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Foreword

As far as the laws of mathematics refer

to reality, they are not certain; and as far

as they are certain, they do not refer to

reality.

Albert Einstein

Since the early days of aviation, engineers with inventive talents had to over-
come tremendous challenges. From building vehicles that can fly in a control-
lable manner designed and flown by pioneers like Lilienthal, Wright brothers,
Sperry in the beginnings, to developing todays modern comfortable and re-
liable vehicles for daily routine all-weather operations (Airbus, Boeing and
others), there were many creative efforts to improve performance (aircraft
size, endurance, speed), minimize structural weight, provide necessary thrust,
and guarantee safe flight operations. Nowadays all these inventions assure the
high mobility of the modern human society in a global world. The aeronau-
tical challenges were drivers for many new technologies and methodologies
that are commonly used in other industries today.

In the last three decades, the requirements for the design of high-perfor-
mance flight control systems that enhance automation of flight, initiated a
number of ingenious technological developments. Flight control law design is
one of the areas where aeronautical engineers are pioneering new technologies.

During development (design and test) of flight control laws, engineers rely
on mathematical models. Inevitably such models cannot mimic all aspects of
a highly complex, physical plant as a modern high-performance jet airplane
and its environment (atmosphere, air traffic, etc.) with absolute fidelity. The
above quotation from Einstein describes the fundamental difficulty that con-
trol engineers are facing, when striving the clearance of flight control laws on
basis of mathematical models.

However, engineers (named after the Latin word ingenium, meaning innate
quality, especially mental power, hence a clever invention) often find solutions
even to the most challenging problems. To prove that an aircraft is safe to fly
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they develop aircraft dynamics models with quantified uncertainties and ap-
ply adequate mathematical theories for their analysis. Those models can be
used to verify that the control laws operate as specified even when deviations
from the nominal conditions occur. In addition, test engineers consider all
imaginable test conditions using experience from the past including knowl-
edge about abnormal cases, incidents and accidents. This approach extends
the uncertain parameter space with many additional test cases, with special
care to investigate the critical ones. The huge amount of possible parameter
combinations as well as the presence of model nonlinearities result in an in-
credibly high number of test cases to be checked for the clearance of flight
control laws. The objective of the EC-sponsored project COFCLUO aims
at mastering this Herculean task, by applying efficient optimization-based
search techniques to discover hidden weaknesses of flight control laws and
to determine worst-case parameter combinations to aid possible control law
redesigns. Eventually the clearance of control laws is achieved, thus guaran-
teeing the safe aircraft operation.

This book describes and demonstrates the main achievements of the
COFCLUO project. When you study it, you will find out that this endeav-
our has significantly enhanced the state-of-the-art of the clearance of flight
control laws by providing innovative ideas and advanced analysis techniques.
The reported project achievements are a convincing proof of a very successful
European cooperation.

Berlin, January 12, 2011 Robert Luckner



Preface

This book addresses the Clearance Of Flight Control Laws Using Optimisa-
tion (COFCLUO) and summarizes the main achievements of the EC founded
6th Framework Programme COFCLUO project. It is well known that be-
fore an aircraft can be tested in flight, it has to go through a rigorous certi-
fication and qualification process to prove to the authorities that the flight
control system is safe and reliable. Currently significant time and money is
spent by the aeronautical industry on this task. An important part of the
certification and qualification process is the clearance of flight control laws
(CFCL). The overall objective of the COFCLUO Project was to develop and
apply optimisation techniques to CFCL in order to improve efficiency and
reliability of the certification and qualification process. The application of an
optimisation-based approach relies on clearance criteria derived from the cer-
tification and qualification requirements. To evaluate these criteria different
types of models of the aircraft are employed, which usually both serve for
clearance as well as for control law design purposes. The development of dif-
ferent models and of suitable clearance criteria were therefore also objectives
of the project. Because of wider applicability, the optimisation-based CFCL
will open up the possibility to design innovative aircraft that today are out
of the application field of classical clearance tools. Optimisation-based CFCL
will not only increase safety but it will also simplify the whole certification
and qualification process, thus reduce costs. The speedup achieved by us-
ing the new optimisation-based approach also supports rapid modelling and
prototyping and reduce ”time to market”. The COFCLUO project success-
fully contributed to the achievement of a top-level objective to meet society’s
needs for a more efficient, safer and environmentally friendly air transport
by providing new techniques and tools for significantly improved technologies
for CFCL.

May 2011 Andreas Varga
Anders Hansson
Guilhem Puyou
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Chapter 1

Introduction

Anders Hansson and Andreas Varga

Abstract. We describe the background and motivation of the research car-
ried out within the COFCLUO project in developing and applying optimiza-
tion techniques to the clearance of flight control laws for civil aircraft.

1.1 Background

To prove to the certification authorities that an aircraft is safe to fly is a
long and complicated process. It is the responsibility of the manufacturer
to show that the aircraft complies with the certification specifications, and
especially the airworthiness requirements specified in the European and US
regulations JAR Part 25 [3] and FAR Part 25 [4], respectively. These require-
ments consists of many different clearance criteria that has to be met by the
designed flight control system. The main activity in this context is the clear-
ance of flight control laws (CFCL). One typical example for a safety critical
requirement is the stability of the controlled aircraft in all flight conditions
(characterized by different Mach number, altitude, dynamic pressure, or an-
gle of attack), and for all possible values of aircraft parameters (like mass or
position of the centre of gravity).

Before the first manned flights can be executed, the CFCL must be per-
formed to prove that the controlled aircraft meets all clearance criteria. For
this purpose, extensive computer aided simulations and robustness assess-
ment are performed. Both computations rely on a high fidelity nonlinear
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dynamics model of the aircraft which explicitly includes the dependencies of
all parametric uncertainties (such as mass, centre of gravity, aerodynamics
coefficients).

For the assessment of the already mentioned stability criterion, analysis
based on linear models are currently performed. Such models are obtained by
trimming and linearization of the nonlinear models around steady state flight
conditions for fixed values of parameters. The resulting linearized models are
therefore only valid for small perturbations around the equilibrium state.
By using a sufficiently large number of different linear models obtained for
different values of the uncertain parameters and different flight conditions,
the stability of the nonlinear model can be investigated by assessing the
stability of the linearized models. In this way, any instability detected for the
linearized models will disqualify the flight control system design.

Several other clearance criteria for civil aircraft are also formulated in
terms of linearized models. The state of the art of industrial certification
practice for all these criteria is to investigate a finite (possibly large) number
of different linear models, selected from a continuum of models corresponding
to each possible value of the parameters and flight conditions. Even if, as
today, many thousands of different linear models are investigated on fairly
fine grids for uncertain parameters and flight conditions, it is still possible
to miss the model corresponding to the most critical parameter combination.
Moreover, it is well known that robust control methods based on gridding of
the parameter space are highly computationally demanding and suffer from
the curse of dimensionality. With an optimization based clearance approach
this problem can be overcome in an automated and systematic way.

Even if the whole continuum of linear models is found to meet all the
clearance criteria, the underlying nonlinear system may not perform satisfac-
tory, it might actually be unstable. As mentioned above, traditionally this is
investigated by both off-line and piloted simulations using the high fidelity
aircraft nonlinear model. However, stability for any other manoeuvres than
the ones investigated in the simulations cannot be induced from such simula-
tions. Since there are infinitely many different manoeuvres to investigate, it
will never be possible to prove stability of an aircraft using only simulations.
With optimization based clearance it is believed that this challenge may be
overcome.

Impact

Over the next 10 to 15 years vehicle manufacturing is among the groups of
technologies expected to hold the most relevant transport application and
the most relevant applications to improve vehicle efficiency, [2]. For air trans-
port this will contribute to improve or develop among others sub-sonic civil
aircraft with increased capacity, lower emission, noise and fuel consumption.
Technologies relevant for vehicle manufacturing are, among others, the rapid
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modeling and rapid prototyping for vehicle design. The main drivers for this
are competition due to globalization, emerging markets, and flexibility re-
quired to meet increased pressure from customers. The efficient and reli-
able CFCL can be seen as a key technology supporting rapid prototyping of
aircraft, with an important impact on increasing flight safety and reducing
manufacturing costs.

Previous Research

The shortcomings of the standard industrial clearance process was recognised
already in 1999 by the Group for Aeronautical Research and Technology in
Europe (GARTEUR), which established the Flight Mechanics Action Group
11 (AG11) to address the CFCL. The AG11 investigated several new tech-
niques and published its findings in [1]. The industrial evaluation pointed out
the optimization based CFCL as the most promising approach. The reasons
for this are several:

Generality: It can be used for both frequency-domain and time-domain anal-
ysis, and for both linear and non-linear models. Moreover, there is no limi-
tation on the number of parametric uncertainties that can be investigated.

Reliability: It will not miss points in parameter space or flight envelope
lying in-between a grid.

Non-conservatism: It does not itself add conservatism to the clearance prob-
lem as do many other alternative approaches to the traditional griding or
Monte-Carlo analysis based CFCL.

It should be mentioned that the GARTEUR group focused its efforts on
military applications but that Chapter 24 in the aforementioned reference [1]
was devoted to considerations for clearance of civil transport aircraft in which
Robert Luckner (formerly at AIRBUS Deutschland GmbH, now at Techni-
cal University Berlin) writes: ”Therefore, methods and techniques that sup-
port an efficient automated flight control laws clearance process – as the
optimization-based worst-case method – are needed and should attract re-
searchers’ attention. To investigate and demonstrate the benefits of new anal-
ysis methods for the civil clearance process, an equivalent civil benchmark
problem should be formulated. This benchmark should consist of a civil air-
craft model plus controller and a baseline solution. Special emphasis should
be placed on the analysis of nonlinear criteria. A combination of these tech-
niques with optimization-based worst-case search should be considered.”

An important finding of the GARTEUR AG11 is the complementarity
between worst-case search methods and global robustness assessment ap-
proaches as μ-analysis. For example, the latter approach can guarantee the
stability of a continuum of uncertain parametric models and provide bounds
on admissible values of uncertain parameters. The limitations of this ap-
proach are related to the significant modelling effort necessary to develop
linear parameter varying (LPV) models which approximate with a sufficient
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accuracy the nonlinear aircraft model for all values of uncertain parameters
over the full or parts of the flight envelope. Increasing the accuracy of ap-
proximations is typically associated with increased modelling and analysis
efforts (due to higher dimension of uncertain models or using several un-
certain models). Furthermore, these methods generally provide only bounds
on the admissible parameter values, but not the worst-case parameter com-
binations. On the other side, the worst-case search based methods aim to
determine worst-case parameter combinations, and thus can easily disqualify
a given design by determining just a single value where a clearance criterion
is violated. However, when a violation of a criterion is not detected even by
using global search based approaches, the worst-case search method cannot
guarantee global stability, because the existing remote risk of failure of any
global search algorithm. In the light of this discussion it is clear that a com-
bination of the two approaches can provide the best results in terms of the
reliability of clearance and in detecting critical parameter combinations.

Enhancement of State-of-the-Art

From what has been said previously it is clear that optimization based clear-
ance is one of the most promising approaches for CFCL for civil aircraft. De-
spite the fact that much work had been done on optimization based CFCL for
military aircraft, there were certain difficulties with the method that needed
further attention – it was not just the application of available theory to a civil
aircraft that needed to be performed. For civil aircraft, dynamics related to
the flexible structure require different, more detailed and thus larger models
than what is necessary for military aircraft. Therefore new, integrated models
were developed and a special attention was paid to the fast trimming and
linearization of these models. Also the question of how to obtain rational
approximations of the state space matrices of the linear parameter-varying
systems resulting from the linearization was addressed. This was essential in
order to build so-called Linear Fractional Transformation based parametric
models, which are the state-of-the art model representations used in robust-
ness analysis of control systems. Another main difference in clearance of civil
aircraft as compared to military aircraft is the emphasis on protection vio-
lation which calls for other types of clearance criteria. There are many more
failure cases to be investigated for a civil aircraft. Therefore new optimization
based clearance techniques where developed to address this challenge, among
others by using global search methods and convex relaxation methods. In
addition to this, the optimization algorithms for CFCL often have tuning
parameters, which for the ordinary engineer might be difficult to understand.
Because of this, easy-to-use graphical user interfaces (GUIs) were developed.
Also some optimization problems might have such a large dimension, or the
number of problems to be solved might be so large, that answers might not
be found in reasonable time with off-the-shelf optimization solvers. Hence
parallel computations were employed.
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Objectives

It is important to keep in mind that the questions addressed in this project
were not purely technical, since industry was already technically able to suc-
cessfully clear flight control laws. The main industrial benefits of the new
methods should be related to reducing the involved effort and cost, while
getting sufficiently reliable results, or increasing the reliability of the analysis
results with a reasonable amount of effort. Therefore a benchmark prob-
lem was defined according to current industrial standards, and the results
obtained from optimization-based clearance was compared with a baseline
traditional solution based on gridding the parameter space and testing the
flight control laws for a finite number of manoeuvres.

1.2 The COFCLUO Project

The results achieved in the COFCLUO project were obtained on the basis
of a strong and fruitful cooperation among 6 partner organizations involving
a major civil aircraft manufacturer, three research establishments and two
universities:

1. Linköping University – Project coordinator (Sweden, Linköping)
2. AIRBUS France SAS (France, Toulouse)
3. Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR-Oberpfaffenhon,

Germany, Wessling)
4. Swedish Defense Research Agency (FOI, Sweden, Stockholm)
5. Office National d’Etudes et de Recherches Aerospatiales (ONERA, France,

Toulouse)
6. Universita degli Studi di Siena (Italy, Siena)

The work to be carried out was divided into four main work packages (WPs).
Besides the WP0 for project management, there were work packages for air-
craft modeling (WP1), optimization techniques for clearance (WP2) and eval-
uation of results (WP3). The allocation of the work carried out within WP1,
WP2 and WP3 approximately corresponds to the successive activities carried
out in the project. A prerequisite for optimization based clearance in WP2
was that suitable models to use in the optimization had been developed in
WP1, while a prerequisite for the evaluation of the proposed optimization
techniques in WP3 was that they had been developed and validated in WP2.

The project work was structured in four logical phases: (1) conception, (2)
study, (3) design and (4) implementation. The conception phase was fully
carried out while preparing the project-proposal. The study phase was mainly
performed during the first 12 months. During this phase surveys of existing
technologies were performed and the need for future development assessed.
Also initial models were developed. During the design phase the research
and development of new technologies for optimization based clearance of
flight control laws was carried out. Also a baseline solution to clearance was
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implemented. Some further modeling issues were also dealt with. The design
phase was mainly performed during months 7–24. During the implementation
phase software was written, which implemented the technologies developed,
and finally the software was evaluated on the benchmark against the baseline
solution. This work was mainly carried out during the last 12 months.

Project Achievements

The main achievements of the COFLCUO Project are documented in the
project deliverables, which are technical reports, of which the public ones can
be downloaded from http://www.cofcluo.isy.liu.se.

Two international workshops addressing the topic of clearance of flight
control laws have been organized within the COFCLUO project. Their
web-sites are located at http://www.unisi.it/eventi/cofcluo/index.htm
and http://www.cofcluo.isy.liu.se.

Finally, an invited session was organized at the 6th IFAC Symposium
on Robust Control Design in Haifa in 2009. In total, 11 scientific papers
have been published within the project. This book summarizes the main
achievements of the project.

1.3 Outline of the Book

The book consists of six parts. In part one the background and motivation of
the COFCLUO Project is described in Chapter 1 and the clearance bench-
mark problem for a representative civil aircraft is formulated in Chapter 2.

Part two consists of 4 chapters, which describe the development of LPV
uncertainty models and their linear-fractional representations (LFRs) ex-
pressed via linear fractional transformations (LFTs). Chapter 3 describes
the generation of LPV models and the corresponding LFRs starting from
the high-fidelity nonlinear aircraft dynamics model. Chapter 4 is dedicated
to the generation of LFRs from a collection of large order integral linearized
models which describe the flexible aircraft dynamics in various load configu-
rations. Chapter 5 addresses the development of uncertainty models for the
controller as LFRs. The LFRs for the open-loop aircraft and controller are
then feedback connected to obtain the LFRs for the linearized closed-loop
system. Chapter 6 describes a new approached to identify LPV uncertainty
models by minimizing a suitable input-output error norm.

Part three is the main theoretical part of the book and describes vari-
ous optimization-based approaches to address different aspects of the clear-
ance problem. Chapter 7 deals with linear robustness analysis methods using
enhanced μ-analysis techniques. Chapter 8 describes general worst-case search
based methods to solve clearance problems relying on global optimiza-
tion techniques. The efficiency of these methods can be tremendously im-
proved on parallel architecture machines by exploiting various features of the
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underlying optimization algorithms. In Chapter 9 clearance methods for sta-
bility related criteria relying on Lyapunov-stability-based robustness analysis
techniques are described, while Chapter 10 presents integral quadratic con-
straints (IQC) based techniques applicable to linear stability and performance
robustness analysis. In Chapter 11 nonlinear programming methods suitable
to address worst-case pilot input determination are described.

Part four parallels part three by addressing the applications of various
methods to concrete clearance criteria formulated in the benchmark problem.
The application of the μ-analysis technique for the analysis of eigenvalue and
stability margin criteria is presented in Chapter 12. In Chapter 13 parallel
computations based global optimization methods are used for the clearance of
various nonlinear simulation based clearance criteria related to nonlinear sta-
bility and protection control laws. The Lyapunov-stability-based framework
is employed in Chapter 14 to the analysis of the aeroelastic stability criterion
and of the un-piloted nonlinear stability criterion. The IQC-based analysis
technique is applied in Chapter 15 to both linear and nonlinear stability crite-
ria using both rigid and flexible aircraft models. The nonlinear programming
algorithms described in Chapter 11 are applied to compute worst-case pilot
inputs in Chapter 16.

The industrial evaluation is the topic of fifth part. The currently employed
baseline solution is compared in Chapter 17 with the new optimization based
clearance techniques. In Chapter 18 the industrial perspectives for the appli-
cability of the new methods are discussed and final concluding remarks are
presented.

Part six includes three surveys of leading experts and practitioners describ-
ing alternative approaches and their relevance to the clearance problematic.
Chapter 19 presents a nonlinear analysis technique for stability robustness
assessment based on the estimation of suitable regions of attraction. Applica-
tions to two aircraft models are also presented. Chapter 20 describes NASA’s
approach to validation and verification of safety critical systems. Finally, in
Chapter 21 the clearance approach currently employed in EADS for advanced
fighter aircraft is presented.
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Chapter 2

Clearance Benchmark for a Civil
Aircraft

Guilhem Puyou and Yannick Losser

Abstract. This chapter describes the benchmark problem which will be used
in the following chapters to address the clearance of flight control laws. Two
sub-problems are considered. The first one, called ”nonlinear benchmark”,
aims at validating the aircraft behavior close to the operating domain limits
using a nonlinear rigid body model. The second one, called ”integral bench-
mark”, uses large scale linear models including flexible structural modes and
represents a challenging problem for robust stability analysis methods. For
each benchmark the underlying models and the associated clearance criteria
to be validated are presented. The underlying models include detailed models
of the flight mechanics or structural mechanics, together with the flight con-
trol laws to be assessed, as well as simplified models of the actuators and sen-
sors. The clearance criteria cover a large range of certification requirements,
as linear stability and performance analysis, or time domain performance
evaluations. The current AIRBUS clearance methodology is also described
and realistic expectations are stated regarding potential cost savings (both
clearance effort and time) by using enhanced clearance technologies.

2.1 Introduction

The overall flight control law clearance problem that we propose to analyse is
divided into two parts: the nonlinear benchmark and the integral benchmark.
Both are representative of different issues that occur in the flight control law
validation process. After introducing the needs for these two benchmarks and
the main drivers that led to this choice, we will give a short overview of the
AIRBUS flight control law philosophy by presenting its main objectives and
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key features. Then we will explain in detail, for both benchmarks, the main
model components and the criteria to be fulfilled. Lastly we will briefly intro-
duce the current AIRBUS practices for validating these sets of requirements
so that we can first understand the main issues and then at the end measure
the enhancements provided by the methods developed in this book.

2.1.1 Nonlinear Benchmark

The first benchmark considers the clearance of a flight control law assuming
that the aircraft is rigid. It uses a nonlinear model of the closed loop aircraft
including a nonlinear model of the control law. The major issue that drives
this choice is the ability to perform a validation of requirements on the whole
flight domain considering a wide class of pilot inputs and wind perturbations.

In-house control law design methodologies are usually used to address the
nonlinearity of the flight mechanics model. Only Monte-Carlo based time
domain simulation techniques have so far been used in the AIRBUS val-
idation process to validate the effects of nonlinearities. In the current civil
aircraft model many of nonlinearities are introduced by the control laws them-
selves. Examples of flight control law nonlinearities are: saturated integrators,
switches between protection laws (see Sect. 2.2), dead-zones and saturations
in control command allocation, and saturations and rate limits on command
signals delivered by the control laws to the actuators.

The presence of all these nonlinear elements indicates that flight control
law clearance is not an easily tractable problem and only time domain simu-
lations on a nonlinear simulator are suited for clearance purposes. We reach
here the second issue. Considering that flight control laws must be tolerant
to any pilot action and still perform well for a wide class of wind perturba-
tions, how can it be proved that the whole set of inputs is cleared? Current
AIRBUS practices for clearance will be detailed in the last part of this chap-
ter. Regarding requirement assessment in a nonlinear context, the employed
techniques are mainly based on flight domain gridding approaches which are
known to be highly time consuming. Hence the hope is that new techniques
for clearance will significantly reduce validation times.

2.1.2 Integral Benchmark

The second benchmark considers the clearance of a flight control law for a
flexible aircraft. Because of highly optimized overall aircraft designs allowing
larger aircraft sizes, the bandwidth of the bending modes becomes lower and
closer to the rigid body modes. Then two major issues arise: the control laws
must not violate the structural load limits, and a proper design of the control



2 Clearance Benchmark for a Civil Aircraft 13

laws can help designers in optimizing the aircraft structure by reducing the
load limits. However, even if attention is often focused on the flexible body
part, the structural behavior is coupled to the rigid aircraft, and hence the
models include both rigid and flexible parts. This is the reason why the
benchmark is called ’Integral’.

The most interesting features of this benchmark is that the dynamics are
of high order. The fact that the models in general would be nonlinear is not
so relevant. Hence we will only consider a linear model, but of high order.
This will be challenging for two reasons. First, analysing models of high order
is difficult per se. Second, the models are only available on a finite and coarse
grid of values in the flight envelope and on a finite and course grid of values
of uncertain parameters. Hence it will be very challenging to say anything
about the points which are not grid points, which is of course highly desirable
from a clearance point of view.

2.2 Description of Flight Control Laws

First the flight control law to be cleared will be described. Three different
loops can be identified in the overall aircraft control architecture in Fig. 2.1:
the control loop, the guidance loop and the navigation loop. Each loop is
characterized by different time scales and control objectives. Here we focus
on the clearance of the flight control laws acting at the control loop level. In
what follows we will describe the main functionalities provided by the flight
control laws. Their detailed architecture is presented later in the modeling
part of Sect. 2.3.5.

Fig. 2.1 Aircraft global control architecture with control, guidance and navigation
loops
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2.2.1 Flight Control Laws Philosophy

The design of architecture of the AIRBUS flight control laws is based on
fulfilling the following two requirements:

1. In the usual operating domain, the normal flight control laws shall provide
an instinctive piloting with the same behavior as a conventional aircraft,
as well as an accurate and comfortable control, i.e. stability and manoeu-
vrability, homogeneous aircraft response with respect to pilot inputs in
the whole normal flight envelope, compensation of aircraft configuration
changes, minimisation of turbulence effect on the flight path and the bank
angle, balanced effort in pitch and roll, and safe behavior in the case of
engine asymmetry detection.

2. In extreme situations, flight control laws shall provide protections in or-
der to remain in the safe operating domain and reduce the risk of over-
controlling/over-stressing the aircraft while at the same time giving the
highest authority to the pilot in order to achieve best possible aircraft
performances, e.g. for avoidance manoeuvers.

This leads to the definition of two flight envelopes as illustrated in Fig. 2.2.
The normal flight envelope inside which the normal laws are activated and
the peripheral flight envelope inside which a set of protection laws ensures
both full authority and safety to the pilot. Once in the peripheral envelope,
pilots must maintain a permanent stick/pedal deflection to keep the current
attitude. From the moment the pilot releases the stick/pedal, the aircraft re-
turns to the normal flight envelope. This is the reason why we talk about ”soft
limits” for the normal flight envelope, which pilots can decide to override, and
”hard limits” for the peripheral envelope.

Fig. 2.2 Flight envelopes and protected parameters
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2.2.2 Longitudinal Axis

In this section the longitudinal normal law and the associated protections are
described.

Pitch Law

The pitch law (called also Nz normal law) is used to control the flight path of
the aircraft through a load factor demand. An impulse on the stick leads to
a flight path angle change. At constant speed, the flight path angle remains
roughly constant when the stick is released. In order to stay within the safe
flight envelope, the commanded load factor is limited to [−1g, 2.5g] in clean
configuration and to [0, 2g] in high lift configurations.

Angle of Attack Protection

The angle of attack protection law (also called low speed protection) ensures
static stability at low speed and protects the aircraft against stall, while pro-
viding the best possible manoeuvrability when necessary (typically avoidance
manoeuvres). The angle of attack limits are ”α prot” (αprot) with neutral
stick position and ”α max” (αmax) with full back-stick as can be seen in
Fig. 2.3. The control must also provide adequate roll manoeuvrability and
compensate pitch-up aerodynamic effects.

Low Energy Awareness and Alpha-Floor

The objective of these functions is to enhance pilot awareness of a low energy
situation by providing the necessary level of energy depending on the flight
phase. Low energy awareness is the first level of warning which tells the
pilot to increase thrust. Alpha-floor is the second level of warning, and it
automatically applies full thrust.

High Speed Protection

The objective of the high speed protection law is to limit the possible
speed/Mach exceeding maximum speed (Vmax) and Mach number (Mmax).
The Vmax/Mmax target is VMO (maximum operating speed)/MMO (max-
imum operating Mach number) stick free and roughly VMO/MMO+15kts
full forward stick. The goal is to protect the aircraft from the ultimate value
that corresponds to the structural limit VD (diving speed)/MD (diving Mach
number).



16 G. Puyou and Y. Losser

Fig. 2.3 AOA and Speed scales

Pitch Attitude Protection

The objective of the pitch attitude protection law is to enhance the effective-
ness of the angle of attack and high speed protections in extreme conditions,
by limiting the aircraft pitch dynamic close to the angle of attack and speed
limits.

2.2.3 Lateral Axis

Similarly to the longitudinal axis, the lateral axis control laws and protections
are briefly introduced.

Lateral Law

The lateral law (called also lateral normal law) controls the roll and yaw
axes of the aircraft, through roll rate and sideslip demands. The roll stick
deflection is translated into a roll rate demand at zero sideslip. An impulse
on the stick leads to a bank angle change. When the stick is released, the
bank angle is stabilized in the neutral stability domain. The pedal input
commands a combination of sideslip and roll angle. The maximum roll rate
demand must not exceed 15◦/s. In the case of one external engine failure at
low speed, the roll rate authority must be limited to 7.5◦/s.

Roll Attitude Protection

A neutral spiral stability must be achieved up to 33◦ bank angle for constant
bank angle with stick at neutral, while spiral stability, i.e. real part of the
mode strictly negative, must be restored above 33◦ bank angle, i.e. bank
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angle comes back to 33◦ with stick at neutral. The objective is to limit the
maximum bank angle to 66◦.

2.3 The Nonlinear Benchmark Model

The closed loop nonlinear aircraft model is shown in the Simulink represen-
tation in Fig. 2.4. It includes the pilot inputs, flight control laws, actuators,
flight mechanics and sensors. A simple wind model providing only ramps or
constant inputs has been used. In what follows we highlight the main features
of the model to emphasize its complexity and representativeness. A detailed
description of all closed-loop model components is available in [4].

WIND

SENSORS

PILOT INPUTS

OUTPUTS

y

CONTROL LAWS

AIRCRAFT

ACTUATORS

Fig. 2.4 Simulink closed-loop aircraft model overview

2.3.1 Flight Envelopes

The aircraft benchmark model aims to be representative of a civil aircraft
augmented with flight control laws in the normal and peripheral flight en-
velopes shown in Fig. 2.2. The limiting values of the main flight mechanics
variables are detailed in Table 2.1. The mass and center of gravity location
are varying parameters, which are connected in accordance with the mass
and balance diagram shown in Fig. 2.5.

Table 2.1 Flight envelopes definition

Variable Normal envelope Peripheral envelope
Load factor −1g ≤ nz ≤ 2.5g
Pitch attitude −15◦ ≤ θ ≤ 30◦

Angle of attack −5◦ ≤ α ≤ αprot −5◦ ≤ α ≤ αmax

Altitude 0 ≤ h ≤ 41000ft
Speed (in flight) Vαprot ≤ Vcas ≤ VMO Vαmax ≤ Vcas ≤ VD

Mach (in flight) 0.2 ≤M ≤MMO 0.2 ≤M ≤MD

Roll angle −33◦ ≤ φ ≤ 33◦ −66◦ ≤ φ ≤ 66◦
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Fig. 2.5 Mass (tonnes) and balance diagram (percentage of the aerodynamic mean
chord)

2.3.2 Pilot Inputs and Pilot Model

The aircraft is controlled through the pilot inputs described in Table 2.2: the
side stick with both longitudinal and lateral inputs, the pedals, the high lift
configuration lever, the airbrakes lever and the throttle lever.

Table 2.2 Pilot inputs

Variable Meaning Values Conventions
δpm Lateral stick input −16◦ ≤ δpm ≤ 16◦ Left turn: δpm≥0
δqm Longitudinal stick input −16◦ ≤ δqm ≤ 16◦ Nose down: δqm≥0
δr Pedal input −21◦ ≤ δr ≤ 21◦

CONF High lift configuration 0, 1, 2, 3, 4, 5 Clean:0, Full:5
AF Airbrakes lever command 0 ≤ AF ≤ 1 Full airbrakes:1
Π Thrust on mass input

For simulation purposes, the values for the inputs variable δpm, δqm, δr,
and Π can either be defined by the user or independently generated by a
pilot model which roughly corresponds to an enhanced1 set of auto-pilot hold
modes. We define a flight path angle hold mode to manage the pitch axis and
1 Enhanced means that it includes some nonlinearities such as dead-zones and

saturations to be representative for a human pilot.
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control δqm, a heading hold mode to manage the roll axis and control δpm, a
sideslip angle hold mode to manage the yaw axis and control δr, and a speed
hold mode, named auto-thrust, to manage the thrust and control Π. Each
mode can be independently activated so that users can mix inputs provided
by them and the pilot model.

2.3.3 Actuators and Sensors

It is important to emphasize that the focus of the nonlinear benchmark model
is on evaluating handling qualities. Therefore only simple models for actua-
tors, sensors and onboard computers are considered. It aims to be representa-
tive of the main dynamics, to the first order at least, and the saturation effects
when relevant. A typical model for an actuator is based on three elements as
shown in Fig. 2.6. These are a first or second order transfer function which
represents actuator position dynamic, a position saturation that could be
asymmetric, and a rate limiter. The input is the demanded actuator position
and the output is the real actuator position.

Fig. 2.6 Simplified actuator modelling

2.3.4 Flight Mechanics

The mathematical description of aircraft flight mechanics is based on the
fundamental principles of dynamics. In the nonlinear benchmark we use a
quaternion based model to describe the aircraft motion in the form (see [2]
for details)

m ˙Vtas = Fa + Fg + Fp

˙̄q =
1
2
q̄ ⊗Ω

IT Ω̇ = Ma +Mp −Ω × ITΩ

where the intervening variables are described in Table 2.3. In the above equa-
tions ”⊗” and ”×” are standard notations for quaternion and cross products,
respectively. The main forces and moments acting on the aircraft are due to
the aerodynamic effects (Fa and Ma), gravity (Fg) and engine thrust (Fp

and Mp). The aim of this part is to describe how these various forces and
moments are modeled in order to give an overall view of the behavior of the
aircraft and of the model which is associated with it.
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Table 2.3 Interpretation of model variables and parameters.

Notation Meaning
m mass
Fa sum of the aerodynamic forces
Fg sum of the gravity forces
Fp sum of the engines forces
q̄ quaternion vector describing attitude
Ω angular velocity vector in the aircraft coordinate system
IT inertial tensor
Ma aerodynamic forces induced momentum at center of gravity
Mp engine forces induced momentum at center of gravity

Aerodynamic Loads

The main loads used in the flight mechanics equations are the aerodynamic
loads. Normally, these loads are represented macroscopically by a set of mo-
ments and forces applied to the center of gravity and projected either onto the
aircraft coordinate system or onto the aerodynamic coordinate system. These
aerodynamic loads and moments depend on the state of the system, i.e. ve-
locities, attitude, altitude, external conditions such as velocity and direction
of the wind, etc., the configuration of the aircraft such as slats, flaps, spoilers,
etc., and the position of the aerodynamic control surfaces such as ailerons,
rudder, elevators, etc. The determination of these loads is most often based on
the identification of a set of aerodynamic coefficients (Cx, Cy, Cz , Cl, Cm, Cn),
which enters in the expressions of the components of the forces (Fax , Fay , Faz)
and moments (Max ,May ,Maz ) along the axes (x, y, z) as

Fax = − 1
2ρSV

2
tasCx, Fay = − 1

2ρSV
2
tasCy, Faz = − 1

2ρSV
2
tasCz,

Max = 1
2
ρSLV 2

tasCl, May = 1
2
ρSLV 2

tasCm, Maz = 1
2
ρSLV 2

tasCn,

where ρ is the air density, L is the wing span, and S is the reference area.
The global aerodynamic coefficients (Cx, Cy, Cz , Cl, Cm, Cn) in the nonlinear
benchmark are expressed as nonlinear functions of the previously mentioned
variables through a neural network. For simplicity, these loads are expressed
in the aircraft coordinate system according to Fig. 2.7.

Gravity

The vertically oriented gravity force Fg = mg is considered to be applied in
the center of gravity of the aircraft. The components (Fgx , Fgy , Fgz ) of this
force along the axes (x, y, z) in the aircraft coordinate system of Fig. 2.8 can
be expressed as

Fgx = mg sin θ, Fgy = mg cos θ sinφ, Fgz = mg cos θ cosφ
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Fig. 2.7 Aerodynamic loads and moments in the aircraft coordinate system

Fig. 2.8 Projection of gravitational force in aircraft coordinate system

Forces and Moments Generated by the Engines

The force generated by the engine thrusts allows to achieve and maintain a
desired longitudinal velocity of the aircraft. The total force is Fp = FpR +FpL ,
representing the sum of forces FpR and FpL generated by the right and left
engines, respectively. The force generated by each engine is directed along
the engine’s longitudinal axis, which is in general different from that of the
aircraft coordinate system shown in Fig. 2.9. Dissimilar thrusts of the left and
right engines can help in the lateral control of the aircraft by generating a
torque Mp in the yaw axis. The total force and moment have respectively the
components (Fpx , Fpy , Fpz ) and (Mpx ,Mpy ,Mpz ) in the aircraft coordinate
system.
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Fig. 2.9 Representation of engine thrust forces

2.3.5 Control Laws

As already mentioned in Sect. 2.2, the nonlinear benchmark considers manual
control only, i.e. the autopilot and guidance laws are not included in the flight
controls to be validated. However, for better manoeuvre management, the au-
tothrust and a pilot model are included in the model to maintain constant
states (speed, flight path during lateral manoeuvre ...). Moreover, since fail-
ure reconfiguration is not part of the study, these elements are not included
in the flight control laws. The different embedded laws and their function-
alities have been described in Sect. 2.2 in detail. In Fig. 2.10 and Fig. 2.11,
simplified views of each control axis are presented including the ”normal”
laws, protections and control command allocation named ”kinematics”. The
longitudinal control gets longitudinal stick pilot inputs (DQM) and deliv-
ers symmetric control demands to the elevators (ODQ*) and horizontal trim
(OIH), while the lateral control gets lateral stick pilot inputs (DPM) and
provides antisymmetric control demands to the inner ailerons (OAILI), outer
ailerons (OAILE), spoilers (OSPi), and rudder (OLDEGRYD).

The normal control laws (longitudinal and lateral) are exclusively em-
ployed for linear system analysis based clearance. Figs 2.12 and 2.13 provide
some extra information on these laws. They mainly consist of proportional
output feedback with an integral control error feedback to ensure zero steady-
state tracking error. Their gains are scheduled to cover the whole operating
domain. Notations are the following: Vc is the conventional speed (Vcas),
CONF is the slat/flap configuration and XG is the center of gravity position.
More details about AIRBUS flight control law design are given in [1].
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Fig. 2.10 Longitudinal axis control

Fig. 2.11 Lateral axis control

2.4 Clearance Criteria for the Nonlinear Benchmark

In this section we define a set of clearance requirements for the nonlinear
benchmark. The description of each requirement involves the specification
of some initial conditions, as for example, the relevant mass and balance
values, the range of flight points and/or special settings for control device
deflections. The definition of the corresponding clearance criteria involves
the specification of the manoeuvers to be simulated for their evaluation or
the necessary indicators to be computed (e.g., eigenvalues for stability anal-
ysis). The purpose of the clearance is to show that the clearance criteria
exhibit robustness with respect to various uncertainties and variabilities, as
for example, unknown external inputs such as special wind profiles, varying
parameters of aircraft or of various manoeuvers, changes in the aerodynamics
data, variations of flight points, failure cases, etc. The list of considered clear-
ance problems is not exhaustive. It represents merely a selection of clearance
problems which would probably most benefit from enhanced computer-aided
clearance methodologies in terms of reduction of analysis efforts, especially,
by substantially reduced analysis times.

2.4.1 Un-piloted Aircraft Stability

Criterion Description

In any trimmed point in the overall flight domain, the closed-loop aircraft
must remain stable in the absence of pilot actions (i.e., for an un-piloted
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Fig. 2.12 Simplified view of longitudinal normal law

Fig. 2.13 Simplified view of lateral normal law
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aircraft2). Because the pilot is nevertheless still in the loop, stability can be
relaxed to the existence of slowly divergent modes, provided that the time of
doubling of any divergent state variable is above 6s.

Uncertainties

Besides the usual variabilities regarding mass and flight points, the stability
must be assessed also in the case of erroneous CG data used for the schedul-
ing of the control laws. In particular, the robustness to CG data must be
guaranteed to cover pilot errors when entering payload data into the system
before take-off. Even when wrong CG values are used in the control laws
(between the minimum and maximum CG values), the closed-loop stability
must be guaranteed. Therefore the CG scheduling value must be considered
as an uncertain parameter in the robustness analysis.

2.4.2 Manoeuvrability Requirements for the
Longitudinal Axis

Criterion Description

In any trimmed point in the peripheral flight domain, the flight domain pro-
tections should not limit the aircraft capability for avoidance manoeuvres in
the absence of pilot actions. The following two cases are considered:

� the low speed case: the pilot must be able to modify the short term tra-
jectory within the flight envelope. When pulling the stick for Δt = 5s, the
short term response of Cz(t) should be compared to the natural aircraft
capability by computing the ratio

r =

∫ Δt

0

Cz(t)dt

Cz,αmaxΔt

The ratio r should be greater than 1√
2
. The coefficient Cz,αmax is the

maximum lift coefficient value in the current aircraft configuration at the
current flight point.

� the high speed case: between VMO and VMO+15kts, the nose-down au-
thority, measured by the induced variation of vertical load factor nz , must
remain greater than 0.3g.

Manoeuvre Description

Based on past experiences, the following manoeuvres are known to be the
most demanding ones:
2 Of course, the aircraft should remain stable even with a pilot in the loop, but this

is more difficult to assess, and is considered to be a distinct clearance criterion.
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� the low speed case: longitudinal side-stick is constantly forward deflected
within the capabilities of the device (−16◦ ≤ δqm ≤ 0). Other control
devices are kept at their trim positions.

Device inputs Objective / Manoeuvre
δqm constant nose up demand
δpm no input
δr no input
Π constant thrust level (auto-thrust off)

� the high speed case: longitudinal side-stick is constantly upward deflected
within the capabilities of the device (0 ≤ δqm ≤ 16◦).

Device input Objective / Manoeuvre
δqm constant nose down demand
δpm no input
δr no input
Π constant thrust level (auto-thrust off)

Uncertainties

Global aerodynamic coefficient uncertainties of ±10% on the values of Cx,
Cy, Cz , Cl, Cm and Cn are assumed.

2.4.3 Flight Domain Protection

Criteria Description

In any trimmed point in the normal flight domain, for any pilot inputs and
wind perturbations, the aircraft response must remain in steady state within
the peripheral envelope defined in Table 2.1. Accordingly, flight domain pro-
tection clearance criteria have been defined in [3] for load factor, pitch atti-
tude, angle of attack, altitude, Mach number, and roll angle protections. For
the pitch attitude θ and angle of attack α protections, some transient over-
shoot of the bounds can be tolerated, where the overshoot of bounds should
be less than 1◦ at high Mach numbers (M > 0.5) and less than 2◦ at low
Mach numbers (M ≤ 0.5).

By ”any pilot inputs” we mean that the control device inputs can be
arbitrary time functions provided that they fulfill the following constraints
on the steering device capabilities:

� longitudinal stick: −16◦ ≤ δqm ≤ 16◦,
∣∣∣ dδqm

dt

∣∣∣ < 30◦/s

� lateral stick: −16◦ ≤ δpm ≤ 16◦,
∣∣∣dδpm

dt

∣∣∣ < 30◦/s

� pedals: −21◦ ≤ δr ≤ 21◦,
∣∣dδr

dt

∣∣ < 20◦/s
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For clearance purposes, only violations of the flight envelope boundaries are
of interest. Nevertheless, for analysis and insight, the worst-case parameter
combinations are of interest, even if the boundaries are not violated.

Manoeuvre Description

The flight domain protection should be assessed for any pilot input. This
implies that the set of manoeuvres contains infinitely many elements. Nev-
ertheless, from previous experience, and in order to decrease the number of
varying parameters, we may restrict the attention to some kind of ”sizing
manoeuvre” as described in [3]. Unless otherwise specified, the auto-thrust
will be considered on.

Uncertainties

The following uncertainties must be considered:

� global aerodynamic coefficients uncertainties: ±10% on the values of Cx,
Cy, Cz, Cl, Cm and Cn;

� wind gradient occurrence: gradient between [1, 5kts/s], amplitude <20kts,
any orientation, see Fig. 2.14;

� failure cases: one engine out.

Fig. 2.14 Wind gradient

2.5 The Integral Benchmark Model

In this section the integral benchmark model is described. The model compo-
nents are the same as for the nonlinear benchmark model shown in Fig. 2.4.
The only difference is within the aircraft model itself, where a description of
the flexible modes is added to the rigid body dynamics.
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2.5.1 Flexible Aircraft Model

Structural Dynamics Equation of Motion

The integral model is obtained from the following Laplace-transformed sec-
ond order differential equation which describes the structural dynamics with
generalized aerodynamic loads

μs2q(s) + βsq(s) + γq(s) = Fm(s) + Ft(s) + Fg(s) (2.1)

where q is the truncated modal coordinates vector (including the rigid mo-
tion modes and flexible motion modes truncated to the most relevant ones),
(μ, β, γ) represents the generalized mass, dissipation and stiffness matrices,
respectively, Fm are the aerodynamic forces, Ft are the surfaces deflection
induced forces, and Fg are the turbulence forces. Using the expression of the

dynamic pressure qdyn :=
1
2
ρV 2

tas, these forces can be modeled as

Fm(s) = qdynFGM(s)q(s),
Ft(s) = qdynFGT (s)δ(s),
Fg(s) = qdynFGMg(s)w(s),

where FGM(s), FGT (s) and FGMg(s) are large scale improper transfer-
function matrices of the particular forms

FGM(s) = F0 + F1s + F2s
2 +

Nret∑
i=1

Fi+2
s

s + γi
(2.2)

FGT (s) = Ft0 + Ft1s + Ft2s
2 +

Nt
ret∑

i=1

Ft(i+2)
s

s+ γti
(2.3)

FGMg(s) = Fg0 + Fg1s + Fg2s
2 +

Ng
ret∑

i=1

Fg(i+2)
s

s+ γgi
(2.4)

The intervening coefficient matrices F∗ and filter poles γ∗ result from a FEM
analysis.

State-Space Model

The transfer-function matrix corresponding to an input-out description of
the model (2.1) from the inputs δ and w to some outputs y and l (defined
as selected components of q) is guaranteed to be proper. Therefore, it can be
realized as a first order state-space model of the form
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Ẋ = AX + B

(
δ
w

)

(
y
l

)
= CX + D

(
δ
w

)
(2.5)

where X is the state vector (including q and q̇, but also delays introduced
by the rational terms s

s+γ�
), δ is the vector of control surface inputs, w is

the vector of wind disturbance inputs, y is the vector of measured outputs
(e.g., attitude or attitude rate), and l is a vector of load outputs at selected
locations on the aircraft structure. The state space model (A,B,C,D) cor-
responds to a single flight condition and a fixed mass configuration.

Several linearized models are usually provided to cover a representative
set of flight conditions and mass configurations. All matrices of such state
space models are sparse, but for all flight conditions and mass configurations
they have the same sparsity pattern of zero and nonzero elements as shown
in Fig. 2.15 for the matrices A and B. The large state vector dimensions of
about 250 (may vary among the models) is one of the main computational
challenges for the analysis methods.

Fig. 2.15 Sparsity patterns of A and B matrices

2.5.2 Mass Configurations and Flight Points

The mass configurations are described in the terms of percentages of the
Pay Load (PL) and of three fuel tank loads: the Trim Tank (TT) which is
located in the horizontal tail plane, the Center Tank (CT) which is located
in the center wing box, and the Outer Tank (OT) which is symmetrically
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located in the wing part. We propose the following reduced number of load
configurations that can be independently combined:

• 2 PL configurations: 0% and 100%
• 1 TT configuration: 0%
• 3 CT configurations: 0%, 50% and 100%
• 3 OT configurations: 0%, 50% and 100%

The above selection gives 18 mass configurations for each flight point defined
by a combination of values of the Mach number M and speed Vcas. In the
benchmark definition, 9 combinations are considered for three values of M
and three values of Vcas. The corresponding values of altitude h, Vtas and air
density ρ are given in Table 2.4.

Table 2.4 Flight points

M Vcas (kts) Flight point name h (ft) ρ (kg �m−3) Vtas (m � s−1)

0.70 205 M70_V1 40825.50 0.290 206.55
0.70 285 M70_V2 26233.57 0.525 215.66
0.70 365 M70_V3 13732.22 0.803 226.68

0.86 255 M86_V1 41294.11 0.283 253.76
0.86 310 M86_V2 32751.14 0.414 257.61
0.86 365 M86_V3 25046.82 0.548 266.27

0.91 275 M91_V1 40819.91 0.290 268.52
0.91 320 M91_V2 34182.28 0.392 270.85
0.91 365 M91_V3 28082.68 0.492 278.17

By counting both longitudinal and lateral models for all mass configura-
tions and all flight points, we have altogether 324 models of which 162 are
longitudinal models and 162 are lateral models.

2.6 Clearance Criteria for the Integral Benchmark

2.6.1 Aeroelastic Stability

Criterion Definition

Assume that the linearized closed-loop system in Figure 2.4 has the state-
space realization (Acl, Bcl, Ccl, Dcl). To asses the aeroelastic stability of the
closed-loop linear system, all eigenvalues λi of Acl must have negative real
parts. The clearance of the aeroelastic stability criterion (also known as eigen-
value criterion) must cover all operating points within the flight envelope and
all mass configurations.
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2.6.2 Stability Margins

Criterion Description

Depending on the development phase, strict stability (as defined in Sect. 2.6.1)
is sometime not enough to cover model uncertainties. Then SISO phase and
gain stability margins are required. A usual requirement is to provide

� absolute phase margin ≥ 90◦, and
� gain margin ≥ 6 dB.

The margins are computed by considering the open-loop transfer function
obtained when breaking the loop at the input of one actuator while leaving the
other loops closed. In the case of multiple inputs system, margins should be
computed for each actuator. On the Nichols plot of the open-loop frequency
response, the gain margin is defined by the gain value (in dB) when the phase
is equal to -180◦ +/- 360◦, while the stability margin is defined by the phase
value when the gain is equal to 0dB.

Varying Parameters

Those margins have to be satisfied whatever the fuel tank load ratios, which
can vary between empty (0%) and full (100%), and for any flight point (i.e.
speed/Mach value).

2.6.3 Comfort with Respect to Turbulence

Description

The comfort criterion uses specific acceleration outputs γ that represent ver-
tical or lateral load factors in different parts of the aircraft. Comfort filters
representing the passenger seat transfer function are added after these ac-
celerations to compute evaluation outputs γcf , see [5] for further details. We
use a von Kármán filter with white noise input w̃ to describe the wind, as
required by the Military Specification MIL-F-8785C. No pilot input is used
in this case (uc=0). The closed-loop model used for analysis is presented in
Fig. 2.16.

Criterion Description

Let Tw̃→γcf
(s) be the stable transfer function between the wind input w̃ and

the evaluated output γcf in Fig.2.16. Since w̃ is assumed to be a white noise
input, we can compute the variance σc of γcf using the relation

σ2
c =

1
2π

∫ +∞

−∞

∣∣Tw̃→γcf
(jω)

∣∣2 dω =
∥∥Tw̃→γcf

(s)
∥∥2

2
(2.6)
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Fig. 2.16 Closed loop with aircraft integral model, control law, white noise input
and comfort filter

Let σcCL and σcOL be the evaluations of σc with and without the control law,
respectively. The fulfillment of the comfort requirements is achieved if

σcCL

σcOL

≤ k,

where k is the comfort improvement factor. A basic requirement is obtained
with k = 1, but smaller values can be used for k if the control laws aim at
improving the natural aircraft comfort level.

Varying Parameters

The comfort requirement has to be satisfied whatever the fuel tank load
ratios, that can vary between empty (0%) and full (100%), and for any flight
point, i.e. speed/Mach value. It has also to be evaluated for different points
along the fuselage to be representative for different seats in the aircraft.

2.7 Current AIRBUS Practices

In this section we describe the current AIRBUS practices for validation. Start-
ing from current standards, we will highlight where major enhancements can
be expected by using new clearance methods.

2.7.1 Validation Methods

Validation history is closely linked to design history. Figure 2.17 describes
both design methods used along the program life from feasibility studies to
series support and validation methods used to verify the designed laws. The
starting point of the design process is the mechanics of flight and load mod-
els delivery. These models are the reference behavior models used everywhere
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Fig. 2.17 Validation methods

in AIRBUS. We usually start with a linear design of the normal law inside
the nominal flight envelope for the rigid body aircraft model. Then nonlin-
ear design is performed to tune the protection laws which keep the aircraft
inside the peripheral envelope. Finally load protections are designed either
in a linear context when dealing with turbulence or in a nonlinear context
when dealing with gust and manoeuver. A possible fourth linear design step
might be required after evaluation of the aeroelastic margins. There are many
iterative loops during the development phase due to model updates. The last
one follows at the end of the identification phase. After that we can assume
that only fine tuning is performed to adjust the local behavior of the closed
loop.

Based on the design cycle, we first use linear analysis methods to validate
the linear design. This includes: closed-loop eigenvalue study, i.e. stability
and handling qualities related to pole placement, gain and phase margins,
time-domain response to basic analytical pilot inputs such as steps, and fre-
quency domain response. Then nonlinear design is validated using nonlinear
analysis methods such as: nonlinear stability margins, i.e. admissible phase
and gain perturbations for a nonlinear model until instability is reached,
nonlinear time domain response to basic analytical inputs but also to more
complex scenarios involving protections. After analysis of basic design points,
robustness is tested on a finer grid including: more flight points, more flight



34 G. Puyou and Y. Losser

scenarios, and additional uncertainties such as data processing delays, pilot
dynamics etc.

The failure case analysis is also a highly time consuming activity which is,
however, out of the scope of this project.

2.7.2 Validation Means

To perform the different types of analysis described above, a wide set of
validation means are available, from non real-time simulators to flight test
aircraft. All these simulators use the same flight mechanics and load models
when available, but representativeness of the system parts such as actua-
tors, sensors and computers are different. At start, the validation process
uses a non-real-time fully simulated aircraft model, i.e. non-real-time desk-
top simulators. A typical example is the MATLAB-Simulink model provided
to support the benchmark definition. Other model building and simulation
environments exist within AIRBUS. ATOSMA is dedicated to handling qual-
ity studies and manual laws, SIMPA is dedicated to auto-pilot law validation
and ATLAS to load computation. Only analytical inputs are available. To
perform piloting tasks we must introduce a pilot model that will control the
different axes for given objectives on speed, sideslip angle, heading, flight
path angle, etc. Later in the validation process a real-time desktop simula-
tor is used. This consists of an interactive fully simulated aircraft model. It
provides simplified control devices so that design engineers can interact with
the simulation and perform some basic scenarios which are more complex
than single objective control. We then switch to advanced simulators. This
simulators contain a true representation of the cockpit and the piloting de-
vices. We can here begin to involve flight test pilots in the validation process.
Those simulators also progressively introduce real systems in the loop, i.e.

Fig. 2.18 Validation means
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on-board computers, hydraulic systems, electrical systems, actuators, etc.
The last validation means is of course the most representative: the real
aircraft.

2.7.3 Validation Coverage

The different validation means are used to assess clearance criteria fulfill-
ment on the specified flight domain. Correlation between the flight domain
validation coverage and the use of validation means is shown in Figure 2.19.

The depicted ratios are not necessarily representative of the current sit-
uation. We only want to highlight the main features. The very first part of
validation is performed on the non-real-time simulators. This includes linear
model analysis such as stability, frequency domain response, etc. and time
domain simulation on the nonlinear model using basic scenarios: analytical
inputs such as steps, pulses, etc. or one piloting task using a pilot model. To-
day, within the context of manual laws clearance, non-real-time simulations
are only used to perform analysis on fine grids. Monte-Carlo based statisti-
cal validation methods are solely implemented for the auto-pilot validation,
where the set of inputs is more limited. Introduction of the statistical valida-
tion process to the manual flight control laws is an ongoing process. It shall
be noted that the latter problem is more complex because of the wide class
of inputs, i.e. pilot and wind inputs combinations.

Fig. 2.19 Current situation

For the time being, fixed grid validations are used to pre-determinate worst
cases used for real-time simulations. Desktop simulations are widely used by
designers to perform full flight domain validation and to help select worst case
scenarios that need to be tested during advanced simulator sessions with a
test pilot. When the simulation provides satisfactory results, flight tests can
begin. After an identification campaign and a model update only a few worst
case scenarios will be flight tested.
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These scenariosmainly include certification requirements, simulation worst-
cases where pilot judgment is mandatory, and some pilot scenarios coming from
previous aircraft development knowledge.

2.8 AIRBUS Expectations

Our expectations for the future are detailed in Figure 2.20. The main goal we
want to achieve is to widen the use of un-piloted desktop simulators in order
to reduce the piloted simulation activities. This will reduce the cost. From
our point of view the major task will be the automation of finding worst case
combinations so that we can reduce our piloted simulations and flight tests.
Nevertheless it is important to note that flight tests cannot be drastically
reduced, mainly because we always need both to validate the model accuracy
and to fulfill the certification requirements.

Fig. 2.20 Trend
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Chapter 3

Generation of LPV Models and LFRs
for a Nonlinear Aircraft Model

Simon Hecker and Harald Pfifer

Abstract. In this chapter we present a general approach to generate a linear
parameter varying (LPV) state-space model, which approximates a nonlinear
system with high accuracy and is well suited for LFT-based robustness analy-
sis. A Jacobian-based linearisation of the nonlinear parametric aircraft model
is performed first to generate a set of linearised state-space models describ-
ing the local behaviour of the nonlinear aircraft for a representative set of
parameter values and flight conditions. These models are then approximated
by a unique LPV model, by using multivariable polynomial fitting techniques
in combination with global optimisation. The objective is to find an LPV
model which guarantees a specified approximation accuracy and simultane-
ously leads to a linear fractional representation (LFR) of least possible order.
For this, a gap metric constraint on the input-output transfer-function error
is included in the optimisation problem. The effectiveness of the proposed
method is demonstrated by generating high accuracy LPV models and the
corresponding LFRs for the COFCLUO nonlinear aircraft model.

3.1 Introduction

Various dynamic systems can be described by nonlinear differential equations

ẋ = f(x, u, p)
y = g(x, u, p)

(3.1)

with state vector x(t) confined to some operating region X ⊂ R
n, input vec-

tor u and output vector y. These systems may depend on a parameter vector
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p which is either not exactly known (i.e., uncertain) or is time-varying and
belongs to an admissible parameter value set Π , i.e., p ∈ Π . The analysis
or control design for such systems ensuring the stability and performance
requirements for all allowable parameter variations and over the whole range
of operating conditions is a highly complex task and can be addressed only
by employing advanced techniques like μ-analysis/synthesis [1] or Linear Pa-
rameter Varying (LPV) control [3].

Therefore (3.1) is usually approximated by an LPV model of the form

ẋ = A(δ)x +B(δ)u
y = C(δ)x +D(δ)u,

(3.2)

where the matrices A(δ), B(δ), C(δ), D(δ) depend rationally on δ [1]. Note
that besides the parameter vector p, the vector δ may also include components
of the state vector x, thus allowing to cover state dependent nonlinearities in
the representation given by (3.2) [4]. Note that depending on the LPV genera-
tion method the vectors x, u and y in (3.2) may differ from the corresponding
vectors in (3.1). As an example, (3.2) may be generated by interpolating a
set of LTI models, which are generated by linearising (3.1) around a certain
set of equilibrium points. In this case x, u and y in (3.2) will describe only
small variations around equilibrium points of (3.1).

Finally, (3.2) is transformed into a Linear Fractional Representation (LFR)
[1], which is a standard form to apply modern robust control techniques
like μ-analysis/synthesis [1]. These techniques are usually computationally
demanding and one may obtain more accurate results (e.g. tighter bounds
for μ) when using least order LFRs [5]. Therefore LFRs of high accuracy and
low complexity (order) are required. Once (3.2) is available, very powerful
and efficiently implemented techniques [6, 7] exist for the transformation of
(3.2) into an almost least order LFR. However, the minimal achievable order
of the resulting LFR mainly depends on the complexity (order of rational or
polynomial approximations) and structure of (3.2). Thus the main emphasis
must be put on an optimal generation of the LPV model (3.2) such that it
is of high accuracy and optimally fits for low order LFR generation.

For this purpose we present a general procedure, starting with the gen-
eration of a set of linear time-invariant (LTI) state-space systems obtained
by linearisation of (3.1) at certain equilibrium points (trim points). Least-
squares multivariable polynomial fitting is used to approximate the single
elements of the state-space matrices and to find a single LPV model (3.2)
covering the whole set of LTI equilibrium models. Within the fitting process,
sophisticated methods are employed to reduce the complexity of the polyno-
mials by eliminating monomials with negligible influence on the accuracy of
the polynomial approximations. Furthermore, the element-wise polynomial
fitting is part of a global optimisation loop, where a genetic algorithm tunes
the polynomial structure of each state-space matrix element with the objec-
tive to minimise the order of the related LFR model, which will be generated
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from the LPV model. To guarantee the accuracy of the transfer function of
the LPV model, the maximum ν-gap error between the set of equilibrium
models and the LPV model is calculated and included as a constraint for the
optimisation.

It is important to emphasize that we directly choose to minimise the over-
all achievable LFR order for the optimisation of the LPV model instead of
reducing the polynomial order/complexity of its single elements. This may
allow to increase the accuracy, while keeping the same order for the resulting
LFR. To see this, consider the matrix with two parameters

A(δ) =
[
δ21 a12(δ1, δ2)
0 δ22

]
(3.3)

where the entry a12 may only have small variations within a given parameter
value set. In order to reduce the complexity of A(δ) one may therefore decide
to choose a12 to be constant. However, in terms of the LFR order, one may
also choose a12 as a second order polynomial (e.g., a12 = δ1+δ21 +δ22) without
increasing the resulting LFR order for A(δ).

Note, that in several cases one may directly derive (3.2) from (3.1) via
symbolic calculations. However, especially in aeronautical applications the
nonlinear models usually include highly nonlinear functions (neural networks,
tables) or may only be given for a discrete set of conditions (linear aeroelastic
models) such that the generation and approximation of a set of LTI state-
space models is the only way to apply LPV and LFT-based robust control
techniques.

In sections 3.2 and 3.3 we will describe the overall procedure for the genera-
tion of ”optimal” LPV models. In section 3.4 the efficiency of the procedure is
demonstrated by the generation of highly accurate LFRs for the COFCLUO
nonlinear aircraft benchmark model.

3.2 Basic Procedure for the Generation of LPV Models

The starting point for the generation of LPV models is a nonlinear parametric
model as given in (3.1). For this model, a grid of m linear, time-invariant
state-space systems for a pre-specified set of flight conditions with parameter
values δ(k), k = 1, ...,m is generated. Note that it must be guaranteed that
all elements of the grid have consistent state, input and output vectors, i.e.
the vectors have the same dimensions and physical interpretation. In the
following the grid-point state-space matrices with transfer matrix Gk(s) =
Dk +Ck(sI−Ak)−1Bk are alternatively represented in concatenated form as

Sk =
[
Ak Bk

Ck Dk

]
, k = 1 . . .m.
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The goal is to calculate a parameter dependent matrix S(δ), which best
approximates all matrices Sk as a function of the parameter vector δ. The
basic fitting procedure is divided into four steps:

A Separate the known physical relations and the unknown parts of Sk, that
shall be approximated.

B Check if the variation of an element si,j of Sk, k = 1, . . . ,m within the
grid points has only a negligible influence on the accuracy of the transfer
function of S(δ) given as G(s, δ) = D(δ) + C(δ)(sI − A(δ)−1)B(δ), such
that it can be approximated by a constant value or a low order polynomial.

C If the variation of an element si,j has a significant influence onG(s, δ), then
find a polynomial approximation for the element si,j as a function of the
parameter vector δ. This step includes a so-called rank deficient polynomial
basis reduction based on QR decomposition with column pivoting.

D Finally, perform a full rank basis reduction of the polynomial approxima-
tions using suitable measures for the significance of individual monomials.

These four steps are embedded in an optimisation loop, which will be de-
scribed later on.

3.2.1 Specification of Known Relations

For many dynamical systems physical insight into the system may be avail-
able, so that the dependency of S(δ) on the parameter vector δ may be partly
known. Consider for instance a matrix as in (3.3) with two parameters, where
the polynomial dependencies of all elements except a12 are known. Hence, the
generation process has to approximate only the element a12.

3.2.2 Element-Wise Significance Check

During the element-wise significance check, for each element si,j of the set of
matrices Sk a so-called influence coefficient ICi,j is determined. An element
has a low influence coefficient if its variation among the set of grid point LTI
models does not significantly influence the transfer function of the models (in
terms of the ν-gap metric [8]) and if it is sufficiently accurate to approximate
an element with its mean value of all the grid point models. Therefore for
each si,j a set of concatenated state-space matrices Ski,j , k = 1, . . . ,m with
transfer matrix Gki,j is generated, where all entries are equal to the entries of
the set Sk except the entry si,j , which is chosen as the mean value of the m
grid point values si,j . Finally, the influence coefficient ICi,j of si,j is defined
as

ICi,j = max
k

(δν(Gk, Gki,j )), k = 1, . . . ,m,
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where δν denotes the ν-gap metric, which is introduced in [8] as a measure-
ment of the distance between two systems. A ν-gap metric value of one states
that two systems are far apart, whereas zero means that they are identical.

During the polynomial approximation, which is described in the next sec-
tion, the significance ICi,j is used to adapt the accuracy of the polynomial
approximation, which may further help to reduce the order of the resulting
LFR. If ICi,j is smaller than a pre-specified threshold ρ1, the constant mean
value of the grid points is used to approximate the element si,j . If ICi,j is
larger than ρ2, then si,j will be approximated with a polynomial of high accu-
racy, which is defined as a given maximum root mean square error (RMSE).
If ICi,j is between ρ1 and ρ2, then the desired RMSE for the polynomial ap-
proximation will be increased/multiplied by the factor q, which is illustrated
in Fig. 3.1. Hence, if an element si,j has a small significance ICi,j close
to ρ1, the RMSE for its polynomial approximation will be doubled, which
will lead to a simpler and lower order polynomial approximation. Note, the
thresholds ρ1 and ρ2 will be free parameters for the optimisation described in
section 3.3.

1

2

q

ρ2ρ1

ICi,j

Fig. 3.1 Relation between ICi,j and q

3.2.3 Multivariable Polynomial Fitting

The algorithm for finding polynomial approximations of the single matrix
elements is based on a least squares fitting by employing monomial polyno-
mial bases. In addition, sophisticated methods for the reduction of monomial
bases [9] are used to obtain the simplest possible approximation.

In the following δ
(k)
i denotes the numerical value of the parameter δi at

the kth grid point, y is a vector including the m grid point values of an
element si,j and b is a vector including the polynomial coefficients. In a first
step, a matrix X will be built, which considers all possible monomials for a
multivariable polynomial of a given order. As an example, the matrix X for
a two parametric, second order polynomial p(δ) = [1 δ1 δ2 δ21 δ1δ2 δ22 ] b is
given by

X =

⎡
⎢⎢⎣

1 δ
(1)
1 δ

(1)
2 δ

(1)
1

2
δ
(1)
1 δ

(1)
2 δ

(1)
2

2

...
...

...
...

...
...

1 δ(m)
1 δ

(m)
2 δ

(m)
1

2
δ
(m)
1 δ

(m)
2 δ

(m)
2

2

⎤
⎥⎥⎦ (3.4)
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With the above defined matrix X the following least squares problem is
solved.

min
b

1
2
‖y −Xb‖22 (3.5)

1
2
∂‖y −Xb‖22

∂b
= XTXb−XTy = 0 (3.6)

Since the assumption of X having full column rank may not hold especially
for higher order polynomial approximations, (3.6) cannot be directly solved
for b by inverting XTX . Instead, the optimal coefficients b∗ of (3.5) are found
by means of singular value decomposition (SVD) [2] of X , which is defined
in the following way. For an arbitrary matrix X ∈ R

m×n, there exist unitary,
orthogonal matrices U ∈ R

m×m and V ∈ R
n×n, such that

X = UΣV T .

The matrix Σ is a diagonal matrix containing the singular values of X in
descending order. The rank r of the matrix X corresponds to the non-zero
singular values, so that a diagonal matrix Σr ∈ R

r×r can be defined which
only contains the non-zero singular values. Further, the first r columns of U
and V can be written in Ur ∈ R

m×r and Vr ∈ R
n×r respectively, since the

neglected columns do not contribute to the result of the SVD [10].
With the so defined matrices Σr, Ur and Vr, (3.5) can finally be solved for

the optimal coefficients b∗ as

b∗ = VrΣ
−1
r UT

r y. (3.7)

In case of a nearly rank deficient X , some of its singular values are almost
zero, which may drastically reduce the accuracy of the solution of (3.7). A way
to deal with nearly rank deficient matrices in case of a least squares problem
is to use a truncated SVD solution [11]. Instead of the real rank a numerical
rank is used by setting all singular values below a specified threshold to zero.

The algorithm developed in the present work iteratively increases the poly-
nomial order of the approximation and computes the new polynomial coef-
ficients by employing (3.7) until either the relative root mean square error
RMSE defined in (3.8) drops below a specified maximum ρ3 or the improve-
ment in the relative RMSE becomes insignificant. Those two values (i.e. the
maximum allowed error ρ3 and the minimum error decrement ρ4) are used as
additional tuning parameters in the optimal generation process as described
in section 3.3.

RMSE =
‖e‖2
‖y‖2

with e = y −Xb∗ (3.8)

Remark: Recall, that in order to distinguish between elements with significant
and negligible variations, the RMSE and the RMSE decrement will both
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be multiplied by the factor q, which was defined in the last section. If the
corresponding ICi,j is below ρ1 then no polynomial fitting will be performed
and the constant mean value will be used to approximate the element si,j .

In addition to the already described polynomial fitting based on a singular
value decomposition, a sophisticated monomial basis reduction is integrated,
in order to use as few monomials for the approximation as possible. The
data matrix X includes all possible monomials and some of them might be
redundant and can be omitted. For this purpose a so-called rank deficient or
nearly rank deficient basis reduction is performed.

In case of nearly rank deficient basis reduction, a subset of columns of X ,
which is numerically most linear independent shall be found and used for
solving the least square problem [9, 11]. It is therefore possible to eliminate
the nearly redundant (nearly linear dependent) columns of X which reduces
the number of monomials needed for the approximation. The basis reduction
is based on a QR decomposition with column pivoting and is described in [9].
Let Vr ∈ R

n×r be the matrix formed from the first r columns of V . Define V
as

V = V T
r diag(b∗1, . . . , b

∗
n)

Then, the QR decomposition with column pivoting of V has the form

V = Q
[
R11 R12

]
PT

With the permutation matrix P a new data matrix Z is calculated accord-
ing to (3.9) and the first r columns of Z are used to refit the polynomial
approximation [9], where

Z = XP. (3.9)

3.2.4 Full Rank Basis Reduction

The full rank basis reduction is conducted as a final step of the fitting algo-
rithm after a feasible approximation has been found. Some monomials of this
polynomial approximation may not have a significant influence so that they
can be eliminated. A good measure of the significance of certain monomials
is the magnitude of the whole term, i.e. the product of the coefficient with
its corresponding column of X . For this reason a utility factor u for a term j
is defined according to (3.10) [9].

uj =
‖b∗jXj‖2
‖y‖2

(3.10)

During the full rank basis reduction, the column corresponding to the low-
est utility factor is omitted from X and a new set of polynomial coefficients is
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calculated with the reduced X . This procedure is repeated until the RMSE of
the new approximation has significantly increased with respect to the original
approximation. The threshold ρ5 is specified as the relative increase with
respect to the original RMSE in percentage.

The presented approach via singular value decomposition and basis re-
duction introduced by [9] and implemented in this work has been compared
to classical linear regression methods as provided in the Matlab Statistics
Toolbox. Both algorithms yield similar results but the SVD-based one has
performed faster and numerically more robust in case of rank deficient and
nearly rank deficient problems in several test cases.

3.3 Optimisation of the Linear Parameter Varying
Model

The structured singular value computation and similar LFT based stabil-
ity analysis are computational demanding. Thus for an efficient analysis the
availability of low order LFRs is vital, which will also yield more accurate
analysis results [5,12]. Such an optimal, low order LFR, which still possesses
a sufficient accuracy can be obtained by solving an optimisation problem.
Instead of minimising the LFR order directly, it is approximated by a lower
bound as described in [6], which reduces the computational effort drastically.

For a given LPV model S(δ) with δ ∈ R
l the lower bound can be cal-

culated as follows: Substitute all but one parameter δi with random values
and compute a one parametric LFR with minimal order ri. Note, that for
single parametric systems one can always calculate a minimal order LFR.
Repeat this procedure for all parameters. Finally, the lower bound is given
by r =

∑l
i=1 ri.

The above defined lower bound can then be minimised over the following
optimisation parameters:

� Thresholds ρ1 and ρ2 from the significance check of a single element
� Maximum RMSE for the polynomial approximation ρ3

� Minimum decrement ρ4 of the RMSE when increasing the order of the
polynomial approximation

� Maximum allowed increase ρ5 of the RMSE during the full rank basis
reduction

These five parameters are concatenated in the vector ρ. For given numerical
values of the optimisation parameters in ρ, it is first decided which elements
are significant and therefore are considered for the polynomial approximation.
For the elements with a sufficiently high influence coefficient, multivariable
polynomials are fitted by means of the algorithms described in the previous
section.
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3.3.1 Optimisation with ν-Gap Metric Constraint

In addition to the minimisation of the LFR order via its lower bound, an
easily verifiable criteria for the accuracy of the LPV model is required, in the
form of the distance between the LPV model S(δ) and the grid-point LTI
models. For this, the ν-gap metric δν already introduced at the element-wise
significance check is used, which has the advantage that it can also be used
for unstable systems.

By introducing the maximum ν-gap metric between the LPV model and
the set of LTI models as an additional optimisation constraint δν,max =
max δν(Gk(s), G(s, δ(k))), k = 1, . . . ,m, the optimisation problem can be
written in the following way:

min
ρ

(r (ρ)) subject to δν,max(ρ) < νmax. (3.11)

G(s, δ(k)) denotes the transfer function of the system corresponding to S(δ)
for δ evaluated at the kth entry, i.e. G(s, δ(k)) = D(δ(k)) + C(δ(k))(sI −
A(δ(k)))−1B(δ(k)). The value νmax is chosen depending on the desired ap-
proximation accuracy of the LPV model.

Due to the fact that neither r(ρ) nor δν,max(ρ) are continuously differen-
tiable in ρ, a gradient based optimisation algorithm is unsuitable and instead
a global search algorithm is used. In the present work the differential evolu-
tion algorithm proposed by [13] and implemented in [14] is applied. For the
COFLCUO models this optimisation typically took around 20 minutes with
Matlab 2007b under Windows XP on an Intel Dual Core T2500 (2GHz, 1GB
RAM) computer.

Concerning the initial choice of ρ, we usually started with very low values
yielding very accurate but high order models and then the optimiser increased
the values to reduce the complexity until the maximum allowed model error
was reached.

3.3.2 Optimisation of the Polynomial Coefficients

Once the optimisation of (3.11) is finished, the polynomial structure and
also the resulting LFR order are fixed. However, a further reduction of the
maximum ν-gap between the LPV model S(δ) and the LTI models may be
achieved by additional minimisation of δν,max over all the polynomial coeffi-
cients. So far, aside from the influence coefficient computation, each element
has been treated individually in the algorithm. In the end, however, the sys-
tem’s behaviour reflects the quality of the solution, not the best individual
approximation. Therefore, the following optimisation problem is proposed

min
Coeffs

δν,max,
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where Coeffs denotes a vector including the polynomial coefficients of all
elements si,j(δ) of S(δ). In our procedure, the polynomial coefficients are
constrained within a twenty percent band of the original solution, in order to
stay close to the solution obtained from the previous optimisation.

Note, that during this second optimisation the structure and order of the
polynomial fittings within the LPV model are not changed and only the
coefficients are (slightly) tuned in order to improve the accuracy of the model.
Hence at least for the models under consideration the cost function of the
optimisation was smooth and fast gradient based algorithms could be used for
this second optimisation. For the COFLCUO models this second optimisation
typically took around five minutes with Matlab 2007b under Windows XP
on an Intel Dual Core T2500 (2GHz, 1GB RAM) computer.

3.4 Application to the COFLCUO Nonlinear Aircraft
Model

The aircraft model includes many nonlinearities, e.g. the aerodynamic equa-
tions are represented as neural networks, and an exact LPV representation
based on nonlinear symbolic equations would be very complex. Therefore we
decided to apply the procedure presented in sections 3.2 - 3.3 to generate an
accurate model approximation in LPV form which can be transformed into
an LFR of low complexity.

3.4.1 The Aircraft Model

The nonlinear aircraft model is implemented in Simulink and consists of an
actuator block, an aircraft dynamics block and a sensor block. The inputs,
outputs and states (without sensor and actuator states) of the aircraft model
are given in Tables 3.1 - 3.3. As no guidance loops have been considered in
the project, the states describing the aircraft position were removed and the
application of numerical order reduction also removed one unobservable state
of the quaternions from the linearised state-space models, such that the final
LPV models and LFRs only have nine states.

The uncertain and varying parameters of the aircraft model are given by
the aircraft massm, the x-position of the center of gravityXcg, the calibrated
airspeed Vcas and the Mach number M . These parameters are allowed to vary
within some given domains, the weight/balance domain and the Vcas −M
flight envelope. In order to obtain LPV models and LFRs of low complexity,
we splitted the overall parameter domain into 16 subdomains (yielding 16
LPV models and LFRs). The subdomains are shown in Figures 3.2-3.4. De-
pending on the mass of the aircraft (light or heavy cases) we used different
Vcas −M domains, which can be seen in Fig. 3.3 and Fig. 3.4.

Note that in order to allow an independent variation of the uncertain pa-
rameters m and Xcg in the LPV models - which will simplify the application



3 Generation of LPV Models and LFRs for a Nonlinear Aircraft Model 49

Table 3.1 Inputs to aircraft model

Input Description
1 Elevator
2 Horizontal Stabilizer
3 Rudder
4 Inner left aileron
5 Inner right aileron
6 Outer left aileron
7 Outer right aileron
8 Left spoilers 2 and 3
9 Right spoilers 2 and 3
10 Left spoilers 4 and 5
11 Right spoilers 4 and 5

Table 3.2 Outputs of aircraft model

Output Description
1 Pitch angle θ
2 Roll angle φ
3 Roll rate p
4 Pitch rate q
5 Yaw rate r
6 Lateral load factor ny

7 Vertical load factor nz

8 Angle of sideslip β

of μ-analysis techniques - it was initially decided to choose rectangular do-
mains for these two parameters. With the actual set of models a small region
of the weight and balance domain is not covered, however, on the one hand
it would be no problem to generate additional models that cover the remain-
ing regions and on the other hand the actual set of models was considered
to be sufficient to demonstrate in principle the applicability of the clearance
methods and tools developed within the project.

3.4.2 Trimming and Linearisation

In order to apply the method described in section 3.2 we adapted the
very accurate and efficient tools for trimming (trimex.m) and linearisation
(linmod3.m) from DLR to the nonlinear aircraft model in Simulink. The
function trimex.m relies on efficient nonlinear system solvers available via
the mex -function interfaces to nonlinear system solvers and least-squares
routines from the subroutine libraries MINPACK [15] and PORT [16]. A
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Table 3.3 States of aircraft model

State Description
1 Quaternion 1
2 Quaternion 2
3 Quaternion 3
4 Quaternion 4
5 Roll rate p
6 Pitch rate q
7 Yaw rate r
8 Ground speed Vx

9 Ground speed Vy

10 Ground speed Vz

11 x-Position
12 y-Position
13 z-Position
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Fig. 3.2 Weight and balance domains

very useful feature implemented in trimex.m is the optional trimming with
simple bounds on the trim variables. The superiority of the new trimming
tool trimex.m over the standard Matlab tool trim.m in what concerns speed
(factor of 10 faster) and reliability (accuracy and feasibility) of the results has
been demonstrated in many trimmability studies within the project. These
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Fig. 3.4 Vcas −M domain for high masses (models 9-16)

tools allow to easily generate a huge grid of linear state-space systems within
the admissible flight envelope of the aircraft.

For the generation of the LPV models, in each of the 16 parameter domains
we used 3 gridpoints for each parameter resulting in 81 (34) gridpoint LTI-
models per subdomain and an overall set of 16×81 = 1296 models. In addition
we generated a finer grid of LTI-models consisting of 625 (54) gridpoints per
subdomain (overall set of 16× 625 = 10000 LTI-models) that were used for
the validation of the LPV-models.

3.4.3 Generation of an LFR for the Actuator Model
and the Sensor Model

In the aircraft model the actuator dynamics are independent from the pa-
rameters m, Xcg, M and Vcas. Each actuator is described by a first order
system including a rate limiter and a deflection limiter (see Fig. 3.5).

To simplify the robust stability analysis of the aircraft model, the limiters
are substituted by dead-zones (see Fig. 3.6), where in the LFR the dead-zones
are included as artificial parameters.



52 S. Hecker and H. Pfifer

1

Rate_Limit

1
s1/T

Defl_Limit

1

Fig. 3.5 Actuator model
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Fig. 3.6 Actuator model including dead-zones

The LFR (M,Δ) of a single actuator is given as

M =

⎡
⎢⎢⎣
−1/T 0 1 1/T
−1 0 0 0
1/T 0 0 −1/T
1 1 0 0

⎤
⎥⎥⎦ , Δ = diag(1/s,D∗, R∗).

where T is the time constant,D∗ is the dead-zone parameter for the deflection
limiter and R∗ is the dead-zone parameter for the rate limiter of the actuator.
In the LFRs the ∗ is substituted by the name of the corresponding control
surface.

The sensor model has 17 inputs that are used to calculate the 8 outputs
that are used as controller inputs and performance outputs. In order to re-
duce the complexity of the resulting LFR model the algebraic and parameter
dependent part (only affine dependence on Xcg) of the sensor model was con-
sidered to be part of the flight dynamics model, thus reducing the outputs
of the flight dynamics model from 17 to 8. Therefore the remaining part of
the sensor model only consists of 8 first order linear filters representing the
dynamics of the sensors, which can directly be transformed into an LFR.

3.4.4 Generation of LPV Models and LFRs for the
Flight Dynamics Model

The method described in sections 3.2 - 3.3 was applied to generate optimised
LPV-models for the nonlinear aircraft dynamics. Due to the small number of
grid-points (81 per subdomain), the 16 LPV models had a very similar poly-
nomial structure resulting in LFRs of orders around 270 for all the models.

Note, that the LTI grid point models have been numerically reduced, di-
agonalised and balanced in order to obtain minimal order state-space rep-
resentations that can be interpolated. Therefore the knowledge about the
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parametric dependence of the states was lost and the first step of the LPV
model generation process (see section 3.2) was omitted.

The accuracy and structure of the 16 LFRs is listed in Table 3.4, where
the maximum ν-gap error and the mean ν-gap error between the LFR and
the grid-point models is shown. Furthermore, the structure of the Δ matrix,
with Δ = diag(XcgIn1 ,mIn2 ,M In3 , VcasIn4) is given. For the generation of
the LFRs from the optimised LPV models the symbolic pre-processing tools
described in [6] were used. It is important to emphasize that a direct appli-
cation of the standard object-oriented LFR generation method [6] without
any pre-processing or numerical order reduction would result in LFRs of or-
ders around 24000. However, as there is a lot of exploitable structure in the
LPV models (common factors in the rows and columns of the LPV models),
symbolic pre-processing methods allowed to reduce this incredible large order
down to orders around 270, which is sufficiently small for the application of
the efficient μ-analysis and Lyapunov function based analysis techniques as
proposed in the COFCLUO project.

Note, that the lower bound LFR orders obtained from the LPV model
optimisation were ranging around 190 and the orders of 270 obtained by
symbolic pre-processing are comparatively large. However, there is no way to
evaluate the accuracy of this lower bound and the orders around 270 could
even be minimal.

Note, that the dynamics of the LPV models and LFRs are exactly the
same as no numerical reduction/approximation was performed during the
generation of the LFRs.

Table 3.4 Accuracies and orders of LFRs

Model No. max(δν) mean(δν) (n1, n2, n3, n4)
∑

ni

1 0.013 0.0028 (81,49,51,85) 266
2 0.044 0.0051 (61,50,85,51) 247
3 0.044 0.0033 (84,56,51,85) 276
4 0.029 0.0025 (66,53,85,51) 255
5 0.023 0.0026 (62,71,85,51) 269
6 0.025 0.0030 (81,50,85,51) 267
7 0.023 0.0049 (78,55,85,51) 269
8 0.024 0.0029 (75,55,51,85) 266
9 0.041 0.0053 (85,73,85,51) 294
10 0.022 0.0020 (69,62,85,51) 267
11 0.050 0.0031 (81,56,68,68) 273
12 0.024 0.0032 (71,47,51,85) 254
13 0.040 0.0090 (81,55,85,51) 272
14 0.040 0.0055 (79,56,85,51) 271
15 0.043 0.0032 (78,53,51,85) 267
16 0.047 0.0047 (84,86,85,51) 306
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3.4.5 Validation of the LPV Models and LFRs of the
Flight Dynamics Model

In a first step it was very important to validate the set of linearised grid
point models. Therefore a comparison between step responses of the nonlinear
simulation and the grid point LTI models was performed. In several cases
it was necessary to adapt the perturbations, which are used to compute the
central difference in the Matlab linearisation function linmod.m. In Fig. 3.7 an
example of this comparison for a rudder step response with outputs p, q, r are
shown. Here the dominating dynamics (in roll and yaw rate) are matched very
good. However, there will always be small discrepancies (even locally), which
can be seen in this case when after some seconds the nonlinear simulation
shows some pitch movement, which is not excited in the LTI model.

0 5 10 15
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]
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Fig. 3.7 Angular rates for rudder step input of nonlinear (dash-dotted line) and
LTI (solid line) model

After validation of the LTI grid-point models the next step is to compare
the LTI models with the LPV model. For this the ν-gap metric between
the LPV model and the fine LTI-model validation grid (625 grid-points per
parameter subdomain) was calculated, which only resulted in a negligible
increase of the ν-gap values as given in Table 3.4. In addition, Bode magnitude
plots of the LPV and LTI models were compared (see an example in Fig. 3.8).
These usually showed almost no difference, which was already indicated by
the small values of ν-gap metric errors (< 0.05 in average).

One of the main achievements of the fitting algorithm of section 3.2 was to
eliminate all unnecessary monomials from the polynomial approximations of
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Fig. 3.8 Comparison of LTI and LPV model bode magnitude plots
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the state-space matrix elements, which resulted in a very smooth transition
of the LPV model eigenvalues between the grid-points.

As an example the transitions of two complex eigenvalues of the aircraft
model valid in subdomain 1 are shown in Fig. 3.9 for a variation of the mass
m between 120t and 144.5t. The grid for the generation of the LPV model
included the values at 120t, 132.25t and 144.5t and the transition of the
eigenvalues between these grid points is very smooth.

3.5 Conclusion

A general algorithm for generating linear parameter varying (LPV) models
has been developed, which can be applied to arbitrary nonlinear systems,
as long as the system behaviour can be accurately described/approximated
with polynomial or rational parametric state-space systems. The bases for
efficient LFT based methods like μ-analysis are low order and accurate models
in LFT form. Hence, an optimisation problem is derived to find an accurate
parametric approximation of the nonlinear system, which provides an optimal
structure in terms of least order LFR generation. Additionally, state-of-the-
art algorithms as proposed in [6] are used for the transformation of the LPV
model into an LFR.

In the present work, these methods have been successfully applied to gener-
ate LFRs of high accuracy and reasonable order for the COFCLUO nonlinear
benchmark model. These LFRs will be combined with the nonlinear controller
in LFR form (see chapter 5) to allow the application of LFT based clearance
methods.
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Chapter 4

Generation of LFRs for a Flexible
Aircraft Model

Clément Roos

Abstract. The flexible aircraft described in Chapter 2 is modelled as a col-
lection of linear time-invariant models which correspond to different combina-
tions of aircraft payload configurations and flight conditions. In this chapter
we propose a methodology to convert such a set of models into a linear frac-
tional representation (LFR), to be used in several robustness analysis meth-
ods. The modelling challenge consists in building a unique LFR starting from
a set of large order state-space models, having different sizes and different
physical meanings of state vectors. The resulting LFR has a moderate size
and satisfactorily approximates the aircraft behaviour, by providing almost
exact match of the system eigenvalues and frequency responses. This model
serves as basis of the clearance techniques relying on μ-analysis, Lyapunov-
based analysis and IQC-based analysis.

