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Preface

This book originally grew out of my notes on the statistical inference courses at the
Department of Statistics, University of Mumbai. I have experienced that reasonably
good M.Sc. (Statistics) students are many a time not able to understand or solve
problems from some available texts on statistical inference. These books are
excellent in terms of content, but the presentation is highly sophisticated. For
instance, proofs of various theorems are given in brief and a few examples are
provided. To overcome this difficulty, I have solved many examples and, wherever
necessary, a program in R is also given. Further, important proofs in this book are
presented in such a manner that they are easy to understand.

Through this book, we expect students to know matrix algebra, calculus,
probability theory, and distribution theory. This book will serve as an excellent tool
for teaching statistical inference courses. The book consists of many solved and
unsolved problems. Instructors can assign homework problems from the exercises
and students will find the solved examples hugely beneficial in solving the exercise
problems.

In “Prerequisite”, we have discussed some basic concepts like distribution
function and order statistics and illustrated them by using interesting examples.
Chapter 1 deals with sufficiency and completeness. In this chapter, we have solved
37 examples. Chapter 2 deals with unbiased estimation. In the last 30 years of my
teaching, I found that students were always confused about the relationship between
sufficiency and unbiasedness. We have explained this relationship with various
examples in this chapter. Chapter 3 is devoted to method of moments and maximum
likelihood. In Chap. 4, we deal with lower bound for the variance of an unbiased
estimator. Popular concepts like Cramer–Rao (1945, 1946) and Bhattacharya
(1946, 1950) lower bound are discussed in detail. Chapter 4 also deals with
Chapman and Robbins (1951) and Kiefer (1952) lower bound for the variance of an
estimate but does not require regularity conditions. In Chap. 5, the concept of
consistency is discussed in detail and illustrated by using different examples. In
Chap. 6, Bayesian estimation is briefly discussed. Chapters 7 and 8 are significantly
large chapters. Testing of hypothesis is studied in Chap. 7, whereas unbiased and
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other tests are studied in Chap. 8. We have given R programs in various chapters.
No originality is claimed except perhaps in the presentation of the material.

It will prove difficult to thank all my friends who have contributed in some or
other way to make this book a reality. I am thankful to Prof. R.B. Bapat for his
valuable suggestions to improve upon the content and presentation of the book.
I also thank Dr. T.V. Ramanathan for making some valuable suggestions. I am
thankful to Shamim Ahmad, senior editor at Springer India for encouraging me to
publish this book through Springer and making it easy to go through the process.
I thank Prof. Seema C. for reading the book for language. I am equally thankful to
Dr. Alok Dabade, Prof. Shailaja Kelkar, Dr. Mehdi Jabbari Nooghabi, Prof.
S. Annapurna and Prof. Mandar Bhanushe for various academic discussions related
to the book and drawing figures. I am also very thankful to my son Anand and
daughter Vaidehi who helped me solve various problems. Further, I am thankful to
my wife Dr. (Mrs.) Vaijayanti for the insightful discussions on our book.

We are grateful to Prof. Y.S. Sathe and Late Prof. M.N. Vartak for the diverse
discussions which were helpful in understanding statistical inference. These dis-
cussions were particularly helpful in solving problems on UMVUE and testing
of hypotheses. We are thankful to Prof. B.V. Dhandra, Dr. D.B. Jadhav, and
Prof. D.T. Jadhav for providing their M.Phil. dissertations.

In spite of my best efforts, there might be some errors and misprints in the
presentation. I owe these mistakes and request the readers to kindly bring them to
my notice.

Ulhas Jayram Dixit

viii Preface
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Prerequisite

General distribution theory and that of order statistics are an inevitable part of
learning theory of estimation and testing of hypothesis. Therefore, we briefly dis-
cuss these two topics with some interesting examples.

Distribution Function

Let F(x) be a real-valued function of the variables x; we denote as

Fð1Þ ¼ lim
x!1FðxÞ;

Fð�1Þ ¼ lim
x!�1FðxÞ;

Fðxþ Þ ¼ lim
h!0þ

Fðxþ hÞ ¼ Fðxþ 0Þ;

Fðx�Þ ¼ lim
h!0�

Fðxþ hÞ ¼ Fðx� 0Þ;

Definition 1 A function F(x) of a random variable X is called a distribution
function (df) if it satisfies the following three conditions:

1. F(x) is non-decreasing, i.e. Fðxþ hÞ�FðxÞ if h[ 0
2. F(x) is right continuous, i.e. Fðxþ Þ ¼ FðxÞ
3. Fð1Þ ¼ 1 and Fð�1Þ ¼ 0.

A point x is called a discontinuity point of the distribution function F(x) if
Fðxþ Þ ¼ FðxÞ 6¼ Fðx�Þ.
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Further, if FðxÞ ¼ Fðx�Þ then x is called a continuity point of F(x). The quantity
PðxÞ ¼ Fðxþ Þ � Fðx�Þ ¼ FðxÞ � Fðx�Þ is called the jump of F(x) at the point
x. Hence, jump of a distribution function is positive at its discontinuity points and
zero at its continuity points. An interval is called a continuity for the distribution
function F(x) if both its end points are continuity points of F(x). A point x is called a
point of jump of the df F(x) if Fðxþ εÞ � Fðx� εÞ[ 0 for any ε[ 0.

We discuss some following examples of distribution function.

Example 1 Let the random variable X follow binomial distribution with parameters
n = 3 and p = 0.5. Then probability mass function (pmf) is given by,

PðX ¼ xÞ ¼
3
x

� �
ð0:5Þ3 ; x ¼ 0; 1; 2; 3

0 ; otherwise:

8<
:

The df F(x) is given by

FðxÞ ¼
0 ; x\0P½x�
i¼0

3
x

� �
ð0:5Þi ; 0� x\3

1 ; x� 3:

8>><
>>:

The function F(x) is a df with discontinuity points (0, 1, 2, 3). For the discon-
tinuity point 1, F(1 − 0) = 0.125 and F(1) = F(1 + 0) = 0.5, one can see P½X ¼ x�
and F(x) in Figs. 1 and 2, respectively.

Example 2 Let X be distributed as triangular distribution with probability density
function (pdf):

f ðxÞ ¼
x ; 0\x� 1
2� x ; 1� x� 2
0 ; otherwise

8<
:

Then df of X is the df obtained as follows:

FðxÞ ¼

0 ; x� 0Rx
0
tdt ¼ x2

2 ; 0� x� 1

R1
0
tdtþ Rx

1
ð2� tÞdt ¼ 2x� x2

2 � 1 ; 1� x� 2

1 ; x� 2

8>>>>>><
>>>>>>:
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The df F(x) is a continuous function as there are no jump points, i.e., discon-
tinuity points. Figures 3 and 4 give the graph of f(x) and F(x), respectively.

Example 3 The random variable X has the following df

FðxÞ ¼ 0 ; x\0
1� pe�

x
θ ; x� 0; 0\p\1; θ[ 0

�

The function F(x) is a df with one discontinuity point x = 0; since F(0 − 0) = 0
and Fð0Þ ¼ Fð0þ Þ ¼ 1� p. Such a function is called a mixture df, i.e., mixture of
a step function and a continuous function. We can see the graph of F(x) in Fig. 5.

Every df has a countable set of discontinuity points, and it can be decomposed
into two parts as a step function and a continuous function.

Now we consider the Jordan Decomposition Theorem to prove this fact.

Fig. 2 Distribution function

Fig. 1 Probability mass
function
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Fig. 4 df of triangular
distribution

Fig. 3 pdf of triangular
distribution

Fig. 5 Distribution Function
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Theorem 1 Every df F has a countable set of discontinuity points. Moreover,
FðxÞ ¼ αFdðxÞþ ð1� αÞFcðxÞ; 8x; 0�α� 1; where FdðxÞ is a step function and
FcðxÞ is a continuous function. Further, decomposition is unique.

Proof First, we shall prove the first part
Let (a, b] be a finite interval with at least n discontinuity points x1; x2; . . .; xn

such that a\x1\x2\ � � �\xn\b,
Hence,

FðaÞ�Fðx1�Þ\Fðx1Þ�Fðx2�Þ\Fðx2Þ\ � � � �Fðxn�Þ\FðxnÞ�FðbÞ

Let pk ¼ P½X ¼ xk� ¼ FðxkÞ � Fðxk�Þ; k ¼ 1; 2; . . .; n

Now,
Pn
k¼1

pk ¼ FðbÞ � FðaÞ
) The number of points with jump greater than ε will be less than or equal to

FðbÞ � FðaÞ
) nε ¼ FðbÞ � FðaÞ.
) n ¼ FðbÞ�FðaÞ

ε
.

) The number of points of discontinuity in the interval is finite.
Now, < can be looked upon as a countable union of intervals of the type (a,b].
Therefore, the set of discontinuity points of a df F is countable.
Next, we shall prove the second part.
If α ¼ 1 then FðxÞ ¼ FdðxÞ ) X is a discrete random variable.
If α ¼ 0 then FðxÞ ¼ FcðxÞ ) X is a continuous random variable.
If α 2 ð0; 1Þ then FðxÞ ¼ αFdðxÞþ ð1� αÞFcðxÞ
Let D denote the points of discontinuity of the df F.
Let α ¼ PðX 2 DÞ
Since the number points of discontinuity is countable, without loss of generality

we assume them to be x1; x2; . . .
Let pðxiÞ ¼ P½X ¼ xi� ¼ FðxiÞ � Fðxi�Þ; i ¼ 1; 2; . . .
Let

FdðxÞ ¼
X
xi � x

pðxiÞ 1
α

� �
ð1Þ

Now,

Fdð�1Þ ¼
X

xi ��1
pðxiÞ 1

α
¼ 0

Fdð1Þ ¼
X
xi �1

pðxiÞ 1
α
¼ α

α
¼ 1
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Let x\x0

Fdðx0Þ ¼
X
xi � x0

pðxiÞ 1
α

¼
X
xi � x

pðxiÞ 1
α
þ

X
x\xi � x0

pðxiÞ 1
α

¼ FdðxÞþ
X

x\xi � x0
pðxiÞ 1

α

Fdðx0Þ � FdðxÞ ¼
X

x\xi � x0
pðxiÞ 1

α
� 0

) Fdðx0Þ �FdðxÞ

FdðxÞ is non-decreasing function of x.
Now

Fdðxþ hÞ ¼
X

xi\xþ h

pðxiÞ 1
α

¼
X
xi � x

pðxiÞ 1
α
þ

X
x\xi � xþ h

pðxiÞ 1
α

¼ FdðxÞþ
X

x\xi � xþ h

pðxiÞ 1
α

Taking limit as h ! 0

FdðxþÞ ¼ FdðxÞ:

FdðxÞ is right continuous 8x ) FdðxÞ is a df of a discrete random variable.
Now,

FðxÞ ¼ αFdðxÞþ ð1� αÞFcðxÞ

FcðxÞ ¼ 1
1� α

½FðxÞ � αFdðxÞ�

Fcð�1Þ ¼ 0
1� α

¼ 0

Fcð1Þ ¼ 1� α

1� α
¼ 1
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Since F(x) and FdðxÞ are right continuous at x, FcðxÞ is also right continuous.
Let x\x0

Fcðx0Þ � FcðxÞ ¼ 1
1� α

Fðx0Þ � FðxÞ � α Fdðx0Þ � FdðxÞð Þ½ �

¼ 1
1� α

Fðx0Þ � FðxÞ � α
X
xi\x0

pðxiÞ
α

�
X
xi � x

pðxiÞ
α

( )" #

¼ 1
1� α

Fðx0Þ � FðxÞ �
X

x\xi � x0
pðxiÞ

" #
� 0 ð2Þ

Since
P

x\xi � x0 pðxiÞ = sum of the total jumps, in F(x) between points x and x0P
x\xi � x0

pðxiÞ� Jump in F(x) between x and x0 i.e. Fðx0Þ � FðxÞ

) Fcðx0Þ � FcðxÞ� 0

Therefore, if x0 [ x ) Fcðx0Þ �FcðxÞ
) FcðxÞ is a non-decreasing function of x.
) FcðxÞ is a df.
Now, we shall prove that FcðxÞ is left continuous function of x.
From (2),

Fcðx0Þ � FcðxÞ ¼ 1
1� α

Fðx0Þ � FðxÞ �
X

x\xi � x0
pðxiÞ

" #

¼ 1
1� α

Fðx0Þ � FðxÞ �
X

x\xi\x0
pðxiÞ � PðX ¼ x0Þ

" #

Fcðx0Þ � FcðxÞ ¼ 1
1� α

Fðx0Þ � FðxÞ � α
X

x\xi � x0

pðxiÞ
α

 !
� Fðx0Þ � Fðx0�Þð Þ

" #

¼ 1
1� α

Fðx0�Þ � FðxÞ � α Fdðx0�Þ � FdðxÞð Þ½ �

¼ 1
1� α

Fðx0�Þ � αFdðx0�Þ � FðxÞþαFdðxÞ½ �

¼ Fðx0�Þ � αFdðx0�Þ
1� α

� ½FðxÞ � αFdðxÞ�
1� α

¼ Fcðx0�Þ � FcðxÞ

) Fcðx0Þ ¼ Fcðx0�Þ
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) FcðxÞ is left continuous at any point x.
But FcðxÞ is also right continuous at all points of x.
Hence, FcðxÞ is a df of a continuous random variable X.
Therefore FðxÞ ¼ αFdðxÞþ ð1� αÞFcðxÞ.
We shall now prove the third part, i.e., the decomposition is unique.
Suppose that the decomposition is not unique.

FðxÞ ¼ αFd1ðxÞþ ð1� αÞFc1ðxÞ ¼ αFd2ðxÞþ ð1� αÞFc2ðxÞ

α½Fd1ðxÞ � Fd2ðxÞ� ¼ ð1� αÞ½Fc2ðxÞ � Fc1ðxÞ�

) Step function = Continuous function
This cannot be true. Hence, our assumption is wrong and therefore, decompo-

sition is unique.

Example 4 Decompose the following

FðxÞ ¼
0 ; x\� 1
xþ 1
12 ; �1� x\2

3
4 ; 2� x\3
1� 3

4x ; x� 3

8>><
>>:

Fð�1�Þ ¼ 0, Fð�1Þ ¼ 0 ) Fð�1�Þ ¼ Fð�1Þ. Therefore F(x) is continuous at
x = −1.

Now Fð2�Þ ¼ 1
4, Fð2Þ ¼ 3

4 ) Fð2�Þ 6¼ Fð2Þ, which implies that F(x) is dis-
continuous at x = 2. The jump at the point 2 is P½X ¼ 2� ¼ Fð2Þ � Fð2�Þ ¼
3
4 � 1

4 ¼ 1
2. At the point 3 Fð3�Þ ¼ 3

4, Fð3Þ ¼ 3
4 ) Fð3�Þ ¼ Fð3Þ and therefore F

(x) is continuous at x = 3.
Let D be the set of discontinuity points D ¼ f2g.

α ¼ PðX 2 DÞ ¼ PðX ¼ 2Þ ¼ 1
2

FdðxÞ ¼
X
xi � x

pðxiÞ
α

¼ 2
1
2

� �
¼ 1

FdðxÞ ¼ 0 ; x\2
1 ; x� 2

�

Therefore,

FðxÞ ¼ αFdðxÞþ ð1� αÞFcðxÞ
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¼ 1
2
FdðxÞþ 1

2
FcðxÞ

where

FcðxÞ ¼ 2½FðxÞ � 1
2
FdðxÞ�

FcðxÞ ¼ 0; x\� 1.
For �1� x\2; FcðxÞ ¼ 2 xþ 1

12

� � ¼ xþ 1
6

For 2� x\3; FcðxÞ ¼ 2 3
4 � 1

2

� � ¼ 1
2

For x� 3; FcðxÞ ¼ 2 1� 3
4x � 1

2

� � ¼ 1� 3
2x

Hence

FcðxÞ ¼
0 ; x\� 1
xþ 1
6 ; �1� x\2

1
2 ; 2� x\3
1� 3

2x ; x� 3

8>><
>>:

Example 5 Decompose the following

FðxÞ ¼

0 ; x\1
1
4 þ x2�1

12 ; 1� x\2
3
4 þ x�2

4 ; 2� x\3

1 ; x� 3

8>>>><
>>>>:

Fð1�Þ ¼ 0; Fð1Þ ¼ 1
4
) Fð1�Þ 6¼ Fð1Þ

F(x) is discontinuous at x = 1. PðX ¼ 1Þ ¼ 1
4

Fð2�Þ ¼ 1
4 þ 1

4 ¼ 1
2, Fð2Þ ¼ 3

4 ) Fð2�Þ 6¼ Fð2Þ.
F(x) is discontinuous at x = 2 ) PðX ¼ 2Þ ¼ 1

4
Fð3�Þ ¼ 1, Fð3Þ ¼ 1 ) FðxÞ is continuous at x ¼ 3.
The set of points of discontinuity is D ¼ f1; 2g and α ¼ PðX 2 DÞ ¼ 1

2.

FdðxÞ ¼
X
xi � x

pðxiÞ
α

¼ 2
X
xi � x

pðxiÞ
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Hence

FdðxÞ ¼
0 ; x\1
1
2 ; 1� x\2
1 ; x� 2

8<
:

FðxÞ ¼ αFdðxÞþ ð1� αÞFcðxÞ

¼ 1
2
FdðxÞþ 1

2
FcðxÞ

FcðxÞ ¼ 2½FðxÞ � 1
2
FdðxÞ�

For x\1; FcðxÞ ¼ 2ð0Þ ¼ 0.

For 1� x\2; FcðxÞ ¼ 2 1
4 þ x2�1

12 � 1
4

h i
¼ x2�1

6 .

For 2� x\3; FcðxÞ ¼ 2 3
4 þ x�2

4 � 1
2

� � ¼ x�1
2 .

Hence

FcðxÞ ¼
0 ; x\1
x2�1
6 ; 1� x\2

x�1
2 ; 2� x\3
1 ; x� 3

8>><
>>:

If X is discrete random variable then

If X is continuous random variable then

fcðxÞ ¼
x
3 ; 1� x\2
1
2 ; 2� x\3
0 ; otherwise

8<
:

Example 6 Decompose FðxÞ and find EðXÞ and VðXÞ

FðxÞ ¼
0 ; x\0
1
4 ; 0� x\1
1
2 þ 1

2 ð1� e�ðx�1ÞÞ ; x� 1

8<
:

Fð0�Þ ¼ 0, Fð0Þ ¼ 1
4 ) Fð0�Þ 6¼ Fð0Þ ) FðxÞ is discontinuous at x ¼ 0 and

P½X ¼ 0� ¼ 1
4.

X 1 2
P(X = x) 1

2
1
2
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Fð1�Þ ¼ 1
4, Fð1Þ ¼ 1

2 ) Fð1�Þ 6¼ Fð1Þ ) FðxÞ is not continuous at x ¼ 1
therefore P½X ¼ 1� ¼ 1

4.
D ¼ f0; 1g and PðX ¼ 1Þ ¼ Fð1Þ � Fð1�Þ ¼ 1

4

α ¼ PðX ¼ 0ÞþPðX ¼ 1Þ ¼ 1
4
þ 1

4
¼ 1

2

FdðxÞ ¼
X
xi � x

pðxiÞ
α

¼ 2
X
xi � x

pðxiÞ

FdðxÞ ¼
0 ; x\0
1
2 ; 0� x\1
1 ; x� 1

8<
:

FðxÞ ¼ 1
2
FdðxÞþ 1

2
FcðxÞ

¼ 1
2
½FdðxÞþFcðxÞ�

FcðxÞ ¼ 2 FðxÞ � 1
2
FdðxÞ

	 


For x\0; FcðxÞ ¼ 2½0� 0� ¼ 0. For 0� x\1; FcðxÞ ¼ 2 1
4 � 1

4

� � ¼ 0.
For x� 1; FcðxÞ ¼ 2 1

2 þ 1
2 ð1� e�ðx�1ÞÞ � 1

2

� � ¼ 1� e�ðx�1Þ.
Hence

FcðxÞ ¼ 1� e�ðx�1Þ ; x� 1
0 ; otherwise

�

Therefore,
If X is discrete random variable then

If X is continuous random variable then

f ðxÞ ¼ e�ðx�1Þ; x� 1

Let A ¼ f0; 1g and B ¼ fð1;1Þg.
Further, let IA and IB be two indicator functions such that

X 0 1
P(X = x) 1

2
1
2
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IAðxÞ ¼ 1 ; x 2 A
0 ; otherwise

�

and

IBðxÞ ¼ 1 ; x 2 B
0 ; otherwise

�

Then the random variable X can be written as

X ¼ 1
2
IAðxÞþ 1

2
IBðxÞ

EX ¼ 1
2
EIAXþ 1

2
EIBX

EIAX ¼ 0� 1
2
þ 1� 1

2
¼ 1

2

EIBX ¼
Z1
1

xe�ðx�1Þdx ¼ 2

EX ¼ 1
4
þ 1 ¼ 5

4

EX2 ¼ 1
2
EIAX

2 þ 1
2
EIBX

2

EIAX
2 ¼ 1

2

EIBX
2 ¼

Z1
1

x2e�ðx�1Þdx ¼ 5

EX2 ¼ 1
4
þ 5

2
¼ 11

4

VðXÞ ¼ 11
4
� 25
16

¼ 19
16
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Example 7 Decompose FðxÞ and find EðXÞ and VðXÞ.

FðxÞ ¼
0 ; x\0
x
4 ; 0� x\2
3
4 ; 2� x\3
1 ; x� 3

8>><
>>:

Fð0�Þ ¼ 0, Fð0Þ ¼ 0 ) Fð0�Þ ¼ Fð0Þ ) FðxÞ is continuous at x ¼ 0.
Fð2�Þ ¼ 1

2, Fð2Þ ¼ 3
4 ) Fð2�Þ 6¼ Fð2Þ ) FðxÞ is not continuous at x ¼ 2.

Therefore PðX ¼ 2Þ ¼ Fð2Þ � Fð2�Þ ¼ 1
4.

Fð3�Þ ¼ 3
4, Fð3Þ ¼ 1 ) Fð3�Þ 6¼ Fð3Þ ) FðxÞ is not continuous at x ¼ 3.

Therefore PðX ¼ 3Þ ¼ Fð3Þ � Fð3�Þ ¼ 1
4.

The set of points of discontinuity isD = {2, 3}) α ¼ PðX ¼ 2ÞþPðX ¼ 3Þ ¼ 1
2.

FdðxÞ ¼
X
xi � x

pðxiÞ
α

¼ 2
X
xi � x

pðxiÞ

Hence

FdðxÞ ¼
0 ; x\2
1
2 ; 2� x\3
1 ; x� 3

8<
:

FcðxÞ ¼ 2 FðxÞ � 1
2
FdðxÞ

	 


For x\0 ) FcðxÞ ¼ 0.
For 0� x\2; FcðxÞ ¼ 2 x

4 � 0
� � ¼ x

2.
For 2� x\3; FcðxÞ ¼ 2 3

4 � 1
4

� � ¼ 1.
For x� 3; FcðxÞ ¼ 2 1� 1

2

� � ¼ 1.
Hence,

FcðxÞ ¼
0 ; x\0
x
2 ; 0� x\2
1 ; x� 2

8<
:

Therefore,
If X is discrete random variable then

X 2 3
P(X = x) 1

2
1
2
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If X is continuous random variable then

fcðxÞ ¼
1
2 ; 0� x\2
0 ; otherwise

�

Let A ¼ f2; 3g and B ¼ fð0; 2Þg. Further, let IA and IB be two indicator func-
tions such that

IAðxÞ ¼ 1 ; x 2 A
0 ; otherwise

�

and

IBðxÞ ¼ 1 ; x 2 B
0 ; otherwise

�

Then the random variable X can be written as

X ¼ 1
2
IAðxÞþ 1

2
IBðxÞ

EX ¼ 1
2
EIAXþ 1

2
EIBX

EIAX ¼ 1þ 3
2
¼ 5

2

EIBX ¼
Z2
0

x
2
dx ¼ 1

Therefore,

EX ¼ 5
4
þ 1

2
¼ 7

4

Also,

EX2 ¼ 1
2
EIAX

2 þ 1
2
EIBX

2

EIAX
2 ¼ 4� 1

2
þ 9� 1

2
¼ 13

2
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EIBX
2 ¼

Z2
0

x2

2
dx ¼ 4

3

Therefore,

EX2 ¼ 13
4

þ 4
6
¼ 47

12

Hence,

VðXÞ ¼ 47
12

� 49
16

¼ 41
48

Examples on pmf and pdf

Before considering the examples, let us consider some theorems which will be used
in subsequent chapters.

Theorem 2 Let X be a rv with the pdf f ðxÞ; x 2 R.
Let Y = g(x) be one-to-one function and differentiable at all x. The pdf of y is

f ðyÞ ¼ fXðg�1ðyÞÞ dx
dy

����
����;

where x ¼ g�1ðyÞ:
Theorem 3 Let X be an rv with pdf f ðxÞ; x 2 R.

Suppose Y = g(x) is a many-to-one function. Let A be the set of values of
X. Further, let A1;A2. . . be the disjoint subsets of A such that

S
i¼1 Ai ¼ A:

Also the transformation Y = g(x) is one-to-one for every X 2 Ai; i ¼ 1; 2. . .
Then the pdf of Y is given as

fYðyÞ ¼
X
i¼1

fXðg�1ðyÞÞ dx
dy

����
����

� �
Ai

Theorem 4 Suppose X is a discrete rv with pmf f(X = x). Let Y = g(x).
(a) If Y = g(x) is a one-to-one function then

P½Y ¼ y� ¼ P½X ¼ g�1ðyÞ�
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(b) If Y = g(x) is a many-to-one function then

P½Y ¼ y� ¼
X
x

P½X ¼ x; gðxÞ ¼ y�

Theorem 5 Let X and Y be the two rvs then EX ¼ EEXjY
Proof Assume X and Y are continuous rvs.
Consider

EðXjYÞ ¼
Z
X

xf ðxjyÞdx

¼
Z
X

x
f ðx; yÞ
gðyÞ dx

EðEXjYÞ ¼
Z
Y

Z
X

x
f ðx; yÞ
gðyÞ dx

2
4

3
5gðyÞdy

¼
Z
Y

Z
X

xf ðx; yÞdx
0
@

1
Ady

¼
Z
X

x
Z
Y

f ðx; yÞdy
0
@

1
Adx

¼
Z
X

xf ðxÞdx ¼ EX

We can prove similarly, when X and Y are discrete rvs.

Theorem 6 Let X and Y be two rvs then

VðXÞ ¼ E½VðXjYÞ� þV ½EðXjYÞ�

Proof Consider,

E½VðXjYÞ� þV ½EðXjYÞ�

E½ðEX2jYÞ � ðEXjYÞ2� þE½EðXjYÞ�2 � ½EðEXjYÞ�2

E½ðEX2jYÞ� � E½EðXjYÞ�2 þE½EðXjYÞ�2 � ½EðEXjYÞ�2 ð3Þ
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Now, by using Theorem 5,

E½ðEX2jYÞ� ¼ EX2 and EðEXjYÞ ¼ EX;

Equation (3) becomes

EX2 � ðEXÞ2 ¼ VðXÞ

Example 8 Let X be an rv with [ ð�θ; θÞ. Find the distribution of (i) jXj (ii) X2

(i) Let Y ¼ jXj By definition

jXj ¼ X ; X[ 0
�X ; X\0

�

Let

A1 ¼ fx : �θ� x\0gA2 ¼ fx : 0� x\θg

In this case Y ¼ jXj is one-to-one function for X 2 Aiði ¼ 1; 2Þ

fYðyÞ ¼
X2
i¼1

fXðxÞj dxdy j
� �

Ai

¼
X2
i¼1

1
2θ

� �
Ai

¼ 1
2θ

þ 1
2θ

¼ 1
θ

f ðyÞ ¼
1
θ

; 0\y\θ

0 ; otherwise

�

Note One can use this result in estimating θ (see Chap. 2)
(ii) Now Y ¼ X2 is many-to-one function.
Let

A1 ¼ fx : �θ� x\0gA2 ¼ fx : 0� x\θg

Now Y ¼ X2 is one-to-one function for every x 2 Aiði ¼ 1; 2Þ

fYðyÞ ¼
X2
i¼1

1
ð2θÞ

1
2
ffiffiffi
y

p
� �

Ai
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¼ 1
ð2θÞ

1
2
ffiffiffi
y

p þ 1
ð2θÞ

1
2
ffiffiffi
y

p ¼ 1
ð2θÞ ffiffiffi

y
p ; 0\y\θ2

Therefore

fYðyÞ ¼
1

2θ
ffiffi
y

p ; 0\y\θ2

0 ; otherwise

�

Example 9 Let X be a discrete rv with the following pmf

PðX ¼ xÞ ¼ k ; x ¼ 0;� j; j ¼ 1; 2; . . .; n
0 ; otherwise

�

Find the pmf of jXj and X2.

We can write as

PðX ¼ xÞ ¼
1

2nþ 1 ; x ¼ �n;�nþ 1; . . .; 0; 1; 2; . . .; n
0 ; otherwise

�

Let Y ¼ jXj ) Y be one-to-one at x = 0 and many-to-one at x 6¼ 0.

P½Y ¼ y� ¼ P½jXj ¼ y�

¼ P½X ¼ y� þP½X ¼ �y�

¼ 2
2nþ 1

Hence,

PðY ¼ yÞ ¼
1

2nþ 1 ; y ¼ 0
2

2nþ 1 ; y ¼ 1; 2; . . .; n
0 ; otherwise

8<
:

Let Y ¼ X2

P½Y ¼ y� ¼ P½X2 ¼ y�
¼ P½X ¼ ffiffiffi

y
p �þP½X ¼ � ffiffiffi

y
p �

¼ 2
2nþ 1

; y ¼ 1; 4; 9; . . .; n2

P½Y ¼ 0� ¼ P½X2 ¼ 0� ¼ P½X ¼ 0�
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¼ 1
2nþ 1

Therefore,

PðY ¼ yÞ ¼
1

2nþ 1 ; y ¼ 0
2

2nþ 1 ; y ¼ 1; 4; 9; . . .; n2

0 ; otherwise

8<
:

Example 10 Let X be an rv with the following pdf

f ðxÞ ¼
2x
π2 ; 0\x\π

0 ; otherwise

�

Find the cdf of (i) sin x (ii) cos x

(i) Let Y ¼ sinX

GðyÞ ¼ P½Y � y�

¼ P½sinX� y�

¼ P½ð0�X� sin�1ðyÞ [ ðπ� sin�1ðyÞ�X�πÞ�

Y ¼ sin x is a many-to-one function

X ¼ sin�1ðyÞ ; 0\x\ π
2

π� sin�1ðyÞ ; π
2\x\π

�

Let

A1 ¼ fx : 0\x\
π

2
gA2 ¼ fx : π

2
\x\πg

f ðyÞ ¼ f ðxÞj dx
dy

j
� �

A1

þ f ðxÞj dx
dy

j
� �

A2

¼ 2sin�1y
π2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p þ 2ðπ� sin�1yÞ
π2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
¼ 2

π

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p ; 0\y\1

Prerequisite xxxi



Hence,

f ðyÞ ¼
2
π

1ffiffiffiffiffiffiffiffi
1�y2

p ; 0\y\1

0 ; otherwise

(

(ii) Y ¼ cos x

FðxÞ ¼
Rx
0

2x
π2 ¼ x2

π2 ; 0\x\π

1 ; x[π

8<
:
HðyÞ ¼ P½Y � y�

¼ P½cosX � y�

Principal value of cos�1y are
0\cos�1y\π when �1\y\1

HðyÞ ¼ Pðcos�1y\X\πÞ ¼ FðπÞ � Fðcos�1yÞ

¼ 1� ðcos�1yÞ2
π2 ;�1\y\1;

See Fig. 6.
The pdf is given by

Fig. 6 Distribution function
of cos(x)
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hðyÞ ¼
2cos�1y

π2
1ffiffiffiffiffiffiffiffi
1�y2

p ; �1\y\1

0 ; otherwise

(

Example 11 Let X be an rv with the following pdf

f ðxÞ ¼ θe�θx ; x[ 0; θ[ 0
0 ; otherwise

�

Find the pdf and df of (i) sin x (ii) cos x

FðxÞ ¼ 0 ; x\0
1� e�θx ; x� 0

�

Consider

GðyÞ ¼ P½Y � y� ¼ P½sinX� y�

For 0\y\1; (see Fig. 7)

GðyÞ ¼ P½X� sin�1y� þP½π� sin�1y�X� 2πþ sin�1y�
þ P½3π� sin�1y�X� 4πþ sin�1y� þP½5π� sin�1y�X� 6πþ sin�1y� þ � � �
¼ 1� e�θsin�1y þ P1

n¼1
P½ð2n� 1Þπsin�1y�X� 2nπþ sin�1y�

¼ 1� e�θsin�1y þ P1
n¼1

e�θ½ð2n�1Þπ�sin�1y� � e�θ½2nπþ sin�1y�
h i

¼ 1� e�θsin�1y þ exp½πθþ θsin�1y�P1
n¼1

exp½�ð2θπnÞ�

� exp½�θsin�1y�P1
n¼1

exp½�2θπn�

¼ 1� e�θsin�1y þðeπθþ θsin�1y � e�θsin�1yÞ e�2πθ

1�e�2πθ

� �
¼ 1�e�2πθ�e�θsin�1y þe�2πθ�θsin�1y þe�πθþ θsin�1y�e�2πθ�θsin�1y

1�e�2πθ

¼ 1þ e�πθþ θsin�1y�e�θsin�1y

1�e�2πθ

GðyÞ ¼ 1þ e�πθþ θsin�1y�e�θsin�1y

1�e�2πθ ; 0\y\1
0 ; otherwise

�
ð4Þ

Note that for �1\y\0, the principal value of sin�1y will be negative.
For �1\y\0
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P½sinX� y� ¼ P½π� sin�1y\X\2πþ sin�1y� þP½3π� sin�1y\X\4πþ sin�1y� þ � � �

¼
X1
n¼1

P½ð2n� 1Þπ� sin�1y\X\2nπþ sin�1y�

¼
X1
n¼1

e�θ½ð2n�1Þπ�sin�1y� � e�θ½2nπþ sin�1y�
n o

¼ eπθþ θsin�1y � e�θsin�1y
� � e�2πθ

1� e�2πθ

� �

¼
e�πθþ θsin�1y � e�2πθ�θsin�1y
� �

1� e�2πθ

ð5Þ

From (4) and (5)

GðyÞ ¼
e�πθþ θsin�1y�e�2πθ�θsin�1y

1�e�2πθ ; �1\y\0

1þ e�πθþ θsin�1y�e�θsin�1y

1�e�2πθ ; 0\y\1
0 ; otherwise

8><
>:

The pdf of Y is as follows:

gðyÞ ¼
θe�θπ½eθsin�1y þe�πθ�θsin�1y�

ð1�e�2πθÞ
ffiffiffiffiffiffiffiffi
1�y2

p ; �1\y\0

θ½e�πθþ θsin�1y þe�θsin�1y�
ð1�e�2πθÞ

ffiffiffiffiffiffiffiffi
1�y2

p ; 0\y\1

0 ; otherwise

8>>><
>>>:

.

Fig. 7 Graph of sin(x)
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(ii) GðyÞ ¼ P½Y � y�

¼ P½cosX � y� ¼ P½X� cos�1y�

For �1\y\1 for 0\x\1 Principal value of cos�1y are
0\cos�1y\π, �1\y\1; (see Fig. 8)

GðyÞ ¼ P½cos�1y\X\2π� cos�1y; 2πþ cos�1y\X\4πþ cos�1y; . . .�

¼
X1
n¼1

P½ð2n� 2Þπþ cos�1y\X\2nπ� cos�1y�

¼
X1
n¼1

1� e�θ½2nπ�cos�1y� � 1þ e�θ½ð2n�2Þπþ cos�1y�
h i

¼ eθcos
�1y
X1
n¼1

e�2nθπ þ e�θcos�1y
X1
n¼1

e�θπð2n�2Þ

where

X1
n¼1

e�2nθπ ¼ e�2πθ

ð1� e�2πθÞ

GðyÞ ¼ e�θcos�1y � eðθcos
�1y�2πθÞ

1� e�2πθ ; �1\y\0

Note that the same is true for 0\y\1, therefore

GðyÞ ¼ e�θcos�1y � eðθcos
�1y�2πθÞ

1� e�2πθ ; �1\y\1

Fig. 8 Graph of cos(x)
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gðyÞ ¼ 1
1� e�2πθ

θe�θcos�1yffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p þ θe�2πθþ θcos�1yffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
" #

¼ θ

1� e�2πθ

e�θcos�1yffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p þ e�2πθþ θcos�1yffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
" #

Example 12 A probability distribution is not uniquely determined by its moments.

Let X be an rv with lognormal distribution

f ðxÞ ¼
1

x
ffiffiffiffi
2π

p exp½� 1
2 ðlogxÞ2� ; x[ 0

0 ; otherwise

�

Consider another random variable Y as

gðyÞ ¼ f1þ b sinð2πlog yÞgf ðyÞ ; y[ 0;�1\b\1
0 ; otherwise

�

EYr ¼
Z1
0

yrf ðyÞdyþ b
Z1
0

yr sinð2πlog yÞf ðyÞdy

¼ EXr þ bffiffiffiffiffiffi
2π

p
Z1
0

yr sinð2πlog yÞ 1
y
e�

1
2ðlogÞ2dy

Let log y ¼ z ) y ¼ ez

¼ EXr þ bffiffiffiffiffiffi
2π

p
Z1
�1

erz�
z2
2 sinð2πzÞdz

¼ EXr þ bffiffiffiffiffiffi
2π

p e
r2
2

Z1
�1

e�
ðz�rÞ2

2 sinð2πzÞdz

Since z� r ¼ t ) sinð2πzÞ ¼ sinð2πrþ 2πtÞ ¼ sin2πt, r being a positive
integer

¼ EXr þ be
r2
2ffiffiffiffiffiffi
2π

p
Z1
�1

e�
t2
2 sinð2πtÞdt
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The integral is an odd function of t. Therefore the value of the integral is zero.

EXr ¼ EYr

Hence, we have two different distributions and their moments are same. We can
conclude that moments cannot determine the distribution uniquely.

Note If the moments of the specified order exist, then all the lower order
moments automatically exist. However, the converse is not true. See the following
example.

Example 13 Consider the following pdf

f ðxÞ ¼
2
x3 ; x� 1
0 ; otherwise

�

EX ¼ 2 and EX2 ¼ 1
Example 14 Let

f ðxÞ ¼ ðrþ 1Þθrþ 1

ðxþ θÞrþ 2 ; x� 0; θ[ 0

EXr ¼ ðrþ 1Þθrþ 1βðrþ 1; 1Þ

EXrþ 1 ¼ ðrþ 1Þθrþ 1
Z1
0

xrþ 1

ðxþ θÞrþ 2 dx ! 1

In this example moments up to rth order exist and higher order moments do not
exist.

Example 15 A continuous distribution need not be symmetric even though all its
central odd moments vanish.

Let

f ðxÞ ¼ 1
48

expð�jxj14Þ½1� ksin jxj14�; �1\x\1

where

k ¼ �1 ; x\0
1 ; x[ 0

�
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In this case EX2rþ 1 ¼ 0
Hence f(x) is asymmetric, but all its odd moments are zero, see Churchill (1946).

Example 16 If X1 and X2 are independent then

φX1 þX2
ðtÞ ¼ φX1

ðtÞ � φX2
ðtÞ;

where φ is a characteristic function. But converse is not true.

(i)

f ðxÞ ¼ 1
π

1
1þ x2

; �1\x\1

φX1
ðtÞ ¼ e�jtj

Let X1 ¼ X2 almost surely ) PðX1 ¼ X2Þ ¼ 1

φX2ðtÞ ¼ e�jtj

φX1 þX2
ðtÞ ¼ e�2jtj ¼ φX1

ðtÞ � φX2
ðtÞ

But X1 and X2 are not independent.
(ii) Consider the joint density of ðX1;X2Þ

f ðx1; x2Þ ¼
1
4 f1þ x1x2ðx21 � x22Þg ; jx1j\1 and jx2j\1
0 ; otherwise

�

Marginal pdf of Xiði ¼ 1; 2Þ

gðx1Þ ¼
1
2 ; jx1j � 1
0 ; otherwise

�

gðx2Þ ¼
1
2 ; jx2j � 1
0 ; otherwise

�

φX1
ðtÞ ¼

Z1
�1

e�itx1 dx1
2

¼ eit � e�it

2it
¼ sin t

t

φX2
ðtÞ ¼ sin t

t

φX1 þX2
ðtÞ ¼ ðsin tÞ2

t2
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Next, Z ¼ X1 þX2 then

hðzÞ ¼
Z

f ðu; z� uÞdu

¼ 1
4

Z
½1þ uðz� uÞfu2 � ðz� uÞ2g�du

¼ 1
4

Z
½1þ 3z2u2 � 2zu3 � z3u�du

Since X1 ¼ u and X2 ¼ z� u
The limits of integration for u in terms of z is given by �1� u� zþ 1; u� 0

and z� 1� u� 1; u[ 0

hðzÞ ¼ 1
4

Zzþ 1

�1

½1þ 3z2u2 � 2zu3 � z3u�du ¼ 2þ z
4

; �2� z� 0

¼ 1
4

Z1
z�1

½1þ 3z2u2 � 2zu3 � z3u�du ¼ 2� z
4

; 0\z� 2

φX1 þX2
ðtÞ ¼

Z2
�2

eitzhðzÞdz

¼
Z0
�2

2þ z
4

eitzdzþ
Z2
0

2� z
4

eitzdz

¼
Z2
0

2� z
4

e�itzdzþ
Z2
0

2� z
4

eitzdz

¼
Z2
0

ðe�itz þ eitzÞ 2� z
4

dz

¼ 1
2

Z2
0

ð2� zÞcos ðtzÞdz

¼ 2� 2cos ð2tÞ
4t2

¼ 1� cos ð2tÞ
2t2

¼ sin t
t

� �2

¼ φX1
ðtÞ � φX2

ðtÞ
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But f ðx1; x2Þ 6¼ gðx1Þ � gðx2Þ
Example 17 If X1; X2; X3; X4 are independent Nð0; 1Þ random variables, show
that

(a) Z ¼ jX1X2 þX3X4j had exponential pdf e�x for x[ 0.
(b) Z1 ¼ X1

X2
has Cauchy distribution.

MX1X2ðtÞ ¼
Z1
�1

Z1
�1

expðtx1x2Þ
2π

exp � 1
2
ðx21 þ x22Þ

	 

dx1dx2

¼ 1ffiffiffiffiffiffi
2π

p
Z1
�1

exp� x21
2

� �
1ffiffiffiffiffiffi
2π

p
Z1
�1

exp tx1x2 � x22
2

	 

dx2

0
@

1
Adx1

Now,

exp � 1
2

x22 � 2tx1x2 þ t2x21 � t2x21
� �	 


¼ exp � 1
2
ðx2 � tx1Þ2 þ t2x21

2

	 


Hence

1ffiffiffiffiffiffi
2π

p
Z1
�1

exp tx1x2 � x22
2

	 

dx2 ¼ e

t2x2
1

2

Z1
�1

1ffiffiffiffiffiffi
2π

p e�
1
2ðx2�tx1Þ2dx2 ¼ e

t2x2
1

2

MX1X2ðtÞ ¼
Z1
�1

1ffiffiffiffiffiffi
2π

p exp � x21
2

þ t2x21
2

	 

dx2 ¼

Z1
�1

1ffiffiffiffiffiffi
2π

p exp � x21
2
ð1� t2Þ

	 

dx1

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p

Similarly,

MX3X4ðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p

Hence

MX1X2 þX3X4ðtÞ ¼
1

1� t2
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This is the mgf of Z with Laplace distribution.

f ðxÞ ¼ 1
2
expð�jxjÞ; �1� x�1

To verify this

MXðtÞ ¼ 1
2

Z0
�1

exetxdxþ 1
2

Z1
0

e�xetxdx ¼ 1
1� t2

fX1X2 þX3X4ðxÞ ¼ e�x; x[ 0

(b) Let Z1 ¼ X1
X2
, Z2 ¼ X2 ) X1 ¼ Z1Z2

oðX1;X2Þ
oðZ1; Z2Þ ¼ Z2

f ðZ1; Z2Þ ¼ f ðX1;X2ÞZ2 ¼ 1
2π

exp � 1
2
fz21z22 þ z22g

	 

z2 ¼ z2

2π
exp � z22

2
ð1þ z21Þ

	 


f ðz1Þ ¼
Z1
�1

z2
2π

exp � z22
2
ð1þ z21Þ

	 

dz2

¼ 2
Z1
0

z2
2π

exp � z22
2
ð1þ z21Þ

	 

dz2

¼
Z1
0

1
π
exp½�wð1þ z21Þ�dw ¼ 1

π

1
ð1þ z21Þ

Hence Z1 has a Cauchy distribution.

Example 18 If the rv X 	Bðn; pÞ and the rv Y has negative binomial distribution
with parameters r and p, prove that

P½X� r � 1� ¼ P½Y [ n� r�

Now,

P½Y [ n� r� ¼
X1

y¼n�rþ 1

yþ r � 1
r � 1

� �
prqy
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Let Z = y − (n − r + 1)

¼ prqn�rþ 1
X1
z¼0

zþ n
r � 1

� �
qz

Now

zþ n
r � 1

� �
¼
Xr�1

k¼0

n
k

� �
z
r � 1� k

� �

P½Y [ n� r� ¼ prqn�rþ 1
X1
z¼0

Xr�1

k¼0

n
k

� �
z
r � 1� k

� �" #
qz

Now,
m
r

� �
¼ 0 if m\r

¼ prqn�rþ 1
Xr�1

k¼0

n
k

� � X1
z¼r�1�k

z
r � 1� k

� �
qz

Let t = z − (r − 1 − k)

¼ prqn�rþ 1
Xr�1

k¼0

n

k

� �X1
t¼0

tþ r � 1� k

r � 1� k

� �
qtþ r�1�k

" #

¼ prqn
Xr�1

k¼0

n

k

� �X1
t¼0

tþ r � 1� k

r � 1� k

� �
qt�k

" #

¼ prqn
Xr�1

k¼0

n

k

� �
q�k

X1
t¼0

tþ r � 1� k

t

� �
qt

" #

¼ prqn
Xr�1

k¼0

n

k

� �
q�kð1� qÞ�ðr�kÞ

	 


¼
Xr�1

k¼0

n

k

� �
pkqn�k

	 

¼ P½X� r � 1�

Example 19 Let X be an rv with Bðn; pÞ. Prove that

Fnþ 1ðyÞ ¼ pFnðy� 1Þþ qFnðyÞ;

where,
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FnðyÞ ¼ P½X� y� ¼
Xy
x¼0

n
x

� �
pxqn�x

Consider Fnþ 1ðyÞ ¼ pFnðy� 1Þþ qFnðyÞ

¼ p
Xy�1

x¼0

n

x

� �
pxqn�x þ q

Xy
x¼0

n

x

� �
pxqn�x

¼
Xy�1

x¼0

n

x

� �
pxþ 1qn�x þ

Xy
x¼0

n

x

� �
pxqn�xþ 1

¼ ½pqn þ n

1

� �
p2qn�1 þ n

2

� �
p3qn�2 þ � � � þ n

y� 1

� �
pyqn�yþ 1�

þ ½qnþ 1 þ n

1

� �
pqnþ n

2

� �
p2qn�1þ � � � þ n

y

� �
pyqn�yþ 1�

¼ qnþ 1þ n

0

� �
þ n

1

� �	 

pqnþ n

1

� �
þ n

2

� �	 

p2qn�1 þ n

2

� �
þ n

3

� �	 

p3qn�2

þ � � � þ n

y� 1

� �
þ n

y

� �	 

pyqn�yþ 1

¼ qnþ 1þ nþ 1

1

� �	 

pqn þ nþ 1

2

� �	 

p2qn�1 þ nþ 1

3

� �	 

p3qn�2 þ � � � þ nþ 1

y

� �	 

pyqn�yþ 1

Pnþ 1½X � y� ¼
Xy
x¼0

nþ 1
x

� �
pxqn�xþ 1 ¼ Fnþ 1ðyÞ

Example 20 Let X be an rv with Bðn; pÞ. Prove that

P½X � k� ¼ ðn� kÞ n
k

� �Zq
0

tn�k�1ð1� tÞkdt

Now,

P½X� k� ¼
Xk
r¼0

n
r

� �
prqn�r

dP½X� k�
dq

¼
Xk
r¼0

n
r

� �
½rpr�1ð�1Þqn�r þ prðn� rÞqn�r�1�

¼
Xk
r¼0

� nðn� 1Þ!
ðr � 1Þ!ðn� rÞ! p

r�1qn�r þ nðn� 1Þ!
r!ðn� r � 1Þ! p

rqn�r�1
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¼
Xk
r¼0

n
n� 1
r

� �
prqn�r�1 � n� 1

r � 1

� �
pr�1qn�r

	 


Let Ar ¼ n� 1
r

� �
prqn�r�1

¼
Xk
r¼0

n½Ar � Ar�1� ¼ nAk ð6Þ

dP
dq

¼ n
n� 1
k

� �
pkqn�k�1

On integrating both sides

P½X � k� ¼ n
n� 1

k

� �Zq
0

ð1� uÞkun�k�1du

¼ ðn� kÞ n

k

� �Zq
0

ð1� uÞkun�k�1du

Example 21 If the rv X has Bðn; pÞ and Y has Beta distribution with parameters
k and (n-k-1) then prove that

P½Y � p� ¼ P½X� k�

Now, P½X� k� ¼ Pn
r¼k

n
r

� �
prqn�r

dP½X � k�
dp

¼ nTk�1;where Tr ¼
n� 1

r

� �
prqn�r�1

¼ n
n� 1

k � 1

� �
pk�1qn�k

On integrating both sides

P½X� k� ¼ n
n� 1

k � 1

� �Zp
0

uk�1ð1� uÞn�kdu

¼ 1
βðk; n� kþ 1Þ

Zp
0

uk�1ð1� uÞn�kdu
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Example 22 Let X be a Poisson Distribution with parameter λ, prove that

P½X� x� ¼
Z1
λ

e�ttx

Γðxþ 1Þ dt

Let

Ix ¼
Z1
λ

1
x!
e�ttxdt

¼ 1
x!

�e�ttx½ �1λ þ
Z1
λ

xtx�1e�tdt

0
@

1
A

¼ e�λλx

x!
þ 1

ðx� 1Þ!
Z1
λ

tx�1e�tdt

¼ λxe�λ

x!
þ Ix�1

¼ e�λλx

x!
þ e�λλx�1

ðx� 1Þ! þ Ix�2

¼ e�λλx

x!
þ e�λλx�1

ðx� 1Þ! þ
e�λλx�2

ðx� 2Þ! þ Ix�3

¼ e�λλx

x!
þ e�λλx�1

ðx� 1Þ! þ � � � þ e�λλ

1!
þ e�λ

¼
Xx
i¼0

e�λλi

i!
¼ P½X � x�

Example 23 Let X1;X2 be the iid rvs with N(0, 1).
Find the pdf of Z1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
1 þX2

2

p
and Z2 ¼ tan�1ðX1

X2
Þ.

Z2
1 ¼ X2

1 þX2
2 ; tan Z2 ¼

X1

X2
) Z2

1 ¼ X2
2ðtan Z2Þ2 þX2

2

X2
2 ¼ Z2

1

1þ tan 2Z2
¼ Z2

1

sec2Z2

X2 ¼ � Z1
sec Z2

¼ �Z1cos Z2;X1 ¼ �Z1sin Z2
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Therefore X1 ¼ Z1sin Z2 or �Z1sin Z2
X2 ¼ Z1cos Z2 or �Z1cos Z2

oðX1;X2Þ
oðZ1; Z2Þ ¼

�sin z2 �z1cos z2
�cos z2 
z1sin z2

0
@

1
A ¼ z1sin

2z2 þ z1cos
2z2 ¼ z1

jJj ¼ Z1 þ Z1 ¼ 2Z1

f ðx1; x2Þ ¼ 1
2π

exp � x21 þ x22
2

� �	 


f ðz1; z2Þ ¼ 1
2π

e�
z2
1
2 ð2z1Þ

¼ z1
π
exp � z21

2

	 


X1 2 ð�1;1Þ and X2 2 ð�1;1Þ
then Z1 2 ð0;1Þ and Z2 2 ð� π

2 ;
π
2Þ

hðz1Þ ¼
Zπ

2

�π
2

z1
π
exp½� z21

2
�dz2

¼ z1
π
exp � z21

2

	 

π ¼ z1exp � z21

2

	 

; 0\z1\1

gðz2Þ ¼
1
π

; � π
2\z2\ π

2
0; ; otherwise

�

Example 24 Let X1;X2; . . .;Xn be iid rvs from Bð1; pÞ. Find the distribution of
S2 ¼P ðXi � �XÞ2.

S2 ¼
X

ðXi � �XÞ2 ¼
X

X2
i �n

P
Xið Þ2
n2

¼
X

X2
i �

P
Xið Þ2
n

Since Xi ¼ 0 or 1 for i = 1, 2,…, n,
P

X2
i 	Bðn; pÞ and PXi 	Bðn; pÞ

Let Y ¼PX2
i ¼PXi

S2 ¼ y� y2

n
¼ y 1� y

n

� �
¼ y

n� y
n

� �

P½S2 ¼ 0� ¼ Pðy ¼ 0ÞþPðy ¼ nÞ ¼ qn þ pn
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P S2 ¼ n� 1
n

� �
¼ Pðy ¼ 1ÞþPðy ¼ n� 1Þ ¼ npqn�1 þ npn�1q

¼ npqðqn�2 þ pn�2Þ

P S2 ¼ 2ðn� 2Þ
n

� �
¼ Pðy ¼ 2ÞþPðy ¼ n� 2Þ ¼ n

2

� �
p2qn�2 þ pn�2q2
� �

¼ n

2

� �
p2q2½qn�4 þ pn�4�

P S2 ¼ 3ðn� 3Þ
n

� �
¼ Pðy ¼ 3ÞþPðy ¼ n� 3Þ ¼ n

3

� �
p3qn�3 þ pn�3q3
� �

¼ n

3

� �
p3q3½qn�6 þ pn�6�

In general

P S2 ¼ iðn� iÞ
n

� �
¼ Pðy ¼ iÞþPðy ¼ n� iÞ ¼ n

i

� �
piqn�i þ pn�iqi
� �

¼ n

i

� �
piqi qn�2i þ pn�2i� �

; i ¼ 0; 1; 2; . . .; n

Example 25 Let X1;X2; . . .;Xn be independent rvs with exponential distribution
having mean one. Prove that the following rvs have the same distribution.

Z ¼ maxðX1;X2; . . .;XnÞ

W ¼ X1 þ X2

2
þ X3

3
þ � � � þ Xn

n

P½Z� z� ¼ ðFðzÞÞn ¼ ð1� e�zÞn

f ðzÞ ¼ nð1� e�zÞn�1e�z

MzðtÞ ¼
Z1
0

etznð1� e�zÞn�1e�zdz

Let u ¼ 1� e�z ) du ¼ e�zdz and etz ¼ ð1� uÞ�t

z ¼ 0 ) u ¼ 0; z ¼ 1 ) u ¼ 1
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¼
Z1
0

nun�1ð1� uÞ�tdu ¼ nβðn; 1� tÞ

¼ nΓðnÞΓð1� tÞ
Γðnþ 1� tÞ ¼ n!ð�tÞ!

ðn� tÞ!
¼ n!ð�tÞ!

ðn� tÞðn� t � 1Þ. . .ð2� tÞð1� tÞð�tÞ!

MzðtÞ ¼ n!
ðn� tÞðn� t � 1Þ � � � ð2� tÞð1� tÞ

MwðtÞ ¼ MX1ðtÞ �MX2
2
ðtÞ � . . .�MXn

n
ðtÞ

¼ 1
1� t

� 2
2� t

� � � � � n
n� t

¼ n!
ðn� tÞðn� t � 1Þ. . .ð2� tÞð1� tÞ

Hence, Z and W have the same distribution.

Example 26 Let X1 and X2 be independent rvs with [ ð0; θiÞ; i ¼ 1; 2 respectively.
Let Z1 ¼ minðX1;X2Þ and

Z2 ¼ 0 ; Z1 ¼ X1

1 ; Z1 ¼ X2

�

Show that Z1 and Z2 are independent rvs.

(i) θ1\θ2

P½Z1 � z1; Z2 ¼ 0� ¼ P½minðX1;X2Þ� z1; Z2 ¼ 0�

¼ P½ðX1 � z1;X1\X2�

¼
Zz1
0

Zθ2
x1

1
θ1θ2

dx1dx2

¼ 1
θ1θ2

z1θ2 � z21
2

� �
; 0\z1\θ1

¼
Zz1
0

1
θ1

θ2 � x1
θ2

� �
dx1

¼ z1
θ1θ2

θ2 � z1
2

� �

ð7Þ
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P½Z2 ¼ 0� ¼
Zθ1
0

Zθ2
x1

1
θ1θ2

dx1dx2

¼ 1
θ1θ2

Zθ1
0

θ2 � x1ð Þdx1
2
4

3
5 ¼ 1� θ1

2θ2
ð8Þ

P½Z1 � z1; Z2 ¼ 1� ¼ P½minðX1;X2Þ� z1; Z2 ¼ 1�

¼ P½X2 � z1;X2\X1�

¼
Zz1
0

Zθ1
x2

dx1dx2
θ1θ2

¼
Zz1
0

ðθ1 � x1Þ
θ1θ2

dx1

¼ 1
θ1θ2

z1θ1 � z21
2

� �

¼ z1
θ1θ2

θ1 � z1
2

� �
ð9Þ

P½Z2 ¼ 1� ¼ P½X2 �X1�

¼
Zθ1
0

Zθ1
x2

1
θ1θ2

dx1dx2

¼ 1
θ1θ2

Zθ1
0

ðθ1 � x2Þdx2
2
4

3
5

¼ 1
θ1θ2

θ1x2 � x22
2

	 
θ1
0

¼ 1
θ1θ2

½θ21 �
θ21
2
�

¼ θ1

2θ2
; θ1\θ2 ð10Þ

From (7) and (9)
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P½Z1 � z1� ¼ z1
θ1θ2

θ1 þ θ2 � z1½ � ¼ θ1 þ θ2

θ1θ2
z1 � z21

θ1θ2

f ðz1Þ ¼ θ1 þ θ2

θ1θ2
� 2z1
θ1θ2

; 0\z1\θ1 ð11Þ

P½Z2 ¼ 0� ¼ 1� θ1

2θ2
ð12Þ

P½Z2 ¼ 1� ¼ θ1

2θ2
ð13Þ

(ii) θ1 [ θ2
Similarly, as before

f ðz1Þ ¼ θ1 þ θ2

θ1θ2
� 2z1
θ1θ2

; 0\z1\θ2 ð14Þ

P½Z2 ¼ 0� ¼ 1� θ2

2θ1
ð15Þ

P½Z2 ¼ 1� ¼ θ2

2θ1
ð16Þ

(iii) θ1 ¼ θ2 ¼ θ

Similarly, as before

f ðz1Þ ¼ 2
θ
� 2z1

θ2
; 0\z1\θ ð17Þ

P½Z2 ¼ 0� ¼ 1
2

ð18Þ

P½Z2 ¼ 1� ¼ 1
2

ð19Þ

From (7), (9), (11), (13), (14), (15), (17), (18) and (19), Z1 and Z2 are inde-
pendent rvs.

Order Statistics

Many functions of random variable of interest, in practice, depend on the relative
magnitude of the observed variables. For instance, we may be interested in the
fastest time in an automobile race or the heaviest mouse among those found on a
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certain diet. Thus we often order observed random variables according to their
magnitudes. The resulting ordered variables are called order statistics.

Definition 2 If the random variables X1;X2; � � � ;Xn are arranged in ascending order
of magnitude and then written as Xð1Þ �Xð2Þ � . . .�XðrÞ �Xðrþ 1Þ � � � � �XðnÞ, XðrÞ
is called the rth order statistic (r = 1, 2,…, n) and ðXð1Þ;Xð2Þ; . . .;XðnÞÞ is called the
set of order statistics.

Let X1;X2; � � � ;Xn be n independent random variables. Let FrðxÞ be the distri-
bution function (df) of the rth order statistic XðrÞ.

Hence,

FrðxÞ ¼ P½XðrÞ � x�

¼ P½Atleast r of Xi are less than or equal to x�

¼
Xn
i¼r

n
i

� �
FiðxÞ½1� FðxÞ�n�i; ð20Þ

where F(x) = df of X = P½X� x�:
Theorem 7 The distribution of rth order statistic is

fXðrÞ ðxÞ ¼
n!

ðr � 1Þ!ðn� rÞ!F
r�1ðxÞ½1� FðxÞ�n�rf ðxÞ; x 2 R ð21Þ

Proof Differentiating (20) with respect to x, let �FðxÞ ¼ 1� FðxÞ

fXðrÞ ðxÞ ¼
Xn
i¼r

n

i

� �
iFi�1ðxÞ�Fn�iðxÞf ðxÞ �

Xn
i¼r

n

i

� �
FiðxÞðn� iÞ�Fn�i�1ðxÞf ðxÞ

¼ n
Xn
i¼r

n� 1

i� 1

� �
Fi�1ðxÞ�Fn�iðxÞf ðxÞ � n

Xn
i¼r

n� 1

i

� �
FiðxÞ�Fn�i�1ðxÞf ðxÞ

Let Ai ¼
n� 1

i

� �
FiðxÞ�Fn�i�1ðxÞf ðxÞ:

Therefore, fXðrÞ ðxÞ ¼ n
Xn
i¼r

ðAi�1 � AiÞ ¼ nðAr�1 � AnÞ

But An ¼ 0

fXðrÞ ðxÞ ¼ nAr�1

¼ n
n� 1

r � 1

� �
Fr�1ðxÞ�Fn�rðxÞf ðxÞ
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Corollary 1 The distribution of XðnÞ ¼ maxiXi is

fXðnÞ ðxÞ ¼ nFn�1ðxÞf ðxÞ; x 2 R ð22Þ

Proof

fXðnÞ ðxÞ ¼ P½XðnÞ � x�
¼ P½All X 0

i
s� x�

¼
Yn
i¼1

P½Xi � x� ¼ FnðxÞ ðX 0
i
s are iidÞ

Hence

fXðnÞ ðxÞ ¼ nFn�1ðxÞf ðxÞ; x 2 R ð23Þ

Corollary 2 The distribution of Xð1Þ ¼ miniXi is

fXð1Þ ðxÞ ¼ n½1� FðxÞ�n�1f ðxÞ; x 2 R ð24Þ

Proof

FXð1Þ ðxÞ ¼ P½Xð1Þ � x�
¼ 1� P½Xð1Þ [ x�
¼ 1� P½All X 0

i
s[ x�

¼ 1�
Yn
i¼1

P½Xi [ x�

¼ 1� ½1� FðxÞ�n ðX 0
i
s are iidÞ

Hence

fXð1Þ ðxÞ ¼ n½1� FðxÞ�n�1f ðxÞ; x 2 R

Theorem 8 The joint pdf of ðXð1Þ; Xð2Þ; . . .; XðnÞÞ is given by

gðXð1Þ;Xð2Þ; . . .XðnÞÞ ¼ n!
Qn

i f ðxðiÞÞ ; Xð1Þ\Xð2Þ\ � � �\XðnÞ
0 ; otherwise

�
ð25Þ
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Corollary 3 The marginal pdf of XðrÞ from (25) is given by (21).

Proof

gXðrÞ ðxrÞ ¼ n!f ðxrÞ
Zxr
�1

Zxr�1

�1
� � �

Zx2
�1

Z1
xr

Z1
xrþ 1

� � �
Z1
xn�1

�
Yn
i6¼r

f ðxðiÞÞdx1dx2. . .dxðr�1Þdxðrþ 1Þ. . .dxn

ð26Þ

Consider

Z1
xn�1

f ðxnÞdxn ¼ 1� Fðxn�1Þ

Z1
xn�2

f ðxn�1Þ½1� Fðxn�1Þ�dxn�1 ¼ 1
2
½1� Fðxn�2Þ�2

Hence

Z1
xr

Z1
xrþ 1

� � �
Z1
xn�1

f ðxnÞf ðxn�1Þ � � � f ðxrþ 1Þdxndxn�1 � � � dxrþ 1

¼ 1
ðn� rÞ! ½1� FðxrÞ�n�r ð27Þ

Next,

Zx2
�1

f ðx1Þdx1 ¼ Fðx2Þ

Zx3
�1

Fðx2Þf ðx2Þdx2 ¼ F2ðx3Þ
2

Zxr
�1

f ðxr�1ÞFr�2ðxr�1Þdxr�1 ¼ Fr�1ðxr�1Þ
ðr � 1Þ! ð28Þ
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Hence, from (25), (26), (27), and (28), we get the distribution of Xr as given
in (21).

Theorem 9 The joint distribution of Xr and Xs, ðr\sÞ, is given as

grsxr; xsÞ ¼
n!

ðr�1Þ!ðs�r�1Þ!ðn�sÞ!F
r�1ðxrÞ½FðxsÞ � FðxrÞ�s�r�1½1� FðxsÞ�n�sf ðxrÞf ðxsÞ; xr\xs

0; otherwise

(

ð29Þ

Proof Note that

�1\x1\x2 � � � xr�1\xr\xrþ 1; � � �\xs�2\xs�1\xs\xsþ 1. . .\xn\1

Consider three parts
(a) Omitting xr,

�1\x1\x2;�1\x2\x3;�1\x3\x4; � � � ;�1\xr�2\xr�1;

�\1\xr�1\xr ð30Þ

(b) Omitting xs,

xr\xrþ 1\xs; xrþ 1\xrþ 2\xs; xrþ 2\xrþ 3\xs; . . .; xs�3\xs�2\xs;

xs�2\xs�1\xs ð31Þ

(c)

xs\xsþ 1\1; xsþ 1\xsþ 2\1; xsþ 2\xsþ 3\1; . . .; xn�2\xn�1\1;

xn�1\xn\1 ð32Þ

Consider (a) omitting xr

Zx2
�1

f ðx1Þdx1 ¼ Fðx2Þ;
Zx3
�1

Fðx2Þf ðx2Þdx2 ¼ F2ðx3Þ
2

Zx4
�1

F2ðx3Þ
2

f ðx3Þdx3 ¼ F3ðx4Þ
3!
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In general,

Zxr
�1

Fr�2ðxr�1Þ
ðr � 2Þ! f ðxr�1Þdxr�1 ¼ Fr�1ðxrÞ

ðr � 1Þ! ð33Þ

Consider (b) omitting xs

Zxs
xs�2

f ðxs�1Þdxs�1 ¼ FðxsÞ � Fðxs�2Þ

Zxs
xs�3

FðxsÞ � Fðxs�2Þ½ �f ðxs�2Þdxs�2 ¼ 1
2
FðxsÞ � Fðxs�3Þ½ �2;

Zxs
xs�4

FðxsÞ � Fðxs�3Þ½ �2
2

f ðxs�3Þdxs�3 ¼ FðxsÞ � Fðxs�3Þ½ �3
3!

;

Zxs
xrþ 1

½FðxsÞ � Fðxrþ 2Þ�s�r�3

ðs� r � 3Þ! f ðxrþ 2Þdxrþ 2 ¼ ½FðxsÞ � Fðxrþ 1Þ�s�r�2

ðs� r � 2Þ! ;

Zxs
xr

FðxsÞ � Fðxrþ 1Þ½ �s�r�2

ðs� r � 2Þ! f ðxrþ 1Þdxrþ 1 ¼ FðxsÞ � FðxrÞ½ �s�r�1

ðs� r � 1Þ! ;

Consider (c)

Z1
xn�1

f ðxnÞdxn ¼ 1� Fðxn�1Þ

Z1
xn�2

½1� Fðxn�1Þf ðxn�1Þdxn�1 ¼ ½1� Fðxn�2Þ�2
2

Z1
xn�3

½1� Fðxn�2Þ�2
2

f ðxn�2Þdxn�2 ¼ ½1� Fðxn�2Þ�3
3!
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Z1
xsþ 1

½1� Fðxsþ 2Þ�n�s�2

ðn� s� 2Þ! f ðxsþ 2Þdxsþ 2 ¼ ½1� Fðxsþ 1Þ�n�s�1

ðn� s� 1Þ!

Z1
xs

½1� Fðxsþ 1Þ�n�s�1

ðn� s� 1Þ! f ðxsþ 1Þdxsþ 1 ¼ ½1� FðxsÞ�n�s

ðn� sÞ! ð34Þ

Hence from (a)

Zx2
�1

Zx3
�1

Zx4
�1

� � �
Zxr
�1

f ðx1Þf ðx2Þ � � � f ðxr�1Þdx1dx2 � � � dxr�1 ¼ Fr�1ðxrÞ
ðr � 1Þ! ð35Þ

From (b)

Zxs
xs�2

Zxs
xs�3

� � �
Zxs

xrþ 1

Zxs
xr

f ðxs�1Þf ðxs�2Þ � � � f ðxrþ 2Þf ðxrþ 1Þdxs�1dxs�2 � � � dxrþ 2dxrþ 1

¼ ½FðxsÞ � FðxrÞ�s�r�1

ðs� r � 1Þ! ð36Þ

From (c)

Z1
xn�1

Z1
xn�2

� � �
Z1

xsþ 1

Z1
xs

f ðxnÞf ðxn�1Þf ðxn�2Þ � � � f ðxsþ 1Þdxndxn�1 � � � dxsþ 1

¼ ½1� FðxsÞ�n�s

ðn� sÞ! ð37Þ

Therefore

¼f ðxrÞf ðxsÞ
Zx2
�1

Zx3
�1

Zxr
�1

Zxs
xr

Zxs
xrþ 1

Zxs
xrþ 2

Z1
xs

Z1
xsþ 1

� � �
Z1
xn�2

Z1
xn�1

� n!
Yn
i6¼r;s

f ðxiÞdx1dx2 � � � dxr�1dxrþ 1dxrþ 2 � � � dxs�1dxsþ 1 � � � dxn
ð38Þ
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By using (35), (36), and (37), the joint distribution of Xr and Xs, ðr\sÞ, is given
as

crsf ðxrÞFr�1ðxrÞ½FðxsÞ � FðxrÞ�s�r�1½1� FðxsÞ�n�sf ðxsÞ; ð39Þ

where crs ¼ n!
ðr�1Þ!ðs�r�1Þ!ðn�sÞ!

Distribution of Range

Let Wrs ¼ Xs � Xr

f ðwrsÞ ¼ crs

Z1
�1

f ðxÞFr�1ðxÞ½FðxþwrsÞ � FðxÞ�s�r�1½1� FðxþwrsÞ�n�sf ðxþwrsÞdx;

Put r = 1, s = n, then call wrs ¼ w,

f ðwÞ ¼ nðn� 1Þ
Z1
�1

f ðxÞ½FðxþwÞ � FðxÞ�n�2f ðxþwÞdx ð40Þ

The cdf of w is more simpler

FðwÞ ¼ n
Z1
�1

f ðxÞ
Zw
0

ðn� 1Þ½FðxþwÞ � FðxÞ�n�2dwdx

¼ n
Z1
�1

f ðxÞ½FðxþwÞ � FðxÞ�n�1dx

Example 27 Let X1; X2; . . .; Xn are [ ð0; 1Þ
(i) Distribution of rth order statistic.

frðxÞ ¼ xr�1ð1� xÞn�r

βðr; n� rþ 1Þ ; 0\x\1

(ii) Joint distribution of rth and sth order statistics.

frsðx; yÞ ¼ crsxr�1ðy� xÞs�r�1ð1� yÞn�s ; 0� x� y� 1
0 ; otherwise

�
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(iii) Distribution of Wrs.

fwrsðwÞ ¼
ws�r�1ð1� wÞn�sþ r

βðs� r; n� sþ rþ 1Þ ; 0�w\1

(iv) Distribution of range (s = n, r = 1 in (iii)).

f ðwÞ ¼ wn�2ð1� wÞ
βðn� 1; 2Þ ; 0\w\1
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Chapter 1
Sufficiency and Completeness

1.1 Introduction

Suppose that a random variable (rv) X is known to have a Gamma distribution
G(p,σ) but we do not know one of the parameters, say, σ. Suppose further that a
sample X1, X2, . . . , Xn is taken on X . The problem of point estimation is to pick a
(one dimensional) Statistic T (X1, X2, . . . , Xn) that best estimates the parameter σ.
The numerical value of T when the realization is x1, x2, . . . , xn , is known as estimate
of σ. From the Wikipedia, we quote the difference between the estimator and the
estimate. In statistics, an estimator is a rule for calculating an estimate of a given
quantity based on observed data. Hence rule is an estimator and result is the estimate.
Here, we will use the same word “estimate” for both the function of T and its
numerical value. If both p and σ are unknown, we find a joint Statistic T = (W1,W2)

as an estimate of (p,σ).
Let X be a random variable with a distribution function (df) F which depends on

a set of parameters. Suppose further that the functional form of F is known except
perhaps for a finite number of these parameters. Let θ be the vector of (unknown)
parameters associated with F .

Definition 1.1.1 The set of all admissible values of the parameters of a distribution
function F is called the parameter space.

Let F(x, θ) = df of X if θ is the vector of parameter associated with the df
of X . Denote the parameter set as �. Then θ ∈ �. Hence the set {F(x, θ) :
θ ∈ �, x ∈ �} is called the family of df of X.

Example 1.1.1 Let the rv X have Poisson distribution with parameter λ denoted as
P(λ) where λ is unknown. Then � = {λ : λ > 0} and {P(λ) : λ > 0} is the family
of probability mass function’s (pmf) of X.

Example 1.1.2 Let the rv X have a binomial distribution with parameters n and p.
Then it is denoted as X ∼ B(n, p). Note that only p is unknown.

© Springer Science+Business Media Singapore 2016
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Hence, � = {p : 0 < p < 1} and {B(n, p), 0 < p < 1} is the family of pmf’s
of X.

Example 1.1.3 Let the rv X have a normal distribution with mean μ and variance
σ2. It is denoted as X ∼ N (μ, σ2). Assume that μ and σ are unknown. Then
� = {(μ,σ2) : −∞ < μ < ∞,σ > 0}.
If μ = μ0 and σ is unknown,

� = {(μ0,σ
2)} : σ > 0}

If σ = σ0 and μ is unknown

� = {(μ,σ2
0) : −∞ < μ < ∞}

Definition 1.1.2 Let X1, X2, . . . , Xn be iid rvs from F(x, θ), where θ = (θ1, θ2,
. . . , θn) is the vector of unknown parameters. Also θ ∈ � ⊆ �n , where �n is the
set of real numbers. A Statistic T (X1, X2, . . . Xn) is said to be a point estimate of θ
if T maps �n into �, i.e.,

T : �n → �.

Example 1.1.4 Let X1, X2, . . . Xn be a sample from N (θ, 1), where θ is an unknown
parameter. Then we get several estimators for θ. Let T be

(1) T = X̄ , where X̄ = n−1 ∑n
i=1 Xi an estimator for θ.

(2) T = 1

n(n + 1)

∑n
i=1 i Xi is an estimate of θ.

(3) Any Xi is an estimate of θ.

It implies T = Xi (i = 1, 2, . . . , n).

Example 1.1.5 Let X1, X2, . . . Xn be a sample from B(1, p), where p is unknown.
Here also we get several estimators

1. T = X̄
n

2. T = 1

3

3. T = X1

n

4. T = X1 + X2 + X3

3n
are all estimates of p.

From these examples, it is clear that we need some criterion to choose among all
possible estimates.
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1.2 Sufficient Statistics

Why do we require sufficient statistics?
The answer is in the meaning of sufficiency. One of the important objectives in the

primary stage of statistical analysis is to process the observed data and transform it
to a form most suitable for decision-making. The primary data processing generally
reduces the dimensionality of the original sets of variables. It is desired, that no infor-
mation relevant to the decision process will be lost in this primary data reduction.
As shown later in the chapter, not all families of distribution function allow such a
reduction without losing information. On the other hand, there are families of df for
which all set of sample values can give a real-valued statistics. The theory of suffi-
cient statistics enables us to characterize families of df and provides corresponding
transformation, which yields sufficient statistics.

A sufficient statistic, for a parameter θ is a statistic that, in a certain sense, captures
all the information about θ contained in the sample. Any additional information
in the sample, besides the value of sufficient statistics, does not contain any more
information about θ. These considerations lead to the data reduction technique known
as the sufficient principle.

We start with a heuristic definition of a sufficient statistic. We say T is a sufficient
statistic if the statistician who knows the value of T can do just a good job of
estimating the unknown parameter θ as the statistician who knows the entire random
sample.

Definition 1.2.1 Let X = (X1, X2, . . . , Xn) be a sample from {F(x, θ) : θ ∈ �}.
A statistic T = T (X) is sufficient for θ if and only if the conditional distribution of
the sample X , given T (X) = t does not depend on θ.

To motivate the mathematical definition, we consider the following experiment.
Let T (X) be a sufficient statistics. There are two statisticians; we will call them
A and B. Statistician A knows the entire random sample X1, X2, . . . , Xn , but Sta-
tistician B only knows the value of T , call it t . Since conditional distribution of
X1, X2, . . . , Xn given T does not depend on θ, statistician B knows this conditional
distribution. So he can use computer to generate a random sample X ′

1, X
′
2, . . . , X

′
n ,

which has this conditional distribution. But then his random sample has the same
distribution as a random sample drawn from the population (with its unknown value
of θ). So statistician B can use his random sample X ′

1, X
′
2, . . . , X

′
n to compute what-

ever statistician A computes using his random sample X1, X2, . . . , Xn , and he will
(on average) do as well as statistician A.

Definition 1.2.2 Let X = (X1, X2, . . . , Xn) be a sample from {F(x, θ) : θ ∈ �}.
A statistic T = T (X) is sufficient for θ if and only if the conditional distribution of
Xi (i = 1, 2, . . . , n), given the value T (X) = t does not depend on θ.

Example 1.2.1 (normal population, unknown mean and known variance) Let the rvs
Xi , i = 1, 2, . . . , n have normal distribution with mean μ and variance σ2. Now σ2

is known, say σ2
0.
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Now we say that T = ∑
Xi is sufficient for μ.

f (x1, x2, . . . xn,μ) = 1

σ0

√
2π

exp

[

− 1

2σ2
0

∑
(xi − μ)2

]

. (1.2.1)

Distribution of T is N (nμ, nσ2
0),

f (t) = 1

σ0

√
2πn

exp

[

− 1

2nσ2
0

(t − nμ)2
]

(1.2.2)

Using Definition 1.2.1,

f (x1, x2, . . . xn|T = t) = f (x1, x2, . . . xn, T = t)

f (t)
(1.2.3)

Note that {X = x} is a subset of {T (X) = t}

= f (x1, x2, . . . xn)

f (t)
(1.2.4)

=
( 1

σ0
√
2π

)
n
exp

[
− 1

2σ2
0

∑n
i=1(xi − μ)2

]

1
σ0

√
2πn

exp
[
− 1

2nσ2
0
(t − nμ)2

] (1.2.5)

Consider

= exp

[

− 1

2σ2
0

(
n∑

i=1

x2i − 2μ
n∑

i=1

xi + nμ2

)]

= exp

[

− 1

2σ2
0

n∑

i=1

x2i + 2μt

2σ2
0

− nμ2

2σ2
0

]

Next

exp

[

− 1

2nσ2
0

(t − nμ)2
]

= exp

[

− t2

2nσ2
0

+ 2nμt

2nσ2
0

− n2μ2

2nσ2
0

]

Then

f (x | T = t) = c exp

[

− 1

2σ2
0

(
n∑

i=1

x2i − t2

n

)

+ μt

σ2
0

− μt

σ2
0

− nμ2

2σ2
0

+ nμ2

2σ2
0

]

,

where c is a constant, x = (x1, x2, . . . , xn)
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f (x | T = t) = c exp

[

− 1

2σ2
0

(
n∑

i=1

x2i − t2

n2

)]

(1.2.6)

We can see that (1.2.6) does not involve μ.
Therefore, f (x | T = t) does not depend on μ. Using Definition 1.2.1, we can

claim that T is sufficient for μ.

Example 1.2.2 Let the random variables X1 and X2 have Poisson distribution with
parameter λ. Find sufficient statistic for λ.

f (X1 = x1, X2 = x2, | λ) = e−λλx1

x1!
e−λλx2

x2! (1.2.7)

Let T = X1 + X2 and T has P(2λ).

f (X1 = x1, X2 = x2 | T = t) = e−λλx1

x1!
e−λλx2

x2!
t !

e−2λ(2λ)t

= t !
x1!x2!

1

2t
; xi ≤ t (i = 1, 2) (1.2.8)

Therefore, f (x | T = t) does not depend on λ.
Using Definition 1.2.1, we can claim that T is sufficient for λ.

Example 1.2.3 Consider the Example 1.2.1 with σ0 = 1. In this example, we can
say that (X | T = t) is multivariate normal with mean vector θ1n and covariance
matrix In where 1n = (1, 1, . . . , 1) and In is an identity matrix of order n.

Consider the transformation Y = HX , where H is an orthogonal matrix such that
Yn = √

nx̄ ,

Yk = kxk+1 − (x1 + x2 + · · · + xk)√
k(k + 1)

, k = 1, 2, . . . , n − 1 (1.2.9)

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− 1√
2

1√
2

0 0 . . 0 0

− 1√
6

− 1√
6

2√
6
0 . . 0 0

. . . . . . . .

. . . . . . . .

− 1√
n(n−1)

− 1√
n(n−1)

. . . . n − 1√
n(n−1)

0
1√
n

1√
n

. . . . 1√
n

1√
n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (1.2.10)

The transformation H : X → Y is known in a particular form as the Helmert
transformation.
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E(Y ) = HE(X) = Hθ1n (1.2.11)

V (Y ) = H ′HV (X) = In (1.2.12)

H1n =

⎛

⎜
⎜
⎜
⎜
⎝

0
0
.

.√
n

⎞

⎟
⎟
⎟
⎟
⎠

,

Hence Y1,Y2, . . . Yn−1 are iid rvs having N (0, 1) distribution independent of Yn .
Hence, the conditional distribution of Y1,Y2, . . . ,Yn−1 given Yn = √

nx̄ is
N (0, In−1). Using Definition 1.2.1, we can claim that Yn is sufficient for μ.

Example 1.2.4 Consider the Example 1.2.2 with T = X1 + 2X2.

P(X1 = 1, X2 = 1|T = 3) = P(X1 = 1, X2 = 1)

P(X1 = 1, X2 = 1) + P(X1 = 3, X2 = 0)

= (e−λλ)(e−λλ)

e−2λλ2 + e−λ(λ)3

3! e−λ

= e−2λλ2

e−2λ[λ2 + λ3

6 ] = 1

1 + λ
6

(1.2.13)

Equation (1.2.13) depends on λ. Hence we cannot say that T is sufficient for λ.
Note that the distribution of X1 + 2X2 is not P(3λ).

Example 1.2.5 Let X1, X2, . . . Xm be a random sample from B(n, p). Then the dis-
tribution of T = ∑m

i=1 Xi has B(nm, p). Hence we will find the distribution of

1. f (x1|T )

2. f (x1, x2|T )

3. f (x1, x2, . . . , xr |T )(r < m)

(i) f (X1 = x1|T = t) = f (X1 = x1, T = t − x1)

P(T = t)

f (X1 = x1|T = t) =
( n
x1

)
px1qn−x1

(n(m−1)
t−x1

)
pt−x1qn(m−1)−t+x1

(nm
t

)
ptqnm−t

(1.2.14)

=
( n
x1

)(n(m−1)
t−x1

)

(nm
t

) ; x1 = 0, 1, . . . , t (1.2.15)
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(ii) As in (i), we can write f (X1, X2|T = t)

f (x1, x2|t) =
( n
x1

)( n
x2

)( n(m−2)
t−x1−x2

)

(nm
t

) ; x1 + x2 ≤ t (1.2.16)

(iii) f (x1, x2, . . . , xr |T = t) =
∏r

i=1

(n
xi

)( n(m−r)
t−∑r

i=1 xi

)

(nm
t

) ;
r∑

i=1

xi ≤ t (1.2.17)

We can see that (1.2.15), (1.2.16) and (1.2.17) are free from the parameter p. Hence
by Definition 1.2.2 we can conclude that, T is sufficient for p.

Example 1.2.6 Let X1, X2, . . . , Xn be iid rvs from an exponential distribution with
mean θ. Then the distribution of T = ∑n

i=1 xi is gamma with mean nθ, where n is a
shape parameter. The distribution of T is gamma and denoted as G(n, 1

θ
). Now we

will find the distribution of

1. f (X1|T )

2. f (X1, X2|T )

3. f (X1, X2, . . . Xn|T ).

(i) Let

f (xi ) = 1

θ
e− xi

θ ; xi > 0, θ > 0, i = 1, 2, . . . , n

f (t) = e
−t
θ tn−1

θn�(n)
; t > 0, θ > 0

f (x1|t) = f (x1) f (t2)

f (t)
;where T2 =

n∑

i=2

xi

= (n − 1)(t − x1)n−2

tn−1
; 0 < x1 < t (1.2.18)

(ii) f (x1, x2|t) = (n − 1)(n − 2)(t − x1 − x2)n−3

tn−1
; 0 < x1 + x2 < t (1.2.19)

(iii) f (x1, x2, . . . xn|t) = �(n)

tn−1
;

n∑

i=1

xi < t (1.2.20)

Using Definitions 1.2.1 and 1.2.2, we can conclude that T is sufficient.

Example 1.2.7 Let X1, X2, . . . , Xn be iid random sample from U (0, θ). Then we
will find the distribution of
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1. f (xi |T )

2. f (xi , x j |T = t) i �= j
3. f (x1, x2, . . . xn|T = t), where T = Max(X1, X2, . . . Xn)

(i) f (xi |t) = 1

t
; 0 < xi < t, i = 1, 2, ..., n (1.2.21)

(ii) f (xi , x j |t) = 1

t2
; 0 < xi < t, 0 < x j < t, i �= j (1.2.22)

(iii) f (x1, x2, ...xn|t) = 1

ntn−1
; 0 < xi < t, i = 1, 2, ..., n (1.2.23)

In all the above examples, T is sufficient for θ.

Lemma 1.2.1 Let X1, X2, . . . Xn be iid discrete rvs with df F(x). Suppose X(m) =
Max(X1, X2, . . . Xn)

h(t) = P[X(m) = t] = H(t) − H(t − 1). (1.2.24)

where H(t) = [F(t)]m
Proof

H(t) = P[X(m) ≤ t]
= P[All X ′

i s ≤ t]

=
m∏

i=1

P[X ′
i s ≤ t] = [F(t)]m

h(t) = P[X(m) = t] = [F(t)]m − [F(t − 1)]m
= [H(t)] − [H(t − 1)]

Lemma 1.2.2

P[Xi = r |X(m)] =
{
P(Xi = r) h1(t)h(t) r = 0, 1, 2, . . . t − 1,

P(Xi = r) h2(t)h(t) r = t,
(1.2.25)

where
h1(t) = F(t)m−1 − F(t − 1)m−1

h2(t) = F(t)m−1
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Proof Let
Tmax = Max(X1, X2, . . . , Xi−1, Xi+1, . . . Xm)

P[Xi = r/X(m)] =
{

P(Xi = r, Tmax = t)
P(X(m) = t) r = 0, 1, 2, . . . t − 1,

P(Xi = r,X j ≤ t)
P(X(m) = t) r = t, i �= j = 1, 2, . . . , n

(1.2.26)

=
{
P(Xi = r) h1(t)h(t) r = 0, 1, 2, . . . t − 1

P(Xi = r) h2(t)h(t) r = t.
(1.2.27)

One can see further details from Dixit and Kelkar (2011).

Note 1: Let X1, X2, . . . , Xm be iid Binomial or Poisson rvs with df F(x) and G(x)
respectively. Then P[Xi = r |X(m)] depends on parameters of Binomial or Poisson
distribution. Hence X(m) is not sufficient for the parameters of Binomial or Poisson
distribution.

Note 2: In Example 1.2.7, we have shown that X(n) = Max(X1, X2, . . . , Xn) is
sufficient for θ. Moreover, we can show that order statistics are sufficient statistics but
we should not expect more with so little information about the density f . However,
even if we do specify more about the density we still may not be able to get much of
sufficiency reduction. For example, suppose that f is a Cauchy pdf

f (x | θ) = 1

π[1 + (x − θ)2] ; x ∈ �, θ ∈ �.

the logistic pdf

f (x | θ) = exp[−(x − θ]
[1 + exp(x − θ)]2 ; x ∈ �, θ ∈ �.

For details see Lehman and Casella (1998) or Casella and Berger (2002).

Note 3: Definitions 1.2.1 and 1.2.2 are not very useful because we have to guess
statistic T and check to see whether T is sufficient. Moreover, the procedure for
checking that T is sufficient is quite time consuming. Hence, using the next theo-
rem due to Halmos and Savage (1949), we can find a sufficient statistics by simple
inspection of the pdf or pmf of the sample.

Theorem 1.2.1 (Factorization Theorem) Let X1, X2, . . . , Xn be a random sample
with joint density f (x1, x2, . . . , xn|θ). A statistics T (X) is sufficient if and only if the
joint density can be factored as follows:

f (x1, x2, . . . , xn | θ) = h(x1, x2, . . . , xn)g[T (X) | θ] (1.2.28)

We give proof only for the discrete distributions.
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Proof Assume T (X) is sufficient. Using definition, we can use

h(x1, x2, . . . , xn) = f (x1, x2, . . . , xn | T = t) (1.2.29)

because h(x) does not depend on θ.

f (x1, x2, . . . , xn | θ) = f (x1, x2, . . . , xn and T = t)

= f (x1, x2, . . . , xn | T = t)g(t | θ)

= h(x1, x2, . . . , xn)g(t | θ)

Now assume that factorization (1.2.28) holds.

f [T = t0 | θ] =
∑

T=t0

f (X = x | θ)

=
∑

T=t0

g(t |θ)h(x1, x2, . . . , xn)

= g(t0|θ)
∑

T=t0

h(x1, x2, . . . , xn)

Suppose that f [T = t0|θ] > 0 for some θ > 0,

f (X = x |T = t0) = f [X = x, T = t0]
f (T = t0)

= f (X = x)

f (T = t0)

= g(t0|θ)h(x1, x2, . . . , xn)

g(t0|θ)∑T=t0
h(x1, x2, . . . , xn)

= h(x1, x2, . . . , xn)
∑

T=t0
h(x1, x2, . . . , xn)

= h(x)
∑

T=t0
h(x)

Since the ratio does not depend on θ. By Definition 1.2.1, T (X) is sufficient for θ.

Example 1.2.8 For normal model described in Example 1.2.1 consider

∑
(xi − μ)2 =

∑
(xi − x̄ + x̄ − μ)2

=
∑

(xi − x̄)2 + n(x̄ − μ)2
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f (x |μ) = (2πσ2
0)

−n
2 exp

[ −1

2σ2
0

{∑
(xi − x̄)2 + n(x̄ − μ)2

}]

f (x |μ) = (2πσ2
0)

−n
2 exp

[−∑
(xi − x̄)2

2σ2
0

]

exp

[

−n(x̄ − μ)2

2σ2
0

]

(1.2.30)

Using factorization theorem,

h(x) = (2πσ2
0)

−n
2 exp

[−∑
(xi − x̄)2

2σ2
0

]

(σ0 is given)

which does not depend on the unknown parameter μ. The factor contained in (1.2.30)
is a function of T and μ. In this case T = x̄ . Therefore,

g(t |μ) = exp

[−n(x̄ − μ)2

2σ2
0

]

.

Thus, By factorization theorem, T (X) = X̄ is sufficient for μ.

Example 1.2.9 Consider a Binomial distribution described in Example 1.2.5

f (X |p) =
m∏

i=1

(
n

xi

)

p
∑m

i=1 xi qmn−∑m
i=1 xi ; q = 1 − p

= ptqmn−t
m∏

i=1

(
n

xi

)

= g(t |p)h(x)

where T = ∑m
i=1 xi .

Using factorization theorem, we can say that T is sufficient for p.

Example 1.2.10 Let X1, X2, . . . , Xn be independent identically distributed as dis-
crete uniform random variables.

f [Xi = xi ] =
{

1
N ; xi = 1, 2, . . . N , i = 1, 2, . . . , n
0 ; otherwise

= 1

Nn
; xi = 1, 2, . . . , N

= 1

Nn

n∏

i=1

IA(xi )IB(xi ),
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Let X(1) = min Xi and X(n) = max Xi where A = {1 ≤ X(1) ≤ N } and B =
{X(n) ≤ N ≤ ∞} where

IA(xi ) =
{
1 ; xi ∈ A
0 ; otherwise

IB(xi ) =
{
1 ; xi ∈ B
0 ; otherwise

f (X |N ) =
n∏

i=1

IA(xi )N
−n

n∏

i=1

IB(xi ),

= h(x)g(t |N )

where T = X(n) = max Xi . Hence X(n) is sufficient for N .

Example 1.2.11 Let X1, X2, . . . , Xn be a sample from the following pdf

f (x |θ) =
{

1
θ

; − θ
2 < x < θ

2
0 ; otherwise

The joint pdf of X1, X2, . . . , Xn is given by

f (x |θ) = θ−n IA(x)

where

A =
{

(x) : −θ

2
≤ X(1) ≤ X(n) ≤ θ

2

}

= h(x)g(t |θ)

where h(x) = 1 and g(t |θ) = θ−nTA(x).
By factorization theorem (X(1), X(n)) are sufficient for θ.

Example 1.2.12 Consider the Example 1.2.1, where σ is unknown.

f (X |μ,σ) = (2πσ2)
− n

2 exp

[

− 1

2σ2

∑
(xi − μ)2

]

= (2πσ2)
− n

2 exp

[

− 1

2σ2

(∑
xi

2 − 2μ
∑

xi + nμ2
)]

= (2πσ2)
− n

2 exp

[

−
∑

xi 2

2σ2
+ μ

∑
xi

σ2
− nμ2

2σ2

]

In this case h(x) = 1 and T (x) = (∑
xi ,

∑
xi 2

)
is jointly sufficient for (μ,σ2).
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Note 1: An equivalent sufficient statistic that is frequently used is T (x) = (X̄ , S2),
where S2 = ∑(

Xi − X̄
)2
.

Note 2: X̄ is not sufficient for μ if σ2 is unknown and S2 is not sufficient for σ2 if μ
is unknown.

Note 3: If, however, σ2 is known, X̄ is sufficient for μ. If μ = μ0 is known then∑
(xi − μ0)

2 is sufficient for σ2.

Note 4: Theorem 1.2.1 holds if θ is a vector of parameters and T is a random vector,
and we say that T is jointly sufficient for θ. Further even if θ is a scalar, T , may be
a vector, still sufficiency holds (see Example 1.2.11).

Remark: If T is sufficient for θ, any one to one function of T is also sufficient.
In Example 1.2.1, X̄ is sufficient for μ but X̄2 is not sufficient for μ2. Further X̄ is
sufficient for μ2 or any other function of μ. Theorem 1.2.1 can not be used to show
that a given statistic T is not sufficient. Mostly, we can use Definition 1.2.1 or 1.2.2.

Stigler (1972) had given some theorems to show that the given statistics is not
sufficient.

1.3 Minimal Sufficiency

We will start with an example so that our idea on Minimal sufficiency will be clear.

Example 1.3.1 (Zacks 1971) Consider the case of n independent Bernoulli experi-
ments. Let

Xi =
{
1 if ith experiment is successful
0 ; otherwise

The sample space� is a discrete one and contains the 2n points (X1, X2, . . . , Xn).
The joint density of (X1, X2, . . . , Xn) is

f (X1, X2, . . . , Xn; p) =
{
ptn (1 − p)n−tn Xi = 0, 1, tn = ∑n

i=1 Xi , 0 < p < 1
0 ; otherwise

(i) According to factorization theorem, the sample point S1 = (X1, X2, . . . , Xn) is
a sufficient statistic for p.
(ii) According to same theorem S2 = (X1 + X2, X3, . . . , Xn), S3 = (X1 + X2 +
X3, X4, . . . , Xn), . . . Sn−1 = (X1 + X2 +· · ·+ Xn−1, Xn) and Sn = ∑n

i=1 Xi are all
sufficient for p.

TheStatistic S1 partitions� into 2n disjoint exhaustive sets, each ofwhich contains
one of the original points (X1, X2, . . . Xn).

The Statistic S2 partitions � into 3 × 2n−2 sets; The number 3 we can get
from X1 + X2 = 0, X1 + X2 = 1, X1 + X2 = 2, i.e., we get three points
of the form {(0, 0, x3, x4, . . . , xn)}, {(0, 1, x3, x4, . . . xn), (1, 0, x3, x4, . . . xn)} and
{(1, 1, x3, . . . xn)}.
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We remark that S2 is a function of S1 say T (S1) which adds the first components
of S1 and leaves the other components unchanged. We further notice that each set of
the partitions induced by S1 is included in one of the sets of the partitions induced
by S2 but not vice versa.

In a similar manner S3 = T (S2) partitions � into 4 × 2n−3 sets. The number 4
we can get from X1 + X2 + X3 = 0, X1 + X2 + X3 = 1, X1 + X2 + X3 = 2,
X1 + X2 + X3 = 3.

The partitions associated with Si is (i + 1)2n−i and Sj is ( j + 1)2n− j for (i < j).
For every n ≥ 2, we have ( j + 1)2n− j < (i + 1)2n−i . Thus we have the following:

Statistics Number of sets
S1 2n

S2 3 × 2n−2

S3 4 × 2n−3

· ·
· ·
Si (i + 1) × 2n−i

S j ( j + 1) × 2n− j

· ·
Sn n + 1

We can say that Sn contains minimum number of sets. Sn is a function of Sn−1

and Sn−1 is a function of Sn−2, etc. Therefore, the statistics Sn is considered minimal
sufficient statistic in the sense that the number of sets it forms is minimal and it is a
function of any other sufficient statistics.

