

Wei-Meng Lee

Practical .NET 2.0
Networking Projects

Practical .NET 2.0 Networking Projects

Copyright © 2007 by Wei-Meng Lee

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-790-3

ISBN-10 (pbk): 1-59059-790-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Beth Christmas
Copy Edit Manager: Nicole Flores
Copy Editor: Kim Wimpsett
Assistant Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor and Artist: Diana Van Winkle, Van Winkle Design
Proofreader: Linda Seifert
Indexer: Broccoli Information Management, Inc.
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

Contents at a Glance

About the Author . ix

About the Technical Reviewer . xi

Acknowledgments . xiii

Introduction . xv

■CHAPTER 1 Sockets Programming . 1

■CHAPTER 2 Serial Communications . 67

■CHAPTER 3 Incorporating Fingerprint Recognition
into Your .NET Application . 123

■CHAPTER 4 Infrared Programming . 175

■CHAPTER 5 Fun with RFID . 201

■CHAPTER 6 Interfacing with External Devices . 241

■INDEX . 267

iii

Contents

About the Author . ix

About the Technical Reviewer . xi

Acknowledgments . xiii

Introduction . xv

■CHAPTER 1 Sockets Programming . 1

Introducing Sockets Programming . 1
Creating Your Own Multiuser Chat Application . 3

Using the TcpClient and TcpListener
Classes for Network Communications . 3

Building the Server . 7
Building the Client . 16

Testing the Chat Applications . 24

Building an Advanced Multiuser Chat Application 25

Defining Your Own Communication Protocol 25

Protocol Description . 26

Walking Through the Features . 27

Building the Server. 29

Building the Client . 45

Testing the Application . 66

Summary . 66

■CHAPTER 2 Serial Communications . 67

Some Serial Communication Basics . 68

Chatting Using Serial Ports . 69

Hardware Needed . 70

Building the Chat Application . 72

Instantiating the SerialPort Class . 73

Listing All the Available Serial Port Names 74

Opening a Serial Port . 75

Disconnecting a Serial Port. 77

Sending Data Using the Serial Port . 78

Receiving Data on the Serial Port . 79

Testing the Application . 80

Transmitting Unicode Characters . 81

Connecting to Other Serial Devices. 84 v

Chatting Using Serial Ports on the Pocket PC . 87

Hardware Needed . 87

Building the Application . 88

Coding the Application . 89

Creating a Mapping Application Using a GPS Receiver
and Microsoft Virtual Earth . 93

Building the Application . 97

Creating the HTML File Containing the Virtual Earth Map 98

Coding the Application . 100

Displaying the Coordinates of the Map . 103

Connecting to a GPS Receiver. 106

Plotting Saved Path . 115

Summary . 121

■CHAPTER 3 Incorporating Fingerprint Recognition
into Your .NET Application . 123

Using the GrFinger SDK . 124

Creating the Application . 125

Coding the Application . 128

Wiring Up All the Controls . 130

Testing the Application . 147

Summary . 148

■CHAPTER 4 Infrared Programming . 175

Introducing IrDA . 175

Creating Infrared Communications Between Windows
Mobile Devices . 176

What You Need . 176

Creating the Project . 177

Coding the Application . 178

Receiving Messages . 180

Displaying the Received Messages . 183

Sending Messages . 184

Compiling and Deploying the Application . 188

Creating Infrared Communications on the Desktop 188

What You Need . 189

Creating the Project . 189

Importing the Namespaces . 190

Declaring the Constants and Member Variables 191

Coding the Form1_Load() Event . 191

■CONTENTSvi

Coding the ReceiveLoop() Subroutine . 192

Coding the ReceiveMessage() Function . 193

Coding the Delegate and the UpdateTextBox() and
UpdateStatus() Subroutines . 195

Coding the SendMessage() Subroutine . 195

Coding the Send Button Control . 198

Testing the Application . 199

Summary . 199

■CHAPTER 5 Fun with RFID . 201

Introducing RFID . 201

Building an Attendance-Taking Application . 203

RFID Reader #1: Parallax’s RFID Reader Module 204

RFID Tags . 204

Setting Up the Reader . 205

Building the Application User Interface . 207

Coding the Application . 213

Testing the Application . 227

RFID Reader #2: PhidgetRFID . 227

RFID Tags . 228

Building the Sample Application . 229

PhidgetRFID APIs . 232

Coding the Application . 232

Testing the Application . 238

Comparing the Two RFID Readers . 239

Summary . 239

■CHAPTER 6 Interfacing with External Devices . 241

Components Used . 242

Sensor . 242

Webcam . 243

Connecting the Sensor to the PC . 243

Connecting the PING Sensor . 245

Programming the PING Sensor . 246

Integrating with the PC . 250

Programming the Webcam . 255

Using the AVICap Class . 256

Summary . 265

■INDEX . 267

■CONTENTS vii

About the Author

■WEI-MENG LEE is a technologist and founder of Developer Learning
Solutions (http://www.learn2develop.net), a technology company that
specializes in hands-on training in the latest Microsoft technologies.
Wei-Meng speaks regularly at international conferences and has authored
and coauthored numerous books about .NET, XML, and wireless technolo-
gies, including ASP.NET 2.0: A Developer’s Notebook and Visual Basic 2005
Jumpstart (both from O’Reilly Media). He is also the coauthor of Program-

ming Sudoku (from Apress). Find out about the latest books and articles by Wei-Meng at his
blog: http://weimenglee.blogspot.com/.

ix

About the Technical Reviewer

■FABIO CLAUDIO FERRACCHIATI is a senior consultant and a senior analyst/developer using
Microsoft technologies. He works for Brain Force (http://www.brainforce.com) in its Italian
branch (http://www.brainforce.it). He is a Microsoft Certified Solution Developer for .NET, a
Microsoft Certified Application Developer for .NET, and a Microsoft Certified Professional, as
well as a prolific author and technical reviewer. Over the past ten years he has written articles
for Italian and international magazines and coauthored more than ten books about a variety
of computer topics. Visit his blog at http://www.ferracchiati.com.

xi

Acknowledgments

Although the “Acknowledgments” section of a book is always placed at the front, it is always
the last thing an author writes; and after spending several months working on the book
together with different groups of people, most names are not even mentioned (or at least
mentioned in passing). Yet, without the collective efforts of these people, the book would
never have been possible.

This book is no exception.
Now that this book is done, I can finally look forward to seeing it on the shelves of book-

shops. I want to take this opportunity to thank my editor, Ewan Buckingham, for his guidance
and valuable suggestions for making this book a better read. Fabio Claudio Ferracchiati, the
technical reviewer for this book, also deserves special mention because he painstakingly
tested every project in this book and made several good suggestions for improving the quality
of the code. Thank you, Ewan and Fabio. And this book would never be possible without the
great patience of its project manager, Beth Christmas. Beth was extremely patient with me
while I was juggling writing this book and working on my daytime projects. For this, I am very
grateful, Beth! To the production crew, Kim Wimpsett and Katie Stence—thanks for the great
job of polishing my work!

I also want to thank Rod Paddock (editor-in-chief at CoDeMagazine) for publishing my
RFID chapter as an article in the Nov/Dec 2006 issue of CoDeMagazine. And I want to express
my gratitude to Ryan Clarke (from Parallax) and Matt Trossen and Jennie Jetter (from Phidgets
USA) for their help in getting me started with RFID. They have been very patient in guiding an
hardware-idiot (that’s me) and for this I am very grateful to them! Last but not least, I want to
thank Lori Piquet, my editor at DevX.com. Lori has always been very open to my new article
ideas, and her support has provided me with the avenues to try new project ideas. For this, I
am indebted and very grateful to you, Lori.

Finally, thank you for picking up this book, and I hope you have a great time with the vari-
ous projects discussed in this book.

xiii

Introduction

Practical .NET 2.0 Networking Projects demonstrates some of the key networking technologies
that are being made easily accessible through the .NET Framework 2.0. It discusses communi-
cation between wired machines and between networks and mobile devices. The book teaches
you about the technologies by walking you through sample projects in a straightforward and
direct way.

This book contains six chapters, each covering a specific aspect of network programming.
You’ll use the various APIs within the .NET Framework as well as third-party SDKs to build a
variety of cutting-edge networking applications that cover everything from Bluetooth and
RFID communication to sockets programming and chat servers. You’ll build working exam-
ples for each project, which you can also customize and use for your own purposes. The
featured projects cover the following.

Chapter 1:
Sockets Programming
Writing networked applications is one of the most interesting aspects of programming. This
is especially intriguing when you see your applications successfully communicating over the
network. In this chapter, you will build a chat application that works similarly to Windows Live
Messenger (or ICQ) using TCP/IP. Using the chat application, you will learn how network pro-
gramming happens in .NET and the various challenges you’ll encounter when building a
multiuser chat application.

Chapter 2:
Serial Communications
Serial communication is one of the oldest mechanisms for devices to communicate with each
other. Starting with the IBM PC and compatible computers, almost all computers are equipped
with one or more serial ports and one parallel port. As the name implies, a serial port sends and
receives data serially, one bit at a time. In contrast, a parallel port sends and receives data eight
bits at a time, using eight separate wires.

Despite the comparatively slower transfer speed of serial ports over parallel ports, serial
communication remains a popular connectivity option for devices because of its simplicity
and cost-effectiveness. Although consumer products today are using USB connections in
place of serial connections, still a lot of devices use serial ports as their sole connections to
the outside world.

In this chapter, you will learn how to communicate with other serial devices using the new
SerialPort class available in the .NET Framework 2.0 and the .NET Compact Framework 2.0.

xv

In particular, you will build three projects that illustrate how to use serial communications.
The first project is a chat application that allows two computers (connected using either a serial
cable or a Bluetooth connection) to communicate. And using the foundation of this applica-
tion, you can extend it to communicate with other external serial devices such as cellular
phones. You will learn how to use the AT commands to programmatically control your mobile
phones through a serial Bluetooth connection. The second project is a Pocket PC chat applica-
tion, which is similar to the first project. The third application shows how to communicate with
a GPS receiver and then extract the useful data for displaying the current location on a map.

Chapter 3:
Incorporating Fingerprint Recognition
into Your .NET Application
Biometric recognition is one of the most reliable ways to confirm the identity of an individual.
And by now, most people should be familiar with the Microsoft Fingerprint Reader. Using the
Microsoft Fingerprint Reader, you can now log in to your computer by placing your finger on
the reader. You can also use the application provided by the Fingerprint Reader to save your
user IDs and passwords for websites that require them for authentication. You can then use
your fingerprint as a key to retrieve the user IDs and passwords for logging into these sites
securely. The Microsoft Fingerprint Reader removes the hassle of remembering different
passwords for different sites.

In this chapter, I will show you how you can use the GrFinger Fingerprint SDK to integrate
the Microsoft Fingerprint Reader into your .NET 2.0 Windows applications. In particular, you
will build a visitor identification system whereby users visiting your office can register at the
reception desk. Once a user is registered, the next time the user visits the office, he can simply
scan his fingerprint, and the system will register his visit. Schools can also adapt this applica-
tion for attendance-taking purposes, such as in big lecture theaters where attendance must be
taken rapidly and efficiently.

Chapter 4:
Infrared Programming
With all the buzz around WiFi, Bluetooth, and other wireless technologies, it’s easy to overlook
one of the simplest and most common forms of wireless communications—infrared. Anyone
who has ever used a remote control has used it! Infrared uses the invisible spectrum of light
just beyond red in the visible spectrum. You can use it in applications for short-range, point-
to-point data transfer. Because it uses light, line-of-sight is a prerequisite for infrared. Despite
this limitation, infrared is increasingly popular in devices such as digital cameras, PDAs, and
notebook computers.

In this chapter, I will show you how to build an application that allows two devices (as
well as computers) to communicate wirelessly using infrared. You can adapt the programming
technique illustrated in this chapter for other programming tasks, such as writing wireless
network games, and so on.

■INTRODUCTIONxvi

Chapter 5:
Fun with Radio Frequency Identifications (RFID)
Radio frequency identification (RFID) is one of the buzzwords receiving a lot of coverage in
the IT world lately. An RFID system is an identification system that uses radio waves to retrieve
data from a device called a tag or a transponder. RFID is all around us in our daily lives—in the
supermarkets, libraries, bookstores, and so on. RFID provides a quick and efficient way to col-
lect information, such as stocktaking in a warehouse or tracking the whereabouts of items.

In this chapter, you will learn how to build a Windows application that incorporates RFID
technology for data collection. You will use two RFID readers and understand their pros and cons.

Chapter 6:
Interfacing with External Devices
Today, a webcam is a common peripheral that most people can easily afford; and it’s used
most often for video conferencing. But what can you do with your webcam besides video
conferencing? For .NET developers, the answer is plenty; and you will be glad to know that
integrating a webcam with a Windows application is not as difficult as you might imagine.

Besides integrating a webcam with your application, you can connect your Windows appli-
cation to an external device such as a sensor to monitor the movements of the surroundings.

In this chapter, you will build a security system by interfacing a Windows application with
an external sensor and a webcam so you can monitor for unwanted activities. You will be able
detect the proximity of an intruder and use the webcam to record the intruder’s movements.

■INTRODUCTION xvii

Sockets Programming

Writing networked applications is one of the most interesting aspects of programming. This
is especially intriguing when you see your applications successfully communicating over the
network. In this chapter, you will build a chat application that works similarly to Windows Live
Messenger (or ICQ) using TCP/IP. Using the chat application, you will learn how network pro-
gramming happens in .NET and the various challenges you’ll encounter when building a
multiuser chat application.

Introducing Sockets Programming
A socket is an abstract description of a means of sending and receiving data between computers/
applications on a network. It describes a connection between two communicating points
(which may be on different computers or within the same computer).

In practice, socket programming is commonly associated with TCP/IP and UDP/IP com-
munications (see the “Understanding IP, TCP, and UDP” sidebar for more information about
TCP/IP and UDP/IP). When discussing sockets programming, three pieces of information are
important:

• The protocol (such as TCP/IP or UDP/IP)

• The IP address (for example, 127.0.0.1)

• The port number (for example, port 80)

For example, you should be familiar with an address such as http://www.apress.com. This is
an address that instructs your web browser to load the home page located at www.apress.com.
The http part specifies the application protocol used (HTTP uses TCP/IP for data delivery), and
www.apress.com specifies the address (the name www.apress.com will be resolved by the DNS
service into an IP address). Because HTTP uses port 80 for communications, port 80 is implicitly
implied and is not included in the address. As shown in Figure 1-1, for two parties to communi-
cate, both must have an IP address.

1

C H A P T E R 1

■ ■ ■

Figure 1-1. Communication between a web browser and a web server

Although a protocol such as TCP/IP takes care of delivering data from one point to
another, it is the application protocol such as HTTP that specifies the content of the data to
be transferred.

In the .NET Framework, socket communication is implemented by the Socket class
(located in the System.Net.Sockets namespace).

UNDERSTANDING IP, TCP, AND UDP

For network programming, it is important that you have a good idea of some of the common protocols in
use today. The first is Internet Protocol (IP). IP specifies the format as well as the addressing scheme of data
packets (known as datagrams) that are to be sent from one point to another. Think of IP as the postal system
where you can send a package from one location to another. You simply write the address of the recipient
and drop the package in the postal box. The post office will then try to deliver the package to the recipient.
However, you have no guarantee that the package will definitely arrive at the destination, and you won’t
know when the package does arrive.

To ensure that packages are delivered correctly, you have to use extra services such as registered mail.
In a similar fashion, you use IP with other protocols to ensure guaranteed delivery of packets. One such pro-
tocol is Transmission Control Protocol (TCP). TCP is a connection-oriented network protocol that guarantees
reliable and in-order delivery of packets (through acknowledgments). Coupled with IP, TCP has been adopted
as a popular networking protocol by applications such as web browsers and email clients.

Although TCP ensures guaranteed delivery, it has its overhead. Just like registered mail, which costs
more money to send, TCP adds overhead to the packets being sent and increases the packet size. Hence,
sometimes developers use IP with User Datagram Protocol (UDP). UDP is a connectionless network protocol
that sends packet from one point to another, with one exception—it does not provide reliable and guaranteed
delivery. Since UPD does not guarantee delivery, the packets are more efficient and faster to deliver. Develop-
ers using UPD must devise their own logic to ensure packets are delivered correctly. This is analogous to the
postal example, where you can manually call your recipient to see whether they have received the package
you sent. If they have not received it, you may need to resend it. UDP is useful for applications that send
small packets of data and require no elaborate assembling of data. These applications include Trivial File
Transfer Protocol (TFTP), Domain Name System (DNS), and Voice over IP (VoIP).

HTTP (TCPIP)
www.apress.com (69.19.150.101)

Port 80

HTTP (TCPIP)
1.2.3.4
Port 80

CHAPTER 1 ■ SOCKETS PROGRAMMING2

Creating Your Own Multiuser Chat Application
In the first part of this chapter, you will first build a simple chat application that allows anyone
who is connected to a central server to communicate. This will allow you to explore the basics
of socket communications and learn how to broadcast messages to all connected users.

Figure 1-2 shows the application you will be building in the first part of the chapter.

Figure 1-2. The chat application you will create in the first part of the chapter

Using the TcpClient and TcpListener Classes for
Network Communications
Creating a chat application generally involves socket programming—creating a connection
between a client and a server so that messages can be sent and received by both the client and
the server. The System.Net.Sockets namespace provides the functionality required for socket
programming. You will use two classes in the System.Net.Sockets namespace for this project:
TcpClient and TcpListener.

The TcpClient class implements a socket for sending and receiving data using TCP.
Because the connection to the remote device is represented as a stream, data can be read and
written with .NET Framework stream-handling techniques.

The TcpListener class provides simple methods that listen for and accept incoming con-
nection requests in blocking synchronous mode.

The following code example shows a simple implementation of a server (a console appli-
cation) waiting for an incoming connection.

CHAPTER 1 ■ SOCKETS PROGRAMMING 3

Visual Basic 2005

Imports System.Net.Sockets
Imports System.Text

Module Module1
'---port number to use for listening---
Const portNo As Integer = 500

Sub Main()
Dim localAdd As System.Net.IPAddress = _

System.Net.IPAddress.Parse("127.0.0.1")

'---listen at the local address---
Dim listener As New TcpListener(localAdd, portNo)
listener.Start()

'---Accepts a pending connection request---
Dim tcpClient As TcpClient = listener.AcceptTcpClient()

'---use a NetworkStream object to send and receive data---
Dim ns As NetworkStream = tcpClient.GetStream
Dim data(tcpClient.ReceiveBufferSize) As Byte

'---read incoming stream; Read() is a blocking call---
Dim numBytesRead As Integer = ns.Read(data, 0, _

CInt(tcpClient.ReceiveBufferSize))

'---display data received---
Console.WriteLine("Received :" & _

Encoding.ASCII.GetString(data, 0, numBytesRead))

'---prevent the console window from closing immediately---
Console.ReadLine()

End Sub

End Module

C# 2005

using System;
using System.Collections.Generic;
using System.Text;
using System.Net.Sockets;

namespace Server_CS
{

CHAPTER 1 ■ SOCKETS PROGRAMMING4

class Program
{

//---port number to use for listening---
const int portNo = 500;
static void Main(string[] args)
{

System.Net.IPAddress localAdd =
System.Net.IPAddress.Parse("127.0.0.1");

//---listen at the local address---
TcpListener listener = new TcpListener(localAdd, portNo);
listener.Start();

//---Accepts a pending connection request---
TcpClient tcpClient = listener.AcceptTcpClient();

//---use a NetworkStream object to send and receive
// data---
NetworkStream ns = tcpClient.GetStream();
byte[] data = new byte[tcpClient.ReceiveBufferSize];

//---read incoming stream; Read() is a blocking call---
int numBytesRead = ns.Read(data, 0,

System.Convert.ToInt32(tcpClient.ReceiveBufferSize));

//---display data received---
Console.WriteLine("Received :" +

Encoding.ASCII.GetString(data, 0, numBytesRead));

//---prevent the console window from closing
// immediately---
Console.ReadLine();

}
}

}

To connect to the server and send it a string, the client code (a console application) will
look like the following.

Visual Basic 2005

Imports System.Net.Sockets
Imports System.Text

Module Module1
Const portNo As Integer = 500
Sub Main()

Dim tcpclient As New TcpClient

CHAPTER 1 ■ SOCKETS PROGRAMMING 5

'---connect to the server---
tcpclient.Connect("127.0.0.1", portNo)

'---use a NetworkStream object to send and receive data---
Dim ns As NetworkStream = tcpclient.GetStream
Dim data As Byte() = Encoding.ASCII.GetBytes("Hello")

'---send the text---
ns.Write(data, 0, data.Length)

End Sub
End Module

C# 2005

using System;
using System.Collections.Generic;
using System.Text;
using System.Net.Sockets;

namespace Client_CS
{

class Program
{

const int portNo = 500;
static void Main(string[] args)
{

TcpClient tcpclient = new TcpClient();

//---connect to the server---
tcpclient.Connect("127.0.0.1", portNo);

//---use a NetworkStream object to send and receive
// data---
NetworkStream ns = tcpclient.GetStream();
byte[] data = Encoding.ASCII.GetBytes("Hello");

//---send the text---
ns.Write(data, 0, data.Length);

}
}

}

Note that the NetworkStream object works with byte arrays, and hence you need to use the
Encoding.ASCII.GetString() and Encoding.ASCII.GetBytes() methods from the System.Text
namespace to convert the byte array to a string, and vice versa.

The previous example is relatively simple—it contains the code for the server as well as
the client. The service opens a socket at 127.0.0.1 using port 500 and listens for an incoming

CHAPTER 1 ■ SOCKETS PROGRAMMING6

TCP connection. When a connection is established, a NetworkStream object reads the data sent
by the client. The data received is then displayed on the console. The client, on the other hand,
opens a connection at 127.0.0.1 and then sends a string to the server using the NetworkStream
object.

However, the problem becomes much more pronounced when the server needs to com-
municate with multiple clients and be able to both send and receive messages from clients, all
at the same time. To do so, the following must be true:

• The server must be able to create connections with multiple clients.

• The server must be able to asynchronously read data from the client and be able to
send messages to the client at any time.

• The client must be able to asynchronously read data from the server and be able to
send messages to the server at any time.

The following sections will address these three problems.

Building the Server
The chat application has two components—server and client. Let’s get started by first building
the server. For the server, you will create a console application project using Visual Studio
2005. Name the project Server.

In the default Module1.vb/Program.cs file, first import the System.Net.Sockets namespace
that will contain all the relevant classes you will use for this project.

Visual Basic 2005

Imports System.Net.Sockets

C# 2005

using System.Net.Sockets;

Next, declare a constant containing the port number to use for this application. For this
application, I have used the port number 500.

Visual Basic 2005

Module Module1
Const portNo As Integer = 500

C# 2005

class Program
{

const int portNo = 500;

CHAPTER 1 ■ SOCKETS PROGRAMMING 7

■Tip If you have a firewall installed on the server (or client), be sure to open port 500 for this application to work.

You also need to define the local address to listen to and then create an instance of the
TcpListener class to use for listening for connections from TCP clients.

