the hypothesis Hy : p; — o = 0 against the alternative
Hy : py — pp > 0 such that the power at two points S(u; — o = 0) = 0.05 and
B(py — pp = 10) = 0.90 approximately.

15. Find the Neyman—Pearson size atest of Hy : 8 = 6y against H; : 0 = 60,(6, < 6y)
based on a sample size 1 from the pdf

fo) =20x+2(1—0) (1 —x), 0<x<160€]0,1].

(Take o« = 0.02,0.10, 6y = 4 and 6, = 2)

16. Find the Neyman—Pearson size o test of Hy : § = 1 against H, : § = (,(>1)
based on sample size 1 from

[ B 0<x <
fx. )= [0 ; otherwise

17. Let X be an observation in U(0, 1). Find an MP size actestof Hy : X ~ f(x) = 4x

if0<x <3 and=4—4xif § <x < lagainstH; : X ~f(x) = 1if0 <x < 1.

Find the power of your test.

18. Let X, X», ..., X, be a random sample with common pdf
1 |x]
Jox) = Z_GGXP_F’ XxXERO>0

Find a size o MP test for testing Hy : 0 = 6, versus H; : 8 = 0,(>6p)
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19.Let X ~ f;,j =0, 1 where

(1)
X 112131415
fo|3]55/5]3
neol ¢33k
(i)
X 11213145
fo) 1120 1]0
i) fLio]2

(Take a = 0.02, 0.06).
(a) Find the form of the MP test of its size.
(b) Find the size and the power of your test for various values of the cut off point.

20. Let X have the binomial distribution B(n, p) and consider the hypothesis Hy : p =
poagainst H) : p = p; > po atlevel of significance . Determine the boundary values
of the UMP unbiased test for n = 10, « = 0.1, pp = 0.2 and o = 0.05, py = 0.4
and in each case graph the power functions of both the unbiased and the equal tails
test.

21. Let % have a x? distribution with n degrees of freedom. For testing Hy : § = 1
at level of significance o = 0.05, find n so large that the power of the UMP unbiased
1

test is >0.90 against both § > 2 and 6 < 5- How large does n have to be if the test

is not required to be unbiased? (see Definition 8.1.1).

22. Let X1, Xp, ..., X, beiid N(5, 1). Draw a sample of size 10.
Test (i) Hy : . = 5 against H; : p # 5, assume « = 0.5
(i) Hy: p=5against Hy : p > 5
(i) Hy : p =S5 against H; : p < 5
Draw the power curve of all three test on the same graph paper and comment.

23. Let X1, X5, ..., X, be iid N(0, 6) with § = 6. Draw a sample of size 10.
Test (i) Hy : 0 = 6 against H : 6 # 6, assume « = 0.5
(i) Hy : 0 = 6 against H; : 0 > 6
(iii) Hy : # = 6 against H; : 0 < 6
Plot the power function of all the three test on the same graph and comment.

24. Suppose a certain type of 40 W bulb has been standardized so that the mean life
of the bulb is 1500h and the standard deviation is 200h. A random sample of 25
of these bulbs from lot having mean 6 was tested and found to have a mean life of
1380h.

(a) Test at 1 percent significance level the hypothesis Hy : § = 1500 against the
alternative H; : 6 < 1500
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(b) Compute the power of the test at § = 1450, 1400, 1300, 1200, 1150, and plot
the power function.

25. A sample of size 9 from a population which is normally distributed with mean
1260 is as follows:

1268, 1271, 1259, 1266, 1257, 1263, 1272, 1260, 1256.

(a) Test at 5 percent level of significance the hypothesis o> = 40 against the
alternative o < 40

(b) Compute the power of the test when o> = 36, 32, 28, 24, and plot the power
function.

26. A sample of size 5 is observed from a binomial distribution B(20, p). Find a
UMP test for resting the hypothesis Hy : p = % against the alternative H; : p > % at
5 percent level significance.

27. A sample of size 10 is obtained from a Poisson distribution with parameter m.
Construct a test of level of significance a = 0.01 to test Hy : m = 3 against the
alternative H; : m > 3.

28. Let X be the number of successes in n independent trials with probability p of
successes, and let ¢(X) be the UMP test for testing p < pg against p > pg at level of
significance .

(i) For n = 6, pg = 0.25 and the levels a = 0.05, 0.1, 0.2 determine k and + and
find the power of the test against P; = 0.3, 0.4, 0.5, 0.6, 0.7.

(i) If po = 0.2 and o = 0.05, and it is desired to have power 3 > 0.9 against
p1 = 0.4, determine the necessary sample size (a) by using tables of the binomial
distribution, (b) by using the normal approximation.

(iii) Use the normal approximation to determine the sample size required when
a=0.050=0.9,p)=0.01,p; =0.02.

29. Let X1, X», ..., X,, be independently distributed with density
f@ =) ep[-5]. x>0.6>0

andletY; <Y, <... <Y, be the ordered X’s.

Assume that Y; becomes available first, then Y,, etc., and that observation is
continued until Y, has been observed. On the basis of Y7, ..., Y, it is desired to test
H : 0 > 6, =1000 at level & = 0.05 against H, : § < 6y

(1) Determine the rejection region when » = 4, and find the power of the test
against ¢; = 500.

(ii) Find the value of r required to get power 3 > 0.95 against the alternative.

30. When a Poisson process is observed for a time interval of length r, the number X
of events occurring has the Poisson distribution P(Ar). Under an alternative scheme,
the process is observed until r events have occurred, and the time T of observation
is then a random variable such that 2AT has a x? distribution with 2r degrees of
freedom. For testing H : A < )¢ at level « one can, under either design, obtain a
specified power 3 against an alternative \; by choosing T and r sufficiently.
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(i) The ratio of the time of observation required for this purpose under the first
design to the expected time required under the second is %

(ii) Determine for which values of each of the two designs is preferable when
=1L =2,a=0.0508=009.

31.Let Xy, Xs, ..., X, are iid rvs from U(0, 6 + 1). Find a UMP test of size « to test
Hy : 0 < 6 against H; : 6 > 6.
Further, test Hy : 6 < 2 against H; : § > 2 for the following data. Let v = 0.05.
2.69 2.72 2.60 2.61 2.65 2.55 2.65
2.02 2.32 2.04 2.99 2.98 2.39 2.63
2.00 2.04 2.62 2.78 2.19 2.05

32. Let X1, X5, ..., X, are iid rvs from U(6, 26). Find a UMP test of size « to test
Hy : 0 <6 against H; : 6 > 6.
Further, test Hy : 6 < 4 against H; : 6 > 4 for the following data. Let o = 0.05.
4.51 5.64 3.88 5.88 3.50 5.45 5.84
5.54 3.52 5.38 4.16 4.14 3.75 3.96
4.36 5.96 4.66 5.15 5.67 3.46

33. Let X1, X», ..., X, are iid rvs from the following distribution as
A
A . 0
)\ — (l+x)A+1 y X >
SN [ 0 ; otherwise

Obtain a UMP test for testing Hy : A < A\ against H; : A > ).
Further test Hy : A < 1 against H; : A > 1 for the following data. Let o = 0.05.
1.10 0.32 0.14 0.23 0.20 0.05 1.48
0.86 0.35 0.39 0.23 2.18 0.32 5.11
7.77

34. Let the rv X; has exponential distribution with mean (19 and the rv X, has g(x;16),
g(x210) = ngflg 0<x<1,0>0

Obtain a MP test of size « for testing Hy : 6 = 6y against H, : 6; > 6. Can it be a
UMP test?

35. Let the rv X is B(n, p) and the rv X; is NB(r, #). Obtain a MP test of size « for

testing Hy : 6 = 0.2 against H; : #; = 0.3. Can it be a UMP test? Assume n and r

are known. If n = 5 and r = 3, test the same hypothesis for the following data
2,1,11,01, 5, 18, 12, 5.

36. Let the rvs X1, Xp, ..., X, are N(y;, o), i=1,2,...,n, ;i is known. Obtain a

MP test of size « to test Hy : 0> = 0¢? against H : 0> = 01> > 0¢°.

37. Let the rvs X, Xp, ..., X, are N(u, 03, i=1,2,...,n, o; are known. Obtain
a MP test of size av to test Hy : . = po against Hy @ g = g < o
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38. Let the rvs X; has P(i)\), i = 1,2,...,n. Obtain a MP test of size « to test
Hy: A= )Xpagainst H; : A = A\ < .

39. Letthe rvs X1, X, .. ., X, be iid rvs with U(—k6, k#), 6 > 0, k is known. Obtain
a MP test of size « for testing Hy : 6 = 6y against H; : 01 # 0y.

40.Letthervs X1, X,, ..., X, beiid rvs with (1) U(=0, 0), 6 > 0(ii) U(0, #?), 6 > 0
(i) U@, 6% 6 > 0.
Obtain UMP test of size « for testing Hy : 6 = 6 against H; : 6 # 6.
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Chapter 8
Unbiased and Other Tests

In earlier chapters, we have discussed the most powerful and UMP tests. Many
times, we cannot get UMP tests for testing Hy : 8 = 6y against H; : 6 # 6.
Then how to get UMP tests? In the beginning, we will consider the extension of
Neyman—Pearson Lemma to the cases where f; and f; may take negative values.
They may not be necessarily densities but may satisfy some other conditions. We,
therefore, discuss the maximization of | ¢ fdx for some integrable function f over
a class of critical functions ¢, satisfying several other conditions. This extension is
also known as generalized Neyman—Pearson Lemma. We will only state this Lemma
with a brief proof. The detailed proof is given in Lehman (1986). Further, we will
consider unbiased and other tests.

8.1 Generalized NP Lemma and UMPU Test

Theorem 8.1.1 Suppose we have (m+1) functions go(x), g1(x), ..., gm(x) which
are integrable and let 0 < ¢(x) < 1 such that

/d)(x)g,-(x)dx =c¢,i=1,2,....m (8.1.1)

where c;’s are known constants.

Let ¢ (x) be a function such that

13 go(x) > > kigi(x)
0 ; otherwise

Po(x) = [

then [ ¢o(x)go(x)dx > [ ¢(x)go(x)dx
where ¢ (x) and ¢(x) satisfy (8.1.1).
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Proof Consider

[¢0(x) = P(x)] |:90(X) - > kg (X)} =0 (8.1.2)

i=1

One can easily see that if ¢o(x) = 1 then (8.1.1) is nonnegative.
Similarly if ¢o(x) = O then also (8.1.1) is nonnegative.
From (8.1.2)

[$0(x) — $(x)] [go(x) - > kig; (x)] >0

i=1

= [ 160 - 01 g0 = 3k [ [ augwx — [ o (x)dx}
i=1

From (8.1.1), > ki[c; —¢i]1 =0

i=1

N / [60(x) — H()] go()dx = 0
N / S0 ()g0(r)dx > / $(r)go(x)dx

Remark We can see the difference between NP lemma and its extension

(i) There is an equality in (8.1.1).
(i) The functions go(x), g (x), ..., gm(x) need not be pdf.
(iii) k;’s need not be nonnegative.

Definition 8.1.1 A test ¢(x) is called an unbiased test of size «v if Eg,¢(x) < o or
Bs(0) <, 8 € Ogor sup By(0) = a, and Ey, ¢(x) > avor 5,(0) >, 0 € By,

0e®
Construction of UMP unbiased (UMPU) test
Assume that f(x|0) involves single parameter. In this case, we will find an UMPU
test for testing Hy : 0 = 6, against H; : 6 # 6, for a size of a.
From the Definition 8.1.1,
Bs(0) <, € O 1)

and
By(@) = a, 0 # by (ii)

Suppose that the power function Eg, ¢(x) is a continuous function of 6.
From (i) and (ii), Ey,¢(x) has minimum at 6 = 6,.
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Therefore, we want to find ¢ such that

By(0o) = a (iii)
and
B(0) > a for 6 # 6 @iv)
If 3,(0) is differentiable, then
dps0 ,
ﬁdﬁ( ) lo=8, = 0 = B,(6p) =0 )

Class of test satisfying (i) and (ii) is a subset of a class of tests satisfying (i) and (v).
Now we have to find a MP test satisfying (i) and (v). If the test is independent of 6,
then it is UMPU.

Now our problem reduces to find a test ¢ such that

En,d(X) = / () f (x|60)dx = a (vi)

and if regularity conditions are satisfied then

dEe¢(X)| _dBy(0)
o =T ap

d
lozgy = / Lo f(xlfdxlys, =0 (viD

Now ¢(x) maximizes the power f @(x) f (x]61)dx such that to find ¢ (x) that satisfies
(vi) and (vii).

ie., [ do(x) f(x|0)dx = [ p(x)f(x|0))dx V¥ 0

Using Theorem 8.1.1, i.e., GNP lemma, go(x) = f(x]61), g1(x) = f(x]6y) and
¢(x) = df(XW) l6—6,

_ Fx101) > ki £ (x160) + ko[ LD,
Po(x) = IO otherwise

dl 0
do(x) = | Ui S > ko Rl PRy,

0 ; otherwise

(8.1.3)

where k; and k, are such that Eg,¢o(x) = « and dEd’U(") lo=6, = 0

Theorem 8.1.2 Let the rv X has pdfipmf) f(x|0),0 € ©. Assume that f(x|0)
belongs to a one parameter exponential family.

f(x|0) = A(x)expl0T (x) + D(#)], x e R,0 € ©
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Then prove the test if

(i) U is continuous
1, u<coru=>cp

0 ; otherwise (8.1.4)

Po(x) = i

(ii) U is discrete
1 ;u<cioru>c
Po(x)=1visu=c,i=12 (8.1.5)
0 ; otherwise

is UMPU of size « for testing Hy : 0 = 6y against Hy : 0 # 0y, where u =
Z?:l T (x;)

Proof

fOnx0, o x|0) = [[AG) exp [ez T(x;) + nD(9)1|

i=1 i=I

Using GNP and (8.1.3),

. e [ix161) dlog f(x]0)
1 s lf Fo(x100) > kl +k2[T]9=€0

0 ; otherwise

do(x) = [ (8.1.6)

filxr, xo, .00, x,101) _ expl0h >.'_, T(x;) +nD(0))]
fo(xi, x2, ..., x0l60)  explbo > i) T(x;) +nD(6p)]

= exp {(91 —00) > T(x;) +n{D() — D(Go)}:| (8.1.7)

i=1

Next,

log f(x]6) = D log A(x;) + 6 > T(x;) +nD(0)

i=1 i=1

dlog f(x]6)

= = ZT(x,-) +nD'(9) (8.1.8)
i=1
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From (8.1.6), (8.1.7), and (8.1.8)

bo(x) = [ 15 exp[(01 — 00) X0y T(xi) +n{D(O1) — DWO)}] > ki + k2 [S7_, T(xi) +nD'(6p)]
’ 0; exp[(01 — 00) X1y T(xi) +n{D(01) — DW)}] < ki + k2 [X}_; T(xi) +nD'(6)]

_ [ 1 exp (01 — o) ST > kf+k >0 T(x)
05 exp|(@r —00) D0 Tx)| <kf+k5>0, T(x)

where

K= kl kzi’lD/(a()) % k2
"7 n[D(O1) — D)) ' n[D®;) — D)1’ > nlD(6) — D(6)]

Let A[>/_, T(x;)] = exp[(y — 00) D T (x)1 — k3 >0 T(x;)
Then

_ Vs h [ TO] > &
Po(x) = [0 < h [Z?:: T(xi)] = k%

Nature of A [>°7 | T (x;)]
LetU(x) = > T(x;)

h(u) = exp[(0) — Oo)u(x)] — kyu(x)
h'(u) = (6 — o) exp[(6; — Oo)u(x)] — k3
B () = (0; — 6p)? exp[(0; — Op)u(x)] > 0; (see Fig. 8.1)

This implies that h(u) is convex in U. If A(u) > ki = u < ¢; or u > ¢, (Fig.8.1).