4.1 Introduction

The current industrial approach to clearance of flight control laws is thor-
oughly described in Chapter 2. Basically, it consists in gridding the considered
parametric domain and checking a set of criteria at each point of the grid.
The main drawback of such a strategy is that clearance is restricted only
to the considered grid points and nothing can be assessed for the remain-
ing points in the parametric domain. Moreover, significant costs are involved
to perform this task. Several techniques, such as μ-analysis (see Chapter 7
and [1,2,3]), Lyapunov-based analysis (see Chapter 9 and [4]) and IQC-based
analysis (see Chapter 10 and [5]), could be efficient alternatives. Indeed, they
allow to determine quickly whether the clearance requirements are fulfilled
on a continuous parametric domain. Unfortunately, most of these techniques
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require the aircraft models to be expressed as linear fractional representations
(LFRs), which usually are not available in the aeronautical industry.

Moreover, because of a better overall aircraft design optimisation and an
increase in aircraft sizes, the bandwidth of the bending modes tends to be
larger and now often comes very close to the one of the rigid body modes.
It must then be checked that control laws do not alter neither the stabil-
ity properties of the first flexible modes nor the over-shoot loads objectives
assigned by structural aircraft design [6]. To address these issues, the flexi-
ble aircraft behaviour need to be modeled with high fidelity. This is usually
done by using a collection of high order linear time-invariant state-space
models (so-called reference models), which correspond to different combina-
tions of aircraft payload configurations and flight conditions. The building
of LFRs using the linear fractional transformation (LFT)-based modelling
process becomes very challenging, since both the size and the meaning of
state variables of the reference models can vary according to the considered
point in the parametric domain. In this context, the main contribution of the
present chapter is to propose a new methodology to convert a set of reference
models describing the aeroelastic dynamics of the aircraft for various pay-
load configurations and flight conditions into a suitable LFR, with a special
emphasis on LFT reduction techniques. Note that another approach to the
same issue is proposed in [7].

The outline of the chapter is as follows. Sect. 4.2 states the problem, while
Sect. 4.3 describes the LFT modelling and reduction strategy. Numerical
results are then presented in Sect. 4.4 to demonstrate that the resulting LFRs
are highly representative of the reference models and that their complexity
is compatible with the use of robustness analysis tools.

4.2 Problem Statement

4.2.1 Description of the Reference Models

Let us consider the reference set of N = 162 open-loop longitudinal (or equiv-
alently lateral) models (Gi(s))i∈[1, N ] ↔ (Ai, Bi, Ci, Di)i∈[1, N ] introduced in
Chapter 2. These models describe both the rigid and the flexible dynamics of
a civil passenger aircraft on a 5-D grid corresponding to the mass configura-
tion (amount of fuel in the center/outer tanks δCT /δOT , embarked payload
δPL) and the flight point (Mach number M , calibrated air speed Vcas). More
precisely, the grid is composed of

� 2 payload configurations: 0% and 100%,
� 3 outer tank configurations: 0%, 50% and 100%,
� 3 center tank configurations: 0%, 50% and 100%,
� 3 values of the Mach number: 0.70, 0.86 and 0.91,
� 3 values of the calibrated air speed for each value of M , as shown in

Table 4.1.
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Table 4.1 Description of the flight domain

Mach number 0.70 0.86 0.91
205 255 275

Calibrated air speed (kts) 285 310 320
365 365 365

4.2.2 LFT Modelling Objective

Let δ = (δCT , δOT , δPL,M, Vcas). Let δ denote the normalised version of
vector δ, i.e. δ ∈ [−1, 1]5 on the grid. With reference to Fig. 4.1(a), the LFT
modelling task considered in this chapter is to convert the aforementioned set
of aeroelastic models into a suitable open-loop LFR Fu(M(s), Δ), where yr

is composed of the control surfaces deflections and possibly the wind velocity,
while y consists of the flight parameters measured by the sensors and possibly
a load output or an acceleration signal. In the present context, Δ is a block-
diagonal matrix

Δ = diag (δCT In1 , δOT In2 , δPLIn3 ,MIn4 , V casIn5) (4.1)

where Inj stands for the nj-by-nj identity matrix and nΔ =
∑
nj is the total

size of Δ.

�

�

� �
�

�

w z

yyr

Δ

(a)

w z

Δ

(b)

M(s) M(s)

Fig. 4.1 Structure of the LFRs used to assess either loads/comfort (a) or stability
(b) criteria

The open-loop LFR should be highly representative of the initial models, in
the sense that its eigenvalues and frequency responses should almost exactly
match those of the initial models on the 5-D grid. A special attention should
also be paid to the trajectories of its eigenvalues and the continuum of its
frequency responses to ensure that they are as regular as possible on the
whole continuous parametric domain.

Moreover, its complexity should remain compatible with the use of robust-
ness analysis tools. Indeed, the open-loop LFR will be used in Chapter 5 to
build different kinds of closed-loop LFRs, so as to assess several clearance
criteria. As an example, two such criteria are described below
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� Turbulence loads or comfort criterion. Loads level or vertical acceleration
induced by turbulence must not overshoot a given value. The associated
closed-loop LFR is depicted in Fig. 4.1(a), where yr is the wind velocity
and y denotes either a load output or an acceleration signal at a specific
point of the aircraft fuselage.

� Un-piloted aircraft stability criterion. The closed-loop plant must remain
stable on the whole operating domain. The associated closed-loop LFR is
depicted in Fig. 4.1(b).

4.2.3 Challenging Issues

Generating a suitable open-loop LFR from the set of aeroelastic models in-
troduced in Chapter 2 has several challenging aspects:

� Due to the presence of numerous flexible modes, the reference models
(Gi(s))i∈[1,N ] are of relatively high orders, with state dimensions of order
300. Moreover, their state matrices are ill-conditioned, which makes their
reduction tedious.

� The dimensions of the state variables may vary from one grid point to
another. Some flexible modes are present in one model and missing from
another model for different mass configurations and/or flight conditions.
This is inherent to the industrial modelling process.

� The grid is very coarse. Therefore, achieving a good fit over the whole
domain of variation of the mass and flight parameters is a demanding
interpolation task.

� The parametric structure of the models is unknown.

Each of these aspects may prevent the direct use of existing methods to
obtain a suitable LFR. Indeed, LFT modelling for a flexible plant is notably
investigated in [8, 9], but under the assumption that the structure of the
initial models is available.

The methodology presented in Sect. 4.3 allows to overcome the aforemen-
tioned limitations. Moreover, it is worth pointing out that it can be applied
to dynamic models for which the analytical structure is unknown and for dif-
ferent use (e.g., evaluating the robustness properties of a plant or designing
self-scheduled controllers). This can be achieved by tuning the LFT reduction
algorithm described in Sect. 4.3.4, so as to favor either high reliability or low
complexity.

4.3 Description of the Method

In this section a complete methodology is described to convert a set of ref-
erence aeroelastic models (Gi(s))i∈[1,N ] defined on a parameter grid into an
LFR. A preprocessing step described in Sect. 4.3.1 first generates reduced
models with consistent state space matrices (same order and same physical



4 Generation of LFRs for a Flexible Aircraft Model 63

meaning of states) and accurate modal content. These models are then in-
terpolated and converted into an LFR in Sect. 4.3.2, and the special case of
a coarse grid is considered in Sect. 4.3.3. An algorithm is finally proposed
in Sect. 4.3.4 to reduce the LFR complexity while maintaining a satisfactory
approximation accuracy.

4.3.1 Generation of Reduced and Consistent Models

A modal truncation is first performed on each reference model: the flexible
modes whose frequency is higher than a given bound ω are eliminated, as well
as all other unwanted modes, such as the delay modes introduced in Chap-
ter 2 to model the generalised aerodynamic loads. This allows to preserve
the exact values of the remaining modes. A new set of state space models
(Gred

i (s))i∈[1, N ] is thus obtained with a block-diagonal structure of the state
matrix. These models remain highly representative of the initial ones on a
sufficiently large frequency interval, but whose size makes them compatible
with the development of reasonably low order LFRs.

The next step consists in reordering as much as possible the state vectors
of these reduced models in order to ensure modal consistency (i.e., the same
physical meaning of state components), which is crucial in the perspective of
interpolating their state space matrices in Sect. 4.3.2. Two strategies can be
adopted:

� If the state vectors of the reference models are consistent, the states of the
reduced models can be reordered by comparing the eigenvectors contained
in the modal shape matrices used for reduction. The similarity between
two eigenvectors v1 and v2 is intuitively measured by the angle σ between
them, which makes cos2(σ) = (vT

1 v2)
2

|v1|2|v2|2 a good indicator.
� Otherwise, a cruder approach can be implemented, which consists in com-

paring the distances between the eigenvalues of different reduced models,
as well as their trajectories in the complex plane.

In both cases, a recursive algorithm can be implemented to investigate step
by step all reduced models. In addition, the following strategy is proposed in
case some flexible modes are missing for certain grid points:

� If the influence of such a mode on the frequency responses of the models
in which it is present is not significant, the mode is eliminated.

� Otherwise, it is artificially added to all the other models (the associated
elementary A matrix is simply obtained by linear interpolation).

A change of state coordinates is then performed to scale the reduced models
Gred

i (s)↔ (Ared
i , Bred

i , Cred
i , Dred

i ). The idea is to impose the same structure
to each Ared

i and to the first column of each Bred
i matrix. For example, the

submatrices Ared
i,j and Bred

i,j associated to the jth mode of the ith model are
expressed as follows
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ared
i,j =

(
0 1

−|λi,j |2 2
(λi,j)

)

Bred
i,j =

(
1 B1

i,j

0 B2
i,j

) if λi,j is a complex eigenvalue

{
Ared

i,j = λi,j

Bred
i,j =

(
1 B1

i,j

) if λi,j is a real eigenvalue

(4.2)

The computation of Ared
i and Bred

i is then straightforward

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ared
i = diag (Ared

i,j ) =

⎛
⎜⎜⎝

. . .
Ared

i,j

. . .

⎞
⎟⎟⎠

Bred
i =

⎛
⎜⎜⎝

...
Bred

i,j
...

⎞
⎟⎟⎠

(4.3)

This allows to avoid an imbalance between the models which would prove
harmful during the interpolation performed in Sect. 4.3.2. Moreover, it is
desirable to have as many constant terms as possible in the matrices to be
interpolated, so as to reduce the complexity of the resulting LFR. Note also
that the use of a companion form for Ared

i,j is not a trivial choice: numerous
tests have indeed revealed that this structure is a good choice in terms of
LFR complexity.

The reference full-size models are ill-conditioned and numerical problems
can alter the aforementioned reduction step. The frequency responses of some
reduced models thus have to be improved, so that they remain as close as pos-
sible to the ones of the reference models on the frequency interval [0, ω]. The
frequency error between a reference model Gi(s) and its reduced counterpart
Gred

i (s) is defined by
Hi(ω) = xFi(ω)−Gi(ω) (4.4)

where x =
(
Cred

i Dred
i

)
contains the optimisation parameters and

Fi(ω) =

(
(jωI −Ared

i )−1Bred
i

I

)
(4.5)

Gi(ω) = Ci(jωI − Ai)−1Bi +Di (4.6)
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The idea is to minimise the following quantity
√

1
2π

∑
j

trace (H∗
i (ωj)Hi(ωj))(ωj+1 − ωj) (4.7)

It is similar to theH2-norm except that the integral term has been replaced by
a sum on a frequency grid, which must be fine enough to ensure that the ap-
proximation is reasonable. The next proposition shows that minimising (4.7)
w.r.t. Cred

i and Dred
i is equivalent to minimising a quadratic criterion, which

can be performed easily. It is assumed in the sequel that the considered fre-
quency grid is regular: the term ωj+1 − ωj is constant for all j and can thus
be ignored.

Proposition 4.1. [7] Let u1, . . . , un and l1(ωj), . . . , ln(ωj) denote the rows
of x and the columns of Fi(ωj)G∗

i (ωj) respectively. Then
∑

j

trace (H∗
i (ωj)Hi(ωj)) = x̃TQx̃− 2x̃T f + c (4.8)

where
x̃ =

(
u1 . . . un

)T (4.9)

and

Q =
∑

j

diag

⎛
⎜⎝Fi(ωj)F ∗

i (ωj), . . . , Fi(ωj)F ∗
i (ωj)︸ ︷︷ ︸

n repetitions

⎞
⎟⎠ (4.10)

f =
∑

j

⎛
⎜⎝

(l1(ωj))

...

(ln(ωj))

⎞
⎟⎠ (4.11)

c =
∑

j

trace (Gi(ωj)G∗
i (ωj)) (4.12)

Minimising (4.7) is thus equivalent to computing x̃ such that Qx̃ = f .

In practice, Q is almost always invertible and thus x̃ = Q−1f . Moreover, an
obvious advantage of (4.7) is that it is possible to consider only a finite fre-
quency interval [0, ω]. Following the same lines, it is also possible to optimise
Bred

i and Dred
i . A biconvex optimisation procedure can thus be implemented

to optimise alternatively Cred
i , Dred

i and Bred
i , Dred

i .
At the end of this preprocessing step, a set of reduced models with consis-

tent state space matrices and accurate modal/frequential content is available.
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4.3.2 Polynomial Interpolation and LFT Modelling

The elements of the state space matrices (Ared
i , Bred

i , Cred
i , Dred

i )i∈[1, N ] can
now be interpolated. Let (zi)i∈[1, N ] be the values taken by one of them on the
grid. In the perspective of building an LFR, either a polynomial or a rational
interpolation must be performed. The former prevents the appearance of
discontinuities and is preferred here, although a higher degree is sometimes
necessary to model accurately a large variation in the element. The following
expression is thus assumed

z(δ) =
np∑

k=1

γkpk(δ) (4.13)

where (pk)k∈[1,np] is a set of multivariate polynomials and (γk)k∈[1,np] are
parameters to be determined. Let

P =

⎛
⎜⎜⎝
p1(δ

(1)
) . . . pnp(δ

(1)
)

...
. . .

...

p1(δ
(N)

) . . . pnp(δ
(N)

)

⎞
⎟⎟⎠ =

(
P1 . . . Pnp

)
(4.14)

ΓT =
(
γ1 . . . γnp

)
, ZT =

(
z1 . . . zN

)
(4.15)

where δ
(i)

is the value of δ at the ith point of the grid and (Pk)k∈[1,np] are
called the modelling functions. The objective is to minimise the quadratic
error between z(δ) and (zi)i∈[1,N ] on the grid, i.e. to compute

Γopt = arg min
Γ∈R

np
J(Γ ) (4.16)

where
J(Γ ) = (Z − PΓ )T (Z − PΓ ) (4.17)

An intuitive choice for (pk)k∈[1,np] is

{
[−1, 1]m → R

(δ1, ..., δm) → δ
i1
1 ... δ

im

m

, i1 ≤ d1, ..., im ≤ dm

}
(4.18)

where δj is the jth element of δ, m is the length of δ and d1, . . . , dm are
user-defined integers. In this context, the solution of (4.16) is

Γopt = (PTP )−1PTZ (4.19)

An alternative consists in choosing orthogonal modelling functions such that
PT

k Pl = 0 ∀k 
= l, as proposed in [10]. Thus
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γk,opt =
PT

k Z

PT
k Pk

∀k ∈ [1, np] (4.20)

and the corresponding value Jopt of J(Γ ) is given by

Jopt = ZTZ −
np∑

k=1

(PT
k Z)2

PT
k Pk

(4.21)

Using orthogonal modelling functions is relevant. Indeed, PTP becomes di-
agonal and can be trivially inverted. Moreover, it can be observed in (4.21)
that the reduction in the least squares criterion J(Γ ) resulting from the in-
clusion of Pk does not depend on Pj for all j 
= k. This allows to evaluate
each orthogonal modelling function in terms of its ability to reduce J(Γ ),
regardless of which other functions are selected. This property is exploited in
Sect. 4.3.4 to reduce the LFR complexity.

In the present section, a classical basis (4.18) is defined, from which
standard modelling functions are obtained. The solution of (4.16) is thus
given by (4.19). Once polynomial approximations A(δ), B(δ), C(δ), D(δ) of
(Ared

i , Bred
i , Cred

i , Dred
i )i∈[1, N ] are available, the structured tree decomposi-

tion algorithm of [11] is applied to get an LFR. This algorithm is implemented
in the function symtreed.m of the LFR Toolbox for Matlab [12].

4.3.3 Special Case of a Coarse Grid

The direct application of the aforementioned interpolation technique often
gives satisfactory results. Nevertheless, if the considered grid is too coarse,
the eigenvalues of the resulting LFR sometimes follow inconsistent trajecto-
ries outside the grid. In this context, the following algorithm is introduced,
which exploits the block-diagonal structure of the state matrices of the mod-
els (Ared

i , Bred
i , Cred

i , Dred
i )i∈[1, N ]: it allows to refine the grid only for the

rigid or flexible modes that cannot be interpolated satisfactorily over the
initial grid.

Algorithm 4.1 (interpolation over a coarse grid). Let L = 0. For each
rigid or flexible mode of the models to be interpolated:

1. Build an LFR Lj from the submodels (Ared
i,j , B

red
i,j , C

red
i,j , D

red
i,j )i∈[1, N ] by

interpolation over the initial grid G1.
2. Compute the eigenvalues of Lj on a finer grid G2. If the values obtained

on G2 are included (to a given tolerance) in the convex envelopes of those
computed on G1, set L ← L+ Lj and stop. Otherwise, go to step 3.

3. Identify the points of G2, for which the distances between the eigenvalues
of Lj and the associated convex envelopes are the largest, and add them to
G1. Generate fictitious submodels associated to these new points by linear
interpolation of the existing ones. Using an augmented basis of multivariate
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polynomials, build a new LFR Lj by interpolation over the augmented grid
G1, and go back to step 2.

The choice of a block-diagonal (modal) form for the reduced models
(Ared

i , Bred
i , Cred

i , Dred
i )i∈[1, N ] proves relevant in the perspective of apply-

ing Algorithm 4.1. Indeed, it allows to increase the size of the grid and the
order of the polynomials used for interpolation only for the eigenvalues that
cannot be interpolated correctly over the initial grid. To some extent, this
amounts to minimising the increase of complexity of the LFR. The procedure
described in Algorithm 4.1 is illustrated in Sect. 4.4.3.

4.3.4 Low Order LFR Generation Procedure

It is generally desirable to have an LFR with as low complexity as possible. A
three step procedure is thus introduced to reduce the size of Δ while keeping
a reasonable accuracy.

First step. The influence of the variation of each element of the matrices
Ared

i , Bred
i , Cred

i and Dred
i on the frequency responses of Gred

i is evaluated
in terms of H2-norm. More precisely, let Gred

i,c be obtained from Gred
i by

replacing a given element of Ared
i , Bred

i , Cred
i or Dred

i by its mean value for
all i ∈ [1, N ]. Let ΔGred

i (ωj) = Gred
i (ωj)−Gred

i,c (ωj). If

max
i∈[1, N ]

√√√√
∑

j trace (ΔGred∗
i (ωj)ΔGred

i (ωj))∑
j trace (Gred∗

i (ωj)Gred
i (ωj))

is below a pre-specified threshold ε1, then the mean value of this element is
used for all models and no polynomial interpolation is performed in the next
step.

Second step. Each varying element of the state space models (Ared
i , Bred

i ,
Cred

i , Dred
i )i∈[1, N ] is interpolated. For this, the following algorithm can be

used to identify the most relevant monomials of (4.18) which allow to obtain
an interpolation error lower than a given value ε2. All the other monomials are
eliminated, which amounts to a certain extent to minimising the complexity
of the interpolation formula.

Algorithm 4.2 (Identification of the Most Relevant Monomials).

1. Let Z be the data to interpolate as defined in (4.15). Let τ1 and τ2 be two
small predefined tolerances (e.g., τ1 = 10−6 and τ2 = 10−6). Choose the
maximum allowable interpolation error ε2, and build a basis of multivari-
ate monomials (ξk)k∈[1, np] as defined in (4.18), where di is the maximum
degree in the ith variable.
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2. Let (Ξk)k be the modelling functions associated to (ξk)k as defined in (4.14).
Build an orthogonal basis (Pk)k from (Ξk)k using a Gram-Schmidt proce-
dure. Compute the value (4.20) of Γopt which solves the optimisation prob-

lem (4.16). Let Zopt = PΓopt and Stest =
{
i,

(P T
i Z)2

P T
i Pi

≤ τ1Z
TZ
}
.

3. Let Selim = ∅. For each element i of Stest:

a. let (Ξ̃k)k = (Ξk)k �

{
Ξj , j ∈ S̃elim

}
, where S̃elim = Selim ∪ i, and build

an orthogonal basis (P̃k)k from (Ξ̃k)k,
b. compute Z̃ = P̃ Γ̃ , where Γ̃ solves the optimisation problem (4.16),
c. if ‖Z− Z̃‖2 > ε2‖Z‖2, interrupt step (3) and go to step (4) ; otherwise,

if ‖Zopt − Z̃‖2 ≤ τ2‖Zopt‖2, let Selim = S̃elim and Zopt = Z̃.

4. Let (ξk)k ← (ξk)k � {ξj , j ∈ Selim}. If step 3 has been interrupted, stop.
Otherwise, let τ1 ← 10τ1 and τ2 ← 10τ2 if Selim = ∅ and then go back to
step 2.

Step 2 determines a set of candidate monomials that are likely to be elim-
inated. Step 3 then decides whether these monomials are to be eliminated
or not. The gradual increase in the tolerances τ1 and τ2 allows to eliminate
progressively some of the monomials until the maximum allowable interpola-
tion error ε2 is reached. The remaining ones can then be used to interpolate
the considered element. Once all the elements are interpolated, an LFR is
generated as detailed at the end of Sect. 4.3.2.

Third step. The frequency error between the LFR Fu(M(s), Δ) and
the reference models (Gi(s))i∈[1, N ] is minimised. The following quantity is
considered

√
1
2π

∑
i,j

trace (H∗
i (ωj)Hi(ωj))(ωj+1 − ωj) (4.22)

where Hi(ωj) = Fu(M(ωj), Δi) − Gi(ωj). The matrices C,D and B,D of
the LFR are then optimised alternatively using the method presented in
Sect. 4.3.1, which can be easily adapted to the LFR framework [7].

The choice of ε1, ε2 in the aforementioned procedure allows to handle the
trade-off between accuracy and complexity.

4.4 Numerical Results

The methodology proposed in Sect. 4.3 is now applied to the set of longitudi-
nal aeroelastic models described in Sect. 4.2 (see also Chapter 2). Note that
similar results can be obtained for the set of lateral models but they are not
detailed here for the sake of conciseness.
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4.4.1 Construction of the LFR

The first step consists in choosing the interpolation parameters:

� The aircraft mass is obviously described by the payload δPL, as well as
the center and outer tanks configurations δCT and δOT .

� The flight domain can be characterised by any two of the following param-
eters: Mach number, true air speed V tas, calibrated air speed, altitude and
air density. The choice can be made by observing the shape of the domain
for several couples of parameters. This is illustrated in Fig. 4.2, where the
domain is plotted in both the (M,V tas) and (M,V cas) planes. In the first
case, the domain is far from being square and the nine grid points are
placed very irregularly. In particular, some of them are very close, which
tends to generate an LFR with inconsistent behaviour between the points.
On the contrary, a much more regular grid is obtained in the (M,V cas)
plane, which corresponds to the retained configuration.

Remark 4.1. As already mentioned, the flight domain is not square whatever
combination of two parameters is used to describe it. Thus, a preprocessing
step described in Chapter 12 is sometimes necessary before some analysis
techniques such as μ-analysis can be applied. Note that such a transformation
results in more complex LFRs than those presented in Tables 4.2 and 4.3.
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Fig. 4.2 Representation of the flight domain in the (M,Vtas) and (M,Vcas) planes

The interpolation method described in Sections 4.3.1 to 4.3.3 is then ap-
plied. The grid is composed of 3 values for δCT , δOT , M , V cas and only 2
for δPL. A basis of multivariate monomials of degree 2 in δCT , δOT , M , V cas

and 1 in δPL thus allows to perform an exact interpolation in the sense that
the eigenvalues and the frequency responses obtained while evaluating the
resulting LFR on the initial grid exactly match those of the reduced models
(Ared

i , Bred
i , Cred

i , Dred
i )i∈[1, N ].
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Several open-loop LFRs corresponding to different parametric domains
and values of ω are generated. Their structure is as depicted in Fig. 4.1(a):

� yr is composed of the elevator deflection and possibly the wind velocity,
� y consists of the flight parameters measured by the sensors (pitch rate,

vertical load factor) and possibly a load output or an acceleration signal.

Their dimensions are specified in Tables 4.2 and 4.3, where ns, nio and nΔ

denote the number of states, the number of inputs/outputs and the size of Δ
respectively. Note that the order of the LFRs dedicated to the evaluation of
loads and comfort criteria is slightly higher. Indeed, several turbulence delays
(see Chapter 2) have been kept to model the wind influence more accurately.

Table 4.2 Open-loop LFRs dedicated to the evaluation of stability criteria

Parameters in ω = 15 rad/s ω = 50 rad/s
the Δ block ns nio nΔ ns nio nΔ

M,V cas 10 1/2 48 22 1/2 84
δCT ,M, V cas 10 1/2 96 22 1/2 175

δOT , δCT ,M, V cas 10 1/2 193 22 1/2 344
δPL, δOT , δCT ,M, V cas 10 1/2 277 28 1/2 610

δCT 10 1/2 14 22 1/2 26
δOT , δCT 10 1/2 46 22 1/2 82

δPL, δOT , δCT 10 1/2 72 28 1/2 166

Table 4.3 Open-loop LFRs dedicated to the evaluation of loads and comfort
criteria

Parameters in ω = 15 rad/s ω = 50 rad/s
the Δ block ns nio nΔ ns nio nΔ

M,V cas 12 2/3 60 30 2/3 100
δCT ,M, V cas 12 2/3 120 30 2/3 231

δOT , δCT ,M, V cas 12 2/3 241 30 2/3 436
δPL, δOT , δCT ,M, V cas 12 2/3 346 36 2/3 790

δCT 12 2/3 18 30 2/3 30
δOT , δCT 12 2/3 58 30 2/3 98

δPL, δOT , δCT 12 2/3 91 36 2/3 207

Sections 4.4.2 and 4.4.3 focus on the LFR whose size is printed in bold
type in Table 4.3, while Sect. 4.4.4 considers the one whose size is printed in
bold type in Table 4.2.
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4.4.2 Validation on the Grid

Several frequency and modal criteria are defined to evaluate the similar-
ity between the LFR and the reference models on the grid. Let Hi(ω) =
Fu(M(ω), Δi)−Gi(ω).

H2 criterion : δ2 = max
i∈[1,N ]

√∑
j trace (H∗

i (ωj)Hi(ωj))∑
j trace (G∗

i (ωj)Gi(ωj))
(4.23)

H∞ criterion : δ∞ = max
i∈[1,N ]

σ(Hi(ω))
σ(Gi(ω))

(4.24)

modal criterion : δλ = max
i∈[1,N ]

max
j

|λj
i − λj

ref,i|
|λj

ref,i|
(4.25)

where λj
ref,i and λj

i denote the jth eigenvalue of the ith reference model
(including all the lag states) and of the LFR evaluated at the ith grid point
respectively. Here, δ2 = 5%, δ∞ = 6% and δλ = 10−5%. All errors are
very low, thus proving the relevance of the method, and particularly of the
reduction step and the biconvex optimisation performed in Sect. 4.3.1. Fig. 4.3
shows the results obtained at one of the worst-case grid points. The frequency
response on the right plot is associated to the transfer function between the
vertical wind velocity and the vertical acceleration at the central point of the
aircraft fuselage. A square without a cross on the left plot corresponds to an
eigenvalue that has been eliminated at the very beginning of the modelling
process. A cross without a square means that a flexible mode is missing in the
reference model and has been added by linear interpolation (see Sect. 4.3.1).
Note also that the rigid behaviour of the aircraft is represented by four states
in the reference model: the altitude z, the pitch angle θ, and their derivatives.
It can be equivalently modelled by only two states, namely the angle of attack
α and the pitch rate q. This explains why the LFR does not exhibit any pole
at the origin.

Remark 4.2. The interpolation error is always low on the grid, which can lead
to the computation of an over-optimistic modelling error. A more realistic
approach would be to generate the LFR using a coarse grid, and then to
compute the modelling error on a denser grid. Unfortunately, such a strategy
cannot be applied in the present context, since only a very coarse grid is
available.

4.4.3 Validation on the Whole Continuous Domain

It is certainly important to ensure that the eigenvalues and the frequency
responses obtained when the LFR is evaluated on the initial grid precisely
match those of the reference models. But a special attention should also be
paid to the eigenvalues of the LFR in order to ensure that they are as realistic
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Fig. 4.3 Comparison of eigenvalues (left) and frequency responses (right) on the
grid (squares and solid lines: reference models - crosses and dashed lines: LFR)

as possible between the grid points. It is notably desirable that they cannot
become too different from the values they take on the grid, which motivated
the introduction of the convex envelopes at step 2 of Algorithm 4.1. Fig. 4.4
illustrates, for a given eigenvalue λ, the relevance of the interpolation tech-
nique introduced in Algorithm 4.1. The convex envelope corresponding to
the values of λ on the initial grid G1 is represented by dashed lines. If the
LFR computed at step 1 is evaluated on a finer grid G2 (crosses), it can be
observed on Fig. 4.4(a) that several configurations exist for which the value
of λ is unrealistic, and sometimes even unstable. The worst-case configura-
tion, i.e. the configuration for which the value of λ is the farthest from the
convex envelope, is then identified (circle) and added to G1. A fictitious sub-
model is then generated and a new LFR is computed. It can be observed on
Fig. 4.4(b) that the resulting cloud of points is significantly smaller (there
is no configuration anymore, for which this mode is unstable). This whole
procedure is applied once again, and it can finally be observed on Fig. 4.4(c)
that all crosses are now included in or located very near the convex envelope.
The interpolation is thus satisfactory and the algorithm is terminated.

It should also be emphasised that the increase in complexity due to the
refinement of the grid at step 3 of Algorithm 4.1 is negligible. For instance,
if the initial grid is used to interpolate the whole reduced models, i.e. if only
step 1 is performed:

� nΔ = 195, which is only little lower than the value of 207 obtained with
the whole algorithm,

� the resulting LFR exhibits an unrealistic behaviour between the grid
points, as shown on Fig. 4.4(a).
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Fig. 4.5 Eigenvalues of the LFR computed on a fine grid (dots) and convex en-
velopes of the eigenvalues computed on the initial grid (dashed lines)

Fig. 4.5 shows the eigenvalues of the LFR computed on a very fine grid. It
appears that Algorithm 4.1 is efficient, since the clouds of points associated
to the various eigenvalues (dots) are almost included in the corresponding
convex envelopes (dashed lines).

Although no comparison can be made outside the grid points, another
strong requirement is that the LFR behaviour remains realistic, i.e. that its
eigenvalues and frequency responses vary as linearly as possible. The whole
domain cannot be checked exhaustively, but investigating the principal direc-
tions provides a good indication of the validity of the LFR. Here, both the
modal trajectories and the frequency responses continuum are quite regular,
as can be seen in Fig. 4.6 and Fig. 4.7.
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Fig. 4.6 Modal trajectories w.r.t. δOT (crosses and circles: reference models)
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Fig. 4.7 Frequency response continuum w.r.t. δCT (solid lines: reference models)

4.4.4 Evaluation of the Low Order LFR Generation
Procedure

Designing a self-scheduled controller can become a computational burden if
the size of the considered open-loop LFR is too high, which motivates an
efficient low order LFR generation procedure. In this context, the method of
Sect. 4.3 is used to build an open-loop LFR with two varying parameters (δCT

and δOT ) as depicted in Fig. 4.1(a), where yr is the elevator deflection and
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Table 4.4 Impact of the LFT reduction algorithm on complexity and accuracy

Type of LFR nΔ δ2 δ∞ δλ

initial 46 2% 8% 10−5%
reduced 22 10% 13% 8%

y denotes the flight parameters outputs (pitch rate and vertical load factor).
Note that setting ω = 15 rad/s is not restrictive in a design perspective due to
the limited bandwidth of the actuators. The reduction algorithm introduced
in Sect. 4.3.4 is then applied. Results are summarised in Table 4.4 and plotted
in Fig. 4.8 for the worst-case configuration.
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Fig. 4.8 Comparison of eigenvalues (left) and frequency responses (right) on the
grid (squares and solid lines: reference models - crosses and dashed lines: reduced
LFR)

The size of Δ is halved and accuracy remains quite sufficient for design
purposes. The LFT reduction algorithm thus proves conclusive.

4.5 Conclusion

A whole methodology is described in this chapter to convert a set of aeroe-
lastic models into an LFR. It can be applied to any kind of purely numerical
models for which the analytical structure is unknown. A preprocessing step
first generates reduced order models with consistent state space matrices
and accurate modal/frequential content. A basis of multivariate modelling
functions is then defined and a polynomial interpolation is performed using
the method of [10]. The structured tree decomposition of [11] is finally ap-
plied to build an LFR. An efficient algorithm is also proposed, which allows
to select only the most relevant modelling functions during the interpola-
tion step and thus to prevent data overfitting. This significantly reduces the
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LFR complexity while maintaining a satisfactory accuracy. The application
of this methodology to a flexible aircraft proves conclusive. The resulting
LFRs are indeed highly representative of the plant behaviour, in the sense
that their eigenvalues and frequency responses almost exactly match those of
the reference models at the considered grid points. Moreover, the trajectories
of their eigenvalues and the continuum of their frequency responses remain
quite regular on the whole continuous parametric domain. It should finally be
underlined that their reasonable complexity makes them exploitable both to
evaluate the robustness properties of the plant and to design self-scheduled
controllers, as in demonstrated in Chapters 7, 9 and 10.
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Chapter 5

Generation of LFRs for a Nonlinear
Controller and Closed-Loop Aircraft
Models

Carsten Döll, Fabien Lescher, and Clément Roos

Abstract. In this chapter the block-diagram based generation approach of
low order Linear Fractional Representations (LFRs) is applied to the non-
linear controller described in Chapter 2. For this purpose, all individual pa-
rameter dependent blocks as well as all nonlinear blocks like saturations or
rate limiters are replaced by their LFR counterparts in the block-diagram
structure of the controller. Look-up tables are approximated by rational ex-
pressions before their replacements. The overall controller LFR is extracted
from the resulting block-diagram by a standard linearization technique. The
resulting controller LFR is interconnected with the LFRs of the actuators,
sensors and of the nonlinear rigid aircraft or linear flexible aircraft generated
in Chapters 3 or 4 to obtain the LFRs of the corresponding closed-loop sys-
tems. These closed-loop LFRs are used for stability and performance analysis
in Chapters 12–16.

5.1 Introduction

The generation of linear fractional representations (LFRs) for the nonlinear
controller introduced in Chapter 2 can be performed employing the method-
ology of Chapter 3 applied to the nonlinear aircraft model. Thus, a set of lin-
earised controller models can be generated first via successive trimming and
linearisations of the nonlinear controller for a given set of flight conditions.
Then, parameter fitting has to be performed to obtain LFRs which interpo-
late these models. Alternative interpolation techniques are also described in
Chapter 4. From an user’s point of view, the resulting controller LFR would
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be a black-box input/output behaviour. Therefore, the main drawback of this
approach is that the knowledge of the readable and comprehensive controller
structure is entirely lost.

A second drawback is that, if for example, one component of the controller
(e.g., a certain gain) is changed during the overall aircraft design process to
cope with new stability or performance constraints or newly acquired ground
or flight test results, it would generally not be possible to simply adjust only
this element and its corresponding LFR block to update the existing LFRs.
Instead, the complete trimming, linearisation and interpolation process has
to be repeated, which can be very time consuming.

To overcome both above drawbacks by maintaining the readability of the
controller structure in the final LFR and allowing an easy modification of the
controller LFR after a change in one of its components, an alternative LFR
generation procedure will be employed based on the use of block-diagrams un-
der MATLAB-Simulink1 [1]. In essence, each uncertain parametric block in
the controller block-diagram is replaced by its LFR counterpart. The block-
diagram is hence not changed, it is still readable. If some elements of the
controller are later changed, it is sufficient to change only these blocks and
the corresponding LFR counterparts. The overall LFR of the controller is
finally computed by employing a standard linearization technique. This pro-
cedure applies the LFR objects block-set for use with MATLAB-Simulink,
which has been developed by ONERA in the past in order to simplify the
manipulation of interconnected LFRs [2].

This chapter is organized as follows. The nonlinear controller structure is
first explained in Sect. 5.2. The generation of LFRs for the nonlinear con-
troller is then detailed in Sect. 5.3. In Sect. 5.4, the controller LFRs are
combined with either the LFRs for the nonlinear rigid aircraft of Chapter 3
or the LFRs for the linear flexible aircraft of Chapter 4 as well as the LFRs
for the actuators and the sensors in order to create the LFR for the closed-
loop system. The resulting closed-loop LFRs are used by the analysis teams
for stability and performance analysis, see Chapters 12–16. In Sect. 5.5, the
controller and the closed-loop LFRs are evaluated with respect to linearised
models obtained from the initial nonlinear system.

5.2 Description of the Nonlinear Controller

The nonlinear controller is split into a longitudinal controller and a lateral
controller. Both controllers contain several component blocks whose dynamics
contain gains which are scheduled with respect to various flight parameters.
Most of the gains are also scheduled with respect to the aircraft configuration.
This dependency is however not taken into account in the following, as just
the clean configuration is considered.
1 MATLAB and Simulink are registered trademarks of The Mathworks Inc.
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The longitudinal controller structure is depicted in Fig. 5.1. The pilot
pitch input δqm is first translated into an equivalent demanded vertical load
factor δnz,c by a nonlinear relation including a dead-zone and a deflection
saturation within the longitudinal feedforward block without any dynamics.
The measurements are the pitch rate q, the bank angle φ, the pitch angle θ and
the vertical load factor nz. φ, θ and nz are translated within the longitudinal
estimator into a correction signal δnz using the following relation

δnz = nz − cos θ
cosφ

(5.1)

For example, during horizontal flight, nz = 1, θ ≈ 0 and φ = 0, thus the re-
sulting correction δnz ≈ 0. However, during a standard turn manoeuvre with
φ = 30o, the resulting correction δnz is 1 − 2√

3
≈ −0.15. The aircraft must

pitch up in order to hold the altitude during the turn. This relation is there-
fore called the turn coordination. There are no dynamics in the longitudinal
estimator.

In the pitch law block, an equivalent pitch deflection demand δqc is com-
puted. The control contains two proportional terms and one integral term.
In total, five gains are used which are scheduled with respect to the cali-
brated airspeed Vcas, Mach number M and center of gravity location Xcg,p,
which the pilot has chosen in function of the loading of the aircraft. Xcg,p

can therefore be different from the aircraft’s true Xcg.
The controller outputs are the demanded elevator deflection δE,c and the

demanded horizontal tailplane deflection δTHS,c, which are computed within
the pitch kinematics block. The equivalent pitch deflection δqc is first multi-
plied with the tailplane efficiency and then filtered by a first order linear time
invariant (LTI) low pass filter and limited in rate and position in order to
determine the slow tailplane deflection. On the other hand, the fast elevator
deflection is determined from δqc by subtracting a slow deflection which is
equivalent to the tailplane deflection divided by its control surface efficiency.
The resulting signal is then filtered by an LTI second order low pass filter
whose cut-off frequency is 103 times higher than the one of the tailplane. It
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is finally limited in rate and position. The tailplane efficiency is given as a
look-up table in function of M .

The lateral controller is depicted in Fig. 5.2. Within the lateral feedforward
block, the pilot roll input δpm is first translated into an equivalent internal
signal δpm,c by a nonlinear relation including a dead-zone and a deflection
saturation. On the one hand, δpm,c is directly multiplied with a gain, which
is scheduled with respect to Vcas. On the other hand, it is also fed through
an integrator with a constant gain. Both signals are then summed to get the
demanded bank angle φc. The pilot pedal input δr is directly transmitted
as the demanded sideslip angle βc. The lateral feedforward block is hence a
system of order one.

The lateral estimator processes the measurements of the roll rate p, the
yaw rate r, the bank angle φ, the lateral load factor ny and the deflection
of the rudder δR. p and r are filtered within the lateral estimator by two
LTI first order low pass filters, while φ is directly transmitted. An estimated
sideslip βest is calculated from the measurements using the lateral side force
equation

βest = − 1
Cyβ(M,α)

[
Cyr(M,α) r

c

Vtas
+ Cyp(M,α) p

c

Vtas
· · ·

+ CyδR(M,α) δR +Kny(Vcas,mp)ny

]
(5.2)
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where the four aerodynamic coefficients are given as look-up tables in function
of M and the angle of attack α, the gain Kny is a function of Vcas and the
mass of the aircraft mp which is entered by the pilot. Note that mp can be
different from the real aircraft mass m. c is the aerodynamic chord and Vtas

the true airspeed which is itself a function of M and Vcas. Two LTI first order
low pass filters are used during the estimation of βest. The lateral estimator
is hence a system of order four.

Within the roll law block, an equivalent roll demand δpc is computed. The
control law contains five proportional terms and one term with first order
dynamics. In total, six gains are used, which are scheduled with respect to
Vcas.

The roll outputs are the demanded deflections of the four inner and outer,
left and right ailerons δA,c and the four groups of left and right spoilers δS,c.
They are computed within the roll kinematics block. δpc is first filtered by
an LTI second order low pass filter before being limited in position. This
signal is then split into the various aileron and spoiler deflections by using
their corresponding surface efficiencies and the corresponding lever arms. In
our case, LTI gains and nonlinear input/output relations are involved, but
no dynamics are added.

Table 5.1 The input-output description of the controller

Inputs Outputs States xc Scheduling Parameters
δpm δE,c 1 integrator in the pitch law M
δqm δTHS,c 1 integrator in the roll law Vcas

δr δR,c 1 integrator in the yaw law Vtas

δR δAil,c
filter order 1 on δTHS,c Xcg,p

θ δAir,c filter order 2 on δE,c α
φ δAol,c

filter order 2 on δpc mp

p δAor,c filter order 2 on δrc
q δSl,2,3,c

1 integrator in the lat. feedforward
r δSr,2,3,c filter order 1 on p
ny δSl,4,5,c

filter order 1 on r
nz δSr,4,5,c 2 filters order 1 for βest

Within the yaw law block, an equivalent yaw demand δrc is computed.
The control law contains four proportional terms and one first order term. In
total, five gains are used which are scheduled with respect to Vcas.

The yaw output is the demanded deflection of the rudder δR,c and is com-
puted within the yaw kinematics block. δrc is first filtered by an LTI second
order low pass filter before being limited in rate and position. The resulting
signal is added to βc and a second time saturated in position in order to get
finally δR,c. The position saturations are function of Vcas. No dynamics are
added.
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Table 5.1 summarises the inputs, outputs, states and scheduling param-
eters of the nonlinear controller. Thus, the controller is a system with 11
inputs, 11 outputs, and 15 states. The internal gains are scheduled via 6
scheduling parameters. For the generation of the controller LFR, three addi-
tional scheduling variables, namely δqm, θ and φ, will also be included.

5.3 Generation of the Controller LFRs

In the following subsections, it is illustrated step by step how the controller
LFR is built by preserving the longitudinal and lateral block structures given
in Fig. 5.1 and Fig. 5.2, respectively. The controller LFR is expressed as
an upper linear fractional transformation (LFT) Fu(Mc, Δc) (see Chapter
4), where all known and fixed dynamics are put together in the (nominal)
LTI controller with transfer-function matrix Mc(s), while the scheduling pa-
rameters, uncertainties and the nonlinearities (like saturations) are parts of
the controller perturbation matrix Δc. The Mc(s) and Δc blocks are inter-
connected via artificial inputs wc and outputs zc as shown in Fig. 5.3. The
controller inputs are the pilot inputs δpm, δqm, and δr, the rudder deflection
δR, and the sensor measurements (see Table 5.1 for details), while the outputs
are the demanded control surface deflections δ∗,c.

�

�

�

�
�
�

�
�

Δc

δpm
δqm

δr δ∗,cMc

δR
ymeas

wc
zc

Fig. 5.3 Upper LFT form of the controller

In contrast to Chapters 3 and 4, the LFR generation process exploits and
preserves the original block-diagram structure of the controller. The first
step is to identify the individual blocks which have to be transformed into
LFRs. Parameter varying gains like scheduled controller gains or tabulated
aerodynamic coefficients, both given as look-up tables, have first to be re-
placed by rational expressions and then transformed into equivalent LFRs.
The employed approach is illustrated in Sect. 5.3.1. All kind of nonlinearities
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as rate limiters, saturations, trigonometric or irrational functions have also to
be replaced by appropriate LFRs. Possible approaches for this are described
in Sections 5.3.2-5.3.3. LTI systems with constant parameters enter without
modification in the final LFR of the controller and are therefore ignored at
this stage. In the controller structure, 52 blocks which need to be handled
have been identified. For the moment being, the identification of these blocks
has been done manually, however it is possible to completely automate this
step. This automation becomes mandatory for complicated block-diagrams
with a huge number of blocks. After having built the LFRs of all blocks, the
overall LFR corresponding to the overall block-diagram of the controller is
determined as described in Sect. 5.3.4.

5.3.1 LFRs for Parameter Varying Gains

35 blocks have been identified with parameter varying gains, including de-
pendencies like Vtas(M, Vcas), the gain Kny(Vcas, mp), four aerodynamic co-
efficients Cy∗(M, α) and 29 scheduled gains, which are functions of M , Vcas

and/or Xcg,p. All these gains are given as look-up tables and we can assume
for them a functional dependence of the form ζ(ρ), where ρ is one (or contains
several) scheduling variable(s).

To build an LFR of each ζ(ρ), the corresponding look-up tables have to be
replaced by explicit polynomial or rational expressions in the parameters ρ.
Typically, approximations based on polynomial or rational interpolation are
used. The first one prevents the appearance of discontinuities and is preferred
here, although a higher degree is sometimes necessary to model accurately
the table. In what follows, we describe shortly the interpolation approach
using multivariate polynomials.

Let ζ(ρ) be a polynomial approximation of ζ(ρ) of the form

ζ(ρ) =
np∑

k=1

γkpk(ρ), (5.3)

where pk(ρ), for k = 1, . . . , np is a set of multivariate polynomials and γk, for
k = 1, . . . , np, are constant parameters to be determined.

For example, we can determine γk which minimise the quadratic error∑N
i=1(ζ(ρi) − ζ(ρi))2, where ρi, i = 1, . . . , N are suitably chosen values of ρ

on a grid. The solution of this least squares problem can be done similarly
as described in Sect. 3.2. The approximation problem can also be solved by
choosing orthogonal modelling functions [3] applying (4.20) and (4.21), as
shown in Sect. 4.3.2.

To illustrate the polynomial interpolation in the mono-variable case, let us
consider the lateral gain LSG07(Vcas) which is scheduled with respect to the
calibrated airspeed Vcas. It is a 1-D look-up table and its tabulated values
are linearly interpolated as shown in Fig. 5.4(a) (continuous line). It is a
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whole range Vcas ∈ [185, 320] kts
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monotonically decreasing function with three slopes, a central flat and two
steep ones.

Fig. 5.4(b) illustrates that at least a 4th-order polynomial is required in or-
der to satisfy εmax ≤ 2% on the whole Vcas-range [185, 320] kts. The resulting
polynomial is hence of the following structure

LSG07(Vcas) = γ1 + γ2 Vcas + γ3 V
2
cas + γ4 V

3
cas + γ5 V

4
cas (5.4)

which, with the help of a Horner form based representation, can be realized as
a fourth order LFR of the form Fu(M,VcasI4). Note that a direct realization
based on the power representation of each term would lead to an LFR of
order 10.

It is possible to further reduce the order of the resulting LFRs by splitting
the parameter range into sub-domains. The initial range Γ = [185, 320] kts of
Vcas can be split into two smaller sub-domains defined as Γ1 = [185, 250] kts
and Γ2 = [250, 320] kts. For a given precision level εmax ≤ 2%, polynomials
of lower order can be used to approximate LSG07(Vcas) within the smaller
ranges. For example, in the sub-domain Γ1 LSG07 can be approximated by
a third order polynomial, while in the sub-domain Γ2 LSG07 can be approx-
imated by a linear function. Actually, the linear approximation can be used
even on a larger domain Γ3 = [225, 320] kts (which includes Γ2). The LFRs
corresponding to Γ1 and Γ2 (also Γ3) have orders 3 and 1, respectively.

The polynomial interpolation using orthogonal modelling functions has
been performed with the new function data2poly.m included in the LFR
Toolbox for MATLAB [4]. This function automatically selects the degree of
polynomials to guarantee a desired approximation accuracy. The creation of
the elementary LFRs, the series and parallel couplings, as well as the Horner
factorisation are part of the symbolic pre-processing tools implemented in the
functions sym2lfr.m and symtreed.m. The polynomial interpolation and the
creation of the corresponding LFR can be fully automated. This represents
a substantial gain in time because of the important number of parameter
varying blocks, which have usually to be treated.

Additional symbolic manipulations, as extracting common factors, employ-
ing special evaluation sequences, or separation of variables can help to reduce
the overall order of the controller LFR. For six blocks out of 35, symbolic pre-
processing allowed to reduce the global LFR order with at least one for each
block.

5.3.2 LFRs for Saturations and Rate Limiters

Three rate limiters and five saturations can been found in the initial block-
diagrams of the controller. Fig. 5.5(a) shows how rate limiters and saturations
are modelled in the initial controller block-diagram. A rate limitation block
is added after a first order transfer function with a certain time constant T
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Fig. 5.5 The implementation of rate limiters and saturations

and before the saturation. This type of modelling would introduce additional
dynamics during linearisation.

To reduce the state dimension of the overall resulting controller LFR, the
rate limiters can also be modelled as depicted in Fig. 5.5(b). In this case, the
first order transfer function with rate limiter and saturation is modelled as
a feedback connection containing an integrator, saturation and a gain 1/T ,
with the output of the integrator fed back. The rate signal is hence the input
of the integrator. A rate limitation can be naturally modelled by a saturation
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of this signal. Therefore, rate limitations and position saturations are both
treated as saturations.

A saturation can be replaced by a dead-zone as illustrated in Fig. 5.5(c).
Such a dead-zone can be described as an LFR of the form

Fu

([
0 1
−1 1

]
, ΔDZ

)
,

where ΔDZ is the uncertainty associated to the dead-zone operator. The
LFRs for rate limiters and saturations are depicted in Fig. 5.5(d). Separate
dead-zones are used for a deflection saturation and for a rate limiter. Dead-
zones and hence saturations belong to the family of so-called piece-wise affine
nonlinearities (PWANL). A differentiated dead-zone corresponds to a piece-
wise constant slope, where the slope is equal to zero inside the dead-zone and
to one outside the dead-zone. Anti-windup methods [5, 6] are able to cope
with this kind of LFRs.

5.3.3 LFRs for Nonlinear Input/Output Relations

Eight blocks describing static nonlinear input/output relations are present in
the controller block structure. To illustrate the treatment of these blocks, let
us consider the nonlinear relation

δpm,c = f(δpm) (5.5)

in the lateral feedforward between the pilot roll input δpm and the equivalent
control input δpm,c. The continuous line in Fig. 5.6 shows δpm,c as a function
of δpm. The function graph is symmetric with respect to the origin, but for
clarity, it is shown only in the first quadrant of the (δpm, δpm,c) plane. As it
can be observed, the values of δpm are limited to the range [−15o, +15o], and
there is also a dead-zone for values of the input δpm,c within [−0.5o, +0.5o].
In the rest, the input-output dependence is almost linear with a slope of
about 0.77.

This nonlinearity can be handled in several ways to obtain the correspond-
ing LFRs. The function f(δpm) is a PWANL and can be expressed exactly
using a combination of a dead-zone and a saturation as shown in Sect. 5.3.2.
The main advantage of this type of modelling is that the PWANL can be
transcribed as a standard LFR in the form

Fu

⎛
⎝
⎡
⎣0 0 2

0 0 1
0.38 −0.77 0

⎤
⎦ ,
[
ΔDZ1 0

0 ΔDZ2

]⎞
⎠ ,

where ΔDZ1 and ΔDZ2 are the uncertainties associated to the dead-zone
operators.
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Fig. 5.6 Nonlinear input/output relation between δpm and δpm,c

A less accurate modelling uses the approximation with a sector function
between the horizontal axis (with zero slope) and the line between the origin
and the value of δpm,c = 15o for δpm = 20o with a slope of 0.75. The border
of the sector is indicated by the dashed lines in Fig. 5.6. The corresponding
LFR can be simply expressed as

Fu

([
0 1
1 0

]
, ΔDS

)
,

where ΔDS is the operator corresponding to the sector defined by the slope
range [0, 0.75]. This modelling is however conservative, because it does not
take into account the limitation of δpm,c at 15o. Also, for analysis special
algorithms like algorithms based on Integral Quadratic Constraints (IQC)
must be used [7].

Frequently, an equivalent gain me can be used to approximate f(pm) as
me pm, which represents a linear approximation of f over the whole domain.
For our example, this is the dash-dotted line plotted in Fig. 5.6 through the
origin and the point (20o, 15o), with a slope of 0.75. No LFR modelling is
necessary in this case. Although simple, the equivalent gain based approxi-
mation ignores both the saturation of δpm,c at 15o as well as the presence of
the dead-zone.
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The use of an equivalent gain is well suited for differentiable nonlinearities.
Assuming f in (5.5) would be differentiable, the corresponding equivalent gain
is me = ∂f/∂(δpm) evaluated in the corresponding trim condition.

In the controller block, seven nonlinear input/output relations were imple-
mented as equivalent gains for the purpose of the LFR generation.

The equivalent gain based approximation can be extended to approximate
nonlinear input/output relations via parameter varying gains. This approach
has been chosen for the nonlinear input/output relation between δqm and
δnzc in the feedforward block of the longitudinal controller. In this case,
the gain explicitly depends on the trim value of δqm. Using a polynomial
approximation of the gain, a third order quasi-LFR can be determined, where
the trim value of δqm appears as an uncertain parameter.

This technique has been also applied to generate the LFR for the turn
coordination relation (5.1), which can be linearized as

Δδnz =
[

1
sin θ
cosφ

− cos θ
cosφ

tanφ
] ⎡
⎣ Δnz

Δθ
Δφ

⎤
⎦ (5.6)

where θ and φ represent the corresponding trim values. The sine-, cosine-
and tangent-functions can be very accurately approximated for small angle
values by truncated Taylor-series, as for example,

cos(θ) ∼= 1− θ2

2

sin(φ) ∼= φ

(
1− φ2

6

)
(5.7)

tan(φ) ∼= φ

(
1 +

φ2

3

)

The resulting LFR has a Δ-matrix of the form

ΔEst,lon = diag (θ I5, φ I7) (5.8)

5.3.4 LFRs for the Overall Nonlinear Controller

The result of the analysis of the previous sections is a collection of 52 LFRs
for all parameter dependent and nonlinear blocks identified in the initial con-
troller block-structure. Replacing these blocks with their LFR counterparts
fully preserves the block-structure. For example, the resulting LFR of the
longitudinal controller block-diagram is depicted in Fig. 5.7. The longitudi-
nal feedforward, estimator and the pitch law blocks are shown in the upper
part, whilst the longitudinal kinematics blocks are plotted in the lower part.

If one or several of these elements change during the control law design
process, it is easy to replace it or them with new LFR(s). This also holds
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Fig. 5.7 The resulting longitudinal controller LFR block-diagram
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for blocks where different LFRs exist. All gains depending on Vcas possess
four LFRs corresponding to four different Vcas-ranges (Γ , Γ1, Γ2, Γ3) de-
fined in Subsection 5.3.1). All nonlinear input/output relations are usually
replaced by equivalent gains, but could also be replaced by LFRs for sectors
or PWANLs. The same holds for blocks whose LFRs have to be changed, as
the underlying polynomial interpolation or the modelling as equivalent gain
are not precise enough. In all these cases, it is not necessary to recompute
the whole controller LFR, which could be a very time-consuming task.

The LFR of the global controller of Fig. 5.3 can be extracted from the
block-diagram of Fig. 5.7 as follows. The i-th LFR block of the controller
(i = 1, . . . , 52) has input uc,i and output yc,i and is represented with the help
of the LFT-representation as

yc,i = Fu(Mc,i, Δc,i)uc,i,

where Δc,i is a diagonal matrix and Mc,i is a constant matrix partitioned as

Mc,i =
[
M11,i M12,i

M21,i M22,i

]

such that the square matrices M11,i and Δc,i have the same order. The LFT-
based representation corresponds to a feedback connection (see the blocks in
Fig. 5.7), which involves the additional inputs wc,i and outputs zc,i connected
by an internal feedback connection

wc,i = Δc,izc,i

The interconnection of all LFRs and LTI components of the controller results
in an LFR which can be described by a system

ẋc = Ac xc +
[
Bc,1 Bc,2

] [wc

uc

]

[
zc

yc

]
=
[
Cc,1

Cc,2

]
xc +

[
Dc,11 Dc,12

Dc,21 Dc,22

] [
wc

uc

]
(5.9)

and a feedback connection
wc = Δ̃czc

To perform the coupling, first all LFRs are prepared for coupling by cutting
out all Δi-matrices and introducing the artificial inputs wi and outputs zi.
What remains are the static transfers Mi and dynamic and static LTI blocks.
To obtain the system matrices in (5.9), a standard linearization tool can be
employed (e.g., the linmod function of MATLAB), using the trivial equi-
librium point xc,0 = 0, uc,0 = 0, wc,0 = 0. A similar coupling takes place to
obtain Δc by stacking all inputs wc,i and all outputs zc,i in the correspond-
ing vectors wc and zc, respectively. The matrix Δ̃c results diagonal, with the
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scheduling and uncertain variables on its diagonal. For analysis purposes with
standard tools (e.g., μ-analysis), the inputs in wc and corresponding outputs
in zc have to be permuted to obtain Δ̃c in a block diagonal form

Δ̃c = diag (δc,1In1 , · · · , δc,�In�
) ,

where each parameter δc,i appears only in a single block. The permutation
performed on Δ̃c must be also performed on the columns of Bc,1 and rows of
Cc,1. The overall LFR representation of the controller in Fig. 5.3 corresponds
to the following definition of matrices Mc and Δc

Mc =

⎡
⎣ Ac Bc,1 Bc,2

Cc,1 Dc,11 Dc,12

Cc,2 Dc,21 Dc,22

⎤
⎦ , Δc =

[ 1
s Inc 0
0 Δ̃c

]
,

where nc is the dimension of the linearized controller state vector.
The block-diagram based LFR generation process can be performed auto-

matically using a new function slk2lfr, from ONERA’s Simulink handling
of LFR objects extension [2] to the LFR toolbox [4]. Table 5.2 shows the
number of inputs, outputs and states of all resulting controller LFRs. The
longitudinal (Lon.) and lateral (Lat.) controllers are decoupled in terms of
states and outputs. The numbers of outputs and states of the global con-
troller are equal to the sum of the outputs or the states of the lateral and
longitudinal controllers, respectively. φ is the only input which is used in both
the lateral and longitudinal controllers. Hence, the global controller uses just
11 inputs. For the list of inputs, outputs and states, refer to Table 5.1.

Table 5.2 Inputs, outputs and states of the controller LFRs

Controller Lon. Lat. Lon. & Lat.
Number of inputs 5 7 11
Number of outputs 2 9 11
Number of states 4 11 15

In Table 5.3 the corresponding Δc-blocks are compared. The varying pa-
rameters are M , Vcas, Xcg,p, α and mp (see Sect. 5.3.1). θ and φ stem from
the turn coordination (see Sect. 5.3.3) and δqm from the longitudinal feedfor-
ward (see Sect. 5.3.3). The four nonlinearities in the longitudinal controller
LFR concern the rate and position saturations of δE,c and δTHS,c

ΔNL,c,lon = diag
(
DδE,c , RδE,c , DδT HS,c , RδT HS,c

)
(5.10)

whilst the four nonlinearities in the lateral controller concern the rate and
position saturations of δrc, the position saturation of δR,c and the position
saturation of δpc
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ΔNL,c,lat = diag
(
Dδrc , Rδrc , DδR,c , Dδpc

)
(5.11)

where D and R are the notations for the dead-zones corresponding to po-
sition saturations and rate limiters introduced in Sect. 5.3.2. For the global
controller holds

ΔNL,c,lon+lat = diag (ΔNL,c,lon, ΔNL,c,lat) (5.12)

resulting in eight nonlinearities.

Table 5.3 The Δc-block structure of the resulting controller LFRs

Controller/ ni

∑
ni

Vcas Range M Vcas Xcg,p δqm θ φ α mp Nonlinearities
Lat. on Γ 13 28 - - - - 6 2 4 53
Lat. on Γ1 13 15 - - - - 6 2 4 40
Lat. on Γ2 13 11 - - - - 6 2 4 36
Lat. on Γ3 13 16 - - - - 6 2 4 41
Lon. on Γ 8 13 3 3 3 5 - - 4 39
Lon. on Γ1 8 13 3 3 3 5 - - 4 39
Lon. on Γ2 & Γ3 8 8 2 3 3 5 - - 4 33
Lon. & Lat. on Γ 21 41 3 3 3 5 6 2 8 92
Lon. & Lat. on Γ1 21 28 3 3 3 5 6 2 8 79
Lon. & Lat. on Γ2 21 19 2 3 3 5 6 2 8 69
Lon. & Lat. on Γ3 21 24 2 3 3 5 6 2 8 74

The size of the Δc-block of the global controller is the sum of the sizes of
the individual Δc-blocks of the lateral and longitudinal controllers. The size
of the global Δc-block of the coupled longitudinal/lateral nonlinear controller
is 92. The size of the LFR for the longitudinal controller on its own is 39 and
the one for the lateral controller is 53. Thanks to the split of the initial Vcas-
range into 3 sub-domains Γ1, Γ2 and Γ3, the size of the global Δc-block can
be significantly reduced from 92 to 79 for the Vcas ∈ Γ1 or even to 69 for
Vcas ∈ Γ2. The center of gravity Xcg,p and the mass mp vary within the
whole weight-balance domain given in Fig. 3.2. The calibrated air speed Vcas

and the Mach number M vary within the Vcas−M domains for low and high
masses given in Fig. 3.3 and 3.4.

A final normalization of the ranges of variables in the Δc-matrix is re-
quired to complete the generation of the controller LFRs. This means that
all δi are shifted and/or scaled to lie in the interval [−1, 1]. For this purpose,
we employ the same ranges for Xcg,p, mp, Vcas and M as those employed for
the generation of LFRs for the nonlinear aircraft model in Chapter 3 and for
the LFRs of the linear flexible aircraft models in Chapter 4. For the nonlinear
aircraft model 1, Xcg,p is normalized on Xcg,p ∈ [17%, 41%]. The normaliza-
tion of Vcas is performed with respect to the different ranges employed in
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Subsection 5.3.1. For example, for aircraft model 1, Vcas lies in Vcas ∈ Γ1, the
normalization range [185, 250] kts is hence used. The corresponding ranges
for M and mp are M ∈ [0.28, 0.50] and mp ∈ [120t, 144.5t]. The corre-
sponding normalized controller LFR will be named for further references as
controller LFR 1.

5.4 Generation of the Closed-Loop LFR

In order to generate the closed-loop LFRs for stability and performance anal-
ysis, it is now sufficient to interconnect the aircraft LFRs with the controller
LFRs via the LFRs for the sensors and actuators.

The LFR of the sensors is treated during the modelling of the nonlinear
rigid aircraft. The actuators do not have parameter varying elements. Their
deflections are just limited by rate limitations and position saturations which
are different from those in the controller. However, the saturations can depend
on Vcas. ΔNL,act is expressed as

ΔNL,act = diag
(
DδAil

, RδAil
, DδAir

, RδAir
, DδSl,2,3

, RδSl,2,3
, . . .

DδSl,4,5
, RδSl,4,5

, DδSr,2,3
, RδSr,2,3

, DδSr,4,5
, RδSr,4,5

, . . .

DδR , RδR , DδE , RδE , DδT HS , RδT HS

)
(5.13)

See Sect. 3.4.3 for more details on Δsens, Δact as well as D and R. Various
Δc are given in Table 5.3. Sixteen ΔA/C for the nonlinear rigid aircraft model
are given in Table 3.4 and fourteen ΔA/C for the linear flexible aircraft model
are given in Table 4.2.

5.4.1 Closed-Loop LFRs for the Nonlinear Model
Performance Analysis

Fig. 5.8 illustrates for example the interconnection structure for the turn
coordination performance analysis between the pilot roll input δpm and the
bank angle φ and sideslip angle β.

Using the same procedure as in Sect. 5.3.4, the LFR of the closed-loop
system can be derived. It corresponds to Fig. 5.9 with one input δpm and
two outputs φ and β. The total number of states is always 40 where nine
states stem from the aircraft, nine states from the actuators, seven states
from the sensors and 15 states from the controller. The nominal transfer
matrix Mcl is fed-back with the perturbation matrix Δcl involving M , Vcas,
m, Xcg, Xcg,p, α, θ, φ, mp and nonlinearities corresponding to

ΔNL,cl = diag (ΔNL,c, ΔNL,act) (5.14)
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with ΔNL,c given by (5.12) with a size of 8 and ΔNL,act given by (5.13) with
a size of 18.

Several closed-loop LFRs using the interconnection structure of Fig. 5.8
have been generated. In all cases, the LFR for the nonlinear aircraft model
1 is used. Hence, the controller LFR 1 has to be used.

As the turn coordination analysis criteria do not depend on the pilot’s
pitch input δqm, δqm can be set to zero in the Δc-matrix in all cases. It will
hence disappear from the resulting overall Δcl-matrix as shown in Table 5.4.
θ is defined as

θ = α+ γ (5.15)
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Table 5.4 Δcl-block of the resulting closed-loop LFRs

Cases ni

∑
ni

M Vcas m Xcg Xcg,p φ mp Nonlinearities
1 70 113 46 76 2 3 2 26 338
2 70 113 48 78 - 3 - 26 338
3 70 113 48 78 - - - 26 335
4 85 131 122 64 - - - 26 428
5 85 147 122 64 - - - 26 444
6 70 113 48 78 - - - 26 335

For horizontal flight, γ is always equal to zero, so that θ equals to α. It is
replaced by α in the Δcl-matrix. In the cases 1, 2, 3 and 6, α is set to the
nominal trim value α0 = 3o for the aircraft model 1. θ and α will hence simply
disappear from the resulting overall Δcl-matrix. The size of the Δcl-matrix
in case 1 is 338. It corresponds to the sum of the sizes of the Δi-matrices. In
cases 4 and 5, α is replaced by the trim value which is itself a function of M ,
Vcas, Xcg and m. The corresponding LFR is computed using the approach of
Subsection 3.4.4. Its Δα-matrix is

Δα = diag(M I2, Vcas I2, Xcg I5,m I2) (5.16)

The size of the Δcl-matrix increases significantly from 338 to 428 in case
4. This is a drawback for the analysis-algorithms. If the analysis-algorithms
are able to cope with such a Δcl-matrix, the analysis result will however be
less conservative, as θ and α are adapted in the controller to the real flight
condition, whereas in cases 1, 2, 3 and 6, θ and α correspond just to a mean
value.

For cases 2-6, it is supposed that the controller Xcg,p and mp are set by
the pilot corresponding to the real aircraft Xcg and m. In these cases, Xcg,p

and mp disappear from the overall Δcl-matrix, however the corresponding
Xcg and m entries increase by two. The overall size in case 2 does not change
with respect to case 1. The LFR in case 1 can be used to analyse the impact
of a wrong controller Xcg,p and mp setting. The LFRs of cases 2-6 are used
to analyse nominal settings.

In cases 3-5, φ is fixed to a mean value of −5o. This reduces the size of
the resulting LFR by three. φ disappears from the Δcl-matrix. The analysis
result will however be more conservative, as φ is not adapted in the controller
during the turn.

In case 5, the actuator saturations depend on Vcas. The size of the result-
ing Δcl-matrix increases by 16 due to additional Vcas terms with respect to
case 4.

In the following, let us consider the case 3, i.e. the controller trim conditions
are set to δqm = 0, α = θ = α0, φ = −5o, Xcg,p = Xcg and mp = m. The
simplified actuator model is used, where the saturations do not depend on



5 Generation of LFRs for Nonlinear Controller and Closed-Loop Models 99

Table 5.5 Δcl-block of the resulting closed-loop LFRs for turn coordination per-
formance analysis with δqm = 0, α = θ = α0, φ = −5o, Xcg,p = Xcg and mp = m,
the simplified actuators and the 16 aircraft models

Model ni

∑
ni

M Vcas Xcg m nonlinearities
1 70 113 78 48 26 335
2 104 68 58 50 26 306
3 70 111 81 55 26 343
4 104 68 63 52 26 313
5 104 79 60 68 26 337
6 104 68 76 48 26 322
7 104 77 75 53 26 335
8 70 102 71 54 26 323
9 104 73 69 63 26 335
10 104 73 66 60 26 329
11 87 90 77 54 26 334
12 70 107 68 46 26 317
13 104 73 77 53 26 333
14 104 73 75 54 26 332
15 70 107 75 52 26 330
16 104 73 69 63 26 335

Vcas. The loop is now closed for all 16 aircraft LFRs with the corresponding 16
controller LFRs. The sizes of the resultingΔcl-matrices are listed in Table 5.5.
The smallest size of 306 is obtained for model 2. The corresponding aircraft
LFR is the smallest of all aircraft LFRs. The controller LFR for model 2 is
built with the LFR for Vcas ∈ Γ2, which is also the smallest controller LFR.
The largest size of 343 is obtained for model 3. The controller LFR for model
3 is built with the LFR for Vcas ∈ Γ1, which is the second largest controller
LFR. All or some of the position saturations and rate limitations can finally
be suppressed by the analysis teams by setting the corresponding D and R
values in the Δcl-matrix to zero, which sets the saturation to the zone where
it behaves in a linear way.

5.4.2 Closed-Loop LFRs for the Nonlinear Model
Stability Analysis

For stability analysis of the nonlinear model, it is sufficient to delete the
pilot’s input and the outputs in Fig. 5.9. The resulting LFR of the closed-
loop system corresponds to Fig. 5.10. The resulting Δcl-matrix corresponds
to case 6 in Table 5.4, which is equal to the one of case 3.
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Fig. 5.10 The closed-loop LFR for the stability analysis

In Chapter 3 it has already been explained that the longitudinal and lateral
motion of the nonlinear aircraft can be extracted from the overall aircraft
LFR. In Table 5.3 it was shown that this also holds for the controller. The
closed-loop LFR of Fig. 5.10 can hence be used for the stability analysis of
either the combined nonlinear longitudinal/lateral motion or the nonlinear
longitudinal or the nonlinear lateral motion.

5.4.3 Closed-Loop LFRs for the Flexible Model
Stability and Performance Analysis

Interconnecting the longitudinal controller LFR given in Table 5.3 with one of
the fourteen linear flexible aircraft LFRs given in Table 4.2 like in the previous
subsections leads to the closed-loop LFRs for stability or performance analysis
of the flexible aircraft model. Table 5.6 illustrates for example five stability
analysis LFRs with either ten or four flexible modes nf and 32 or 20 states ns.
The parameters in the Δcl-block correspond to the flight condition expressed
by the Mach number M , the calibrated air speed Vcas and the payload PL
as well as the filling level in the center (CT ) and outer tank (OT ).

Table 5.6 Δcl-block of the resulting closed-loop LFRs for the stability analysis of
the flexible aircraft model

LFR number Parameters in Δcl nf ns Size of Δcl

1 M,V cas 10 32 87×87
2 M,V cas 4 20 51×51
3 M,V cas, δOT 4 20 104×104
4 M,V cas, δOT , δCT 4 20 203×203
5 M,V cas, δOT , δCT , δPL 4 20 290×290
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5.5 Evaluation of the LFR Generation Process

The evaluation of the generation process of the controller and the closed-loop
LFRs is performed in order to:

� verify the accuracy of the employed LFR modelling process,
� demonstrate the ability of the LFR framework to represent the nonlinear

behaviour of the system due to the presence of elements such as dead-zones
and saturations.

For both the LFR of the controller and the LFR of the closed-loop, the
evaluation consists in comparing:

� the dynamic properties of the generated LFRs with those of the linearised
models of the nonlinear system,

� the time domain simulations of the LFRs and of the nonlinear models.

5.5.1 Evaluation of the LFR of the Nonlinear
Controller

In order to analyse its dynamic properties, the nonlinear controller is firstly
linearised over a tight grid of its scheduling parameters covering the whole
flight envelope. Linearisations are performed by applying the linmod func-
tion to the Simulink-schemes of the controller. Special care is taken to the
linearisation process of the nonlinear elements. In particular, each controller
dead-zone is removed from the Simulink-schemes.

These linearised models are compared to the linear models generated from
the controller LFR. These linear models are generated by setting the Δ-
matrix parameters:

� to the flight condition values for the scheduling parameters Vcas, M , mp =
m and Xcg,p = Xcg,

� to the corresponding equilibrium value for the trimmed angle of attack α0,
� to α0 for the trimmed pitch angle θ0, considering that the flight path angle
γ = 0,

� to zero for the trimmed demanded pitch angle δqm,0,
� arbitrarily to the negative value −5o for the trimmed bank angle φ0,
� to zero for the parameters corresponding to nonlinear elements.

Such values of trimmed variables correspond to a realistic initial configuration
for turn coordination analysis. Controller input/output transfers of the two
families of linear models are then analysed in order to evaluate the accuracy
of the LFR modelling process.

Input/output transfer functions of both linear models extracted from the
LFR and linearised models of the longitudinal controller are computed over
a tight grid of the three scheduling parameters Xcg,p = Xcg, M and Vcas

covering the whole flight domain (the longitudinal controller is only scheduled
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by these three variables). For the transfer function between the j-th input
and the i-th output of the controller, the relative error εi,j(ρk) at the flight
point ρk of the grid is defined as

εi,j(ρk) = max
ω∈R+

∣∣∣Ki,j(jω, ρk)− K̃i,j(jω, ρk)
∣∣∣

|Ki,j(jω, ρk)|

where Ki,j(jω, ρk) and K̃i,j(jω, ρk) correspond respectively to the frequency
responses of the linearised model and of the linear model extracted from
the LFR. The maximum relative error over the grid εi,j = maxk εi,j(ρk)
is presented in Table 5.7. Results are satisfactory, except for the column
corresponding to the δqm input. For this input, the amplitudes of errors of
about 20% can be explained by the choice of a mean equivalent gain for
the representation of the longitudinal feedforward nonlinearities. The mean
equivalent gain is calculated by considering δqm variations of arbitrarily large
amplitudes, whereas the linearised model is just valid for very small variations
in δqm. Note however that this gap concerns an external input of the system
and does not affect closed-loop stability analysis (but could significantly affect
the performance analysis).

Table 5.7 Maximum relative error between transfer functions of the linear models
extracted from the LFR and the linearised model of the longitudinal controller

δqm q φ θ nz

δE,c 22.5% 3.83% 5.33% 5.33% 5.33%
δTHS,c 21.8% 4.70% 6.21% 6.21% 6.21%

Table 5.8 presents maximum relative errors of the input/output trans-
fer functions between linear models generated from the LFR and linearised
models of the lateral controller. These transfer functions are calculated over
a tight grid of the four parameters mp = m, α, M and Vcas that schedule the
lateral controller. The whole flight domain is covered. For this comparison,
the LFR of the lateral controller is generated by selecting mean equivalent
gains adapted to small variations for the description of the nonlinearities of
the ailerons and spoilers kinematics functions. For each input/output trans-
fer, a maximum relative error less than 12% is considered acceptable. This
is achieved excepting the spoiler input/output transfer functions, for which
the maximum error adds up to 16.5% for the input δpm. This particular high
error can be explained by the employed mean equivalent gain approximation
within the lateral feedforward (see Sect. 5.3.3).

Nonlinear simulations are also performed to compare time domain re-
sponses of the LFRs and nonlinear models of the controller. Simulations
of LFRs including nonlinear elements are performed using [2]. For these
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Table 5.8 Maximum relative error between transfer functions of the linear models
extracted from the LFR and the linearised model of the lateral controller

δpm δr p r φ ny r

δAil,c
and δAir,c 3.43% - 0.63% - 0.42% - -

δSl,2,3 and δSr,2,3 16.5% - 14.2% - 13.9% - -
δSl,4,5 and δSr,4,5 16.5% - 14.2% - 13.9% - -

δR,c 11.75% 0.0% 9.8% 9.5% 10.1% 11.1% 9.95%

simulations, the LFR of the lateral controller is generated selecting piece-wise
affine functions to describe spoilers and ailerons kinematics.

Fig. 5.11 presents the time responses of both the LFR and the non-
linear controllers due to the pilot roll input δpm, which covers the range
[−20o, +20o]. The LFR controller responses (continuous lines) match almost
exactly the nonlinear controller ones (dash-dotted lines), in spite of the pres-
ence of dead-zones, rate and position saturations in the nonlinear controller.
The generated LFR is able to correctly represent the controller nonlinearities,
whose effects are sensitive to inputs of realistic amplitude. The controller LFR
seems therefore to be well suited for the response to the δpm input within
the turn coordination performance context. The controller LFR response is
closer to the nonlinear system response than to the response of the linearised
system. This explains the relatively large error in Table 5.8. The responses
of the controller LFR due to the pilot pitch input δqm match correctly the
nonlinear controller ones. There is a small error of about 0.5o, especially
on the horizontal tailplane deflection δTHS,c, which is much better than the
relatively large error of Table 5.7. The behaviour of the controller LFR is
considered as satisfactory with respect to the nonlinear one.

5.5.2 Evaluation of the Closed-Loop LFR

The dynamic properties of the generated LFR of the closed-loop system have
to be compared to those of the nonlinear model. A first step consists in
generating linearised models of the nonlinear closed-loop around some oper-
ating points. However, the linmod function cannot be directly applied to the
Simulink-scheme of the closed-loop nonlinear aircraft because of some diffi-
culties which have been identified during the aircraft LFR generation process,
see Chapter 3 for more details. Therefore, the linearised models of the aircraft
which have been generated during the aircraft LFR generation process (see
again Chapter 3) are employed. They are connected to the linearised models
of the controllers, actuators and sensors.

To cover the whole flight envelope, linearisations are performed for each
one of the 16 flight sub-domains defined during the aircraft LFR genera-
tion process in Chapter 3. For each flight sub-domain, 81 flight points are
considered, corresponding to a grid on Vcas, M , m and Xcg. These models
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Fig. 5.11 Comparison of controller time responses to a δpm input at the flight con-
dition: [Vcas; M ; m; Xcg] = [217.7 kts; 0.43; 144.5 t; 29%]. Dash-dotted: response of
the nonlinear controller; solid: response of the LFR of the controller.

are compared with linear models generated from the closed-loop LFR, which
are obtained by setting to zero the Δ-matrix parameters corresponding to
nonlinear elements.

Fig. 5.12 illustrates the pole chart for the sub-domain 8 (see Table 3.4
and Fig. 3.3 for more details). It corresponds to high Vcas and has been
identified, amongst all sub-domains, as the worst-case sub-domain in terms of
pole matching. The poles of the LFR (markers×) and of the linearised models
(markers +) are spread relatively far from each other, but the correspondence
is still satisfactory.

The pole matching between the linear model M̃cl(s, ρk) generated from the
LFR at the flight point ρk and the linearised model Mcl(s, ρk) is evaluated by
computing the distance d(ρk) between the vectors containing the eigenvalues
λ(M̃cl(s, ρk)) and λ(Mcl(s, ρk))

d(ρk) =
ns∑

j=1

∣∣∣λj(M̃cl(s, ρk))− λj(Mcl(s, ρk))
∣∣∣
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Fig. 5.12 Pole charts of the linear models extracted from the LFR of the closed-
loop (Marker ×) and of the linearised model (Marker +) for several flight conditions
corresponding to sub-domain 8 (high Vcas).

with λj(.) denoting the j-th eigenvalue and ns the number of states. Note that
the computation of d(ρk) requires that the poles of M̃cl(s, ρk) and Mcl(s, ρk)
are correctly paired. For this purpose, the poles of both models are associated,
considering their locations, in such a way that the overall distance between
the paired poles is minimized.

The worst-matching flight conditions are specifically identified for the
transfer functions δpm → φ and δqm → θ by evaluating the matching of
the poles of these specified transfer functions over a grid of the variables
Vcas, M , Xcg and m. The worst-matching flight conditions correspond to:

� Worst case 1 for the δpm → φ transfer:
[Vcas; M ; m; Xcg] = [316.9 kts; 0.83; 169 t; 17%]

� Worst case 2 for the δqm → θ transfer:
[Vcas; M ; m; Xcg] = [316.9 kts; 0.63; 144 t; 17%]

For these two cases, frequency and time domain responses of both linear
models are relatively close, and the main dynamic properties are reproduced
in a satisfactory way by the models generated from the closed-loop LFR.
Fig. 5.13 illustrates for instance the dynamic behaviours of the linear model
extracted from the LFR and of the linearised models on the worst-matching
flight condition 2.

The LFR of the closed-loop is finally compared to the nonlinear closed-
loop model by performing some time domain nonlinear simulations. The time
responses of the closed-loop LFR and the nonlinear model due to a pilot roll
input δpm are relatively close, except for the response of the pitch angle θ.
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Fig. 5.13 Dynamic closed-loop properties of the δqm → θ transfer for the worst-
matching flight condition 2. Marker ×, solid: LFR of the closed-loop; Marker +,
dash-dotted: linearised closed-loop.

Only the nonlinear system has an expected behaviour concerning this output:
the pitch angle θ of the nonlinear system remains stable after the δpm in-
put, whereas θ diverges in the case of the closed-loop LFR and the linearised
model. Consequently, this phenomenon seems to be due to the linearisation
operation, and not to the LFR generation process. The correspondence of
the time responses of the different models due to the pitch input δqm is sat-
isfactory, and the main characteristics of the time responses of the nonlinear
model are correctly reproduced by the LFR. Note that, particularly in the
case of the response to the pedal input δr, the response of the closed-loop LFR
matches more accurately the response of the nonlinear model than the lin-
earised one. This property can be explained by the presence of the nonlinear
elements in the closed-loop LFR, which permit to represent some nonlinear
behaviour induced notably by the presence of dead-zones and saturations in
the controller and actuators LFRs. Hence, these nonlinear simulations also
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Fig. 5.14 Comparison of closed-loop time responses to a δr input at the flight
point: [Vcas; M ; m; Xcg] = [272.2 kts; 0.72; 217 t; 29%]. Solid: response of the LFR
of the closed-loop; dashed: response of the linearised closed-loop; dash-dotted: re-
sponse of the nonlinear closed-loop.

demonstrate the ability of the LFR framework to correctly represent the dy-
namic behaviour of such a nonlinear system. Fig. 5.14 presents for example
the responses to a pulse on the pedal input δr of the LFR, of the linearised
model and of the nonlinear model of the closed-loop.

5.6 Conclusions

An alternative LFR generation procedure based on the block-diagram struc-
ture of a given dynamic parameter-varying nonlinear system was introduced
in this chapter. It is complementary to the procedures introduced in Chap-
ters 3 and 4, as it keeps by its nature the block-diagram structure and hence
the access to all block elements. All varying blocks and all nonlinearities are
one by one replaced by their LFR counterparts before generating the over-
all LFR. The procedure is based on the Simulink extension [2] of the LFR
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toolbox [4] for use with MATLAB. This is particularly interesting for the
generation of controller LFRs. If one or several blocks of the controller change
during the industrial design process, it is not necessary to repeat the whole
LFR generation procedure, but just to replace the LFRs of the new blocks.
That is why this alternative LFR generation procedure has been highlighted
on the LFR generation for the controller given in Chapter 2.

Parameter varying blocks are often given as look-up tables, which have
to be expressed as rational or polynomial functions before linear fractional
transformations can be applied. A polynomial interpolation method was pro-
posed in order to come up with a polynomial with a reduced number of
monomials ensuring a chosen precision level. This is very important for low
size and precise LFR generation. The polynomial interpolation has already
been used during the generation of aircraft LFRs [8, 9].

Finally, the closed-loop LFRs have been built using again the Simulink
extension of the LFR toolbox. The LFRs for the nonlinear rigid aircraft of
Chapter 3 or the LFRs for the linear flexible aircraft of Chapter 4 have
been connected to the actuators, the sensors and the developed controller
LFRs. The interconnection of several LFRs using the LFR objects blocks be-
comes straightforward. Furthermore, the interconnection structure can easily
be modified for the various stability and performance analysis applications
in Chapters 12–16.

In the near future, the Simulink extension and the LFR toolbox will both
be further enhanced. In addition to the polynomial interpolation tools, some
rational interpolation tools will be developed, always with the objective to
reduce as much as possible the size of the resulting LFR.
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Chapter 6

Identification of LPV State-Space
Models Using H2-Minimisation

Daniel Petersson and Johan Löfberg

Abstract. Advanced robustness analysis methods employed in flight control
law clearance such as IQC-analysis and μ-analysis, rely on linear fractional
representations (LFRs). These models are usually obtained from linear pa-
rameter varying (LPV)-models which approximate the behaviour of the un-
derlying parameter uncertain nonlinear aircraft model. The generation of
LPV-models is usually done starting from a collection of linearised state-
space models describing the local behaviour of the nonlinear aircraft for a
representative set of parameter values and flight conditions. In this chapter
we propose an optimisation-based generation method to convert these linear
models into an LPV-model, by minimising a suitable H2 error norm. Al-
though computationally more demanding than the alternative element-wise
approximation approach, the new method often produces LPV-models with
lower complexity.

6.1 Introduction

The behaviour of a linear parameter varying (LPV)-model can be described
by

ẋ(t) = A(δ(t))x(t) + B(δ(t))u(t),
y(t) = C(δ(t))x(t) + D(δ(t))u(t)

where x(t) are the states, u(t) and y(t) are the input and output signals
and δ(t) is the vector of model parameters. In flight control applications, the
components of δ(t) are typically mass, position of centre of gravity and various
aerodynamic coefficients, but can also include state dependent parameters
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such as altitude and velocity, specifying current flight conditions. In this
chapter we will study the case when the parameters vary slowly and not take
time dependence of the parameters into account.

Some advanced robustness analysis methods such as IQC-analysis and μ-
analysis, see, e.g., [1] and Chapters 7, 9 and 10, require a conversion of the
LPV-model into a linear fractional representation (LFR). For this purpose, it
is necessary that the parametric matrices A(δ), B(δ), C(δ), D(δ) of the LPV-
model are rational in δ. This requirement is often violated in LPV-models
generated directly from a nonlinear model description, either due to presence
of nonlinear parametric expressions or tabulated data in the model. In both
cases, rational approximations must be used to obtain a suitable model.