Visual Basic 2005

Sub Main()
Dim localAdd As System.Net.IPAddress = _

System.Net.IPAddress.Parse("127.0.0.1")
Dim listener As New TcpListener(localAdd, portNo)

C# 2005

static void Main(string[] args)
{

System.Net.IPAddress localAdd =
System.Net.IPAddress.Parse("127.0.0.1");

TcpListener listener = new TcpListener(localAdd, portNo);

In the Main() function, use the Start() method from the TcpListener class to start listen-
ing for incoming connection requests. The AcceptTcpClient() method is a blocking call,
and execution will not continue until a connection is established. Because the server in this
example needs to service multiple clients at the same time, you will create an instance of the
ChatClient class (which you will define shortly) for each user. The server will loop indefinitely,
accepting clients as they connect.

Visual Basic 2005

Sub Main()
Dim localAdd As System.Net.IPAddress = _

System.Net.IPAddress.Parse("127.0.0.1")
Dim listener As New TcpListener(localAdd, portNo)
listener.Start()
While True

Dim user As New ChatClient(listener.AcceptTcpClient)
End While

End Sub

C# 2005

static void Main(string[] args)
{

System.Net.IPAddress localAdd =
System.Net.IPAddress.Parse("127.0.0.1");

CHAPTER 1 ■ SOCKETS PROGRAMMING8

TcpListener listener = new TcpListener(localAdd, portNo);
listener.Start();
while (true)
{

ChatClient user = new
ChatClient(listener.AcceptTcpClient());

}
}

The complete source for Module1.vb looks as follows.

Visual Basic 2005

Imports System.Net.Sockets

Module Module1
Const portNo As Integer = 500
Sub Main()

Dim localAdd As System.Net.IPAddress = _
System.Net.IPAddress.Parse("127.0.0.1")

Dim listener As New TcpListener(localAdd, portNo)
listener.Start()
While True

Dim user As New ChatClient(listener.AcceptTcpClient)
End While

End Sub
End Module

C# 2005

using System;
using System.Collections.Generic;
using System.Text;
using System.Net.Sockets;

namespace server_CS
{

class Program
{

const int portNo = 500;
static void Main(string[] args)
{

System.Net.IPAddress localAdd =
System.Net.IPAddress.Parse("127.0.0.1");

TcpListener listener = new TcpListener(localAdd, portNo);
listener.Start();
while (true)
{

CHAPTER 1 ■ SOCKETS PROGRAMMING 9

ChatClient user = new
ChatClient(listener.AcceptTcpClient());

}
}

}
}

The next step is to define the ChatClient class. You use the ChatClient class to represent
information about each client connecting to the server.

Add a new Class item to your project in Visual Studio 2005, and name it ChatClient.vb/
ChatClient.cs. As usual, the first step is to import the System.Net.Sockets namespace (for the
C# version of the code, you need to also import the System.Collections namespace).

Visual Basic 2005

Imports System.Net.Sockets

C# 2005

using System.Net.Sockets;
using System.Collections;

In the ChatClient class, first define the various private members (their uses are described
in the comments in the code). You also declare a HashTable object (AllClients) to store a list of
all clients connecting to the server. The reason for declaring it as a shared member is to ensure
all instances of the ChatClient class are able to obtain a list of all the clients currently con-
nected to the server.

Visual Basic 2005

Public Class ChatClient
'---contains a list of all the clients---
Public Shared AllClients As New HashTable

'---information about the client---
Private _client As TcpClient
Private _clientIP As String
Private _clientNick As String

'---used for sending/receiving data---
Private data() As Byte

'---is the nickname being sent?---
Private ReceiveNick As Boolean = True

CHAPTER 1 ■ SOCKETS PROGRAMMING10

C# 2005

class ChatClient
{

//---contains a list of all the clients---
public static Hashtable AllClients = new Hashtable();

//---information about the client---
private TcpClient _client;
private string _clientIP;
private string _clientNick;

//---used for sending/receiving data---
private byte[] data;

//---is the nickname being sent?---
private bool ReceiveNick = true;

When a client gets connected to the server, the server will create an instance of the ChatClient
class and then pass the TcpClient variable (client) to the constructor of the class. You will also
get the IP address of the client and use it as an index to identify the client in the HashTable object.
The BeginRead() method will begin an asynchronous read from the NetworkStream object
(client.GetStream) in a separate thread. This allows the server to remain responsive and continue
accepting new connections from other clients. When the reading is complete, control will be
transferred to the ReceiveMessage() function (which you will define shortly).

Visual Basic 2005

Public Sub New(ByVal client As TcpClient)
_client = client

'---get the client IP address---
_clientIP = client.Client.RemoteEndPoint.ToString

'---add the current client to the hash table---
AllClients.Add(_clientIP, Me)

'---start reading data from the client in a separate thread---
ReDim data(_client.ReceiveBufferSize)
_client.GetStream.BeginRead(data, 0, _

CInt(_client.ReceiveBufferSize), _
AddressOf ReceiveMessage, Nothing)

End Sub

CHAPTER 1 ■ SOCKETS PROGRAMMING 11

C# 2005

public ChatClient(TcpClient client)
{

_client = client;

//---get the client IP address---
_clientIP = client.Client.RemoteEndPoint.ToString();

//---add the current client to the hash table---
AllClients.Add(_clientIP, this);

//---start reading data from the client in a
// separate thread---
data = new byte[_client.ReceiveBufferSize];
client.GetStream().BeginRead(data, 0,

System.Convert.ToInt32(_client.ReceiveBufferSize),
ReceiveMessage, null);

}

In the ReceiveMessage() function, you first call the EndRead() method to handle the end
of an asynchronous read. Here, you check whether the number of bytes read is less than 1.
If it is, it means that the client has disconnected, and you need to remove the client from the
HashTable object (using the IP address of the client as an index into the hash table). You would
also broadcast the message to all the clients that this particular client has left the chat using the
Broadcast() function (which you will define shortly). For simplicity, assume that the client will
send the nickname of the user the first time it connects to the server. Subsequently, you will just
broadcast whatever was sent by the client to everyone. Once this is done, the server will proceed
to perform the asynchronous read from the client again.

Visual Basic 2005

Public Sub ReceiveMessage(ByVal ar As IAsyncResult)
'---read from client---
Dim bytesRead As Integer
Try

SyncLock _client.GetStream
bytesRead = _client.GetStream.EndRead(ar)

End SyncLock

'---client has disconnected---
If bytesRead < 1 Then

AllClients.Remove(_clientIP)
Broadcast(_clientNick & _

" has left the chat.")
Exit Sub

Else
'---get the message sent---

CHAPTER 1 ■ SOCKETS PROGRAMMING12

Dim messageReceived As String = _
System.Text.Encoding.ASCII. _
GetString(data, 0, bytesRead)

'---client is sending its nickname---
If ReceiveNick Then

_clientNick = messageReceived

'---tell everyone client has entered the chat---
Broadcast(_clientNick & _

" has joined the chat.")
ReceiveNick = False

Else
'---broadcast the message to everyone---
Broadcast(_clientNick & ">" & _

messageReceived)
End If

End If

'---continue reading from client---
SyncLock _client.GetStream

_client.GetStream.BeginRead(data, 0, _
CInt(_client.ReceiveBufferSize), _
AddressOf ReceiveMessage, Nothing)

End SyncLock

Catch ex As Exception
AllClients.Remove(_clientIP)
Broadcast(_clientNick & _

" has left the chat.")
End Try

End Sub

C# 2005

public void ReceiveMessage(IAsyncResult ar)
{

//---read from client---
int bytesRead;
try
{

lock (_client.GetStream())
{

bytesRead = _client.GetStream().EndRead(ar);
}

//---client has disconnected---

CHAPTER 1 ■ SOCKETS PROGRAMMING 13

if (bytesRead < 1)
{

AllClients.Remove(_clientIP);
Broadcast(_clientNick + " has left the chat.");
return;

}
else
{

//---get the message sent---
string messageReceived =

System.Text.Encoding.ASCII.GetString(
data, 0, bytesRead);

//---client is sending its nickname---
if (ReceiveNick)
{

_clientNick = messageReceived;

//---tell everyone client has entered the
// chat---
Broadcast(_clientNick +

" has joined the chat.");
ReceiveNick = false;

}
else
{

//---broadcast the message to everyone---
Broadcast(_clientNick + ">" +

messageReceived);
}

}

//---continue reading from client---
lock (_client.GetStream())
{

_client.GetStream().BeginRead(data, 0,
System.Convert.ToInt32(
_client.ReceiveBufferSize),ReceiveMessage,
null);

}
}
catch (Exception ex)
{

AllClients.Remove(_clientIP);
Broadcast(_clientNick + " has left the chat.");

}
}

CHAPTER 1 ■ SOCKETS PROGRAMMING14

One issue to note in the previous code is that you need to use the SyncLock (lock in C#)
statement to prevent multiple threads from using the NetworkStream object. This scenario is
likely to occur when your server is connected to multiple clients and all of them are trying to
access the NetworkStream object at the same time.

The SendMessage() function allows the server to send a message to the client.

Visual Basic 2005

Public Sub SendMessage(ByVal message As String)
Try

'---send the text---
Dim ns As System.Net.Sockets.NetworkStream
SyncLock _client.GetStream

ns = _client.GetStream
End SyncLock

Dim bytesToSend As Byte() = _
System.Text.Encoding.ASCII.GetBytes(message)
ns.Write(bytesToSend, 0, bytesToSend.Length)
ns.Flush()

Catch ex As Exception
Console.WriteLine(ex.ToString)

End Try
End Sub

C# 2005

public void SendMessage(string message)
{

try
{

//---send the text---
System.Net.Sockets.NetworkStream ns;
lock (_client.GetStream())
{

ns = _client.GetStream();
}

byte[] bytesToSend =
System.Text.Encoding.ASCII.GetBytes(message);

ns.Write(bytesToSend, 0, bytesToSend.Length);
ns.Flush();

}
catch (Exception ex)
{

Console.WriteLine(ex.ToString());
}

}

CHAPTER 1 ■ SOCKETS PROGRAMMING 15

Finally, the Broadcast() function sends a message to all the clients stored in the AllClients
HashTable object.

Visual Basic 2005

Public Sub Broadcast(ByVal message As String)
'---log it locally---
Console.WriteLine(message)
Dim c As DictionaryEntry
For Each c In AllClients

'---broadcast message to all users---
CType(c.Value, _

ChatClient).SendMessage(message & vbLf)
Next

End Sub

C# 2005

public void Broadcast(string message)
{

//---log it locally---
Console.WriteLine(message);
foreach (DictionaryEntry c in AllClients)
{

//---broadcast message to all users---
((ChatClient)(c.Value)).SendMessage(

message + Environment.NewLine);
}

}

Building the Client
Now that you’ve built the server, it is time to build the client. Using Visual Studio 2005, create
a new Windows application (name it WinClient), and populate the default form with the con-
trols shown in Figure 1-3. Set the MultiLine and ReadOnly properties of the txtMessageHistory
control to True, and set its ScrollBars property to Vertical. Also, set the Enabled property of
the btnSend control to False.

CHAPTER 1 ■ SOCKETS PROGRAMMING16

Figure 1-3. Populating the Windows form with the various controls

The client application logic is similar to the server, albeit more straightforward. Double-
click the form to switch to the edit window. Import the following namespace.

Visual Basic 2005

Imports System.Net.Sockets

C# 2005

using System.Net.Sockets;

Define the following constant and variables within the form.

Visual Basic 2005

Public Class Form1
Const portNo As Integer = 500
Dim client As TcpClient
Dim data() As Byte

TextBox Control
(txtMessageHistory)

Button Control
(btnSignIn)

Label
Control

TextBox Control
(txtNick)

TextBox Control
(txtMessage)

Button Control
(btnSend)

CHAPTER 1 ■ SOCKETS PROGRAMMING 17

C# 2005

public partial class Form1 : Form
{

const int portNo = 500;
TcpClient client;
byte[] data;

When the user signs in, you first connect to the server and send the nickname of the user
using the SendMessage() subroutine. You then begin reading data from the server asynchro-
nously and change the name of the button to Sign Out. When the user signs out from the chat
application, you invoke the Disconnect() subroutine.

Visual Basic 2005

Private Sub btnSignIn_Click(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnSignIn.Click
If btnSignIn.Text = "Sign In" Then

Try
'---connect to server---
client = New TcpClient
client.Connect("127.0.0.1", portNo)
ReDim data(client.ReceiveBufferSize)
SendMessage(txtNick.Text)

'---read from server---
client.GetStream.BeginRead(_

data, 0, _
CInt(client.ReceiveBufferSize), _
AddressOf ReceiveMessage, Nothing)

btnSignIn.Text = "Sign Out"
btnSend.Enabled = True

Catch ex As Exception
MsgBox(ex.ToString)

End Try
Else

'---disconnect from server---
Disconnect()
btnSignIn.Text = "Sign In"
btnSend.Enabled = False

End If
End Sub

CHAPTER 1 ■ SOCKETS PROGRAMMING18

C# 2005

private void btnSignIn_Click(object sender, EventArgs e)
{

if (btnSignIn.Text == "Sign In")
{

try
{

//---connect to server---
client = new TcpClient();
client.Connect("127.0.0.1", portNo);
data = new byte[client.ReceiveBufferSize];

//---read from server---
SendMessage(txtNick.Text);
client.GetStream().BeginRead(data, 0,

System.Convert.ToInt32(
client.ReceiveBufferSize),
ReceiveMessage, null);

btnSignIn.Text = "Sign Out";
btnSend.Enabled = true;

}
catch (Exception ex)
{

MessageBox.Show(ex.ToString());
}

}
else
{

//---disconnect from server---
Disconnect();
btnSignIn.Text = "Sign In";
btnSend.Enabled = false;

}
}

When the user clicks the Send button, you send a message to the server.

Visual Basic 2005

Private Sub btnSend_Click(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnSend.Click
SendMessage(txtMessage.Text)
txtMessage.Clear()

End Sub

CHAPTER 1 ■ SOCKETS PROGRAMMING 19

C# 2005

private void btnSend_Click(
object sender,
EventArgs e)

{
SendMessage(txtMessage.Text);
txtMessage.Clear();

}

Add the SendMessage() subroutine to allow the client to send a message to the server.

Visual Basic 2005

Public Sub SendMessage(ByVal message As String)
Try

'---send a message to the server---
Dim ns As NetworkStream = client.GetStream
Dim data As Byte() = _
System.Text.Encoding.ASCII.GetBytes(message)
'---send the text---
ns.Write(data, 0, data.Length)
ns.Flush()

Catch ex As Exception
MsgBox(ex.ToString)

End Try
End Sub

C# 2005

public void SendMessage(string message)
{

try
{

//---send a message to the server---
NetworkStream ns = client.GetStream();
byte[] data =

System.Text.Encoding.ASCII.GetBytes(message);

//---send the text---
ns.Write(data, 0, data.Length);
ns.Flush();

}
catch (Exception ex)
{

MessageBox.Show(ex.ToString());
}

}

CHAPTER 1 ■ SOCKETS PROGRAMMING20

The ReceiveMessage() subroutine asynchronously reads data sent from the server in a
separate thread. When the data is received, it will display the data in the txtMessageHistory
control. Because Windows controls are not thread-safe, you need to use a delegate
(delUpdateHistory()) to update the controls.

THREAD SAFETY

By default, a Windows application uses a single thread of execution. And when you have multiple threads of
execution (like what you did here with the ReceiveMessage() subroutine), things get a little complicated
when you try to update the UI of the application from different threads.

It is important to note that you cannot directly access the properties of Windows controls on separate
threads (other than on the main thread that it is running on), because Windows controls are not thread-safe.
Trying to do so will also trigger a runtime error, a useful feature new in Visual Studio 2005. Instead, you
should use a delegate and call it using the Invoke()/BeginInvoke() method of the controls/form
you are trying to update.

Visual Basic 2005

Public Sub ReceiveMessage(ByVal ar As IAsyncResult)
Try

Dim bytesRead As Integer

'---read the data from the server---
bytesRead = client.GetStream.EndRead(ar)
If bytesRead < 1 Then

Exit Sub
Else

'---invoke the delegate to display the received
' data---
Dim para() As Object = _
{System.Text.Encoding.ASCII.GetString(_
data, 0, bytesRead)}

Me.Invoke(New delUpdateHistory(_
AddressOf Me.UpdateHistory), para)

End If

'---continue reading...---
client.GetStream.BeginRead(_

data, 0, CInt(client.ReceiveBufferSize), _
AddressOf ReceiveMessage, Nothing)

Catch ex As Exception
'---ignore the error; fired when a user signs off---

End Try
End Sub

CHAPTER 1 ■ SOCKETS PROGRAMMING 21

C# 2005

public void ReceiveMessage(IAsyncResult ar)
{

try
{

int bytesRead;

//---read the data from the server---
bytesRead = client.GetStream().EndRead(ar);
if (bytesRead < 1)
{

return;
}
else
{

//---invoke the delegate to display the
// received data---
object[] para = {

System.Text.Encoding.ASCII.GetString(
data, 0, bytesRead) };

this.Invoke(new delUpdateHistory(UpdateHistory),
para);

}
//---continue reading...---
client.GetStream().BeginRead(data, 0,

System.Convert.ToInt32(client.ReceiveBufferSize),
ReceiveMessage, null);

}
catch (Exception ex)
{

//---ignore the error; fired when a user signs off---
}

}

You use the delUpdateHistory() delegate to invoke the UpdateHistory() function in the
main thread.

Visual Basic 2005

'---delegate and subroutine to update the TextBox control---
Public Delegate Sub delUpdateHistory(ByVal str As String)
Public Sub UpdateHistory(ByVal str As String)

txtMessageHistory.AppendText(str)
End Sub

CHAPTER 1 ■ SOCKETS PROGRAMMING22

C# 2005

//---delegate and subroutine to update the TextBox control---
public delegate void delUpdateHistory(string str);
public void UpdateHistory(string str)
{

txtMessageHistory.AppendText(str);
}

Finally, the Disconnect() subroutine disconnects the client from the server.

Visual Basic 2005

Public Sub Disconnect()
Try
'---Disconnect from server---

client.GetStream.Close()
client.Close()

Catch ex As Exception
MsgBox(ex.ToString)

End Try
End Sub

C# 2005

public void Disconnect()
{

try
{

//---Disconnect from server---
client.GetStream().Close();
client.Close();

}
catch (Exception ex)
{

MessageBox.Show(ex.ToString());
}

}

When the form is closed, call the Disconnect() subroutine to disconnect the client from
the server.

CHAPTER 1 ■ SOCKETS PROGRAMMING 23

Visual Basic 2005

Private Sub Form1_FormClosing(_
ByVal sender As Object, _
ByVal e As _

System.Windows.Forms.FormClosingEventArgs) _
Handles Me.FormClosing
Disconnect()

End Sub

C# 2005

private void Form_Closing(
object sender,
FormClosingEventArgs e)

{
Disconnect();

}

For the C# version of the code, you need to wire up the event handler for the FormClosing
event of the form by adding the following code in bold in Form1.Designer.cs (in Solution
Explorer, click the Show All Files button, and you will find this file located under Form1.cs):

private void InitializeComponent()
{

...
this.FormClosing += new

System.Windows.Forms.FormClosingEventHandler(this.Form_Closing);
}

Testing the Chat Applications
To test the applications, first run the server by pressing F5 in Visual Studio 2005. To launch
multiple copies of the client to test the multiuser capabilities of the server, you can locate
the .exe file of the client in the \bin folder of the WinClient project. Run multiple copies of
WinClient.exe, and sign in and chat at the same time (see Figure 1-4).

■Note In the interest of simplicity, I have assumed that data sent over the TCP stream is sent and received
in the same block. However, this is not always true. Data sent over the TCP stream is not guaranteed to
arrive at once; you may receive a portion of the message in the current read cycle and receive the rest in
the next read cycle, or several messages may be read at the same time. The project in the next section will
show you how to take care of this.

CHAPTER 1 ■ SOCKETS PROGRAMMING24

Figure 1-4. Testing the multiuser chat application

Building an Advanced Multiuser Chat Application
In the previous sections, you saw how to build a multiuser chat application that allows many
users to chat simultaneously. Although the application is interesting, it is not very flexible
because you cannot choose the users you want to privately chat with—all messages are broad-
cast to everyone in the chat.

In the following sections, based on the foundation covered in the earlier sections, you will
enhance the application to allow private chats between selected users. You will also build FTP
support into the application so you can transfer files between users.

Defining Your Own Communication Protocol
When you start to enhance the chat application, you’ll realize that you have to define your
own application protocol for the various functions. For example, when you want to chat with
someone, you need to indicate the username to the server so that only messages destined for
this particular user are sent to him. Similarly, when you need to perform a file transfer, there
must be several handshaking processes to ensure that the recipient explicitly accepts the file
transfer, and only then can you start sending the file.

The application will use the protocols defined and described in the next sections.

CHAPTER 1 ■ SOCKETS PROGRAMMING 25

Protocol Description
The following sections describe the interaction between the users and the server.

Logging In
When a user (for example, User1) signs in to the server, the following happens:

• User1 sends [Join][User1] to the server indicating its presence.

• The server broadcasts [Join][User1] to all the users currently connected.

Requesting Usernames
When a user (for example, User1) logs in to the server, he needs to know who is currently
online:

• User1 sends [Usrs] to the server asking for a list of users currently online.

• The server sends back to User1 [Usrs][User1,User2,UserN,] containing a list of all
usernames.

Chatting
A user (for example, User1) wants to send a message (“Hello!”) to other users (for example,
User2 and User3):

• User1 sends [Talk][User2,User3,]User1>Hello! to the server.

• The server sends [Talk][User2,User3,]User1>Hello! to both User2 and User3.

Transferring Files
A user (for example, User1; IP address 1.2.3.4) wants to send a file named Filename.txt to
another user (for example, User2; IP address 3.4.5.6):

• User1 sends [File][User1,User2,][Filename.txt] to the server.

• The server sends [File][User1][Filename.txt] to User2 to confirm he wants to receive
the file.

• If User2 wants to receive the file, he will then send [Send_File][User1, User2] to the
server indicating that he wants to receive the file.

• User2 starts to listen at port 501 for incoming data.

• The server looks up the IP address of User2 and sends [Send_File][3.4.5.6] to User1.

• User1 starts the FTP service by sending the file using the IP address (3.4.5.6) and port
number 501.

■Note Note that for file transfers, the actual transferring of files takes place between the clients; the server
is not involved.

CHAPTER 1 ■ SOCKETS PROGRAMMING26

Leaving a Chat
A user (for example, User1) signs out of the chat:

• User1 sends [Left][User1] to the server.

• The server broadcasts [Left][User1] to all users.

Walking Through the Features
Before you learn how to write the chat application, let’s look at the application you are going
to build in this part of the chapter.

When you log in to the server, a list of online users will appear on the ListBox control (see
the left of Figure 1-5).

Figure 1-5. Logging in to the server

To chat with a user, simply select the user you want to chat with, and click the Send but-
ton to send the message (see Figure 1-6).

Figure 1-6. Chatting with a user

CHAPTER 1 ■ SOCKETS PROGRAMMING 27

To chat with multiple users, Ctrl+click the users’ names in the ListBox control (see
Figure 1-7).

Figure 1-7. Chatting with multiple users

To send a file to another user, select the recipient’s name, and click the Send File button.
You will then select the file you want to send and click Open (see Figure 1-8).

Figure 1-8. Sending a file to another user

CHAPTER 1 ■ SOCKETS PROGRAMMING28

On the recipient’s end, he will get a prompt requesting to download the file. If he clicks
Yes, the file is downloaded (see Figure 1-9).

Figure 1-9. Prompting the recipient to download the file

As the file is downloaded, the status bar will display the number of bytes received so far
(see Figure 1-10).