Fig. 8.1 Graph of h(u)

h(u)

M e ----
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The UMPU test is given as

l;u<cy oru>c
0 ; otherwise

Po(x) = [

If U is discrete
1l ;u<c oru=>c

po(xX) =1 visu=c¢,i=12
0 ; otherwise

~;(i = 1, 2) can be determined such that E¢y(x) = o and

P <) + P> 2)lp=g, = 0.

Conclusion: For one parameter exponential family, we have seen how to obtain
UMPU test for testing Hy : 6 = 6, against H : 6 # 6.

These conditions are as follows:

(i) E¢(x) = a
(i) HEG(x)[g=g, =0

These conditions can be put in different form. Hence, we consider the following
theorem:

Theorem 8.1.3 Let f(x|6) = c(0)e’”®h(x); x € R,0 € O.
Prove that

E¢(x)T (x) = aET (x), (8.1.9)

where ¢(x) is defined in (8.1.4) or (8.1.5)

Proof The test ¢(x) defined in (8.1.4) or (8.1.5) satisfies (i) and (ii) defined in the
conclusion.

i — i T (x) _
S50 = 5 [ 600c@ T h e, = 0
= / ()@ T (x)h(x)dx + / P(x)c'(0)e"T O h(x)dx|p—g, = O

= Elp(x)T (x)] +¢'(0) / ¢(x)e” Oh(x)dx|gg, =0

= BT W]+ ((g)) / $(0)c(O)e"TOh(x)dxlomg, = 0
¢(6)
= E[p(x)T(x)] + —=E¢p(x) =0 (8.1.10)

c(®)
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This is true for all ¢, which are unbiased.

Let p(x) = «
aE[T (x)] + @a =0
c(6)
Then
ET()] = - S @ 8.1.11)
c(6)

From (8.1.10) and (8.1.11),
E[¢(x)T (x)] = E[¢(x)]E[T (x)]
Then we get the result as in (8.1.9),
E[¢(x)T (x)] = «E[T (x)]

Remark 1 We can find the constants ¢ and ¢, from (i) E[¢(x)] = « and

(i) E[¢(x)T (x)] = aE[T (x)].

Remark 2 A simplification of the test is possible if for § = 6, the distribution of T
is symmetric about some point a.
ie.,

Po,[T <a—ul= PylT >a+u] Vu

Then any test which is symmetric about a and satisfies Ey,¢(x) = «, i.e., it satisfies
(8.1.9).

Let ¢(¢) be symmetric about a and Et/(f) = «, then we have to show that ¢(¢) is
unbiased, i.e., it satisfies (8.1.9).

En ()T (x) = E,[(T — ) (1) + ap(0)]
= En (T — a)(t) + aBpy (1)
— 0+ aEp, (1)

(As T is symmetric about a then ET = a.)

=aa = aET(x)
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Hence it satisfies (8.1.9).
Therefore v (¢) is unbiased.

Remark 3 c¢;’s and ~;’s can be found out such that

= Pyy[T < a1l +nPylT =cil =

(SR

and

= Py [T > 2] + Py [T = 2] =

(S s)

Further v, =y, anda =

cito
2

Example 8.1.1 Let the rvs Xy, X5, ... X, are iid rvs N (0, 1). Find UMPU test for
testing Hy : 6 = 6, against H, : 6 # 6y

\ 1 -
fO1 %, x10) = (2m)7F exp [—5 D - 9)2]

i=1
This belongs to a one parameter exponential family. Hence, from Theorem 8.1.2,

U=2Tx)=2 x
The UMPU test is

¢(X)=[1; Sxi<cpor Dxi>c2

0 ; otherwise
OR

;X <cp or X >
0 ; otherwise

Po(x) = [

X is distributed as N (0, %)
Ep,¢(x) =«

Py (X <c)+P(X > ) =a

y PRY Ry
Ny I

Next, Eo0 |, =0
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cy . ) —00 - s
-4 {/ o exp[—”(x%)]} di + / Al g = 0
2

o V2r 2 N 2
—00
J Vi(e1—0) 2 2
ﬁ@ / rdl“f’ / fdt |9 90_0
Jn(ca—0)
v niey —0p)* | | Jn n(ca — 0)2
= — exp| ———— | + exp| ——— | =0
Noran 2 VP 2

. 2 - 2
= exp |:—w:| = exp {_W}

= (c1 — 00)* = (c2 — bp)?
= (c1 —00)* — (c2 — 00)* =0
= (c1 —p)(c1 +¢cp —26p) =0
=cy=c¢p and ¢c1 +¢c3 —20p=0

=1 =20y —cp orcy =20y —cy

Now E¢(x) = e and /n(c2 — 0p) = /n(20p — ¢ — bp) = /n(6p — 1)

Hence,

Jn(ei— 90) ,z

——dt +
| =
n(fo—c1)

Jn(ei—=0o) o

=2 / er:a

V2r

—0Q

NGE Y
2
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00 2
/ ¢’ dt
= i
2T 2
—/n(c1—0)

= —n(c1 — ) = Zs

Za Z

2 dc=2~0
ﬁan Co 0+\/ﬁ

22

=c=0)—

Hence, the UMPU test is

N
|oie

b(x) = 1; i<00—%0r x>0+ —F*
0 ; otherwise

Example 8.1.2 Letthervs X, X», ... X, areiid rvs N (O, o?). Find UMPU test for
testing Hy : 0 = oy against H; : 0 # 0y

fx,x x|02)— ;nex —M'X‘ER c>0
1 2y ey n - O_m p 20_2 ’ 1 ’

This belongs to a one parameter exponential family.
Hence, from Theorem 8.1.2, 3" T'(x;) = > x2,
The UMPU test is

. 2 2
qb(x):[l’ Dxi<cior »xi>e

0 ; otherwise

¢y and ¢, are such that Ey,¢(x) = « and dEO(x) lo—oy = 0. Let > x? =1.

22 ~ 2, End(x) =a

Now

dt + (8.1.12)

S)
\cﬂg\
N\: .\,‘\
"J E~
SIS
\8
N\“ N\\
’7 M
(ST

Q

dE¢(X)

and lo=c, =0
_‘712 1 _% 1
2% (CL\5— 202 (€2 \5—
e 0 2 e 0(=%)2
_26‘1 (ag) 2¢; (0,3) —0
3 [ 3 2 on -
op 2:I'3 lop 22T
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- n — L2 n
= —cie M (e f e Mi(e): T =0
C1 C2 (6] %
Sexp|l-——+—|=(|—=
p[ 203 20’(%:| (Cl)
N 1[ 1 nl o
——lc1 — 2]l = = log—
202 1T T R
Cy — (1
= logc, —logce; = 5 (8.1.13)
nog
> Cy —C

= nol = (8.1.14)

log ¢, — log ¢y

¢y and c; satisfying (8.1.12) and (8.1.14) are found by trial and error method.
Let

¢

3 o0
/ f(®)dt = a; and /f(t)dt = oy, (8.1.15)
—00 Q9
%
and o = o1 + aa,
Then,
C1 > Co 2 Cr — Cq >
—_— = y —H — and —_— = s
0_(2) Xn,l—al U(% Xn,az IOg c) — IOg ) nUO

Find ¢, and ¢, from these equations and start with o) = %

Example 8.1.3 Consider X ~ B(10, p) and assume o« = 0.1. To test Hy : p = 0.2
against H; : p # 0.2. The UMPU test is given by

1 ; x<cpor x>c
b(x) = Y1 X =
Y25 X =0
0 ; otherwise

To find cy, ¢, 7y and 7,, we will use the following equations

En¢(x) =«
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= > (10) (0.2)*(0.8)10 + i (10) (0.2)*(0.8)'0—*
x=0 X cr+1 X

+ (10) (0.2)°(0.8)'01 + 72(10) (0.2)2(0.8)'°" = 0.10  (8.1.16)
C1 e

Next,
E¢(x)T (x) = aET (x) = anpy
= 9 10 9
! 10 x—1 10—x
XZ:(; (x 3 1)(0.2) (0.8)10~ + % (x ~ 1)(0.2) (0.8)

9 9
+m (0.2)71(0.8)1971 4, (0.2)2710.8)1°72 = 0.10
C1 — 1 Cy — 1

c1—2 9
9 9 9

! o Y 9-y -1 10—c¢

= ; (y) (0.2)7(0.8) + % (y) (0.2)7(0.8) +7 (c1 B 1)(02) 1=10.8) 1
+ 72(629_ 1)(0.2)”71(0,8)10"‘2 =0.10 (8.1.17)

B(10,0.2)] |B(9,0.2)
X [P(X=x) |X|P(X=x)

0 |0.107374]0 [0.134218
1 [0.268435 1 [0.301990
2 |0.301990 2 [0.301990
3 0.201327]3 [0.176161
4 {0.088080 |4 [0.066060
5 0.026424]5 [0.016515
6 |0.005505 |6 [0.002753
7 10.000786 7 [0.000295
8 [0.0000748 [0.000018
9 {0.000004 [9 [0.000001
10[0.000000

from (8.1.16) and (8.1.17),c;y =0and ¢, = 4
From (8.1.16),

0+ 0.03279 4 0.107374~; + 0.08808v, = 0.10 (8.1.18)
From (8.1.17),

0+ 0.08564 + (0)y; + 0.176167, = 0.10 (8.1.19)
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Solving (8.1.18) and (8.1.19) simultaneously,
v1 = 0.5591 and ~, = 0.08152

The UMPU test is
1 s x<0or x >4,
0.5591 ; x =0,
) = 1008152 x =4,
0 ; otherwise

Example 8.1.4 Letthervs X, X», ... X, are iid rvs with B(k, p). Find UMPU test
for testing Hy : p = po against H; : p # po

n

k B n
FG1 X2, x| p) =H(x.)p’q”" S T=)x qg=1-p
! i=1

i=I

)
iz WM/ N4

This belongs to one parameter exponential family because 6 = g, STx) =2 x
(see, Theorem 8.1.2)

The UMPU test is
1 ;T <c or T>cy,

px)=17%:T=c,i=1,2
0 ; otherwise

¢i’s and 4;’s (i = 1, 2) are such that E¢(x) = a and ‘*’%) = 0or Ep(x)T(x) =
aET (x)
Now T is distributed as B(nk, p).

En,0(x) = q,
c1—1 nk
nk r _nk—r nk r _nk—r nk ¢y nk—
:>Z(r)l70%k + Z (r)PO‘Iok +’Y1(cl)l’ol€/01k “
r=0 r=cy+1
nk ¢y nk—cy
+ 7 Pydy = (8.1.20)
(&)
Consider
" (n
A — r_n—r
© Z‘ (r)p q
dA(C) . n r—1 —r . n r —r—1
i =Z(r)rp ¢ =2\, ) =g

r=c r=c

$ n_l - n—r n_l r_n—r—
=X [(C)re = ()]

r=c
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Let

=n [Dr1— D]
r=c

n) Dy = D

= n[Dc—l - Dn] (8121)
Note that D,, = 0 because (";1) =0
dA
dA© _p.
dp
—1
—n (” ) pelgn=e (8.1.22)
c—1

c—1
-4 =3 (':) pg

r=0

dll —A@] _ dA(e) _ (n—=T1\ .|
=g = n(c_l)p g (8.1.23)

From (8.1.20), use (8.1.23)

dEo(x nk — 1 , , nk —1 . .
¢( ) — —nk pocl—lqonk—cl + nk poczqoﬂk—éz—l
dp Cc] — 1 C2

nk .
+ 'Yl( ){Clpocll%"kc‘ — (nk — Cl)poclqonkfclfl}
Cq

nk c—1 _ nk—c, ¢y nk—cy—1
+tl, {c2p0™ ™ qo — (nk —c2)po?q0™ 7} =0 (8.1.24)
2

To get ¢y, c2, y1 and ~y, from (8.1.20) and (8.1.24), unique solution is not possible.
A program in R is written for (8.1.20) and (8.1.24) to get ¢y, ¢, 1 and 7, for
n=10,k=5,Hy: p=0.95

library(’rootSolve’)

biump=function (n,k,p0,alpha){ eg=function (gamma) {
c(fl=pbinom(cl-1,n*k,p0)+1l-pbinom(c2,n*k,p0)+gamma[1l]*dbinom(cl, n*k,p0)+gamma[2]*dbinom(c2,n*k,p0)-alpha,
f2=-n*k*dbinom(cl-1,n*k-1,p0)+n*k*dbinom(c2,n*k-1,p0)+

gamma [1] *choose (n*k,cl) * (c1*p0” (c1-1) * (1-p0) " (n*k-cl) - (n*k-cl) *p0"cl* (1-p0) " (n*k-cl-1))
+gamma [2] *choose (n*k, c2) * (c2*p0~ (c2-1) * (1-p0) " (n*k-c2) - (n*k-c2) *p0"c2* (1-p0) " (n*k-c2-1))) }
for (cl in 1:(n*k-1)){ for (c2 in (cl+1):(n*k))

kk=multiroot (f=eq,c(0,0))$root if (kk[1]1>0 & kk[1l]<=1 & kk[2]>0 &

kk[2]<=1)

{print (c(’'gammal,gamma2=",kk));print(c(’cl=',cl, c2=',c2));break}} }

biump (n=10,k=2,p0=0.95,alpha=0.05)

biump (n=10,k=3,p0=0.95,alpha=0.05)



8.1 Generalized NP Lemma and UMPU Test 359

biump (n=10,k=4,p0=0.95,alpha=0.05)
biump (n=10,k=5,p0=0.95,alpha=0.05)

biump (n=10,k=2,p0=0.95,alpha=0.01)
n=10,k=3,p0=0.95,alpha=0.01)
n=10,k=4,p0=0.95,alpha=0.01)

(
(
(
biump (n=10,k=5,p0=0.95,alpha=0.01)

The UMPU test is forn = 10, p = 0.95, « = 0.05,k =2

1 ;T <16 or T > 20,
0.6896; T =16

o) =10.1067: T =20
0 ; otherwise

Now using the condition

E¢(x)T (x) = aET (x)

c1—1 nk
nk _ nk _ nk . _
E¢(0)T(x) = r(r )Porqo"k > r(r )Porqo"k ' +7161(01)po"'q0"k “
r=0 r=cy+1

nk _
+ me (cz)poczq()”k 2 = ankpy = aET (x)

< nk — 1 r—1_ nk—r & nk — 1 r—1_ nk—r nk —1 c1—1  nk—c
=> Lo Tl T > ) O N L
r=0 "= r=cy+1 "= ‘-
-1\ . .