The LPV-models in this chapter are generated by starting from a multi-
model system in state-space form

G(δ(i)) =
[
A(δ(i)) B(δ(i))
C(δ(i)) D(δ(i))

]

where each model, G(δ(i)), corresponds to a model sampled in the point δ(i),
for i = 1, . . . , N . The goal is to approximate this multi-model system with a
single LPV-model

Ĝ(δ) =

[
Â(δ) B̂(δ)
Ĉ(δ) D̂(δ)

]

whose state-space realisation depends polynomially on δ, and G(δ(i)) and
Ĝ(δ) are transfer-function matrices. A frequently used method today is
element-wise approximation see, e.g., [2] and Chapter 3. This method in-
terpolates the elements in the system matrices individually with rational or
polynomial functions. A possible drawback with this approach is that it fails
to take system properties into account, such as input-output relations or the
frequency response. Additionally, a prerequisite for the application of this
method is that the number of states is the same in all the models and the
matrices correspond to the same ordering of states. Other methods that also
use interpolation are, e.g., [3], [4], but they transform the models into canon-
ical state-space forms before doing the interpolation. There are also methods
that address the input-output relation and try to identify an LPV-model
using, e.g., linear regression [5] or nonlinear optimisation [6]. An excellent
survey over existing methods can be found in [7].

In this chapter we first formulate an optimisation problem to find an LPV-
model that approximates the multi-model system and captures the input-
output behaviour as measured by the H2-norm, [1]. This method was first
introduced in [8] and is now extended here. We then present two approaches
to solve the optimisation problem that arises. The first of these two methods
is then used to create low-order LPV-models of an aircraft, which ultimately
are used to generate low-order LFRs.
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Common measures to characterise a dynamical system, such as the H2- or
H∞-norm, are candidates to use when formulating the problem. One reason
for choosing the H2-norm and not the H∞-norm is that the cost function
in the optimisation problem becomes differentiable in the optimisation vari-
ables and any standard gradient based solvers can be used to perform the
optimisation.

6.2 H2-Minimisation

In this section we formulate an optimisation problem that arise when trying
to approximate a multi-model system, consisting of N local models, with
an LPV-model. The optimisation problem is formulated such that the sought
model should capture input-output behaviour of the multi-model system. The
objective is to minimise the error between the true models and the sought
LPV-model in the sampled points, in the H2-norm, i.e., we formulate the
optimisation problem

min
Â,B̂,Ĉ,D̂

N∑
i=1

∣∣∣
∣∣∣Gi − Ĝ(δ(i))

∣∣∣
∣∣∣2
H2

= min
Â,B̂,Ĉ,D̂

V (6.1)

where

Gi =
[
Ai Bi

Ci Di

]

are the sampled (given) models and

Ĝ(δ) =

[
Â(δ) B̂(δ)
Ĉ(δ) D̂(δ)

]

is the LPV-model depending on the parameter δ. We will in this chapter
assume that the system matrices in the LPV-model depends polynomially on
the parameters, e.g., when we have one parameter

Â(δ) = Âδ0 + Âδ1δ + · · ·+ ÂδkA δ
kA (6.2a)

B̂(δ) = B̂δ0 + B̂δ1δ + · · ·+ B̂δkB δ
kB (6.2b)

Ĉ(δ) = Ĉδ0 + Ĉδ1δ + · · ·+ ĈδkC δ
kC . (6.2c)

where Âδj are coefficient matrices and δj are monomials of δ. We start by
looking at the models in one sample point and omit the index i. Later this
will be generalised to the case where we have multiple models.
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Define the error systems as

E = G− Ĝ,

this system can be realised in state-space form as

E =
[
Ae Be

Ce De

]
=

⎡
⎣
(
A 0
0 Â

) (
B
B̂

)
(
C −Ĉ

)
D− D̂

⎤
⎦ . (6.3)

This realisation of the error system will later prove beneficial in rewriting the
optimisation problem. Notice that for a continuous time model the H2-norm
is unbounded if the model is not strictly proper, i.e., we need D = D̂ for
all models or that both D = 0 and D̂ = 0. We can thus see the problem of
finding an approximation D̂ as a separate problem which we do not address
in this chapter. We will also throughout the chapter assume that the models
we are given are stable, otherwise the H2-norm will not be defined.

6.2.1 Important Property of H2-Minimisation

The idea of the method is to capture the input-output behaviour of the
model. A benefit with the method, is that even though some elements can
depend non-polynomially or as a high order polynomial on the parameters,
it can exploit the fact that the realisation is non-unique. The model G(δ) =[
A(δ) B(δ)
C(δ) D(δ)

]
has the same transfer function and input-output behaviour as

GT(δ), with

GT(δ) =
[
AT(δ) BT(δ)
CT(δ) D(δ)

]
=
[
T(δ)A(δ)T(δ)−1 T(δ)B(δ)

C(δ)T(δ)−1 D(δ)

]
.

where T(δ) is a non-singular transformation matrix that can depend on δ.
This means that for every model Gi we are not only limited to find the best

approximation between Gi =
[
Ai Bi

Ci Di

]
and Ĝ(δ(i)) =

[
Â(δ(i)) B̂(δ(i))
Ĉ(δ(i)) D̂(δ(i))

]
,

but to find the match between Gi =
[
TiAiT−1

i TiBi

CiT−1
i D̂i

]
and Ĝ(δ(i)) =

[
Â(δ(i)) B̂(δ(i))
Ĉ(δ(i)) D̂(δ(i))

]
. We illustrate this by an example.
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Example 6.1. Assume we are given samples from the LPV-model

A(δ) =

⎛
⎜⎝

0.40δ2 + 3δ − 3.6 − 0.40(δ3−24δ−40)
δ

0.20(27δ3+55δ2+37δ−160.)
δ

0.40δ2 + 3.6δ − 3.2 − 0.20(2δ3+3δ2−46δ−10)
δ

0.20(27δ3+23δ2−96δ−20)
δ

1.6δ − 1.6 − 0.20(8δ2−33δ−5)
δ

0.20(23δ2−68δ−10)
δ

⎞
⎟⎠

B(δ) =

⎛
⎝8 + 7δ + δ2

6 + 2δ + δ2

3

⎞
⎠

C(δ) =
(
0.20 + 0.20δ − 0.20(−9δ+δ2−10)

δ
− 0.80(−1δ+4δ2−5)

δ

)

D(δ) = 0

It would be difficult to use an element-wise method with low order polyno-
mials to identify this LPV-model due to the rational functions. However, a
different realisation of this model is given by

AT(δ) = T(δ)A(δ)T−1(δ) =

⎛
⎝ −2 + δ 3 + δ 5 + 2δ

2 + 2δ −4 + 3δ 1 + 5δ
−8 + 8δ 1 + 5δ −2 + 3δ

⎞
⎠

BT(δ) = T(δ)B(δ) =

⎛
⎝1 + δ

2 + δ
3

⎞
⎠

CT(δ) = C(δ)T−1(δ) =
(
1 + δ 2 + 2δ 3 + 3δ

)
DT(δ) = D(δ) = 0

T(δ) =

⎛
⎝0.2 −0.2 0.2

0 1
δ
− 2

δ
0 0 1

⎞
⎠

obviously, this model is affine in δ.

The example illustrates the important property that when searching in the
class of LPV-models with low dependence on δ, it is sometimes possible to find
an equivalent model with respect to the input-output relation, even though
the given model depends non-polynomially on δ. One important thing to
note is that the D-matrix is not affected by a state transformation, thus
state transformations do not help to simplify the dependence of δ in D.

6.2.2 Rewriting the H2-Norm of the Error System

By definition the H2-norm of a continuous LTI system, see [1], is

||E||2H2
= tr

[
1
2π

∫ ∞

−∞
E(jω)E(jω)Hdω

]
. (6.4)
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To calculate the cost function efficiently we rewrite (6.4) to a numerically
more suitable form. This can be done using the Gramians for the system, see
[1]. The observability and controllability Gramians, Qe and Pe respectively,
for the error system, E, are defined as

Pe =
∫ ∞

0

eAetBe(eAetBe)T dt, (6.5a)

Qe =
∫ ∞

0

(Cee
Aet)T Cee

Aetdt (6.5b)

where Pe and Qe satisfy the Lyapunov equations, see [1],

AePe + PeAT
e + BeBT

e = 0, (6.6a)

AT
e Qe + QeAe + CT

e Ce = 0. (6.6b)

Now we use Parseval’s identity to rewrite (6.4) as

||E||2H2
= tr

[∫ ∞

0

(
Cee

AetBe

) (
Cee

AetBe

)T
dt

]
=

= tr
[∫ ∞

0

(
Cee

AetBe

)T (
Cee

AetBe

)
dt

]
.

By using (6.5) and (6.6) it is possible to rewrite the cost function as

||E||2H2
= trBT

e QeBe = trCePeCT
e . (6.7)

6.3 Method 1: General Nonlinear Optimisation

In this section, we try to solve the optimisation problem as a general nonlinear
optimisation problem, for which we derive expressions for the cost function
and the gradient which can be efficiently evaluated.

For the method proposed in this section, we have derive efficiently com-
putable expressions for both the cost function and its gradient. To solve the
optimisation problem any gradient based optimisation scheme can be used to
actually perform the numerical search for a local optimum [12]. Hence, to test
the efficiency of the proposed algorithm, essentially any available commercial
or open-source solver can be used. It is thus beyond the scope of this chapter
to give any details on how a complete solver is implemented.

6.3.1 Evaluation of the Cost Function

With the realisation (6.3) of E and equations (6.6), if we partition the Grami-
ans Pe and Qe as
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Pe =
(

P X
XT P̂

)
, Qe =

(
Q Y
YT Q̂

)

we obtain six Sylvester and Lyapunov equations

AP + PAT + BBT = 0, (6.8a)

AX + XÂT + BB̂T = 0, (6.8b)

ÂP̂ + P̂ÂT + B̂B̂T = 0, (6.8c)

AT Q + QA + CT C = 0, (6.8d)

ATY + YÂ−CT Ĉ = 0, (6.8e)

ÂT Q̂ + Q̂Â + ĈT Ĉ = 0. (6.8f)

We note that P and Q satisfy the Lyapunov equations for the controllability
and the observability Gramians for the given system, while P̂ and Q̂ satisfy
the Lyapunov equations for the controllability and the observability Gramians
for the sought system. With the partitioning of Pe and Qe it is possible to
rewrite the cost function, (6.7), as

||E||2H2
= tr

(
BT QB + 2BTYB̂ + B̂T Q̂B̂

)
(6.9a)

||E||2H2
= tr

(
CPCT − 2CXĈT + ĈP̂ĈT

)
. (6.9b)

The two equations in (6.9) are equivalent and are both useful to simplify the
derivations for the gradients later. However, at this point we will only use
(6.9a) to calculate the cost function. It is now straightforward to express the
cost function for the more general case when we have multiple models, i.e.,
rewrite the cost function V in (6.1) with the new partitioning

V =
∑

i

||Ei||2H2
=
∑

i

tr
(
BT

i QiBi + 2BT
i YiB̂(δ(i))+

+B̂(δ(i))T Q̂iB̂(δ(i))
)
. (6.10)

The optimisation problem (6.1) can now be written as

min
Â

δk ,B̂
δk ,Ĉ

δk

∑
i

tr
(
BT

i QiBi + 2BT
i YiB̂(δ(i)) + B̂(δ(i))T Q̂iB̂(δ(i))

)
. (6.11)

Keep in mind the parametrisation of the system matrices introduced in (6.2).
Additionally, Pi,Qi, P̂i, Q̂i,Xi and Yi satisfy the equations
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AiPi + PiAT
i + BiBT

i = 0, (6.12a)

AiXi + XiÂ(δ(i))T + BiB̂(δ(i))T = 0, (6.12b)

Â(δ(i))P̂i + P̂iÂ(δ(i))T + B̂(δ(i))B̂(δ(i))T = 0, (6.12c)

AT
i Qi + QiAi + CT

i Ci = 0, (6.12d)

AT
i Yi + YiÂ(δ(i))−CT

i Ĉ(δ(i)) = 0, (6.12e)

Â(δ(i))T Q̂i + Q̂iÂ(δ(i)) + Ĉ(δ(i))T Ĉ(δ(i)) = 0. (6.12f)

The cost function to the optimisation problem (6.11) is now expressed in
the sought variables Â, B̂, Ĉ, the given data Ai,Bi,Ci and in the different
partitions of the Gramians for the error system, i.e., the solutions to the
equations in (6.12) that can easily be calculated.

6.3.2 Evaluation of the Gradient

An appealing feature of the proposed nonlinear optimisation approach to
solve the problem is that the equations (6.9) are differentiable in the system
matrices, Â, B̂ and Ĉ (see [9, 10]). In addition, the closed form expression
you obtain when differentiating the cost function is expressed in the given
data (A,B and C), the optimisation variables (Â, B̂ and Ĉ) and solutions to
equations (6.12), some of them already calculated when calculating the cost
function, so you get them for free. To be more precise, the computational
effort of computing the derivative is only an additional constant cost once
the cost function is calculated.

We start by calculating the gradient with respect to Â, i.e.,
∂||E||2H2

∂Â
where[

∂||E||2H2

∂Â

]
ij

=
∂||E||2H2

∂âij
and âij are the individual elements in Â. Again we

start by looking at the case when we only have one given system and then
later extend the result to multiple models and an LPV-model with polynomial
dependence in the parameters. Q̂ and Y depend on Â which we need to keep

in mind when differentiating (6.9a) with respect to Â. Hence,
[

∂||E||2H2

∂Â

]
ij

becomes [
∂ ||E||2H2

∂Â

]

ij

= tr

(
2B̂BT ∂Y

∂âij
+ B̂B̂T ∂Q̂

∂âij

)
(6.13)

where ∂Y
∂âij

and ∂Q̂
∂âij

depend on Â via the differentiated versions of equations
(6.8d) and (6.8e)
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AT ∂Y
∂âij

+
∂Y
∂âij

Â + Y
∂Â
∂âij

= 0, (6.14a)

ÂT ∂Q̂
∂âij

+
∂Q̂
∂âij

Â +
∂ÂT

∂âij
Q̂ + Q̂

∂Â
∂âij

= 0. (6.14b)

To simplify the calculations of the gradient we need the following Lemma
(see [11]).

Lemma 6.1. If M and N satisfies the following Sylvester equations

AM + MB + C = 0, NA + BN + D = 0

then trCN = trDM.

Now applying Lemma 6.1 on (6.8) and (6.14) yields

tr B̂BT ∂Y
∂âij

= trXT Y
∂Â
∂âij

,

tr B̂B̂T ∂Q̂
∂âij

= tr P̂

(
∂ÂT

∂âij
Q̂ + Q̂

∂Â
∂âij

)
.

Inserting this in (6.13) yields
[
∂ ||E||2H2

∂Â

]

ij

= tr

(
2XTY

∂Â
∂âij

+ P̂

(
∂ÂT

∂âij
Q̂ + Q̂

∂Â
∂âij

))
=

= 2 tr

(
∂ÂT

∂âij

(
Q̂P̂ + YT X

))
.

It follows that
∂||E||2H2

∂Â
= 2
(
Q̂P̂ + YT X

)
. Analogously we can calculate the

gradients with respect to B̂ and Ĉ.

∂ ||E||2H2

∂Â
= 2
(
Q̂P̂ + YT X

)
(6.15a)

∂ ||E||2H2

∂B̂
= 2
(
Q̂B̂ + YT B

)
(6.15b)

∂ ||E||2H2

∂Ĉ
= 2
(
ĈP̂−CX

)
(6.15c)

If we now extend this to the more general form when given multiple models
and when the LPV-model has polynomial dependence in the parameters, e.g.
Â(δ) = Âδ0 + Âδ1δ + Âδ2δ2 + · · ·+ Âδkδk, then the gradient of (6.10) with
respect to the coefficient matrices Âδj , B̂δj , Ĉδj becomes
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∂V

∂Âδj

=
∂
(∑

i ||Ei||2H2

)

∂Âδj

= 2
∑

i

(
δ(i)
)j (

Q̂iP̂i + YT
i Xi

)

∂V

∂B̂δj

=
∂
(∑

i ||Ei||2H2

)

∂B̂δj

= 2
∑

i

(
δ(i)
)j (

Q̂iB̂i + YT
i Bi

)

∂V

∂Ĉδj

=
∂
(∑

i ||Ei||2H2

)

∂Ĉδj

= 2
∑

i

(
δ(i)
)j (

ĈiP̂i −CiXi

)
.

Remark: To calculate the cost function (6.10), three Lyapunov/Sylvester
equations (6.12d,6.12e,6.12f) need to be solved for every i and iteration. No-
tice that Qi in (6.12d) can be precomputed before the algorithm starts. Cru-
cial to notice is that the extra cost to compute the gradient is merely to solve
two additional Lyapunov/Sylvester equations (6.12b,6.12c).

In addition, looking at equations (6.12) we see that they all have Ai and
Âi as factors in them, which can be exploited by the Lyapunov solver to solve
all of these equations efficiently.

6.4 Method 2: Semidefinite Programming

In this section we try to minimise the error system using a semidefinite pro-
gramming approach. With the realisation (6.3) and equations (6.6) and (6.7)
we rewrite the H2-norm for a system as a minimisation problem

min
Q

trBT
e QBe

s.t. AT
e Q + QAe + CT

e Ce = 0, Q � 0

This can be rewritten, using a Schur complement (see [13]), to get an equiv-
alent problem

min
γ,Q

γ

s.t.
(
QAe + AT

e Q CT
e

Ce −I

)
≺ 0,

(
γI BT

e Q
QBe Q

)
� 0.

(6.16)

Our objective is to find the system Ĝ =

[
Â B̂
Ĉ 0

]
that approximates the

system G =
[
A B
C 0

]
well in the H2-norm, i.e., we also want to minimise over

the matrices Â, B̂, Ĉ.
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Since the system E is the augmented system

E =
[
Ae Be

Ce 0

]
=

⎡
⎣
(
A 0
0 Â

) (
B
B̂

)
(
C −Ĉ

)
0

⎤
⎦

and if we partition Q as

Q =
(
Q11 Q12

QT
12 Q22

)

we can rewrite the minimisation problem (6.16) as a new problem, now also
optimising over the sought system matrices, as

min
γ,Q,Â,B̂,Ĉ

γ

s.t.

⎛
⎝Q11A + AT Q11 Q12Â + AT Q12 CT

QT
12A + ÂT Q12 Q22Â + ÂT Q22 −ĈT

C −Ĉ −I

⎞
⎠ ≺ 0,

⎛
⎝ γI BTQ11 + B̂T QT

12 BTQ12 + B̂TQ22

Q11B + Q12B̂ Q11 Q12

QT
12B + Q22B̂ QT

12 Q22

⎞
⎠ � 0.

(6.17)

Generalising this to the case when we have a true model sampled at dif-
ferent p-values and want to find an LPV-approximation is straightforward.
Rewriting (6.17) again for this problem we get

min
γi,Qi,Â

δk ,B̂
δk ,Ĉ

δk

N∑
i=1

γi, k = 1, . . . , L

s.t.

⎛
⎜⎝

Q11,iAi + AT
i Q11,i Q12,iÂ(δ(i)) + AT

i Q12,i CT
i

QT
12,iAi + Â(δ(i))T Q12,i Q22,iÂ(δ(i)) + Â(δ(i))T Q22,i −Ĉ(δ(i))T

Ci −Ĉ(δ(i)) −I

⎞
⎟⎠ ≺ 0,

⎛
⎜⎝

γiI BT
i Q11,i + B̂(δ(i))T QT

12,i BT
i Q12,i + B̂(δ(i))T Q22,i

Q11,iBi + Q12,iB̂(δ(i)) Q11,i Q12,i

QT
12,iBi + Q22,iB̂(δ(i)) QT

12,i Q22,i

⎞
⎟⎠ 	 0

i = 1, . . . , N

(6.18)

where Âδk , B̂δk and Ĉδk are the coefficient matrices in (6.2) and L is the
highest degree of δ in Â, B̂ or Ĉ. Looking at (6.18) we see that it is bilinear
in the variables. To try to solve this a local iterative two-step algorithm can be
used, [14]. Start by keeping Âδk , B̂δk constant, then solve (6.18) for Qi, Ĉδk .
Then keep Q12,i,Q22,i constant and solve (6.18) for Q11,i, Âδk , B̂δk , Ĉδk .
Continue doing this until convergence. Generally bilinear semidefinite pro-
grams are very hard to solve [15], and note also that in this case all the Qi

are optimisation variables and the semidefinite program grows rapidly with
the dimension of the models and soon becomes intractable. The semidefinite
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programming approach described in this section, although having a straight-
forward format and derivation, was early on discovered to be far too com-
putationally expensive, and was thus omitted from the evaluations. These
are the reasons that the rest of the chapter is devoted to the more general
nonlinear programming approach described in Sect. 6.3.

6.5 Regularisation of the Optimisation Problem

In the previous section we have tacitly assumed that the given data, (i.e.,
the state-space matrices in different parameters points) are exact. In a more
realistic setting we can assume the presence of errors (e.g., truncation or
round-off) in these data. The question is how to cope with these errors and
take them into account. The method we propose is to use a problem-specific
regularisation, which we will show can be interpreted as a worst-case opti-
mization approach.

To reduce the influence of errors in data, we regularise the original cost
function by adding three new terms to the cost function. These are the Frobe-
nius norm of the derivative of the cost function with respect to the given data,
A,B and C, i.e.,

min
Â,B̂,Ĉ

V + εA

∣∣∣∣
∣∣∣∣∂V∂A

∣∣∣∣
∣∣∣∣
F

+ εB

∣∣∣∣
∣∣∣∣∂V∂B

∣∣∣∣
∣∣∣∣
F

+ εC

∣∣∣∣
∣∣∣∣∂V∂C

∣∣∣∣
∣∣∣∣
F

. (6.19)

As in the case for the gradient of the cost function, the cost function is
also differentiable in the matrices A,B,C. Using also here Lemma 6.1 and
the equations in (6.8) we can calculate the derivative, analogously with the
calculations in Sect. 6.3.2.

∂V

∂A
= 2
(
QP + YXT

)
(6.20)

∂V

∂B
= 2
(
QB + YB̂

)
(6.21)

∂V

∂C
= 2
(
CP− ĈXT

)
(6.22)

Finding an explicit expression of the derivative of the regularised cost function
with these terms inserted can be done using the same methodology as in
Sect. 6.3.2, but the details are omitted for brevity.

To motivate the choice of the Frobenius norm in (6.19), and not, e.g., the
squared Frobenius norm, we look at the case where we have an unstructured
error in the B matrix.

VΔ = tr
(
(B +Δ)T Q(B +Δ) + 2(B +Δ)T YB̂ + B̂T Q̂B̂

)
= (6.23)

= V + tr
(
2ΔT

(
QB + YB̂

)
+ΔTQΔ

)
(6.24)
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Now maximise this expression with respect to Δ, under the assumption that
the error is small,

max
||Δ||F≤ε

VΔ = trV + max
||Δ||F≤ε

tr
(
2ΔT

(
QB + YB̂

)
+ΔTQΔ

)
= (6.25)

= V + 2ε
∣∣∣
∣∣∣QB + YB̂

∣∣∣
∣∣∣
F

+O(ε2) (6.26)

Here we identify the second term as the Frobenius norm of the derivative
of the cost function with respect to B. Analogous calculation can be done
when we have a small unstructured error in C. This shows that the approach
has clear connections to recently popularised worst-case approaches, [16].
Regarding A, the interpretation is not as clear and is currently an open
question.

6.6 Examples

In this section we start with an academic example to shed light to some
properties of the proposed method, and then address a practical example
illustrating the applicability of the proposed method to realistically sized
problems.

When solving the examples, the function fminunc in Matlab was used
as the quasi-Newton solver framework. To generate a starting point for the
solver, which is an extremely important problem with much research left to
do, a balanced realization of the linear model given in the mid-point of the
parameter-space was used to initialize (Âδ0 , B̂δ0 , Ĉδ0). All other parameters
were initialised to zero. The examples was performed on a computer with
2GB memory, Intel Core2Duo (2.66 GHz) CPU running under CentOS 5.4
with Matlab version 7.9 (R2009b).

6.6.1 Academic Example

Here a small academic example is presented to show the potential of the new
method and to show the importance of addressing system properties.

The system in this example is G = G1G2 where G1 = 1
s2+2ζ1s+1

and
G2 = 9

s2+6ζ2s+9
with ζ1 = 0.1 + 0.9δ and ζ2 = 0.1 + 0.9(1− δ) and δ ∈ [0, 1].

The system was sampled in 30 points equidistant in [0, 1], i.e. we are given
30 linear models with four states.

The data is given in a state basis where all the elements in the system
matrices happen to depend nonlinearly on the parameter δ, see Fig. 6.1.
In this basis it will undoubtedly be hard to find a good low-order approx-
imation with an element-wise approach with polynomial dependence of δ.
The interesting property of this example is that there exists a state basis
where the model has linear dependence on δ, in fact only two elements of the
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0 0.5 1
−0.4

−0.2

0

0 0.5 1
−1

−0.9

−0.8

0 0.5 1
−0.4

−0.2

0

0 0.5 1
0

0.2

0.4

0 0.5 1
0.8

0.9

1

0 0.5 1
−1

−0.5

0

0 0.5 1
−4

−2

0

0 0.5 1
0

0.5

1

0 0.5 1
−0.4

−0.2

0

0 0.5 1
0

2

4

0 0.5 1
−4

−2

0

0 0.5 1
1

2

3

0 0.5 1
−0.4

−0.2

0

0 0.5 1
0

0.5

1

0 0.5 1
−3

−2

−1

0 0.5 1

−4

−2

0

Fig. 6.1 The elements in the A-matrix depending on δ. δ varies between 0 and 1
on the x-axis.

system matrix A are linear in δ and all other matrix elements in A,B,C are
constants.

To test the algorithm, 15 validation points were generated. From the result
in Table 6.1 we see that when the proposed method is used, a high accuracy
low-order (indeed linear) LPV-model of the system can be found. If we try
to obtain a model using an element-wise method with first order polynomials
we, of course, obtain a much worse model. Achieving comparable results using
an element-wise strategy requires polynomials of order 9. To further illustrate
the accuracy in the validation points, root loci are given in Fig. 6.2 and the
H2-norm for the error model in the 15 validation points is shown in Fig. 6.3.

Table 6.1 Numerical results for the academic example

Method
∑

i ||Ei||2H2
Degree Computational Time

Element-wise 0.514 1 0.013 s
Element-wise 3.79 � 10−5 9 0.049 s
Method 1 5.37 � 10−7 1 179 s

This example illustrates what was said in Sect. 6.2.1. Even though the
realisation of the model given is non-polynomial in the parameters, we are
able to find the underlying model with only linear dependence. It thus illus-
trates the importance to look at the input-output relation and not only the
individual elements.
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Fig. 6.2 Root loci for the true model, the model approximated with the element-
wise method using 1st order and 9th order polynomials and the model approximated
with the new method using 1st order polynomials, in the 15 validation points.
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wise method using 1st order and 9th polynomials and the model approximated with
the new method using 1st order polynomials, in the 15 validation points.
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6.6.2 Application Example

The proposed method in Sect. 6.3 is now applied to three sets of longitudinal
aeroelastic models. Each of these models have been created from an LFR with
the purpose of trying to identify an LPV-model that has a corresponding
LFR with a smaller Δ-block than the original model, but still is sufficiently
accurate for the kind of analysis described in Chapters 7,9 and 10.

The models depend on three parameters that describe the aircraft mass.
These parameters are the payload δPL, and the centre and outer tanks con-
figurations δCT and δOT . The dimensions of the original LFRs can be seen in
Table 6.2, where ns is the number of states in the models, nio is the number
of input/outputs and nΔ is the size of the Δ-block.

Since our goal is to find models which yield LFRs with smaller Δ-block,
we try with simple affine LPV-models. The size of the resulting Δ-blocks
can be seen in Table 6.3 under nΔ. We validate the models in 100 randomly
chosen points in the parameter region using the relative error in H2- and
H∞-norm, the results are given in Table 6.3. In Fig. 6.4 the amplitude plot
of a frequency response for the LFR and the resulting model for a validation
point is plotted, and as we can see they almost completely agree.

Table 6.2 Data for aeroelastic models

Model no. Parameters in Δ-block ns nio nΔ

1 δCT 22 1/1 20
2 δCT , δOT 22 1/1 62
3 δCT , δOT , δPL 22 1/1 98

Table 6.3 Resulting models

Model no. Computational time mean
(

||Ei||2H2
||Gi||2H2

)
max

(
||Ei||2H2
||Gi||2H2

)
nΔ

1 5h 09m 47s 3.6 � 10−5 7.4 � 10−5 9
2 7h 50m 46s 1.5 � 10−4 2.2 � 10−4 18
3 11h 02m 41s 1.9 � 10−4 3.5 � 10−4 27

Remark: One important thing to note is that we do not take the D-matrix
into account in our optimisation algorithms. In the original size of the Δ-
block of the LFRs, nΔ, this is included but not in the resulting model. This
is because the D-matrix is not important for the stability analysis for the
closed loop system.
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Fig. 6.4 This figure shows an amplitude curve of a frequency response in a val-
idation point for model no. 2. The LFT-model is the solid line and the resulting
model from method 1 is the dashed line.

6.7 Conclusions

In this chapter we have proposed two new methods for generating LPV-
models. The core concept in both approaches is to preserve input-output
relations in the approximation, and not strive to match the actual numbers
in the given state-space models. But, because of this, the resulting LPV-
models might not be suitable when you want to assess the stability with re-
spect to a boundary of a sector. On the other hand, the frequency responses
of LPV-models obtained by an element-wise approach sometimes exhibit an
oscillatory behaviour between the points used for interpolation, which this
method has not shown to do. One of these methods, the one using standard
nonlinear optimisation, has shown good properties on both academic exam-
ples and more realistic problems. The method was applied on complex aircraft
models, and gave us an approach to generate LFRs with reduced complexity.
The method described in this chapter have been implemented in Matlab and
can found at http://www.cofcluo.isy.liu.se. The method is slower than
typical methods used today, e.g., the methods in Chapters 3 and 4, but if we
are able to create less complex models, then there is much time to save in
the following analysis steps of the model. The semidefinite programming ap-
proach, although having a straightforward format and derivation, was early
on discovered to be far too computationally expensive, and was thus omitted
from the evaluations.
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Chapter 7

Enhanced μ-Analysis Techniques for
Clearance

Jean-Marc Biannic and Clément Roos

Abstract. A practical method based on μ-analysis is proposed in this chap-
ter to compute a stability robustness margin for high-order LTI plants with
real parametric uncertainties. In contrast to grid-based approaches, the valid-
ity of this margin is guaranteed on a continuous frequency interval, without
any risk of missing critical frequency values. The algorithm to compute the
stability margin underlies a recursive procedure to determine a guaranteed
stability domain for possibly uncertain parameter dependent plants. Exten-
sions to non-standard robustness problems as well as algorithmic variants to
handle the trade-off between conservatism and computational time are also
discussed. The application of the proposed method to the clearance of flight
control laws is finally addressed for two stability related clearance criteria.

7.1 Introduction

Consider the issue of computing an estimate of the robustness margin for an
uncertain linear time-invariant (LTI) system, i.e. the maximal size of model
uncertainties for which closed-loop stability or performance is still guaran-
teed. Such a margin can be obtained in terms of the inverse of the maximal
structured singular value μ over the frequency range R+ [1]. Computing the
exact value of μ is known to be NP hard [2]. Thus, a guaranteed robustness
margin is usually obtained by computing an upper bound of μ on R+ using
the classical polynomial-time algorithm proposed in [3,4], which relies on the
determination of suitable scaling matrices.

Nevertheless, this is a difficult optimisation problem with an infinite num-
ber of both frequency-domain constraints and optimisation variables. A stan-
dard solution consists in restricting the computation of the μ upper bound

Jean-Marc Biannic � Clément Roos
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to a finite frequency grid. But such a solution can be unreliable, especially
in the case of flexible systems, since it is impossible to guarantee that the
critical μ peak is not missed between two points of the grid. Moreover, com-
puting a μ upper bound on a fine grid, so as to reduce the probability to miss
such a peak, can be time-consuming. It thus appears that there is a real need
to develop more reliable and computationally attractive tools, particularly
when high-order flexible plants have to be analysed.

The idea to compute a guaranteed μ upper bound on a whole frequency
segment is not new. For example, the frequency is condidered as an uncertain
parameter in [5], which is repeated as many times as the plant order. A state-
space LMI formulation is also proposed in [6]. Nevertheless, these methods
usually lead to numerically intractable problems when high-order systems are
considered. A computationally very efficient approach is presented in [7,8,9],
where strategies for computing a guaranteed μ upper bound over a whole
frequency interval and for eliminating some frequency intervals inside which
μ is less than a given threshold are merged into a single algorithm. These
contributions serve as a basis for the present work, where a more powerful
technique is introduced to validate the scaling matrices. As a consequence,
the convergence properties of the algorithm are significantly improved and
high-order plants with numerous real uncertainties can now be analysed, as
demonstrated in Chapter 12. The resulting algorithm is then used to compute
a guaranteed stability domain for a possibly uncertain parameter dependent
system.

This chapter is organised as follows. The analysis problem is first stated
in Sect. 7.2, where all the theoretical background is presented. An efficient
algorithm is then introduced in Sect. 7.3 to compute a guaranteed robustness
margin for an uncertain LTI plant. It is encompassed in a recursive procedure
in Sect. 7.4, which allows to compute a guaranteed stability domain for a pos-
sibly uncertain parameter dependent plant. Some extensions and variations
are also discussed. The connection with the clearance of flight control laws is
finally established in Sect. 7.5.

7.2 Problem Statement and Preliminary Results

7.2.1 Introduction to μ-Analysis

Let us consider the standard interconnection of Fig. 7.1. In the context of μ-
analysis, the transfer function matrixM(s) is a stable real-valued continuous-
time LTI plant representing the nominal closed-loop system. Δ(s) is a m-by-
m block-diagonal LTI operator, which gathers all model uncertainties. It is
composed of real scalar blocks of the form δrI, where δr ∈ R, corresponding
to parametric uncertainties, as well as complex scalar blocks of the form
δcI, where δc ∈ C, and unstructured transfer matrices representing neglected
dynamics. Let Δ be the set of matrices with the same structure and nature
(real or complex) as Δ(jω).
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�Δ(s)

M(s)

Fig. 7.1 Standard interconnection for robust stability analysis

For a given frequency ω, a singularity appears in the interconnection of
Fig. 7.1 along the imaginary axis if det(I −M(jω)Δ(jω)) = 0. As a result,
the inverse of the structured singular value μΔ, whose definition is recalled
below, provides the distance to instability at frequency ω.

Definition 7.1. (structured singular value) If no matrix Δ ∈ Δ makes I −
M(jω)Δ singular, then the structured singular value μΔ(M(jω)) is equal to
0. Otherwise, it is defined as the inverse of the size of the smallest matrix
Δ ∈Δ satisfying det(I −M(jω)Δ) = 0

μΔ(M(jω)) =
1

min {k ∈ R+ : ∃Δ ∈ kBΔ , det(I −M(jω)Δ) = 0} (7.1)

where BΔ = {Δ ∈ Δ : σ(Δ) < 1} denotes the unit ball of matrices with
admissible structure.

The robustness margin kmax is then obtained as the inverse of the maximal
value of μΔ(M(jω)) over the frequency range R+

1
kmax

= max
ω∈R+

μΔ(M(jω)) (7.2)

and stability of M(s) is thus guaranteed for all Δ(s) such that Δ(jω) ∈
kmaxBΔ for all ω ≥ 0.

Let us now present the classical formulation introduced in [3,4] to compute
an upper bound of μΔ. It is essentially based on the use of two frequency
dependent scaling matrices D(ω) and G(ω) which belong to specific sets D
and G reflecting the block-diagonal structure and the real or complex nature
of Δ [4].

Proposition 7.1. (μΔ upper bound) Let β be a positive scalar and ω > 0
be a given frequency. If there exist scaling matrices D(ω) ∈ D and G(ω) ∈ G
which satisfy

σ

(
F (ω)−

1
4

(
D(ω)M(jω)D(ω)−1

β
− jG(ω)

)
F (ω)−

1
4

)
≤ 1 (7.3)



134 J.-M. Biannic and C. Roos

where σ (.) denotes the largest singular value and

F (ω) = I +G(ω)2

D = {D ∈ C
m×m, D = D∗ > 0 : ∀Δ ∈Δ, DΔ = ΔD}

G = {G ∈ C
m×m, G = G∗ : ∀Δ ∈Δ, GΔ = Δ∗G}

then μΔ(M(jω)) ≤ β.

In the general case, the computation of the robustness margin is a challenging
problem with an infinite number of both frequency-domain constraints and
optimisation variables. It is usually solved on a finite frequency grid as follows:

1. Define a finite set of N frequency points {ω1, . . . , ωN},
2. Compute upper bounds βi of μΔ(M(jωi)) for all i = 1 . . .N ,
3. Compute an estimate of the robustness margin kmax = 1/ max

i∈[1,N ]
(βi).

However, a crucial problem appears in this procedure. Indeed, the frequency
grid which is introduced in step 1 must contain the most critical frequency
point for which the maximal value of μΔ is reached. If this is not the case,
the robustness margin calculated in step 3 is under-evaluated and becomes
useless. But if such a critical frequency point is known a priori, the problem
is then half-solved and the frequency grid can be reduced to a single point!

To overcome the above difficulty, an alternative method is proposed in this
chapter, which essentially consists in computing a reliable frequency segment
around each ωi for which the upper bound βi remains valid (see Sect. 7.2.2).
As it is clarified in Sect. 7.3, this removes any risk of under-evaluation of the
robustness margin.

7.2.2 Validity of the Scaling Matrices

Thanks to the characterisation of Proposition 7.1, which is implemented in
the standard Matlab routine mussv.m [10], a μ upper bound βi and associ-
ated scaling matrices D(ωi) and G(ωi) can be easily computed for any given
frequency point ωi, even for high-order plants affected by mixed uncertain-
ties (involving real and complex elements). Let us now slightly increase this
upper bound, i.e. set βi ← (1 + ε)βi, so as to enforce the strict inequality

σ

(
F (ωi)−

1
4

(
D(ωi)M(jωi)D(ωi)−1

βi
− jG(ωi)

)
F (ωi)−

1
4

)
< 1

The objective is then to compute the largest frequency interval I(ωi) � ωi for
which the increased upper bound and the associated scaling matrices remain
valid, i.e. such that ∀ω ∈ I(ωi)
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σ

(
F (ωi)−

1
4

(
D(ωi)M(jω)D(ωi)−1

βi
− jG(ωi)

)
F (ωi)−

1
4

)
≤ 1 (7.4)

As is shown in Proposition 7.2, the determination of I(ωi) boils down to a
standard eigenvalues computation.

Proposition 7.2. Let (AM , BM , CM , DM ) denote a state-space representa-
tion of M(s). Build the matrix

H =
[

AH 0
−CH

∗CH −AH
∗

]
+
[

BH

−CH
∗DH

]
(I −DH

∗DH)−1
[
DH

∗CH BH
∗]

where
[
AH BH

CH DH

]
=

[
I 0
0 F−1/4

√
βi

] [
AM − jωiI BMD−1

DCM DDMD−1 − jβiG

] [
I 0
0 F−1/4

√
βi

]
(7.5)

Define ω and ω as

ω = max{λ ∈ R− : det(λI + jH) = 0}
= −ωi if jH has no positive real eigenvalue

ω = min{λ ∈ R+ : det(λI + jH) = 0}
= ∞ if jH has no negative real eigenvalue

Then condition (7.4) holds true ∀ω ∈ I(ωi), where

I(ωi) = [ωi + ω , ωi + ω] (7.6)

Proof: Define H(jω) as

H(jω) = F (ωi)−
1
4

(
D(ωi)M(j(ωi + ω))D(ωi)−1

βi
− jG(ωi)

)
F (ωi)−

1
4 .

The bounds defining I(ωi) are obtained by searching for both positive
and negative ω of smallest magnitude such that I − H(jω)∗H(jω) be-
comes singular, i.e. det(I −H(jω)∗H(jω)) = 0. A state-space representation
(AH , BH , CH , DH) of H(s) is given by (7.5). A state-space representation
(AX , BX , CX , DX) of I −H∗(s)H(s) is then given by

AX =
[

AH 0
−CH

∗CH −AH
∗

]
BX =

[ −BH

CH
∗DH

]

CX =
[
DH

∗CH BH
∗ ] DX = I −D∗

HDH
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Some standard manipulations finally conclude the proof

det(I −H(jω)∗H(jω)) = 0 ⇔ det(I + CX (jωI − AX)−1BXD
−1
X ) = 0

⇔ det(I + (jωI −AX)−1BXD
−1
X CX) = 0

⇔ det(jωI − (AX −BXD
−1
X CX )) = 0

⇔ det(ωI + jH) = 0 �

7.3 Computation of a Guaranteed Robustness Margin

7.3.1 Standard Version of the Algorithm

The following algorithm is proposed to compute a guaranteed robustness
margin for a high-order uncertain LTI plant. It consists of an initialisation
phase followed by an iterative procedure on a list of intervals.

Algorithm 7.1 (computation of a robustness margin).

1. Initialisation phase:

a. Define an initial value βmax for the μΔ upper bound. This initialisa-
tion can be achieved by a μΔ lower bound computation. Otherwise, set
βmax = 0.

b. Define the initial frequency range [ωmin , ωmax] on which the maximal
value of the μΔ upper bound is to be computed.

c. Set a tolerance level ε on the μΔ upper bounds, which will be used to
enforce strict inequalities as described in Sect. 7.2.2.

d. Initialise the list of frequency intervals I to be investigated as follows:

I = {I1} = {[ωmin , ωmax]}

2. While I 
= ∅, repeat:

a. Select an interval Ii from the list and choose a frequency ωi ∈ Ii.
b. Compute β,D(ωi), G(ωi) so that condition (7.3) holds for ω = ωi.
c. Increase β ← (1+ε)β so that condition (7.3) becomes a strict inequality.
d. Set βmax ← max(β, βmax).
e. Set βi = βmax and use Proposition 7.2 to compute the largest frequency

interval I(ωi) for which condition (7.4) holds for all ω ∈ I(ωi).
f. Generate a new list I of frequency intervals to be investigated by elimi-

nating the frequencies contained in I(ωi).

3. Compute a guaranteed robustness margin as follows:

kmax = 1/βmax
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Remark 7.1. Several possibilities exist to select the frequency ωi in step 2(a).
The easiest one consists in systematically choosing the middle point of Ii.

As already mentioned, the proposed algorithm is not based on a frequency
grid to be defined a priori, with the risk of missing a critical frequency.
On the contrary, it relies on a list of frequency intervals which is updated
automatically during the iterations. By this approach, the robustness margin
is guaranteed on the whole frequency range and no tricky initialisation is
required.

The precision level of the μΔ upper bounds computed in step 2 is controlled
by both the user-defined tolerance ε and the optional argument of the function
mussv.m. Indeed, these parameters allow to handle the trade-off between high
accuracy and reasonable computational cost. If ε is increased for example, the
elimination step 2(f) is more efficient and fewer iterations are required, but
accuracy slightly decreases. Moreover, a standard call to mussv.mwithout any
option usually gives satisfactory results, but setting the optional argument to
’a’ can improve accuracy provided that the order of the considered system
is not to high.

7.3.2 Extension to Modal Performance Analysis

In its standard version, Algorithm 7.1 is dedicated to the computation of a ro-
bust stability margin. In practice, however, the notion of robust performance
is very important too. Indeed, it is often desirable to quantify the perfor-
mance degradations, which are induced by model uncertainties and appear
before instability. Fortunately, Algorithm 7.1 can be easily adapted to allow
for modal performance analysis requirements: the structured singular value
is not computed along the imaginary axis anymore, but on the borderline of
a truncated sector defined by three parameters α, Φ and ωc, as depicted in
Fig. 7.2. In this context, the robustness margin has to be computed along
two segments instead of one:

� segment 1: s = −α+ jω for ω ≤ ωc,
� segment 2: s = jωz for ω ≥ ωc,

where z = [1 + j tan(Φ)] and ωc = α/ tan(Φ). Let (AM , BM , CM , DM ) denote
a state-space representation of M(s). It can then be easily observed that:

� M(−α+ jω) = M1(jω) on segment 1, where (AM + αI,BM , CM , DM) is
a state-space representation of M1(s).

� M(jωz) = M2(jω) on segment 2, where (AM/z,BM/
√
z, CM/

√
z,DM ) is

a state-space representation of M2(s).

The adaptation of Algorithm 7.1 to handle modal performance is thus rather
straightforward.
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ωc

α

Φ

Fig. 7.2 Truncated sector

7.4 Computation of a Guaranteed Stability Domain

7.4.1 Standard Version of the Algorithm

Algorithm 7.1 allows to compute a guaranteed robustness margin for an un-
certain LTI plant, provided that it can be modelled by a Linear Fractional
Representation (LFR) as depicted in Fig. 7.1. A typical aeronautical applica-
tion consists in considering an aircraft model for which the flight conditions
are fixed, but several parameters such as the aerodynamic coefficients, the
mass and the center of gravity are not known precisely.

Let us now consider a parameter dependent plant, which describes the
behaviour of a given system on its whole operating domain Θ, and assume
that it can be modelled by an LFR as depicted in Fig. 7.1. The operator
Δ is composed of n real and possibly repeated parameters whose variations
cover all possible operating conditions. In this context, Algorithm 7.1 can be
used to compute a guaranteed stability domain, i.e. a subset of the whole
parametric domain on which stability of the system is ensured.

More precisely, assume that the considered representation (M(s), Δ) is
normalised, which means that the operating domain Θ of the plant is covered
by all possible variations of Δ inside the structured unit ball BΔ. If kmax ≥
1 when Algorithm 7.1 is applied, the problem is solved, since stability is
guaranteed on the entire domain. Otherwise, the following recursive algorithm
can be introduced, which allows to partition Θ and to investigate stability
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on smaller domains, so as to validate gradually the largest possible subset S
of Θ.

Algorithm 7.2 (computation of a stability domain).

1. Initialisation phase:

a. Let Θ = [a1, b1]×· · ·× [an, bn] ⊂ R
n be the initial box on which stability

is investigated.
b. Let (M(s), Δ) be a normalised representation of the parameter depen-

dent plant on Θ as defined above.
c. Let l be the minimum length below which the edges of the investigated

boxes cannot be bisected anymore.
d. Let S = ∅.

2. Recursive phase:

a. If the plant M(s) is stable, compute a guaranteed stability domain Θmax

using Algorithm 7.1 (see remark 7.3) and go to step 2(b). Otherwise,
go to step 2(c).

b. Set S ← S ∪ Θmax. If kmax ≥ 1, interrupt the current execution of
step 2. Otherwise, go to step 2(c).

c. Let Θ be the set of boxes obtained by bisecting Θ along each of its edges
whose length is greater than 2l. While Θ 
= ∅:
• Select a box Θ̃ ∈ Θ.
• Compute a normalised representation (M̃(s), Δ̃) of the plant on Θ̃.
• Execute step 2 with M(s)← M̃(s) and Θ ← Θ̃.
� Eliminate Θ̃ from Θ.

Remark 7.2. Algorithm 7.2 must be applied on a box. Thus, it can sometimes
be necessary to consider a box approximation of the real operating domain.

Remark 7.3. The stability domain Θmax computed in step 2(a) is similar to
Θ. Both domains have the same center and the scaling factor between the
two equals kmax

Θmax = [a1, b1] × · · · × [an, bn] (7.7)

where for all j ∈ [1, n]

[aj , bj ] = kmax[aj , bj] +
aj + bj

2
(
1− kmax

)
(7.8)

Remark 7.4. Algorithm 7.2 can be applied with slight modifications if the
considered parameter dependent plant is uncertain:

• A skew-μ problem is solved in step 2(a). The idea is to maximise the size
of the parametric domain, on which stability is guaranteed for all values
of the uncertainties inside the structured unit ball. Algorithm 7.1 can be
easily adapted accordingly.
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• The bisection of the box Θ in step 2(c) is restricted to the edges associ-
ated to the system parameters, the ones associated to the uncertainties
remaining unchanged.

7.4.2 Computation of the μ-Sensitivities

A single call to Algorithm 7.1 is usually not computationally expensive, even
if a plant with numerous parameters or uncertainties is analysed (see Chap-
ter 12). But 2n calls to this algorithm are required each time the investigated
domain needs to be bisected in Algorithm 7.2. The computational time thus
grows exponentially with the number of parameters in the Δ block and can
become totally unacceptable is n is quite high. This means that Algorithm 7.2
in its present form is mostly applicable to systems with only few but possibly
highly repeated parameters.

If numerous parameters are considered, the computational burden can be
alleviated by bisecting the investigated domain along a single edge corre-
sponding to the parameter with the highest influence on stability. This can
be achieved in step 2(a) of Algorithm 7.2 by computing the μ-sensitivities [11],
which quantify the impact on system stability when the bounds on the
parameters are increased one at a time, the others being fixed to their
nominal values. To speed up this process, the μ-sensitivities can be evalu-
ated only at the critical frequency for which the value of kmax computed
by Algorithm 7.1 is obtained.

7.4.3 Other Algorithmic Variants

Algorithmic variants can be devised to reduce the computational costs, while
still getting a large stability domain:

1) The investigated domain Θ is systematically bisected in step 2(c) of Al-
gorithm 7.2 if kmax < 1 in step 2(a). It is thus possible to interrupt Al-
gorithm 7.1 as soon as βmax > 1 and go directly to step 2(c).

2) The higher the value of βmax, the larger the frequency interval I(ωi)
computed in step 2(e) of Algorithm 7.1. Setting the initial value βmax = 1
in step 1(a) of Algorithm 7.1 thus allows to increase the efficiency of the
elimination procedure, without for all that forcing the robustness margin
kmax to become larger than 1.

If both variants are used, the domain Θmax computed at each occurrence of
step 2 of Algorithm 7.2 will be either empty if stability cannot be guaranteed
on the whole investigated domain Θ, or equal to Θ even if stability could
have been ensured on a larger domain.

Finally, note that it is possible to use the LMI formulation (7.9) below
instead of (7.3) to compute β in Algorithm 7.1. Indeed, condition (7.3) is
usually solved suboptimally by the function mussv.m, and (7.9) thus allows
to improve accuracy at the price of an increase in the computational time.
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Proposition 7.3. Let β a positive scalar. If there exist scaling matrices
D(ω) ∈ D and G(ω) ∈ G which satisfy

M(jω)∗D(ω)M(jω)+

j(G(ω)M(jω)−M∗(jω)G(ω)) ≤ β2D(jω) (7.9)

then μΔ(M(jω)) ≤ β.

7.5 Connection with Clearance of Flight Control Laws

The aforementioned analysis technique can be more widely exploited to eval-
uate some of the clearance criteria that need to be assessed during the certifi-
cation process of an aircraft. More precisely, two criteria can be easily inves-
tigated using μ-analysis techniques: the eigenvalue criterion and the stability
margin criterion. These criteria are defined in Chapter 2 from an industrial
point of view, and the corresponding mathematical formulations are recalled
in Sections 7.5.1 and 7.5.2. A special emphasis is notably put on how they
can be efficiently evaluated using the algorithms introduced in Sections 7.3
and 7.4.

Notation: The interconnections depicted in Fig. 7.3 are called upper (a)
and lower (b) linear fractional transformations (LFT). They are denoted by
Fu(M,Δ) and Fl(M,K) respectively. Moreover, it is assumed in the sequel
that Δ is composed of real repeated parameters δ = (δ1, . . . , δn), i.e. Δ =
diag(δ1Ii1 , . . . , δnIin).

�

�

� �

�

� �

�

(a)

M

(b)

M

u

u y

y
K

Δ

Fig. 7.3 Upper (a) and lower (b) LFTs

7.5.1 Eigenvalue Criterion

This criterion is intended to check over a given parametric domain that the
eigenvalues of the considered closed-loop model do not become unstable. It
can be computed at each point δ ∈ R

n of the considered domain as the largest
real part of the closed-loop system eigenvalues λ1(δ), . . . , λp(δ)
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ceig(δ) = − max
j∈[1,p]

Re(λj(δ)) (7.10)

Assume now that δ is normalised, which means that the whole parametric
domain is covered when each of the n parameters in δ varies between −1 and
1. It is thus desirable in a certification perspective that ceig(δ) > 0 for all
δ ∈ R

n such that δi ∈ [−1, 1]. This is usually not the case for two reasons.
First, the model can be unstable in specific regions of the parametric domain.
Then, the method used to evaluate the largest parametric domain on which
ceig(δ) > 0 can be conservative, and thus fail to prove stability for certain
values of δ for which the model is actually stable.

In this context, let Θr denote the real stability domain, i.e. Θr = {δ ∈
R

n, δi ∈ [−1, 1] : ceig(δ) > 0}. The issue is to compute the largest subdomain
Θs ⊂ Θr on which stability of the closed-loop plant can be guaranteed. This
can be achieved using the method introduced in Sect. 7.4, provided that
an LFR describing the system behaviour on the whole parametric domain
is available. Note that such an LFR can be generated using the method
described in Chapters 4 and 5.

Several tests have revealed that the conservatism of the analysis method
introduced in the previous sections remains quite moderate in practice. It
means that most of the configurations that cannot be cleared are actually
unstable, and thus that Θs is usually almost equal to Θr. A detailed study
on conservatism is presented in Chapter 12.

The eigenvalue criterion (7.10) can be easily adapted to quantify not only
the stability but also the performance properties of the closed-loop plant. The
idea is to compute the minimum distance between the eigenvalues and a given
truncated sector instead of the imaginary axis, as explained in Sect. 7.3.2.
Such an extension may not be necessary for certification but it can help
the control engineers to identify easily which are the most critical regions
of Θr, i.e. the regions for which performance degradations or even loss of
stability are most likely to occur if additional uncertainties or unmodelled
dynamics are considered. It also allows to take into account the modelling
error resulting from the use of simplified LFRs instead of full-order reference
models to perform analysis (this question is discussed in detail in Chapter 12).

7.5.2 Stability Margin Criterion

This criterion is intended to check over a given parametric domain that the
open-loop system obtained when breaking a feedback loop at the input of
a given actuator has sufficient gain and phase margins. More precisely, the
open-loop Nichols plot of the frequency response obtained when breaking the
loop at the input of this actuator, while leaving the other loops closed, must
avoid the trapezoidal exclusion region shown in Fig. 7.4 (left).

A preliminary task before such a criterion can be analised using μ-analysis
tools is to generate an LFR Fu(M(s), Δ) describing the aforementioned
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Fig. 7.4 Nichols plane exclusion region (left) - Gain and phase offsets (right)

open-loop system. This can be achieved using the method described in Chap-
ters 4 and 5. A three-step procedure is then implemented:

1. the trapezoidal region shown in Fig. 7.4 (right) is represented by an LFR,
which is denoted by Fu(T,ΔT ) in the sequel,

2. an augmented open-loop LFR Fu(P (s), ΔP ) = Fu(M(s), Δ)Fu(T,ΔT ) is
created, where ΔP = diag(Δ,ΔT ),

3. the stability of the closed-loop LFR Fl(Fu(P (s), ΔP ), 1) is evaluated using
μ-analysis tools.

Such a strategy is based on the equivalence of the three following assertions:

1. the Nichols plot of the frequency response of the open-loop LFR
Fu(M(s), Δ) avoids the trapezoidal exclusion region shown in Fig. 7.4 (left)
∀Δ ∈ BΔ,

2. the Nichols plot of the frequency response of the augmented open-loop
LFR Fu(P (s), ΔP ) avoids the critical point (−180 deg, 0 dB) ∀ΔP ∈ BΔP ,

3. the augmented closed-loop LFR Fl(Fu(P (s), ΔP ), 1) is stable ∀ΔP ∈ BΔP .

Two approaches exist to convert the trapezoidal region shown in Fig. 7.4
(right) into an LFR, which are based either on an elliptical or a first-order
Padé approximation.

Elliptical Approximation

This approach was first introduced in [12] and further exploited in [13, 14].
The idea is to represent the trapezoidal region shown in Fig. 7.4 (right) by
an ellipse E

E =
{

(φdeg , GdB) ∈ R
2 :

φ2
deg

φ2
m

+
G2

dB

G2
m

≤ 1
}

(7.11)

The numerical values φm = 35 deg and Gm = 4.5 dB offer a good com-
promise, as shown in Fig. 7.5. Such an approach is interesting, since ΔT is
only composed of one complex non-repeated uncertainty, but the resulting
approximation is not very accurate.
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Fig. 7.5 Elliptical approximation

First-Order Padé Approximation

The second approach was introduced in [14, 15]. The idea is now to model
the trapezoidal region shown in Fig. 7.4 (right) using a first-order Padé ap-
proximation. To this end, let us describe the phase and gain variations as

φdeg =
φmax − φmin

2
δφ +

φmax + φmin

2
(7.12)

GdB = δG(t−mδφ) (7.13)

where φmin = 0 deg, φmax = 35 deg, t = 3, m = 1.5, δG ∈ [−1, 1] and
δφ ∈ [−1, 1]. The augmented open-loop frequency response is thus obtained
by multiplying the nominal open-loop frequency response by Ge−jφ, where

φ = φdeg
π

180
(7.14)

G = e
ln(10)

20 GdB (7.15)

Let c =
ln(10)

20
, γ1 =

φmax − φmin

2
π

180
and γ2 =

φmax + φmin

2
π

180
. Then

Ge−jφ = e−jγ2ecδG(t−mδφ)−jγ1δφ (7.16)

To obtain a rational expression in δG and δφ from (7.16), a first-order Padé
approximation is used

ex = 1 +
x

1− x/2 (7.17)



7 Enhanced μ-Analysis Techniques for Clearance 145

where x = cδG(t − mδφ) − jγ1δφ. The resulting LFR Fu(T,ΔT ) is finally
defined by

T ↔
⎡
⎣

0.5ct −0.5c c
m+ 0.5jγ1t −0.5jγ1 jγ1

te−jγ2 −e−jγ2 e−jγ2

⎤
⎦ ; ΔT =

(
δG 0
0 δφ

)
(7.18)

Such an approach leads to a very accurate description of the trapezoidal
region, as shown in Fig. 7.6. Furthermore, the size of ΔT is only slightly
larger than for the elliptical approximation. In addition, the result presented
in [15] is improved here, since the repetition of δφ in ΔT is avoided by the
use of a suitable factorisation.
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Fig. 7.6 First-order Padé approximation

The stability margin criterion can thus be evaluated using the same strat-
egy as in Sect. 7.5.1, where λ1(δ), . . . , λp(δ) now denote the eigenvalues of
Fl(Fu(P (s), ΔP ), 1) at the considered point δ = (δ1, . . . , δn, δG, δφ) of the
parametric domain.

7.6 Conclusion

Two efficient algorithms are proposed in this chapter. They allow to com-
pute either a guaranteed robustness margin for a high-order LTI plant with
highly repeated parametric uncertainties, or a guaranteed stability domain
for a (possibly uncertain) linear parameter dependent plant. The key point
of the method consists in combining strategies for computing a guaranteed
μ upper bound over a whole frequency interval, and for eliminating the fre-
quency intervals inside which μ is less than a given threshold. As a result,
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no grid is required and the whole parametric domain is systematically in-
vestigated. Numerous tests presented in Chapter 12 show that the proposed
methodology allows to handle high-order industrial models that cannot be
analysed rigorously using classical methods. Indeed, it appears that conser-
vatism can be easily mastered and that computational time remains quite
reasonable, even if very demanding problems are considered. The algorithms
introduced in the present chapter can also be used in an aeronautical context
to evaluate some of the clearance criteria that need to be assessed during the
certification process of an aircraft, such as the eigenvalue and the stability
margin criteria introduced in Chapter 2. The modelling methodology pro-
posed in Chapter 4 and the clearance technique presented here are thus the
two main stages towards the development of a modelling and optimisation
tool dedicated to the clearance of stability criteria, which is able to meet the
industrial needs specified in Chapter 2. The way how they can be efficiently
combined and implemented is discussed in Chapter 12.
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Chapter 8

Worst-Case Parameter Search Based
Clearance Using Parallel Nonlinear
Programming Methods

Hans-Dieter Joos

Abstract. This chapter presents the theoretical background for several
enhancements of the worst-case parameter search based clearance of flight
control laws. The worst case search method aims to find combinations of
parameters and flight conditions for which the clearance criteria are mostly
violated or poorly satisfied. The two main aspects for the proposed enhance-
ments are: (1) increasing the reliability of clearance by the application of
global optimization methods in conjunction with established simulation and
analysis tools; and (2) increasing the efficiency of clearance by applying par-
allel computation techniques. These enhancements are illustrated in Chapter
13 by the application of the selected optimization methods and parallelization
techniques to several challenging clearance criteria.

8.1 Introduction

The clearance problem of flight control laws can be formulated as a robustness
analysis problem, where a set of suitably defined clearance criteria must be
checked to lie within certain limits for all admissible variations of aircraft
parameters, pilot inputs and all flight conditions. The idea of optimisation
based flight control law clearance is to use available and efficient optimisation
methods in combination with established and reliable simulation and analysis
tools, to find worst-case combinations of parameters and flight conditions for
which the criteria are mostly violated or poorly satisfied.

For the first time, a comprehensive description of the optimization-based
clearance was given in [17]. An analysis cycle was introduced which combines
the traditionally used gridding-based approach with respect to the flight
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envelope with worst-case search using local parameter optimization at se-
lected flight conditions. Parameter optimisation is used to determine worst-
case parameter combinations around these flight conditions which lead to
worst performance within the parameter range and flight conditions under
investigation. Discretisation with respect to some parameters is used to over-
come to some extent the problem of local minima and to find the overall
worst case parameter combination.

In the aftermath, several investigations have been made regarding the suit-
ability and effectiveness of different optimization algorithms [3], [12], [13]
and [14]. It was shown that the reliability of the approach, i.e. the probabil-
ity to find hidden weaknesses, is increased when global search algorithms are
applied instead of local search methods. The loss of performance measured
in computing time is expected to be compensated when parallel computation
techniques are applied.

The strength of the optimization-based approach is its flexibility in that it
can be used to check all linear or nonlinear clearance criteria as far as they
can be expressed as mathematical objective functions. Within the COFCLUO
project global optimisation methods are investigated for the clearance of ma-
noeuvrability and protection violation criteria with pilot input. Among the
various existing methods, an evolutionary algorithm called evolution strategy
(ES) proved to be most effective. See [10] for a detailed comparison of the
applied algorithms. An overview and preliminary results are also given in [9].

Worst case search implies finding the global optimum, but there is no the-
ory guaranteeing that evolutionary algorithms can reach a global solution
with a prescribed level of confidence within finite time. There exist deter-
ministic optimisation algorithms, such as box decomposition methods, which
guarantee to reach the global solution under some variational conditions but
at the expense of exponentially long time as the number of variables in-
creases [1].

In this chapter a clearance strategy is proposed based on the assumption
that the worst case can be found with nonzero probability. This rate of success
is in general unknown in advance and might even be zero for a given problem.
However, the results achieved within the COFCLUO-project show that for
this kind of optimisation problems reasonable values can be derived from the
existing computational experience.

8.2 Theoretical Basis

8.2.1 Formulation as Global Optimisation Problem

For utilising optimisation methods the clearance problem has to be expressed
as a scalar objective function c(p, d) with optimisation parameters p that
are uncertain or varying during operation (e.g. aerodynamic coefficients,
wind or aircraft mass, inertia, speed, height, etc.) and discrete conditions d
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(e.g. aircraft configuration, landing gear settings, etc.). The components of p
are assumed to be bounded and continuously varying over known intervals,
defining a hyper-box P . The clearance problem can now be formulated as a
minimization problem. Let c0(d)a lower acceptable value for c then

cmin(d) = min
p∈P

(c(p, d)) (8.1)

is a measure for the clearance performance. We assume that the clearance re-
quirement is fulfilled for condition d if cmin(d) ≥ c0(d), otherwise the criterion
is not cleared.

8.2.2 Level of Confidence

The difficulty with the optimisation based approach is not to find param-
eters/inputs/flight conditions such that a criterion is not satisfied, i.e. to
demonstrate that the flight control system (FCS) is not cleared, but to con-
fidently assert that all criteria are fulfilled. That means one has to solve a
global optimisation problem where the global solution, i.e. the worst case can
be found with some reasonable level of confidence. The level of confidence
can be estimated from a series of optimisation runs with different initial con-
ditions assuming a positive probability of success as outlined in the following.

In order to estimate the probability that in a series of n optimisation runs
the worst case is detected for k times, a random variable X is defined which
counts the number of successful optimisations. Such a random variable has a
binomial cumulative distribution

Pr(X ≤ k) = B(k|n, q) :=
k∑

i=0

(
n
i

)
qi(1− q)n−i

depending on the number of runs n and the probability q of success. If we
assume that the outcome of the different optimisation runs are independent
trials, the probability to obtain at least k successful runs out of a set of n
runs is given by

Pr(X ≥ k) = 1−B(k − 1|n, q). (8.2)

As an example, for a given success rate of q = 0.1 about 40 runs are necessary
to get the worst case at least once with a confidence level of Pr = 0.92. For
80 runs the corresponding detection probability would be greater than 0.99.

8.2.3 Clearance Strategy

The consideration on confidence level leads to the following clearance strat-
egy which has been applied to the COFCLUO clearance problems:
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Assume the success rate for a specific
criterion is q, specify the desired level of con-
fidence Pr0 which gives the requested number
of optimisation runs in order to detect the
worst case for example at least once. Start
a sequence of independent optimisations
runs with randomly chosen initial values and
initialisations of random number generators.
Stop this sequence when either the solution
found is less than the lower limit c0 or the
required number of runs is reached.

 

no 

not 
cleared 

cleared 

q 

yes 

yes 

c<c0 

Pr>Pr0 

worst case search 

no 

The crucial assumption for this strategy is the expected success rate, i.e.
the probability to detect the global minimum. The success rate depends on
the criterion properties, the selected optimisation algorithm and the num-
ber of considered parameters and of corresponding parameter ranges. It is a
priori unknown. However, an estimate for success rate can be deduced from
computational experiments. As it can be seen in Chapter 13, for the reported
criteria more than 30 from 40 optimisation runs terminate with almost identi-
cal results (up to computing tolerance). Assuming this result to be the worst
case the success rate can be estimated to be about 0.7. Analysis of other cri-
teria confirms this estimate. For the COFCLUO clearance problems a value
of q = 0.1 will be assumed as conservative and cautious working hypothesis.
Of course there is no guarantee that some kind of ’singular’ worst cases exist
which can be found with vanishingly small probability only. In that case the
proposed strategy will fail.

8.2.4 Transformation of Parameter Space

In equation (8.1) it is assumed that the optimisation variables p are elements
of a hyper-box P and no other constraints are involved. However, when us-
ing physical variables directly as optimisation variables this is not generally
valid. While parameters like mass m and height h can be simply bounded
as m ∈ [mmin,mmax] and h ∈ [hmin, hmax], other parameters as the cen-
tre of gravity Xcg has lower and upper bounds depending on mass, thus
Xcg ∈ [Xcg,min(m), Xcg,max(m)], while the speed Vcas has bounds generally
depending on h, m and Xcg, thus Vcas ∈ [Vmin(h,m,Xcg), Vmax(h,m,Xcg)].
To work with such bounds, additional non-linear constraints would be nec-
essary to restrict the parameters to the feasible range. Since the available
implementations of the global search methods solve constrained problems
by transforming them into unconstrained problems via penalty terms, non-
feasible trial points would inevitably lead to questionable simulation or anal-
ysis results.

For the clearance problems in COFCLUO exact mathematical character-
izations of the bounds are available, and these can be used to substitute
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physical variables by box bounded normalized variables. Assuming the nor-
malized parameters for speed ΔVcas ∈ [0, 1] and centre of gravity ΔXcg ∈
[0, 1], the physical parameters Xcg and Vcas can be expressed in the form

Xcg = Xcg,min(m) +ΔXcg (Xcg,max(m)−Xcg,min(m))

Vcas = Vmin(h,m,Xcg)+ΔVcas(Vmax(h,m,Xcg)−Vmin(h,m,Xcg))
(8.3)

Hence the normalized variables ΔVcas and ΔXcg can be used as optimisation
parameters instead of Vcas andXcg leading to a simple box bounded problem.

8.3 Applied Optimisation Methods

Several global search algorithms like evolutionary strategy (ES) [1], genetic
algorithm (GA) [1], [4], differential evolution (DE) [15], particle swarm op-
timisation (PSO) [11] and deterministic box decomposition techniques [2]
have been investigated for their usefulness in the analysis of several simu-
lation based clearance criteria. All implementations have been taken from
DLR’s optimisation environment MOPS [7]. In terms of success rate, i.e. the
probability to find the global minimum, the ES algorithm [1] outperformed
all others and was therefore used for the analyses reported in Chapter 13.
More details on the comparison of the applied methods and according results
can be found in [10].

According to [1], the ES belongs to the family of evolutionary algorithms
whose special feature is the self-adaptation of algorithm parameters. Self-
adaptation is achieved by including additional parameters into the optimisa-
tion process and by co-evolving them with the solution. In the implementation
used here, for each optimisation variable a self-adapting mutation step size
is introduced. In detail the implementation comprises:

– representation of individuals as real valued vectors;
– uniform random selection of parents;
– discrete recombination of optimisation variables by choosing randomly el-

ements from two different parents;
– intermediary recombination (arithmetic mean) of two different parents for

the step size parameters;
– generation of a number of children which is much greater than the number

of parents;
– mutation of step size parameters σi is done by applying a lognormal dis-

tribution

σ
′

i = σi � exp(τ1N (0, 1) + τ2Ni(0, 1)) , σ
′

i ≥ ε0 (8.4)

where τ1 , τ2 are internal constants depending on the number of variables;
– mutation of optimisation variables xi is done by a Gaussian perturbation
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x
′

i = xi + σ
′

i �N (0, 1) � (xu,i − xl,i) (8.5)

where xu,i and xl,i are the upper and lower bounds of the i-th variable xi.
– forming the next generation optionally either from the best children, the

best children including the overall best (survival of the fittest) or by elitists
selection from offspring and parents.

The user has to specify only four algorithm parameters which of course can
influence the success rate of detecting the worst case. These parameters are
the population size, offspring size, type of survivor selection and accuracy
tolerance. All clearance optimisations in Chapter 13 have been performed
using parameter values recommended in [1] and adapted using own experience
with various criteria. The chosen population size was 2 or 3 times larger
than the number of optimisation variables, while the offspring size was 7
times larger than the population size. The elitists selection from parents and
offspring has been used, together with a moderate accuracy tolerance of 10−3,
to comply with the noisy characteristics of the simulation based criteria. The
user can additionally set three other termination conditions as the maximum
number of generations (used value 200), maximum number of generations
without progress in the criterion value (used value 10) and maximum number
of steps with size less than the tolerance (used value 1). In all analyses, the
optimisation runs have been terminated by one of the last two termination
conditions indicating convergence of the algorithm.

After termination of the evolutionary global search the worst case found
was used as initial value for a final local search applying a pattern search
algorithm similar to [6] (see [7] for extensions). Performing a final local search
provides the advantages that the optimisation result may be further improved
with a comparatively small additional computational effort. In this way, the
(local) minimum determined by the global algorithm can be approximated
more accurately and hence identical solutions from different optimisation runs
can be assessed easier. Moreover, the global search can be terminated earlier
when no significant improvements are made or no further improvements can
be expected due to small step sizes.

The additional computational effort of a final local search however is small
compared to the global search, because the local method can be expected
to converge fast in the neighborhood of a (local) minimum. The user has no
additional parameters to specify.

The gradient free pattern search (PS) algorithm is a robust optimisation
method. By experience it is less sensitive to noisy criteria than gradient based
methods, but has still reasonable convergence properties. A global conver-
gence theory for algorithms based on pattern search is established for instance
in [16].
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8.4 Parallel Computation

It is well known that solving clearance problems is cost intensive, requiring
a huge amount of computational work [17]. The parallelisation of compu-
tations, by using distributed computing on a computer network or multi-
ple processors, can help to drastically reduce the computing times. For this
purpose, the problem must be broken into independent parts which can be
concurrently executed. However, parallel computation introduces new soft-
ware engineering aspects, like communication and synchronisation between
different processors or computer nodes, which occasionally may significantly
influence the resulting speedups.

There are several levels (or types) of parallel computing: bit-level, instruc-
tion level, data level or task level. While bit and instruction level paralleli-
sations are inherently implemented in the processing elements (CPUs) and
are exploited by modern numerical libraries or compilers, parallelisation on
data or task level can be used on a higher programming layer, as solving
optimisation problems. This is the level considered here.

Fortunately, worst-case search based on stochastic global search algorithms
like ES can be parallelised efficiently in two straightforward ways using a sim-
ple master/slave concept (for more details see [8]). A first approach illustrated
in Fig. 8.1 is the parallelization of criteria evaluations for each member of a
population. This approach requires a ‘parallel’ implementation of the under-
lying algorithms.

The second approach shown in Fig. 8.2 performs individual optimisation
tasks in parallel with different initial conditions to enforce the reliability of
global search. In contrast to the first approach, this parallelization can be
performed without any changes in the implementations of the algorithms.

 

Master 

Initialise identical environment on master and slaves to execute 
criterion: 
Initiate optimisation 

Provide actual set of optimisation parameters 
     Dispatch criterion evaluation on master and slaves 
    Synchronise, wait until all evaluations have been done 
Stop optimisation 

Slave 1 
 
Evaluate criterion ... 

parameter 
values  

criterion 
value 

Slave 2
 
Evaluate criterion 

Fig. 8.1 Parallelisation of criteria evaluations by means of a master/slave concept.
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Master 

Initialise identical environment on master and slaves to execute 
optimisation runs: 

Provide optimisation start data 
     Dispatch optimisation run on master and slaves 
    Synchronise, wait until all optimisations have been done 
 
Stop dispatching, post processing of optimisation results 

Slave 1 
 
Worst case optimisation 

Slave 2
 
Worst case optimisation ...

start data worst case 
solution found

Fig. 8.2 Parallelisation of multiple optimisation runs by means of a master/slave
concept.

The parallelisation can be made very efficient without producing too much
overhead in communication or data transfer. The diagram in Fig. 8.3 shows
the dependence of computing times on the number of used processors and
the amount of time necessary for one criterion evaluation (simulation time).
The results are obtained on a Linux-cluster (installed in 2002) consisting of
32 single-core, Intel Xeon processors (2.8GHz) with 2GB memory each. For
each run 1200 evaluations have been performed.
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Fig. 8.3 Computing times for different number of processors and different amount
of time for criterion computation (simulation time) based on 1200 evaluations.
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Fig. 8.4 Speedup achieved for different number of processors (4, 10, 15, 20) and
different amount of time for criterion computation (simulation time) based on 1200
evaluations.

The gain in efficiency when using parallel computations can be measured
by the speedup S defined as [5]

S = (s +N � p)/(s + p) (8.6)

where N is the number of processors, and s and p are, respectively, the times
spent in the serial and parallel parts of the code. The theoretically achievable
maximum speedup is N . According to measurements performed for s and p
and shown in Fig. 8.4, this maximum value can be almost reached in all cases
under investigation.

8.5 Conclusions

As already mentioned the main advantage of the optimization-based clear-
ance method is its flexibility regarding its applicability to virtually all clear-
ance problems and all classes of underlying models. The expected benefits of
this approach are:

– increased reliability in finding weaknesses compared to traditional gridding
based methods or Monte Carlo analysis,

– reduction of overall analysis time compared to traditional methods
– possibility to deal simultaneously with a greater number of parameters,
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– applicability to any kind of clearance problem without adding any conser-
vatism to the method

– finding worst-case combinations of parameter and flight conditions which
can be useful to improve the tuning of control laws.

A known weakness of the approach is that there is no absolute guarantee
to find the global worst case with a prescribed level of confidence because
the proposed clearance strategy relies on an estimate for the success rate
which is in general unknown. However, the type of problems considered in
the COFCLUO-project allow to conclude that a non-zero success rate exists
because the sensitivity of the dynamics of a controlled aircraft with respect
to clearance parameters is bounded for physical reasons. However, a reliable
estimate of the success rate can only be hypothesised from a series of opti-
misation runs.

In the absence of theoretical guarantees, the proposed worst case search
methodology needs possibly benchmarking with classical methods like Monte
Carlo analysis. The results documented in Chapter 13 show that bad cases
(not necessarily the worst case) can be found more reliable by means of the
proposed search algorithms and clearance strategy (see also [10] for more
details).
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Chapter 9

Lyapunov-Based Robustness Analysis
Techniques for Clearance

Andrea Garulli, Alfio Masi, Simone Paoletti, and Ercüment Türkog̃lu

Abstract. This chapter considers different techniques for robustness analysis
of uncertain systems modeled by linear fractional representations, based on
the use of parameter-dependent Lyapunov functions and multipliers. Several
sufficient conditions for robust stability, relying on the choice of simplified
structures for the Lyapunov function and the multiplier matrices, are pro-
posed. These conditions provide a useful tool for trading off conservatism and
computational burden, which is a key issue when addressing robustness anal-
ysis of high dimensional uncertain systems arising from clearance problems.

9.1 Introduction

Clearance of flight control laws is an integral part of the certification of an
aircraft, and is characterized by the evaluation of its robustness against pre-
defined stability or performance criteria within a given region of interest,
the flight/uncertainty domain. A commonly practiced approach in industrial
aircraft clearance is the grid-based approach: a finite set of grid points are
selected within the flight/uncertainty domain and the clearance criterion of
interest is tested for each point. The main drawbacks of this approach are
the high computational times required (which depend on the density of the
grid), and the fact that only the grid points are actually cleared and not
the entire domain. Indeed, this has motivated intensive research on alterna-
tive approaches, combining intensive computer simulations, optimization and
robustness analysis techniques (see e.g. [1, 2, 3, 4] and references therein).
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via Roma 56, 53100 Siena, Italy
e-mail: garulli@dii.unisi.it, masi@dii.unisi.it,

paoletti@dii.unisi.it, turkoglu@dii.unisi.it

A. Varga et al. (Eds.): Opti. Based Clearance of Flight Control Laws, LNCIS 416, pp. 161–178.
springerlink.com � Springer-Verlag Berlin Heidelberg 2012



162 A. Garulli et al.

Robustness analysis of linear systems depending on uncertain parameters
has been a subject of notable interest in the systems and control community
for several decades, and Lyapunov theory has played a pivotal role in this
context. The development of computationally efficient techniques for solving
convex optimization problems involving Linear Matrix Inequalities (LMIs)
has motivated research efforts towards more and more sophisticated sufficient
conditions for assessing robust stability of uncertain systems [5].

Within the context of Lyapunov theory, robustness of linear systems af-
fected by parametric uncertainty can be analyzed through the search for
Lyapunov functions which are either parameter independent, or parameter
dependent. The notion of quadratic stability, namely the existence of a com-
mon quadratic Lyapunov function for all the admissible systems, allows one
to address also time-varying uncertainties, but it usually leads to conservative
results. This shortcoming has instigated research efforts on Lyapunov func-
tions that are parameter-dependent. Sufficient conditions for the existence
of parameter-dependent Lyapunov functions depending affinely or polynomi-
ally on the uncertain parameters have been proposed in the literature (see
e.g. [6,7,8,9]). The main drawback of most of these approaches is that they ei-
ther assume systems to depend affinely on the uncertain parameters, or they
consider polytopic uncertainty models given as convex combinations of known
nominal models. However, in real-world systems, like flight control schemes,
the dependence on the uncertain parameters is much more involved (usually
rational) and is modeled by linear fractional representations (LFRs) [10].

In the literature, sufficient conditions for robust stability of uncertain LFR
systems, based on parameter-dependent Lyapunov functions, have been pro-
posed by several authors. In this chapter, we will focus on three specific
techniques. The first one, proposed in [11], combines the constant scaling
technique for LFR systems with the use of (rationally) parameter-dependent
Lyapunov functions. This technique can also deal with time-varying param-
eters with bounded variation rate. The other two techniques considered rely
on ideas from the classical multiplier approach adopted in the absolute sta-
bility theory, which also finds useful applications in robustness analysis of
uncertain systems [12]. While several authors propose the use of constant
multipliers, less conservative conditions are obtained if parameter-dependent
multipliers are adopted. Two different approaches along this line, which em-
ploy multiaffine parameter-dependent Lyapunov functions, have been pre-
sented in [13] and [14]. Relationships between these approaches have been
investigated in [15].

The three techniques recalled above have been employed in two benchmark
clearance problems defined within the COFCLUO project: the aeroelastic sta-
bility criterion, for integral models including rigid and flexible modes, and the
un-piloted stability criterion, for nonlinear aircraft models (see Chapter 2).
Robustness analysis is performed on the LFR models derived in Chapters
3, 4 and 5. Direct application of the considered techniques for such mod-
els turns out to be computationally unfeasible. Therefore, several relaxations
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relying on the choice of specific structures for the Lyapunov function and
for the multipliers, are proposed. Under the assumption that the uncertain
parameters and trim flight values are time-invariant, the uncertainty domain
is partitioned in order to obtain accurate approximations of the robust sta-
bility region. In this respect, two alternative approaches, denoted as pro-
gressive and adaptive partitioning, are introduced. The proposed relaxations
and partitioning strategies allow one to properly trade off conservatism and
computational workload of the considered techniques.

The chapter is organized as follows. In Sect. 9.2, the sufficient conditions for
robust stability analysis of systems in LFR form are described. Application of
the above conditions to the specific clearance problems at hand is addressed in
Sect. 9.3. In order to compare the potential and the computational workload
of each method, the considered techniques are tested on a simple numerical
example in Sect. 9.4. Finally, some conclusions are presented in Sect. 9.5.

9.2 Robustness Analysis Using Lyapunov Functions

In this section, several methods are presented for testing the robust stability
of systems whose dependence on the uncertain parameters is rational, i.e.
systems in LFR form. Sufficient conditions for the existence of a common or
parameter-dependent quadratic Lyapunov function are provided in terms of a
finite number of LMIs. Simplified structures of Lyapunov matrices and multi-
pliers are introduced, in order to yield more conservative but computationally
less demanding sufficient conditions (hereafter referred to as relaxations).

9.2.1 Problem Statement in LFR Framework

Consider the autonomous system

ẋ(t) = A(δ)x(t), (9.1)

where x ∈ R
n is the state vector and A(δ) is a function of the parameter

δ ∈ R
nδ according to the relation

A(δ) = A+BΔ(δ)(I −DΔ(δ))−1C, (9.2)

with
Δ(δ) = diag (δ1Is1 , . . . , δnδ

Isnδ
). (9.3)

and δi denotes the i-th component of vector δ. An equivalent linear fractional
representation of the system (9.1)-(9.3) is given by:

⎧⎨
⎩
ẋ(t) = Ax(t) +Bq(t)
p(t) = Cx(t) +Dq(t)
q(t) = Δ(δ)p(t),

(9.4)
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where q ∈ R
d, p ∈ R

d, with d =
∑nδ

i=1 si, and A, B, C, D are real matrices of
appropriate dimensions. In view of the stability analysis of the LFR system
(9.4), matrix A is assumed to be Hurwitz.

The uncertain parameter vector δ is supposed to belong to a hyper-
rectangle Θ. Hereafter, we shall refer to the 2nδ vertices of Θ as Ver[Θ].
The uncertain parameters are assumed to be constant, i.e. δ̇ = 0. System
(9.4) is said to be:

� quadratically stable, if there exists a common quadratic Lyapunov function
V (x) = xTPx, for all matrices A(δ), δ ∈ Θ;

� robustly stable, if A(δ) is Hurwitz, for all δ ∈ Θ.

Clearly, quadratic stability implies robust stability, while the converse is not
true. Moreover, quadratic stability is also a sufficient condition for global
exponential stability of the equilibrium x = 0 when the uncertain parameters
δi are time-varying.

In the following, we review three different approaches to robust stability of
system (9.4), which are based on the use of parameter-dependent Lyapunov
functions.

9.2.2 Wang-Balakrishnan Relaxations

In [11], several sufficient conditions for robust stability analysis of LFR sys-
tems are proposed. Here, two of them are recalled. A sufficient condition for
quadratic stability of system (9.4) is stated as follows.

Proposition 9.1 (WBQ). System (9.4) is quadratically stable if there exist
P ∈ R

n×n, P = PT > 0 and M ∈ R
d×d, M = MT > 0, such that

[
ATP + PA+ CTMC PB(δ) +CTMD(δ)
B(δ)TP +D(δ)TMC −M +D(δ)TMD(δ)

]
< 0 (9.5)

for all δ ∈ Ver[Θ], with B(δ)=BΔ(δ) and D(δ)=DΔ(δ).

To establish whether condition (9.5) is verified, one has to check feasibility
of a set of 2nδ LMI constraints of dimension n+ d, one LMI of dimension d
and one LMI of dimension n. This results in a family of LMIs with a total
number of free variables nvar = d(d+1)

2 + n(n+1)
2 .

A less conservative condition for robust stability of system (9.4), exploits
parameter-dependent Lyapunov functions of the form V (x) = xTQ(δ)−1x
with Q(δ) = Q0 +

∑nδ

j=1 δjQj.

Proposition 9.2 (WB). System (9.4) is robustly stable if there exist nδ +1
symmetric matrices Q0, . . . , Qnδ

∈ R
n×n, and N ∈ R

d×d, N = NT > 0, such
that
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⎧⎪⎨
⎪⎩
Q(δ) > 0[
AQ(δ)+Q(δ)AT +B(δ)NB(δ)T Q(δ)CT +B(δ)ND(δ)T

CQ(δ) +D(δ)NB(δ)T D(δ)ND(δ)T−N

]
<0

(9.6)

for all δ ∈ Ver[Θ].

In order to verify the condition in Proposition 9.2, it is necessary to solve a
set of 2nδ LMIs of dimension n, 2nδ LMIs of dimension n+d, and one LMI of
dimension d. The number of free variables is nvar = (nδ + 1)n(n+1)

2
+ d(d+1)

2
.

It is important to note that when the uncertainty set Θ is symmetric with
respect to the origin, the feasibility of the condition in Proposition 9.2 implies
that the system is also quadratically stable, i.e. the LMIs (9.6) admit also a
solution with Qi = 0, i = 1, . . . , nδ.

In order to obtain a condition which is computationally less demanding,
one can reduce the number of free variables by imposing a structure on the
scaling matrices M and N . For example, the choice of a diagonal M in the
WBQ condition, or a diagonalN in the WB condition, can significantly speed
up the solution of the LMI feasibility problem when d is much larger than n,
however, at the price of a higher conservatism. We refer to these conditions
as WBQ-dM relaxation and WB-dN relaxation, respectively.