Figure 1-10. Showing the progress of the download

Building the Server
This chat application has two components: server and client. You will start by building the
server. For the server, you will create a console application project using Visual Studio 2005.
Name the project Server.

In the default Module1.vb file, populate it with the following.

Visual Basic 2005

Imports System.Net.Sockets
Module Module1

Const portNo As Integer = 500
Sub Main()

Dim localAdd As System.Net.IPAddress = _
System.Net.IPAddress.Parse("10.0.1.4")

Dim listener As New System.Net.Sockets.TcpListener(_
localAdd, portNo)

listener.Start()

CHAPTER 1 ■ SOCKETS PROGRAMMING 29

While True
Dim user As New ChatClient(listener.AcceptTcpClient)

End While
End Sub

End Module

C# 2005

using System;
using System.Collections.Generic;
using System.Text;
using System.Net.Sockets;
namespace server_CS
{

class Program
{

const int portNo = 500;
static void Main(string[] args)
{

System.Net.IPAddress localAdd =
System.Net.IPAddress.Parse("10.0.1.4");

System.Net.Sockets.TcpListener listener = new
System.Net.Sockets.TcpListener(localAdd, portNo);

listener.Start();
while (true)
{

ChatClient user = new
ChatClient(listener.AcceptTcpClient());

}
}

}
}

USING A REAL IP ADDRESS

If you look closely at the code, you will realize that this time around I used a real IP address (and not the
localhost address of 127.0.0.1). The IP address that I used here—10.0.1.4—is an address assigned by my
router, and you will most likely have a different IP address for your own computer. The reason why I am using
the real IP address is that in order to test the FTP feature of this project, you need to use at least two comput-
ers. One computer will host the server and the client, and the other one will host the client. Since the FTP
feature will transfer files directly using each client’s IP address, using the localhost address will result in an
error. Also, if the server is on a different computer from the client’s, you need to use the real IP address of the
server.

For your own testing, be sure to use the IP address of the computer hosting the server.

CHAPTER 1 ■ SOCKETS PROGRAMMING30

The next step is to define the ChatClient class. You use the ChatClient class to represent
information about each client connecting to the server. Add a new class to your project in
Visual Studio 2005, and name it ChatClient.vb.

First, import the following namespace(s).

Visual Basic 2005

Imports System.Net.Sockets

C# 2005

using System.Net.Sockets;
using System.Collections;

In the ChatClient class, first define the various private members (their uses are described
in the comments in the code). You also declare a HashTable object (AllClients) to store a list of
all clients connecting to the server. The reason for declaring it as a shared member is to ensure
all instances of the ChatClient class are able to obtain a list of all the clients currently con-
nected to the server.

Visual Basic 2005

'---class to contain information of each client---
Public Class ChatClient

'---constant for linefeed character---
Private Const LF As Integer = 10

'---contains a list of all the clients---
Public Shared AllClients As New Hashtable

'---information about the client---
Private _client As TcpClient
Private _clientIP As String
Private _clientNick As String

'---used to store partial request---
Private partialStr As String

'---used for sending/receiving data---
Private data() As Byte

C# 2005

class ChatClient
{

//---constant for linefeed character---
const int LF = 10;

CHAPTER 1 ■ SOCKETS PROGRAMMING 31

//---contains a list of all the clients---
public static Hashtable AllClients = new Hashtable();

//---information about the client---
private TcpClient _client;
private string _clientIP;
private string _clientNick;

//---used to store partial request---
private string partialStr;

//'---used for sending/receiving data---
private byte[] data;

When a client gets connected to the server, the server will create an instance of the
ChatClient class and then pass the TcpClient variable (client) to the constructor of the class.
You will also get the IP address of the client and use it as an index to identify the client in
the HashTable object. The BeginRead() method will begin an asynchronous read from the
NetworkStream object (client.GetStream) in a separate thread. This allows the server to remain
responsive and continue accepting new connections from other clients. When the reading is
complete, control will transfer to the ReceiveMessage() function (which you will define shortly).

Visual Basic 2005

'---when a client is connected---
Public Sub New(ByVal client As TcpClient)

_client = client

'---get the client IP address---
_clientIP = client.Client.RemoteEndPoint.ToString

'---add the current client to the hash table---
AllClients.Add(_clientIP, Me)

'---start reading data from the client in a separate thread---
ReDim data(_client.ReceiveBufferSize - 1)
_client.GetStream.BeginRead(data, 0, _
CInt(_client.ReceiveBufferSize), _
AddressOf ReceiveMessage, Nothing)

End Sub

C# 2005

//---when a client is connected---
public ChatClient(TcpClient client)
{

_client = client;

CHAPTER 1 ■ SOCKETS PROGRAMMING32

//---get the client IP address---
_clientIP = client.Client.RemoteEndPoint.ToString();

//---add the current client to the hash table---
AllClients.Add(_clientIP, this);

//---start reading data from the client in a separate
// thread---
data = new byte[_client.ReceiveBufferSize];
_client.GetStream().BeginRead(data, 0,

System.Convert.ToInt32(_client.ReceiveBufferSize),
ReceiveMessage, null);

}

The SendMessage() function allows the server to send a message to the client.

Visual Basic 2005

'---send the message to the client---
Public Sub SendMessage(ByVal message As String)

Try
'---send the text---
Dim ns As System.Net.Sockets.NetworkStream
SyncLock _client.GetStream

ns = _client.GetStream
Dim bytesToSend As Byte() = _
System.Text.Encoding. _
ASCII.GetBytes(message) _
ns.Write(bytesToSend, 0, _
bytesToSend.Length)
ns.Flush()

End SyncLock
Catch ex As Exception

Console.WriteLine(ex.ToString)
End Try

End Sub

C# 2005

//---send the message to the client---
public void SendMessage(string message)
{

try
{

//---send the text---
System.Net.Sockets.NetworkStream ns;
lock (_client.GetStream())
{

CHAPTER 1 ■ SOCKETS PROGRAMMING 33

ns = _client.GetStream();
byte[] bytesToSend =

System.Text.Encoding.ASCII.GetBytes(message);
ns.Write(bytesToSend, 0, bytesToSend.Length);
ns.Flush();

}
}
catch (Exception ex)
{

Console.WriteLine(ex.ToString());
}

}

The Broadcast() function sends a message to all the clients stored in the AllClients
HashTable object.

Visual Basic 2005

'---broadcast message to selected users---
Public Sub Broadcast(ByVal message As String, _

ByVal users() As String)

If users Is Nothing Then
'---broadcasting to everyone---
Dim c As DictionaryEntry
For Each c In AllClients

'---broadcast message to all users---
CType(c.Value, _

ChatClient).SendMessage(message & vbLf)
Next

Else
'---broadcasting to selected ones---
Dim c As DictionaryEntry
For Each c In AllClients

Dim user As String
For Each user In users

If CType(c.Value, ChatClient). _
_clientNick = user Then

'---send message to user
CType(c.Value, ChatClient). _
SendMessage(message & vbLf)
'---log it locally
Console.WriteLine("sending -----> " _
& message)
Exit For

End If
Next

Next

CHAPTER 1 ■ SOCKETS PROGRAMMING34

End If
End Sub

C# 2005

//---broadcast message to selected users---
public void Broadcast(string message, string[] users)
{

if (users == null)
{

//---broadcasting to everyone---
foreach (DictionaryEntry c in AllClients)
{

((ChatClient)(c.Value)).SendMessage(
message + "\n");

}
}
else
{

//---broadcasting to selected ones---
foreach (DictionaryEntry c in AllClients)
{

foreach (string user in users)
{

if (((ChatClient)(c.Value)).
_clientNick == user)

{
((ChatClient)(c.Value)).SendMessage(

message + "\n");
//---log it locally
Console.WriteLine("sending -----> "

+ message);
break;

}
}

}
}

}

■Note All messages sent to the client end with the linefeed (vbLf in Visual Basic and \n in C#) character.

In the ReceiveMessage() function, you first call the EndRead() method to handle the end of
an asynchronous read. Here, you check whether the number of bytes read is less than 1. If it is,
the client has disconnected, and you need to remove the client from the HashTable object

CHAPTER 1 ■ SOCKETS PROGRAMMING 35

(using the IP address of the client as an index into the hash table). You also want to broadcast
a message to all the clients telling them that this particular client has left the chat. You do this
using the Broadcast() function. In this ReceiveMessage() function, you check the various mes-
sage formats sent from the client and take the appropriate action. For example, if the client
initiates a FTP request, you need to repackage the message (as described in the earlier section
“Protocol Description”) and send it to the recipient.

It is important to note that incoming data may not arrive all at once—a request may be
broken up and received separately, or multiple requests may come in at the same time. The
sidebar “Receiving Incoming Data” discusses the three possible scenarios.

RECEIVING INCOMING DATA

Here are the three possible scenarios.

Scenario 1

The first scenario is the ideal scenario. Here, the string sent by a client is received in its entirety. The
following illustration shows a talk request sent by User1 to User2 and User3. The request ends with an LF
character, and the rest of the byte array contains null characters (0).

Scenario 2

The second scenario happens when a request is broken up and received separately. In the following
illustration, the request sent by User1 to User2 and User3 is broken up into two parts. Only the second portion
of the request ends with the LF character.

Scenario 3

The third scenario occurs when two separate requests are received together, as shown in the following
illustration. Here, the first request is separated from the second request by an LF character.

Visual Basic 2005

'---receiving a message from the client---
Public Sub ReceiveMessage(ByVal ar As IAsyncResult)

'---read from client---
Dim bytesRead As Integer

[[T a l k] [U s e r 2 , U s e r 1 > H e y [T a l k] [U s e] LF r 1 . . .

[T a l k] [U s e r 2 , U s e 0

r 3 ,] U s e r 1 > H e l l o LF 0

[[T a l k] [U s e r 2 , U s e r 3 ,] U s e r 1 > H e l l o LF 0

CHAPTER 1 ■ SOCKETS PROGRAMMING36

Try
SyncLock _client.GetStream

bytesRead = _client.GetStream.EndRead(ar)
End SyncLock

'---client has disconnected---
If bytesRead < 1 Then

AllClients.Remove(_clientIP)
Broadcast("[Left][" & _clientNick & _

"] has left the chat.", Nothing)
Exit Sub

Else
Dim messageReceived As String
Dim i As Integer = 0
Dim start As Integer = 0

'---loop until no more chars---
While data(i) <> 0

'---do not scan more than what is read---
If i + 1 > bytesRead Then Exit While

'---if LF is detected---
If data(i) = LF Then

messageReceived = _
partialStr & _
System.Text.Encoding.ASCII.GetString(_
data, start, i - start)

Console.WriteLine("received <----- " & _
messageReceived)

If messageReceived.StartsWith("[Join]") Then

'====client is sending its nickname====
'---e.g. [Join][User1]---

'---extract user's name---
Dim nameLength As Integer = _

messageReceived.IndexOf("]", 6)
_clientNick = messageReceived.Substring(_

7, nameLength - 7)

'---tell everyone client has entered the
' chat---
Broadcast(messageReceived, Nothing)

CHAPTER 1 ■ SOCKETS PROGRAMMING 37

ElseIf messageReceived.StartsWith("[Usrs]") _
Then

'===client is requesting for all users
' names===
'--- e.g. [Usrs]---

'---get all the users---
Dim allUsers As String = "[Usrs]["
Dim c As DictionaryEntry
For Each c In AllClients

'---get all the users' name---
allUsers += _

CType(c.Value, _
ChatClient)._clientNick & ","

Next
allUsers += "]"

'--- e.g. [Usrs][User1,User2,etc]---
Broadcast(allUsers, Nothing)

ElseIf messageReceived.StartsWith("[Talk]") _
Then

'===Chatting with someone===
'---e.g. [Talk][User2,User3]User1>Hello
' everyone!---

'---get all users---
Dim users() As String = _

messageReceived.Substring(7, _
messageReceived.IndexOf("]", 7) - _
8).Split(",")

'---send to specified users---
Broadcast(messageReceived, users)

ElseIf messageReceived.StartsWith("[File]") _
Then

'===FTP request===
'---e.g.
' [File][User1,User2][Filename.txt]---

'---get all users---
Dim users() As String = _

messageReceived.Substring(7, _
messageReceived.IndexOf("]", 7) - _

CHAPTER 1 ■ SOCKETS PROGRAMMING38

8).Split(",")
Dim index As Integer = _

messageReceived.IndexOf("]", 7) + 2
Dim filename As String = _

messageReceived.Substring(index, _
messageReceived.Length - index - 1)

'---see who initiated the request---
Dim from As String = users(0)

'---remove the first user (initiator)---
For j As Integer = 1 To users.Length - 1

users(j - 1) = users(j)
Next
users(users.Length - 1) = String.Empty

'---send to user---
'---e.g. [File][User1][Filename.txt]---
Broadcast("[File][" & from & "][" & _
filename & "]", users)

ElseIf _
messageReceived.StartsWith("[Send_File]") _

Then
'===send file via FTP===
'---e.g. [Send_File][User1,User2]---

'---send file from User1 to User2---
'---check send to who---
Dim users() As String = _

messageReceived.Substring(12, _
messageReceived.IndexOf("]", 12) - _
12).Split(",")

Dim RecipientIP As String = String.Empty

'---find out the recipient's IP address---
Dim c As DictionaryEntry
For Each c In AllClients

If CType(c.Value, ChatClient)._
_clientNick = users(1) Then

'---send message to user---
RecipientIP = _

CType(c.Value, ChatClient). _
_clientIP.Substring(0, _
_clientIP.IndexOf(":"))

CHAPTER 1 ■ SOCKETS PROGRAMMING 39

Exit For
End If

Next
users(1) = String.Empty

'---e.g. [Send_File][1.2.3.4]---
Broadcast("[Send_File][" & RecipientIP & _
"]", users)

End If
start = i + 1

End If
i += 1

End While

'---partial string---
If start <> i Then

partialStr = _
System.Text.Encoding.ASCII.GetString(_
data, start, i - start)

End If
End If

'---continue reading from client
SyncLock _client.GetStream

_client.GetStream.BeginRead(data, 0, _
CInt(_client.ReceiveBufferSize), _
AddressOf ReceiveMessage, Nothing)

End SyncLock
Catch ex As Exception

AllClients.Remove(_clientIP)
Broadcast("[Left][" & _clientNick & _

"] has left the chat.", Nothing)
End Try

End Sub

C# 2005

//---receiving a message from the client---
public void ReceiveMessage(IAsyncResult ar)
{

//---read from client---
int bytesRead;
try
{

lock (_client.GetStream())
{

bytesRead = _client.GetStream().EndRead(ar);
}

CHAPTER 1 ■ SOCKETS PROGRAMMING40

//---client has disconnected---
if (bytesRead < 1)
{

AllClients.Remove(_clientIP);
Broadcast("[Left][" + _clientNick +

"] has left the chat.", null);
return;

}
else
{

string messageReceived;
int i = 0;
int start = 0;

//---loop until no more chars---
while (data[i] != 0)
{

//---do not scan more than what is read---
if (i + 1 > bytesRead)
{

break;
}

//---if LF is detected---
if (data[i] == LF)
{

messageReceived = partialStr +
System.Text.Encoding.ASCII.GetString(
data, start, i - start);

Console.WriteLine("received <----- " +
messageReceived);

if (messageReceived.StartsWith("[Join]"))
{

//====client is sending its
// nickname====
//---e.g. [Join][User1]---

//---extract user's name---
int nameLength =

messageReceived.IndexOf("]", 6);
clientNick =

messageReceived.Substring(
7, nameLength - 7);

//---tell everyone client has entered
// the chat---
Broadcast(messageReceived, null);

CHAPTER 1 ■ SOCKETS PROGRAMMING 41

}
else if

(messageReceived.StartsWith("[Usrs]"))
{

//===client is requesting for all
// users names===
//---e.g. [Usrs]---

//---get all the users---
string allUsers = "[Usrs][";

foreach (DictionaryEntry c in
AllClients)

{
//---get all the users' name---
allUsers +=
((ChatClient)(c.Value)).
_clientNick + ",";

}
allUsers += "]";

//---e.g. [Usrs][User1,User2,etc]---
Broadcast(allUsers, null);

}
else if

(messageReceived.StartsWith("[Talk]"))
{

//===Chatting with someone===
//---e.g.
// [Talk][User2,User3]User1>Hello
// everyone!---

//---get all users---
string[] users =

messageReceived.Substring(
7, messageReceived.IndexOf("]", 7)
- 8).Split(',');

//---send to specified users---
Broadcast(messageReceived, users);

}
else if

(messageReceived.StartsWith("[File]"))
{

//===FTP request===
//---e.g.
// [File][User1,User2][Filename.txt]---

CHAPTER 1 ■ SOCKETS PROGRAMMING42

//---get all users---
string[] users =

messageReceived.Substring(
7, messageReceived.IndexOf("]", 7)
- 8).Split(',');

int index =
messageReceived.IndexOf("]", 7)
+ 2;

string filename =
messageReceived.Substring(
index, messageReceived.Length –
index - 1);

//---see who initiated the request---
string from = users[0];

//---remove the first user
// (initiator)---
for (int j = 1; j <= users.Length - 1;

j++)
{

users[j - 1] = users[j];
}
users[users.Length - 1] =

string.Empty;

//---send to user---
//---e.g. [File][User1][Filename.txt]
// ---
Broadcast("[File][" + from + "][" +

filename + "]", users);
}
else if

(messageReceived.StartsWith(
"[Send_File]"))

{
//===send file via FTP===
//---e.g. [Send_File][User1,User2]---

//---send file from User1 to User2---
//---check send to who---
string[] users =

messageReceived.Substring(
12, messageReceived.IndexOf("]",
12) - 12).Split(',');

string RecipientIP = string.Empty;

CHAPTER 1 ■ SOCKETS PROGRAMMING 43

//---find out the recipient's IP
// address---
foreach (DictionaryEntry c in

AllClients)
{

if (((ChatClient)(c.Value)).
_clientNick == users[1])

{
//---send message to user---
RecipientIP =

((ChatClient)(c.Value)).
_clientIP.Substring(
0, _clientIP.IndexOf(":"));

break;
}

}

users[1] = string.Empty;
//---e.g. [Send_File][1.2.3.4]---
Broadcast("[Send_File][" +

RecipientIP + "]", users);
}
start = i + 1;

}
i += 1;

}

//---partial string---
if (start != i)
{

partialStr =
System.Text.Encoding.ASCII.GetString(data,
start, i - start);

}
}

//---continue reading from client
lock (_client.GetStream())
{

_client.GetStream().BeginRead(
data, 0, System.Convert.ToInt32(

_client.ReceiveBufferSize), ReceiveMessage,
null);

}
}
catch (Exception ex)
{

CHAPTER 1 ■ SOCKETS PROGRAMMING44

AllClients.Remove(_clientIP);
Broadcast("[Left][" + _clientNick +

"] has left the chat.", null);
}

}

Building the Client
Now that you’ve built the server, it is time to build the client. Using Visual Studio 2005, create a
new Windows application (name it WinClient), populate the default form with the controls
shown in Figure 1-11, set the MultiLine and ReadOnly properties of txtMessageHistory to True,
and set the ScrollBars property to Vertical. Also, set the SelectionMode property of lstUsers
to MultiExtended.

Figure 1-11. Populating the Windows form with the various controls

Double-click the form to switch to the code-behind. Import the following namespaces.

Visual Basic 2005

Imports System.Net.Sockets
Imports System.IO

C# 2005

using System.Net.Sockets;
using System.IO;

TextBox Control
(txtMessageHistory)

ListBox Control
(1stUsers)

TextBox Control
(txtMessage)

TextBox Control
(txtNick)

Button Control
(btnSignIn)

ToolStripstatusLabel Control
(ToolStripStatusLabel)

StatusStripControl
(StatusStrip1)

Button Control
(btnSend)

(btnFTP)

CHAPTER 1 ■ SOCKETS PROGRAMMING 45

Within the Form1 class, define the following variables and constants.

Visual Basic 2005

Public Class Form1
'---get own IP address---
Private ips As Net.IPHostEntry = _

Net.Dns.GetHostEntry(Net.Dns.GetHostName())

'---port numbers and server IP address---
Const PORTNO As Integer = 500
Const FTPPORTNO As Integer = 501
Const SERVERIP As String = "10.0.1.4"

Private client As TcpClient

'---used for sending and receiving data---
Private data() As Byte

'---for FTP use---
Private fs As System.IO.FileStream
Private filename As String
Private fullfilename As String

'---used to store partial request---
Private partialStr As String

C# 2005

public partial class Form1 : Form
{

//---get own IP address---
private System.Net.IPHostEntry ips =

System.Net.Dns.GetHostEntry(System.Net.Dns.GetHostName());

//---port numbers and server IP address---
const int PORTNO = 500;
const int FTPPORTNO = 501;
const string SERVERIP = "10.0.1.4";
private TcpClient client;

//---used for sending and receiving data---
private byte[] data;

//---for FTP use---
private System.IO.FileStream fs;
private string filename;
private string fullfilename;
//---used to store partial request---
private string partialStr;

CHAPTER 1 ■ SOCKETS PROGRAMMING46

When the user signs in, the client first connects to the server and sends the nickname of
the user using the SendMessage() subroutine (defined shortly). Then it begins reading data
from the server asynchronously and changes the name of the Sign In button to Sign Out. It
will also ask for a list of users currently logged in.

When the user signs out from the chat application, you invoke the Disconnect() subrou-
tine (defined shortly).

Visual Basic 2005

'--Sign in to server---
Private Sub btnSignIn_Click(_

ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnSignIn.Click

If btnSignIn.Text = "Sign In" Then
'---Sign in to the server---
Try

client = New TcpClient

'---connect to the server---
client.Connect(SERVERIP, PORTNO)
ReDim data(client.ReceiveBufferSize - 1)

'---inform the server of your nickname---
' e.g. [Join][User1]
SendMessage("[Join][" & txtNick.Text & "]")

'---begin reading data asynchronously from the server---
client.GetStream.BeginRead(_

data, 0, CInt(client.ReceiveBufferSize), _
AddressOf ReceiveMessage, Nothing)

'---change the button and textbox---
btnSignIn.Text = "Sign Out"
btnSend.Enabled = True
txtNick.Enabled = False

'---get all users connected---
' e.g. [Usrs]
SendMessage("[Usrs]")

Catch ex As Exception
MsgBox(ex.ToString)

End Try
Else

'---Sign off from the server---
Disconnect()
lstUsers.Items.Clear()

CHAPTER 1 ■ SOCKETS PROGRAMMING 47

'---change the button and textbox---
btnSignIn.Text = "Sign In"
btnSend.Enabled = False
txtNick.Enabled = True

End If
End Sub

C# 2005

//---Sign in to server---
private void btnSignIn_Click(object sender, EventArgs e)
{

if (btnSignIn.Text == "Sign In")
{

//---Sign in to the server---
try
{

client = new TcpClient();

//---connect to the server---
client.Connect(SERVERIP, PORTNO);

data = new byte[client.ReceiveBufferSize];

//---inform the server of your nickname---
SendMessage("[Join][" + txtNick.Text + "]");

//---begin reading data asynchronously from the
// server---
client.GetStream().BeginRead(

data, 0, System.Convert.ToInt32(
client.ReceiveBufferSize), ReceiveMessage,
null);

//'---change the button and textbox---
btnSignIn.Text = "Sign Out";
btnSend.Enabled = true;
txtNick.Enabled = false;

//---get all users connected---
SendMessage("[Usrs]");

}
catch (Exception ex)
{

MessageBox.Show(ex.ToString());
}

}

CHAPTER 1 ■ SOCKETS PROGRAMMING48

else
{

//---Sign off from the server---
Disconnect();
lstUsers.Items.Clear();

//---change the button and textbox---
btnSignIn.Text = "Sign In";
btnSend.Enabled = false;
txtNick.Enabled = true;

}
}

The Send button sends a message to the server. Note that you need to select a user in the
ListBox control before you can send a message.

