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Notation and List of Symbols

Here we give a brief account of the mathematical notation that we use We
assume that the reader is familiar with the fundamentals of vector and tensor
calculus We shall use the classical notation Scalars are written in italics,
vectors and tensors in bold small or capital Roman letters Spatial coordinates
are written as (z,y, z) or (z!,22,23); the letters x,y, 2 are not reserved for
Cartesian coordinates Often they denote the three mutually perpendicular
axes of a curvilinear coordinate system The letter ¢ is reserved for time The
operators J(-)/0x and 9(-)/0t denote partial derivatives of (-) with respect
to z and t, respectively; V is the Nabla (del) operator, Vu the gradient of
the vector or second rank tensor u, in Cartesian tensor notation written as
Ou;/0x; = (Vu);; or 0A;j/0xy, = (VA);jr The divergence, curl and dyadic
tensor product operations are written as V-u, V-A, V xu, u®v, respectively,
and possess the Cartesian components

Ouy 0A;;
! LA Y
(9171" v 8:1:j ’

8uk
VXxu=e¢gigm—, u®vV=u;.

V-U.: 8’UJj’

We have used the so called EINSTEIN summation convention according to
which summation is understood over doubly repeated Latin indices and we
have used = as a correspondence relation and not an equality sign Moreover,
the KRONECKER delta and the epsilon tensor are defined as

5 — 1, for i=y,
Y90, for i # g,

1, if 4,4,k are even permutations of 1,2,3,
€jk =1 —1, if 4,5,k are odd permutations of 1,2, 3,
0, if 4,5,k are no permutations of 1,2, 3.

For the derivation of field equations referred to curvilinear coordinate sys
tems, we restrict considerations to orthogonal coordinates and distinguish
covariant and contravariant components of tensors by writing components as
superscripts and subscripts, respectively Ultimately, equations are referred
in these cases to unit basis vectors with components being called physical
For details, see [42, 43, 222]
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Latin Symbols

Symbols

S|

R

gi, 81, 82, 83

g = gi/l8il
9ij, 9
g9(t)

h

H

HOa Hmax

Definition

Acceleration, characteristic speed in first order hyperbolic
PDE

Coefficients in avalanche equations, see (6 60)

Scalar coefficient in the momentum equations, see (3 58), (3 60)
Area

Matrices arising in the general conservation laws

Variable or index defining or characterising the basal surface
Scalar coefficient in B, variable defining the pitch of a helix,
see (9 8)

(2 x 2) matrix arising in the momentum equation (3 60),
binormal vector

Vectorial variable defined in (3 66)

Drag coefficient,

Coefficients in avalanche equations, see (6 64), (6 66)
Particle diameter

Increment of x

Increment of the arc length s

Scalar coeflicient arising in the momentum equation (3 60)
Accumulation rate at the free surface, sedimentation rate
(deposition rate) at the basal surface

Coefficient of restitution

Unit 2 vector

Entrainment

Friction force

Function defining the basal surface

Function defining the free surface

Semi width of an elliptically shaped avalanche

Vector valued function in the general conservation law
General vector valued function depending on parameter «
Flux function

(2 x 2) flux matrix arising in the momentum equation (3 60),
SERRET FRENET matrix

Gravity constant

Gravity vector, Vector valued function in the general conser
vation law

Basis vectors

Unit basis vector

Covariant, contravariant metric tensors

& value of margin position, avalanche semi length
Thickness, depth of an avalanche

Typical avalanche thickness

Maximum depth of an avalanche
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I
J
Kact
Kpas
Kact/pas
K,, K,
K, Kyan

h

Pij, Pzxy
P =2nB
PIV

PTV

Notation and List of Symbols VII

Numerical value of h at spatial point i, j and time slice n
Unit vector in the x direction

Light intensity

Unit vector in the y direction

Active earth pressure coefficient

Passive earth pressure coefficient

Active or passive earth pressure coefficient

Earth pressure coefficients in the z,y directions
Parameter quantifying the wall dependence of the bed fric
tion angle

Typical avalanche length or extent, radius of the rotating
drum

Mass of a body

Normal stress, unit normal vector

Unit normal vector, of the base and the free surface, respec
tively

Order symbol, origin of a coordinate system

Pressure

Longitudinal pressure

Depth integrated pressure, coefficient in first order ODE
Pressure tensor, its 75 and xy components

Pitch of a helix

Particle image velocimetry

Particle tracking velocimetry

Dimensionless coefficient in the VOELLMY drag
Coeflicient in first order ODE, mass flux

Radial distance

Radius of curvature

Position vectors

Position vector

Cross correlation function

Particular correlation functions

Variable, index characterising the free surface, arc length
(Negative) shear force, shear traction

Driving accelerations arising in the momentum equations,
see (3 37), (3 38)

Drag: Total, viscous, COULOMB

Time

Unit vector tangential to a curve

Total variation

Total variation diminishing

Velocity,  component of the velocity vector

Depth averaged velocity

Velocity vector, at the base
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T

h weighted average centre of the mass velocity vector
Difference velocity relative to the centre of mass

Cell average of a field variable at point ij and time slice n
Numerical value of u at the spatial point 4, j, and at time
slice n

Velocity, y component of the velocity vector

Depth averaged velocity

Avalanche volume

Velocity component in the direction of the z coordinate
Vector of unknowns (conservative variables) in the general
conservation law

Coordinate in the direction of a curve, arc length

Initial value of x

Cartesian coordinate in the horizontal direction

Position of the front and rear margins of an avalanche
Centre of mass position

Cartesian coordinate in the horizontal direction

Spatial coordinate, usually perpendicular to the avalanche
base

Cartesian coordinate in the vertical direction (against the
direction of gravity)

Distance between the master curve of the channel and the
talweg

Greek Symbols

Symbols

«
O[S,O[B

B By

Definition

Parameter in a general function representation

Adjustable coefficients in avalanche equations, see Table 6 2
Earth pressure dependent terms in the depth integrated mo
mentum equations

Exponent of e, 0 < < 1

Exponent of 6,0 < v < 1

CHRISTOFFEL symbol of the second kind

Components of Fj;

Bed friction angle

Effective bed friction angle

Scale factors (3 85) at the base and free surface, respectively
Difference of friction coefficient in the front and in the rear
Increment in z and y, finite difference grid lengths
Increment in ¢, finite difference time step

Aspect ratio (= H/L <« 1)

Inclination angle, coefficient in coordinate representation (4 8)
Basal friction angle
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BW
minmod
superbee b
Woodward &
¢TVDLF
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Notation and List of Symbols X

Coordinate in the y direction co moving with the centre of
mass, coefficient in coordinate representation (4 8), dimen
sionless coordinate in the fixed point transformation (5 6)
Azimuthal angle

Curvature of the reference, basal topography

Interparticle distance

Topographic curvature parameter

Topographic torsion parameter

Parameter in coordinate representation, see (4 13),
Parameter in rotating drum modelling, see (6 22)

Friction coefficient (= tan ¢), numerical viscosity, fixed point
coordinate in the 1 direction (transverse coordinate)
Friction coefficient

Mean friction coefficient

Value of the friction coefficient in the front and in the rear
Difference of friction coefficients in the front and in the rear
Fixed point coordinate in the £ direction, coefficient in up
wind scheme

“Viscosity” coefficient in the VOELLMY drag, coordinate in
the = direction co moving with the centre of mass
Alternative VOELLMY drag coefficient

Dimensionless parameter measuring the pressure dependence
of the bed friction angle

Angular velocity

Constant angular velocity of the rotating drum

Mass density per unit volume

Basal density

Constant reference density

True density of particles

Slope limiter in the TVD method

Time, (geometric) torsion, shear traction

Shear stress

Collisional shear stress

Frictional shear stress

Internal angle of friction, flux limiter in the TVD method
Accumulation of torsion

LAX WENDROFF flux limiter

Beam Warming flux limiter

Minmod flux limiter in TVD

Superbee flux limiter in TVD

WOODWARD flux limiter in TVD

TVD LaXx FRIEDRICHS flux limiter
Parameter in coordinate representation
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Miscellaneous Symbols

Symbols

d
dt
D
Dt
9
ot
0
dx

sgn (z)

Definition

Material (total) time derivative

Time derivative following a singular surface
Partial (local) time derivative

Partial derivative with respect to =

-1, z <0,
|+, x>0

Nabla (del) operator
Depth average of f

Dimensionless version of (e)
1

= — // (e)da, areal average of (e), or
A A

L / / h(e)da, h weighted areal average of (e), or
hA A

1
= E/ (8) dz, depth averaged value of (e)
b

— (o) — ()7, jump of (s)



Preface

The writing and compilation of this book was initiated by an invitation of
R LANCELLOTTA from the Department of Structural and Geotechnical En

gineering of the Polytechnical Institute in Turin, Italy, for us to hold an
intensive graduate level course on the continuum description of granular ma

terials The course was held in Turin, at the Polytechnical Institute, from 8 to
12 April 2002 and a first set of notes was distributed to the approximately 35
participants of course [82] Subsequently, it was decided to substantially re

vise and extend these notes and to publish them The topic was further dealt
with in a course held at the Swiss Federal Institute of Technology, Ziirich,
Switzerland, at the Department of Earth Sciences and it was targeted in parts
in an extensive course in January 2003 for the Institute for Geotechnical and
Tunnel Engineering, University of Innsbruck, Austria, for graduate and un

dergraduate students, as well as civil servants and engineering and science
specialists from the industry in Obergurgl, Austria In addition numerous
talks were held at many universities, research laboratories and conferences to
publicise the topic

With this book we have several intentions in mind Firstly, to publish our
own work on rapid flows of cohesionless granular materials down inclined
topographies This work was developed by a relatively large number of un
dergraduate and PhD students, postdoctoral research fellows, as well as guest
scientists and friends Moreover, it has reached a stage at which a summary
and a critical overview may be helpful for ourselves, and anybody else who
is interested in this field, in order to document its important results and
to elucidate the generality of the model now known in the literature as the
SAVAGE HUTTER model and its generalisation

Secondly, even though the model equations and their extensions, which have
been presented in peer reviewed, reputed international scientific journals,
have received adequate attention by the specialized scientific and techno
logical community, we feel that the model has not yet sufficiently attracted
the interest of those who could use them with profit in practice, nor are its
different possible extensions that fit with the interests of the people from di
verse disciplines adequately known In fact, we firmly believe that the model
equations presented in this book can, if properly used, serve as a routine
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tool to estimate the probability of potentially endangered zones being hit by
avalanches Moreover, with a sufficiently flexible software for the integration
of the pertinent equations, this tool may further help to serve efforts to pro
tect inhabitated regions more precisely, and perhaps it may also make the
lives of inhabitants of such regions safer

Thirdly, in the geophysical environment avalanches occur in a variety of cir

cumstances Mention might be made of rock and snow avalanches, landslides
of catastrophic soil release, debris flows, mud flows, gravity driven motions
of volcanic ash, and turbidity currents (underwater avalanches) Industrial
examples are flows of cereals, pharmaceuticals, alumina, coal and concrete in
storage facilities, production lines, power stations, and construction sites Al

though these examples might seem of a disparate nature, they do in fact have
many common features and their mathematical description can be based on
very similar physical principles This indicates that the same or nearly the
same concepts have been applied to avalanching processes in different fields of
science and engineering specialities with little or no knowledge of each other’s
work Evidently, much profit can be gained from a broader, more general ap

proach that highlights the common and disparate features Thus, even though
the primary intention of this book was a focus on snow avalanches, it has be

come much broader with time and it is now the rapid motion of cohesionless
granular materials, possibly dispersed with interstitial fluids

Fourthly, the model equations focussed on in this book are depth integrated
versions of the balance laws of mass and momentum, and as such involve ide
alising approximations that may or may not be sufficiently satisfied Further
more, the equations are based on a dry granular concept and thus employ a
one constituent continuum formulation, and the derivation of the depth inte
grated equations is based on mathematical simplifications All these simplified
prerequisites constitute limitations that need to be quantified or delineated,
if the model equations are to be used to constrain their applicability, both
physically and mathematically Such a detailed analysis will certainly enhance
confidence in the model equations on the one hand, and, on the other hand,
the careful presentation of the deductions will also provide hints to the alert
reader to find his/her own model(s) for avalanching granular flows or debris
flows for situations outside the range of validity of the equations presented
in this book

Fifthly, our past experience has told us, by both looking at the achievements
of others as well as our own, that a new scientific idea or concept no matter
how small does often not receive the attraction it deserves, if it is only
published through its original paper(s) Books seem to be more effective, if
they treat the topic from its entirety and if concepts are framed such that
they are easily understood by a general readership We hope to have achieved
this goal
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Inevitably, the book summarises our own research; nevertheless, we have first
presented a fundamental and conceptual background circumscribing avalan

che dynamics and have then framed the central theoretical model by setting
it within the context of the dynamics of the rapid flow of cohesionless granu

lar materials under the action of gravity In so doing, the scope and extent of
the applicability of the model equations becomes evident not only as a model
for dense flow avalanches of snow, but equally also for debris flows, landslides
and sturzstroms, and for water saturated mud flows, after a relatively simple
extension Furthermore, the theoretical concepts were also motivated from a
viewpoint of field events of snow avalanches and activities to control their
occurrence It is hoped that this will motivate the reader to cope with the
intellectual difficulties that are unavoidable in a model of such complexity

Conceptually, the book is written in a style that should be accessible to
readers with a background in engineering and natural sciences, such as civil
and mechanical engineering, geophysics and geology, but equally also applied
mathematics and physics The mathematical prerequisites that are used do
not go beyond those that are generally covered in these fields The spirit is
educational as well as research oriented A wealth of information contained
in the applied avalanche and debris flow literature is touched upon and dis
cussed in brief

The book focuses on avalanches of snow This is particularly motivated, be
cause our own first and foremost involvement was with applications of the
topic to snow avalanches Therefore, a substantial part of the motivating ar
guments were developed with this type of catastrophic mass flow in mind
Such a view may even be historically correct, as the development of the ra
tional scientific description, using physically and mathematically based for
mulations of these catastrophic flows has first been done for these kinds of
geophysical applications We therefore also think it appropriate to give brief
historical accounts of snow avalanche research in those countries worldwide
that are exposed to snow avalanche catastrophes However, the topic of dry
granular avalanches equally applies to lahars, large mass rock falls, as well
as to rapid flows of grains and gravel in the industrial context We will also
mention these applications, and indeed our own laboratory experiments have
been exclusively performed with various sorts of grains: sugar, salt, poppy
seeds, sand, gravel, glass and plastic beads, etc This thus illustrates the
great variety of applications

Most of the first writings were done by S P PUDASAINT These were quickly
discussed and homogenised by K HUTTER and S P PUDASAINI, and revised
by both authors with several extensions and iterations

The work obviously profited from the works of many of K HUTTER’s for
mer students and postdoctoral assistants who, with their diploma (MSc)
and PhD dissertations, and along with the joint publications contributed
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immensely to the advancement of the development of the science of
dry granular avalanches We especially mention: W EcCkART, J M N T
Gray, R GRreVE, T KocH, R LANG, Y NoncucHi, C PLUss, Y
C Tai, M WIELAND, Y WANG and T ZWINGER The very early work
also profited from the association of K HUTTER with S B SAVAGE (prior
to 1989), from the occasional association with the Swiss Federal Institute
of Snow and Avalanche Research under the leadership of directors M DE
QUERVAIN and C JACCARD (prior to 1992), the senior scientists B SALM
and H U GUBLER, and, later, the creative interaction with D ISSLER,
Davos/Altendorf; D McCLUNG, Vancouver; A MANGENEY CASTELNAU,
Paris; S NOELLE, Aachen; E B PiTMAN and A K PaTrA, Buffalo, New
York state; R IVERSON and R DENLINGER, Vancouver; C ANCEY, Greno
ble and Lausanne; S S HsiAU, Chung Li and R KATZENBACH, Darmstadt
on modelling, numerics and experimentation The writing also profited indi
rectly from the programme “Granular and Particle Laden Flows” which K
HUTTER co organised at the Isaac Newton Institute for Mathematical Sci
ences, Cambridge University, United Kingdom from 1 September until 19
December 2003, together with J M N T GRAY, University of Manchester;
T MUuLLIN, University of Manchester and J T JENKINS, Cornell University
Through their talks and in extensive discussions these scientists broadened
our horizon and influenced our work, in later stages

We asked individual scientists from countries in which snow avalanches play
an important role to write a brief account on snow and avalanche research as
it has evolved in the past approximately 100 years and received very construc
tive response The help from these scientists is acknowledged in the places
where their work has been used

We also wish to mention the help that we received from N KIRCHNER (Uni
versity of Kaiserslautern) She took on the burden of reading the entire book,
found weaknesses, clumsy formulations, drew our attention to inconsistencies
in the formulation, and simply found many remaining typing errors despite
our painstaking scrutiny of the text We emphasise our appreciation and ex
press our deep gratitude

Similarly, three anonymous referees read a preliminary manuscript and com
mented in detail on particular aspects This led in part to substantial changes
and extensions We trust that our manuscript has profited from this involve
ment We would like to thank the referees for the time and efforts they de
voted to our text In writing this book we also profited immensely from the
secretarial help of R RUTSCHER and A MAURER, who typed many drafts
of extended and iterated versions of different chapters, especially in the final
stages of writing Our departmental librarian C AULL painstakingly checked
and united our reference list of about 470 entries We would like to thank
them very much for their contributions
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Finally, we thank all those who have supported us in this endeavour; above all
the Deutsche Forschungsgemeinschaft (DFG) and the Darmstadt University
of Technology for their continuous support since 1987, former and present
PhD students and postdoctoral researchers for the fruitful collaboration that
made this book possible, the authors and publishers for allowing the publi
cation of so many figures We also thank Springer Verlag and especially C
CARON for publishing this book As a matter of fact, a book has to be aban
doned be finished We have tried to make this text as perfect as possible As
always, errors remain, and for those we offer our apologies Any suggestion
from the readers pointing them out or suggesting improvements would be
appreciated

Darmstadt University of Technology
Darmstadt, 2005

Shiva P Pudasaini - Kolumban Hutter
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Part 1

Introduction, Conception and the Importance
of Avalanche Research



1 Introduction

1.1 Motivation

Avalanches, debris and mudflows and also landslides are natural phenomena
that occur in mountainous regions on our globe on a regular basis They,
therefore, are as such a common phenomenon for inhabitants of mountainous
regions such as the Alps, the Himalayas or the Rocky Mountains, who have
learned to accept their occasional occurrence and to avoid the accompanying
damages Nevertheless, accidents involving damage of life and property and
devastating singular incidences have regularly occurred in the past These are
the major reasons why in such regions the study of avalanches is a topic of
public concern that is of permanent significance The physics of the formation
of the rapid motion of a large mass of soil, gravel or snow and the dynamics
of the motion must be understood, if the danger induced by the release of
a certain mass of gravel, snow or soil is to be avoided, or the impact of
a moving mass on the avalanche track or on obstructing buildings is to be
estimated One hopes that an understanding of their physical basis will enable
the appropriate defensive measures to be taken

The last few years have witnessed increased efforts devoted to the physical
understanding of avalanche formation and motion in complex topography
More specifically, whilst any forecast of avalanche occurrence and estimation
of size is still largely a question of experience, the motion of a given loose mass
of gravel, snow or soil is more amenable to analysis This is so because the
physics of the motion of a finite mass of soil or snow may be less difficult to un
derstand than the physics of the mass release from a soil or snow slope at rest

This book is an attempt to provide a survey and discussions about the motion
of avalanches and debris flows from initiation to run out To a large extent
it summarises research that was conducted by the authors and many other
coworkers and research fellows during the past 20 years and it brings the
description to the forefront of present day research However, we have also
summarised and explicitly incorporated the research work done elsewhere by
other scientists, engineers and researchers in the related topics of avalanche
and debris flow dynamics It is hoped to demonstrate that today’s method
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of the determination of the avalanche motion along its track promises to
give to the avalanche practitioner a tool with the aid of which fairly reliable
predictions of avalanche motion along its track can be made, from initiation to
run out The model computations also allow inferences as to the distribution
of the mass of gravel or snow in the deposition zone, as well as to the forces
exerted on structures that are affected by the motion of the avalanche This,
in short, is the aim of this book

To achieve this aim, the well known depth integrated avalanche model of
SAVAGE and HUTTER [375] has been generalised in different stages since the
early nineties of the last century from simple to arbitrary channelised to
pographies, the intention being that the different extensions of the model
would be able not only to describe the flow of a finite mass of snow, gravel,
debris or mud, down a corrie of arbitrary curvature and twist, and arbitrary
cross sectional profile, but equally also the transportation of grains or pills
in the agricultural and pharmaceutical industry, respectively The emerging
equations for the distribution of the avalanche thickness and the topography
parallel depth averaged velocity components, to be derived in this book, are
a set of hyperbolic partial differential equations Once they are derived, new
significant technical problems must be solved in order to judge their adequacy
The question arises as to how these equations are solved numerically, and how
experiments are conducted to compare theoretical results with corresponding
experimental findings Both subproblems pose challenging questions, as we
shall now briefly outline

There were earlier attempts than that due to SAVAGE and HUTTER to pro
pose forecast procedures for the dynamics of avalanches HARBITZ [142] col
lects and summarises a great number of such models in the Snow Avalanche
Modelling, Mapping and Warning in Europe (SAME) report of the “Fourth
European Framework Programme: Environment and Climate” and discusses
in a multi author effort (7) statistical empirical, (i7) dense snow, (iii) slush
flow (iv), powder snow, (v) coupled dense powder snow and (vi) subaquatic
avalanches In 50 pages of the SAME report a great number of avalanche
models for dense avalanching flow of snow or granular materials are pre
sented Among these are block models (VOELLMY [430], PERLA et al [315],
DADE and HUPPERT [71], SALM [361, 362, 363, 364], SALM et al [365],
SAarMm and GUBLER [366], GUBLER [134]), centre of mass models (IRGENS
et al [187], NoHaucHI [300], MAENO and NISHIMURA [261]), quasi two
dimensional models (BARTELT and GRUBER. [25], SARTORIS and BARTELT
[368], BARTELT et al [26]), the biviscous modified Bingham model (DENT [78],
DENT and LANG [79]), hydraulic models (EGLIT [84, 86, 87, 88, 90, 91], EGLIT
and SVESHNIKOVA [85], GRIGORIYAN et al [130], BLAGOVESHCHENSKIY and
EaGLIT [35], BLAGOVESHCHENSKIY et al [36], DANILOVA and EGLIT [69, 70],
Kurikovskry and EGLIT [230], MIRONOVA and EGLIT [284], GRIGORIYAN
[133], GRIGORIYAN and OSTROUMOV [131, 132], MIRONOVA [282, 283], Os
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TROUMOV [308], VOLODICHEVA et al [432]), quasi two dimensional viscoplas
tic models (NOREM et al [302, 303]), quasi two dimensional multi material
models (HUNGR [163]) and more These works have in common that they are
either rigid body models or founded on shallow geometry of the deforming
mass Differences may lie in the particular constitutive assumptions and in
details how the shallow geometry is incorporated in the model Many of these
models are very close in structure to our model and lead to hyperbolic field
equations in which advective terms play a significant role, as is the case, e g,
with the shallow water or SAINT VENANT equations of hydraulic channel
flow

Depth integrated models, obeying material constitutive laws, very similar but
not identical to ours, have also been proposed in the dry debris/pyroclastic
flow literature, but on the whole these papers came later and essentially used
the earlier literature of the SAVAGE HUTTER equations and some of its ex
tensions as a basis Research figures in this branch of granular avalanche
dynamics are IVERSON, DENLINGER and LOGAN from the United States Ge
ological Survey [74, 75, 192, 194] Similar attempts were and are still being
undertaken by an interdisciplinary group of engineers, geologists, geophysi
cists, mathematicians and numerical modellers at the State University of New
York at Buffalo (PATRA et al [313], PITMAN [318], PITMAN and NICHITA
[319], P1TMAN et al [320, 321, 322|, SHERIDAN et al [385, 386, 387]) A fur
ther group of geophysicists and mathematicians at the University of Paris
shares a similar interest in the spreading of dry granular masses from volcanic
eruptions (Montserrat) and from a suddenly freed cylindrical deposit (FELIX
and THOMAS [98], LEGROS [248], MANGENEY CASTELNAU et al [264, 265],
LAJEUNESSE et al [237], BOUCHUT et al [38], BOouCHUT and WESTDICK
ENBERG [40]) These three latter groups, apart from the presentation of the
equations, which all are based on depth averaging of the balance equations
of mass and momentum and basically use frictional phenomenological laws,
concentrate on the numerical integration of the deduced equations, which are
generally hyperbolic and strongly convective

Successful modelling of strongly convective hyperbolic equations is one of
the most challenging problems in computational fluid mechanics, particu
larly when large gradients of the physical variables occur, e g , for a moving
front and boundary, or possibly arising internal shock waves in a granular
avalanche Shock formation is an essential mechanism in granular flows on an
inclined surface merging into a horizontal run out zone or encountering an
obstacle when the velocity becomes subcritical from its supercritical state
This phenomenon is akin to the sonic boom in aerodynamics or the hydraulic
Jump in open channel flows In the latter case, a subcritical (supercritical) flow
possesses a slower (faster) velocity than the shallow water wave speed A tran
sition from a supercritical state say the flow down a weir to a subcritical
state in the shallow channel below the weir must for continuity reasons be
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accompanied with an increase in water depth This transition is immediate,
ie, it takes place over a very small distance, making local surface gradi
ents very steep Ideally, the transition is discontinuous and manifests itself
as a jump; realistically, i e , in the experiment, the depth change occurs over
a certain small distance, sometimes referred to as a diffusive jump or diffusive
shock

These properties of the physical system are mathematically expressed in spe
cial forms of the model equations, hyperbolic partial differential equations
that require special numerical integration techniques capable of resolving
the steep gradients and moving margins often observed in experiments and
field events but not captured by traditional finite difference schemes Today
these are available in different versions of comparable performance and have
brought the science of avalanche modelling an important step ahead !

Several numerical simulations of avalanching flows from simple to complex
topographies, incorporating curvature as well as torsion of the topography,
demonstrate fundamental, physically interesting and practically applicable
results The original theory of SAVAGE and HUTTER [375] and their various
extensions are proven to be useful in different scenarios Moreover, the recent
generalisation of the theory by PUDASAINT and HUTTER [335] for arbitrary
channel topography and its numerical simulations disclose the complicated
physics of flows of avalanching debris through strongly curved and twisted
channels and opens an enormous spectrum of applications In principle, the
theory can be applied to any kind of topography from a simply inclined
plane to very complicated arbitrarily curved and twisted channels in indus
trial as well as geophysical mass flows down mountain valleys from initiation
to the deposits in the run out zones It is at this juncture where the mod
els of the IVERSON and PITMAN groups differ in important details from the
models by PUDASAINIT and HUTTER [335] and BOUCHUT and WESTDICKEN
BERG [40] The ultimate aim of all models is to establish numerical solution
techniques, in which direct use of geographical information systems (GIS),
applied to mountainous avalanche prone regions, can be applied This aim is
materialised by using the shallowness approximation, referred to different ba
sic coordinates The IVERSON and PITMAN groups, and partly also the French
group, refer the equations to horizontal and vertical Cartesian coordinates
and define avalanche thicknesses vertically, not accounting for the differential
geometric (e g, curvature) properties of the mountain surface This implies
that slope angles must be small PUDASAINI and HUTTER use curvilinear
coordinates that allow better approximation of the basal topographic differ
! Technically, these methods are known as non oscillatory central (NOC) dif
ferencing schemes with total variation diminishing (TVD) limiters, or finite
difference schemes using the method of characteristics, which often involve the
so called RIEMANN solvers, etc The specialized literature is large and develop
ing rapidly, see Chaps 7 and 8
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ential geometric properties They define the height and shallowness properties
(nearly) perpendicular to the bed, at least to the extent that the curvature
and twist of a master curve following the talweg of a valley or corrie affect the
equations Alternatively, equations that are constrained by the real topogra
phy were been presented recently by BoucHUT and WESTDICKENBERG [40]
Their equations closely account for the differential geometric properties of the
basal topography, at least to the extent that digital elevation software allows
the pointwise reproduction of the mean and Gaussian curvatures PUDASAINI
et al [341] have shown that the differences in the choice of the curvilinear
coordinates and the definition of the orientation of the depth over which
the three dimensional equations are integrated to arrive at two dimensional
equations are significant in realistic avalanche scenarios This makes future
numerical modelling of avalanche dynamics more difficult than one might
have initially anticipated

Avalanche motion is difficult to observe and systematically record in nature,
the reason being that the release is unpredictable unless the avalanches are
artificially triggered, but equally important is that they are devastating This
is the reason why in natural avalanches only the deposit, its mass distribution
and the reconstructed track are generally known Occasionally, remote sensing
techniques are used to record the moving snow, especially the front velocity
as a function of position [7] The disadvantage of such in situ experiments is
that they always contain uncontrollable components Laboratory experiments
have the advantage that almost all aspects are controllable and that errors
may, therefore, be more easily estimated Furthermore, if it can be shown that
the laboratory avalanche can be up scaled according to well defined rules,
then agreement between computed avalanche quantities and their measured
counterparts in the laboratory allows inferences for the natural avalanche
This is indeed the case

In the past, different experimental techniques, such as photogrammetry and
light sheet projections were used to measure the evolution of the geometries
of the flowing and deforming granular piles, e g , of sand, gravel and quartz,
on the laboratory scales, sliding down confined and unconfined, as well as
straight and curved chutes, and also chutes with humps To this end, fast
speed technical measurement cameras were used Examples of a large num
ber of laboratory experiments and a comparison of their output with results
of computations performed for the model equations will be given in Chaps
10 and 12 HUTTER and associates (Chaps 10 and 12), IVERSON and others
[74, 194], McDoUGALL and HUNGR [272, 273, 274], POULIQUEN [329] and
PoULIQUEN and FORTERRE [330] have independently performed such exper
iments Good to excellent correlations between the theory and the laboratory
experiments have been generally established

One of the dynamical aspects of an avalanche is its velocity distribution It is
very important for practitioners to have a proper knowledge of the velocity
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field in order to estimate the impact pressures (on obstructions and infrastruc
tures), stress and strain rates and so on, in the course of an avalanche sliding
down a mountain topography From a structural engineering and planning
point of view, one must know the velocity field in order to design buildings,
roadways and rail transportation in mountainous regions Equally important
is the fact that one is always keen to know the velocity field of flowing granular
materials and fine granulates through various channels in process engineering
scenarios in order to predict the flow dynamics In this regard, the final task
is the corroboration of the physical adequacy of the model equations, the
efficiency of the numerical method and their harmony with the (laboratory)
experiments performed under essentially well controllable circumstances to
gether with an advanced measurement technique

Recently, the particle image velocimetry (PIV measurement technique) was
used by PUDASAINI and PUDASAINT et al [334, 343] to measure the dynamics
of the velocity distribution of free surface flows of avalanches down curved
chutes merging into horizontal planes To our knowledge, such experiments
had not been performed before Ultimately, it will be demonstrated that the
theory, numerics and the experimental results are in excellent agreement with
one another

Remark A further specification may be necessary regarding the determina
tion of the velocity distribution in plane view and with depth, because it is
the cause of certain different views among present day specialists Researchers
focusing on the physical basis of gravity driven dense granular flows tend to
distribute the transfer of the shearing through the moving avalanche layer,
while modellers, with the aim of constructing a forecast model for the dy
namics of avalanches in a given terrain, focus their attention on an accurate
description of the velocity field parallel to the terrain and dispense with a de
tailed description of the velocity profile perpendicular to the terrain This
attitude is the heart of all depth integrated models We have shown that,
except for a small number of rather extreme cases, the collapse of the shear
ing region to the basal surface has a very small effect on the evolution of an
avalanche along its track, as well as in the deposits [183]

1.2 Goals, Methods and Structure
1.2.1 Goals

There were three main aims in writing this book They are as follows:

One of our basic tasks was to collect and present a systematic develop
ment of depth integrated continuum mechanical hydraulic models of flow
avalanches Particular emphasis has been given to the development of a con
tinuum avalanche model and the creation of a new theory that can model
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flows of debris and avalanches down non trivial and complicated mountain
topographies in geophysics, as well as flows of dense powder and granulate
bulk materials through general channels in process engineering scenarios
(see [335, 375])

Of equal importance is to solve the complicated time dependent non linear
hyperbolic model equations thus developed to describe flow avalanches
from initiation to deposit in the run out zones Solutions of these equations
should capture the underlying physics of the whole process Therefore, the
sophisticated modern numerical integration methods that are capable of
capturing shock discontinuities must be applied Such methods exist, have
been and are still being developed in the mathematics and engineering
communities They have found implementations in the finite difference,
finite volume and finite element techniques of solving hyperbolic partial
differential equations As one of the major challenges of debris flow is con

cerned with the underlying topography, we must be able to apply these
numerical schemes to different topographic configurations from simple to
complex bed geometries, so that they can serve as a benchmark status for
practitioners

Do the model equations represent the physics we are looking for? Or are
they merely calculations for some artefacts? Are the numerical schemes
that we are using reliable and able to cope with the physics of the model
equations? The proper answers to these questions can only be established
through field and/or laboratory experiments The ultimate goal should
thus be the corroboration of the theory and numerics with the experimen

tal measurements regarding the velocity distribution and the evolution of
the depth profile, as well as the impact pressures when an avalanche slides
down a given topography from initiation to the deposit, describing the en

tire dynamics To achieve this goal, some modern measurement techniques,
such as digital photogrammetry, particle image velocimetry and laser tech

nology should be utilised

1.2.2 Methodology

In order to achieve these lofty goals, various advanced methodologies must
be used For the physical mathematical modelling of avalanches one needs
advanced knowledge of the differential geometry, partial differential equa
tions, material properties, flow rules and dynamical aspects of large as well
as small scale geophysical fluid dynamics Due to the hyperbolicity and non
linearity of the model equations, they can only be solved properly with the
help of the above mentioned numerical schemes that damp oscillatory phe
nomena but are so weak in numerical diffusion that steep gradients can still
be reproduced Furthermore, in laboratory experiments the particle image
velocimetry (PIV) measurement technique is used to measure the velocity
distribution of the particles at the free surface and at the bottom of the
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avalanching mass (see PUDASAINI and PUDASAINI et al [334, 343]) PIV
measurements can also be used to determine the evolving boundary, whereas
penetrometers can be used to measure the depth profile of the deposit of the
avalanche However, for proper measurement of the three dimensional evo
lution of the avalanche geometry one should use digital photogrammetry or
the laser beam technique Special measurement cameras (e g, TMK 21) can
be used to take a pair of stereo images of the avalanche (e g, deposit) and
through the stereoscope one can have a three dimensional visualisation of the
avalanche Analytical stereo evaluation devices (e g, AC3) can be utilised to
determine the free surface of the avalanche In the field, non invasive tech
niques are primarily used Video recordings are classical The DOPPLER radar
method allows determination of the velocity (and density) profile with depth
Seismic and acoustic sensors have also been used, as have been plates installed
into avalanche prone slopes prior to snow deposit, with built in pressure and
shear traction transducers Invasive techniques also use load cells installed
in dams or masts to measure impact pressure Classical pitot tubes, light
emitting diodes, capacitance probes and acoustic transducers are employed
to measure pressures, arrival times of moving avalanche fronts, densities and
velocities The topic requires knowledge of advanced experimental techniques,
is highly specialized and the literature is vast For a recent in depth review,
see ISSLER and others [189, 190]

1.2.3 Structure

The entire book is divided into five parts: introduction, theory, numerics,
experimental validation and avalanche protection

Part I consists of two chapters The first chapter presents the introduc
tion and motivation for avalanche research, and the necessities for avalanche
studies Snow avalanche hazards, and fatalities and casualties from differ
ent kinds of avalanches are reported Major international scientific activities
in avalanche and debris flow research are discussed in brief, which provides
a forum for researchers in the international community to exchange ideas
on how to cope with avalanche and debris flow hazards Chapter 2 provides
a wide and general definition of avalanche dynamics as a rapid motion of
large scale geomaterials like snow and debris down the side of a complicated
mountain terrain Dynamical aspects of avalanches, such as their tracks, run
out zones and impact pressures, are discussed in brief Some important and
fundamental applications of avalanches, both in geophysics and process en
gineering scenarios, are presented Other aspects contained in this chapter
are the division of avalanches into flow and powder types, and intermediate
states between them A survey on some classical avalanche models is pre
sented The limitations and drawbacks of the classical models indicate the
necessity of a new model
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Part IT contains four chapters, the first two dealing with the developments of
continuum mechanical theories for different topographic descriptions A short
review of a continuum mechanical theory of granular avalanches flowing down
a basal topography of which the talweg lies essentially in a vertical plane
aligned parallel to the steepest descent (main flow direction) is presented
in Chap 3 There, we put the avalanche model equations into a frame of
a theory that is well defined and well structured from both a mathemati
cal and a physical point of view The assumptions, inputs and outputs of
the theory are listed in a systematic manner Generalisations of the theory
for two and three dimensional basal topographies are presented Advantages
and limitations of the theory are explicitly and systematically listed, which
cannot be found in the other existing literature Chapter 4 is very impor
tant; it presents a complete and detailed derivation of a recently developed
theory for the gravity driven free surface flow of an avalanche over arbitrar
ily curved and twisted topography This is a very important extension of
the original SAVAGE HUTTER model [375] The new theory includes the si
multaneous effects of curvature and torsion on flow avalanches in channels,
which could not be investigated before This makes the theory applicable
to realistic avalanche motions down arbitrarily guided topographies, such as
valleys and channelised corries Digital data from geographical information
systems (GIS) of mountainous avalanche prone regions can, in principle, be
applied to this model in order to use the model in realistic situations and
to construct hazard maps Special features and the importance of the new
theory are presented It is shown that these new model equations, proposed
by PUDASAINI and HUTTER [335], can reproduce all previous extensions of
the SAVAGE HUTTER equations as special cases The theory is developed
from a completely different topographical point of view, in which not only
the talweg but also the entire basal topography can be curved and twisted
The model equations are put into standard conservative form to analyse the
flow behaviour Finally, a comparison of these model equations with previous
equations is presented

Chapter 5 outlines simple analytical solutions of avalanche equations for
different cases Similarity solutions for flows down inclined surfaces are de
rived explicitly Steady state exact solutions for avalanches occurring in rotat
ing drum configurations with and without erosion are presented Chapter 6
presents the importance of the avalanching motion to describe the mixing
phenomenon of different granular materials in a thin gap between two circu
lar discs It is demonstrated that such phenomena can be exactly represented
in a closed mathematical form These exact solutions, although simple and
restricted in nature, may serve as fundamental tools to provide analytical in
sight into the full understanding of the theory Moreover, such solutions are
always very useful for checking the performance of numerical methods and
computed results before they are used to solve the full system of equations
Apart from this, the example allows a non standard comparison of compu
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tational and experimental results on particle mixing in avalanching flows In
this chapter, an alternative model describing the flow and mixing of granular
material in a rorating cylinder is also presented This model starts from infor
mation gained by nuclear magnetic resonance measurements of velocity that
are in conflict with the exact solution obtained by our model New stress
closure is employed and approximations are slightly different from those of
our model, but it is shown that a comparison of the new theoretical results
with the corresponding results from measurements is quite convincing

Part III is divided into three chapters It deals with the numerical meth
ods and simulations of the model equations (these are the hyperbolic partial
differential equations mentioned earlier) presented in Chap 4 for different
topographic situations High resolution shock capturing numerical methods
are developed in Chap 7 Numerical difficulties of the model equations in
traditional numerical methods are discussed and appropriate modern nu
merical methods, such as NOC, ENOC (essentially non oscillatory central
differencing) schemes with different TVD limiters, are presented in detail
for non linear one dimensional conservation laws Similarly, Chap 8 extends
the one dimensional shock capturing numerical scheme of Chap 7 to a two
dimensional system of conservative equations This two dimensional shock
capturing method is applied to the extended equations derived in Chap 4
Chapter 9 deals with the numerical simulations of avalanches in topographies
ranging from simple to complex configurations The performances of various
numerical schemes are discussed here It is shown that the NOC scheme with
the Minmod TVD limiter demonstrates the best numerical results for simu
lating avalanche dynamics with, among others (e g, Woodward and Super
bee), limiters and ENO cell reconstructions ? Firstly, numerical simulations
are presented for simple and torsion free topographies that include the basal
surfaces: curved downhill but laterally flat; cylindrically curved downhill and
channelised in the cross slope direction in both cases with constant and
variable cross slope curvatures Simulations are presented for superimposed
basal topographies with laterally flat and curved reference topographies For
all these cases, results are presented and discussed in detail Secondly, a large
number of simulations are performed for complex and non trivial topogra
phies These topographies include uniformly and non uniformly curved and
twisted channels with constant and variable channel widths It is shown via
different, numerical simulations that the new theory developed in Chap 4
is able to include the simultaneous effects of curvature and torsion in the
dynamics of an avalanching mass over (generally) curved and twisted (moun
tain) topography This is an entirely new aspect in the field of avalanche
research These numerical simulations disclose uncovered physical features

2 The technical terms are mentioned here for those readers having an expert

knowledge of the numerical integration technique of shock capturing schemes
There are also other methods than those mentioned above that are capable of
capturing shocks Details will be given in Chaps 7 9
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of avalanche processes and disclose some fundamental aspects of avalanches
in order to judge the applicability of the new model equations in reality
Similarly, simulations are presented to investigate the sensitivity of the phe
nomenological parameters and the pressure dependence of the friction angles
It is shown that the dynamics of the avalanche is fairly sensitive to variations
of the bed friction angle but less to the variation of the internal friction an
gle Also, we have introduced a linear dependency of the bed friction angle
on the overburden pressure of the granular pile However, this destroys the
scale invariance of the model equations

Part IV deals with the experimental validation of the theoretical prediction
of the model equations There are three chapters in this part Chapter 10
contains a wealth of information, necessary to conduct laboratory avalanche
experiments The design of the chute, selection of the material and phe

nomenological parameters, experimental set up, experimental procedure and
much more are presented in this chapter It is also made clear that such
laboratory experiments on avalanches are a necessity for any avalanche the

ory before the model is put into real practice, e g , in land use planning and
hazard zoning it must be checked by small scale, well controlled laboratory
experiments A model that is not verified first by using ideal, well controlled
laboratory experiments has little chance of adequately reproducing natural
phenomena, where input and boundary data are much less reliable We ex

plain in detail avalanche experiments on simple to bumpy chutes with or
without sidewise confinements The hard test of an avalanche model is its
performance for avalanches across irregular three dimensional terrain This
test is also performed in this chapter on two different levels Laboratory tests
of an avalanche on a realistic topography are compared with results from com

putations These experiments were conducted in the US Geological Survey
by DENLINGER and IVERSON and IVERSON et al [74, 194], at the University
of British Columbia by McDouGALL and HUNGR [273], and at the State
University of New York at Buffalo by PATRA et al [313] Comparisons of
computational results with data collected from real events are also given We
shall reproduce descriptions by McDoUGALL and HUNGR [273, 274] The
coincidence is very encouraging Chapter 11 gives a brief review of the theory
of the PIV measurement technique that is primarily designed for velocity
measurements in transparent fluids Next, we introduce a “granular PIV” in
order to measure the velocity distribution of the particles at the surface and
bottom of the free surface motion of an avalanche (see ECKART et al , Pu

DASAINT and PUDASAINT et al [83, 334, 343]) Technical details, such as the
set up of the “granular PIV” and particular and general problems arising in
the “granular PIV” are pointed out in brief Chapter 12 presents experimental
results and brings all items together (i e , theory, numerics and experiments)

It is unquestioned both from a conceptual as well as practical point of view
that one should have proper knowledge of the velocity field It provides in

formation on the orders of magnitude of the specific momentum and kinetic
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energy and thus gives hints as to the orders of magnitudes that the stagna
tion pressure may assume The PIV measurement technique is used to mea
sure the dynamics of the velocity distribution of an avalanching flow down
a curved chute that merges continuously into the horizontal run out zone
Similarly, the evolution of the avalanche boundary and the depth profile of
the deposit are measured Experimental details are explained and the prob
lems are outlined Excellent agreements between the theoretical predictions
and experimental measurements are established

Part V, which is divided into two chapters, focuses on avalanche protection
and interaction between avalanching masses and defence structures such as
catching dams, deflecting dams, avalanche splitters, avalanche mounds and
galleries and fences Chapter 13 presents a collective review of the most im
portant avalanche defence and protection measures used to date in different
countries in Europe and America Before the construction of avalanche pro
tection structures one must know the dynamic behaviour of the potential
avalanche and debris flow hazards How large can the avalanche be in some
particular mountain sub region, how fast can it move and how big an area may
it occupy for settlement? These fundamental questions must be understood
and solved before starting the construction of the protection structures, ie,
during the structural design of the houses, sheds and galleries in the avalanche
and debris flow prone regions The basic theme of this chapter is practical
structural design, and our presentation can only be a brief introduction that
is not in depth Specialized literature is generally difficult to find because it is
contained in internal reports of snow and avalanche research institutions and
civil offices, and perhaps lecture notes of courses in earth science departments
of some universities Of interest may be ANCEY’s book on Dynamique des
Avalanches [8], lecture notes by SALM et al [367], and the reference listed
in Sect 142 on snow and avalanche research in various countries Finally,
Chap 14 contains a detailed summary of the book and provides an outlook
for future research

1.3 Necessities for Avalanche Studies

Snow avalanches, landslides, rock falls and debris flows are extremely de
structive and dangerous natural calamities The frequency of occurrence and
amplitudes of these disastrous events appear to have increased in recent years,
possibly due to increase in development activities, anticipated warming of the
Earth’s atmosphere, the associated increase of extreme storms, poor forestry
practices and land misuse in mountainous areas This implies an increase in
damage and consequently leads to large casualties Mountainous regions are
always gravely affected by such phenomena because they endanger public
life and properties and infra structures Reliable methods for the prevention
and/or reduction of the effects of such disasters are, therefore, of great need
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Evidently, civil engineers, forestry engineers and concerned authorities who
are responsible for the planning and development in these regions have con
siderable interest in such methods

1.3.1 Snow Avalanche Hazards and Fatalities

Avalanche conditions are usually caused by a combination of heavy snowfall,
wind and changing temperatures The number of avalanches falling annu
ally in the United States is of the order of 10° and the number of avalanches
falling annually worldwide is on the order of 10 x 10° Millions of snow and ice
avalanches occur each year worldwide causing numerous casualties (Ameri
can Avalanche Association) According to the US statistics (around 1986)
about one percent of the total avalanches causes serious problems: injury,
death and destruction of property Based on this report, about 140 people
are caught annually in avalanches, 60 70 are partly or wholly buried, 12
sustain injury, and 17 are killed Average annual property damage is approx
imately $400,000 Austria and Switzerland each report 25 40 persons killed
by avalanches per year, France 31, Italy 20 30, Japan 30, Norway 10 15, Ger
many 10 and Canada 7 [13] Furthermore, the capital that is invested for di
rect and indirect prevention of damage and casualties due to snow avalanches
is much more than the average amount spent on insurance claims, more than
50 million Swiss francs per year in Switzerland alone [180]

Snow and debris avalanches are natural hazards that occur in many parts
of the world They are responsible for casualties of injured and dead people,
as well as the destruction of railways, bridges and houses Avalanches are
typically associated with steep mountainous areas Early avalanche victims
were travellers and soldiers By the Middle Ages, the mountain valleys of the
Alps were inhabited but a dramatic population increase occurred in the 20th
century The earliest reference to avalanche deaths is from the year 1118 in
Iceland [33, 34] FLURY SPRECHER VON BERNEGG (who was responsible for
recording all kinds of unusual events occurring in the Davos environs) was
the first to record avalanche related deaths in Davos, Switzerland In 1449, he
described an avalanche that destroyed 4 buildings and killed 11 people Four
people were buried for 24 hours but were rescued alive This was the first entry
in the Swiss avalanche history The next entry was made on 16 January 1602
to describe a similar type of avalanche hazard in which 13 people were found
dead under the snow; a fourteen year old girl was found alive after having
been buried in the snow for 36 hours SCHNEEBELI et al [382] compile the
history of avalanche events in Switzerland from 1440 until 1999 According to
this source, the most devastating years must have been 1689, 1749 and 1951,
when 120, 129 and 98 people died, respectively The source also indicates that
there has been a continuous occurrence of avalanches throughout the years,
often with between 10 and 30 deaths
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For France, ANCEY [5] collects data in table form compiled by himself and
MOUGIN [289] It covers the entire history of the principal avalanche catas
trophes in France and Andorra from 1408 until 1999, with many single inci
dences causing between 10 and 30 deaths and extensive property damage per
annum According to this source, the most tragic events occurred in 1601 in
the villages Chéze and Saint Martin in the Pyrenees with 107 people dying
Another, very severe avalanche event, occurring in 1806 in the village Talau
of the East Pyrenees resulted in 64 deaths Consistent with the Swiss records,
there has been a steady non interrupted sequence over more than 500 years
of avalanche history that documents a regular repetitive accident toll with
property damage and deaths, on average more than 10 each year

Two of the worst years in the avalanche history of Norway were 1679, when
between 400 600 people were killed, and 1755, when about 200 people died,
as records show [13] Avalanche history in North America is just over a cen
tury old but full of devastating property damage and loss of human life
McCLUNG [268] reports about the avalanche deaths in the Himalaya From
1895 to 1979 some 200 mountaineers and porters died in avalanches, mak
ing this the greatest killer of a number of expeditions to the worlds highest
mountains Mt Everest tops the list with 34 killed, followed by Nanga Parbat
(20), Dhaulagiri (17), Manaslu (17) and Annapurna (12) As for the US in
1898, during the month of April alone, 72 gold seekers died in an avalanche,
while another 49 were buried or caught in Alaska “The worst disastrous
avalanche in the history of the United States occurred on 1 March 1910 near
the town of Wellington in Washington The final death toll was 96, with 22
survivors among 118 victims Beneath the snow lay two trains, three steam
locomotives, four electric locomotives, a rotary snowplow, several boxcars,
an engine shed, a water tower, and telegraph poles and wires!” [13] Also
a surprising fact is that during World War II, soldiers fought battles in the
mountains of alpine regions and avalanches were used as weapons of destruc
tion FRASER [101, 102] estimates that some 40,000 80,000 soldiers were lost
in the avalanche warfare From the winters 1940/41 to 1978/88 more than
7,000 snow avalanches were recorded in Switzerland with damaged property
leading to a total of 1,269 deaths In Europe, a suddenly released debris flow
in North Ttaly in August 1998 buried five German tourists on the super
highway “Brennerautobahn” The deadliest avalanches in recent years struck
Southeast Turkey in 1992 Heavy snowfall resulted in about 10 m of snow
The thick layer of snow on the steep mountain side triggered numerous devas
tating avalanches over several days Whole villages were buried and hundreds
of people were killed Included in that total are as many as 104 paramilitary
police officers [469, 470]

The Alpine region of Europe is said to suffer more avalanches than any other
region in the world In two months (January and February 1999), more than
70 people were killed in avalanches throughout resort towns in France, Italy
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Fig. 1.1. Snow avalanches killed more than 30 people in the tiny town of Galtiir,
Austria in 1999 [451, 452]

and Switzerland, and the rest of Europe [454] A four week period, begin
ning in late January 1999, provided a tragic reminder that ski resorts are an
environment prone to natural disaster, in Galtiir, Austria and elsewhere in
Europe (Fig 1 1a,b) It was the worst alpine natural disaster in more than
40 years On 25 February 1999, heavy snow in the central Alps provoked
avalanches that killed more than 30 people A snowslide hit the village of
Galtiir at more than 160 kmh—'2 44 ms—!, while an avalanche as tall as
a house plunged down the Chamonix valley in France The heavy death toll is
the result of avalanches penetrating inhabited areas; as a rule, the victims are
climbers, skiers and snowboarders on the slopes However, what provokes the
snowslide is often a skier or snowboarder: most victims die in an avalanche
of their own making For skiers going off piste in unfamiliar terrain when
there is an avalanche risk, an essential precaution is to be accompanied by
a qualified mountain guide

1.3.2 Debris and Mud Flows, Pyroclastic Flows and Lahars

Avalanches also occur in the form of the motion of soil or rock down moun
tain sides, usually mixed with uprooted bushes, trees and often containing
water When water does not play any significant role in the motion of these
granular masses, geologists also talk of avalanches or rockfalls (if the material
has broken off from a rock formation) If water is likely to be the triggering
element of the soil motion, then the terminology is debris flow, even if even
tually, i e , during the catastrophic motion of the granular mass, the water
can be ignored as a dynamic element Mud flows are flows of soil and added
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debris that is substantially mixed with interstitial fluid, and this fluid sub
stantially contributes to the dynamics of the solid fluid mixture Mud flows
are formed during heavy rains and storms when stagnant soil is soaked with
water much like a sponge and then breaks loose They can also arise in water
swollen rivers in which the bed breaks loose and develops into a catastrophic
sediment transport Since these speeds are large and occur often suddenly,
geologists also denote them as “sturzstroms’, a terminology that has crept
into English and, perhaps, can be translated as “fallstreams’

Volcanic eruptions also generate avalanching motions of debris What is
meant here are not the lava streams but the dense to dilute flows of vol
canic ash down the mountain side These flows are formed by the debris spat
out by the volcano that is too heavy to stay completely airborne It then
forms a dense boundary layer flow of hot ash that may carry on it a more
dilute, airborne component, moving down steep mountain flanks This ma
terial is generally hot Its debris flow is referred to as pyroclastic because of
its considerable heat and burning temperature Another denotation is lahar,
but then it is understood that the flowing material is not only hot but also
muddy and mixed with a large proportion of very fine components Debris
flow hazards, including mud flows and pyroclastic lahars, are often caused by
exceptional meteorological and geological events and are always only one part
of a natural disaster When initiating on steep slopes they can travel unex
pectedly large distances before they come to rest Their occurrence is largely
unpredictable and in mountainous regions, like the Alps and the Himalaya,
they continue to be a threat both to human life and property Research in
avalanche and debris flow prevention and the study of their dynamics are,
therefore, important responsibilities of most mountainous nations

Volcanic activity can ruin vast areas of productive land, destroy structures
and injure or kill the population of entire cities World wide, volcanoes erupt
regularly, about 50 each year The emerging mass flows of surficial material
include rock falls, debris flows or avalanches, often accompanied by large
quantities of water A debris flow associated with the eruption of Nevado
del Ruiz in Columbia in 1985 resulted in the death of some 26,000 people
and the destruction of 5,000 homes Similarly, Ruapehu, a large complex
volcano with a summit crater lake on the North Island of New Zealand has
erupted four times in the past half century This produced ash falls on the
snow cap and caused the crater lake to overspill, producing more than 60
large mudflows The debris flow resulting from the 1953 eruption destroyed
the Tangiwai railroad bridge, killing 151 passengers on a passing train The
above mentioned research groups in the US and France are working on such
problems, see Sect 11

Figure 1 2 shows a view of the Gondo spitting mudflow of 14 October 2000,
and the destruction of the village of Gondo (Switzerland) and roadways [457]
The rain that had been falling incessantly in the area around the village
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Fig. 1.2. Destruction by mudflow and landslide On 14 October 2000, the rain that
had been falling incessantly in the area around the village of Gondo, Switzerland,
for 48 hours triggered off a 10,000 m® spitting mud flow The flow composed of
mud and blocks caused 14 deaths and destroyed a dozen buildings, including the
400 year old Stockalper tower [457]

of Gondo for 48 hours triggered off a 10,000 m? spitting mud flow The
flow, composed of mud and blocks, caused 14 deaths and destroyed a dozen
buildings

Being a mountainous country, Nepal is frequently and badly affected by hun
dreds of landslides each year during the rainy season The biggest and most
massive landslides triggered by heavy monsoon rains in the year 2002 buried
alive at least 44 persons and displaced nearly 228 families of two villages
in the eastern hilly district of Khotang, 200 km southeast of the Nepalese
capital Kathmandu 42 persons were buried in their sleep in Sanmal village,
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including seven members of a family and 13 travellers lodged for the night
in one house Another landslide buried two others in Dipsey village The
heavy rains triggered the landslides at 2 am, 15 July 2002 The landslides
fell about two kilometres above the villages Sixteen victims were rescued
and airlifted to Kathmandu and nearby hospitals for treatment, Around 300
livestock were also killed by the landslides Most of the people killed in the
landslides were children and elderly people who could not escape from the
areas in the night hours A week later, in a period of five days, 94 persons
were killed in Makwanpur district in floods and landslides triggered by rains,
while 26 died in Kathmandu Valley Similarly, in the last week of August
2001, in Khotang and Okhaldhunga districts, a landslide buried 15 houses
In the year 2000, floods and landslides triggered by heavy rains claimed at
least 160 lives across the country [465] 2 Table 1 1 presents an overview of
selected landslides worldwide of the last century [396]

The eruption of Mount Saint Helens in Washington State, 1980, which was
the most destructive in the history of the United States, resulted in scores of
injuries and the loss of 60 lives The lateral blast, debris avalanche, mudflows,
and flooding caused extensive damage All buildings and related man made
structures in the vicinity of Spirit Lake were damaged or buried Two hun
dred houses were destroyed and many more were damaged in Skamania and
Cowlitz Counties, leaving many people homeless The total cost of the de
struction and damage caused by this eruption was about $1 billion

Figure 1 3 shows the destruction of settlement and roads caused by debris
flow in the Aosta Valley in Italy Similarly, Fig 14 depicts the devastat
ing debris slide in January 2001 in Las Colinas, El Salvador This landslide
was induced by an earthquake and may have buried as many as 500 homes
Figure 1 5a shows another debris deposition in a forest area of Taiwan with
a huge amount of boulders on the surface of the deposition Figure 1 5b repre
sents quite a different situation The picture demonstrates a moraine debris
in Kyrgyzstan that might have been formed during the last Ice Age(s) by
a glacier in Tuyk Valley, Alaarcha basin North Tien Shan The moraine to
the left has been displaced by a debris flow Geologists conjecture that this
debris could probably have been induced by a strong seismic wave

The 1998 mudflow at Casito Volcano in Nicaragua caused thousands of
deaths [323] Massive mudslides are often generated by intense rainfall on

% Observations (since approximately 1980) indicate that debris and mud flow

events in Nepal may increase dramatically in future The likely reason has
been identified as the retreat of glaciers due to climate warming This process
may lead to the formation of ice dammed lakes and lakes in the forefield of the
glaciers that may frequently break out These outburst events may generate
tremendous flood waves moving down the valleys as catastrophic debris and
mud flows The increase in such devastating events has alerted international
organisations to call for fundamental research and protective measures
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Table 1.1. Overview of the natural hazard induced by landslides in different parts
of the world * includes earthquakes, ** includes floods, data source [396]

Selected Landslides of the 20th Century

Year Location Approximate Death Toll
1916 Italy /Austria 10,000

1920 China* 200,000

1945 Japan™* 1,200

1949 Former USSR* 12,000 20,000
1954 Austria 200

1962 Peru 4,000 5,000

1963 Italy 2,000

1970 Peru* 70,000

Fig. 1.3. Deposit of devastating debris: showing the destruction caused by debris
flow in the Aosta Valley in Ttaly
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Fig. 1.4. Initiation, channelling, spreading and deposit of a devastating debris
slide in Las Colinas (on the outskirts of San Salvador), El Salvador, January 2001
This landslide was induced by an earthquake and may have buried as many as 500
homes [460]

hillsides that are devoid of vegetation, often due to irresponsible deformation
Frequently, mudslides are triggered during other environmental catastrophes
A recent example is the devastating action of the Hurricanes Ivan and Jeanne
that struck Haiti in September 2004 and caused approximately 3000 deaths
A large portion of casualties was due to the debris flow and mudslides that
were triggered by the heavy rain falls that accompanied the hurricane while
it struck the Caribbean area, and many of the casualties and much property
damage is due to this secondary effect

Another dramatic mudflow event was triggered by a huge glacier mass break
ing off from Kolka glacier, triggering the mud ice flow in the Genaldon Valley,
North Ossetia on 20 September 2002 The estimated mass of ice set in motion
was 115 x 10 m® It generated a huge flow of ice, water and debris that came
to a halt 2 km from the village Gizel 18 people died, 108 people remained
missing, and a large number of buildings, electrical lines and gas pipe lines
were destroyed (see HAEBERLI et al and POPOVNIN et al [136, 326])

Remarks on Common Properties of Natural and Industrial Ava-
lanches There are many common properties of natural and industrial aval
anches Usually, granular avalanches occur when a large layer of granular
material becomes unstable Rockfalls, landslides, debris flows and snowslab
avalanches are examples of granular avalanches in geophysical contexts Sim
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Fig. 1.5. a) Debris deposition in Taiwan (from [397], courtesy of Sino Geotechnics,
Sino Geotechnics Research and Development Foundation, Taipei, Taiwan) b) De
bris flow in Kyrgyzstan Glacier moraines in Tuyk Valley, Alaarcha basin North
Tien Shan The moraine to the left has been displaced by a (probably seismically
induced) debris flow (Courtesy of V A1zeN, University of California at Santa
Barbara )

ilarly, flows in silos, hoppers, rotating drums and slag heaps are examples of
granular avalanches in industrial applications (see Fig 1 6) Another applica

tion of avalanching flow in industry is the coating of thin films by generating
avalanches made of powdery grains of the micrometre scale down an inclined
surface that is to be coated by the powder These flows are gravity driven
with thicknesses of milimetre size, and the coated layers have micrometre
thickness Surprisingly, as long as cohesive forces between the particles are
not effective, these tiny avalanche flows behave very similarly to gigantic geo

physical mass flows The physical principles seem to be much the same So,
although there is an enormous difference in the length scale between geo

physical and industrial avalanche flows, the dominant and principal physical
mechanisms that drive the flows are similar Dense flow avalanches of rock,
ice and snow are gravity driven flows that are observed in the natural envi

ronment on a very wide range of length scales GRAY et al [123] mention
that in geophysical contexts, rockfalls, landslides and snow slab avalanches
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Fig. 1.6. Piling of a mixed bed of granular materials in a cement factory; an
example of granular flow and avalanche in process engineering Different grey scales
of the heap correspond to different ingredients of the mixture of the cement The
material is continuously deposited from a quasi static point source The material
flows rapidly down the faces of the heap in shallow layers During the downward
flux of the fine mixture of granular material, particle segregation according to size,
density or resilience takes place (Courtesy of MVT Materials Handling GmbH,
Dillingen )

may set in motion up to 10'° m?® of material, whereas in industrial flows in
silos, hoppers, rotating drums and slag heaps the volume of the material is
of the order of several cubic centimetres to several hundreds of cubic metres
Three key prehistoric events in rockslides are presented in Table 12 These
are huge events in the history of rockslides In fact, it is believed that size
effects enter into account only for very large avalanches [374] 4

1.3.3 International Scientific Activities

The large number of calamities expressed in huge economic losses, as well
as insured and dead people, are the reasons why the general assembly of
the United Nations passed a resolution on 11 December 1987, designating
the 1990s as the International Decade for Natural Disaster Reduction This
resolution was aiming at the promotion of international awareness and scien

tific research activities on natural and man made disasters (for more details,
see [396]) In Germany, the Deutsches Komitee fiir Katastrophenvorsorge
e V is an active committee for disaster reduction within the International
Strategy for Disaster Reduction (ISDR) Special, regularly held international
conferences are devoted to these topics, e g, CALAR (Concerted Action on
Forecasting, Prevention, and Reduction on Landslide and Avalanche Risks)

Conference on Avalanches, Landslides, Rock Falls and Debris Flows, Vienna,
January 2000 This conference was held under the auspices of the United

% This statement assumes that avalanches are dry or the effects of the interstitial

fluid can be ignored Pore pressure generates a size effect [339]
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Table 1.2. Three key (huge) rockslides in the prehistoric period Frictionite was
observed in the case of Kéfels The table also demonstrates the long run out of large
events in terms of the total overall slope corresponding to the total overall distance
travelled by the moving mass in the longitudinal flow direction The data are taken
from [94]

Prehistoric Huge Rockslides

Event Volume Material Overall slope
Flims (Switzerland) 10'? m® Limestone 0.07
Kofels (Austria) 10" m? Augengneiss 0.18
Langtang (Nepal) 10'° m? Migmatite/gneiss ——

Nations International Decade for National Disaster Reduction/International
Strategy for Disaster Reduction (IDNDR/ISDR), the International Associ
ation for the Study of Insurance Economics (the Geneva Association) and
the International Society for Soil Mechanics and Geotechnical Engineering
(ISSMGE) Similarly, INTERPRAEVENT annual conferences on the pro
tection of inhabited areas from flooding, debris flows, avalanches and slope
movements are being held every year with the following objectives: preven
tion and protection from natural hazards, promotion of research in the field
of protection against flooding, debris flows, avalanches and slope movements,
exchange of interdisciplinary experience at an international level in the field
of science, techniques, ecology and economics Furthermore, the first, second
and third International Conferences on Debris Flow Hazards Mitigation, re
spectively, were held in San Francisco, California, USA; Taipei, Taiwan and
Davos, Switzerland, in order to provide fora for debris flow researchers in
the international community to exchange ideas on how to cope with debris
flow hazards using the most advanced, state of the art methodology both in
mechanics and hazard prediction and risk assessment This has drawn atten
tion to the importance of reliable recognition of natural avalanche paths and
predicting deposition zones

Within the avalanche research community regular conferences, workshops and
symposia are held that are exclusively devoted to snow behaviour in its cover
and to avalanching motion of snow The International Glaciological Society
has held two conferences, in 1992 and 2000, that were exclusively devoted to
snow, and additional conferences in 1996 and 1998, in which the dynamics
and thermodynamics of snow and ice were central topics of interest The
society also held the International Symposium on Snow and Avalanches on
2 6 June 2003, in Davos, Switzerland The conference proceedings, Annals
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of Glaciology,® are a continuing source flow of the most recent research both
from a fundamental and an applied point of view

Apart from these international activities, there are numerous national and
regional events organised and conducted by local universities, institutes, civil
servant offices and societies

1.4 A History of Avalanche Research

Avalanches occurred in the mountainous regions throughout the Holocene
(and earlier), and people in the Alps have been continuously exposed to the
devastating events and forced to live with them Documentation of catas
trophic events is reported in local annals and community periodicals, and
for Switzerland and France excerpts of those are given by SCHNEEBELI et al
[382], MoucIN [289] and ANCEY [5] Such reports have also been collected
for Iceland by JONSSON et al [208] and include landslides from volcanic erup
tions These writings from the Middle Ages show that common people who
lived in the mountains and travellers or postal officers who were frequently
exposed to avalanche danger had a good understanding of its nature It is
also known that scientific geologists in Europe in the Middle Ages ridiculously
debated about the nature of rocks, and the different contenders were called
volcanists and neptunists, but many people living near volcanoes in Iceland
(and presumably also elsewhere) know the nature of igneous rocks quite well
It appears that during this early scientific phase lay persons were ahead of
scientists 6

Within the scientific community, the field of snow and avalanche research is
relatively new and young Until the 20th century scientists had not attempted
any systematic studies of the physical aspects of the mountain snowpack,
mechanical forces causing avalanches or avalanche dynamics Winter moun
taineering and skiing seems to have become fashionable only at the begin
ning of the last century Interest in avalanche research developed gradually
due to mountaineering and skiing First avalanche studies took place in the
European Alps around the beginning of the 20th century and half a cen
tury later in the United States Serious research in this field was started
in 1936 when the Swiss founded their own Snow and Avalanche Research
Institute in Davos [349] Subsequently, similar centres were established in
France, Canada, USA, USSR /Russia and other countries as well These in
stitutes are now leading centres for fundamental and applied avalanche re
search

5 The particular volume numbers are 23, 27, 30, 32 and 38
6 T JOHANNESSON, from the Icelandic Meteorological Office, personal commu
nication
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1.4.1 Early History

There exists a great number of historical reports on snow avalanches ARM

STRONG and WILLIAMS [13] and HUTTER [180] have given reports on the
early history The first historic record of an avalanche encounter may have
been in the third century B C when the Carthagian general HANNTBAL led
his army on an epic crossing of the Alps during the Second Punic War There
have since been some 24 centuries of battle between man and avalanche, at
least, as the people of the Alps have fought to be successful while living in
the shadow of the mountains During the Middle Ages mountain inhabitants,
mainly of Europe, viewed avalanches as an “act of God or evil forces from
above” They took it as an unavoidable happening The first ever and sys

tematic publication on avalanches, “Description of the National History of
Switzerland”, was made by JOHANN SCHEUCHZER, see [19] The book was
published in Ziirich in 1706 and contains many insightful observations on
means of protection from avalanches As an example, we quote the following
paragraph: “  practically never erect buildings at the foot of a steep mountain
unless there is a hill or a wood appropriately located on the slope which could
divert the rolling avalanche to the sides or force it temporarily to loose its
power upon arrival in the valley ” Triangular shaped “patches of pine woods”
above villages were protected by law “  triangular walls were found at the
foot of the mountains, their apexes pointed in the direction of the most dan

gerous walls [direction], so as to break up the avalanches and keep them from
doing damage to buildings 7 [13]

SCHEUCHZER described an avalanche as a huge snow ball and assumed its
size to be that of a house or even a mountain Although it seems to be an in
accurate definition, he mentioned a lot of other correct features of avalanches
similar to what we consider today However, the concept of the huge snow
ball prevailed for centuries; see Figs 17 and 18, which indeed show snow
balls in a wooden engraving and a painting

Even in the 19th century paintings of avalanches still showed huge snow balls
rolling down a mountain side This is probably be due to the fact that in the
Middle Ages mountainous regions were not sufficiently populated or visited
by intellectuals, scientists and artists Consequently, pictures of avalanches
turned out to be the result of imagination rather than observation

1.4.2 Modern History

Mountain climbers and early skiers were the first avalanche researchers who
gained knowledge of it from years of observation and experience The first sci
entific publication on avalanches, “Avalanches of the Swiss Alps”, was made by
a Swiss forester, JOHANN COAzZ in 1881, see [13] The main intention of this
work was to study avalanche forces so that avalanche defence structures could
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Fig. 1.7. Wood engraving Nr 34 of H T BURGKMAIR in the Theuerdank depicting
an imagined avalanche in the Middle Ages as a huge snow ball Wood engraving in
Emperor Maximilian’s Theuerdank (Photo reproduced with permission from [421])

be designed and one could learn where and how often avalanches occurred, so
that a long turn record would exist for planning purposes, for locating protec
tion structures and re forestation projects In a book called “The Ski Runner”,
RICHARDSON in 1909 classified avalanches according to their prime causes
wind, snowfall, rain, etc [13] Up to 1930, many other researchers from central
Europe contributed their works on avalanches through publications mainly
for climbers and skiers FLAIG wrote two books, Der Lawinen Franzjosef, in
1941 and Lawinen, in 1955, with a wealth of information about snow and
avalanches [99, 100]

Remarks on the VOELLMY Model Avalanche research as a field of
physical science attempting to derive the equations of motion of a moving
snow mass down an inclined chute started in 1955 with VOELLMY’s four
short papers “Uber die Zerstérungskraft von Lawinen” in the “Schweizerische
Bauzeitung”, i e , “About the destructive forces of avalanches” in the “Swiss
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Fig. 1.8. Die Lawinenkugel [The avalanching snow ball] Until the 19th century
people of Alpine regions thought that a snow avalanche as a huge snow ball rolling
and sliding on a mountain side (Photo reproduced with permission from Hasli
Museum Meiringen, Switzerland)

Civil Engineering Magazine” [430] These papers entered the scenario of snow
research in mountainous regions as a big bang and kept researchers busy for
many decades and are still keeping them busy today For many years, they re
mained unchallenged Attempts for improvement were made in 1966 by SALM
[361] and in 1980 by PERLA et al [315] In the mid 80s of the last century
a whole surge of models emerged A summary of a large number of models,
including very recent ones is compiled in the SAME report [142], mentioned
earlier Interesting about the avalanche research by VOELLMY is that he was
not working at the Swiss Federal Institute for Snow and Avalanche Research,
but was an engineer at the Swiss Federal Institute of Materials Testing, and
prior to his landmark papers the properties of steel, aluminium and wood
were probably much more familiar to him than snow

In the following paragraphs we present histories and contributions to ava
lanche research in the most avalanche prone countries The reader wanting
to skip these in a first reading may directly pass to Chap 2



30 1 Introduction

The Swiss Contribution to Avalanche Research?” The Swiss are the
pioneers in avalanche awareness, research and application First scientific
statements related to the behaviour of snow and avalanches can be traced
back to the beginning of the 18th century with work by JOHANN JACOB
SCHEUCHZER, 1706 Early serious attempts aiming at a closer understanding
of the physical behaviour of snow in its cover and in motion were under

taken by the head of the Swiss Forest Inspectorate, JOHANN COAZ, who
from 1876 until the early years of the twentieth century played an influential
role in establishing a public awareness of the danger of snow avalanches in
Switzerland and abroad In 1931, the Snow and Avalanche Commission of
Switzerland was formed It soon recognised that fundamental research was
required ROBERT HAEFELI, a geotechnical engineer and HENRI BADER,®
a young crystallographer, started the first snow mechanical measurements in
the winter of 1934/35 and continued these in the early winter of 1936 together
with EDWIN BUCHER, a civil engineer, and a few helpers at the Weissfluhjoch,
2670 m above sea level This was the birth of the Swiss Federal Institute of
Snow and Avalanche Research,” which was stationed at the Weissfluhjoch
from 1936 until 1996, when it moved to its new headquarters in Davos Dorf
BADER, HAEFELI and BUCHER published their first report “Snow and its
metamorphism” [19] in 1939, which to date still remains worthwhile reading
for any snow scientist In the last approximately 70 years of its existence,
the institute was headed by four directors, E BUCHER (1936 1949), M DE
QUERVAIN (1950 1979), C JACCARD (1980 1991) and W AMMANN (1992

today) Through the years, more than 250 scientists have been employed, and
more than a 1’000 scientific memoirs and several thousand technical reports
have been published The institute slowly grew from the small beginnings of
a handful people to a considerable size of approximately 40 employees in the
sixties and seventies to more than 100 full time and temporary employees at
the turn of the millennium

Researchwise, EISLF has concentrated its activities on four different divi
sions:

weather, snow cover, and avalanches,
snow cover and avalanche protection,
snow cover and vegetation,

basic research on snow and ice

The authors thank W AMMANN for making the brochure “Eidgendssisches
Institut fiir Schnee und Lawinenforschung, Davos, 1996” available to them,
from which a large part of this information is drawn

BADER later left Switzerland and assumed a leading position as a snow and ice
researcher in the army of the United States in the Snow, Ice and Permafrost
Research Establishment (SIPRE), Wilmett and the US Army Cold Regions
Research and Engineering Laboratory (CRREL) in Hanover, USA
Eidgenossisches Institut fiir Schnee und Lawinenforschung (EISLF)
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In most of these special fields, lasting contributions were made For instance,
BruUNO SALM, HAaNS UELT GUBLER and DIETER ISSLER essentially con
tributed to the theoretical description of the mechanics of the snow cover
and of dense flow and dilute powder snow avalanches, as well as to the de
velopment of experimental techniques, and this activity is continued today
by many PhD students and post doctoral assistants under the leadership of
PERRY BARTELT

SAMUEL STEINEMANN contributed in the 1950s with his far reaching dis
sertation on the creep behaviour of monocrystalline and polycrystalline ice,
published in 1958 [404] Much of this work was done concurrently with the
work performed on the same subject by JOHN GLEN at Cambridge University,
which would justify renaming the flow law of ice as the GLEN STEINEMANN
flow law Furthermore, RONALD LI1ST and BRUNO FEDERER pushed ahead
the study of the formation of hale Interestingly, the four brief, but very influ
ential papers by A VOELLMY, published in 1955 [430] in the “Schweizerische
Bauzeitung”, are not contributions of the EISLF, as VOELLMY was an engi
neer at the Swiss Institute of Materials Testing in Diibendorf, Switzerland
These may well be called the most influential papers on snow mechanics and
motion of the twentieth century Similarly, early papers on flow avalanches
were written by SAVAGE HUTTER at ETH, Ziirich, and laboratory experi
ments by T SCHEIWILLER and K HUTTER [380], T SCHEIWILLER [380],
F HERRMANN [150] and S KELLER [212] were initiated by K HUTTER at
the Laboratory of Hydraulics, Hydrology and Glaciology at ETH, Ziirich and
B Sarwm at EISLF; most early work was performed in Ziirich but with close
cooperation of scientists from EISLF

The French Contribution to Avalanche Research!® CEMAGREF!! is
a French public research institute working on agriculture and environmental
problems It was created in 1981 and employs approximately 1000 persons
One of its laboratories, nowadays referred to as Torrential Erosion, Snow and
Awvalanches (TESA), focuses on snow avalanches, blowing snow, debris flows,
and bed load transport Although CEMAGREF is quite a recent institute,
TESA takes its roots in a long standing tradition of avalanche engineering,
which dates back to the middle of the 19th century

In 1860, after a series of catastrophic floods in the 1850s, the French gov
ernment created a new department inside the powerful Forest and Water
Administration (Eauz et Foréts): the Restauration des terrains en montagne
(RTM or restoration of mountain terrains), whose objective was primarily to

10 This historical overview of the CEMAGREF was kindly written and provided
by CHRISTOPHE ANCEY from Ecole Polytechnique Fédérale de Lausanne, Lab
oratoire d’Hydraulique Environnementale, Switzerland

" CEMAGREF (Centre National d’Etudes du Machinisme Agricole, du Génie
Rural, et des Eaux et Foréts) is a French research institute focused on environ
mental science for sustainable management of land and water
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deal with erosion and floods by covering erodible terrains with forests and
drying up torrents At the end of the 19th century, the RTM service also
started trying to fight against avalanches

In 1899, a young forest engineer, PAUL. MOUGIN, went to Switzerland, met
J CoAz, who was the head of the Swiss forest service at that time, and went
back to France full of ideas He organised a system of field observation, in
cluding meteorological measurements (notably snowfall) and monitoring the
avalanche activity in some avalanche paths After becoming the head of the
RTM service, he continued the scientific study of snow and avalanches In
1922, he published his results on the physical characteristics of snow and
proposed a simple model to compute avalanche velocity and impact pressure:
an avalanche was considered to be a sliding block experiencing a COULOMB
force 12 The model was used in a few engineering applications, e g , the ca
bleway at the Aiguille du Midi in the Chamonix Valley

After MOUGIN, research into snow and avalanches was dormant in France till
1970; the Eauz et Foréts administration had its own research centre, shared
with the meteorological services and Electricité de France, but only limited
work was done In February 1970, an avalanche killed 39 people in a chalet in
Val d’'Isére This catastrophe caused deep commotion in the population, and
the French government took a series of measures to avoid the occurrence of
such catastrophic events This led to the creation of the Avalanche Science
laboratory of CTGREF (an applied research centre of the Fauz et Foréts
administration, which became CEMAGREF in 1981)

One of the first engineers employed at CEMAGREF was CLAUDE CHARLIER

As a forest engineer, he was mainly interested in the naturalist’s knowledge
of avalanches and in rational ways of studying avalanche paths At the end of
1980s and the beginning of the 1990s, he worked with LAURENT BUISSON on
how to translate expert rules into formal (mathematical or logical) rules that
could be incorporated into a programme Despite its interests and promis

ing results, this research route was abandoned when LAURENT BUISSON left
CEMAGREF in 1995

In 1978, two engineers, BRUGNOT and POCHAT, suggested using the analogy
between snow avalanches and floods; they adapted the shallow flow (SAINT
VENANT) equations to model avalanches They faced severe mathematical
issues when trying to numerically solve the depth averaged equations of mo
tion One of the first theses launched in this laboratory was that by JEAN
PAUL VILA [429] (now mathematics professor in Toulouse), who implemented
GopuNoVv and VAN LEER schemes'® to solve the shallow flow equations nu
merically

12
13

This proves that the VOELLMY model had a French precursor 33 years earlier
These are shock capturing schemes
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At the same time, another PhD student, PIERRE BEGHIN [31], started con

ducting small scale experiments to investigate the properties of powder snow
avalanches in the laboratory In 1981, he provided evidence that the simpli

fied model, proposed by the two Soviet researchers KULIKOVSKIY and SVESH

NIKOVA [231], was able to provide the key characteristics of buoyancy driven
particle clouds In the 1980s, he continued his experimental research and
explored the effect of various parameters on dust cloud dynamics PIERRE
BEGHIN was also a great alpinist who successfully reached the summits of
several Himalaya peaks above 8000 m He tragically disappeared in 1992
when he descended the south face of the Annapurna (one of the central Hi

malaya peaks in Nepal), during a storm 4

Avalanche Research in Canada'® The research on snow and avalanches
in Canada originated when ROBERT F LEGGET visited the Federal Institute
of Snow and Avalanche Research in Switzerland in 1946 Being impressed by
the work of the institute, LEGGET decided that this was what Canada needed
as well because Canada has more snow than Switzerland

In 1948, when LEGGET had become the Director of Building Research of the
National Research Council of Canada, he arranged for MARCEL DE QUERVAIN
of the Swiss Avalanche Research Institute to spend a year in Canada with
the task of recommending activities about snow, ice and avalanche research
After touring Western Canada, DE QUERVAIN recommended that avalanche
research be carried out In 1950, LEGGET created the Snow and Ice Section
within the Division of Building Research LORNE W GOLD became the sec
tion head In 1956, the Department of Public Works of Canada requested the
National Research Council to assist with the design of the avalanche control
at the highway at Rogers Pass in British Columbia The Snow and Ice Sec
tion, which previously had carried out only studies on snow and ice, made
weather instruments and snow observation equipment available and in 1957
added PETER SCHAERER to its staff for the avalanche studies

Besides designing the avalanche control for the Trans Canada Highway at
Rogers Pass, SCHAERER analysed the weather and snow conditions that pro
duce avalanches Avalanche research was dormant after the completion of the
Rogers Pass highway in 1962 SCHAERER was engaged in highway engineering
and research on the control of snow and ice on roads

In 1966, ROBERT LEGGET, recognising a future demand for information on
avalanches, decided that PETER SCHAERER resume the avalanche studies

14 The French work in this active period is summarised in two reviews by HOPFIN

GER [155] and HUTTER [180] It may also be of interest that most of this
work concentrated upon airborne density currents, appropriate for powder snow
avalanches rather than dense flow avalanches

This historical overview was kindly written and provided to us by PETER
SCHAERER, Vancouver, Canada

15
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Consequently, in September 1966, SCHAERER began a new avalanche research
program The research objective was to develop information with application
to locating and designing engineered avalanche control The studies included:

observations of the speed of avalanches,

observations of the mass of avalanches and determination of the volume of
a design avalanche,

observations of avalanche impact pressures on load cells in avalanche paths,
correlation of avalanche frequencies with features of the terrain,

variation with elevation of the maximum amount of snow on the ground

Rogers Pass in the Selkirk Mountains became the outdoor laboratory of
avalanche research The avalanche research staff of the National Research
Council was initially comprised of a research officer, a full time technician
and two temporary technicians during the winter LORNE GOLD at the head
quarters in Ottawa was the supervisor The administration of Glacier Na
tional Park, where Rogers Pass is located, made accommodation, office space
and technical support available

In 1975, the geophysicist TONY SALWAY joined the staff as a temporary
research associate His principal duty was to develop the equipment for mea
suring avalanche impact pressures and to analyse the observations When
the term of SATWAY’s employment expired in 1979, DaviD McCLUNG, also
a geophysicist, obtained the position He was later appointed to a regular
research officer

The avalanche research program of the National Research Council ended
in March 1991, when the Canadian government reduced funds and the Re
search Council reassigned its priorities The avalanche research officers and
technicians were laid off PETER SCHAERER retired and DaviD McCLUNG
obtained a teaching and research position in the Geography Department of
the University of British Columbia at Vancouver

In 1998, McCLUNG secured a chair for avalanche research at the university
with the support of the Government of British Columbia and CMH Heli
Skiing His research includes fracture mechanics of the start of avalanches,
dynamics of avalanches, and the prevention of avalanche damage in forests

In 1989, CoLIN JOHNSTON at the Department of Civil Engineering of the
University of Calgary began an avalanche research project in collaboration
with Mike Wiegele Helicopter Skiing at Blue River in British Columbia The
National Sciences and Engineering Research Council gave financial support
BRUCE JAMIESON was in charge of the field work and the analysis of data
The research concentrated on the stability of snowpacks including studies of
the strength of weak layers, the development of stability tests, fracture propa
gation and the spatial distribution of snowpack weakness COLIN JOHNSTON
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has since retired and the project now runs under the designation Applied
Snow and Avalanche Research of the University of Calgary under BRUCE
JAMIESON, with financial support of the skiing industry and governments
Field observations take place at Blue River and at Rogers Pass

In summary, the National Research Council of Canada carried out avalanche
research from 1948 until 1991 The University of British Columbia (DAVID
McCLUNG) and the University of Calgary (BRUCE JAMIESON) continue the
research In addition, the following agencies are engaged in avalanche obser
vations, public warnings and education:

Canadian Avalanche Center, with headquarters at Revelstoke,
National Parks of Canada,

Ministry of Transportation of British Columbia,

Canadian Avalanche Foundation (a funding agency)

The Norwegian Contribution to Avalanche Research!'® Avalanches
may occur at any altitude in Norway, right down to sea level along the fjords
with their high, steep slopes In many areas, especially along the west coast,
safe ground for settlements is very scarce, and avalanches have claimed 20
lives per year on average over three centuries This was brought to public
attention by ARTHUR KLABO’s book Farlige fjell (Dangerous Mountains ) in
1942 After World War II, GUNNAR RAMSLI was commissioned by the state
as a consultant to counties, communes and the road authorities to help plan
mitigative measures; in 1951, he also issued a popular booklet Sng og sngskred
(Snow and Snow Avalanches) Somewhat later, the hydrologist KNUT WoLD
began to systematically collect data on snow depth and snow water equiva
lents on behalf of the National Water and Electricity Board

Several tragic avalanche accidents between 1968 and 1972, where locals, work
ers, ski tourists and rescuers lost their lives, aroused the emotions of the pub
lic The parliament passed a resolution to initiate snow and snow avalanche
research in Norway The Norwegian Geotechnical Institute (NGI), a non
profit foundation in Oslo active in geotechnical research and consulting, was
chosen as the host institution in January 1973 The newly formed group,
headed by KARSTEIN LIED, soon set up a snow research field at Fonnbu near
Stryn, western Norway Besides the by then classical types of measurement,
loads on poles and snow bridges due to snow creep and gliding were systemat
ically investigated As one of the first activities, data on extreme avalanches
in all of Norway were collected Analysis of these data led LIED, BAKKEH®1I
and others to the still widely used @ § model This is a statistical correlation
between the run out angle o (measured from the fracture crown to the toe

6 This text was written by D IsSLER from NADESCOR, Altendorf, Switzerland
with help of K LiED and S BAKKEH@I The authors gratefully acknowledge
this input
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of the deposit) and the mean inclination angle 3 of the avalanche track from
the crown to the beginning of the run out zone It captures the observation
that, for a given fall height, fast avalanches with steep tracks generally have
a shorter run out than slower avalanches on more gentle slopes

In the early 1980s, the full scale avalanche test site Ryggfonn was established
in Grasdalen near Fonnbu Dynamic loads were measured at a high steel py
lon (with internal strain gauges), a concrete wedge (instrumented with load
plates) and on cables across the width of the path The 16 m high and 100 m
wide dam is a unique feature of this test site The equipment has changed over
time, partly in response to destructive avalanche events, and was extended in
2004 by a DOPPLER and a profiling radar system for measuring internal ve
locity spectra, flow depths, velocity profiles and erosion rates From the data,
various formulas for dimensioning structures have been derived The mea
surements has also led to the formulation of two avalanche dynamics models
based on different approaches to the granular nature of snow avalanches The
PLK model by the American PERLA, LIED and KRISTENSEN [316] simulates
the avalanche as a collection of mini avalanches (each of them described by
the PCM (PERLA CHENG McCLUNG) [315] model, which is similar to the
VOELLMY SALM model) with stochastic interaction among each other It
is presently the most often used model for consulting in America HARALD
NoREM, FRIDTIOV IRGENS and BONSAK SCHIELDROP [302, 303] specialized
the rheology of a CRIMINALE ERICKSEN FILBEY fluid to snow avalanches
that may exhibit both granular and viscoplastic behaviour and implemented
it in the NIS (NOREM IRGENS SCHIELDROP) model, routinely used for con
sulting by NGI

The 1990s have seen continued full scale measurements, refinements of the ex
isting models, studies of the interaction of avalanches with deflecting dams,
improved hazard mapping and risk analysis techniques, and many studies
of slush avalanches Since 2000, research on avalanches and other gravita
tional mass movements both on land and in the water has been coordinated
and intensified in intense collaboration with other European institutes In
particular, more detailed measurements at Ryggfonn and extensions and an
improved implementation of the NIS model are at the centre of the activities
up to 2005

The Austrian Contribution to Avalanche Research First attempts of
avalanche research in Austria'” began with the construction and erection
of protective shelters at the western ramp of the Arlberg railway track in
1880 1884 by VINCENZ POLLAK He may justly be regarded as the founder
of avalanche research in Austria However, an official bureau was only es
17 This contribution is based on material and advice obtained from M KuHN
and B LACKINGER from the University of Innsbruck Part of the text is based
on an unpublished text in the German language by H SCHAFFHAUSER
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tablished after World War II by the Innsbruck branch of the Torrent and
Avalanche Control Office in the Wattener Lizum Its duties were research on
the prevention of avalanches

In the aftermath of the avalanche catastrophes of 1951 and 1954, with a total
of 271 deaths, it was realized that roughly two thirds of all avalanches are
released below the timber line The research office was moved to Obergurgl
in the Otz Valley at 2000 m above sea level Research then concentrated on
methods of afforestation at high altitudes, which should have replaced the ex
pensive protective measures of structural engineering In 1963, this research
office was incorporated as an external station for subalpine forest research into
the Federal Forest Institute (Forstliche Bundes Versuchsanstalt, FBVA) in Vi
enna, and later, in 1966, it became part of the Forest Engineering Service in
Torrent and Avalanche Control '® Increasing urbanisation in the alpine valleys
and the accompanying demand for the necessary infrastructure led in the 70s
of the last century to extraordinary protective measures Financial restraints
demanded a close cooperation with the Swiss Federal Institute of Snow and
Avalanche Research at the Weissfluhjoch, Davos with emphasis on structural
geotechnical problems In 1975, FRITSCHE, AULITZKY and RABOFSKY criti
cally analysed the state of the art of avalanche research in Austria and drew
attention to its unsatisfactory conditions [17, 236, 350, 351, 378], thus ve
hemently requesting the foundation of an institute exclusively devoted to
avalanche research

However, the time was not yet ripe; research was still being done by indi
viduals HOINKES and AMBACH at the University in Innsbruck, FRITSCHE
at the Technical University in Graz and AULITZKY at the Institute of Tor
rent and Avalanche Control at the “University of Natural Resources and
Applied Life Sciences”'® in Vienna all contributed to avalanche related prob
lems Moreover, LACKINGER at the University of Innsbruck contributed to
glide avalanches and foundation problems and SLUPETZKY at the University
of Salzburg contributed successfully for over two decades to the analysis of
avalanche casualties

The avalanche catastrophes in 1974 and 1981, finally, led to the foundation in
1985 of the Avalanche Institute at the Federal Forest Institute in Innsbruck It
was merged in 1995 with the Institute for Torrent Studies and then renamed
Institute for Avalanche and Torrent Studies

Since 1985 avalanche research at the Innsbruck office of the Federal Forest
Institute comprises national and international projects related to avalanche
dynamics, avalanche forecast, avalanche formation within forests, forest ecol
ogy and afforestation in the sub alpine regime, risk analysis of landslides,

18
19

Institute fiir Wildbach und Lawinenverbauung
Universitat fiir Bodenkultur, Wien
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rockfalls, debris flows, mud flows, floods and avalanches Of particular inter
est is the initiation in 1992 and subsequent development of a mathematical

numerical model for the hindcast and forecast of the dynamics of mixed
avalanches, comprising of a bottom layer for a dense granular flow overlaid
by a particle laden turbulent flow of air, the powder avalanche atop of the
dense particle flow (see ZWINGER and ZWINGER et al [449, 450]) The soft

ware of this coupled SAVAGE HUTTER and powder avalanche model called
SAMOS (snow avalanche modelling and simulation) allows the determina
tion of avalanche geometry and velocities along the concomitantly determined
track

The Japanese Contribution to Avalanche Research?’ Scientific snow
avalanche research in Japan was started by MIKI0 SHODA from the Railway
Technical Research Institute [388] He released avalanches artificially on a test
slope in Niigata and measured front velocities and impact forces on structures
from 1959 to 1962 After his pioneering work, avalanche studies were executed
mainly under the leadership of the Institute of Low Temperature Science
(ILTS), Hokkaido University, which was founded in 1941

E1z1 AKITAYA conducted a series of experiments on depth hoar in a cold lab
oratory in 1975 and quantitatively revealed the growth conditions of skeleton
type and solid type snow [2] The quick growth of depth hoar crystals near
the snow surface was investigated by TAKUYA FUKUZAWA and E1Z1 AKITAYA
in 1993 [105] They found that depth hoar was formed under clear skies after
a thin deposition of new snow on denser snow, and obtained the relationship
between the growth rate and the temperature gradient both in the laboratory
and the field In 2001, AKIHIRO HACHIKUBO and EI1ZI AKITAYA measured
vapour sublimation rates and meteorological conditions in the fields, and
discussed the effect of wind on the growth of surface hoar [135]

Avalanche observation was made in the Kurobe Canyon by a joint group from
Toyama University and ILTS from 1972 to 1978 The test site is in the North
Japanese Alps and is known as a district of frequent large scale powder snow
avalanches, named “hou” in the local dialect Observations were made in the
Shiai dani area to discover the overall features and dynamics of this avalanche
type (see SHIMIZU and HUZIOKA [390])

In January 1985, an avalanche broke out at Gongen dake, Maseguchi, Ni
igata; it was so large that it killed 13 people and destroyed more than 10
houses After the disaster, Japanese avalanche researchers organised a sys
tematic project of snow avalanche observations in the Shiai dani area in 1987
Velocities in the snow cloud were measured with an ultra sonic anemometer

20 This text was kindly provided by Kouicur NisHIMURA, Nagaoka Institute of

Snow and Ice Studies, Snow and Ice Research Group, National Research Insti
tute for Earth Science and Disaster Prevention, Nagaoka, Japan
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Velocities of the lower flowing layer were calculated by differencing measure
ment of the impact pressure (see NISHIMURA et al [298, 299])

Physical properties of fluidised snow were investigated by NORIKAZU MAENO
and KourcHt NisHIMURA from ILTS with experiments of a fluidised bed of
snow and the chute system set in a cold laboratory, from 1978 to 1996 They
revealed that shear stresses are linearly proportional to the shear rate in
a lower shear rate region, and shear stresses depend on the square of the
shear rate in the higher shear rate region A strong increase of the viscosity
coefficients with the density was also observed In 1987, TsuToMU NAKA

MURA from the National Research Center for Disaster Prevention in Shinjo
constructed a 20 m outdoor chute and measured the impact forces by snow
blocks with speeds of about 12 ms™! [292]

Based on the above observations and experiments, several avalanche models
were proposed In 1989, YASUAKI NOHGUCHI from the Nagaoka Institute of
Snow and Ice Studies derived a three dimensional model for the motion of
the centre of mass of an avalanche on a surface of arbitrary configuration
[300] NoORIKAZU MAENO and KouUTcHT NISHIMURA (1989) considered the
snow entrainment and viscous resistance in the prediction of the motion of
this centre of mass model [296] FUKUSHIMA described the suspension layer
of a powder snow avalanche with his quasi two dimensional block model in
1990 [104]

In 1995, KouicHr NisHIMURA and YASUAKI NOHGUCHI started ping pong
ball avalanche experiments at the Miyanomori ski jump in Sapporo to study
three dimensional granular flows Up to 550,000 balls were released near the
top of the landing slope [213, 297] Ping pong balls are particularly suitable,
since they reach the terminal velocity in only a few metres, so fully developed
flows occur even on relatively short slopes The aim of these experiments
was to elucidate the dynamics of two phase granular flows rather than to
directly extrapolate the results to dense snow avalanches The experiments
provided detailed data and insights on the physically significant dynamical
processes controlling avalanches This work was carried out with the help of
STEFAN KELLER from ETH, Ziirich and JAMES MCELWAINE from Cambridge
University [275]

Avalanche Research in Iceland?' Snow avalanches and landslides have
caused many catastrophic accidents and severe economical damage in Iceland
since the country was settled in the ninth century Avalanche problems are
relevant to most populated areas of the country, although they are by far
most serious in the northwestern, northern and eastern coastal regions [34]
The pioneering work of OLAFUR JONSSON in 1957, which was updated in

2L Written by ToMAS JOHANNESSON from the Icelandic Meteorological Office

We appreciate this input very much
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1992 [208], lists avalanches reported in annals and other sources since the
twelfth century Avalanches and landslides have killed 194 people in Iceland
since 1901 and the direct economic damage due to avalanches and landslides
in the period between 1974 and 2000 has been estimated at about 40 million
USD [206]

Apart from the work of OLAFUR JONSSON, snow avalanches were not seri
ously considered as a natural hazard in Iceland until a catastrophic avalanche
occured in Neskaupstadur in eastern Iceland that killed 12 people in 1974
During the next several years following this accident, a few studies of the
avalanche hazard situation in Iceland were conducted, including a short re
port [348] from a visit by MARCEL R DE QUERVAIN in 1975, head of the SLF
in Davos at the time, and preliminary suggestions for protection measures for
Neskaupstadur written in 1976 by KARSTEIN LIED and STEINAR BAKKEH®I
at NGI in Oslo Somewhat later, ERIK HESTNES, also at NGI, made a short
report about the snow avalanche hazard situation in several villages in west
ern and northwestern Iceland, [153] Furthermore, civil defence authorities
in Neskaupstadur and at the national level conducted some studies of snow
avalanche hazard after the Neskaupstadur accident These studies did not
lead to significant action, neither in terms of improved safety measures nor
much scientific research on snow avalanches in Iceland This situation did not
change until 1995, when two catastrophic avalanches in the villages Stdavik
and Flateyri in northwestern Iceland killed 34 people and caused extensive
economic damage These two accidents totally changed the view of the public
and the political system regarding avalanche safety in Iceland

Following the accidents in 1995, the law regarding snow avalanche and land
slide hazard was changed and the Icelandic Meteorological Office was given
the responsibility of issuing avalanche warnings to settlements and ordering
evacuations together with local civil defence authorities The office was also
made responsible for hazard zoning for areas at risk, it advises the govern
ment regarding the build up of protection measures, and conducts scientific
research on avalanches (see [262]) Most avalanche research in Iceland since
1995 has been directly connected with the aftermath of the accidents at
Sudavik and Flateyri

Avalanche hazard zoning methods based on individual risk were developed
at the University of Iceland and at the Icelandic Meteorological Office [209],
utilising among other things dynamical and statistical studies of the run out
of avalanches [392] Studies of the run out of Icelandic avalanches included
a calibration of the Norwegian o 8 model [252] using a data set of avalanches
with the longest run out in the respective paths [203] New regulations about
hazard zoning of settlements based on individual risk were formalised by
The Ministry for the Environment [419] Since then, hazard maps have been
made for 14 villages [14] The regulations specify acceptable risk in terms of
individual annual probability of being killed in an avalanche accident
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In the year following the accidents in 1995, an overview study was made of the
avalanche situation and the need for avalanche protection measures in Ice
land [202] Based on this study, the Icelandic government drew up a ten year
plan to construct avalanche protection measures for hazard areas and/or to
purchase endangered property in order to reduce the death toll and the eco
nomic damage caused by avalanches Laboratory experiments with avalanches
of granular materials in scale models were carried out in order to study the
dynamics of snow avalanches that hit obstacles, such as breaking mounds,
catching dams and deflecting dams [139, 140] These experiments led to the
realisation that discontinuities or shocks in the flow depth and velocity are
an important, but often ignored, aspect of the interaction of snow avalanches
with obstacles such as protection dams An evaluation of the effectiveness of
such protection measures cannot be obtained except by properly considering
this aspect of the dynamics

Avalanches that hit the dams constructed in Iceland since 1995 are closely
monitored in order to obtain much needed field data about the effectiveness
of these structures Since 1999 a total of 11 avalanches have hit six deflect

ing dams and deflecting wedges in northwestern and northern Iceland The
avalanches have in all cases been successfully diverted away from the settle

ments It should, however, be noted that none of these avalanches have come
close to the dams in terms of size, so a full scale test of the effectiveness of
the dams has yet to be made In some of these cases, observations indicate
that the impact with the dam channelled a part of the width of the avalanche
into a stream along the dam where the thickness of the flow seems to have
increased with respect to the undisturbed flow farther away from the dam
side (see [205, 207]), in a similar way as seen in the above mentioned labora

tory experiments In many or most cases, detailed observations of avalanches
that hit dams are difficult because the avalanches fall during snow storms
and much of the evidence about run up on the dam sides and even the out

lines of the avalanches are partly obscured by snowfall after the avalanche
and by snow drift A CW DOPPLER was recently installed on the deflecting
dam at Flateyri by the Icelandic Meteorological Office in collaboration with
avalanche research institutes in other European countries in order to study
the flow of the avalanches hitting the dam more closely, [394]

In summary, a large effort has been made in Iceland during the last ten years
to build up avalanche research, establish an avalanche warning service, to
construct protection measures and implement other safety requirements such
as relocating settlements at risk Much work remains to be done, however,
before a satisfactory safety situation can be achieved, as was evidenced by
two relatively serious avalanche cycles in northwestern and northern Iceland
in 2004 and 2005, which led to the loss of one life and caused significant
property damage
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The Soviet /Russian Contribution to Avalanche Research?? First seri
ous studies of snow avalanches in Russian territory started in the 19th century
and were initiated for, and related to, the transportation on road and by rail
through the Caucasus Ridge Avalanche danger and meteorological conditions
along the “Military Georgian Road” were estimated and were first published
in “The Caucasian Calendar” in 1852 The avalanche map along this road
the first of its kind in Russia was prepared by B N STATKOVSKII, who
also participated in building the first Russian snow protection constructions
The investigations were finalised at the beginning of the 20th century by the
appearance of the railroad around the Caucasus Ridge along the Black Sea
coast

This provisional end was actually only an intermission; indeed, avalanche re
search was relaunched and rehabilitated in the thirties of the 20th century
due to the revitalisation of the idea of the construction of a railroad through
the Caucasus Ridge G G SAATCHAN [360], A G GoOFF and G F OTTEN
[117] applied equipment and experimental methods from soil mechanics to
the study of the mechanical properties of snow For the first time, the pres
sure exerted by a moving snow avalanche on an obstacle was measured by
mechanical sensors They also developed methods of determination of some
mechanical properties of snow The results of the studies led to schemes of
estimations of avalanche velocities and avalanche pressures on obstacles, pub
lished in the first Soviet Handbook on Snow and Avalanche Research [117]
Almost simultaneously, another centre of snow and avalanche research was
founded in the Khibiny mountains (Kirovsk) by the Apatite mining indus
try (The Apatite mining company’s snow avalanche department has been
active in avalanche research until today ) Here, I K ZELENOI organised the
Snow Meteorological Service and the first Snow Avalanche Station in the
Soviet Union The scientific research efforts resulted in the construction of
a forecast method of the time of avalanche danger, the first of its kind in
the history of snow and avalanche research With their experiments A G
GorF and G F OTTEN [11] obtained records of the temporal evolution of
the pressure on an obstacle that was subjected to an avalanche Some of the
protective constructions that they designed were unique worldwide Artificial
snow avalanches, released by detonations from artillery shells, were also used;
they led to a detailed account of the basis of avalanche release phenomena
published in [10, 11]

The growing industrial development in mountainous regions after World
War II increased avalanche research activities in various regions of the So
viet Union Results on investigations of snow avalanche research by G K
TUSHINSKII at the mountain passes of the Caucasus, published in 1949 [427],

22 This text was written by SERGEY SOKRATOV from the Geography Department

of the Moscow State University The authors would like to thank him very
much for this contribution
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belong to these, as do the numerous investigations on thermodynamic and
mechanical properties of snow and avalanche dynamics in the Elbrus region
by SULAKVELIDSE [408]

In the late fifties of the 20th century, the institutions dealing with the observa

tion and physical description of snow avalanches in the territory of the Soviet
Union were subordinated to the State Committee of Hydrometeorology and
Environmental Control The Meteorological Centre of Snow Avalanche Ob

servations and Forecast was concentrated in the Central Asian V A Bugaev

Hydro Meteorological Research Institute (SANIGMI) in Tashkent; it subse

quently collected information on avalanche events from all snow avalanche
stations in the Soviet Union SANIGMI was responsible for the development
of a theoretical basis and of applied methods of snow avalanche forecast [210]

The Laboratory of Snow Avalanches and Mudflows (LSAM) at the Faculty of
Geography, Moscow State University, became the centre of developing meth

ods of grading and mapping avalanche danger, and studying mechanical and
thermodynamical properties of snow and their spatial and temporal variabil

ity K F Vortkovskil, E S TROSHKINA and V N GOLUBEV are today’s
representatives of this research

The sixties to eighties of the 20th century were characterised in the Soviet
Union by a focus of snow and avalanche research on experimental studies
and mathematical modelling of snow stability on slopes, dynamics of dense,
powdery and slush avalanches and their interaction with the underlying slopes
and obstacles Principal investigators are S S GRIGORIYAN, M E EcGLIT,
A N Bozuinskir and K S LosEv, [44, 84, 85, 86, 87, 88, 89, 130, 131, 132,
133]

The peak of snow avalanche research in the Soviet Union had been reached at
the end of the eighties in the 20th century From 1984 until 1991, twenty vol
umes on snow avalanches of the USSR, were published About 40 institutions
of the State Hydro Meteorological Service maintained snow avalanche depart
ments in various regions of the country Such intensive concentration resulted
in several monographs entirely related to avalanche research [12, 44, 384, 434]

Since the foundation of the Russian Federation, recent activities on snow
avalanche research are primarily concentrated at the Moscow State University
and in the Snow Avalanche Department of the Apatite mining company
Nevertheless, some of the institutions that were actively involved in avalanche
studies during the Soviet times are still active now as institutions of their own
countries These include SANIGMI in Uzbekistan, the Institute of Geography
of the Kazakh Academy of Sciences, and others
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The History of Avalanche Research in the USA?3 The history of
avalanche research in the United States is the story of the Frontier West
and the practical need for defense against avalanches Hence it is also the
story of a community of dedicated, practical avalanche professionals working
closely and cooperatively with a cadre of avalanche scientists and research
engineers

Avalanches and the need to reduce their hazards to life and property began in
the west of the US with the mining boom of the 1800s As a consequence, by
the late 1800s, miners in the San Juan mountains of Colorado were already
protecting their surface facilities with avalanche barriers and splitters

Year round mountain communities and attendant transportation needs flour
ished in the post World War II era, as isolated mining and ranching commu
nities began to grow, and winter recreation, especially ski resort development,
began in earnest During this time, systematic avalanche research began to
address the growing need for understanding avalanches and reducing their
hazards

Avalanche research activities took root during this time at Alta, Utah, where
MONTY ATWATER was hired as a snow ranger by the US Forest Service As
a 10th Mountain Division veteran of the European war, he quickly put his
skills and experience to work on the avalanche problems at Alta, institut
ing a rigorous avalanche forecasting program, and utilising explosives and
artillery for avalanche mitigation work [16] With Alta as the model, other
Forest Service snow rangers began to address their own local problems in
a systematic way in places like Berthoud Pass, Colorado, and the passes of
Washington’s Cascade range

In 1949, the Forest Service brought Swiss avalanche expert ANDRE ROCH to
the US to tour the most avalanche prone areas and to provide advice and
expertise In addition, the Forest Service started the Alta Avalanche School,
which grew into what is today: the National Avalanche School These early
schools became a focal point for the exchange of information between practi
tioners and scientists of the time In the 1950s, ED LACHAPELLE [233] joined
ATWATER in Alta, and with the later addition of RON PERLA, a formidable
research team assembled in Alta to investigate a wide range of avalanche
problems

23 This history on avalanche research in the United States was written jointly

by RAND DECKER, Department of Civil and Environmental Engineering,
College of Engineering and Natural Sciences, Northern Arizona University,
and Avalanche Scientist KARL BIRKELAND, USDA Forest Service National
Avalanche Center, Bozeman, Montana The authors gratefully acknowledge
their contribution
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At this same time, avalanche research was also taking hold in other loca
tions around the country The US Army’s Snow, Ice and Permafrost Research
Establishment (SIPRE), which was to become the US Army Cold Regions
Research and Engineering Lab (CRREL) in Hanover, New Hampshire had
a mission to provide support for the US military and civilian needs They
imported European avalanche researchers and engineers, mainly from the
Swiss Federal Institute for Snow and Avalanche Research, and translated
their knowledge and experience into monograms for both military and public
consumption (see [19, 278])

Avalanche research also took hold at Montana State University (MSU) in
Bozeman The research of CHARLES BRADLEY and JOHN MONTAGNE, both
10th Mountain Division veterans like ATWATER, grew out of practical needs;
BRADLEY had some close calls with avalanches, and MONTAGNE was the ski
patrol leader for Bridger Bowl, which was expanding up the mountain and
into significant avalanche terrain BRADLEY’s work focused on depth hoar
and snowpack structure He developed the resistograph to investigate these
problems, an instrument that has seen many improvements and continues to
be refined today MONTAGNE’s work focused on studying and mitigating the
dangerous cornices overhanging Bridger Bowl [243] In time, they enlisted
the help of the MSU Civil Engineering Department in their work, launching
the notable contributions of TED LANG and BOB BROWN, and later their
students ED ApAMS, RAND DECKER and JIMMY DENT, among others LANG
and BROWN’s pioneering work on snow microstructure and metamorphism
has been integrated into the latest snowpack evolution models

By the late 1960s, realignment in the Forest Service resulted in the transfer of
the duties of the Alta Avalanche Study Center to the Forest Service’s Rocky
Mountain Research Station in Fort Collins, Colorado PERLA left for work
in Canada, while LACHAPELLE began a successful academic career at the
University of Washington, where he mentored students like DAvE McCLUNG,
SaMm COLBECK, SUE FERGUSON and MARK MOORE A new Forest Service
research team emerged in Colorado, led by PETE MARTINELLI It included
ART JUDSON, D1cK SOMMERFELD and R A SCHMIDT [314] They expanded
the facilities at Berthoud Pass, and began investigating a variety of avalanche
and snow problems They also saw the need to address the growing demand
for public awareness, and avalanche information and forecasts; and in the
early 1970s they founded the Colorado Avalanche Warning Center under the
direction of KNOX WILLIAMS

Also in the early 1970s, the San Juan research project was launched on Red
Mountain Pass in Colorado in a cooperative effort between JACK IVES at the
University of Colorado and LACHAPELLE at the University of Washington
Led by RICHARD ARMSTRONG, the project aimed at improving understand
ing and forecasting of avalanches along this hazardous mountain highway
The research team investigated snow metamorphism, the role of snow struc
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ture in avalanche release, and statistical techniques of avalanche forecasting,
amongst other important and practical issues

In the 1980s, the Forest Service began to scale back its support for avalanche
research, cutting the program at the Rocky Mountain Research Station in
Colorado In addition, they had already begun transferring much of the snow
ranger program and responsibility for avalanche mitigation to individual ski
areas and departments of transportation At the same time, an increasing
demand for avalanche information for a growing back country recreational
population led to increasing numbers of regional avalanche centers, providing
awareness, education and real time avalanche forecasts to the public These
centres were mostly staffed by the Forest Service, with the exception of the
Colorado Center, which became an activity supported by Colorado’s state
government

Today’s Forest Service National Avalanche Center, led by DouG ABROMEIT
and KARL BIRKELAND, supports a number of separate regional avalanche
forecast centres across the country and in Alaska, with coordination and
modest amounts of research, funded by competitive grants from the National
Science Foundation (NSF) The research work is primarily in the practical
field of snowpack spatial variability The National Avalanche Center also con
tinues to coordinate the on going use of surplus military weapons by ski areas
and highway departments in their efforts to control avalanches

Today, avalanche research in the US has become more decentralised, with
research taking place at a number of different institutions and universities,
including those in Arizona, California, Colorado, Montana, New Hampshire,
Oregon, Utah, Washington and Wyoming Despite this dispersed nature of
avalanche research in the US, practitioners and scientists still gather with
their colleagues from Canada and around the world at the biennial meetings
of the International Snow Science Workshops (ISSW) The ISSW’s are valu

able gatherings that provide for information exchange and catalyse avalanche
research activities in North America As in the past, ISSW is founded on and
serves to connect today’s avalanche researchers with the on going, practical
needs of the avalanche hazard reduction community working in the field



2 Granular Avalanches: Definition, Related
Concepts and a Review of Classical Models

2.1 The Complexity of Granular Materials

A granular material is a collection of a large number of discrete solid par
ticles with interstices filled with a fluid or gas Granular materials show a
distinctive behaviour that manifests itself either as that of solids or liquids or
gases For instance, powders pack like solids and flow like liquids All these
effects originate in the ability of granular materials to form a hybrid state
between fluid and solid In fields such as process engineering and produc
tion technology, feeding and discharging particulate materials into and from
storage systems of any kind (e g, silos and hoppers) are typical operations
of bulk solids handling that give rise to granular flows Snow, rock or pow
der avalanches, debris or pyroclastic flows, or the formation of dunes are
typical examples of granular flows in the geophysical context Many interest
ing properties of granular materials can be observed through granular flows
Among these are species segregation, avalanches, dilatancy, reverse grading,
formation of shear bands, the Brazil nut effect and fluidisation, all important
phenomena arising in cohesionless particle systems of geophysical or indus
trial applications Such a rich and diverse appearance of granular materials
is the result of its complex disparate response to dynamic external agitation
Processes can be continuous or intermittent, even if external driving mecha
nisms are continuous Such a complex and apparently unpredictable reaction
contributes considerably to the fact that granular systems may oscillate in
their response between chaos and order

In this chapter we collect a number of observations on moving granular mate
rials and offer an interpretation The description is somewhat distant at first
from a direct application to snow avalanches and landslides, but it demon
strates the common behaviour of a wealth of phenomena, and thus lays the
basic physical foundation at an early stage of the development The subject
is treated in physics, geophysics, powder technology and other literature, and
is presently being very extensively researched, with a great number of books
and conference proceedings being published Restricted overviews can, for
instance, be obtained from CAMPBELL [57], HUTTER and RAJAGOPAL [17§],
HERRMANN and LUDING [152], Ri1sTow [356] and many others Proceedings
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of Powder and Grains and Traffic and Granular Flow conferences may equally
provide extensive complementary information, see [107, 148, 220]

2.2 Applications of Granular Flows

There are numerous applications of flows of granular materials both in na
ture, technology and engineering applications Here, we will explain some
of these applications that are often encountered in process engineering and
geophysical flow systems of particulate materials

2.2.1 Chemical Process Engineering

Particles are important products of chemical process industries, agricultural
products, pharmaceuticals, paints, dyestuffs and pigments, cement, ceramics,
and electronic materials Solids handling and processing technologies are thus
essential to the operation and competitiveness of these industries In chemical
engineering, mention might be made of fluidised beds, spouted beds and man
ufacturing of pharmaceuticals All these arise in one form or another when
bulk matter has to be moved Methods of xerography (called electrophotog
raphy, a method of dry photocopying in which the image is transferred by
using the attractive forces of electric charges; ionised plastic particles, called
toner that sticks to the charged areas is introduced, the powder is then fused
to the paper with heat), powder material forming (the development of new
materials by means of powder consolidation), powder metallurgy processes
(material forming processes based on powders that are used in various indus
tries such as automobile industries to produce motors, gears and brake pads;
in abrasives for polishing and grinding wheels; in manufacturing for cutting
and drilling, etc ) and ultra structural processing of ceramics and novel coat
ing techniques (advanced coating technology for granular and other materials)
are just a few examples requiring knowledge of granular flows

Fluidised Bed A fluidised bed is a bed of solid particles with a stream of air
or gas passing upward through the particles at a rate great enough to set them
in motion, see, e g, [64, 441] Thus the primary factor influencing a fluidised
bed process is airflow Significant amounts of solid materials are processed
using fluid bed technology Fluidisation technology is employed not only in
chemical production, it is also applied in coal gasification and combustion for
power generation, mineral processing, food processing, soil washing and other
related waste treatment, environmental remediation, and resource recovery
processes

Spouted Bed A spouted bed is a combination of a jet like, upward moving,
dilute, fluidised phase, which is surrounded by a slow, downward moving bed
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through which gas percolates upward, see, e g, [65] The spouted bed princi
ple is successfully implemented for coating of granular materials Whether or
not a particle bed can be made to spout depends on the gas flow, bed depth,
inlet nozzle diameter and particle diameter In this process, the particles or
tablets to be coated are fluidised, as explained earlier, in an upward moving
air stream A high velocity air stream is introduced into the fluidised bed,
causing a spout A draft tube partition is placed around the spout to prevent
the particles in the spout from colliding with the particles descending in the
fluidised bed A cyclical flow of particles is thus created