9.2.3 Fu-Dasgupta Relaxations

Another approach, based on parameter-dependent Lyapunov functions, pro-
vides sufficient conditions for robust stability of LFR systems. It is usually
referred to as the parametric multiplier approach. It can be seen as a gen-
eralization of the traditional multiplier approach, used in absolute stability
theory [16], employing parameter-dependent multipliers. The main idea of the
approach presented in [13], is to seek a transfer matrix with affine structure,
called affine multiplier, which, when cascaded with another matrix related to
the uncertain system, will result in a strictly positive real transfer matrix.
This affine multiplier can be found by solving a set of LMIs, whose feasibility
guarantees the existence of a parameter-dependent Lyapunov function for the
uncertain LFR system.

In order to cast the problem into the framework adopted in [13] let us
introduce the matrices

C(δ) := Δ(δ)C =
∑nδ

i=1 δiCi

D(δ) := −I +Δ(δ)D = D0 +
∑nδ

i=1 δiDi,

where Ci = TiC, D0 = −I, Di = TiD, for i = 1, . . . , nδ , and

Ti = diag (0s1 , . . . , 0si−1 , Isi , 0si+1 , . . . , 0snδ
).
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A sufficient condition for robust stability of system (9.4) is introduced in the
next result, by using a multi-affine parameter-dependent Lyapunov function
(mapdlf), i.e. V (x) = xTP (δ) x, where

P (δ) = P0 +
nδ∑

j=1

δjPj +
nδ∑
i=1

nδ∑
j=i+1

δiδjPij + . . . (9.7)

is a generic symmetric multi-affine matrix function of δ.

Proposition 9.3 (FD). System (9.4) is robustly stable if there exist 2nδ +2
matrices Cμ,i ∈ R

d×n, Dμ,i ∈ R
d×d for i = 0, . . . , nδ such that

[
CT

i

DT
i

] [
Cμ,i Dμ,i

]
+
[
CT

μ,i

DT
μ,i

] [
Ci Di

] ≤ 0 (9.8)

for i = 1, . . . , nδ, and
⎧⎨
⎩
P (δ) > 0[
AT (δ)P (δ) + P (δ)A(δ) Π1,2(δ)

ΠT
1,2(δ) Π2,2(δ)

]
< 0,

(9.9)

for all δ ∈ Ver[Θ], where P (δ) is given by (9.7) and

Π2,2(δ) = − (Dμ(δ)D−1(δ) +D−T (δ)DT
μ (δ)

)
Π1,2(δ) = P (δ)BD−1(δ)− CT

μ (δ) + CT (δ)D−T (δ)DT
μ (δ)

with
Cμ(δ) = Cμ,0 +

∑nδ

i=1 δiCμ,i

Dμ(δ) = Dμ,0 +
∑nδ

i=1 δiDμ,i .

The family of LMIs (9.8)-(9.9) is composed by nδ + 2nδ constraints of di-
mension n+ d, and 2nδ constraints of dimension n. The total number of free
variables is nvar = (nδ +1)(nd+d2)+2nδ

(
n(n+1)

2

)
, the rightmost term being

due to the multi-affine parametrization of P (δ) in (9.7).
The number of free variables in the sufficient condition of Proposition 9.3

can be reduced by simplifying the structure of the affine parametric multi-
plier and/or the structure of the Lyapunov function, at the price of a higher
degree of conservatism, but with significant benefits in terms of reduced com-
putational complexity. In this paper, we will consider two possible relaxations
of the FD condition:

� FD-cμ relaxation: full constant multipliers Cμ(δ) = Cμ,0, Dμ(δ) = Dμ,0

(i.e., Cμ,i = 0, Dμ,i = 0, for i = 1, . . . , nδ);
� FD-cdμ relaxation : constant diagonal multipliers, which is the same as

FD-cμ, but with diagonal matrices Cμ,0 and Dμ,0.
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Moreover, we will consider the following simplified structures for the Lya-
punov function:

� common Lyapunov function (clf), P (δ) = P0;
� affine parameter-dependent Lyapunov function (apdlf),

P (δ) = P0 +
nδ∑

j=1

δjPj .

It is worth remarking that the combined use of FD-cμ or FD-cdμ relaxations
with the clf structure, guarantees quadratic stability of the LFR system.

9.2.4 Dettori-Scherer Relaxations

Another way to assess robust stability of system (9.4) by jointly using multi-
affine parameter-dependent Lyapunov functions and parameter-dependent
multipliers has been proposed in [14]. The resulting sufficient condition can
be stated as follows.

Proposition 9.4 (DS). System (9.4) is robustly stable if there exist two
matrices S0, S1 ∈ R

d×d such that
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P (δ) > 0⎡
⎢⎢⎣
I 0
A B
0 I
C D

⎤
⎥⎥⎦

T ⎡
⎣ 0 P (δ) 0
P (δ) 0 0

0 0 W (δ)

⎤
⎦
⎡
⎢⎢⎣
I 0
A B
0 I
C D

⎤
⎥⎥⎦ < 0

(9.10)

for all δ ∈ Ver[Θ], where P (δ) is given by (9.7) and

W (δ) =

[
S1 + ST

1 −S0 − S1Δ(δ)
−ST

0 −Δ(δ)ST
1 ST

0 Δ(δ) +Δ(δ)S0

]
, (9.11)

with Δ(δ) given by (9.3).

The set of constraints (9.10) consists of 2nδ LMIs of dimension (n + d) and
2nδ LMIs of dimension n, with a total number of free variables nvar =
2d2 + 2nδ

(
n(n+1)

2

)
. Once again, one can introduce relaxed versions of the

DS condition by choosing simplified structures for the matrices S0 and S1

parameterizing the multiplier W (δ), and for the Lyapunov matrix P (δ). We
will refer to the robustness stability test (9.10) with diagonal matrices S0 and
S1 in (9.11), as DS-dS relaxation. Moreover, we will consider both common
(clf) and affine parameter-dependent (apdlf) Lyapunov functions, as for the
FD relaxations.
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Remark 9.1. In [15], it has been proved that the FD-cμ condition with full
constant multipliers Cμ,0, Dμ,0 is in general less conservative than the DS
condition with full free matrices S0, S1. The two conditions turn out to be
equivalent when the C matrix of the LFR system is full column rank. The
existence of relationships between these techniques, when a more restrictive
structure of the multipliers is imposed (e.g. between FD-cdμ and DS-dS) is
still an open issue. Numerical comparisons between the above methods and
relaxations on a simple numerical example are reported in Sect. 9.4.

9.2.5 Special Case: Affine Parameter-Dependent
Systems

In Chapter 6, an H2 approximation technique has been employed to derive
reduced-order LFR models of the aircraft dynamics. In particular, some of
these models turned out to depend linearly on the uncertain parameters, i.e.
to be of the form (9.1) with

A(δ) = A0 +A1δ1 + . . .+Anδ
δnδ

. (9.12)

Clearly, (9.12) is a special case of the general LFR (9.2)-(9.3), where s1 =
s2 = · · · = sn = n and

A = A0 , B = [A1 A2 . . . Anδ
] , C =

⎡
⎢⎣
In
...
In

⎤
⎥⎦ , D = 0.

A number of sufficient conditions for dealing with robust stability of systems
with affine parameter-dependence has been derived in the literature (the
interested reader is referred to [9] and references therein). Here, we briefly
recall two of them.

Proposition 9.5. System (9.1), with A(δ) given by (9.12), is quadratically
stable if and only if there exists P ∈ R

n×n, P = PT > 0 such that

AT (δ)P + PA(δ) < 0 , ∀δ ∈ Ver[Θ]. (9.13)

The next proposition is based on the multi-convexity condition given in [6].

Proposition 9.6. System (9.1), with A(δ) given by (9.12), is robustly stable
if there exist nδ + 1 symmetric matrices P0, P1, . . . , Pnδ

such that

AT
i Pi + PiAi ≥ 0 ∀i = 1, . . . , nδ (9.14)

and
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{
P (δ) = P0 + δ1P1 + . . .+ δnδ

Pnδ
> 0

AT (δ)P (δ) + P (δ)A(δ) − P0 < 0,
(9.15)

for all δ ∈ Ver[Θ].

The set of constraints (9.13) consists of 2nδ + 1 LMIs of dimension n with
nvar = n(n+1)

2
, while (9.14)-(9.15) amounts to 2nδ+1 +nδ LMIs of dimension

n with a number of free variables equal to nvar = (nδ + 1)n(n+1)
2 .

9.3 Clearance of Flight Control Schemes

In this section, the robustness analysis techniques presented in Sect. 9.2 are
applied to two specific flight clearance problems introduced in Chapter 2: the
aeroelastic stability and the un-piloted stability criteria.

9.3.1 Aeroelastic Stability Criterion

Within the COFCLUO project, several clearance criteria have been proposed
for the certification process of the integral model of an aircraft, accounting for
both rigid and flexible modes. The aeroelastic stability criterion (also called
eigenvalue criterion) requires that the largest real part of the closed-loop
eigenvalues (λ1, λ2, · · · , λn) of the linearized aircraft model is negative, i.e.

max
j∈{1,...,n}


(λj) < 0, (9.16)

for all admissible values taken by the uncertain parameters (describing the
aircraft mass configuration) and the trimmed flight variables (namely, Mach
number and calibrated air speed).

In order to address this criterion, LFR models describing the closed-loop
aeroelastic behavior of the aircraft have been derived in Chapters 4 and 5.
With the mentioned uncertain parameters and flight variables as the entries
of the δ vector in (9.3), the techniques presented in Sect. 9.2 can be directly
applied to verify which of these LFR models satisfy the eigenvalue criterion
in (9.16) for all uncertain parameters and flight variables δ ∈ Θ, i.e. to prove
that

max
δ∈Θ

max
j∈{1,...,n}


(λj(δ)) < 0,

where λj(δ), j = 1, . . . , n, denote the eigenvalues of A(δ) in (9.2).
The aeroelastic stability criterion can be tackled also by considering the

reduced-order LFR models derived in Chapter 6. When the dependence on
the uncertain parameters is affine, the conditions presented in Propositions
9.5 and 9.6 can be employed to verify robust stability of such LFR models.
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9.3.2 Un-piloted Stability Criterion

Several clearance criteria have also been presented for the certification process
of the nonlinear aircraft model considered in the COFCLUO benchmark.
The un-piloted stability criterion requires that the augmented system remains
stable, for all admissible values of the position of the center of gravity assumed
by the control law, and for all possible trimmed point values. Because of the
presence of pilot-in-the-loop control, the stability requirement is relaxed to
include slowly divergent modes, provided that the time of doubling of the
divergent variables is more than 6 sec.

LFR models representative of the nonlinear aircraft and controller dynam-
ics within given regions in the flight envelope, have been derived in Chapters
3 and 5. Due to the presence of saturations in the aircraft actuators, the Δ
block of the resulting LFR models contains not only uncertain parameters
(mass, position of center of gravity assumed by the controller) and trimmed
flight variables (Mach, calibrated air speed), but also memoryless nonlin-
earities (dead-zones). Therefore, two different un-piloted stability clearance
problems are addressed:

i) Robustness analysis of LFR models containing only flight envelope vari-
ables and/or uncertain parameters in the Δ block, with dead-zones set
to their nominal values (which corresponds to assuming that actuators do
not saturate). In this case, all the robustness analysis techniques described
in Sect. 9.2 can be applied directly to check the relaxed robust stability
requirement, i.e. that the largest real part of the eigenvalues of the LFR
matrix A(δ) does not exceed log(2)/6. Notice that, due to the structure
of A(δ) in (9.2), this can be imposed by simply replacing the open-loop
matrix A by the shifted matrix A− log(2)

6 I. Hereafter, this relaxed stability
condition will be referred to as shifted stability.

ii) Robustness analysis of LFR models containing dead-zones in the Δ block:
in this case, dead-zones are treated as sector-bounded time-varying un-
certainties, within the sector [0, 1]. The techniques of Sect. 9.2 can still
be applied to check shifted stability, provided that a common Lyapunov
function (clf) and parameter-independent multipliers are employed.

Lyapunov-based conditions for dealing with LFR models with dead-zones
have been recently proposed in [17, 18, 19, 20]. Such conditions are usually
less conservative than those treating dead-zones as sector-bounded uncertain-
ties. However, they do not consider the presence of time-invariant parametric
uncertainties in the LFR structure, and therefore can be applied to the con-
sidered LFR models only after setting the uncertain parameters and trimmed
flight values to a constant nominal value (see Chapter 14).
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9.3.3 Partitioning of the Uncertainty Domain

Since all the conditions presented in Sect. 9.2 are only sufficient, they may be
too conservative to clear the entire uncertainty domain, however they may
succeed in clearing portions of this domain. This is still acceptable for the
considered criteria, as the uncertain parameters and the trim flight values
are assumed to be time-invariant. This has motivated the formulation of two
approaches, namely, the progressive tiling and the adaptive tiling, which rely
on partitioning of the uncertainty domain. These are described next.

In the progressive tiling, the idea is to progressively partition the uncer-
tainty domain Θ into hyper-rectangular regions (hereafter, tiles), and then,
apply the robustness analysis conditions presented in Sect. 9.2 to each tile.
The clearance procedure is carried out by successively reducing the sizes of
the uncleared tiles; this step involves bisection of each side of an uncleared
tile. The size of each uncleared tile is reduced until the whole domain is
cleared, or the predefined maximum number of bisection steps is reached. To
initialize the procedure, the initial tile is set equal to the whole uncertainty
domain (or a hyper-rectangle containing the actual domain, when this is a
generic polytope). For each tile, the LFR system (9.4) is re-parameterized,
so that the resulting uncertainty region is centered in the origin of the nor-
malized uncertainty space (recall that this implies that the conditions WB
and WBQ are equivalent). If the LFR model contains dead-zones, such as in
the un-piloted stability criterion, these are treated as sector-bounded time-
varying uncertainties. Hence, partitioning is not performed with respect to
the corresponding parameters, but only with respect to the time-invariant
flight parameters.

With the objective of improving the efficiency of the clearance process,
one may choose to combine progressive tiling with an adaptive choice of
the robustness condition. The idea is to proceed as in the progressive tiling
approach, but to change the condition whenever a predefined partitioning
level has been reached. For example, one may employ conservative (but fast)
methods in the first steps of the progressive tiling, with the aim to clear large
regions of the uncertainty domain which are “easy” (in the sense that they
can be cleared even by the most conservative techniques). Then, as soon as
a predefined number of partitions is reached, one can employ more powerful
(and more computationally demanding) techniques only for the “difficult”
tiles, that have not been cleared in the first steps. In order to test this idea,
adaptation with respect to the choice of the Lyapunov function has been
performed (clearly, adaptation with respect to the multipliers structure can
also be considered).

9.3.4 Gridding

The flight/uncertainty domain of interest may contain models which are un-
stable. Since a model corresponds to an aircraft configuration with fixed
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values for the uncertain parameters and the trimmed flight variables, such
unstable models will render the entire flight/uncertainty domain unclearable.
Hence, in order to save computational time, before attempting to clear each
tile by applying one of the methods presented in Sect. 9.2, a coarse gridding of
the tile is performed. This involves the selection of a set of uniformly spread
models within the tile. If any one of these models is found to be unstable,
clearance of the tile is not attempted and the tile containing the model is
temporarily marked as unstable. Conversely, if there are no unstable models
within the tile grid, then the selected clearance method is applied. Notice
that as the partitioning of the domain proceeds, tiles that have been marked
as unstable are successively partitioned and portions of them can be later
cleared. When the maximum number of partitions is reached, the tiles con-
taining unstable models found by gridding are finally marked as unstable.
Clearly, by suitably defining the maximum number of partitions (and hence
the minimum tile size), one can obtain an approximation to the desired preci-
sion of the domain which can be cleared by the considered robustness analysis
technique.

9.3.5 A Graphical User Interface for Robust Stability
Clearance Problems

A Graphical User Interface (GUI) has been developed to facilitate the se-
lection of the various options in the clearance problem, and to present the
results of the robustness analysis process. The GUI provides a user interac-
tive set-up for the two considered clearance criteria, and for a collection of
closed-loop LFR models. The software package comprises of a collection of
routines coded in Matlab and exploits three publicly available software pack-
ages: YALMIP [21], SDPT3 [22] and LFR Toolbox [23]. Figure 9.1 shows a
screenshot of the GUI panel.

Figure 9.2 is an example of graphical presentation of a clearance analysis
result for an LFR model with nδ = 2. The light gray areas represent regions
where the corresponding model has been cleared; dark gray areas denote
regions where the LFR model could not be cleared (due to the presence of
unstable models found by gridding); white areas represent regions where no
unstable models were found by gridding, but stability of the model could not
be certified with the chosen robustness analysis technique.

Besides graphical results, the GUI returns also detailed information about
all the outcomes of the clearance process, and in particular:

� the number of optimization problems that have been solved (corresponding
to the number of tiles attempted to be cleared);

� the time elapsed in the course of the clearance procedure;
� the percentage of the cleared domain with respect to the whole uncertainty

domain;
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� the percentage of the uncertainty domain which, at the end of the tiling
procedure, was found to contain closed-loop unstable models by gridding;

� the percentage of the uncertainty domain, which could neither be defined
as unstable after gridding, nor be certified as cleared by the tested method;

� the clearance rate, defined as ratio between the cleared uncertainty region
and the clearable domain (i.e the domain that did not contain closed-loop
unstable models found by gridding).

The latter indicator can be considered as a measure of performance of the
chosen clearance technique (with the precision allowed by the selected mini-
mum tile size).

An extensive collection of results obtained by applying the proposed ro-
bustness analysis tools to the considered clearance problems are reported in
Chapter 14.

9.4 Numerical Example

In this section, the methods previously discussed are applied to a simple
numerical example, in order to highlight the potential of the considered tech-
niques and to offer insight into the computational workload one may expect
when techniques are applied to high dimensional systems.

Fig. 9.1 GUI panel for robust stability analysis.
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Fig. 9.2 Example of clearance result: cleared (light gray), unstable (dark gray),
unknown (white).

Consider the system
ẋ(t) = f(δ)x(t), (9.17)

with x ∈ R and

f(δ) = 672.2δ61 + 401.7δ51δ2 − 75δ51 − 727.9δ41δ22 + 233.6δ41δ2 − 30.5δ41

−254.5δ31δ32 − 71δ31δ22 − 19.6δ31δ2 + 26.6δ31 − 233.5δ21δ32 + 40.2δ21δ22

+64.3δ21δ
4
2 + 2δ21δ2 + 6.6δ21 − 282.1δ1δ52 + 152δ1δ42 − 9.3δ1δ32

−19.7δ1δ22 + 3.7δ1δ2 + 1.9δ1 + 251.8δ62 + 234.6δ52 − 64.8δ42
−19.9δ32 + 9δ22 + 1.7δ2 − 3.1

(9.18)
is a bivariate polynomial in δ = (δ1, δ2), such that f(0) < 0 and f(δ) < 0 for
δ belonging to the region bounded by the black curve in Fig. 9.3.

It is possible to derive an equivalent representation of system (9.17)-(9.18)
in the LFR form (9.4) by using tools in [23]. For the considered f(δ), the size
of the Δ(δ) matrix in the LFR system turns out to be d = 27, with s1 = 21
and s2 = 6.

Table 9.1 reports the results obtained by applying the robustness analysis
techniques presented in Sect. 9.2 to the considered system. The GUI software
described in Sect. 9.3.5 has been run on a PC equipped with an Intel XEON
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Table 9.1 Comparison among the techniques on the analytical example.

Method Clearance
rate NOPs Time

(h:m:s)
WBQ 1 75 0 : 04 : 45
WBQ-dM 0.8655 147 0 : 05 : 59
WB 1 75 0 : 05 : 57
WB-dM 0.8655 147 0 : 08 : 07
DS (clf) 1 71 0 : 15 : 10
DS (apdlf) 1 71 0 : 16 : 12
DS (mapdlf) 1 71 0 : 16 : 54
DS-dS (clf) 0.9793 79 0 : 03 : 28
DS-dS (apdlf) 0.9828 79 0 : 04 : 31
DS-dS (mapdlf) 0.9828 75 0 : 04 : 55
FD-cμ (clf) 1 71 0 : 03 : 41
FD-cμ (apdlf) 1 71 0 : 03 : 54
FD-cμ (mapdlf) 1 71 0 : 04 : 04
FD-cdμ (clf) 0.9138 111 0 : 01 : 46
FD-cdμ (apdlf) 0.9138 111 0 : 01 : 49
FD-cdμ (mapdlf) 0.9138 111 0 : 01 : 51

Table 9.2 Adaptive tiling DS-dS.

Method clf apdlf Clearance
rate NOPs Time

(h:m:s)
DS-dS 0 5 0.9827 79 0 : 04 : 31

1 4 0.9827 79 0 : 04 : 46
2 3 0.9827 79 0 : 04 : 51
3 2 0.9827 79 0 : 04 : 42
4 1 0.9827 79 0 : 04 : 22

5150 processor and 4 Gbyte of DDRII RAM. In Table 9.1, the clearance rate
is defined according to Sect. 9.3.5, NOPs is the number of LMI optimization
problems solved and Time is the total elapsed time required by the clearance
process. All relaxations have been applied with progressive partitioning and
maximum number of partitions equal to 5. Figure 9.3 illustrates the cleared
areas and the resulting tiling patterns for the relaxations FD-cμ, FD-cdμ, DS-
dS and WBQ-dM, all applied with a common quadratic Lyapunov function.
Tile colors are defined according to the example in Figure 9.2.

The different tiling patterns in Fig. 9.3 testify the different potential of
the relaxations within the progressive partitioning approach. In particular, it
can be observed that the techniques employing diagonal scaling matrices or
multipliers fail to clear some tiles that are close to the boundary of the stabil-
ity region. On the other hand, they often manage to significantly reduce the
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Fig. 9.3 Stability regions: a) FD-cμ (clf). b) FD-cdμ (clf). c) DS-dS (clf). d)
WBQ-dM.

computational time; notice however that this is not the case for WBQ-dM
and WB-dN due to the much larger number of optimization problems to be
solved. It is also interesting to note that, being the C matrix full column rank,
the conditions DS and FD-cμ are equivalent (see Remark 9.1). However, the
times required by DS are always larger than those employed by FD-cμ, which
seems to suggest that the parametrization of the FD-cμ condition is more effi-
cient. On the whole, one may conclude that in this example, the FD-cdμ and
DS-dS relaxations offer a reasonable compromise between conservativeness
and computational workload. This will be confirmed in most clearance prob-
lems tackled in Chapter 14, although it seems difficult to establish a general
hierarchy between the methods with respect to this fundamental trade-off.

Table 9.2 shows the results obtained by applying the adaptive tiling pro-
cedure with the DS-dS relaxation. The second and third column report the
number of partitioning steps in which the clf and apdlf structures of the
Lyapunov function have been employed. As expected, the clearance rate is
always the same because apdlf is always applied in the last partitioning step.
The minimum computational time is obtained with clf in the first 4 steps and
apdlf only in the last step. Though the benefit here is minor, the potential of
the adaptive tiling strategy is more evident when addressing robust stability
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of large LFR models, for which the computational time may vary significantly
with different choices of the Lyapunov matrix structure (see applications to
clearance problems in Chapter 14).

9.5 Conclusions

This chapter has presented several relaxations of sufficient conditions for ro-
bust stability of uncertain systems in LFR form. The relaxations rely on the
combined choice of simplified structures for the Lyapunov function and the
multiplier or scaling matrices employed in the sufficient conditions. The moti-
vation for the introduction of such relaxations is the possibility of trading off
conservativeness and computational load in the robustness analysis of high
dimensional systems with rational dependence on the uncertain parameters.
The proposed techniques have been applied to a set of LFR models repre-
senting the longitudinal dynamics of an augmented civil aircraft, used as a
benchmark within the COFCLUO project. Two clearance criteria, aeroelas-
tic stability and un-piloted stability, have been cast as robustness analysis
problems. The results of the clearance processes are reported in Chapter 14.
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Chapter 10

IQC-Based Analysis Techniques for
Clearance

Christos Papageorgiou, Rikard Falkeborn, and Anders Hansson

Abstract. This chapter presents the use of Integral Quadratic Constraints
(IQCs) for solving flight control clearance problems. The theory of IQCs pro-
vides a powerful framework for the robustness analysis of control systems
with respect to a very broad range of uncertainties and nonlinearities. The
clearance criterion of robust stability with respect to parameter variations is
addressed by employing the standard robust stability theorem of IQCs and
by a suitable choice of an IQC for real parametric uncertainty. In addition,
we use IQCs to solve two specific flight control clearance problems which
are formulated as robust performance problems with respect to real param-
eter variations. These problems are the stability margins criterion and the
comfort criterion with respect to turbulence which are formulated as robust
H∞ and H2 problems respectively. The formulation of a flight control clear-
ance problem using IQCs results in a convex optimization problem involving
Linear Matrix Inequalities (LMIs) for which there exist efficient, numerical
solvers. Even so, there exist limitations related to increased computational
complexity in case of optimization problems resulting from the analysis of
large systems.

10.1 Introduction

The clearance of a flight control law is defined as the procedure which proves
that the control law will satisfy the clearance criteria for a given flight enve-
lope and in the presence of uncertainty [1]. The clearance criteria are measures
to quantify stability and performance under all possible flight conditions.
The flight envelope is defined as the set of possible flight conditions and is
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characterized by flight parameters such as speed, altitude and angle of attack.
The uncertainty is defined as the set of uncertain parameters whose values
are not known but they have known ranges of variation and bounded rates
of variation.

In this chapter we propose the formulation of a control law clearance task
as a convex optimization problem by using ideas from robust control the-
ory [4]. We formulate the clearance task either as a robust stability or a
robust performance problem with respect to variations in the uncertain pa-
rameters and the flight envelope parameters. The powerful paradigm of Linear
Fractional Representations (LFR) is used to avoid the gridding of the flight
envelope and the uncertain parameter space. Using this approach, the un-
certain closed-loop system is embedded with some conservatism in an LFR
representation.

A solution to a lot of robustness analysis problems such as robust stability
with respect to uncertain parameters or robust H2 and H∞ minimization
can be obtained using convex optimization and in particular Semidefinite
Programming (SDP). An SDP problem is an optimization problem with the
cost function being a linear function of the decision variables and the con-
straints being Linear Matrix Inequalities (LMIs) [5]. The formulation of a
robustness analysis problem as an SDP results by searching for Lyapunov
functions (either constant or parameter-dependent) to prove stability and
performance or by assessing robust stability using the theory of IQCs [6] in
conjunction with the Kalman-Yakubovich-Popov (KYP) Lemma.

In this chapter the IQC theory is used to evaluate the robust stability of
the flight control system with respect to variations in real uncertain param-
eters. In conjunction with IQC theory, a tool from robust control theory is
used in order to solve the stability margins problem. This tool is the gen-
eralized stability margin bPC which is associated with the H∞ loop-shaping
methodology [7] for designing robust controllers. Finally, we use an IQC for-
mulation of a robust H2 performance problem [22] in order to evaluate the
comfort criterion with respect to excitation from turbulence.

10.2 Analysis of Robust Stability and Robust
Performance Using IQCs

This section will give a brief introduction to IQCs and describe some of the
theory needed in order to formulate the clearance criteria. The robust stability
criterion with respect to parametric uncertainty is a direct outcome of the
IQC robust stability condition of Theorem 10.1 and is not treated in more
detail. The clearance criteria which are formulated as robust performance
problems are presented in the following sections.
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Fig. 10.1 Basic feedback interconnection considered.

The uncertain system under consideration is defined by

v = Gw + f,

w = Δ(v) + e,
(10.1)

and is illustrated in Fig. 10.1. We assume thatG is a known stable linear time-
invariant (LTI) system and that the operator Δ is causal and has bounded
gain. The signals f and e correspond to finite energy external disturbances.
The operator Δ could represent a parametric uncertainty, a time-delay or a
general nonlinear function such as a saturation or a deadzone. This is precisely
the system studied in [6] where much of the theory that we present here can
be found.

Before we continue with the definition of IQCs, we remark that when we
say that v(t) ∈ Ll

2, we mean that v(t) is an l-dimensional signal with bounded
energy.

The definition of an IQC follows the definition in [6] which states:

Definition 10.1 (IQC). Two signals v(t) ∈ Ll
2 and w(t) ∈ Lm

2 are said to
satisfy the IQC defined by Π(jω) if

∫ ∞

−∞

[
v̂(jω)
ŵ(jω)

]∗
Π(jω)

[
v̂(jω)
ŵ(jω)

]
dω ≥ 0. (10.2)

Here, v̂(jω) and ŵ(jω) denote the Fourier transforms of v(t) and w(t) re-
spectively. In principle, Π : jR → C

(l+m)×(l+m) can be any measurable
Hermitian-valued function. For practical purposes, it is usually sufficient to
consider rational functions that are bounded on the imaginary axis.

The following theorem from [6] characterizes the stability of the intercon-
nection in Fig. 10.1 when the uncertain operator Δ is described using an
IQC.

Theorem 10.1 ( [6]). Let G be a stable LTI system, and let Δ be a bounded
causal operator. Assume that:

i) for every τ ∈ [0, 1], the interconnection of G and τΔ is well-posed [4];
ii) for every τ ∈ [0, 1], the IQC defined by Π(jω) is satisfied by τΔ;
iii)there exists ε > 0 such that
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[
G(jω)
I

]∗
Π(jω)

[
G(jω)
I

]
≤ −εI, ∀ω ∈ R. (10.3)

Then, the feedback interconnection of G and Δ is stable.

Two famous theorems for proving stability of nonlinear systems are the small
gain theorem and the passivity theorem [10]. By using suitable choices for
Π(jω) in the above theorem, we can recover the small gain and passivity
theorems. Namely, if we use

Π1(jω) =
[
I 0
0 −I

]
, Π2(jω) =

[
0 I
I 0,

]
, (10.4)

we get, with Π(jω) = Π1(jω), the small gain theorem and, with Π(jω) =
Π2(jω), the passivity theorem.

We can see in (10.4), that both Π1 and Π2 have the upper left corner
positive semi-definite and the lower right corner negative semi-definite. This
is often the case in applications [6] and simplifies assumption ii) since τΔ
then satisfies the IQC defined by Π(jω) for τ ∈ [0, 1] if and only if Δ does.

10.2.1 Parametrized and Multiple IQCs

The IQCs described by the multipliers in (10.4) were both fixed, i.e. there
were no degrees of freedom in the choice of the multiplier Π(jω). In prac-
tice, a parametrization is chosen for the multiplier with free variables which
need to be calculated through an optimization problem in order to satisfy
the frequency-domain inequality and thus prove robust stability. This is il-
lustrated with an example.

Let us assume we have two signals v(t) and w(t) in L2 and their relation
is such that

ŵ(jω) = Δ(jω)v̂(jω), (10.5)

where Δ is an unknown LTI system with bounded H∞-norm satisfying

||Δ||∞ < g (10.6)

for some positive constant g. This uncertainty characterization can be used
if we have some unmodeled or uncertain dynamics in our system. Then, a
multiplier that satisfies condition (10.2) for this pair of signals is given by

Π(jω) =
[
g2x(ω)I 0

0 −x(ω)I

]
, (10.7)

for any scalar x(ω) ≥ 0 such that Π(jω) is a bounded, self-adjoint operator.
To verify this we insert the multiplier in the definition of the IQC and we
get,
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∫ ∞

−∞

[
v̂(jω)
ŵ(jω)

]∗
Π(jω)

[
v̂(jω)
ŵ(jω)

]
dω =

∫ ∞

−∞
v̂(jω)∗v̂(jω)g2x(ω)− ŵ(jω)∗ŵ(jω)x(ω) dω >

∫ ∞

−∞
v̂(jω)∗v̂(jω)g2x(ω)− v̂(jω)∗v̂(jω)g2x(ω) dω = 0. (10.8)

The inequality is obtained by first inserting the relation between ŵ(jω) and
v̂(jω) and then using the fact that |Δ(jω)| is bounded by g.

In theory, we can choose x(ω) as any positive bounded hermitian func-
tion, but in order to facilitate the verification of the stability condition, we
will usually take x(ω) to be a rational transfer function where we leave the
coefficients of the nominator as free variables; the reason for this will be
clear in Section 10.2.2. As an example, for the IQC specified in (10.7), the
IQCβ-toolbox [11] uses x(ω) = X(jω) +X(jω)∗, where X∗ is the conjugate
transpose of X and

X(jω) = x0 +
x1

jω + a1
+ · · ·+ xN

jω + aN
, (10.9)

where the ai’s are positive constants fixed by the user and the xi’s are free
variables.

In a similar way, one can derive IQCs for other uncertainties. We mention
another common uncertainty which will be used in the later chapters of this
book, namely the relation

w(t) = δv(t), (10.10)

where δ is an unknown constant with values between −1 and 1. An IQC for
this relation is given by

∫ ∞

−∞

[
v̂(jω)
ŵ(jω)

]∗ [
P (jω) Q(jω)
Q∗(jω) −P (jω)

] [
v̂(jω)
ŵ(jω)

]
dω ≥ 0, P > 0, (10.11)

where P (jω) = R(jω) +R∗(jω) and

R(jω) = X0 +
1

jω + a1
X1 + · · · + 1

jω + aN
XN , (10.12)

Q(jω) = Z0 +
jω

−ω2 − a2
1

Y1 +
a1

−ω2 − a2
1

Z1 + . . .

+
jω

−ω2 − a2
N

YN +
aN

−ω2 − a2
N

ZN , (10.13)

where Xi are arbitrary square matrices, Yi are arbitrary symmetric matrices
and Zi are arbitrary skew-symmetric matrices. The verification of this IQC
can be derived in a similar way as for the IQC for unmodeled dynamics.
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A list of several useful IQC’s for different kinds of uncertainties, delays and
nonlinearities can be found in Sect. VI in [6]. Other examples of IQC’s can
be found in the manual of the toolbox IQCβ [11] and in papers such as [12]
(delays with bounded rate of variation).

A nice property of IQCs is that if an uncertain operator Δ satisfies several
IQC’s defined by Π1, . . . , Πn, then a sufficient condition for stability is the
existence of γ1, . . . , γn ≥ 0 such that (10.3) holds for Π = γ1Π1 + · · ·+γnΠn.
Hence, one can reduce conservatism by using more IQC’s forΔ at the expense
of increasing the computational complexity since a larger number of free
variables are included in the verification of the stability condition.

10.2.2 Verifying the Robust Stability Condition

Verifying condition (10.3) requires the solution of an infinite dimensional
feasibility problem since we need to verify it for all ω. Furthermore, it is
not known how we should choose Π(jω) if we have parametrized or multiple
IQCs as in Section 10.2.1.

We choose to parametrize our IQCs as in (10.9), i.e. the IQC depends on
the free variables xi in an affine way. If that is the case, we can use suitable
state-space realizations for G(s) and Π(s) which yields
[
G(jω)
I

]∗
Π(jω)

[
G(jω)
I

]
=
[
(jω −A)−1B

I

]∗
M(x)

[
(jω −A)−1B

I

]
, (10.14)

where M(x) depends affinely on the decision variables, i.e. M(x) = M0 +∑N
i=1Mixi. By using the KYP Lemma [13], we get that the condition in (10.3)

is equivalent to the existence of a positive definite symmetric matrix P such
that

[
ATP + PA PB

BTP 0

]
+M0 +

N∑
i=1

xiMi < 0, (10.15)

where N is the number of variables required to specify the IQCs. Here we
stress that the dimension of A is not the number of states in the original
system, since A also contains the dynamics of the multipliers used in the
IQCs for characterizing the uncertainties. Frequency domain conditions on
IQCs or variables that define IQCs can be handled in a similar way. For
example, the positivity condition on x(ω) in (10.7) can be transformed into
a constraint similar to (10.15).

Verifying the feasibility of the LMI (10.15) is a finite-dimensional, con-
vex optimization problem for which there exist tailor-made algorithms and
solvers, see for example [14, 15, 16, 17, 18, 19, 20].

In [6], it is established that a system that is quadratically stable can always
be proven stable by using IQC’s. For more complex Lyapunov functions the
connections have not been established yet.
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In this section we have only addressed the robust stability of our system.
Robust performance can be addressed in a similar way if the performance
criteria can be formulated in the form of (10.2). One such example is the
induced L2-norm ∫ ∞

0

(|z|2 − γ2 |e|2) dt, (10.16)

which, by the use of Parseval’s Theorem, can be put in the form of (10.2).
The clearance criteria which are formulated as robust performance problems
are presented in the sequel.

10.3 Stability Margins Clearance with IQCs

10.3.1 Specifying Nichols Exclusion Regions

In this section we present how the generalized stability margin bPC can be
used to analyze the stability of closed-loop systems and how the results can
be related to exclusion regions in the Nichols diagrams.

Given the closed-loop system [P,C] in Fig. 10.2 consisting of a nominal
plant P and a controller C (designed with any control design method), we
calculate the closed-loop transfer matrix Tcl(s) as

Tcl(s) := T⎡
⎣vy

vu

⎤
⎦→

⎡
⎣y
u

⎤
⎦

=
[
P
I

]
(I − CP )−1

[−C I
]
. (10.17)

This closed-loop transfer matrix corresponds to the transfer matrix from ex-
ternal disturbances (vu, vy) injected at the inputs and outputs of the plant
to the inputs and outputs (u, y) of the plant. Its stability is equivalent to
the internal stability of the closed-loop system and it contains all the impor-
tant closed-loop transfer functions in terms of characterizing nominal perfor-
mance, like the sensitivity function, the complementary sensitivity function,
the control sensitivity function and the plant sensitivity function. Addition-
ally, the size of the closed-loop transfer matrix Tcl(s) characterizes the robust
stability of the closed-loop system with respect to coprime factor uncertainty
in the plant [21].

P

C

Σ

Σ

yuvu

vy

−
−

Fig. 10.2 Closed-loop interconnection for defining the generalized stability margin.
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For the analysis of the closed-loop system in Fig. 10.2, it is desirable to
introduce stable, minimum-phase weights in the loop so that the loop transfer
matrix remains unchanged. Therefore, the weights are applied at the inputs
and outputs of the plant with their inverses applied at the inputs and outputs
of the controller as shown in Fig. 10.3, with the artificial disturbance signals
defined as v̄u = W−1

i vu and v̄y = Wovy.

P WoWi

C W −1
oW −1

i

Σ

Σ Wo

W −1
i

u yūv̄u

vyv̄y

ȳ

vu

−
−

Fig. 10.3 The placement of weights for the calculation of the weighted generalized
stability margin.

The placement of weights does not affect the actual properties of the closed-
loop system, it is merely an analysis technique for obtaining more meaningful
information regarding the robust stability and nominal performance of the
closed-loop system.

The weighted generalized stability margin is defined as

bWoPWi,W
−1
i CW−1

o
:=

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

[
Wo 0
0 W−1

i

]
T⎡
⎣vy

vu

⎤
⎦→

⎡
⎣y
u

⎤
⎦

[
W−1

o 0
0 Wi

]
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

−1

∞

(10.18)

which is the inverse of the size of the closed-loop transfer matrix from the
weighted disturbances to the weighted internal signals of the system.

For the analysis of the closed-loop system, the objective is to choose weights
Wo and Wi to maximize the stability margin, or minimize the weighted H∞
norm. We therefore define the optimization problem:

bPC := max
Wo,Wi

bWoPWi,W
−1
i CW−1

o
. (10.19)

Furthermore, it was shown in [8] that if we maximize the weighted generalized
stability margin over diagonal weights, we can relate the optimal value to the
robust stability of the closed-loop system with respect to input and output
independent and simultaneous multiplicative perturbations applied at the
plant using the following theorem.

Theorem 10.2 ( [8]). Let Δ1 and Δ2 be complex diagonal matrices which
perturb a nominal plant P to PΔ = (I + Δ1)P (I − Δ2)−1. If the weighted
stability margin satisfies
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bWoPWi,W
−1
i CW−1

o
≥ β (10.20)

for any diagonal input and output analysis weights, Wi, Wo, then [PΔ, C]
is stable for any perturbations satisfying ||Δ2||∞ < β and ||Δ1||∞ < β.

The above theorem presents the motivation for solving the optimization prob-
lem in (10.19) over a more restricted class of stable and minimum-phase
weights, those which are diagonal. In this way we can guarantee the robust
stability of the closed-loop system with a perturbed plant PΔ, where the un-
certainty enters in a special way, as diagonal input and output multiplicative
perturbations. A further step can be taken to establish a connection between
the optimal value β to the Nichols stability margins by the characteriza-
tion of the perturbed plant PΔ, (||Δ1||∞, ||Δ2||∞ < β) using multiplicative,
input-output, gain-phase perturbations. Expressing the perturbed plant as

PΔ =
1√

1− β2
(I +Δ1)P (I −Δ2)−1

√
1− β2 (10.21)

and taking into account that β < 1 (which is the case since the general-
ized stability margin is bounded between 0 and 1), we observe that the sets

{ 1+δ1√
1−β2

: |δ1| < β} and {
√

1−β2

1−δ2
: |δ2| < β} are identical. Therefore the

closed-loop system is robust with respect to simultaneous and independent
multiplicative perturbations at the inputs and outputs of the plant (MIMO
case) as shown in Fig. 10.4. The set { 1+δ√

1−β2
: |δ| < β} describes an ellipse if

we consider the logarithm of the magnitude against the phase of the complex
number. An example for β = 0.3 is shown in Fig. 10.5 where the smaller
ellipse corresponds to the MIMO case uncertainty. If we wish to consider an

C

P

1+δi1√
1−β2

1+δiq√
1−β2

1+δo1√
1−β2

1+δop√
1−β2

PΔ

Fig. 10.4 The interconnection of the multiplicatively perturbed plant and the
controller. If b

WoPWi,W−1
i CW−1

o
≥ β, the closed-loop system can tolerate the mul-

tiplicative perturbations shown in the figure for any |δ| < β.
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Fig. 10.5 The region described by the multiplicative perturbation set for β = 0.3
both in the SISO (larger ellipse) and MIMO (smaller ellipse) cases.

uncertainty acting either at the input or the output of a single channel (SISO
case), the allowable uncertainty set is given by { (1+δ)2

1−β2 : |δ| < β} [8]. This
gives an ellipse twice as big as the one obtained for the MIMO case. It is
important to remember that although in the MIMO case the perturbation is
smaller, it can be tolerated simultaneously at both the input and output of a
certain channel. The trapezoidal region specifies the standard SISO gain and
phase margin requirements from an industrial point of view [2]. It is easy to
see that a value of β > 0.3 will guarantee the clearance of the SISO gain and
phase margin criterion.

10.3.2 Lower Bound Calculation

In this section we propose an optimization method to calculate a lower bound
on the value of bPC . The lower bound is obtained using IQC analysis of
a certain closed-loop interconnection with respect to a diagonal fictitious
uncertainty.

Following the definition of bPC in (10.19) we wish to solve the equivalent
optimization problem

b−1
PC = min

diag W (s)
||W (s)Tcl(s)W−1(s)||∞, (10.22)

where W (s) = diag (Wo(s),W−1
i (s)). For the lower bound calculation, con-

sider the problem of analyzing the stability of the closed-loop system in
Fig. 10.6 using IQCs. The first step is to use IQCs to characterize the fic-
titious, diagonal uncertainty. Assume that the structured uncertainty Δ =
diag (Δo(s), Δi(s)) satisfying ||Δi(s)||∞ ≤ γ, ||Δo(s)||∞ ≤ γ satisfies the
following IQC
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∫ ∞

−∞

⎡
⎢⎢⎣
ŷ(jω)
û(jω)
v̂y(jω)
v̂u(jω)

⎤
⎥⎥⎦

∗ [
Π(jω) 0

0 − 1
γ2Π(jω)

]
⎡
⎢⎢⎣
ŷ(jω)
û(jω)
v̂y(jω)
v̂u(jω)

⎤
⎥⎥⎦ dω ≥ 0, (10.23)

where

Π(jω) = diag (Πo(jω), Πi(jω)), Π(jω) = Π(jω)∗ ≥ 0. (10.24)

Tcl(s)

[
Δo(s) 0

0 Δi(s)

]

y
u

vy
vu

Fig. 10.6 Robustness analysis with respect to a structured, diagonal, fictitious
uncertainty, for the purpose of using IQC analysis for obtaining a lower bound on
bPC .

The sufficient IQC condition for the closed-loop stability of the interconnec-
tion in Fig. 10.6 is the existence of a multiplier Π(jω) such that,

[
Tcl(jω)

I

]∗ [
Π(jω) 0

0 − 1
γ2Π(jω)

] [
Tcl(jω)

I

]
< 0 ∀ ω ⇔

⇔ T ∗
cl(jω)Π(jω)Tcl(jω)− 1

γ2
Π(jω) < 0 ∀ ω. (10.25)

Given that we can factorize Π(jω) = W ∗(jω)W (jω), we substitute in the
previous inequality and also right-multiply by W−1(jω) and left-multiply by
W−∗(jω) to obtain the equivalent inequality

(X(jω))∗(X(jω))− 1
γ2
I < 0 ∀ ω, (10.26)

with
X(jω) = W (jω)Tcl(jω)W−1(jω). (10.27)

The above inequality is equivalent to

sup
ω
σ̄(X(jω)) <

1
γ
⇔ ||W (s)Tcl(s)W−1(s)||∞ <

1
γ
. (10.28)

We know that b−1
PC = mindiag W (s) ||W (s)Tcl(s)W−1(s)||∞ and we have

found a candidate diagonal weight that satisfies an upper bound on the H∞
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norm of the weighted closed-loop transfer matrix. This implies that bPC > γ.
Therefore, checking the robust stability of the closed-loop system in Fig. 10.6
for increasing values of the uncertainty size γ will provide successively im-
proved lower bounds on bPC . Thus, the optimization problem for obtaining
the lower bound is,

min
Π(jω)

1
γ2

(10.29)

subject to (10.25)

Using a bisection algorithm on 1
γ2 and using appropriate state-space rep-

resentations for Π(s) and Tcl(s), we can apply the KYP-Lemma on condi-
tion (10.25) to transform it into an LMI problem. It is also possible to use the
IQC-toolbox which automates the step of transforming the frequency domain
inequality into an LMI problem.

10.3.3 Formulation of the Perturbed Stability Margin
Problem

In certain clearance problems it is required to estimate not only the nominal
stability margins but also the perturbed stability margins in the presence
of real, parametric uncertainty. This parametric uncertainty is either due to
uncertain physical parameters or due to flight envelope parameters. Assume
that the set of the parametric uncertainty is given by

Δu = {Δu : Δu = diag (δ1Ik1 , . . . , δmIkm), δi ∈ R, |δi| ≤ ε}. (10.30)

The problem of calculating the worst-case stability margin bPC,WC for a
given uncertainty size 0 < ε ≤ 1 can be formulated as follows with reference
to Fig. 10.7

Δu

Tcl(s)
y
u

vy
vu

z w

Fig. 10.7 The closed-loop system for the formulation of the perturbed stability
margin problem. Note that the transfer matrix Tcl(s) is not the same as the one
used for the calculation of the nominal stability margin.
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b−1
PC,WC(ε) := min

diag W (s)
sup

Δu∈Δu

||W (s)Fu(Tcl(s), Δu)W−1(s)||∞, (10.31)

where Fu(Tcl(s), Δu) is the perturbed closed-loop system expressed as an
upper Linear Fractional Transformation (LFT) of the nominal closed-loop
transfer matrix Tcl(s) with respect to the structured, parametric uncertainty
Δu. Note that the transfer matrix Tcl(s) is not the same as the one used
for the calculation of the nominal stability margin. It also contains terms
that describe how the real, parametric uncertainty is interconnected to the
known system dynamics. Clearly, as ε→ 0 we have Δu → 0 and we approach
the nominal stability margin. The idea here is to gradually increase ε to
1 (the normalization of Δu captures the physical parameter variations) and
investigate the possible degradation in the stability margin value as a function
of the uncertainty size.

A lower bound on the perturbed stability margin can be obtained by uti-
lizing the robust performance analysis result of the IQC theory and applying
it for the case where the desired performance is expressed as a weighted H∞
norm. Assume that the parametric uncertainty Δu satisfies the IQC given by

∫ ∞

∞

[
ẑ(jω)
ŵ(jω)

]∗ [
Π11(jω) Π12(jω)
Π∗

12(jω) Π22(jω)

] [
ẑ(jω)
ŵ(jω)

]
dω ≥ 0. (10.32)

Theorem 10.3 (Weighted robust L2-gain performance). Assume that
any uncertainty Δu ∈Δu satisfies the IQC given in (10.32). If there exists a
multiplier Π(jω) and a γ such that the following frequency-domain inequality
holds

[
Tcl(jω)

I

]∗
⎡
⎢⎢⎣
Π11(jω) 0 Π12(jω) 0

0 Π(jω) 0 0
Π∗

12(jω) 0 Π22(jω) 0
0 0 0 − 1

γ2Π(jω)

⎤
⎥⎥⎦
[
Tcl(jω)

I

]
< 0 ∀ω (10.33)

then

||W (s)Fu(Tcl(s), Δu)W−1(s)||∞ ≤ 1
γ
∀Δu ∈Δu

with Π(jω) = W ∗(jω)W (jω). (10.34)

The satisfaction of the inequality in (10.34) implies the following:

bPC,WC(ε) ≥ γ. (10.35)

A proof of the above theorem can be found in [9]. As with the nominal
case, the optimization problem will involve a bisection algorithm on 1

γ2 and
a search for multipliers Π(jω), Π11(jω), Π12(jω) and Π22(jω) to satisfy the
frequency-domain inequality in (10.33).
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10.4 Formulation of the Comfort Clearance Criterion
Using IQCs

10.4.1 State-Space Formulation of the Comfort
Criterion

The standard method for the calculation of the comfort criterion is to perform
a frequency-wise, numerical integration of the power spectral density of the
filtered acceleration signals at a specific point of interest on the aircraft. More
specifically, the comfort criterion at a specific point on the aircraft is defined
in the frequency domain as

Jc =
√
J2

feet + J2
seat + J2

back, (10.36)

Jfeet =

√
1
π

∫ ω2

ω1

Φafw afw
(ω)dω, (10.37)

Jseat =

√
1
π

∫ ω2

ω1

Φasw asw
(ω)dω, (10.38)

Jback =

√
1
π

∫ ω2

ω1

Φabw abw
(ω)dω. (10.39)

The comfort criterion is composed of three components, for example, the
quantity Φafw afw

(ω) denotes the power spectral density of the filtered accel-
eration at the feet position of the specific point of interest.

The calculation of the comfort criterion can also be formulated in the
state-space domain as an H2 analysis problem of the linear system shown in
Fig. 10.8.

TF (s) Ta(s)

⎡
⎣ 1
Tfs(s)
Tfb(s)

⎤
⎦

⎡
⎣Wf (s) Ws(s)

Wb(s)

⎤
⎦wn v af

af
as
ab

afw
asw
abw

Fig. 10.8 Block diagram for the state-space formulation of the comfort criterion.

The signal wn denotes the white noise signal and the transfer function
TF (s) denotes the turbulence filter whose output’s power spectral density
approximates the Von Kármán turbulence spectrum. Both for the symmetric
and anti-symmetric turbulence case the filter is given by

TF (s) =
σ
√

L
V π

(
1 + 2.7478 L

V
s + 0.3398

(
L
V

)2
s2
)

1 + 2.9958 L
V s + 1.9754

(
L
V

)2
s2 + 0.1539

(
L
V

)3
s3

(10.40)



10 IQC-Based Analysis Techniques for Clearance 193

with σ = 1 and L = 762 m. The parameter σ denotes the turbulence intensity
and the parameter L denotes the turbulence scale length and both depend
on altitude [3]. The parameter V denotes the true airspeed of the aircraft.

The signal v denotes the stochastic wind velocity (either vertical or lateral)
and Ta(s) denotes the open-loop or closed-loop transfer function from the
wind velocity to the acceleration at the feet position of a specific measurement
point on the fuselage. In the general case Ta(s) will be expressed as an LFT
with respect to flight and uncertain parameters. The signal af denotes the
acceleration at the feet position. The transfer functions Tfs(s) and Tfb(s)
relate the feet acceleration to the seat and back accelerations respectively.
They are independent of the specific measurement point but they change
depending on whether the turbulence field is symmetric or anti-symmetric.
The transfer functions Wf (s), Ws(s) and Wb(s) correspond to the comfort
filters for the feet, seat and back positions respectively and depend on whether
the turbulence field is symmetric or anti-symmetric. Let the total transfer
function relating the white noise signal wn to the weighted accelerations be
given by ⎡

⎣afw

asw

abw

⎤
⎦ =

⎡
⎣G1(s)
G2(s)
G3(s)

⎤
⎦wn. (10.41)

It can be shown that the H2 norm of this transfer function is equal to

||G||2 =

√
1
π

∫ ∞

0

(
Φafw afw

+ Φasw asw
+ Φabw abw

)
dω. (10.42)

The frequency-domain comfort measure Jc should tend to ||G||2 when ω1 = 0
and ω2 →∞ and the number of frequency points tends to∞, thus ||G||2 ≥ Jc.

Possible sources of discrepancy between the frequency-domain and the
state-space domain comfort criteria, apart from the finite frequency range
used in the frequency-domain formulation, are the approximation of several
frequency-domain responses with rational transfer functions. This is the case
for the Von Kármán spectrum which is approximated by the transfer function
in (10.40) and for the frequency responses that relate the feet acceleration to
the seat and back accelerations.

10.4.2 Robust H2 Performance Analysis Using IQCs

This section presents the implementation of an H2 robust performance test
developed in [22] based on IQC theory for the solution of the comfort
criterion.

Consider the interconnection shown in Fig. 10.9, where G(s) represents the
transfer matrix of the generalized plant andΔ represents the uncertainty. The
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G(s)

Δ

qp

w e

Fig. 10.9 Robustness analysis with respect to a structured uncertainty Δ.

uncertainty Δ is characterized using an IQC with an associated multiplier Π
such that

∫ ∞

−∞

[
q̂(jω)
p̂(jω)

]∗
Π(jω)

[
q̂(jω)
p̂(jω)

]
dω ≥ 0, ∀ q ∈ Lnq

2 . (10.43)

It is assumed that Π is a dynamic multiplier and can be factorized as Π =
Ψ(s)∗MΨ(s) where Ψ(s) =

[
ΨA(s) ΨB(s)

]
is partitioned accordingly with the

dimensions [nq, np] and admits the minimal realization

[
ΨA(s) ΨB(s)

]
=

⎡
⎣A11 A12 B11 B12

0 A22 0 B22

C1 C2 D1 D2

⎤
⎦ . (10.44)

Assume also that the generalized plant has a realization given by

G(s) =
(
Gqp(s) Gqw(s)
Gep(s) Gew(s)

)
=

⎡
⎣ A Bp Bw

Cq Dqp Dqw

Ce Dep Dew

⎤
⎦ . (10.45)

The generalized plantG(s) is defined according to the analysis in the previous
section, i.e the performance signals w and e correspond to the white noise and
weighted acceleration signals respectively and the signals p and q characterize
the uncertainty interaction. Define the realization of

(
ΨA(s)Gqp(s) + ΨB(s) ΨA(s)Gqw(s)

Gep(s) Gew(s)

)
=

⎡
⎣ A Bp Bw

CΨ DΨp DΨw

Ce Dep Dew

⎤
⎦ . (10.46)

Theorem 10.4. The interconnection in Fig. 10.9 is stable and the squared
H2 norm from w → e is less than γ for all uncertainties characterized by
the IQC with multiplier Π, if DΨw = 0, Dew = 0 and if there exist matrices
M = MT , X = XT and Q = QT such that,
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⎡
⎢⎢⎣
I 0
A Bp

CΨ DΨp

Ce Dep

⎤
⎥⎥⎦

T ⎡
⎢⎢⎣

0 X 0 0
X 0 0 0
0 0 M 0
0 0 0 I

⎤
⎥⎥⎦

⎡
⎢⎢⎣
I 0
A Bp

CΨ DΨp

Ce Dep

⎤
⎥⎥⎦ < 0, (10.47)

BT
wXBw < Q, (10.48)

trace (Q) < γ. (10.49)

Minimizing the trace of the matrix BT
wXBw directly and expanding (10.47)

results in the following optimization problem which involves a KYP-LMI with
possibly additional constraints on M depending on the type and structure of
the uncertainty block Δ.

min
X ,M

trace (BT
wXBw) = trace (BwBT

wX )

subject to[XA+ATX XBp

BT
p X 0

]
+
[ CT

e

DT
ep

] [Ce Dep

]
+
[ CT

Ψ

DT
Ψp

]
M
[CΨ DΨp

]
< 0. (10.50)

The implementation of the above KYP-LMI problem requires the completion
of the following tasks which are presented in detail in the sequel. Initially,
we specify a general form of the uncertainty matrix Δ such that it is more
suitable to flight control clearance problems. For the specific choice of Δ, we
specify the structure of the dynamic multiplier used in the IQC and construct
a state-space representation of the dynamic part of the multiplier as presented
in (10.44). Finally, we specify the state-space realization of (10.46) in terms
of the state-space realizations of (10.45) and of (10.44).

10.4.2.1 Characterization of Real Parametric Uncertainty with an
IQC

In the context of flight control clearance we are mainly interested in real,
parametric uncertainties and we wish to characterize the structured, para-
metric uncertainty given by

Δ =

⎡
⎢⎢⎢⎣

δ1Im1 . . . 0 0
0 δ2Im2 . . . 0
...

...
. . .

...
0 0 . . . δrImr

⎤
⎥⎥⎥⎦ , Imi ∈ R

mi×mi , δi ∈ R, |δi| ≤ 1

(10.51)
using an IQC with a suitable multiplier Π(jω). For the sub-block δiImi , it is
suggested in [22] to use the dynamic multiplier Πi(jω) = Ψi(jω)∗MiΨi(jω),
where
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Ψi(jω) =
[
ψi(jω) 0

0 ψi(jω)

]
, (10.52)

with ψi(jω) ∈ C[(nψ+1)×mi]×mi of the form

ψi(jω) =
[
Imi

jω−p
jω+p

Imi . . .
(

jω−p
jω+p

)nψ

Imi

]T
(10.53)

and

Mi =
[
Pi Qi

QT
i −Pi

]
, (10.54)

with Pi = PT
i > 0, Pi ∈ R

[(nψ+1)mi]×[(nψ+1)mi] and Qi + QT
i = 0 , Qi ∈

R
[(nψ+1)mi]×[(nψ+1)mi].
Consider that the uncertainty Δ in Fig. 10.9 consists of only one sub-block

as p = δiImiq. Substituting in the LHS of the IQC of (10.43) results in

∫ ∞

−∞

[
q̂(jω)
p̂(jω)

]∗ [
ψ(jω)∗Piψ(jω) ψ(jω)∗Qiψ(jω)
ψ(jω)∗QT

i ψ(jω) −ψ(jω)∗Piψ(jω)

] [
q̂(jω)
p̂(jω)

]
dω

=
∫ ∞

−∞
q̂(jω)∗ψ(jω)∗

(
(1− δ2i )Pi + δi(Qi +QT

i )
)
ψ(jω)q̂(jω)dω.

(10.55)

Considering the positivity condition on Pi and the skew-symmetry condition
on Qi and the fact that |δi| ≤ 1, it is obvious that for the specific choice of the
multiplier the IQC is satisfied. We remark the condition Pi > 0 can be relaxed
to ψ∗

i (jω)Piψi(jω) > 0 according to [22], but this would introduce another
KYP-LMI for each i, with an associated extra matrix valued variable. In the
application considered, we have not seen the need for this, i.e. the accuracy
was good enough. See Chapter 13 for more details.

For the case where we have i = 1, . . . , r different uncertain parameters
each with multiplicity mi, the multiplier Π(jω) is given by

Π(jω) =
[
diag (ψi) 0

0 diag (ψi)

]∗ [ diag (Pi) diag (Qi)
diag (QT

i ) diag (−Pi)

] [
diag (ψi) 0

0 diag (ψi)

]

︸ ︷︷ ︸
Ψ(jω)

.

The notation diag (ψi) denotes a diagonal matrix whose entries are the ψi’s
for the corresponding range of the index i.

10.4.2.2 State-Space Representation for Ψ(s)

We start with a state-space representation of

ψi(s) =
[
Imi

s−p
s+p

Imi
. . .
(

s−p
s+p

)nψi

Imi

]T
. (10.56)
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Given the order nψi we have

ẋψi = Aψixψi +Bψiqi,

yψi = Cψixψi +Dψiqi,

Aψi ∈ R
(nψi

×mi)×(nψi
×mi),

Bψi ∈ R
(nψi

×mi)×(mi),

Cψi ∈ R
((nψi

+1)×mi)×(nψi
×mi),

Dψi ∈ R
((nψi

+1)×mi)×(mi),

(10.57)

with

Aψi =

⎡
⎢⎢⎢⎢⎢⎣

−pImi 0 . . . . . . 0
−2pImi −pImi 0 . . . 0
−2pImi −2pImi −pImi . . . 0

...
...

...
. . .

...
−2pImi . . . . . . −2pImi −pImi

⎤
⎥⎥⎥⎥⎥⎦
, Bψi =

⎡
⎢⎢⎢⎢⎢⎣

−2pImi

−2pImi

−2pImi

...
−2pImi

⎤
⎥⎥⎥⎥⎥⎦
,

(10.58)

Cψi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . . . . 0
Imi 0 0 . . . 0
Imi Imi 0 . . . 0
...

...
. . . . . .

...
Imi Imi . . . Imi 0
Imi Imi . . . Imi Imi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, Dψi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Imi

Imi

Imi

...
Imi

Imi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (10.59)

The state-space realization of ΨA results by diagonally augmenting the real-
izations for the ψi for i = 1, . . . , r and by introducing an equal amount of
outputs corresponding to the zero transfer matrix as shown below

ẋΨA = [diag (Aψi)]xΨA + [diag (Bψi)]

⎡
⎢⎣
q1
...
qr

⎤
⎥⎦ , (10.60)

yΨA =
[
diag (Cψi)

0

]
xΨA +

[
diag (Dψi)

0

]⎡⎢⎣
q1
...
qr

⎤
⎥⎦ . (10.61)

Considering a similar state-space realization for ΨB and combining the two so
that Ψ =

[
ΨA ΨB

]
we have the following state-space realization for Ψ where

i = 1, . . . , r.
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[
ẋΨA

ẋΨB

]
=
[
diag (Aψi) 0

0 diag (Aψi)

] [
xΨA

xΨB

]
+
[
diag (Bψi) 0

0 diag (Bψi)

] [
qi
pi

]

yΨA + yΨB =
[
diag (Cψi) 0

0 diag (Cψi)

] [
xΨA

xΨB

]
+
[
diag (Dψi) 0

0 diag (Dψi)

] [
qi
pi

]
.

(10.62)

It is then straightforward to establish the correspondence to the minimal
state-space realization of Ψ(s) in (10.44).

It remains to describe the matrices involved in the KYP-LMI problem
of Theorem 10.4 in terms of the matrices of the state-space realizations of

Ψ(s) and of the generalized plant G(s). Defining C1 =
[
C11

0

]
, C2 =

[
C12

C22

]
,

D1 =
[
D11

0

]
and D2 =

[
D12

D22

]
we have,

⎡
⎣ A Bp Bw

CΨ DΨp DΨw

Ce Dep Dew

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 B11Cq B11Dqp +B12 B11Dqw

0 A22 0 B22 0
0 0 A Bp Bw

C11 C12 D11Cq D11Dqp +D12 D11Dqw

0 C22 0 D22 0
0 0 Ce Dep Dew

⎤
⎥⎥⎥⎥⎥⎥⎦
. (10.63)

The conditions of Theorem 10.4 require that Dew = 0 and D11Dqw = 0 so
that there is no direct feedthrough term from the disturbance signal to the
performance signal and thus the H2 norm is finite.

10.5 Preliminary Steps of the Analysis Algorithms

In this section we present the preliminary analysis steps required to obtain
the appropriate generalized plant for the analysis of the aforementioned cri-
teria. This preliminary analysis refers to the flight control system depicted in
Fig. 10.10. The flight control system contains all the systems and signals re-
quired to define the three clearance criteria. The parameters ρ and Δ denote
the flight parameters and uncertain parameters respectively. The controller
is also presented as an LFT with respect to certain parameters to include
the case of a scheduled controller whose scheduling parameters are measured
with some error when compared to the actual ones.

� Robust stability: The disturbance signal w and performance signal e are
disregarded along with the turbulence and performance filters. The loop
is not cut at the plant input. The aircraft model LFT is combined with
the controller LFT along with the sensor and actuator models to create
the overall LFT of the uncertain flight control system.
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� Stability margins (nominal): The disturbance signal w and perfor-
mance signal e are disregarded along with the turbulence and perfor-
mance filters. The uncertainty blocks of the aircraft and controller LFTs
are disregarded and the flight parameters are fixed at certain values. De-
cide whether to investigate the margins in the MIMO case or in the SISO
case.

– First method: Introduce fictitious disturbance signals vu, vy at the ap-
propriate input and output channels of the plant as shown in Fig. 10.2.
Calculate Tcl(s) as shown in (10.17) and use it in the analysis depicted
by Fig. 10.6.

– Second method: Interrupt the loop at the appropriate input or output
channels of the plant. An example is shown in Fig. 10.10 where the
SISO case stability margin is considered at the third input of the plant.
Calculate the loop transfer matrix as L(s) = Tu→uc . Let P (s) = L(s)
and C(s) = I and form the closed-loop transfer matrix Tcl(s) as shown
in (10.17).

For both methods it must be ensured that Tcl(s) satisfies the requirement
of internal stability and that the appropriate state-space manipulations are
used in order to avoid the presence of redundant states when forming it.

� Stability margins (perturbed): The flight parameters are not fixed but
are allowed to vary in their pre-defined ranges. The uncertain parameters
are not disregarded. The same steps can be taken as for the case of the
nominal stability margins in order to form Tcl(s). The transfer matrix
Tcl(s) can be used in the analysis diagram of Fig. 10.7.

� Comfort criterion: The loop is not interrupted at any of the plant inputs
or outputs. The external disturbance w corresponds to the white noise
signal wn of Fig. 10.8 and the performance signal e corresponds to the
vector of weighted accelerations. The generalized plant G(s) in Fig. 10.9
is formed by expressing the transfer function from w to e as an LFT with
respect to the flight and uncertain parameters.

Aircraft
Model

Performance
Filters

[
ρ

Δ

]

Actuators

Turbulence
filters

Controller

[
ρ

Δc

]

Sensors

e

w

uuc

Fig. 10.10 Flight control system used for calculating the generalized plants used
in the flight control clearance of the aforementioned criteria.
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10.6 Conclusion

This chapter presents the use of IQCs and convex optimization in order to
examine three flight clearance criteria. These are the robust stability crite-
rion with respect to variations in real, uncertain parameters, the stability
margins criterion and the comfort criterion with respect to excitation from
turbulence. The robust stability criterion with respect to variations in uncer-
tain parameters is a standard stability criterion and is naturally formulated
using IQCs.

The classical stability margins criterion is analyzed using a technique based
on the use of the generalized stability margin bPC which has already been
shown to have a connection to an exclusion region in the Nichols plane that
the loop transfer function does not enter. A non-conservative lower bound on
bPC allows the construction of a larger ellipse that the loop transfer function
does not enter and therefore implies the satisfaction of better phase and gain
margins. We show in this chapter how to calculate the lower bound on bPC

by solving a semidefinite program based on IQC theory. We are also able to
formulate the problem of calculating a lower bound on the perturbed stability
margin with respect to variations in parametric uncertainty. In this way we
can investigate the classical stability margins in the presence of parametric
uncertainty.

The comfort criterion can be formulated as a robust H2 performance anal-
ysis problem. The objective is to obtain an upper bound on the energy of the
acceleration signals at certain points on the fuselage under the excitation of
turbulence. Again, the calculation of the upper bound of the energy of the
acceleration signals over variations in parameters is performed using IQCs.
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Chapter 11

Nonlinear Programming Methods for
Worst-Case Pilot Input Determination

Daniel Skoogh and Fredrik Berefelt

Abstract. This chapter describes optimisation algorithms suitable for search-
ing of worst-case pilot manoeuvres. The worst-case behaviour is determined
by optimization of suitable criteria capturing the maximum departure of
important flight parameters (e.g., angle of attack). The search must be per-
formed over a parameter space consisting of pilot inputs, wind perturba-
tions, aerodynamic coefficient’s uncertainties, and initial flight conditions, by
applying global and local optimisation techniques. We present an overview
of several local methods (pattern search, cyclic coordinate descent, quasi-
Newton) and global methods (genetic algorithms, differential evolution, evo-
lution strategies, dividing rectangles). All these methods have been imple-
mented to cope with the special features of the underlying optimization prob-
lem (e.g., noisy functions, large parameter space). The application of these
methods is described in Chapter 16.

11.1 Introduction

Modern aircraft use fly-by-wire Flight Control Systems (FCS) to enhance
handling qualities, safety, and controllability. Nevertheless, the introduction
of fly-by-wire systems also carries the risk of unwanted dynamical properties
like loss of stability or presence of uncontrollable modes through an inade-
quate design of Flight Control Laws (FCL). The process of clearing a FCS
becomes an increasingly expensive and time consuming task as the FCS be-
comes more complex.

Daniel Skoogh � Fredrik Berefelt
Swedish Research Defence Agency (FOI), System Technology,
SE-16490 Stockholm, Sweden
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For the clearance of flight control laws it must be proven to the aircraft
certification authorities, that for each point of the flight envelope, for all
possible aircraft configurations and for all combinations of parameter varia-
tions and uncertainties, there should be no possibility to drive the aircraft
into an uncontrollable state. This is however very difficult since there are in-
finitely many combinations of flight modes, aircraft configurations and pilot
inputs to analyse. Current flight clearance schemes employed by the aerospace
industry try to face this challenge by performing the search for hidden weak-
nesses by using gridding-based search techniques of the parameter space in
combination with statistical analysis methods (Monte Carlo simulations).

There is a need to improve flight clearance methods by reducing analysis
times and guaranteeing a full coverage of the parameter space. A promising
approach is to use optimisation based methods to find the parameters that
cause the worst cases of the used clearance criteria. This chapter describes an
effort to enhance the current clearance methods for determining worst-case
pilot manoeuvres by using nonlinear programming techniques and a suitable
parameterisation of the pilot input signals, flight envelope and uncertainty
set. For this, we give an overview of several local and global optimisation
methods which have been specially adapted for the needs of the COFCLUO
project [1] to solve the worst-case pilot input problem. The application of
these methods is described in Chapter 16.

Early works on optimisation based clearance were done within the GAR-
TEUR Flight Mechanics Action Group FM(AG11) [2], where methods based
on formulating linear and nonlinear clearance criteria as nonlinear program-
ming problems have been applied. Besides that, methods based on the μ-
analysis technique, parameter gridding and the ν-gap metrics have been in-
vestigated.

Several works of optimisation based clearance used simulation of the non-
linear aircraft model together with a fixed pilot signal over a parametric
uncertainty set. The evaluated criterion was the normal load factor, nz or
the angle of attack, α, exceedance criterion. In [3,4,5,6] the pilot signal was a
fixed ramp or step function and in [7] the pilot signal was the “Klonk” signal,
a fixed sequence designed to cause the worst possible behaviour. None of the
above methods cover the case of a general pilot input signal.

Few works have been done with a parameterised pilot input signal of pulse
type [9,10,8]. It should be noted that in these studies the signal values were
confined to a few discrete levels.

In the present work, the pilot signals are spanned by a finite number of
parameters. However, differently from [9,10,8], the parameters are real valued
and can take any values in a finite interval. Some preliminary results are
presented in [11]. This Chapter is built on results obtained in the COFCLUO-
project, see also [1, 12, 13].
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11.2 Optimisation-Based Search of Worst-Case Pilot
Inputs

11.2.1 Definition of Clearance Criteria

To capture the worst possible aircraft behaviour produced by a pilot input,
we need to define a way to measure such a behaviour. For this purpose, simple
measures can be used, as for example, taking the maximum of a relevant flight
variable, e.g., the angle of attack, over a given time period [ 0, T ]:

c(p, e,u) := max
t∈[0,T ]

α(t; p, e,u) (11.1)

The angle of attack depends on the pilot signals via a set of parameters p
used for the signal parametrization, the vector of Flight Condition (FC) pa-
rameters e specified at t = 0, and the uncertain parameters u. By maximizing
c(p, e,u) over the combination of these parameters, the worst-case behaviour
is determined, which also defines the corresponding worst-case pilot input.

11.2.2 Parametrization of Pilot Signals

The parametrization of the pilot signal must allow a sufficiently rich signal
dynamics to break, if possible, the flight domain protections laws (e.g., by
violating the angle of attack protection) in the case of inadequate designs
(see Chapter 2 for the definition of several protection criteria). We chose a
simple parametrization via low degree piecewise polynomials. In fact, as it
will be shown in Chapter 16, a parametrization relying on piecewise constant
and linear signals as shown in Figure 11.1 is sufficient for the determination
of worst-case pilot signals (for the longitudinal and lateral stick inputs, or for
the pedal signal) which violate the protection laws.

As decision variables p for the optimisation problem relying on criterion
(11.1) we have taken the pilot signal values on a fixed time grid. For simulation
purposes, these values are interpolated using constant or linear interpolation.
The special structure induced by this parametrization on the optimisation
problem can be exploited by the optimization algorithms. Such enhancements
have been implemented in the quasi-Newton and cyclic coordinate descent
method, see Sect. 11.3.3 and [1, 12] for more details.

11.2.3 Definition of Optimisation Problem

The optimisation problem can be set up as follows. We simply put the pa-
rameter vector p, Flight Condition (FC) vector e and the uncertainty vector
u into a single vector x
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Fig. 11.1 Piecewise constant and linear pilot signals

x :=

⎡
⎣p

e
u

⎤
⎦ (11.2)

and, using the criterion definition (11.1), we define the objective function f
as

f(x) := c(p, e,u) (11.3)

The resulting optimisation problem will be

max
x∈X

f(x) (11.4)

where X is the set of feasible x. Here it is assumed that the set X can be
described by simple bound constraints, i.e.

xmin(i) ≤ x(i) ≤ xmax(i) (11.5)

where x(i) denotes the ith component of the vector x. Thus the optimisation
problem is a real valued optimisation problem with a nonlinear objective
function and simple bound constraints.

The flight clearance problems covered in this Chapter are stated in [14].
A background on the formulation of the worst-case pilot input problem in
terms of global optimisation is given in [15], and [16] presents a summary of
the benefits and drawbacks of optimisation based clearance. In the analysis
performed in Chapter 16, we included in x only the pilot signal parameters in
the set of decision variables, because protection violations were possible even
without considering the additional effects of variations in flight conditions
and uncertain parameters.

The optimisation methods discussed in what follows have been applied to
determine worst-case pilot inputs for the nonlinear Airbus model described
in [17] This is a nonlinear simulation model, which is implemented in a MAT-
LAB/Simulink environment. The main challenges of solving the worst-case
pilot input problem are the presence of local minima and the noisy objective
function evaluations. These challenges are addressed in Chapter 16, where
comparative results are presented for all methods described in the rest of
this chapter.
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11.3 Local Optimisation Methods

Three methods for local optimisation in a bounded real-valued domain have
been implemented and investigated. The methods called Pattern Search (PS)
and Cyclic Coordinate Descent method (CCD) do not need any computation
of derivative information. The Quasi-Newton method (QN) uses the gradient
of the objective function (analytic or an approximation via finite differences)
and an approximation of the Hessian. Although the quasi-Newton method
has a theoretically higher convergence rate on smooth objective functions
than the other two methods, this method is however considered less robust
in determining minima of non-convex problems [18].

The existing convergence theory of these methods assumes smooth objec-
tive functions. Noisy objective function evaluations (e.g., due to the presence
of truncation errors, finite difference approximations, or numerical integra-
tions) put more strain on the optimisation methods, and the convergence
conditions of the methods will not be fulfilled. Nevertheless, with a proper
implementation, it can be achieved that these methods perform satisfactory
even on problems with noisy functions.

Pattern search has been used in optimisation based flight clearance, see
[19]. Further, the quasi-Newton method has been used in the work [19], and
also in the works [3, 4, 27] through the MATLAB function fmincon1.

11.3.1 Pattern Search

Pattern search (PS) is a deterministic local optimisation method, based only
on sampling of the objective function in a neighborhood of a current point.
The term pattern search is used in [20] for a collection of direct search (deriva-
tive free) methods of similar structure and origin. The particular method
employed in the present implementation is the classical algorithm of Hooke
and Jeeves [21].

Somewhat simplified, what happens is the following. Take steps forward
and backward in each coordinate direction around the current iterate and see
if the objective function value improves. Every time it does, accept the new
point as current point and continue to investigate the remaining directions.
If all directions are tried without success, shrink the step size by a factor θ,
which is an option parameter (a good default value is 0.5), and make a new
round of this so-called coordinate search. However, if a better point is found,
declare it as new current iterate and take a step ahead of this better point
(in the hope that the direction from the old current iterate to the better one
is profitable) and around the point that is then reached, a new coordinate
search is performed.
1 The MATLAB function fmincon uses a BFGS quasi-Newton update scheme if

medium scale algorithm is selected.
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The situation concerning convergence results is somewhat better as com-
pared to the global optimizers. In [20], proofs of convergence to a stationary
point, ∇f(x) = 0, are given for continuously differentiable functions. In [22] a
very interesting result is given about the possibility of using the step size as a
convergence measure. So, for continuously differentiable objective functions,
the decrease in step size provides an actual indicator of convergence.

11.3.2 Cyclic Coordinate Descent Method

We implemented a cyclic coordinate descent method inspired by [23], that
minimises the objective function f(x) with respect to one component of x at
a time in a cyclic way. This method requires no derivative information and
is more robust than the quasi-Newton method, but has considerably slower
convergence rate. This is why, we use this method mainly in conjunction
with the quasi-Newton method to refine the outcome of a coordinate descent
search.

The search takes place on a discrete set of grid points determined by the
coordinate direction ei, defined by the i-th unit vector, and the correspond-
ing step length hi. The algorithm tries to find a point x ∈ X such that
the objective function value f(x) reaches the lowest value compared to the
surrounding points on the grid, i.e., such that the following holds

f(x) < f(x + hiei) and f(x) < f(x− hiei) (11.6)

for all i such that x(i) is not on the boundary. For a coordinate x(i) that
touches the boundary described by the simple bound constraints (11.5), the
following holds

f(x) <f(x + hiei) and x(i) = xmin(i)
f(x) <f(x− hiei) and x(i) = xmax(i)

(11.7)

If a point x ∈ X is found that (11.6) and (11.7) hold, then the algorithm
terminates.

Let h be the step length vector, whose i-th component is hi. The conditions
(11.6) and (11.7) guarantee that a local minimiser x is found on the grid
determined by h , but it does not guarantee that x ∈ X is a local minimiser.
If the step length h is sufficiently small and the objective function is smooth
the above criterion assures that x ∈ X is a sufficient good approximation
to a local minimiser. It is also important to select h large enough to avoid
converging prematurely to a “false” local minima.

For optimisation problems where the objective function evaluations are
based on simulations, it can be very hard to check if a point x ∈ X is a local
minimiser based on gradient and Hessian information. The accuracy in the
gradient and Hessian evaluations might not be sufficiently high. Further, the
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approximation of the Hessian can be very expensive through finite differences.
In such cases the above described strategy offers a good alternative.

An algorithm description of the cyclic coordinate descent method is given
in [1, 12].

11.3.3 Quasi-Newton Method

Quasi-Newton methods constitute a family of methods which use at each it-
eration xk an approximation Bk of the Hessian Hk of the objective function
f(xk) in a quadratic approximation which serves for step length determi-
nation. The approximate Hessian Bk is updated in every iteration by using
gradient information. For a more in-depth discussion about quasi-Newton
methods, see [24, 15] and the literature cited therein.

Local gradient based methods with Hessian approximation using quasi-
Newton updating schemes are interesting candidates for addressing flight
clearance problems. For a typical clearance criterion involving n optimiza-
tion parameters, the main advantage is that only gradient information is
needed, which can be computed using finite difference approximations with
O(n) function evaluations. In this way, the direct computation of the more
expensive Hessian can be avoided, which would involve O(n2) function eval-
uations using finite difference approximations. The disadvantage is that their
performance degrades when the function evaluations can not be done accu-
rately enough (e.g., in the case of noisy function evaluations).

The quasi-Newton method has superlinear convergence under certain
smoothness conditions [24]. The challenge we encounter in applying opti-
mization-based search techniques to noisy clearance criteria is to preserve
the same high convergence rate on these much harder problems.

We will just briefly describe the ideas behind our implementation of the
quasi-Newton method for the determination of worst-case pilot inputs. For
further details see [1,12]. One of the major points is that the objective func-
tion evaluations are based on simulation runs, which totally dominates the
computational costs. This has several implications.

First, the cost of numerical linear algebra computations, like eigendecom-
position of the approximate Hessian, is negligible in comparison with the
objective function evaluations. Second, the number of objective function eval-
uations can be reduced by considering causality aspects and boundary condi-
tions. Due to causality, small changes of the pilot signal that occur at a time
t > tmax, where at tmax the flight variable in question (e.g., angle of attack)
achieves it maximum value, will not affect the computed objective function.
This implies that all components of the current gradient gk corresponding to
time values t > tmax will be zero2. Third, lazy evaluation is used, i.e. compu-
tation involving objective function evaluations like the gradient computation
2 Here we have assumed that the maximum occurs at only one location, and that

the objective function is Lipschitz continuous.
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through finite difference is not done before it is needed. Another of the major
points is that our method is adapted to handling noisy objective functions.
Here, the line search plays an important role.

11.4 Global Optimisation Methods

Four methods for global optimisation in a bounded real-valued domain have
been implemented and investigated. Differential Evolution (DE), Genetic Al-
gorithm (GA), and Evolution Strategies (ES) are population based stochastic
search algorithms, collectively referred to as evolutionary algorithms. A de-
terministic sampling method, Dividing Rectangles (DIRECT), has been in-
cluded for comparison. All four methods are derivative free, i.e. they do not
use gradient information, but only evaluations (sampling) of the objective
function.

Evolutionary algorithms share a common framework and terminology bor-
rowed from biology. A population of feasible solutions evolves into a series of
generations by the action of recombination, mutation and selection operators.
These operators have parameters on which the search performance depends.
These parameters may be monitored during an optimization run in order to
incorporate adaptation into the algorithm. Such self-adaptation has become
a main feature of ES.

Global optimisation methods have been proven to be robust and efficient
on several problems in science and engineering including several works in op-
timisation based flight clearance. For further information about DE see [25],
and specifically in optimisation based flight clearance [11, 27]. Genetic Algo-
rithms are discussed, for example, in [28] and applied to optimisation based
flight clearance in [3, 4, 8, 9, 19, 27]. Further, Evolution Strategies are dis-
cussed in [29], while the deterministic sampling method DIRECT is discussed
in [30, 31] and in connection to optimisation based flight clearance in [27].

11.4.1 Genetic Algorithms

Genetic algorithms are perhaps the most well known evolutionary algorithms.
The term genetic algorithms (GA) denotes not just one optimisation proce-
dure, but a whole family of almost endless variability. The present presenta-
tion captures just some possibilities, and is the basis of our implementation
of the GA. For a more detailed account, see, for example, [28].

A population is a sequence of N vectors P = (xi)i=1,...,N representing
candidate solutions from a given bounded region X , called the search space.
The D coordinates of the vectors are the decision variables. The population
iteratively evolves into a series of new generations, by applying stochastic
variation and selection operators. The terms of P are often referred to as
“members”, or “individuals”.
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The sequence of the best individual from each generation will hopefully
converge to a global optimizer (“best” in terms of objective function value,
also called fitness). The initial population is seeded randomly within the
bound constraints, but may also be a “recycled” population from a previous
run.

Variation

There are two main kinds of variation operators, called mutation and
crossover. A mutation operator takes one individual and perturbs some of its
coordinates randomly. In crossover (also called recombination), two individ-
uals, usually referred to as parents, are combined by some random method
of mixing/exchanging the values of the parents’ coordinates. The resulting
vector is in both cases called a child, or offspring. Here, we will refer to the
single operand of mutation also as a “parent”.

Three crossover operators have been implemented, resulting in children
that lie somewhere within a hypercube with the two parents positioned in
opposite corners. This introduces a certain degree of correlation between the
child and its parents. The two implemented mutation operators, on the other
hand, create children that are (more or less) uncorrelated with the parent in
the mutated coordinates. The role of mutation is to create diversity in the
population and to explore the whole search space, whereas crossover may find
an even better solution in the vicinity of two already “good” parents (i.e., it
is more local in its character).

In our implementation, each produced child is the result of applying only
one variation operator (either crossover or mutation). The number of chil-
dren coming from each operator is determined by a set of option parameters.
The choice of a specific blend of variation operators is crucial for a successful
result.

Selection

The explorative activity of the variation operators is counteracted by a selec-
tion mechanism whereby the individuals “compete for survival”. This creates
a force towards convergence, which has to be carefully balanced against the
striving for diversification from variation. This takes place at two stages.

First, parent selection: the parents used for creating the offspring are ran-
domly selected from P on the basis of their fitness; individuals with better
fitness have higher probability of being selected for mutation or crossover.

Second, survivor selection: from the combined sequence of current popula-
tion and offspring, individuals for the next generation are selected also based
on their fitness but this time deterministically.
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Termination Criteria

Unfortunately, there exist no useful proofs of convergence for the kind of
population based stochastic search algorithms to which GA, DE, and ES be-
long. Only recently, there have emerged some partial results [32]. The proofs
given are for convergence in a probabilistic sense. It is impossible to give a
measure of the “degree of convergence” achieved so far, one can only rely on
a sensible judgment of the state of affairs. The termination criterion used in
our implementation just limits the number of generations.

The size of the population is an important parameter. It influences not
only the total computation time, but also the quality of convergence. A large
population maintains a greater diversity, explores larger areas of search space
and may even lead to faster convergence. A too small population may give
premature convergence. In [26], a population size of five to ten times the num-
ber of search space dimensions is advocated as reasonable for DE, but this
is presumably a good recommendation also for GA. More difficult optimisa-
tion problems will certainly need even larger populations. It is mandatory
not to be too greedy about this. This entails in turn the necessity of parallel
computing for large search spaces.

11.4.2 Differential Evolution

Differential evolution (DE) is a relatively recent optimisation method that
handles the real valued representation and its variational operators very effi-
ciently with few control parameters. A more detailed account is given in [25].

As in GA, the population P is a sequence of N vectors in a given bounded
search space X . After initialisation, P is iteratively evolved by applying quite
simple variation and selection operators.

Variation and Selection

The population is updated by running through three steps, mutation,
crossover, and survivor selection, for each member xi of P . Thus, for each
index i = 1, . . . , N , pick the member xi and do the following:

Mutation: Randomly choose three different individuals (xi1 xi2 xi3) from
P other than the current member xi. Define a mutant vector vi as

vi = xi1 + F (xi2 − xi3),

where F ∈ (0, 2) is a fixed scale factor (an option parameter).