Visual Basic 2005

'---Send Button---
Private Sub btnSend_Click(_

ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnSend.Click
' e.g. [Talk][User2,User3,etc]User1>Hello world!

'---select users to chat---
If lstUsers.SelectedItems.Count < 1 Then

MsgBox("You must select who to chat with.")
Exit Sub

End If

'---formulate the message---
Dim Message As String = "[Talk]["

'---check who to chat with---
Dim user As Object
For Each user In lstUsers.SelectedItems

Message += user & ","
Next
Message += "]" & txtNick.Text & ">" & txtMessage.Text

'---update the message history---
txtMessageHistory.Text += txtNick.Text & _
">" & txtMessage.Text & vbCrLf

'---send message---
SendMessage(Message)
txtMessage.Clear()

End Sub

CHAPTER 1 ■ SOCKETS PROGRAMMING 49

C# 2005

//---Send Button---
private void btnSend_Click(object sender, EventArgs e)
{

// e.g. [Talk][User2,User3,etc]User1>Hello world!

//---select users to chat---
if (lstUsers.SelectedItems.Count < 1)
{

MessageBox.Show("You must select who to chat with.");
return;

}

//---formulate the message---
string Message = "[Talk][";

//---check who to chat with---
foreach (object user in lstUsers.SelectedItems)
{

Message += user + ",";
}
Message += "]" + txtNick.Text + ">" + txtMessage.Text;

//---update the message history---
txtMessageHistory.Text += txtNick.Text + ">" +

txtMessage.Text + Environment.NewLine;

//---send message---
SendMessage(Message);
txtMessage.Clear();

}

The SendMessage() subroutine, used in the previous code, allows the client to send a mes-
sage to the server.

Visual Basic 2005

'---Sends the message to the server---
Public Sub SendMessage(ByVal message As String)

'---adds an LF char---
message += vbLf
Try

'---send the text---
Dim ns As System.Net.Sockets.NetworkStream
SyncLock client.GetStream

ns = client.GetStream
Dim bytesToSend As Byte() = _
System.Text.Encoding. _

CHAPTER 1 ■ SOCKETS PROGRAMMING50

ASCII.GetBytes(message)

'---sends the text---
ns.Write(bytesToSend, 0, bytesToSend.Length)
ns.Flush()

End SyncLock
Catch ex As Exception

MsgBox(ex.ToString)
End Try

End Sub

C# 2005

//---Sends the message to the server---
public void SendMessage(string message)
{

//---adds a linefeed char---
message += "\n";
try
{

//---send the text---
System.Net.Sockets.NetworkStream ns;
lock (client.GetStream())
{

ns = client.GetStream();
byte[] bytesToSend =

System.Text.Encoding.ASCII.GetBytes(message);
//---sends the text---
ns.Write(bytesToSend, 0, bytesToSend.Length);
ns.Flush();

}
}
catch (Exception ex)
{

MessageBox.Show(ex.ToString());
}

}

The ReceiveMessage() subroutine asynchronously reads data sent from the
server in a separate thread. When the data is received, it will display the data in the
txtMessageHistory control. Because Windows controls are not thread-safe, you need to use a
delegate, delUpdateHistory(),(), to update the controls. Like before, you need to take special
note that the request may not come in its entirety.

Visual Basic 2005

'---Receives a message from the server---
Public Sub ReceiveMessage(ByVal ar As IAsyncResult)

CHAPTER 1 ■ SOCKETS PROGRAMMING 51

Try
Dim bytesRead As Integer
bytesRead = client.GetStream.EndRead(ar)
If bytesRead < 1 Then

Exit Sub
Else

Dim messageReceived As String
Dim i As Integer = 0
Dim start As Integer = 0
'---loop until no more chars---
While data(i) <> 0

'---do not scan more than what is read---
If i + 1 > bytesRead Then Exit While

'---if LF is detected---
If data(i) = 10 Then

messageReceived = _
partialStr & _
System.Text.Encoding.ASCII.GetString(_

data, start, i - start) & _
vbCrLf

'---update the message history---
Dim para() As Object = {messageReceived}
Me.Invoke(New delUpdateHistory(AddressOf _

Me.UpdateHistory), para)
start = i + 1

End If
i += 1

End While

'---partial request---
If start <> i Then

partialStr = _
System.Text.Encoding.ASCII.GetString(_
data, start, i - start)

End If
End If

'---continue reading for more data---
client.GetStream.BeginRead(data, 0, _

CInt(client.ReceiveBufferSize), _
AddressOf ReceiveMessage, Nothing)

Catch ex As Exception
MsgBox(ex.ToString)

End Try
End Sub

CHAPTER 1 ■ SOCKETS PROGRAMMING52

C# 2005

//---Receives a message from the server---
public void ReceiveMessage(IAsyncResult ar)
{

try
{

int bytesRead;
bytesRead = client.GetStream().EndRead(ar);
if (bytesRead < 1)
{

return;
}
else
{

string messageReceived;
int i = 0;
int start = 0;
//---loop until no more chars---
while (data[i] != 0)
{

//---do not scan more than what is read---
if (i + 1 > bytesRead)
{

break;
}

//---if LF is detected---
if (data[i] == 10)
{

messageReceived = partialStr +
System.Text.Encoding.ASCII.
GetString(data, start, i - start) +
Environment.NewLine;

//---update the message history---
object[] para = { messageReceived };
this.Invoke(new

delUpdateHistory((this.UpdateHistory)),
para);

start = i + 1;
}
i += 1;

}

//---partial request---
if (start != i)
{

CHAPTER 1 ■ SOCKETS PROGRAMMING 53

partialStr = System.Text.Encoding.ASCII.
GetString(data, start, i - start);

}
}

//---continue reading for more data---
client.GetStream().BeginRead(

data, 0, System.Convert.ToInt32(
client.ReceiveBufferSize),
ReceiveMessage, null);

}
catch (Exception ex)
{

MessageBox.Show(ex.ToString());
}

}

You use the delUpdateHistory() delegate to invoke the UpdateHistory() function in the
main thread.

Visual Basic 2005

'---delegate to update the textboxes in the main thread---
Public Delegate Sub delUpdateHistory(ByVal str As String)

C# 2005

//---delegate to update the textboxes in the main thread---
public delegate void delUpdateHistory(string str);

In the UpdateHistory() subroutine, you examine the message format and perform the
appropriate action. For example, if the user has left a chat (through the [Left] message), you
must remove the username from your ListBox.

Visual Basic 2005

Public Sub UpdateHistory(ByVal str As String)
If str.StartsWith("[Join]") Then

'e.g. [Join][User1]

'---extract user's name---
Dim nameLength As Integer = str.IndexOf("]", 6)

'---display in the ListBox---
lstUsers.Items.Add(str.Substring(7, _
nameLength - 7))

Exit Sub

CHAPTER 1 ■ SOCKETS PROGRAMMING54

ElseIf str.StartsWith("[Left]") Then
'e.g. [Left][User1]

'---extract user's name---
Dim nameLength As Integer = str.IndexOf("]", 6)

'---remove the user from the listbox---
Try

lstUsers.Items.RemoveAt(_
lstUsers.Items.IndexOf(_
str.Substring(7, nameLength - 7)))

Catch ex As Exception
End Try
Exit Sub

ElseIf str.StartsWith("[Usrs]") Then
'e.g. [Usrs][User1,User2,User3,etc]

'---extract the usernames---
Dim users() As String = _

str.Substring(7, str.Length - 8).Split(",")

Dim user As String
lstUsers.Items.Clear()
'---add the user to ListBox---
For Each user In users

lstUsers.Items.Add(user)
Next
'---remove the last empty user---
lstUsers.Items.RemoveAt(lstUsers.Items.Count - 1)
Exit Sub

ElseIf str.StartsWith("[File]") Then
'e.g. [File][User1][Filename.ext]

'---get username---
Dim users() As String = _
str.Substring(7, str.IndexOf("]", 7) _
- 7).Split(",")

'---extract filename---
Dim index As Integer = str.IndexOf("]", 7) + 2
Dim filename As String = str.Substring(index, _
str.Length - index - 3)

'---prompt the user---

CHAPTER 1 ■ SOCKETS PROGRAMMING 55

Dim response As MsgBoxResult
response = MsgBox(_
"Do you want to download the file " & _
filename, MsgBoxStyle.YesNo)

'---proceed with download---
If response = MsgBoxResult.Yes Then

'---tell the client that he can proceed to
' send the file---
' e.g. [Send_File][User1,User2]
SendMessage("[Send_File][" & users(0) & "," _
& txtNick.Text & "]")

'---start the FTP process---
FTP_Receive(filename)

End If
Exit Sub

ElseIf str.StartsWith("[Send_File]") Then
'e.g. [Send_File][1.2.3.4]

'---extract the IP address of file recipient---
Dim userIP As String = _
str.Substring(12, str.Length - 15)

'---start the FTP process---
FTP_Send(fullfilename, userIP)
Exit Sub

ElseIf str.StartsWith("[Talk]") Then
'e.g. [Talk][User1]Hello!

'---display the message in the textbox---
str = str.Substring(str.IndexOf("]", 7) + 1)
txtMessageHistory.AppendText(str)

End If
End Sub

C# 2005

public void UpdateHistory(string str)
{

if (str.StartsWith("[Join]"))
{

//---e.g. [Join][User1]---
//---extract user's name---
int nameLength = str.IndexOf("]", 6);

CHAPTER 1 ■ SOCKETS PROGRAMMING56

//---display in the ListBox---
lstUsers.Items.Add(str.Substring(7, nameLength - 7));
return;

}
else if (str.StartsWith("[Left]"))
{

//---e.g. [Left][User1]---
//---extract user's name---
int nameLength = str.IndexOf("]", 6);
try
{

//---remove the user from the listbox---
lstUsers.Items.RemoveAt(

lstUsers.Items.IndexOf(str.Substring(7,
nameLength - 7)));

}
catch (Exception ex)
{
}
return;

}
else if (str.StartsWith("[Usrs]"))
{

//---e.g. [Usrs][User1,User2,User3,etc]---
//---extract the usernames---
string[] users = str.Substring(

7, str.Length - 8).Split(',');
lstUsers.Items.Clear();

//---add the user to ListBox---
foreach (string user in users)
{

lstUsers.Items.Add(user);
}

//---remove the last empty user---
lstUsers.Items.RemoveAt(lstUsers.Items.Count - 1);
return;

}
else if (str.StartsWith("[File]"))
{

//---e.g. [File][User1][Filename.ext]---
//---get username---
string[] users = str.Substring(

7, str.IndexOf("]", 7) - 7).Split(',');

//---extract filename---

CHAPTER 1 ■ SOCKETS PROGRAMMING 57

int index = str.IndexOf("]", 7) + 2;
string filename = str.Substring(

index, str.Length - index - 3);

//---prompt the user---
DialogResult response;
response = MessageBox.Show(

"Do you want to download the file " + filename,
"Download", MessageBoxButtons.YesNo);

//---proceed with download---
if (response == DialogResult.Yes)
{

//---tell the client that he can proceed to
// send the file---
//---e.g. [Send_File][User1,User2]---
SendMessage("[Send_File][" + users[0] + "," +

txtNick.Text + "]");

//---start the FTP process---
FTP_Receive(filename);

}
return;

}
else if (str.StartsWith("[Send_File]"))
{

//---e.g. [Send_File][1.2.3.4]---
//---extract the IP address of file recipient---
string userIP = str.Substring(12, str.Length - 15);

//---start the FTP process---
FTP_Send(fullfilename, userIP);
return;

}
else if (str.StartsWith("[Talk]"))
{

//---e.g. [Talk][User1]Hello!---
//---display the message in the textbox---
str = str.Substring(str.IndexOf("]", 7) + 1);
txtMessageHistory.AppendText(str);

}
}

When a user clicks the Send File button, check to see that a recipient user is selected and
then prompt the user to select a file to send.

CHAPTER 1 ■ SOCKETS PROGRAMMING58

Visual Basic 2005

'---Send File button---
Private Sub btnFTP_Click(_

ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnFTP.Click

'---formulate the message---
'---e.g. [FILE][User1,User2,User3,][Filename.ext]---
Dim Message As String = "[File][" & _
txtNick.Text & ","

Dim user As Object
If lstUsers.SelectedItems.Count < 1 Then

MsgBox("You must select who to send to.")
Exit Sub

End If

'---check who to send to---
For Each user In lstUsers.SelectedItems

Message += user & ","
Next

'---select the file to send---
Dim openFileDialog1 As New OpenFileDialog()

openFileDialog1.InitialDirectory = "c:\"
openFileDialog1.Filter = _
"txt files (*.txt)|*.txt|All files (*.*)|*.*"

openFileDialog1.FilterIndex = 2
openFileDialog1.RestoreDirectory = True

If openFileDialog1.ShowDialog() = _
DialogResult.OK Then

fullfilename = openFileDialog1.FileName

filename = _
fullfilename.Substring(_
fullfilename.LastIndexOf("\") + 1)

Message += "][" & filename & "]"
SendMessage(Message)

End If
End Sub

CHAPTER 1 ■ SOCKETS PROGRAMMING 59

C# 2005

//---Send File button---
private void btnFTP_Click(object sender, EventArgs e)
{

//---formulate the message---
//---e.g. [FILE][User1,User2,User3,][Filename.ext]---
string Message = "[File][" + txtNick.Text + ",";

if (lstUsers.SelectedItems.Count < 1)
{

MessageBox.Show("You must select who to send to.");
return;

}

//---check who to send to---
foreach (object user in lstUsers.SelectedItems)
{

Message += user + ",";
}

//---select the file to send---
OpenFileDialog openFileDialog1 = new OpenFileDialog();
openFileDialog1.InitialDirectory = "c:\\";
openFileDialog1.Filter =

"txt files (*.txt)|*.txt|All files (*.*)|*.*";
openFileDialog1.FilterIndex = 2;
openFileDialog1.RestoreDirectory = true;
if (openFileDialog1.ShowDialog() == DialogResult.OK)
{

fullfilename = openFileDialog1.FileName;
filename =

fullfilename.Substring(
fullfilename.LastIndexOf("\\") + 1);

Message += "][" + filename + "]";
SendMessage(Message);

}
}

The FTP_Send() subroutine sends a file to the recipient through the TCP port 501. It sends
files in blocks of 8,192 bytes (the maximum buffer size).

Visual Basic 2005

'---FTP process - Send file---
Public Sub FTP_Send(_

ByVal filename As String, _
ByVal recipientIP As String)

CHAPTER 1 ■ SOCKETS PROGRAMMING60

'---connect to the recipient---
Dim tcpClient As New System.Net.Sockets.TcpClient
tcpClient.Connect(recipientIP, FTPPORTNO)
Dim BufferSize As Integer = _
tcpClient.ReceiveBufferSize
Dim nws As NetworkStream = tcpClient.GetStream

'---open the file---
Dim fs As FileStream
fs = New FileStream(filename, FileMode.Open, _
FileAccess.Read)

Dim bytesToSend(fs.Length - 1) As Byte
Dim numBytesRead As Integer = fs.Read(bytesToSend, _
0, bytesToSend.Length)

Dim totalBytes As Integer = 0
For i As Integer = 0 To fs.Length \ BufferSize

'---send the file---
If fs.Length - (i * BufferSize) > BufferSize Then

nws.Write(bytesToSend, i * BufferSize, _
BufferSize)
totalBytes += BufferSize

Else
nws.Write(bytesToSend, i * _

BufferSize, fs.Length - (i * BufferSize))
totalBytes += fs.Length - (i * BufferSize)

End If
'---update the status label---
ToolStripStatusLabel1.Text = _

"Sending " & totalBytes & " bytes...."
Application.DoEvents()

Next
ToolStripStatusLabel1.Text = _

"Sending " & totalBytes & " bytes....Done."
fs.Close()
tcpClient.Close()

End Sub

C# 2005

//---FTP process - Send file---
public void FTP_Send(string filename, string recipientIP)
{

//---connect to the recipient---
System.Net.Sockets.TcpClient tcpClient = new

System.Net.Sockets.TcpClient();

CHAPTER 1 ■ SOCKETS PROGRAMMING 61

tcpClient.Connect(recipientIP, FTPPORTNO);
int BufferSize = tcpClient.ReceiveBufferSize;
NetworkStream nws = tcpClient.GetStream();

//---open the file---
FileStream fs;
fs = new FileStream(filename, FileMode.Open,

FileAccess.Read);
byte[] bytesToSend = new byte[fs.Length];
int numBytesRead = fs.Read(bytesToSend, 0,

bytesToSend.Length);
int totalBytes = 0;
for (int i = 0; i <= fs.Length / BufferSize; i++)
{

//---send the file---
if (fs.Length - (i * BufferSize) > BufferSize)
{

nws.Write(bytesToSend, i * BufferSize,
BufferSize);

totalBytes += BufferSize;
}
else
{

nws.Write(bytesToSend, i * BufferSize,
(int)fs.Length - (i * BufferSize));

totalBytes += (int)fs.Length - (i * BufferSize);
}
//---update the status label---
ToolStripStatusLabel1.Text = "Sending " + totalBytes +

" bytes....";
Application.DoEvents();

}
ToolStripStatusLabel1.Text = "Sending " + totalBytes +

" bytes....Done.";
fs.Close();
tcpClient.Close();

}

The FTP_Receive() subroutine receives an incoming file through TCP port 501. It saves
the file to the C:\temp directory.

■Note For simplicity, be sure you have the C:\temp folder created on the computer running the client.

CHAPTER 1 ■ SOCKETS PROGRAMMING62

Visual Basic 2005

'---FTP Process = Receive Files---
Public Sub FTP_Receive(ByVal filename As String)

Try
'---get the local IP address---
Dim localAdd As System.Net.IPAddress = _
System.Net.IPAddress. _
Parse(ips.AddressList(0).ToString)

'---start listening for incoming connection---
Dim listener As New _

System.Net.Sockets.TcpListener(_
localAdd, FTPPORTNO)
listener.Start()

'---read incoming stream---
Dim tcpClient As TcpClient = _
listener.AcceptTcpClient()
Dim nws As NetworkStream = tcpClient.GetStream

'---delete the file if it exists---
If File.Exists("C:\temp\" & filename) Then

File.Delete("C:\temp\" & filename)
End If

'---create the file---
fs = New System.IO.FileStream("c:\temp\" & _
filename, _

FileMode.Append, FileAccess.Write)

Dim counter As Integer = 0
Dim totalBytes As Integer = 0
Do

'---read the incoming data---
Dim bytesRead As Integer = _

nws.Read(data, 0, _
tcpClient.ReceiveBufferSize)

totalBytes += bytesRead
fs.Write(data, 0, bytesRead)

'---update the status label---
ToolStripStatusLabel1.Text = "Receiving " & _
totalBytes & " bytes...."
Application.DoEvents()
counter += 1

CHAPTER 1 ■ SOCKETS PROGRAMMING 63

Loop Until Not nws.DataAvailable
ToolStripStatusLabel1.Text = "Receiving " & _
totalBytes & " bytes....Done."
fs.Close()
tcpClient.Close()
listener.Stop()

Catch ex As Exception
MsgBox(ex.ToString)

End Try
End Sub

C# 2005

//---FTP Process = Receive Files---
public void FTP_Receive(string filename)
{

try
{

//---get the local IP address---
System.Net.IPAddress localAdd =

System.Net.IPAddress.Parse(
ips.AddressList[0].ToString());

//---start listening for incoming connection---
System.Net.Sockets.TcpListener listener = new

System.Net.Sockets.TcpListener(localAdd,
FTPPORTNO);

listener.Start();

//---read incoming stream---
TcpClient tcpClient = listener.AcceptTcpClient();
NetworkStream nws = tcpClient.GetStream();

//---delete the file if it exists---
if (File.Exists("c:\\temp\\" + filename))
{

File.Delete("c:\\temp\\" + filename);
}

//---create the file---
fs = new System.IO.FileStream("c:\\temp\\" + filename,

FileMode.Append, FileAccess.Write);
int counter = 0;
int totalBytes = 0;
do
{

CHAPTER 1 ■ SOCKETS PROGRAMMING64

//---read the incoming data---
int bytesRead = nws.Read(data, 0,

tcpClient.ReceiveBufferSize);
totalBytes += bytesRead;
fs.Write(data, 0, bytesRead);

//---update the status label---
ToolStripStatusLabel1.Text = "Receiving " +

totalBytes + " bytes....";
Application.DoEvents();
counter += 1;

} while (nws.DataAvailable);
ToolStripStatusLabel1.Text = "Receiving " + totalBytes

+ " bytes....Done.";
fs.Close();
tcpClient.Close();
listener.Stop();

}
catch (Exception ex)
{

MessageBox.Show(ex.ToString());
}

}

When the user closes the form (by clicking the X button on the window), disconnect the
client from the server.

Visual Basic 2005

Private Sub Form1_FormClosing(_
ByVal sender As Object, _
ByVal e As System.Windows.Forms.FormClosingEventArgs) _
Handles Me.FormClosing
Disconnect()

End Sub

C# 2005

private void Form_Closing(
object sender,
FormClosingEventArgs e)

{
Disconnect();

}

Finally, the Disconnect() subroutine disconnects the client from the server.

CHAPTER 1 ■ SOCKETS PROGRAMMING 65

Visual Basic 2005

'---disconnect from the server---
Public Sub Disconnect()

Try
client.GetStream.Close()
client.Close()

Catch ex As Exception
MsgBox(ex.ToString)

End Try
End Sub

C# 2005

//---disconnect from the server---
public void Disconnect()
{

try
{

client.GetStream().Close();
client.Close();

}
catch (Exception ex)
{

MessageBox.Show(ex.ToString());
}

}

Testing the Application
To test the application, first run the server by pressing F5 in Visual Studio 2005. You need to
launch multiple copies of the client to test the multiuser capabilities of the server. To do this,
compile the code files provided in the Source Code/Download section of the Apress website
(http://www.apress.com) into an .exe file. Run multiple copies of the application, sign in, and
chat at the same time! To test the FTP feature of the application, be sure to run the client on
different computers.

Summary
In this chapter, you saw how the TcpClient class allows you to perform asynchronous communi-
cation between two computers. The two chat applications developed in this chapter illustrate
how you can design your own communication protocols, and this lays the foundation for build-
ing more complicated chat applications. For now, have fun with the chat applications!

CHAPTER 1 ■ SOCKETS PROGRAMMING66

Serial Communications

Serial communication is one of the oldest mechanisms for devices to communicate with
each other. Starting with the IBM PC and compatible computers, almost all computers are
equipped with one or more serial ports and one parallel port. As the name implies, a serial
port sends and receives data serially, one bit at a time. In contrast, a parallel port sends and
receives data eight bits at a time, using eight separate wires.

■Tip For serial communication to work, you just need a minimum of three wires—one to send, one to
receive, and one signal ground. For parallel communication, you need eight wires.

Despite the comparatively slower transfer speed of serial ports over parallel ports, serial
communication remains a popular connectivity option for devices because of its simplicity
and cost-effectiveness. Figure 2-1 shows some of the devices that use a serial port to connect
to the computer. Using a serial port, you can connect to a modem, a mouse, or a device such
as a bridge/router for configuration purposes.