Definition 1.3.1 T (X) is a minimal sufficient statistic for θ ∈ � if

1. T (X) is a sufficient statistic
2. T (X) is a function of any other sufficient statistic.

Sampson and Spencer (1976) had extensively discussed the technique that in a par-
ticular statistical model a given statistic is not sufficient or that a given sufficient
statistic is not minimal.

Lemma 1.3.1 Let K (λ) and Q(λ) be the functions (possibly vector valued) defined
on the same domain D. A necessary and sufficient condition for Q to be a function
of K , i.e., for any λ1,λ2 ∈ D satisfying K (λ1) = K (λ2), it follows that Q(λ1) =
Q(λ2).

Definition 1.3.2 The points x, y ∈ � are said to be likelihood equivalent if there
exists h(x, y) > 0 such that for all θ ∈ �, f (x |θ) = h(x, y) f (y|θ).
Lemma 1.3.2 In order that x, y ∈ � be likelihood equivalent, it is necessary and
sufficient that for all θ1, θ2 ∈ �, f (x |θ1) f (y|θ2) = f (x |θ2) f (y|θ1)
Lemma 1.3.3 Let T (X) be any sufficient statistic for θ. If x, y ∈ � are any points
such that T (x) = T (y), then x and y are likelihood equivalent.
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Theorem 1.3.1 Suppose T (X) is sufficient statistic for θ. T (X) is minimal sufficient
if for any x, y that are likelihood equivalent, it follows that T (x) = T (y).

Proof Let S(X) be a sufficient statistic for θ. Suppose that x, y ∈ � satisfying the
condition S(x) = S(y). Now by Lemma 1.3.3, it follows that X and Y are likelihood
equivalent. Given that T (x) = T (y), using Lemma 1.3.1, we get T (X) is a function
of S(X). By Definition 1.3.1, we say that T (X) is a minimal sufficient.

Theorem 1.3.2 Let T (X) be any statistic, if there exists some θ1, θ2 ∈ � and x, y ∈
�, such that

1. T (x) = T (y)
2. f (x |θ1) f (y|θ2) �= f (x |θ2) f (y|θ1)
Then T (X) is not a sufficient statistic.

Proof Let T (X) be a sufficient for θ.
For any x, y ∈ �, we have from 1 T (x) = T (y). From Lemma 1.3.3, x and y are
likelihood equivalent. From Lemma 1.3.2,

f (x |θ1) f (y|θ2) = f (x |θ2) f (y|θ1),

which is a contradiction to the condition 2. Therefore, T (X) is not a sufficient statistic.

Theorem 1.3.3 Let S(X) be a statistic. Suppose T (X) is a minimal sufficient sta-
tistics. If there exists x, y ∈ � such that S(x) = S(y) and T (x) �= T (y) then S(X)

is not a sufficient statistic.

Proof Let, if possible, S(X) is a sufficient statistic. For any x, y ∈ �, we have
S(x) = S(y).NowT (X) is aminimal sufficient statistic,wehave, byDefinition1.3.1,
T (x) = T (y), which is a contradiction.

Therefore, S(X) is not a sufficient statistic.

Theorem 1.3.4 Let T (X) and S(X) be sufficient statistics. If there exists x, y ∈ �,
such that

1. T (x) �= T (y)
2. S(x) = S(y)

then S(X) is not a minimal sufficient statistic.

Proof Let, if possible, S(X) is a minimal sufficient statistics. For x, y ∈ �, we
have S(x) = S(y). Since S(X) is a minimal sufficient statistic, therefore by Defini-
tion 1.3.1, it is a function of T (X), T (X) is a sufficient statistic.

By Lemma 1.3.1 T (x) = T (y), which is a contradiction to 1. Therefore, S(X) is
not a minimal sufficient statistic.

Example 1.3.2 Consider the normal model described in (1.2.1), where μ and σ2 are
both unknown.
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Suppose X is likelihood equivalent to Y , i.e., there exists h(x, y) > 0, such that
∀θ,

f (x |μ,σ2)

f (y|μ,σ2)
= h(x, y)

f (x |μ,σ2)

f (y|μ,σ2)
= (2πσ2)

−n
2 exp

[− 1
2σ2 {n(x̄ − μ)2 + (n − 1)S2x }

]

(2πσ2)
−n
2 exp

[− 1
2σ2 {n(ȳ − μ)2 + (n − 1)S2y}

]

This ratio will be constant if and only if x̄ = ȳ and S2x = S2y .
Hence, by Theorem 1.3.1, (x̄, S2x ) is minimal sufficient for μ and σ2.

Example 1.3.3 Suppose (X1, X2, . . . , Xn) are iid uniform rvs on the interval
(θ, θ + 1), − ∞ < θ < ∞.
Then the joint pdf of X is

f (x |θ) =
{
1 ; θ < xi < θ + 1, i = 1, 2, . . . , n
0 ; otherwise

This is same as

f (x |θ) =
{
1 ; x(n) − 1 < xi < x(1)

0 ; otherwise

f (x |θ)
f (x |θ) = I (θ − x(n) + 1)I (x(1) − θ)

I (θ − y(n) + 1)I (y(1) − θ)

This ratio will be constant if and only if x(n) = y(n) and x(1) = y(1).
Hence, by Theorem 1.3.1, T (X) = (x(1), x(n)) is a minimal sufficient statistic.

Example 1.3.4 Let X1, X2, X3, X4 are iid rvs having the following pmf:

f (X1 = x1, X2 = x2, X3 = x3) = n! px11 px22 px33 p(n−x1−x2−x3)
4

x1!x2!x3!(n − x1 − x2 − x3)!

where p4 = 1 − p1 − p2 − p3,
∑3

i=1 Xi � n

Consider

f (X1 = x1, X2 = x2, X3 = x3)

f (Y1 = y1,Y2 = y2,Y3 = y3)
=

n! px11 px22 px33 p(n−x1−x2−x3)
4

x1!x2!x3!(n − x1 − x2 − x3)!
n! pn11 pn22 pn33 p(n−y1−y2−y3)

4

y1!y2!y3!(n − y1 − y2 − y3)!
This ratio is independent of pi (i = 1, 2, 3, 4) if X1 = Y1, X2 = Y2 and X3 = Y3.

By Theorem 1.3.1 (X1, X2, X3) is minimal sufficient.
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Example 1.3.5 Consider the normal model described in Example 1.2.1, where μ and
σ2 are both unknown and σ2 = μ.

As before,

f (x | μ,μ)

f (y | μ,μ)
=

(2πμ)
−n
2 exp

[
−

∑
x2i

2μ2 + ∑
xi − nμ

]

(2πμ)
−n
2 exp

[
−

∑
y2i

2μ2 + ∑
yi − nμ

]

This ratio will be independent of μ if and only if
∑

x2i = ∑
y2i . Hence, By Theo-

rem 1.3.1,
∑

x2i is minimal sufficient statistic for μ.
Remark 1: In a normal model described in Example 1.2.1, where σ2 = μ2,(∑
xi ,

∑
x2i

)
is minimal sufficient in N (μ,μ2).

Example 1.3.6 Let X1, X2, . . . Xn be iid rvs with the following pmf having the den-
sity function:

f (X = x) = (1 − θ)θ(x−μ) ; x = μ,μ + 1 . . . , 0 < θ < 1 (1.3.1)

To find the minimal sufficient statistic if μ and θ are unknown.

P(x(1), x(2), . . . , x(n)

P(y(1), y(2), . . . , y(n)

= θ[∑n
i=1 x(i)−nx(1)+nx(1)−nμ]

θ[∑n
i=1 y(i)−ny(1)+ny(1)−nμ]

= θ[∑n
i=1(x(i)−x(1))+n(x(1)−μ)]

θ[∑n
i=1(y(i)−y(1))+n(y(1)−μ)]

The ratio is independent of θ and μ if∑n
i=1(x(i) − x(1)) = ∑n

i=1(y(i) − y(1)) and x(1) = y(1)

Hence
∑n

i=2(x(i) − X(1)) and x(1) are jointly sufficient for (θ,μ).

Example 1.3.7 Let Yi (i = 1, 2, . . . , n) are iid with N (α + βXi ,σ
2), where −∞ <

α,β < ∞, σ > 0 are unknown parameters and (X1, X2, . . . , Xn) are known.

f (y|α,β,σ2)

f (z|α,β,σ2)
=

exp
[
− 1

2σ2

{∑
y2i − 2α

∑
yi − 2β

∑
xi yi + nα2 + 2αβ

∑
xi + β2 ∑

x2i
}]

exp
[
− 1

2σ2 {∑ z2i − 2α
∑

zi − 2β
∑

xi zi + nα2 + 2αβ
∑

xi + β2
∑

x2i }
]

This ratio is independent if and only if
∑

y2i = ∑
z2i ,

∑
yi = ∑

zi and
∑

xi yi =∑
xi zi .
Therefore,

(∑
xi ,

∑
y2i ,

∑
xi yi

)
is minimal sufficient.

Example 1.3.8 (Sampson and Spencer (1976)): Let (X1, X2, . . . , Xn) be iid rvs
according to f (x |θ), where

f (x |θ) =
⎧
⎨

⎩

x
θ2

; 0 < x ≤ θ
2θ−x

θ2
; θ ≤ x ≤ 2θ

0 ; otherwise
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Here we will show that for n ≥ 5, median Xi and max Xi are not jointly sufficient.

Let θ1 = 9
8 and θ2 = 1

Consider

X =
(
1

4
,
1

4
,
5

4
,
3

2
, 1, 1, . . . , 1

)

Y =
(
1

2
,
3

2
, 1, 1, . . . , 1

)

max X = 3
2 , Median X = 1, max Y = 3

2 and Median Y = 1

f

(

x |9
8

)

=

⎧
⎪⎨

⎪⎩

64
81 x ; 0 < x < 9

8
16
81 (9 − 4x) ; 9

8 ≤ x < 9
4

0 ; otherwise

f (x |1) =
⎧
⎨

⎩

x ; 0 ≤ x ≤ 1
2 − x ; 1 ≤ x ≤ 2
0 ; otherwise

f

(

x | 9
8

)

=
(
64

81
× 1

4

)(
64

81
× 1

4

)(
16

81
× 4

)(
16

81
× 3

)(
64

81

)n−4

=
(

(64)n−1

81n
× 3

)

f

(

y|9
8

)

=
(

(64)n−1

81n
× 24

)

f (x |1) =
(

3

128

)

f (y|1) =
(
1

4

)

Therefore,

f

(

x |9
8

)

f (y|1) =
(

(64)n−1

81n
× 3

4

)

and

f (x |1) f
(

y|9
8

)

=
(

(9)(64)n−1

81n

)
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f

(

x |9
8

)

f (y|1) �= f (x |1) f
(

y|9
8

)

By Theorem 1.3.4, Median Xi and MaxXi are not jointly sufficient.

Example 1.3.9 Let (X1, X2, . . . , Xn) be iid rvs with left truncated exponential dis-
tribution.

f (xi |α,β) =
{ 1

β
exp[−(x−α)

β
] ; xi ≥ α

0 ; otherwise

This model is used in systems reliability theory. Suppose we have n independent
and identical systems. Let the random variable X be represents the failure time of a
system. The data consist of order statistics X(1) ≤ · · · ≤ X(n), where the i th order
statistic X(i) represent the failure time of a system which is failed at i th time point,
(i = 1, 2, . . . , n).

f (x(1), x(2), . . . , x(n)) = n!
βn

exp

[

−
∑n

i=1(x(i) − α)

β

]

= n!
βn

exp

[

− 1

β

n∑

i=1

(x(i) − x(1) + x(1) − α)

]

= n!
βn

exp

[

− 1

β

n∑

i=1

(x(i) − x(1)) + n(x(1) − α)

β

]

Next,

f (y(1), y(2), . . . , y(n)|α,β)

f (x(1), x(2), . . . , x(n)|α,β)
=

exp
[
− 1

β

∑n
i=1(y(i) − y(1)) + n(y(1)−α)

β

]

exp
[
− 1

β

∑n
i=1(x(i) − x(1)) + n(x(1)−α)

β

]

This ratio will be independent of α and β if and only if
∑n

i=1(y(i) − y(1)) =∑n
i=1(x(i)−x(1)) and y(1) = x(1). This implies that [x(1),

∑n
i=1(x(i)−X(1)] is minimal

sufficient for (α,β).

Remark A minimal sufficient statistics is not unique. Any one-to-one function of
a minimal sufficient statistic is also a minimal sufficient statistic. For example, in

∪(θ, θ + 1), (X(1), X(n)), (X(n) − X(1), X(n) + X(1)),

(
X(n) − X(1)

2
,
X(n) + X(1)

2

)

,

etc., are all minimal sufficient statistics.
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1.4 Ancillary Statistics

Fisher had introduced the term ancillary statistics. Many statisticians had given the
definition of ancillary statistics, this include Basu (1959), Cox and Hinkley (1996)
etc.

Definition 1.4.1 A statistic T (X) whose distribution does not depend on the para-
meter θ, is called an ancillary statistic.

Here, we will consider some examples of ancillary statistics.

Example 1.4.1 Let the rvs X1 and X2 are distributed as N (θ, 1). Then the distribution
of W = X2 − X1 is N (0, 2), which does not depend on θ. Hence W is a ancillary
statistics.

Example 1.4.2 Let X1X2, . . . , Xn are iid rvs with ∪ (
θ − 1

2 , θ + 1
2

)
. Then

f (x |θ) =
n∏

i=1

I[θ− 1
2 ,θ+ 1

2 ]xi = I(θ− 1
2 ,∞)x(1) I(−∞,θ+ 1

2 )x(n) (1.4.1)

By Theorem 1.3.1, T = (T1, T2) = (
x(n), x(n) − x(1)

)
is minimal sufficient.

x(1) = T1 − T2
θ − 1

2 < T1 − T2 < T1 < θ + 1
2

θ − 1
2 < T1 − T2 and T1 < θ + 1

2
θ − 1

2 + T2 < T1 and T1 < θ + 1
2

⇒ θ − 1
2 + T2 < T1 < θ + 1

2

Now, the joint pdf of T1 and T2 is

f (t1, t2|θ) = n(n − 1)tn−2
2 I[0,1](t2)I[θ− 1

2 +t2,θ+ 1
2 ]t1

The marginal density of T2 is

f (t2|θ) = n(n − 1)tn−2
2 (1 − t2); 0 < t2 < 1 (1.4.2)

This does not depend on θ.
Hence T2 is ancillary. Further, we can say that the statistic T2 does not give any

information about θ.
But interestingly, conditional density of T1 given T2 is

f (t1|t2, θ) = 1

1 − t2
I[θ− 1

2 +t2,θ+ 1
2 ]t1, (1.4.3)

which depends on θ.
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Example 1.4.3 Suppose X1 and X2 are iid observations from the pdf

f (x |α) = αxα−1 exp[−xα], x > 0,α > 0

We will show that
log X1

log X2
is an ancillary statistic.

Let W1 = log X1 and W2 = log X2. Since X1 and X2 are iid rvs then W1 + W2

are also iid rvs. Suppose W = W1 + W2

Hence,

f (w|α) = α exp[αw − eαw], − ∞ < w < ∞.

Let Z = αW , then

f (z) = exp[z − ez], z > 0

Hence Z1 and Z2 are iid rvs with f (z|α = 1).
Then

log X1

log X2
= W1

W2
= z1/α

z2/α
= z1

z2

Since the distribution of z is independent of α, then the distribution z1
z2

does not
dependent on α.

Thus log X1

log X2
is an ancillary statistic.

Example 1.4.4 Consider the normal model in Example 1.2.1, where σ2 = 1.
Define T (X) = (n − 1)S2 = ∑n

i=1(Xi − X̄)2

The distribution of T (X) is χ2
n−1. Thus T (X) is independent of μ. Hence T (X)

is an ancillary statistic.

Note: In Example 1.2.1, μ = 0, the distribution of X̄ is N
(
0, σ2

n

)
.

Hence X̄ is not ancillary.

1.5 Completeness

Definition 1.5.1 Let { fθ(x) : θ ∈ �} be a family of pdf’s (or pmf’s). We say that
the family is complete if

Eg(x) = 0 ∀ θ ∈ � (1.5.1)

then P[g(x) = 0] = 1 ∀ θ ∈ �
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Definition 1.5.2 AStatistics T (X) is said to be complete if the family of distribution
of T is complete.

Example 1.5.1 Let Xi (i = 1, 2, . . . ,m) be iid rvs as B(n, p). Then the distribution
of T = ∑m

i=1 Xi is B(nm, p).

Now, we will show that T is complete. Let g(t) be a function of t .

Eg(t) =
mn∑

t=0

g(t)

(
mn

t

)

pt (1 − p)mn−t

Since Eg(t) = 0
Therefore,

mn∑

t=0

g(t)

(
mn

t

)(
p

1 − p

)t

= 0

Let r = p
1−p , then

mn∑

t=0

g(t)

(
mn

t

)

r t = 0

Hence, RHS of the above expression is a polynomial of degree mn in r .
Since LHS is zero then each term is zero. Therefore, g(t)

(mn
t

)
r t = 0.

But
(mn

t

)
r t �= 0. Therefore, g(t) = 0 with probability 1.

Example 1.5.2 Consider the rv X , where each Xi (i = 1, 2, . . . , n) has N (μ, 1).
Hence X̄ has N (μ, 1

n ). Now we will show that X̄ is complete.

Let Y = X̄ . Consider the function g(y). Since Eg(y) = 0. This implies

∞∫

−∞
g(y)(

n

2π
)
1
2 exp

[
−n

2
(y − μ)2

]
dy = 0

By removing nonzero constants and nμ = S

∞∫

−∞
h(y)e− ny2

2 eSydy = 0

This equation states that the Laplace transform of the function h(y)e− ny2

2 is zero
identically.



1.5 Completeness 23

But the function zero also has the transform which is zero identically. Hence
by uniqueness property of Laplace transform it follows that h(y)e− ny2

2 = 0. This
implies h(y) = 0 with probability 1 for all μ.

Example 1.5.3 Let X be the rv from the pmf

f (x |θ) =
(

θ

2

)|x |
(1 − θ)1−|x |; x = −1, 0, 1, 0 ≤ θ ≤ 1

EX = −θ

2
+ θ

2

But X = 0 is not with probability 1. Hence X is not complete. But |X | is complete
and its distribution is Bernoulli.

In Example 1.5.1, we have shown that Binomial family is complete. Bernoulli is
a particular case of Binomial. Hence | X | is a complete statistics.

Example 1.5.4 Let X1, X2, . . . , Xn be iid N (θ,αθ2), where α > 0, a known con-
stant and θ > 0. We can easily show that (X̄ , S2) is minimal sufficient statistic Using
the Theorem 1.3.1 for fixed α > 0.

In this example (n−1)S2 = ∑
(Xi − X̄)2. Therefore, (n − 1)S2

σ2 has χ2 with (n−1)

df and σ2 = αθ2. Hence E(S2) = αθ2, E[X̄2] = (n+α)θ2

n .

⇒ E[ S2
α

] = θ2 and E[ n X̄2

(n+α)
] = θ2

Consider T (X) = n X̄2

α+n − S2

α
then E[T (X)] = 0 ∀ θ. But T (X) is not identically

zero. Hence (X̄ , S2) is not complete.

Example 1.5.5 Stigler (1972) had given an interesting example of an incomplete
family. If we remove one probability distribution (say Pn) then the family ℘ − Pn is
not a complete, where ℘ is a family of discrete uniform probability distributions.

Consider a function

g(x) =
⎧
⎨

⎩

0 ; x = 1, 2, . . . , n − 1, n + 2, n + 3, . . .
a ; x = n
−a ; x = n + 1

where a is nonzero constant.
Consider the following case:
(i) N < n

E[g(X)] =
N∑

x=1

g(x)
1

N
= 0

because g(x) = 0 for x = 1, 2, . . . , n − 1
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(ii) N > n

E[g(X)] =
N∑

x=1

g(x)

N

= 1

N
[g(1) + g(2) + · · · + g(n − 1) + g(n) + g(n + 1) + g(n + 2) + · · · ]

= 1

N
[0 + a + (−a) + 0] = 0

(iii) N = n

E[g(X)] =
n∑

x=1

g(x)

N

= 1

N
[g(1) + g(2) + · · · + g(n)]

= 1

N
[0 + a] = a

N

Therefore,

E[g(X)] =
{
0 ; ∀ N �= n
a
N ; ∀ N = n

Therefore, we conclude that the family ℘ − Pn is not complete.

Example 1.5.6 Consider the family of distributions:

P = P[X = x |λ] = λxe−λ

x ! ; x = 0, 1, 2, . . . and λ = 1 or 2

If λ = 1

E[g(X)] = e−1g(0) + e−1
∞∑

x=1

g(x)

x !

Let g(0) = 0 and
∑∞

x=1
g(x)
x ! = 0 then E[g(x)] = 0 but g(x) �= 0 because g(1) = 1,

g(2) = −2, and g(0) = 0 if x > 2
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If λ = 2

E[g(X)] = e−2g(0) + e−2
∞∑

x=1

g(x)

x !

By the above argument E[g(X)] = 0 and g(x) �= 0 identically.
Hence, the Poisson family with λ restricted is not complete.

Example 1.5.7 Let X1, X2, . . . , Xn be iid rvs having the following uniform distrib-
utions

(i) f1(x |θ) =
{

1
θ

; 0 < x < θ
0 ; otherwise

(ii) f2(x |θ) =
{
1 ; θ < x < θ + 1
0 ; otherwise

(iii) f3(x |θ) =
{

1
θ

; θ < x < 2θ
0 ; otherwise

(iv) f4(x |θ) =
{

1
2θ ; θ < x < 3θ
0 ; otherwise

(v) f5(x |θ) =
{
1 ; θ − 1

2 < x < θ + 1
2

0 ; otherwise

(i) In this example, we have to show that X(n) is minimal sufficient. Let T = X(n).
Then the pdf of T is

h(t |θ) =
{

ntn−1

θn
; 0 < t < θ

0 ; otherwise

Let g(T ) be a function such that E[g(T )] = 0 ∀ θ. Since E[g(T )] is constant as a
function of θ, its derivative is zero.

E[g(T )] =
θ∫

0

g(t)
ntn−1

θn
dt = 0

⇒
θ∫

0

g(t)tn−1dt = 0 (1.5.2)
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⇒ d

dθ

θ∫

0

g(t)tn−1dt = 0

Using the following rule, if range is not independent of θ and f is zero at the extremes
of the range, i.e., f (a, θ) = 0 = f (b, θ) then

∂

∂θ

b∫

a

f dx =
b∫

a

∂ f

∂θ
dx − f (a, θ)

∂a

∂θ
+ f (b, θ)

∂b

∂θ

From (1.5.2),

= g(θ)θn−1 = 0

Therefore, g(θ) = 0 ∀ θ > 0.
Hence T is complete.
(ii) Using Theorem 1.3.1, we can show that (X(1), X(n)) is minimal sufficient.

The joint distribution of (X(1), X(n)) is given by

f (x, y|θ) =
{
n(n − 1)(y − x)n−2 ; θ < x < y < θ + 1
0 ; otherwise

Let T1 = X(n) − X(1) and T2 = X(1)+X(n)

2

⇒ X(1) = 2T2−T1
2 and X(n) = 2T2+T1

2 and |J | = 1 θ < X(1) < X(n) < θ + 1
θ < 2T2−T1

2 and 2T2+T1
2 < θ + 1

2θ < 2T2 − T1 and 2T2 + T1 < 2θ + 2
2θ + T1 < 2T2 and 2T2 < 2θ + 2 − T1
θ + T1

2 < T2 and T2 < θ + 1 − T1
2

⇒ θ + T1
2 < T2 < θ + 1 − T1

2
Trivially, 0 < T1 < 1

h(t1, t2|θ) =
{
n(n − 1)t1n−2 ; 0 < t1 < 1, θ + t1

2 < t2 < θ + 1 − t1
2

0 ; otherwise

h(t1|θ) = n(n − 1)t1
n−2(1 − t1); 0 < t1 < 1

E(T1) = n − 1

n + 1
,

Consider the T (X,Y ) = y − x − n − 1

n + 1
Therefore, E[T (X, Y )] = 0 but T (X,Y ) is not identically zero.
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We can conclude that R is ancillary but (X(1), X(n)) is not complete.
The reader should show that if a function of a sufficient statistics is ancillary, then
the sufficient statistics is not complete.
(iii) Using Theorem 1.3.1, we can show that (X(1), X(n)) is minimal sufficient statis-
tics.
Let Wi = Xi

θ
, i = 1, 2, . . . , n.

Then the joint distribution of W1,W2, . . . ,Wn is given as

f (w1, w2, . . . , wn) =
{
1 ; 1 < wi < 2, i = 1, 2, . . . , n
0 ; otherwise

Let W(1) = X(1)

θ
and W(n) = X(n)

θ

So
X(1)

X(n)

= W(1)

W(n)

, which is free from θ.

Hence,
X(1)

X(n)

is ancillary and a function of sufficient statistic. Therefore, (X(1), X(n))

is not complete.
In (iv) and (v) we can easily show using the same argument by (ii) and (iii).
(X(1), X(n)) is not complete. Similarly, we can find ancillary statistic for (iv) and (v).

Example 1.5.8 Let P[X = −1] = θ, P[X = x] = (1 − θ)2θx , x = 0, 1, . . .
Using Theorem 1.3.1

P[X = x]
P[X = y] = (1 − θ)2θx

(1 − θ)2θy

This is independent of θ if X = Y .

Hence X is minimal sufficient.

But X is not complete, because

E(X) = −θ +
∞∑

x=0

x(1 − θ)2θx

= −θ + (1 − θ)2[θ + 2θ2 + 3θ3 + · · · ]
= −θ + θ(1 − θ)2[1 + 2θ + 3θ2 + · · · ]
= −θ + θ(1 − θ)2

(1 − θ)2
= 0

But X �= 0 identically.

Example 1.5.9 Dahiya and Kleyle (1975) have studied the estimation of parameters
of this mixed failure time distribution (MFTD)
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F(x) =
{
1 − pe− x

θ ; x ≥ 0, θ > 0, 0 < p ≤ 1
0 ; x < 0

(1.5.3)

from Type I censored data.

It may be noted that the parameter θ cannot be estimated when all the observations
in the sample come from degenerate distributions. In such a situation, they have
modified the form of the estimator and studied the properties of modified estimator.
The corresponding pdf of (1.5.3) can be written as

f (x |p, θ) =
{

(1 − p)I (x)[ p
θ
e− x

θ ]1−I (x) ; x > 0, θ > 0, 0 < p ≤ 1
0 ; otherwise

(1.5.4)

where

I (x) =
{
1 ; x = 0
0 ; x > 0

The joint distribution of (X1, X2, . . . , Xn) is given as

f (x1, x2, . . . , xn |p, θ) =
{

(1 − p)
∑n

i=1 I (xi )
∏n

i=1[ pθ e−
xi
θ ]1−I (xi ) ; xi > 0, θ > 0, 0 < p ≤ 1

0 ; otherwise
(1.5.5)

Let r = n−∑n
i=1 I (xi ), r denotes the number of positive observations in the sample.

Then (1.5.5) can be written as

f (x1, x2, . . . , xn|p, θ) =
{

(1 − p)n−r (
p
θ
)r e−

∑
xi

θ ; xi ≥ 0
0 ; otherwise

(1.5.6)

One can easily see that by Theorem 1.2.1, (r, zr ) is sufficient for (p, θ), where
zr = ∑n

i=1 xi . For details, see Dixit (1993).
Next lemma is given by Dixit (1993).

Lemma 1.5.1 Let (X1, X2) be a rv having a joint distribution with parameters
(θ1, θ2). Further, (X1, X2) may be vectors. Suppose the marginal distribution of X1

is discretewhich depends on θ1 only and belongs to a complete family of distributions.
Further suppose the conditional distribution of X2 given X1 depends only on θ2 and
belongs to a complete family of distributions, then the family of joint distribution
(X1, X2) is complete.

Proof Let S1 be the support of X1. Since X1 is discrete, S1 is at most countable. Let
h be a function such that

E[h(X1, X2)] = 0 ∀ (θ1, θ2) ∈ �
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That is,

∫ ∫

h(x1, x2)dF(x1, x2) = 0 ∀ (θ1, θ2) ∈ �

∑

x1∈S1
P[X1 = x1]

∫

h(x1, x2)dF(x2|x1) = 0 ∀ (θ1, θ2) ∈ �

We are given that marginal distribution of X1 belongs to a complete family.

∑

x1∈S1
k(x1)P[X1 = x1) = 0

where

k(x1) =
∫

h(x1, x2)dF(x2|x1)

It may be noted that Sc1 is a Pθ1 -null set for all θ1 and θ2.

Now, for each fixed x1 ∈ S1, k(x1) = 0,
it implies that

∫
h(x1, x2)dF(x2|x1) = 0.

Again given that conditional distribution of X2 given X1 = x1 is complete for each
x1 ∈ S1, we get that

h(x1, x2) = 0 ∀ x2 ∈ Nc
x1 ,

where Pθ2(Nx1) = 0 ∀ x1 ∈ S1.
Now since S1 is countable, N = ∪Nx1 is a Pθ2 -null set and we get that

h(x1, x2) = 0 ∀ x2 ∈ Nc and ∀ x1 ∈ S1

Hence,

Pθ1,θ2 [h(x1, x2) = 0] = 1 ∀ θ1, θ2.

Now, we consider the completeness about the family in (1.5.4).
The marginal distribution of r is binomial with(n, p), which is a complete family

of distribution and the conditional distribution of z giver r

f (z|r) =
{

e− z
θ zr−1

�(r)θr ; z > 0, r > 0, θ > 0
0 ; otherwise

(1.5.7)

Which depends only on θ and is a complete family of distribution. Hence, from
Lemma 1.5.1, (r, z) is complete for (P, θ).
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Theorem 1.5.1 (Basu’s Theorem) In a complete family every ancillary statistic is
independent of the minimal sufficient statistic.

Proof Let T be a complete sufficient statistic.
Let S be an ancillary statistic.
By definition, for any event A, P{S ∈ A} does not depend on θ. Further, P{S ∈
A|T = t} also does not depend on θ because T is sufficient.

Consider a function

g(T ) = P[S ∈ A] − P[S ∈ A|T = t]

E[g(T )] = P[S ∈ A] − EP[S ∈ A|T = t] = 0 ∀ θ

By the assumption of completeness P[g(T ) = 0] = 1

⇒ P[S ∈ A] = P[S ∈ A|T = t]

This implies S and T are independent. Thus

P[S ∈ A, T ∈ B] = P[S ∈ A]P[T ∈ B]

Hence, for any sets A and B, S and T are independent.

Definition 1.5.3 A family of distributions {F(t |θ) : θ ∈ �} is boundedly com-
plete if

E[g(T )] =
∫

g(t) f (t)dt = 0 ∀ θ

and real statistics g(t) satisfying |g(t)| < M , then g(t) = 0.

Theorem 1.5.2 If a family of distributions is complete then it is boundedly complete.

Remark The converse of the theorem is not true.

Example 1.5.10 Let T be a random variable with the following probability distrib-
ution:

P[T = 0] = q and P[T = i + 1] = p2qi , i = 0, 1, 2, . . . , 0 < p < 1, q = 1 − p

Let E[g(T )] = 0 then

g(0)q + g(1)p2 + g(2)p2q + g(3)p2q2 + · · · = 0

g(1) + g(2)q + g(3)q2 + · · · = −g(0)qp−2

= −g(0)q(1 − q)−2

= −g(0)[q + 2q2 + 3q3 + · · · ]
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This implies that g(1) = 0, g(2) = −g(0), g(3) = −2g(0), etc.
Hence,

g(i) = −(i − 1)g(0)

If g(0) = 0 then g(t) = 0 at all nonnegative integers. Otherwise, the function g(t)
is unbounded.

Therefore, there are nondegenerate unbiased estimates of zero but they are none
that are bounded. Hence, we conclude that the family of distributions is boundedly
complete but not complete.

1.6 Exponential Class Representation: Exponential Family

Let X be a vector valued random variable with pdf/pmf { f (x |θ), θ ∈ �} and θ is a
vector of parameters. We say that X belongs to the exponential family

1. � contains an open rectangle.
2. x : f (x | θ) > 0 is independent of θ.
3. log f (x, θ) = ∑k

i=1 ui (θ)Ti (x) + v(θ) + w(x).
4. The partial derivatives ∂ui

∂θ j
(i = 1, 2, . . . , n, j = 1, 2, . . . , k) are continuous and

the jacobian

|J | =
∣
∣
∣
∣
∂(u1, u2, . . . , un)

∂(θ1, θ2, . . . , θk)

∣
∣
∣
∣ �= 0

5. {T1(x), T2(x), . . . , Tn(x), 1} are linearly independent.

Example 1.6.1 Let X1, X2, . . . , Xn be independent random variables each having
distribution G(p,α).

Let

f (x |p,α) = x p−1e− x
σ

σ p�(p)
; x > 0, p > 0,σ > 0 (1.6.1)

The joint pdf of X1, X2, . . . , Xn is f (x1, x2, . . . , xn | p, σ) =
∏n

i=1 x
p−1
i exp[−

∑n
i=1 Xi

σ
]

σnp(�p)n

log f (x | p,σ) = −n log�(p) − np logσ + (p − 1)
n∑

i=1

log xi − 1

σ

n∑

i=1

xi

(1.6.2)
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1. � = {(σ, p)|σ, p > 0} contains an open rectangle.
2. {(x1, x2, . . . , xn)|x1 > 0, x2 > 0, . . . , xn > 0} is independent of parameters σ

and p.
3. T1(x) = ∑n

i=1 log xi , T2(x) = ∑n
i=1 xi , u1(p) = p − 1 and u2(p) = − 1

σ
.

J =
(

∂u1
∂ p

∂u1
∂σ

∂u2
∂ p

∂u2
∂σ

)

=
(
1 0
0 1

σ2

)

= 1

σ2

and |J | > 0
4. Linear Independence: {T1, T2, 1}

a
n∑

i=1

log xi + b
n∑

i=1

xi + c = 0 (1.6.3)

Consider X = (eα, 1, 1, 1 . . . , 1) for α �= 0

aα + b(eα + n − 1) + c = 0

(c + nb) + (a + b)α + b

[ ∞∑

r=2

αr

r !

]

= 0

This implies that c + nb = 0, a + b = 0 and c = 0
Then a = 0, b = 0 and c = 0.
Thus, gamma distribution defined in (1.6.1) belongs to exponential family.
If a probability distribution belongs to an exponential family then one can get com-
plete sufficient statistics. Here, we will give a proof which is within the scope of this
book. General proof is given by Lehman and Casella (1998).

Theorem 1.6.1 Let { f (x |θ), θ ∈ �} be a k-parameter exponential family given by

f (x |θ) = exp[
k∑

i=1

ui (θ)Ti (x) + v(θ) + w(x)] (1.6.4)

Then T = (T1(X), T2(X), . . . , Tk(X)) is a complete sufficient statistic, where u(θ) =
(u1, u2, . . . , uk)

Proof This is given by Rohatagi and Saleh (2001) for k = 1.
Let X be a discrete random variable. By factorization theorem, we can show that T
is sufficient.
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Let k = 1 and u(θ) = θ in (1.6.4).

Eg(T ) =
∑

t

g(t)P[T (X) = t]

=
∑

t

g(t) exp[θt + v(θ) + w∗(t)] = 0 ∀ θ > 0 (1.6.5)

where P(T (X) = t) = exp[θt + v(θ) + w∗(t)]
Now, we have to show g(t) = 0 ∀ θ
Let

x+ =
{
x ; x ≥ 0
0 ; x < 0

and

x− =
{−x ; x < 0
0 ; x ≥ 0

Then g(t) = g+(t) − g−(t).
Further, g+ and g− are both nonnegative functions.
From (1.6.5),

E [g(T )] = 0 ⇒ E
[
g+(T )

] = E
[
g−(T )

]
(1.6.6)

Therefore,

∑

t

g+(t) exp[θt + v(θ) + w∗(t)] =
∑

t

g−(t) exp[θt + v(θ) + w∗(t)] ∀ θ

(1.6.7)

For fixed θ = θ0 ∈ (α,β)

P+(t) = g+(t) exp[θ0t + w∗(t)]
∑

t g
+(t) exp[θ0t + w∗(t)] (1.6.8)

P−(t) = g−(t) exp[θ0t + w∗(t)]
∑

t g
−(t) exp[θ0t + w∗(t)] (1.6.9)

From (1.6.7), (1.6.8) and (1.6.9),

∑

t

P+(t)

[
∑

t

g+(t) exp(θ0t + w∗(t))

]

exp(θ − θ0)t

=
∑

t

P−(t)

[
∑

t

g−(t) exp(θ0t + w∗(t))

]

exp(θ − θ0)t
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Now α < θ < β ⇒ α − θ0 < θ − θ0 < β − θ0, we get,

∑

t

eδt P+(t) =
∑

t

eδt P−(t) ∀ δ ∈ (α − θ0,β − θ0) (1.6.10)

By uniqueness of MGF if it exists, (1.6.10) implies that, P+(t) = P−(t) ∀ t
Then g+(t) = g−(t) ⇒ g(t) = 0 ∀ θ

Remark 1 From Example 1.6.1, we can see that
(∑

log Xi ,
∑

Xi
)
is complete suf-

ficient statistic for (p,σ). But one should not conclude that
∑

log Xi and
∑

Xi are
individually complete sufficient for p and σ respectively.

Example 1.6.2 Let X1, X2, . . . , Xn are iid with N (μ,σ2). The joint pdf of X1, X2,

. . . , Xn is

f (x |μ,σ2) =
(

1

σ
√
2π

)n

exp

[

− 1

2σ2

n∑

i=1

(xi − μ)2

]

=
(

1

σ
√
2π

)n

exp

[

− 1

2σ2

(∑
xi

2 − 2μ
∑

xi + nμ2
)]

=
(

1

σ
√
2π

)n

exp

[

−
∑

xi 2

2σ2
+ μ

∑
xi

σ2
− nμ2

2σ2

]

This belongs to exponential family.
Thus, from Theorem 1.6.1, we can conclude that (T1, T2) is complete sufficient
statistic for (μ,σ2) where T1 = ∑

Xi and T2 = ∑
X2
i .

Remark 2: If σ2 = μ then in Example 1.6.2,
∑

X2
i is complete sufficient statistic

for μ.

1.7 Exercise 1

1. Let X1, X2, . . . , Xn be the independent rvs having the following uniform distrib-
ution

(i)

f (x |θ) =
{

1
2θ ;−θ < x < θ
0 ; otherwise

Show that Y(n) = max
i

|Xi | is sufficient statistic.
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Further, find the distribution of Yi given Y(n).
(ii)

f (x |θ) =
{

1
θ

; 0 < x < θ
0 ; otherwise

Show that X(n) is sufficient statistic.
(iii)

f (x |θ1, θ2) =
{ 1

θ2−θ1
; θ1 < x < θ2

0 ; otherwise

Show that (X(1), X(n)) is jointly sufficient statistic.
(iv)

f (x |θ) =
{
1 ; θ < x < θ + 1
0 ; otherwise

Show that (X(1), X(n)) is jointly sufficient statistic.
(v)

f (xi |θ) =
{

1
2iθ ;−i(θ − 1) < xi < i(θ + 1)
0 ; otherwise

Prove that (MinXi
i , MaxXi

i ) is jointly sufficient statistic.
2. Let (X1,Y1), (X2,Y2),…, (Xn,Yn) be iid rvs with uniform bivariate rvs as follows

f (x, y|α,β, a, b) =
{ 1

(β−α)(b−a)
;α < x < β, a < y < b

0 ; otherwise

Prove that (X(1), X(n),Y(1),Y(n)) is jointly sufficient for (α,β, a, b).
3. The randomvariable X1, X2, . . . , Xn be iid rvswith a commonLaplace distribution
with density

f (x |θ) =
{

1
2θ exp[− |x |

θ
] ;−∞ < x < ∞, θ > 0

0 ; otherwise

Prove that T = ∑n
i=1 |Xi | is complete sufficient statistic.

4. Let X1, X2, . . . , Xn be iid rvs having the following distribution

(a) P(X = x |λ) = e−λλx

x ! ; x = 0, 1, 2, . . . ,λ > 0

(b) P(X = x |p) =
(
n

x

)

pxqn−x ; x = 0, 1, 2, . . . , n, 0 < p < 1 and n is known

Find (i) P[X1 = x |T = t] (ii) P[X1 = x1, X2 = x2|T = t], where T = ∑
Xi
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5. Let {Yi j }, i = 1, 2, . . . , p, j = 1, 2, . . . , q be independent rvs and

Yi j = μ + αi + εi j ; i = 1, 2, . . . , p, j = 1, 2, . . . , q,

where α1,α2, . . . ,αp are iid rvs with N (0,σ2
1) and εi j ∼ N (0,σ2). The parameters

μ, σ1 and σ are unknown. Show that (T, Te, Tα) is jointly sufficient, where

T = 1

pq

p∑

i=1

q∑

j=1

Yi j , Te = 1

pq

p∑

i=1

q∑

j=1

(Yi j − Ȳi .)
2, Ȳi . = 1

q

q∑

j=1

Yi j , Tα = q
p∑

i=1

(Ȳi . − T )2

Remark: In linear model, it is called as one-way analysis.
6. Let X1, X2, . . . , Xn be iid rvs having the following pdf as

f (x |θ) =
{

2
θ2

(θ − x) ; 0 ≤ x ≤ θ
0 ; otherwise

Find the minimal sufficient statistic.
7. Let X1, X2, . . . , Xn be iid rvs with the following uniform distribution

f (x |N1, N2) =
{ 1

N2−N1
; x = N1 + 1, . . . , N2

0 ; otherwise

Find the sufficient statistics for (N1, N2).
8. From the problem 1(iii) find the distribution of f (X1, X2, X3|T ), where T =
(X(1), X(n)).
9. From the problem 8, find the distribution of (X1, X2, . . . , Xn|T ), where T =
(X(1), X(n)). Further find f (X1|T ) if it exists.
10. Find the sufficient statistics from the following distribution based on a sample of
size n.

f (x |θ) = a(θ)2− x
θ ; x = θ, θ + 1, . . . , θ > 0,

where a(θ) is constant.
Further find the distribution of (X1, X2, . . . , Xn|T ), and (Xi |T ), where i = 1, 2,
. . . , n and T is a sufficient statistics.
11. Let X1, X2, . . . , Xn be iid rvs from ∪(θ − 1

2 , θ + 1
2 ), θ ∈ �, T = (X(1), X(n))

is sufficient for θ. By using ancillary statistic, show that it is not complete.
12. Let X1, X2, . . . , Xn be a random sample from the inverse Gaussian distribution
with the following pdf:

f (x |μ, θ) =
(

θ

2πx3

) 1
2

exp

[

−θ(x − μ)2

2xμ2

]

; x > 0, μ > 0, λ > 0,
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Prove that the statistics X̄ and T = n∑n
i=1(

1
Xi

−X̄)
are sufficient and complete.

13. Let X1, X2, . . . , Xn be a random sample from the pdf

f (x |μ) = exp [−(x − μ)] ; x > μ, μ ∈ �

(i) Prove that X(1) is a complete sufficient statistic.

(ii) Using Basu’s Theorem prove that X(1) and S2 = (∑
Xi − X̄

)2
are independent.

(Hint: Let Zi = Xi − μ, then S2 = ∑
(Zi − Z̄)2.

14. Let X1, X2, . . . , Xn be a random sample from the following Pareto distribution

f (x |α, θ) = αθα

xα+1
; x > θ, θ > 0, α > 0

For known θ, prove that
∏n

i=1 Xi is complete sufficient statistic for α.
15. Let X1, X2, . . . , Xn be iid rvs with N (μ, 1). Prove that X̄2 is not sufficient for
μ2.
16. Let X1, X2, . . . , Xn be iid rvs with (i) ∪(θ, 2θ) (ii) ∪(θ, 3θ)
Show that (X(1), X(n)) is not complete.
17. Let X1, X2, . . . , Xn be a random sample from the pdf f (x |θ)

f (x |θ) =
{

θxθ−1 ; 0 < x < 1
0 ; otherwise

Find sufficient and complete statistic for θ.
18. (Zacks 1971) Let X1 and X2 be random variables having the density function

f (x |σ) =

⎧
⎪⎨

⎪⎩

(1 + σ
√
2π)−1 exp[− x2

2σ2 ] ; x < 0
(1 + σ

√
2π)−1 ; 0 � x � 0

(1 + σ
√
2π)−1 exp[− (x−1)2

2σ2 ] ; 1 � x

Find the minimal sufficient statistic for σ.
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Chapter 2
Unbiased Estimation

If the average estimate of several randomsamples is equal to the population parameter
then the estimate is unbiased. For example, if credit card holders in a city were
repetitively random sampled and questioned what their account balances were as
of a specific date, the average of the results across all samples would equal the
population parameter. If, however, only credit card holders in one specific business
were sampled, the average of the sample estimates would be biased estimator of all
account balances for the city and would not equal the population parameter.

If themean value of an estimator in a sample equals the true value of the population
mean then it is called an unbiased estimator. If themean value of an estimator is either
less than or greater than the true value of the quantity it estimates, then the estimator
is called a biased estimator. For example, suppose you decide to choose the smallest
or largest observation in a sample to be the estimator of the population mean. Such an
estimator would be biased because the average of the values of this estimator would
be always less or more than the true population mean.

2.1 Unbiased Estimates and Mean Square Error

Definition 2.1.1 A statistics T(X) is called an unbiased estimator for a function of
the parameter g(θ), provided that for every choice of θ,

ET(X) = g(θ) (2.1.1)

Any estimator that is not unbiased is called biased. The bias is denoted by b(θ).

b(θ) = ET(X) − g(θ) (2.1.2)

© Springer Science+Business Media Singapore 2016
U.J. Dixit, Examples in Parametric Inference with R,
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We will now define mean square error (mse)

MSE[T(X)] = E[T(X) − g(θ)]2
= E[T(X) − ET(X) + b(θ)]2
= E[T(X) − ET(X)]2 + 2b(θ)E[T(X) − ET(X)] + b2(θ)

= V[T(X)] + b2(θ)

= Variance of [T(X)] + [bias of T(X)]2

Example 2.1.1 Let (X1,X2, . . . ,Xn) be Bernoulli rvs with parameter θ, where θ is
unknown. X̄ is an estimator for θ. Is it unbiased ?

EX̄ = 1

n

n∑

i=1

Xi = nθ

n
= θ

Thus, X̄ is an unbiased estimator for θ.
We denote it as θ̂ = X̄ .

Var(X̄) = 1

n2

n∑

i=1

V(Xi) = nθ(1 − θ)

n2
= θ(1 − θ)

n

Example 2.1.2 Let Xi(i = 1, 2, . . . , n) be iid rvs from N(μ,σ2), where μ and σ2 are
unknown.

Define nS2 =∑n
i=1(Xi − X̄)2 and nσ2 =∑n

i=1(Xi − μ)2

Consider

n∑

i=1

(Xi − μ)2 =
n∑

i=1

(Xi − X̄ + X̄ − μ)2

=
n∑

i=1

(Xi − X̄)2 + 2
n∑

i=1

(Xi − μ)(X̄ − μ) + n(X̄ − μ)2

=
n∑

i=1

(Xi − X̄)2 + n(X̄ − μ)2

Therefore,

n∑

i=1

(Xi − X̄)2 =
n∑

i=1

(Xi − μ)2 − n(X̄ − μ)2
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E

[
n∑

i=1

(Xi − X̄)2

]

= E

[
n∑

i=1

(Xi − μ)2

]

− nE[(X̄ − μ)2]

= nσ2 − nσ2

n
= nσ2 − σ2

Hence,

E(S2) = σ2 − σ2

n
= σ2

(
n − 1

n

)

Thus, S2 is a biased estimator of σ2.
Hence

b(σ2) = σ2 − σ2

n
− σ2 = −σ2

n

Further, nS2

n−1 is an unbiased estimator of σ2.

Example 2.1.3 Further, if (n − 1)S2 = ∑n
i=1(Xi − X̄)2, then (n− 1)S2

σ2 has χ2 with
(n − 1) df. Here, we examine whether S is an unbiased estimator of σ.

Let (n− 1)S2

σ2 = w
Then

E(
√
w) =

∞∫

0

w
1
2 e− w

2 w
n−1
2 −1

�
(
n−1
2

)
2

n−1
2

dw

= �
(
n
2

)
2

n
2

�
(
n−1
2

)
2

n−1
2

= �
(
n
2

)
2

1
2

�
(
n−1
2

)

E

[
(n − 1)

1
2 S

σ

]

= 2
1
2 �
(
n
2

)

�
(
n−1
2

)

Hence

E(S) = 2
1
2 �
(
n
2

)

�
(
n−1
2

)
σ

(n − 1)
1
2

=
(

2

n − 1

) 1
2 �

(
n
2

)

�
(
n−1
2

)σ

Therefore,

E

(
S

σ

)

=
(

2

n − 1

) 1
2 �

(
n
2

)

�
(
n−1
2

)
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Therefore,

Bias(S) = σ

[(
2

n − 1

) 1
2 �

(
n
2

)

�
(
n−1
2

) − 1

]

Example 2.1.4 For the family (1.5.4), p̂ is U-estimable and θ̂ is not U-estimable. For
(p, θ), it can be easily seen that p̂ = r

n and Ep̂ = p. Next, we will show θ̂ is not
U-estimable.

Suppose there exist a function h(r, z) such that

Eh(r, z) = θ ∀ (p, θ) ∈ �.

Since

EE[h(r, z)|r] = θ

We get

n∑

r=1

(
n

r

)

prqn−r

∞∫

0

h(r, z)
e− z

θ zr−1dz

θr�(r)
+ qnh(0, 0) = θ

Substituting p
q = �, and dividing qn on both sides

n∑

r=1

�r

(
n

r

) ∞∫

0

h(r, z)
e− z

θ zr−1dz

θr�(r)
+ h(0, 0) = θ(1 + �)n, Since q = (1 + �)−1

Comparing the coefficients of �r in both sides, we get, h(0, 0) = θ, which is a
contradiction.
Hence, there does not exist any unbiased estimator of θ. Thus θ is not U-estimable.

Example 2.1.5 Let X is N(0,σ2) and assume that we have one observation. What is
the unbiased estimator of σ2?

E(X) = 0

V(X) = EX2 − (EX)2 = σ2

http://dx.doi.org/10.1007/978-981-10-0889-4_1
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Therefore,

E(X2) = σ2

Hence X2 is an unbiased estimator of σ2.

Example 2.1.6 Sometimes an unbiased estimator may be absurd.

Let the rv X be P(λ) and we want to estimate �(λ), where

�(λ) = exp[−kλ]; k > 0

Let T(X) = [−(k − 1)]x; k > 1

E[T(X)] =
∞∑

x=0

[−(k − 1)]x e
−λλx

x!

= e−λ
∞∑

x=0

[−(k − 1)λ]x
x!

= e−λe[−(k−1)λ]

= e−kλ

T(x) =
{
[−(k − 1)]x > 0; x is even and k > 1
[−(k − 1)]x < 0; x is odd and k > 1

which is absurd since �(λ) is always positive.

Example 2.1.7 Unbiased estimator is not unique.

Let the rvsX1 andX2 areN(θ, 1).X1,X2, andαX1+(1−α)X2 are unbiased estimators
of θ, 0 ≤ α ≤ 1.

Example 2.1.8 Let X1,X2, . . . ,Xn be iid rvs from Cauchy distribution with parame-
ter θ. Find an unbiased estimator of θ.

Let

f (x|θ) = 1

π[1 + (x − θ)2] ; −∞ < x < ∞,−∞ < θ < ∞

F(x|θ) =
x∫

−∞

dy

π[1 + (y − θ)2]

= 1

2
+ 1

π
tan−1(x − θ)

Let g(x(r)) be the pdf of X(r), where X(r) is the rth order statistics.
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g(x(r)) = n!
(n − r)!(r − 1)! f (x(r))[F(x(r))]r−1[1 − F(x(r))]n−r

= n!
(n − r)!(r − 1)!

[
1

π

1

[1 + (x(r) − θ)2]

][
1

2
+ 1

π
tan−1(x(r) − θ)

]r−1 [ 1

2
− 1

π
tan−1(x(r) − θ)

]n−r

E(X(r) − θ) = n!
(n − r)!(r − 1)!

1

π

∞∫

−∞

x(r) − θ

[1 + (x(r) − θ)2]
[
1

2
+ 1

π
tan−1(x(r) − θ)

]r−1

×
[
1

2
− 1

π
tan−1(x(r) − θ)n−r

]

dx(r)

Let (x(r) − θ) = y

E(X(r) − θ) = Crn
1

π

∞∫

−∞

y

1 + y2

[
1

2
+ 1

π
tan−1 y

]r−1 [1

2
− 1

π
tan−1 y

]n−r

dy,

where Crn = n!
(n−r)!(r−1)!

Let

u = 1

2
+ 1

π
tan−1 y ⇒ u − 1

2
= 1

π
tan−1 y

⇒
(

u − 1

2

)

π = tan−1 y ⇒ y = tan

(

u − 1

2

)

π ⇒ y = − cot πu

dy = π

[
(cosπu)(cosπu)

sin2 πu
+ sin πu

sin πu

]

du

= π[cot2 πu + 1] = π[y2 + 1]du

E(X(r) − θ) = − n!
(n − r)!(r − 1)!

1∫

0

ur−1(1 − u)n−r cot πudu

= −Crn

1∫

0

ur−1(1 − u)n−r cot πudu
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Replace r by n − r + 1

E(X(n−r+1) − θ) = − n!
(n − r)!(r − 1)!

1∫

0

cot(πu)un−r(1 − u)r−1du

Let 1 − u = w

= − n!
(n − r)!(r − 1)!

1∫

0

(−1) cot[π(1 − w)](1 − w)n−rwr−1dw

= n!
(n − r)!(r − 1)!

1∫

0

cot(πw)(1 − w)n−rwr−1dw

Now

1∫

0

ur−1(1 − u)n−r cot πudu =
1∫

0

cot(πw)(1 − w)n−rwr−1dw

E[(x(r) − θ) + (x(n−r+1) − θ)] = 0

E[X(r) + X(n−r+1)] = 2θ

θ̂ = x(r) + x(n−r+1)

2

Therefore, x(r) + x(n− r + 1)

2 is an unbiased estimator of θ.
Note: Moments of Cauchy distribution does not exist but still we get an unbiased
estimator of θ.

Example 2.1.9 Let X be rv with B(1, p). We examine whether p2 is U-estimable.

Let T(x) be an unbiased estimator of p2

1∑

x=0

T(x)px(1 − p)1−x = p2

T(0)(1 − p) + T(1)p = p2
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p[T(1) − T(0)] + T(0) = p2

Coefficient of p2 does not exist.
Hence, an unbiased estimator of p2 does not exist.

Empirical Distribution Function

Let X1,X2, . . . ,Xn be a random sample from a continuous population with df F and
pdf f . Then the order statistics X(1) ≤ X(2) ≤ · · · ≤ X(n) is a sufficient statistics.

Define F̂(x) = Number of X ′
i s ≤x

n , same thing can bewritten in terms of order statistics as,

F̂(x) =
⎧
⎨

⎩

0 ; X(1) > x
k
n ; X(k) ≤ x < X(k+1)

1 ; x ≥ X(n)

= 1

n

n∑

j=1

I(x − X(j))

where

I(y) =
{
1; y ≥ 0
0; otherwise

Example 2.1.10 Show that empirical distribution function is an unbiased estimator
of F(x)

F̂(x) = 1

n

n∑

j=1

I(x − X(j))

EF̂(x) = 1

n

n∑

j=1

P[X(j) ≤ x]

= 1

n

n∑

j=1

n∑

k=j

(
n

k

)

[F(x)]k[1 − F(x)]n−k (see (Eq. 20 in “Prerequisite”))

= 1

n

k∑

j=1

n∑

k=1

(
n

k

)

[F(x)]k[1 − F(x)]n−k



2.1 Unbiased Estimates and Mean Square Error 47

= 1

n

n∑

k=1

(
n

k

)

[F(x)]k[1 − F(x)]n−k
k∑

j=1

(1)

= 1

n

n∑

k=1

k

(
n

k

)

[F(x)]k[[1 − F(x)]n−k

= 1

n
[nF(x)] = F(x)

Note: One can see that I(x−X(j)) is a Bernoulli random variable. Then EI(x−X(j)) =
F(x), so that EF̂(x) = F(x). We observe that F̂(x) has a Binomial distribution with
mean F(x) and variance F(x)[1−F(x)]

n . Using central limit theorem, for iid rvs, we can
show that as n → ∞

√
n

[
F̂(x) − F(x)√
F(x)[1 − F(x)]

]

→ N(0, 1).

2.2 Unbiasedness and Sufficiency

Let X1,X2, . . . ,Xn be a random sample from a Poisson distribution with parameter
λ. Then T =∑Xi is sufficient for λ. Also E(X1) = λ then X1 is unbiased for λ but
it is not based on T . Moreover, we can say that it is not a function of T .
(i) Let T1 = E(X1|T). We will prove that T1 is better than X1 as an estimate of λ. The
distribution of X1 given T as

f (X1|T = t) =
{( t

x1

) (
1
n

)x1 (1 − 1
n

)t−x1 ; x1 = 0, 1, 2, . . . , t
0; otherwise

(2.2.1)

E[X1|T = t] = t
n and distribution of T is P(nλ)

V

(
T

n

)

= 1

n2
V(T) = nλ

n2
= λ

n

V(X1) > V

(
T

n

)

(2.2.2)

(ii) Let T2 =
(

Xn,
n−1∑

i=1
Xi

)

is also sufficient for λ.
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T0 =
n−1∑

i=1
Xi. We have to find the distribution of X1 given T2

P[X1|T2] = P[X1 = x1,T2 = t2]
P[T2 = t2]

= P[X1 = x1,Xn = xn,
∑n−1

i=2 Xi = t0 − x1]
P[Xn = xn,

∑n−1
i=1 Xi = t0]

= e−λλx1

x1!
e−λλxn

xn!
e−(n−2)λ[(n − 2)λ]t0−x1

(t0 − x1)!
xn!

e−λλxn

t0!
e−(n−1)λ[(n − 1)λ]t0

= t0!
x1!(t0 − x1)!

(n − 2)t0−x1

(n − 1)t0

=
(
t0
x1

)(
n − 2

n − 1

)t0 ( 1

n − 2

)x1

=
(
t0
x1

)(
1

n − 1

)x1 (n − 2

n − 1

)t0−x1

; x1 = 0, 1, 2, . . . , t0 (2.2.3)

Now X1 given T2 has B(t0,
1

n−1 )

E[X1|T2] = t0
n − 1

=
∑n−1

i=1 Xi

n − 1

V

[
T0

n − 1

]

= (n − 1)λ

(n − 1)2
= λ

n − 1
(2.2.4)

We conclude that
∑n−1

i=1 Xi

n−1 is unbiased for λ and has smaller variance than X1. Com-

paring the variance of X1, X̄, and
∑n−1

i=1 Xi

n−1 , we have

V(X1) > V

(∑n−1
i=1 Xi

n − 1

)

> V(X̄)

This implies λ > λ
n−1 > λ

n .

Hence, we prefer X̄ to
∑n−1

i=1 Xi

n−1 and X1.

Note:

1. One should remember that E(X1|T = t) and E(X1|T2 = t2) are the unbiased
estimators for λ.

2. Even though sufficient statistic reduce the data most we have to search for the
minimal sufficient statistic.
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Let T1(X1,X2, . . . ,Xn) and T2(X1,X2, . . . ,Xn) be two unbiased estimates of a para-
meter θ. Further, suppose that T1(X1,X2, . . . ,Xn) be sufficient for θ. Let T1 = f (t)
for some function f . If sufficiency of T for θ is t0 have any meaning, we should
expect T1 to perform better than T2 in the sense that V(T1) ≤ V(T2). More generally,
given an unbiased estimate h for θ, is it possible to improve upon h using a sufficient
statistics for θ? We have seen in the above example that the estimator is improved.
Therefore, the answer is “Yes.”
If T is sufficient for θ then by definition, the conditional distribution of (X1,X2, . . . ,

Xn) given T does not depend on θ.
Consider E{h(X1,X2, . . . ,Xn)|T(X1,X2, . . . ,Xn)}. Since T is sufficient then this
expected value does not depend on θ.
Set T1 = E{h(X1,X2, . . . ,Xn)|T(X1,X2, . . . ,Xn)} is itself an estimate of θ.
Using Theorem 5 in “Prerequisite”, we can get ET1

E(T1) = E [E{h(X1,X2, . . . ,Xn)|T(X1,X2, . . . ,Xn)}]

= E{h(X1,X2, . . . ,Xn)} = θ

Since h is unbiased for θ, hence E(T1) is also unbiased for θ.
Thus, we have found out another unbiased estimate of θ that is a function of the
sufficient statistic. What about the variance of T1?
Using Theorem 6 in “Prerequisite”

V[h(X1,X2, . . . ,Xn)] = E{V(h(X1,X2, . . . ,Xn)|T(X1,X2, . . . ,Xn))}
+V{Eh(X1,X2, . . . ,Xn)|T(X1,X2, . . . ,Xn)}

= E{V(h(X1,X2, . . . ,Xn)|T(X1,X2, . . . ,Xn))} + V(T1) (2.2.5)

Since V(h|T) > 0 so that E[V(h|T)] > 0
From (2.2.5), V(T1) < V[h(X)]
If T(X) is minimal sufficient for θ then T1 is the best unbiased estimate of θ. Some-
times we face the problem of computations of expectation of h given T .
The procedure for finding unbiased estimates with smaller variance can now be
summarized.

1. Find the minimal sufficient statistic.
2. Find a function of this sufficient statistic that is unbiased for the parameter.

Remark If you have a minimal sufficient statistic then your unbiased estimate will
have the least variance. If not, the unbiased estimate you construct will not be the
best possible but you have the assurance that it is based on a sufficient statistic.
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Theorem 2.2.1 Let h(X) be an unbiased estimator of g(θ). Let T(X) be a suf-
ficient statistics for θ. Define �(T) = E(h|T). Then E[�(T)] = g(θ) and
V[�(T)] ≤ V(h) ∀ θ. Then �(T) is uniformly minimum variance unbiased esti-
mator (UMVUE) of g(θ).
This theorem is known as Rao–Blackwell Theorem.

Proof Using Theorem 5 in “Prerequisite”,

E[h(X)] = E[Eh(X)|T = t] = E[�(T)] = g(θ) (2.2.6)

Hence �(T) is unbiased estimator of g(θ)
Using Theorem 6 in “Prerequisite”,

V[h(X)] = V[E(h(X)|T(X))] + E[V(h(X)|T(X))]

= V[�(T)] + E[V(h(X)|T(X))]

Since V[h(X)|T(X)] ≥ 0 and E[V(h(X)|T(X))] > 0
Therefore,

V[�(T)] ≤ V[h(X)] (2.2.7)

We have to show that �(T) is an estimator,
i.e., �(T) is a function of sample only and independent of θ.
From the definition of sufficiency, we can conclude that the distribution of h(X) given
T(X) is independent of θ. Hence �(T) is an estimator.
Therefore, �(T) is UMVUE of g(θ).

Note:We should remember that conditioning on anythingwill not result in improving
the estimator.

Example 2.2.1 Let X1,X2 be iid N(θ, 1).

Let

h(X) = X̄ = X1 + X2

2
,

Eh(X) = θ and V[h(X)] = 1

2
,

Now conditioning on X1, which is not sufficient. Let �(X1) = E(X̄)|X1).
Using Theorem 5 in “Prerequisite”, E[�(X1)] = EX̄ = θ. Using Theorem 6 in
“Prerequisite”, V[�(X1)] ≤ V(X̄). Hence �(X1) is better than X̄. But question is
whether �(X1) is an estimator?
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�(X1) = E(X̄|X1)

= E

(
X1 + X2

2
|X1

)

= 1

2
E(X1|X1) + 1

2
E(X2|X1)

= 1

2
X1 + 1

2
E(X2) (X1 and X2 are independent)

= 1

2
X1 + 1

2
θ

Hence �(X1) is not an estimator. This imply that we cannot say that �(X1) is better
than X̄.

Theorem 2.2.2 (Lehmann–Scheffe Theorem) If T is a complete sufficient statistic
and there exists an unbiased estimate h of g(θ), there exists a unique UMVUE of θ,
which is given by Eh|T.
Proof Let h1 and h2 be two unbiased estimators of g(θ) Rao–Blackwell theorem,
E(h1|T) and E(h2|T) are both UMVUE of g(θ).
Hence E[E(h1|T) − E(h2|T)] = 0
But T is complete therefore

[E(h1|T) − E(h2|T)] = 0

This implies E(h1|T) = E(h2|T).
Hence, UMVUE is unique.
Even if we cannot obtain sufficient and complete statistic for a parameter, still we
can get UMVUE for a parameter. Therefore, we can see the following theorem:

Theorem 2.2.3 Let T0 be the UMVUE of g(θ) and v0 be the unbiased estimator of
0. Then T0 is UMVUE if and only if Ev0T0 = 0 ∀ θ ∈ �. Assume that the second
moment exists for all unbiased estimators of g(θ).

Proof (i) Suppose T0 is UMVUE and Ev0T0 �= 0 for some θ0 and v0 where Ev0 = 0.
Then T0 + αv0 is unbiased for all real α. If Ev2

0 = 0 then v0 is degenerate rv. Hence
Ev0T0 = 0. This implies P[v0 = 0] = 1.
Let Ev2

0 > 0

E[T0 + αv0 − g(θ)]2 = E(T0 + αv0)
2 − 2g(θ)E(T0 + αv0) + g2(θ)

= E(T0 + αv0)
2 − g2(θ)

= E(T0)
2 + 2αE(T0v0) + α2Ev2

0 − g2(θ) (2.2.8)

Choose α such that (2.2.8) is equal to zero, then differentiating (2.2.8) with respect
to α, we get

= 2E(T0v0) + 2αEv2
0 = 0
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Hence

α0 = −E(T0v0)

Ev2
0

(2.2.9)

E(T0 + αv0)
2 = E(To)

2 + 2αE(T0v0) + α2Ev2
0

= E(T0)
2 − (E(T0v0))2

Ev2
0

< E(T0)
2 (2.2.10)

Because (ET0v0)2

Ev20
> 0 (our assumption E(T0v0) �= 0)

Then we can conclude that

V(T0 + αv0) < E(T0)
2

which is a contradiction, because T0 is UMVUE.
Hence EvT0 = 0
(ii) Suppose that

EvT0 = 0 ∀ θ ∈ � (2.2.11)

Let T be an another unbiased estimator of θ, then E(T − T0) = 0.
Now T0 is unbiased estimator and (T − T0) is unbiased estimator of 0, then by
(2.2.11),

ET0(T − T0) = 0

ET0T − ET0
2 = 0

This implies ET02 = ET0T
Using Cauchy–Schwarz’s inequality

ET0T ≤ (ET0
2)

1
2 (ET 2)

1
2

Therefore,

ET 2
0 ≤ (ET0

2)
1
2 (ET 2)

1
2

(ET0
2)

1
2 ≤ (ET 2)

1
2 (2.2.12)
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Now if ET02 = 0 then P[T0 = 0] = 1
Then (2.2.12) is true.
Next, if ET02 > 0 then also (2.2.12) is true
Hence V(T0) ≤ V(T) ⇒ T0 is UMVUE.

Remark Wewould like to mention the comment made by Casella and Berger (2002).
“An unbiased estimator of 0 is nothing more than random noise; that is there is no
information in an estimator of 0. It makes sense that most sensible way to estimate
0 is with 0, not with random noise. Therefore, if an estimator could be improved by
adding random noise to it, the estimator probably is defective.”
Casella and Berger (2002) gave an interesting characterization of best unbiased esti-
mators.

Example 2.2.2 Let X be an rv with ∪(θ, θ + 1), EX = θ + 1
2 , then (X − 1

2 ) is an
unbiased estimator of θ and its variance is 1

12 . For this pdf, unbiased estimators of
zero are periodic functions with period 1.

If h(x) satisfies
∫ θ+1
θ h(x) = 0

d

dθ

θ+1∫

θ

h(x) = 0

h(θ + 1) − h(θ) = 0 ∀ θ

Such a function is h(x) = sin 2πx.
Now,

Cov

[

X − 1

2
, sin 2πX

]

= Cov[X, sin 2πX] =
θ+1∫

θ

x sin 2πxdx

= − (θ + 1) cos 2π(θ + 1)

2π
+ θ

cos 2πθ

2π

+ sin 2π(θ + 1)

4π2
− sin 2πθ

4π2

Since sin 2π(θ + 1) = sin 2πθ

cos 2π(θ + 1) = cos 2πθ cos 2π − sin 2πθ sin 2π

= cos 2πθ (cos 2π = 1, sin 2π = 0)

Cov[X, sin 2πX] = −cos 2πθ

2π



54 2 Unbiased Estimation

Hence
(
X − 1

2

)
is correlated with an unbiased estimator of zero. Therefore,

(
X − 1

2

)

cannot be the best unbiased estimator of θ.

Example 2.2.3 Sometimes UMVUE is not sensible.

Let X1,X2, . . . ,Xn beN(μ, 1). Now X1 is unbiased estimator for μ and X̄ is complete
sufficient statistic for μ then E(X1|X̄) is UMVUE. We will show that E(X1|X̄) = X̄.
See (ii) of Example 2.2.11
Note that X̄ is N(μ, 1

n )

E(X1X̄) = 1

n
EX1[X1 + X2 + · · · + Xn]

= 1

n
[E(X2

1 ) + E(X1X2) + · · · + E(X1Xn)]

= 1

n
[1 + μ2 + μ2 + · · · + μ2]

Cov(X1, X̄) = 1 + nμ2

n
− μ2 = 1

n

E(X1|X̄) = EX1 + Cov(X1, X̄)

V(X̄)
[X̄ − EX̄]

= μ + 1

n
n[X̄ − μ]

= μ + [X̄ − μ] = X̄

(X1, X̄) is a bivariate rv with mean

(
μ
μ

)

and covariance matrix
(
1 1

n
1
n

1
n

)

In this example, we want to estimate d(μ) = μ2 then
(
X̄2 − 1

n

)
is UMVUE for μ2.

One can easily see that EX̄2 = 1
n + μ2.



2.2 Unbiasedness and Sufficiency 55

Hence E
(
X̄2 − 1

n

) = μ2 and X̄2 is sufficient and complete for μ2.
Now μ2 is always positive but sometimes

(
X̄2 − 1

n

)
may be negative. Therefore,

UMVUE for μ2 is not sensible, see (2.2.56).
Now, we will find UMVUE for different estimators for different distributions.

Example 2.2.4 Let X1,X2, . . . ,Xn are iid rvs with B(n, p), 0 < p < 1. In this case,
we have to find the UMVUE of prqs, q = 1 − p, r , s �= 0 and P[X ≤ c]. Assume
n is known.

Binomial distribution belongs to exponential family. So that
∑n

i=1 Xi is sufficient
and complete for p.
(i) The distribution of T is B(mn, p).
Let U(t) be unbiased estimator for prqs.

nm∑

t=0

u(t)

(
nm

t

)

ptqnm−t = prqs (2.2.13)

nm∑

t=0

u(t)

(
nm

t

)

pt−rqnm−t−s = 1

nm−s∑

t=r

u(t)

(nm
t

)

(nm− s− r
t − r

)

(
nm − s − r

t − r

)

pt−rqnm−t−s = 1

Then

u(t)

(nm
t

)

(nm−s−r
t−r

) = 1

Hence

u(t) =
{

(nm− s− r
t − r )
(nmt )

; t = r, r + 1, r + 2, . . . , nm − s

0 ; otherwise
(2.2.14)

Note: For m = n = 1, r = 2, and s = 0, the unbiased estimator of p2 does not exist,
see Example 2.1.9
(ii) To find UMVUE of P[X ≤ c]
Now

P[X ≤ c] =
c∑

x=0

(
n

x

)

pxqn−x
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Then UMVUE of

pxqn−x =
(nm−n

t−x

)

(nm
t

)

Hence UMVUE of P[X ≤ c]

=
⎧
⎨

⎩

c∑

x=0

(n
x

) (nm−n
t−x )
(nmt )

; t = x, x + 1, x + 2, . . . , nm − n + x, c ≤ min(t, n)

1 ; otherwise
(2.2.15)

Note: UMVUE of P[X = x] = (nx
)
pxqn−x is (nx)(

nm−n
t−x )

(nmt )
; x = 0, 1, 2, . . . , t

Particular cases:
(a) r = 1, s = 0. From (2.2.14), we will get UMVUE of p,

u(t) =
(nm−1

t−1

)

(nm
t

) = t

nm
(2.2.16)

(b) r = 0, s = 1. From (2.2.14), we will get UMVUE of q,

u(t) =
(nm−1

t

)

(nm
t

) = nm − t

nm
= 1 − t

nm
(2.2.17)

(c) r = 1, s = 1. From (2.2.14), we will get UMVUE of pq,

u(t) =
(

t

nm

)(
nm − t

nm − 1

)

(2.2.18)

Remark We have seen that in (2.2.16), (2.2.17), and (2.2.18),

p̂ = t

nm
; q̂ = 1 − t

nm
and p̂q =

(
t

nm

)(
nm − t

nm − 1

)

Hence, UMVUE of pq �= (UMVUE of p) (UMVUE of q).

Example 2.2.5 Let X1,X2, . . . ,Xm are iid rvs with P(λ). In this case we have to find
UMVUE of (i) λre−sλ (ii) P[X ≤ c]
Poisson distribution belongs to exponential family. So that T =∑n

i=1 Xi is sufficient
and complete for λ.
(i) The distribution of T is P(mλ).
Let U(t) be unbiased estimator for λre−sλ

∞∑

t=0

u(t)
e−mλ(mλ)t

t! = e−sλλr (2.2.19)
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∞∑

t=0

u(t)
e−(m−s)λmtλt−r

t! = 1

∞∑

t=r

u(t)
mt

(m − s)t−r

(t − r)!
t!

e−(m−s)λ[(m − s)λ]t−r

(t − r)! = 1

Then

u(t)
mt

(m − s)t−r

(t − r)!
t! = 1

u(t) =
{

(m− s)t−r

mt
t!

(t−r)! ; t = r, r + 1, . . . , s ≤ m
0 ; otherwise

(2.2.20)

(ii) To find UMVUE of P[X ≤ c]

P[X ≤ c] =
c∑

x=0

e−λλx

x!

Now, UMVUE of e−λλx is (m−1)(t−x)

mt
t!

(t−x)!
UMVUE of P[X ≤ c]

=
c∑

x=0

t!
(t − x)!x!

(
m − 1

m

)t ( 1

m − 1

)x

=
{∑c

x=0

(t
x

) (
1
m

)x (m−1
m

)t−x ; c ≤ t
1 ; otherwise

(2.2.21)

Remark UMVUE of P[X = x] = e−λλx

x! is
(t
x

) (
1
m

)x (m−1
m

)t−x ; x = 0, 1, . . . , t
Particular cases:
(a) s = 0, r = 1
From (2.2.20), we will get the UMVUE of λ,

u(t) = mt−1t!
mt(t − 1)! = t

m
(2.2.22)

(b) s = 1, r = 0
From (2.2.20), we will get the UMVUE of e−λ,

u(t) =
(
m − 1

m

)t

(2.2.23)
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(c) s = 1, r = 1
From (2.2.20), we will get the UMVUE of λe−λ

u(t) = (m − 1)t−1t!
mt(t − 1)! =

(
m − 1

m

)t t

m − 1
(2.2.24)

Remark UMVUE of λe−λ �= (UMVUE of λ)(UMVUE of e−λ)

Example 2.2.6 Let X1,X2, . . . ,Xm are iid rvs with NB(k, p). In this case we have to
find UMVUE of

1. prqs(r, s �= 0)
2. P[X ≤ c]
P[X = x] = Probability of getting kth successes at the xth trial

=
(
k + x − 1

x

)

pkqx; x = 0, 1, 2, . . . , 0 < p < 1, q = 1 − p (2.2.25)

Negative Binomial distribution belongs to exponential family.
Therefore, T = ∑m

i=1 Xi is complete and sufficient for p. Distribution of T is
NB(mk, p).
Let U(t) be unbiased estimator for prqs

∞∑

t=0

u(t)

(
mk + t − 1

t

)

pmkqt = prqs

∞∑

t=0

u(t)

(
mk + t − 1

t

)

pmk−rqt−s = 1

∞∑

s=0

u(t)

(mk+t−1
t

)

(mk−r−s+t−1
t−s

)

(
mk − r − s + t − 1

t − s

)

pmk−rqt−s = 1

Then

u(t)

(mk + t − 1
t

)

(mk − r − s+ t − 1
t−s

) = 1

Hence,

u(t) =
(mk − r − s+ t − 1

t−s

)

(mk + t − 1
t

)
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u(t) =
{

(mk−r−s+t−1
t−s )

(mk+t−1
t )

; t = s, s + 1, . . . , r ≤ mk

0 ; otherwise
(2.2.26)

(ii) To find UMVUE of P[X ≤ c]

P[X ≤ c] =
c∑

x=0

(
k + x − 1

x

)

pkqx

Now UMVUE of pkqx = (mk−k−x+t
t−x )

(mk+t−1
t )

UMVUE of P[X ≤ c]

=
{∑c

x=0
(k+x−1

x )(mk−k−x+t
t−x )

(mk+t−1
t )

; t = x, x + 1, . . .

1 ; otherwise.
(2.2.27)

Remark UMVUE of P[X = x] = (k+x−1
x

)
pkqx is (k+x−1

x )(mk−k−x+t
t−x )

(mk+t−1
t )

Particular cases:
(a) r = 1, s = 0
From (2.2.26), we will get UMVUE of p,

u(t) =
(mk+t−2

t

)

(mk+t−1
t

) = mk − 1

mk + t − 1
(2.2.28)

(b) r = 0, s = 1
From (2.2.26), we will get UMVUE of q,

u(t) =
(mk+t−2

t−1

)

(mk+t−1
t

) = t

mk + t − 1
(2.2.29)

(c) r = 1, s = 1
From (2.2.26), we will get UMVUE of pq,

u(t) =
(mk+t−3

t−1

)

(mk+t−1
t

) = t(mk − 1)

(mk + t − 1)(mk + t − 2)
(2.2.30)

Remark UMVUE of pq �= (UMVUE of p)(UMVUE of q)

Example 2.2.7 LetX1,X2, . . . ,Xm be iid discrete uniform rvswith parameterN(N >

1). We have to find UMVUE of Ns(s �= 0).
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Then joint distribution of (X1,X2, . . . ,Xm) is

f (x1, x2, . . . , xm) = 1

Nm
I(N − x(m))I(x(1) − 1)

I(y) =
{
1 ; y > 0
0 ; otherwise

By factorization theorem, X(m) is sufficient for N .
Now, we will find the distribution of X(m).

P[X(m) ≤ z] =
m∏

i=1

P[Xi ≤ z] = zm

Nm

P[X(m) = z] = P[X(m) ≤ z] − P[X(m) ≤ z − 1]

= zm

Nm
− (z − 1)m

Nm
; z = 1, 2, . . . ,N (2.2.31)

We have to show that this distribution is complete, i.e., we have to show if Eh(z) = 0
then h(z) = 0 with probability 1.

Eh(z) =
N∑

z=1

h(z)

[
zm

Nm
− (z − 1)m

Nm

]

= 0

Now
(
zm−(z−1)m

Nm

)
is always positive then h(z) = 0 with probability 1.

Therefore, X(m) is sufficient and complete for N .
Let u(z) be unbiased estimator of Ns

Then
N∑

z=1

u(z)

[
zm − (z − 1)m

Nm

]

= Ns

N∑

z=1

u(z)

[
zm − (z − 1)m

Nm+s

]

= 1

N∑

z=1

u(z)

[
zm − (z − 1)m

zm+s − (z − 1)m+s

] [
zm+s − (z − 1)m+s

Nm+s

]

= 1

Hence,

u(z)

[
zm − (z − 1)m

zm+s − (z − 1)m+s

]

= 1



2.2 Unbiasedness and Sufficiency 61

u(z) =
[
zm+s − (z − 1)m+s

zm − (z − 1)m

]

Therefore,

u(X(m)) =
[
Xm+s

(m) − (X(m) − 1)m+s

Xm
(m) − (X(m) − 1)m

]

(2.2.32)

Then u(X(m)) in (2.2.32) is UMVUE of Ns.
Particular cases:
(a) s = 1
From (2.2.32), we get UMVUE of N ,

N̂ =
[
Xm+1

(m) − (X(m) − 1)m+1

Xm
(m) − (X(m) − 1)m

]

(2.2.33)

(b) s = 5
From (2.2.33), we get UMVUE of N5

N̂5 =
[
Xm+5

(m) − (X(m) − 1)m+5

Xm
(m) − (X(m) − 1)m

]

(2.2.34)

(c) To find UMVUE of eN

Now

eN =
∞∑

j=0

Nj

j! (2.2.35)

Using (2.2.32), UMVUE of eN is

eN̂ =
∞∑

j=0

1

j!

[
Xm+j

(m) − (X(m) − 1)m+j

Xm
(m) − (X(m) − 1)m

]

Remark UMVUE of eN �= eN̂

Example 2.2.8 Let X1,X2, . . . ,Xm be iid rvs with power series distribution.

P(X = x) = a(x)θx

c(θ)
; x = 0, 1, 2, . . . (2.2.36)

where c(θ) =∑∞
x=0 a(x)θ

x.
This distribution belongs to exponential family.
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Therefore, T = ∑
Xi is sufficient and complete for θ. In this case, we will find

UMVUE of θr

[c(θ)]s (r, s �= 0).
This distribution of T is again a power series distribution, see Roy and Mitra (1957),
and Patil (1962)

P(T = t) = A(t,m)θt

[c(θ)]m , (2.2.37)

where A(t,m) = ∑

(x1,x2,...,xm)

m∏

i=1
a(xi)

Let U(t) be an unbiased estimator of θr

[c(θ)]s

∞∑

t=0

u(t)
A(t,m)θt

[c(θ)]m = θr

[c(θ)]s (2.2.38)

∞∑

t=0

u(t)
A(t,m)θt−r

[c(θ)]m−s
= 1

∞∑

t=0

u(t)
A(t,m)

A(t − r,m − s)

A(t − r,m − s)θt−r

[c(θ)]m−s
= 1

Now

u(t)
A(t,m)

A(t − r,m − s)
= 1

This implies

U(t) =
{ A(t−r,m−s)

A(t,m)
; t ≥ r, m ≥ s

0 ; otherwise
(2.2.39)

Example 2.2.9 Let X1,X2, . . . ,Xm be iid rvs with G(p, 1
θ
).

Let

f (x, θ) = e− x
θ xp−1

θp�(p)
; x > 0, p > 0, θ > 0 (2.2.40)

Now gamma distribution belongs to an exponential family. T = ∑
Xi is sufficient

and complete for θ.

The distribution of T is

f (t) = e− t
θ tmp−1

θmp�(mp)
; t > 0, p > 0, θ > 0 (2.2.41)

We have to find UMVUE of (i) e− k
θ θr (ii) P(X ≥ k)

(i) Let u(t) be an unbiased estimator of e− k
θ θr
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∞∫

0

u(t)
e− t

θ tmp−1

θmp�(mp)
= e− k

θ θr

∞∫

0

u(t)
e− t−k

θ tmp−1

θmp+r�(mp)
= 1

∞∫

k

(

u(t)
tmp−1�(mp + r)

(t − k)mp+r−1�(mp)

)(
e− t−k

θ (t − k)mp+r−1

θmp+r�(mp + r)

)

dt = 1

Then,

u(t)
tmp−1�(mp + r)

(t − k)mp+r−1�(mp)
= 1

u(t) =
{

(t−k)mp+r−1�(mp)
tmp−1�(mp+r) ; t > k, mp > −r

0 ; otherwise
(2.2.42)

(ii) We have to find UMVUE of P[X ≥ k]. Note that

P[X ≥ k] =
∞∫

k

e− x
θ xp−1

θp�(p)
dx

Let

Y =
{
1 ; X1 ≥ k
0 ; otherwise

E(Y) = P[X1 ≥ k]

Hence Y is unbiased estimator for P[X1 ≥ k]. We have seen in Sect. 2.2 that [EY |T =
t] is an estimator and has minimum variance.
So E[Y |T = t] = P[X1 ≥ k|T = t]. Nowwewill require the distribution ofX1|T = t

P[X1|T = t] = f (x1)f (t1)

f (t)
, where T1 =

m∑

i=2

Xi

Distribution of (T1 = t1) = f (t1)

f (t1) = e− t1
θ t(m−1)p−1

1

�((m − 1)p)θ(m−1)p
; t1 ≥ 0
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P[X1|T = t] = e− x1
θ xp−1

1

�(p)θp
e− t1

θ t(m−1)p−1
1

�((m − 1)p)θ(m−1)p

�(mp)θmp

e− t
θ tmp−1

=
( x1

t

)p−1 (
1 − x1

t

)(m−1)p−1

tβ(p, (m − 1)p)
; 0 ≤ x1

t
≤ 1 (2.2.43)

E[Y |T = t] = P[X1 ≥ k|T = t] =
t∫

k

( x1
t

)p−1 (
1 − x1

t

)(m−1)p−1

tβ(p, (m − 1)p)
dx1

Let x1
t = w

=
1∫

k
t

wp−1(1 − w)(m−1)p−1

β(p, (m − 1)p)
dw

= 1 −
k
t∫

0

wp−1(1 − w)(m−1)p−1

β(p, (m − 1)p)
dw (2.2.44)

P[X1 ≥ k|T = t] =
{
1 − I k

t
(p,mp − p) ; 0 < k < t

0 ; k ≥ t

Now

P[X ≥ k] =
∞∫

k

e− x
θ xp−1

θp�(p)
dx

1 − I k
θ
(p) = Incomplete Gamma function. (2.2.45)

Hence UMVUE of 1− I k
θ
(p) is given by incomplete Beta function 1− I k

t
(p,mp−p).

Note: Student should use R or Minitab software to calculate UMVUE.

Example 2.2.10 Let X1,X2, . . . ,Xm be iid rvs with the following pdfs.

1. f (x|λ) = λ
(1+x)λ+1 ; x > 0

2. f (x|λ) = λxλ−1; 0 < x < 1, λ > 0
3. f (x|λ) = 1

2λe
|x|
λ ; x > 0, λ > 0

4. f (x|λ) = α
λ
xα−1e− xα

λ ; x > 0, λ > 0, α > 0

5. f (x|λ) = 1√
2πλ

e− x2

2λ ; x > 0, λ > 0
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(i) Let Y = log(1 + x) then f (y|λ) = λe−λy; y > 0, λ > 0

The UMVUE of λr is given as

u(t) = t−r�(m)

�(m − r)
; m > r (2.2.46)

Consider r = 1 then we will get UMVUE of λ,

λ̂ = m − 1

T
(2.2.47)

(ii) Let Y = − logX then f (y|λ) = λe−λy; y > 0, λ > 0
We will get the UMVUE of λr in (2.2.46) and for r = 1, UMVUE of λ is given in
(2.2.47)
(iii) Let |x| = y then f (y|λ) = λe−λy; y > 0, λ > 0
In the same way as (i) and (ii) we can obtain the UMVUE of λ−r .
(iv) Let xα = y then f (y|λ) = 1

λ
e− y

λ ; y > 0, λ > 0
In the same way as (i) and (ii), we can obtain the UMVUE of λr (here θ = λ).

(v) Let x2

2 = y then f (y|λ) = e− y
λ y− 1

2

�( 1
2 )λ

1
2
; y > 0, λ > 0

In this case p = 1
2 and θ = λ.

Similarly, we can obtain the UMVUE of λr .

Example 2.2.11 Let X1,X2, . . . ,Xm be iid rvs withN(μ,σ2). We will consider three
cases

(i) μ known,σ2 unknown

(ii) μ unknown,σ2 known

(iii) μ and σ2 both unknown

(i) Normal distribution belongs to exponential family.
T =∑m

i=1(Xi − μ)2 is complete and sufficient for σ2.

∑m
i=1(Xi − μ)2

σ2
has χ2 with m df (2.2.48)

Hence, E T
σ2 = m. This implies that UMVUE of σ2 is σ̂2 =

∑
(Xi −μ)2

m

Let σ2 = θ and Y = T
θ

Then

f (y) = e− y
2 y

m
2 −1

2
m
2 �
(
m
2

) ; y > 0

To find the unbiased estimator of θr . Let u(y) be an unbiased estimator of θr .
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∞∫

0

u(y)
e− y

2 y
m
2 −1

2
m
2 �
(
m
2

)dy = θr = tr

yr

∞∫

0

u(y)

tr
e− y

2 y
m
2 +r−1

2
m
2 �
(
m
2

) dy = 1

∞∫

0

(
u(y)

tr
�
(
m
2 + r

)
2

m
2 +r

2
m
2 �
(
m
2

)

)
e− y

2 y
m
2 +r−1

2
m
2 +r�

(
m
2 + r

)dy = 1

Now (
u(y)

tr
�
(
m
2 + r

)
2

m
2 +r

2
m
2 �
(
m
2

)

)

= 1

u(y) = tr�
(
m
2

)

2r�
(
m
2 + r

) ; r = 1, 2, . . . (2.2.49)

Particular cases: r = 1

u(y) = t�
(
m
2

)

2�
(
m
2 + 1

) = t

(2)
(
m
2

) = t

m

=
∑

(Xi − μ)2

m
(2.2.50)

Therefore,
∑

(Xi−μ)2

m is the UMVUE of σ2.
Next, we will find the UMVUE of P[X1 ≥ k]

P[X1 ≥ k] = P

[
X1 − μ

σ
≥ k − μ

σ

]

= 1 − P

[
X1 − μ

σ
<

k − μ

σ

]

= 1 − �

[
k − μ

σ

]

(2.2.51)

Define

Y1 =
{
1 ; X1 ≥ k
0 ; otherwise

EY1 = P[X1 ≥ k]
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According to Rao–Blackwell theorem, we have to find P[X1 ≥ k|T = t].
For this we will have to find the distribution of X1 given T = t. Then it is necessary
to find the joint distribution of X1 and T = t
Let T = (X1 − μ)2 + Z and T

σ2 has χ2
m. So Z = T − (X1 − μ)2 then Z

σ2 has χ2
m−1. Let

y = z
σ2 . Then

f (y) = e− y
2 y

m−1
2 −1

2
m−1
2 �

(
m−1
2

)

f (z) = e− z
2σ2 z

m−1
2 −1

2
m−1
2 �

(
m−1
2

)
σm−1

; z > 0 (2.2.52)

f (x1, t) = f (x1)f (z)

= e− (x1−μ)2

2σ2 e− [z−(x1−μ)2 ]
2σ2 [t − (x1 − μ)2] m−1

2 −1

(σ
√
2π)2

m−1
2 �

(
m−1
2

)
σm−1

= e− t
2σ2
[
t − (x1 − μ)2

] m−1
2 −1

2
m
2 �
(
m−1
2

)
σm

√
π

(2.2.53)

f (t) = e− t
2σ2 t

m
2 −1

2
m
2 �
(
m
2

)
σm

f (x1|T = t) =
⎧
⎨

⎩

�( m
2 )[t−(x1−μ)2]

m−1
2 −1

�( 1
2 )t

m
2 −1

�( m−1
2 )

; μ − √
t < x1 < μ + √

t

0 ; otherwise
(2.2.54)

Note that
√

π = �
(
1
2

)

Consider

[
t − (x1 − μ)2

] m−1
2 −1

t
m
2 −1

=
t
m−1
2 −1

[

1 −
(
x1−μ√

t

)2
] m−1

2 −1

t
m
2 −1

= t−
1
2

[

1 −
(
x1 − μ√

t

)2
] m−1

2 −1
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P[X1 ≥ k|T = t] =
μ+√

t∫

k

t− 1
2

[

1 −
(
x1−μ√

t

)2
] m−1

2 −1

β
(
1
2 ,

m−1
2

) dx1

Let
(
x1−μ√

t

)2 = v ⇒ 2√
t

(
x1−μ√

t

)
dx1 = dv

⇒ dx1 =
√
t

2 v− 1
2 dv

when X1 = k ⇒ v =
(
k−μ√

t

)2
and X1 = μ + √

t ⇒ v = 1

= 1

2

1∫

(
k−μ√

t

)2

v− 1
2 (1 − v)

m−1
2 −1

β
(
1
2 ,

m−1
2

) dv

Hence

2P[X1 ≥ k|T = t] = 1 −

(
k−μ√

t

)2

∫

0

v− 1
2 (1 − v)

m−1
2 −1

β
(
1
2 ,

m−1
2

) dv

P[X1 ≥ k|T = t] = 1

2
− 1

2
I( k−μ√

t

)2

(
1

2
,
m − 1

2

)

UMVUE of P[X1 ≥ k] = 1 − �

(
k − μ

σ

)

is P[X1 ≥ k|T = t]

P[X1 ≥ k|T = t] =

⎧
⎪⎨

⎪⎩

1
2 − 1

2 I( k−μ√
t

)2
(
1
2 ,

m−1
2

) ; μ − √
t < k < μ + √

t

1 ; k < μ − √
t

0 ; k > μ + √
t

(2.2.55)

(ii) For σ known,
∑

Xi or X̄ is complete and sufficient for μ. The distribution of

X̄ ∼ N
(
μ, σ2

m

)
.

Now, EX̄ = μ and EX̄2 = μ2 + σ2

n

E

(

X̄2 − σ2

m

)

= μ2

Hence, (

X̄2 − σ2

m

)

is UMVUE for μ2 (2.2.56)

For (2.2.56), see Example 2.2.3.
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E(X̄r) =
∞∫

−∞
x̄r

√
m

σ
√
2π

e− m
2σ2

(x̄−μ)2dx̄

Let w = (x̄−μ)
√
m

σ
⇒ x̄ = μ + wσ√

m

=
∞∫

−∞

(

μ + wσ√
m

)r 1√
2π

e− w2

2 dw

Since odd moments of w are 0

=
∞∫

−∞

[(
wσ√
m

)r

+
(
r

1

)(
wσ√
m

)r−1

μ +
(
r

2

)(
wσ√
n

)r−2

μ2 + · · · + μr

]
e− w2

2√
2π

dw

= σr

m
r
2
μr +

(
r

1

)
σr−1

m
r−1
2

μr−1μ +
(
r

2

)
σr−2

m
r−2
2

μr−2μ
2 · · · + μr

μr =
{
0 ; r is odd
(r − 1)(r − 3) . . . 1 ; r is even

Particular cases: (a) r = 3 (b) r = 4
(a) r = 3

E(X̄3) = σ3

m
3
2

μ3 +
(
3

1

)
σ2μ2μ

m
+
(
3

2

)
σμ1μ

2

m
1
2

+ μ3

= 3
σ2μ

m
+ μ3

UMVUE of μ3 = X̄3 − 3
σ2μ

m
(2.2.57)

(b) r = 4

E(X̄4) = σ4

m2
μ4 +

(
4

1

)
σ3

m
3
2

μ3(μ) +
(
4

2

)
σ2

m
μ2(μ)2 +

(
4

3

)
σ

m
1
2

μ1(μ)3 + μ4

μ4 = (4 − 1)(4 − 3) = 3, μ3 = 0, μ2 = 1

E(X̄4) = 3σ4

m2
+ 6σ2

m
(μ)2 + μ4
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UMVUE of μ4 is

X̄4 − 3σ4

m2
− 6

σ2(μ)2

m

= X̄4 − 3σ4

m2
− 6σ2

m

(

x̄2 − σ2

m

)

(2.2.58)

Similarly, we can find UMVUE of μr(r ≥ 1)
Next, find the UMVUE of P[X1 ≥ k]
Again define

Y1 =
{
1 ; X1 ≥ k
0 ; otherwise

EY1 = P[X1 ≥ k]

According to Rao–Blackwell theorem, we have to find P[X1 ≥ k|T = t] where T =∑m
i=1 Xi and T1 = ∑m

i=2 Xi. T ∼N(mμ,mσ2) and T1 ∼N
(
(m − 1)μ, (m − 1)σ2

)

f (x1, t) = f (x1)f (t1)

f (x1, t) = 1

σ
√
2π

e− (x1−μ)2

2σ2
1

σ
√
2π(m − 1)

e
− [t1−(m−1)μ]2

2(m−1)σ2

f (t) = 1

σ
√
2πm

exp

[

− 1

2mσ2
(t − μ)2

]

f (x1|T = t) = 1

σ
√
2π
√

m−1
m

e
− m

2(m−1)σ2
(x1− t

m )2 (2.2.59)

Therefore, (X1|T = t) has N
(

t
m , (m−1)σ2

m

)

To find P[X1 ≥ k|T = t]

= 1 − �

⎛

⎝
k − t

m

σ
√

m−1
m

⎞

⎠

= 1 − �

⎛

⎝ k − x̄

σ
√

m−1
m

⎞

⎠ (2.2.60)

We conclude that �

(
k−x̄

σ
√

m−1
m

)

is UMVUE of �
(
k−μ
σ

)
.
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(iii) Both μ and σ are unknown
(x̄, S2) is jointly sufficient and complete for (μ,σ2) because normal distribution
belongs to exponential family where S2 =∑(xi − x̄)2.
Now, S2

σ2 has χ2 distribution with m − 1 df.