2.2.2 Geophysical Flows

In natural sciences, one can find examples of granular flows in geophysical
applications such as landscape formation by landslides, rock, ice and snow
avalanches, debris and pyroclastic flows Although these examples might seem
to be of a very disparate nature, they in fact have many similarities This is
why during the past few decades research into the fundamental mechanisms
of granular and geophysical flows have increased both in space and scope
Despite their everyday familiarity, granular systems have become paradig
matic systems of complexity Because of their practical importance, granular
flows and avalanches have been studied by many researchers from different
disciplines who have presented their own models Collective reviews can be
found, e g, in VOIGHT [433], HOPFINGER [155], HUTTER [180], SIMPSON
[395], ERISMANN and ABELE [94] and others

2.3 Distinctive Properties of Granular Materials

Granular materials have attracted scientists in engineering, mathematics, ge
ology and physics Because they are of immense practical significance in tech
nological and industrial applications, they are extremely complex in their
physical behaviour and thus demanding in the theoretical description of the
mathematical models Granular materials exhibit a number of distinctive fea
tures that are not sheared by other “ordinary” solids, fluids or gases In fact,
they behave somewhat like solids or fluids or gases depending on the exter
nally applied forces and actions There is an abundance of literature available
where mathematical models are developed in which the granular material be
haves as a solid, fluid or gas, respectively, but it is equally evident that the
mathematical description of processes encompassing solid, fluid and gaseous
dynamical behaviour, including the transition regimes, must be very diffi
cult In what follows, we shall present a short account of the most significant
distinctive features of granular materials
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This richness of behaviour has been experienced by us as children, when
playing in the sand box The quality of the solid behaviour depends on the
humidity of the sand With dry sand, we were never able to build a sta
ble tunnel or castle To this end, the sand needed to be slightly humid; this
moisture content makes it sufficiently cohesive for vertical walls or holes to be
built Alternatively, we all know too well that rain will destroy all the beau
tiful buildings, fortresses, streets and tunnels made of sand The sand water
mixture flows away and ends up in a ugly muddy pulp By adding water, the
sand becomes liquefied and under these conditions it reacts much more like
a fluid than a solid Moreover, when one shakes flour or sand in a sieve to
separate fine from coarse grains, the layer of powder or sand experiences “flu
idisation” at its bottom through the impact of the particles with themselves
and with the sieve Here the particles behave much like molecules in a gas
and, indeed, the behaviour is gaseous, at least as long as energy is provided
to the system

2.3.1 Single-phase and Multi-phase Flows

Granular media under natural conditions on Earth are always mixtures of
a loose solid phase, a liquid and/or a gas If the interstitial fluid plays an
insignificant role in the transportation of momentum, flows of such materials
can be considered as dispersed single phase flows Rockfalls, landslides and
flow avalanches of snow, but also pipe flows of grains and pills in the food
and pharmaceutical industries are examples of this On the other hand, when
the mass of the interstitial fluid is comparable to that of the solids, the in
teraction between the fluid and solid phases is significant The motion of the
fluid can then provide the driving force for the flow of the solid phase Such
flows are frequently initiated on soil slopes during or after heavy rainfall and
yield catastrophic avalanches, landslides or mudflows, leaving behind a dev
astating destruction of the slope However, in many realistic situations, the
interstitial fluid does not play a significant role, and thus we may ignore its
effects in modelling such phenomena as flow avalanches of dry snow or rock
falls on a mountainside The dynamics of dense flow avalanches and debris
flows is in many situations sufficiently accurately described by a single phase
continuum Water saturated debris flows and mud flows must be described
by a two phase model of solids and water, and the dilute, particle laden mo
tion of a powder snow avalanche or a subaquatic turbidity current is equally
describable by a two phase model of turbulent flow of air and water with
suspended solid particles

The theory of single constituent dense gravity flow is the main subject of
this book The problem of two phase flows has, however, also been attacked
by constructing theories from “easy to more complex” situations Early at
tempts to describe the flow of powder snow avalanches, turbidity currents,
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sand storms, etc , were based on density current concepts, see, e g, EGLIT
and VEL'TISHECHEV [89], HUTTER [180], SIMPSON [395] in which mass bal
ance is treated for the individual constituents, whilst momentum balance
is that of the mixture as a whole The two phase descriptions, treating the
solid and air/fluid phases alike, formulate mass and momentum balances
for both constituents and possibly also incorporate turbulent closure condi
tions In the powder snow literature, these activities were initiated by SCHEI
WILLER and HUTTER [380], TESCHE [418], HERRMANN and HUTTER [151],
in the dense avalanche, debris flow and mud flow research by IVERSON et
al [74, 75, 192, 194], PiTMAN and others [320, 321, 322, 323|, SHERIDAN et
al [385, 386, 387] and MANGENEY et al [264, 265], LAJEUNESSE et al [237],
MABsSOUT and PASTOR [259], PASTOR et al [310, 311, 312], QUECEDO et al
[345, 346, 347] and others Of relatively recent attention is the fact that such
gravity driven shear flows often comprise a combination of a lower layer dense
granular flow overlain by a turbulent two phase flow of a dusty cloud This
combination, treating the dense layer essentially by the SAVAGE HUTTER
model and the turbulent powder part as a density or two phase current is
fairly recent and due to ZWINGER [449] and ZWINGER et al [450] Often var
ied turbulent closure models are suggested and analyses restricted to steady
state behaviour and subtle entrainment mechanisms (ELLISON and TURNER
[92], FUKUSHIMA et al [103], PARKER et al [309] and CHU et al [62]) An
up to date summary is given by ISSLER [188, 189, 190]

2.3.2 Dilatancy

Deformations in a granular body are always accompanied by corresponding
volume changes Experimental evidence shows that there exists a mechani
cal and geometrical relationship between the applied stress and the voidage
filled with a fluid or a gas in any neighbourhood of a granular material in
motion or at rest One of the most interesting and basic observations of such
a relationship was first presented by REYNOLDS in 1885 [354] He called this
phenomenon dilatancy If an array of identical spherical grains at closest
packing is subject to a load so as to cause a shear deformation, then from
pure geometrical considerations those particles must ride one over another
and it follows that an increase in volume of the bulk material will occur (see
Fig 2 1) Dilatancy in this case is a consequence of kinematic restrictions
The presence of internal pressure forces is responsible for the tendency of
granular material to ezpand under shearing deformations This is the reason
why granular materials are often called dilatant materials

REYNOLDS used this concept of dilatancy to explain the phenomenon ob
served when walking along a seashore near the water edge, namely that upon
stepping on saturated sand The sand around the foot appears to be whiter,
indicating that it has dried momentarily, as shown in Fig 2 2a Then upon
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initial state shear dilation

Fig. 2.1. Shearing of a close packing of spheres introduces a volume expansion
(dilatation)

a b

Fig. 2.2. Dilatancy effect in the sand mixed with water a) Walking on a seashore
near the water edge, upon stepping on the sand, the sand around the foot becomes
whiter, indicating the fact that it has dried momentarily b) Upon removing the
foot one observes that a puddle of water has formed in the imprint in the sand

removing the foot, one observes that a puddle of water has formed in the im
print in the sand (see Fig 2 2b) The reasoning of REYNOLDS was that the
sand on the seashore is in a densely packed state due to the washing of the
water, and that upon subsequent deformation, because of the external stress
supplied by the foot, the sand around the foot must experience an overall in
crease in volume This increase in volume allows the surface water around the
foot to drain downward, leaving the surface granules dry Conversely, when
the foot is lifted from the sand, the reduction of stress by releasing the surface
traction causes the void volume to decrease This ultimately results in the
expulsion of water from the voids and hence the puddle in the footprint This
is why REYNOLDS concluded that it is the concept of dilatancy that char
acterises granular materials and it may be regarded as distinguishing these
materials from the other two large classes of materials generally known as
solids and fluids

This dilatancy property implies that granular materials exhibit what rheolo
gists and continuum mechanicians call the “normal stress effect” This means
that the (nearly) simple shearing deformation as sketched in Fig 2 1 must
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induce a normal stress perpendicular to the direction of shearing When pos
tulating explicit forms of the constitutive relations for the stress tensor, only
those candidates have a chance to model the dilatancy phenomenon correctly
that generate normal stresses under simple shear A NEwTONian (NAVIER
STOKES) fluid, or its nonlinear extension of a power law fluid have no chance
to model this correctly, because these stress strain rate relations do not pro
duce these normal stresses

2.3.3 Cohesion

It is today’s understanding that in granular deposits the contact forces be
tween particles can be normal and tangential If the normal forces are re
stricted to pressures, the granular material is said to be cohesionless If also
some tension can be applied, then the contact is cohesive Such tensile forces
can be induced in many ways, e g, by electrostatic forces or humidity, or
both

Loose sand under static loadings may behave as a solid material; for a given
sand it can form heaps with slopes of fixed angle However, when excavations
are made, soil walls of one or more metres depth may stay without a sheet
piling wall, at least for some time The slope stability under an effective angle
of repose (considerably) larger than the critical angle of repose at which the
dry sand becomes unstable is possible, because the soil is humid At low
water content below saturation the water within the soil accumulates along
the surfaces of the particles but is not sufficient to form a water saturated
soil So, the pore space is mostly filled with air and the liquid film between
the particles forms menisci The surface tension then leads to adhesion, so
that the resulting contact forces between the particles may also be tensile (see
Fig 23) A similar phenomenon is also active in snow close to the melting
point, even though there the bonding forces are also of electrostatic nature

Cohesion is a physical mechanism that is likely to be more significant for
snow, soil and rock masses at rest than in motion as granular flows Indeed,
cohesion may have the effect that a snow cover, soil slope or rock mass may
delay its break off or not start to move catastrophically simply because co
hesion is effective In such circumstances, cohesion may be active within the
endangered mass at its basal surface, as well as at its lateral and proximal sur
faces A simple and obvious question related to cohesion could be as follows:
Does the strength of the material suffice to resist the load exerted by the mass
as a consequence of gravity and possibly other forces? The answer requires
parameterisation of cohesion inside the mass of material breaking off, as well
as along the bounding surfaces To quantify the cohesion (i e, the strength
of the material) is by no means an easy task, at least for the prediction of
initiation of debris and rockslides, because for an adequate response of such
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Fig. 2.3. In slightly humid soil the water accumulates in liquid films with menisci
The surface tension is then responsible for cohesion

materials one should take into account several parameters such as weather
ing, intact strength and parameters concerning joints: spacing, orientation,
width, continuity of the material constituents, infill, outflow of the intersti
tial gas or fluid (like water), and so on, see [383] Because of this complexity,
cohesion is mostly ignored in avalanche dynamics

2.3.4 Lubrication

There are several distinct mechanisms to reduce friction in granular materials
in motion One of them is lubrication, a technical term, which is related to
the reduction of frictional resistance by introducing a further medium, “the
lubricant”, between the surfaces of two bodies displaced with respect to each
other This definition of lubrication implies the very mechanism of economis
ing the frictional energy Lubrication, for example, in technical bearings may
refer to a liquid of low or high viscosity (e g, water or oil), a gas (e g, air),
a near to liquid or otherwise particular solid (grease, graphite), and it may
be kept in place either by its own coherence (oil, grease) or by means of other
agents such as hydraulic pressure

Water or air, snow or ice, mud or clay, dust or powder, fire or heat, and many
other material entities, can act as hypothetical and theoretical lubricating
agents in connection with rockslides, debris flows and snow avalanches in
motion In the literature, hypothetical lubricating materials are divided into
four principal groups according to their mechanisms: water, air, fire, earth,
correspondingly for liquid, gas, heat and solid These are also called the four
classic elements of lubricants [94]

Whenever granular materials move under gravity, lubrication is particularly
important because of possible long run out to low slope angles However,
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from a technical point of view, there are conflicting requirements concerning
viscosity in problems of optimising frictional resistance Viscosity is required
to be low to minimise the resistance in the relative displacement between
the involved materials (bodies), whilst it should be high to reduce its rate
of escape from the gap between the bodies to locations of lower hydraulic
pressure

In flow avalanches of snow, lubrication in the form of a liquid water film
between the surface of the sliding snow and the ground can occur It proba
bly often occurs, since the frictional energy may produce so much heat that
some snow particles melt and produce their own lubricating liquid The phe
nomenon is hardly discussed in the literature

In very large rock avalanches, the frictional heat at the sliding surface can
be demonstrated to cause a local temperature rise of more that 1000 K, so
that the rock gravels melt, and the molten rock liquid lubricates the sliding
surface ERISMANN and ABELE [94] detail this analysis and for the historic
avalanche event at Kofels (Austria) show that rock material must have melted
and subsequently solidified Such “volcanic rock” was indeed found in the area
These rock pieces have received their own name by geologists: “ frictionites”
Such melting processes are a certainty where lahars from volcanic eruptions
with hot ash form a debris flow over a glacier surface and bring the glacier
ice to melt This is likely to have occurred in the Sherman landslide in Alaska
in 1964 [389] and also the devastating debris flow in the 20 September 2002
glacial catastrophe in the Karmadon gorge in North Ossetia (North Caucasus
of Russia) where more that 100 people were burried, see POPOVNIN et al
[326]

2.3.5 Fluidisation

Fluidisation refers to those gas solid and liquid solid systems in which the
solid phase behaves more or less like a fluid by the upwelling current of gas or
liquid stream moving through the bed of solid particles Fluidisation starts at
a point when the bed pressure drop exactly balances the net downward forces
(gravity minus buoyancy forces) on the bed packing When fluidising sand
with water, the particles move further apart and their motion becomes more
vigorous as the velocity is increased, but the bed density at a given velocity
is the same in all sections of the bed This is called particulate fluidisation
and is characterised by a large but uniform expansion of the bed at high
velocities

Water need not be added to a granular material, such as sand or soil, to
make it behave like a fluild The sand may become fluidised simply if it is
set in motion, e g, by vibrations from outside or by external forces that
make individual grains on a granular surface move An individual rock falling
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down a soil slope may by its impact with other boulders generate the release
of a large soil mass The multitude of collisions of the solid particles will
then induce an internal pressure that may generate an increase of the mean
free distance between the particles and thence reduce the frictional resistance
between them This is one of the reasons why granular avalanches (of snow or
debris or rock) move much larger distances than one would expect according
to their natural angle of repose, the maximum critical angle that the heap
of a granular material can make with the horizontal plane On the basis
that the loss of potential energy from the recorded initiation to the run
out zones is balanced by the work done by basal sliding, it can be shown
that the basal friction angle between the particles and the sliding surface
must be smaller than the given internal angle of friction ¢ Therefore, such
sturzstroms often spread out into very thin layers and flow on surfaces that
are much less inclined than the angle of repose of the granular material under
consideration

For over 120 years, since HEIM [146, 147] observed and described the Elm
rockfall in Switzerland, attempts have been made to explain the apparent
fluid like behaviour and high mobility of these slides There are many diverse
conjectures and controversial explanations for the reduced sliding resistance
such as upward current of air, hovercraft action at the base, melting of rock,
fluidisation aided by the presence of the fine dust, acoustic fluidisation, etc ,
see [375] Nevertheless, the most acceptable explanation is that in a very
thin layer immediately above the sliding surface strong shearing gives rise
to enhanced collisions of the particles, leading to an increase of the mean
particle distance This reduces the effective friction angle One way to handle
this situation is to ignore the thickness of the boundary layer and to introduce
a MoHR CoOULOMB type friction law with a bed friction angle §, which is
smaller than the internal friction angle ¢; this will be explained in more detail
in Chaps 3 and 4 This fact is also a reason why the nose of a landslide or
avalanche moves surprisingly long distances It indicates that the fluidisation
of the granular material takes place at the boundary layer (see Fig 2 20, Sect
2.7.1) Such fluidisation or liquefaction phenomena also act when the soil or
gravel in a mountain slope suddenly becomes unstable, for any reason, e g
seismic wave or a sudden change in temperature, and catastrophically moves
downhill (see Fig 1 5b, Sect 1.3.2)

Vibrations are used in industries to fluidise a granular mass that must move
through pipes Grains in the food industries and pills in the pharmaceutical
industries are often transported by reducing the internal friction with induced
vibrations If air is blown through the granular material, the mean free path
between the individual particles may become so large and the number of
particle collisions so frequent that the medium in this situation now behaves
as a gas
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At a glance, lubrication and fluidisation seem to be similar, but actually they
need not be ERISMANN and ABELE [94] differentiate between them as follows:
“The fundamental difference between lubrication and fluidisation lies in the
location of the mechanism achieving a reduction of frictional resistance In
case of lubrication this mechanism, irrespective of its physical nature, is con
sidered as concentrated in the immediate vicinity of the boundary between
moving mass and ground; in fluidisation, on the other hand, the mechanism
is active at least in a considerable portion, normally even in the entire thick
ness of the mass In this context, roughly speaking, lubrication might be
considered as a quasi bidimensional phenomenon, while fluidisation is fun
damentally three dimensional Therefore, in motion, a fluidised mass, like a
liquid, normally generates relative displacements within its entire volume
Lubricated motion, on the other hand, entails moderate relative displace
ments between the particles of disintegrated mass, thus keeping it “in shape”
and preserving to a large extent the sequential order of constituent parts” !
Whilst this differentiation seems to be meaningful it does not correspond to
today’s common practice, which often uses the two terms synonymously

2.3.6 Unlubricated Sliding

As mentioned above, there are numerous practical difficulties related to lu
brication and fluidisation of a material in motion, particularly in geophysical
flows such as snow avalanches, debris flows and rockslides Therefore, in many
engineering practices, unlubricated (or non fluidised) friction between coher
ent sliding bodies is normally treated according to the classical CouLOMB
law In this rule, it is postulated that the resistance opposed to a sliding mo
tion of a granular body be proportional to the compressive force acting at right
angles to the contact basal surface The factor of proportionality is called the
coefficient of friction and is assumed to be a constant throughout the entire
motion This means that it depends only on the characteristics of the contact
surfaces (e g, material), but it is independent of load, relative velocity and
time It is therefore important to notice that as long as no further mech
anisms have to be considered, COULOMB’s rule gives a reliable basis for a
quantitative treatment of unlubricated sliding

When using the simple CouLOMB rule, the basic differential equation of dis
placements yields the velocities in a first and the distance in a second inte
gration So, for the motion of a mass point (see Fig 2 4) along an inclined
plane the equation of motion can be written in its simple form

a=g(sinC — pcosC), (21)

! ERISMANN and ABELE obviously use the term “fluidisation” to characterise

“gliding or shearing” and “lubrication” to denote “sliding”
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Fig. 2.4. Motion of a rigid body down an inclined plane The frictional force F
may only be of CouLOMB type, |F| = uN, or also contain a velocity dependent
contribution |F| = uN 4 Cu?

where a is the acceleration of the mass in its flow direction, g the gravitational
acceleration, ¢ the slope angle to the horizontal of the surface on which the
flow takes place, and p the coefficient of friction of the material with the
basal surface

The second term on the right hand side of (2 1) accounts for dry friction,
generally not dependent on the velocity Such a “viscous” drag, if it is present,
is likely to depend on the square of the velocity with a drag coefficient C' In
this case, COULOMB’s rule should be modified and (2 1) written as follows:

a=g(sin¢ — pcos¢) — Cu?. (22)

In practical applications, (2 2) has to be solved only for a finite (short) time
As the coefficient C' is (very) small, the third term on the right hand side
of (2 2), therefore, is smaller than the first two ERISMANN and ABELE ar
gue that in such a case the second term may be substituted by an increased
value of the coefficient of friction, u, approximately accounting for its pre
sumed average Expressed in terms of velocity and distance, the resulting
errors will very often be tolerable [94] Therefore, the practical suitability
of the COULOMB rule is backed up by more than the frequently negligible
contribution of velocity bound resistance during the flow

The above two simple formulas, however also point at a basic difference ex
hibited by CouLoMB and viscous type sliding laws If we let
_du d’z

= (23)

“Tat T A

where u is the velocity and x the distance travelled by the particle, integration
for an inclined plane yields for (2 1)
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u=g(sin¢ — pcos¢)t+ug,
(24)
T = g (sin¢ — pcos )t + ugt + x .
For positive g (sin ¢ — pcos() the velocity u and distance  grow indefinitely
It follows that an avalanching mass subject to COULOMB type resistance with

constant 1 on an inclined plane cannot reach a steady state Alternatively,
integration of (2 2) with (2 3) yields for g (sin¢ — prcos¢) >0

Y \/g(sinC—MCOSC)
- C

tanh{\/Cg (sin¢ — peos() (t—to)} ,
(25)

z lncos{\/g (sin¢ ;MCOSO (tto)} + .

As t — oo, these two formulas imply that

uﬂ\/g(sm(ucos()7 xHIOJr\/g(sm(ucos()t' 26)
c c

Thus for wvelocity dependent sliding an avalanching mass reaches a steady
asymptotic flow state given by (2 6) As t — oo, from (2 6); it follows that
v/a/C is the constant steady velocity Similarly, from (2 6)s, it follows that
the distance for the steady motion is given by z¢ + (1/a/C)t, where x¢ is the
initial position of the mass at time ¢ = 0 The question whether the viscous or
velocity dependent effect should be incorporated or not is still not completely
settled, and it may, perhaps, never need to be settled, because travel distances
in field events that allow identification of steady conditions are too short for
clear identification Laboratory experiments may provide better information
and, indeed, we shall discuss this in more detail later

The above result may occasionally have led to misinterpretations by stating
that CouLoMmB sliding alone may not lead to steady state solutions How
ever, one such solution exists on an inclined plane Indeed, according to (2 4)4,
u = ug is constant, and this requires that tan ( = p So, if a sliding mass has
an initial velocity ug, and it slides along a plane with inclination tan( = p,
it will continue this motion forever However, there exist also other solutions
that allow steady motion of a particle down a curved surface SAVAGE and
NownaucHr [373], NonaucHT et al [301] and HUTTER and NOHGUCHT [173]
have determined such solutions for the SAVAGE HUTTER equations An in
depth analysis will be given in Chap 5 As a precursor to that analysis we
mention that ANCEY and MEUNIER [7] in a back analysis of 173 avalanches in
the French Alps conclude that velocity dependent sliding cannot convincingly
be inferred and that CouLOMB sliding may be sufficiently detailed to ade
quately reproduce the motion of dense flow avalanches Moreover, in Chap 12
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results of the flow of sand down inclined planes are reported that indicate
that with steep slope angles above 35° steady velocities are not reached even
in very long flows, whilst such final velocities may be reached for slope angles
smaller than or equal to 35° This agrees qualitatively with laboratory results
of POULIQUEN [329] and POULIQUEN and FORTERRE [330]

2.3.7 Segregation, Inverse Grading and the Brazil Nut Effect

The dynamics of loose granular materials also shows behaviour that is re
sponsible for further complexity, but is simultaneously annoying for many
engineers in applications: the segregation of particles with different proper
ties, mostly size It is a common experience for everyone who wishes to mix
different types of granular particles that it is very difficult to achieve homoge
neous mixing of several sorts of grains, whereas it is, in general, fairly easy to
achieve homogeneous mixing with miscible fluids A system containing parti
cles of different properties usually tends to show segregation Particles with
the same properties collect together The nature of segregation depends on
many factors, such as the geometry and surface properties of the particles,
velocity gradients and the boundary conditions, etc The extent of segrega
tion mainly depends on the size ratio and relative number of large and small
particles in the mixture [152, 333] Shaking a new box of muesli before use
brings many of the large nuts to the surface, much to the benefit of the first
user and the disadvantage of the later ones Transport of a mixture of gran
ules of different size by fluidisation, conveyer belt or by any other means, will
demix the grains of different sizes, often against the intention of the process
engineer This segregation mechanism operates optimally in certain ranges of
the external driving mechanisms and may then lead to an ordering of some
sort, For example, in a binary mixture of particles of two sizes, the larger
and smaller particles may separate and occupy different regions, or they may
continuously demix, such that concentrations of the larger particles in the
small particles change smoothly Alternatively, such ordering may again be
completely destroyed, if the external driving mechanism is changed Even
though many particular aspects can be explained, this transition from order
to chaos and vice versa is still an enigma today

Many rather astonishing phenomena are known to occur when granular ma
terials such as sand and powders move When the mixture of grains of the
same material (equal density) but different size is shaken in a container, the
larger particles rise to the top This phenomenon, called the Brazil nut effect
[152], has much importance in numerous industrial and geological processes
When a granular material consisting of grains differing in size, shape, density,
etc is agitated or deformed in the presence of a gravitational field, segrega
tion or grading of particles can occur, and particles having the same or similar
properties tend to collect together in one part of the system In gravity driven
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shear flows with a free surface, it is observed that the fine particles collect at
the lower parts of the layer, whereas the largest particles move towards the
free surface In the geological literature, this phenomenon is called reverse or
inverse grading [178]

Such particle size separations are often observed in avalanches, debris flows
and pyroclastic flow deposits In dynamical systems of such flows, one gener
ally observes that the large particles move to the front and to the top surface,
whilst small particles accumulate at the bottom and in the rear part of the
avalanche In deposits of pyroclastic flows due to volcanic eruptions or in ma
rine sediments of turbidity currents the following phenomena are observed:
Deposition profiles show a repetitive occurrence of “flow units” with the dust
particles at the bottom and particle size increasing as one moves higher up
until a level is reached where a new flow unit commences, as shown in Fig
2 5a, a sketch of the eruption of Mount St Helens, 1980 Each flow unit
corresponds to the passage of an avalanche It is obviously characterised by
inverse grading

Similar structures of inverse grading can also be seen in debris or mud flow
deposits Figure 2 5b depicts the particle size segregation after the deposition
of a devastating debris flow that occurred in Taiwan in 1996 The lower
part of the deposition consists of the fine material, whilst the free surface is
covered by large boulders It is thus evident from Fig 2 5b that often a thin
“mantle” of large particles covers the top, whereas the main part of the body
is composed of smaller size particle components

At this point, we shall describe a table top experiment that demonstrates
segregation and inverse grading phenomena by particle size in the rapid flow
of an avalanche Let us consider a chute having a parabolic profile inclined
at a given angle, say 45° (with the horizontal) and merges smoothly into a
horizontal plane as shown in Fig 2 6a The talweg? of the chute follows the
steepest descent An almost uniform mixture of two different granular mate
rials (one small and dark, the other large and pale) is released from the upper
end out of a position at rest by suddenly removing a gate that fits exactly
with the chute The photographs of deposits from above and below are shown
in Figs 2 6b and 2 6c¢, respectively It is evident, as explained above, that the
large particles are primarily at the top and in the front, whilst the small
ones are at the bottom and at the rear of the settled body of the granular
avalanche This phenomenon of inverse grading can be relatively easily un
derstood In a segregation process particles fall through holes between other
particles Now, it is obvious that the small particles have a larger probability
of falling through existing holes than the bigger ones This explains the phe

2 The set of all points with minimum altitude in each cross section perpendicular

to the channel topography
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Fig. 2.5. a) Sketch of a profile from a deposit of a pyroclastic flow due to the
volcanic eruption of Mount St Helens, 1980 The profile is taken from a position
about 6.7 km north of the crater and 1 km southwest of Spirit Lake One complete
“flow unit” is shown that is underlaid and overlaid by other flow units The profile
depicts a clear reverse grading in which larger grains are at the upper portion of the
flow unit, while smaller grains are in its lower parts Each flow unit corresponds to
the passage of a pyroclastic flow (From [406], courtesy of S STRAUB ) b) Debris
flow deposit from a disastrous flow event on 31 July 01 August 1996 in Taiwan
The front side of the road has been cleared The picture also demonstrates particle
size separation The free surface of the deposit is covered by large boulders, whilst
the lower part consists of the fine material (From [397] )

nomenon when gravity forces are present More details on this will be given
below

We conclude this brief description on segregation by stating that not all
dynamical processes lead to inverse grading under the action of gravity There
are situations that lead to “normal” grading They are described by, among
others, BREU [45] and KRULLE [223]

2.4 Granular Avalanches
2.4.1 Definition

By the term avalanche we mean a rather large mass of snow, ice, sand, soil
or rock that slides rapidly down the side of a mountain Avalanches are often
huge and sweep down the mountainside with tremendous impact force and
roar like thunder Everything in their path is swept away railways, high
ways, automobiles, buildings, trees, people and animals Nevertheless, often
they may be small, simply block a path, do no damage at all and stop af
ter a movement of a very short distance An avalanche will continue down a
mountain until the elevation of the mountain starts to decrease and flatten



2 4 Granular Avalanches 63

C

Fig. 2.6. Experiment demonstrating inverse grading in avalanche deposition of a
bidisperse granular mixture The particles were, initially almost uniformly, mixed
and segregated during their motion due to gravity a) Small scale laboratory model
with a parabolic chute inclined at 45° and continuously emerging into a horizontal
plane b) Photograph, from above, of the deposited binary mixture small (dark)
and large (pale) particles The large particles are primarily at the top and in the
front c) Photograph, from below, of the same deposited mixture A frontal ring
of pale, large particles is clearly seen and the remainder of the basal deposit are
basically small particles

out where the avalanche will then pile up It can also lose speed down the
mountain, depending on how large the slope is and how much material forms
the total mass The more snow, the longer an avalanche will travel

The word avalanche directly derives from the old French avalanste, meaning
to “let down”, “lower”, or “go downstream” Similarly, the Latin derivative
of “lavina” gives rise to the German word for avalanche, which is Lawine,
meaning “to slip” or “glide down” There are different types of avalanches:
rock avalanches that can bring down millions of tons of granite or other
mountain forming materials, which may change the land for geological times;
soil avalanches and mudslides that are caused when water saturated soils
break loose and flow down a mountain side, also ice avalanches, which always
contain some snow but are primarily made up of fragmented ice from junks
of glaciers More generally and broadly speaking, a granular avalanche repre
sents the gravity driven free surface flow of a continuum granulate medium
down a steep slope, often initiated by the instability of a granular layer For
a better understanding, see Figs 2 7a,b, which show (panel a)) a deposit of
(wet) snow from a flow avalanche and (panel b)) a snapshot of a laboratory
avalanche, for which a mixture of sand and gravel (40 kg) is released from
a spherical plexiglass cap and moves down the gully Both pictures indicate
similarities at least in the run out zones, which may be a good motivation to
model avalanches from a physical mathematical point of view and validate
the model from a well controlled laboratory test
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Fig. 2.7. Deposits of avalanches in two different situations a) A real snow avalanche
in the Alps, a geophysical application of granular flows (Courtesy of the Swiss
Federal Institute of Snow and Avalanche Research, SLF, Davos ) b) Laboratory
avalanche simulation with a mixture of sand and gravel (From [121])

The most characteristic feature of rockfall, rockslide, landslide and mud flow
avalanche events consists in the dominance of a rapid descent over a steep
mountain slope If the displacements take place on a very steep slope, they are
also called fallings While descending, a large amount of the total weight acts
as a motor and only limited weight is able, by generating friction, to produce
a breaking effect The result is not only a high rate of acceleration but also
an almost equal velocity of all moving elements as long as the atmospheric
drag is not a substantial limiting factor > An interesting fact in the case
of a rockslide is that sometimes the event can be triggered neither by a
particularly heavy earthquake nor by abnormal precipitation but entirely by
the long term degradation of the material strength of rock

#  The atmospheric drag can be estimated by 7 = cpsu®/2, where ¢ is the drag
coefficient, ps the density of snow and u the avalanche velocity Typical values
for these parameters are ¢ = 0.002, ps = 300 kgm >, u = 20 ms~! With these
values 7 = 120 Pa, which is a very small quantity
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These phenomena, collectively referred to as avalanches, can be physically
characterised as multi phase gravity flows, which consist of randomly dis
persed, interacting phases, the properties of which change with respect to
both time and space An avalanche can be described as the transient, three
dimensional motion of a variable mass system made up of a non uniform
assemblage of non rigid, non rotund granular (snow) fragments flowing down
a non uniform slope of varying surface resistance [240] In this complexity,
an exact analysis of the motion of an avalanche is perhaps an unattainable
goal However, strictly identical particles yield a narrow, while polydispersed
sized grains are expected to give a broad avalanche distribution [428] Thus,
we may define the avalanche as follows [335]:

Definition An avalanche can be described as a transient, three dimensional
gravity driven free surface motion of a mass system made up of an assemblage
of granular fragments initiated by an instability of a granular layer and flow
ing down to the run out zone on an arbitrarily steep topography with varied
surface resistance

2.4.2 Pattern Formation by Granular Avalanches

In this section, we will give a brief account on small scale avalanches in a thin
gap between two vertical plates, rectangular or circular The development of
patterns and mixing, demixing and segregation of particles in silos, hoppers,
heap formations and in transportation of mixtures of fine grains are related to
the nature of avalanches This justifies the fact that the study of avalanches
is important not only in nature but also in process engineering scenarios

A successive deposit of granular avalanches may exhibit a strong pattern for
mation Continuous deposition, erosion or rotation gives rise to intermittent
avalanche release at low flow rates Once in motion, kinetic sieving of a bi
disperse granular mixture creates two layer shear bands in which the larger
particles overlie the smaller particles When this motion is suddenly brought
into rest by the upstream propagation of a shock wave, a pair of stripes is gen
erated in the deposition Successive releases of the granular materials create
a large scale pattern, leaving a strong imprint of the flow [120] In the follow
ing paragraphs, we describe three mechanisms for avalanche initiation and
particle size segregation together with shock waves that bring the avalanche
quickly to rest These phenomena lead to pattern formation within the de
posited material All the experiments take place between parallel plates with
a spacing of 3 mm, which prevents lateral spreading of the avalanche and
exerts an additional wall friction that slows the avalanche speed A binary
mixture of cohesionless (white) sugar crystals and (dark) spherical iron pow
der with mean grain diameters of 0.5 mm and 0.34 mm, respectively, is used
with mixing ratio 1:1 by volume The mixture is fed from a point source from
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Fig. 2.8. Pile formation by pouring a mixture of large (white) and small (dark) par
ticles between the slit of two parallel plexiglass plates a) Photograph and schematic
diagram of a granular avalanche in a typical roll wave configuration An inverse
graded particle size distribution rapidly develops in which the large particles overlie
the small particles forming a stripe Shearing of the velocity through the avalanche
thickness transports the larger particles to the front of the deposit b) Photograph
and schematic diagram of the upward propagating dispersed shock wave The ma
terial below the shock is at (or nearly at) rest, whilst the grains above it are flowing
rapidly downslope (From [120])

above with a continuous flux, thus forming the triangular heap of which half
is shown in Fig 2 8a,b

Particle Size Segregation and Shock Waves One of the most funda
mental characteristics of an avalanche is that it has the ability to act as a
kinetic sieve; this, in turn, sorts the granular material by grain size Consider
a typical roll wave configuration on an inclined slope as shown in Fig 2 8a As
the grains are sheared gaps between the particles are continuously created
and destroyed Under the action of gravity the smaller particles are more
likely to fall into the space available in the granular heap An inverse grad
ing of the particles rapidly develops in which the larger particles overlie the
smaller particles The white particles overlie the dark (smaller) particles, thus
forming two layered shear bands (i e, stripes) The larger grains are trans
ported to the front, whilst the smaller grains concentrate at the rear of the
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avalanche This phenomenon, as shown in Fig 2 8b, is due to the fact that the
surface of the avalanche moves faster than the base Dispersed shock waves
in granular avalanches, which bring the granular material rapidly to rest,
are important agents for pattern formation These shock waves are initiated
when the avalanche front reaches the base of the slope or a solid wall, and
propagate rapidly upslope, thereby freezing the particle size distribution into
the deposited granular material, thus preserving the pattern formed during
the avalanche motion

Avalanches in Thin Vertical Piles of a Binary Mixture of Fine Gran-
ules In a first experiment, consider two vertical plexiglass plates forming a
narrow gap Together with a basal plate and two side walls, they form a plane
two dimensional “silo” The mixture is poured into this silo that is 70 cm high
by 34 cm wide in dimension from a point source at the top centre Although
the material is continuously deposited at the top of the pile, it does not
flow immediately down the faces because of the difference between the static
and dynamic internal friction angles * Once the static friction angle is ex
ceeded, the avalanche flows down the face of the pile and forms a roll wave,

Fig. 2.9. Pattern formation and destruction by avalanches in a pile of a bidisperse
granular heap a) A pine tree effect is built up through successive stripe formation
and burial b) When a small hole is opened at the base, a core flow develops with
the large (white) particle at the centre and the small (dark) at the side c¢) At low
flow rates, intermittent granular avalanches penetrate into the central core, leaving
a straight stripe on the free surface that acts as a tracer particle in the low (From
[120])

* The tangent of the static angle of friction ¢; is the ratio of the shear and nor

mal tractions between two surfaces at vanishing relative motion, the dynamic
angle of friction ¢4 is the corresponding angle when the surfaces slide over one
another Generally, ¢q < @5
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in which kinetic sieving takes place (see Fig 2 8a) Successive and alternating
avalanche releases on both faces of the triangular pile build up a sequence
of layers giving rise to a pine tree pattern, as shown in Fig 2 9a It is worth
mentioning that there is a tendency for the upslope propagating shock wave
to destabilise the granular material on the opposite face of the pile, so that
avalanches tend to form first on one side and then on the other [120]

Once this pile has been formed, a small hole of 5 mm width opens at the centre
of the silo base The granular material then develops into an internal core
flow, and a vee shaped rat hole is quickly formed, as shown in Fig 2 9b The
granular material on either side of the core is at rest and the pine tree pattern
is preserved there Material is fed to the core by a sequence of intermittent
avalanches that flow down the faces of the rat hole and are initiated by erosion
at the base of the avalanche slope As before, kinetic sieving takes place within
the avalanche and the larger particles concentrate in the centre of the core,
whilst the smaller particles are drawn into a dark shear band on either side
of the central white core of the silo If the flow rate is low, avalanches can
penetrate into the centre of the core and come to rest when they hit the
opposite side of the rat hole A series of initially straight stripes have been
sheared and deformed into regular eddy like structures due to the discharge
of material from the bottom hole of the silo, as shown in Fig 2 9c, [120, 121]

The Catherine Wheel Effect Consider a thin closed circular disk with
a diameter of 25 cm, filled with the same granular mixture as before with
a free surface that lies above the centre, as shown in Fig 2 10 In order to
emphasise the pattern formation due to small avalanches, the disk is first laid
horizontally and then gently shaken so that all the small dark particles fall
to the bottom Once gently turned to the vertical position, one side of the
disk is completely dark, whilst the other is completely white When the disk
is rotated in its vertical position at a constant rate of 100 s per revolution
intermittent avalanches form at the free surface The intermittency again
stems from the difference between static and dynamic internal friction angles
The central circular core of the material remains completely undisturbed due
to the slow rotation of the disk Each avalanche release sorts the granular
material, forming a stripe, which is frozen into the deposit by the shock wave
and subsequently buried and rotated in the undisturbed material below the
free surface Subsequent releases create a sequence of stripes tangent to the
central core (see Fig 2 10a) This process ultimately creates a Catherine wheel
effect after a complete revolution, as shown in Fig 2 10b, [120]

At faster rotation rates (here < 20 s per revolution), the intermittency of the
avalanche release, shock waves and stripes disappear and a steady state flow
regime dominates (see Fig 2 10c) The material is continuously released on
the upper side and continuously deposited on the lower side of the concave
free surface, and is transported between the two positions by a quasi steady
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Fig. 2.10. Demonstration of the formation and collapse of the Catherine wheel
effect a) At low rotation rates intermittent avalanche release in a thin rotating
disk filled with the granular mixture leads to the formation of stripes tangent to
the free surface b) The disk is rotated to a full revolution to form a Catherine
wheel effect ¢) At faster rotation speed a quasi steady flow develops d) In such a
situation, the free surface is fixed in space and there is a continuous distribution of
particle sizes outside the centre core (From [120])

avalanche in which kinetic sieving takes place The smaller particles are the
first to get deposited on the lower half of the free surface because they are
concentrated at the bottom of the avalanche and a new pattern develops in
which the central core is undisturbed There is a continuous distribution of
grain sizes outside the central core The distribution starts with a high con
centration of small particles near the core and ends with a high concentration
of large particles near the outer wall (see Fig 2 10d)
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The pine tree structure exhibited by the bidisperse depositions in the heaps
of Figs 2 8 and 2 9 and in the Catherine wheel effect, and their transition into
completely differently ordered arrangements by an outflow through a bottom
hole (Fig 2 9b,c), or an increase of the rotation speed, shows how critically
the mixing processes react to the exerted forces or outside motions and forces
In the rotating disk experiment, two different orderings have been established
by only changing the rotation speed of the wheel Loss of intermittency was
the reason for the configurational change An analogous change in the parti
cle patterns has similarly occurred in the granular pile structure The eddies
of Fig 2 9c are the result of the strong shearing and not of intermittency It
is not, difficult to imagine situations in which the pattern would mimic total
chaos This can be reached in the rotating disk problem by increasing the ro
tation rate such that the centrifugal forces acting on the particles make them
fly away from the free surface The violent motion results in an unstructured
deposition of the large and small particles

The above text reports on experiments of particle size segregation in small
gaps of vertical rotating cylinders Many additional experiments have been
performed on these, including theoretical analyses Later, in Chap 6 we shall
explicitly demonstrate that the theoretical model due to GRAY [124] allows
a surprisingly adequate reproduction of the particle mixing induced by the
avalanching motion of the grains in a rotating gap Further analyses on such
rotating particle mixing have also been conducted by KHAKHAR et al [218,
219] and ORPE and KHAKHAR [307] Although it is true that these rotational
granular flows may be distant from real avalanche processes in nature, they
are, however, ideal laboratory scenarios by which the theoretical model can
be tested From this point of view they justify the treatment in this book

Finally, it is worth mentioning that a long cylinder, rotating about its horizon
tal axis and partly filled with a bidispersed mixture of dry particles develops
on long time scales a different segregation patterns by size Here, the large
and small particles separate in layers perpendicular to the rotation axis and
the number of stripes depends on the geometry of the rotating cylinder, the
filling ratio and the particle properties BREU [45] and KRULLE [223] have
conducted work on this When water is added, the situation is different again;
BREU conducts a literature review of earlier work on experiments on this In
the sequel we shall not be concerned with these kinds of three dimensional
rotating granular experiments, except for mentioning that particles now dif
fuse also sidewise Segregation of large particles to the sides along a wide, but
channelised topography have occasionally also been seen in snow and debris
avalanches A detailed description of these, also known as “levées” is given
by FELIX and THOMAS [98] Figure 2 11 provides a demonstration of this
segregation phenomena



2 4 Granular Avalanches 71

Fig. 2.11. Lobe shaped deposits produced by the 1993 pyroclastic flows of the
Lascar volcano (Chile): (top) levées enriched in large pumices (flow moving ahead),
and (bottom) global view of lobes observed on the southeast flank of the volcano
The cube (upperpicture) gives a three dimensional scale: the edges are 78 cm long
(From [98] )



72 2 Granular Avalanches: Definition, Related Concepts and a Review

2.5 Snow Avalanche Regions, Formation and Dynamics

Avalanches arise only in certain regions and are triggered to a larger or lesser
extent according to the topographic and meteorological conditions to which
they are exposed Their speeds and consequently their dynamics, however,
also depend upon the surface roughness and the shape of the mountain side
on which they are formed We will briefly address these points

2.5.1 The Home of Natural Snow Avalanches

Here we present some facts on snow avalanches About 20% of the continental
land mass is covered by mountains These mountain ranges are situated at
sufficiently cold latitudes or reach high enough elevations to favour a deep
mantle of (winter) snow They are the habitat of (snow) avalanches In simple
terms, an avalanche requires only two ingredients: a snow cover and some
mechanisms for it to slide down Nature is always ready to provide both
Snow and wind are the architects to design and create avalanches in these
steep mountains

The world’s largest mountains produce the largest avalanches The Himalayas
of Asia, with about 10 peaks above 8,000 m (nine of them, including Mt
Everest (8,848 m), the highest peak of the world, in Nepal, and the second
highest peak, Mt K2 Godwin Austen, in China Pakistan), produce wonder
ful and awesome, but equally dangerous and deadly avalanches (see Fig 2 15)

No part of the world, however, has seen a longer and harder struggle against
avalanches than the Alps of Austria, France, Italy and Switzerland To a
lesser extent, avalanches fall in the other great mountain range of Europe,
the Caucasus of southern Russia and the Republic of Georgia Similarly, the
Scandinavian countries must also deal with avalanches, mainly in the moun

tainous and glacier carved fjords of Norway Occasionally, people in Scotland
and more often in Iceland also face avalanche danger Still other mountain

ous countries of the world fight against avalanche fatalities The main island
Honshu of Japan, the southern mountains of New Zealand, the mountains of
southeast Australia and the Andes of South America also produce avalanche
hazards on a vast scale To close this list, we must mention the Rocky Moun

tains of North America, one of the greatest mountain systems on Earth cover

ing the states of California, Colorado, Nevada, Utah, Montana, Washington,
Alaska and the Provinces, British Columbia and Alberta In these regions,
avalanches also arise in abundance and they are equally devastating but of
lesser impact than, e g , in Europe because these areas are much more sparsely
populated
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Fig. 2.12. a) The Swiss village Andermatt and the wedge of trees that protects it
from avalanches The remainder of the steep slope is bare, thus providing a perfect
track for the run of a snow avalanche (From [4], courtesy of Birkh#user Verlag,
and Swiss Federal Institute of Snow and Avalanche Research, SLF, Davos) b) A
flow avalanche on Wasatch Mountain, Utah initiated from a crack of a snow pack
(From [235] )

2.5.2 Topographic Conditions

In the ensuing paragraphs, a number of qualifications, properties and condi
tions are stated that influence the avalanching motions

Steepness Experience reveals that slopes of 30 45° or more are most
favourable for the initiation of an avalanche The reason is that at these
steepnesses the balance between strength (the bonding of the snow trying to
hold it in place) and stress (the force of gravity trying to pull it loose) are
most critical ®

Elevation Mountains that rise above the timberline are more likely to pro
duce avalanches This is because above the timberline avalanches are free to
start, and once they are set in motion, they can easily sweep away the trees
below, so as to provide favourable tracks by themselves (see Fig 2 12a)

This is an indication that small slopes below approximately 30° inclination
give rise to an avalanche behaviour that is different from that above it This is
indeed so: There seem to exist two regimes, boldly characterised by steep and
shallow slopes On shallow slopes, shearing within the avalanche body plays
the more dominant role relative to sliding than on steep slopes, see HUTTER
et al [183]
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Orientation More avalanches fall on slopes facing north, northeast and east
than those facing south through west The effect of slope orientation is due
to its interaction with solar radiation and wind

Shape of the Terrain Avalanche paths may form in all shapes and sizes,
some on open slopes, others in narrow and twisted gullies Some are straight
and maintain a nearly constant slope from initiation to stopping There are
paths of which the vertical profile has convex curvature in the upper portion
of the path when viewed from the side, whilst others have concave shaped
paths Still other paths are of composite type, having a convex portion fol
lowed by a concave one with smooth transition to the straight run out zone
However, there are two main path configurations that are particularly prone
to producing devastating avalanches First is the large bowl shaped starting
zone in which a section of snow breaks away and thus removes support from
the adjacent sections in which the stress increases until these sections can
neither support themselves and also break loose Second is the path that
consists of several gullies (probably twisted) that feed into a common track
lower down One gully might turn loose its load of snow before the other
has quite reached that point of readiness, but they remain prone to dumping
their loads at approximately the same time

Roughness of the Ground Usually, the surface conditions of a starting
zone control and determine the size and type of a released avalanche For
example, the rough ground surface of mixed boulder fields do not allow
an avalanche to be produced early in the winter, for it takes considerable
snow fall to cover the ground anchors What is likely to occur is that, if
the avalanche is not formed during the entire winter, it will run to ground
in spring, once melt water percolates through the snow and lubricates the
ground surface Vegetation, on the other hand, has a mixed effect on avalanche
release Generally, bushes provide anchoring support until they become to
tally covered by snow A dense stand of trees can easily provide enough
anchors to prevent avalanches from releasing and make them less rapid and
destructive even if they have already been released (Fig 2 12a) Since isolated
trees provide concentrated weak points on the slopes, they are more harm
ful than good This is why reforestation of bare slopes is always an effective
means of controlling avalanches

2.5.3 Snowpack and Weather Conditions

There are three main factors of snow avalanche release ¢ They are terrain,
snowpack and weather The terrain factors, which we have just dealt with

6 We only give a brief list of characterisations A detailed account may be ob

tained from ANCEY [8]
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above, are more or less fixed and do not need to be re evaluated for a long
time once these factors have been identified However, the state of snowpack
and weather changes on a regular basis, often daily or hourly, and these
changes are particularly pronounced in winter Below, we give an account of
such temporal agents of avalanche potential

Snowfall More than 80% of all avalanches fall during or just after a surge of
snowfall This indicates that snowfall is the most important of all events that
lead to avalanches The question is, why does it happen? Because the fresh
snow provides extra weight on the existing snow cover, and if the snow cover
neither absorbs the extra weight nor bonds it in place to the snow in deposit,
avalanche release is inevitable There is also a very rough relationship between
the size of an avalanche and new snowfall As a rule, snowfalls greater than
1 m are able to produce major avalanches, whereas snowfalls of less than
15 em seldom produce avalanches [13]

Snowfall Intensity Snow in the snow cover behaves much like an elasto
visco plastic material So, under a slow load, snow can absorb the load by
changing its shape with a slow deformation or compression Recovery is never
complete However, under a rapid load, there is less time for the snow to
absorb the weight by changing its shape Here the response is elastic with
fracturing if the dynamic stress reaches a certain threshold Thus, the snow
is much more likely to break under the applied stress It follows that the
rate at which snowfall accumulates on top of an old snow cover is almost as
important as the amount of snow itself A snowfall of 1 m in one day is far
more hazardous than 1 m in three days

Rainfall Light rain, falling on a cold snowpack, always freezes into an ice
crust adding strength to the snow cover At a later time, though, this smooth
crust may become a favourable sliding layer beneath the newly fallen snow
Heavy rain, however, greatly weakens the snow cover in two ways Firstly, it
adds weight 1 cm of rain is equivalent in weight to about 10 cm of snow
Secondly, it adds no internal strength of its own, as new snow would, while at
the same time it dissolves bonds between snow grains as it percolates through
the top snow layer, resulting in a reduction of strength

Temperature Although there is no direct correlation of an avalanche onset
with temperature, a rapid temperature change is often more important than
its absolute value

There are also some other factors causing avalanche formation They are
wind speed and direction, new snow density and crystal type, the depth of
the snow cover, the nature of the snow surface, formation of depth hoar, etc ,
but we do not go into details here, see, e g , [4, 13, 235]
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2.5.4 Size and Speed of Snow Avalanches

There are various kinds of snow avalanches: thin, thick or deep, broad and
narrow, and short and long Thin avalanches slide down as a thin film and
remove the top thin layers of snow just a few centimetres thick; deep ones may
take away the snow cover of an entire winter and transport it down the valley
Short avalanches generally travel a small distance, often only a few metres,
whilst long ones can descend several kilometres With respect to speed, small
avalanches are also slow with speeds as low as 5 kmh~! =2 1.4 ms~!, whilst
ultra speedy demons can exceptionally travel with a speed as high as 500
kmh=! 22 140 ms™!

Sluffs, very small avalanches, are mostly harmless and are common in the
mountains After a fresh snowfall, the small shallow mantle of dry snow travels
some metres down Artificial means, such as detonations or outside triggers,
e g, a skier, are very effective in releasing small to medium size avalanches,
mostly in shallow snowpacks The other end of the avalanche spectrum is
covered by huge moving snow masses They are mainly released by their own
weight, a natural cause

A typical large avalanche might set in motion (1 — 10) x 10° m® snow To have
an idea about its size, imagine a mountain side of snow having a depth of 3 m
and an area of 20 football fields; next let this amount of snow break loose
and fall 1,200 m in elevation (the equivalent of a slope distance of 2,000 m
to 3,200 m) Two huge avalanches fell near the remote community of Gothic,
Colorado, during a storm in March 1978 The first broke loose in a snow
layer only 1 m deep, but this layer was about 900 m wide and 900 m long
The second avalanche was 1 2 m deep and 3,000 m wide Both fell about 800
m in elevation One especially large avalanche fell down the slope of Mount
Sanford (N America) on 12 April 1981 This contained an estimated 7.7 x 10°
m? of ice and snow and fell about 3,000 m in elevation and travelled almost
13 km before coming to a stop [13] An interesting fact was that the avalanche
threw up a powder cloud many thousands of metres that was visible for more
than 160 km

An average avalanche of snow is about one metre deep at the fracture line, 30
to 60 m wide and falls 100 to 150 m in elevation For dry snow, the average
speed of such an avalanche is roughly 65 to 100 kmh~! =2 (18 to 28 ms™1)
However, for wet snow (due to rain or thaw), the speed will be less, proba
bly in the range of 25 to 50 kmh™! 22 (7 to 14 ms™!) On the other hand,
larger avalanches attain higher speeds Japanese scientists have measured ve
locities in an ultra speedy avalanche as being in the range of 370 kmh—! =
103 ms™! [13]
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Fig. 2.13. a) The avalanche path and its deposition A: the starting zone, B: the
track and C: the deposition area of an avalanche in the Swiss Alps b) Manifestion of
the destructive power of an avalanche that derailed a train from its track (From [4],
courtesy of Birkhauser Verlag, and Swiss Federal Institute of Snow and Avalanche
Research, SLF, Davos, only a )

2.5.5 Avalanche Dynamics

How does an avalanche move, how fast, how far and with how much destruc
tive power? The answers to these, and similar, questions are contained in
the topic avalanche dynamics The science of avalanche dynamics was not
well advanced until the middle of the 20th century A reason could be a lack
of measured data for avalanche velocity, dynamic and impact pressures and
geometric deformation and the complicated topographic features on which
the flow takes place Methods to predict avalanche velocity, run out zones
and associated impact forces were first developed in Switzerland in the 1950s
due to the availability of historical and initial experimental data of their own
[4, 13] Here, we address some important aspects of avalanche dynamics

Avalanche Paths They are generally divided into three parts that are dis
tinguished according to the dynamics (Fig 2 13a) The starting zone is usually
the steepest part of the entire path Here the avalanche breaks away, accel
erates down the slope and picks up additional material (snow) as it moves
No reliable model exists to date that would allow the prediction of the mass
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that is breaking loose and its geometry These must be estimated For this
reason, the unstable mass, its geometry and velocity are treated as an ini
tial condition for the subsequent motion The additional gravel (snow) mass,
entrained from the ground along the track is described phenomenologically
in the equations of motion that follow, if it is accounted for From the start
ing zone, the avalanche moves into the t¢rack, where the velocity generally
remains more or less constant and little or no additional snow is added to the
moving avalanche, and the average slope angle has become less steep This
is where small avalanches stop, because they do not have enough inertia to
flow any further After travelling down the track, the avalanche reaches the
run out zone where its motion ends, either abruptly when it crashes into the
bottom of a gorge or slowly when it enters a flat plane region (see Fig 2 13a),
or as it decelerates across a gradual slope As a general rule, the slope angle
of starting zones is in the range of 30° to 45° or more, that of the track is
20° to 30°, and the run out zones are less steep than 20° In most cases, the
avalanche simply flows along a path down the steepest route on the slope
while being guided or channelled by terrain features, such as the side walls
of a gully, which normally direct the flow of the avalanche to the bed This
holds for so called dense flow avalanches but not for airborne powder snow
avalanches

Run-Out Zones Large masses move more “efficiently” and thus reach far
ther distances than smaller ones This effect was first investigated by HEIM
[147] The observations indicate that avalanche run outs exhibit a size effect,
ie, on geometrically similar tracks large avalanches move farther distances
than small ones The existence of long run out events is a significant obstacle
for a reliable mathematical modelling of such flows of very large masses *

One of the most complicated and practically relevant aspects of avalanche
dynamics is the effort to predict how far an avalanche will continue to flow or
travel after it has reached the run out zone An equally important question for
avalanche practitioners is to determine the area of impact in the deposition
zone and how the deposited mass is distributed These areas are important
from an infrastructure point of view because they may potentially be used
for habitation (see Fig 2 13a)

Dynamic and Impact Pressures Besides the reach of an avalanche, or
a rockslide, also the wvelocity at any point of its travel is of outstanding im
portance The destructive power of an avalanche may be estimated by its
velocity v and density p, since pv?/2 has the dimension of a pressure This is
called the dynamic pressure and when multiplied by 2, the impact pressure by

" Compilations of run out distances of dry avalanches of various sizes indicate

that there seems to be a threshold value for the avalanche size, below which
the run out distance is independent of size, whilst above it there is such a
dependence This threshold seems to be of the order of 10° m?, see [372]
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avalanche dynamicists and stagnation pressure by fluid mechanicians, shows
that the speed is a decisive variable in determining the forces exerted on the
structures by the moving snow Small and medium sized events may have
impact pressures of 10* Pa (0.1 bar), but in very large avalanches they may
reach as much as 10° Pa (10 bar) and are then able to uproot a large part of
a forest and destroy solid buildings Sometimes they can even derail an entire
train in transport (see Fig 2 13b)

2.6 Types of Granular Avalanches

There are two limiting cases of avalanche, landslide and rockfall dynamics
depending upon the form of motion rather than the quality of the material
Between the two limiting cases discussed below, a wide variety of avalanches
can be found that are sometimes referred to as mized type avalanches

2.6.1 Flow Avalanches

The so called flow avalanche (see Figs 2 7a,b and 2 14a,b) can be understood
as a dense gravity driven “laminar type flow” avalanche ® In this case, the role
of the solid particles dominates, while that of the interstitial fluid is minor or
even negligible Such flows are typical for many debris and mudflows, rock

falls, landslides and snow avalanches On average, the density is fairly high,
for snow avalanches it ranges from 150 kgm ™ to 500 kgm =3 The typical
mean velocity ranges from 18 kmh~! to 90 kmh=! = (5 ms~! to 25 ms™!)

These flows usually follow the local topographic features and run along chan

nels and/or corries It follows that the basal friction must be significant Most
snow and ice avalanches, when they are formed from a fractured snowpack,
develop as flow avalanches (see Figs 2 12b and 2 14) The size of their parti

cles depends upon the thermodynamic state of the snowpack Fresh dry snow
tends to form small granules of perhaps, 2 3 mm diameter, wet snow develops
into hard snow balls (from several tens of mm to dm diameter), and old snow
in the spring that has undergone several metamorphoses (so called “greasy
snow”) consists of ice grains of 5 10 mm diameter While their behaviour
under flow must be different from other flow avalanches simply because of
their different appearance in the deposit, they have similarities with dense
granular flows Avalanches may grow in mass along their tracks by entrain

ment of snow from the snow layer that is overrun or they may loose mass
by sedimenting snow, but these entrainment processes are relatively poorly
known, although they are very important and sometimes play a decisive role
in the overall dynamics

8 We set “laminar” in quotation marks, because it is debatable whether this flow

is really laminar, but the term is popular in avalanche dynamics
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a

Fig. 2.14. a) Deposition of a flow avalanche b) Avalanche “Marianne” at Bernina,
blasting: Artificially released flow avalanche c¢) Deposit of a wet flow avalanche
(Courtesy of E WENGI, Swiss Federal Institute of Snow and Avalanche Research,
SLF, Davos, Switzerland ) d) Snow deposit of a dry flow avalanche (Courtesy of
E WEenNGI, Swiss Federal Institute of Snow and Avalanche Research, SLF, Davos,
Switzerland )

In debris and rockfalls and in certain fast landslides, such as pyroclastic flows,
these “flow avalanches” indeed correspond to “dense granular flows” with a
solid volume fraction of the order of 0.4 to 0.7 Particle diameters in these
flows range from the sizes of clay to grabbos (about fist size), or boulders

2.6.2 Powder Avalanches

Powder (snow) avalanches occur in very cold, dry climates The light powdery
snow grains do not stick together well Sometimes, when strong winds cause
this snow to move down a mountain side, it swirls and spins like a huge
white cloud These avalanches can be so forceful as to uproot large trees
and carry them along like match sticks A powder avalanche is accompanied
with induced and added wind, and much damage is caused by the wind
alone These avalanches are much less dense than flow avalanches and may
be called “turbulent type flows” of airborne particles They are very rapid
flows and the role of the fluid and particles is of similar significance These
flows are called particle laden flows; they are often treated as turbulent two
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Fig. 2.15. A sequence of snapshots of a powder snow avalanche in the Himalaya
(Photo F TSCHIRKY, courtesy of Swiss Federal Institute of Snow and Avalanche
Research, SLF, Davos, Switzerland )

phase flows or, at solid particle concentrations larger than 10~2 in volume,
as turbulent binary mixtures, and they are typical for density and turbidity
currents, e g, dust clouds occurring in the desert, in pyroclastic volcanic
eruptions, in subaquatic turbidity currents and in snow and ice avalanches
(see Figs 215,216 and 2 17) However, such avalanches are less frequent
than flow avalanches Typically, the mean flow depth, velocity and density are
of the order of 10 100 m, 50 100 ms~! and 5 50 kgm 3, respectively, see [6]
A further distinction is also that powder snow avalanches follow the direction
of the steepest descent of a considerably averaged topography and not the
particular small scale troughs and deepenings that are relevant for dense flow
avalanches This implies that details of basal friction cannot be significant for
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Fig. 2.16. Photographs of a powder avalanche taken from a helicopter The
avalanche moves uphill after passing through a valley, bottom picture (Courtesy of
Swiss Federal Institute of Snow and Avalanche Research, SLF, Davos, Switzerland )

the description of their gross motion A summary of the different typical scales
is given in Table 2 1

The above mentioned two situations actually present idealised, limiting cases
Neither of the two types of avalanches is less dangerous Once either has been
triggered off, there is usually little or no chance for walkers, skiers, or climbers
to escape its path By far the avalanche occurring most often is of mixed
type, e g , a flow avalanche overlaid by some snow dust, or a powder snow
avalanche underlaid at its bottom by a boundary layer of a flow avalanche
A closer look at the physical behaviour of such mixed avalanches shows that
there exists a number of layers in which the dominant dynamical processes
are characterised by a distinct physical behaviour, compare Table 2 2 The
lowest layer is the ground, which either consists of soil, rock or a snow cover of
at most a few metres thickness, typically less than 10 m The dense avalanche
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Fig. 2.17. Pyroclastic flow of the volcanic eruption in Goma, Congo, 17 January
2002, that destroyed 40% of the largest city in the region This eruption was the
largest in the volcano’s history, according to geological evidence

Table 2.1. Typical scales of flow and powder snow avalanches

Flow avalanches

Powder avalanches

Flow type
Velocities

Flow height
Density

Stagnation pressure

Topography

Friction

Laminar

~5 30 ms™!
~110m

100 300 kgm 3
05 5 bar

Often bound to
local topography

Basal friction is
everywhere significant

Turbulent

~ 40 100 ms™"
~ 100 m

~ 5 kgm 3
025 06 bar

Topographic details
are insignificant

Basal friction mainly
significant
in the run out

comprises the next layer and may be fed from the ground layer by entrained
snow, or snow may be deposited on the ground by deposition of snow from
the dense flow avalanche This snow settlement, of course, only arises in the

run out zone

The dense flow avalanche constitutes the source of mass for the dusty, very
thick layer of the powder snow avalanche, but this mass transfer takes place
in a very thin saltation layer of a few centimetres thickness There are also ob

servations indicating that this layer may reach several decimetres (SCHAERER
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and SALWAY [377]) At the lower boundary of this thin layer the snow or ice
particles are torn from the flow avalanche surface The particles then go into
ballistic motion and bounce back to the flow avalanche surface, where they
may trigger additional particles to bounce to the surface, or they collide with
each other A number of particles receive enough vertical momentum to leave
the saltation layer and become the airborne particles in the suspension layer
All these particles then form the particle laden flow in the suspension layer
that is characterised by strong aerodynamic turbulence Particle collisions are
likely to be much less frequent than in the saltation layer, interaction is rather
through collisions between particle laden eddies This uppermost suspension
layer is bounded above by the still atmosphere or a geostrophic flow at the
upper edge of the suspension layer This makes it plausible that the flow
within the saltation layer is that of a true solid fluid two phase continuum,
whilst the suspension layer can be simpler, and a diffusive mixture suffices
The saltation layer in a mixed avalanche has not been observed and it may
for obvious reasons never be observed, but it is akin to the saltation layer in
snow or sand drift GAUER [108, 109] has drawn attention to this saltation
layer in snow drift and Fig 2 18 shows photographs taken by KOBAYASHI
[224] This figure shows the grain motion within the saltation layer In this
case, the mean length of the saltation paths of snow particles falls in the
intervals (0 05,0 14) m and (0 11, 0 3) m for the wind speed of 5.0 ms~! and
10.0 ms™!, respectively

A separate study of the dense flow and dilute powder snow avalanche is
helpful because the relevant physics can be more easily described, which
makes it easier to understand the corresponding physical processes

Fig. 2.18. Top: Saltation at very low speed (3.8 ms™') during light snowfall
Bottom: Saltation of typical shallow drift in the absence of snowfall (wind speed
5.0 ms™') (From [224] )

2.6.3 Landslides and Avalanches on other Planets

Like on Earth, scientists have also observed avalanches, debris flows and
landslides on other planets of our solar system, such as Mars and Venus The
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Fig. 2.19. Avalanches on Mars a) Valles Marineris a close up view of a landslide
on the south wall of Valles Marineris, which partially removed the rim of the crater
that is on the plateau adjacent to Valles Marineris Several distinct layers can be
seen in the walls of the trough (Picture source [461]) b) Canyon landslide debris
of a canyon landslide in a very steep crater similar to that of Valles Marineris
(Picture source [462] )

reason is that these planets also consist of large ranges of mountains covered
by ice, rocks and soil

Mars has (perhaps) the largest avalanches of the planets in our solar system
It has many large avalanches but underlying processes are still concealed The
landslides on this planet are very wide, typically about 100 km The volume
of the landslide debris of Ophir Chasma, a large west northwest trending
trough, is more than 1000 times greater than that of the debris avalanche
of Mount St Helens on 18 May 1980, see Sect 2.3.7 Figure 2 19a shows a
close up view of a landslide on the south wall of Valles Marineris (on Mars)
This landslide partially removed the rim of the crater bordering the plateau
adjacent to Valles Marineris Several distinct layers can be seen in the walls
of the trough These layers may be regions of distinct chemical composition
or mechanical properties in the Martian crust Similarly, Fig 2 19b shows
debris of canyon landslide ?

Mass movements on Venus, seen in radar images acquired by the Magellan
spacecraft during its first mapping cycle, are easily interpreted within the
scheme commonly used to classify terrestrial landslides Rock slumps, rock
and/or block slides, rock avalanches, debris avalanches, and possibly debris
flows are seen in areas of high relief and steep slope gradients, and are most
abundant in the tectonic troughs that criss cross much of the equatorial region
of Venus Venusian landslides, like those found within the Valles Marineris on
Mars, tend to come from escarpments typically higher than those on Earth
Faulting and seismically induced accelerations are probably responsible for
the majority of these non volcanic mass movements The atmosphere may
participate in promoting the movement of some of the landslide debris, but
environmental factors (e g, rainfall, temperature cycling) do not appear to
play as dominant a role as they do on Earth Venus shows clear and unam
biguous evidence of mass movements at a variety of scales Measurements
and observations show that Venus is covered by, at most, a very thin mantle
of debris Similar avalanches are also found on the Moon

®  For many more pictures and a detailed description, see [255]
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2.7 Fundamentals of Granular Avalanches
2.7.1 Some Characteristics of Flow Avalanches

Simple analysis of a gravity driven shear flow of a material with shear resis
tance shows that the longitudinal velocity profile consists of two contribu
tions: a component due to sliding of the material along the basal surface and
a second component due to shearing within the moving pile (see Fig 2 20)
Observations in laboratory granular chute flows indicate that strong shear is
usually restricted to a thin basal layer, whilst its contribution to the total
velocity throughout most of the moving pile is small Scrutiny of the struc
ture of this shear layer also indicates that the particle concentration and
thus apparent densities are smaller than in the thick layer above it This
behaviour motivated SAVAGE and HUTTER to replace, as an approximation,
the shearing altogether and to add it to the sliding mechanism [375] This
will be mathematically implemented in the models presented later At this
stage, two questions remain to be answered: (i) are there observational evi
dences from flow avalanches which support this and (i4) what is the physical
mechanism for the velocity reduction in the thin shear layer?

As to the first question, limited evidence is provided by GUBLER [134] and
DENT et al [80] By using radar DOPPLER technology, GUBLER success
fully studied the dynamics of artificially released snow flow avalanches He
concluded that the rear bottom boundary layer is not negligibly thin in com
parison to the entire thickness of the moving flow mass He also found den
sity variations throughout the depth, but measurements were not sufficiently
conclusive in this regard DENT et al , on the other hand, observed a mov

Fig. 2.20. Velocity profile in a gravity driven shear flow The velocity at a certain
depth is composed of a sliding contribution vs, a contribution of strong shearing
in a bottom boundary layer dvi, and a very small shearing contribution dv2 in the
larger top layer In general, the velocity of the flowing material can be idealised by
taking an approximate sliding velocity at the base
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ing flow avalanche from a window of a cage, built behind a rock but within
the avalanche track in Montana and concluded from cinefilms taken during
an event that the observed velocity profile indeed suggested negligible shear
ing throughout almost the entire depth and substantial shearing possibly in
a thin basal boundary layer and strong sliding at the ground as shown in
Fig 221

Measurements in the field of velocity profiles in debris or mud flows are
not known to us So, in this granular flow realisation of avalanching flows,
inferences on the velocity distribution can only be drawn from laboratory
experiments These are performed under idealised situations and show that,
on surfaces with bed friction angles in the range of 30 50°, the concentration
of all shearing at the base in a sliding surface is adequate Only when basal
surfaces are very bumpy, may this extreme concentration of shearing in the
bottom layer have to be revised More details on this analysis can be found
in [183]

The reduction of the particle concentration in the thin boundary layer is
due to the dilatation that is necessarily accompanied with the remaining
deformation of a granular material (see Fig 2 20) The effect of dilatancy
is also a significant mechanism in a granular material that is responsible
for it to behave as a non NEWTONian fluid exhibiting, in particular, normal
stress effects By this it is meant that a shearing deformation with constrained
volume changes must necessarily be accompanied with normal stress

Fig. 2.21. a) Revolving door instrumentation shed b) Revolving door data col
lection The instrumentation, of a large scale dry snow avalanche, includes: optical
sensors to measure velocity and density profiles, a capacitance probe to also mea
sure density profiles, a mechanical gauge to measure flow depth, and a strain gauged
plate mounted on the avalanche running surface to measure shear and normal stress
These properties were measured for avalanches of up to 1.5 m in depth and moving

at speeds greater than 10 ms™' The information collected is being used to help

construct and validate models of avalanche movement (From [453])
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A striking observation in landslides and snow avalanches is that they often
spread out in very thin layers and flow on surfaces that are much less in
clined than the angle of repose of the material From the field observations of
GUBLER and NOREM et al [134, 302, 303] it is found that distances travelled
by landslides or avalanches are very large and deposition lengths long and
avalanche depths correspondingly small Furthermore, for very large rockfalls
or landslides with volumes exceeding 10® m?, the run out distance is volume
dependent [374] For a given profile, the larger the avalanche volume, the
larger its relative run out distance [179]

A collection of these observations from landslides on the Earth, Moon, Mars
and Venus disclosed this scale dependence, but it has not been explained
theoretically and still remains an enigma An account of this will be given
in Sect 2.7.5 The large distance travelled, however, can be explained For
landslides, gravel and rock avalanches it is due to the fluidisation of the ma
terial, i e , the bouncing of the individual grains against each other, in which
the above mentioned dilatation is active This fluctuating motion generates
a dispersive pressure that accompanies the shearing and reduces the effec
tive shear resistance within this boundary layer and, therefore, also increases
the sliding '° This is by far the most plausible cause of the large distances
travelled by avalanches and their considerable spreading in the deposition In
snow avalanches and extremely large rock avalanches, the frictional heat may
also melt basal snow or rock, and so add the molten material as a further
lubricant !

2.7.2 Stress Generating Mechanisms

Following common rules of physics, one distinguishes three different mecha
nisms that operate in generating stresses due to deformations of cohesionless
granular bulk material In relative motion, particles can slide and rub against
each other, bounce and loose energy in collisions and perform ballistic mo
tions between encounters In general, all these mechanisms are effective in a
high to a moderate density regime The first of the following mechanisms is
applicable for dense avalanche flows, it reflects solid and fluid like behaviour
The other two are mainly applicable for granular gases

Dry CourLoMB Rubbing Friction Such a frictional behaviour is typi
cal when particles are in contact and ride one over the other without losing
10 This description means that the internal angle of friction or the bed friction
angle will decrease as soon as the interstitial pressure is sufficiently large

In geology, rocks formed from solidification of molten materials in landslides
are called frictionites This term is defined as “  any at least partially melted
products gemerated by friction near the surface and allowing to be put down
ezogenous processes exclusively depending on terrestrial gravitation 7 [94]

11
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contact In this state, the associated internal forces develop through con
tact mechanisms During quasi static processes, or when collisional activity is
small, these frictional processes are dominant The so called natural densities
are normally huge here, and the behaviour is plastic and of COULOMB type

Collisional Interactions These take place when particles bounce against
each other When the particle contact is of short duration so that CourL.omMB
rubbing friction cannot effectively develop, the momentum transport is
caused by collisional interactions and the behaviour is rate dependent (vis
cous)

Translational Transport The third mechanism to generate stresses is
due to the transport of momentum by particle translation In this case, the
COULOMB type rubbing friction is practically insignificant, collisions are in
frequent, the mean free paths are long, and particle concentrations are cor
respondingly small

These three limiting states essentially characterise solids, fluids and gases In
gravity driven shear flows, all three act simultaneously, but often one of them
is dominant, whilst the others can be ignored In dense snow avalanches or
reasonably wet snow bouncing is seldom observed, so collisional interactions
and translational transport may be ignored Alternatively, in dry snow or sand
avalanches on very steep slopes, the particles may be agitated throughout the
entire granular layer, so that rubbing friction may be ignored Depending on
which limit is considered, different concepts apply

2.7.3 Density Variations

When a finite mass of granular material starts to move from rest, the major
part of volume expansion takes place immediately at the start, such that
the subsequent motion may be nearly isochoric [180] The incompressibility
assumption is based on descriptive field observations (see MELOSH [279]) and
on deductions from the study of confined laboratory chute flows of a finite
mass of gravel [172]; it makes implicit use of the fact that the basal zone be
the active zone in which nearly all shearing takes place [241]

While the true mass density of the material making up the individual grains
is constant or nearly so, noticeable variation in bulk density may exist as a re
sult of variations in void spaces between grains Here, we would like to give an
outlook on why we can treat the bulk density of the flow avalanche as a con
stant An understanding of how such bulk density variations might develop
in a practical problem can be inferred from earlier studies of constitutive be
haviour of rapidly sheared granular materials derived from considerations of
individual particle interactions [195] Immediately after the pile accelerates
from rest down the bed, a particle layer of sheared material will develop due to
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the friction between the moving mass and the rough basal surface Dispersive
pressures normal to the bed develop as a result of the collisions between the
randomly fluctuating particles This causes the accelerating sheared layer to
expand If the bed is steep and the flow accelerates rapidly for a long enough
time, the reduction in bulk density can be significant However, if the bed
slope is close to the angle of repose of the granular material, the granu
lar mass will accelerate slowly In such a case, the thickness of the rapidly
sheared basal layer can be a small portion of the total depth of the flowing
granular body, so that the vertical dilatation of this layer will be relatively
small As will be seen in the sequel, a crucial step in the development of the
continuum mechanical theory is the process of depth averaging of the field
equations The variations of bulk density that might be present are of less
consequence and may be assumed to have a small effect on the convective
terms in the resulting equations of motion

Two dimensional laboratory experiments on gravel and plastic beads flowing
down curved beds are presented in [172, 175, 179, 324] There it is reported
that the observations of these laboratory avalanches through the glass side
walls of the confining channel show variations in overall average bulk density
from the initiation of the motion until the material comes to rest that are
typically less than a few percent [376] The largest density changes are right at
the start and immediately prior to settlement In a moving mass, the density
variations are generally small

2.7.4 Constitutive Relations

When considering snow avalanches as continuous deforming masses, an es
sential step in their description is the postulation of the stress closure In
particular, due to the strong stress strain history dependence and the non
linear behaviour of snow, constitutive relations seem to be quite complicated
Quoting SALM [364], LANG [242] writes “There exists no universal constitu
tive equation for snow and other granular materials, only equations reflect
ing the behaviour under certain conditions” For various specific problems
of snow, both microstructural theories [244, 245] and continuum theories
[47, 48, 49, 50, 51] have been proposed and applied successfully Unfortu
nately, all these models require detailed information on the particular type
of snow in question [242]

Modern theoretical models of engineering nivology make use of the substan
tial achievements of modern thermodynamics of solids and fluids [1, 28, 47],
fracture mechanics [30, 269] and techniques of homogenisation Modern tools
of elasto viscoplasticity, structural porous, granular and heterogeneous me
dia are used [1] and subjected to experimental scrutiny The two main fields,
(i) the description of snow in its cover and subject to creeping deformations
and (i7) its behaviour in catastrophic motion are so disjoint that to date no
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proposed stress deformation relation that would reproduce both regimes ex
ists, including the breaking of the snow cover into a catastrophically moving
avalanche The two regimes of behaviour are theoretically disjoint and are
largely still thus treated Snow at rest and snow in motion seems to be two
separate scientific fields In the debris and dense pyroclastic flow science the
situation is similar

In 1954, for the first time, BAGNOLD conducted laboratory experiments with
annular shear cells to determine the dependence of the shear and normal
stresses upon rapid shear rates and particle concentration [20, 21] A number
of other experiments were also performed following this pioneering work, see,
e g, SAVAGE and SAYED [372], BUGGISCH and STADLER [55], STADLER AND
BuaaiscH [402, 403] and CAMPBELL [57] The results of such tests depend
upon whether shear tests are performed at constant volume or at a constant
normal stress, respectively In both cases, it is found that the shear and nor
mal stresses are related by a MOHR COULOMB type criterion with an internal
angle of friction that is nearly constant At high shear rates, when shear cell
tests (see Fig 2 22) are conducted so as to maintain a constant volume, it
is found that stresses vary with the square of the shear rate When the layer
of particles is allowed to expand freely, and shear cell tests are performed
with a constant normal load, then it is found that the shear stress is nearly
independent of the shear rate [141, 369, 371] It is in fact this distinguished
behaviour of granular materials that motivated and prompted the authors to
apply it in developing the theory on avalanching motion of a finite mass of

rotating
cop

velocity
profile

annular trough
containing granular material

Fig. 2.22. a) Sketch of an annular shear cell; the granular material is contained
in the annular trough in the lower half of the shear cell and capped by an annular
ring attached to the upper half of the shear cell The cap is rotated with constant
angular velocity, thus inducing a shear flow in the granular material (From [375] )
b) Gravity driven granular motion with large plug flow regime lying on top of a
thin shear flow regime on the basal surface The shear layer is magnified
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granular materials HUTTER and co workers [175, 375, 376] exclusively dis
cussed its relevance for the flow of granular materials down an inclined chute
Afterwards, they successfully applied this idea in more general situations with
respect to an underlying topography [123, 334, 335, 337, 341, 342, 445] In
deed, the use of the MoHr COULOMB yield criterion with constant internal
angle of friction, ¢ is justified, which we will see explicitly in the following
considerations when the continuum mechanical theory is discussed in detail
For the collisional and translational transport of momentum, statistical the
ories have also been developed along the lines of the kinetic theory of a dense
gas, e g , by JENKINS and others [195, 196, 197, 198], for a review see HUTTER
and RAJAGOPAL [178]

In many laboratory experiments of dense granular avalanches [123, 128, 175,
179, 227, 241, 334, 343, 445] and probably in real situations too, it is ob
served that in the flow avalanche regime most of the moving granular mass
rides more or less passively on a fluidised bed This means that only a very
thin basal boundary layer tends to be fluidised, while the major upper part
of the moving and deforming mass is in the regime where a COULOMB type
rubbing friction is effective In fact, despite the dynamic nature of the flow,
instead of treating the fluidised layer as a granular material in COULOMB dry
rubbing friction and collisional interaction regions, one practically collapses
the thin boundary layer to a boundary condition (see Fig 2 22b), namely
the CouLOMB type sliding law with bed friction angle § at the basal surface
For this reason, in their original paper [375] SAVAGE and HUTTER proposed
a simplified constitutive model to treat the granular materials as being of
rate independent COULOMB type, both in the interior and at the bed, with
constant internal and bed friction angles ¢ and J, respectively Later, other
avalanche dynamicists, see for instance [198], used this type of simple yield
criterion to model the frictional behaviour of debris flows and avalanches with
a rough sliding surface Similar ideas were also put forth in debris flows re
search (DENLINGER and IVERSON [74, 75], IVERSON et al [192, 194], PITMAN
et al , [320, 321, 322] and PATRA et al [313])

2.7.5 The Size Effect

Whenever reading about size effects in avalanche dynamics we were puzzled
by not exactly understanding what the authors might mean So, let us state
how we understand it To this end, consider an avalanche track and a mass
of granular materials with its initial locations of release and end deposition
as, e g, shown in Fig 2 23 Imagine a second, analogous situation, similar to
this by geometry but much bigger When scaling this larger avalanche down
to the size of the smaller one, two situations can arise: the two pictures, one
of which is scaled down, are either congruent or they are not If they are,
then there is no size effect, if they are not, then there is such a size effect
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Fig. 2.23. A sketch of the owerall angle, “Fahrboschung”, and its counterpart
overall height drop, “Pauschalgefille”; of an avalanche The line corresponding to
“Pauschalgefille” is also called the energy line since it counts the drop of potential
energy of the mass falling downslope due to the driving force of gravity The white
points are the centres of mass of the granular piles

It follows that size effects manifest themselves in changes of the slope of the
“Fahrbdschung” and “Pauschalgefille” (see Fig 2 23) 12

HEeiM and other avalanche and rockslide scientists observed that large masses
generally travel farther than smaller ones [94, 146, 147] He considered the
size effect as an important tool for investigating the travel distance of a flow

ing mass There are two special terms used in the literature concerning the
travel distance of the mass One of them is the “Fahrboschung” (overall slope),
which is defined to be the tangent of the angle between the horizontal and
the line connecting the crown of the head scrap with the most distal debris
along the midstream path of the mass [94] (see Fig 2 23) The other term,
“Pauschalgefélle”, is defined as the angle between a line connecting the centres
of mass in the initial and end positions and the horizontal, as illustrated in
Figs 223 and 2 24b The line connecting the centres of mass, in this defi

nition is also called the energy line These terms may be useful parameters
distinguished by two important advantages Firstly, they can often be de

termined even if most of the debris of the event has been carried away by
erosion So they are useful for post eventum analysis Secondly, they may fa

cilitate prediction In many cases, the presumptive location of a head scrap of
the avalanche or a rockslide can somehow be marked by a large crack Thus,
one of the two required points of the dynamics is known If the value of the
12 The denotation of these two different slopes in English by these two German
technical words seems to be common in the geological literature “Pauschalge

falle” agrees with the energy line The height travelled by the displaced mass
determines the loss in gravitational potential energy, which equals the total en
ergy loss in the catastrophic motion The “Fahrbdschung” has no physical, but
perhaps a morphological significance It provides information on the terrain
that is affected by the avalanche and it is relatively easy to determine
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overall slope can be determined by past experiences, the material properties
and the topographic features of the ground, and then, the longitudinal reach
of the debris can be estimated

The size effect of the total masses on the dynamics of rockslides, debris and
mudflows, and avalanches is at first of secondary importance in the study,
but it manifests itself in the distance travelled It exerts a direct influence
upon the resistance and an indirect one on the track Most of these effects are
positive, which means that larger masses reach farther However, there are
examples where size effects have a negative influence, for instance, avalanches
and rockslides that are lubricated by air [94] However, because of the great
variety of effects, the theoretical deduction of a generally acceptable depen
dence between size and resistance is probably extremely complex As a rule
of thumb, large masses move faster than smaller ones This fact further in
creases the complexity induced by the size effect Due to this complexity, the
size effect is considered by some rockfall and rockslide dynamicists as a black
bozx [15]

SCHEIDEGGER. presented a model equation depending on the total volume as
a tool for the prediction of the run out distance of rockslide events [379] He
correlates the slope of the “Fahrboschung” f. via

fe =107 ¥C2LogY, (27)

with the total volume V of the moving mass, where C; and C5 are constants
determined by a large number of data points The function f. = f.(V) is
a continuous function obtained by a regression (interpolation) fit of a large
number of f;(V;) data, where 4 is the index running through the number of
events and f; = tan (;(V;) is the tangent of the “Fahrbéschung” (overall slope,
() of the event with volume V; (see Fig 2 23)

This is a purely empirical method and is based on a large number of data
points obtained from field evidence As pointed out by ERISMANN and ABELE,
since the resulting function f. depends on the individual data of the events
employed for its calculation, there is always a risk of a non representative
choice and other sources of errors [94]

In principle, both the analysis and prediction of the one dimensional ava
lanche travel distance determined on the basis of the positions assumed by the
centre of gravity would be preferable However, in many realistic situations
these positions are either not known or very difficult to estimate

2.8 Survey on Avalanche Modelling

Of course, in the past numerous avalanche models were proposed, most of
them being direct adoptions or extensions of the VOELLMY model, but also
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new, innovative models In this section, we present an account of some of
them, ranging from stochastic models to continuum mechanical models to
discrete multi particle models A detailed review of such models was compiled
by HARBITZ [142] in the SAME report; we have already reported on it in
Chap 1 It is hoped that the selection below gives an objective cross section
of the attempts that were made

2.8.1 A View on Some Classical Avalanche Models

Statistical Models'® In mountainous regions, mapping models are used to
determine avalanche zoning for land use and planning This normally de
mands either an accurate knowledge of past avalanche spreads or methods
for computing boundaries of the avalanches To this end, several statistical
models have been proposed Two widely used stochastic models are due to
Liep and BAKKEHGT and McCLUNG and LIED [252, 267]; they establish

initial position
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Fig. 2.24. a) Parameter fit in the statistical model The dark thick line is the real
one dimensionally curved topography that is approximated by the dashed parabola
The solid straight line L determines the stopping point of the avalanche that is
described by the angle « to the horizontal axis Similarly, the broken straight line
L' is the representative of the average inclination angle, characterised by the angle
3, of the real topography, starting from point A and ending at point B b) Pauschal
gefille (tana): Since during motion a thin fluidised boundary layer is formed just
above the bed, this angle is smaller than the internal angle of friction ¢ c) A por
tion of the avalanche in motion: “{” indicates a thin boundary layer lying on the
bed Also seen is the effect of inverse grading due to kinetic sieving

13 These are not models based on statistical mechanics, but rather regression

models correlating pairs of variables thought to possess such correlation
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correlations between the run out distances and the underlying topographic
parameters of an avalanche track These parameters include the location of
the initiation point (A), an intermediate point (B) somewhere in the tran
sition zone (to the run out) and the position of the stopping point (C) (see
Fig 2 24a) A simple continuous curve (e g, parabola) is used to fit the nat
ural path of the avalanche in the downhill direction by assuming that the
longitudinal profile of the avalanche path governs its dynamics The average
inclination angle, 3, to the horizontal of the avalanche path is determined
by a straight line, L', joining the initial point and the intermediate point,
the point at which the deceleration of the avalanche starts The position of
the stopping point of the avalanche motion is described by using a stopping
angle, a, that is, the angle of a straight line, L, joining the starting and
stopping point to the horizontal This angle is the Pauschalgefille as shown
in Fig 2 24b Using regression methods, this angle can be expressed as a
function of the average inclination angle, thus providing the one dimensional
extent and consequential boundaries of the avalanches The model equation
can be explicitly written as « = AB + ~, where the regression coefficient, A
and the constant 7 are to be determined by real field data [252, 253] These
models are explained in somewhat greater detail in [142] They have also
been extended in the recent past and subjected to scrutiny by application
to realistic avalanche events, see KEYLOCK [216], KEYLOCK et al [217] and
JOHANNESSON [203] Further complexity has also been added by employing
multi variate statistics BUSER et al [56], BAKKEH@I AND NOREM [22, 23]
have put these methods to scrutiny with field observations

The upshot of these models consists in variations of the parameters and a
fit of the model with a particular topography Although statistical models
have been extensively used in practice and give fairly reliable and objective
results for fized sites, many shortcomings are attached to these approaches
This method needs a long return period, typically 100 years, of avalanches
for a given avalanche track The dynamics of avalanches is governed not only
by topographic features of their paths, but also depends on many other rheo
logical and mechanical properties of the material, such as basal and internal
angles of friction of the base and the material, respectively The statistical
model is limited to one dimensional path profiles and thus cannot predict
the areal spread of the avalanche, which, among others, is one of the most
important features of avalanche mapping

Mass Point Models Until late 80s of the last century, the most widely
used and applied avalanche models utilised a centre of mass approach They
were based on the ideas suggested by VOELLMY [430], who related the shear
traction at the base of the flow to the square of the velocity and postu
lated an additional COULOMB friction contribution to it On the one hand,
VOELLMY assumed uniform and steady conditions, whilst on the other hand,
in this model a number of subjective parameters must be predetermined in



2 8 Survey on Avalanche Modelling 99

order to obtain results that match observational data The simplicity of the
model constitutes its power, because, depending upon the parameter choice,
it may be applicable to flow as well as powder snow avalanches, but this
flexibility also makes it difficult to handle Many attempts have been un
dertaken to improve VOELLMY’s model, e g, by SALM, GUBLER, PERLA,
CHENG, McCLUNG, MELLOR and BARTELT et al [27, 134, 278, 315, 361]
Unfortunately, none of these extensions could be advanced beyond the centre
of mass approach They are not able to provide information as to the spatial
and temporal properties of an avalanche, such as the velocity distribution
and the evolution of the avalanche height and spread These are certainly not
constant, neither in space nor in time [76, 77] The height of the flow may
merely be included as a parameter value, but is not calculated as a function
of space and time One mass point model due to VOELLMY is so popular and
has been so influential that we give a separate outline of it in Sect 2 8 2

Hydraulic Models!'* Some other, hydraulic, models attempt to idealise
these complicated materials as linear NEWTONian fluids and are discussed by
BruaNOT, DENT and LANG [52, 76] They lead to the NAVIER STOKES equa
tions, which may be solved numerically Although it is perhaps not feasible to
assume that this type of constitutive relation adequately describes the media,
some success has been achieved in modelling certain aspects, such as the geo
metric properties of the motion of the avalanche, with this approach Several
hypotheses have been proposed to explain the mechanisms for fluidisation
that occurs in a thin layer close to the basal surface [93, 134, 156, 214, 389
For fluidised granular materials, apparent viscosities may be measured [391],
but the range of conditions that sustain fluidisation varies greatly among
solid fluid gravity current systems [242]

Hydraulic models are generally developed in the context of gravity driven
flows down inclined planes and are mostly restricted to steady flow within
vertical planes Such a model was developed in the 1980s of the last century
by the Norwegians on the basis of a nonlinear rheological behaviour and
it was an attempt to resolve a velocity profile that was not quadratic in
the variable perpendicular to the basal plane, but showed a form with large
shearing close to the basal pane and near plug like behaviour in an upper
' Hydraulic models are channel flow models in which the flow depth and the
downflow velocities are the principal field variables They are often motivated
from river hydrodynamics The depth integrated models for plane channel flow,
derived for an incompressible ideal fluid, in which the hydrostatic pressure
assumption is employed, are among the most famous equations of hydraulic
engineering They were first derived and used by SAINT VENANT This is the
reason why depth integrated equations for shallow flows are sometimes called
SAINT VENANT equations, even if other than ideal fluid behaviour is in focus
MANGENEY et al [264, 265], for example, refer to granular flow equations as
SAINT VENANT equations
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layer NOREM et al [303] employ the constitutive behaviour of an ERICKSEN

FiLBEY fluid and combine this with a CourLoMB plastic behaviour that is
based on rate independent stretching behaviour This model is able to resolve
the shearing plug flow combination Its generalisation to an unsteady and
three dimensional situation was constructed by IRGENS et al [187] Similar
attempts at a determination of the velocity profile of plane flow were also
undertaken by TAKAHASHI [416] in the debris flow context TAKAHASHI starts
from a rheological model with a quadratic dependence of the shear stress on
shearing, but this model was not easy to extend to three dimensions That
was done by HUTTER et al [181], however the three dimensional extension
has so far not been applied to general avalanching conditions of debris flows

Kinetic Models Methods of statistical mechanics can be used to derive the
fundamental governing equations, including rheological closure conditions, if
it is assumed that the particles are in high agitative motion and this mo
tion is maintained by successive collisions The result is a mathematical de
scription of a dense granular gas (see, e g, HAFF, JENKINS and SAVAGE,
JENKINS and RicHMAN, LUN et al , HWANG and HUTTER and many others
[137, 185, 195, 196, 258]) However, these theories are difficult to apply to
avalanche flows as shown by GUBLER, HUTTER et al , SALM and GUBLER
[134, 170, 171, 366] Such kinetic theories involve as field equations the balance
laws for mass, momemtum and fluctuation energy, corresponding to the field
variables: density, velocity and granular temperature The latter is a measure
of the fluctuating kinetic energy due to the particle collisions Construction
of solutions entails the use of rather complex boundary conditions for the
granular temperature, velocities and stresses For ideal situations of identical
spheres and regular bumpy boundaries, JENKINS and RICHMAN [197] derive
explicit forms of boundary conditions, but for less ideal situations their mo
tivation is still ad hoc In any case it has been demonstrated by HUTTER et
al [170] that the construction of solutions to the related problem, even for
steady chute flows, is very complicated

JENKINS outlined a hydraulic theory applied to a debris of a dry granular
mass in which the greater part of the depth is assumed to behave as a fric
tional plastic material [198] This frictional plastic material is supported at
its base by a thin shear layer in which collisional transfers of momentum and
energy dominate Assuming the heap to be deformed by frictional shearing
while supported at its base by a relatively thin region of intense shear in
which grains interact through collision, he described the frictional shearing
by using the MOHR CoOULOMB yield criterion Together with balance laws
and boundary conditions of the kinetic theory for dense granular flows to
describe the region of colliding grains at the base, he determined the relation
between the shear stress, normal stress and relative velocity of the boundaries
in this shear layer using an analysis of a steady shear flow between identical
bumpy boundaries
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The Discrete Element Method (DEM) This is a direct numerical sim

ulation method in which the motion of individual particles is followed by
interpreting the particles as solid bodies and accounting for the particle

particle interaction For particular aspects of grain interaction the model is
also known as molecular dynamics or event driven dynamics The calcula

tions are typically carried out for a fixed number of spherical particles (or in
two dimensions, circular disks) that are usually bounded on the four sides by
stationary or periodic boundaries Initially, the particles have assigned ran

dom velocities The numerical method involves explicit integration of NEW

TON’s second law of motion Whereas the collisions between molecules can
be treated elastically, this is generally not so for collisions between parti

cles They are inelastic and require to account for a coefficient of restitution
that is smaller than unity Slip is also allowed during contact with frictional
resistance For grains with arbitrary shape, the full EULER equations of trans

lational and rotational motion must be solved for the motion between encoun

ters; this integration is substantially simplified for spherical particles since it
is not necessary to determine all the EULER angles '

Intellectually the method is easy NEWTON’s second law of motion and pos

sibly EULER’s balance of moment of momentum must be formulated for each
grain in free flight and subject to the forces exerted by the contacting parti

cles under collision Since all forces, except the external forces such as gravity,
only act during particle contacts, one must keep track of all the collisions dur

ing numerical simulations A naive implementation would check at each time
step for all N particles whether they are in contact with any of the other
N —1 particles This is very inefficient and hardly feasible for system sizes of
more that a few thousand particles In order to achieve as effective numeri

cal simulations as possible, different numerical methods have been suggested,
see [3, 53, 277, 356] Numerical results obtained by the molecular dynamic
simulations generally exhibit good agreement with observations For exam

ple, in a simulation of plane Couette flow by THOMPSON and GREST [422], a
HOOKE type elastic force model with 750 soft particles with equal radii was
employed A plug like motion of the core and a thickness of the boundary
shear layers of 6 to 12 particle diameters was found, which shows good agree

ment with experimental results [141] Surprisingly, the shear stress did not
show a quadratic dependence on the mean shear rate as expected [20], but
became constant for large shear rates; this is explained by the dilatancy in
15 For a non spherical body the angular momentum equation is derived in a frame
fixed with the body and yields the so called EULER equations The generalised
coordinates are the so called EULER angles; they describe at each instance the
orientation of the body relative to a fixed coordinate system The rotational
degree of freedom per particle is three Since a sphere is symmetric relative
to any plane through its centre, only one equation is needed to describe its
rotational motion This leads to a substantial reduction of the complexity of
the numerical integrations of many particle systems
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the steady state regime Moreover, segregation by size or density can also be
modelled by the use of molecular dynamics [138, 306, 357]

Such direct simulations can hardly handle real practical problems involving
hundreds of thousands, in fact millions of particles, in which the interactions
between any particle and its neighbours are far from simple Nonetheless, they
do provide useful insight into the formulation of theories, much the same as
experimental results This is demonstrated in various simulations that have
been developed and are in use (see the reviews of CAMPBELL and SAVAGE
[57, 370])

Above all, most molecular dynamic simulations have been performed for dry
granular materials The stickiness due to the humidity of the surrounding air
may make it necessary to account for cohesion In such cases and when the
viscous nature of the surrounding fluid is large, the interstitial fluid is signif
icant Then the NAVIER STOKES equations can be used to model the fluid
phase What remains is to adequately incorporate the interactions between
the grains and the fluid

2.8.2 VOELLMY’s Pioneering Work

It is unquestioned that A VOELLMY from the Swiss Institute of Materials
Testing (Eidgendossische Materialpriifungsanstalt, EMPA) in 1955 presented
the first theoretical analysis of avalanche dynamics that was internation
ally recognised [See also Sect 14 2, the text on “The French Contribution
to Avalanche Research”] VOELLMY’s pioneering work appeared in a paper
“About the destructive power of avalanches” (iiber die Zerstorungskraft von
Lawinen [430]), published as a series of four consecutive articles in the Swiss
Civil Engineering Magazine (Schweizerische Bauzeitung) The work was ini
tiated by a consultancy to EMPA commissioned by the private company
“VOBAG AG” to record and evaluate the damage done on properties in the
Vorarlberg, Austria by the catastrophic avalanche event in January 1954
VOELLMY’s paper is 20 printed pages long, and covers the subject of analysis
of the destructive power of avalanches in its entirety

Part 1 is devoted to an estimation of the forms that avalanches exhibit
on obstructing objects and their effects A back analysis is performed on
the buildings and train composition that were destroyed, broken, displaced
or overturned This analysis led to an estimation of the kind and order of
magnitude of the pressures that can be exerted by avalanches

Part 2 stretches over five pages and has the simple title “About the dynamics
of avalanches” Only about half a page is devoted to deriving the model
equations After explaining that the flow in an avalanche must be turbulent
because of the fractionation of the snow slab, and after motivating that such
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turbulent flow must be accompanied with a flow resistivity 7, ~ pv?/€ in
which p,v and £ are the density, the flow velocity and the drag coefficient,
he continues to say:!¢

“A snow layer, with vertically measured height h, sliding down an incline of
constant slope (, generates at the base a frictional resistance that is pro
portional to the slide area (sliding coefficient &), and in turbulent motion
proportional to the mean velocity v and the density p In addition, a fric
tional resistance acts that is proportional to the slide area and to the normal
pressure acting on it Little is known about the frictional coefficient 1 The
friction angle at rest is usually 30° to 40°; most avalanches arise in this range
of slope inclinations

If the buoyancy of the air with density pr, = 0.127 kem 2 is accounted for,
the equation of motion of a portion of a sliding snow layer whose horizontal
projection equals the unit area, is

force = mass x acceleration,

dv
g(p—pL)hsinC—g(p—pL)hCOSCu—'05—902 Phdt (28)
or
d'Ui g h o p'UQ 29
@ o (p— pL)(smg—ucosC)f?, (29)

where h is the constant flow height of the moving layer With & = £h/g the
solution of this differential equation is

V = Upax tanh (%t) , (2 10)

in which the maximum velocity is given by

Umax = \/gh (1 - 7) (sin¢ — pcos(). (2 11)

In most cases, pr,/p and p can be ignored; one may then set
Unax = Ehsing. (2 12)

If initially (s = 0), the snow layer of the investigated travel distance s already
possesses a velocity vg, and then one must, with the aid of (2 10), determine

16 We use a notation in conformity with this book For example, inclination angles

are denoted by ¢ and instead of specific weights v, popular at VOELLMY’s time,
we use mass densities p
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the corresponding time tg, and for the further considerations use the time
to + t instead of ¢ in (2 10)

The travel distance s is obtained as the integral of (2 10)

s = k1ncosh (UH:X t) . (213)

For the starting time ¢* until 80% of the limit velocity vmyax is reached, one
has

tanh (”“:"t*) = 0.8, (214)

and by substituting the value t* obtained from this into (2 13), one obtains
s* = 0.5k, (2 15)

that is, for & = 500 ms~2, one obtains s* = 254’ Already after a very short
starting distance, almost the maximum velocity is reached 7

These are the few central lines of VOELLMY’s text in our translation into
English VOELLMY continues to discuss the applicability of the model to flow
avalanches comprising of only part of the total snow layer or the full layer,
and shows that it also reproduces the dynamics of powder snow avalanches
correctly The latter point is particularly rewarding as a number of measured
velocities for flow as well as powder snow avalanches can be shown to conform
in magnitude with those predicted by the model

Part 3 of VOELLMY’s paper addresses questions of pressure The basis is the
BERNOULLI equation for a compressible fluid Energy considerations are then
used to find the run out distance of the avalanche and to estimate stagnation
pressures

Part 4, finally summarises the formulas and demonstrates their applicability
to real situations

VOELLMY’s paper is a landmark not only because of the derivation of the
model equation and its integration, but it is even more worth reading because
of many side issues that are touched and that demonstrate a superb physical
understanding of the dynamic problem concerning fundamental as well as
applied aspects

2.8.3 Experimental Data

Field Experiments and Their Complexities A major problem in aval
anche dynamics has been the availability of experimental data on various
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aspects of the avalanche motion Field measurements are limited and diffi
cult to obtain and similitude is difficult to achieve when attempting to scale
down and model such flows in the laboratory [172] Direct field observations
and experiments of the dynamics of catastrophic rockfalls or avalanches are
extremely difficult to make as they occur in nature, and they are probably
only possible by remote sensing techniques As already has previously been
mentioned, by using radar DOPPLER technology, GUBLER [134] successfully
studied the dynamics of artificially released snow flow avalanches in central
Switzerland; depth, velocity and density profiles were determined The mod
ern trend in snow avalanche research is the installation of stable test sites
The Swiss Federal Institute of Snow and Avalanche Research is now continu
ously operating such a site in the Vallée de la Sionne and each winter releases
enough snow artificial avalanches, equips the site heavily with instrumen
tation and exploits the measurements in internal reports; for an account of
this, see ISSLER [190] This site is particularly apt for powder snow avalanches
Flow avalanches are studied in a field test site at Ryggfonn in Norway NOREM
et al [302] measured avalanche frontal speeds and forces from a measuring
pillar built into the track of a proposed avalanche when real avalanches were
treated during three consecutive winters in Norway A summary is given by
NOREM [304]

In Japan, avalanche dynamicists performed interesting experiments and nu
merical simulations of ping pong ball avalanches to study three dimensional
granular flows [275] (see Fig 2 25a) Natural snow weighing 300 kg at max
imum was released in winter, whereas up to 550,000 ping pong balls where
used in summer to simulate three dimensional granular flows along the in
clined chute Experiments were performed at the Miyanomori ski jump in
Sapporo, where the balls were released near the top of the leading slope of
gently varying concave and convex curvature followed by a horizontal run
out zone The slope was 160 m long and 60 m high, and covered with an
artificial surface Since the effect of the air drag acting on a ping pong ball is
fairly large, the flow arrived at a steady state within a short distance The at
tained terminal velocities showed a remarkable growth as the number of ping
pong balls increased This is indicative of a mass or size effect MCEIWAINE
and NISHIMURA and NISHIMURA et al [275, 466] observed many similari
ties between natural snow and ping pong ball avalanches Similarity analysis
shows that the experiment at the ski jump corresponds to a natural pow
der snow avalanche running for several kilometres The mentioned authors
are involved in computer simulations of three dimensional, inhomogeneous
two phase flows that use DEM for the particles and the REYNOLDS averaged
NAVIER STOKES equations for the fluid They conclude that the unique na
ture of the ping pong ball experiment provides a wonderful opportunity for
testing a theory and simulation of strongly coupled two phase flows
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a

Fig. 2.25. a) Front view of a 550,000 ping pong ball avalanche at the Miyanomori
ski jump in Sapporo, Japan The motion of this avalanche looks like a powder
avalanche and less like a dense granular flow (From [275] ) b) The revolving door
avalanche path of a large scale dry snow avalanche looking upslope from the instru
mented shed (From [80] )

Large scale dry snow avalanche experiments have been conducted by DENT
et al [80] (see Fig 2 25b) They instrumented a small avalanche path near
the Bridger Bowl ski area in southwest Montana to measure density, velocity,
pressure, height, normal and shear stresses and dynamic friction in a flowing
avalanche (see Fig 2 21) The path was 100 m long on a nearly uniform 35°
east facing zone A bowl shaped starting zone provided snow for avalanches
of up to 1.5 m depth and 1,000 m? in volume Both experiments imply that
the tangential velocity components parallel to the bed are nearly independent
of the depth of the avalanche

The Role of Laboratory Experiments Most observations in the field are
indirect and generally provide only after the fact information As a result,
most theoretical models contain certain hypothetical facts There are only
a limited number of observations that would permit a partial verification
of the theoretical models In addition, comparison of models with results
from field events is often aggravated because these events can be extremely
complex in terms of the kind and size of materials that are present, as well



2 8 Survey on Avalanche Modelling 107

as the bed and avalanche geometries that might be involved In view of these
complexities and the lack of detailed field data against which the theoretical
model can be tested, laboratory experiments are very important; they permit
a control of both material properties and bed geometries They thus facilitate
a comparison of theory with experiment

Most avalanche studies deal with the mathematical formulation of model
equations, their integration and, when possible, verification by means of field
observations Such attempts are limited even though estimation of the run

out distance is very important prognostic information By and large models
are limited to one spatial dimension Illustrative examples are given by AN

CEY and MEUNIER [6, 7, 8], GUBLER [134] and many others Because of their
spatial one dimensionality (and a number of ad hoc assumptions) such model
calculations give global “order of magnitude” information of the flow impli

cations and may also require adjustment of the model parameters of the site

It is, however, practically important to try to obtain a fundamental under

standing of the physics involved in avalanche flow and from this to test the
governing equations and closure relationships that describe them Labora

tory simulation of avalanches is, therefore, an extremely important means of
developing basic theoretical concepts Probably for the first time, systematic
laboratory experiments involving the motion of a finite mass of dry gravel
flow down an inclined plane were conducted by HUBER [160] to predict the
surface water waves (tsunamis) in lakes due to rockfalls plunging into the
water Advances in this area have been made by many avalanche experts,
such as LANG and DENT, NAKAMURA et al and PLUSss and HUTTER et al

[172, 239, 292, 324] At the time, these experiments were probably the only
ones against which a theoretical model could be tested [375] 17

In the hope of isolating the simplicities inherent in the response behaviour of
rapidly flowing granular materials, GRAY et al , GREVE and HUTTER, HUT

TER and KocH, HUTTER et al , KOCH et al , LANG et al , WIELAND et al ,
PupasaiNi, PubpasaiNT et al [123, 128, 175, 179, 227, 241, 334, 343, 445] per

formed well defined laboratory experiments and compared their results with
the findings from computations of the extended SAVAGE HUTTER theory
They showed fairly good to excellent agreement between the theoretical pre

dictions and experimental data A satisfactory fit of such a theory with lab

oratory data still does not imply that the theory is adequate to describe
large scale natural processes Apart from the idealisations of the laboratory
'" In the meantime other debris flow and granular scientists have followed the ini

tiative of HUTTER and coworkers and have conducted their own laboratory, or
as they say, table top experiments Among these are DENLINGER and IVERSON
[74] and IVERSON et al [194], who also performed large scale outdoor experi

ments Similarly, PATRA et al [313] and McDouGALL and HUNGR [273, 274|
also performed experiments on granular flows In debris and mudflow science,
extensive outdoor experiments are described by TAKAHASHI [416)]
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experiment, scale effects might falsify the conclusions in natural hazards
However, the above authors are confident that the formulation of theory
(that in fact is scale invariant) and laboratory experiments is superior to the
previous simpler treatments It examines the problem in a more detailed way
than other formulations have done in the past and is a very important step
in the direction of treating the full problem [175]

Artificial laboratory avalanches show some typical features They are initiated
by releasing a finite mass of granular material, held within a cap or behind a
shutter (see Figs 2 26a,b and 2 27) The freed mass then moves downslope,
expands and contracts as it moves into the deposition area, where it comes
(very) quickly to rest The following facts have been observed in experiments
on an unconfined shallow and curved chute flow (see Fig 2 28): The initial
motion is typical for an unconstrained flow due to gravity; the mass of the
suddenly released granules collapses and flows outward and downward in such
a manner that the potential energy of the pile due to static or overburden
pressure and gravity is converted to the kinetic energy of its motion After
this initial yield, the material, having previously been in a state of consolida
tion, dilates (see Fig 2 26a) If the angle of inclination, ¢, of the inclination
zone is greater than the bed friction angle, d, for a particular material and
surface roughness, the mass continues to flow downward and outward due

Fig. 2.26. a) Side view demonstrating initial yield and dilatant effect after release
of granular material (From [241] ) b) The vertical plate designed to confine the
granular material By pulling the bolt, the plate rotates about the horizontal axle in
the counter clockwise direction, thereby immediately releasing the material (From
[175])
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Fig. 2.27. Consecutive snapshots of the release of a granular material in a curved
chute (From [175])

both to shear failure at the surface material interface and to loss of inter

nal resistance The rate of shear increases rapidly in the initial phase of the
motion and generates large impulsive contact pressures; the particles become
randomly separated, and the mass appears to continue to dilate [241] Also,
an interesting fact is that, at the initiation of the motion, the leading edge
accelerates quite rapidly, whilst the tail remains static for a while or initially
even moves upward The internal friction and the bed friction exert retarding
forces on those parts of the mass that are trying to move at higher relative
speeds However, as the leading edge moves out, the shear rate increases; this
in turn enlarges the impulsive contact pressure so that both the front and the
surface of the flow continues to dilate, reducing the internal resistance of the
flow The granules attain their maximum travel distance as the leading edge
reaches the transition region to the run out zone The movement of the lower
layers is then retarded by the resistance of the basal surface and this has a
considerable effect on the form of the leading edge of the flowing mass The
lower layers are decelerated at the front of the mass, but the tail continues to
accelerate The avalanche thickness in the curved part of the bed is governed
by this breaking action and also under the influence of the “centrifugal” force
generated by the curvature of the basal surface When the lower layers come
to rest, the leading edge is still fluidised The final shape in the run out zone
appears to indicate that the tail of the flow has sufficient momentum to con

tinue moving in the vicinity of the deposited pile The final deposit of the pile
is found to be in the shape of a compact hump (see Fig 2 28)

As is clear from the above discussion, laboratory experiments are a very im
portant means to validate model equations of avalanching motions of a gran
ular body, an extensive study of experimental results and their comparisons
with model equations will be carried out in Chaps 10 13
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Fig. 2.28. A series of laboratory avalanches on an unconfined shallow chute of
which the initiation zone angle is 45° 20.5 kg of 5 mm quartz particles is used The
time interval between two consecutive snapshots is 0.1 s (From [241] )

2.8.4 Necessity for a New Model

The simple two parameter mass point models, e g , of VOELLMY [430], SALM
[361] and PERLA et al [315] have only been tested against field data as far
as run out distances are concerned, and this comparison shows considerable
scatter This means that the field data against which theoretical models could
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be tested were too scarce to calibrate the existing models of that time with
sufficient certainty: the classical theoretical formulations of VOELLMY and
SALM are known to be oversimplified Obviously, because of the mass point
assumption, the temporal evolution of the geometry of the moving avalanche
cannot be calculated in these models The reasons why the run out distances
and deposition areas cannot be predicted by these models with significant
accuracy can be attributed to the difficulties of the parameter identification,
but more likely to an inadequate description of (¢) the physical (rheological)
properties, (i) the sliding conditions and (#i7) the geometries of the moving
avalanches, see [177] Furthermore, these models do not allow the determina
tion of the spreading of the avalanching mass and thus cannot give informa
tion on the mass distribution in the run out zone, see [179] There are other
models describing the avalanches as linear NEwTONian fluids [52, 76] lead
ing to NAVIER STOKES equations These are, in principle, able to somehow
describe the geometrical properties of the motion However, real avalanches
are governed by nonlinear constitutive relations, so that the above ansatz can
only serve as a very rough approximation Alternatively, statistical models are
limited to one dimensional situations and depend on both the topographic
features and long run period They cannot incorporate the rheological and
mechanical behaviour of the material Moreover, kinetic theory and molecular
dynamics models are very complicated to handle even for simple geometries
[134, 170, 171, 366]

It is very difficult to postulate a constitutive relation for the stress tensor in
terms of a deformation measure that correctly describes avalanche behaviour
under rapid motion and possible large shearing for which the phenomeno
logical parameters can be identified Fortunately, observations suggest that
the major part of the shearing in many avalanches takes place in a very thin
boundary layer near the bottom, and it is therefore possible to circumvent
the detailed determination of the constitutive response by depth averaging
the field equations Instead of prescribing a detailed constitutive relation
(stress stretching relation), a COULOMB dry friction law for the basal friction
and a MoHR COULOMB yield criterion for the interior behaviour are used
The information obtained in this way is sufficient to essentially reduce in
formation about the stresses to the traction conditions at the free and basal
surfaces and thus involves only a closure relation for the basal shear traction
(depth averaged equations) Based on these prerequisites, dynamic equations
are derived that describe the temporal spatio evolution of the height and the
depth averaged streamwise velocity of the moving avalanche pile [129]

Since the late 1970s and early 1980s, new mathematical descriptions for the
motion of rockfalls, ice and snow avalanches have been presented for an obvi
ous reason, namely the need for a better prediction of the run out distances
and deposition zones Earlier attempts of such geophysical flows either dealt
with hydraulic type models that treat the problem as a gradually varying
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open channel flow of infinite mass or the mass point model of VOELLMY
As explained above, the avalanche models existing before the late 1980s were
generally too restrictive The trend at that time, and till now in the research
of flowing snow and other granular materials was directed at determining the
predominant mechanisms governing the motion of flow avalanches Despite
the significant role of avalanches in mountainous regions like the Alps and
the Himalaya, where accurate predictions of forces exerted by, and the travel
distances arising in, the other existing avalanche forecast models seemed to
be weak and fraught with uncertainties

The model proposed by SAVAGE HUTTER [375] and their various extensions
and generalisations for real as well as complicated topographies incorpo
rate a great number of the above discussed important features of granular
avalanches [123, 335, 337, 340, 341, 342, 343, 376, 445] It is a more com
plete theory in the sense that it provides a clear formulation of the problem
in physical mathematical terms and leads to well defined initial boundary
value problems to questions of practical relevance Thus, advanced numerical
techniques are being developed and successfully implemented Consequently,
theoretical predictions can be and have been validated by many different
laboratory experiments Thus, in many situations it may provide a complete
knowledge of the avalanche motion on steep slopes from initiation to run out
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3 A Continuum Mechanical Theory
for Granular Avalanches

3.1 General Introduction

It is probably fair to state that in 1989 SAVAGE and HUTTER [375] devel
oped the first continuum mechanical theory, abbreviated in this book as “SH
theory” or “SH model”, capable of describing the evolving geometry of a fi
nite mass of a granular material and the associated velocity distribution as it
slides down an inclined surface This model provides a more complete anal
ysis of such flows than previous models, and its extension as well as a com
parison with laboratory experiments demonstrate it to be largely successful
This depth averaged hydraulic model is rather sophisticated, accepted by re
searchers but is only on the verge of being used by today’s practitioners
The reason for this is that the model is simple to understand and very eco
nomical to implement, even for extremely huge natural phenomena such as
avalanches of snow and rock, and debris flows, e g , from volcanic eruptions
Another very important feature of the model is that it is based on physical
reasoning and rigorous mathematical foundations Equally important is the
fact that the model in its simplest form is scale invariant and can predict
the dynamics of the flow of granular material quite well in chemical and
process engineering, as well as geophysical circumstances Several simplify
ing, but nevertheless realistic, assumptions were made that streamlined the
mathematical formulation They are as follows:

e The moving mass was assumed to be volume preserving This assumption
is based on observations in the laboratory that possible volume expansions
and compactions arise at the initiation and still stand, whilst during its
motion the moving mass nearly preserves its volume Since the dynamics
define the motion, assuming volume preserving is an adequate approxima
tion

e The moving and deforming dry granular mass is cohesionless and obeys
a MoOHR COULOMB vyield criterion both inside the deforming mass, as
well as at the sliding basal surface, but with different internal, ¢, and
bed, §, friction angles This assumption is based on the experimental fact
that on any plane, at which shear and normal tractions may act, their
ratio is constant and equal to the tangents of ¢ or ¢, respectively This
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classical criterion is quite appropriate for materials with rate independent
constitutive properties

e The shear stresses lateral to the main flow direction can be neglected

e The body is supposed to be in an isothermal state or, if not, thermal effects
can be ignored

e The geometries of the avalanching masses are shallow in the sense that
typical avalanche thicknesses are small in comparison to the extent par
allel to the sliding surface This assumption allows the introduction of a
shallowness parameter and simplification of formulas in terms of it

e The avalanching motion consists of shearing within the deforming mass
and sliding along the basal surface However, on the basis of observations,
the shearing deformation commonly takes place within a very small basal
boundary layer, so that it is justified to collapse this boundary layer to zero
thickness and to combine the sliding and shearing velocity to a single sliding
law with a somewhat larger modelled sliding velocity This then effectively
means that variations of the material velocities across the thickness may be
ignored and thickness averaged equations may be employed This method
was introduced by voN KARMAN [435] and later refined by POHLHAUSEN
[325], where the equations are averaged over depth and the velocity profile
is assumed

e In order to obtain a spatially reduced theory for the flow down a slope
of constant inclination angle, the leading order two dimensional equations
are integrated through the avalanche depth

e Scaling analysis identifies the physically significant terms in the governing
equations and isolates those terms that can be neglected

The assumptions of the theory are formally stated in Sect 3.4.3 We also
wish to mention at this early stage that the equations have been criticised
Detailed answers to such criticisms are given in [183] Here we are content to
presenting a simple deduction of the model, quasi as an introduction in its
simplest form An account on its limitations will be given later

This simple spatially one dimensional model, applicable along a straight slid
ing surface, has been generalised in various different ways In fact, one of
the strengths of the procedure is that the model can be generalised to higher
dimensions, to more complex geometries and for multi phase flows such as de
bris and pyroclastic flows, see [75, 123, 124, 128, 129, 177, 191, 192, 194, 313,
321, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 375, 376] A generalisa
tion to flows along a simple curved basal topography was performed in 1991
[376] in order to obtain a complete knowledge of the avalanche motion from
initiation on a steep slope to run out on a shallow slope The coordinates
were generated by a basal curve following the direction of steepest decent
and assuming no topographic variations perpendicular to it This led to an
orthogonal metric and a description of the motion that predominantly singles
out the talweg direction This allowed the local inclination angle to vary as a
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function of the downslope coordinate This idea was equally used in yet more
complex situations of channelised flows The ultimate goal, of course, is the
reference of the metric to the real topography A first step towards this end
is taken in [40]

3.2 The SH-Model, Reduced to its Essentials

Let us commence with a derivation of the SH equations, reduced to their es

sentials We follow a simple “strength of materials approach” that will disclose
the most significant properties of the model and so highlight its essentials

Therefore, consider the plane flow of a granular mass down an inclined plane

Let the x coordinate point in the downflow direction and the z coordinate be
perpendicular to it Isolate a column of length dx and formulate the mass bal

ance and x momentum balance for the element (see Fig 3 1) Assume, to this
end, that the downslope velocity is constant over depth, so that u = u(x,t),
and that the density p of the granular material is constant Equating the
growth rate of mass within the column by a change of height to the inflow of
mass from above and outflow below, yields

% (ph(x,t)) dx = ph(z, t)u(z,t) — ph(x + dx, t)u(z + dz,t)

- ‘(% (ph(z, t)u(z,t)) dz + O ((d:c)Q) , (31)

Fig. 3.1. Plane flow of a finite mass of granular material down an inclined
plane a) Sketch of the geometry, coordinate system and an infinitesimal col
umn for which mass and momentum balances are formulated b) Free body di
agram of the column with acting forces, where P(z,t) = foh(x’t) pr(x, z,t)dz and

P(m + d;mt) — th(w+da:,t) pL(m + dm, 2, t)dZ
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where, on the right hand side TAYLOR series expansion has been used Here,
the O ((dz)?) symbol means that the next term would be of the order (dxz)?
Since p is a constant, (3 1) reduces to

oh n 0 (hu)

ot Ox
in which the arguments (z,¢) and the terms of higher order in (dz) have been
dropped

=0, (32)

Balance of momentum states that the time rate of change of the x momentum
of the column equals the convected flux of momentum into and out of the
column plus the sum of the forces acting on the isolated column Since phu dx
is the x momentum of the column, one easily may write

e Time rate of change of phu dz:

% (ph(z, t)u(x,t)) dx. (33)

e Flux of z momentum through the column walls:

ph(x, t)u?(x,t) — ph(z + dx, t)u*(x + dz, t)

0
= — 5 (ph(a, 1w’ (. 1)) da + O ((d:v)2> . (3 4)
e Forces: these consist of three contributions
(i) =pghsin( dx (driving component of gravity)
(i) = — Tdx (basal friction)
h(x,t)
1) = pr(x, z,t)dz longitudinal pressure
0

h(z+dz,t)
—/ pr(x+dx, z,t)dz,
0

in which the index L indicates that the longitudinal pressure may be dif
ferent from the overburden pressure To specify item (iii), a force balance
in the z direction yields a hydrostatic pressure distribution

p(x, z,t) = pg (h(z,t) — z) cos (.