Figure 2-1. Some common serial devices—modem, mouse, and router 67

C H A P T E R 2

Although consumer products today are using USB connections in place of serial connec-
tions, still a lot of devices use serial ports as their sole connections to the outside world.

In this chapter, you will learn how to communicate with other serial devices using the new
SerialPort class available in the .NET Framework 2.0 and the .NET Compact Framework 2.0. In
particular, you will build three projects that illustrate how to use serial communications. The
first project is a chat application that allows two computers (connected using either a serial
cable or a Bluetooth connection) to communicate. And using the foundation of this application,
you can extend it to communicate with other external serial devices such as cellular phones.
You will learn how to use the AT commands to programmatically control your mobile phones
through a serial Bluetooth connection. The second project is a Pocket PC chat application,
which is similar to the first project. The third application shows how to communicate with a
GPS receiver and then extract the useful data for displaying the current location on a map.

Some Serial Communication Basics
As mentioned, a serial device sends and receives data one bit at a time. Some devices can send
and receive data at the same time and are known as full-duplex devices. Others that can either
send or receive at any one time are known as single-duplex.

To initiate transmission, a device first transmits a start bit, followed by the data bits. The
data bits can be five, six, seven, or eight bits, depending on what has been agreed upon. Both
the sender and the receiver must be set to the same data bits for communication to take place
correctly. Once the data bits are sent, a stop bit is sent. A stop bit can be one, one and a half,
and two bits. The baud rate is the speed of transmission of data from one device to another.
Baud rate is usually measured in bits per second (bps).

■Note Most serial devices transmit in seven or eight bits.

To detect that the data has been sent correctly, an optional parity bit can be included
together with the data bits. A parity bit can be one of the following: odd, even, mark, space,
or none (mark and space parity are almost always used). Using a parity bit provides a basic
mechanism to detect corruption of data that was sent and does not guarantee that the data
received is free from error. Nevertheless, a parity bit is useful for improving the integrity of the
data sent.

Most serial ports adhere to the RS232C standard, which specifies a connector either
with 25 pins or with 9 pins (see Figure 2-2). Most serial devices use the nine-pin connector.

Figure 2-2. The 25-pin and 9-pin serial connectors

CHAPTER 2 ■ SERIAL COMMUNICATIONS68

Chatting Using Serial Ports
The first application you will build in this chapter is a chat application. This chat application will
allow two users whose computers are connected using a serial connection to communicate.

■Tip Notice that I mention serial connection, not a serial cable. This is because two users who are con-
nected by Bluetooth can also use this application to communicate—you can establish a serial connection
between two computers paired using Bluetooth.

The most common scenario is to connect two computers using a null modem cable (see
Figure 2-3).

Figure 2-3. A null modem cable

Figure 2-4 shows the finished project. To start the chat, select the COM number corre-
sponding to the serial port that is connected to the remote computer. Click Connect, and you
are ready to talk!

Figure 2-4. Selecting a serial port to start chatting

CHAPTER 2 ■ SERIAL COMMUNICATIONS 69

Hardware Needed
To test serial communications, you have a couple of options:

Computer to computer: As mentioned, you can connect two computers using a null
modem cable.

Single computer: You can connect two serial ports on the same computer using a null
modem cable. If your computer has only one serial port, you can convert a USB port to a
serial port using a USB-to-serial-port converter (see the next section for more informa-
tion about this).

Bluetooth connection: You can create a serial connection between two Bluetooth-paired
computers.

USB-to-Serial-Port Converters
Unless you have two computers, you won’t be able to test serial communications. However, you
can use a null modem cable to connect two serial ports on the same computer to simulate two
computers communicating over serial ports. But most computers today come with at most one
serial port (and some notebooks do not even have one). One good solution is to use a USB-to-
serial-port adapter to convert a USB port to a serial port. Hence, if your computer does not have
any serial ports, you will need a pair of USB-to-serial-port adapters and a null modem cable (see
Figure 2-5). Then, connect each USB-to-serial-port adapter to a USB connection.

Figure 2-5. A USB-to-serial-port adapter and a null modem cable

CHAPTER 2 ■ SERIAL COMMUNICATIONS70

The USB-to-serial-port adapter comes with its own drivers. After installing the drivers,
right-click My Computer on the desktop, and select Properties. In the System Properties dialog
box, click the Hardware tab, and click the Device Manager button. Expand the Ports (COM &
LPT) item, and locate the two newly added COM ports (see Figure 2-6).

Figure 2-6. Locating the newly created serial ports

In this example, the two USB serial ports are COM3 and COM4.

Bluetooth Adapters
Besides using a null modem cable to connect two serial ports, you can also use Bluetooth to
pair two computers. You can equip each computer with a Bluetooth adapter (see Figure 2-7).

Figure 2-7. A USB Bluetooth adapter

You can then pair the two computers and establish a serial connection between them.

CHAPTER 2 ■ SERIAL COMMUNICATIONS 71

■Note Refer to the documentation that comes with your Bluetooth adapter to learn how to establish a
serial connection between two Bluetooth-paired computers.

Building the Chat Application
Using Visual Studio 2005, create a new Windows application, and name it SerialCommChat.
Populate the default Form1 as shown in Figure 2-8.

Figure 2-8. Populating the default Form1 with the various controls

Set the properties for the various controls as shown in Table 2-1.

Table 2-1. Setting the Properties for the Various Controls

Control Property Value

Form1 Text "Serial Chat"

Form1 AcceptButton btnSend

lblMessage BorderStyle FixedSingle

txtDataReceived ScrollBars Vertical

txtDataReceived MultiLine True

txtDataToSend MultiLine True

RichTextBox Control
(txtDataReceived)

Label Control
(lblMessage)

Label
Control

Button Control
(btnConnect)

TextBox Control
(txtDataToSend)

Button Control
(btnSend)

ComboBox Control
(cbbCOMPorts)

Button Control
(btnDisconnect)

CHAPTER 2 ■ SERIAL COMMUNICATIONS72

In .NET 2.0, there is now a new SerialPort Windows Forms control located on the Compo-
nents tab in the Toolbox (see Figure 2-9). This SerialPort control encapsulates all the required
functionality that you need to access in order to communicate using serial communications.
You can either drag and drop a SerialPort control to your project or instantiate one from code
(you will use this method for this project).

Figure 2-9. The SerialPort control in the Toolbox

Switch to Code View for Form1 to start coding the application.

Instantiating the SerialPort Class
First, declare the member variable serialPort to represent the serial port you want to use.

Visual Basic 2005

Public Class Form1
Private WithEvents serialPort As New IO.Ports.SerialPort

C# 2005

public partial class Form1 : Form
{

private System.IO.Ports.SerialPort serialPort =
new System.IO.Ports.SerialPort();

■Note You can use the SerialPort control as mentioned earlier, or you can use the IO.Ports.SerialPort
class; both are the same.

Notice that for Visual Basic 2005, you need to declare it with the WithEvents keyword. This
is because the SerialPort class has the DataReceived event that is fired when data arrives at
the serial port, and hence you need to service this event to receive the data. For C# 2005, the
event handler for the DataReceived event will be added in the Form1_Load event.

CHAPTER 2 ■ SERIAL COMMUNICATIONS 73

Listing All the Available Serial Port Names
When the form is first loaded, you will retrieve all the available serial port names on your
computer and then add these port names to the ComboBox control. Double-click the form
to switch to the code-behind of the form, and the Form1_Load event handler will automatically
be shown. Code the event as follows.

■Note Henceforth in this chapter, to make Visual Studio 2005 automatically create the event handler for a
control (such as a form’s Load event or a button’s Click event), double-click the control to create the event
handler.

Visual Basic 2005

Private Sub Form1_Load(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles MyBase.Load

'---display all the serial port names on the local computer---
For i As Integer = 0 To _

My.Computer.Ports.SerialPortNames.Count - 1
cbbCOMPorts.Items.Add(_

My.Computer.Ports.SerialPortNames(i))
Next
btnDisconnect.Enabled = False

End Sub

C# 2005

private void Form1_Load(object sender, EventArgs e)
{

//---set the event handler for the DataReceived event---
serialPort.DataReceived += new

System.IO.Ports.SerialDataReceivedEventHandler(
DataReceived);

//---display all the serial port names on the local
// computer---
string[] portNames =

System.IO.Ports.SerialPort.GetPortNames();
for (int i = 0; i <= portNames.Length - 1; i++)
{

cbbCOMPorts.Items.Add(portNames[i]);
}
btnDisconnect.Enabled = false;

}

CHAPTER 2 ■ SERIAL COMMUNICATIONS74

HANDLING EVENTS IN C#

In the C# version of the Form1_Load event, I have also added an event handler for the SerialPort class’s
DataReceived event. This event will be fired when there is incoming data at the serial port. You don’t need
to wire this event handler in Visual Basic 2005 because you can use the Handles keyword to wire up event
handlers.

Also note that for the C# version of the code, before you press F5 to test the code, you need to comment
out the following section of the code because the DataReceived() event handler has not been defined yet:

//---set the event handler for the DataReceived event---
// serialPort.DataReceived += new
// System.IO.Ports.SerialDataReceivedEventHandler(
// DataReceived);

Figure 2-10 shows how the ComboBox control will look when the form is first loaded.

Figure 2-10. The ComboBox control displaying all the serial port names

Opening a Serial Port
Once a port name is selected, the user clicks the Connect button to open the selected port.
You accomplish this with the following method.

Visual Basic 2005

'---Event handler for the Connect button---
Private Sub btnConnect_Click(_

ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnConnect.Click
'---close the serial port if it is open---
If serialPort.IsOpen Then

serialPort.Close()
End If

Try
'---configure the various parameters of the serial port---

CHAPTER 2 ■ SERIAL COMMUNICATIONS 75

With serialPort
.PortName = cbbCOMPorts.Text
.BaudRate = 9600
.Parity = IO.Ports.Parity.None
.DataBits = 8
.StopBits = IO.Ports.StopBits.One

End With

'---open the serial port---
serialPort.Open()

'---update the status of the serial port and
' enable/disable the buttons---
lblMessage.Text = cbbCOMPorts.Text & " connected."
btnConnect.Enabled = False
btnDisconnect.Enabled = True

Catch ex As Exception
MsgBox(ex.ToString)

End Try
End Sub

C# 2005

//---Event handler for the Connect button---
private void btnConnect_Click(object sender, EventArgs e)
{

//---close the serial port if it is open---
if (serialPort.IsOpen)
{

serialPort.Close();
}
try
{

//---configure the various parameters of the serial
// port---
serialPort.PortName = cbbCOMPorts.Text;
serialPort.BaudRate = 9600;
serialPort.Parity = System.IO.Ports.Parity.None;
serialPort.DataBits = 8;
serialPort.StopBits = System.IO.Ports.StopBits.One;

//---open the serial port---
serialPort.Open();

//---update the status of the serial port and
// enable/disable the buttons---
lblMessage.Text = cbbCOMPorts.Text + " connected.";

CHAPTER 2 ■ SERIAL COMMUNICATIONS76

btnConnect.Enabled = false;
btnDisconnect.Enabled = true;

}
catch (Exception ex)
{

MessageBox.Show(ex.ToString());
}

}

In particular, you set the various properties of the SerialPort class, such as PortName,
BaudRate, Parity, and so on.

■Note The two communicating parties must have the same properties set. That is, they must have the
same baud rate, parity, data bits, and stop bit.

Disconnecting a Serial Port
The Disconnect button closes the currently open serial port.

Visual Basic 2005

'---Event handler for the Disconnect button---
Private Sub btnDisconnect_Click(_

ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnDisconnect.Click
Try

'---close the serial port---
serialPort.Close()

'---update the status of the serial port and
' enable/disable the buttons---
lblMessage.Text = serialPort.PortName & " disconnected."
btnConnect.Enabled = True
btnDisconnect.Enabled = False

Catch ex As Exception
MsgBox(ex.ToString)

End Try
End Sub

C# 2005

//---Event handler for the Disconnect button---
private void btnDisconnect_Click(object sender, EventArgs e)
{

CHAPTER 2 ■ SERIAL COMMUNICATIONS 77

try
{

'---close the serial port---
serialPort.Close();

//---update the status of the serial port and
// enable/disable the buttons---
lblMessage.Text = serialPort.PortName +

" disconnected.";
btnConnect.Enabled = true;
btnDisconnect.Enabled = false;

}
catch (Exception ex)
{

MessageBox.Show(ex.ToString());
}

}

Sending Data Using the Serial Port
To send data to the recipient through the serial port, use the Write() method of the
SerialPort class.

Visual Basic 2005

'---Event handler for the Send button---
Private Sub btnSend_Click(_

ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnSend.Click
Try

'---write the string to the serial port---
serialPort.Write(txtDataToSend.Text & vbCrLf)

'---append the sent string to the TextBox control---
With txtDataReceived

.AppendText(">" & txtDataToSend.Text & vbCrLf)

.ScrollToCaret()
End With

'---clears the TextBox control---
txtDataToSend.Text = String.Empty

Catch ex As Exception
MsgBox(ex.ToString)

End Try
End Sub

CHAPTER 2 ■ SERIAL COMMUNICATIONS78

C# 2005

//---Event handler for the Send button---
private void btnSend_Click(object sender, EventArgs e)
{

try
{

//---write the string to the serial port---
serialPort.Write(txtDataToSend.Text +

Environment.NewLine);

//---append the sent string to the TextBox control---
txtDataReceived.AppendText(">" + txtDataToSend.Text +

Environment.NewLine);
txtDataReceived.ScrollToCaret();

//---clears the TextBox control---
txtDataToSend.Text = string.Empty;

}
catch (Exception ex)
{

MessageBox.Show(ex.ToString());
}

}

Receiving Data on the Serial Port
One nice feature of the SerialPort class is that you don’t need to constantly poll for incoming
data. Instead, you just need to service the DataReceived event, and it will automatically fire
when incoming data is detected. However, because this event is running on a separate thread,
any attempt to update the main form directly will result in an error. Hence, you need to use a
delegate to update controls on the main thread (Form1).

Visual Basic 2005

'---Event handler for the DataReceived event---
Private Sub DataReceived(_

ByVal sender As Object, _
ByVal e As System.IO.Ports.SerialDataReceivedEventArgs) _
Handles serialPort.DataReceived
'---invoke the delegate to retrieve the received data---
txtDataReceived.BeginInvoke(New _

myDelegate(AddressOf updateTextBox), _
New Object() {})

End Sub

CHAPTER 2 ■ SERIAL COMMUNICATIONS 79

C# 2005

//---Event handler for the DataReceived event---
private void DataReceived(object sender,

System.IO.Ports.SerialDataReceivedEventArgs e)
{

//---invoke the delegate to retrieve the received data---
txtDataReceived.BeginInvoke(new

myDelegate(updateTextBox));
}

Define the delegate and the updateTextBox() subroutine as follows.

Visual Basic 2005

'---Delegate and subroutine to update the TextBox control---
Public Delegate Sub myDelegate()
Public Sub updateTextBox()

'---append the received data into the TextBox control---
With txtDataReceived

.AppendText(serialPort.ReadExisting)

.ScrollToCaret()
End With

End Sub

C# 2005

//---Delegate and subroutine to update the TextBox control---
public delegate void myDelegate();
public void updateTextBox()
{

//---append the received data into the TextBox control---
txtDataReceived.AppendText(serialPort.ReadExisting());
txtDataReceived.ScrollToCaret();

}

Testing the Application
You are now ready to test the application. Press F5 in Visual Studio 2005 to debug the applica-
tion. You need to run another instance of the application in order to test the chat functionality.
To do so, find the SerialCommChat.exe application within the Debug folder contained in the
directory where you have stored the solution.

In the first instance of the application, select port 3 (based on the port number on my
computer; check the port number on your computer), and click Connect. On the other
instance, select port 4, and click Connect. You can now start chatting (see Figure 2-11)!

CHAPTER 2 ■ SERIAL COMMUNICATIONS80

Figure 2-11. Chatting via two COM ports

Transmitting Unicode Characters
By default, the SerialPort class transmits ASCII characters only. This is set in the Encoding
property of the SerialPort class. If you want to converse in other languages (such as Chinese
or Japanese), you need to set the Encoding property of the SerialPort class to Unicode so that
the data can be sent and received correctly.

■Tip The current versions of the .NET Framework 2.0 and the .NET Compact Framework 2.0 do not work
correctly when you use the ReadExisting() method to read Unicode characters. Hence, instead of using
the ReadExisting() method to read incoming Unicode characters, you will use the Read() method.

First, you need to set the Encoding property in the SerialPort class to Unicode.

CHAPTER 2 ■ SERIAL COMMUNICATIONS 81

Visual Basic 2005

With serialPort
.PortName = cbbCOMPorts.Text
.BaudRate = 9600
.Parity = IO.Ports.Parity.None
.DataBits = 8
.StopBits = IO.Ports.StopBits.One
'---set the encoding the Unicode---
.Encoding = System.Text.Encoding.Unicode

End With

C# 2005

serialPort.PortName = cbbCOMPorts.Text;
serialPort.BaudRate = 9600;
serialPort.Parity = System.IO.Ports.Parity.None;
serialPort.DataBits = 8;
serialPort.StopBits = System.IO.Ports.StopBits.One;
//---set the encoding the Unicode---
serialPort.Encoding = System.Text.Encoding.Unicode;

Then, modify the updateTextBox() subroutine to read the incoming Unicode characters
correctly.

Visual Basic 2005

Public Sub updateTextBox()
'---UNICODE work-around---
With txtDataReceived

'---find out the number of bytes to read---
Dim bytesToRead As Integer = serialPort.BytesToRead

'---declare a char array---
Dim ch(bytesToRead) As Char

'---read the bytes into the ch array---
Dim bytesRead As Integer = 0
bytesRead = serialPort.Read(ch, 0, bytesToRead)

'---convert the ch array into a string---
Dim str As String = New String(ch, 0, bytesRead)

'---append the received string into the TextBox control---
.AppendText(str)
.ScrollToCaret()

End With
End Sub

CHAPTER 2 ■ SERIAL COMMUNICATIONS82

C# 2005

public void updateTextBox()
{

//---UNICODE work-around---
//---find out the number of bytes to read---
int bytesToRead = serialPort.BytesToRead;

//---declare a char array---
char[] ch = new char[bytesToRead];
int bytesRead = 0;

//---read the bytes into the ch array---
bytesRead = serialPort.Read(ch, 0, bytesToRead);

//---convert the ch array into a string---
string str = new string(ch, 0, bytesRead);

//---append the received string into the TextBox
// control---
txtDataReceived.AppendText(str);
txtDataReceived.ScrollToCaret();

}

Figure 2-12 shows sending and receiving Chinese characters.

Figure 2-12. Sending and receiving Chinese characters

CHAPTER 2 ■ SERIAL COMMUNICATIONS 83

Connecting to Other Serial Devices
One interesting use for the chat application is using it to communicate with serial devices.
One good candidate to test on is your Bluetooth-enabled mobile phone (and modem). Most
mobile phones support the AT command set, which means you can programmatically interact
with the phone by issuing AT commands.

To see how the example application communicates with a Bluetooth handset, you first
need the following hardware:

• A Bluetooth-enabled handset, such as the Sony Ericsson T68i or the Motorola E398

• A Bluetooth adapter for your computer

Before running the application, first pair the computer with the Bluetooth-enabled hand-
set. Your Bluetooth driver (on your computer) will tell you which serial port is being used to
connect to the handset. Suppose that COM1 is used to connect to a Sony Ericsson T68i. You
will now connect COM1 in the application and then issue the AT command (see Figure 2-13).

■Note When communicating with external devices, remember to change the encoding from Unicode to the
default ASCII.

Figure 2-13. Issuing an AT command to a handset

You should see “AT OK” returned by the phone. You can try the sample AT commands
listed in Table 2-2.

CHAPTER 2 ■ SERIAL COMMUNICATIONS84

Table 2-2. Some AT Commands

Command Usage Example Response

AT Attention. AT OK

AT* List all supported AT commands. *EACS, *EAID, *EALR, *EALS, *EAM,
*EAMS, *EAPM, *EAPN, and so on

AT+CGMI Request manufacturer identification. ERICSSON

AT+CGMM Request model identification. 1130202-BVT68

ATDT+Number Dial a number.

AT*EVA Answer a call.

AT+CBC? Check battery charge. +CBC: 0,44 (44 means the battery is
44 percent charged)

AT+CSQ Signal quality. +CSQ: 14,99 (signal strength is from
0 to 31; 14 is the signal strength)

■Note Not all phones support the same AT command set. Refer to the manual for your handset for the
actual AT commands supported.

Two interesting AT commands are ATDT and AT*EVA. You can use them to make and receive
calls, respectively.

■Note Not all phones support ATDT and AT*EVA. I tested the two commands using the Sony Ericsson T68i.

To allow users to control their mobile phones using their computers, I added the controls
as shown in Figure 2-14.

Figure 2-14. Adding the controls to Form1

GroupBox Control
(GroupBox1)

TextBox Control
(txtPhoneNumber)

Button Control
(btnAnswerCall)

TextBox Control
(Label2)

Button Control
(btnDialNumber)

CHAPTER 2 ■ SERIAL COMMUNICATIONS 85

The code for the Dial Number and Answer Call buttons is as follows.

Visual Basic 2005

'---Event handler for the Dial Number button---
Private Sub btnDialNumber_Click(_

ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnDialNumber.Click
'---write the AT command ATDT to the serial port---
serialPort.Write("ATDT " & txtPhoneNumber.Text & vbCrLf)

End Sub

'---Event handler for the Answer Call button---
Private Sub btnAnswerCall_Click(_

ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnAnswerCall.Click
'---write the AT command AT*EVA to the serial port---
serialPort.Write("AT*EVA" & vbCrLf)

End Sub

C# 2005

//---Event handler for the Dial Number button---
private void btnDialNumber_Click(object sender, EventArgs e)
{

//---write the AT command ATDT to the serial port---
serialPort.Write("ATDT " + txtPhoneNumber.Text +

Environment.NewLine);
}

//---Event handler for the Answer Call button---
private void btnAnswerCall_Click(object sender, EventArgs e)
{

//---write the AT command AT*EVA to the serial port---
serialPort.Write("AT*EVA" + Environment.NewLine);

}

Press F5 to test the application. You can now enter a phone number and click the Dial
Number button, and your mobile phone will automatically dial the number! When the phone
rings, click the Answer Call button to answer the call.

CHAPTER 2 ■ SERIAL COMMUNICATIONS86

Chatting Using Serial Ports on the Pocket PC
In the previous sections, you saw how to use the SerialPort class to send and receive data
through the serial ports on your computer. In fact, the SerialPort class has greatly simplified the
life of serial communication programmers by encapsulating all the important functionalities
into a single class. Fortunately, the SerialPort class is also available in the .NET Compact
Framework 2.0. This means it is now easy to write network applications on the Pocket PC.

To see how easily you can use the SerialPort class using the .NET Compact Framework,
you will now port the chat application from the previous project to the Pocket PC platform.

Hardware Needed
For the application in this section, you need two Bluetooth-enabled Pocket PCs. Most new
Pocket PCs on the market today come with built-in Bluetooth functionality, and hence you are
not required to purchase additional hardware. For this example, I used the iMate JASJAR (see
Figure 2-15), which runs on the latest Windows Mobile 5.0 platform and has built-in Blue-
tooth, WiFi, and 3G support.