Let S2

σ2 = y then EYr = �( m−1
2 +r)

�( m−1
2 )

2r

Hence

E(S2)r = �
(
m−1
2 + r

)

�
(
m−1
2

) (2σ2)r (2.2.61)

Therefore,
�( m−1

2 )S2

�( m−1
2 +r)2r

is UMVUE of σ2r

Particular case: (a) r = 1
2 (b)r = 1

(a)

σ̂ = �
(
m−1
2

)
S

�
(
m−1
2 + 1

2

)
2

1
2

(b)

σ̂2 = �
(
m−1
2

)
S2

�
(
m−1
2 + 1

2

)
2

= S2

m − 1

E(X̄2) = μ2 + σ2

m

Then

E

[

X̄2 − S2

m(m − 1)

]

= μ2

So that

UMVUE of μ2 is X̄2 − S2

m(m − 1)
(2.2.62)

Next,

E(X̄3) = μ3 + 3σ2

n
μ

E

[

X̄3 − 3x̄S2

m(m − 1)

]

= μ3

[X̄3 − 3x̄S2

m(m − 1)
] is UMVUE of μ3 (2.2.63)



72 2 Unbiased Estimation

Similarly, one can obtain UMVUE of μr(r ≥ 1)
(c) r = −1

UMVUE of
1

σ2
= σ̂−2

= �
(
m−1
2

)

�
(
m−1
2 − 1

)
S−2

2−1

= m − 3

S2
; m > 3 (2.2.64)

Next, we will find the UMVUE of P[X1 ≥ k]

P[X1 ≥ k] = 1 − �

(
k − μ

σ

)

As usual

Y =
{
1 ; X1 ≥ k
0 ; otherwise

(2.2.65)

EY = P[X1 ≥ k] = 1 − �

(
k − μ

σ

)

As we have done earlier,

E(Y |X̄, S2) = P[X1 ≥ k|X̄, S2]

We need to find the distribution of (X1, X̄, S2).
Consider the following orthogonal transformation:

z1 = 1√
m

(x1 + x2 + · · · + xm) = √
mx̄

z2 =
[(

1 − 1

m

)

x1 − x2
m

− · · · − xm
m

]√
m

m − 1

zi = ci1x1 + ci2x2 + · · · + cimxm i = 3, 4, . . . ,m

where
∑m

j=1 cij = 0, i = 3, 4, . . . ,m and
∑m

j=1 cjj
2 = 1

z1 ∼ N(
√
mμ,σ2) (2.2.66)

zr ∼ N(0,σ2) r = 2, 3, . . . , n
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Let Z = PX, where P is an orthogonal matrix

Z ′Z = X ′P′PX = X ′X

Hence,
m∑

i=1

zi
2 =

m∑

i=1

xi
2 (2.2.67)

m∑

i=3

zi
2 =

m∑

i=1

xi
2 − z1

2 − z2
2

=
m∑

i=1

xi
2 − mx̄2 − z2

2 = S2 − z2
2

Let v = S2 − z2
2,

where v =∑m
i=3 zi

2

Let z1 = √
mx̄, z2 =

√
m

m−1 (x1 − x̄), v = S2 − z22

J = ∂(z1, z2, v)

∂(x1, x̄, S2)

=
⎛

⎜
⎝

∂z1
∂x1

∂z1
∂x̄

∂z1
∂S2

∂z2
∂x1

∂z2
∂x̄

∂z2
∂S2

∂v
∂x1

∂v
∂x̄

∂v
∂S2

⎞

⎟
⎠

J =
⎛

⎜
⎝

0
√
m 0√

m
m−1 −

√
m

m−1 0

0 0 1

⎞

⎟
⎠ = − m√

m − 1

Therefore,

|J| = m√
m − 1

f (z1, z2, v) = e− (z1−√
mμ)2

2σ2

σ
√
2π

e− (z2)2

2σ2

σ
√
2π

e− v

2σ2 v
m−2
2 −1

�
(
m−2
2

)
2

m−2
2 σm−2

|J| (2.2.68)
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Note that v
σ2 ∼ χ2

m−3

f (x1|x̄, S2) = f (z1, z2, v)

f (x̄, S2)

= |J|
exp
[

(z1−√
mμ)2

2σ2 − z22
2σ2 − v

2σ2

]

exp
[
− m

2σ2 (x̄ − μ)2 − s2
2σ2

]
v

m−2
2 −1 σ√

n

√
2π2

m−1
2 σm−1�

(
m−1
2

)

σm(2π)�
(
m−2
2

)
2

m−2
2 (s2)

m−1
2 −1

Consider

exp

[

− m

2σ2
(x̄ − μ)2 − m

m − 1

(x1 − x̄)2

2σ2
− S2

2σ2
+ m

m − 1

(x1 − x̄)2

2σ2
+ m

2σ2
(x̄ − μ)2 + S2

2σ2

]

= 1

f (x1|x̄, S2) = m√
m − 1

2
m−1
2 �

(
m−1
2

)

√
m

√
2π

v
m−2
2 −1

�
(
m−2
2

)
2

m−1
2 (S2)

m−1
2 −1

= m2
1
2

2
1
2

√
m−1√π

�
(
m−1
2

)

�
(
m−2
2

)
[S2 − m

m−1 (x1 − x̄)2] m−2
2 −1

(S2)
m−1
2 −1√m

= m√
m − 1

�
(
m−1
2

)

�
(
1
2

)
�
(
m−2
2

)
[S2 − m

m−1 (x1 − x̄)2] m−2
2 −1

(S2)
m−1
2 −1

=
√
m√

m − 1

[S2 − m
m−1 (x1 − x̄)2] m−2

2 −1

(S2)
m−1
2 −1β

(
1
2 ,

m−2
2

) (2.2.69)

=
√

m

m − 1

√
m−1
2

�
(
1
2

)
�
(
m−2
2

)
[S2 − m

m−1 (x1 − x̄)2] m−2
2 −1

(S2)
m−1
2 −1

=
√

m

m − 1

1

β
(
1
2 ,

m−2
2

)

(
1

S2

) m−1
2 −1

[S2 − m(x1 − x̄)2] m−2
2 −1

=
√

m

m − 1

1

β
(
1
2 ,

m−2
2

) (S2)−
1
2

[

1 − m

m − 1

(
x1 − x̄

S

)2
] m−2

2 −1

(2.2.70)

Now

S2 >
m

m − 1
(x1 − x̄)2 ⇒ (m − 1)S2

m
> (x1 − x̄)2
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This implies that |x1 − x̄| < S
√

m−1
m

Hence,

x̄ − S

√
m − 1

m
≤ x1 ≤ x̄ + S

√
m − 1

m
(2.2.71)

P[X1 ≥ k|T = t] =
x̄+S

√
m−1
m∫

k

1

β
(
1
2 , m−2

2

)

√
m

m − 1
(S2)−

1
2

[

1 − m

m − 1

(
x1 − x̄

S

)2
]m−2

2 −1

dx1

Let m
m−1

(x1−x̄)2

S2 = t, 2m
m−1

(x1−x̄)
S2 dx1 = dt, and dx1 = m−1

2m
S2

(x1−x̄)dt

=
1∫

m
m−1 (

k−x̄
S )

2

1

2β
(
1
2 ,

m−2
2

) [1 − t] m−2
2 −1t−

1
2 dt (2.2.72)

UMVUE of P[X1 ≥ k] is

P[X1 ≥ k|x̄, S2] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 ; k > x̄ + S
√

m−1
m

x̄+S
√

m−1
m∫

k
f (x1|x̄, S2)dx1 ; x̄ − S

√
m−1
m ≤ x1 ≤ x̄ + S

√
m−1
m

1 ; k > x̄ − S
√

m−1
m

(2.2.73)

Further, if x̄ − S
√

m−1
m ≤ x1 ≤ x̄ + S

√
m−1
m

x̄+S
√

m−1
m∫

k

f (x1|x̄, s2)dx1 = 1

2

[

1 − I m
m−1 (

k−x̄
s )

2

(
1

2
,
m − 2

2

)]

(2.2.74)

where I is an incomplete Beta distribution.

2.3 UMVUE in Nonexponential Families

This section is devoted to find UMVUE from right, left, and both truncation families.
One can see Tate (1959), Guenther (1978), and Jadhav (1996).

Example 2.3.1 Let X1,X2, . . . ,Xm be iid rvs from the following pdf:

f (x|θ) =
{
Q1(θ)M1(x) ; a < x < θ
0 ; otherwise

(2.3.1)
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where M1(x) is nonnegative and absolutely continuous over (a, θ) and Q1(θ) =
[∫ θ

a M1(x)dx
]−1

, Q1(θ) is differentiable everywhere.

The joint pdf of X1,X2, . . . ,Xm is

f (x1, x2, . . . , xm|θ) = [Q1(θ)]m
m∏

i=1

M1(xi)I(θ − x(m))I(x(1) − a)

where

I(y) =
{
1 ; y > 0
0 ; y ≤ 0

By factorization theorem, X(m) is sufficient for θ. The distribution of X(m) is w(x|θ),
where

w(x|θ) = m[F(x)]m−1f (x) (2.3.2)

Now
θ∫

a

Q1(θ)M1(x)dx = 1

This implies
θ∫

a

M1(x)dx = 1

Q1(θ)

Then
x∫

a

M1(x)dx = 1

Q1(x)
(2.3.3)

This implies F(x) = Q1(θ)
Q1(x)

From (2.3.2)

w(x|θ) = m[Q1(θ)]mM1(x)

[Q1(x)]m−1
, a < x < θ (2.3.4)

Let h(x) be a function X(m). Now, we will show that X(m) is complete.

E[h(x)] =
θ∫

a

h(x)
[Q1(θ)]mM1(x)

[Q1(x)]m−1
dx = 0 (2.3.5)
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Consider the following result
Let f = f (x|θ), a = a(θ), b = b(θ)

d

dθ

⎡

⎣

b∫

a

fdx

⎤

⎦ =
b∫

a

df

dθ
dx + f (b|θ)db

dθ
− f (a|θ)da

dθ
(2.3.6)

Now,

θ∫

a

h(x)
M1(x)

[Q1(x)]m−1
dx = 0 (2.3.7)

Using (2.3.6),

dh(x) M1(x)
[Q1(x)]m−1

dθ
= 0 (2.3.8)

Differentiating (2.3.7) with respect to θ

h(θ)M1(θ)

[Q1(θ)]m−1
= 0 and, M1(θ) and Q1(θ) �= 0

Hence h(θ) = 0 for a < x < θ.
This implies h(x) = 0 for a < x < θ.
We will find UMVUE of g(θ). Let U(x) be an unbiased estimator of g(θ).

θ∫

a

u(x)
m[Q1(θ)]mM1(x)

[Q1(x)]m−1
dx = g(θ)

θ∫

a

u(x)
M1(x)

[Q1(x)]m−1
dx = g(θ)

m[Q1(θ)]m (2.3.9)

Differentiating (2.3.9) with respect to θ

u(θ)M1(θ)

[Q1(θ)]m−1
= 1

m

[
g(1)(θ)

[Q1(θ)]m + g(θ)[Q(1)
1 (θ)](−m)

[Q1(θ)]m+1

]

= 1

m

[
g(1)(θ)

[Q1(θ)]m − mg(θ)Q(1)
1 (θ)

[Q1(θ)]m+1

]

(2.3.10)
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where g(1)(θ) = First derivative of g(θ)
Q(1)

1 (θ) = First derivative of Q1(θ)
Now

θ∫

a

M1(x)dx = 1

Q1(θ)
(2.3.11)

Differentiating (2.3.11) with respect to θ

M1(θ) = −Q(1)
1 (θ)

Q2
1(θ)

(2.3.12)

Substitute (2.3.12) in (2.3.10),

u(θ)M1(θ)

[Q1(θ)]m−1
= 1

m

[
g(1)(θ)

[Qm
1 (θ)] + mg(θ)M1(θ)

[Q1(θ)]m−1

]

u(θ) = g(1)(θ)

m[Qm
1 (θ)]

[Q1(θ)]m−1

M1(θ)
+ g(θ)M1(θ)

[Q1(θ)]m−1

[Q1(θ)]m−1

M1(θ)

= g(1)(θ)

mQ1(θ)M1(θ)
+ g(θ) ∀ θ

Therefore,

u(x(m)) = g(1)(x(m))

mQ1(x(m))M1(x(m))
+ g(x(m)) (2.3.13)

We can conclude that U(x(m)) is UMVUE of g(θ).
Particular cases:
(a)

f (x|θ) =
{

1
θ

; 0 < x < θ
0 ; otherwise

(2.3.14)

Comparing (2.3.14) with (2.3.1), Q1(θ) = 1
θ
and M1(x) = 1

In this case we will find UMVUE of θr(r > 0).
Then g(θ) = θr . Using (2.3.13), g(x(m)) = [x(m)]r , g(1)(x(m)) = r[x(m)]r−1,
Q1(x(m)) = 1

x(m)
,M1(x(m)) = 1

u(x(m)) = r(x(m))
r−1

m 1
x(m)

(1)
+ (x(m))

r

= xr(m)

[ r

m
+ 1
]

(2.3.15)
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If r = 1, then

u(x(m)) = m + 1

m
x(m) (2.3.16)

is UMVUE of θ.
(b)

f (x|θ) =
{ aθ

(θ−a)x2 ; a < x < θ

0 ; otherwise
(2.3.17)

In comparing (2.3.17) with (2.3.1), Q1(θ) = aθ
(θ−a) and M1(x) = 1

x2

Let g(θ) = θr (r > 0), g(1)(θ) = rθr−1

Using (2.3.13),

u(x(m)) = rxr−1
(m)

m
(

ax(m)

x(m)−a

) (
1

x2(m)

) + xr(m) (2.3.18)

= xr(m)

[
r(x(m) − a)

am
+ 1

]

(2.3.19)

Put r = 1 in (2.3.19)

u(x(m)) = x(m)

[
x(m) − a

am
+ 1

]

(2.3.20)

is UMVUE of θ
(c)

f (x|θ) = 3x2

θ3
; 0 < x < θ (2.3.21)

In this case M1(x) = 3x2, Q1(θ) = 1
θ3
, g(θ) = θr

u(x(m)) = rxr−1
(m)

m 1
x3(m)

3x2(m)

+ xr(m)

= xr(m)

[
r + 3m

3m

]

(2.3.22)

Put r = 1 in (2.3.22) then U(x(m)) = x(m)

(
3m+1
3m

)
is UMVUE of θ.

(d)

f (x|θ) = 1

θ
; −θ < x < 0 (2.3.23)
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Let
Yi = |Xi|, i = 1, 2, . . . ,m (2.3.24)

then Y1,Y2, . . . ,Ym are iid rvs with ∪(0, θ).
From (2.3.15), UMVUE of θr is u(y(m)), hence

u(y(m)) = yr(m)

[ r

m
+ 1
]

(2.3.25)

Example 2.3.2 Let X1,X2, ldots,Xm be iid rvs from the following pdf:

f (x|θ) =
{
Q2(θ)M2(x) ; θ < x < b
0 ; otherwise

(2.3.26)

where M2(x) is nonnegative and absolutely continuous over (θ, b) and Q2(θ) =
[∫ b

θ M2(x)dx
]−1

, Q2(θ) is differentiable everywhere.

The joint pdf of X1,X2, . . . ,Xm is

f (x1, x2, . . . , xm|θ) = [Q2(θ)]m
m∏

i=1

M2(xi)I(θ − x(1))I(x(m) − b)

By factorization theorem, X(1) is sufficient for θ. The distribution of X(1) is w(x|θ),
where

w(x|θ) = m[1 − F(x)]m−1f (x) (2.3.27)

Now
b∫

θ

M2(x)dx = 1

Q2(θ)

This implies then
b∫

x

M2(x)dx = 1

Q2(x)
(2.3.28)

1 − F(x) = P[x ≥ x] =
b∫

x

Q2(θ)M2(x)dx

= Q2(θ)

Q2(x)
(2.3.29)
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w(x|θ) = m
[Q2(θ)]mM2(x)

[Q2(x)]m−1
, θ < x < b (2.3.30)

Using (2.3.6), we can get

h(θ)M2(θ)

[Q2(θ)]m−1
= 0 and M2(θ),Q2(θ) �= 0

Hence h(θ) = 0 for θ < x < b
This implies h(x) = 0 for θ < x < b
We conclude that X(1) is complete.
Let U(x) be an unbiased estimator of g(θ).

b∫

θ

u(x)
m[Q2(θ)]mM2(x)

[Q2(x)]m−1
dx = g(θ)

Using (2.3.6)

− u(θ)M2(θ)

[Q2(θ)]m−1
= 1

m

[
g(1)(θ)

[Q2(θ)]m − mg(θ)[Q(1)
2 (θ)]

[Q2(θ)]m+1

]

(2.3.31)

Now,
b∫

θ

M2(x)dx = 1

Q2(θ)
(2.3.32)

Differentiating (2.3.32) with respect to θ

M2(θ) = Q(1)
2 (θ)

Q2(θ)
(2.3.33)

Substituting (2.3.33) into (2.3.31)

u(θ) = g(θ) − 1

m

g(1)(θ)

Q2(θ)M2(θ)

Hence

u(x(1)) = g(x(1)) − 1

m

g(1)(x(1))

Q2(x(1))M2(x(1))
(2.3.34)

Particular cases:
(a)



82 2 Unbiased Estimation

f (x|θ) =
(
1
θ

) (
θ
x

)2

1 − θ
b

; θ < x < b (2.3.35)

Here Q2(θ) = θ
1− θ

b

and M2(x) = x−2

We wish to find UMVUE of g(θ) = θr using (2.3.31),

u(x(1)) = xr(1) − 1

m

rxr−1
(1)(

x(1)

1− x(1)
b

x−2
(1)

)

= xr(1)

[

1 − 1

m

r(b − x(1))

b

]

For r = 1

u(x(1)) = x(1)

[

1 − b − x(1)

mb

]

(2.3.36)

(b)

f (x, θ) =
{

e−x

e−θ−e−b ; θ < x < b
0 ; otherwise

(2.3.37)

Comparing (2.3.37) and (2.3.23)
Q2(θ) = (e−θ − e−b)−1 and M2(x) = e−x

To find UMVUE of g(θ) = θr using (2.3.31),

u(x(1)) = xr(1) − 1

m

rxr−1
(1) (e−x(1) − e−b)

e−x(1)

Put r = 1, then UMVUE of θ

u(x(1)) = x(1) − 1

m
ex(1) (e−x(1) − e−b) (2.3.38)

In the following example, wewill findUMVUE from two-point truncation parameter
families. This technique was introduced by Hogg and Craig (1972) and developed
by Karakostas (1985).

Example 2.3.3 Let X1,X2, . . . ,Xm be iid rvs from the following pdf:

f (x|θ1, θ2) =
{
Q(θ1, θ2)M(x) ; θ1 < x < θ2
0 ; otherwise

(2.3.39)

where M(x) is an absolutely continuous function and Q(θ1, θ2) is differentiable
everywhere.
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The joint pdf of X1,X2, . . . ,Xm is

f (x1, x2, . . . , xm|θ1, θ2) = [Q(θ1, θ2)]m
m∏

i=1

M(xi)I(x(1) − θ1)I(θ2 − x(m)) (2.3.40)

By factorization theorem, (x(1), x(m)) is jointly sufficient for (θ1, θ2). Suppose we are
looking for UMVUE of g(θ1, θ2) is such that dg(x(1),x(m))

dx(1)
and dg(x(1),x(m))

dx(m)
both exists.

The joint pdf of (x(1), x(m)) is

f(x(1),x(m))(x, y) =
{
m(m − 1)[F(y) − F(x)]m−2f (x)f (y) ; θ1 < x < y < θ2
0 ; otherwise

(2.3.41)
Now,

θ2∫

θ1

M(x)dx = 1

Q(θ1, θ2)
(2.3.42)

Hence

y∫

x

M(t)dt = 1

Q(x, y)
(2.3.43)

F(y) − F(x) =
y∫

x

Q(θ1, θ2)M(t)dt

= Q(θ1, θ2)

Q(x, y)
(2.3.44)

f (x, y|θ1, θ2) =
{
m(m − 1) [Q(θ1,θ2)]m

[Q(x,y)]m−2M(x)M(y) ; θ1 < x < y < θ2
0 ; otherwise

(2.3.45)

Assume that df (x,y)
dx and df (x,y)

dy both exists.
To prove the completeness of f (x, y|θ1, θ2), let

R(y, θ1) =
y∫

θ1

h(x, y)[Q(x, y)]−(m−2)M(x)dx
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where h(x, y) is any continuous function of (x, y) and

R(θ1, θ2) =
θ2∫

θ1

M(y)R(y, θ1)dy

R(θ1, θ2) =
θ2∫

θ1

y∫

θ1

h(x, y)[Q(x, y)]−(m−2)M(x)M(y)dxdy = 0 (2.3.46)

Hence to prove h(x, y) = 0, i.e., to prove h(θ1, θ2) = 0

∂R(θ1, θ2)

∂θ1
=

θ2∫

θ1

−h(θ1, y)[Q(θ1, y)]−(m−2)M(θ1)M(y)dy (2.3.47)

∂2R(θ1, θ2)

∂θ1∂θ2
= −h(θ1, θ2)[Q(θ1, θ2)]−(m−2)M(θ1)M(θ2) = 0 (2.3.48)

which implies that h(θ1, θ2) = 0. Hence h(x, y) = 0.
Completeness of f (x, y|θ1, θ2) implies that a UMVUE u(x, y) for some function of
θ’s, g(θ1, θ2), say, will be found by solving the integral equation.

g(θ1, θ2) = E[u(x, y)]

That is,

g(θ1, θ2) =
θ2∫

θ1

θ2∫

x

u(x, y)m(m − 1)M(x)M(y)
[Q(θ1, θ2)]m
[Q(x, y)]m−2

dxdy

= [Q(θ1, θ2)]m
θ2∫

θ1

m(m − 1)M(x)

⎧
⎨

⎩

θ2∫

x

u(x, y)M(y)

[Q(x, y)]m−2
dy

⎫
⎬

⎭
dx (2.3.49)

Now, we will have to find the solution of the integral equation (2.3.49).
Since

1

Q(θ1, θ2)
=

θ2∫

θ1

M(x)dx

−
∂Q(θ1,θ2)

∂θ1

[Q(θ1, θ2)]2 = −M(θ1)
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∂Q(θ1, θ2)

∂θ1
= [Q(θ1, θ2)]2M(θ1) (2.3.50)

Let

Q1(θ1, θ2) = Q2(θ1, θ2)M(θ1), (2.3.51)

where Q1(θ1, θ2) = ∂Q(θ1,θ2)
∂θ1

Next,

− ∂Q(θ1,θ2)
∂θ2

Q2(θ1, θ2)
= M(θ2)

−∂Q(θ1, θ2)

∂θ2
= Q2(θ1, θ2)M(θ2)

Let

Q2(θ1, θ2) = −Q2(θ1, θ2)M(θ2) (2.3.52)

where Q2(θ1, θ2) = ∂Q(θ1,θ2)
∂θ2

∂2Q(θ1, θ2)

∂θ1θ2
= Q12(θ1, θ2) = −2Q3(θ1, θ2)M(θ1)M(θ2) (2.3.53)

Differentiating (2.3.49) with respect to θ1,

g1(θ1, θ2) = [Q(θ1, θ2)]m[−m(m − 1)M(θ1)]

⎧
⎪⎨

⎪⎩

θ2∫

θ1

u(θ1, y)M(y)

[Q(θ1, y)]m−2 dy

⎫
⎪⎬

⎪⎭

+ mQm−1(θ1, θ2)Q1(θ1, θ2)

θ2∫

θ1

m(m − 1)M(x)

⎧
⎪⎨

⎪⎩

θ2∫

x

u(x, y)M(y)

[Q(x, y)]m−2 dy

⎫
⎪⎬

⎪⎭
dx

where g1(θ1, θ2) = ∂g
∂θ1

Using (2.3.51)

= mQm+1(θ1, θ2)M(θ1)

θ2∫

θ1

m(m − 1)M(x)

⎧
⎨

⎩

θ2∫

x

u(x, y)M(y)

[Q(x, y)]m−2
dy

⎫
⎬

⎭
dx

− Qm(θ1, θ2)[m(m − 1)M(θ1)]
⎧
⎨

⎩

θ2∫

θ1

u(θ1, y)M(y)

[Q(θ1, y)]m−2
dy

⎫
⎬

⎭
, (2.3.54)
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Using (2.3.49)

g1(θ1, θ2) = mQ(θ1, θ2)M(θ1)g(θ1, θ2)

− m(m − 1)Qm(θ1, θ2)M(θ1)

⎡

⎣

θ2∫

θ1

u(θ1, y)M(y)

[Q(θ1, y)]m−2
dy

⎤

⎦ (2.3.55)

This equation can be written as

θ2∫

θ1

u(θ1, y)M(y)

[Q(θ1, y)]m−2
dy = g1(θ1, θ2) − mQ(θ1, θ2)M(θ1)g(θ1, θ2)

−m(m − 1)[Q(θ1, θ2)]mM(θ1)

= g(θ1, θ2)

(m − 1)[Q(θ1, θ2)]m−1
− g1(θ1, θ2)

m(m − 1)M(θ1)[Q(θ1, θ2)]m (2.3.56)

Differentiating with respect to θ2,

u(θ1, θ2)M(θ2)

[Q(θ1, θ2)]m−2(θ1, θ2)
= g(θ1, θ2)[−(m − 1)]Q[(θ1, θ2)]−(m−1)−1Q2(θ1, θ2)

m − 1

+ g2(θ1, θ2)

(m − 1)[Q(θ1, θ2)]m−1

−
[
g1(θ1, θ2)(−m)[Q(θ1, θ2)]−(m+1)Q2(θ1, θ2)

m(m − 1)M(θ1)

+ g12(θ1, θ2)

m(m − 1)[Q(θ1, θ2)]mM(θ1)

]

(2.3.57)

u(θ1, θ2)M(θ2)

[Q(θ1, θ2)]m−2
= g(θ1, θ2)[−(m − 1)]Q2(θ1, θ2)

(m − 1)[Q(θ1, θ2)]m
+ g2(θ1, θ2)

(m − 1)[Q(θ1, θ2)]m−1

−
[

g1(θ1, θ2)(−m)Q2(θ1, θ2)

m(m − 1)Qm+1(θ1, θ2)M(θ1)

]

− g12(θ1, θ2)

m(m − 1)Qm(θ1, θ2)M(θ1)
(2.3.58)
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u(θ1, θ2)M(θ2)

Qm−2(θ1, θ2)
= g(θ1, θ2)M(θ2)

[Q(θ1, θ2)]m−2

− g1(θ1, θ2)M(θ2)

(m − 1)[Q(θ1, θ2)]m−1M(θ1)

+ g2(θ1, θ2)

(m − 1)[Q(θ1, θ2)]m−1

− g12(θ1, θ2)

m(m − 1)[Q(θ1, θ2)]mM(θ1)
(2.3.59)

u(θ1, θ2) = g(θ1, θ2) − g1(θ1, θ2)

(m − 1)[Q(θ1, θ2)]mM(θ1)

+ g2(θ1, θ2)

(m − 1)M(θ2)Q(θ1, θ2)

− g12(θ1, θ2)

m(m − 1)M(θ1)M(θ2)[Q(θ1, θ2)]2 (2.3.60)

Replacing θ1 by X(1) and θ2 by X(m),

u(X(1),X(m)) = g(X(1),X(m)) − g1(X(1),X(m))

(m − 1)Q(X(1),X(m))M(X(1))

+ g2(X(1),X(m))

(m − 1)M(X(m))Q(X(1),X(m))

− g12(X(1),X(m))

m(m − 1)M(X(1))M(X(m))[Q(X(1),X(m))]2 (2.3.61)

is UMVUE of g(θ1, θ2).
Particular cases:
(a)

f (x|θ1, θ2) =
{ 1

θ2−θ1
; θ1 < x < θ2

0 ; otherwise
(2.3.62)

Comparing (2.3.62) and (2.3.39), Q(θ1, θ2) = 1
θ2−θ1

,M(x) = 1

To find UMVUE of (i) θ1, (ii) θ2, (iii)
θ1−θ2

2 and (iv) θ1+θ2
2

(i) g(θ1, θ2) = θ1, g(X(1),X(m)) = X(1), g1(X(1),X(m)) = 1,
g2(X(1),X(m)) = 0 and g12(X(1),X(m)) = 0
M(X(1)) = M(X(m)) = 1, Q(X(1),X(m)) = 1

X(m)−X(1)
. Using (2.3.61),

u(X(1),X(m)) = X(1) − X(m) − X(1)

(m − 1)
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= mX(1) − X(1) − X(m) + X(1)

(m − 1)

= mX(1) − X(m)

(m − 1)
(2.3.63)

Hence, mX(1)−X(m)

(m−1) is UMVUE of θ1
(ii) g(θ1, θ2) = θ2, g(X(1),X(m)) = X(m), g1(X(1),X(m)) = 0, g2(X(1),X(m)) = 1
and g12(X(1),X(m)) = 0
M(X(1)) = M(X(m)) = 1, Q(X(1),X(m)) = 1

X(m)−X(1)

u(X(1),X(m)) = X(m) + X(m) − X(1)

(m − 1)

= mX(m) − X(m) + X(n) − X(1)

(m − 1)

= mX(m) − X(1)

(m − 1)
(2.3.64)

Hence, mX(m)−X(1)

(m−1) is UMVUE of θ2

(iii) UMVUE of θ1−θ2
2

= mX(1) − X(m) − mX(m) + X(1)

2(m − 1)

= (m + 1)

2(m − 1)
[X(m) − X(1)] (2.3.65)

(iv) UMVUE of θ1+θ2
2

= 1

2

[
mX(1) − X(m)

(m − 1)
+ mX(m) − X(1)

(m − 1)

]

= 1

2(m − 1)

[
(m − 1)X(1) + (m − 1)X(m)

]

= X(m) + X(1)

2
(2.3.66)

(b)

f (x, θ1, θ2) =
{

θ1θ2
θ2−θ1

x−2 ; θ1 < x < θ2
0 ; otherwise

(2.3.67)
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Comparing (2.3.67) to (2.3.39)

Q(θ1, θ2) = θ1θ2

θ2 − θ1
,M(x) = x−2

To find UMVUE of (θ1θ2)
m

g(X(1),X(m)) = [(X(1)X(m)]m, g1(X(1),X(m)) = m[(X(1)X(m)]m−1X(m)

g2(X(1),X(m)) = m[(X(1)X(m)]m−1X(1),

g12(X(1),X(m)) = m(m − 1)[X(1)X(m)]m−2X(1)X(m) + m[X(1)X(m)]m−1

M(X(1)) = X−2
(1) ,M(X(m)) = X−2

(m),Q(X(1),X(m)) = X(1)X(m)

X(m) − X(1)

U(X(1),X(m)) = (X(1)X(m))
m − m[X(1)X(m)]m−1X(m)[X(m) − X(1)]

(m − 1)X(1)X(m)X
−2
(1)

+ m[X(1)X(m)]m−1X(1)[X(m) − X(1)]
(m − 1)X(1)X(m)X

−2
(m)

− m(m − 1)[X(1)X(m)]m−2X(1)X(m) + m[X(m)X(1)]m−1

m(m − 1)X−2
(1)X

−2
(m)X

2
(1)X

2
(m)

[X(m) − X(1)]2

= (X(1)X(m))
m − m[X(m) − X(1)][X(1)X(m)]m−1

(m − 1)X−1
(1)

+ m[X(1)X(m)]m−1[X(m) − X(1)]
(m − 1)X−1

(m)

− [X(1)X(m)]m−1[X(m) − X(1)]2
1

− m[X(1)X(m)]m−1[X(m) − X(1)]2
m(m − 1)X−2

(1)X
−2
(m)X

2
(1)X

2
(m)

= (X(1)X(m))
m − m

m − 1
X(1)[X(m) − X(1)][X(1)X(m)]m−1

+ m

m − 1
X(m)[X(m) − X(1)][X(1)X(m)]m−1 − [X(1)X(m)]m−1[X(m) − X(1)]2

− [X(1)X(m)]m−1[X(m) − X(1)]2
(m − 1)
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= (X(1)X(m))
m + m

m − 1
[X(m) − X(1)]2[X(1)X(m)]m−1

− [X(1)X(m)]m−1[X(m) − X(1)]2 − [X(1)X(m)]m−1[X(m) − X(1)]2
m − 1

= (X(1)X(m))
m + [X(m) − X(1)]2[X(1)X(m)]m−1

[
m

m − 1
− 1 − 1

m − 1

]

= (X(1)X(m))
m (2.3.68)

Hence, (X(1)X(m))
m is UMVUE of (θ1θ2)

m. One should note that MLE of (θ1θ2)
m is

again the same.
Stigler (1972) had obtained an UMVUE for an incomplete family.

Example 2.3.4 Consider the Example 1.5.5.
Further, consider a single observation X ∼ PN .

P[X = k] =
{

1
N ; k = 1, 2, . . . ,N
0 ; otherwise

Now X is sufficient and complete.

EX = N + 1

2
and E[2X − 1] = N

Then, �1(X) = (2X − 1) is UMVUE of N .

V[�1(X)] = N2 − 1

3
(2.3.69)

Now the family ℘ − Pn is not complete, see Example 1.5.5.
We will show that for this family the UMVUE of N is

�2(k) =
{
2k − 1 ; k �= n, k �= n + 1
2n ; k = n, n + 1

(2.3.70)

According to Theorem 2.2.3, we have to show that �2(k) is UMVUE iff it is uncor-
related with all unbiased estimates of zero.
In Example1.5.5, we have shown that g(X) is an unbiased estimator of zero, where

g(x) =
⎧
⎨

⎩

0 ; x = 1, 2, . . . , n − 1, n + 2, n + 3 . . .

a ; x = n
−a ; x = n + 1

(2.3.71)

where a is nonzero constant.

http://dx.doi.org/10.1007/978-981-10-0889-4_1
http://dx.doi.org/10.1007/978-981-10-0889-4_1
http://dx.doi.org/10.1007/978-981-10-0889-4_1
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Case (i) N < n

Eg(X) =
N∑

k=1

g(x)
1

N
= 0

Case (ii) N > n

Eg(X) =
N∑

k=1

1

N
g(x)

= 1

N
[0 + · · · + 0 + (−a) + (a) + 0] = 0

Case (iii) N = n

Eg(X) =
N∑

k=1

g(x)
1

N

= 1

N
[0 + · · · + 0 + (a)] = a

N

Eg(X) =
{
0 ; N = n
a
N ; N = n

Thus we see that g(x) is an unbiased estimate of zero for the family ℘ − Pn and
therefore the family is not complete.
Remark: Completeness is a property of a family of distribution rather than the
random variable or the parametric form, that the statistical definition of “complete”
is related to every day usage, and that removing even one point from a parameter set
may alter the completeness of the family, see Stigler (1972).
Now, we know that the family℘−{Pn} is not complete. Hence�1(X) is not UMVUE
of N for the family ℘ − {Pn}. For this family consider the UMVUE of N as �2(X),
where

�2(X) =
{
2x − 1 ; x �= n, x �= n + 1
2n ; x = n, n + 1

(2.3.72)

According toTheorem2.2.3,�2(X) isUMVUE iff it is uncorrelatedwith all unbiased
estimates of zero.
Already, we have shown that g(x) is an unbiased estimator of zero for the family
℘ − {Pn}.
Since Eg(x) = 0 for N �= n
Now, we have to show that Cov[g(x),�2(X)] = 0.
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Cov[g(x),�2(X)] = E[g(x)�2(X)]

Case (i) N > n

E[g(x)�2(X)] = 1

N

N∑

k=1

g(x)�2(k)

= 1

N
[(0)(2k − 1) + (a)(2n) + (−a)(2n)] = 0

Case (ii) N < n

E[g(x)�2(X)] = 1

N
[(0)(2k − 1)] = 0

Thus, �2(X) is UMVUE of N for the family ℘ − {Pn}.
Note that E�2(X) = N . We can compute the variance of �2(X)

Case (i) N < n

E�2(x) =
N∑

x=1

(2x − 1)
1

N

= 1

N

[
2N(N + 1)

2
− N

]

= N

E�2
2(x) = 1

N

N∑

x=1

(2x − 1)2
1

N

= 1

N

[
N∑

k=1

(4x2 − 4x + 1)

]

= 1

N

[
4N(N + 1)(2N + 1)

6
− 4N(N + 1)

2
+ N

]

= 2(N + 1)(2N + 1)

3
− 2(N + 1) + 1

= 4N2 − 1

3

Var[�2(X)] = 4N2 − 1

3
− N2

= N2 − 1

3
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Case (ii) N > n

E[�2(x)] = 1

N

⎡

⎣
N∑

x=1

�2(x)

⎤

⎦

= 1

N
[�2(1) + �2(2) + · · · + �2(n − 1) + �2(n) + �2(n + 1)

+ �2(n + 2) + · · · + �2(N)]
= 1

N
[1 + 3 + · · · + 2n − 3 + 2n + 2n + 2n + 3 + 2n + 5 + · · · + 2N − 1]

= 1

N
[1 + 3 + · · · + 2n − 3 + (2n − 1 + 2n + 1) + 2n + 3 + · · · + 2N − 1

+ 2n + 2n − (2n − 1 + 2n + 1)]
= 1

N

[
N

2
(1 + 2N − 1) + 0

]

= N

E�2
2(x) = 1

N
[�2

2(1) + �2
2(2) + · · · + �2

2(n − 1) + �2
2(n)

+ �2
2(n + 1) + �2

2(n + 2) + · · · + �2
2(N)]

= 1

N
[12 + 32 + 52 · · · + (2n − 3)2 + {(2n − 1)2 + (2n + 1)2}

+ (2n + 3)2 + (2n + 5)2 + · · · + (2N − 1)2 + (2n)2 + (2n)2 − {(2n − 1)+(2n + 1)2}]

= 1

N

⎡

⎣
N∑

k=1

(2k − 1)2 + 4n2 + 4n2 − 4n2 + 4n − 1 − 4n2 − 4n − 1

⎤

⎦

= 4N2

3
− 1

3
− 2

N

Var[�2(X)] = 4N2

3
− 1

3
− 2

N
− N2 = N2 − 1

3
− 2

N

Var[�2(X)] =
{

N2−1
3 ; N < n

N2−1
3 − 2

N ; N > n
(2.3.73)

Thus �2(X) is UMVUE for ℘ − {Pn} but �2(X) is not unbiased for the family ℘.
Note that for N = n,

E[�2(X)] = 1

n

N∑

x=1

�2(X)

= 1

n
[�2(1) + · · · + �2(n − 1) + �2(n)]

= 1

n
[1 + 3 + · · · + 2n − 3 + 2n]

= 1

n

[
N∑

x=1

(2x − 1)2 + 2n − (2n − 1)

]

= n2 + 1

n
(2.3.74)
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E[�2
2(X)] = 1

n

[
N∑

x=1

(2x − 1)2 + (2n)2 − (2n − 1)2
]

= 4n2 − 1

3
+ 4n − 1

n

Var[�2(X)] = 4n2 − 1

3
+ 4n − 1

n
−
(
n2 + 1

n

)2

Example 2.3.5 Let X1,X2, . . . ,Xm be iid discrete rvs with following pmf f (x|N).
Find the UMVUE of g(N).

f (x|N) =
{

φ(N)M(x) ; a ≤ X ≤ N
0 ; otherwise

(2.3.75)

where
∑N

x=a M(x) = 1
φ(N)

.
According to Example 2.2.7, we can show that X(m) is sufficient and complete for N.

P[X(m) ≤ z] =
[
φ(N)

φ(z)

]m

P[X(m) ≤ z − 1] =
[

φ(N)

φ(z − 1)

]m

P[X(m) = z] = φm(N)[φ−m(z) − φ−m(z − 1)]

Let u(X(m)) is UMVUE of g(N)

N∑

z=a

u(z)φm(N)[φ−m(z) − φ−m(z − 1)] = g(N)

N∑

z=a

u(z)
φm(N)

g(N)
[φ−m(z) − φ−m(z − 1)] = 1

Let ψ(N) = φ(N)

g
1
m (N)

N∑

z=a

u(z)ψm(N)[φ−m(z) − φ−m(z − 1)] = 1
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N∑

z=a

u(z)[φ−m(z) − φ−m(z − 1)]
[ψ−m(z) − ψ−m(z − 1)] ψm(N)[ψ−m(z) − ψ−m(z − 1)] = 1,

Hence

u(z)[φ−m(z) − φ−m(z − 1)]
[ψ−m(z) − ψ−m(z − 1)] = 1,

This implies

u(z) = [ψ−m(z) − ψ−m(z − 1)]
[φ−m(z) − φ−m(z − 1)] ,

Therefore,

u(X(m)) = [ψ−m(X(m)) − ψ−m(X(m) − 1)]
[φ−m(X(m)) − φ−m(X(m) − 1)] ,

We conclude that U(X(m)) is UMVUE of g(N).
Particular cases:
(a) g(N) = Ns, s is a real number.
According to (2.3.75), φ(N) = N−1,M(x) = 1,

ψ(N) = N− (s+m)

m , ψ(X(m)) = X
− (s+m)

m
(m) , φ(X(m)) = X−1

(m).

u(X(m)) = Xm+s
(m) − (X(m) − 1)m+s

Xm
(m) − (X(m) − 1)m

,

which is same as (2.2.32).
(b) g(N) = eN

ψ(N) = N−1e− N
m ⇒ ψ(X(m)) = X−1

(m)e
− X(m)

m

Hence u(X(m)) is UMVUE of eN .
Hence,

u(X(m)) = Xm
(m)e

X(m) − (X(m) − 1)meX(m)−1

Xm
(m) − (X(m) − 1)m

,

Reader should show that the above UMVUE of eN is same as in Example 2.2.7.
Now, we will consider some examples which can be solved using R software.

Example 2.3.6 2, 5, 7, 3, 4, 2, 5, 4 is a sample of size 8 drawn from binomial
distribution B(10,p). Obtain UMVUE of p, p2, p2q, p(x ≤ 2), p(x > 6).



96 2 Unbiased Estimation

a=function (r,s)

{

m<-8

n<-10

x<-c(2,5,7,3,4,2,5,4)

t<-sum(x)

umvue=(choose(m*n-r-s,t-r)/choose(m*n,t))

print(umvue)

}

a(1,0) #UMVUE of p

a(2,0) #UMVUE of pˆ2

a(2,1) #UMVUE of pˆ2*q

b=function(c)

{

m<-8

n<-10

x<-c(2,5,7,3,4,2,5,4)

t<-sum(x)

g<-array(,c(1,c+1))

for (i in 1:c)

{

g[i]=((choose(n,i)*choose(m*n-n,t-i))/choose(m*n,t))

}

g[c+1]=((choose(n,0)*choose(m*n-n,t))/choose(m*n,t))

umvue=sum(g)

print (umvue)

}

b(2)#UMVUE of P(X<=2)

1-b(6)#UMVUE of P(X<=6) & P(X>6)

Example 2.3.7 0, 3, 1, 5, 5, 3, 2, 4, 5, 4 is a sample of size 10 from the Poisson
distribution P(λ). Obtain UMVUE of λ, λ2, λe−λ, and P(x ≥ 4).

d=function (s,r) {

m<-10

x<-c(0,3,1,5,5,3,2,4,5,4)

t<-sum(x)

umvue=((m-s)ˆ(t-r)*factorial(t))/(mˆt*factorial(t-r))

print (umvue) } d(0,1) #UMVUE of lamda d(0,2) #UMVUE of

lamdaˆ2 d(1,1) #UMVUE of lamda*eˆ(-lamda) f=function (c) {

m<-10

x<-c(0,3,1,5,5,3,2,4,5,4)

t<-sum(x)

g<-array(,c(1,c+1))

for (i in 1:c)
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{

g[i]<-(choose(t,i)*(1/m)ˆi*(1-(1/m))ˆ(t-i))

}

g[c+1]=choose(t,0)*(1-(1/m))ˆt

umvue=sum(g)

print (umvue) } 1-f(3) #UMVUE of P(X<4) & P(X>=4)

Example 2.3.8 8, 4, 6, 2, 9, 10, 5, 8, 10, 8, 3, 10, 1, 6, 2 is a sample of size 15 from
the following distribution:

P[X = k] =
{

1
N ; k = 1, 2, . . . ,N
0 ; otherwise

Obtain UMVUE of N5.

h<-function (s) {

n<-15

x<-c(8,4,6,2,9,10,5,8,10,8,3,10,1,6,2)

z<-max(x)

umvue=(zˆ(n+s)-(z-1)ˆ(n+s))/((zˆn)-(z-1)ˆn)

print (umvue) } h(5) #UMVUE of Nˆ5

Example 2.3.9 Lots of manufactured articles are made up of items each of which
is an independent trial with probability p of it being defective. Suppose that four
such lots are sent to a consumer, who inspects a sample of size 50 from each lot. If
the observed number of defectives in the ith lot is 0, 1, or 2, the consumer accepts
this lot. The observed numbers of defectives are 0, 0, 0, 3. Obtain UMVUE of the
probability that a given lot will be accepted.

j=function (c) {

m<-4

n<-50

t<-3

g<-array(,c(1,c+1))

for (i in 1:c)

{

g[i]<-(choose(50,i)*choose((m*n)-n,t-i))/(choose(m*n,t))

}

g[c+1]<-(choose(m*n-n,t))/(choose(m*n,t))

umvue=sum(g)

print (umvue) } j(2) #UMVUE of P(X<=2)
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Example 2.3.10 Let X1,X2, . . .Xn be a sample from NB(1, θ).
Find the UMVUE of d(θ) = P(X = 0), for the data 3, 4, 3, 1, 6, 2, 1, 8

k=function (r,s) {

m<-8

k<-1

x<-c(3,4,3,1,6,2,1,8)

t=sum(x)

umvue=choose(t-s+m*k-r-1,m*k-r-1)/choose(t+m*k-1,t)

print(umvue) } k(1,0) #UMVUE of P(X=0), i.e., p

Example 2.3.11 The following observations were recorded on a random variable X
having pdf:

f (x) =
{

xp−1e− x
σ

σp�(p) ; x > 0, σ > 0, p = 4
0 ; otherwise

7.89, 10.88, 17.09, 16.17, 11.32, 18.44, 3.32, 19.51, 6.45, 6.22.
Find UMVUE of σ3

x1<-function (k,r) {

p<-4

n<-10

y<-c(7.89,10.88,17.09,16.17,11.32,18.44,3.32,19.51,6.45,6.22)

t<-sum(y)

umvue=((gamma(n*p))*(t-k)ˆ(n*p-r-1))/((gamma(n*p-r))*tˆ(n*p-1))

print (umvue) } x1(0,-3) #UMVUE of sigmaˆ3

Example 2.3.12 A random sample of size 10 is drawn from the following pdf:

1.

f (x, θ) =
{ θ

(1+x)θ+1 ; x > 0, θ > 0
0 ; otherwise

Data: 0.10, 0.34, 0.35, 0.08, 0.03, 2.88, 0.45, 0.49, 0.86, 3.88

2.

f (x, θ) =
{

θxθ−1 ; 0 < x < 1
0 ; otherwise

Data: 0.52, 0.79, 0.77, 0.76, 0.71, 0.76, 0.47, 0.35, 0.55, 0.63

3.

f (x, θ) =
{

1
θ
e− |x|

θ ; −∞ < x < ∞
0 ; otherwise
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Data: 9.97, 0.64, 3.17, 1.48, 0.81, 0.61, 0.62, 0.72, 3.14, 2.99
Find UMVUE of θ in (i), (ii), and (iii).

(i)

x2<-function (k,r) {

n<-10

y<-c(0.10,0.34,0.35,0.08,0.03,2.88,0.45,0.49,0.86,3.88)

x<-array(,c(1,10))

for (i in 1:10)

{

x[i]=log(1+y[i])

}

t<-sum(x)

umvue=(((t-k)ˆ(n-r-1))*gamma(n))/((tˆ(n-1))*gamma(n-r))

print (umvue) } x2(0,1) #UMVUE of theta

(ii)

x3<-function (k,r) {

n<-10

y<-c(0.52,0.79,0.77,0.76,0.71,0.76,0.47,0.35,0.55,0.63)

x<-array(,c(1,10))

for (i in 1:10)

{

x[i]=-log(y[i])

}

t<-sum(x)

umvue=(((t-k)ˆ(n-r-1))*gamma(n))/((tˆ(n-1))*gamma(n-r))

print (umvue) } x3(0,1) #UMVUE of theta

(iii)

x4<-function (k,r) {

n<-10

y<-c(9.97,0.64,3.17,1.48,0.81,0.61,0.62,0.72,3.14,2.99)

t<-sum(y)

umvue=(((t-k)ˆ(n-r-1))*gamma(n))/((tˆ(n-1))*gamma(n-r))

print (umvue) } x4(0,-1) #UMVUE of theta

Example 2.3.13 The following observations were obtained on an rv X following:

1. N(θ,σ2)

Data: 5.77, 3.81, 5.24, 8.81, 0.98, 8.44, 3.16, 11.27, 4.40, 4.87, 7.28, 8.48, 6.43,
−0.00, 9.67, 12.04, −5.06, 13.71, 6.12, 4.76
Find UMVUE of θ, θ2, ϑ3 and P(x ≤ 2)
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2. N(6,σ2)

Data: 7.26, −0.23, 7.55, 3.09, 7.62, 16.79, 5.27, 8.46, 5.16, −0.66.
Find UMVUE of 1

σ
, σ, σ2, P(X ≥ 2)

3. N(θ,σ2)

Data: 10.59, −1.50, 6.40, 7.55, 4.70, 1.63, 0.04, 2.96, 6.47, 6.42
Find UMVUE of θ, θ2, θ + 2σ,

(i)

x5<-function (sigsq,n,k)

{x<-c(5.77,3.81,5.24,8.81,0.98,8.44,3.16,11.27,4.4,4.87,7.28,

8.48,6.43,0,9.67,12.04,-5.06,13.71,6.12,4.76)

umvue1=mean(x)

umvue2=umvue1ˆ2-(sigsq/n)

umvue3=umvue1ˆ3-(3*sigsq*umvue1/n)

umvue4=pnorm((k-(mean(x)))/(sqrt((sigsq*((n-1)/n)))))

print (umvue1) #UMVUE of theta

print (umvue2) #UMVUE of thetaˆ2

print (umvue3) #UMVUE of thetaˆ3

print (umvue4) #UMVUE of P(X<=2) } x5(4,20,2)

(ii)

x6<-function (n,r) {

x<-c(7.26,-0.23,7.55,3.09,7.62,16.79,5.27,8.46,5.16,-0.66)

t<-sum((x-6)ˆ2)

umvue=(((tˆr)*gamma(n/2))/((2ˆr)*gamma((n/2)+r)))

print (umvue) } x6 (10,-0.5) #UMVUE of 1/sigma x6 (10,0.5)

#UMVUE of sigma x6 (10,1) #UMVUE of sigmaˆ2

x7<-function (n,k) {

x<-c(7.26,-0.23,7.55,3.09,7.62,16.79,5.27,8.46,5.16,-0.66)

t<-sum((x-6)ˆ2)

umvue<-(1-pbeta(((k-6)/sqrt(t))ˆ2,0.5, ((n-1)/2)))*0.5

print (umvue) } x7(10,2) #UMVUE of P(X>=2)

(iii)

x8<-function(n,r) {

x<-c(10.59,-1.5,6.4,7.55,4.7,1.63,0.04,2.96,6.47,6.42)

s<-sum((x-mean(x))ˆ2)

umvue1<-mean(x) #UMVUE of theta

umvue2<-((sˆ(r))*gamma((n-1)/2))/(gamma(((n-1)/2)+r)*(2ˆr))

#UMVUE of sigmaˆ2

print (umvue1)
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print (umvue2)

print ((umvue1ˆ2)-(umvue2/n))#UMVUE of thetaˆ2

print (umvue1+2*sqrt(umvue2))#UMVUE of theta+2*sigma }

x8(10,1)

Example 2.3.14 If rv X is drawn from U(θ1, θ2). Find the UMVUE of θ1 and θ2
from the following data:
3.67, 2.65, 4.41, 3.48, 2.07, 2.91, 2.77, 4.82, 2.73, 2.98.

x<-c(3.67,2.65,4.41,3.48,2.07,2.91,2.77,4.82,2.73,2.98)

umvue1<-(max(x)-length(x)*min(x))/(1-length(x)) umvue1 #UMVUE

of theta1 umvue2<-(length(x)*max(x)-min(x))/(length(x)-1)

umvue2 #UMVUE of theta1

Example 2.3.15 If rv X is drawn from U(0, θ) Find the UMVUE of θ, θ2, and 1
θ

from the following data:
1.60, 1.91, 3.68, 0.78, 2.52, 4.34, 1.15, 4.69, 1.53, 4.53

x9<-function (n,r) {

x<-c(1.6,1.91,3.68,0.78,2.52,4.34,1.15,4.69,1.53,4.53)

umvue<-((max(x)ˆr)*((n+r)/n))

print (umvue) } x9(10,1) #UMVUE of theta x9(10,2) #UMVUE of

thetaˆ2 x9(10,-1)#UMVUE of (1/theta)

2.4 Exercise 2

1. For the geometric distribution,

f (x|θ) = θ(1 − θ)x−1; x = 1, 2, 3, . . . , 0 < θ < 1

Obtain an unbiased estimator of 1
θ
for a sample of size n. Calculate it for given

data: 6, 1, 1, 14, 1, 1, 6, 5, 2, 2.
2. X1,X2, . . . ,Xn is a random sample from an exponential distribution with mean
θ. Find an UMVUE of exp(− 1

θ
) when t > 1, where T = ∑n

i=1 Xi for the given
data: 0.60, 8.71, 15.71, 2.32, 0.02, 6.22, 8.79, 2.05, 2.96, 3.33
3. Let

f (x|μ,σ) = 1

σ
exp

[

− (x − μ)

σ

]

; x ≥ μ ∈ R and σ > 0

For a sample of size n, obtain
(a) an unbiased estimate of μ when σ is known,
(b) an unbiased estimate of σ when μ is known,
(c) Ten unbiased estimators of σ2 when μ is known.
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4. Let X1,X2, . . . ,Xn be a random sample of size n fromN(μ,σ2), where μ is known
and if T = 1

n

∑n
i=1 |Xi − μ|, examine if T is unbiased for σ and if not obtain an

unbiased estimator of σ.
5. If X1,X2, . . . ,Xn is a random sample from the population

f (x|θ) = (θ + 1)xθ; 0 < x < 1, θ > −1

Prove that
[
− (n−1)∑

lnXi
− 1
]
is an UMVUE of θ.

6. Suppose X has a truncated Poisson distribution with pmf

f (x|θ) =
{ exp[−θ]θx

[1−e−θ]x! ; x = 1, 2
0 ; otherwise

Prove that the only unbiased estimator of [1− e−θ] based on X is the statistic T(X),

T(x) =
{
0 ;when x is odd
2 ;when x is even

[Hint
∞∑

x=1

θ2x

(2x)! = e−θ + eθ

2
− 1]

7. Let X1,X2, . . . ,Xn be iid rvs from f (x|θ),

f (x|θ) =
{
exp[iθ − x] ; x ≥ iθ
0 ; x < iθ

Prove that

T = min
i

[Xi

i
]

is minimal sufficient statistic for θ. If possible obtain the distribution of X1 given T .
Can you find an unbiased estimator of θ? If “Yes,” find and if “No,” explain.
8. Let X1,X2, . . . ,Xn be iid rvs with f (x|μ),

f (x|μ) =
{ 1

2iμ ; −i(μ − 1) < xi < i(μ + 1)
0 ; otherwise

where μ > 0. Find the sufficient statistic for μ. If T is sufficient for μ then find the
distribution of X1,X2 given T . If possible, find an unbiased estimator of μ.
9. If X1,X2, and X3 are iid rvs with the following pmfs:
(a)

f (x|λ) = e−λλx

x! ; x = 0, 1, 2, . . . ,λ > 0

(b)
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f (x|λ) =
(
n

x

)

λx(1 − λ)n−λ; 0 < λ < 1, x = 0, 1, 2, . . . , n

(c)

f (x|λ) = (1 − λ)λx; x = 0, 1, 2, . . . λ > 0

Prove that X1 + 2X2, X2 + 3X3, and X1 + 2X2 +X3 are not sufficient for λ in (a), (b),
and (c). Further, prove that 2(X1 + X2 + X3) is sufficient for λ in (a), (b), and (c).
10. Let X1,X2, . . . ,Xn be iid rvs having∪(θ, 3θ), θ > 0. Then prove that (X(1),X(n))
is jointly minimal sufficient statistic.
11. Let {(Xi,Yi), i = 1, 2, . . . , n} be n independent random vectors having a bivariate
distribution

N =
((

θ1
θ2

)

,

(
σ21 ρσ1σ2

ρσ1σ2 σ22

))

; − ∞ < θ1, θ2 < ∞, σ1,σ2 > 0, − 1 ≤ ρ ≤ 1.

Prove that
(∑

Xi,
∑

X2
i ,
∑

XiYi,
∑

Yi
∑

Y 2
i

)

is jointly sufficient (θ1,σ1, ρ, θ2,σ2).
12. Let the rv X1 is B(n, θ) and X2 is P(θ) where n is known and 0 < θ < 1. Obtain
four unbiased estimators of θ.
13. Let X1,X2, . . . ,Xn are iid rvs with ∪(θ, θ + 1).

(i) Find sufficient statistic for θ

(ii) Show that the sufficient statistic is not complete

(iii) Find an unbiased estimator of θ

(iv) Find the distribution of X1 given T , where T is sufficient for θ

(v) Can you find UMVUE of θ ? If “No,” give reasons.

14. Let X be a rv with pmf

f (x|p) =
(p

2

)|x|
(1 − p)1−|x|; x = −1, 0, 1, 0 < p < 1
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(i) Show that X is not complete.

(ii) Show that |X| is sufficient and complete.

15. Let X1,X2, . . . ,Xn are iid rvs from the following pdf:
(i)

f (x|α) = α

(1 + x)1+α
; x > 0,α > 0

(ii)

f (x|α) = (lnα)αx

α − 1
; 0 < x < ∞,α > 1

(iii)

f (x|α) = exp[−(x − α)]exp[−e−(x−α)]; − ∞ < x < ∞,−∞ < α < ∞

(iv)

f (x|α) = x3e− x
α

6α4
; x > 0,α > 0

(v)

f (x|α) = kxk−1

αk
; 0 < x < α,α > 0

Find a complete sufficient statistic or show that it does not exist.
Further if it exists, then find the distribution of X1 given T , where T is sufficient
statistic. Further, find UMVUE of αr , whenever it exists.
16. Let X1,X2, . . . ,XN are iid rvs with B(1, p), where N is also a random variable
taking values 1, 2,…with known probabilities p1, p2, . . . ,

∑
pi = 1.

(i) Prove that the pair (X,N) is minimal sufficient and N is ancillary for p.
(ii) Prove that the estimator X

N is unbiased for p and has variance p(1 − p)E 1
N .

17. In a normal distribution N(μ,μ2), prove that (
∑

Xi,
∑

X2
i ) is not complete in a

sample of size n.
18. Let X1,X2, . . . ,Xn be iid rvs from the following pdf:
(i)

f (x|θ) = θxθ−1; 0 < x < 1, θ > 0

Find UMVUE of (a) θe−θ (b)
θ

θ + 1
(c)

1 + θ

e2θ
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(ii)

f (x|θ1, θ2) = 1

(θ2 − θ1)
; θ1 < x < θ2, θ1, θ2 > 0

Find minimal sufficient statistic and show that it is complete, further if possible, find
the the distribution of X1 given T , where T is sufficient statistic. Find UMVUE of

exp(θ2 − θ1),
θ1

θ1 + θ2
, sin(θ1 − θ2), and cos(θ1 − θ2)

19. Let T1,T2 be two unbiased estimates having common variances aσ2(a > 1),
where σ2 is the variance of the UMVUE. Prove that the correlation coefficient
between T1 and T2 is greater than or equal to 2− a

a .
20. Let X1,X2, . . . ,Xn are iid rvs from discrete uniform distribution

f (x|N1,N2) = 1

N2 − N1
; x = N1 + 1,N1 + 2, . . . ,N2.

Find the sufficient statistic for N1 and N2.
If exists, find UMVUE for N1 and N2.
21. Let X1,X2, . . . ,Xn are iid rvs from P(λ). Let g(λ) = ∑∞

i=0 ciλ
i be a parametric

function. Find the UMVUE for g(λ). In particular, find the UMVUE for (i)g(λ) =
(1 − λ)−1 (ii) g(λ) = λr(r > 0)
22. Let X1,X2, . . . ,Xn are iid rvs with N(θ, 1). Show that S2 is ancillary.

23. In scale parameter family, prove that
(
X1
Xn

, X2
Xn

, . . . ,
Xn−1

Xn

)
are ancillary.

24. Let X1,X2 are iid rvs with N(0,σ2). Prove that X1
X2

is ancillary.
25. Let X1,X2, . . . ,Xn are iid rvs with (i) N(μ,σ2) (ii)N(μ,μ2). Examine T =((

X1−X̄
S

)
,
(
X2−X̄
S

)
, . . . ,

(
Xn−X̄
S

))
is ancillary in (i) and (ii).

26. Let X1,X2, . . . ,Xm are iid rvs with B(n, p), 0 < p < 1 and n is known. Find the
UMVUE of P[X = x] = (nx

)
pxqn−x; x = 0, 1, 2, . . . , n, q = 1 − p

27. Let X1,X2, . . . ,Xm are iid rvs from Poisson (λ). Find the UMVUE of P[X =
x] = e−λλx

x! ; x = 0, 1, 2, . . . , λ > 0
28. Let X1,X2, . . . ,Xm are iid rvs from gamma distribution with parameters p and

σ. Then find the UMVUE of e− x
σ xp−1

σp�(p) for p known, x > 0, σ > 0.

29. Let X1,X2, . . . ,Xn are iid rvs from N(μ,σ2), μ ∈ R, σ > 0. Find UMVUE of
P[X1 ≤ k], k > 0.
30. Let X1,X2, . . . ,Xn are iid rvs with pdf,

f (x|θ) =
{

1
2θ ; −θ < x < θ
0 ; otherwise

Prove that T(X) = max
[−X(1),X(n)

]
is a complete sufficient statistic. Find UMVUE

of θr(r > 0). If Y = |X|, then find UMVUE of
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1. θr

2.
θ

1 + θ
3. sin(θ)

based on Y.
31. Let X1,X2, . . . ,Xn are iid rvs from the pdf,

f (x|μ,σ2) = 1

σ
exp

[

− (x − μ)

σ

]

; x ≥ μ,σ > 0

(i) Prove that [X(1),
∑n

j=1(Xj − X(1))] is a complete sufficient statistic for (μ,σ).
(ii) Prove that UMVUE of μ and σ are given by

(μ̂ = X(1)) − n

(n − 1)

n∑

j=1

(Xj − X(1))

σ̂ = 1

n − 1

n∑

j=1

(Xj − X(1))

32. Let X1,X2, . . . ,Xn are iid rvs from ∪(θ1, θ2) or ∪(θ1 + 1, θ2 + 1). Find the
UMVUE of g(θ1, θ2) without using the general result from Example 2.3.3. Further,
find the UMVUE of θr1θ

s
2(r, s > 0).

33. LetX1,X2, . . . ,Xn be iid rvs from∪(−kθ, kθ), k, θ > 0. Show that the UMVUE
of g(θ) is

u(y(m) = g(y(m)) + y(m)g
′(y(m))

m
,

where y(m) = max
i

Yi, Yi = |Xi|
k : i = 1, 2, . . . , n

34. Let X1,X2, . . . ,Xm be iid rvs from discrete uniform distribution where

f (x|N) =
{

1
2N ; x = −N,−N + 1, . . . ,−1, 1, 2, . . . ,N
0 ; otherwise

Find UMVUE of (i) sinN (ii) cosN (iii) eN (iv) N
eN

35. Let X1,X2, . . . ,Xm be iid rvs from f (x|N)

(a) f (x|N) = 2x

N(N + 1)
; x = 1, 2, . . . ,N

(b) f (x|N) = 6x2

N(N + 1)(2N + 1)
; x = 1, 2, . . . ,N
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Find UMVUE of (i) sinN (ii) cosN (iii) eN (iv) N
eN (v) eN

sinN (vi) eN

cosN
36. Let X1,X2, . . . ,Xm be iid rvs from f (x|N1,N2)

f (x|N1,N2) = 1

N2 − N1 + 1
; x = N1,N1 + 1, . . . ,N2

Find UMVUE of (i) N1 (ii) N2 (iii) (N1N2)
2

37. Let X1,X2, . . . ,Xm be iid rvs with ∪(0, θ).

Then find UMVUE of (i) eθ (ii) sin θ (iii)
θ

1 + θ
.

38. Let X1,X2, . . . ,Xm be iid rvs with f (x|θ),

f (x|θ) = 4x3

θ4
; 0 < x < θ,

Find UMVUE of (i) θ5 (ii)
θ2

1 + θ3
(iii) cos θ.
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Chapter 3
Moment and Maximum Likelihood
Estimators

In the previous chapters, we have seen that unbiased estimators are not unique.
UsingRao–Blackwell andLehman–Scheffe theorem,we couldfind the best estimator
among the class of unbiased estimatorswhich hasminimumvariance.Generally, such
estimators are called UMVUE. Is it possible for us to get a biased estimator which
is better than UMVUE with respect to MSE? We cannot say ‘Yes’ with probability
one. But sometimes we may get a better estimator than UMVUE. In this chapter, our
effort will be to find an alternative estimator which may be better than UMVUE in
some cases.

It is an easy work to estimate a parameter in some cases. For example, the sample
mean is a good estimate for the population mean. Method of moments (MM) is, the
oldest method of finding point estimator. It is very simple to use and always yields
some sort of estimate. According to Fisher, MM produces the estimators with large
variance.

3.1 Method of Moments

Let X1, X2, . . . , Xn be iid rvs with pdf f (x |θ). Here, we have to equate the first
r(r ≥ 1) sample moments to the corresponding r population moments. Then by
solving the resulting system of equations, we can obtain the moment estimators.
Let

E[g(X)] = h(θ1, θ2, θ3, . . . , θk) (3.1.1)

Suppose g(X) = X then μ′
1 = E(X).

The corresponding sample moments m ′
1 = 1

n

∑n
i=1 Xi

© Springer Science+Business Media Singapore 2016
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Similarly,

μ′
2 = E(X2) and m ′

2 = 1

n

n∑

i=1

X2
i

μ′
r = E(Xr ) and m ′

r = 1

n

n∑

i=1

Xr
i

One should note that the population moments μ′
1,μ

′
2, . . . ,μ

′
r are the functions of

(θ1, θ2, θ3, . . . , θk).According to (3.1.1),we call this function ashr (θ1, θ2, θ3, . . . , θk).
Therefore,

m′
1 = h1(θ1, θ2, θ3, . . . , θk), m′

2 = h2(θ1, θ2, θ3, . . . , θk) . . . m′
r = hr (θ1, θ2, θ3, . . . , θk)

(3.1.2)
After solving the Eq. (3.1.2), we get the estimators of θi , (i = 1, 2, . . . , k).

Example 3.1.1 Let X1, X2, . . . , Xn be iid rvs with P(λ). Using MM, we will find
the estimator of λ.

Population moment: μ′
1 = E(X) = λ and Sample moment m ′

1 = 1
n

∑n
i=1 Xi

Hence,

λ̂ = 1

n

n∑

i=1

Xi (3.1.3)

But μ2 = μ′
2 − μ′

1
2

Now, X2 = X (X − 1) + X . Hence,

E[X (X − 1)] = λ2 and E(X) = λ

Population moments:

μ′
2 = λ2 + λ and μ2 = λ

sample moments: m2 = 1
n

∑n
i=1(Xi − X̄)2.

Hence,

λ̂ = 1

n

n∑

i=1

(Xi − X̄)2 (3.1.4)

The reader should think which estimator from (3.1.3) to (3.1.4) should be selected.
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Example 3.1.2 Let X1, X2, . . . , Xm be iid rvs with B(n, p)

P[X = x |n, p] =
(
n

x

)

px (1 − p)n−x ; x = 0, 1, 2, . . . n, 0 < p < 1, q = 1 − p.

Here, we assume that both the parameters are unknown. Now, we will estimate n
and p.
Equating the sample moments to population moments,

X̄ = np (3.1.5)

1

m

∑
(Xi − X̄)2 = npq (3.1.6)

After solving (3.1.5) and (3.1.6),

p̂ = mX̄ −∑(Xi − X̄)2

mX̄
and n̂ = mX̄2

mX̄ −∑(Xi − X̄)2
(3.1.7)

In (3.1.7), if p̂ > 0 then mX̄ >
∑

X2
i − mX̄2.

⇒ X̄ + X̄2 > m ′
2⇒ (X̄ + 1

2 )
2 > m ′

2 + 1
4 .

If |X̄ + 1
2 | <

√
m ′

2 + 1
4 then

− 1
2 −

√
m ′

2 + 1
4 < X̄ <

√
m ′

2 + 1
4 − 1

2 . In such situation p̂ is negative. Then

the value of p̂ is not admissible. Hence, value of X̄ has to lie outside of (− 1
2 −

√
m ′

2 + 1
4 ,

√
m ′

2 + 1
4 − 1

2 ).
In other words, we can say that if sample mean is smaller than the sample variance

then it suggests that there is a large degree of variability in the data. Same argument
is true for the estimate of n. One needs to reduce the difference between sample mean
and variance then we can get the better estimate of n and p.
For more details, see Hamedani and Walter (1988), Draper and Guttman (1971),
Feldman and Fox (1968).

Example 3.1.3 Let X1, X2, . . . , Xm be iid rvs with G(p,σ). Here, we will try to
find the moment estimators of p and σ.

X̄ = pσ (3.1.8)

1

m

∑
(Xi − X̄)2 = pσ2 (3.1.9)
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After some algebra,

σ̂ = m−1∑m
i=1(Xi − X̄)2

X̄
(3.1.10)

p̂ = X̄2

m−1
∑m

i=1(Xi − X̄)2
, (3.1.11)

One should see Dixit (1982).

Example 3.1.4 Method of moment estimators may not be functions of sufficient or
complete statistics.

For example,

f (x |θ1, θ2) =
{ 1

2θ2
; θ1 − θ2 < X < θ1 + θ2, θ2 > 0

0 ; otherwise
(3.1.12)

Moment estimator for (θ1, θ2) are
(
X̄ ,

√
3
n

∑n
i=1(Xi − X̄)2

)
.

But sufficient and complete statistics for (θ1, θ2) is (X(1), X(n)).

3.2 Method of Maximum Likelihood

So far we have considered the problem of finding an estimator on the basis of the
criteria of unbiasedness and minimum variance. Another more popular principle
which is very often used is that of method of maximum likelihood.

Let X1, X2, . . . , Xn be iid rvs with pdf f (x |θ), θ ∈ �. Consider the joint pdf of
X1, X2, . . . , Xn . Treating the X ’s as if they were constants and looking at this joint
pdf as a function of θ, we denote it by L(θ|x1, x2, . . . , xn) and this is known as the
likelihood function. It is defined as

L(θ|X) = L(θ1, θ2, . . . , θk |x1, x2, . . . , xn) =
n∏

i=1

f (xi |θ1, θ2, . . . , θn)

One should note that for likelihood X1, X2, . . . , Xn need not be iid. For example,
let X1, X2, X3 are three rvs such that any one has a pdf g(x |θ) and remaining two
rvs have a pdf f (x |θ). The joint density of (X1, X2, X3) is

h(x1, x2, x3|θ) = 1

3

3∏

i=1

f (xi )
3∑

i=1

g(xi |θ)
f (xi |θ)
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This can be written as

L(θ|x1, x2, x3) = 1

3

3∏

i=1

f (xi )
3∑

i=1

g(xi |θ)
f (xi |θ) (3.2.1)

For details see Dixit (1987, 1989)
θ̂ = θ̂(x1, x2, . . . , xn) is called maximum. Hence, we can obtain MLE of θ if a
sample X is given.
Note

1. Intuitively, MLE is a reasonable choice for an estimator.
2. To find a global maximum, one has to verify it.
3. Since the function y = log x x > 0, is strictly increasing, in order to maximize

with respect to θ, it is much more convenient to work with log function.

Remark:

1. Suppose that the X ’s are discrete. Then,

L(θ|x1, x2, . . . , xn) = Pθ[X1 = x1, X2 = x2, . . . , Xn = xn]

This implies, L(θ|x) is the probability of observing the X ’s which were actually
observed. Then one should select the estimate of θ which maximizes the prob-
ability of observing the X ’s, which were actually observed if such a θ exists. A
similar argument holds true for the continuous case.

2. Generally, MLE is obtained by differentiating the likelihood with respect to θ and
equating to zero.

3. Sometimes, it is not differentiable or the derivative tends to get messy and some-
times it is even harder to implement, then one should evaluate the likelihood
function for all possible values of parameter and find MLE. The general tech-
nique is to find a global upper bound on the likelihood function and then establish
that there is a unique point (s) for which the upper bound is attained.

4. Over all, one should remember that we have to maximize the likelihood func-
tion with respect to θ by any method. Differentiation is one method while other
methods are also there.

5. MLE is often shown to have several desirable properties, We will consider the
properties later on.

Example 3.2.1 Let X1, X2, . . . , Xn be iid rvs with P(λ).

Then

L(λ|x1, x2, . . . , xn) = e−nλλ
∑n

i=1 xi
∏n

i=1 xi !
(3.2.2)
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Next,

log L(λ|x) = − log
n∏

i=1

xi ! − nλ +
(

n∑

i=1

xi

)

logλ

Therefore the likelihood equation

d log L(λ|x)
dλ

= 0

Hence,

− n +
∑n

i=1 xi
λ

= 0 (3.2.3)

which gives λ̂ = x̄
Next,

d2 log L

dλ2
= −

∑n
i=1 xi
λ2

< 0

Thus, λ̂ = x̄ is the MLE of λ.

Example 3.2.2 Let X1, X2, . . . , Xn be multinomially distributed rv with parameters
θ = (p1, p2, . . . , pn) ∈ �, where � is the (n − 1)-dimensional hyperplane in Rn

defined by

� =
⎧
⎨

⎩
θ = (p1, p2, . . . , pn) ∈ Rn, 0 < pi < 1, i = 1, 2, . . . , n and

n∑

i=1

pi = 1

⎫
⎬

⎭

Then

L(θ|x1, x2, . . . , xn) = n!px11 px22 . . . pxnn∏n
i=1 xi !

= n!
∏n

i=1 xi !
px11 px22 . . . pxn−1

n−1 [1 − p1 − p2 − · · · − pn−1]xn ,

where n =∑n
i=1 xi . Then

log L(θ|x) = log n! − log
n∏

i=1

xi ! + x1 log p1 + x2 log p2 + · · · + xn−1 log pn−1

+ xn log(1 − p1 − p2 − · · · − pn−1) (3.2.4)
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Differentiating with respect to pi = i = 1, 2, . . . , n − 1 and equating it to zero

xi
pi

− xn
1 − p1 − p2 − · · · − pn−1

= 0, i = 1, 2, . . . , n − 1 (3.2.5)

Since pn = 1 − p1 − p2 − · · · − pn−1

xi
pi

− xn
pn

= 0

xi
pi

= xn
pn

; i = 1, 2, . . . , n − 1 (3.2.6)

Hence

x1
p1

= x2
p2

= · · · = xn−1

pn−1
= xn

pn
(3.2.7)

and this common value is equal to

x1 + x2 + · · · + xn
p1 + p2 + · · · + pn

= n

1

Therefore

xi
pi

= n and pi = xi
n

, i = 1, 2, . . . , n

We can say that these values of pi ’s actually maximize the likelihood function,
and therefore, p̂i = xi

n , i = 1, 2, . . . , n are the MLE’s of the pi ’s.

Example 3.2.3 Let X1, X2, . . . , Xn be iid rvs with (i) N (μ,σ2) (ii) N (μ,μ) (iii)
N (μ,μ2)

(i) � = {θ = (μ,σ2),μ ∈ R,σ > 0}
The likelihood function is given by

L(θ|x) =
(

1

σ
√
2π

)n

exp

[

− 1

2σ2

n∑

i=1

(xi − μ)2

]

log L = −n

2
logσ2 − n

2
log 2π − 1

2σ2

n∑

i=1

(xi − μ)2

∂ log L

∂μ
= n(x̄ − μ)

σ2
= 0 (3.2.8)
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∂ log L

∂σ2
= −n

2σ2
+ 1

2σ4

n∑

i=1

(xi − μ)2 = 0 (3.2.9)

After solving (3.2.8) and (3.2.9), we get,

μ̂ = x̄ and σ̂2 = 1

n

n∑

i=1

(xi − x̄)2 (3.2.10)

It can be shown that μ̂ and σ̂2 actually maximize the likelihood function and
therefore μ̂ = X̄ and σ̂2 = n−1∑n

i=1(xi − x̄)2 are the MLE of μ and σ2 respectively.

Remark:

1. If we assume that σ2 is known then we get μ̂ = x̄ as the MLE of μ.
2. If we assume that μ is known then we get σ̂2 = n−1∑n

i=1(xi − μ)2 is the MLE
of σ2.

3. When both μ and σ2 are unknown, μ̂ is unbiased estimator of μ and σ̂2 is not
unbiased for σ2.

Comment on MLE and UMVUE of (μ,σ).
Since μ̂ = X̄ and σ̂2 = 1

n

∑n
i=1(Xi − X̄)2

Now, E(X̄) = μ and V (X̄) = σ2

n .

Now the distribution of
∑n

i=1(xi−x̄)2

σ2 is χ2
n−1

E(σ̂2) = σ2

n
E

[∑n
i=1(Xi − X̄)2

σ2

]

= (n − 1)σ2

n

V (σ̂2) = σ4

n2
V

[∑n
i=1(Xi − X̄)2

σ2

]

= 2(n − 1)σ4

n2
(3.2.11)

UMVUE of μ = μ̃ = X̄ and UMVUE of σ2 = σ̃2 =
∑n

i=1(Xi−X̄)2

n−1

V

[

(n − 1)−1
n∑

i=1

(xi − x̄)2
]

= 2σ4

n − 1
(3.2.12)

It may be noted that when we have to compare more than one estimator for two
methods, then consider the determinant of the covariance matrix in both methods.

Covariance matrix for (μ̂, σ̂2) in MLE

M =
(

σ2

n 0
0 2(n−1)σ4

n2

)

(3.2.13)
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Covariance matrix for (μ̂, σ̂2) in UMVUE

U =
(

σ2

n 0
0 2σ4

n−1

)

(3.2.14)

det |M | = |M | = 2(n − 1)σ6

n3
(3.2.15)

det |U | = |U | = 2σ6

n(n − 1)
(3.2.16)

We get,

2(n − 1)σ6

n3
<

2σ6

n(n − 1)

⇒ (n − 1)2

n2
≤ 1,

which is always true. Therefore, in this case MLE are more efficient than the,
UMVUE.

(ii) � = {θ : (μ,μ),μ > 0},
In this case, mean = variance = μ, then the likelihood function is given by

L(θ|x) =
(

1√
2πμ

)n

exp

{

− 1

2μ

n∑

i=1

(xi − μ)2

}

log L(θ|x) = −n

2
log 2π − n

2
logμ − 1

2μ

n∑

i=1

(xi − μ)2

= −n

2
log 2π − n

2
logμ − 1

2μ

[
n∑

i=1

x2i − 2μ
n∑

i=1

xi + nμ2

]

= −n

2
log 2π − n

2
logμ −

∑n
i=1 x

2
i

2μ
+

n∑

i=1

xi − nμ

2

d log L

dμ
= − n

2μ
+
∑n

i=1 x
2
i

2μ2
− n

2
= 0 (3.2.17)

After some algebra,

μ2 + μ − m ′
2 = 0, where m ′

2 =
∑n

i=1 x
2
i

n
.
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Hence

μ̂ = −1 ± √
1 + 4m2

2
(3.2.18)

Here we get two MLEs for μ.
We have to select μ̂ = −1+√

1+4m2

2 . Reader should think why we have to select
this value of μ.

(iii) � = {θ : (μ,μ2),μ > 0}
The likelihood function is given by

L(θ|x) =
(

1

μ
√
2π

)n

exp

{

− 1

2μ2

n∑

i=1

(xi − μ)2

}

log L(θ|x) = −n logμ − n

2
log 2π − 1

2μ2

n∑

i=1

(xi − μ)2

= −n logμ − n

2
log 2π − 1

2μ2

[
n∑

i=1

x2i − 2nμx̄ + nμ2

]

= −n logμ − n

2
log 2π −

∑n
i=1 x

2
i

2μ2
+ nx̄

μ
− n

2

Therefore,

d log L

dμ
= −n

μ
+
∑n

i=1 x
2
i

μ3
− nx̄

μ2
= 0

Hence, after some algebra,

μ2 + x̄μ − m ′
2 = 0,

which implies

μ̂ = −x̄ ±√x̄2 + 4m ′
2

2

Since, μ > 0 then μ̂ = −x̄+
√

x̄2+4m ′
2

2

Example 3.2.4 Let X1, X2, . . . , Xm be iid rvs from B(n, p), where p is known and
n is unknown.
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The likelihood function is given by

L(n|x, p) =
m∏

i=1

(
n

xi

)

pxi qn−xi

=
m∏

i=1

(
n

xi

)

p
∑m

i=1 xi qmn−∑m
i=1 xi

Since n is an integer,

L(n|x̄, p) = 0 if n < x(m) (3.2.19)

Hence, MLE is an integer n > x(m) that satisfies

L(n|x̄, p)
L(n − 1|x̄, p) ≥ 1 and

L(n + 1|x̄, p)
L(n|x̄, p) < 1 (3.2.20)

Then

L(n|x̄, p)
L(n − 1|x̄, p) = nm(1 − p)m

∏m
i=1(n − xi )

≥ 1 (3.2.21)

and

L(n + 1|x̄, p)
L(n|x̄, p) = (n + 1)m(1 − p)m

∏m
i=1(n + 1 − xi )

< 1 (3.2.22)

From (3.2.21) to (3.2.22),

nm(1 − p)m ≥
m∏

i=1

(n − xi ) and (n + 1)m(1 − p)m <

m∏

i=1

(n + 1 − xi )

Dividing nm and letting z = 1
n

(1 − p)m ≥
m∏

i=1

(1 − xi z)

Then we have to solve

(1 − p)m =
m∏

i=1

(1 − xi z) for 0 ≤ z ≤ 1

x(m)

(3.2.23)
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Let g(z) = ∏m
i=1(1 − xi z). Then g(0) = 1 and g(

1

xm
) = 0. Further g is monotone

and convex on

[

0,
1

xm

]

. Thus there is a unique z (say ẑ) that solves the equation. The

quantity z = 1
x(m)

may not be an integer but the integer n̂ that satisfies the inequalities
and is the MLE, is the smallest integer greater than or equal to x(m).

For example, p = 3
4 , p = 2

3 , p = 1
2 , m = 2, X1 = 20, X2 = 25

From (3.2.23),

p Quadratic equation (from 3.2.23) Roots (̂n) = max(Root)−1

3
4 8000z2 − 720z + 15 0.0572, 0.0327 31
2
3 4500z2 − 405z + 8 0.0607, 0.0292 34
1
2 2000z2 − 180z + 3 0.0679, 0.0220 45

The description of the MLE for n was found by Feldman and Fox (1968), Draper
and Guttman (1971). Further see Dixit and Kelkar (2011, 2012). Reader should refer
Casella and Berger (2002). Note that for a binomial distribution in the presence of
outliers, Dixit and Kelkar (2011) have shown that MM estimator of p is better than
MLE of p.

Example 3.2.5 Let X1 and X2 be independent exponential random variables with
mean λ1 and λ2 respectively.

Let Z1 = min(X1, X2) and

Z2 =
{
0 ; Z1 = X1

1 ; Z1 = X2

Find the MLE of λ1 and λ2 in a sample of size m.
We will have to find the distribution of (Z1, Z2)

P[Z1 ≤ z1, Z2 = 0] = P[min(X1, X2) ≤ z1, Z2 = 0] = P[X1 ≤ z1, X1 < X2]

=
z1∫

0

∞∫

x1

1

λ1
e− x1

λ1
1

λ2
e− x2

λ2 dx1dx2

Since

∞∫

x1

1

λ2
e− x2

λ2 dx2 = e− x1
λ2
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Next,
z1∫

0

e− x1
λ2

1

λ1
e− x1

λ1 dx1 =
z1∫

0

1

λ1
e−x1θ12dx1,

= 1

λ1θ12

[
1 − e−z1θ12

]

where

θ12 = 1

λ1
+ 1

λ2

Hence

P[Z1 ≤ z1, Z2 = 0] = 1

λ1θ12
[1 − e−z1θ12 ] (3.2.24)

Similarly,

P[Z1 ≤ z1, Z2 = 1] = P[min(X1, X2) ≤ z1, Z2 = 1] = P[X2 ≤ z1, X2 < X1]

=
z1∫

0

∞∫

x2

1

λ1
e− x1

λ1
1

λ2
e− x2

λ2 dx1dx2

=
z1∫

0

1

λ2
e− x2

λ2 e− x2
λ1 dx2

=
z1∫

0

1

λ2
e−θ12x2dx2

= 1

λ2θ12
[1 − e−θ12z1 ] (3.2.25)

Now

P[Z2 = 0] = P[X1 ≤ X2]

=
∞∫

0

∞∫

x1

1

λ1
e− x1

λ1
1

λ2
e− x2

λ2 dx2dx1

=
∞∫

0

1

λ1
e− x1

λ1 e− x1
λ2 dx1

=
∞∫

0

1

λ1
e−θ12x1dx1 = 1

λ1θ12
(3.2.26)
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Similarly,

P[Z2 = 1] = 1

λ2θ12
(3.2.27)

From (3.2.24), (3.2.25), (3.2.26) and (3.2.27),

P[Z1 ≤ z1] = 1 − e−θ12z1 ; z1 > 0

and

f (z1) = θ12e
−θ12z1; z1 > 0, θ12 > 0 (3.2.28)

This implies that Z1 and Z2 are independent.

If we have a sample of size m, let Z2 takes value zero r times and one (m − r )
times. Hence the likelihood function is given by

L(λ1,λ2|z1z2) = (θ12)
m exp

[

−θ12

m∑

i=1

z1i

]
m!

r !(m − r)! (λ1θ12)
−r (λ2θ12)

−(m−r)

L = const + exp

[

−θ12

m∑

i=1

z1i

]

(λ1)
−r (λ2)

−(m−r)

log L = const − exp

[

−θ12

m∑

i=1

z1i

]

− r logλ1 − (m − r) logλ2

∂ log L

∂λ1
=
∑m

i=1 z1i
λ2
1

− r

λ1
(3.2.29)

∂ log L

∂λ2
=
∑m

i=1 z1i
λ2
2

− m − r

λ2
(3.2.30)

From (3.2.29), λ̂1 = 1
r

∑m
i=1 z1i and

From (3.2.30), λ̂2 = 1
m−r

∑m
i=1 z1i

Example 3.2.6 Let X1 X2 and X3 be independent exponential random variables with
mean λi (i = 1, 2, 3).

Let Z1 = min(X1, X2, X3) and

Z2 =
⎧
⎨

⎩

0 ; Z1 = X1

1 ; Z1 = X2

2 ; Z1 = X3
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Find the MLE of λ1, λ2 and λ3 in a sample of size m.
Let θi jk = 1

λi
+ 1

λ j
+ 1

λk
; i 	= j 	= k

θi j = 1
λi

+ 1
λ j

; i 	= j
To find P[Z1 ≤ z1, Z2 = 0]
Z2 = 0 indicates that Z1 = min(X1, X2, X3) = X1

We have two cases (i) X1 < X2 < X3 (ii) X1 < X3 < X2

Case (i)

=
z1∫

0

1

λ1
e− x1

λ1 dx1

⎡

⎣

∞∫

x1

1

λ2
e− x2

λ2

⎛

⎝

∞∫

x2

1

λ3
e− x3

λ3 dx3

⎞

⎠ dx2

⎤

⎦ (3.2.31)

Consider

∞∫

x1

1

λ2
e− x2

λ2 e− x2
λ3 dx2 =

∞∫

x1

1

λ2
e−θ23x1dx2 = e−θ23x1

λ2θ23
,

Equation (3.2.31) becomes

=
z1∫

0

e−θ123x1

λ1λ2θ23
dx1 = 1 − exp(−θ123z1)

λ1λ2θ23θ123
(3.2.32)

Case (ii)

=
z1∫

0

1

λ1
e− x1

λ1 dx1

⎡

⎣

∞∫

x1

1

λ3
e− x3

λ3

⎛

⎝

∞∫

x3

1

λ2
e− x2

λ2 dx2

⎞

⎠ dx3

⎤

⎦ (3.2.33)

=
z1∫

0

e−θ123x1

λ1λ3θ23
dx1 = 1 − exp(−θ123z1)

λ1λ3θ23θ123
(3.2.34)

Hence from (3.2.32) and (3.2.34),

P[Z1 ≤ z1, Z2 = 0] = 1 − exp(−θ123z1)

λ1θ23θ123

[
1

λ2
+ 1

λ3

]

= 1 − exp(−θ123z1)

λ1θ123
, z1 > 0 (3.2.35)
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Similarly,

P[Z1 ≤ z1, Z2 = 1] = 1 − exp(−θ123z1)

λ2θ123
, z1 > 0 (3.2.36)

P[Z1 ≤ z1, Z2 = 2] = 1 − exp(−θ123z1)

λ3θ123
, z1 > 0 (3.2.37)

Now, we shall find the P[Z2 = z2]
(Z2 = 0) implies (i) X1 < X2 < X3 (ii) X1 < X3 < X2

In case (i)

=
∞∫

0

1

λ1
e− x1

λ1 dx1

⎡

⎣

∞∫

x1

1

λ2
e− x2

λ2

⎛

⎝

∞∫

x2

1

λ3
e− x3

λ3 dx3

⎞

⎠ dx2

⎤

⎦

=
∞∫

0

exp(−θ123x1)dx1
λ1λ2θ23

= 1

λ1λ2θ23θ123

In case (ii)

=
∞∫

0

1

λ1
e− x1

λ1 dx1

⎡

⎣

∞∫

x1

1

λ3
e− x3

λ3

⎛

⎝

∞∫

x3

1

λ2
e− x2

λ2 dx2

⎞

⎠ dx3

⎤

⎦

= 1

λ1λ3θ23θ123

P[Z2 = 0] = 1

λ1λ2θ23θ123
+ 1

λ1λ3θ23θ123
= 1

λ1θ123
(3.2.38)

Similarly,

P[Z2 = 1] = 1

λ2θ123
(3.2.39)

P[Z2 = 2] = 1

λ3θ123
(3.2.40)

From (3.2.35) to (3.2.40), Z1 and Z2 are independent random variables.
Hence,

f (z1) = θ123e
−θ123z1; z1 > 0 (3.2.41)

If we have a sample of sizem, assume Z2 takes value zero r1 times, Z2 takes value
one r2 times and Z2 takes value two (m − r1 − r2) times.
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The likelihood function is given by

L(λ1,λ2,λ3|Z) = (θ123)
me−θ123

∑m
i=1 z1i crm(λ1θ123)

−r1(λ2θ123)
−r2(λ3θ123)

−(m−r1−r2)

(3.2.42)
where crm = m!

r1!r2!(m−r1−r2)!

log L = −θ123

m∑

i=1

z1i − r1 logλ1 − r2 logλ2 − (m − r1 − r2) logλ3

∂ log L

∂λ1
=
∑m

i=1 z1i
λ2
1

− r1
λ1

(3.2.43)

∂ log L

∂λ2
=
∑m

i=1 z1i
λ2
2

− r2
λ2

(3.2.44)

∂ log L

∂λ3
=
∑m

i=1 z1i
λ2
3

− m − r1 − r2
λ3

(3.2.45)

From (3.2.43),

λ̂1 =
∑m

i=1 z1i
r1

(3.2.46)

From (3.2.44),

λ̂2 =
∑m

i=1 z1i
r2

(3.2.47)

From (3.2.45),

λ̂3 =
∑m

i=1 z1i
m − r1 − r2

(3.2.48)

Remark: Let X1, X2, . . . , Xn be independent exponential rvs with means λi (i =
1, 2, . . . , n) respectively, let Z1 = min(X1, X2, . . . Xn).
Let

Z2 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 Z1 = X1

1 Z1 = X2

2 Z1 = X3

.

.

n − 1 Z1 = Xn

P[Z2 = i − 1] = 1

λiθ123...n
; i = 1, 2, . . . , n (3.2.49)
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f (z1) = θ123...n[exp−(z1λiθ123...n)] ; z1 > 0 (3.2.50)

where θ123...n =∑n
i=1

1
λi

MLE of λ1,λ2, . . . ,λn is

λ̂1 = 1

r1

m∑

i=1

z1i , λ̂2 = 1

r2

m∑

i=1

z1i , . . . , λ̂n−1 = 1

rn−1

m∑

i=1

z1i

λ̂n = 1

m −∑n−1
i=1 ri

m∑

i=1

z1i

Example 3.2.7 Let X1, X2, . . . , Xn be iid rvs satisfying the following regression
equation

Xi = αzi + ei , i = 1, 2, . . . , n

where z1, z2, . . . , zn are fixed and e1, e2, . . . , en are iid rvs N (0,σ2), σ2 unknown.
We will find the MLE of α.

The log likelihood function is given by

log L(α, σ2)|X) = −n

2
log(2π) − n

2
σ2 − 1

2σ2

∑
x2i + α

σ2

n∑

i=1

(xi zi ) − α2

2σ2

∑
z2i

For fixed σ2,

d log L

dα
= 1

σ2

n∑

i=1

(xi zi ) − α

2σ2

∑
z2i = 0

Then

α̂ =
∑n

i=1(xi zi )∑
z2i

and
d2 log L

dα2
< 0

MLE of α is α̂ =
∑n

i=1(xi zi )∑
z2i

. Reader can show that α̂ is unbiased for α. Further

find the MLE of σ2.

Example 3.2.8 Let X1, X2, . . . , Xn be iid rvs with the following uniform pdf

1. ∪(0, θ)
2. ∪(θ, 2θ)
3. ∪(θ − 1, θ + 1)
4. ∪(θ, θ + 1)
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(i) The pdf of X is given by

f (x |θ) =
{

1
θ

; 0 < x < θ,
0 ; otherwise

(3.2.51)

and the corresponding likelihood function is

L(θ|x) = θ−n ; 0 < xi < θ, i = 1, 2, . . . , n

Consider the order statistics X(1) < X(2) < · · · < X(n). Hence 0 < X(1) < X(2) <

· · · < X(n) < θ < ∞. Note that the support of θ is X(n) < θ < ∞
We have to maximize L(θ|x) which is equivalent to finding the minimum value of
θ, and it is given by θ̂ = X(n). Thus,

MLE of θ is X(n) (3.2.52)

(ii) The pdf is given by

f (x |θ) =
{

1
θ

; θ < x < 2θ,
0 ; otherwise

and the corresponding likelihood function is given by

L(x |θ) =
{

θ−n ; θ < X(1) < X(n) < 2θ, i = 1, 2, . . . , n
0 ; otherwise

θ < X(1) and
X(n)

2 < θ

⇒ X(n)

2 < θ < X(1)

Maximizing L(θ|x) occurs at minimum value of θ
That is,

θ̂ = X(n)

2
(3.2.53)

(iii) The pdf and its corresponding likelihood functions are given by

f (x |θ) =
{

1
2 ; θ − 1 < x < θ + 1,
0 ; otherwise

L(θ|x) =
{

1
2n ; θ − 1 < X(1) < X(n) < θ + 1,
0 ; otherwise

The support of θ is X(n) − 1 ≤ θ ≤ X(1) + 1.

Here any value of θ is MLE.
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Therefore,

θ̂ = α(X(n) − 1) + (1 − α)(X(1) + 1), (3.2.54)

where α ∈ [0, 1]

(iv) In this case

L(θ|x) =
{
1 ; θ < x < θ + 1,
0 ; otherwise

and

L(θ|x) =
{
1 ; θ < X(1) < X(n) < θ + 1,
0 ; otherwise

The support of θ is X(n) − 1 < θ < X(1). Here also, any value of θ is MLE,

θ̂ = α(X(n) − 1) + (1 − α)X(1) (3.2.55)

Remark:

1. In (iii) and (iv), from (3.2.54) and (3.2.55), we can conclude that MLE is not a
function of sufficient statistics, if α = 0 or 1.

2. From (3.2.54) and (3.2.55), we can say that MLE is not unique.

Example 3.2.9 Let X be a rv with B(1, p), p ∈ [ a
a+b ,

b
a+b

]
, b > a. The likelihood

function is given by

L(p|x) =
{
px (1 − p)1−x ; x = 0, 1
0 ; otherwise

Therefore,

log L = x log p + (1 − x) log(1 − p)

and

d log L

dp
= x

p
− (1 − x)

(1 − p)
= 0

From this, p̂ = x . This value does not lie in � = [ a
a+b ,

b
a+b

]
. Here,

L(p|x) is maximized, if we select

p̂ =
{ a

a+b ; x = 0
b

a+b ; x = 1
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Hence

p̂ = (b − a)x + a

a + b
(3.2.56)

Now,

E( p̂) = (b − a)p + 1

a + b
	= p,

which is a biased estimator of p.

MSE( p̂) = E

[
(b − a)X + a

a + b
− p

]2

= 1

(a + b)2
E [(b − a)X + a − p(a + b)]2

= 1

(a + b)2
[
(b − a)2E(X2) + 2(b − a)aE(X) + a2 + p2(a + b)2

− 2p(a + b)(b − a)EX − 2p(a + b)a
]

Now E(X2) = E(X) = p

= 1

(a + b)2
[
(b − a)2 p + 2a(b − a)p + a2 + p2(a + b)2 − 2p2(a + b)(b − a) − 2pa(a + b)

]

= 1

(a + b)2
[
a2 + p2

{
a2 + b2 + 2ab − 2b2 + 2a2

}+ p
{
b2 − 2ab + a2 + 2ab − 2a2 − 2a2 − 2ab)

}]

= 1

(a + b)2
[
a2 + p2

(
3a2 + 2ab − b2

)+ p
{
b2 − 2ab − 3a2

}]

= 1

(a + b)2
[
a2 + p2(3a − b)(a + b) + p(b − 3a)(a + b)

]

= a2

(a + b)2
+ p2(3a − b)

(a + b)
+ p(b − 3a)

(a + b)
(3.2.57)

In particular if (i) a = 2, b = 3 and p = 2
5

E( p̂ − p)2 = 0.016

In particular if (i) a = 2, b = 3 and p = 3
5

E( p̂ − p)2 = 0.016 (3.2.58)

(i) δ(x) = 1
2 and p = 2

5 , where δ(x) is any trivial estimator of p.