This may be called the overburden pressure perpendicular to the bed

Following common practice in soil mechanics, we now postulate

pL(»TaZat) = Kact/pasp(xazat)v (3 5)

where Kt /pas 18 the (dimensionless) earth pressure coefficient, and we as
sume that
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Kact, if 3u/3:17 > O,

Kact/pas =
Kpas, if Ou/0x <0,

where K, and Kp.s correspond to the extensive and compressive modes of
deformation With this, one easily deduces from (iii) above that

10
(131) = ~P95 5. (Kact/pash® (2, t)) cos (dz + O ((dw)Q) .

Applying a COULOMB type friction law for the basal shear traction with bed
friction angle 6 and 7 = (tand)p, we obtain

(i1) = —sgn(u) (tan d) pgh(z,t) cos (dx.
Now, adding (7), (#4) and (iii) together, we have
x—force = {pgh(w, t) (sin ¢ — sgn(u) tan d cos ¢)
f%% (Kact/pashQ(x, t)) cos C}d:z: + 0 ((d:c)2> . (36)
If we now collect (3 3) + (34) = (3 6) and drop the common factor pdz in
the emerging equation, we have

0 0
5 (hu) + 2 (huQ)
=g {(Sing —sgn(u)tand cosC) h — %68_;5 (Kact/pashQ(x, t)) cos C} . (87

Equations (3 2) and (3 7) constitute a system of two partial differential equa
tions for the avalanche thickness h(z,t) and the longitudinal velocity u(x,t)
These equations are correct to O ((dx)Q) The driving force is the downs
lope component of the gravity force (first term on the right hand side) This
force is counteracted by the frictional force (second term on the right hand
side), which here is modelled by a CouLoMB type dry friction law There
is a third contribution on the right hand side of (3 7) that, by its deriva
tion, is due to the longitudinal pressure variation and is expressed only in
changes of geometry; it may have either sign and its role will be explained
below

Equations (3 2) and (3 7) together are the SAVAGE HUTTER equations for
the flow of a finite mass of granular material down an inclined plane with in

clination angle ( However, in their original paper, the model was not derived
in this way In the above, they appear in a so called “conservative” form ' If

1 ”

The terms “conservative”, “conserved quantity” and “conservation law” are used
in the literature of continuum mechanics and applied mathematics in two dif
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product differentiations on the left hand side of (3 7) and in the third term
on the right hand side are performed, then (3 7), after dividing it by h and
using the mass balance (3 2), becomes

h
= P9 (Sin ¢— Sgn(u) tan  cos C) - pgKact/pasg_x cos ¢, (3 10)

in which the constant density has been re substituted to make NEWTON’s
second law more explicit In this form, the last term on the right hand side
becomes more transparent It corresponds to a “pull” where Oh/0x is negative
and a “friction” where 0h/0x is positive So, looking at Fig 3 1, the last term
on the right hand side of (3 10) accelerates the mass in the frontal part and
decelerates it in the rear part of the pile Evidently, the term —pgdh/dx is
responsible for the change of the geometry of the moving mass Omitting this
term from (3 10) reduces the equation to the momentum balance of a rigid
mass model that cannot account for the geometric changes of the moving
mass, e g, VOELLMY model [430]

The above analysis outlines the essential elements of the derivation of the
one dimensional depth averaged equations From a physical point of view,
the essential elements are (¢) the implementation of the hydrostatic pressure
assumption, i e, the pressure p at the elements below a column of moving
snow or gravel is the weight of the material above that column corrected by
the cosine of its inclination angle, plus (i) the account of the longitudinal

ferent forms Both are based on the balance law
1o}
= (o) + V- (pfu+@’) = ps’ + i1’ (38)

for a specific quantity f, its flux ®7, supply s¥ and production IT/ densities,
which in view of the mass balance dp/9t+V-(pu) = 0 may, upon differentiation,
also be written as

pj—{zfv-ﬂf+psf+pﬂf. (39)
In continuum mechanics, the statements (3 8) and (3 9) are conservation laws,
or f is called conservative, if II" = 0 In mathematics today, an equation of
the form of (3 8) is called a conservation law, whilst (3 9) is said not to be in
conservative form This has historically not been so Indeed, originally in math

ematics, (3 8) was only denoted to be in conservative form if p (sf + Hf) =0

Today, p (sf + Hf) may be different from zero and (3 8) is then still called a
conservation law by mathematicians, sometimes made more precise by saying
“conservative equation with source term” We admit that all this is unsystem

atic and confusing Which version of conservatism is addressed must be under

stood from the context However, in this book, we consider a conservative law
in the form of (3 8)
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pressure, p;, When p = pr, the pressure distribution is that of a liquid (and
Kact/pas = 1) In this form, the equations correspond to the usual hydraulic
models and are often called SAINT VENANT or BOUSSINESQ equations, and
have so been used in avalanche models in Russia (the former USSR) (see
GRIGORIYAN and others [130, 131, 132, 133], EGLIT and others [84, 85, 86,
87, 88, 89, 90, 91]) When p # pr, then K,c/pas # 1 and non isotropic
pressure distribution prevails; in the soil mechanics literature two different
values of K. pas are suggested according to whether the flow is extending
or compressing, respectively

What remains, therefore, in the above analysis is the determination of the ac
tive and passive earth pressure coefficients K, pas To this end, we consider
the granulate as behaving as a cohesionless COULOMB material with internal
angle of friction, ¢ > 9, the bed friction angle For a plane material element
at the base (see Fig 3 2a), the state of stress (p,—7) in the stress space
must lie on the straight line through the origin and inclined at the angle —d
(see Fig 3 2b) All other elements that are rotated relative to the element
shown in Fig 3 2a must lie on those circles through the point (p, —7) that are
also tangential to the lines through the origin with inclination +¢ There are
two such circles, a bigger, passive and a smaller, active one The stress state
(pr,T) on the perpendicular elements lie on opposite sides of these MOHR
circles as indicated in Fig 3 2b The centre of the bigger MOHR circle lies at
1(p+ pr) and its radius is given by r = (72 + 1 (pp, — p)*)Y/2 Furthermore,
pure trigonometric relations yield

-
p 7 (p+pL)

Substituting the first into the second equation yields a quadratic equation

for pr./p = Kact/pas for which the solution is given by

Koct/pas = 2 sec? ¢{1 F (1 — cos? ¢ sec? 5)1/2} -1, (311)

in which the upper (lower) signs apply for Kue, (Kpas) and sec¢ = 1/ cos¢
This shows that two phenomenological constants, the internal, ¢, and bed, 9,
friction angles describe the material response of the granular material These
can in practical circumstances be determined or estimated relatively easily

The above derivation is somewhat restrictive and sketchy, not suitable for gen
eralisation However, it contains the two essential features of the avalanche
flow, (i) the important geometric term in the  momentum equation (third
term on the right hand side of (3 7) or (3 10)) and, (i) dilating and com
pacting flows are differently treated via the earth pressure coefficient This
coefficient only arises in the geometric term

The above equations have all been written in dimensional form Later, they
will be written in non dimensional form, which for reasons of comparison will
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a

T=-Ptand
T=-Pilanod

Fig. 3.2. a) Material plane element at the basal plane with the stresses (p,7)
and (pr,T), acting at the faces as indicated b) MOHR circles, representing active
and passive stress states: the element touching the base, the side element, pr/p =
Kact /pas follows from trigonometric relations

also be done here In this process we shall recognise the equations also to be
scale invariant Thus, let

(2,2, hu,t} = {La:Hth VoL, \/L/gf} , (3 12)

in which L and H are length and depth scales, /L/g is a time scale, remi
niscent of free fall, \/gL a free fall velocity and the overbarred quantities are
dimensionless These scales are not those of shallow water equations If the
scales (3 12) are substituted into (3 2), (3 7) or (3 2) and (3 10) and overbars
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are dropped, the following dimensionless forms of the governing equations
are obtained

In conservative form

oh 0
a + % (hu) =0,

(313)
2(hu) + 9 (hu?) = (sin ¢ — sgn(u) tand cos ¢) h — 2(EK h? cos C) ;
ot Ox D\ act/pas '

in non conservative form
on + 9 (hu) =0,
ot Ox
(3 14)
O ug = (sinC — sgn(u) tan b c05 ) £ €05 CKoct/pan g
5 T U5 = sin sgn(u) tan § cos € €08 (Kyet /pas o
in which ¢ is the aspect ratio, defined by
H
e=—<1, (315)

L

which, usually, is very small

Equations (3 13) or (3 14) disclose an additional property of the avalanche
model equations They do not contain a typical physical quantity such as,
e g, the FROUDE number In particular, for ¢ = constant and é = constant,
there is no dimensionless physical parameter (e g, FROUDE or REYNOLDS
numbers, etc ) upon which the equations would depend The equations are
scale independent and, therefore, cannot reproduce a possible mass depen
dence of the run out distance

We shall see that, as long as ¢ and ¢ are constants, all these derived properties
are shared by all generalisations of the model equations
3.3 Generalisations of the Original Theory

There are two main streams of generalisation of the theory, one depending
on the coordinate system, the other on the topography In the following
discussion, we will consider both of them separately

3.3.1 Generalisation with Respect to the Coordinate System

The original paper of SAVAGE and HUTTER was based on a formulation using
Cartesian coordinates [375] This initial investigation considered the idealised
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Fig. 3.3. Sketch of the geometry of a finite mass of granular material moving along
a curved rigid bed showing the definition of the free surface given by F*(x,t) = 0
and the equation of the bed F(x,t) = 0 Also indicated are the scales [L] and [H]
for the spread and the maximum height of the avalanche, and the free surface unit
normal n® pointing outward from the body

problem of a finite mass of granular material released from rest on a rough
inclined plane Consider now the free surface flow of a granular material along
a slowly varying bottom topography, as shown in Fig 3 3 When the under
lying topography varies moderately along the longitudinal direction but has
no variation in the transverse direction, a treatment using Cartesian coor
dinates is likely to be a first good approximation of the problem However,
in many situations the downslope variation of the topography may deviate
strongly from a straight line In such cases, it is quite natural and conve
nient to adopt a coordinate system that can better describe the topography
of the base of the flowing material In 1991, SAVAGE and HUTTER [376] ex
tended their model [375] to describe the flow of an initially stationary mass
of cohesionless dry granular material down rough curved beds (see Fig 3 4)
By depth integration of the incompressible conservation of mass and linear
momentum equations that were written in terms of a curvilinear coordinate
system aligned with the curved bed, evolution equations for the depth A and
the depth averaged velocity v were obtained In this way, the bed curvature
effects in the longitudinal direction were incorporated in the theory Such a
curvilinear coordinate system, for instance, can adequately describe a chute
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Fig. 3.4. Definition sketch of the coordinate system and geometry of a finite mass of
granular material moving down a rough curved rigid bed Here, x, z are curvilinear
coordinates in the direction of the flow and normal to the bed, whereas X, 7 are
their Cartesian counterparts u and w are the velocity components along the x and
z coordinates zy and z, indicate the front and rear margins, whilst s,b and h are
the free and basal surfaces and the height of the moving and deforming avalanche
on a rough bed whose local inclination angle with the horizontal is ¢ and the local
radius of curvature is x. Also shown are the free surface and basal unit normals n®
and n’, respectively, pointing outwards from the avalanching body

having a bed made up of a straight inclined portion followed by a curved
part and a horizontal part In all subsequent developments and extensions of
the theory for confined and unconfined chutes, two dimensional and three

dimensional flows, the basal topographies were modelled by using curvilinear
coordinate systems in a natural way, and all equations of motion were written
in such an appropriate coordinate form

3.3.2 Generalisation with Respect to the Basal Topography

a) One-Dimensional Generalisation

The major part of the extensions of the original model [375] is concerned
with the basal topography on which the flow of cohesionless incompressible
granular avalanches takes place As described earlier, the first model was
developed for flow along a rough inclined plane or a situation in which the
main flow direction is nearly parallel to such a plane, as shown in Fig 3 3
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osculating circle

avalanching body

Fig. 3.5. The avalanching body does not pass through the centre of curvature of the
basal surface The centre of curvature is the point of singularity of the coordinate
system under consideration

The model was immediately extended to a two dimensional curved bed [376],
which could better predict the flow of an avalanche on a slightly curved
topography The bed is assumed to have a steep slope at the initial position
of the pile and is curved so as to approach a horizontal flat area in the
downstream direction It is convenient to introduce curvilinear coordinates
z and z as shown in Fig 34 The x coordinate, ie, the coordinate line
z = 0, follows the basal profile and the coordinate lines x = constant are
straight rays perpendicular to the basal profile There are some restrictions of
application of this coordinate system It possesses a singularity at all centres
of the curvature where z equals the radius of curvature Physically, these
points correspond to the positions at which consecutive z axes (which vary
locally) intersect with one another Therefore, in applications we require that
the avalanche does not pass through one of these points during the course of
its motion (see Fig 3 5)

HuTrTER and KocH [175] successfully implemented the theory for curved
channels to the motion of granular avalanches in an exponentially curved and
two dimensionally confined chute GREVE and HUTTER [128] subsequently
extended the implementation of such a theory to a motion of an avalanche in a
convex and concave chute (see Fig 3 6) Because of the bump and depending
upon the granulate bed combination, an initial single pile of the granular
body evolved as a single pile throughout its motion and be deposited above
or below the bump of the bed; or it separated in the course of the motion
into two piles that were separately deposited above and below the bump

b) Two-Dimensional Generalisation

HUTTER et al [177] added one more dimension to the theory, namely the
cross slope direction, which is concerned with the motion of an unconfined
finite mass of granular material released from rest on an inclined plane They



3 3 Generalisations of the Original Theory 127

Fig. 3.6. Same as Fig 3 4 but for a convex and concave chute

considered a free surface flow of granular material down a slowly varying
topography and identified the mean plane surface of this topography with
a plane that is parallel to the (x,y) plane of the three dimensional Carte
sian coordinate system To explain the model, let the x coordinate follow the
direction of steepest descent, the y coordinate be parallel to the horizontal
lines and the z coordinate perpendicular to these (see Fig 3 7) Thus, the
z axis is inclined with respect to the vertical by the angle ¢ The bottom and
the free surfaces of the moving mass will be defined by z = b(x,y,t) and
z = s(z,y,t), respectively The depth averaged equations are deduced from
the three dimensional dynamical equations by scaling the equations and im

Fig. 3.7. Definition of the coordinate system and configuration



128 3 A Continuum Mechanical Theory for Granular Avalanches

posing the shallowness assumption that the moving piles are long and wide
but not deep The assumption of confined plane flow conditions is adequate
to describe many flow avalanches, particularly if they are wide and move on
evenly sloped mountain sides However, avalanches often experience uncon
fined conditions or are suddenly subject to a relief from a sidewise confine
ment, as will occur when the avalanche moves out of a gorge In this first
analysis of an avalanche with variation of the width of the moving mass,
an additional transversal averaging was performed [177] This process was
performed by assuming a parabolic depth distribution across the width, and
longitudinal and transverse velocities, which, respectively, have uniform and
linear distribution across the width of the pile A system of spatially one
dimensional partial differential equations in x (the longitudinal variable) and
t (time) then yields differential equations for the evolution of the centerline
depth of the pile, the combined depth averaged and width averaged longitu
dinal velocity components, the distribution of the width of the avalanche and
its time rate of change This model was developed by LANG [242] but has
never been closely followed or explored in any detail It may be of limited use
in narrow corrie flow or free channel flow in industrial applications

c) Three-Dimensional Generalisation

GREVE et al [129] presented in detail a three dimensional extension of the
two dimensional theory that deals with gravity driven free surface flows of
piles of granular materials along bottom profiles that are weakly curved down
wards and plane laterally (see Fig 3 8) The motion is essentially in the di
rection of steepest descent with small sidewise dispersion In the laboratory
arrangement, a pile of granular material held within a hemispherical cap is
suddenly released from its rest position and moves down the bed until it
comes to rest in the run out zone In this situation, a convenient curvilinear
coordinate system x,y, z is introduced as follows: x is the downward coordi
nate fitting the curve profile of the bed that follows the direction of steepest
descent; y is the lateral coordinate (in this direction the bed is assumed to
be flat); and z is the coordinate perpendicular to the local tangent plane of
the curved bed as shown in Fig 3 8

A further extension of the theory was proposed by GRAY et al [123] They
presented a two dimensional depth integrated theory for the gravity driven
free surface flow of cohesionless granular avalanches, with cross flow variation
of the topography as shown in Fig 39 The talweg in this case is still a
curve in a vertical plane and has no twist The situation nevertheless points
at an important extension of the one dimensional model equations In it a
simple curvilinear coordinate system is adopted, which is fitted to the mean
downslope chute topography This defines a quasi two dimensional reference
on top of which a shallow three dimensional basal topography is superposed
We will deal in detail with this extension in the sequel The reason is that
we can reproduce all of the previous theories as special cases of this model
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Fig. 3.8. Definition sketch of the curvilinear coordinate system fitting the experi
mental curved surface and geometry of a moving pile of granular material

Fig. 3.9. The rectangular Cartesian coordinate system OXY Z aligned so that the
Z axis is parallel but opposite in direction to the gravity acceleration vector, and
the Y axis is parallel to the cross slope reference surface coordinate y The basal
topography (solid lines), on which the avalanche slides, F°(x,t) = 0, is defined by
its height above the curvilinear reference surface F* = b(x,y,t) — z (dashed lines)
The shallow complex three dimensional geometry is therefore superposed on the
two dimensional curved reference surface



130 3 A Continuum Mechanical Theory for Granular Avalanches

The propagation of dense flow avalanches, as well as their transition into
flows of turbulent particle suspensions in air, i e, powder snow avalanches,
has been studied by ZWINGER [449] who modified the Cour.omMB law for dry
friction to complement it with a velocity dependent basal friction law while
using the SH theory for the dense flow part of the avalanche A comparison
between numerical results of the coupled computational model and field data
shows generally good agreement [450]

Recently, some further advancements of the theory have been achieved
PUDASAINI et al [337] extended the theory to cases in which curvature and
torsion effects of the basal topography are included In this sense, this is an
important extension of the original theory All previous extensions were done
in a traditional manner, as they did not incorporate the effect of the torsion
of the basal topography through the underlying metric Natural corries in
steep mountainous regions “meander” in the landscape, which implies that
their talwegs are three dimensional curves in three dimensional space, and
these are locally characterised by curvature and torsion (twist) The most
conceivably simple situation is a helical chute For such situations it is feasible
to base the curvilinear coordinate system on such a three dimensional curve
(here helix) PUDASAINT et al [337] extended the theory to rapid shear flows
of dry granular masses in such a rather strongly curved channel having both
curvature and torsion

Quite recently, PUDASAINI and HUTTER [335] extended the theory to a basal
topography generated by an arbitrary space curve having slowly varying cur
vature and torsion This extension has many important features as well as
far reaching applications in real flow situations In contrast to other previous
extensions, this local coordinate system is based on a generating line with
curvature and torsion Its derivation was necessary because real avalanches
are often guided by rather curved and twisted corries In this way, the equa
tions provide fundamental insight into the effects of non uniform curvature
and torsion, using an orthogonal coordinate system that rotates with torsion,
and find an analytic description for flow avalanches This theory is explained
in detail in Chap 4 The major parts of this book rely on this theory, which
can reproduce all previous extensions of the SAVAGE HUTTER theory In this
sense, this theory is very important both from a theoretical as well as an
applicational point of view

3.4 A Three-Dimensional Granular Avalanche Model

Two variants of extensions of the SH theory will be considered and presented
in detail, which are applicable to unconfined, confined and curved and twisted
avalanche paths with increasing complexity We present both, because it turns
out that they are mathematically very similarly structured and give rise to
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unified analytical and numerical solution procedures This recognition is of
much help later when explicit solutions are constructed The ultimate goal
is to present a critical comparison and to outline the physical meanings and
applicabilities of the equation sets in different configurations The remainder
of this chapter deals with a three dimensional avalanche model that is as
sociated with an orthogonal curvilinear coordinate system This model will
be referred to as the orthogonal complex system, complex in the sense that
a three dimensional basal topography that varies both in the longitudinal
and lateral directions is superposed on top of a quasi two dimensional basal
reference surface The other extension and generalisations of the theory for
an arbitrary reference surface, generated by an orthogonal general coordinate
system will be presented in Chap 4

In the ensuing presentation we shall not derive the model equations as gener
alised by GRAY et al [123], but simply state and explain them, and establish
the connection with the equations derived boldly in Sect 3 2 This deriva
tion will carefully be done for the most general case in Chap 4 The earlier
equations will then fall out from the general ones as special cases

3.4.1 Field Equations

The avalanche is assumed to consist of an incompressible, dry and cohesion
less material with constant density p throughout the entire body Then the
mass and momentum conservation laws reduce to

V-ou=0, (3 16)
o
p{a—?JrV-(u@ll)}:—V-erpg, (317)

where V is the gradient operator, u is the velocity, d/0t indicates differenti
ation with respect to time, ® is the tensor product, p is the pressure tensor
(the negative CAUCHY stress tensor) and g is the gravitational acceleration

Phenomenologically, the granular mass is assumed to satisfy a MOHR Cou
LOMB yield criterion in which the internal shear stress S and the normal
pressure N on any plane element (see Fig 3 10) are related by

S| = N tan ¢, (3 18)

where the sign is given by the direction of the sliding velocity and ¢ is the
internal angle of friction At the base ¢ will be replaced by 0, the bed friction
angle

The conservation laws (3 16) and (3 17) are complemented by kinematic
boundary conditions at the free surface, F® (x,t) = 0, and at the base,
F*(x,t) = 0, of the avalanche, namely
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z

Fig. 3.10. Sketch showing the internal shear stress S and the normal pressure N
on a plane element in the granular body ¢ is the internal angle of friction The
orientation of the plane is arbitrary except at the base, where it is parallel to the
bed

OF®
F*(x,t) =0, 5 +u® - VF* =0, (319)
OF®
F(x,t) =0, 7+uﬁ’-VFb:o, (3 20)

where the superscripts “s” and “b” indicate that a variable is evaluated at
the surface and the base, respectively

There are also dynamical boundary conditions that must be satisfied The free
surface of the avalanche is traction free, while the base satisfies a COULOMB
dry friction sliding law:

F?(x,t)
FP(x,t)

where the surface and basal unit normals are

p°n® =0, (321)

=0,
=0, p’n’—n® (nb . pbnb) = (ub/|ub|) (nb . pbnb) tand, (3 22)

VFS ., VE
n :]VF5|’ n :]VFb|' (3 23)

Remarks

Notice that pn is the negative traction vector, N = n - pn is the normal
pressure and S = pn — n (n - pn) is the negative shear traction It follows
that the COULOMB dry friction law (3 22) expresses the fact that the mag
nitude of the basal shear stress equals the normal basal pressure multiplied
by a coefficient of friction, tand The parameter J is termed the basal angle
of friction

Also notice that the shear traction is assumed to point in the opposite
direction to the basal velocity u® in (3 22) This implicitly assumes that
u’n’ = 0 by (3 20) It also implies that the basal velocity u’ is tangential to
the basal surface This then explicitly indicates the condition that the basal
surface is independent of time, ie, F®/0t = 0 However, for notational



34 A Three Dimensional Granular Avalanche Model 133

convenience we will retain the term 9F®/0t in the field equations wherever
it appears

Defining the direction of the shear stress in this way introduces a singu
larity into the equations at u® = 0 In practical modelling of landslides,
rockfalls, debris flows and snow and ice avalanches this restriction only
requires attention at the onset and near the end of the avalanche motion,
when it seeks to come to rest This singularity may be avoided by replacing
u’/[u’| by the vector valued function

fa:(fuvavfw)v (3 24)

where
fu =tanh (au), f, =tanh(aw), f, = tanh(aw), (3 25)

and o« > 1 is a real number This parameterisation is continuous and re
moves the singularity at u® = 0; moreover, as o — oo, f, approaches the
function u®/|u’|

3.4.2 Curvilinear Coordinate System in a Vertical Plane?

As explained in the previous sections, GRAY et al [123] extended the SH
theory to model the flow of avalanches over a shallow parabolic three dimen
sional topography This led to the first description of the flow of a finite
mass of granular material down a valley or corrie A reference surface that
follows the mean downslope bed topography is used to define an orthogonal
curvilinear coordinate system, oxyz (see Fig 39) The z axis is normal to
the reference surface and the x and y coordinates are tangential to it, with
the z axis oriented in the downslope direction The downslope inclination
angle, , is used to define the reference surface as a function of the downslope
coordinate, x The reference surface does not vary as a function of the cross
slope coordinate, y The chute geometry is superposed by defining its height,
z = b(x,y,t) above the reference surface, z = 0, through the kinematic
boundary conditions, as illustrated in Fig 39, and the depth integration
Even though the local downslope direction of the basal topography may not
coincide with the direction of the = coordinate, for notational simplicity, the
components in the x direction are referred to as downslope components and
those in the y direction as cross slope components

In this section and henceforth, knowledge of the basic elements of tensor cal
culus is assumed There is a great number of books on this, e g, BOWEN and
WAaNG, SOKOLNIKOFF, KLINGBEIL, BRILLOUIN [42, 43, 46, 222, 398] and many
others
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Here, we will present a brief derivation of the model equations of the the
ory For the precise explanation, a rectangular Cartesian coordinate system
OXY Z is defined with unit basis vectors i, j, k aligned so that the vector k is
parallel, but in the opposite sense, to the gravity acceleration vector, i lies in
the vertical plane in which the reference surface varies, and j is perpendicular
to both A simple curvilinear coordinate system oxyz is introduced In this
coordinate system, the position vector r is given by

r=r"(z,y)+ zn", (3 26)

where r” is the position vector of the reference surface and n” is the normal
vector to this surface In Cartesian coordinates, the normal to the reference
surface is

n" = sin (i + cos ¢k, (327)

where ( is the inclination angle of the normal of the reference surface relative
to the Z axis For ease of notation, the identification (z,y,z) = (2!, 22, 2%) is
made These are the contravariant components in the curvilinear coordinate
system (see, e g, BOWEN and WANG and KLINGBEIL [42, 43, 222]), and the

associated covariant basis vectors, g;, are given by
Or
i~ oxt’
The gradients dr/0x! and dr/dx? are simply the tangent vectors to the
reference surface in the ' and 2? directions, respectively Thus, choosing
the mutually orthogonal tangent vectors with the x axis in the OX Z plane,
it follows that dr” /0x! = cos (i — sin(k and dr"/dx? = j, so that
gr=(1- mc?’) (cos (i —sinck),
g2 = J, (3 29)
g3 = sin (i + cos (k,

(3 28)

where the curvature k is given by

¢
The covariant metric coefficients are defined as g;; = g; . g; Thus, it follows
from (3 29) that

(1 — f<;:v3)2 0 0
(9i5) = 0 1 0. (3 31)

0 0 1
Since the off diagonal elements of this metric tensor are all zero, this simple
curvilinear coordinate system is called orthogonal The region above the ref

erence surface z = 0 can be described by the coordinates xyz that are based
on the metric with the square arc length

ds? = (1 — k2)* da® + dy® + d2°. (3 32)
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The metric is uniquely defined as long as the z coordinate is locally smaller?
than 1/k In the theory this is assumed to be satisfied automatically It is
clear that (3 32) defines an orthogonal metric because there is no products
term in it

3.4.3 The Model Equations

Conservative Form The coordinate invariant governing equations of
Sect 3.4.1 are expressed in a first step in the curvilinear coordinate system of
Sect 3.4.2 as shown in Fig 39 Equations are then non dimensionalised via
a scaling that introduces an aspect ratio e = typical height/typical extent
and is used to simplify the equations In a second step, the mass and momen

tum balance equations are integrated through the avalanche depth along the
normal of the reference geometry In this process terms of order higher than
O(e) are neglected For an incompressible cohesionless material the continu

ity equation yields, together with the kinematic boundary conditions at the
free surface and the base of the avalanche,

oh 0 0

—+—(h — (hv) =0 333

50 T g () + 5 () =0, (333)
where h represents the evolving geometry of the avalanche and u = (u,v) is
the depth averaged surface parallel velocity with components u and v in the
downslope and cross slope directions, respectively Similarly, the momentum
balance equations in the downslope and cross slope directions reduce to

) D, o 0 B 0 [ B.h?
E(hu)wL%(hu)Jra—y(huv)hsxa—x( 5 ) (3 34)
) ) ) o [ Byh?
g (hv) + 7 (huv) + o (hv?) = hs, — ay ( y2 ) (3 35)

Equations (3 33) (3 35), which are in conservative form, will henceforth be
referred to as an orthogonal complex system The factors 3, and (3, are de
fined as

By =ecos(K, and [, =ecosCK,, (3 36)

respectively The terms s, and s, represent the net driving accelerations in
the downslope and cross slope directions, respectively, given by

Physically, these points correspond to the positions at which consecutive z axes,
which vary locally, intersect with one another Therefore, the superimposed
topography b should also be shallow Provided that the avalanche does not
pass through one of these points during the course of its motion, the curvilinear
coordinates (3 31) represent a valid coordinate system
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sz:sin(fﬁtané(cosCJr)\an) fscos(%, (337)
Sy = —|%| tané(cos§+)\f<;u2) —scosgg—z, (3 38)
in which
. typical height _ H
typical extent L’
typical extent L

- typical topographic radius of curvature R

and ¢ is the bed friction angle of the granular material with the basal topog
raphy, namely b = b(z,y,t) K, and K, are called the earth pressure coeffi
cients, which are equal to the ratio of the in plane to vertical pressure in the
downslope and cross slope directions, respectively (that is, K, = p,./p.. and
K, = pyy/p--) Elementary geometrical arguments may be used to determine
these values as functions of the internal, ¢, and basal, §, angles of friction,
see [177]; they are given by
Ju

:25e02¢{1:t(1—0052¢sec25)1/2}—1, =0, (339

K Jgu
or =

Lact /pas

1 2 9
sy = 3 {Km +1F (K, —1)° + dtan?) } , 8_Z 20, (340

where K, and K, are active during dilatational motion (upper sign) and
passive during compressional motion (lower sign) The detailed presentation
of these statements and computations will be given in Chap 4, Sect 4.7 For
(3 39), however, see, also (3 11)

The conservation laws (3 33) (3 35) are written in non dimensional curvilin
ear form The non dimensional variables, (x,y, h, b, u,v,t, k) can be mapped

back to their physical counterparts (:i:, U, iL, l;, w, 0,1, /%) by applying the scal
ings

(#,9) =L(x,y),  (h,b)=H(h,D),

(4,0) = VgL (u,v), t=+/L/gt, i=r/R,

where g is the gravitational acceleration It is, moreover, assumed that both
the aspect ratio e = H/L and the characteristic curvature of the chute A =
L/R, arising in (3 36) (3 38), are small

(3 41)

Let us pause and compare (3 33) (3 41) with (3 2) (3 12) in Sect 3.2 Equa
tion (3 33) is the depth integrated balance of mass Other than (3 2), as vari
ables it now contains h and two topography parallel depth averaged velocity
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components (u,v) Note that 2 and y are now curvilinear coordinates, but the
equation appears as if it were written in Cartesian coordinates As we shall
see in Chap 4, this is the result of ignoring terms of order higher than O(e)
This is important to recognise: In general, the conservative form is not ob
tained when curvilinear coordinates are used; the shallowness assumption and
ordering or re definition of variables (see BOUCHUT and WESTDICKENBERG
[40]) puts the equations back to conservative form *

Equations (3 34), (3 35) with the definitions (3 36) (3 40) are the dimen
sionless forms of the downslope and cross slope momentum equations Equa
tion (3 34) is analogous to (3 13); with the addition of the third term on the
left hand side, the transverse flux of the downslope momentum flow, and the
topographic gradient effect, the third term on the right hand side of (3 37)
Equation (3 35) is new, but its structure is analogous to (3 34) The last two
terms on the right hand sides of (3 34) and (3 35) with 8, and f, as given
in (3 36), are the analoga to the corresponding term in (3 7) These terms
account for the variation of the vertically integrated pressures p,, and py,
of an infinitesimal column of cross section dxdy (see Fig 3 1b, in which p,,
or py, correspond to pr) Moreover, as before, they are responsible for the
changes of the geometry of the granular pile and the basal topography Only
these terms contain the earth pressure coefficients and thus account for the
distinction between dilatational and compressional flow states

The source terms s, and s, in (3 37) and (3 38) are also slightly different
from the corresponding terms in (3 7) In (3 37) sin( is the dimensionless
component of the gravity force in the downslope direction The second term
is the component of the basal friction in the downslope direction, but here
the basal pressure is enlarged by A\ru?, the “centrifugal” contribution due to
the downslope curvature of the bed The last term, finally, is the influence
of the basal topography; it accounts for an additional resistive force due to
the fact that the basal surface does not agree with the reference surface
As for an interpretation of s,, it is obvious that in this coordinate system
the y coordinates are always horizontal, so gravity has no component in this
direction The contribution of the second term is analogous to that in s,
and so is the third, geometric term Note that the prefactors of the frictional
forces are such that the resultant frictional traction has the magnitude

7= —tand (cos( + Amﬁ) .

To understand this properly, recall that in the footnote on pages 119/120 var
ious terminologies of “conservatism” of balance laws were introduced Here the
strongest version is meant, namely a balance law without a production term,
and a source term that is truly a source, i e, determined by outside “agents”,
such as, e g, gravity In this strong definition s, and s, in (3 37) and (3 38)
contain a term that depends on u,v It is extremely important for mathemat
ical reasons that the unknown variables appear as far as possible in the flux
terms rather than the “source terms”
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Finally, we mention that the conservative form (3 34) and (3 35) is again only
obtained, since, owing to the shallowness assumption, terms higher than order
O(e) have been ignored There are also further delicate ad hoc assumptions
that will be made clear in Chap 4

Non-Conservative Form For smooth solutions, the mass balance (3 33)
can be used to simplify the convective terms in the momentum equations
(3 34) and (3 35) With the operator

d 0 0 0

— = — — 342

dt 8t+u3x+vﬁy’ (342)
the conservative equations of momentum balance change into the following
non conservative form

ill—?Sin(ﬁtané(cos(Jr)\an)scos(<Kz%+%>, (343)
2_:: —%tané(COSC+)\I€U2)—ECOSC(Kyg—Z‘Fg_Z) ) (3 44)

provided that h # 0. The system of equations (3 33), (3 43) and (3 44) con
stitutes a mon conservative system of equations, derived originally by GRAY
et al [123] to generalise the one dimensional SH theory [375, 376] As we
shall see later on, the non conservative form is useful in implementing the
LAGRANGEan numerical scheme, for more details see [123, 412, 445]

Given the reference surface (slope) ¢ (z), a basal topography b (x,y,t) and
the material slip parameters § and ¢, both of these systems of equations
allow three independent variables h, u and v to be computed once the initial
conditions and boundary conditions are prescribed

We summarise the above findings formally in a compact and precise mathe
matical form quasi as a “theorem” The theory is based on a hydraulic frame
work and generalises the mass point model of VOELLMY [430]

Extended Savage Hutter Avalanche Model® We consider the following
assumptions:

(i) Topography A reference surface can be described by an orthogonal curvi
linear coordinate system Ozyz in which the z axis is normal to the surface
and the x axis and y axis are tangential to it, with the x axis oriented down
slope The function ¢ = ((x) represents the downslope inclination angle to
the horizontal and k = —0(/0x is its curvature Suppose z = b(x,y,t) is
the chute geometry above this surface and z = s(x,y,t) the free surface so
that h(z,y,t) = s(z,y,t)—b(x,y,t) represents the avalanche height along the
z axis

>  For further extension and generalisation of this model, we refer to Sect 49 1
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It will be assumed that a typical value of h(x,y,t), say H, is small in com
parison to a typical extent, L; hence H/L < 1 This is the shallowness
assumption

(i4) Material The avalanche is assumed to consist of an incompressible,
non cohesive, isothermal, dry and dense granular continuum material

(i41) Closure Assume that the material satisfies the CouLoMB dry friction
law at the bottom and the MoHR COULOMB plastic yield criterion in the in
terior, and the dominant deformation takes place in the downslope direction
Assume, moreover, that the shear stresses lateral to the main flow direction
can be neglected and suppose that the downslope and cross slope pressures
vary linearly with the normal pressure through the depth of the avalanche,
and that shearing takes place in a very small basal layer so that the velocity
distribution is almost uniform over the depth

(iv) Pressure Coefficients and Parameters Let ¢ and ¢ be the bed and
internal friction angles, respectively, of the granular material and let the
pressure coefficients K, , = K, , (J,¢) be functions, constructed by using
the MOHR circle, of the form

Km:2sec2¢{1$(1—COSQ¢SeC25)1/2}—1, 9 s, (345)
ox
- 1 2 2 1/2 (91) >
K 2{KI+1:F((KII) + 4tan 5) . 5y 20 (31

for extension and contraction of the material body Moreover, let H, L and
R = 1/k be a typical avalanche thickness, length and radius of the curvature
Define, e = H/L, A = L/R, and

By = ecos (K, By = ecos (K, (347)
sgv:sing—ﬁtané(cosg—i—)\mﬁ)—SCOSC%, (3 48)
Sy = fitané(cos§+)\nu2) fscoséﬁ (3 49)

v |ul dy’

where u = (u,v) is the depth averaged surface parallel velocity with compo
nents v and v along the z and y coordinates, respectively

(v) Smoothness Suppose that all field variables are sufficiently smooth so
that the order of integration and differentiation can be interchanged

Then, under a realistic non dimensionalisation, the dynamics of a granular
avalanche can be described by the set of partial differential equations
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oh 0 0

% o (hu) + a (hv) =0, (3 50)
o 0, o 0 B 9 (Bh*
E(hu)qL%(hu)qLa—y(huv)hszaw( 5 ), (351)
0

5 (hv) + 8% (huv) + 9 (hv*) = hsy — 9 (ﬁyh ), (3 52)

accurate to order 77, 0 <y < 1

Note The physical variables are recovered by realistic non dimensionalisa

tions as pointed out by (3 41)
|

3.4.4 Differences Between Geophysical Mass Flows
and Shallow Water Equations

The avalanche equations (3 50) (3 52) presented above look structurally sim
ilar to the classical shallow water equations However, there are fundamen
tal differences between these two classes of equations These differences are
mainly reflected by the scalings, on which the equations are based, the con
stitutive behaviour and the physical conditions at the boundaries to which
these flows are subjected

(¢) Constitutive Behaviour The fundamental assumption in the above
equations is frictional resistance according to MOHR COULOMB plasticity;
by contrast, the shallow water theory applies to ideal or NAVIER STOKES
fluids The implementation of the former into a depth integrated model is far
more complicated than the implementation of the latter In particular, the
concept of active and passive states of stresses is introduced This implies,
firstly, that the “pressures” in the three space directions are not the same and
thus deviate markedly from hydrostaticity and, secondly, coefficients (i e, 3,
and 8, in (351) and (3 52) or (3 47)) may be discontinuous whenever the
flow goes from a dilatational state of deformation to a compacting one

(i7) Secalings Avalanches fall, water layers do not, but motions in both are
due to the presence of gravity Thus, besides g, the acceleration due to gravity,
a characteristic length to characterise speeds and time are a typical avalanche
extent, L, and the water depth, H, respectively, leading to the characterisa
tion in Table 3 1 This means that a typical speed for avalanches is the free
fall velocity and for water the shallow water velocity This avalanche scaling
has been used in (3 41)

(#i7) Mathematical Differences We have just remarked that 8, and 3,
may be discontinuous, since the earth pressure coefficients K, and Kp.s may
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Table 3.1. Characteristics of the avalanche and shallow water equations Typical
scales to non dimensionalise the avalanche and shallow water equations

Characteristic quantity Avalanche Shallow water
Length L H
Time L/g H/g
Velocity VgL VgH

suffer jump discontinuities This makes the governing equations a system
of hyperbolic partial differential equations with discontinuous coefficients
Mathematically, this is a major step into complexities, because a theory of
existence proofs is still not known in this case One idea is, therefore, to make
K, and K, continuous functions of du/0x and dv/dy, see (3 39) and (3 40),
but then the system of equations may lose the hyperbolicity property and
shocks may now be smoothed  All these peculiarities are not encountered in
the shallow water theory

(iv) Erosion and Deposition Erosion and deposition at the sliding bed
and accumulation at the free surface (usually not significant) may well be
dominating processes in avalanches and debris flows; if incorporated, they
will add production terms to the mass and momentum balance equations,
and they will also change the basal boundary conditions We know that these
processes are not significant in water The erosion process in avalanches and
debris flows is sometimes so significant that the deposited mass in the run
out zone is much larger than the initial mass in the starting zone Or erosion
of a river bed in a mud flow may enlarge the cross section of the river by as
much as ten times and more, see also Chap 10

3.4.5 Features and Limitations of the Extended Model

There are many distinguished advantageous features of the extended model
Needless to say, there are also some limitations We point them out system
atically as follows:

Advantages:

e A Complete Theory The extended model equations provide a complete
dynamic description of the avalanche, debris flow or small scale industrial
flows in channels, hoppers, silos or heap formations from initiation along

5 Such a regularisation has been proposed in [410]
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their paths to the run out or standstill and deposition The dynamics of any
avalanche is associated with the evolution of the avalanche geometry and
the velocity distribution over the entire body Consequently, one can predict
the dynamic pressure on obstructions along the path of the avalanche or
the debris The main intention of the model is to provide these properties
of the flowing geo and industrial granular masses ”

e Three Dimensional Mapping With the exception of the Russian models
there is no other simple avalanche model® that can provide a three
dimensional avalanche mapping along its path to the run out There are
mass point and statistical models (as explained earlier in Sect 2.8), but
they can only provide one dimensional mapping The extended SH model
provides the required three dimensional mappings sought by the avalanche
practitioners to separate a mountain valley into “red, yellow and green” re
gions implying high danger, moderate danger and relative safety, in order
to protect the lives and properties of valley inhabitants

e Scale Invariance The model equations are scale invariant if friction is re
stricted to be of COULOMB type Since the model equations are non
dimensionalised, they can be used for very small (several cubic centimetres)
laboratory motions up to very huge (several million cubic metres) natural
events

e Slope Fitted Model Equations The equations are derived in slope fitted co
ordinates that are compatible with the real bed over which the avalanche
moves at least for simple topographies where downslope curvature is in
cluded Consequently, this model can capture the effects of topographic
curvature None of the other existing models possesses this property

e Handy and Economical The model is very simple to implement in the sense
that one needs to know only two physical parameters: the internal angle
of friction and the bed friction angle and the flow topography In many
cases, the material or the phenomenological parameters can be determined
in the laboratory or they are known from experience in the field and the
basal surface can be constructed from remote digital altimeter data What
is most needed is the initial geometry at the time of the trigger and the
initial velocity (usually zero) In the laboratory this is not problematic
In the field, estimation of the initially breaking mass is more difficult and
can, in re analyses or hindcasts of events be determined from the deposits
Fortunately, the final deposit does not seem to critically depend on the

7 Russians scientists [35, 36, 84, 85, 86, 87, 88, 89, 90, 91, 130, 131, 132, 133, 282,
283, 284, 308, 432] were very much ahead in their developments of avalanche
models, but whereas they accounted for all geometric ingredients, they used
fluid constitutive behaviour analogous to the SAINT VENANT equations with
VOELLMY type basal friction It is known that this makes non planar free
surfaces of depositions impossible, see [40]

Exceptions are NAVIER STOKES models, but they are physically inadequate,
and there are a number of more complex models that, perhaps, aim at the
same goals, see, e g, [74, 75, 191, 192, 194, 313, 321]
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initial conditions except its total volume Computationally, the economy
of the programs is optimal: Usual CPU times for a single run on complex
geometry are minutes and not hours or days, so that computations can
easily be performed for random sets of initial data

Mathematically Well Structured The model equations can be brought into
the standard form of two dimensional non linear hyperbolic partial dif
ferential equations with source terms Robust numerical solution schemes
have been and are still being developed to solve these equations success
fully, from the classical finite difference methods to modern finite element
schemes Moreover, shock capturing and front tracking total variation di
minishing numerical schemes are being implemented for these equations
in order to capture possible shocks We will develop and implement such
numerical schemes in Chaps 7,8,9 and 12

Possibility of Validation by Laboratory Exzperiments The model equations
can easily be validated by well controlled laboratory experiments of con
fined and non confined avalanche motions of different granular materials
Previous experiences have demonstrated good to excellent correlations be
tween the theoretical predictions and the laboratory simulations via nu
merical computations

Reduction to Shallow Water Equations As a special case, the model equa
tions reduce to the classical shallow water equations For this, one needs
only to set the earth pressure coefficients to unity, because fluids, like wa
ter, do not extend or contract as they pass through a topography with
variable curvature Moreover, these model equations can be used to model
actual river dynamics as they include the real topography of the river bed
The equations are then identical to those due to SAINT VENANT; conse
quently the SH type equations are also referred to as SAINT VENANT type
equations, see MANGENEY CASTELNAU et al [264, 265] and BOUCHUT et
al [38, 40]

Ezxtension to Complicated Mountain Topography One of the most important
features of the model is that it can be extended to describe the real flow
of an avalanche and debris in natural and complicated mountain terrain
We will make this fact clear in Chap 4 by developing a new theory that
can predict such flows

Limitations

Parameters The theory holds true only if the internal friction angle is
greater than or equal to the bed friction angle In most engineering and
geophysical flows this restriction is not a problem However, otherwise the
theory fails, because the earth pressure coefficients become complex valued
Geometry The theory gives good to excellent results if the topography
varies gently One may not expect good results if there are abrupt changes
in the topography in a large sub region of the flow path For instance, the
motion over a cliff may cause the avalanche to go into a ballistic motion
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without any contact with the basal surface Under these circumstances the
model equations fail Moreover, the avalanching body should not exceed,
in its height, the radius of curvature and not pass through the centre of
the curvature of the basal topography

e Frictional Resistance There are two opinions about the dry CoULOMB fric
tion law implemented in the SH theory ANCEY and MEUNIER [7] recently
implemented field data of different avalanches in order to infer the bulk
frictional forces on the basis of the knowledge of the velocity variation
and the depth profiles of the events They concluded that the CouLOMB
friction model is adequate to describe variations in velocity and frictional
forces during the course of an avalanche On the other hand, some people
argue that it would be better to include a viscous or velocity dependent
contribution to the basal drag [329, 330, 449, 450] To some extent this is
correct However, its incorporation is conceptually trivial, and it is most
likely not necessary for many flows of cohesionless granular materials The
incorporation of this velocity dependent drag has not been convincingly
demonstrated for such restricted applications ? For snow avalanches some
authors claim it will be necessary and when real computations are per
formed, this viscous drag can be incorporated [449, 450], others come to
the opposite conclusion [7]

e Velocity Profile In the model, it is assumed that the velocity profile varies
uniformly through the depth of the avalanche Actually, a closure would
be needed to include other possibilities that would produce additional pa
rameters for all averaged product quantities However, it is very difficult
to identify them Nevertheless, we have estimated the influence of shearing
and found it is almost never necessary to include it, see [183]

e Lateral Pressure In the derivation of the model equations, it is assumed
that the lateral confinement pressure is close to a principal stress FEx
pressed in the introduced coordinates z, y, z, this is tantamount to ignoring
Tzy, Which is an ad hoc criterion Incidentally, this assumption is justified
whenever lateral velocities and their variations are small as compared to
“downhill” velocities

o Incompressibility The model equations are designed to describe the overall
dynamics of an avalanche However, locally, in the starting region, while
approaching the deposition zone and in the vicinity of obstructions of the
avalanche path, the prediction of the model may not be as good as in other
parts of the topography This is due to the large (relative) dilatation of the
body in these critical zones

o Combination of the First and Leading Orders The final governing equa
tions involve terms of O(1) and O(e), which is standard in the SH theory

In our own experiments of flow of a sheet of granular materials down inclined
planes we were not able to conclusively demonstrate that a steady motion is
be reached This is an argument in favour of CouLOMB friction rather than
viscous behaviour, see [83, 183]
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No other techniques, such as a different scaling or a formal perturbation
expansion, have been found so far that yield only O(1) terms in the final
equations

In Chap 4, we will generalise this theory so as to study the dynamics of
avalanches, debris flows, mud flows, landslides and rockslides over a non
trivial mountain topography that might be arbitrarily curved and twisted

3.5 Avalanches with CouLoMB-Type and Viscous-Type
Frictional Resistance

Up to now the granular mass is treated as a dry COULOMB continuum both
within the interior of the material and on the sliding surface In this section,
we will generalise this concept The basal frictional force will now be assumed
to be composed of a COULOMB type component with a bed friction angle and
a viscous VOELLMY type resistive stress that is proportional to the squared
velocity Such consideration adds further understanding of the dynamics of
flow avalanches, which have a negligible airborne powder snow contribution
It also aims at an improved description of the classical VOELLMY, SALM,
and PERLA et al models [315, 362, 430] It is at this point where the model
provides the necessary flexibility sought by the avalanche dynamicist

3.5.1 Model Equations Including VOELLMY Drag

We extend the bed friction law (3 18) by adding to the COULOMB drag a vis
cous drag as follows:

S =S¢ +Sy. (3 53)

The first is given by |S¢| = Ntand The second is a viscous drag, very much
like the classical VOELLMY drag in the early avalanche models and has the
form

Sy = pqlulu, (3 54)

where ¢ = ¢ (|ul, N) is the dimensionless drag coefficient that may depend on
the modulus of the velocity vector and the stress normal to the basal surface
If ¢ is independent of u, then Sy has a quadratic dependence on the velocity,
but any other dependence (e g , on normal stress) is also possible The impor
tant point here is the following The avalanche dynamicists used to dealing
with the VOELLMY model usually define the viscous drag Sy as follows:

Sy = ”g—g|u|u, (3 55)

where £ = g/q is called “viscosity” but has the dimension of an acceleration
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If (3 55) is incorporated in the model equations, the governing equations
(3 33) (3 40) remain the same except for the driving terms, which now read!®

1 1
Sz = Swi.37) — E|U-|U» Sy = Syi.as)

[ufo, (3 56)

—
—

where (from (3 55))

e &
E=-== 357
.7 (357)
may be called VOELLMY drag coefficient Thus, with (3 56) the model equa
tions (3 33) (3 35) or (3 33) and (3 43), (3 44) are also valid for a frictional
model that incorporates both COULOMB type and viscous type friction This
extended model still exhibits the properties of similitude, if the phenomeno

logical parameters §, ¢ and = are kept constant with the change of the
scale 11

Finally, let us prepare the equations to a form that is particularly convenient
for analytical studies At the same time, a better physical understanding will
thereby be obtained To this end, let

A=sin¢, B=¢ccos(K,, C=cos(tand, D =ccos(K, (358)

be constants and

hu?  huv B 0 1
fz(huv th), B:(O D)’ u= (u,v), ez(o).(359)

Here, all quantities are self explanatory and e is the unit vector in the down
slope (curvilinear) direction With these definitions it is easy to show that
(333) (335), with s, and s, defined in (3 56), take the forms

% + div(hu) =0,
(3 60)
1
% + divF = Ahe — Bgrad(h?/2) — Chﬁ - =[afu.

This form of the model equations allows a particularly convenient separa
tion of the avalanche motion into the motion of the centre of mass plus the
deformation This will now be done

10" Note that (356) contain velocity dependent source terms, which are un

known This fact has its bearings in the handling of the governing equations
with respect to their conservative characteristics, see the footnote on page
119/120

Actually, = exhibits scale dependence through the appearance of g, but as
long as the gravity constant does not change, it is ineffective However, if,
instead of a quadratic viscous drag, a linear drag had been postulated, the
scale dependence would become very explicit

11
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3.5.2 Equations for the Motion of the Centre of Mass

In Chap 5 we will construct solutions that preserve the shape and structure
of the velocity field For this purpose, we need to decompose the motion
into that of the centre of mass and the deformation relative to it [176] This
decomposition is possible provided that the variation of the VOELLMY drag
on the deformation is ignored; instead, it is assumed to be symmetrically
distributed throughout the motion and finally replaced by a “suitable average
value” With it, the depth and velocities relative to those of the centre of
mass of the moving pile can be determined analytically

Equations (3 60) will now be separated into two sets of equations, one gov
erning the motion of the centre of mass, the other describing the deformation
or the deviation from the rigid body motion To this end, let A = A(t) be
the domain in the (z,y) space at time ¢ covered by the avalanching mass
Furthermore, let 0.4 be its boundary margin Integrating the mass balance
equation (3 60); over A yields

//A (% + div(hu)) da =0, (3 61)

where da is the element of the areal integral By using REYNOLDS’ transport
theorem in the first term and GAUSS’ or divergence theorem in the second,

//A%da %//Ahdafgf‘h(u'n)ds,
//Adiv(hu) da%mh(u.n) s,

where n is the outward unit vector normal to d.A and ds is the element of
the line integral Equation (3 61) now takes the simple form

// hda = 0. (363)

This equation says that the total volume of the avalanche is conserved
throughout the motion Obviously, entrainment of snow is ignored In much
the same way, the momentum equation (3 60)s may be transformed in a
straightforward manner to the form

2
i// huda:// (Ahe+(divB)h 0h—“|_“|>da. (3 64)
dt JJ 4 A |ul =

Note that in order to achieve the global momentum balance (3 64), the di
vergence theorem has been employed in various places, and the boundary
condition that h vanishes along the boundary 9.4 has been implemented

(3 62)
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Furthermore, REYNOLDS’ transport theorem has also been employed in this
process

In order to deduce the simplified equation describing the motion of the centre
of the avalanching mass, we define averaged field quantities as follows:

Ei//f‘hda, % :hA// (divB)
‘—ﬂWM(%)Mﬂm o
ol (50 =2 5

Here h.A is the averaged pile volume and U, = (4., 7.) the averaged velocity
of the centre of mass Other averaged quantities are only formal This will
become clear in the sequel Also notice that with the definition (3 59)o, B is
a vector with the components

— 2 OB h? 0D h?

where {} T denotes the transpose of the vector quantity {} With the def
initions (3 65), the global momentum balance, (3 64) takes the following dif

ferential form:
en- (o) - (u (3 67)
dt 2 [u| ZEh )’

This equation is not independent of the deformation of the moving pile, be
cause all overbarred quantities generally depend upon the evolution of the
pile It follows that a centre of mass model alone cannot in general adequately
describe the motion of the centre of a deforming mass This is only so provided
special conditions are satisfied For instance, if A, B,C, D are all constant,
which means that the avalanche moves down an inclined plane and ¢ and ¢
are constant, then A =sin(,B = 0 and C(u/[u]) = C(u/|u]); however, even
with = = constant, the viscous sliding term cannot be expressed in terms of
u. alone Thus, under the above stated simplifications

au. = sinCe — cos( tand EC

.|

dt
is an exact equation and independent of the deformation of the moving gran
ular mass, but

(3 68)

Uc . ﬁc ﬁclﬁc|
—— =sin(e — cos(tand —
gr ~omeeTcosctandm - =

(3 69)
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is approximate and the VOELLMY drag coefficient = is a new (and not
consistent) parameterisation, which decouples (3 69) from the deformational
motion of the pile In general, such ad hoc assumptions, however, need be
made for all terms on the right hand side of (3 68) and (3 69) Next, as
sume dynamic and geometric symmetry of the avalanche with respect to
the x axis, ie, in the direction of steepest descent, as shown in Fig 37
Then,

u(z,y,t) = u(z, —y,t),
v(x,y,t) = —v(x, —y,t), (370)
h(z,y,t) = h(z, —y,t).

This means that v and h are even functions of y, but v is odd in y Then
(3 65)2 implies that v, is identically equal to zero at all times Similarly, the
second component of the vectorial equation (3 67) is identically satisfied, if
for instance,

E(x,y) = E(x, —y), (371)

In view of (3 66), (3 71)s is satisfied only if D is symmetric, i e,
D(z,y) = D(z, —y). (372)

The requirements (3 71) and (3 72) are fulfilled only if the friction angles d, ¢
and the VOELLMY drag coefficient = are symmetrically distributed through
out the motion

Centre of Mass Velocity The centre of mass velocity u. of (3 65)2 can be
determined by integrating the equation of motion

dX. _
Pl (3 73)

where X. = (Z.,7,) is the position of the centre of mass given by

z::_i// hxda, (3 74)
hAJJa

with x = (z,y) Due to the symmetry assumptions (3 71) (3 72), only the
downslope component of (3 73) is non trivial, namely

dZ.
dt
whilst dg,./dt = 0, because v. = 0.

= U, (375)
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3.5.3 Equations for the Deformation and Motion of Mass

With (3 73) (3 75) for the centre of mass motion at hand, we now proceed to
the derivation of the deformation equations To this end, we define the new
independent variables

§:x—fc, n:y_gc’ T=t. (376)

From these equations, we obtain the following relationships between the dif
ferential operators of the new and old variables

o o0 o0 o0 o0 0 _ 0 _0
5z %€ oy ow o or e oy 7D

Introducing the difference velocity relative to the centre of mass velocity
(G, ) =a=u—T1, = (U — U¢, v — T¢) (378)

and the transformation rules (3 76) (3 77) into the governing equations
(3 60), we may, on account of (3 67), derive the following deformation equa
tions:

oh
5 T dive, (hi) =0,

ou N — 1 —
-+ (grad; ,u)u = (A—A)e— B (grade ,h) — 5B (3 79)

{%%ZE%S}{%%+Z%%5}

where the suffix notations &, 7 indicate differentiations with respect to these
variables The derivation of (3 79) is somewhat long but straightforward For
a motion along an inclined plane configuration with constant internal and
bed friction angles, the coefficients A, B,C' and D are constant, implying
A—A =0,B =0 Moreover, if the difference velocities @, % are small in
comparison to u., then the quadratic and higher order terms can be ignored
and yield the following approximations:

ciwc{ L. ‘_10“2},
lu [  [@| [

(3 80)
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In order to avoid formation of a singularity at the margin, A is replaced by
the mean depth h in (3 80)3 4, while in compensation the VOELLMY drag
coefficient = has been replaced by =, a “suitable average” over the avalanche
that has not explicitly been defined before [176]

Note On the one hand, the above relations (3 80) correspond to additional
ad hoc assumptions and are needed if the separation of field equations into
two sets, one describing the centre of mass motion and the other describ
ing the deformation of the entire body is concerned On the other hand,
these expressions are also physically reasonable, because with the exception
of the onset of the motion, the dispersive velocity is small in comparison to
the centre of mass velocity Furthermore, singularities at the margins of the
VOELLMY resistive force are physically very unlikely and variations of the
drag coefficients = within the avalanche are very difficult to determine

With the help of the expressions (3 80), (3 67), (3 75) and (3 79) reduce to
the form

dz. _

ar e

iy,

dt = Vg,

du, e 1
p =sin¢{ - C S Eﬁ”uc—i_vc Ue,
dv. Ve L o
#o o EVERT ey
Oh 0O (hu 0 (hv
_+M+M:O7

or 193 an

ou _0u _Ou Oh [Tc|@
94 a5 _ g2t _pllelt
or "o oy o6 “En’
ov  _0v  _0Ov v Oh  [u.|v
ar Yo Ty @ Con =

The first four equations are equivalent to (3 69) and (3 73), and correspond
to the classical VOELLMY model, but they are here more general than in
the VOELLMY model, because they are written for the motion down a two
dimensional surface and are comprised of a motion in the downslope and
cross slope directions On the other hand VOELLMY, SALM and others, and
PERLA et al [315, 361, 362, 365, 366, 315, 430] dealt only with a one
dimensional motion of the centre of mass The resistive force is composed
of a dry CouLoMB drag and a viscous drag that are proportional to the
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squared velocity The remaining three equations of (3 81) go beyond the clas
sical VOELLMY model as they describe the deformation of the avalanche as
well The equations are in general coupled, but in the approximation, which
is based on (3 80), the equations of the motion of the centre of mass can be
integrated first and those for the deformation afterwards

Note There are several mechanisms that influence the spreading of the
avalanche in motion In the downhill direction the term B (0h/9€) contributes
to a dilatation as Oh/0¢ > 0(< 0) in front of (behind) the centre of gravity
On the other hand, only the velocity dependent drag force resists dilata
tion However, the sidewise spreading, which is incorporated by the term
D (0h/9dn), is reduced by both the COULOMB type and viscous type friction

forces
[ |

In Chap 5 we will present semi exact similarity solutions of (3 81)3_5 to
investigate some basic physical properties of a two dimensionally deforming
avalanche

3.6 Avalanches with Erosion and Deposition

In this section we will present an extension of the SH theory that includes
granular avalanches flowing on a moving and deforming bed in which ero
sion and deposition of granular material can occur Such an extension was
first developed by GRAY [124] Physically, it is important, because a snow
avalanche will often accumulate snow mass from the snow layer it overrides if
its kinetic energy is sufficiently large, and it will deposit snow on the way or
in the run out zone In an actual event these processes may well dominate its
dynamics, but practically it is still unclear how they could be incorporated
in a natural event

For simplicity, we deal only with the two dimensional plane flow of a granular
mass that outlines the basic issues To this end, we rewrite the COULOMB
dry friction sliding law, ie , (3 22), as

F’(x,t) =0, p’n’—n° (nb . pbnb) = (u"/[u"|) (nb . pbnb) tand, (3 82)

where the factor (u”/|u"|) ensures that the COULOMB friction law opposes
the avalanche motion The relative velocity vector u” = u®t — u®~ is the
velocity difference between the base of the avalanche, u®t, and the basal to
pography, u®~ This definition differs from the original SH equations [375] in
the sense that the basal topography can have a non vanishing velocity com
ponent parallel to the interface of the avalanche '? For simplicity, additional

12" This is peculiar to the laboratory experiment considered by GRAY in which the

base itself is moving [124]
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zZ,w

Fig. 3.11. A definition sketch of a fixed Cartesian coordinate system in which
the z axis is inclined at an angle ¢ to the horizontal and points in the downslope
direction The basal topography lies at z = b(x, t) and the avalanche free surface at
z = s(z,t) The avalanche depth is measured along the z axis, which is parallel and
in the direction of the upward pointing normal The normal accumulation rate d*
is the equivalent volume of the granular material deposited on the avalanche free
surface per unit area per unit time Similarly, d* is the normal deposition rate,
which is equivalent to the volume of granular material deposited at the base per
unit area per unit time u and w are the velocity components along the downslope
and normal directions Also shown are the unit basal and free surface normals, n®
and n®, respectively, and e, and e. are the unit vectors along the coordinate axes

effects, such as air drag, rate dependent basal drags and momentum thrust
terms due to mass interaction are neglected

3.6.1 Coordinate System

A fixed Cartesian coordinate system oxz is defined as illustrated in Fig 3 11,
with origin o so that the x axis lies approximately parallel to the basal in
terface and points in the down hill direction with an inclination angle ¢ to
the horizontal The z axis is chosen along the upward pointing normal The
free surface is mathematically described by the equation F* = z — s (x,t)
and the interface between moving avalanche and differently moving base is
given by F® = b(x,t) — z Both are movable and, in general, non material,'?
if accumulation, erosion and deposition can arise

'3 A surface is non material if matter can flow through it For instance, the free

surface of a snow cover is non material during snow fall, because snow flakes
are continuously added to it
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avalanche free surface

\‘\ ) ‘ avalanche

| d.wn_..

o

Fig. 3.12. A sketch of the avalanche and avalanche free surface d® and d° are the
normal accumulation rates at the free surface and the bed, respectively n® and n®
are the unit normals of the free surface and the bed pointing outward from the
avalanching body u’ is the velocity field of the free surface without accumulation
and v® = u’® + d°n° is the velocity of the free surface with accumulation

3.6.2 Accumulation and Deposition

Surface accumulation and basal deposition can occur in many industrial and
geophysical situations: sediment transport in rivers, moving sand dunes in the
desert, erosion of soil in debris flows, erosion of the snow cover in an avalanche
and heap formation of granular materials are typical examples The granular
material that is poured onto the top of the pile provides a source of continuous
surface accumulation to the avalanche and as the granular material comes to
rest at the far end of the slant side it is deposited and buried into the solid
body region of the granular material beneath it This deposition mechanism
can be viewed as a moving phase boundary between the solid and fluidised
regions

The free surface and basal interfaces are modified by accumulation and de
position Let d° be the normal accumulation rate, which is defined to be the
equivalent volume of granular mass deposited on the avalanche free surface
per unit area per unit time (see Fig 3 12) Similarly, let the normal deposi
tion rate, d°, be the equivalent volume of deposited granular material at the
avalanche base per unit area per unit time Then, the velocities of the free
and basal interfaces, respectively, are v¥ = u® + d°n® and v® = u® — d®n® It
follows that the basal and surface kinematic conditions are
ab , Ob

z = b(x,t), n +u pe wl = AP, (3 83)
3] 3]
z = s(xz,t), a—:qLusa—;fws = A%d®, (3 84)
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where
1/2 1/2
Ab = {1 + &2 (8b/6w)2} . AT = {1 +e2 (63/6:6)2} (3 85)

are the non dimensional normalisation factors of the basal and free surface
unit normals, n®, n®, respectively, pointing outward from the avalanching
material Let us derive the second of these relations and leave the first as an
exercise to the reader To this end, we first note that F* = z — s(x,¢) =0 is
the equation of the free surface, which as mentioned above, moves with the
velocity v® Then, the time derivative of F'* = 0 following the surface must
equally vanish for all time This argument implies
DF*  OF® Dx

in which Dx/Dt = v* is the velocity of the surface (and not necessarily of the
particles instantaneously sitting upon it) The next step consists in writing
v® =v® —u® + u®, so that the kinematic equation becomes

oF* grad F'*
dF*) -u® = s _ sy, oo s
ot +(grad £7) -u’ = (u? = v7) |grad F's|

|grad F°|. (387)

Recognising that grad F'¥ is a vector perpendicular to the free surface, F'* = 0,
we may write

grad
lgrad F's|
and thus obtain
+ (grad F*) - u® = |grad F*| (u® — v®) - n°. (3 88)
—_———

—ds

There remains the interpretation of the term —d® It is the flow per unit
surface area per unit time perpendicular to the surface into the direction
of the exterior unit vector n® Thus, d* physically represents the accumula
tion rate of volume per unit surface area Straightforward computation with
F%(x,z,t) = z — s(x,t) now shows that (3 88) agrees with (3 84) Note that
the factors €2 in (3 85) appear from the non dimensionalisation process

In the above, as a first approximation, the effects of accumulation and deposi
tion are taken into account only for the kinematic boundary conditions, and it
is assumed that they have no effect on the dynamical boundary conditions at
the free and basal surfaces of the avalanche In general, more complex bound
ary conditions apply, which also account for the corresponding alterations in
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the dynamic jump conditions '* What is meant here are the convective contri
butions to the surface jump conditions when such surfaces are non material
Since in this book we have not derived such jump conditions, this is difficult
to explain here, see [182] It is, however, clear that, if mass is added at the
top, this mass must also be accelerated to reach the motion of the particles
at the top This no longer makes the traction vanish at the surface

3.6.3 The Model Equations

To derive the governing equations we start with the continuity equation,
divv = 0, and integrate it in z from z =bto z = s

(7 Ou  Ow 0 [ s 0s s p Ob b
Of/b <6x+82>d28w budz [uaw w}Jr{uaw w],

in which LEIBN1Z’ rule has been used in interchanging the integration and
x differentiation The terms in brackets can be replaced by (3 83) and (3 84),
ie,

s 0s | Os s s p Ob »|  Ob b b
[u&r w]— at—l—Ad, [uax w}— at—i—Ad.

With these replacements and the definition of hu = fbs udz, h = s — b, the
conservation equation of mass is obtained in the form
oh 0
o ox
An analogous procedure is also applied for the balance of momentum Here,
one starts with the £ momentum equation in dimensionless form,

T R R 9 .

and again performs an integration in z from z = b to z = s In this pro
cess, integrations and differentiations are interchanged and LEIBNIZ’ rule is
observed This yields

2/ udz—f—i/ u?dz —u® [@ +us@ —ws] +ub {@ +ub@ —wb]
b b

(hw) = A*d® — AbdP. (3 89)

ot Ox ot ox ot ox
—
hu Nz Asds Abqb

e o [ . ., Os ) , Ob
- (Sln C) h 8$ /b Epﬂﬂdz |:Mp:vz S a$:| + |:Mpxz Dz ax:| ’

EPxz h 0

' Here we mean that the free and basal surfaces are now no longer material

surfaces; therefore, [pn] is no longer continuous but given by the jump in
normal mass flux p[v] This latter term can often be ignored, but must then
be justified
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in which the terms identified by parentheses either define the overbarred
quantities or are given by (3 83), (3 84) and the shear traction condition at
the free surface If it is also observed that p’, = —A(u,/|u,|)p’, and that
pb, =nb . p’nb the above equation reduces to

0 0 / —

= () + o (W) — (' Ad* — P A'd)

= hsin¢ — <A” (u"/|u"|) tan & + 5%) (n®-p'n®) — Eaa_x (hpez) - (391)

The final form of the (approximate) x momentum equation is obtained if we
set,

_ h2
u? =72, smh:ﬂzg, A =A"~1, pb, =hcosC.

Equations (3 89) and (3 91) then take the forms

oh o
o Ty ) =d° =", (3 92)

0 0 0

— (hu)+ = (hu?)+ = (B:h?/2) =hsy+u (d° —d°
6t(u)+aw(u)+ax(ﬁ /2) =hsz+u ( ), (393)
where 8, = ecos(K,, and for simplicity, the averaging bar is now dropped
on the downslope velocity component Notice that u® = uw + O (EH’Y) and
ub =u+ 0 (EH’Y) are also employed in (3 93) The net driving acceleration

Sy 1s given by
. ob
SmZSIHC—(UT/|UT|)COSCtan5—ECOSCa—. (394)
x

Given a slope inclination angle ¢, basal friction angle ¢, internal friction
angle ¢, the basal topography b, the surface accumulation rate d° and the
basal deposition or erosion rate d’, (3 92) and (3 93) form a closed system for
spatio temporal evolution of the avalanche depth h and the depth averaged
streamwise downslope velocity v In a typical flow avalanche of snow and in
debris flow avalanches the surface accumulation rate usually vanishes, d* = 0,
whilst the deposition or erosion rate, d°, must functionally be described It
is the determination of this functional relation that we regard as the grand
unsolved problem of avalanche dynamics

Note The MOHR COULOMB yield criterion may not always be an appro
priate assumption for a rapidly flowing granular material Moreover, it is a
rather strong condition when the material is far beyond the point of yield
[124] The inviscid fluid model proposed by EGLIT [87] with an isotropic
pressure distribution

Prz = Pzz, (3 95)
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may also be considered as an alternative method of closure In this case,
K, =1 and there is no jump in the longitudinal stress component, because
Do = Kup.. + O (177) and p.. is a smooth quantity For diverging and
extending flow it may be difficult to differentiate between these two closure
models, as K, is close to unity for typical values of the internal and
basal friction angles ¢ and 0, respectively, see Chap 4 However, as du/0x
passes through the zero value, in other words, when flow changes its state
from extending to contractive (mainly) in the run out zone, or around an
obstacle, the inviscid fluid model is not appropriate [123, 445] This same
proviso also applies to the theory of GRAY et al [126] 15

3.7 Granular Flows in Rotating Drums

Partly filled rotating drums are often used in industry to transport and mix
granular matter In these applications the cylinders are very long Here we are
concerned with a small gap between two co rotating circular plates In such
situations, the motion is characterised by a (large) solid like region of slowly
rotating mass about the horizontal axis of rotation, on top of which there is a
very thin rapidly moving fluid like avalanche of grains close to the free surface
On the other hand, rotating drum experiments, in which a cylinder that is
partially filled with a granular material is rotated, are an ideal laboratory set
up to observe the disparate features that a granular moving system can have;
and under certain restrictions it is ideal to experimentally test whether the
extended SH equations withstand experimental proof It is quite clear that
the dynamics of granular materials in partly filled rotating long cylinders is
more complicated, but for extremely short cylinders, forming only a small gap
between two disks the motion is plane This is the restriction we shall look at
here The experiments described below were conducted by GRAY [124] who
clearly elucidated the suitability of the avalanche theory

3.7.1 Solid-Like and Fluid-Like Regions

One of the biggest problems with granular materials is that they undergo
strong phase transitions between solid, liquid and gaseous states Solving
particular problems, therefore, often involves not only determining the flow
in each of the three regions, but also the evolution of an unknown interface
between two different states However, the phase transitions are much more
complicated and are still poorly understood

'S Tt is interesting to observe that the paper [126] shows the motion of the

avalanche only in the rapid flow region and not close to the deposit The inad
equacy of the model would have become visible there
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Here we consider only the steady flow in a partially filled slowly rotating
drum in order to investigate the coupling between a solid rotating region and
a fluid like avalanche close to the free surface In the theoretical treatment
the fluid like avalanche and the solid like rotating region are treated as sep
arate bodies with a non material singular surface between them, at which
the field variables are discontinuous This is a mathematical idealisation,
and in practice there is a thin layer between the two regions, where there
are large gradients of the density and velocity GRAY [124], however, has
proven it to be a very good approximation for at least a differently coloured
monodispersed granular mizture It is very important to point out the fact
that the dominant physical processes are the mass transfer between the solid
region and the avalanche above it and the dynamics of the avalanche it
self

3.7.2 Coordinate System

In the following, we will make use of the avalanche model developed in
Sect 3.6 for the avalanche motion inside a rotating drum It is therefore
convenient to use two different Cartesian coordinate systems OX Z and oxz
to reflect different geometries in the solid body and avalanching region (see
Fig 313) The avalanche coordinate system is already defined in Fig 3 11
and the angle of inclination ¢ may now be chosen so that the downslope
x axis lies approximately parallel to the free surface of the avalanche (this
consideration is also applicable to the basal surface) As defined in the same
figure, the z axis is normal to it and points upward The solid body coordi
nate system OX 7 is similarly defined so that its axes are parallel to those in
oxz, but the origin O is shifted so that it lies on the axis of revolution The
two coordinate systems are thus related by

Z=1+z X=u, (3 96)

where the constant [ defines the fill level of the drum [124], as illustrated
in Fig 313 It follows from (3 96) that the free surface height S = S (X,t)
and non material singular surface height B = B (X,t) in the solid body
coordinate system OXZ are related to their avalanching counterparts, s =
s(x,t) and b = b (z,t) in the oxz system by

S=1+s, B=I1+b. (3 97)

If the rotating drum is taken to have a radius L, the typical length scales
in the solid region will be of order L, in both X and Z directions Due to
(3 96)2, the avalanche is also of a length of the order L in the x direction
Nevertheless, it is shallow, its thickness is only of the order H such that
e=H/L<1
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(-a.0)

Fig. 3.13. Definition sketch of the coordinate systems in a slowly rotating drum
of radius L, partly filled with granular material oxz and OXZ, respectively, rep
resent the avalanching and solid body coordinate systems This configuration is for
clockwise rotation and the angular velocity of the drum is denoted by —{2 because
2 is the angular velocity for positive rotation in the counterclockwise direction
Both coordinate systems are parallel to each other with a shift of origin The down
hill coordinates of both systems are inclined at an angle ¢ with the horizontal
Also shown in the picture is the vector g of the gravitational acceleration, the
fill level [, the polar coordinate (r,6), the downhill (uphill) coordinate a (—a) of
the intersection of the avalanche with the drum wall (Redrawn from [124] with
changes)

Therefore, the shallowness assumption holds also for flow of granular materi
als in the rotating drum and thus the avalanche equations can be directly used
for the fluidised regions of the whole system of mass in the drum The motion
of the avalanche can, therefore, be computed by solving the system of (3 92)
and (3 93), together with the corresponding earth pressure coefficient (3 39)

3.7.3 Governing Equations in a Solid Rotating Body

Governing equations in a solid rotating body may be determined once the
angular velocity and the position of particles (in the granular bulk material)
from the centre of revolution of the drum are known Since there is a cou
pling of the solid body rotation and the avalanching motion on top of it, a
new kinematic boundary condition must be introduced at the non material
singular surface

In what follows, the field quantities, i e , velocity and density, “within the solid
granular material” will be denoted with the superscript “~” It is, therefore,
assumed that the solid granular material is a rigid body with constant uniform
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density p~ and rotates with angular velocity (2(¢) about the horizontal axis
of revolution O of the drum Let r be the distance from the axis of revolution
O and 6 the unit vector in the azimuthal direction; then the linear velocity
field is simply defined by

u = 2rf, (3 98)

provided that the slip at the boundary between the granular material and the
drum is ignored (this will be considered later) It follows that the downslope
and normal velocity components in the solid region are given by

u=-027Z, w =0NX. (3 99)

At the non material singular interface, F'®, with the avalanching granular
material the solid body is subject to a kinematic boundary condition

b OF" b
F°(x,t) =0: W+vnn~VF:0, (3 100)
where v~ is the normal speed of the interface in the direction of the normal
n®, which points outwards from the avalanche

3.7.4 Interfacial Conditions and Scalings

For notational brevity, in the following, the superscript notations “b—" and
“b+" is introduced to differentiate between variables evaluated on the solid
body (lower) side and avalanching (upper) side of the singular interface, F°,
respectively

These are discontinuities in the density and velocity at the interface between
the rotating material and the avalanche At such a surface, the mass jump
condition is

[p(u-n"—22)] =0, (3101)

where the jump bracket [(-)] = (-)** — (-)*~ is the difference between the
values of the corresponding expressions on the upper and lower sides of the
singular interfacial surface Equation (3 101) simply implies that the mass
jump through the interface is zero, but this provides a means of coupling
between the velocities, as well as densities in the avalanche and solid

We need to use new scalings for all quantities arising from the introduction
of the coupling of the solid body with the avalanche For this region, let
02* be the typical angular velocity magnitude of the rotating granular bulk
material Then the linear velocities in the solid body are of the order of
magnitude 2* L Since density changes are relatively small, a balance between
the normal velocity components (3 101) implies that

v =n’-u, ie 2°L=¢e\/gL, (3102)
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because, n® - u is associated with w and w is multiplied by € in the scal

ings, see Chap 4, which also holds for the avalanche in the rotating drum
However, new scalings must be introduced for the fill height, the free surface
and singular surface variables and other variables in the solid rotating body
These are as follows:

(u_,w_ Ub_) =e

rn

(X,Z,B,8,0) =L (XZBSZ) ,
gL (4=, ,057), (3103)
Q2 =e\/g/L102,

where the hats, as before, represent the non dimensional variables '® The
variables are differently scaled in the avalanching and the solid body mo
tion, see Chap 4 In the avalanche, the downslope and normal characteristic
lengths are scaled differently to reflect the thinness of the geometry, whilst in
the solid body the coordinates are scaled using the same lengths Equations
(396) and (3 103) imply that the non dimensional coordinates are related by

Z=l+ez, X=u, (3104)

where for simplicity the hats are dropped Henceforth, hats are dropped and
all variables are non dimensional unless stated otherwise Then, it follows
that the free surface heights and interface heights are

S=1Il+es, B=I1+e¢b. (3 105)
The solid body velocity components are
um =-07Z w =0NX. (3 106)

From (3 104), (3 105)2 and (3 106), in particular, the velocity components at
the lower side of the singular surface are

uT =02 +eb), w =0 (3107)
in the avalanche coordinate system

Let d** and d’~ be the equivalent volumes of the avalanching and solid
granular material deposited from the avalanche to the solid per unit area per
unit time, respectively It follows that the normal speed v’ in the direction
of the basal normal n® is equal to

et =T b — @bt Wl =ub ont—d', (3108)

b b—

where n® = n®* = n®" is required to conserve mass and prevent void space
opening up between the solid and avalanching layers Assuming that the

16 Here ¢ enters all velocities because the rigid body motion is slow everywhere
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avalanching density on the upper side of the singular surface is p™, the mass
jump condition (3 101), together with (3 108), implies that

&t =(p~/p")d". (3109)

Moreover, in realistic situations, the ratio of densities from the lower and
upper sides of the singular surface is close to unity [124] The velocities on
the solid body (lower side) of the singular surface are prescribed by the nature
of the rigid rotation (3 107) Since u®~ = (=2 (I +¢b), 2z) (from (3 107))
and n® = (e0b/dx, —1) /A, it follows from (3 108) that the deposition rate
on the lower side of the singular surface is

d==ub" -nb ol
= (=2 +eb),Rz) - (£0b/dx, —1) JA® — 2], (3110)
= —¢ (£2/A%) (1 + ¢b) & (92/A%) & — b

ox

From (3 100) the normal speed is equal to v2 = — (9b/0t) JA® Since A’ =
140 (e'*7), (3 110) implies

0b 0b
& = —e— - Qz+ — ) 111
el :c+at+0(e ) (3111)
An approximate deposition rate d’* on the upper side of the singular interfa,
cial surface can now be obtained from (3 109) and (3 111) to order O (') .

3.7.5 Governing Equations in the Avalanche Region

Intermittent Flows At slow rotation rates there are essentially two flow
regimes: intermittent flow and continuous flow Intermittent flow occurs typ
ically at rotation periods above 100 seconds per revolution [124] In inter
mittent flow, the rotation of the drum increases the inclination of the free
surface until the whole or part of it reaches the maximum angle of repose of
the granular material [161, 162] Failure then occurs along an internal slip
surface and an avalanche is created, which flows rapidly downslope When
the avalanche head reaches the front wall of the drum, a shock wave is gen
erated that propagates upslope bringing the avalanche to rest [120], see also
Chap 2, Sect 2.4 The free surface inclination angle now lies below the crit
ical angle of repose of the material and must wait until the rotation of the
drum brings it up to the maximum angle of repose, which is the necessary
criterion for the re occurrence of the failure The intermittent flow regime
is therefore characterised by discrete avalanche events and upstream shock
wave propagation
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Continuous Flows Continuous flow typically occurs in the range be
tween 10 100 seconds per evolution of the drum [124] In this situation, the
avalanche flows continuously downslope and both the basal interface and the
free surface are spatially fixed This implies that there is a continuous steady
erosion and deposition across the avalanche and the solid body interface It
follows that material is fed to the top half (x < 0) of the avalanche by the rel
atively fast rotation of the solid body region The avalanche then transports
this material rapidly downslope, where it is re absorbed into the solid body
region (z > 0) and transported to the top again by the solid body rotation
All processes take place smoothly with a stable configuration in a wide range
of rotation rates

Figure 2 10 of Chap 2 shows the pattern formed in a thin circular drum
filled with a binary mixture of sugar crystal and spherical iron powder and
rotated The intermittent flow regime is clearly visible in Fig 2 10b Within
the avalanche the particles are segregated by their size, so that the larger
ones (white) lie on top of the smaller ones (dark) However, the dynamics of
the bulk motion is essentially the same as when a single grain size is present
On the other hand, Fig 2 10d shows the steady flow regime generated by
a continuous erosion and deposition of the basal interface

Model Equations The fluid like region in the rotating drum can be mod
elled as a granular avalanche with erosion and deposition at its basal interface
The theory presented in Sect 3.6 is, therefore, appropriate and the coordi
nate system oxz and all the variables, scalings and results are adopted here
In addition, the avalanche is assumed to have constant density p™ = po,
and since there is no surface accumulation in a (slowly) rotating drum, the
surface accumulation, d®, defined in Sect 3.6.2 is taken equal to zero The
conservation laws (3 92) (3 93), therefore, reduce to

oh 0 T

o () = —d", (3 112)
9 9y + 2 (8.02/2) = hs, — udt
py (hu) + 3x<hu )+ pe (Bsh?/2) = hsy — ud’™, (3113)

to order O ('), where 3, = eK, cos(, the deposition rate d’" is given
by (3109) and (3 111), and the earth pressure coeflicient K, is defined by
(339) Note that, for an inviscid fluid, the value of K, may simply be taken
to be unity However, great care should also be given to the geometric and
curvature effects of the basal topography In the rotating drum experiments
there is a downslope (slip) velocity in the solid region The scalings (3 41)
and (3 103) imply that the relative slip velocity v = u — 2l + O (5”'7)
This is incorporated into the source term (3 94) to give the resultant driving
acceleration

sx:singfsgn(ufsQl)cos(tanéfscos(?. (3114)
x
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Steady state solutions of the model equations (3 112) (3 113) are presented
in Chap 6 in detail in order to investigate mixing of a granular material in
a slowly rotating horizontal cylindrical drum that is partially filled

3.8 Summary

The main purpose of this chapter was to provide an introduction to the equa
tions that govern the motion of cohesionless granular avalanches In so doing,
the intention was to give a fundamental physical understanding of the meth
ods how these dynamical equations are derived Section 3.2 offered a simple
introduction to the derivation of the dynamical equations as they hold for
plane two dimensional flows of a finite mass of granular material down an in
clined plane The goal was to isolate the physical foundation and to keep the
mathematics as simple as possible to generate equations for this reduced case
that disclose already essential ingredients typical for all avalanche formula
tions later in this book Conservative and non conservative systems of equa
tions were deduced, COULOMB type friction for the plastic yield behaviour
of the material and a similar sliding law were introduced, as were the active
and passive stress states under dilatational and compacting flow states

Section 3.3 gave a descriptive summary of several configurations for which the
avalanche equations, commonly called the SH type equations, were derived
These comprise channel flows in chutes that allow the interpretation of the
flow as two dimensional, so that considerations can be restricted to processes
arising in vertical planes bounded by topographic lines Furthermore, side
wise spreading was then looked at, for unconfined and confined flows along
topographies where the talweg was curved but not twisted and thus lying in
a vertical plane

Section 3.4 then outlined the set of avalanche model equations, formulated
with respect to an orthogonal curvilinear coordinate system, of which the ma
jor coordinate axis, following the talweg of a channelised topography, lies in
a vertical plane These equations, while being more complex in their appear
ance than the previous ones, exhibit the same physical properties as those
of the simple example in Sect 3.2 This section also contains an explanation
as to in what respect the extended avalanche equations differ from the shal
low water equations and lists the advantages and limitations that they may
exhibit

Having presented these model equations for relatively complex geometries,
it is interesting to see how the most popular mass point model fits into this
context Thus, Sect 3.5 extends the basal drag to include both CouLomB
and velocity dependent, viscous type basal friction and then transforms the
governing equations to a composition of a set of equations governing the
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motion of the centre of mass and a second set for the deformation of the
moving granular pile It is shown that for a deforming mass there is, in general,
no centre of mass model that can be integrated without also simultaneously
solving the equations describing the deformation of the pile A decoupling
is only possible for the motion of an avalanche down an inclined bed with
constant bed, §, and internal, ¢, angles of friction, and when the velocity
dependent drag is ignored Because the latter is an essential ingredient of the
VOELLMY model, one is compelled to conclude that the VOELLMY model can
never be an ezxact reduction to a mass point model of a deforming granular
mass

Section 3.6 presented an introduction to the phenomena of erosion and de
position For simple two dimensional flow accumulation of mass from above
and entrainment to and deposition of mass from the avalanche are introduced
into the governing equations

These additional concepts introduced into the description of granular flows in
rotating drums were given in Sect 3.7 For these flows, the governing equa
tions of steady avalanche motion were described, but solutions were deferred
to later Chap 6



4 Rapid Flows of Dry Granular Masses
in Arbitrarily Curved and Twisted Channels

4.1 Motivation

In Chap 3 a set of dynamic equations for the motion of a finite mass of granu
lar material down a certain guiding topography was presented The equations
were motivated by deriving their reduced form for the conceivably most sim
ple version of plane flow down an inclined plane The intention was to give
the reader the underlying ideas of the physics in constructing the various
models The derivation of the equations for the more complex basal geome
tries outlined in Chap 3 was discussed and equations were only presented
but not derived Since in this chapter the flow along a general channelised
topography will be considered, depth integrated equations that are a fairly
general version of the SH type equations will be described Moreover, since
all previous versions are deducible as special cases from this case, it was de
cided to present the explicit analysis only once The reader interested in the
derivations of the simplified versions may consult the pertinent literature
Readers wishing to focus first on the implications may directly pass to Sect
4.9

The model equations presented, e g , in [123, 375, 376] were derived with the
intention of describing the motion of a finite mass of granular material down
a mountain side into a deposition area The underlined curvilinear coordi
nate system was based on a so called ruled surface' of which the generating
base curve was in a vertical plane, and the ruled straight lines were kept
parallel to one another, whilst the third coordinate were perpendicular to
these (see Fig 4 1) The topographies permissible for this special coordinate
system were small deviations from the reference surface z = 0 Whereas this

A ruled surface is one that can be swept out by a moving straight line in space
and therefore has a parameterisation (with parameters v and v) of the form
R(u,v) = b(u) + vd(u),

where b is called the base curve (also called the directriz) and d is the director
curve The straight lines themselves are called rulings The rulings of a ruled
surface are asymptotic curves



168 4 Avalanches in Arbitrarily Curved and Twisted Channels
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Fig. 4.1. Ruled surface, constructed from a generating base curve in a vertical plane
and parallel ruling straight lines The three families of curves define the curvilinear
coordinate system z,y, z

allows a large variety of topographies to be studied, see Chap 3, the geome
tries are nevertheless restricted For instance, the motion in a rather strongly
curved channel having both curvature and torsion cannot be analysed with
mentioned curvilinear coordinate system Such cases do, however, realisti
cally occur In the transportation of solid materials, a finite mass of a dry
granular material may have to be transported through a curved and twisted
channel (e g, with a helicoidal surface) Similarly, the flow of snow or de
bris avalanches down a mountain corrie may be treated as a flow through a
channel, of which the talweg is any prescribed three dimensional curve with
curvature and torsion in the physical space (see Figs 42 and 4 3) Both
situations give rise to alternative formulations in settings with their own co
ordinate systems

In this chapter, we present a review of the recent two dimensional depth
integrated theory developed by PubDAsaINT and HUTTER [335] for the gravity
driven free surface flow of a granular avalanche over an arbitrarily curved and
twisted topography, which is a very important extension of the class of SH
equations In contrast to other previous extensions, this local coordinate sys
tem is based on a generating line with the curvature and torsion The theory
is based on an orthogonal metric, associated with the curvature and torsion
of a basal topography that is generated by an arbitrary three dimensional
curve in physical space It allows relatively easy access to comparison with
laboratory experiments as well as field events The aim of the theory is to
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Fig. 4.2. Examples of curved and twisted natural corries in geophysical scenarios
In both pictures, the talweg of the valley can easily be identified as a smooth three
dimensional space curve (Right picture from [4], courtesy of Birkhiuser Verlag,
and the Swiss Federal Institute of Snow and Avalanche Research, SLF, Davos)

Fig. 4.3. Diverging, converging and uniform curved and twisted channels that can
be used in the transportation of the granular materials (From [342] )

gain fundamental insight into the effects of non uniform curvature and tor
sion, using an orthogonal coordinate system that rotates with the curvature
and torsion, and to find an analytic description of flow avalanches As before
[335], we assume a shallow avalanche of a dry cohesionless granular mate
rial, which is incompressible, i e, with constant density p throughout the
motion from initiation to the run out zone The motion (approximately) fol
lows the talweg of a curved and twisted channel Balance laws of mass and
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momentum, kinematic boundary conditions on the basal and free surface,
the CouroMB dry friction law at the base and the tractionless free surface
condition constitute the underlying moving boundary value problem Depth
averaging the field equations leads to a set of non linear partial differential
equations for the space and time evolution of the granular pile height and
the depth averaged streamwise velocity distribution of a finite mass of gran
ules CouroMB like constitutive behaviour both for the bed and interior of
the granular body is employed An enormous and significant simplification is
achieved by the depth averaging process

The emerging equations constitute a generalised avalanche theory and are
capable of predicting the flow of dense granular materials over curved and
twisted channels of general type The derivation of this new theory starts
from quite a different geometrical and analytical setting, but, surprisingly
enough, the present model can exactly reproduce all previous model equa
tions of the class of SH theory The equations are tested and validated by
numerical simulations, as well as controlled laboratory avalanches of dry and
cohesionless finite mass of different granules that have similar properties to
those of natural avalanches and debris This will be dealt with in detail in
Chaps 7 12

4.2 The Essence of the New Theory

As has been mentioned, PUDASAINI and HUTTER [335] presented a theory
for rapid flows of dry granular masses in a non uniformly curved and twisted
channel having both curvature and torsion In the study of the flow of an
avalanche in a channel of which the azial line, henceforth called the “master
curve” or the “reference curve”, is a generic spatial line, it is important to
choose an appropriate system of coordinates In this theory, one may assume
that the curvature x and torsion 7 of the master curve are known as functions
of the arc length s, k = k(s), 7 = 7(s) Alternatively, they can be determined,
e g , from the digital elevation model (DEM) Then, an orthogonal coordinate
system along the generic master curve can be introduced and the equations
for a non steady, incompressible, dry and cohessionless granular avalanche
explicitly derived in this frame of reference Thus in [335] we studied the
simultaneous effects of curvature and torsion on the flow of avalanches in
channels, something that could not be investigated before

This theory aims at providing evidence that the model equations work well
also for topographies having curvature and torsion This makes the present
model amenable to realistic avalanche motions down arbitrarily guided to
pographies, such as valleys and channelised corries In fact, geographic infor
mation systems (GIS) applied to mountainous avalanche prone regions can,
in principle, be applied to this model GIS provides the analytical and ge
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ometrical basis for an application close to realistic situations and tuned to
practical use This chapter lays the theoretical foundation towards this end
Different from in the original theory [375, 376], we choose an arbitrary space
curve and use it to define an orthogonal curvilinear coordinate system As in
the SH model, we formulate the balance laws of mass and momentum, as well
as the boundary conditions in terms of these coordinates, non dimensionalise
the equations and average them over the depth of the avalanche There is,
however, a subtle difference in non dimensionalising the equations and in the
ordering analysis as compared to the original theory The final governing
balance laws of mass and momentum appear to be much less complicated
with the averaging operation performed due to the use of an orthogonal basis
constructed in a special way

In what follows, we will present this theory in detail The derivation of the
field equations in their coordinate free form can be taken from Sect 3.4.1
Here we will just refer to those equations whenever they are explicitly needed
Therefore, we will start the analysis of the flow by presenting the underlying
curvilinear coordinate system

4.3 General Orthogonal Coordinate System

Consider an avalanche prone landscape and a subregion of it where the topog
raphy allows the identification of an avalanche track (see Fig 4 2) A curve fol
lowing the landscape topography (e g , the talweg of a valley) is singled out as
a master curve C from which the track topography will be modelled Let this
three dimensional curve be smooth; in the global coordinate system it may be
given by R(x,y, z), where x, y and z are the Cartesian coordinates A moving
coordinate system is constructed (see, e g , KLINGBEIL, BOWEN and WANG,
GERMANO, ZABIELSKI and MESTEL [42, 43, 112, 113, 222, 447, 448]) by con
sidering this spatial curve described by the position vector R(s), where s
is the parameter that measures the arc length from some convenient refer
ence point 2 At any point of the curve we may erect the orthonormal triad
{T,N, B} that, comprises the tangent, principal normal and binormal unit
vectors, respectively, also expressible as functions of s The vector pair {IN, B}
spans a plane perpendicular to C Any vector X in three dimensional space
can be expressed as

We assume here that the arc length is either known or can be computed If ¢
is another parameterisation of the reference curve, then

t
s:/ IR(t)|dt’,
to

where to is the parameter value for which s =0
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// to line L
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Fig. 4.4. Sketch and description of a moving coordinate system and generation of a
mountain corrie: R(s) describes the reference (master) curve C' embedded in R, s is
the arc length, {T, N, B} is the moving orthonormal unit triad following the curve
(r,0) are polar coordinates spanning the plane of circle S with radius 7 normal to
the axis of C' The origin of the azimuthal angle, 6, in this plane is arbitrary, but
measured from the unit vector N*, which is rotated from IN by a phase (¢(s) + ¢o)
for an s € [so,00), so € [0,00) and 6 € (0, 2m) o is an arbitrary constant and P
is any point in space (From [335])

X :=X(s,r,0)
=R(s) +rcos (0 + o(s) + o) N(s) + rsin (0 + o(s) + o) B(s). (41)

Here, (r,0) are polar coordinates spanning the plane normal to the axis of
the master curve C in Fig 4 4 The origin of the azimuthal angle, 6, in this
plane is arbitrary but measured from the unit vector N*, which is rotated
from N by a phase (p(s) + ¢o) Moreover, ¢ is an arbitrary constant (in
applications often conveniently taken as 0 or +7/2) and

o(s) = — /S 7(s")ds (42)

is the accumulation of the torsion of the curve as it proceeds from the ini
tial point so Hence the torsion, 7(s), enters into the equations through the
auxiliary function ¢ = ¢(s)® From differential geometry (see, BOWEN and
WaNG and KLINGBEIL [42, 43, 222]) we recall the following results:

3 This system of coordinates is well known to researchers involved in studies on

hydromagnetic equilibria It was first introduced by MERCIER [280] and was
extensively used by SOLOVE’V and SHAFRANOV [399] in their computations
of plasma confinement in closed magnetic systems GERMANO [112] wrote the
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T(s) = 0, N(s):ﬂ(ls)drgis), B(s) = T(s) x N(s),  (43)

where x(s) is the curvature of the master (reference) curve C' and “x” stands
for the “cross product” of two vectors in R3 Curvature and torsion can be
computed from the function R = R(z,y, z) and are intrinsically expressible
as functions of the arc length s: Kk = k(s) and 7 = 7(s) The SERRET
FRENET formulas provide a connection between the curvature and torsion
and the changes of T, IN, B along s as follows:

dT dN dB
E—KZN, ngB*K)T, E—*TN, (44)
or in matrix notation
d T 0 w O T T
Ts =|-& 0 7 N |=F@s)| N, (45)
*\B 0 —7 0 B B

with the skewsymmetric matrix F

Because GIS refer the topography to the global Cartesian system {z,y, z},
this must in a particular application first be transformed to the orthogonal
moving coordinate system This can be done, e g, by using NURBS (non
uniform rational B spline), see PIEGL and TILLER [317] In this chapter it will
not be of any concern because our focus will be on the derivation of the model
equations for an arbitrary topography The most advantageous fact of this
moving coordinate system along a curved and twisted line is that one is free
to choose the master curve Hence it may have applications in investigations
of the flow behaviour of fluids as well as moving granular materials in a curved
and twisted channel

For ease of notation the identifications
(z', 2?, 2°) = (s, 0, 1) (46)
will be made

The tangent vectors to the coordinate lines, i e , the associated covariant basis
vectors, g; = X /0z" (see Fig 4 5), are given by*

NAVIER STOKES equations for an incompressible viscous fluid in these coordi

nates and GERMANO [113] extended the DEAN equations [72, 73] to the case
of a helical pipe flow in this orthogonal system of coordinates Recently, GAM

MAcK and Hypon [106] studied steady and unsteady flows in pipes with small,
slowly varying curvature and torsion using GERMANO’s extension of the DEAN
equations

Note that in the derivation of these basis vectors (4 2) (4 4) are implemented
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Fig. 4.5. Representation of a curved and twisted channel, a reference curve and
the tangent vectors along the coordinate lines The dark line along the channel is
the axis of the channel (From [342])

g1 = (1 —rrn) T(s),
g2 = —1(N(s) + rnB(s), 47)
g3 = 77N(3) + CB(S)a

where
n=-cos(0+¢(s)+po), ¢ =sin(0+(s)+po). (48)

The covariant metric, defined as (g;;) = (g; . g;) and the associated con
travariant metric (¢%), determined by (g) (g;x) = 6}, turn out to be

(1—rrp)®> 0 0 . 1/1—rr)® 0 0
(9ij) = 0 r2 0|, (¢7) = 0 1/r2 0].(49)
0 0 1 0 0 1

It is clear that in contrast to the standard Cartesian unit vectors i, j, k, the
covariant vectors g; vary as functions of position One can easily show that
the metric for the chosen coordinate system is given by

ds® = dX - dX = g;; da’ da’
=[1—k(s)rcos (04 p(s) + <p0)]2 (ds)2 + (dr)2 + (7“d9)2 . (410)
This corroborates the orthogonality of the system (4 1) and (4 3) It is also
easy to see that when 7 = 0, this system of coordinates reduces to the simple

toroidal system, while it reduces to the cylindrical coordinate system when
k=17=0
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The CHRISTOFFEL symbols of the second kind® are needed to express the
differential operators grad and div in order to transfer the equations of mo
tion from the coordinate free form to the curvilinear coordinates This is
a standard method when tackling geophysical flow processes with compli
cated boundary and topographic conditions In an orthogonal coordinate
system, they are defined as (see, e g, BOWEN and WANG and KLINGBEIL
[42, 43, 222))

Iy, = %g(kk) (gmk,t + Grtm — Gim k) (4 11)

For the curvilinear coordinates (4 9) the components of the CHRISTOFFEL
symbols are

Ar —kr¢ kn 1 —kC/Y 00 kn/v 0 0
M'=—y|l-rr¢ 0 0], T?== 0 01|, %= 0 —r0], (412
Km0 0 "\ 0 10 0 00

where
A=kn+rr¢, v=1/(1—rrn) and k' = 9r/0s. (4 13)

The (covariant) unit vectors are defined® as g = gi/,/gu;) Further, the
vector differential operator V is defined as
0

V=g—, 414

8 5% (4 14)

with components given in terms of the contravariant basis g* and the gradient

of a given scalar field F is VF = F,,, g" For the curvilinear coordinate system

defined in (4 9), in terms of the covariant unit basis, this can be expressed

as

OF . 10F . OF .
VF:lﬂE& + - 90 %2 + 2, 83 (4 15)

in which g7 = gi/\/9G;) The prefactors of g are called the physical compo
nents of the gradient of F'

The physical components of the vector u are defined” by u™ = u’, /g
Similarly, the physical components p¥/* of a second order tensor p are related
to the contravariant components by p¥* = p¥ ( /9Gi0) /g(jj)) The divergence
5 The CHRISTOFFEL symbols of the second kind are defined as Fl-’; =
(8g¢/8x7) -g", where g* are the contravariant basis vectors

We employ the summation convention over doubly repeated indices However,
the summation is not carried out when such indices are put in parentheses

This can be obtained as follows: u = u'g; = u’, /GG (&i/\/TGn) = u, /968 =

u™g? This implies that u** = ' G(i7)» which by definition are the physical
components of u
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of a vector field u = u'g; and a symmetric second order pressure tensor
p =p“g; ® g;, respectively, are expressible as

V-ou= <gk—a$k) : (U gi) =u,;+u Fﬁm FZZ :gk " 8iks (4 16)
kO ij ki i ik kj i *
Vop=(g'57 (0 @) ="+ T+ PV T G es - (417)

For notational brevity and to make the present theory compatible with previ
ous model equations of the extended SH theory, we define the following new
variables:

(x,y,2):=(s,r0,7). (418)

From now on all derivations are done with respect to these new variables:
Firstly we take the differentials with respect to these variables and then again
shift the z coordinate by an amount z7, i e, we replace z by z + zp, where
zr is the distance between the master curve and the talweg (see Fig 4 6),
where 00 = zp

Therefore, from now on (x, y, z) are not Cartesian coordinates, but rather
the coordinates of the curved and twisted channel, and the origin of this
new coordinate system lies in the talweg Furthermore, the manifold z =
constant forms a curved and twisted reference surface and the new variable z
is the coordinate in the direction normal to it We refer to the z,y, and
z coordinates as downslope, cross slope and normal directions, respectively
For notational brevity, in the following computations we write

Teg
(3
<

Z

%

Fig. 4.6. For a given value of the arc length, the avalanche domain in the lateral
direction occupies a region in a circular section of a plane perpendicular to the
talweg of the valley and 6 is the azimuthal angle in this plane OO = zp is the
radial distance between the master (reference) curve and the talweg The lateral
coordinate, y, is determined by the transformation y = 0z {T, N, B} is the moving
orthonormal unit triad following the talweg (equivalently the master curve) (From
[341])
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Z=z+zp. (4 19)

With the CHRISTOFFEL symbols and physical components of u and p expres
sions (4 16) and (4 17), in curvilinear coordinates, respectively, read

0 Ley | Ou* Qud

V.ou= 2 (@/Ju ) + 2y + b
— P2AZU + prCu — (1/1,%77 - %) u*, (4 20)
B 8 11 ap12* ap13*

v p[@x (op™) + Oy + 0z

* * * 1 * *
— PP AZp™ + 20k(p" T —20knp™* + gplg ]gl

o 124 ap22* 3p23*
* [Gx(wp )+ oy * 0z

* * * 2 * *
— YrCp' =P AZp"* +pr(p*T — (w%n—g) p*® ]gz (421)
a 134 6p23* ap33*
* [Gx (ep™)+ dy * 0z

1 1
+ w’inpll* o §p22* —¢2AZP13* +¢I€Cp23*— (1/}&77_ z) p33*:| g§
The derivation of these expressions is not difficult, but it is somewhat lengthy
and requires careful attention to details Notice, moreover, that (4 20) and
(4 21) are so structured that their components have the form

B 0 0 ] (422)

3_x<.) + a—y(o) + &(*) + additional terms| .

When the “additional non divergent terms” are absent, one says that (4 20)
and (4 21) have conservative forms The non conservative form is due to the
contributions of the CHRISTOFFEL symbols

4.4 Non-Dimensional Equations

For the ensuing developments it is assumed that the avalanche motion
is sufficiently distant from the master curve C' More explicitly, for the
fixed value s = constant, the avalanche domain occupies a region in the
plane S 1 (), so that the avalanche is distant from the centre of the
channel (see Figs 44 and 47) This then justifies identifying the radial
direction with the “thickness” direction and postulating that the typical
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AB

: free surface
L . F=0

Fig. 4.7. For a given value of s = x, the avalanche domain in the lateral direction
occupies a region in the plane of the circle St L C| so that the avalanche is distant
from the centre of the moving triad {T,N,B} The concentric and coplanar circles
St, Sr, and Sgp (with the centres at the master curve and radii 77, rr, andrg),
respectively, pass through the talweg (7') and the left (L) and right (R) marginal
points of the avalanche with its basal topography in the lateral direction In this
plane section the basal topography F’ = 0 and the free surface F'* = 0 of the
avalanche are shown The depth of the avalanche in this section is represented by
a height function h(x,y,t) and is measured in the radial direction Also shown, for
instance, is the distance d of the avalanche from the centerline to the circle St [335]

“radial thickness” is small relative to a typical length (or width) of the
avalanche

In this section, the coordinate independent equations of Sect 3.4.1 are ex
pressed in terms of the curvilinear coordinate system introduced in Sect
4.3 The physical components of the velocity field u are defined as u, v
and w Similarly, the physical components of the symmetric pressure ten
SOr P are Pug, Pyy, Pzzs Peys Pozs Py- Where the convention that superscripts
define contravariant quantities is now dropped, ie, p;., etc are now and
henceforth physical components Also, for notational brevity, from now on,
we will simply write e; for covariant unit base vectors gj, so that u =
ue, + ve, + we, defines the physical components u, v, w and (e,, e, e,) =
(e1,e2,e3) The physical variables are non dimensionalised by using the scal
ings
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(z,y, 2, F*, Fb 1) = (Lx Ly, H2, HFs, HFY (L/g)"?i )
(u,v,w) = (g ) ('&,'0,511)),
(Daas Pyys Pzz) = PIH (Daas Pyy» Dzz) 5 (423)
(pxyvpzzvpyz) = pgHp (ﬁry»ﬁrmﬁw) ,
(gacvgyng) g(@xv@yvﬁZ)v
(5, 7) = (R/R,7/R-),

where the hats represent non dimensional variables The scalings (4 23) as
sume that the avalanche has a typical length, L, tangential to the reference
surface and a typical thickness, H, normal to it Furthermore, R and R,
are, respectively, the typical radius of curvature and torsion of the refer
ence geometry Assuming a granular static balance, the typical normal pres
sures at the base of the avalanche are of the order® pgH, and the CouLOMB
dry friction law (3 18) suggests that the basal shear stresses are of the or
der pgH tand, where ¢ is a typical basal angle of friction Also, notice that
9xz, gy and g in these equations are dimensional physical components of the
gravitational acceleration along the x , y and z coordinates, respectively,
and g is the magnitude of the gravitational acceleration Finally, the cur
vature x and torsion 7 are assumed to be of order 1/R and 1/R., re
spectively These scalings introduce the following non dimensional param
eters:

e=H/L, A=L/R, M\ =L/R,, p=tand, (4 24)

where ¢ is the aspect ratio of the avalanche, A\ and A, are measures of the
curvature and torsion of the reference geometry with respect to the length
of the avalanche and p is the coefficient of friction of the granular material,
related here to a typical bed friction angle

4.4.1 Components of the Gravitational Acceleration

The non dimensional physical components of the gravitational acceleration
along the x , y and z coordinates, respectively, can be determined as known
functions of curvature and torsion referred to the moving triad of the given
master curve Their derivation is as follows:

Consider the orthonormal unit basis vectors along the coordinate lines (see

(47)),

This scaling for the normal pressure tacitly assumes a “hydrostatic nature” of
the pressure in a granular heap This is in fact untypical for granular systems
for which the pressure is not the overburden weight as it “saturates” after a
certain depth
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e, = T(x),
ey = —(N(z) +7B(x), (4 25)
e, = nN(x) + (B(x).