Figure 2-15. The iMate JASJAR

■Note There are some known issues when using the SerialPort class on some older devices, such as
those running on platforms prior to Windows Mobile 5.0. On some devices, the SerialPort class has prob-
lems receiving data and will drain the battery power of your device rapidly.

CHAPTER 2 ■ SERIAL COMMUNICATIONS 87

Building the Application
Launch Visual Studio 2005, and create a new smart-device application. Choose the Windows
Mobile 5.0 Pocket PC project type, and then select the Device Application template (see
Figure 2-16).

■Note Out of the box, Visual Studio 2005 does not ship with the Windows Mobile 5.0 for Pocket PC SDK.
You can download it by going to http://www.microsoft.com/downloads/ and searching for Windows
Mobile 5.0 for Pocket PC SDK.

Figure 2-16. Creating a new smart-device application

Populate the default Form1 with the controls shown in Figure 2-17, and set the properties
of the various controls as shown in Table 2-3.

CHAPTER 2 ■ SERIAL COMMUNICATIONS88

Figure 2-17. Populating the default Form1

Table 2-3. Setting the Properties for the Various Controls

Control Property Value

txtReceivedMessage ScrollBars Vertical

txtReceivedMessage MultiLine True

cbbCOMPorts Items COM0, COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8,
COM9 (all separated by carriage returns)

Coding the Application
Switch to the code-behind of Form1, and instantiate a SerialPort object.

Visual Basic 2005

Private WithEvents serialPort As New IO.Ports.SerialPort

C# 2005

private System.IO.Ports.SerialPort serialPort =
new System.IO.Ports.SerialPort();

Next, add the following subroutines.

TextBox Control
(txtReceivedMessage)

ComboBox Control
(cbbCOMPorts)

Button Control
(btnConnect)

TextBox Control
(txtMessageToSend)

MenuItem Control
(MenuItem1)

Label Control

Label Control

Label Control

CHAPTER 2 ■ SERIAL COMMUNICATIONS 89

■Note The code here is similar to the code listed in the previous sample application. Hence, I will not
spend too much time explaining its usage.

Visual Basic 2005

'---Event handler for the DataReceived---
Private Sub DataReceived(_

ByVal sender As Object, _
ByVal e As System.IO.Ports.SerialDataReceivedEventArgs) _
Handles serialPort.DataReceived

txtReceivedMessage.BeginInvoke(New _
myDelegate(AddressOf updateTextBox), _
New Object() {})

End Sub

'---Delegate to update the TextBox control---
Public Delegate Sub myDelegate()
Public Sub updateTextBox()

txtReceivedMessage.Text = _
serialPort.ReadExisting & _
txtReceivedMessage.Text

End Sub

'---Send menu item---
Private Sub MenuItem1_Click(_

ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles MenuItem1.Click
Try

serialPort.WriteLine(txtMessageToSend.Text)
txtReceivedMessage.Text = ">" & _

txtMessageToSend.Text & vbCrLf & _
txtReceivedMessage.Text

txtMessageToSend.Text = String.Empty
Catch ex As Exception

MsgBox(ex.ToString)
End Try

End Sub

'---Connect button---
Private Sub btnConnect_Click(_

ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnConnect.Click
Try

CHAPTER 2 ■ SERIAL COMMUNICATIONS90

If serialPort.IsOpen Then
serialPort.Close()

End If
With serialPort

.PortName = cbbCOMPorts.Text

.BaudRate = 9600

.Parity = IO.Ports.Parity.None

.DataBits = 8

.StopBits = IO.Ports.StopBits.One
End With
serialPort.Open()
MsgBox("Port opened successfully!")

Catch ex As Exception
MsgBox(ex.ToString)

End Try
End Sub

C# 2005

//---Form Load event---
private void Form1_Load(object sender, EventArgs e)
{

serialPort.DataReceived += new
System.IO.Ports.SerialDataReceivedEventHandler(
DataReceived);

}

//---Event handler for the DataReceived---
private void DataReceived(object sender,

System.IO.Ports.SerialDataReceivedEventArgs e)
{

txtReceivedMessage.BeginInvoke(new
myDelegate(updateTextBox));

}

//---Delegate to update the TextBox control---
public delegate void myDelegate();
public void updateTextBox()
{

//---for receiving plain ASCII text---
txtReceivedMessage.Text = (serialPort.ReadExisting()) +

txtReceivedMessage.Text;
txtReceivedMessage.ScrollToCaret();

}

//---Send menu item---
private void MenuItem1_Click(object sender, EventArgs e)
{

CHAPTER 2 ■ SERIAL COMMUNICATIONS 91

try
{

serialPort.Write(txtMessageToSend.Text + "\r");
txtReceivedMessage.Text = ">" + txtMessageToSend.Text

+ "\r" + txtReceivedMessage.Text;
txtMessageToSend.Text = string.Empty;

}
catch (Exception ex)
{

MessageBox.Show(ex.ToString());
}

}

//---Connect button---
private void btnConnect_Click(object sender, EventArgs e)
{

if (serialPort.IsOpen)
{

serialPort.Close();
}
try
{

serialPort.PortName = cbbCOMPorts.Text;
serialPort.BaudRate = 9600;
serialPort.Parity = System.IO.Ports.Parity.None;
serialPort.DataBits = 8;
serialPort.StopBits = System.IO.Ports.StopBits.One;
serialPort.Open();
MessageBox.Show("Port opened successfully!");

}
catch (Exception ex)
{

MessageBox.Show(ex.ToString());
}

}

To test the application, connect a Pocket PC device to your computer and ensure that it is
connected via ActiveSync. In Visual Studio 2005, select Windows Mobile 5.0 Pocket PC Device
(see Figure 2-18) in the Target Device drop-down list, and press F5. This will cause the applica-
tion to be deployed on the Pocket PC. Repeat this process for the second Pocket PC.

Once the two Pocket PCs are loaded with the application, you need to pair them up
using Bluetooth. In addition, ensure that you establish a serial connection between these
two paired Pocket PCs, and take note of the respective serial port numbers. On each Pocket
PC, you can then launch the application (by default it is installed in the \Program Files\
SerialCommChatPocketPC directory).

Finally, select the respective serial port number on the application, and click Connect.
You are now ready to chat!

CHAPTER 2 ■ SERIAL COMMUNICATIONS92

Figure 2-18. Selecting a target device to deploy your application

Creating a Mapping Application Using
a GPS Receiver and Microsoft Virtual Earth
In the final project of this chapter, you will learn how to build a mapping application using
Microsoft Virtual Earth and a GPS receiver. Microsoft Virtual Earth (VE) is a map and search
system comprising maps, aerial images, business directories, and so on. Using VE, you can
search for businesses and addresses, as well as ask for directions (see Figure 2-19).

■Tip You can access VE via MSN Virtual Earth at http://local.live.com/.

To developers, Microsoft exposes the VE Map control that allows you to embed VE maps
into your own application. You can then build your own custom solution using the mapping
services provided by VE. The VE Map control consists of a JavaScript page and a stylesheet.
The VE Map control is hosted at http://dev.virtualearth.net/mapcontrol/v3/mapcontrol.js.
The CSS is located at http://local.live.com/css/MapControl.css.

■Note Besides Microsoft Virtual Earth, another popular mapping solution is Google Maps. Google Maps
also exposes APIs for developers to integrate mapping abilities into their custom applications. However,
Google Maps will work only on Web browsers; it does not allow developers to embed Google Maps within a
Windows application. Hence, if you want to include a mapping functionality in your Windows application,
Microsoft VE is the way to go.

CHAPTER 2 ■ SERIAL COMMUNICATIONS 93

Figure 2-19. Microsoft Virtual Earth

In this project, you will build a Windows application that allows you to track your location
in real time by getting positioning information from your GPS receiver and then feeding the
data to VE. For this to work, I am assuming you have Internet connectivity, possibly through
wireless hotspots or General Packet Radio Service (GPRS). In addition, this application is also
able to plot traveled paths by extracting GPS data from a file. For example, you can track your
traveled path by saving all the positioning information using a GPS receiver (and a Pocket PC
or notebook). When you return to the office, you can upload the saved data to the application,
and it will display the path you have traveled using VE.

This application will use a Bluetooth-enabled GPS receiver (such as the Holux GPSlim
236; see Figure 2-20) that connects to your computer (such as Pocket PC or computer) via
Bluetooth (through a serial communication).

CHAPTER 2 ■ SERIAL COMMUNICATIONS94

Figure 2-20. The Holux GPSlim 236 GPS receiver

Figure 2-21 shows how the completed project will look. You can view the maps of a partic-
ular location as well as pan and zoom into specific areas.

Figure 2-21. The user interface of the application

CHAPTER 2 ■ SERIAL COMMUNICATIONS 95

Besides viewing the roads of an area, you can also choose to view the aerial images (see
Figure 2-22).

Figure 2-22. Viewing aerial images

Depending on the locations you have specified, you can also zoom into specific areas and
view the highly detailed map (see Figure 2-23).

Figure 2-23. Zooming and viewing the highly detailed map

CHAPTER 2 ■ SERIAL COMMUNICATIONS96

Building the Application
Let’s now build the application. Launch Visual Studio 2005, and create a new Windows appli-
cation project. Name the application VirtualEarth.

Populate the default Form1 with the controls shown in Figure 2-24.

Figure 2-24. Populating the default Form1 with the various controls

In addition, add a Timer control to the form. Configure the controls on the form with the
values shown in Table 2-4.

Table 2-4. Configuring the Controls on Form1

Control Property Value

Form1 BackColor Khaki

WebBrowser1 Size 460,380

txtDataReceived MultiLine True

txtDataReceived ScrollBars Both

Timer1 Interval 1000

Label Control
(lblMessage)

TextBox Control
(txtDataReceived)

Button Control
(btnGotoPoint)

Button Control
(btnConnect)

TextBox Control
(txtLongitude)

GroupBox Control
(GroupBox1)

TextBox Control
(txtLatitude)

Button Control
(btnClearPath)

WebBrowser Control
(WebBrowser1)

Button Control
(btnShowPath)

ComboBox Control
(cbbCOMPorts)

GroupBox Control
(GroupBox2)

GroupBox Control
(GroupBox3)

CHAPTER 2 ■ SERIAL COMMUNICATIONS 97

Creating the HTML File Containing the Virtual Earth Map
The next step is to create an HTML file containing all the necessary JavaScript functions to
interact with the VE map.

Add an HTML page to the project (right-click the project name in Solution Explorer, select
Add ➤ New Item, and then select HTML Page). Name the HTML page Map.html.

Populate the HTML page with the following:

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>My Virtual Earth</title>
<link href="http://local.live.com/css/MapControl.css"

type="text/css" rel="stylesheet" />
<script type="text/javascript"

src="http://dev.virtualearth.net/mapcontrol/v3/mapcontrol.js">
</script>
<script type="text/javascript">

var map = null;
// Update the position of the map in the TextBox controls
function updatePosition(e)
{

window.external.mapPositionChange(
e.view.latlong.latitude,e.view.latlong.longitude);

}
// Go to a particular location on the map
function goto_map_position(lat, lng)
{

map.PanToLatLong(lat, lng);
}

// Add a pushpin to the map
function addPushpin(id, text, Lat, Long)
{

map.AddPushpin(id, Lat, Long, 15, 40, 'pin', '' + text +
'', 1);

}

// Remove a particular pushpin
function removePushpin(id)
{

map.RemovePushpin(id);
}

// Load the map
function loadMap()
{

var params = new Object();

CHAPTER 2 ■ SERIAL COMMUNICATIONS98

params.latitude = 38.898748;
params.longitude = -77.037684;
params.zoomlevel = 12;
params.mapstyle = Msn.VE.MapStyle.Road;
params.showScaleBar = true;
params.showDashboard = true;
params.dashboardSize = Msn.VE.DashboardSize.Normal;
params.dashboardX = 2;
params.dashboardY = 2;

container = document.getElementById("VirtualEarthMap");
container.style.width = 460;
container.style.height = 380;

map = new Msn.VE.MapControl(container, params);
map.Init();

// Attach the event handlers for the various events
map.AttachEvent("onendcontinuouspan", updatePosition);
map.AttachEvent("onendzoom", updatePosition);
map.AttachEvent("onclick", updatePosition);

}
</script>

</head>
<body onload="loadMap()" style="margin: 0px">

<div id="VirtualEarthMap"></div>
</body>
</html>

The Map.html page contains a reference to the VE Map control (.js) as well as to the CSS
file (.css). It also contains five JavaScript functions:

updatePosition():(): Displays the currently selected position on the map by calling the
mapPositionChange() method defined in the code-behind of Form1 (more about this
later).

goto_map_position():(): Goes to a particular location on the map based on the latitude
and longitude specified.

addPushpin():(): Adds a pushpin to the map using the caption specified in the parameter.

removePushpin():(): Removes a particular pushpin on the map.

loadMap():(): Loads the map with the various parameters such as size of the map, zoom
level, latitude and longitude, and so on. It also attaches event handlers to the various
events so that when certain events happen, the appropriate event handler will be fired.

You also need to set the Copy to Output Directory property of Map.html to Copy if newer
(via the Properties window) so that the HTML page is deployed during runtime.

CHAPTER 2 ■ SERIAL COMMUNICATIONS 99

Coding the Application
Once the HTML page is populated, switch to the code-behind of Form1. For this application,
you need to programmatically interact with the map displayed within the WebBrowser
control, and hence you need to mark the Form1 class as “COM visible” using the
ComVisibleAttribute class.

Visual Basic 2005

<System.Runtime.InteropServices.ComVisibleAttribute(True)> _
Public Class Form1
...

C# 2005

[System.Runtime.InteropServices.ComVisibleAttribute(true)]
public partial class Form1 : Form
...

Next, declare the following member variables.

Visual Basic 2005

'---index of the pushpin---
Private pushpin As Integer = 0

'---keeping track of the points---
Private pointCounter As Integer

'---used for remembering the lines read
' from a file containing coordinates---
Private lineIndex As Integer = 0
Dim line() As String

'---serial port for communicating with GPS receiver---
Private WithEvents serialPort As New IO.Ports.SerialPort

C# 2005

//---index of the pushpin---
private int pushpin = 0;

//---keeping track of the points---
private int pointCounter;

//---used for remembering the lines read
// from a file containing coordinates---
private int lineIndex = 0;
string[] line;

CHAPTER 2 ■ SERIAL COMMUNICATIONS100

//---serial port for communicating with GPS receiver---
private System.IO.Ports.SerialPort serialPort = new

System.IO.Ports.SerialPort();

In the Form1_Load event, you first display a list of available serial ports on the computer,
then read the content of the Map.html file, and finally load it into the WebBrowser control.

Visual Basic 2005

Private Sub Form1_Load(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles MyBase.Load

'---display the available COM port on the computer---
For i As Integer = 0 To _

My.Computer.Ports.SerialPortNames.Count - 1
cbbCOMPorts.Items.Add(_

My.Computer.Ports.SerialPortNames(i))
Next

'---Load the WebBrowser control with the Virtual Earth map---
Dim fileContents As String

'---remember to set the Copy to Output Directory
' property of Map.html to "Copy if newer"---
fileContents = My.Computer.FileSystem.ReadAllText(_

Application.StartupPath & "\Map.html")

WebBrowser1.DocumentText = fileContents
WebBrowser1.ObjectForScripting = Me

End Sub

C# 2005

private void Form1_Load(object sender, EventArgs e)
{

//---set the event handler for the DataReceived event---
serialPort.DataReceived += new

System.IO.Ports.SerialDataReceivedEventHandler(
DataReceived);

//---display the available COM port on the computer---
string[] portNames =

System.IO.Ports.SerialPort.GetPortNames();
for (int i = 0; i <= portNames.Length - 1; i++)
{

cbbCOMPorts.Items.Add(portNames[i]);
}

CHAPTER 2 ■ SERIAL COMMUNICATIONS 101

//---Load the WebBrowser control with the Virtual Earth
// map---
string fileContents;
//---remember to set the Copy to Output Directory
// property of Map.html to "Copy if newer"---
fileContents = System.IO.File.ReadAllText(

Application.StartupPath + "\\Map.html");
WebBrowser1.DocumentText = fileContents;
WebBrowser1.ObjectForScripting = this;

}

You can now test the application to see whether the map is able to load correctly. Press F5,
and you should see the map as shown in Figure 2-25.

Figure 2-25. Loading the map onto the WebBrowser control

TESTING THE C# CODE

For the C# version of the code, before you press F5 to test the code, you need to comment out the following
section of the code because the DataReceived() event handler has not been defined yet:

//---set the event handler for the DataReceived event---
// serialPort.DataReceived += new
// System.IO.Ports.SerialDataReceivedEventHandler(
// DataReceived);

CHAPTER 2 ■ SERIAL COMMUNICATIONS102

Displaying the Coordinates of the Map
When you use the mouse to drag the map, notice that the map will move and pan. You can
also use the dashboard to pan the map and use the slider to change the zoom level of the map
(see Figure 2-26).

Figure 2-26. The dashboard and the zoom slider

When you double-click a particular location of the map, the map will zoom in and display
the selected location in the center of the map.

■Tip You can also zoom in and out of the map by clicking the map and then using the wheel on your wheel
mouse.

It is useful to display the latitude and longitude of the selected location on the map. As a
matter of fact, when you click the map, the onClick event of the VE Map control is fired. And
as you recall in the Map.html page, you attached the updatePosition() event handler to the
following events:

map.AttachEvent("onendcontinuouspan", updatePosition); // when spanning is done
map.AttachEvent("onendzoom", updatePosition); // when zooming is done
map.AttachEvent("onclick", updatePosition); // when the map is clicked

The updatePosition() JavaScript event handler calls an external (as indicated by the
window.external object) method named mapPositionChange():

// Update the position of the map in the TextBox controls
function updatePosition(e)
{

window.external.mapPositionChange(
e.view.latlong.latitude,e.view.latlong.longitude);

}

Therefore, in the code-behind for Form1, let’s now add a mapPositionChange() subroutine
so you can display the latitude and longitude of the selected location in the TextBox controls.

CHAPTER 2 ■ SERIAL COMMUNICATIONS 103

Visual Basic 2005

'---update the latitude and longitude on the TextBox controls---
Public Sub mapPositionChange(_

ByVal lat As Double, ByVal lng As Double)
txtLatitude.Text = lat
txtLongitude.Text = lng

End Sub

C# 2005

//---update the latitude and longitude on the TextBox
// controls---
public void mapPositionChange(double lat, double lng)
{

txtLatitude.Text = Convert.ToString(lat);
txtLongitude.Text = Convert.ToString(lng);

}

This subroutine simply takes two input parameters (latitude and longitude) and then dis-
plays them in the appropriate TextBox controls you created earlier.

Alternatively, users can also enter a set of coordinates and click the Goto Point button to
bring them directly to the specified location. You accomplish this using the event handler for
the Goto Point button.

Visual Basic 2005

'---set the map to a particular location---
Private Sub btnGotoPoint_Click(_

ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnGotoPoint.Click
Dim lat, lng As Double

'---get the latitude and longitude---
lat = txtLatitude.Text
lng = txtLongitude.Text
gotoPosition(lat, lng, False, "")

End Sub

C# 2005

//---set the map to a particular location---
private void btnGotoPoint_Click(object sender, EventArgs e)
{

double lat, lng;

//---get the latitude and longitude---
lat = Convert.ToDouble(txtLatitude.Text);
lng = Convert.ToDouble(txtLongitude.Text);

CHAPTER 2 ■ SERIAL COMMUNICATIONS104

gotoPosition(lat, lng, false, "");
}

The event handler for the Goto Point button first extracts the latitude and longitude from
the TextBox controls and then calls the gotoPosition() subroutine.

Visual Basic 2005

'---go to a particular location on the map---
Private Sub gotoPosition(_

ByVal lat As Double, ByVal lng As Double, _
ByVal showPushpin As Boolean, ByVal pushPinText As String)

'---display map at specific location---
Dim param() As Object = New Object() {lat, lng}
WebBrowser1.Document.InvokeScript("goto_map_position", param)

'---if need to insert pushpin---
If showPushpin Then

'---set the pushpin---
param = New Object() {pushpin, pushPinText, lat, lng}
WebBrowser1.Document.InvokeScript("addPushpin", param)
pushpin += 1

End If
End Sub

C# 2005

//---go to a particular location on the map---
private void gotoPosition(

double lat, double lng,
bool showPushpin, string pushPinText)

{
//---display map at specific location---
object[] param = new object[] { lat, lng };
WebBrowser1.Document.InvokeScript("goto_map_position",

param);

//---if need to insert pushpin---
if (showPushpin)
{

//---set the pushpin---
param = new object[]

{ pushpin, pushPinText, lat, lng };
WebBrowser1.Document.InvokeScript("addPushpin",

param);
pushpin += 1;

}
}

CHAPTER 2 ■ SERIAL COMMUNICATIONS 105

The gotoPosition() subroutine first gets the map to display a particular location by
calling the JavaScript function (using the InvokeScript method of the Document object)
goto_map_position(). It then determines whether it needs to insert a pushpin into the
specified location. The gotoPosition() subroutine is also used later to plot traveled paths.

Connecting to a GPS Receiver
If you have a GPS receiver paired to the computer running the application, you can connect to
it using a serial connection and then retrieve your positioning information. When the applica-
tion is loaded, it lists all the available COM ports on your computer (see Figure 2-27).

Figure 2-27. Listing all the available COM ports on your computer

Assuming you have paired your computer with a Bluetooth-enabled GPS receiver, you
then select the serial port associated with your GPS device and click Connect to establish a
connection to the serial port. You accomplish this process with the following event handler.

Visual Basic 2005

'---connect to a serial port to communicate with the GPS
' receiver---
Private Sub btnConnect_Click(_

ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnConnect.Click
If btnConnect.Text = "Connect" Then

btnConnect.Text = "Disconnect"

'---close the serial port if it is open---
If serialPort.IsOpen Then

serialPort.Close()
End If
Try

'---configure the parameters of the serial port---
With serialPort

.PortName = cbbCOMPorts.Text

.BaudRate = 9600

CHAPTER 2 ■ SERIAL COMMUNICATIONS106

.Parity = IO.Ports.Parity.None

.DataBits = 8

.StopBits = IO.Ports.StopBits.One
End With

'---open the serial port---
serialPort.Open()
lblMessage.Text = cbbCOMPorts.Text & " connected."

Catch ex As Exception
MsgBox(ex.ToString)

End Try
Else

'---close the serial port---
btnConnect.Text = "Connect"
serialPort.Close()

End If
End Sub

C# 2005

//---connect to a serial port to communicate with the GPS
// receiver---
private void btnConnect_Click(object sender, EventArgs e)
{

if (btnConnect.Text == "Connect")
{

btnConnect.Text = "Disconnect";

//---close the serial port if it is open---
if (serialPort.IsOpen)
{

serialPort.Close();
}
try
{

//---configure the parameters of the serial
// port---
serialPort.PortName = cbbCOMPorts.Text;
serialPort.BaudRate = 9600;
serialPort.Parity = System.IO.Ports.Parity.None;
serialPort.DataBits = 8;
serialPort.StopBits =

System.IO.Ports.StopBits.One;

//---open the serial port---
serialPort.Open();
lblMessage.Text = cbbCOMPorts.Text + "

CHAPTER 2 ■ SERIAL COMMUNICATIONS 107

connected.";
}
catch (Exception ex)
{

MessageBox.Show(ex.ToString());
}

}
else
{

//---close the serial port---
btnConnect.Text = "Connect";
serialPort.Close();

}
}

With the GPS connected to your application via the selected serial port, you must now
stand by for incoming data from the GPS receiver. Generally, most GPS receivers support the
NMEA standard. Table 2-5 lists some common NMEA data sentences.