R (i e (8.1.25)
From (8.1.24) and (8.1.25), ¢, ¢ 1 and 7, can be obtained. One has to use binomial
tables.
As n > 30 and p tends to %, the distribution of

T — nkpo
v nkpogo

Using normal tables, one can find ¢ and c¢,. In this situation y; = v, = 0.

Now for sample sizes which are not too small and values of py are not too close
to 0 or 1, the distribution of 7 is approximately symmetric.

In this case, much simpler equal tails test gives a good approximation to the
unbiased test.
c; and ¢, are determined so that

C[*l
nk r , nk—r }’lk c1 ., nk—cy «

Z Po 4o + Po 9o == (8.1.26)
r C] 2

r=0

— N, 1).
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2k nk «
r  nk—r 5 nk—c
E Pogo 7 Po?q0" ==
r (65)
r=cy+1

(8.1.27)

Similarly, program is written in R for (8.1.26) and (8.1.27) to get ¢y, ¢2, 71, and ;.

# Given data

n = 10; p = 0.35; alpha = 0.05; k = 3; g = 1-p; m = n*k

# First equation

# To find cl
a <- seq(from=1,to=m,by=1) # Declaring possible values for cl.
cdf = pbinom(a,m,p)-dbinom(a,m,p) # P(T < cl)
ind = min(which(cdf < (alpha/2))) # Gives value of cl such that P(T < cl
cl = a[ind]

# To find gammal
gaml = -0.1 # Declaring gamma variable.
while(gaml < 0 || gaml > 1)
{
gaml = ((alpha/2)-pbinom(cl,m,p)+dbinom(cl,m,p))/dbinom(cl,m,p)

cl_pre = cl; gaml_pre = gaml;
cl = cl+1;
}
# Second equation
b <- seqg(from=0,to=(m-1),by=1) # Declaring possible values for c2.
cdf = l-pbinom(b,m,p) # P( T > c2)
# To find c2 such that P(T > c2) < alpha/2
if(cdf[m] < (alpha/2))
{
ind = min(which(cdf < (alpha/2))); c2 = al[ind];
}
if(cdf[m] > (alpha/2)) { c2 = m}
To find gamma2
gam2 = -0.1 # Declaring gamma variable.
while(gam2 < 0 || gam2 > 1)
{
gam2 = ((alpha/2)-l+pbinom(c2,m,p))/dbinom(c2,m,p)

4

c2_pre = c2; gam2_pre = gam2;
c2 = c2-1;
}
# Assignment
cl = cl_pre; gammal = gaml_pre
c2 = c2_pre; gamma2 = gam2_pre
# To check value
alphal = pbinom(cl,m,p)-dbinom(cl,m,p)+ (gammal*dbinom(cl, m,p))

alpha2 = 1-pbinom(c2,m,p)+ (gamma2*dbinom(c2,m,p))
# OUTPUT
print(c("cl=",cl));
print(c("c2=",c2));
print (c("gammal=",gammal)) ;
print (c("gamma2=",gamma?2)) ;
print ("Check")

(

print (c("First equation",alphal)) ;
print (c("Second equation",alphal));
# RESULT
# OUTPUT
nel=n o ven
"c2=" "16"
"gammal=" "0.0493338989789363"
"gamma2=" "0.713138558357069"
"Check"
"First equation" "0.025"

"Second equation" "0.025"

< alpha
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The UMPU test is forn = 10, p = 0.35, = 0.05,k =3

1 ;T <6 or T > 16,
0049 ; T =6,

S =107131: T = 16,
0 ; otherwise

Example 8.1.5 Let X ~ P(\) and assume o = 0.05 To test Hy : A = 2 against
Hi:\N#2

The UMPU test is given by
1 ; x<c or x>0y,
Y15 X =Ch,
X) =
o) X =c,

0 ; otherwise

To find ¢y, ¢z, 7y and 7y,, we will use the following equations:

Ep,¢o(x) =«

ci—1 Mo () =20 (\n)! 00 =20 (\g)" =20 (\g)E2
:ZE (Ao) _{_7]6 (Mo) _I_Ze (0)+2€ (Ao) _

| ! | |
—0 r: Ci. S r: Co.
ci—1 8722r 672201 0 8722r 6722C2
+ v + 7 —0.05 (8.1.28)
r! cy! r! c!
r=0 r=c;+1

Next Ey, [¢(x)T (x)] = aEg, T (x)

=2 _ o) _ _ ”—
-— e Ao/\os e )\0)\061 e )‘U—)\os 4 )‘0)\06‘ !
= + + E +

! 72 =«
o s! c! = s! cy — 1!
ci—l 6722s 672261 o 67223 67220271
E +m + E + 7 =0.05 (8.1.29)
= s! cy! = s! c— 1!

Considercy =0andc, =6
From (8.1.28),

0 + (0.13534)7; + (1 — 0.99547) + (0.01203)7, = 0.05

(0.13534)v; + (0.01203)y, = 0.04547 (8.1.30)
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Poisson(2)
PX=x) |F(x)

0.135335 [0.13534
0.270671 [0.40601
0.270671 [0.67668
0.180447 [0.85712
0.090224 [0.94735
0.036089 [0.98344
0.012030 [0.99547
0.003437 {0.99890
0.000859 |0.99976
0.000191 {0.99995
1010.000038 |0.99999
11{0.000007 [1.00000
12{0.000001 [1.00000

O 0O [ QN[ | B W — D <

From (8.1.29),

0+ (0.01656) + 0 4 +,(0.03089) = 0.05 (8.1.31)
= 7, = 0.9266
From (8.1.30), v; = 0.2536 The UMPU test is
1 cx<0or x> 6,
0.2536 ; x =0,
O0)=1009266: x =6,
0 ; otherwise

Example 8.1.6 Letthervs X, X5, ... X, areiid rvs with P(\). Find UMPU test for
testing Hy : A = A\g against H} : A # A

—nA )\t
H” X!
j=1i*

This belongs to one parameter exponential family.
In thiscase >/, T(x;) = >\, x; = T.Now t ~ P(n)\).
The UMPU test is

flxy, X2, .o, X0 A) = ;x; =0,1,2...

1l :T<corT>cy
px)=17%; T=c,i=12, (8.1.32)
0 ; otherwise

c1, ¢2, v1 and 7y, are such that Ep ¢(x) = o and ET (x)9(x) = aET (x)
From Ep,¢(x) = o
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1—1 _
cl e—n)\o (n)\o)r e n)\o(n)\o)cl N 0
r!
r=0 r=cy+1
e (n o)
+p——— =a
Cy!
Consider
a=l _nx r €2 —n\ r
e (n)\g) e " (n o)
> 2 T
r! r!
r=0 r=ci r=cy+1
€2 —nXo r c—1 —nXo r
e " (n)g) e " (n)g)
= 1= r! B r! +
r=0

C1
(8.1.33) becomes

o e " (n o)

e—n)\o )¢
(nAo) n

r=cy+1

363

e—n)\o (n)\o)r

r!

(8.1.33)

o —n\o r
3 ﬂ —1(8.1.34)
r!

e N (nXo)"

r!

e—n)\o (n )\O)Cz

=1- M
r!
r=c)

o ¢ " (nAo)"

e (n)g)!

Cl!

e~ (nXg)e

Cz!

=1—a(8.1.35)

1
r! Cl!

r=c

From ET (x)¢(x) = aET (x)

ci—l —n r
_ ‘Zre M) i .

e*"/\o (n /\O)r

efn)\o (I’l)\())cl

Cl!

r=0 r! r=cy+1 r!
—n\o \n)€2
N L (8.1.36)
Cz!
N S e () 1+ — e (nXg) ! ,ylff”’\”('l)\o)c'f1
— (r—1)! e =D (cr = D!
e~ (n)g)2 !
) =
+ 7 -1 @
< "%(nxo)s — ¢ " (n)\o)* 2 (120) 7!
L
- Z ; 5! (1 — D)l

e—n)\o (n)\O)CZ 1

+ 7 (= 1!

(8.1.37)
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Now
c1—2 —nXo s -1 —n\ s o _n\ s
e " (n)o) e " (n)o) e " (n)o)
— Y =1 B139)
s=0 s=c;—1 s=cy
Hence,
a2 s o —n\ s o=l _n) s
_nx, (MA0) e """ (nXo)" e " (n)o)
eI s 2
s=0 : s=c : s=c;—1 .
o -l e—nko(n)\o)s e—nko(n/\o)cl—l e—n)\g(n)\o)cz—l B
R e T G =)
S§=Cc|1—
N -l e_n/\O(VL)\())S e_n/\O(VL)\())Cl_l e—n)\g(n)\o)cg—l 1
T et P - T

(8.1.39)

We have to solve the Egs. (8.1.35) and (8.1.39) to get ¢y, ¢z, 71, and 7, but it is
difficult to solve.

A program in R is written as ¢y, ¢3, y; and vy, forn = 10, A = 8.2, « = 0.05

library(’rootSolve’)

poiump=function (n,lambda0,alpha,m) {

eg=function (gamma) {

c(£1=1- (ppois (c2,n*lambda0) -ppois (c1-1,n*lambda0) ) +gamma[1] *dpois (c1,n*lambda0) +gamma[2] *dpois (c2,n*lambda0) -alpha,
£2=(ppois (c2-1,n*lambdal) -ppois (c1-2,n*lambda0)) -

gamma [1] *dpois (c1-1,n*lambda0)-gamma (2] *dpois (c2-1,n*lambda0)-1+alpha) }
for (cl in 1:(m-1)){

for (c2 in (cl+1):(m))

kk=multiroot (f=eq,c(0,0))$root

if (kk[1]>0 & kk[1]<=1 & kk[2]>0 & kk[2]<=1)

{print (c(’gammal,gamma2=",kk));print(c(’cl=’,cl, 'c2=",c2)) ;break}}

}

poiump (n=10, lambda0=8.2,alpha=0.05,m=100)

The UMPU test is

1 ;T <65 or T > 100
0.3709 ; T = 65,

0.1007 ; T = 100,

0 ; otherwise

P(x) =

As an approximation, we can use equal tail test,

=1
< e "M (n)g)" e (n)g)"!

1 n | =
r: C.

(8.1.40)

(SR s)

r=0
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e~ (n)g)" MmN«
2 =

0 ol (8.1.41)

0|

c+1

Similarly, program is written in R for (8.1.40) and (8.1.41) to get ¢y, ¢z, 1 and 7».

find _cl = function(a)
{
cdf = ppois(a,m)-dpois(a,m) # P(T < cl)
if(cdf < (alpha/2)) { return(a)}

if(cdf >= (alpha/2)) {print("some error")}
}
find_gammal = function(a)
{
gaml = ((alpha/2)-ppois(a,m)+dpois(a,m))/dpois(a,m);

return (gaml)
}
# Given data
n = 10; lambda = 8.2; alpha = 0.05; m = n*lambda
# First equation
a=1; gl = -0.1
while(gl < 0 || gl > 1)
{
cl = find_cl(a);
gl = find _gammal (a) ;
a = a+l;
}
# Second equation
b = 0 # Declaring possible values for c2.
cdf = alpha
while(cdf >= (alpha/2))
{
cdf = l-ppois(b,m) # P( T > c2)
b_pre = b
b=Db+ 1
}
c2 = b_pre;
# To find gamma?2
gam2 = -0.1 # Declaring gamma variable.
while(gam2 < 0 || gam2 > 1)
{
gam2 = ((alpha/2)-l+ppois(c2,m)) /dpois(c2,m)
c2_pre = c2; gam2_pre = gam2;
c2 = c2+1;
}
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Assignment

gammal = gl

c2 = Cc2_pre; gammal2 = gam2_pre

To check value

alphal = ppois(cl,m)-dpois(cl,m)+ (gammal*dpois(cl,m))
alpha2 = 1-ppois(c2,m)+ (gamma2*dpois(c2,m))

OUTPUT

print(c("cl=",cl));

print
print

print

(
(
print (
(
(

c("c2=",c2));
c("gammal=",gammal)) ;
c("gamma2=",gamma2) ) ;
"Check")

print (c("First equation",alphal))

print (c("Second equation",alphal));

#

The

RESULT

"cl=" "65"

"c2=" "100"

"gammal=" "0.223352054419766"
"gammal2=" "0.274038885245226"
"Check"

"First equation" "0.025"

"Second equation" "0.025"

UMPU testis forn = 10, A = 8.2, « = 0.05

1 ;T <65 or T > 100
S(x) = 0.22234 ;T = 65,

0.2740 ;T = 100,

0 ; otherwise

For large n, we can use normal approximations

X; — n\
%_) N, 1)
0

Hence

« «
Py (T <)) = ) and P(T > ¢) = )

p (Z c —n)\o) « i P (Z cz—n)\o) «
<———) == an > ) ==
\/nAo 2 \/nAo 2

p (Z c —n)\o) « 4 Pz c —n)\o) | o
<———)=—= an < ——H)=1-—=
\/I’l)\o 2 \/l/l)\o 2
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c1—n\ cy —nAo
————— =—Zo and ——— =Z«
\/n/\o 2 »\/I’l)\() 2

= =nh — n/\oz% and ¢, =n)y+ n/\()Z%

In this case, v, and 7, is equal to zero.
Approximate UMPU test is

1; T <n)h — \/n)\OZ% or T >n)o+ «/n)\OZ%
0 ; otherwise

d(x) = [

8.2 Locally Most Powerful Test (LMPT)

Sometimes, when UMP test does not exist, i.e., there is no single critical region which
is the best for all alternatives, we may find regions which are best for alternatives close
to null hypothesis and hope that such regions will do well for distant alternatives.

Alocally most powerful test is the one which is most powerful in the neighborhood
of the null hypothesis.

Let Hy : 0 = 0y against Hy : 6 > 0y, ie.,0 =0y + 6,9 >0

Let ¢ is locally most powerful, then Eg ¢(x) = (,(00) = « and (4(0) >
By(B0) YO, wherey <0 <bp+6V §>0

We have to maximize 3(6) in the interval 0y < 6 < 6y + 9.
Construction of LMP test
Expand (3;(0) around 6, by Taylor Series expansions.

B50) = B5(60) + (0 — 00)3;,(60) + 0(6%)

Maximizing (3, () is equivalent to maximizing 6; (0), where

d
5600 = / 600 f (x10)dx s,

Assuming that differentiation under the integral sign holds.
Hence, we have to find ¢ such that it maximizes f % f(x]0)¢p(x)dx subject to

f¢(x)f(x|90)dx = Q.

Using extension of NP lemma, the test is given by

Ly L&D, 0> kf(x]60)

0 ; otherwise

o(x) = [
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This test can be written as

1: leg.f'(x\('))'gie >k
— ’ do =0o 2.1
$(x) [ 0 ; otherwise ®2.1)

LMP test in a sample of size n
Suppose we have a random sample X;, X, < ..., X, from the pdf f(x|6). Then
LMPT for testing Hy : 6 = 0y against H; : 6 > 0 is given as

1 9
1; > —Ogdj;(xl Y g—g, > k

2.2
0 ; otherwise (8.2.2)

P(x) = [

Note: If f(x|6) is such that

E [dlogf(xle)} —0
Ao oy,

and

dlog f(xl0)]
A\ [T:Lgo = 1(90)7

where I(6y) is a Fisher’s Information.
Then for large n,

L d 0
DRSS %mz% ~ N, ).

i=1

Hence, if Z, is upper a% value of N (0, 1), then an approximate value of K =

Za«/ nI(90)

Example 8.2.1 LetthervXis N(6, 1+ a6?), a > 0 and known. Find the LMP test
for testing Hy : 6 = 0 against H; : 0 > 0

f(x]0) = ;ex [_lﬂ}
T Vi /irae Tl 20 +at)
1 oo 1 (x — 0)2
log f(x]0) = —zlog(l +ab”) — Elong TS
dlog f(x|0)  —2ab x—6) abx —06)?
do C2(14af?)  1+af? " [1+ab?)?