The gravity vector g can be written in the form

where {i,j,k} forms the standard Cartesian basis and ¢ is the magnitude
of the gravitational acceleration We need to express g in terms of the unit
basis, {e;}, as follows:

g = g€z + gy€y + g:€;
= ¢, T+ gy (—(N +1B) + g. ()N + (B)
= 9T — (Cgy —mg:) N+ (ng, + (g:) B
=9[9=T — (Cgy — ng=) N + (ngy + (g-) B, (427)
where {gs,9y,9.} = 9{dx, gy, G-} are the physical components of g with
respect to the basis {e;} Let ¢;, n; and b;, i = 1,2, 3, be, respectively, the
components of the tangent, normal and binormal unit vectors of a given space

curve with respect to the standard Cartesian basis {i,j,k} We must express
the right hand side of (4 27) in terms of this basis as follows:

— (€gy — ng=) (nai+ n2j + nsk)

0+ G0:) (i 4 00|

=g |:t1gw —ni (ng - ngz) + b (77§y + ng) :|1

+g [tQQac — N2 (ng —19z) + b2 (Tlﬁy +¢3g-) ]J

+ g |:t3gac —n3 (ng - 7792) + b3 (Uﬁy + ng) :| k. (4 28)

Comparing the similar terms of this equation with (4 26), we obtain the
following set of linear equations in g, gy, §-:

t192 + (011 — n1¢) Gy + (N1 + 61¢) §. = 0,
t2gz + (b2 — 12C) gy + (nam + b2€) §= = 0, (4 29)

t3gz + (b3n —n3() gy + (nan + b3() §» = —1.
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This system can be solved to obtain values for (g, gy, §-) in terms of ¢;, b;
and n; The solution is

Jo = [binz — bana] /4
gy = [t2 (n1n + 1) — t1 (nan + b2()] /4
9= = [t1 (ban — n2C) — 12 (b1 — 1 ()] /A (4 30)
A = t1 (nabs — bang) + ta (bing — n1bs) + t3 (n1ba — bing)
=T (N x B),

which is the scalar triple product of T,N and B Therefore, the possible
values of A are £1

4.4.2 Balance Equations

Applying the scalings (4 23) and (4 24) to the condition V - u = 0, it follows
that the non dimensional curvilinear form of the mass balance equation (4 20)
is

0 ov  Ow
e (u) + oy t3;
—eMPPAZu+ Mpklo — (mpmy — %) w=0, (4 31)

where the hats, identifying non dimensional quantities, are now and hence
forth dropped, and

v=1/(1—eXwnZ), A= (k'n+ I\r7(). (4 32)

The prime now expresses differentiation with respect to the dimensionless arc
length The momentum balance equation (3 17) can be written in curvilinear
coordinates by using relation (4 21) to transform the tensor u ® u and the
pressure tensor p After a somewhat lengthy calculation it follows that the
non dimensional components of the momentum balance in the downslope and
cross slope directions and the direction normal to the reference surface are,
respectively,
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downslope:
ou 0 5 0 0
E-l—%(wu)—l-a—y(uv)—i—&(uw)

1
— M2 AZU? 4 20KCu — 2eM)Rnuw + Zuw
0 0 0
= {‘3% (Ypaz) + €N6_y (Pay) + N& (Pz2)

- 52)"‘/)2/12171:3 + 25}‘/“/”{ (szy - prz) + %pzz} + 9o (4 33)

cross slope:

ov 0 d , , 0
E—i—a—x(wuv)—i—a—y(v)—i—&(vw)

— MK (u2 — 1)2) — e AZuv — (5)\1/)/177 — %) vw
0 0 0
= {EN% (djpacy) + ga_y (pyy) + N& (pyz)

2
— eEANYRCP) — 52)‘M¢QApry K <€>\Wm - z) pyZ} + 9y, (4 34)

normal:

ow 0 (Yuw) 0 (vw) ow?
5{5%* o oy | o:

2
+ )\'l/)finu2 — ;_Z — 5)\ (5'[/)2/12’[1, _ 'l/)fiC’U) w — (62)\1/),%77 o %) 'lU2

0 0 0
{E/L% (d)pzz) + Eﬂa_y (pyZ) + & (pzz)

1
+eXprnPy — =P — EMp® AZpy. + sAuw%prz} + gz, (4 35)
where
P; = (pww _pyy)v P; = (pww _pzz)a sz = (pyy _pzz) . (4 36)

Further simplification of these equations is possible, but they are left in the
given form as this proves to be particularly useful when the free surface and

basal boundary conditions are included once the depth integration process in
Sect 4.5 is performed
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4.4.3 Kinematic Surface Conditions

The free surface of the avalanche, F'*(x,t) = 0, and the basal topography
over which the avalanche is assumed to slide, F?(x,t) = 0, are defined by
their respective heights above the curvilinear reference (see Fig 4 7),

F$=z—s(z,y,t) =0, F'=—24b(z,y,t)=0. (4 37)

The functions are so chosen that gradient vectors computed from them point
into the exterior of the avalanche body The functions F*(x,t) and s(z,y,t)
are, in general, time dependent, but for a stagnant non moving mass they are
time independent; on the other hand, F’(x,t) and b(z,y,t) are only time
dependent provided that snow is entrained from the bottom or is deposited
along the avalanche track The kinematic surface equations in dimensional
form are?
b s

aaitJrub-VFb:O, aait+us.VFS:o. (4 38)
We deduce from (4 14), (4 23), (4 24), (4 32), (4 37) and (4 38) the follow
ing non dimensional curvilinear kinematic conditions for the basal and free

surfaces'®
= : —_— —_— - — - 4
z =b(z,y,t) Er +’u pe +v 9y w’ =0, (4 39)
z = s(z,y,t): %Jri/ﬁus%Jrvsg—was:O. (4 40)

4.4.4 Traction-Free Condition at the Free Surface

From the definition (4 14) of the gradient of a scalar field, the traction free
condition (3 21) reads

pij OF's
VG 02

and has downslope, cross slope and normal physical components as follows:

gi =0 (4 41)

It is emphasised that here u® is the material velocity of particles at the base;
when processes of bed erosion or sedimentation are included, u® in (4 38) has
to be replaced by say, w, the non material velocity with which the base moves
when erosion from, and deposition of material to, the base are accounted for,
see also Sect 3.6 This is not the case here

9 For notational convenience, we write z = b(z,y,t) instead of z = b(z,y)
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- wspm ax é‘upiy% + upy. =0,
—EH Pha g 0 é‘pyyg + upy =0, (4 42)
—smﬂspim% - Eﬂpﬁyg—y +p2. =0,

written here again in dimensionless form

4.4.5 The CourLoMB Sliding Law at the Base

From (4 15), (4 23), (4 24) and (4 32), we obtain the non dimensional form
of the gradient of the basal surface as follows:

ob ob
\vial :gdjba_xgm—}—ga—ygy—gz_ (4 43)

The CoULOMB basal sliding law (3 22) states that the basal shear traction
is proportional to the pressure perpendicular to the surface, the factor of
proportionality being the bed friction coefficient tané This implies the rela
tion

b
pbnb _ (n pbnb) nd = (hli—b|) (l’lb . pbnb) tand | (4 44)
negative shear traction pressure friction
normal to  coeff
surface
or
p’n’ = (n” - p’n’) {(u’/|u’|) tand + n"} . (4 45)

Tt follows from this and (4 42) and (4 43) that the dimensionless downslope,
cross slope and normal components of the basal sliding law (traction vector)
read, respectively,

0b 0b ob
1/1bpma + supwa —ppl, = (n*- pbnb)< ] tand + ez/Jb )
Ob b VP Ob
e pyw— +e pyya MPZZ = (nb -p’n )(Ab| b| tané—l—aa—y), (4 46)
Ob b
5H¢bpzza + Eupzya pgz = (nb . p n )(Ab| B tand — )

where [u’| = ((u*)? + (v*)% + EQ(wb)2)1/2, the basal unit normal vector n® is
given by Ayn® = VF?, A, := ¥V F"| and the associated normalisation factor
is
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Ay = {1+g2 (¢b)2(%)2+52 (%)2}1/2. (4 47)

Note The dry friction law (4 46) may be extended to incorporate a velocity
dependent contribution, but given the fact that a large number of laboratory
experiments and observations of field events did not call for an alteration
of the sliding law, this will not be done here For related topics, see also
[7, 329, 330, 449, 450]

This completes the transformation of the governing equations from the co
ordinate independent form of Sect 3.4.1 to the curvilinear coordinates of
Sect 4.3 using the non dimensional variables defined in (4 23) and (4 24)

4.5 Depth Integration

The distance between the free surface, s(z,y,t) and the basal topography,
b(x,y,t), defines the thickness, or depth, of the avalanche

hz,y,t) = s(z,y,t) — bla,y,t), (4 48)

measured in the normal (radial) direction within the plane perpendicular to
the reference curve (see Fig 4 7) A crucial step in deriving the equations of
motion for the evolution of the shallow geometry of the granular material is
the process of integration of the mass and the momentum balance equations
through this thickness In order to perform this step, it is useful to define the
mean value of a function f = f(x,y, z,t) over the avalanche thickness

Foty = [ e (4.19)
z,Y,t :7/ z,y, 2, t)dz, 449
h(I,y,t) b(x,y,t)

where the overbar is a shorthand notation for the mean of the depth
integrated value

In the process of depth integration, we need LEIBNIZ’ rule to interchange
the order of integration and differentiation According to this rule, if G(x,t)
and 0G(x,t)/0t are continuous functions with respect to x and ¢, and if the
functions a(t) and b(t) are differentiable with respect to ¢, then the following
holds:

(G(z,t))de + |G(z,t)—

4
=l @0

b(t) b(t)
d Gz, t)dx = / 0

b(t)
d 9 dw]

a(t)

where the square bracket defines the difference of the enclosed function at
the two limiting points of integration, [f]z = fb— fo.
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Using LEIBNIZ’ rule (4 50), the mass balance (4 31) is integrated through the
avalanche depth This yields

/bs{a—iw )+ 50+ S8 — A Zu+ o - (dw'ﬁn—%) w} dz
o, — o o 0 ®
:%(hd)u)ﬂ?( v)— {wu—zﬂa—zw]b

—eAWp2AZu + AhiprCo — h(a)\z/mn - %) w. (451)

The function contained in square brackets in (4 51) has a number of terms
in common with the equations expressing the kinematic boundary conditions
(4 39) and (4 40) Thus, from (4 39), (4 40) and (4 48), we obtain

0= (4 52)

wu— V— — W

3h 0z 0z s
Jy

b
Equations (4 51) and (4 52) therefore imply that the depth integrated form
of the mass balance (4 31) takes the form

oh 0 0, _
E + a— (h?/) ) 6y (hv)
—eAWp2AZu + AhprCo — h(s)\wmy - %) w =0, (4 53)

which is valid for a density preserving material Notice, it does not possess
“usual” conservation law structure Only if the terms on the left hand side in
the second line are interpreted as source terms, is a conservation law form
obtained

The process of depth integration of the momentum balance equations (4 33)
(4 35) is performed in a number of steps Integrating the first four terms of
the left hand side of (4 33) (the downslope acceleration) and then using the
kinematic conditions (4 39) and (4 40), we have

/bs{%+§ (vu?) + %(W)*‘%(uw)}dz
9 () + 2 (mpuZ) aay(hm)* {u <%+¢“8—i+v%w>r

T ot Oox ot 0 oy b
0 0 0
2
=5 (ha) + o (hi/)u ) a (huv) . (4 54)

Similarly, the first three terms in the right hand side of (4 33), after integrat
ing and employing (4 42); and (4 46);, reduce to
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s P P 5

g , — g .. 0z 0z
= {e:% (M)pas) + Loy (hpacy)] - {swpma— + Py upm} .

g, — 0 ab
=s%(hwpm)+aua—y<hm>+(nb-pn)(Ab| i tand ey’ ) (4 55)

where the COULOMB dry friction law and the downslope component of the
basal normal pressure enter through the boundary conditions In a simi
lar fashion we can derive corresponding expressions for the depth integrated
cross slope and normal components of the momentum balances It then fol
lows that the depth integrated downslope, cross slope and normal compo
nents of the momentum balances, respectively, are

gt (hu )—i—a2 (h’(/iu2) —i—a2 (huv)

- gAth?Azu?+2mmpguv—25mwnuw+h(%)
X

u® b bbb 9 Ay —
Abl |tan5+€1/)— (n ~pn)f€6—(h@/}pm)fsua—y(hpxy)

+ 82)\h1/)2/12pmc —2eAurxhy ((pxy —NPrz)—

) + hga, (4 56)

o 98—
o7 U+ 5 (o) 5 (m?)

— AR (2 —v?) —eAh (1/12/13uv—l<01/1771)w> +2h@

ob o
= - (A tand 42 ) (0 pPt) e (W) — = ()

+ €>\fih1/}<Pz + E2ANuh Y2 AZp,y, + eAurshynp,. + 2uh< ) + hgy, (457)

o . _ 8 — 0,
{8t (hw)+ (hwuw) +5'—y (hvw)}
+ Achynu? — = — | — " Ahp2 AZuw

e\ Z
- 02
+ edchipCow — 2 khnuw? + h (?)

) [y
<Ab | | tand — 1) (nb ' pbnb) - 5#% (hwpacz) 75,ua_y(hpyz)

Akl (PP T u(pyz)Jrh( )+52>\uh¢2Aszz h(%) Yhg.. (458)
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The formal depth integration process is now complete We emphasise that
no approximations have been made so far The depth integrated mass bal
ance (4 53) and the downslope and cross slope momentum balances (4 56)
and (4 57), form the basis of the shallow granular motion The depth in
tegrated normal component of the momentum equation (4 58) will thereby
serve as an auziliary equation defining the pressure This will now be made
clear

4.6 Ordering

Equations (4 53) and (4 56) (4 58) constitute four scalar field equations for
h,u,v and w as unknowns However, they contain more than just these un
knowns because many “correction terms” arise, which are thickness averages
of product quantities of h,u,v and w, as well as stress components The
number of these unknown variables can be reduced by introducing a fur
ther approzimation based on the ordering of the various terms arising in the
stated equations Such orders of magnitudes are now assumed for the pa
rameters A\, A\, and p Realistic avalanche lengths are generally larger than
typical radii of curvatures and torsions of the topography Of course, this is
not unanimously so, but 0 < (A, A\;) < 1 is correct almost everywhere Sim
ilarly, 6 being a typical friction angle is smaller than 45° (usually between
20° and 30°, both in field and in the laboratory) Thus, also 0 < p < 1 must
hold Since the aspect ratio is generally much smaller than unity, from (4 24)
it follows that such corrections are fulfilled for

e<l, A=0("), A =0("), p=0(), (4 59)

where 0 < («, a,, ) < 1 are realistic for the typical reference surface cur
vature, torsion and coefficients of basal friction As typical values of these
parameters we can take!! a = 1/2, a, = 1/2, B =1/2, e = 1/100 and
@ = 1/10 Therefore, the functions 1) and Ay in (4 32) and (4 47), respec
tively, can be estimated by

Yv=1+0(""), A,=1+0(%). (4 60)

With these orderings, the depth integrated mass balance equation (4 53) re
duces to
oh 0 0 w

Bt T g ) + 5 (1) + AARCo — h<§> +O () =0, (461)

with an error of the order of (e'+%)
11

As long as no formal perturbation expansion involving higher order terms is
pursued the exponents a, @, and 3 need not further be specified except a # 1,

ar #1, B # 1.
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The downslope and cross slope components of the depth integrated momen
tum balances (4 56) and (4 57) must be approximated to leading order, £°,
and first order, !, in the small parameter ¢, so as to obtain a realizable theory
that includes some constitutive properties of granular material These equa
tions contain a common term that is multiplied by the factor n® - p®n® From
the normal component of the momentum balance (4 58), it follows that, to
leading order,

n® . p’n’ = Aehynu® + hC — hg, + O (¢) = hC — hg, + O (¢7), (4 62)

P22 P v?
-)-)-(3)
zZ zZ ez ( )
and v = min(«, o, 3) The component of the local momentum balance (4 35)
in the normal, i e , z direction, also reduces to

where

0 DPyy DPzz v? v
—_— = - — —_— . 4 4
aZ(pzz) = Z+EZ+gz+O(a) (4 64)

Integrating this from z = 2 to Z = s and employing the boundary condition
D22 (2 =8) =0, we obtain (with Z = Z + z7)

s 2
Pyy  DPzz v -
sy = — = =t —=+4g,0dZ2+ 0 (), 4 65
P /Z{Z Z ez g} ( ) ( )

from which, owing to (4 63), it follows that
b, =hC —hg. +0 (). (4 66)

This, together with (4 46)3 and (4 62), eventually proves the consistency of
our computations, namely that

(n" - p'n’) = pt.. (467)

In the SH theory, a linear variability of the pressure with depth is assumed
This is fulfilled if

s 2
/ {@—]”Lf+”—~}d2=0(57), (4 68)
.lz z ez

so that it follows from (4 65) that
Pz =—(s=2)g: +O("), pl.=—hg. +0("). (4 69)

This assumption is not as dramatic as it might seem, because in applications
zr is of the order O (671)

Since we are deriving depth averaged model equations, we must be able to
eliminate the effects of the normal component w of the velocity field and the
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normal coordinate z from the balance equations In typical avalanche flows,
the dominant deformation takes place mainly in the downhill direction It is,
therefore, legitimate to assume that |p,./zr| = O(g) Usually, in applications
we have z/zp < 1 and p,./zr < 1 With this rational, we have the following
approximation:

pIZ 1 SpIZ 1 3 1
=— dz = =Py dz+ O
(Z) hJy Z TR /b zZ+ 27 2+ 06)

pJEZ 1 pIZ s
hZT/b 7275 z+0(e) hZT/b 2+ O(e)
pIZ pCL‘Z
= Zr2y === = . 4
hh o+ 0(e) = 72+ 0(e) = 0() (4 70)

An analogous approximation holds for (p,./Z) Hence, we have the following
results:

(Pzz/Z) = O (), (py=/2)=0(e). (471)

Finally, we need to approximate three terms, namely, (vw/Z), (vw/Z2), (w/2)
For this, we assume that the velocity components u,v and w vary only neg
ligibly with depth and that w/zr < 1,1ie, zr is relatively large and w is
small With these assumptions we have the following approximation:

(%),l/sﬁer/s o,
Z 7h b Z 7hZT b (1+Z/ZT)

_ ! 149 ,ﬂ/s 149

thT/b (1—|—Z/ZT)dZ+O(€ )thT : lderO(E )

= —+0(E") =0 (). (472)
T

So, we may also assume that (uw/Z), (vw/Z), (w/Z) are O (¢'77) and there
fore negligible Moreover, since we consider the shallow geometry of the basal
topography, for small curvature and torsion, we may also consider Ax( to be
of order O (°7*7) ~ O (e'*7) and, therefore, negligible

Summarising the above analysis and restricting considerations to O (51)
terms, we deduce from (4 59), (4 60), (4 62), (4 67), (4 69), (4 71) and (4 72)
that the mass balance (4 61) and the downslope and cross slope momentum
components (4 56) and (4 57) reduce to
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oh o 9,
a3t o )+ 5, () =0, (473)
9

’ — b
= hg, — h-tans [fgz + Annuﬂ + 5hgza— 4
u

e (), (4TY

= hg, — h|11j1—b| tan & {—gz + )\mmﬂ} + Ehgzg—z - aaﬁy (hDyy), (475)
correct to O ('*7) Before continuing, let us pause and see what all these
assumptions have brought us The left hand sides of (4.73) (4.75) are reduced
to conservation form as if x and y were Cartesian coordinates, which they
are not The right hand sides of (4.74) (4.75) only contain “forces” as was
already the case for the simpler formulation in Chap 3

Note There are publications in dynamics of avalanches and debris flows, that
use the Cartesian coordinates Oxyz, with Oxy defining the horizontal plane
and Oz the vertical direction When this is the case, the true approximations
are hidden, because the non divergent terms in (4.20) and (4.21) and sub
sequent equations are then missing However, this does not only mean that
those formulations are more restricted in their application than the model
equations (4.73) (4.75) Rather, they are also likely to be less accurate be
cause they do not employ topography following coordinates We acknowledge,
however, that our equations are not strict either, because the general orthogo
nal coordinate system in Sect 4.3 does not strictly follow the exact mountain
topography, but only approximately

4.7 Closure

Further reduction of equations (4 74) and (4 75) requires “constitutive in
formation” about the pressure tensor p and the depth integrated tangential
velocity u Note that the pressure p,. need only be approximated to order €7,
since it is used to simplify the depth integrated downslope and cross slope
pressure terms Py, and P,,, which are already order ¢ terms in (4 74) and
(475)

We assume that a very simple state of stress prevails within the avalanche
Following common practice in soil mechanics, we assume that the pressures
Dzz and py, can be expressed in terms of the overburden pressure p., with the
aid of the MOHR circle This holds at the base and at the stress free surface
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Z

Fig. 4.8. Infinitesimal cubic element cut out of the avalanche with surfaces per
pendicular to the coordinates The motion is predominantly in the direction of
steepest descent and the dominant shearing is parallel to the zz plane This
gives rise to the dominant shear stresses p,. and normal pressures pua, Pyy, Pz=
Shear stresses py. and ps, also arise but are much smaller than p,. Thus,
pyy 1S approximately equal to pi, one of the principal stresses (When p,. and
Py vanish exactly, then p,, is exactly p1) The other two principal stresses, p2
and ps3, act on surface elements of which the surface normals lie in the (xz)
plane

Thus, its validity through depth is justified by the continuity requirement
Because the predominant shearing takes place in vertical surfaces parallel
to the direction of tangential velocity, it may as a rough approximation be
justified to assume that the lateral confinement pressure p,, is close to a
principal stress, say p; (see Fig 4 8) Furthermore, it shall be assumed that
one of the other principal stresses acting on the (z,z) surface, ps and ps,
equals p; This is an ad hoc assumption that is not guaranteed by any physical
argument,'? but it reduces the three MOHR circles that describe all possible
combinations of normal stresses and shear stresses to only one MOHR circle
as for the case in two dimensions Thus, to a given stress state (p5,, —pl.) at
the base, two MOHR stress circles can be constructed to satisfy both the basal
sliding law and the internal yield criterion simultaneously Their construction
is shown in Fig 49

12" This assumption is equivalent to the statement that, of the three MOHR circles

in a three dimensional stress state, one circle collapses to a point
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Fig. 4.9. MOHR circle diagram representing the stress state within the avalanche

The yield criterion corresponds to the two straight lines at angles +¢ to the hor

izontal Similarly, the CouLoMB basal dry friction is indicated by the line at an
angle —J to the horizontal The passive basal stress state is indicated by the solid
circle of radius r and the centre at p = @ The circle is both tangent to the yield
curves and passes through the point (p.., —p..tand) The broken line circle repre

sents a second active stress state that also satisfies these conditions M indicate the
possible stress states in the zz plane, ® show possible stress states for py,

The principal stresses po and ps in the zz plane are given by

(0205) = 5 (pa 9-2) % 5\ (e — 9o + 4202, (476)
and the cross slope principal stress is p,, = p» or p3 depending on the nature
of the deformation > We assume that the basal normal pressure equals p’_
and the shear stress equals —p?, [375, 376] The basal downslope pressure
pb . can, therefore, assume two values, one on the smaller circle, p® < p®_
and one on the larger circle p?, > p?_, that are related to active and passive
stress states, respectively Since there are four possible values for the principal
stresses, p’ and p?, there are four values for the basal cross slope pressure
ph, The earth pressure coefficients K and K? are defined as follows:

v P,
Kh=20 K=" (477)
pZZ pZZ
To determine the values of these pressure coefficients, we used (see [127, 129,
'3 The selection is made according to whether dv/dy < 0 or dv/dy > 0 If
Ov/dy < 0, then the state of stress is compressive in the y direction and the

larger of the peripheral principal stresses at the abscissa on one of the two
circles must be chosen
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177]) elementary geometrical arguments and the MOHR circle representation
(476) (see also Fig 49) as a function of the internal and basal angles of
friction to derive

Kb :2sec2¢{1$(1—c082¢sec26)1/2}—1, (478)

Lact/pas
b 1 1/2
(Ki) =3 {(K§ +1) % (K2 —1)° + 4tan?6) } . (479

which are real for § < ¢ Active and passive earth pressure coefficients in
downslope and cross slope directions are plotted in Fig 4 10 as functions
of the internal friction angle for the constant bed friction angle § = 20°
Similarly, Fig 4 11 shows active and passive earth pressure coefficients in
both directions, but now as functions of the bed friction angle for the constant
internal friction angle ¢ = 30°

Indeed, with reference to Fig 4 9, one may write

2
tan? ¢ = (pgz) ,
pzz b

7“2

% (pz:v + pzz)2

_ (p;v;v - pzz)2 + 4piz

.2
sin“ ¢ =
b (pxx +pzz)2 b

(Kt —1)% + 4tan2 6

x

(1+ Kb)?

)

which is a quadratic equation for K, On the other hand, again with reference
to Fig 49, one has

1 1 2 2
Py = 5 (Phe +9%2) F \/Z (e —pE)" + (B.)°,

from which, on using (4 77), (4 79) follows immediately

Remark Obviously, for § > ¢ the earth pressure coefficients are complex
valued and the theory fails In this case, there may be a strong shearing and
the depth averaging is no longer adequate A likely chain of transformations
in this case is as follows: At the onset of the motion, strong shearing is
established, which leads to violent collisional activity of the particles This
will obviously increase the mean particle distance, homogenise the velocity

profile and reduce the bed friction angle to § < ¢
[ |

To uniquely determine the value of the earth pressure coefficient associated
with a particular deformation, the earth pressure coefficient K, is defined
to be active (upper sign) or passive (lower sign) according to whether the
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Fig. 4.10. Earth pressure coefficients: The left panel shows the downslope and the
right panel the cross slope earth pressure coefficients as functions of the internal
friction angle ¢ with constant bed friction angle § = 20°
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Fig. 4.11. Earth pressure coefficients: The left panel shows the downslope, and
the right panel the cross slope earth pressure coefficients as functions of the bed
friction angle § with constant internal friction angle ¢ = 30°

downslope motion is dilatational or compressional as given by the following
equation:

Ks,., Ou/0x >0,
Kb = (4 80)
K Ou/ox < 0.

Tpas )

Analogously, the earth pressure coefficients in the lateral direction are com
puted by considering whether the downslope and cross slope deformations
are dilatational or compressional:
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KZset Qu/0x >0, 9Ov/dy >0,

Yact

Kjeer, ou/ox >0, Jv/dy <0,

Kb = (4 81)
K2y, Ou/dr <0, Ov/dy >0,

Ky, 0u/dx <0, 0Ov/dy <0.
At the traction free surface of the avalanche (4 42)5 implies p%, = 0, to O (¢),
and so to order €7 the MOHR COULOMB yield criterion collapses to a single
point, and the downslope and cross slope normal surface pressures are

Do =04+0(7), py, =0+0(7). (4 82)

With the values of p,, and p.. at the base and the free surface, interme
diate values are now interpolated accordingly We assume that the down
slope and cross slope pressures vary linearly with normal pressure through
the avalanche depth This is achieved to leading order by the following ex
pressions:

Poe = Klpoo + 0(€7), pyy=Klp.. +0(). (4 83)

Substituting for the normal pressure p,, from (4 69) and integrating through
the avalanche depth the depth integrated pressures in the downslope and
cross slope directions, respectively, are given by

2

WPz = Kigz/ (z—s) dZZKfZgz[Z—
b

s 1
5~ sz}b:—ith%z—i—O ("), (484)

_ s 22 s 1
hpyy = KZgz/b (z—s)dz=K)g. [3 - sz}b:f§KZh292+O (7). (485)
Remark The linearity of the pressure distributions with depth causes ps,
Dyy and p.. to depend on g. Thus, “hydrostatic” conditions are the basis to
obtain this The lack of mass dependence of the SH equations may lie in this

assumption
|

4.8 Flow Profile

In a depth integrated hydraulic model there is no possibility of evaluating the
depth variation of the velocity It must rather be postulated and here it is
assumed that the velocity profiles are approximately uniform through the
avalanche depth, so that mostly sliding and little differential shearing takes
place Figure 4 12 explains how the velocity of the flowing material can be
idealised by considering an approximate sliding velocity at the base In the
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Fig. 4.12. a) Gravity driven granular motion with a large plug flow regime lying
on top of a thin shear flow regime on the basal surface The shear layer is magnified
b) Velocity profile in a gravity driven shear flow The velocity at a certain depth is
composed of a sliding contribution, v, strong shearing contribution for consistency
in a bottom boundary layer, dvi, and a very small shearing contribution, dvs, in
the larger top layer In general, the velocity of flowing material can be idealised by
taking an approximate sliding velocity at the base, vs

literature, such an assumption was first introduced by BOUSSINESQ [41] and
is mathematically written in the form

u=u"+0 ("), v=0"+0("). (4 86)

This means that the characteristic mean velocities in the longitudinal and
lateral directions can be approximated by their basal counterparts to order
e, The velocity product may then be factorised as

ww =’ + 0 (') =uv 4+ 0 (') . (4 87)

These assumptions are supported by measurements in different avalanches
and debris flows in nature, large scale, dry snow and artificial ping pong ball
avalanches, see, e g, ANCEY and MEUNIER, DENT et al , MCEIWAINE and
NISHIMURA [7, 80, 213, 275], as well as by small scale laboratory granular
avalanches, see ECKART et al and PUDASAINT et al [83, 334, 343] A detailed
investigation on this will be given in Chap 12

Remark Consider the depth averaged u component of the velocity having
the form 1 s
u? = — / u’dz = g, (4 88)
hJy
where « is a constant emerging from the integration operation Values of
a1 in this equation, which deviate from unity, give information about the
deviation of the velocity profile from uniformity For example, for a parabolic
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velocity profile with vanishing basal velocity (corresponding to no sliding and
all differential shear) oy = 6/5, whereas for a uniform profile (all sliding and
no differential shear) ay = 1 Since it is likely that sliding is present, the active
shear zone is confined to a thin basal layer and the velocity profile is blunt
[279] Thus, without introducing a large error one may choose o =~ 1 This
justifies the presence of the O (') term in (4 86) and (487) A detailed
study on this was done in [183] This study has shown that deviation from
a1 = 1 only influences the spreading of an avalanche in exceptional situations

4.9 The Model Equations in Conservative Form

In this section, we present the final form of the model equations, proposed
by PUDASAINT and HUTTER model [335], in conservative form that can be
used to describe the avalanche and debris motion down arbitrarily curved and
twisted channels We will also make it clear how the new model equations can
exactly be reduced to previous model equations of the SH type Moreover,
we will outline some important features of the new model equations Finally,
we will compute the characteristic speeds and critical flows by introducing
the standard conservative form of the model equations

4.9.1 Avalanche Motions Down Curved and Twisted Channels

With (4 86) the mass balance equation (4 73) reduces to

oh 0 0

—+—(h — (hv) =0 489

5 g () + 5o () =0 (489)
which is correct to O (e'*7) Moreover, with the results (4 84) (4 87), the
depth integrated downslope and cross slope momentum balances (4 74)
(4 75) yield

0 0 5 0 B 9 [ B.h?
E(hu)ﬁ-%(hu)—l—a—y(huv)—hsm—a—x( 5 ), (4 90)
9 9 O ) = hs — 2 (Bl
5 (hv) + B (huv) + ay (hv?) = hs, a9 < 5 ) (491)

again correct to O (') The factors 3, and 3, are defined as

Be = —€g9. K, and ﬁy = *EgzKyv (4 92)
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respectively The terms s, and s, represent the net driving accelerations in
the downslope and cross slope directions, respectively, and are given by

0b
Se = Ga — & tan (fgz + )\m;u2) + 592%, (4 93)
v 0b
sy = gy — — tand (—g. + \enu?) + g, —, 494
where |u] = (u? +v2)1/2 is the magnitude of the velocity field tangen

tial to the reference (basal) topography, n = cos (0 + ¢(z) + ¢o), ¢
sin (0 + o(x) + o), 8 = y/(ezr) and the superscript “b” has been dropped

The first terms on the right hand sides of (4 93) and (4 94) are due to the grav
itational acceleration The second terms represent the dry CoUL.OMB friction
in which the normal tractions comprise the overburden pressure (—g.) plus a
contribution due to the curvature and torsion of the master curve (Am;uQ)
Finally, the third terms are the projections of the topographic variations
along the normal direction For a more extensive discussion, see PUDASAINI
et al [342]

Given the reference surface or the basal topography b, the material parame
ters § and ¢, (4 89) (4 91), written in non dimensional form, constitute a two
dimensional conservative system of equations Equations (4 89) (4 91) will
henceforth be referred to as an orthogonal general system or the PUDASAINT

HUTTER model or the extended SH model They allow determination of three
independent variables, h, the avalanche geometry, and v and v, the depth
averaged bed parallel velocity components in the longitudinal and lateral di
rections, respectively, as functions of time and space, once appropriate initial
and boundary conditions have been prescribed

4.9.2 The Importance of the New Theory

(I) Reduction to the Previous Models The present theory can directly
be reduced to the class of previous models of the SAVAGE HUTTER theory
Note that in applications and numerical computations, it is convenient, to take
the sign of g. to be negative '* With this convention, the model equations
(4 89) (4 94) can exactly reproduce the previous equations of GRAY et al
[123] as a special case We shall prove this in the following paragraphs

For this purpose, we consider a basal topography that is torsion free and
curved only in the downslope direction as described by the following mathe
matical representation:

4" This means that the direction of z is reversed In (4 89) (4 94) it only affects
(4 92), (493) and (4 94), in which g. is replaced by —g.
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607 OSZZ?SIZ,
> s (X —T
{() = <o< ) n<r<a, (495)
Ty — X
0, T > Ty,

where (o is the inclination angle!® of the straight upper part of the reference
surface, which merges continuously into a horizontal run out plane as shown
in Fig 4 13a C is the slope angle of the talweg with the horizontal In this
figure and the corresponding equation, x; and x, are the left and right end
points of the continuous transition connecting the two straight parts, an upper
inclined part and another horizontal part, respectively If the topography is
laterally flat, we consider the azimuthal angle 6 to be very small and the
distance between the reference curve and the talweg, 00 = zp, relatively
large (see Fig 4 13b) Then the components of the gravitational acceleration
in the downslope, cross slope and normal directions of the basal topography,
respectively, are given by

gr =sinl, g,=0, g.=—cosC. (4 96)

Furthermore, when the topography is flat in the lateral direction it is torsion
free, so that ¢(z) = 0 We take the value of ¢y (which in the derivation of
the theory is an arbitrary constant) to be zero Thus, we have the following
additional conditions corresponding to the restricted topography considered
previously by GRAY et al , WIELAND et al [123, 445] and many others:

0=0, ¢x)=0, ¢o=0, n=1, ¢=0. (497)

With conditions (4 96) and (4 97), the model equations presented in Sect 4.9.1
can exactly reproduce all previous model equations of the SAVAGE HUTTER
type theory as mentioned in Chap 3, Sect 3.4.3 Therefore, the theory pre
sented in this chapter, which can be applied to arbitrarily curved and twisted
mountain topography and channels in industrial flow configurations, is very
important both from a theoretical and application point of view

(II) Special Features of the New Theory Previously, the SH theory
was only directly generalised from the one dimensional configuration to the
quasi two dimensional flow situations in which the talweg of the topography
varies only in the vertical plane In [335] we started the derivation of the new
theory from a completely different geometrical point of view where not only
the talweg but also the entire basal topography can be curved and twisted
Although this new theory was started from quite a different topographical
and analytical setting, the model equations can directly be reproduced to
achieve all previous relatively simple and restricted model equations

If we consider the model equations derived by GRAY et al [123], we immedi
ately see that there is no mechanism that would produce and represent the

5 Note here that g: corresponds to ¢ in Chap 3
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Fig. 4.13. a) Avalanche passing through the transition into the run out zone in a
vertical plane containing the talweg of the valley In this picture, z; and x, are the
left and right end points of the continuous transition between the straight inclined
upper part with inclination angle C~0 and horizontal run out in the valley b) For a
given value of the arc length, the avalanche domain in the lateral direction occupies
a region in a circular section of a plane perpendicular to the talweg of the valley and
0 is the azimuthal angle in this plane The depth of the avalanche in this section
is represented by a height function (of the avalanche) that at different positions
is not parallel but radial OO(= zr) is the radial distance between the master
(reference) curve and the talweg The lateral coordinate, y, is determined by the
transformation y = 0zr {T,N,B} is the moving orthonormal unit triad following
the talweg (equivalently the master curve) (From [341])

sidewise component of the gravitational acceleration for a channelised flow
This means that these model equations can, in general, not be applied to a
channelised flow, for which the talweg is a plane curve in a vertical plane To
model the channelised flow GRAY et al superimposed a basal topography that
enters into the model equations through the kinematic boundary conditions
and the depth integration procedure However, there is no term in the final
governing equations that can replace the lateral component of the gravity
force in a fundamental way If the sidewise bent of the channel is strong, the
lateral component of the gravity is an important factor to force the mass to
concentrate along a small longitudinal vicinity of the talweg This drawback
is eliminated in the new model equations by PUDASAINT and HUTTER [335]
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and is reproduced here The physics of the sidewise motion of the avalanche
is modelled by inclusion of the component of the gravitational acceleration
in the lateral direction, e g, g,, in the first term on the right hand side of
the net driving acceleration, (4 94), in the cross slope direction Due to the
topographic restriction, this lateral component of the gravity force always
remains zero, g, = 0, in the model equations derived by GRAY et al and all
previous model equations

Of course, the non vanishing of g, is the result of the choice of the coordinate
system Neither that of GRAY et al nor this one yields an y component of
the gravity force that locally corresponds to the driving force tangential to
the bed, unless the bed agrees locally with the particular choice We consider
ours to be more ideally suited to channel flows than that of GRAY et al

4.9.3 The Standard Form of the Differential Equations

Definition A system of partial differential equations is said be of “conserva

tive form” or of “conservative form with source” s if it can be written as
ow  Of (w) n g (w)
ot Ox dy

where w, f, g and s are vector valued quantities Otherwise it is said to be
of non conservative form '°

=s(w), (4 98)

Now, we will write the two dimensional conservative system of equations
(4 89) (491), with the specifications (4 92) (4 94), in the general and “com
pact” vector form (4 98), where w denotes the vector of the conservative
veriables and f, g represent the transport fluzes in the x and y directions,
respectively Similarly, s, on the right hand side of the equation represents
the vector of the source terms Let us define the conservative variables as
h, mz = hu and m, = hv Then, the model equations (4 89) (4 91) can be
written in the form (4 98), where w, f, g and s are given by

h My
w=|m,; |, f=| m2/h+ B.h%/2 |,
My mymy/h
(4 99)
my 0
g= Mgy /h , s=| hsy
m2 /h+ Byh? /2 hs,

The values of the terms 3, 3y, s, and s, must be carried over from (4 92)
(4 94)

16 Tn a strict definition of a conservative equation, s does not depend on w This

ought to be so, because any first order PDE takes the form (4 98)
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4.9.4 Characteristic Speeds and Critical Flow

In order to compute the characteristic speeds of the system of (4 98) and
(4 99), we rewrite it as

ow
ow Or
E +A 8_w =5, A= (Arv Ay)v (4 ]‘00)
dy
where
0 1 0
A, ::g—i’: —m2/h?+ B.h  2mg/h 0 ,
—mgmy, /h? my/h mg/h
(4101)
0 0 1
A~—%— —mgmy/h?  my/h my/h
VT ow My y x

—m2/h*+ Byh 0 2my /h

We now define the characteristic speeds in a spatially one dimensional situa
tion To achieve this at a fixed position x = (z,y) in the avalanche, a rotation
of the coordinate system must be performed such that in the rotated coordi
nate system (identified by the asterisks) (4 100) reduces to

ow*
a;; +AT| 97 | —0, AT = (A5, AY), (4 102)
0

implying that the characteristic equation is now given by
det (Ar — M\I3) = 0. (4 103)

Note that condition Ow*/Jy* = 0 defines the rotation matrix O of the coor
dinate system,'” see PUDASAINT et al [337]

We restrict ourselves in this discussion to the situation where this rotation
does not have to be performed, namely those lines where either dw/0y = 0
or else Ow/0x = 0 Equation (4 103) then reads

7 The condition dw*/dy* = 0 in general may not even have a solution However,

when locally plane flow conditions prevail, such solutions do exist
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det (A, —AI3) =0, and det(A, —A3) =0, (4 104)
with the solutions

At=u, A3= % £/ Bzh,
(4 105)
)\4 =V, /\5,6 = % + ﬁyh

A1,4 give as characteristic speeds the particle velocity in the z and y
directions, respectively; alternatively, the other solutions in each case give a
subcritical and a supercritical speed in the z and y directions, respectively

When a finite avalanching mass of granular material moves down a steep slope
and approaches the run out zone with a supercritical speed, a considerable
deceleration will suddenly occur and lead to a transition from a supercritical
to a subcritical flow Any such transition from a supercritical to a subcritical
flow state produces a shock as shown in Fig 2 8 and described in its caption,
which is accompanied with changes from small heights and larger speeds to
larger heights and smaller speeds In this book, we will develop and implement
shock capturing numerical schemes for this system An explicit analysis is
given in Chaps 7 9

4.10 Erosion and Deposition
for the Full Set of Equations

In Sect 3.6 we presented model equations with erosion and deposition for
plane flow situations Here we extend this idea for the full set of equations in
the general orthogonal coordinates of this chapter The main task is to intro
duce some empirical functional relation to define erosion (and deposition)

4.10.1 Inclusion of Erosion and Deposition

To take into account the erosion or deposition at the bed and accumulation
(or melting) at the free surface of the avalanche, we perform the following
four steps:

e Formally, define the bed profile to be time dependent:
b="0b(z,y,t). (4 106)

e As in (3 82), define the CouLoMB sliding law (or the dynamic boundary
condition) at the bed according to

p’n® —n® (nb . pbnb) = (u"/|u") (nb . pbnb) tan ¢, (4 107)
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where u” = ub* — u®~ is the velocity difference between the upper side of
the basal interface, u’T, and the basal topography, u”~, on the lower side
of the interface Until now we had u’~ = 0, so there was no time dependent
basal topography

e Add the accumulation rate d* and the deposition (erosion) rate d® in the
kinematic boundary condition:'®

0s Os Os
— t): — s — f——w'=d° 41
s =s(z,y,t) at+u aerv 9 w , (4 108)
b=b(x,y,t) : ob + ubﬁ vb% —w’ =d" (4 109)

ot ox Ay

Here, the left hand side of (4 109) is the normal speed of the interface
Usually, the accumulation rate d® is not important

e Now, through depth integration these new effects enter the balance equa
tions of mass and momentum as follows:

on o e
a-f—%(hu)—l—a—y(hv)—d—d, (4 110)
0 &, o 0 B 0 (Buh? s b
at(hu)Jrax (hu)Jray(huv)—hsz a$< 5 ) u(d®*—d"), (4111)
2 oy 2 o2 (o) o~ 2 (B s

5 (hv)Jr@x (huv)+6y (hv?) =hs, 8y< 5 v(d®=d’). (4112)

The main new contributions are:
The rate of change of mass (or mass production): d* — d°

Momentum productions along the downslope and cross slope directions
u®d® —ubdb = u (ds — db) and v3d® —vbdb = v (dS — db) in which use has
been made of the fact that the velocity profile is uniform

4.10.2 Functional Relation for Erosion and Deposition

Ordinarily, the accumulation rate at the surface, d®, is zero Only if accidently
an avalanche were to fall onto the avalanche under consideration would a non
vanishing additional mass have to be considered from above We shall not

18 Note that d” > 0 implies deposition Note also that in (4 108) and (4 109) the
shallowness assumption is incorporated Indeed, an exact form of the kinematic
boundary conditions (4 108) and (4 109) would be

0Os sas sas s _ s 78 s _ 2 2\1/2
at+u 8x+v 2y w® = N*d’, N°"= {1+ (0s/0z)" + (9s/0y)"} '~ ,

Ob  wb L u0b

ot " ar Y By

1/2

w’ = Nd",  N°’= {1+ (0b/9z)> + (9b/dy)*}
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deal with this case Usually, it is very difficult to find the functional relation
or the expressions for both d® and d” This law must involve the mechanical
properties of the flowing materials, the geomorphology of the bed topography,
the meteorological conditions, the geometric features of the mountain terrain
and so on However, there have been some preliminary attempts to define
this quantity for real applications

Erosion Rate Depending upon the Stress Threshold As a basic step
towards a full understanding of the erosion process along the avalanche
track PITMAN and others [321] defined the erosion rate as an empirical fac
tor:

g | ol i T =T, (4 113)
0:  if To <TO,
where [u| = (u? + v2)1/ ? is the magnitude of the velocity parallel to the

bed, T is the total shear traction at a given point, 7 is a threshold stress
and « a proportionality constant to be fitted by a specific experiment or
to be calibrated from the data of a field event PITMAN and others took
d®* = 0, because for the rapid motion of huge geomaterials, surface accu
mulation (such as snowfall or snowdrift during the motion) is not impor
tant

Typical values for the two new parameters o and 77, taken by PITMAN and
others from table top experiments on sliding sand of about 400 g in mass
over an inclined chute are o = 0.1 (erosion rate, a non dimensional constant)
and T° = 0.1 (threshold value, dimension of stress) This means that in the
erosion simulation, the threshold for the initiation of the erosion is 10% of
the maximum initial pressure Also, simulation results match experimental
findings qualitatively for the case of a sliding sand pile on an inclined plane,
which at a distance of 0.8 m from the top abruptly meets a horizontal plane
The total length of the experimental flat chute is about 1 m and the width
is 0.5 m A coarse sandpaper was glued on the top of the chute To perform
experiments with erosion, the plane surface was covered with a layer of sand
about 1 cm thick Since the friction angle between the sandpaper and the
sand is large, this layer remains stable for the required range of inclination
angles for the experiments This erosion model was then implemented into the
numerical reproduction of the 1963 rockfall avalanche at the Little Tahoma
Peak [321] That avalanche consisted of 107 m? of rock material For the back
calculations of this event, the &« = 0.1 value was fixed as in the table top
experiment, but erosion was activated whenever the shear stress was greater
than 1% of the initial gravitational pressure The final deposit with erosion
was about twice as large as that without erosion During the simulation the
sliding pile swept out an area that was in good agreement with the field
reconstruction of the deposit of this event
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Nevertheless, in this erosion model, PITMAN and others disregard the changes
in elevation of the basal surface due to erosion, and they solve the equations
of motion with a frozen bed surface This means that changes in the basal
surface slopes and curvatures induced by erosion are neglected They also do
not change the digital elevation map that defines the terrain Therefore, the
net effect of erosion consists only in changing the net mass and momentum
of the avalanche They argue that for large scale flows this assumption is
justified, but for small scale table top experiments the assumption may not
be accurate A similar erosion model was also introduced by McDOUGALL
and HUNGR [274] and applied in a re analysis of the Nomash River landslide,
see Chap 10, Sect 105

Remark The erosion rate parameterisation (4 113) is certainly preliminary,
but in form it resembles the entrainment rate proposed by MORTON et
al [288] in turbulent plumes The turbulent literature is full of different
entrainment parameterisations, which may serve as suggestions for analo
gous postulates in avalanche flows Among others, the work of PARKER,
FukusHIMA and PANTIN covers entrainment processes in powder snow
avalanches [104, 309]

4.11 Discussion
4.11.1 Summary and Embedding of Earlier Models

Equations (4 89) (4 91) with the precisions (4 92) (4 94), or the equivalent
system (4 98) (4 99), comprise a hyperbolic system of partial differential
equations for three unknown field quantities, h, u and v; these are repre
sentative of an avalanche thickness and downslope and cross slope thickness
averaged velocity components The equations are formally analogous, almost
identical, to those of previous derivations under (much) simpler situations,
see [123, 375, 376, 445] For n = 1 and ¢ = 0, which corresponds to a large
distance between the master curve and the talweg and a small azimuthal
angle in the cross sectional plane, these equations reduce to those of GRAY
et al and WIELAND et al [123, 445]

By varying the azimuthal angle and the distance between the talweg and
the master curve, it is now possible to analyse the motion of avalanches in
channels with different cross sections Another major advantage of these new
model equations is that they include the effect of torsion in the avalanching
motion, which was not be achieved by other previous models Therefore, the
applicability of the present model equations is by far broader than in the
previous cases This has been achieved by use of a different and appropriate
coordinate system
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Obviously, for different azimuthal angles the radial directions are not parallel;
at this point the present model deviates from previous ones It implies that
the earlier equations of the SH type model with torsion free master curves are
exactly reproduced when these master curves are moved far away Practically,
the master curve does not need to be moved infinitely far away from the
talweg; it suffices if z = b (z,y,t) = O (5_1_") , 7 > 0 to obtain numerical
coincidence

The careful derivation of the model was important because it delineates its
applicability by explicitly stating the underlying simplifications These are ex
plicitly stated in the Introduction and primarily pertain to shallowness, but
also involve a significant principal stress assumption on the basis of which
downslope shearing in planes parallel to the basal surface is dominant With
this assumption, the rotational invariance of the original equations is not
maintained by the model equations, but this is no significant restriction,
since avalanches primarily move downhill with small transverse spreading
A further important underlying assumption of the model is the uniformity
with depth of the downslope and cross slope velocity components There is
limited observational evidence under simpler conditions both in the field
(DENT et al , KELLER et al , MCELWAINE and NISHIMURA [80, 213, 275])
and the laboratory (ECKART et al and PUDASAINT et al [83, 334, 343]) in
support, of this assumption This will also be discussed in Chap 12 Inci
dentally, the assumption is popular in fluid mechanics and corresponds to
the neglect of the correlation integrals of velocity differences from unifor
mity akin to the omission of the REYNOLDS stresses in turbulence theory
This analogy, however, is merely formal with no physical bearing to tur
bulence Assuming power law distributions of the velocity with depth will
show that u2 = « (ﬂ)2 with 1 < o < 1.2, where the upper value applies
for a parabolic distribution Measured velocity profiles are much closer to
uniformity than parabolas (see [83, 183, 334, 343|) and so « is very close to
unity

The underlying assumptions described above are important ingredients of
the model to reduce the governing partial differential equations to conser
vation form They eliminate all CHRISTOFFEL symbols that would “destroy”
the conservation property of the emerging equations This is mathematically
and numerically pleasing, since established methods exist for conservation
equations to prove existence of solutions and convergence of numerical in
tegration schemes including those of front tracking and shock capturing In
spite of this, (4 98) (4 99) are still a challenge both to mathematical and
numerical analysts The equations involve coefficients (e g, the earth pres
sure coefficient) that may be discontinuous when the flow changes from
diverging to converging conditions To our knowledge, mathematicians are
still trying to prove the existence of solutions under such general prerequi
sites
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Nevertheless, for strictly diverging flow conditions, the equations allow the
construction of restricted similarity solutions analogous to those already cons
tructed by SAVAGE and HUTTER [375] Such parabolic cap and M wave so
lutions are explicitly presented by PUDASAINI et al in [337, 338] We believe
them to be important despite their simplicity, because they demonstrate well
posedness under at least restricted conditions and may, furthermore, be used
to partly verify a code for their numerical integration [412] For more details,
see Chap 5

At this point, it is worthwhile to have a systematic comparison of the model
equations of this chapter with the previously developed model presented in
the last chapter

4.11.2 The Orthogonal Complex
vs. the Orthogonal General System

In situations when the talweg is a curve in a vertical plane, it has al
ready been proven (for instance, see [123, 445]) that this system, called
the orthogonal complex system can reproduce laboratory experiments to a
very good approximation The equations derived in these papers were also
used to reproduce the flow of a granular avalanche down a channel with
a rather slowly meandering talweg with fair to good agreement of experi
mental and computational findings [121] All this is demonstrated in Chap
10 The major problem in extending this model was to introduce non
uniform curvature and torsion in the metric that describes the whole flow
behaviour It is made possible by using the orthogonal general system of
equations derived in this chapter In many cases, the orthogonal complex
system seems to be very useful Nevertheless, in general, the orthogonal
general system may serve as a good theoretical foundation in order to in
vestigate the flow of granular masses in more complicated topographies
Here, we discuss the connection and differences between these two theo
ries

Broad Applicability The general equations (4 89) (4 91) with the speci
fications (4 92) (4 94) are analogous to the equations obtained in the previ
ous derivations (3 33) (3 35), see also [123, 175, 445] However, this general
system of equations can be applied over a large variety of topographies It
is made possible by the choice of an arbitrarily varying orthogonal coor
dinate system along the talweg of the valley For this reason, these new
model equations can be used in realistic flow situations both in nature and
in industrial applications

Introduction of Non-Uniform Curvature and Torsion The key idea
was the use of an orthogonal curvilinear moving coordinate system that
is based on a master line in three dimensions that exhibits non uniform
curvature and torsion The talweg of a valley (possibly shifted a cer
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tain distance in the normal or vertical direction) or the axis of a three
dimensionally curved and twisted channel or pipe may be the basis for
the construction of this master curve Planes perpendicular to this mas
ter curve give rise to the introduction of a polar coordinate system within
these planes, of which the origin is the intersection point with the master
curve The topographic profile of the avalanche within these planes can be
described in terms of these polar coordinates; the normal (radial) direction
determines the direction of the height, the cross slope (azimuthal) direc
tion embraces its width A shift in the normal coordinate makes it possible
to bring the origin of the coordinate system down in the valley to a point
in the talweg

Flexible and More Realistic The advantage of the formulation of a
model of depth integrated avalanche equations of this chapter lies in its
flexibility of application The flow down an inclined plane or within a chan
nel whose the axis lies in a vertical plane but may be curved and the flow of
a granular avalanche in a helicoidal channel of arbitrary cross section can
be described as can the flow down mountain valleys with arbitrarily curved
and twisted talwegs It is this last application that motivated us to derive
this model, because it is ideally suited to application in realistic situations
in connection with the use of geographical information and visualisation
systems (GIVS)

4.12 Concluding Remarks and Future Outlook

The above discussion should have made it convincingly clear that the pro
posed model equations (4 89) (4 91) are suitable for the prediction of ava
lanche flows of granular materials down arbitrarily curved and twisted tracks
Since the equations reduce to earlier models for which the extended SAVAGE

HUTTER theory has been demonstrated to reproduce results from laboratory
experiments well, there is no question about the validity and the applicability
of the new theory The theory presented in this chapter is to date probably
one of the most sophisticated and most advanced theories in the field of dry
granular avalanche research The model equations have numerous applica
tions in geophysical and industrial avalanches

The next and immediate goal for researchers may be to perform numeri
cal simulations with the intention of providing a general purpose software
for practitioners involved with the prediction of avalanche run out in moun
tainous regions The intention should be the use of geographical information
systems (GIS) from which digitised realistic topographies in mountainous re
gions are available With these GIS particular avalanche prone subregions can
be selected and for individual sites the master curve and the cross sectional
topography constructed From a preselected release of a finite mass of gravel,
sand or snow at a breaking zone it is then intended to determine the flow
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from initiation to run out This step requires numerical integration via an
avalanche purpose software using total variation diminishing non oscillating
or shock capturing schemes Its output can, in a final step, be used in visu
alisation software to identify endangered zones A multitude of applications
will then be at the disposal of practitioners to investigate with the software
Needless to say that a comparison with photographic observational data in
the field taken from helicopters and airplanes, or digital video cameras posi
tioned at a fixed station, or the satellite data, then will become possible and
more reliable



5 Exact and Semi-Exact Solutions
of the Model Equations

5.1 Solutions of the Model Equations

There are basically two fundamental approaches by which knowledge and
understanding in any field of research in science and technology is acquired
The first is to understand the physics and nature of the physical phenomena
and to put them into proper form, usually as a mathematically expressible
system of equations The system of equations must exhibit certain obvious
properties, e g , it must be well posed and possess a solution; if it does, it
is commonly called a model With the model equations at hand, the next
important step is to solve them and to interpret them either by compar
ing them with observations or by comparing such solutions with experience
known already prior to the development of the model Both steps are equally
significant from a physical point of view for applications in real life problems
There are three main ways of solving a set of model equations, which we shall
now briefly outline

5.1.1 A Complete Analytical Solution

First, one should try to solve the full set of model equations analytically with
all principal parameters and boundary and initial values left as general as pos
sible Such a solution, if one is able to compute it analytically and explicitly,
is superior to all other possible solutions, because analytical solutions provide
qualitative insight and usually enhance the general understanding Unfortu
nately, construction of a general analytical solution is almost impossible, at
least in complicated cases such as geophysical flows This is the actual case
in the formulation of the original SH theory, all of its further extensions' and
also other models, see, e g , [38, 40, 74, 75, 163, 191, 194, 273, 274, 321, 323]
This is clearly due to the complexity of the non linear partial differential
equations and the moving boundary conditions, which together describe the

! For the development of and detailed studies on such models we refer the reader

to [123, 128, 129, 173, 175, 176, 177, 179, 227, 301, 335, 336, 337, 338, 375,
376, 445]
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dynamic behaviour of flow avalanches from simple to complicated topogra
phies One must find a way to avoid this complication

5.1.2 Particular Solutions

This special way, in fact, must be sought in almost all situations, since exact
analytical solutions can usually only be obtained for some special cases If
these solutions turn out to be problem significant, they will provide crucial
insight into the full system Such special exact analytical solutions are impor

tant, because (i) they can in many cases predict phenomena that are observ

able in nature, (i4) they may help in comparing results with corresponding
results obtained from other existing models, and (4i7) they are crucial to test
the efficiency and applicability of numerical solutions Here we will construct
some analytical and semi analytical?® solutions

In this second step, one simplifies the complicated equations by, e g , substi
tuting typical values for the parameters, by considering the problem for some
particular situations like steady state and homogeneous flows, by decreasing
the dimension of the problem or specifying the conditions of the environment
(boundary and initial conditions) In such situations, one may then find exact
analytical solutions of some particular type Although such solutions cannot
describe the behaviour of the posed problem in a full form, they are still im
portant to provide some qualitative insight into its behaviour Furthermore,
such solutions may also be useful to analyse numerical schemes Below we
will address this possibility

5.1.3 Numerical Solutions

Thirdly, and this is today probably most the popular and convenient way, one
seeks to solve the complicated system of equations by numerical techniques
With the growing development of hardware and software, and with the rapid
increase of numerical and scientific computing techniques, this method has
become a dominant approach in analysing systems expressible in standard
mathematical form This is no different for the SH theory Its original equa
tions [375] and all of its further developments have successfully been solved
by applying different numerical techniques, and the results have been tested
against reliable indoor and outdoor laboratory experiments, as well as natu
ral events such as avalanches and debris flows and rockslides; good to excel
lent agreement has been found between theoretical and experimental results
These procedures are so important in the development of the theory that

2 A solution is called semi analytical, if either some steps are performed compu

tationally or ad hoc assumptions are introduced in the process of solution
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we will discuss the numerical techniques and the experiments in detail in
Chap 7

Let us begin with the presentation of the simplest possible form of (analytical)
solutions that still reflect the motion of avalanches, the similarity solutions
There are several forms of these in one and two spatial dimensions, exhibiting
sidewise confined or unconfined flows As we shall see, these solutions provide
a surprisingly large amount of qualitative information that enhances the un
derstanding of the underlying physics, information that could otherwise be
obtained only by relatively cumbersome output of numerical computations
Apart from this basic information, the solutions presented in this chapter
also provide a first understanding of the dynamics of avalanching flows

5.2 One-Dimensional Similarity Solutions

Imagine the situation that a finite mass of granular material in a narrow chute
initially has a parabolic longitudinal shape and is then released to evolve
The question is, does this mass upon release, perhaps, preserve its shape,
thus remain a parabola and only change its aspect ratio? It has been shown
that such similarity solutions do indeed exist The forms of the preserving
geometries are in this case indeed parabolas and the evolution of their length
is described by a system of non linear ordinary differential equations in time
The main conclusions that are deducible from these computations are that
these results demonstrate useful quantitative physical behaviour but do not
indicate whether similarity solutions can be in any way suitable for prognostic
purposes [174]

SAVAGE and HUTTER [375] constructed some similarity solutions of perma
nent shape for the depth integrated spatially one dimensional equations of
motion They found two such solutions and called them parabolic cap and
M wave similarity solutions They were constructed for a chute of constant
inclination using a Cartesian coordinate system and for a constant bed fric
tion angle These solutions were later extended to more general cases [63, 97]
Here we will follow this spirit

In this section, we consider the system of equations of motion (3 33), (3 43)
and (3 44) developed for complex basal topography by GRAY et al [123]

5.2.1 One-Dimensional Flow Down Inclined Planes

In the following computations, we will consider the flow of granular materials
down an inclined plane The flow is one dimensional and lies in a vertical
plane For diverging motions the avalanche always extends Thus, no shocks
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will form This explicitly means that the downslope velocity is always positive,
u > 0, and sgn(u) =1 Also, in real situations the variations of the downslope
earth pressure coefficient with respect to the downslope coordinate are small
With these assumptions the model Eqs (3 33), (3 43) and (3 44) reduce to
the following standard non conservative form:

oh 0 ou ou oh
E“r%(hu)—o, —+U—+ﬁ%

ot ox
where 3 = ccos(K,, s, = cosC(tan¢ —tand) A detailed derivation can
also be found in [125, 337, 338, 375] ANCEY, CHUGUNOV et al and FARWIG
equally constructed similarity solutions that go beyond those presented here

8, 63, 97]

= S, (51)

Consider a point within the moving avalanche for which 0h/0x = 0, identify
it with the location of the avalanche centre of mass and employ the index m
as its identifier For this point (5 1)2 reduces to

duy _ o d_0 9
a - w o "o

Thus, the velocity of the centre of the avalanche is

t
g (£) = 1y + / sudt’, (52)
0

and it translates the distance
t
T (1) = Ty +/ U (¢) Al (53)
0

in time ¢t Next define, a new moving coordinate system (£,t) that translates
with the centre of mass velocity, and the relative velocity @ in this coordinate
system,

E=x—xp, (), G=u—upn(t). (54)

We are looking for solutions of (5 1) having a symmetric avalanche thickness
distribution and a skew symmetric relative velocity distribution about £ = 0,
ie,

h(ﬁ,t):h(—é,t), ﬂ’(&at):_a<_§?t) (5 5)
With these restrictions the front and rear of the avalanche always lie at £ =
g (t) and &g = —g (t), respectively, see Fig 5 1

To find particular solutions to this moving boundary value problem we apply
a fized domain mapping by which the span interval is mapped onto a fixed
interval with variable 7 has values in the fixed domain [—1, 1], with n = +1
for the front and rear margins and 1 = 0 for the (moving) centre of the
avalanche In this way, we define new coordinates (see Fig 5 1), namely
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Fig. 5.1. Mapping from the moving coordinate &, left, to the fixed domain 7, right

6 ez
T=ew - g 0 T

where ¢ is the spreading factor (i e, half the length) of the support of the
avalanche With this change of variables, the differential operators reduce to

o0 00T 00y 0 0 [x—xzy(t)) O
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(56)
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ie,
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with ¢’ = dg/dr With these operators, the left hand side of (51); can be
rewritten as

(3 (5 55) ) 3o
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A similar transformation can be made with the left hand side of (5 1)

@4_ @‘Fﬁ%_ i_ g_/+u_m 2 ()+ 1@4’_51%
“or oxr  \Or 77g g ) On “ ug@n g on

(3 (5 e-0f) F)or-sifioid
(24t ) us 2
- (%ﬂLé(ﬁ—ng’)%) (a+um)+§g_z
7%+§( ”79')2—%@8—“”0,

in which du,,/0r = s, from (5 1)a, since (Oh/0x) {I:I = 0, and Ou,,/
On = 0, since u,, does not depend on 7 Hence, the non conservative system
(5 1) may, alternatively, be written as

@+1(~, ’)@4,&@*
or gu g on  gon

(58)
oa 1., 0a Boh
6r+g(u77’g)an+gan”

and shows that explicit knowledge of the net driving force is not necessary

The Parabolic Cap Solution The above (5 8) serve as the basis for the
construction of the similarity solution of the reduced system of equations
(51) “Technically”, similarity solutions are obtained if one succeeds in trans
forming the partial differential equations (5 8) to ordinary differential equa
tions The transformed system (5 8) can be simplified considerably by assum
ing that the velocity profile has a solution of the form

u=ng. (59)

This states that the difference velocity relative to the velocity of the centre of
mass varies linearly with the distance from the centre The sign of ¢’ will define
whether the flow is diverging or compacting Using (5 9), the momentum
balance equation (5 8)2 reduces to

oh  gg"”

o B

(5 10)
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Integration subject to the boundary conditions that h(n = +£1) = 0 implies
that the avalanche thickness has a parabolic profile,

99" 2
h= 1-— 511
=) (511)
with vanishing thickness at the margins and maximum thickness at the cen
tre Substituting the assumed velocity profile (5 9) and the computed thick
ness profile (5 11) into the mass balance (5 8); yields an ordinary differential
equation for the spreading, g, of the avalanche,

1- 2 0 " 1- 2 //a /
(2—ﬁn>§(gg)+< wn)g oy (19) =0

This implies

(99") +49'9" =0, (512)
and thus » )
I__ o9 (5 13)
g g
Integrating this yields
9°g" = A, (5 14)

where A is a constant As the pile is assumed to be of finite size and there is
no mass transfer, the total volume, V', must be conserved,

133 +1
V- /f " it = | hnarian (5 15)

Substituting for the thickness expression (5 11) and integrating determines
the unknown constant A in (5 14),

-1 28 20 3], 387

implying
3
9°q" = 20V =4, (5 16)
relating the constant of integration, A, to volume V and to § Initially the
front and the rear of the avalanche are assumed to lie at £ = £1, and the dif

ference velocity relative to the velocity of the centre of mass is zero throughout
the pile This is equivalent to the conditions

g(0) =1, ¢(0) =0. (517)
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We next integrate (5 14) Changing the independent variable from 7 to g and
making the substitution p = ¢’, (5 16) becomes

dp A

= —. 518
Pl " P (518)
This can be integrated subject to (5 17) to give
9 1
pP=2A(1-=), (519)
)
and since p = dg/dr, this is equivalent to the separable equation
d
V9 _d9 57 (5 20)

s/gflg

Substituting g = w? transforms the term on the left hand side into standard
integrable form with the solution

\/g(gfl)+hl’\/§+\/g*1’:\/ﬂT:\/gﬂVT, (521)

defining 7 as a function of g, see, eg, [81, 119] Figure 5 2 displays the
function g(7) for various values of 3, see PUDASAINT et al [337] For g — oo,
the left hand side of (5 21) is equivalent to g This implies

g~ V2AT, as g— 0. (5 22)

Thus, the spread grows rapidly at first and becomes linear in time as time
increases To summarise, with the help of (5 16) and (5 20), the thickness and
velocity solutions can be written in parametric form as follows:

a=g'n=nv2A(1-1/g) =nV/36V(1-1/g),

" (5 23)
A 3
h= G5 (=) = 55, (=) =

Figure 5 3 displays the temporal evolution of h (n,7) [337] The results, ex
pressed by (5 22) and (5 23), state that for large time the avalanche spread
increases linearly with time, g ~ 7, its height decreases as ¢~' ~ 77! and
its difference velocity (for fixed 1) remains constant In other words, on an
infinitely long inclined chute, a finite granular mass having a parabolic cap
profile accelerates indefinitely, and simultaneously spreads asymptotically lin
early in time, thereby equally thinning to preserve the volume Still other
wise stated: there is no steady state motion of a finite mass developing into
a parabolic cap This is a property of COULOMB friction on a plane surface
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Fig. 5.2. The spreading factor g for different parameter values of f = ¢K, cos(
and V =4/3, K, =1 (From [337])
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Fig. 5.3. The time and space evolution of the parabolic cap similarity solution
(From [337] )

The M-Wave Solution The transformed system (5 8) can also be solved
by seeking a separable variable solution of the form

h=1U(r)H(n), a=k(r)F(n). (5 24)
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Substituting these relations into (5 8) yields the following two ordinary dif
ferential equations for the new functions H and F:

qg'l / ki ’
H—-n=—H —(HF) =0
U +ﬂx ) =0,
(5 25)
q'k / k? / Bl .,
F—n—F —FF —H =0
T T T ’

where (-)" = d(-)/dn for H and F, but (-) = d(-)/dr for g,l and k Assuming
all quotients

1 kl 'k k2 l
9_7 BETEl g_a BENE BENE (5 26)
gt gl" gk’ gk gk
to be constants and seeking power solutions of the form
g=7% 1=7", k=71, (527)

the coefficients in (5 26) are all indeed time independent and (5 25), therefore,
indeed ordinary differential equations provided that

Y=2, ¢=a-1 (5 28)
A third relationship follows from the conservation of the total volume
+1 +1
[ nrigrin =+ [ Hepa, (5 29)
1 —1
which is also time independent provided that
a+v=0. (5 30)
The three linear equations (5 28) and (5 30) are easily solved to give

2 2 1 (5 31)
3 1Ty Ty

Using (5 31) and substituting the power solutions (5 27) into the governing
equations (5 25), two ordinary differential equations for H and F are ob
tained, namely

o =

2\’ 2
(F—gn) H—i—(F—gn)H':O, (5 32)
2 , , 1
F—gn F'+BH :§F. (5 33)
The first may be integrated directly to give

<F - §n> H=C, (5 34)
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where C'is a constant of integration Substituting (5 34) into (5 33), a single
ordinary differential equation is obtained for the thickness profile,

H? <2nH - 30)

/—_ —
H = 6H3—C2

5 (5 35)

The symmetry requirement in the fixed domain mapping (5 5) dictates that
H(n) = H(—n) and H'(n) = —H'(—n) Applying these conditions to (5 35)
implies that

C =0, (5 36)
and the solution is simply
F:gn H:i(h +n?) (5 37)
3" 93 * " '

where h,, is assumed to be greater than zero as it is the thickness at the
centre of the avalanche It follows that the thickness and the velocity profiles

are
1 _ 2
h=g5" 23 (R +17), =27 3y, (5 38)
where h,,, must be positive because the pile will not develop into two separate
piles It can be connected to the (constant) avalanche volume V' by stating

that fil h(n)dn =V, the result being

2 1 2 1
V:%(dm_1+§):%(hm+§)v (539)

where d,, = h,, + 1 is the normalised depth of the avalanche margin and
thus automatically greater than zero The results (5 38) show that the depth
distribution is parabolic but with increasing depth as one moves away from
the centre and maximum thicknesses arising at the margins Furthermore,
the difference velocity varies linearly with distance from the centre This
latter result is analogous to the corresponding behaviour of the parabolic
cap However, the thickness distribution is different, not like a cap but more
like an M, which is the reason for calling the solution (5 38) an M wave

It is, furthermore, worth noticing that the temporal evolutions of the parabolic
cap and the M wave are different In particular, the above results suggest that

e For the Parabolic Cap®

g~T, he~T! (ZV (1 —172)) ,  u~+/38V(n) as T— 0.

3 Here ~ indicates that the two expressions are asymptotically equal
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o For the M Wave

1 2
g= 7’2/3, h=r"2"3 (% (hm +772)> , u= T3 (577) for 7€ [0,00).

Note that these are asymptotic results for the parabolic cap, but ezact state
ments at all times for the M wave solution The results obviously confirm the
non existence of a steady state at large times, but they also draw attention
to the question of whether both similarity solutions may indeed exist in real
ity In an attempt to gain clarity in this regard, SAVAGE and HUTTER [375]
performed a restricted linear perturbation analysis of these two similarity so
lutions to see whether they would prove to be stable (it was hoped that the
M wave would turn out to be unstable, because by mere intuition it “looked”
to be unrealistic) However, both solutions turned out to be stable against
the investigated perturbations This does not rule out instabilities against
nonlinear perturbations; in any case the result makes both the parabolic cap
and M wave solutions likely candidates for realistic motions to look for in
experiments

This was done by using very rough experiments in [375] In fact they used
photographs from HUBER’s experiment [160] for gravel motions along an
inclined plane to see whether the asymptotic evolution of the semi spread
would asymptotically grow as 7 or 72/3 The M wave could not definitely be
excluded, but the experiments showed a better coincidence for large times
with a linear 7 rather than with a 72/3 dependence Thus, it appears that
physics selects the parabolic cap rather than the M wave solution to which
piles along inclined planes converge

Figures 5 3 and 5 4 show the time evolutions of the parabolic cap and M wave
similarity solutions for the height of the granular avalanches, see PUDASAINT
et al [337] The reader should keep in mind that these figures were drawn
in terms of the fixed domain variables, so that one can not directly notice
the preservation of the volume It is seen, however, that the profiles for h
are shape preserving and that the avalanche spread and the amplitude of
the pile vary with time The parabolic cap solution is of special importance
particularly in checking the efficiency of numerical codes, as done by TAT and
K0SCHDON and SCHAFER [228, 412]

5.2.2 Flow Over an Arbitrarily Curved and Twisted Channel

It is also possible to construct exact solutions of the system (4 89) (4 91)
of Chap 4 for the orthogonal general coordinates that correspond exactly
to the parabolic cap and M wave solutions For this purpose, let us assume
that the avalanching mass is moving along the talweg of a narrow valley
It is then legitimate to assume that the transversal velocity component is
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Time evolution of h
Ul W N

AAaA4a a

The fixed domain variable 1

Fig. 5.4. The time and space evolution of the M wave similarity solution (From
[337])

almost zero, ie, v &= 0 and that the net driving force in the transversal
direction is almost negligible It is further assumed that 0K,/0x = O (¢7),
which means that the downhill earth pressure coefficient does not vary with
respect to the downslope coordinate Finally, we assume that there is no
variation of basal topography in the downhill direction and that dg./d0z =
O (£7) or equivalently, that the master curve is almost a plane curve With
these assumptions the system of equations (4 89) (4 91) (after using the mass
balance in the downslope momentum balance) reduces to the following simple
one dimensional system:

% + aﬁ(hu) =0,

* (5 40)
@ + @ +ﬁ % —
ot u@x ””aa:_s””’

where s, = (g, + g. tand) is the net driving acceleration *

These equations have the same form as (5 1), but now x is the downslope arc
length coordinate of a curved and twisted channel and s, may vary with posi
tion through such a dependence in ¢, and g, If these are constant, then (5 40)

* For plane flow configuration g, = sin¢ and g, = — cos(, where ( is the in

clination angle of the channel with the horizontal However, in general, we do
not explicitly need to know these components exactly in order to construct the
similarity solutions, see (5 8) for how s, disappears
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has parabolic cap and M wave solutions as derived above For instance, in a
helical channel with constant cross section and constant pitch, such solutions
do indeed exist and have been constructed [337] These solutions are, however,
only approximate, because the transverse velocity v was assumed to be negli
gible, which must be enforced in a real experiment by side walls of the twisted
(e g, helical) channel The solution may also be an adequate model for the
flow down a bob run of constant inclination and small curvature and torsion

5.2.3 Moderately Curved Beds

Let us now construct similarity solutions of the parabolic cap type for the
plane motion of a granular avalanche down a curved bed For this case, (5 40)
remain valid, but the inclination angle ( now varies with the downslope po
sition, and it is no longer justified to ignore this variation SAVAGE and No
HGUCHI [373] constructed similarity solutions for this case

As before, we let x be the curvilinear coordinate (arc length) and ¢ the time
Consider (5 40) with

sy =sin( —pcos(, B =¢eKuct/pasC0s( (541)

with constant bed friction angle, u = tan § = constant, but variable {(x) Let
us define

u(t) = /Ot (sin ¢ — tand cos () dt (542)

which corresponds to the velocity of a mass point released from rest on a
roughcurved bed Define a new streamwise coordinate relative to the position
of this point mass as

gzx—Azwmﬁ. (5 43)

In addition, we can think of this translation as shifting the origin of the frame
(&,t) moving with the velocity @(t) to the location where Oh/0x = 0 It is
also convenient to introduce the difference velocity

i =u—(t). (5 44)

It is further supposed that the depth profile is symmetric and the difference
velocity is skew symmetric with respect to £ =0, 1ie,

h(§7t):h(7€7t)7 ﬂ(§7t):7ﬂ(757t)7 (5 45)

hence the leading edge (front margin) and trailing edge (rear margin) of the
pile are, respectively, given by

§r=9g(t), &r=—g(t) (5 46)
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As in Sect 5.2.1, we can transform the equations from the (x,t) plane to the
(¢,7) plane using

9 _ 0 a(r) 0 0 0

ot or o¢’ ox  O¢

In the following we write ¢ for 7

Now, expanding sin ¢ and cos ¢ in a TAYLOR series using ((x) = (&, t) about
the position £ = 0 we find, for example,

sin((z,t) =sin¢(0,t) + cos((O,t)g—g 5205 + (547)
Note that

193 Ox

where we will take A to be of order ¢ Using these results with (5 42) and
neglecting terms of order higher than ¢ in the sin and cos expansions, we find
that the balance laws of mass and linear momentum can be expressed in the
forms

oh 9 (hit)

e =0 (5 49)
oun _o0u oh
s + ua—€ = —Ak(0,t) cos ((0,t) & — eK et /pas COSC(O’t)B_f' (5 50)

We anticipate a solution in which the shapes of the depth and difference
velocity distributions are preserved, and the profiles are merely stretched or
compressed in the streamwise direction With this in mind, we choose a new
similarity variable normalised by the half length of the pile

n:%:ﬁ{x—/{)tﬂ(t’)dt’}, (5 51)

where ¢(t) represents the half spread of the pile (assuming symmetry about
¢ = 0) Thus, the leading and trailing edges of the pile correspond, respec
tively, to n = 1 and n = —1 Now we transform from the (&, t) plane to the
(n,t) plane by using®

0 0 g 0 g 10

e_2_g92 Z2__2 2
ot ot 77g on’ ¢ gon (5 52)

®  Note that we formally write ¢ for 7, so (5 52); should read

6 _0 d9

ot~ or ngan'

This is why we use the assignment symbol := and not equality in (5 52);
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With (5 52), (5 49) and (5 50) can then be expressed in the forms

oh g'oh 10 B
5 U;a—n 9 (ht) =0, (553)
o1 g ou uodu 10h

e e A T e SR _ B, 4
TR A£(0,) cos ¢(0,t)gn ﬁog o’ (5 54)

where 3y = € cos ((0,t) Kyet /pas and primes denote differentiation with respect
to time ¢t We attempt a solution of the form

a(n,t) =ng'(t), (555)

which is consistent with the assumption (545) of skew symmetry With
(5 55), (5 54) reduces to

@
on ﬁo

Integrating this and taking the thickness to be zero at the front and rear
margins, we obtain the depth profile

T (Aw(0,8) cos C(0,1)g + g") n.

h = zg (Ak(0,t) cosC(0,t)g + ¢") (1 — 1) . (5 56)
0

In this solution, material elements can expand or contract in the direction
parallel to the bed (ie, ¢’ can be positive or negative), so the stress state
can correspond to either the active or the passive case The choice of K, or
Kpas for Kt /pas is thus linked to the solution for g(t)

We can obtain the differential equation for the evolution of g from the overall
mass conservation equation, ie ,

&R
/ h(§,t) d§ =V = constant. (557)

At time t = 0, we take h = (1 — £2), which amounts to putting g(0) = 1,
hence

V:/_1(1—§2)d§=§. (5 58)

Furthermore, in general, since d¢ = gdn

| ntatan=v =3 (2%0> (k(0,8) cos C(0,)g + g") . (559)

Hence, the evolution equation for g(t) is

g" 9% + Mk (0,1) cos €(0,1)g> = 23,. (5 60)
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We shall solve (5 60) subject to the initial conditions
9(0)=1, ¢'(0)=0, (5 61)
corresponding to a pile of physical length 2L, at rest at t =0

It is not possible to find analytical solutions to the above equations, but
numerical solutions have been constructed for a number of basal geometries
To this end, it is advantageous to first collect the governing equations in one
place

Numerical Computations We can express the bed shape in terms of hor

izontal and vertical (downward) coordinates X,Y of which the origin corre

sponds to the initial centre of mass at time ¢ = 0 Thus, dX/dz = cos( and
dY/dx = sin¢ If we express these in terms of the derivatives with respect
to time and complement them with the equations of motion for the centre
of mass (5 42) and those for the semi spread (5 60), the following system of
ordinary differential equations is obtained:

dX  _ _ av _ .

E—ucosg(ac), E—usmg(ac),

iz _ du . . _

= = == sin ¢(T) — tan d cos (T), (5 62)
dg dif (2 o _

% - fa E =€ (92> Kact/pas COSC(ZC) + or | gCOSC(ZC),

where (5 47) has been used and T and @ are the position and velocity of the
mass point, respectively These equations are coupled insofar as the centre of
mass motion influences the semi spread, but not vice versa The equations
were integrated by SAVAGE and NOHGUCHI [373] by using a fourth order
RUNGE KUTTA technique Two particular profiles were examined, one in
which the bed slope corresponds to the shape of a circular arc,ie,

¢=C (1 —ax), (563)

and one in which the bed slope decays exponentially with the downstream
distance,

¢ = Goexp (—az), (5 64)
where a is a constant bed shape parameter and the initial slope is given by
G =¢=0)=(E§=0t=0).

By varying the parameters (o and a, we can generate a number of plausible
realistic bed shapes
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Figures 5 5a,b show typical results of the computations for the circular bed
and Figs 5 5c¢,d display the analogous results for the exponential bed They
display the half spread g(z,t) as a function of 2 and ¢ Details of the param
eter choices are given as insets In all considered cases, the pile starts out
from rest, the centre of mass accelerates and reaches a maximum velocity,
then decelerates and finally comes to rest The end points of the curves of
g(t) versus time correspond to the position where @ = 0

It is important to recall that it was assumed in the specification of the bed
friction in the present similarity analysis that @ > 0 everywhere This implies
that || < @, or in other words ¢’ < w This condition needs to be satisfied,
and indeed it is satisfied for all curves of Fig 55 As can be seen from the
curves, the semi spread may monotonously increase from the start to the
settlement of the granular pile; or it may first increase, reach a maximum
and then decrease, or it may first decrease, go through a minimum and then
increase Some piles move initially as rigid or nearly rigid bodies, others first
deform and reach a steady state at a later time (in Fig 55 the regions of
steady states are hatched) Clearly, which behaviour will evolve depends on
the relative balance of the two terms on the right hand side of (5 62)¢ Since
the first term is positive, contracting flow can only form, if (9¢/0x) |E is
negative SAVAGE and NOHGUCHT [373] discuss conditions for extensional,
rigid and compacting flows

In short, whereas the flow of a (plane) parabolic cap of a granular material
with constant friction angles ¢ and § down an inclined plane is persistently
extending, the corresponding flow down a slightly curved bed may go through
phases of extending, compacting and rigid body motions The order in which
these phases follow one another depends on the geometry of the bed and the
initial conditions from which the avalanche evolves

5.2.4 Variable Bed Friction

The above results were derived for a flat plane bed and a constant friction co
efficient, or weakly curved beds and constant frictional resistance For curved
beds it was found that the centre of mass of the granular pile could accelerate
or decelerate depending on the shape of the bed and the initial conditions In
this section, we investigate the case of flat beds again, but allow the friction
angle to depend on position, velocity, or both We shall see that the spreading
rate and the motion of the centre of mass of the pile can be influenced by
varying the bed friction angle

The governing equations for plane flow down an inclined plane again take
the form (5 1) but, since the friction angle may now vary and extending or
compressing flow may arise, we write them as
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% n thu) _o,
O(hu) 2( %) 9 o0
hu hu . h
5 + o —hSlnC—hucosC—ﬁha—x,
in which
p=sgn(u)tand and [ = eK,ct/pas S (5 66)

x is measured along the bed in the downward direction Equation (5 65); is
the mass balance averaged over the height of the pile, while (5 65)2 is the
longitudinal momentum balance Equations (5 65) will be solved subject to
the boundary conditions

hF:h(,TF(t)) :O, hR:h(xR(t)):O, (5 67)

where = zp(t) and © = zp(t) are the positions of the front and rear
margins, respectively

Equations for the Centre of Mass Motion and the Deformation By
integrating (5 65)2 from x = zr(t) to = zp(t), we may show by use of the
REYNOLDS’ transport theorem in the first term and the GAUSS’ divergence
theorem in the second term that

[ [+ 2 o
—(hu) + — (hu ]dw:— hu dx,
zR(t) 3t 8$ dt zR(t)

zr(t) zp(t) zr(t)
/ h(sin¢ — pcos¢)dzx = sin( hdx — cos( phdx, (568)
zr(t) R (t) zRr(t)

v 9h 1 o™ L9 9
/ Bh—dzx = ——/ h2—ﬁd:c ~ 0, since 98 < 1.
ety O 2 Jorwy Oz Ox

The last approximation is justified, since [ varies via the earth pressure
coefficient through the variation of p, which cannot be large It follows that
d Ip(t) mF(t) Ip(t)
— hudx = sin hdx — cos( phdx. (5 69)
dt J gty cr(t) cr(t)

A similar procedure, applied to the mass balance (5 65)1, yields

dv d rer zp(t)
—_— == / hdr =0, = V= h dx = constant. (5 70)
dt dt zr(t) zR(t)

The last two equations suggest the definitions

1 T 1 TF 1 TE
:v/m hz dx, ﬂ:v/m hu dz, ﬁ:v/m hpdz, (571)

5]
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which define the centre of mass position, the mean velocity and the mean
basal friction coefficient With these and (5 70), (5 69) implies

dT du

d—f:U, d—?zsin(—ﬁcosg. (572)

These are the equations of motion of the granular pile as a whole

Having defined the centre of mass motion through (5 71), we now proceed to
the derivation of the deformation equations To this end, it is convenient to
define, as before,

T=t, {=x-T(t), (573)
from which one obtains (after setting 7 = t)

o o o o _o
L2 Lo g2 4
or  o¢ ot ot "oe (574)

Introducing the difference velocity
u=u—"u(t) (5 75)

into the evolution equation (5 65) and transferring from the (x,t) coordi
nates to the (£,7) coordinates, we obtain, on using (5 72), the deformation
equations

oh 0

P9 hay =0,
oo (5 76)
i ~8u__ o B %
E*‘Ua—g = —(u—H)cos( 585'

Generally, equations of motion (5 72) and (5 76) are mutually dependent and
decouple only in special situations This coupling may arise because @ may
depend on 7 so that the deformation equations (5 76) depend on the centre
of mass motion, or 7z in (5 76) may vary such that it depends on variables
characterised by the deformation of the pile, thus affecting the centre of mass
motion The degree of this coupling will be studied in the remainder of this
Section via the introduction of various different basal sliding laws

Variable Friction Models It is not possible to measure the bed friction
angle in a moving granular mass, but it is likely that the bed friction angle
may vary as a function of position and be smaller in the rear part than in the
front part region of an avalanche It may, e g, occur that some finer material
is deposited in the larger troughs of the basal topography, implying a decrease
of the frictional resistance from the front to the rear margin Another possible
mechanism may be particle size segregation with large particles in the front
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and smaller ones in the rear In any case, it is instructive to see how such
variations affect the qualitative evolution of the motion of an avalanche

We now wish to solve the above equations with the bed friction coefficients p,
which vary with position (models type I), velocity (models type II) or both
(models type III) In Table 5 1 the friction models studied are numbered from
1 to 8 and separated in columns according to their type We analyse these
different, cases because we will see in the results that subtle differences in the
frictional assumptions that may seem natural to an engineer may imply great
qualitative mathematical differences of the emerging dynamical system

e In model I the basal friction angle varies linearly between the front and
rear margins such that the front and rear friction coefficients yur and g,
are held constant It is also assumed that up > ug When pugr = pp holds,
no variation of y arises in this model and the results are those derived in
Sect. 5.2.1 When pp > pug, the model can be physically interpreted in two
different ways We may think of the model to account for certain plowing
effects, which is a realistic assumption for snow avalanches Or we may
interpret the reduction of the bed friction angle from the front to the rear
margin as a smoothing mechanism due to say, the deposition of some fine
material This may also occur in snow avalanches, but is certainly effective
in debris flows

e Model 2 is very similar It has a fixed frontal resistance, ur, and a linear
decrease as one moves backwards, but here the gradient is fixed and not
the value up

e In model 3, ;1 depends linearly on the local velocity Because the velocity of
the front is expected to be larger than further back, we expect the model
to have similar features to models 1 and 2

e Models 4,5, 6 differ from model 3 in the fact that u now does not depend
on the local velocity but on that of the centre of mass Quantitative but
no qualitative differences in the behaviour of the model are expected

e Finally, models 7 and 8 are combinations of the models type I and IT In
model 7, p is formed as the product of functions of models 1 and 4 (or
5 and 6) and in model 8 this product is formed with the functions from
models 2 and 4 (or 5 and 6)

It is sufficient to motivate these models by a “microscopic” physical argument;
they are here proposed to scrutinise the influence of the suggested variations
It will be shown that small differences may have large qualitative influences

Similarity Solutions of the Deformation Equations for Different
Models We will now establish the governing equations for the spreading
rate for each model In other words, we will derive similarity solutions for
a granular pile with parabolic shape Strictly speaking, such similarity so
lutions do not exist for the above models 1,2,3,7 and 8 For their exis
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Fig. 5.6. Parabolic granular pile with centre of mass position Z({ = 0) and margin
positions zr(£r) at the front and xr (§r) at the rear end Plotted is also the tangent
of the bed friction angle for model 1 (From [301] )

tence a further assumption has to be invoked The earth pressure coeffi
cient K.t /pas must be independent of the variables £ or @ and can only
depend on a bed friction angle that may be expressed as a functional of
a reference value of &, say the semi spread, g and/or a reference velocity,
say the centre of mass velocity @ : K = K (uret(%,g)) Such conditions
are automatically fulfilled for models 4 to 6 Eventually we shall, however,
also limit attention to constant uger values in these cases This limits con
siderations to small variations of p This is consistent with the earlier as
sumption in (5 68)3 We shall also suppose that the depth profile is sym
metric and the difference velocity is skew symmetric with respect to & = 0,
ie,

h <§’t) =h (—f,t) ;u (f,t) =-u (—f,t) ’ (5 77)
hence the leading and trailing edges of the pile are given, respectively,
by

§r=—Er=g(1). (578)

With these preliminaries we are now in a position to derive the evolution
equation for g(t) for each of the models

e Model 1 Let

— wr+ UR
A=fle="—5— & =ur—pr (579)

Then, using Table 5 1, it follows that u — 7 = A&/ 29 When substituting
this, as well as the ansatz
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_ £, 49
i=ng =g ==¢ (5 80)
g g
into the deformation equations (5 76), we obtain®
oh 1 g A
T~ (L2 581
o0& eK cos( < g + 2¢ cos¢ ) &, (581)
in which we will now approximately set
2(1:F\/1—(1+u§)cos2¢) g >0,
K~ : 1 (5 82)
o7 g <o

A prime denotes differentiation with respect to time With the approximation
(5 82), (5 81) is separable and can be integrated By taking the depths at the
front and rear margins to be zero, the integration yields

1 1 1
:%TCOSCE (g +%Cos§> (92752)' (5 83)

If we finally impose the overall conservation equation f Y hdé =V = con
stant, we are led to the evolution equation of the semi spread of model 1

J— ;EKCOSCV% - %COSC. (5 84)
Equation (5 83) proves that the profile for h is parabolic in £ The fac
tor in front is a function of ¢ alone and still not determined, but the dif
ferential equation for the semi spread g is given in (5 84) It is seen that
the profile h is shape preserving; however, the avalanche spread and the
amplitude of the parabola vary in time Below, we shall solve equations
like (5 84) numerically and shall thus determine the temporal evolution
of g

e Model 2 Here we let

B = pr —ag (5 85)

and thus have y — @ = a&, implying a variable bed friction angle, where
a = du/d¢, from Table 5 1, is a constant When substituting (5 85) together
with (5 80) into (5 76)2 we again obtain an equation similar to (5 81) This
equation is separable only provided that K is constant or merely a func
tion of g Under such simplifying assumptions the evolution equation for
g reads

3 1
= §EKCOS<V—2 —acos(g, (5 86)
g
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where

- cos? ¢ (5 87)

2(1¢\/1*(1+u%ef)cos2¢) ) g >0,
7 g <O0.

As is evident from (5 85), appropriate values for urer are pp and T, respec
tively The former is constant, the latter is a linear function of ¢ We shall
choose here prer = up only

e Model 3 As is evident from Table 5 1, we here have
7= po (1+ ), (5 88)

so that u — @ = pgcu, where & = u — u Separable solutions of an equation
similar to (5 81) exist provided that K is approximated by K =~ K (uget) in
which pgrer is constant, or only depends on @ As is seen from (5 88), two
choices are natural, purer = po and prer = po(1l + ¢@); a dependence on g
does not arise For either case, proceeding as before we will obtain

3 1
= §EK cosCV— —cuo cosCy, (5 89)
g

and we shall focus attention on the case puger = o

e Models 4 6 When p is dependent on the velocity of the centre of mass,
then

7= = pof (@), (5 90)

This makes the deformation equations (5 76) particularly simple, because
w— @ =0 and leads to the evolution equation for ¢(¢) in the form

3 1
— §5K COSCVg—2, (591)

in which no approximation on K needs to be introduced, since p only depends
on u However, in the spirit of the previous approximations, we shall set

K (:LLRef) =K (NO) ) (5 92)
where K is given in (5 87)

e Models 7 and 8 The remaining models are now a combination of the
models of type I and type IT For model 7, one has

7= f (@), u—ﬁzi@%ﬁﬁa (5 93)

6 This formula makes it particularly clear that K. ,.s may be treated as a

constant since e0K/9¢ would be O (7),v > 1
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with
0 0
_ PE +
lo="— Ao=pp—ip (594)
Application of the same integration procedure as before now yields
3 1 u
= —EKCOSCV——MCOSC, (5 95)
2 g2 2

in which K = K(ugre) This is only meaningful as long as pger is either a
constant or a function of 4 We shall choose piger = p2

Finally, for model 8 we have

fi = f (@) (uF — aog) (5 96)

and p— 7 = f (1) apé In this case, we may deduce

3 1 _
g”:isKCOSCV?*aOJC(U)COSCQv (597)

where again K = K (uret) and piref = I OF figef = p% We shall only deal
with this latter case

Summary of the Models We can summarise the above derivations with
the following two equations that govern the spread and the motion of the
centre of mass:

3 V
9" = 2K (pret (4, 9)) cos Cg_g — F(@,9,9') cos ¢,

u' =sin¢ — 7 (u, g)cos(.

(5 98)

Herein, the functions F (@, g,q’), pret(T,g) and 7w, g) are coupling coeffi
cients If F' and pger are independent of @, then the evolution of the avalanche
spread is independent of that of w, but the centre of mass motion may still
be affected by the evolution of the spread through a dependence of 7z on g
Alternatively, if @ does not depend on g, the centre of mass motion is un
affected by the evolution of the spread Table 5 2 lists all functions for the
eight models In all but models 4 to 6 the similarity solutions are approxi
mate, because no exact value for the earth pressure coefficient could be used
In fact, in most models, two possible values for urer are suggested In actual
computations, only the choices with prer = constant were selected For these
cases, we infer the following from Table 5 2:

1 In models 1 and 3 6 the centre of mass motion and the spreading are
decoupled

2 In model 2 the centre of mass motion is influenced by the evolution of
the spreading rate, while in model 7 the spreading rate is affected by the
centre of mass motion and not vice versa A full two sided coupling only
exists for model 8
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Table 5.2. Description of the functional dependence of F, 1z and ugrer as defined
n (5 98) for the various models The function f(u) for each model is defined in
Table 51 In all but models 4 6 the earth pressure coefficient is evaluated approx

imately
Model F(ﬂ7g7gl) ﬁ(ﬂ, g) MREf( 7.9)
1 A pr—pr 1P+ PR MF+MR
2 2 2
pr —ag
2 ag pwE —ag {
dg 1+ cu)
3 cpo oy po f (@) {
po f(u
46 0 o f () { ’
7 20 j(m) ) {
_ o uF —aog) f ()
8 aof(u)g (1 — aog)

3 As can be seen from the first of (5 98), a rigid body motion can only exist
for F(u,g,9’) # 0 All but models 4 6 possess the flexibility for this rigid
body motion

A limiting steady speed for the centre of mass motion only exists provided
that the right hand side of (5 98)2 can vanish Thus,

7 (u,g) =tan¢, with ¢ =0 (599)

describes these steady states For a constant & or fi(g), this equation does
not define a velocity; a final velocity simply does not exist (models 1 and
2) 7 For models 3 to 5, the above condition leads formally to

1 t 1/p
a{—<“mé1)} . p=1,2, (5 100)
c Ho
if f(w) =1+ c@ (models 3 to 5) Alternatively,
T=ln—F2 (5 101)

Ho + oo _taHC

If @ = 7i(g), then (599) defines g = gsteady, but this value is, in general, in
conflict with (5 98);
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for model 6 If u depends on both @ and ¢ as in model 8, a steady centre
of mass velocity only exists together with a rigid body motion of the pile
A solution of this equilibrium state is obtained by setting the right hand
sides of (5 98) simultaneously to zero and imposing the condition ¢’ =0

In short, a COULOMB type model allows a steady state rigid body motion of
a parabolic cap down an inclined bed in the stated approximation only if the
bed friction angle varies both with position and velocity 8

Computational Results To construct numerical solutions of the governing
equations, we write (5 98) in standard form as

a9’
dt
du . o dzT
o sin¢ — 71 (@, g) cos ¢, i

and solved by a fourth order RUNGE KUTTA scheme subject to the initial
conditions

3 _ |4 _
= §€K (/’LRef (U, g)) COSC—2 - F (u7gvgl) COS<7
g (5 102)

=,

7(0) =0, u(0)=uo, 9(0)=go, g¢'(0)=gp. (5103)

In all but model 8 this initial value problem decouples such that the equations
of the centre of mass motion can be solved first and those for the spreading
afterwards or vice versa The initial conditions have been chosen so general in
order to obtain a full coverage of the phase plane (g, g') under a broad range of
practically possible situations When putting the equations into dimensionless
form it was understood that the length scale L would be identified with the
semi spread at rest, implying go = 1 Snow avalanches often start as moving
rigid slabs and only break after having reached a finite speed At this moment
their initial shape may be close to a parabola; obviously then, one may have
go > 1,9 # 0 and up # 0 The solution of the equations of motion for a range
of initial conditions (5 103) permits exploration of the particular models for
a variety of practically relevant conditions

e Model 1 (Bed friction angle position dependent): Table 5 2 indicates that
the motion of the centre of mass and the deformation are independent of
each other Depending upon whether 4 # 0 or 24 = 0 (this is the differ
ence between the bed friction coefficient at the front and rear margins), the
two models exhibit different qualitative behaviour Figure 5 7 displays phase
space orbits, g versus ¢/, for 24 = 0 and conditions otherwise stated in the
figure caption To interpret this figure, consider an avalanche starting from

8 In soil mechanics it is sometimes claimed that the internal angle of friction

and the bed friction angle are pressure dependent This assumption can be
translated here to a dependence of p on ¢ It immediately follows that with
this parameterisation no steady rigid motion can be generated
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Fig. 5.7. Phase space orbits g versus g’ for a parabolic cap avalanche sliding down
an inclined plane when the bed friction angle is constant, i e , urer = ¢ The arrows
indicate the direction in which the trajectories are traversed when the avalanche
moves down the slidepath C' represents a point when the pile neither extends nor
contracts D is a point when the avalanche is in a state of extension (From [301])

g = go and ¢’ = g{, As the avalanche moves down the slidepath, the corre
sponding point in phase space moves along an orbital trajectory to the right
as indicated by the arrows If the initial condition is go > 0, g, < 0, one would
start in the left half plane, and g would initially decrease as the trajectory
is traversed, the granular pile would compress and passive stresses would be
established In the right half plane when ¢’ > 0, g will monotonically increase;
here the flow is extending and an active state of stress is established Usual
initial conditions start from a state g, = 0, i e, point C' in the graph Thus,
irrespective of the location of the starting point along the axis ¢’ = 0, the
granular avalanche will extend without limits as ¢ tends to infinity When
4 # 0, the qualitative behaviour is quite different Figures 5 8a,b show
phase space trajectories for various different initial conditions and the same
configuration and physical conditions as in Fig 5 7, but two different internal
friction angles (¢ = 15° in panel a and ¢ = 25° in panel b) The granular
avalanche may start to disperse from any point C on the axis ¢/ =0 Trajec
tories now “wind” themselves around the ordinate axis and all end within the
interval [A, B], which corresponds to a rigid body motion of the parabolic
pile Indeed, from (5 102); 2 and Table 5 2 we may deduce a non deforming
motion when ¢” = ¢’ = 0, or equivalently when

3 VA
g’ = 55[( cos( priir cos¢ =0, (5 104)

from which we obtain
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3eK et V 3eKpas V
Gact = A ———— < Grigid < {/ = = YJpas; 5105
t 4& g 4& P ( )

and gact defines point A, and gpas point B

If the starting point C of the avalanche lies below A, then the avalanche is
extending in time until its orbit in phase space again crosses the g axis at
¢’ = 0 If this intersection lies above the interval [A4, B], the avalanche will
subsequently contract and follow the trajectory in the left half plane of (g, ¢’)
until it again intersects the g axis at ¢ = 0 This process continues until
a point within the interval [A, B] is reached In this process the avalanche
goes through several expanding and contracting phases When a point within
[A, B] is reached, it can easily be shown with the aid of (5 102); 2 that neither
extending nor contracting flow is possible Indeed, for a point between A and
B the right hand side of (5 104) is positive (negative) when K = Kpas (Kact)
so that ¢’ > 0(¢” < 0), which leads to extensional (contracting) flow, a
contradiction to the choice K = Kpas(Kact)! Thus, the parabolic pile can
only move as a rigid body

The existence of the rigid body motion is a new and essential feature of this
model and is due to () the variability of the basal friction coefficient and (iz)
the fact that Kact # Kpas When Ko = Kpas, we see from (5 105) that the
points A and B coalesce; consequently no rigid body motion exists in this
case except when g = gact = gpas This happens when § = ¢ The differences
between Figs 5 8a and 5 8b reflect the fact that ¢ — ¢ is smaller in Fig 5 8a

e

S A
& Kpos A D
1 Kpas (1:_._/ 1t ¢

@

¥

%//

52150 Kot 5 o150 e=01

=15° Y & 1o 6-25 7B 1 TTBi1e] Koot | -15°
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Fig. 5.8. Phase space orbits g versus ¢’ as in Fig 5 7 but for a bed friction angle
that varies with position (4 is a constant, p varies linearly and pugrer = (€ = 0))
The interval [A, B] represents states (g, g" = 0) corresponding to rigid body motions
of the parabolic pile Panel a holds for an internal angle of friction of ¢ = 15° and
panel b for ¢ = 25° When A = 0, the interval [A, B] moves to infinity (From
[301])
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than it is in Fig 58b On the other hand, we can also look at the limit
wp — pg of uniform and constant basal friction In this limit 24 — 0, and
both points A and B will move to infinity along the g axis In this case, the
situation of Fig 5 7 is recovered

When the volume V' is prescribed and the parabolic shape is given, the height
for the rigid body motion at the location of the centre of mass can be obtained
from (5 105) to lie within the interval

1 [34V 1 [3AV
- < Pyigia < — . 5 106
4 5Kpas - gid 4 EKact ( )

By combining (5 105) and (5 106), the ratio of this height to the spread 2g
must satisfy the inequality

h
& < (—) < & . (5 107)
8eKpas 2¢g rigid 8e K et

This interval of the aspect ratio of the rigid body granular pile is proportional
to 4 and independent of the total volume V'

Formulas (5 106) and (5 107) are helpful for rough estimates To be useful,
however, the value of the avalanche semi length ¢ in the rigid body motion
must be known This value depends on the initial values of ginitial and g’(= 0)
NoHGUCHI et al [301] compute grigia as a function of ginitial (¢4 = 0) and
show that for an avalanche to reach a rigid steady motion, it may have to go
through several extensional and contracting motion phases They also demon
strate via an extensive parameter study that an avalanche of model type 1
may realistically hardly ever reach this rigid body motion, since travel
times and lengths are too long Figure 5 9 displays the temporal evolution of
g for a number of initial states, how this rigid body state is reached As can
be seen, on its motion the avalanche may go through several increasing and
decreasing “cycles” before proceeding as a rigid body In the figure we have
hatched the time interval that may realistically cover real avalanches

e Model 2: The results of this model are similar to those of model 1; so our
discussion will be brief The evolution equations (5 102) in this case become

dg" 3 14 d
d—i:§5Kcong—2—acong, d—‘z:g’,

du dT

d—? =sin¢ — (up — ag) cos(, d—f —1, (5 108)

and explicitly show that the centre of mass motion depends on the spread g,
whereas the spread is independent of the centre of mass motion Phase space
trajectories are qualitatively the same as those shown in Fig 58 and will
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Fig. 5.9. Temporal evolution of the semi spread g of an avalanche for various initial
values ginitial, for ¢ = 15° and conditions as indicated in the inset The time interval
in which typical real avalanches occur is shown hatched i indicates increasing and
d decreasing spreading of the body (From [301] )

therefore not be repeated here Rigid body motions are characterised by the
equilibrium points of (5 108); 2 This yields

3 KoV \ 3 eKpasV |/
Gact = (5 Tt> < Origid < (2 2 ) = Jpas- (5 109)

Furthermore, with the volume V' given, the height for the rigid body motion
at the location of the centre of mass lies within the interval

2\ 1/3 2\ 1/3
9 av <h< (29 . (5 110)
32 eKpas 32 eKact
From (5 109) and (5 110) we may deduce that the aspect ratio of the pile in
the rigid body state lies in the interval

3 a2V \'"? [h 3 a2V \?
< (X <= . 5111
4 (252[{3&5) - (29)rigid 4 (282[(2 ) ( )

act

Contrary to the result (5 107), the boundaries of this interval depend on the
volume of the avalanche and on the value of a

e Model 8: The evolution equations for g and T for this model are

dg' 3 1% d
i:—chos§—2—cuog’cosC, —gzg/-,

dt 2 g dt (5 112)
d_ﬂfs' ¢ — o (14 cu)cos¢ d—f*_

7 at "
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Fig. 5.10. Phase plane g(g') or (¢’,g) and typical behaviour of a phase plane
orbit g(g’) for model 3 Arrows indicate the directions in which the trajectories are
traversed

in which K = K, and K = K, depending on whether ¢’ > 0 or ¢’ < 0
They show that the centre of mass motion and the spreading are independent
of each other The second term on the right hand side of (5 112); plays the
role of a resistance against the spreading of the pile In spite of this, no rigid
body motion can exist This can be understood as follows (see Fig 5 10)
The hyperbola in this figure represents those values of g and ¢’ for which the
right hand side of (5 112); vanishes Along this curve dg/dg’ = oo, since 0 =
dg'/dt = (dg'/dg)(dg/dt) and dg/dt # 0; consequently all phase orbits g(g’)
cross this line with a vertical tangent as indicated by the arrow Moreover,
at ¢’ = 0 we have

y_dg _dgdg _ dg _

0= = = =
=% " dg dt  dg

0, (5 113)
because for ¢’ = 0 we have dg’/dt # 0, according to (5 112);; phase space
trajectories g(g') intersect the axis ¢’ = 0 with a horizontal tangent, also
indicated by a thick arrow In the remaining regions, the general direction
is as indicated by the arrows So, for ¢’ < 0 the granular pile is contracting,
whereas it is extending for ¢’ > 0 Even though the phase orbit bends towards
the ¢ axis after crossing the hyperbola, the axis ¢’ = 0 is only approached
asymptotically as ¢ tends to infinity Indeed, it was shown above that all
phase space trajectories must cross the hyperbola with a vertical tangent
Obviously, such a second crossing is only possible at ¢ — oo This proves the
non existence of a rigid body state

e Models 4 6: The spreading of the granular pile in these models is qualita
tively the same as for model 1 with 24 = 0 and as illustrated in Fig 57 The
centre of mass motion depends on the form of the functional relation u (@)
These models are capable of attaining a terminal velocity (see (5 100) and
(5 101) for their representations), but no simultaneous steady spread exists
This makes these models unrealistic candidates for practical use

e Models 7 and 8: Even though in model 8 the centre of mass motion and the
deformation of the parabolic pile depend on each other, whereas in model 7
the centre of mass motion is independent of the deformation, the qualitative
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Fig. 5.11. Domain of the semi spread grigia, where a rigid body motion of the
granular parabolic pile prevails for model 7, indicated by the shaded area Regions
of the centre of mass motion, where the application of the model is doubtful are also
indicated (hatched) The thick solid curve shows the evolution of the spreading when
go = 3 A rigid body state is followed by a contraction and subsequently another
rigid body state (From [301])

behaviour of the two models is similar For model 7 the equation for the
spreading rate is
dg’ 3

Vv
i §SKCOSC9—2 -

dg ’

- 5114
=9 ( )

f@) 4 o
TCOSC,

with a rigid body motion being possible in the interval

e 3K otV 36K pusV
act  __ Efact < Grigid < 78 pa = gpd (5 115)

et T\ T @ o T4y~ s
(the right hand side of (5 114) vanishes) This condition of rigid body motion
includes the velocity of the centre of mass through f(w) Figure 5 11 displays
this dependence when f (@) = 1 + c@ (shaded variable band) When ¢ = 0.1
and @ > 7, |cu| is not very much smaller than 1, and the prerequisites of the
model are no longer fulfilled This right most region is hatched in Fig 5 11
The temporal evolution of the semi spread g and of the velocity of the centre
of mass u for several choices of the initial spread gg is shown in Fig 5 12 For
go = 1, the granular pile first extends and then reaches a rigid body state
with a value of gyigiq close to 2 When go = 4, the initial phase of the motion
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Fig. 5.12. a) Spreading g plotted against time for various different initial values go
b) Evolution in time of the velocity of the centre of mass when started from rest
for model 7 (From [301] )

of the pile is a contraction, followed by a rigid body motion On the other
hand, when gg = 3 (compare also Figs 5 11 and 5 12), the pile starts with
a rigid body motion, then contracts, and goes through another rigid body
state The motion of the centre of mass is not influenced by these properties
This is the reason why in Fig 5 12b only one curve, which is valid for all
cases is drawn This is a rather dubious behaviour and eliminates model 7 as
a candidate for a realistic avalanche model This is not so in model 8

Closing Remarks We made use of the depth averaged SH equations of mo
tion and obtained one dimensional approximate similarity solutions for the
motion of a finite mass of an incompressible cohesionless granular material
moving down a rough inclined plane Basal resistance was introduced as a
Mour COULOMB type friction law with a friction coefficient that could de
pend on position, velocity or both On the basis of very mild to relatively
strong simplifying assumptions regarding the dependence of the earth pres
sure coefficient on the basal friction angle, the depth profiles of the moving
and deforming piles were found to have a parabolic cap shape and the dif
ference velocity (depth averaged velocity minus the centre of mass velocity)
was found to vary linearly with the distance from the centre of mass of the
moving pile For all investigated basal friction laws the dynamical equations
could be reduced to a set of ordinary differential equations describing the
motion of the centre of mass and the extension or contraction of the pile
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The behaviour of eight different friction models was studied The analysis
showed that the dependence of the bed friction angle in the COULOMB type
basal sliding law on local field variables is crucial For a constant bed friction
angle it was shown that the centre of mass motion of a granular mass persis
tently accelerates, and its deformation is monotonically extending A proper
dependence of the bed friction angle on other (local) field variables allows
these qualitative features to be changed Qualitatively, when bed resistance
is large in the front of the avalanche and smaller in its back, the deforma
tion is no longer monotonically extending, and the avalanche may go through
phases in its motion in which extending, contracting and rigid body states
are possible The exact performance is model dependent, but the possibility
of an evolution with a bounded length can be achieved by either making
the tangent of the bed friction angle position or velocity dependent, or both
Furthermore, the centre of mass motion need no longer have to accelerate
indefinitely along the infinitely long inclined plane In cases when the bed
friction angle depends on the depth averaged velocity, a finite terminal veloc
ity of the centre of mass might exist Such steady state conditions, however,
do not exist for all investigated models Of course, an experimental corrobora
tion of the existence of such steady state conditions would be rewarding, but
it is hardly possible Nevertheless, the construction of the solutions is use
ful because the qualitative behaviour shows how sensitively the dynamical
system “avalanche” reacts to subtle changes in the friction law

The analysis also showed that the dependence of the bed friction angle on
velocity and/or spread is crucial for the existence of steady state conditions
A model in which the centre of mass motion is capable of reaching a steady
state but the stretch can not, or vice versa, is likely to be physically un
realistic Finally, the analysis has been approximate insofar as the split of
the total motion into that of the centre of mass and the deformation with
a parabolic shape of the moving mass only led to a coupled set of ordinary
differential equations for the centre of mass displacement and the semi spread
by invoking ad hoc assumptions Of course, a mathematical proof or disproof
of the outlined properties from the original equations would be a worthwhile
endeavour

5.2.5 Variable Bed Friction, Curved Bed and VOELLMY Drag

In an attempt to investigate whether inclusion of the VOELLMY drag would
qualitatively yield alterations of the results derived so far, HUTTER and NO
HGUCHI [173] looked at the plane flow of a granular material down a curved
bed of which the basal friction law consisted of a COULOMB term S¢ and
a velocity dependent term Sy such that S = S + Sy with a quadratic
dependence of Sy on the downslope velocity u (see also Sect 35 1):

Sv = pq(|ul,[N])[ufu, (5 116)
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where u is the basal velocity, N is the traction normal to the bed, p is the
density and ¢ a dimensionless phenomenological coefficient that may also
depend on u and N VOELLMY writes

Sy = 22 |ulu, (5117)

3

where ¢ is called “viscosity”, even though it has the dimension of an acceler
ation Obviously,

If z is the downslope coordinate and ¢ the time, then the dimensionless depth
integrated conservation laws of mass and linear momentum take the forms

oh 0
E + % (hu) =0,

(5 119)
ou ﬁ Oh

) — K 0t /pas €08 ( () =~

— 4+ u@ = SIDC(ZC) - (MCOSC(‘T)—’— 8$

ot ox eh

and must be solved subject to the boundary conditions
h(zp(t)) =0, h(zgr(t)) =0,

where = zp(t) and © = zp(t) are the positions of the front and rear
margins, respectively

Defining averaged field quantities as before by

_ 1 [TF® TR (1)
f= V/ hfdz, V= / h(z) dz, (5 120)
ZR(t) TR(t)
the equations of motion for the centre of mass take the forms (see (5 72)),
du 1/ qu? dT
du _ o R ol T _a 121
i e -meosc@ - 1(40). Gem o G

provided that w > 0 for all ¢t > 0 To deduce the governing equations for the
deformation, we let

a=u—1u(t), E€=xz-7(), T=t, (5 122)
and then may derive in a manner similar to before
oh 0, _
E + 3_§ (hu) = 0,
ot  _0u ¢ _ _
ot TUge = cos () - T (1 — 1) cos ((T) (5 123)

1| qu? qu? _.0h
- {T — (T — €K act/pas COS C(ﬂc)a—5
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describing the deformation of the pile In (5 123), ((2) has been expanded to
first order about the centre T to account for the curvature effects of the bed,
(d¢/dx) |z:5 This implies that (5 121) and (5 123) are exact only for flows
down inclined panes

The sets of evolution equations (5 121) and (5 123) are not in a form that
is integrable for the unknowns T,u,h and @ To this end, the VOELLMY
term needs further simplification For this, the following condition must be
imposed:

ﬁ—@zo(gﬁ), B> 1. o

These assumptions require the velocity profiles to be nearly uniform and
extending and contracting rates to be negligible in the VOELLMY term This
assumption leads to significant quantitative inferences The final system of
equations then becomes

[N
S8
]

du . SR - qu ar

% - SIHC(ZE) /’LCOSC(I) EE ) dt =u,

oh 0 , _

at o (hw) =0, (5 125)
oa o _d¢ B 3 _on

E + ua_f COS C(w)E e - (/1’ - M) COSC<$)_EKaCt/pas COSC(x)a_g'

Evidently, the VOELLMY drag coefficient directly affects only the centre of
mass motion

With the experience gained in the previous sections it is now straightforward
to construct similarity solutions of the parabolic cap type To this end, let us
choose ¢ = constant and

prE+pr 4N

_ HF — HR ad

(5 126)
_ldg

ol Ldog

9g=& =—&r, U=ng = i

g g~ gdt
where ¢ is the semi spread, u. the mean of the tangent of the bed friction
angle and 4 its linear variation from the front to the rear margin Moreover,
u has been assumed to be linearly distributed over the pile length With

equations (5 126), (5 125) become
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dX
—p = (t) cos ((2),
dY
—p = ult)sin(z),
du 2q u*
d—u = sin ((T) — pe cos ((T) — —quvg,
a € (5 127)
dT
a
dg 3 — VoA _.d¢ _
> 2K L= =
dt €N act/pas COSC(CE)g2 2 COSC(:E) + dr IZECOSC(LE) 9,
d_,
dt ’

where K et /pas = Kact/pas(Tret) and the first two equations have been added
to directly determine the horizontal (X) and vertical (downward, ¥') compo
nents of the centre of mass position

The ordinary differential equations (5 127) exhibit a two sided coupling: the
centre of mass motion is affected by the deformation On the other hand, the
centre of mass motion also affects the deformation via the VOELLMY term
However, as is evident from the right hand sides of (5 127)3 5, rigid body
motions are possible, as are extensional and compressional motion phases In
fact, the qualitative behaviour of the solutions is easily seen to be as follows:

(1)  When the right hand side of (5127)5 is negative for both K, and
Kpas, dg’/dt < 0, so g’ will decrease and phase space trajectories will
be traversed from right to left, as indicated in the left graph of Fig 5 13
Such a behaviour cannot correspond to a rigid body motion and the
pile will contract

(#9)  When (dg’/dt) |K:Km <0< (dg'/dt) ’K:Kpas’ one has dg’/dt < 0 for
g > 0,and dg’/dt > 0 for ¢’ < 0 Phase space trajectories are traversed
such that they move towards the ordinate both from the left and from
the right Hence a constant length ¢ is approached, corresponding to a
rigid body motion, as illustrated in the middle graph of Fig 5 13

(#4¢) When the right hand side of (5 125)5 is positive, dg’/dt > 0, so ¢’ will
increase and phase space trajectories are traversed from left to right,
as shown in the right graph of Fig 5 13 The pile is extending

Phase plane orbits look qualitatively the same as those in Fig 5 8 The graphs
in Fig 5 13 correspond to the neighbourhoods of the coordinate axis below
point A, within the interval [A, B] and above point B, respectively
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g g g
Kpos — Kact Kpas T k t k el bl Kact
p p ac pas ac
— - e\ e ——
g —_— 9 g9’
0 0 0
dg’ dg’ dg’ dg’ dg’ dg’
dt ’Kact dt ’Kpas <0 dt ‘Kact <0< dt ’Kpas 0< dt ’Kact dt ‘Kpas

Fig. 5.13. Directions of traverses of phase space orbits (indicated by arrows) in the
neighbourhood of ¢’ = 0 for contracting (left), rigid body (middle) and extending
(right) low (From [173])

5.3 Two-Dimensional Similarity Solutions

Two dimensional similarity solutions have been derived by HUTTER and
GREVE [176] for the avalanching motion of a finite mass of granules with
CouLOoMB dependent and velocity dependent frictional resistance for a gran
ular pile with elliptical shape in plane view and parabolic distributions of the
height both in the downflow and crossflow directions The motion is decom
posed into that of the centre of mass and the deformation relative to it This
decomposition is possible provided that the effect of the VOELLMY drag on
the deformation is ignored With it, the depth and velocities relative to those
of the centre of the mass of the moving pile can be determined analytically
For this purpose, we consider (3 79) of Sect 3.5.3 describing the deformation
and motion of a granular mass down an inclined plane From (3 79) simi
larity solutions cannot be derived; additional assumptions are needed These
are stated immediately below (3 79) and include the additional approxima
tions (3 80) With all these assumptions, the existence of similarity solutions
can be demonstrated These similarity solutions were constructed when the
CouLoMB friction angles ¢ and § were kept constant [176, 177] Here we
slightly generalise these equations The basis is (3 81), which are now spe
cialized for the case that the centre of mass lies in a vertical plane defining
the downhill direction For a motion from rest along an inclined plane this
is necessarily so In (3 81), we then have T, = 0 and 7, = 0 so that (3 81), ,
reduce to two equations for 7. and T., whilst (3 81);, can be used without
any changes

As in the one dimensional case of Sects 5.2.1 and 5.2.2, we anticipate a
solution in which the shape and difference velocity distributions are preserved,
and the profiles are merely stretched or compressed in the streamwise and
lateral directions In view of this, we choose new similarity variables that are
normalised by the half extent of the pile in the two principal flow directions,
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_ & o
9(r)’ f(r)’
From (5 128), we deduce the following relation of the differential operators
between the new and old variables
0 _19 0 _190
o gov’  On ou’
0 o ¢ o f 0

oo 9o o

t=r. (5128)

|

(5 129)

where primes denote univariate differentiation Substituting relations (5 128)
and (5 129) into (3 81); , and seeking solutions for the difference velocity in
the form

u=gv, v=fpu, (5 130)

yields the following set of deformation equations:
oh  hou  hov
ot  gov  fou

oa  Boh _|ul ,
—_— = —— —_— 5131
5 g 2ERYY ( )
ov  DOh u I
7 Fou =MW

in which 7 has been replaced by ¢ Again replacing @ and v by (5 130), the
momentum balance equations (5 131)2 3 reduce to

Oh v ,, [T.|
—_— = —— 2= 5132
By Bg{g + Ehg s ( )

%77ﬂ i C |EC| /
o Df{f - <|ac| *Eﬁ)f }

where B, C and D, as defined in (3 58), are

B =¢cosCK,, C=cosCtand, D =ecosCK,, (5 133)

and = is the VOELLMY drag coefficient, see (3 57) Both equations appear in
separable form The right hand sides of each equation are a product of v (and
1, respectively) and a function of time In order to solve these equations, we
assume that the granular mass initially has a circular paraboloidal shape that
in the course of motion deforms into an elliptic pile height Such geometries
of the pile are, however, not exactly observed in laboratory experiments (see
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Fig. 5.14. Different coordinate systems, plane view of the granular piles and ex
planation of similarity solution: a) Initial circular projection of the granular pile
and general position in elliptic form b) Fixed domain transformation, again into a
circular form

Figs 5 17 and 5 18) ? In the present considerations, the semi spread functions
g and f are interpreted as principal semi axes of the ellipse Therefore, the
transformation of the ellipsoidal hump into the (v, 1) plane by the rule (5 128)
maps the elliptical domain into the interior of a fixed circle with unit radius,
as shown in Fig 5 14

We, therefore, assume the avalanche geometry to have the form
h(v, p,t) = Ho(t) (1 — v° — p?), (5 134)

where Hy(t) is the avalanche depth at the centre of the ellipse Substituting
(5 134) into (5 132) yields

Elliptical pile shapes were never observed in our laboratory experiments This
may be an indication that the assumptions leading from (3 79) to (3 81)
and then to (5 131) are too severe The similarity solutions of the simplified
equations, however, still give insight into the qualitative behaviour of two
dimensional idealised motions, as will be demonstrated later
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U
Ho(t) = % {g” + 2|—E|g’}

f 1! C |ﬂc| !/
Holt) = 2D{f+<|ac| Eﬁ)f}'

These equations form two second order ordinary differential equations for
the avalanche expansion coefficients g(t) and f(t), respectively, provided that
Hy(t) is a known function of time A connection between these coeflicients
and Hy(t) can be established from the conservation law of the volume of the
avalanching mass We thus evaluate the total volume V/

v = //A hdgdy = Holt) //A (=0 ) o)) v

1 p2m
= Hogf //AO (1 —? = u2) dvdp = Hogf/o/o (1 — ?"2) rdfdr (5 136)

(5 135)

1
H,
st [ (1) 7ho
0

where A is the unit circle, i e, since the initial volume is preserved,

2V
Hy= —. 5137
0= (5137)
We thus have,
2V
h=-"—(1-v>—4?, 5138
o ( 1) (5138)
and the mean height is given by
_ 2V
h://hdudu:// (1—u —u)dudu
ATgf
27 1
= 1—r Td@dr——27r/ 1—r2)dr
wgf // f ( )
4V
= 5139
dmg f gf ( )

Equation (5 138) indicates that the temporal evolution of the height profile is
known once ¢ and f are determined Substituting the value of Hy and h from
(5137) and (5 139), respectively, into (5 135) we obtain two second order
ordinary differential equations for g and f as follows:

+< |uc|7fgf> 4BV
g ,—V g - ﬂng’

(5 140)

c|mgf 4DV
"y < + |U |7Tg _ )
f [z EV f'= mgf?
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What remains is to corroborate the mass balance (5 131); with the definition
of the difference velocity (5 130) This is not difficult to show Indeed, from
(5 130) and (5 138) one concludes that

on  hou 1o

ot gov  fOou

_of2v s 2V s 19(g'v)  10(f'n)
ot {wgf (1= MQ)} * g f (L= =4) {g o f ou }
gl

Ve[ ) L(g_' f_)}
71'(1 M){( af?  g¢*f +gf g+f

- (1—v*—p?) ! (—gf' —g'f+df+gf)=0.