E

(
1

2
− p

)2

< 0.016 ⇒ 0.01 < 0.016 (3.2.59)
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(ii) δ(x) = 1
2 and p = 3

5

E

(
1

2
− p

)2

< 0.016

In the sense of the MSE, the MLE is worse than the trivial estimator δ(x) = 1
2 .

Remark:We can conclude thatMLE can beworst estimator than the trivial estimator
(See Rohatagi and Saleh (2001)).

Example 3.2.10 Consider the following example where MLE does not exist.

Let X1, X2, . . . , Xn be iid rvs with b(1, p). Suppose p ∈ (0, 1). If (0, 0, . . . , 0),
(1, 1, . . . , 1) is observed. Then p̂ = x̄ , i.e., x̄ = 0, 1, which is not admissible value
of p. Hence MLE does not exist.

Example 3.2.11 Let X1, X2, . . . , Xn be iid rvs from double exponential pdf as fol-
lows:

f (x |μ) = 1

2
exp[−|x − μ|];−∞ < x < ∞,−∞ < μ < ∞

Then the likelihood function is given by

L(μ|x) =
n∏

r=1

1

2
exp[−|xr − μ|]

L(μ|x) = 2−n exp[−
n∑

r=1

|xr − μ|] (3.2.60)

In this case we have to maximize, L(μ|x), which is equivalent to minimize∑n
r=1 |xr − μ|, where x(r) = r th order statistics, 1 ≤ r ≤ n.

For x(r) ≤ μ ≤ x(r+1),

n∑

i=1

|xi − μ| =
r∑

i=1

(μ − xi ) +
n∑

i=r+1

(xi − μ)

= μ j − (n − r)μ −
r∑

i=1

x(i) +
n∑

i=r+1

x(i)

= μ(2r − n) −
r∑

i=1

x(i) +
n∑

i=r+1

x(i) (3.2.61)

Equation (3.2.61) is a linear function of μ which decreases if r < n
2 and increases if

r > n
2 .

If n is even then r = 1
2 i.e., 2r − n = n − n = 0.
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Then (3.2.60) or (3.2.61) is a constant function between x( n
2 )

and x( n
2 )+1 and any

value in this interval is an MLE of μ.

In general median is the MLE. If n is odd then μ̂ = x( n+1
2 ) and if n is even then

μ̂ = 1
2

[
x( n

2 )
+ x( n+1

2 )

]
.

Example 3.2.12 Due to Basu (1955), MLE of θ is an inconsistent estimator of θ.
Let X1, X2, . . . be a sequence of iid rvs with a probability density where 0 < θ < 1,

Pθ[Xi = 1] =
{

θ ; θ is rational
1 − θ ; θ is irrational,

Further,

Pθ[Xi = 0] = 1 − Pθ[Xi = 1],

Hence,

f (x |θ) =
{

θx (1 − θ)1−x ; θ is rational
(1 − θ)xθ1−x ; θ is irrational,

The MLE of θ based on first n observations is θ̂n =
∑

Xi

n since θ̂n is rational for all
n = 1, 2, . . .
But

θ̂n ⇒
{

θ ; θ is rational
(1 − θ) ; θ is irrational,

Hence θ̂n is an inconsistent estimator of θ.

Example 3.2.13 Let X1, X2, . . . , Xn be a sample from the following pmf

f (X = x) =
{

1
N ; k = 1, 2, . . . , N
0 ; otherwise

L(N = x) =
{

1
Nn ; 1 ≤ X(n) ≤ N
0 ; otherwise

We have to maximize L(N |x) then to find the minimum value of N . The support of
N is x(n) ≤ N < ∞.

Hence MLE of N = N̂ = x(n) (3.2.62)
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Example 3.2.14 Let the rv X have the hypergeometric distribution

PN (x) =
{

(M
x )(

N−M
n−x )

(N
n)

; max(0, n − N + M) ≤ x ≤ min(n, M)

0 ; otherwise

We have to find the MLE of N where M and n is known.

MLE is N̂ if,
P(N | x)

P(N − 1 | x) ≥ 1 and
P(N + 1 | x)
P(N | x) ≤ 1

Consider,

λ(N ) = P(N | x)
P(N − 1 | x

=
(M
x

)(N−M
n−x

)

(N
n

)

(N−1
n

)

(M
x

)(N−1−M
n−x

)

= N − n

N

N − M

N − M − n + x

if

λ(N ) ≥ 1 ⇔ nM ≥ Nx

⇔ nM

N
≥ x

⇔ N ≤ nM

x
(a)

similarly,

λ(N + 1) = N + 1 − n

N + 1

N + 1 − M

N + 1 − M − n + x

Therefore,

λ(N + 1) ≤ 1 ⇔ nM ≤ Nx + x

N ≥ nM

x
− 1 (b)

From (a) and (b) we get,

N ≤ nM

x
and N ≥ nM

x
− 1
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Now N is an integer, if
nM

x
is an integer then

nM

x
− 1 is also an integer. Therefore,

MLE of N = N̂ = nM

x
or

nM

x
− 1.

If
nM

x
is not an integer then MLE of N is

[
nM

x

]

. (3.2.63)

Theorem 3.2.1 Let T be a sufficient statistics for the family of pdf(pmf) f (x |θ, θ ∈
�). If an MLE of θ exists and it is unique then it is a function of T .

Proof It is given that T is sufficient, from the factorization theorem,

f (x |θ) = h(x)g(T |θ)

Maximization of the likelihood function with respect to θ is therefore equivalent to
the maximization of g(T |θ), which is a function of T alone. �

Remark: This theorem does not say that a MLE is itself a sufficient statistics.
In Example 3.2.8, we have shown that MLE need not be a function of sufficient
statistics (see Remark 1).

Example 3.2.15 Find the MLE of the parameter p and σ of the following pdf

f (x |p,σ) = 1

�p

( p

σ

)p
e− px

σ x p−1; x > 0, p, σ > 0

For large value of p, one should use �(p),

�(p) = log p − 1

2p
and � ′(p) = 1

p
+ 1

2p2
,

where �(p) and � ′(p) are known as digamma and trigamma functions,

d log�p

dp
= �(p) and

d�(p)

dp
= � ′(p) (3.2.64)

For details see, Abramowitz and Stegun (1972), Dixit (1989).
The corresponding likelihood function is given by,

L(p,σ|x) =
(

1

�p

)n ( p

σ

)n
pe

− p
σ

n∑

i=1
xi

n∏

i=1

x p−1
i

log L = −n log�p + np[log p − logσ] − p

σ

n∑

i=1

xi + (p − 1)
n∑

i=1

log xi
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Let G be the geometric mean of x1, x2, . . . , xn , then

logG = 1

n

n∑

i=1

log xi ⇒ n logG =
n∑

i=1

log xi

log L = −n log�p + np[log p − logσ] − pnx̄

σ
+ (p − 1)n logG

∂ log L

∂σ
= −np

σ
+ npx̄

σ2
= 0 ⇒ σ̂ = x̄

∂ log L

∂ p
= −n�(p) + n[log p − logσ] + np

p
− nx̄

p
+ n logG

⇒
[

−n log p + n

2p

]

+ n[log p − logσ + 1] − n + n logG = 0

⇒ 1

2p
− log x̄ + 1 − 1 + logG = 0

1

2p
− log

x̄

G
= 0

p̂ = 1

2 log x̄
G

(3.2.65)

Hence, MLE of p and σ are

p̂ = 1

2 log x̄
G

and σ̂ = x̄ (3.2.66)

Example 3.2.16 Consider a power series distribution with pmf

f (x |θ) = axθx

g(θ)
; x = 0, 1, 2 . . .

where g(θ) =∑∞
x=0 axθ

x , ax may be nonzero in a sample space of size n.

For some x , we will show that MLE of θ is the root of the equation:

X̄ = θ
g′(θ)
g(θ)

= λ(θ),

where λ(θ) = EX . The likelihood function is given by,
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L(θ|x) =
∏n

i=1 axi θ
xi

gn(θ)

= θt
∏n

i=1 axi
gn(θ)

(3.2.67)

where T =∑n
i=1 xi

log L = t log θ +
n∑

i=1

axi − n log g(θ).

Therefore,

d log L

dθ
= t

θ
− ng′(θ)

g(θ)
= 0

⇒ θg′(θ)
g(θ)

= t

n
= x̄ .

Hence,

x̄ = λ(θ) = θg′(θ)
g(θ)

. (3.2.68)

Thus, MLE of θ is the root of the equation (3.2.67)
Consider

EX =
∞∑

x=0

ax xθx

g(θ)

Now,

∞∑

x=0

axθ
x = g(θ) (3.2.69)

Differentiate (3.2.68) with respect to θ;

∞∑

x=0

ax xθ
x−1 = g′(θ)

⇒
∞∑

x=0

xaxθ
x = θg′(θ)

⇒
∑∞

x=0 xaxθ
x

g(θ)
= θg′(θ)

g(θ)
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Hence,

E(X) = λ(θ) = X̄ . (3.2.70)

Example 3.2.17 We will find the MLE of θ in N (θ, 1) in a sample of size n, where
θ is an integer.

L(θ|x) =
(

1√
2π

)n

exp

[

−1

2

∑
(xi − θ)2

]

= (2π)−
n
2 exp

[

−1

2
{S2 + n(x̄ − θ)2}

]

where S2 =∑(xi − x̄)2.

In this case, we have to minimize (x̄ − θ)2 with respect to θ = 0,±1,±2, . . .
Let x̄ = [x̄] + δ, where 0 < δ < 1, and [x̄] = integer part of x̄
Minimize A = [[x̄] + δ − θ]2 with respect to θ = ±1,±2, . . .

If θ = [x̄] ⇒ A = δ2

= [x̄] + r ⇒ A = (r − δ)2 if r ≥ 2
= [x̄] − r ⇒ A = (r + δ)2 > δ2

Note that (r − δ)2 > δ2 then we require the condition r ≥ 2.
For r = 1 then A = (1 − δ)2

Consider δ2 and (1 − δ)2

If δ > 1
2 then (1 − δ)2 < δ2

If δ < 1
2 then (1 − δ)2 > δ2

If δ = 1
2 then (1 − δ)2 = δ2

Therefore, MLE of θ is
If δ = 1

2 then θ̂ = [x̄] or [x̄] + 1

If δ < 1
2 then θ̂ = [x̄]

If δ > 1
2 then θ̂ = [x̄] + 1

Invariance Property of Estimator in Case of MLE
Invariance estimator in case of an MLE is a very useful property. Suppose for some
pdf f with parameter θ, X̄ is the MLE of θ. Then the MLE of h(θ) = θ+1

θ−1 is

h(θ̂) = X̄+1
X̄−1

. Here we will give a procedure due to Zehna (1966). In other words for
a density function f , we are finding MLE for h(θ). If θ → h(θ) is one-to-one, there
is no problem. In this case, it is easy to see that it makes no difference whether we
maximize the likelihood as a function of θ or as a function of h(θ), in each case we
get the same answer.

Let� = h(θ) then the inverse function θ = h−1(�) iswell defined.The likelihood
function of h(θ), written as a function of �, is given as
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L∗(h(θ)|X) = L∗(�|θ) =
n∏

i=1

f (xi |θ)

=
n∏

i=1

f (xi |h−1(�)) = L(h−1(�)|X)

sup
h

= L∗(h(θ)|X) = sup
θ

L(h−1�|X) = sup
θ

L(θ|X)

Hence, the maximum of L∗(h(θ)|X) is attained at � = h(θ̂), showing the MLE of
h(θ) is h(θ̂).

If h(θ) is one-to-one, then it is quite possible that θ may take more than one value
which satisfies h(θ) = �. We may say that h(θ̂) is also not unique, see Casella and
Berger (2002). We state the theorems without proof.

Theorem 3.2.2 (Invariance property of MLE):
If θ̂ is the MLE of θ, then h(θ̂) is the MLE of h(θ), where h(θ) is any continuous
function of θ.

Further, we state the following theorems on MLE without proof.

Theorem 3.2.3 Let X1, X2, . . . , Xn be iid rvs having common pdf f (x |θ), θ ∈ �.
Assumption:

1. The derivative ∂i log f (x |θ)
∂θi

, i = 1, 2, 3 exist for almost all x and for every θ belong-
ing to a non-degenerate interval in �

2. There exists functions H1(x), H2(x) and H3(x) such that | ∂ f
∂θ

| < H1(x), | ∂2 f
∂θ2

| <

H2(x), | ∂3 f
∂θ3

| < H3(x), ∀θ ∈ �,
∫
H1(x)dx < ∞,

∫
H2(x)dx < ∞,∫

H3(x)dx < ∞,
3.

∫ [
∂ log f (x |θ)

∂θ

]2
f (x |θ)dx

is finite and positive for every θ ∈ �.

If assumptions (a)–(c) are satisfied and true parameter point θ0 is an inner point
then for sufficiently large n,

1.

n∑

j=1

∂ log f (x j |θ)
∂θ

= 0

has at least one root θ̂n which converges in probability to θ0.
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2.
√
n(θ̂n − θ0) converges in distribution to N (0, I−1(θ)), where

I (θ) =
∫ (

∂ log f (x |θ)
∂θ

)2

f (x |θ)dx,

which is the Fisher information contained in the sample size n.

Theorem 3.2.4 Huzurbazar (1948): The consistent root is unique.

Theorem 3.2.5 Wald (1949): The estimate which maximizes the likelihood
absolutely is a consistent estimate.

3.3 MLE in Censored Samples

In this section, we assume that the life times Xi (i = 1, 2, . . . , n) are iid rvs. We dis-
cuss, two types of censoringmechanisms and describe their corresponding likelihood
functions.

Let X be a non-negative rvs representing the lifetime of an individual in some
populations. Let X be observed upto time t then cdf of X is F(t),where

F(t) = P[X ≤ t] =
t∫

0

f (x)dx

The probability of an individual surviving to time t is given by the survivor function
F̄(t), where

F̄(t) = P[X > t] =
∞∫

t

f (x)dx

In some contexts, involving systems or lifetimes of manufactured items, F̄(t) is a
monotone decreasing continuous function. This function exhibits the complementary
properties of F(t). Some authors denote F̄(t) as S(t).

Suppose that n individuals have lifetimes represented by rvs X1, X2, . . . , Xn .
Consider a time ti which we know is either the lifetime or censoring time. Define a
variable δi = I (Xi = ti ), where,

δi =
{
1 ; Xi = ti
0 ; Xi > ti

This is called censoring or status indicator for ti . It implies that if ti is an observed
lifetime, then δi = 1 and censoring time then δi = 0. The observed data consist of
(ti , δi ), i = 1, 2, . . . , n.
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I. Type-I Censoring

A type-I censoring mechanism is said to apply when each individual has a fixed
potential censoring time Ci > 0 such that Xi is observed if Xi ≤ Ci ; otherwise we
knowonly that Xi > Ci . Type-I censoring often ariseswhen a study is conducted over
a specified time period. For example, termination of a life test on electrical insulation
specimens after 100 minutes would mean that Ci = 100 for each item. In another
example of clinical trials, there is often staggered entry of individuals to the study
combined with a specified end of study date. Consider the problem of estimation
in the presence of excess of loss reinsurance. Suppose that the claims record shows
only the net claims paid by the insurer. A typical claims record might be

x1, x2, M, x3, M, x4, x5, . . . (3.3.1)

and an estimate of the underlying gross claims distribution is required.

The sample in (3.3.1) is censored. In general, a censored sample occurs when
some values are recorded exactly and the remaining values are known only to exceed
a particular value, here the retention level is M .
Let ti = Min(Xi ,Ci ), δi = I (Xi ≤ Ci ) for type-I censoring.
Since Ci are fixed constants and that ti can take values ≤ Ci with

P[ti = Ci , δi = 0] = P[Xi ≥ Ci ]

P[ti , δi = 1] = f (ti ) when Xi ≤ Ci

Assuming that the lifetimes X1, X2, . . . , Xn are stochastically independent, then
likelihood function will be

L =
n∏

i=1

[ f (xi )]δi [F̄(Ci )]1−δi

If Ci = M , then

L(θ) =
n∏

i=1

[ f (xi )]δi [F̄(M)]1−δi

If
∑n

i=1 δi = r ,

L(θ) =
r∏

i=1

[ f (xi )][F̄(M)]n−r
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Example 3.3.1 Claims in portfolio are believed to arise as a gamma distribution with
shape and scale parameter 2 and λ respectively. There is a retention limit of 1000
in force, and claims in excess of 1200 are paid by the insurer. The insurer, wishing
to estimate λ, observes a random sample of 120 claims, and finds that the average
amount of the 100 claims that do not exceed is 85. There are 20 claims that do exceed
the retention limit. Find the MLE of λ. Note that r = 100,

f (x |λ) = xe−λxλ2 ; x > 0, λ > 0

P[X > 1000] = e−1000λ[1000λ + 1]

The likelihood function is

L(λ|x) =
100∏

i=1

λ2xi e
−λxi

[
e−1000λ(1 + 1000λ)

]20

= λ200

(
100∏

i=1

xi )e
−λ
∑100

i=1 xi e−20000λ(1 + 1000λ

)20

Now
∑100

i=1 xi = 100 × 85 = 8500

log L(λ|x) = 200 logλ +
100∑

i=1

log xi − λ

100∑

i=1

xi − 20000λ + 20 log(1000λ + 1)

∂ log L(λ|x)
∂λ

= 200

λ
−

100∑

i=1

xi − 20000 + 20000

1000λ + 1
= 0.

Hence,

200

λ
− 28500 + 20000

1000λ + 1
= 0

⇒ 285000λ2 − 1915λ − 2 = 0

λ1 = 0.00763806, λ2 = −0.00091876

II. Type-II Censoring
Type-II censoring refers to the situation where only the r(< n) smallest lifetimes
(x1 < x2 < · · · < xr |r < n) in a random sample of n are observed. Here, by
censoring at the right, we may be able to obtain reasonable good estimates of the
parameters much sooner than by waiting for all times to fail.
With Type-II censoring the value of r is chosen before the data are collected and the
data consists of the r smallest lifetimes in a random sample x1, x2, . . . , xn .
The problem considered is: Given the values of x(1), x(2), . . . , x(r) and n, to find the
MLE of the parameter(s) as follows;
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The joint distribution of the order statistics x(1), x(2), . . . , x(r) in a sample of size
n is given as:

f (x(1), x(2), . . . , x(r)|θ) = n!
(n − r)!

[
r∏

i=1

f (x(i))

]

[1 − F(x(r))]n−r

Wilk (1962) derived the MLE of the parameters of gamma distribution based on the
order statistics (x(1) < x(2) < · · · < x(r)|r < n).

Example 3.3.2 Consider the exponential distribution with parameter λ but lifetimes
are type-II censored.

The likelihood function is,

L(λ|x) = n!
(n − r)!λ

r e−λ
∑r

i=1 x(i)e−(n−r)x(r)λ

log L(λ|x) = Const + r logλ − λ

r∑

i=1

x(i) − (n − r)x(r)λ

Therefore,

∂ log L

∂λ
= r

λ
−

r∑

i=1

x(i) − (n − r)x(r)

and hence

λ̂ = r
∑r

i=1 x(i) + (n − r)x(r)

For details, see Lawless (2003), Dixit and Nooghabi Jabbavi (2011).

3.4 Newton–Raphson Method

The Newton–Raphson method is a powerful technique for solving equations numer-
ically. Like so much of the differential calculus, it is based on the simple idea of
linear approximation.

Let f (x) be a well-behaved function. Let x∗ be a root of the equation f (x) = 0
which we want to find. To find let us start with an initial estimate x0. From x0,
we produce to an improved estimate x1 (if possible) then from x1 to x2 and so on.
Continue the procedure until two consecutive values xi and xi+1 in i th and (i + 1)th
steps are very close or it is clear that two consecutive values are away from each
other. This style of proceeding is called ‘iterative procedure’.
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Consider the equation f (x) = 0 with root x∗. Let x0 be a initial estimate. Let
x∗ = x0 + h then h = x∗ − x0, the number h measures how far the estimate x0 is
from the truth. Since h is small, we can use linear approximation to conclude that

0 = f (x∗) = f (x0 + h) � f (x0) + h f ′(x0)

and therefore, unless f ′(x0) is close to 0,

h � − f (x0)

f ′(x0)

This implies,

x∗ = x0 + h � x0 − f (x0)

f ′(x0)

Our new improved estimate x1 of x∗ is given by

x1 = x0 − f (x0)

f ′(x0)

Next estimate x2 is obtained from x1 in exactly the same way as x1 was obtained
from x0

x2 = x1 − f (x1)

f ′(x1)

Continuing in thisway, if xn is the current estimate,then next estimate xn+1 is given by

xn+1 = xn − f (xn)

f ′(xn)
,

See Kale (1962).

Example 3.4.1 Consider the Example 3.2.15

log L = −n log�p + np[log p − logσ] − npx̄

σ
+ n(p − 1) logG

∂ log L

∂σ
= np

σ
+ npx̄

σ2
⇒ σ̂ = x̄

∂ log L

∂ p
= −n�(p) + n[log p − logσ] + np

p
− nx̄

σ
+ n logG

⇒ log p − �(p) = log
x̄

G
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Let log x̄
G = C

Hence log p − �(p) = C . By Newton–Raphson iteration method gives

p̂k = p̂k−1 − log( p̂k−1) − �( p̂k−1) − C

( p̂k−1)−1 − � ′( p̂k−1)

p̂k denotes the kth iterate starting with initial trial value p̂0 and � ′(p) = d�(p)

dp
.

The function �(p) and � ′(p) are tabulated in Abramowitz and Stegun (1972) in
the form of digamma and trigamma functions and can be expressed in power series as

�(y) = log y − 1

2y
+

∞∑

i=1

B2i

2i
y−2i (−1)i

� log y − 1

2y
+

10∑

i=1

a2i y
−2i (−1)i

where a2i = B2i
2i for i = 1, 2, 3, . . . , 10.

a2 = 1

12
a12 = 691

32760

a4 = 1

120
a14 = 7

84

a6 = 1

252
a16 = 3617

8160

a8 = 1

240
a18 = 43867

14364

a10 = 5

660
a20 = 174611

6600

� ′(y) = 1

y
+ 1

2y2
+

10∑

i=1

2ia2i y
−2i−1

where B2i are Bernoulli numbers. These numbers are obtained from Abramowitz
and Stegun (1972, p.810).

Here when y is less than or equal to 2, the values of �(y) and � ′(y) are accurate
upto 4 decimals and when y is greater than 2, they are accurate upto 7 decimals as
compared to Pairman’s (1919) table. For details, see Dixit (1989).
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Example 3.4.2 Gross and Clark (1975) consider a gamma model following random
sample of 20 survival times (in weeks) of male mice exposed to 240 rads of gamma
radiation.

152, 152, 115, 109, 137, 88, 94, 77, 160, 83, 165, 125, 40, 128, 123, 136, 101, 62,
153, 69

x̄ = 113.45, G = (∏n
i=1 xi

) 1
n = 107.0680

S2 = (n − 1)−1∑n
i=1(xi − x̄)2 = 1280.8921

Moment estimators

p̄ = x̄

S2
= 10.0484

σ̂ = x̄

p̂
= 11.2904

Consider the moment estimators as initial solutions.
By Newton–Raphson method,

L(p,σ|x) =
∏n

i=1 x
p−1
i e−

∑
xi

σ

(�p)nσnp

log L(p,σ|x) = (p − 1)
n∑

i=1

log xi −
∑

xi
σ

− n log�p − np logσ

∑
xi

σ2
− np

σ
= 0 ⇒ σ̂ =

∑
xi

np
= x̄

p

n∑

i=1

log xi − n�(p) − n logσ = 0

1

n

n∑

i=1

log xi − �(p) − (log x̄ − log p) = 0

logG − log x̄ + log p − �(p) = 0

log p − �(p) = log
x̄

G

The following program in R is given to estimate the parameters.

# Given data
x <- c(152,152,115,109,137,88,94,77,160,83,165,125,40,128,123,136,101,62,

153,69) # given observations
n <- length(x) # number of observations.

# to find arithmetic mean, variance and geometric mean.
mn <- mean(x) # arithmetic mean
gm <- prod(x)ˆ(1/n) # geometric mean.
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s2 <- var(x) # variance
# To initialise parameters.

sigma <- s2/mn;p <- mn/sigma;
# To define required variables.

diff <- 1; eps <- 0.0001; p_val <- rep(0,5); p_val[1] <- p; i <- 2;
# Newton-Raphson method.

while(diff > eps)
{
gp <- log(p) - digamma(p) - log(mn/gm); # function g(p).
der_gp <- 1/p - trigamma(p); # derivative of g(p).
p_new <- p - (gp/der_gp); # iteration
diff <- abs(p_new - p);
p <- p_new; p_val[i] <- p; i <- i+1;

}
sig <- mn/p_val;

# OUTPUT
p_val; sig;

k p̂k−1 σ̂k−1

1 10.0484 11.2904
2 8.6831 13.0656
3 8.8413 12.8318
4 8.8442 12.8276
5 8.8445 12.8275

II. Scoring Method
As we have said earlier, the MLE equations are usually complicated so that the

solutions cannot be obtained directly. Here also, we have to assume a trial solu-
tion and derive the linear equations for small additive corrections. The process can
be repeated until the corrections become negligible. A nice mechanization is intro-
duced by adopting the method known as the scoring method for obtaining the linear
equations for the additive corrections.

The quantity d log L
dθ

is defined as the efficient score for θ. The MLE is the value of
θ for which the efficient score vanishes. If θ0 is the trial value of the estimate, then
expanding d log L

dθ
and retaining only the first power of �θ = θ − θ0 leads to

d log L

dθ
� d log L

dθ
|θ=θ0 + �θ

d2 log L

dθ2
|θ=θ0

= d log L

dθ
|θ=θ0 + �θ I (θ)|θ=θ0

where I (θ) is the fisher information of θ, i.e., the expected value of − d2 log L
dθ2

.

In large samples the difference between −I (θ0) and d2 log L
dθ2

|θ=θ0 will be o( 1n ),
where n is the number of observations, so that the above approximations holds to the
first order of small quantities. The correction �θ is obtained from the equation
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�θ I (θ0) = d log L

dθ
|θ=θ0 ,

�θ = d log L

dθ
|θ=θ0 ÷ I (θ0)

Example 3.4.3 Consider the Example 3.4.2

This method is given by the following iteration scheme

(
p̂k
σ̂k

)

=
(
p̂k−1

σ̂k−1

)

+
(

Var( p̂k−1) Cov( p̂k−1, σ̂k−1)

Cov( p̂k−1, σ̂k−1) Var(σ̂k−1)

)(
m( p̂k−1, σ̂k−1)

h( p̂k−1, σ̂k−1)

)

where

Var( p̂k−1) = p̂k−1

p̂k−1�( p̂k−1) − 1

Cov( p̂k−1, σ̂k−1) = −σ̂k−1

p̂k−1�( p̂k−1) − 1

Var(σ̂k−1) = σ̂2
k−1�( p̂k−1)

p̂k−1�( p̂k−1) − 1

m( p̂k−1, σ̂k−1) = −n p̂k−1

σ̂k−1
+ nx̄

σ̂2
k−1

h( p̂k−1, σ̂k−1) = 1

n

n∑

i=1

log xi − �( p̂k−1) − log σ̂k−1

k = 1, p̂0 = 10.0484, σ̂0 = 11.2904

ML scoring method

Iterations k p̂k−1 σ̂k−1

1 10.0484 11.2904
2 8.6211 13.1596
3 8.7955 12.8986
4 8.7993 12.8931
5 8.7994 12.89312
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3.5 Exercise 3

1. Let X1, X2, . . . , Xn be iid rvs with ∪(a, a + |a|), a ∈ �.

(i) Find the MLE of a when a ∈ (−∞, 0)
(ii) If possible, find UMVUE of a if a ∈ (−∞, 0)
(iii) Which estimator is more efficient? Why?
(iv) If a ∈ (0,∞), then show that there does not exist UMVUE of θ.
(iv) Find the MLE of a if a ∈ (0,∞) and further, find an unbiased estimator of a.

2. If the rv X has the following Bernoulli distribution as follows:

P(X = x) =
(

θ

2

)|x |
(1 − θ)1−|x |; x = −1, 0, 1

Find the MLE of θ.

3. Let X1, X2, . . . , Xm are iid rvs (i) B(n, p) (ii) P(λ)

(i) Find theMLE of p2q3 and compare with the UMVUE estimator of p2q3. Which
is more efficient for p = 0.3, n = 5,m = 10 and 20?

(ii) Find the MLE of λ2 and compare with the UMVUE estimator of λ2. Which is
more efficient for λ = 2, 3 andm = 10, 20?

4. Let X1, X2, · · · , Xn be iid rvs with G(p,λ). Find the MLE of p
λ2 .

5. Let X1, X2, . . . , Xn be a sample from inverse Gaussian pdf

f (x |μ,λ) =
(

λ

2πx3

) 1
2

exp

{

−λ(x − μ)2

(2μ2x)

}

, x > 0, μ > 0, λ > 0

Show that MLE of μ and λ are μ̂ = X̄ and λ̂ = n∑n
i=1

1
xi

− 1
X̄

.

6. Find the estimator of a and b by themethod ofmoments for β(a, b) for a sample
of size n.

7. For the Problem 7 in Exercise 2, find the MLE of λ.

8. For the Example 3.2.5, find the moment estimator of λ1 and λ2.

9. For the Problem 6 in Exercise 2, find the moment estimator of θ in explicit
form. (Hint: See Dixit and Nasiri (2008).)

10. For the Problem 6 in Exercise 2, find the estimate of θ usingmethod ofmoment
and MLE. Which estimator is more efficient? Why?



148 3 Moment and Maximum Likelihood Estimators

11. For the Problem 20 in Exercise 2, find the MLE of N1 and N2.

12. For the Problem 30 in Exercise 2 find the MLE of θ.

13. The weight of ball bearing is assumed to be normally distributed with mean μ
and variance σ2. Fifteen bearings are weighted are found to have weighs satisfying

n∑

i=1

xi = 145.104g,

n∑

i=1

x2i = 1407.441g2

Find MLE of

(i) σ if μ=10
(ii) σ and μ
(iii) Probability that weight of the ball bearing is greater than 12.

14. For a particular experiment the following frequencies were observed for four
mutually exclusive and exhaustive classes. Find the MLE of α.

Sr. No 1 2 3 4
Frequency 10 12 15 30

Probability 2+α2

4
1−α2

4
1−α2

4
1−α2

4

15. The crushing strength of concrete samples in kilograms per square centimeter
is modeled as gamma distributed rvs with pdf

f (x |θ) = xe− x
θ

θ2
; x > 0, θ > 0

(i) Find the MLE of θ based on the observations
5.4, 7.1, 5.6, 6.2, 4.9, 5.8, 6.3, 5.5, 4.8.

(ii) Find the MLE of P(X > 3).

16. The following is a sample of size 10 from a normal distribution with mean =
variance = θ:
6.18, 5.96, 3.60, 3.76, 0.0, 5.92, 5.94, 6.22, −0.38, 4.04.

(i) Obtain the MLE of θ
(ii) Find MLE of P(X ≥ 2)

17. The distribution of length of life in hours of electronic tubes is assumed to
have the pdf of the type

f (t) = 1

θ
e− t

θ ; t > 0, θ > 0
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A sample of 30 tubes was tested for life until 5 tubes failed. The observed failure
times were 780, 820, 850, 900, and 980 h.
Estimate θ by maximum likelihood method.
18. Following table gives the probabilities and the observed frequencies in four
phenotypic classes AB, Ab, aB, and ab in a genetic experiment. Estimate θ by the
maximum likelihood method and its standard error.

Phenotypic class Probability Observed frequency

AB 2+ θ
4 100

Ab 1− θ
4 20

aB 1− θ
4 25

ab θ
4 6

19. Let X1, X2, . . . , Xn be iid rvs from the pdf

f (x |θ,λ) = 1

λ
e
−

(x − θ)

λ ; x > θ, λ > 0

(i) Find MLE of (θ,λ)

(ii) Find the MLE of P[X ≥ 2].
20. Let X1, X2, . . . , Xn be iid rvs with N (θ, 1). If there are m(<n) observations

which are less than zero but these observations are not available. Find the MLE of θ.

21. The following is a sample of size 10 from a normal distribution with
mean = variance = θ
6.18, 5.96, 3.6, 3.76, 0, 5.92, 5.94, 6.22, −0.38, 4.04
Obtain the MLE of θ and P[X ≥ 3].

22. A potato manufacturer buys potatoes which are either too large or too small.
He accepts potatoes which have width between 3 and 8 cm. The width of potato is
assumed to follow a normal distribution with mean μ and variance σ2. From a lot
of 100 potatoes, 20 were rejected because their width was less than 3 cm, 40 were
rejected because their width was greater than 8 cm and remaining 40 were accepted.
Obtain the maximum likelihood estimator of μ and σ2 (Hint: Use Example 3.2.3).

23. The distribution of length of life in hours of electronic tubes is assumed to
have the pdf of the type 1

θ
exp(− t

θ
) : t ≥ 0, θ > 0.

A sample of 30 tubes were tested for life until 5 bulbs failed. The observed failure
times were 780, 820, 850, 900, 980 h.
Estimate θ by MLE (Hint: Use Example 3.3.1)

24. Let X1 and X2 be independent rvs with ∪(0, θi ); i = 1, 2 respectively.
Let z1 = min(X1, X2) and
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Z2 =
{
0 ; Z1 = X1

1 ; Z1 = X2

Find the MLE of θ1 and θ2 in a sample of size n.
25. Let the rvs X1 and X2 be distributed as exponential with mean θ and N (θ, 1)
respectively. Find the MLE of θ.

26. Let the rvs X1 and X2 be distributed as B(n, θ) and N B(r, θ) respectively,
0 < θ < 1. Find MLE of θ if n and r are known.

27. If the rv X has the following probability distribution as follows
P(X = −2) = θ

4 , P(X = −1) = θ
4 , P(X = 0) = 1 − θ

P(X = 1) = θ
4 , P(X = 2) = θ

4
In a sample of size n, find the MLE of θ.

28. Let the rv X1 is ∪(0, θ), X2 be G(1, 1
θ
) and X3 is ∪(0, θ). Find the MLE of θ.

Assume X1, X2 and X3 are independent rvs.

29. Let the rv X1, X2, . . . , Xn be independently distributed as G(p, 1
σi

); (i =
1, 2, . . . , n). For p known, find the MLE of σi ; (i = 1, 2, . . . , n).

30. Let the rv X1, X2, . . . , X n
2
be distributed as P(λ1), X n

2 +1, X n
2 +2, . . . X 3n

4
be

distributed as P(λ2) and X 3n
4 +1, X 3n

4 +2, . . . Xn be distributed as P(λ3). Find theMLE
of λ1, λ2 and λ3. Note that X1, X2, . . . , Xn are independent rvs. Assume n is divisi-
ble by four.

31. Let X1, X2, . . . , Xn are iid rvs with (i) ∪(0, θ2) (ii) ∪(θ, θ2), θ > 1. Find the
MLE of θ.
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Chapter 4
Bound for the Variance

The history of the lower bounds on the variance of the estimators is long and hasmany
contributors. The widely known bound, and the basis of this theory is the so-called
Cramer–Rao bound (Cramer 1946; Rao 1945). It is equal to the inverted value of
Fisher’s information quantity. It is important to know that Frechet (1943) has given
the inequality which is now known as the Cramer–Rao inequality in the statistical lit-
erature, after its explicit and independent publication by Cramer (1946), Rao (1945).
Specifically,Rohatagi andSaleh (2001) called this boundFrechet-Cramer-Rao (FCR)
lower bound. But we call this inequality as Cramer–Rao (CR) lower bound, as it is
popularly known. Bhattacharya (1946, 1950) generalized Rao’s results, under some
additional conditions, to give a sequence of sharper bounds. Chapman and Robbins
(1951), Kiefer (1952) gave a lower bound for the variance of an estimate which does
not require regularity conditions of the CR lower bound. Detailed review is done by
Jadhav (1983).

Before considering the lower bound, we will have to consider the Cauchy–
Schwarz inequality. Now, the variance is invariant under translation. Therefore, we
expect the bound also to be invariant under translation.

4.1 Cramme–Rao Lower Bound

Theorem 4.1.1 The C-S inequality, which is translation invariant, is given by

Var(U ) ≥ Cov(U, V )

Var(V )
(4.1.1)

Theorem 4.1.2 (Frechet 1943, Rao 1945, Cramer 1946)
We call this inequality as CR inequality.
Let X1, X2, . . . , Xn be a sample with pdf f (x |θ).
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Let T (X) = T (X1, X2, . . . , Xn) be any unbiased estimator of g(θ). It satisfies
the following conditions

∂

∂θ

∫

T (x) f (x |θ)dx =
∫

T (x)
∂

∂θ
f (x |θ)dx i f f (x |θ) is a pd f (4.1.2)

∂

∂θ

∑

x

T (x) f (x |θ)dx =
∑

x

T (x)
∂

∂θ
f (x |θ)dx i f f (x |θ) is a pm f (4.1.3)

Then

Var(T (X)) ≥ [g′(θ)]2
E[{ ∂

∂θ
log f (x |θ)}2] (4.1.4)

If equality holds in (4.1.4), then there exists a real number c(θ0) �= 0, such that

T (X) − ET (X) = c(θ0)
∂ log f (x |θ)

∂θ
(4.1.5)

with probability 1, provided T (X) is not constant.

Proof The proof is very simple and it is an application of Theorem 4.1.1, i.e., C-S
inequality.

From (4.1.1), replace U by T (X) and V by ∂ log f (x |θ)

∂θ

Now

Cov(U, V ) = Cov

[

T (X),
∂ log f (x |θ)

∂θ

]

(4.1.6)

Since
∫

R

f (x |θ)dx = 1 ⇒
∫

R

∂ f (x |θ)

∂θ
dx = 0

⇒
∫

R

1

f (x |θ)

∂ f (x |θ)

∂θ
f (x |θ)dx = 0

⇒
∫

R

∂ log f (x |θ)

∂θ
f (x |θ) = 0 (4.1.7)

⇒ E

[
∂ log f (x |θ)

∂θ

]

= 0 (4.1.8)
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Hence

Cov

[

T (X),
∂ log f (x |θ)

∂θ

]

= E

[

T (X)
∂ log f (x |θ)

∂θ

]

(4.1.9)

Differentiating (4.1.7) with respect to θ ,

∫
∂2 log f (x |θ)

∂θ2
f (x |θ)dx +

∫
∂ log f (x |θ)

∂θ

∂ f (x |θ)

∂θ
dx = 0

∫
∂2 log f (x |θ)

∂θ2
f (x |θ)dx +

∫ (
∂ log f (x |θ)

∂θ

)2

f (x |θ)dx = 0

Therefore

E

{
∂2 log f (x |θ)

∂θ2
+
(

∂ log f (x |θ)

∂θ

)2
}

= 0

Hence,

E

(
∂ log f (x |θ)

∂θ

)2

= −E

[
∂2 log f (x |θ)

∂θ2

]

(4.1.10)

Hence, from (4.1.7),

V

(
∂ log f (x |θ)

∂θ

)

= E

(
∂ log f (x |θ)

∂θ

)2

= −E

[
∂2 log f (x |θ)

∂θ2

]

(4.1.11)

E[T (X)] =
∫

T (x) f (x |θ)dx = g(θ) (4.1.12)

Differentiating (4.1.12) with respect to θ ,

∫

T (x)
∂ f (x |θ)

∂θ
dx = g′(θ)

∫

T (x)
∂ log f (x |θ)

∂θ
f (x |θ)dx = g′(θ)
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⇒
∫

T (x)
∂ log f (x |θ)

∂θ
f (x |θ)dx = g′(θ) (4.1.13)

Using (4.1.1), (4.1.8), (4.1.9), (4.1.11) and (4.1.13)

V(T (X)) ≥ [g′(θ)]2
E[{ ∂ log f (x |θ)

∂θ
}2]

Remark:
1. If X1, X2, . . . , Xn are iid rvs then

E

[{
∂ log f (X |θ)

∂θ

}2
]

= nE

{
∂ log f (xi |θ)

∂θ

}2
, i = 1, 2, . . . , n

where X = (X1, X2, . . . , Xn)

f (X |θ) = f (x1, x2, . . . , xn|θ) =
n∏

i=1

f (xi |θ)

log f (X |θ) =
n∑

i=1

log f (xi |θ)

∂ log f (X |θ)

∂θ
=

n∑

i=1

∂ log f (xi |θ)

∂θ

(
∂ log f (X |θ)

∂θ

)2

=
(

n∑

i=1

∂ log f (xi |θ)

∂θ

)2

=
n∑

i=1

(
∂ log f (xi |θ)

∂θ

)2

+
n∑

i �= j

∂ log f (xi |θ)

∂θ

∂ log f (x j |θ)

∂θ

From (4.1.7), E

[
∂ log f (xi |θ)

∂θ

]

= 0

E

(
∂ log f (X |θ)

∂θ

)2

= nE

(
∂ log f (xi |θ)

∂θ

)2

(4.1.14)
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since X1, X2, . . . , Xn are iid rvs

2. E
(

∂ log f (X |θ)

∂θ

)2
is called Fisher information

3. We will consider (4.1.5) when equality holds in (4.1.4)
If there exist a(θ) such that

∂ log f (X |θ)

∂θ
= a(θ)[T (X) − ET (X)] (4.1.15)

V

[
∂ log f (X |θ)

∂θ

]

= a2(θ)V[T (X)]

Hence

a2(θ) = V[ ∂ log f (X |θ)

∂θ
]

V[T (X)] (4.1.16)

From (4.1.4),

V[T (X)]E
[{

∂ log f (X |θ)

∂θ

}2
]

= [g′(θ)]2

⇒ V[T (X)]V
[
∂ log f (X |θ)

∂θ

]

= [g′(θ)]2 (4.1.17)

From (4.1.16) and (4.1.17),

a(θ) = V[ ∂ log f (X |θ)

∂θ
]

g′(θ)
(4.1.18)

From (4.1.15), since ET (X) = g(θ)

∂ log f (X |θ)

∂θ
= V[ ∂ log f (X |θ)

∂θ
]

g′(θ)
[T (X) − g(θ)] (4.1.19)

T (X) = g(θ) + g′(θ)

V[ ∂ log f (X |θ)

∂θ
]
∂ log f (X |θ)

∂θ

4.

E

(
∂ log f (X |θ)

∂θ

)2

= −E

(
∂2 log f (X |θ)

∂θ2

)
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Example 4.1.1 Let X1, X2, . . . , Xn be iid rvs with N (θ, 1). We will obtain the lower
bound for the variance of an unbiased estimator of θ .

log f (x1, x2, . . . , xn|θ) = const − 1

2

n∑

i=1

(xi − θ)2

∂ log f (x1, x2, . . . , xn|θ)

∂θ
=

n∑

i=1

(xi − θ) (4.1.20)

∂2 log f (x1, x2, . . . , xn|θ)

∂θ2
= −n

V

[
∂ log f (x1, x2, . . . , xn|θ)

∂θ

]

= n (see 4.1.11)

Hence, a(θ) = n(Since g′(θ) = 1)
From (4.1.15) and (4.1.20),

∂ log f (x1, x2, . . . , xn|θ)

∂θ
= −n(x̄ − θ) (4.1.21)

Since T (X) = X̄ and V (X̄) = 1
n

From (4.1.4),

V(X̄) = 1

n

Moreover,

T (X) = θ + (1)(n)(x̄ − θ)

θ
= x̄

It attains lower bound and it is the unbiased estimator of θ . Therefore, X̄ is UMVUE
for θ .

Further, we will obtain the lower bound for the unbiased estimator of θ2.
Let T (X) = X̄2

V(X̄) = E X̄2 − θ2 = 1

n

Hence,

E

(

X̄2 − 1

n

)

= θ2 and V

(

X̄2 − 1

n

)

= V(X̄2) (4.1.22)
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V(X̄2) = E(X̄4 − E X̄)2 (4.1.23)

Now, E(X̄ − θ)3 = 0

E(X̄3) − 3(E[X̄2])θ + 3θ2E(X̄) − θ3 = 0

E(X̄3) = 3

(

θ2 + 1

n

)

θ − 3θ2(θ) + θ3

= 3θ

n
+ θ3 (4.1.24)

Since in standard normal distribution,

β2 = μ4

μ2
2

= 3 ⇒ μ4 = 3μ2
2 = 3

n2

Hence,

E(X̄ − θ)4 = 3

n2
(4.1.25)

E(X̄4) − 4E(X̄3)θ + 6E(X̄2)θ2 − 4E(X̄)θ3 + θ4 = 3

n2

E(X̄4) = 3

n2
+ 4θ

[
3θ

n
+ θ3

]

− 6θ2

[

θ2 + 1

n

]

+ 4θ3(θ) − θ4

= 3

n2
+ 12θ2

n
+ 4θ4 − 6θ4 − 6θ2

n
+ 4θ4 − θ4

= 3

n2
+ θ4 + 6θ2

n
(4.1.26)

Therefore,

V(X̄2) = 3

n2
+ θ4 + 6θ2

n
−
(

θ2 + 1

n

)2

= 3

n2
+ θ4 + 6θ2

n
− θ4 − 2θ2

n
− 1

n2
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= 2

n2
+ 4θ2

n
(4.1.27)

Next, by using CR lower bound, i.e. (4.1.4),
T (X) = X̄2, g(θ) = θ2, g′(θ) = 2θ

E

{
∂ log f (X |θ)

∂θ

}2
= V

[
∂ log f (X |θ)

∂θ

]

= n (4.1.28)

V[X̄2] ≥ 4θ2

n
(4.1.29)

From (4.1.27) and (4.1.29)

2

n2
+ 4θ2

n
≥ 4θ2

n

In this,
(
X̄2 − 1

n

)
does not attain CR bound. Moreover, we can say that the estimator

with variance 4θ2

n may not exist.

Example 4.1.2 Let X1, X2, . . . , Xn are iid rvs with ∪(0, θ).
Can you obtain CR lower bound for any unbiased estimator of θ?

It does not satisfy the condition as mentioned in (4.1.2).

∂

∂θ

θ∫

0

T (x) f (x |θ)dx = ∂

∂θ

θ∫

0

T (x)

θ
dx

= T (θ)

θ
+

θ∫

0

T (x)
∂

∂θ

(
1

θ

)

�=
θ∫

0

T (x)
∂ f (x |θ)

∂θ
dx

In this case, we cannot apply CR lower bound.

Example 4.1.3 Let X1, X2, . . . , Xn be iid rvs with P(λ).

f (x |λ) = e−λλx

x ! ; x = 0, 1, 2, . . . , λ > 0.
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In this case, we will find the CR lower bound for e−λ

Define

ε(x) =
{
1 ; x = 0,
0 ; otherwise

Eε(x) = P(X = 0) = e−λ

ε(x) is an unbiased estimator of e−λ.

V[ε(x)] = e−λ − e−2λ = e−λ(1 − e−λ)

Now, let us compute CR lower bound for e−λ

Let θ = e−λ ⇒ λ = − log θ = log 1
θ

f (x |θ) = θ(log 1
θ
)x

x !

log f (x |θ) = x log

(

log
1

θ

)

+ log θ − log x !

∂ log f (x |θ)

∂θ
= −x

θ log 1
θ

+ 1

θ

= x

θ log θ
+ 1

θ

E

(
∂ log f (x |θ)

∂θ

)2

= E

[
x2

θ2(log θ)2
+ 1

θ2
+ 2x

θ2(log θ)2

]

= λ2 + λ

θ2(log θ)2
+ 1

θ2
+ 2λ

θ2(log θ)2

Substitute θ = e−λ

= λ(λ + 1)

e−2λλ2
+ 1

e−2λ
− 2λ

λe−2λ

= e2λ
[
(λ + 1)

λ
+ 1 − 2

]

= e2λ
[

1 + 1

λ
+ 1 − 2

]

= e2λ

λ
(4.1.30)
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E

(
∂ log f (x |θ)

∂θ

)2

= ne2λ

λ
(see Remark 1)

From (4.1.4), CR lower bound for any unbiased estimator of e−λ is λe−2λ

n

V[T (X)] ≥ λe−2λ

n
(4.1.31)

But actual variance of ε(x), which is unbiased estimator of e−λ is e−λ(1 − e−λ)

e−λ(1 − e−λ) > λe−2λ (4.1.32)

Hence, variance of ε(x) is greater than CR lower bound. Here also, we can say that

the estimator with variance
λe−2λ

n
may not exist.

Note: Without reparametrization, one can get CR lower bound.
Since

E

(
∂ log f

∂λ

)2

= 1

λ

V[T (X)] ≥ λe−2λ

n

Example 4.1.4 Let X1, X2, . . . , Xn be iid rvs with exponential distribution having
mean θ . What is the CR lower bound for the variance of an unbiased estimator of
g(θ) = exp

(− 1
θ

)
? Does the variance of the UMVUE of g(θ) attain this lower bound?

Let X = (X1, X2, . . . , Xn)

f (X |θ) = (θ)−n exp

(

− t

θ

)

, where t =
n∑

i=1

xi

log L = −n log θ − t

θ

we want to obtain CR lower bound for an unbiased estimator of e− 1
θ

Let λ = e− 1
θ ⇒ − 1

θ
= log λ

log f (X |λ) = n[log(− log λ)] + t log λ
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∂ log f (X |λ)

∂λ
= 1

λ

[

t + n

log λ

]

E

(
∂ log f

∂λ

)2

= 1

λ2

[

E

{

t2 + 2nt

log λ
+ n2

(log λ)2

}]

Now E(T 2) = n(n + 1)θ2 and E(T ) = nθ

= e
2
θ [n(n + 1)θ2 − 2n2θ2 + n2θ2]

= e
2
θ (nθ2)

If T (X) is an unbiased estimator of e− 1
θ

Then,

V(T (X)) ≥ e− 2
θ

nθ2
(4.1.33)

Note: Without reparametrization,

E

(
∂ log f

∂θ

)

= −n

θ
+ t

θ2

E

(
∂ log f

∂θ

)2

= n

θ2
,

Since g′(θ) = 1
θ2 e− 1

θ .

V[T (X)] ≥ e− 2
θ

θ4
× θ2

n
= e− 2

θ

nθ2

The reader can see from (4.1.19) that it does not attain CR lower bound.

Example 4.1.5 Let X1, X2, . . . , Xn are iid rvs with B(n, p). We will show here that
variance of X̄

n attains the CR lower bound.

f (X |p) =
m∏

i=1

(
n

xi

)

pxi qn−xi ; q = 1 − p

=
m∏

i=1

(
n

xi

)

ptqmn−t ; where T =
n∑

i=1

xi
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log f = const + t log p + (mn − t) log q

∂ log f

∂p
= t

p
− mn − t

q

∂2 log f

∂p2
= − t

p2
− mn − t

q2

E

[

−∂2 log f

∂p2

]

= mnp

p2
+ mn − mnp

q2

= mn

p
+ mn

q
= mn

pq

Therefore,

V

[
∂ log f

∂p

]

= pq

mn

From (4.1.15) and (4.1.18), g(p) = p

∂ log f

∂p
= pq

mn

[
X̄

n
− p

]

By using (4.1.4),

V

[
X̄

n

]

= [g′(p)]2

E
(

∂ log L
δp

)2 = 1
mn
pq

= pq

mn

Hence, X̄
n attains CR lower bound.

Theorem 4.1.3 (i) A necessary condition for V = ∂ log f (x |θ)

∂θ
to give an inequality of

CR lower bound is that V depends on X only through the minimal sufficient statistics.
(ii) The above condition is also sufficient when the minimal sufficient statistics is

complete.

A detailed proof of this theorem is given by Blyth and Roberts (1972).
Here we have given a counter-example where V depends on X only through the

minimal sufficient statistics but it does not give an inequality of CR as the minimal
sufficient statistics is not complete.
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Example 4.1.6 Let X1, X2, . . . , Xn be iid rvs with N (θ, θ2).

f (x |θ) = (2π)−
n
2 θ−n exp

[

− 1

2θ2

n∑

i=1

(xi − θ)2

]

Then
(∑n

i=1 Xi ,
∑n

i=1 X
2
i

)
is minimal sufficient statistics. Since (X̄ , S2) is one-to-

one function of
(∑n

i=1 Xi ,
∑n

i=1 X
2
i

)
, it is also minimal sufficient.

Now, X̄ has N
(
θ, θ2

n

)
. Also (n−1)s2

θ2 = 1
θ2

∑n
i=1(Xi − X̄)2 has χ2 distribution

with (n − 1) degrees of freedom.
Hence E(S2) = θ2. Similarly, E(X̄2) = n+1

n θ2.

Then E
(
n X̄

2

n+1 − S2
)

= 0, but n X̄
2

n+1 − S2 �= 0 for some X, which implies that

(X̄ , S2) is not complete.

Let T1 = n X̄
2

n+1 , T2(X) = S2 and V(X, θ) = T1(X)+T2(X)

2θ4

Then E[T1(X)] = E[T2(X)] = θ2

Cov[T1, T1 + T2] = E{T1(T1 + T2)} − E(T1)E(T1 + T2)

= E(T 2
1 ) + E(T1T2) − [ET1]2 − ET1ET2

= V(T1) + Cov(T1, T2) = V(T1)

Because (X̄ , S2) is independent, then Cov(T1, T2) = 0

V(T1) = 2θ4

n + 1

Now,

Cov[T1, V ] = 1

2θ4
Cov[T1, T1 + T2]

= 1

n + 1

Similarly,

Cov[T2, T1 + T2] = V(T2) = 2θ4

n − 1
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⇒ Cov[T2, V ] = 1

n − 1

Hence, we do not get CR inequality.
Joshi (1976) shows that CR lower bound may be attained in cases where the

underlying densities do not belong to one parameter exponential family.

Example 4.1.7 Select any number λε(0, 1) and for this determine β from the
equation

β∫

λ

(t2 − 1) exp

[

− t2

2

]

dt = 0 (4.1.34)

Define

A(t) =
{
2 ; λ ≤ |t | ≤ β

1 ; otherwise

Let

f (x |θ) = CA(|x − θ |) exp
{

− (x − θ)2

2

}

, −∞ < x < ∞ (4.1.35)

where

C =
[
(2π)

1
2 {1 + 2φ(β) − 2φ(λ)}

]−1
(4.1.36)

It is clear that f (x |θ) is not a member of the exponential class of densities.
Since θ is a location parameter, EX exists and the density is symmetric about

θ,EX = θ . Thus, T (X) = X is an unbiased estimator of θ, ∀ θ ε�.
Therefore,

Var [T (X)] = E(X − θ)2

= C

∞∫

−∞
(x − θ)2A(|x − θ |) exp

{

− (x − θ)2

2

}

dx (4.1.37)

Let t = x − θ
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= C

∞∫

−∞
t2A(|t |)e− t2

2 dt

= 2C

∞∫

0

t2A(t)e− t2

2 dt

= C

⎡

⎣

∞∫

−∞
t2e− t2

2 dt + 2

β∫

λ

t2e− t2

2 dt

⎤

⎦

= C

⎡

⎣
√
2π + 2

β∫

λ

t2e− t2

2 dt

⎤

⎦ (4.1.38)

= C[C−1] = 1

Thus, X is an unbiased estimator of θ with unit variance.
Now, we obtain CR lower bound for the variance of an unbiased estimator of θ .
From (4.1.37),

log f (x |θ) = logC + log A(|x − θ |) − (x − θ)2

2

Therefore,

∂ log f (x |θ)

∂θ
= (x − θ),

because C is independent of θ and d A(|x−θ |)
dθ

= 0 for all x and for all θ except at
x −β, x −λ, x +λ and x +β, where A|x −θ | is not differentiable with respect to θ .

E

[
∂ log f (x |θ)

∂θ

]

= E(x − θ) = 0

and

E

(
∂ log f (x |θ)

∂θ

)2

= E(x − θ)2 = 1

Hence, by (4.1.19), V(T (X)) = A(θ) which is the CR lower bound.
This shows that a density for which the CR lower bound A(θ) is attained is not

necessarily exponential.
Hence, in the proofs of usually stated result the CR lower bound is attained if and

only if the underlying density is a member of exponential family, the fact that the
linear relation between T (X) and ∂ log f (x |θ)

∂θ
(see 4.1.19) may fail to hold on a null

set which may depend on θ is ignored.
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Therefore, Wijsman (1973) stated the necessary and sufficient condition for the
attainment of CR lower bound and gave a rigorous proof of the result. We will only
state his theorem without proof. First, we state here the regularity conditions of
Wijsman. Suppose that

(i) � is an open interval
(ii) f (x |θ) > 0 for every θε�, xεR and f (x |θ) is continuously differentiable

function of θ for every xεR
(iii) 0 < Var( ∂[log f (x |θ)

∂θ
] < ∞ ∀ θε�

(iv)
∫∞
−∞ f (x |θ)dx is differentiable under the integral sign with respect to θ

(v)
∫∞
−∞ T (X) f (x |θ)dx is finite and can be differentiated under the integral sign
with respect to θ .

(vi) There is a linear relation between T (X) and ∂ log f (x |θ)

∂θ
, see (4.1.19)

Theorem 4.1.4 Let g be a real valued function on �, not identically constant; let
T (X) be an unbiased estimator of g(θ) and the above regularity conditions from (i)
to (vi) are satisfied. Then the inequality in (4.1.4) is an equality for all θε� if and
only if ∀x and for every θε�,

f (x |θ) = exp[U (θ)T (X) − V (θ) + W (x)],

as given in Sect. (1.6).

Remark: From the Theorem 1.6.1, T (X) is sufficient and complete and T (X) is
the unbiased estimator of g(θ). Then T (X) is UMVUE of g(θ).

In the Theorem 2.2.3, we have shown that a necessary and sufficient condition for
an estimator to be UMVUE of its expectation is that, it must have zero covariance
with every finite variance, unbiased estimator of zero.

We now prove an interesting result similar to Theorem 2.2.3, which is due to Blyth
(1974), and provides a necessary and sufficient condition for ∂ log f (x |θ)

∂θ
to give an

inequality of CR type.

Theorem 4.1.5 The variance V = ∂ log( f (x |θ)

∂θ
, with 0 < Var(V ) < ∞, gives an

inequality of Cramer–Rao type if and only if V has zero covariance with every finite
variance unbiased estimator of zero.

Proof Necessity: Assume that V gives an inequality of Cramer–Rao type.
If T1 and T2 are any two unbiased estimators of g(θ) then

Cov(T1, V ) = Cov(T2, V )

Now,

ET (X) = E{T (X) + T0(X)},

http://dx.doi.org/10.1007/978-981-10-0889-4_1
http://dx.doi.org/10.1007/978-981-10-0889-4_2
http://dx.doi.org/10.1007/978-981-10-0889-4_2
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To(X) being any unbiased estimator of zero with finite variance. Therefore,

Cov(T, V ) = Cov(T + T0, V )

= Cov(T, V ) + Cov(T0, V )

which implies that Cov(T0, V ) = 0
Sufficiency:Here,we haveCov(T0, V ) = 0. Let T1(X) and T2(X) be two unbiased

estimators with finite variance.
Then E(T1 − T2) = 0, which implies Cov(T1 − T2, V ) = 0 ⇒ Cov(T1, V ) −

Cov(T2, V ) = 0 which means Cov(T1, V ) = Cov(T2, V ). Therefore, V gives an
equality of Cramer–Rao type.

Theorem 4.1.6 A necessary and sufficient condition for the existence of an achiev-
able Cramer–Rao type bound (4.1.4) for the variance of an estimator T (X) having
a specified expectation g(θ) is that g(θ) possess UMVUE with positive variance.

Proof Let the variance of an unbiased estimator T = T ∗ achieve equality in (4.1.4)
if V of that inequality is almost surely linearly related to T ∗. From (4.1.15) and
(4.1.19),

V = Var(V )

g′(θ)
T (X) − Var(V )g(θ)

g′(θ)

= d(θ)T ∗(X) + c(θ),

where c(θ) and d(θ) being independent of X. The bound given by (4.1.4) is invariant
under linear transformations. Therefore, the bound given by d(θ)T ∗(X) + c(θ) will
be the same as that given by T ∗(X). Therefore, to achieve equality in (4.1.4), we can
write V = T ∗. Then according to Theorem 4.1.5, we get an CR inequality, we must
have zero covariancewith every finite variance unbiased estimator of zero. Therefore,
T ∗ must be UMVUE of g(θ) since this is a necessary and sufficient condition for an
estimator to be UMVUE of its expectation (see Theorem 2.2.3).

4.2 Bhattacharya Bound

Theorem 4.2.1 Let S1, S2, . . . , Sk and T1, T2, . . . , Tk be the two sets of random
variables such that with probability one Si ’s are linearly independent, i.e.,

P[a1S1 + a2S2 + · · · + ak Sk = 0] = 1 (4.2.1)

http://dx.doi.org/10.1007/978-981-10-0889-4_2
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Further,
� = Covariance matri x o f Si , i = 1, 2, . . . , k

M = Covariance matri x o f Tj , j = 1, 2, . . . , k

N = Covariance matri x o f Si and Tj , i �= j

Then the matrix (M − N ′�−1N ) ≥ 0 is positive semi-definite, i.e.,

v′(M − N ′�−1N )v ≥ 0

This is also known as Hodge’s Lemma.

Proof Without loss of generality, assume that ESi = 0,ETj = 0 and if ESi and
ETj �= 0, then let Si ∗ = Si − ESi and Tj

∗ = Tj − ETj , then Var(Si ) = Var(S∗
i )

and Var(Tj ) = Var(T ∗
j ).

Using Cauchy–Schwarz inequality,

Cov2(u′S, v′T ) ≤ Var(u′s)Var(v′T ) (4.2.2)

[u′Cov(S, T )v)]2 ≤ [u′Var(S)u][v′Var(T )v]

(u′Nv)2 ≤ (u′�u)(v′Mv)

Suppose �u = Nv ⇒ u = �−1Nv

[(�−1Nv)′Nv]2 ≤ [(�−1Nv)′��−1Nv][v′Mv]

[v′N ′�−1Nv]2 ≤ [v′N ′�−1��−1Nv][v′Mv]

[v′N ′�−1Nv]2 ≤ [v′N ′�−1Nv][v′Mv]

[v′N ′�−1Nv] ≤ [v′Mv]

Therefore,

v′(M − N ′�−1N )v ≥ 0 (4.2.3)

Theorem 4.2.2 Let X1, X2, . . . , Xn be iid rvs with joint pdf f (x1, x2, . . . , xn|θ)

satisfying the regularity conditions.
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Let

Si = 1

f (x |θ)

∂ i f (x |θ)

∂θ i

then ESi = 0, i = 1, 2, . . . , k

� = Covariance matri x o f Si , i = 1, 2, . . . , k

N ′ = [g(1)(θ), g(2)(θ), . . . , g(k)(θ)], where g(i)(θ) = ∂ i g(θ)

∂θ i
; i = 1, 2, . . . , k

u(x1, x2, . . . , xn) is an unbiased estimator of g(θ), then

V(u(x)) ≥ Lk where Lk = N ′�−1N (4.2.4)

(4.2.4) is called Bhattacharya bound.

Proof Let u(x) be an unbiased estimator of g(θ)

Hence,

∫ ∫

· · ·
∫

u(x) f (x |θ)dx = g(θ)

∂

∂θ

∫ ∫

· · ·
∫

u(x) f (x |θ)dx = ∂g(θ)

∂θ

∫ ∫

· · ·
∫

u(x)

f (x |θ)

∂ f (x |θ)

∂θ
f (x |θ)dx = g(1)(θ)

∫ ∫

· · ·
∫

u(x)S1 f (x |θ)dx = g(1)(θ)

E[u(x)S1] = g(1)(θ)

In general,

∫ ∫

· · ·
∫

u(x)

f (x |θ)

∂ i f (x |θ)

∂θ i
f (x |θ)dx = g(i)(θ)

E[u(x)Si ] = g(i)(θ)

We know that ESi = 0 ⇒ Cov[u(x), Si ] = g(i)(θ)
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By using Hodge’s Lemma (Theorem 4.2.1),

M − N ′�−1N ≥ 0

In this case M = Var [u(x)]

Var [u(x)] − N ′�−1N ≥ 0

Let Lk = N ′�−1N then Var [U (x)] ≥ Lk

Var [u(x)] ≥ Lk

Hence Lk ≥ Lk−1 ≥ · · · ≥ L1. (4.2.5)

Note
For k = 1, Var [u(x)] ≥ L1

L1 = [g(1)(θ)]2
Var(S1)

,

S1 = 1

f (x |θ)

∂ f (x |θ)

∂θ
= ∂ log f (x |θ)

∂θ

Var(S1) = Var

[
∂ log f (x |θ)

∂θ

]

CR bound becomes a particular case of Bhattacharya bound for k = 1.
Steps to find Bhattacharya bound:

1. To get N ′, differentiate the given parametric function g(θ).

i.e., N ′ =
[

∂g(θ)

∂θ
,

∂2g(θ)

∂θ2 , . . . ,
∂k g(θ)

∂θ k

]

2. Find Si = 1
f (x |θ)

∂ i f (x |θ)

∂θ i ; i = 1, 2, . . . , k and verify ESi = 0

3. Find Var(Si ) = E(Si )2 and Cov(Si , Sj ) = E(Si S j )(i �= j). Then obtain the
covariance matrix of (Si , Sj ), (i �= j), i.e., �.

4. Calculate N ′�−1N .

Example 4.2.1 Let X1, X2, . . . , Xn be iid rvs with N (θ, 1). We will obtain the
Bhattacharya bound for g(θ) = θ2

N ′ = [g(1)(θ), g(2)(θ), . . . , g(k)(θ)] = [2θ, 2, 0, . . . , 0] (4.2.6)

Here, we can take N ′ = [2θ, 2].
f (x |θ) = (2π)−

n
2 exp

[

−1

2

n∑

i=1

(xi − θ)2

]
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∂ f (x |θ)

∂θ
= (2π)−

n
2 n(x̄ − θ) exp

[

−1

2

n∑

i=1

(xi − θ)2

]

S1 = 1

f (x |θ)

∂ f (x |θ)

∂θ
= n(x̄ − θ) (4.2.7)

Then ES1 = 0

∂2 f (x |θ)

∂θ2
= (2π)

− n
2

⎡

⎣

⎧
⎨

⎩
−n exp

⎡

⎣− 1

2

n∑

i=1

(xi − θ)2

⎤

⎦

⎫
⎬

⎭
+ n2(x̄ − θ)2 exp

⎡

⎣− 1

2

n∑

i=1

(xi − θ)2

⎤

⎦

⎤

⎦

= (2π)−
n
2 exp

[

−1

2

n∑

i=1

(xi − θ)2

]

[−n + n2(x̄ − θ)2]

S2 = 1

f (x |θ)

∂2 f (x |θ)

∂θ2
= −n + n2(x̄ − θ)2 (4.2.8)

Similarly, one can find S3, S4, . . . , Sk .

ES2 = −n + n = 0

Var(S1) = ES1
2 = n2E(x̄ − θ)2 = n (4.2.9)

Var(S2) = E[n2(x̄ − θ)2 − n]2

= n2E[n(x̄ − θ)2 − 1]2 (4.2.10)

= n2E[n2(x̄ − θ)4 − 2n(x̄ − θ)2 + 1]

Now,

E(x̄ − θ)4 = 3

n2

= n2[n2 3

n2
− 2n

1

n
+ 1]
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= n2[3 − 2 + 1] = 2n2

Cov(S1, S2) = ES1S2

= E[{n(x̄ − θ)}{n2(x̄ − θ)2 − n}]

= E[n3(x̄ − θ)3] − E[n2(x̄ − θ)] = 0 (4.2.11)

Hence

� =
(
n 0
0 2n2

)

,�−1 =
( 1

n 0
0 1

2n2

)

,

L2 = N ′�−1N = ( 2θ 2
)
( 1

n 0
0 1

2n2

)(
2θ
2

)

= 4θ2

n
+ 2

n2
, (4.2.12)

and L1 = 4θ2

n = CR lower bound
Therefore L1 < L2.

Example 4.2.2 Let the rv X have a geometric distribution with parameter p. We will
find a Bhattacharya bound for g(p) = p.

P[X = x] = pqx ; x = 0, 1, 2 . . . , 0 < p < 1, q = 1 − p

∂P(x)

∂p
= qx + xpqx−1(−1) = qx − xpqx−1

=
[[

P(x)

p
− x P(x − 1)

]

(−1)0
]

∂2P(x)

∂p2
= −2xqx−1 + x(x − 1)pqx−2

=
[[

2x P(x − 1)

p
− x(x − 1)P(x − 2)

]

(−1)1
]
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∂3P(x)

∂p3
=
[
3x(x − 1)P(x − 2)

p
− x(x − 1)(x − 2)P(x − 3)

]

(−1)2

∂ i P(x)

∂pi
=
[
i x(x − 1) . . . (x − i + 2)P(x − i + 1)

p
− x(x − 1)(x − 2) . . . (x − i + 1)P(x − i)

]

(−1)i−1

Si = 1

P(x)

∂ i P(x)

∂pi
=
[
i x(x − 1) · · · (x − i + 2)

pqi−1
− x(x − 1)(x − 2) · · · (x − i + 1)

qi

]

(−1)i−1

(4.2.13)

We will find L1 and L2,

ESi =
[
iEX (i−1)

pqi−1
− EX (i)

qi

]

(−1)i−1

Note that EX (i) = ith factorial moment.

EX (i) =
[
i !qi

pi

]

ESi =
[
i(i − 1)!qi−1

(pqi−1)(pi−1)
− i !qi

qi pi

]

(−1)i−1

=
[
i !
pi

− i !
pi

]

(−1)i−1 = 0 (4.2.14)

Now,

S1 = − 1

q

(

x − q

p

)

and S21 = 1

q2

(

x − q

p

)2

(4.2.15)

E(S21 ) = 1

qp2

S2 = (−1)

[−x2

q2
+ x(q + 1)

pq2

]

(4.2.16)

S22 =
[
x4

q4
+ x2(q + 1)2

p2q4
− 2x3(q + 1)

pq4

]

E(X2) = q(1 + q)

p2
, EX3 = q(1 + 4q + q2)

p3
, EX4 = q + 11q2 + 11q3 + q4

p4
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E(S22 ) = 4q2(q + 1)

p4q4
= 4(q + 1)

p4q2
(4.2.17)

S1S2 =
[

− x3

q3
− x2(q + 1)

pq3
+ 1

p

(

− x2

q2
+ x(q + 1)

pq2

)]

(−1)1 (4.2.18)

ES1S2 = − 2

p3q
(4.2.19)

g(p) = p, N ′ = (1, 0)

� =
(

ES21 ES1S2
ES1S2 ES22

)

=
(

1
p2q − 2

p3q

− 2
p3q

4(q+1)
p4q2

)

(4.2.20)

L2 = N ′�−1N , where

�−1 = p6q3

4

(
4(1+q)

p4q2
2
p3q

2
p3q

1
p2q

)

(4.2.21)

N ′�−1N = (1 0
) p6q3

4

(
4(1+q)

p4q2
2
p3q

2
p3q

1
p2q

)(
1
0

)

= 4(1 + q)

p4q2

p6q3

4
= p2q(1 + q) (4.2.22)

Similarly

L3 = p2q(1 + q + q2) (4.2.23)

In general,

Lk = p2q(1 + q + q2 + · · · + qk)

If T (X) is an unbiased estimator of p, then

Var(T (x)) ≥ p2q(1 + q + q2 + · · · + qk)

Remark: If k is tending to infinity, then V(T (X)) ≥ pq.
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Example 4.2.3 Let X1, X2, . . . , Xn are iid rvs with Bernoulli distribution

P(X = x) = pxq1−x ; x = 0, 1

P(X1 = x1, X2 = x2, . . . , Xn = xn) = ptqn−t ; where t =
n∑

i=1

xi

P(X = x) =
(
p

q

)t

qn

∂P(X)

∂p
=
(
p

q

)t

qn

[
t

pq
− n

q

]

∂2P(X)

∂p2
=
(
p

q

)t

qn

[

− t

qp2
+ t

pq2
− n

q2

]

+
(
p

q

)t

qn

[
t

qp
− n

q

]2

S1 = 1

P(x)

∂P(X)

∂p
= t

pq
− n

q
(4.2.24)

S2 = 1

P(x)

∂2P(X)

∂p2
= −t

qp2
+ t

pq2
− n

q2
+ 1

p2q2
(t − np)2 (4.2.25)

Now

ES1 = np

pq
− n

q
= 0

ES2 = − np

qp2
+ np

pq2
− n

q2
+ npq

p2q2

= − n

qp
+ n

q2
− n

q2
+ n

pq
= 0

Note the result:
Ki = ith cumulant

K1 = ET = np, K2 = npq, K3 = npq(1 − 2p)

S1S2 =
(

t

pq
− n

q

)[

t

( −1

qp2
+ 1

pq2

)

− n

q2
+ 1

p2q2
(t − np)2

]
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= 1

pq
[t − np]

[

t

( −1

qp2
+ 1

pq2

)

− n

q2
+ 1

p2q2
(t − np)2

]

(4.2.26)

Note that

E[t (t − np)] = E(t − np + np)(t − np) = E(t − np)2 + npE(t − np) = npq

μ3 = K3 = E(t − np)3 = npq(q − p)

ES1S2 = Et (t − np)

pq

[ −1

qp2
+ 1

pq2

]

− n

q2
+ E(t − np)

pq
+ E(t − np)3

p3q3

= npq

pq

[−q + p

p2q2

]

− 0 + npq(q − p)

p3q3

= −n(q − p)

p2q2
+ n(q − p)

p2q2

= 0

S21 =
(

1

pq

)2

(t − np)2

ES21 =
(

1

pq

)2

E(t − np)2 = npq

(pq)2
= n

pq

Next,

S2 =
(

t

pq
− n

q

)2

+ t

(
p − q

p2q2

)

− n

q2

= 1

(pq)2
(t − np)2 + t

(
p − q

p2q2

)

− n

q2

(pq)4S22 = [(t − np)2 + t (p − q) − np2]2

= (t − np)4 + t2(p − q)2 + n2 p4 + 2(p − q)t (t − np)2 − 2np2(p − q)t − 2np2(t − np)2

(pq)4ES22 = np2q[10q + nq + 4np] − np2(2np2 + np − 2)
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ES22 = n

p2q3
(10q + nq + 4np) − n

p2q4
(2np2 + np − 2)

g(p) = p, N ′ = (1, 0)

� =
( n

pq 0
0 b

)

Let ES22 = b

�−1 =
( pq

n 0
0 1

b

)

N�−1N = (1 0
)
( pq

n 0
0 1

b

)(
1
0

)

= ( pq
n 0

)
(
1
0

)

= pq

n

Example 4.2.4 Let X1, X2, . . . , Xn be iid rvs with exponential distribution having
mean σ . We will obtain Bhattacharya bound for the unbiased estimator of σ .

f (x) = 1

σ
e− x

σ ; x > 0, σ > 0

f (x1, x2, . . . , xn|σ) = 1

σ n
e− t

σ ; t > 0

where T =∑n
i=1 xi

∂ f

∂σ
= σ−ne− t

σ

[

− n

σ
+ t

σ 2

]

S1 = 1

f

∂ f

∂σ
= − n

σ
+ t

σ 2

= 1

σ 2
(t − nσ)

Note that t has G(n, 1
σ
)

E(S1) = 0
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E(S21 ) = nσ 2

σ 4
= n

σ 2

(S2) = 1

f

∂2 f

∂σ 2
= (t − nσ)2

σ 4
− (2t − nσ)

σ 3

E(S2) = 0

S1S2 = 1

σ 6
(t − nσ)3 − 1

σ 5
(t − nσ)(2t − nσ)

ES1S2 = 1

σ 6
E(t − nσ)3 − 1

σ 5
E(t − nσ)(t + t − nσ)

= 1

σ 6
E(t − nσ)3 − 1

σ 5

{
E(t − nσ)2 + Et (t − nσ)

}

= 2nσ 3

σ 6
− 1

σ 5

{
nσ 2 + E(t − nσ + nσ)(t − nσ)

}

= 2nσ 3

σ 6
− 1

σ 5
{nσ 2 + nσ 2}

= 2n

σ 3
− 2n

σ 3
= 0

(S22 ) = (t − nσ)4

σ 8
+ (2t − nσ)2

σ 6
− 2

σ 7
(t − nσ)2(2t − nσ)

Ki (t) = (i − 1)!nσ i ; i = 1, 2, 3, 4

μ4 = K4 + 3K 2
2

E(t − nσ)4 = 6nσ 4 + 3n2σ 4 = 3σ 4n(n + 2)

E(2t − nσ)2 = nσ 2(n + 4)

E(t − nσ)2(2t − nσ) = n(n + 4)σ 3
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E(S22 ) = 3n(n + 2)σ 4

σ 8
+ n(n + 4)σ 2

σ 6
− 2n(n + 4)σ 3

σ 7

= 3n(n + 2)

σ 4
+ n(n + 4)

σ 4
− 2n(n + 4)

σ 4

= 3n(n + 2)

σ 4
− n(n + 4)

σ 4

= n

σ 4
[3n + 6 − n − 4] = (2n + 2)n

σ 4
= 2n(n + 1)

σ 4

Hence

� =
( n

σ 2 0
0 2n(n+1)

σ 4

)

�−1 =
(

σ 2

n 0
0 σ 4

2n(n+1)

)

N ′�−1N = ( 1 0
)
(

σ 2

n 0
0 σ 4

2n(n+1)

)(
1
0

)

= σ 2

n

L1 = σ 2

n
, L2 = σ 2

n
· · · Lk = σ 2

n

Bhattacharya bound for the unbiased estimator of σ is σ 2

n .

4.3 Chapman-Robbins-Kiefer Bound

Theorem 4.3.1 Let the random vector X have a pdf(pmf) f (x |θ). Let T (X) be an
unbiased estimator g(θ), where g(θ) defined on �. Further, assume that ET 2 < ∞
for all θε�. If θ �= α, then assume that f (x |θ) and f (x |α) are different. Assume
that S(θ) = { f (x |θ) > 0}, S(α) = { f (x |α) > 0} and S(α) ⊂ S(θ).

Then,

Var [T (X)] ≥ sup
S(α)⊂S(θ),α �=0

[g(α) − g(θ)]2
Var{ f (x |α)

f (x |θ)
} ∀ θε� (4.3.1)
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Proof Under f (x |θ) and f (x |α)

ET (X) =
∫

T (X) f (x |θ)dx = g(θ)

ET (X) =
∫

T (X) f (x |α)dx = g(α)

g(α) − g(θ) =
∫

T (X)
f (x |α) − f (x |θ)

f (x |θ)
f (x |θ)dx

=
∫

T (X)

[
f (x |α)

f (x |θ)
− 1

]

f (x |θ)dx

Cov

[

T (X),
f (x |α)

f (x |θ)
− 1

]

= g(α) − g(θ)

Using Cauchy-Schwarz inequality,

Cov2

[

T (X),
f (x |α)

f (x |θ)
− 1

]

≤ Var [T (X)]Var
[
f (x |α)

f (x |θ)
− 1

]

= VarT (X)Var

[
f (x |α)

f (x |θ)

]

Therefore,

[g(α) − g(θ)]2 ≤ VarT (X)Var

[
f (x |α)

f (x |θ)

]

Var [T (X)] ≥ [g(α) − g(θ)]2
Var{ f (x |α)

f (x |θ)
} ∀ θε� (4.3.2)

Then, (4.3.1) follows immediately.
Chapman and Robbins (1951) had given the same above-mentioned theorem in

different form.

Theorem 4.3.2 Let the random vector X = (X1, X2, . . . , Xn) have a pdf(pmf)
f (x |θ), θε�. Let T (X) be an unbiased estimator of θ . Suppose, θ + h(h �= 0)
be any two distinct values in � such that

S(θ + h) ⊂ S(θ)
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Then,

Var(T ) ≥ 1

inf
h
E(J |θ)

,

where

J = J (θ, h) = 1

h2

{[
f (x |θ + h)

f (x |θ)

]2
− 1

}

Proof Note that

∫

S(θ+h)

f (x |θ + h)dx =
∫

S(θ)

f (x |θ)dx = 1

Let t = t (x),

∫

S(θ)

t f (x |θ)dx = θ

∫

S(θ+h)

t f (x |θ + h)dx = θ + h

Consider

1

h

∫

S(θ+h)

(t − θ) f (x |θ + h)dx = 1

and

1

h

∫

S(θ+h)

(t − θ) f (x |θ)dx = 0

Therefore,

∫

S

(t − θ)
√

f (x |θ)
f (x |θ + h) − f (x |θ)

h f (x |θ)

√
f (x |θ)dx = 1
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By using Cauchy–Schwarz inequality,

⎡

⎣
∫

S

(t − θ)2 f (x |θ)dx

⎤

⎦
∫

S

[
f (x |θ + h) − f (x |θ)

h f (x |θ)

]2
f (x |θ)dx ≥ 1

⇒ Var(t |θ)
1

h2

∫

S

[
f (x |θ + h) − f (x |θ)

f (x |θ)

]2
f (x |θ)dx ≥ 1 (4.3.3)

Since

∫ [
f (x |θ + h)

f (x |θ)
− 1

]2
f (x |θ)dx =

∫ {[
f (x |θ + h)

f (x |θ)

]2
− 1

}

f (x |θ)dx

Let

J = J (θ, h) = 1

h2

{[
f (x |θ + h)

f (x |θ)

]2
− 1

}

Var(t |θ)E(J |θ) ≥ 1

Hence,

Var(t |θ) ≥ 1

E(J |θ)
(4.3.4)

⇒ Var(t |θ) ≥ 1

inf
h
E(J |θ)

(4.3.5)

Example 4.3.1 To find CRK lower bound of an unbiased estimator of the mean of a
normal distribution based on a random sample of size n

f (x |θ) = 1

σ
√
2π

exp

[

− 1

2σ 2
(xi − θ)2

]

;

|J | = 1

h2

{[
f (x |θ + h)

f (x |θ)

]2
− 1

}
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= 1

h2

{

exp

[

− 1

σ 2

n∑

i=1

[
(xi − θ − h)2 − (xi − θ)2

]
]

− 1

}

= 1

h2

{

exp

[

−nh2

σ 2
+ 2h

σ 2

n∑

i=1

(xi − θ)

]

− 1

}

Let k = h
√
n

σ
then h = σk√

n

= n

σ 2k2
{
exp

[−k2 + 2ku
]− 1

}
, where u =

∑n
i=1(xi − θ)

σ
√
n

Now,

EJ |θ = nE[e−k2+2ku − 1]
σ 2k2

Since u is N (0, 1) and Eetu = e
t2

2

E[e−k2+2ku − 1] = e−k2+2k2 − 1 = ek
2 − 1

EJ |θ = n(ek
2 − 1)

σ 2k2

inf E(J |θ) = lim
k→0

n(ek
2 − 1)

σ 2k2
= n

σ 2
(use L’Hospital’s rule)

Hence, if T is any unbiased estimator of θ , it follows from

V(T ) ≥ σ 2

n

Since the sample mean X̄ is UMVUE of θ with Var(x̄ |θ) = σ 2

n , it follows that X̄
has the minimum variance among the class of unbiased estimators.

Example 4.3.2 Unbiased estimator of the variance when the mean is known. Wlog,
we assume that mean is zero,

J = 1

h2

{ [(σ + h)
√
2π]2n exp[− 1

(σ+h)2

∑
x2i ]

(σ
√
2π)2n exp[− 1

σ 2

∑
x2i ]

− 1

}

(4.3.6)
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= 1

h2

{(
σ

σ + h

)2n

exp

[∑
x2i

{
1

σ 2
− 1

(σ + h)2

}]

− 1

}

= 1

h2

{(
σ

σ + h

)2n

exp

[∑
x2i

{
h2 + 2σh

σ 2(σ + h)2

}]

− 1

}

Let h2+2σh
(σ+h)2

= s, then to find Ees
∑

x2i
σ2

Since
∑

x2i
σ 2 is χ2

n , let u =
∑

x2i
σ 2 ,

Eesu = (1 − 2s)−
n
2

EJ = 1

h2

[(
σ

σ + h

)2n

(1 − 2s)−
n
2 − 1

]

Let k = h

σ
,

σ

σ + h
= (1 + k)−1,

(1 − 2s) = 1 − 2k − k2

(k + 1)2

EJ = 1

σ 2k2

[
(1 + k)−n(1 − 2k − k2)−

n
2 − 1

]

inf EJ = lim
k→0

EJ

lim
k→0

(1 + k)−n(1 − 2k − k2)− n
2 − 1

σ 2k2

Use L’Hospital’s rule,

lim
k→0

−n(1 + k)−n−1(1 − 2k − k2)− n
2 + n(1 + k)−n+1(1 − 2k − k2)− n

2 −1

2kσ 2

lim
k→0

(−n)[−(n + 1)A−n−2
k B

− n
2

k + nA−n
k B

− n
2 −1

k ] + n[(−n + 1)A−n
k B

− n
2 −1

k + A−n
k B

− n
2

k (n + 2)]
2σ 2
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where Ak = (1 + k) and Bk = 1 − 2k − k2

= (−n)[−(n + 1) + n] + n[(−n + 1) + n + 2]
2σ 2

= (−n)[−1] + 3n

2σ 2
= 4n

2σ 2
= 2n

σ 2

Remark Cramer–Rao lower bound yields precisely the same bound.

Example 4.3.3 Unbiased estimation of the standard deviation of a normal distribu-
tion with known mean

E(J |σ) = (1 + k)−n(1 − 2k − k2)− n
2 − 1

σ 2k2

Now, the minimum value of E(J |σ) is not approached in the neighborhood of h =
k = 0

Consider n = 2,
For k = h

σ
, (k+1) > 0 and 1−2k−k2 > 0,wefind that−1 < k <

√
2−1, k �= 0.

Set p = 1 + k, then 0 < p <
√
2

E(J |σ) = p−2[2 − p2]−1 − 1

σ 2(p − 1)2

= (1 − p2)2

p2(2 − p2)σ 2(p − 1)2

= (p + 1)2

p2(2 − p2)σ 2

For p = 0.729 ⇒ E(J |σ) = 3.830394
σ 2

Hence, CRK lower bound = (0.2610)σ 2

Consider the UMVUE if σ from (2.2.49) with μ = 0

T (X) = σ̂ = t
1
2 �
(
n
2

)

2
1
2 �
(
n
2 + 1

) ,

where T =∑ X2
i

Now, we will find the variance of T.

T = σ̂ =
t
1
2

σ
�( n2 )

�( n2 + 1)

σ√
2

T 2 =
(

t

σ 2

)(
�( n2 )

�( n2 + 1)

)2
σ 2

2

http://dx.doi.org/10.1007/978-981-10-0889-4_2


188 4 Bound for the Variance

ET 2 =
(
nσ 2

2

)(
�( n2 )

�( n2 + 1)

)2

VarT = σ 2

[
n

2

(
�( n2 )

�( n2 + 1)

)2

− 1

]

For n = 2 and note �( 12 ) = √
π

= σ 2

[
4

π
− 1

]

= (0.2732)σ 2

which is greater than 0.2610σ 2, the CRK bound.

Example 4.3.4 Unbiased estimation of the mean of an exponential distribution

f (x |σ) = 1

σ
e− x

σ ; x > 0, σ > 0

J = 1

h2

[
(σ + h)−2n exp{− 2t

σ+h }
(σ )−2nexp{− 2t

σ
} − 1

]

where t =∑n
i=1 xi

= 1

h2

[(

1 + h

σ

)−2n

exp

{
2ht

σ(σ + h)

}

− 1

]

Let h
σ

= k then (1 + h
σ
)−2n = (1 + k)−2n and 2h

σ(σ+h)
= 2k

σ(k+1)
Note that T ∼ G(n, σ )

J = 1

σ 2k2

[

(1 + k)−2n exp

{
2kt

σ(k + 1)

}

− 1

]

To find E exp
(

2kt
σ(k+1)

)
,

Let 2k
σ(k+1) = s

Hence, E[exp(st)] = (1 − sσ)−n

EJ = 1

σ 2k2
[
(1 + k)−2n(1 − sσ)−n − 1

]
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Now, 1 − sσ = 1 − k

1 + k

EJ = 1

σ 2k2

[

(1 + k)−2n

(
1 − k

1 + k

)−n

− 1

]

= 1

σ 2k2
[
(1 + k)−n(1 − k)−n − 1

]

= 1

σ 2k2
[
(1 − k2)−n − 1

]

Next,

inf EJ = lim
k→0

1

σ 2k2
[
(1 − k2)−n − 1

]

lim
k→0

1

2σ 2k

[
(−n)(1 − k2)−n−1(−2k)

]

lim
k→0

1

σ 2

[
n(1 − k2)−n−1

] = n

σ 2

One should note that Crammer-Rao lower bound yields the same bound.

Example 4.3.5 Let X1, X2, . . . , Xn be iid with ∪(0, θ). We will find CRK lower
bound for any unbiased estimate of θ , see Kiefer (1952)

J = 1

h2

{(
θ

θ + h

)2n

− 1

}

; −θ < h < 0

EJ = 1

h2

[

E

(
θ

θ + h

)2n

− 1

]

= 1

h2

[
θ + h

θ

(
θ

θ + h

)2n

− 1

]

= 1

h2

[(
θ

θ + h

)2n−1

− 1

]

Let h
θ

= k ⇒ θ
θ+h = (1 + k)−1 then −1 < k < 0,

EJ = 1

θ2k2
[(1 + k)−2n+1 − 1]
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For n = 1

EJ = − 1

θ2k(k + 1)
,

Then we have to maximize −k(k + 1).

inf EJ = 4

θ2
, for k = −1

2

In this case, Var(T ) ≥ θ2

4 and Variance of UMVUE of T = θ2

n(n+2) is
θ2

3
n = 2

EJ = 1

θ2k2
[
(1 + k)−3 − 1

]
,

EJ = 1

θ2k2
[−k3 − 3k2 − 3k]

(1 + k)3
,

inf
k
EJ = inf

k

1

θ2k2
[−k3 − 3k2 − 3k]

(1 + k)3
,

f (k) =
(

−k − 3 − 3

k

)

(1 + k)−3

d f (k)

dk
=
(

−1 + 3

k2

)

(1 + k)−3 +
(

−k − 3 − 3

k

)

(−3)(1 + k)−4 = 0

This implies

(

−1 + 3

k2

)

(1 + k) +
(

k + 3 + 3

k

)

(3) = 0

(−k2 + 3)(1 + k) + (3k3 + 9k2 + 9k) = 0

It implies that we have to solve the equation 2k3 + 8k2 + 12k + 3 = 0
Roots of the equations are (−0.308586,−1.8557 ± 1.20592i).
Hence, k = −0.308586

inf
k
EJ = 21.2698

θ2
⇒ Var(T ) ≥ θ2

21.2698

Variance of UMVUE of T for n = 2 = θ2

8
It does not attend the lower bound.
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Remark: In ∪(0, θ), X is sufficient and complete statistics. 2X is unbiased for θ .
So that T (X) = 2X is UMVUE. In this case, CRK attains the lower bound.

Example 4.3.6 Let X1, X2, . . . , Xm are iid with B(n,p). We will find CRK lower
bound for any unbiased estimator of p.

J = 1

h2

[(
p + h

p

)2T (1 − p − h

1 − p

)2(N−T )

− 1

]

where T =∑ Xi , N = mn

= 1

h2

[

s2T
(
1 − p − h

1 − p

)2N

− 1

]

,

where s = q(p+h)

p(q−h)
, q = 1 − p

EJ = 1

h2

[(
q − h

q

)2N

ES2T − 1

]

,

Es2T = (ps2 + q)N and let k = h
p

E(J ) = 1

p2k2

{[
q2 p(1 + k)2

(q − pk)2
+ q

]N

q−2N (q − pk)2N − 1

}

= 1

p2k2

{
q−N

[
qp(1 + k)2 + (q − pk)2

]N − 1
}

= 1

p2k2
{
q−N (q + k2 p)N − 1

}

inf EJ = lim
k→0

q−N (q + k2 p)N − 1

p2k2

Use L’Hospital’s rule,

= lim
k→0

Nq−N

2kp2
[
(q + k2 p)N−12kp

]

= lim
k→0

Nq−N

p

[
(q + k2 p)N−1

] = N

pq
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Hence

inf EJ = N

pq

In this case, Var(T1) ≥ pq
N , where T1 is any other unbiased estimator of p.

Example 4.3.7 Let X1, X2, . . . , Xn be iid with P(λ).Wewill find CRK lower bound
for any unbiased estimator of λ

J = 1

h2

[(
λ + h

λ

)2T exp[−2(λ + h)m]
exp[−2λm] − 1

]

, T =
m∑

i=1

Xi

J = 1

h2

[(
λ + h

λ

)2T

exp[−2hm] − 1

]

Let s = ( λ+h
λ

)2
,

EJ = 1

h2
[
exp(−2hm)E(sT ) − 1

]

EsT = [expmλ(s − 1)]

EJ = 1

h2
[
exp(−2hm) exp[mλ(s − 1)] − 1

]

= 1

h2

[

exp(−2hm) exp

[

mλ

(
2h

λ
+ h2

λ2

)]

− 1

]

= 1

h2

[

exp

(
mh2

λ

)

− 1

]

Let h
λ

= k

inf EJ = lim
k→0

1

λ2k2
[
exp(mλk2) − 1

]

Use L’Hospital’s rule,

= lim
k→0

1

2kλ2

[
2kmλ exp(mλk2)

]

= lim
k→0

m

λ

[
exp(mλk2)

] = m

λ
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⇒ EJ = m

λ

If T1 is any unbiased estimator of λ then Var(T1) ≥ λ
m .

4.4 Exercise 4

1. Find CR, Bhattacharya and CRK lower bound for the variance of any unbiased
estimator of the parameter in a sample of size n, wherever possible.

(1) f (x |θ) = θ(1 − θ)x ; x = 0, 1, 2 . . . ; 0 < θ < 1
(2) f (x |p) = (x+k−1

x

)
pkqx ; x = 0, 1, 2 . . . , 0 < p < 1, q = 1 − p, k known.

(3) f (x |σ) = 1
σ
√
2π

exp
[
− x2

2σ 2

]
;−∞ < x < ∞, σ > 0

(4) f (x |μ) = 1√
2π

exp
[
− (x−μ)2

2

]
;−∞ < x < ∞,−∞ < μ < ∞

(5) f (x |σ) = e− x
σ x p−1

σ p�(p) ; x > 0, σ > 0 p is known
(6) f (x |α) = α

xα+1 ; x ≥ 1
(7) f (x |θ) = θxθ−1; 0 < x < 1, θ > 0
(8) f (x |θ) = log θ

θ−1 θ x ; 0 < x < 1, θ > 0
2. Let X1, X2, . . . , Xn be iid rvs with N (θ, θ2), θ > 0. Find CR and CRK lower

bound for any unbiased estimator of θ .
3. Let X1, X2, . . . , Xn be iid rvs from the pmf,

f (x |θ) =
(

θ

2

)|x |
(1 − θ)1−|x |; x = −1, 0, 1

Find CRK lower bound for an unbiased estimator of θ .
4. A sample of n observations is taken from the pdf f (xθ) where

f (x |θ) =
{
exp[−(x − θ)] ; x > θ

0 ; otherwise

Find CRK lower bound for θ .
5. Let X1, X2, . . . , Xn be iid rvs with B(n,p).Find CR, Bhattacharya and CRK

lower bound for p2

6. Let X1, X2, . . . , Xn be iid rvs with P(λ). Find CR, Bhattacharya and CRK
lower bound for (i) λ2 (ii) λe−λ

7. Obtain CRR lower bound for θ in (i) ∪(θ, θ + 1) (ii) ∪(θ − 1, θ + 1) (iii)
∪(θ, 2θ)

8. Let the rv X have the following pmf

P[X = x] = e−mmx

(1 − e−m)x ! ; x = 1, 2, . . . , m > 0
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Obtain CRK lower bound for m.
9. Let X be a rv with the following pdf

f (x) =
{ 1

3−a ; a < x < 3, a > 0
0 ; otherwise

Obtain CRK lower bound for a.
10. Obtain CRK lower bound of θ in (i) ∪(−θ, θ) (ii) ∪(0, 2θ) (iii) ∪(θ, θ2)

11. The probability density function of the rv X has the following pdf

f (x) =
{

1
2θ exp

[
−|x−θ |

θ

]
; −∞ < x < ∞, θ > 0

0 ; otherwise

Find CR and CRK lower bound for θ .
12. Obtain CRK lower bound for e− c

σ if X1, X2 < . . . , Xn are iid rvs from an
exponential distribution with mean σ .

13. Let X1, X2, . . . , Xn be iid rvs with N B(r, θ). Find CRK lower bound for an
unbiased estimator θ , θ2 and eθ . Assume r known.

14. Let X1, X2, . . . , Xn be iid rvs with f (x, θ) and g(x, θ). If m is even, then
X2k−1 has f (x, θ) and X2k has g(x, θ), where k = 1, 2, . . . , m

2 .
Assume f (x, θ) = (nx

)
θ x (1 − θ)n−x ; x = 0, 1, 2, . . . , n and

g(x, θ) = (x+r−1
x

)
θ r (1 − θ)x ; x = 0, 1, 2, . . .

Find CR and CRK lower bound for the variance of an unbiased estimator of θ , 1
θ
,

θ3, and eθ

θ
.

15. Let The rv X1 has exponential distribution with mean
1

θ
and the rv X2 has

f (x |θ),

f (x |θ) = θxθ−1; 0 < x < 1, θ > 0

Assume that X1 and X2 are independent rvs.
Find CR, CRK, and Bhattacharya lower bound for the variance of any unbiased

estimator of θ and θ2.
16. Let the rv X1 has ∪(0, θ) and X2 has ∪(θ, θ + 1). Find CRK lower bound for

θ . Assume X1 and X2 are independent rvs.
17. Assume that the rvs X1 and X2 are distributed as∪(0, θ) and exponential with

mean θ , respectively. Find CRK lower bound for θ2.
18. As in problem 14,

f (x |θ) = 1

θ
e− x

θ ; x > 0, θ > 0

g(x |θ) = θxθ−1 ; 0 < x < 1, θ > 0

Find CR and CRK lower bound for θ and θ2 in a sample of size m.
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19. Let X1, X2, . . . , Xn be iid rvs with N (θ, 1). Find CR and CRK lower bound

for (i) θ
θ+1 (ii) θeθ (iii)

e−θ

θ + 1
.