Under Hy, i.e., 0 =0, dlogd—w =x
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In a sample of size n,

dlog f(xi|0)
S defnld 3,

i=1

The LMPT is _
X >k
0 ; otherwise

P(x) = l

Now under H, X ~ N(O, %

Eo(x) =P(X > k) = «
=P(J/nX > ky/n) =

Hence, Z, = k/n = k = 5—%
The LMPT is _

0 X > %
O otherwise

P(x) =
Construction of Locally Most Powerful Unbiased Test
If UMPU test does not exist, then we can find a test which is most powerfully unbiased
in the neighborhood of 6y. And then we have to take the alternatives very close to 6
and maximize the power locally.
We have to test Hy : 0 = 60 against Hy : 0 # 6y
Determine a test ¢ such that

En,¢(x) = a and Ep ¢(x) > a for 0 # 6 (8.2.3)

It maximizes Eyp¢(x) when |0 — 6| < 9, when § is very small.
Expand Ey¢(x) around 6,

dE¢(X) (0 — 60)> d*Eo(x)
o= 2 d6?

Ey¢(x) = Eg,¢(x) + (0 — 0p) lo=g, + 0(6%)

From (8.2.3), Eg¢(x) has minimum at 6 = 6,. It implies that dEfgx) lo=6, = 0
Maximizing E¢(x) when |0 — 6| < 0 is equivalent to maximizing %M:%
subject to Eg, ¢ (x) = o and dE”(x) lo=g, = 0

i.e., Maximize f(/)(x)d f(x\é?)dx|0=00 subject to [ ¢(x) f(x]6p) = a

o
and [ ¢(x) LD gx|o_g =0
Using Extension of NP lemma with ¢, = o, ¢, =0, go = . {;gﬁl‘g)w —0y» 1 = f(x]60)

andg df(x\9)| —6o
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Hence,
1 S50, > ki f (xr160) + ko LG o
= v e o =60
o) [O ; otherwise
Consider
d* f(x10) df(x|0)
Tle:eo > ki f(x]60) + k2 70 =0,
1 d*f(x]0) ky df(x|0)
—_————|y= k _— — 8.2.4
Faloe dr TRt Faiey T ap e 829
Next,
df _ 1df _dlogff
de — fde’ —  de
d’f d*log f dlog f df
e de? do do
d’log f dlog f (1df
= T ae (?Ef)
d*log f dlog f
= +( a8 ) f
1 d*f  d’log f(x|0) N dlog f(x|6)7*
f(x|6) d6? do? do
(8.2.4) will become
d?log f(x|0 dlog f(x|0)\* dlog f(x|0
ié;( 16) =0+( gdf@( | )) o, > k1 + ko gdj;( | )e:eo
The LMPUT is
qS(x) — l; & logefz(x\ﬁ) |9:90 + (dlogd];(x\H))2|6:90 >k + kz_dlogd);(xle) |9:90 (825)
0 ; otherwise

ky and k; are such that Eg,¢(x) = o and dEW) lo=g, = O

Example 8.2.2 Let X1, X», ..., X, be iid with Cauchy distribution C(#). Obtain
LMPT for testing Hy : 6 =0 agalnst H :60>0.

1
fx10) = m, —0<x<o0o, >0

log f(x]6) = —logm — log[1 + (x — 6)?]
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dlog f(x|0)  2(x—0)
do Tl (x—0)2

For a sample of size n,

= dlog f(x;|0) 5o
— = Ty =2 -
Z d0 |€_0 ; 1 +xl2

i=1

Using (8.2.2), LMPT is given as

. n Xi
Ly 20 +a2 k
0 ; otherwise

P(x) = <

k is chosen such that

E¢(x):a:>P|:zlf 2>k:|=a

i=I i

It is difficult to obtain the distribution of "7, - el

By applying CLT, the distribution of > 7, ¥; ~ AN (nu, no?), where Y;

and EY; :pandV(Y,-):az; i=1,2,....n
Now

oo

Xi " 1 dxi
EY/ = —
14+x?) 71+ x?

—00

oo

7T[1 + X; ]r+1

—0oQ
If ris odd then EY/ = 0. Letris even and x; = tan 0 = dx; = sec? 0d0
Ifx;=0=>tanf=0=0=0andx; =00 = tanf) =00 = 0 = 3
BV :z / (tan 0)" sec?(6)
™ [sec2(8)]+!

T

2 [ (tngy
_ﬂ/[secz(B)]’de

0

5 5
:-/sin’(@) cos’ (9)do
7r
0

371

(8.2.6)

X

1+X?
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We know that

/ sin?"~1(8) cos (@)d = (”;’ n)
0

Putr=2, E(Yf) = % Hence, E(Y;) =0, V(Y;) = %

From (8.2.6)
8 8
P[ZYi >k] e |:,/—ZY,- >,/—k:| —a
n n
/8 In
Za = —k = k => —Za
n 8
The LMPT is

P(x) = [ L Xin Vi > V5

0 ; otherwise

Example 8.2.3 Let X1, X5, ..., X, be iid rv with Cauchy distribution C(6). Obtain
LMPU test for testing Hy : § = 0 against H; : 6 # 0.

n

o dlog f (xi|6) X
— = =2 [ S
2 Tl

i=1

n

2 d”log f(x;|6) ” x? 1
e M, =4 Y S S
2. a1 ; (14 x2)? ; 1+ x2

i=1

2

e |
=2y 4
§(1+x3)2

From (8.2.5), the LMPU test is

n 2x;
o(x) = P22 <1+x2>2 +A L T ?)2 > ki ke 0 T+
0 ; otherwise

ky and k; are such that Ey,¢(x) = « and dE")(X) lg=0 =

Remark If UMPU test exists then it is LMPU but converse is not true.



8.2 Locally Most Powerful Test (LMPT)

373

Example 8.2.4 Let X, X5, ..., X, be iid rvs with N (6, 1). Show that UMPU test

for testing Hy : 6 = 0 against Hl 6 # 01is also LMPU test.
We have already given an UMPU test in the Example 8.1.1.
The UMPU test is _ _
; X <cp Oor X >0
o) = l 0 ; otherwise

Now we will find the LMPU test for testing Hy : = 0 against H,

n

1
log f(x1, x2, ..., x,|0) = const — = Z(xl — 9)2
i=1

dlo
%21 Jomo = zx,
dzlogf|
—0 = —h
doz =°

The LMPU test is given as

d(x) = [; —n 4 (X x)* > ki k(L %)

0 ; otherwise

1: n?3%—n> ki + konx
= o) = HO ; otherwise
Consider n2x2 —n —k; —kni > 0= 32— &4 159
kot k 1
Let t =x =>g(t)=f2—i—(—12+—) 0
n n n

= g(t) =1+ At + Ay > 0,

where A; = —’% and A, = — (% + %)

g =2t—-% g’1)=2>0
g(t)isconvex int = t < ¢y ort > ¢, Hence,

1, Xx<cpor x>0
0 ; otherwise

d(x) =

which is same as UMPU test.

10 #£0
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Example 8.2.5 Let X1, X»,..., X, be iid rvs with N (0, o?). Find LMPU test for
testing Hy : 0% = 0(2) against Hy : 02 # 0(2)

Leto? =10

2
f(X1,xQ,...,xn|o'2)=_ n exp[_zxi}
V2rf 20

> X

logf(xl,xz,...,xnwz) = —glogQ—

20
dlog f no > x?
— =0 = — 5+ 5
9 200 202
d? logf| _on > x?
ez =" T 202 T 6}

. ZX,Z n Zx,z n 2 ZX,Z n
oo = | (5 )+ (B ) >k (B - )
0 ; otherwise

2
o= 1+ (g ram)+ (o) ke (h-5)
0 ; otherwise

Let

/
g =2 - o
402 0z 26,
//( ) l O
V)= — >
g 202
g(v) is convex, then LMPU test is given as

1; 29—;("2<cl or Zagc? > o

d(x) = [

0 ; otherwise

c1 and c; are such that Ey,¢(x) = o and %M:% =0

Further note that Ze—f ~x:=e = X%,lfa and c; = Xﬁ,(r
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8.3 Similar Test

In many testing problems, the hypothesis is for a single parameter but the distribution
of the observable random variables depends on more than one parameter. Therefore,
we will obtain UMPU test for composite alternatives when pdf(pmf) involves more
than one parameter.
Let f(x]6) be a family of pdf with parameter 6, 6 € ©, where O is a parametric
space.
Suppose Hy : 0y € O, where ®, contains more than one point, H; : § € ® — Q
Let ¢(x) be the test of level of significance a.

Ep,0(x) <a V 0 € B
Egox) >aV 0e®—-0

Definition 8.3.1 A test ¢(x) of significance level « is called a similar test for testing
H, : 0 € A, where A is a subset of © if

Epp(x) =a V 0 € A,

where a set A in the parametric space © is called the boundary set of subsets of ®
and © — Q.

Further if # € A, then there are points in ®y and ® — ©,, which are arbitrarily
close to 6.

For example, consider N (, %) O ={—00 < w<oo,0 >0}

fOy:u=0and® — Oy : u #0then A : p=0.

Hence, A is called boundary of ®j and ® — .

Theorem 8.3.1 Ler ¢(x) be an unbiased test of level of significance « for testing
Hy : 0 € ©¢ against H; : § € ©® — ©. Suppose that Ey, ¢(x) is a continuous
Sfunction of 0 then ¢(x) is a similar test for testing Hy : 0 € A where A is a boundary
of ©p and © — .

Proof Let 6y be a point in A. Assume that there exists a sequence 6}, in ®y such
that

lim 91,1 = 90

n— 00

Since Eg, ¢(x) is a continuous function of 6.
1im Ey,, 6(x) = Egd(x)

= B4(01,) — Bs(6o)
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Since B4(01n) <a VYn, 0, € O

= B4(th) < « (8.3.1)

There exist a sequence 6, in ® — O such that lim,,_, o, 65, = 6
Since ¢ is unbiased

E€2/1¢('x) > o= BO(QZn) >«

= Ep,0(x) > a = (400 > « (8.3.2)
From (8.3.1) and (8.3.2), Eg,¢(x) = «
= ﬂ¢(90) =« for Oy € A

= ¢(x) is a similar test for testing § € A.

Note: Thus, if 3,(6) is continuous in 6 for any ¢- an unbiased test of size o of Hy
against H, is also a-similar for the pdf(pmf) of A, i.e., for { f(x|0) : 8 € A}. We can
find MP similar test of Hy : € € A against H; and if this test is unbiased of size «,
then necessarily it is MP in the smaller class.

Definition 8.3.2 A test ¢ is UMP among all a-similar test on the boundary A, is
said to be a UMP «-similar test.

Remark 1 Let C; be the class of all unbiased test for testing Hy : 0 € O, against
H; : 0 € ® — ©. Since Ey¢(x) is a continuous function. Similarly, let C, be the
class of all similar test for testing Hy : 6 € A against H; : 6 € ® — ©q then C; C C,.

Remark 2 1t is frequently easier to find a UMP a-similar test. Moreover, tests that
are UMP similar on the boundary are often UMP unbiased.

Theorem 8.3.2 Let The power function of the test p of Hy : 0 € ©¢ against Hy : 0 €
® — O be continuous in 6, then a UMP «-similar test is UMP unbiased provided
that its size is « for testing Hy against H,.

Proof Let ¢y be a UMP «-similar. Then
Egdo(x) < 0 € ®g (i)
Consider a trivial test ¢(x) = «

Bs, (0) = B4(0) (Because ¢g is UMP)

Bau@ >a 00 —0, (i)

From (i) and (ii), ¢y is also unbiased.
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Remark 3 Hence, we see that class of all unbiased size « test is a subclass of the
class of all -similar tests.

Remark 4 The continuity of power function (3,(6) is not always easy to check. If the
family f(x|6) belongs to exponential family, then the power function is continuous.

In the following example, we will show that UMP a-similar test is unbiased.

Example 8.3.1 Let X1, X,, ..., X, be iid random sample from N (0, 1), we wish to
test Hy : 0 < 0 against H; : 0 > 0

Since this family of densities has an MLR in 7 = »"/_, x;. We can give a UMP

test as
1, T>k
0 ; otherwise

P(t) =

Now we will find similar test
By =1{0<0},0 -0 ={0>0},A={0=0}

Distribution of T ~ N (n#, n), which is a one parameter exponential family, then
the power function of any test ¢ based on T is continuous in 6. It follows that any
unbiased size « test has the property, 3,(8) = « of similarity over A.

Now we have to find a UMP test of Hy : 6 € A against H; : 6 > 0
By NP lemma,

2 (t —nb)?
Aty =exp| — ——— | >k T >k
2n 2n
The UMP test is given as
1, T>k
o) = [O ; otherwise

where k is determined as

T k
EHO¢(Z):a:>P[T>k]:P|:ﬁ>ﬁ}:a

k
— =Z,=>k=4nZz,
NG v
Since ¢ is independent of H; as long as § > 0, we see that the test
|1, T > nz,
o) = [0 ; otherwise

is UMP a-similar.
We need only to check that ¢ is of right size for testing Hy against H;.
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We have Hy : 0 <0

Ep,d(1) = Py[T > /nZ,]
|:T —nf  /nZ, —nG]

>

NG NG
T —nb
=P9[ ﬁ” >Za—\/ﬁe}
Since § < 0= Z, —/nl >0= Z,— /nb > Z,
Hence
T —n6 T —nb
P[T;>Za—ﬁ9]§P|: \/ﬁn >Zu:|=a

= Ep,0(t) < «

Therefore, ¢ is UMP unbiased.

8.4 Neyman Structure Tests

In this case, we shall restrict ourselves to test which are similar for testing Hy : 0 € A
against H : § € ® — O, where A is a boundary of ®; and ® — ©.

Definition 8.4.1 Let 7T'(x) be a sufficient statistics for f(x|0), whenever § € A, then
a test ¢(X) is called a Neyman Structure test for testing § € A if

En[6(X)|T(X)=t]=a V  and 0 € A.

Theorem 8.4.1 Every test ¢(X) having Neyman Structure for 0 € A is a similar
test for 0 € N

Proof Let ¢(X) be Neyman Structure test and 7'(X) be a sufficient statistics for 0 € A

En[¢(X|T (x)] = « ®

Er {En[o(X)IT ()]} =Er(a) =a ¥ t and V0 € A.

= It is a similar test.

One should note that a complete family is always boundedly complete but the con-
verse is not true.
Note: See Theorem 1.5.2 and Example 1.5.10
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Theorem 8.4.2 Let T(X) be boundedly complete sufficient statistics for 0 € A, then
every similar test for testing 6 € A has a Neyman Structure.

Proof Let ¢(X) be a similar test for testing € A. Hence E,¢(X) = a V 0 € A.
We have to prove that E[¢(X)|T (x) = t] = «.