Crossover: From the current vector xi and the mutant vi, a trail vector ui

is formed component-wise by selecting with probability pcross the coordinate
from vi, otherwise from xi. Here, pcross ∈ (0, 1] is another option parameter.
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Survivor selection: The trail vector ui is then compared with the current
vector xi, and if ui has a better fitness value, it takes the place of xi in the
next generation, otherwise xi is retained.

Compared to GA, there is no parent selection in that the “parents” in the
mutation/crossover steps are not chosen on the basis of their fitness values.
Further, the survivor selection takes place by a simple direct tournament
between the current target vector and its offspring, implying that there is no
need for collecting and sorting a whole sequence of children.

A mutation operator in GA usually depends on some fixed probability dis-
tribution. In DE, on the other hand, mutation is influenced by the population
itself through the base and difference vectors, which confers a kind of “self-
adapting” character. Another attractive feature of DE is its dependence on
only two parameters. Good default values are F = 0.5 and pcross = 0.5−0.8.

11.4.3 Evolution Strategies

Evolution strategies (ES) are algorithms for global optimisation in real-valued
domains. They have been around for as long as GA, but were developed
independently. ES share many features with GA. What distinguishes them
is the inclusion of self-adaptive control parameters. In GA, the mutation
operators typically depend on fixed (exogenous) parameters. By letting those
parameters themselves evolve during the search, subjecting them to mutation
and crossover, the search process may become more efficient. A thorough
presentations of ES can be found, for example, in [29], to which we refer the
reader for further details. Some useful information is also found in [28].

Here, the population P is a sequence of μ individuals a = (x,σ) in an
extended search space X ×R

nσ
+ . An individual’s first component x is a vector

of D decision variables. The second component σ is a vector of nσ stan-
dard deviations, nσ is either 1 or D. In each generation, λ new individuals
(children) are produced by recombination and mutation, from which the new
generation is selected. A parameter ρ determines the number of parents in-
volved in recombination. Our implementation deals with multi-member ES
where μ ≥ 2.

Self-adaptation

The task of mutation is to create diversity in the population. In ES, the
decision variables are mutated by adding random perturbations zk, scaled by
the lengths of the search space edges according to

x′(k) = x(k) + (xmax(k)− xmin(k)) � zk, k = 1, . . . , D.

TheD random variables (zk) have a joint normal (Gaussian) distribution with
zero mean. In the simplest case of isotropic mutation, the covariance matrix of



214 D. Skoogh and F. Berefelt

the joint distribution is proportional to the unit matrix, i.e. the components
are independent and share the same standard deviation σ. In non-isotropic
mutation, the covariance matrix is diagonal, the components are independent
but have individual standard deviations σk, k = 1, . . . , D. This gives a better
adaptability to the local fitness landscape, but also demands more parame-
ters to control. A third variant, giving even better adaptability, is correlated
mutation, where the covariance matrix also includes non-zero off-diagonal
elements. We have so far implemented only the first two cases.

Instead of being fixed from the beginning, the standard deviations are
included in the extended search space of ES and undergo recombination and
mutation in every iteration cycle. The idea is to have the search process
for the decision variables adjusting itself to the topology of the objective
function in the course of evolution. The objective function depends only on
the decision variables, but the standard deviations get evaluated indirectly:
good σ produce good x that survives selection.

11.4.4 Dividing Rectangles Method

The Dividing Rectangles (DIRECT) algorithm is a deterministic and deriva-
tive free method for global optimisation. It systematically samples the search
space in a clever way, that includes both global and local explorations simulta-
neously. It was introduced in [30] as a generalisation of so-called Lipschitzian
optimization. It contains only one parameter, the Jones factor, of which the
algorithm is fairly insensitive. Unfortunately, the computational complexity
scales unfavorable with the number of variables, which is limited to problems
with no more than about 20 decision variables.

We refrain from giving a detailed description and instead redirect the user
to [30]. Our implementation is based on a free software developed by Daniel
Finkel [31]. We have adapted the code to the framework of the optimisation
package for worst-case pilot input search.

DIRECT always starts by sampling the center of the search space, which
is a hyper-rectangle (a “box”) due to the bound constraints. This box is then
iteratively partitioned into a series of sub-boxes, all of which are sampled at
their center points where the objective function is evaluated. In each iteration,
some of the current boxes are selected for further division along their longest
edges.

It is possible to show that, in the limit of infinite number of such divisions,
the set of all samples forms a dense subset of the search space [30]. If the
objective function is continuous in a neighborhood of the global optimum,
then convergence of the algorithm is guaranteed.

However, for a real world application, it is not possible to quantify how
far a given result is located from the true global optimum. The “state of
convergence” after a finite number of iterations must be judiciously estimated
or assessed.
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11.5 Conclusions

In this chapter, by employing simple parametrizations of the pilot inputs, we
formulated the worst-case pilot input determination problem as a standard
nonlinear programming problem with simple bounds. An overview of opti-
misation methods suited for searching of a worst case manoeuvre has been
presented, by considering both local and global search techniques. The se-
lection of the best methods highly depends on the concrete problem to be
solved.

Of the presented local methods, it is difficult to select the best one. For
all of them, the existing convergence proofs depend on the smoothness of
the objective functions. Nevertheless it is possible to make them run quite
well on noisy problems, at least if the noise is not too large. The pattern
search method does not rely on any derivative information in its execution,
which makes it less sensitive to noise than the quasi-Newton method. The
latter method has higher theoretical convergence rate than the former. It
relies on an estimate of the gradient through finite difference. How well it
works on a noisy problem depends very much upon the implementation, as
seen in Chapter 16. On a noisy problem, it is recommended that a run with
the quasi-Newton method is supplemented with a run with a method that
converges on a grid of points like our implementation of the cyclic coordinate
descent method.

Of the presented global methods, differential evolution seams to be most
suitable for the Airbus clearance problem as seen in Chapter 16. However,
one cannot rule out the other stochastic optimisation methods. Since there
are many internal option parameters of these methods, and many different
“flavors”, it is difficult to select a winner. The computational complexity of
the DIRECT method grows very fast with the dimension of the optimisation
problem which makes it less suitable for the Airbus clearance problem, at
least for higher dimensions. All global methods presented use only objective
function evaluations, i.e. no derivative information, which makes them less
sensitive to noisy objective functions.

The piecewise constant and piecewise linear parametrisation of pilot signals
are sufficient for clearance purposes, in the sense that, they allow to determine
worst-case maneuvers which break the protection laws, as shown in Chapter
16. A natural extension would be to use higher order piecewise polynomials
for interpolation. If this is done, a careful inspection of the properties of the
resulting parameterised pilot signal needs to be done. For example, the use
of cubic splines would ensure a certain smoothness of first and second order
derivatives, but will destroy the causality property which can be exploited
by gradient based local methods. This happens because any change in the
interpolation parameters will affect the whole curvature of the cubic spline.
Another possible extension is to restrict the movements of the pilot signals
between interpolation points, by bounding derivatives of the pilot signals, or
add an appropriate penalty function to the objective function.
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Chapter 12

Application of μ-Analysis Techniques
to Clearance

Clément Roos and Jean-Marc Biannic

Abstract. An efficient algorithm based on an enhanced μ-analysis technique
has been proposed in Chapter 7 to compute a guaranteed robust stability
domain for a linear parameter dependent plant. This algorithm is applied
in this chapter to the clearance of flight control laws, more precisely, for
the robustness analysis of the eigenvalue and the stability margin criteria.
Numerous performed tests revealed that the proposed methodology allows
to handle very complex flexible plant models, that cannot be fully handled
using traditional methods as grid-based worst-case search or Monte-Carlo
simulation. The low conservatism of the method and the reasonably low com-
putational effort allow its application to highly demanding problems. Thus,
the enhanced μ-analysis technique represents an attractive alternative to tra-
ditional approaches to analyse stability, loads and comfort related clearance
criteria.

12.1 Introduction

An efficient method based on μ-analysis is described in Chapter 7 to analyse
some of the clearance criteria that need to be assessed during the certification
process of an aircraft, such as the eigenvalue and the stability margin criteria
introduced in Chapter 2. A Matlab package has been implemented, which
allows even non-expert users to fully benefit from the last theoretical advances
in using μ-analysis techniques. These tools, presented in detail in [1], are
validated by the analysis results described in the present chapter.

Starting from a set of high-order reference models describing both the rigid
and the flexible dynamics of a civil passenger aircraft, several linear parameter
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dependent closed-loop models have been developed in Chapters 4 and 5.
These models have then been converted into linear fractional representations
(LFR), which serve here as a basis for the aforementioned validation. Their
features are summarised in Table 12.1, where nf and ns denote the number of
flexible modes and the total number of states, respectively. The n parameters
inΔ are normalised and characterise either the flight point (Mach numberM ,
calibrated airspeed V cas) or the aircraft mass configuration (center and outer
tanks filling levels δCT and δOT , embarked payload δPL). The robustness
analysis is thus always investigated for parameter variations inside the unit
hypercube [−1, 1]n.

When trying to validate the theoretical tools proposed in Chapter 7, it
is reasonable to assume that these LFRs are fully representative of the true
aircraft behaviour. But in the perspective of incorporating μ-analysis tech-
niques into an industrial clearance strategy, such an assumption becomes
unacceptable, since it can lead to over-optimistic analysis results. Indeed,
several reductions and other simplifying operations are usually required to
generate LFRs, whose sizes allow the use of the proposed analysis tools. The
price to pay is that they can be quite rough approximations of the original
reference models. Fortunately, the modelling errors can be taken into account
during the analysis step, as explained in Sect. 12.2.4.

The chapter is organised as follows. Analysis results are presented in Sec-
tions 12.2 and 12.3 for the eigenvalue and the stability margin criteria, respec-
tively. Accuracy and computational times are evaluated for different values
of the tuning parameters. The way μ-analysis techniques can be integrated
in an industrial clearance process is then briefly discussed in Sect. 12.4.

Table 12.1 Description of the closed-loop LFRs used to validate the clearance tool

LFR number Parameters in Δ nf ns Size of Δ
1 M,V cas 10 32 87×87
2 M,V cas 4 20 51×51
3 M,V cas, δOT 4 20 104×104
4 M,V cas, δOT , δCT 4 20 203×203
5 M,V cas, δOT , δCT , δPL 4 20 290×290

12.2 Analysis of the Eigenvalue Criterion

12.2.1 Direct Application of the Analysis Method and
Variations

The standard version of Algorithm 7.2 of Chapter 7 is first applied to LFR
number 1, for which the Mach number and the calibrated airspeed are
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Fig. 12.1 Guaranteed stability domain - Standard computation

repeated 50 and 37 times in Δ. The domain S on which stability can be
guaranteed is depicted in Fig. 12.1. Each of its constituting subdomains is
represented by a rectangle and the shape of the flight envelope is drawn
with dashed lines. Note that βmax is allowed to be smaller than 1 in Al-
gorithm 7.1 of Chapter 7. Some configurations are thus cleared, which are
outside the investigated box [−1, 1]× [−1, 1]. The stability domain obtained
using a standard grid-based approach is also plotted for the sake of compari-
son (stable and unstable configurations are represented by dots and x-marks
respectively). Results are very conclusive. Indeed, 98.6% of the aforemen-
tioned stable configurations are included in the domain S, which shows that
the proposed μ-analysis based method is not very conservative. It can also be
seen that the flight envelope is almost entirely cleared. The reference compu-
tational time is 2830 seconds on a standard 3 GHz PC with 4GB memory.

The first two algorithmic variants introduced in Sect. 7.4.3 are then em-
ployed. The domain S, on which stability can be guaranteed, is depicted in
Fig. 12.2. The stability is proved for 96.0% of the stable flight conditions
computed using a standard grid-based approach. This is almost as good as
the results obtained before. The main gain is however a drastic reduction of
the computational time to 342 seconds.

The μ-sensitivities are finally computed, as explained in Sect. 7.4.2. The
resulting domain S, on which stability can be guaranteed, is depicted in
Fig. 12.3. The stability is proved for 96.0% of the stable flight conditions
computed using a standard grid-based approach. As it can be expected, the
number of stability subdomains is lower than before and the computational
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Fig. 12.2 Guaranteed stability domain - Variations on the algorithms

time is 463 seconds. It thus appears that in this specific case, the evaluation
of the μ-sensitivities is quite demanding and does not bring a significant
improvement. This is mainly due to the fact that a 2-D domain is investigated
here. Nevertheless, benefits can be expected when the number n of parameters
increases, since only 2 subdomains instead of 2n must be investigated each
time a box is bisected in Algorithm 7.2 of Chapter 7.

12.2.2 Influence of the Shape of the Initial Domain

The flight envelope represented in Figs. 12.1–12.3 is not square. Fortunately,
it is almost trapezoidal, as can be seen in Fig. 12.4 (left), where the real
envelope and its trapezoidal approximation are represented by dashed and
solid lines respectively. Its shape can thus be easily modified to obtain a quasi-
square domain. It suffices to replace V cas by a new parameter Vn defined as

Vn =
2V cas − 1− f(M)

1− f(M)
(12.1)

where f(M) = (7M−9)/16. The modified envelope is represented in Fig. 12.4
(right) and is well suited to the analysis method introduced in Chapter 7,
which can only investigate stability on a box. But the price to pay is an
increase in the size of theΔ block of the resulting LFR, which is now 124×124.

Using this transformation to LFR number 1, we obtain the result depicted
in Fig. 12.5, which shows that stability can be guaranteed for all flight con-
ditions within the investigated domain [−1, 1]× [−1, 1]. This means that the
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Fig. 12.3 Guaranteed stability domain - Computation of the μ-sensitivities

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1  

−0.5

0

0.5

1

M

V
c
a
s

V
n

M

Fig. 12.4 Transformation of the initial flight envelope into a square domain

flight envelope is entirely cleared. The computational time is 349 seconds,
which is quite low, although the Mach number is repeated 87 times in the
Δ block of the LFR. This substantial reduction of computational time is
primary due to the fact that, as it can be seen in Fig. 12.5, the clearance
tool has only divided the whole envelope into seven subdomains. Thus, the
preliminary transformation of the initial domain into a square domain is a
worthwhile option which can substantially ease the analysis.
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12.2.3 Evaluation of Conservatism

The proposed analysis method is conservative, since only μ upper bounds are
computed, and therefore the corresponding robustness margins are under-
estimated values. It follows that, proving stability for certain configurations
can fail, although the system may actually be stable. Fortunately, it is pos-
sible to efficiently handle the trade-off between conservatism and computa-
tional time. This can be achieved by appropriately tuning the parameter l
introduced in Algorithm 7.2 of Chapter 7, which defines the minimum length
below which the edges of the investigated boxes cannot be bisected anymore.
Analysis results are shown in Fig. 12.6 for LFR number 1 and for values of l
ranging from 0.01 to 0.5.

The conservatism of a method can be measured as the ratio R between the
size of the domain on which stability can be guaranteed using that method
and the size of the actual stability domain. As it can be seen in Fig. 12.7, the
conservatism of the proposed method tends to become negligible as soon as
l is chosen sufficiently small. As it can be expected, the price to pay is the
exponential growth of computational time (see Fig. 12.8). Nevertheless, the
computational time remains acceptable when l is chosen higher than 0.1. In
this case, all computations can indeed be achieved in less than 350 seconds,
although the size of Δ is 87×87. Moreover, up to 96% of the actual stability
domain can be validated, as can be seen in Fig. 12.7.
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Fig. 12.6 Guaranteed stability domain for several values of l

The conservatism of the analysis method thus remains very reasonable
in practice, which means that most of the configurations that cannot be
validated are actually unstable.

12.2.4 Stability with Respect to the Boundary of a
Truncated Sector

Algorithm 7.1 of Chapter 7 can be used to evaluate not only the stability but
also the modal performance properties of a closed-loop system. The idea is
to investigate stability with respect to the boundary of a truncated sector in-
stead of the imaginary axis, as explained in Sect. 7.3.2. Such an extension can
help the control engineers to identify easily the most critical configurations,
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Fig. 12.8 Computational time

for which performance degradations or even loss of stability are most likely
to occur if additional uncertainties or unmodelled dynamics are considered.
It also allows to take into account the modelling error resulting from the use
of simplified LFRs that are not always fully representative of the real aircraft
behaviour. Results are shown in Fig. 12.9 for LFR number 1 and for a set of
sectors characterised by a relative stability degree α = −0.168k and a damping
factor ξ = sin(φ) = 0.0168k, where k ∈ [ 0, 1 ].

Note that setting k = 0 amounts to investigating stability with respect to
the imaginary axis. For example, it can be observed that the configuration
(M = −1, V cas = −1) cannot be cleared for k ≥ 0.6. It is thus more critical
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Fig. 12.9 Guaranteed stability domain with respect to the boundary of a truncated
sector

than (M = 1, V cas = 1), which is in turn more critical than (M = −1, V cas =
1). The size of the stability subdomains also provides a confidence level: the
larger a stability subdomain, the higher the guarantee that the real system
is actually stable.

12.2.5 Application to Systems with Highly Repeated
Parameters

To evaluate the ability of the analysis tool to handle systems with highly
repeated parameters, the Algorithm 7.2 of Chapter 7 is applied successively
to LFRs number 2–5. The obtained results are summarised in Table 12.2.

The ratio R between the sizes of the guaranteed and the actual stability
domains remains quite high, even if 4 or 5 parameters are considered. Thus,
it appears that the proposed method allows to tackle challenging real-world
problems. Moreover, the computational time remains reasonable compared to
the complexity of the data. Indeed, the parametric domain is very large, since
the whole flight domain as well as many mass configurations are investigated.
Finally, note that the algorithm can be interrupted at any time and always
provides at least a partial stability domain.
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Table 12.2 Application to systems with highly repeated parameters

LFR number Size of the Value Computational Ratio
Δ block of l time R

2 51×51 0.1 79 seconds 0.961
3 104×104 0.1 90minutes 0.953
4 203×203 0.2 30 hours 0.784
5 290×290 0.5 170 hours 0.652

12.3 Analysis of the Stability Margin Criterion

We analysed the stability margin criterion using both the elliptical and the
first-order Padé approximation of the Nichols plane exclusion region, as de-
scribed in Sect. 7.5.2. For this purpose, an LFR has been used, which resulted
from LFR number 1 by cutting the feedback loop at the input of the elevator.
With this LFR, two augmented closed-loop LFRs have been generated for the
two above mentioned approximations of the exclusion region. The domains,
on which it can be guaranteed that the criterion is satisfied, are depicted in
Figs. 12.10 and 12.11.

As expected, the first-order Padé approximation is much less conservative
than the elliptical one. It leads to quite satisfactory results that are sum-
marised in Table 12.3, where R denotes the ratio between the areas of the
cleared domain and the domain on which the stability margin criterion is
actually satisfied.
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Fig. 12.10 Domain on which the stability margin criterion is satisfied - Elliptical
approximation
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Fig. 12.11 Domain on which the stability margin criterion is satisfied - First-order
Padé approximation

Table 12.3 Evaluation of the stability margin criterion

Type of approximation Computational time (s) Ratio R
Elliptical 732 0.758
First-order Padé 448 0.903

12.4 Conclusions and Future Perspectives

The numerous tests performed in this chapter demonstrate that several clear-
ance criteria can be analysed more rigorously using the proposed methodol-
ogy than using classical methods. Moreover, it is possible to efficiently handle
the trade-off between conservatism and computational time, even if very de-
manding problems are considered. Enhanced μ-analysis techniques thus ap-
pear as an attractive alternative to Monte-Carlo simulations or grid-based
approaches in the perspective to assess stability, loads and comfort criteria.
Finally, it is worth being emphasised that these techniques could be efficiently
incorporated in an industrial process. At first, the proposed clearance tools
could be seen as indicators, which allow to determine quickly the most criti-
cal parametric configurations in terms of system stability or performance. In
the light of the obtained results, it would then be possible to perform Monte
Carlo simulations only on reduced parametric domains, thus decreasing the
computational cost. Subsequently, it could be considered to use the proposed
analysis tools as real validation means, thus making it possible to get rid of
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Monte Carlo simulations to compute guaranteed stability domains. Neverthe-
less, a thorough validation of the closed-loop LFR would become necessary
to quantify the modelling error as rigorously as possible. This is one of the
next challenges for the future years.
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Chapter 13

Application of Parallel Nonlinear
Programming Methods for Worst-Case
Parameter Search

Hans-Dieter Joos

Abstract. This chapter presents results obtained by applying optimisation-
based worst case search for flight control law clearance problems. The focus is
on clearance of aircraft manoeuvrability and compliance to protection limits.
Such kind of assessment problems requires sophisticated non-linear simula-
tion models with sufficient accuracy even at extreme flight conditions. The
results obtained for for several clearance criteria demonstrate the potential
of combined global and local optimisation techniques in conjunction with
parallel computation.

13.1 Introduction

The worst case search techniques presented in Chapter 8 are applied to clear-
ance problems regarding simulation based manoeuvrability and flight domain
protection criteria. These clearance problems are described in [1]. During the
COFCLUO-project 8 different criteria based on non-linear simulation have
been analysed and documented in the final project report, regarding low and
high speed manoeuvrability, protections of load factor, pitch attitude and
angle of attack as well as un-piloted stability. In this chapter three represen-
tative criteria are discussed: the low speed manoeuvrability criterion briefly
denoted here as Clsm, and two flight domain protection criteria, namely, the
load factor protection criteria denoted as Cnz ,long and Cnz ,lat for longitudinal
and lateral manoeuvres, respectively. For all criteria the clearance strategy
introduced in Chapter 8 is applied to find the overall worst case up to a
prescribed level of confidence based on an assumed success rate to find the
global minimum.
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All results are obtained by applying the evolution strategy (ES) optimisa-
tion method implemented in DLR’s optimisation environment MOPS [4]. It
is a combined use of a stochastic global search algorithm based on evolution-
ary strategy concepts [2] and a local pattern search (PS) method [3]. More
details are outlined in Chapter 8. Method ES was selected from four stochas-
tic global search algorithms available in MOPS because it outperformed all
others regarding the achieved quality of the solution and the reliability to
repeatedly find the minimum.

The chapter is organised as follows: Sect. 13.2 presents the clearance re-
sults for the selected criteria. In Sect. 13.3 different optimsation methods are
compared and the choice of method ES is motivated. In Sect. 13.4 computa-
tion times are reported and the effectiveness of the parallel computation is
summarised. Final remarks and future perspectives are provided in Sect. 13.5.

13.2 Simulation Based Clearance Criteria

13.2.1 Low Speed Manoeuvrability Criterion

13.2.1.1 Criterion Description

This criterion is intended to check that the flight domain protections imple-
mented in the control laws do not limit the avoidance manoeuvrability of the
aircraft for low speed. Starting from any equilibrium point in the peripheral
low speed flight domain, the pilot must be able to modify significantly the
short term flight trajectory by pulling the longitudinal stick.

The aircraft is trimmed for a normal level flight for the purpose of simu-
lation of the following pilot manoeuvre: the longitudinal side-stick is set to
its minimum value δqm = −16deg for a time interval Δt = 5s. There is no
lateral stick or pedal input and the thrust is set constant to the trim level
with auto-thrust not engaged [1]. The low speed manoeuvrability criterion
Clsm can be mathematically defined as

Clsm =
1

Δt �Cz,αmax

Δt∫

0

Cz(t)dt

where Cz(t) is the time response of the lift coefficient and Cz,αmax is the
maximum lift coefficient value of the current aircraft configuration at the
current flight point. The criterion is satisfied when Clsm > C0,lsm = 1/

√
2.

The worst case is searched with respect to the parameters described in
Table 13.1.

The parameter ΔXcg defines the normalised location of the centre of
gravity between its minimum and maximum value depending on mass m.
The corresponding centre of gravity location Xcg(m) is calculated using lin-
ear interpolation between the minimum and maximum values provided by



13 Application of Worst-Case Parameter Search 235

Table 13.1 Optimisation parameters of low speed manoeuvrability criterion

Name Unit Min Max Comment

h ft 0 41000 altitude
m t 120 233 mass
ΔXcg - 0 1 Xcg(m) = Xcg,min(m)+

ΔXcg � (Xcg,max(m)−Xcg,min(m))
ΔVcas - 0 1 Vcas = Vs1g +ΔVcas � (Vls − Vs1g)
δCx - -0.1 0.1 relative uncertainty in Cx

δCz - -0.1 0.1 relative uncertainty in Cz

δCm - -0.1 0.1 relative uncertainty in Cm

the weight and balance functions included in the non-linear COFCLUO-
simulation model [1].

Similar holds for the parameter ΔVcas which defines the aircraft speed
in the peripheral flight envelope between stall speed Vs1g and minimum se-
lectable speed Vls. These quantities are depending on height, centre of gravity
and mass. Functions to compute Vls and Vs1g are also available with the
COFCLUO-simulation model [1].

The parameters δCx, δCz and δCm describe relative uncertainties of the
longitudinal aerodynamic coefficients Cx, Cz and Cm, respectively.

The auxiliary parametersΔXcg and ΔVcas have been introduced explicitly
in order to transform nonlinear parameter ranges to independent parameter
intervals leading to a simpler unconstrained parameter optimisation problem,
see Chapter 8. Independent from that, the applied optimisation algorithm
automatically scales all optimisation parameters according to their range to
improve efficiency. This allows to define parameters with physical meaning
even if their ranges of values differ significantly. Compare e.g. the range of
altitude h and uncertainty δCx in Table 13.1.

13.2.1.2 Worst Case Search Results

According to the clearance strategy proposed in Chapter 8, a series of 40 in-
dependent optimisation runs has been started with different initial parameter
values and different sequences of random numbers. Assuming a success rate
to detect the worst case of 0.1, the worst case should be achieved at least once
with a confidence level of about 0.9. Contrary to the proposed strategy, the
series of optimisations is not terminated after a solution not satisfying the
clearance level has been detected. For the first clearance criterion considered
here, the complete series of 40 optimisations is computed in order to ensure
and certify the assumption on the success rate.

The optimisation runs are performed applying the following options for
the method ES listed in Table 13.2.
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Table 13.2 Method options applied for clearance of criterion Clsm

popsize: 20 size of population
ngen: 100 number of generations

offspringsize: 140 offspring size
elite: 2 elitists selection from parents and

children
randseed: -1 no reset of random number generator
nfunval: 10 termination after nfunval generations

without improvement of the criterion
nsteps: 1 termination after nsteps generations

with mutation step size smaller than
ftol

ftol: 1.0e-03 accuracy tolerance
hybrid: 0 start local optimisation for refinement

after termination of gobal search

The initial populations are generated randomly with uniform distribution
of the parameters, guaranteeing the statistical independency of the individual
runs.

The worst case criterion value found is Clsm = 0.66235 < 0.7071 and hence
the criterion is not cleared. Up to numerical tolerances this value was found
in all 40 optimisation runs. The corresponding worst case parameter values
are listed in Table 13.3.

Table 13.3 Worst case parameter values found for criterion Clsm

Name Unit Worst Case Value

h ft 1.4489
m t 120
ΔXcg - 1
ΔVcas - 1
δCx - 0.1
δCz - 0.1
δCm - 0.1

The results obtained are illustrated in Fig. 13.1. The diagrams show that
all achieved criterion and depicted parameter values are graphically identical.
All 40 optimisations end up with almost the same solution which can be
assumed as worst case. A more detailed analysis of all results yields that only
the parameters h and δCx are not exactly the same for all solutions. The
worst case values of altitude h lye between 1.4ft and 29ft, which represent
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Fig. 13.1 Results of the low speed manoeuvrability criterion Clsm found by 40
runs of ES with different initial settings (initial values, random numbers). All op-
timisation runs end up with graphically identical parameter values and identical
time responses of normalised Cz .

practically the same values regarding the total parameter range of 41000ft
and the used optimisation tolerances. The worst case values of the uncertainty
δCx vary from -0.04 to 0.1, indicating less sensitivity of the criterion with
respect to this parameter. The resulting normalised time responses Cz/Cz(0)
are also graphically identical and can not be distinguished for the different
optimisation runs.

The contour of the flight envelope in Fig. 13.1 is sketched for mean values
of weight and position of the centre of gravity, shortly denoted as balance.
The corresponding mean low speed bounds of the normal and peripheral
envelope are also depicted.

The outcome of a single optimisation run is illustrated in Fig. 13.2. The
lower left diagram shows the optimisation progress, where the values of the
criterion are correlated with shading. The diagrams on the right hand side
show the corresponding trial points in the flight envelope and the mass and
balance diagram, respectively. The shading of the points corresponds to the
shading of the criteria values.

The data produced during optimisation can be further analysed. Even
though the optimisation is goal oriented towards worst case, most of the
trial points have a criterion value Clsm > C0,lsm and hence are satisfactory.
Only 14% of the trial points have criterion values below the clearance level.
Unsatisfactory solutions only occur for low altitude (h < 70ft), low weight
(m < 128t), high values of the centre of gravity location (ΔXcg > 0.52) and
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Fig. 13.2 Outcome of a single Clsm optimisation run utilising evolutionary strat-
egy. The diagrams on the right show parameter trials of Mach, height, weight and
balance examined during optimisation. The shading is correlated with the criterion
values. The worst case found is encircled. The left diagram illustrates the progress
of the criterion value over evaluations.

higher speed values (ΔVcas > 0.79). Since this analysis is only based on the
trial points of a single optimisation, an exact separation of the flight points
into cleared and not cleared is not possible. Nevertheless, the results clearly
indicate regions in the parameter space with unsatisfactory behavior.

Regarding the optimisation progress, Fig. 13.2 shows that unsatisfactory
solutions are found very early. The first unsatisfactory result is obtained after
about 200 trials. However, the evolutionary strategy algorithm does not stop
before 3000 evaluations. Otherwise a sufficient examination of the parameter
space would not be possible. In all runs the stochastic search terminates
because of the exceedance of option parameter nfunval, see Table 13.3, i.e.
the criterion value did not improve for more than 10 succeeding generations.
The value of nfunval is therefore crucial for optimisation success on one hand
and computational effort on the other hand. The value of nfunval = 10 is
chosen to give a high success rate.

The final optimisation using a pattern search algorithm provides only a
small improvement of the overall result. The criterion value was improved
from about 0.6632 to the final value of 0.6624 at the expense of about 150
evaluations.
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13.2.1.3 Confidence of Worst Case Results

Additional 40 independent runs have been performed to get higher confidence
in the worst case found up to now, although the minimum value is below the
clearance bound already. The achieved solutions of the new runs are the same
as before, see Fig. 13.3. This confirms the minimum solution to be the worst
case. Assuming a success rate of q = 0.1 gives now a confidence of Pr = 0.99.
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Fig. 13.3 Results of the 2nd series of 40 Clsm optimisation runs applying ES; the
minimum solutions are the same as in Fig. 13.1.

From the results obtained one can conclude that the assumed value of the
success rate, q = 0.1, underestimates the true value. Experiences show that
other COFCLUO-clearance criteria have similar characteristics regarding the
worst case search as the low speed manoeuvrability criterion has. Hence, for
further investigations a higher success rate can be assumed. The worst case
search for the remaining criteria is done now by assuming a value of q = 0.5,
which leads to at most 10 runs for detecting the worst case at least once with
a confidence level of 0.99.

13.2.1.4 Comparison with Monte Carlo Analysis

A Monte Carlo analysis of criterion Clsm was performed for comparison pur-
pose. All worst case search parameters are assumed to be uniformly dis-
tributed over the defined intervals. A sample size of 200000 was chosen. This
is more than the total number of evaluations needed for 40 optimisation runs.
For this about 160000 evaluations have been necessary. Fig. 13.4 shows the
frequencies of criterion values and the corresponding cumulative distribution
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Fig. 13.4 Empirical probability and cumulative distribution of criterion Clsm for
a Monte-Carlo analysis run with uniformly distributed parameters and a sample
size of 200000.

function. No trial point with criterion value less than the clearance bound
C0lsm

= 0.7071 was detected.
From the Monte Carlo analysis we can conclude that unsatisfactory events

are very unlikely having a probability less than 5 � 10−6. To detect such an
event at least once with confidence level of, say, 0.9 more than 460000 sample
points would be necessary. Thus unsatisfactory values can be detected more
efficiently and reliably by worst case search than by Monte Carlo simulation.
However, Monte Carlo simulation is still relevant to asses the probability of
unsatisfactory cases.

13.2.2 Load Factor Protection: Longitudinal
Manoeuvre

13.2.2.1 Criterion Description

For a specific longitudinal manoeuvre it must be shown that for all parameter
combinations in a special flight condition the normal acceleration nz does not
exceed the prescribed bounds, i.e., -1g≤ nz ≤ 2.5g in clean configuration (i.e.,
wing flaps, slats, spoilers and landing gear are retracted) and 0 ≤ nz ≤ 2g in
high lift configurations, see [1].

The indicator function is the time response of the normal acceleration
nz over a finite time interval [0, T ]. The criterion considered here evaluates
the maximum load factor in clean configuration. The criterion manoeuvre
is performed for the maximum allowed weight at an altitude of 20000ft as
suggested in [1]. The manoeuvre starts from IDLE (i.e., minimum thrust
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level) and a flight path corresponding to the correct speed. Then a 2.5g pull-
up is performed while applying full thrust. The pitch angle is stabilized at
20◦ until the activation of the alpha protection occurs. The criterion Cnz,long

is simply computed as:

Cnz,long = −max
t≤T

nz(t)

where T = 30s. The value of the criterion should not be below −2.5, i.e.
normal acceleration should not exceed 2.5g.

The COFCLUO nonlinear aircraft model provides several pilot models to
facilitate simulation of pilot manoeuvres. The so called ”flight path angle
mode” is used to perform the specific longitudinal manoeuvre. The required
pitch angle target θt = 20◦ is achieved by transforming it to a flight path
angle target γt according to:

γt = θt + (γ − θ).

The simulation model has been augmented by this flight path angle target
law. Full thrust has been achieved by setting the speed target to the maximum
value, while the auto thrust is engaged during the whole manoeuvre.

The parameters for worst case search are described in Table 13.4. The
parameter ΔVcas is introduced to cover the speed range of the flight envelope
between minimum selectable speed Vls and maximum operating velocity VMO .
The parameter ΔXcg defines the location of the centre of gravity between its
possible minimum and maximum value depending on mass.

Table 13.4 Optimisation parameters for longitudinal load factor protection crite-
rion Cnz,long.

Name Unit Min Max Comment

ΔVcas - 0 1 Vcas = Vls +ΔVcas � (Vmaxop − Vls)
ΔXcg - 0 1 Xcg(m) = Xcg,min(m)+

ΔXcg � (Xcg,max(m)−Xcg,min(m))
δCx - -0.1 0.1 relative uncertainty in Cx

δCz - -0.1 0.1 relative uncertainty in Cz

δCm - -0.1 0.1 relative uncertainty in Cm

wx,ti - 0 1 wind initiation time, x direction,
fraction of simulation time

wx,a kts -20 20 wind amplitude, x direction
wx,g kts/s 1 5 wind gradient, x direction
wz,ti - 0 1 wind initiation time, z direction,

fraction of simulation time
wz,a kts -20 20 wind amplitude, z direction
wz,g kts/s 1 5 wind gradient, z direction
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Fig. 13.5 Shape of the wind profile and the corresponding parameters.

Wind velocity components in x, and z-directions are specified by 3 param-
eters for each direction. The profile of each component is sketched in Fig. 13.5
according to [1]. The time instances ti and tf are computed for the x-axis
from the optimisation parameters wind initiation time wx,ti , wind amplitude
wx,a and wind gradient wx,g as follows:

ti = wx,tiT, tf =
wx,a

wx,g
+ ti

and similarly for the z-axis.

13.2.2.2 Worst Case Search Results

A series of independent optimisations has been started applying search
method ES and stopped after 10 runs. With our assumptions on the suc-
cess rate, made in subsection 13.2.1.3, we can conclude that the worst case
has been found at least once with probability Pr = 0.99.

The optimisation runs are performed applying the options for method ES
listed in Table 13.5.

Compared to criterion Clsm, the population size has been increased be-
cause of the higher number of parameters. The number of generated offspring
is adapted accordingly.

The outcomes of the 10 optimisations are depicted in Figs. 13.6 and 13.7.
All optimisation runs end with maximum values for speed and balance. The
small variation of the criterion values result from slightly different wind pa-
rameters which also causes the differences in the time responses of nz and
θ (Fig. 13.7). The most effective parameters are speed and balance, wind is
less effective.

The right diagram in Fig. 13.7 shows that the response of the pitch angle
is perfectly kept at 20◦ by the implemented control law as demanded for the
manoeuvre.
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Table 13.5 Method options applied for clearance of criterion Cnz,long

popsize: 30 size of population
ngen: 100 number of generations

offspringsize: 180 offspring size
elite: 2 elitists selection

randseed: -1 no reset of random number generator
nfunval: 10 termination after nfunval generations

without improvement of the criterion
nsteps: 1 termination after nsteps generations

with mutation step size smaller than
ftol

ftol: 1.0e-03 accuracy tolerance
hybrid: 0 start local optimisation after

termination of global search

Method:
Runs:
Bad Cases:
Worst Case found:

ES
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Fig. 13.6 Results of the longitudinal load factor protection criterion Cnz,long found
by 10 runs of ES with different initial settings (initial values, random numbers).

The criterion values are greater than -2.5 in all cases and hence the lower
bound is not violated. Thus the criterion can be considered as cleared with a
high level of confidence. The parameter values of the worst case can be found
in Table 13.6.

Analysis of a single optimisation run shows, that low criterion values are
found very early in the optimisation run and low values also occur very fre-
quently, but the clearance bound was never reached, see Fig. 13.8.
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Fig. 13.7 Time responses of nz and θ for the 10 results found for criterion Cnz,long.

Table 13.6 Worst case parameters found for criterion Cnz,long

Name Unit Worst Case Value

ΔVcas - 1
ΔXcg - 1
δCx - 0.065
δCz - 0.1
δCm - 0.1
wx,ti - 0.06
wx,a kts 1.18
wx,g kts/s 3.95
wz,ti - 0.07
wz,a kts 13.93
wz,g kts/s 5

13.2.3 Load Factor Protection: Lateral Manoeuvre

13.2.3.1 Criterion Description

For a specific lateral manoeuvre it must be shown that for all parameter
combinations in a special flight condition the normal acceleration does not
exceed the prescribed bound of 2.5g in clean configuration (i.e., wing flaps,
slats, spoilers and landing gear are retracted), see [1].

The indicator function used is the time response of the normal acceleration
nz over a finite time interval [0, T ]. The manoeuvre is performed for the
maximum allowed weight at an altitude of 20000ft as suggested in [1]. The
aircraft is trimmed for a straight level flight. A turn is performed at constant
speed with bank angle slowly increasing up to 66◦. The bank angle should
be hold at 66◦ for 10 seconds and then is decreased to zero. The criterion
Cnz ,lat is computed as

Cnz,lat = − max
t∈[0, T ]

nz(t)
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Fig. 13.8 Outcome of a single Cnz ,long optimisation run utilising evolutionary
strategy. The diagrams on the right show parameter trials of Mach and balance
examined during optimisation. The shading is correlated with the criterion values.
The worst case found is encircled. The left diagram illustrates the progress of the
criterion value over evaluations.

where T = 40s. The value of the criterion should not be below −2.5 for clean
configuration which is considered here.

The pilot model ”yaw angle target mode”, provided with the COFCLUO-
simulation model [1], is used to perform the specific lateral manoeuvre where
the yaw angle target is generated by an additional feedback law. The increas-
ing bank angle φ up to 66◦ is achieved by commanding an increasing yaw
angle χ as output of an integrator where the integrator input χ̇ is derived
from the kinematic relation of load factor and yaw rate:

nz =
√

cos2 θ + (χ̇V/g)2 .

For small pitch angle θ it can be assumed that cos θ ≈ 1 and hence

χ̇ ≈ g

V

√
n2

z − 1.

Here, V denotes the ground speed. When the maximum achievable bank angle
was detected the value of χ̇ is held for 10 seconds. Afterwards the integrator
is reset to a constant value providing a new constant yaw angle target such
that φ goes back to zero. In addition the flight path angle hold mode and
the auto thrust were engaged during the manoeuvre in order to hold altitude
and speed.
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Table 13.7 Optimisation parameters for lateral load factor protection criterion
Cnz,lat

Name Unit Min Max Comment

ΔVcas - 0 1 Vcas = Vls +ΔVcas � (Vmaxop − Vls)
ΔXcg - 0 1 Xcg(m) = Xcg,min(m)+

ΔXcg � (Xcg,max(m)−Xcg,min(m))
δCx - -0.1 0.1 relative uncertainty in Cx

δCy - -0.1 0.1 relative uncertainty in Cy

δCz - -0.1 0.1 relative uncertainty in Cz

δCl - -0.1 0.1 relative uncertainty in Cl

δCm - -0.1 0.1 relative uncertainty in Cm

δCn - -0.1 0.1 relative uncertainty in Cn

wx,ti - 0 1 wind initiation time, x direction,
fraction of simulation time

wx,a kts -20 20 wind amplitude, x direction
wx,g kts/s 1 5 wind gradient, x direction
wy,ti - 0 1 wind initiation time, y direction,

fraction of simulation time
wy,a kts -20 20 wind amplitude, y direction
wy,g kts/s 1 5 wind gradient, y direction
wz,ti - 0 1 wind initiation time, z direction,

fraction of simulation time
wz,a kts -20 20 wind amplitude, z direction
wz,g kts/s 1 5 wind gradient, z direction

The optimisation parameters for worst case search are described in Ta-
ble 13.7. For this protection criterion all longitudinal and lateral uncertainties
and wind components are applied. This results in a total of 17 optimisation
parameters.

13.2.3.2 Worst Case Search Results

Again a series of 10 independent optimisation runs has been performed ap-
plying search method ES . The method options listed in Table 13.8 have been
used in each run.

Despite the larger number of parameters, the same value of 30 has been
assigned to the population size as for the longitudinal criterion. Only the
offspring number has been increased to 7 times the population size in order
to produce more variation in the successive generations.

The results obtained are depicted in Figs. 13.9 and 13.10. As in the lon-
gitudinal case, all optimisation runs result in maximum values for speed and
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Table 13.8 Method options applied for clearance of criterion Cnz,lat.

popsize: 30 size of population
ngen: 100 number of generations

offspringsize: 210 offspring size
elite: 2 elitists selection

randseed: -1 no reset of random number generator
nfunval: 10 termination after nfunval generations

without improvement of the criterion
nsteps: 1 termination after nsteps generations

with mutation step size smaller than
ftol

ftol: 1.0e-03 accuracy tolerance
hybrid: 0 start local optimisation after

termination of global search

Method:
Runs:
Bad Cases:
Worst Case found:
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Fig. 13.9 Results of the lateral load factor protection criterion Cnz,lat found by
10 runs of ES with different initial settings (initial values, random numbers).

balance. The variation of the criterion values are mainly caused by different
wind parameters. The most effective parameters are speed and balance.

The manoeuvre causes in all runs an exceedance of the roll angle envelope
boundary of 66◦ and a criterion value which is less than -2.5. Hence the
criterion is not cleared. The parameter values of the overall worst case found
are shown in Table 13.9.

The analysis of a single optimisation run shows, that low criterion values
are found very early in the optimisation run and low values also occur very
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Fig. 13.10 Time responses of nz and Φ for the 10 results found for criterion Cnz,lat.

Table 13.9 Worst case parameters for criterion Cnz ,lat

Name Unit Worst Case Value

ΔVcas - 1
ΔXcg - 1
δCx - 0.1
δCy - 0.1
δCz - 0.1
δCl - 0.1
δCm - 0.1
δCn - 0.1
wx,ti - 0.246
wx,a kts 20
wx,g kts/s 3.43
wy,ti - 0.409
wy,a kts 20
wy,g kts/s 4.03
wz,ti - 0.152
wz,a kts 20
wz,g kts/s 4.268

frequently, see Fig. 13.11. However, trial points with speed and balance not
at the maximum value are mostly satisfactory.

The global search was terminated after about 8000 criterion evaluations
and the local search algorithm applied subsequently was quite successful in
further improving the criterion value (see also the “tail” of the optimisation
progress diagram in Fig. 13.11). The final local optimisation using a PS al-
gorithm provides an improvement of about -0.1 in the criterion value. The
high number of evaluations compared to the former optimisations can be ex-
plained with the higher number optimisation parameters. However, a simple
screening of the parameter space by only inspecting the min-max parameter
values, would result in 217 = 131072 criterion evaluations which is even more
than the evaluations needed for all 10 optimisation runs.
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Fig. 13.11 Outcome of a single Cnz ,lat optimisation run utilising evolutionary
strategy. The diagrams on the right show parameter trials of Mach and balance
examined during optimisation. The shading is correlated with the criterion values.
The worst case found is encircled. The left diagram illustrates the progress of the
criterion value over evaluations.

13.3 Performance Comparison of Optimisation
Methods

The optimisation environment MOPS [4] provides the implementation of four
global search algorithms: evolutionary strategy (ES), genetic algorithm (GA),
differential evolution (DE) and particle swarm optimisation (PSO) ). For
more details and the corresponding references see Chapter 8. Several prelim-
inary tests have been made in order to select the method most suitable for
clearance problems of the type investigated here. The outcome of such a test
is shown in Fig. 13.12, where only the results for the low speed manoeuvra-
bility criterion (Clsm) are presented achieved in 20 optimisation runs for each
optimisation method.

For each method the default option parameter values have been taken as
a reasonable choice. The population size for the methods DE, PSO and GA
was set to 40 each. For ES a population size of 15 and a offspring size of 100
was assumed as recommended in [2] for a default choice. The optimisation
runs differ in randomly chosen initial populations.

The ES is the only algorithm which was able to achieve the worst case
solution in all runs and for which all results are equal within computing tol-
erances. Besides ES, the DE algorithm is also able to find solutions lower than
the clearance level in all runs. However the results differ in the achieved worst
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Fig. 13.12 Optimisation results achieved for the low speed manoeuvrability crite-
rion (Clsm) by 4 different optimisation methods (ES, GA, DE, PSO). 20 optimisa-
tion runs have been performed for each method with different initial populations.

case solution. Two different solutions are obtained depending on the initial
population. The genetic algorithm provides results all above the clearance
level. The results achieved by the particle swarm optimisation are varying
very much while the smallest solution, obtained by ES, was reached only
once (run 15 in Fig. 13.12).

The average number of necessary criterion evaluations per optimisation
run is 2516 for ES, 2267 for DE, 1693 for PSO and 2249 for GA. The ES
method needs only about 11% more criterion evaluations than DE but gives
the highest success rate and accuracy. Since emphasis is put on the reliability
in finding worst cases, the method ES was chosen for the investigations done
here.

13.4 Computation Times

Along the general computation time analysis of Chapter 8 we investigated
the time effort required by the ES method for the considered three criteria.
The applied parallelisation technique is described in Chapter 8, where the
evaluation of sample points or search patterns was done in parallel, while
using serial optimisation runs. Computations are made on a high performance
Linux-cluster with superior performance compared to the tests reported in
Chapter 8. The cluster consists of 16 dual-core, dual-processor blades with
Intel� Xeon� processors (CPU 5160, 3GHz) and 16GByte memory per
blade. 20 CPUs have been utilised for all computations.
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Table 13.10 summarizes the elapsed computing times for the different cri-
teria. The second column of the table contains the averaged computing time
for one criterion evaluation. In the third column the average numbers of
evaluations for one optimisation run are listed. For serial and parallel optimi-
sations the average times of a single optimisation are given in columns 4 and
5. The ratio of column 4 and 5 gives the speedup as introduced in Chapter 8.
Dividing the speedup by the number of CPUs gives the effectiveness shown
in column 6.

Table 13.10 Average computing times for serial and parallel optimisations and
resulting speedup

Single Average Average time of one Speedup/
Criterion evaluation number of clearance optimisation [h:m:s] effectiveness

time [s] evaluations serial 20 CPUs
[h:m:s] [h:m:s]

Clsm 4.5 3972 4:56:26 0:16:04 18.46 / 0.923
Cnz ,long 7.2 4342 8:38:21 0:26:23 19.65 / 0.982
Cnz,lat 8.5 7676 18:04:17 1:01:16 17.70 / 0.885

Speedup or effectiveness of parallelisation increases when the single evalua-
tion time is larger, because serial part of the computation and parallelisation
overhead are more or less constant. This effect can be observed for crite-
ria Clsm and Cnz,long. However, in spite of a larger evaluation time, criterion
Cnz ,lat has a smaller speedup. This is due to the comparatively large local op-
timisation after the evolutionary strategy has terminated, see e.g. Fig. 13.11.
The available implementation of the local pattern search allows a theoretical
maximum speedup of factor 3 only. Hence, local optimisation reduces the
speedup achievable by algorithm parallelisation of population based optimi-
sation methods.

13.5 Summary

The major conclusion from the clearance results achieved is that optimisation
based worst case search proved to be a general, direct and reliable approach to
solve clearance problems. Applying global stochastic search methods makes
it applicable to any kind of clearance problem (not only simulation based)
without adding conservatism involved in the method. With an assumption on
the success rate reasonable confidence values can be determined. An estimate
of the success rate can be found empirically.

The direct formulation of clearance criteria from simulation results can
lead to noisy or even discontinuous objective functions with multiple minima
which are difficult to detect. However, the proposed search techniques, global
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and local, are insensitive to such kind of criteria and hence are able to solve
the worst case search effectively and reliably.

Especially the applied evolutionary strategy proved to be most successful
in finding solutions which are sufficiently close to the global minimum. A rea-
sonable value for the success rate can be assumed for that method even for
criteria difficult to be optimised. Experiences with the presented clearance
criteria showed, that a value of 0.5 for the success rate is a precautious as-
sumption. Such a value yields a manageable amount of necessary optimisation
runs for a high level of confidence.

Since the proposed clearance strategy is an iterative procedure the amount
of computational work can be kept small at least in those cases where unsat-
isfactory criteria values could be found. Computation time can be reduced
effectively when parallel computation is available. Since the amount of com-
putational effort is still large, at least for manoeuvres with long simulation
times, parallel computation is a prerequisite for applying optimisation based
clearance efficiently in production work.

Optimisation based worst case search seems to be very “aggressive” in
the sense that it can take advantage out of any possibly incomplete or in-
correct modelling of the clearance criterion. Hence, unsatisfactory criterion
values are not necessarily due to control law weaknesses. Before accepting
a criterion as not cleared, a careful examination of potential error sources
must be performed, as for example: validity of parameter ranges; complete-
ness and correctness of the models involved (aircraft, controller, criterion);
reasonable and realistic manoeuvres and the corresponding implementations
as simulation tasks. Since worst case search often operates at extreme flight
conditions in the flight envelope, the validity of the aerodynamic models in
those regions is of crucial importance. Therefore worst case search can not
only be applied for clearance of flight control laws, but also for verification
of design and assessment models.
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Chapter 14

Applications of Lyapunov-Based
Analysis Techniques for Clearance

Andrea Garulli, Alfio Masi, Simone Paoletti, and Ercüment Türkog̃lu

Abstract. This chapter presents results obtained by applying the Lyapunov-
based robustness analysis techniques developed in Chapter 9 to two clearance
problems: aeroelastic stability and un-piloted stability. The considered tech-
niques have been employed to certify robust stability of a number of LFR
models, derived from the physical models of a benchmark civil aircraft. The
results illustrate the potential and limitations of Lyapunov-based analysis in
the clearance context.

14.1 Introduction

In this chapter, the Lyapunov-based robustness analysis techniques presented
in Chapter 9 are applied to two benchmark clearance problems concerning
the closed-loop longitudinal dynamics of a civil aircraft: the aeroelastic sta-
bility criterion for integral models including rigid and flexible modes, and
the un-piloted stability criterion for nonlinear aircraft models. The analysis
is performed on the uncertainty models in linear fractional representation
(LFR) form, developed by applying the methodologies presented in Chapters
3, 4 and 5. The considered techniques, briefly denoted as FD [1], DS [2] and
WB [3], provide sufficient conditions for robust stability of systems in LFR
form, in terms of LMI optimization problems. Several relaxations of these
techniques are employed, based on different choices of the structure of the
Lyapunov functions, multipliers and scaling matrices. The abbreviations used
to denote the relaxations are recalled in Table 14.1. Two types of quadratic
Lyapunov functions are used in combination with the mentioned relaxations:
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i) common Lyapunov function (clf); ii) affine parameter-dependent Lyapunov
function (apdlf). The reader is referred to Chapter 9 for the technical details.

Additional results on the aeroelastic stability criterion have been ob-
tained by employing reduced-order models with affine parameter depen-
dence, derived by applying theH2-norm approximation technique proposed in
Chapter 6.

The chapter is organized as follows. Sect. 14.2 presents the results on the
aeroelastic stability criterion, while Sect. 14.3 reports results concerning the
un-piloted stability criterion. Results on affine parameter-dependent models
are given in Sect. 14.4. Final remarks and future perspectives are provided
in Sect. 14.5.

Table 14.1 Methods for robust stability.

Relaxation Characteristics
FD-cμ FD method with constant full multipliers
FD-cdμ FD method with constant diagonal multipliers
DS DS method with constant full multipliers
DS-dS DS method with diagonal multipliers
WBQ-dM WB method for quadratic stability with diagonal scaling

14.2 Results on Aeroelastic Stability Criterion

In this section, results on the robustness analysis of models developed for the
aeroelastic stability criterion (also called eigenvalue criterion) are presented.
The considered robust stability methods are applied to a set of LFR models,
by employing two different strategies for partitioning the uncertainty domain.

14.2.1 LFR Models for Aeroelastic Stability

Several LFR models of the open-loop longitudinal dynamics of a civil air-
craft have been derived in Chapter 4, from a set of linear aeroelastic models
dependent on:

� the mass configuration (expressed in terms of fullness of two fuel tanks
and a payload);

� the trim flight point (characterized by Mach number and calibrated air
speed).

In order to generate closed-loop models, these LFRs have been combined
with the LFRs describing the longitudinal axis actuators, sensors and the
controller dynamics (see Chapter 5). The position of the center of gravity
along the longitudinal axis, assumed by the controller, is considered as an
additional uncertain parameter.
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Depending on the parameters δ appearing in the uncertainty block Δ,
several different closed-loop LFR models have been generated to be repre-
sentative of the aircraft rigid and flexible dynamics in the frequency range
[0, 15] rad/sec. The models are named according to the uncertain parameters
or trimmed flight variables appearing in the Δ block, which are denoted by
the symbols reported in Table 14.2. The number of states n, the size d of the
Δ block, and the dimension si of the uncertainty sub-blocks associated with
each uncertain parameter or trim flight value, are summarized in Table 14.3.
Each one of the fuel load parameters and/or flight point values not appear-
ing among the uncertain parameters δ in Table 14.3, are fixed to the nominal
values reported in Table 14.2.

Table 14.2 Symbols used in the model description.

Symbol Description Nominal value
δCT central tank 0.5
δOT outer tank 0.5
δPL payload 0
Vcas calibrated air speed 310 kt
M Mach number 0.86
Xcg center of gravity 0.5

Table 14.3 LFR models for aeroelastic stability criterion: uncertainty structure
(si denotes the dimension of the Δ block corresponding to parameter δi).

Model n d δ1, s1 δ2, s2 δ3, s3
C 20 16 δCT , 16 − −
CX 20 18 δCT , 14 Xcg, 4 −
OC 20 50 δCT , 26 δOT , 24 −
OCX 20 50 δCT , 24 δOT , 22 Xcg, 4
POC 20 79 δCT , 42 δOT , 24 δPL, 13
MV 20 54 M , 26 Vcas, 28 −

For the MV model, bounds on the flight parameters δ are available in terms
of a polytope Θ, representing the considered flight envelope (the polytope
bounded by the thick line in Figures 14.1-14.6). The robustness analysis has
been carried out on the smallest rectangle including the polytope Θ. For all
the other models, the fuel loads (δCT and δOT ), payload (δPL) and position
of center of gravity (Xcg) take normalized values between 0 and 1. Hence,
the corresponding uncertainty domains are hyper-boxes in the appropriate
dimensions.
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14.2.2 Robustness Analysis by Progressive Tiling

A collection of results on robustness analysis for the LFR models reported
in Table 14.3 is presented in the following. All clearance problems have been
solved by employing the GUI software presented in Chapter 9, within 64-bit
Matlab 2007b, running under Linux Ubuntu, on a PC equipped with an Intel
XEON 5150 processor and 4 Gbyte of DDRII RAM.

We first present results obtained by applying the techniques described in
Chapter 9 with progressive tiling and maximum number of partitions set to
7, corresponding to a minimum tile side equal to 1

128 of the related initial
side of the flight/uncertainty domain.

C, CX, OC and OCX Models

Table 14.4 summarizes clearance results for model C obtained by applying the
progressive tiling approach with different methods, and different structure of
the Lyapunov function (clf and apdlf). The first column (Cleared) represents
the percentage of the uncertainty domain which has been cleared; the sec-
ond column (NOPs) denotes the number of convex optimization problems
that have been solved (corresponding to the number of tiles attempted to be
cleared), while the third column provides the corresponding computational
times (in seconds). Similar results are reported in Table 14.5 for the CX model.

Table 14.4 Progressive tiling: C model.

Method Cleared (%) NOPs Time (sec)
DS (clf) 100 1 9.78
DS (apdlf) 100 1 10.97
DS-dS (clf) 100 3 10.15
DS-dS (apdlf) 100 1 4.15
FD-cμ (clf) 100 1 5.81
FD-cμ (apdlf) 100 1 8.77
FD-cdμ (clf) 100 3 8.43
FD-cdμ (apdlf) 100 1 4.93
WBQ 100 3 31.45
WBQ-dM 100 3 4.38

Results from the robustness stability analysis carried out on the models
OC and OCX are shown in Tables 14.6 and 14.7, respectively. Here, times are
shown in hours:minutes:seconds format (h:m:s).

It can be observed that the employed methods and relaxations have
managed to certify robust stability of all models considered so far, within
the whole uncertainty domain. As expected, the conditions involving affine
parameter-dependent Lyapunov functions (apdlf) have to solve in general a
smaller number of optimization problems, with respect to those formulated
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Table 14.5 Progressive tiling: CX model.

Method Cleared (%) NOPs Time (sec)
DS (clf) 100 1 30.88
DS (apdlf) 100 1 44.47
DS-dS (clf) 100 5 48.59
DS-dS (apdlf) 100 1 16.33
FD-cμ (clf) 100 1 18.60
FD-cμ (apdlf) 100 1 32.30
FD-cdμ (clf) 100 5 32.37
FD-cdμ (apdlf) 100 1 18.91
WBQ 100 5 107.32
WBQ-dM 100 5 9.16

Table 14.6 Progressive tiling: OC model.

Method Cleared (%) NOPs
Time

(h:m:s)
DS-dS (clf) 100 73 0 : 26 : 32
DS-dS (apdlf) 100 41 0 : 31 : 51
FD-cμ (clf) 100 33 2 : 55 : 30
FD-cμ (apdlf) 100 1 0 : 06 : 11
FD-cdμ (clf) 100 85 0 : 22 : 00
FD-cdμ (apdlf) 100 49 0 : 31 : 50
WBQ 100 37 7 : 55 : 14
WBQ-dM 100 169 0 : 14 : 48

Table 14.7 Progressive tiling: OCX model.

Method Cleared (%) NOPs
Time

(h:m:s)
DS (clf) 100 185 327 : 00 : 28
DS (apdlf) 100 1 3 : 07 : 22
DS-dS (clf) 100 745 11 : 10 : 09
DS-dS (apdlf) 100 265 10 : 53 : 36
FD-cμ (clf) 100 185 41 : 31 : 34
FD-cμ (apdlf) 100 1 0 : 17 : 47
FD-cdμ (clf) 100 841 8 : 52 : 25
FD-cdμ (apdlf) 100 385 13 : 34 : 34
WBQ 100 201 61 : 20 : 32
WBQ-dM 100 2129 4 : 34 : 12
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with common Lyapunov functions (clf). Nevertheless, this leads to a reduc-
tion of the computational time only if the number of solved optimization
problems turns out to be significantly smaller (in this respect, see e.g. the
different behavior of FD-cμ and FD-cdμ for models OC and OCX).

Relaxations employing diagonal multipliers or scaling matrices have man-
aged to significantly reduce the computational times in several cases. Com-
pare for example FD-cμ and FD-cdμ with clf, or WBQ and WBQ-dM, for
models OC and OCX. However, the choice of structurally simple multipliers
can increase the time required for robustness certification if the number of
optimization problems to be solved grows too much (for example, this occurs
for FD-cμ and FD-cdμ with apdlf, for models OC and OCX).

It is also interesting to note that in Tables 14.4, 14.5 and 14.7, the times
required by DS is always larger than that employed by FD-cμ, although the
latter method is in general less conservative than the former one (see Remark
1 in Chapter 9). This seems to suggest that the parametrization of the FD-cμ
method is more efficient.

POC Model

Table 14.8 presents performance indicators of the stability analysis performed
on the POC model by adopting the progressive tiling approach. It can be ob-
served that, as the number of uncertain parameters δ and the size of the
uncertainty block Δ(δ) grow, the computational workload increases signif-
icantly. Nevertheless, the considered techniques have managed to clear the
entire uncertainty domain. Other techniques have been tested, e.g. using apdlf
instead of clf, but they turned out to be significantly more computationally
demanding for this model.

Table 14.8 Progressive tiling: POC model.

Method Cleared (%) NOPs
Time

(h:m:s)
DS-dS (clf) 100 993 33 : 42 : 48
FD-cμ (clf) 100 105 142 : 38 : 10

MV Model

Table 14.9 presents results on robust stability analysis for the MV model.
Progressive tiling has been employed in the assessment of the flight envelope.
In this example the clearance rate is not equal to 1 for all the considered
techniques. Such a rate, reported in the second column of Table 14.9, is
computed as the ratio of the cleared domain and the portion of the domain
which does not contain unstable models found by gridding (see Chapter 9 for
details). It can be interpreted as a measure of effectiveness of the considered
technique: when the rate is less than 1, there are regions that could not be
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Table 14.9 Progressive tiling: MV model.

Method Clearance
rate NOPs

Time
(h:m:s)

DS-dS (clf) 0.9875 1282 12 : 32 : 13
DS-dS (apdlf) 0.9931 1030 24 : 35 : 25
FD-cμ (clf) 0.9993 218 34 : 00 : 29
FD-cμ (apdlf) 1 174 30 : 09 : 45
FD-cdμ (clf) 0.9895 1346 8 : 28 : 02
FD-cdμ (apdlf) 0.9921 1202 20 : 59 : 54
WBQ-dM 0.9759 2798 27 : 30 : 40

cleared even if the gridding procedure did not return unstable models within
them.

By inspecting the results in Table 14.9 one can observe that, while an
increase in the number of free variables has led to a reduction in the number
of optimization problems solved (e.g. from FD-cdμ to FD-cμ), this has not
translated into computationally less demanding optimization problems. On
the other hand, the least conservative and most computationally demanding
method (FD-cμ with apdlf) has been the only one able to achieve a clearance
rate equal to 1, for the considered minimum tile size.

Figures 14.1-14.6 offer a detailed picture of the certified regions provided
by the considered techniques. The tiles in light gray represent the areas which
have been cleared, while the dark gray tiles contain unstable models found
by gridding. The white tiles indicate the regions which have neither been
cleared nor found to contain unstable models by gridding. The different tiling
patterns testify the different conservatism level of the relaxations. It can be
noticed that the condition FD-cμ in Figures 14.3-14.4 provides the largest
cleared region, and was the only one to completely clear the actual flight
envelope (denoted by the polytope).

14.2.3 Robustness Analysis by Adaptive Tiling

The adaptive tiling procedure described in Chapter 9 has been tested on the
model MV, and the adaptation has been performed on the structure of the Lya-
punov function. The conditions DS-dS, FD-cμ and FD-cdμ have been applied
with progressive tiling with a common Lyapunov function in the first parti-
tioning steps; then, the same relaxations with an affine parameter-dependent
Lyapunov function have been applied in the subsequent partitioning steps.
Table 14.10 reports the clearance results obtained for the model MV by em-
ploying the adaptive tiling. Columns 2 and 3 in Table 14.10 indicate the
number of bisections for which the clf and apdlf conditions have been em-
ployed, respectively. For example, clf=2 and apdlf=5 means that in the first
two partitions we applied the corresponding condition with clf, while apdlf has
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Fig. 14.1 Clearance by partitioning
using DS-dS with clf.
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Fig. 14.2 Clearance by partitioning
using DS-dS with apdlf.
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Fig. 14.3 Clearance by partitioning
using FD-cμ with clf.
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Fig. 14.4 Clearance by partitioning
using FD-cμ with apdlf.

0.7 0.75 0.8 0.85 0.9

220

240

260

280

300

320

340

360

M [mach]

V
ca

s [k
no

ts
]

Fig. 14.5 Clearance by partitioning
using FD-cdμ with clf.
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Fig. 14.6 Clearance by partitioning
using FD-cdμ with apdlf.
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been employed in the subsequent 5 partitions (the choice clf=0 and apdlf=7
is equivalent to the progressive approach with apdlf reported in Table 14.9,
and is repeated here for comparison).

As expected, it is confirmed that the FD-cμ relaxation is the only one that
has been able to clear all the clearable tiles. The adaptation has proved to
be effective in reducing the computational time for both DS-dS and FD-cdμ.
On the contrary, it has led to an increase of computational times for FD-cμ.

Table 14.10 Adaptive tiling: MV model.

Method clf apdlf Clearance
rate NOPs

Time
(h:m:s)

DS-dS 0 7 0.9931 1030 24 : 35 : 25
2 5 0.9931 1042 27 : 27 : 54
4 3 0.9931 1110 25 : 20 : 00
6 1 0.9931 1236 20 : 10 : 37

FD-cμ 0 7 1 174 30 : 09 : 45
2 5 1 179 31 : 19 : 19
4 3 1 188 32 : 21 : 30
6 1 1 206 36 : 05 : 11

FD-cdμ 0 7 0.9921 1202 20 : 59 : 54
2 5 0.9921 1214 23 : 13 : 35
4 3 0.9921 1266 21 : 18 : 30
6 1 0.9921 1362 15 : 39 : 18

14.2.4 Discussion

On the whole, the results show that it is not possible to establish a priori
which combination of robustness condition, relaxation and structure of the
Lyapunov function will give the best compromise in terms of clearance rate
and overall computational time, because this depends on the trade-off be-
tween conservatism and complexity of each condition, whose impact may in
turn depend on the specific problem at hand. The FD-cμ relaxation is the
most powerful one among those implemented, but it may sometime require an
excessive computational effort. Experience accumulated in employing the suf-
ficient conditions in the clearance process indicates that the FD-cdμ, DS-dS
and WBQ-dM relaxations often provide a good trade-off between computa-
tional workload and clearance rate (see e.g., both progressive and adaptive
results on the MV model). Concerning the selection of the structure of the
Lyapunov function, starting with clf and than switching to apdlf to clear
only the “most difficult” tiles, as in the adaptive approach, has proven to be
useful in several cases.
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14.3 Results on Un-piloted Stability Criterion

In this section, results on the robustness analysis of LFR models developed
for the un-piloted stability criterion are presented.

14.3.1 LFR Models for Un-piloted Stability

The longitudinal nonlinear aircraft dynamics is described by LFR models
developed according to the methodology proposed in Chapter 3. The resulting
closed-loop LFR models, including the longitudinal actuators, sensors and
controller dynamics, have been presented in Chapter 5. There are 16 different
models corresponding to different regions of the flight envelope. The flight
parameters are treated as linear time-invariant uncertain parameters. The
actuator saturations are transformed into dead-zones in the LFR models. The
full model considered here includes four flight parameters (mach number,
calibrated air speed, aircraft mass, position of center of gravity) and four
dead-zones (related to position and rate limiters in the elevator, both in the
aircraft and in the controller). Table 14.11 summarizes the dimensions si of
the Δ block corresponding to the flight parameters in the complete closed-
loop model, for a collection of available LFRs. All the dead-zones enter in the
Δ block with dimension 1. The meaning of parameter symbols is explained in
Table 14.12. The uncertain parametersXcg andm belong to given rectangular
regions, while the values of the trim flight variables M and Vcas are bounded
in a convex polytope (different for each model). For the latter variables, the
robustness analysis is carried out in the smallest rectangle containing such a
polytope.

Since the full models have Δ blocks of dimension up to 145, including the
dead-zones, a collection of simpler models has been considered in order to
obtain more tractable robustness analysis problems. Six different simplified
LFR model classes have been defined, by considering only a subset of un-
certain flight parameters and/or elevator dead-zones in the full LFRs, and

Table 14.11 LFR models for nonlinear longitudinal dynamics: uncertainty block
dimensions.

Model number n M , s1 Vcas, s2 Xcg, s3 m, s4
1 14 46 37 37 21
2 14 38 45 23 35
5 14 38 45 23 35
6 14 38 45 37 21
9 14 38 40 22 35
10 14 38 41 36 21
13 14 38 40 36 21
14 14 30 48 22 35
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Table 14.12 Symbols used in the model description.

Symbol Description
m mass
Vcas calibrated air speed
Xcg center of gravity
M Mach number
Pa dead-zone related to elevator position limiter in the aircraft
Pc dead-zone related to elevator position limiter in the controller
Ra dead-zone related to elevator rate limiter in the aircraft
Rc dead-zone related to elevator rate limiter in the controller

setting the remaining ones to the corresponding nominal values. The set of
considered simplified models are name-coded in the following format:

class number

where class characterizes the set of uncertain flight parameters or dead-
zones δi appearing in the Δ block, according to Table 14.13, while number
refers to the model number reported in Table 14.11.

Table 14.13 Simplified LFR model classes for un-piloted stability.

Name δ1 δ2 δ3 δ4
XW Xcg m
MV M Vcas

MVW M Vcas m
PaPcRaRc Pa Pc Ra Rc

XWPaPc Xcg m Pa Pc

MVPaPc M Vcas Pa Pc

14.3.2 Robustness Analysis Results

In the following, the results obtained by applying the proposed techniques on
the LFR models described in Sect. 14.3.1 are reported. All tests have been
performed with progressive tiling and maximum number of partitions set to
6 (except where otherwise specified).

XW Models

The uncertain flight parameters in this class of models are Xcg and m. The
other flight parameters (M , Vcas) are set to their corresponding nominal
values, and the dead-zones are set to zero. The analysis utilized the FD-
cμ relaxation, with affine parameter-dependent Lyapunov functions (apdlf).
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Tables 14.14 and 14.15 summarize the analysis results for the considered
LFRs. Table 14.14 refers to the standard robust stability analysis, while
Table 14.15 concerns shifted stability analysis, allowing for the presence of
slowly divergent modes (corresponding to right shifting the imaginary axis
by log(2)/6). The first column (Model) represents the model analyzed. The
second column (NOPs) denotes the number of optimization problems that
have been solved (i.e., the number of tiles attempted to be cleared). The ra-
tio (in %) of the cleared domain to the whole uncertainty domain is given
in column Cleared. The percentage of the whole uncertain parameter do-
main, which after gridding was found to host closed-loop unstable models, is
given in column Unstable. The column Unknown shows the percentage of the
whole uncertainty domain, which could not be defined as unstable after grid-
ding, yet, with the tested method it could not be certified as cleared either.
The column (Time) provides the time elapsed in the course of the clearance
procedure.

It can be observed that when using the standard notion of stability, unsta-
ble models have been found almost everywhere within the flight uncertainty

Table 14.14 Clearance analysis for XW models: standard stability (FD-cμ with
apdlf).

Model NOPs
Cleared

(%)
Unstable

(%)
Unknown

(%)
Time

(h:m:s)
XW 1 8 0.195 99.805 0.0 0:49:08
XW 2 69 3.442 96.558 0.0 4:26:28
XW 5 91 9.839 90.161 0.0 6:35:25
XW 6 57 2.20 97.80 0.0 3:40:39
XW 9 1 0.024 99.976 0.0 0:04:24
XW 10 5461 0.0 100.0 0.0 0:06:55
XW 13 14 0.488 99.512 0.0 1:01:16
XW 14 5461 0.0 100.0 0.0 0:06:20

Table 14.15 Clearance analysis for XW models: shifted stability (FD-cμ with apdlf).

Model NOPs Cleared
(%)

Unstable
(%)

Unknown
(%)

Time
(h:m:s)

XW 1 1 100.0 0.0 0.0 0:04:13
XW 2 1 100.0 0.0 0.0 0:04:17
XW 5 1 100.0 0.0 0.0 0:03:27
XW 6 1 100.0 0.0 0.0 0:03:17
XW 9 1 100.0 0.0 0.0 0:03:13
XW 10 1 100.0 0.0 0.0 0:07:04
XW 13 1 100.0 0.0 0.0 0:03:13
XW 14 1 100.0 0.0 0.0 0:04:22
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Fig. 14.7 Standard robust stability
analysis for model XW 5.
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Fig. 14.8 Robust shifted stability
analysis for model XW 5.
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analysis for model XW 6.
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Fig. 14.10 Robust shifted stability
analysis for model XW 6.

domain. For some models, the clearance process lasted hours as a fine tiling
has been required (see Fig. 14.7 and Fig. 14.9). Conversely, when shifted sta-
bility is considered (i.e., slowly divergent modes are allowed), all models are
fully cleared by solving one single optimization problem, without tiling the
uncertainty domain (see Fig. 14.8 and Fig. 14.10). The computational times
are in the order of few minutes. This testifies that slowly divergent modes are
indeed present in the closed-loop system and motivated us to address only
shifted stability in the subsequent analysis.

MV Models

This class of models treats M and Vcas as uncertain flight parameters, the
other uncertain parameters (Xcg, m) are set to their corresponding nominal
values, and the dead-zones are set to zero. The shifted stability analysis em-
ployed the FD-cμ relaxation with apdlf. Table 14.16 summarises the analysis
results for the models considered. Figures 14.11-14.12 report the results of the
analysis and the actual flight envelope boundaries (thick lines). Notice that
the Cleared and Unstable rates in Table 14.16 refer to the entire rectangle in
Fig. 14.11 and Fig. 14.12 and not only to the flight envelope.
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Table 14.16 Clearance analysis for MV models (FD-cμ with apdlf).

Model NOPs
Cleared

(%)
Unstable

(%)
Unknown

(%)
Time

(h:m:s)
MV 2 110 96.14 3.86 0.0 114:31:19
MV 5 33 97.93 2.07 0.0 47:23:31
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Fig. 14.11 Robust shifted stability analysis for model MV 2.
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Fig. 14.12 Robust shifted stability analysis for model MV 5.
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It can be observed that the computational times have significantly in-
creased with respect to XW models, due to the larger dimension of the LFR
Δ block and to the much higher number of optimization problems resulting
from the progressive tiling. However, it can be noticed that most of the time
is spent in the attempt to clear regions close to the stability boundary, re-
quiring a much finer partitioning, which lie outside the actual flight envelope
of interest. This information has been kept in this example, in order to show
that the partitioning technique allows one to obtain a detailed approximation
of the true robust stability domain. In the following analysis tests, the tiles
which are completely outside the polytopic flight envelope will be skipped,
in order to reduce the computational times.

MVW Models

This model class treats M , Vcas, and m, as uncertain flight parameters, the
other uncertain parameter (Xcg) is set to its corresponding nominal value,
and the dead-zones are set to zero. The shifted stability analysis utilized pro-
gressive tiling approach employing DS-dS method with clf, with maximum
number of partitions set to 4 (other relaxations have proven to be compu-
tationally unfeasible for this example). Table 14.17 summarizes the analysis
results for the considered models. Figures 14.13-14.15 report the projection
of the cleared uncertainty domain on the M -Vcas plane, for different inter-
vals of m. It can be observed that different cleared regions are obtained
for different “slices” with respect to m (dark gray tiles, containing unstable
models represented by dots, show up in Fig. 14.14). In particular, unstable
models have been found within the considered flight envelope, in the region:
260 ≤ Vcas ≤ 267 knots, 0.395 ≤M ≤ 0.41 mach, 142.95 ≤ m ≤ 144.5 T .

Table 14.17 Clearance analysis for MVW models (DS-dS with clf).

Model NOPs
Cleared

(%)
Unstable

(%)
Unknown

(%)
Time

(h:m:s)
MVW 2 562 99.0420 0.7001 0.2579 34:48:49
MVW 5 173 100.0 0.0 0.0 12:29:10

PaPcRaRc Models

In this class of models, all flight parameters are set to their corresponding
nominal values, except the four dead-zones Pa, Pc, Ra and Rc. The dead-
zones are treated as sector-bounded nonlinearities: this amounts to consider
in the Δ-block all the nonlinearities belonging to the sector [0, 1], i.e. the
gray sector in Fig. 14.16. It is apparent that the results of the analysis are in
general conservative, because of the large set of nonlinearities with respect
to which stability is assessed.



268 A. Garulli et al.

0.4 0.45 0.5 0.55 0.6

260

270

280

290

300

310

 m ∈ [ 130.71875 , 132.25 ] [T]

M [mach]

V
ca

s [k
no

ts
]

Fig. 14.13 Robust shifted stability analysis for model MVW 2: M−Vcas plane for
m ∈ [130.71875, 132.25] T .
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Fig. 14.14 Robust shifted stability analysis for model MVW 2: M−Vcas plane for
m ∈ [142.96875, 144.5] T . Dots represent unstable models.

In the case of the PaPcRaRc models, after performing analysis with FD-
cμ method, common Lyapunov function (clf) and dead-zones considered
as sector-bounded uncertainties in the sector [0, 1], none of the considered
models have been cleared. Indeed, it can be checked that there exist con-
stant values of the dead-zones parameters, such that the resulting mod-
els have eigenvalues with real part greater than log(2)/6. This corresponds
to the existence of linear gains in the [0, 1] sector in Fig. 14.16, which
make the closed-loop system shifted unstable. This means that any method
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Fig. 14.15 Robust shifted stability analysis for model MVW 5.
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Fig. 14.16 Dead-zones as sector-bounded uncertainties.

considering sector-bounded, or even slope-bounded nonlinearities, cannot
clear the considered PaPcRaRc models (obviously, this does not mean that
such models cannot be cleared by other methods).

A further analysis has been performed, by considering smaller sector
bounds [0, γ], with γ < 1. This corresponds to assuming that the signals
entering the dead-zones are limited. In Fig. 14.16, the dash-dotted line is an
example of a reduced sector [0, γ]. It can be observed that if the signals p en-
tering the dead-zones are such that |p| ≤ p̄, then the dead-zones are correctly
covered by the reduced sector. Table 14.18 reports the maximum values of γ
for which robust shifted stability has been certified by applying the FD-cμ
method. These values of γ allow one to compute the maximum range p̄ of the
input signals of the dead-zones for which the system remains stable.
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Table 14.18 Maximum values of γ for which PaPcRaRc models have been cleared.

Model γ
PaPcRaRc 1 0.62
PaPcRaRc 2 0.64
PaPcRaRc 5 0.62
PaPcRaRc 9 0.60
PaPcRaRc 13 0.60

The same clearance procedure has been applied to LFR models with dead-
zones Pa and Pc set as uncertain parameters, sector-bounded in sector [0, 1],
and all other parameters (including rate limiter dead-zones: Ra, Rc) set to
their nominal values. All such models have been cleared. On the other hand,
LFR models accommodating only Ra, Rc dead-zones, and with all the re-
maining parameters (including the actuator dead-zones Pa and Pc) set to
their nominal values, have not been cleared. This suggests that the rate lim-
iter dead-zones play a critical role in the clearance analysis.

In [4,5] several approaches have been proposed to address robust stability
of systems with dead-zones. In particular, [5] provides LMI conditions for
global exponential stability, which exploit information on the time derivative
of the saturated signals and a generalized Lur’e-Postnikov Lyapunov function.
Unfortunately, also this technique was not able to clear any model in the
PaPcRaRc class. Then, motivated by the local stability results of Table 14.18,
the regional analysis techniques proposed in [4] have been applied, in order
to estimate the region of attraction of the origin in the state space. Two
approaches have been considered, which are based on the embedding of the
LFR with dead-zones either in a polytopic differential inclusion (PDI), or
a norm-bounded differential inclusion (NDI). By using these approaches, it
has been possible to certify the regional stability of the systems reported in
Table 14.18 and to obtain a non trivial (spherical) estimate of the region of
attraction of the trim point. The radius α of the spherical stability region is
reported in Table 14.19, for the two considered approaches. As expected, the
approach based on PDI embedding turned out to be slightly less conservative.

Table 14.19 Estimation of the stability radius α of PaPcRaRc models.

Model α (PDI) α (NDI)
PaPcRaRc 1 1.7998 1.7927
PaPcRaRc 2 2.9506 2.9372
PaPcRaRc 5 1.7867 1.7795
PaPcRaRc 9 1.9234 1.9143
PaPcRaRc 13 1.9200 1.9107
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XWPaPc Models

This class of models treats Xcg and m as uncertain parameters, and the dead-
zones related to the elevator position limiters Pa and Pc as sector-bounded
uncertainties. The results obtained by applying the FD-cμ method with clf,
for robust shifted stability with threshold log(2)/6, are given in Table 14.20.

Table 14.20 Clearance analysis for XWPaPc models (FD-cμ with clf).

Model NOPs Cleared
(%)

Unstable
(%)

Unknown
(%)

Time
(h:m:s)

XWPaPc 1 1 100.0 0.0 0.0 0:13:45
XWPaPc 5 1 100.0 0.0 0.0 0:11:07
XWPaPc 9 1 100.0 0.0 0.0 0:09:56

It is worth remarking that these models have been fully cleared by solving
one single optimization problem, i.e., no partitioning of the uncertainty do-
main, including Xcg and m, has been necessary (although up to 6 partitions
have been allowed for such parameters).

MVPaPc Models

These LFR models include M and Vcas as uncertain flight parameters, and
the dead-zones related to the elevator position limiters Pa and Pc as sector-
bounded uncertainties. Results of robust shifted stability analysis, using FD-
cμ method with clf, are reported in Table 14.21.

Table 14.21 Clearance analysis for MVPaPc models (FD-cμ with clf).

Model NOPs
Cleared

(%)
Unstable

(%)
Unknown

(%)
Time

(h:m:s)
MVPaPc 2 21 100.0 0.0 0.0 31:45:29
MVPaPc 5 5 100.0 0.0 0.0 6:34:19

Both the considered models have been fully cleared, by exploiting parti-
tioning with respect to the time-invariant flight parameters M and Vcas. The
resulting tiling patterns are drawn in Fig. 14.17 and Fig. 14.18. By comparing
the results obtained for LFR models in the classes XWPaPc and MVPaPc with
those concerning XW and MV models, it is confirmed that the position limiter
dead-zones Pa and Pc do not affect the stability of the system, within the
considered flight envelopes.
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Fig. 14.17 Robust shifted stability analysis of MVPaPc 2.
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Fig. 14.18 Robust shifted stability analysis of MVPaPc 5.

14.4 Robustness Analysis of Affine
Parameter-Dependent Models

By applying the H2-norm approximation technique presented in Chapter 6,
reduced-order LFR models have been derived which are representative of the
rigid and flexible dynamics of the considered benchmark aircraft. In partic-
ular, models with affine dependence on the uncertain parameters related to
the fuel loads (δCT and δOT ) and the payload (δPL) have been provided, to
address the aeroelastic stability criterion. These models have 22 states and
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the state matrix takes the form A(δ) = A0 + A1δ1 + A2δ2 + A3δ3. The ac-
curacy of the H2-norm approximation has been tuned by selecting the rank
of the matrices Ai, i = 1, 2, 3. Robust stability analysis of such models has
been performed by applying the standard quadratic stability condition and
the multi-convexity robust stability condition proposed in [6] (see Chapter
9 for details). The techniques have been applied with progressive tiling and
maximum number of partitions set to 5. Results are reported in Table 14.22,
for models with different ranks of the Ai matrices.

As expected, the multi-convexity condition is much less conservative and
hence more effective in completing the clearance process. For the model with
full rank Ai matrices, quadratic stability required an excessively high com-
putational effort.

Table 14.22 Results for affine parameter-dependent POC model.

Stability
condition

Rank
of Ai

NOPs Cleared
(%)

Unstable
(%)

Unknown
(%)

Time
(h:m:s)

Quadratic 6 1545 99.927 0 0.0732 4 : 12 : 54
Multi-convexity 6 1 100.0 0 0 0 : 01 : 39
Quadratic 7 305 100.0 0 0 0 : 42 : 30
Multi-convexity 7 1 100.0 0 0 0 : 01 : 33
Multi-convexity 22 385 100.0 0 0 9 : 18 : 27

For comparison, also some of the robustness analysis methods for general
LFRs have been applied to the affine parameter-dependent POC model. The
results are reported in Table 14.23, for the cases in which the computational
time has not exceeded 3 days. It can be observed that the techniques tailored
to the affine parameter-dependent models have proven to be more efficient.

Table 14.23 FD relaxations for affine parameter-dependent POC model.

Stability
condition

Rank
of Ai

NOPs
Cleared

(%)
Unstable

(%)
Unknown

(%)
Time

(h:m:s)
FD-cμ (clf) 7 305 100.0 0 0 5 : 56 : 00
FD-cμ (apdlf) 7 1 100.0 0 0 0 : 03 : 20
FD-cμ (apdlf) 22 73 100.0 0 0 51 : 05 : 32

14.5 Conclusions

Lyapunov-based robustness analysis techniques have been applied to two
clearance problems concerning a benchmark civil aircraft. The clearance prob-
lems have been cast as robust stability problems and several different tech-
niques have been considered, which are able to cope with uncertainty models
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in LFR form. The obtained results indicate that there is a key trade-off
between performance and computational burden. This is apparent when ro-
bustness conditions are applied within the progressive tiling strategy. Relaxed
conditions, which are conservative if applied directly to the entire uncertainty
region, may perform much better on smaller subregions. This, however, re-
quires the solution of a large number of LMI optimization problems. The
size of the tiles, the number of partitions of the region under analysis, the
structure of the multipliers and/or the Lyapunov matrices turn out to be key
tuning knobs in this respect.

Although it is difficult to devise an a priori strategy for choosing the “best”
robustness analysis technique, based on experience accumulated in the testing
of the clearance software and in view of the analysis results, a combined use
of structurally simple multipliers in either the FD or DS method, with an
affine parameter-dependent Lyapunov function, seems to offer a reasonable
compromise between conservatism and computational feasibility. Adaptation
of the Lyapunov function structure within the partitioning scheme has also
proven to be beneficial in some cases.