20. Let X1, X2, . . . , Xn be iid rvs with exponential and mean θ . Find CR, CRK,
and Bhattacharya lower bound for eθ . Further, find UMVUE of eθ . Whether it attains
CR lower bound? Justify.
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Chapter 5
Consistent Estimator

In the previous chapters, we have seen various methods of estimation. Among the
class of unbiased estimators, UMVUE is the best estimator in the sense that it has
minimumvariance. According to Lehmann–Scheffe theorem, if a complete sufficient
statistic T exists, all we need to find is a function of T which is unbiased. One should
note that if a complete sufficient statistics does not exist, an UMVUEmay still exist.
Similarly, we have considered moment and maximum likelihood estimators. These
estimatorsmay be biased or unbiased. In some casesmoment ormaximum likelihood
estimators may be more efficient than UMVUE in the sense of mse. If n is large,
what happens about all these estimators? It is quite possible that for a large n all these
estimators may be equally efficient. Hence in this chapter, we will consider the large
sample properties of estimators. This property of sequence of estimators is called
consistency. Initially, we will consider some theorems on modes of convergence.

5.1 Prerequisite Theorems

Definition 5.1.1 A sequence of rvs {Xn} is said to converge to X in probability,

denoted as Xn
P−→ X , if for every ε > 0, as n → ∞

P[|Xn − X | ≥ ε] → 0. (5.1.1)

Equivalently, Xn
P−→ X , if for every ε > 0, as n → ∞

P[|Xn − X | < ε] → 1. (5.1.2)

Now we will state the theorem without proof.
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Theorem 5.1.1 Let Xn
P−→ X, and Yn

P−→ Y . Then

(i) kXn
P−→ kX, (k is real)

(ii) Xn + Yn
P−→ X + Y .

(iii) XnYn
P−→ XY .

(iv) Xn
Yn

P−→ X
Y if P[Yn = 0] = 0, ∀n and P[Y = 0] = 0.

Definition 5.1.2 The sequence of rvs {Xn} is said to converge to X almost surely
(a.s.) or almost certainly, denoted as Xn

a.s.−→ X iff Xn(w) → X (w) for allw, except
those belonging to a null set N .

Thus,
Xn

a.s.−→ X iff Xn(w) → X (w) < ∞, for wεNc,

where P(N ) = 0. Hence we can write as

P
[
lim
n

Xn = X
]

→ 1 (5.1.3)

Theorem 5.1.2 Xn
a.s.−→ X ⇒ Xn

P−→ X
The reader can see the proof of Theorems 5.1.1 and 5.1.2 in Rohatagi and Saleh
(2001), and Bhat (2004).

One should note that the converse of Theorem 5.1.2 is not true.

Definition 5.1.3 Let Fn(x) be the df of a rv Xn and F(x), the df of X . Let C(F) be
the set of points of continuity of F . Then {Xn} is said to converge to X in distribution

or in law or weakly, denoted as Xn
L−→ X and/or Fn

W−→ F , for every x ∈ C(F).

It may be written as Xn
d−→ X or Fn

d−→ F .

Theorem 5.1.3 Let Xn
L−→ X, Yn

L−→ c then

(i) Xn + Yn
L−→ X + c.

(ii) XnYn
L−→ Xc.

(iii) Xn
Yn

L−→ X
c if P[Yn = 0] = 0 and c �= 0.

Theorem 5.1.4 Let Xn
P−→ X ⇒ Xn

L−→ X.

Theorem 5.1.5 Let k be a constant, Xn
L−→ k ⇔ Xn

P−→ k.

But in Theorem 5.1.4, we cannot say that Xn
L−→ k ⇒ Xn

P−→ k

Definition 5.1.4 A sequence of rvs {Xn} is said to converge to X in the rth mean if
E|Xn − X |r → 0 as n → ∞. It is denoted as Xn

r−→ X .
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For r = 2, it is called convergence in quadratic mean or mean square.

Theorem 5.1.6 Xn
r−→ X ⇒ E|Xn|r → E|X |r .

Theorem 5.1.7 Xn
r−→ X ⇒ Xn

P−→ X.

If X ′
ns are a.s. bounded, conversely,

Xn
P−→ X ⇒ Xn

r−→ X , for all r

The above relationship between these convergence is explained in the following
diagram:

convergence a.s.
=⇒
� convergence in probabili t y

=⇒
� convergence in distribution

convergence in probabili t y ⇔ convergence in the rth mean (5.1.4)

The proofs of the above theorems are available in any text book on probability theory.
See Serfling (1980), Billingsley (2012), Athreya and Lahiri (2006), Feller (1970),
Rohatagi and Saleh (2001), and Bhat (2004). The reader should refer to different
types of examples on the above theorems in Stoyanov (1997).

Next, we will study the limiting behavior of sums of independent rvs.

Definition 5.1.5 Let {Xn} be a sequence of rvs. Let Sn = ∑n
i=1 Xi , n = 1, 2, . . ..

We say that {Xn} is said to be stable in probability or it obeys the weak law of large
numbers (WLLN) with respect to numerical sequences {An} and {Bn}, Bn > 0,
Bn ↑ ∞ if B−1

n (Sn − An) → 0 in probability as n → ∞.

Theorem 5.1.8 Let {Xi } be a sequence of pair-wise uncorrelated rvs withEXi = μi

and EXi = σ2
i , i = 1, 2, . . . , n. If

∑n
i=1 σ2

i → ∞ as n → ∞, we can choose
An = ∑n

i=1 μi and Bn = ∑n
i=1 σ2

i such that

Sn − An

Bn
=

n∑

i=1

Xi − μi
∑n

i=1 σ2
i

P−→ 0 as n → ∞ (5.1.5)

Note:

1. If Xi
′s are iid rvs, then An = nμ and Bn = nσ2.

2. Choose Bn = n provided that n−2∑n
i=1 σ2

i → 0 as n → ∞.

3. In iid case, choose An = nμ, Bn = n, since nσ2

n2 → 0 as n → ∞ then Sn
n

P−→ μ.

Theorem 5.1.9 Let {Xi } be a sequence of rvs. Set Yn = n−1∑n
i=1 Xi . A necessary

and sufficient condition for the sequence {Xn} to satisfy the WLLN is that

E

[
Y 2
n

1 + Y 2
n

]

→ 0 as n → ∞ (5.1.6)
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Theorem 5.1.10 WLLN holds if and only if the three following conditions hold;

(i) lim
n∑

k=1
P[|Xk | > n] = lim

n∑

k=1
P[|Xk | �= Xn

k ] → 0,

(ii)
1

n

n∑

k=1
EXn

k → 0,

(iii)
1

n2

n∑

k=1
Var(Xn

k ) → 0,

where

Xn
k =

{
Xk ; |Xk | ≤ n
0 ; otherwise

Definition 5.1.6 Let {Xn} be a sequence of rvs. Let Sn = ∑n
i=1 Xi , n = 1, 2, . . . ,.

We say that {Xn} is said to be stable for a.s. probability or it obeys the strong law of
large numbers (SLLN) with respect to numerical sequences {An} and {Bn}, Bn > 0,
Bn ↑ ∞ if B−1

n (Sn − An)
a.s.−→ 0 as n → ∞.

Theorem 5.1.11 If {Xk} are independent and Var(Xk) = σ2
k < ∞, Bn ↑ ∞,

An = ESn and Bn = ∑n
k=1

σ2
k

b2k
< ∞, then

(
Sn − An

Bn

)
a.s.−→ 0 (5.1.7)

The proofs of WLLN and SLLN are available in any text book of probability.

Chebychev’s Inequality

Theorem 5.1.12 Let X be a rv with EX = μ and Var X = σ2 < ∞, for any k > 0

P[|X − μ| ≥ kσ] ≤ 1

k2
(5.1.8)

or equivalently,

P[|X − μ| < kσ] ≥ 1 − 1

k2
(5.1.9)

Note: The distribution of X is not specified.

5.2 Definition and Examples

If we collect a large number of observations then we have a lot of information about
any unknown parameter θ, and thus we can construct an estimator with a very small
mse. We call an estimator consistent if
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lim
n→∞MSE(T (X)) = 0 (5.2.1)

which means that as the number of observations increase, the mse decreases to
zero. For example, if X1, X2, . . . , Xn ∼ N (θ, 1), then MSE(X̄) = 1

n . Hence
lim
n→∞ MSE(X̄) = 0, X̄ is consistent estimator of θ.

Definition 5.2.1 Let X1, X2, . . . , Xn be a sequence of iid rvs with pdf(pmf) f (x |θ).
A sequence of point estimates T is called consistent estimator of θ, where T =
T (X1, X2, . . . , Xn) if for a given ε, δ > 0, there exists n0(ε, δ, θ) such that ∀θ ∈ �

P[|T − θ| < ε] ≥ 1 − δ, ∀ n > n0 (5.2.2)

or, using the Definition 5.1.1, we can say that T
P−→ θ as n → ∞.

Moreover, we can say that

P[|T − θ| < ε] → 1 (5.2.3)

Note: Some authors (5.2.3) define as a weak consistency and if we use a Defini-
tion 5.1.2 then they define it as a strong consistency.

Example 5.2.1 Let {Xi }m1 be iid B(n, p), then
X̄

n
is consistent estimator for p, where

X̄ =
∑m

i=1 Xi

m
.

Now, MSE
(

X̄
n

)
= pq

mn , q = 1 − p. As m → ∞ ⇒ MSE
(

X̄
n

)
→ 0

Example 5.2.2 Let {Xi }n1 be iid rvs with P(λ) λ > 0 then X̄ is a consistent estimator
of λ, X̄ = n−1∑n

i=1 Xi .

Now, E X̄ = λ and MSE(X̄) = λ
n → 0 as n → ∞.

Example 5.2.3 Let {Xi }n1 be iid rvs with ∪(0, θ), θ > 0.
X̄ is not an consistent estimator of θ.

MSE(X̄) = (3n+1)θ2

12n and limn→∞ (3n+1)θ2

12n = θ2

4 �= 0
But X(n) is an consistent estimator.

(i) EX(n) = nθ
n+1 and MSE(X(n)) = 2θ2

(n + 1)(n + 2)
→ 0 as n → ∞

(ii) Use the Definition (5.1.1) and assume ε ≤ θ, from (5.1.2)

P[|X(n) − θ| < ε] =P[θ − ε < X(n) < θ + ε]

=
θ∫

θ−ε

nxn−1

θn
dx = 1 −

(
θ − ε

θ

)n

→ 1 as n → ∞



202 5 Consistent Estimator

(iii) Consider a df of X(n), let it be Hn(x, θ)

Hn = P[X(n) ≤ x] =
⎧
⎨

⎩

0 ; x < 0
( x

θ
)n ; 0 ≤ x < θ

1 ; x ≥ θ

lim
n→∞ Hn(x, θ) = H(x, θ),

where

H(x, θ) =
{
0 ; x < 0
1 ; x ≥ 0

In (5.1.4), we have explained the relationship between convergence, using this rela-
tionship,

X(n)
P−→ θ ⇔ Hn

d−→ H

In this case H(x, θ) is a df of a singular random variable, i.e., P[X = θ] = 1, then

X(n)
d−→ X ⇒ X(n)

P−→ θ.

Example 5.2.4 Consider {Xi }n1 are iid rvs as Cauchy distribution with location para-
meter θ.

f (x |θ) = 1

π

[
1

1 + (x − θ)2

]

; x ∈ R, θ ∈ R

then X̄ is not a consistent estimator for θ.

The distribution of X̄ is Cauchy with parameter θ.
Using the Definition 5.1.1,

P[|X̄ − θ| < ε] = P[θ − ε < X̄ < θ + ε] (5.2.4)

=
θ+ε∫

θ−ε

1

π

[
dx

1 + (x − θ)2

]

= 2

π
tan−1 ε

This does not tends to 1.
Hence X̄ is not a consistent estimator.

Example 5.2.5 Let X1, X2, . . . , Xn be iid N
(
μ,σ2

)
rvs. We have to find the con-

sistent estimator for σ2.

We know that (n−1)S2

σ2 ∼ χ2
(n−1), where S

2 =
∑

(xi−x̄)2

n−1 .
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From Chebychev’s Inequality, i.e., from Theorem 5.1.12
kσ = ε ⇒ k = ε

σ

P[|S2 − σ2| > ε] ≤ Var(S2)

ε2
= 2σ4

(n − 1)ε2
→ 0 as n → ∞

Hence S2 is consistent estimator for σ2.

Theorem 5.2.1 Let T be a consistent estimator for θ and let g be a continuous
function then g(t) is consistent for g(θ).

Proof Given any ε > 0, there exist a δ > 0, such that, |g(t) − g(θ)| < ε whenever
|T − θ| < δ

Therefore,

{x | |T − θ| < δ} ⊆ {x ||g(t) − g(θ)| < ε}

Then

P{x | |g(t) − g(θ)| < ε} ≥ P{x ||T − θ| < δ},

Hence,

P{x | |g(t) − g(θ)| < ε} → 1

Because

P{x | |T − θ| < δ} → 1

g(t) is consistent for g(θ). �

Example 5.2.6 Let X1, X2, . . . , Xn be iid p(λ) rvs. To find the consistent estimator
for g(λ) = e−sλλr . We know that X̄ is consistent for λ.

Using the Theorem 5.2.1, g
(
X̄
) = e−s X̄

(
X̄
)r

is consistent for g(λ) = e−sλλr .

Example 5.2.7 Let X1, X2, . . . , Xm be iid B(n, p) rvs. We know that
X̄

n
= (mn)−1

∑m
i=1 Xi is consistent for p.

Now, using Theorem 5.2.1,
(n
x

)
X̄ x
(
1 − X̄

)n−x
is consistent for

(n
x

)
pxqn−x , when

m → ∞.

Example 5.2.8 Let X1, X2, . . . , Xm be iid B(n, p) rvs, where p is a function of θ,
in Bioassay problem, p(θ) = exp(θy)

1+exp(θy) , where y > 0 is a given dose level.
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Now X̄
n is consistent for p.

X̄

n
= exp(θy)

1 + exp(θy)
⇒ θ̂ = 1

y
log

X̄
n

1 − X̄
n

, X̄ =
∑m

i=1 Xi

n

Example 5.2.9 Let X1, X2, . . . , Xn be iid with f (x |θ),

f (x |θ) = θxθ−1 ; 0 < x < 1, θ > 0

Let y = − log x

g(y|θ) = θe−θy ; y > 0, θ > 0

One can easily see that −n∑
log xi

is consistent for θ.

Now we will define population quantiles.

Definition 5.2.2 Let X be a rv with its df F(x |θ), θε� then population quantile qp

is defined as

P[X ≤ qp] = p, 0 < p < 1

See David and Nagaraja (2003).
If p = 1

2 then q 1
2
is median.

If p = i
4 (i = 1, 2, 3), then q i

4
is called as i th Quartile. In many textbooks,

Quartiles such as Q1, Q2 and Q3 are defined.
If Di = i

10 (i = 1, 2, . . . , 9), then q i
10
is called as i th Decile. In many textbooks,

it is defined as (D1, D2, . . . , D9).

Definition 5.2.3 Let the rv X have exponential distribution with mean θ, then to find
Q1, Q2, Q3, D1, D3, and D8:

f (x |θ) = 1

θ
e− x

θ ; x > 0, θ > 0

By Definition 5.2.2,

P[X ≤ Q1] = 1

4

1 − e− Q1
θ = 1

4
⇒ Q1 = −θ log

3

4



5.2 Definition and Examples 205

Similarly,

Q2 = −θ log
1

2
and Q3 = −` log

1

4

D1 = −θ log
9

10
, D3 = −θ log

7

10
and D8 = −` log

2

10
.

Lemma 5.2.1 Let X be a random variable with its df F(x). The distribution of F(x)
is ∪(0, 1)

Proof Then

P[F(X) ≤ z] = P
[
X ≤ F−1(z)

] = F
[
F−1(z)

] = z

Hence F(x) is ∪(0, 1). �

Theorem 5.2.2 Sample quantiles are consistent estimators of population quantiles.
Let X(r) be the rth order statistics of the sample and qp is the pth quantiles. Hence

X(r)
P−→ qp. If r = [np] + 1, then X [np]+1

P−→ F−1(p).

Proof Let {X(1), X(2), . . . , X(r)} be the order statistics of a sample of size n from the
population. �

Let Z(r) = F(X(r)) has the same distribution as that of rth order statistic for a sample
of size n from ∪(0, 1), see Lemma 5.2.1.

fZ(r) (x) = n!
(r − 1)!(n − r)! x

r−1(1 − x)n−r ; 0 < x < 1

EZ(r) = EF(X(r)) = r

n + 1
,EZ2

(r) = r(r + 1)

(n + 1)(n + 2)

Let r = [np] + 1, where [a] = integer part of a.
Consider

E(Z(r) − p)2 = r(r + 1)

(n + 1)(n + 2)
− 2pr

n + 1
+ p2

r = [np] + 1 ⇒ np ≤ r ≤ np + 1

np

n + 1
≤ r

n + 1
≤ np + 1

n + 1

lim
n→∞

np

n + 1
≤ lim

n→∞
r

n + 1
≤ lim

n→∞
np + 1

n + 1

p ≤ lim
n→∞

r

n + 1
≤ p
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Hence

lim
n→∞

r

n + 1
= p

Similarly, np + 1 ≤ r + 1 ≤ np + 2

⇒ np + 1

n + 2
≤ r + 1

n + 2
≤ np + 2

n + 2

Then

lim
n→∞

r + 1

n + 2
= p

Hence limn→∞ E(Z(r)) = p and E(Z(r) − p)2 → 0.

Then F(X(r))
P−→ p.

Now F−1 is continuous (which holds if dF
dx = f (x) > 0),

We have F−1F(X(r)) = X(r)
P−→ F−1(p)

This implies that X(r)
P−→ qp ⇒ X [np]+1

P−→ qp.

Example 5.2.10 Let X1, X2, . . . , Xn are iid rvs with Pareto distribution

f (x |λ) = λ

xλ+1
; x ≥ 1, λ > 0

F(u) = P[X ≤ u] = 1 − u−λ ; u ≥ 1

For 0 < p < 1, qp(λ) is given by F(qp) = p
Then 1 − (qp)

−λ = p

qp = exp

[

− log(1 − p)

λ

]

,

By Theorem 5.2.2, X [np]+1
P−→ qp.

Therefore, X [np]+1 is consistent for exp[− log(1−p)
λ

].
Let �(λ) = exp

[
− log(1−p)

λ

]

Now d�
dλ

�= 0 and �−1 exist.

Therefore, 1 − (qp)
−λ = p ⇒ λ̃ = − log(1−p)

log qp

Now X [np]+1 is consistent for qp.
Then λ̃ = − log(1−p)

log X [np]+1
is consistent for λ.
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Note:

EX =
∞∫

1

xλ

xλ+1
dx = λ

λ − 1
; λ > 1

If λ > 1, X̄
P−→ λ

λ−1 .

Hence, λ̃ = X̄
1−X̄

,

Then λ̃ → λ in probability if λ > 1
Further, if λ ≤ 1 then EX does not exist and X̄ is not consistent for λ

λ−1 , and

therefore λ̃ is not consistent for λ.

Example 5.2.11 Let X1, X2, . . . , Xn be Weibull distribution with pdf given by

f (x |α) = αxα−1 exp[−xα]; x > 0, α > 0

In this case, F(u) = 1 − exp[−uα]
Hence,

1 − exp[−qp
α] = p

qp
α = − log(1 − p)

α̃ = log
[
log(1 − p)−1

]

log qp

Now X [np]+1 is consistent for qp

α̃ = log
[
log(1 − p)−1

]

log X [np]+1

Therefore, α̃
P−→ α, i.e., consistent estimator for α is given by log[log(1−p)−1]

log X [np]+1
.

5.3 Consistent Estimator for Multiparameter

In this section, we consider the case when θ is vector valued parameter.

Definition 5.3.1 Let θ = (θ1, θ2, . . . , θn). Then the consistency of a vector valued
statistic T = (T1, T2, . . . , Tn) can be defined in two ways

(i) Marginal consistency: Ti
P−→ θi (i = 1, 2, . . . , n)

(ii) Joint consistency
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lim
n→∞ P[||T − θ|| < ε] = 1, ∀ε > 0, ∀ θ > 0

where ||x || is a suitable norm for n-dimensional Euclidean space Rn ,
||x || = max ||xi ||, which is equivalent to

√
x ′x

||T − θ|| =
[∑

(Ti − θi )
2
] 1

2

Theorem 5.3.1 T is marginally consistent if and only if it is jointly consistent.

Proof (i) Assume that T is jointly consistent.
Let Ai = {x | |Ti − θi | < ε}
Let A = {x |maxi |Ti − θi | < ε}
It implies that A = ⋂n

i=1 Ai

Since T is jointly consistent then P(A) → 1 as n → ∞ and A ⊆ Ai .
Hence P(Ai ) ≥ P(A)

Therefore, P(Ai ) → 1 as n → ∞,
Thus, T is marginally consistent.
(ii) Assume that T is marginally consistent.
P(Ai ) → 1 ⇒ limn→∞ P(Ai ) = 1
limn→∞ P(Ac

i ) = 0 for each i
Using De’Morgan’s Law, Ac = ⋃n

i=1 A
c
i

P(Ac) ≤ ∑n
i=1 P

(
Ac
i

) → 0

⇒ P(Ac) → 0

⇒ P(A) → 1

This implies that T is jointly consistent for θ. �

Example 5.3.1 Kale (1999) had given a consistent estimator for a location and scale
parameter for f (x |μ,σ), x ∈ R, μ ∈ R, σ > 0

Let

f (x |μ,σ) = 1

σ
f0

(
x − μ

σ

)

Now

F(qp) =
qp∫

μ

1

σ
f0

(
x − μ

σ

)

dx = p
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Let Z = X−μ
σ

F(qp) =
qp−μ

σ∫

0

f (z)dz = p

Let cp = qp−μ

σ
⇒ qp = μ + σcp

Consider 0 < p1 < p2 < · · · pk < 1, then qpr = μ + σcpr , r = 1, 2, . . . , k,
We know that X [npr ]+1 is consistent for qpr
Hence, X [npr ]+1 = μ + σcpr ; r = 1, 2, . . . , k
We have k equations and we can estimate parameters by the method of least

squares:

σ̂ = Cov
[
X [npr ]+1, cpr

]

Var [cpr ]

=
k

k∑

r=1
X [npr ]+1 cpr −

k∑

r=1
X [npr ]+1

k∑

r=1
cpr

k
∑

c2pr − (∑
cpr
)2

μ̂ =

k∑

r=1
X [npr ]+1 − σ̂

k∑

r=1
cpr

k

Since X [npr ]+1 → μ + σcpr in probability as n → ∞.

We can easily show that σ̂
P−→ σ and μ̂

P−→ μ. Hence (μ̂, σ̂) is consistent for
(μ,σ).

Example 5.3.2 Let X1, X2, . . . , Xn be iid

N (μ,σ2) rvs
Using Theorem 5.1.8,

m ′
1 = X̄

P−→ μ, where m ′
1 =

∑
Xi

n

m ′
2

P−→ μ2 + σ2, where m ′
2 =

∑
X2
i

n

m ′
2 − (m ′

1)
2 P−→ σ2

Let T1 = X̄ and T2 = m ′
2 − (m ′

1)
2,

Using Theorem 5.3.1, (T1, T2) are jointly consistent for
(
μ,σ2

)
.

Note: If T2 = m2, then
√
m2 → σ in probability,

thus (X̄ + Zα
√
m2) → μ + Zασ in probability, where Zα is 100α% point of the

normal distribution.
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Example 5.3.3 Consider the two-parameter gamma family:

f (x |p,σ) = e− x
σ x p−1

σ pΓ (p)
; x > 0, p > 0,σ > 0

EX = pσ, EX2 = p(p + 1)σ2, V(X) = pσ2

X̄ = m ′
1

P−→ pσ and m2
P−→ pσ2

m2
m ′

1

P−→ σ and (m ′
1)

2

m2

P−→ p

Using Theorem 5.3.1,
(
m2
m ′

1
,

(m ′
1)

2

m2

)
is jointly consistent for (σ, p).

Example 5.3.4 {Xi }ni=1 are iid exponential rvs with location and scale parameter μ
and σ respectively.

EX = μ + σ, Var(X) = σ2

m2
P−→ σ2 and

√
m2

P−→ σ

X̄
P−→ μ + σ and X̄ − √

m2
P−→ μ.

Hence, (X̄ − √
m2,

√
m2) is jointly consistent for (μ,σ).

Alternatively, we can find consistent estimators for (μ,σ) based on order statistics.
Let X(1) < X(2) < · · · < X(n) be the order statistics.
The distribution of X(1) is exponential with location and scale parameter μ and

σ

n
, respectively.

gX(1) (x |μ,σ) = n

σ
exp{− n

σ
(x − μ)} ; x > μ, σ > 0

EX(1) = μ + σ
n and Var(X(1)) = σ2

n2

One can easily verify that

X(1)
P−→ μ, and X̄

P−→ μ + σ. Then 1
n

n∑

i=2
(X(i))

P−→ σ

Hence, by Theorem 5.2.1,

[X(1),
1
n

n∑

i=2
(X(i))] P−→ (μ,σ).

5.4 Selection Between Consistent Estimators

Let T1 and T2 be the two consistent estimators for θ. Assume T1 and T2 converges in
quadratic mean to θ (see the Definition 5.1.4), i.e., Ti → θ in quadratic. We prefer
T1 to T2 if for sufficiently large n (say n > n0) and ∀θ ∈ �,

MSE(T1|θ) ≤ MSE(T2|θ). (5.4.1)
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Example 5.4.1 Let X1, X2, . . . , Xn are iid ∪(0, θ) rvs. We know that T1 = X(n) and
T2 = 2X̄ are both consistent estimators for θ (Reader can show this).

MSE(T1|θ) = 2θ2

(n+1)(n+2) and MSE(T2|θ) = θ2

3n .

In this case MSE(Ti |θ) → 0 as n → ∞
From (5.4.1), we choose T1 to T2 if MSE(T1|θ) converges to zero at a faster rate

than that of MSE(T2|θ).
Now, MSE(T1|θ) → 0 at the rate of 1

n2

and MSE(T2|θ) → 0 at the rate of 1
n

Thus, MSE(T1|θ) converges to zero at a faster rate than that of MSE(T2|θ). We
prefer T1 for θ. In such a situation, we will say T1 is faster than T2.

Example 5.4.2 Let X1, X2, . . . , Xn are iid rvs with f (x |μ),

f (x |μ) = exp[−(x − μ)]; x ≥ μ

Let T1 = X(1) and T2 = 2X̄ + 1
MSE(T1) = 2

n2 , MSE(T2) = 1
n .

Here, also, T1 is faster than T2.

Example 5.4.3 {Xi }2n+1
1 are iid rvs with ∪(μ − 1,μ + 1).

Let T1 = Median = X(n+1) and T2 = X̄2n+1 = 1
2n+1

∑2n+1
i=1 Xi = sample mean

Here E(T1) = E(T2) = μ, Var(T1) = 1
3(2n+1) and Var X(n+1) = 1

2n+3 .

Var(T1) = 1

2n

(

1 + 3

2n

)−1

= 1

2n

[

1 − 3

2n
+ o

(
1

n

)]

= 1

2n
− 3

4n2
+ o

(
1

n2

)

(5.4.2)

Var(T2) = 1

6n

(

1 + 1

2n

)−1

= 1

6n

[

1 − 1

2n
+ o

(
1

n

)]

= 1

6n
− 1

12n2
+ o

(
1

n2

)

(5.4.3)

Comparing the coefficient of 1
n in (5.4.2) and (5.4.3)

1

6
<

1

2
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Hence T2 is more efficient than T1. Therefore, samplemean is preferable thanmedian
for μ. Further, taking the ratios of MSE and then taking the limit as n → ∞, we
conclude that

MSE[X(n+1)]
MSE[X̄(2n+1)]

→ 3 as n → ∞.

The sample mean is three times more efficient than the median.

Example 5.4.4 Let X1, X2, . . . , Xn are iid N (μ,σ2) rvs.

Let T1 = S2

n , where S
2 = ∑

(xi − x̄)2 and T2 = S2

n−1

Note that S2

σ2 ∼ χ2
n−1, E(S2) = (n − 1)σ2 and Var(S2) = 2(n − 1)σ4.

MSE(T1) = E

(
S2

n
− σ2

)2

= Var(
S2

n
) +

[

Bias

(
S2

n
− σ2

)]2

= 2(n − 1)σ4

n2
+ [ (n − 1)σ2

n
− σ2)]2

= σ4[2(n − 1)

n2
+ 1

n2
]

= σ4[2
n

− 1

n2
] (5.4.4)

Similarly,

MSE(T2) = 2σ4

n − 1
= 2σ4

n

(

1 − 1

n

)−1

= 2σ4

n

[

1 + 1

n
+ o

(
1

n

)]

= σ4

[
2

n
+ 2

n2
+ o

(
1

n2

)]

(5.4.5)

By observing (5.4.4) and (5.4.5)

(a) Coefficient of 1
n is same in both (5.4.4) and (5.4.5)

(b) Coefficient of 1
n2 in (5.4.4) is −1 and in (5.4.5) is 2.

Hence, MSE(T1) is smaller than MSE(T2).
We prefer T1 than T2 as a consistent estimator for σ2.
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5.5 Determination of n0

Kale (1999) has explained the method of determination of n0 in a very interesting
way. In some examples, we will require the following Cramer and Fisz theorem; see
Serfling (1980, p. 77)

Theorem 5.5.1 Let qp be the 100p% point of F and let X [np]+1 be the sample
100p% point then under regularity conditions

X [np]+1 ∼ AN

[

qp,
p(1 − p)

n[ f (qp)]2
]

(5.5.1)

Using the Definition 5.1.4 and Theorem 5.1.12, we can write if T
2−→ θ then

P[|T − θ| < ε] ≥ 1 − MSE(T )

ε2
(5.5.2)

In (ε, δ) terminology, suppose we want that

P[|T − θ| < ε] ≥ 1 − δ ∀ n ≥ n0 (5.5.3)

then using (5.5.2) if 1 − MSE(T )

ε2
≥ 1 − δ, the desired level of accuracy specified by

(ε, δ) is achieved if n0 is determined by

MSE(T ) ≤ δε2 (5.5.4)

Example 5.5.1 Consider the Example 5.4.3,

MSE(X̄2n+1) = 1

3(2n + 1)
(5.5.5)

MSE(X(n+1)) = 1

2n + 3
(5.5.6)

Using (5.5.4) and (5.5.5)

1

3(2n + 1)
≤δε2

⇒n ≥ 1

2

(
1

3δε2
− 1

)

⇒n0 =
[
1

2

(
1

3δε2
− 1

)]

+ 1 (5.5.7)
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Table 5.1 n0 for mean X̄2n+1

δ\ε 0.2 0.1 0.01 0.001

0.2 21 83 8333 833,333

0.1 42 167 16,667 16,666,667

0.01 417 1667 16,667 16,666,667

0.001 4167 16,667 1,666,667 166,666,667

Table 5.2 n0 for median X(n+1)

δ\ε 0.2 0.1 0.01 0.001

0.2 62 250 25 × 104 25 × 105

0.1 125 500 5 × 104 5 × 106

0.01 1250 5000 5 × 105 5 × 107

0.001 12,500 5 × 104 5 × 106 5 × 108

Similarly, using (5.5.4) and (5.5.6)

1

2n + 3
≤δε2

⇒n ≥ 1

2

(
1

δε2
− 3

)

⇒n0 =
[
1

2

(
1

δε2
− 3

)]

+ 1 (5.5.8)

The Tables5.1 and 5.2 give the values for n0 using R,

# To enter epsilon (eps) and delta (del).
eps <- c(0.2,0.1,0.01,0.001); del <- c(0.2,0.1,0.01,0.001);
ld <- length(del); # length of delta
le <- length(eps); # length of epsilon

# declaring matrics for n0t and n0t2.
n0t1 <- matrix(data=0,nrow=ld,ncol=le); n0t2 <- matrix(data=0,nrow=ld,ncol=le)

# To find n0 for T1=X(n+1).
for(i in 1:ld)
{

for(j in 1:le) { n0t1[i,j] <- (((1/(del[i]*(eps[j]ˆ2)))-3)/2)+1 }
}

colnames(n0t1) <- c("[0.2]","[0.1]","[0.01]","[0.001]")
rownames(n0t1) <- c("[0.2]","[0.1]","[0.01]","[0.001]")

# To find n0 for T2=X_bar(2n+1).
for(i in 1:ld)
{

for(j in 1:le) { n0t2[i,j] <- (((1/(3*del[i]*(eps[j]ˆ2)))-1)/2)+1 }
}

colnames(n0t2) <- c("[0.2]","[0.1]","[0.01]","[0.001]")
rownames(n0t2) <- c("[0.2]","[0.1]","[0.01]","[0.001]")

# OUTPUT
print("n0 for T1"); n0t1; print("n0 for T2"); n0t2

Here ε = 0.2, 0.1, 0.01 and 0.001, and δ = 0.2, 0.1, 0.01 and 0.001
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It is interesting to see that n0 is increasing faster in row-wise than in column wise.
Hence, we will have to be more careful in selecting ε than δ. Hence, one should select
δ smaller than ε.

The above analysis of determination of n0 and the minimum sample size required
to attain a given level of accuracy specified by (ε, δ) is the basic idea underlying the
concept of efficiency or asymptotic relative efficiency. In this case, we can define
relative efficiency of T1 and T2 as we prefer T1 to T2 if n0(T1) ≤ n0(T2) ∀ θ ∈ �.

Since this efficiency depends on Chebychev’s inequality and it gives a very crude
lower bound to the probability. Therefore, n0(T ) determined by this inequality may
actually be an overestimate.

The CLT plays an important role in statistical theory. We generally make the
assumption that underlying observations follow normal distribution at least approx-
imately. The theory of errors used by physicists or astronomers can be justified on
the basis of CLT.

Theorem 5.5.2 Let X1, X2, . . . , Xn be iid rvs with EXi = μ and Var Xi = σ2 <

∞. Let Yn = √
n(

X̄−μ
σ

), where X̄ = n−1∑n
i=1 Xi . Then Yn converges to a standard

normal variate.

Note:

1. CLT gives the probability bound for |X̄−μ|, whileWLLN gives only the limiting
value.

2. Reader should refer Bhat (2004), where CLT’s are givenwith different conditions.

Example 5.5.2 Consider the Example 5.5.1

Let T1 = X̄2n+1 and T2 = X(n+1)

By Theorem 5.1.1

√
3(2n + 1)

(
X̄2n+1 − μ

) d−→ N (0, 1) (5.5.9)

Thus

P
[∣
∣X̄2n+1 − μ

∣
∣ < ε

] = P
[
−ε
√
3(2n + 1) ≤ √

3(2n + 1)(X̄2n+1 − μ) ≤ ε
√
3(2n + 1)

]

= �[ε√3(2n + 1)] − �[−ε
√
3(2n + 1)],

where

�(y) =
y∫

−∞

1√
2π

e− x2

2 dx

Using (5.5.3)

�[ε√3(2n + 1)] − �[−ε
√
3(2n + 1)] ≥ 1 − δ
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By symmetry,

2�
[
ε
√
3(2n + 1)

]
− 1 ≥ 1 − δ

ε
√
3(2n + 1) ≥ �−1

[

1 − δ

2

]

n ≥ 1

6ε2

[

�−1

(

1 − δ

2

)]2
− 1

2

Thus

n0(T1) =
[

1

6ε2

{

�−1

(

1 − δ

2

)}2
− 1

2

]

+ 1 (5.5.10)

Consider the estimator T2 = X(n+1)

P[|X(n+1) − μ| < ε] = 1

β(n + 1, n + 1)

μ+ε∫

μ−ε

(
y − μ + 1

2

)n (

1 − y − μ + 1

2

)n dy

2

(5.5.11)

Substitute w = y − μ

= 1

β(n + 1, n + 1)

ε∫

−ε

(
1 + w

2

)n (1 − w

2

)n dw

2

= 1

β(n + 1, n + 1)22n

ε∫

0

(1 − w2)ndw

Let w2 = t

= 1

22n+1β(n + 1, n + 1)

ε2∫

0

(1 − t)nt−
1
2 dt

This is an incomplete Beta type distribution. In such a situation, it is difficult to
find n0. Now, we will use Cramer–Fisz theorem, i.e., Theorem 5.5.1 to find the
distribution of X(n+1). In this case, p = 1

2 , qp = μ, f (qp) = 1
2 and n is replaced by

2n + 1.

X(n+1) ∼ AN

[

μ,
1

(4)(2n + 1)( 12 )
2

]
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⇒ X(n+1) ∼ AN

[

μ,
1

2n + 1

]

⇒ √
2n + 1[X(n+1) − μ] ∼ AN (0, 1)

Therefore

P
[∣
∣X(n+1) − μ

∣
∣ < ε

] = �
[
ε
√
2n + 1

]
− �

[
−ε

√
2n + 1

]

Similarly as before,

n0(T2) =
[

1

2ε2

{

�−1

(

1 − δ

2

)}2
− 1

2

]

+ 1 (5.5.12)

Tables5.4 and 5.5 give the values of n0 using R

# To enter epsilon (eps) and delta (del).
eps <- c(0.2,0.1,0.01,0.001); del <- c(0.2,0.1,0.01,0.001);
ld <- length(del); # length of delta
le <- length(eps); # length of epsilon

# declaring matrices for n0t1 and n0t2.
n0t1 <- matrix(data=0,nrow=ld,ncol=le); n0t2 <- matrix(data=0,nrow=ld,ncol=le)

# To fnd n0 for T1.
for(i in 1:ld)
{

for(j in 1:le)
{
x <- 1-(del[i]/2); y <- qnorm(x,0,1);
n0t1[i,j] <- ((yˆ2/(6*eps[j]ˆ2))-2)+1 }

}
colnames(n0t1) <- c("[0.2]","[0.1]","[0.01]","[0.001]")
rownames(n0t1) <- c("[0.2]","[0.1]","[0.01]","[0.001]")

# To fnd n0 for T2.
for(i in 1:ld)
{

for(j in 1:le)
{
x <- 1-(del[i]/2); y <- qnorm(x,0,1);
n0t2[i,j] <- ((yˆ2/(2*eps[j]ˆ2))-0.5)+1 }

}
colnames(n0t2) <- c("[0.2]","[0.1]","[0.01]","[0.001]")
rownames(n0t2) <- c("[0.2]","[0.1]","[0.01]","[0.001]")

# OUTPUT
print("n0 for T1"); n0t1
print("n0 for T2"); n0t2

Here ε = 0.2, 0.1, 0.01, and 0.001, and δ = 0.2, 0.1, 0.01, and 0.001. One can use
these following values to find n0(T1) and n0(T2), if you are not using R. If we have
to calculate n0(T1) and n0(T2) without using R, then one can use Table5.3.

In view of the asymptotic normality of both X̄2n+1 and X(n+1), it has been observed
that n0(T1) < n0(T2). The relative efficiency of T1 is better than T2.
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Table 5.3 Percentile points of standard normal distribution

δ 0.2 0.1 0.01 0.001

�−1(1 − δ
2 ) 1.28155 1.64485 2.57583 3.29053

Table 5.4 n0 for X̄2n+1 (by using CLT)

δ\ε 0.2 0.1 0.01 0.001

0.2 6 27 273 273,728

0.1 11 45 4509 450,921

0.01 27 110 11,058 1,105,816

0.001 44 179 18,044 1,804,596

Table 5.5 n0 for X(n+1) (by using Theorem 5.5.1)

δ\ε 0.2 0.1 0.01 0.001

0.2 21 82 8212 821,185

0.1 34 135 13,528 1,352,766

0.01 83 332 33,175 3,317,450

0.001 135 541 54,138 5,413,794

Example 5.5.3 For double exponential distribution with mean = median = θ. Use
CLT to obtain asymptomatic distribution of X̄n . Use Theorem 5.5.1 to obtain asymp-
totic distribution of Median = Mn . Determine n0(ε, δ, θ) for X̄n and Mn for the given
ε = 0.01, 0.1 and δ = 0.01, 0.1.

In this case,

f (x |θ) =
{

1
2 exp[−|x − θ|] ; − ∞ < x < ∞, θ > 0
0 otherwise

E(Xr ) = 1

2

∞∫

−∞
(z + θ)r e−|z|dz, where z = |x − θ|

= 1

2

∞∫

−∞

r∑

k=0

(
r

k

)

zkθr−ke−|z|dz, where z = |x − θ|

= 1

2

r∑

k=0

(
r

k

)

θr−k[
0∫

−∞
(−1)k zkezdz +

∞∫

0

zke−zdz]
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= 1

2

r∑

k=0

(
r

k

)

θr−k[(−1)kk! + k!]

= 1

2

r∑

k=0

(
r

k

)

θr−kk![1 + (−1)k]

μ′
1 = θ, μ′

2 = θ2 + 2, V(X) = 2, E X̄n = θ and V(X̄n) = 2
n .

The exact distribution of median is very complicated. Hence using Cramer–Fisz
theorem

X [np]+1 ∼ AN

(

qp,
p(1 − p)

n[ f (qp)]2
)

In this case, p = 1
2 , qp = θ

f (qp) = f (θ) = 1
2

Median = Mn ∼ AN (θ, 1
n )

⇒ EMn = θ and V(Mn) → 0 as n → ∞ Mn
P−→ θ

To find n0,
Consider P[|Mn − θ| < ε] ≥ 1 − δ

P[|Mn − θ| < ε] ≥ 1 − δ

⇒ φ[ε√n] ≥ 1 − δ

2

⇒ n ≥ 1

ε2

[

φ−1

(

1 − δ

2

)]2

⇒ n0(T1) =
[
1

ε2

{

φ−1

(

1 − δ

2

)}2
]

+ 1 see Table 5.6

Consider the another estimator X̄n , E X̄n = θ and lim
n→∞V

(
X̄n
) = 0.

Hence X̄n
P−→ θ

Using CLT X̄n ∼ N (θ, 2
n )

Hence,

P[|X̄n − θ| < ε] ≥ 1 − δ

P

[

−ε

√
n

2
< z < ε

√
n

2

]

≥ 1 − δ, where z ∼ N (0, 1)
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Table 5.6 n0 for median δ\ε 0.1 0.01

0.1 271 664

0.01 27,061 66,307

Table 5.7 n0 for mean δ\ε 0.1 0.01

0.1 542 1327

0.01 54,121 132,613

2φ

[

ε

√
n

2

]

− 1 ≥ 1 − δ

φ

[

ε

√
n

2

]

≥ 1 − δ

2

Therefore,

⇒ n ≥ 2

ε2

[

φ−1(1 − δ

2
)

]2

⇒ n0(T1) =
[
2

ε2

{

φ−1

(

1 − δ

2

)}2
]

+ 1 see Table 5.7

n0 for ε = 0.1, 0.01 and δ = 0.1, 0.01
Tables5.6 and 5.7 give the values of n0 using R

# To enter epsilon (eps) and delta (del).
eps <- c(0.1,0.01); del <- c(0.1,0.01);
ld <- length(del); # length of delta
le <- length(eps); # length of epsilon

# declaring matrices for n0t1 = median and n0t2 = mean.
n0t1 <- matrix(data=0,nrow=ld,ncol=le)
n0t2 <- matrix(data=0,nrow=ld,ncol=le)

# To find n0 for T1.
for(i in 1:ld)
{

for(j in 1:le)
{
x <- 1-(del[i]/2); y <- qnorm(x,0,1);
n0t1[i,j] <- ((yˆ2)/(eps[j]ˆ2))+1

}
}

colnames(n0t1) <- c("[0.1]","[0.01]")
rownames(n0t1) <- c("[0.1]","[0.01]")

# To fnd n0 for T2.
for(i in 1:ld)
{
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for(j in 1:le)
{
x <- 1-(del[i]/2); y <- qnorm(x,0,1);
n0t2[i,j] <- (2*(yˆ2)/(eps[j]ˆ2))+1

}
}

colnames(n0t2) <- c("[0.1]","[0.01]")
rownames(n0t2) <- c("[0.1]","[0.01]")

# OUTPUT
print("n0 for T1"); n0t1
print("n0 for T2"); n0t2

Note: In the above examples, n0(T ) is independent of μ.
Practical advantage of n0(T ) being independent of θ is that the minimum sample

size required to achieve (ε, δ) level accuracy does not depend on the unknown para-
meter θ, then such a minimum sample size cannot be determined as θ is unknown.
We can take N0 = supθ∈� n0(T ) if such N0 is finite, which is usually the case if � is
bounded or closed compact set and n0(ε, δ, θ) for a given T is a continuous function
of θ.

Example 5.5.4 Let X1, X2, . . . , Xn are iid ∪(0, θ) rvs.

Let T1 = X(n) be a consistent estimator of θ.

P[|X(n) − θ| < ε] =
{
1 − ( θ−ε

θ
)n ; ε < θ

0 ; ε ≥ θ

If ε < θ then

1 −
(

θ − ε

θ

)n

≥ 1 − δ,

Then

n ≥ log δ

log(1 − ε
θ
)

Thus

n0(T1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢
⎣

log δ

log(1 − ε

θ
)

⎤

⎥
⎦+ 1 ; ε < θ

1 ; ε ≥ θ

(5.5.13)

Let T2 = 2X̄ be a consistent estimator of θ.
By CLT, 2X̄ ∼ AN (θ, θ2

3n ),
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Then
√
3n
θ

(2X̄ − θ) ∼ AN (0, 1)

P[|2X̄ − θ| < ε] = �

(
ε
√
3n

θ

)

− �

(

−ε
√
3n

θ

)

= 2�

(
ε
√
3n

θ

)

− 1

n0(T2) is given by

2�

(
ε
√
3n

θ

)

− 1 ≥ 1 − δ,

n0(T2) =
[

θ2

3ε2

{

�−1

(

1 − δ

2

)}2
]

+ 1 (5.5.14)

The following table gives the values of n0(T1) and n0(T2) for a given θ, ε = δ = 0.1
using R

# Given data
eps <- 0.1; del <- 0.1; theta <- c(0.5,1,2,4);
lt <- length(theta);

# Declaring vectors for n0 for T1, T and T2.
n0t1 <- rep(0,lt); n0t <- rep(0,lt); n0t2 <- rep(0,lt);

# To fnd n0(T1).
for(i in 1:lt)
{

x <- 1-(eps/theta[i]);
n0t1[i] <- log(del)/log(x) +1;

}
# To fnd n0(T).

for(i in 1:lt)
{

x <- theta[i]/eps;
n0t[i] <- -x*log(del) +1;

}
# To fnd n0(T2).

for(i in 1:lt)
{

x <- 1-(del/2); y <- qnorm(x,0,1);
n0t2[i] <- ((theta[i]ˆ2)*(yˆ2)/(3*epsˆ2))+1

}
# OUTPUT

print("n0 for T1 using Eq.\,5.5.13"); n0t1
print("n0 for T1"); n0t;
print("n0 for T2"); n0t2
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Note: We will show that Yn = n(θ − X(n))
d−→ Y , where Y has exponential distrib-

ution with mean θ.

Hn(y) =P[n(θ − X(n)) ≤ y]
=P

[
X(n) ≥ θ − y

n

]

=
θ∫

θ− y
n

ntn−1

θn

=1 −
(
1 − y

nθ

)n

lim
n→∞ Hn(y) = lim

n→∞ 1 −
(
1 − y

nθ

)n = 1 − e− y
θ

⇒ Y has exponential distribution with mean θ.
Therefore,

P[n(θ − X(n)) ≤ nε] = P[Yn ≤ nε]

This tend to

P[Yn ≤ nε] = 1 − e
−nε
θ ,

Then

1 − e
−nε
θ ≥ 1 − δ

⇒ n0(T ) =
[
θ

ε
(− log δ)

]

+ 1 (5.5.15)

From the following Table5.9, we will get almost same value of n0(T ) as in the
Table5.8.



224 5 Consistent Estimator

Table 5.8 n0 for X(n) and 2X̄

θ 1
2 1 2 4

n0(T1) 11 22 45 91

n0(T2) 23 90 359 1435

Table 5.9 n0 for X(n)

θ 1
2 1 2 4

n0(T ) 12 24 47 93

5.6 Exercise 5

1. Let X1, X2, . . . , Xn are iid rvs with ∪(0, θ). Show that T (X) = (
∏n

i=1 Xi )
1
n is

consistent estimator for θ
e .

2. Let X1, X2, . . . , Xn are iid rvs with the pdf f (x |θ), where f (x |θ) = θxθ−1 ; 0 <

x < 1. Find the consistent estimator for θ and eθ. Further obtain n0 for both the
estimators.
3. Let X1, X2, . . . , Xn are iid rvs with EXi = μ and EX2

i < ∞. Show that T (X) =
2

n(n+1)

∑n
i=1 i Xi is a consistent estimator for μ.

4. If X1, X2, . . . , Xn are random observations on a Bernoulli variate X such that
P(X = 1) = p and P(X = 0) = 1 − p , 0 < p < 1. Show that (i) X̄ is consistent
estimator of p.
(ii) X̄(1− X̄) is a consistent estimator of p(1− p). Find if possible n0 in both cases.
5. Let X1, X2, . . . , Xn are iid rvs with geometric distribution as,

P[X = x] = pqx , x = 0, 1, 2 . . .

Find the consistent estimator for p−1 and
q

p
. Further, find n0 for both estimators.

6. Let X1, X2, . . . , Xn are iid rvs with ∪(0, θ). Prove or disprove X(1) is a consistent
estimator of θ.
7. If X1, X2, . . . , Xn is a random sample obtained from the density function:

f (x |θ) =
{
1 ; θ < x < θ + 1
0 ; otherwise

Show that X̄ is a consistent estimator of θ + 1
2 . Find n0 for θ = 2, 3.

8. Show that in sampling from Cauchy distribution

f (x |μ) = 1

π
[
1 + (x − μ)2

] ; − ∞ < x < ∞,μ > 0,
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(i) Sample mean X̄ is not a consistent estimator of θ.
(ii) Sample median is a consistent estimator of θ.

9. If T1 and T2 are consistent estimators of g(θ), prove that α1T1 + α2T2, such that
α1 + α2 = 1, is also consistent for g(θ).
10. For a Poisson distribution with mean λ, show that X̄ is a consistent estimator
for λ. Find n0. Further prove that 1

X̄
is consistent estimator of 1

λ
. Can you find n0 in

case of an estimator 1
X̄
? Give reasons.

11. Let X1, X2, . . . , Xn be a random sample from a population with pdf

f (x |θ) = 1

2θ
; − θ < x < θ, θ > 0

Find, if exists, a sufficient consistent estimator of θ and its corresponding n0.
(Hint: Consider maxi |Xi |)
12. Let X1, X2, . . . , Xn be independent random sample with pdf

f (xi |θ) = 1

2iθ
; − i(θ − 1) < xi < i(θ + 1), θ > 0,

Find a sufficient consistent estimator of θ. Further, if exists, find n0.
13. Let X1, X2, . . . , Xn be iid rvs with the pdf

f (x |μ,σ) = 1

σ
exp

[

− (x − μ)

σ

]

; x > μ,σ > 0,

Find the sufficient and consistent estimator for μ and σ. If possible, find n0 for both
consistent estimators of μ and σ.
14. Let X1, X2, . . . , Xm be iid rvs with B(n, p). Find the consistent estimator of p
and the minimum sample size.
15. Let X1, X2, . . . , Xn be iid exponential rvs with mean λ. Find a consistent esti-
mator for λ and its n0.
16. Let X1, X2, . . . , Xn be iid rvs with N B(r, θ). Find the consistent estimator of θ,
θ2 and eθ.
17. Let the rv X1 be B(n, θ) and rvs X2, X3 . . . , Xn be exponentially distributed with
mean θ. Find the consistent estimator of θ, θ2, 1

θ
and eθ.

18. Let X1, X2, . . . , Xn are iid rvs with (i) ∪(−θ, 0), θ > 0 (ii) ∪(θ, θ2), θ > 1 (iii)
∪(0, θ2)
Find the consistent estimator of θ. Further, find its n0.
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Chapter 6
Bayes Estimator

In all the previous chapters, we have considered the moment, maximum likelihood
and uniformly minimum variance unbiased estimators. Generally, mle are better
than moment estimators with reference to their mse. More recently, Dixit and Kelkar
(2011) had shown that for a binomial distribution, moment estimators are better than
mle with reference to the generalized variance in the presence of outliers. In general,
it is not possible to decide which estimation procedure is better among mle and
UMVUE.

Strictly speaking, there is no such thing as an unconditional probability. However,
it often happens that many probability statements aremade conditional on everything
that is part of an individual’s knowledge at a particular time. When many statements
are to be made conditional on the same event, it makes for cumbersome notation to
refer to this same conditioning event every time.

The Bayesian philosophy involves a completely different approach to statistics.
The Bayesian version of estimation is considered here for the basic situation con-
cerning the estimation of a parameter, given a random sample from a particular
distribution.

The fundamental difference between Bayesian and classical methods is that the
parameter θ is a fixed unknown quantity. This leads to difficulties such as interpreting
the classical confidence intervals, because the interval is random in Bayesian interval
estimation. For example, ifwe have a randomsample of size n fromN(μ, 1) then 95%

confidence interval is,

(

X̄ − 1.96
1√
n
, X̄ + 1.96

1√
n

)

. We can interpret in classical

methods but if μ is random then it is difficult to interpret. Once the data are observed
then one can give the confidence interval for θ, because probability is not involved
in such a situation.

In the beginning, we will consider some examples based on Bayes theorem.

1. In 2011, there are three candidates for the position of vice-chancellor Dr. Joshi,
Dr. Sawant and Dr. Rege whose chances of getting the appointment are in the
proportions 5:6:9 respectively. The probability that Dr.Joshi if selected would
introduce credit system in the university is 0.6. The probabilities of Dr. Sawant
and Dr. Rege doing the same are respectively 0.5 and 0.4.

© Springer Science+Business Media Singapore 2016
U.J. Dixit, Examples in Parametric Inference with R,
DOI 10.1007/978-981-10-0889-4_6
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If credit system has been introduced, what is the probability that Dr. Joshi, Dr.
Sawant and Dr. Rege is the vice-chancellor?
Here, we are not solving the problem.
If c=credit system, given probabilities are p(c|J), p(c|S) and p(c|R), where J, S,
and R denotes for Joshi, Sawant and Rege. But we want to find the probability
p(J|c), p(S|c) and p(R|c).

2. Lee (1997) had given the following interesting example.
A case of alleged discrimination on the basis of a test to determine eligibility for
promotion was considered. It turned out that, of those taking the test, 48 were
Black(B) and 259 were White(W), so that if we consider the test

p(B) = 48

307
= 0.16, p(W ) = 259

307
= 0.84.

Of the Blacks taking the test, 26 passed(P) and the rest failed(F), whereas of the
Whites, 206 passed and the rest failed, so that altogether 232 people passed.

Hence p(B|P) = 26

232
= 0.11, p(W |P) = 206

232
= 0.89.

One may think that these figures indicate the possibility of discrimination. But

instead of the figures that should be considered are p(P|B) = 26

48
= 0.54, p(P|W ) =

206

259
= 0.80.

One should see the fact that p(B|P) is less than p(W |P) is irrelevant to the real
question as to whether p(P|B) is less than p(P|W ). Therefore, it might or might not
be depending on the rest of the relevant information, that is, p(B) and p(W ).

It is easily checked that the probabilities are related by Bayes theorem in both the
examples. In the first example, given probabilities were p(c|J), p(c|S), and p(c|R).

Further, p(J) = 5

20
, p(S) = 6

20
, and p(R) = 9

20
, these probabilities of becoming

vice-chancellor are given. In this case, posterior probabilities are p(J|c), p(S|c), and
p(R|c). Similarly, from p(B|P) and p(W |P), the figures indicate serious discrimi-
nation. But from the figures p(P|B) and p(P|W ), moderate discrimination may be
there.

6.1 Bayes Theorem

Bayes theorem was given by a British mathematician Thomas Bayes in 1763. Given
the new information, he updated the prior probabilities by calculating revised prob-
abilities and referred to them as posterior probabilities.

Theorem 6.1.1 (Bayes Theorem) If E1,E2, . . . ,En aremutually disjoint events with
P(Ei) > 0(i = 1, 2, . . . , n) then for any arbitrary event H which is a subset of∪n

i=1Ei

such that P(H) > 0, we have

P(Ei|H) = P(Ei)P(H|Ei)
∑

P(Ei)P(H|Ei)
= P(Ei)P(H|Ei)

P(H)
; i = 1, 2, . . . , n (6.1.1)
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Fig. 6.1 Partition of events

Proof See Fig. 6.1.
Since

H ⊆ ∪n
i=1Ei ⇒ H = H ∩ (∪n

i=1Ei) = ∪n
i=1(H ∩ Ei)

This is true to distributive law. Since H ∩ Ei(i = 1, 2, . . . , n) are mutually disjoint
events, using addition theorem of probability

P(H) = P[∪n
i=1(H ∩ Ei)] =

n∑

i=1

P(H ∩ Ei) =
n∑

i=1

P(Ei)P(H|Ei)

Now P(H ∩ Ei) = P(H)P(Ei|H)

P(Ei | H) = P(H ∩ Ei)

P(H)
= P(H)P(Ei|H)
∑n

i=1 P(Ei)P(H|Ei)

Remark 1. The probabilities P(Ei), i = 1, 2, . . . , n are called as the prior probabili-
ties, because they exist before we gain any information from the experiment itself.
2. The probabilities P(H|Ei), i = 1, 2, . . . , n are called likelihoods because they
indicate how likely the eventH under consideration is to occur, given each and every
prior probability Ei(i = 1, 2, . . . , n).
3. The probabilities P(Ei|H), i = 1, 2, . . . , n are called posterior probabilities,
because they are determined after the results of the experiments are known.
4. From the figure, we can conclude:

If the events E1,E2, . . . ,En constitute a disjoint partition of the sample space �

and P(Ei) > 0, i = 1, 2, . . . , n then for every event H in �, we have

P(H) =
n∑

i=1

P(H ∩ Ei) =
n∑

i=1

P(Ei)P(H|Ei)

5. Bayes theorem is extensively used in statistical inference, and by business and
management executives in arriving at valid decisions in the face of uncertainty.
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6.2 Bayes Theorem for Random Variables

Theorem 6.2.1 Let the rvs X1,X2, . . . ,Xn given Y be iid with f (x1, x2, . . . , xn|y),
where y is distributed as π(y). Then

f (y|x1, x2, . . . , xn) ∝ π(y)f (x1, x2, . . . , xn|y) (6.2.1)

Proof Since the relative size of probability distribution of (X, Y ) will remain same
in the conditional probability of Y given X or X given Y .

Since f (X|Y) ≥ 0,
∫
f (X|Y)dx = 1

Similarly f (Y |X) ≥ 0,
∫
f (Y |X)dy = 1

Hence, f (X,Y) = f (X|Y)π(y)
f (x) = ∫ f (X,Y)dy = ∫ f (X|Y)π(y)dy,
π(y) is the pdf of a rv y
It is clear that

f (Y |X) = f (X,Y)

f (X)
= f (X|Y)π(y)

f (X)

This implies that

f (Y |X) ∝ f (X|Y)π(y) (6.2.2)

Note: 1. If we replace y for θ then we have our density function f (x|θ). In this case,
pdf or pmf of θ is called prior density of θ.
2. The conditional distribution of θ is given as X i.e., f (θ|X) is called the posterior
probability distribution of θ, given the sample.

6.3 Bayesian Decision Theory

In statistical inference, decision about the population parameter is taken from the
sample data. Consider the following example:

A statistician is told that a coin has either a head on one side and a tail on the
other side or it has two heads.

A statistician cannot inspect the coin but can observe a single toss of the coin and
see whether it shows a head or tail. The statistician must then decide whether or not
the coin is two-headed. If the statistician makes the wrong decision there is a penalty
of Rs. 1 and otherwise there is no penalty.

Ignoring the fact that the statistician can observe the toss of coin, the problem
could be regarded as follows:
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Statistician
(Player A)

a1 a2
Nature θ1 0 1
(Player B) θ2 1 0

θ1 =The state of nature is that the coin is two-headed.
θ2 =The state of nature is that the coin is balanced.
a1 = statistician’s decision is that the coin is two-headed.
a2 =Statistician’s decision is that the coin is balanced.
Let X be a random variable taking values 0 (heads) and 1 (tails). Consider the

following decision function

d1(X) =
{
a1; when X=0
a2; when X=1

one can write d1(0) = a1 and d1(1) = a2.
Note that if head occurs, then X = 0 and if tail occurs then X = 1. Other decision

functions are
d2(0) = a1, d2(1) = a1

It implies that choose a1 whatever may be outcome of the experiment.

d3(0) = a2, d3(1) = a2 d4(0) = a2, d4(1) = a1

Some of the decision functions may not be very sensible in practice.
Consider the loss function in the table

Statistician (Player A)
a1 a2

Nature θ1 L(a1,θ1) L(a2, θ1)
(Player B) θ2 L(a1, θ2) L(a2, θ2)

Our option is to choose a1 when X = 0 and a2 when X = 1.
Consider the risk function as R(di, θj), i = 1, 2, 3, 4 and j = 1, 2

R(di, θj) = E[L(di, θj)]

Under θ1, P[X = 0] = 1 and P[X = 1] = 0.
Note that the coin is two-headed, i.e., the toss resulting out in head is certain event.

Under θ2, P[X = 0] = 1
2 , and P[X = 1] = 1

2 .
This gives

R(d1, θ1) = 1L(a1, θ1) + 0L(a2, θ1) = 1(0) + 0(1) = 0

R(d1, θ2) = 1

2
L(a1, θ2) + 1

2
L(a2, θ2) = 1

2
(1) + 1

2
(0) = 1

2
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R(d2, θ1) = 1L(a1, θ1) + 0L(a1, θ1) = 1(0) + 0(0) = 0

R(d2, θ2) = 1

2
L(a2, θ2) + 1

2
L(a2, θ2) = 1

2
(1) + 1

2
(0) = 1

2

R(d3, θ1) = 1L(a2, θ1) + 0L(a2, θ1) = 1(1) + 0(0) = 1

R(d3, θ2) = 1

2
L(a2, θ2) + 1

2
L(a2, θ2) = 1

2
(0) + 1

2
(0) = 0

R(d4, θ1) = 1L(a2, θ1) + 0L(a1, θ1) = 1(1) + 0(0) = 1

R(d4, θ2) = 1

2
L(a2, θ2) + 1

2
L(a1, θ2) = 1

2
(0) + 1

2
(1) = 1

2

The Minimax criteria
We are assuming the minimax criteria, i.e., each player chooses the strategy that
minimizes their maximum loss or it otherwise maximizes their minimum gain. We
can say that each player will consider the worst possible outcome they could get for
each move they make and then select the move for which this works out to be the
least worst.

i R(di, θ1) R(di, θ2) Maxθ1θ2 R(di, θ)

1 0 1
2

1
2

2 0 1
2

1
2

3 1 0 1

4 1 1
2 1

Mini Maxθ1,θ2 R(di, θ) =
1

2
. The minimax solution is,

d1(X) =
{
a1 ; X = 0
a2 ; X = 1

or

d2(X) =
{
a1 ; X = 0
a1 ; X = 1

If θ is regarded as a random variable, under the Bayes criterion, the decision function
chosen is that for which E[R(d, θ)] is minimum where the expectation is taken with
respect to θ.
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Different Loss Functions
Loss function is a function that maps an event into a real number intuitively repre-
senting some “cost” associated with the event. According to the earlier examples, a
statistician will suffer loss of L(θ, a) if he takes action ‘a’ when the true state nature
is θ. If we use the decision function d(x), when L is the loss function and θ is the true
parameter value, the loss is the r.v. L(θ, d(x)) for all loss function, θ ∈ �, a ∈ A.

1. Quadratic Loss Function

L(θ, a) = (θ − a)2, (6.3.1)

2. Weighted Quadratic Loss Function

L(θ, a) = w(θ)(θ − a)2 (6.3.2)

3. Absolute Loss Function

L(θ, a) = |θ − a| (6.3.3)

4. Zero-One Loss Function

L(θ, a) =
{
0 ; |θ − a| ≤ ε
1 ; |θ − a| > ε

(6.3.4)

On the basis of data, the statistician chooses an action d(X) ∈ A, resulting in a
random loss L(θ, d(x)). Then the risk function R(θ, d) is defined as

R(θ, d) = EL(θ, d(x))

=
∫

L(θ, d(x))f (x|θ)dx (6.3.5)

Let the prior density of θ is p(θ). The Bayes risk r(d) of the decision rule d can be
defined as ER(θ, d) over all possible values of θ, where θ and X are continuous rvs.

r(d) = ER(θ, d) =
∫

R(θ, d)p(θ)dθ

=
∫ [∫

L(θ, d(x))f (x|θ)dx
]

p(θ)dθ

=
∫ ∫

L(θ, d(x))f (x, θ)dxdθ

=
∫ { ∫

L(θ, d(x))f (θ|x)dθ
}
f (x)dx (6.3.6)
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Note that f (x) = ∫ f (x|θ)p(θ)dθ and h(x) = ∫ L(θ, d(x))f (θ|x)dθ.

r(d) =
∫

h(x)f (x)dx

Then the Bayes risk is minimized if the decision rule d∗ is chosen such that r(d) is
minimum for all x.

If θ and X are discrete rvs, then

r(d) =
∑

θ

∑

x

L(θ, d(x))f (x, θ) (6.3.7)

Definition 6.3.1 A decision rule d∗ is known as a Bayes rule if it minimizes r(d) or
(6.3.6) or (6.3.7)

r(d∗) = inf
d
r(d) (6.3.8)

Theorem 6.3.1 Consider a problem of estimation of a parameter θ ∈ �with respect
to a quadratic loss function L(θ, d) = (θ − d)2. A bayes rule is given by d∗(x) =
E(θ|X = x), where d∗(x) is known as an Bayes estimate.

Proof From (6.3.6), we have to minimize

R(θ, d) =
∫

L(θ, d)f (θ|x)dθ

=
∫

(θ − d)2f (θ|x)dθ

=
∫

(θ2 − 2θd + d2)f (θ|x)dθ (6.3.9)

Differentiating (6.3.9) with respect to d and put it equal to zero, then

∫

(−2θ + 2d)f (θ|x)dθ = 0

⇒
∫

df (θ|x)dθ =
∫

θf (θ|x)dθ

⇒ d∗ = E(θ|X) (6.3.10)

Theorem 6.3.2 In Theorem 6.3.1, if the loss function is weighted quadratic then
L(θ, d) = W (θ)(θ − d)2. A Bayes rule is given by

d∗(X) = EθW (θ)|X
EW (θ)|X (6.3.11)
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Proof From (6.3.6), we have to minimize

R(θ, d) =
∫

L(θ, d(X))f (θ|x)dθ

=
∫

W (θ)(θ − d)2f (θ|x)dθ

=
∫

W (θ)(θ2 − 2θd + d2)f (θ|x)dθ (6.3.12)

Differentiating (6.3.12) with respect to d and equating it to zero, then

∫

W (θ)(−2θ + 2d)f (θ|x)dθ = 0

⇒
∫

θW (θ)f (θ|x)dθ = d
∫

W (θ)f (θ|x)dθ

⇒ d∗ =
∫

θW (θ)f (θ|x)dθ
∫
W (θ)f (θ|x)dθ

⇒ d∗(X) = EθW (θ)|X
EW (θ)|X

Theorem 6.3.3 In Theorem 6.3.1, if the loss function is absolute error loss function
then L(θ, d) = |θ − d|. A Bayes rule is given by

d∗(X) = Median of the posterior distribution of θ given X. (6.3.13)

Proof Let M be the median of the posterior distribution given X.
Hence P(θ ≤ M|X) ≥ 1

2 and P(θ ≥ M|X) ≥ 1
2 .

Let d1 be any rule and for definiteness, d1 > M for some particular value of X.

There are three cases: (i) θ < M < d1 (ii)M < θ < d1 (iii)M < d1 < θ
In case (i)

L(θ,M) = −(θ − M) and

L(θ, d1) = −(θ − d1)

In case (ii)
L(θ,M) = (θ − M) and

L(θ, d1) = −(θ − d1)

In case (iii)
L(θ,M) = (θ − M) and
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L(θ, d1) = (θ − d1)

L(θ,M) − L(θ, d1) =
⎧
⎨

⎩

M − d1 ; θ < M < d1
2θ − (M + d1) ; M < θ < d1
d1 − M ; M < d1 < θ

For M < θ < d1

2θ − (M + d1) < θ − M < d1 − M

So that

L(θ,M) − L(θ, d1) ≤
{
M − d1 ; θ ≤ M
d1 − M ; θ > M

Hence

E[L(θ,M) − L(θ, d1)] ≤ (M − d1)P(θ ≤ M|X) + (d1 − M)P(θ > M|X)

= (M − d1)P(θ ≤ M|X) + (d1 − M)[1 − P(θ ≤ M|X)]

= (d1 − M){1 − 2P(θ ≤ M|X)]}

Hence,

E[L(θ,M) − L(θ, d1)] ≤ 0

Similarly, we can show that if d1 < M.
Hence, we can conclude that posterior median is the approximate Bayes rule for

this loss function.

Note: For zero-one loss function, EL(θ, a) = P[|θ − a| > ε] = 1 − P[|θ − a| ≤ ε]
A modal interval of length 2ε is defined as (a − ε, a + ε), where a is mode of the
observation, which has the highest probability for given t. Then the mid point of
Mode(X) of this interval is a Bayes estimate for this loss function. For details, see
Lee (1997).

Bayes Risk
In calculation of Bayes risk d∗, one can use the following procedure:
First procedure
1. Find

∫

L(θ, d∗(x))f (x|θ)dx ; if X is continuous
∑

X

L(θ, d∗(x))f (x|θ) ; if X is discrete (6.3.14)
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2. Let

q(θ) =
∫

X

L(θ, d∗(x))f (x|θ)dx; if X is continuous

q(θ) =
∑

X

L(θ, d∗(x))f (x|θ); if X is discrete

Then

r(d∗) =
∫

q(θ)p(θ)dθ; if θ is continuous

r(d∗) =
∑

θ

q(θ)p(θ); if θ is discrete (6.3.15)

Second procedure
1. Find h(x), where

h(x) =
∫

θ

L(θ, d∗(x))f (θ|x)dθ ; if θ is continuous

h(x) =
∑

θ

L(θ, d∗(x))f (θ|x); if θ is discrete rv (6.3.16)

2.

r(d∗) =
∫

X

h(x)f (x)dx; if X is continuous

r(d∗) =
∑

X

h(x)f (x) ; if X is discrete rv (6.3.17)

6.4 Limit Superior and Limit Inferior

If {xn}∞n=1 is a convergent sequence, then limn→∞ xn measures, roughly, “the size of
xn when n is large”. In this section, we introduce the concepts of limit superior and
limit inferior which can be applied to all sequences.

Definition 6.4.1 Let {xn}∞n=1 be a sequence of real numbers that is bounded above
and let Mn =Least upper bound (l.u.b) {xn, xn+1, xn+2, . . .}
(i) If {Mn}∞n=1 converges, we define

lim supn→∞ xn to be limn→∞ Mn
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(ii) If {Mn}∞n=1 diverges to −∞, then we write

lim sup
n→∞

xn = −∞

For example, xn = (−1)n then Mn = 1
Hence lim

n→∞Mn = 1 ⇒ lim sup
n→∞

(−1)n = 1

Definition 6.4.2 If {xn}∞n=1 be a sequence of real numbers that is not bounded above,
we write

lim sup
n→∞

xn = ∞

Theorem 6.4.1 If {xn}∞n=1 is a convergent sequence of real numbers, then

lim sup
n→∞

xn = lim
n→∞ xn

Definition 6.4.3 Let {xn}∞n=1 be a sequence of real numbers that is bounded below
and let mn = greatest lower bound {xn, xn+1, xn+2, . . .}
(i) If {mn}∞n=1 converges, we define

lim inf
n→∞ xn to be lim

n→∞Mn

(ii) If {xn}∞n=1 diverges to ∞ then we write

lim inf
n→∞ xn = ∞

For example, if xn = (−1)n then mn = −1
lim inf(−1)n = −1

Theorem 6.4.2 If {xn}∞n=1 is a convergent sequence of real numbers, then

lim inf
n→∞ xn = lim

n→∞ xn

Theorem 6.4.3 If {xn}∞n=1 is a sequence of real numbers, then

lim inf
n→∞ xn ≤ lim sup

n→∞
xn

Remark

1. For a sequence {xn}∞n=1 of real numbers

lim sup xn = inf
n≥1

sup
k≥n

xk (6.4.1)

lim inf xn = sup
n≥1

inf
k≥n

xk (6.4.2)
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2. From the Theorem 6.4.3

sup
n≥1

inf
k≥n

xk ≤ inf
n≥1

sup
k≥n

xk (6.4.3)

Theorem 6.4.4 Let {f (x|θ); θ ∈ �}bea family of pdf(pmf). Suppose that an estimate
d∗ of θ is a Bayes estimate corresponding to a priori distribution π(θ), θ ∈ �. If
the risk function R(θ, d∗) is constant on �, then d∗ is a minimax estimate for θ (see
Berger (1985)).

Proof Since d∗ is the Bayes estimator of θ with constant risk r∗ (free of θ), we have

r∗ = R(π, d∗) =
∞∫

−∞
R(θ, d∗)π(θ)dθ

Using Definition (6.3.1), or (6.3.8)

r∗ = R(π, d∗) = inf
d
R(π, d)

Using (6.3.5)

= inf
d∈D

∫

R(θ, d)π(θ)dθ

≤ sup
θ∈�

inf
d∈D

R(θ, d)

Using (6.4.3)

≤ inf
d∈D

sup
θ∈�

R(θ, d)

Since r∗ = R(θ, d∗) ∀θ ∈ �

r∗ = sup
θ∈�

R(θ, d∗) ≥ inf
d∈D

sup
θ∈�

R(θ, d)

Together, we have,

sup
θ∈�

R(θ, d∗) = inf
d∈D

sup
θ∈�

R(θ, d)

which means d∗ is minimax.

Example 6.4.1 Let the rvX ∼ B(n, p) and L(p, d(x)) = [p − d(x)
]2
.Wewill obtain

the Bayes estimate for p, where p is ∪(0, 1).
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Let π(p) = 1; 0 < p < 1

f (x) =
1∫

0

f (x|p)π(p)dp

=
1∫

0

(
n

x

)

pxqn−xdp =
(
n

x

)

β(x + 1, n − x + 1)

= 1

n + 1
(6.4.4)

f (p|x) = f (x, p)

f (x)
= f (x|p)π(p)

f (x)

=
(n
x

)
pxqn−x

(n
x

)
β(x + 1, n − x + 1)

Bayes estimate of of p

E(p|x) =
1∫

0

pf (p|x)dp

=
1∫

0

px+1qn−x

β(x + 1, n − x + 1)
dp

= β(x + 2, n − x + 1)

β(x + 1, n − x + 1)
= x + 1

n + 2

From (6.3.10),

d∗(x) = x + 1

n + 2

Bayes Risk = r(d∗)
Using the first procedure

h(p) =
n∑

x=0

(
d∗(x) − p

)2
f (x|p)

=
n∑

x=0

(
x + 1

n + 2
− p

)2 (n

x

)

pxqn−x

=
(

1

n + 2

)2 n∑

x=0

[
x + 1 − (n + 2)p

]2
(
n

x

)

pxqn−x
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=
(

1

n + 2

)2 n∑

x=0

[
(x − np) + (1 − 2p)

]2
(
n

x

)

pxqn−x

=
(

1

n + 2

)2
[

n∑

x=0

[x − np]2
(
n

x

)

pxqn−x + (1 − 2p)2
n∑

x=0

(
n

x

)

pxqn−x

+ 2(1 − 2p)
n∑

x=0

(x − np)

(
n

x

)

pxqn−x

]

= npq + (1 − 2p)2

(n + 2)2
(since other terms are zero)

r(d∗) =
1∫

0

npq + (1 − 2p)2

(n + 2)2
π(p)dp

=
1∫

0

n

(n + 2)2
p(1 − p)dp +

1∫

0

1 − 4p + 4p2

(n + 2)2
dp

= nβ(2, 2)

(n + 2)2
+ 1 − 2 + 4

3

(n + 2)2
= 1

6(n + 2)

Second procedure

h(x) =
1∫

0

(

p − x + 1

n + 2

)2

f (p|x)dp

=
1∫

0

(

p − x + 1

n + 2

)2 pxqn−x

β(x + 1, n − x + 1)dp
= (x + 1)(n − x + 1)

(n + 2)2(n + 3)

Reader should note that it is the variance of a Beta distributionwith parameters (x+1)
and (n − x + 1).

Next step is to find r(d∗)

r(d∗) =
n∑

x=0

(x + 1)(n − x + 1)

(n + 2)2(n + 3)
f (x),

where f (x) = 1

n + 1
; x = 0, 1, . . . , n, which is given in (6.4.4)

r(d∗) = 1

(n + 1)(n + 2)2(n + 3)

n∑

x=0

[
nx + (n + 1) − x2

]
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= 1

(n + 1)(n + 2)2(n + 3)

[
n2(n + 1)

2
+ (n + 1)2 − n(n + 1)(2n + 1)

6

]

= (n + 1)(n + 2)(n + 3)

6(n + 1)(n + 2)2(n + 3)
= 1

6(n + 2)

Example 6.4.2 Let X1,X2, . . . ,Xn be iid rvs with N(μ, 1) and μ is N(0, 1). Find
Bayes estimate of μ and its risk.

f (x1, x2, . . . , xn|μ) = (2π)−
n
2 exp

[

−1

2

n∑

i=1

(xi − μ)2

]

,

π(μ) = 1√
2π

exp

[

−μ2

2

]

f (x1, x2, . . . , xn) =
∞∫

−∞
(2π)−( n+1

2 ) exp

[

−1

2

{ n∑

i=1

(xi − μ)2 + μ2

}]

dμ

Consider

−1

2

[
n∑

i=1

(x2i − 2xiμ + μ2) + μ2

]

= −1

2

[
n∑

i=1

x2i − 2nx̄μ + nμ2 + μ2

]

= −1

2

n∑

i=1

x2i − μ2(n + 1)

2
+ 2nμx̄

2

= −1

2

n∑

i=1

x2i − (n + 1)

2

[

μ2 − 2nμx̄

n + 1

]

= −1

2

∑
x2i − (n + 1)

2

[

μ2 − 2
2nμx̄

n + 1
+ n2x̄2

(n + 1)2

]

+ n2x̄2

2(n + 1)

= −1

2

∑
x2i + n2x̄2

2(n + 1)
− (n + 1)

2

[

μ − nx̄

n + 1

]2

Therefore,

f (x1, x2, . . . , xn) = (2π)−( n+1
2 )(2π)

1
2 (n + 1)−

1
2 exp

[

−1

2

∑
x2i + n2x̄2

2(n + 1)

]
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= (2π)−( n
2 )(n + 1)−

1
2 exp

[

−1

2

∑
x2i + n2x̄2

2(n + 1)

]

f (μ|x1, x2, . . . , xn) = f (x1, x2, . . . , xn,μ)

f (x1, x2, . . . , xn)

f (μ|x1, x2, . . . , xn) =
(

2π

n + 1

)− 1
2

exp

{

− (n + 1)

2

(

μ − nx̄

n + 1

)2
}

In this case (μ|x) is N ( nx̄
n+1 ,

1
n+1

)
.

Therefore, Bayes estimate d∗(x) = nx̄
n+1 .

Now x̄ ∼ N
(
μ, 1

n

)
.

Using first procedure

h(μ) =
∫ (

nx̄

n + 1
− μ

)2

f (x̄|μ)dx̄

Consider

=
(

nx̄

n + 1
− nμ

n + 1
+ nμ

n + 1
− μ

)2

=
(

n

n + 1

)2

(x̄ − μ)2 +
(

nμ

n + 1
− μ

)2

+ 2

(
n

n + 1

)

(x̄ − μ)

(
nμ

n + 1
− μ

)

Since the third term is zero after expectation

h(μ) =
(

n

n + 1

)2

V(x̄) + μ2

(n + 1)2

h(μ) =
(

n

n + 1

)2 1

n
+ μ2

(n + 1)2
= μ2 + n

(n + 1)2

Bayes Risk = r(d∗)

r(d∗) =
∞∫

−∞

μ2 + n

(n + 1)2
1√
2π

exp

(

−μ2

2

)

dμ (6.4.5)

= n + Eμ2

(n + 1)2

and Eμ2 = 1
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r(d∗) = 1

n + 1
(6.4.6)

Using second procedure

h(x1, x2, . . . , xn) =
∫ (

μ − nx̄

n + 1

)2

exp

{

−n + 1

2

(

μ − nx̄

n + 1

)2
}

dμ

= V(μ|X) = 1

n + 1

Bayes Risk = r(d∗)

r(d∗) =
∫

x1

. . .

∫

xn

(
1

n + 1

)

(2π)−( n
2 )(n + 1)−

1
2 exp

[

−1

2

∑
x2i + n2x̄2

2(n + 1)

]

dx1 . . . dxn

r(d∗) = 1

n + 1

Note:

In both the examples, we get the sameBayes risk. Reader should select one procedure
according to simplicity of integral or summation.

Example 6.4.3 Let X1,X2, . . . ,Xn be iid rvs with pdf

f (x|θ) = exp[−(x − θ)]; x > θ

Consider the prior distribution of θ is π = e−θ; θ > 0. Find the Bayes estimator
of θ under quadratic loss. In this problem range of θ is very important.

f (x(1), x(2), . . . , x(n)|θ) =
{
n! exp [− (∑n

i=1 x(i) − θ
)] ; θ < x(1) < x(2) < · · · < x(n) < ∞

0 ; otherwise

π = e−θ; θ > 0

f (x(1), x(2), . . . , x(n), θ) =
{
n! exp [− (∑n

i=1 x(i) − nθ
)]
e−θ ; 0 < θ < x(1)

0 ; otherwise

f (x(1), x(2), . . . , x(n)) = n! exp
[

n∑

i=1

x(i)

] x(1)∫

0

eθ(n−1)dθ

= n! exp
[

−
n∑

i=1

x(i)

]
ex(1)(n−1) − 1

n − 1
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f (θ|x) = (n − 1)eθ(n−1)

ex(1)(n−1) − 1
; 0 < θ < x(1)

In this case Bayes estimator is d∗(x)

E(θ|X) = d∗(x)

d∗(x) =
(

x(1)

n − 1

)(
ex(1)(n−1)

ex(1)(n−1) − 1

)

− 1

(n − 1)2
(6.4.7)

Example 6.4.4 Let X1,X2, . . . ,Xn be iid ∪(0, θ). Suppose that the prior distribution
of θ is a Pareto with pdf

π(θ) =
{

αβα

θα+1 ; θ > β
0 ; otherwise

Using the quadratic loss function find the Bayes estimator of θ.

f (x(1), x(2), . . . , x(n)|θ) =
{

n!
θn

; 0 < x(1) < x(2) < · · · x(n) < θ
0 ; otherwise

π(θ) =
{

αβα

θα+1 ; θ > β
0 ; otherwise

f (x(1), x(2), . . . , x(n), θ) =
{

n!αβα

θn+α+1 ; max(β,X(n)) < θ < ∞
0 ; otherwise

Case (1) X(n) < β < θ < ∞

f (x(1), x(2), . . . , x(n)) =
∞∫

β

n!αβα

θn+α+1
dθ = n!α

(n + α)βn

Case (2) β < X(n) < θ < ∞

f (x(1), x(2), . . . , x(n)) =
∞∫

x(n)

n!αβα

θn+α+1
dθ = n!αβα

(n + α)xn+α
(n)

f (θ|x(1), x(2), . . . , x(n)) =
{

(n+α)βα+n

θn+α+1 ;β < θ < ∞
(n+α)xα+n

(n)

θn+α+1 ; x(n) < θ < ∞

Bayes estimate of θ = d∗(x)

d∗(x) =
{

(n+ α)β
n+ α−1 ; x(n) < β
(n+ α)x(n)

n+ α−1 ; β < x(n)
(6.4.8)
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Example 6.4.5 Let X1,X2, . . . ,Xn be iid rvs from an exponential distribution with
mean 1

σ
. Let the prior distribution of σ is π(σ) = exp(−σ), σ > 0. Find the Bayes

estimate of σ and its risk using squared error loss function.

f (x1, x2, . . . , xn|σ) = σn exp

[

−σ

n∑

i=1

xi

]

; xi > 0

π(σ) = e−σ; σ > 0

f (x1, x2, . . . , xn) =
∞∫

0

σn exp [−σ(t + 1)] dσ, t =
n∑

i=1

xi

= �(n + 1)

(t + 1)n+1

Note that
∫

. . .

∫
�(n + 1)

(t + 1)n+1
dx1 . . . dxn = 1

⇒
∫

. . .

∫
dx1dx2 . . . dxn

(t + 1)n+1
= 1

n! (6.4.9)

f (σ|x) = (t + 1)n+1

�(n + 1)
σn exp [−σ(t + 1)] ; σ > 0

Bayes estimate is

d∗(x) = E(σ|x) = n + 1

t + 1
(6.4.10)

V(σ|x) = n + 1

(t + 1)2

Using second procedure

h(σ) =
∫ (

n + 1

(t + 1)
− σ

)2
(t + 1)n+1

�(n + 1)
σne−σ(t+1)dσ

= n + 1

(t + 1)2
= V(σ|x)
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Bayes risk = r(d∗)

r(d∗) =
∫ ∫

. . .

∫
n + 1

(t + 1)2
�(n + 1)

(t + 1)n+1
dx1dx2 . . . dxn

= (n + 1)�(n + 1)
∫ ∫

. . .

∫
dx1dx2 . . . dxn

(t + 1)n+3

Using (6.4.9)

= (n + 1)�(n + 1)

�(n + 3)
= (n + 1)n!

(n + 2)! = 1

n + 2

Reader should obtain the above risk using the first procedure. Generally, it is felt that
the first procedure is more complicated than the second. Therefore, reader should
select the procedure according to his understanding.

Following steps should be remembered to obtain Bayes estimator and its risk.

1. Find the joint distribution of X and θ.
i.e., f (x, θ) = f (x|θ)π(θ)
2. Find the marginal distribution of X from f (x, θ). Denote it by g(x).
3. Find the posterior distribution of θ given X.
i.e., f (θ|x) = f (x,θ)

g(x)
4. According to loss function, find mean or median of θ given X.
5. Use procedure I or II to find Bayes risk.
One should note that it is not always easy to go through these steps in practice.

Definition 6.4.4 Let X be a rv with f (x|θ) and θ be a rv with π(θ). Then π is said to
be conjugate prior family, if the corresponding posterior distribution f (θ|x) belongs
to the same family as π(θ).

Example 6.4.6 Let the rv X be N(μ,σ2) and the rv μ is N(θ, b2)

f (x|μ,σ2) = 1

σ
√
2π

exp

[

− 1

2σ2
(x − μ)2

]

f (x,μ|σ2) = 1

σ
√
2π

exp

[

− 1

2σ2
(x − μ)2

]
1

b
√
2π

exp

[

− 1

2b2
(μ − θ)2

]

= 1

bσ(2π)
exp

[

− 1

2σ2
(x2 − 2μx + μ2) − 1

2b2
(μ2 − 2μθ + θ2)

]

Consider

x2 − 2μx + μ2

σ2
+ μ2 − 2μθ + θ2

b2
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= x2

σ2
+ θ2

b2
+ μ2

σ2
+ μ2

b2
− 2μ

(
x

σ2
+ θ

b2

)

= x2b2 + θ2σ2

σ2b2
+ μ2

(
σ2 + b2

σ2b2

)

− 2μ

(
xb2 + θσ2

σ2b2

)

= x2b2 + θ2σ2

σ2b2
+ μ2

(
σ2 + b2

σ2b2

)

− 2μ

(
xb2 + θσ2

σ2b2

)

+ (xb2 + θσ2)2

σ2b2(σ2 + b2)
− (xb2 + θσ2)2

σ2b2(σ2 + b2)

= x2b2 + θ2σ2

σ2b2
− (xb2 + θσ2)2

σ2b2(σ2 + b2)
+
[

μ

(
(σ2 + b2)

1
2

σ2b2

)

− xb2 + θσ2

σb(σ2 + b2)
1
2

]2

= b2σ2(x2 − 2xθ + θ2)

(b2 + σ2)b2σ2
+
[

μ

(
σ2 + b2

σ2b2

) 1
2

− xb2 + θσ2

σb(σ2 + b2)
1
2

]2

= (x − θ)2

b2 + σ2
+ σ2 + b2

σ2b2

[

μ − xb2 + θσ2

σ2 + b2

]2

f (x,μ|σ2) = 1

bσ(2π)
exp

[

− (x − θ)2

2(b2 + σ2)

]

exp

[

−σ2 + b2

2σ2b2

{

μ − xb2 + θσ2

σ2 + b2

}2]

g(x|σ2) = 1

bσ(2π)
exp

[

− (x − θ)2

2(b2 + σ2)

]√
2π

bσ

(b2 + σ2)
1
2

= 1
√
2π(b2 + σ2)

exp

[

− (x − θ)2

2(b2 + σ2)

]

Therefore, posterior distribution of μ given x i.e.,

f (μ|x) =
√

σ2 + b2√
2πσb

exp

[

−σ2 + b2

2σ2b2

(

μ − xb2 + θσ2

σ2 + b2

)2
]

In this case μ is N(θ, b2) and μ | x is N
(
xb2 + θσ2

σ2 + b2
,

σ2b2

σ2 + b2

)

.

Hence π(μ) is said to be conjugate prior.

Definition 6.4.5 (Minimax estimate) An estimator d : X → θ is called minimax
with respect to risk function R(θ, d) if it achieves the smallest maximum risk among
all estimators, meaning if it satisfies
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sup
θ∈�

R(θ, d) = inf
d
sup
θ∈�

R(θ, d)

Note that if a Bayes’ estimator has a constant risk, then it is minimax.
In the following example, we try to find a minimax estimate.

Example 6.4.7 Let the rv X is B(n, p), 0 ≤ p ≤ 1.
Find aminimax estimate of p of the formαX+β, using squared error loss function.

Consider

R(p, d) = E(αX + β − p)2

= E[αX + β + αnp − αnp − p]2
= E[α(X − np) + β + p(αn − 1)]2
= α2E(X − np)2 + β2 + p2(αn − 1)2 + 2βαE(X − np) + 2βp(αn − 1)

+ 2αp(αn − 1)E(X − np)

= α2V(x) + β2 + p2(αn − 1)2 + 2βp(αn − 1)

= α2npq + β2 + p2(αn − 1)2 + 2βp(αn − 1)

= α2np(1 − p) + β2 + p2(αn − 1)2 + 2βp(αn − 1)

= p2[(αn − 1)2 − α2n] + p[α2n + 2β(αn − 1)] + β2

Let d∗ is a minimax estimator of p if R(p, d) is constant.
Therefore, to find α and β such that coefficient of p2 and p equal to 0, then R(p, d)

is equal to β2.

(αn − 1)2 − α2n = 0 (6.4.11)

α2n + 2β(αn − 1) = 0 (6.4.12)

From (6.4.11),

α = 1√
n(1 + √

n)
or

1√
n(

√
n − 1)

β = 1

2(1 + √
n)

or
−1

2(
√
n − 1)

By omitting second set of roots, we get

d∗(X) = X√
n(1 + √

n)
+ 1

2(1 + √
n)

(6.4.13)
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To show that d∗(X) is a Bayes estimate for some prior π(p), where

π(p) = pa−1(1 − p)b−1

β(a, b)
; 0 ≤ p ≤ 1, a, b > 0

The posterior pdf of p given X is

h(p|X) = px+a−1(1 − p)n−x+b+1

β(a, b)
; 0 < p < 1

E(p|X) = x + a

n + a + b
(6.4.14)

Hence

d∗(X) = x + a

n + a + b
(6.4.15)

From (6.4.13) and (6.4.14)

X

n + √
n

+ 1

2(
√
n + 1)

= X

n + a + b
+ a

n + a + b

a + b = √
n and 1

2(
√
n+ 1) = a

n+ a+ b

⇒ a

n + √
n

= 1

2(
√
n + 1)

⇒ a =
√
n

2
and b =

√
n

2

For this choice of a and b, the estimate d∗(X) is minimax with constant risk

R(θ, d∗) = β2 = 1

4(
√
n + 1)2

(6.4.16)

Now, compare (6.4.16) with the variance of the UMVUE of p.
In this case p̂ = X

n

Var(p̂) = p(1 − p)

n
(6.4.17)

From (6.4.16) and (6.4.17) we will see the following table for n = 5(5)50(50)200
and p = 0.2, 0.5.
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n R(θ, δ∗) Var(p̂)(p = 0.2) Var(p̂)(p = 0.5)
5 0.2387 0.320 0.05
10 0.01443 0.0160 0.025
15 0.01053 0.0107 0.0167
20 0.00834 0.008 0.0125
25 0.00694 0.0064 0.01
30 0.00596 0.0053 0.0083
35 0.00523 0.0046 0.0071
40 0.0047 0.0040 0.00625
45 0.0042 0.0036 0.056
50 0.0038 0.0032 0.005
100 0.0021 0.0016 0.0025
200 0.0011 0.0008 0.0012

p(1 − p)

n
≤ 1

4(1 + √
n)2

iff |p − 1

2
| ≥

√
1 + 2

√
n

2(1 + √
n)

= an

If
p(1 − p)

n
≥ 1

4(1 + √
n)2

⇒ p2 − p + n

4(1 + √
n)2

< 0

⇒ 1

2
−
√
1 + 2

√
n

2(1 + √
n)

≤ p ≤ 1

2
+
√
1 + 2

√
n

2(1 + √
n)

⇒ 1

2
− an ≤ p ≤ 1

2
+ an

⇒ p ∈
[
1

2
− an,

1

2
+ an

]

sup V (p̂)

supR(P, d∗)
=

1
4n
1

4(1+√
n)2

= n + 2
√
n + 1

n

As n → ∞

⇒ sup V (p̂)

supR(P, d∗)
→ 1

We can numerically see the above result.
We can conclude that one should prefer the minimax estimate if n is small and

would prefer UMVUE if n is large. Moreover, it is simple.
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Example 6.4.8 Let the rv X is N(θ, 1) and the rv θ is π(θ), where

π(θ) = exp[−(θ − α)]
[
1 + exp[−(θ − α)]2] ,

where α is the location parameter.

Marginal pdf of X is g(X), where

g(X) = eα

√
2π

∞∫

−∞

e−θe− (X−θ)2

2

[1 + e−(θ−α)]2 dθ, (6.4.18)

It is difficult to integrate (6.4.18). Hence the closed form of g(X) is not known.
Then we cannot get the closed form of f (θ|x). Due to mathematical convenience,
statisticians use conjugate prior. Naturally, posterior distributions also belong to the
same family.

Example 6.4.9 Consider an urn with N balls,M of which are white and N − M are
red. Suppose that we draw a sample of n balls at random (without replacement) from
the urn. Then the probability of getting k white balls out of n is

P(X = k|M) =
(M
k

)(N −M
n− k

)

(N
n

) ; k = 0, 1, 2, . . . min(n,M)

Here, we wish to find minimax estimate of M

Note that

E(X) = nM

N
,V(X) = nM(N − n)(N − M)

N2(N − 1)

We seek a minimax estimator of M of the form αX + β using squared error loss
function.

R(M, d) = E[αX + β − M]2

= E

[

αX + β + αnM

N
− αnM

N
− M

]2

= E

[

α

(

X − nM

N

)

+ M
(αn

N
− 1
)

+ β

]2

= α2E

(

X − nM

N

)2

+ β2 + M2
(αn

N
− 1
)2 + 2βM

(αn

N
− 1
)
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(other terms are equal to 0 because EX = nM
N )

= α2nM(N − n)(N − M)

N2(N − 1)
+ M2

(αn

N
− 1
)2 + 2βM

(αn

N
− 1
)

+ β2

Let Q = n(N−n)
N2(N−1)

R(M, d) = α2QM(N − M) + M2
(αn

N
− 1
)2 + 2βM

(αn

N
− 1
)

+ β2

= M2

[(αn

N
− 1
)2 − α2Q

]

+ M
[
α2QN + 2β

(αn

N
− 1
)]

+ β2

For a minimax estimator, R(M, d) = β2

⇒
(αn

N
− 1
)2 − α2Q = 0 (6.4.19)

and

α2QN + 2β
(αn

N
− 1
)

= 0

⇒ α2Q =
(αn

N
− 1
)2 ⇒ N

(αn

N
− 1
)2 + 2β

(αn

N
− 1
)

= 0

N
(αn

N
− 1
)

+ 2β = 0

Therefore,

β = N

2

(
1 − αn

N

)

Further, from (6.4.19)

(αn

N
− 1
)

= ± α

N

√
n(N − n)

N − 1

α

⎡

⎣
n ±

√
n(N − n)
N − 1

N

⎤

⎦ = 1

α =
⎡

⎣ N

n ±
√

n(N − n)
N − 1

⎤

⎦
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We will consider

α =
⎡

⎣ N

n +
√

n(N − n)
N − 1

⎤

⎦

Next we show that αX + β is the Bayes estimator corresponding to the prior pmf.