Let (X) = ¢(X) — «
E[(X)] =0V 6 €A
Since E[¢)(X)|T (X) = 1] is independent of # (Because T(X) is sufficient)
ErE[(X)|T(x) =t]=0V e A

Let *(T) = E[¢(X)IT (x) = 1] = E¢*(T) =0

Now ¢(X) lies between 0 and 1. 1/(X) lies between —a and (1 — «). It implies
that ¥ (X) is bounded. Hence, its expectation also lies between —a and (1 — «).
T(X) is boundedly complete which imply

YIT()] =0V TX) ®

YT ()] = E[(X)|T (x) =1]
=E[¢(X) —a|T(x) =1]
=E[p(X)IT(x) =1]—a

From (i)

E[¢(X)|T(x) =11—a=0

= B[¢X)IT(x) =t] =«
This implies that ¢(X) has Neyman Structure.

Remark Let C;=Class of unbiased test.

C,=class of similar test V 6 € A

C;=Class of Neyman Structure test V 6 € A.

C, € (,,C3 € Cy,and Cp € C3 = every similar test is Neyman Structure provided
that sufficient Statistics is bounded complete.

= C, = Cj3; see Fig.8.2.

Steps to Obtain Neyman Structure Test

(i) Find A: boundary of ®p and ® — ©
Then test Hy : 0 € A against H; : 0 € ® — Qg
(i) Find sufficient Statistics T(X) on A



380 8 Unbiased and Other Tests

Fig. 8.2 Graphical

presentation of relation 02 =03
between unbiased, similar

and Neyman structure test

(iii)) Show that T(X) is boundedly complete

(iv) Obtain the conditional pdf of f(x|T(x)) under Hy, i.e., for # € A and
f(x|T (X)) under Hy, ie.,0 € © — ©.

(v) Obtain most powerful test using the theorem stated in Chap. 7.

Remark Suppose if we want to find UMPU test of size a for Hy : 6 € A against
H, : 0 € ©® — Oy, then using above steps find UMP Neyman Structure Test of size
afor Hy : 0 € A against H : 6 € © — Q.

If there exists a boundedly complete sufficient statistics, then this test is also UMP
similar test for 6 € A.

If this test has to be unbiased, it should satisfy

Eyp(X) < a V 0e B

and Ego(X) > aV e ®—0

Example 8.4.1 Let X1, X»,..., Xy, and Y1, Ys, ..., Yy, are iid rvs B(n, p1) and
B(n,, p»), respectively, where n| and n, are known. Find Neyman Structure test for
testing Hy : p; = p; against H; : p; > p,.

In this case A : p; = p

ky ks
i - H ny Sy
f(x, ylpl, p2) = H (x')plth?]kl 1 (yA)pztqul_kz t27
' i=1 \1

i=1

where,q1 =1 —pl,go=1—p, T1 = Zf'zl xi, T = /;2:1 yj
Now T1 ~ B(nlkl, pl) and T2 ~ B(nzkz, pz).

Then under Hy, Ty + T> ~ B(niky + naka, p1)

T\ + T, is sufficient and complete under Hj.


http://dx.doi.org/10.1007/978-981-10-0889-4_7
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Sy, yITi +Th =t) = (mk|+nzkz) ;% =0,1,2,...,n1,y; =0,1,2, ..., ny,
t

i=1,2,.. k.j=12 ..k

Now to find the distribution of 73 + 7> = ¢ under H,

niky\ (nakz _ _
ft, t2lp1, p2) = ( )( )Plt'qf”kl "y,

3] 153

LetT)+Th=Tand T, =T — T

}’llkl n2k2 _ _ ¥ _
f(tl, t2|[71, 172) — ( )( )plllqillkl llpzt t|q212k2 t+l1’

5] r—1n

. (n1k1)(n2k2) (ﬂ)tl (@)tI (&)tqnlqunzkz
n r—n P2 q1 q2 bR

in(niky,1)
PIT = 1] = g"figme (&)t mmil ' (n1k1)(nzk2) (M)tl
b q2 v I I—=1n) \P2q

151

ki ko
ni ny _ —_
eyl =] (x) I1 (y})pl"qi“k' "patay T,
1

i=1 j=1

kq ko
n ny _ _ _
eyl ) =] (x) I1 (y.)PIIIQTIkl "y gy,
1]

i=1 j=1

<1 n 2 n n
| | 1 | | 2 niky _naky 12 l 1q2
( ) ( ) h ( ) ( ) ,
i=1 Xi j=1 y] 92 F2q1

[Tt () T () (2
N

S, YT+ T =1) =

oG,y T +T, =1)
fa, (e, yIT1 + T, =1)

Alx, yIT) =

(Il]k]+n2k2) (M)tl

t D241
min(niky,t) (nikp) (naka o 192\t
a0 () () (G
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Hence
L5 (B2 > k1, pi, p2)
PX,YITi+Ta=1)=17; (B =k(t, p1, p2)

D\
05 (5q) <k, pi,p2)

1 T\ > k(t, p1, p2)
=2¢X,YIT'+T,=1)=77; T1 =k, p1, p2)
0; T < k(t, p1, p2)

To find the distribution of 7; given T} + T, = ¢ under Hy

PlTi=n,T,=t—1]
PIT\+ T, =1]

PyTh=4Ti + T, =t]=

_ ()
(nlkrjﬂzkz)

1 =0,1,2,...min(n kg, t)

Ep[o(X, YT\ + T, = 1)] =

= P[Ty > k(t, p1,p)ITi + T =t]+~yP[Th =k(t,p1, p)ITT + Th =t] =«

min(nky,t) (nlkl) (nikz) (n]k]) (ilikz)
= > (ntlllirVizktzl) T (nlfkw:zkf)
t t

=«
H=k+1

This is a conditional test as it depends on ¢.

One should note that this test does not depend on p; and p,. Hence this test is
UMP similar for p; > p;.

We have written a program in R to calculate k and .

# Given data
x =c¢(1,1,2,3,2,2,1,1,0,2);
y =¢(3,3,3,2,3,2,1,3,2,3,1,3,3,1,2)
alpha = 0.05; nl = 4; n2 = 5;
k1l = length(x); k2 = length(y); m <- nl*kl; N <- nl*kl+n2*k2
# To find k such that first term is < alpha
tl = sum(x); t2 <- sum(y); T = tl+t2;
a = seq(from=0,to=min(m,T)-1,by=1); # possible values for k
la = length(a)
# to find cumulative probability, i.e., P(tl > k)
cpk <- rep(0,la) # declaring variable to find cumulative probability.
for(i in 1:1la)
{
for(j in (a[i]+1) :min(m,T))
{
cpk[i] = cpk[i] + dhyper(j,m,N-m,T);
}
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ind = min(which(cpk < alpha)) # gives cumulative probability < alpha
# To find gamma
\textit{k} = ind-1; b <- dhyper(k,m,N-m,T);
gamma = (alpha-cpk[k+1])/b
# To check the answer
check <- cpk[k+1]+ (gamma*dhyper (k,m,N-m,T))
OUTPUT
print (c("k=",k))
print (c("gamma =", gamma))
print (c("check=", check))
RESULT
"k=" "22"
"gamma =" "0.918666332250108"
"check=" "0.05"

+=

£

Example 8.4.2 Let X1, X», ..., X,, be arandom sample from N (u, o?), where W is
unknown. Find N eyman Structure test or UMP similar test for testing Hy : 0% = O’%

against H; : 02 > 00, where p is unknown.

Now x and s? are jointly sufficient for (u, o?), where s = Z;’zl (x; — %)2. Further,
% and s? are independent random variables.

52 2 n-l
_ n@E@—p?le ¥ (!
f(X,S2)= a i| n-1 2n71 2
27 (%) 0

n
o 2T P |: 20?

n=l_
cexpl—25(E — 1?17 7 expl—2s]
o-n

where c is constant. ,
Under Hy : x ~ N (u, (;—0)

S2 n—=l_
fro (%, s2%) = pr= T eXp [—g} 7T

09 0

where ¢ is constant.
- 2 2 2
Under Hy, x ~ N(u, "7), o > o}

co™" expl— g (& — ) + s21(sH) T !

c1o ! expl— 5= {n(X — w)?}]

fr (&%, 5%|%) =

7(n71)( 2)ﬂ71 52
= 0 s7) 2 exp|———=1,
2 P 2072

f, s (1 1
= o —aee 5 (G- )]



384 8 Unbiased and Other Tests
where ¢; is function of (o2, 03)

= AX, s2|%) > k

= s > k(o, 00)
Neyman Structure Test is given as

. o2
o =g TR

; 87 < k(o, 09)
k(o, 09) is determined as

Pp,[s* > k(o, 00)|X] = a

§2
= Py, [—2 > k|i} =a
90

Now though it is a conditional probability but one can write it out as

SZ

:>PH0|:U—(2)>k:|=a,

because x and s? are independent.
2

S

2 2
2 ~ Xn-1 = k= Xn—l,a
99

The test is )
o 1: 5 >y2
= ¢(F, 5|%) = [ 73 = Xn-ta

0 ; otherwise

Note: This test is UMP similar test.

Example 8.4.3 Let Xy, X», ..., X, be arandom sample from N (p, o?), where o2 is
unknown. Find Neyman Structure test for testing Hy : it = /19, o> unknown against
Hy:p> o

Now X and s? are jointly sufficient for (u, o%)

ICERES Ui exp [‘Tiz{"(f -+ sz}} (CoRaE

where c is constant, s> = Z?=1 (x; — X)2.
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n(x — o) 52
% ~NO. 1) and =~

n(x — o)’ + 52
=3  ~ Xa

Letw =n(x — uo)2 + 52 is a sufficient statistics for N (u, o).

co™" exp(— ) [w — n(E — 19)*'7 ~!

n 9
)

= 2
fHo(-x3S |w) = —n w
c10 exp(—m)w

ealw — n(E — p)?17 !
1]

w?2

Now to find fy, (X, s*|w)

- 2
Let py = p — po and (X — po) ~ N(u1, %)
= Jn(x — po) ~ N(/np1, o?),
Let v = /n(x — o)
Consider

w= s>+ [n — pol?
=s2+v2

(5)5 T exp(— 1) expl— 5 (v — vpn)?]

2
f(s%v) 2%1"(%)02 ov21

= i(sz)%_1 exp I:—Lz{s2 + (v — \/E,ul)z}i|
20

o-n
We have to find a joint distribution of s and w.

Since w = s2 4+ 12 = v = vVw — 52 and 52 = 52

0Os® Os

ow 0s2

PO (3— 3—) _ (%(w—sz)% “lw— st

= w52 0 1

=—(w—sH)2
5w =%

] = 2w =)
—Zw S

n—1 1
F2w) = ()T exp [——z{s2 + - ﬁul)z}] M
o" 20

385
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c n 1
fs*w) = ;(52)7171 exp [_TH{S2 +w—s? = 2V/numvw — s+ nuf}i| [J]

(NI

net 1 | 1 -
= —(52) 1eXp [—r‘z{w—Zﬁ(w—sz)Zul +n,u%}i| E(w—sz)

V>02w—s2>0=>s52<w

w 1

f(w):/ai"(sz)%ileXp[_ﬁ{w_zﬁ(w—sz)%m+nu%}]%("’_s2) % ds?
0

Let%:u:dszzwdu

1 1
/(wu) 2 - exp|: ]exp[—w——] _f(l—u) deu
o

o o2 202

1 Ll —wip n
0

C n_q w 2
= —w?2 €X anry w, , O
prn p[ 202]9( H1,07)

co™ " exp[—ﬁ{n(i —w? 452w —n(x — MO)Z]%_I

fr, (s s w) = )
co w2 eXP[— sz lg(w, puy, o?)

Consider

1 _
exp | == {n(x — po + po — 11)* + 57}
L 20

1 -
= exp —ﬁ{n(x - /L())2 + 52 —2n( — Lo + n/ﬁ}i|

1 -
=exp | —55{w —2nxpu + 2npop + n,u%}
| 20

= exp(— )CXP[ { 2nxpy + 2npopy + il

Vexp[— 5> {—2nXp1 + 2npiop + npd}]

wr " g(w, py, 02)

[w—n(x — MO)Z]T]

fr (&, 5% |w) =

fu, (X, 5% W)

X, sHw) = 22222 2
fu, (X, s2|W)

1
= const.exp[—T‘z(—Zniul)] 8.4.1)
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— const. exp [”xf ‘} (8.4.2)

(o
— const. exp [M] (8.4.3)

(o

The Neyman Structure test is
_ nx(p — o)
G(F, 52wy = | L+ Pl 71>k
0 ; otherwise
. \/ﬁ()z - ,u()) 2

= o 2wy = 1 T3 ke, 09 (8.4.4)

0 ; otherwise

_ (X —pp)

- G
Consider, h(t) = ooy~ T

h'(t) > 0 = h(t) is increasing in ¢

n(x — pio) N V(X — po) -

k
Jw s

From (8.4.4)

W > ki, o, )

ﬁP[M>k|wi|:P|:M>k:|=a=>k=ln1,04
Jw s

Hence, Neyman Structure test is

1 (L)) g

- 2

X, s \w) = .
o w) [0 ; otherwise
Example 8.4.4 Let X1, X,,..., X, and Yy, Y5, ..., Y, are iid rvs as P(\;) and

P()\y), respectively. Find (i) Neyman Structure test (i) UMPU test (iii) UMP similar
test for testing Hy : A\ = A, against Hj : A} > Ap.

LetT) = z;nzl x;and T, = Z?:l yj
T, is sufficient for \; and 75 is sufficient for \,. Under H,, the distribution of 77 4+ 7>
is P((m + n)N).
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Moreover, under Hy, T + T5 is complete sufficient statistics.

e (mAD" e (n )2

ft.n) = P ol
(Th'=t,T, =t — 1)
Sa, 0l +T, =1t) = ST 1f(t2) 2
_ e mN)" e M (n\)"2 t!
N n! n! e N[ \(m + n)]

t m h n t=n
=()( ) ( ) =012t
h m-+n m+n

Under H,, T| + T is distributed as P[mA; + n\;]

i 0T+ T =1) = ! mAl ! nA2 t_tl-t =0,1,2 t
mt,nlhh+1Hh=t)= 0) Gy £ on S W ;1 =0,1,2,...,

T +Th =t A n by =1
Nty |T) = fmnhi+h =0 _ 1 2 (m+n)!
S, (1, 0| Ty + T =1) mA] +n; mA1 +ni;

At | T > k() = (5" > kO, Ao, 1) = 1 > k(A Ao, 1)
The Neyman Structure test is given as

L5 > k(A A, 1)

ot bIT =1) =17 h=k(\, A2, 0)

0 11 <k(Ai, A2, 1)

The distribution of T; given T; 4+ T under Hj as

PT T T t ! tt] = 1
=t +Th=t]= 1 =0,1,2,...,¢
[T 11T 2 ] ’ 1

Now EHO¢(I1, HliT) =«

Py [Ty > kA1, Ao, O)IT =t1+vPg[Ti =k, M, )T + T =t =«

206 G 06 G -

One can find k and v according to the example as stated in UMP tests. This test is
also UMPU and UMP similar test.
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Given data
x = c(4,8,5,6,3,3,11,10,8,4,2,1);
vy =¢(3,2,3,6,6,6,8,3,2,5,2,3,2,2,6);
alpha = 0.05
m = length(x); n = length(y); p = m/(m+n); q = 1-p;
To find k such that cumulative probability is < alpha
tl = sum(x); t2 <- sum(y); T = tl+t2;
a = seq(from=0,to=(T-1),by=1); # possible values for k
la = length(a)
to find cumulative probability, i.e., P(tl > k)
cpk <- rep(0,la) # declaring variable to find cumulative probability.
for(i in 1:1la)
{
for(j in (al[il+1):T)
{
cpk[i] = cpk[i] + dbinom(j,T,p);

}
ind = min(which(cpk < alpha)) # gives cumulative probability < alpha
To find gamma
k = ind-1; b <- dbinom(k,T,p);
gamma = (alpha-cpk[k+1])/b

To check the answer

check <- cpk[k+1l]+ (gamma*dbinom(k,T,p))
OUTPUT

print(c("k=",k))

print (c("gamma =", gamma) )

print (c("check=", check))

RESULT

"k=" "e4"

"gamma =" "0.238699811290301"
"check=" "0.05"

Example 8.4.5 Let X1, X5,..., X,y and Y1, Y5, ..., Y, are iid rvs with N (u,, 012)

and

N (3, a%), respectively, where 1 and i, are unknown.