7T g% f?

This means that we are consistent in our calculations

Numerical Integration To determine the motion of the centre of mass and
the (longitudinal and transversal) spreading rates we must solve equations
(3 81)1,3 with T, = 0 and (5 140) Collectively the emerging equations are

dT.

= Uc,

dUC — Sinc _ C? _ |EC|ZC7Tgf
|uc| .:V

)

(5 141)

dg’ U 4B
i E—— Quﬂ g’ + V7
dt BV wg2f
a .
dt - f )

df’ C U 4DV
dt A ZV g f?

The integration of these equations must be performed subject to the following
initial conditions:

Ec(t:O):_g? ﬂc(tZO):UCO,
git=0)=go, ¢ (t=0)=g), (5142)
ft=0)=fo, [f({t=0)=f,

corresponding to a mass with initial length 2gy and initial width 2f; Notice
that in writing (5 141) the time variable ¢ is used instead of 7 and relation
V = hgf is used from (5 139)

There are many special properties of system (5 141) Some of them are listed
below
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In general, the centre of mass motion and the deformation are mutually
coupled This is due to the fact that the term (|, |[u.7gf) / ZV is composed
of w. and g f

Without the viscous sliding term (5 — oo), the motion of the centre
of mass of the pile decouples from that of the deformation Therefore,
(5141); 5 and (5 141)3_6 can be solved separately for the centre of mass
motion once this is determined for the deformation and flow, respectively
From (5 141)4¢ it follows that there can never be a rigid body motion
(for which g and f are constant) even for finite = A rigid motion would
require ¢’ = f' = dg'/dt = df'/dt = 0, but the statements dg’/dt = 0 and
df’/dt = 0 are not possible because for ¢’ = 0 and f’ = 0 the right hand
sides of (5 141)4,6 are positive in this case due to the presence of the terms
4BV /7g®f and 4DV /mg f?

Since g and f can never be constant, it follows from (5 141), that the centre
of mass can never be steady for finite = For = — oo, C' = sin( is the only
steady solution, which is physically very limited

So far we have shown that the model pile has a parabolic cap shape and
contour lines are elliptical The semi axes and the position and velocity of
the centre of mass are calculated numerically Thus, within the context of
similarity solutions, HUTTER and GREVE, [176] showed that:

e For two dimensional spreading, a rigid body motion does not exist, no mat
ter what the values of the bed friction angle and the coefficient of viscous
drag are

e A steady final velocity of the centre of the mass cannot be approached, but
the motion of the centre of mass depends on the value of the VOELLMY
coefficient

e The aspect ratio of the moving pile depends on the variation of the bed
friction angle with position, as well as on the value of the coefficient of the
viscous drag

These statements are rigorous inferences from (5 141) The explicit calcula
tions show, however, that the motion of the centre of mass may reach nearly
steady conditions and the corresponding longitudinal and transverse spread
ings are nearly constant, so that “effective rigid steady motion” is nearly
obtained Figures 5 15 and 5 16 show this for conditions as indicated in the
inset Figure 5 15 shows temporal evolutions of g and f when the VOELLMY
coefficient = is held constant but A = gont — Orear varies and vice versa Tt
is seen that both longitudinal and sidewise spreadings are affected by these
variations, and in all cases except when = > 102 nearly steady values seem
to be approached when ¢ becomes large This indicates that the VOELLMY
drag and variations of the bed friction angle are very effective in attaining
distinctive behaviour
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Fig. 5.15. Temporal evolution of the semi spreads g(t) (solid line) and f(t) (dashed
line), calculated for ¢ = 35° and the physical parameters shown in the inset In the
left panels 8 = Otront — Orear 1S varied while = is held fixed, in the right panel it is
the opposite (£z,£2y) = (0.5,1) (top) and (ez,€2y) = (0.5,0.5) (bottom) Also note
that e, = [H]/[L:] and €.y = [Ly]/[Lz], where H is the typical avalanche height,
and L, and L, are the typical extents of the avalanche in the  and y directions,
respectively (From [176] )

There must also be a strong dependence of the centre of mass motion on the
VOELLMY coefficient Figure 5 16 provides evidence for this In the top two
panels, the centre of mass position, T., in the lower panels the centre of mass
velocity, ., (both dimensionless) are plotted against dimensionless time, ¢,
for various values of the parameter = For very large = values (£ > 1000),
the centre of mass velocity is essentially linear in time and its position grows
quadratically These results are an important corroboration of our earlier cal
culations, which were performed without the VOELLMY term With growing
viscosity (decreasing = values), the growth of the centre of mass velocity is
more and more reduced The fact that the graphs for ¢, =1 and €, = 0.5
hardly differ is an indication that the centre of mass motion is only minimally
affected by the amount of spreading On the other hand, that the amount
of spreading crucially depends on both the dry and viscous drag behaviour,
demonstrates the superiority of the present model over the classical models
due to VOELLMY, SALM and others

The qualitative results gained by the analysis of similarity solutions are
physically very important One result is that with a CouLoMB sliding law
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Fig. 5.16. Temporal evolution of the centre of mass position Z. and its velocity .
calculated for ¢ = 35° and the physical parameters shown in the insets, when
the VOELLMY coefficient is varied Computations have been done for (e4,e2y) =
(0.5,0.5) (left) and (es,e2y) = (0.5,1) (right) (From [176] )

exhibiting constant friction angles, a steady state solution on an inclined
plane cannot be reached This is sometimes taken as an argument to ‘“reject”
the CoULOMB friction law, calling it “physically unreasonable” since adding
a velocity dependent contribution automatically re establishes the existence
of such steady states However, to corroborate such a steady state solution of
a dry avalanche of parabolic shape by experiment has never been successful,'®
and in the field such a corroboration is hardly achieved Thus, requesting
a viscous contribution to the drag may not be experimentally substantiated
It may, however be convenient, since it provides more flexibility in matching
the model with field data

As far as the experimental reproduction of the constructed similarity solu
tions go, our attempts have never been successful In chute flows neither the
parabolic cap nor M wave solutions were closely observed; only moving heaps
looking like parabolic humps were observed, however with shapes breaking the
symmetry in the cross hill direction For two dimensional avalanches, start

10 In Chaps 11 12 the motion of sand down inclined planes is experimentally

studied using particle image velocimetry There are indications for very long
chutes at relatively small inclination angles that a steady state flow may be
established far downstream While this inference is likely, it is however, not
completely convincing
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Fig. 5.17. Sequence of photographs of a moving mass of quartz sand down an
inclined plane of a 45° inclination angle moving on a smooth aluminium surface
The longer arm of the clock at the upper left corner performs one revolution per
second, so the camera takes about 10 frames per second The motion initiates from
a shutter of spherical cap geometry at rest The first picture shows the granular
mass immediately after the cap has been lifted by rotating it about a horizontal
axis at its upper end, thus instantly freeing the granular mass The mass develops
into a droplet shape and, as time proceeds, becomes elongated with a progressively
larger aspect ratio, L/B The direction of motion is from top to bottom (Courtesy
of K HUTTER and C BUCHER)
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Fig. 5.18. Same as Fig 5 17 but for a moving mass of plastic beads (Vestolen) on
a sand paper coating of the inclined plane Note the much more diffuse margins due
to substantial particle bouncing because of the larger bed friction angle between the
plastic particles and the sand paper bed, and the higher coefficient of restitution
and a lesser compaction of the material than in Fig 517 Moreover, the aspect
ratio of the droplets is larger than in Fig 517 (Courtesy of K HUTTER and C
BUCHER)
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ing from a rotationally symmetric parabolic heap, tear drop like avalanche
geometries evolved, see Figs 5 17 and 5 18, which break the double symme
try of the ellipse A likely reason for our inability to reproduce the elliptic
parabolas could be a dependence of the bed friction angle upon the position
within the avalanche domain Further research is needed to clear this point



6 Exact Solutions for Flow Avalanches
in Rotating Drums

The flow of granular materials in rotating drums is a typical example of mix
ing and demixing in process engineering scenarios Many interesting and tech
nically important phenomena can be observed in such flows The behaviour
is different depending upon whether the drum is a long cylinder extending
over many particle diameters or whether it is thin, only forming a small gap
between two circular disks The character of the particle rearrangement also
depends upon whether the assemblage is monodisperse or polydisperse,' and
further factors are the filling and the presence or absence of an interstitial
fluid Dry granular flows of mixed large and small particles in long rotating
horizontal cylinders tend to separate by size and form bands, separating large
and small particles The flow of dry cohesionless particles in the small gap
between two co rotating disks mix according to the avalanching motion and
the embedding of the particles in the central core that performs a rigid body
motion If the avalanching motion is intermittent in a “go and stop manner”,
then a Catherine wheel effect is generated as shown in Figs 2 10a,b,c If the
rotation of the cylinder is faster such that the avalanching flow at the free
surface is continuous, then the deposition generates a continuous intermix
between the small and large particles as shown in Fig 2 10d

Because of its significance in, e g , powder mixing processes, the flow of granu
lar materials in rotating long or short cylinders has been thoroughly analysed
over the past 20 years These studies concentrate on long or short cylinders
and on continuous avalanching motion at moderately fast rotation speeds
or intermittent flow at small rotation speed Among the most detailed ex
perimental studies of flow in a rotating cylinder that is characterised by a
continuous and steady surface flow of particles are the works by HENEIN et al
[149] and NAKAGAWA et al [291] In the latter work, the density and velocity
fields were experimentally determined by using nuclear magnetic resonance
imaging The authors determined the density and velocity fields across the
avalanching layer We shall return to this in Sect 6 4 In other experimental
studies, RAJCHENBACH [353] found the dynamic angle of repose to be pro

! Polydisperse particle systems are particle assemblages in which particles with

distinct properties are present; in monodisperse systems all particles have the
same properties: size, mass and resilience
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portional to the square of the angular velocity, whereas KLEIN and WHITE
[221] found it to vary with the square root of the acceleration due to gravity
in reduced gravity experiments According to KHAKHAR et al [218, 219] and
ORPE and KHAKHAR [307] these observations are largely unexplained

Simulations of rotational cylindrical flow have been carried out by WALTON
and BRAUN [437] for spheres and BUCHHOLTZ et al [54] for cubic particles
Both papers report different dependencies of the dynamic angle of repose on
rotation speed, inter particle friction and particle shape Issues of transverse
mixing in rotating drums have been analysed by HoGG and FURSTENAU
[154], LEHMBERG et al [249] and INOUE et al [186] Mixing at slow rotational
speed, in which the cascading motion is intermittent has also been studied
by METCALF et al [281] and MCCARTHY et al [266]

In this chapter, we will be involved with continuous “small gap” cylindri
cal flows We will demonstrate how the avalanche theory can be utilised to
investigate the flow mechanism and mixing behaviour in a slowly rotating
partially filled drum Exact solutions for the avalanche depth, particle paths
and circuit time are constructed by including the effects of wall friction, the
erosion and deposition processes and mixing phenomena in more detail The
basic concepts, notations and field equations have already been developed in
Sects 3.6 and 3.7

6.1 A Simple Exact Solution for Steady Flow
in a Rotating Drum Without Erosion
and Deposition

In this section, we investigate a simple solution for the avalanche equations
for two dimensional flow of a finite mass of cohesionless granular material in
a rotating drum with constant angular velocity Here we neglect the effect
of bed erosion and deposition In other words, the granular mass only fills a
small part of the gap, so that the entire mass slides along the outer wall of
the gap In Sect 6.2 the additional effect in which a large part of the gap is
filled with granular material will be treated

6.1.1 Coordinate System, Geometry
of the Drum and the Moving Mass

A Cartesian coordinate system is defined in order to describe the flow of a
finite mass in a partially filled slowly rotating drum as shown in Fig 6 1,
where the x axis connects the front, x,., and the rear margin, —x,., and the
drum centre lies on the z axis The circular form of the drum yields the
following basal topography:
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X

Fig. 6.1. Left: sketch of a Cartesian coordinate system and motion of a granular
material of finite mass in a rotating drum, where L is the radius of the drum, Hy
is the distance of the drum centre, Oq4, to the coordinate origin, O, and z, is the
half length of the bulk body This coordinate system is inclined with angle ¢ to
the horizontal The free surface profile and the basal topography in this coordinate
system are described by s(z) and b(xz), respectively The light portion of the mass
indicates the avalanching part, whilst the dark portion is (approximately) a rigid
body part (with basal slip along the outer circle) Right: determination of the basal
topography b(z)

(Ho—b(@)* +a® =1* = b@)=Ho—(L2=2?)"".  (61)
where L is the radius of the drum and Hj is the distance of the drum centre
to the coordinate origin, i e , to the interface of the avalanche and the rigid
portion of the mass Note that b(z) is negative

6.1.2 Avalanche Depth Determined Without Wall Friction

In a simple situation, the processes of mass evolution and avalanching mo
tion in a rotating drum may be described by the classical smooth solution
of the SAVAGE and HUTTER theory [375] The reason for this is as follows:
From observations of the bulk in experiments it is concluded that the free
surface and velocity field are continuous, i e, no discontinuity seems to de
velop [412, 413] We recall that the momentum balance law (two dimensional
spatio/temporal) for the classical smooth solution is given by

ou . ou
==
ot ox
where s,, the net driving acceleration, and (., respectively, are

oh
:Sw_ﬁwa_ma (6 2)

Sz:COSC(taHC7U/|U|tan5)7€COS<%, Bz = ecos (K. (6 3)

Notice that all quantities appearing in the above equations, and henceforth,
are in their non dimensional forms As already described in Chap 3, h is
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the avalanche thickness in the z direction, u is the depth averaged downslope
velocity, € is the slope angle of the x axis with the horizontal and K, is the
earth pressure coefficient as a function of the internal, ¢, and basal, §, angle
of friction (see Sect 3.4.3)

Kipi)poe = 2sec? ¢ {1 F (1 — cos® ¢/ cos® §) 1/2} -1 (64)

We assume a constant angular velocity of the drum In this situation, the
motion of the granular material can be viewed as in steady state (ie , u = ug)
and u/|u| =1 Thus, du/0x = 0, and this implies that we are unable to select
K, and K., since K, , < K, < K, , The earth pressure coefficient
K, remains undetermined, having a value perhaps between K, and K,
In steady state h = h(x), which implies Oh/0x = dh/dx, and 0b/Ox = db/dx
Under these conditions (6 2) and (6 3) reduce to

as ?

dh  db
€<Kx%+%> ftanéftané. (6 5)

This, together with the basal topography (6 1), yields

EX

dh
e Ky— (L2 — 22)1/2°

T tan{ — tan§ —

(6 6)

Subject to the boundary condition h(x,) = 0, the solution h(z) of (6 6) is
given by (see, e g [412])

h(z)

=K {(tan( — tan )z 4 e(L? — 22)Y/? 67)

—(tan¢ — tan &)z, —e(L? —22)V2} . x € [—ap, 2,

This equation demonstrates the advantage exhibited by the choice of coordi
nate system and thus can be simplified to a great extent The depth profile
h(z) must fulfil the rear margin condition h(—x,) = 0, which necessarily im
plies that ( = 6 This also indicates the possibility of measuring the basal
friction angle by rotating drum experiments Under the compelling condition
that ¢ =0, (6 7) reduces to a very simple form

h(z) = KL{(L2 — x2)1/2 — (L2 — xf)lﬂ}, x € [—2p, Ty (6 8)
This equation has two special features Firstly, it is independent of the slope
parameter ¢ and the stretching parameter ¢ Secondly, this implies that the
thickness of the bulk body is proportional to 1/K, The free surface profile
is then given by s(x) = h(x) — b(x) When the wall friction is neglected, the
profile is symmetric with respect to z = 0 and the maximum height of the
avalanche occurs at the centre of the drum Together with the relation of the
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0.015¢ 4 \

0.005f '

-1 -0.5 0 0.5 1

Fig. 6.2. Theoretical prediction of the avalanche thickness of a finite mass of
granular material in a wall friction free rotating drum The result is evaluated with
the compelling condition ( = § = 31°, where the parameter values are chosen as
e=1, K, =082, L =475 and Hp = 4.6 (From [413])

coordinate geometry, L? — 22 = HZ, the thickness at this centre, z = 0, is
then given by

hO:h(O):KLI{Lf(ﬁf:zzf)l/Q}:KLI(LfHO). (6 9)

Figure 6 2 demonstrates the depth profile evaluated by (6 8) in the coordinate
system defined by L = 4.75 and Hy = 4.6, where the inclination angle is equal
to the basal friction angle ( = § = 31°, and the earth pressure coefficient is
K, =0.82

Parabolic Similarity Solution We now have the possibility of obtaining a
similarity solution analogous to that computed in Sect 5.2, but for a steady
flow configuration For this we need a very large drum With the assumption
x, < L, which is satisfied by the condition A = O(e®), 0 < a < 1, of
Chap 3 and using a binomial series expansion, (6 8) can be approximated

as
L x? x2 x2 )2
h(z) = —{1—— —1 Ry s L 1
() Km{ 212 +2L2} 2LK1{ <:c> } (6 10)

which forms a parabolic thickness profile [412], and is similar to the parabolic
similarity solution obtained in [373, 375] The factor (22/2LK,) on the
right hand side of (6 10) indicates that the height profile is proportional to
the square of the half extent of the avalanche but inversely proportional
to the radius of the drum This is a rather trivial relation, because if the
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Fig. 6.3. Photograph of the rotating drum experiment with 3.5 1 of Vestolen The
drum is rotated with an angular velocity of approximately 10~" Hz The dimensions
of the drum are: inner width 151 mm and radius 475 mm (From [413] )

fill level (for the definition see Sect 6.2.2) of the granular material is be
low the centre of the drum, z, increases as L decreases The nontrivial re
sult, however, is that h(z) in (6 10) depends on K, Measuring h(x) thus
may allow determination of K, The rotating drum experiment with 3 51 of
Vestolen (a type of plastic particles of lens like shape) is shown in Fig 6 3

6.1.3 Avalanche Depth Determined by Including
Wall Friction

In real cases we need to incorporate the wall friction, which is partly re
sponsible for the bulk drag This kind of drag was not considered in the
last section Provided that the wall friction angle is equal to the basal fric
tion angle and using the hydrostatic pressure on the wall (which contributes
an additional term — K, cos(tand h/2 on the right hand side of (6 3)1), the
steady state version of (6 2) with the driving acceleration s, (6 3); is then
given by

db dh
0=(t —(1+ K, h/2)tand) —e— — K, —. 611
(tan ¢ — (1 + Kuh/2) tand) — e— . (611)
This, with (6 1), reduces to
dh
e K, o = tanC — (1 + Kph/2) tand — ———— (6 12)

dx (L2 — 22)1/2’
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which must obey the boundary conditions h(z,) = 0 and h(—z,) =0 Equa
tion (6 12) can be written in the following standard form:

L ph—q, (613)
dx

where
_ tand _ tan( —tand T

2 eK, C KVIZ 22
Since P is a constant and @ is only a function of the independent variable z
and does not involve h, the linear ordinary differential equation (6 13) has

the solution (this solution is derived with the knowledge gained in any intro
ductory course in ordinary differential equations)

h = Aexp (/%dt) + exp ( /%dt) /Z{Q exp </tidt’) } dt, (6 15)

where A is a constant of integration Subject to the boundary condition
h(—z,) = 0, at the upper most point of the avalanche and the solid interface,
A becomes identically zero, and since P is a constant this solution has the
following simple integral form (see also [413]):

(6 14)

h(z) = { ’ Qexp (P(t+ x,)) dt} exp (—P(x + ,)) . (6 16)

—x,

Due to the presence of the factor 1/K, in @, as in the previous case without
wall friction, the geometry of the depth profile of the avalanche explicitly
depends on the value of the earth pressure coefficient The numerical solution
of h(z), subject to the conditions h(+z,) = 0, is illustrated in Fig 6 4, where
K, = 0.82 and the coordinate parameters are the same as in Fig 6 2,
L =475 and Hy = 4.6

Since the wall friction is active to drag the mass back, the inclination angle ¢
is greater than the basal friction angle § The centre of the avalanching mass
is thus shifted to the left, as expected, and located in the rear part of the
bulk contrary to the case without considering the effect of wall friction

A more detailed investigation of the steady state solutions of an avalanche of
a finite mass of granular material in a slowly rotating partially filled horizon

tally placed (circular) cylindrical drum can be found in [412, 413], where dif

ferent cases of the earth pressure coefficients are considered In these papers,
it is demonstrated that the surface curvature depends upon the numerical
values of the earth pressure coefficient
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Fig. 6.4. Analytical prediction of the depth profile of the avalanching bulk of a
finite mass of granular material in a rotating drum with wall friction, where ¢ = 1,
K, =0.82, L =4.75, Hy = 4.6 The mass centre is shifted to the left and located
in the rear part (From [412])

6.2 An Exact Solution for Steady Flow in a Slowly
Rotating Drum with Erosion and Deposition

6.2.1 A Steady Flow Avalanche

In this section, the simple steady state solutions to the avalanching motion
in a rotating drum are investigated > These solutions were constructed by
GRAY [124] In this section and Sect 6 3 we will follow his procedure The
model equations have already been derived and discussed in detail in Sects
3.6 and 3.7 It is, therefore, assumed that the solid core granular material
rotates with constant angular velocity (2, and that all derivatives with time
are zero, (0/0t) (-) = 0 Furthermore, the basal friction angle, §, is assumed
to have a constant value, 09 For the avalanche part, the coordinate system
oxz is chosen (see also Sect 3.7 and Fig 3 13) so that its angle of inclination
is ¢ = do If the magnitude of the avalanche velocity is greater than |e£20l],
ie, (Jul > |ef2ol| which implies sgn (u — ef29l) = 1), then except for the ge
ometric contribution, € cos(db/dx, the net driving acceleration defined in
(3 114) is identically equal to zero This means that the avalanching motion
is non accelerating in the downslope direction and the gravitational accelera
tion effect is cancelled out by the basal friction force For the classical smooth
solutions (the conservation form of) the momentum balance (3 113) can be
further simplified with the help of the mass balance equation (3 112), and
the normal deposition rates (3 109) and (3 111), to yield the following steady
state balance laws:

2 The reader is asked to consult Sects 3 6 and 3 7 prior to reading this section
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b B oy b

_x(hu) =0 (p /p ) (5[—8:17 + :c) , (6 17)
u 0 2 _ 9b

huz + 5 (Kz cos¢h?/2) = —chcosC -, (6 18)

where p~ is the bulk density in the deposition zone and p* that in the
avalanche Usually, the model equations (6 17) and (6 18) are solved for the
avalanche thickness, h, and velocity, u, for given basal angle of friction, d, in
ternal friction angle, ¢, basal topography, b, and suitable initial and boundary
conditions

Note The (constitutive) parameter p~/p™ is included in the model equa
tions (6 17) (6 18) to account for the fact that the solid granular bulk ma
terial must dilate for the grains to move past each other in the fluid regime
Nevertheless, the dynamics of avalanches is not greatly affected by this pa
rameter Typically, the amount of dilatation is of the order of 5 10%, see,
eg, [124]

6.2.2 An Exact Solution

Here, a special class of solutions is considered in which the downslope
avalanche velocity, u, is assumed to be constant,

u = ug, (6 19)

and the avalanche equations (6 17) and (6 18) are solved for the avalanche
thickness, h, and the basal topography, b, provided the suitable boundary
conditions and parameter values This contrasts with other solution methods
that seek values of the avalanche thickness, h, the free surface, s, and the
velocity distribution, u; the present method may be considered as a “semi
inverse” technique of solution The earth pressure coefficient, K, is defined
in terms of du/dx, see (4 80) As for the present situation du/dx =0 K,
is equal to a constant value Ky through the avalanche region Therefore,
for constant K, = Ky, the model equations (6 17) and (6 18) together with
(6 19) reduce to (see [124])

dh db
A—+el—+x=0, (6 20)

dx dx

dh db
Ko—+—=0 6 21
Odl' + dx ) ( )

where A is an order unity constant defined as

A= — P+U0

p=8%’

(6 22)
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that incorporates the effects of the density changes from the upper part, p™,
to the lower part, p—, of the basal interface, the constant rotation rate of the
solid granular body, {2y, as well as the steady uniform downslope avalanche
velocity, ug It will be shown later that for a solution with positive avalanche
thickness the parameter A is positive It may also be assumed without loss
of generality that the constant downslope velocity is positive, ug > 0, and
hence the constant angular velocity is negative, {29 < 0

The point (—a,l) in the solid body system is the uppermost point of the
intersection between the drum wall and the avalanche free surface; it defines
the top of the starting zone of the avalanche Thus, with the “fill level” | =
L — Hy, a = VL?—12 (see Figs 313 and 6 1) Integrating (6 20) (6 21)

subject to the boundary conditions h = 0 and b = 0 at x = —a implies
1
Ah el — 5 (a* —2%) =0, (6 23)
Koh+b=0. (6 24)

From these two equations, it follows that the avalanche height and basal
topography are

h = hg (a® — 2%) /a?, (6 25)
b= —Kohg (a® — 2°) /a?, (6 26)
where the constant
L
ho = 5@ (/1 - ElKo) (6 27)

is the avalanche thickness at © = 0 For positive order unity values of A, the
constant hg in (6 27) and hence the avalanche thickness h in (6 24) is positive,
provided that A > elKy This conforms with the assumption that A is a
positive parameter for solutions with positive thickness of the avalanche [124]

The system of equations (6 25) (6 26) can be used to predict the avalanche
thickness h and the basal topography b, provided that the free parameters
A, I and L along with a constitutive model for Ky are known The explicit
solutions for both the avalanching as well as the rotating systems are plotted
in Fig 65

Note The basal topography gradient db/dz = 2Kohox/a? implies that a point
mass (particle) is accelerated in the upper half (i e, the avalanche starting
zone, x < 0) region and decelerated in the lower half (ie, in the avalanche
deposition zone, x > 0) region Similarly, the avalanche thickness gradient
dh/dx = —2hoz/a? decelerates the avalanche in the upper half region x < 0
and accelerates it in the lower half region > 0 An exact balance between
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A=3.00, I=-.20 A=3.00, [=0.60

Fig. 6.5. Sketches of the steady state solutions for the flow of dry non cohesive gran
ular material in a partially filled and slowly rotating drum for negative and positive
fill heights In both cases, the free parameters L, K¢, respectively, are chosen to be
1 and 2.0, see [124] The arrows indicate velocity vectors so as to show the relative
speed and direction of the flow Also shown are the position of the avalanche free
surface and the interface between the avalanching and solid regions (From [125] )

these competing mechanisms ensures that there is no non zero net accelera
tion and the downslope avalanche velocity is constant along the entire extent
of the avalanche The mathematical description of this competition is re
flected by the equation b = —Kyh This phenomenon is compatible with the
assumption made before about a non accelerating avalanche motion in the
rotating drum [124]

|

6.3 Mixing in a Rotating Drum

To investigate the mixing phenomenon of a granular mixture in a rotating
drum, it is necessary to know the particle® paths and the circuit time of each
particle in the process In this section we will deal with these aspects

6.3.1 Particle Paths

The particle path in the solid body rotation is trivially circular once the
distance from the centre of revolution is provided However, the determination
of the particle path within the avalanching flow is not straightforward and
needs a detailed investigation of the balance laws, kinematic conditions, as
well as interfacial conditions The particle paths within the avalanching flow
can be determined by integrating the system of ordinary differential equations

3 The term “particle” here does not mean “grain” but the continuum mechanical

particle
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dx ( 0 dz
— =u(z, 2 —
dt T dt
subject to the initial conditions that z = xg and z = 2y at the initial time
t =0 Notice that the time derivative d/dt is the rate of change as observed

when moving along a fixed trajectory

=w(z, z,1), (6 28)

Since the motion is non accelerating and the downslope velocity is constant
(u = up), it trivially follows from (6 28); that

x = uot + To; (6 29)

this formula gives the displacement at time t of the particle in the downhill
direction

There is no direct means of computing the displacement of the particle per
pendicular to the x direction The normal velocity component w can be de
termined from the incompressibility relation du/0x + dw/dz = 0 subject
to the interfacial mass jump condition (3 101) Since the downslope veloc
ity component is constant, the condition that the velocity field is solenoidal
implies that dw/0z = 0, which, integrated with respect to z, implies

w = w’", (6 30)

where w®t is the normal velocity at the base of the avalanche (ie, on the
upper side of the singular surface) given, from (3 83), (3 109) and (3 111), by

d dz

With the help of (6 22), (6 30) and (6 31), and by using (6 29), the change of
variable t = (x — xg) /uo transforms the differential equation for the normal
velocity component, (6 28)s into

d db db
/ey (51— + x) +0 (") (6 32)

wht = uod—z + (p~/p") 2 (sl@ + :c) +0 (") (6 31)

de T dx dx

Finally, integrating this with respect to = yields the height of the particle as
a function of its position x

1 2
z:zO+b—Z<glb+%)+O(51+7), (6 33)

where zq is the initial height of the particle

Up to now we have only used the incompressibility condition, the mass jump
condition, the kinematic condition and ordering but not the momentum bal
ance for the determination of the particle path Next we will show how the
SH equations can be used to determine the particle paths and thus how
the momentum balance enters these considerations For more details on it,
see [124]
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Parameterisation of Particle Paths Due to the symmetry of the avalan
che profile about the z axis, the maximum height of the avalanche is attained
at x = 0, and therefore all avalanche particle paths cross the z axis The
process of tracking particles can be investigated by introducing a new pa
rameter o This parameter labels the particle paths that pass through the
avalanching domain Therefore, let p be the relative height of the avalanche
particle path to the maximum avalanche height, hg, as it crosses the z axis
With this definition, it follows that g is equal to zero at the avalanche base
and unity at the free surface and that it is linear in z, [124] The value of
p thus uniquely labels the particle paths that pass through the avalanche
region

Substituting the definition of p into (6 33) it follows that

2

1
z:b—i—hop—z{al(b—bo)+%}+0(sl+7), (6 34)

where, according to (6 24), by = —Kohyg is the position of the basal interface
at x = 0 Substituting for the basal topography from (6 26) and (6 27), (6 34)
can still be simplified to yield

z=b+hop — ho (v*/a®) + O (e'17). (6 35)

A Closed Path In order to show that the avalanching paths form closed
curves that pass through the fluid like and solid like regions, it is necessary
to detect the points at which the particle enters into the avalanche zone
from the solid body and comes back to its solid region A particle crosses
the interface between the avalanche and the solid rotating granular material
when its height is equal to the local height of the basal topography, ie,
when z = b Equation (6 35) in this case becomes a quadratic equation for
the intersection positions and has two real and distinct roots

Tpy, = A/ =: Tp, Tpy, = —a\/P = —Tp. (6 36)

The locations of these points are illustrated in Fig 6 6 where they lie an
equal downslope distance on either side of the z axis The corresponding
intersection points of the normal coordinates, therefore, are given by

Zby = b (xbl) ) Rby = b (xbz) ) (6 37)

respectively, where b is given by (6 26) Because of the symmetry of the
avalanche height about the z axis, in other words, since the intersection points
lie an equal downslope distance on either side of the origin, and since the
basal interface, b, is an even function of z, the intersection points have the
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Fig. 6.6. Illustration of a closed particle path for steady granular motion inside
a partially filled drum The particle enters into the avalanching region at (ry, 6s,)
and is rapidly transported down to the wall of the drum by the avalanche It then
re enters the solid region at (74,0, ) and performs a solid body rotation and comes
back to its original position (74,0s,) completing a closed circuit A is the angle
between 6, and 6, measured through the region of solid rotation in clockwise
direction The base of the avalanche at X = 0 lies at By For By > 0, a solid core
develops in the centre of the drum so that the particles in this region never have
contact with the avalanche and are isolated from being fluidised (Redrawn from
[125] with changes )

same normal components z,, =z, We simply call this the common value z;
Provided that the downslope velocity ug > 0, a granular particle will cross
from the solid to the avalanche region at (zy,,2,) and pass back from the
avalanche to the solid region at (z3,, 25) In the OX Z coordinate system these
points correspond to (Xp,, Zp) and (Xp,, Zp), respectively, where X3, = a3,
Xy, = Ty, and Z, = [ 4+ €z, Due to symmetry about the Z axis, both of
these positions lie an equal distance

ry =\ XE+ Z2, (6 38)

from the axis of rotation at the centre of the drum

Since the particles in the solid granular material are in rigid rotational motion
with a constant angular speed, {2, about the origin (which lies on the axis
of revolution), their paths are given by the solution of the set of ordinary
differential equations

ax - dz "~

— =z, — =clX™
= = —eZT, o =X, (6 39)
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subject to the initial conditions that X~ = Xj and Z= = Z; at ¢t = 0.
Therefore, the particles move in circular arcs that are parameterised by

X =rcosl, Z =rsinb, (6 40)
where the azimuthal angle
6 =et+ 0y, 6 =tan(Zy /Xy). (6 41)

An avalanche particle path intersects the basal interface at points (X,, Zp)
and (Xp,,Zy) In polar coordinates these points have their respective posi
tions at (74, 0s,) and (74, 6, ), where the angles

9},1 = COS_1 (Xb1 /’I’b) y 91;2 = COS_1 (XbQ/Tb) . (6 42)

It follows that after the particle has crossed from the avalanche to the solid
region at (ry, 0y, ) it describes a circular arc until it reaches (ry, 0y, ), where it
re enters the avalanche region Since both the starting and re entry positions
lie on the two end points of the same circular arc, it follows that the particle
paths in the rotating drum form closed circuits that extend through both
the avalanching and solid regions Each of these closed curves are uniquely
identified by the relative height @ as it crosses the z axis in the avalanche
The exact solutions and the experimental results are illustrated for negative
and positive fill levels in Fig 6 7 [125]

Note A particularly interesting feature of the motion is that if the height
of the basal topography lies above the axis of rotation at =z = 0, a solid
central core develops where the particles never enter into the avalanche, [125]
The two states of motions are thus distinguished by the height of the basal
interface By = [ + cbg at =z = 0:

a solid core develops, if By >0,
no solid core, if By <0. (6 43)

For By > 0 the radius of the central core is By = [ —eKyhy Therefore, as the
fill level increases, the size of the central core becomes progressively larger
This agrees well with the laboratory experiments This situation is illustrated
in Fig 6 7, which shows two long time exposures of a drum partially filled
with black and white poppy seeds In the upper two panels the height of
the basal interface By < 0, which implies that all the particle paths intersect
with the avalanching domain close to the free surface In the lower two panels
the height of the basal interface By > 0, so a solid core develops where the

particles are always in solid rotation
[ |
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B,=037 [1=0.60

Fig. 6.7. Experiments and predictions of closed particle paths in long time exposure
for negative and positive fill heights For By < 0 all the particle paths pass through
the avalanche (upper panel) However, for By > 0, some particles in the solid
rotating region describing circular arcs never intersect with the free surface of the
avalanche (lower panel) The diameter of the solid rotating circular disk depends
on the fill level and rotation speed of the drum (From [125])

6.3.2 Circuit Time

To have a complete theory for mixing we further need the total time of a
closed circuit, from the avalanche through the solid and back to the avalanche
again In this section, we investigate this as a closure of the theory

The time a particle takes to complete a circuit around the drum (in the solid
body and the avalanching region) has a very important consequence for the
mixing of the granular material and is extremely sensitive to the particle
path, o, and the fill level, [, of the drum Since the avalanche velocity ug is a
constant, a particle entering the avalanche at (—x, 25) takes a time

ta = 2xp/ug (6 44)

to reach the other end of the avalanche (xp,2,) As the particle enters the
solid region it travels along a circular arc from (74, 0p, ) to (73, 6p,) in the time
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ls = zﬂ/ <_€QO)7 (6 45)

where

A = ang (0, 0,) (6 46)
is the angle between the intersection points measured through the solid region
in the clockwise sense, which lies in the range 0 < A < 27 The factor e ! in
(6 45) is the manifestation of the fact that the time spent in the solid region is
much larger than the time spent in the avalanche, which implies that ¢, < ¢
For convenience one may set the aspect ratio to be 1:1, which is achieved by
setting € = 1 in the avalanche flow solution to unstretch the coordinates For
simplicity, the angular velocity may be chosen so that the drum performs one
complete revolution in a single non dimensional time unit, ie, 2y = —27
It is then evident that the particles travel through the avalanche in a time
te < 1, [125]

Finally, the total time ¢; taken by a particle to perform one complete close
circuit in the drum is the sum of the time spent in the avalanche, t,, and the
time spent in solid rotation tg,

ty = to + ts, (6 47)

which is equal to 223 /ug+ A/ 2 for the aforementioned simplified situation
with parameter values ¢ = 1 and 25 = —27

Comparison of the exact solutions of Sects 6.2 and 6.3 with small scale lab
oratory experiments was presented by GRAY in [124, 125] who investigated
the mixing phenomena of differently coloured monodispersed granular par
ticles It is shown that the theoretical predictions agree quite well with the
laboratory findings

To summarise, this section on avalanches in rotating small cylindrical gaps is
only peripherically alien to the main topic of avalanche dynamics The exact
solution of the steady motion of a finite mass of granular material sliding
in a steadily rotating drum may turn out to be a solution with vanishing
stretching (Ou/dz) conditions for which the value of the earth pressure coef
ficient is not known This flow state is neither active nor passive A carefully
constructed experiment, paired with the analytical solution, may provide a
means of determining the earth pressure coefficient at zero stretching

The exact steady solution for the rotating drum with erosion and deposition
is an imaginable simple situation for which erosion and deposition processes
arise Even though erosion and deposition processes are generally difficult to
quantise, the situation here has been shown to be simple insofar, as no phe

nomenological closure statement needs to be formulated; jump conditions of
mass and a statement of dilation from the deposited material to that in mo

tion are sufficient This implies that the mixing of particles in avalanches can
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ideally be studied under such physically simple conditions Rotating drums
have, therefore, demonstrated that they are ideal for testing the model equa
tions of avalanching flows

6.4 An Alternative Model Describing
the Transverse Flow and Mixing of Granular Material
in a Rotating Cylinder

In the previous section, the extended SH equations were used in describing
the cascading flow of granular material down the free surface of a partly filled
rotating cylinder One assumption was that the downslope velocity compo
nent within the avalanche is constant across the layer, and a consequence of
the emerging steady equations which, incidentally can be solved exactly
was that this depth averaged velocity was also constant as a function of the
downslope coordinate We also saw that the results of mixing determined by
this model showed good to very good agreement with observations of exper
iments, see GRAY [124] However, in the introduction to this chapter we also
reported experiments by NAKAGAWA et al [291], which do not support these
findings KHAKHAR et al [218] summarise these as follows:

“The density, i e , solid volume fraction decreases with distance across the
cascading layer, with the lowest density at the free surface

The cascading velocity increases linearly with the distance across the layer,
except near the boundary between the bed and the layer where there is a
slow variation

The velocity also varies along the layer and exhibits a maximum near the
midpoint of the layer

The layer thickness is maximum near the midpoint, and the thickness at
the midpoint increases with rotational speed, achieving a constant value
at high rotational speeds ”

Of these observational results the first three contradict the basic assumptions
implied in the SH equations Thus, it is interesting to see how different pos
tulates, resulting in a different theory, cope with these experimental findings
In the ensuing developments we follow KHAKHAR et al

6.4.1 Model

KHAKHAR et al [218] write the depth integrated balance of mass as

dQ d
— = —(phu) = ppE 6 48
Ty = g Ph) = puBe, (6 48)
in which @ is the cascading mass flux, pu is the depth averaged downslope
mass flux in the z direction,
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Fig. 6.8. View of the flow region showing the coordinate system and geometrical
parameters of the system Note that the unit normal vector, n, points into the
avalanche region

1 0
pu= 4 / . puzdy =: (pvg), (6 49)

and h is the avalanche thickness Furthermore, p; is the density of the solid
core mass and FEj the entrainment rate With reference to Fig 6 8 it is easy
to see that the velocity of the particles in the bed and the unit normal vectors
perpendicular to it are

vy, = —w(H + h)é, —wzé,,
. We,+eé , dh (6 50)
n=—-_"Y n = —

1+h72 dx )’

so that
Nw(H + h) +wz
V14 h'?

Because the cascading region is thin and long, we may assume that |h/|< 1
To lowest order, E} thus takes the approximate form

Eb:Vb-fl:—

(6 51)

Ey, = —wz + O(hw). (6 52)

Consequently d@/dx = —ppwz, or after integration

Q= %pbw (L? —2?), (6 53)

a formula already derived by DE GENNES [111] This shows that the mass
flux is maximum at the centre (ie, origin of the coordinate system) and
vanishes at the extreme boundaries in the z direction The steady state depth
integrated momentum balance equation in the downslope direction can be
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written as*

d

dx
Here, (v2) is the depth averaged x component of the velocity square and ¢y is
the slope angle of the coordinate system On the right hand side the first term
is the driving force due to the acceleration due to gravity, the second term
represents the impulse due to the velocity jump across the basal surface and
7 is the frictional shear traction at the base In (6 54) KHAKHAR et al ignore
the contribution associated with the longitudinal pressure variation This is
consistent with the earlier assumption of ignoring O (h'w) terms in the mass
balance, but the neglected term constitutes exactly the contribution in the
SH equations to be significant That term alone involves the earth pressure
coefficient It follows that the MoHrR COULOMB plastic behaviour cannot be
described in this model

(p(v2)h) = pghsin (o — ppEp]v - &,] — 7. (6 54)

The velocity jump at the basal surface in the downslope direction, [v - &,],
takes different values for z < 0 and x > 0 For x < 0, material is entrained
from the bed and [v - &,] is claimed to be negligible by the following argu
ment: “When particles cross the interface to enter the layer, they experience
an abrupt change in their tangential velocity, as mentioned above The tan
gential component of the momentum of the particles entering the layer is
thus difficult to estimate However, the magnitude of the particle momentum
is small (as is apparent from the experimental results of NAKAGAWA et al
[291]), and hence we assume that [v - é,] = 07 [218] Alternatively, the ve
locity jump at > 0 is —[vg|e=—n — w(H + h)] + O (Ww) = —[vg|e=—n], an
approximation that is plausible, since |vy|y——p[> | W(H + h)|

There now remains the parameterisation of the shear stress 7 KHAKHAR et
al [218] follow JOHNSON and JACKSON [201] and write

T=Tf+Te (6 55)
as the sum of a frictional and collisional contribution They write for 7,
7§ = pghps cos Co, (6 56)

where the coefficient of friction, u, is related to the static angle of repose, (o,
by us =tan(p,, and set (o =+ 4 with |4 | = O(h') Thus,

Tr = pghpscos ((+ 4 ) = pghps ¢ cos(cosf —sin¢  sin 4
—— ——
1 ~tan 4 =h'
= pghps {cos ¢ — (sin )R’} . (6 57)

Note that KHAKHAR et al [218] treat p as a constant, even though they claim
it to be a variable
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The collisional stress 7. is written in the form derived by BAanoLDp [20]

: (6 58)

in which
m = AppD. (6 59)

A is a constant, pp is the particles’ true density, D is their diameter and A
a measure of interparticle spacing With all these simplifications the balance
of linear momentum (6 54) takes the form

for z < 0:
d 5 , 5 (8%)2
— (p(v)h) =pla+arh’)h —mA | — ,
7 (p(vz)h) = p(a+arh) oy ) |,_ .
(6 60)
for x > 0:
d 9v.\*
. (p(v2)h) = p(a+aih’)h — pwavI’yth — m\? (3—y) -
where
a:=g(sin¢ — cos(ptan(y) = gERLS ~5s) (S CS),
cos (s
ay = gsin( tan (g, (6 61)

Ls := tan (s.

Here, ¢, is the bed friction angle In deriving (6 60) and (6 61), {p, on the
right hand side of (6 54) has been replaced by ¢ (with an error of O(h')) and
s = tan (o has been replaced by tan ¢ (again with an error of O(h')) Thus,
(6 60) and (6 61) are not consistent in their 4’ ordering 3

Equations (6 60) are not yet integrable; to that end, (vZ), vy|,—_p and
(0vy/0y)|y=—n must first be expressed in terms of the depth averaged ve
locity v, and the avalanche thickness h The approach taken is that of
POHLHAUSEN [325] for the analysis of boundary layer flows The velocity
profiles correspond to solutions for steady unidirectional flow down an in
clined plane, and KHAKHAR et al [218] choose plug flow, flow of a BAGNOLD
fluid and linear shearing The velocity profiles v, and the additional variables

vy
(v2), %yy}h, (a—y) yy}h (6 62)

corresponding to these flows are given in Table 6 1 If the expressions of the

®  KHAKHAR et al [218] have an error in the second term on the right hand side

of (6 60); they write zv.| instead of pywzvs|

y=—h y=—h
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Table 6.1. Velocity profiles v, and corresponding values for (v2), ”w’y:,h and

(Ovg /0y) ‘yth for plug flow, BAaNoLD flow and linear shearing

ov
Fl ; .
Plug U u? U 0
5 3/2 5 5
BAGNOLD Su (1 - ‘% ) 547 0 %%
Linear 2u(1+ %) L2 g %”
shearing

Table 6.2. Velocity profile dependent coefficients for the momentum equation
(6 64) for plug flow, BagNoLD flow and linear shearing as given in Table 6 1
ap = m/(psL?), as := X?/[(pyL*)h*] These two parameters are treated as fitting
parameters, held constant

Flow " <0 " >0
4 Cy C3 Ci Oy Cs
Plug 1 1 0 1 0 0
BAGNOLD 3 1 5o 3 1 5am
Linear % 1 3ash* % 1 3ash*
shearing

table are substituted into the momentum equations (6 60) and the resulting
equations are non dimensionalised by using the scales L, py, w according to

xr — Lx*, h— Lh*, Q — ppwL?Q*, a— w?’La*,

u— wlu*, p— ppp*, H — LH*, a; — w?Laj, (6.63)

in which the variables carrying an asterisk are dimensionless, then the differ
ential equations (6 60) take the forms

* *2

*6u* * * */ - u p*2u*5
u Gy C’1<a +a1h )4’02 Q* Q*3 y

where the prime now means d/dz* and the coefficients C;(i = 1,2,3) are
given in Table 6 2 The first and second terms on the right hand side con
stitute the net body force acting on the layer in dimensionless form (ie,
gravitational force plus frictional resistance), the third term arises due to the
flow of particles into and out of the layer and the fourth term represents the
dimensionless collisional stress

— Cy (6 64)
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Table 6 2 is informative Firstly, the plug flow model does not include a
contribution due to the collisional stress (C5 = 0) Thus, its resistance to
flow is due to friction alone and it is independent of the velocity (recall, the
frictional resistance is contained in Cy) This contrasts with the results for
the shear velocity profiles where the collisional resistance increases sharply
with the average velocity Secondly, the equations for linear shearing and
BAcNoOLD profiles behave qualitatively very similarly The coefficient C; has
values in the two cases that do not differ much from one another and since ap
and «ay, respectively, are adjustable parameters, differences in the numerical
values of C'5 are less significant

Equation (6 64) is not directly integrable since, apart from u*, it involves h*
and Q* However, both are known, at least approximately @Q* follows from
(6 53) and h* can be evaluated by differentiating h* = Q*/(p*u*) This
yields

w1 a2
f*,z (i* ) >Q;du* (6 65)

Note that in the evaluation of (6 65)2 p* is treated as a constant With (6 65),
equation (6 64) takes the form

* )k du*
<1+Cla1Q3>u* U
2 2 .5
i Lot 2t p* u*
{Cl (CL alp*u*>+C2 Q* —C4 Q*3 } (666)

Analytical solutions for this equation in general cannot be found, although
numerical integration seems to be straightforward Once u* is determined,
h* follows from h* = Q*/(p*u*)

6.4.2 Experiments

KHAKHAR et al [218] performed experiments; we quote the description from
their paper as follows: “Transverse flow and mixing are studied experimentally
using a cylinder with glass side walls; the inner curved surface is roughened
by gluing sandpaper The cylinder radius is 6 9 cm and its length is 1 5 cm

A small length is used mainly to facilitate the study of flow and mixing: the
initial loading of the tracer particles is simplified, and axial variations are
eliminated The results obtained should be very similar to those for longer
cylinders, because the frictional forces applied by the smooth glass walls mod

ify the flow only slightly The drum is driven by a computer controlled stepper
motor (Compumotor) with a sufficiently small step, so that the rotation of
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Fig. 6.9. Time exposed photograph showing streaklines of flow for typical cases,
for different materials The demarcation of the layer based on the streaklines is also
shown by means of dashed lines (From [218])

the drum is accurately controlled and smooth A digital camera (Kodak Mega
Plus) with a resolution of 1024 x 1024 pixels connected to the computer is
used to obtain digital images of the side of the drum The images are then
analysed to extract the required data

The main objective of the flow experiments is to measure the layer thickness
profile for different particles at different angular speeds Time exposed digital
images of the rotating drum are taken at sufficiently low shutter speeds so
as to obtain particle streaks Typical time exposed photographs for different
materials are shown in Fig 6 9; streaklines in the fixed bed are arcs of circles
and there is a nearly rectilinear flow in the moving layer substantially veri
fying the assumptions of the models The layer thickness profile is obtained
from a time exposed photograph by joining the corners in the streaklines,
which represent the transition between the fixed bed and the cascading layer
flow Figure 6 9 shows the layer thickness profile obtained for each case using
this procedure Each such profile is averaged over ten images The procedure
for determining the layer bed boundary, a though somewhat subjective, gives
very consistent results For each experiment, the dynamic angle of repose (an
gle of the free surface when the bed rotates) and the static angle of repose
(angle of the free surface at which the particles come to rest after rotation is
stopped) are measured from the digital images The length of the free surface
is also measured from the images The details of the materials used in the
experiments are given in Table 6 3”
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Table 6.3. Specification of the granular materials used in the flow experiments D,
is the particle diameter, p, is the bulk density of the material and (, is the static
angle of repose

Material Shape D, (mm) pv(g/cm?) Cs(deg)
Sugar balls Spherical 18 11 206
BBs Spherical 45 44 246
Sugar crystals Angular 10 084 291

6.4.3 Results and Discussion

The differential equation for the downslope velocity, (6 64) or (6 66), is of
first order and thus allows the satisfaction of only one constant of integra
tion This is determined by prescribing the boundary condition u* = 0 at
z* = —1 A second condition for the velocity «* at z* = 1 cannot be pre
scribed, as its value is rather the outcome of the integration As is evident
from Table 6 2, there is no adjustable parameter for plug flow that could influ
ence the solution On the other hand, for the BAGNOLD and linear shearing
profiles the solution of the differential equation can be influenced by ade
quately selecting ap and ag, respectively KHAKHAR et al [218] did this by
matching the maximum velocity of the cascading layer, which approximately
arises at 2* = 0 Velocity measurements by NAKAGAWA et al [291] indicate
that the velocity is large in the middle portion of the cascading flow, but
relatively small towards the two ends, and it is compelling that h* = 0 at
x* = +1 These are the requirements that must be met by the differential
equation (6 66), and it is likely that for linear shearing and BAGNOLD profiles
better results can be obtained

The dimensionless velocity u* and the corresponding layer thickness A*
for the three different velocity profiles are shown in Fig 6 10 The pa
rameter values are given in the inset and correspond to typical values
for the system ® The velocity for the plug flow case increases monotoni
cally with distance The reason is that the frictional resistance to flow is
constant and independent of the velocity in the layer By contrast, the
flow for the linear shearing profile is strongly damped by the collisional
stresses and achieves a maximum value near the midpoint of the layer
x* = 0 Furthermore, there is only a small difference in the velocities pre
dicted by the simple shear flow and BAGNOLD’s profile The overall veloc
ity is significantly higher for the plug flow case as compared to the other
two The layer thickness is consequently much smaller for the plug flow

5 We think that these values are a bit large
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Fig. 6.10. Variation of the average velocity u™ and layer thickness h™ with distance
along the layer 2* calculated using the different velocity profiles (From [218] with
changes )

than for the shearing flows Also note that the layer thickness profile for
the plug flow is asymmetric, due to the monotonic increase in the veloc
ity

An estimate of the thickness of the layer at the midpoint is obtained by
recognising that
du* dh*

T 0, and T 0, at z*=0. (6 67)

Using this in (6 64) yields

*2 *5
Cha* — 52 —0, (6 68)
Q x*=0

or, since u* = Q*/(p*h*),Q*(0) = 1/2 (from (6 65)1), p* = 1, and substitut
ing for C4, C3 the values from Table 6 2, we get
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Fig. 6.11. Computed results for the variation of the experimentally measured

layer thickness at the midpoint hy = h(0)/L with rotational speed in rpm for the

different materials Experimental parameters are taken from [218] Experiments

were performed with sugar balls, BBs and sugar crystals (From [218])

e\ 1/4
(—*) , linear shearing,
N a
hy = 95 o 1/5 (6 69)
(— ) , BAGNOLD profile.
16 a*

Figure 6 11 shows the values for the experimentally measured layer thickness
at the midpoint h{ as a function of the rotational speed Accordingly, hf
grows linearly with the rotational speed at low values of rpm (rotation per
minute) but at rpm =~ 20 perhaps saturating at a value of hj = 0.25 These
results do not follow RAJCHENBACH’s [353] scalings that assume (¢ —(;) o< w?,

implying that h§ is independent of w [218§]

Figure 6 12 shows a comparison of the theoretical and experimental values of
hg for linear shearing and BAGNOLD flow For each material the parameters
as and ap are adjusted so that the computed layer thickness profiles match
the experimental profiles at the lowest (3 10 rpm) rotational speed To this
end, also the corresponding dimensionless parameters a* and aj are needed
Details are given in [218] The solid lines in Fig 6 12 are the results obtained
from (6 66), and the dashed lines are obtained by using (6 69); or (6 69)2
There is good agreement between theoretical predictions and experiments
Finally, Fig 6 13 shows a comparison between the predicted and experimen
tal layer thickness profiles for the different materials for the smallest rota
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Fig. 6.12. Comparison of the theoretically predicted midpoint thickness for simple
shear flow and BAgNoOLD flow with experimental values Symbols represent the
experimental data, the solid lines are predictions using (6 66) and the dashed lines
are the predictions using (6 69) (From [218])
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0.20

h*
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Fig. 6.13. Comparison of the experimental and theoretical layer thickness varia
tion with dimensionless distance along the layer z* for the lowest rotational speed
(as given in the inset) for each material Calculations are for simple shear flow
using (6 66) Note that the experimental curves (E) are less symmetrical than the
computed curves (7') (From [218])

tional speed in each case There is very good agreement between theory and
experimental data for the sugar balls and the BBs; the agreement between
theoretical prediction and experimental data for the sugar crystals is, how
ever, not so good; here the thickness profiles deviate rather conspicuously
from symmetry

6.5 Concluding Remarks

In this chapter, two different models have been derived that are capable of
describing the cascading flow of dry granular materials down the free surface
of a rotating cylindrical gap In one case, the SH type model was the basis
of the theoretical formulation, extended by entrainment statements Uniform
distribution of the velocity across the moving layer was assumed and ex
act solutions to the governing equations were found, in which the downslope
velocity component was constant Hence, independent of the downslope coor
dinate, steady layer heights were found to be symmetrically distributed and
parabolic in the downslope variable Comparison with experiments turned
out to be very good, but no velocity measurements were made, so that the
constancy of the downslope velocity could not be corroborated or disproved
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The concept of the second model was different Here NMR (nuclear magnetic
resonance) measurements were utilised and indicated that downslope veloci
ties could not be assumed to be constant through the layer depth or in the
downslope direction Balances of mass and momentum and the entrainment
concept were treated alike, but approximations were less accurate than in
the first model insofar as the linear terms in the shallowness parameter were
dropped [these are the terms of O(h’)] This implied that the longitudinal
pressure distribution (accounting for the earth pressure normal stress) could
not be accounted for Therefore, a different stress closure had to be assumed
The basal shear stress was additively decomposed in a COULOMB frictional
plus a collisional contribution for which the plug flow, linear shearing and the
BAGNOLD relations were used Employing a predescribed distribution of the
downslope velocity component across the cascading layer and employing the
PoHLHAUSEN method to close the depth integrated momentum equation, an
explicit differential equation could be deduced for the depth integrated downs
lope velocity component Applying this method to plug flow, BAGNOLD and
linear shearing profiles showed that the plug flow model generated unrealistic
longitudinal velocity distributions (which exhibit monotonic growth), whilst
results from the other two profiles could adequately be brought together
with experimental data It was shown that the ill behaviour of the plug flow
case can be traced back to the absence of the collisional stress contribution
Likewise, we can conclude from the constancy of the downslope velocity com
ponent in the first model that the plugflow assumption has not led to totally
unreasonable results The thickness distribution of the cascading region is
similar to that in this model [recall that in our formulation h* = K(1 —2*°),
where K is a constant, see (6 10), whereas in the KHAKHAR et al model

Q =01-a)/2"

Our model achieves this result with an approximation that is one order higher
(ie, linear in O(h*')) than the KHAKHAR et al model Furthermore, it uses
a full MoHrR CouLoMB stress rheology and with a plug flow assumption
can reach acceptable results By contrast, the KHAKHAR et al model is less
accurate and must, therefore, introduce collisional stress contributions and
avoid plug flow profiles Despite this success, we find it interesting that a plug
flow assumption in this case generates such a physically singular behaviour

We attribute the odd behaviour of the plug flow model in the KHAKHAR et
al description to a loss of one derivative in the differential equation and a
corresponding loss of a parameter in the model adjustment at one boundary
This singularity does not arise in our model
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7 Classical and High Resolution
Shock-Capturing Numerical Methods
in one Spatial Dimension

Numerical methods to solve the dynamical avalanche equations have been
developed from simple to complex and their history reflects as much the
learning experience as that of the derivation of the equations themselves
Early studies dealt with plane (chute) flows; later sidewise confinement was
relaxed, two dimensional flow was treated, and model equations for arbitrarily
curved and twisted channels were derived and solved numerically Ultimately,
numerical integration of the avalanche equations on arbitrary topography is
sought,

In this chapter, mostly spatial one dimensional flow will be analysed Phys
ically, the chapter will thus deal with the flow of a granular mass down a
narrow chute confined on either side, so that sidewise variations of the depth
and velocity can be ignored, or else the moving granular mass flows down a
cylindrical surface with a very wide uniform flux from above (see Fig 7 1)
Early attempts of the construction of numerical solutions of the spatially
one dimensional avalanche model equations were rather naive and grew from
a great number of unsuccessful attempts SAVAGE and HUTTER [375] con
structed second order accurate EULERian and LAGRANGEan finite difference
schemes and were able to predict the confined flow of a finite mass of granu
lar material down an inclined plane chute The finite difference schemes were
only conditionally stable and required that additional numerical diffusion be
added The LAGRANGEan scheme turned out to be preferable since it repro

| |
SO

NESURRRRN

Fig. 7.1. Spatially one dimensional flows a) Narrow chute with parallel walls,
b) flow down a wide cylindrical surface with a uniform flux from above
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duced the parabolic cap solution treated earlier, whilst the EULERian scheme
did not A great number of solutions, also for spatially two dimensional sit
uations was constructed These will be discussed in detail in Chapt 10

Traditional schemes suffer from the disadvantage of not being able to capture
possible shocks that form within a granular mass when it is, e g , moving from
an extending to a compressive regime Modern numerical methods are capable
of capturing such sudden changes They need to be applied in avalanche
dynamics to properly predict the flow In the ensuing developments we shall
first illustrate how the traditional numerical techniques using EULERian and
LAGRANGEan finite difference schemes are used, after which we shall address
modern numerical methods with total variation diminishing properties In
this chapter, only spatially one dimensional configurations are analysed, i e,

oh 0
(71)
0

0 5 0 2 0\ ob
g (hu) + P2 (hu?) + P2 (Buh?/2) = hs, EhCOSC&T’
where s, = cos( (tan{ — (u/]u|) tand) is the net driving acceleration and
Br =eK, cos(, see Sect 343

7.1 Classical EULERian and LAGRANGEan Approaches

The governing depth integrated equations presented in Chaps 3 and 4 or
their one dimensional and two dimensional reductions for the conservation
laws of mass and linear momentum, (7 1), can be solved numerically by using
finite difference or other advanced schemes for several initial conditions and
parameter values Although these equations seem to be similar to the non
linear shallow water equations, their numerical integration, in fact, turns out
to be quite troublesome There are several reasons for this:

e When a pile of a granular material is released from rest on a slope, the
material near the rear end often tends to initially move up the slope Sim
ilarly, in the deposition at the rear end material is still approaching the
deposited mass; often parts of the mass at the rear end moves backwards
before it comes to a rest

e Because the motion is dominantly advective and the convective! acceler
ation terms critically decide about the stability of a numerical scheme,
we must be careful to use appropriate upwinding (in the EULERian finite
discretisation) to avoid numerical instabilities

e The avalanche model equations are very close in structure to the shallow
water equations, but the geometries of the avalanches are different from

! We use the terms “advective” and “convective” synonymously
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those of the usual water wave problem Unlike the analogous water wave
problem, the material is in contact with the bed over a small portion, and
the depth is zero elsewhere Other major mathematical and mechanical dif
ferences between the shallow water equations and the avalanche equations
have been mentioned in detail in Sect 3.4.4.

e The flow of a granular mass can be regarded as a moving interface and it
embodies all the associated difficulties of such problems

Before discussing the numerical techniques applied, we emphasise that it is
very significant to realise that the scope and range of applicability of a certain
software that integrates the avalanche equations depends upon which equa
tions are in fact integrated, for example, those in conservative form (3 33)
(3 35) or those deduced from them by differentiation and substitution of mass
balance (3 33), (3 43) and (3 44) Obviously, the second of these sets can only
work when the avalanche velocity and thickness distribution are differentiable
within the entire domain of the avalanche, whereas this need not be so for
equations in conservative form, which are able to capture associated shocks
For smooth solutions, the early EULERian and LAGRANGEan schemes are
applicable Shock capturing techniques will be dealt with later

SAvAGE and HUTTER [375] proposed two numerical finite difference schemes,
one of LAGRANGEan, the other of EULERian type, to solve the spatially one
dimensional equations of motion describing the flow of an avalanche of a finite
mass of granular material down a rough incline Equations (7 1) were not used
directly but transformed by differentiation into the non conservative form

oh 0
a + g(hu) =0,

@4, %+ﬁ %7 _ C%
ot o " Trpy T Sr T eSSy

(72)

The EULERian scheme was able to reproduce the motion of the M wave simi
larity solution quite well However, even when the initial profile is something
other than an M wave, this scheme eventually forces the profile into a shape
that is reminiscent of the M wave solution Such a behaviour is not appar
ent, in the laboratory experiments; it may be a numerical aberration Thus,
one may conclude that the LAGRANGEan technique, in which the grid is ad
vected with the material particles, is a natural choice for this problem The
LAGRANGEan scheme was found to be simple, efficient and able to adequately
predict the observed experimental behaviour In the following paragraphs, we
will discuss these two numerical schemes for the system of (7 2)
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7.1.1 EULERian Approach

Among several implicit and explicit schemes to treat hyperbolic systems?
(see, e g, MCDONALD and AMBROSIANO [270]), SAVAGE and HUTTER used a
method similar to that of MACCORMACK [260] comprising a two step explicit
finite difference scheme This method appeared to work best among all those
that were tried From the known solution at time ¢ = nA , one can predict
the values of h and u at the new time ¢t = (n+ 1) A by using one sided
upwind differences to approximate the first derivatives Corrections are made
in the second step to predict values using opposite one sided differences for
the first derivatives The method is second order accurate and stable for the
appropriate timesteps

To determine h and u, the artificial diffusive terms pd%h/d2% and pd*u/0x2,
respectively, (with viscosity u) were introduced on the right hand sides in
both the mass and momentum equations (7 2) so as to dampen the oscillating
effects due to sharp gradients In one spatial dimension, in a first step the
finite difference forms of the predictions for A and u at the new timestep are
calculated as

hitt=h; 24 (W hityy — uiflhifl)—i_ﬁ (b =207 + i), (T3)
n n A n n n n n
upth = - 24 {S (uiyy —uf) + 5 (uf —uiy)}
. A
+ 4 (sinC—sgn (1) TC) — 25 (W, — B 9
A
+ % (U?-H —2u} + u?—l)v

where S = (1 —sgn (u})), TC = tand cos(, 3 = €K et /pas OS¢

The corrections for h and © at the new time are calculated in the second
step by the formulas

n+1l __ n n+1 n+13n+1 n+1 pn+1
hi™ = [hz +hT - A <Ui+1 iy —u hi—l)

N | =

(75)

18 (i )|
The one dimensional first order quasi linear system of partial differential equa
tions of the form %—";’ + afa(;v) = 0, where w is the vector of conservative vari
ables, is said to be hyperbolic if the JacoBian matrix f'(w) of the flux function
f(w) has the following property: for each value of w the eigenvalues of f'(w)
are real and the matrix is diagonalisable, i e , there is a complete set of linearly

independent eigenvectors
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and?

n+1 __
U, =

ot T AT { (e () G- )
+ (1 — sgn (u?+1>) (u?‘|r1 — u?ff)} (76)
+ A (sinC —sgn (F) TC) — % (%—@)
+ 58 (oI - 2 )|

A.2

In the above, the superscript n indicates the n th timestep, whilst the sub
script i denotes the 7 th node point Constant time intervals A and space
intervals 4 are selected Furthermore, on the right hand side of (7 3) the
second term is the finite difference (FD) approximation of d(hu)/0x, whilst
the last term is the second order FD approximation of the numerical diffusive
term Similarly, the second term on the right hand side of (7 4) is the lowest
order upwind FD representation of the convective acceleration, the second
line gives the FD representation of the driving forces, whilst the third line
is again the FD representation of the numerical diffusion for the velocity

The expressions for h?"’l and u"+1 are first approximations that are further
corrected in (7 5) and (7 6) to yield the final values h]'"' and u"*! Val
ues of u of about 0.01 were found to be sufficient to keep the ripples near
the discontinuities small without significantly smearing out the discontinuity
itself Figure 7 2 shows a series of calculations for different bed friction an
gles § = 22°, § = 16° and 6 = 10° but all at the same bed slope { = 32°
The figure depicts that decreasing the bed friction angle increases the ac
celeration of the pile down the slope, but the rate of spread of the length
of the pile remains much the same The granular material is released from
rest at time ¢ = 0 with an unsymmetrical shape given by (10 4) in Chap 10
This particular profile was chosen for comparison with the laboratory exper
iments performed by HUBER [160] which were the only ones known at that
time

Problems of the EULERian Approach There are several difficulties with
the commonly used EULERian approach Some of them are as follows:

e This scheme uses a fixed spatial grid that extends upstream and down
stream of the moving pile

e Even at those parts of the bed where there is no material and the depth
is zero, the equations of motion (7 2) yield finite velocities upstream and
downstream of the pile This causes sudden changes in the velocities corre
sponding to the front and rear of the pile; a destabilising effect in numerical
integrations

% There is a sign mistake in front of sgn in the first line of (7 6) in the corre

sponding equation of SAVAGE and HUTTER [375]
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Fig. 7.2. Results obtained from MACCORMACK’s explicit EULERian finite differ
ence scheme for the evolution of the motion of a finite mass of granular material
starting from rest on a bed with inclination angle ¢ = 32°, internal friction angle
¢ = 29° and different bed friction angles: (a) § = 22°, (b) § = 16°, (c) 6 = 10° and
e =0.3218 (From [375] )
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e Although, artificial viscosity was used to control such instabilities, in
the numerical computations the velocities in the regions outside of that
occupied by the pile began to affect the results in the region of the
pile itself This must have forced the pile to evolve towards the M
wave

These faulty results led SAVAGE and HUTTER to abandon EULERian schemes
and to try LAGRANGEan schemes It was realised only much later that shock
capturing EULERian integration methods were needed to obtain physically
correct results

7.1.2 LAGRANGEan Approach

A LAGRANGEan scheme was thought to be a more natural choice to over
come the difficulties of the EULERian approach The key idea is to use
a material net that follows the motion of the avalanche This scheme in
volves the determination of the position of the moving margin As shown
in Fig 7 3, the granular depth profile is divided into a number of cells, the
boundaries of which are convected with the depth averaged velocity of the
granular particles as a basis for the formulation of the approach The mesh
cell boundaries are advected with the particles Then, an index notation
is set up where i corresponds to the mesh cell centres and j corresponds
to the mesh cell boundary points The cell boundary points are defined at
times n — 1 and are designated as :c;-“l The velocities of the cell boundary
points (see Fig 7 3), are defined at the half timesteps and are written as
n—1/2
u; /
Agsume that the geometry and velocity distribution in discretised form is
known at t = (n — 1)A To determine it at ¢t = nA we proceed as follows
Firstly, the new position of the cell boundaries is determined

o =a e T2A (5 =0,1,2,.,N), (77)

Fig. 7.3. Definition of mesh cell notation for the LAGRANGEan numerical scheme
The i indices refer to cell centres, j to cell boundaries
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from which the positions of the mid points of the cell follow as
= 5(:15] —|—xj+1) (1=1,2,3,...,N). (7 8)
Integrating (using LEIBNIZ’ rule and GAuUss’ divergence theorem) the mass
balance equation (7 2); along the ¢ th cell yields
d [ ox; Ox;i_
= | hdw—h(x;) a—i R (2im1) :Cat L
Tim1 (79)

+h ($1)u($1) —h ($i_1)u ($i_1) =0.

Since u (x;) = 0x;/0t, we readily deduce

d [ dF,
a ), "MT=g

1

=0 (i=1,2,3,,...,N), (7 10)

where F; is the area of the ¢ th cell In other words, the area of any numerically
advected cell is conserved

Approximating F; by h; (x; — 2;-1), i =1,2,3,..., N, this conservation
property implies

O e ) I M CAa i=1,2,3 .., N, (711)

i i
which determines A} since all other quantities are known

Finally, the depth averaged momentum equation (7 2), is used to solve for
the new values of velocities at the cell boundary points Since the left hand
side of this equation contains Oh/0dxz, the boundary cells must be handled
separately:

W2 = u?_lm + A [Sin( —sgn (u"_1/2> cos (tan d — e K et /pas COS ngn} ,

J J

(712)
where
PP = hg/(af — %), for j=0,
Pl = (b} —h} )/ (a} —a} ),  for  j=1,....,N—1, (713)
P} = h’]@_l/(;c% — :c?,_l), for j=N,
and 1
o =5 (5 +afia) (1)
_ Kact, for Ujr1 —uj; > 0,
KaCt/PaS = K;gé/pas = (7 15)

Kpas, for ujr1 —u; < 0.
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An artificial viscosity term pd?u/0x?,

62u n—1/2 n—1/2 n—1/2 n n 2
Py = H (ujﬂ/ - 2u] / +uj71/ ) /(2] — 2 y) (7 16)

is added to the right hand side of (7 12) for the calculation at points other
than the leading and trailing edge points The artificial viscosity, x, dampens
a possible amplification of the velocity gradients and thus reduces the nu

merical ripples that tend to develop under certain conditions More details
regarding the justification of the introduction of the numerical diffusion can
be found in ANDERSON et al [9] The values for the artificial viscosity u be

tween 0.01 and 0.03 are appropriate for the system of (7 2) [375] The above
numerical integration contains three numerical parameters, the number of
cells, N, the temporal integration step, A , (the spatial step is related to A

according to (7 7)) and the artificial (dimensionless) numerical viscosity, u

The accuracy of the LAGRANGEan finite difference scheme depends on the
values of these parameters GREVE [127] has given a detailed analysis about
how to select the appropriate values; he found that the results are most crit

ically dependent upon values of p and concluded that N = 40, A = 0.002,
and pu = 0.05 are appropriate values for routine computations Figure 7 4
shows the profile shapes at six different (dimensionless) times for the same
initial conditions as for the EULERian integrations shown in Fig 7 2 In the
inset, the front, middle point and rear end velocities are shown Circles mark
computed values, crosses are deduced from one of HUBER’s experiments [160]

Agreement is not overwhelming but it is promising In fact, the experiments
indicate movement into a smooth profile that is reminiscent of a parabolic
cap and not an M wave

Now, we can conclude as follows: While EULERian schemes based upon MAC

CORMACK’s [260] numerical method are able to reproduce the M wave simi

larity solution, they give unreliable results for more general initial conditions
A LAGRANGEan approach in which the computational grid was advected with
the material was found to be simple, efficient and reliable However, it does
not capture singularities, which is the likely reason why the M wave solution
could not be found

SAVAGE and HUTTER [376] discretised and numerically integrated the equa
tions of motion, written in curvilinear coordinates, for the dynamics of
avalanches of granular materials from initiation to run out along a curved
bed in the form of a LAGRANGEan type finite difference representation, where
the grid is advected with the material particles

When dealing with a curved bed and modelling the equations of motion by
curvilinear coordinates, additional terms appear, mainly in the linear mo
mentum equation, namely Axku?, and the inclination angle ¢ is a function of
the downslope coordinate z, ie, ¢ = ( (x), see [175]
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Fig. 7.4. The height h is plotted against distance x for LAGRANGEan calculations
of avalanche profile shown for six different times With increasing time the profile
tends to become more parabolic Also shown in the inset are the front, middle and
rear end velocities The points indicate computed values, whilst crosses are deduced
by SAVAGE and HUTTER from HUBER’s experiment 106b [160] Computations were
performed for ¢ = 32°,¢ = 29°,§ = 22° and € = 0.3218 (From [375] )

GREVE and HUTTER [128] used this LAGRANGEan scheme for numerical com
putations of the avalanche height, velocity distribution, the front, rear and
an in between position corresponding to the maximum height, the maximum
height of the avalanche for different numerical, as well as material parameter
values for a motion of a granular avalanche in a convex and concave chute (see
Fig 3 6) They found good to excellent correspondence between experiments
and the theory More on this will be said in Chap 10 This LAGRANGEan
integration method has also been used in the construction of solutions to the
dam break problem with COULOMB friction by KERSWELL [215]
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Scrutiny of the numerical integration procedure (7 11) (7 16) shows that the
momentum equation is integrated in its non conservative form, which itself
was obtained by differentiating the conservative form of the momentum bal

ance equation Thus, these finite difference equations are not explicitly shock

capturing Steep gradients and spurious oscillations of the field variables must
be handled with numerical diffusion, using the latter judiciously where insta

bility prone oscillations occur This has been reasonably successful, but it is
unsatisfactory and calls for better schemes This will now be attempted

7.2 Some Traditional Numerical Methods

In this section, we will present some traditional numerical schemes used in
different contexts in the literature to solve hyperbolic systems of equations
We will also point out why some of these schemes are not appropriate in our
case that leads to the development of high order shock capturing numerical
methods

7.2.1 First-Order Schemes

We start with the very simple case of a one dimensional conservative equa
tion For simplicity, the = t plane of space and time will be discretised by
choosing an uniform and stationary mesh width Az and a timestep At How
ever, most methods presented in this book are extendable to variable mesh
grids The discrete mesh points will be denoted by (z;, t"*) and are defined as

rj=jlz, j=0,1,2,...; t"=nAt, n=0,1,2,..., (717)

where the mesh cell z; is bounded by the boundaries x;_1/2, =;41/2 and
Ij+1/2 =Ty + AI’/Q

For a systematic development of numerical schemes, we start with the homo
geneous linear scalar hyperbolic advective conservation law

ow ow

— +a— =0, 718

ot oz ( )
where a (the characteristic wave speed) is a positive constant The second
term adw/dx represents a fluz derivative 0 f /0x = adw/Ox, with the physical
fluz f = aw, where w is a conservative variable Equation (7 18) is discretised
by integrating it over the space time rectangle [x;_1 /2, 2;41/2] X [t", t" 1 to
obtain

Tjt+1/2 Tji1/2 g+l
’U}(LL’, tn+1) dr = / ’U}(LL', tn) dr — /{f($j+1/2, t) — f(iCj,l/Q, t)} dt.
Ti_1/2 Tj_1/2 tm

(7 19)
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All schemes presented in the following are expressed in terms of the spatial
and temporal mean values of the conservative variable w and physical flux
function f For this reason, we define these mean values, respectively, as
follows:

. 1 Tiy1/2 . . 1 gt
Ur = EL wie, ydr,  FU§+1/2) = o /tnf(xjﬂm, 1) dt.
j—1/2
(7 20)
With these definitions, (7 19) reduces to the following discretisation in general
form:
Uttt :Uﬂ—ﬁf (U;j+1/2)—FU; j—1/2)} (721)
J VAV ' ' ’
where F(U; j + 1/2) denote the numerical flux functions that are functions
of the cell averages of the neighbouring cells on the cell boundaries at x; 1/,
and x;_1 /2, respectively We will show in the following that these numerical
fluzes may have different forms depending on the order of accuracy and types
of interpolation If the cell averages in the numerical flux functions are taken
at the time level t", one obtains an explicit numerical scheme This allows
us to determine U™*! explictly, whereas using cell averages at time level
t"+1 results in an implicit method Although implicit methods are useful in
solving other types of partial differential equations, they are rarely used for
time dependent hyperbolic equations In this chapter we will only consider
explicit methods In the following derivations we will set a to be positive,
unless otherwise stated explicitly Firstly, we discuss a first order scheme

Upwind Method From the initial data wg(z) = w(z,t = 0) we define the
data U for the approximate solution as

U? = w(z). (7 22)

Alternatively, this value can also be defined by cell averages U JQ = E?(:z:) We
then use a time marching procedure to construct the approximation U™*!
from U™ and so on, in a several levels method There is a wide variety of
finite difference methods that can be used In many cases, the derivatives
occurring in (7 18) may simply be replaced by appropriate finite difference
approximations, for example, utilising the low order upwind flux approxima
tions

FIWWU;j+1/2)=aU}, FW(U;j-1/2) =aU}",. (7 23)

For these numerical flux functions (7 21) results in the following (low) first
order upwind method

Urtt =Up — (U} - U y), (7 24)

J j—1
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where
v =alt/Azx. (7 25)

Many of the high resolution schemes for the approximation of the one

dimensional system of conservation laws are based on upwind differencing If
the conservation law is non linear, a more complex situation occurs, particu

larly when there is a mixture of both right going and left going waves In this
case, we need to identify the direction of the “wind” The upwind method has
the advantage that it does not result in any spurious oscillation near a discon

tinuity but it is only of first order accuracy As we will see later, unphysical
oscillations in numerical solutions as obtained with central differences may
not be encountered with the upwind method, but such schemes lead to large
numerical diffusion in time dependent problems

7.2.2 Second-Order Schemes

The LaAx WENDROFF Method A large number of second order meth
ods can be developed to solve the linear system (7 18) by using different
finite difference approximations Most of them are directly based on finite
difference approximations of the model equations with the exception of the
LAX WENDROFF method This method is based on the TAYLOR series ex
pansion of the conservative variable, where the numerical fluxes are given
by

FU;j+1/2)=aU 2 FU—1/2) =aUM) (7 26)

Applying TAYLOR series expansion in time, retaining only the first order
terms and using the conservation law (7 18) yields

n n o Az VAN 1 "
jjll//; =wj+— (Ow/0z); + < (Ow/ot);
A At (727)
€T 7 a (3
=wj + 3 (Ow/0x); — - (Ow/0z); .

By virtue of (7 27) and using central differences, the value of U;fll/; for the

numerical flux (7 26) is approximated by

—_

al\t
20z

1 v
=5 (U +U7) =5 (U = U7) -

J J

UL = U0+ 5 (U = Uf) = 5 (U = UF)

(7 28)

Substituting (7 26) and (7 28) into (7 21) yields the LAX WENDROFF scheme
in central difference form,

2
U =07 = 5 (Ui = Uiy) + 5 (U = 207 +U7Ly) - (729)
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The TAYLOR series expansion of the form (7 29) at z; implies that the LAX
WENDROFF method is of second order accuracy in space Thus, from (7 26)
and (7 28), the numerical flux in (7 29) is viewed as the high order LAX
WENDROFF fluz,

arv

U~ U, (7 30)

FEW(U;5+1/2) = 5 Ufn +Uf) -
Upwind Beam-Warming Method This is a one sided version of the LAX
WENDROFF method It is a high (second) order approximation method with

14

Ut =0 v (U~ V) -

j—1

(1—v) (U} =20}, + U} ,), (731)

where the numerical fluxes are defined in the same way as in (7 26), but the

value of U;fll/; is approximated by using (7 27) with an upwind (one sided)
method, ie,
n+1/2 _ 7 1 n n alt n n
Uj+1/2 - Uj + 9 (Uj - Uj—l) N (Uj o Uj—l)
1 (7 32)
n n n v n n
=Uj+5 (U =ULy) =5 (U] = Uj) .

All methods discussed so far are two level methods For time dependent con
servation laws, two level methods are exclusively used Higher level methods
involve additional difficulties, see [250]

Problems with Traditional Schemes It is well known that traditional
second order central difference methods introduce dispersive effects that lead
to unphysical oscillations in the numerical solution for physical problems with
large gradients of variables For hyperbolic equations it is often the case that
the numerical oscillations are so large that a stable simulation may not be
reached For such cases, in order to avoid possible (emerging) instabilities or
to suppress numerical oscillations to an “acceptable level”, a certain artificial
diffusion must be incorporated In order to avoid the above problem, non
centred upstream difference schemes may be used However, this introduces
alternative difficulties implicit numerical diffusion

7.3 Appropriate Numerical Modelling

In all theories presented in Chaps 3 and 4, the governing equations comprise
a hyperbolic system for the avalanche thickness and bed parallel velocity,
which in this spatially one dimensional situation is the downslope velocity
In all situations the equations are very similar Thus, common principal in
tegration schemes can with advantage be used for all In the following chap
ters, we shall demonstrate this for the different geometries illustrated in the
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previous chapters as well as for some new geometric configurations In the
past decades, numerical techniques have been developed to solve the SH type
avalanche equations for typical moving boundary value problems of granular
flows as illustrated in Figs 37, 38 and 39 These techniques are based on
LAGRANGEan moving mesh finite difference schemes In these LAGRANGEan
schemes, explicit artificial numerical diffusion was incorporated to maintain
stability and to make shocks diffusive In doing so, the quality of resolu
tion deteriorates In fact, the adequacy of these numerical solutions can be
“challenged” because of uncontrolled spreading due to this diffusion Without
adding extra artifical diffusion, the formation of the shock resulted in numer
ical instabilities of the LAGRANGEan moving grid technique [227, 445] This
also occurs for the EULERian integration technique if the central difference
scheme is employed [440] Other traditional high order difference methods
with the EULERian representation are likewise susceptible to numerical in
stabilities and cause non physical oscillations in regions of large gradients of
the variables [439] The usual way to deal with these types of instabilities
and oscillations is also to incorporate artificial diffusion into the numerical
scheme However, if this is applied uniformly over the problem domain, and
sufficient diffusion is added to dampen spurious oscillations, then the solu
tion is smeared out elsewhere Although traditional first order finite difference
methods, e g , upstream schemes, are monotonic and stable due to inherent
numerical diffusion, they are strongly dissipative, causing the solution to also
become smeared out and often grossly inaccurate

Successful modelling of strongly convective hyperbolic equations is one of
the most challenging problems in computational fluid mechanics, particu
larly when large gradients of the physical variables occur, e g , for a moving
front or possibly arising shock waves in a granular avalanche Shock for
mation is an essential mechanism in granular flows on an inclined surface
merging into a horizontal run out zone or encountering an obstacle when the
velocity becomes subcritical from its supercritical state It is, therefore, nat
ural to apply conservative high resolution numerical techniques that are able
to resolve the steep gradients and moving fronts, often observed in experi
ments and field events but not captured by the LAGRANGEan finite differ
ence scheme and traditional EULERian finite difference schemes The devel
opment of high resolution shock capturing schemes has a long history, see,
eg, [228, 250, 412, 415, 424, 425, 440, 446] We choose a recently developed
high resolution approach, namely the non oscillatory central (NOC) schemes
first introduced by NESSYAHU and TADMOR [294], in which different cell
reconstruction techniques the total variation diminishing (TVD) limiters
[250] and an essentially non oscillatory (ENO) cell reconstruction scheme
[143] are applied, respectively The numerical results obtained with the
high resolution schemes are compared with and the traditional finite differ
ence schemes Of the numerical methods under consideration here, the NOC



312 7 Classical and High Resolution Shock Capturing Numerical Methods

scheme with the minmod limiter is demonstrated to be the most suitable for
handling the problem of avalanche dynamics

In this chapter, we will develop some high resolution numerical methods that
can essentially capture shock phenomena encountered in geophysical flows
such as avalanches and debris movements over simple curved chutes in the
laboratory as well as over complex non trivial natural terrains

7.4 Modern Numerical Methods*
7.4.1 Total Variation Diminishing Method

Although first order finite difference methods are monotonous and stable,
they are also strongly numerically diffusive, causing the solution to become
smeared out Second order or higher order techniques are less dissipative, but
susceptible to non linear, numerical instabilities that cause non physical oscil
lations The high resolution methods are a compromise between the traditional
first order and higher order difference schemes Their central idea is, on the
one hand, to avoid the introduction of under shoots and over shoots (numer
ical oscillation), and on the other hand, to maintain the numerical diffusion
as small as possible, which is often achieved by different cell reconstruction
techniques

It is well known that in computing discontinuous solutions, the first order
(upwind) method gives substantially smeared solutions, while the second
order method (LAX WENDROFF or beam warming) gives spurious oscilla
tions, see e g, LEVEQUE [250] In order to develop a method that is of
higher order and at the same time non oscillatory and capable of captur
ing shocks, we need to define the powerful concept called the total variation
diminishing (TVD) method

We define the total variation (TV) of the mean value U™ as

N-1

V(U™ = > U, = U7 (7 33)

Jj=0

The contribution |U}", ; —U}'| at the right hand side of (7 33) is large if values
of U, ; and U} differ strongly from one another Thus, any oscillation in the
computed result increases the total variation The TVD condition, requiring

TV U™ <TV(U™), (7 34)

% In writing the text of this section, we profited from Y C Tar’s dissertation

[412] Some parts of this section also closely follow PUDASAINT [334]
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provides a method that gives a solution without spurious oscillations near
the discontinuities Any numerical scheme that fulfils the TVD condition
(7 34) for all grid functions U™ is called a TVD method Therefore, any TVD
method is automatically monotonicity preserving This means, in particular,
that oscillations of the physical quantities such as velocity jumps and other
sharp gradients cannot arise near an isolated propagating discontinuity As
we will see later, another beautiful feature of the TVD requirement is that it
is possible to derive higher order accurate methods that also satisfy (7 34)
It can also be shown that the true (i e , physically relevant weak) solution to
a scalar conservation law possesses this TVD property, see [250]

General Criterion for the TVD Method Let us consider a general two
sided numerical scheme of the form
Ut =Uj = Ciapp (U] = UjLy) + Djayp (U = U}) - (735)

in which C;_,,, and D;,,/, are data dependent expressions The scheme
(7 35) is a TVD method if the following conditions are satisfied:

0 < Cj*l/?? 0 < Dj+1/2, 0 < Cj*l/? + Dj+1/2 < 1, for all ] (7 36)

For a proof, see HARTEN, [143] For example, the low order upwind scheme
(724) is a TVD method under the COURANT FRIEDRICHS LEVY (CFL)
condition® |aAt/Ax| <1, see [66, 68], since in an upwind scheme C;_; /o =
v=alt/Az €0, 1) and D; /5 = 0, which satisfies conditions (7 36)

7.4.2 Second-Order TVD Schemes

In the following we develop some numerical methods that are second order
accurate for smooth solutions and yet give well resolved, non oscillatory dis
continuities The major roles are played by the TVD flux limiters and TVD
slope limiters

Flux Limiter Methods In order to achieve a better resolution of the solu
tions of hyperbolic conservation equations we can couple a high order flux Fyy
(e g, some central difference methods) that works well in the smooth regions
and a low order flux F7, (e g, some monotone methods) that behaves well in

%  In order to prevent the blow up of the numerical scheme it is always neces

sary to impose the CFL condition, |aAt/Axz| < 1, on the timestep Thus, the
CFL condition is an important criterion to determine the stability of a time
dependent numerical scheme In general, a smaller timestep leads to a more
stable numerical scheme However, the number of timesteps for smaller A will
increase, requiring more computational time for the same simulation There
fore, it is important to select an appropriate timestep to insure a stable scheme
and an efficient simulation
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the vicinity of discontinuities The structure of this coupling, say F, should be
such that F reduces to Fg for the smooth part of the solution and to Fy, for
the discontinuous part of the solution In this section, we couple a (low) first
order upwind scheme with the (high) second order LAX WENDROFF scheme
with the aid of a flux limiter

The LAX WENDROFF scheme (7 29) can be rewritten as

v n n n
(1 —v) (U, — 208 +UM),  (737)

urtt=up —v(Up -Up )—2 p

J Jj—1
which demonstrates that the high order LAX WENDROFF flux, Fp, can be
viewed as consisting of the low order upwind flux, 7, plus a LAX WENDROFF
correction (Fy — Fr,)

fH:fLJr(]'—H*]'—L). (738)

The first term on the right hand side of this equation, Fp, corresponds to
the first order upwind scheme (7 24) and thus results in very diffusive so
lutions Whereas the correction term, (Fg — Fr), is referred to as an anti
diffusive flux (SWEBY [409]), since it will be utilised to act as an agent to
capture discontinuities The low order flux F;, contains too much diffusion,
which must be compensated by the correction term (Fy — Fr), but this
correction must somehow be controlled physically, e g, by a TVD flux lim
iter

Since the upwind method possesses the TVD property at discontinuities, by
virtue of (7 38) one can define a method that uses the TVD property at
discontinuities and has second order accuracy on smooth solutions by intro
ducing a fluz limiter ¢;, that is,

F:}—L#‘Qﬁj:?:]{*]:[,}. (739)

The flux limiter ¢; = ¢(U; j) is chosen near unity if the data U is smooth near
U; and close to zero when there is a rapid change of the data around U; This
means that the value of ¢; is exclusively determined by the smoothness of the
data for the quantification There are several ways to do this One possibility
is to observe the behaviour of the ratio of the consecutive gradients, 6;,

ur—-ur,
¢j=o0;), 0= (7 40)
Ui, = U
where 6, can be seen as a measure of the smoothness of the solution This
definition is a natural choice to achieve an approximate TVD condition, as
we will immediately see below Notice that this measurement breaks down
near the extreme points of U when the denominator is close to zero and that
6; becomes arbitrarily large or negative even if the solution is smooth
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Remark There are some disadvantages of the TVD method One of them is
that one cannot maintain second order accuracy at extreme points At these
points the method is only first order accurate Thus, TVD methods must
degenerate to first order accuracy at extreme points

Hybridisation Between Upwind and LAX WENDROFF Methods
Now, we will establish a condition on the flux limiter ¢; that must be sat
isfied so that a hybrid approach between the upwind and LAX WENDROFF
methods agrees with the TVD requirement (7 34) Let us consider the com
bination of first order upwind and second order LAX WENDROFF meth
ods The limited flux can be written in combination with the flux limiter
as

. n 1 n n
F(U;j+1/2) = aUj +§a(171/)( M1 = Uy, (741)
where ¢; = ¢ = 1 generates the Lax WENDROFF method (7 30)

By inspection of (731) and (7 41) it follows that ¢P" = 6; = (U} —
ur.,)/ (U}, — Uf) for the beam warming scheme This is the reason why
we have defined the flux limiter by (7 40) Substituting (7 41) into (7 21)
yields

n n n n v n n n n
Ut = U7 —v(U7 = Uy ) = 5 (L= ){(Ufs1 = UF') 65 = (U} = Ujy) 651}
=Uj' = Cja (U = UjLy) + D; (Ufy = UF) (7 42)

where y y
Cj—l =V — 5(1 —V)¢j_1, Dj = —5(1—V)(]5j. (7 43)

Formula (7 42) is a TVD method if it satisfies the TVD conditions (7 36)
However, this is not the case here since D; < 0 for ¢; > 0 Therefore, we must
find some conditions on ¢; such that the constraints in (7 36) are satisfied
with some manipulation of (7 42) For this reason, we rewrite (7 42) in an
equivalent form

Urtt =ur -G (Up = UM ,) + Dy(Ur,, — U, (7 44)
where the coefficients of the scheme are given by

(U = UG — (U = U y)dj1
c = v 1— J+ j /%3 J J j
j—1 =V T+ ( V){ ur—ur,

},D;.:o.(745)

The TVD condition (7 36) is satisfied by (7 45) under the restrictions
0<C; <1, forall j. (7 46)

Condition (7 46) is satisfied provided that the following holds together with
the CFL condition |v|< 1:
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9.
’¢59j]) —6(0;,1)| <2, for all 6;, 6;_1. (7 47)
The requirement (7 47) is satisfied only if the following two inequalities
hold: 0
0< ¢59.j) <2 and 0<¢(9;) <2, forall 6. (7 48)
j

However, the critical weakness of the TVD method is the following If ¢; <0,
then the slopes at neighbouring points have opposite signs This, conse
quently, implies that the data has an extremum near U; The total variation
certainly increases if the values at such points are accounted for For this
reason, the condition

¢j = (b(@]) = O, for Qj < O, (7 49)
is imposed to be at a safe position and only the upwind method is used

Remark It is impossible to satisfy both the higher order accuracy and the
TVD requirement at the critical grid values where ¢; < 0 The only way out
is that the higher (second) order accuracy requirement must be given up at
these critical grid values However, any difference scheme with formal higher
(second) order accuracy at all but these critical points may be understood as
having higher (second) order resolution in the sense that the local truncation
error is of order O (4 ) almost everywhere, and the overall higher (second)

order accuracy does not seem to be degraded in these cases, at least in the
L' norm5, (see [294] )

On the other hand, this is a weak point of the TVD method since, if the
data is smooth near the extremum, one is always tempted to take the value
of the flux limiter to be unity in order to use a high order method However,

in doing so the total variation will generally increase
[ |

Figure 7 5a displays the region for condition (7 48) to be satisfied The line
¢(0) = 1 corresponds to the LAX WENDROFF method and ¢(6) = 6 generates
the second order upwind beam warming method Only a part of these two
lines lies in the TVD region, so neither the LAX WENDROFF nor the beam
warming method possess the TVD property, in general

The best choice for ¢ is the convex combination of the ¢ for the LAX
WENDROFF method, which is simply ¢ = 1, and the ¢Z" for the beam
warming method, which is ¢ = 6 as follows:

6 The L' norm of a vector V with components V = [v1,v2,v3, ...... , vn}T is de

fined by |[V|1 =>"_, |v]
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Fig. 7.5. a) Region (shaded) of values that ¢(f) can take to possess the TVD
property b) Region of values ¢(6) for the second order TVD methods where the
superbee limiter (solid line) is on the upper boundary, the minmod limiter (dashed
line) lies on the lower boundary and the Woodward limiter (dashed dotted line) lies
between them

$(0) = (1 —(0) o™ +(8)0""
=14+4@)0—-1), for 0<vy(B) <1 (7 50)

With conditions (7 48) and (7 50) SWEBY [409] showed that for second order
TVD, ¢(#) is confined to lie in the region shown in Fig 7 5b Note that the
condition ¢(1) = 1 is automatically imposed, which indicates that the method
is of second order accuracy for # = 1, i e, the data is smooth

Some Special Limiters There is no hard rule for the quantitative selection
of the flux limiter ¢(f) and it depends on the particular problem at hand
Nevertheless, its value must lie in a certain region of the § — ¢ diagram If
#(0) is defined by the lower boundary of the “second order TVD region”,
what results is the so called Minmod limiter,

Minmod g (9) — max(0, min(1, 9)), (7 51)
whilst the Superbee limiter
Superbee s, (9) — max (0, min(1, 20), min(6, 2)) (7 52)

is obtained if ¢(#) is defined by the upper boundary of the second order TVD
region The Woodward limiter lies between them and is given by

Woodward¢(9) — max (07 Inin(27 29, 05(1 + 9))) (7 53)

Figure 7 5b illustrates the values of ¢(6) against 6 for these three limiters
Since ¢(#) determines the value of the anti diffusion fluz, different limiters
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result in different diffusion The superbee limiter which lies on the upper
boundary of the second order TVD region causes the least diffusion The
minmod limiter is the most diffusive The Woodward limiter lies between
them In fact, the superbee limiter is not only the least diffusive, it is often
anti diffusive and hence has a tendency to steepen gradients of field variables,
as we will see in the corresponding numerical results in Chap 9 The appli
cation of these slope limiters can eliminate unwanted oscillations and gives
second order accurate reconstruction for the smooth solutions over the cell
(except near critical points) One can, therefore, develop high order resolu
tion schemes without spurious oscillations, but with the ability to capture a
possible discontinuity

These limiters should be selected according to the physical diffusivity of the
problem For example, if we consider a linear advection hyperbolic RIEMANN
problem with constant coefficient (this is problem (7 18)), we must select the
most anti diffusion flux limiter because from the exact analytical solution we
know that the initial geometry is advecting with time along the characteristic
direction making the discontinuity undistorted As we will see in Chap 9 while
dealing with the computational results, large scale geophysical flows such as
avalanches and debris flows cannot produce such strong and sharp geometry
as in the case of the aforementioned RIEMANN problem Nevertheless, we must
choose the most diffusive flux, i e , minmod Many other different limiters can
be found in, e g, YEE [446], but we shall not discuss them all

7.4.3 Cell Reconstruction with Slope Limiters

We define now a so called “slope limiter” which is an analogue of the flux
limiter defined in (7 40) These slope limiters are designed in such a way
that certain numerical schemes fulfil the TVD property under appropriate
piecewise linear cell reconstructions

In the above considerations we assumed a > 0 For a < 0, a similar method
can be defined by again viewing the LAX WENDROFF method as a modifica
tion of the upwind method, which is then one sided in the opposite direction
A mathematically pleasing property is that we can unify these two methods
into a single formula This, to a great extent, helps in generalising the method
to linear systems of equations and non linear problems Because in more gen
eral cases both negative and positive wave speeds can exist simultaneously,
we now unconfine the sign of a Thus, for a of either sign, the fluxes of the
upwind and LAX WENDROFF methods can be written as

FOVU;j+1/2) = 3a(Ufy + UF) = 3lal (U4 = UP), (7 54)

J

FW (U3 +1/2) = 3a(Uf + U} = 5av(Ufyy = UP). (7 55)

J J
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Introducing the flux limiter as in (739), the TVD flux for the LAX
WENDROFF method is given by

F(Us;j+1/2) = FUW(U;j +1/2) + 5¢5a(sgn(v) — v)(Ufyy = U}). (7 56)

This is analogous to (7 41) The flux limiter ¢/ is used to determine the value
of F'at xj,/5 and 0; depends on the sign of the characteristic speed a For
both signs of a we can define ¢;/ as

. Up - U} o
by = ¢(0y), with 0, = LEde = _sgn(a). (757
UJ+1 Uj

For a > 0 and a < 0 respectively, the TVD flux (7 56) can be realised as
follows:

FU;j+1/2) = as Ui+ 5 (U = U)o — —( [ U")¢}

L
2
a{U JrA_ s an) viz (U} J+1

o “UDG L 7ss)
2 Ax 79 Az N

(U J + 1/2 =a _]-‘,—1 ) ]+1 )QSJ _( Jj+1 U;L)QSJ/}
Az (U, —U} A
a{ i 5 ( ﬁix J)fba voa (U ﬁi )¢J} (7 59)

The oscillations arising in the LAX WENDROFF scheme can be interpreted
geometrically as being caused by a poor choice of slopes between two grid
values This may lead to a piecewise linear reconstruction @" (z,t,) with
much larger total variation than in the given data U™ This can be remedied
by defining a “slope limiter” Let us first consider a reconstruction of the cell
values by a piecewise linear function of the form

a" (x,t,) = U + 0 (x —x;5), onthecell [z;_1/5,741/] (7 60)

The slope o0; in this equation is based on the data U™ It can be easily seen
that for any choice of the slope o, the mean value of the cell average 4" (z,t,,)
over [r;_1/2,7;11/2] is equal to the data point U The most significant
question is the choice of an appropriate slope o;, which will greatly influence
the numerical results of the scheme

This makes it possible to introduce the slope limiter

ur ur
@(;%E;i)@- (7 61)
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With this, the numerical flux (7 56) can be rewritten as

1
F(Usj +1/2) = aU, + Slalog, Ax - gy%m, (7 62)
with
- [ if a>0,
]1{j+1, if a<0. (763)

This means that the flux at z;,,/, is approximated for a > 0 by U; together
with o; and for a < 0 by Uj;1 together with 0,11 Therefore, with the
definition of the slope limiter (7 61), it can be seen that a piecewise linear
reconstruction (7 60) over the cell x € [x;_1/2, T;41/2] is defined by the slope
limiter Also note that (7 62) reduces to the LAX WENDROFF flux if we
use (7 61) to replace o1, whereas with o;; = 0, (7 62) recovers the upwind
method This justifies the choice of the definition (7 61) as a slope limiter
The slope limiter will play a wvital role in the remaining numerical methods
to be presented This is responsible for the order of the resolution and the
entire results of the methods

Thus, any of the flux limiters presented above can be converted into the corre
sponding slope limiter via (7 61) and vice versa Also note that slope limiters
are geometric features whereas flux limiters are their algebraic counterparts
Finally, the slope limiters can be viewed as an effective tool to make an ap
propriate piecewise linear cell reconstruction to let the numerical scheme hold
the TVD property

7.4.4 Non-Linear Conservation Law and TVD Methods
Next we will develop a second order accurate TVD method for non linear

hyperbolic conservation laws Consider the homogeneous non linear scalar
hyperbolic conservation law

ow  Of(w) ow ow

= — — = 4
5 + o 0 or 5 Jra(w)aw 0, (7 64)
where a(w) = 0f(w)/0w is the characteristic wave speed that depends on
the conservative variable w Because of the generality of a, the problem now
turns out to be more complicated than for the linear case

In the upwind method, the physical value at the cell boundary U;i,/s is
assumed to be one of the adjacent cell averages, either U; or Uj;1 This is
equivalent to using a piecewise constant reconstruction, ie, o; = 0, in the
flux function over the cell in the scheme It, therefore, only gives first order
accuracy Spatially high order monotonic upstream schemes for conservation
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Fig. 7.6. Schematic diagram for the cell average physical values U; (dashed lines)
and their linear piecewise cell reconstructions (solid lines) For each interface (e g ,
between U; and Uj41) there are two values: UJ-LH/2 = U;j + U;/2 from the left side
of the cell and UjR+1/2 = Ujy1 — Uj;1/2 from the right side of the cell with the
corresponding approximate derivatives U; and U}, respectively

laws (MUSCL) are introduced by applying the first order numerical flux and

replacing the arguments U; and Uj;q by UJ.L+1/2 and UjRH/Q, respectively, as
L —Jn 1 R _1n 1
Uj+1/2 =Uj + EUJ/" Uj+1/2 =Uj1—3 J/-H, (7 65)

where U} denotes the slope limiter determined derivative Ul = Axo; (see
Fig 7 6) Since the linear piecewise reconstruction is second order accurate,
MUSCL is a spatially second order scheme, but it requires the knowledge of
the characteristic variables

7.4.5 TVD LAX FRIEDRICHS Method

To obtain a spatially high order differencing scheme, a better cell reconstruc
tion is necessary One possibility is to apply the TVD limiters to obtain the
linear piecewise reconstruction The application of the slope limiters can elim
inate unwanted oscillations and gives second order accurate reconstruction
for smooth solutions (except near the critical points) over the cell One can,
therefore, develop high order resolution schemes without spurious oscillation,
but with the ability to capture a possible discontinuity

The main advantage of this method is its simplicity No RIEMANN problems
need to be solved The LAX FRIEDRICHS method is defined by

N 1, . " At n
Ut = 3 (U1 +Uja) = YN {ffa = fiea}s (7 66)

where fI' = f(U]') This scheme can alternatively be written as

U]?lﬂ =Ur —

At Ax
7 2/\x

P fja - G (U - 207 4 U1} (760
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This can be realised as a scheme with the numerical fluxes of the kind
Aw " "
(UJ+1 Uj )} ’

A
Filiye = {fﬁf; 1 Af (Ufol)}. (7 68)

~7:J+1/2 {fa+1 +f]

This method has a dissipation term of the form

A Az
LF €L n un

j+1/2:E(j+1* j)* A

/2 (7 69)

Replacing Uj41 and U; by the second order accurate UZ 5 and U

j+1/ J+1 /2
from (7 65) (which inherits the slope limiter determined derivatives) changes
the first order LAX FRIEDRICHS scheme into a second order TVD LAX
FrIEDRICHS (TVDLF) scheme,

" VAN
urtt =up - Ao (Fivryz — Fj-1/2) 5 (770)
with the flux
1 Ax
Fiv12 = 3 {f (UJ+1/2) + f( 3+1/2> ~; AUJH/Q} (771)

where the dissipative limiter of the TVDLF scheme is given by

YAV YAV
TVDLF _
¢j+1/2 At (UJH/? UJH/?) At AUJH/?’ (772)
in which Ulil/Q and UF 172 are defined in (7 65)

7.4.6 Modified TVDLF Scheme

Although in contrast to the MUSCL scheme, the TVDLF scheme can be
applied to any system of conservation laws without knowledge of the charac
teristic variables; the dissipative limiter (7 72) in the TVDLF scheme results
in large diffusion TOTH and ODSTRCIL [426] suggested that the dissipative
limiter should be multiplied by the maximum COURANT number C;‘jﬁ‘m
obtain a modified dissipative limiter, ie

MLF (mnax max max

2 = Ciiadiy e = < i+1/2 At) AUTE jp = a5 AU o, (T73)

with
Qe = max{ SUR ), a Uk, /2)} (7 74)
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max

where ay s is the associated maximum wave speed of the hyperbolic equa
tion Therefore, the modified TVDLF (MTVDLF) flux is expressed by

1
FME, = S { R ) + F U y) = a5p U o}, (775)

where the superscript MLF stands for the dissipative limiter of the modified
TVD LAX FRIEDRICHS scheme

Up until now we have discussed the methods that are second order only in
space We can improve the numerical model further by using the HANCOCK
predictor step, see e g , [426], which can be used to introduce an intermediate
state “U™"/® in order to obtain a method that is second order accurate in
space as well as time; explicitly,

Uf+1/2 =Uj' - 22—; {f (U;l+1/2> —f (Uf—1/2>}’ (776)

A
in which the flux arguments are taken to be U?,, , = Uj" + Txoj The full

scheme (corrector step) then takes the form

U"“ U - At FMLE U?_z+11/22 _ FMLF U?_zjll/; 7 (777)
Az i+ -1/

where F is defined in (7 75) Note that no dissipative limiter appears in the

predictor step (7 76) The left and right values, U :11/22 nd U"jll/2 arising

in (7 77) can be computed by first order TAYLOR series expansion at the grid
point (z;, t") and approximated, respectively as,

n+1/2L _ rrn At Ax n_ pmtl/2 Az "
Uj+1/2 - Uj + (8U/at) + TUJ' = Uj + TO'J- s
(778)
At Az Ax
n+1/2 n n n+1/2 n
Uj+1//2 =Uj j+1 + = (aU/at)]+1 9 o Oj4+1 = Uj+1 /2 _ 70j+1.
(7 79)

Thus, we see that the main idea of the MTVDLF method is to avoid the
dissipative limiter but still maintain second order accuracy

7.5 NOC Schemes

NESSYAHU and TADMOR [294] developed the one dimensional non oscillatory
central differencing (NOC) scheme, which is a second order accurate exten
sion of the classical LAX FRIEDRICHS scheme [246] but with high resolution
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(higher order), obeying the TVD requirement In this scheme, the TVD lim
iter is used for the cell reconstructions If the cell reconstruction is computed,
numerical integrations with the NOC schemes can be realised A main con
cept of the NOC schemes is the use of a staggered grid, which is a predictor
corrector method and consists of two steps At time t"t! = t" + A, the
cell averages U;.ljll/Q are evaluated over the bounded region [r;,z;41] (see
Fig 77) As a consequence, the boundaries of the cells at the new time
level are the centres of the cells at the old time level At these boundary
points, the piecewise polynomial reconstruction of the cell averages at the
old time level ¢ is smooth, and it remains so for ¢ < ¢"*! under an appro
priate restriction of the timestep Therefore, the flux across the boundaries
of the cells at the new time level may be evaluated by TAYLOR extrapo
lations using the differential equation and standard quadrature rules Here
we use the midpoint rule in time to achieve temporally second order accu
racy

Let us consider the general one dimensional hyperbolic differential equation

ow n df(w)

5t T se = W)

(7 80)
where s(w) is the source term Integrating (7 80) over the rectangle [z;, xj+1]X
[t", "] gives

Tt T et
/ w(, t"“)d:c:/ w(, t”)d:v—/ (Fajans t) — flay, 1)) dt
x xT tm

J J
tn+1

Tjt1
—|—/ / s(x, t) dtdx.
T; tm

J

(7 81)
This is discretised by
Az UnT! A n n A n+1/2 n+1/2
TUjr1/2 —7( j+1/a T j+3/4) - t<fj+1 — I )
ANAT ( nr12 | nt1)2
+= <j+1/4+sj+3/4>, (7 82)

where Ujq/5 is interpreted as the cell average over [z;, ;1] Dividing by
4, this reduces to a scheme of the type

1 At
n+1 n n n+1/2 n+1/2
Uj+1/2 9 (Uj+1/4 + j+3/4> “Ax (fj+1 - fj )

At pi1/2 0 nyi)2
e G B (7 83)



75 NOC Schemes 325

j j+1 j+2 j+172
n+2—+ g * » nal—— e i * TR
| | ' | f |
1 ! :
! Jj+12 1 J+372 1 ! : !
P IS A S A FEYY, 5 S VD G D
: : S 7 S A
1 ; 1
N N | |
n - - = X n b &— x
a j j+1 Jj+2 b j Jj+l

Fig. 7.7. Diagram of the NOC scheme a) Grid points computed in the NOC
method b) NOC computational diagram e indicate the grid points at time level n,
n+1and n+2 mrepresents the positions where the fluxes F at time level n+1/2
are approximated, ¢ the source terms s and 1 denotes the quarter and three quarter

points, e g, Uy 4 Ults/s

as illustrated in Fig 7 7b Using the TVD slope limiter o7 for the j th cell at

time ", the values of U"+1 /4 and U, ,,, are determined by the reconstruction

over the j th and (j+1) thcell, ie,

Jj+3/

Az " . Az,
Ufta =Uj + 1 % Ujyaa = Ujyr — it (7 84)

The integral of the transport flux f is approximated by the physical values
at ({Ej, tn+1/2) and (.%'j+1, tn+1/2), ie s

e A (e el (A R ()

together with the following approximations for the arguments:

At A

J Jj+1 J+1

Similarly, the integral of the source s is approximated at (11,4, t”+1/2) and
(21374, t"T1/?), respectively, by

n+1/2 n+1/2 n+1/2 o n+1/2
Sjv1/a =8 (Uj+1/4 ) v Sjta/a =S (Uj+3/4 ) ) (7 87)
the grid values are approximated by the cell reconstructions

ni1/2 oo O VAV

Uisrja = Ui + — (0U/0t); + — =07,
A Az

n+1/2 n

Ug+3//4 =Uin+ - (6U/6t)3+1 4 it (7 88)

Finally, the temporal derivative (8U /0t)? in (7 86) and (7 88) is determined
by using the conservation law (7 80) as follows:
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(Qw/ot)] = — (0f /0x)} + s} = —aff o + 57, (7 89)
where

(0f/0x) = (0f /Oow) (Ow/0z), a=0f/0w, o= 0w/ox. (7 90)

The CFL Condition Substituting the TVD cell reconstruction by the mid
point rule and using the one step scheme, (7 83) reduces (with s = 0) to

At
n+1 n n n
UJ++1/2 = (Uj +UMN) — N (fir = 17) (791)
which satisfies the TVD requirement (7 34) under the CFL condition
fj+1 f] At 1 .
= — ™| < <, forall 2
Aac A _2 e la |<2 orall 7, (792)

where a™?* is the maximum wave speed NESSYAHU and TADMOR [294]
showed by some numerical examples that with the CFL condition (7 92) the
NOC scheme (7 83) possesses the TVD property for a homogeneous scalar
conservative law Ow/dt + 0 f(w)/0x =0