P(M = m) =
1∫

0

(
N

m

)

pmqN−m p
a−1(1 − p)b−1

β(a, b)
dp

=
(N
m

)
β(a + m,N − m + b)

β(a, b)
; m = 0, 1, 2, . . . ,N

P(X,M) = P(X|M) × P(M = m)

=
(m
k

)(N−m
n−x

)

(N
n

)

(N
m

)
β(a + m,N − m + b)

β(a, b)

P(X = k) =
N−n+k∑

m=k

(m
k

)(N−m
n−x

)(N
m

)
β(a + m,N − m + b)
(N
n

)
β(a, b)

The Bayes estimate is given by

d∗(k) =
∑N−n+k

m=k m
(m
k

)(N−m
n−x

)(N
m

)
β(a + m,N − m + b)

∑N−n+k
m=k

(m
k

)(N−m
n−x

)(N
m

)
β(a + m,N − m + b)

(
m

k

)(
N − m

n − x

)(
N

m

)
n!(N − n)!
n!(N − n)! =

(
N − n

m − k

)(
N

n

)(
n

k

)

Set m as m + a − a, let i = m − k, if m = k ⇒ i = 0 and m = N − n + k ⇒
i = N − n

d∗(k) =
∑N−n

i=0

(N−n
i

)
�(k + a + i + 1)�(N + b − k − i)

∑N−n
i=0

(N−n
i

)
�(k + a + i)�(N + b − k − i)

− a

Consider

N∑

m=0

(
N

m

)
β(a + m,N − m + b)

β(a, b)
= 1
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N∑

m=0

(
N

m

)

�(a + m)�(N − m + b) = �(a)�(b)�(N + a + b)

�(a + b)

Using this

N−n∑

i=0

(
N − n

i

)

�(k + a + 1 + i)�(N + b − k − i) = �(k + a + 1)�(b − k + N)�(N + a + b + 1)

�(a + b + N + 1)

Similarly,

N−n∑

i=0

(
N − n

i

)

�(k + a + i)�(N + b − k − i) = �(k + a)�(b − k + N)�(N + a + b)

�(a + b + N)

Therefore, the Bayes estimator of M is

d∗(k) = (k + a)(N + a + b)

a + b + n
− a

6.5 Exercise 6

1. Let X1,X2, . . . ,Xm are iid with B(n, p) and L(p, d(x) = [p − d(x)]2. Obtain the
Bayes estimate for p if p has Beta distribution with parameters a and b. Find the
Bayes estimate of p and its risk.

From the following data, obtain the estimate of p for a = 3 and b = 5.
3 5, 3, 4, 4, 3, 4, 5, 2, 4.
Compare the variance of Bayes estimate of p and UMVUE of p.
Further, obtain the Bayes estimate for weighted loss function.
2. Let X1,X2, . . . ,Xn are iid rvs fromN(μ, 1) and μ isN(α,β2). Obtain the Bayes

estimate of μ under squared error and weighted quadratic loss function.
From the following data obtain the estimate of μ for α = 2 and β = 3.

0.4384 6.8281 40.0148 29.3679
−10.3823 0.0871 −9.5146 19.8065
12.9548 32.6523 −2.0395 −15.8874
8.9464 −0.2844 11.0987 −10.8222
40.6232 14.3904 −8.7655 −4.4608
Obtain the Bayes risk of μ̂ and compare it with the variance of UMVUE of μ.

3. In example 2, if μ is ∪(0, 1), then find Bayes estimate of μ under squared error
and weighted quadratic loss function.
4. Let X1,X2, . . . ,Xn are iid rvs with pdf

f (x|α) =
{
exp[−(x − α)] ; x ≥ α
0 ; otherwise
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Obtain the Bayes estimate of α if

π(α) = e− α
a αb−1

ab�(b)
; α > 0, a, b > 0

and the loss function is squared error and weighted quadratic loss function.
From the following data obtain the Bayes and UMVUE estimate of α.

6.1398 5.5978 6.4957 6.5645 6.2387
10.7251 7.2395 5.0859 5.4681 5.3441
6.1722 6.4479 7.2601 9.0449 8.2572
5.4054 6.9218 7.3457 5.3869 5.7536
6.1015 6.3037 6.9928 6.4762 5.8694

Assume a = 4 and b = 6. Find Bayes risk.
5. Suppose that the vector X = (X1,X2,X3) has a trinomial distribution depending
on the index n and the parameter P = (p1, p2, p3), where p1 + p2 + p3 = 1 and
n = x1 + x2 + x3, that is,

f (x|p) = n!
x1!x2!x3!p1

x1p2
x2p3

x3

Obtain the Bayes estimate of p if pi is ∪(0, 1).
6. Let the rv X is B(n, p). Suppose that your prior for p is 3

4 : 1
4 mixture of∪(0.1, 0.5)

and ∪(0.3, 0.9). Obtain the Bayes estimate of p, if the data is n = 10, X = 4 under
squared error and weighted quadratic loss function and further obtain the minimax
estimate of p.
7. Let the rv X is NB(r, p), r is known. Suppose that the prior distribution of p is
∪(0, 1). Find Bayes estimate of p and its risk.
8. In problem 1, if the prior distribution of p is π(p), where

π(p) =
{

αpα−1 ; 0 < p < 1
0 ; otherwise

Obtain the Bayes estimate of p and its risk.
For α = 3, calculate the Bayes estimate of p (use the data given in problem 1).

9. Let X1,X2, . . . ,Xn is NB(r, p), r is known. Suppose that your prior for p is 2
3 : 1

3 ,
mixture of ∪(0.2, 0.6) and ∪(0.3, 0.9). Obtain the Bayes estimate of p and its risk
under squared error loss function from the following data.

14 10 11 25 21 13 16 17 7
16 20 20 16 14 22 17 19 26
14 17

Assume r = 5
10. A random sample of size n is taken from N(μ, 1). The prior distribution of μ is
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π(μ) =
{
1 ; μ > 0
0 ; otherwise

Find the Bayes estimate of μ under squared error loss function.
11. Let the rv X beN(μ, 1). Suppose that your prior for μ is 1

4 : 3
4 , mixture ofN(1, 1)

and N(2, 1). Find the posterior probability of μ > 2, if the observation from X is
1.5.
12. Let X1,X2, . . . ,Xn are iid from f (x|θ),

f (x|θ) = (α + 1)xα

θα+1
; 0 < x < θ

Find the Bayes estimate of θ and its risk using conjugate prior.
13. Let the rv X is B(n, θ) and the rv Y is NB(n, θ). Suppose the prior distribution of
θ is π(θ),

π(θ) = θa−1(1 − θ)b−1

β(a, b)
; 0 < θ < 1

Find the Bayes estimate of θ and its risk.
14. Let X1,X2, . . . ,Xn are iid rvs from an exponential distribution with mean 1

σ
.

Let the prior distribution of σ is 2
3 : 1

3 , mixture of exponential with mean α and β.
That is

π(σ) = 2

3α
e− σ

α + 1

3β
e− σ

β

Find the Bayes estimate of σ and its risk using squared error loss function.
15. LetX1,X2, . . . ,Xn be iid∪(0, θ). Suppose that the prior distribution of θ is Pareto
with pdf π(θ),

π(θ) =
{

αβα

θα+1 ; θ > β
0 ; otherwise

Using squared error loss function find the risk of the Bayes estimator of θ. Calculate
the Bayes estimator from the following data for α = 2, β = 5.

3.92 0.44 9.97 7.68 2.45 2.03 1.34
5.26 3.05 6.46 6.56 3.02 8.73 6.93
7.06 4.51 1.67 0.73 6.13 0.83

16. LetX1,X2, . . . ,Xn be iid∪(θ, θ+1). Suppose that prior distribution of θ is Pareto
with pdf π(θ),

π(θ) =
{

αβα

θα+1 ; θ > β
0 ; otherwise
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Using quadratic and weighted loss function, find the Bayes estimate of θ. Calculate
the Bayes estimator from the following data for α = 3 and β = 8

3.72 3.56 5.89 3.91 4.27 5.45 8.12
6.94 2.87 6.72 3.84 8.25 3.70 6.78
5.30 3.38 5.46 5.45 6.69 8.99

17. Let X1,X2, . . . ,Xn be iid rvs with pdf

f (x|θ) = exp[−(x − θ)]; x > θ

Find the Bayes risk of estimator if π(θ) = e−θ : θ > 0
18. Let X1,X2, . . . ,Xn be iid rvs with pdf

f (x|θ) = exp[−(x − θ)]; x > θ

Assume squared error loss function and find the Bayes estimator of θ if prior distri-
bution of θ is π(θ),

π(θ) = θk−1e− θ
α

�(k)αk
; θ > 0, α, k > 0

Calculate the Bayes estimator for the following data.

3.03 2.34 2.25 3.07 2.79 2.50
2.08 2.40 2.24 2.26 2.51 3.16
2.37 3.11 2.25

Assume k = 4 and α = 5.
19. In problem 17, if θ is ∪(0, 1) then find the Bayes estimator under squared error
and quadratic loss function. Further find its risk. Calculate the Bayes estimator of θ
using the data given in problem 18.
20. Let X1,X2, . . . ,Xn be iid rvs with ∪(θ, 2θ). Suppose that the prior distribution
of θ is Pareto with pdf

π(θ) =
{

αβα

θα+1 ; θ > β
0 ; otherwise

Using quadratic loss function, find Bayes estimator of θ and its risk. Calculate Bayes
estimator from the following data for α = 2 and β = 4,

4.16 2.41 4.01 2.52 2.76 2.30 2.89
5.60 5.47 2.85 4.89 5.15 2.71 3.51
3.15

21. Let X1,X2, . . . ,Xm be iid rvs with f (x|θ) and g(x|θ). If m is even then X2k−1

has f (x|θ) and X2k has g(x|θ), where k = 1, 2, . . . , m
2 . Assume f (x|θ) = (nx

)
θx(1 −

θ)n−x; x = 0, 1, 2, . . . , n and g(x|θ) = (x+r−1
x

)
θr(1−θ)x; x = 0, 1, 2, . . .. Assuming
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prior distribution of θ as β(a, b), find Bayes estimate of θ under squared error loss
and weighted quadratic loss function.
22. Let the rv X1 has exponential distribution with mean θ and the rv X2 has g(x, θ),

g(x|θ) = θxθ−1; 0 < x < 1 θ > 0

Find the Bayes estimate of θ under squared error and weighted loss function. Assume
that θ has improper prior distribution.
23. Let the rvX1 has∪(0, θ) andX2 has∪(θ, θ+1). Suppose that the prior distribution
of θ is a Pareto distribution with pdf

π(θ) =
{

αβα

θα+1 ; θ > β
0 ; otherwise

Using quadratic loss function, find the Bayes estimate of θ.
24. Assume that rvsX1 andX2 are distributed as∪(0, θ) and exponential withmean θ,
respectively. Find the Bayes estimate of θ under the quadratic loss function. Further,
assume that prior distribution of θ as specified in problem 23 and obtain the Bayes’
estimate of θ.
25. Let X1,X2, . . . ,Xn be iid (i) ∪(−θ, 0) (ii) ∪(0, θ2) (iii) ∪(θ, kθ), k > 1 (iv)
∪(−2θ, 2θ).

Suppose the prior distribution of θ is π(θ)

π(θ) =
{

αβα

θα+1 ; θ > β
0 ; otherwise

Using the squared error loss function, find the risk of the bayes estimator of θ (use
the data given in problem 20).
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Chapter 7
Most Powerful Test

Suppose that your parliament is considering a proposal for uniform civil code for all
religions. To gather information, a group surveys 500 randomly selected individuals
from their district and learns that 65% of these people favor the proposal.

Can the Member of Parliament conclude that a majority of all adults in their
district favor this proposal? Because the result is based on the sample, there is a
possibility that the observed majority might have occurred just by the “Luck of the
draw.” If the majority of the whole population actually opposes the proposal, how
likely is it that 65% of a random sample would favor the proposal?

In this chapter, wewill learn how to use themethod of statistical hypothesis testing
to analyze this type of issue. The hypothesis testing method uses data from a sample
to judge whether or not a statement about a population may be true. A hypothesis
test is used to answer questions about particular values for a population parameter,
or particular relationship in a population, based on information in the sample data.
The five steps for any hypothesis test follow.

Step 1: Determine the null and alternative hypothesis.
Step 2: Verify necessary data conditions, and if met summarize the data into an
appropriate test statistics.
Step 3: Assuming the null hypothesis, find the p-value.
Step 4: Decide whether or not the result is statistically significant based on the
p-value.
Step 5: Report the conclusion in the context of the situation.

We shall learn these steps one by one.

7.1 Type-1 and Type-2 Errors

Let (X1,X2, . . . ,Xn) be iid from f (x|θ), θ ∈ � and � ⊆ �. Further, we assume that
the functional form of f (x|θ) is known except the parameter θ. Also, we assume that
θ contains at least two points.
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Any statement about the population or population parameter from which a given
random sample (x1, x2, . . . , xn) may have been drawn is called a null hypothesis.
Further, a parametric hypothesis is an assertion about the unknown parameter θ. It is
denoted by H0. Moreover, we can say that no statistical significance exists in a set of
given observations. The specific null hypothesis varies from problem to problem, but
generally it can be thought of as the status quo, or no relationship, or no difference.
In many instances, the statistician hopes to disprove or reject the null hypothesis.

The alternative hypothesis is denoted by H1. It is a statement that something is
happening. In most situations, this hypothesis is what the statistician hopes to prove.
Itmay be a statement that the assumed status quo is false, or that there is a relationship,
or that there is a difference.

Consider the following example of null hypothesis:

• Men and women have same I.Q.
• There is no difference between the mean pulse rates of men and women.
• The accused is not guilty.

Some examples of alternative hypothesis

• Men and women do not have the same I.Q.
• There is a difference between the mean pulse rates of men and women.
• The accused is guilty.

In notation, we can write:
H0 : θ ∈ �0, where �0 ⊂ �

H1 : θ ∈ �1, where �1 ⊂ �

Definition 7.1.1 If�0 or�1 contains only one point, we say that�0 or�1 is simple
hypothesis, otherwise it is composite hypothesis.

If the hypothesis is simple, the probability distributionofX is completely specified.

(1) For example, if the rv X isN(μ, 1) andH0 : μ = 4 andH1 : μ = 5. In this case
under H0, X is N(4, 1) and under H1, X is N(5, 1). Hence it is a simple hypothesis.

(2) Let the rv X is N(μ,σ2) and both μ and σ2 are unknown.
� = {(μ,σ2) : −∞ < μ < ∞,σ2 > 0}
Let H0 : μ ≤ μ0,σ

2 > 0, where μ0 is known constant against H1 : μ > μ0,

σ2 > 0.
In this case, both null and alternative hypothesis are composite.
Given the sample pointX = (x1, x2, . . . , xn), we have to find a decision rule which

will lead to a decision to accept or reject the null hypothesis. Further partition the
n-dimensional Euclidean space �n into two disjoint sets A and Ac.

If x ∈ A, reject H0 and x ∈ Ac, accept H0.

Definition 7.1.2 Let X1,X2, . . . ,Xn are iid rvs from f (x|θ), θ ∈ �. The subset ‘A’
of �n such that if x ∈ A then H0 is rejected with probability 1 is called the critical
region or rejection region.
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Fig. 7.1 Acceptance and rejection region

In notation, we can write,
A = {x ∈ �n,H0 is rejected if x ∈ A}; see Fig. 7.1.
We can make two possible types of error:

(i) We may reject the hypothesis when we ought to accept it; i.e., when it is true
(ii) We may accept the hypothesis when we ought to reject it; i.e., when it is false

Decision
Test Reject H0 Accept H0

H0 True Type-1 error Correct

H0 False Correct Type-2 error

Let α = Probability of Type-1 error and
β = Probability of Type-2 error.
Choose the critical region so as to minimize both types of errors simultaneously,

but this is, in general, not possible for a sample of fixed size. In fact, decreasing one
type of error may very likely increase the other type. Thus, by deciding to always
accept the hypothesis, we can reduce type-1 error to zero, but in that case β would
have its largest value, i.e., 1. In practice, we keep type-1 error fixed at a specified
value and then, out of these critical regions all of which give this type-1 error, we
choose that region which minimizes the type II error. The type-1 error, which is the
same for all these regions, is sometimes called the size of the critical regions.

Definition 7.1.3 The test function φ is defined as φ : � → [0, 1]
Examples of test function

(i) φ(x) = 1∀ x ∈ �n

(ii) φ(x) = 0 ∀ x ∈ �n

(iii) φ(x) = δ, 0 ≤ δ ≤ 1, ∀ x ∈ �n

Definition 7.1.4 The test function φ is said to be a test of hypothesis H0 : θ ∈ �0

against the alternativeH1 : θ ∈ �1 with the error probability α (it is also called level
of significance) if

Eθφ(x) ≤ α ∀ θ ∈ �0 (7.1.1)
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Further, our objective will be to seek a test φ for a given α, 0 ≤ α ≤ 1, let
βφ(θ) = Eθφ(x), such that

sup
θ∈�0

βφ(θ) ≤ α (7.1.2)

LHS of (7.1.2) is also known as the size of the test φ. From (7.1.1) and (7.1.2), we
can conclude that it restricts attention to those tests whose size does not exceed a
given level of significance α.

In the hypothesis testing problems involving discrete distributions, it is usually
not possible to choose a critical region consisting of realizable values of the statistics
of size exactly α, where α is some prescribed value. In simple hypothesis, we can
write α = Probability of type I error,

= P[Reject H0|H0 is true], and
β = Probability of type II error,

= P[Accept H0|H0 is false]
For a nonrandomized test with rejection region A, φ for a region A is just an

indicator function. That is,

φ(x) =
{
1 ; x ∈ A
0 ; x ∈ Ac

Wewill extend this to allow for some different action (other than reject and accept) if
the outcome X is on the boundary of the critical region. The other action effectively
is performing an auxiliary experiment such as tossing a coin with P[heads] = p; if
head results, reject H0; if tail results, H0 is accepted. The value of p is chosen to
make P[Reject H0|H0 is true], the desired value.

More formally, for a test with critical region A and a value of X = x0 on the
boundary, we may define

φ(x) =
⎧
⎨

⎩

1 ; x < x0
γ ; x = x0
0 ; otherwise,

where 0 < p < 1.
Such a test is known as “Randomized Test.”

Example 7.1.1 Suppose X has a Poisson distribution with mean λ. A sample of size
n = 10 is used to test H0 : λ = 0.1 against H1 : λ > 0.1.

Note that Y = ∑10
i=1 Xi has a Poisson distribution with mean 10λ.

The test is to rejectH0 for large values ofY. Supposewewish to have a significance
level of α = 0.05.
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Now, P[Y ≥ 3] = 0.08 and P[Y ≥ 4] = 0.019. The desired level of significance
can be achieved by the test

φ(Y) =
⎧
⎨

⎩

1 ; Y ≥ 4
γ ; Y = 3
0 ; Y < 3,

P[Reject H0|H0 is true] = 0.05

Eφ(y) = 1 × P[Y ≥ 4] + γ × P[Y = 3] + 0

= 0.019 + γ[P(Y ≥ 3) − P(Y ≥ 4)]
= 0.019 + γ[0.08 − 0.019]
= 0.019 + γ(0.061)

Therefore,
= 0.019 + γ(0.061) = 0.05

⇒ γ = 31

61

Hence, the randomized test can be written as

φ(Y) =
⎧
⎨

⎩

1 ; Y > 3
31
61 ; Y = 3
0 ; Y < 3,

Example 7.1.2 Let the random variable X has ∪(θ1, θ2). We wish to test H0 : θ1 =
2, θ2 = 5 against H1 : θ1 = 3, θ2 = 8, using a sample of size 1. Find randomized
test of size α = 0.05.

Clearly any sensible decision rule would include if x ∈ (2, 4), H0 should be
accepted, if x ∈ (3, 8), H0 should be rejected. But if x ∈ (4, 5), we will reject H0

sometimes and accept H0 sometimes (Fig. 7.2).
Our φ function will be

φ(X) =
⎧
⎨

⎩

1 ; X ∈ (5, 8)
γ ; X ∈ (4, 5)
0 ; X ∈ (2, 4)
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Fig. 7.2 Acceptance-rejection region

α = P[RejectH0|H0 is true]
0.05 = 1 × P[X ∈ (5, 8)] + γ × P[X ∈ (4, 5)]

= 0 + γ

5∫

4

1

3
dx

= γ

3

⇒ γ = 0.15

Our randomized test is

φ(X) =
⎧
⎨

⎩

1 ;X ∈ (5, 8)
0.15 ;X ∈ (4, 5)
0 ;X ∈ (2, 4)

Definition 7.1.5 Let φ be any test function for H0 : θ ∈ �0 and H1 : θ ∈ �1. For
every θ ∈ �1, define

βφ(θ) = Eθφ(X); θ ∈ �1 (7.1.3)
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As a function of θ, βφ(θ) is called the power function of the test φ, for θ ∈ �1.
Further in simple hypothesis if β is Type II error then power of the test is 1 − β.
Moreover in composite hypothesis βφ(θ) for θ ∈ �1 is a power function.

Problem in Testing of Hypothesis

Let X1,X2, . . . ,Xn be iid rvs from f (x|θ), θ ∈ �. Assume 0 < α < 1 be given.
Given a sample point X, find a test φ(x) such that

sup
θ∈�0

βφ(θ) ≤ α

and βφ(θ) for θ ∈ �1 is maximum.
Evidently, we can find in general many and often even an infinity of subregions

A of the sample space, all satisfying (7.1.2). Which of them should we prefer to the
others? This is the problem of the theory of testing of hypothesis. We can put it in
different words as to which set of observations are to regard as favoring and which
is disfavoring a given hypothesis?

Once the question is put in this way, we are directed to the heart of the problem.
KnowingHo alone, along with the properties of the critical region does not suffice. It
is essential to know the alternative hypothesis also. What happens when some other
hypothesis holds? In otherwords,we cannot saywhether a given body of observations
favors a given hypothesis unless we know to what alternatives this hypothesis is
being compared. The hypothesis being used to study the set of observations should
be meaningful and appropriate hypothesis should be stated. For example, if our
objective is to test the quantity of milk in 500 ml packet, it is obvious that testing
should be done around 500 ml and must not vary from far 500 ml, like say 300 or
600ml.Mathematically, it may be correct but statistically it is incorrect. The problem
of testing a hypothesis is essentially one of choice between it and some others. It
follows immediately that whether or not we accept the original hypothesis depends
crucially upon the alternatives against which is being tested.

Here, we seek a critical region A such that its power defined in (7.1.3) is as large
as possible. Then, in addition to having controlled the probability of type-1 error
defined in (7.1.1) or (7.1.2), we have to minimize the probability of type-2 error.

Now, we will consider some examples of type-1 and type-2 errors.

Example 7.1.3 Let the rv X is distributed as ∪(0, θ). We are testing the hypothesis
H0 : θ = 1 against H1 : θ = 2 based on a single observation. Calculate the type-1
and type-2 errors based on the following critical regions. Also obtain the power of
the test.

(i) A1 = {x|0.9 < x}
(ii) A2 = {x|1 < x < 1.5}
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(i) Type-1 error = P[Reject H0|H0 is true]

= P[X > 0.9|θ = 1]

=
1∫

0.9

dx = 0.10

Type-2 error = P[Accept H0|H1 is true]

= P[0 ≤ X < 0.9|θ = 2]

=
0.9∫

0

dx

2
= 0.45

Power = P[Reject H0|H1 is true]

= P[X > 0.9|θ = 2]

= P[0.9 < X < 2|θ = 2]

=
2∫

0.9

dx

2
= 0.55

(ii) A2 = {x : 1 ≤ x ≤ 1.5}
Type-1 error = P[1 ≤ x ≤ 1.5|θ = 1]

=
1∫

1

dx = 0

Type-2 error = P[Accept H0|H1 is true]

= P[x ∈ A2
c|θ = 2]

= 1 − P[x ∈ A2|θ = 2]
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= 1 −
1.5∫

1

dx

2
= 0.75

Power = P[Reject H0|H1 is true] = P[x ∈ A2|θ = 2] = 0.25

Example 7.1.4 If X ≥ 1 is the critical region for testingH0 : θ = 2 againstH1 : θ =
1 on the basis of a single observation from the following population

f (x|θ) =
{

θe−θx ; x > 0, θ > 0
0 ; otherwise

Obtain Type-1 and Type-2 errors. Further obtain the power of this test.
A = {x|x ≥ 1}, Ac = {x|x < 1}
We can say that A is the critical region
(i) Type-1 error = P[Reject H0 | H0 is true]

= P[x ≥ 1|θ = 2]

=
∞∫

1

2e−2xdx = e−2

Type-2 error = P[Accept H0|H1 is true]

= P[X < 1|θ = 1]

=
1∫

0

e−xdx = 1 − e−1

Power = P[Reject H0|H1 is true]

= P[X ≥ 1|θ = 1] = e−1

The probability of Type-1 error α depends on the choice of the critical region A
and on the hypothesis H0, while probability of Type II error β depends on both the
hypothesis H0 and H1. An increase in α results in decrease in β and a decrease in α
results in an increase in β.

Example 7.1.5 Research and development department of a pharmaceutical company
has recently developed a dietary supplement to reduce cholesterol level. Company
applied for license to FDA, a drug regulatory body, to market the drug. The FDA
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authorities asked the company to administer the supplement on 100 people and check
hypothesis.

H0: The drug does nothing to reduce the cholesterol, i.e., p = 0.10.
H1: The drug reduces the cholesterol in 20% people, i.e., p = 0.20.
FDA knew from the past experience that in about 10% of the people cholesterol

declines naturally. FDA decided to issue license for marketing the drug only when
the experiment shows strong evidence that the drug reduces cholesterol 20% of all
the people. FDA also supplied the decision rule

φ(p̂) =
{
1 ; p̂ > 0.15
0 ; p̂ ≤ 0.15

where p̂ is observed proportion and p̂ ∼ N(p, pq
n ).

Probability of type-I error

P[p̂ > 0.15|H0 is true]

= P[p̂ > 0.15|p = 0.10]

= P

⎡

⎣ p̂ − p
√

pq
n

>
0.15 − 0.10√

0.0009

⎤

⎦ = P[z > 1.67], where z ∼ N(0, 1), q = 1 − p,

= 0.0475,

Probability of type II error = P[Accept H0|H1 is true]

= P[p̂ < 0.15|p = 0.20]

= P[z ≤ −1.25] = 0.1056 (7.1.4)

Example 7.1.6 Let X and Y be two independent rvs with ∪(0, θ). We are testing the
hypothesis H0 : θ = 1 against H1 : θ = 2. Calculate the probability of type-1 error
and power of the test based on the following critical regions

(i) (X + Y) > 0.75 (ii) XY > 0.75 (iii) X
Y > 0.75

X and Y are independent random variables.
(i) X ∼ ∪(0, 1),Y ∼ ∪(0, 1),
To find P(X + Y > 0.75) (ii) P(XY > 0.75) (iii) P

(
X
Y > 0.75

)

Here X ∼ ∪(0, 1) and Y ∼ ∪(0, 1),
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Also X and Y are independent.

fX,Y (x, y) = fX(x)fY (y)

fX(x) =
{
1 ; 0 < x < 1
0 ; otherwise

fY (y) =
{
1 ; 0 < y < 1
0 ; otherwise

fX,Y (x, y) =
{
1 ; ∀ 0 < x < 1, 0 < y < 1
0 ; otherwise

We will find probability of type-1 error in all the three critical regions.
Here, as the value of pdf is 1, for all 0 < x < 1, 0 < y < 1, the probability

required will actually be the area bounded by x+ y > 0.75, x < 1 and y < 1, x > 0,
y > 0. Required region is A.

Now Area (A) + Area (B) = Area of Squares

Area (A) = 1-Area (B) = 1 − 1

2
× 3

4
× 3

4
Since B is a right angled triangle.

= 1 − 9

32
= 23

32
P(X + Y > 0.75) = 0.71875; see Fig. 7.3

(ii) P(XY > 0.75) Here, XY = 0.75 is a hyperbola.
Required region is A

Fig. 7.3 Area for
X + Y > 0.75 under H0
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Area (A) =
1∫

3
4

(

1 − 0.75

x

)

dx

= [
x − 0.75 log x

]1
3
4

= (1 − 0.75 log 1) −
(
3

4
− 0.75 log 0.75

)

= 1 − 0.9657 = 0.034238

∴ P(XY > 0.75) = 0.034238; see Fig. 7.4

(iii) P

(
X

Y
> 0.75

)

X = 3
4Y . Required region is A.

Area (A) + Area (B) = 1

Area (A) = 1-Area (B) = 1 − 1

2
× 3

4
× 1

= 1 − 3

8
= 5

8
= 0.625

P

(
X

Y
> 0.75

)

= 0.625; see Fig. 7.5.

Next we will find power of the test in all the three regions.
Here X ∼ ∪(0, 2) and Y ∼ ∪(0, 2),
Also X and Y are independent.

fX,Y (x, y) = fX(x)fY (y)

fX(x) =
{

1
2 ; 0 < x < 2
0 ; otherwise

fY (y) =
{

1
2 ; 0 < y < 2
0 ; otherwise

Fig. 7.4 Area for
XY > 0.75 under H0
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Fig. 7.5 Area for X
Y > 0.75

under H0

fX,Y (x, y) =
{

1
4 ; 0 < x < 2, 0 < y < 2
0 ; otherwise

Here, value of pdf is 1
4 , for all 0 < x < 2, 0 < y < 2. The required probability will

be the area bounded by given lines or curves multiplied by 1
4 .

(i) P(X + Y > 0.75)

Area (A) = 4-Area (B) = 4 − 1

2
× 3

4
× 3

4

= 4 − 9

32
= 3.71875

P(X + Y > 0.75) = 1

4
× 3.71875 = 0.92968

∴ P(X + Y > 0.75) = 0.92968; see Fig. 7.6
(ii) P(XY > 0.75)

Area (A) =
2∫

3
8

(

2 − 0.75

x

)

dx

= [
2x − 0.75 log x

]2
3
8

= (4 − 0.75 log 2) −
(
3

4
− 0.75 log

3

8

)

= 3.480139 − 1.48562 = 1.9945



274 7 Most Powerful Test

Fig. 7.6 Area for
X + Y > 0.75 under H1

∴ Required probability = 1
4 × 1.9945 = 0.49863

P(XY > 0.75) = 0.49863; see Fig. 7.7

(iii) P

(
X

Y
> 0.75

)

Area (A) = 4-Area (B) = 4 − 1

2
× 1.5 × 2 = 4 − 1.5 = 2.5

P

(
X

Y
> 0.75

)

= 2.5

4
= 0.625; see Fig. 7.8.

Fig. 7.7 Area for
XY > 0.75 under H1
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Fig. 7.8 Area for X
Y > 0.75

under H1

7.2 Best Critical Region

A critical region whose power is no smaller than that of any other region of the same
size for testing a hypothesis H0 against the alternative H1 is called a best critical
region (BCR) and a test based on BCR is called a most powerful (MP) test. We will
illustrate this BCR in notation.

Let A denote a subset of the sample space S. Then A is called a BCR of size
α for testing H0 against H1 if for every subset C of the sample space S for which
P[(X1,X2, . . . ,Xn) ∈ C] ≤ α.

Let X = (X1,X2, . . . ,Xn)

(i) P[X ∈ A|H0 is true] ≤ α
(ii) P[X ∈ A|H1 is true] ≤ P[X ∈ C|H1 is true] (7.2.1)

A test based on A is called the MP test.

Definition 7.2.1 Let φα be the class of all test whose size is α. A test φ0 ∈ φα is
said to be most powerful (MP) test against an alternative θ ∈ �1 if

βφ0(θ) ≥ βφ(θ), ∀φ ∈ φα (7.2.2)

Note: If �1 contains only one point, this definition suffices. If on the other hand
�1 contains at least two points as will usually be the case, we will have a MP test
corresponding to each �1.

Definition 7.2.2 A test φ0 ∈ φα for testing H0 : θ ∈ �0 against H1 : θ ∈ �1 of size
α is said to be uniformly most powerful (UMP) test if
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Table 7.1 Ratio of probabilities under H1 to H0

X P0(X) P1(X)
P1(X)
P0(X)

0 1
32

1
1024

1
32

1 5
32

15
1024

3
32

2 10
32

90
1024

9
32

3 10
32

270
1024

27
32

4 5
32

405
1024

81
32

5 1
32

243
1024

243
32

βφ0(θ) ≥ βφ(θ), ∀ φ ∈ φα uniformly in θ ∈ �1 (7.2.3)

There will be many critical regions C with size α but suppose one of the critical
regions, say A is such that its power is greater than or equal to the power of any such
critical region C.

Example 7.2.1 Let the rvX isB(5, θ). We have to testH0 : θ = 1
2 againstH1 : θ = 3

4

Consider the Table7.1:
(i) α = 1

32
We can have two regions A1 = {0},A2 = {5}
One can see

α = P

[

X = 0|θ = 1

2

]

= P

[

X = 5|θ = 1

2

]

Power (A1) = PA1 [Reject H0|H1 is true]

= PA1

[

X = 0|θ = 3

4

]

= 1

1024

Power (A2) = PA2

[

X = 5|θ = 3

4

]

= 243

1024

In this case A2 is BCR.
One can observe that the BCR is found by observing the points in P0 at which P0

is small among other points. Hence, we have two sets A1 and A2.

Select BCR, such that
P1(X)

P0(X)
is maximum.

At X = 0,
P1(X)

P0(X)
= 1

32
and At X = 5,

P1(X)

P0(X)
= 243

32

max

{
P1(X = 0)

P0(X = 0)
,
P1(X = 5)

P0(X = 5)

}

= 243

32
.
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Hence, BCR = A2 = {X = 5}.
(ii) α = 6

32
We can have the following four regions:
A1 = {0, 1},A2 = {4, 5},A3 = {0, 4},A4 = {1, 5}

Critical region Power

A1
16

1024

A2
648
1024

A3
406
1024

A4
258
1024

Power is maximum at A2. In this case BCR is A2.
One can observe that P1

P0
has largest and next largest values at X = 4 and X = 5.

Thus, if H0 and H1 are both composite, the problem is to find a UMP test φ a test
very frequently does not exist. Then we will have to put further restriction on the
class of the tests φα.

Remark: If φ1 and φ2 are both tests and λ is a real number, 0 < λ < 1, then
λφ1+(1−λ)φ2 is also a test function and it follows that the class of all test functions
φα is convex.

Example 7.2.2 Let X1,X2, . . . ,Xn be iid rvs with N(μ, 1), where μ is unknown. But
it is known that μ ∈ � = {(μ0,μ1),μ1 > μ0}. We have to find critical regions for
given α under H0 : μ = μ0 against H1 : μ = μ1(μ1 > μ0).

Assume that the critical region A = {X̄ > k}. Define the test φ(X) as

φ(x) =
{
1 ; X̄ > k
0 ; X̄ ≤ k

EH0φ(X) = P[Reject H0|μ = μ0]
= P[X̄ > k|μ = μ0]
= P[√n(X̄ − μ0) >

√
n(k − μ0)] = α

Let Z = √
n(X̄ − μ0) and Zα = √

n(k − μ0)

Hence P[Z > Zα] = α then k = μ0 + Zα√
n

Hence our test is

φ(x) =
{
1 ; X̄ > μ0 + Zα√

n

0 ; X̄ ≤ μ0 + Zα√
n

In this case X̄ is known as test statistic.
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Power of the test = EH1φ(X) = P[Reject H0|H1 is true]

= P

[

X̄ > μ0 + Zα√
n
|μ = μ1

]

= P

[√
n(X̄ − μ1) >

√
n

(

μ0 + Zα√
n

− μ1

)]

= P
[√

n(X̄ − μ1) > Zα − √
n(μ1 − μ0)

]

= 1 − �
[
zα − √

n(μ1 − μ0)
]

Theorem 7.2.1 (Neyman–Pearson Lemma)
Let the rv X have pdf(pmf) f (x|θ0) and f (x|θ1).
(a) Existence: For testing H0 : X ∼ f (x|θ0)(=f0) against H1 : X ∼ f (x|θ1)(=f1)

and for every 0 < α ≤ 1, there exists a test φ, k ≥ 0 and γ(x) = γ such that

EH0φ(X) = α, (7.2.4)

where

φ(X) =
⎧
⎨

⎩

1 ; f1 > kf0
γ(x) ; f1 = kf0
0 ; f1 < kf0

(7.2.5)

and for α = 0, there exists a test φ(x), k = ∞ such that

EH0φ(X) = 0, (7.2.6)

where

φ(X) =
{
1 ; f0 = 0
0 ; f0 > 0

(7.2.7)

(b) Sufficient condition for MP test: Any test of the form (7.2.5) for some k ≥ 0 and
0 ≤ γ(x) ≤ 1, is most powerful of its size in Aα for testing H0 : X ∼ f1,

Aα = {φ|EH0φ(X) ≤ α} (7.2.8)

Further, if k = ∞ the test of the form (7.2.7) is most powerful of size o for testing
H0 against H1.

(c) Necessary condition for MP test:
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If φ∗ is the MP test of its size in Aα, then it has the form as given in (7.2.5) or
(7.2.7) except for a set of X with probability zero under H0 against H1.

Proof If k = ∞ then from (7.2.7)

EH0φ(X) = 0, i.e.α = 0

(Note that when k is very large then almost there is no rejection region)
Next, if k = 0, then the test

φ(X) =
{
1 ; f0 = 0
0 ; f0 > 0

(7.2.9)

EH0φ(X) = 1

Next, consider 0 < α < 1, let γ(x) = γ,
From (7.2.5),

EH0φ(X) = PH0 [f1 > kf0] + γPH0 [f1 = kf0]

= 1 − PH0 [f1 ≤ kf0] + γPH0 [f1 = kf0] (7.2.10)

Let Y = f1
f0
then PH0 [Y ≤ k] is a df, i.e., it is nondecreasing and right continuous.

If, for a fixed α, there exists a k0 such that

PH0 [Y ≤ k0] = 1 − α

then EH0φ(X) = α, γ = 0 and the test is

φ(X) =
{
1 ; f1 > kf0
0 ; f1 � kf0

It implies that randomization on the boundary with probability γ(x) = γ is not
required when the distribution of Y given H0 is continuous. If the above situation is
not met then from (7.2.10),

EH0φ(X) = α and k = k0

α = 1 − PH0 [Y ≤ k0] + γPH0 [Y = k0] (7.2.11)
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P[Y < k0] + (1 − γ)PH0 [Y = k0] = 1 − α (7.2.12)

It implies

P[Y < k0] ≤ 1 − α (7.2.13)

and

P[Y ≤ k0] = (1 − α) + γP[Y = k0] (7.2.14)

(1 − α) < P[Y ≤ k0] (7.2.15)

From (7.2.13) and (7.2.15),

P[Y < k0] ≤ (1 − α) < P[Y ≤ k0] (7.2.16)

Hence, from (7.2.14),

γ = PH0 [Y ≤ k0] − (1 − α)

PH0 [Y = k0] (7.2.17)

Then the test φ(X) for k = k0 is defined as

EH0φ(X) = α

and

φ(X) =
⎧
⎨

⎩

1 ; f1 > kf0
γ(x) ; f1 = kf0
0 ; f1 < kf0

(b) Let the sample space S is divided into three regions

S+ = {x ∈ S|f1(x) > kf0(x)}

S0 = {x ∈ S|f1(x) = kf0(x)}

S− = {x ∈ S|f1(x) < kf0(x)}

Let φ(x) be the test satisfying (7.2.5) and φ∗(x) be any test with

EH0φ
∗(X) ≤ EH0φ(X) (7.2.18)
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In continuous case,

∫

[φ(X) − φ∗(X)][f1(x) − kf0(x)]dx

=
∫

S+

[φ(X) − φ∗(X)][f1(x) − kf0(x)]dx +
∫

S0

[φ(X) − φ∗(X)][f1(x) − kf0(x)]dx

+
∫

S−

[φ(X) − φ∗(X)][f1(x) − kf0(x)]dx

For any x ∈ S+,φ(X) = 1 ⇒ φ(X) − φ∗(X) = 1 − φ∗(X)

⇒ [1 − φ∗(X)][f1(x) − kf0(x)] > 0 (7.2.19)

Next, x ∈ S0

[1 − φ∗(X)][f1(x) − kf0(x)] = 0 (7.2.20)

Next x ∈ S−,φ(X) = 0 ⇒ φ(X) − φ∗(X) = −φ∗(X)

⇒ −φ∗(X)[f1(x) − kf0(x)] > 0 (7.2.21)

From (7.2.19), (7.2.20) and (7.2.21), the complete integral gives a quantity which is
greater than or equal to zero and we have,

∫

S

[φ(X) − φ∗(X)][f1(x) − kf0(x)]dx > 0

⇒
∫

φ(X)[f1(x) − kf0(x)]dx >

∫

φ∗(X)[f1(x) − kf0(x)]dx

⇒ EH1φ(X) − kEH0φ(X) > [EH1φ
∗(X) − kEH0φ

∗(X)]

⇒ EH1φ(X) − EH1φ
∗(X) > k[EH0φ(X) − EH0φ

∗(X)]

From (7.2.18), LHS is positive.

⇒ EH1φ(X) > EH1φ
∗(X)

i.e., φ(X) is MP test of size α in Aα.
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Further, consider a test φ(X) with size 0 that satisfies the Eqs. (7.2.6) and (7.2.7).
Let φ∗(X) be any other test in A0 where

A0 = {φ|EH0φ(X) = 0}

A test φ∗ ∈ A0, which implies that

∫

φ∗(X)f0(x)dx = 0.

This implies that φ∗ = 0 with probability 1 on the set {x : f0(x) > 0}.
Consider

EH1φ(X) − EH1φ
∗(X) =

∫

x:f0(x)=0

[φ(X) − φ∗(X)]f1(x)dx

+
∫

x:f0(x)>0

[φ(X) − φ∗(X)]f1(x)dx

=
∫

x:f0(x)=0

[1 − φ∗(X)]f1(x)dx ≥ 0

EH1φ(X) ≥ EH1φ
∗(X)

Hence, the test φ in (7.2.7) is MP of size 0.
(c) Necessary condition for MP test
Let φ(X) be a MP test given in (7.2.4) and (7.2.5). Let φ∗(X) be some other MP

test of size α in Aαα > 0, for testing H0 : X ∼ f0 against H1 : X ∼ f1.
Since S = S+ ∪ S− ∪ S0,
Assume that the tests φ and φ∗ takes on different values on S+ and S−.
Consider a set

W = S ∩ {x : f1(x) �= kf0(x)} = {x : f1(x) �= kf0(x)}

Assume that P[W ] > 0, consider the integral

∫

S

[φ(X) − φ∗(X)][f1(x) − kf0(x)]dx =
∫

W

[φ(X) − φ∗(X)][f1(x) − kf0(x)]dx

+
∫

S0

[φ(X) − φ∗(X)][f1(x) − kf0(x)]dx
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Since φ(X) and φ∗(X) are both MP test of size α then
EH0φ(X) = EH0φ

∗(X) and EH1φ(X) = EH1φ
∗(X)

⇒
∫

W

[φ(X) − φ∗(X)][f1(x) − kf0(x)]dx = 0

with [φ(X) − φ∗(X)][f1(x) − kf0(x)] > 0.
It gives P[W ] = 0. It is a contradiction to the assumption P[W ] > 0. Therefore

P[W ] = 0. Let P be such that P(W ) = P(W |H0) + P(W |H1). But P[W ] = 0, it
implies that P(W |H0) and P(W |H1) are both zero. Thus the probability on the setW
on which φ and φ∗ are different, become zero under the H0 and H1 hypothesis.

In other words, we can say that φ(X) �= φ∗(X) on the set S0 = {x|f1(x) = kf0(x)}.
It implies that φ and φ∗ are of the same form except on the set S0 under H0 and H1.

Let φ be a test given in Eqs. (7.2.6) and (7.2.7). Further, let φ∗ be an MP test of
size 0 in A0. The test φ and φ∗ differ on the set

W = {x : f0(x) = 0, f1(x) > 0} ∪ {x : f0(x) > 0, f1(x) > 0}

Assume P(S) > 0. Since [φ − φ∗]f1(x) > 0 on W and the integral

∫

W

[φ − φ∗]f1(x)dx = 0

Because EH1φ(X) = EH1φ
∗(X). This implies that P(W ) = 0.

This shows that MP tests φ(X) and φ∗(X) have the same form as in Eqs. (7.2.6)
and (7.2.7) except perhaps on the set {x : f0(x) > 0} ∪ {x : f1(x) > 0}.

7.3 P-Value

In many experimental situations and financial decisions, we conveniently use type
I error as 1 or 5%. This is because we do not know how much one could tolerate
the first kind of error. In fact, the choice of significance level should be such that the
power of the test against the alternative must not be low.

Under H0, the distribution of f1(x)
f0(x)

is continuous. Then, the MP level α test is

nonrandomized and reject if f1(x)
f0(x)

> k, where k = k(α) is determined by (7.2.4). For
varying α, the resulting tests provide an example of the typical situation in which
the rejection regions Aα are nested in the sense that

Aα ⊂ Aα′ if (α < α′)
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When this is the case, it is a good practice to determine not only whether the hypoth-
esis is accepted or rejected at the given significance level, but also to determine the
smallest significance level, or more formally.

p̂ = p̂(X) = inf{α : X ∈ Aα}

at which the hypothesis would be rejected for the given observation. This number, the
so-called p-value gives an idea of how strongly the data contradicts the hypothesis. It
also enables others to reach a verdict based on the significance level of their choice.

Example 7.3.1 Suppose that H0 : μ = μ0 against H0 : μ = μ1 > μ0 and α = 0.05.
Suppose our test φ(X) is defined as

φ(X) =
{
1 ; X > k
0 ; X ≤ k

Let k = 1.64. Further, we assume that Z is N(0,1); see Fig. 7.9. Let the calculated
value of z from the sample is 1.86. Hence, our test is reject H0 if z > 1.64. In this
case 1.86 is greater than 1.64, so we reject H0; see Fig. 7.10.

Now, we can find p-value

P[z > 1.86] = 0.0314,

Fig. 7.9 5% upper tail area for standard normal distribution

Fig. 7.10 p-value
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In this case p-value is 0.0314 and it is less than 0.05. One should observe that we
reject H0 if p-value < α. Now consider the equivalence between the two methods.
Calculated value from sample of a test statistics is more than the table value of the
distribution of a test statistics is equivalent that p-value less than α in rejecting H0.
One can see this in the above Fig. 7.10. Hence 1.86 > 1.64 ⇔ 0.0314 < 0.05.

If H0 : μ ≥ μ0 against H1 : μ < μ0. The test is

φ(X) =
{
1 ; X < −1.64
0 ; X > −1.64

P[z < −1.64] = 0.05 and P[z < −1.86] = 0.0314.
P-value, i.e., probability of observing the value of z in the sample as small as

−1.86 and 0.0314 < 0.05.

P-value in two-sided test

Determining p-value in the two-sided tests presents a problem. The most common
practice in two-sided test is to report the p-value as twice as the one-sided p-value.

This procedure is satisfactory for cases in which the sampling distribution of test
statistic is symmetric under H0.

However, if the distribution is not symmetric underH0, doubling the p-value may
lead to get p > 1 and other problems. Hence Gibbson and Pratt (1975) suggested
that in the case of two-sided tests, we should report the one-sided p-value and state
the direction of the observed departure from the null hypothesis.

7.4 Illustrative Examples on the MP Test

Example 7.4.1 Let X be a random variable with pmf underH0 andH1. Find MP test
of size 0.03 and further find its power.

(i)

X: 1 2 3 4 5 6

f0(x): 0.01 0.01 0.01 0.01 0.01 0.95

f1(x): 0.05 0.04 0.03 0.02 0.01 0.85
f1(x)
f0(x)

: 5 4 3 2 1 0.89

Let λ(x) = f1
f0

One can observe that λ(x) is decreasing function of X.
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If Eφ(X) ≤ 0.03 then MP test of size 0.03,

φ(X) =
{
1 ; λ(X) ≥ 3
0 ; λ(X) < 3

⇒ φ(X) =
{
1 ; X ≤ 3
0 ; X > 3

Power = PH1(X ≤ 3) = 0.05 + 0.004 + 0.03 = 0.12.
One should note that according to NP lemma, if we take any other region of size

0.03, it will have less power.
For example:

⇒ φ1(X) =
{
1 ; X = 1, 4, 5
0 ; otherwise

or

φ2(X) =
{
1 ; X = 3, 4, 5
0 ; otherwise

EH1φ1(X) = PH1(X = 1) + PH1(X = 4) + PH1(X = 5) = 0.05 + 0.02 + 0.01 = 0.08

EH1φ2(X) = PH1(X = 3) + PH1(X = 4) + PH1(X = 5) = 0.03 + 0.02 + 0.01 = 0.06

Example 7.4.2 Consider a random sample of size one and let H0 : X ∼ N(0, 1)
against H1 : X ∼ C(0, 1). We want to obtain MP test of size α for the given H0

against H1

λ(x) = f1
f0

=
√
2

π

exp( x
2

2 )

1 + x2

logλ(x) = const + x2

2
− log(1 + x2)

∂ logλ(x)

∂x
= x − 2x

1 + x2
(7.4.1)

∂2 logλ(x)

∂x2
= 1 − 2(1 − x2)

(1 + x2)2
(7.4.2)
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From (7.4.1), x[x2 − 1] = 0
Hence x = 0, or x = ±1

From (7.4.2), at x = 0,
∂2 logλ(x)

∂x2
< 0,

at x = ±1,
∂2 logλ(x)

∂x2
> 0,

Therefore, at x = 0,λ(x) has a local maximum, i.e., λ(0) = 0.7979 =
√

2

π
.

Further at x = ±1,λ(x) has a minimum, i.e., λ(±1) = 0.6577 =
√

2
π
( e

0.5

2 )

We can say that λ(x) is decreasing in (0, 1) and increasing in (1,∞).
The horizontal line λ(x) = k intersects the graph of λ(x); see Fig. 7.11

(i) in two points if k > 0.7979 (points a, b)
(ii) in three points if k = 0.7979 (points c, d, e)
(iii) in four points if k ∈ (0.6577, 0.7979) (points f, g, h, i)
(iv) in two points if k = 0.6577 (points j, k)
(v) in no points if k < 0.6577

A program in R for the function λ(x) is written.

f=function(x) sqrt(2/pi)*exp((1/2)*xˆ2)/(1+xˆ2)

x=seq(-2,2,0.01) plot(y=f(x),x,type=’l’,col=’solid line’,lwd=4)

abline(h=0.7979,col=’dashed line’,lty=2,lwd=3)

abline(h=0.6577,col=’dotted line’,lty=4,lwd=3) legend("top",

c("-lambda(x)","-lambda(0)","-lambda(+1,-1)"),text.col=c(’solid line’,’dashed line’,’dotted line’))

(i) if 0 ≤ k ≤ 0.6577, then

EH0φ(x) = 1

Fig. 7.11 Graph of λ(x)
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(ii) if k ∈ (0.6527, 0.7979) then

EH0φ(x) = PH0 [−c1 < X < c1] + PH0 [X < −c2] + PH0 [X > c2]

(iii) if k > 0.7979 then

EH0φ(x) = P[X < −d1] + P[X > d1]

Forα = 0.05, theMP testwill have critical region |x| > d1 providedλ(d1) > 0.7979.
From tables, α = 0.05, d1 = 1.96 and λ(d1) = 1.2124 and λ(d1) > 0.7979.
We can write the MP test as

φ(X) =
{
1 ; |x| > d1
0 ; |x| ≤ d1

For α = 0.05

=
{
1 ; |x| > 1.96
0 ; |x| ≤ 1.96

Power of the test

EH0φ(x) = 1 −
1.96∫

−1.96

1

π

1

1 + x2
dx

= 1 − 2

1.96∫

0

1

π

1

1 + x2
dx = 1 − 2 tan−1 1.96

π
= 0.3003

Example 7.4.3 Let X1,X2, . . . ,Xn be iid B(1, p) rvs and let H0 : p = p0 against
h1 : p = p1 > p0. Now, we will find a MP test of size α.

λ(x) = f1(x1, x2, . . . , xn|p)
f0(x1, x2, . . . , xn|p)

λ(x) = p1t(1 − p1)n−t

p0t(1 − p0)n−t
; t =

n∑

i=1

xi

=
(
p1
p0

)t (1 − p0
1 − p1

)t (1 − p1
1 − p0

)n
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=
(
p1(1 − p0)

p0(1 − p1)

)t (1 − p1
1 − p0

)n

For p1 > p0, λ(x) is nondecreasing function of t. It implies that λ(x) > k,

λ(x) > k ⇔ t > k

(the reader should note that after many algebraic operations, we will call the constant
as k only)

Our MP test is as

φ(X) =
⎧
⎨

⎩

1 ; t > k
γ ; t = k
0 ; t < k

Now, k and γ are determined from EH0φ(x) = α

α = PH0 [t > k] + γP[t = k]

Now T ∼ B(n, p)
In particular n = 5, p0 = 1

2 , p1 = 3
4 and α = 0.05

0.05 =
5∑

r=k+1

(
5

r

)(
1

2

)5

+ γ

(
5

k

)(
1

2

)5

Let k = 4

= 0.0312 + γ(0.1562)

γ = 0.0188

0.15620
= 0.12

The MP test of size α = 0.05 is given as

φ(X) =
⎧
⎨

⎩

1 ; t > 4
0.12 ; t = 4
0 ; t < 4

Thus the MP size α = 0.05 test is to reject p = 1
2 in favor of p = 3

4 if
∑

xi = 5 and

reject p = 1
2 with probability 0.12 if

∑5
i=1 xi = 4.
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For this a program in R is also given below.

# Given data

alpha = 0.05; n = 5; p0 = 0.5; p1 = 3/4.

# To find k such that first term is < alpha

a = seq(from=0,to=(n-1),by=1); # possible values for k

la = length(a)

# to find cumulative probability, i.e., P(t1 > k)

cpk <- rep(0,la) # declaring variable to find cumulative probability.

for(i in 1:la)

{

for(j in (a[i]+1):n)

{

cpk[i] = cpk[i] + dbinom(j,n,p0);

}

}

ind = min(which(cpk < alpha)) # gives cumulative probability < alpha

# To find gamma

k = ind-1; b <- dbinom(k,n,p0);

gamma = (alpha-cpk[k+1])/b

# To check the answer

check <- cpk[k+1]+(gamma*dbinom(k,n,p0))

# OUTPUT

print(c("k=",k))

print(c("gamma =",gamma))

print(c("check=",check))

Example 7.4.4 A sample size of 10 is obtained from a Poisson distribution with
parameterm. Obtain aMP test of sizeα = 0.01 to testH0 : m = 3 againstH1 : m > 3

λ(x) = f1(x1, x2, . . . , xn|p)
f0(x1, x2, . . . , xn|p) =

∏n
i=1 e

−m1m1
xi(xi!)−1

∏n
i=1 e

−m0m0
xi(xi!)−1

= e−n(m0−m1)

(
m1

m0

)t

; t =
n∑

i=1

xi

For m1 > m0, λ(x) > k ⇔ t > k
The MP test is

φ(X) =
⎧
⎨

⎩

1 ; t > k
γ ; t = k
0 ; t < k

Now, EH0φ(x) = 0.01 and the distribution of T under H0 is P(30).

PH0 [t > k] + γPH0 [t = k] = 0.01

P[t > k] ≤ 0.01
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For large m T ∼ N(30, 30)

P[t > k] = P

[

z >
k − 30√

30

]

= 0.01

⇒ k − 30√
30

= 2.325 ⇒ k = 42.74 ≈ 43

PH0 [t > 43] + γPH0 [t = 43] = 0.01

γ = 0.01 − P[t > 43]
p[t = 43]

= 0.01 − 0.009735

0.00508432
= 0.05212

Hence MP test is given as

φ(X) =
⎧
⎨

⎩

1 ; t > 43
0.05212 ; t = 43
0 ; t < 43

Note: If you are using R then the above method of calculation is not required. A pro-
gram in R is also given to calculate k and γ.

# Given data

n = 10; m = 3; lambda = n*m;

# To find k such that P(T <= k) > 1-alpha

# Defining function

fun = function(upper,lambda)

{

alpha = 0.01;

a = seq(from=0,to=(upper-1),by=1); # possible values for k

la = length(a)

# to find cumulative probability, i.e., P(t1 <= k)

cpk <- rep(0,la) # declaring variable to find cumulative probability.

for(i in 1:la)

{

cpk[i] = ppois(a[i],lambda);

}

if(cpk[la] < (1-alpha))

{ print("increase the value of k") }

if(cpk[la] > (1-alpha))

{

ind = min(which(cpk > (1-alpha))) # gives cumulative probability > 1-alpha

# To find gamma

k = ind-1; b <- dpois(k,lambda);

gamma = (cpk[k+1]-1+alpha)/b;

return(c(k,gamma));

}

}

upper = 10; ans = fun(upper,lambda)

"increase the value of k"
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upper = 50;

ans = fun(upper,lambda)

k = ans[1]; gamma = ans[2];

# To check the answer

check <- (1-ppois((k),lambda))+(gamma*dpois(k,lambda))

# OUTPUT

print(c("k=",k))

print(c("gamma =",gamma))

print(c("check=",check))

Example 7.4.5 Let X be a rv with C(1, θ). Obtain a most powerful test of level of
significance of α to test H0 : θ = 0 against H1 : θ = 1

f (x|θ) = 1

π[1 + (x − θ)2]

λ(x) = 1 + x2

1 + (x − 1)2

From NP lemma,

λ(x) > k ⇒ 1 + x2

1 + (x − 1)2
> k

⇒ x2(1 − k) + 2kx + (1 − 2k) > 0 (7.4.3)

if k > 1

⇒ x2 + 2kx

1 − k
+ 1 − 2k

1 − k
< 0 (7.4.4)

Let k1 = 2k
1− k and k2 = 1− 2k

1− k

x = −k1 ±
√
k1

2 − 4k2
2

Let λ1(k) = 1
2

[
−k1 −

√
k1

2 − 4k2
]
and λ2(k) = 1

2

[
−k1 +

√
k1

2 − 4k2
]
.

From (7.4.4), λ1(k) < x < λ2(k) if k > 1
The MP test is given by

φ(X) =
{
1 ; λ1(k) < x < λ2(k)
0 ; otherwise
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EH0φ(x) = α

⇒ h(k) =
λ2(k)∫

λ1(k)

dx

π[1 + x2] = α

⇒ tan−1 λ2(k) − tan−1 λ1(k) = πα (7.4.5)

From (7.4.3) if k < 1

x2 + 2kx

1 − k
+ 1 − 2k

1 − k
> 0

The MP test is given by

φ(X) =
{
1 ; x > λ2(k) or x < λ1(k)
0 ; otherwise

EH0φ(x) = α

⇒
∞∫

λ2(k)

dx

π[1 + x2] +
λ1(k)∫

−∞

dx

π[1 + x2]

⇒
λ2(k)∫

λ1(k)

dx

π[1 + x2] = 1 − α

⇒ tan−1 λ2(k) − tan−1 λ1(k) = π(1 − α) (7.4.6)

λ1(k) = −k − √−k2 + 3k − 1

(1 − k)

and

λ2(k) = −k + √−k2 + 3k − 1

(1 − k)
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Assume (−k2 + 3k − 1) is positive.
If k > 1 and 3−√

5
2 < k < 3+ √

5
2 then 1 < k < 3+√

5
2 and if k < 1 then

3− √
5

2 < k < 1.
πα = 0.314139 if α = 0.10

k λ2(k) λ1(k) tan−1 λ2(k) − tan−1 λ1(k)
0.3819 −0.618 −0.618 0
0.50 0 −2 1.1071
0.60 0.1583 −3.5183 1.4211541
0.80 0.3589 −8.3589 1.7963
0.99 0.4937 −198.4937 2.0244
1.50 5.2361 0.7639 0.7297
2 3 1 0.4636
2.2 2.5598 1.1069 0.3623
2.3 2.37 1.1684 0.3086
2.29 2.3885 1.1619 0.31415

k = 2.29
UMP test

φ(X) =
{
1 ; 1.1619 < X < 2.3885
0 ; otherwise

A program is written for the function λ(x) in R.
Assume f (k) = tan−1 λ2(k) − tan−1 λ1(k). If k = 2.29, then f (k) = 0.31
see Fig. 7.12. Note: One can use the following formula for (7.4.5) and (7.4.6)

tan−1(A) − tan−1(B) = tan−1 A − B

1 + AB
, if A and B are positive.

Fig. 7.12 Graph of f (k)
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# TO FIND VALUES OF LAMBDA1 AND LAMBDA2.

# To define function lambda1

lambda1 = function(k)

{

k1 = 2*k/(1-k); k2 = (1-2*k)/(1-k);

l1 = (-k1-sqrt(abs((k1ˆ2)-(4*k2))))/2;

return(l1)

}

# To define function lambda2

lambda2 = function(k)

{

k1 = 2*k/(1-k); k2 = (1-2*k)/(1-k);

l2 = (-k1+sqrt(abs((k1ˆ2)-(4*k2))))/2;

return(l2)

}

# To define function h(k)

fun <- function(k)

{ f1 <- atan(lambda2(k))-atan(lambda1(k)); return(f1) }

# To obtain values and to plot h(k)

# Given values of k.

k <- c(0.3819,0.50,0.60,0.80,0.99,1.50,2,2.2,2.3,2.29,3.0,3.5)

result <- data.frame(lambda1(k),lambda2(k),fun(k))

plot(k,fun(k),type="l"); points(2.2899,fun(2.2899),pch=19)

axis(1,2.29); axis(2,0.31)

# Result

result

# To solve h(k)

# Defining h(k)

f =function(k)

{

alpha <- 0.10; k1 = 2*k/(1-k); k2 = (1-2*k)/(1-k);

l1 = (-k1-sqrt(abs((k1ˆ2)-(4*k2))))/2; l2 = (-k1+sqrt(abs((k1ˆ2)-(4*k2))))/2;

fun <- atan(lambda2(k))-atan(lambda1(k))-pi*alpha;

return(fun)

}

# To solve h(k)

y <- uniroot(f,c(1.01,2.98)) print(y$root)

Example 7.4.6 Let X1,X2, . . . ,Xn be iid rvs N(μ,σ2), where both μ and σ2 are
unknown. We wish to test H0 : μ = μ0, σ2 = σ2

0 against H1 : μ = μ1 > μ0,
σ2 = σ2

0,

λ(X) =
(

1
σ0

√
2π

)n
exp

[
− 1

2σ2
0

∑n
i=1(xi − μ1)

2
]

(
1

σ0
√
2π

)n
exp

[
− 1

2σ2
0

∑n
i=1(xi − μ0)2

]

= exp

[
1

2σ2
0

{
n∑

i=1

(xi − μ0)
2 −

n∑

i=1

(xi − μ1)
2

}]

= exp

[
1

2σ2
0

{

2
n∑

i=1

xi(μ1 − μ0) + n(μ2
0 − μ2

1)

}]
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If μ1 > μ0 ⇒ λ(x) > k if and only if
∑n

i=1 xi > k.
The distribution of

∑
Xi is N(nμ, nσ2).

Now, k is determined such that

α = PH0

[
n∑

i=1

xi > k

]

= PH0

[

z >
k − nμ0

σ0
√
n

]

,

where

z =
∑n

i=1 xi − nμ0

σ0
√
n

∼ N(0, 1)

Zα = k − nμ0

σ0
√
n

⇒ k = σ0
√
nZα + nμ0

The MP test is

φ(X) =
{
1 ; ∑Xi > σ0

√
nZα + nμ0

0 ; otherwise

Similarly, for testing H0 : μ = μ0,σ
2 = σ2

0 against H1 : μ = μ1 < μ0,σ
2 = σ2

0.
The MP test is

φ(X) =
{
1 ; ∑Xi < σ0

√
nZα + nμ0

0 ; otherwise

Note: 1. If σ = σ0, i.e., σ is known, the test determined is independent of μ1 as long
as μ1 > μ0 and it follows that the test is UMP against H1 : μ = μ1 > μ0. Similarly
the test is UMP for H1 : μ = μ1 < μ0. Further, we can say that the test does not
depend on H1.

2. If σ is not known and H0 is composite hypothesis. Then the test determined
above depends on σ2. Hence the above test will not be an MP test.

Example 7.4.7 Let X1,X2, . . . ,Xn be iid random sample of size n from exponential
distribution with mean θ. Find MP test for testingH0 : θ = θ0 againstH1 : θ = θ1 <

θ0

λ(x) = f1(x1, x2, . . . , xn|θ1)
f0(x1, x2, . . . , xn|θ0)

=
(

θ0

θ1

)n

exp

[
n∑

i=1

xi

(
1

θ0
− 1

θ1

)]
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By NP lemma, λ(x) > k and λ(x) is nonincreasing in t, where t = ∑n
i=1 xi because

θ1 < θ0.
Hence λ(x) > k ⇔ t < k
The MP test is given by

φ(X) =
{
1 ; t < k
0 ; otherwise

Under H0, T = t has gamma distribution with parameters n and 1
θ0

f (t) = e− t
θ0 tn−1

θ0
n�(n)

; t > 0, θ0 > 0

Let V = 2t
θ0

then V ∼ χ2
2n

EH0φ(x) = α ⇒ P[t < k] = α

⇒ P

[
2t

θ0
<

2k

θ0

]

= α

⇒ P

[

V <
2k

θ0

]

= α

⇒ χ2
2n,1−α = 2k

θ0
⇒ k = θ0

2
χ2
2n,1−α

The MP test is

φ(X) =
{
1 ; T < θ0

2 χ2
2n,1−α

0 ; otherwise

Note: 1. This test is UMP because it does not depend on H1.
2. Similarly, one can find a UMP test when H1 : θ = θ1 > θ0.

Example 7.4.8 Let X1,X2, . . . ,Xn be iid random sample of size n from N(0,σ2).
Find MP test for testing H0 : σ = σ0 against H1 : σ = σ1 > σ0

According to earlier examples, the MP test is given as

φ(X) =
{
1 ; ∑ x2i > k
0 ; otherwise
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Note that, under H0,
∑

x2i
σ2
0

∼ χ2
n

EH0φ(x) = α ⇒ P

[∑
x2i

σ2
0

>
k

σ2
0

]

= α

k

σ2
0

= χ2
n,α ⇒ k = σ2

0χ
2
n,α

Hence, the UMP test is given by

φ(X) =
{
1 ; ∑ x2i > σ2

0χ
2
n,α

0 ; otherwise

Example 7.4.9 Let X be a rv with pdf f (x|θ)

f (x|θ) =
{

2(θ − x)
θ2

; 0 < x < θ
0 ; otherwise

Obtain a MP test of size α to test

(i) H0 : θ = θ0 against H1 : θ = θ1 > θ0
(ii) H0 : θ = θ0 against H1 : θ = θ1 < θ0

(i) There are three cases:
(a) 0 < x < θ0 (b) θ0 < x < θ1 (c) θ1 < x < ∞

λ(x) =

⎧
⎪⎨

⎪⎩

θ20(θ1−x)
θ21(θ0−x)

; 0 < x < θ0
2θ−2

1 (θ1−x)
0 ; θ0 < x < θ1

0
0 ; θ1 < x < ∞

λ′(x) = θ20
θ21

(θ1 − θ0)

(θ0 − x)2
> 0

Hence λ(x) is nondecreasing sequence in x
Hence

λ(x) > k ⇔ x > k

Hence, MP test of size α is given as

φ(X) =
{
1 ; x > k
0 ; otherwise
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EH0φ(x) = α ⇒
θ0∫

k

2(θ0 − x)

θ20
dx = α

k − θ0

θ0
= ±√

α

k = θ0 ± θ0
√

α, 0 < α < 1

Since X lies between 0 and θ0,
i.e., 0 < x < θ0 ⇒ k < θ0
⇒ k = θ0(1 − √

α)

This test is UMP because it does not depend on H1.
Hence, UMP test of size α is given by

φ(X) =
{
1 ; x > θ0(1 − √

α)

0 ; otherwise

(ii) H0 : θ = θ0 against H1 : θ1 < θ0
There are three cases (a) 0 < x < θ1 (b) θ1 < x < θ0 (c) θ0 < x < ∞

λ(x) =

⎧
⎪⎨

⎪⎩

θ20(θ1−x)
θ21(θ0−x)

; 0 < x < θ1
0

2θ−2
0 (θ0−x)

; θ1 < x < θ0
0
0 ; θ0 < x < ∞

λ′(x) =
(

θ0

θ1

)2
(θ1 − θ0)

(θ0 − x)2
< 0,

Hence λ(x) is nonincreasing in x

λ(x) > k ⇔ x < k

EH0φ(x) = α ⇒
k∫

0

2

θ20
(θ0 − x) = α

⇒ k = θ0 ± θ0
√
1 − α

We can take the value of k = θ0(1 − √
1 − α) because k < θ0
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The UMP test is given as

φ(X) =
{
1 ; x < θ0(1 − √

1 − α)

0 ; otherwise

Example 7.4.10 Obtain the MP test of size α to test H0 : X ∼ f0(x), where

f0(x) =
{
1 ; 0 < x < 1
0 ; otherwise

against H1 : X ∼ f1(x) where

f1(x) =
{
4x ; 0 < x < 1

2
4 − 4x ; 1

2 ≤ x < 1

λ(x) = f1(x)

f0(x)
=
{
4x ; 0 < x < 1

2
4 − 4x ; 1

2 ≤ x < 1

λ′(x) =
{
4 ; 0 < x < 1

2 ⇒ λ(x) is ↑ in(0, 1
2 )−4 ; 1

2 ≤ x < 1 ⇒ λ(x) is ↓ in( 12 , 1)

λ

(
3

4

)

= λ

(
1

4

)

= 1,λ

(
1

2

)

= 2

λ(x) is symmetric about x = 1
2

λ(x) > k ⇔ k1 < x < k2

⇔ 1

2
− k < x <

1

2
+ k

The MP test of size α is given as

φ(x) =
{
1 ; 1

2 − k < x < 1
2 + k

0 ; otherwise

EH0φ(x) = α ⇒
1
2 +k∫

1
2 −k

dx = α ⇒ k = α

2
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φ(x) =
{
1 ; 1− α

2 < x < 1+α
2

0 ; otherwise

Example 7.4.11 Let X be a rv with pdf f (x|θ),

f (x|θ) =
{
2θx + 2(1 − θ)(1 − x) ; 0 < x < 1, θ ∈ [0, 1]
0 ; otherwise

Find the MP test of size α to test H0 : θ = θ0 against H1 : θ = θ1 > θ0

λ(x) = 2θ1x + 2(1 − θ1)(1 − x)

2θ0x + 2(1 − θ0)(1 − x)

= x[2θ1 − 1] + (1 − θ1)

x[2θ0 − 1] + (1 − θ0)

λ′(x) = θ1 − θ0

[x(2θ0 − 1) + (1 − θ0)]2 (since θ1 > θ0)

⇒ λ(x) is nondecreasing function in x.
⇒ λ(x) > k ⇔ x > k
The MP test is

φ(X) =
{
1 ; X > k
0 ; otherwise

EH0φ(x) = α ⇒
1∫

k

[x(2θ0 − 1) + (1 − θ0)]dx

= (2θ0 − 1)(1 − k2) + 2(1 − θ0)(1 − k)

Now

= (2θ0 − 1)(1 − k2) + 2(1 − θ0)(1 − k) = α

k2(2θ0 − 1) + 2(1 − θ0)k + α − 1 = 0
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k =
−(1 − θ0) +

√
θ20 − α(2θ0 − 1)

(2θ0 − 1)

The UMP test of size α is given as

φ(X) =
{

1 ; X >
−(1− θ0)+

√
θ20 − α(2θ0−1)

(2θ0 − 1)
0 ; otherwise

This test is UMP because it does not depend on H1.

Example 7.4.12 LetX be a rvwithβ(1, b). Find aMP test of sizeα to testH0 : b = 1
against H1 : b = b1 > 1

f (x) = (1 − x)b−1

β(1, b)
; 0 < x < 1

λ(x) = b1(1 − x)b1−1

Fig. 7.13 Graph of λ(x)
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λ′(x) = b1(b1 − 1)(1 − x)b1−2(−1) < 0

λ(x) is nonincreasing function in x then λ(x) > k ⇔ x < k. The MP test of size α
is given as

φ(X) =
{
1 ; X < k
0 ; otherwise

EH0φ(x) = α ⇒ k = α

Hence our UMP test of size α is given as

φ(X) =
{
1 ; X < α
0 ; otherwise

This test is UMP because it does not depend on H1.
See Graph of λ(x) for β(1, b1), (Fig. 7.13).

Example 7.4.13 Let P0,P1,P2 be the probability distributions assigning to the inte-
gers 1, 2, 3, 4, 5 and 6 the following probabilities

1 2 3 4 5 6
P0 0.03 0.02 0.02 0.01 0 0.92
P1 0.06 0.05 0.08 0.02 0.01 0.78
P2 0.09 0.05 0.12 0 0.02 0.72
P1
P0

2 2.5 4 2 ∞ 0.85
P2
P0

3 2.5 6 0 ∞ 0.78

Determine whether there exists a α-level test of H0 : P = P0 which is UMP
against alternative P1 and P2 when

(i) α = 0.01 (ii) α = 0.05 (iii) α = 0.07
(A) H0 : P = P0 against H1 : P = P1

P1

P0
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞ ; X = 5
4 ; X = 3
2.5 ; X = 2
2 ; X = 1 or 4
0.85 ; X = 6

(i) α = 0.01
Define

φ1(X) =
⎧
⎨

⎩

1 ; X = 5
γ ; X = 3
0 ; otherwise
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EP0φ1(x) = P(x = 5) + γP(x = 3) = 0.01

⇒ 0 + γ(0.02) = 0.01 ⇒ γ = 0.5

The MP test is

φ1(X) =
⎧
⎨

⎩

1 ; X = 5
0.5 ; X = 3
0 ; otherwise

Power = EP1φ1(x) = 0.05
(ii) α = 0.05
Define a MP test

φ2(X) =
{
1 ; X = 5, 3, 2 and 4
0 ; otherwise

Power = EP1φ2(x) = 0.16
Define one more MP test of the same size

φ3(X) =
⎧
⎨

⎩

1 ; X = 5, 3, 2
γ ; X = 1
0 ; otherwise

EP0φ3(x) = 0.02 + 0.02 + γ(0.03) = 0.05 ⇒ γ = 1

3

Hence our test is

φ3(X) =
⎧
⎨

⎩

1 ; X = 5, 3, 2
1
3 ; X = 1
0 ; otherwise

Power = EP1φ3(x) = 0.16
Note: In this case, we have two MP tests, i.e., φ2 and φ3.
(iii) α = 0.07
Define a MP test

φ4(X) =
{
1 ; X = 5, 3, 2, 1
0 ; otherwise

One can easily see that EP0φ4(x) = 0.07
Power = EP1φ(x) = 0.20
Define one more randomized test

φ5(X) =
⎧
⎨

⎩

1 ; X = 5, 3, 2
γ ; X = 1, 4
0 ; otherwise
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EP0φ(x) = 0.07 ⇒ γ = 3

4

The MP test φ5(X) is given as

φ5(X) =
⎧
⎨

⎩

1 ; X = 5, 3, 2
0.75 ; X = 1, 4
0 ; otherwise

Power = EP1φ5(x) = 0.20
Define one more MP test

φ6(X) =
⎧
⎨

⎩

1 ; X = 5, 3, 2, 4
γ ; X = 1
0 ; otherwise

EP0φ6(x) = 0.07 ⇒ γ = 2

3

The MP test φ6(X) is given as

φ5(X) =
⎧
⎨

⎩

1 ; X = 5, 3, 2, 4
2
3 ; X = 1
0 ; otherwise

Power = EP1φ6(x) = 0.20
One should note that φ4,φ5 and φ6 are MP tests of size 0.07.
(B) To test H0 : P = P0 against H1 : P = P2

P2

P0
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∞ ; X = 5
6 ; X = 3
3 ; X = 1
2.5 ; X = 2
0.78 ; X = 6
0 ; X = 4

(i) α = 0.01
Define

φ7(X) =
⎧
⎨

⎩

1 ; X = 5
γ ; X = 3
0 ; otherwise

EP0φ7(x) = P(x = 5) + γP(x = 3) = 0.01 ⇒ γ = 0.5
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The MP test of size 0.01 is given as

φ7(X) =
⎧
⎨

⎩

1 ; X = 5
0.5 ; X = 3
0 ; otherwise

Power = EH1φ7(x) = 0.08
(ii) α = 0.05
The MP test of is given as

φ8(X) =
{
1 ; X = 5, 3, 1
0 ; otherwise

Power = EH1φ8(x) = 0.23
(iii) α = 0.07
The MP test of is given as

φ9(X) =
{
1 ; X = 5, 3, 1, 2
0 ; otherwise

Power = EP2φ9(x) = 0.28
(C) To find UMP for H0 : P = P0 against H1 : P = P1 or P2

max

{
P1

P0
,
P2

P0

}

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∞ ; X = 5
max(4, 6) ; X = 3
max(2, 3) ; X = 1
max(2.5, 2.5) ; X = 2
max(2, 0) ; X = 4
max(0.85, 0.78) ; X = 6

max

{
P1

P0
,
P2

P0

}

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∞ ; X = 5
6 ; X = 3
3 ; X = 1
2.5 ; X = 2
2 ; X = 4
0.85 ; X = 6

(i) α = 0.01
To find UMP test

φ10(X) =
⎧
⎨

⎩

1 ; X = 5
γ ; X = 3
0 ; otherwise
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Eφ10(x) = 0.01 ⇒ γ = 1

2

The UMP test becomes

φ10(X) =
⎧
⎨

⎩

1 ; X = 5
1
2 ; X = 3
0 ; otherwise

Power = EP1φ10(x) = 0.05 and EP2φ10(x) = 0.08
Power of φ1 and φ10 is same for α = 0.01 under P1.
Similarly Power of φ7 and φ10 is same for α = 0.01 under P2.
Further, one can get class of UMP test such as φ∗

1(X) = aφ1 + (1 − a)φ10 and
φ∗
2(X) = bφ7 + (1 − b)φ10, 0 ≤ a, b ≤ 1,
(ii) α = 0.05
The MP test is given as

φ11(X) =
{
1 ; X = 5, 3, 1
0 ; otherwise

Since EP0φ11(x) = 0.05
Power (P1) = EP1φ11(x) = 0.01 + 0.08 + 0.06 = 0.15
Power (P2) = EP2φ11(x) = 0.02 + 0.12 + 0.09 = 0.23
Define one more MP test as

φ12(X) =
⎧
⎨

⎩

1 ; X = 5, 3, 2
γ ; X = 1
0 ; otherwise

EP0φ12(x) = 0.05 ⇒ γ = 1

3

The MP test becomes

φ12(X) =
⎧
⎨

⎩

1 ; X = 5, 3, 2
1
3 ; X = 1
0 ; otherwise

Power (P1) = EP1φ12(x) = (0.01 + 0.08 + 0.05) + 1
3 (0.06) = 0.14 + 0.02 = 0.16

Power (P2) = EP2φ12(x) = (0.02+0.12+0.05)+ 1
3 (0.09) = 0.19+0.03 = 0.22

The test depends on P1 and P2

Hence UMP test does not exist for P = P1 or P2.
(iii) α = 0.07
The MP test is given as

φ13(X) =
{
1 ; X = 5, 3, 2, 1
0 ; otherwise
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Since EP0φ13(x) = 0.07
Power (P1) = EP1φ13(x) = 0.20
Power (P2) = EP2φ13(x) = 0.28
Power of φ13,φ4,φ5 and φ6 is same for P = P1

Similarly Power of φ13 and φ9 is same under P = P2

Hence the MP test φ13 does not depend on H1.
Therefore φ13 is UMP test.

Example 7.4.14 Let the distribution of X be given by
X: 0 1 2 3
P(X): θ 2θ 0.9 − 2θ 0.1 − θ
where 0 < θ < 1.
For testing H0 : θ = 0.05 against H1 : θ > 0.05 at α = 0.05, determine which of

the following tests (if any) is UMP?

(i) φ(0) = 1,φ(1) = φ(2) = φ(3) = 0
(ii) φ(1) = 0.5,φ(0) = φ(2) = φ(3) = 0
(iii) φ(3) = 1,φ(0) = φ(1) = φ(2) = 0

Now, H0 : θ = 0.05 against H1 : θ > 0.05

X 0 1 2 3
P0 0.05 0.1 0.8 0.05
P1 θ1 2θ1 0.9 − 2θ1 0.1 − θ1
P1
P0

20θ1 20θ1 1.125 − 5
2 θ1 2 − 20θ1

Since θ < 0.10 ⇒ 20θ < 2

max

(
P1

P0

)

=

⎧
⎪⎪⎨

⎪⎪⎩

2 ; X = 0
2 ; X = 1
0.875 ; X = 2
0 ; X = 3

The MP test is given by
(i)

φ1(X) =
{
1 ; X = 0
0 ; otherwise

We can easily see that Eφ1(x) = 0.05
Power = EH1φ1(X) = θ1
(ii)

φ2(X) =
{
0.5 ; X = 1
0 ; otherwise

Eφ2(X) = (0.5)(0.1) = 0.05
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Power = EH1φ2(X) = (0.5)(2θ1) = θ1
(iii)

φ3(X) =
{
1 ; X = 3
0 ; otherwise

EH0φ3(x) = 0.05
Power = EH1φ3(x) = 0.1 − θ1
We can conclude that φ1 and φ2 are UMP test.

Example 7.4.15 Let X1,X2, . . . ,Xn are iid rvs from ∪(0, θ). Find the UMP test for
testing

(A) H0 : θ = θ0 against H1 : θ > θ0
(B) H0 : θ = θ0 against H1 : θ < θ0
(C) H0 : θ = θ0 against H1 : θ �= θ0

(A) H0 : θ = θ0 against H1 : θ > θ0

f (x1, x2, . . . , xn|θ) = θ−nI(θ − x(n))

where

I(θ − x(n)) =
{
1 ; X(n) < θ
0 ; otherwise

There are three cases
(i) 0 < X(n) < θ0 (ii) θ0 < X(n) < θ1 (iii) θ1 < X(n) < ∞

λ(x) =

⎧
⎪⎨

⎪⎩

( θ0
θ1

)n
I(θ1−X(n))

I(θ0−X(n))
; 0 < X(n) < θ0

θ−n
1 I(θ1−X(n))

0 ; θ0 ≤ X(n) < θ1
0
0 ; X(n) ≥ θ1

λ(x) is nondecreasing in X(n).
Hence λ(x) > k ⇔ X(n) > k.

fX(n) (x) =
{

nxn−1

θn
; 0 < x < θ

0 ; otherwise

The MP test is defined as
(a) Define φ1 as

φ1(x) =
{
1 ; X(n) > k
α ; otherwise

EH0φ1(x) = α ⇒ P[X(n) > k] + αP[X(n) ≤ k] = α

If k > θ0 ⇒ PH0 [X(n) > k] = 0 and k ≤ θ0 ⇒ PH0 [X(n) ≤ θ0] = 1
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We can write φ1 as

φ1(x) =
{
1 ; X(n) > θ0
α ; X(n) ≤ θ0

Hence,

Eφ1(x) = 1 × P[X(n) > θ0] + αP[X(n) ≤ θ0] = α

The test φ1(x) is UMP as it does not depend on H1.
(b) Define φ2 as

φ2(X) =
{
1 ; X(n) > k
0 ; X(n) ≤ k

P[X(n) > k] = α ⇒
θ0∫

k

n
xn−1

θn0
dx = α

⇒ 1 − kn

θn0
= α

k = θ0(1 − α)
1
n

This test does not depend on H1. Hence φ2 is a UMP test.
We can write φ2 as

φ2(X) =
{
1 ; X(n) > θ0(1 − α)

1
n

0 ; X(n) ≤ θ0(1 − α)
1
n

We can get class of UMP test by the linear combination of φ1 and φ2.
Hence φ∗

a = aφ1 + (1 − a)φ2 is also a class of UMP tests, where a ∈ [0, 1].
Power of φ1

EH1φ1(x) =
θ1∫

θ0

n
xn−1

θn
dx + α

θ0∫

0

n
xn−1

θn1
dx

= 1 −
(

θ0

θ1

)n

(1 − α)
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Power of φ2

EH1φ2(x) =
θ1∫

θ0(1−α)
1
n

n
xn−1

θn1
dx = θn1 − θn0(1 − α)

1
n

θn1

= 1 −
(

θ0

θ1

)n

(1 − α)

One should note that φ∗
a also has the same power.

(B) H0 : θ = θ0 against H1 : θ = θ1 < θ0
There are three cases
(i) 0 < X(n) < θ1 (ii) θ1 < X(n) < θ0 (iii) θ0 < X(n) < ∞

λ(x) =

⎧
⎪⎨

⎪⎩

( θ0
θ1

)n ; 0 < X(n) < θ1
0

θ−n
1 I(X(n)−θ0 )

; θ1 ≤ X(n) < θ0
0
0 ; θ0 ≤ X(n) < ∞

λ(x) is nonincreasing in X(n).
Hence λ(x) > k ⇔ X(n) < k.
The MP test is given as

φ3(X) =
{
1 ; X(n) < k
0 ; X(n) ≥ k

When k > θ0 ⇒ P[X(n) < k] = 1
If k < θ0 then

Eφ3(x) = α ⇒ PH0 [X(n) < k] =
k∫

0

nxn−1

θn0
dx ⇒ k = θ0(α)

1
n

This test does not depend on H1; it is UMP.
The UMP test is given as

φ3(X) =
{
1 ; X(n) < θ0(α)

1
n

0 ; X(n) ≥ θ0(α)
1
n

Power of φ3(x)

EH1φ3(x) =
θ0(α)

1
n∫

0

nxn−1

θn0
dx =

(
θ0

θ1

)n

α
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(C) H0 : θ = θ0 against H1 : θ �= θ0
We can write one more UMP test as

φ4(x) =
{
1 ; X(n) < θ0(α)

1
n or X(n) > θ0

0 ; X(n) > θ0(α)
1
n

We will verify the size of φ4(X)

EH1φ4(X) = P[X(n) < θ0(α)
1
n ] + P[X(n) > θ0]

=
θ0(α)

1
n∫

0

nxn−1

θn0
dx + 0 = α

Power of φ4(X) if θ1 < θ0

EH1φ4(x) = P[X(n) < θ0(α)
1
n ] + P[X(n) > θ0]

=
θ0(α)

1
n∫

0

nxn−1

θn1
dx =

(
θ0

θ1

)n

α

Power of φ4(X) if θ1 > θ0

EH1φ4(x) = P[X(n) < θ0(α)
1
n ] + PH1 [X(n) > θ0]

=
θ0(α)

1
n∫

0

nxn−1

θn1
dx +

θ1∫

θ0

nxn−1

θn1
dx

= 1 −
(

θ0

θ1

)n

(1 − α)

Power of φ1, φ2 and φ4 is same for θ1 > θ0 and Power of φ3 and φ4 is same for
θ1 < θ0.

Example 7.4.16 Let X1,X2, . . . ,Xn be a random sample of size n from the pmf

P[X = x] = 1

N
; x = 1, 2, . . . ,N . (N ≥ 1)
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Find the UMP test for testing

(A) H0 : N = N0 against H0 : N > N0

(B) H0 : N = N0 against H0 : N < N0

(C) H0 : N = N0 against H0 : N �= N0

We will find a test for (A)
(A) H0 : N = N0 against H0 : N > N0

f (x1, x2, . . . , xn|N) = N−nI(N − x(n))

where

I(N − x(n)) =
{
1 ; X(n) < N
0 ; otherwise

There are three cases
(a) 0 < X(n) ≤ N0 (b) N0 < X(n) ≤ N1 (c) N1 < X(n) < ∞

λ(x) =

⎧
⎪⎨

⎪⎩

(N0
N1

)n ; X(n) ≤ N0
N−n
1 I(N1−X(n))

0 ; N0 < X(n) ≤ N1
0
0 ; X(n) > N1

λ(x) is nondecreasing in X(n).
Hence λ(x) > k ⇔ X(n) > k.
Let X(n) = Y

P[Y = y] =
( y

N

)n −
(
y − 1

N

)n

; y = 1, 2, . . . ,N

Define a MP test
(i)

φ1(X) =
{
1 ; X(n) > k
0 ; otherwise

To find k such that EH0φ(X) = α

⇒ PH0 [X(n) > k] = α (7.4.7)

Note that if k > N0 ⇒ P[X(n) > k] = 0 and if k ≤ N0 ⇒ P[X(n) ≤ N0] = 1
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From (7.4.7), under H0,

P[X(n) > k] = P[Y > k] =
N0∑

y=k+1

(
y

N0

)n

−
(
y − 1

N0

)n

= α

=
N0∑

y=k+1

[
yn − (y − 1)n

] = αNn
0

⇒ (k + 1)n − kn + (k + 2)n − (k + 1)n + · · · + Nn
0 − (N0 − 1)n = αNn

0

⇒ Nn
0 − kn = αNn

0

⇒ k = N0(1 − α)
1
n

This test does not depend on H1. Hence it is a UMP test.
The UMP test φ1 is given as

φ1(X) =
{
1 ; X(n) > N0(1 − α)

1
n

0 ; otherwise

(ii) Define one more MP test as

φ2(X) =
{
1 ; X(n) > N0

α ; X(n) ≤ N0

EH0φ2(X) = P[X(n) > N0] + αP[X(n) ≤ N0] = 0 + α = α

Power of φ1(X) = EH1φ1(X)

=
N1∑

y=N0(1−α)
1
n +1

[(
y

N1

)n

−
(
y − 1

N1

)n]

Let N ′
1 = N0(1 − α)

1
n + 1

=
N1∑

y=N ′
1

[(
y

N1

)n

−
(
y − 1

N1

)n]

= 1

Nn
1

[
Nn
1 − (N ′n

1 − 1)
] = 1

Nn
1

[
Nn
1 − Nn

0 (1 − α)
] = 1 −

(
N0

N1

)n

(1 − α)
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Power of φ2(X)

EH1φ2(X) =
N1∑

y=N0+1

[(
y

N1

)n

−
(
y − 1

N1

)n]

+ α

N0∑

y=1

[(
y

N1

)n

−
(
y − 1

N1

)n]

= 1

Nn
1

[
Nn
1 − Nn

0

]+ α

Nn
1

Nn
0

= 1 −
(
N0

N1

)n

(1 − α)

(B) H0 : N = N0 against H1 : N < N0

There are three cases
(i) 0 < X(n) ≤ N1 (ii) N1 < X(n) ≤ N0 (iii) N0 < X(n) < ∞.

λ(x) =

⎧
⎪⎨

⎪⎩

(N0
N1

)n ; 0 < X(n) ≤ N1
0

N−n
0 I(X(n)−N0)

; N1 < X(n) ≤ N0
0
0 ; N0 < X(n) < ∞

λ(x) is nonincreasing in X(n).
Then, λ(x) > k ⇔ X(n) < k.
The MP test is given as

φ3(X) =
{
1 ; X(n) ≤ k
0 ; otherwise

EH0φ3(X) = α =
k∑

y=1

[(
y

N0

)n

−
(
y − 1

N0

)n]

= kn

Nn
0

⇒ k = N0α
1
n

This test does not depend on H1. Hence it is a UMP test.
The UMP test φ3 is written as

φ3(X) =
{
1 ; X(n) ≤ N0α

1
n

0 ; otherwise

Power of φ3(X) = EH1φ3(X), let N0α
1
n = N ′

0

=
N ′
0∑

y=1

[(
y

N1

)n

−
(
y − 1

N1

)n]

=
(
N0

N1

)n

α
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(C) H0 : N = N0 against H0 : N �= N0

We can write one more UMP test as

φ4(X) =
{
1 ; X(n) ≤ N0α

1
n or X(n) > N0

0 ; otherwise

EH0φ4(X) = P[X(n) ≤ N0α
1
n ] + P[X(n) > N0]

=
N ′
0∑

y=1

[(
y

N0

)n

−
(
y − 1

N0

)n]

+ 0 =
(
N0

N0

)n

α = α,

where N ′
0 = N0α

1
n .

Power of φ4(X) if N1 < N0

EH1φ4(X) = P[X(n) ≤ N0α
1
n ] + P[X(n) > N0]

=
N ′
0∑

y=1

[(
y

N1

)n

−
(
y − 1

N1

)n]

+ 0 =
(
N0

N1

)n

α

Power of φ4(X) if N1 > N0

EH1φ(X) =
N1∑

y=N0+1

[(
y

N1

)n

−
(
y − 1

N1

)n]

+
N ′
0∑

y=1

[(
y

N1

)n

−
(
y − 1

N1

)n]

= Nn
1 − Nn

0

Nn
1

+
(
N0

N1

)n

α

= 1 −
(
N0

N1

)n

(1 − α)

Power of φ1, φ2 and φ4 is same for N1 > N0 and Power of φ3 and φ4 is same for
N1 < N0.

Example 7.4.17 Let X be a rv under H0 against H1 as follows:
H0 : X ∼ f0(x), where

f0(x) = 1√
2π

exp

[

−x2

2

]

; − ∞ < x < ∞
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against H1 : X ∼ f1(x), where

f1(x) = 1

2
e−|x| ; − ∞ < x < ∞

Test H0 against H1 based on a single observation.

λ(x) = f1(x)

f0(x)
= 2−1 exp−|x|

(2π)− 1
2 exp

[
− x2

2

]

By NP lemma, λ(x) > k

⇒ x2

2
− |x| > k

⇒ [|x| − 1]2 > k

⇒ |x| > k + 1 or |x| < 1 − k

Hence we define a MP test as follows:

φ(X) =
{
1 ; |x| > k + 1 or |x| < 1 − k
0 ; otherwise

Eφ(X) = α

⇒ P[|x| > 1 + k] + P[|x| < 1 − k] = α

⇒ 1 − P[|x| > 1 + k] − P[|x| < 1 − k] = 1 − α

⇒ P[|x| ≤ k + 1] − P[|x| < 1 − k] = 1 − α

⇒
1+k∫

1−k

2e− x2

2√
2π

= 1 − α

⇒
1+k∫

1−k

e− x2

2√
2π

= 1 − α

2
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⇒ �(1 + k) − �(1 − k) = 1 − α

2

Given α, k has to be found out by trial and error.
To calculate value of k we can use following R progran.

# To solve the equation phi(1+k)-phi(1-k) = (1-alpha)/2

# Defining function.

f <- function(k)

{

alpha <- 0.05;

l = pnorm(1+k,0,1)-pnorm(1-k,0,1)-((1-alpha)/2);

return(l)

}

# To solve function using uniroot.

x = uniroot(f,c(0,5))

# OUTPUT

print(x$root)

# To calculate manually

k <- c(seq(from = 0, to = 0.9, by = 0.1),0.9951,seq(from = 1, to = 1.5, by = 0.1))

phi1 <- pnorm(1+k,0,1); phi2 <- pnorm(1-k,0,1);

phi <- phi1-phi2

output <- data.frame(k,phi1,phi2,phi)

alpha <- 0.05; al <- (1-alpha)/2;

a <- min(which(phi>al))

print(c("function has value greater than (1-alpha)/2 at k=",k[a]))

OUTPUT

Using uniroot function in R

0.995046

Calculating manually

k phi1 phi2 phi

1 0.0000 0.8413447 0.8413447 0.00000000

2 0.1000 0.8643339 0.8159399 0.04839406

3 0.2000 0.8849303 0.7881446 0.09678573

4 0.3000 0.9031995 0.7580363 0.14516317

5 0.4000 0.9192433 0.7257469 0.19349646

6 0.5000 0.9331928 0.6914625 0.24173034

7 0.6000 0.9452007 0.6554217 0.28977897

8 0.7000 0.9554345 0.6179114 0.33752312

9 0.8000 0.9640697 0.5792597 0.38480997

10 0.9000 0.9712834 0.5398278 0.43145560

11 0.9951 0.9769840 0.5019548 0.47502920

12 1.0000 0.9772499 0.5000000 0.47724987

13 1.1000 0.9821356 0.4601722 0.52196342

"function has value greater than (1-alpha)/2 at k=" 0.9951.

Example 7.4.18 Let X1,X2, . . . ,Xn are iid rvs from f (x|θ),

f (x|θ) =
{

θ
x2 ; 0 < θ ≤ x
0 ; otherwise

Find the MP test of size α for testing

(A) H0 : θ = θ0 against H1 : θ = θ1 > θ0
(B) H0 : θ = θ0 against H1 : θ = θ1 < θ0
(C) H0 : θ = θ0 against H1 : θ �= θ0
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(A) H0 : θ = θ0 against H1 : θ = θ1 > θ0

f (x1, x2, . . . , xn|θ) = θnI(x(1) − θ)
∏n

i=1 x
2
i

There are three cases: (i) 0 < x(1) < θ0 (ii) θ0 ≤ x(1) < θ1 (iii) θ1 ≤ x(1) < ∞

λ(x) =

⎧
⎪⎨

⎪⎩

0
0 ; 0 < x(1) < θ0

0
θ−n
0 I(x(1)−θ)(

∏n
i=1 x

2
i )

−1 ; θ0 ≤ x(1) < θ1
(

θn1
θn0

)
I(x(1)−θ1)
I(x(1)−θ0)

; θ1 ≤ x(1) < ∞

λ(x) is nondecreasing in x(1).
Hence, λ(x) > k ⇔ x(1) > k.

f (x(1)) =
{

nθn

xn+1 ; θ < x(1) < ∞
0 ; otherwise

The MP test is defined as

φ1(x) =
{
1 ; X(1) > k
0 ; otherwise

Eφ1(X) = α =
∞∫

k

nθ0
n

xn+1
dx = α

⇒ k = θ0

α
1
n

This test does not depend on H1. Hence, it is a UMP test.
The UMP test φ1 is written as

φ1(X) =
{
1 ; X(1) > θ0α

− 1
n

0 ; otherwise

Note that X(1) > θ0α
− 1

n and X(1) > θ1 ⇒ X(1) > max(θ1, θ0α− 1
n )

Power of φ1(x)

EH1φ1(x) =
∞∫

θ1

nθn1
xn+1

dx = 1
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(B) H0 : θ = θ0 against H1 : θ < θ0
There are three cases: (i) 0 < x(1) < θ1 (ii) θ1 ≤ x(1) < θ0 (iii) θ0 ≤ x(1) < ∞

λ(x) =

⎧
⎪⎨

⎪⎩

0
0 ; 0 < x(1) < θ1
θ−n
1 I(x(1)−θ1)(

∏n
i=1 x

2
i )

−1

0 ; θ1 ≤ x(1) < θ0
( θ1

θ0
)n

I(x(1)−θ1)
I(x(1)−θ0)

; θ0 ≤ x(1) < ∞

Now, λ(x) is nonincreasing in X(1).
Hence, λ(x) > k ⇔ X(1) < k.
The MP test is defined as

φ3(X) =
{
1 ; X(1) ≤ k
0 ; otherwise

EH0φ3(X) = α =
k∫

θ0

nθn0
xn+1

dx = α

⇒ k = θ0

(1 − α)
1
n

Hence, we can write the MP test as

φ3(X) =
{
1 ; X(1) < θ0(1 − α)−

1
n

0 ; otherwise

This test does not depend on H1. Hence, it is a UMP test.
(C) In this case, NP lemma cannot be used to get UMP test for testingH0 : θ = θ0

against H1 : θ �= θ0.