Find Neyman Structure Test for testing Hy : 07 = o5 against H; : o7 > 03,
where ) and p, are unknown.

X~

0'2 - UZ
N (%) 5~ N (12, 2)

2 2
Sy 2 5~ y2
o2~ Xm-1 and o2 7 Xn—1

Jm Ji

m n
(X,5,82,83) = ———ex |:——()_c — )2} N ex |:__(— _ )2}
&35, 5 o1/ 2m P 20% f o227 P 20% Y~

2 3

m—1

-5 n—1 -
(s12) 5 716 207 (S§)77 e 203

25 regher 25 regher!

2 2
c m n _ s S L*],l ﬂ—l
= aexp| 550G 7#1)2 -0 7#2)2 — —lz - —22 (312) 2 (s%) 2 (845)
2 209 205 207 205

where c is a constant.
Under Hy, (x,y, 512 + s%) is sufficient and complete statistic.
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390

2 2
STty N2
oz Xm+n—2
- 2 - 2 s +5 m+n727
oxp| _ME—m)? nG = p) 179 (242! (8.4.6)
20% 20

2
205

)
fG Y, s7,89) = T
192

Now to find fy, (X, y, s7, 55|%, J, 57 + 53)
S5, s8,59)

X, ,s , 85 |x, ,s + s —
fH@( y 1 2| y 1 2) f(x, y,S]2+S%)

Dm0 e
-5 Z(i*" ZSI) — (8.4.7)
(s%)
where 52 = 57 + 53
To find fu, (%, . 5)
fu (85,57 = S (D56 — s T
e
m(f — /1*1)2 I’l()_7 - ,UQ)2 512 (S2 _ 512)
X exp[— _ ! S 2 |
207 203 207 202
- = 2N _ m(x _M)Z n()_’—,uz)z B i
fne = [ 207 203 203
r %ﬂdslz

></exp|:—s—1 (i— 1)]( ) (s )
2 012 02
0

2
= us® = st = dus® = ds}

Letu =3
.S
Consider

. 1 )] (PN~
g

§2 il 52
sp) 7 dsy

min—2 _
Ydu

)] RO R o

2
o1, 07)
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Hence

fry @ 5057 =

- 2 - 2 2
m(xX — ) n(y — p) s 202 2,2
exp | — - - —5 |97, 07, 05)(s7)
Mol |: 20% 20% 20% g 172

m+4n—2
) —1
172

2 C m@E—p? G-’ st =)
X, ¥.87,8) = exp | — - T 252 292
Ju, (X, ¥, 57, 83) e P |: 207 202 203 203

x (sH)' (s =D

s 1 2 771 PN
exp[ (—2 )] (DT (s —sH"
fu, (%, 3,53, 52|%, 5, s%) = a__%)

+n—!

(52) 2 g(s Jla 02)

Sz 1 1
S - 2 2s s 2 exp[—_l (_2__2)]
X, ¥V,87,851X,Y,8 B
A, 7,52, s2I%, 5, s%) = S (X, 3,57, 851X, 7, 87) e gl

2 © ) SARALIT A
fu, (X, ¥, 5%, 831X, 3, 52) g(s2, 01, 03)

We define a Neyman Structure test as

*12 1 1
2 2 2 A G
P(x, y, 57, 851%, y,57) = L 9(s2,07,03)
0 ; otherwise

> k(s2, 012, 0%)

2 2 2 2
- - 2 2= - 2 1 sy > k(s®, 07,03)
X, y,8%, 5%|%,9,8%) = .

P&, 3,51, 51, 5, 57) [0;0therw1se

- o 1: k 2

=>¢(X,y,812,sglx,y,s2)= ’ s+s2 > k(s?, ‘71"72)

0 ; otherwise
2 w
Letw =3 2 :> Sl+52 = =
1
g(w). 1+w =g (w) sy >0
g(w) is increasing in w.
Then

1; w> k(s?, 01,02)
O, 3,57, 531%, 5, 87) = [0 otherwise

2
X v - - 1 5 2
O, .55 AT . s =1 8T k(s?)

i (8.4.8)
0 ; otherwise

We have to find the distribution of glven S? under Hj.

Letw = 3 z,v—s, —|—s2
SZ

1 ~ — ~
o2 mel and o2 anl
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2.2
2 52 PN SR N B e 1
F3 53 = (6D D) e 5

2 wu

2 2 0 — (212 2 _ —
Now sy = wsy, v =5 + 55 = 55 = ST = Tvw

v
I+w’
(')s, (’)f] v w v
J = ?)ué {) _ ( (14w)? lJTw) _
= =\ _"% =—07
= 5 u? THw (14 w)

fw,v) = f(si,s9)1J]

m=1_y

n=l_ 1
wv 2 v 2 v o
=c e 22
(l—l-w) (l—i—w) (1+w)

m=1_1
w 2 min 5 _ -
= CcC— 0V 2 e 20

U+ w=
= fitw) f2(w)

w and v are independent
Hence, f(wlv) = f(w)

si/m=1)
therefore, /D) Fn—1n-1

From(8.4.8),P[slz/(L_‘f;>k]_a:k_ m—l—la

53/(n
Hence Neyman Structure Test is

1. Si/m=D
> s3/(n—1)
0 ; otherwise

> mel,nfl,a

O(x, 3, 57,83) = [ (8.4.9)

Example 8.4.6 Let X1, X2, ..., X, and Yy, Ya, ..., Y,, are iid rvs with N (u;, 0°)
and N (u, 02), respectively, where o is unknown. Find Neyman Structure test for
testing Hy : p11 = o against Hy : py > o, where &% is unknown.

Note that (x, y, s2) is sufficient and complete for (1, po, 0?), where s2 = > (xi—
D+ 20— 9)?

n1+n2 -2

f(f’?’f):ﬁexp[ 5 (& = ) +m(5 — ,uz)}:|€ 2 (s7) ,

Letn =ny +n,

Under Hy, i.e., jt1 = pia, (11X +n2y, Doty x> + ZJ | yj) are jointly sufficient and
complete for (i1, po, o 2y,

Letz = @ w=>" x>+ Z;”:l ng are any functions of sufficient statistics.
Lets? =sf +s3 =200 07 —m X2+ 22 yi — nay?

we want to find the distribution of z, w and y.

s2=w —nx? —n2y2 = w =s2+n1)?2+n2)72
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n
- = 2 0z Ow 0y . = 0
_O0G@ 5. o ovoon | _ 5T
- =N 0z Oow 0y - 2 2nm2y
Oz w.y) | ot o5 o5 o T o
0z 0w 0y

[J| =
_}’l]
Consider

n & = p)? + 2 — ) + 52 =nyF = 2np ¥ +n1u% +n25% = 2mo 10§ +n2u% +52
Since w = §% 4+ n1%2 + ny 2

=w — 2% — 2nop0F + nypg + nag

nix+nyy = ¥ = nz—nsy

Next, since z =
n ny

-\ 2
_ _ nz — npy _
s2=w—n1x2—n2y2=w—n1 (—) —n2y2,
n

Further,

w = 2m Xy — 202400 + nip; + nopis
=w —2n (

= w — 2u1[nz — nayl — 2nop2¥ + napi + nops
=w — 21z + 2pnay — 2napiny 4+ nypd + naps
=w — 2npz — 2m25 (o — 1) + mpy + nops3

nz —npy _
n—zy) — 2np2y + nypi; + nop;
1

fw, 3 = fE& 3.5/

1 _
= cexp [—ﬁ{w — 2z — 2m3 (i — ) + napi; + nzu%}]

— n=2_1
- nz —nzy z
X [w —my* —nl{n—}z]
1

Let g(w, zlp1, po, 02) = [ f(z, w, y)dy
Under H

n=2

coxp |~z (w — 2npuz + )| [w —mo3? — g (BRI 2] 2

g (w, zlp, 0?)

-2
fHy (x,y,s |z, w) =
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1

Fiy @, 5%z, w) = cexpl—=—5 (w — 2np1z — 2025 (i — 1) + n1pf + nop3)]

202

- —np§y 2,12
[w—npy? —m (E2y2 7!

x 2
g(w, zlp1, p2, 0°)
- -2
- H (X, Y, 5%z, w)
AE, 3, 821z, w) = fly—z
fH, (%, ¥, 5%z, w)
nyy — I
= exp [4”(“722 / ])} > k(z, w, p1, 2, 0°)
o

= § > k(z.w, 11, p2. o)
The Neyman Structure test is given as

o 15 3> k(u, pa, 2, w, 0%)
= ¢, 3, 5%z, w) = [0 ' oherwina
Consider y > k = ny > k

= (n1 +ny)y —nz >k
= ny+nmy—nx—nyy>k
>n(y—x)>k=>O—Xx) >k

Next,

2, 2 2 =2 2 52
ST +s; = E X; —mx" + E Yi —nyy

= lez +Zy12 —I’l])z2 —I’lzyz

2

K :w—nl)_c2

-2
—nay

s>=w-—n+n— nliz — n2y2

(8.4.10)
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Further,
nzz—nlx —nzy (n1x+n2y) —nliz—nzyz
LT2:2 4 )
= — |:n y +2n1n2xy] —nix —nzy
n
1
= = |:n% 72 —|—n2y 4+ 2n1noxy —nn1x2 —nnyy ]
n
1
= - |:n1x + n2 y + 2n1nyxy — (nq +n2)n1x
1
= - |:2n1n2)?)7 - nlnziz - nlnzyz]
n
—niny 7_ _ __ niny _  _
= R[4 82 - 25 = - M2 - 92
s%—i—sz w—nzz——lnz(_ ©)?
(8.4.10) will be
1; y—x>k

0 ; otherwise

o(x, ¥, 5% w, ) = [

1, = k
= (%, 5, s*w, 2) = W =
0 ; otherwise

395

—(n1 + nz)n2§2]

Now
y—x (y—x
Vw—nz? 2 omn g gy
Let i;i =v, h(v) = = :T"zuz = h'(v) > 0 = h(v) is an increasing function
inv. '

Hence v > &,
The Neyman Structure test is

1; = ok

N
0 ; otherwise

P, 5, s%|w, z) = [

y—

To find the conditional distribution of w) under H,

(8.4.11)

1 w2
f(%, 3,5 =cexp [—ﬁ{nl (X — w)? 4+ (v — w)?* + sz}} sH= !

1 =22

s

w=3 7+ 2y =5+t +HEG - 5)?
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w = s [1 n wtz] +nZ? (8.4.12)
n
Now ny (¥ — p)? +na(y — p)? + 52

= lez + Zylz —2n ik — 2napy + (ng + ny)p?
=D X7+ Dy = 2umiE 4 n2y) + (ny + ny)pi?
= lez + Zy,z —2npz + (ny + na)p?

=w — 2npuz + np’ (8.4.13)
Next,
w—nzg* =52 [1 + wtz]
n
won o (8.4.14)

ning .2
1+ mmy
w — nz> i|n221

o 1
f(x,y, sz) = cexp [—T‘z{w —2npz +n,u2}] |:—1 2

= ] L L
= cexp| = {w —2npuz +nu (w—nz TlTnztz

= gi1(w, 2)92(7)

Hence, (w,z) and ¢ are independent.

Therefore, the conditional distribution of ’é;x given (w,z) is the distribution of
Now j — % ~ N(pz — pu, 0*{5- + -1

ny
under Ho j — X ~ N(0, 07), where 07 = o?{-- + 1}

-1 m
= (JE+%) G-H~NO,

2., 2 2 ) 2 =2
o ST+ 53 _in—nlx + D y7 —npy

n1+n2—2 n]+n2—2

Hence

-1
L1 -
( atan) O0—X%

~ Iny+ny—2
[ 52452 e
ni+n,—2
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From (8.4.11),

E[d)(i’ y7S2|Z5 w)] =P [y;x > ki| =
S

=k= tnl+n2—2.u

Hence Neyman Structure test is

- - 1; =5 > _
2 _ I ni+n,—2,a
o(x, y, 57w, z) = IO | otherwise (8.4.15)

8.5 Likelihood Ratio Tests

In earlier sections, we had obtained UMPU, LMPU, similar and Neyman Structure
tests for some distributions. Perhaps, they do not exist for other distributions. We
also had seen that computations of UMP unbiased tests in multiparameter case are
usually complicated. Since these are o Similar tests having Neyman Structure.

In this section, we consider a classical procedure for constructing tests that has
some intuitive appeal and that frequently, though not necessarily, leads to optimal
tests. The procedure also leads to tests that have some desirable large-sample prop-
erties. Neyman and Pearson (1928) suggested a simple method for testing a general
testing problem. Consider a random sample X, X, ..., X,, from f(x]0),0 € ©
and we have to test

Hy:0 € ©y against Hy:0 € O, (8.5.1)
The likelihood ratio test for testing (8.5.1) is defined as

_ SUPyeg, L(0)x)

Ax) = (8.5.2)

Supyce L(f]x)
where L(0|x) is the likelihood function of x.

Definition 8.5.1 Let L(f|x) be a likelihood for a random sample having the joint
pdf(pmf) f(x|6) for 6 € ©. The likelihood ratio is defined to be

SUPpee, L(O|x
A(}C) — p@EOO ( | )
SUpPyee L(6]x)
The numerator of the likelihood ratio A(x) is the best explanation of X that the null
hypothesis Hy can provide and the denominator is the best possible explanation of
X. Hy is rejected if there is a much better explanation of X than the best one provided
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by Hy. Further, it implies that smaller values of A leads to the rejection of Hy and
larger values of A leads to acceptance of Hy. Therefore, the critical region would be
of the type A(x) < k. Note that 0 < A < 1. The constant k is determined by

sup P[A\(x) < k] = a..

96("‘)0

If the distribution of A(x) is continuous, then the size « is exactly attained and no
randomization on the boundary is required. Similarly, if the distribution of A(x) is
discrete, the size may not attain « and then we require randomization. We will see
the following theorems without proof.