Table 2-5. Common NMEA Data Sentences and Their Meanings

Sentence Description

$GPGGA Global positioning system fixed data

$GPGLL Geographic position: latitude/longitude

$GPGSA GNSS DOP and active satellites

$GPGSV GNSS satellites in view

$GPRMC Recommended minimum specific GNSS data

$GPVTG Course over ground and ground speed

A typical stream of GPS data looks like this:

$GPVTG,,T,,M,,N,,K,N*2C
$GPGGA,001431.092,0118.2653,N,10351.1359,E,0,00,,-19.6,M,4.1,M,,0000*5B
$GPGSA,A,1,,,,,,,,,,,,,,,*1E
$GPGSV,3,1,12,20,00,000,,10,00,000,,25,00,000,,27,00,000,*79
$GPGSV,3,2,12,03,00,000,,31,00,000,,24,00,000,,15,00,000,*78
$GPGSV,3,3,12,16,00,000,,05,00,000,,01,00,000,,26,00,000,*7D
$GPRMC,001431.092,V,0118.2653,N,10351.1359,E,,,070805,,,N*72
$GPVTG,,T,,M,,N,,K,N*2C
$GPGGA,001432.092,0118.2653,N,10351.1359,E,0,00,,-19.6,M,4.1,M,,0000*58
$GPRMC,001432.092,V,0118.2653,N,10351.1359,E,,,070805,,,N*71
$GPVTG,,T,,M,,N,,K,N*2C
$GPGGA,001433.106,0118.2653,N,10351.1359,E,0,00,,-19.6,M,4.1,M,,0000*55
$GPRMC,001433.106,V,0118.2653,N,10351.1359,E,,,070805,,,N*7C

CHAPTER 2 ■ SERIAL COMMUNICATIONS108

■Tip You can learn more about GPS NMEA sentences at http://www.commlinx.com.au/
NMEA_sentences.htm. Table 2-5 is extracted from the previous website.

For the example application, you would be interested only in knowing your geographical
location, that is, latitude and longitude. Therefore, you need to look out for sentences begin-
ning with $GPGGA.

Table 2-6 shows the breakdown of a typical $GPGGA sentence.

Table 2-6. The Fields in a $GPGGA Sentence

Field Sample Description

0 $GPGGA Sentence prefix

1 001431.092 UTC time (in hhmmss.sss format)

2 0118.2653 Latitude (in ddmm.mmmm format)

3 N (N)orth or (S)outh

4 10351.1359 Longitude (in dddmm.mmmm format)

5 E (E)ast or (W)est

6 0 Position Fix (0 is invalid, 1 is valid, 2 is valid DGPS, 3 is valid PPS)

7 04 Satellites used

8 Horizontal dilution of precision

9 –19.6 Altitude (unit specified in next field)

10 M M is meter

11 4.1 Geoid separation (unit specified in next field)

12 M M is meter

13 Age of DGPS data (in seconds)

14 0000 DGPS station ID

15 *5B Checksum

15 CRLF Terminator

As you can see from Table 2-6, you need to look in fields 2 and 4 to obtain the latitude and
longitude of a position.

To receive incoming data on the serial port, create the DataReceived event.

Visual Basic 2005

Private Sub DataReceived(_
ByVal sender As Object, _
ByVal e As System.IO.Ports.SerialDataReceivedEventArgs) _
Handles serialPort.DataReceived
'---invoke the delegate to display the received data---

CHAPTER 2 ■ SERIAL COMMUNICATIONS 109

txtDataReceived.BeginInvoke(New _
myDelegate(AddressOf updateTextBox), _
New Object() {})

End Sub

C# 2005

private void DataReceived(object sender,
System.IO.Ports.SerialDataReceivedEventArgs e)

{
//---invoke the delegate to display the received data---
txtDataReceived.BeginInvoke(new

myDelegate(updateTextBox));
}

When incoming data is detected, the DataReceived event will be fired, and it will then call
a delegate to display the data on the TextBox control.

Visual Basic 2005

Public Delegate Sub myDelegate()
Public Sub updateTextBox()

Try
With txtDataReceived

'---read all data from serial port---
Dim Data As String = serialPort.ReadExisting

'---append the data to the TextBox control---
.AppendText(Data)
.ScrollToCaret()

'---extract the second last line---
Dim GPSData As String = txtDataReceived.Lines(_

txtDataReceived.Lines.Length - 2)

'---process only lines starting with $GPGGA---
If GPSData.StartsWith("$GPGGA") Then

If Not processGPSData(GPSData) Then
lblMessage.Text = "No fix..."

End If
End If

End With
Catch ex As Exception

Console.WriteLine(ex.ToString)
End Try

End Sub

CHAPTER 2 ■ SERIAL COMMUNICATIONS110

C# 2005

public delegate void myDelegate();
public void updateTextBox()
{

try
{

//---read all data from serial port---
string Data = serialPort.ReadExisting();

//---append the data to the TextBox control---
txtDataReceived.AppendText(Data);
txtDataReceived.ScrollToCaret();

//---extract the second last line---
string GPSData =

txtDataReceived.Lines[txtDataReceived.Lines.Length
- 2];

//---process only lines starting with $GPGGA---
if (GPSData.StartsWith("$GPGGA"))
{

if (!(processGPSData(GPSData)))
{

lblMessage.Text = "No fix...";
}

}
}
catch (Exception ex)
{

Console.WriteLine(ex.ToString());
}

}

Incoming data is appended to the end of the TextBox control. One important point you
need to be aware of is that the GPS receiver may not necessarily send incoming data as a com-
plete sentence. For example, the following sentence:

$GPGGA,000000.053,0118.2653,N,10351.1359,E,0,00,,-19.6,M,4.1,M,,0000*51

might be sent in three separate blocks:

$GPGGA,000000.053,0118.2
653,N,10351.1359,E,0,00,
,-19.6,M,4.1,M,,0000*51

In this case, each block of data received by the serialPort.ReadExisting() method is
incomplete, and you must wait until the whole $GPGGA sentence is received before you can
parse it for the data you need. One easy way to solve this is to extract the $GPGGA sentence from
the TextBox control (txtDataReceived). Because all incoming data is appended to the end of

CHAPTER 2 ■ SERIAL COMMUNICATIONS 111

the TextBox control and the last line may contain a partial sentence, you should thus always
extract the second-to-last line to extract the location information (see Figure 2-28). Program-
matically, you can extract the second-to-last line of a TextBox control by subtracting 2 from its
length. For example, if a TextBox contains five lines (with index from 0 to 4), then the index of
the second-to-last line will be 5 minus 2, which is 3.

■Note Ideally, you should use the serialPort.ReadLine() method to read each line of incoming data.
However, the current implementation causes an exception to be thrown during runtime.

Figure 2-28. The second-to-last line contains a complete sentence.

CONVERTING LATITUDE AND LONGITUDE VALUES

Both the latitude and longitude values represented in the NMEA data sentence are presented in degrees,
minutes, and decimal minutes. Both latitude and longitude are represented as ddmm.mmmm. The directions
of latitude and longitude are indicated as a single character in the next field (N for north, S for south, E for
east, and W for west).

However, most mapping applications require latitude and longitude information to be represented as
signed decimal degrees, with negative latitude for south and negative longitude for west. You can use the
formula shown in the following illustration to convert latitude (or longitude) information from the “degrees,
minutes, and decimal minutes” format to the “decimal degree” format:

The vertical bars represent integer division.

Hence, if the second-to-last line begins with the $GPGGA word, you will call the
processGPSData() function to process the sentence, which is defined as follows.

ddmm.mmmm
100 60

ddmm.mmmm – • 100
+

ddmm.mmmm
100

txtDataReceived.Lines.Length - 2

CHAPTER 2 ■ SERIAL COMMUNICATIONS112

Visual Basic 2005

Private Function processGPSData(ByVal str As String) As Boolean
Try

'---separate the GPS data into various fields---
Dim field() As String
field = str.Split(",")
Dim lat, lng As Double
Dim rawLatLng As Double
If field.Length < 15 Then Return False

'---latitude---
rawLatLng = Convert.ToDouble(field(2))
lat = (rawLatLng \ 100) + _

((rawLatLng - ((rawLatLng \ 100) * 100)) / 60)

'---latitude is negative if South---
If field(3) = "S" Then

lat *= -1.0
End If

'---longitude---
rawLatLng = Convert.ToDouble(field(4))
lng = (rawLatLng \ 100) + _

((rawLatLng - ((rawLatLng \ 100) * 100)) / 60)

'---longitude is negative if West---
If field(5) = "W" Then

lng *= -1.0
End If

'---update map---
If str.StartsWith("$") Then

'---live data from GPS---
gotoPosition(lat, lng, False, "")

Else
'---recorded path---
gotoPosition(lat, lng, True, "X")

End If
lblMessage.Text = "Latitude: " & lat & " Longitude: " & _

lng
Return True

Catch
Return False

End Try
End Function

CHAPTER 2 ■ SERIAL COMMUNICATIONS 113

C# 2005

private bool processGPSData(string str)
{

try
{

//---separate the GPS data into various fields---
string[] field;
field = str.Split(',');
double lat;
double lng;
double rawLatLng;
if (field.Length < 15)
{

return false;
}

//---latitude---
rawLatLng = Convert.ToDouble(field[2]);
lat = ((int)(rawLatLng / 100)) +

((rawLatLng - (((int)(rawLatLng / 100)) * 100)) / 60);

//---latitude is negative if South---
if (field[3] == "S")
{

lat *= -1;
}

//---longitude---
rawLatLng = Convert.ToDouble(field[4]);
lng = ((int)(rawLatLng / 100)) + ((rawLatLng –

(((int)(rawLatLng / 100)) * 100)) / 60);

//---longitude is negative if West---
if (field[5] == "W")
{

lng *= -1;
}

//---update map---
if (str.StartsWith("$"))
{

//---live data from GPS---
gotoPosition(lat, lng, false, "");

} else
{

//---recorded path---

CHAPTER 2 ■ SERIAL COMMUNICATIONS114

gotoPosition(lat, lng, true, "X");
}
lblMessage.Text = "Latitude: " + lat +

" Longitude: " + lng;
return true;

}
catch
{

return false;
}

}

The processGPSData() function extracts the fields containing the latitude and longitude
and then performs some simple processing. In particular, you need to convert them to the
correct degree and minute format that VE can understand. Also, if the direction indicated is
south, then the latitude must be negated. Similarly, the longitude is negated for west. Finally,
the map is updated with the new position.

You can now test the application and see whether it is able to display your current location.
Press F5, and select the serial port that is connected to your GPS receiver.

■Tip Be sure you are connected to the Internet so that the map can be retrieved and updated.

Plotting Saved Path
Besides displaying the map in real time, you can also save the positional information reported
by your GPS receiver to a text file and then feed it into the application to plot the path you
have traveled.

■Tip You can download a Pocket PC application that I have written to collect the data from a GPS receiver
from the Source Code/Download section of the Apress website (http://www.apress.com).

To load a saved GPS data file, the user clicks the Show Path button (see Figure 2-29).

Figure 2-29. The Show Path and Clear Path buttons

CHAPTER 2 ■ SERIAL COMMUNICATIONS 115

The event handler for the Show Path button is as follows.

Visual Basic 2005

'---plot a path from a GPS data file---
Private Sub btnShowPath_Click(_

ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnShowPath.Click

Dim fileContents As String = String.Empty

'---let user choose a file---
Dim openFileDialog1 As New OpenFileDialog()
openFileDialog1.InitialDirectory = "c:\"
openFileDialog1.Filter = _

"txt files (*.txt)|*.txt|All files (*.*)|*.*"
openFileDialog1.FilterIndex = 2
openFileDialog1.RestoreDirectory = True

'---Load the content of the selected file---
If openFileDialog1.ShowDialog() = _

Windows.Forms.DialogResult.OK Then
fileContents = My.Computer.FileSystem.ReadAllText(_

openFileDialog1.FileName)
End If

'---split the content various lines using the $ as the
' delimiter---
line = fileContents.Split("$")
lineIndex = 0
Timer1.Enabled = True

End Sub

C# 2005

//---plot a path from a GPS data file---
private void btnShowPath_Click(object sender, EventArgs e)
{

string fileContents = string.Empty;

//---let user choose a file---
OpenFileDialog openFileDialog1 = new OpenFileDialog();
openFileDialog1.InitialDirectory = "c:\\";
openFileDialog1.Filter =

"txt files (*.txt)|*.txt|All files (*.*)|*.*";

CHAPTER 2 ■ SERIAL COMMUNICATIONS116

openFileDialog1.FilterIndex = 2;
openFileDialog1.RestoreDirectory = true;

//---Load the content of the selected file---
if (openFileDialog1.ShowDialog() == DialogResult.OK)
{

fileContents =
System.IO.File.ReadAllText(
openFileDialog1.FileName);

}

//---split the content various lines using the $ as the
// delimiter---
line = fileContents.Split('$');
lineIndex = 0;
Timer1.Enabled = true;

}

It prompts the user to select a saved GPS data file and then splits (using $ as the delimiter)
its content into an array called line. The content of a typical GPS data file may look like this:

$GPGGA,001409.105,0118.2653,N,10351.1359,E,0,00,,-19.6,M,4.1,M,,0000*5F
$GPRMC,001409.105,V,0118.2653,N,10351.1359,E,,,070805,,,N*76
$GPVTG,,T,,M,,N,,K,N*2C
$GPGGA,001410.091,0118.2653,N,10351.1359,E,0,00,,-19.6,M,4.1,M,,0000*5B
$GPRMC,001410.091,V,0118.2653,N,10351.1359,E,,,070805,,,N*72
$GPVTG,,T,,M,,N,,K,N*2C
$GPGGA,001411.091,0118.2653,N,10351.1359,E,0,00,,-19.6,M,4.1,M,,0000*5A
$GPGSA,A,1,,,,,,,,,,,,,,,*1E
$GPGSV,3,1,12,20,00,000,,10,00,000,,25,00,000,,27,00,000,*79
$GPGSV,3,2,12,03,00,000,,31,00,000,,24,00,000,,15,00,000,*78
$GPGSV,3,3,12,16,00,000,,05,00,000,,01,00,000,,26,00,000,*7D
$GPRMC,001411.091,V,0118.2653,N,10351.1359,E,,,070805,,,N*73
$GPVTG,,T,,M,,N,,K,N*2C
$GPGGA,001412.106,0118.2653,N,10351.1359,E,0,00,,-19.6,M,4.1,M,,0000*56
$GPRMC,001412.106,V,0118.2653,N,10351.1359,E,,,070805,,,N*7F
$GPVTG,,T,,M,,N,,K,N*2C
$GPGGA,001413.091,0118.2653,N,10351.1359,E,0,00,,-19.6,M,4.1,M,,0000*58
$GPRMC,001413.091,V,0118.2653,N,10351.1359,E,,,070805,,,N*71
$GPVTG,,T,,M,,N,,K,N*2C
$GPGGA,001414.091,0118.2653,N,10351.1359,E,0,00,,-19.6,M,4.1,M,,0000*5F

CHAPTER 2 ■ SERIAL COMMUNICATIONS 117

Figure 2-30 shows the content of the line array after the split.

Figure 2-30. The content of the line array

To animate the path taken, you use the Timer control to draw each point every second.
You do this by setting the Enabled property of the Timer control to true.

Every second, the Timer1_Tick event will fire. This is where you examine the data in the
line array to extract the latitude and longitude of the current position.

Visual Basic 2005

'---for plotting a path---
Private Sub Timer1_Tick(_

ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles Timer1.Tick

If lineIndex = 0 Then pointCounter = 1

'---plot a point in the path---
While (lineIndex <= line.Length - 1)

If line(lineIndex).StartsWith("GPGGA") AndAlso _
processGPSData(line(lineIndex)) Then
lblMessage.Text = "Updating map...point " & _

pointCounter
pointCounter += 1
Exit While

End If
lineIndex += 1

End While
lineIndex += 1

'---stop the Timer control when the end of the path is
' reached---

CHAPTER 2 ■ SERIAL COMMUNICATIONS118

If lineIndex > line.Length - 1 Then
Timer1.Enabled = False
lblMessage.Text = "Plotting completed."

End If
End Sub

C# 2005

//---for plotting a path---
private void Timer1_Tick(object sender, EventArgs e)
{

if (lineIndex == 0)
{

pointCounter = 1;
}

//---plot a point in the path---
while ((lineIndex <= line.Length - 1))
{

if (line[lineIndex].StartsWith("GPGGA") &&
processGPSData(line[lineIndex]))

{
lblMessage.Text = "Updating map...point " +

pointCounter;
pointCounter += 1;
break;

}
lineIndex += 1;

}
lineIndex += 1;

//---stop the Timer control when the end of the path is
// reached---
if (lineIndex > line.Length - 1)
{

Timer1.Enabled = false;
lblMessage.Text = "Plotting completed.";

}
}

CHAPTER 2 ■ SERIAL COMMUNICATIONS 119

In essence, you keep looking for lines beginning with the word GPGGA and then use the lati-
tude and longitude to update the position on the map. The Tick event will keep on firing every
second until you explicitly turn it off when the number of lines to process has reached the end.
Each location on the map is shown with a pushpin (marked with an x; see Figure 2-31).

Figure 2-31. Displaying the traveled path with pushpins

To clear the path just shown on the map, click the Clear Path button. The following event
handler handles this.

Visual Basic 2005

'---clear the plotted path by removing all pushpins---
Private Sub btnClearPath_Click(_

ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnClearPath.Click
'---removing all the pushpins---
For i As Integer = 0 To pushpin

removePushpin(i)
Next

End Sub

C# 2005

//---clear the plotted path by removing all pushpins---
private void btnClearPath_Click(object sender, EventArgs e)
{

CHAPTER 2 ■ SERIAL COMMUNICATIONS120

//---removing all the pushpins---
for (int i = 0; i <= pushpin; i++)
{

removePushpin(i);
}

}

It calls the removePushPin() subroutine repeatedly until all the pushpins are removed.

Visual Basic 2005

'---remove a pushpin---
Private Sub removePushpin(ByVal id As Integer)

Dim param() As Object = New Object() {id}
WebBrowser1.Document.InvokeScript("removePushpin", param)

End Sub

C# 2005

//---remove a pushpin---
private void removePushpin(int id)
{

object[] param = new object[] { id };
WebBrowser1.Document.InvokeScript("removePushpin", param);

}

Summary
In this chapter, you built three projects using the SerialPort class. As you can see, the
SerialPort class has greatly simplified your life by encapsulating much of the functionality
you need. In the first project, you used serial communication to enable two PCs to communi-
cate. You can use the same application to control a mobile phone via a Bluetooth connection.
In the second project, you ported the first project to the Windows Mobile 5.0 platform; using
this project, two Pocket PCs can communicate wirelessly over Bluetooth (which supports the
serial profile). In the last project, you saw how to pipe GPS data to your PC via a serial port
(over Bluetooth) and how to use the data to display a map using a mapping application such
as Microsoft Virtual Earth.

CHAPTER 2 ■ SERIAL COMMUNICATIONS 121

Incorporating Fingerprint
Recognition into Your
.NET Application

Biometric recognition is one of the most reliable ways to confirm the identity of an individual.
And by now, most people should be familiar with the Microsoft Fingerprint Reader (http://
www.microsoft.com/hardware/mouseandkeyboard/productdetails.aspx?pid=036; see also
Figure 3-1).

Figure 3-1. The Microsoft Fingerprint Reader

Using the Microsoft Fingerprint Reader, you can now log in to your computer by placing
your finger on the reader. You can also use the application provided by the Fingerprint Reader
to save your user IDs and passwords for websites that require them for authentication. You
can then use your fingerprint as a key to retrieve the user IDs and passwords for logging into
these sites securely. The Microsoft Fingerprint Reader removes the hassle of remembering
different passwords for different sites.

123

C H A P T E R 3

■ ■ ■

However, that’s all you can do with the Fingerprint Reader. Microsoft does not provide a
SDK to allow developers to incorporate the Fingerprint Reader into their applications. For
this, you have to rely on third-party solution providers. Fortunately, one such provider exists:
Griaule (http://griaule.com/).

Griaule provides the GrFinger Fingerprint SDK (http://griaule.com/page/en-us/
grfinger_sdk), a fingerprint recognition SDK that supports existing fingerprint readers; it
works with Microsoft Fingerprint Reader, Digital Persona U.are.U 4000, SecuGen Hamster
FDU02, Geomok (Testech) Bio-I, and Crossmatch USB Fingerprint Reader.

In this chapter, I will show you how you can use the GrFinger Fingerprint SDK to integrate
the Microsoft Fingerprint Reader into your .NET 2.0 Windows applications. In particular, you
will build a visitor identification system whereby users visiting your office can register at the
reception desk (see Figure 3-2). Once a user is registered, the next time the user visits the
office, he can simply scan his fingerprint, and the system will register his visit. Schools can
also adapt this application for attendance-taking purposes, such as in big lecture theaters
where attendance must be taken rapidly and efficiently.

Figure 3-2. The visitor identification system application you will build in this chapter

Using the GrFinger SDK
Two editions of the GrFinger Fingerprint SDK exist: light and full (http://www.griaule.com/
page/en-us/grfinger_sdk). Consult Griaule’s website for full pricing information for each edi-
tion. For this chapter’s examples, I have used the full edition of the GrFinger SDK 4.2. You can
apply for a free 90-day trial license to test the SDK (http://www.griaule.com/page/en-us/
downloads).

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION124

Creating the Application
Once you have the GrFinger SDK installed, you are ready to create the application. Using
Visual Studio 2005, create a new Windows application (select either Visual Basic or C#), and
name it Fingerprintreader.

First, you need to add the GrFingerXCtrl control (an ActiveX control representing the
GrFinger component) to your Toolbox. Right-click the Toolbox, and select Add/Remove Items.
On the COM Components tab, check the GrFingerXCtrl Class item (see Figure 3-3), and click OK.

Figure 3-3. Adding the GrFingerXCtrl control to the Toolbox

The GrFingerXCtrl control will now appear in the Toolbox (see Figure 3-4).

Figure 3-4. The GrFingerXCtrl control in the Toolbox

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 125

In the default Form1, populate it with the following controls (see Figure 3-5):

• PictureBox

• AxGrFingerXCtrl

• Label

• TextBox

• Button

• GroupBox

• Timer

Figure 3-5. Populating the default Form1 with all the controls

ListBox Control (ListBox1)

Button Control (btnRegister)

TextBox Control (txtEmail)
TextBox Control (txtContactNumber)
TextBox Control (txtCompany)
TextBox Control (txtName)
TextBox Control (txtSSN)

Label Control (lblMessage)

PictureBox Control
(PictureBox1) GroupBox Control

Timer Control
(Timer1)

Label Controls

AxGrFingerXCtrl Control
(AxGrFingerXVCrl1)

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION126

ACTIVEX CONTROL BUG IN VISUAL STUDIO 2005

Because of a bug in Visual Studio 2005, you may encounter an error message when you try to drag and drop
the AxGrFingerXCtrl control from the Toolbox onto the Windows form. The typical error message is “Failed to
import the ActiveX control. Please ensure it is properly registered.” This error usually arises when you try to
add third-party ActiveX controls to your Windows application.