7.6 Alternative Numerical Schemes

In this chapter we have dealt with numerical finite difference representations
of the spatially one dimensional avalanche equations (7 2), or equivalently
(75) (76) Our procedure was “historical”, presenting the early EULERian
and LAGRANGEan schemes, identifying with them the difficulties and ranges
of inadequate application and then moving to modern shock capturing finite
difference methods

The EULERian method applied to the non conservative form of the model
equations was integrated for a finite mass of granular material moving down
an inclined plane chute and generated solutions that were hardly trustworthy
The subsequent LAGRANGEan integration method generated solutions for the
same problem, which were closer to the shapes of the evolving granular piles
Both integration methods required incorporation of additional numerical dif
fusion for stability The LAGRANGEan integration method, appearing to be
the more trustworthy one of the two, was subsequently used for a number
of avalanching flows down inclines, and curved chutes, see e g Chap 10,
but a rational reason for its preference over the EULERian scheme was not
identified

This step came with the replacement of these classical finite difference meth
ods by the modern EULERian finite difference method and the recogni
tion that the equations ought to be written in conservative form and non
oscillatory total variation diminishing schemes should be used These meth
ods are apt for hyperbolic partial differential equations, because they capture
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shocks if such discontinuities develop within the domain of a moving gran
ular pile We presented non oscillatory central difference schemes that obey
the total variation diminishing property, but we did not at the same time
also present results of the performances of these schemes Such results have
been presented by TAIl [412] and are somewhat academic, but since the fi
nite difference methods are sound, i e , have proven convergence and stability
properties, the numerical results are trustworthy

There is yet another difficulty that one encounters when dealing with finite
domain mowving boundary value problems, such as the motion of a finite mass
of granular material with vanishing height at the front and rear margins
This requires special handling of the boundary conditions, since in a EuU
LERian description the front and rear margins may not lie at grid points
The special finite difference approximations at these boundary locations are
called front tracking methods For the spatially one dimensional case, they
were introduced by TAT et al [415], and very good performance was also
demonstrated

The modern numerical methods for hyperbolic partial differential equations
of this chapter are based on finite difference methods as originally devel
oped by NEUMANN and RICHTMYER [295] and LAX and WENDROFF [247],
and combine the finite difference approximated flux terms An alternative
approximation was proposed by Gopunov [115, 116] In his method exact
solutions at the cell boundaries are computed for piecewise constant initial
values that are subsequently smeared over each cell These special initial value
problems are the so called RIEMANN problems, and they are solved exactly
or approximately The considered temporal step is limited by the COURANT

Levy FrIEDRICHS (CLF) condition, which avoids collisions of waves that
are generated at the boundaries HARTEN et al [145] and RopioNov [359]
improved on the accuracy of the GODUNOV procedure

Such a GODUNOV scheme with second order accuracy, using a LAGRANGEan
grid has been used by KoscHDON and SCHAFER and KOSCHDON [228, 229]
and was applied, among others, to the one dimensional SH equations As was
previously also done by TAT [412], the comparison between numerical and
exact solutions was demonstrated for the parabolic cap solution, see Chap 5,
and the dam break problem The accuracy for the parabolic cap solution is
about the same for the two integration methods, but the results for the dam
break problem seem better with TAT’s shock capturing EULERian integration
technique

As a final remark on numerical technique, we would also like to mention nu
merical integration procedures used by SARTORIS and BARTELT and CHRIS
TEN et al from EISLF, Davos [61, 368] These are the avalanche dynamics
program for the particle of snow, and upwind finite difference schemes for
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dense snow avalanche flows, respectively For physical modelling they use the
improved VOELLMY model

Using SAINT VENANT type equations with COULOMB basal friction, and no
CouLoMB material behaviour, but a hydrodynamic isotropic fluid pressure
inside the body, BoUuCHUT et al [38] presented a hydrostatic reconstruction
scheme By adequately combining the conservation laws of mass and mo
mentum an energy type balance law was derived, which, for weak solutions
becomes an inequality that may be used as an entropy inequality to select
the physically acceptable solutions MANGENEY et al [264, 265] used this
kinetic scheme to simulate the spreading of a granular cylindrical heap on a
horizontal plane A summary of a great number of balanced schemes is given
by BOUCHUT [39]

7.7 Summary

In this chapter, we have presented numerical schemes for classical as well
as modern computational methods to solve one dimensional avalanche equa
tions and that are, in general, applicable to the hyperbolic conservation laws
As for the classical methods we have discussed advantages and disadvantages
of both EULERian and LAGRANGEan finite difference schemes A peculiar
characteristic of hyperbolic (avalanche) equations (partial differential equa
tions) is that they are associated with internal shock formation when the flow
changes from the supercritical to subcritical state This means that the field
variables, e g , the depth and velocity profiles, possess jump discontinuities
if such flows hit obstacles on their way or if they encounter sudden changes
in the topography over which the slides take place The classical EULERian
scheme is not able to capture the generation and propagation of such discon
tinuities, whereas the LAGRANGEan scheme is too diffusive because it needs
artificial diffusion to be imposed to numerically dampen non physical oscil
lation In order to develop a modern shock capturing scheme, which in fact
is able to resolve these problems, we have discussed first order and second
order traditional schemes, such as first order upwind, and second order LAX

WENDROFF and upwind beam warming schemes These methods are either
numerically diffusive or instable and cause non physical oscillations A high
resolution method is a compromise between them A total variation dimin
ishing high resolution shock capturing numerical scheme with different flux
limiters was presented Slope limiters were employed for cell reconstruction
Finally, non oscillatory central difference numerical schemes with different
limiters were constructed, which can be used to solve granular and debris
flows equations In Chap 8 this modern numerical scheme will further be ex
tended to two dimensional avalanche equations written in their most general
forms We have also presented a discussion on several alternative numerical
schemes that can be applied in solving hyperbolic conservation laws



8 Two-Dimensional Shock-Capturing Schemes
for Avalanching Flow

In this chapter, we extend the procedures that were applied in the last chap
ter to spatially one dimensional flows to two dimensions Our own early nu
merical solution procedures were second order LAGRANGEan finite difference
methods and thus did not have total variation diminishing properties and
required explicit additional numerical diffusion This was kept as small as
possible and only became substantial in the transition regime from dilating
to compressing flow configurations (or vice versa) In Sect 8 1, we shall briefly
give a survey of the literature of this LAGRANGEan integration method, but
not the entire method, because today more suitable shock capturing schemes
are used Section 8 2 deals with non oscillatory finite difference schemes in
the EULERian description, whilst Sect 8 3 applies these to the extended
avalanche equations We also review briefly other shock capturing integra
tion techniques In the Sect 8 4 a summary is presented

8.1 The Two-Dimensional LAGRANGEan Techniques

The LAGRANGEan integration technique is particularly attractive for two
dimensional avalanche problems, because the grid is advecting, which makes
the handling of marginal lines, along which the avalanche thickness must
vanish, easy Moreover, the LAGRANGEan integration technique with second
order accuracy in the spatial finite difference operators and leapfrog inte
gration procedure in time yields accurate results whenever only dilational or
only compressional flow conditions prevail

The above mentioned numerical integration scheme was developed in the
avalanche context by KOCH et al and WIELAND et al [227, 445] A finite
difference approximation is presented that handles two dimensional problems
numerically accurately It applies for the model equations of un confined flow
of granular avalanches along a partly curved surface that is flat laterally
(see Fig 3 8) In the scheme of [227] the granular material is divided into
triangular prisms with flat tops For stability and simplicity each triangle
has its own constant height Figure 8 1 displays a typical discretisation In
order to model the experimental results, this discretisation is fit to the initial
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Fig. 8.1. Triangulation of a granular mass with cylindrical triangular elements
(prisms) having constant heights (From [227])

-2 0 2 -2 0 2

X X
Fig. 8.2. The initial circular surface of the granular material with the inclined
bed is filled with a number of triangular elements (prisms) (a) Triangulation with
88 elements arranged in four rings of approximately equal width (b) Same as
in (a) but the outer rings are smaller than the interior rings to better account
for approximation of the steep radial gradient of the height at the margin (c)
Triangulation with 40 elements arranged in three rings (d) Same as in (c) but
with 80 elements (From [227])

form of the experimental granular material Figure 8 2 shows the projections
of the numerical grid onto the Cartesian plane We are not going to deal with
this in detail but only wish to present some results computed by this method
For a detailed study the reader is reffered to [227]

GRAY et al [123] improved and extended the two dimensional LAGRANGEan
numerical scheme of KOCH et al [227] to solve the system of equations de
rived to investigate the motion of free surface flow of granular avalanches
over complex basal topography WIELAND et al [445] implemented a mixed
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type finite volume finite difference scheme, explicit in time and a spatially
two dimensional LAGRANGEan scheme to solve the aforementioned depth
averaged equations of motion designed by GRAY et al [123] The avalanche
is discretised into a finite number of triangular elements, which form a grid
that moves and deforms with the motion of the avalanche as shown in the
Fig 8 3 The set of points used to generate this grid reflects the initial exper
imental configuration of the avalanche The authors have explicitly discussed
the numerical scheme and showed convincing agreement with several different
laboratory experiments that will be discussed later in Chap 10

8.2 The Two-Dimensional NOC Schemes

The finite difference scheme presented in the remainder of this chapter will
be fixed EULERian Only in the final reviewing section shall we also address
LAGRANGEan techniques

8.2.1 Description

The one dimensional non oscillatory central differencing (NOC) scheme of
NEssYAHU and TADMOR [294] (as discussed in the previous chapter) is a
second order accurate extension of the classical LAX FRIEDRICHS scheme
[246] Its two dimensional scheme was first proposed by JIANG and TADMOR
[200] and was also modified by L1E and NOELLE [251] This scheme was
applied to numerical simulations of granular avalanche flows by TAr [412],
TAl et al [415], GRAY et al [126], WANG et al [440], CHIOU et al [60] and
PupasaINT and others [334, 336, 339, 340, 341, 342, 343]

Since in numerical schemes only values of the cell averages are available,
with the concept of high resolution methods the distribution of the physical
variables over the cell is reconstructed As in the one dimensional case, the
two dimensional NOC scheme is a predictor corrector method that consists of
two steps (i) The grid values are predicted according to the non oscillatory
reconstructions from the given cell averages (i7) At the second corrector
step, a staggered averaging is introduced, together with the predicted mid

values, to determine the full evolution of these averages This results in a
high order, non oscillatory central scheme The key feature of this scheme
is that the staggered averages at (2,412, Yqs1/2,t" ") are computed by the
cell averages at (z,,y,,t"), see Fig 8 4a Our main aim in this chapter is to
extend this scheme to a system of non homogeneous two dimensional shallow
avalanche equations
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40

0 10 20 30 40
X

Fig. 8.3. Dimensionless deformations and displacements of a ten ring numerical
grid used to simulate the avalanche experiment V05 (Vestolen) The flow is from left
to right, at first down on an inclined plane, then (between the dashed vertical lines)
into the horizontal plane on the right The image sequence is shown at dimensionless
times ¢t = 3.1,4.1,5.1,6.0,7.0,8.0,9.1,11.1, 13.2, 15.2,17.2 The vertical dashed lines
at © = 17.5 and x = 21.5 indicate the beginning and the end of the transition zone,
with a 40" inclined channel to the left and the horizontal run out plane to the right
(From [445] )
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Let us start with the general two dimensional conservation law

ow | Of(w) , dg(w) _

ot Ox oy s(w), (81)

subject to prescribed initial data, w(z, y, t = 0) = wo (x, y) Let C, 4 be the
(p,q) th cell covered region,

Cpa={ @0

Ax Ay
|z — 2p|< s Y= yel= . (82)
2 2
Moreover, let U}, denote the cell average over this region at time ¢", and

Wp,q(2; Y, 1) = U + 0y o (€ = xp) + 0y ((y = yq), for (z,y) € Cpq, (83)

be a piecewise linear reconstruction over the cell, where oy , and o} , denote
the discrete slopes of U in the x and y directions, respectively, which are
determined by a TVD limiter [250], or a central, essentially non oscillatory
(ENO) cell reconstruction [143] In the TVD schemes they are the TVD slope
limiters and in the ENO schemes they are the mean slopes of the high order
interpolations over the cells

The piecewise linear cell reconstructions are at most of second order ac
curacy With the help of ENO schemes it is possible to construct a poly
nomial approximation over the cell that is accurate pointwise to higher
order The ENO schemes were first developed by HARTEN [143], who ap
proximated the cell reconstructions by an essentially non oscillatory high
order accurate polynomial interpolation of a piecewise smooth function
from its cell averages Thus, it is a generalisation of the TVD method
of piecewise linear cell reconstructions The second order ENO scheme re
sults in a piecewise linear cell reconstruction, equivalent to a TVD method
with a cell reconstruction determined by the minmod limiter In what fol
lows, the third order quadratic ENO cell reconstruction is employed, for
details see [143, 412, 440] Let Upii/2,411/2 denote the staggered aver
age over Cpi1/2 q+1/2 Integration of (8 1) over Cpiq/, gi1/2 X [t", "]
yields

n+1 1 Tp+1 (Ya+1 "
Upii/2, q11/2 = N Ay/ / w(z, y, t")dz dy
Tp Yq

1 Yq+1
Axly /t / (f(zpr1, Y t) — flzp, y, 1)) dy dt

tn+

xp+1
Al’Ay / LE Yq+1, t) - g(:r, Yq> t)) dx di

tn+

Tp+1 fYg+1
4
AgcAy / / s(z, y, t)dx dy dt. (84)
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Fig. 8.4. a) The two dimensional NOC scheme and the staggered grid The stag
gered averages at (ajpil/g,yqﬂ/g,t”“), denoted by o, are computed by the aver
ages at (zp,yq,t"), represented by ¢ b) The two dimensional NOC scheme and a
floor plan of the staggered grid The cell Cp, 1/ ¢41/2 consists of four 1ntersect1ng
cells with Cp g, Cpi1,q, Cpi1,g+1 and Cpgp1, denoted by CoW, C5E . CNE .,
and Cgﬂl, respectively e indicates the computed cell centre and O denotes the
centre of the intersecting cell The numerical fluxes are considered on the values
across the corresponding faces, east (E), north (N), west (W) and south (S), re

spectively

The first integral on the right hand side of this equation can be split into
four parts as follows:

Tp41 Yg+1
/ / (x, y, t dxdyf// x, Yy, t da:der// x, y, t") dx dy
Yq

CSfl q
// (z, y, t dxdy+// x, y, t") dx dy. (8 5)
o et Cplat

These contributions come from the four intersecting cells, viz CZ*? ZV, CSE 1.5
CNE o1 and CV, These cells are defined as

P
SW o
Cp,q T CP+1/2,q+1/2 N Cp,g,
C’10+1 ¢ =Cpt1/2,0+1/2 N Cprag, (86)
Cof a1 = Cpr1y2,4+172 N Cpit g1,
Cp ar1 = Cpp1/2,9+1/2 N Cpgu1,

respectively (see Fig 8 4b)
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Starting with the intersection cell CEZV at the south west corner, using the
reconstructed polynomial in (8 3) together with the discrete slopes of, and
j . of U in the  and y directions, respectively, we may derive

1 /1p+1/2/yq+1/2 ( ")d J
_— w(x, y, t")dx dy
Ax Ny - »

1

Yg+1/2

Tp+1/2
T Axly /p /y (Upq +0pq(x—xp) + 08 (v —yg)) dady

q

VAN Ay
4qu 16 T6 e T 16 16 Tp.q-

87)

Following this procedure and continuing in a counterclockwise direction, it
follows that

1 Tpt1 Yg+1/2
dad
AxAy/wﬁm/y w(z, y, t")dz dy

" Az Ay
= 4 p+la = 7 Tptla + 1_607?;“"1’ (88)
1 /:Dp+1 /yq+1 ( )d d
w(x, y, t")dx dy
BT BY Jayirsn Sy
1 . VAV Ay
= 1 p+1,q+1_Eop-&-l,q-&-l_ﬁag-i-lﬂ-i-l’ (8 9)
/1p+1/2 /yq+1 )
(x, y, t")dx dy
Ax Ay yq+1/2
n Ax ot Ay
U q+17L 16 Tpg+1 — 16 gqﬂ (810)

Next, we compute the four numerical fluxes corresponding to the points
Tpt1, Tps Yg+1,Yq i (8 4) on the east and west surfaces (associated with the
flux function f), and north and south (associated with the flux function g)
surfaces, respectively (see Fig 8 4b) They are approximated by the midpoint
quadrature rule for second order accuracy of the temporal integral and second
order rectangular rule for the spatial integration across the corresponding
face The flux along the east face is then given by

tn+

yq+1
AJ]Ay / IP+17 Y, t)dy dt

1At
~9Ax {f(%ﬂ’ Ygr T2 4 F(@pt, Yot t"+1/2)}

- 55 {7 () + 1 (i)} s 1)
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Analogously, the other three fluxes in a counterclockwise direction are, re
spectively, given by

tn+1

Tp+1
t)dx dt
AZCAy i LP g(:Z?, Yq+1, ) &Xr

1At n+1/2 n+1/2
=57y o (Ua) +o ()} (1)

tn+1

Yq+1
flxy, y, t)dy dt
A:cAy n /y (p )

L ) s () 6

T

tn+1

Tp+1
t)dr d
AxAy y /% 9(w, yq, t)dz dt

LS o) o)) o

8.2.2 Predictor Step

n+1/2

The conservation law (8 1) is employed to evaluate the values of U; for
j=p,p+1, k=¢q,q+1in (811) (8 14):
n+1/2 n At 8w "
%k6%+7<£)
At af(w))" < g(w )) At
g S (Y e (a2t
b 2 Ox ) 2 o Jin 2 (Ujix)
VAN n At n VAN 2PN
=Ujk— = (o), — - @i+ 55 (Ufk) (8 15)

where o/ and ¢9 are one dimensional discrete slopes of the fluxes f and ¢
in the = and y directions, respectively, which are determined by the non
oscillatory TVD limiters or ENO interpolations Alternatively, they can also
be represented by the corresponding JACOBIans,

('), = <3=g (;”)X T (0O = (3%”)):0;,6, (3 16)

) 7>

where o7 and O’  are the discrete slopes of U in the & and y directions, re
spectlvely, see JIANG and TADMOR [200] Nevertheless, herein we will employ
only the JACOBIan free approach [294]
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There remains now the integration of the source term This integration also
combines contributions from the four intersecting cells, and it is approximated
by the values at the centres of the four intersecting cells, (@1 /4, Ygr1 /4, t"/3),

(zp?/zlqu%l/zbtnﬂ/z))a ($p+3/4,yq+3/4,t"+1/2) and ($p+1/4,yq+3/4,t"+1/2),
see Fig 8 4b,

1 T pp1 Y
—_— s(z, y, t)dx dy dt
AxAy /tn /xp /yq ( )

At

T {5($p+1/4, Yg+1/45 /2y 4 5(Tp43/a, Yg+1/4> /2y

+ 8(Tpra/as Yarasas t"T2) F(2p11/a; Yars/as t"+1/2)}
At n+1/2 n+1/2
:T {S (UP+1/47<1+1/4> +s (Up+3/4,q+1/4)

n+1/2 n+1/2
+s (Up+3/4,q+3/4> ts (Up+1/4,q+3/4>} : (817)
A TAYLOR series expansion is used to evaluate the values of U;:ll/ Zq 174
the southwest intersecting cell

/2 pnerje A (0w Ay (0wt
Ypirjsans = %a "= \5y ) T \5y)

at

A n A n
— U2 4 22 (o0 + =Y (oY) (8 18)
) 4 ;
where U, f{l/ ?. defined in (8 15), is employed Continuing in a counterclock
wise direction and repeating the last equation, it follows that

Ax n Ay

U:ill//f,q-i-l/ﬁl - UIZ;IQ + 4 (Uw)p,q + 4 (Uy)z,q ’ (8 19)
U;jsl//iqu/zi = Uijﬁ{f - % (0 ) ps1q + % (@) pi1.qs (8 20)
Uptafaaran = Uptlihn = % (@) ps1.g41 — % (") p1ge1s  (821)
U:jll//ziqw/zi - :ﬁf + % (") pgi1 — % (@) p.gt1 - (822)

8.2.3 Corrector Step

Collecting all the results from (8 7) (8 10) and (8 11) (8 14), we can sum
marise as follows The two dimensional NOC scheme consists of the first
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order predictor steps (8 15), (8 19) (8 22) and the second order corrector
steps,

n+1
Up+1/2 q+1/2

{ g T Upitq + Upirge1 + Upgin )

+E Up q z+1,q B Uz+1,q+1 + U;q-l-l}
_6 {0ha + Tpsra = Tpr1a41 ~ Tpgrr )
At n+1/2 /2 nt1/2 n+1/2
B {7 () + o (Upilida) - 1 (v 72) = 7 ()}
n+1/2 + Un+1/2 o Un+1/2 . Un+1/2
p q+1 9 p+1l,q+1 9 ,q 9 p+1,q

325 19
+% {S (U:jll//‘iq-i-l/él) T (U;:31//42»Q+1/4)

n+1/2 n+1/2
ts (Up+3/4,q+3/4> ts (Up+1/4,q+3/4>} (8 23)

for the cell mean value at (2p41/2, Gg+1/2, t"*+1) This results in a high order
accurate non oscillatory scheme As in the one dimensional case, presented in
Chap 7, the non oscillatory behaviour of this scheme also strongly depends
on the reconstructed discrete slopes, o*, 0¥, o/ and o9

The CFL Condition A “realistic” geometric CFL restriction for the scheme
given by (8 15) and (8 23) is

At Of At 0g
- = < .
ma X< o y6w> 1/2 (8 24)

This condition was confirmed by the numerical tests by JIANG and TADMOR
[200] with the simple linear advection equation, dw/dt+0w/0x+0w /Oy = 0

8.3 Two-Dimensional Shock-Capturing Methods
Applied to the Extended Avalanche Equations

In this section, we will apply the two dimensional NOC scheme developed in
Sect 8.2 to the two dimensional extended model equations for flow avalanches
down curved and twisted channels derived by PUDASAINI and HUTTER [335]
as a generalisation of the SH equations For this purpose, let us consider
the model equations (4 89) (4 91) of Chap 4 in conservative form These
equations can be written in compact vectorial form (see (4 98)), as follows:
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ow of (w)  Og(w)
T e T a9 =s(w), (8 25)

where w denotes the vector of conservative variables, f and g represent the
transport fluxes in the = and y directions, respectively, and s denotes the
source term They are

h My my 0
w=| my |, f=| m2/h+B.h%/2 |, g= Mgy /h ,s=| hss |,
my mgmy/h m2/h+ Byh? /2 hs,

(8 26)

where the source terms in the momentum balance equations, s, and s,, the
parameters (3, and (3, are defined in (4 92) (4 94), and the equations are
computed in the conservative variables h, m, = hu and m, = hv

By virtue of (8 23), the cell average pr/2 i1z A at (Tp41/2, Ygi1/2, ") is
given by
n+1
Wpt1/2,q+1/2

1 {Wg,q + W;L-l-Lq + WZ—&-l,q-&-l + Wg,q+1}
Ax T xr T xr
+E {Wznq ~Wptlg ~ Wptig+r T Wp,q-&-l}
16 {Wg,q + Wgﬂ,q o Wg+1,q+1 o Wg,qﬂ}
At n+1/2 n+1/2 nt1/2 n+1/2
55 (£ (whine) + £ (i) — £ (wpd?) — £ (w321) }
At n+1/2 n+1/2 nt1/2 n+1/2
_2Ay {g (Wp,q-H ) +8 (Wp+1,q+1) ) ( Wp.a / ) -8 (Wp+1,q )}
At n+1/2 n+1/2
T {s (Wp+1/4,q+1/4> TS (Wp+3/4,q+1/4>
n+1/2 n+1/2
+s (Wp+3/4»q+3/4> +s (Wp+1/4,q+3/4) } : (8 27)

Here, w7, and w e for j=p, p+1and k=g, ¢+ 1 are the mean discrete
deviators (derlvatlves) over the cell in the z and y directions, respectively,

x __ T Yy LY
Wi =07, Wi =05, (8 28)

Applying the conservation law (8 25), the cell average at time level t"+1/2,
as in (8 15), is given by

At (ow\"

n+1/2 n

Wj7k / :Wj,k+7 <E)k, (8 29)
Js
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where the temporal derivative is approximated by

ow\" _ [of\" [og\" N
<E)j,k o <%>Jk (6_y>j,k+ > (Wj’k)
- (gf)zk —(0®)7, +s(w]y). (8 30)

Here of and 0% are the one dimensional discrete slopes of the fluxes in the
x and y directions, respectively

For our problem, the earth pressure coefficients, K, and K, arising in the
fluxes (via f and g) 8, = —cg.K,; and 8, = —eg.K,, can be determined
by the velocities on the adjacent cells with the ad hoc definitions (4 80) and
(181),

(Kz)p,q = Kz(up+1,q7 upfl,q)v (8 31)

(Ky)p,q = Ky (Up+1,q» Up—1,q5 Up,g+15 Up,g—1)- (8 32)

Here u and v are the velocities in the z and y directions, respectively, which
are determined by the definition of the conservative variables,

Up,q = (Mz)p,g/hp.qs  Vpg = (My)p,q/hpg for hyq #0. (833)

Remark Equations (8 33) indicate that the scheme given by (8 27) suffers
from the trivial solution, 0 = 0, at h = 0 for the momentum balance equation
There are two remedies to this problem (i) A first choice is the addition
of a very thin layer of material over the entire computational domain (i)
Alternatively, one may set all the physical variables equal to zero outside the

avalanche domain
[ |

Using the cell reconstructions and the predicted values (8 29), the arguments
for the source term in (8 27) are given by

n+1/2 12, Dr v,
Wpt1/4,q+1/4 = Wpia + 4 Pa + 4 Wo.q0
n+1/2 _ontl/2 Az . n Ay y
p+3/4,q+1/4 = Wptla T T Wotla T T Wptig
(8 34)
n+1/2 o nf1)2 Az - Ay Y
p+3/4,q+3/4 = Wptla+l T g Wptlatl T g WptlgtD
n+t1/2 _ otz Dz Ay,
Wpt1/4,q+3/4 = Wpgt+1 + 4 Wh,q+1 4 Wog+l-

They are analogous to (8 19) (8 22)
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The CFL Condition As in (7 92), this NOC scheme must obey the CFL

condition A
=Y |Cmax| <

Az 2’

with the global maximum wave speed

™ = max <|“p7q| +VBehpg s [Vpgl + v ﬁyhp,q) (8 36)

all p,q

for all p, q, (8 35)

over the entire computational domain For methods how to compute the wave
speeds, we refer to (4 105)

In Chap 9, we will implement the numerical scheme of this section to solve
the two dimensional avalanche equations (4 89) (4 91) for a number of cases:
(1) different topographies, (ii) different parameter values, (i:i) different nu
merical methods and (iv) different cell reconstructions

Discussion on Alternative Numerical Schemes As with the spa
tially one dimensional case, additional alternative shock capturing and shock
tracking schemes have been and are still being developed in the current lit
erature The discussion presented here follows immediately that of Sect 7 6
Multi dimensional versions of GODUNOV type schemes with relaxation and
kinetic solvers are described in BoucHUT [39] The motion of the numerical
grid allows the description of flows in variable numerical domains GODUNOV
developed his method on moving grids by adequately discretising the corre
sponding conservation laws [116] A number of publications deals with the
motion of the grid within a given finite volume solver On this basis, THOMAS
and LOMBARD [420] developed their geometric conservation law, which de
termines the enlargement of the controlling volume that is generated by the
motion FARHAT et al [96] propose a discretised form of the conservation
law on a moving grid that agrees with that of GopuNOV The corresponding
explicit schemes with second order accuracy are presented by BAUMANN [29]
and AZARENOK et al [18] KOSCHDON [229] reproduces results of granular
flows down an inclined channel merging into a horizontal plane and states
that the results agree well with the experiments of WIELAND et al [445]
Similarly, VOLLMOLLER employed the wave propagation method to predict
the sand flow down channels [431]

8.4 Summary

At the beginning of this chapter, we briefly discussed the two dimensional
LAGRANGEan finite difference scheme This was motivated by the fact that
for two dimensional avalanche problems one can easily handle the advecting
margin of the avalanche along which its depth must vanish However, this
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technique is only well suited for dilational or compressional flow situations,
but not when the flow prevails rapid changes in depth and velocity profiles
during the motion In such situations, the method is oscillatory and produces
non physical results It is necessary to add numerical diffusion into the model
equations in order to control instabilities To accurately solve the hyperbolic
model equations describing the avalanching debris flows, a shock capturing
scheme is needed For this reason, we presented in detail NOC schemes with
appropriate slope limiters for cell reconstructions This is a high resolution
shock capturing scheme and satisfies the TVD requirement of conservative
variables, a method that gives a solution without spurious oscillations near
the discontinuities This scheme employs a two step method, expressed by
two predictor corrector steps Finally, the extended avalanche equations of
Chap 4 are put into a two dimensional shock capturing TVD NOC scheme



9 Avalanche Simulations over Curved
and Twisted Channels

In this chapter, we will implement the numerical schemes developed in
Chap 8 into a computer code in order to simulate avalanching masses We
will make use of the two dimensional avalanche equations (4 89) (4 91) pro
posed by PUDASAINT and HUTTER [335] for a number of cases: (i) different
numerical methods, (i4) different cell reconstructions, (ii7) different topogra
phies, (iv) different parameter values and (v) flow down a basal surface with
humps

9.1 Performance of Various Numerical Schemes

In order to identify the best numerical scheme that ideally fits the problem
of avalanche dynamics, we first consider a very simple geometric situation
in which the basal topography varies only in the downhill direction but is
laterally flat Let us consider the model equations (4 89) (4 91) By setting
6 = 0° (where 6 appears through 7 and ¢ via the net driving force components
(493) (494), and the factors 8, and 3, in (4 92)), we obtain a torsion free
master curve Indeed, if we set the parameter § = 0°, we obtain a topogra
phy that varies only in the downhill direction and is flat in the cross slope
direction

In this section, a simulation example of an avalanche of finite granular mass
sliding down an inclined plane and merging continuously into a horizontal
plane is presented A hemispherical shell holding the material together at
the upper end of the chute is suddenly released so that the bulk material
commences to slide on an inclined flat plane at 35° into a horizontal run out
plane connected by a smooth transition The computational domain is the
rectangle z € [0,30] and y € [-7,7] in dimensionless length units, where the
inclined section lies in the interval = € [0, 17.5] and the horizontal region lies
where x > 21.5 with a smooth change of the topography in the transition
zone, : € [17.5,21.5] The inclination angle is prescribed as
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lo, 0<z<17.5,
() =< Co(1— (x—17.5)/4), 175<z <215, (91)
0°, x>21.5,

with ¢y = 35° The simulation is performed with an internal angle of friction
¢ = 30° and a bed friction angle § = 30° The material is suddenly released
at t = 0 from the hemispherical shell with an initial radius of rq = 1.85
in dimensionless length units The centre of the cap is initially located at
(x0,y0) = (4,0), see Fig 91 The results of the numerical simulations will be
tested against laboratory avalanche experiments in Chaps 10 and 12

9.1.1 Numerical Performances

Figures 92 and 94 9 8 illustrate the thickness contours of the avalanche
body at nine time instances as the avalanche slides on the inclined plane into
the horizontal run out zone, obtained with different numerical schemes (for
more details see [334, 440]) If the traditional central difference scheme is
applied to simulate the avalanche flow, stable numerical simulations cannot
be performed For such cases, in order to suppress numerical oscillations and
avoid possible emerging instabilities, artificial diffusion must be incorporated

Figure 9 2 shows numerical results obtained with the central difference scheme
where the artificial diffusion term p1,0°w /022 + p,,0°w/9y? is added to the
right hand sides of (8 25) with viscosities p, = p,, = 0.02 For smaller viscosi
ties the simulation becomes unstable The central difference schemes, as well
as many other traditional higher order difference methods, introduce disper
sive effects that are susceptible to numerical instabilities and lead to unphys
ical oscillations in the numerical solution These are usually located behind
the advancing front and are damped with growing distance from the front
(for t =3 tot = 12 in Fig 9 2), although for this case certain artificial diffu
sion has been incorporated The corresponding three dimensional evolution
of the avalanche geometry at three different dimensionless times ¢t = 6, 9, 12
is shown in Fig 93 The unphysical oscillations behind the moving front
are obvious If sufficiently large artificial diffusion is added to dampen the
spurious oscillations, a solution without superimposed numerical oscillations
can be reached However, in such cases, the corresponding solution will be
highly diffusive, similar to that obtained with the first order accuracy up
stream scheme (Fig 9 4), in which additional diffusion is inherent Although
traditional first order finite difference methods, e g , the first order upstream
scheme, are monotonic without numerical oscillations and stable, they are
strongly dissipative, causing the solution to become smeared out and often
grossly inaccurate Due to the dissipative nature of the upstream difference
scheme, the simulated granular flow spreads out over a much wider area than
that with high order difference schemes At some time levels, e g, for t = 9
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Fig. 9.1. Top: Laboratory avalanche chute consisting of upper inclined, middle
continuous transition and lower horizontal parts At the top of the inclined part,
a hemispherical cap is mounted to hold the initial granular mass Bottom: Ide
alised bottom topography to test the various numerical schemes with scalings in
dimensionless form

and t = 18 — 24 in Fig 9 4, the extents of the granular mass exceed the com
putational domain Thus, to study the numerical solution of this scheme more
deeply, a relatively large (lateral) computational domain should be chosen

The numerical results obtained by the use of the NOC scheme with different
cell reconstruction methods three TVD limiters: superbee, Woodward and
minmod as well as the third order ENO cell reconstruction are shown in
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Fig. 9.2. Thickness contours of the avalanche at nine different dimensionless times
t =0,3,6,9, 12, 15, 18, 21, 24, obtained with the traditional central difference
scheme The transition zone from the inclined plane to the horizontal plane lies
between the two dotted lines In order to achieve a stable simulation, the artifi
cial numerical diffusion term pu,0%w /0> + 1,0*w/0y*> must be incorporated in
(8 25) with viscosities p; > 0.018, py > 0.018 Here we choose pe = py = 0.02
Nevertheless, large numerical oscillations still exist (From [440])

Fig. 9.3. Three dimensional geometries of the avalanche at three different dimen
sionless times ¢t = 6, 9, 12, obtained with the traditional central difference scheme
as in Fig 9 2 Considerable numerical oscillations can be observed (From [440] )

Figs 95 98 Because the superbee limiter is the least diffusive among the
second order TVD limiters, the solution with this limiter still exhibits oscil
lations (for t = 9 and ¢t = 12 in Fig 9 5) In fact, the superbee limiter is often
anti diffusive, i e, it has a tendency to steepen gradients The deposition in
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Fig. 9.4. Thickness contours of the avalanche at nine different dimensionless times
t=20,3,6,9, 12, 15, 18, 21, 24, obtained with the traditional first order upstream
difference scheme The zone between the two dotted lines is the transition zone
from the inclined plane to the horizontal plane The scheme is obviously very
diffusive (From [440] )
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Fig. 9.5. Thickness contours of the avalanche at nine different dimensionless times
t =0,3,6,9, 12, 15, 18, 21, 24, obtained with the NOC scheme and the super
bee limiter The zone between the two dotted lines is the transition zone from the
inclined plane to the horizontal plane Because the superbee limiter is the least dif
fusive or even anti diffusive, some numerical oscillations still occur and even large
gradients are recorded (From [440] )
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Fig. 9.6. Thickness contours of the avalanche at nine different dimensionless times
t=0,3,6,9, 12, 15, 18, 21, 24, obtained with the NOC' scheme and the Woodward
limiter The zone between the two dotted lines is the transition zone from the in
clined plane to the horizontal plane With this TVD limiter satisfactory numerical
results can be achieved, although some small oscillations still exist (From [440] )

Fig 9 5 for t = 18 — 24 has a steepened border in comparison with the results
in Figs 96 9 8, obtained with other high resolution schemes

The NOC schemes with the Woodward TVD limiter (Fig 9 6), the ENO cell
reconstruction (Fig 9 7) or the minmod TVD limiter (Fig 9 8) show fairly
similar results, where few numerical oscillations occur and simultaneously nu
merical dissipation is negligibly small However, we recommend application
of the NOC scheme with the minmod TVD limiter to simulate the granular
avalanche flow described by the extended SAVAGE HUTTER theory, because
in some other test examples, e g, with a larger inclined angle of the chute
plane, some small numerical oscillations are also visible in the solutions ob
tained with the Woodward limiter and the ENO cell reconstruction

From Figs 9 6 9 8 it can be seen that, once the cap is opened, the avalanche
accelerates downslope due to gravity and extends until the front reaches the
horizontal run out zone The front comes (almost) to rest when ¢ > 9, but
part of the tail accelerates further down, and the avalanche body contracts
Once the velocity changes from supercritical to subcritical, a shock wave
develops around the end of the transition zone at x = 21.5 for t = 12 With
the approaching mass from the tail, the shock wave propagates backwards
fromt =12tot = 24 At t = 24, the shock front reaches almost the beginning
of the transition zone at x = 17.5, and the final deposition of the granular
mass is nearly attained
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Fig. 9.7. Thickness contours of the avalanche at nine different dimensionless times
t=20,3,6,9, 12, 15, 18, 21, 24, obtained with the NOC scheme and the third order
ENO cell reconstruction The zone between the two dotted lines is the transition
zone from the inclined plane to the horizontal plane This scheme can provide fairly
satisfactory numerical results (From [440] )

Figure 9 9 illustrates the depth profiles of the granular flow along the central
line y = 0 simulated by the NOC scheme with the minmod limiter for the
same times as in Fig 9 8 The granular mass released from the cap extends on
the inclined plane until the front reaches the horizontal run out zone Here,
the basal friction is sufficiently large to bring the front of the granular flow
to rest At this stage, a surge wave is created at t = 12, which moves a short
distance upward, as can clearly be seen by comparing the humps for ¢t = 12
to t = 24 A more direct overview of the granular avalanche flow can be
obtained from the evolution of the three dimensional avalanche geometries
displayed in Fig 9 10

Choice of Numerical Scheme We have seen that the NOC scheme with
the minmod TVD limiter demonstrates the best numerical performance for
simulating avalanche dynamics among all other limiters and the ENO cell
reconstructions For this reason, in the remainder of this book, we will im
plement only the NOC scheme together with the minmod limiter for the
numerical simulations of avalanches over different bed topographies and pa
rameter values



350 9 Avalanche Simulations over Curved and Twisted Channels

st t=0 55 t=9 50 t =18
e ) 1 {0
-5 -5 -5
0 10 20 0 10 20 0 0 10 20 30
5 st t =12 st =21
z o ° @
-5 -5 -5
0 10 20 0 10 20 30 0 10 20 30
st t=26 st t=15 st t =24
-5 - -5
0 10 20 0 10 20 0 0 10 20 0
x xT x

Fig. 9.8. Same as in Fig 9 7 but with the NOC scheme and the minmod limiter
The scheme is demonstrated to be the most favourable in treating these hyper
bolic avalanche equations, including the cases with various other parameters (From

[440] )

9.2 Effects of Topographic Variations

9.2.1 Constant Cross-Slope Curvature

In order to further test the model equations (4 89) (4 91) of Chap 4, we
consider an idealised mountain subregion in which the non twisted talweg is
defined by the slope function

Co, 0<z<a,
{() = <() 5z <, (92)
Ty — T
0°, x> T,

where g}) = 45° is the straight upper part of the talweg that merges into a
horizontal run out plane as shown in Fig 4 13a, and 2; = 11.5 and z,, = 14.5
are the (non dimensional) initial and final points of the continuous transi
tion The azimuthal angle 6 (which includes the cross slope curvature) is
confined to the interval [—14.32°, 14.32°] and the non dimensional distance
of the master curve to the talweg is set equal to zp = 20, corresponding to
y € [-5,5], see Fig 4 13b A hemispherical cap with non dimensional radius
Ry = 0.98 holding the granular material in it is placed at (z¢, yo) = (3.0,0.0)
of the chute and suddenly released The values of the material parameters are
chosen as 6 = 33° and ¢ = 43°, which correspond to marble chips of mean
diameter 2 4 mm
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Fig. 9.9. Avalanche thickness along the central line of the flow, y = 0, at different
dimensionless times obtained with the NOC scheme and the minmod limiter Since
the deposited height of the avalanche is very small compared to the length, the
height is four times exaggerated As the front reaches the run out zone and comes
to rest, the rear part of the avalanche accelerates further and the avalanche body
contracts When supercritical flow merges into a region of subcritical flow, a shock
wave develops, which moves upward Here we do not explicitly see the volume
preserving of the material since we have plotted only the central section of the
avalanche in the vertical plane that contains the talweg (From [440] )

Figure 9 11 depicts the thickness contours of the avalanching body, as com
puted by PuDasaINI et al [340], at ten non dimensional time steps in a doubly
curved channel in the downhill direction (see Fig 4 13) The bulk body com
mences to slide and deform continuously along the chute as long as the bed
friction resistive force is smaller than the downslope component of gravity
The first four panels in this figure clearly show that, once the cap is opened,
the avalanche accelerates and spreads rapidly in the downslope direction due
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t=12 t =15 t =18

Fig. 9.10. Three dimensional geometries of the avalanche at six different dimen
sionless times ¢t = 3, 6, 9, 12, 15, 18, obtained with the NOC scheme and the min
mod limiter as in Figs 98 and 99 (From [440] )

to the channelling effect in the cross slope direction The avalanche deceler
ates rapidly as soon as it enters the run out zone, from the fourth panel for
t > 4.5 Due to the continued mass flux from the tail, its front is then able
to spread out laterally as seen in panels 5 7 for t = 6.0,7.5,9.0

After t = 7.5, due to the channelling effect of the cross section, the tail of
the avalanche reduces in width, but the head expands in width in the run

out zone The curvature of the transition zone induces a shock associated
with the height of the avalanche that is moving upstream from time ¢ = 9.0
onward The avalanche comes to rest after ¢ = 13.5 The first three panels of
Fig 9 11 indicate that due to the dilatation, the granular body is extending in
all directions, although mainly in the downhill direction Although the front
is descending rapidly, the tail moves upward in the beginning because of the
earth pressure At ¢t = 4.5, the front reaches the transition zone, while the tail
also starts to move downward At ¢ = 6.0, the front part of the body has fully
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Fig. 9.11. A sequence of numerical snapshots of the avalanching motion of a gran
ular material with internal and basal friction angles ¢ = 43° and § = 33°, for
different time slices Contours of equal thickness are plotted at ten time intervals
using “unrolled” projected non dimensional curvilinear coordinates (z,y) The tran
sition zone lies between x = 11.5 to x = 14.5 The 45° inclined section lies on the
left and the horizontal part lies on the right of each panel The talweg of the val
ley is indicated by the line y = 0 The panels thus demonstrate the deformation
and settling of avalanches in doubly curved (both in the downslope and cross slope
directions) channels (From [340] )
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reached the transition zone Therefore, the mass at the front is contracting
due to the effect of the passive earth pressure coefficient, but the mass in
the tail is still extending At ¢t = 7.5, deposition of the mass starts near the
vicinity of the lower end of the transition zone Owing to the effect of the
curvature, the flowing body starts contracting longitudinally but extending
laterally After ¢t = 9.0, a steep surface (height) gradient starts to develop
on the tail side of the avalanche Although the front of the body is almost at
standstill, the mass from the tail is continuously flowing down and is deposited
on the tail side of the body This is the main mechanism for the development
of the shock front moving upstream The physical explanation for this is that
from the front there is a strong resistive force from the bed that prevents
the body from sliding further Thus, mass arriving from the upper part of
the channel must be deposited at the back of the body Consequently, the
stopped body must extend upward The last three panels show the continuous
development of the upward moving shock At the same time, there is almost
no motion at the front Due to the partial lateral confinement, the extension
of the body in the cross slope direction is almost negligible

As determined by PubpasaINT et al [340], Fig 9 12 depicts the channelling
effects for different channel widths Parameter values are as in Fig 9 11
The contours represent the final deposits of the avalanches for four different
channel curvatures As the value of the parameter 6 (azimuthal angle) in
creases, the lateral curvature increases and the width of the channel decreases
The values of = 0°, 15°, 25° and 45° correspond to the non dimensional
distances (representing the radius of curvature of the lateral bed profile)
00, 19.1, 11.46 and 6.4, respectively, while the range of y is kept fixed as
before, ie, y € [-5,5] Consequently, with the increase of 6, the granular
materials tend to accumulate around and along the talweg of the channel,
the geometries of the deposited piles change, and both the pile heights and
the run out distances increase considerably This effect is directly associated
with the lateral component of the gravitational acceleration (g,), which de
pends on the lateral curvature (this was always zero in previous extensions
of the theory)

Dispersion of the Masses In order to analyse the dispersion of the
avalanching mass quantitatively, we consider the total volume of the granular
body (V = [ h(z,y)dz dy) and define the centre of mass as follows:

(Z, ¥) = %/xh(w,y)dwdy, %/yh(w,y)dwdy . (9 3)

= 0 by symmetry

The dispersion of the deformable granular body can then be computed by
the following standard deviation formula (where “dis” stands for dispersion):
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Fig. 9.12. Channelling effects: Parameter values are as in Fig 9 11 The contours
represent the final deposits of identical avalanche masses for four different channel
widths corresponding to the parameter 6 As the value of the parameter 0 (azimuthal
angle) increases, the width of the channel decreases Consequently, the granular
materials tend to accumulate around and along the talweg of the channel, the
geometries of the deposited piles are changed, and both the pile heights and the
run out distances increase (From [340] )

(Tais, Ydis) = (\/%/(m—f)Q h(z,y) dz dy, \/%/(y _ Q)Q h(z,y) dx dy) .

(94)

Tables 9 1 and 9 2 represent data sets for the centre of mass and the disper

sion of the sliding and deforming granular body for different non dimensional
time steps and azimuthal angles Other parameter values are as in Fig 9 12

Analysing these tables we draw the following conclusions: (i) The centre of
mass is almost independent of the azimuthal angle 6 at all times The dis

persion along the downhill direction first increases then decreases but the
dispersion in the crosshill direction increases monotonically for all values
of 6 (ii) In general, the dispersion along the downhill direction increases as
f increases, but this relation is reversed for the dispersion in the cross slope
direction, as expected (ii7) Since the channel is flatter around the talweg and
has larger cross slope gradients at the outer rims along the downhill direction
than elsewhere, dispersion relations in both directions are more pronounced
in the two panels in the first row than in the two panels in the last row of
Fig 9 12; this is exactly what is quantitatively shown in Table 9 2
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Table 9.1. The centre of mass of the avalanching body at different non dimensional
time steps ¢ and azimuthal angles § The first and the second coordinates in each
column represent the centre of mass in the x and y directions, respectively, as
predicted by (9 3)

0 =0° 0 e (—15°15°) O (—25°25°) 6 c(—45° 45°)
t=30 (47,00) (47,00) (46,00) (47,00)
t= 60  (88,00) (87,00) (87,00) (88,00)
t=90 (130,00) (130, 00) (129, 00) (130, 00)
t=120 (143,00) (143, 00) (14 3, 00) (143, 0 0)
t=135 (144,00) (144, 00) (144, 00) (144, 00)

Table 9.2. Same as in Table 9 1 but for the dispersion as predicted by (9 4) (From
[340] )

0 =0° 0 e (—15°15°) O (—25°25°) 6 c(—45° 45°)
t=30 (160, 075) (160, 0 72) (159, 0 70) (163, 067)
t= 60 (299, 0095) (300, 0 81) (298, 0 76) (304, 0 69)
t= 90 (253, 109) (2 55, 0 89) (257, 0 82) (259, 0 73)
t=120 (097, 118) (101, 097) (104, 091) (110, 0 84)
t=135 (086, 120) (091, 1 00) (095, 0 95) (102, 0 89)

9.2.2 Variable Cross-Slope Curvature

Until now, only numerical results of an avalanche of finite granular mass
sliding down an inclined surface have been demonstrated, where there exists
no variation of topography in the cross slope direction The cross sectional
basal surface was circular In nature, avalanches often occur in a valley; for
such cases lateral variations of the topography should be considered In the
previous section, we considered the case where the bed topography had a
constant cross slope curvature forming a uniform cylindrical channel In this
section, we deal with a more general case where the bed topography contains
variable curvature also in the cross slope direction The cross slope curvature
can be made variable by defining the parameter 6 as a function of z and y
Let us consider a bed topography of which upper part is a cylindrical channel
merging continuously into an open flat run out zone according to
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y/zr, 0<z<a,
9($,y) = (y/ZT)f(I)v r <ux< L, (9 5)
0°, T > T,

Here, z7 is the distance between the master curve and the talweg in the upper
inclined part of the channel (hence a constant), and f(z) = sin(x)/ sin p,
where 50 is the inclination angle of the upper part of the channel This implies
that f = 1 at x; and f = 0 at x, Thus, the continuous transition of the
parameter 6 from its higher value (y/zr) in the upper part to the zero value
in the open run out zone constitutes a three dimensional channel that has
variable curvature both in the longitudinal as well as the lateral direction

For the numerical simulation we choose the parameter values as follows:
x; = 15 and x, = 20 are the (non dimensional) initial and final points of
the continuous transition The azimuthal angle 6 (which includes the cross
slope curvature) in the upper part of the channel is confined to the inter
val [—45°, 45°] and the non dimensional distance is set equal to zp = 7.6,
corresponding to y € [—6,6], see Fig 4 13b A hemispherical cap with non
dimensional radius Ry = 1.75 holding the granular material in it is placed
at (xo,90) = (5.0,0.0) of the chute and suddenly released The values of the
material parameters are chosen as 6 = 27° and ¢ = 37°, which correspond to
Vestolen, a sort of plastic particle of lens like shape and 4 mm diameter, on
drawing paper The inclination angle of the upper part of the channel relative
to the horizontal is ¢ = 50°

It is interesting to make a comparative study of the avalanching motion
among the three channels: (i) a cylindrical channel merging into the run
out zone maintaining constant cross slope curvature (i e, constant channel
width), (i7) a channel with continuously varying cross slope curvature given
by (9 5) so as to form an open divergent channel continuously transitting
to the horizontal run out area, and (¢iz) a rolled surface (see Figs 38, 41
and 9 1) curved downslope as before but entirely flat laterally As computed
by PUDASAINT [334], the dynamics of the avalanche in the channel with
a constant cross slope curvature is presented in Fig 9 13 Since there is a
strong lateral curvature forming a narrow channel, the granular material is
not able to spread considerably in the cross slope direction However, such a
lateral spread is pronounced a bit just after the release (non dimensional time,
t = 1.5,3) and just before the deposit (non dimensional time, ¢ = 10.5,12, 15,
due to the effect of the downhill curvature) of the bulk material Therefore,
the dynamics is mainly dominated by the extension and contraction of the
avalanching and deforming body parallel to the direction of the talweg of the
channel

By contrast, the dynamics is completely different for the flow in the chan
nel with variable cross slope curvature Results are presented in Fig 9 14
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Fig. 9.13. A sequence of numerical snapshots of an avalanching motion of a gran
ular material with internal and basal friction angles ¢ = 37° and 6 = 27°, for
different time points The contours of equal thickness are plotted at ten time inter
vals using “unrolled” projected non dimensional curvilinear coordinates (x,y) The
transition zone lies between x = 15 to x = 20 The 50° inclined section lies on
the left and the horizontal part lies on the right of each panel The talweg of the
valley is indicated by the line y = 0 The panels thus demonstrate the deformation
and settling of avalanches in doubly curved (both in the downslope and cross slope
directions) channels (From [334])

The channel width remains constant in the range = € [0,15] It is flattened
continuously in the range x € [15,20] and, afterward, the section of the bed
topography is a part, of the horizontal plane Before t = 6 the contours rep
resenting the avalanche geometry are the same as in Fig 9 13 The results
are completely different after time ¢ = 7.5 Since the channel is continuously
open and ultimately, in the horizontal run out area, completely flattened in
the lateral direction, the avalanching body spreads rapidly in the lateral di
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Fig. 9.14. Same as in Fig 9 13 but with variable lateral curvature given by (9 5)
so that the upper cylindrical channel merges continuously into an open fan like
horizontal run out zone (From [334])

rection However, there is not such a big difference in the dispersion in the
longitudinal direction

Similarly, Fig 9 15 records the motion of an avalanche over a bed topography
curved downslope as before but completely flat in the cross slope direction,
i e, with zero lateral curvature over the entire flow domain Since the channel
is unconfined in the lateral direction, the avalanching mass is continuously
extending in the lateral direction until it comes to rest Also, the body is
extending in the downhill direction until it reaches the continuous transition
zone Afterwards, as in the other cases, the body starts decelerating and
comes to rest A more detailed comparison of the final deposits is presented
in Fig 9 16, see PUDASAINT [334] It shows the final deposits at time ¢ = 15 of
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Fig. 9.15. Same as in Fig 9 14 but with zero lateral curvature (From [334])

Figs 913,914 Fig 9 15 These comparisons thus demonstrate and highlight
the effects of the bed topographies on the final depositions of the avalanches

9.3 Superimposed Basal Topography

Until now, we used only the downslope and cross slope coordinates to form a
three dimensionally varying basal topography that is actually just a reference
topography In real applications we need to include detailed local information
about the elevation of the mountain subregion, for instance through GIS dig
ital elevation data This is usually done by superimposing a basal topography
over a reference surface that may be curved or flat both in the lateral and
longitudinal directions
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Fig. 9.16. Effects of the topographic variation of an avalanche track in the deposits
of avalanches Comparison of the final deposits of an avalanche for a constant cross
slope curvature, § € (—45°,45°): (a) corresponding to Fig 9 13, a variably flattened
bed topography given by (9 5); (b) corresponding to Fig 9 14 and a completely flat
bed topography in the cross slope direction; (¢) corresponding to Fig 9 15 (From
334])

Below we consider a basal topography varying in the cross slope direction,
which is defined by its elevation b(z,y) above a reference surface without
lateral variation:

b(z,y) = by (1 — cos (%%)) sin(z), forye[-7,7. (96)
Here, B = 14 is the width of the computational domain, and multiplication
by sin¢ ensures that this elevation is smoothly transited from the inclined
reference surface (with its maximum) to zero value on the horizontal run out
plane where the lateral elevation ceases, as in Fig 3 9 The basal topography
over which the avalanche flows has a channelling effect on the inclined section
of the chute Two values, by = 2 and by = 10, are chosen corresponding to
maximum elevations at the lateral boundary of the computational domain on
the inclination of the basal surface 6™ = 0.34 and b™** = 1.68; they indicate
mean lateral inclinations of 2.8° and 13.5°, respectively Other parameter
values are taken from Sect 9.1 Numerical results are depicted in Figs 9 17
and 9 18 It is surprising that a fairly small lateral curvature can exert obvious
influences on avalanche geometries, as we can see by comparing Fig 9 17 (left
panel) and Fig 9 18 (upper panels) for b™** = (.34 with Figs 98 and 9 9 for
b™Max = (), respectively A comparison of Fig 9 8 with Fig 9 18 and Fig 99
with Fig 9 17 shows that partial confinement of the avalanche in the inclined
parabolic type section of the chute prevents lateral spreading and strongly
channelises the flow With the increase in the lateral confinement, granular
materials tend to accumulate around the talweg as a result of the lateral
channelling Consequently, the granular flow becomes thicker and longer along
the talweg



362 9 Avalanche Simulations over Curved and Twisted Channels
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Fig. 9.17. Avalanche thickness along the central line of the flow, y = 0 The bottom
topography varies in the cross slope direction according to (9 6) with by = 2 (left
panel), corresponding to a maximum dimensionless elevation b™** = 0.34 at the
lateral boundaries y = +7 within the top inclined region, and by = 10 (right panel),
corresponding to b™* = 1.68 (From [440] )
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Fig. 9.18. Thickness contours of the avalanche The bottom topography varies in
the cross slope direction according to (9 6) with by = 2 (upper panels), correspond
ing to a maximum dimensionless elevation b™** = 0.34 at the lateral boundaries
y = £7 within the top inclined region, and by = 10 (lower panels), corresponding
to b =1.68 (From [440] )
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It should be pointed out that (3 33) (3 38) described in Chap 3 are only
suitable for a shallow topographic elevation b = b(z,y) above the reference
surface z = 0 This reference surface (or equivalently the downslope incli
nation angle 6) changes only as a function of the downslope coordinate x
and there is no lateral variation in the cross slope y direction For a large
lateral variation of the basal topography the extended model (4 89) (4 91)
for rapid shear flows of dry granular masses, proposed by PUDASAINI and
HUTTER [335] is more suitable, because there the talwegs may be arbitrar
ily curved and twisted and the channel geometry may also be more flexible
The equations as derived by BouCHUT and WESTDICKENBERG [40] refer to
the true topography and are, therefore, better suited to natural conditions
They, however, do not use MOHR COULOMB material response but isotropic
hydrodynamic pressure and thus present difficulties in adequately modelling
motions and depositions

9.4 Avalanches Sliding Down
Curved and Twisted Channels

Our main intention while developing the avalanche theory in Chap 4 was to
be able to include the simultaneous effects of curvature and torsion in the
dynamics of an avalanching mass over generally curved and twisted moun
tain topography One might expect that there must be not only the effect
of curvature but also that of torsion on the entire dynamics and the deposit
of an avalanche when it slides down over a curved and twisted terrain The
model equations (4 89) (4 91), proposed by PUDASAINT and HUTTER [335],
should be able to predict the flow of an avalanche over a non uniformly curved
and twisted channel where the cross slope curvature (or the channel width)
may vary This section is devoted to numerical simulations and their physical
explanations and analysis over such topographic configurations The main
target is the analysis of the joint effects of curvature, torsion, cross slope cur
vature, i e, the channel width, and the “centrifugal” force! in the dynamics
of the avalanching body sliding down more general channels and topogra
phies This is a new aspect in the field of avalanche research, not previously
touched upon On the one hand, the simulations, to be presented in the fol
lowing, will disclose the related peculiarities of the physics and thus uncover
fundamental insights into the dynamical behaviour of avalanches; as a con
sequence, the study will allow us to judge about the applicability of the new
model equations presented in Chap 4 On the other hand, the simulations
will open a wide spectrum of possibilities for applied scientists involved in
hazard mapping, risk management and public safety This then will lead to

L In the strict sense “centrifugal” is the wrong terminology; what we mean here

is the radial acceleration effects operating in a curvilinear coordinate system
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the implementation of the theory to realistic mountain topography together
with GIS elevation data of some specific mountain subregions

9.4.1 Flows Through Uniformly Curved
and Twisted Channels

As an example, we consider a helically curved and twisted channel On the one
hand, this is an academic test ezample that can be (relatively) easily verified
by laboratory experiments On the other hand, there are many industrial
applications of granular flows in process engineering scenarios where such
flow configurations are practically used For this reason, we consider a helix
as a talweg, so as to form a helically curved and twisted channel For a more
detailed discussion, see PUDASAINI et al [334, 341, 342]

Let us consider a circular helix described by
R(¥) = (Acosd, Asind, —BY), (97

where ¢ is the azimuthal angle The arc length z, curvature , torsion 7 and
pitch P of the helix are given by
1/2 A B

v =(A24+B%)"%9, k= T T ey Poh 09
respectively Based on (9 7) a helically curved and twisted channel is formed
as in Sect 9.2.1 The lateral section of the topography is the intersection of a
plane perpendicular to the talweg of the channel and the channel itself Here,
this section is a circular arc, but note that when dealing with variable channel
widths the curvature of this arc changes with the width of the channel One
expects the flowing granular mass to deviate continuously outward from the
central line (ie, the talweg) of the channel due to the radial acceleration
induced by the slope fitted curvilinear coordinates

Figure 9 20 displays thickness contours of an avalanche sliding down a heli
cally curved and twisted channel (see Fig 9 19 (a)) with uniform curvature
and torsion given by (9 8) and a constant cross slope channel width ? The
parameter values are A = 300 and B = 300, so that the channel is inclined rel
ative to the horizontal at 45°; the internal and bed friction angles are ¢ = 33°
and § = 27°, respectively The radius of curvature in the cross slope direction
is zp = 128 and 0 € (—44.8°,44.8°) corresponding to y € [—100,100] The
mass held initially by a hemispherical cap centred at (23,0) with radius 6.5

2 All figures shown for helical chutes are geometrically distorted The graphs

are vertical projections of the chute and granular heaps whose circular annular
geometry is stretched to become straight Thus, a segment of the annular ring
becomes a rectangle whose top edge is the chute outside and the bottom edge
the chute inside boundary This graphical representation is chosen because it
is relatively easy to program
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Fig. 9.19. a) A curved and twisted channel with uniform curvature and torsion b)
A curved and twisted channel with non uniform curvature and torsion The channel
merges continuously into the flat horizontal run out zone (From [342])

is suddenly released with zero initial velocity The contours are plotted at
the time steps 15, 18,21, 24, 27, 28.5, respectively, only in the vicinity of the
flow domain where the granular mass occupies a subregion of it We also
adopt this idea for the plotting of consecutive figures of this section As time
increases, the avalanching mass spreads less laterally, but it rapidly moves
outwards from the centreline of the channel in the front much more than in
the back This is because the speed of the front is much larger than that
of the tail Such behaviour of the deforming mass is the joint effect of the
curvature, torsion, and the radial acceleration that is modelled in the the
ory (4 89) (4 94) through the gravitational acceleration components g, gy, 9=
and the net driving force components s, s, which include the curvature and
torsion of the talweg, the bed topography and the cross slope curvature of
the channel The mass is always extending and accelerating in the downslope
direction, because the channel does not merge into transition and run out
zones In the following, we will deal with cases in which the transition and
run out zones are included in the geometrical part of the model

9.4.2 Avalanching Flows Through Non-Uniformly Curved
and Twisted Channels

In reality, channels may be arbitrarily curved and twisted with variable cross
slope curvature and channel width In particular, realistic avalanche tracks
go from steep to flat regions, where they come to a halt The geometry must
play a crucial role to make the body stand still The concave curvature of the
mountainside increases the bed friction and consequently forces the avalanche
to slow down and eventually come to rest In this section we will present
avalanche simulations through curved and twisted channels having run out
zones However, we will pay particular attention to the different forms in
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Fig. 9.20. Height contours of an avalanching motion in a helically curved and
twisted channel with uniform curvature and torsion and a constant circular cross
slope channel width The plane rectangles are in reality helically curved and twisted
in the = direction and circularly curved in the y direction Parameter values: the
radii of curvature and torsion are 26, friction angles are ¢ = 33° and § = 27°,
respectively The mass held by a hemispherical cap centred at (23, 0) with radius 6.5
is suddenly released with zero initial velocity The inset in the last panel shows
schematically the circular cross section and a cross cut of the avalanching mass
(From [341] )

which this transition from the steep inclined helical channel to the horizontal
run out is executed PUDASAINI et al [334, 341, 342, 344] have presented a
more detailed and extended analysis for flows down such non trivial channels

(I) Variable Pitch? One geometric model is such that the pitch defined in
(9 8) can be modified as

By, 0<z<m,
2
B(z) = BO<xT x) , 1 <z<a,, 99)
Ty — X
O, T > T,

so that prior to the left end point, x;, of the continuous transition zone, the
chute is exactly the same as that used in the previous part of this section
However, there is a continuous decrease of the pitch from z; to a2, Then, for
x > x, the pitch is always zero and thus, the subsequent channel forms a
channelised circular run out Of course, physically this can only be realised if
(a1 — @) < 2wA, where g, is the end point of the talweg in the run out
zone

Avalanche simulations for this case are presented in Fig 9 21 The chosen
parameter values are as in Fig 9 20, and By = 300, x; = 250 and x, = 350
The different forms in Fig 9 21 are presented only for the time slices after
the avalanche entered the transition zone Before that the flow is the same
as displayed in Fig 9 20 (¢t = 15 to t = 28.5) Since the pitch of the channel
continuously decreases for x > x;, from ¢ = 35 onward, the granular mass
tends to slow down and turn smoothly towards the central line of the channel
Corresponding to the decrease of the pitch, the inclination angle of the chute
with the horizontal plane also continuously decreases Ultimately, the channel
merges into a horizontal circularly curved channel, thus forming a gully type
channelised run out zone Beyond t = 28.5 (Fig 9 20), the sidewise pressure
from the channelised bed topography exceeds the force due to the radial
acceleration This occurs more effectively at the front than in the rear part,

3 Later we will refer to this as case (I), etc
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because the velocities are now smaller there than in the rear part This leads
to a continuous rotation of the body towards the centre of the channel This
sidewise pressure is so strong that after ¢t = 60, the mass crosses the talweg
of the channel and heads towards the opposite side Finally, the body comes
to rest at time ¢ = 70.

(II) Variable Curvature and Torsion Next, consider a channel where the
curvature and torsion are redefined with the new expression for A in (9 8)
given as

Ao, 0<a <a,
A(x) = { Agexp|(x — x;)?], o <z<ax,, (9 10)
AO eXprr - xl)a]v X Z Ty,

where a is an exponent that determines the intensity of decrease of the cur
vature and torsion For the simulations we have set a = 1 and Ag = 300, so
that before the transition (z < ;) the channel is the same as in the previous
case (Fig 9 21) Equation (9 10) tells us that the radius of the curvature and
the torsion of the channel increase rapidly as the arc length = becomes larger
than z; Before this transition point, the channel has uniform radius of cur
vature, torsion and pitch This increase forces the channel to quickly merge
(approximately) into a lesser and lesser curved and eventually straight, hori
zontal channel This horizontal portion of the channel also forms the run out
zone for the avalanche

The results of the avalanche simulation for this configuration are presented
in Fig 9 22 There are large differences in the avalanche motions in Figs 9 21
and 9 22, especially in the run out zones For the present case, since the radius
of curvature and the torsion increase rapidly from x = z;, the avalanche
quickly turns back to the central line of the channel and suddenly comes to
rest, much earlier and much closer to the transition zone than in Fig 9 21
It is also interesting to observe that in Fig 9 22 the deposit between ¢ = 60
and ¢t = 70 still seems to spread slightly in all directions

The differences manifest themselves for ¢ > 35 In particular, for ¢ = 40, the
pile in Fig 9 21 has left the transition zone by about one third of its mass,
whereas it is still almost inside the transition zone in Fig 9 22 This can be
physically understood The increasing radius of curvature of the channel axis
in the transition zone for case (II) reduces the local slope angle of the chan
nel axis much faster than for case (I), so that within the transition zone of
case (II) the avalanching mass encounters deposition prone conditions more
quickly than in case (I) Comparing the thickness contours for ¢ > 45 in the
two figures shows that the run out distance of the avalanche mass is greatly
affected
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Fig. 9.21. Avalanche motion in a helically curved and twisted channel with variable
pitch and a constant cross slope channel width Parameter values: the internal and
bed friction angles are ¢ = 33° and § = 27°, respectively The mass, held by a
hemispherical cap centred at (23,0) with radius 6.5, is suddenly released with zero
initial velocity Contour lines are plotted at the time steps 35, 40, 45, 50, 55, 60, 70,
respectively The transition zone lies between z; = 250 and z, = 350 (From [341])
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(III) Decreasing Pitch and Variable Cross-Slope Curvature Real
channels may be diverging or converging (with respect to their channel width
or cross slope curvature) in the downhill direction Therefore, the avalanche
theory must be able to deal with more general channels and natural valleys or
gullies with generally varying cross slope curvature At this point, we simulate
the avalanche motion in a channel where the pitch, B, is defined by (9 9), as
for case (I), and the parameter A is constant, but now we vary the channel
width starting from the left boundary of the transition zone where the pitch
starts to decrease This can be achieved by defining a channel that merges
continuously into an open flat run out zone according to

y/ 27, 0< 2 <o,
9($,y) = (y/ZT)f(I)v r <ux< L, (9 11)
0°, T > Ty

Here, z7 is the distance between the master curve and the talweg in the upper
inclined part of the channel (hence a constant), and the function defining the
cross slope curvature is given by

flz) = (1 - M)Z). (9 12)

(xr - xl)

Thus, the continuous transition of the parametric function 6 from its higher
value (y/zr) in the upper part to its zero value in the open run out zone
constitutes a three dimensional channel having variable pitch and variable
curvature both in the longitudinal and the lateral directions Figure 9 23 de

picts the contours of the avalanche motion from its transition to the open
run out zone, where only the outward half part of the channel is plotted, be

cause in this and in the following cases (for ¢t < 35) the granular masses appear
only in this half part of the channel The graphs describe the deformation of
the avalanche disclosing its subtle reaction to the different geometry of the
run out region Although the pitch is decreasing, after reaching the transition
zone, the avalanching body heads radially outwards of the flat run out zone
until it comes to rest close to the outside edge of the chute The main mech

anism for this is that, as soon as the mass enters the run out zone, the radial
acceleration decreases rapidly, but since the chute is flattening out in the
cross slope direction, the decreasing radial acceleration must keep the mass
further and further away from the centreline The direction and the process
of the deposition is in conformity with physical intuition and expectation

(IV) Decreasing Curvature and Torsion, and Variable Cross-Slope
Curvature A further interesting geometrical model is a channel whose cur
vature and torsion decrease from the beginning of the continuous transition
zone as described by (9 10) The channel opens and merges continuously into
the horizontal plane as described by (9 11) and (9 12), but B = By is kept
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fixed This case is more important in geophysical applications because cur
vature and torsion often decrease as one enters into the horizontal run out
zone of a mountain valley The avalanching motion from the transition to
the run out zone in such a channel is presented in Fig 9 24 The principal
mechanism for the deformation and the deposition of the mass is analogous
to case (IIT) (ie, Fig 9 23), but it stops earlier in time and at a shorter
run out distance than before Given the results of cases (I) and (II), this was
to be expected

Figures 9 21 9 24 already demonstrate the significant role of the details of
the topography, however, this comparison takes a particularly striking form
if the final deposits are repeated in one common place Thus, in Fig 9 25 the
deposits of the four different model cases (I) (IV) are repeated to emphasise
the significant influence of the geometry of the avalanche track on the travel
distance, location and distribution of the deposited masses

9.5 Sensitivity to Phenomenological Parameters

In the above sections the numerical results of the various schemes were com
pared with respect to different topographies In this section, we will inves
tigate the effects of the internal and bed friction angles if their values are
varied

Internal and Bed Friction Angles In Figs 9 26 and 9 27, the sensitivity
of the extended SH equations to the internal angle of friction, ¢, and the bed
friction angle, ¢, is examined by depicting the evolutions of the avalanching
body at various dimensionless time points in a vertical plane along the central
line of the flow The topographic description and other parameters are as in
Sect 9.1 (see (9 1) and Fig 9 1) Comparing the numerical results for ¢ = 30°
(right panels), ¢ = 32° (middle panels) and ¢ = 37° (left panels) of Fig 9 26
shows that the avalanche flow is robust against variations of the internal
angle of friction In contrast, the geometries of the avalanching bodies are
fairly sensitive to variations of the bed friction angle, as shown by comparing
the numerical results for § = 30° (left panels), § = 28° (middle panels) and
d = 23° (right panels), respectively, in Fig 9 27 With a decrease of the bed
friction angle, the granular body becomes more fluidised Consequently, the
run out zone and the run out distance are larger and the deposit becomes
shallower than for deposits obtained with large values of the bed friction
angle From these simulations we infer the following: although the geometry
and the shape of the deposit of an avalanche also depend on the internal
angle of friction, the fluidity of the sliding mass is very sensitive to a change
of the bed friction angle This means that one must be very careful when
supplying the correct bed friction angle as an input parameter of the model
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Fig. 9.23. Avalanche motion in a “helically” curved and twisted channel with de
creasing pitch and increasing cross slope channel width Parameter values: the ra
dius of curvature and the torsion are given by (9 8), (9 9) and (9 11), the internal
and bed friction angles are ¢ = 33° and § = 27°, respectively The contours are
plotted for the time steps 35,40, 45, 50, 55,60, 70 The transition zone lies between
x; = 250 and x, = 350 (From [341])
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Fig. 9.25. Granular deposits in the run out zones at non dimensional time ¢ = 70,
reproduced from Figs 9 21 (case (I)), 922 (case (II)), 9 23 (case (III)) and 9 24
(case (IV))

but one can less carefull with the internal angle of friction Otherwise, the
computed results are less reliable in comparison to reality

9.6 Pressure Dependence of the Friction Angles

A pressure dependence of the internal angle of friction is known to represent
the quantification of the pore space dependence of the internal friction, see
[238] Such a dependence has also been observed in wall friction experiments
for the bed friction angle, see [328, 417] Thus, we must assume § = §(p)



9 Avalanche Simulations over Curved and Twisted Channels

376

([op¥] woaq) 0€ = ¢ ‘o1 ‘paSueyoun
sureural a[3ue UONOLI Woljoq o], (ybrt) ,0¢ = ¢ pue (appprt) z& = ¢ ‘(2f9]) L& = ¢ @ so[Sue UOIIOLI] [RUILIUT JUSISHIP 9017} 10]
$Z ‘T2 ‘T ‘ST ‘CT ‘6 ‘9 ‘€ ‘0 = 7 SOUIT) SSO[UOISUSTUIP JUSISYIP J& ‘) = fi ‘MOTJ 97 JO SUI[ [BIJUID 9} SUOTR SSOUINDIY) dYDUR[RAY 97" 6 "Srq




377

9 6 Pressure Dependence of the Friction Angles

([o7p] wog) 0g =¢ ‘o1 ‘poSueroun
sureurar oa[due UOIOLY [euIdul oy ], (7ybrd) .¢g = ¢ pue (ajpprut) 8z = ¢ ‘(1f2]) ,0€ = ¢ :¢ S9[3uR UWOIIDLI] UI0))0( JUSIDJIP 91} 10]
$Z ‘T2 ‘ST ‘ST ‘CT ‘6 ‘9 ‘€ ‘0 = 7 SOUII) SSO[UOISUSTUIP JUSIDYIP J& ‘) = fi ‘MOTJ 973 JO SUI[ [BIJUID 9) SUOTR SSOUINDIY) dYDUR[RAY * LT 6 “Srq




378 9 Avalanche Simulations over Curved and Twisted Channels

and ¢ = ¢(p), where p is the pressure However, since the SH type theory
has only manifested a weak dependence of the avalanche geometry on the
values of ¢ as demonstrated in Sect 9.5, we shall ignore pressure dependence
of ¢, and ¢ = constant Experiments indicate a decrease of the bed friction
angle with pressure [238, 328, 417]; the simplest parameterisation is linear
and according to [339] we choose

0 =109 — , 913
0 o p ( )

where Jg is the pressure independent bed friction angle and ¢; is its value at
p =p1 Scaling p and p; according to

p=o0g[H]p, p1=og[Hi], (914)
(9 13) takes the form
[H] 60 — &1 A}
§=08pd1— L , 915
o{1- s (915)
where p at the base,
p= (fgz + Am7u2) h, (9 16)

is the dimensionless pressure, see (493) and (4 94) Formula (9 15) is re

markable in the following respect: the pressure dependent term is not scale

invariant because it involves the factor [H|/[H;1] We shall choose the follow

ing notation and study its influence upon the avalanche motion:
[H] 6o — 01

[Hi] 6o

(9 17)

This parameterisation of the bed friction angle § destroys the scale invariance
of the avalanche equations According to practitioners the avalanche dynamics
and the run out distance must be mass dependent for extremely large natural
events, typically larger than 10° m? in volume

9.6.1 Mass-Dependent Bed Friction Angle

In order to test the mass dependence of the dynamics and deposits of the
avalanche, we consider an ideal mountain subregion where the talweg is de
fined by the slope function (9 2), where {; = 50° is the straight upper part
of the talweg that merges into a horizontal run out as shown in Fig 4 13a,
and z; = 13 and x,, = 17 are the initial and the final points of the continuous
transition The azimuthal angle 6 varies in the interval [-17.9°,17.9°], which
accounts for a (shallow) circular variation (cross slope curvature) of the bed
topography in the lateral direction, and the non dimensional distance zp = 16
corresponds to y € [—5,5], see Fig 4 13b A hemispherical cap with radius
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Ry = 1.85 holding the granular material in it is placed at (xq, yo) = (5.0,0.0)
of the chute and suddenly released The phenomenological parameters are
chosen as §y = 27° and ¢ = 37°, which corresponds to Vestolen on drawing

paper

At first, the bed friction angle ¢ is considered to be pressure independent
and it is assumed to be constant, § = dy = 27° corresponding to IT = 0
in (917) Figure 9 28a depicts the evolution of the avalanching body at ten
non dimensional time steps in a vertical plane containing the talweg of the
valley For more details see PUDASAINT et al [339] The first four panels
clearly show that once the mass is released, the avalanche accelerates and
spreads rapidly in the downslope direction due to the channelling effect in
the cross slope direction, the gravity and the dilatation Although the front
descends rapidly, the tail moves a bit upward (second panel) because of the
fluidisation of the mass and the support of the material from the downhill
(front) side At t = 4 the front reaches the transition zone and the tail also
starts to move downward At ¢ = 6, the front part of the body has fully
reached the transition zone Therefore, the mass at the front is contracting
due to the effect of the passive earth pressure coefficient, but the mass in the
tail is still extending At ¢ = 7, the mass in the vicinity of the lower part
of the transition zone starts to be deposited and, owing to the effect of the
curvature, the flowing body is contracting For ¢ > 8, a steep surface (height)
gradient develops on the tail side of the avalanche Although the front of
the body is almost at standstill, the mass from the tail is still continuously
flowing down and being deposited on the tail side of the body This leads to
the shock front moving upstream The physical explanation for this is that
from the front there is a strong resistive force from the bed, which prevents
the body from advecting further Thus, whatever comes from the upper part
of the channel must be deposited on the back of the body Consequently, the
mass body must extend upward The last four panels show the continuous
development, of the upcoming shock, while there is no simultaneous motion
at the front

9.6.2 Scale Effects Due to the Pressure Dependence of §

As an example, the value of the parameter IT is taken to be 0.4, which
corresponds to the reference values §; = 20° and H/H; = 1.6 Figure 9 28b
collects a series of numerical results for the same data as in Fig 9 28a but
with the pressure dependent bed friction angle (9 15) The granular body is
more fluidised as this angle decreases Consequently, the run out distance
is larger and the height of the deposit is shallower than for a constant bed
friction angle The last panels indicate that the front of the avalanche for a
variable bed friction angle is about 20% farther away than for a constant bed
friction angle Similarly, the maximum pile height of the final deposit for a
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a b

talweg t =0

Fig. 9.28. a) A series of numerical simulations of avalanche motion with inter
nal and basal friction angles ¢ = 37° and § = 27°, for different time points The
avalanche thickness is plotted using the curvilinear coordinate x, which runs from
left to right along the talweg of non dimensional length 26.5 Here we do not ex
plicitly see the volume preserving of the material since we have plotted only the
central section of the avalanche in the vertical plane containing the talweg The
remaining mass spreads in the sidewise direction b) Same as in a) but with a
pressure dependent bed friction angle In this case, the avalanche body is more
fluidised, the travel distance (indicated by | in the last panels) increases and the
height of the deposit decreases considerably (From [339] )
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variable bed friction angle is about 25% less than in the previous case These
conclusions are also applicable right after the release of the mass, but the
comparison is more pronounced as time elapses Due to the excess fluidity,
the formation of the shock is weaker in the last four panels of Fig 9 28b

9.7 Formation of Shocks

The previous sections dealt with the application of the shock capturing nu
merical scheme (TVD, mainly with minmod limiter) to the extended SH
equations, but the focus was not emphatically on capturing two dimensional
shock formations This will be done now The basal topography is shown in
Fig 9 29; the reference surface consists of a plane, inclined at ¢ = 40°, that
merges into a horizontal run out zone with ¢ = 0° by a cylindrical transition
zone Superposed on the inclined section of the chute is a shallow parabolic
cross slope topography, z°(y) = y?/(2R) with R = 110 cm, thus channelising
the avalanche in its downhill motion The inclined parabolic channel lies in
the range 0 < x < 215 cm and the run out zone lies in the range > 245 cm,
between which a transition zone smoothly joins the two regions At x = 160
cm, a circular bump with parabolic height profile is positioned It is symmet
rically arranged, has a base radius of 15 cm and a central height that can
be varied to study the obstructing effect of this bump (see Fig 9 29) In the
transition zone, 215 cm < x < 245 cm, the topography changes according to

Fig. 9.29. Basal topography for the test problem describing two dimensional shock
formation A simple reference surface is defined consisting of an inclined plane that
is connected to a horizontal run out zone by a transition zone Superposed on the
reference surface is a shallow parabolic cross slope topography, which forms a chan
nel that partly confines the avalanche motion The parabolic channel is restricted
to the inclined range It is connected with the horizontal run out zone by a smooth
transition zone A small parabolic hill lies in the channel centre of the inclined
portion and constitutes a partial obstruction (Courtesy of Y C TaI)
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Co, 0 <z <215 cm,
{(x) = o[l — (z —215)/40], 215 < & < 245 cm, (9 18)
0°, x> 245 cm,

where (o = 40° The simulation is performed with an internal angle of fric
tion, ¢ = 37° and a bed friction angle, § = 32° The material is suddenly
released from a hemispherical shell with radius 7o = 32 cm It is so fitted to
the basal chute topography that the projection of the line of intersection onto
the reference surface is approximately elliptical in shape The major axis of
the ellipse is 32 cm long and the maximum height of the cap above the refer
ence surface is 22 ecm Computations were made for circular bumps with two

different central heights, hﬁjﬁnal —0.5cmand B, =15 cm, respectively

central

Figure 9 30 (top panels) shows the depth contours for the bump with small
height Tt displays the results for a sequence of non dimensional times, from
the release of the material (¢ = 0) until the avalanche comes to rest (¢t = 22.5)
As soon as the material is released, the avalanche accelerates and extends,
where the acceleration in the downslope direction is obviously dominant
(t = 2.5) Because of the back pressure, the rear part of the avalanche moves
slightly backwards at the initial stage of the motion Due to the curvature
in the cross slope direction, the extension in the y direction is limited in the
channel region (see t = 5.0 to ¢ = 10) The bump partly holds the material
up (t = 0.5 to t = 12.5), but immediately below the hill and on either side of
it two knolls form Furthermore, behind the bump the reduction of inflowing
mass causes a dent to form Basically, the material accelerates until it reaches
the horizontal run out zone With increasing basal drag the front comes to
rest (t = 12.5 to t = 22.5), but part of the tail accelerates further At this
stage the avalanche body contracts Once the supercritical velocity becomes
subcritical, a shock wave (steep surface gradient) is formed This occurs just
after the end of the transition zone at approximately z = 26 dm (¢ = 15)
With the approaching mass from the tail, the shock wave propagates back
ward (t = 15 to t = 20), i e, as time proceeds, this shock wave propagates
upstream At ¢ = 22.5 the avalanche comes to rest

The velocities inside the avalanche body are illustrated in Fig 9 30 (bottom
panels), at the same times as the avalanche geometries in Fig 930 (top
panels) The arrows denote the direction of the velocity and their lengths
indicate the speed The velocity of the elements with depth h < 0.1 cm are
not shown here Although the bump holds the material back slightly, and
side knolls are formed around it and a dent behind it, the velocity is not
(significantly) affected by these features (¢t = 5.0 to ¢t = 12.5) The material is
obviously accelerated in the downslope direction The front comes to rest in
the run out zone, but part of the tail accelerates further (¢ = 10 to t = 22.5)
At t = 15 a jump in velocity obviously takes place in the transition zone,
which corresponds to the steep surface gradient in Fig (9 30) (top panels)
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With the mass approaching from the tail, the jump propagates backwards
(t =15tot = 20) Att¢ = 22.5 the avalanche comes to rest As a typical result,
the bump is evidently not sufficiently strong to generate an internal shock
in its immediate vicinity The flow over it and around it remains continuous
The discontinuities are rather generated by the transition into the horizontal
run out zone

This situation changes drastically if the height of the bump is increased so
that it becomes a more substantial obstruction Results of the evolution of
the same avalanche on an otherwise identical chute but now with a bump
of hﬁfn)"al = 1.5 cm are shown in Fig 9 31 Before the moving granular mass
reaches the bump results are identical to those of Fig 9 30, but they change
dramatically afterwards (¢ > 5.0) The bump induces a shock at the upper
part and along the sides, forming lobes of higher elevation (¢t = 7.5) At
t = 12.5, a small region of zero particle coverage develops in the lower part of
the bump This granular vacuum grows with increasing time and then covers
the rear part of the bump (a large region below it), but as the material
moves into the horizontal run out zone the vacuum decreases At t = 12.5,
this granule free region has a carrot like form The substantial mass flow
around the bump exerts a considerable effect on the mass distribution within
the deposition The mass now spreads more to the sides, and two hills are
formed that are due to the increased flow of mass down the two side lobes
than in Fig 9 30 This also makes the granular mass in the horizontal part
move out farther to the left and right than the centre Quite obvious is also
the slower flow as compared to Fig 930 At ¢ = 22.5, when the granular
mass has come to rest in Fig 9 30 with a small height bump, there is still
considerable flow for the large bump case Furthermore, the evolution of the
shock, although still present in the rear part of the deposit is somewhat
weaker here than in Fig 9 30

In short, these two examples show that the geometry of the track may have a
decisive effect not only on the evolving distribution of the granular mass, but
also the flow field; internal shocks may or may not form, a fact that influences
both the velocity and the mass field distributions

9.8 Summary

In this chapter, we presented avalanche simulations over different topogra
phies where the talweg was curved only in the downhill direction, or it was
curved and twisted in an analytically prescribable way This means that the
theory developed in Chap 4 can, in principle, be applied to (almost) any kind
of topography* from a simply inclined plane to very complicated arbitrarily

*  Restrictions are only given by the fact that the shallowness assumption is

satisfied and that the avalanche does not lift from the base
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curved and twisted channels, from initiation to the deposits in the run out
zones

Similarly, we presented simulations for different phenomenological parame
ters, for pressure dependent and pressure independent bed friction angles,
for flows along the reference surfaces and flows in superimposed channels,
for diverging, converging and uniform channels, for flow with obstruction,
and so on All these simulations revealed quite reasonable and physically jus
tifiable results for avalanching debris flows of granular materials However,
the model equations must still be tested with experiments With this proviso,
therefore, we may conclude that the theory presented in Chap 4 can describe
the avalanching motion for diverse situations, mainly with respect to the to
pography This thus proves the applicability of the theory under realistic
configurations for flows of granular materials in transportation phenomena
in process engineering and in geophysical contexts More importantly, we
must compute the functional relations describing the curvature and torsion
of the talwegs, as well as the function describing the cross slope geometry of
the mountain terrains from GIS digital elevation data Once this has been
achieved, we can use the model computer code to simulate avalanching debris
down complicated mountain topographies In this way, the model serves the
purpose of constructing hazard maps and the protection of life and property
The next step is now a thorough comparison with experiments
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10 Experimental Findings
and a Comparison with the Theory

10.1 Why Are Laboratory Experiments Performed?
What Can be Inferred from Them?

In earlier chapters, a number of laboratory experiments were reported to
demonstrate that the class of SH models was predicting features that are in
fact observed in realistic situations Such cases were the avalanching motions
of dry particles in small gap drums, in which the re ordering of the particles in
the gap was well reproduced by the theory at least for a number of revolutions
of the drum Nothing was said about how to perform the experiments and
how reliable the inferences were It was simply recognised, on the basis of
visual coincidence, that the model equations reproduced the process of the
granular motion in the drum very well

Furthermore, since all model equations derived in Chaps 3 and 4 on the basis
of realistic assumptions are scale invariant, the theoretical model can be tested
with any size of physical model as long as scale effects are not manifest in the
physical model Scale effects will obviously play a role when either avalanche
models are so small that, for instance, the grain size is no longer very small
as compared to the avalanche height or when the avalanche is too large such
that the pressure distribution over depth is no longer close to hydrostatic
an assumption inherently incorporated not only in all extensions of the SH
equations but also in all other models known to the authors, see [26, 74, 75,
76, 191, 267, 272, 273, 274, 302, 303, 315, 316, 323, 342, 361, 362, 365, 430]

It has also already been mentioned that direct field observations of the catas
trophic motions of avalanches are extremely difficult to make; in fact there
are only a limited number of field observations that would permit a par
tial verification of theoretical models (see, e g, GUBLER [134], NOREM et
al [302, 303], ISsLER [190]) In addition, comparison of models with results
from field events is often aggravated because these events can be extremely
complex in terms of the kinds and sizes of materials that are present, as
well as the bed and avalanche geometries that might be involved Moreover,
controlled observations of catastrophic debris flows are not known, because
their inception is largely unpredictable and even more dangerous than snow
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avalanches Laboratory experiments permit a control of material properties,
bed geometries and initial conditions, and thus facilitate a comparison of
theory with experiment

In the hope of isolating the simplicities inherent in the response behaviour
of rapidly flowing granular materials, HUTTER and co workers (see the ref
erence list below) performed well defined laboratory experiments and com
pared their results with the findings from model computations Later, similar
laboratory experiments were also conducted by IVERSON et al [194], Mc
DoucGALL and HUNGR [273, 274] and others Laboratory experiments were
also performed with the principal focus of identifying the frictional behaviour
Among these are, e g , the experiments of POULIQUEN and POULIQUEN and
FORTERRE, [329, 330] A satisfactory fit of a theory with laboratory data,
however, does still not imply that the theory is adequate to describe large
scale processes in nature Apart from the idealisations of the laboratory ex
periment, scale effects might falsify the conclusions Finding a satisfactory
agreement between theory and experimental results at the small scale con
stitutes a step in the direction of treating the full problem

Three classes of problems have been analysed:

e Flows of a finite mass of granular material within a narrow straight or
curved chute situated in a vertical plane This flow is nearly, but not ex
actly, plane because the two side walls confine the material and slow its
velocity in boundary layers near walls This side boundary effectively in
creases the friction and is the cause for the deviation of the flow from being
purely plane A spatially one dimensional version of the avalanche model
equations is employed in this case and accounts for the deviation from
strict one dimensionality by adjusting the bed friction angle accordingly
Experiments have been performed for chutes with flat beds by HUBER
[160]; exponentially curved beds by Kocw [225], HUTTER and KOcCH [175],
chutes consisting of a straight inclined portion, a curved part and a hori
zontal part by PLUss [324], HUTTER et al [172, 179], and chutes of with a
concavely and convexly curved bed by GREVE [127], GREVE and HUTTER
[128]

e Flows of a finite mass of granular material down a surface in three
dimensional space, providing no or at most limited sidewise confinement
to the moving granular mass were considered in the second stage These
surfaces are either inclined planes or rolled surfaces that are curved in the
direction of steepest descent but flat perpendicular to this direction Ex
periments were performed for inclined planes and surfaces consisting of
an inclined plane in the upper part, a cylindrically curved transition zone
and a horizontal plane in the run out and deposition zones by GREVE et
al [129] and KocH et al [227] The next conceivable complication is to
replace the inclined plane by a weakly parabolic channel with a straight
talweg in the direction of steepest descent merging into the horizontal
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plane where the deposition is expected GRAY et al [123] and WIELAND
et al [445] performed laboratory experiments on such topographies Still
a further complication arises if the talweg does not follow the direction of
steepest descent of the inclined reference plane but performs a sidewise me

andering so that an avalanche in a channel following this talweg is guided
and partially mimics this sidewise displacement Experiments on such bed
profiles have been conducted by GRAY and HUTTER [121] The situation
closest to an avalanche flow in a corrie is a channel type topography where
the talweg forms a smooth curve in three dimensional space that exhibits
both curvature and twist (or torsion) A helicoidal talweg is an example
of this and was considered by PUDASAINI et al [337] A more general sys

tem for corrie type channels with arbitrary curvature and torsion is due
to PUDASAINT and HUTTER, [335] ' IVERSON et al [194], on the other
hand, performed table top experiments of avalanching flow down a surface
mimicking a natural terrain close to an inclined plane with topographic
variations not favouring channelling of the flow McDoUGALL and HUNGR
[273, 274] in their laboratory experiment mimic the flow changing direction
from a side channel into a main channel with different direction

Flows that disclose the hyperbolic nature of the governing equations are
those for which internal shocks are formed These, for instance, comprise
flows of a granular material down an inclined plane encountering obstruc

tions or moving from a steep slope at supercritical speed into a shallow
run out zone where subsonic flow prevails This transition is associated
with a “hydraulic jump”, i e , a sudden increase in avalanche depth and as

sociated decrease of the streamwise velocity A similar situation arises when
a granular avalanche with supercritical speed approaches an inclined wall
(e g, perpendicular to the basal topography) and is diverted to the side, or
can be seen in the flow around an obstruction, see, e g, [59, 60, 411] We
have seen in Chap 9 that shock capturing numerical schemes are capable
of identifying such discontinuities

In this chapter, we shall show that all these phenomena can be well
reproduced with the equations presented in Chaps 3 and 4 Our treatment
will present qualitative details, so that the reader, in principle, will be able
to perform his/her own experiments

1

As this book goes to press, such laboratory experiments are underway by
S S Hsiau from the National Central University at Chung Li, Taiwan and
the authors, but to report results would be premature here
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10.2 Chute Flow Experiments
10.2.1 Experimental Set-Up

Experiments have been performed by HUTTER et al [179] in a 100 mm wide
chute of variable length slightly greater than 4000 mm The chute was made
of two straight portions (one inclined, the other horizontal) that were con

nected by a curved replaceable segment so as to adjust the angle of inclination
from 40° to 60° (first type experiments) Alternatively, the bed consisted of
a flexible strip of Makrolon (a material similar to plexiglass but softer and
more flexible, second type experiments, so as to form an exponentially curved
chute) This bed was formed to follow the trace of a prescribed shape, ie,
an exponential curve (HUTTER and KOCH [175]) A third type of experiment
was performed down a curved chute with an intermediate bump (GREVE and
HUTTER [128]) The back wall of the chute was made of a PVC, whilst the
front wall was made of clear and transparent plexiglass through which the
moving granular pile could be photographed

Figure 10 1 shows the arrangement of the set up for the first type of ex
periments, the technical details being described in the figure caption The
situation for the second type of experiments was analogous but not exactly
the same Important for the present purposes is that the motion of a finite
mass of granular material was followed from initiation to run out and the
material, its total mass, the chute geometry and the roughness of the bed
were varied

The motion of the pile of granular material was observed through the trans
parent front wall, and it was video filmed and photographed by a 50 mm
camera with a high speed motor drive capable of operating at nominally 6,
12.5 and 15 frames per second, respectively The distance of the camera from
the chute varied from 35 m to 5 m Generally, the camera was positioned
as close to the chute as possible, the minimum distance being dictated by
the requirement that the chute be photographed in its entire length A clock,
accurate to 0 01 s, was also positioned such that it was visible on the pho
tographs

Figure 10 2 gives a sketch of the laboratory test apparatus as used for the
chutes with exponentially curved beds ¢ = {p exp (—ax), where a is a curve
parameter (¢ = 0.1) Figure 10 3 shows the chute with the bed made of
Makrolon and the distance scale that was taped on the front plexiglass wall
and the back wall Figure 10 4a is a photograph of the plate confining the
granular material with its rotating mechanism, whilst Fig 10 4b shows it in
operation when 3 1 of plastic beads were released

The tests were performed for the seven different sorts of granular materials
shown in Fig 10 5(a) (g), glass beads of 3 mm and 5 mm nominal diame
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Fig. 10.1. a) Perspective view of the chute with a 40° inclination angle 1: frontal
side wall made of plexiglass 2: rear side wall made of PVC 3: basal surface (either
PVC, or coated by drawing paper or sandpaper) 4: curved chute element 5: shutter
or gate that may rotate about a horizontal axis upon removing a bolt 6: space to
fill in the avalanche material 7: number identifying the experiment 8: clock with a
minute scale, but its arm performs one revolution per second b) Cross sectional cut
through the chute Scales are in mm 1: frontal side wall (plexiglass) 2: rear side wall
(PVC) 3: basal surface (PVC, coated by drawing paper, sandpaper or Makrolon)
c) Detail of the operating mechanism of the shutter consisting of an aluminium
blade, an axle and a lever arm carrying a weight F; F bolt to release the shutter
from its rest position, Fj; weight generating fast rotation of the blade about the
indicated horizontal axle The rotation speed can be increased by enlarging the
weight (From [179] )

ters, plastic particles (Vestolen of lense type shape, 2.8 mm diameter, 4 mm
height), quartz granulates of 3 mm and 5 mm mean diameter and two frac
tions of marble chips with rough shapes and typical diameters of 3 mm and
5 mm These materials differ from one another in important physical prop
erties: quartz has a high mass density as well as a large internal angle of
friction; alternatively, the glass beads have a similarly high mass density but
a small internal angle of friction On the other hand, the plastic particles
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Fig. 10.2. Overview of the laboratory test apparatus showing the dimensions of
the back wall (solid and dotted lines) and the front plexiglass wall (dashed line)
The basal surface of the chute follows an exponential curve Dimensions are in mm
Details A and B are shown in Figs 10 3 and 104 (From [175])

Fig. 10.3. Detail B in Fig 10 2 showing the chute made of Makrolon (a kind
of plexiglass, but softer) Visible on the front plexiglass and the rear walls is the
distance scale (distance of markers: 5 cm) (From [175] )

have a small mass density and an internal angle of friction that lies between
those of the glass beads and the quartz chips Finally, all these materials
differ considerably in the coefficient of restitution

The effects of the bed roughness were examined by performing experiments
with different bed linings of Makrolon, drawing paper and no 120 STA sand
paper, respectively In all these cases, the sidewall smoothness was kept, small
in an attempt to maintain the two dimensional flow as far as possible
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Fig. 10.4. a) Detail A in Fig 10 2 showing the vertical plate confining the gran
ular material By pulling the bolt, the plate rotates about a horizontal axle in the
counter clockwise direction b) The release of 3 1 of plastic beads in a chute having
60° initial slope angle The nominal speed with which the shots were taken was 15
frames per second (From [175])

Fig. 10.5. Samples of the granular materials: a) glass 0 (3 mm); b) glass 1 (5 mm);
c) Vestolen; d) quartz 0 (3 mm); e) quartz 1 (5 mm); f) marble 0 (3 mm); g) marble
1 (5 mm) (From [175])

10.2.2 Experimental Procedure

A large number of experiments (> 100) was conducted by varying the follow
ing parameters:

e Bulk volume: for material at its densest packing: 15, 2.5 and 3.0 1 and
other volumes in special cases

e Initial geometry of the pile: wedge type, roof like and parabolic initial
shapes were used, but it was found that the initial shape of the pile had
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relatively little influence upon the development of the avalanche at later
stages 2 Therefore, experiments were conducted only with wedge like initial
shapes

e The seven different sorts of granular materials shown in Fig 10 5

e Basal bed linings consisting of Makrolon, drawing paper and no 120 STA
sandpaper were used

o Different chute forms: (i) chutes consisting of a straight inclined part with
a curved segment merging into a straight horizontal portion; (i7) two expo
nentially curved chutes with different initial slope angles; (éi7) a chute with
a concave bed smoothly going through a convexly curved segment (bump)
were considered

Most experiments were performed repeatedly Results from such experiments
differed little from one another when they were performed consecutively, but
could differ when a number of experiments had been performed one after an
other The reason for this behaviour was the fact that the bed lining Makrolon
and drawing paper changed the roughness with the number of experiments

Figures 10 6 and 10 7 display the motions of two avalanches from initiation
to run out The figures are compositions from individual consecutive pho
tographs The clock indicates the time when each photograph was taken; the
long arm performs one revolution per second, so consecutive photographs in
Fig 10 6 are approximately 0 15 s apart from one another

In experiment no 97, a mass of 2000 g Vestolen particles moves down the
chute with an inclination angle of 50° and basal roughness of no 120 SIA
sandpaper The first photograph in Fig 10 6 shows the pile of particles shortly
after its release by the shutter As seen from the consecutive photographs,
the mass spreads very quickly The front reaches the curved part of the chute
before the rear end has barely started to move The mass seems to spread
further even when its front has already travelled quite a distance into the
horizontal portion, even though signs of deceleration and particle deposition
can already be seen as soon as the avalanche front has reached the horizontal
part of the chute

The photographs do not give any indication of very violent particle motion in
the interior parts of the moving pile Thus the flow there seems to be primarily
“laminar” ? Alternatively, the immediate front and especially a considerable
portion of the tail shows substantial agitation of the particles, see the front
of the avalanche in the last panel on the left in Fig 10 6 and the rear of the
avalanche in the panels on the right Evidently, the shear due to basal friction
causes enough fluidisation and the particle collisions generate considerable

Notice that in two dimensions the initial shape influenced the shape of the pile
The term “laminar” is used to characterise particle motions subject more to
rubbing friction between the particles than bouncing

3
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Fig. 10.6. Series of snapshots (experiment no 97) of a mass of 2000 g of plastic
particles (Vestolen) moving down a chute with an inclination angle of 50° and a
bottom surface coated by no 120 SIA sandpaper The inclined portion is 170 cm
long, the curved part has a radius of 24.5 cm The black lines on the frontal plexi
wall mark increments of 5 cm and the long leg of the clock performs one revolution
per second (From [179])

dispersion and dilatation Other experiments show less activation at the front
and the tail

Figure 10 7 shows an analogous situation for a mass of 3 1 quartz 0 par
ticles, moving down an exponentially curved chute The photographs show
consecutive shots of a moving and deforming pile from initiation to rest Such
photographs (in large prints) can be used to determine the evolution of the
geometry of the granular avalanche as it moves down the curved chute; how
ever, rather than tracing the entire geometry in each print, we shall present
the following set of variables (see Fig 10 8a): x,, the rear end of the pile; xy,
the front end of the pile; xyax, position where the moving pile is thickest;
Hnax, the height of the pile at the position of z,.  all as functions of time
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Fig. 10.7. Series of photographs (experiment 73) taken at different dimensionless
times of a granular material (3 1 of quartz 0 particles) moving down the exponen
tially curved chute, the bed of which is roughened by drawing paper and the initial
slope angle is 60° Times of the individual photographs are shown in seconds as
inferred from the clock bearly seen in the lower left (From [175] )
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Fig. 10.8. a) Front view of the avalanche geometry during motion The coordinate
x is the arc length measured along the base of the chute; x,, x5 and zmax denote
the position at the rear end, the front end and where the avalanche depth is at a
maximum b) Cross sectional view of the granular avalanche at the position Zmax,
identifying HX2idde and HIM (From [175] )

How reliably these data are derived and how the physical quantities can be
determined from enlarged prints of the photographs is explained in detail
in [175, 179] For instance, the front, xy, and rear, z,, positions as viewed
through the front plexiglass wall are different from corresponding positions
in the middle of the chute As sketched in Fig 10 8, the maximum height as
well as its position, xyax, varied according to whether it was referred to the
middle of the chute, H™2iddle o1 its value at the front wall, H'"* Figure 10 9a

max max

shows the rear end of a granular pile in its deposit, the parabolic like curve
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Fig. 10.9. a) Photograph of the rear end of the granular avalanche (experiment 73)
at rest, showing the parabolic type distribution of the rear end across the width
of the chute b) Leading edge of the settled granular avalanche (experiment 73)
showing the large spread of the particles (From [175] )

of the arrangement of the last granules being the manifestation of increased
friction at the confining side walls; similarly, at the front, the particles are
spread over wide distances (see Fig 10 9b)

Among the more difficult variables that had to be determined experimentally
are the time of the onset of the motion (¢t = 0) and the time at which the
granular pile comes to rest (t = T) The former can best be determined
by using close ups of the video films of the shutter confining the granular
material Under the assumption that the opening of the plate takes place
with a constant speed of rotation (see Fig 10 4b), the time of the opening of
the shutter can be extrapolated backwards from the two consecutive frames,
taking into account that the video camera was operating at a nominal speed
of 25 frames per seconds Analogously, the time when the avalanche comes to
rest, defined as the time when the particles at z,. come to rest, was determined
by quadratic extrapolation from the last three shots when the rear end was
still in motion and the end position x, at rest

Using this procedure, a great number of experiments were conducted, about
100 for the chute arrangement shown in Figs 10 1 and 10 6 and more than
30 for the exponentially curved chute of Fig 10 7 Not all experiments were
analysed in detail, but a careful description of a comparison of experiments
and the corresponding theoretical numerical results for about 30 experiments
are provided in [179, 175] A subset thereof will be discussed below

10.2.3 Measurement of Phenomenological Coefficients

The theoretical formulation of the avalanche theory requires knowledge of
the values of the internal angle of friction, ¢, and the bed friction angle,
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0; these were determined for the materials together with some estimates of
the coefficient of restitution Of course their determination for laboratory
granular avalanches is different from that in the fields We report here about
procedures taken for the laboratory avalanches

Internal Friction Angle The static internal angle of friction is generally
identified with the angle of repose of a wedge type pile of the granular mate
rial that is deposited on a rough horizontal plane Results depend to a certain
extent on how the material is poured to form the wedge Repeating the exper
iment several times and working with wedges held between two parallel walls
and of different size to eliminate size effects, led to mean angles of repose
between 30° and 47° with deviations of the individual measurements from
the mean of at most 4° for the seven materials with which experiments were
conducted

Dynamic internal friction angles are smaller than their static counterparts
HUNGR and MORGENSTERN [161, 162] found in their annular shear cell ex
periments that the dynamic friction angle was about 4° less than the angle
of repose As a consequence, we reduced the effective internal friction angles
from the wedge measurements by 2° or 3° Fortunately, as we will see later,
computations indicate that the computed results are not critically sensitive
to the values of ¢ except when the bed friction angle J is close to the internal
angle of friction ¢, so a very accurate determination of ¢ is not so important

Bed Friction Angle The other parameter that appears in the theory is the
bed friction angle dy (the reason for the index 0 will soon become apparent)
Two different experimental procedures are employed, the first one adequate
to determine the bed friction angle without including the side wall boundary
layer effect for chute flows, the second with it To determine &y, the “true”
bed friction angle, a small cylindrical container of 70 mm diameter was made
out of paper and placed on a tilting plane apparatus filled with the granules
to a certain height The paper ring was lifted about half a particle diameter
to eliminate the contact with the plate (see Fig 10 10) The plate was then
gradually inclined until a gentle push on the side of the cylinder containing
the granular material resulted in its continued motion down the incline The
corresponding tilt angle was taken to be the bed friction angle §; Repeating
this experiment for each material and each bed lining (three to four times)
gave values for dy between 20.0° and 40.0° with errors not larger than 2°
Values are listed in Table 10 1 4

% There are, obviously, professionally better established methods to determine

the internal and bed friction angles The above are the poor scientist’s meth
ods; every geotechnical institute possesses standard instruments by which shear
and normal stresses in a layer of granular material can be correlated to deter
mine the internal or bed friction angles, also for much larger forces than those
exhibited above
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paper granulfar filling

granular filling cylinder
A paper wall
coated by

plastic tape

tilt angle &,

Fig. 10.10. Experimental arrangement to determine the bed friction angle

Influence of Wall Friction As is evident from Fig 10 9 there are side wall
effects in chute flows; a simple approximate way to account for the side wall
friction effects is to make use of an effective bed friction coefficient tan deg as
suggested by ROBERTS [358] and SAVACE [369] According to these authors,
the effective bed friction angle can accurately be expressed as a linear function
of the depth to width ratio, namely

H H
Ooft = 0o + kwh =0y + ckwanh;  kwan = (W) k, (10 1)
where H is the characteristic height scale, W is the width and h the dimen
sionless depth of the flow In the experiment d.g is measured as a function of
height, see Fig 10 11, and kwan is computed according to

(6eff - 60)

kwan = " . (10 2)
To find the effective bed friction angle, the arrangement of Fig 10 12 was
used A box made of styrofoam plates and without side walls® was placed
between a copy of the chute and filled with the granular material to height H
such that neither its front nor its rear end plates could touch the side walls
or the bed Then the entire arrangement was tilted as for the first experi
ment with the cylinder Experiments were again performed several times and
results are collected in Table 10 1

®  This material and arrangement was chosen to minimise the weight of the box;

it should be negligible in comparison to the weight of the granular filling
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Fig. 10.11. Effective bed friction angle ¢ plotted against depth H (in cm) for (a)
glass 0 on a Makrolon lining and (b) marble 0 granules on a Makrolon lining Points
represent the experimental findings, solid lines give the best fit linear dependence,
with dashed lines showing the variance The values of §p and dwan arising in (10 1)
and the variation 4 (the indicated band width) are: for (a), 6o =18.5°, 4 =1.2°,
kwall = 9.190; fOI‘ (b), (50 = 22.30, A = 0.807 kwall = 12.60 (F‘rom [175] )

Fig. 10.12. Box with crosswise tightened strings for stabilisation, placed between
the back and front walls of the chute and positioned on a strip lined with Makrolon
The box is uniformly filled with the granular material to the depth H The tilting
angle § at which the box, including the granular material inside it, commences to
move is defined as the effective bed friction angle Dimensions are in millimetres
(From [175] )

Bulk Density and Coefficient of Restitution Values for bulk densities
depend heavily on the amount of packing that is achieved Two methods were
applied, first by filling a measuring cylinder to its 500 ml mark and deter
mining its density p; (defined as a dense packing) and then slightly shaking
the cylinder with the material and measuring the density p2 > pi, yielding
an even closer packing of the granular material Repeating this experiment
led to mean values and errors, also listed in Table 10 1 The coefficient of
restitution gives information about the elasticity of the encounters between
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the particles and the bed linings Thus, it was determined according to

¢ = /A Jo, (10 3)

where hyg is the height from which a particle at rest falls onto a plane and h,. is
the corresponding height of rebouncing Values of the coefficient of restitution
were obtained as averages from 50 repetitions and more, but errors were still
5% to 10% The results in Table 10 1 show what one would expect, that the
rougher the plate and the surfaces of the particles, the smaller the coefficient
of restitution

10.2.4 Results

Results will be shown for flows of a finite mass of granular materials down
different chutes as discussed above, however, only a small number of the ex
periments conducted and compared with theoretical results will be presented
A large number of additional illustrations of this comparison, corroborating
the convincing performance of the theory given in [128, 175, 179]

Straight Chute Flow down a straight chute was already discussed in brief
in Chap 7 SAVAGE and HUTTER, [375] used a EULERian code to predict the
evolution of a finite mass of granular material down an inclined chute

Figure 7 2 shows a series of calculations all at the same bed slope ¢ = 32° but
for different bed friction angles 22°, 16° and 10° As the bed friction angle
decreases, the acceleration of the pile down the slope increases, whereas the
rate of spread of the length of the pile remains much the same For these,
numerical simulations, an asymmetrical initial shape of the granular material
was used that started from rest at time ¢ = 0 with the shape given by

h(z) = 0.879897 sin |7 (z — 0.6) | — 0.3 sin [27 (z — 0.6)], 0.6 < z < 1.6.
(10 4)
This initial profile was chosen for comparison with the laboratory experiments
of HUBER [160] Tt is seen to evolve into the M wave shape, see Chap 5 and
[375]

As was already suggested in Chap 7, it seems unlikely that a given heap
at rest will asymptotically develop into an M wave, virtually irrespective of
what its initial geometry might have been This was the reason for developing
a LAGRANGEan scheme for which different solutions arose despite the fact
that the same initial profile was used Thus, unless otherwise stated, in this
chapter, we will discuss the comparison of the experimental findings with the
LAGRANGEan numerical simulations of the theory

Predictions of HUBER’s experiment no 106b [160] using the LAGRANGEan
scheme are shown in Fig 7 4, and were based upon the initial depth profile
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given by (10 4) with the measured quasi static bed friction angle 6 = 22° and
the estimated dynamic internal friction angle ¢ = 29° The figure shows the
profile shapes at six different (dimensionless) times Also shown in the inset
are the front, middle and rear end velocities The circle marks are computed
values and the cross marks are deduced values from HUBER’s laboratory ex
periments involving the motion of gravel released from rest on a rough inclined
plane Although in these experiments the continuum approximation breaks
down at large times when the gravel layer is only a few particle diameters
thick, the general features of the development of the gravel mass give reason
to assume that these are the correct solutions Of course, this must be verified
The above descriptions of numerical solutions obtained with the EULERian
and LAGRANGEan codes require further comment By mere observation and
comparison of experiments conducted in the laboratory with avalanches con
sisting of a cohesionless granular pile it was concluded that the M wave type
solutions obtained with the EULERian scheme were false results, not cor
responding to a physically realizable situation, whilst the results obtained
with the LAGRANGEan scheme were physically more realistic This interpre
tation was corroborated only once EULERian TVD schemes were developed,
as we have seen in Chap 7 where the parabolic cap solution can be repro
duced with any EULERian scheme obeying the TVD conditions Solutions
constructed with these schemes from initial continuous humps all developed
into shapes that were close to those obtained with the LAGRANGEan scheme
as displayed in Fig 7 4, see [412, 415]

Straight Chute with Horizontal Run-out Let us now concentrate on
experiments of the type displayed in Fig 10 6; these concern the motion of
a pile of plastic beads down a bed made up of a straight, inclined portion, a
curved part and a horizontal part The numerical simulations are presented
here for conditions as described in the caption of Fig 10 6, and the physical
parameters ¢, ¢ (for no 120 SIA lining, i e, sandpaper) are given in Ta
ble 10 1 Tt is found that the predicted temporal evolutions of the rear and
front ends of the pile of granular material, as well as the shape, agree quite
well with those of the laboratory experiments [175] The trailing and leading
edges of the granular avalanches indicate that their computed counterparts
react sensitively to variations in the bed friction angle but not to those of
the internal angle of friction Furthermore, a weak velocity dependence of
the bed friction angle, d, is also seen to have a small, but negligible effect
on these variables Comparison of the experimental results with computa
tional findings for many (more than 20) combinations of the masses of the
granular materials and bed lining showed that the theoretical predictions and
experimental results agree satisfactorily

Figure 10 13 shows just one comparison between the positions of the front,
xs, the trailing edge, x,, and the maximum height positions, x5, (top panel)
as obtained by the experiment and the model for conditions as detailed in the
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Fig. 10.13. Comparison of the theoretical predictions and experimental measure
ments of the (dimensionless) leading edge, z¢, the trailing edge, x» and the po
sition where the maximum height, z,, arises (top figure) and the (dimensionless)
maximum height, hs, (bottom figure) plotted against the (dimensionless) time for
experiment no 97 Data points, taken from large prints of photographs, are shown
as full circles with estimated error bars; direct readings of the positions x s, s and
x, of the settled masses are shown as open circles Computed results are shown as
solid curves, obtained for a bed friction angle dp, an internal angle of friction, ¢,
and Kwan as indicated in the inset Also shown are the material (V = Vestolen), its
mass M, the bed lining (SP = sandpaper), and bed inclination angle ¢ The param
eters N, A and p are the number of grid points, the time step and the diffusivity
of the numerical scheme The laboratory data have been made dimensionless with
L =15 cm and H = 15 cm corresponding to £ =1 (From [179] )

inset and the figure caption The symbols (full circles with error bars) are
inferred from the photographs, the solid lines represent the computational
results The lower panel in Fig 10 13 displays the corresponding results for
the maximum height It is seen that the front and trailing edges are reason
ably well reproduced by the model The computed positions of the maximum
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height also show a relatively sudden jump of the position x4 of the maximum
height that obviously cannot be reproduced by the photographs; it arises at
t ~ 4.6 when the front of the avalanche reaches the horizontal part and when
the flow changes from an extensional to a compactive state The final posi
tion of the avalanche in the settling zone of z¢, x5, z, (open circles) is also
satisfactorily reproduced, as is the maximum height, even though there seem
to be some deviations at times immediately before standstill Of special inter
est is the temporal development of the position, x4, of the maximum height
within the avalanche The computational evolution z4(t) clearly shows the
occurrence of an internal shock at ¢ = 4.6 This demonstrates that the La
GRANGEan scheme used here, is capable of reproducing large gradients, well
in agreement with the measurement & There are a large number of analogous
experiments showing a similar agreement between experimental findings and
computational results, see [179]

Exponentially Curved Chute A comparison of theoretical results and
experiments was also conducted for the motion of a finite mass of a granu
lar material down an exponentially curved chute (Fig 107) HUTTER and
KocH [175] gave a detailed account on the experiments themselves and their
exploitation; here we only give a brief account, not addressing the fine tun
ings needed in a trustworthy evaluation Since slope changes for exponentially
curved chutes are less abrupt than for straight inclined chutes merging into
the horizontal via a curved segment, it is expected that all fields will also
change more smoothly, in particular the change from dilating to contracting
flow This will most likely imply that agreement of computational results
with experimental findings will look more convincing here than with earlier
chute experiments This is indeed so, as we shall soon see

The bed friction angle was taken as accounting for wall friction as in (10 1)
with dg(x) being a function of position along its track,

[ —0.0461 (z — 9)* + 29, x < 18.3,
do(x) = { 25, x> 18.3, (105)
because the bed turned out to be worn out when the experiments were made
Several different but equally plausible initial profiles were selected