Theorem 8.5.1 For 0 < o < 1 nonrandomized Neyman—Pearson and likelihood
ratio test of a simple hypothesis against a simple alternative exist, they are equivalent.

Theorem 8.5.2 For testing 6 € ©g against 6 € ©,, the likelihood ratio test is a
function of every sufficient statistics for 6.

Example 8.5.1 Let X, X5, ..., X, be a random sample of size n from a normal
distribution with mean p and variance o2. Obtain the likelihood ratio for testing

Ho @ j1 = po against Hy @ p1 # po

Case (i) 02 is known
Note that there is no UMP test for this problem.
The likelihood function is

n

I 1 )
L(pl X1, Xo, ..., Xp) = H Py exp —T‘z(xi — )

i=1

1 n 1 n
=—=) exp| -5 D> i —p?*
() ooz B
Consider X/ (xi —p)? = D1 (xi =X+ X —p)? =21 (xi —%)? +n(x — p)?

1y 1 <
L(ulX) = (W) exp | —55 (F — 2] exp [—ﬁ > —f)z]
i=1

sup L(u|x) = sup L(plx) = L(po)
0€0 H=Ho

_ 1 " n_ R - o
_(a 27r) exp[ F(x ,uo)]exp|: 752 (x; x):|

i=1

sup L(u|x) = L(fi|x), fi is the mle of p.
fec®

/1 is the mle of
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Hence, mle of u = i = X

1y 1 <
L(Alx) = (0 m) exp [‘T.z Z(x,»—i)z]
i=1

From (8.5.2)

M) = exp [ =575 (F = o)’

= 2
The likelihood ratio is just a function of "(XU_—Z“")
is large.

The LR test is given as

and will be small when the quantity

X—o
7

Jn
0 ; otherwise

1; >k

Po(x) =

Since ( 23 ) is N (0, 1). Then k can be obtained as P —U@) > k] =Z.
n v
Therefore, k = Z s = %th quantile of N (0, 1)
Then the test is given as
1; |54 s Za
P(x) = 7 2
0 ; otherwise
Note: The reader should see Example 8.1.1.
This LR test is also UMPU.
Case (ii) 0% unknown
We have to test Hy : p = po against Hy @y % po
From (8.5.1),
L(ulx) ( 1 ) : i( )?
su ulx) = su exp| —=—= Xi — o
lt=/10,rlr)2>0 023) o 21 P 202 i—1
MLE of 62 = 1 > — 140)>
Let s} = Zizl(x,- — o)’ = 02 = ;—3
Under H,,
NS n
sup L(u|x) = sup ( exp( ) (8.5.3)
o2>0 02>0 \Sov 2

Further, MLE of z and o2 is /i and o2
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fi=Xando? = £ 2 = 3 (x; — ¥)?

" SV .
) ol 2] () e oo
From (8.5.2), (8.5.3) and (8.5.4)
s\ s2\?
w=(5) = (%)

=D (=) =D (i — T+ T — o)
i=1

i=1

= (i — 5> +nE - po)* =57 +n(x — po)’
i=1

52 2 1 t
)\ = B = _—
x) |:s2+n(i—uo)2j| 1.,.”062%)2

E—po)

CRis A(x) < k = 165w o f
- NG

> k. The likelihood ratio test is

|f(x M0)|>k

0 ; otherwise

=}

Now 922 ~ N (0, 1) ands— ~x2,
ﬁ
Hence

The distribution #,_; is symmetric about 0,

PHO[ﬁ(f—uo) >k]:g
K 2

The likelihood ratio test is given as

D >

P(x) = H

0 ; otherwise
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Note: 1. If we are testing Hy : i < po against Hy : p > pio
For % known
Under Hy, MLE of p

A Mo X = po
= [)E ;X < o
This gives
Y 1 , 2. =
sup L(ulx) = <0m)n P {5 20 =)’} = po
=t (m}ﬁ) exp{—5z >.(x; —%)*} ; otherwise

MLE of pis x

1 " 1
sup L(ulx) = (W) exp [—ﬁ D i 2)2]

He®

From (8.5.2),
The likelihood ratio test is given as

n

= 2y .

’

=1

= Mo
< Mo

=1

The LR test is given as
1: ﬁ(i—lto) >k

d(x) = [

0 ; otherwise

Since Y1) N (0, 1), hence k = Z,.

2. If we are testing Hy : ;0 < o against Hy : p > pyp.
For o unknown

Under Hy, MLE of ;1 and o2:

A J B0 X = o
H X ;X < o
and 5 ~
e [so ;X = i
=1 2X@w=9 . =
= X < Mo

Hence, under H,,

sup L(u, 02|X) =
(1,02)€®

(vVZmso) " exp(—2) ;& = pug
(%)_” exp{—5} : otherwise
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— =3 s
mle of = 1 = ¥ and 0> = >

sup L(p, o?|x) = ) exp {—E}
(11,0%)€® ’ NG 2

LR is given as

Hence LR test is given as

. AnG—p)
b = [1 o Tk

N
0 ; otherwise

Since M has ¢-distribution with (n-1) df.
Therefore, k = t,,_ 4.
This is also Neyman Structure Test, reader should see Example 8.4.3.

Example 8.5.2 Let X|, X», ..., X, be a random sample from N (y, o?). Obtain a
LR test to test Hy : 0> = o2 against H; : 0> # o; with population mean i is
unknown.

1y 1 «
L(p, o*1X) = (E) exp [—ﬁ Z(Xi - #)2]
i=1

1 " 52
sup L(u,ale)=( ) exp [——}
(1,03)€0y o2 20(%

N — ~, —5)2
ML estimate of xz and o2 is i = X and 02 = Z(X’Tx) =2

n

N Y _n
0= () o ()

o= () ool 415

The CRis A\(x) < k

() 4]

LR is
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_ 52 N2
Letw—g—é Xin—1

= w < kjorw > kp
Under H

Py, lw < k1] + Pyylw > k]l = o

Distributing the error probability, i.e., a equally in tails, we get k; = Xﬁ_m_%
and k = Xﬁ—l,%
The LR test is as

.52 2 5% 2
gy = L0 7 S Xaaog O o7 Z Xy
0 ; otherwise

Example 8.5.3 Let Xy, X2,..., X,y and Y}, Y>, ..., Y, be independent rvs from
N(u1,0%) and N(ua, 03), respectively. Obtain the likelihood ratio test for Hy :
1 = pp against Hy : py # pp under two conditions.

(i) o? and o3 known

(ii) o} = 0% = o* unknown

(1) The likelihood function for (u;, pp) € © is given as

_ Ly _Lm 2

1 n
* (azm) exp[ 2 ;;(% M)} (8.5.5)

MLE of s, = /iy = % and MLE of 11> = /i = 3.

1 m
sup L, polx, y) = ( ) exp (xi — %)
f1.pi2 o1V 2T 12 i1

1 -2
; — 8.5.6
X(Jz«/Z ) exp|: %,Zl“y y):| ( )
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Likelihood function for 1 € ®y is given as

1 m 1 n
L(u|X,Y)= P — R i —
(ulX,Y) (Up/ﬁ) (Ulm) exp |: U% lzll(x i|exp|: 2 lz%(y ) }

dlog L(ulx, y)

=0
o

M+"y
o

= =MLE of p=—;

(8.5.7)

n

2 2
a7 a5

1 m 1 n m -
sup L(u|X,Y) = [ —— _ 1 RS ,
:EH‘EO R (01V27f> (01~/27r) o [ 12; 24 2121:@ u)]

_ 1 m 1 n _L m o . . i
‘(mm) (am) e*p[ m[;“ %)% +m(E — i) H
1 n
o [_27 ’Z(y" =P 4G - WH (8.538)
i=1

2

suplue@(] L(M|X7 Y)

Alx, y) = (8.5.9)
sup,,, ., L(p, palx, y)
From (8.5.6) and (8.5.8),
m(x — ) n(y—p)?
Ax,y) = - - 8.5.10
(x,y) =exp [ 207 202 ( )
From (8.5.7)
X y
02 (72
~ G5 (%)
b= —0—

m n
i
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s |S

(72
Leta; = v ay =

_ata _@itay
ata a + a
0% _ o? ~
R
H=—"5"05
T
Consider x — [
2 _ o2
T
=X- (72 (72
%%
i[ﬁ+ﬁ]_ﬁ_glv
= . ':2 o2 -
P
7@ - )
iy
fop=nt”? 8.5.11)
02+<7_1
(5 — %)
N 2 =X
y—uzﬁ (8512)
ey
From (8.5.10),
o? - - 2 o2 - - 2
m | (X —y) n | 2y —x)
Moo=\ o 'a 2 | Tl aE
1 E—i_? 2 Z—i_?
1 (x—y)?
=e&Xp|—5—7
2(ﬁ+”2)2
2
- =2
)\(x,y)<k<:>(M) >k
a4 2
) P (8.5.13)

m n
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Since, x ~ N(uy, %‘2), y ~ N(uz, %ﬁ) and X and Y are independent, then x — y ~
2 2
Ny — pia, 2=+ 22)

(X —=y) — (u1 — p2)

~N(,1) (8.5.14)
/7,2
m n
Under H,,
N0
i, a
LR test is given as o
l : |x2—y\2 > k
P(x,y) = e
0 ; otherwise
xX—y «
Enox.y)=a=P| —=—=>k|=5=k=1s
i, 4 2
LR test will become F|
R
o(x,y) =

0 ; otherwise

(i) The maximum likelihood estimate of 11, py and o2 will be (i} = X, />
A _ _ S 2 S 2
2= =02+ 2 — ) = T

m+n

I
<1

From (8.5.5) and substituting these ML estimates,
we get,

m-+n

exp [—%(m + n):|

m-+n

Lp, pi2, 0°1x,y) = | ———ex
27 (s? +53)

m—+n

m+n 1
exp |:—§(m + n)]

sup L, 2, 0°x, y) = | ——me=
M1, 2 €O /27T(512 + s%)
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Under H :

1 m-+n 1 m n
L(p, o*|x, y) = (W) exp [—Fizm —M)2+Z(yi —H)zl]
i=1 i=1

ML estimate of 12 and o is fi = "2

m n

02 = ~ in [Z(xi — P+ D i - u)z]

i=1 i=1

1 m n
= [2}%—ff+m@—ﬁf+§3%—ff+ﬂﬁ—m1
i=1

m-+n ;
i=1

Now

mx +ny 2
m-+n

we= m+n

mi +nyT 3 [n(y — )E)T

m+n m+n

()7—/1)22[&—

2= ! |:2 , | mn(X = §)° ”mz()_’—i)z] 8.5.15)

+s3+
T T ) (m +n)?

. 1 ¥ — )2
o2 = [512 52t M] (8.5.16)
n m

m+n
+ g
sup  L(p, o’lx,y) = nrr M (8.5.17)
(1,0%)€00 \/27r[512 + 57+ M (5 — §)2]

m+n

SUP (. 020, L (14 071, ¥)
SUP (111, 112,02) €0 Ly, p2, 02|x, y)

")
_ st +53 2
st + 85 + (X — §)?

m-+n

Alx,y) =

m+n

mn(x — y)? }_( ?
=14+ 8.5.18
[ * (m + n)(s? + s3) ( )
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_ 2 - 2 - -
X~N(u, Z)and y ~ N(uz, Z). X — 5 ~ N(uy — pi2, 0% (- + 1))

X —y) — (1 — p2)
= ~ N(0, 1)
a,/%-i—%

2 —\2
S _Z(x,-—x) 2

Xm—
0_2 0,2 m—1

$_Z0i-9 .

0_2 0_2 n—1
s? + 52
1 2 .2
o2 = Xm+n-2
under Hy : p1 = up
*x—y)

o/ L+1]
T w2
S 485
o2(m+n—2)

mn

m+n C))
"~ lntn-2
[ s2+s? e

o(m+n—2)

o mn@E =)’
(m + n)(s]2 + s%)

=

(m+n-—2)

12 mn(x — y)?2

= 8.5.19
m+n—2 (m—i—n)(sf—i—s%) ( )

From (8.5.18)

- - -1
2 1 mn(x — y)> i|
Aern X, = = 1+ —_—
@)= = [ G et e

(m+n)(s}+s3)

Using (8.5.19),

12 _1_ mtn—2
2 T m4n-—2+41¢

2
Amn(x,y) = |1



8.5 Likelihood Ratio Tests 409

m+n—2

— < k=P>k=>t >k
mtn—2+1¢2

/\ﬁ(x, y) <k=
k is obtained such that
Py lIT| > k]l =«

Now k is an upper 5 th quantile of ¢ distribution with df m+n-2.
Then LR test is given as

Lo _lx=yl
1 ’ + > t%,ln+n—2
(Z)(x7 y) = s E+;'7 2
0 ; otherwise
2 2
2 sits)
where s° = P

Example 8.5.4 Let X, X5,...,X,and Yy, Vs, ..., Y, beiidrvs with N (uq, of) and
N (ua, 0%), respectively. Find the likelihood ratio test for testing

(a) Ho:p < upagainst Hy @ py > up

(b) Ho: py > pp against Hy : puy < pip

when the population variance (i) o7 and 5 known (ii) 07 = 03 = ¢ but unknown.
According to note in Example 8.5.1, one can get the following test:

(i) o7 and o3 known
. _G=y)
1; Ny > Z,
(@p(x, y) = et

0 ; otherwise

1: @x=y)
’ 2

B)p(x, y) = s

0 ; otherwise

> —Z,

(ii) o} = 05 = o but unknown.

LGy
@G, y) =1 s/ e

0 ; otherwise

L €t ) AN
(b)(j)(x, y) _ v ’_%-F% m+n—2,«

0 ; otherwise



410 8 Unbiased and Other Tests

2 _ s]2+x§

where s P

Example 8.5.5 A random sample X, X, ..., X, is taken from N (u, 0?). Find the
likelihood ratio test of
(@) Hp:o? =0} against H, : 0 # 03

2

(b) Hy:o0? < o5 against H, : 0% > 0}

(¢) Hp:o?> o} against H; : 0> < 0}

under the conditions (i) ¢« known (ii) ¢ unknown.
(1) 1 known

2 _ 1 _L - L 2
(@L(o ,mx)—(a m) exp[ 53 Zj(x, u)] (8.5.20)

1 " 1 <
sup L(0”|x) = (—) exp | —=— D _(xi — )’
02ed®, oo 2T 203 ;
From (8.5.20), mle of 02 = 02 = IS — w)?

n
sup L(c?|x) = |: - :|
02€® 2m Zi:l(xi - w?

SUP,2c@, L(02|x)

Sup,2c@ L(0?|X)

> — 2R 1< o
= [—2 exp —T.ﬁ ;(X[ _M) + 5

oIS
(¢}
>
o
|
| =
[E—

Ax) =

nog

n 2
Letw = —Zi:]f:zl W~y

o= (2) (51 <+

0

i

= wie T <k

Let f(w) = wie ?

Plot the function w verses f(w).

f(w) <k= w <k and w > kp; see Fig. 8.3

LR test is given as

1; w<ky or w>k
0 ; otherwise

P(x) =
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Fig. 8.3 Graph of f(w)

Epo(x) = Plw < k(] + Plw > k]l =«

One should note that y? is not a symmetric distribution but for mathematical con-
venience, we consider equal probability 5 on the right and left side of the critical
region.