The results obtained are by no means exhaustive and there are several
open issues to be addressed in future research activities. A major limitation
of Lyapunov-based techniques is the high computational burden, which scales
exponentially with the number of uncertain parameters and trimmed flight
variables. When these are assumed to be time-invariant, robustness analysis
in the frequency domain has proven to be significantly more efficient (see
Chapter 12). On the other hand, the main potential of Lyapunov-based tech-
niques is that they can easily handle both time-invariant and time-varying
uncertainties (including also bounds on the variation rate), as well as memo-
ryless nonlinearities accounting for actuators saturations. When such complex
clearance problems are faced, reduction of the conservatism is a key issue: this
is testified, for example, by the models in the class PaPcRaRc, for which global
exponential stability is still an open problem. In this respect, the development
of less conservative sufficient conditions, which can tackle robustness analysis
of LFR models containing both uncertain parameters and dead-zones in the
Δ block, is a subject of ongoing research. Combined use of Lyapunov-based
techniques and worst-case search based on optimization (see Chapter 8) for
assessing the conservatism of clearance results, is another topic that deserves
more investigation.

The robustness techniques employed in this chapter may provide a valu-
able tool for validating the LFR modelling process. Indeed, one of the key
points to be addressed is the reliability of these models, i.e. their potential
in representing all the aircraft dynamics of interest, within the considered
flight envelope and for all admissible values of the uncertain parameters. By
comparing the results of Lyapunov-based robust stability analysis with those
obtained by applying the baseline industrial solution (usually based on grid-
ding of the fligh/uncertainty domain), it will be possible to single out the
most significant discrepancies between the physical aircraft models used so
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far in industrial clearance, and the models developed within the COFCLUO
project. This will provide guidelines for trading off model accuracy and com-
plexity, which is a key step towards a full integration of robustness analysis
techniques within the industrial clearance process.

References

1. Fu, M., Dasgupta, S.: Parametric lyapunov function for uncertain systems: The
multiplier approach. In: El Ghaoui, L., Niculescu, S.-I. (eds.) Advances in Linear
Matrix Inequality Methods in Control. SIAM, Philadelphia (2000)

2. Dettori, M., Scherer, C.: New robust stability and performance conditions based
on parameter dependent multipliers. In: Proc. of 39th IEEE Conf. on Decision
and Control, Sydney, Australia, pp. 4187–4192 (2000)

3. Wang, F., Balakrishnan, V.: Improved stability analysis and gain-scheduled con-
troller synthesis for parameter-dependent systems. IEEE Trans. on Automatic
Control 47(5), 720–734 (2002)

4. Hu, T., Teel, A.R., Zaccarian, L.: Stability and performance for saturated sys-
tems via quadratic and nonquadratic Lyapunov functions. IEEE Transactions
on Automatic Control 51(11), 1770–1786 (2006)

5. Dai, D., Hu, T., Teel, A.R., Zaccarian, L.: Piecewise-quadratic Lyapunov func-
tions for systems with deadzones or saturations. Systems & Control Let-
ters 58(5), 365–371 (2009)

6. Gahinet, P., Apkarian, P., Chilali, M.: Affine parameter-dependent Lyapunov
functions and real parametric uncertainty. IEEE Trans. on Automatic Con-
trol 41(3), 436–442 (1996)





Chapter 15

Applications of IQC-Based Analysis
Techniques for Clearance

Ragnar Wallin, Sina Khoshfetrat Pakazad, Anders Hansson,
Andrea Garulli, and Alfio Masi

Abstract. Results for stability analysis of the nonlinear rigid aircraft model
and comfort and loads analysis of the integral aircraft model are presented in
this chapter. The analysis is based on the theory for integral quadratic con-
straints and relies on linear fractional representations (LFRs) of the underly-
ing closed-loop aircraft models. To alleviate the high computational demands
associated with the usage of IQC based analysis to large order LFRs, two
approaches have been employed aiming a trade-off between computational
complexity and conservatism. First, the partitioning of the flight envelope
in several smaller regions allows to use lower order LFRs in the analysis,
and second, IQCs with lower computational demands have been used when-
ever possible. The obtained results illustrate the applicability of the IQCs
based analysis techniques to solve highly complex analysis problems with an
acceptable level of conservativeness.

15.1 Introduction

The setup for stability analysis using integral quadratic constraints (IQCs)
is very similar to the setup used in μ-analysis. In both cases linear frac-
tional representation (LFR) models of the system under analysis are needed.
Such a model is depicted in Fig. 15.1. AIRBUS and ONERA have developed
approximate models of this type for the nonlinear rigid aircraft model and
the integral aircraft model including sensors, actuators, and controller, see
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Fig. 15.1 A linear fractional representation

Chapters 3 and 5 for details. For the LFR approximation of the integral air-
craft model the Δ block contains repeated constant real uncertainties, and
for the LFR approximation of the rigid aircraft model the Δ block contains
repeated constant real uncertainties as well as nonlinearities in the form of
deadzones. The Δ blocks for these models have a diagonal structure.

The theory behind IQCs is briefly reviewed in Chapter 10. For a thor-
ough description read the original paper by Megretski and Rantzer [1] or the
more detailed lecture notes by Jönsson [2]. The theory for μ-analysis, see [3]
and [4], was developed for linear time-invariant uncertainties but has been
extended to handle also linear time-varying uncertainties, see [5]. Performing
IQC analysis we can use an even wider variety of uncertainties in the Δ block.
There can be uncertain linear time-invariant dynamics, constant parametric
uncertainty, time-varying parameters, various nonlinearities, or combinations
of the above. Furthermore, using IQCs it is possible to solve a wider class of
analysis problems. One example is robustH2 performance analysis. However,
if only stability analysis of the system is considered and the Δ block contains
repeated constant real uncertainties μ-analysis is in most cases superior to
IQC analysis in the sense that the latter method will deliver the same re-
sults but at a much lower computational cost. If the multipliers used in the
IQCs are parameterized using transfer functions as basis functions, which
is common practice, μ-analysis may actually yield slightly less conservative
results.

The main drawback with IQC analysis is that, even though it results in con-
vex optimisation problems which are considered tractable, the models used
in advanced applications may be too complex to analyse. The resulting opti-
misation problems become very large. Much work and time has been invested
in making it possible to solve such large optimisation problems, see for exam-
ple [6], [7], [8], [9], [10], [11], [12], [13] and [14]. However, none of these methods
are applicable in our case. For the methods described in [12], [13] and [14]
the IQC analysis problem has been turned into a semidefinite program (SDP)
via the Kalman-Yakubovich-Popov lemma. Sometimes SDPs with this par-
ticular structure are called KYP-SDPs. To actually speed up computations
these methods require that the number of inputs to the linear time-invariant
system M in Fig. 15.1 are few compared to the number of states. This is not



15 Applications of IQC-Based Analysis Techniques for Clearance 279

the case for the models developed in the COFCLUO project. As we have one
input for each repetition of a real uncertainty and one input for each non-
linearity in the Δ block the number of inputs is usually much greater than
the number of states. The methods described in [6], [7], [8], [9], [10] and [11],
based on outer approximation methods, on the other hand require that the
multipliers in the IQCs can be described using rather few variables. This is
not true either for the models at hand. Hence, we have used other methods
than structure exploitation to cope with computational complexity. These
methods are described in Section 15.2.

In this study the following two criteria are considered:

Stability analysis of the nonlinear rigid aircraft model. We consider longi-
tudinal motion only. This criterion is described in Chapter 2 and the anal-
ysis results are presented in Sect. 15.3.

Comfort and loads analysis of the integral aircraft model. We consider lon-
gitudinal motion only. This criterion is also described in Chapter 2 and
the analysis results are presented in Sect. 15.4. In Chapter 10 it is shown
how this criterion can be formulated as an IQC-based analysis problem.

For the first criterion only the closed-loop system is considered. The closed
loop system in principle has to be stable, but since the pilot can counteract
slowly divergent modes such modes are allowed as long as the time of doubling
of the signals is less than six seconds. Allowing such modes is taken care of
by shifting the stability region, if necessary, from being the left half plane to
being the half plane to the left of ln 2

6 .

15.2 Coping with Computational Complexity

As was mentioned in the introduction many successful approaches to reduce
computational cost for IQC analysis are based on exploitation of the model
structure. It is far from obvious if there is a way to do so in our case. This is a
possible topic of future research. Hence, we have to rely on other methods to
reduce the computational complexity. Three possibilities are described below.
The techniques can be used separately or in combination.

15.2.1 Choice of IQCs

The combination of a complex model with complex IQCs may result in op-
timisation problems that are too large to solve. Fortunately, we sometimes
have a choice between several possible IQCs to use. Both for the constant
parameters and the deadzones we can use more than one IQC to prove
stability. The more information we incorporate in the IQC the more com-
plex the resulting optimisation problem gets but the less conservative the
results are. On the other hand, if we succeed to prove stability using a low
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information IQC this is often good enough since we are sometimes only con-
sidering a sufficient condition for clearance.

The most informative IQC we can use for constant real parameters is the
one called iqc ltigain in the IQC toolbox [15]. This IQC is specifically de-
signed for constant real parameters and is the basis for standard upper bounds
on structured singular values [16], [17]. The multiplier has the structure

Π(jω) =
[
X(jω) Y (jω)
Y (jω)∗ −X(jω)

]
, (15.1)

where X(jω) = X(jω)∗ ≥ 0 and Y (jω) = −Y (jω)∗ are bounded and mea-
surable matrix functions. However, we can also use the IQC that is called
iqc tvscalar in the IQC toolbox [15]. This IQC is designed for parameters
that are allowed to vary arbitrarily fast. It is clear that if we can prove sta-
bility for this case we have also proved stability for the case with constant
parameters. The multiplier for this case looks like

Π(jω) =
[
X Y
Y ∗ −X

]
, (15.2)

where X = XT ≥ 0 and Y = −Y T are real matrices. A third option, with
an even simpler multiplier, is to use iqc diag. Also here the parameters are
allowed to vary arbitrarily fast but here we ignore that the parameters are
possibly repeated. This will of course introduce extra conservatism as it allows
for more difficult parameter combinations. The corresponding multiplier has
the structure

Π(jω) =
[
X 0
0 −X

]
, (15.3)

with X > 0 being a diagonal real matrix. It is obvious that each of these
multipliers can be considered a special case of the previous one. Which one
you choose is a trade-off between conservatism and computational complexity.

Also for the deadzones we have multiple choices of IQCs we can use. The
first one is the IQC for sector bound functions. We say that a nonlinear
function φ : Rn �−→ Rn belongs to a sector [α, β] 0 ≤ α ≤ β < ∞, if it
satisfies the following condition,

αx2 ≤ φ(x)x ≤ βx2. (15.4)

For the deadzone we have α = 0 and β = 1. This condition uses very little
information about the nonlinearity and hence often yields very conservative
results. Functions that vary much more than a deadzone can also fit into such
a sector. The IQC used for sector bound nonlinearities is iqc sector which
is characterised by the multiplier

Π(jω) =
[−2αβ α+ β
α+ β −2

]
. (15.5)



15 Applications of IQC-Based Analysis Techniques for Clearance 281

An IQC that incorporates a little bit more information about the nonlinearity
is the IQC for odd slope-bound functions iqc slope odd. We say that the
monotonic odd function φ : Rn �−→ Rn has a slope restricted to the interval
[0, k] if it satisfies the following condition

0 ≤ φ(x1)− φ(x2)
x1 − x2

≤ k (15.6)

for all x1 and x2. The corresponding IQC is based on the work in [18] and is
characterised by the multiplier

Π(jω) =
[

0 1 +H(jω)
1 +H(−jω) −2(1 + ReH(jω))/k

]
. (15.7)

The rational proper transfer function H(jω) has real coefficients and satisfies
∫ ∞

−∞
|h(t)|dt ≤ 1,

where h(t) is the impulse response corresponding to H(jω).
It is worth noting that if the multipliers are not mere special cases of each

other it is often a very good idea to use a combination of several IQCs in the
analysis. This will yield more precise results but of course the computational
complexity will be higher. Hence, we will not do this.

15.2.2 Partitioning of the Parameter Space

For static nonlinearities in combination with constant real parameters or real
parameters that can vary arbitrarily fast it is possible to clear the flight
envelope part by part. This enables us to get a good picture of the shape of
the stable and unstable regions.

It is possible to decide beforehand how large the smallest partition should
be. However, it is not a good idea to divide the flight envelope into partitions
of this size already from the beginning as it would result in a huge number
of optimisation problems. It is much better to start with large partitions
and then, if required, divide them into smaller ones. If a region of the flight
envelope is proved to be stable, further partitioning of that region will always
result in stable regions. Hence, no further partitioning is necessary. This may
save us considerable amounts of time and computational effort.

15.2.3 Model Reduction

To further reduce the computational effort we may also perform model re-
duction in each partition. It is very likely that smaller regions of uncertainty
can be accurately described by simpler models. As the computational effort
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needed grows very fast with model complexity there is much to be gained by
this. Of course, the approximation error should be included in the analysis.

When it is possible to find low order models that approximate very large
regions accurately the method described in Chapter 6 may be considered.
However if we have to use many partitions a less computationally heavy
method is required. It is a trade-off between how much time it takes to
compute a reduced order model and how much time that is gained in the
analysis.

15.3 Stability Analysis of the Nonlinear Rigid Aircraft
Model

In this section we present a method for analysing the stability of the un-
piloted nonlinear rigid aircraft model. We describe the choices made in the
proposed method, and discuss the achieved results. The data supplied to the
controller is uncertain and possibly erroneous. Hence, the robustness with
respect to the uncertain variables should be checked, see Chapter 2 for details.
The uncertain variables in the Δ block for the nonlinear rigid aircraft model
are

Δ = diag
[
MIkM VcasIkVcas

XcgIkcg mIkm ΔNLIkNL

]
. (15.8)

where M is the Mach number, Vcas is the calibrated air speed, Xcg represents
the uncertainty in the position of the centre of gravity, m is the mass of
the aircraft and ΔNL represents the nonlinearities due to deadzones in the
actuators and control laws.

Generally, aircraft models transformed into LFRs, come with very high di-
mensional Δ blocks, which makes the stability analysis very challenging and
time consuming. In order to make the process less computationally demand-
ing it is often wise to divide the analysis into several smaller subproblems.
One possible way is to perform the stability analysis in three separate stages
which we here call analysis of nominal stability, analysis of robust stability
and analysis of nonlinear stability. What we mean by this is explained next.

1. Robust linear stability with nominal Xcg: In this stage of the stability
analysis, we only consider uncertainty over mass, calibrated airspeed and
Mach number and neglect the nonlinearities and the uncertainty over the
position of centre of gravity. Then we look for regions where stability of the
system with respect to the considered uncertainties can be shown. In the
analysis we use the IQC for diagonal real uncertainties that are allowed to
vary arbitrarily fast. As we partition the flight envelope and clear it part
by part this results in a good trade-off between how many partitions we
need and the computational time for each partition.

2. Robust linear stability: In this stage, we investigate if the stability of the
system is robust with respect to the uncertainty over the position of centre
of gravity. We only consider regions with cleared robust linear stability
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with nominal Xcg. In each such region we investigate how much we can
change the centre of gravity without making the system unstable.

3. Robust nonlinear stability: Finally, having performed the previous two
stages we look for regions in the flight envelope where we can show stabil-
ity with respect to the nonlinearities and all possible uncertainties, that
is mass, calibrated airspeed, Mach number and the position of centre of
gravity.

We will show results for the robust linear stability with nominal Xcg and
a simplified version of the robust nonlinear stability. Why we use a simpli-
fied version of the robust nonlinear stability is explained in Sect. 15.3.2. The
robust linear stability analysis yielded either very conservative results or re-
sulted in optimisation problems that were computationally too heavy. Thus,
we exclude this part of the analysis in the following.

15.3.1 Analysis of Robust Linear Stability for
Nominal Centre of Gravity Position

The objective of the proposed analysis is either to show stability of the sys-
tem over the whole flight envelope, or if this is impossible, localise regions
with unclear stability properties. We do this by partitioning the flight en-
velope with respect to the uncertainties in several stages, as described in
Section 15.2.2.

The stability of a system, such as the one in Fig. 15.1, can be checked
by computing the induced H2 gain from the input signals yr to the output
signals y. If this gain is finite the system is stable. For the closed loop system
the input signals yr are missing. However, we have to introduce artificial
inputs in order to take every possible initial state into account. This is done
in the following way. The closed loop system is described by

ẋ = Ax+Bw

z = Cx+Dw

w = Δz

.

We extend this system with extra inputs and outputs and get

ẋ = Ax+Bw +Bredyr

z = Cx+Dw

y = Cx+Dw

w = Δz

.

where Bred is a column compressed version of B, that is the columns of Bred

form a minimal basis for the column space of B. Now it is possible to find a
yr that models the contribution of any initial state to the signals y and z. In
our applications the number of columns in B often is most often greater than
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the number of states. Hence, we can usually save considerable computational
effort by compressing the columns and use Bred instead of adding a copy of
B to model the influence of initial states.

In the following analysis iqc diag is used to describe the constant real
uncertainties in the model. The results will be conservative but the compu-
tational time per partition will be much shorter than if we use the other
IQCs listed in Sect. 15.2.1. The choice yields a reasonable trade-off between
the number of partitions needed and the computational complexity per par-
tition. To get an idea of how conservative this choice is we first consider a
simplified problem. We ignore the nonlinearities and assume that only the
Mach number, M , and calibrated air speed, Vcas, are uncertain. The mass,
m, and centre of gravity, Xcg are set to their nominal values. First the anal-
ysis is performed with the stability region being the left half plane. Then, to
allow slowly divergent poles, we let the stability region be the half plane to
the left of ln2

6 .
In Fig. 15.2, Fig. 15.3, Fig. 15.5 and Fig. 15.6 the considered flight enve-

lope is the area between the two straight lines. Points in the flight envelope
that are stable with respect to the considered stability region are called clear-
able and points that are proven to be stable with respect to the considered
stability region are called cleared. The cleared partitions are marked with
dark rectangles. Points that corresponds to unstable modes are marked with
crosses. Clearable, but not cleared points are marked with dots.

In Fig. 15.2 and Fig. 15.3 we use the left half plane as the stability region
and consider two partitioning schemes with different coarseness. In Fig. 15.2
we use the split ratios 6, 3, and 2. That is, the parameter space is first split
into six partitions, if necessary these partitions are in turn split into three
partitions and so on. In Fig. 15.3 we use the split ratios 4, 4, 2 and 2. By
performing the analysis using the finer partition the size of the cleared region
is increased, but not very much.

In order to get a better feeling of the level of conservativeness of the ap-
proach we do another test. Fig. 15.4 shows how far into the left half plane
the eigenvalues of the system are located. As before a cross corresponds to an
unstable mode. A plus corresponds to a mode where the eigenvalue closest to
the imaginary axis has a real part between -0.002 and 0. A star corresponds
to a mode where the eigenvalue closest to the imaginary axis has a real part
between -0.004 and -0.002. Finally, the points marked by dots correspond to
modes with all eigenvalues having a real part less than -0.004. The points
in this latter category correspond fairly well to the partitions that can be
cleared with the IQCs and partitioning scheme used. To clear the small area
in the the lower left corner of Fig. 15.4 a slightly finer partition than the one
used has to be performed. Hence, this area does not show up in Fig. 15.2 and
Fig. 15.3. The conclusion is that the results are indeed conservative but not
very much so.

Fig. 15.5 and Fig. 15.6 illustrate the results of the analysis when we allow
slowly divergent modes. A cross corresponds to an unstable mode, that is
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Fig. 15.2 This figure presents the outcome of the analysis for the original model.
The analysis for has been performed in 3 stages of partitioning with split ratios of
6, 3 and 2. Cleared partitions are marked with dark rectangles.
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Fig. 15.3 This figure presents the outcome of the analysis for the original model.
The analysis for has been performed in 4 stages of partitioning with split ratios of
4, 4, 2 and 2. Cleared partitions are marked with dark rectangles.

where at least one eigenvalue is to the right of ln2
6

. A dot corresponds to a
clearable mode, that is where all eigenvalues are to the left of ln2

6
. Cleared

partitions are marked by a dark rectangle. We use two different partitioning
schemes one with split ratios 6, 3, and 2 and one with split ratios 8, 4, 2, and
2. As can be seen from the figure we have no problem clearing the whole flight
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Fig. 15.4 This figure presents the pole mapping of the original model.
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Fig. 15.5 This figure illustrates the partitioning in 3 stages for the model with
shifted poles. The split ratios for the different stages are 6,3,2.

envelope for this case. Note, that even with the finer partition we have a small
region which we cannot clear even though we know that the all eigenvalues
are to the left of ln2

6 .
The model of the nonlinear rigid aircraft consists of sixteen LFR models

valid in different regions of the flight envelope. In Fig. 15.7 to Fig. 15.14 the
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Fig. 15.6 This figure illustrates the partitioning in 4 stages for the model with
shifted poles. The split ratios for the different stages are 8,4,2,2.

Table 15.1 Provided LFT models descriptions.

LFT No. Mass Vcas Mach XCG Total Δ block size No. States
1 21 37 48 38 144 14
3 35 45 40 24 144 14
14 35 48 32 23 138 14
16 35 48 32 23 138 14

results of the nominal stability analysis for models number 1, 3, 14 and 16
are presented. The dimensions of the uncertainty blocks for the considered
models are presented in Table 15.1. The partitioning is conducted in three
steps and in order to satisfy the required accuracy, split ratios of 5, 2 and
2 are chosen for the consecutive steps. The time elapsed for performing the
3 stages of partitioning is 339, 277, 348 and 141 hours, for each respective
model. Fig. 15.7 and Fig. 15.8 show the cleared regions in the first and second
partitioning step for model 1 and 3, respectively. Fig. 15.9 shows the cleared
regions in the third partitioning step and Fig. 15.10 displays regions where
we cannot prove nor disprove stability for models 1 and 3. Fig. 15.11 and
Fig. 15.12 show the cleared regions in the first and second partitioning step for
model 14 and 16. Fig. 15.13 shows the cleared regions in the third partitioning
step and Fig. 15.14 shows the regions where we cannot prove nor disprove
stability. In both cases we consider model 14 and model 16.



288 R. Wallin et al.

120
130

140
150

180
200

220
240

260

0.2

0.3

0.4

0.5

0.6

0.7

Mass[tons]
V

CAS
[kts]

M
ac

h

Fig. 15.7 This figure presents the cleared regions within the first stage of the
partitioning for models 1 and 3. The light planes represent the validity boundaries
for each of the models (the one on the top model 3 and the one on the bottom
model 1.). Outer planes also represent the boundaries of the flight envelope.
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Fig. 15.8 This figure presents the cleared regions within the second stage of the
partitioning for models 1 and 3. The light planes represent the validity boundaries
for each of the models (the one on the top model 3 and the one on the bottom
model 1.). Outer planes also represent the boundaries of the flight envelope.
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Fig. 15.9 This figure presents the cleared regions within the third stage of the
partitioning for models 1 and 3. The light planes represent the validity boundaries
for each of the models (the one on the top model 3 and the one on the bottom
model 1.). Outer planes also represent the boundaries of the flight envelope.
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Fig. 15.10 This figure presents the regions with unclear stability properties after
the end of the partitioning procedure, for models 1 and 3. The light planes represent
the validity boundaries for each of the models (the one on the top model 3 and the
one on the bottom model 1.). Outer planes also represent the boundaries of the
flight envelope.



290 R. Wallin et al.

200
210

220
230

240

260
280

300
320

340

0.4

0.5

0.6

0.7

0.8

0.9

Mass[tons]
V

CAS
[kts]

M
ac

h

Fig. 15.11 This figure presents the cleared regions within the first stage of the
partitioning for models 14 and 16. The light planes represent the validity boundaries
for each of the models (the one on the top model 16 and the one on the bottom
model 14.). Outer planes also represent the boundaries of the flight envelope.
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Fig. 15.12 This figure presents the cleared regions within the second stage of the
partitioning for models 14 and 16. The light planes represent the validity boundaries
for each of the models (the one on the top model 16 and the one on the bottom
model 14.). Outer planes also represent the boundaries of the flight envelope.
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Fig. 15.13 This figure presents the cleared regions within the third stage of the
partitioning for models 14 and 16. The light planes represent the validity boundaries
for each of the models (the one on the top model 14 and the one on the bottom
model 16.). Outer planes also represent the boundaries of the flight envelope.
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Fig. 15.14 This figure presents the regions with unclear stability properties after
the end of the partitioning procedure (right),for models 14 and 16. The light planes
represent the validity boundaries for each of the models (the one on the top model 14
and the one on the bottom model 16.). Outer planes also represent the boundaries
of the flight envelope.
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15.3.2 Analysis of Robust Nonlinear Stability

In this section we present the results from the nonlinear analysis. The proce-
dure is the same as for the robust linear stability with nominal Xcg. During
preliminary experiments with the models considered it was discovered that
if one of the nonlinearities was replaced with a constant gain only slightly
larger than 0.7 the resulting closed loop system will be unstable. This does
not mean that the nonlinear system is unstable but we cannot use exist-
ing IQCs to prove stability. Instead we choose to make some experiments
to investigate how conservative the IQCs for sector restricted and slope re-
stricted nonlinearities are for this system considering the little information
they utilise. To get an estimate of the level of conservativeness we perform
the analysis using the nominal model, i.e. the uncertain parameters are set
to their nominal values, and include the nonlinearities. All models considered
have 14 states and 8 nonlinearities. We then look for the maximum sector or
slope for which we can prove stability.

The analysis using the sector description of the nonlinearities, iqc sector,
results in bounds on β very close to zero. The analysis is not very computa-
tionally demanding but the results are very conservative. The analysis per-
formed using slope based IQCs leads to less conservative results but as the
resulting optimisation problem is high dimensional and the analysis is very
computationally demanding. The results for the IQC for slope restricted non-
linearities is presented in Table 15.2. As expected, the results are a little bit

Table 15.2 Estimated maximum allowed slope for description of nonlinearities.

LFT No. Time Elapsed [min] Maximum Allowed Slope
1 18 0.6718
2 17 0.6950
3 30 0.6950
4 17 0.7050
5 50 0.6818
6 18 0.6718
7 16 0.6818
8 17 0.6950
9 24 0.6443
10 19 0.6605
11 19 0.6605
12 14 0.6818
13 20 0.6443
14 19 0.6605
15 16 0.6605
16 20 0.6818

Total 6 Hours
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conservative. None of the existing IQCs yield a description of the deadzone
nonlinearity that is informative enough. However, it is an active field of re-
search how to introduce less conservative methods from other frameworks,
such as Lyapunov based methods, to the IQC framework and provide more
accurate descriptions for simple nonlinearities like deadzones and saturations.
Hopefully, there will be future results.

15.4 Loads and Comfort Criterion

In this section we present and discuss analysis results for the comfort crite-
rion defined for the unpiloted integral aircraft model. The baseline solution
for the comfort criterion is described in Chapter 2 and how to reformulate
the problem as an H2 performance analysis problem and tackle it via IQC
techniques is shown in Chapter 10. As this criterion is a performance criterion
we want to use the best possible IQCs. Hence, the number of choices we have
to make is much more limited than for the stability analysis of the nonlinear
rigid aircraft model described earlier.

We consider the LFR models described in Chapter 4 for analysis of the
longitudinal linear dynamics of the aircraft. As the analysis is very compu-
tationally demanding we only consider models where the fullness ratio of the
fuel load for the centre tank (CT ) is uncertain. In particular, we consider the
following models:

� OL lon15 C : open-loop model with uncertain parameter CT , valid in the
domain [0, 15] rad/sec.

� OL lon50 C : open-loop model with uncertain parameter CT , valid in the
domain [0, 50] rad/sec.

� CL lon15 CXcg : closed-loop model with uncertain parameter CT and Xcg

set to a constant value, valid in the domain [0, 15] rad/sec.

The number of state variables n and the size of the Δ block d, that is,
the number of repetitions of uncertain parameter CT for these models, are
reported in Table 15.3.

Table 15.3 Number of states n and size of Δ block d for the integral LFR models
developed for the comfort criterion

Model n d
OL lon15 C 12 14
OL lon50 C 30 26

Cl lon15 CXcg 22 18
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15.4.1 Computational Times

As has been mentioned above the robust H2 technique is quite computation-
ally demanding. The average computational times experienced for a single
robust H2 norm computation, i.e.: one criterion, one point in the fuselage
and one partition of the uncertainty domain, are the following:

� OL lon15 C : 20 minutes on an Intel XEON 5150 processor with 4 GB
RAM

� CL lon15 CXcg : 40 minutes on the same machine as above.
� OL lon50 C : 8 hours on a Intel dual core processor with 16 GB RAM.

In contrast, the baseline solution routine is very fast, as it does not require
the solution of any optimisation problem. It will only take a few minutes
to compute all the criteria for all points in the fuselage. However, this is
not surprising, as we have chosen only 21 grid points and a single uncertain
parameter.

15.4.2 Level of Conservatism

To get an idea of the conservativeness of the analysis, the method has been
tested on the model OL lon15 C. The values of the robust H2 norm for all
the criteria, all points in the fuselage and all four channels, i.e. [Jfeet; Jseat;
Jback; J ], are shown in Fig. 15.15. The corresponding values provided by the
baseline solution, applied to the LFR models, are reported in Fig. 15.16.
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Fig. 15.15 Robust H2 analysis for model OL lon15 C.
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Fig. 15.16 Baseline solution for model OL lon15 C.

It can be observed that the two figures are almost indistinguishable. This
suggests that the proposed technique for robust H2 norm computation is not
significantly conservative for the considered LFR model. Partly this has to do
with the fact that it is a single input single output system. The lower bound
provided by the baseline solution is quite tight. This is due to the fact that the
worst-case values for the considered model are attained at the extremes of the
uncertainty interval and that the gridding with respect to CT always includes
those points. The comparison between the baseline solution for the LFR
models and that computed for the original AIRBUS models, may be useful
to validate the LFR models. In fact, significant discrepancies are expected for
the models whose domain of validity is [0, 15] rad/sec, while more accurate
values of the comfort criterion should be obtained on the models valid in the
[0, 50] rad/sec range. This is due to the fact that the baseline solution is based
on numerical integration on the finite frequency domain [0.062, 62.8] rad/sec.
This comparison may represent a valuable guideline for a fine tuning of the
LFR models generated for the comfort clearance.

It is worth noting that the values of the comfort index returned by the
baseline solution are always smaller than those obtained via the robust H2

analysis for two reasons: (i) the considered robust H2 technique is conserva-
tive in general; (ii) the baseline solution considers a finite grid of CT values
and a finite frequency range, and hence it gives a lower bound to the true
criterion; on the contrary, the robust H2 approach considers the continuum
of all possible CT values and all the frequencies, thus providing an upper
bound to the criterion.
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15.5 Conclusions and Future Research

In this chapter we have presented the results from the IQC based analysis of
the nonlinear rigid aircraft model and the integral aircraft model. We have
performed stability analysis on the nonlinear rigid aircraft model and con-
sidered the comfort and loads criterion for the integral aircraft model. Some
parts of the stability analysis performed has been omitted here since it, with
the choices of IQCs made et cetera, either yielded very conservative results
or were computationally too complex. Also the robust nonlinear analysis had
to be somewhat simplified due to problems with destabilising constant gains
lying in the same sector as the deadzone nonlinearities considered.

The models developed in the project are very computationally demanding
to perform IQC analysis on. As was mentioned in the introduction existing
structure exploiting methods for solving KYP-SDPs cannot handle the struc-
ture we have in the problems at hand. Hence, it would be very interesting
to further investigate if it is possible to find new structure exploiting algo-
rithms that can cope with multipliers with a complex structure and systems
with many more inputs than states. Outer approximation methods for IQC
analysis which work in the frequency domain are not applicable either as the
number of parameters needed for the multipliers is too large. However, there
is perhaps possible to develop new methods inspired by interesting recent
work done in μ-analysis.

Very often we also encounter numerical issues in complex IQC analysis
problems. While years of research has been spent on how to solve Riccati
equations in a good way surprisingly little has been done for KYP-SDPs.
KYP-SDPs can solve the same problems as can be solved using Riccati equa-
tions but also more general ones. Hence, improving numerical properties for
this class of semidefinite programs is, in our opinion, a very important area
of future research.
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Chapter 16

Application of Nonlinear Programming
Methods for Determination of
Worst-Case Pilot Inputs

Daniel Skoogh and Fredrik Berefelt

Abstract. This chapter describes the results obtained by applying the op-
timisation methods presented in Chapter 11 for searching of worst-case ma-
noeuvres. The search for worst-case pilot inputs is performed for a single
flight condition and nominal model parameters by using both local and global
optimisation algorithms over a parameter space consisting of suitably param-
eterized pilot inputs.

16.1 Introduction

In this chapter we describe the results obtained by applying the optimisation
methods described in Chapter 11 to the worst-case pilot input problem. For
all the numerical results we have used the Airbus simulation model described
in [1]. All computational results have been obtained using Matlab Version
R2007b. For the optimizations we used dedicated Matlab implementations
of all local and global methods.

In Sect. 16.2 we describe the results obtained from the application of the
three local methods: quasi-Newton, cyclic coordinate descent, and pattern
search. The performed tests illustrate that local search methods, when prop-
erly initialized, are able to determine useful worst-case pilot inputs by em-
ploying an acceptable number of function evaluations. We also performed
comparisons with similar general purpose tools available in popular opti-
mization software. It is worth mentioning that our implementations are com-
petitive with these tools, in both their timing performances as well as in the
achieved accuracy.
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SE-16490 Stockholm, Sweden
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In Sect. 16.3 we describe results from application of the following global
methods: differential evolution, genetic algorithm, evolution strategies, and
dividing rectangles. As expected, the global methods are generally more ex-
pensive to use than local methods in terms of necessary number of function
evaluations. However, the performed tests showed that, with acceptable costs,
it is relatively easy to determine worst-case pilot inputs which violates the
controller protection laws (if such inputs exist).

16.2 Application of Local Methods

In this section we describe the results obtained by applying the Quasi-Newton
method (QN) in combination with the Cyclic Coordinate Descent method
(CCD), and Pattern Search method (PS) to solve the worst-case pilot in-
put determination problem. Since local methods typically converges to local
optima, we performed the worst-case search for several randomly generated
initial parameter points.

For all local methods we employed the same clearance criteria, the maxi-
mum value of the angle of attack in a given time interval [ 0, T ] for a given
pilot input. The objective function to be maximized is defined as

f(x) = max
t∈[0,T ]

α(t,x) =: αmax(x) (16.1)

where α(t,x) indicates the dependence of the angle of attack of time and a
parameter vector x which consists of the parameters used for the parametriza-
tion of the pilot signal. We will refer throughout this chapter to tmax as the
time instant when the maximum angle of attack αmax occurs. From practical
considerations, we used a value of T of 150 seconds and 11 intervals of 10
seconds lengths were used to define 10 time grid values for each pilot input.
Thus, for each the pitch and roll pilot signal parameters, a total of 20 decision
variables have been used. The amplitudes of all pilot signals were constrained
to lie in the interval [−16◦, 16◦]. It follows, that the resulting mathematical
optimization problem has only simple bound constraints on the optimization
variables.

Each parameter set determines the shapes of two pilot inputs (the lon-
gitudinal and lateral sticks). The duration of each pilot inputs encompasses
150 seconds, of which the first 10 seconds and the last 30 seconds use null
amplitude signals. On the remaining 10 time intervals, linear interpolation is
employed between two successive time grid values. Each function evaluation
use a simulation run from t = 0 to t = 150, where the in the starting flight
condition corresponds to a cruise flight at altitude of 31834 feet with a speed
of 236 knots. Further, the considered aircraft weight was 230000 kg and the
center of gravity position was at 0.37%.
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16.2.1 The Quasi-Newton Method

For all tests, we employed a centered finite difference scheme to estimate the
gradient, with a step size of h = 0.1◦. For details regarding the choice of the
step size, see [2].

In Fig. 16.1, the longitudinal and lateral pilot signals are shown together
with the corresponding angle of attack α(t,xstart), where xstart is a typical
randomly generated starting point for the QN iterations. The dashed lines in
Fig. 16.1 correspond to the time instant of the last pilot inputs grid points
that affects the maximum angle of attack peak for small changes of the am-
plitude. In Fig. 16.2, the maximum angle of attack αmax is plotted against
the iteration number. For this example, the QN method converged after 9
iterations and needed 362 objective function evaluations to determine the lo-
cal optimiser xmax. The corresponding optimum is f(xmax) = 12.7002◦ and
occurs at time instant tmax = 28.7167s. Of the total number of 362 objective
function evaluations, 124 were used for gradient estimation and 238 for line
search. A number of 236 objective function evaluations have been avoided due
to the special structure of the problem induced by causality considerations,
as discussed in Chapter 11 and [2].

After the convergence of the QN method, we run the CCD method with a
step size h = 0.1◦ used to define the search grid directions. As initialization
point of the CCD method we used the termination point of the QN method.
For this specific case, the CCD method terminated at the first iteration after
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Fig. 16.1 The longitudinal and lateral pilot signals are shown together with the
angle of attack α(t,xstart) corresponding to the starting point of the quasi-Newton
iterations.
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Fig. 16.2 The maximum angle of attack is shown with respect to the number of
iterations for the quasi-Newton method.

performing a complete search cycle. In this way, the solution computed by the
QN method was confirmed as a local optimiser in one iteration of the CCD
method. The advantages of using of using the CCD method in conjunction
with QN method is discussed in Chapter 11.

In Fig. 16.3, the longitudinal and lateral pilot signals are shown together
with the angle of attack α(t,xmax) corresponding to the termination point
of the QN iterations. The dashed lines in Fig. 16.3 correspond to the time
instant of the last interpolation point that will affect the maximum angle of
attack peak for small changes of amplitude.

As a comparison, the objective function (16.4) used for the global search in
Section 16.3 was evaluated to −4.5593◦, i.e. a violation of the αmax protection
law by 4.5593◦.

Timing Results

We used both the parallel and the serial version of the QN method, which
are described in detail in [3]. To run the QN method in parallel, we used
the Matlab Distributed Computing Toolbox [4]1. For all computations we
haved used a computer with two Xeon 2.66GHz processors, 4 cores on each
processor, under Linux.

The QN method converged in 9 iterations and performed 362 objective
function evaluations. Using parallel computations on 4 cores, the QN method
1 The toolbox has now changed the name to: Parallel Computing Toolbox.
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Fig. 16.3 The longitudinal and lateral pilot signals are shown together with the
angle of attack α(t,xmax) corresponding to the termination point of the quasi-
Newton iterations.

needed 2992 seconds. For the same computation performed in serial mode,
the QN method needed 7721 seconds. The speedup ratio using 4 cores2 was
thus 2.58, which should be compared to the speedup 3.24 obtained for Monte
Carlo simulations. The reasons why the maximum speedup ratio of 4 can
usually not be achieved are the lack of full parallelization in the employed
code and the shared memory architecture of the employed machine.

Evaluation and Comparison

In what follows, we present more details of the performed experiments with
our implementation of the QN method. To increase the robustness of local
search, we used 7 randomly generated initial points on which the QN method
was applied. After convergence, the CCD method, with a step length of 0.1◦ in
each input parameter, was used to refine the local optimum. For comparison,
we performed the same experiments with two solvers available in popular
optimization packages: the function fmincon from the Matlab Optimiza-
tion Toolbox [6] and the Fortran code SNOPT [5] via the Matlab based
interface TOMLAB [7]. Both solvers implement the Sequential Quadratic
Programming (SQP) method, but also provide options for selecting BFGS
quasi-Newton updates for approximating the Hessian of the Lagrangian.
2 We used 2 cores on each processor. The maximum speedup was obtained using

this configuration.
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For the QN method, the termination criteria was construced by using the
objective function values at iterates k + 1 and k − 1 as follows

|f(xk+1)− f(xk−1)| < ε (16.2)

The tolerance ε was set to be 10−4. Further, for SNOPT/TOMLAB, the
major optimality tolarance was 10−6, which specifies the final accuracy of
the dual variables π involving the reduced gradient. Finaly, for fmincon, the
termination tolerance of the objective function value TolFun was 10−6 and
the termination tolerance of the decision variable TolX was 10−6.

The Tables 16.1, 16.2, and 16.3 summarize the results for our implementa-
tion of the QN method (denoted by QN), fmincon and SNOPT/TOMLAB,
respectively. Here, NIT denotes the number of performed iterations and NFE,
the number of performed function evaluations. By studying the tables, we see
that the objective function value at the QN termination point was much closer
to the objective function value of the CCD method than for fmincon and
SNOPT/TOMLAB, for most starting points. Note also that the maximum
difference between the objective function value at the termination point of
fmincon and CCD was 2.4. The corresponding value for SNOPT/TOMLAB
was 0.76, while for the QN it was smaller than 0.1. Overall on this problem,
our implementation of the QN method was considerably more robust than
both fmincon and SNOPT/TOMLAB.

On average, our implementation of the QN method used more function
evaluations than fmincon, but considerably fewer than SNOPT/TOMLAB.
Also, fmincon failed for the third initialization point due to a simulation
model crash.

This evaluation also shows that for the worst-case pilot input optimisation
problem involving noisy function evaluations, it makes good sense to supple-
ment a local search (as performed with the QN method) with a less noise
sensitive method like CCD that operates on a grid of points. An alternative
to CCD could also be the pattern search method which we will discuss next.

Table 16.1 Evaluation of the implemented QN method.

Starting Point No. 1 2 3 4 5 6 7
NIT for QN 6 9 13 10 27 19 10
NFE for QN 187 362 1060 443 2279 902 968
αmax 7.52 12.70 10.74 12.96 15.70 13.02 10.25
tmax 16.08 28.72 142.96 39.65 124.04 42.31 98.79
NIT for CCD 1 1 4 3 5 3 5
NFE for CCD 3 5 223 45 335 101 218
|αQN

max − αCCD
max | 0 0 0.0280 0.0233 0.0431 0.0962 0.0365
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Table 16.2 Evaluation of the fmincon software.

Starting Point No. 1 2 3 4 5 6 7
NIT for fmincon 4 3 – 21 2 23 36
NFE for fmincon 129 105 – 605 63 668 1022
αmax 7.52 10.26 – 10.47 9.60 12.02 11.46
tmax 16.08 29.62 – 30.74 29.43 43.41 40.50
NIT for CCD 1 1 – 13 8 2 2
NFE for CCD 4 5 – 299 152 48 46
|αfmincon

max − αCCD
max | 0 0 – 2.4031 0.2313 0.4662 0

Table 16.3 Evaluation of the TOMLAB/SNOPT software.

Starting Point No. 1 2 3 4 5 6 7
NIT for SNOPT 8 25 38 33 34 14 31
NFE for SNOPT 2790 6152 8940 11113 9678 5004 9637
αmax 7.52 13.54 13.15 10.81 14.40 11.31 10.00
tmax 16.08 50.68 121.36 41.60 116.64 42.21 99.51
NIT for CCD 1 3 9 4 10 4 2
NFE for CCD 3 93 639 125 835 130 153
|αsnopt

max − αCCD
max | 0 0.0021 0.0295 0.7672 0.1048 0.2217 0.1715

16.2.2 Pattern Search

The Pattern Search (PS) method was applied to the same test problem and
starting points as the QN method. The initial step size was Δ0 = 3.2◦ for
each coordinate direction. For a given shrink factor θ, the step sizes used by
PS are

Δ = Δ0θ
M , (16.3)

where M is the number of times the step size has been reduced. As termination
criterion, we used the smallest allowed relative step size satisfying θM ≥
0.005, which corresponds to an absolute step size of 0.016◦. An interesting
feature is that by using this termination criteria, PS finds a local optimiser
and the corresponding optimum on a grid of points with the grid size equal
to the last used step length. This makes the termination of PS more robust
than of QN, and therefore there was no need to supplement a search by PS
with another algorithm.

In Table 16.4, we show the results from the run with PS for a shrink factor
of θ = 0.5, for which the fastest convergence results have been obtained.
When comparing these results with those for QN in Table 16.1, we see that,
on average, PS found higher αmax than the QN method, although the latter
found the highest αmax of all methods.
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A potential drawback of PS is that the method may converge towards
different local optima depending on the ordering of the decision variables.
This may cause difficulties, for example, when PS is used in a hybrid global
method. In this case, some coordinate directions may be systematically over-
looked.

Table 16.4 Evaluation of Pattern Search

Starting Point No. 1 2 3 4 5 6 7
NIT for PS 6 8 13 24 11 9 6
NFE for PS 527 524 839 1225 769 602 686
αmax 7.52 13.00 12.20 14.82 15.09 12.93 11.48
tmax 16.07 29.19 68.21 40.15 120.18 42.47 98.20

16.3 Application of Global Methods

In this section we present results for worst-case pilot input determination
obtained using the global methods Differential Evolution (DE), Evolution
Strategies (ES), Genetic Algorithm (GA), and Dividing Rectangles (DI-
RECT). We refer to Chapter 11 for a review of the algorithms and a de-
scription of their option parameters.

For the evaluation of global methods, we used an alternative formulation
of the worst-case pilot input determination problem, by minimizing the fol-
lowing objective function defined as the ”distance” to the peripheral envelope

f(x) = min
t∈[0,T ]

(αprot(t,x)− α(t,x)) (16.4)

where αprot(t,x) is the upper (protection) bound for the angle of attack pro-
vided by the control algorithm. Both αprot(t,x) and α(t,x) depend of the
parameter vector x which consists of the parameters used for the parametriza-
tion of the pilot signal. This ”distance” defined above takes on a negative
value when the angle of attack exceeds the upper bound, so minimising the
envelope distance means implicitly maximising the angle of attack. The flight
condition used for the initialization of the pilot maneuver was: altitude of
20000 ft and speed of 220 kts. The considered aircraft weight was 230000 kg
and the center of gravity position was at 0.37%. The auto thrust engagement
was on. The search space included only longitudinal and lateral stick inputs,
both defined as constant values on 6 time intervals of 2 seconds length (thus
T = 12). The effective pilot signals to be determined start after 2 seconds
and ends at 14 seconds. The total simulation time was 15 seconds, and the
pilot inputs are zero outside the active interval [2, 14].

The search space of the optimisation is spanned by the 12 amplitude val-
ues, lying in the interval [−16◦, 16◦]. The present setup is comparable to the
worst-case pilot input computation performed in [8]. This reference also used
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step sequences for longitudinal and lateral inputs, but the values of the two
sequences were coupled to each other, so there were only 5 decision variables
taking only 4 possible discrete values (binary coded GA was employed).

It has been surprisingly easy to find stick inputs that bring the aircraft
outside the peripheral envelope defined in [9]. This is why, in all our tests
(except DIRECT), we started from randomly generated initial populations
which already contained pilot inputs leading to the protection violation.

We did not perform a systematic comparison between the different global
methods. To do this, it would be necessary to collect statistics from a great
number of runs, which in the present case would demand large computational
resources. We have done just an informal investigation of a limited number
of sample computations, trying different values of the option parameters. By
letting the computations last for a large number of function evaluations, we
have tried to expose the long term behavior of the algorithms (several of
the runs presented below have actually lasted longer than indicated in the
convergence plots).

16.3.1 Differential Evolution

The upper left panel in Fig. 16.4 shows the convergence plot in a run em-
ploying DE. The chosen population size was 50 and the values of the two
main parameters, the scaling factor F and crossover probability pcross, were
0.5 and 0.9, respectively (see [10]). The plot shows the envelope distance
as a function of the accumulated number of objective function evaluations.
A negative value implies an angle of attack exceeding the upper bound of
the peripheral envelope. Each objective function evaluation involves the sim-
ulation of the closed-loop aircraft model to compute the envelope distance
within a time horizon of 15 seconds. Each dot in the figure represents the
least distance found in a single iteration of the algorithm. Every iteration
performs 50 new objective function evaluations.

The envelope distance falls rapidly in the beginning, going below −20
degrees after 750 function evaluations. After 3400 function evaluations, it
stays close to −23.8 (translating into an angle of attack of 34.4 degrees). The
other three panels in Fig. 16.4 show the longitudinal and lateral stick inputs
and the resulting angle of attack versus time of the final worst-case found. The
time axis has been extended to 40 seconds in order to reveal what happens
after the stick input has become quiescent. As one might expect, the angle
of attack returns quickly to values in between the upper and lower bounds
(represented by dashed red lines).

Fig. 16.5 shows another DE run with population size = 100, F = 0.5
and pcross = 0.8. The convergence is here much slower. It takes 10200
function evaluations to arrive below −20 and very little progress is made be-
tween 5800 and 10200 function evaluations, where it could have been tempt-
ing to regard the computation as being converged. But after 10200 function
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Fig. 16.4 DE: population size = 50, F = 0.5, pcross = 0.9. Convergence plot
(upper left), angle of attack (lower left), longitudinal stick input (upper right) and
lateral stick input (lower right) of the final worst-case found.

evaluations, the progress is resumed, reaching finally a criterion value of−26.5
after 23000 function evaluations (the corresponding angle of attack is 37.1
degrees). Fig. 16.5 shows also the final worst-case longitudinal/lateral stick
inputs and angle of attack versus time.

We want to point out the following observations. The longitudinal input
sequence is quite similar to the previous case apart from the first step, while
the lateral input is, more or less, the mirror image of the sequence in Fig. 16.4.
This makes sense, since the fitness landscape should be symmetric under
change of sign of the lateral stick input, and this run just happened to find
(approximately) the symmetric partner of the solution found in the previous
run. However, the plot of angle of attack versus time in Fig. 16.5 is very
different from the one in Fig. 16.4, showing that there is something in the
simulation model breaking the “left-right symmetry”. In the present case,
the angle of attack makes a huge excursion reaching almost 60.5 degrees at
t = 22 seconds before it returns inside the bounds at t = 36 (n.b. that the
time horizon for the worst-case search is just 15 seconds).

Further, by increasing the amplitude value of the first step in the longi-
tudinal input by a tiny amount (∼ 0.004 degrees), the angle of attack versus
time in Fig. 16.5 flips into the shape shown in Fig. 16.4 (the lateral input
staying fixed). We have no explanation for this behavior.
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Fig. 16.5 DE: population size = 100, F = 0.5, pcross = 0.8

A third example run of DE is shown in Fig. 16.6 (population size = 50,
F = 0.5 and pcross = 0.8). It reaches a solution very close to the case in
Fig. 16.5 after only 3500 objective function evaluations. Again, changing sign
on the lateral stick input turns the angle of attack versus time back into the
form of Fig. 16.4.

If this exercise of changing sign on the lateral input is performed on some
more “benign” stick sequence, the angle of attack versus time stays constant
as it should. In other words, the global optimisers seem to have proved their
usefulness in finding an anomalous stick input for the present test problem.

16.3.2 Evolution Strategies

For the application of ES, there are several option parameters to be set. It
was not intended to pursue exhaustive investigations for an optimal setting
of these parameters for the problem in question. The used values adhere to
standard recommendations found in the literature. For the problem at hand,
it was quite obvious that a non-elitist selection involving μ parents and λ
children (denoted with (μ, λ)-ES in the ES terminology) does not properly
work. Therefore, we used all μ + λ parents and children for the selection
(denoted with (μ+ λ)-ES). Non-isotropic mutation was always employed.

Fig. 16.7 gives an example of running (μ+λ)-ES with μ = 30, λ = 210 (also
with several other parameters/options described in [10] set to: initScale = 1,
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Fig. 16.6 DE: population size = 50, F = 0.5, pcross = 0.8.

tauC = 1.5, using recombination scheme “B”). The envelope distance goes be-
low−20 degrees after 1900 function evaluations, below−25 after 8000 function
evaluations, and settles down at−26.5 around 21000 function evaluations. The
final worst-case solution is almost identical to the one in Fig. 16.5. We have also
seen examples of ES converging to the mirror solution in Fig. 16.4.

Occasionally, we observed that the ES gets caught in what appears to
be a local optimum at an envelope distance near −20 degrees. An example
is shown in Fig. 16.8 (with parameters/options set to: μ = 10, λ = 100,
initScale = 3.3, tauC = 1, recombination scheme “A” with ρ = 2). The DE
computation in Fig. 16.5 seems to be visiting precisely this local optimum
during the plateau between 5800 and 10200 objective function evaluations.

16.3.3 Genetic Algorithm

As the last member of the evolutionary algorithms, an example run of GA
is given in Fig. 16.9. The population size was 50 and the number of elite
members was 5. The computation clearly got stuck at −14 degrees, then
suddenly took a jump and moved towards −19.2 degrees. The worst-case
solution found resembles the one in Fig. 16.8, but it has not quite reached
the local optimum of the latter. The convergence in this example is not good,
the balance between the five different variation operators being far from ideal.
Instead of using standard GA operators, it would be interesting to construct
special crossover and mutation operators that better explored the structure
inherent in the problem, for instance the temporal order of the input steps
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Fig. 16.7 ES: μ = 30, λ = 210, initScale = 1, tauC = 1.5
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Fig. 16.8 ES: μ = 10, λ = 100, initScale = 3.3, tauC = 1.
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Fig. 16.9 GA: population size = 50, number of elite = 5.

(as earlier steps maybe more decisive for the result than later steps) or the
fact that the worst-case seems to lie close to the search space boundary (or
even close to its corners, as is clearly seen in Fig. 16.4 and Fig. 16.5 and
which might be expected also from a physical point of view).

16.3.4 Dividing Rectangles

The result of running the dividing rectangles method (DIRECT) for 26000
function evaluations is shown in Fig. 16.10. If one compares this with the
solution obtained already after 2555 evaluations, as shown in Fig. 16.11, it is
clear that the only thing the algorithm accomplished during the last 23000
evaluations was to move some of the steps closer to the extreme values ±16.
This just confirms the well known fact that DIRECT has great difficulties
finding optima located on the search space boundary.

But a closer look reveals that at least some steps of the input sequences in
Fig. 16.11 are in fact not very far from the values of the (presumably) “global
optimum” in Fig. 16.4. An obvious idea is then to try a local method and see
if it can move the differing steps into place. We did run pattern search with
different parameter settings, but without success. Some of the steps that
differed would have to be moved across almost the whole feasible interval,
something that our implementation of pattern search did not manage to do.
It would be interesting to devise a method that could refine, in an effective
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Fig. 16.10 DIRECT, the result after 26000 function evaluations.
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Fig. 16.11 The stick inputs found by DIRECT after 2555 functions evaluations

manner, a coarse search made by DIRECT. (Of course, with hindsight, one
expects that the most effective method for the present problem would be to
search for an approximate solution only in the corners of the search space
boundary.)

16.4 Conclusions

Regarding the local methods, it is difficult to give a definitive answer to
the question which of the applied local search methods (PS or QN with
CCD) is better suited to address the solution of the worst-case pilot input
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determination problem. The main difficulties of solving this problem are the
relatively high costs of function evaluations and noisy nature of optimiza-
tion problem. Both these aspects result from the need to perform numerical
simulations in each function evaluation. Taking advantage of parallel com-
putations, could substantially alleviate the computational costs for both QN
and PS.

The PS method appears to be more robust on the considered problem
than the QN method. Recall that for a shrink factor of 0.5, PS performs on
average approximately as good as, or even better than QN. However, just as
for CCD, there is no proof that the termination point of PS is a sufficient
good approximation of a local optimum on the noisy test problem.

The QN method tends to be more efficient in producing good approxima-
tions of the worst-case by using gradient information. Unfortunately, noisy
function evaluations strongly limits the good guaranteed final convergence. A
major cost with QN on the considered problem is the line search. The ratio
of the number of objective function evaluations with line search and with
gradient estimation will probably get smaller for higher dimensions.

Regarding the global methods, it is hard to declare any of the evolutionary
algorithms to be better than the others for the present problem. DE converged
more quickly in a couple of cases, but may be this was just by chance. DE is
in any case the easiest method to use, having only two option parameters to
decide apart from the population size. ES has more parameters and its per-
formance seems to depend quite a bit on their values. It is doubtful whether
the self-adaptive mechanism of ES really make any difference in the present
problem. Perhaps the objective function is too “awkward” (the fitness land-
scape may be very irregular indeed). GA in the real-valued representation
should be investigated further, especially in regard to the possibility of using
variation operators that better explore the search space boundary.

References

1. Puyou, G.: Models delivery: Part 1 - Nonlinear model. COFCLUO Technical
Report D1.1.2, Airbus France (2007)

2. Skoogh, D., Berefelt, F.: Final report WP2.5. COFCLUO Technical Report
D2.5.5, FOI (January 2010)

3. Skoogh, D.: Final software - Part 2: Local methods for search of worst case
manoeuvre, Version 2.0. COFCLUO Technical Report D2.5.4, FOI (January
2010)

4. Mathworks. Distributed Computing Toolbox, Version 3, User’s Guide (2007)
5. Gill, P.E., Murray, W., Saunders, A.: User’s Guide for SNOPT Version 6, A

Fortran Package for Large-Scale Nonlinear Programming (2002)
6. Mathworks. Optimization Toolbox, Version 3, User’s Guide (2007)



16 Application of Nonlinear Programming Methods 315
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Chapter 17

Evaluation of Clearance Techniques in
an Industrial Context

Guilhem Puyou, Rafael Fernandes de Oliveira, and Adrien Berard

Abstract. This chapter focuses on the application of the methods devel-
oped in previous chapters to a common benchmark to compare them (when
relevant) regarding their performance and evaluate the easiness of their ap-
plicability. The most promising techniques have been further tested in a real
industrial context, with more complex requirements to fulfill and using a
certified aircraft model as reference. Based on this application an integrated
validation strategy is proposed to comply with the industrial validation needs.

17.1 Overview of Basic Methods

In this section we review the clearance methods based on the information
provided in previous chapters and analyse them from an user/engineering
point of view. For each clearance technique, we point out the main advan-
tages, summarize the best practices as suggested by the authors and briefly
explain the level of complexity involved in their use.

17.1.1 Enhanced μ-Analysis Techniques

Criteria and Results

The main appeal of the methods described in Chapter 7, based on the μ-upper
bound computation, is their ability to provide guaranteed robust stability
margins. In the COFCLUO project, these methods have been used to assess
the eigenvalue criteria for the ”Nonlinear” and ”Integral” benchmarks and
the stability margin criteria for the ”Integral” benchmark. For the eigenvalue
stability analysis, the default practice assumes that eigenvalues should stay
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ωc

α

Φ

Fig. 17.1 Sector definition

in the left half-plane of the complex space, but the users can define their own
sector-based stability domain as in Fig. 17.1, characterized by the following
parameters: degree of stability α, minimum damping sinΦ and maximum
natural frequency ωc. To define the stability margin requirements, the user
should choose values for the maximum phase margin, or the minimum and
maximum gain offsets for the gain margin.

Let c(δ) be a clearance criterion expressing a certain stability requirement.
This function depends on the parameter vector δ ∈ Θ, where Θ denotes the
admissible set of parameter values. A parameter combination δ is cleared if
c(δ) ∈ C, where C is the set of admissible values of c. Thus, the set

D = {δ ∈ Θ | c(δ) ∈ C} (17.1)

defines the clearable domain of parameter values.
The μ-analysis based method provides an estimate D̃ of the domain D,

such that D̃ ⊂ D. Typical approximations of D rely on fine gridding of the
parameter domain and determine a union of cleared subdomains denoted by
D�. A precision indicator can be computed as the ratio of the domain D̃
hypercube volume and the volume of the approximated domain D� (usually
consisting of many small hypercubes). Obviously, this kind of information is
useful in a preliminary phase when setting up the methods and calibrating
them, to have confidence (or not) in the results. Its use in an extensive way
is not planned.

Parameters Tuning and Ease of Use

The user can tune several input parameters of the analysis function as, for
example, the sensitivities and tolerances to compute the μ upper bound,
the employed algorithm (LMI-based or not), etc. For all these parameters,
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carefully chosen default values can be used, so that, for practical use, the
only parameter to be tuned by the user is the minimum allowed length of
the investigated hypercube edge in the Θ domain. By relying on the default
settings, the user has therefore only to choose the criterion to be analyzed,
define the uncertain parameters δ and the corresponding search the domain
Θ through the LFR object definition, and set the minimum length for para-
metric search space subdivision. Therefore it is rather simple to use the μ-
analysis for stability clearance purposes, even without an expert knowledge
of this technique.

17.1.2 Convex Relaxations

Criteria and Results

The Lyapunov-based methods described in Chapter 9 are able to deliver a
guaranteed robustness margin (e.g., for the left half complex plane condition
or shifted imaginary axis condition, both involving to check that each model
eigenvalue λ satisfies 
(λ) ≤ α, α ∈ R) for either LTI or LTV models. In
the present case both have been studied to check aeroelastic stability for the
”Integral” benchmark and the un-piloted stability criterion in the presence
of saturations for the ”Nonlinear” benchmark.

In all cases, the method provides an estimate D̃ of the clearable domain
D defined in (17.1), such that D̃ ⊂ D. The same kind of precision indicator
as the one proposed for the enhanced μ-analysis techniques has been set up.

Parameters Tuning and Ease of Use

A GUI has been developed to interface with the available stability analysis
methods. In addition to the model to be analysed, the user can choose among
several relaxation methods (FD, DS, WB), the kind of multipliers (parame-
ter dependent, constant full, constant diagonal), the parametric region to be
investigated (default or user defined), the type of tilling approach (progres-
sive or adaptive), the structure of the Lyapunov function (common, affine
parameter-dependent, multi-affine parameter dependent) and the number of
domain partitions (NbPart). As the degrees of freedom available are high,
a compromise should be found between precision (increased either by more
complex dependencies or higher number of partitions) and computational
time. Although no clear best strategy has been highlighted in the application
chapter, a default strategy has been proposed (progressive tiling, FD method,
simple multipliers (full), affine parameter-dependent Lyapunov function), so
that the only remaining decision is the choice of the model (LFR object)
that includes the parameter range definition and the number of partitions. It
can be noticed that, compared to the enhanced μ-analysis technique, NbPart
corresponds to the number of domain partitions that are authorized, so that
the equivalent minimum subdivision length is equal to 1/2NbPart.
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17.1.3 IQC-Based Analysis Techniques

Criteria and Results

The IQC-based methods described in Chapter 10 can be used to check ro-
bust stability, stability margin or robust H2 performance (i.e., a guaranteed
level of H2-norm of a given transfer function on the whole parametric do-
main). Within the project, they have been used to check un-piloted stability
and eigenvalue criteria, as well as the aeroelastic comfort (H2) criterion for
the ”Integral” benchmark. The results are quite different depending on the
analysis performed. For stability criteria, the method provides an approxima-
tion of the clearable domain D defined in (17.1). For the comfort criterion,
the method provides a worst-case value cmax = maxδ∈Θ c(δ) and worst-case
argument δmax = argmaxδ∈Θ c(δ) as well.

Parameters Tuning and Ease of Use

The software is based on a set of scripts to deal with stability issues. In the
same way as for μ-analysis and Lyapunov-based methods, inputs are the LFR
and the number of subdivisions allowed for the partition strategy.

For the comfort criterion, it is possible to choose the comfort channel
(feet, seat, back, all) and the set of points of interest along the fuselage. The
number of partitions of the uncertainty region is also available. Since the
comfort analysis is based on the IQC theory, additional degrees of freedom
can be used in order to reduce the conservatism of the results, namely, by
the choice of position of poles of the dynamic multiplier (10, by default) and
its degree (2, by default).

17.1.4 Worst-Case Search-Based Methods

Criteria and Results

The worst-case search-based methods described in Chapters 8 and 11 apply
nonlinear programming techniques to minimize/maximize suitably defined
clearance criteria to determine worst-case combinations of uncertain param-
eters. These methods can be in principle applied to all formulated clearance
criteria in the clearance benchmark. However, the applications of these meth-
ods primarily focussed on time domain criteria involving expensive simulation
runs, as manoeuvrability, flight domain protection, or piloted stability criteria
in Chapter 13 and on the determination of worst-case pilot inputs in Chapter
16. Each clearance task has been formulated as a minimization problem of a
mathematical function c(δ) depending on uncertain parameters δ over a set
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of admissible values Θ. The results are the worst-case value found and its
associated input parameters

cmin = min
δ∈Θ

c(δ), δmin = argmin
δ∈Θ

c(δ)

The main appeal of the worst-case search-based methods is the lack of con-
servativeness via an exhaustive search of the admissible parameter domain
Θ. Also, the computed worst-case parameter vector δmin provides useful in-
formation to further improvements of control laws. Moreover, provided δmin

is a global minimum, then the clearance is achieved if cmin ∈ C (the set of
admissible values of c).

Of course, the difficulty to find the global optimum will increase with
the complexity of the c function and therefore the choice of an adequate
optimisation method will greatly depend on the problem itself. The authors
of Chapters 13 and 16 have therefore decided to include several optimisation
algorithms in their software and test them on the benchmark with both global
(stochastic) and local (gradient-based and gradient-free) methods.

Parameters Tuning and Ease of Use

For the analysis in Chapter 13, the first step is to define a model to serve
for the evaluation of the objective function c. This is achieved in the current
application by using an augmented aircraft simulation model based on the
provided Simulink model. Then optimisation parameters δ can be specified
through a dedicated GUI, where the user can activate the parameters for the
worst-case search, and define nominal values and simple bounds for them.
Additional flexibility is available to experienced users, by allowing to add
their own parameters to the list. The setup of the optimization problem for
the worst-case pilot determination problem in Chapter 16 relies on special
parameterizations of the pilot inputs.

Several optimisation methods and several parameters for each optimisation
method are available. According to the tests performed in Chapters 13 and
16, it appears that the evolutionary strategy (ES) is one of the best methods
or at least the one which statistically provides the highest probability to get
the global optimum for the validation problem. A default tuning of internal
algorithm parameters is provided to maximize algorithm efficiency for the
current benchmark. The two main parameters are the initial population size
and the tolerance to stop the algorithm. The population size should be pro-
portional to twice/three times the number of parameters to be tuned, but
this ratio can be increased if run-time is not a constraint, as this will directly
influence the ability to find worst cases. Genetic algorithm (GA2) developped
in Chapter 11 seems also to be efficient and will be selected for application.
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17.2 Methods, Criteria and Models

17.2.1 Techniques Mapping

Fig. 17.2 and Fig. 17.3 show the class of techniques developed and their use on
the two benchmarks: the rigid nonlinear benchmark (NLin) and the integral
benchmark (Lin). Two classes of techniques have been employed. The first
class is called LFR-based techniques and uses simplified closed-loop aircraft
models (known as LFT models or LFRs) to perform the robustness analy-
sis. The second class is called worst-case search-based techniques and applies
nonlinear programming methods to minimise suitably defined clearance crite-
ria to determine worst-case parameter combinations. The underlying models
should serve for criteria evaluation purposes and thus can be general purpose
nonlinear simulation models or any kind of linear model approximations (in-
cluding LPV models).

The results delivered by the two method classes have a complementary
character. The LFR-based methods are able to deliver a guaranteed stabil-
ity (and sometimes performance) region, whose estimation can be slightly
conservative (but nevertheless guaranteed) depending on the used method
and its tuning. These are called ”sufficient techniques” in Chapter 18. The
potential difficulties with these methods is the lack of full coverage of the
admissible parameter domain and the hight costs involved by the generation
and validation of low order approximations as LFRs. Moreover, these meth-
ods are usually not suited to produce worst-case parameter combinations,
but only bounds where the worst-case is supposed to lie.

On the other hand, the worst-case search-based techniques, called ”nec-
essary techniques” in Chapter 18, explicitly determine worst-case parameter
combinations together with the worst-case criteria values. Thus, if the em-
ployed optimization method provides also certificates for the resulting global
optima, these results can be used to assess the clearance. Moreover, a single
violation of clearance requirements allows to completely deny the clearance.
Besides the full coverage of the admissible parameter domain, the computed
worst-case parameter vector often provides useful information to further im-
provements of control laws. However, in general, there is no guarantee that
the worst case found by a particular method is a global optimum, and ob-
taining certificates for global optimimum can involve significant additional
efforts. Moreover, even if a worst-case value violates the clearance require-
ments, the range of values where such violations occur can not be directly
computed.

17.2.2 LFR Review

While worst-case search-based techniques can in principle use any kind of
input/output model (such as a black box), this is not the case for the methods
which use an LFR object to represent the model with uncertainties to be
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Fig. 17.2 Analysis applied to the rigid nonlinear benchmark clearance
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Fig. 17.3 Analysis applied to the integral benchmark clearance

analysed. Hence, for LFR-based techniques, a modeling step is mandatory
before the analysis can start. The final result and its relevance to the original
problem will then greatly depend on the quality of the model itself (see further
details in section 17.3.5). Therefore we discuss here the representativeness of
the generated LFR with respect to the original nonlinear model.



326 G. Puyou, R.F. de Oliveira, and A. Berard

Nonlinear Benchmark

To cover the whole flight envelope and the whole range of parameter vari-
ations, the flight domain for the rigid nonlinear benchmark has been par-
titioned into mutually disjunct subdomains on which accurate LPV-models
have been generated with acceptable complexity. We restrict our study to a
single LFR covering a single subdomain of the flight envelope. Since stability
problems usually occur in the extreme Mach and speed conditions, we have
selected the LPV-model number 16. In order to make it easier to interpret the
results, we also restricted the analysis to only two varying parameters: the
Mach number M and calibrated speed Vcas. The mass m and center of grav-
ity position Xcg have been kept constant at their nominal values: m = 217t
and Xcg = 29%.

A first check of how the LFR model approximate the nonlinear has been
performed using time domain analysis. For this, the effects of small pilot input
movements on the stick (δq) on some system outputs (q and θ) have been
compared for the original nonlinear model response, the linearized model
response and the selected LFR. The time responses shown in Fig. 17.4 are
representative of the accuracy of the model in the whole domain. The presence
of errors in the static gains reflects the difficulty of generating an LFR to be
representative of all the side-stick deflections, due to the nonlinearities that
exists in the control laws and that depends on the stick input value itself.
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Fig. 17.4 Time domain analysis of the LFRs for longitudinal stick input
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The time domain comparisons have been supplemented with analysis which
is closely connected to the clearance problem at hand. In our case, the LFR is
used exclusively to check the closed-loop system stability over the flight do-
main. Therefore, the initial goal was to evaluate the errors in the eigenvalues
characterizing different handling qualities modes (e.g., short period, phugoid,
Dutch roll, etc.) However, since this kind of analysis is really difficult to im-
plement, we refrained only to map the degree of stability of the closed-loop
models, defined as the maximum real part of the closed-loop system eigen-
values. In Fig. 17.5 we present the contour plots for the degree of stability
for linear model resulted from linearizations of the original nonlinear model
and the generated LPV model.
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Fig. 17.5 Degrees of stability of LFR vs. linearized models

A difference can be seen in the strict stability domain frontiers (degree
of stability equal to zero), but if we observe the results more precisely, we
can see that the differences in the stability degree values are small, with a
maximum value of 0.05.

Integral Benchmark

The LFR for the integral flexible aircraft benchmark has been generated using
a set of linearized state-space models provided for a number of mass/flight
point configurations shown in Table 17.1. The approach used in Chapter 4
to generate the LFR of the open-loop model ensures that the resulting LFR
is roughly exact on the set of original linear models. To analyse the resulting
LFR, accuracy tests have been performed using extra values of Vcas. The
comparisons presented in this paragraph concern the aircraft model with no
payload (PL), 50% of outer tank (OT) and 50% of central tank (CT) for a
Mach number of M = 0.91. For the generation of the LFR, three speed cases
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Table 17.1 Linear stability analysis grid

Variable Values

Vcas V1, V2, V3

Mach 0.7, 0.86, 0.91
PL 0%, 100%
OT 0%, 50%, 100%
CT 0%, 50%, 100%

were provided (V1 = 275 kts, V2 = 320 kts and V3 = 365 kts). For the sake
of comparison, additional flight points are considered at every 15 kts.

Comparisons of eigenvalues and frequency domain analysis results have
been performed for the longitudinal open loop system only. Fig. 17.6 and
Fig. 17.7 show a comparison between the frequency analysis using LFR and
the original model.

Fig. 17.6 Comparison of the frequency response gains between the generated LFR
and original linear models for frequencies up to 2.4 Hz.

Fig. 17.6 shows the variation with the calibrated speed Vcas of the fre-
quency response gain of the open-loop transfer function between the up-wind
input and the vertical load factor nz output (at the front of the cabin) for
frequencies up to 2.4Hz. This transfer function underlies the definition of the
comfort criterion (see Chapter 2). The coloured semi-transparent surface is
the gain of the transfer function of the generated LFR, while the coloured
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Fig. 17.7 Comparison of the frequency response gains between the generated LFR
and original linear models for frequencies up to 8 Hz.

lines are the gain of the transfer function obtained from the linearization of
the original model. The red arrows highlight the speeds whose corresponding
model was used for the creation of the LFR (V1=275 kts, V2=320 kts and
V3=365 kts). As expected, the matching between the LFR and the original
model frequency gains is very good at the speeds V1, V2 and V3. The matching
is also good in intermediary points between V2 and V3. But the LFR seems
to be over-evaluating gains for speeds between V1 and V2.

Fig. 17.7 shows a comparison of the gain of transfer function between up-
wind and the vertical load factor nz up to a frequency of 8 Hz. As previously
observed, the matching is very good for the speeds used for the generation of
the LFR (red arrows). Some discrepancies appear for frequencies around 2.5-
3 Hz (as already illustrated in the previous figure), but the overall matching
is good. The discrepancies found are due to errors in the LFR mode tracking
(for speed variations).

Fig. 17.8 illustrates mode tracking when Vcas varies. Most of the modes are
well approximated by the LFR, but some errors appear in the mode tracking
(circled in blue and red). It appears in the area circled in blue that the LFR
swapped two modes, as it fails to capture the folding of one of them. This
swapping results in some discrepancies between the frequency responses of
the models, but these are negligible since the two affected modes make only
a small contribution to the response of the aircraft to wind. The LFR mode
tracking errors are due to the fact that models for only three speeds were
used to generate the LFR.
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Fig. 17.8 Speed dependency of the real and imaginary parts of the eigenvalues of
the state matrix of LFR and original linear model

17.3 Straightforward Applications of LFR Based
Methods

All LFR-based methods described in Sect. 17.1 have been used to solve the
rigid benchmark stability clearance problem for the LFR number 16. The
results have been compared with those obtained by a baseline solution which
corresponds to the current industrial practice. The objective of our study was
to highlight the improvements provided by new methods over the baseline
solution and underline potential drawbacks.

17.3.1 Baseline Solution

In the baseline solution we addressed the linear stability problem over the
whole flight domain using a gridding based approach. The analysis consists
in linearizing the closed-loop nonlinear aircraft model on a discrete set of
flight conditions and parameter values and analysing the closed-loop stability
by comparing the maximum real part of the linearized closed-loop system
eigenvalues with a given stability degree α.
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17.3.2 Enhanced μ-Analysis Techniques

Analysis Run

We ran the stability analysis to delimit the stability region for different sta-
bility degree values of α. We tested both the classical stability degree of α = 0
and the value α = log 2/6 resulting from the un-piloted aircraft stability re-
quirement taking into account the admissible doubling time of 6s. For both
values, we tested two minimum subdivision length (led) values: led = 0.1
and led = 0.01, for which the analysis results are presented in Fig. 17.9 and
Fig. 17.10, respectively. The green squares represent the guaranteed stabil-
ity domains determined by the analysis function. The results of the gridding
approach employed in the baseline solution were also plotted: the red crosses
represent unstable points found, and green dots are the stable ones. Gray
areas are out of the LFR validity domain. It can be seen in Fig. 17.9 and
Fig. 17.10 that the most complex stability domain shape is obtained for
α =0. In this case (led=0.1), analysis is only able to find a stability domain
that corresponds to 58% of the real one. There is therefore a clear interest
in using a smaller subdivision length. For led = 0.01, the method is able to
estimate the stability domain within a 5% error, at the cost of an increased
computational time.
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Fig. 17.9 Stability analysis for two α values and led = 0.1

A sensitivity study was carried out for α = 0 to highlight the trade-off that
needs to be done between computational time and precision (Fig. 17.11). For
a given minimum subdivision length value, we plotted both the precision
of the stability domain estimation (called precision indicator) and the time
taken to perform this analysis. Of course, the more the subdivision length is
reduced, the closer we are to the true stability domain but, unfortunately,
longer computational time is necessary. It is difficult to extract default values
from this example because the results greatly depend on the shape of the
stability domain that we are trying to estimate. If we go back to the first
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Fig. 17.10 Stability analysis for two α values and led = 0.01
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Fig. 17.11 Computational time and achieved coverage of stability domain for
α = 0.

case (led = 0.1), although the estimation error was 42% (precision indicator
= 58%) for α =0, it was only 1% for the α = log 2/6 case. It is therefore
recommended to start with a middle value (led = 0.1 is a good starting
point) and then increase precision (i.e., decrease led parameter value) if the
accuracy of the result is not sufficient.

Comparison with the Baseline Solution

In the baseline solution, the employed grid is really coarse, so an unstable
region can easily be missed (see the case for α = 0). In this sense, the μ-based
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technique seems more powerful. On the other hand, this kind of analysis is
more time consuming, so it can be argued that refining the grid would have
delivered the same results by identifying the instability regions better. It is in-
teresting to note that, in this case, the the μ-analysis based approach and the
baseline solution with a fine gridding (with a step length corresponding to the
minimum subdivision length led) are equivalent in terms of computational
burden. Still, the μ-analysis results are more useful, since they guarantee
stability on compact regions instead of proving stability in discrete points.

Conclusion

This method provides a real improvement in terms of computational time (in
comparison with existing algorithms). It can handle high order LFR objects
(i.e., with high number of states and high order parametric blocks). Moreover,
the sub-domain division strategy enables the user to determine complicated
stability domain shapes (instead of square domains used in the basic version
of μ-analysis). Nevertheless, a trade-off between the resulted accuracy and
computational time is necessary. However, the method usually remains fast
for a less than 5% error result.

An enhancement provided by the method is to present a stability margin
analysis, which is still widely used in the industrial context. Of course results
should be treated with care, as their quality depends on LFR accuracy.

17.3.3 Convex Relaxations

Analysis Run

Using the same example as in the previous section, we selected two stability
degree values (α = 0 and α = log 2/6) and set NbPart=4, which is equiv-
alent in the previous μ-analysis method to led=0.1. Results are shown in
Fig. 17.12, where green squares are guaranteed stability regions, and red
squares are those for which at least one unstable eigenvalue has been found.
It should be noted that this does not necessarily mean that the entire red
square is unstable.

Here is a summary of the achieved results for α = log 2/6 and NbPart=4.
There were 49 convex optimization problems solved, which totally required
12.1 hours. Thus, about 15 minutes were necessary to solve each optimization
problem. In comparison, the time required for the gridding approach was
significantly shorter, being only 7 seconds. A positive feature of this method
is that the analysis covered the whole parameter region, of which 93.75%
is cleared and 6.25% is not cleared. The (red marked) not cleared squares,
contain at least one point where the clearance requirement is not fulfilled.

For this analysis, the computational time is quite significant. We measured
the computation times for two precision settings: NbPart=4 and NbPart=6. As
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Fig. 17.12 Stability analysis for two α values and NbPart=4

Table 17.2 Computational times (hours)

Stability degree α = 0 α = log 2/6

NbPart=4 (led=0.1) 16 12.1
NbPart=6 (led=0.01) – 36.4

it clearly appears from Table 17.2, that desired precision should be carefully
chosen to avoid excessive computational times.

Comparison with the Baseline Solution

The method produce solid results, with a 100% coverage of the parameter
region. This strongly contrasts with the poor coverage of the baseline solution
in only discrete points. The price for this higher reliability is a tremendous
computational effort, which is orders of magnitudes higher than for the base-
line solution. The improvements in reliability of the clearance results involve
therefore high costs and need to be carefully pondered.

Conclusion

The default strategy provided by the method can give good accuracy. Since
it can provide guaranteed stability regions whose shape is more complex than
an hypercube, the tiling strategy makes the result more powerful. Neverthe-
less, although an effort to make the analysis as quick as possible (and not
too conservative) has been provided, the computational burden is still high.
We do not report here the different tests we performed on the method and
multiplier choices, but nevertheless they did not seem to reduce the required
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time while maintaining accuracy. Since the LFR object size has a huge im-
pact on computational time, one way of improvement could be to include for
the tightest region a LFR reduction step to take advantage of the reduced
parametric variation intervals. Although some direct LFR reduction meth-
ods can be really fast, this added step is not obviously instantaneous and a
compromise should be found at the end.

17.3.4 IQC-Based Analysis Techniques

Analysis Run

To benchmark the method and make a fair comparison with previous tech-
niques, we implemented the stability analysis restricted to the (Mach,Vcas)
domain with α =0. The results are plotted in Fig. 17.13. We apply the same
colour coding as for the μ-analysis technique (see subsection 17.3.2). The
computational time of 8500 seconds (i.e., about 2.4 hours) is still acceptable,
but the accuracy of the results is poor. Another test was therefore performed
on a relaxed stability requirement (α = log 2/6) which provided slightly bet-
ter results, but with an increased amount of time (about 5.5 hours).
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Fig. 17.13 Stability analysis on the (Mach,Vcas) domain

Conclusion

In our opinion, these new IQC-based analysis methods are not yet sufficiently
mature and should be investigated further. First, computational time is still
high, and there is room for a more efficient numerical approach (see the μ-
analysis example). Moreover, IQC-based techniques should be carefully con-
sidered in solving problems which are more complex than the classical trim
point linear stability analysis.
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17.3.5 Discussion

All three LFR-based methods are able to solve the stability clearance prob-
lem and determine the guaranteed stability domain with a good accuracy, but
the methods strongly differ in terms of required computational effort. On the
same problem and for the same accuracy requirement (i.e., minimum subdi-
vision length), the computational time varies from 440s to solve the problem
with the μ-analysis techniques, 8506s with the IQC-based method and 57622s
with the Lyapunov-based approach. Although the use of Lyapunov- and IQC-
based techniques may not be optimally adapted to this specific problem (i.e.,
configuration of parametric dependencies), these methods seem to be not
well-suited for a wide use. The μ-analysis technique seems to be the most
promising for an immediate integration in an industrial clearance process.
For the sake of comparison, we performed the stability a analysis over the
full parameter range of Vcas, M , m and Xcg using both the enhanced μ-
analysis and the gridding-based approach (for the baseline solution) on a fine
grid. For a minimum subdivision length of 0.0625 it took about 32 hours to
analyse the LFR model 16 with the μ-analysis technique. Within the same
time it was possible to perform the analysis of 684 ≈ 21.4 millions individual
parameter points, so that the achieved grid minimum subdivision length cor-
responds to 1/68 ≈ 0.0147. In this sense, the precision of results is four times
higher for the gridding approach. On the other hand, the μ-analysis technique
provides more useful results by guaranteeing stability of whole continuous re-
gions rather than the stability of a finite set of points for a gridding-based
approach. Therefore, for the baseline solution the stability in intermediary
points is only assumed, but without any guarantees. However, for practical
use we can therefore consider that both methods have similar performance.

Independently of performance results, these methods are still based on the
use of a suitable LFR, which provides an approximation of the nonlinear
closed-loop system. Therefore, from the clearance point of view, both the
LFR generation and the LFR-based analysis should be considered as part
of the clearance process. In Fig. 17.14 we present a comparison of the clear-
ance processes based on a gridding approach (used for the baseline solution)
and on LFR-based methods. If we only focus on the clearance results for
the determination of the stability domain, we already knew that LFR-based
methods are more powerful, since they provide a continuous stability do-
main Sc, whereas the baseline solution provides only a finite set of points Sd.
Then, theoretically the following inclusions must hold: Sc ⊂ D and Sd ⊂ Sc.
However, there are still two sources of difficulties. The first one regards the
conservatism of the analysis method, quantified via the parameter ε̄, that
may make Sd 
⊂ Sc, the second on is the error in the LFR approximation
ε, that may make Sc 
⊂ D. We saw that conservatism of the method is easy
to monitor using the minimum subdivision length. However, the error in the
LFR approximation error is an issue that has not been addressed by the
partners and especially a way to include it in the analysis result is missing.
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Fig. 17.14 Clearance process - Gridding-based vs. LFR-based approaches

In Chapter 12 the authors propose a way to address this problem, but it has
not yet been applied to any concrete clearance problem.

The LFR generation is usually a time-consuming activity, so if we consider
both the modeling and analysis as a whole, the LFR-based approach does
not seem to be a ready to apply and competitive method compared to the
gridding-based approach used in the baseline solution. This could however
change in the future if the LFR generation process will be automated and if
the LFRs are not only used for the clearance purposes, but also for control
laws design.

17.4 Straightforward Applications of Worst-Case
Search-Based Methods

LFR-based methods can be used when dealing with clearance problems which
can be formulated as linear systems robustness analysis problems. A typical
application is stability analysis around constant trim points. However, to
handle more complex validation problems, there is a need for high fidelity
non-linear models which are used for the evaluation of clearance criteria via
simulations of the augmented aircraft model.

A typical example is the validation of aircraft flight domain protections,
where it has to be assessed that with any combination of pilot inputs
and initial flight conditions, the aircraft remains within the flight envelope
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boundaries. Such a problem can be addressed by the worst-case search-based
methods, which will be studied in this section.

As benchmark model, we use the Simulink model of the augmented aircaft
presented in Fig. 2.4 of Chapter 2. For the flight domain validation, two basic
problems were selected for comparisons purposes. The first one is related to
the aircraft performing a fixed manoeuvre and finding the worst flight con-
ditions for it. The second problem is related to finding the (worst-case) pilot
input that causes the most critical response of the aircraft. Both problems
aim at validating the maximum angle of attack protection efficiency.

17.4.1 Baseline Solution

Part of the validation process currently used by the industry relies on gridding
the input domain, or performing Monte-Carlo simulations in order to assess
the behaviour of a system. The flight domain validation is usually performed
using a gridding approach in conjunction with a fixed flight manoeuvre, while
the determination of worst-case pilot input is handled using Monte-Carlo
simulations. In what follows, we describe the baseline solutions for each of
these problems.

Fixed Manoeuvre Analysis Using Gridding

The main use of the gridding approach is to prove that the aircraft is able to
perform a set of basic manoeuvres without problems. The manoeuvre studied
here is shown in Fig. 17.15 and is related to the maximum angle of attack
protection, associated with the roll angle protection. It is currently performed
during the validation phase of flight control laws, and its outputs are checked
for no overshoot of the αmax and that the roll angle is limited to at most 45�.
This manoeuvre is currently checked for a grid of 54 flight points defined by
Table 17.3.