This jump is the manifestation of the internal shock that is formed when the
velocity changes from supercritical to subcritical and can arise as a sharp tran
sition only for a truly hyperbolic system of equations The LAGRANGEan nu
merical integration scheme of Sect 7.1.2 cannot capture such a shock, as it is
diffusive and additional numerical diffusion has been introduced to stabilise it
where large gradients occur with the adoption of a mesh refinement at these
locations to properly capture the diffusive shock We shall see later when shock
capturing integration methods are used that this shock is a real jump of the
thickness
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Fig. 10.14. Experimental measurements and theoretical predictions of x,, x5 and
Tmax as functions of dimensionless time for (a) experiment 66 and (b) experiment
73 Data points are shown with error bars Internal and bed friction angles are
reduced from their static counterparts listed in Table 10 1 In (a) (o = 60°, a = 0.1,
E = 1, (50 = 260, ¢ = 330, k‘wan =11° In (b) Co = 600, a = 0.1, E = 1, (50 = 290,
¢ = 40°, kwan = 12° (From [175] )

Here we present results of when the initial condition was defined from the
first photograph in which the avalanche was already moving The pile depth
was read in these cases at 10 to 15 positions and a polynomial interpolation
was used to construct the computational initial profile The initial time could
then simply be determined from the photograph and the initial streamwise
velocity was linearly interpolated between w, and vy, and the initial velocities
at the rear and front ends, respectively

Figure 10 14 compares experimental measurements and theoretical predic
tions of the evolution of the leading and trailing edge positions x ¢, z,, as well
as the position, Ty, where the maximum height of the granular avalanche
occurs for experiments 66 (3 1 of Vestolen particles on a basal bed lined with
drawing paper) and 73 (3 1 of quartz 0 particles on a basal bed lined with
drawing paper) The data points are shown with error bars Agreement in the
prediction of the evolution of z,, x5 and zax between theory and observation
is good with some deviations for x, at the early stages and for xyax

Figure 10 15 compares the observed and computed non dimensional veloci
ties at the front, uy and the rear, u,, and at the position where the height
is a maximum, up,, Agreement between theory and experiments for the
velocities is less convincing than for positions, mainly because the velocities
inferred from the photographic prints are fraught with larger errors This is
the reason why we need to implement sophisticated measuring techniques for
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Fig. 10.15. Evolution of the dimensionless velocities at the front uyr (top), at the
position where the avalanche depth has a maximum wumax (middle) and at the
trailing edge u, (bottom) as deduced from experiment and theory under the same
conditions as in Fig 1014 (a) Results for experiment 66, (b) for experiment 73
(From [175] )

the determination of the velocity field We will address these in Chaps 11
and 12

Comparisons of other variables as deduced from the experiments and derived
from the theory are equally convincing for the two experiments selected
Figure 10 16 displays the evolution with time of the maximum height, hyax
within the granular pile for both experiments 66 and 73

10.2.5 Variable Bed Friction Angle (Position-Dependent)

It was mentioned before that repeated experiments wore down the bed and
resulted in a position dependence of the bed friction angle A curve fit to
the measured bed friction angle dp(z) was given in (10 5); this was used
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Fig. 10.16. Experimental measurements and theoretical predictions of the maxi
mum height plotted against dimensionless time and avalanche length, respectively,
for (a) experiment 66, (b) experiment 73 The computations are for (a), (o = 60°,
a=0.1e=1,3d =26.5° ¢ =32° kwan = 11% in (b), (o = 60°, a = 0.1, ¢ = 1,
(50 = 290, (]5 = 400, k‘wan =12° (From [175] )

in evaluations of the effective bed friction angle and in computations and
reproductions of experiment 37 (3 1 of quartz 0 on Makrolon bed lining) Fig
ure 10 17 shows a comparison of experiments with computational predictions
for ., x and zmax for both a variable dy (according to (10 5)) and a constant
0o = 28° The computational results hardly differ from each other and the
agreement between theory and experiment is excellent Thus, consideration
of the variability of the bed friction angle is not needed in this example

The above comparison between observational results and theoretical predic
tions involved only three experiments This is not sufficient to be able to claim
adequacy of the theoretical model We performed many more comparisons
both for straight chutes with horizontal run out and for exponentially curved
chutes Results are summarised in [175, 179] Here we list a few additional
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Fig. 10.17. Experimental measurements and theoretical predictions of ., zy and
ZTmax as functions of dimensionless time for experiment 37 (3 1 of quartz 0 granules
and a bed lining of Makrolon) Computations were done by using the law (10 5) for
the bed friction, once with a constant value do = 28° (dotted lines) and once for a
variable 0o (solid lines) Differences in the results are small Aspect ratio, ¢ = 1;
friction angles ¢ = 41°; §o = 28°; kwan = 12°; chute parameters (o = 60°, a = 0.1
(From [175] )

results obtained for the exponential chute Table 10 2 lists the conditions for
eight experiments and Fig 10 18 shows the comparison between experimental
findings and computational results Agreement in these eight experiments is
generally very good

10.2.6 Chutes with a Convex Curved Bump

The above results indicate that the agreement between theoretical predic
tions and laboratory experiments is good and seems to be somewhat better
for the chute with an exponentially curved bed than the chute with a straight
inclined part, connected by a short and sharply curved element merging into
a straight horizontal part These results, as promising as they are, could nev
ertheless be challenged by avalanche practitioners, the argument being that
agreement between theoretical predictions and laboratory experiments might
be less satisfactory in chutes with a convex curved “bump” In these cases,
depending on the internal and basal friction angles, and the bed curvature
and total mass, a single initial mass of granular material might settle in one
of the following forms: (i) deposition of all the material above the bump, (i)
deposition of all material below the bump and (iii) splitting of the entire
mass into two depositions, one above and the other below the bump GREVE
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Fig. 10.18. Experimental measurements and theoretical predictions of ., zy and
Zmax plotted as functions of dimensionless time ¢ for experiment no (a) 10, (b) 31,
(c) 34, (d) 41, (e) 51, (f) 52, (g) 54, (h) 62, listed in Table 10 2 For all calculations
a=0.1 and e =1 Data points are shown with error bars All graphs demonstrate
a satisfactory agreement between experiment and theory (From [175])

Table 10.2. Experimental conditions for granular avalanches sliding down the
exponentially curved chute of Fig 10 7, where M = Makrolon, D = drawing paper,
all angles are in degrees and volume in litres These data are employed to produce
the eight different panels in Fig 10 18

Exp Granular Bed Volume  Initial Internal Bed Wall
no material  material slope, friction  friction  fiction
Co angle, angle, angle,
¢ 4 Eyan
10 Vestolen M 3 60 32 25 10
51 Vestolen D 3 54 32 25.5 11
52 Vestolen D 1.5 54 32 25.5 11
34 quartz 0 D 1.5 60 40 27.5 12
62 quartz 0 D 1.5 54 40 29 11
54 quartz 0 D 3 54 40 29 11
31 marble 0 M 3 60 43 27 12.5
41 quartz 1 D 3 60 39 27 11.5

[127] and GREVE and HUTTER [128] demonstrate that agreement between
theoretical predictions and observations in the laboratory is very good They
chose the same granular materials and chute properties as described earlier in
this chapter (see Table 10 1), but constructed a particular form of the chute
with a partly convex and partly concave geometry (see Fig 10 19) A total of
48 experiments was conducted under the following conditions and by varying
the following parameters:

bulk volume of the material at its densest packing: 1.5 1 and 3.0 1;

the seven different sorts of materials shown in Fig 10 5;

basal bed linings consisting of drawing paper and no 120 SIA sandpaper;
one particular form of the chute: in the dimensionless coordinate x (equal
to arc length), the slope angle ¢ is expressed as

C(x) = Coexp (—0.1z) + (1&/ (1 + €5) — G exp (—0.3 ( + 10/3)2) , (10 6)

with



414 10 Experimental Findings and a Comparison with the Theory

Fig. 10.19. Series of photographs (experiment no 02, taken at different dimen
sionless times) of a granular material (3 | of glass beads with 5 mm diameter on
no 120 SIA sandpaper) moving down a concave and convex bed (From [128])

Fig. 10.20. Experimental (dashed lines) and theoretical (solid lines) dimension
less avalanche profiles h(z,t) plotted in each panel for fixed dimensionless times
(when the photographs were taken) in dimensionless temporal steps ~ 2.5 (viz
the time sequence starting from the top panel and ending in the bottom panel is
t=0,2.5,4.93,7.60,10.10, 12.53, 15.12,17.71, 20.21, 22.80, 25.39) for experiment no
29 in which 1.5 1 of plastic beads (Vestolen) were used on a bed lined with drawing
paper for which 09 = 26.5°, ¢ = 37.0° and Kywan = 11.0° The numerical parameters
chosen were N = 40, A = 0.002 and g = 0.05 The inset shows the geometry of
the bed with the dimensionless length scale along the bed profile that is unrolled in
the panel as the horizontal axis The diamond symbols denote the segment of the
bed with convex curvature (From [128])
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4
E=—(@-9) (107)
and
(o =60° (G =31.4° (;=237°, (10 8)

in which non dimensionalisation has been implemented by choosing for L,
H, R 150 mm each

Comparison of the experimental findings with computational results proved
to lead to very good agreement between experiment and theory A comparison
of the experimentally determined avalanche geometries against the theoretical
predictions at the times when the snapshots were taken is summarised for
one experiment in Fig 10 20 It is noteworthy that the model computations
reflect the measured avalanche profiles surprisingly well, for all times of the
experimental duration, including such details as the profile shapes and the
separation of the single granular masses into separate piles Therefore, we
can conclude that the chute flow of cohesionless granular material along a
bed topography with convex and concave curved segments is well predicted
by the model equations

10.2.7 Limitation of the Model

The above is a report where comparisons of theory and experiment are suc
cessful This is, because the prerequisites of the model were generally sat
isfied For the exponential or “bumpy” chute geometries, the bed curvature
was small in comparison to the avalanche length This was, however, not so
for the chute in which the straight inclined and horizontal arms were con
nected by a curved segment In this case, the dimensionless curvature was
not O (g7), 0 <~y < 1, but O(1) or even larger Nevertheless, in all exper
iments the results led to satisfactory agreement between theoretical results
and laboratory experiments [179]

In all experiments for which a comparison with theoretical results is reported
here, the numerical values for the internal, ¢, and bed, dy, friction angles, are
sufficiently distinct Results for experiments where ¢ and §p were rather close
to one another, so that the total bed friction angle often formally exceeded
the internal angle of friction are reported in [175] In these circumstances,
we used § = 0.999¢ With § ~ ¢, the basal surface is no longer dynamically
different, from any internal surface of the granular pile We suspect, but have
not been able to support this with an explicit proof, that the basal surface
no longer acts as a clear and distinct sliding surface and that the velocity
distribution is not as uniform over depth and now has a substantial shear
layer This problem clearly warrants further study

There have also been cases where computed and measured travel times or
travel distances differed from one another The causes for this failure can
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not in all these cases be attributed to the internal and bed friction angles
being close to each other A small total mass paired with a high coefficient
of restitution allowed the particles to bounce over large parts of the granular
pile, so that a considerable amount of energy was stored in the fluctuating
motion This would make it plausible that in these cases, experimental travel
times are considerably smaller than in their computed counterparts The
exact causes, however, are still not known

10.3 Avalanche Flow Without Side Confinement

The confined chute flow models presented so far constitute a first attempt
to describe real avalanche flows but are certainly not realistic enough for
flow avalanches moving down steep mountain slopes For that purpose, two
dimensional extensions are needed as developed in Chap 3 The first models
of this class, e g, [127, 174, 242], were still spatially one dimensional; the
evolving avalanche geometry was computed by double averaging and the re
sults were compared with corresponding data from laboratory experiments,
but this comparison was not convincing The experiments were conducted
with granular avalanches on an unconstrained inclined plane connected to a
horizontal run out plane by a curved cylindrical element (see Figs 4 1 and
10 21) The likely reason for the poor coincidence was the fact that calcula
tions were based on a set of equations obtained from the three dimensional
equations by performing both depth and width averages This, paired with
the satisfactory results obtained when the width average is not performed,
implies that double averages should be avoided, see [242]

10.3.1 Experimental Set-Up

A set of experiments without side confinement was performed on the sur
face shown in Fig 10 21, consisting of an inclined and horizontal plate con
nected with a cylindrical element Its surface was either fairly smooth plastic
Makrolon, or it was covered with drawing paper or sandpaper STA no 120
The time was again measured with an analogue clock, and the material was
filled into a hemispherical cap at densest packing The motion was initiated
by tilting the cap as shown in Figs 2 26a and 10 21, and the moving mass was
photographed from the front The rectangular grid drawn on the sliding sur
face facilitated evaluation and interpretation of enlarged prints Numerically
simulated time sequences for this case are plotted in Fig 10 22

Inclined Plane Here we present numerical results for an avalanche on an
inclined plane The calculations are based on a LAGRANGEan finite difference
scheme
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Fig. 10.21. Photograph of the longitudinally curved laboratory slide Here, the
slide is lined with sandpaper STA no 120 carrying a 20 x 10 cm grid The granular
material is filled in a hemispherical cap and released by tilting the cap (top middle)
The arm of the clock performs one revolution per second (From [241])

Fig. 10.22. (a) Numerically simulated time sequences t = 0, 1,2, 3,4, 5,6, 7, for the
basal profile of an avalanche moving on an inclined plane with an inclination angle
¢ = 45° The other parameters are: dimensionless volume V' = 13.6, bed friction
angle § = 29°, internal friction angle ¢ = 39° The positions and time are given in
dimensionless form (b) The same, but the time sequence up to only 7 units and
d = 10° The double arrow shows the flow direction (From [129])

Figure 10 23 depicts temporal sequences for the basal profile of an avalanche
with a total dimensionless volume 13.6 on an inclined plane with an incli

nation angle ( = 45° The initial profile consists of a half egg shaped body
representing the approximate shape of an originally hemispherical avalanche
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Fig. 10.23. Sequence of photographs of a moving mass of plastic beads (Vestolen)
down an inclined plane of a 45° inclination angle moving on a smooth aluminium
surface The arm of the clock at the upper left corner performs one revolution per
second so the camera takes about 10 frames per second The motion initiates from a
shutter of hemispherical cap geometry at rest The first picture shows the granular
mass immediately after the cap has been lifted by rotation about a horizontal axis
at its upper end, thus instantly freeing the granular mass The mass develops into a
droplet shape and, as time proceeds, becomes elongated with a progressively larger
aspect ratio, L/B Direction of motion from top to bottom (From [129])
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some tenths of a second after its release with ¢ and § as prescribed in the
figure caption The originally circular circumference develops into a tear drop
with a blunt front and a more pointed rear end Furthermore, the tear drop
shape of the granular avalanche is blunter when the bed friction angle is
small than when it is big Thus, sidewise spreading is obviously increasingly
hampered by enlarged friction This can be made more convincing by plot
ting the aspect ratio “typical length to typical width”, L/B, for a fixed time
after the onset of the motion for different values of § The aspect ratio grows
with increasing bed friction angle § This is exactly what observations also
reveal Figures 10 23 and 10 24 show a sequence of snapshots of plastic beads
moving down a plane of 45° inclination angle on a smooth aluminium surface
(Fig 10 23) and a rough surface coated by sandpaper (Fig 10 24) The two
granular piles have the same mass and start from rest with the shape of a
hemispherical cap The two figures also indicate that the basal friction angle
is very significant for the identification of the pile geometry A smooth base
gives rise to little agitation of the particles, a rough base obviously leads to
violent bouncing of the particles The question therefore arises as to how the
outer boundary of the experimental avalanche should be defined This ques
tion will be addressed later Figure 10 25 compares the experimental and
numerical results for the motion of a pile of plastic beads (Vestolen) down an
inclined aluminium plane of 45° inclination angle The experimental marginal
contours are represented by strokes that are indicative for a range of bound
ary positions (error bars), marking the margin of a mono layer of particles
The computational results are shown by solid curves, linearly interpolated
between points that are the outcome of the computations The outer curves
mark the numerical avalanche margin with vanishing height, the inner one
defines the contour with height h = 3.5 mm, agreeing with the approximate
magnitude of the diameters of the granular particles The motion in this fig
ure is from left to right, and only that part of the inclined plane is shown
that exhibits the entire moving mass The first plot in panel (a) shows the
state from which the numerical scheme is started Further comparisons are
given by KocH [226]

10.3.2 Rolled Surfaces

Experiments were also conducted on slides comprising an inclined plane merg
ing into a horizontal plane via a cylindrically curved segment, see LANG et
al [241], KocH [226] and KocH et al [227] Figure 10 26 shows a sequence of
snapshots of an experiment with quartz granules moving on a surface consist
ing of sandpaper STA no 120 The avalanche again starts from a state of rest
from a hemispherical cap; its initial motion consists of a dilatation both in the
downhill and sidewise directions until the avalanche enters the curved part of
the slide where it contracts, particularly in the streamwise direction and even
tually comes to rest in the horizontal plane Figure 10 27 shows a comparison
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Fig. 10.24. Same as in Fig 10 23 but the motion takes place on a surface coated
by sandpaper no 120 SIA Note that because of the larger bed friction angle as
compared to Fig 10 23, the shape is less blunt and the aspect ratio is larger
Furthermore, it is difficult to identify the outer contour margin because of the
particles’ higher collisional agitation Direction of motion from top to bottom (From
[129] )



422 10 Experimental Findings and a Comparison with the Theory

4)»8‘\ ¥ T T T 4;.d 7
26 L i
y ° [ vy 2 1
or ! 0Ff ]
RS a2t |
—4{ =235 _4l¢=510 ]
0 8 16 4 12 ‘ 20
4—b¥ T T T T ] 4ke\ T
r ] o[
y 2L ] y oL
ol 1 ol
2t ] 2l
_4l1=335 ] —4} 1=6.15
0 g 6 8 16 24
Nosss : —
2 [ 1
y °[ ]
0— _
_2l J
—4ft=44 ]
0 8 16 12 20 28
X X

Fig. 10.25. Time series of numerical and experimental positions of an avalanche
on an inclined plane in an experiment with plastic beads The x and y coordinates
are downhill and sidewise, respectively, and the direction of motion is from left to
right Only that portion of the slide is shown where the granular pile is momentarily
positioned Solid lines indicate theoretical avalanche margins, at height h = 0, and
h = 3.5 mm; symbols represent the experimental margin indicating the location
where the ground is fully covered by a mono layer of particles The variables z,y
and t are all dimensionless and the time series is t = 2.35, 3.35, 4.4, 5.10, 6.15, 7.10
(From [227] )

between experiments and numerical predictions for an experiment conducted
with marble chips on a bed lined with STA no 120 sandpaper The motion in
the figure is from left to right and symbols are as before Agreement between
experiment and theory immediately after the release (¢ = 4.0) is very good
As the avalanche moves down, the agreement remains good for ¢ < 6.09 For
t > 8.39, the experimental positions of the margin points, indicated by the
error bars, are again well predicted by the theory, except for the trailing edge
where the outer numerical contour stays a bit behind Even the rather strong
lateral spreading at the leading edge in the run out zone where the avalanche
comes to rest is rather well described by the theory The spreading of the
experimental 50% areal coverage contours (dashed lines) cannot be predicted
by the model, since it is based on a continuum mechanical description that
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Fig. 10.26. Sequence of snapshots of an experiment with quartz granules on a
partly curved slide coated with STA no 120 sandpaper Time interval between
subsequent shots is approximately 0.2 s and ~ 1.98 in dimensionless representation
The inclination angle in the acceleration zone is (o = 45°, the friction angles are
6 =29° and ¢ = 39° (From [227] )

is certainly violated in this domain To summarise, the agreement between
the motion of the experimental granular avalanches and the numerical cal
culations performed with the two dimensional LAGRANGEan finite difference
scheme of the model equations is surprisingly good [227]

Further comparisons were performed for different materials and different bed
linings (see KocH [226] and KocH et al [227]) with similarly convincing
results Only the relatively large spreading due to the bouncing of individual
particles is somewhat concerning It is less violent in snow avalanches, because
the coefficient of restitution is considerably smaller for snow than for the
experimental particles
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Fig. 10.27. Time series of numerical and experimental positions of an avalanche on
a curved bed with marble chips The motion is from left to right and the horizontal
axis is the unrolled arc length along the steepest descent Each panel represents
a snapshot of the in surface projection of the moving pile in consecutive order
numbered from (a) to (h) The slide is plane and inclined at ¢ = 45° to the left of
the first vertical line and to the right of the second wvertical line lies the horizontal
plane; in between the cylindrical transition zone Solid lines represent the computed
contour at zero height and the height of one particle diameter Symbols represent
the location in the experiment where the bed is covered at least by one particle and
dashed lines indicate, where, experimentally, the bed is half covered by particles
and half free (50% areal coverage) The variables z,y and ¢ are all dimensionless
The bed and internal angles of friction are 6 = 35° and ¢ = 42°, respectively (From
[227])
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10.4 Channelised Avalanche Flows

Chutes provide maximum confinement, almost giving rise to plane flow, slid

ing surfaces without sidewise curvature exhibiting no confinement; chan

nelised flow, for which the sliding surface has a sidewise curvature lies in
between these two extremes Flow down a sliding surface that is a straight
parabolic channel down an inclined plane merging into a horizontal plane
may be considered a first step towards the description of a granular flow over
complex basal topography Figure 10 28 shows such a model and experiment
for a table top demonstration A laboratory experiment on a chute with a ge

ometry much like that in Fig 10 28 has been performed to test the validity of
the theoretical model in this more complicated situation A simple reference
surface is defined, which consists of an inclined plane ({ = 40°) that is con

nected to a horizontal run out zone (¢ = 0°) by a cylindrical transition zone
(see Fig 39) The x axis is aligned with the direction of steepest descent of
the reference surface and the y axis points in the cross slope direction Super

posed on the inclined section of the chute is a shallow parabolic cross slope
topography, b = y?/(2R) with R = 110 cm, which forms a channel that partly
confines the avalanche motion The inclined parabolic chute lies in the range
x < 175 cm, the plane run out zone lies in the range 215 cm < x < 320 cm
and the transition zone smoothly joins these two regions The partly confined
chute channels the flow and results in significantly longer maximum run out
distances than in an unconfined chute Below we discuss the results of GRAY
et al [123]

The experiment (V02) was performed with quartz chips of a mean diameter
of 2 4 mm (quartz 0), an internal angle of friction, ¢ = 40° and a basal
friction angle, § = 30° The granular material was released from rest on the
parabolic inclined section of the chute by means of a cap having the form of a
hemispherical surface and fitted to the basal chute topography Figure 10 29
shows that, once the cap is opened, the avalanche accelerates and spreads
rapidly in the downslope direction, while it is channelled by the parabolic
cross slope profile As the avalanche enters the run out zone, it decelerates
rapidly and is able to spread out laterally once the partial confinement of the
topography ceases The avalanche comes to rest after 1.79 s

Figure 10 30 shows a comparison of the marginal curves of the experimental
avalanche with the computed topography (shaded area), demonstrating that
the computed speeds of the rear part of the avalanche are considerably un
derpredicted The last panel in Fig 10 30 also shows that the experimental
avalanche has come to rest while the rear part of the computed avalanche
is still in motion The most likely cause for this slow tail motion is that the
basal sliding law is considerably more complicated than simple CouLOMB
dry friction with a constant bed friction angle
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Fig. 10.28. Plexiglass model of a straight parabolic channel at a given inclination
angle merging into a plane Avalanching motion of a bidisperse granular material
from beginning to deposit (For more details, see Fig 2 6) (From [411])
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Fig. 10.29. An experimental image sequence from experiment V02 showing the
deformation of the avalanche at approximately equally spaced time intervals of
0.25 s The sequence begins at (a) and ends at (h) The parabolic channel and
run out plane are constructed from sheet steel and the smooth transition is made
from wood and modelling plaster The entire chute is painted to give it an even
finish The sparkles in dark colour are necessary requirements for photogrammetric
processing (From [123] )
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Fig. 10.30. The computed avalanche thickness is illustrated at five time intervals
using “unrolled” projected curvilinear coordinates (z,y) Contours of equal thickness
are indicated in cm and thickness ranges are differently shaded The time is indicated
in the top left hand corner and all lengths are in cm The solid lines at © = 175
cm and z = 215 cm indicate the position of the transition zone The 40° inclined
parabolic section lies on the left and the horizontal plane on the right of each
panel The line y = 0 is the talweg The thick solid line indicates the position of the
avalanche edge in the laboratory experiment (V02), determined from photographs
(From [123] )
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In order to demonstrate that a change in the bed friction sliding law can at
least qualitatively bring theory and experiment into agreement, the numerical
computations have been repeated using a variable bed friction angle In the
front quarter of the avalanche the bed friction angle is constant as before,
but linearly reduced in the rear according to

1
b0, v 2 ap— o (v —an),

5= 1 1 (10 9)
do —ms ((wf—x)—z(xf—m)), x<xf—1(acf—xT),

where 6y = 30° is the constant bed friction angle, ms = 10° m~"! is the bed
friction reduction factor and x¢ and z, are the positions of the front and
the rear of the avalanche, respectively The avalanche thickness distributions
computed by using the modified bed friction relation (10 9) are illustrated
in Fig 10 31 The reduced bed friction angle in the avalanche tail allows the
rear of the avalanche to accelerate more rapidly under the action of gravity
and the agreement with the experimental boundary is considerably better

WIELAND et al [445] performed a series of laboratory experiments on the
channelised free surface and the variable bed friction angle (10 9) as de
scribed above They extensively discussed the experimental procedures, the
basal topography, initial conditions and measurements, as well as numerical
techniques Here, we will explain one of these experiments and its comparison
with numerical computations For example, experiment (V05) was performed
with round plastic beads (Vestolen) with a mean diameter of 2 3.5 mm, a
basal angle of friction, § = 27°, and an internal angle of friction, ¢ = 33°
The experimental pictures are similar to those of Fig 10 29, so we will not
repeat them here In Fig 10 32, the computed thickness is illustrated at the
time steps as shown in this figure, and the bottom right panel shows a com
parison with the final thickness distribution, which agrees very well with that
predicted (immediately) above

The above reported comparisons between experiments and numerical predic
tions were conducted using the LAGRANGEan integration technique for the
(3 33), (343) and (3 44) in non conservative form Agreement has been good
even for cases in which rapid changes, i e , steep gradients in the topography
of the moving avalanche occurred An example is experiment V04, performed
with marble chips with a mean diameter of 2 4 mm These have quite a
pointed geometry and their surface is considerably rougher than that of the
plastic beads As a result, there is much more interparticle and basal friction,
which is reflected in the higher internal, ¢ = 43°, and basal, § = 33°, friction
angles

Figure 10 33 shows computed results of avalanche thicknesses for the avalanche
from initiation to run out demonstrating in the panel for ¢ = 16.8 and
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Fig. 10.31. Same as in Fig 10 30, but avalanche thickness are computed by using
the modified basal angle of friction (10 9) and a comparison with the experimental
avalanche boundary (V02) (From [123])
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Fig. 10.32. Computed dimensionless avalanche thicknesses for experiment V05
(Vestolen) are illustrated using contour intervals The vertical dashed lines at x =
17.5 and = = 21.5 indicate the position of the transition zone with the 40° inclined
channel to the left and the horizontal run out plane to the right In the bottom right
panel the thickness distribution of the experimental avalanche is illustrated, which
agrees very well with that predicted (immediately) above (From [445])

t = 18.7 that gradients of the topography in the rear part of the avalanche
are very steep, most likely the sign of an internal shock Thus, in further work
shock capturing integration techniques are used, see Chap 12 The numeri
cal scheme can also be used to demonstrate that sidewise confinement (here
caused by the parabolic profile) narrows the geometry of the avalanche both
in motion and at rest as evidenced in Fig 10 34
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Fig. 10.33. Computed dimensionless avalanche thicknesses for experiment V04
(marble) are illustrated as in Fig 10 32 using contour intervals The final experi
mental thickness distribution is shown bottom right (From [445])
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Fig. 10.34. Computed avalanche thickness on a chute without lateral confinement
illustrated at a sequence of time steps The thick solid line shows a comparison with
experiment (V02), which has lateral confinement (From [123])
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Shallow Water (Avalanche) Model It was pointed out earlier that the
SH equations or any one of their extensions are very similar in form to the
shallow water equations of fluid mechanics The theory differs, naturally, with
respect to the coordinate system, the nature of the forcing terms and the drag
relations However, the major differences lie in the assumed constitutive prop
erties and basal topographies One dimensional hydraulic avalanche models
of this kind were put forward by EGLIT [87], but no numerical solutions have
been performed in either one or two dimensions It is, therefore, of consider
able interest to determine how well the shallow water equations can describe
the flow of granular avalanches over complex topography

A two dimensional shallow water avalanche model can be obtained by setting
K, = K, = 1 and performing the computations under otherwise identical
conditions This was done for the conditions of experiment V02 and results of
the computations are shown in Fig 10 35 It is evident from this figure that
under rapid dilatational motion the computed and experimental avalanche
shapes do not differ considerably from one another; however the contracting
computed avalanche differs substantially from that of the experiment The
travel distance is too short and the avalanche spread too wide CoULOMB
frictional behaviour is, therefore, very significant in catching the correct dy
namical behaviour of the avalanche

It is worth mentioning that selecting earth pressure coefficients unequal to
unity (ie, K, # 1 # K,) is tantamount to accepting normal stress effects in
the constitutive relationship Following the retaining wall analogy, we assume
that the smaller active value is associated with extensive motions and the
larger passive value is associated with compressive motions with a jump trac
tion between the two states when the downslope divergence is zero This is
assumed to be the standard behaviour in soil plasticity It is interesting that
an alternative hydraulic formulation with K, = 1 = K, was suggested in the
early Soviet/Russian literature by GRIGORIYAN et al [130, 131, 132, 133],
Kurikovskry and EcLiT [230] and EGLIT [84, 87, 83, 90, 91] This latter
formulation was again taken up by GRAY et al [126] who state that “to date,
there is no compelling experimental evidence to suggest that such a sharp
stress transition [the jump] actually takes place 7 They further state that
“GRAY et al [123] and GRAY [124] have found that this simpler model also
gives promising results in steep flows and in industrial rotating drum flows”
They then show computations of their numerical solutions with their exper
iments for granular bores and flows past a wedge type obstacle, but no flow
close to and forming the deposition in the run out zone Our own computa
tions for the cases analogous but not identical to GRAY et al [126], using
K, # 1 # K,, show similar results in the rapid flow regime, see, e g , Chap
12, to GRAY et al , but we also reproduce the depository geometries, as shown
in the last panel of Fig 10 35 (corresponding to the experimental curve) We
have no conclusive arguments to offer for this behaviour, but argue that
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Fig. 10.35. Computed avalanche thickness using the shallow water avalanche
model illustrated at a sequence of time steps for which V02 experiment photographs

are plotted in dark lines (From [123])
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normal stress effects are likely to play a significant role when the avalanche
transits into the depository mode Here, further research is certainly required

A Laboratory Gully Model So far all talweg geometries were curves in
vertical planes following the direction of steepest descent This allowed the
fastest downhill motion into the run out zone Figure 10 36 shows a laboratory
gully for simulations of granular avalanches where the talweg deviates sinu

soidally from the direction of steepest descent The parabolic channel merges
after 240 cm into the horizontal plane in the foreground and thereby gives up
the parabolic profile A mixture of sand and gravel (40 kg) is released from a
hemispherical plexiglass cap and moves down the gully, obviously while being
diverted by the sidewise sinusoidal deviation of the talweg from the direction
of steepest descent The early longitudinal stretching and the formation of
a tail that still moves when the front of the avalanche has already settled
down are typical Figure 10 37 displays a comparison of this experiment with
computational results, also using the LAGRANGEan integration technique de

veloped in GRAY et al [123] Comparison between theory and experiment is
fair to good

10.5 Avalanches Across Irregular
Three-Dimensional Terrain

The above laboratory experiments were all concerned with “academic” (lab
oratory) situations, ie, idealised geometries of basal topographies that al
low not only straightforward chute construction in the laboratory but also
controlled performance of experiments and, perhaps, easy identification of
causes for the observed behaviour The ultimate test of the theory is, how
ever, obtained with the motion of granular materials across irregular three
dimensional terrain There are complications associated with such flows; the
experimental techniques are generally more involved and the results more
difficult to explain, since certain peculiar behaviour may not be correlated to
a single identifiable cause Such laboratory experiments have been conducted
at the Cascade Volcano Observatory of the US Geological Survey (USGS) by
IVERSON and associates on two different scales: (i) table top experiments of
approximately 1 2 m length (see Fig 10 38) and (i¢) outdoor flume experi
ments of 95 m length and 31° inclination plus approximately 10 m horizontal
deposition area In a series of papers, both dry and water saturated granular
materials were analysed, [74, 75, 191, 192, 194] Here we only report on the
table top experiments conducted with dry granular materials Analogous ex
periments were also performed by McDoOUGALL and HUNGR, PATRA et al
and PITMAN et al [273, 274, 313, 322] Some of their findings will also be
reported here
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Fig. 10.38. Schematic (top) and photograph (bottom) of the miniature flume used
by IVERSON et al to construct dry avalanche experiments (From [74, 194] )

10.5.1 The Table-Top Experiments

IVERSON and collaborators used data from small scale experiments of dry
sand They employed a rectangular flume with a bed of 31.6° inclination,
merging via a curved section with a 10 cm radius of curvature into a horizontal
run out surface In each experiment dry quartz sand with grain diameters
~ 0.5 mm was placed behind a vertical wall, positioned 37 5 cm upslope
from the entrance to the horizontal run out plate The sand was arranged
behind the gate to form a triangular cone (i e , wedge shape) with a horizontal
surface and then discharged suddenly by opening a spring loaded gate In
one type of experiment the gate spanned the entire flume of 20 cm width,
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and in a second type it spanned a slot, 4 cm to 12 cm wide in the centre
of the flume Two bed linings were used One was simply a planar inclined
surface merging into a horizontal plane, and the three dimensionality of the
flow was reached by releasing the material through a slot gate smaller than
the flume width In the other, the steep part of the flume was fitted with
a custom formed insert that provided an irregular surface Rotation of the
insert enabled experimentation with two distinct topographic configurations
of the chute and the kind of materials used as surface coatings Precautions
had to be taken to avoid electrostatic adhesive forces between the grains and
the bed linings Details as to how the gate, holding the material in its initial
position, was opened to initiate the motion are not presented here

The data acquired in the avalanche experiment consisted of sequential pho
tographic snapshots of the avalanche geometry, recorded in vertical pho
tographs The three dimensional geometry of the avalanching masses was
mapped by using the following cartographic technique Horizontal sheets of
light from refracted laser beams were projected onto the bare bed (for cali
bration reasons) and the moving granular mass at 5 mm intervals The form
of the illuminated lines allowed, via post data processing, the construction
of the digitised height distribution of the moving granular mass at the time
slices when photographs were taken” (see Fig 10 39)

In what follows we only report on a fraction of the results reported in DEN
LINGER and IVERSON [74] and IVERSON et al [194] Figure 10 40 illustrates
results for the flow of quartz grains with 0 1 0 5 mm diameter down an in
clined plane from an initial wedge shaped silo through a 4 cm wide gate
in the middle of the 20 cm wide flume The left column displays isopachs
(lines of equal thickness) at 1 mm intervals as revealed from the experiments,
the right column shows those computed from the theory and its numerical
implementation ® “The narrow gate impeded sand discharge and caused pro
T In our own experiments we used methods of photogrammetry but the implied
experimental method did not achieve sufficient accuracy except in the standstill
deposit, see WIELAND et al [445] The light sheet method was also used by
McDonNALD and ANDERSON and POULIQUEN and FORTERRE [271, 330)]

The theoretical model on which the numerical method is based does not match
the SH type equations (see [74]) For instance, the equations are referred to the
horizontal and vertical directions of a Cartesian coordinate system and define
the shallowness with respect to the vertical direction For this reason, the
hydrostatic pressure assumption in the z direction cannot be maintained, and
vertical acceleration needs to accommodate for the fact that the flow is guided
by the inclined surface Furthermore, DENLINGER and IVERSON [74] use an
earth pressure closure different from ours All these differences make it rather
difficult to identify the true differences of the two models Computationally,
DENLINGER and IVERSON use a shock capturing finite volume/finite element
procedure in which the flux discretisation is based on a wave propagation form
of GopuNov’s method as outlined by LEVEQUE [250] This difference in the
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Fig. 10.39. Miniature flume used by IVERSON et al , illuminated from the left by
horizontal light sheets Each light sheet generates an illuminated line on the surface
of the topography from which the topography of the moving granular avalanche can
be constructed (From [194] )

nounced cross slope momentum transport as the flow converged and thus
divided while passing through the gate opening Frictional energy dissipation
associated with this convergence and divergence caused the flow to move [as
a slow thin sheet]” [192] Completion of the deposit required approximately
5 s, which is relatively long and due to the slow and continuous mass release
from the granular wedge through the gate DENLINGER and IVERSON [74]
state that the model predictions compare well with the results We quote
from their paper [194]:

“Flow timing, depth and depositional pattern all match approximately The
largest discrepancies between model predictions and data occur as a result
of very thin flow (=1 grain diameter thick), where the COULOMB continuum
model is inappropriate For example, much of the upward tapering margin of
the measured deposit resulted from accumulation of saltating grains, which
are not simulated by the model Despite such discrepancies the final deposit
shape and time of deposition shown in Fig 10 40 exhibit relatively small
errors Model predictions for the narrow gate leave sand stranded behind the
vertical barrier at 62 5 cm, just as measured in experiments However, the
model predicts that the heap of sand behind the gate undergoes smoothing
and stretching due to numerical creep that results from imperfect balancing of
static driving and resisting forces The same numerical creep allows a trickle

numerical solution procedure in comparison to our own is probably less critical
than the differences in the theoretical approaches
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Small Flume Experiment Numerical Model
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Fig. 10.40. Maps of sand comparing experimental data and model predictions for
flow of dry sand released instantaneously from a 4 cm gate in the experimental
set up of Fig 10 38 The basal surface was an inclined plane (31.6°) merging into a
horizontal plane The gate opened at time zero and contours depict 1 mm isopachs
of sand thickness normal to the bed The left column shows the experimental results
and the right column the computed ones (From [74] )

of sand to escape from behind the barrier even after deposition has effectively
ceased, but this shortcoming has little effect on the final deposit geometry”

Judging visually the isopach sequences of Fig 10 40 between the experiments
and the numerical output, it is probably fair to say that the principal charac
teristics of the avalanche evolution are adequately reproduced by the model
The final deposition of the computed avalanche is larger in its areal extent in
the computational results than in the experiment The cause for this might
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be that the erosion of the wedge and the funnel formed immediately above
the gate must be different in the experiment and the computations A bet
ter judgement of the performance of the model will most likely result from
controlled initial conditions

In Fig 10 41 we compare computational results from our model equations
(PUDASAINT et al [342]) with the measurement data of DENLINGER and
IVERSON [74] where the gate of the channel spanned the entire flume of 20 cm
width in which 1 mm contour isopachs are plotted normal to the bed sur
face Comparison is made at five time slices that include the entire avalanche
motion The most important aspects of the model performance can be seen
when comparing the panels on the left and right columns In both cases,
it took 15 s for the mass to complete deposition Predicted timing, depth,
geometry, front and tail positions, and final deposit of the granular sand fit
almost exactly with the measured data of DENLINGER and IVERSON Con
spicuous boundary layer effects, mainly in the tail side of the debris body,
can be seen at time 0 93 s in the experimental result Otherwise, this effect
is small or likely to be negligible Shocks form at the tail side of the body
in the deposits, as seen at times 0 93 s and 1 50 s in the experimental pan
els They are accurately predicted by our model simulations Qualitatively,
similar results were also obtained by DENLINGER and IVERSON, [74]

IVERSON et al [194] also conducted experiments with the miniature flume
when its steep part was filled with an urethane insert that provided an ir
regular basal surface Their paper reports on two experiments with grain
diameters of 05 1 0 mm and 025 05 mm and head gate widths of 12 cm
and 4 cm, respectively We only report here about the second experiment and
give the results from computations Except for the addition of the irregular
topography in the steep part of the flume, experimental conditions are the
same as stated before

Figure 10 42 shows time slices of the avalanche evolution for the experiment
(left) and as determined by the authors’ numerical implementation (right);
details are described in the figure caption Model predictions match many of
the details as well as the overall behaviour of the avalanche in experiment The
effects of topographic forcing on the three dimensional form, and lateral limits
of the avalanche are well predicted, especially at early times At ¢ > 1.0 s
“differences in the geometry of observed and computed deposits result largely
from dispersal of the distal margin due to sand saltation in the experiments”
[194]

IVERSON et al [194] express their opinion that their model offers advantages
over the SH equations through the more flexible three dimensionality and
their use of continuous change of the earth pressure coefficients They also
state that “the accuracy of their predictions lends support to the SAVAGE
and HUTTER [375] hypothesis that a simple COULOMB proportionality (7 =
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Fig. 10.41. Maps of sand comparing experimental data and model predictions for
flow of dry sand released instantaneously from a 20 cm gate in the experimental
set up of Fig 10 38 (fop panel) The basal surface was an inclined plane (31.6°)
merging into a horizontal plane The gate opened at time zero and contours depict
1 mm isopachs of sand thickness normal to the bed The left column shows the
experimental results [74], the right column the computed ones [342] (From [74]

and [342] )
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Fig. 10.42. Isopach maps of the vertical avalanche thickness h, comparing data
(left) and model predictions (right) for experiment (B) in IVERSON et al [194]
The aperture width of the flume is 4 cm, the shape of the quartz grains is rounded
with 0 25 0 5 mm diameter, the sand mass is 476 5 g, the basal friction angle of the
sand on urethane is 22.45 + 0.66° and the internal friction angle is 39.39 + 0.23°
The head gate is opened at t =0 s (From [194] )

otan¢) between shear stress 7 and normal stress o is a robust feature of
granular avalanches This finding may seem surprising”, since typical shear
rates in this experiment are u/H = 200 s~ !, which is considerably larger than
shear rates that may be typical of most geophysical avalanches (IVERSON and
VALLANCE [193]) and are far longer than the shear rates of classical quasi
static COULOMB behaviour This finding also agrees with the corresponding
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findings of ANCEY and MEUNIER [7] deduced from snow avalanche back
analyses and discounts the conjectural approach of GRAY et al [126], who
advocate a classical hydraulic approach

10.5.2 Further Verification of the Model Equations

The Geotechnical Engineering Group at UBC Almost simultaneously
with the developments of the model equations of the research group at the
US Geological Survey, HUNGR and associates from the University of British
Columbia developed their own continuum model and verified it with lab
oratory experiments and with a back analysis of the Frank Slide, Turtle
Mountain, Canada, that claimed 70 lives in 1903 Papers of significance are
[163, 164, 165, 166, 167, 168, 169, 273, 274] The derivation of the model
equations that reduce essentially to the SH type equations are presented by
McDoucALL and HUNGR in [273] This paper also presents the integration
scheme for numerically computing avalanche flow on arbitrary topography
and compares the results with photographs from laboratory avalanches and
a large scale landslide McDoucALL and HUNGR aim at the derivation of a
model obeying the following requirements [273]:

“The model should allow for non hydrostatic, anisotropic® internal stress,
which may be controlled by an internal rheology different from the basal
rheology

It should allow for entrainment of material along the slide path

It should allow selection of a variety of material rheologies, which can vary
along the slide path and/or within the slide mass

It should permit very long displacements and possible branching or decou
pling of the slide mass

It should be user friendly and efficient in order to facilitate rapid back
analysis and extensive calibration against real events”

Their paper is an attempt towards this end; they acknowledge that the models
of IVERSON [191], IVERSON and DENLINGER [192] and DENLINGER and IVER

SON [74] that incorporate constitutive relationships adapted from grain fluid
mixture theory have successfully simulated controlled flume experiments, but
they also express their desire for a simpler semi empirical approach based on
the concept of the “equivalent fluid”, defined by HUNGR [163] and used tacitly,
®  What is meant here is the deviation of the total stress from the isotropic fluid
stress that is expressible as a pressure alone This is contrary to the assumption
of fluid behaviour in the Russian literature [84, 85, 86, 87, 130, 131, 132, 230]
and in the more recent literature, GRAY et al [126] This requirement of an
anisotropic stress tensor exhibiting normal stress effects is deeply rooted in ex

perimental evidence of soil mechanics and has indirectly also been corroborated
by the results displayed in Fig 10 35 [123]
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e g, by a number of other researchers (see, e g, SOUSSA and VOIGHT [401],
O’BRIEN et al [305], RICKENMANN and KOCH [355])

The derivation of the governing equations follows an ad hoc engineering ap
proach, uses in each point a local Cartesian coordinate system, employs the
hydraulic pressure assumption and incorporates entrainment of material from
the ground Interestingly, in the hydrostatic pressure assumption, perpendic
ular to the base the centripetal acceleration due to the downhill velocity is
accounted for McDOUGALL and HUNGR [273] consider with this exactly the
dominant term of the CHRISTOFFEL symbols arising due to the curvilinear
ity of the coordinates It agrees with the curvature term that survives in
our formulation, when the shallowness approximation is introduced and only
first order and second order terms in the shallowness parameter are retained

The stress parameterisation in MCDOUGALL and HUNGR’s [273] model is
based on RANKINE’s earth pressure theory and expresses 044, 0yy, Tay, ... i
terms of o,, via

o =Kp0.:, oy =Ky0.., Toy = Kpyoss, ... (10 10)

The earth pressure coefficients K, K, Ky, ... are defined by the tangential
strain state prevailing within the deforming landslide This strain state is
described by the symmetric part of the (z,y) components of the velocity

gradient
ou 1 (ou ov
Jor 2\ 0y O

symgrad, ) (u,v) = ,

< v
m -
which approximately equals
0
o
symgrad, ,(u,v) = 8:1;) o (10 11)
~ a—y’

so that K, = 0 It follows that o, is close to a principal stress, implying the
same earth pressure coefficient as in all formulations of the SH type equations
considered in this book The earth pressure coefficients used by McDOUGALL
and HUNGR now take forms for which asymptotic values are those of our the
ory Nevertheless, the two formulations still differ slightly in the following
respect In the formulation of PUDASAINT and HUTTER and PUDASAINI et
al [335, 342] the approximation (10 11) is employed for x pointing in the
direction of the talweg and y perpendicular to it, thereby ignoring the shear
ing vy Thus, the zy shearing is assumed to be small in comparison to the
stretchings du/0x and dv/dy McDoUGALL and HUNGR employ a more local
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criterion for which their ~,, is assumed to be negligible Both procedures are
approximations, but they are not the same More correct than both would be
to compute locally the eigenvalues and eigenvectors of symgrad<$7y)(u, v) and
to define these as directors for a local coordinate system and afterwards rotate
everything back to whichever orthogonal coordinate system used HUTTER
has explicity spelled this out in [184]

The discretisation of the equations used by McDoUGALL and HUNGR [273]
is a LAGRANGEan integration technique as demonstrated in Chaps 7 and 8
Their model follows the same discretisation approach as ours, but employs
a meshless technique in which mass conservation is implicitly satisfied by
interpolation The method is based on smoothed particle hydrodynamics,
which was developed for the simulation of astrophysical phenomena, see Lucy
[256], GINGOLD and MONAGHAN [114], and has been adapted for depth
averaged analysis of free surface flows, see WANG and SHEN [438] For reviews,
see, e g, BENZ [32] and MONAGHAN [286, 287] We shall not go into any
details here

McDoUGALL and HUNGR checked their program against the classical dam
break problem (STOKER [405]), its generalisation that accounts for bed slope
and basal friction (MANGENEY et al [263]) and one of the two dimensional
experiments of GRAY et al [123] They found very good agreement with the
analytical solutions of the first two and good coincidence with the experiment
for the latter They state that, since their model is not shock capturing and a
shock arises in the experiment, improvement may be achieved by adequately
altering the numerical software

Their laboratory experiment was a deflection run out experiment conducted
with dry polystere beads In their own words [273]: “The material was released
from a box onto a chute with variable slope (to control the approach velocity),
ran out onto a 20° approach slope and was defected by a dyke oriented
obliquely to the flow direction The deflection angle, «; (plan angle between
the initial direction of motion and the intersection of the dyke and approach
planes), and the dyke dip angle, as, were variable The sliding surface of
smooth sheet metal was marked with a 10 cm square grid A photograph of
the laboratory apparatus is shown in Figure 10 43

A simulation of an experiment configured with a; = 60° and as = 33° is
shown in Figure 10 44 The box used to contain and release the material at
start up could not be replicated by a digital three dimensional sliding surface,
due to its infinitely sloping sidewalls Therefore, an imaginary release chute
and the initial distribution of material were used by the model By trial
and error, the position, width and velocity of the simulated flow front were
synchronised with the experiment at the start of the 20° approach slope The
model was calibrated to match the maximum run up distance on the dyke
plane using a frictional rheology with § = 20° and ¢ = 25° These friction
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Fig. 10.43. Photograph of the laboratory apparatus at the University of British
Columbia used for deflected run out experiments (From [273])

angles are within a small range of values measured in separate laboratory tests
by placing a conical pile of beads on a sheet metal plane and, respectively:
(1) measuring the tilt angle that initiates basal sliding and (i¢) measuring
the angle of repose of the material itself The model accurately simulates the
position of the flow front and the general trajectory of the flow along the
dyke plane

With rheological parameters calibrated on the basis of the previous test
(6 = 20° and ¢ = 25°), the model was used to predict the maximum run up
distances observed using three other experimental configurations A com
parison of observed and predicted maximum run up distances is shown in
Fig 1045 The calibrated model produces accurate predictions of maximum
run up distance, as well as the position and distribution of slide material at
that instant This is important as it demonstrates the ability of the calibrated
model to make accurate first order predictions of landslide motion involving
geometries different from that used for calibration” [273]

McDoudGALL and HUNGR also performed a back analysis of a real, historic
landslide to see whether the model equations adequately reproduced the soil
mass movement in the landslide They use the Frank Slide in Canada We
again quote from their paper [273]
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Fig. 10.44. Analysis of a deflected run out experiment using o; = 60° and
a2 = 33° The experimental and simulated flow positions are shown at 02 s in
tervals and the flow depth contours are at 10 mm intervals The planes are marked
with a 10 cm square grid (From [273])
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Fig. 10.45. Comparison of observed and predicted maximum run up distances
using three other experimental configurations: a) a; = 45° and s = 33° b) a1 =
45° and ap = 45° ¢) a1 = 60° and @z = 45° The experimental and simulated flow
positions are shown at the point of maximum run up on the dyke plane and the
flow depth contours are at 10 mm intervals The planes are marked with a 10 cm
square grid (From [273])

“On April 29, 1903 approximately 30 million m? of rock descended Turtle
Mountain into the Crowsnest River valley, partially burying the town of
Frank, Alberta and killing about 70 people It was Canada’s worst landslide
disaster (EVANS [95])

The analysis of the Frank Slide presented below is preliminary, in that no at
tempt was made to optimise the input data and the calibration of the model,
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or to describe the detailed results The simulation is shown in Fig 10 46
A detailed digital elevation model of the present day topography was pro
vided by the Geological Survey of Canada With reference to historical pho
tos and maps, the topography of the deposition zone was modified to ap
proximate the preslide condition, by removing approximately 30 million m?
from the area according to estimated deposit depths The starting position
of the 30 million m? slide mass was similarly estimated This modification,
while subjective, is not unduly significant for the performance of the frictional
model, as the introduced elevation changes affect the slope of the mean energy
line of the model by less than 1%

The model provided a good match of the general extent and distribution of
the final deposit using a frictional rheology with § = 14° and ¢ = 40° The
low value of the bulk basal friction angle implies the presence of pore water
pressure in the flowing material This result is in close agreement with the
analysis of the Frank Slide reported by HUNGR and EVANS [164]

The results of the preliminary analysis resemble the real event in a number
of ways The flow comes to rest within 100 s It spreads thinly across the
opposite side of the valley and banks slightly right The bulk of the flow is
deposited proximally on the opposite side of the Crowsnest River, while the
distal flow margin is influenced by the terraced valley topography, running
up and back down the slopes and depositing on the terraces More detailed
evaluation of these results, tests with different rheologies and further calibra
tion of the model could undoubtedly yield even better correspondence with
the prototype” [273]

In a companion paper [274], McDoucALL and HUNGR incorporated effects
of entraining loose material into the moving avalanche from the bottom If
M = pV is the rate of mass entrained per unit area at the base (M has
the dimension of density x velocity and V' that of a velocity), then this
quantity enters the balance of mass as a source term and a similar term,
multiplied with v, enters the momentum balance equations as a resisting
force (because the entrained mass must be accelerated) Parameterisation of
M is the crucial closure condition of this model; indeed we regard it as one of
the grand unsolved problems of landslide/avalanche dynamics McDOUGALL
and HUNGR motivate their parameterisation from early turbulent closure
conditions in jet, plume and boundary layer flows, and write

V =E(lvlh), (10 12)

where |v| is the modulus of the depth averaged velocity and h is the avalanche
depth, whilst E is a parameter that they assume as a function of space

The event is the 1999 Nomash River rock slide debris avalanche in British
Columbia This landslide began with the collapse of 300,000 m? of crystalline
limestone, with the head scarp located about 430 m above the river on the
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t=0s

Fig. 10.46. Analysis of the Frank Slide Plane and oblique views of the simulated
flow position at 20 s intervals The flow depth contours are at 5 m intervals and
the sliding surface contours are at 50 m intervals The thick solid line indicates the
extent of the real event (digitised from Canada Department of Mines, 1917 [58])
(From [273])
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Fig. 10.47. Oblique aerial views of the 1999 Nomash River rock slide debris
avalanche in British Columbia, Canada (photographs courtesy of D Ayotte) Top
photograph looking down valley, bottom photograph showing the erosion in the
track (From [274])
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Fig. 10.48. Simulation of the Nomash River landslide accounting for entrainment
of material from the source slope The surface elevation contours are shown at 20 m
intervals Dashed lines show the computed trimline (From [274] )

western side of the narrow V shaped glacial valley (see Fig 1047) A dry
granular avalanche of this magnitude is likely not to be able to run down
the entire valley for more than a kilometre, but will form a “steep talus like
deposit at the foot of the source slope” [274] as has been corroborated by Mc¢

DoucALL and HUNGR’s computations for the entrainment free case Thus,
an entrainment region had to be introduced for which the true distribution
of the parameter E had to be estimated such that an additional run out of
360,000 m> of saturated, fine grained surfacial deposits would be mobilised

By trial and error McDOUGALL and HUNGR found £ = 1.9 x 1073 m~!
applied in the quadrilateral grey zone of Fig 10 48, which shows both the
simulated and the observed trimlines

A disadvantage of this model is that the entrainment constant E was de
termined from estimated observations of entrained mass These estimates
are bound to be inaccurate and tuned to some extent to generate the de
sired results This will remain so until a reliable entrainment model is given
that allows quantification from the material in the ground prior to a possi
ble avalanche event Here one has learned that entrainment may change the
run out significantly

The Geophysical Mass Flow Group Model The interdisciplinary Geo
physical Mass Flow Group (GMFG) of the New York State University at
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Fig. 10.49. Comparison of simulated and measured trimlines for the Nomash River
landslide The surface elevation contours are shown at 20 m intervals (From [274] )

Buffalo, consisting of mathematicians, numerical analysts, engineers, geolo
gists and geographers, designed models for dry as well as water saturated
granular avalanches, developed their own computational software TITAN2D
[467] and applied it to situations of laboratory scale as well as field avalanches
In a series of papers [313, 318, 320, 321, 322, 323, 386, 387, 423] they intro
duced their model to the interdisciplinary science community

Their avalanche model for dry granular avalanches is identical to that of
IVERSON and others [74, 75, 191, 192, 194] and differs in its essential physics
from the extended SH model in the fact that it “preserves the rotational
symmetry” by setting

Orz = Oyy = Koct/pasOz= (10 13)

and selecting the branch of the earth pressure coefficient according to whether

ou  Ov
97 + oy (10 14)
is positive or negative In other words, the two earth pressure coefficients
for 0, and oy, have the same value They state that the earth pressure
coefficients in our formulation violate the objectivity requirements This is
correct, but we believe the statement emphasises the different point Many
approximations of objective physical models may become inobjective by the
very approximation, e g, linear elasticity So let us try to state the differ
ences more clearly: the difference of the stress closure in this book (including
McDoUGALL and HUNGR’s closure) and that of the groups at the GMFG is
that the former allow stress anisotropies or normal stress effects, whereas the
latter do not; (in this regard) they are closer to a hydrodynamic model °

10 Of course, there are also other differences For instance, the (z,y) coordinates
in this book are not measured in the principal directions of the two dimensional
rate of the strain tensor They are only nearly so, if the downhill velocity com
ponent is much larger than the cross slope velocity component Similarly, the



10 5 Avalanches Across Irregular Three Dimensional Terrain 457

PITMAN et al [322] look at a granular flow down an inclined plane abruptly
merging at 1000 m into a horizontal surface They show pictures from compu
tational results, but do not compare them with experimental findings They
also state that with TITAN2D they can well reproduce the two dimensional
similarity solutions of HUTTER et al [177] Somewhat more explicit is a
comparison of their computational predictions and a laboratory experiment
reported in PATRA et al [313] Their laboratory experiments were conducted
using sand flows released on a masonite plane The following statement is
taken from their paper: “It measured 190 cm x 60 cm, and consisted of two
parts The first section was tilted at angles of 23.9° 44.3° with an adjustable
mount Particles were released instantaneously on the upper part of this sec
tion either from a smaller spherical or a larger cylindrical container The
tilted section was joined to a second section that dipped from 1° 2° down
stream The mass released from the spherical cap was ~ 43 g, that from
the cylindrical container was ~ 425 g Particles were playground sand grains
sieved so that only 177 250 um fraction was used The basal friction angle
for the material was tested by a number of methods to lie at 18° 29° The
large variance resulted from differences in the test methodology The basal
maximum angle of stability was 36° Both the internal friction angle and the
internal maximum angle of stability were 37.3° The propagation of the sand
was measured by videotaping while a horizontal grid was projected onto the
plane to aid in visualisation Video frames were then grapped with a digital
frame grabber, and the sand propagation was measured directly from the
frames by measuring the lateral spreading, as well as the advance of the head
and tail of the flowing mass Because of the difficulty in ascertaining the edge
of the flow during time steps when the material was thinly spread, and be
cause of geometrical distortions, the error in the measurements of positions
of the flow is estimated to range from 1— ~ 2.5 cm

A typical experiment proceeded as follows (Fig 10 50) The video camera
was started and the operator then filled the starting container with sand as
the base was placed flush to the test plane The container was removed with
a smooth motion to avoid undue disturbance of the particles The test mass
then began propagation downslope, with the head initially moving at a no
ticeably greater speed than the tail, which appeared to be stationary for a
short time The sand grains spread laterally as well as downstream, so that
the mass rapidly attained a teardrop shape With time, this teardrop shape
elongated and spread laterally, although the tail did ultimately propagate
downstream Once on the lower test section, the particles in the head began
to deposit in a teardrop shape that was noticeably less elongated in the down
stream direction than the actively propagating mass The final disposition of

(z,y) coordinates of the USGS and GMFG groups are horizontal, but should
be locally tangent to the basal surface Therefore, requesting rotational invari
ance relative to these coordinates is as inappropriate as may be the violation
of the objectivity of the SH procedure
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Fig. 10.50. Experimental set up and example runs a) Schematic diagram traced
from an image showing the positions of masonite planes and sandpile masses The
angle of the plane was measured with a digital construction level b) Starting of
experiment at 44.3° with a mass of 4253 g Image taken 023 s after start of
experiment c¢) Final position of the sandpile from experiment at 31.8°, with a mass
of 42511 g Image taken 3 13 s after start of experiment d) Final position of
the sandpile from experiment at 44.3° (as part b) Image taken 126 s after start
of experiment Note the shorter time to the final position, and more distal final
position than in part ¢ The final sandpile is outlined in yellow for visualisation
(From [313] )

the mass resembled a conic section with its base on the lower test section and
its apex at some height on the upper test section that depended on the slope
angle of the upper test section The only exception to this geometry was in
experiments at angles within the range of the basal friction angle, in which
case the mass was arrested on the upper test section” [313]

PATRA et al [313] also show comparison of their table top experiments with
numerical output Figures 10 51a,b show this sample comparison of the flow
simulations with the experiments for the case of a ~ 425 g mass and slopes
of 38.5° They state that the plots show good qualitative comparison of the
evolving pile shape, speed and run out distance, if an offset of +0.35 is applied
to the numerical results When compared with earlier findings, the results
of Fig 10 51 are at best fair Reasons by PATRA et al are given but not
scrutinised Since the basic physics of the model of the USGS and GMFG
groups are similar, and since the results of the comparisons between the
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Fig. 10.51. Simulated and experimental observations of the front and tail of a pile
of granular material sliding down a flat plane inclined at 38.5° The propagation of
the experimental and numerical flows matches well with a time offset of 0 3 s added
to the numerical flow a) Propagation in the downslope direction as indicated by
the position of flow head and tail b) Propagation in the cross slope direction as
indicated by the width, and extension and elongation of the pile as indicated by
the difference in head and tail positions (From [313])
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model and computations of our models and the model of McDOUGALL and
HUNGR are more detailed and appear to be more convincing, a benchmark
comparison would be helpful

The group GMFG (University at Buffalo) has also performed computations
of mass flow from volcanoes on real topography One example is the spreading
of an avalanche down the mountain flanks of Volcan de Colima in Mexico, the
other is the flow down Little Tahoma Peak on Mount Rainier, Washington
However, no comparison with independently determined debris depositions
from a real event has been made so far



11 Particle Image Velocimetry
for Free Surface Flow Avalanches

11.1 Introduction

Following the numerical simulations and the results from the experiments
presented in the previous chapters, we continue with the validation of the
theory by means of modern and different laboratory avalanche experiments
In this chapter we will particularly focus on wvelocity measurements The ve
locity and depth distributions are crucial in describing the dynamics and
drawing inferences about the flow behaviour of an avalanche Our primary
task in this and the following chapter is the measurement of these quantities
and their comparison with theoretical predictions We are mainly interested
in measuring velocity distributions for unsteady free surface flows of finite
mass avalanches

The experimental method that will be described and applied here is the
so called particle image velocimetry (PIV) technique with which the velocity
field of the surface in a granular avalanche can be measured This is an optical
measuring system The basic idea is as follows: A part of or the whole surface
of a flowing granular avalanche is illuminated twice, at time ¢ and time ¢+ 4
Then the two pictures, called “frame A” and “frame B”, are captured by a
CCD (charge coupled devices) camera “Displacements” of identifiable points
of the moving avalanche are calculated by comparing frame A and frame B via
pattern recognition The velocity of such a point is simply its displacement
divided by the time difference & between both frames !

We intend to implement the PIV system to measure dynamical quantities
such as the velocity distribution and geometry of an unsteady and free surface
flow of granular avalanches over curved surfaces In the following we consider
the flow without lateral confinement on an inclined plane that merges con
tinuously into the horizontal run out zone To measure the velocity of such
an avalanche, which is released from a hemispherical cap and flows down an
inclined surface, a two dimensional PIV system is used Particularly, we are
interested in the magnitude of the surface velocity over the avalanche Fur
thermore, we intend to obtain information about the velocity profile through

! Note that some parts of this chapter closely follow [83, 334]
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the depth by simultaneous measurement of the velocity from the surface and
the base of the chute The form of the velocity profile through the depth
influences the factor in front of the non linear convective terms in the equa
tions of motion This factor is unity if the profile is uniform and 6/5 if it is
parabolic, see [183] In addition, knowledge about this depth profile provides
general information of the physics of granular materials It may, for exam
ple, help us to answer the question as to under which flow conditions the
granular material behaves more fluid like or more solid like and how these
conditions can be best mathematically described [83, 334] Another impor
tant information is the development of the velocity field at the onset of the
avalanche motion and during its settling in the deposition zone where the
avalanche comes to rest The former flow situation may provide information
about the initial conditions, which are particularly important for numerical
simulations, whereas the latter is of practical importance for determining the
run out distance

11.2 Particle Image Velocimetry (PIV) Technique

At first, we briefly review some basic theoretical aspects of the PIV system
Some details are taken from ECKART et al , RAFFEL et al and PUDASAINT et
al [83, 334, 343, 352] and TSTI’s manual for PIV [468] The PIV system is an
optical system that essentially interprets differences in light intensities as a
pattern The use of a transparent fluid is the common case in PIV To generate
a pattern in the transparent fluid, small non transparent tracer particles are
seeded in the fluid The PIV theory is based primarily on two important
concepts: Firstly, the image intensity field and, secondly, the cross correlation
function The function describing the pattern mathematically is the image
intensity field Particular spots of brightness are interpreted as grey scale
patterns that, in general, move Such a moving pattern can most easily be
detected by comparing two consecutive frames captured by a camera Then,
the second task of the system is to decide which displacement (and hence
velocity) is “correct” among a certain set of possible displacements This
can be mathematically accomplished by constructing the cross correlation
function between two consecutive brightness distributions To this end, it is
necessary to detect both a pattern on frame A and frame B, and the difference
between the patterns obtained from the two frames

The geometric imaging scheme is sketched in Fig 11 1 The whole region of
interest (here the light sheet) in the three dimensional physical space with
coordinates X,Y,Z is subdivided into smaller regions, the so called “inter

rogation volumes” Such a volume is mapped with the imaging lens onto the
“interrogation area” in the two dimensional image plane with the coordinates
x,y,z For simplicity, in the following the phrase “interrogation spot” will be
used for either interrogation volume or interrogation area
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Fig. 11.1. Sketch of the geometric imaging arrangement (From [352] )

11.2.1 Image Intensity Field

For each of the interrogation spots, the image intensity field assigns to each
point in the image plane a scalar value that quantifies the light intensity of
the corresponding point in the physical space This light intensity depends
on many factors, in particular the illumination, but also on the physical
properties of the lens and the camera However, for a series of experiments
these latter influences can be kept constant The image intensity field maps
the light energy of an individual particle in physical space (ie, the tracer
particles in the observed region of the flow) into an intensity value in the
image plane Mathematically, this function can be viewed as a transformation
between two spaces It is basically a convolution of the transfer function
responsible for the determination of the “effective” light energy of one particle
and the point spread function describing the optical behaviour of the lens

The image intensity fields I (x,T) and I’ (x,I' + D) at times ¢ and ¢ + 4
are defined, respectively, as follows:
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N
I(x,T) = ZVO(X-)T(x—xi), (11 1)
~
I'(x,T +D) = ZVO’X +D)7(x—x; —d), (11 2)

where I' = (X, X, ..., X ) denotes the positions of the N different (tracer)
particles in the (three dimensional) physical space, x the position in the (two
dimensional) image plane, D the displacement in the physical space (D =
X! —X;), d the displacement in the image plane, Vj the transfer function
and 7 the point spread function of the lens

In this way, one obtains a field of numbers in the interrogation area for each
pixel and each instant of time These numbers may be considered as grey
values, and the whole set may be interpreted as a grey scale pattern [83] Tt
is in general moving and/or deforming (i e , a function of time) However, it
is common practice to assume that all points in this spot are assigned the
same velocity, i e , this pattern moves “rigidly” within the interrogation spot

11.2.2 Cross-Correlation Function
The cross correlation function Ry (s, T, D) is defined as the convolution

1
Rrp (s,T,D) = 04_1/ I(x,T)I'(x+s,T+D)dx

ZVO D Vi (X +D)/T(xfxi)r(xijstfd)dx, (11 3)

ar

where «; denotes the interrogation area and s the separation vector in the
correlation plane The function Rjj essentially calculates possible displace
ments by correlating all “grey values” from the first frame (intensity field I)
with all “grey values” from the second frame (intensity field I’), where the
separation vector is the independent variable that is to be varied To make
this clear, consider a simple example as illustrated in Fig 11 2 Suppose that
three particles are located at x;, xo and x3 in an interrogation spot at time ¢,
ie, picture [ in Fig 11 2a By the time ¢t + A , they have moved to positions
x'1, x'5 and x's in picture I of Fig 11 2a In passing we note that x's is
not inside the interrogation spot This is called “loss of pairs” However, the
cross correlation function R;;» shown in Fig 11 2b is calculated by taking
all possible displacements regardless of whether the correct particles are cor
related with each other or not, ie, if the particle at x; has moved to x’3,
then the displacement is x’3 —x; and so on Four of the six possible displace
ments occur only once, but x'; — x; = x'3 — x3 = d occurs twice Thus, the
displacement d is the most likely displacement
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Fig. 11.2. a) Image intensity fields I and I’ at times ¢ and ¢’ = t+ A , respectively
b) The corresponding cross correlation of all possible displacements (From [352] )

Rp

Fig. 11.3. An example of the cross correlation plane illustrating the correlation of
identical particle images Rp and the errors Rc + Rr (From [352])

R, can be decomposed into three parts (see [211]):
R,y (s,I',D) = Rp(s,I'D)+ (Rc (s,I',D) + Rr (s, I',D)), (114)

where Rp is the correlation of identical particle images (terms i = j), R¢
the convolution of the mean intensities (terms i # j) and Rp the fluctu
ating noise (terms ¢ # j) This means that Rc + Rr produce the errors,
whereas Rp is the correct value that is sought Figure 11 3 shows an im
age of the cross correlation plane Rp corresponds to the highest value of
R, in the correlation plane called “first peak” The coordinates s, and s,
are the separations in the  and the y directions, respectively This picture
can be read as follows: The most likely displacement is the displacement
d = (s+(Rp),sy(Rp)), where s, ,(Rp) denote the coordinates of Rp in the
cross correlation plane The quality of this measurement is usually estimated
by determining the ratio of the value of the first peak divided by the value of
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the second tallest peak (called first noise peak, the tallest peak of the “noise”
Rec + Rp): A high ratio means high and a low ratio means low reliability of
the measurements

11.2.3 Spatial Resolution

It is to be noted that only one displacement vector is calculated within one
interrogation spot The velocity vector is simply the displacement vector di
vided by the time delay 4 between two frames It must hence be viewed as
an average velocity vector of the particles inside the interrogation spot To
increase the spatial accuracy, especially for flows with strong displacement
gradients, the interrogation spot size must be chosen sufficiently small Com
mon values are 32 x 32 and 64 x 64, for example If the camera resolution is
1280 x 1024 pixels and the observed region fits the whole image zone, then
1280/32 x 1024/32 = 1280 and 1280/64 x 1024/64 = 320 velocity vectors are
calculated for interrogation spot sizes of 32 x 32 and 64 X 64, respectively,
see e g , [468]

11.2.4 Summary of the PIV System

The mathematical procedure of the PIV system can be summarised as follows,
see, e g , ECKART et al and PUDASAINI et al [83, 334]:

Subdivide the whole area/image into interrogation spots

Calculate the image intensity fields at time ¢ and ¢t + 4 for one interroga
tion spot

Calculate the correlation between these image intensity fields for one given
separation

The cross correlation plane is built by the correlation values of all possible
separations

The most likely displacement is the separation for which the correlation
function has the highest value

Repeat the procedure for each interrogation spot

11.3 Experimental Set-Up for Granular Avalanches

In this section, the PIV set up for granular avalanches flowing down inclined
surfaces is described Firstly, the “usual” PIV set up for transparent fluids is
introduced Subsequently, it becomes clear that there are specific problems
occurring for (usually) “non transparent” granular materials For granular
avalanche experiments we use plexiglass chutes There are some particular
problems with their usage, which will also be discussed in this section How
ever, plexiglass chutes are used because they can be easily deformed to make
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different channels and the velocity fields can be measured simultaneously
from above and below the chute

11.3.1 Transparent Fluids and the Usual PIV Set-Up

Firstly, we briefly review the usual set up in a wind tunnel A sketch is given
in Fig 11 4 The major device of the PIV system is the CCD camera Together
with lenses this is called imaging optics For illumination, a laser, light sheet
and a mirror are needed To control and trigger the laser and the camera, a
synchroniser and a PC with evaluation and post processing software should
be installed The transparent fluid must be seeded with tracer particles so
that the camera and the software can detect some pattern

11.3.2 Set-Up for Granular Avalanches

The set up for granular materials differs from that described above in the
following respects: For non transparent materials, laser light sheets can ob
viously not be used for illumination Therefore, we employed computer con
trollable flashes equipped with a diffuser In order to guarantee (nearly) the
same brightness on both frames, the intensity and the duration of the flashes
were adjustable From Fig 114 it is clear that for “usual PIV” the velocity
distribution of the tracer particles inside the flow is measured However, for
“sranular PTV” this is not possible Alternatively, we measure the velocity of
granular particles of an avalanching flow at the surface or at some bound
ary and the base, ie, from below the plexiglass chute It is advantageous

Light sheet optics Mirror

)\ Light sheet

o First light pulse at t

o Second light pulse at ¢
9 Imaging optics
Image plane

tl

Fig. 11.4. Usual PIV set up in a wind tunnel with tracer particles (From [352])
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with granular particles that the optical surface structure, which is produced
by illumination of the surface of the avalanche, is already sufficient to detect
the motion This means that we do not need to add tracer particles in the
bulk material However, the flash illumination in connection with the plex
iglass chutes used may produce different kinds of illumination errors, which
will be discussed later in greater detail Furthermore, the region outside the
support of the avalanche in the chute can be disregarded in the evaluation
and post processing stage so as to eliminate (or to minimise) such errors

11.3.3 Technical Details

It is appropriate to describe the technical details of the electronic equipments
employed in the experiments We use a system of the company TSI, see
[468] It includes two charge coupled devices (CCD cameras) of type TSI
PIVCAM 13 8, two NIKON wide angle lenses NIKKOR AF 28mm f/2 8D
(called WA lenses), see [332], a synchroniser and a PC including the INSIGHT
PIV software For illumination, we used two or four flashes (depending upon
whether one or two cameras were used) of the type METZ MECABLITZ 60
CT 4, see [331] As has already been explained, two flashes for one camera are
needed since a camera captures two frames Because the time delay between
frames A and B is rather short, one might think it is sufficient to use one flash
for illuminating both pictures For two reasons this is not possible Firstly, it
is nearly impossible to trigger and adjust one flash such that the brightness
on both pictures would be the same Secondly, the shutter of the second frame
is opened for a relatively long time due to technical reasons, which would
result in distortions if only one flash were used The motion can, in general,
not be frozen in time and the second picture would become blurred [83, 334]
Hence, proper adjustment of the flashes is mandatory The system is also
supplemented by superwide angle zoom lenses of type NIKON NIKKOR AF
18 35 mm {/3 5 ~ 4 5D IF (called WAZ lenses), see also [332] In fact, these
lenses were used in all experiments because of their greater variability and
quality compared to the WA lenses As explained in Sect 11.2.3, the CCD
camera (which we used) has a resolution of 1280 x 1024 pixels and a colour
depth of 12 bits (22 = 4096 different grey values) Furthermore, its highest
temporal resolution is four double frames per second The time delay between
the first and the second frame depends on the range of the velocity values
We chose it to be in the order of 1 us

11.4 Experimental Peculiarities Arising
for Granular Materials

As in any other measuring system, PIV is subjected to certain measure
ment uncertainties that cause errors Some of them are specific for granu
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lar avalanches and some are of general relevance There are two main error
sources for granular PIV: Inappropriate surface structure of the avalanche
and/or the background and imperfect illumination due to shadows, reflec
tions, etc , see also ECKART et al and PUDASAINI [83, 334] Both are specific
for granular avalanches Because of their exceptional importance, they will
be discussed in the following in more detail

11.4.1 General Errors

Below we point out some error sources of general relevance arising both in
transparent and non transparent fluids:

Motion perpendicular to the picture plane (two dimensional measure
ments): This is only of importance for locations where strong gradients
of the height arise, e g, in the flow inception and deposition zones of lab
oratory avalanches However, even in this situation the influence is rather
small in comparison with the main error sources

Displacement gradients arising within the interrogation spot: The pattern
is not only shifted, but also deformed This error is of limited importance
at fixed boundaries of the domain

The angle between the observation plane and the camera may not always
be 90°: This is a big error source when the chute is relatively large and the
space available for the experimental set up is small This is also a consid
erable problem for curved, and curved and twisted chutes and channels In
this case, many cameras are needed, each for a small portion of the flow
domain or identical experiments where shifted camera positions must be
performed

Distortion due to the usage of extreme wide angle lenses and short dis
tances between camera and observation plane: As in the previous case, this
causes problems for large chutes and small available experimental space

11.4.2 Particular Errors for Granular Flows

Error Due to Light Reflection There are still many other problems for
granular PIV, e g, light reflections from the chute or from the laboratory
environments Reflections can, in general, be avoided by either choosing an
appropriate position of the flashes or using indirect flashing that does not
point, directly to the chute but is directed towards a white paper or screen
reflecting the light of the flash to the chute This well known procedure dif
fuses the light such that the chutes are, in general, illuminated with no or
very few reflections [83, 334]

Error from Electrostatic Charging Another specific problem, in the
case of fine materials flowing over plexiglass or plastic chutes is electrostatic
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charging This is more pronounced for two dimensional channelised flows from
a silo or flows down confined channels than for three dimensional free surface
flows Electrostatic charging can be minimised by using an anti electrostatic
charging spray or ionising airgun Alternatively, electrostatic forces may be
minimised by avoiding minute experimental set ups and designing larger scale
models

Optical Surface Properties The optical surface properties are of utmost
importance To illustrate this, velocity measurements of two plates at rest are
compared [83] One plate is covered with sand, the other one with a varnish
Whereas the surface of the former is optically well structured, the surface of
the latter is rather homogeneous, see Fig 115

a Optically Structured b Optically Homogeneous

Fig. 11.5. Two different surfaces at rest, coated with a) sand and b) varnish (From

[83])
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Fig. 11.6. Measured velocity for a) sandpaper, corresponding to Fig 11 5a and,
b) varnish, corresponding to Fig 11 5b (From [83] )
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The velocity distribution corresponding to these cases is given in Fig 116

Whereas the velocity for the “sand plate” is measured correctly, that of the
varnished plate is not: the in plane velocities are more or less randomly dis

tributed in magnitude and orientation, which is clearly wrong Evidently,
with an optically homogeneous (i e , non structured) background, erroneous
velocity vectors may be produced; this may deteriorate the entire quality of
the measurements It is thus recommended to choose also the background
appropriately, i e , with an optical structure if possible However, this is not
possible when plexiglass chutes are used Nevertheless, in many situations we
can either eliminate or minimise such errors by disregarding the grain free
zone of an avalanche in the post processing operations

Illumination Another main error source is illumination If laser light sheets
can be used, the quality of the illumination may, in general, be good However,
we are compelled to use alternative illumination techniques such as flashes
to illuminate the surface of non transparent materials Figures 11 7 and 11 8
show frame A and frame B of one double frame for different positions by
flash A and flash B The object is sandpaper at rest To illustrate the effect
in a drastic way, the position of the flashes are chosen exaggeratedly badly
The illumination of subregions on the sandpaper for frames A and B is not
the same in Fig 117, but it is fairly uniform in Fig 11 8 Note that illumi
nation differences between different regions on the sandpaper are of minor
importance; crucial is the comparison of the same subregion in frame A with
that in frame B

Figure 11 9 displays the inferred velocity distribution of the sandpaper for
the different positions of the flashes It clearly shows that inappropriate po
sitions of the flashes lead to significant measurement errors Notice that the
error produced here is not of a random nature, as was the case in the last
paragraph The direction of the “faulty velocity” distribution in Fig 11 9a
somehow reflects the axis and orientation of the flash illumination

Frame A

Fig. 11.7. Flash A upper left corner, flash B lower right corner of the observed
region of a sandpaper surface at rest (From [83])
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Frame A Frame B
Fig. 11.8. Flashes as close to each other as possible, illuminating a sandpaper
surface at rest in a fairly homogenuous way (From [83] )
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Fig. 11.9. Measured velocity of sandpaper a) for illumination as in Fig 11 7 and
b) for that in Fig 118 (From [83])

Testing the PIV System In this paragraph, a simple method to estimate
systematic errors of the measured velocity values of the granular PIV system
is described Specifically of interest is the deviation of velocity values at the
surface from those at the bottom at the same spatial locations (which may
also include the influence of the plexiglass) and the deviation of the velocity
values from one another in the whole region either at the surface or at the
bottom This will be dealt with in greater detail in the next chapter when
measuring the velocity distribution of a free surface flow of an avalanche over
a curved plexiglass chute

Towards this end, a set up with two cameras, a plexiglass chute and a “rigid
avalanche” is used (see Fig 11 10) One camera is placed below the chute,
capturing pictures through the plexiglass, the other one is above it If the
sandpaper is released, double frames of both cameras are taken simultane
ously; frames A are shown in Fig 11 11 and the measured velocity distribu
tions are given in Fig 11 12 Note that the range of the colour bars is from
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A

Fig. 11.10. The “rigid avalanche” A thick piece of rigid paper (0 3 mm thickness)
with sand on both sides (From [83])

Fig. 11.11. Frame A of a) the bottom and b) the surface camera (not mirrored)
Motion is from top to bottom (From [83])

a Mean velocity value: 1.86927 ms™' b Mean velocity value: 1.87178 ms ™!
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Fig. 11.12. Measured velocity of a) the bottom and b) the top surface of the
sandpaper (not mirrored) Motion is from top to bottom (From [83])
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the lowest (1 833 ms~!) to the highest (1 898 ms~!) measured value and raw
data were used, i e , no filters (see Sect 11 5) were applied to the data shown
in Fig 11 12 The deviation between the mean surface and the mean bottom
velocity is only 0 13% However, the deviation between the smallest and the
largest velocity value in either panel a) or b), is approximately 3 5% This
shows once again that surface properties and illumination that are responsible
for the velocity variations are the main error sources, whereas the influence
of the plexiglass is negligible

11.5 Post-Processing and Evaluation

At the instant when the material is suddenly released, ie, by lifting the
cap or head gate, by which it is held, a sequence of pictures is captured
The most important information that can be obtained from granular PIV
measurements is the surface velocity distribution After capturing this, the
interesting portions of the pictures are subject to calculation and validation
processes to obtain the velocity (done by the software) A cross correlation
algorithm utilising fast FOURIER transform (FFT) is used [468] The spot size
of the interrogation windows is either 32 x 32 pixels (no oversampling) or
32 x 16 (double oversampling) After filtering possible errors, the processed
data are exported to suitable plot programs for post processing operations

In a PIV system, the raw data may be subjected to a so called validation
procedure to eliminate possible faulty data This is done by filters There are
different filters, but two of them are important for avalanche flows, namely
the range filter and the standard deviation filter With the range filter, the
permissible range of velocity values can be adjusted Sometimes selection of
this range depends on personal experience It is to be mentioned that the
avalanche always flows from top to bottom, say in the negative y direction
This clearly suggests restriction of the velocity values in the y direction to
negative values By definition, the standard deviation filter eliminates all
velocity values that are not within a certain distance to the mean velocity
It can only be applied if the velocity values not differ extremely from one
another In our case, the flow field is almost homogeneous, and thus the
standard deviation filter provides a good choice for eliminating random errors
The blanks areas were interpolated by a mean neighbourhood filter

However, in the next chapter we do not use these filters and thus need not
validate the data for the free surface flow of the avalanche The reason for this
is that we select a grain free region (outside the boundary) of the avalanche
and delete it from processing, so that (almost) no faulty data remains In the
following, we will use this technique in order not to use artificially interpolated
data This also increases the reliability of the measurements
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11.6 PIV with Multi-Cameras

Finally, we explain how PIV measurements are made with many cameras
Multi cameras are used mainly for three purposes: (i) One camera is put
below and the other one above the chute to measure simultaneously at the
same locations the velocities at the base and the surface of the avalanche, re
spectively These measurements serve as additional experimental results from
which one may decide whether or not the velocity profile is uniform through
depth (i7) Two cameras can also be used to obtain the three dimensional
stereographic images and the velocity fields (7ii) In the case of large, curved,
and curved and twisted channels, one must make use of a series of cameras so
as to guarantee good measurements of several subdivided flow regions (iv)
If a limited number of cameras, e g, just a single one, available, one may
alternatively, perform repetitive experiments under identical conditions but
different camera positions This requires that conditions do not change from
one experiment to the next This may have to be checked carefully, especially
with regard to the frictional properties of the chute, i e, the bed friction
angle We will mainly be concerned with points (z) and (ii)

11.7 Particle Tracking Velocimetry (PTV) Measuring
Technique

PUDASAINT et al [344] introduced an alternative measuring technique called
particle tracking velocimetry (PTV) to measure the velocity field of free sur

face flow in granular avalanches down curved and twisted channels This
technique is a predecessor of the PIV technique The basic idea of this sys

tem is as follows: A series of images of a part or the whole body (ie, the
region of interest) of the surface of a flowing granular avalanche is captured by
using CCD camera(s) Then two consecutive images (say frames A and B)
are selected to determine the velocity of tracer particles appearing on the
free surface The addition of an adequate amount of tracer particles with
sufficient colour contrast against background particles is a necessary integral
part of any PTV system This is where PTV differs from PIV, which, for
any type of granular flows, needs no tracer particles, see PUDASAINI et al

[343] Displacements of identifiable tracer particles of the moving avalanche
are calculated by comparing frames A and B through grey value recognition
across the boundaries of the tracer particles and the background bulk body

The displacement divided by the time difference & between both frames
gives the velocity of a tracer particle The PTV system works, particularly,
for non transparent fluids such as sand, gravel, quartz or other granular ma

terials We call this PTV system “granular PTV” Velocity fields of the tracer
particles detected by this system at the free surface of the flow are assumed
to be representatives of the real velocity field This means that the velocity of
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other particles (constituting the main bulk body) in the immediate vicinity
of a tracer particle is the same or almost the same, because the background
material and the tracer particles are the same material with different colours

Technical Overview At this stage, we describe the technical details of the
electronic equipment employed in the experiments Because the PTV system
is limited to non transparent fluids, only the flow surface can be recorded
and analysed by an image processing system This system consists of a JAI
CV All CCD camera, a frame grabber (Matrox, Meteor II) and an IBM
compatible personal computer The shutter speed of the camera is usually
controlled between 1/2000 and 1/10,000 seconds The typical space resolu
tion is 648 x 492 For a shorter shutter time, the image becomes sharper
The quality of the image taken by the camera is sensitive to the source and
direction of the light A typical distance of the camera from the channel is
100 cm A 300 W tungsten halogen light was used as the continuous light
source Every image of the motion is digitised to grey levels (ranging from 0
to 255; 8 bits) through an image grabber and stored in a computer file

PTV Methodology The particle tracking method is employed to measure
velocity fields In an usual shear cell experiment, the minimum amount of
tracer particles needed is about 5%, but for rapid motions such as avalanches
a larger amount of tracer particles should be used The amount of tracer
particles thus depends on the speed of the flow and the gradients of the
flow variables PUDASAINT et al [344] used 10% identical black sand particles
acting as tracer particles against the main bulk of white granular particles
From two consecutive images, the displacement of each tracer particle is
identified by the autocorrelation technique (see, e g , NATARAJAN et al , [293];
Hs1AaU and SHIEH, [158]) A set of consecutive images is shown in Fig 11 13
Firstly, a small window with n1, X n1, pixels is allocated around an identified
tracer particle in the first image A larger window with no, X ng, pixels is
drawn in the second image This latter window must be sufficiently large to
include all possible locations of the tracer particle in the next time step The
first window is then shifted in the streamwise and transverse directions by ds;
and ds; pixels each time, which are multiplied with the corresponding pixel
value of the second window to get the autocorrection value ¢ = ¢(ds;, ds;):

Nig MNly

c(0si,08;) = D > Pili, §)Pali+ 0si, j + 65;), (11 5)

i=1 j=1

where i and j indicate the pixel coordinates in the images and P; and P;
are the pixel values in the two image windows When the maximum auto
correlation value ¢ occurs, the shifts of ds; and ds; are used to calculate the
displacement of the tracer particle (see, e g, NATARAJAN et al [293], HS1AU
and JANG [157]) The errors of velocity measurements are within 7%
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Fig. 11.13. Two consecutive frames captured by using a CCD camera during the
motion of granular flow White circles represent the main background bulk material
and the dark particles are tracer particles A small window with 11, X ni, pixels
is allocated around an identified tracer particle in the left image A larger window
with mn2, X ngy pixels is drawn in the right image, so as to include all possible
locations of the tracer particle in the immediate next time step

Improved PTV In order to improve the accuracy of the usual PTV method
ology, Hs1Au and SHIEH [158] calculated the corrections of the grey level
deviations in the x and y directions by the following equations:

cz(084,08;) =

Nig My

S {iPi+ 1) - Pl ) %

i=1 j=1
[Pg(i+1+§si,j+58j)—Pg(i+68i,j+68j)]} (11 6)
and

cy(0s;,085) =

Nig My

S {PiGi g+ 1) = Pii, )] x

i=1 j=1
[Pg(i—i—(Ssi,j—i—1+6sj)—Pg(i+5si,j+5sj)]}. (117)
The total correlation value R = R(ds;, ds;) was decided by the sum of these

three correlation values ¢(ds;, s;), cz(9s;,ds;) and ¢, (ds;, ds;), multiplied by
the corresponding weighting factors k, k. and k,,

R(0si,055) = kc(384,085) + kgce(98i,085) + kycy(dsi, ds5). (11 8)

Tracer displacements in two consecutive images were then determined from
ds; and ds; when the maximum value of R occurred Because the deviation of
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the grey value at the interface between the tracer particle and the background
ones is more significant, it is easier to locate the tracer boundary In typi
cal experiment, the ratio of ¢(ds;,ds;), cu(ds;,0s;) and cy(ds;,ds;) should
be about 60:2 45:2 45 Therefore, 2, 49 and 49 were chosen as the weight
ing factors for k, k, and k, respectively (1/60:1/2 45:1/2 45 ~ 2:49:49) The
accuracy of this modified method is > 98.5% [158]



12 Avalanche Experiments Using the PIV
Measurement Technique

In this chapter, we will measure the efficiency of the extended avalanche
theory of PUDASAINT and HUTTER. [335] presented in Chap 4 [335] There
are two ways to check the validity of a theory On the one hand, one can
apply the theory in real practice and “measure the distance between the
theory and the reality”, e g , in some large scale (natural) geophysical debris
or avalanche flows On the other hand, the performance of the theory can
be judged by comparing well controlled laboratory experiments against the
theoretical prediction of the model equations via their numerical solutions

There are many factors that directly or indirectly influence the correspon
dence between theory and experiments:

1 Laboratory circumstances: the experimental set up and the measurement,
techniques are concerned with the technical part of the correspondence

2 Similarly, the numerical method is responsible for solving the model equa
tions appropriately without losing the underlying physics of these equa
tions

3 The theoretical model is always the heart of the description of any physical
process

Because the model equations are generally constructed with ample physical
insight together with some advanced mathematical computations, one nor
mally considers them to possess the capacity of reflecting the natural phe
nomenon with high precision However, this must be verified by experiments
In this chapter, we will corroborate the physical adequacy of the model equa
tions, the efficiency of the numerical method and their harmony with the
laboratory experiments performed under essentially well controlled circum
stances We use an advanced measurement technique Ultimately, it will be
demonstrated that for the prediction of the avalanche geometry and velocity
through time, the theory, numerics and experimental results are in very good
agreement

As explained in the last chapter, we will make use of the particle image
velocimetry technique to measure the dynamics of the velocity distribution of
the avalanching flow down a curved chute The other important variable in the
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model equations is the evolution of the avalanche geometry from initiation to
the run out zone until it comes to rest as a deposit We will present results of
both the velocity and the height of the free surface flow of avalanches through
a comparison of the experimental findings against theoretical predictions To
our knowledge, such results (in such detail by making direct comparisons
with the theoretical predictions) have not been presented before For more
details on results presented in this chapter we refer the reader to PUDASAINT
et al [334, 343]

12.1 Experimental Details

Chute Geometry and Arrangement We performed several series of ex
periments over a curved chute as shown in Fig 12 1! consists of three dif
ferent parts connected together The inclination angle of the upper inclined
plane portion is 45°; it merges continuously into the horizontal run out zone
Specifically, the details are as follows: () upper inclined zone: length 1560
mm, (i) middle continuous transition zone: (curved) length 370 mm, (ii%)
lower horizontal run out zone: length 2250 mm The width of all three parts
is 1600 mm Experimental images are taken separately in all three zones by
repeating experiments under (essentially) identical conditions and laboratory
circumstances to assure the quality and reliability of the measurements It
should also be noted that, if one includes the entire flow region, i e , the whole
chute, in a single capture, the image and the data will be highly distorted be
cause the chute is very large and curved In the upper right part of the chute,
an electric analogue clock with two arms is mounted: the long arm performs
one complete revolution in one second, whereas one unit of the short arm
stands for one second In the middle of the top of the inclined portion, a cap
cut from a sphere is mounted to hold the initial mass of the granules The
cap is made of plexiglass with the supporting frame made of steel, and can
instantly be lifted This motion in the opening process is a rotation about a
horizontal axis The opening of the cap, the flashes, the cameras, the clock
and the PC are all synchronised

Initial Conditions Two kinds of caps are separately used to hold the gran
ular materials at the middle top of the chute (see Fig 12 1) The caps are
called “small cap” and “big cap”, respectively, depending on their capacity
(volume) Both caps are skull caps of different hemispheres For the small
cap, the upper part, above 30° latitude, of a hemispherical cap of radius
195 mm is cut and used to hold the initial pile of the granular material The
radius of the base of the cap thus constructed is 170 mm The big cap is

! This chute was built by the workshop personnel H HorFmaNN, H WIENER

and C Bonk of the Department of Mechanics, Darmstadt University of Tech
nology
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Table 12.1. Details of the granular materials used in different experiments For
rice the mean diameter means the mean length of the major axis (From [334])

Quartz Yellow sand Rice Caps

Mean diameter (mm) 5 05 7 ——
Mass (kg) 8.72 8.91 830 Small

Mass (kg) 29.30 —— —— Big

0] 35° 30° 40° ——

0 23° 21° 22° ——

constructed analogously from a hemisphere of radius 300 mm The radius of
the base of this cap is 260 mm Note that this cap is the upper part of the
corresponding hemisphere above 30° latitude measured from the horizontal
This design of the caps prevents the granules from a free fall motion at the
front and the top of the heap at the time of release These caps can instantly
be lifted by applying a relatively heavy load connected by a rope from the
forehead of the cap to its opposite side (back of the chute) without disturbing
the flow This motion in the opening process is a rotation about a horizon
tal axis Furthermore, with this choice the rear part of the heap does not
initially move backward Therefore, we can define the initial computational
velocity to be (ug,vo) = (0,0) Other conditions concerning the internal and
bed friction angles, and initial mass are listed in Table 12 1

Materials A series of experiments was conducted for three different types of
dry granular materials with small and big caps, separately The experiments
were repeated for all three zones of the chute under essentially the same
conditions The materials used for the experiments were: quartz, yellow sand
and rice (long ellipsoidal) Table 12 1 presents the necessary information for
the materials Of the many experiments, only selected results are presented

Control and Synchronisation The lifting of the cap, opening of the cam

era shutter, blinking of the flashes, starting of the clock and the connection of
these devices with the computer are all synchronised ? All are controlled and
operated simultaneously Such controls and synchronisations are crucial in
determining the real time of different snaps and positions of the avalanching
mass The real time elapse determined in this way is then used to find the
correspondence between the experiment and the theoretical prediction

2 The electronic instrumentation for this was built by the electronic technician

K PoLSTER of the Laboratory of the Department of Mechanics, Darmstadt
University of Technology
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Velocity Measurements As explained in the last chapter, the velocity of
the avalanching and deforming granular material is measured by the PIV
measurement technique using instrumentation of the company TSI The ve
locity field of the particles at the free surface and the bottom of the avalanche
are measured This provides information about the adequacy of one assump
tion of our theory, which deals with depth averaged equations

Non-Dimensional Parameters and Length Scales The model equations
contain two non dimensional parameters, € and A They are associated with
the geometry of the avalanching material and the chute Provided that the
chute geometry and initial conditions are similar, the model equations (4 89)

(4 91) predict the same avalanche flow irrespective of whether it is in a small
scale laboratory run or a geophysical avalanche in a large scale mountain
environment This is a consequence of the scale invariance of the equations
and, e g , assumes that no pressure dependent or velocity dependent bed fric
tion angle is used To achieve a possibly greater generality and a real feeling
for the physical variables, both the experimental and the computed results
are presented in dimensional variables The appropriate physical variables
for a particular application can then be constructed by applying the (back)
transformation of the scalings (4 23) To make a correspondence between
the theory and the experiments we must define a non dimensionalisation of
the physical variables We chose the same length scale in all z , y and z

directions, ie, L = H = 100 mm and R = 100 mm These length scales
correspond to the characteristic lengths, the initial heights of the respective
granular piles kept in the caps, providing e = H/L =1 and A= L/R =1
This preserves the aspect ratio of the physical avalanche and makes it easier
to interpret the results

Single Constituent Granulates In the theory, we treat the granular mix
ture as a single constituent In reality, it is almost impossible to find geo
materials that consist of a single constituent medium Sand, quartz or rice,
whatever we use for a laboratory run, contain some dust, powder and small
grains either because the material was not properly washed or abrasion occurs
during the experiment After several runs the situation becomes even worse
During the flow of an avalanche, small particles move towards the bottom and
the rear part of the avalanche, whereas the larger grains are carried to the
surface and collected near the front of the avalanche This is a consequence of
kinetic sieving during the dynamics of the avalanche, see Chap 2 Therefore,
it is not so easy to control the friction angle between the avalanching material
and the chute and between the grains themselves This could make the bed
friction angle position dependent Nevertheless, in all experiments we tried
to maintain the possible optimal choice by cleaning the chute with anti static
spray after each experiment and filling the caps homogeneously Therefore,
one should always recall, while comparing the experimental results with the
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theory, that such factors may also be responsible for possible discrepancies
between theory and experiments

12.2 Measurement of Avalanche Depth Profiles

The temporal and spatial variations of the velocity distribution and the depth
geometry describe the dynamics of the avalanche If their prediction by the
theory is correct, then there must be a good correspondence between the
avalanche depth predicted by the theory with that measured by the experi
ment at any instant of time In particular, we are interested to acquire knowl
edge of the depth profile of the deposit of the avalanche in the run out zone
Its correct determination is very important in real applications There are two
reasons for this Knowing the actual run out distance (area) and the height
profile of the deposit one can easily divide avalanche prone mountain terrains
and valleys into danger zones of different degrees, i e , one can construct the
hazard map of the specific site On the other hand, if there is good agreement
between the theory and the experimental measurement of the height profile
in the deposit, then one can easily infer the reliability and efficiency of the
theory over the entire avalanche path In this way, the theory can be used to
predict the velocity distribution, depth profile, impact pressure, strain rate
and other related quantities as an avalanche slides down a mountain side

For these reasons, we measured the depth profiles of the deposits of avalanches
of different materials The depth profile of each avalanche deposit is measured
very carefully with a penetrometer In regions of large gradients of the gran

ular pile heights the density of points is increased For each experiment, the
depth measurements are taken at (about) 200 points The data are inter

polated and the geometries thus obtained are compared with the computed
geometries of the theoretical predictions Note also that the determination of
the avalanche margin at each time step is very easy and can be identified by
the margin of the velocity field recorded by the PIV measurements

Determination of the Avalanche Boundary If the mass is relatively
large, the granular particles are small and regular, the chute surface is smooth,
the opening of the shutter holding the pile in its initial position is very fast
and it can be lifted approximately perpendicularly to the chute, and the other
mechanisms are also appropriately used, then, the demarcation between the
grain free and the avalanche covered zone is easy Under such circumstances,
the granular body cannot spread unsystematically near its boundary and the
mass distribution around and along the boundary is fairly continuous Other
wise, dispersion of the grains along the boundary is inevitable Consequently,
it is very difficult to define the boundary If the boundary cannot be deter
mined properly, e g, because of the bouncing of the particles, one cannot
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establish a reliable and accurate correspondence between the theoretical pre

diction and the experimental measurements In all measurements we define a
contour as the boundary of the avalanche if it passes through those points of
the chute that are approximately covered (in height) at least by a single grain
of the granular material Also note that the determination of such boundaries
is relatively easy for experiments with the big cap and with sand, but it is
difficult for small cap experiments conducted with quartz particles

12.3 Validation of the Theory

The aim is to validate of the theory by some laboratory experiments In
this section, we will present some selected results of unsteady free surface
avalanche flow of granular materials in a laboratory chute against theoretical
prediction, see PUDASAINT et al [334, 343] In particular, we will demonstrate
how well the theoretical prediction of the velocity distribution of an unsteady
avalanche flow down a curved chute compares with the PIV measured velocity
field of the particles at different parts of the free surface

12.3.1 Experiments Using Small-Cap and Quartz Particles

Figure 12 1 depicts a series of experimental snapshots of an avalanche in
the laboratory taken with a digital video (DV) camera The bulk material
consisting of quartz granulates is held inside the hemispherical cap that is
pressed to the bottom at the upper edge of the inclined plane The first panel
shows a photograph before the cap is lifted, defining the initial condition of
the avalanche, the second panel describes the circumstances right after open

ing the cap As soon as the cap is removed, the bulk material is continuously
extending, mostly in the direction of steepest descent Panel three captures
the fully developed flow in which the entire granular mass lies in the upper
inclined zone Comparing the first and second panels, one can see that the
front of the avalanche accelerates faster than its tail The reason for this is
that the entire heap is under a passive state of stress before the cap is lifted

Immediately after the release of the cap, the front part of the heap no longer
suffers a surface stress from the confining cap, and an active state of earth
pressure is established The remaining grains still feel the stresses from their
neighbours (this is passive stress) until the wave front that separates the ac

tive from the passive states has reached the upper part Thus, the motion of
the frontal part of the pile is ahead of that in the rear portion Moreover, the
initial surface slope triggers the downhill motion, whereas that in the rear part
acts in the uphill direction In panel four, the avalanche front has entered the
transition zone The front of the avalanche has just crossed the front bound

ary of the transition to the deposition zone Due to the downslope curvature
of the chute topography in the transition zone, the avalanching front starts
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Fig. 12.1. Overview of the laboratory avalanche chute with six snapshots of a sand
avalanche showing the spreading mass from initiation (first panel) to deposition
(sizth panel), lasting approximately 1.75 seconds The chute (4000 mm long and
1600 mm wide) is made of plexiglass The upper plane part is inclined at 45°; it
merges into a short cylindrical element with rear boundary at 1560 mm and front
boundary at 1930 mm from the top of the chute These boundaries are indicated
by red and green lines, respectively It is followed by the horizontal run out plane
The sand is initially held in a hemispherical cap that is quickly tilted upward to
release the material, which here is quartz of 4 mm nominal diameter On the upper
right edge of the chute an analogue clock indicates the time The arrows in the first
two panels show the direction of the downhill motion, the circled numbers indicate
the consecutive orders of the snapshots and the real times are shown in the lower
left corners Note the somewhat blurred margins of the piles due to collisions The
persons are: left: S P PUDASAINI, right: S S Hsiau (From [343] )
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decelerating Therefore, the mass in the front is contracting in the downhill
direction due to the effect of the passive earth pressure, but the mass in the
tail is still extending The deposition of the mass commences in the vicinity
of the lower end of the transition zone The fifth panel captures a snap of the
avalanche at a time when the major part of the body lies in the run out zone
and the body approaches its rest position The rear material is now hindered
from freely moving forward; it dilates in the cross slope direction and begins
to broaden its deposition The far end part of the tail consists mainly of the
fine granulates and powder is an inevitable constituent of the bulk material

The final panel shows the deposit of the avalanche, which lies entirely in the
horizontal run out zone of the chute Although (immediately before the de

posit) the front of the body is almost at standstill the mass from the tail is
still flowing down and deposited on the tail side of the body A steep surface
(height) gradient is thus developed on the tail side of the avalanche Occa

sionally, this steep backward slope is slightly weakened in the last phase of
the motion by a backward motion of the top granules to re establish the local
angle of repose The deposit is of convex shape, more or less but not quite
“ellipsoidal” with the major axis along the lateral direction Actually, in all
panels the flowing granular body is fairly compact with only slightly diffusive
margins due to particle bouncing, so that the continuum assumption seems
to be justified The shape of the body depends on the material properties,
i e, internal and bed friction angles, the chute geometry, the geometry of the
material in its initial position and the initial conditions The motion of the
bulk and the deforming body from panel one to panel six defines the com

plete dynamics of the avalanche as a rapid free surface motion of dry granular
material from initiation to deposit

12.3.2 The PIV Measurement and Validation of the Theory

One of the dynamical aspects of an avalanche is its velocity distribution It is
very helpful for practitioners to have a proper knowledge of the velocity field
in order to estimate the stagnation and impact pressures (on obstructions
and infrastructures), stress and strain rate, and so on along the track of an
avalanche sliding down a mountain topography From a structural engineer
ing and planning point of view, one must know the velocity field properly
in order to adequately design buildings, roadways and rail transportation in
mountainous regions and properly predict the tractions on obstructing build
ings that may be hit by an avalanche Of equal importance is to know the
velocity field of flowing granular materials and fine granulates through various
channels in process engineering scenarios to predict the flow dynamics In this
regard, we now present some results concerning the velocity field obtained by
using the PIV measurements of an avalanche of quartz particles flowing down
a curved chute (see Fig 12 1) and compare it with the theoretical prediction
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We will see in the following that there is rather good agreement between
theory and measurements

Before presenting a detailed comparison between theory and measurements,
some remarks are in order In fact, the ensuing figures show the full frames
captured by the camera(s) (see panels on the right of Fig 12 2) This implies
that consecutive pictures correspond to different experiments and repetitions
under identical external conditions Also note that the different colours in
these pictures represent the magnitudes of a kind of mean velocity distribu

tion in the corresponding regions determined by the contours computed from
the real data of the velocity magnitudes The magnitudes of the velocity fields
are shown in colour bars on the right of each picture It should, therefore, be
clear that the real range of the actual velocity field may be somewhat larger
than that presented by the colour coding Since we plotted the mean velocity
for both the measurements and theoretical predictions, there is no question of
inconsistency As we increase the number of contours, the range of the colour
bars may also increase Furthermore, the arrows indicate the directions, and
their lengths represent the relative magnitudes of the actual velocity vectors
in each panel

Figure 12 2 depicts the comparison between the theoretical predictions (left
panels) and PIV measurements (right panels) of an avalanche of quartz par
ticles sliding and deforming down a curved plexiglass chute, as shown and
explained in Fig 12 1 (from PUDASAINT et al [334, 343]) The comparison is
presented at five consecutive times as indicated in the upper left corners of
each panel, immediately after the onset of the motion of an avalanche until
it almost reaches the deposit in the horizontal run out zone

The two uppermost panels of Fig 12 2 present the theoretical versus the ex
perimental results at the time 0.38 s The flow is fully developed, unsteady
and the granular mass lies entirely on the inclined upper zone of the chute
The motion is mainly in the downhill direction, with some sidewise spreading,
accelerating, and the velocity field is symmetric about the central line (y = 0)
of the chute The colour bars on the right of each picture indicate the magni
tudes of the velocity fields in ms™! Differences are only seen in the curvature
of the lines separating the differently coloured velocity regions The likely
reason for this difference is that the shear stresses 7, parallel to the sliding
surface are ignored in our theory but may be active in the experiment Apart
from this, comparison of the two panels shows excellent agreement between
theory and experiment for both the geometry (boundary) and the velocity
distribution of the avalanche of quartz particles for this time step

The second row contains the theoretical and experimental results at time
0.63 s A trace of a boundary layer effect along the margins can be seen in
the experimental panel As soon as the mass crosses the upper boundary of
the transition zone (horizontal red line), the flow switches from its supercrit
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Fig. 12.2. Comparison between pile geometries and the velocity distributions at
the surface according to the theoretical prediction (left panels) and the PIV mea
surements (right panels) The experimental configuration is explained and presented
in Fig 121 Very good agreement between theory and experimental measurements
of the velocity distribution is seen (From [343])

ical to the subcritical state, and the mass starts decelerating This is seen in
both panels, but most clearly in the experimental one, in which the velocity
reduction at the front tip of the margin seems to be somewhat larger than in
the computed panel Otherwise, the measured pile is slightly wider than the
computed one, and in the rear the computed pile is rounder than the mea
sured pile The slight asymmetry of the measured pile cannot be explained
This asymmetry seems to disappear as the pile moves on Apart from this,
there is very good correspondence between the prediction of the theory and
the PIV measurements

At time 0.69 s (panels of row three) a large portion of the mass has entered
into the transition zone At this time, the transition of the flow from the
supercritical to the subcritical state can be clearly seen in both panels As
explained before, this is the effect of the curvature of the chute in the down
hill direction Although the body is contracting around its front, it is still
extending in its rear part Comparing the experimental and computed veloc
ity distributions and the pile geometries, it is seen that the symmetry of the
experimental avalanche pile is almost established As in the previous panels,
one can see very good correspondence between theory and experiment

A special situation is presented in the fourth row (time 1.05 s) in the sense
that these panels only show the rear part of the pile (only this part was
covered by the camera) Furthermore, the panels exhibit the motion of the
avalanche in three parts: the upper inclined zone, the middle transition zone
and the lower run out zone A close look at the lower parts of both panels
reveals that the granular body is contracting around its front in the run out
zone Since the chute is laterally unconfined, the granular mass is extending
in the cross slope direction near the front This spreading is symmetric about
the central line The longitudinal earth pressure is increasing (passive pres
sure state), and this information is propagating upstream This can clearly
be observed, if we compare these panels with the panels of the third row,
because the magnitude of the velocity field has considerably decreased On
the other hand, the cross slope earth pressure is decreasing (active pressure
state) This information is also propagating upstream As soon as the mass
enters the run out zone, the velocities of the particles decrease rapidly Con
sequently, the mass is extending in the lateral direction Although the rear
margin is far more pointed in the experimental pile than in its computed
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counterpart,® comparison of the theoretical prediction with the experimental
result nevertheless still reveals very good agreement

The last panel describes the state of the avalanching mass just before it
comes to rest at time 1.25 s The entire mass of the body now lies in the
horizontal run out zone Although the particles around the rear ends are still
considerably in motion, those near the front of the body are close to rest Note
that, although the colour distribution does not seem to correspond exactly
to each other between theory and measurement, their numerical values agree
quite well The discrepancy in the shape of the pile body is also due to the
contour plotting because it neglects that part of the body that has very small
velocity magnitude Apart from this, the lateral and longitudinal spread of
the body and velocity distributions between the theoretical predictions and
the experimental measurements are both in very good agreement

12.3.3 Evolution of the Avalanche Geometry

We have seen in the last section that the PIV measurements can obviously be
used to determine the avalanche boundary, and thus the areal coverage, dur

ing the motion Since the applied technique is only apt for the velocity mea

surements, we cannot use it to determine the three dimensional evolution of
the avalanche geometry For this, we need to apply some other techniques such
as digital photogrammetry One of the most important, aspects in avalanche
dynamics is the determination of the run out area and the height profile of
the avalanche in its deposit This is so, because with this information we can
construct the hazard map and estimate the impact pressures on obstructions
in the run out zone The evolution of the three dimensional geometry along
the entire track is not so vital For this reason, we measured the avalanche
height in the deposit using a penetrometer Figure 12 3 displays the contours
of the depths of the avalanche in the deposition area both for the theoretical
prediction and the experimental measurement at times ¢ > 1.35 s when the
avalanche is at rest, see also PUDASAINT et al [334, 343] It is clearly seen
that the lateral and longitudinal run out distances, the over all run out zone,
as well as the height profiles are well predicted by the theory

12.3.4 Multi-CCD Cameras and Velocity Shearing

The avalanche equations developed by us and presented in Chap 4 to predict
the velocity and evolution of the avalanche geometry is based on realistic
3 The source for this is unknown and we can only muse about possible causes:
local fines may reduce the bed friction angle, decreased bed friction at the rear
margin, which seems to be evident from the colours at the immediate rear end
of the experimental avalanche
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Fig. 12.3. Final deposit of the avalanche The contours in the upper panel represent
the computed avalanche heights and the contours in the lower panel represent the
measured heights, both in the horizontal run out zone The experimental result is
well predicted by the theory (From [343])

assumptions One of them concerns the velocity distribution We assumed
that the velocity profile is almost uniform through the depth of the avalanche
This assumption may not be adequate right after the release, in the vicinity
of obstructions and close to the deposit where both the height and vertical
component of the velocity field may change considerably, in some cases even
abruptly Therefore, assuming uniform velocity is a good approximation only
when there is a smooth boundary However, along the main flow path or along
the track of the avalanche, the concept of a uniform velocity distribution
through its depth should be a fairly reasonable assumption We analysed the
images just before the transition zone so as to have both a fully developed
unsteady flow and good quality and resolution of the images Also note that,
for simplicity, only a rectangular portion of the avalanche containing the
central line of the chute (the left boundary in Fig 12 4) is taken into account
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Fig. 12.4. Velocity distribution: a) at the free surface, b) at the bottom The
actual topographic location of the chute is shown in length units in mm The left
velocity field is computed from the image captured by the CCD camera from the
top (free surface) and the right field is its counterpart computed from the image
captured simultaneously by another CCD camera from the opposite side (bottom)
of the plexiglass chute For a better visualisation the right field is mirrored about
the central line of the chute (From [343])

Two cameras were placed and aligned parallel to the normal of the chute
surface about 1000 mm distance from the chute on both sides Since we
used a plexiglass chute, images from either side of the chute was possible
(to capture) The measured velocity distributions from the top and bottom
of the chute show that the difference between the top and bottom mean
velocities is about 5%, providing the physical justification of the assumption
on the velocity profile through the depth of the avalanche We computed the
relative difference between the top and bottom velocities with the following
expression:

fA (Utop - Ubottom) dA
fA VgopdA \/fA VbottomdA

where A is the area of the image zone, vyop and vpottom the velocity at the
top and bottom, respectively The difference in the mean between the top
and bottom velocity fields is computed by

relative difference = , (12 1)

Etop — Ubottom (12 2)

— — ’
v/ Utop V Ubottom

where Tiop and Tpottom are the mean values of the velocities at the top and
bottom, respectively

relative difference in mean =

Furthermore, in the following, we will also discuss standard deviations at the
top and bottom of the flow, respectively
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Figure 12 4a depicts the velocity measurement at the free surface of a fully
developed avalanche of quartz particles initially kept in a cut of the hemi

spherical cap (small cap) as explained earlier (details are taken from PupA

SAINI et al [334, 343]) Similarly, Fig 12 4b displays the velocity field at the
bottom of the avalanche measured from the opposite side of the plexiglass
chute For better visualisation this field is mirrored about the central line
y = 0 of the chute Mean values at the top and bottom are 2 79 ms~! and
2 65 ms~!, respectively Therefore, the mean deviation between the top and
bottom velocities is 5 1% [from (12 2)] Standard deviations for the top and
bottom velocity profiles are 0 24 ms~! and 0 32 ms~!, respectively Another
important aspect is the relative difference between the top and bottom ve

locities, computed in relation with the corresponding values at the top and
bottom of the flow, which is found to be 9% [from (12 1)] This value is larger
than the mean deviation between the top and bottom velocities computed
separately The reason for this are large errors at some points on the bottom
data This analysis indicates that, although the absolute maximum value of
the velocity field in the right figure is a bit larger than in the left one, the
mean velocity at the free surface is slightly larger than the mean velocity at
the bottom The non realistic larger absolute values in the right figure emerge
from the measurement errors There are two main error sources Firstly, the
chute is a bit scratched These scratches produce random reflections Sec

ondly, reflections are also due to the horizontal metal bars (the supports of
the chute) These reflections artificially increase the magnitudes of the ve

locity field However, there is no problem of this kind for the image taken
from the top of the chute The higher value of the standard deviation (for the
right figure) also manifests the random fluctuation of the velocity field due to
these reflections Otherwise, a comparison between these two figures reveals
that for the fully developed motion of an avalanche, the velocity distribution
through the depth is highly uniform

Finally, we would like to mention the following results based on simulations
of model equations with and without inclusion of the velocity shearing In
order to study the effects of the velocity shearing, we introduced momentum
correction factors in the momentum balance equations and concluded that
a depth averaged model based on uniform velocity profiles provides a fair de
scription of the dynamics of flow avalanches even on rather rough beds [183]

12.4 Is There a Terminal Velocity on Inclined Planes?
12.4.1 Background
The question as to whether the basal drag can be described by a dry

CouLOMB type law alone or must be complemented by a velocity dependent
contribution has been disputed ever since VOELLMY presented his avalanche
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model, which in fact contained both [430] We have also seen in Chap 5 that
introducing a viscous contribution to the basal drag changes the qualitative
behaviour of the flow of a granular mass down an inclined chute consider
ably Once again: for flows down an inclined plane, COULOMB friction alone
with constant friction angles leads to an ever accelerating flow far down
stream, whilst a viscous sliding law yields a steady flow far downstream, as
does a flow subject to a combination of a COULOMB dependent and velocity
dependent drag Steady flow can also exist for COULOMB drag alone, but
then it must be down a chute with a curved base, or the bed friction angle
must be velocity dependent [373]