Hence ki = x;; |_o and ko = X

Our LR test is as follows:

90 90

L D> (i —p)? 2 > (xi—po)? 2
b(x) = 1, ===~ < Xpaoa OF 57— > XG0
0 ; otherwise

(b) Similarly, LR test for testing Hj : o’ < 00 against H; co? > 00 is given as

. Z(Xi—/lo)z 2
¢(X) = [ 1 ‘70 = X”’a

0 ; otherwise

(c) Further, LR test for testing Hy : 0> > 0’0 against H; : 0% < 00 is given as

. (xi —po)? 2
S0x) = 1; 22—5#0 < Xii—a
0 ; otherwise

(i) p unknown
(a) Inthiscase mleof u = i = x
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1 " 1
sup L(u, a(z)lx) = ( ) exp |:—— E (x; — )Z)2:|
(1,02)€® ooV 2w 205

MLE of 02 = 2 = &

Vi) n
sup  L(u, 0°|x) = ( exp
(1,02)€® N V [ :I

= (%) e[ 5 ]
X)=—) exp|—=1— —n
na(z) P 2 ag
underHo,ﬁ

2
7 ™~ Xp—1

(S]]

Letw =

©
ONN

[SIE]

w

A(x) = (%) exp [—%{w _ n}i|

Now M\x) <k & wie ? <k w<k and w > ky

(8.5.21)
LR test is given as

cw <k or w>ky
Px) = {0 otherwise

En,¢(x) = a = Py,(w < ki) + Py,(w > ky) =

=k = X%q,p%, ky = Xﬁfl a

Now LR test is given as

.52 2 2 2

o) =113 @ S Xamniog O > X g
0 ; otherwise

(b) Similarly, LR test for testing Hy : 0% < 0‘0 against Hj :

52 2
L8>
wm=[l’ﬁ—xnw

0 ; otherwise

0' > 0'0 is glVCH as
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(c) Further, LR test for testing Hj : o > 0’0 against H; : o’ < og

52

. 2
_0 = Xn 11—«
0 ; otherwise

P(x) =

Example 8.5.6 Let X, X»,..., X,, and Y1, Y, ..., Y, be two independent sample
from (11, 07) and (i1, 03), respectively. Find out the likelihood ratio test of

(a) Hp: 01 = 02 against H| : ‘71 # 03

(b) Hy: 01 < 02 against H; : O’l > a%

where p; and p, are unknown.

The likelihood equation for (u1, pi2, 07, 03) is given as

1 : 1 %
L(uy, ,02,02 =1 — X 2 — 1
(w1, p2, 07, 03) (sz) [ 7 ;( i = ) 2702 % 2 I(y, 112)?

MLE of (p1, 112, 012, 0%) is
2 5 2 _ S2
[ =X, ,uz_x oy =3 02

where 57 = > (x; — x)in Z(yz -7

s 2 m\2( n \? m-+n
Sl.lp2 L(Ml,/j/z,O'l,O'Zp(, Y)= W W eXp| — )
1 2

1. fi2,07,03€0

The likelihood equation for (i1, 2, 0%) € ®y

1 n
|: Z(xz p)? — 797 ;()’i - M2)2:|

m+n

1
L 9 b 2 9 =
(w1, pi2, 07 |x, y) (27r02)

MLE of (1, 12, 0°),
_ ~ _ A~ .2 ‘2
[ =%, iy =%, 02 = [ 4+ 2]

m+n

m-+n (m 4+ n)
sup  L(ui, po, 0%1x, y) = m exp[——j|
(5

1 p2,02€0q
n

2
SUD,,, ,11p,02€0, L(py, o, 0°|x, y)
2 2
SuplllvMLU%,U%EG) L(:ul y U2, 01 N 0'2 |X, y)

Ax, y) =
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() ()

2 2\
i+L2
m n

oIz

m+n
2

(m +n)

)

Define
> (xi—%)? s?
_ m—1 _ m=l
F= S(xi—x)?2 53 m—1,n—1
n—1 n—1

2
3 _ (m=DF
Let 3= oo

m+n S12
n+m)" (2

m+n

Alx, y) =

I+

= piofs o
+
—_
\—/
o
—
BN
~

©

A

3

+

3

N

N‘i
/N
= psfs e
N—~—"

3
Ry

)

i
()
2

win [ pm—DF |2
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0 ; otherwise
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ki = Fn_1n-11-g and ky = Fyy_1 n_1,2
LR test is given as

—to

m—1

1;

1
< Fu-1n-1,1-1,

2 < Fm—l,n—l,%
2

ox,y) =

2
2
a1

=1
0 ; otherwise

(b) Similarly, we can obtain LR test for testing Hy : 07 < o3 against H; : 07 > o3

as
s
.ol
15 > Fm—l,n—l,a

ox,y) = 7

n—1

0 ; otherwise

)

Further if we are testing Hy : 07 > o3 against H; : 07 < 03, then LR test is

2
51

.om1
l» mz SFm—l.n—l,l—a

ox,y) = 2

n—1

0 ; otherwise

2 2
Note: if 1) and i, are known then % is replaced by < *— in all above test.
n—1 n
Example 8.5.7 Let X1, X», ..., X, be a random sample from exponential distribu-

tion with mean 6. Test the hypothems Hy : 6 = 0y against H, : 6 # 0
sup L(0|X) = sup 07 "e™ = =06,"e i , Wheret = le
0e® 0e®q i=1

MLEoff =% = !

sup L(O|x) = (L)_ e "
n

0e®

o - M kO et () (L)
SUpgeo L(O1x)  (5)=me ™

t
Ax) <k =t"exp (_6_) <k; seeFig. 84
o

t <kjort >k (Fig.8.4).
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Fig. 8.4 Graph of \(x)

f(t) = t'exp(-t/6)
40

20

2 2
Note that 5 ~ x3,
Letw = % = w < kj or w > ky LR test is given as

1; w<k or w>k
0 ; otherwise

P(x) =

En,¢(x) = a = Py,(w < k1) + Plw > k] =«

kl = X%n,lfg and k2 = X%n,%
The LR test is given as

. 2 2
1; w< Xop—a OF W > X3, a

p(x) = I

0 ; otherwise

Example 8.5.8 Let Xy, X», ..., X,, be arandom sample from B(n, p). Find the LR
testtotest Hy : p < po against H; : p > p»

(] — mn—t . X. ¥ — D X
sup L(plx) = P?( po_) Ppo <X =SS0
P=po G (=)=t = < po

i t i mn—t
antnn= () (1-2)
pe® n n

py—po)™~t

Ppd=po)™ " -
M) = | Gra=hm= > ?0

! s w < Po

ST

Mt) = Lif ¥ < npoand \(r) < lifnpy < %
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= \(¢) is decreasing function of ¢
Hence \(1) <k =1t >k
LR test is given as

1;t>k
Ay =17 1=k
0;t<k

under Hy, T ~ B(mn, pg)
k can be selected as

Eop(t) = a = Pylt > k]+~yPlt =kl =«

This test is same as we have discussed in Chap. 7.

Example 8.5.9 Let X, X, ..., X, be a random sample from Poisson()). Obtain
the LR test to test Hy : A < Ag against H; : A > )

LOn _ e—nz\)\t
(Alx) = —H;lei!
e Mo\ -
= Ao > X
sup LAy = { M 770 =7
A< ot A < X
efni(ni)t
sup LX) = —=5—+
A€® [Tz x!
Mo . =
)\(f) — eXP[t - n)\O](TO)t B )\0 = )f
1 A< X

A) <1 ifdg=xand A\(t) =1 if \g <x
= \(t) is decreasing function of 7 if and only if r > k
The LR test is given as
1;t>k%k
AD)={7v:t=k
0 ; otherwise

under Hy, T = >}, X; ~ P(n)\)
k can be selected as

Py, [t > k] + Pyt =kl =«

This test is also same as we have discussed in Chap. 7.


http://dx.doi.org/10.1007/978-981-10-0889-4_7
http://dx.doi.org/10.1007/978-981-10-0889-4_7

418 8 Unbiased and Other Tests

8.6 Exercise 8

1. Let X1, X», ..., X, are iid rvs with N (u, 0%), o2 is known. Find UMP unbiased
test of size « for testing Hy : ;1 = 0 against H; : u # 0. From the following data,
test Hy : i = 2 against H; : p # 2 for a = 0.05

0.81 1.01 2.04 —3.17 0.57 —1.05 —3.83

2.88 —0.44 —2.23 4.09 4.00 —3.63 6.05

1.53

2.Let Xy, X», ..., X, areiid rvs from gamma distribution with parameters p(known)
and o unknown.

(1) Obtain UMP test of size « for testing Hy : 0 < 0 against H, : 0 > 0y.
(i) Obtain UMPU test of size « for testing Hy : 0 = o against H, : o # 0y.

3. Let the rv X is ((a, 1). Obtain UMPU test of size « to test Hy : a = 1 against
Hi :a#1

4.Let X, is B(n, 6) and X, is N B(r, 0), n and r is known. Obtain UMPU test of size
« for testing Hy : 6 = 6 against Hy : 0 # 6.

Letn=5,r=4and a = 0.02

Test Hy : 0 = 0.3 against H; : 6 # 0.3 for the given data as X| = 3 and X, = 4.

5. Let X, is U(0, #1) and X, is U(0, 6,). Obtain UMP test of size a for testing
Hy : 6, = 0, against H, : 6; # 0,.

6. Let X is G(1, 6}—1) and X, is G(1, iz). Obtain UMPU test of size « for testing
Hy : 0) = 6, against H : 0, # 0,.

7.Let X1, X5, ..., X, be arandom sample from f(x|6), where

Laxpl— 12 07-
f(xw)z[(z)gexp[ |Z:xeR 0>0

; otherwise

Obtain UMPU test for testing Hy : 6 = 0y against H, : 6 # 0, of size a.

8. Let X be a rv with B(n, p) and consider the hypothesis Hy : p = pg of size
a. Determine the boundary values of the UMP unbiased test for n = 10, o = 0.1,
po = 0.3 and a = 0.05, pg = 0.4. In each case, plot the graph of the power function
of both the unbiased and the equal tails tests. Use R

9.Let X1, X», ..., X, be asample from P (). Find UMPU test to test

(1) Hy: A < Xgagainst H; : A > )\
(i) Hp: A= Xgagainst Hy : A # A

Assume that size of test is a.

Test (i) Hy : A < 3 against H; : A >3

(i1) Hp : A = 5 against H; : A # 5 for the following sample.
2,1,4,3,50,2,2, 1, 3. UseR.

10. Let % have x2. For testing Hy : 6 = 3, at level of significance o = 0.05, find
n so large that the power of the test is 0.96 against both § > 4 or § < 1. How large
does n have to be if the test is not required to be unbiased? (Use R)



8.6 Exercise 8 419

11. Let X be NB(1, 6)>. Find UMPU test of size « to test (i) Hy : 8 < 6, against
H, : 6 > 6yand (ii) Hy : 0 = 6, against H, : 6 # 0y

If 6y = 3, find UMPU test for the sample

1,3, 1,41, 1, 1, 2, 4, 2.

12. Find the locally most powerful test for testing Hy : 6 = 0 against H; : 6 > 0
from the following data if X ~ N (6, 1 + 26?),

-3.11, —1.72, 047, —1.32, —0.72, —0.70, 0.36

242, —0.98, —2.60, 0.84 (o = 0.10, use R).

13. Find the LMPT to test Hy : 6 = 4 against H; : 0 > 4 from the following data if
(i) X ~ N0, 0) and (ii)) X ~ N (6, 6?)

0.61 2.34 1.15 1.61 1.79 0.01 2.37 0.06

4.11 1.26 1.74 2.70 3.54 3.18 3.41 (o = 0.03, use R).

14.Let X1, X5, ..., X, be iid rvs with N (u, o?). Obtain Neyman structure test for
testing Hy : 0> = 5 against H, : 0> > 5, where y is unknown, for the following
data:

2.09 1.19 2.26 5.02 4.15 1.48 2.41 0.42

—0.32 494 —0.29 546 9.42 9.34 1.34 (o = 0.03, use R).

15. Let the rvs X, X», ..., X,, are iid from N (0, 2). Find UMPU test for testing
Hy : 0 = 3 against H, : o # 3 for the following data.

0.13 —2.43 —6.19 —0.80 2.62 2.65 0.86

—1.89 0.83 5.01 0.76 —0.29 3.91 3.02

(Let o = 0.05, use R)

16. Let Xy, X», ..., X, be iid rvs with Cauchy distribution C(6). Obtain LMPT for
testing Hy : 0 = 0 against H, : 8 > 0 from the following data.

1.04 0.53 3.56 1.96 2.34 246 1.19 2.16 0.92

1.71 4.54 41.95 1.19 6.80 2.09 —5.56 3.28 4.37

5.24 —0.75

(Let o = 0.05, use R)

17. Let X4, X, ..., X,, be iid rvs with N (0, o2). Find UMPU test for testing Hy :
02 = 9 against H; : 0 # 9 for the data given in problem 15.

18. Let (X1, X2, ..., Xy,) and (Y1, Ya,...,Yy,) are iid rvs with B(nj, p;) and
B(ny, p»), respectively, where n; and n, are known.

Find Neyman Structure test for testing Hy : p1 = p, against H; : p; > p, for the
following data.

Assume ny =3,n, =4, a = 0.05

X:3121111122— —

Y: 122221013313

(Use R)

19. Let X1, X5, ..., X and Y1, Ys, ..., Y, are iid rvs as P(\;) and P()\,), respec-
tively. Find Neyman Structure test for testing Hy : \; = X, against H, : A} > A\,
from the following data.

X:1230215021— —

Y:115252210623

(Let o = 0.02, use R)

20. Let X1, X», ..., X, be iid rvs with pdf f(x|6),
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0x%1:0<x<1,0>0
f(x10) = [O : otherwise

Find UMPU test of size « to test Hy : § = 6y against H; : 6 # 6. Further, for
a = 0.02, find UMPU test for the following sample if 6y = 5

0.90, 0.63, 0.51, 0.83, 0.96, 0.87, 0.41, 0.89,

0.71, 0.96, 0.96, 0.99, 0.98, 0.83, 0.92

21. Let thr rv X; has exponential distribution with mean 1/6 and the rv X, has
g(x20),

gal®) =0x7";0<x <1, >0

Obtain a UMPU test of size « for testing Hy : 8 = 0y against H; : 6 # 6.
22. Let X1, X3, ..., X, beiid rvs with f(x|6),

e_?x?
- 0<x<c, 0>0
X 9 = ob ’
Fx16) [ 0 ; otherwise
where b = 1 — e~ ¢ ;¢ > 0. Obtain a Neyman structure test of size a to test
Hy : ¢ = oo against H| : ¢ < 0o,  unknown. (see Dixit and Dixit (2003))
23. Let X1, X3, ..., X, beiid rvs with f(x|6),

fx16) = { Sl el R
0 ; otherwise

Obtain a Neyman structure test of size « to test Hy : 4 = 0 against H; : u > 0, 0
unknown.
24. Let X1, X», ..., X, be iid rvs with U(0, 6).
Find LR test for testing Hy : 8 = 6, against H : 0 # 0.
25. Find LR test for the problem 20.
26. Find LR test for the problem 21.
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