0 5 10 15 20 25 30 35 40 45 50
−16

−14

−12

−10

−8

−6

−4

−2

0

Time [s]

In
pu

t [
de

g]

 

 

Longitudinal Stick Input (dqm)
Lateral Stick Input (dpm)

Fig. 17.15 Fixed manoeuvre for angle of attack protection
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Table 17.3 Flight domain grid for fixed manoeuvre at altitude 35000 [ft]

Mass CG Position Mach

0.5 � (MLW +MZFW ) Forward 0.7 0.75 0.78 0.83 0.85 0.87 0.89
0.5 � (MLW +MZFW ) Median 0.7 0.75 0.78 0.83 0.85 0.87 0.89
0.5 � (MLW +MZFW ) Aft 0.7 0.75 0.78 0.83 0.85 0.87 0.89
0.5 � (MLW +MTOW ) Forward 0.75 0.78 0.83 0.85 0.87 0.89
0.5 � (MLW +MTOW ) Median 0.75 0.78 0.83 0.85 0.87 0.89
0.5 � (MLW +MTOW ) Aft 0.75 0.78 0.83 0.85 0.87 0.89

MTOW Forward 0.78 0.83 0.85 0.87 0.89
MTOW Median 0.78 0.83 0.85 0.87 0.89
MTOW Aft 0.78 0.83 0.85 0.87 0.89

Worst-Case Pilot Input Determination Using Monte-Carlo Method

To analyse the flight control laws protection in the whole operating domain,
a Monte-Carlo method is currently used. Random pilot inputs are applied
at random flight points, and protections of the flight envelope are checked.
For the tests performed on the Simulink model, a simple parameterization
of the pilot inputs was used, with two points in a fixed time step for both
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Fig. 17.16 Random pilot input
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longitudinal and lateral sticks, as shown in Fig. 17.16. The time-step was
taken at 10 seconds, and points were in the range of full stick deflection.

One main advantage of the Monte-Carlo method is repeatability of results
(random points are created always using the same seed), so that, when a new
version of the flight control laws is developed, the engineer can compare re-
sults, looking for improvements and especially for performance degradations.
Another advantage is that it is possible to validate several different criteria at
the same time, thus reducing the number of runs required to check different
aspects of the flight control laws to a single Monte Carlo analysis.

17.4.2 Comparisons with the Baseline Solution

We applied the worst-case search based method to both benchmark prob-
lems. The general idea of the optimization based worst-case search is shown
in Fig. 17.17. Here, the determination of the worst-case pilot input and worst-
case parameter combination is described. However, the case a fixed manoeu-
vre is also covered, by keeping the same pilot inputs during the optimization
run, while varying only the flight parameters. For optimization purposes we
only employed the evolutionary strategy (ES) and genetic algorithm (GA)
to solve the clearance benchmark problems. In what follows we discuss the
main findings of our study.
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Fig. 17.17 Overview of simulation-based validation

Fixed Manoeuvre - Gridding vs. Optimisation

The gridding approach (using the flight points defined in Table 17.3) is shown
to be very limited in comparison to optimisation. It performs a set of 54
simulations, and can find only one worst case with an overshoot of 0.9◦.
Optimisation was able to identify, using the same manoeuvre and altitude-
speed limits, worst cases with overshoot of over 2.0◦, as can be seen in
Fig. 17.181.

1 In Fig. 17.18, since we have formulated the validation problem as a minimization,
overshoot is negative. Thus a 2.0◦ overshoot of the maximum angle of attack value
corresponds to a −2.0◦ value in the third column.
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Fig. 17.18 Comparison of results - Gridding vs. optimisation

Worst-Case Pilot Input - Monte-Carlo Method vs. Optimisation

It was found, during comparison of the methods, that one of the main weak-
nesses of the Monte-Carlo method is that it does not explore the flight domain
after a worse case is found. It only reports that there is something wrong but
without searching around it for worst points.

On the other hand, optimisation was consistently able to gather worst
cases and improve them. The cost of this is that it will take more time to
explore the whole flight domain than with the Monte-Carlo method, as the
population size is usually small due to run-time constraints, and more than
one run is required. Another advantage of the Monte-Carlo method is that
many criteria can be checked at the same time. Multi-criteria optimisation
is investigated later in section 17.5. Nevertheless, results obtained through
optimisation show its real value. Violations found were consistently worse
than those found by the Monte-Carlo method (able to find only one αmax

overshoot of 1.3◦), while optimisation could find overshoots up to 8◦.

Comparison of the Methods

On the basis of the results reported in Fig. 17.18 and Fig. 17.19, it appears
that for these clearance problems the evolutionary strategy is more efficient
than the genetic algorithm to find the worst case within a limited number of
runs.
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Fig. 17.19 Comparison of results - Monte-Carlo method vs. optimisation

17.5 Industrial Application of Worst-Case
Search-Based Methods

As worst-case search-based methods seem to provide promising results and
can be adapted to any simulation tool, we decided to implement them in an
industrial context.

17.5.1 Coupling of Optimisation and Simulation
Model

In the context of the COFCLUO project, a Simulink-based long-range aircraft
model was used as a way to represent the industrial application. To implement
internally the methods developed for COFCLUO, the Simulink model was
replaced with a certified flight loop model that is capable of simulating many
AIRBUS aircraft, with different configurations, engines, systems, and flight
control law versions, among several other options. The model is a stand-
alone application that receives a specially crafted xml file representing the
simulation inputs (including operating point, pilot inputs for controls and
engines) and required outputs. The simulation is run on a dedicated server,
and the outcome is processed to calculate each criterion. The whole process
is shown in Fig. 17.20.
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Fig. 17.20 Overview of the optimisation process

17.5.2 Benchmark: Worst-Case Pilot Input

Objective

Current practice within AIRBUS is mainly based on extensive use of sim-
ulation on either deterministic or randomly generated grids of points (see
section 17.4.1). To test the usefulness of optimisation in a real validation of
flight control laws, it is necessary to know if the novel method is better than
the current practice (at least maximizing the probability of finding worst
cases), so a comparison between the Monte-Carlo method and optimisation
was made.

In the case of validation using random pilot inputs, the flight points
(weight, position of CG, initial speed and altitude) and pilot inputs (lat-
eral and longitudinal side-stick, pedal, throttle and air-brakes – Fig. 17.21)
are taken randomly. The aircraft slats/flaps configuration is taken as clean.

Stick & Pedal Inputs Throttle

Fig. 17.21 Definition of a random pilot input
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Table 17.4 Parameters settings and ranges for the random pilot input test

Flight Domain: Altitude (between 10 and 43 kft)
%CG (between 0 and 100% of available range)
Mass (between OEW and MTOW)
Speed (between Vls and VMO)

Pilot Inputs: Longitudinal Stick (2 values, 3 timesteps)
Lateral Stick (1 value, 3 timesteps)
Pedal (2 values, 3 timesteps)
Left Throttle (2 positive values, 3 timesteps)
Right Throttle (2 positive values, 3 timesteps)

The settings of search parameters and their variation ranges are given in the
Table 17.4. The total number of parameters amounts to 27.

The currently used Monte-Carlo method checks for violations in many
criteria, and while this could be implemented in a multi-objective setting, it
was decided that a comparison with only two time domain criteria would be
done first, both for time constraints and not to have unexpected influence on
the outcome. The protections for α < αmax and Vcas < VD were selected, as
they require, at least different flight conditions (α < αmax usually being a
low-speed problem, and Vcas < VD the opposite). The criteria are defined as

cαmax = min
t

[αmax (t) + αoffset (t)− α (t)] (17.2)

cVcas<VD = min
t

[
−Vcas (t)
VD (t)

]
(17.3)

where αmax and VD are respectively the maximum angle of attack and maxi-
mum dive speed that the aircraft is allowed to reach, as calculated by the air-
craft flight computers during simulation. There is an allowed offset (αoffset)
of at most 2◦ for the αmax protection, that is a function of aircraft indicated
speed. Sample violations are shown in Fig. 17.22.

Baseline Method - Monte-Carlo Method

The current validation of flight control laws is done in two separate parts,
one using a gridding approach and the other the Monte-Carlo method. The
purpose of the gridding approach is to check, in fixed flight points, how the
control laws are performing, while the Monte-Carlo method is used to ensure
the completeness of the protections. For this, random pilot inputs are applied
at random flight conditions, and the simulation results are then checked for
any misbehaviour and the probability of violations.
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Fig. 17.23 Monte-Carlo simulation results for the random pilot input test

A typical Monte-Carlo simulation run with 400 points is presented in
Fig. 17.23, where it can be seen that the method is only capable of find-
ing some small violations of 5◦ for the αmax protection (-5◦ on the ”αmax

violation” plot) and at most 7% for speed protection (-7% on the ”-Vcas/VD”
plot).

COFCLUO Approach

Different criteria can also be dealt with either by separate single-objective
optimisations or by multi-objective optimisations.

By focusing on a single criterion, the single-objective optimisation method
should be better (i.e. more efficient) at finding worst case values for each
criterion. Nevertheless, Pareto-based multi-objective optimisation methods
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are supposed to provide a set of optimal solutions corresponding to different
weighted linear combinations of the selected criteria. Hence single-objective is
a special case of multi-objective which should not just focus on solutions that
violate all criteria at the same time (Fig. 17.24). One of the main advantages,
compared to single-objective optimisation, is to share information generated
during simulation results for different criteria.

Therefore, multi-objective optimisation using the concept of Pareto opti-
mum was tested. After simulations are performed and results analysed for
violations, these violations are ranked, so that the non-dominated worst case
solutions have a higher probability of being selected during optimisation
(Fig. 17.24).

Both single-objective and multi-objective optimisations were run. Results
showed, at least on our application, a clear saving of time without any lack of
optimality when using the Pareto approach. It will therefore be the baseline
approach for subsequent optimisation.
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Fig. 17.24 Pareto frontier for α < αmax and Vcas < VD criteria

Comparison of Results

Pareto frontiers for Monte-Carlo method and for optimisation are shown in
Fig. 17.25. It can be seen that Monte-Carlo method was not capable of finding
significant worst cases while optimisation was able to find and refine them.
One interesting point is that, although initially the two criteria are supposed
to be antinomic (one corresponds to high speed and the other to low speed),
optimisation was able to find points where both criteria were violated at the
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Fig. 17.25 Comparison of Pareto frontiers

same time. This may be an isolated case but it demonstrates the interest of
using multi-objective optimization anyway: either a method is able to find
worst cases for several criteria in the same area and then you can save time,
either worst cases are decoupled and then Pareto front will grow in several
directions at the same time.

Conclusion

The use of optimisation methods for validation of flight control laws has
proven to be interesting, but it is also important for the engineer to have a
way to first check if changes in flight control laws result in improvements or
regressions and then evaluate the importance of the worst cases with respect
to the ones which fulfil the specifications. Simply replacing the Monte-Carlo
method by optimisation is not ideal, as Monte-Carlo method has its usefulness
for comparing different versions of the flight control laws, as inputs are created
by a pseudo-random number generator that can be initialized with the same
seed. In this sense, the ideal outcome we have found is to complement the
Monte-Carlo method with optimisation, in a way that optimisation will start
from the previous results found by Monte-Carlo simulations. This actually
improves optimisation, as it is better to select the initial points from a more
comprehensive population than restricting it to a small set.

17.5.3 Enhancements

This section presents enhancements of the original method proposed in the
previous chapters.

Selection of Optimisation Methods

Previous studies by [1, 2, 3, 4] have shown that stochastic methods, such
as genetic algorithms (GA) have exceptional robustness for the type of
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problem studied here, but generally require many evaluations before conver-
gence. Initial studies within COFCLUO found another evolutionary method,
called Evolutionary Strategy (ES) that yields better results in the clearance
challenge, but as different methods became available, a new comparison of
methods was made using the validation scheme proposed. Besides the GA
method, with two implementations denoted GA1 (from the MATLAB soft-
ware) and GA2 (from 11), and the ES method (from 8), also a new method
developed internally called Variability Preservation Search (VIPS) (see ref-
erence [7]) has been tested using single criterion optimisation, to solve the
α < αmax protection issue. The initial population was created with 100
points, and was kept the same for all runs.

Each method was allowed to run for 400 simulations, and 20 runs were
made to compare the ability to converge to a worst case. From the results in
Fig. 17.26 and summarized in Table 17.5, it can be seen that both GA2 and
VIPS consistently found violations, with VIPS being able to find worst cases
more often (in the current context where the number of runs is limited). The
ES method was also able to find worst cases in every run, with a minimal
violation of 3.4◦ , but was unable to improve them beyond a certain point.
The cumulative probability of finding worst cases is presented in Fig. 17.27.

Fig. 17.26 Results for α < αmax, different optimisation methods starting with
same initial population

As explained above, the capability of dealing with more than one criterion
at the same time is also required. Multi-objective optimisations are generally
performed by stochastic methods, and many techniques for this have already
been studied, such as fitness-sharing, Pareto domination and non-dominated
Pareto ranking [8]. Here, only the concept of non-dominated Pareto fronts,
as presented by [9], was used to assess the performance of multi-objective
optimisation methods. Both α < αmax and Vcas < VD protections are now
checked. The methods tested were: the baseline Monte-Carlo method, NSGA2
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Fig. 17.27 Distribution of worst-cases for α < αmax protection, different optimi-
sation methods starting with same initial population

Table 17.5 Summary of results for different optimisation methods for α < αmax

violation

Method Maximum Minimum Average Std. Deviation

GA1 −33.4◦ −0.7◦ −7.4◦ 7.4◦

ES −16.7◦ −3.4◦ −7.5◦ 2.9◦

GA2 −31.6◦ −0.5◦ −10.3◦ 7.1◦

VIPS −49.6◦ −2.1◦ −15.3◦ 13.6◦

Table 17.6 Summary of multi-objective results for α < αmax and Vcas < VD

violations

Method Worst Minimum Average Worst Minimum Average

NSGA2 −9.9◦ 1.4◦ −0.4◦ −11.7% 3.78% −2.7%
Monte-Carlo −8.6◦ −1.7◦ −3.1◦ −17.2% −6.4% −11.1%
GA2 −17.9◦ −2.4◦ −8.6◦ −26.1% −12.2% −21.2%
VIPS −54.2◦ −3.8◦ −11.6◦ −38.7% −11.9% −18.7%

(from [9]), GA2 and VIPS. The setup for this test consisted of 20 runs with
400 evaluations each, starting with an initial population of 20 random points
(keeping the same between methods during each run).

It can be noted from Fig. 17.28 and Fig. 17.29 that NSGA2 performed
worse than Monte-Carlo method. This shows the necessity of tuning opti-
misation methods to the highly non-linear COFCLUO problem (as also ex-
plained by [3,10]). Between the other two GA2 and VIPS, both have notable
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Fig. 17.28 All violations found for each criteria, 20 runs for each method

−60º −50º −40º −30º −20º −10º 0º
40%

30%

20%

10%

0%

−10%

α
max

 violation [deg]

V
ca

s/
V

d 
vi

ol
at

io
n

 

 

GA2
Monte Carlo
NSGA2
VIPS

Fig. 17.29 Final worst-case value for each run

results, finding worst-cases in 100% of the runs, with an average violation of
−8.6◦/−21.2% for GA2, and −11.6◦/−18.7% for VIPS.

Effects of Parallelisation

Generate-and-test methods, such as genetic algorithms, evolutionary strategy
and Monte-Carlo method, are well suited to parallelisation due to their na-
ture. As cases are independent of each other, multiple simulations can be run
at the same time, thus reducing the total elapsed time. Currently, paralleli-
sation is made using a simulation server that takes input data from optimisa-
tion, performs full aircraft simulation, and then returns the results. A study
of parallelisation speedup was made, and results are shown in Fig. 17.30.
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Fig. 17.30 Optimisation runtime and speedup, 500 simulations

Although it is possible to significantly reduce the computational time re-
quired, there is still a huge gap between the ideal and achieved speedup. This
is related to some time-consuming operations that are performed in a serial
manner, such as reading and plotting results. Therefore, further improve-
ments can be made to reduce this time, making this validation tool more
efficient.

Local Single-Objective Optimisation

One problem found in global methods is that, although they are able to find
worst-cases with good probability, they sometimes have limited convergence
performance, as investigated by [5, 6]. Unfortunately we are both limiting
the number of runs and using multi-objective methods with a wide searching
area. In order to improve results, a local single-objective approach was tested
(in addition to multi-objective optimisation), using the pattern search (PS)
method. Use of a global single-objective method before a local one would
have been wiser, but results were not better when limiting the evaluation
number. The pattern search method takes previously found worst cases, and
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Fig. 17.31 Improvements obtained by pattern search, results for α < αmax

uses them as the initial point for a pattern search optimisation. Basically,
each input variable is incremented monotonically by a small δ, and when
a better point is found, the method starts to move in that direction, until
improvement stops. Then it starts again with this new point, reducing δ as
necessary until convergence.

The use of pattern search after optimisation was tested with 40 runs using
α < αmax protection, and was found to be worthwhile. Results in Fig. 17.31,
before and after pattern search, show improvements for most of the worst
cases tested, with an average improvement of 5.5◦.

A typical result of hybrid optimisation is shown in Fig. 17.32. The method
started with a previously found worst case, running 50 simulations (a small
number to test its usefulness when many worst cases will have to be tested).
A significant improvement of the worst-case was found, increasing the αmax

overshoot from −4.53◦ to −8.85◦, by making small changes in four key vari-
ables, as detailed in Table 17.7 and Fig. 17.34. From the 27 parameters that
define the simulation, it was possible to identify 4 of them that improved
results.

There is still a high computational cost of using local methods, as due to
their nature, they are hard to parallelise compared to global stochastic meth-
ods. Therefore, it is suggested that local optimisation should be restricted to
some selected worst cases, after previous runs of a global method were able
to find them, but got stuck in improving results. A possible way to parallelise
this is to perform several pattern search runs at the same time, using different
worst cases found.

Sensitivity to Inputs

From an engineering point of view, it is of great interest to know what caused
a bad response from the flight control laws in each worst case. Currently, this
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Fig. 17.32 Improvement in worst case using pattern search

Table 17.7 Changes in four worst-case parameter valuesa

Parameterb Start Point After pattern search

Mass [% of MTOW] 68.30% 67.17%
pcT0

manche 5.48� 5.86�

pcP1
manche 9.66� 10.19�

throttleT0
left 11.94� 11.56�

a All other parameter values are kept unmodified.
b Definition of parameters (see Fig. 17.21):
pcT0

manche is the lateral stick position during initial step time T0;

pcP1
manche is the first step amplitude variation of lateral stick, P1;

throttleT0
left is the left throttle position during initial step time T0.

is done by hand, trying to identify relevant parameters in the simulation. A
sensitivity analysis is implemented by changing each input variable by a con-
figurable amount and analysing results to see which parameter has most in-
fluence. It requires only twice the number of parameters function evaluations
to be performed, and is suitable for parallelisation, so the cost of performing
a sensitivity analysis is low, taking, with the current implementation, less
than 20 minutes to run. Fig. 17.33 illustrates the basic principle of sensitivity
analysis for the worst-case solution.
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Fig. 17.33 Sensitivity analysis

Fig. 17.34 shows a sensitivity report before and after local optimisation,
providing information on which input parameters are influencing the results.
It can be seen that pattern search correctly identified the parameters Mass,
pcT0

manche and pcP1
manche as the ones capable of improving the worst case, and

there was still room for improvement, especially in the parameter pcP1
manche,

but the algorithm was unable to find it with the small number of function
evaluations defined.

Fig. 17.34 Sensitivity report before (left) and after pattern search (right) - Some
parameters are not shown

17.5.4 Proposed Validation Workflow

As for the clearance problem, it is important for the engineers to have, not
only for certification but during the design phase, a way to check if flight
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control laws are performing adequately in the main part of the operating
domain. Moreover, it is interesting to compare different versions, to verify
improvements and regressions. Monte-Carlo method is useful for this, as it
can be initialized with the same seed between runs. But Monte-Carlo method
alone does not provide the necessary insight compared to the results ob-
tained with optimisation. In this sense, the ideal outcome is to complement
Monte-Carlo simulations with optimisation, as described in Fig. 17.35. The
proposed validation scheme starts with performing Monte-Carlo simulations,
and then, different multi-objective optimisation runs are performed. Selected
worst cases are then used as initial points for a hybrid-optimisation using the
classical pattern search method. Finally, sensitivity analysis is used to give a
comprehensive view of what is causing the unwanted response, and to guide
the engineer in understanding and solving the problem.
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17.6 Conclusion

LFR-based analysis methods are interesting to be used in the first design val-
idation loop, to perform linear analyses such as stability checks or robustness
margins for uncertainties. The computational burden seems to be no longer
an issue, and results are more powerful than current baseline gridding-based
solution. But an efficient modeling process is still needed, which is something
that may be missing today (even after this project). Two main issues are
still open. The first is the automation of the aircraft LFR generation process,
but this is mainly a matter of developing the required tools. The second is
probably more difficult to handle, since it is related to the way to integrate
modeling errors in the final result provided by the analysis. A preliminary
approach has been initiated in the paper, but it relies on a gridding based
approach. Whatever solution that could be found to these two open points,
it appears that a generalized use of LFRs for controller design and analysis
should be built up to make modeling time investment profitable, focusing on
the open loop aircraft model only. Regarding analysis techniques, we have
mainly tried to solve an LPV stability problem. We should think about use-
fulness of techniques (Lyapunov and IQC) to solve other problems and even
address more complex ones, such as the piloted aircraft stability issue.

Worst-case search methods, coupling optimisation and simulation on the
full nonlinear model, appear to be really mature and easy to implement in an
industrial context. The results are quite different from those obtained with
the gridding or Monte-Carlo based approach. There is no longer the idea of
a domain, only worst-case values and arguments are provided. However the
methods provided are usually better suited (i.e. with an higher probability) to
find worst cases than Monte-Carlo-based approaches with the same amount
of simulations. Optimisation is therefore no longer a competitor, but should
be used as a complement to current approaches. A mixed use in a complete
workflow has been set up to respond to validation needs. Although these
methods are powerful, experience shows that they do not stop the user from
keeping a critical view on the results. Special attention should be paid to the
model validity domain which can be exceeded.
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Chapter 18

Concluding Remarks and Industrial
Perspective

Anders Hansson and Philippe Menard

Abstract. In this chapter the achievements of the COFCLUO project are
summarized. The possible exploitation of the results is discussed. Finally,
directions for future research are given.

18.1 Summary of Achievements

The optimization techniques for Clearance of Flight Control Laws (CFCL)
developed within the COFCLUO project have been tested on two realistic
and relevant benchmarks with a very positive outcome.

The first benchmark considers CFCL for a rigid aircraft with a non-linear
model of the closed-loop flight control system. Two major issues have driven
this choice: performance assessment in a nonlinear framework, and validation
of requirements on the whole flight domain considering a wide class of pilot
inputs and wind perturbations. The second benchmark considers CFCL for
a flexible aircraft with a linear model, for which the bending modes are very
close to the rigid body modes.

For implementing different clearance criteria for a range of optimization-
based approaches, different types of parametric models were needed to be
employed. A non-linear dynamics aircraft model with explicit parametric de-
pendencies has been developed together with appropriate flight control laws
to be cleared. Also a collection of so-called integral linear models depending
on relevant parameters have been provided to model flexible aircraft configu-
rations. A criteria library has been defined and implemented starting from the
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specifications of the benchmark problem for both the integral linearized as
well as the non-linear closed-loop aircraft models. The availability of reliable,
accurate and fast trimming and linearization tools was essential for generat-
ing linearized models. Such tools have been developed and served for efficient
and accurate criteria evaluations in optimization-based worst-case search.
The trimming and linearization tools have been also used to obtain param-
eter dependent linear models, the so-called linear parameter varying (LPV)
models, which can be alternatively described using linear fractional trans-
formation (LFT) based representation of system matrices. The LFT-based
models for the closed-loop aircraft models, both nonlinear and integral mod-
els, have been generated to serve for analysis purposes. The LPV-modelling
and LFT-generation activities have been pursued practically during the whole
project period by improving successively the quality of approximations, de-
veloping new LPV-approximation methods and generating LFT-models of
lower complexity.

The clearance techniques can be grouped in two different categories:

1. Sufficient techniques based on solving convex optimization problems and
using LFT models of the aircraft.

2. Necessary techniques based on solving nonlinear optimization problems
and using standard nonlinear differential equation models of the aircraft.

In the first category, LFT models have to be developed and then convex opti-
mization problems are solved. In the case when the analysis method delivers
a positive answer, it is for sure known that the whole region of the flight en-
velope and the whole region of uncertain parameters considered are cleared.
However, if the method delivers a negative answer, nothing is known, i.e.
it could be the case that the region considered is safe, but the method was
not able to provide that answer. Therefore the methods in this category are
conservative, i.e. they are so-called sufficient techniques for CFCL. Also the
methods might provide the wrong answer in the case the LFT models do not
approximate the nonlinear differential equations of the aircraft accurately
enough.

In the second category, no LFT models need to be developed. In the case
a method finds a violation of a clearance criteria, it is for sure known that
there is a point in the flight envelope which is not cleared. In the case when
the optimization algorithm is able to find the global optimum, at least one
unsafe point in a region that has unsafe points will be found. However, in such
a case presumably a whole neighborhood of points will contain only unsafe
points. This is the reason why this category of methods are called necessary
techniques for CFCL. However, solving nonlinear optimization problems is
difficult, and often only local optima are found. Because of this, it may happen
that these methods fail to find unsafe points, although such point may exist.
Hence, in general, if the method cannot find an unsafe point, usually nothing
is known, i.e. it could be the case that the regions considered are not safe
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because the method has missed an unsafe point, or the region is safe because
there are no unsafe points.

Because of what has been said above the two different categories of meth-
ods are complementary to one another. In case a method in category 1 cannot
say anything for sure, it could be that a method in category 2 may detect
an unsafe point. Also in case a method in category 2 cannot say anything for
sure, it could be the case that a method in category 1 can clear the whole re-
gion under consideration. Of course it can also be the case that methods from
both categories employed together cannot say anything for sure. Notice that
it should never be possible for a method in category 1 to clear a region at the
same time as a method in category 2 finds an unsafe point, unless the LFT
models do not approximate the nonlinear differential equations accurately
enough. This fact can be used to validate or invalidate the LFT models.

In comparison with the Monte Carlo simulation based approach currently
used in the industry for both robustness assessment and performance cer-
tification, the sufficient techniques are promising, though in some cases too
slow. The usefulness of the sufficient techniques relies on accurate enough
approximations of the nonlinear differential equations with LFTs. However,
the more accurate the approximations are, the larger the dimension of the
LFT models are, resulting in longer computational times for the sufficient
techniques for clearance. Hence there is trade-off between accuracy in the
results and the time it takes to obtain the results. It should be stressed, that
if the LFTs are accurate, then the sufficient techniques can guarantee that a
whole region is cleared and not only the generated points as is the case with
Monte Carlo simulation.

The necessary techniques are usually able to find cases that are worse than
those obtained with Monte Carlo simulations when using the same number
of simulations. However, they are not able to determine compact domains
of parameter values containing only safe (cleared) and unsafe (not cleared)
points. The resulting worst cases are only isolated points, which can be used
to complement the results of Monte Carlo analysis techniques in guiding the
designers in their understanding of what may lead to these worst cases.

To summarize, the project has resulted in new modelling techniques as
well as new optimization based clearance techniques. Usefulness of LFTs has
been demonstrated as well as the potential and maturity of global optimiza-
tion. Huge efforts have been made to make large-scale computations feasible
by exploiting problem structure and inherent computational parallelisability
features. Easy to use software, like GUIs, global tuners, and guidelines have
been developed to assist the users. It has been demonstrated on an industrial
benchmark that the new techniques are very promising, and it is the inten-
tion of AIRBUS to use some of these new techniques in their development
process.
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18.2 Industrial Perspective

Industry has made a substantial step forward thanks to the COFCLUO
project and a part of the delivered methods will be used in a development
context within AIRBUS. An A350 toolbox is already prototyped for use by
the control design teams to secure their flight controls performance and ro-
bustness, combining COFCLUO derived methods with Monte-Carlo analysis.
The resulting mixed validation strategy is being compared with usual indus-
trial practises in terms of worst case discovery capabilities, and productivity.

Beyond validation plans used internally for securing robustness of flight
control systems, AIRBUS could also propose to airworthiness authorities that
they include these kinds of methods in their recommended clearance process
in addition to the current recommendations. Some of the COFCLUO deliv-
erables will be developed into production quality clearance tools. These tools
may either be sold or licensed, or used in-house or for consulting services.
The results from the project are useful not only for clearance of flight control
laws for civil aircraft but also for military aircraft. Many of the results ob-
tained are general and can be adapted for clearance of control laws for other
vehicles, such as unmanned aerial vehicles, cars and trucks. Flight clearance
for unmanned aerial vehicles is expected to call for different approaches and
pose even more challenging issues. For the car industry, one application of
optimization-based clearance of control laws could be to improve the reliabil-
ity of existing systems, such as vehicle stability control and traction control.
Another application in future control systems development is automatic ob-
stacle avoidance. The results obtained can also be used in the validation of
many other different types of systems, and thus the results will strengthen
the ability of European industry to validate safety-critical systems in general.

18.3 Future Research

Several important challenges remain for future research. A few areas that are
of key interest for future research are highlighted below.

18.3.1 Influence of Internal Controller Structure

Flight control systems are basically non-linear and time-varying systems.
They include many non-differentiable nonlinearities (e.g., position and rate
limiters, multi dimensional interpolation based gain-scheduling) and non-
smooth behaviour as control law switching. The latter happens, for exam-
ple, when the controller is switching from normal laws to protection laws as
the aircraft gets closer to its flight envelop border. For these kinds of con-
trollers the objective functions used for clearance are often not differentiable,
and hence global optimization methods using only objective function values
are the main candidates for an optimization-based clearance approach. Since
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these methods need typically an extremely large number of function evalua-
tions to converge, it is essential to be able to evaluate the objective functions
in an efficient way. It is believed that in the future the aircraft manufacturer
should invest a sustained effort in the design of control architectures and
the implementation of control laws to be better tailored to fit the efficiency
requirements of the clearance approach.

18.3.2 Identification of Critical Parameter Domains

The workload for guidance and control design and validation steadily in-
creased over time, and therefore the complexity of the validation process in-
creased as well. Being more and more time consuming, the validation phase
calls for enhanced methods to guide engineers in their worst case search
strategies. Even if sufficient techniques are sometimes conservative, they have
the advantage, that in the case they are successful, the search for critical cases
can be eliminated or at least drastically reduced. On the other hand, necessary
methods able to continuously explore the parameter space are of key inter-
est, if they could also provide some information about the nature of critical
scenarios or determine whole compact domains of critical operation points,
instead of providing only isolated worst cases. For the industrial clearance,
it is desirable that CFCL techniques can assist designers in finding features
of low robustness regions and families of critical scenarios. That is why the
clearance approach based on Monte-Carlo techniques is still a valuable analy-
sis tool in the industry. A merging of the two clearance methodologies would
be of highest interest to enhance the current industrial clearance practice.

18.3.3 Low Computational Burden Challenge

The computational burden associated with the optimization-based clearance
is an important cost factor for the future acceptance of new verification and
validation strategies in the industry. The speed of numerical computations
has dramatically increased for a long period of time, partly due to increase
of processors performance and partly due to development of more sophisti-
cated algorithms. However, for the last 5 years processor performance has
not increased significantly. To compensate for this speed stagnation, multi-
core and multi-processor computers have seen an increased use. In addition
to this, computational clusters and grids have emerged as another way to
speed up computations. These new parallel architectures offer various new
opportunities to reduce the computational burden of the clearance process,
but also pose new challenges on the development of new analysis algorithms
able to exploit the inherent parallelism in many analysis tasks.
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18.3.4 Clearance of Systems with Failures

The CFCL addressed in this book covers only the case of failure free aircraft.
However, the CFCL is also mandatory for the analysis of failure recovery cases
implemented in the flight control laws. The multitude of failure scenarios,
encompassing structural failures of aircraft, actuators and sensor failures, as
well as their combinations, leads to a complicated clearance procedure with
combinatorial complexity. To cover all flight conditions, failure combinations
and recovery procedures, the analysis involves mixed discrete and continuous
event scenarios which pose new challenges for the development of automatic
clearance procedures. One way to address these clearance problems, is to
formulate them as mixed integer nonlinear programming (MINLP) problems
involving optimization of both discrete and continuous variables. Finding
worst cases and critical scenarios requires the use of special methods like
branch-and-bound, outer-approximation, or cutting plane, which represents
extensions of continuous nonlinear programming techniques to problems with
discrete variables.

18.3.5 Human Pilot Modelling Challenge

The CFCL process requires a complete closed-loop flight control system
model to simulate various flight scenarios operated by the pilot in manual
mode. For this purpose, usually a so-called pilot model is employed, whose
primary task is to generate the required control demands. The complexity
of pilot models differs from case to case, for example, different models can
be used for take-off and for landing, to mention only two typical situations.
More complex models are necessary to execute complex manoeuvres, as for
example, those necessary to evaluate protection laws violation criteria (see
Chapter 13) or recovery manoeuvres from failures cases. Therefore, the de-
velopment of human pilot models with realistic biomechanical features is an
important research challenge for the CFCL.

18.3.6 Other Challenges

The COFLCUO Project has clearly illustrated various challenges which the
optimization-based CFCL faces. Here we only present a short list, to recall
them once again.

Developing accurate low-order LFT models. Sufficient methods fully
rely on these models, and therefore the generation of LPV/LFT models
still requires sustained research in both theoretical and computational ar-
eas. Exploiting analytical information is one way to arrive to better models.

Efficient solution of very large-scale semi-definite programs. This
is required by the application of sufficient techniques for clearance. The
nowadays required excessive times are not acceptable in many cases.
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Merging optimization and Monte-Carlo analysis-based techniques.
The integration of different clearance techniques serves for a better cover-
age, increased performance and overall reliability.

Extension of sufficient methods to nonlinear simulation criteria.
Addressing time-varying and/or transient conditions have been addressed
so far only with necessary techniques. To provide clearance guarantees,
extension of sufficient techniques to the analysis of nonlinear simulation
criteria is desirable.

Embedding of CFCL into the design cycle. The optimization-based
CFCL provides many useful information (e.g., worst-case parameter com-
binations) which can serve to enhance the performance of the FCS or even
to redesign the flight control laws. The definition of a systematic design
cycle which embeds the CFCL process would potentially contribute to
reduced global costs for controller tuning and assessment.
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Chapter 19

Assessment of Aircraft Flight
Controllers Using Nonlinear
Robustness Analysis Techniques

Peter Seiler, Gary J. Balas, and Andrew K. Packard

Abstract. The current practice to validate flight control laws relies on ap-
plying linear analysis tools to assess the closed loop stability and performance
characteristics about many trim conditions. Nonlinear simulations are used to
provide further confidence in the linear analyses and also to uncover dynamic
characteristics, e.g. limit cycles, which are not revealed by the linear analysis.
This chapter reviews nonlinear analysis techniques which can be applied to
systems described by polynomial dynamic equations. The proposed approach
is to approximate the aircraft dynamics using polynomial models. Nonlinear
analyses can then be solved using sum-of-squares optimization techniques.
The applicability of these methods is demonstrated with nonlinear analyses
of an F/A-18 aircraft and NASA’s Generic Transport Model aircraft. These
nonlinear analysis techniques can fill the gap between linear analysis and
nonlinear simulations and hence used to provide additional confidence in the
flight control law performance.

19.1 Introduction

The current practice to validate flight control laws relies on applying linear
analysis tools to assess the closed loop stability and performance charac-
teristics about many trim conditions. Nonlinear simulations are then used
to provide further confidence in the linear analyses and also to uncover dy-
namic characteristics, e.g. limit cycles, which are not revealed by the linear
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analysis. This approach is well-suited for validation of current commercial
and military aircraft. However, there are drawbacks of this approach. First,
the process is rather time-consuming and requires many well-trained control
and simulation engineers. Second, most adaptive control laws lead to non-
linear, time-varying closed loop dynamics. Thus the current practice is not
applicable to validating systems with adaptive control laws. There is a need
for analytical tools to assess the performance of nonlinear feedback systems.

This chapter reviews an approach to reformulate nonlinear analysis prob-
lems into a form which can be solved using available software tools. The
approach is applicable to nonlinear systems described by polynomial dy-
namics and it relies on connections between sums of squares (SOS) poly-
nomials and positive semidefinite matrices. A polynomial p is a sum of
squares if it can be expressed as p =

∑m
i=1 f

2
i . This connection was made

in the work by Parrilo [1, 2] and has led to research on computational
tools for estimating regions of attraction, reachability sets, input-output
gains, and robustness with respect to uncertainty. The reader is referred
to [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] and the references
contained therein. There are two key ideas in this approach. First, suffi-
cient conditions for many nonlinear analysis problems can be formulated as
set containment conditions involving either a Lyapunov function or a stor-
age function. Second, the set containment conditions can be reformulated
as polynomial non-negativity conditions using a generalized version of the
S-procedure [21]. This approach will be described in more detail in the re-
mainder of the chapter.

These nonlinear analysis techniques can fill the gap between linear analysis
and nonlinear simulations. Linearized analysis is only valid over an infinitesi-
mally small neighborhood of the equilibrium point/null input. The proposed
approach provides an improvement over linearized analysis in that the results
are valid over a provable region of the state/input space [20]. Moreover, the
nonlinear analysis tools can complement the linear analysis tools and non-
linear simulations to provide additional confidence in the flight control law
performance.

The remainder of the chapter has the following outline. The next section
provides a brief review of background material including SOS polynomials,
their connections to positive semidefinite matrices, and SOS programming
problems. Sect. 19.3 describes the formulation of several nonlinear analy-
sis problems in terms of optimizations with SOS constraints. This section
also provides a discussion of the computational approaches to solve these
problems. In Sect. 19.4 the proposed approach is applied to compare the
performance of two F/A-18 control laws in their ability to suppress a loss-
of-control motion known as the Falling Leaf Mode. The tools are also used
to compute reachable set estimates for NASA’s Generic Transport Model.
Finally, conclusions are given in Sect. 19.5.
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19.2 Sum of Squares Optimization

This section provides a brief review of computational methods for sum-of-
squares polynomial optimizations. A polynomial p is a sum of squares (SOS)
if there exist polynomials {fi}mi=1 such that p =

∑m
i=1 f

2
i . As a simple ex-

ample, p = x2 − 4xy + 7y2 is a sum of squares since p = f2
1 + f2

2 where
f1 = (x − 2y)2 and f2 = 3y2. This section first presents the notation and
background material. Next connections between semidefinite matrices and
SOS polynomials are described. Finally the software available to solve SOS
optimization problems is discussed.

19.2.1 Background

19.2.1.1 Polynomial Notation

R[x] denotes the set of all polynomials in variables {x1, . . . , xn} with real
coefficients. N denotes the set of nonnegative integers, {0, 1, . . .}, and N

n is
the set of n-dimensional vectors with entries in N. For α ∈ N

n, a monomial
in variables {x1, . . . , xn} is given by xα .= xα1

1 xα2
2 · · ·xαn

n . The degree of a
monomial is defined as deg xα .=

∑n
i=1 αi. In this notation a polynomial in

R[x] is simply a finite linear combination of monomials:

p
.=
∑
α∈A

cαx
α =

∑
α∈A

cαx
α1
1 xα2

2 · · ·xαn
n

where cα ∈ R and A is a finite collection of vectors in N
n. Using the definition

of deg for a monomial, the degree of p is defined as deg p .= maxα∈A [deg xα].
A polynomial p is a sum of squares (SOS) if there exist polynomials {fi}mi=1

such that p =
∑m

i=1 f
2
i . The set of SOS polynomials is a subset of R[x]

and is denoted as Σ[x]. Note that if p is a sum of squares then p(x) ≥ 0
∀x ∈ R

n. Thus p ∈ Σ[x] is a sufficient condition for a polynomial to be
globally non-negative. The converse is not true, i.e. non-negative polynomials
are not necessarily SOS polynomials. This is related to one of the problems
posed by Hilbert in 1900 [22].

19.2.1.2 Semidefinite Programming

This brief review of semidefinite programming (SDP) is based on a survey
by Vandenberghe and Boyd [23] and a monograph by Boyd, et al. [21]. A
symmetric matrix F ∈ R

n×n is positive semidefinite if xTFx ≥ 0 for all
x ∈ R

n. Positive semidefinite matrices are denoted by F � 0. A semidefinite
program is an optimization problem of the following form:

minλ cTλ
subject to: F0 +

∑r
k=1 λkFk � 0 (19.1)
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The symmetric matrices F0, . . . , Fr ∈ R
n×n and the vector c ∈ R

r are
given data. The vector λ ∈ R

r is the decision variable and the constraint,
F0 +

∑r
k=1 λkFk � 0, is called a linear matrix inequality. Equation (19.1)

is referred to as the primal problem. The dual associated with this primal
problem is:

maxZ −Tr [F0Z]
subject to: Tr [FkZ] = ck k = 1, . . . , r

Z � 0
(19.2)

where Z = ZT ∈ R
n×n is the decision variable for the dual problem. Tr [ � ]

denotes the trace of a matrix. This dual problem can be recast in the form of
Equation (19.1) and thus it is also a semidefinite program. While the primal
and dual forms may look restrictive, these formulations are quite versatile
and SDPs find applications in many problems of interest. Moreover, SDPs
are convex and quality software exists to solve these problems. In particular,
SeDuMi [24, 25] is a freely available MATLAB toolbox that simultaneously
solves the primal and/or dual forms of a semidefinite program.

In some cases, the only goal is to find a decision variable that satisfies
the linear matrix inequality constraint. These are semidefinite programming
feasibility problems. The following is an example:

Find λ1, . . . , λr ∈ R such that F0 +
r∑

k=1

λkFk � 0 (19.3)

19.2.2 Connections between SOS Polynomials and
Semidefinite Matrices

Theorem 19.1 below gives a concrete statement of the connection between
sums of squares and positive semidefinite matrices. Two facts that follow
from [26] (refer to Theorem 1 and its preceding Lemma) are required:

1. If p is a sum of squares then p must have even degree.
2. If p is degree 2d (d ∈ N) and p =

∑m
i=1 f

2
i then deg fi ≤ d ∀i.

Next, define z as the column vector of all monomials in variables {x1, . . . , xn}
of degree ≤ d:1

z
.=
[
1, x1, x2, . . . , xn, x

2
1, x1x2, . . . , x

2
n, . . . , x

d
n

]T
(19.4)

1 Any ordering of the monomials can be used to form z. In Equation (19.4), xα

precedes xβ in the definition of z if:

deg xα < deg xβ or deg xα = deg xβ and the first nonzero entry of α− β is > 0
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There are
(

k+n−1
k

)
monomials in n variables of degree k. Thus z is a column

vector of length lz
.=
∑d

k=0

(
k+n−1

k

)
=
(

n+d
d

)
. If f is a polynomial in n

variables with degree ≤ d, then f is a finite linear combination of monomials
of degree ≤ d. Consequently, there exists a ∈ R

lz such that f = aT z. The
proof of the following theorem, introduced as the “Gram Matrix” method by
Choi, Lam, and Reznick [27], is included for completeness. This result can be
found more recently in [28].

Theorem 19.1. Suppose p ∈ R[x] is a polynomial of degree 2d and z is the
lz × 1 vector of monomials defined in Equation (19.4). Then p ∈ Σ[x] if and
only if there exists a symmetric matrix Q ∈ R

lz×lz such that Q � 0 and
p = zTQz.

Proof
(⇒) If p is a SOS, then there exists polynomials {fi}mi=1 such that p =∑m

i=1 f
2
i . As noted above, deg fi ≤ d for all i. For each fi there exists a

vector ai ∈ R
lz such that fi = aT

i z. Define the matrix A ∈ R
lz×m whose ith

column is ai and define Q .= AAT � 0. Then p = zTQz.
(⇐) Assume there exists Q = QT ∈ R

lz×lz such that Q � 0 and p = zTQz.
Define m .= rank(Q). There exists a matrix A ∈ R

lz×m such that Q = AAT .
Let ai denote the ith column of A and define the polynomials fi

.= zTai.
Then p = zT (AAT )z =

∑m
i=1 f

2
i . �

19.2.3 Software for SOS Optimizations

A sum-of-squares program is an optimization problem with a linear cost and
SOS constraints on the decision variables [29]:

min
u∈Rn

c1u1 + · · ·+ cnun (19.5)

subject to:
ak,0(x) + ak,1(x)u1 + · · ·+ ak,n(x)un ∈ Σ[x] k = 1, . . .Ns

The polynomials {ak,j} are given as part of the optimization data and u ∈ R
n

are decision variables. In Sect. 19.3 it will be shown that many nonlinear
analysis problems can be posed within this optimization framework.

Theorem 19.1 provides the link to convert an SOS program into a
semidefinite-programming problem. For example, the constraint ak,0(x) +
ak,1(x)u1 + · · ·+ ak,n(x)un ∈ Σ[x] can be equivalently written as:

ak,0(x) + ak,1(x)u1 + · · ·+ ak,n(x)un = zTQz (19.6)
Q � 0 (19.7)

Q is a new matrix of decision variables that is introduced when an SOS
constraint is converted to an LMI constraint. Equating the coefficients of
zTQz and ak,0(x) + ak,1(x)u1 + · · · + ak,n(x)un imposes linear equality
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constraints on the decision variables u and Q. Thus, Equation (19.6) can
be rewritten as a set of linear equality constraints on the decision variables.
All SOS constraints in Equation (19.5) can be replaced in this fashion with
linear equality constraints and LMI constraints. As a result, the SOS program
in Equation (19.5) can be written in the SDP dual form (Equation (19.2)).

While this may appear cumbersome, there is software available to perform
the conversion. For example, SOSTOOLS [29], Yalmip [30], and SOSOPT [31]
are freely available MATLAB toolboxes for solving SOS optimizations. These
packages allow the user to specify the polynomial constraints using a symbolic
toolbox. Then they convert the SOS optimization into an SDP which is solved
with SeDuMi [25, 24] or another freely available SDP solver. Finally these
toolboxes convert the solution of the SDP back to a polynomial solution.

A drawback is that the size of the resulting SDP grows rapidly if the
SOS optimization involves polynomials with many variables and/or high de-
gree. For a generic degree 2d polynomial p in n variables, the Gram matrix
representation involves lz :=

(
n+d

d

)
monomials. An SOS constraint on p is

enforced via a positive semidefinite constraint on the lz × lz Gram matrix
Q. For example, for a generic degree 2d = 8 polynomial in n = 8 variables,
the Gram matrix has dimension lz = 495. The size of this positive semidefi-
nite constraint is at or near the limits of current semidefinite programming
solvers. While various techniques can be used to exploit the problem struc-
ture [32], this computational growth is a generic trend in SOS optimizations.
Some methods which use simulation to ease this computational growth have
been developed [16, 17, 18].

19.3 Nonlinear Analysis Tools

Many nonlinear analysis problems can be formulated as sum of squares pro-
gramming problems. This connection was made in the work by Parrilo [1, 2]
and has led to research on computational tools for estimating regions of at-
traction, reachability sets, input-output gains, and robustness with respect
to uncertainty. The reader is referred to [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20] and the references contained therein. The key idea is that
sufficient conditions for these nonlinear analysis problems can typically be for-
mulated as set containment conditions involving either a Lyapunov function
or a storage function. The set containment conditions can be reformulated
as polynomial non-negativity conditions using a generalized version of the
S-procedure [21]. These problems can then be solved as SOS programs since
SOS polynomials are globally non-negative. In this section this approach is
described in more detail for region of attraction estimation, L2 − L2 input-
output gain calculation, and estimation of reachability sets with L2 bounded
inputs. Analysis problems with different signal norms and/or with model un-
certainty are described in the references given above. Software to perform all
analyses described in this section is available at [31].
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19.3.1 Region of Attraction Estimation

This section describes the computational method to estimate a region of
attraction (ROA). Consider an autonomous nonlinear dynamical system of
the form:

ẋ = f(x), x(0) = x0 (19.8)

where x ∈ R
n is the state vector and f : R

n → R
n is a multivariable polyno-

mial. Assume that x = 0 is a locally asymptotically stable equilibrium point.
Formally, the ROA is defined as:

R =
{
x0 ∈ R

n : If x(0) = x0 then lim
t→∞

x(t) = 0
}

(19.9)

Computing the exact ROA for nonlinear dynamical systems is difficult. There
has been significant research devoted to estimating invariant subsets of the
ROA [1, 3, 4, 15, 33, 34, 35, 36, 37]. The approach taken here is to restrict the
search to ellipsoidal approximations of the ROA. Given an n × n matrix
N = NT > 0, define the shape function p(x) := xTNx and level set Eβ :=
{x ∈ R

n : p(x) ≤ β}. p(x) defines the shape of the ellipsoid and β determines
the size of the ellipsoid Eβ . The choice of p is problem dependent and reflects
dimensional scaling information as well as the importance of certain directions
in the state space. Given the shape function p, the problem is to find the
largest ellipsoid Eβ contained in the ROA:

β∗ = maxβ (19.10)
subject to: Eβ ⊂ R

Determining the best ellipsoidal approximation to the ROA is still a chal-
lenging computational problem. Instead, lower and upper bounds for β∗ sat-
isfying β ≤ β∗ ≤ β̄ are computed. If the lower and upper bounds are close
then the largest ellipsoid level set, defined by Equation (19.10), has been
approximately computed.

The upper bounds are computed via a search for initial conditions leading
to divergent trajectories. If limt→∞ x(t) = +∞ when starting from x(0) =
x0,div then x0,div /∈ R. If β̄div := p(x0,div) then Eβ̄div


⊂ R which implies β∗ ≤
β̄div and Eβ∗ ⊆ Eβ̄div

. An exhaustive Monte Carlo search is used to find the
tightest possible upper bound on β∗. Specifically, random initial conditions
are chosen starting on the boundary of a large ellipsoid: Choose x0 satisfying
p(x0) = βtry where βtry is sufficiently large that βtry  β∗. If a divergent
trajectory is found, the initial condition is stored and an upper bound on
β∗ is computed. βtry is then decreased by a factor of 0.995 and the search
continues until a maximum number of simulations is reached. There is a trade-
off involved in choosing the factor 0.995. A smaller factor results in a larger
reduction of the upper bound for each divergent trajectory but it typically
limits the accuracy of the upper bound. No divergent trajectories can be
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found when βtry < β∗ and this roughly limits the upper bound accuracy to
β∗/(factor). The value of 0.995 is very close to one and was chosen to obtain
an accurate upper bound on β∗. β̄MC will denote the smallest upper bound
computed with this Monte Carlo search.

The lower bounds are computed using Lyapunov functions and recent re-
sults connecting sums-of-squares polynomials to semidefinite programming.
Computing these bounds requires the vector field f(x) in Equation (19.8) to
be a polynomial function. The computational algorithm is briefly described
here and full algorithmic details are provided elsewhere [5,6,7,10,14,16,18,19].
Lemma 19.1 is the main Lyapunov theorem used to compute lower bounds
on β∗. This specific lemma is proved by [14] but very similar results are given
in textbooks, e.g. by [38].

Lemma 19.1. If there exists γ > 0 and a polynomial V : R
n → R such that:

V (0) = 0 and V (x) > 0 ∀x 
= 0 (19.11)
Ωγ := {x ∈ R

n : V (x) ≤ γ} is bounded. (19.12)
Ωγ ⊂ {x ∈ R

n : ∇V (x)f(x) < 0} ∪ {0} (19.13)

then for all x ∈ Ωγ, the solution of Equation (19.8) exists, satisfies x(t) ∈ Ωγ

for all t ≥ 0, and Ωγ ⊂ R.

A function V , satisfying the conditions in Lemma 19.1 is a Lyapunov func-
tion and Ωγ provides an estimate of the region of attraction. If x = 0 is
asymptotically stable, a linearization can be used to compute a Lyapunov
function. Let A := ∂f

∂x

∣∣∣
x=0

be the linearization of the dynamics about the ori-

gin and compute P > 0 that solves the Lyapunov equation ATP +PA = −I.
VLIN (x) := xTPx is a quadratic Lyapunov function that satisfies the con-
ditions of Lemma 19.1 for sufficiently small γ > 0. VLIN can be used to
compute a lower bound on β∗ by solving two maximizations:

γ∗ :=max γ (19.14)
subject to: Ωγ ⊂ {x ∈ R

n : ∇VLIN (x)f(x) < 0}

β :=maxβ (19.15)

subject to: Eβ ⊂ Ωγ∗

The first maximization finds the largest level set of VLIN , Ωγ∗ , such that
Lemma 19.1 can be used to verify Ωγ∗ ⊆ R. The second maximization finds
the largest ellipsoid Eβ contain within Ωγ∗ .

The set containment constraints can be replaced with a sufficient condition
involving non-negative functions [14]. The next Lemma provides this sufficient
condition. This lemma is a generalization of the S-procedure which has been
frequently applied in control theory [21]. The function s appearing in the
Lemma is called a multiplier.
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Lemma 19.2. Define two sets A := {x ∈ Rn : fA(x) ≥ 0} and B :=
{x ∈ Rn : fB(x) ≥ 0}. If there exists a function s(x) ≥ 0 ∀x such that
fB(x)− fA(x)s(x) ≥ 0 ∀x then A ⊆ B.

Proof
Assume there exists a function s(x) ≥ 0 ∀x such that fB(x)− fA(x)s(x) ≥ 0
∀x. Take any x ∈ A. Then fB(x) ≥ fA(x)s(x) ≥ 0. Thus x is also in B. �

The Positivstellensatz is a result from algebraic geometry that can be used
to construct necessary and sufficient algebraic conditions for this set contain-
ment condition (See [1,2] and the references contained therein). In addition,
more general set containment constraints, e.g. sets with nonstrict inequali-
ties, can be handled. The condition in Lemma 19.2 can be interpreted as a
simplification of the most general Positivstellensatz conditions. This simple
condition will be used in the remainder of the paper since it typically requires
much less computation than the most general Positivstellensatz conditions.

Applying this Lemma to Eβ ⊂ Ωγ∗ in Optimization ((19.15)) leads to:

β := max
β, s(x)

β (19.16)

subject to: s(x) ≥ 0 ∀x
− (β − p(x)) s(x) + (γ∗ − VLIN (x)) ≥ 0 ∀x

The function s(x) is a decision variable of the optimization, i.e. its coeffi-
cients are decision variables that are computed as part of the optimization.
It is straight-forward to show that the two non-negativity conditions in Opti-
mization ((19.16)) are a sufficient condition for the set containment condition
in Optimization ((19.15)). If s(x) is restricted to be a polynomial then both
constraints involve the non-negativity of polynomial functions. Restricting a
polynomial to be SOS is a sufficient condition for the polynomial to be non-
negative. Replacing the non-negativity conditions in Optimization ((19.16))
with SOS constraints leads to an SOS optimization problem:

β := maxβ (19.17)

subject to: s(x) ∈ Σ[x]
− (β − p(x))s(x) + (γ∗ − VLIN (x)) ∈ Σ[x]

As described in Sect. 19.2 there is freely available software to solve such SOS
optimizations. β

LIN
will denote the lower bound obtained from Optimiza-

tion ((19.17)) using the quadratic Lyapunov function obtained from linearized
analysis.

Unfortunately, β
LIN

is usually orders of magnitude smaller than the up-
per bound β̄MC . Better lower bounds β can be computed by also optimizing
the choice of the Lyapunov function. This leads to an optimization prob-
lem that is bilinear in the Lyapunov function and a multiplier function.
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Specifically, the SOS constraint that arises due to the set containment con-
dition in Equation (19.14) is:

−(γ − V )s2 − (∇V � f + l2) ∈ Σ[x] (19.18)

where s2 is another SOS multiplier function and and l2(x) = −ε2xTx where ε2
is a small positive constant on the order of 10−6. If both V and s2 are allowed
to vary then the term V s2 in this constraint will be bilinear in the unknown
coefficients of V and s2. Thus optimizing over V and the set containment
multipliers is not a convex problem due to this bilinearity and hence heuristic
solution methods are required. Several methods to compute better Lyapunov
functions exist, including V -s iterations [5,6,7,10], bilinear optimization [14],
and the use of simulation data [16,18]. The V -s iteration is now described in
more detail. The Lyapunov function V (x) in the iteration is initialized with
the linearized Lyapunov function VLIN . The iteration also uses functions
l1(x) = −ε1xTx and l2(x) = −ε2xTx where ε1 and ε2 are small positive
constants on the order of 10−6. The V -s iteration algorithm steps are provided
below.

1. γ Step: Hold V fixed and solve for s2 and γ∗

γ∗ := max
s2∈Σ[x],γ

γ s.t. − (γ − V )s2 − (∇V � f + l2) ∈ Σ[x]

2. β Step: Hold V , γ∗ fixed and solve for s1 and β

β := max
s1∈Σ[x],β

β s.t. − (β − p)s1 + (γ∗ − V ) ∈ Σ[x]

3. V step: Hold s1, s2, β, γ∗ fixed and solve for V satisfying:

− (γ∗ − V )s2 − (∇V � f + l2) ∈ Σ[x]

− (β − p)s1 + (γ∗ − V ) ∈ Σ[x]

V − l1 ∈ Σ[x], V (0) = 0

4. Repeat as long as the lower bound β continues to increase.

Software and additional documentation on the V -s iteration is provided at
[31]. The basic idea of the iteration is to avoid the bilinearity in V s2 by
holding either s2 or V fixed. Each step of this iteration is a linear SOS
optimization that can be solved with available software. In the V -s iteration,
the Lyapunov functions are allowed to have polynomial degree greater than
two. Increasing the degree of the Lyapunov function will improve the lower
bound at the expense of computational complexity. The computational time
grows rapidly with the degree of the Lyapunov function. Simulation data can
also be used to construct a good initial candidate V for this iteration [17].

The V step requires additional discussion. An interior-point solver is used
to find a feasible solution to the LMI feasibility problem in the V step. The
Lyapunov function V that is used in the γ and β steps will be feasible for the
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constraints in the V step. Thus it possible for the solver to simply return the
same Lyapunov function that was used in the γ and β steps. While this is
possible, it typically happens that the solver returns a different V that allows
both γ and β to be increased at the next iteration. An informal justification
for this behavior is now given. The constraint −(γ∗− V )s2 − (∇V � f + l2) ∈
Σ[x] is active after the γ step. In the V step an interior point method obtains a
new feasible V by computing decision variables that are at the analytic center
of the set specified by the LMI constraints. The V step typically returns
a feasible V that is “pushed away” from the constraints. Loosely, the new
feasible V satisfies −(γ∗−V )s2−

(
∇V � f + l̃2

)
∈ Σ[x]. where l̃2 ≥ l2. l̃2 ≥ l2

means the next γ step has freedom to increase γ while still satisfying the
constraint with l2. A more formal theory for the behavior of this feasibility
step is still an open question.

19.3.2 Input-Output Gains

This section describes a computational method to compute L2 input-output
gains. More details on this problem as well as computing gains with other sig-
nal norms can be found in [13,19,20]. Consider nonlinear dynamical systems
of the form:

ẋ = f(x, u) (19.19)
y = h(x)

where x ∈ R
nx is the state vector, u ∈ R

nu is the input, and y ∈ R
ny is

the output. Assume f is a nx × 1 polynomial function of x and u such that
f(0, 0) = 0. Also assume that h is an ny × 1 polynomial function of x such
that h(0) = 0. Denote this system by S.

Define the L2 norm of a signal as ‖u‖2 :=
√∫∞

0
uT (t)u(t)dt. u is an L2

signal if this integral is finite. The L2-L2 input-output gain of the system
is defined as ‖S‖ := supu∈L2,‖u‖2 
=0

‖y‖2
‖u‖2

. A “local” input-output gain of the

system can also be defined as ‖S‖R := supu∈L2,0<‖u‖2≤R
‖y‖2
‖u‖2

. For linear
systems the magnitude of the output scales proportionally with the magni-
tude of the input and hence the ratio ‖y‖2

‖u‖2
does not depend on ‖u‖2. Thus

‖S‖R = ‖S‖ for all R > 0. For a nonlinear system, the local gain depends on
the magnitude of the input and hence ‖S‖R and ‖S‖ need not be equal. The
class of possible inputs increases with increasing values of R and so ‖S‖R is
a monotonically increasing function of R and ‖S‖R ≥ ‖S‖ for all R > 0.

Lemma 19.3 provides a sufficient condition for the local L2-L2 input-output
gain to be less than γ. This specific lemma can be found in [13, 19, 20] but
similar results are given in textbooks [38, 39].
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Lemma 19.3. If there exists a γ > 0 and a continuously differentiable func-
tion V : R

n → R such that:

� V (0) = 0 and V (x) ≥ 0 ∀x ∈ R
nx

� {(x, u) ∈ R
nx+nu : V (x) ≤ R2} ⊆ {(x, u) ∈ R

nx+nu : ∂V
∂x f(x, u) ≤

uTu− γ−2yT y}
then x(0) = 0 and ‖u‖2 ≤ R implies ‖y‖2 ≤ γ‖u‖2.
Proof
A sketch of the proof is provided. Assume that ∂V

∂x f(x, u) ≤ uTu − γ−2yT y
holds along the trajectories of the system S from time 0 to T . Integrating
with respect to time yields:

V (x(T ))− V (x(0)) ≤
∫ T

0

(
uTu− γ−2yT y

)
dt (19.20)

If x(0) = 0 and ‖u‖2 ≤ R then Equation (19.20) implies that V (x(T )) ≤
‖u‖22 ≤ R2. Thus the state trajectories satisfy V (x(T )) ≤ R2 ∀T ≥ 0 and it
is valid to assume ∂V

∂x
f(x, u) ≤ uTu− γ−2yT y holds along the system trajec-

tories. Moreover, Equation (19.20) implies that
∫ T

0

(
yT y
)
dt ≤ γ2

∫ T

0

(
uTu

)
dt

since V (0) = 0 and V (x) ≥ 0 ∀x. ‖y‖2 ≤ γ‖u‖2 follows by letting T →∞. �

Lemma 19.3 provides a sufficient condition to prove ‖S‖R ≤ γ in terms of
a storage function, V . This lemma involves one non-negativity condition on
the storage function and one set containment condition. The generalized S-
procedure (Lemma 19.2) can again be used to convert the set containment
condition into a function non-negativity constraint. This leads to the follow-
ing optimization for computing upper bounds on the local L2-L2 gain:

γ∗ := min
V,s,γ

γ (19.21)

subject to:
s(x, u) ∈ Σ[x, u], V (x) ∈ Σ[x], V (0) = 0 (19.22)

uTu− γ−2h(x)Th(x)−∇V � f(x, u)− s(x, u) (R2 − V (x)
) ∈ Σ[x, u]

(19.23)

The constraint in Equation (19.23), if satisfied, ensures that {(x, u) ∈
R

nx+nu : V (x) ≤ R2} ⊆ {(x, u) ∈ R
nx+nu : ∂V

∂x f(x, u) ≤ uTu − γ−2yT y}.
Since SOS polynomials are non-negative everywhere this follows by applying
the generalized S-procedure in Lemma 19.2. By Lemma 19.3, ‖S‖R ≤ γ for
any γ for which the constraints are valid. γ∗ is the smallest upper bound on
‖S‖R which can be found with this sufficient condition.

This optimization problem involves SOS constraints on s(x, u) and V (x)
(Equation (19.22)). The coefficients of the polynomials s(x, u) and V (x) are
decision variables in the optimization. The constraint in Equation (19.23)
is an SOS constraint on a polynomial of x and u. Unfortunately this
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constraint is bilinear in the decision variables since it involves a term of
the form s(x, u) � V (x). This problem is nonconvex in the decision variables
and again heuristics are required. This can be solved directly using bilinear
matrix inequality solvers [17]. Alternatively, a V -s iteration can be formu-
lated for this input-output gain problem. This iteration can be initialized
with V as the quadratic storage function obtained from linear analysis [6].
Simulation data can also be used to construct a good initial candidate V for
this iteration [17].

19.3.3 Reachable Sets

Again consider nonlinear dynamical systems, S, in the form of Equation
(19.19). The reachable set G(γ) is the set of states that can be reached from
x(0) = 0 with an input satisfying ‖u‖22 ≤ γ. Formally,

G(γ) := {xf ∈ R
n : ∃T, u(t) defined on [0, T ] s.t. ||u||22 ≤ γ and x(T ) = xf}

(19.24)

The reachable set depends on the input energy to the system. Lemma 19.4
provides a sufficient condition for computing an outer bound on G(γ) [14,19].
Similar reachable set results for linear systems can be found in [21].

Lemma 19.4. If there exists a γ > 0 and a continuously differentiable func-
tion V : R

n → R such that:

� V (0) = 0 and V (x) ≥ 0 ∀x ∈ R
nx

� {(x, u) ∈ R
nx+nu : V (x) ≤ γ} ⊆ {(x, u) ∈ R

nx+nu : ∇V � f(x, u) ≤
uTu}

then G(γ) ⊆ {x : V ≤ γ} := Ωγ

As in the previous sections, the generalized S-procedure can be used to con-
vert the set containment constraint into an SOS constraint. Also, an ellip-
soidal approximation of Reach(γ) is easier to visualize and understand. As
in the ROA estimation problem, a shape function p(x) := xTNx and level
set Eβ := {x ∈ R

n : p(x) ≤ β} can be introduced. The problem is then to
find the smallest ellipsoid Eβ that contains G(γ). Eβ then provides an outer
approximation for the reachable set. This leads to the following optimization
problem:

β∗ := min
V,s,γ,β

β (19.25)

subject to:
s(x, u) ∈ Σ[x, u], V (x) ∈ Σ[x], V (0) = 0
(β − p)− (γ − V )s2 ∈ Σ[x]

− ((∇V � f − uTu) + (γ − V )s1) ∈ Σ[x, u]
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Again this problem is bilinear due to the V s1 term in the last constraint. A
V -s iteration can be used to compute an ellipsoidal bound Eβ on G(γ) for
any value of γ.

19.3.4 Summary of Approach

The computational tools for other nonlinear problems (estimating regions of
attraction, reachability sets, input-output gains with other signal norms, and
robustness with respect to uncertainty) all essentially follow the same steps
as used in the previous sections. Specifically, a Lyapunov or storage func-
tion type theorem is used to derive a sufficient condition for the nonlinear
system to have a particular performance/stability property. Lyapunov and
storage functions are naturally restricted to be positive definite and this can
be enforced using SOS constraints. Additional conditions can typically be for-
mulated as set containment conditions. These set containment conditions can
then be converted into function non-negativity constraints using the gener-
alized S-procedure. Since SOS polynomials are non-negative everywhere, the
non-negativity constraints can be relaxed and written as SOS constraints. In
many cases this sequence of constraint reformulations leads to either a linear
or bilinear SOS programming problem which yields a bound on a particular
systems property (e.g. inner approximations to regions of attraction or upper
bounds on system gains). Bilinear problems can be solved using one of the
methods described above. Simulations or gradient searches can be used to
compute dual bounds (e.g. outer approximations to regions of attraction or
lower bounds on system gains). For example, lower bounds on the local gain
can be computed using a power method derived for a finite horizon optimal
control problem [40]. This approach provides an improvement over linearized
analysis in that the results are valid over a provable region of the state/input
space rather than for an infinitesimally small neighborhood of the equilibrium
point/null input. Further details on this statement can be found in [20].

19.4 Examples

This section performs nonlinear analyzes for an F/A-18 and NASA’s Generic
Transport Model. The software used to perform these analyses is available
at [31].

19.4.1 ROA Estimation for an F/A-18

The US Navy F/A-18 A/B/C/D Hornet aircraft with the original baseline
flight control law experienced a number of out-of-control flight departures
since the early 1980’s. Many of these incidents have been described as a
falling leaf motion of the aircraft [41]. The falling leaf motion has been
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studied extensively to investigate the conditions that lead to this behavior.
The complex dynamics of the falling leaf motion and lack of flight data from
the departure events pose a challenge in studying this motion. An extensive
revision of the baseline control law was performed by NAVAIR and Boeing in
2001 to suppress departure phenomenon, improve maneuvering performance
and to expand the flight envelope [41]. The revised control law was imple-
mented on the F/A-18 E/F Super Hornet aircraft after successful flight tests.
These flight tests included aggressive maneuvers that demonstrated success-
ful suppression of the falling leaf motion by the revised control law. This
section uses nonlinear region of attraction estimation to compare the closed-
loop stability properties of the baseline and revised control laws. Additional
details on this analysis can be found in [42].

The falling leaf motion of an aircraft can be characterized as large, coupled
out-of-control oscillations in the roll (p) and yaw (r) direction combined with
large fluctuations in angle-of-attack (α) and sideslip (β) [43, 41]. Fig. 19.1
shows the main characteristics of the falling leaf motion [43,41]. This out-of-
control mode exhibits periodic in-phase roll and yaw rates with large ampli-
tude fluctuations about small or zero mean. The roll and yaw rate generation
is mainly due to the large sideslip oscillation. During large sideslip and angle-
of-attack motion, the dihedral effect (roll caused by sideslip) of the aircraft
wings becomes extremely large and the directional stability becomes unsta-
ble. The like-signs of these two values are responsible for the in-phase mo-
tion. The roll rate motion can easily reach up to ±120◦/s, while the yaw rate
motion can fluctuate around ±50◦/s. During this motion, the value of angle-
of-attack can reach up to ±70◦ with sideslip oscillations between ±40◦ [43].
The required aerodynamic nose-down pitching moment is exceeded by the
pitch rate generation due to the inertial coupling of the in-phase roll and yaw
rates. The reduction in pitching moment is followed by a reduction in normal
force, eventually causing a loss of lift in the aircraft. A distinguishing feature
of the falling leaf motion is that α vs. β plot produces a mushroom shape
curve as seen in Fig. 19.1. For more details on the falling leaf motion, readers
are encouraged to refer to the papers by Jaramillo & Ralston [43] and Heller,
David & Holmberg [41].

The F/A-18 Hornet is a high performance, twin engine fighter aircraft
built by the McDonnell Douglas (currently known as the ‘Boeing’) Corpora-
tion. Each engine is a General Electric, F404-GE-400 rated at 16,100-lbf of
static thrust at sea level. The aircraft features a low sweep trapezoidal wing
planform with 400 ft2 area and twin vertical tails [44]. Table 19.1 lists the
aerodynamic reference and physical parameters of the aircraft. The conven-
tional F/A-18 Hornet has five pairs of control surfaces: stabilators, rudders,
ailerons, leading edge flaps, and trailing edge flaps. However, only the sym-
metric stabilator, differential aileron and differential rudder are considered
as control effectors for the analysis performed in this section. Longitudinal
control or pitch control is provided by the symmetric deflection of the stabi-
lators. Deflection of differential ailerons is used to control the roll or lateral
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Fig. 19.1 Characteristic behavior of falling leaf motion

direction, while differential deflection of rudders provide directional or yaw
control. There is a coupling between roll and yaw dynamics.

The conventional 6DOF aircraft equations of motion are described in Sten-
gel [45], Cook [46], and Napolitano and Spagnuolo [47] are primarily driven
by the aerodynamic forces and moments acting on the aircraft. Many flight
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Table 19.1 Aircraft parameters

Wing Area, Sref 400 ft2

Mean Aerodynamic Chord (c) 11.52 ft
Wing Span, bref 37.42 ft

Weight 33310 lbs
Ixx 23000 slug-ft2

Iyy 151293 slug-ft2

Izz 169945 slug-ft2

Ixz -2971 slug-ft2

experiments have been performed to estimate the stability and control deriva-
tives of the F/A-18 High Alpha Research Vehicle (HARV) [48,49,50,51]. The
F/A-18 HARV has similar aerodynamic characteristics as the F/A-18 Hor-
net [52] with the exception of the F/A-18 HARV having thrust vectoring
control. Hence, the F/A-18 HARV aerodynamic data are used to construct
the aerodynamic coefficient data.

The nonlinear region of attraction analysis requires the aircraft dynamics
to be described via a polynomial model. The computational burden of SOS
optimization also restricts the model to cubic degree polynomials. Hence, a
six state cubic degree polynomial model of the F/A-18 aircraft for roll-coupled
maneuvers [53] was constructed for the region of attraction estimation. The
polynomial model captures the key characteristics of the full 6 DOF model.
This polynomial model is derived based on the characteristics of the falling
leaf motion. During the falling-leaf motion, the velocity is usually on the
order of 250 ft/s [43]. Hence velocity is assumed to be constant and equal
to 250 ft/s in the construction of the 6-state polynomial model. Aggressive
maneuvers, like bank turns, are more likely to put the aircraft in the falling
leaf motion compared to straight and level flight. Hence, steady bank turn
maneuvers with zero climb rate (θ̇ = 0) are considered. As a result two other
states, pitch angle (θ) and yaw angle (ψ), can be assumed constant in the
six state model. Thrust effects in the sideslip direction are also neglected.
Small angle approximations are used for the trigonometric terms in the full 6
DOF model to derive a polynomial representation of the aircraft dynamics.
Finally, a polynomial least squares fit of the aerodynamic data over a gridded
α - β space of −20◦ ≤ β ≤ 20◦, and −10◦ ≤ α ≤ 40◦ is performed to
obtain the cubic polynomial model. Further details of this polynomial model
approximation are provided in [42].

The baseline controller structure for the F/A-18 aircraft closely follows the
Control Augmentation System (CAS) presented in the report by Buttrill, Ar-
buckle, and Hoffler [44]. The revised F/A-18 flight control law is described
in the papers by Heller, David, & Holmberg [41] and Heller, Niewoehner,
& Lawson [54]. The objective of the revised flight control law was to im-
prove the departure resistance characteristics and full recoverability of the
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F/A-18 aircraft without sacrificing the maneuverability of the aircraft [41].
The significant change in the revised control law was the additional sideslip
(β in rad) and sideslip rate (β̇ in rad/s) feedback to the aileron actuators.
The sideslip feedback plays a key role in increasing the lateral stability in
the 30 − 35◦ range of angle-of-attack. The sideslip rate feedback improves
the lateral-directional damping. Hence, sideslip motion is damped even at
high angles-of-attack. This feature is key to eliminating the falling leaf mode,
which is an aggressive form of in-phase Dutch-roll motion. There are no di-
rect measurements of sideslip and sideslip rate. Therefore, these signals are
estimated for feedback. The sideslip and the sideslip rate feedback signals are
computed based on already available signals from the sensors and using the
kinematics of the aircraft.

The remainder of this section compares the regions of attraction for the
baseline and revised control laws. The V -s iteration described in Sect. 19.3.1
is used to compute these ROA estimates. The analysis is performed for the
F/A-18 aircraft operating at a steady (β = 0) bank turn of φ = 60o. This
ROA analysis uses the cubic polynomial models for 60o steady bank turn
maneuver. The ordering of the state vector is xT := [β, p, r, φ, α, q, xc].
The shape matrix for the ellipsoid is chosen to be

N := (5)2 � diag (5o, 20o/s, 5o/s, 45o, 25o, 25o/s, 25o)−2.

This roughly scales each state by the maximum magnitude observed dur-
ing flight conditions. The factor of (5)2 normalizes the largest entry of the
matrix N to be equal to one. The ellipsoid, xTNx = β, defines the set of
initial conditions for which the control law will bring the aircraft back to its
trim point. This provides valuable information about the closed-loop stability
characteristics. If the aircraft is perturbed due to a wind gust or other upset
condition but remains in the ellipsoid then the control law will recover the
aircraft and bring it back to trim. In other words the ellipsoid defines a safe
flight envelope for the F/A-18. Hence, the ROA provides a measure of how
much perturbation the aircraft can tolerate before it becomes unstable. The
value of the β can be thought of as ’nonlinear stability margin’.

As previously mentioned, increasing the degree of the Lyapunov function
will improve the lower bound estimate of the ROA. ROA bounds were first
computed using the quadratic Lyapunov function from linearized analysis.
This method has been proposed for validation of flight control laws [55].
The bound β

LIN
= 8.05 × 10−5 was computed for the baseline control law

and β
LIN

= 1.91 × 10−4 for the revised control. Unfortunately these lower
bounds are not particularly useful since they are two to three orders of mag-
nitude smaller than the corresponding upper bounds computed via Monte
Carlo search. Next, lower bounds were computed with the V -s iteration us-
ing quadratic (degree 2) and quartic (degree 4) Lyapunov functions. The
V -s iteration with quadratic Lyapunov functions gives β

2
= 3.45× 10−3 for

the baseline control law and β
2

= 9.43 × 10−3 for the revised control law.
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These bounds took several minutes to compute. The V -s iteration with quar-
tic Lyapunov functions is β

4
= 1.24× 10−2 for the baseline control law and

β
4

= 2.53×10−2 for the revised control law. The bounds for the baseline and
revised controllers took seven and five hours, respectively, to compute. These
bounds are significantly larger than the bounds obtained for the linearized
Lyapunov function. A sixth order Lyapunov function would lead to improved
lower bounds but with a significant increase in computation time.

The Monte Carlo search, described in Sect. 19.3.1, was used to compute
an upper bound on the ROA estimate. A search was performed with 2 mil-
lion simulations each for the baseline and revised control laws. The baseline
control law provides an upper bound of β̄MC = 1.56 × 10−2 whereas the
revised control law provides an upper bound of β̄MC = 2.95 × 10−2. The
search also returns an initial condition x0 on the boundary of the ellipsoid,
i.e. p(x0) = xT

0 Nx0 = β̄MC , that causes the system to go unstable. Hence, the
value of the β̄MC provides an upper bound of the ROA for the F/A-18 air-
craft. This is complementary information to that provided by the Lyapunov-
based lower bounds. The Monte Carlo search returned the following initial
condition for the closed system with the baseline control law:

x0 = [−1.1206o, −12.3353o/s, 1.5461o/s, −5.8150o, 28.9786o, 9.9211o/s, 0]T

This initial condition satisfies p(x0) = 1.56×10−2 and the closed-loop system
with the baseline control law diverges from this initial condition. Decreasing
the initial condition slightly leads to a stable response. For the revised control
law the Monte Carlo search returned the following initial condition:

x0 = [0.3276o, −8.0852o/s, 2.8876o/s, −2.1386o, 44.8282o, 9.9829o/s, 0]T

This initial condition satisfies p(x0) = 2.95× 10−2 an the closed-loop system
with the revised control law diverges from this initial condition. Decreasing
the initial condition slightly leads to a stable response.

The lower and upper bounds on β∗ can be visualized by plotting slices of
the ellipsoidal approximation. Fig. 19.2 and Fig. 19.3 show slices of the in-
ner/outer approximations of the best ellipsoidal ROA approximation for both
the baseline and revised control laws. The slices are in the α-β (Fig. 19.2)
and p-r (Fig. 19.3) planes. The solid lines show the slices of the inner bounds
obtained from quartic Lyapunov analysis. Every initial condition within the
solid ellipses will return to the trim condition (marked as a ’+’). The dashed
lines show the slices of the outer bounds obtained from Monte Carlo analysis.
There is at least one initial condition on the outer ellipsoid which leads to a
divergent trajectory. The initial condition leading to a divergent trajectory
does not necessarily lie on the slice of the ellipsoid shown in the figure. The
closeness of the inner and outer ellipsoids means that we have solved, for en-
gineering purposes, the best ROA ellipsoid problem. Recall the aerodynamic
coefficients were fitted over a gridded α - β space of −20◦ ≤ β ≤ 20◦, and
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Fig. 19.2 ROA estimates in α-β plane for baseline and revised flight control law
around steady 60o bank turn

Fig. 19.3 ROA estimates in p-r for baseline and revised flight control law around
steady 60o bank turn
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−10◦ ≤ α ≤ 40◦. Hence, the model is not valid over the entire region shown
in this figure. The lower bounds for the revised controller are larger than
the upper bounds for the baseline controller. Thus the ROA for the revised
controller is provably larger than the ROA for the baseline controller.

19.4.2 Reachable Set Estimation for NASA’s GTM

NASA’s Generic Transport Model (GTM) is a remote-controlled 5.5 percent
scale commercial aircraft [56,57]. The main GTM aircraft parameters are pro-
vided in Table 19.2. NASA constructed a high fidelity 6 degree-of-freedom
Simulink model of the GTM with the aerodynamic coefficients described as
look-up tables. This section describes the construction of a polynomial model
for the longitudinal dynamics of the GTM. This polynomial model is then
used to estimate the reachable set for the open-loop longitudinal dynam-
ics. Details on the polynomial modeling are provided in [58]. [59] provides
additional motivation for using reachable sets for estimating the safe flight
envelope for an aircraft.

Table 19.2 Aircraft and environment parameters

Wing Area, S 5.902 ft2

Mean Aerodynamic Chord, c̄ 0.9153 ft
Mass, m 1.542 slugs

Pitch Axis Moment of Inertia, Iyy 4.254 slugs-ft2

Air Density, ρ 0.002375 slugs/ft3

Gravity Constant, g 32.17 ft/s2

The longitudinal dynamics of the GTM are described by a standard four-
state longitudinal model [60]:

V̇ =
1
m

(−D −mg sin (θ − α) + Tx cosα+ Tz sinα) (19.26)

α̇ =
1
mV

(−L+mg cos (θ − α)− Tx sinα+ Tz cosα) + q (19.27)

q̇ =
(M + Tm)

Iyy
(19.28)

θ̇ = q (19.29)

where V is the air speed (ft/s), α is the angle of attack (rad), q is the pitch
rate (rad/s) and θ is the pitch angle (rad). The control inputs are the elevator
deflection δelev (deg) and engine throttle δth (percent).

The drag forceD (lbs), lift force L (lbs), and aerodynamic pitching moment
M (lb-ft) are given by:
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D = q̄SCD(α, δelev , q̂) (19.30)
L = q̄SCL(α, δelev , q̂) (19.31)
M = q̄Sc̄Cm(α, δelev , q̂) (19.32)

where q̄ := 1
2
ρV 2 is the dynamic pressure (lbs/ft2) and q̂ := c̄

2V
q is the

normalized pitch rate (unitless). CD, CL, and Cm are unitless aerodynamic
coefficients computed from look-up tables provided by NASA.

The GTM has one engine on the port side and one on the starboard side of
the airframe. Equal thrust settings for both engines is assumed. The thrust
from a single engine T (lbs) is a function of the throttle setting δth (percent).
T (δth) is specified as a ninth-order polynomial in NASA’s high fidelity GTM
simulation model. Tx (lbs) and Tz (lbs) denote the projection of the total
engine thrust along the body x-axis and body-z axis, respectively. Tm (lbs-ft)
denotes the pitching moment due to both engines. Tx, Tz and Tm are given
by:

Tx(δth) = nENGT (δth) cos(ε2) cos(ε3) (19.33)
Tz(δth) = nENGT (δth) sin(ε2) cos(ε3) (19.34)
Tm(δth) = rzTx(δth)− rxTz(δth) (19.35)

nENG = 2 is the number of engines. ε2 = 0.0375 rad and ε3 = −0.0294 rad
are angles that specify the rotation from engine axes to the airplane body
axes. rx = 0.4498 ft and rz = 0.2976 ft specify the moment arm of the thrust.

The following terms of the longitudinal are approximated by low-order
polynomials:

1. Trigonometric functions: sin(α), cos(α), sin(θ − α), cos(θ − α)
2. Engine model: T (δth)

3. Rational dependence on speed:
1
V

4. Aerodynamic coefficients: CD, CL, Cm

Constructing polynomial approximations for the trigonometric functions, en-
gine model, and rational dependence on speed is relatively straight-forward.
The trigonometric functions are approximated by Taylor series expansions:
sin z ≈ z − 1

6
z3 and cos z ≈ 1 − 1

2
z2 for z in units of radians. For the en-

gine model, a least squares technique is used to approximate the ninth order
polynomial function T (δth) by a third order polynomial. The least squares

technique is also used to compute a linear fit to
1
V

over the desired range of

interest from 100 ft/s to 200 ft/s. Finally, polynomial least squares fits are
computed for the aerodynamic coefficient look-up table provided by NASA. A
degree seven polynomial model is obtained after replacing all non-polynomial
terms with their polynomial approximations. The polynomial model takes the
form:
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ẋ = f(x, u) (19.36)

where x := [V (ft/s), α(rad), q(rad/s), θ(rad)], and u := [δelev(deg), δth(%)].
The degree seven polynomial model f(x, u) is provided in [58]. The quality of
the polynomial approximation was assessed by comparing the trim conditions
and simulation responses of the polynomial model and the original model with
look-up tables.

The remainder of the section describes the estimation of the reachable set
for the open-loop longitudinal dynamics of the GTM. The trim condition for
the analysis is:

xtrim := [150 ft/s, 0.047 rad, 0 rad/s, 0.047 rad] (19.37)

The throttle input is held at its trim value and the reachable set is computed
for elevator inputs around the trim elevator input. The shape function is
p(x) := xTNx where:

N := diag (50 ft/s, 0.35 rad, 0.87 rad/s, 0.35 rad)−2 (19.38)

Upper bounds β̄ were computed such that Gγ ⊆ Eβ̄. These bounds were com-
puted for many values of γ using the method described in Sect. 19.3.3. A
nonlinear optimal control problem can be approximately solved to compute
“worst-case” inputs for this reachable set problem [40]. The inputs are worst-
case in the sense of maximizing p(xf ) subject to the constraint ‖u‖22 ≤ γ2.
This worst-case algorithm provides lower bounds β for the reachable set prob-
lem. These lower bounds provide complementary information to the upper
bounds computed using SOS methods. Specifically the lower bounds prove
that there is an xf ∈ Gγ such that p(xf ) = β.

Fig. 19.4 shows the lower and upper bounds computed for the GTM. The
upper bounds computed using quadratic and quartic (degree 4) storage func-
tions are shown in squares and diamonds, respectively. Each point on the
upper bound curve with quadratic storage functions took several minutes
to compute. Only three points were computed for quartic storage functions
since each data point on this curve took several hours to compute. Degree
six storage functions would lead to improved bounds but with a significant
increase in computation time. The lower bound computed using the method
in [40] is shown with circles. This curve is quite far from the quartic upper
bound. The reachable set for the linearized plant is drawn as a black dashed
curve. This is a straight line because scaling the norm of the input scales the
distance that can be reached. The optimal input for the linear plant can be
computed via an optimal control problem. This worst-case input computed
from the linear plant is shown in Fig. 19.5. Simulating the nonlinear system
with this worst-case input (scaled to achieve ‖u‖22 = γ) achieved the lower
bound shown in squares in Fig. 19.4. This lower bound is very close to the
quartic upper bound. Thus the worst-case input computed from the linear
plant is also a bad input for the nonlinear plant. It appears that the GTM
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Fig. 19.5 Worst-case input computed from the linear plant

dynamics are well-approximated by the linearization at this flight condition.
This statement was further investigated by simulating the full 6DOF GTM
model with the worst-case input computed from the linear plant (scaled to
have ‖u‖22 = 1). The 6DOF GTM model includes many additional modeling
details including lateral dynamics, actuator dynamics, etc. Surprisingly the
response of the full 6DOF GTM model with this input was very similar to
the response of the polynomial model with this input. A comparison of the
simulation responses is shown in Fig. 19.6. The states (α,θ,q) have units of
(rad,rad,rad/s) but are plotted in units of (deg,deg,deg/s) for ease of inter-
pretation. For this input the polynomial model achieved β = 0.4803 and the
full GTM achieved β = 0.3478. This nonlinear reachable analysis provides
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Fig. 19.6 Simulation of polynomial and 6DOF GTM models with worst-case input

confidence that the linear model can be used as a good approximation at this
flight condition.