Measurements have been performed on inclined planes at low inclination
angles smaller than 30° by POULIQUEN and POULIQUEN and FORTERRE
[329, 330], which indicate that the drag is velocity dependent Our own mea
surements and comparisons with computational results, using the extended
avalanche equations, however, never indicated that the introduction of the
velocity dependent term was necessary (see, e g, Chaps 10 and 12) Our
own experiments were consistently carried out for granular flows on steep
slopes with inclination angles larger than 30° Moreover they were conducted
on relatively smooth beds, whilst POULIQUEN’s experiments were done on
bumpy beds and may for that reason have led to shearing conditions that
affected not only the base via sliding, but a considerable layer of the entire
avalanche depth We studied latter point [183] by accounting for this shearing
in the model equations, and was found through a series of avalanche compu
tations that in almost all situations it had a negligible effect on the geometry
of the deposits However, the question as to whether a velocity dependent
drag is important still remains unsettled

One may ask, whether this question can be settled experimentally An at
tempt was made to this end by ECKART et al [83] in an experimental study,
using PIV, of flows of a cohesionless granular material down inclined planes
In fact, they studied the flow from a silo through its outlet slit down plex
iglass planes of 30°, 35°, 40° and 45° inclination, 650 mm, 1850 mm, 2850
mm lengths, 260 mm width, and photos were taken from above, the side and
below

One of the tasks in this section is to find indications of a terminal velocity
of the avalanche Another challenging question is the dependence of the flow
behaviour on the inclination angle Different flow behaviour of the avalanche
may define a “(phase) transition”, where the flow behaviour changes signif
icantly, for example, from more fluid like to more solid like behaviour (see
also [330])
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12.4.2 Remarks on Experimental Procedures

When sand moves on plexiglass surfaces uncontrollable forces due to electro
static charging may develop To minimise these, an anti static spray was ap
plied before each experiment Furthermore, it was checked whether variations
in the measured velocities between identical repetitions of the experiments
would remain small, and indeed they did Experiments were conducted with
cohesionless sand of a nominal particle diameter of 0 5 mm and roundish
shape The (static) basal friction angle of the sand on plexiglass is 20°

Pictures were taken from the side and above For those taken from the side,
the camera had a distance between 400 mm and 600 mm from the chute The
visible section corresponds to a rectangular domain of 100 mm x 200 mm
Note also that for all measurements taken from the side through the plexi
glass, only the velocity at the boundary was measured, which in general is
different from the internal velocity away from the boundary In all these pic
tures, the avalanche flows from left to right For the pictures taken from the
top, the camera had a distance of 100 200 mm from the chute In this case,
the avalanche always flows from the top of the picture to the bottom For
data analysis, the raw data were subjected to a validation procedure using
range and mean filters to eliminate the faulty data

12.4.3 Results

Free Surface Velocities We start our discussion with surface velocity mea

surements obtained near the outlet for inclination angles of 30°, 35°, 40° and
45°, which are presented in Fig 12 5 In each panel velocity vectors (in black)
and the velocity magnitude (in colour) are shown, in one case in shades of
grey The colour scale is always chosen according to the maximum velocity
measured in this particular experiment The measurements were taken ap

proximately 0 5 s after release, when the whole chute is covered by material

The visible region is 450 mm downstream from the outlet, which is at y =0

Here it can be clearly seen that the qualitative behaviour of the flow is the
same for all inclination angles investigated This can be concluded from the
relative distribution of the velocity magnitude, which is nearly the same for
all panels The avalanche accelerates downstream; the maximum velocities of
each experiment are reached at the bottom of all pictures Furthermore, the
velocity distribution in the cross slope direction (i e , in the x direction, note
that the x and y directions are interchanged in this section) is quite uniform
in all panels From this, we conclude that the boundary effects due to the
confining side walls are relatively small and restricted to very thin layers in
the direct vicinity of these walls

Next, we turn to the end of the long chute (see Fig 12 6) Here the velocity
was measured at the end of the chute (ie, y =0 means 1850 mm down
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Fig. 12.5. Measured surface velocity near the outlet (y = 0) for four different
inclination angles Motion is from top to bottom (From [83])

stream from the outlet), where the visible region corresponds to a domain of
730 mm The pictures were taken approximately 0 75 s after release Once
again, velocity vectors and the velocity magnitude are given in panels (a) (d)
for inclination angles of 30°, 35°, 40° and 45° It can be seen that the veloc
ity values in Fig 12 6 are larger than those in Fig 12 5; the avalanche has
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clearly accelerated further downstream * However, the velocity differences in
each panel decrease compared to those in Fig 125

The velocity distribution in panel (a) for an inclination angle of 30° differs
slightly from that of the other panels On the one hand, pronounced side
boundary layers can be seen where the velocity differs significantly from the
velocity in the middle of the chute The material in these boundary layers
has a velocity of approximately 1 35 15 ms~! and seems to accelerate more
slowly or at least with some delay as compared to the bulk in the middle
of the chute Recall that the maximum velocity in panel (a) of Fig 125
was 132 ms™! The boundary effects for the other inclination angles are
less pronounced On the other hand, there are slightly “darker” regions in
panel (a) than in the other panels, which means that the distribution of the
velocity magnitude in this panel is slightly different from those in the other
ones

Let us now turn to the measurements obtained for an extra long chute
(2 85 m), which are presented in Fig 127 The axis y = 0 corresponds to
a distance of 2850 mm downstream of the outlet, the visible region is 720
mm Now, a significantly different behaviour can be observed, in particular
in panel (a), where the results for an inclination angle of 30° are presented
Firstly, the mazimum velocity is not located at the end of the chute as is to
be expected, but is more or less randomly distributed in this picture The ve
locity magnitude does not change much within this picture except perhaps
in the boundary layer It is worth noting that the maximum velocity in panel
(a) of Fig 12 7 is nearly the same as in panel (a) of Fig 12 6 (long chute)
From these results it can be concluded that a rate dependent drag law must
probably be included in depth integrated theories This behaviour for panel
(a) of Fig 12 7 is not seen in panels (b) (d), and the velocity is significantly
increased in comparison with panels (b) (d) of Fig 12 6 (long chute) How
ever, to examine this clearly, even longer chutes would be needed We may
now summarise and clarify the results of Figs 125, 126 and 12 7 This is
done in Fig 12 8, where we present, cross slope averaged values of the velocity
magnitude from Figs 125, 126 and 127

The most remarkable information that can be inferred by comparing panels
(a) (d) of Fig 12 8 is that the behaviour for an inclination angle of 30° differs
significantly form the other ones It shows that for travel distances beyond
2 3 m the avalanche no longer accelerates but seems to come to a steady state
(terminal velocity) Note that the scale of the vertical axis in panels (a) (d)
is chosen according to the maximum velocity for this particular inclination

* Note that the colour distribution in Fig 12 6 is slightly distorted as compared

to Fig 125 (ie, the mean colour is shifted to higher velocities) to be able to
show flow details
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angle The curves for the inclination angles of 35°, 40° and 45° are rather
similar in shape

In summary, we conclude that for granular flows on steep planes with incli
nation angles larger than 30° a terminal velocity was not reached within a
chute length of approximately 3 m For a chute inclination of 30°, however,
there are indications that within 3 m steady flow conditions are reached This
agrees both with observations of POULIQUEN [329] in his own laboratory ex
periments with small inclination angles (< 30°), deductions for field data of
snow avalanches by ANCEY and MEUNIER [7] and our own observations This
problem obviously warrants further study

Velocity measurements have also been made from the side of the chute
through the plexiglass walls both immediately below the head gate from the
silo (Fig 12 9) and near the end of of the short chute (Fig 12 10)

Observations from the Side It can be seen in Fig 12 9 that (in the vicinity
of the outlet) there is a region where the material at the bottom nearly sticks
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Fig. 12.9. Velocity measurements from the side at the outlet for different inclina
tion angles Motion is from left to right (From [83])
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Fig. 12.10. Velocity measurements from the side near the end of the short chute
for four different inclination angles Motion is from left to right (From [83])

to the bed (called a “dead zone”), while the material at the top is already
flowing: the material is vertically divided into (at least) two regions, where
the upper region slips over the lower region This fits quite well with the
observations and descriptions of creeping flows of soils as shown in [436]
However, the panels of Fig 12 9 show only the onset of the flow The velocity
profile is clearly not constant through depth Comparisons of the velocity
measurements that were taken for different inclination angles show that the
dead zone increases if the inclination angle decreases Indeed, if we were to
further decrease the angle, the dead zone material would remain stagnant
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on the chute whilst the complete upper layer would flow down A similar
behaviour is also reported in [329, 330]

There is an obvious qualitative interpretation of the fact that the velocity
profiles close to the left end show a pronounced dependence across the layer
depth with zero velocity at the base and a much more uniform distribution
close to the right end The free surface exerts no shear resistance to the
surface particles and so they are accelerated first It takes some time (ie,
the distance from the left to the right) until this information has reached the
bottom This is obviously faster for the steeper chute inclinations than for
the shallow ones The initial shearing is larger, but at a distance of 50 to 100
mm from the outlet it is small and the deviation of the velocity profiles from
uniformity is considerably reduced

In the velocity measurements of Fig 12 10 near the end of the short chute,
it can be seen that the velocity is to a good approximation uniform through
depth Recall (also from the surface velocity measurements) that the velocity
at the confining plexiglass wall is not the same as inside the flow region,
hence the velocity distribution through depth also cannot be the same as in
the middle However, ECKART et al and PUDASAINT et al [83, 334, 343] also
performed experiments with two cameras, one from above the other from
below and corroborated equality of the surface and basal velocities at an
interior region to within very small experimental differences

12.4.4 Summary

In this section, we presented and discussed the experimental results of sand
avalanches flowing down inclined rectangular plexiglass chutes Surface, basal
and sidewall velocities were measured with a PIV system Although the PIV
system was originally not designed for the flow of granular avalanches, it
provides a good measuring technique for visible regions of the flow The major
difference of the granular PIV to usual PIV is the use of flash lights instead
of laser light sheets, which cause a more or less inhomogeneous illumination
Careful positioning and use of the flashes are required to reduce measurement
errors Sand avalanches possess enough surface structure for the system to
easily detect a moving pattern, i e , no seeding (tracer particle) is needed

Surface measurements of the avalanche for inclination angles of 35°, 40° and
45° showed nearly the same qualitative behaviour The avalanche accelerates
downstream on all chutes and the maximum velocity is higher for larger incli

nation angles However, for the smallest inclination angle of 30° an onset of
a terminal velocity on the longest chute (approximately 3 m) was detected

In this case, the avalanche did not accelerate any further This shows a sig

nificantly different behaviour in comparison with results for other inclination
angles
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It is perhaps premature to draw definite inferences from this result, because
it only points at a peculiar behaviour but does not explore it in its full extent
Two different physical behaviours are imaginable: (¢) a possible “phase” tran
sition where the granular flow changes significantly when starting from slopes
that have inclination angles smaller than, say 30°, from the other regime at
inclination angles larger than 30°; (i¢) a more complex frictional behaviour
than CoUuLOMB type (e g , COULOMB plus a viscous type behaviour) for slid
ing on slopes on all inclination angles The presently known experimental
results do not seem to support either of the two possibilities Further ex
periments are needed on even longer inclines to see whether, asymptotically,
constant velocities are reached

For the measurements taken from the side of the channel and the experi
ment carried out with two cameras (one below and one above the chute) we
showed that the velocity distribution through depth is fairly uniform except
in a limited region very close to the outlet Thus, the assumption of a uniform
velocity distribution through depth is reasonable, at least for the flows in
vestigated here At high velocities we observed small boundary layers in the
vicinity of the confining walls, whilst in the interior the velocity remained
uniform across the channel The boundary layers were more pronounced for
smaller inclination angles and for longer distances down the chute

12.5 Concluding Remarks

One of the most fundamental questions related to the avalanche theory pre
sented in this book is: are these model equations really able to simultaneously
predict flow properties such as the velocity and flow depth in chutes and
channels? Several results can be found in the literature concerning the geo
metric deformation of the granular pile from initiation to deposit They are
reported in Chap 10 and involve chute flows as well as two dimensional flows
over various topographies However, comparison between the theory and the
experimental results for both the dynamics of the velocity field and the ge
ometry of the avalanche along the channel and in the run out zone are scarce
in the existing literature In fact, we only know of velocity measurements in
an exponentially curved channelised chute as reported in [175] There, only
the velocities at the front, at the position where the avalanche depth has a
maximum and at the trailing edge were measured However, the results were
not complete and not convincing as far as velocities are concerned, because
of the large errors incurred by the measuring technique (see Fig 10 15) To
improve on velocity measurements and to make it complete was one of the
purposes of this chapter

Both the velocity distribution and the evolution of the avalanche boundary
from its initiation to the deposit on the run out zone and the depth profile of
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the deposit, were measured We introduced and used the PIV measurement
technique to measure the velocity field of non transparent granular particles
at the surface and the bottom of free surface flows of non uniform and un
steady motions of avalanches over a chute curved in the main flow direction
and merging continuously into the horizontal run out zone The results are
presented for different regions of the chute and for different times We were
able to demonstrate excellent agreement between the theoretical predictions
and experimental measurements This, ultimately, proves the applicability of
the theory and efficiency of the numerical method, and establishes a very
good correlation between theory, numerics and experiments

We further presented results on velocity variations along inclined planes of dif
ferent lengths to see whether a uniform flow released from rest would reach a
steady velocity However, measurements performed along four different chutes
with different lengths did not clearly indicate that the granular flow down an
inclined plane reaches steady conditions Thus, the necessity of a velocity
dependent drag does not seem to be compelling

Mention should also be made of work by TISCHER et al [423], who also used
PIV measuring techniques to analyse the kinematics of sand avalanches on
inclined beds with inclination angles ¢ in the interval (¢ < ( < (n, where
(; is the angle of repose and &, is the maximum angle of stability, beyond
which sand grains start to move along the side of a heap They released
a continuous grain flow from a bulb pipette on an inclined plane that is
either rough, solid and immobile, or consists of a loose layer of sand and
observed different behaviour in the two cases The PIV technique applied
by them is similar to ours Since the purpose of TISCHER et al was the
description of the observed flow, and no theory or model description was
provided, details are not presented here Finally, since our PIV results seem
to indicate a steady terminal velocity when the inclination is below 30°, which
is obtained also by POULIQUEN, it is equally appropriate to call upon FELIX
AND THOMAS’ work [98] on the relation between dry granular flow regimes
and morphology of the deposit With classical laboratory experiments not
using PIV  these authors show that the frontal velocity of a finite width
granular mass (they use glass beads) down an inclined plane from a steady
upstream finite width source, reaches a constant Since their inclination angle
is 20°, this result seems to reinforce the statement, spelled out above, that
the frictional behaviour is different for ¢ < 30° than for { > 30° A clear
understanding still awaits to be found
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Avalanche Protection and Defence Structures



13 Protection Against
Snow Avalanche Hazards

The main purpose of research on avalanche dynamics is the issue of avalanche
protection in mountainous regions that are frequently targeted by such natu

ral calamities For mountainous countries or regions, such as Austria, Canada,
France, Iceland, Italy, Japan, Nepal, Norway, Russia, Switzerland and the
United States, to name a few, an effective avalanche warning service is cru

cial to safeguard densely populated areas and traffic lines, and to provide ski
area operators, off piste skiers and mountaineers with up to date information
on the current snow and avalanche situation Since historic times people of
the Alps have developed and used different avalanche protection measures
on the sloping faces of the mountains above their settlements, agricultural
farms, and other important objects There is no unique way or method for
avalanche protection It may depend on the slope, slope orientation, topogra

phy, snow cover, vegetation, and the nature of the object needing protection,
i e, whether it is a single object, a road, a highway, a railway track, a house, a
small village or a whole town Another important factor may be whether the
protection measures are to be taken on a steep slope of a mountain (the start

ing area), with the intention of preventing the avalanche from being formed;
or in the likely travelling zone of an avalanche, rockslide and landslide to
influence, i e, redirect or slow the motion to its standstill

The technology of avalanche protection has primarily been developed in the
context of snow avalanches and much less in the area of landslide, debris or
pyroclastic flows from volcanoes The literature on the subject can be found
basically in reports of specialized institutions and less in scientific commu
nications, and is therefore not readily available, either, e g , because these
reports are written in the local language of the institution, or the documents
are simply internal reports for the specialists or the contracting agencies com
mitting the study In snow avalanche research, such institutions are the Swiss
Federal Institute of Snow and Avalanche Research (EISLF), Davos; in France
CEMAGREF and Meteo France; in Norway the Norwegian Geotechnical In
stitute (NGI) in Oslo and in Iceland the Icelandic Meteorological Office We
only know of a single book that is explicitly devoted to the practical aspects
of avalanches and protection from them, see ANCEY [5], and the lecture notes
by SALM et al [367]
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Avalanche defence structures are commonly used, but they are restricted
to the protection of settlements (towns and villages or simply isolated single
buildings), industrial sites and major highways These structures are generally
very expensive, and this expense can only be justified if the defence structures
protect something very important such as human lives and property

In this chapter, we will give a brief introduction into these techniques, which
have been in use in the Alps (e g, Austria, Switzerland, France) for many
decades already, and have in recent years been extensively employed in Ice
land after the avalanche accidents in Sudavik (1995) and Flateyri (1998)
They present an advanced technique, specially designed from a structural
engineering point of view

13.1 Types of Avalanche Protection
13.1.1 Avalanche Initiation and Protective Measures

The potential threat of any avalanche depends on the strength and structure
of each layer of snow within a snowpack Each layer is different because
different precipitation events and weather histories create different types of
snow crystals, as well as varying structures and amounts of snow As time
goes by, a snowpack becomes “a multi layered history of storms and weather”
A weak layer is formed whenever snow crystals do not bond tightly and
are loosely packed together, thereby creating an unstable layer In snow,
such weak layers are often associated with depth hoar that is formed by
recrystallisation processes due to thermodynamic phase change conditions
The dominant factor that determines how threatening an avalanche is, is how
deeply the weak layer of snow within the snowpack is buried Generally, the
deeper a weak layer is buried, the more unstable the snowpack above it will be
This is so, because the temperature of the snow grows with increasing depth
and thus causes thermodynamic conditions in its vicinity that favour the
formation of larger crystals with fewer bonds An avalanche in this instance
is called a slab avalanche and occurs when any form of stress or trigger (which
includes new or windblown snow, skiers, a loud noise and explosives used for
avalanche control or seismic activities that may produce an extra shear stress
of several hundred Pa over some time duration) causes snow to break off in a
single large plate Subsequently, the slab or plate fractures and slips down the
slope of the mountainside as a granular piece or cloud of snow mass, with the
result of being potentially dangerous While it is difficult to predict exactly
when or where an avalanche will occur, detailed monitoring and investigation
of the snowpack, weather conditions and past avalanche occurrences are likely
to provide the necessary information to forecast avalanche cycles The threat
of most snow avalanches is confined to rather well defined avalanche tracks or
channels Snow avalanches have a large potential to destroy natural resources,
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man made structures, and transportation and communication links However,
the removal of the forest cover from steep slopes in snow belts having high
accumulation can create potentially destructive snow movement zones While
it is difficult to control the complete effects of large avalanches, it is possible
to reduce the frequency and effects of small ones by the application of snow
avalanche protection measures

Usually, an avalanche path consists of three parts: the starting zone, the track,
and the run out zone Some avalanche paths have an airblast zone below the
run out zone Snow accumulates at the starting zone, which is the critical
area for snow avalanches The areas adjacent to the starting zone, especially
on the windward side are also critical Therefore, it is necessary to consider
all high elevation forests and mountains within or adjacent to the starting
zone for delineation as potential avalanche areas Little can be done to stop
the damage caused by huge and fast avalanches, but a protective buffer in
the run out zone is usually effective in controlling small and slow avalanches
of dense flow type

Mountainous regions may be categorised according to “red, yellow and green
zones”, with red being dangerous, where housing and any form of construction
is strictly prohibited, and yellow being less dangerous but potentially not safe,
where certain safety precautions and housing codes apply Therefore, the yel
low zone implies that avalanches are possible but adequate protection in the
form of barriers of housing are maintained The green zone is generally safe
However, this division is only a very rough way of zoning avalanche prone
mountain slopes It should be noted that hazard mapping is now carried
out for many mountainous regions, if not all Different designations, criteria
and colour codes are being used by different countries in constructing their
hazard maps Effective long term preventive measures to reduce avalanche
fatality include hazard mapping, land use planning, development of protec
tive forests, as well as installation of defence structures Short term measures
include avalanche forecasting, avalanche warnings, artificial releases of snow
masses, road and rail closures and evacuations Some governments in Europe
have already invested heavily in such avalanche protection measures because
of their demonstrated cost effectiveness Over the past 50 years, for exam
ple, about 1.5 billion Swiss francs (about 1 billion €) has been invested in
protective structures in Switzerland, in addition to the resources devoted to
forecasting, hazard zoning and protective forests

Avalanche projects aimed at protecting human habitats can be regarded as
part of the infrastructure of mountain areas Protective structures must be
of high quality and receive regular maintenance to ensure that they continue
to provide reliable protection for a considerable time in the future [455]
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13.1.2 Early Efforts

FRASER speculates that the first defence structure may have been a deflection
wall built above the Swiss village of Leukerbad after a devastating avalanche
in 1518 killed 61 inhabitants in this village [102] However, avalanche pro
tection structures became popular in the Alps only in the late 1880s when
these mountain ranges became more densely inhabited and the Swiss railway
system had been established It has already been mentioned in Sect 1.3.1
that blasts were used in World War II to release avalanches as an instrument
of death “During the fighting in the Alps, armies aimed their cannons not
on the opposing armies but on the slopes above them, and the avalanches
rained down in torrents of death” [13] Military weapons, such as explosives
(grenades and artillery), have been used in Europe since 1930 for controlled
avalanche release and protection In the United States, avalanche control was
started for the purpose of mining by blasting during the mining era of the
late 19th century

13.1.3 Modern Methods of Avalanche Defence and Protection

There are two quite different ways of controlling avalanches  active and
passive One is to attack a slope to cause it to slide when intended and it can
do no harm This is referred to as an active attack, usually done by explosives
so as to check the stability of the snow by giving it a massive jolt Such active
control is most commonly used along highways and in ski areas The other is
avalanche defence by preventing a slope from sliding, called passive control
If the sliding takes place, this measure is still more important to channel the
avalanche where it can do no harm or to stop it before it can cause damage

In this section, we will mainly focus on passive controls These are the solid,
somehow permanent, structures built to control avalanches There are three
general types of avalanche defence structures, depending on the position of the
avalanche path In the starting zone, the structures are designed to hold the
snow in place; as a result an avalanche should never occur The other types
of structures are installed in the main track or the run out zone to divert
the flow or to dissipate its destructive power The final types of avalanche
defence structures are designed to alter the snow deposition patterns; they
are built above an avalanche path, either on the opposite windward slope or
on the ridge of a mountain itself

Supporting Structures in the Starting Zones These are rigid and heavy
structures built of concrete, steel, aluminium, wood, or a combination of these
materials They are designed to anchor the snow in its place They are built
in parallel lines, stretching along the contours of the initiation zone There
are three types of support structures Two of them are of rigid types Those
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Fig. 13.1. Snow bridges in the Swiss Alps a) Heavy structures made of concrete
or steel are located at the top of a mountain, the starting zone of avalanches (From
[13], courtesy RICHARD L. ARMSTRONG) b) Wooden bridges illustrating how they
hold the snow in place (From [4] and Swiss Federal Institute of Snow and Avalanche
Research, SLF, Davos )

having horizontal bars are called snow bridges, as shown in Fig 13 1, and
those having vertical bars are called snow rakes The final type of support
structures are flexible supports They are snow nets consisting of flexible ca
bles hung on tubular steel posts

Supporting structures are costly to build and maintain In the Alps it is not
unusual that millions of Euros must be invested in supporting structures for
a single starting zone, when the avalanche threatens a town below Much
of the expense goes into the cost of the construction materials, mostly con
crete, cement and steel, but are also, due to the very complicated mountain
topography, and into transportation costs by helicopters

Deflecting and Dissipating Structures These kinds of defence structures
are located in the track and run out zones to divert, retard and stop a moving
avalanche before it hits what is to be protected These structures are usually
massive and made of concrete, rock and steel because they must withstand
huge dynamic forces However, dams and breaking mounds are also made
from earth and boulders The deflection angles of these structures should be
small (normally no more than 15 20°) because walls built at sharper angles
to the flow are likely to be over run by the fast moving dry snow avalanches
(see Figs 13 15 and 13 16) In addition, the stresses normal to the structure
against which it has to be designed are this way kept small

Earthen cone shaped mounds are frequently built in the lower part of the
track and the run out zone to retard and dissipate the destructive power of
an avalanche, as shown in Fig 13 2 Once such protections have effectively
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Fig. 13.2. Cone shaped mounds placed close to the run out zone for avalanche
protection (From [4] and Swiss Federal Institute of Snow and Avalanche Research,
SLF, Davos )

Fig. 13.3. Defensive structure as an integral part of an object A pole of an electric
line protected by a tetrahedral wedge (From [4] and Swiss Federal Institute of Snow
and Avalanche Research, SLF, Davos )

stopped an avalanche, it is necessary to bulldoze the deposit of the debris
from around the mounds to make them work well for subsequent avalanches
Defensive structures can also be built directly uphill as an integral part of
an object, like a building, a historic monument or a tower that need protec
tion (see Fig 13 3) A good example of such structures are splitting triangular
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Fig. 13.4. A snow shed gallery, protecting a motorway from being damaged or
interrupted by avalanches in Switzerland (From [4] and Swiss Federal Institute of
Snow and Avalanche Research, SLF, Davos )

and prism like wedges We will discuss this kind of protection structure in
more detail in Sect 13.3

In Switzerland, it is common practice to build sheds and galleries along moun
tain highways and railways to protect them from avalanches This is an ad
vanced technique, often and worldwide used, where the sheds are roofs built
close to the angle of the slope of the mountain and allow avalanches to cross
over them without interrupting public traffic (see Fig 13 4) However, in the
design of such sheds the corresponding impact forces have to be taken into
account These sheds are so expensive that a 100 m shed costs as much as
€1.5 million in Switzerland

Structures Installed Above the Starting Area By building appropriate
structures just above the starting zone of avalanches it is possible to alter the
snow accumulation and thus reduce the amount of deposit in the starting
zone This results in a reduction of the size and number of avalanches One
method is to keep snow out of the starting zone by erecting snow fences
on the windward slope upstream of the starting zone, so as to deposit the
drifting snow right downwind of the fence instead of letting it accumulate in
the starting zone The erection of fences, however, is a rather tricky measure,
since the local aerodynamic conditions change because of the fences that may
alter the depositions of the transported snow in an unwanted manner GAUER
gives an account of the complexity of this problem [110]
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13.2 Avalanche Protection in Different Countries
13.2.1 Avalanche Protection in Switzerland

Different avalanche protection measures such as supporting structures and
shed galleries have been in operation or used in Switzerland for many years
The task of supporting structures is to prevent large avalanches or at least
to limit snow motions, but experience shows that they are never completely
eliminated to a harmless magnitude Fully developed avalanches cannot be
stopped completely by supporting structures The first task is to produce
an overall increase in the stability' of the flowing avalanche by additional
compressive stresses and to reduce the shear stresses in the weak layer by the
defence structure The second task consists in limiting the size of the snow
masses that have been set in motion and in retarding and catching them The
principal calculation and the design of supporting structures are explained
in the “Swiss Guidelines for Avalanche Control in the Starting Zone” [407]
These guidelines are the basis for all designs and applications of supporting
structures in Switzerland

According to these guidelines, mountain slopes at an inclination of 30° to
50° are generally considered to be in the range that justifies the construction
of defence measures The primary location for supporting structures is below
the highest fracture line that is observed by the experts or is expected from
experience The continuous arrangement of structures in lines with lengths
between 20 m and 50 m is preferred The height of a structure is decisive
for the avalanche safety during situations of intense snow accumulation and
for the design of the structures The structures have to withstand the maxi
mum static and dynamic snow pressures Furthermore, they must reduce the
velocities of small avalanches together with the roughness of the supporting
plane In Switzerland, the vertical height of the structures must correspond
at least to the extreme snow depth with a return period of 100 years Typical
structure heights used in the Swiss Alps are 3 m to 4 m

The costs for these supporting structures, as explained previously, are high
Usually, one hectare costs more than 1 million Swiss francs, but these sup
porting structures in the starting zones have been used for avalanche control
for about 120 years Until 1996, supporting structures with a total length of
approximately 470 km had been built At present, steel and concrete snow
bridges and flexible snow net systems are most commonly used The snow
pressure loads are up to 100 kNm~!' This manifests the required strength
of these defence structures Supporting structures are suitable to prevent ex
tremely destructive avalanches with long return periods and long run outs In

! The term “stability” is used in the avalanche community differently than in the

mathematical or engineering literature It here means something like “proba
bility of the snow not to slide down”
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Switzerland, expensive supporting structures are widely used to protect zones
or objects that are difficult to evacuate or to close (like town and village
settlements, industrial areas, motorways and railways that were built a long
time ago in the run out of extreme avalanches) during high avalanche hazard
[464]

13.2.2 Avalanche Protection in France

Avalanche Protection Screens and Nets Avalanche protection screens
and nets are widely used in France (see Fig 13 5) These nets are flexible
structures mounted in areas where avalanches begin They prevent the snow
mantle from breaking off by braking the snow slide They can also resist small
avalanches that may occur between two rows of nets, as well as rockfalls Such
nets are used in avalanche protection mainly because of (i) a considerably
lower investment and (i7) a better fit into the surrounding scenery with land
scape On the other hand, this type of defensive equipment may be installed
on all types of ground, on a sound bedrock or on loose soil, but what is ex
pected is that the average snow depth is about 3 m to 5 m on stiff slope
Specific avalanche protection nets and screens can be designed and are be
ing produced, including particular specifications depending on environmental
conditions

Rock Protection Nets Rockslides and rockfalls are also common phenom
ena in mountainous regions In France, rock protection nets, made of flexible
structures are used to prevent fatalities caused by natural hazards such as
rockslides Such screens are made of metallic nets linked to energy squander
ers Tubular stands keep the entire system perpendicular to the slope The
nets are equipped with energy absorption systems They are able to disperse
the kinetic energy of falling or sliding rocks until they definitely stop The

Fig. 13.5. Avalanche protection screens and nets used in France (From [463] )
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nets allow a 500 kJ to 5000 kJ retention, representing a 10 ton rock falling
at 31.7 ms~! (114 kmh™1!), see [463]

13.2.3 Avalanche Protection in Iceland

Avalanche accidents have had a major effect on the development of avalanche
research in Iceland In December 1974, catastrophic avalanches in Neskaups
tadur killed 12 people Following that accident, a committee was established
in Neskaupstadur and a year later a report was completed with plans for co
operation over the whole country for protection against avalanche danger In
January 1995, an avalanche struck Sudavik, killing 14 people (see Fig 13 6)
In October of the same year, another one fell on the village Flateyri caus
ing the death of 20 people The three catastrophic avalanches, all of which
fell during the night on people sleeping in their houses, in the Westfjords
that occurred during three winters in the years 1994 and 1995 had a ma
jor influence on avalanche work in Iceland The direct economic loss due to
avalanches and landslides in the last 26 years alone is estimated to be around
3 8 billion TKR. 2 If the cost of re location and defence structures is added
to this economic loss, the direct cost of avalanches and landslides in Iceland
exceeds 6 billion IKR JOHANNESSON also mentions in [204] that if the death
of a person in an avalanche or landslide accident is included in the economic

Fig. 13.6. Sudavik in August 1995 The main part of the village in Stidavik was
moved after the avalanche accident The old houses were bought by the authorities
and new ones were built in a different area, which is considered safe (From [458] )

2 At present 1 Euro — 73 IKR
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loss as 100 million IKR. per fatal accident, the total cost of avalanche and
landslide accidents in Iceland in the last 26 years together with the cost of
avalanche protection totals more than 13 billion TKR! All of these avalanches
had longer run out distances than thought possible in those areas according
to the methods for making hazard maps at that time It was then realised that
the avalanche history should be reviewed and the run out zones estimated by
some reliable measures The Icelandic Meteorological Office made a report
in 1996 with suggestions on avalanche protection measures and estimation of
their costs for all avalanche endangered towns [458]

In 1996, experts in those hazard areas installed avalanche retaining structures
under Icelandic conditions and standards because the snow in Iceland is much
heavier than in Alpine countries In preparation for building avalanche de
fence structures, dozens of snow stakes were installed in the starting zones
above various villages

In Flateyri two deflecting dams were built in August 1998 to protect the
village against avalanches from the two gullies The dams are connected at
the top and farther down the slope an additional catching dam connects the
two main dams Together, the three dams form the shape of an “A” as seen
in Fig 137, [393] For more details, see also [458]

Fig. 13.7. Flateyri, the deflecting dams in August 1998 Two deflecting dams
have been built to protect against avalanches from the two gullies The dams are
connected at the top and farther down the slope is a catching dam Together the
three of them form the shape of an “A” (From [458] )
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13.2.4 Snow Avalanche Protection in Austria

A major avalanche hazard in the history of Austria occurred in January
1954, when 56 people were killed in the town of Blons in Vorarlberg State
The avalanche that struck Galtiir in the Paznaun valley was the first to hit
the village in living memory Local records showed that the last avalanche
to hit Galtiir was back in 1689 and wiped out the village and killed 250
people Since avalanches had not attacked Galtiir for over 300 years, it was
considered a less dangerous zone until it was hit again in 1999 killing more
than 30 people

Galtiir was placed in the yellow (i e , potentially less endangered) zone until
1999 Austria has invested more than €60 million in the Paznaun Valley and
€20 million in Galtir alone, in avalanche prevention over 50 years Metal
and concrete barriers (bridges and racks), as used in Switzerland, were placed
above the timber line and positioned in many rows on avalanche prone slopes
However, the avalanche that devastated Galtiir rushed down an unprotected
slope [456]

In addition, the relatively high avalanche activity that has occurred in the
past half century and may in part be due to global warming, has led to an
impetus in Austria in avalanche research, in particular the development of
improved mathematical descriptions of mixed flow powder snow avalanches
and their applications to field events, see [449, 450] and the account of the
history of snow and avalanche research in Austria in Chap 1

13.2.5 Snow Avalanche Barriers in North America

As in the European Alps, snow avalanche barriers are also used in the preven
tion of snow avalanches in North America Although these types of systems
are extensively used throughout Europe, a new system, called the Brugg (ca
bles) system, which uses a combination of flexible nets and high yield anchors
(which have also been routinely used in the Alpine regions for many years),
is probably installed only in North America The first system of this kind in
the world was installed in at the Washington State Snoqualmie Pass The
placement of the system is pre engineered by avalanche experts and struc
tural engineers to pinpoint the exact locations on the slope where the system
is to be installed The system, which is particularly useful in forest areas,
is probably one of the largest snow avalanche barriers installed in the world
[459] (see Fig 13 8) This is a highly effective and proven system The system
was installed to protect houses threatened by snow avalanches

Remark In Sect 142 we presented a short account of the history of
avalanche research of most avalanche prone countries This historic descrip
tion also incorporates avalanche fatalities and means of avalanche protection
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Fig. 13.8. Installing snow avalanche barrier posts for the Brugg System (From
[459] )

and includes countries like Switzerland, France, Austria, Iceland, Norway,
USSR, (former) and Russia, USA, Canada and Japan Thus, readers more
interested in avalanche hazards and protection measures are also referred to

Sect 142
[ |

13.3 Laboratory Experiments: A Means to Design
Defence Structures

The avalanche equations presented in Chaps 3 and 4 have been demonstrated
to be an adequate mathematical model for snow flow avalanches that are
relatively dry and dense granular flows Since the equations are scale invariant
and because agreement with experiments is good, laboratory experiments
can be used to test realistic flows with and without obstructions Therefore,
principles of similitude can be applied and physical models be constructed
for the design of avalanche protection structures Experimental techniques
can also be used in the optimal design of flow around avalanche protection
structures in mountainous regions Laboratory experimental techniques can
be used effectively in the design of avalanche protection constructions and
in the determination of potential avalanche endangered zones of inhabited
regions [411]
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13.3.1 Laboratory Models and Experiments

Consider an obstruction designed to protect a structure from being hit by an
avalanche The model object selected for protection is the Schneefernerhaus
at the Zugspitze, Germany, which is an old hotel that has been renovated
and transferred into a research laboratory for environmental and climatolog
ical research (see Fig 13 9a) The building is situated at 2700 m above sea
level on a steep mountain slope, but that is flat in the cross slope, inclined
approximately at an angle of 45° It was planned to erect a number of masts
equipped with meteorological instruments on the roof of the building The
building must be protected against avalanche impact throughout the year
Several avalanches pass every year and occasionally flow over the building
so that a protection for a 100 year event is thought necessary ® According
to expert studies, a large avalanche with a 100 year recurrence is a snow
layer of slightly more that 8 m depth moving down the mountain In a first
study of protecting the building against such an event, a tetrahedral wedge
(pyramid) was designed that should divert the flow and guide the snow to
pass the building on either side Figure 13 9a shows a photograph of the
Schneefernerhaus Experiments in situ being out of the question, it was de
cided to perform laboratory experiments The mountain flank was modelled
as an inclined plane of a 45° slope angle, made of metal and plexiglass, re
spectively, and the model Schneefernerhaus and wedge were cut from plastic
and wooden blocks, depending on the scale Figure 13 9b shows one of the
laboratory models A tetrahedral wedge was positioned above the building

Fig. 13.9. a) Schneefernerhaus at the Zugspitze in the German Alps, at 2700 m
on a rather planar mountain slope inclined at an angle of approximately 45° b)
A model reproduction together with a tetrahedral wedge type avalanche protection
structure (From [411])

3 An avalanche of large size hit the hotel in 1963 and killed 14 people, who were

on the roof
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Fig. 13.10. Schneefernerhaus in an incline and the avalanche protection wedge as
its integral part Scales: a) 1:300, b) 1:100 (From [411])

at an optimal distance by trial and error The experiments were performed
with two models of scales 1:100 and 1:300, respectively Plastic beads of 2.5
mm and semolina and white sugar of approximately 0.8 mm in diameter,
respectively, were used as “dry snow” for the laboratory simulation These
materials gave internal and basal angles of friction of approximately 35 45°
and 15 25°, which lie in the range appropriate for snow

Figures 13 10a,b shows the experimental set up in the two scales mentioned
above Figure 13 11 displays three consecutive snapshots of the motion of
a layer of semolina down the slope, past and around the wedge and the
Schneefernerhaus at three different stages The snow depth here corresponds
to the motion of an 8 m layer It can clearly be seen how the side flanks of
the wedge divert the flow A shock is formed at the wedge tip that extends
on both sides of the flanks of the wedge

An obvious advantage of the model experiments is the fact that various differ
ent event scenarios can be tested, and thus the effectiveness of the structure
estimated A frequent scenario is when a layer of new snow is deposited on
a hard and stable layer of old snow, and this new layer becomes unstable
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Fig. 13.11. Flow of a layer of semolina, discharged by opening the gate of the
silo at the top of the chute, which is inclined at 45° angles The flow goes past the
tetrahedral wedge and around the building that must be protected (From [411])

a C

Fig. 13.12. a) Model Schneefernerhaus accompanied by a tetrahedral protection
wedge against avalanches In these experiments, it is assumed that 5 m hard snow
is stably deposited and the plexiglass surface corresponds to the upper level of this
snow cover Motion of b) a 3 m and ¢) an 8 m layer of “snow” (semolina) (From
[411])

and forms an avalanche Such a case is illustrated in Fig 13 12 In this case,
the plexiglass surface is identified with the upper surface of the hard layer;
here it corresponds to a 5 m deep layer, and the flowing granular mass has
been designed to represent 3 m and 8 m new snow layers, thus amounting, at
most, to a total of 13 m snow cover It is evident that the wedge suffices for
the first scenario but does not sufficiently shield the building for the second,
which was neither intended nor achieved
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13.3.2 Simulation of Avalanche Protection

The avalanche model equations of Chaps 3 and 4 have been applied in the
design of avalanche protection constructions as discussed above [412] To
describe the flow in the situation of the Schneefernerhaus is really a great
challenge There are many reasons for this Below the pyramid wedge the
flow forms a vacuum with a grain free region In a first test example, the
wedge is interpreted as an integral part of the basal surface Figure 13 13
displays the photograph and a result from the simulation with the model
equations for the steady flow past the tetrahedral wedge (pyramid) as an
avalanche defence structure * The triangular lines represent the tetrahedral
wedge and the computed flow thickness is given in contours of dimensionless
length scale at the dimensionless time unit ¢ = 10, when the flow is nearly

01

-
t3

Fig. 13.13. a) Photograph of the steady flow past an avalanche defence structure
(pyramid) b) The defence structure is represented by triangular lines The com
puted dimensionless flow thickness contours of equal thickness are illustrated at the
dimensionless time unit ¢ = 10, when the flow is nearly stationary (From [412])

The formulation of the boundary value problem in this situation does not in all
respects correspond to the experimental performance of the flow For instance,
panel a) in Fig 13 13 shows two subregions of ballistic (free flight) motion that
was computationally not reproduced Given such deviations of the real flow
and its computed analogue the agreement is convincing
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Fig. 13.14. Local view of the velocity field around the defence structure (tetra
hedral wedge) obtained by a numerical simulation The arrows and their lengths,
respectively, are representative of the directions and the speed of the velocity
(From [412] )Ta1

stationary At the tip of the defence structure an oblique shock is formed
This can be clearly seen from the streamlines in the photography, as well as
in the corresponding contour plot obtained from the numerical simulation
Behind (i e, below) the pyramid, the mass rapidly spreads in the lateral
direction and thus an ezpansion fan is formed, which is well described by the
contour plot A grain free zone, which is viewed as the protected region, is
developed behind the defence structure

Figure 13 14 depicts the velocity field of the flow around the pyramid It
is seen that the pyramid arrests the flow and diverts it to either side of it
The arrows and their lengths are indicative of the directions and the speed
of the velocity, respectively Below the pyramid the flow accelerates and the
downslope velocity becomes dominant again

Similar experiments have also been performed in the Laboratory of the
Department of Mechanics, Darmstadt University of Technology GRAY et
al [126] report on flows around a tetrahedron arranged upside down and
CHiou [59] conducted a great number of experiments against and around
obstructing walls and tetrahedra of different size
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13.3.3 A Structural Protection Technique by Deflection

Rapidly flowing granular masses, such as snow avalanches or rockslides are
diverted and redistributed by structural devices such as fences and walls
These are classical constructions for the protection of valuable structures
on a mountainside Here, we consider some simple deflection structures If
a uniform layer of rapidly flowing granular material down an inclined plane
encounters a vertical wall forming an angle « with the direction of steepest
descent, as shown in Fig 13 15, then a straight triangular shock is formed
at an angle 5 Although the protected region is a function of angle «, this
angle must not exceed a certain critical value depending on the strength of
the material of the deflecting device and its structural design Also notice
that the angle § depends on the basal topography, the material property of
the flowing mass and the angle @ Above the shock, the undisturbed flow is
supercritical with a given height h; and velocity wi; behind the shock it is
subcritical with a different thickness ho > hy and different velocity us < uy
The situation is analogous to the subcritical and supercritical flows in the
hydraulics of free surface channel flow If the retaining wall is curved, the

Fig. 13.15. A steady layer of granular material with thickness h1 and the super
critical downstream velocity u; is moving down an inclined plane As the flow
encounters a straight vertical wall inclined at an angle «, the induced cross flow
generates a straight triangular shock that is inclined at an angle 3 with layer thick
ness ho > hi and velocity uz < ui Arrows indicate the direction and (relative)
magnitude of the velocity field Also shown is the protection of a house below the
avalanche Left: sketch, right: experiment (Right picture: From [411] )
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Fig. 13.16. Similar to Fig 13 15 but for the curved deflecting structure (Right
picture from [411] )

steady shock that is formed will also be curved (see Fig 13 16) This means
that the nature of the shock depends on the topography and the shape of the
deflecting structure itself The downstream flow behaviour can be computed
if the upstream conditions (velocity, height and pressure) are given The de
termination of the impact pressure at the deflecting wall is very important
from a structural point of view The concept discussed here can also be ex
tended for slopes of varying topography, as well as for complicated structures,
see [59]

13.4 Conclusion

A review has been given in this chapter about the various protective measures
that are taken in various countries to protect the people in avalanche prone
regions from being directly exposed to their dangers While a potential danger
cannot, in general, be completely avoided, a partial reduction is possible In
many cases, an understanding of the mechanisms is already a substantial step
towards its removal

One step towards this goal is the modelling of the avalanche processes from
(basic) first physical principles This has led, on the one hand, to the con
struction of the SH theory and its various extensions dealt with in this book
On the other hand, this model and its validation by laboratory experiments
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has opened up a new and innovative method of analysis for the study of
avalanche flows by physical model experiments Since our model equations
are scale invariant and agreement of the theoretical numerical results with
laboratory experiments under fairly varied conditions range from good to ex
cellent (see Chaps 10 and 12), physical models and their results provide us
with trustworthy results that can be transferred from the laboratory scale to
a scale in nature Therefore, such experiments ought to be performed more
often than presently done, especially when protective measures against po
tential avalanche dangers are to be designed

One should not forget that even if no avalanches occur in potentially avalanche
prone regions for years or decades, the threat remains, and we must be pre
pared to face the avalanche danger Research on avalanche hazard protection
must be done continuously Protection measures against avalanches must be
carried out in endangered areas, so that gradually it will be safer to live
in the avalanche prone towns and villages Even when protection structures
are completed, future observation of the snow cover, its metamorphisms and
the weather outlook is vital in order to warn against the avalanche danger
Protections can only reduce risk and will never be able to provide complete
safety It is extremely important to be aware of the remaining risk Gradually
people have seen that avalanches can strike where there is no previous his
tory of occurence Realising the possibility of danger, that knowledge can be
used for protection against it On the one hand, continuous further research
for more advanced avalanche protection and mappings should be conducted,
while on the other hand people must be educated about avalanches and the
signs of avalanche danger, which is very important for the well being of the
inhabitants in the areas of avalanche danger, as well as the people travelling
and enjoying outdoor winter sports
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For the convenience of the reader, we shall in this chapter briefly outline a
summary of what we believe to have covered in this book and also provide
an outlook to future activity

There remain two questions to be answered: What has been achieved so far
and what should be done in future? The answer to the first question is rela
tively easy but very important in order to give an overall impression about
the up to date achievements, as well as the specific, significant and novel and
lofty outcomes presented in this book A straightforward answer to the sec
ond question seems to be a little difficult, but from past experience, knowing
today’s needs and technology we can infer what can be and what must be
done in future Firstly, to provide continuity to the work that has been done
until now, and secondly, to utilise the achievements obtained so far in real
applications directly related to the security and benefits of the public For
the continuation of the research activities and the implementation of the re
sults thus obtained as predictive tools of avalanche behaviour, it is required
in practice to use the most advanced technology both in understanding the
physics of the flow by means of well controllable laboratory and field experi
ments and in corroborating most advanced and sophisticated theoretical tools
available in different configurations that are compatible with the need of the
people and are close to reality Such tasks may be related to geophysical flows
at large scale and catastrophic deformations and movements of earth materi
als such as landslides, rockslides, debris and snow avalanches down the slopes
of mountains Understanding the mechanisms of the initiation and dynamics
of the flows from the breaking and release of the masses to the depositions
is extremely important for hazard mapping of mountainous regions, for the
prevention, reduction and mitigation of the natural hazards causing devas
tating damage of property and claiming the lives of the people on a large
scale Alternatively, one can make use of these theoretical and experimental
facilities to analyse also the flows of powders and fine granulates in silos,
hoppers, and the transportation of different kinds of bulk materials such as
cereals, ceramics, dyestuffs, electronic materials, pills and capsules, just to
name a few, through different and specific channels in the food producing,
chemical process and pharmaceutical industries The prediction of such flows
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basically helps the production and quality control of these materials to meet
the standards set by the authority concerned

Let us review the knowledge as we see it at present and then contemplate
activities that may or ought to be done in future

14.1 Knowledge at Present

We mainly focus on dry granular materials Let us now go back to the first
question We were mainly involved in doing three things successively:

the collective and systematic presentation of the classical and new general
theories for avalanching granular flows that can be used both in geophysics
and process engineering,

implementation of reliable and sophisticated numerical methods that can
appropriately solve the model equations thus developed without losing the
underlying physics of the theory,

and, finally, providing the proof that the theoretical predictions of the model
equations can well be reproduced by the laboratory experiments, so as to
pave ways to real applications in different scenarios

14.1.1 Theory

Concerning the theory, the following points are worth emphasising: We have
presented and discussed the most widely used avalanche theories in practice
ranging, from the classical mass point model of VOELLMY [430] to the early
depth integrated continuum mechanical model due to SAVAGE and HUTTER
[375, 376] to recent extensions and a generalisation of this model proposed
by PupasaINT and HUTTER [335] In this endeavour, competing models are
also discussed Major attention is paid to the systematic evolution of these
hydraulic avalanche equations The new and generalised model equations de
veloped in Chap 4, are formally analogous to those of previous derivations
under much simpler situations For torsion free and flat cross slope (refer
ence) bed topography, these equations reduce to the much simpler equations
proposed by GRAY et al and WIELAND et al [123, 445] as special cases Fur
thermore, the new theory can reproduce all previous model equations of the
SAVAGE HUTTER type theory as particular cases Analysis of the motion of
avalanches in channels with different cross slope curvatures and widths is now
possible, see [341] For the first time, we were able to include the simultane
ous effects of the curvature and torsion of the channel axis and cross sectional
curvature in the avalanche motion, which could not be achieved explicitly by
any previous models This should be realised as one of the major advan
tages and achievements of these new model equations The applicability of
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the present model equations is, therefore, much broader than in the previ
ous cases The advantage of this formulation of a depth averaged avalanche
model lies in its flexibility of application The flow down an inclined plane
or within a channel with its axis in a vertical plane (which may be curved)
can be described, as can the flow down complicated mountain valleys with
arbitrarily curved and twisted talwegs and bed topographies It is this last
application that motivated us to derive the new model Thus, the theory
provides an entirely new direction in the field of avalanche and debris flow
research It also opens a large spectrum of applications in different industrial
and geophysical problems We simply mention at this point that PUDASAINI
et al [342] extended the aforementioned single phase cohesionless dry granu
lar avalanche model equations over generally curved and twisted channels to
a two phase fluid solid mixture of debris material !

14.1.2 Numerics

Another challenge has been to solve the model equations The first step to
wards the full understanding of the theory is the simulation of the model
equations for some specific and particularly interesting, somehow academic
engineering problems The results emerging from these simulations indicate
the basic and fundamental capabilities of the entire theory Since the model
consists of non linear hyperbolic partial differential equations with discontin
uous coefficients, we should not solve them with classical numerical methods
These require the use of additional numerical diffusion and may thus smear
out rapid changes of the values of the physical variables We have seen that
their approximate preservation requires a tricky and balanced application
of artificial numerical diffusion that, however, may not work satisfactorily

! These remarks require the following clarification In the literature, depth

integrated equations of motion are often derived by referring their coordinate
dependent version to a Cartesian coordinate system with two horizontal axes
and one vertical axis rather than a coordinate system that follows the local
topography, see [191, 192, 321, 323] Such a procedure defines shallowness dif
ferently, and in particular, requires among other things that the slopes are
not steep Nevertheless, those authors apply their equations up to very high
slopes True, the curvilinear coordinates employed by Pubpasaini and Hut
TER [335] do not exactly follow the true topography either, but only approx
imately and more closely than when horizontal vertical Cartesian coordinates
are used A direct comparison between the different approaches is difficult and
perhaps not possible, but discounting other differences, e g, the use of dif
ferent numerical techniques and softwares for the integration of the equations

the procedure followed by us is certainly more accurate Equations founded
on the true topography would be the ideal modelling basis BoucnuT and
WESTDICKENBERG [40] have derived them for hydraulic equations with basal
friction A worthwhile understanding could be a benchmark problem in which
the different approaches are compared
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under all circumstances To avoid any spurious oscillations and include nat
urally induced shock phenomena of the hyperbolic equations, we introduced
shock capturing numerical schemes To this end, NOC schemes with TVD
limiters were implemented The numerical sensitivity analysis reveals that
the NOC method with the minmod limiter provides the best performance for
the avalanche flows

One of the most interesting aspects of avalanche dynamics is the study of
avalanching motion over different bed structures and the effect of topog

raphy on their motion and deposits For this purpose, a large number of
simulations are presented for different topographic configurations The first
part of the simulations is concerned with a very simple bed topography that
is laterally flat but curved and merges into the horizontal run out zone along
the down hill direction One of the most basic and fundamental questions
related to the new equations derived in Chap 4 is: are these model equations
really able to predict flows in chutes and channels that simultaneously incor

porate curvature and torsion effects of the bed topography? In other words,
can we really use these equations to predict the flow dynamics of debris and
avalanches down arbitrarily curved and twisted mountain valleys and natural
gullies from initiation to deposit? To answer these questions, we performed
several numerical tests for avalanching masses down curved and twisted bed
topographies Uniformly curved and twisted channels, as well as channels in

corporating a continuous transition zone merging into the horizontal run out
zones were considered Both confined and unconfined transition zones with
constant and variable inclination angle of the topography were taken into ac

count In one instance, the topographies used were based on helical talwegs

As the “arts” of the theory can be seen in the simulations, these computa

tions reveal the fantastic and fascinating results that we were imaging while
developing the theory They demonstrate the combined effects of curvature,
torsion and the radial acceleration associated with the bed topography Thus,
we were able to quantify the intrinsic effects of the topography on the dy

namics of flow avalanches Such sophisticated studies have not been carried
out before, and it was possible here only with the new model equations >

14.1.3 Experiments

A scientific work on a physical process, whatever it may be, should be verified
by observations on the natural object or some suitable experiments conducted
in the laboratory It should not merely be based on some computations, ma
nipulations, reasonings and logics that are not physically verified Practition
ers and engineers use or tend to use model equations that have already been

?  There are some experimental works that show that extended theory [335] is

well able to reproduce the flow in helical channels merging into a horizontal
plane, see PUDASAINT et al [344]
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proven to be able to reproduce experimental facts either in the laboratory
or in the field Thus, in order to acquire confidence in new model equations
it is vital to corroborate them by direct observation In this spirit, we per
formed several laboratory experiments for different materials in order to check
the validity of the theory The two most important variables that should be
known in the determination of the motion of an avalanche are probably the
mass transport or depth averaged velocity distribution and the evolution of
the avalanche boundary from its initiation to the deposit in the run out zone
and the depth profile of the deposit

We have explicitly explained different measurement techniques and tools to
perform laboratory experiments A large number of laboratory experiments
with increasing complexity have been conducted Results were obtained and
compared with the theoretical predictions of the model equations Simple
to complex topographies incorporating bumps and side walls and sidewise
confinements were taken into account Several granular materials were used
for the experiments Deposits of the avalanches were measured In some in

stances, highspeed photo cameras and video cameras were used, from which
one can identify the geometry, the front and rear positions and the position
of the maximum height of the pile; the velocity of the front and rear part of
the avalanching motion

We also used the modern measurement technique, PIV, to measure the veloc
ity field of the particles at the free surface and the bottom of the free surface
and unsteady motion of an unconfined avalanche over a chute curved in the
main flow direction and merging continuously into the horizontal run out
zone This technique is discussed in detail and implemented by ECKART et
al and PuDASAINTI et al [83, 334, 343] Onuly selected results were presented
here to show how the method works in reality We presented the results for
different regions of the chute We were looking for the correspondence and
harmony between the theory, the adequacy of the numerics and the demon
stration of the experimental facts We were able to demonstrate that there are
good to excellent agreements between the theoretical predictions of the model
equations and the experimental measurements This, ultimately, proves the
applicability of the theory and efficiency of the numerical method and code,
and establishes a nice and strong correlation among theory, numerics and
experiments We also reported such successful comparisons done by others

The proof of the adequacy of the model equations by hindcast analysis of real
events is an order of magnitude more complicated and because of less reliable
input also less convincing Here, the breaking mass of soil must be estimated
from the site investigations of the deposited materials and carved surface of
the likely breaking zone and eroded channel walls Trimlines bounding the
affected region must also be estimated by geological investigations from the
after the fact studies We have reported about attempts to compute the mo

tion of the mass of granular material for hindcast analysis of the Frank Slide
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in Canada Results are convincing Thus, the usefulness of the computations
cannot be denied

14.2 Attempts in Future

Now we address the second and final question posed at the beginning: What
should be done in future? Our experience says that there are still many chal
lenges to be met in the field of avalanche and debris flow research Here we
will focus only on the part of the problem related to dynamics The main
intention of research in this field should be directed towards modelling and
solving the real problems so as to minimise the casualties and hazards in
duced by natural catastrophes such as avalanches and debris disasters This
includes knowledge and understanding of the release mechanisms of avalanch
ing masses, the reliable prediction of the motion from initiation to run out,
the evaluation of impact forces of the moving masses on the objects they
may encounter, the estimation of the likelihood of an avalanche prone region
to be hit by a moving mass, etc This list involves more than the scientific
techniques provided in this book, but what has been tackled here is a vital
step towards the solution of the overall theme Within the limited scope, here
is an outlook

14.2.1 Application in Nature

The next and immediate goal should be to perform additional numerical
simulations on realistic topographies with the purpose of providing a general
purpose software for practitioners involved in the prediction of avalanche
run out in mountainous regions The approach is to use GIS from which
DEM can be deduced and digitised realistic topographies in mountainous
regions realised With GIS particular avalanche prone subregions can be se
lected From a preselected release of a finite mass of gravel or snow at a
breaking zone the flow from initiation to run out can be determined This
step requires numerical integration via avalanche purpose built software in
corporating a shock capturing TVD scheme Its output could, in a final step,
be used in visualisation software to identify endangered zones A multitude
of applications could then be investigated with the software A comparison
with observational data in the field such as photographs from helicopters, or
a digital video camera positioned at a fixed station, may then become pos
sible From these computational results one can easily estimate the impact
pressures on obstructions and infrastructures along the track and in the de
posit, which is very useful for civil and forest engineers, rural planers and
authorities from municipalities responsible for the safety preservance in pop
ulated mountain regions Moreover, the results should ultimately be applied
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to construct hazard maps in the mountain ranges with the aim of avalanche
warning, reduction, mitigation and prevention of the hazards

A number of prime and fundamental works in this direction has been and
is being done One example of this kind is the reanalysis of site events
by McDoudcALL and HUNGR [273, 274], another is the implementation of
the SAVAGE HUTTER equations to the bottom dense flowing part of the
avalanche in the computational SAMOS model by ZWINGER and ZWINGER
et al Known as GMFG research group from the University at Buffalo, the
State University of New York, researchers here are using GIS technology
with parallel adaptive numerical simulations They are also involved in im
proving the model equations by incorporating erosion and deposition pro
cesses [313, 321, 322, 323] IVERSON and DENLINGER from USGS are dealing
with the modification of the existing models and computations of avalanching
flows across irregular three dimensional terrains [74, 75, 191, 192, 194] Their
aim is to further test the ability of these models to predict the behaviour of
(ideal) dry granular flows down such topographic surfaces that may provide
an important step towards the full understanding of the dynamics of rapid
and massive mass movements across irregular terrains These are only a few
examples However, the research is oriented in the right direction

14.2.2 Application in the Laboratory

Laboratory experiments can be used not only for the corroboration of the
theoretical numerical results, but equally as an alternative to test on a small
scale the behaviour of an avalanching mass at a larger scale, as it occurs
in nature This method is particularly apt, because the SH equations and
many of their present extensions, such as the model equations proposed by
GRAY et al and PUDASAINT and HUTTER [123, 335] have been found to be
scale independent Thus, whenever the physical conditions are such that these
model equations may be adequate, laboratory experiments may be advanta
geous for the computational approach Furthermore, the effect of obstructions
in an avalanche track can easily be studied by laboratory experiments More
over, with adequate pressure and shear gauges being used at walls of obstruc
tions, such laboratory experiments may even be suitable to gain information
about the forces exerted by avalanches on obstructing structures Besides,
laboratory experiments should be amply used to broaden the information on
the corroboration of the theory Also to be mentioned here is that IVERSON
and DENLINGER performed several experiments for avalanching granular and
debris flows in relatively long flume IVERSON et al [194] also conducted in
door small scale experiments down irregular prototype terrain The intention
of these experiments was to test the theory for the situation of a realistic
bottom topography, to perform experiments under controlled conditions and
thus to have optimal conditions for a comparison Small scale indoor exper
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iments have also been performed by McDoUGALL and HUNGR [273, 274],
PATRA et al and PITMAN et al [313, 322]

14.2.3 Advancing the Numerics

Determination of the front and the entire boundary of the free surface flow
of avalanches is very important From this one can probably more efficiently
predict the front and boundary of the avalanche in time, which may also be
useful to increase the accuracy of the velocity distributions and the evolution
of the avalanche geometry along its path and in the deposit For this reason,
one needs to develop a two dimensional shock capturing scheme that can be
utilised for the moving boundary problem of the avalanche to determine the
margin locations For this, one should either incorporate the shock capturing
capability in a LAGRANGEan moving grid scheme or develop new numerical
methods in which the LAGRANGEan method can somehow be inserted into
the NOC schemes that we have implemented here Alternatively, finite vol
ume and finite element methods can also be implemented together with the
finite difference method as proposed by DENLINGER and IVERSON [75] and
KoscupoN and SCHAFER and KOSCHDON, [228, 229] Similarly, PATRA et al
and PITMAN and others implemented a parallel adaptive mesh finite volume
computational method based on a GODUNOV solver to simulate avalanche
and debris flows [313, 321, 323] However, whatever method is used, it must
be able to describe the physics of avalanches and debris flows to a reliable,
reasonable, acceptable and applicable level Every advancement in the nu
merical methods must be applied from laboratory to real scale events and
thus be judged in practice

14.2.4 More Advanced Measurement Techniques and Experiments

As usual, the final step should be related to the experimental phenomena
There are lots of things to be done One may categorise avalanche and de
bris flow experiments into four divisions: small scale indoor experiments (de
scribed in detail in this book), large scale outdoor but well controllable exper
iments (done by the Japanese and others, see, e g , [213, 275, 297]), artificially
triggered large scale field experiments and naturally released events that can
automatically be monitored from measuring stations (see [134, 190]) All are
very important They may have some common and some disjoint properties
Here we mainly focus on the small scale laboratory experiments

From the technical side, one should use high speed CCD cameras so as to cap
ture a larger number of experimental images during the flow of the avalanche
One may then obtain a better correspondence between theory and experi
ments On the other hand, the PIV measurement facility should be utilised
to analyse avalanching flows over more complicated topographies One can
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remodel the chute topography to include sidewise curvature, either uniform
or non uniform The chute channel may either be diverging or converging in
its main flow direction Further complicated aspects would be to add more
CCD cameras and perform experiments for the flows over curved and twisted
channels, as discussed above The most interesting aspect would be the de
termination of the flow velocity by the PIV measurement system for the
flow of a granular mass sliding down a (more general) prototype mountain
topography consisting of some realistic obstructions, with the principle of
down scaling, in the laboratory environment, and then to use the measured
results to predict the flow dynamics in the field

The other aspect of the experiment should be the correct determination of
the avalanche geometry during its entire evolution over irregular topogra

phy Fundamental work in this direction has been recently started, e g, by
DENLINGER and IVERSON and IVERSON et al [75, 194] They implemented
a new method of laser assisted cartography to map the three dimensionally
deforming avalanches over a non smooth benchtop avalanche chute In this
technology, horizontal sheets of light from refracted laser beams were used
to superpose topographic contours on the chute bed and the moving free
surface of the avalanche A similar method was already used earlier by Mc

DoNALD and ANDERSON and POULIQUEN and FORTERRE [271, 330] The
other aspect could be the use of digital photogrammetry technique to map
the three dimensionally deforming avalanche body and compare the results
obtained by other techniques Such experiments should be done for several
prototype flumes and chutes with different irregularities, for different granular
materials and for different initial conditions The conclusions of these exper

iments will then be of great importance to safely apply the model equations
to real flow situations in nature
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134, 167, 168, 175, 181, 380, 428
orthogonal, 130, 131, 175
orthogonal general, 131
polar, 160, 172
system, 117,123 125, 127 131, 133,
134, 153, 159, 160, 167, 168, 170,
171, 175, 176, 255, 267
moving, 172, 173
of avalanche, 159
of solid body, 159
rotated, 203
correction, 314
step, 300
term, 188, 314
corrector
step, 323, 331, 337
second order, 338
correlation, 465
between intensity fields, 466
plane, 464
Coulomb
basal sliding law, 184
behaviour, 445
continuum, 145
model, 441
drag, 145, 151, 494
dry friction, 187, 193, 425
law, 57, 130, 152
force, 32
material, 121
plastic behaviour, 100, 284
plastic yield, 139, 165
plasticity, 140
proportionality, 443
rule, 57, 58
sliding law, 59, 94, 132, 152, 204,
259
term, 249
yield criterion, 94, 100, 111, 115,
139
Coulomb friction, 144, 199, 220, 294
contribution, 98
law, 119, 132, 139, 144, 152, 170,
179, 493

model, 144
Coulomb frictional
behaviour, 434
resistance, 253
Coulomb type
basal sliding law, 249
constitutive behaviour, 170
criterion, 93
friction law, 56, 119, 146, 248
model, 241
plastic behaviour, 91
resistance, 59
rubbing friction, 90, 91, 94
coupling coefficient, 239
covariant
basis vectors, 134, 173
metric, 174
coefficients, 134
unit vectors, 175, 178
critical
angle of repose, 53
flow, 203
points, 318
zones, 144
cross correlation
function, 462, 464
of displacements, 465
plane, 465, 466
cross slope
channel width
constant, 369, 370
increasing, 373, 374
curvature, 350, 361, 363, 365
variable, 12, 357, 371
direction, 126, 135, 136, 176,
181
pressure, 196
curvature, 109, 126, 130, 134, 138,
144, 168 170, 173, 179, 209, 364,
391, 484
centre, 126
characteristic, 136
concave, 105, 365
contribution, 199
convex, 105
cross slope, 350, 356, 361, 363, 365,
371
decreasing, 370



effect, 11, 124, 164, 352, 354, 363,
365, 379, 489, 530
of bed topography, 130, 532
lateral, 354, 357
non uniform, 130, 363, 365
of topography, 6, 188
radius, 125, 126
uniform, 365, 367
variable, 356, 368

curved

avalanche paths, 130
basal topography, 116
bed, 124 126, 128, 226, 230, 249,
305, 494
exponentially, 390
channel, 126, 168, 173, 176, 198,
225, 297, 338, 469
doubly, 351, 353
chute, 8, 390, 479, 480, 484
exponential, 126, 394, 397
flow, 108
corries, 130
plexiglass chute, 487
reference surface, 129
surface, 59, 129, 329, 461
topography, 126

curvilinear

coordinate, 226
system, 209
coordinates, 7, 124 126, 128 131,
133 135, 137, 138, 167, 168, 175,
181, 305, 353, 380
projected, 428
slope fitted, 364
form of mass balance, 181
moving coordinate system, 209
reference, 183
surface, 129
cylindrical
channel, 356
curved segment, 420
element, 417, 485
flow, 266
surface, 297
transition zone, 381

dam break problem, 306, 327, 448
debris, 47, 53
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channelling, 22
deposits, 22, 61
flows, 3, 5, 17, 49, 51, 54, 55, 57, 61,
79, 85, 93, 94, 107, 115, 116, 157,
168, 170, 198, 318
catastrophic, 20, 389
dynamics, 3
initiation, 22
material, 531
moraine, 20
spreading, 22
defence structure, 508 510
type, 510
deflection wall, 510
deformation, 146, 251
equation, 150, 233, 254
geometric, 77
measure, 111
demixing, 265
dense
flow, 85
avalanche, 59, 78, 81, 84, 90, 130
gas, 94
granular
flows, 80
gas, 100
material, 139
density, 78, 81, 103, 106, 117, 131,
160, 265
bulk, 273
change, 274
of snow, 64
preserving material, 186
profiles, 89
variations, 91
deposit, 7, 62, 63, 68, 79, 109, 355,
359, 375, 480, 483, 487
granular, 53
of the avalanche, 486, 491
deposition, 65, 77, 83, 153, 164, 485
area, 77, 111, 167
at basal interface, 164
at bed, 204, 266
at sliding bed, 141
basal, 154
for plane flow, 204
of granular material, 152
process, 266, 281, 535
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rate, 157, 163, 205
normal, 153, 154, 272
steady, 164
zone, 452, 462
depth, 157
contours, 383, 384
distribution, 461
geometry, 483
of the avalanche, 178, 185
profile, 9, 14, 226, 228, 271, 272,
483
of the deposit, 483, 533
depth averaged
bed parallel velocity, 135, 199
equations, 120, 167
model, 115
velocity, 4, 124, 135, 139
components, 137
depth integrated
avalanche model, 4
continuum mechanical model, 8, 135,
198, 199
cross slope momentum, 187, 198
downslope momentum, 187, 198
equations, 298
hydraulic model, 196
mass balance, 186, 198, 282
momentum balance, 198, 283
normal component of momentum,
187
pressures, 196
depth integration, 92, 124, 133, 135
difference velocity, 150, 218, 220, 226,
233, 254
differential
equation, 57, 103
form, 148
geometric property, 7
geometry, 9
operators, 150, 175, 217, 254
div, 175
grad, 175
shear, 196, 198
diffusion artificial, 300, 344
diffusive
anti, 318, 346
jump, 6
least, 318, 346

margin, 486

most, 318

shock, 6, 311
digital elevation

data, 360

map, 207

model, 170, 452, 534
dilatancy, 47, 51, 52, 89

effect, 52

property, 52
dilatant

effect, 108

materials, 51
dilatation, 52, 89, 90, 92, 144, 152,

352, 397, 486
dilatational

motion, 136, 195

state of deformation, 140
dilating flow, 108, 121, 329
dilational flow condition, 329
dilute flow, 85
dimensional

form, 121

variables, 482
dimensionless form, 123
direct simulations, 102
direction

cross slope, 135, 176, 181

downslope, 135, 176, 181

lateral, 131, 199

longitudinal, 124, 131, 199

normal, 176, 181, 185

radial, 185

transverse, 124
discontinuity, 309

in density, 161

in velocity, 161
discontinuous field variables, 159
discrete

derivatives, 339

multi particle models, 97

slopes, 335, 336, 338 340
dispersion, 397

of avalanche, 354, 356

of the grains, 483
dispersive

effect, 310, 344

pressure, 90, 92
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velocity, 151 avalanche equations, 165, 297
dissipation term, 322 boundary conditions, 132
dissipative limiter, 322 dynamics, 72

modified, 322 of motion, 3
divergence theorem, 147 of velocity distribution, 479
diverging channel, 371
down scale, 105 earth pressure, 352
downflow direction, 117 active, 484, 489
downhill velocity, 144 closure, 440
downslope coefficients, 118, 121, 136, 140, 143,

acceleration, 186 160, 164, 193 195, 268, 271, 273,

curvature, 142, 484 284, 340, 434, 443, 447, 456

direction, 133, 135, 136, 176, 181 active, 194

momentum flow, 137 cross slope, 195

pressure, 193, 196 downslope, 195

velocity, 117, 157 passive, 194, 354, 379
drag cross slope, 489

atmospheric, 64 longitudinal, 489

coefficient, 58, 64, 103, 145, 146, passive, 486, 489

151, 251, 254 effective

force, 152 angle of repose, 53
drift, 85 bed friction
driving angle, 401, 402

acceleration, 135, 157, 164, 199, 267, coefficient, 401

270, 298 friction angle, 56

force, 218, 365 eigenvalues, 300, 448
dry eigenvectors, 300, 448

avalanche, 78 elasticity, 402, 456

friction, 193 elasto

law, 119, 132, 139, 179 viscoplastic material, 75
sliding law, 132, 152 viscoplasticity, 92

granular mass, 115 electrostatic

sand, 50, 53 charging, 470, 495

snow, 50, 79 force, 53, 470

avalanche, 89 elevation
experiments, 106 basal, 361
dunes, 47, 154 topographic, 363
dynamic empirical factor, 206

angle of repose, 265, 288 energy

boundary condition, 204 frictional, 54

equations, 167 line, 95, 452

friction, 106 ENO

internal friction angle, 67, 68, 400 cell reconstruction, 12, 345, 348,

jump conditions, 156 349

pressure, 77, 78, 514 scheme, 12, 333

stress, 75 entrainment, 79, 183

symmetry, 149 constant, 455

dynamical mass, 452
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mechanisms, 51
model, 455
of material, 446, 455
of snow, 39, 147
parameterisations, 207
processes in powder avalanches, 207
rate, 207
region, 455
equation of motion, 57, 299
for centre of mass, 250
erosion, 65, 68, 153, 164
at basal interface, 164
at bed, 141, 266
for plane flow, 204
of granular material, 152
process, 206, 266, 281, 535
rate, 36, 157, 205, 206
parameterisation, 207
steady, 164
torrential, 31
error, 188, 198, 468
illumination, 468
measurement, 471
source, 469, 493
essentially non oscillatory scheme,
311
Euler
angles, 101
equations, 101
Eulerian
finite difference scheme, 297, 300
evolution
equation, 124, 236, 251
of spreading rate, 239
exact analytical solution, 214
expansion coefficients, 256
experiment, 6, 9, 13, 265, 266, 270,
280, 282, 287, 390, 397, 440, 444,
461, 479, 484, 490, 533, 535
field, 536
in situ, 7
indoor, 536
laboratory, 7, 389, 390, 436, 536
layer thickness, 291
outdoor, 536
rotating drum, 158
experimental
data, 104, 107
set up, 392, 417, 458

validation, 10, 13
explicit numerical scheme, 308
exponentially curved chute, 126, 230,
407, 413
extending
motion, 230
regime, 298
state, 249
external stress, 52

Fahrboschung, 95, 96
fallstream, 18
field
avalanche, 456
data, 41, 110, 500
equations, 92, 131, 133, 266
events, 6, 13, 106, 185
experiments, 104
measurements, 105
observation, 35, 105, 185, 389, 500
quantities, 148, 160
variables, 139
fill
height, 162
negative, 275
positive, 275
level, 159, 160, 270, 274, 280
filter
mean, 474, 495
range, 474, 495
standard deviation, 474
finite difference
approximation, 301, 308
method, 9, 536
representation, 305
scheme, 6, 143, 297, 311
finite element method, 9, 143, 536
finite volume method, 9, 536
first order, 189
difference scheme, 312
predictor step, 338
scheme, 307, 308
upwind method, 308, 314
fixed domain, 216
mapping, 216, 223
flow
avalanche, 50, 55, 63, 73, 79 81, 83,
85, 88, 91, 104, 112, 128, 130, 169,
214, 338, 461



continuous, 163
depth, 89
intermittent, 163
path, 491
profile, 196
resistivity, 103
subcritical, 204
supercritical, 204
unsteady, 487, 491
velocity, 103
fluctuation of kinetic energy, 100
fluid, 49, 51, 91
behaviour, 494
model, 158
inviscid, 157
non transparent materials, 466
region, 277, 462
stress isotropic, 446
transparent, 462, 466, 467
fluidisation, 47, 48, 50, 55 57, 60, 90,
99, 396
acoustic, 56
of the mass, 379
fluidised
avalanche body, 380
bed, 48, 49, 94
granular body, 372, 379
region, 160
flux
anti diffusion, 314, 317
derivative, 307
function, 300, 335, 336, 340
numerical, 308
physical, 308
high order, 310, 313
limited, 315
limiter, 313 315, 317, 318
low order, 313
of mass, 282, 352
of momentum, 118
physical, 307
uniform, 297
force
centrifugal, 137
electrostatic, 53
frictional, 119, 137
gravity, 119, 137
resistive, 137
forecast

Index 583

method, 42
of avalanche, 3
of events, 38
formation of avalanche, 3
Fourier transform, 474
free
channel flow, 128
fall velocity, 122, 140
parameters, 275
surface, 61, 62, 68, 69, 124, 125,
131, 132, 138, 154, 183, 185
accumulation, 141
avalanche flow, 484
channel flow, 525
flow, 8, 63, 124, 127, 128, 461, 475
flow avalanche, 11, 461
motion, 65, 486
velocity, 492, 495

friction
angle, 119, 157, 179
basal, 179

effective, 56
position dependent, 241, 482
typical, 188
coefficient, 184
force, 58, 119, 137, 144, 152
law, 56, 119, 130, 144, 152, 179
frictional
behaviour, 90, 94, 390
coefficient, 103
contribution, 284
energy, 54, 55
dissipation, 441
heat, 55, 90
model, 452
phenomenological law, 5
plastic material, 100
resistance, 54 57, 101, 103, 140,
144, 253, 286
rheology, 448, 452
shear traction, 284
shearing, 100
traction, 137
frictionite, 25, 55, 90
front, 405
margin, 124, 125, 226, 232, 266
moving, 311
of avalanche, 216, 219, 396, 484
tracking schemes, 143, 208
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velocity, 305, 306

gas, 49 51, 91
state, 158
gas solid systems, 55
Gauss'’s divergence theorem, 147
general avalanche equations, 209
geographical information system, 6,
11, 170, 173, 210, 534
geological event, 18
geological processes, 60
geometric
changes, 120
deformation, 77
effect, 164
features of mountain terrain, 206
imaging, 462, 463
model, 367, 371
properties, 99
property of basal topography, 7
symmetry, 149
geomorphology of bed topography, 206
geophysical, 154, 169
application, 372
avalanche, 445
large scale, 482
flow, 48, 49, 111, 175, 213, 318
debris, 57
rockslides, 57
snow avalanches, 57
fluid dynamics, 9
mass flow, 6, 23, 479
equations, 140
glacier, 55
retreat, 20
global
coordinate system, 171
momentum balance, 147, 148
governing
equations, 123, 135, 156, 198, 199,
298
hyperbolic, 391
gradient, 175
operator, 131
vectors, 183
grading of particles, 60
grain free
region, 523
zone, 471, 483, 524

grand unsolved problem, 157, 452
granular
approach, 36
avalanche, 61, 63, 65, 79, 94, 128,
164, 311, 456, 461, 475
model, 130, 135, 198, 199
of debris, 56
of rock, 56
of snow, 56
behaviour, 36
body, 57, 132
deposition, 53
flow, 39, 47 49, 53, 64, 89, 105, 265,
299, 311, 390
fragments, 65
gas, 90, 100
heap, 66
layer, 65, 91
mass, 115, 117, 297
flow, 486
material, 47, 49, 51 56, 60, 65, 89,
91 94, 107, 108, 115, 117, 119, 121,
127 129, 152, 157, 165, 167, 179,
189, 297, 353, 390, 467, 484, 529
media, 50
mixture, 69, 275
single constituent, 482
motion, 389
particles, 60
pile structure, 70
static balance, 179
temperature, 100
vacua, 384
vacuum, 385
granular PIV, 13, 467, 469
measurement, 474
system, 472
granular PTV, 475
gravitational
acceleration, 58, 131, 136, 179, 180,
199, 200, 272
components, 354, 365
mass movement, 36
gravity
current, 99
driven
flow, 8, 11, 23, 51, 63, 65, 128
shear flow, 88
force, 55, 119, 137



vector, 180
grey scale pattern, 462, 464
grey value, 464
gully, 63

hazard
areas, 41
map, 490
mapping, 36, 363, 509, 529
mitigation, 25, 529, 535
potential, 14
prediction, 25
prevention, 529, 535
reduction, 529, 535
zoning, 13, 40
heap formation, 65
height
computed, 491
measured, 491
profile, 269
in the deposit, 483
helical channel, 226
helical chute, 130
helically
curved and twisted channel, 364,
367, 369, 370, 373, 374
helicoidal surface, 168
helix, 130, 364
hemispherical
cap, 128, 345, 350, 364, 484, 485
shell, 344, 382
high order
accuracy, 316
central scheme, 331
difference scheme, 312
flux, 313
non oscillatory scheme, 338
technique, 312
high resolution
method, 331
numerical technique, 311
scheme, 309, 324
shock capturing, 12, 311
hindcast of events, 38, 142
homogeneous
flow, 214
mixing, 60
hopper, 23, 24, 47, 65
horizontal

Index 585

parts, 345
run out, 201, 405
plane, 200, 350, 485
zone, 5, 365, 372, 461, 486, 487,
490, 491
hovercraft action, 56
humidity of soil, 53, 54
hydraulic
approach, 446
avalanche
equations, 530
model, 434
channel flow, 5
jump, 5, 391
model, 111, 115, 121, 196
pressure, 54, 55, 447
hydrostatic
conditions, 140, 196
pressure, 118, 120, 179, 440, 447
on the wall, 270
reconstruction scheme, 328
hyperbolic
conservation law, 135, 198, 199, 307,
320, 333
partial differential equations, 4, 6,
9, 12, 141, 143, 199
system of equations, 199, 307, 311

illumination, 463, 467 469, 471
by flashes, 471
error, 468
image intensity field, 462, 463, 465,
466
image plane, 463, 464
impact
force, 38, 62, 77, 513, 534
pressure, 9, 32, 34, 39, 42, 77, 483,
486, 490
at deflecting wall, 526
implicit numerical scheme, 308
inclination angle, 134, 157, 200, 201,
271, 343
inclined
bed, 241, 345, 489
plane, 57 59, 117, 119, 124 126,
148, 165, 167, 261, 262, 297, 417,
461
surface, 115
incompressibility, 91, 144
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relation, 276
incompressible, 131
material, 139
independent variables, 138, 199, 220
initial
boundary value problems, 112
conditions, 78, 138, 199, 229, 241,
257, 279, 390, 480, 484, 486
value, 213
volume, 256
initiation of debris, 22
instability, 65, 298
numerical, 312
instrumentation, 105
integration
spatial, 335
technique, 329
intensity
field, 463, 464
value, 463
interface, 158, 161, 267, 275, 277
basal, 153, 274
heights, 162
moving, 299
of the avalanche, 152
solid, 271
speed, 161
interfacial mass jump, 276
intermittent, 47
avalanches, 67 69, 265
flow, 163
internal
friction, 56, 109
angle, 56, 90, 93, 94, 115, 121,
131, 132, 136, 139, 143, 157, 194,
195, 241, 344, 372, 376, 377, 400,
404, 413, 486
pressure, 51, 56
rheology, 446
shear stress, 131, 132
shock, 385, 391
shock wave, 5
slip surface, 163
strength, 75
stress, 446
yield criterion, 192
interrogation
area, 462, 464
spot, 462 464, 466

volume, 462
interstitial

fluid, 18, 24, 50, 79, 102, 265

pressure, 90
inverse grading, 61, 63, 66, 97
inviscid fluid model, 157, 158
ionising airgun, 470
irregular

basal surface, 443

surface, 440

terrain, 535

three dimensional terrain, 13, 436
isochoric, 91
isotropic

fluid pressure, 328

pressure distribution, 157

jump, 5, 6
bracket, 161
condition, 156, 161, 163, 276, 281
diffusive, 6
discontinuities, 141
hydraulic, 391
mass, 161
of velocity, 382

kinematic
boundary conditions, 131, 133, 135,
155, 160, 161, 186, 205
conditions, 154, 183, 186
for basal surface, 183
for free surface, 183
restrictions, 51
surface
conditions, 183
equations, 183
kinetic
energy, 14, 100, 108, 152
numerical scheme, 328
sieving, 65, 66, 68, 69, 97, 482
theory, 100, 111
for dense granular flows, 100
of dense gas, 94

laboratory
apparatus, 448, 449
avalanche, 33, 63, 64, 108, 110, 400,
446, 456, 484
chute, 345, 485
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experiment, 461 scales, 124, 159, 482
small scale, 482 typical, 179
chute flow, 88, 91, 484 light
experiment, 7, 9, 13, 93, 106, 107, energy, 463
109, 112, 115, 143, 389, 390, 436, intensity, 462, 463
446, 484, 519, 533, 535, 536 reflection, 469
gully model, 436, 437 sheet, 441, 462
model, 63, 520 laser, 467, 471
motion, 142 method, 440
simulation, 521 source, 476
test, 63 limiter
Lagrangean dissipative, 322
finite difference scheme, 297 flux, 318
lahar flow, 18 minmod, 312, 317, 381
laminar flow, 84, 396 slope, 318, 319
laminar type flow avalanche, 79 superbee, 317
landslides, 3, 19, 47, 49, 50, 56, 79, TVD, 312
85, 90, 446 Woodward, 317
disaster, 451 linear
large elasticity, 456
avalanche, 24 momentum, 124
plug flow, 197 ordinary differential equation, 271
scale, 65 shearing, 285, 286, 291
experiment, 107 profile, 289
geophysical mass flow, 479 velocity, 161
landslide, 446 liquefaction, 56
powder snow avalanche, 38 liquid, 50
shearing, 111 state, 158
lateral liquid solid system, 55
channelling, 361 local
component of gravity force, 201 coordinate system, 130, 168
confinement, 461 momentum balance, 189
of granular material, 361 slope angle, 368
pressure, 144, 192 longitudinal
coordinate, 128, 201 direction, 124, 131, 199
curvature, 354, 357, 359, 361 pressure, 118, 119, 121
variable, 359 variation, 284
zero, 360 stress component, 158
direction, 131, 176, 178, 199, 201, variable, 128
486 velocity, 119, 128
pressure, 144 low order flux, 313
spreading, 65, 361 lubrication, 54, 55, 57, 90
variation of basal topography, 363
velocities, 144 M wave
layer thickness, 288, 290, 291 shape, 403
leading similarity solution, 223, 225
edge, 109, 226 mapping, 363
order, 189 models, 97

length, 141 marine sediments, 61
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mass
balance, 5, 51, 117, 120, 138, 147,
282
depth integrated, 186
equation, 135, 141, 198, 205
balance equation, 181
conservation
equation, 228
law, 131, 250, 298
densities, 91, 103
dependence, 123
dependent run out distance, 378
entrainment, 452
flux, 156, 282, 352
interaction, 153
jump, 161
condition, 276
movements, 86
point, 57
assumption, 111
model, 110, 138, 142, 166
production, 205
system, 65
transfer, 83, 159, 219
master curve, 7, 170 173, 176, 177,
199, 201, 225, 343, 357
material
constants, 404
geometry, 486
net, 303
parameters, 199, 350
properties, 9, 96, 390, 486
response, 121
rheology, 446
slip parameters, 138
surface, 156
velocity, 183
mathematical modelling, 9, 43
mean
basal friction coefficient, 233
discrete derivatives, 339
free
distance, 56
path, 56, 91
height, 256
value, 308, 493
cell, 338
of a function, 185

spatial, 308
temporal, 308
velocity, 233, 474, 492
velocity distribution, 487
measurement error, 471, 493
measurement techniques, 479
acoustic transducer, 10
capacitance probes, 10
CW Doppler method, 41
digital photogrammetry, 7, 9, 10,
537
laser technology, 9, 10, 440, 441,
537
light emitting diodes, 10
light sheet projection, 7, 440, 441
load cell, 10, 34
mechanical sensor, 42
nuclear magnetic resonance, 12,
265, 294
particle image velocimetry, 8, 9,
461, 462, 479, 482, 504, 533, 536
particle tracking velocimetry, 475
pitot tubes, 10
pressure gauge, 535
pressure transducer, 10
radar Doppler method, 10, 36
resistograph, 45
seismic and acoustic sensors, 10
shear gauge, 535
shear traction transducer, 10
stereo evaluation device, 10
strain gauge, 36
technical measurement camera, 7,
10
ultra sonic anemometer, 38
Video recording, 10, 457
mechanical
boundary conditions, 155
gauge, 89
properties, 98
of flowing materials, 206
mesh
cell, 303
boundaries, 303
points, 307
meteorological
condition, 38, 72, 206
event, 18



metric, 134, 174, 209
coefficients, 134
contravariant, 174
covariant, 174
of basal topography, 130
orthogonal, 168
tensor, 134
microstructural theories, 92
middle velocity, 305, 306
minmod limiter, 312, 317, 333, 345,
349 352, 381
mixed type avalanche, 79, 82, 84
mixing, 265, 287
of granular material, 12
phenomena, 266, 275
mixture, 60, 66
of grains, 60
sand gravel, 63
sand water, 50
solid fluid, 18
theory grain fluid, 446
two phase, 531
mobility high, 56
model, 63, 92, 213
digital elevation, 170
equations, 11, 104, 141, 143, 156,
164, 165, 198, 199, 213, 389, 443,
479, 482, 533
experiment, 521
forecast, 8
geometrical, 367, 371
input parameter, 372
mathematical, 49
Mohr circle, 121, 122, 139
Mohr Coulomb
friction law, 56, 248
material response, 363
plastic behaviour, 284
plastic yield, 139
plasticity, 140
stress rheology, 294
yield criterion, 94, 100, 111, 115,
131, 157, 196
molecular dynamic simulations, 101,
102, 111
molecules, 50
momentum
balance, 5, 51, 117, 118, 120, 121,
124, 135, 138, 141, 148, 205, 254,
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283, 285
global, 147
local, 189

conservation law, 131, 250, 298
flux, 118
productions, 205
specific, 13
thrust, 153
transport, 91
momentum balance
depth integrated
cross slope component, 187
downslope component, 187
normal component, 187
monodisperse granular mixture, 159,
265
monotonous method, 312
motion
compacting, 230
compressional, 136, 195
dilatational, 136, 195
extending, 230
non accelerating, 272
of centre of mass, 239, 257
of rigid body, 230
mountain
areas, 15
corrie, 168, 172
region, 3, 8, 11, 507, 529
slope, 56, 509
steep, 417
terrain, 143, 206, 483
topography, 364, 365, 486
curved and twisted, 363
non trivial, 145
valley, 6, 372, 483
moving
avalanche layer, 8
boundary, 5
boundary conditions, 213
boundary value problem, 170, 216
coordinate system, 172, 173, 216
front, 5, 311
granular mass, 297
interface, 299
margin, 6
orthonormal unit triad, 176, 178,
201
phase boundary, 154
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mud
flow, 3, 17, 19, 50, 51, 79
catastrophic, 20
deposits, 61
slides, 63
multi phase
flows, 50, 116
gravity flow, 65

natural
avalanche, 170
calamities, 14
catastrophe, 534
corries, 169
disaster, 18, 24, 534

events, 142
hazards, 15, 21, 25, 108, 529, 534,
535

tsunamis, 107
terrain, 391
Newtonian fluid, 89, 99
NOC
computational diagram, 325
method, 325
scheme, 12, 311, 323, 325, 331, 337,
338, 341, 345, 347 352, 532
one dimensional, 323
two dimensional, 334
non accelerating motion, 272
non cohesive, 139
non conservative
form, 138, 177, 202, 216, 299, 307
system, 165
non dimensional
coordinates, 162
curvilinear
coordinates, 353
form, 181
equations, 135, 136, 140, 177, 286
form, 121, 199, 267
parameters, 179, 482
physical variables, 482
scales, 286
scalings, 178
variables, 136, 162, 179
non divergent terms, 191
non linear
behaviour, 92
constitutive relations, 111

convective term, 462
hyperbolic
conservation law, 320
model equations, 9
partial differential equations, 143,
199, 531
ordinary differential equation, 215
partial differential equations, 143,
170, 199, 213
non material
singular
interface, 161
surface, 153, 159, 160
velocity, 183
non Newtonian fluid, 89
non oscillatory
central scheme, 311, 323, 331, 338
finite difference scheme, 329
non transparent
fluid, 462
material, 466, 467, 471
non uniform, 65
curvature, 12, 130, 169, 209, 363,
365
torsion, 12, 130, 169, 209, 363, 365
normal
basal pressure, 132
component of momentum, 188
deposition rate, 272
direction, 176, 181, 185
load, 93
mass flux, 156
pressure, 103, 131, 132, 179, 184,
187, 192, 196
typical, 179
speed of interface, 161, 205
stress, 53, 89, 93, 100, 106, 145,
192, 445
effect, 52, 89, 434, 456
surface pressure, 196
traction, 67, 115, 199, 250
unit vector, 180
normalisation factors, 155, 184
numerical
flux, 310, 322, 335
function, 308
instability, 298, 311, 312, 344
method, 12, 297
modelling, 310



oscillation, 344
parameters, 305
performance, 349
simulation, 12
solutions, 131, 214, 311, 479
technique, 214, 299
traditional, 298

viscosity, 305

numerical diffusion, 297, 301, 309, 312,
329
artificial, 311, 531
term, 301

numerical integration, 297, 298, 305
method, 9
procedure, 307

numerical scheme, 343
first order, 307
second order, 309
shock capturing, 391
traditional, 307
upwind, 308

numerics, 10

objectivity requirement, 456
obstacle, 3, 5, 8, 41 43, 490, 535
wedge type, 434
one dimensional
approximate similarity solution, 248
discrete slopes, 336
equation of motion, 299
equations, 120
flow, 125, 297, 329
hyperbolic differential equation, 324
mapping, 142
model, 116
partial differential equations, 300
system, 225
open channel flow, 5
optical
behaviour of lens, 463
measuring system, 461
sensors, 89
surface property, 470
surface structure, 468, 471
system, 462
optically
homogeneous, 471
structured, 470
order, 47

Index 591

ordering, 135
ordinary differential equations, 218,
222, 223, 229, 256, 271, 275, 278
orthogonal
complex system, 135, 209
coordinate, 130, 170
system, 175, 209
curvilinear
coordinate system, 131, 133
moving coordinate system, 209
general
coordinate system, 131
coordinates, 224
system, 209
metric, 116, 135, 168
moving coordinate system, 173
orthonormal unit
basis vectors, 179
moving triad, 171, 172, 176
oscillation, 309
outdoor
chute, 39
experiment, 107
overall
angle, 95
distance, 25
height drop, 95
slope, 25, 95, 96
overburden pressure, 108, 118, 179,
191, 199

parabola like curve, 398
parabolic, 306
cap, 230, 241
profile, 220
solution, 298
channel, 381, 390, 425, 426, 436,
437
cross slope topography, 381
distribution, 208
granular pile, 235
hill, 384
profile, 61, 219
section, 361
similarity solution, 269
thickness profile, 269
topography, 133
velocity profile, 198, 462
parameterisation, 207
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of bed friction angle, 378
of entrainment, 452
of shear stress, 284
parameters, 143, 146, 188, 199, 213,
214, 273 275, 277, 372, 482
material, 350
non dimensional, 179
numerical, 305
phenomenological, 379, 386
study, 244
values, 221, 364
parametric
form, 220
function, 371
partial differential equations, 4, 6, 9,
12, 119, 128, 139, 141, 170, 202,
213, 218, 300, 531
particle
collisions, 85, 100, 396
concentration, 93
coverage, 385
demixing, 65
diameter, 265, 285, 289, 350, 393,
404, 521
mixing, 65, 70
path, 266, 275, 278 280
segregation, 60, 65
size
segregation, 61, 65, 70
separation, 61, 62
translation, 91
velocity, 204
Particle Image Velocimetry, 8, 479,
482
technique, 461
Particle Tracking Velocimetry, 475
particle laden flows, 80, 85
particles used in experiments, 164
BBs, 288, 289, 291, 293
capsules, 529
ceramic, 529
cereal, 529
dye stuff, 529
electronic materials, 529
glass beads, 392, 395, 404, 504
gravel, 3, 7, 63, 64, 91, 436, 437
iron powder, 164
marble chips, 350, 393, 395, 404,
413

pills, 529
ping pong ball, 39, 105, 106
plastic beads, 48, 270, 392, 419, 521
quartz, 7, 110, 393, 395, 404, 413,
423, 481, 482, 484, 486, 487
sand, 261, 439, 485
rice, 481, 482
sand, 7, 436, 437, 482, 485
semolina, 521, 522
sugar crystal, 164, 288, 289, 291,
293
Vestolen, 262, 270, 393, 395, 404,
413
white sugar, 521
yellow sand, 481
particular solution, 214, 216
passive
earth pressure, 486, 489
coefficient, 121, 136, 194, 379
stress, 193
state, 122, 140, 165, 193, 242, 484
pattern formation, 65, 67, 68
Pauschalgefille, 95, 98
pharmaceutical, 48
industry, 4, 50, 529
phase, 172
plane, 241
space
orbit, 241 243
trajectory, 242
transition, 158
phenomenological, 78
coefficient, 250
measurement, 399
constants, 121
law, 5
parameters, 13, 111, 142, 146, 379,
386
physical
components, 175, 178 180
flux, 307
function, 308
parameters, 142
principle, 526
variables, 5, 482
non dimensional, 482
physics of avalanche
formation, 3
motion, 3



piecewise linear cell reconstruction,

318, 319, 333
pine tree effect, 67, 68
pitch, 364, 367, 369, 373

PIV, 8,9, 13, 461, 462, 466, 467, 475,

482, 502

measurement, 475, 483, 484, 486,

489, 533, 536
set up, 466
for granular avalanche, 467
in wind tunnel, 467
plane
chute, 297
flow, 297
flow, 117, 167
plastic
behaviour, 100, 284
material, 100
yield
behaviour, 165
criterion, 139
plexiglass, 392, 495
chute, 426, 466
curved, 487
plates, 66, 67
wall, 392
plowing effect, 234
plug
flow, 285, 286, 289
regime, 93, 197
like behaviour, 99
point
mass, 274
source, 65, 67
point spread function, 463, 464
polar coordinates, 160, 172
polydisperse mixture, 265
pore
pressure, 24
space dependent friction, 375
water pressure, 452
post eventum analysis, 95
potential
energy, 56, 95, 108
hazard, 14
powder, 486
and grains, 48
avalanche, 80, 82, 83
material forming, 48

Index 593

metallurgy processes, 48
mixing process, 265
snow, 51
avalanche, 33, 38, 39, 50, 78, 80,
81, 84, 105, 130
power solution, 222
predictor corrector method, 324, 331
predictor step, 323, 336
first order, 338
preserving shape, 224
pressure, 102, 104, 106, 140, 179, 188,
378
back, 382
basal, 132
coefficient, 118, 121, 136, 139, 140,
143
cross slope, 196
downslope, 193, 196
gauge, 535
hydraulic, 54, 447
hydrostatic, 118, 440, 447
impact, 483, 486, 490, 526
isotropic, 328, 363
longitudinal, 118, 119
normal, 132, 196
to the surface, 184
overburden, 118
saturation, 179
stagnation, 14, 486
tensor, 131, 176, 178, 181, 191
variation, 119, 284
pressure distribution, 121
hydrostatic, 389
isotropic, 157
non isotropic, 121
pressure dependent, 378
bed friction angle, 379, 380, 482
friction angles, 13, 241, 375
principal
flow direction, 253
normal unit vector, 171
parameters, 213
stress, 144, 192, 447
assumption, 208
stresses, 192, 193
process engineering, 8, 24, 48, 65, 265
processing
food, 48
mineral, 48
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production term, 137, 141
protective measure, 20
PTV system, 475, 476
Pudasaini Hutter, 198
Pudasaini Hutter model, 199, 338,
343, 479
pyroclastic
eruptions, 81
flow, 5, 18, 47, 49, 61, 62, 93, 116
deposit, 61

radial
acceleration, 364, 367, 371
effect, 363, 365
direction, 177, 178, 185
distance, 176, 201
thickness, 178
radius
of curvature, 125, 126, 136, 139,
179
of torsion, 179
Rankine’s earth pressure theory, 447
rate
dependent, 91
basal drag, 153
drag, 498
independent, 116
granular materials, 94
stretching behaviour, 100
rear
end, 298
margin, 124, 125, 226, 232, 266
of avalanche, 216, 219
velocity, 305, 306
reference
curve, 170 174, 176, 185, 201
geometry, 179
surface, 129, 131, 133, 134, 138,
167, 179, 199, 200, 360, 381, 425
arbitrary, 131
curvature, 188
torsion, 188
topography, 199
regression method, 98
relative velocity, 216
remote sensing techniques, 7, 105
resistance
against pile spreading, 246
frictional, 54

resistive force, 137, 151, 351, 354, 379
restitution, 101, 402 404
reverse grading, 47, 61, 62
Reynolds’ transport theorem, 147,
148
rheological
behaviour, 99
closure conditions, 100
properties, 111
rheology
basal, 446
frictional, 448
internal, 446
material, 446
rigid
body, 58, 162
motion, 147, 162, 230, 241, 258,
265
state, 249
mass model, 120
portion of the mass, 267
river
bed, 143
dynamics, 143
hydrodynamics, 99
rock avalanches, 55, 62
rockfalls, 17, 50, 79
rockslides, 53, 54, 57, 64
roll wave, 66
rotated coordinate system, 203
rotating
cylinder, 12, 282
drum, 23, 24, 158, 159, 164, 265,
266, 269, 270, 272, 275, 278
coordinates, 160
experiment, 158
rotation
matrix, 203
of the body, 368
rate
constant, 274
slow, 163
speed, 291
fast, 265
small, 265
rotational symmetry, 456
rubbing friction, 90
rule
midpoint, 324, 326



midpoint quadrature, 335
quadrature, 324
second order rectangular, 335
ruled surface, 167, 168
run out
angle, 35
area, 490
distance, 78, 90, 98, 104, 111, 123,
372, 378, 379, 490
plane, 485
zone, 36, 65, 74, 77, 78, 83, 105,
109, 128, 201, 365, 368, 372, 375,
381, 461, 480, 483, 489, 490, 509
horizontal, 372
open, 357
open flat, 356, 371

saltation, 85
layer, 83, 84
sand, 62 64
avalanche, 485
box, 50
dunes, 154
loose, 53
paper, 287
storms, 51
saturated
debris flows, 50
sand, 51
saturation, 53
Savage Hutter (SH) model, 115, 117,
138
extended, 138, 199, 338, 381
scalar
conservation law, 307
field, 175
equations, 188
scale
dependence, 146
effects, 108, 390
independent, 123
equations, 123
invariant, 13, 115, 122, 142, 378,
389, 482
scales, 122
of flow avalanches, 83
of powder avalanches, 83
scaling, 135, 140, 178, 179, 378
down, 94

Index 595

Schneefernerhaus, 520
second order
accuracy, 315, 324
corrector step, 338
ordinary differential equation, 256
scheme, 309, 314, 317, 324, 331
TVD
limiter, 346
method, 317, 320
region, 317
scheme, 313
sediment transport
catastrophic, 18
in river, 154
sedimentation, 79
at bed, 183
segregation, 24, 47, 60 62
mechanism, 60
of particles, 60
process, 61
seismic wave, 20, 56
semi
analytical, 214
spread, 229, 236, 245, 247, 259
domain, 247
separable
equation, 220
form, 254
variable, 221
separation vector, 464
shallow
avalanche equations, 331
flow, 108
equations, 32
geometries, 116
granular motion, 188
layers, 24
slope, 73, 116
water
avalanche model, 431, 434, 435
equations, 122, 140, 141, 143, 298,
299
model, 5
scaling, 140
velocity, 140
wave speed, b
shallowness
approximation, 6
assumption, 137, 139, 205
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parameter, 116
shape preserving, 224, 236
shear
band, 47, 68
two layer, 65, 66
cell, 93
test, 93
deformation, 51
failure, 109
flow, 51, 61, 88, 91, 93
of dry granular masses, 130
regime, 93
gauge, 535
layer, 88, 93, 100, 101
rate, 39, 93, 101, 109
resistance, 88, 502
stress, 39, 89, 93, 100, 101, 106,
116, 132, 133, 179, 192, 206, 445,
514
parameterisation, 284
strong, 56
traction, 67, 98, 115, 119, 132, 157,
184, 206, 284
shearing, 88, 100, 111, 447
condition, 494
deformation, 89, 116
flow, 286
linear, 285, 286
profile, 289
region, 8
strong, 194
velocity, 116
shock, 204, 298, 352, 385
capturing, 448
finite difference method, 326
numerical schemes, 12, 143, 204,
208, 299, 329, 391, 532, 536
scheme, 381
diffusive, 6
evolution, 385
formation, 5, 311, 381, 443, 521
oblique, 524
triangular, 525
front, 379
internal, 385, 391
steady, 526
travelling upslope, 384
upward moving, 354, 379

wave, 5, 65, 67, 68, 163, 311, 382
dispersed, 66, 67
propagation, 163, 348

side walls, 67
sidewise
confinement, 297, 390, 417
spreading, 487
silo, 23, 24, 47, 65, 67, 68
similarity

solution, 215, 218, 253, 255, 269
approximate, 248
down a curved bed, 226
M wave, 215, 225, 299
parabolic cap, 215, 269
semi exact, 152

variables, 227, 253

simple shear, 53
single phase
continuum, 50
flows, 50
singular
interface, 161, 163
surface, 159, 160, 162, 163, 276
singularity, 126, 133
of the coordinate system, 126
size effect, 24, 94, 105
skew symmetric
difference velocity, 226, 235
relative velocity distribution, 216
slag heap, 23, 24
sliding, 88, 198

coefficient, 103

law, 132, 184, 185, 192

layer, 75

resistance, 56

snow layer, 103

surface, 55, 56, 89, 145

velocity, 116, 131, 196, 197

slip

parameters, 138

surface, 163

velocity, 164

slope

angle, 58, 78
local, 368

discrete, 335, 338

fitted coordinates, 142, 364

function, 350



inclination angle, 157
limiter, 313, 318, 319, 333
determined derivative, 321
movement, 25
sluffs, 76
slush avalanche, 36
small scale avalanches, 65
smooth
data, 316, 317
solutions, 138, 267, 299, 313, 314,
318
smoothed particle hydrodynamics, 448
smoothing mechanism, 234
snow, 3, 62, 92
avalanche, 35, 54, 57, 64, 72 74, 79,
90 92, 115, 130, 168, 390, 508
ball, 27 29
cover, 30, 72, 75, 82, 93
crystal, 508
density, 75
deposition, 84
drift, 85
entrainment, 39, 84
mechanical measurement, 30
protection construction, 42
stability, 43
snowpack, 73, 74, 79, 508
snowpack and weather conditions, 74
rainfall, 75
snowfall, 75
intensity, 75
soil, 3, 62
humidity, 53
mass movement, 449
mechanics, 42, 118, 121, 191, 241,
446
plasticity, 434
slopes, 50
solid, 49, 91
behaviour, 494
body, 159, 160
coordinate system, 159
rotation, 160, 278
velocity components, 162
central core, 279
interface, 271
material, 53
particles, 50, 56

Index 597

phase, 50
region, 159, 164, 277, 278, 280, 462
rotating body, 160
state, 158
solid fluid mixture, 18
solutions, 147, 165
analytical, 11, 213
exact, 266
general, 214
numerical, 214
particular, 214
smooth, 267
sonic
boom, 5
flow, 391
source term, 120, 137, 143, 186, 202,
324, 339
integral, 325
space curve, 130
specific weight, 103
speed
subcritical, 204
supercritical, 204
spouted bed, 48
spreading, 152, 219, 239, 244, 246
factor, 217, 221
rate, 239, 247, 257
two dimensional, 258
stability, 311
of flowing avalanche, 514
of numerical scheme, 298
of snow, 510
of snowpack, 34
test, 34
stable method, 312
staggered
average, 333, 334
averaging, 331
grid, 324, 334
stagnation pressure, 14, 79, 486
standard
conservative form, 143, 198
deviation, 493
form, 214
of differential equations, 202
mathematical form, 214
starting zone, 74, 77
static
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angle of repose, 288, 289
balance of granular material, 179

internal friction angle, 67, 68, 400

loadings, 53
pressure, 108, 514
statistical
mechanics, 100
model, 94, 97, 98, 111, 142
steady
centre of mass velocity, 241
conditions, 59, 98
equation, 282
flow, 159, 269, 494
motion, 59, 144, 278
shear flow, 100
shock, 526
surface flow of particles, 265
uniform avalanche velocity, 274
velocity, 59, 258
steady state, 59, 240, 268, 270
balance laws, 272
behaviour, 51
condition, 249
flow, 260
flow regime, 68
motion, 220
non existence, 224
regime, 102
rigid body motion, 241
situation, 214
solution, 165, 271
velocity, 498
steep
gradients, 6
mountain slope, 64, 72
slope, 63, 73, 91, 116
topography, 65

steepest descent, 128, 192, 425, 437,

484
stochastic models, 97
strain
gauge, 36, 89
rate, 8, 483, 486
state, 447
strength of material, 53, 64, 117
stress, 8, 52, 91, 122, 486
anisotropy, 456
closure, 12, 92, 456

components, 158, 188
deformation relation, 93
space, 121
state, 121, 192, 193
tensor, 53, 111, 131
anisotropic, 446
threshold, 206
total, 446
stress strain history dependence, 92
stress strain rate relations, 53
sturzstrom, 18
subcritical
flow, 204, 351
speed, 204
state, 311
of velocity, 5
velocity, 382
subjective parameters, 98
subscript, 301
superbee limiter, 317, 345, 347
supercritical
flow, 204, 351
speed, 204
state, 311, 489
of velocity, 5
velocity, 348, 382
superscript, 132, 160, 161, 178, 301
surface
accumulation, 154, 206
rate, 157
conditions, 74
curvature, 188
gradient, 382, 486
helicoidal, 168
non material, 153, 159
normals, 192
properties of particles, 60
resistance, 65
roughness, 72
ruled, 167
singular, 159
slope, 484
stress, 484
structure, 469
optical, 468
tension, 54
torsion, 188
traction, 52



velocity, 461, 495 497, 499
distribution, 474

water waves, 107
surge wave, 349
suspension layer, 39, 84
symmetric

avalanche thickness distribution, 216

depth profile, 226, 235
symmetry

dynamic, 149

geometric, 149
synchroniser, 467, 468, 481

table top experiment, 61, 107, 206,
391, 425, 436, 458
tail, 109
of avalanche, 396, 484
talweg, 61, 116, 128, 130, 168, 169,
176, 178, 200, 209, 350, 351, 364,
380
arbitrary, 363
helical, 364, 391
of the channel, 357, 365, 368
of the gully, 436 438
of the valley, 7, 171, 176, 201, 209
tangent
plane, 128
unit vector, 171, 180
vectors, 134, 173, 174
tangential velocity, 191
temperature change, 75
temporal mean value, 308
tensor, 181
product, 131
terminal velocity, 39, 105, 494, 498
on inclined plane, 493
theoretical
models, 92, 389
prediction, 13, 107, 484, 486, 487,
489, 490, 533
thickness, 273
contours, 344, 362
of the avalanche, 185
profile, 223
parabolic, 269
typical, 179
thin
basal boundary layer, 89, 94
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boundary layer, 89, 97, 495
film, 76
fluidised boundary layer, 97
layer, 56, 85, 90, 99
shear flow, 197
shear layer, 88, 100
third order
ENO cell reconstruction, 345, 349
three dimensional, 127
avalanche model, 130, 198, 199
basal topography, 11, 128, 131
channel, 357
curve, 130, 168, 171
flows, 128
geometry, 129, 346
granular flow, 39
mapping, 142
space, 130, 171
space curve, 169
stress state, 192
terrain irregular, 13, 436
topography, 133
threshold
stress, 206
values, 206
tilting plane apparatus, 400
timberline, 37, 73
time, 141
topographic
conditions, 73, 175
elevation, 73
ground roughness, 74
orientation, 74
shape of terrain, 74
steepness, 73
curvature, 142
elevation shallow, 363
parameters, 98
radius of curvature, 136
variation effect, 361
topography, 81, 123, 124, 157, 167,
171, 185, 199
arbitrary, 173, 297
channelised, 167
complex, 3, 434
torrential
control, 37
erosion, 31
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torsion, 130, 168 170, 173, 179, 209, translational transport, 91
364, 391 of momentum, 94
accumulation, 172 transparent fluid, 13, 462, 466, 467
contribution, 199 transport
decreasing, 370 bed load, 31
effect, 11, 363, 365, 530 flux, 202, 339

of bed topography, 130, 532 of grains and pills, 4
free, 343 sediment, 154
basal surface, 199 theorem, 147, 148
topography, 200 transversal averaging, 128
non uniform, 130, 363, 365 transverse
of the topography, 6, 188 direction, 124
uniform, 365, 367 flux, 137
variable, 368 velocities, 128

total shear traction, 206 travel distance, 109, 372

total variation, 312 tsunamis, 107
diminishing turbidity current, 50, 61, 81

limiters, 311 turbulence theory, 208
property, 329 turbulent, 51, 102
scheme, 311 aerodynamic motion, 85

tracer particles, 67, 462, 463, 467, binary mixture, 81
475, 476 boundary flow, 84
boundaries, 475 closure condition, 452

track, 77, 78, 372 motion, 103
avalanche, 171, 183 particle laden flow, 84
topography, 171 plumes, 207

traction powder flow, 84
free, 132 two phase flow, 51, 81

condition, 183 type flow avalanche, 80
surface, 196 TVD
normal, 250 cell reconstruction, 326
vector, 132, 184 condition, 315

traffic flow, 48 flux limiter, 313

trail, 405 limiter, 12, 311, 333, 336, 345, 348,

trailing edge, 226 532

trajectory, 242 method, 312, 317

transfer property, 317
function, 464 requirement, 326
of shearing, 8 scheme, 311, 333, 381

transformation, 201 slope limiter, 313, 333

transient, 65 twist, 128

transition twisted
continuous, 350 avalanche paths, 130
into run out zone, 201 channel, 168, 173, 176, 198, 225,
regimes, 49 297, 338, 469
region, 109 corries, 130
zone, 98, 201, 484, 486, 489 gullies, 74

cylindrical, 381 two dimensional
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avalanche equations, 329, 343 binormal, 180

confined chute, 126 normal, 180

conservation law general, 333 tangent, 180

conservative system, 199, 202 vectors

curved bed, 126 Cartesian, 174

extended model equations, 338 covariant, 175

flow, 126, 297, 329 upwind, 314

NOC scheme, 334, 337 flux, 308, 314

plane flow, 152 method, 308

reference, 128 representation, 301

scheme, 331 scheme, 300, 314, 347

shallow avalanche equations, 331

shock formation, 381 validation, 143, 474, 486, 495

shock capturing scheme, 329 variable

similarity solution, 253 bed friction, 230, 249

spreading, 258 angle, 236, 409, 429
two phase cross slope

continuum, 85 channel width, 365

flow, 39, 50, 51, 84, 105 curvature, 12, 357, 365

mixture, 531 curvature, 143, 356, 368

model, 50 friction model, 233
typical separable, 221

friction angle, 188 torsion, 368

length, 179, 420 vector

normal pressures, 179 form, 202

radius of curvature, 179 gravity, 180

radius of torsion, 179 vegetation, 74

thickness, 179 velocity, 78, 79, 106, 115, 131, 141,

width, 420 160, 265, 273

angular, 160, 161

unconfined at the boundary, 495

avalanche paths, 130 centre of mass, 151

channel, 359 components, 125, 137, 199

chute flow, 108 difference, 205

conditions, 128 dispersive, 151

flow, 126, 329 field, 8, 178, 199, 461, 475, 476,
uniform 483, 484, 487

conditions, 98 linear, 161

curvature, 12, 365, 367 gradient, 60, 305, 447

distribution of velocity, 293 jump, 284, 382

flux, 297 at basal surface, 284

torsion, 12, 365, 367 maximum, 498

velocity profile, 196, 198, 462, 491, measurement, 13, 461, 493

493, 502 of centre of avalanche, 216
unit profile, 383, 384

basis vectors, 178, 180 shearing, 116

triad, 172, 176 sliding, 116

vector slip, 164
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subcritical, 348, 382
supercritical, 348, 382
tangential, 191
terminal, 39, 498
vector averaged, 466
velocity distribution, 7 9, 479, 483,
486, 489, 492
mean, 487
surface, 474
velocity profile, 88, 89, 99, 116, 144,
196, 198, 223, 285, 286, 461, 475,
501
parabolic, 198
uniform, 491, 493
velocity dependent, 152
basal friction law, 130
bed friction angle, 482
contribution, 144, 185, 493
drag, 494
effect, 59
frictional resistance, 253
sliding, 59
term, 249
vertical
pressure, 136
projection, 364
viscoplastic behaviour, 36
viscosity, 55, 145
artificial, 303
coefficient, 39
high, 54
numerical, 300
viscous
contribution, 144, 260, 494
drag, 58, 145, 151
coefficient, 258
effect, 59
frictional resistance, 39, 145
resistive stress, 145
sliding, 148
law, 58, 494
type
friction, 146
friction force, 152

Voellmy
coefficient, 258, 259
drag, 145, 147, 249, 251, 253
coefficient, 146, 149, 251, 254
model, 28, 32, 96, 98, 102, 120, 138,
145, 151, 166, 250, 328, 494, 530
term, 251, 252, 259
type
friction, 142
resistive stress, 145
volcanic eruption, 5, 18, 55, 61, 62,
81, 115
volume
dependent, 90
expansion, 52, 91, 115
fraction, 80
preserving, 115

wall
effect, 401
friction, 65, 266, 270, 272, 401
angle, 270
effect, 271
friction free rotating drum, 269
water saturated
granular
avalanche, 456
flow, 436
soils, 63
wave
front, 484
propagation, 163
seismic, 20
speed, 320
global maximum, 341
maximum, 326
weather condition, 74
wet snow, 63, 79
Woodward limiter, 317, 345, 348

yield
behaviour plastic, 165
criterion, 94, 111, 115, 131, 139,
157, 192, 193, 196
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