7.5 Families with Monotone Likelihood Ratio

If we wish to test H0 : θ ≤ θ0 against H1 : θ > θ0 then it is not possible to find UMP
test. Because the MP test of H0 : θ ≤ θ0 against H1 : θ > θ0 depends on H1, i.e., on
θ1. Here, we consider a special case of distributions that is large enough to include
the one parameter exponential family, for which a UMP test of one-sided hypothesis
exists.

When the alternative hypothesis is composite, i.e., H1 : θ ∈ �1, then the power
can be different for different alternatives. For each particular alternative θ1, a test
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is MP test of size α for an alternative θ1 if the test is most powerful for the simple
alternative H1 : θ = θ1.

If a particular test functionφ∗(x) is theMP test of sizeα for all alternatives θ ∈ �1,
then we say that φ∗(x) is a uniformly most powerful (UMP) test of size α.

Definition 7.5.1 Let {fθ : θ ∈ �} be a family of pdf(pmf). We say that {fθ} has
a monotone likelihood ratio (MLR) in statistics T(x) if for θ2 > θ1, whenever fθ1
and fθ2 are distinct, i.e., f (x|θ1) �= f (x|θ2) ∀ x, the ratio f (x|θ2)

f (x|θ1) is a non decreasing
function of T (x) for the set of values of x for which at least one of f (x|θ1) and f (x|θ2)
is greater than zero.

Definition 7.5.2 A class of tests φα is defined as

φα = {φ ∈ D| sup
θ∈�0

Eθφ(x) ≤ α}

Theorem 7.5.1 The one-parameter exponential family

f (x|θ) = exp{Q(θ)T(x) + S(x) + D(θ)}

where Q(θ) is nondecreasing, has MLR in T(x).

Proof Let θ2 > θ1

λ(x) = f (x|θ2)
f (x|θ1)

λ(x) = exp{Q(θ2)T(x) + S(x) + D(θ2)}
exp{Q(θ1)T(x) + S(x) + D(θ1)}

= exp[D(θ2) − D(θ1)] exp[T(x){Q(θ2) − Q(θ1)}]

Differentiate λ(x) with respect to x,

λ′(x) = [Q(θ2) − Q(θ1)]T ′(x) exp[{Q(θ2) − Q(θ1)}T(x)] exp[D(θ2) − D(θ1)],

where T ′(x) is derivative of T(x).

Given that Q(θ) is nondecreasing

⇒ [Q(θ2) − Q(θ1)] > 0 for θ2 > θ1

⇒ λ′(x) > 0

Hence λ(x) is nondecreasing and f (x|θ) has MLR property in T(x).
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Theorem 7.5.2 Let X1,X2, . . . ,Xn be iid rvs from one-parameter exponential fam-
ily. Then a UMP test exist for testing H0 : θ = θ0 against H1 : θ = θ1 > θ0.

Proof By Theorem 1, λ(x) is nondecreasing for θ1 > θ0. It has MLR property in
T(x).

λ(x) = exp

[
n∑

i=1

T(xi){Q(θ1) − Q(θ0)} + n{D(θ1) − D(θ0)}
]

By NP lemma, λ(x) > k ⇔ ∑n
i=1 T(xi) > k.

The MP test is given by

φ1(x) =
⎧
⎨

⎩

1 ; ∑n
i=1 T(xi) > k

γ ; ∑n
i=1 T(xi) = k

0 ; otherwise

Since φ1 does not depend on any specific values of θ1. Hence φ1 is UMP test of
level α.

Remark: 1. If we are testing H0 : θ = θ0 against H1 : θ = θ1 < θ0, similarly we
get UMP test of size α as

φ2(x) =
⎧
⎨

⎩

1 ; ∑n
i=1 T(xi) < k

γ ; ∑n
i=1 T(xi) = k

0 ; otherwise

2. Theorem 7.5.1 includes Binomial, Poisson, normal, gamma etc.
3. One should note that ∪(0, θ), which does not belong to exponential family has an
MLR property.

Theorem 7.5.3 Let the rv X has pdf(pmf) f (x|θ), where f (x|θ) has an MLR in T(x).
Consider the one-sided testing problem, H0 : θ ≤ θ0 against H1 : θ > θ0, θ0 ∈ �,
any test of the form

φ(x) =
⎧
⎨

⎩

1 ; T(x) > t0
γ ; T(x) = t0
0 ; T(x) < t0

(7.5.1)

has nondecreasing power function and is UMP of its size α provided that α > 0.
Moreover, for every 0 ≤ α ≤ 1 and every θ0 ∈ �, there exist a t0,−∞ < t0 < ∞

and 0 ≤ γ ≤ 1, such that the test described in (7.5.1) is UMP of its size α for testing
H0 against H1.
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Proof Let θ1, θ2 ∈ �, θ1 < θ2.
Consider the testing problem H0 : θ = θ1 against H1 : θ = θ2.
By using NP lemma, MP test of size α is given as

φ(x) =
⎧
⎨

⎩

1 ; λ(x) > k
γ ; λ(x) = k
0 ; λ(x) < k

(7.5.2)

with 0 ≤ k < ∞ and EH0φ(x) = α > 0.
Next, for k = ∞, the test

φ(x) =
{
1 ; f (x|θ1) = 0
0 ; f (x|θ1) > 0

(7.5.3)

is MP of size 0.

Now f (x|θ) has MLR in T(x). It implies that λ(x) is nondecreasing function in
T(x).

Hence λ(x) > k ⇔ T(x) > k, k is chosen such that Eθ1φ(x) = α > 0. Let k = t0

φ(x) =
⎧
⎨

⎩

1 ; T(x) > t0
γ ; T(x) = t0
0 ; T(x) < t0

(7.5.4)

Now we shall show that the test given in (7.5.4) has a nondecreasing power function.
Consider a test φ∗ = α ⇒ EH0φ

∗(x) = EH1φ
∗(x) = α

Power of test (7.5.4) is at least α

⇒ EH1φ(x) = Eθ2φ(x) ≥ α = Eθ2φ
∗(x)

But α = Eθ1φ(x)

⇒ Eθ2φ(x) ≥ Eθ1φ(x)

⇒ Power function of the test φ, i.e., EH1φ(x) is nondecreasing function of θ, θ2 > θ1,
provided that its size Eθ1φ(x) > 0.

Let θ1 = θ0 and θ2 > θ0, the testing problem can be written as

H0 : θ = θ0 against H1 : θ > θ0 (7.5.5)

The corresponding class of level α tests becomes

{φ|Eθ0φ(x) ≤ α} (7.5.6)



324 7 Most Powerful Test

in which we shall find out a UMP test for testing problem given in (7.5.5). The test
in (7.5.4) is UMP of size α in the class (7.5.6) since it does not depend on H1.

Now, consider the testing problem
H0 : θ ≤ θ0 against H1 : θ > θ0.
The class of level α tests for testing this problem would be

{φ| sup
θ≤θ0

Eφ(x) = α} = {φ|EH0φ(x) ≤ α,∀θ ≤ θ0} (7.5.7)

The test φ in (7.5.1) belongs to the class given in (7.5.7) since its power function is
nondecreasing function of θ and its size α > 0. Further, class of tests in (7.5.7) is
contained in (7.5.6) because the number of restrictions in (7.5.7) is more than that
of in (7.5.6). Therefore, the UMP of size α test φ in the larger class becomes UMP
of size α test in the smaller class because it belongs to a smaller class.

Hence, providedα > 0, the test in (7.5.4) is UMP of sizeα for testingH0 : θ ≤ θ0
against H1 : θ > θ0.

From (7.5.1), we can write as

sup
θ≤θ0

Eφ(x) = α ⇒ Eθ0φ(x) = α

⇒ P[T > t0] + γP[T = t0] = α

⇒ 1 − P[T > t0] − γP[T = t0] = 1 − α

⇒ P[T ≤ t0] − γP[T = t0] = 1 − α (7.5.8)

Note thatP[T ≤ t0] is a distribution function. It is nondecreasing and right continuous
function of t0.

If P[T ≤ t0] = 1 − α then γ = 0
If γ > 0 then

P[T < t0] + (1 − γ)P[T = t0] = 1 − α

P[T < t0] ≤ 1 − α (7.5.9)

and

P[T ≤ t0] = (1 − α) + γP[T = t0]

(1 − α) < P[T ≤ t0] (7.5.10)
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From (7.5.9) and (7.5.10),

P[T < t0] ≤ (1 − α) < P[T ≤ t0]

Hence, from (7.5.8), for γ = γ0

γ0 = P[T ≤ t0] − (1 − α)

P[T = t0] ; 0 < γ0 ≤ 1

Next, consider the case α = 0.
Define the support of f (x|θ) under H0 and H1,

S0 = {x|f (x|θ0) > 0} = {x|a < x < b}

S1 = {x|f (x|θ1) > 0} = {x|c < x < d}

then a < c. Without loss of generality assume that b ≤ d. Consider a test φ of the
form as:

φ(x) =
{
1 ; T(x) > T(b)
0 ; otherwise

(7.5.11)

sup
θ≤θ0

EH0φ(x) = 0 ⇒ Eθ0φ(x) = 0

Consider any other test φ1 of size 0.
Then

Eθ0φ1(x) = 0 ⇒
∫

S0

φ1(x)f (x|θ)dx = 0

⇒ φ1(x) = 0 on S0

Next, consider the power of the test φ at any θ > θ0,

Eφ(x) =
∫

x≥b

φ(x)f (x|θ)dx ≥
∫

x≥b

φ1(x)f (x|θ)dx

=
∫

x≥b

f (x|θ)dx ≥
∫

x≥b

φ1(x)f (x|θ)dx

Since 0 ≤ φ1(x) ≤ 1.
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Now,

∫

x≥b

φ1(x)f (x|θ)dx =
∫

S0

φ1(x)f (x|θ)dx +
∫

S0
c

φ1(x)f (x|θ)dx

Now φ1(x) = 0 on S0

=
∫

S0c

φ1(x)f (x|θ)dx

= EH1φ1(x)

Hence EH1φ(x) ≥ EH1φ1(x).
It implies that φ(x) is UMP of size 0.

Theorem 7.5.4 For one-parameter exponential family, there exist a UMP test of the
hypothesis H0 : θ ≤ θ1 or θ ≥ θ2 against H1 : θ1 < θ < θ2.

The test function is given as

φ(x) =
⎧
⎨

⎩

1 ; c1 < T(x) < c2
γi ; T(x) = ci(i = 1, 2)
0 ; T(x) < c1 or T(x) > c2

where the c’s and γ′s are given by
(i) Eθ1φ(x) = Eθ2φ(x) = α
(ii) The test minimizes Eθφ(x) subject to (i) for all θ < θ1 or θ > θ2
(iii) For 0 < α < 1, the power function of this test has a maximum at a point θ0
between θ1 and θ2 and decreases strictly as θ tends away from θ0 in either direction,
unless there exist two values t1, t2 such that

Pθ[T(x) = t1] + Pθ[T(x) = t2] = 1 ∀ θ

Example 7.5.1 Which of the following distributions possesses an MLR property.
(i) Binomial (n, p) (ii) Cauchy (1, θ) (iii) Gamma (p, 1

σ
)

(i) f (x|p) =
(
n

x

)

pxqn−x; x = 0, 1, 2, . . . , n, 0 < p < 1, q = 1 − p

=
(
n

x

)(
p

q

)x

qn

=
(
n

x

)

exp[x ln p

q
+ n ln q]

=
(
n

x

)

exp[Q(p)T(x) + nD(p)]
= exp[Q(p)T(x) + nD(p) + H(x)]
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where

Q(p) = ln
p

q
, T(x) = x, D(p) = ln q, H(x) = ln

(
n

x

)

dQ(p)
dp > 0, i.e., Q(p) is strictly increasing. This family has MLR property.

(ii) f (x|σ) = e− x
σ xp−1

σp�(p)
; x > 0,σ > 0, p > 0

f (x|σ) = exp
[
− x

σ
+ (p − 1) ln x − p ln σ − ln�(p)

]

For p known

= exp[Q(σ)T(x) + H(x) + D(p)]

where

Q(σ) = − 1

σ
, T(x) = x, H(x) = (p − 1) ln x − ln p, D(p) = −p ln σ

Since dQ(σ)

dσ
> 0 ∀ σ.

This belongs to exponential family. Hence this family has MLR property.
(iii)

f (x|θ2)
f (x|θ1) = 1 + (x − θ1)

2

1 + (x − θ2)2
→ 1as x → +∞ or − ∞ (7.5.12)

Hence, C(1, θ) does not have an MLR property.

Example 7.5.2 Let the rv X have hypergeometric pmf:

P[X = x|M] =
(M
x

)(N−M
n−x

)

(N
n

) ; x = 0, 1, 2, . . . ,M

Find UMP test to test H0 : M ≤ M0 against H1 : M > M0

λ(x) = P[X = x|M + 1]
P[X = x|M] =

(M + 1
x

)(N −M − 1
n− x

)

(M
x

)(N −M
n− x

)

= M + 1

N − M
× N − M − n + x

M + 1 − x
> 0

We see that P[X = x|M] has MLR in x.
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From Theorem 7.5.3, there exist a UMP test of size α and is given as

φ(x) =
⎧
⎨

⎩

1 ; x > k
γ ; x = k
0 ; x < k

k and γ are determined from EH0φ(x) = α.

Example 7.5.3 Let X1,X2, . . . ,Xn be iid rvs with N(μ, 1). Find UMP test for H0 :
μ ≤ μ0 or μ ≥ μ1 against H1 : μ0 < μ < μ1.

From the Theorem 7.5.4, the UMP test is given as

φ(x) =
{
1 ; c1 <

∑n
i=1 xi < c2

0 ; otherwise

Determine c1 and c2 such that

Eμ0φ(x) = Eμ1φ(x) = α

⇒ Pμ0

[
c1 <

∑
xi < c2

]
= Pμ1

[
c1 <

∑
Xi < c2

]

if Xi(i = 1, 2, . . . , n) ∼ N(μ0, 1) then
∑n

i=1 Xi ∼ N(nμ0, n).
Similarly if Xi(i = 1, 2, . . . , n) ∼ N(μ1, 1) then

∑n
i=1 Xi ∼ N(nμ1, n)

Let Z0 =
∑

xi−nμ0√
n

and Z1 =
∑

xi−nμ1√
n

Pμ0

[
c1 − nμ0√

n
< Z0 <

c2 − nμ0√
n

]

= Pμ1

[
c1 − nμ1√

n
< Z1 <

c2 − nμ1√
n

]

= α

Zi ∼ N(0, 1); i = 0, 1.
Given α, n,μ0 and μ1,

�

[
c2 − nμ0√

n

]

− �

[
c1 − nμ0√

n

]

= α (7.5.13)

and

�

[
c2 − nμ1√

n

]

− �

[
c1 − nμ1√

n

]

= α, (7.5.14)

where � is the df of Z.
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We can solve Eqs. (7.5.13) and (7.5.14) simultaneously to get the values c1 and
c2 using R

# Given data

n <- 10; mu0 <- 0.2; mu1 <- 0.3; alpha <- 0.05;

# To find c2 such that Phi((c2-nmu0)/sqrt(n)) > alpha

x <- seq(-4,4,0.1) # possible values for c2

# Standardization

z1 <- (x-(n*mu0))/sqrt(n);

z2 <- (x-(n*mu1))/sqrt(n);

# To find cumulative probability

cdf1 <- pnorm(z1,0,1);

cdf2 <- pnorm(z2,0,1);

# To find c2

a <- min(which(cdf1 > alpha))

b <- min(which(cdf2 > alpha))

c2 <- max(x[a],x[b])

# To find value of c1

Eqn2 <- alpha-0.1

while(Eqn2 < alpha)

{

z3 <- (c2-(n*mu0))/sqrt(n);

Eqn1 <- pnorm(z3,0,1)-alpha;

c1 <- qnorm(Eqn1,(n*mu0),sqrt(n))

z4 <- (c2-(n*mu1))/sqrt(n);

z5 <- (c1-(n*mu1))/sqrt(n);

Eqn2 <- pnorm(z4,0,1)-pnorm(z5,0,1);

if(Eqn3 <= alpha) { c1_pre <- c1; c2_pre <- c2 }

c2 <- c2+0.1

}

# Check

c1 <- c1_pre; c2 <- c2_pre

z1 <- (c2-(n*mu0))/sqrt(n);

z2 <- (c1-(n*mu0))/sqrt(n);

z3 <- (c2-(n*mu1))/sqrt(n);

z4 <- (c1-(n*mu1))/sqrt(n);

Eqn1 <- pnorm(z1,0,1)-pnorm(z2,0,1)

Eqn2 <- pnorm(z3,0,1)-pnorm(z4,0,1)

# OUTPUT

print(c("c1 =",c1));

print(c("c2 =",c2));

print("CHECK")

print("calculated alpha for equation one"); Eqn1

print("calculated alpha for equation two"); Eqn2

# RESULT

# OUTPUT

"c1 =" "2.29843477913486"

"c2 =" "2.7"

"CHECK"

"calculated alpha for equation one" = 0.05

"calculated alpha for equation two" = 0.04999609

Remark: The UMP test for testing H0 : θ1 ≤ θ ≤ θ2 against H1 : θ = θ0 for
one-parameter exponential family does not exist.

Example 7.5.4 Let X1,X2, . . . ,Xn be a random sample from (0,σ2). Find the UMP
test for

(i) H0 : σ = σ0 against H1 : σ > σ0

(ii) H0 : σ = σ0 against H1 : σ < σ0
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By using the Theorem 7.5.3,
(i) The UMP test is given as

φ1(x) =
{
1 ; ∑n

i=1 x
2
i > c1

0 ; otherwise

Under H0,
∑n

i=1 x
2
i

σ2
0

∼ χ2
n

if α = Eφ1(x) = P[∑n
i=1 x

2
i > c1]

then c1 = σ2
0χ

2
n,α

The UMP test is

φ1(x) =
{
1 ; ∑n

i=1 x
2
i > σ2

0χ
2
n,α

0 ; otherwise

(ii) Similarly as in (i), we can write UMP test:

φ2(x) =
{
1 ; ∑n

i=1 x
2
i < σ2

0χ
2
n,1−α

0 ; otherwise

Note: φ1 and φ2 are not UMP for testing H0 : σ = σ0 against H1 : σ �= σ0.

Example 7.5.5 Let X1,X2, . . . ,Xn be a random sample from N(θ, 1), where θ is
unknown. Show that there is no uniformly most powerful test of H0 : θ = θ0 against
H1 : θ �= θ0

By NP lemma,

λ(x) = exp

[

−1

2

∑
(xi − θ1)

2 + 1

2

∑
(xi − θ0)

2

]

≥ k

⇒
∑

(xi − θ0)
2 −

∑
(xi − θ1)

2 ≥ k

⇒ n(θ20 − θ21) + 2
∑

xi(θ1 − θ0) ≥ k

⇒
∑

xi ≥ k

2(θ1 − θ0)
+ n(θ0 + θ1)

2
if θ1 > θ0

⇒
∑

xi ≤ n

2
(θ0 + θ1) + k

2(θ1 − θ0)
if θ1 < θ0
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Consider H1 : θ = θ1 = θ0 + 1

⇒
∑

xi ≥ k

2
+ n(2θ0 + 1)

2
if θ1 > θ0

and if H1 : θ = θ1 = θ0 − 1

⇒
∑

xi ≤ n

2
(2θ0 − 1) − k

2
if θ1 < θ0

Thus a best critical region for testing the simple hypothesis against an alternative
hypothesis H1 : θ = θ1 = θ0 + 1 will not serve as a BCR for testing H1 : θ = θ1 =
θ0 − 1.

Hence, there is no uniformly MP test for H1 : θ �= θ0.

Example 7.5.6 Let X1,X2, . . . ,Xn be a random sample from f (x|θ), θ ∈ �, where

f (x|θ) = a(θ)h(x); − ∞ < x < θ,

Show that this family has MLR.

Let θ1 < θ2

λ(x) = f (x1, x2, . . . , xn|θ2)
f (x1, x2, . . . , xm|θ1)

= [a(θ2)]n∏n
i=1 h(xi)I(θ2 − X(n))

[a(θ1)]n∏n
i=1 h(xi)I(θ1 − X(n))

There are three cases

(i) X(n) < θ1 < θ2 (ii) θ1 ≤ X(n) < θ2
(iii) θ1 < θ2 ≤ x(n)

λ(x) =

⎧
⎪⎨

⎪⎩

[a(θ2)]n
[a(θ1)]n ; − ∞ < X(n) < θ1
[a(θ2)]n∏n

i=1 h(xi)
0 ; θ1 ≤ X(n) < θ2

0
0 ; θ2 ≤ X(n) < ∞

λ(x) is increasing in X(n). Therefore this family has MLR property.

Example 7.5.7 Show that the double exponential family (known as Laplace distrib-
ution) of distribution

f (x|a, θ) = 1

2θ
exp

[

−|x − a|
θ

]

has monotone likelihood ratio, when a is unknown and θ is known.
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H0 : a = a1 against H1 : a = a2 > a1

λ(x) = f (x|a2)
f (x|a1) = exp

{
1

θ
[|x − a1| − |x − a2|]

}

There are three cases

(i) (x − ai) ≤ 0 for i = 1, 2

λ(x) = exp

{
(a1 − a2)

θ

}

(ii) (x − a1) > 0 and (x − a2) < 0

λ(x) = exp

{
(2x − a1 − a2)

θ

}

One can observe λ′(x) > 0 for a1 < a2 and λ(x) → exp{ a2−a1
θ

} as x ↑ a2.
λ(x) is nondecreasing in x.
(iii) (x − a1) < 0 and (x − a2) > 0
⇒ x < a1 and x > a2
⇒ a2 < x < a1, which is not possible
(iv) (x − ai) > 0; i = 1, 2.

h(x) = exp

{
(a2 − a1)

θ

}

From (i), (ii) and (iv), we can see that x ↑ a1 in (−∞, a1), x ↑ a2 in (−∞, a2) and

x ↑ ∞ in (a2,∞), λ(x) equals at exp
{

(a1 − a2)
θ

}
and increases to exp

{
(a2−a1)

θ

}
and

becomes constant at exp
{

(a2−a1)
θ

}
. We can conclude that λ(x) is nondecreasing in x

and this family possesses MLR property.

Example 7.5.8 Consider the following problem from Lehman (1986).
Let X be length of life of an electron tube. Assume that X has an exponential

distribution with mean 2θ. Hence, pdf of X is

f (x|θ) = 1

2θ
exp

(
− x

2θ

)
; x > 0

Let n such tubes be put on test simultaneously, i.e., we draw an independent sample
X1,X2, . . . ,Xn from the exponential population. Let X’s be ordered and denoted by
Y1 ≤ Y2 ≤ · · · ≤ Yn, where Y1 be the life of a tube which gets fused first, Y2 be the
life of a tube which gets fused next to it and so on. We may continue this experiment
till we get rth tube fused. This process is known as inverse sampling. Same model
arises in life testing applications where n bulbs are put on testing and this number n
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is held fixed by replacing each burned out bulb with a new one and denoting Y1 as
the time at which first burn out bulb is replaced, Y2 as the time at which second bulb
is replaced, etc., each measured from some fixed time.

Obtain a UMP test size α for H0 : θ ≥ θ0 against H1 : θ < θ0
On the basis of Y1,Y2, . . . ,Yr .
The joint distribution of (Y1,Y2, . . . ,Yr) is

f (y1, y2, . . . , yr |θ) = n!
(n − r)!

r∏

i=1

f (yi)[1 − F(yr)]n−r

f (yi) = 1

2θ
e− yi

2θ , F(y) = 1 − e− y
2θ

f (y1, y2, . . . , yr |θ) = n!
(n − r)!

1

(2θ)r
exp

[

−
∑r

i=1 yi
2θ

]

exp

[

−yr(n − r)

2θ

]

f (y1, y2, . . . , yr |θ) = n!
(n − r)!

1

(2θ)r
exp

{

− 1

2θ

[
r∑

i=1

yi + yr(n − r)

]}

This belongs to exponential family. By using Theorem 7.5.3, we can give a UMP
test for testing H0 : θ ≤ θ0 against H1 : θ > θ0,

φ(T) =
{
1 ; T > t0
0 ; otherwise

(7.5.15)

where T = ∑r
i=1 yi + yr(n − r).

We have to find a distribution of T,
Note that

1

θ

r∑

i=1

(n − i + 1)(yi − yi−1) = 1

θ

{
r∑

i=1

yi + (n − r)yr

}

The joint distribution of (yi, yi−1) is

f (yi, yi−1) = n!
(i − 2)!(n − i)!

[
1 − exp

(
−yi−1

2θ

)]i−2

exp
[
− yi
2θ

(n − i)
] 1

2θ
exp

[
− yi
2θ

] 1

2θ
exp

[
−yi−1

2θ

]
,

Let C = n!
(i−2)!(n−i)!

f (yi, yi−1) = C

(2θ)2

[
1 − exp

(
−yi−1

2θ

)]i−2
exp

[

−yi(n − i + 1)

2θ

]

exp
[
−yi−1

2θ

]



334 7 Most Powerful Test

Let Ui = Yi − Yi−1 ⇒ Yi = Ui + Yi−1

f (yi, yi−1) = C

(2θ)2

[
1 − exp

(
− yi−1

2θ

)]i−2
exp

[

− (ui + yi−1)(n − i + 1)

2θ

]

exp
[
− yi−1

2θ

]

Let W = 1 − exp
[− yi−1

2θ

]
, dw = exp[− yi−1

2θ ]
2θ dyi−1

fui(u) = C

(2θ)
exp

[

−ui(n − i + 1)

2θ

] 1∫

0

wi−2(1 − w)n−i+1dw

= C

(2θ)
exp

[

−ui(n − i + 1)

2θ

]

β(i − 1, n − i + 2)

Now

Cβ(i − 1, n − i + 2) = n!
(i − 2)!(n − i)!

�(i − 1)�(n − i + 2)

�(n + 1)
= n − i + 1

fui(u) = n − i + 1

(2θ)
exp

[

−u(n − i + 1)

2θ

]

if vi = (n−i+1)ui
θ

then f (vi) = e− vi
2

2
i.e., vi ∼ χ2

2 then
∑r

i=1 vi ∼ χ2
2r

∑
vi = 1

θ

∑
(n − i + 1)ui ∼ χ2

2r

= 1

θ

r∑

i=1

yi + (n − r)yr ∼ χ2
2r (7.5.16)

Hence T = ∑r
i=1 yi + (n − r)yr ∼ G(r, 1

2θ ) We can write the UMP test as given in
(7.5.15) of size α as

φ(T) =
{
1 ; T > θ0χ

2
2r,α

0 ; otherwise

For example, r = 4
if θ0 = 3 then χ2

8,0.05 = 15.5073 then t0 = 46.5219
Our UMP test is

φ(T) =
{
1 ; T > 46.5219
0 ; otherwise
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Example 7.5.9 Find UMP test for the logistic distribution with location parameter
θ to test H0 : θ ≤ θ0 against H1 : θ > θ0 for a size of α.

f (x|θ) = exp[−(x − θ)

{1 + exp[−(x − θ)]}2 ;−∞ < x < ∞,−∞ < θ < ∞

Let θ1 < θ2 and λ(x) = f (x|θ2)
f (x|θ1)

λ(x) = exp[θ2 − θ1]
[
1 + exp[−(x − θ1)]
1 + exp[−(x − θ2)]

]2

Let x < y ⇒ λ(x) < λ(y), i.e., to prove λ(x) − λ(y) < 0

[
1 + exp[−(x − θ1)]
1 + exp[−(x − θ2)]

]

<

[
1 + exp[−(y − θ1)]
1 + exp[−(y − θ2)]

]

⇒ [1 + e−(x−θ1)][1 + e−(y−θ2)] < [1 + e−(x−θ2)][1 + e−(y−θ1)]

⇒ 1 + e−(y−θ2) + e−(x−θ1) + e−(x−θ1)e−(y−θ2) < 1 + e−(y−θ1) + e−(x−θ2) + e−(x−θ2)e−(y−θ1)

⇒ e−(y−θ2) − e−(x−θ2) + e−(x−θ1) − e−(y−θ1) + e−(x−θ1)e−(y−θ2) − e−(x−θ2)e−(y−θ1) < 0

⇒ e−(y−θ2) − e−(x−θ2) + e−(x−θ1) − e−(y−θ1) < 0

(the other term is zero)

⇒ eθ2 [e−y − e−x] + eθ1[e−x − e−y] < 0

⇒ (e−x − e−y)(eθ1 − eθ2) < 0,

which is always true because

θ1 < θ2 ⇒ eθ1 < eθ2 ⇒ (eθ1 − eθ2) < 0

y > x ⇒ −y < −x

e−y < e−x ⇒ (e−x − e−y) > 0

Hence λ(x) > λ(y) if θ1 < θ2.
Therefore, logistic distribution has MLR property.
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By using the Theorem 7.5.3, we can write UMP test as

φ(x) =
{
1 ; x > x0
0 ; otherwise,

x0 is determined by EH0φ(x) = α.
Hence,

∞∫

x0

e−(x−θ0)

[1 + e−(x−θ0)]2 = α

Let w = 1 + e−(x−θ0) ⇒ dw = −e−(x−θ0)dx
Now, x = x0 ⇒ w = 1 + e−(x−θ0) and x = ∞ ⇒ w = 1

1+e−(x−θ0)∫

1

dw

w2
= α

[
1 + e−(x−θ0)

]−1 = 1 − α

1 + e−(x−θ0) = 1

1 − α

e−(x−θ0) = α

1 − α

x0 = θ0 − log
α

1 − α

Therefore, UMP test for testing H0 : θ ≤ θ0 against H1 : θ > θ0 would be

φ(x) =
{
1 ; x > θ0 − log α

1−α

0 ; otherwise,
(7.5.17)

Example 7.5.10 Let the rv X has the following pdf f (x|θ):

f (x|θ) = θ

(θ + x)2
; x > 0, θ > 0

Obtain UMP test for testing H0 : θ ≤ θ0 against H1 : θ > θ0

λ(x) = θ1

θ0

(
θ0 + x

θ1 + x

)2
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logλ(x) = log
θ1

θ0
+ 2[log(θ0 + x) − log(θ1 + x)]

d logλ(x)

dx
= 2

[
1

θ0 + x
− 1

θ1 + x

]

= 2(θ1 − θ0)

(θ0 + x)(θ1 + x)
> 0

⇒ λ′(x) > 0 ∀ x ⇒ It has MLR property.
We can write UMP test as

φ(x) =
{
1 ; x > k
0 ; otherwise,

Eφ(x) = α ⇒
∞∫

k

θ0

(θ0 + x)2
dx = α

⇒ k = θ0

(
1

α
− 1

)

= θ0(1 − α)

α

Hence (7.5.17) becomes

φ(x) =
{
1 ; if x > θ0(1−α)

α
0 ; otherwise

7.6 Exercise 7

1. There are two density P1(X), P2(X) to describe a particular experiment which has
record space X = {0, 1, 2, 3, 4, 5}

Hypothesis X 0 1 2 3 4 5
S1 P1(X) 0.30 0.20 0.05 0.10 0.15 0.20
S2 P2(X) 0.05 0.15 0.20 0.40 0.10 0.10

Two decision rules are proposed.
Rule 1: If 0 ≤ X ≤ 3 decide for S2, otherwise decide for S1
Rule 2: If X < 4 decide for S1, if X ≥ 4 decide for S2
By calculating the liabilities to error for those two decision rules find which is

better. Can you give a reason for your choice? Can you improve on this choice by
reducing the liability to error of the first kind?
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2. The identification of a cell as Type A or Type B is long and expensive, but a recent
series of experiments have shown that the quantity (in certain units) of an easily
quantifiable 1 chemical is well described by a N(15, 3) random variable for type A
and by a N(20, 6) random variable for type B. In future it is decided to classify a
cell as type A if it contains not more than 12 units of the chemical, and as type B
otherwise. Obtain suitable measures of the liabilities to misclassify.

Where should the point of division be drawn if it is required to set the probability
of misclassifying a type A cell equal to 0.06? What then is the probability of the
other kind misclassification?

3. A dispute has arisen between two archeologists over dating of a specimen. A
claims that it is 5000years old and B that it is 10,000years old. It is known that such
specimens emit a certain type of radioactive particle, the number of particles emitted
in any one minute being described by a Poisson (1) random variable if A’s claim is
true and by a Poisson (5) random variable if B’s claim is true.

An arbiter suggests that, after a minute counting, he should decide in favor of A
if not more than 2 particles are observed and decide for B otherwise. Investigate the
liabilities to error with this decision rule.

What is the minimum number of complete minutes for which counting should be
recorded if the probability of deciding for A when in fact B is correct is to be less
than 0.06? What is the corresponding probability of deciding for B when in fact A
is correct?
4. A person claims to have telepathic power in the sense that he can say which of the
two colored cards is being observed by his partner with probability 0.7 rather than
0.6, which would be the appropriate value for guessing of colors randomly presented
to the partner. As a preliminary test he is asked to state the colors on 8 such cards
randomly presented to his partner. It is decided to accept him for further tests if he
scores at least 7 successes, and otherwise to dismiss him. Evaluate the appropriate
measures of the probabilities to unjustified acceptance and to wrongful dismissal in
such a test.

A person who has passed this preliminary test is now subjected to longer series of
500 cards (again randomly presented). It is agreed to accept him for even more tests
if he scores at least 300 successes, and otherwise to dismiss him. Find the appropriate
measures of liability for this series. (Use the normal approximation to the binomial.)
How many successes should have been demanded if the probability of unjustified
acceptance was to kept to 0.06?

5. For a process which produces components at independent operations and with
lifetimes varying according to the density function p(x) = θe−θx (x ≥ 0, θ > 0).
Show that the probability that two components having lifetimes greater than a is
e−2θa, and the probability that the total lifetime of two components is greater than a
is (1 + θa)e−θa.

For process A, θ is known to be 2 for process B, θ is known to be 3. Components
from these processes are not easily distinguishable and unfortunately a large batch
of unlabeled components have been discovered.Compare the following rules, for
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deciding, on the results of life testing two components, which process the batch has
come from.

Rule 1: If both lifetimes are greater than 1
2 decide that it was process A, otherwise

decide for process B.
Rule 2: If the total lifetime of the two components is greater than 2 decide for A,

otherwise decide for B.
What critical value should replace 1

2 in Rule 1 if the probability of deciding for
process B when in fact A was used to be 0.1?What then is the probability of deciding
for process A when in fact B was used?

6. A sample of size 1 is taken from a population distribution P(λ). To testH0 : λ = 2
against H1 : λ = 3, consider the nonrandomized test

φ(x) =
{
1 ; x > 3
0 ; x ≤ 3,

Find the probabilities of type I and type II errors and the power of the test against
λ = 2. If it is required to achieve a size equal to 0.05, how should one modify the
test φ? Plot the power function for H1 : λ > 3.

7.A sample of size 1 is taken fromexponential pdfwith parameter θ, i.e.,X ∼ G(1, θ).
To test H0 : θ = 2 against H1 : θ > 2, the test to be used is the nonrandomized test

φ(x) =
{
1 ; x > 2
0 ; x ≤ 2,

Find the size of the test. What is the power function? Plot the power functions.

8. Let X1,X2 be iid observations from

f (x, θ) = 1

θ
e− x

θ ; 0 < x < ∞, θ > 0

Consider the acceptance region as w = {(x1, x2)|x1 + x2 < 6} for testing H0 : θ = 2
against H1 : θ = 4. Determine type I and type II errors.

9. Let X1,X2 be random sample drawn from

f (x, θ) = θxθ−1; 0 < x < 1

If we test H0 : θ = 1 against H1 : θ = 2 with the critical region w =
{(x1, x2)|(x1 x2) ≥ 1

2 }.
Find the size and power of the test.

10. Let X1,X2, . . . ,X10 be a random sample from N(μ,σ2). Find a MP test of the
hypothesis H0 : μ = 0,σ2 = 1 against the alternative hypothesis H1 : μ = 1,
σ2 = 4.
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11. Let X1,X2, . . . ,Xn be a random sample from a normal distribution with mean μ
and variance 100. It is designed to test H0 : μ = 75 against H1 : μ = 78. Find test
of level of significance 0.05 and with power equal to 0.90 approximately.

12. Let

fθ(x) = 1

π[1 + (x − θ)2] , −∞ < x < ∞

Using a single observation find amost powerful test of size 0.10 to test the hypothesis
H0 : θ = 2 against H1 : θ = 4. Use R.

13. Let X1,X2, . . . ,X10 be a random sample of size 10 from a N(0,σ2). Find a best
critical region of size α = 0.05 for testing H0 : σ2 = 1 against H1 : σ2 = 2. In this
a best critical region against alternative H1 : σ2 > 1.

14. Consider the two independent normal distributions N(μ1, 400) and N(μ2, 225).
Find a UMP test to test the hypothesis H0 : μ1 − μ2 = 0 against the alternative
H1 : μ1 − μ2 > 0 such that the power at two points β(μ1 − μ2 = 0) = 0.05 and
β(μ1 − μ2 = 10) = 0.90 approximately.

15. Find theNeyman–Pearson sizeα test ofH0 : θ = θ0 againstH1 : θ = θ1(θ1 < θ0)
based on a sample size 1 from the pdf

f0(x) = 2θx + 2(1 − θ)(1 − x), 0 < x < 1 θ ∈ [0, 1].

(Take α = 0.02, 0.10, θ0 = 4 and θ1 = 2)

16. Find the Neyman–Pearson size α test of H0 : β = 1 against H1 : β = β1(>1)
based on sample size 1 from

f (x,β) =
{

βxβ−1 ; 0 < x < 1
0 ; otherwise

17. Let X be an observation inU(0, 1). Find anMP sizeα test ofH0 : X ∼ f (x) = 4x
if 0 < x < 1

2 , and = 4 − 4x if 1
2 ≤ x < 1 against H1 : X ∼ f (x) = 1 if 0 < x < 1.

Find the power of your test.

18. Let X1,X2, . . . ,Xn be a random sample with common pdf

f0(x) = 1

2θ
exp−|x|

θ
, x ∈ R θ > 0

Find a size α MP test for testing H0 : θ = θ0 versus H1 : θ = θ1(>θ0)
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19. Let X ∼ fj, j = 0, 1 where
(i)

x 1 2 3 4 5

f0(x)
1
5

1
5

1
5

1
5

1
5

f1(x)
1
6

1
4

1
6

1
4

1
6

(ii)

x 1 2 3 4 5

f0(x)
1
4

1
4 0 1

2 0

f1(x)
1
5

1
5

1
5 0 2

5

(Take α = 0.02, 0.06).
(a) Find the form of the MP test of its size.
(b) Find the size and the power of your test for various values of the cut off point.

20. LetX have the binomial distributionB(n, p) and consider the hypothesisH0 : p =
p0 againstH1 : p = p1 > p0 at level of significanceα. Determine the boundary values
of the UMP unbiased test for n = 10,α = 0.1, p0 = 0.2 and α = 0.05, p0 = 0.4
and in each case graph the power functions of both the unbiased and the equal tails
test.

21. Let Tn
θ
have a χ2 distribution with n degrees of freedom. For testing H0 : θ = 1

at level of significance α = 0.05, find n so large that the power of the UMP unbiased
test is ≥0.90 against both θ ≥ 2 and θ ≤ 1

2 . How large does n have to be if the test
is not required to be unbiased? (see Definition 8.1.1).

22. Let X1,X2, . . . ,Xn be iid N(5, 1). Draw a sample of size 10.
Test (i) H0 : μ = 5 against H1 : μ �= 5, assume α = 0.5
(ii) H0 : μ = 5 against H1 : μ > 5
(iii) H0 : μ = 5 against H1 : μ < 5
Draw the power curve of all three test on the same graph paper and comment.

23. Let X1,X2, . . . ,Xn be iid N(0, θ) with θ = 6. Draw a sample of size 10.
Test (i) H0 : θ = 6 against H1 : θ �= 6, assume α = 0.5
(ii) H0 : θ = 6 against H1 : θ > 6
(iii) H0 : θ = 6 against H1 : θ < 6
Plot the power function of all the three test on the same graph and comment.

24. Suppose a certain type of 40 W bulb has been standardized so that the mean life
of the bulb is 1500h and the standard deviation is 200h. A random sample of 25
of these bulbs from lot having mean θ was tested and found to have a mean life of
1380h.

(a) Test at 1 percent significance level the hypothesis H0 : θ = 1500 against the
alternative H1 : θ < 1500

http://dx.doi.org/10.1007/978-981-10-0889-4_8
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(b) Compute the power of the test at θ = 1450, 1400, 1300, 1200, 1150, and plot
the power function.

25. A sample of size 9 from a population which is normally distributed with mean
1260 is as follows:

1268, 1271, 1259, 1266, 1257, 1263, 1272, 1260, 1256.
(a) Test at 5 percent level of significance the hypothesis σ2 = 40 against the

alternative σ2 < 40
(b) Compute the power of the test when σ2 = 36, 32, 28, 24, and plot the power

function.

26. A sample of size 5 is observed from a binomial distribution B(20, p). Find a
UMP test for resting the hypothesis H0 : p = 1

2 against the alternative H1 : p > 1
2 at

5 percent level significance.

27. A sample of size 10 is obtained from a Poisson distribution with parameter m.
Construct a test of level of significance α = 0.01 to test H0 : m = 3 against the
alternative H1 : m > 3.

28. Let X be the number of successes in n independent trials with probability p of
successes, and let φ(X) be the UMP test for testing p ≤ p0 against p > p0 at level of
significance α.

(i) For n = 6, p0 = 0.25 and the levels α = 0.05, 0.1, 0.2 determine k and γ and
find the power of the test against P1 = 0.3, 0.4, 0.5, 0.6, 0.7.

(ii) If p0 = 0.2 and α = 0.05, and it is desired to have power β ≥ 0.9 against
p1 = 0.4, determine the necessary sample size (a) by using tables of the binomial
distribution, (b) by using the normal approximation.

(iii) Use the normal approximation to determine the sample size required when
α = 0.05,β = 0.9, p0 = 0.01, p1 = 0.02.

29. Let X1,X2, . . . ,Xn be independently distributed with density

f (x) = (2θ)−1 exp
[
− x

2θ

]
, x > 0, θ > 0

and let Y1 ≤ Y2 ≤ · · · ≤ Yn be the ordered X’s.
Assume that Y1 becomes available first, then Y2, etc., and that observation is

continued until Yr has been observed. On the basis of Y1, . . . ,Yr it is desired to test
H : θ > θ0 = 1000 at level α = 0.05 against H1 : θ < θ0

(i) Determine the rejection region when r = 4, and find the power of the test
against θ1 = 500.

(ii) Find the value of r required to get power β ≥ 0.95 against the alternative.

30. When a Poisson process is observed for a time interval of length r, the number X
of events occurring has the Poisson distribution P(λr). Under an alternative scheme,
the process is observed until r events have occurred, and the time T of observation
is then a random variable such that 2λT has a χ2 distribution with 2r degrees of
freedom. For testing H : λ ≤ λ0 at level α one can, under either design, obtain a
specified power β against an alternative λ1 by choosing T and r sufficiently.
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(i) The ratio of the time of observation required for this purpose under the first
design to the expected time required under the second is λt

r
(ii) Determine for which values of each of the two designs is preferable when

λ0 = 1, λ1 = 2, α = 0.05, β = 0.9.

31. Let X1,X2, . . . ,Xn are iid rvs from ∪(θ, θ + 1). Find a UMP test of size α to test
H0 : θ ≤ θ0 against H1 : θ > θ0.

Further, test H0 : θ ≤ 2 against H1 : θ > 2 for the following data. Let α = 0.05.
2.69 2.72 2.60 2.61 2.65 2.55 2.65
2.02 2.32 2.04 2.99 2.98 2.39 2.63
2.00 2.04 2.62 2.78 2.19 2.05

32. Let X1,X2, . . . ,Xn are iid rvs from ∪(θ, 2θ). Find a UMP test of size α to test
H0 : θ ≤ θ0 against H1 : θ > θ0.

Further, test H0 : θ ≤ 4 against H1 : θ > 4 for the following data. Let α = 0.05.
4.51 5.64 3.88 5.88 3.50 5.45 5.84
5.54 3.52 5.38 4.16 4.14 3.75 3.96
4.36 5.96 4.66 5.15 5.67 3.46

33. Let X1,X2, . . . ,Xn are iid rvs from the following distribution as

f (x|λ) =
{

λ
(1+x)λ+1 ; x > 0
0 ; otherwise

Obtain a UMP test for testing H0 : λ ≤ λ0 against H1 : λ > λ0.
Further test H0 : λ ≤ 1 against H1 : λ > 1 for the following data. Let α = 0.05.
1.10 0.32 0.14 0.23 0.20 0.05 1.48
0.86 0.35 0.39 0.23 2.18 0.32 5.11
7.77

34. Let the rv X1 has exponential distribution with mean 1
θ
and the rv X2 has g(x2|θ),

g(x2|θ) = θxθ−1
2 ; 0 < x < 1, θ > 0

Obtain a MP test of size α for testing H0 : θ = θ0 against H1 : θ1 > θ0. Can it be a
UMP test?

35. Let the rv X1 is B(n, p) and the rv X2 is NB(r, θ). Obtain a MP test of size α for
testing H0 : θ = 0.2 against H1 : θ1 = 0.3. Can it be a UMP test? Assume n and r
are known. If n = 5 and r = 3, test the same hypothesis for the following data

2, 1,11, 01, 5, 18, 12, 5.

36. Let the rvs X1,X2, . . . ,Xn are N(μi,σ
2), i = 1, 2, . . . , n, μi is known. Obtain a

MP test of size α to test H0 : σ2 = σ0
2 against H1 : σ2 = σ1

2 > σ0
2.

37. Let the rvs X1,X2, . . . ,Xn are N(μ,σi
2) , i = 1, 2, . . . , n, σi are known. Obtain

a MP test of size α to test H0 : μ = μ0 against H1 : μ = μ1 < μ0.
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38. Let the rvs Xi has P(iλ), i = 1, 2, . . . , n. Obtain a MP test of size α to test
H0 : λ = λ0 against H1 : λ = λ1 < λ0.

39. Let the rvs X1,X2, . . . ,Xn be iid rvs with ∪(−kθ, kθ), θ > 0, k is known. Obtain
a MP test of size α for testing H0 : θ = θ0 against H1 : θ1 �= θ0.

40. Let the rvsX1,X2, . . . ,Xn be iid rvs with (i)∪(−θ, 0), θ > 0 (ii)∪(0, θ2), θ > 0
(iii) ∪(θ, θ2) θ > 0.

Obtain UMP test of size α for testing H0 : θ = θ0 against H1 : θ �= θ0.
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Chapter 8
Unbiased and Other Tests

In earlier chapters, we have discussed the most powerful and UMP tests. Many
times, we cannot get UMP tests for testing H0 : θ = θ0 against H1 : θ �= θ0.
Then how to get UMP tests? In the beginning, we will consider the extension of
Neyman–Pearson Lemma to the cases where f0 and f1 may take negative values.
They may not be necessarily densities but may satisfy some other conditions. We,
therefore, discuss the maximization of

∫
φ f dx for some integrable function f over

a class of critical functions φ, satisfying several other conditions. This extension is
also known as generalized Neyman–Pearson Lemma.We will only state this Lemma
with a brief proof. The detailed proof is given in Lehman (1986). Further, we will
consider unbiased and other tests.

8.1 Generalized NP Lemma and UMPU Test

Theorem 8.1.1 Suppose we have (m+1) functions g0(x), g1(x), . . . , gm(x) which
are integrable and let 0 ≤ φ(x) ≤ 1 such that

∫

φ(x)gi (x)dx = ci , i = 1, 2, . . . , m (8.1.1)

where ci ’s are known constants.

Let φ0(x) be a function such that

φ0(x) =
{
1 ; g0(x) >

∑m
i=1 kigi (x)

0 ; otherwise

then
∫

φ0(x)g0(x)dx ≥ ∫
φ(x)g0(x)dx

where φ0(x) and φ(x) satisfy (8.1.1).
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Proof Consider

[φ0(x) − φ(x)]

[

g0(x) −
m∑

i=1

kigi (x)

]

≥ 0 (8.1.2)

One can easily see that if φ0(x) = 1 then (8.1.1) is nonnegative.
Similarly if φ0(x) = 0 then also (8.1.1) is nonnegative.
From (8.1.2)

[φ0(x) − φ(x)]

[

g0(x) −
m∑

i=1

kigi (x)

]

≥ 0

⇒
∫

[φ0(x) − φ(x)] g0(x)dx ≥
m∑

i=1

ki

[∫

φ0(x)gi (x)dx −
∫

φ(x)gi (x)dx

]

From (8.1.1),
m∑

i=1
ki [ci − ci ] = 0

⇒
∫

[φ0(x) − φ(x)] g0(x)dx ≥ 0

⇒
∫

φ0(x)g0(x)dx ≥
∫

φ(x)g0(x)dx

Remark We can see the difference between NP lemma and its extension

(i) There is an equality in (8.1.1).
(ii) The functions g0(x), g1(x), . . . , gm(x) need not be pdf.
(iii) ki ’s need not be nonnegative.

Definition 8.1.1 A test φ(x) is called an unbiased test of size α if EH0φ(x) ≤ α or
βφ(θ) ≤ α, θ ∈ �0 or sup

θ∈�0

βφ(θ) = α, and EH1φ(x) ≥ α or βφ(θ) ≥ α, θ ∈ �1,

Construction of UMP unbiased (UMPU) test
Assume that f (x |θ) involves single parameter. In this case, we will find an UMPU
test for testing H0 : θ = θ0 against H1 : θ �= θ0 for a size of α.
From the Definition 8.1.1,

βφ(θ) ≤ α, θ ∈ �0 (i)

and
βφ(θ) ≥ α, θ �= θ0 (ii)

Suppose that the power function EH1φ(x) is a continuous function of θ.
From (i) and (ii), EH0φ(x) has minimum at θ = θ0.
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Therefore, we want to find φ such that

βφ(θ0) = α (iii)

and
βφ(θ) > α for θ �= θ0 (iv)

If βφ(θ) is differentiable, then

dβφ(θ)

dθ
|θ=θ0 = 0 ⇒ β′

φ(θ0) = 0 (v)

Class of test satisfying (i) and (ii) is a subset of a class of tests satisfying (i) and (v).
Now we have to find a MP test satisfying (i) and (v). If the test is independent of θ,
then it is UMPU.

Now our problem reduces to find a test φ such that

EH0φ(X) =
∫

φ(x) f (x |θ0)dx = α (vi)

and if regularity conditions are satisfied then

dEθφ(x)

dθ
|θ=θ0 = dβφ(θ)

dθ
|θ=θ0 =

∫
d

dθ
φ(x) f (x |θ0)dx |θ=θ0 = 0 (vii)

Nowφ(x)maximizes the power
∫

φ(x) f (x |θ1)dx such that to findφ0(x) that satisfies
(vi) and (vii).
i.e.,

∫
φ0(x) f (x |θ1)dx ≥ ∫

φ(x) f (x |θ1)dx ∀ θ
Using Theorem 8.1.1, i.e., GNP lemma, g0(x) = f (x |θ1), g1(x) = f (x |θ0) and
g2(x) = d f (x |θ)

dθ
|θ=θ0

φ0(x) =
{
1 ; f (x |θ1) > k1 f (x |θ0) + k2[ d f (x |θ)

dθ
]θ=θ0

0 ; otherwise

φ0(x) =
{
1 ; f (x |θ1)

f (x |θ0) > k1 + k2[ d log f (x |θ)
dθ

]θ=θ0

0 ; otherwise
(8.1.3)

where k1 and k2 are such that EH0φ0(x) = α and dEφ0(x)

dθ
|θ=θ0 = 0

Theorem 8.1.2 Let the rv X has pdf(pmf) f (x |θ), θ ∈ �. Assume that f (x |θ)
belongs to a one parameter exponential family.

f (x |θ) = A(x) exp[θT (x) + D(θ)], x ∈ R, θ ∈ �
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Then prove the test if

(i) U is continuous

φ0(x) =
{
1 ; u < c1 or u > c2

0 ; otherwise
(8.1.4)

(ii) U is discrete

φ0(x) =
⎧
⎨

⎩

1 ; u < c1 or u > c2

γi ; u = ci , i = 1, 2
0 ; otherwise

(8.1.5)

is UMPU of size α for testing H0 : θ = θ0 against H1 : θ �= θ0, where u =∑n
i=1 T (xi )

Proof

f (x1, x2, . . . , xn|θ) =
n∏

i=1

A(xi ) exp

[

θ

n∑

i=1

T (xi ) + nD(θ)

]

Using GNP and (8.1.3),

φ0(x) =
{
1 ; i f f1(x |θ1)

f0(x |θ0) > k1 + k2[ d log f (x |θ)
dθ

]θ=θ0

0 ; otherwise
(8.1.6)

f1(x1, x2, . . . , xn|θ1)
f0(x1, x2, . . . , xn|θ0) = exp[θ1 ∑n

i=1 T (xi ) + nD(θ1)]
exp[θ0 ∑n

i=1 T (xi ) + nD(θ0)]

= exp

[

(θ1 − θ0)

n∑

i=1

T (xi ) + n{D(θ1) − D(θ0)}
]

(8.1.7)

Next,

log f (x |θ) =
n∑

i=1

log A(xi ) + θ

n∑

i=1

T (xi ) + nD(θ)

d log f (x |θ)
dθ

=
n∑

i=1

T (xi ) + nD′(θ) (8.1.8)
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From (8.1.6), (8.1.7), and (8.1.8)

φ0(x) =
{
1 ; exp

[
(θ1 − θ0)

∑n
i=1 T (xi ) + n{D(θ1) − D(θ0)}

]
> k1 + k2

[∑n
i=1 T (xi ) + nD′(θ0)

]

0 ; exp
[
(θ1 − θ0)

∑n
i=1 T (xi ) + n{D(θ1) − D(θ0)}

] ≤ k1 + k2
[∑n

i=1 T (xi ) + nD′(θ0)
]

=
{
1 ; exp

[
(θ1 − θ0)

∑n
i=1 T (xi )

]
> k∗

1 + k∗
2

∑n
i=1 T (xi )

0 ; exp
[
(θ1 − θ0)

∑n
i=1 T (xi )

] ≤ k∗
1 + k∗

2

∑n
i=1 T (xi )

where

k∗
1 = k1

n[D(θ1) − D(θ0)] + k2nD′(θ0)
n[D(θ1) − D(θ0)] , k∗

2 = k2
n[D(θ1) − D(θ0)]

Let h[∑n
i=1 T (xi )] = exp[(θ1 − θ0)

∑
T (xi )] − k∗

2

∑n
i=1 T (xi )

Then

φ0(x) =
{
1 ; h

[∑n
i=1 T (xi )

]
> k∗

1
0 ; h

[∑n
i=1 T (xi )

] ≤ k∗
1

Nature of h
[∑n

i=1 T (xi )
]

Let U (x) = ∑n
i=1 T (xi )

h(u) = exp[(θ1 − θ0)u(x)] − k∗
2u(x)

h′(u) = (θ1 − θ0) exp[(θ1 − θ0)u(x)] − k∗
2

h′′(u) = (θ1 − θ0)
2 exp[(θ1 − θ0)u(x)] > 0; (see Fig. 8.1)

This implies that h(u) is convex in U. If h(u) > k∗
1 ⇒ u < c1 or u > c2 (Fig. 8.1).

Fig. 8.1 Graph of h(u)
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The UMPU test is given as

φ0(x) =
{
1 ; u < c1 or u > c2

0 ; otherwise

If U is discrete

φ0(x) =
⎧
⎨

⎩

1 ; u < c1 or u > c2

γi ; u = ci , i = 1, 2
0 ; otherwise

γi (i = 1, 2) can be determined such that Eφ0(x) = α and
d
dθ

[P(u < c1) + P(u > c2)]θ=θ0 = 0.
Conclusion: For one parameter exponential family, we have seen how to obtain
UMPU test for testing H0 : θ = θ0 against H1 : θ �= θ0.
These conditions are as follows:

(i) Eφ(x) = α
(ii) d

dθ
Eφ(x)|θ=θ0 = 0

These conditions can be put in different form. Hence, we consider the following
theorem:

Theorem 8.1.3 Let f (x |θ) = c(θ)eθT (x)h(x); x ∈ R, θ ∈ �.

Prove that

Eφ(x)T (x) = αET (x), (8.1.9)

where φ(x) is defined in (8.1.4) or (8.1.5)

Proof The test φ(x) defined in (8.1.4) or (8.1.5) satisfies (i) and (ii) defined in the
conclusion.

d

dθ
Eφ(x) = d

dθ

∫

φ(x)c(θ)eθT (x)h(x)|θ=θ0 = 0

⇒
∫

φ(x)c(θ)eθT (x)T (x)h(x)dx +
∫

φ(x)c′(θ)eθT (x)h(x)dx |θ=θ0 = 0

⇒ E[φ(x)T (x)] + c′(θ)
∫

φ(x)eθT (x)h(x)dx |θ=θ0 = 0

⇒ E[φ(x)T (x)] + c′(θ)
c(θ)

∫

φ(x)c(θ)eθT (x)h(x)dx |θ=θ0 = 0

⇒ E[φ(x)T (x)] + c′(θ)
c(θ)

Eφ(x) = 0 (8.1.10)
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This is true for all φ, which are unbiased.

Let φ(x) = α

αE[T (x)] + c′(θ)
c(θ)

α = 0

Then

E[T (x)] = −c′(θ)
c(θ)

(8.1.11)

From (8.1.10) and (8.1.11),

E[φ(x)T (x)] = E[φ(x)]E[T (x)]

Then we get the result as in (8.1.9),

E[φ(x)T (x)] = αE[T (x)]

Remark 1 We can find the constants c1 and c2 from (i) E[φ(x)] = α and
(ii) E[φ(x)T (x)] = αE[T (x)].
Remark 2 A simplification of the test is possible if for θ = θ0, the distribution of T
is symmetric about some point a.
i.e.,

Pθ0 [T < a − u] = Pθ0 [T > a + u] ∀ u

Then any test which is symmetric about a and satisfies EH0φ(x) = α, i.e., it satisfies
(8.1.9).

Let ψ(t) be symmetric about a and Eψ(t) = α, then we have to show that ψ(t) is
unbiased, i.e., it satisfies (8.1.9).

EH0ψ(t)T (x) = EH0 [(T − a)ψ(t) + aψ(t)]
= EH0(T − a)ψ(t) + aEH0ψ(t)

= 0 + aEH0ψ(t)

(As T is symmetric about a then ET = a.)

= aα = αET (x)
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Hence it satisfies (8.1.9).
Therefore ψ(t) is unbiased.

Remark 3 ci ’s and γi ’s can be found out such that
EH0ψ(t) = α

⇒ PH0 [T < c1] + γ1PH0 [T = c1] = α

2

and

⇒ PH0 [T > c2] + γ2PH0 [T = c2] = α

2

Further γ1 = γ2 and a = c1+c2
2

Example 8.1.1 Let the rvs X1, X2, . . . Xn are iid rvs N (θ, 1). Find UMPU test for
testing H0 : θ = θ0 against H1 : θ �= θ0

f (x1, x2, . . . , xn|θ) = (2π)−
n
2 exp

[

−1

2

n∑

i=1

(xi − θ)2

]

This belongs to a one parameter exponential family. Hence, from Theorem 8.1.2,
U = ∑

T (xi ) = ∑
xi

The UMPU test is

φ(x) =
{
1 ; ∑

xi < c1 or
∑

xi > c2

0 ; otherwise

OR

φ(x) =
{
1 ; x̄ < c1 or x̄ > c2

0 ; otherwise

X̄ is distributed as N (θ, 1
n )

EH0φ(x) = α

PH0(X̄ < c1) + P(X̄ > c2) = α

⇒
c1∫

−∞

√
n√
2π

exp

[

−n(x̄ − θ0)
2

2

]

dx̄ +
−∞∫

c2

√
n√
2π

exp

[

−n(x̄ − θ0)
2

2

]

dx̄ = α

Next, dEφ(x)

dθ
|θ=θ0 = 0



8.1 Generalized NP Lemma and UMPU Test 353

⇒ d

dθ

⎡

⎣

c1∫

−∞

√
n√
2π

exp[−n(x̄ − θ0)
2

2
]
⎤

⎦ dx̄ +
−∞∫

c2

√
n√
2π

exp[−n(x̄ − θ0)
2

2
]dx̄]|θ=θ0 = 0

⇒ d

dθ

⎡

⎢
⎣

√
n(c1−θ)∫

−∞

e− t2
2√
2π

dt +
∞∫

√
n(c2−θ)

e− t2
2√
2π

dt

⎤

⎥
⎦ |θ=θ0 = 0

⇒ −
√

n√
2π

exp

[

−n(c1 − θ0)
2

2

]

+
√

n√
2π

exp

[

−n(c2 − θ0)
2

2

]

= 0

⇒ exp

[

−n(c1 − θ0)
2

2

]

= exp

[

−n(c2 − θ0)
2

2

]

⇒ (c1 − θ0)
2 = (c2 − θ0)

2

⇒ (c1 − θ0)
2 − (c2 − θ0)

2 = 0

⇒ (c1 − c2)(c1 + c2 − 2θ0) = 0

⇒ c1 = c2 and c1 + c2 − 2θ0 = 0

⇒ c1 = 2θ0 − c2 or c2 = 2θ0 − c1

Now Eφ(x) = α and
√

n(c2 − θ0) = √
n(2θ0 − c1 − θ0) = √

n(θ0 − c1)
Hence,

√
n(c1−θ0)∫

−∞

e− t2

2√
2π

dt +
∞∫

√
n(θ0−c1)

e− t2

2√
2π

dt = α

⇒ 2

√
n(c1−θ0)∫

−∞

e− t2

2√
2π

dt = α

⇒
√

n(c1−θ0)∫

−∞

e− t2

2√
2π

dt = α

2
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⇒
∞∫

−√
n(c1−θ0)

e− t2

2√
2π

dt = α

2

⇒ −√
n(c1 − θ0) = Z α

2

⇒ c1 = θ0 − Z α
2√
n

and c2 = θ0 + Z α
2√
n

Hence, the UMPU test is

φ(x) =
{
1 ; x̄ < θ0 − Z α

2√
n

or x̄ > θ0 + Z α
2√
n

0 ; otherwise

Example 8.1.2 Let the rvs X1, X2, . . . Xn are iid rvs N (0,σ2). Find UMPU test for
testing H0 : σ = σ0 against H1 : σ �= σ0

f (x1, x2, . . . , xn|σ2) =
(

1

σ
√
2π

)n

exp

[

−
∑n

i=1 x2
i

2σ2

]

; xi ∈ R, σ > 0

This belongs to a one parameter exponential family.
Hence, from Theorem 8.1.2,

∑
T (xi ) = ∑

x2
i ,

The UMPU test is

φ(x) =
{
1 ; ∑

x2
i < c1 or

∑
x2

i > c2
0 ; otherwise

c1 and c2 are such that EH0φ(x) = α and dEφ(x)

dσ
|σ=σ0 = 0. Let

∑
x2

i = t .

Now
∑

x2
i

σ2
0

∼ χ2
n , EH0φ(x) = α

⇒

c1
σ20∫

0

e− t
2 t

n
2 −1

2
n
2 Γ n

2

dt +
∞∫

c2
σ20

e− t
2 t

n
2 −1

2
n
2 Γ n

2

dt = α (8.1.12)

and dEφ(x)

dσ
|σ=σ0 = 0

−2c1
σ3
0

e
− c1

2σ20 ( c1
σ2
0
)

n
2 −1

2
n
2 Γ n

2

+ 2c2
σ3
0

e
− c2

2σ20 ( c2
σ2
0
)

n
2 −1

2
n
2 Γ n

2

= 0
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⇒ −c1e
− c1

2σ20 (c1)
n
2 −1 + c2e

− c2
2σ20 (c2)

n
2 −1 = 0

⇒ exp

[

− c1
2σ2

0

+ c2
2σ2

0

]

=
(

c2
c1

) n
2

⇒ − 1

2σ2
0

[c1 − c2] = n

2
log

c2
c1

⇒ log c2 − log c1 = c2 − c1
nσ2

0

(8.1.13)

⇒ nσ2
0 = c2 − c1

log c2 − log c1
(8.1.14)

c1 and c2 satisfying (8.1.12) and (8.1.14) are found by trial and error method.
Let

c1
σ20∫

−∞
f (t)dt = α1 and

∞∫

c2
σ20

f (t)dt = α2, (8.1.15)

and α = α1 + α2,
Then,

c1
σ2
0

= χ2
n,1−α1

,
c2
σ2
0

= χ2
n,α2

and
c2 − c1

log c2 − log c1
= nσ2

0,

Find c1 and c2 from these equations and start with α1 = α
2 .

Example 8.1.3 Consider X ∼ B(10, p) and assume α = 0.1. To test H0 : p = 0.2
against H1 : p �= 0.2. The UMPU test is given by

φ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 ; x < c1 or x > c2
γ1 ; x = c1
γ2 ; x = c2
0 ; otherwise

To find c1, c2, γ1 and γ2, we will use the following equations

EH0φ(x) = α
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⇒
c1−1∑

x=0

(
10

x

)

(0.2)x (0.8)10−x +
10∑

c2+1

(
10

x

)

(0.2)x (0.8)10−x

+ γ1

(
10

c1

)

(0.2)c1(0.8)10−c1 + γ2

(
10

c2

)

(0.2)c2(0.8)10−c2 = 0.10 (8.1.16)

Next,

Eφ(x)T (x) = αET (x) = αnp0

c1−1∑

x=0

(
9

x − 1

)

(0.2)x−1(0.8)10−x +
10∑

c2+1

(
9

x − 1

)

(0.2)x−1(0.8)10−x

+ γ1

(
9

c1 − 1

)

(0.2)c1−1(0.8)10−c1 + γ2

(
9

c2 − 1

)

(0.2)c2−1(0.8)10−c2 = 0.10

⇒
c1−2∑

y=0

(
9

y

)

(0.2)y(0.8)9−y +
9∑

c2

(
9

y

)

(0.2)y(0.8)9−y + γ1

(
9

c1 − 1

)

(0.2)c1−1(0.8)10−c1

+ γ2

(
9

c2 − 1

)

(0.2)c2−1(0.8)10−c2 = 0.10 (8.1.17)

B(10,0.2) B(9,0.2)
X P(X=x) X P(X=x)
0 0.107374 0 0.134218
1 0.268435 1 0.301990
2 0.301990 2 0.301990
3 0.201327 3 0.176161
4 0.088080 4 0.066060
5 0.026424 5 0.016515
6 0.005505 6 0.002753
7 0.000786 7 0.000295
8 0.000074 8 0.000018
9 0.000004 9 0.000001
10 0.000000

from (8.1.16) and (8.1.17), c1 = 0 and c2 = 4
From (8.1.16),

0 + 0.03279 + 0.107374γ1 + 0.08808γ2 = 0.10 (8.1.18)

From (8.1.17),

0 + 0.08564 + (0)γ1 + 0.17616γ2 = 0.10 (8.1.19)
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Solving (8.1.18) and (8.1.19) simultaneously,
γ1 = 0.5591 and γ2 = 0.08152
The UMPU test is

φ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 ; x < 0 or x > 4,
0.5591 ; x = 0,
0.08152 ; x = 4,
0 ; otherwise

Example 8.1.4 Let the rvs X1, X2, . . . Xn are iid rvs with B(k, p). Find UMPU test
for testing H0 : p = p0 against H1 : p �= p0

f (x1, x2, . . . , xn|p) =
n∏

i=1

(
k

xi

)

pt qnk−t ; T =
n∑

i=1

xi , q = 1 − p

=
n∏

i=1

(
k

xi

)(
p

q

)t

qnk;

This belongs to one parameter exponential family because θ = p
q ,

∑
T (xi ) = ∑

xi

(see, Theorem 8.1.2)
The UMPU test is

φ(x) =
⎧
⎨

⎩

1 ; T < c1 or T > c2,
γi ; T = ci , i = 1, 2
0 ; otherwise

ci ’s and γi ’s (i = 1, 2) are such that Eφ(x) = α and dEφ(x)

dp = 0 or Eφ(x)T (x) =
αET (x)

Now T is distributed as B(nk, p).
EH0φ(x) = α,

⇒
c1−1∑

r=0

(
nk

r

)

pr
0qnk−r

0 +
nk∑

r=c2+1

(
nk

r

)

pr
0qnk−r

0 + γ1

(
nk

c1

)

pc1
0 qnk−c1

0

+ γ2

(
nk

c2

)

pc2
0 qnk−c2

0 = α (8.1.20)

Consider

A(c) =
n∑

r=c

(
n

r

)

pr qn−r

d A(c)

dp
=

n∑

r=c

(
n

r

)

r pr−1qn−r −
n∑

r=c

(
n

r

)

(n − r)pr qn−r−1

= n
n∑

r=c

[(
n − 1

r − 1

)

pr−1qn−r −
(

n − 1

r

)

pr qn−r−1

]
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Let

Dr =
(

n − 1

r

)

pr qn−r−1

d A(c)

dp
= n

n∑

r=c

[Dr−1 − Dr ]

= n
n∑

r=c

[Dr−1 − Dr ]

= n[Dc−1 − Dn] (8.1.21)

Note that Dn = 0 because
(n−1

n

) = 0

d A(c)

dp
=nDc−1

=n

(
n − 1

c − 1

)

pc−1qn−c (8.1.22)

1 − A(c) =
c−1∑

r=0

(
n

r

)

pr qn−r

d[1 − A(c)]
dp

= −d A(c)

dp
= −n

(
n − 1

c − 1

)

pc−1qn−c (8.1.23)

From (8.1.20), use (8.1.23)

dEφ(x)

dp
= −nk

(
nk − 1

c1 − 1

)

p0
c1−1q0

nk−c1 + nk

(
nk − 1

c2

)

p0
c2q0

nk−c2−1

+ γ1

(
nk

c1

)

{c1 p0
c1−1q0

nk−c1 − (nk − c1)p0
c1q0

nk−c1−1}

+ γ2

(
nk

c2

)

{c2 p0
c2−1q0

nk−c2 − (nk − c2)p0
c2q0

nk−c2−1} = 0 (8.1.24)

To get c1, c2, γ1 and γ2 from (8.1.20) and (8.1.24), unique solution is not possible.
A program in R is written for (8.1.20) and (8.1.24) to get c1, c2, γ1 and γ2 for
n = 10, k = 5, H0 : p = 0.95

library(’rootSolve’)

biump=function(n,k,p0,alpha){ eq=function(gamma){

c(f1=pbinom(c1-1,n*k,p0)+1-pbinom(c2,n*k,p0)+gamma[1]*dbinom(c1,n*k,p0)+gamma[2]*dbinom(c2,n*k,p0)-alpha,

f2=-n*k*dbinom(c1-1,n*k-1,p0)+n*k*dbinom(c2,n*k-1,p0)+

gamma[1]*choose(n*k,c1)*(c1*p0ˆ(c1-1)*(1-p0)ˆ(n*k-c1)-(n*k-c1)*p0ˆc1*(1-p0)ˆ(n*k-c1-1))

+gamma[2]*choose(n*k,c2)*(c2*p0ˆ(c2-1)*(1-p0)ˆ(n*k-c2)-(n*k-c2)*p0ˆc2*(1-p0)ˆ(n*k-c2-1)))}

for (c1 in 1:(n*k-1)){ for (c2 in (c1+1):(n*k))

kk=multiroot(f=eq,c(0,0))$root if (kk[1]>0 & kk[1]<=1 & kk[2]>0 &

kk[2]<=1)

{print(c(’gamma1,gamma2=’,kk));print(c(’c1=’,c1,’c2=’,c2));break}} }

biump(n=10,k=2,p0=0.95,alpha=0.05)

biump(n=10,k=3,p0=0.95,alpha=0.05)
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biump(n=10,k=4,p0=0.95,alpha=0.05)

biump(n=10,k=5,p0=0.95,alpha=0.05)

biump(n=10,k=2,p0=0.95,alpha=0.01)

biump(n=10,k=3,p0=0.95,alpha=0.01)

biump(n=10,k=4,p0=0.95,alpha=0.01)

biump(n=10,k=5,p0=0.95,alpha=0.01)

The UMPU test is for n = 10, p = 0.95,α = 0.05, k = 2

φ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 ; T < 16 or T > 20,
0.6896 ; T = 16
0.1067 ; T = 20
0 ; otherwise

Now using the condition

Eφ(x)T (x) = αET (x)

Eφ(x)T (x) =
c1−1∑

r=0

r

(
nk

r

)

p0
r q0

nk−r +
nk∑

r=c2+1

r

(
nk

r

)

p0
r q0

nk−r + γ1c1

(
nk

c1

)

p0
c1q0

nk−c1

+ γ2c2

(
nk

c2

)

p0
c2q0

nk−c2 = αnkp0 = αET (x)

⇒
c1∑

r=0

(
nk − 1

r − 1

)

p0
r−1q0

nk−r +
nk∑

r=c2+1

(
nk − 1

r − 1

)

p0
r−1q0

nk−r + γ1

(
nk − 1

c1 − 1

)

p0
c1−1q0

nk−c1

+ γ2

(
nk − 1

c2 − 1

)

p0
c2−1q0

nk−c2 = α (8.1.25)

From (8.1.24) and (8.1.25), c1, c2 γ1 and γ2 can be obtained. One has to use binomial
tables.
As n > 30 and p tends to 1

2 , the distribution of

T − nkp0√
nkp0q0

→ N (0, 1).

Using normal tables, one can find c1 and c2. In this situation γ1 = γ2 = 0.
Now for sample sizes which are not too small and values of p0 are not too close

to 0 or 1, the distribution of T is approximately symmetric.
In this case, much simpler equal tails test gives a good approximation to the

unbiased test.
c1 and c2 are determined so that

c1−1∑

r=0

(
nk

r

)

p0
r q0

nk−r + γ1

(
nk

c1

)

p0
c1q0

nk−c1 = α

2
(8.1.26)
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nk∑

r=c2+1

(
nk

r

)

p0
r q0

nk−r + γ2

(
nk

c2

)

p0
c2q0

nk−c2 = α

2
(8.1.27)

Similarly, program is written in R for (8.1.26) and (8.1.27) to get c1, c2, γ1, and γ2.

# Given data

n = 10; p = 0.35; alpha = 0.05; k = 3; q = 1-p; m = n*k

# First equation

# To find c1

a <- seq(from=1,to=m,by=1) # Declaring possible values for c1.

cdf = pbinom(a,m,p)-dbinom(a,m,p) # P(T < c1)

ind = min(which(cdf < (alpha/2))) # Gives value of c1 such that P(T < c1) < alpha

c1 = a[ind]

# To find gamma1

gam1 = -0.1 # Declaring gamma variable.

while(gam1 < 0 || gam1 > 1)

{

gam1 = ((alpha/2)-pbinom(c1,m,p)+dbinom(c1,m,p))/dbinom(c1,m,p)

c1_pre = c1; gam1_pre = gam1;

c1 = c1+1;

}

# Second equation

b <- seq(from=0,to=(m-1),by=1) # Declaring possible values for c2.

cdf = 1-pbinom(b,m,p) # P( T > c2)

# To find c2 such that P(T > c2) < alpha/2

if(cdf[m] < (alpha/2))

{

ind = min(which(cdf < (alpha/2))); c2 = a[ind];

}

if(cdf[m] > (alpha/2)) { c2 = m}

# To find gamma2

gam2 = -0.1 # Declaring gamma variable.

while(gam2 < 0 || gam2 > 1)

{

gam2 = ((alpha/2)-1+pbinom(c2,m,p))/dbinom(c2,m,p)

c2_pre = c2; gam2_pre = gam2;

c2 = c2-1;

}

# Assignment

c1 = c1_pre; gamma1 = gam1_pre

c2 = c2_pre; gamma2 = gam2_pre

# To check value

alpha1 = pbinom(c1,m,p)-dbinom(c1,m,p)+(gamma1*dbinom(c1,m,p))

alpha2 = 1-pbinom(c2,m,p)+(gamma2*dbinom(c2,m,p))

# OUTPUT

print(c("c1=",c1));

print(c("c2=",c2));

print(c("gamma1=",gamma1));

print(c("gamma2=",gamma2));

print("Check")

print(c("First equation",alpha1));

print(c("Second equation",alpha2));

# RESULT

# OUTPUT

"c1=" "6"

"c2=" "16"

"gamma1=" "0.0493338989789363"

"gamma2=" "0.713138558357069"

"Check"

"First equation" "0.025"

"Second equation" "0.025"
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The UMPU test is for n = 10, p = 0.35,α = 0.05, k = 3

φ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 ; T < 6 or T > 16,
0.049 ; T = 6,
0.7131 ; T = 16,
0 ; otherwise

Example 8.1.5 Let X ∼ P(λ) and assume α = 0.05 To test H0 : λ = 2 against
H1 : λ �= 2
The UMPU test is given by

φ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 ; x < c1 or x > c2,
γ1 ; x = c1,
γ2 ; x = c2,
0 ; otherwise

To find c1, c2, γ1 and γ2, we will use the following equations:

EH0φ(x) = α

⇒
c1−1∑

r=0

e−λ0(λ0)
r

r ! + γ1
e−λ0(λ0)

c1

c1! +
∞∑

r=c2+1

e−λ0(λ0)
r

r ! + γ2
e−λ0(λ0)

c2

c2! = α

c1−1∑

r=0

e−22r

r ! + γ1
e−22c1

c1! +
∞∑

r=c2+1

e−22r

r ! + γ2
e−22c2

c2! = 0.05 (8.1.28)

Next EH0 [φ(x)T (x)] = αEH0 T (x)

⇒
c1−2∑

s=0

e−λ0λ0
s

s! + γ1
e−λ0λ0

c1

c1! +
∞∑

s=c2

e−λ0−λ0
s

s! + γ2
e−λ0λ0

c2−1

c2 − 1! = α

c1−1∑

s=0

e−22s

s! + γ1
e−22c1

c1! +
∞∑

s=c2

e−22s

s! + γ2
e−22c2−1

c2 − 1! = 0.05 (8.1.29)

Consider c1 = 0 and c2 = 6
From (8.1.28),

0 + (0.13534)γ1 + (1 − 0.99547) + (0.01203)γ2 = 0.05

(0.13534)γ1 + (0.01203)γ2 = 0.04547 (8.1.30)
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Poisson(2)
X P(X=x) F(x)
0 0.135335 0.13534
1 0.270671 0.40601
2 0.270671 0.67668
3 0.180447 0.85712
4 0.090224 0.94735
5 0.036089 0.98344
6 0.012030 0.99547
7 0.003437 0.99890
8 0.000859 0.99976
9 0.000191 0.99995
10 0.000038 0.99999
11 0.000007 1.00000
12 0.000001 1.00000

From (8.1.29),

0 + (0.01656) + 0 + γ2(0.03089) = 0.05 (8.1.31)

⇒ γ2 = 0.9266
From (8.1.30), γ1 = 0.2536 The UMPU test is

φ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 ; x < 0 or x > 6,
0.2536 ; x = 0,
0.9266 ; x = 6,
0 ; otherwise

Example 8.1.6 Let the rvs X1, X2, . . . Xn are iid rvs with P(λ). Find UMPU test for
testing H0 : λ = λ0 against H1 : λ �= λ0

f (x1, x2, . . . , xn|λ) = e−nλλt

∏n
i=1 xi ! ; xi = 0, 1, 2 . . .

This belongs to one parameter exponential family.
In this case

∑n
i=1 T (xi ) = ∑n

i=1 xi = T . Now t ∼ P(nλ).
The UMPU test is

φ(x) =
⎧
⎨

⎩

1 ; T < c1 or T > c2
γi ; T = ci , i = 1, 2,
0 ; otherwise

(8.1.32)

c1, c2, γ1 and γ2 are such that EH0φ(x) = α and ET (x)φ(x) = αET (x)

From EH0φ(x) = α
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⇒
c1−1∑

r=0

e−nλ0(nλ0)
r

r ! + γ1
e−nλ0(nλ0)

c1

c1! +
∞∑

r=c2+1

e−nλ0(nλ0)
r

r !

+ γ2
e−nλ0(nλ0)

c2

c2! = α (8.1.33)

Consider

⇒
c1−1∑

r=0

e−nλ0(nλ0)
r

r ! +
c2∑

r=c1

e−nλ0(nλ0)
r

r ! +
∞∑

r=c2+1

e−nλ0(nλ0)
r

r ! = 1 (8.1.34)

⇒ 1 −
c2∑

c1

e−nλ0(nλ0)
r

r ! =
c1−1∑

r=0

e−nλ0(nλ0)
r

r ! +
∞∑

r=c2+1

e−nλ0(nλ0)
r

r !

(8.1.33) becomes

⇒ 1 −
c2∑

r=c1

e−nλ0(nλ0)
r

r ! + γ1
e−nλ0(nλ0)

c1

c1! + γ2
e−nλ0(nλ0)

c2

c2! = α

⇒
c2∑

r=c1

e−nλ0(nλ0)
r

r ! − γ1
e−nλ0(nλ0)

c1

c1! − γ2
e−nλ0(nλ0)

c2

c2! = 1 − α (8.1.35)

From ET (x)φ(x) = αET (x)

⇒
c1−1∑

r=0

r
e−nλ0(nλ0)

r

r ! +
∞∑

r=c2+1

r
e−nλ0(nλ0)

r

r ! + c1γ1
e−nλ0(nλ0)

c1

c1!

+ c2γ2
e−nλ0(nλ0)

c2

c2! = αnλ0 (8.1.36)

⇒
c1−1∑

r=1

e−nλ0(nλ0)
r−1

(r − 1)! +
∞∑

r=c2+1

e−nλ0(nλ0)
r−1

(r − 1)! + γ1
e−nλ0(nλ0)

c1−1

(c1 − 1)!

+ γ2
e−nλ0(nλ0)

c2−1

(c2 − 1)
! = α

⇒
c1−2∑

s=0

e−nλ0(nλ0)
s

s! +
∞∑

s=c2

e−nλ0(nλ0)
s

s! + γ1e−nλ0
(nλ0)

c1−1

(c1 − 1)!

+ γ2
e−nλ0(nλ0)

c2−1

(c2 − 1)! = α (8.1.37)
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Now

c1−2∑

s=0

e−nλ0(nλ0)
s

s! +
c2−1∑

s=c1−1

e−nλ0(nλ0)
s

s! +
∞∑

s=c2

e−nλ0(nλ0)
s

s! = 1 (8.1.38)

Hence,

c1−2∑

s=0

e−nλ0
(nλ0)

s

s! +
∞∑

s=c2

e−nλ0(nλ0)
s

s! = 1 −
c2−1∑

s=c1−1

e−nλ0(nλ0)
s

s!

⇒ 1 −
c2−1∑

s=c1−1

e−nλ0(nλ0)
s

s! + γ1
e−nλ0(nλ0)

c1−1

(c1 − 1)! + γ2
e−nλ0(nλ0)

c2−1

(c2 − 1)! = α

⇒
c2−1∑

s=c1−1

e−nλ0(nλ0)
s

s! − γ1
e−nλ0(nλ0)

c1−1

(c1 − 1)! − γ2
e−nλ0(nλ0)

c2−1

(c2 − 1)! = 1 − α

(8.1.39)

We have to solve the Eqs. (8.1.35) and (8.1.39) to get c1, c2, γ1, and γ2, but it is
difficult to solve.

A program in R is written as c1, c2, γ1 and γ2 for n = 10,λ = 8.2,α = 0.05

library(’rootSolve’)

poiump=function(n,lambda0,alpha,m){

eq=function(gamma){

c(f1=1-(ppois(c2,n*lambda0)-ppois(c1-1,n*lambda0))+gamma[1]*dpois(c1,n*lambda0)+gamma[2]*dpois(c2,n*lambda0)-alpha,

f2=(ppois(c2-1,n*lambda0)-ppois(c1-2,n*lambda0))-

gamma[1]*dpois(c1-1,n*lambda0)-gamma[2]*dpois(c2-1,n*lambda0)-1+alpha)}

for (c1 in 1:(m-1)){

for (c2 in (c1+1):(m))

kk=multiroot(f=eq,c(0,0))$root

if (kk[1]>0 & kk[1]<=1 & kk[2]>0 & kk[2]<=1)

{print(c(’gamma1,gamma2=’,kk));print(c(’c1=’,c1,’c2=’,c2));break}}

}

poiump(n=10,lambda0=8.2,alpha=0.05,m=100)

The UMPU test is

φ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 ; T < 65 or T > 100
0.3709 ; T = 65,

0.1007 ; T = 100,

0 ; otherwise

As an approximation, we can use equal tail test,

c1−1∑

r=0

e−nλ0(nλ0)
r

r ! + γ1
e−nλ0(nλ0)

c1

c1! = α

2
(8.1.40)
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∞∑

c2+1

e−nλ0(nλ0)
r

r ! + γ2
e−nλ0(nλ0)

c2

c2! = α

2
(8.1.41)

Similarly, program is written in R for (8.1.40) and (8.1.41) to get c1, c2, γ1 and γ2.

find_c1 = function(a)

{

cdf = ppois(a,m)-dpois(a,m) # P(T < c1)

if(cdf < (alpha/2)) { return(a)}

if(cdf >= (alpha/2)) {print("some error")}

}

find_gamma1 = function(a)

{

gam1 = ((alpha/2)-ppois(a,m)+dpois(a,m))/dpois(a,m);

return(gam1)

}

# Given data

n = 10; lambda = 8.2; alpha = 0.05; m = n*lambda

# First equation

a = 1; g1 = -0.1

while(g1 < 0 || g1 > 1)

{

c1 = find_c1(a);

g1 = find_gamma1(a);

a = a+1;

}

# Second equation

b = 0 # Declaring possible values for c2.

cdf = alpha

while(cdf >= (alpha/2))

{

cdf = 1-ppois(b,m) # P( T > c2)

b_pre = b

b = b + 1

}

c2 = b_pre;

# To find gamma2

gam2 = -0.1 # Declaring gamma variable.

while(gam2 < 0 || gam2 > 1)

{

gam2 = ((alpha/2)-1+ppois(c2,m))/dpois(c2,m)

c2_pre = c2; gam2_pre = gam2;

c2 = c2+1;

}
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# Assignment

gamma1 = g1

c2 = c2_pre; gamma2 = gam2_pre

# To check value

alpha1 = ppois(c1,m)-dpois(c1,m)+(gamma1*dpois(c1,m))

alpha2 = 1-ppois(c2,m)+(gamma2*dpois(c2,m))

# OUTPUT

print(c("c1=",c1));

print(c("c2=",c2));

print(c("gamma1=",gamma1));

print(c("gamma2=",gamma2));

print("Check")

print(c("First equation",alpha1));

print(c("Second equation",alpha2));

# RESULT

"c1=" "65"

"c2=" "100"

"gamma1=" "0.223352054419766"

"gamma2=" "0.274038885245226"

"Check"

"First equation" "0.025"

"Second equation" "0.025"

The UMPU test is for n = 10,λ = 8.2,α = 0.05

φ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 ; T < 65 or T > 100
0.22234 ; T = 65,

0.2740 ; T = 100,

0 ; otherwise

For large n, we can use normal approximations
∑

Xi − nλ0√
nλ0

→ N (0, 1)

Hence

PH0(T < c1) = α

2
and P(T > c2) = α

2

P

(

Z <
c1 − nλ0√

nλ0

)

= α

2
and P

(

Z >
c2 − nλ0√

nλ0

)

= α

2

P

(

Z <
c1 − nλ0√

nλ0

)

= α

2
and P(Z <

c2 − nλ0√
nλ0

) = 1 − α

2
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⇒ c1 − nλ0√
nλ0

= −Z α
2

and
c2 − nλ0√

nλ0
= Z α

2

⇒ c1 = nλ0 −
√

nλ0Z α
2

and c2 = nλ0 +
√

nλ0Z α
2

In this case, γ1 and γ2 is equal to zero.
Approximate UMPU test is

φ(x) =
{
1 ; T < nλ0 − √

nλ0Z α
2
or T > nλ0 + √

nλ0Z α
2

0 ; otherwise

8.2 Locally Most Powerful Test (LMPT)

Sometimes, whenUMP test does not exist, i.e., there is no single critical regionwhich
is the best for all alternatives,wemayfind regionswhich are best for alternatives close
to null hypothesis and hope that such regions will do well for distant alternatives.

A locallymost powerful test is the onewhich ismost powerful in the neighborhood
of the null hypothesis.

Let H0 : θ = θ0 against H1 : θ > θ0, i.e., θ = θ0 + δ, δ > 0
Let φ is locally most powerful, then EH0φ(x) = βφ(θ0) = α and βφ(θ) >

βφ∗(θ0) ∀ θ, where θ0 ≤ θ < θ0 + δ ∀ δ > 0
We have to maximize β(θ) in the interval θ0 ≤ θ < θ0 + δ.

Construction of LMP test
Expand βφ(θ) around θ0 by Taylor Series expansions.

βφ(θ) = βφ(θ0) + (θ − θ0)β
′
φ(θ0) + o(δ2)

Maximizing βφ(θ) is equivalent to maximizing β′
φ(θ), where

β′
φ(θ0) = d

dθ

∫

φ(x) f (x |θ)dx |θ=θ0

Assuming that differentiation under the integral sign holds.
Hence, we have to find φ such that it maximizes

∫
d
dθ

f (x |θ)φ(x)dx subject to∫
φ(x) f (x |θ0)dx = α.
Using extension of NP lemma, the test is given by

φ(x) =
{
1 ; d f (x |θ)

dθ
|θ=θ0 > k f (x |θ0)

0 ; otherwise
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This test can be written as

φ(x) =
{
1 ; d log f (x |θ)

dθ
|θ=θ0 > k

0 ; otherwise
(8.2.1)

LMP test in a sample of size n
Suppose we have a random sample X1, X2 < . . . , Xn from the pdf f (x |θ). Then
LMPT for testing H0 : θ = θ0 against H1 : θ > θ0 is given as

φ(x) =
{
1 ; ∑ d log f (x |θ)

dθ
|θ=θ0 > k

0 ; otherwise
(8.2.2)

Note: If f (x |θ) is such that

E

[
d log f (x |θ)

dθ

]

θ=θ0

= 0

and

V

[
d log f (x |θ)

dθ

]

θ=θ0

= I(θ0),

where I(θ0) is a Fisher’s Information.
Then for large n,

[nI(θ0)]−
1
2

n∑

i=1

d log f (x |θ)
dθ

|θ=θ0 ∼ N (0, 1).

Hence, if Zα is upper α% value of N (0, 1), then an approximate value of K =
Zα

√
nI(θ0)

Example 8.2.1 Let the rv X is N (θ, 1+ aθ2), a > 0 and known. Find the LMP test
for testing H0 : θ = 0 against H1 : θ > 0

f (x |θ) = 1√
2π

√
1 + aθ2

exp

[

−1

2

(x − θ)2

(1 + aθ2)

]

log f (x |θ) = −1

2
log(1 + aθ2) − 1

2
log 2π − (x − θ)2

2(1 + aθ2)

d log f (x |θ)
dθ

= −2aθ

2(1 + aθ2)
+ (x − θ)

1 + aθ2
+ aθ(x − θ)2

[1 + aθ2]2

Under H0, i.e., θ = 0, d log f (x |θ)
dθ

= x
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In a sample of size n,

n∑

i=1

d log f (xi |θ)
dθ

=
n∑

i=1

xi

The LMPT is

φ(x) =
{
1 ; X̄ > k
0 ; otherwise

Now under H0, X̄ ∼ N (0, 1
n )

Eφ(x) =P(X̄ > k) = α

=P(
√

n X̄ > k
√

n) = α

Hence, Zα = k
√

n ⇒ k = Zα√
n

The LMPT is

φ(x) =
{
1 ; X̄ > Zα√

n

0 ; otherwise

Construction of Locally Most Powerful Unbiased Test
IfUMPU test does not exist, thenwe canfind a testwhich ismost powerfully unbiased
in the neighborhood of θ0. And then we have to take the alternatives very close to θ0
and maximize the power locally.

We have to test H0 : θ = θ0 against H1 : θ �= θ0
Determine a test φ such that

EH0φ(x) = α and EH1φ(x) ≥ α for θ �= θ0 (8.2.3)

It maximizes Eθφ(x) when |θ − θ0| < δ, when δ is very small.
Expand Eθφ(x) around θ0

Eθφ(x) = Eθ0φ(x) + (θ − θ0)
dEφ(x)

dθ
|θ=θ0 + (θ − θ0)

2

2

d2Eφ(x)

dθ2
|θ=θ0 + o(δ2)

From (8.2.3), Eθφ(x) has minimum at θ = θ0. It implies that dEφ(x)

dθ
|θ=θ0 = 0

Maximizing Eφ(x) when |θ − θ0| < δ is equivalent to maximizing d2Eφ(x)

dθ2
|θ=θ0

subject to Eθ0φ(x) = α and dEφ(x)

dθ
|θ=θ0 = 0

i.e., Maximize
∫

φ(x)
d2 f (x |θ)

dθ2
dx |θ=θ0 subject to

∫
φ(x) f (x |θ0) = α

and
∫

φ(x)
d f (x |θ)

dθ
dx |θ=θ0 = 0

Using Extension of NP lemmawith c1 = α, c2 = 0, g0 = d2 f (x |θ)
dθ2

|θ=θ0 , g1 = f (x |θ0)
and g2 = d f (x |θ)

dθ
|θ=θ0
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Hence,

φ(x) =
{
1 ; d2 f (x |θ)

dθ2
|θ=θ0 > k1 f (x |θ0) + k2

d f (x |θ)
dθ

|θ=θ0

0 ; otherwise

Consider

d2 f (x |θ)
dθ2

|θ=θ0 > k1 f (x |θ0) + k2
d f (x |θ)

dθ
|θ=θ0

⇒ 1

f (x |θ0)
d2 f (x |θ)

dθ2
|θ=θ0 > k1 + k2

f (x |θ0)
d f (x |θ)

dθ
|θ=θ0 (8.2.4)

Next,

d f

dθ
= 1

f

d f

dθ
f = d log f

dθ
f

d2 f

dθ2
=d2 log f

dθ2
f + d log f

dθ

d f

dθ

=d2 log f

dθ2
f + d log f

dθ

(
1

f

d f

dθ
f

)

=d2 log f

dθ2
f +

(
d log f

dθ

)2

f

1

f (x |θ)
d2 f

dθ2
= d2 log f (x |θ)

dθ2
+

[
d log f (x |θ)

dθ

]2

(8.2.4) will become

d2 log f (x |θ)
dθ2

|θ=θ0 +
(

d log f (x |θ)
dθ

)2

|θ=θ0 > k1 + k2
d log f (x |θ)

dθ
|θ=θ0

The LMPUT is

φ(x) =
{
1 ; d2 log f (x |θ)

dθ2
|θ=θ0 + (

d log f (x |θ)
dθ

)2|θ=θ0 > k1 + k2
d log f (x |θ)

dθ
|θ=θ0

0 ; otherwise
(8.2.5)

k1 and k2 are such that EH0φ(x) = α and dEφ(x)

dθ
|θ=θ0 = 0

Example 8.2.2 Let X1, X2, . . . , Xn be iid with Cauchy distribution C(θ). Obtain
LMPT for testing H0 : θ = 0 against H1 : θ > 0.

f (x |θ) = 1

π

1

1 + (x − θ)2
; − ∞ < x < ∞, θ > 0

log f (x |θ) = − logπ − log[1 + (x − θ)2]
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d log f (x |θ)
dθ

= 2(x − θ)

1 + (x − θ)2

For a sample of size n,

n∑

i=1

d log f (xi |θ)
dθ

|θ=0 = 2
n∑

i=1

xi

1 + x2
i

.

Using (8.2.2), LMPT is given as

φ(x) =
{
1 ; ∑n

i=1
xi

1+x2
i

> k

0 ; otherwise

k is chosen such that

Eφ(x) = α ⇒ P

[
n∑

i=1

xi

1 + x2
i

> k

]

= α (8.2.6)

It is difficult to obtain the distribution of
∑n

i=1
xi

1+x2
i
.