19.5 Conclusion

This chapter described the use of sum-of-squares optimizations for analyzing
nonlinear polynomial systems. In particular, optimizations with SOS con-
straints were formulated for computing region of attraction estimates, bounds
on L2 to L2 gain, and reachable sets. Many other nonlinear analysis problems
can be formulated within this optimization framework. The approach was ap-
plied to compare the performance of two F/A-18 control laws in suppressing
a loss-of-control motion known as the falling leaf mode. The reachable set
for NASA’s Generic Transport Model was also estimated. These nonlinear
analysis tools can fill the gap between linear analyses, which are valid only
for infinitesimally small neighborhoods about an equilibrium, and nonlinear
simulations. These tools can be used to provide additional confidence when
validating the performance of a flight control law. Significant work remains
to be done to reduce the computational cost and enable these techniques to
be applied to moderate-sized systems (systems with more than ≈ 8 states).
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Chapter 20

Validation and Verification (V&V) of
Safety-Critical Systems Operating
under Off-Nominal Conditions

Christine M. Belcastro

Abstract. Loss of control (LOC) remains one of the largest contributors to
aircraft fatal accidents worldwide. Aircraft LOC accidents are highly complex
in that they can result from numerous causal and contributing factors acting
alone or more often in combination. Hence, there is no single intervention
strategy to prevent these accidents. Research is underway at the National
Aeronautics and Space Administration (NASA) in the development of ad-
vanced onboard system technologies for preventing or recovering from loss of
vehicle control and for assuring safe operation under off-nominal conditions
associated with aircraft LOC accidents. The transition of these technologies
into the commercial fleet will require their extensive validation and verifi-
cation (V&V) and ultimate certification. The V&V of complex integrated
systems poses highly significant technical challenges and is the subject of a
parallel research effort at NASA. This chapter summarizes the V&V problem
and presents a proposed process that could be applied to complex integrated
safety-critical systems developed for preventing aircraft LOC accidents. A
summary of recent research accomplishments in this effort is referenced.

20.1 Introduction: Motivation for Off-Nominal
Conditions

Aircraft LOC accidents can result from numerous causal and contributing
factors that are collectively referred to in this chapter as “off-nominal con-
ditions”. “Off-nominal” conditions include adverse conditions occurring on-
board the vehicle, such as system failures, external hazards, such as inclement
weather, and abnormal flight conditions, such as stall/departure. A more
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detailed description of off-nominal conditions associated with aircraft LOC
accidents is given in Sect. 20.1.1.

Current aircraft autopilot systems are primarily designed for operation
under nominal conditions, and sometimes disengage and return control au-
thority to the pilot under off-nominal conditions. Future aircraft control sys-
tems will be expected to provide resilience under off-nominal conditions and
operate as a component of a larger resilient flight system. Control resilience
will need to be designed into future systems to provide the capability to miti-
gate off-nominal conditions and provide recovery back to a stable operational
mode whenever possible. This capability will be developed as part of a holis-
tic approach to reduce aircraft LOC accidents. The broader resilient flight
system will include vehicle health management, flight safety management,
and reliable crew interface management functions.

V&V becomes much more difficult for safety-critical resilient systems op-
erating under off-nominal conditions. The objectives of this chapter are to
address V&V issues associated with future safety-critical resilient flight sys-
tems operating under off-nominal conditions and to propose a comprehensive
V&V research framework to address these issues. The remainder of Sect. 20.1
describes aircraft loss of control in more detail (Sect. 20.1.1) and presents a
future resilient flight system concept (Sect. 20.1.2). Sect. 20.2 defines the
V&V problem associated with future resilient flight systems, describes prob-
lem complexity and key technical challenges, identifies V&V process require-
ments, and summarizes a research approach being taken at NASA. Sect. 20.3
presents a comprehensive V&V process that can serve as an initial research
framework for addressing future integrated resilient flight systems. Sect. 20.4
briefly discusses the status of this research and references a detailed summary
of research accomplishments made at NASA Langley. Sect. 20.5 provides a
chapter summary and some concluding remarks. The primary emphasis of
this chapter is on the validation component of V&V for advanced flight con-
trol systems.

20.1.1 Aircraft LOC

LOC remains one of the largest worldwide contributors to aircraft fatal ac-
cidents. For example, a summary of worldwide commercial jet airplane ac-
cidents from 2000 through 2009 [1] is shown in Fig. 20.1. As indicated in
the figure, in-flight loss of control (LOC-I) is the largest accident category
for transport aircraft weighing more than 60,000 pounds, and resulted in 20
accidents and 1,848 total fatalities. The data in Fig. 20.1 show the number of
fatalities for accident categories defined by the Commercial Aviation Safety
Team (CAST) and the International Civil Aviation Organization (ICAO).
A full definition of the CAST/ICAO accident categories is provided in Ta-
ble 20.1.
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Aircra� Loss of Control – In-flight

System & Component
Failures (Non-Engine)

Mid-Air 
Collision / Damage

Abrupt
Maneuver

Icing

Turbulence

Wind Shear /
Thunderstorms

Contributors to LOC:

ADRM  Aerodrome
AMAN  Abrupt Maneuver
ATM  Air Traffic Management
BIRD  Bird
CABIN  Cabin Safety Events
EVAC  Evacua�on
F-POST  Fire/Smoke (Post-Impact)
GCOL  Ground Collision
ICE  Icing
LALT  Low Al�tude Opera�ons
LOC-G  Loss of Control - Ground
RI-A  Runway Incursion – Animal
SEC  Security Related
TURB  Turbulence Encounter

No Accidents were Noted in the Following 
Principal Categories:

Engine 
Failures

Onboard fatali�es

External fatali�es

Fig. 20.1 Aircraft Accident Statistics for Worldwide Commercial Jet Fleet, 2000-
2009 [1]

Aircraft LOC is a highly complex event. Some contributors to aircraft LOC
are denoted in Fig. 20.1. Although some LOC factors noted in Fig. 20.1 were
not determined to be primary causal factors of any accidents in this class of
vehicles (i.e., over 60,000 lbs.) during the stated time period, in general they
have been found to contribute to LOC accidents and are therefore noted for
completeness. Causal and contributing factors associated with aircraft LOC
can occur individually, but more often occur in various combinations. A de-
tailed analysis of 126 aircraft LOC accidents is presented in [2], in which
worst case combinations of LOC accident precursors, i.e., causal and con-
tributing factors, and their time sequences are identified. These factors, or
“off-nominal conditions,” can be categorized as: adverse conditions occurring
onboard the aircraft, including faults, failures, damage, crew error, etc.; ex-
ternal hazards and disturbances, including icing, wind shear, wake vortices,
turbulence, terrain and obstacles, other aircraft, etc.; and abnormal flight or
upset conditions, including unusual attitudes, stall, stall/departure, etc..

Aircraft LOC clearly involves operation under off-nominal conditions,
which motivates the use of the term “off-nominal conditions” to designate
the associated causal and contributing factors. LOC accidents occur across
all vehicle classes, from small aircraft through large transports, and configu-
ration types, from single to multiple engines, including both jet and propeller.
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Table 20.1 CAST/ICAO Accident Categories

AMAN Abrupt Maneuver
ADRM Aerodrome
ARC Abnormal Runway Contact
ATM Air Traffic Management/Communications, Navigation, Surveillance
CABIN Cabin Safety Events
CFIT Controlled Flight into or Toward Terrain
EVAC Evacuation
F-NI Fire/Smoke (Non-Impact)
F-POST Fire/Smoke (Post-Impact)
FUEL Fuel Related
GCOL Ground Collision
ICE Icing
LALT Low Altitude Operations
LOC-G Loss of Control – Ground
LOC-I Loss of Control – In flight
MAC Midair/Near Midair Collision
OTHR Other
RAMP Ground Handling
RE Runway Excursion
RI-A Runway Incursion – Animal
RI-VAP Runway Incursion – Vehicle, Aircraft or Person
SEC Security Related
SCF-NP System/Component Failure or Malfunction (Non-Power Plant)
SCF-PP System/Component Failure or Malfunction (Power Plant)
TURB Turbulence Encounter
USOS Undershoot/Overshoot
UNK Unknown or Undetermined
WSTRW Wind Shear or Thunderstorm

LOC also occurs across all operational categories, scheduled and unscheduled,
and flight phases, including takeoff, cruise, and approach.

Because of the scope and complexity of aircraft LOC events, i.e., acci-
dents and incidents, there is no single intervention strategy for preventing
them. Improved crew training and operational procedures for off-nominal
conditions can enable improved crew response during LOC events. Advanced
onboard systems that provide resilience to off-nominal conditions can enable
improved situational awareness and vehicle response under LOC events. A
holistic approach for preventing aircraft LOC accidents is presented in the
next section.
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20.1.2 Future Advanced System Concept

Improved capabilities are needed for off-nominal conditions that enable effec-
tive crew training, enhanced situational awareness, and onboard resilience.
Underlying technologies to achieve these capabilities have been the subject
of research at NASA over the past decade, i.e., since the year 2000, within
NASA’s Aviation Safety Program (AvSP). Core technology areas of research
include: 1.) dynamics modeling and simulation for off-nominal conditions;
2.) diagnostics and prognostics for detecting, identifying, and characterizing
off-nominal conditions in real time or near real time; 3.) resilient control tech-
nologies for mitigation of off-nominal conditions and vehicle recovery; and 4.)
crew interface technologies for improved situational awareness and decision
support especially under off-nominal conditions.

These core technology areas must be coordinated during both development
and operation. V&V technologies must also be developed and applied to these
technology areas for an improved understanding of safe and unsafe regions of
operation under off-nominal conditions, and for the ultimate certification of
these technologies.

An integrated system concept can be developed based on these technolo-
gies for preventing aircraft LOC accidents in the future. One such future
concept, called the Aircraft Integrated Resilient Safety Assurance and Fail-
safe Enhancement (AIRSAFE) System, is shown in Fig. 20.2.

The shading and block shapes of Fig. 20.2 designate the four core technol-
ogy areas just discussed. Medium shading represents vehicle health
management functions, no shading represents crew interface management

Vehicle Health Management (VHM)
VHM / CVI

Crew / Vehicle Interface (CVI)

Systems External Hazards Airspace Management

Onboard
Environment

Integrated
Vehicle Health 
Management

Vehicle / Crew 
Interface 

Management

Crew / Human
Operator

Online Modeling, 
Simula�on, & 

Databases

Vehicle Safety State 
Assessment

& Management

Variable Autonomy
Assessment &
Management

Onboard 
Mission
Planning

Online 
Trajectory

Genera�on

Closed-Loop 
Adap�ve
Guidance

Closed-Loop 
Adap�ve
Control

Op�mal 
Control Effector 

Management

      Resilient 
Control (RC)

RC / CVI
VHM / RC /
Modeling

Fig. 20.2 Aircraft Integrated Resilient Safety Assurance and Failsafe Enhance-
ment (AIRSAFE) System Concept
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functions, and dark shading represents flight safety management and resilient
control functions. The trapezoidal shape represents modeling and simulation
functions for off-nominal conditions. Multi-shaded blocks represent shared
functions between multiple technology areas. A detailed description of the
functional capabilities and interfaces associated with the AIRSAFE System
concept is contained in [3, 4].

The V&V of future integrated systems, such as the AIRSAFE System
concept of Fig. 20.2, poses numerous technical challenges. In particular,
there is no current V&V capability for complex integrated safety-critical sys-
tems operating under off-nominal conditions. This problem is the subject of
Sect. 20.2.

20.2 V&V Problem

The V&V of integrated safety-critical systems that are designed for operation
under off-nominal conditions is a complex problem. The V&V process must
ultimately lead to system certification. The Federal Aviation Administra-
tion (FAA) in the United States and the Joint Aviation Authorities (JAA)
in Europe have developed extensive and compatible certification specifica-
tions. The Federal Aviation Regulation (FAR) and Joint Aviation Regulation
(JAR) Part 25 provides the certification specifications for transport category
aircraft, and Sect. 1309 applies to equipment and systems installed onboard
aircraft. An excerpt from FAR 25.1309 is provided below, and JAR 25.1309
is nearly identical.

Part 25 AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY
AIRPLANES
Sec. 25.1309: Equipment, systems, and installations.

(a)The equipment, systems, and installations whose functioning is required by this
subchapter, must be designed to ensure that they perform their intended functions
under any foreseeable operating condition.

(b)The airplane systems and associated components, considered separately and in
relation to other systems, must be designed so that –

(1)The occurrence of any failure condition which would prevent the continued
safe flight and landing of the airplane is extremely improbable, and

(2)The occurrence of any other failure conditions which would reduce the capa-
bility of the airplane or the ability of the crew to cope with adverse operating
conditions is improbable.

(c)Warning information must be provided to alert the crew to unsafe system oper-
ating conditions, and to enable them to take appropriate corrective action. Sys-
tems, controls, and associated monitoring and warning means must be designed
to minimize crew errors which could create additional hazards.

(d)Compliance with the requirements of paragraph (b) of this section must be shown
by analysis, and where necessary, by appropriate ground, flight, or simulator
tests. The analysis must consider –
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(1)Possible modes of failure, including malfunctions and damage from external
sources.

(2)The probability of multiple failures and undetected failures.
(3)The resulting effects on the airplane and occupants, considering the stage of

flight and operating conditions, and
(4)The crew warning cues, corrective action required, and the capability of de-

tecting faults.

The terminology “extremely improbable” in FAR 25.1309 translates to an av-
erage probability per flight hour for catastrophic failure conditions of 10−9,
and “improbable” failure conditions are those having a probability on the or-
der of 10−5 or less per flight hour (but greater than 10−9). The development
of a V&V process for demonstration of compliance to FAR/JAR 25.1309
is extremely challenging for complex integrated systems designed for opera-
tion under off-nominal conditions, such as the AIRSAFE System concept of
Fig. 20.2. In fact, the V&V problem for these systems poses a key technol-
ogy barrier to their implementation and transition into the fleet. There are
currently no comprehensive V&V processes for certifying advanced safety-
critical control systems, commercial or military, for effective operation under
off-nominal conditions, or even for adaptive and potentially non-deterministic
systems. The following subsections discuss V&V problem complexity and key
technical challenges for the AIRSAFE future system concept, V&V process
requirements for meeting those challenges, and a research approach being
taken at NASA to address V&V of future safety-critical systems.

20.2.1 V&V Problem Complexity and Technical
Challenges

V&V of safety-critical integrated systems operating under off-nominal con-
ditions can be thought of and analyzed as a complex multidimensional prob-
lem [5]. V&V problem complexity can be discussed in terms of system com-
plexity, operational complexity, and V&V process complexity.

System complexity arises from integrating vehicle health management
functions, resilient control functions, flight safety assessment and prediction
functions, and crew interface and variable autonomy functions. Each of these
functions is characterized by algorithmic diversity that must be addressed in
the V&V process. Vehicle health management involves diagnostic and prog-
nostic algorithms that utilize stochastic decision-based reasoning and exten-
sive information processing and data fusion. Resilient control functions can in-
volve adaptive control algorithms that utilize time-varying parameters and/or
hybrid system switching. Flight safety management may involve diagnostic
and prognostic reasoning algorithms as well as control theoretic algorithms.
Crew interface functions involve displays that are human-factor-based and re-
quire information processing, and variable autonomy will require assessment
and reasoning algorithms. Onboard modeling functions will involve system
identification algorithms and databases. All four core functions are software
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based and will involve various levels of logic and discrete mathematics-based
abstractions and combinations. Subsystem integration will also involve sig-
nificant software and possible hardware complexity.

The second aspect of V&V complexity arises from operational complex-
ity. Normal operating conditions of the future may extend beyond current-
day operational limits. Moreover, safe operation under off-nominal condi-
tions that could lead to LOC events will be a focus of the system design.
In particular, operation under abnormal flight conditions, external hazards
and disturbances, adverse onboard conditions, and key combinations of these
conditions will be a major part of the operational complexity required for fu-
ture safety-critical systems. Future air transportation systems [6] must also
be considered under operational complexity, such as requirements for dense
all-weather operations, self separation of aircraft, and mixed capabilities of
aircraft operating in the same airspace, including current and future vehicle
configurations as well as piloted and autonomous vehicles.

The third aspect of V&V complexity pertains to the V&V process itself.
A wide variety of analytical methods will be needed to evaluate stability and
performance of various and dissimilar system functions, robustness to ad-
verse and abnormal conditions, and reliability under errors, faults, failures,
and damage. Simulation methods will require the development of high-fidelity
models that characterize off-nominal conditions and their multidisciplinary
effects on the vehicle. The capability for multidisciplinary subsystem inte-
gration must also be available in a simulation environment, as well as the
inclusion of pilot-in-the-loop effects. Simulation capability must range from
desk-top batch operation to hardware/pilot-in-the-loop fixed/motion-based
evaluations. Experimental test capability must include ground and flight test-
ing of hardware/software systems, allow for multidisciplinary subsystem in-
tegration, and enable realistic emulation of off-nominal conditions. The V&V
process must itself be assessed for its predictive capability to effectively infer
safe system operation under off-nominal conditions associated with aircraft
LOC events that cannot be fully replicated during V&V. The V&V process
assessment must be able to quantify a level of confidence in this inference.

Operation under off-nominal conditions over a wide envelope of flight con-
ditions results in a very large operational space with multidisciplinary cou-
pled effects. Due to the huge operational space, there are too many condi-
tions to fully analyze, simulate, and test. While there are numerous technical
challenges associated with this problem, some key technical challenges are
summarized below.

� Development and Validation of Physics-Based Off-Nominal Conditions and Ef-
fects Models

– Requires modeling of
� adverse onboard conditions (e.g., faults, failures, damage)
� abnormal flight conditions (e.g., unusual attitudes, stall, stall/departure,

other vehicle upset conditions)



20 Validation and Verification (V&V) of Safety-Critical Systems 407

� external hazards and disturbances (e.g., icing, wind shear, wake vortices,
turbulence)

� worst-case combinations, as determined from LOC Accident/Incident data
– Requires data and/or experimental methods for off-nominal conditions, which

may not be available or easily obtained
– Can involve multidisciplinary coupled effects
– Cannot fully replicate in-flight LOC environment

� V&V of Adaptive Diagnostic, Prognostic, and Control Algorithms Operating
under Off-Nominal Conditions

– Involves a variety of nonlinear mathematical constructs (e.g., inference en-
gines, probabilistic methods, physics-based, neural networks, artificial intel-
ligence, etc.)

– May involve onboard adaptation that may result in stochastic system behav-
ior

– Involves fusion and reasoning algorithms for sensor data, information pro-
cessing, and decisions

– Requires methods for establishing probabilities of
� false alarms and missed detections
� incorrect identifications and decisions
� loss of stability, recoverability, and control

– Requires methods and metrics for establishing off-nominal condition coverage,
reliability, and accuracy for diverse algorithms and multiple objectives

– Requires integrated multi-disciplinary system assessment methods
� performance assessment
� error propagation and effects assessment
� inter-operability effectiveness assessment

� System Verification and Safety Assurance

– Involves large-scale complex interconnected software systems
– Involves potentially fault tolerant and reconfigurable hardware
– May involve adaptive and reasoning algorithms with stochastic behavior
– Requires verification methods for a complex system of systems

� V&V Predictive Capability Assessment

– Requires methods to demonstrate compliance to certification standards for
an extensive set of off-nominal conditions and their combinations that cannot
be fully replicated

– Requires methods for determining and quantifying level of confidence in V&V
process and results for demonstrating compliance

These technical challenges can be utilized in defining V&V process require-
ments, as presented in Sect. 20.2.2.

20.2.2 V&V Process Requirements

In carrying out V&V of complex integrated safety-critical systems operating
under off-nominal conditions, it is necessary to expose system weaknesses and
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vulnerabilities, and to be able to identify safe and unsafe operational condi-
tions, regions, and their boundaries. This is a key point. It is not sufficient,
for example, to demonstrate that a system appears to work in a few selected
flight regimes or under a small subset of off-nominal conditions. In fact, it is
necessary to define a comprehensive integrated V&V process for these sys-
tems, and to utilize this process as a research framework to identify gaps in
current V&V capabilities. Moreover, it is critical to define a V&V process
that effectively and efficiently utilizes analysis, simulation, and experimental
testing to assist in exposing system deficiencies and limitations over a very
large operational space. The V&V process must clearly demonstrate compli-
ance to certification specifications, such as FAR/JAR 25.1309, and quantify
a level of confidence in this compliance.

Key components of the V&V process include algorithm validation, system
verification, and V&V predictive capability assessment. Each of these V&V
components requires the development of methods, tools, and testbeds to per-
form analysis, simulation/ground testing, and flight testing. Moreover, each
method, tool, and testbed must be developed to assess system operation un-
der off-nominal conditions associated with aircraft LOC accidents in order
to reduce or prevent them in the future. V&V metrics must be defined for
the diverse set of algorithms associated with the subsystems and integrated
system, and new methods, tools, and testbeds developed as needed to assess
these metrics. Based on an analysis of the V&V problem, the V&V process
requirements for future systems designed for operation under off-nominal con-
ditions, such as the AIRSAFE System concept, can be defined as depicted in
Fig. 20.3. This figure shows V&V process components, methods, and some
example algorithm validation metrics that are required for AIRSAFE subsys-
tem and integrated system technologies. The core V&V methods of analysis,
simulation/ground testing, and flight testing are applicable to each of the core
V&V components and take on different meanings for each. Metrics must be
developed for assessment of each core component using the appropriate meth-
ods. Although Fig. 20.3 shows some example metrics for algorithm validation,
and illustrates that these are dependent on the algorithm type, metrics are
needed for each core V&V component.

System validation is a confirmation that the algorithms are performing
the intended function under all possible operating conditions. Validation is
not merely a demonstration that the system works under the design condi-
tion and selected test conditions, but a comprehensive process that involves
analytical, simulation/ground testing, and flight testing. The validation sub-
process must be capable of identifying potentially problematic regions of
operation, and their boundaries, and exposing system limitations - partic-
ularly for operation under off-nominal conditions. Fig. 20.3 presents some of
the methods and metrics needed for the analysis, simulation/ground testing,
and flight testing of algorithms associated with AIRSAFE System technolo-
gies. New methods, tools, testbeds, and metrics must be established for al-
gorithms that cannot be thoroughly evaluated using existing methods. For
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Fig. 20.3 V&V Process Requirements for the AIRSAFE System Concept

example, adaptive control systems may require new methods and metrics for
their effective analysis. Moreover, methods and metrics may vary depend-
ing on the algorithm being considered. For example, stability of detection
and prediction algorithms may imply convergence rate and accuracy rather
than the traditional control-theoretic meaning of stability. Performance of
diagnostic and prognostic algorithms may be characterized by probabilities
associated with correct detection and diagnosis of system faults or failures,
whereas performance of control systems may be characterized by tracking
capability or evaluation of some other control objective. Robustness for all
algorithms must be evaluated relative to uncertainties, including parameter



410 C.M. Belcastro

variations and unmodeled system dynamics, and disturbances, including sig-
nal and system noise and turbulence. Coverage of off-nominal conditions must
also be clearly defined and evaluated for effectiveness in dealing with these
conditions. Examples of reliability metrics are given in the figure for detec-
tion/prediction and control theoretic algorithms. Crew interface and variable
autonomy algorithms must be evaluated for handling qualities and interface
effectiveness, and aircraft-pilot coupling (APC), or pilot-induced oscillation
(PIO), susceptibility under off-nominal conditions. Moreover, real-time parti-
tioning effectiveness between the human and automation must be evaluated
under off-nominal and emergency conditions. Simulation and ground test-
ing includes traditional batch, real-time, piloted, and hardware-in-the-loop
methods, as well as a linked lab capability for the integration and evaluation
of multidisciplinary technologies. Flight testing includes traditional full-scale
testing to evaluate pilot/system interactions, as well as sub-scale testing to
evaluate algorithm effectiveness and dynamics models under off-nominal con-
ditions that are too risky for full-scale testing.

Verification of the system is a confirmation that the validated algorithms
have been correctly implemented in software and hardware. This is also a
nontrivial task. Formal methods are utilized for analytically verifying with
proofs that the system requirements are fully defined and met by the imple-
mentation. Fault-tree and safety case analyses of the system implementation
must also be performed. Testing of code is performed at various levels of
system build-up, including evaluation of the code on representative or actual
hardware to be fielded. Flight testing also requires the use of representative
avionics hardware systems and flight environments under nominal and off-
nominal conditions. Although none are given in Fig. 20.3, verification metrics
must be clearly defined and evaluated.

V&V predictive capability assessment is an evaluation of the validity and
a level of confidence that can be placed in the V&V process and its results
for operation under nominal and off-nominal conditions. The need for this
evaluation arises from the inability to fully evaluate these technologies under
actual LOC conditions. A detailed disclosure is required of model, simulation,
and emulation validity for the off-nominal conditions being considered in
the V&V, as well as interactions that have been neglected and assumptions
that have been made during design. Cross-correlations should be utilized
between analytical, simulation and ground test, and flight test results in
order to corroborate the results and promote efficiency in covering the very
large space of operational and off-nominal conditions being evaluated. The
level of confidence in the V&V process and results must be established for
subsystem technologies as well as the fully integrated system. This includes an
evaluation of error propagation effects across subsystems, and an evaluation of
integrated system effectiveness in mitigating off-nominal conditions. Metrics
for performing this evaluation are also needed.
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20.2.3 Research Approach

An approach taken at NASA for addressing V&V has been in the develop-
ment of metrics, methods, software tools, and testbeds that facilitate the
evaluation of safety-critical systems operating under off-nominal conditions.
A high-level V&V concept was developed which integrates analytical, simula-
tion, and experimental methods. Analytical methods must be developed, with
theoretical extensions where needed, as well as user-friendly software tools
to assess algorithm stability, performance, robustness, and reliability under
off-nominal conditions. Simulation methods must be developed to facilitate
Monte Carlo analysis and piloted evaluations under off-nominal conditions. In
addition, advanced high-fidelity databases, models, and simulation enhance-
ments must be developed to characterize off-nominal conditions and their
impacts on vehicle dynamics and control. Experimental testbeds must be
developed to facilitate testing under off-nominal conditions in ground-based
laboratory tests as well as in-flight tests. The full integrated V&V process
must also be demonstrated, evaluated, and refined using realistic LOC test
scenarios, subsystems, and systems. The following sections present a V&V re-
search framework developed at NASA Langley and a brief summary of recent
accomplishments in this research.

20.3 V&V Process and Research Framework

Based on the V&V process requirements of Fig. 20.3, a detailed V&V process
can be developed for complex integrated resilient systems, such as the AIR-
SAFE System concept of Fig. 20.2. A high-level overview of the integrated
V&V process is presented in Fig. 20.4. The shading of the blocks corre-
lates to core AIRSAFE subsystem functions depicted in Fig. 20.2 – that
is, dark gray correlates to resilient control functions, light gray represents
health management functions, and white is associated with crew interface
functions. Multi-shaded boxes in Fig. 20.4 represent evaluation of the associ-
ated integrated subsystem functions. Analysis, simulation, and experimental
V&V components are organized in the V&V process of Fig. 20.4 moving from
left to right, and system evaluation becomes more highly integrated moving
to the center and to the right. Also as indicated in Fig. 20.4, results from the
V&V process are utilized as an iterative process for refining the algorithm
design of each subsystem. The remainder of this section will present a more
detailed description of the control-related components of the V&V process,
including methods and interfaces. This is depicted in Fig. 20.4 by the dot-
ted box around the lower two rows of the process. Reference [5] provides a
detailed description of the entire process.

A set of recommended V&V methods for resilient control system functions
is presented in Fig. 20.5 and Fig. 20.6, which depict analysis and simulation
methods and simulation and experimental methods, respectively. For process
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continuity, the right-most blocks of Fig. 20.5 are repeated as the left-most
blocks of Fig. 20.6. The methods listed in each block include those that are
currently well understood and available as software tools, as well as some
that are in need of further research. Moreover, additional methods can be
identified and added to each block. In this way, new methods and tools can
be identified.

The “Stability and Performance Analysis” block in the lower left of
Fig. 20.5 includes standard stability and performance linear analysis meth-
ods, including: eigenvalue and eigenvector analysis, transient and steady-state
response, and controllability/observability analysis. These methods are well
understood for standard linear time-invariant systems, but are not as well
understood for hybrid and adaptive systems. Failure and damage coverage
must also be considered relative to stability and performance implications.

The “Robustness Analysis” block includes standard μ-Analysis methods
(see Chap. 7) as well as nonlinear extensions (see Chap. 19) for analyzing
stability and performance robustness to uncertainties. Uncertainty model-
ing methods that generate a Linear Fractional Representation (LFR) of the
uncertain system must be utilized for characterizing linear and nonlinear pa-
rameter variations (see Chaps. 3 – 6) and unmodeled dynamics. Robustness
methods that enable the evaluation of hybrid systems switching effects, adap-
tive systems, stochastic uncertainties, and time-delay effects must also be con-
sidered, as well as robustness and worst case analysis for fault/failure/damage
conditions and external disturbances.

The “Nonlinear Analysis” block of Fig. 20.5 includes bifurcation analysis of
nonlinear dynamic and controlled systems, controllability and observability
in a nonlinear sense, such as degree of controllability and observability as a
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function of the changing parameters, and safe set and recoverability analysis.
Safe set and recoverability analysis enables the determination of safe oper-
ating regions within which recovery to stable trim points can be achieved,
as well as the identification of boundaries to unsafe regions from which re-
covery may not be guaranteed or even possible. Nonlinear analysis of hybrid
and adaptive systems, fault and failure effects, and achievable dynamics of
constrained or impaired vehicles must also be considered. A method for ana-
lytically determining the Probability of LOC in a nonlinear sense must also
be developed.

These analysis methods must then be applied to the integrated health
management system, including failure detection and identification functions
for critical control components, and resilient control system, including fail-
ure mitigation functions, as indicated by the “Integrated System Linear and
Nonlinear Analysis” block.

The “Flying Qualities Analysis” block evaluates resilient control system
effectiveness relative to a pilot being in the loop, and may integrate pilot
models and/or crew interface functions. This analysis includes methods to
assess susceptibility to PIO, impact of inappropriate pilot inputs, handling
qualities under off-nominal conditions, effectiveness of variable autonomy par-
titioning between automatic control resilience functions and human-involved
control, effectiveness of trajectory generation and management under vehi-
cle impairment or damage, and integrated guidance and control effectiveness
under off-nominal conditions.

Nonlinear simulation evaluations are performed to assess: the effective-
ness of the detection and mitigation algorithms and their integration; the
probability and impact of false alarms, missed detections, incorrect identi-
fications, and incorrect decisions; failure/damage coverage and propagation
effects; achievable dynamics under vehicle failures or damage; and time de-
lay effects associated with failure detection, identification, and mitigation.
Guided Monte Carlo studies, guided by analysis results to further explore
potentially problematic operational regions, can be utilized to assess these
and other reliability metrics, robustness under uncertainties, and worst-case
combinations of flight and impairment conditions. Nonlinear simulations are
used in evaluating the vehicle health management and resilient control sub-
systems individually and in combination. The crew interface subsystem is
assessed in piloted simulation evaluations individually and as part of the
integrated system to evaluate: crew interface effectiveness in improving situ-
ational awareness under off-nominal conditions; mitigation and recovery ef-
fectiveness, including variable levels of autonomy; handling qualities under
off-nominal conditions, using Cooper-Harper metrics and extensions; variable
autonomy interface effectiveness; and flight/trajectory management under
off-nominal and emergency conditions.

Fig. 20.6 shows the progression to subsystem and integrated system eval-
uations that involve the software/hardware implementations. Formal ver-
ification and safety case analysis methods are utilized to assess system
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requirements and specifications, implementation integrity of adaptive and
predictive/reasoning systems under off-nominal conditions, hybrid switching
logic, and the variable autonomy interface. Various levels of system integra-
tion and implementation are evaluated through laboratory tests and flight
tests, using both full-scale and sub-scale vehicles. Ground and flight test
methods are utilized to assess system integration, software implementation,
fault/failure/damage mitigation effectiveness, and upset recovery effective-
ness under off-nominal conditions throughout and beyond the normal flight
envelope. Robustness to uncertainties, reliability and coverage, variable au-
tonomy interface effectiveness, and impacts of inappropriate crew responses
are also assessed. Sub-scale vehicle flight tests are utilized for high-risk con-
ditions that would not be feasible in a manned vehicle, and full-scale flight
tests are performed to evaluate the crew/vehicle interfaces (CVI) in flight
while using the appropriate timescale.

The V&V process depicted in Fig. 20.5 and Fig. 20.6 is integrated across
the various methods, with information being exchanged between each block.
Information exchange is indicated with double-headed arrows. Reference [5]
provides a detailed description of information exchange throughout the pro-
cess. As an example, consider a subset of the process shown in Fig. 20.5 and
depicted below in Fig. 20.7.
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Fig. 20.7 V&V Subprocess for Resilient Control Functions – Analysis and Sim-
ulation Methods
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This figure contains analysis and simulation methods that are applied to
the resilient control functions. To illustrate information exchange between
subprocess components, consider a subset of these methods as presented in
Fig. 20.8.

   Integrated Resilient Control (IRC) Algorithms Design

 - Control Mi�ga�on Effec�veness
 - Failure/Damage Coverage
 - Guided Monte Carlo Robustness, Worst Case, & Reliability Studies

...

Nonlinear Simula�on Evalua�on

...

Stability &
Performance

Analysis

- Failure/Damage 
  Coverage

...

...

Robustness
Analysis

- Parameter Varia�ons
  (Linear & Nonlinear)
- Unmodeled Dynamics

- Worst Case Analysis
...

Nonlinear Analysis

- Bifurca�on
- Safe Set / Recoverability
- Faults/Failures Effects

...

...

Predicted 
Control 
System 

Performance 
& Coverage

Control System 
Performance   
& Coverage
Deficiencies

Poten�ally 
Problema�c 

Nonlinear 
Opera�ng 

Condi�ons

Problema�c 
Nonlinear 
Opera�ng 
Regions

Uncertainty Cases,  
Worst Case Scenarios, 

Predicted Margins

Coverage Constraints,
Rob. Deficiencies;
Problema�c Parameter 
Combina�ons

Coverage Margins

Failure / Damage
Scenarios

Poten�ally Problema�c 
Nonlinear Opera�ng 

Condi�ons

Worst Case
Failure & Uncertainty

Parameters

Algorithm Refinement
(Performance, Coverage)

Algorithm Refinement
(Robustness)

Algorithm Refinement
(Nonlinear Performance)

...

Fig. 20.8 Example V&V Subprocess Interfaces for Resilient Control Functions –
Analysis and Simulation Methods

Starting with the lower left block of Fig. 20.8, failure/damage scenarios
are evaluated in the “Stability and Performance Analysis” block based on
the failure and damage profiles being mitigated in the resilient control design.
The stability and performance analysis results define the effective coverage of
these failure/damage scenarios. This information can be provided for use in
the “Robustness Analysis” block to generate parametric and non-parametric
uncertainty models, and for performing a worst case analysis. Using robust-
ness analysis techniques, failure/damage coverage margins can be generated
as well as worst case failure, damage, and uncertainty combinations. These
results can be utilized by the nonlinear analysis tools, such as bifurcation,
safe set and recoverability, and failure effect analyses, to identify potentially
problematic nonlinear operating regions. The nonlinear analysis results can
be utilized in re-evaluating robustness in these regions. Analysis results re-
lated to stability and performance, such as failure/damage coverage predic-
tions, robustness, including uncertainties, worst case scenarios, and predicted
margins, and nonlinear properties, such as potentially problematic operating
conditions, are utilized, corroborated, or disputed during nonlinear simulation
evaluations. Simulation results are then utilized by the analysis components
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during re-evaluation. The analysis and simulation results are also utilized as
part of an iterative design process. Each evaluation method provides a basis
for improved system design, as depicted in Fig. 20.8. The subsequent analysis
and simulation results might then be utilized to generate test scenarios for
use in piloted simulation evaluations (not shown in Fig. 20.8). It is conjec-
tured that the use of analytical, simulation, and experimental results in a
coordinated manner will provide a means to effectively and efficiently iden-
tify problematic flight conditions, off-nominal conditions, uncertainties, and
combinations of these without having to perform exhaustive testing.

Recent NASA research that pertains to the V&V process thus described
is briefly summarized and referenced in Sect. 20.4.

20.4 V&V Research Status and Recent
Accomplishments

Significant resources and effort have been invested by NASA in addressing the
V&V of future advanced safety-critical systems. For the last decade, this work
has largely been planned and funded by the system research projects focused
on vehicle health management, flight-critical system design, and resilient
control technology development under the NASA Aviation Safety Program
(AvSP). This research has resulted in the development of analytical methods
and software tools, simulation-based methods, and experimental testbeds for
the validation of safety-critical systems operating under off-nominal condi-
tions related to aircraft loss of control [7, 8]. These results are summarized
in [9]. Software verification methods and tools were also developed under this
research effort, and a new effort under the AvSP is currently being planned
to focus on the V&V of software-intensive systems [10]. This new effort will
develop V&V methods that can be applied to the Next Generation Air Trans-
portation System.

20.5 Summary and Concluding Remarks

Aircraft loss of control is a significant contributor to accidents and fatalities,
resulting in the highest number of fatalities among the worldwide commer-
cial jet fleet. It is also the most complex accident category, resulting from
numerous causal and contributing factors that occur individually or more
often combine to result in a loss of control accident or incident. These fac-
tors are off-nominal conditions that occur onboard the aircraft, as external
disturbances, or as abnormal flight conditions. To address aircraft loss of
control, NASA is developing onboard systems technologies to: prevent and
detect faults, failures, and damage through the development of vehicle health
management technologies; provide improved situational awareness to the crew
through the development of advanced flight deck technologies; and to provide
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the capability to mitigate off-nominal conditions through the development of
resilient aircraft control technologies. A future technology concept, called the
AIRSAFE System, for integrating these technologies and providing onboard
flight safety assurance is envisioned. These technologies are being developed
for safety-critical operation under off-nominal conditions.

The V&V of safety-critical systems operating under off-nominal conditions
poses significant technical challenges. This chapter has provided an analysis
of this V&V problem, and has described a research approach being taken
at NASA to address it. High-level V&V process requirements were defined,
which integrate analytical, simulation, and experimental methods, software
tools, and testbeds. A detailed V&V process was defined for application to
the AIRSAFE System concept, and a detailed description was provided of
the methods and some example interfaces involved in the controls-related
components. Research progress at NASA in the development of analytical,
simulation, and experimental methods was briefly discussed and referenced.

Acknowledgement and Dedication. The V&V research process, meth-
ods and software tools, and the AIRSAFE System concept presented in this
chapter were developed in collaboration with Dr. Celeste M. Belcastro of
NASA Langley Research Center, who lost her selfless and courageous battle
with cancer and passed from this life on August 22, 2008. This chapter and
continued work in this area are dedicated to her memory.

References

1. Statistical Summary of Commercial Jet Airplane Accidents, Worldwide Oper-
ations, 1959-2009. Boeing Commercial Airplanes (July 2010),
http://www.boeing.com/news/techissues/pdf/statsum.pdf

2. Belcastro, C.M., Foster, J.V.: Aircraft Loss-of-Control Accident Analysis. In:
AIAA Guidance, Navigation and Control Conference, Toronto, Canada (2010)

3. Belcastro, C.M., Belcastro, C.M.: Future Research Directions for the Develop-
ment of Integrated Resilient Flight Systems to Prevent Aircraft Loss-of-Control
Accidents, Part I: System Technologies. NASA TM (under final preparation)

4. Belcastro, C.M., Jacobson, S.: Future Integrated Systems Concept for Prevent-
ing Aircraft Loss-of-Control Accidents. In: AIAA Guidance, Navigation and
Control Conference, Toronto, August 2-5 (2010)

5. Belcastro, C.M., Belcastro, C.M.: Future Research Directions for the Develop-
ment of Integrated Resilient Flight Systems to Prevent Aircraft Loss-of-Control
Accidents, Part II: Validation and Verification. NASA TM (under preparation)

6. Joint Planning and Development Office, Concept of Operations for the Next
Generation Air Transportation System, Version 3 (October 2009),
http://www.jpdo.gov/library.asp

7. Belcastro, C.M., Belcastro, C.M.: On the Validation of Safety Critical Aircraft
Systems, Part I: An Overview of Analytical & Simulation Methods. In: AIAA
Guidance, Navigation and Control Conference, Austin, Texas, USA (2003)



20 Validation and Verification (V&V) of Safety-Critical Systems 419

8. Belcastro, C.M., Belcastro, C.M.: On the Validation of Safety Critical Aircraft
Systems, Part II: An Overview of Experimental Methods. In: AIAA Guidance,
Navigation and Control Conference, Austin, Texas, USA (2003)

9. Belcastro, C.M.: Validation and Verification of Future Integrated Safety-
Critical Systems Operating under Off-Nominal Conditions. In: AIAA Guidance,
Navigation and Control Conference, Toronto, Canada (2010)

10. Validation and Verification for Flight-Critical Systems Assessment of Critical
Research Activities. NASA Aeronautics Research Mission Directorate, Aviation
Safety Program, November 25 (2009)





Chapter 21

Clearance of Flight Control Laws for
Carefree Handling of Advanced
Fighter Aircraft

Robert Stich

Abstract. Clearance of fighter aircraft poses additional challenges compared
to civilian transports due to the high agility and performance of the vehicles,
their larger flight envelope, different mission types and higher instability. The
carefree handling concept of modern fighters, which is a mandatory require-
ment for the flight control laws to reduce pilot work load, further increases
the challenges for the assessment task. Carefree handling means, that the
flight control system allows any pilot inputs while it takes care of the struc-
tural and aerodynamic limits of the aircraft and simultaneously maximizes
aircraft performance. The carefree clearance covers however only manoeuvres
that are meaningful for the respective configuration and phase of flight. The
required analysis techniques to provide such a clearance are explained.

21.1 Introduction

This chapter explains how a carefree handling clearance is performed for the
Eurofighter Typhoon at EADS Defense and Securities Business Unit Military
Air Systems (MAS). An aircraft with a carefree handling flight control sys-
tem (FCS) responds to whatever demands and manoeuvres the pilot performs
taking into account the structural and aerodynamic limits whilst simultane-
ously maximizing performance. This poses unique challenges for the clearance
process including a dedicated set of manoeuvre sequences. The assessment is
based on nonlinear simulation, linear stability analysis, manned simulation
and flight test.

During the nonlinear simulation based assessment, carefree handling ma-
noeuvres are simulated for different aircraft configurations (mass, CoG,
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stores) and envelope points as well as for many different uncertainty combi-
nations. The resulting time histories are automatically evaluated with respect
to a given set of criteria and ’worst-case’ configurations and uncertainties are
selected and used for further robustness analysis.

The extremal values of the angle-of-attack and vertical-load-factor ob-
tained during the nonlinear simulation, and the known margins of the flight
envelope are utilized to define the aircraft operational boundaries for the
linear stability analysis. The complete linear clearance process is highly au-
tomated and is described in this chapter.

Detailed handling qualities evaluations are performed in manned simula-
tions, based mainly on the results of the nonlinear assessment. Results of the
nonlinear simulations are further used to derive limits for monitoring criti-
cal parameters during flight testing. After an envelope expansion flight test
campaign and an aerodynamic model modification the nonlinear simulation
is further utilised for the validation of the aerodynamic model via dedicated
post-flight analysis.

21.2 Plant Description and Clearance Process

For control laws design and subsequent clearance a good understanding of
the controlled system is essential. This is especially true for an extremely
complex high performance fighter type aircraft. Thus, a short description of
the Eurofighter Typhoon will be given. Working in a multi-national/multi-
company environment causes some unique concurrent engineering challenges
which will be described with respect to the Eurofighter clearance process.

Fig. 21.1 Eurofighter Typhoon aircraft
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21.2.1 Aircraft Description

The Eurofighter Typhoon is a delta-canard-configuration fourth generation
fighter aircraft (see Fig. 21.1). In the sub- and transonic speed regimes the
aircraft is aerodynamically unstable in the pitch axis for superior performance
and agility. It is propelled by twin EJ200 engines with a thrust-to-weight-ratio
larger than one. Its top speed is Mach 2 and the load factor ranges from -3g
to +9g. The aircraft features swing role capability, i.e. changing in-flight from
the air-to-surface to the air-to-air role according to the attached stores. For
more information about the aircraft see [1].

The Eurofighter FCS is a full-authority quadruplex digital fly-by-wire sys-
tem providing high agility and excellent handling qualities. Primary control
surfaces are canard, trailing edge flaps and rudder. Airbrake, leading edge
slats and intake cowl flaps are used as secondary control surfaces.

During failure-free flight the FCS provides carefree handling characteristics
to minimise pilot workload and improve flight safety. The Eurofighter carefree
handling concept will be described in more detail in section 21.3. In addition
to carefree handling some emergency features have been included into the
FCS design to ensure maximum safety of aircraft operation.

If the aircraft decelerates towards its minimum airspeed the auto-low-speed
recovery function takes over and recovers the aircraft at a safe speed before
control is handed over to the pilot again. A disorientation recovery function
can be activated by the pilot in case of spatial disorientation.

21.2.2 Control Laws Clearance Process

For the Eurofighter clearance a model-based approach is used. This means,
that the clearance is achieved based on validated models of the aircraft and
its subsystems including uncertainties. Model validation and updating is done
via flight testing and other system tests.

The system design responsibility for the Eurofighter flight control laws is
with Military Air Systems. Thus the ’FCS Joint Team’ (FJT) which per-
forms the flight-control-system design and coordinates the clearance efforts
is managed by Military Air Systems and is situated at its Manching plant. It
is made up of engineers from all core Eurofighter Partner Companies (EPCs)
whose participants are given in Table 21.1. The FJT defines the assessment-
rules [2], [3], splits the assessment tasks between the EPCs and coordinates
the results. A schematic description of this process is given in Fig. 21.2.

For a clearance it is essential, that every partner team uses the same models
in the same way. In a multi-partner environment this requires an intensive
use of checkcases. Beside utilising the same aircraft models, different partner
companies use different tool sets based on their experience. This ensures
additional safety because it avoids a common tool error at all EPCs.
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Table 21.1 List of core Eurofighter-Partner-Companies

Country Company
Germany European Aeronautic Defence and Space Company -

Defense and Security, Military Air Systems (EADS-D)
Italy Alenia Aeronautica (ALN)
Spain European Aeronautic Defence and Space Company -

Casa (EADS-C)
United Kingdom BAE Systems (BAES)
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Fig. 21.2 Eurofighter control laws clearance process

21.3 Carefree Handling

Carefree handling is an outstanding feature of the Eurofighter. Protection
against departure, spin, overstress etc. is provided by the FCS. This allows
the pilot to concentrate on his mission and not on flying the aircraft. However
the pilot is only allowed to do meaningful manoeuvres for the actual phase of
flight, i.e. carefree does not mean careless. A full carefree handling clearance
is only provided for failure-free flight, every other flight phase is not carefree.

For the Eurofighter, failure-free flight is defined such that, either no warn-
ing is provided to the pilot, or the failure consequences are so minor, that a
failure-free clearance is given nevertheless. This means for instance, that an
aircraft with a known first failure of the air data system is still considered to
be failure-free.
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21.3.1 Carefree Handling Definition

Carefree handling as it is agreed with the Eurofighter customers has the
following meaning: Free use of flight controls during manoeuvres which are
meaningful from an operational point of view for air-to-surface attack and
air-to-air combat. This implies for example, that a manoeuvre that is mean-
ingful in the air-to-air role may not make sense for air-to-surface missions
and thus will not be part of the carefree handling clearance for an air-to-
surface aircraft. This distinction is done to avoid unnecessary conservatism
and manoeuvre authority restriction.

Carefree handling rules allow up to full and highly aggressive cross-cockpit
stick-inputs including stick-reversals. Pedal inputs may be used in addition.
Manoeuvres may be linked in any order and include continuous rolling. They
can be performed at any throttle setting between idle and max-reheat.

For clearance purposes an extensive evaluation has been performed by
the FJT together with the customer airforces and the infinite number of
possible manoeuvres has been reduced to a fixed set as described in [2].
These manoeuvres are categorised according to their likelihood into three
categories (frequent, less frequent and rare). The manoeuvre categories are
further associated with the tolerance concept (see subsection 21.4.3 for more
details). Depending on the aircraft role (e.g., air-to-surface) only a certain
subset of the manoeuvres has to be cleared. The given carefree handling
manoeuvre set of [2] may be modified during the assessment for worst case
identification.

21.3.2 Manoeuvres Category Definition

For design and clearance purposes manoeuvres are divided into three cat-
egories according to [2] labeled M1, M2 and M3. M1 are full carefree ma-
noeuvres, M2 are relaxed carefree manoeuvres and M3 are non-carefree
manoeuvres.

The most demanding manoeuvre category is M1 (carefree). Manoeu-
vres in this category are only applicable for failure-free flight and have no
limitations for the pilot within the carefree philosophy described in subsec-
tion 21.3.1. A prerequisite for a M1 clearance is a valid M3 (linear) clearance.
A M1 clearance is performed via nonlinear and manned simulation using the
carefree handling manoeuvres described in subsection 21.3.1.

If a M1 clearance is not possible due to the aircraft responses found in
the assessment, a M2 clearance with relaxed manoeuvres compared to the
M1 definition is performed. Just like M1 this category is only applicable for
failure-free flight. The pilot inputs are typical for general day-to-day flying
including take-off and landing and cover rapid inputs up to full-forward/full-
back stick. Maximum roll-rate is limited and only one roll is allowed. By
definition this category is not carefree but envelope protection is still pro-
vided. The M2 clearance requires an existing (linear) M3 clearance to start
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with and is performed using nonlinear analysis and manned simulation with
the appropriate manoeuvres.

The lowest category M3 is also called ’symmetric and gentle flying’ and
is not carefree. This type of manoeuvre is the most basic one and must be
cleared for every possible flight condition including failure-free flight and all
system-failure cases. If a M3 clearance is not possible in a region, then flying
there will be prohibited and this typically will trigger changes within the FCS.
Control inputs up to full-forward/full-back stick are possible if they are done
slowly and gently. Roll rate and bank angle are further limited compared to
the M2 category for these manoeuvres.

For final control law delivery a carefree handling M1 clearance is required
throughout the service envelope. With customer approval some areas may
be limited to M2 manoeuvres. For flight test purposes, excluding carefree
handling, a M3 manoeuvre clearance may be sufficient.

21.4 Assessment Model

The assessment is based on the aircraft equations of motion together with
models of the aircraft and its systems, the atmosphere and pilot-inputs. A
combination of the different configuration parameters and uncertainties is
called a ’configuration’ and is the baseline of the assessment.

The assessment model is calculated for the six-degrees-of-freedom equa-
tions-of-motion of a rigid body. Elastic effects are considered as part of the
aerodynamic dataset. For the linear evaluation and part of the nonlinear-
simulations the speed is set constant, i.e. the model is reduced to five degrees-
of-freedom. This is done to get a better understanding of the local effects
throughout the flight envelope.

21.4.1 Aircraft Model

The mass model describes mass, CoG, inertias etc. of the aircraft to be as-
sessed. All of these variables are highly dependent not only on fuel quantity,
but also on the aircraft stores, i.e. external tanks, missiles and other weapons.
Stores may have a larger effect on mass/CoG as fuel. Due to fuel slosh the
CoG can vary significantly during maneuvering and these extreme CoG po-
sitions (pitch and lateral) must be considered during assessment.

Aerodynamic forces and moments depend on the usual parameters, like
Mach number (M), dynamic pressure (q̄), angle-of-attack (AoA), angle-of-
sideslip (AoS), control surface position etc. The presence of external stores is a
major difference between civil and military aircraft. They have a strong effect
on aerodynamic forces and moments and may exceed the influence of different
fuel loadings. The effect of elastic deformations on the aircraft is modelled
within the aerodynamic data set via specific factors. For linear analysis the
aerodynamic coefficients are numerically linearized to calculate the associated
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derivatives. Uncertainty factors are defined for linear derivatives and moment
offsets.

Since stores have a significant effect on mass/CoG and aerodynamic forces
and moments, a dedicated numbering system for configuration control is used.
If a new store is not covered by the mass/CoG range of existing stores, or
has unique aerodynamic features, the control laws must be adapted and the
assessment process has to be repeated.

The engine model is of less importance since there is only negligible influ-
ence on short term dynamics. The constant speed assumption further enables
a good identification of problem areas. For the part of the manoeuvre clear-
ance which is done with 6 degree-of-freedom, as for example decelerations,
a model including engine dynamic effects is available, which covers the com-
plete thrust range from idle via max-dry to max-reheat. Compared to civil
engines the bypass-ratio is small and the engine reacts relatively fast. The
afterburner is a unique feature of military aircraft.

The model of the flight-control-system contains the complete nonlinear
control laws and sensor systems. The most important sensor models repre-
sent the air-data-system and the inertial-measurement-unit. The fuel/stores
model calculates aircraft mass and CoG and provides these data for the FCS.
The models cover the failure-free state and failure cases. All of these subsys-
tems and associated errors are of interest for both the linear and nonlinear
assessment. Furthermore models of the actuator and hydraulic systems are
available. They cover the specific system dynamics and behaviour and also
deterioration effects and system failures.

For nonlinear simulations further models describe atmospheric distur-
bances like gusts and turbulence. Additional models, like e.g. landing-gear,
head-up- or head-down-displays, are required during manned simulation
exercises.

21.4.2 Aircraft Configuration

The assessment process is based on aircraft configurations. They describe a
specific set of input parameters, i.e. mass/CoG, stores, air-data-system set-
tings, fuel system failure, aerodynamic uncertainty, manoeuvre type etc. and
get a unique name. All subsequent tasks like trim, linear/nonlinear analysis
and postprocessing always refer to these configuration names.

Nonlinear simulations utilise lateral CoG from fuel slosh whereas the linear
assessment is usually performed for a symmetric aircraft. This is done since
differences of the linear system stability margins between a symmetric and a
moderate asymmetric aircraft are minor. If the lateral CoG offset results from
asymmetric stores and thus is larger, the linear assessment also includes this
effect. For manned simulation the same configurations as for the nonlinear
simulations are used.
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For an assessment task more than hundred configurations will be used for
the linear evaluation. Due to the large number of manoeuvres required for
a carefree handling clearance several hundred nonlinear configurations are
assessed.

21.4.3 Tolerance Concept

The term tolerances, as used throughout this chapter, is synonym for all kinds
of model uncertainties (e.g., uncertain parameters in the aerodynamics, fuel
stores) and manoeuvre categories and is the basis for addressing robustness
checks.

The aircraft aerodynamic model as well as the subsystem models con-
tain various uncertainties which are partly known and partly unknown. The
known uncertainties are modelled as uncertainty models and their effects
must be observed during the assessment, as described below. The unknown
uncertainties are characteristics of the aircraft which are not precisely known,
and therefore are not covered by corresponding uncertainty models. Suitable
clearance margins are used to take into consideration the effects of these
uncertainties.

For all systems such as aerodynamics, air data and fuel/stores-system
model uncertainties have been defined. Each model uncertainty exists in a
nominal and toleranced version, with the latter one being larger and less
likely. Note that nominal performance does not necessarily imply a failure-
free system e.g. an air data system with a single failure defines the nominal
ADS performance. As described in subsection 21.3.1 carefree handling ma-
noeuvres are also divided into nominal and toleranced categories with respect
to their probability in the air-to-air/air-to-surface role. Thus for nonlinear
simulations manoeuvre selection adds an additional uncertainty factor.

A tolerance concept on how to combine these uncertainties has been de-
fined. The most basic check is a combination of all models/manoeuvres in
nominal condition. If for these basic calculations any clearance requirement
is violated, so-called ’noncompliance’ checks are performed. They are done to
check the robustness of the aircraft via several combinations of nominal and
toleranced uncertainties. If the noncompliance calculations exhibit sufficient
margins and cliff edge effects are absent, the corresponding limit violation
can be cleared. The prescribed evaluation procedure for noncompliance cal-
culations combines the different probabilities of each uncertainty to obtain
at least the minimal global value required according to the general safety
regulations.

21.4.4 Assessment Tools

For trim, nonlinear simulations and various post-processing tasks in house de-
veloped Fortran programs are utilized at MAS. Trim results (aerodynamic
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model and FCS gains) are linearized by Fortran programs for linear-
evaluations. The resulting data are then used to build a linear model in
MATRIXx Systembuild from which the linear results (frequency responses,
eigenvalues etc.) are derived using MATRIXx tools. Other Eurofighter part-
ner companies use different assessment tool sets including MATLAB.

21.5 Assessment Methods

For a carefree handling clearance several separate assessments take place.
Before any analysis can be performed, it is required to trim the aircraft over
the desired flight envelope on a grid of values for altitude, Mach number and
AoA/Nz. The trim results give a first insight into the aircraft capabilities.
Then linear analysis and nonlinear simulations are performed for selected
trim results. For linear assessment a fine AoA/Nz grid is used. Neutral, full-
forward- and full-back-stick initial conditions are utilized for the nonlinear
simulations. Additional handling qualities evaluations and clearance checks
are done in manned simulation. The ultimate validation is done during flight
test. All of these assessment methods will be described in more detail in the
following sections.

Most of the assessment time (about 65%) is spent on nonlinear assessment,
wile the linear assessment accounts for about 30% of the time. The amount
of time dedicated for manned simulation is below 5%. Flight tests for FCS
assessment have been very rare during the last years due to model maturity.

21.5.1 Trim Analysis

Trim analysis is the most basic assessment method used. It provides a first
insight in limiting factors like extreme surface deflections or maximum sta-
tionary vertical load factor capability. In addition it is the foundation for the
subsequent linear analysis and nonlinear simulations which require trimmed
points as initial conditions.

For trimming based on very generic inputs like altitude, Mach number,
trim-type and associated parameter-range a dedicated trim program has been
developed. For angle-of-attack (AoA), vertical-load-factor (Nz), or pitch-stick
trim, either fixed values or a parameter-range from a minimum to a maxi-
mum value in fixed intervals can be selected. The results of these trim runs
are stored in files. They can be used for a much quicker re-trim run, if some
parameters of minor influence on the trim results e.g., aerodynamic uncer-
tainty type, have been changed. After trim solutions have been found, the
aircraft is linearized around those points if required. Approximately 4,500
trim points are calculated for each configuration in a typical envelope.

Envelope regions where trim is not possible for a given configuration can
provide an insight into insufficient control power if surfaces reach their trim
limit. On the other side, the amount of remaining surface deflection from the
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trim values to the limits is an indicator of maximum control power available
for manoeuvres.

The low speed envelope boundary is reached, if the lift obtained for full-
back-stick equals the weight of the configuration, i.e. level horizontal flight can
be sustained. The envelope below this minimum speed is of less operational
relevance. The region where maximum angle-of-attack and load factor occur
simultaneously in the trim results defines the corner speed.

21.5.2 Linear Analysis

Linear analysis around a trim point is used for stability assessment. Since
aerodynamic uncertainties are only valid in the vicinity of a reference (trim)
point they are best used together with the linearized aircraft model. Envelope
regions with stability problems can be easily identified and described and the
gain and phase margin calculated.

Classical gain and phase margin evaluations are used to assess system ro-
bustness. Gain and phase margins are defined to provide a safety offset and to
cover uncertainties in the aircraft models. Based on the requirements of the
MILSPEC [4] several robustness boundaries have been defined for gain- and
phase margin (see [3], [4]). They are referred to as ’diamonds’ due to their
shape. An example is shown in Fig. 21.3. Note that, in accordance with the
tolerance concept different stability margins are defined for average (nom-
inal) and toleranced configurations. For robustness checks, reduced (inner)
stability margins for gain and phase are defined for both cases in Fig. 21.3.

Frequency responses and eigenvalues for longitudinal and lateral subsys-
tems are assessed. A program automatically evaluates if the required gain
and phase margins are violated and records the margin reserve or the level
of instability. In addition to the Nichols plots, the associated eigenvalues
are calculated as well. Linear handling qualities criteria, like e.g. phase rate
criterion, absolute and relative amplitude, attitude dropback, bandwidth fre-
quency, flight path time delay and roll mode time constant, are also evaluated.
More details about these criteria can be found in MILSPEC [5].

To avoid unnecessary calculations for configurations/envelope areas with
stable aircraft responses a three step approach is used as described in
Fig. 21.4. For critical case selection in a first step several ’test’-configurations
are trimmed and analysed throughout the envelope. This is done in narrow
AoA/Nz steps from the lower to the upper target. To add margin for dy-
namic overshoots a certain AoA/Nz range beyond the targets is additionally
trimmed. The ’test’-configurations are using several worst case assumptions,
which may not exist for the real aircraft, e.g. heaviest configuration together
with most aft center-of-gravity. Several thousand Nichols plots are calculated
and compared to the average outer diamond of Fig. 21.3.
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In the second step several hundred realistic configurations (stores, mass,
center-of-gravity, air-data-system-error, aerodynamic-uncertainty combinat-
ions) are calculated in an AoA/Nz range around the problem areas found for
the ’test’-configurations described above. The linear analysis results created
in this step are once again automatically evaluated for gain and phase margin
(toleranced outer boundary of Fig. 21.3), eigenvalues and other criteria. If one
of these requirements is not passed, the configuration and flight condition is
recorded as a violation.

If the angle-of-attack/vertical-load-factor value of a violation is a certain
margin beyond the extremal AoA/Nz value found during nonlinear carefree
handling maneuvers it is marked as outside the assessment envelope and can
be ignored. Local aerodynamic discontinuities and/or control power losses can
result in instabilities, insufficient stability margins, unstable eigenvalues etc.
If these violations occur within the envelope and are localised over a very
limited AoA/Nz/AoS range, they are acceptable and thus can be cleared.
However it has to be checked in nonlinear/manned simulations, that these
local effects do not harm handling qualities. The ’outside’ and ’local’ detection
is performed automatically by software.

Fig. 21.3 Stability margin requirements for Nichols plots from [3]
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For those violations that are neither outside the envelope nor local, non-
compliance work is done in the third step. For this purpose configurations
with several combined uncertainties or enlarged single uncertainties in ac-
cordance with the tolerance concept described in subsection 21.4.3 are cre-
ated to check for cliff-edge effects. They are calculated for an AoA/Nz range
around the remaining violations from the previous assessment step. The lin-
ear results are again automatically evaluated for stability margins against
the toleranced inner boundary of Fig. 21.3, eigenvalues and other criteria. If
the requirements are passed this proves the robustness of the linear system
stability to off-nominal conditions. In this case the violation is acceptable and
thus can be cleared.

For the remaining violations a manual assessment task is required. This
includes a manual check of the outside envelope and local in AoA/Nz/AoS
criteria, further variation of the affected uncertainties for additional robust-
ness checks etc. If a violation occurs in a region where nonlinear control law
features exist, the linear model may not be an accurate representation of the
FCS. In this case a violation can be assessed by using the nonlinear simula-
tion and adding phase and gain shifts to the actuator signals. The amount
of the gain or phase shift in this case represents the linear requirement. If
the time history response indicates a stable characteristic, or in the extreme
case, a neutrally damped oscillation the linear violation is acceptable.

If a violation is not acceptable despite all of the efforts described above, a
limitation for M3 maneuvering must be issued, which automatically prohibits
M2 and M1 (carefree handling) flying. In this case a repair of the flight control
laws is required to obtain a carefree handling clearance.
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21.5.3 Nonlinear Simulation for Carefree Handling

Nonlinear simulation is utilised for two reasons. The first is to assess the per-
formance of the nominal aircraft/system/manoeuvre combination according
to the tolerance concept (see subsection 21.4.3). The second one, which makes
up the bulk of the assessment task, is to demonstrate overall closed loop stabil-
ity, or check the departure risk during carefree manoeuvres. Uncertainties on
models and manoeuvres are applied in accordance with the tolerance concept.

The nonlinear simulation includes all kinds of nonlinear effects from aero-
dynamic characteristics, nonlinear control law features, cross axis and inertia
coupling, engine performance, actuator performance and degradation due
to position, rate and acceleration limitations, atmospheric disturbances etc.
Nonlinear simulation thus improves the understanding of the aircraft sub-
systems and their interaction. The result of a nonlinear simulation is a time
history, i.e. a recording of several parameters with respect to time.

The time histories created during the carefree handling manoeuvres are
automatically evaluated with respect to several criteria, some of which are
depicted in Fig. 21.5. The most important check is if the aircraft departs dur-
ing a manoeuvre. This is done via monitoring, amongst others, the extremal
angle-of-attack and angle-of-sideslip values. If a departure is found, additional
robustness checks via noncompliance work are required and a limitation may
be issued, triggering repairs in the FCS. In addition to the departure check
criterion, extremal values reached during the manoeuvres are recorded for
various parameters like angle-of-attack, angle-of-sideslip, load-factors etc. For
parameters limited by the FCS like angle-of-attack and vertical-load-factor,
exceedance of the target values is recorded. For parameters for which a FCS
command signal exists, the difference between the command and the actual
value is evaluated. Duration of control surface position saturation, rate sat-
uration and actuator hydraulic load saturation (i.e. hinge moment exceeds
actuator force) is monitored. For dedicated manoeuvres it is checked auto-
matically that pitch/lateral oscillations can not be excited.

Two methods are used to enter pilot inputs into the nonlinear simulation.
The first uses timed commands for pitch- and lateral-stick, pedal, throttle
and airbrake. In some cases, the duration of a manoeuvre (e.g., a 360◦ roll)
may significantly vary with aircraft inertias and flight condition. For these
cases many (slightly different) pilot input specification files would be required
to assess the prescribed carefree handling manoeuvres of subsection 21.3.1.
To simplify the manoeuvre set-up, a second method to define pilot inputs
has been developed, consisting of a simple event triggered pilot model to
determine the required control inputs. This kind of manoeuvre definition
works for all aircraft configurations and initial conditions and proved to be
very effective for carefree handling calculations.

To obtain a maximum number of parameter variations within a limited
number of calculations without compromising safety margins, a phased ap-
proach is used as described in Fig. 21.6. Before a carefree handling clearance
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can be started, trim results for the manoeuvre initial conditions must be cre-
ated. Since these initial conditions are common for all intended manoeuvres,
a dedicated trim condition database is created. Trim results are calculated for
a fine grid of angle-of-attack/vertical-load-factor values to provide flexibility
for the initial conditions.

Based on the trim results, the required maneuvers are performed at full-
forward, full-back and neutral stick initial conditions. The basic calculations
are done with constant speed, i.e. with 5 degrees-of-freedom, to better lo-
calise problem areas. In addition, for a large part of the envelope the engines
provide enough thrust for constant speed even at full back stick. After all ma-
noeuvre sets are calculated, the time histories are evaluated automatically as
described above and the results combined in a database. Then for each alti-
tude and Mach number point the time history with the worst response, e.g the
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highest overshoot, longest time in saturation etc., is selected out of all the
assessed configurations, manoeuvres and initial stick positions. These time
histories are marked as ’worst cases’. To further increase the variation of the
assessment parameters the ’worst case’ manoeuvres are modified with respect
to the following criteria to obtain the so called ’additional’ manoeuvres:

� Mirrored stick inputs
� Manoeuvre with airbrake extended
� Manoeuvre with half the original control inputs
� Manoeuvre with 6 degrees-of-freedom, i.e. speed is variable and thrust can

be varied

After these ’additional’ manoeuvres have been calculated, the new time histo-
ries are automatically evaluated with respect to the same criteria as described
above and the results added to the database file. The extremal angle-of-attack
and vertical-load-factor values found in this database for each altitude and
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Mach number point are used to determine the AoA/Nz target values up to
which the linear analysis must be performed.

The results of the evaluations of all time histories for the nonlinear assess-
ment criteria must be compared with the associated requirements of [2]. If
a requirement is violated this can be accepted, if it only occurs for certain
cases which can be excluded via procedure/briefing note, like e.g. problems
with extended airbrake. Another possibility to accept a violation is, if the
probability of its occurrence is below a certain margin. If an assessment cri-
terion indicates a deterioration of handling qualities, manned simulations are
required. The problem can be cleared, if the test pilots classifies the han-
dling qualities as acceptable, otherwise a briefing note or a limitation will be
required.

All time histories that violate a criterion that affects closed loop stability,
e.g. control surface position or rate saturation, are marked for noncompli-
ance work in the database. For these cases dedicated evaluations are required
to prove the existence of sufficient stability margins (robustness). The sim-
ulations are carried out assuming reasonable atmospheric disturbances or
increased model errors according to the tolerance concept. Time histories
marked for noncompliance work are re-calculated with the following modifi-
cations:

� Increased air-data-system uncertainties
� Several aerodynamic uncertainties
� Atmospheric disturbances
� Control power variation

After these calculations are done, the new time histories are once again au-
tomatically evaluated with respect to the assessment criteria. Manual sim-
ulations with fine tuned inputs to destabilize the aircraft are performed in
addition. If the time histories do not show a departure tendency, the air-
craft behaviour is acceptable despite the original criterion violation. It may
however be necessary to check remaining handling qualities issues in manned
simulation.

In addition dedicated 6 degrees-of-freedom manoeuvres like decelerations
are calculated and evaluated in a similar way as described above with respect
to the assessment criteria. This is done to cover acceleration/deceleration
dependent effects in the aerodynamics, engine model and FCS.

If no departure tendency can be detected, the handling qualities criteria
have been satisfied and a M3 (linear) clearance is available, the most impor-
tant requirements for a carefree handling (M1) clearance are met. Remaining
handling qualities issues after the nonlinear simulation and highly interactive
maneuvers must be assessed in manned simulation before a M1 clearance can
finally be issued. If a M1 clearance is not obtainable, the clearance process
is repeated with less demanding manoeuvres according to the M2 definition
with the aim of providing at least a M2 clearance. This may be acceptable
for example for flight test purposes or certain flight phases.



21 Carefree Handling Clearance 437

21.5.4 Nonlinear Simulation for Dedicated Flight
Test Manoeuvres

For aerodynamic data gathering flight tests, a defined excitation of the con-
trol surfaces is desired. Due to the interaction with the FCS, specific test
inputs are required. For this purpose the Eurofighter control laws offer a
unique ’Frequency and Bias Inputs’ (FBI) functionality. Please see Fig. 21.7
for a schematic description. If necessary FBI manoeuvres must be cleared in
addition to the standard carefree handling (M1) manoeuvres.

After being triggered by the pilot a frequency input adds a sinusoidal signal
to the selected nominal control surface signal to enforce a clean excitation.
A bias input can be used to modify the trim position of a control surface,
e.g. the canard, or to shift target values like angle-of-attack limit or roll-rate
limit. The bias part allows for a controlled stepwise approach for envelope
expansion. The nonlinear assessment determines the extremal FBI signals
that can be used safely during flight test with a process similar to the one
described for the carefree handling clearance.

21.5.5 Manned Simulation

Manned simulation uses the same aircraft and environment models as the
nonlinear simulation. The main difference is pilot participation via the cockpit
and visual system which is attached to the simulation model. This pilot-in-
the-loop possibility is essential for some handling qualities evaluations and
for checking problem areas found in nonlinear simulations for relevance.

The simulator department at Military Air Systems Manching plant offers
several facilities ranging from a one channel visual system to the ’dome’ with
an almost 360◦ field of view (see Fig. 21.8). Using the ’dome’ greatly improves
the level of realism and thus it is preferred for most manned simulation tasks.

Manned simulation is used for manoeuvres with high pilot involvement, like
e.g. tracking tasks, air-to-air-refuelling, taxiing, takeoff and landing. These
kind of manoeuvres are hard to model in the nonlinear simulation due to the
required realistic pilot model.

If the linear and/or nonlinear assessment results in any flight limitations,
they must be checked in manned simulation for their applicability. Problem
areas found during the nonlinear assessment must be checked in manned
simulation for their severity and whether the pilot is able to sustain the flight
condition long enough for the problem to develop. Manual recovery from
system failures and other transient manoeuvres are also best evaluated in
manned simulation.

Handling qualities are further assessed in the simulator. In this case the use
of the ’dome’ simulation is mandatory. It may be necessary to obtain several
pilot opinions, including service pilots, for a consolidated statement. Despite
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the sophisticated ’dome’ environment some handling qualities deficiencies
identified in flight test may be difficult to reproduce.

21.5.6 Flight Test

Flight test is the ultimate assessment method. It is however the most risky
and expensive part of the assessment and thus preferably all significant short-
comings of the aircraft should be ironed out before. Flight test is further the
only kind of assessment that takes place in the real world environment in-
cluding pilot, atmospheric disturbances, load factors etc.

Flight tests are performed for a variety of reasons, like e.g. model vali-
dation, system tests, stores integration, man-machine interface tests, aero-
dynamic data gathering and envelope expansion. Most of the flight testing
is covered by the carefree handling clearance. Aerodynamic data gathering
especially with envelope expansion requires some additional support for in-
creased safety.
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Fig. 21.7 Frequency and bias input schematic
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Fig. 21.8 ’Dome’ simulation facility
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Flight Test
Nonlinear Simulation

AoA

Flap

Fig. 21.10 Comparison of post-flight nonlinear simulation results with flight test
data

During aerodynamic data gathering and especially envelope expansion
flight testing, critical parameters like angle-of-attack, surface deflections etc.
are monitored versus the corresponding values obtained during the nonlinear
simulation. If a significant discrepancy occurs, this indicates that the models
used for the clearance may deviate from reality and the flight test has to be
aborted for further evaluation.

Correlation of flight test data and nonlinear simulation is generally very
good, especially in the envelope regions where all the aircraft models (aero-
dynamic, engine, sensors etc.) are validated. This is of course only true for
smooth atmospheric conditions. During model validation, e.g. during aerody-
namic data gathering for envelope expansion, larger differences may occur.
In this case the relevant models have to be fine tuned.
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21.5.7 Post-flight Analysis for Aerodynamic Dataset
Validation

After aerodynamic data gathering flight tests, the recorded flight test data
can be used to validate the aerodynamic model. In this process the same
models used to derive the clearance, i.e. to ’predict’ the aircraft response,
are utilized to calculate or ’re-predict’ a specific flight test manoeuvre during
post-flight analysis and compare it with the actual flight test data.

The analysis process is depicted in Fig. 21.9. During a manoeuvre, pilot in-
puts, control surface positions and sensor data are recorded. After the flight
the recorded pilot inputs, configuration information (mass, CoG, inertias,
stores etc.) and initial conditions (altitude, speed, Mach number, angle-of-
attack, sideslip-angle, etc.) are used as inputs to the nonlinear simulation
to re-produce the manoeuvre. The resulting flight states and control surface
positions are then compared with those recorded during the test flight. If the
aerodynamic dataset is correct, there should be only minor differences be-
tween the calculated and measured values. The type and size of the deviations
can give valuable information about how to improve the aerodynamic model.
Unfortunately atmospheric disturbances encountered during flight test can
cause significant differences and make this task more complex and difficult.
An example with the results of a post-flight analysis is shown in Fig. 21.10.

21.6 Conclusion

Providing a clearance for an advanced fighter aircraft is a complex and very
challenging task due to the high agility and performance of the vehicles, their
larger flight envelope, demanding mission types and high instability. The
carefree handling requirement of the FCS further increases the complexity of
the clearance task.

For these reasons a typical carefree handling clearance for Eurofighter
Typhoon requires huge amounts of stability analysis calculations (typically
700,000 per task) and nonlinear simulations (typically 600,000 per task). Con-
sidering all assessment tasks to be done for a flight control laws or aerody-
namic model version (more than one task done by each EPC) approximately
12 million linear and 10 million nonlinear assessment runs are performed. To
keep those data volumes manageable a high degree of automation is required
for creating, calculating and evaluating the data throughout the assessment
chain from basic calculations up to the robustness checks, both for linear and
nonlinear assessment. At the end only the ’tip of the iceberg’ can be evaluated
manually. Without this layered approach the number of data to be created
would be higher by approximately a factor of 15 to 20.

To ensure safe performance of flight test manoeuvres associated with FCS
clearance or aerodynamic data gathering, assessment results can be used to
define limits against which flight test data are monitored. This is done in
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real time for several critical parameters. Aerodynamic model changes based
on flight test results are validated by comparing the measured flight test
parameters with the ones calculated during post-flight analysis.

To further improve the quality of the assessment process for the Eurofighter
Typhoon the FJT has started the implementation of a stochastic clearance
process using Monte Carlo simulations. This is done in addition to the es-
tablished EPC clearance processes. The aim is to cover exotic parameter
combinations that might be overlooked otherwise.

Currently unmanned vehicles are becoming of increased importance in the
military world. Clearance of these aircrafts will cause additional challenges
for the assessment process due to e.g., increased reliability demands and
clearance of sense and avoid systems, albeit some other factors may be relaxed
e.g., the flight envelope, compared to manned fighter aircraft.

References

1. Eurofighter Jagdflugzeug GmbH, http://www.eurofighter.com
2. Sortino M (2009) EFA Flight Mechanics Design and Clearance Requirements,

EADS, CD-J-462-F-0003(9)
3. Stenglin P.: EF2000 Flight Control Laws Design and Clearance Requirements,

EADS, R-J-462-F-0001(3) (2003)
4. N.N., Flight Control Systems - Design, Installation and Test of Piloted Aircraft,

MIL-DTL-9490E (2008)
5. N.N., Military Standard Flying Qualities of Piloted Aircraft, MIL-STD-1797A

(2004)



Appendix A

Nomenclature

List of Standard Symbols

Symbol Definition

(A,B,C,D) Quadruple of system state-space realization matrices
(state, input, output, direct feedthrough)

BΔ Ball of structured perturbations
c Aerodynamic chord (m)
C Field of complex numbers or complex plane
Cx Coefficient of axial force
Cy Coefficient of side force
Cz Coefficient of normal force
Cl Coefficient of rolling moment
Cm Coefficient of pitching moment
Cn Coefficient of yawing moment
Cz,αmax Maximum lift coefficient value
δCx Relative uncertainty in Cx

δCy Relative uncertainty in Cy

δCz Relative uncertainty in Cz

diag(A1, . . . , Ak)Block-diagonal matrix with diagonal blocks A1, . . ., Ak

Fl(M,Δ) Lower linear fractional transformation matrix
Fu(M,Δ) Upper linear fractional transformation matrix
g Acceleration due to gravity (m/s2)
h Altitude (feet)
G(s) Transfer-function matrix with coefficients in R or C

H2 Space of square integrable analytic functions on the right half-
plane

H∞ Space of essentially bounded analytic functions on the right half-
plane

�( � ) Imaginary part of a complex quantity
L Wingspan (m)
L2 Space of square integrable functions
m Aircraft total mass (t)
mp Estimated aircraft total mass (t)
M Mach number
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Symbol Definition

M Normalized Mach number
MD Design diving Mach number
MMO Maximum operating Mach number
N Set of natural numbers
N (μ, σ) normal distribution with mean μ and variance σ
ny Load factor along y-axis (g)
nz Load factor along z-axis (g)
δnz Load factor correction along z-axis (g)
δnz,c Demanded load factor along z-axis (g)
p Body-axis roll rate (deg/s)
δpm Stick lateral deflection angle (deg)
δpc Demanded roll angle (deg)
q Body-axis pitch rate (deg/s)
δqc Demanded pitch deflection angle (deg)
δqm Stick longitudinal deflection angle (deg)
r Body-axis yaw rate (deg/s)
δrc Demanded yaw angle (deg)
δrm Pedal deflection angle (deg)
R Field of real numbers
R− Set of negative real numbers
R+ Set of positive real numbers
�( � ) Real part of a complex quantity
s Complex variable in Laplace operator
S Wing planform area (m2)
t Time (s)
trace(A) Trace of matrix A
Vcas Calibrated air speed
δVcas Uncertainty in Vcas

ΔVcas Normalized calibrated air speed
VD Design diving speed
Vls Minimum selectable speed
VMO Maximum operating speed
Vs1g Stall speed
Vtas True air speed
Xcg Centre of gravity position along x-axis
Xcg,p Estimated centre of gravity position along x-axis
ΔXcg Normalized centre of gravity position along x-axis
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List of Greek Symbols

Symbol Definition

α Angle of attack (deg)
αmax Maximum value of the angle of attack (deg)
β Angle of sideslip (deg)
βc Demanded sideslip (deg)
βest Estimated sideslip (deg)
χ Yaw angle (deg)
γ Flight path angle (deg)
δ Vector of system parameters
Δ LFT uncertainty matrix
Δ Set of allowable structured perturbations
δCT Amount of fuel in the center tank
δOT Amount of fuel in the outer tank
δPL Embarked payload
δAil

Inner left aileron deflection (deg)
δAil,c Demanded inner left aileron deflection (deg)
δAir Inner right aileron deflection (deg)
δAir,c Demanded inner right aileron deflection (deg)
δAol Outer left aileron deflection (deg)
δAol,c Demanded outer left aileron deflection (deg)
δAor Outer right aileron deflection (deg)
δAor,c Demanded outer right aileron deflection (deg)
δSl,2,3 Left spoilers 2 and 3 deflections (deg)
δSl,2,3,c Demanded left spoilers 2 and 3 deflections (deg)
δSr,2,3 Right spoilers 2 and 3 deflections (deg)
δSr,2,3,c Demanded right spoilers 2 and 3 deflections (deg)
δSl,4,5 Left spoilers 4 and 5 deflections (deg)
δSl,4,5,c Demanded left spoilers 4 and 5 deflections (deg)
δSr,4,5 Right spoilers 4 and 5 deflections (deg)
δSr,4,5,c Demanded right spoilers 4 and 5 deflections (deg)
δTHS Trimmable horizontal stabilizer deflection (deg)
δTHS,c Demanded trimmable horizontal stabilizer deflection (deg)
δE Elevator deflection (deg)
δE,c Demanded elevator deflection (deg)
δR Rudder deflection (deg)
δR,c Demanded rudder deflection (deg)
μ Structured singular value
μΔ(M) Structured singular value of M with respect to Δ
φ Bank angle (deg)
φc Demanded bank angle (deg)
λj Generic j-th eigenvalue
Π Thrust value
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Symbol Definition

θ Pitch angle (deg)
ρ Density of air (kg/m3)
ω Frequency (rad/sec)
ψ Heading (deg)



Index

μ-analysis 132
μ upper bound 133
μ-sensitivities 140
modal performance analysis 137
scaling matrices 134
stability domain 138
stability robustness margin 133,

136
structured singular value 133

μ-analysis based clearance 141, 319
μ-sensitivities 224
eigenvalue criterion 141, 222
modal performance analysis 227
Nichols exclusion zone 143
stability margin criterion 142, 230
un-piloted stability 331

Aircraft models
COFCLUO benchmark 11

actuators 19
flexible aircraft 12, 27, 28
flight control laws 13, 22
flight mechanics 19
rigid aircraft 12, 17
sensors 19
trimming 49

Eurofighter Typhoon 423
F/A-18 382
NASA’s generic transport model

389

Carefree handling clearance 421
assessment methods 429
assessment model 426

carefree handling definition 424

control laws clearance process 423

Clearance criteria

aeroelastic stability 30, 169, 254,
321, 322

altitude protection 26

angle of attack protection 26

carefree handling 429

comfort criterion 31, 192, 293, 322

eigenvalue criterion 30, 141, 169,
222, 254, 319, 321, 322, 330

flight domain protection 14, 26,
240, 244, 322

load factor protection 26, 240, 244

Mach number protection 26

manoeuvrability criterion 25, 234,
322

maximum angle of attack amplitude
205

nonlinear stability 23, 282, 322

pitch attitude protection 26

roll angle protection 26

stability margin criterion 31, 142,
185, 230, 319

un-piloted stability 23, 170, 262,
282, 321, 322, 331, 333, 335

worst-case pilot input 205, 322

Clearance of flight control laws 3, 359

challenges 362

LFR-based methods 319, 324, 330

Monte Carlo simulation 361

necessary techniques 360

sufficient techniques 360
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worst-case search based methods
322, 324

IQC-based clearance 322
comfort criterion 192, 293
nonlinear stability 282
preliminary analysis 198
robustness analysis 180
stability margins 185
un-piloted stability 335

LFR models 163, 324
aeroelastic stability models 254
affine parameter dependence 168,

272
dead-zones 170
robust stability analysis 168
un-piloted stability models 262

LFT modelling
biconvex optimisation 64
block-diagram based LFT generation

85
generation of consistent models 63
interpolation over a coarse grid 67
order reduction 68
orthogonal modelling functions 67,

85
polynomial interpolation 66, 85
structured tree decomposition 67
symbolic pre-processing 87
validation 72

LPV model generation
H2-minimisation 113

cost function 116
gradient 118
nonlinear programming 116
regularisation 122
semidefinite programming 120

ν-gap metric error 47
element-wise significance check 43
full rank basis reduction 46
lower bound of LFR-order 46
minimisation of LFR-order 47
multivariable polynomial fitting 45
optimisation of polynomial coeffi-

cients 48
rank deficient basis reduction 45

Lyapunov function
affine parameter-dependent 168,

254, 274

parameter-dependent 164
Lyapunov-based clearance 321

adaptive partitioning 171, 259
aeroelastic stability 169, 254
parameter-dependent Lyapunov

function 165, 167
parameter-dependent multipliers

165, 167
progressive partitioning 171, 256
robust stability analysis 163, 253
un-piloted stability 170, 262, 263,

333

Nonlinear systems robustness analysis
369

input-output gains 379
Lyapunov stability analysis

Lyapunov function 376
storage function 380

Monte Carlo simulation 376, 387
polynomial models 389
Positivstellensatz 377
reachable set 381, 389
region of attraction estimation 375,

386
S-procedure 376

polynomial generalization 376
V-s iteration 378, 386

software 378
Nonlinearities

dead-zones 170
piece-wise affine 89
saturation

position saturation 89
rate limitation 89

sector-bounded 90, 267

Semidefinite programming 371
Stability

quadratic stability 164, 168
robust stability 164, 168

Sum of squares (SOS) 371
polynomials 371
SOS programming 373

software 374

Validation and verification 32, 34,
354, 399, 400, 404, 405, 407, 411,
417
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AIRSAFE system 403, 405, 408
certification 404
flying qualities analysis 414
loss of control 399, 400
nonlinear analysis 412
off-nominal condition 399, 401, 406
process 407
robustness analysis 412
stability and performance analysis

412

Worst-case search based clearance
322, 345

confidence level 151, 239
cyclic coordinate descent 208, 302
differential evolution 212, 249, 307

crossover 212
mutation 212
survivor selection 212

distributed computing 155
dividing rectangles method 214,

312
evolution strategies 213, 309

self-adaptation 213
evolutionary strategy 153, 234, 235,

242, 246, 249, 347

flight domain protection 340

genetic algorithm 210, 249, 310,
347

crossover 211

mutation 211

population 210

selection 211

variation operator 211

global optimisation 151, 210, 234,
306

load factor protection 240, 244

local optimisation 207, 300

manoeuvrability criterion 234

Monte Carlo analysis 239, 339, 344

nonlinear programming 322

parallel computing 155, 250, 350

particle swarm optimisation 249

pattern search 154, 207, 234, 305,
351

pilot signal parametrization 205

quasi-Newton method 209, 301

causality 210

speedup 157, 251

worst case search 151, 233, 235,
242, 246
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