By applying CLT, the distribution of
∑n

i=1 Yi ∼ AN (nμ, nσ2), where Yi = Xi

1+X2
i

and EYi = μ and V(Yi ) = σ2; i = 1, 2, . . . , n
Now

EY r
i =

∞∫

−∞

(
xi

1 + x2
i

)r 1

π

dxi

1 + xi
2

=
∞∫

−∞

xr
i

π[1 + x2
i ]r+1

dxi

If r is odd then EY r
i = 0. Let r is even and xi = tan θ ⇒ dxi = sec2 θdθ

If xi = 0 ⇒ tan θ = 0 ⇒ θ = 0 and xi = ∞ ⇒ tan θ = ∞ ⇒ θ = π
2

E(Y r
i ) = 2

π

π
2∫

0

(tan θ)r sec2(θ)

[sec2(θ)]r+1
dθ

= 2

π

π
2∫

0

(tan θ)r

[sec2(θ)]r
dθ

= 2

π

π
2∫

0

sinr (θ) cosr (θ)dθ
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We know that

π
2∫

0

sin2m−1(θ) cos2n−1(θ)dθ = β(m, n)

2

= 2

π

β( r+1
2 , r+1

2 )

2
= β( r+1

2 , r+1
2 )

π

Put r = 2, E(Y 2
i ) = 1

8 Hence, E(Yi ) = 0,V(Yi ) = 1
8

From (8.2.6)

P
[∑

Yi > k
]

= P

[√
8

n

∑
Yi >

√
8

n
k

]

= α

Zα =
√
8

n
k ⇒ k =>

√
n

8
Zα

The LMPT is

φ(x) =
{
1 ; ∑n

i=1 Yi >
√

n
8 Zα

0 ; otherwise

Example 8.2.3 Let X1, X2, . . . , Xn be iid rv with Cauchy distribution C(θ). Obtain
LMPU test for testing H0 : θ = 0 against H1 : θ �= 0.

n∑

i=1

d log f (xi |θ)
dθ

|θ=0 = 2
n∑

i=1

xi

(1 + x2
i )

n∑

i=1

d2 log f (xi |θ)
dθ2

|θ=0 = 4
n∑

i=1

x2
i

(1 + x2
i )2

− 2
n∑

i=1

1

1 + x2
i

= 2
n∑

i=1

x2
i − 1

(1 + x2
i )2

From (8.2.5), the LMPU test is

φ(x) =
{
1 ; 2

∑n
i=1

x2
i −1

(1+x2
i )2

+ 4(
∑n

i=1
xi

1+x2
i
)2 > k1 + k2

∑n
i=1

2xi

1+x2
i

0 ; otherwise

k1 and k2 are such that EH0φ(x) = α and dEφ(x)

dθ
|θ=0 = 0

Remark If UMPU test exists then it is LMPU but converse is not true.
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Example 8.2.4 Let X1, X2, . . . , Xn be iid rvs with N (θ, 1). Show that UMPU test
for testing H0 : θ = 0 against H1 : θ �= 0 is also LMPU test.
We have already given an UMPU test in the Example 8.1.1.

The UMPU test is

φ(x) =
{
1 ; x̄ < c1 or x̄ > c2
0 ; otherwise

Now we will find the LMPU test for testing H0 : θ = 0 against H1 : θ �= 0

log f (x1, x2, . . . , xn|θ) = const − 1

2

n∑

i=1

(xi − θ)2

d log f

dθ
=

n∑

i=1

(xi − θ)

d log f

dθ
|θ=0 =

n∑

i=1

xi

d2 log f

dθ2
|θ=0 = −n

The LMPU test is given as

φ(x) =
{
1 ; − n + (

∑n
i=1 xi )

2 > k1 + k2(
∑n

i=1 xi )

0 ; otherwise

⇒ φ(x) =
{
1 ; n2 x̄2 − n > k1 + k2nx̄
0 ; otherwise

Consider n2 x̄2 − n − k1 − k2nx̄ > 0 ⇒ x̄2 − k2 x̄
n − k1

n2 − 1
n > 0

Let t = x̄ ⇒ g(t) = t2 − k2t

n
−

(
k1
n2

+ 1

n

)

> 0

⇒ g(t) = t2 + A1t + A2 > 0,

where A1 = − k2
n and A2 = − ( k1

n2 + 1
n

)

g′(t) = 2t − k2
n g′′(t) = 2 > 0

g(t) is convex in t ⇒ t < c1 or t > c2 Hence,

φ(x) =
{
1 ; x̄ < c1 or x̄ > c2
0 ; otherwise

which is same as UMPU test.
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Example 8.2.5 Let X1, X2, . . . , Xn be iid rvs with N (0,σ2). Find LMPU test for
testing H0 : σ2 = σ2

0 against H1 : σ2 �= σ2
0

Let σ2 = θ

f (x1, x2, . . . , xn|σ2) = − n√
2πθ

exp

[

−
∑

x2
i

2θ

]

log f (x1, x2, . . . , xn|σ2) = −n

2
log θ −

∑
x2

i

2θ

d log f

dθ
|θ=θ0 = − n

2θ0
+

∑
x2

i

2θ20

d2 log f

dθ2
|θ=θ0 = n

2θ20
−

∑
x2

i

θ30

φ(x) =
{
1 ;

(
−

∑
x2

i

θ30
+ n

2θ20

)
+

(∑
x2

i
2θ0

− n
2θ0

)2
> k1 + k2

(∑
x2

i

2θ20
− n

2θ0

)

0 ; otherwise

Let
∑

x2
i

θ0
= v

φ(x) =
{
1 ;

(
− v

θ20
+ n

2θ20

)
+

(
v
2θ0

− n
2θ0

)2
> k1 + k2

(
v
2θ0

− n
2θ0

)

0 ; otherwise

Let

g(v) =
(

v − n

2θ0

)2

+ n

2θ20
− v

θ20
− k1 − k2

2θ0
(v − n)

g′(v) = 2
(v − n)

4θ20
− 1

θ20
− k2

2θ0

g′′(v) = 1

2θ20
> 0

g(v) is convex, then LMPU test is given as

φ(x) =
{
1 ;

∑
x2

i
θ0

< c1 or
∑

x2
i

θ0
> c2

0 ; otherwise

c1 and c2 are such that EH0φ(x) = α and dEφ(x)

dθ
|θ=θ0 = 0

Further note that
∑

x2
i

θ0
∼ χ2

n ⇒ c1 = χ2
n,1−α and c2 = χ2

n,α.
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8.3 Similar Test

In many testing problems, the hypothesis is for a single parameter but the distribution
of the observable random variables depends on more than one parameter. Therefore,
we will obtain UMPU test for composite alternatives when pdf(pmf) involves more
than one parameter.

Let f (x |θ) be a family of pdf with parameter θ, θ ∈ �, where � is a parametric
space.
Suppose H0 : θ0 ∈ �0, where �0 contains more than one point, H1 : θ ∈ � − �0

Let φ(x) be the test of level of significance α.

EH0φ(x) ≤ α ∀ θ ∈ �0

EH1φ(x) > α ∀ θ ∈ � − �0

Definition 8.3.1 A test φ(x) of significance level α is called a similar test for testing
H0 : θ ∈ ∧, where ∧ is a subset of � if

EH0φ(x) = α ∀ θ ∈ ∧,

where a set ∧ in the parametric space � is called the boundary set of subsets of �0

and � − �0.
Further if θ ∈ ∧, then there are points in �0 and � − �0, which are arbitrarily

close to θ.
For example, consider N (μ,σ2) � = {−∞ < μ < ∞,σ > 0}
If �0 : μ = 0 and � − �0 : μ �= 0 then ∧ : μ = 0.
Hence, ∧ is called boundary of �0 and � − �0.

Theorem 8.3.1 Let φ(x) be an unbiased test of level of significance α for testing
H0 : θ ∈ �0 against H1 : θ ∈ � − �0. Suppose that EH1φ(x) is a continuous
function of θ then φ(x) is a similar test for testing H0 : θ ∈ ∧ where ∧ is a boundary
of �0 and � − �0.

Proof Let θ0 be a point in ∧. Assume that there exists a sequence θ1n in �0 such
that

lim
n→∞ θ1n = θ0

Since EH1φ(x) is a continuous function of θ.

lim
n→∞Eθ1n φ(x) = Eθφ(x)

⇒ βφ(θ1n) → βφ(θ0)
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Since βφ(θ1n) ≤ α ∀ n, θ1n ∈ �0

⇒ βφ(θ0) ≤ α (8.3.1)

There exist a sequence θ2n in � − �0 such that limn→∞ θ2n = θ0
Since φ is unbiased

Eθ2n φ(x) ≥ α ⇒ βφ(θ2n) ≥ α

⇒ Eθ0φ(x) ≥ α ⇒ βφ(θ0) ≥ α (8.3.2)

From (8.3.1) and (8.3.2), Eθ0φ(x) = α

⇒ βφ(θ0) = α for θ0 ∈ ∧

⇒ φ(x) is a similar test for testing θ ∈ ∧.
Note: Thus, if βφ(θ) is continuous in θ for any φ- an unbiased test of size α of H0

against H1 is also α-similar for the pdf(pmf) of ∧, i.e., for { f (x |θ) : θ ∈ ∧}. We can
find MP similar test of H0 : θ ∈ ∧ against H1 and if this test is unbiased of size α,
then necessarily it is MP in the smaller class.

Definition 8.3.2 A test φ is UMP among all α-similar test on the boundary ∧, is
said to be a UMP α-similar test.

Remark 1 Let C1 be the class of all unbiased test for testing H0 : θ ∈ �0 against
H1 : θ ∈ � − �0. Since Eθφ(x) is a continuous function. Similarly, let C2 be the
class of all similar test for testing H0 : θ ∈ ∧ against H1 : θ ∈ �−�0 then C1 ⊆ C2.

Remark 2 It is frequently easier to find a UMP α-similar test. Moreover, tests that
are UMP similar on the boundary are often UMP unbiased.

Theorem 8.3.2 Let The power function of the test φ of H0 : θ ∈ �0 against H1 : θ ∈
� − �0 be continuous in θ, then a UMP α-similar test is UMP unbiased provided
that its size is α for testing H0 against H1.

Proof Let φ0 be a UMP α-similar. Then

Eθφ0(x) ≤ α θ ∈ �0 (i)

Consider a trivial test φ(x) = α

βφ0(θ) ≥ βφ(θ) (Because φ0 is U M P)

βφ0(θ) ≥ α θ ∈ � − �0 (i i)

From (i) and (ii), φ0 is also unbiased.
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Remark 3 Hence, we see that class of all unbiased size α test is a subclass of the
class of all α-similar tests.

Remark 4 The continuity of power function βφ(θ) is not always easy to check. If the
family f (x |θ) belongs to exponential family, then the power function is continuous.

In the following example, we will show that UMP α-similar test is unbiased.

Example 8.3.1 Let X1, X2, . . . , Xn be iid random sample from N (θ, 1), we wish to
test H0 : θ ≤ 0 against H1 : θ > 0

Since this family of densities has an MLR in T = ∑n
i=1 xi . We can give a UMP

test as

φ(t) =
{
1 ; T > k
0 ; otherwise

Now we will find similar test

�0 = {θ ≤ 0},� − �0 = {θ > 0},∧ = {θ = 0}

Distribution of T ∼ N (nθ, n), which is a one parameter exponential family, then
the power function of any test φ based on T is continuous in θ. It follows that any
unbiased size α test has the property, βφ(θ) = α of similarity over ∧.

Now we have to find a UMP test of H0 : θ ∈ ∧ against H1 : θ > 0
By NP lemma,

λ(t) = exp

[
t2

2n
− (t − nθ)2

2n

]

> k ⇔ T > k

The UMP test is given as

φ(t) =
{
1 ; T > k
0 ; otherwise

where k is determined as

EH0φ(t) = α ⇒ P[T > k] = P

[
T√
n

>
k√
n

]

= α

k√
n

= Zα ⇒ k = √
nZα

Since φ is independent of H1 as long as θ > 0, we see that the test

φ(t) =
{
1 ; T >

√
nZα

0 ; otherwise

is UMP α-similar.
We need only to check that φ is of right size for testing H0 against H1.



378 8 Unbiased and Other Tests

We have H0 : θ ≤ 0

EH0φ(t) = Pθ[T >
√

nZα]
= Pθ

[
T − nθ√

n
>

√
nZα − nθ√

n

]

= Pθ

[
T − nθ√

n
> Zα − √

nθ

]

Since θ < 0 ⇒ Zα − √
nθ > 0 ⇒ Zα − √

nθ > Zα

Hence

P

[
T − nθ√

n
> Zα − √

nθ

]

≤ P

[
T − nθ√

n
> Zα

]

= α

⇒ EH0φ(t) ≤ α

Therefore, φ is UMP unbiased.

8.4 Neyman Structure Tests

In this case, we shall restrict ourselves to test which are similar for testing H0 : θ ∈ ∧
against H1 : θ ∈ � − �0, where ∧ is a boundary of �0 and � − �0.

Definition 8.4.1 Let T (x) be a sufficient statistics for f (x |θ), whenever θ ∈ ∧, then
a test φ(X) is called a Neyman Structure test for testing θ ∈ ∧ if

EH0 [φ(X)|T (X) = t] = α ∀ t and θ ∈ ∧.

Theorem 8.4.1 Every test φ(X) having Neyman Structure for θ ∈ ∧ is a similar
test for θ ∈ ∧
Proof Letφ(X) beNeyman Structure test and T (X) be a sufficient statistics for θ ∈ ∧

EH0 [φ(X)|T (x)] = α (i)

ET
{
EH0 [φ(X)|T (x)]} = ET (α) = α ∀ t and ∀ θ ∈ ∧.

⇒ It is a similar test.

One should note that a complete family is always boundedly complete but the con-
verse is not true.
Note: See Theorem 1.5.2 and Example 1.5.10

http://dx.doi.org/10.1007/978-981-10-0889-4_1
http://dx.doi.org/10.1007/978-981-10-0889-4_1
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Theorem 8.4.2 Let T(X) be boundedly complete sufficient statistics for θ ∈ ∧, then
every similar test for testing θ ∈ ∧ has a Neyman Structure.

Proof Let φ(X) be a similar test for testing θ ∈ ∧. Hence EH0φ(X) = α ∀ θ ∈ ∧.
We have to prove that E[φ(X)|T (x) = t] = α.

Let ψ(X) = φ(X) − α

E[ψ(X)] = 0 ∀ θ ∈ ∧

Since E[ψ(X)|T (X) = t] is independent of θ (Because T (X) is sufficient)

ETE[ψ(X)|T (x) = t] = 0 ∀ θ ∈ ∧

Let ψ∗(T ) = E[ψ(X)|T (x) = t] ⇒ Eψ∗(T ) = 0
Now φ(X) lies between 0 and 1. ψ(X) lies between −α and (1 − α). It implies

that ψ(X) is bounded. Hence, its expectation also lies between −α and (1 − α).
T (X) is boundedly complete which imply

ψ∗[T (x)] = 0 ∀ T(X) (i)

ψ∗[T (x)] = E[ψ(X)|T (x) = t]
= E[φ(X) − α|T (x) = t]
= E[φ(X)|T (x) = t] − α

From (i)

E[φ(X)|T (x) = t] − α = 0

⇒ E[φ(X)|T (x) = t] = α

This implies that φ(X) has Neyman Structure.

Remark Let C1=Class of unbiased test.
C2= class of similar test ∀ θ ∈ ∧
C3=Class of Neyman Structure test ∀ θ ∈ ∧.
C1 ⊆ C2,C3 ⊆ C2, andC2 ⊆ C3 ⇒ every similar test is Neyman Structure provided
that sufficient Statistics is bounded complete.
⇒ C2 = C3; see Fig. 8.2.

Steps to Obtain Neyman Structure Test

(i) Find ∧: boundary of �0 and � − �0

Then test H0 : θ ∈ ∧ against H1 : θ ∈ � − �0

(ii) Find sufficient Statistics T(X) on ∧



380 8 Unbiased and Other Tests

Fig. 8.2 Graphical
presentation of relation
between unbiased, similar
and Neyman structure test

(iii) Show that T(X) is boundedly complete
(iv) Obtain the conditional pdf of f (x |T (x)) under H0, i.e., for θ ∈ ∧ and

f (x |T (X)) under H1, i.e., θ ∈ � − �0.
(v) Obtain most powerful test using the theorem stated in Chap.7.

Remark Suppose if we want to find UMPU test of size α for H0 : θ ∈ ∧ against
H1 : θ ∈ � − �0, then using above steps find UMP Neyman Structure Test of size
α for H0 : θ ∈ ∧ against H1 : θ ∈ � − �0.

If there exists a boundedly complete sufficient statistics, then this test is also UMP
similar test for θ ∈ ∧.

If this test has to be unbiased, it should satisfy

Eθφ(X) ≤ α ∀ θ ∈ �0

and Eθφ(X) ≥ α ∀ θ ∈ � − �0

Example 8.4.1 Let X1, X2, . . . , Xk1 and Y1, Y2, . . . , Yk2 are iid rvs B(n1, p1) and
B(n2, p2), respectively, where n1 and n2 are known. Find Neyman Structure test for
testing H0 : p1 = p2 against H1 : p1 > p2.

In this case ∧ : p1 = p2

f (x, y|p1, p2) =
k1∏

i=1

(
n1

xi

)

p1
t1qn1k1−t1

1

k2∏

i=1

(
n2

yi

)

p2
t2qn2k2−t2

1 ,

where, q1 = 1 − p1, q2 = 1 − p2, T1 = ∑k1
i=1 xi , T2 = ∑k2

j=1 y j

Now T1 ∼ B(n1k1, p1) and T2 ∼ B(n2k2, p2).
Then under H0, T1 + T2 ∼ B(n1k1 + n2k2, p1)
T1 + T2 is sufficient and complete under H0.

http://dx.doi.org/10.1007/978-981-10-0889-4_7
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fH0 (x, y|T1 + T2 = t) =
∏k1

i=1

(n1
xi

)∏k2
j=1

(n2
y j

)

(n1k1+n2k2
t

) ; xi = 0, 1, 2, . . . , n1, y j = 0, 1, 2, . . . , n2,

i = 1, 2, . . . , k1, j = 1, 2, . . . , k2

Now to find the distribution of T1 + T2 = t under H1

f (t1, t2|p1, p2) =
(

n1k1
t1

)(
n2k2

t2

)

p1
t1qn1k1−t1

1 p2
t2qn2k2−t2

2 ,

Let T1 + T2 = T and T2 = T − T1

f (t1, t2|p1, p2) =
(

n1k1
t1

)(
n2k2
t − t1

)

p1
t1qn1k1−t1

1 p2
t−t1qn2k2−t+t1

2 ,

=
(

n1k1
t1

)(
n2k2
t − t1

)(
p1

p2

)t1 (q2

q1

)t1 ( p2

q2

)t

qn1k1
1 qn2k2

2 ,

P[T = t] = qn1k1
1 qn2k2

2

(
p2

q2

)t min(n1k1,t)∑

t1=0

(
n1k1

t1

)(
n2k2
t − t1

)(
p1q2

p2q1

)t1

f (x, y|p1, p2) =
k1∏

i=1

(
n1

xi

) k2∏

j=1

(
n2

y j

)

p1
t1qn1k1−t1

1 p2
t2qn2k2−t2

2 ,

f (x, y|p1, p2) =
k1∏

i=1

(
n1

xi

) k2∏

j=1

(
n2

y j

)

p1
t1qn1k1−t1

1 p2
t−t1qn2k2−t+t1

2 ,

=
k1∏

i=1

(
n1

xi

) k2∏

j=1

(
n2

y j

)

qn1k1
1 qn2k2

2

(
p2

q2

)t ( p1q2

p2q1

)t1

,

fH1(x, y|T1 + T2 = t) =
∏k1

i=1

(n1

xi

)∏k2
j=1

(n2

y j

)
(

p1q2
p2q1

)t1

∑min(n1k1,t)
t1=0

(n1k1
t1

)(n2k2
t−t1

)
(

p1q2
p2q1

)t1
,

λ(x, y|T ) = fH1(x, y|T1 + T2 = t)

fH0(x, y|T1 + T2 = t)

=
(n1k1+n2k2

t

)
(

p1q2
p2q1

)t1

∑min(n1k1,t)
t1=0

(n1k1
t1

)(n2k2
t−t1

)
(

p1q2
p2q1

)t1
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Hence

φ(X, Y |T1 + T2 = t) =

⎧
⎪⎨

⎪⎩

1 ; (
p1q2
p2q1

)
t1 > k(t, p1, p2)

γ ; (
p1q2
p2q1

)
t1 = k(t, p1, p2)

0 ; (
p1q2
p2q1

)
t1 < k(t, p1, p2)

⇒ φ(X, Y |T1 + T2 = t) =
⎧
⎨

⎩

1 ; T1 > k(t, p1, p2)

γ ; T1 = k(t, p1, p2)

0 ; T1 < k(t, p1, p2)

To find the distribution of T1 given T1 + T2 = t under H0

PH0 [T1 = t1|T1 + T2 = t] = P[T1 = t1, T2 = t − t1]
P[T1 + T2 = t]

=
(n1k1

t1

)(n2k2
t−t1

)

(n1k1+n2k2
t

) , t1 = 0, 1, 2, . . .min(n1k1, t)

EH0 [φ(X, Y |T1 + T2 = t)] = α

⇒ P[T1 > k(t, p1, p2)|T1 + T2 = t] + γP[T1 = k(t, p1, p2)|T1 + T2 = t] = α

⇒
min(n1k1,t)∑

t1=k+1

(n1k1
t1

)(n2k2
t−t1

)

(n1k1+n2k2
t

) + γ

(n1k1
k

)(n2k2
t−k

)

(n1k1+n2k2
t

) = α

This is a conditional test as it depends on t.
One should note that this test does not depend on p1 and p2. Hence this test is

UMP similar for p1 > p2.
We have written a program in R to calculate k and γ.

# Given data
x = c(1,1,2,3,2,2,1,1,0,2);
y = c(3,3,3,2,3,2,1,3,2,3,1,3,3,1,2)
alpha = 0.05; n1 = 4; n2 = 5;
k1 = length(x); k2 = length(y); m <- n1*k1; N <- n1*k1+n2*k2

# To find k such that first term is < alpha
t1 = sum(x); t2 <- sum(y); T = t1+t2;
a = seq(from=0,to=min(m,T)-1,by=1); # possible values for k
la = length(a)

# to find cumulative probability, i.e., P(t1 > k)
cpk <- rep(0,la) # declaring variable to find cumulative probability.
for(i in 1:la)
{

for(j in (a[i]+1):min(m,T))
{

cpk[i] = cpk[i] + dhyper(j,m,N-m,T);
}

}
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ind = min(which(cpk < alpha)) # gives cumulative probability < alpha
# To find gamma

\textit{k} = ind-1; b <- dhyper(k,m,N-m,T);
gamma = (alpha-cpk[k+1])/b

# To check the answer
check <- cpk[k+1]+(gamma*dhyper(k,m,N-m,T))

# OUTPUT
print(c("k=",k))
print(c("gamma =",gamma))
print(c("check=",check))

# RESULT
"k=" "22"
"gamma =" "0.918666332250108"
"check=" "0.05"

Example 8.4.2 Let X1, X2, . . . , Xn be a random sample from N (μ,σ2), where μ is
unknown. Find Neyman Structure test or UMP similar test for testing H0 : σ2 = σ2

0
against H1 : σ2 > σ2

0, where μ is unknown.

Now x̄ and s2 are jointly sufficient for (μ,σ2), where s2 = ∑n
i=1(xi − x̄)2. Further,

x̄ and s2 are independent random variables.

f (x̄, s2) = n

σ
√
2π

exp

[

−n(x̄ − μ)2

2σ2

]
e− s2

2σ2 ( s2

σ2 )
n−1
2 −1

2
n−1
2 Γ ( n−1

2 )

1

σ2

= c exp[− n
2σ2 (x̄ − μ)2](s2) n−1

2 −1 exp[− s2

2σ2 ]
σn

where c is constant.
Under H0 : x̄ ∼ N (μ,

σ2
0

n )

fH0(x̄, s2|x̄) = c1
σn−1
0

exp

[

− s2

2σ2
0

]

(s2)
n−1
2 −1,

where c1 is constant.
Under H1, x̄ ∼ N (μ, σ2

n ), σ2 > σ2
0

fH1(x̄, s2|x̄) = cσ−n exp[− 1
2σ2 {n(x̄ − μ)2 + s2}](s2) n−1

2 −1

c1σ−1 exp[− 1
2σ2 {n(x̄ − μ)2}]

= c2σ
−(n−1)(s2)

n−1
2 −1 exp

[

− s2

2σ2

]

,

λ(x̄, s2|X̄) = fH1

fH0

= c2 exp

[

− s2

2

(
1

σ2
− 1

σ2
0

)]

,
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where c2 is function of (σ2,σ2
0)

⇒ λ(x̄, s2|x̄) > k

⇒ s2 > k(σ,σ0)

Neyman Structure Test is given as

φ(x̄, s2|x̄) =
{
1 ; s2 > k(σ,σ0)

0 ; s2 ≤ k(σ,σ0)

k(σ,σ0) is determined as

PH0 [s2 > k(σ,σ0)|x̄] = α

⇒ PH0

[
s2

σ2
0

> k|x̄
]

= α

Now though it is a conditional probability but one can write it out as

⇒ PH0

[
s2

σ2
0

> k

]

= α,

because x̄ and s2 are independent.

s2

σ2
0

∼ χ2
n−1 ⇒ k = χ2

n−1,α

The test is

⇒ φ(x̄, s2|x̄) =
{
1 ; s2

σ2
0

> χ2
n−1,α

0 ; otherwise

Note: This test is UMP similar test.

Example 8.4.3 Let X1, X2, . . . , Xn be a random sample from N (μ,σ2), where σ2 is
unknown. Find Neyman Structure test for testing H0 : μ = μ0, σ2 unknown against
H1 : μ > μ0

Now x̄ and s2 are jointly sufficient for (μ,σ2)

f (x̄, s2) = c

σn
exp

[

− 1

2σ2
{n(x̄ − μ)2 + s2}

]

(s2)
n−1
2 −1,

where c is constant, s2 = ∑n
i=1(xi − x̄)2.
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√
n(x̄ − μ0)

σ
∼ N (0, 1) and

s2

σ2
∼ χ2

n−1

⇒ n(x̄ − μ0)
2 + s2

σ2
∼ χ2

n

Let w = n(x̄ − μ0)
2 + s2 is a sufficient statistics for N (μ,σ2).

fH0(x̄, s2|w) = cσ−n exp(− w
2σ2 )[w − n(x̄ − μ0)

2] n−1
2 −1

c1σ−n exp(− w
2σ2 )w

n
2 −1

,

= c2[w − n(x̄ − μ0)
2] n−1

2 −1

w
n
2 −1

Now to find fH1(x̄, s2|w)

Let μ1 = μ − μ0 and (x̄ − μ0) ∼ N (μ1,
σ2

n )

⇒ √
n(x̄ − μ0) ∼ N (

√
nμ1,σ

2),
Let v = √

n(x̄ − μ0)

Consider

w = s2 + [n(x̄ − μ0]2
= s2 + v2

f (s2, v) = ( s2

σ2 )
n−1
2 −1 exp(− s2

2σ2 )

2
n−1
2 Γ ( n−1

2 )σ2

exp[− 1
2σ2 (v − √

nμ1)
2]

σ
√
2π

= c

σn
(s2)

n−1
2 −1 exp

[

− 1

2σ2
{s2 + (v − √

nμ1)
2}
]

We have to find a joint distribution of s2 and w.
Since w = s2 + v2 ⇒ v = √

w − s2 and s2 = s2

J = ∂(v, s2)

∂(w, s2)
=

( ∂v
∂w

∂v
∂s2

∂s2

∂w
∂s2

∂s2

)

=
(

1
2 (w − s2)− 1

2 − 1
2 (w − s2)− 1

2

0 1

)

= 1

2
(w − s2)−

1
2

|J | = 1

2
(w − s2)−

1
2

f (s2, w) = c

σn
(s2)

n−1
2 −1 exp

[

− 1

2σ2
{s2 + (v − √

nμ1)
2}
]

|J |
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f (s2, w) = c

σn
(s2)

n−1
2 −1 exp

[

− 1

2σ2
{s2 + w − s2 − 2

√
nμ1

√
w − s2 + nμ2

1}
]

|J |

= c

σn
(s2)

n−1
2 −1 exp

[

− 1

2σ2
{w − 2

√
n(w − s2)

1
2 μ1 + nμ2

1}
]
1

2

(
w − s2

)− 1
2

v2 > 0 ⇒ w − s2 > 0 ⇒ s2 < w

f (w) =
w∫

0

c

σn (s2)
n−1
2 −1 exp

[

− 1

2σ2
{w − 2

√
n(w − s2)

1
2 μ1 + nμ21}

]
1

2

(
w − s2

)− 1
2 ds2

Let s2

w
= u ⇒ ds2 = wdu

= c

σn

1∫

0

(wu)
n−1
2 −1 exp

[

− w

2σ2

]

exp[−
√

nw
1
2 (1 − u)

1
2 μ1

σ2
− nμ21

2σ2
]w− 1

2 (1 − u)− 1
2 wdu

= c

σn w
n
2−1 exp

[

− w

2σ2

] 1∫

0

u
n−1
2 −1(1 − u)− 1

2 exp[−
√

nw
1
2 (1 − u)

1
2 μ1

σ2
− nμ21

2σ2
]du

= c

σn w
n
2−1 exp

[

− w

2σ2

]

g(w,μ1,σ
2)

fH1(x̄, s2|w) = cσ−n exp[− 1
2σ2 {n(x̄ − μ)2 + s2}][w − n(x̄ − μ0)

2] n−1
2 −1

cσ−nw
n
2−1 exp[− w

2σ2 ]g(w,μ1, σ2)

Consider

exp

[

− 1

2σ2
{n(x̄ − μ0 + μ0 − μ)2 + s2}

]

= exp

[

− 1

2σ2
{n(x̄ − μ0)

2 + s2 − 2n(x̄ − μ0)μ1 + nμ2
1}
]

= exp

[

− 1

2σ2
{w − 2nx̄μ1 + 2nμ0μ1 + nμ2

1}
]

= exp(− w

2σ2
) exp[− 1

2σ2
{−2nx̄μ1 + 2nμ0μ1 + nμ2

1}]

fH1(x̄, s2|w) = [w − n(x̄ − μ0)
2] n−1

2 −1 exp[− 1
2σ2 {−2nx̄μ1 + 2nμ0μ1 + nμ2

1}]
w

n
2 −1g(w,μ1,σ2)

λ(x̄, s2|w) = fH1(x̄, s2|W )

fH0(X̄ , s2|W )
= const. exp[− 1

2σ2
(−2nx̄μ1)] (8.4.1)
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= const. exp

[
nx̄μ1

σ2

]

(8.4.2)

= const. exp

[
nx̄(μ − μ0)

σ2

]

(8.4.3)

The Neyman Structure test is

φ(x̄, s2|w) =
{
1 ; exp[nx̄(μ − μ0)

σ2
] > k

0 ; otherwise

⇒ φ(x̄, s2|w) =
⎧
⎨

⎩
1 ;

√
n(x̄ − μ0)

s
> k(μ,μ0,σ

2)

0 ; otherwise
(8.4.4)

Let t =
√

n(X̄−μ0)

s

Consider, h(t) =
√

n(x̄−μ0)√
s2+n(x̄−μ0)2

= t√
1+t2

h′(t) > 0 ⇒ h(t) is increasing in t

n(x̄ − μ0)√
w

> k ⇒
√

n(x̄ − μ0)

s
> k

From (8.4.4)

√
n(x̄ − μ0)√

w
> k(μ,μ0,σ

2)

⇒ P

[√
n(x̄ − μ0)√

w
> k|w

]

= P

[√
n(x̄ − μ0)

s
> k

]

= α ⇒ k = tn−1,α

Hence, Neyman Structure test is

φ(x̄, s2|w) =
{
1 ; [

√
n(x̄−μ0)

s ] > tn−1,α
0 ; otherwise

Example 8.4.4 Let X1, X2, . . . , Xm and Y1, Y2, . . . , Yn are iid rvs as P(λ1) and
P(λ2), respectively. Find (i) Neyman Structure test (ii) UMPU test (iii) UMP similar
test for testing H0 : λ1 = λ2 against H1 : λ1 > λ2.

Let T1 = ∑m
i=1 xi and T2 = ∑n

j=1 y j

T1 is sufficient for λ1 and T2 is sufficient for λ2. Under H0, the distribution of T1+T2

is P((m + n)λ).
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Moreover, under H0, T1 + T2 is complete sufficient statistics.

f (t1, t2) = e−mλ1(mλ1)
t1

t1!
e−nλ2(nλ2)

t2

t2!

fH0(t1, t2|T1 + T2 = t) = f (T1 = t1, T2 = t − t2)

f (t)

= e−mλ(mλ)t1

t1!
e−nλ(nλ)t2

t2!
t !

e−λ(m+n)[λ(m + n)]t

=
(

t

t1

)(
m

m + n

)t1 ( n

m + n

)t−t1

; t1 = 0, 1, 2, . . . , t

Under H1, T1 + T2 is distributed as P[mλ1 + nλ2]

fH1(t1, t2|T1 + T2 = t) =
(

t

t1

)(
mλ1

mλ1 + nλ2

)t1 ( nλ2
mλ1 + nλ2

)t−t1
; t1 = 0, 1, 2, . . . , t

λ(t1, t2|T ) = fH1(t1, t2|T1 + T2 = t)

fH0 (t1, t2|T1 + T2 = t)
=

(
λ1

mλ1 + nλ2

)t1 ( λ2
mλ1 + nλ2

)t−t1
(m + n)t

λ(t1, t2|T > k(t) ⇒ (λ1
λ2

)t1 > k(λ1,λ2, t) ⇒ t1 > k(λ1,λ2, t)

The Neyman Structure test is given as

φ(t1, t2|T = t) =
⎧
⎨

⎩

1 ; t1 > k(λ1,λ2, t)
γ ; t1 = k(λ1,λ2, t)
0 ; t1 < k(λ1,λ2, t)

The distribution of T1 given T1 + T2 under H0 as

P[T1 = t1|T1 + T2 = t] =
(

t

t1

)(
m

m + n

)t1 ( n

m + n

)t−t1

; t1 = 0, 1, 2, . . . , t

Now EH0φ(t1, t2|T ) = α

PH0 [T1 > k(λ1,λ2, t)|T = t] + γPH0 [T1 = k(λ1,λ2, t)|T1 + T2 = t] = α

t∑

t1=k+1

(
t

t1

)(
m

m + n

)t1 ( n

m + n

)t−t1

+ γ

(
t

k

)(
m

m + n

)t ( n

m + n

)t−k

= α

One can find k and γ according to the example as stated in UMP tests. This test is
also UMPU and UMP similar test.
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# Given data
x = c(4,8,5,6,3,3,11,10,8,4,2,1);
y = c(3,2,3,6,6,6,8,3,2,5,2,3,2,2,6);
alpha = 0.05
m = length(x); n = length(y); p = m/(m+n); q = 1-p;

# To find k such that cumulative probability is < alpha
t1 = sum(x); t2 <- sum(y); T = t1+t2;
a = seq(from=0,to=(T-1),by=1); # possible values for k
la = length(a)

# to find cumulative probability, i.e., P(t1 > k)
cpk <- rep(0,la) # declaring variable to find cumulative probability.
for(i in 1:la)
{

for(j in (a[i]+1):T)
{

cpk[i] = cpk[i] + dbinom(j,T,p);
}

}
ind = min(which(cpk < alpha)) # gives cumulative probability < alpha

# To find gamma
k = ind-1; b <- dbinom(k,T,p);
gamma = (alpha-cpk[k+1])/b

# To check the answer
check <- cpk[k+1]+(gamma*dbinom(k,T,p))

# OUTPUT
print(c("k=",k))
print(c("gamma =",gamma))
print(c("check=",check))

# RESULT
"k=" "64"
"gamma =" "0.238699811290301"
"check=" "0.05"

Example 8.4.5 Let X1, X2, . . . , Xm and Y1, Y2, . . . , Yn are iid rvs with N (μ1,σ
2
1)

and N (μ2,σ
2
2), respectively, where μ1 and μ2 are unknown.

Find Neyman Structure Test for testing H0 : σ2
1 = σ2

2 against H1 : σ2
1 > σ2

2,
where μ1 and μ2 are unknown.

x̄ ∼ N
(
μ1,

σ2
1

m

)
, ȳ ∼ N

(
μ2,

σ2
2

n

)

s21
σ2
1

∼ χ2
m−1 and

s22
σ2
2

∼ χ2
n−1

f (x̄, ȳ, s21 , s22 ) =
√

m

σ1

√
2π

exp

[

− m

2σ2
1

(x̄ − μ1)
2

] √
n

σ2

√
2π

exp

[

− n

2σ2
2

(ȳ − μ2)
2

]

× (s21 )
m−1
2 −1e

− s21
2σ21

2
m−1
2 Γ (m−1

2 )σm−1
1

(s22 )
n−1
2 −1e

− s22
2σ22

2
n−1
2 Γ ( n−1

2 )σn−1
2

= c

σm
1 σn

2
exp

[

− m

2σ21
(x̄ − μ1)

2 − n

2σ22
(ȳ − μ2)

2 − s21
2σ21

− s22
2σ22

]

(s21 )
m−1
2 −1

(s22 )
n−1
2 −1 (8.4.5)

where c is a constant.
Under H0, (x̄, ȳ, s21 + s22 ) is sufficient and complete statistic.
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s21+s22
σ2 ∼ χ2

m+n−2

f (x̄, ȳ, s21 , s22 ) = c

σm
1 σn

2
exp

[

− m(x̄ − μ1)
2

2σ21
− n(ȳ − μ2)

2

2σ22
+ s21 + s22

2σ2

]

(s21 + s22 )
m+n−2

2 −1 (8.4.6)

Now to find fH0(x̄, ȳ, s21 , s22 |x̄, ȳ, s21 + s22 ),

fH0(x̄, ȳ, s21 , s22 |x̄, ȳ, s21 + s22 ) = f (x̄, ȳ, s21 , s22 )

f (x̄, ȳ, s21 + s22 )

= (s21 )
m−1
2 −1(s2 − s21 )

n−1
2 −1

(s2)
m+n−2

2 −1
, (8.4.7)

where s2 = s21 + s22
To find fH1(x̄, ȳ, s2)

fH1(x̄, ȳ, s2) = c

σm
1 σn

2

(s21 )
m−1
2 −1(s2 − s21 )

n−1
2 −1

× exp[−m(x̄ − μ1)
2

2σ2
1

− n(ȳ − μ2)
2

2σ2
2

− s21
2σ2

1

− (s2 − s21 )

2σ2
2

]

fH1(x̄, ȳ, s2) = c

σm
1 σn

2

exp

[

−m(x̄ − μ1)
2

2σ2
1

− n(ȳ − μ2)
2

2σ2
2

− s2

2σ2
2

]

×
s2∫

0

exp

[

− s21
2

(
1

σ2
1

− 1

σ2
2

)]

(s21 )
m−1
2 −1(s2 − s21 )

n−1
2 −1ds21

Let u = s21
s2 ⇒ us2 = s21 ⇒ dus2 = ds21

Consider

s2∫

0

exp

[

− s21
2

(
1

σ2
1

− 1

σ2
2

)]

(s21 )
m−1
2 −1(s2 − s21 )

n−1
2 −1ds21

=
1∫

0

exp

[

−us2

2

(
1

σ2
1

− 1

σ2
2

)]

u
m−1
2 −1(1 − u)

n−1
2 −1(s2)

m+n−2
2 −1du

= (s2)
m+n−2

2 −1g(s2,σ2
1,σ

2
2)
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Hence

fH1 (x̄, ȳ, s2) = c

σm
1 σn

2
exp

[

− m(x̄ − μ1)
2

2σ21
− n(ȳ − μ2)

2

2σ22
− s2

2σ22

]

g(s2,σ21 ,σ22)(s2)
m+n−2

2 −1

fH1(x̄, ȳ, s21 , s22 ) = c

σm
1 σn

2

exp

[

−m(x̄ − μ1)
2

2σ2
1

− n(ȳ − μ2)
2

2σ2
2

− s21
2σ2

2

− (s2 − s21 )

2σ2
2

]

× (s21 )
m−1
2 −1(s2 − s21 )

n−1
2 −1

fH1(x̄, ȳ, s21 , s22 |x̄, ȳ, s2) =
exp

[
− s21

2

(
1
σ2
1

− 1
σ2
2

)]
(s21 )

m−1
2 −1(s2 − s21 )

n−1
2 −1

(s2)
m+n−2

2 −1g(s2,σ2
1,σ

2
2)

λ(x̄, ȳ, s21 , s22 |x̄, ȳ, s2) = fH1(x̄, ȳ, s21 , s22 |x̄, ȳ, s2)

fH0(x̄, ȳ, s21 , s22 |x̄, ȳ, s2)
=

exp
[
− s21

2

(
1
σ2
1

− 1
σ2
2

)]

g(s2,σ2
1,σ

2
2)

We define a Neyman Structure test as

φ(x̄, ȳ, s21 , s22 |x̄, ȳ, s2) =
⎧
⎨

⎩
1 ;

exp

[

− s21
2

(
1

σ21
− 1

σ22

)]

g(s2,σ2
1 ,σ

2
2)

> k(s2,σ2
1,σ

2
2)

0 ; otherwise

φ(x̄, ȳ, s21 , s22 |x̄, ȳ, s2) =
{
1 ; s21 > k(s2,σ2

1,σ
2
2)

0 ; otherwise

⇒ φ(x̄, ȳ, s21 , s22 |x̄, ȳ, s2) =
{
1 ; s21

s21+s22
> k(s2,σ2

1,σ
2
2)

0 ; otherwise

Let w = s21
s22

⇒ s21
s21+s22

= w
1+w

g(w) = w
1+w

⇒ g′(w) = 1
(w+1)2 > 0

g(w) is increasing in w.
Then

φ(x̄, ȳ, s21 , s22 |x̄, ȳ, s2) =
{
1 ; w > k(s2,σ2

1,σ
2
2)

0 ; otherwise

φ(x̄, ȳ, s21 , s22 |x̄, ȳ, s2) =
{
1 ; s21

s22
> k(s2)

0 ; otherwise
(8.4.8)

We have to find the distribution of s21
s22
given S2 under H0.

Let w = s21
s22
, v = s21 + s22

s21
σ2 ∼ χ2

m−1 and
s22
σ2 ∼ χ2

n−1
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f (s21 , s22 ) = c(s21 )
m−1
2 −1(s22 )

n−1
2 −1e− (s21+s22 )

2σ2

Now s21 = ws22 , v = s21 + s22 ⇒ s22 = v
1+w

, s21 = wv
1+w

J =
(

∂s21
∂w

∂s21
∂v

∂s22
∂w

∂s22
∂v

)

=
( v

(1+w)2
w

1+w

− v
(1+w)2

1
1+w

)

= v

(1 + w)2

f (w, v) = f (s21 , s22 )|J |

= c

(
wv

1 + w

) m−1
2 −1 (

v

1 + w

) n−1
2 −1 (

v

1 + w

)

e− v

2σ2

= c
w

m−1
2 −1

(1 + w)
m+n
2 −2

v
m+n
2 −2e− v

2σ2

= f1(w) f2(w)

w and v are independent
Hence, f (w|v) = f (w)

therefore, s21/(m−1)
s22/(n−1)

∼ Fm−1,n−1

From (8.4.8), P
[

s21/(m−1)
s22/(n−1)

> k
]

= α ⇒ k = Fm−1,n−1,α

Hence Neyman Structure Test is

φ(x̄, ȳ, s21 , s22 ) =
{
1 ; s21/(m−1)

s22/(n−1)
> Fm−1,n−1,α

0 ; otherwise
(8.4.9)

Example 8.4.6 Let X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2 are iid rvs with N (μ1,σ
2)

and N (μ2,σ
2), respectively, where σ2 is unknown. Find Neyman Structure test for

testing H0 : μ1 = μ2 against H1 : μ1 > μ2, where σ2 is unknown.

Note that (x̄, ȳ, s2) is sufficient and complete for (μ1,μ2,σ
2), where s2 = ∑

(xi −
x̄)2 + ∑

(yi − ȳ)2

f (x̄, ȳ, s2) = c

σn1+n2
exp

[

− 1

2σ2
{n1(x̄ − μ1) + n2(ȳ − μ2)}

]

e− s2

2σ2 (s2)
n1+n2−2

2 −1,

Let n = n1 + n2

Under H0, i.e., μ1 = μ2, (n1 x̄ + n2 ȳ,
∑n1

i=1 x2
i +∑n2

j=1 y2j ) are jointly sufficient and
complete for (μ1,μ2,σ

2).
Let z = n1 x̄+n2 ȳ

n , w = ∑n1
i=1 x2

i + ∑n2
j=1 y2j are any functions of sufficient statistics.

Let s2 = s21 + s22 = ∑n1
i=1 x2

i − n1 x̄2 + ∑n2
j=1 y2j − n2 ȳ2

we want to find the distribution of z, w and ȳ.
s2 = w − n1 x̄2 − n2 ȳ2 ⇒ w = s2 + n1 x̄2 + n2 ȳ2
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J = ∂(x̄, ȳ, s2)

∂(z, w, ȳ)
=

⎛

⎜
⎝

∂ x̄
∂z

∂ x̄
∂w

∂ x̄
∂ ȳ

∂ ȳ
∂z

∂ ȳ
∂w

∂ ȳ
∂ ȳ

∂s2

∂z
∂s2

∂w
∂s2

∂ ȳ

⎞

⎟
⎠ =

⎛

⎝

n
n1

1
2n1 x̄ 0

n
n2

1
2n2 ȳ 1

0 1 0

⎞

⎠

|J | = n
n1

Consider

n1(x̄ − μ1)
2 + n2(ȳ − μ2)

2 + s2 = n1 x̄2 − 2n1μ1 x̄ + n1μ
2
1 + n2 ȳ2 − 2n2μ2 ȳ + n2μ

2
2 + s2

Since w = s2 + n1 x̄2 + n2 ȳ2

= w − 2n1μ1 x̄ − 2n2μ2 ȳ + n1μ
2
1 + n2μ

2
2

Next, since z = n1 x̄+n2 ȳ
n ⇒ x̄ = nz−n2 ȳ

n1

s2 = w − n1 x̄2 − n2 ȳ2 = w − n1

(
nz − n2 ȳ

n1

)2

− n2 ȳ2,

Further,

w − 2n1 x̄μ1 − 2n2μ2 ȳ + n1μ
2
1 + n2μ

2
2

= w − 2n1μ1

(
nz − n2 ȳ

n1

)

− 2n2μ2 ȳ + n1μ
2
1 + n2μ

2
2

= w − 2μ1[nz − n2 ȳ] − 2n2μ2 ȳ + n1μ
2
1 + n2μ

2
2

= w − 2nμ1z + 2μ1n2 ȳ − 2n2μ2 ȳ + n1μ
2
1 + n2μ

2
2

= w − 2nμ1z − 2n2 ȳ(μ2 − μ1) + n1μ
2
1 + n2μ

2
2

f (z, w, ȳ) = f (x̄, ȳ, s2)|J |
= c exp

[

− 1

2σ2
{w − 2nμ1z − 2n2 ȳ(μ2 − μ1) + n1μ

2
1 + n2μ

2
2}
]

×
[

w − n2 ȳ2 − n1{nz − n2 ȳ

n1
}2
] n−2

2 −1

Let g(w, z|μ1,μ2,σ
2) = ∫

f (z, w, ȳ)d ȳ
Under H0

fH0

(
x̄, ȳ, s2|z, w

)
=

c exp
[
− 1

2σ2 {w − 2nμz + nμ2}
] [

w − n2 ȳ2 − n1{ nz−n2 ȳ
n1

}2
] n−2

2 −1

g
(
w, z|μ, σ2

)
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fH1(x̄, ȳ, s2|z, w) = c exp[− 1

2σ2
{w − 2nμ1z − 2n2 ȳ(μ2 − μ1) + n1μ

2
1 + n2μ

2
2}]

× [w − n2 ȳ2 − n1{ nz−n2 ȳ
n1

}2] n−2
2 −1

g(w, z|μ1,μ2, σ2)

λ(x̄, ȳ, s2|z, w) = fH1(x̄, ȳ, s2|z, w)

fH0 (x̄, ȳ, s2|z, w)

⇒ exp

[
n2 ȳ(μ2 − μ1)

σ2

]

> k(z, w, μ1, μ2,σ
2)

⇒ ȳ > k(z, w, μ1, μ2, σ
2)

The Neyman Structure test is given as

⇒ φ(x̄, ȳ, s2|z, w) =
{
1 ; ȳ > k(μ1,μ2, z, w,σ2)

0 ; otherwise
(8.4.10)

Consider ȳ > k ⇒ n ȳ > k

⇒ (n1 + n2)ȳ − nz > k

⇒ n1 ȳ + n2 ȳ − n1 x̄ − n2 ȳ > k

⇒ n1(ȳ − x̄) > k ⇒ (ȳ − x̄) > k

Next,

s21 + s22 =
∑

x2
i − n1 x̄2 +

∑
y2i − n2 ȳ2

=
∑

x2
i +

∑
y2i − n1 x̄2 − n2 ȳ2

s2 = w − n1 x̄2 − n2 ȳ2

s2 = w − nz2 + nz2 − n1 x̄2 − n2 ȳ2
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Further,

nz2 − n1 x̄2 − n2 ȳ2 = n

(
n1 x̄ + n2 ȳ

n

)2
− n1 x̄2 − n2 ȳ2

= 1

n

[
n21 x̄2 + n22 ȳ2 + 2n1n2 x̄ ȳ

]
− n1 x̄2 − n2 ȳ2

= 1

n

[
n21 x̄2 + n22 ȳ2 + 2n1n2 x̄ ȳ − nn1 x̄2 − nn2 ȳ2

]

= 1

n

[
n21 x̄2 + n22 ȳ2 + 2n1n2 x̄ ȳ − (n1 + n2)n1 x̄2 − (n1 + n2)n2 ȳ2

]

= 1

n

[
2n1n2 x̄ ȳ − n1n2 x̄2 − n1n2 ȳ2

]

= −n1n2
n

[
ȳ2 + x̄2 − 2x̄ ȳ

]
= −n1n2

n
(ȳ − x̄)2

s21 + s22 = w − nz2 − n1n2
n

(ȳ − x̄)2

(8.4.10) will be

φ(x̄, ȳ, s2|w, z) =
{
1 ; ȳ − x̄ > k
0 ; otherwise

⇒ φ(x̄, ȳ, s2|w, z) =
{
1 ; ȳ−x̄√

w−nz2
> k

0 ; otherwise

Now

ȳ − x̄√
w − nz2

= (ȳ − x̄)
√

s2 + n1n2
n (ȳ − x̄)2

Let ȳ−x̄
s = v, h(v) = v√

1+ n1n2
n v2

⇒ h′(v) > 0 ⇒ h(v) is an increasing function

in v.
Hence v > k,
The Neyman Structure test is

φ(x̄, ȳ, s2|w, z) =
{
1 ; ȳ−x̄

s > k
0 ; otherwise

(8.4.11)

To find the conditional distribution of ȳ−x̄
s given (z,w) under H0

f (x̄, ȳ, s2) = c exp

[

− 1

2σ2
{n1(x̄ − μ)2 + n2(ȳ − μ)2 + s2}

]

(s2)
n−2
2 −1

t = ȳ−x̄
s , w = ∑

x2
i + ∑

y2i = s2 + nz2 + n1n2
n (ȳ − x̄)2
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w = s2
[
1 + n1n2

n
t2
]

+ nz2 (8.4.12)

Now n1(x̄ − μ)2 + n2(ȳ − μ)2 + s2

=
∑

x2
i +

∑
y2i − 2n1μx̄ − 2n2μȳ + (n1 + n2)μ

2

=
∑

x2
i +

∑
y2i − 2μ(n1 x̄ + n2 ȳ) + (n1 + n2)μ

2

=
∑

x2
i +

∑
y2i − 2nμz + (n1 + n2)μ

2

= w − 2nμz + nμ2 (8.4.13)

Next,

w − nz2 = s2
[
1 + n1n2

n
t2
]

w − nz2

1 + n1n2
n t2

= s2 (8.4.14)

f (x̄, ȳ, s2) = c exp

[

− 1

2σ2
{w − 2nμz + nμ2}

] [
w − nz2

1 + n1n2
n t2

] n−2
2 −1

= c exp

[

− 1

2σ2
{w − 2nμz + nμ2}

]

(w − nz2)
n−2
2 −1

[
1

1 + n1n2
n t2

] n−2
2 −1

= g1(w, z)g2(t)

Hence, (w,z) and t are independent.
Therefore, the conditional distribution of ȳ−x̄

s given (w,z) is the distribution of
ȳ−x̄

s .
Now ȳ − x̄ ∼ N (μ2 − μ1,σ

2{ 1
n1

+ 1
n2

})
under H0 ȳ − x̄ ∼ N (0,σ2

1), where σ2
1 = σ2{ 1

n1
+ 1

n2
}

⇒
(√

1
n1

+ 1
n2

)−1
(ȳ − x̄) ∼ N (0,σ2),

σ̂2 = s21 + s22
n1 + n2 − 2

=
∑

x2
i − n1 x̄2 + ∑

y2i − n2 ȳ2

n1 + n2 − 2

Hence

(√
1
n1

+ 1
n2

)−1
(ȳ − x̄)

√
s21+s22

n1+n2−2

∼ tn1+n2−2
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From (8.4.11),

E[φ(x̄, ȳ, s2|z, w)] = P

[
ȳ − x̄

s
> k

]

= α

⇒ k = tn1+n2−2,α

Hence Neyman Structure test is

φ(x̄, ȳ, s2|w, z) =
{
1 ; ȳ−x̄

s > tn1+n2−2,α

0 ; otherwise
(8.4.15)

8.5 Likelihood Ratio Tests

In earlier sections, we had obtained UMPU, LMPU, similar and Neyman Structure
tests for some distributions. Perhaps, they do not exist for other distributions. We
also had seen that computations of UMP unbiased tests in multiparameter case are
usually complicated. Since these are α Similar tests having Neyman Structure.

In this section, we consider a classical procedure for constructing tests that has
some intuitive appeal and that frequently, though not necessarily, leads to optimal
tests. The procedure also leads to tests that have some desirable large-sample prop-
erties. Neyman and Pearson (1928) suggested a simple method for testing a general
testing problem. Consider a random sample X1, X2, . . . , Xn from f (x |θ), θ ∈ �

and we have to test

H0 : θ ∈ �0 against H1 : θ ∈ �1 (8.5.1)

The likelihood ratio test for testing (8.5.1) is defined as

λ(x) = supθ∈�0
L(θ|x)

supθ∈� L(θ|x)
(8.5.2)

where L(θ|x) is the likelihood function of x.

Definition 8.5.1 Let L(θ|x) be a likelihood for a random sample having the joint
pdf(pmf) f (x |θ) for θ ∈ �. The likelihood ratio is defined to be

λ(x) = supθ∈�0
L(θ|x)

supθ∈� L(θ|x)
.

The numerator of the likelihood ratio λ(x) is the best explanation ofX that the null
hypothesis H0 can provide and the denominator is the best possible explanation of
X. H0 is rejected if there is a much better explanation of X than the best one provided
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by H0. Further, it implies that smaller values of λ leads to the rejection of H0 and
larger values of λ leads to acceptance of H0. Therefore, the critical region would be
of the type λ(x) < k. Note that 0 ≤ λ ≤ 1. The constant k is determined by

sup
θ∈�0

P[λ(x) < k] = α.

If the distribution of λ(x) is continuous, then the size α is exactly attained and no
randomization on the boundary is required. Similarly, if the distribution of λ(x) is
discrete, the size may not attain α and then we require randomization. We will see
the following theorems without proof.

Theorem 8.5.1 For 0 ≤ α ≤ 1 nonrandomized Neyman–Pearson and likelihood
ratio test of a simple hypothesis against a simple alternative exist, they are equivalent.

Theorem 8.5.2 For testing θ ∈ �0 against θ ∈ �1, the likelihood ratio test is a
function of every sufficient statistics for θ.

Example 8.5.1 Let X1, X2, . . . , Xn be a random sample of size n from a normal
distribution with mean μ and variance σ2. Obtain the likelihood ratio for testing
H0 : μ = μ0 against H1 : μ �= μ0

Case (i) σ2 is known
Note that there is no UMP test for this problem.
The likelihood function is

L(μ|X1, X2, . . . , Xn) =
n∏

i=1

1

σ
√
2π

exp

[

− 1

2σ2
(xi − μ)2

]

=
(

1

σ
√
2π

)n

exp

[

− 1

2σ2

n∑

i=1

(xi − μ)2

]

Consider
∑n

i=1(xi − μ)2 = ∑n
i=1(xi − x̄ + x̄ − μ)2 = ∑n

i=1(xi − x̄)2 + n(x̄ − μ)2

L(μ|X) =
(

1

σ
√
2π

)n

exp
[
− n

2σ2
(x̄ − μ)2

]
exp

[

− 1

2σ2

n∑

i=1

(xi − x̄)2

]

sup
θ∈�0

L(μ|x) = sup
μ=μ0

L(μ|x) = L(μ0)

=
(

1

σ
√
2π

)n

exp
[
− n

2σ2
(x̄ − μ0)

2
]
exp

[

− 1

2σ2

n∑

i=1

(xi − x̄)2

]

sup
θ∈�

L(μ|x) = L(μ̂|x), μ̂ is the mle of μ.

μ̂ is the mle of μ
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Hence, mle of μ = μ̂ = X̄

L(μ̂|x) =
(

1

σ
√
2π

)n

exp

[

− 1

2σ2

n∑

i=1

(xi − x̄)2

]

From (8.5.2)

λ(x) = exp
[
− n

2σ2
(x̄ − μ0)

2
]

The likelihood ratio is just a function of n(x̄−μ0)
2

σ2 and will be small when the quantity
is large.
The LR test is given as

φ(x) =
⎧
⎨

⎩

1 ;
∣
∣
∣
∣

x̄−μ0
σ√
n

∣
∣
∣
∣ > k

0 ; otherwise

Since

(
x̄−μ0

σ√
n

)

is N (0, 1). Then k can be obtained as P

[(
x̄−μ0

σ√
n

)

> k

]

= α
2 .

Therefore, k = Z α
2

= α
2 th quantile of N (0, 1)

Then the test is given as

φ(x) =
⎧
⎨

⎩

1 ;
∣
∣
∣
∣

x̄−μ0
σ√
n

∣
∣
∣
∣ > Z α

2

0 ; otherwise

Note: The reader should see Example 8.1.1.

This LR test is also UMPU.
Case (ii) σ2 unknown

We have to test H0 : μ = μ0 against H1 : μ �= μ0

From (8.5.1),

sup
μ=μ0,σ2>0

L(μ|x) = sup
σ2>0

(
1

σ
√
2π

)n

exp

[

− 1

2σ2

n∑

i=1

(xi − μ0)
2

]

MLE of σ2 = 1
n

∑n
i=1(xi − μ0)

2

Let s20 = ∑n
i=1(xi − μ0)

2 ⇒ σ̂2 = s20
n

Under H0,

sup
σ2>0

L(μ|x) = sup
σ2>0

( √
n

s0
√
2π

)n

exp
(
−n

2

)
(8.5.3)

Further, MLE of μ and σ2 is μ̂ and σ̂2
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μ̂ = X̄ and σ̂2 = s2

n , s2 = ∑
(xi − x̄)2

sup
μ,σ2

(
1

σ
√
2π

) n
2

exp

{

− 2

σ2

n∑

i=1

(xi − μ)2

}

=
( √

n

s
√
2π

)n

exp
(
−n

2

)
(8.5.4)

From (8.5.2), (8.5.3) and (8.5.4)

λ(x) =
(

s

s0

)n

=
(

s2

s20

) n
2

s20 =
n∑

i=1

(xi − μ0)
2 =

n∑

i=1

(xi − x̄ + x̄ − μ0)
2

=
n∑

i=1

(xi − x̄)2 + n(x̄ − μ0)
2 = s2 + n(x̄ − μ0)

2

λ(x) =
[

s2

s2 + n(x̄ − μ0)2

] n
2

=
[

1

1 + n(x̄−μ0)2

s2

] n
2

CR is λ(x) < k ⇒ n(x̄−μ0)
2

s2 > k ⇒
∣
∣
∣
∣
(x̄−μ0)

s√
n

∣
∣
∣
∣ > k. The likelihood ratio test is

φ(x) =
{
1 ; |

√
n(x̄−μ0)

s | > k
0 ; otherwise

Now (x̄−μ0)
σ√
n

∼ N (0, 1) and s2

σ2 ∼ χ2
n−1

Hence

(x̄−μ0)
σ√
n

√
(n−1)s2

σ2

n−1

∼ tn−1

The distribution tn−1 is symmetric about 0,

PH0

{√
n(x̄ − μ0)

s
> k

}

= α

2

The likelihood ratio test is given as

φ(x) =
{
1 ; |

√
n(x̄−μ0)

s | > tn−1, α
2

0 ; otherwise
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Note: 1. If we are testing H0 : μ ≤ μ0 against H1 : μ > μ0

For σ2 known
Under H0, MLE of μ

μ̂ =
{

μ0 ; x̄ ≥ μ0

x̄ ; x̄ < μ0

This gives

sup
μ≤μ0

L(μ|x) =
⎧
⎨

⎩

(
1

σ
√
2π

)n
exp

{− 1
2σ2

∑
(xi − μ0)

2
} ; x̄ ≥ μ0

(
1

σ
√
2π

)n
exp

{− 1
2σ2

∑
(xi − x̄)2

} ; otherwise

MLE of μ is x̄

sup
μ∈�

L(μ|x) =
(

1

σ
√
2π

)n

exp

{

− 1

2σ2

∑
(xi − x̄)2

}

From (8.5.2),
The likelihood ratio test is given as

λ(x) =
{
exp{− n

2σ2 (x̄ − μ0)
2} ; x̄ ≥ μ0

1 ; x̄ < μ0

The LR test is given as

φ(x) =
{
1 ;

√
n(x̄−μ0)

σ
> k

0 ; otherwise

Since
√

n(x̄−μ0)

σ
∼ N (0, 1), hence k = Zα.

2. If we are testing H0 : μ ≤ μ0 against H1 : μ > μ0.
For σ2 unknown
Under H0, MLE of μ and σ2:

μ̂ =
{

μ0 ; x̄ ≥ μ0

x̄ ; x̄ < μ0

and

σ̂2 =
{

s20 ; x̄ ≥ μ0∑
(xi −x̄)2

n ; x̄ < μ0

Hence, under H0,

sup
(μ,σ2)∈�

L(μ,σ2|X) =
{

(
√
2πs0)−n exp{− n

2 } ; x̄ ≥ μ0

(
√
2πs√

n
)−n exp{− n

2 } ; otherwise
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mle of μ = μ̂ = x̄ and σ̂2 = s2

n

sup
(μ,σ2)∈�

L(μ,σ2|x) =
(√

2πs√
n

)−n

exp
{
−n

2

}

LR is given as

λ(x) =
{

( s2

ns20
)

n
2 ; x̄ ≥ μ0

1 ; x̄ < μ0

Hence LR test is given as

φ(x) =
{
1 ;

√
n(x̄−μ0)

s > k
0 ; otherwise

Since
√

n(x̄−μ0)

s has t-distribution with (n-1) df.
Therefore, k = tn−1,α.
This is also Neyman Structure Test, reader should see Example 8.4.3.

Example 8.5.2 Let X1, X2, . . . , Xn be a random sample from N (μ,σ2). Obtain a
LR test to test H0 : σ2 = σ2

0 against H1 : σ2 �= σ2
0 with population mean μ is

unknown.

L(μ,σ2|X) =
(

1

σ
√
2π

)n

exp

[

− 1

2σ2

n∑

i=1

(xi − μ)2

]

sup
(μ,σ2

0)∈�0

L(μ,σ2|X) =
(

1

σ
√
2π

)n

exp

[

− s2

2σ2
0

]

ML estimate of μ and σ2 is μ̂ = x̄ and σ̂2 =
∑

(xi −x̄)2

n = S2

n

sup
μ,σ2

L(μ,σ2|X) =
( √

n

s
√
2π

)n

exp
(
−n

2

)

LR is

λ(x) =
(

s√
nσ0

)n

exp

[

−1

2

{
s2

σ2
0

− n

}]

The CR is λ(x) < k

⇒
(

s√
nσ0

)n

exp

[

−1

2

{
s2

σ2
0

− n

}]

< k
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Let w = s2

σ2
0

∼ χ2
n−1

⇒
(w

n

) n
2
exp

(
−w

2

)
< k

⇒ w < k1 or w > k2
Under H0

PH0 [w < k1] + PH0 [w > k2] = α

Distributing the error probability, i.e., α equally in tails, we get k1 = χ2
n−1,1− α

2

and k2 = χ2
n−1, α

2

The LR test is as

φ(x) =
{
1 ; s2

σ2 ≤ χ2
n−1,1− α

2
or s2

σ2 ≥ χ2
n−1, α

2

0 ; otherwise

Example 8.5.3 Let X1, X2, . . . , Xm and Y1, Y2, . . . , Yn be independent rvs from
N (μ1,σ

2
1) and N (μ2,σ

2
2), respectively. Obtain the likelihood ratio test for H0 :

μ1 = μ2 against H1 : μ1 �= μ2 under two conditions.

(i) σ2
1 and σ2

2 known
(ii) σ2

1 = σ2
2 = σ2 unknown

(i) The likelihood function for (μ1,μ2) ∈ � is given as

L(μ1,μ2|X, Y ) =
(

1

σ1

√
2π

)m

exp

[

− 1

2σ2
1

m∑

i=1

(xi − μ1)
2

]

×
(

1

σ2

√
2π

)n

exp

[

− 1

2σ2
2

n∑

i=1

(yi − μ2)
2

]

(8.5.5)

MLE of μ1 = μ̂1 = x̄ and MLE of μ2 = μ̂2 = ȳ.

sup
μ1,μ2

L(μ1,μ2|x, y) =
(

1

σ1

√
2π

)m

exp

[

− 1

2σ2
1

m∑

i=1

(xi − x̄)2

]

×
(

1

σ2

√
2π

)n

exp

[

− 1

2σ2
2

n∑

i=1

(yi − ȳ)2

]

(8.5.6)
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Likelihood function for μ ∈ �0 is given as

L(μ|X, Y ) =
(

1

σ1
√
2π

)m (
1

σ1
√
2π

)n
exp

⎡

⎣− 1

2σ21

m∑

i=1

(xi − μ)2

⎤

⎦ exp

⎡

⎣− 1

2σ22

n∑

i=1

(yi − μ)2

⎤

⎦

∂ log L(μ|x, y)

∂μ
= 0

⇒ μ̂ = M L E of μ =
mx̄
σ2
1

+ n ȳ
σ2
2

m
σ2
1

+ n
σ2
2

(8.5.7)

sup
μ∈�0

L(μ|X, Y ) =
(

1

σ1
√
2π

)m (
1

σ1
√
2π

)n

exp

[

− 1

2σ2
1

m∑

i=1

(xi − μ̂)2 − 1

2σ2
2

n∑

i=1

(yi − μ̂)2

]

=
(

1

σ1

√
2π

)m (
1

σ1

√
2π

)n

exp

[

− 1

2σ2
1

{
m∑

i=1

(xi − x̄)2 + m(x̄ − μ̂)2

}]

× exp

[

− 1

2σ2
2

{
n∑

i=1

(yi − ȳ)2 + n(ȳ − μ)2

}]

(8.5.8)

λ(x, y) = supμ∈�0
L(μ|X, Y )

supμ1,μ2
L(μ1,μ2|x, y)

(8.5.9)

From (8.5.6) and (8.5.8),

λ(x, y) = exp

[

−m(x̄ − μ̂)2

2σ2
1

− n(ȳ − μ̂)2

2σ2
2

]

(8.5.10)

From (8.5.7)

μ̂ =
x̄

(
σ21
m )

+ ȳ

(
σ22
n )

m
σ2
1

+ n
σ2
2
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Let a1 = σ2
1

m , a2 = σ2
2

n

=
x̄
a1

+ ȳ
a2

1
a1

+ 1
a2

= a2 x̄ + a1 ȳ

a2 + a1

μ̂ =
σ2
2

n x̄ + σ2
1

m ȳ
σ2
2

n + σ2
1

m

Consider x̄ − μ̂

= x̄ −
σ2
2

n x̄ + σ2
1

m ȳ
σ2
2

n + σ2
1

m

= x̄[ σ2
2

n + σ2
1

m ] − σ2
2 x̄
n − σ2

1 ȳ
m

σ2
2

n + σ2
1

m

x̄ − μ̂ =
σ2
1

m (x̄ − ȳ)

σ2
2

n + σ2
1

m

(8.5.11)

ȳ − μ̂ =
σ2
2

n (ȳ − x̄)

σ2
1

m + σ2
2

n

(8.5.12)

From (8.5.10),

λ(x, y) = exp

⎡

⎣− m

2σ2
1

{
σ2
1

m (x̄ − ȳ)

σ2
1

m + σ2
2

n

}2

− n

2σ2
2

{
σ2
2

n (ȳ − x̄)

σ2
1

m + σ2
2

n

}2⎤

⎦

= exp

[

−1

2

(x̄ − ȳ)2

(
σ2
1

m + σ2
2

n )2

]

λ(x, y) < k ⇔
(

(x̄ − ȳ)2

σ2
1

m + σ2
2

n

)2

> k

⇔
∣
∣
∣
∣
∣
∣

(x̄ − ȳ)
√

σ2
1

m + σ2
2

n

∣
∣
∣
∣
∣
∣
> k (8.5.13)
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Since, x̄ ∼ N (μ1,
σ2
1

m ), ȳ ∼ N (μ2,
σ2
2

n ) and X̄ and Ȳ are independent, then x̄ − ȳ ∼
N (μ1 − μ2,

σ2
1

m + σ2
2

n )

(x̄ − ȳ) − (μ1 − μ2)
√

σ2
1

m + σ2
2

n

∼ N (0, 1) (8.5.14)

Under H0,

x̄ − ȳ
√

σ2
1

m + σ2
2

n

∼ N (0, 1)

LR test is given as

φ(x, y) =
⎧
⎨

⎩

1 ; |x̄−ȳ|√
σ21
m + σ22

n

> k

0 ; otherwise

EH0φ(x, y) = α ⇒ P

⎡

⎣ x̄ − ȳ
√

σ2
1

m + σ2
2

n

> k

⎤

⎦ = α

2
⇒ k = Z α

2

LR test will become

φ(x, y) =
⎧
⎨

⎩

1 ; |x̄−ȳ|√
σ21
m + σ22

n

> Z α
2

0 ; otherwise

(ii) The maximum likelihood estimate of μ1, μ2 and σ2 will be μ̂1 = x̄ , μ̂2 = ȳ

σ̂2 = 1
m+n [∑m

i=1(xi − x̄)2 + ∑n
i=1(yi − ȳ)2] = s21+s22

m+n

From (8.5.5) and substituting these ML estimates,
we get,

L(μ1,μ2,σ
2|x, y) =

⎡

⎣ m + n
√
2π(s21 + s22 )

⎤

⎦

m+n

exp

[

−1

2
(m + n)

]

sup
μ1,μ2∈�

L(μ1,μ2,σ
2|x, y) =

⎡

⎣ m + n
√
2π(s21 + s22 )

⎤

⎦

m+n

exp

[

−1

2
(m + n)

]



8.5 Likelihood Ratio Tests 407

Under H0 :

L(μ,σ2|x, y) =
(

1

σ
√
2π

)m+n

exp

[

− 1

2σ2

{
m∑

i=1

(xi − μ)2 +
n∑

i=1

(yi − μ)2

}]

ML estimate of μ and σ2 is μ̂ = mx̄+n ȳ
m+n

σ̂2 = 1

m + n

[
m∑

i=1

(xi − μ)2 +
n∑

i=1

(yi − μ)2

]

= 1

m + n

[
m∑

i=1

(xi − x̄)2 + m(x̄ − μ̂)2 +
n∑

i=1

(yi − ȳ)2 + n(ȳ − μ̂)2

]

Now

(x̄ − μ̂)2 =
[

x̄ − mx̄ + n ȳ

m + n

]2
=

[
n(x̄ − ȳ)

m + n

]2

(ȳ − μ̂)2 =
[

ȳ − mx̄ + n ȳ

m + n

]2
=

[
n(ȳ − x̄)

m + n

]2

σ̂2 = 1

m + n

[

s21 + s22 + mn2(x̄ − ȳ)2

(m + n)2
+ nm2(ȳ − x̄)2

(m + n)2

]

(8.5.15)

σ̂2 = 1

m + n

[

s21 + s22 + mn(x̄ − ȳ)2

m + n

]

(8.5.16)

sup
(μ,σ2)∈�0

L(μ, σ2|x, y) =
⎡

⎣ m + n
√
2π[s21 + s22 + mn

m+n (x̄ − ȳ)2]

⎤

⎦

m+n

e−( m+n
2 ) (8.5.17)

λ(x, y) = sup(μ,σ2)∈�0
L(μ,σ2|x, y)

sup(μ1,μ2,σ2)∈�0
L(μ1,μ2,σ2|x, y)

=
[

s21 + s22
s21 + s22 + mn

m+n (x̄ − ȳ)2

]( m+n
2 )

=
[

1 + mn(x̄ − ȳ)2

(m + n)(s21 + s22 )

]−( m+n
2 )

(8.5.18)
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x̄ ∼ N (μ1,
σ2

m ) and ȳ ∼ N (μ2,
σ2

n ). x̄ − ȳ ∼ N (μ1 − μ2,σ
2( 1

m + 1
n ))

=
⎡

⎣ (x̄ − ȳ) − (μ1 − μ2)

σ
√

1
m + 1

n

⎤

⎦ ∼ N (0, 1)

s21
σ2

=
∑

(xi − x̄)2

σ2
∼ χ2

m−1

s22
σ2

=
∑

(yi − ȳ)2

σ2
∼ χ2

n−1

s21 + s22
σ2

= χ2
m+n−2

under H0 : μ1 = μ2

t =
(x̄−ȳ)

[σ
√

1
m + 1

n ]
√

s21+s22
σ2(m+n−2)

∼ tm+n−2

=
√

mn
m+n (x̄ − ȳ)

√
s21+s22

σ2(m+n−2)

∼ tm+n−2

t2 = mn(x̄ − ȳ)2

(m + n)(s21 + s22 )
(m + n − 2)

t2

m + n − 2
= mn(x̄ − ȳ)2

(m + n)(s21 + s22 )
(8.5.19)

From (8.5.18)

λ
2

m+n (x, y) = 1

1 + mn(x̄−ȳ)2

(m+n)(s21+s22 )

=
[

1 + mn(x̄ − ȳ)2

(m + n)(s21 + s22 )

]−1

Using (8.5.19),

λ
2

m+n (x, y) =
[

1 + t2

m + n − 2

]−1

= m + n − 2

m + n − 2 + t2
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λ
2

m+n (x, y) < k ⇒ m + n − 2

m + n − 2 + t2
< k ⇒ t2 > k ⇒ |t | > k

k is obtained such that

PH0 [|T | > k] = α

Now k is an upper α
2 th quantile of t distribution with df m+n-2.

Then LR test is given as

φ(x, y) =
{
1 ; |x̄−ȳ|

s
√

1
m + 1

n

> t α
2 ,m+n−2

0 ; otherwise

where s2 = s21+s22
m+n−2

Example 8.5.4 Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn be iid rvs with N (μ1,σ
2
1) and

N (μ2,σ
2
2), respectively. Find the likelihood ratio test for testing

(a) H0 : μ1 ≤ μ2 against H1 : μ1 > μ2

(b) H0 : μ1 ≥ μ2 against H1 : μ1 < μ2

when the population variance (i) σ2
1 and σ2

2 known (ii) σ2
1 = σ2

2 = σ2 but unknown.

According to note in Example 8.5.1, one can get the following test:

(i) σ2
1 and σ2

2 known

(a)φ(x, y) =
⎧
⎨

⎩

1 ; (x̄−ȳ)√
σ21
m + σ22

n

> Zα

0 ; otherwise

(b)φ(x, y) =
⎧
⎨

⎩

1 ; (x̄−ȳ)√
σ21
m + σ22

n

> −Zα

0 ; otherwise

(ii) σ2
1 = σ2

2 = σ2 but unknown.

(a)φ(x, y) =
{
1 ; (x̄−ȳ)

s
√

1
m + 1

n

> tm+n−2,α

0 ; otherwise

(b)φ(x, y) =
{
1 ; (x̄−ȳ)

s
√

1
m + 1

n

> −tm+n−2,α

0 ; otherwise
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where s2 = s21+s22
m+n−2 .

Example 8.5.5 A random sample X1, X2, . . . , Xn is taken from N (μ,σ2). Find the
likelihood ratio test of

(a) H0 : σ2 = σ2
0 against H1 : σ �= σ2

0
(b) H0 : σ2 ≤ σ2

0 against H1 : σ2 > σ2
0

(c) H0 : σ2 > σ2
0 against H1 : σ2 ≤ σ2

0

under the conditions (i) μ known (ii) μ unknown.

(i) μ known

(a)L(σ2,μ|x) =
(

1

σ
√
2π

)

exp

[

− 1

2σ2

n∑

i=1

(xi − μ)2

]

(8.5.20)

sup
σ2∈�0

L(σ2|x) =
(

1

σ0

√
2π

)n

exp

[

− 1

2σ2
0

n∑

i=1

(xi − μ)2

]

From (8.5.20), mle of σ2 = σ̂2 = 1
n

∑n
i=1(xi − μ)2

sup
σ2∈�

L(σ2|x) =
[

n

2π
∑n

i=1(xi − μ)2

] n
2

exp
[
−n

2

]

λ(x) = supσ2∈�0
L(σ2|x)

supσ2∈� L(σ2|X)

=
[∑n

i=1(xi − μ)2

nσ2
0

] n
2

exp

[

− 1

2σ2
0

n∑

i=1

(xi − μ)2 + n

2

]

Let w =
∑n

i=1(xi −μ)2

σ2
0

∼ χ2
n

λ(x) =
(w

n

) n
2
exp

(
−w

2
− n

2

)
< k

⇒ w
n
2 e− w

2 < k

Let f (w) = w
n
2 e− w

2

Plot the function w verses f (w).
f (w) < k ⇒ w < k1 and w > k2; see Fig. 8.3
LR test is given as

φ(x) =
{
1 ; w < k1 or w > k2
0 ; otherwise
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Fig. 8.3 Graph of f (w)

EH0φ(x) = P[w < k1] + P[w > k2] = α

One should note that χ2 is not a symmetric distribution but for mathematical con-
venience, we consider equal probability α

2 on the right and left side of the critical
region.

Hence k1 = χ2
n,1− α

2
and k2 = χ2

n, α
2

Our LR test is as follows:

φ(x) =
{
1 ;

∑
(xi −μ0)

2

σ2
0

< χ2
n,1− α

2
or

∑
(xi −μ0)

2

σ2
0

> χ2
n, α

2

0 ; otherwise

(b) Similarly, LR test for testing H0 : σ2 ≤ σ2
0 against H1 : σ2 > σ2

0 is given as

φ(x) =
{
1 ;

∑
(xi −μ0)

2

σ2
0

> χ2
n,α

0 ; otherwise

(c) Further, LR test for testing H0 : σ2 ≥ σ2
0 against H1 : σ2 < σ2

0 is given as

φ(x) =
{
1 ;

∑
(xi −μ0)

2

σ2
0

< χ2
n,1−α

0 ; otherwise

(ii) μ unknown
(a) In this case mle of μ = μ̂ = x̄
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sup
(μ,σ2

0)∈�0

L(μ,σ2
0 |x) =

(
1

σ0

√
2π

)n

exp

[

− 1

2σ2
0

∑
(xi − x̄)2

]

=
(

1

σ0

√
2π

)n

exp

[

− s2

2σ2
0

]

MLE of σ2 = σ̂2 = s2

n

sup
(μ,σ2)∈�

L(μ,σ2|x) =
( √

n

s
√
2π

)n

exp
[
−n

2

]

λ(x) =
(

s2

nσ2
0

) n
2

exp

[

−1

2

{
s2

σ2
0

− n

}]

under H0, s2

σ2
0

∼ χ2
n−1

Let w = s2

σ2
0

λ(x) =
(w

n

) n
2
exp

[

−1

2
{w − n}

]

Now λ(x) < k ⇔ w
n
2 e− w

2 < k ⇔ w < k1 and w > k2. (8.5.21)

LR test is given as

φ(x) =
{
1 ; w < k1 or w > k2
0 ; otherwise

EH0φ(x) = α ⇒ PH0(w < k1) + PH0(w > k2) = α

⇒ k1 = χ2
n−1,1− α

2
, k2 = χ2

n−1, α
2

Now LR test is given as

φ(x) =
{
1 ; s2

σ2
0

≤ χ2
n−1,1− α

2
or s2

σ2
0

> χ2
n−1, α

2

0 ; otherwise

(b) Similarly, LR test for testing H0 : σ2 ≤ σ2
0 against H1 : σ2 > σ2

0 is given as

φ(x) =
{
1 ; s2

σ2
0

≥ χ2
n−1,α

0 ; otherwise
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(c) Further, LR test for testing H0 : σ2 ≥ σ2
0 against H1 : σ2 < σ2

0

φ(x) =
{
1 ; s2

σ2
0

≤ χ2
n−1,1−α

0 ; otherwise

Example 8.5.6 Let X1, X2, . . . , Xm and Y1, Y2, . . . , Yn be two independent sample
from (μ1,σ

2
1) and (μ2,σ

2
2), respectively. Find out the likelihood ratio test of

(a) H0 : σ2
1 = σ2

2 against H1 : σ2
1 �= σ2

2
(b) H0 : σ2

1 ≤ σ2
2 against H1 : σ2

1 > σ2
2

where μ1 and μ2 are unknown.

The likelihood equation for (μ1,μ2,σ
2
1,σ

2
2) is given as

L(μ1, μ2, σ
2
1 , σ

2
2) =

(
1

2πσ2
1

) n
2

exp

[

− 1

2σ2
1

n∑

i=1

(xi − μ1)
2

](
1

2πσ2
2

) n
2

exp

[

− 1

2σ2
2

n∑

i=1

(yi − μ2)
2

]

MLE of (μ1,μ2,σ
2
1,σ

2
2) is

μ̂1 = x̄, μ̂2 = x̄, σ̂2
1 = s21

m , σ̂2
2 = s22

n ,

where s21 = ∑
(xi − x̄)2, s22 = ∑

(yi − ȳ)2

sup
μ1,μ2,σ

2
1 ,σ

2
2∈�

L(μ1,μ2,σ
2
1,σ

2
2 |X, Y ) =

(
m

2πs21

) m
2
(

n

2πs22

) m
2

exp

[

−m + n

2

]

The likelihood equation for (μ1,μ2,σ
2) ∈ �0

L(μ1,μ2,σ
2|x, y) =

(
1

2πσ2

) m+n
2

exp

[

− 1

2σ2

m∑

i=1

(xi − μ1)
2 − 1

2σ2

n∑

i=1

(yi − μ2)
2

]

MLE of (μ1,μ2,σ
2),

μ̂1 = x̄, μ̂2 = x̄, σ̂2 = 1
m+n [ s21

m + s22
n ]

sup
μ1,μ2,σ2∈�0

L(μ1,μ2,σ
2|x, y) =

⎡

⎣ m + n

2π
(

s21
m + s22

n

)

⎤

⎦

m+n
2

exp

[

− (m + n)

2

]

λ(x, y) = supμ1,μ2,σ2∈�0
L(μ1,μ2,σ

2|x, y)

supμ1,μ2,σ
2
1 ,σ

2
2∈� L(μ1,μ2,σ

2
1,σ

2
2 |x, y)
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=
(m + n)

m+n
2

(
s21
m

) m
2
(

s22
n

) n
2

(
s21
m + s22

n

) m+n
2

Define

F =
∑

(xi −x̄)2

m−1
∑

(xi −x̄)2

n−1

=
s21

m−1
s22

n−1

∼ Fm−1,n−1

Let s21
s22

= (m−1)F
(n−1)

λ(x, y) =
(m + n)

m+n
2

(
s21
m

) m
2
(

s22
n

) n
2

(
s21
m
s22
n

+ 1

) m+n
2 (

s22
n

) m+n
2

=
(m + n)

m+n
2

(
s21
m
s22
n

) m
2

(
s21
m
s22
n

+ 1

) m+n
2

=
(m + n)

m+n
2

[
n(m−1)F
m(n−1)

] m
2

[
1 + n(m−1)F

m(n−1)

] m+n
2

Now λ(x, y) < k ⇔ F < k1 or F > k2
LR test is given as

φ(x, y) =
⎧
⎨

⎩
1 ;

s21
m−1

s22
n−1

< k1 or
s21

m−1
s22

n−1

> k2

0 ; otherwise

Now
s21

m−1
s22

n−1

∼ Fm−1,n−1

PH0

⎡

⎣
s21

m−1
s22

n−1

< k1

⎤

⎦ = PH0

⎡

⎣
s21

m−1
s22

n−1

> k2

⎤

⎦ = α

2

PH0 [F < k1] = PH0 [F > k2] = α

2
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k1 = Fm−1,n−1,1− α
2
and k2 = Fm−1,n−1, α

2

LR test is given as

φ(x, y) =
⎧
⎨

⎩
1 ;

s21
m−1

s22
n−1

< Fm−1,n−1,1− α
2
,

s21
m−1

s22
n−1

< Fm−1,n−1, α
2

0 ; otherwise

(b) Similarly, we can obtain LR test for testing H0 : σ2
1 ≤ σ2

2 against H1 : σ2
1 > σ2

2
as

φ(x, y) =
⎧
⎨

⎩

1 ;
s21

m−1
s22

n−1

≥ Fm−1,n−1,α

0 ; otherwise

Further if we are testing H0 : σ2
1 ≥ σ2

2 against H1 : σ2
1 < σ2

2, then LR test is

φ(x, y) =
⎧
⎨

⎩

1 ;
s21

m−1
s22

n−1

≤ Fm−1,n−1,1−α

0 ; otherwise

Note: if μ1 and μ2 are known then
s21

m−1
s22

n−1

is replaced by
∑

(xi −μ1)2

m∑
(yi −μ2)2

n

in all above test.

Example 8.5.7 Let X1, X2, . . . , Xn be a random sample from exponential distribu-
tion with mean θ. Test the hypothesis H0 : θ = θ0 against H1 : θ �= θ0

sup
θ∈�0

L(θ|X) = sup
θ∈�0

θ−ne− t
θ = θ−n

0 e− t
θ0 , where t =

n∑

i=1

xi

MLE of θ = x̄ = t
n

sup
θ∈�

L(θ|x) =
(

t

n

)−n

e−n

λ(x) = supθ∈�0
L(θ|x)

supθ∈� L(θ|x)
= θ−n

0 e− t
θ0

( t
n )−ne−n

=
(

t

nθ0

)n

exp

(

− t

θ0
+ n

)

λ(x) < k ⇒ tn exp

(

− t

θ0

)

< k; see Fig. 8.4

t < k1 or t > k2 (Fig. 8.4).
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Fig. 8.4 Graph of λ(x)

Note that 2t
θ

∼ χ2
2n

Let w = 2t
θ

⇒ w < k1 or w > k2 LR test is given as

φ(x) =
{
1 ; w < k1 or w > k2
0 ; otherwise

EH0φ(x) = α ⇒ PH0(w < k1) + P[w > k2] = α

k1 = χ2
2n,1− α

2
and k2 = χ2

2n, α
2

The LR test is given as

φ(x) =
{
1 ; w < χ2

2n,1− α
2
or w > χ2

2n, α
2

0 ; otherwise

Example 8.5.8 Let X1, X2, . . . , Xm be a random sample from B(n, p). Find the LR
test to test H0 : p ≤ p0 against H1 : p > p2

sup
p≤p0

L(p|x) =
{

pt
0(1 − p0)

mn−t ; p0 < x̄
n ; x̄ =

∑m
i=1 xi

m

( x̄
n )t (1 − x̄

n )mn−t ; x̄
n ≤ p0

sup
p∈�

L(p|x) =
(

x̄

n

)t (

1 − x̄

n

)mn−t

λ(t) =
{

pt
0(1−p0)mn−t

( x̄
n )t (1− x̄

n )mn−t ; p0 < x̄
n

1 ; x̄
n < p0

λ(t) = 1 if x̄ < np0 and λ(t) ≤ 1 if np0 < x̄
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⇒ λ(t) is decreasing function of t
Hence λ(t) < k ⇒ t > k
LR test is given as

λ(t) =
⎧
⎨

⎩

1 ; t > k
γ ; t = k
0 ; t < k

under H0, T ∼ B(mn, p0)

k can be selected as

Eφ(t) = α ⇒ PH0 [t > k] + γP[t = k] = α

This test is same as we have discussed in Chap.7.

Example 8.5.9 Let X1, X2, . . . , Xn be a random sample from Poisson(λ). Obtain
the LR test to test H0 : λ ≤ λ0 against H1 : λ > λ0

L(λ|x) = e−nλλt

∏n
i=1 xi !

sup
λ≤λ0

L(λ|x) =
{

e−nλ0λt
0∏n

i=1 xi ! ; λ0 ≥ x̄
e−nx̄ (nx̄)t
∏n

i=1 xi ! ; λ0 < x̄

sup
λ∈�

L(λ|x) = e−nx̄ (nx̄)t

∏n
i=1 xi !

λ(t) =
{
exp[t − nλ0](λ0

t )t ; λ0 ≥ x̄
1 ; λ0 < x̄

λ(t) ≤ 1 if λ0 ≥ x̄ and λ(t) = 1 if λ0 < x̄
⇒ λ(t) is decreasing function of t if and only if t > k
The LR test is given as

λ(t) =
⎧
⎨

⎩

1 ; t > k
γ ; t = k
0 ; otherwise

under H0, T = ∑n
i=1 Xi ∼ P(nλ)

k can be selected as

PH0 [t > k] + γPH0 [t = k] = α

This test is also same as we have discussed in Chap.7.

http://dx.doi.org/10.1007/978-981-10-0889-4_7
http://dx.doi.org/10.1007/978-981-10-0889-4_7
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8.6 Exercise 8

1. Let X1, X2, . . . , Xn are iid rvs with N (μ,σ2), σ2 is known. Find UMP unbiased
test of size α for testing H0 : μ = 0 against H1 : μ �= 0. From the following data,
test H0 : μ = 2 against H1 : μ �= 2 for α = 0.05
0.81 1.01 2.04 −3.17 0.57 −1.05 −3.83
2.88 −0.44 −2.23 4.09 4.00 −3.63 6.05
1.53
2. Let X1, X2, . . . , Xn are iid rvs from gamma distributionwith parameters p(known)
and σ unknown.

(i) Obtain UMP test of size α for testing H0 : σ ≤ σ0 against H1 : σ > σ0.
(ii) Obtain UMPU test of size α for testing H0 : σ = σ0 against H1 : σ �= σ0.

3. Let the rv X is β(a, 1). Obtain UMPU test of size α to test H0 : a = 1 against
H1 : a �= 1
4. Let X1 is B(n, θ) and X2 is N B(r, θ), n and r is known. Obtain UMPU test of size
α for testing H0 : θ = θ0 against H1 : θ �= θ0.
Let n = 5, r = 4 and α = 0.02
Test H0 : θ = 0.3 against H1 : θ �= 0.3 for the given data as X1 = 3 and X2 = 4.
5. Let X1 is ∪(0, θ1) and X2 is ∪(0, θ2). Obtain UMP test of size α for testing
H0 : θ1 = θ2 against H1 : θ1 �= θ2.
6. Let X1 is G(1, 1

θ1
) and X2 is G(1, 1

θ2
). Obtain UMPU test of size α for testing

H0 : θ1 = θ2 against H1 : θ1 �= θ2.
7. Let X1, X2, . . . , Xn be a random sample from f (x |θ), where

f (x |θ) =
{

1
2θ exp[− | x

θ
|] ; x ∈ R , θ > 0

0 ; otherwise

Obtain UMPU test for testing H0 : θ = θ0 against H1 : θ �= θ0 of size α.
8. Let X be a rv with B(n, p) and consider the hypothesis H0 : p = p0 of size
α. Determine the boundary values of the UMP unbiased test for n = 10, α = 0.1,
p0 = 0.3 and α = 0.05, p0 = 0.4. In each case, plot the graph of the power function
of both the unbiased and the equal tails tests. Use R
9. Let X1, X2, . . . , Xn be a sample from P(λ). Find UMPU test to test

(i) H0 : λ ≤ λ0 against H1 : λ > λ0

(ii) H0 : λ = λ0 against H1 : λ �= λ0

Assume that size of test is α.
Test (i) H0 : λ ≤ 3 against H1 : λ > 3
(ii) H0 : λ = 5 against H1 : λ �= 5 for the following sample.
2, 1, 4, 3, 5, 0, 2, 2, 1, 3. Use R.
10. Let Tn

θ
have χ2

n . For testing H0 : θ = 3, at level of significance α = 0.05, find
n so large that the power of the test is 0.96 against both θ ≥ 4 or θ ≤ 1. How large
does n have to be if the test is not required to be unbiased? (Use R)
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11. Let X be N B(1, θ)>. Find UMPU test of size α to test (i) H0 : θ ≤ θ0 against
H1 : θ > θ0 and (ii) H0 : θ = θ0 against H1 : θ �= θ0
If θ0 = 3, find UMPU test for the sample
1, 3, 1, 4, 1, 1, 1, 2, 4, 2.
12. Find the locally most powerful test for testing H0 : θ = 0 against H1 : θ > 0
from the following data if X ∼ N (θ, 1 + 2θ2),
−3.11, −1.72, 0.47, −1.32, −0.72, −0.70, 0.36
2.42, −0.98, −2.60, 0.84 (α = 0.10, use R).
13. Find the LMPT to test H0 : θ = 4 against H1 : θ > 4 from the following data if
(i) X ∼ N (θ, θ) and (ii) X ∼ N (θ, θ2)
0.61 2.34 1.15 1.61 1.79 0.01 2.37 0.06
4.11 1.26 1.74 2.70 3.54 3.18 3.41 (α = 0.03, use R).
14.Let X1, X2, . . . , Xn be iid rvs with N (μ,σ2). Obtain Neyman structure test for
testing H0 : σ2 = 5 against H1 : σ2 > 5, where μ is unknown, for the following
data:
2.09 1.19 2.26 5.02 4.15 1.48 2.41 0.42
−0.32 4.94 −0.29 5.46 9.42 9.34 1.34 (α = 0.03, use R).
15. Let the rvs X1, X2, . . . , Xn are iid from N (0,σ2). Find UMPU test for testing
H0 : σ = 3 against H1 : σ �= 3 for the following data.
0.13 −2.43 −6.19 −0.80 2.62 2.65 0.86
−1.89 0.83 5.01 0.76 −0.29 3.91 3.02
(Let α = 0.05, use R)
16. Let X1, X2, . . . , Xn be iid rvs with Cauchy distribution C(θ). Obtain LMPT for
testing H0 : θ = 0 against H1 : θ > 0 from the following data.
1.04 0.53 3.56 1.96 2.34 2.46 1.19 2.16 0.92
1.71 4.54 41.95 1.19 6.80 2.09 −5.56 3.28 4.37
5.24 −0.75
(Let α = 0.05, use R)
17. Let X1, X2, . . . , Xn be iid rvs with N (0,σ2). Find UMPU test for testing H0 :
σ2 = 9 against H1 : σ2 �= 9 for the data given in problem 15.
18. Let (X1, X2, . . . , Xk1) and (Y1, Y2, . . . , Yk2) are iid rvs with B(n1, p1) and
B(n2, p2), respectively, where n1 and n2 are known.
Find Neyman Structure test for testing H0 : p1 = p2 against H1 : p1 > p2 for the
following data.
Assume n1 = 3, n2 = 4, α = 0.05
X: 3 1 2 1 1 1 1 1 2 2 − −
Y: 1 2 2 2 2 1 0 1 3 3 1 3
(Use R)
19. Let X1, X2, . . . , Xm and Y1, Y2, . . . , Yn are iid rvs as P(λ1) and P(λ2), respec-
tively. Find Neyman Structure test for testing H0 : λ1 = λ2 against H1 : λ1 > λ2

from the following data.
X: 1 2 3 0 2 1 5 0 2 1 − −
Y: 1 1 5 2 5 2 2 1 0 6 2 3
(Let α = 0.02, use R)
20. Let X1, X2, . . . , Xn be iid rvs with pdf f (x |θ),
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f (x |θ) =
{

θxθ−1 ; 0 < x < 1, θ > 0
0 ; otherwise

Find UMPU test of size α to test H0 : θ = θ0 against H1 : θ �= θ0. Further, for
α = 0.02, find UMPU test for the following sample if θ0 = 5
0.90, 0.63, 0.51, 0.83, 0.96, 0.87, 0.41, 0.89,
0.71, 0.96, 0.96, 0.99, 0.98, 0.83, 0.92
21. Let thr rv X1 has exponential distribution with mean 1/θ and the rv X2 has
g(x2|θ),

g(x2|θ) = θxθ−1
2 ; 0 < x2 < 1, θ > 0

Obtain a UMPU test of size α for testing H0 : θ = θ0 against H1 : θ �= θ0.
22. Let X1, X2, . . . , Xn be iid rvs with f (x |θ),

f (x |θ) =
{

e− x
θ

θb ; 0 < x < c, θ > 0
0 ; otherwise

where b = 1 − e− x
c ; c > 0. Obtain a Neyman structure test of size α to test

H0 : c = ∞ against H1 : c < ∞, θ unknown. (see Dixit and Dixit (2003))
23. Let X1, X2, . . . , Xn be iid rvs with f (x |θ),

f (x |θ) =
{

1
θ
exp

[
− (x−μ)

θ

]
; x > μ, θ > 0

0 ; otherwise

Obtain a Neyman structure test of size α to test H0 : μ = 0 against H1 : μ > 0, θ
unknown.
24. Let X1, X2, . . . , Xn be iid rvs with ∪(0, θ).
Find LR test for testing H0 : θ = θ0 against H1 : θ �= θ0.
25. Find LR test for the problem 20.
26. Find LR test for the problem 21.
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T
Test function, 266
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Trinomial distribution, 256
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Type-1 and Type-2 errors, 261, 267
Type-I censoring, 139
Type-II censoring, 140

U
U-estimable, 42

UMP test, 367
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UMPU similar test, 383, 384
UMPU test, 350, 352, 354, 355, 373, 375,

380, 418–420
UMVUE, 50, 197, 227, 255
Unbiased estimator, 39, 41, 43, 45, 179
Unbiased test, 346, 376
Unbiasedness, 112
Uniformly Most Powerful, 275

W
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Weak Law of Large Numbers (WLLN), 199
Weibull distribution, 207
Weighted Quadratic Loss Function, 233

Z
Zero-One Loss Function, 233
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