To solve this error, after the error message, go to the obj\Debug folder in the application, and delete
the file named Interop.GrFingerXLib.dll. Once you’ve deleted the file, perform the drag and drop one
more time. This time, you should be able to add the ActiveX control successfully.

Set the image of the PictureBox control by clicking the ellipsis (…) icon in the Image prop-
erty of the PictureBox control in the Properties window. Click the Import button to load an
image named fingerprintreader (see Figure 3-6). Click OK.

■Tip Download the sample code from the Source Code/Download section of the Apress website
(http://www.apress.com).

Figure 3-6. Selecting a picture resource

Also, set the Interval property of the Timer control to 5000. This will cause the Timer
control to fire an event every five seconds.

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 127

Coding the Application
The GrFinger Fingerprint SDK comes with a sample application written in different languages:
Visual Basic 6, Java, C++, Visual Basic .NET (for Visual Studio .NET 2003), Visual Basic 2005 (for
Visual Studio 2005), and so on. For the Visual Basic 2005 and C# 2005 versions of this sample,
Griaule has provided two useful libraries: DBClass.vb/DBClass.cs and Util.vb/Util.cs.

The DBClass.vb (or DBClass.cs) library contains routines to add/retrieve user’s informa-
tion to/from a database. The Util.vb (or Util.cs) library contains all the necessary routines to
use the GrFingerXCtrl control and other supporting Win32 APIs. For this reason (rather than
reinventing the wheel), you will use these libraries in this application.

Hence, add the DBClass.vb (or DBClass.cs) and Util.vb (or Util.cs) files to the project
(see Figure 3-7; right-click Solution Explorer, and then select Add ➤ Existing Item). You can
add the two files from the default installation directory: C:\Program Files\Griaule\GrFinger
4.2\samples\Visual Basic.NET 2005\GrFingerX (or C:\Program Files\Griaule\GrFinger
4.2\samples\C# 2005\GrFingerX).

Figure 3-7. Adding the two useful libraries provided by Griaule

Listing 3-1 and Listing 3-2 (later in the chapter) show the full source of Util.vb (and
Util.cs) and DBClass.vb (and DBClass.cs). You will also modify the sample application
provided by Griaule to suit the purpose of this application.

To keep the code in the DBClass.vb (or DBClass.cs) library intact, you will use the sample
Access database provided by Griaule. The original Access database is named
GrFingerSample.mdb (you can find this in the default directory, C:\Program
Files\Griaule\GrFinger 4.2\samples\), and it contains one single table called enroll. The
original enroll table contains only two fields: ID and template (for storing the fingerprint
image). For this application, you will add five more fields to the enroll table. They are SSN,
Name, Company, ContactNumber, and Email (see Figure 3-8).

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION128

Figure 3-8. Adding new fields to the enroll table

Save the changes to the database, and add it to the project (right-click Solution Explorer,
and select Add ➤ Existing Items). Figure 3-9 shows the GrFingerSample.mdb database added to
the project.

Figure 3-9. Adding the GrFingerSample.mdb database to the project

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 129

Wiring Up All the Controls
Let’s now switch to the code-behind of Form1 and write the code to wire up all the controls.
First, import the GrFingerXLib namespace.

Visual Basic 2005

Imports GrFingerXLib

C# 2005

using GrFingerXLib;

Declare the following constants and member variables.

Visual Basic 2005

Public Class Form1
'---name of the database---
Const DBFile = "GrFingerSample.mdb"
Const Logfile = "C:\Log.csv"
Const ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " & _

"Data Source="

'---for an instance of the Util.vb class---
Private myUtil As Util
'---for storing user’s ID---
Private _UserID As Integer
'---database connection---
Private connection As System.Data.OleDb.OleDbConnection

C# 2005

//---name of the database---
const string DBFile = "GrFingerSample.mdb";
const string Logfile = "C:\\Log.csv";
const string ConnectionString =

"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=";

//---for an instance of the Util.vb class---
Util myUtil;
//---for storing user's ID---
int _UserID;

//---database connection---
System.Data.OleDb.OleDbConnection connection;

In the Form1_Load event, code the following.

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION130

Visual Basic 2005

Private Sub Form1_Load(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles MyBase.Load
Dim err As Integer

'---initialize Util class---
myUtil = New Util(ListBox1, PictureBox1, AxGrFingerXCtrl1)

'---Initialize GrFingerX Library---
err = myUtil.InitializeGrFinger()

'---Print result in log---
If err < 0 Then

myUtil.WriteError(err)
Exit Sub

Else
myUtil.WriteLog(_

"**GrFingerX Initialized Successfully**")
End If

'---create a log file---
If Not System.IO.File.Exists(Logfile) Then

System.IO.File.Create(Logfile)
End If

End Sub

C# 2005

private void Form1_Load(object sender, EventArgs e)
{

int err;

//---initialize util class---
myUtil = new Util(ListBox1, PictureBox1, null, null,

null, null, null, null);

//---wire up all the event handlers for the reader---
axGrFingerXCtrl1.SensorPlug += new

AxGrFingerXLib.
_IGrFingerXCtrlEvents_SensorPlugEventHandler(

axGrFingerXCtrl1_SensorPlug);
axGrFingerXCtrl1.SensorUnplug += new

AxGrFingerXLib.
_IGrFingerXCtrlEvents_SensorUnplugEventHandler(

axGrFingerXCtrl1_SensorUnplug);

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 131

axGrFingerXCtrl1.FingerDown += new
AxGrFingerXLib.

_IGrFingerXCtrlEvents_FingerDownEventHandler(
axGrFingerXCtrl1_FingerDown);

axGrFingerXCtrl1.FingerUp += new
AxGrFingerXLib.

_IGrFingerXCtrlEvents_FingerUpEventHandler(
axGrFingerXCtrl1_FingerUp);

axGrFingerXCtrl1.ImageAcquired += new
AxGrFingerXLib.

_IGrFingerXCtrlEvents_ImageAcquiredEventHandler(
axGrFingerXCtrl1_ImageAcquired);

//---Initialize GrFingerX Library---
err = myUtil.InitializeGrFinger(axGrFingerXCtrl1);

//---Print result in log---
if ((err < 0))
{

myUtil.WriteError((GRConstants)err);
return;

}
else
{

myUtil.WriteLog(
"**GrFingerX Initialized Successfully**");

}

//---create a log file---
if (!System.IO.File.Exists(Logfile))
{

System.IO.File.Create(Logfile);
}

}

Here, you create an instance of the Util class. The constructor of the Visual Basic version
of the Util class takes three arguments: the ListBox control to display the status of the
GrFingerXCtrl control, a PictureBox control to display the captured fingerprint image, and
finally the GrFingerXCtrl control. The C# version of the Util class takes eight arguments, but
only the first two are relevant in this case: the ListBox control to display the status of the
GrFingerXCtrl control and the PictureBox control to display the captured fingerprint image.
The rest of the arguments are related to the sample example shipped with the Fingerprint
SDK, and hence you will just ignore them here by sending a null value.

■Note For the C# code, you need to wire up the event handlers for the axGrFingerXCtrl1 control.

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION132

You then initialize the GrFingerX library and create a log file (if it is not already present).
This log file is a comma-separated values (CSV) file that contains the user’s ID and login time.

Next, service all the necessary events of the GrFingerXCtrl control.

Visual Basic 2005

' --
' GrFingerX events
' --
'---A fingerprint reader was plugged on system---
Private Sub AxGrFingerXCtrl1_SensorPlug(_

ByVal sender As System.Object, _
ByVal e As _
AxGrFingerXLib._IGrFingerXCtrlEvents_SensorPlugEvent) _
Handles AxGrFingerXCtrl1.SensorPlug
myUtil.WriteLog("Sensor: " & e.idSensor & ". Event: Plugged.")
AxGrFingerXCtrl1.CapStartCapture(e.idSensor)

End Sub

'---A fingerprint reader was unplugged from system---
Private Sub AxGrFingerXCtrl1_SensorUnplug(_

ByVal sender As System.Object, _
ByVal e As _

AxGrFingerXLib._IGrFingerXCtrlEvents_SensorUnplugEvent) _
Handles AxGrFingerXCtrl1.SensorUnplug
myUtil.WriteLog("Sensor: " & e.idSensor & _

". Event: Unplugged.")
AxGrFingerXCtrl1.CapStopCapture(e.idSensor)

End Sub

'---A finger was placed on reader---
Private Sub AxGrFingerXCtrl1_FingerDown(_

ByVal sender As System.Object, _
ByVal e As _

AxGrFingerXLib._IGrFingerXCtrlEvents_FingerDownEvent) _
Handles AxGrFingerXCtrl1.FingerDown
myUtil.WriteLog("Sensor: " & e.idSensor & _

". Event: Finger Placed.")
End Sub

'---A finger was removed from reader---
Private Sub AxGrFingerXCtrl1_FingerUp(_

ByVal sender As System.Object, _
ByVal e As AxGrFingerXLib._IGrFingerXCtrlEvents_FingerUpEvent) _
Handles AxGrFingerXCtrl1.FingerUp
myUtil.WriteLog("Sensor: " & e.idSensor & _

". Event: Finger removed.")
End Sub

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 133

C# 2005

//--
// GrFingerX events
//--
//---A fingerprint reader was plugged on system---
private void axGrFingerXCtrl1_SensorPlug(object sender,

AxGrFingerXLib._IGrFingerXCtrlEvents_SensorPlugEvent e)
{

myUtil.WriteLog(("Sensor: "
+ (e.idSensor + ". Event: Plugged.")));

axGrFingerXCtrl1.CapStartCapture(e.idSensor);
}

//---A fingerprint reader was unplugged from system---
private void axGrFingerXCtrl1_SensorUnplug(object sender,

AxGrFingerXLib._IGrFingerXCtrlEvents_SensorUnplugEvent e)
{

myUtil.WriteLog(("Sensor: "
+ (e.idSensor + ". Event: Unplugged.")));

axGrFingerXCtrl1.CapStopCapture(e.idSensor);
}

//---A finger was placed on reader---
private void axGrFingerXCtrl1_FingerDown(object sender,

AxGrFingerXLib._IGrFingerXCtrlEvents_FingerDownEvent e)
{

myUtil.WriteLog(("Sensor: "
+ (e.idSensor + ". Event: Finger Placed.")));

}

//---A finger was removed from reader---
private void axGrFingerXCtrl1_FingerUp(object sender,

AxGrFingerXLib._IGrFingerXCtrlEvents_FingerUpEvent e)
{

myUtil.WriteLog(("Sensor: "
+ (e.idSensor + ". Event: Finger removed.")));

}

These events are raised when the following happens:

• A fingerprint reader is plugged or unplugged from the computer.

• A finger is placed or removed from the fingerprint reader.

Also, you need to service the ImageAcquired event of the GrFingerXCtrl control. This event
is fired whenever a fingerprint image is acquired. Once the image is acquired, you call the
ExtractTemplate() function (explained after this) and then the IdentifyFingerprint()
subroutine to identify the user’s fingerprint.

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION134

Visual Basic 2005

'---An image was acquired from reader---
Private Sub AxGrFingerXCtrl1_ImageAcquired(_

ByVal sender As System.Object, _
ByVal e As _
AxGrFingerXLib._IGrFingerXCtrlEvents_ImageAcquiredEvent) _
Handles AxGrFingerXCtrl1.ImageAcquired

'---Copying acquired image---
myUtil.raw.height = e.height
myUtil.raw.width = e.width
myUtil.raw.res = e.res
myUtil.raw.img = e.rawImage

'---Signaling that an Image Event occurred.---
myUtil.WriteLog("Sensor: " & e.idSensor & _

". Event: Image captured.")

'---display fingerprint image---
myUtil.PrintBiometricDisplay(False, _

GRConstants.GR_DEFAULT_CONTEXT)

'---extract the template from the fingerprint scanned---
ExtractTemplate()

'---identify who the user is---
_UserID = IdentifyFingerprint()
If _UserID > 0 Then

'---user found---
Beep()
btnRegister.Enabled = False

'---display user's information---
GetUserInfo()

'---writes to log file---
WriteToLog(_UserID)

Else
'---user not found---
ClearDisplay()
btnRegister.Enabled = True
Beep()
lblMessage.Text = "User not found! Please register " & _

"your information below"
End If

End Sub

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 135

C# 2005

//---An image was acquired from reader---
private void axGrFingerXCtrl1_ImageAcquired(object sender,

AxGrFingerXLib._IGrFingerXCtrlEvents_ImageAcquiredEvent e)
{

//---Copying acquired image---
myUtil._raw.height = e.height;
myUtil._raw.width = e.width;
myUtil._raw.Res = e.res;
myUtil._raw.img = e.rawImage;

//---Signaling that an Image Event occurred.---
myUtil.WriteLog(("Sensor: "

+ (e.idSensor + ". Event: Image captured.")));

//---display fingerprint image---
myUtil.PrintBiometricDisplay(false, _

GRConstants.GR_DEFAULT_CONTEXT);

//---extract the template from the fingerprint scanned---
ExtractTemplate();

//---identify who the user is---
_UserID = IdentifyFingerprint();
if ((_UserID > 0))
{

//---user found---
btnRegister.Enabled = false;
GetUserInfo();

//---writes to log file---
WriteToLog(_UserID.ToString());

}
else
{

//---user not found---
ClearDisplay();
btnRegister.Enabled = true;
lblMessage.Text = "User not found! Please " & _

"register your information below";
}

}

Once the user’s identity is found, you will display the user’s particulars by calling
the GetUserInfo() subroutine. You will also write an entry to the log file by calling the
WriteToLog() subroutine.

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION136

Once a fingerprint image is captured, you need to extract some characteristic points from
the image, called minutiae. One regular fingerprint has some 50 minutiae. To identify a user,
you need about 13 of them. When all the minutiae are extracted, they are put together into a
structure called a template, which is the joining of all the extracted minutiae in a fingerprint.
According to Griaule, the identification is made by a triangulation process and geometrical
relation between the minutiae only, not the entire image. You accomplish this process by
using the ExtractTemplate() function.

Visual Basic 2005

'---Extract a template from a fingerprint image---
Private Function ExtractTemplate() As Integer

Dim ret As Integer

'---extract template---
ret = myUtil.ExtractTemplate()

'---write template quality to log---
If ret = GRConstants.GR_BAD_QUALITY Then

myUtil.WriteLog("Template extracted successfully. " & _
"Bad quality.")

ElseIf ret = GRConstants.GR_MEDIUM_QUALITY Then
myUtil.WriteLog("Template extracted successfully. " & _

"Medium quality.")
ElseIf ret = GRConstants.GR_HIGH_QUALITY Then

myUtil.WriteLog("Template extracted successfully. " & _
"High quality.")

End If

If ret >= 0 Then
'---if no error, display minutiae/segments/directions
' into the image---
myUtil.PrintBiometricDisplay(True, _

GRConstants.GR_NO_CONTEXT)
Else

'---write error to log---
myUtil.WriteError(ret)

End If
Return ret

End Function

C# 2005

//---Extract a template from a fingerprint image---
private int ExtractTemplate()
{

int ret;

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 137

//---extract template---
ret = myUtil.ExtractTemplate();

//---write template quality to log---
if ((GRConstants)ret == GRConstants.GR_BAD_QUALITY)
{

myUtil.WriteLog(
"Template extracted successfully. Bad quality.");

}
else if ((GRConstants)ret ==

GRConstants.GR_MEDIUM_QUALITY)
{

myUtil.WriteLog(
"Template extracted successfully. Medium quality.");

}
else if ((GRConstants)ret == GRConstants.GR_HIGH_QUALITY)
{

myUtil.WriteLog(
"Template extracted successfully. High quality.");

}
if ((ret >= 0))
{

//---if no error, display minutiae/segments/directions
// into the image---
myUtil.PrintBiometricDisplay(true,

GRConstants.GR_NO_CONTEXT);
}
else
{

//---write error to log---
myUtil.WriteError((GRConstants)ret);

}
return ret;

}

The IdentifyFingerprint() function locates the identity of the user by calling the
Identify() method located in the Util.vb (or Util.cs) class. It returns the ID of the identified
user.

Visual Basic 2005

'---Identify a fingerprint; returns the ID of the user---
Private Function IdentifyFingerprint() As Integer

Dim ret As Integer, score As Integer
score = 0

'---identify it---
ret = myUtil.Identify(score)

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION138

'---write result to log---
If ret > 0 Then

myUtil.WriteLog("Fingerprint identified. ID = " & ret & _
". Score = " & score & ".")

myUtil.PrintBiometricDisplay(True, _
GRConstants.GR_DEFAULT_CONTEXT)

ElseIf ret = 0 Then
myUtil.WriteLog("Fingerprint not Found.")

Else
myUtil.WriteError(ret)

End If
Return ret

End Function

C# 2005

//---Identify a fingerprint; returns the ID of the user---
private int IdentifyFingerprint()
{

int ret;
int score;
score = 0;

//---identify it---
ret = myUtil.Identify(ref score);

//---write result to log---
if ((ret > 0))
{

myUtil.WriteLog(("Fingerprint identified. ID = "
+ (ret + (". Score = " + (score + ".")))));

myUtil.PrintBiometricDisplay(true,
GRConstants.GR_DEFAULT_CONTEXT);

}
else if ((ret == 0))
{

myUtil.WriteLog("Fingerprint not Found.");
}
else
{

myUtil.WriteError((GRConstants)ret);
}
return ret;

}

The GetUserInfo() subroutine retrieves the user’s particulars using the value of the UserID
variable.

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 139

Visual Basic 2005

'---get user's information---
Public Sub GetUserInfo()

Dim filePath As String
Try

filePath = Application.StartupPath() & "\" & DBFile
connection = New OleDb.OleDbConnection(ConnectionString _

& filePath)
connection.Open()
Dim reader As OleDb.OleDbDataReader
Dim command As OleDb.OleDbCommand = New OleDb.OleDbCommand
command.Connection = connection

'---retrieve user's particulars---
command.CommandText = "SELECT * FROM Enroll WHERE ID=" & _
_UserID

reader = _
command.ExecuteReader(CommandBehavior.CloseConnection)

reader.Read()

'---display user's particulars---
lblMessage.Text = "Welcome, " & reader("name")
txtSSN.Text = reader("SSN")
txtName.Text = reader("Name")
txtCompany.Text = reader("Company")
txtContactNumber.Text = reader("ContactNumber")
txtEmail.Text = reader("Email")

'---reset the timer to another five seconds---
Timer1.Enabled = False
Timer1.Enabled = True

Catch ex As Exception
MsgBox(ex.ToString)

Finally
connection.Close()

End Try
End Sub

C# 2005

//---get user's information---
public void GetUserInfo()
{

string filePath;
try
{

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION140

filePath = (Application.StartupPath + ("\\" +
DBFile));

connection = new System.Data.OleDb.OleDbConnection((
ConnectionString + filePath));

connection.Open();
System.Data.OleDb.OleDbDataReader reader;
System.Data.OleDb.OleDbCommand command = new

System.Data.OleDb.OleDbCommand();
command.Connection = connection;

//---retrieve user's particulars---
command.CommandText = (

"SELECT * FROM Enroll WHERE ID=" + _UserID);
reader =

command.ExecuteReader(
CommandBehavior.CloseConnection);

reader.Read();

//---display user's particulars---
lblMessage.Text = ("Welcome, " + reader["name"]);
txtSSN.Text = reader["SSN"].ToString();
txtName.Text = reader["Name"].ToString();
txtCompany.Text = reader["Company"].ToString();
txtContactNumber.Text =

reader["ContactNumber"].ToString();
txtEmail.Text = reader["Email"].ToString();

//---reset the timer to another five seconds---
Timer1.Enabled = false;
Timer1.Enabled = true;

}
catch (Exception ex)
{

MessageBox.Show(ex.ToString(), "Error");
}
finally
{

connection.Close();
}

}

When a fingerprint is not recognized, the user can register the fingerprint by filling in his
particulars. This is accomplished by the Register button, which first adds the fingerprint to the
database (via the EnrollFingerprint() function) and then adds the particulars of the user
using the AddNewUser() subroutine.

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 141

Visual Basic 2005

'---Register button---
Private Sub btnRegister_Click(_

ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnRegister.Click

'---first add the fingerprint---
_UserID = EnrollFingerprint()

'---then add the particulars---
AddNewUser()

'---clears the display---
ClearDisplay()

'---writes to log file---
WriteToLog(_UserID)

End Sub

C# 2005

//---Register button---
private void btnRegister_Click(

object sender,
System.EventArgs e)

{
//---first add the fingerprint---
_UserID = EnrollFingerprint();

//---then add the particulars---
AddNewUser();

//---clears the display---
ClearDisplay();

//---writes to log file---
WriteToLog(_UserID.ToString());

}

The EnrollFingerprint() function enrolls a finger in the database using the Enroll()
method defined in the Util.vb (or Util.cs) class.

Visual Basic 2005

'---adds a fingerprint to the database; returns the ID of the
' user---
Private Function EnrollFingerprint() As Integer

Dim id As Integer

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION142

'---add fingerprint---
id = myUtil.Enroll()

'---write result to log---
If id >= 0 Then

myUtil.WriteLog("Fingerprint enrolled with id = " & id)
Else

myUtil.WriteLog("Error: Fingerprint not enrolled")
End If
Return id

End Function

C# 2005

//---adds a fingerprint to the database; returns the ID of
// the user---
private int EnrollFingerprint()
{

int id;
//---add fingerprint---
id = myUtil.Enroll();

//---write result to log---
if ((id >= 0))
{

myUtil.WriteLog(("Fingerprint enrolled with id = " +
id));

}
else
{

myUtil.WriteLog("Error: Fingerprint not enrolled");
}
return id;

}

The AddNewUser() subroutine saves the user’s particulars in the database.

Visual Basic 2005

'---Add a new user's information to the database---
Public Sub AddNewUser()

Dim filePath As String
Try

filePath = Application.StartupPath() & "\" & DBFile
connection = New OleDb.OleDbConnection(ConnectionString _

& filePath)
connection.Open()
Dim command As OleDb.OleDbCommand = New OleDb.OleDbCommand

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 143

command.Connection = connection

'---set the user's particulars in the table---
Dim sql As String = "UPDATE enroll SET SSN='" & _

txtSSN.Text & "', " & _
"Name='" & txtName.Text & "', " & _
"Company='" & txtCompany.Text & "', " & _
"ContactNumber='" & txtContactNumber.Text & "', " & _
"Email='" & txtEmail.Text & "' " & _
" WHERE ID=" & _UserID

command.CommandText = sql
command.ExecuteNonQuery()
MsgBox("User added successfully!")

Catch ex As Exception
MsgBox(ex.ToString)

Finally
connection.Close()

End Try
End Sub

C# 2005

//---Add a new user's information to the database---
public void AddNewUser()
{

string filePath;
try
{

filePath = (Application.StartupPath + ("\\" +
DBFile));

connection = new System.Data.OleDb.OleDbConnection((
ConnectionString + filePath));

connection.Open();
System.Data.OleDb.OleDbCommand command = new

System.Data.OleDb.OleDbCommand();
command.Connection = connection;

//---set the user's particulars in the table---
string sql = ("UPDATE enroll SET SSN=\'"

+ (txtSSN.Text + ("\', " + ("Name=\'"
+ (txtName.Text + ("\', " + ("Company=\'"
+ (txtCompany.Text + ("\', " +
("ContactNumber=\'"
+ (txtContactNumber.Text + ("\', " + ("Email=\'"
+ (txtEmail.Text + ("\' " + (" WHERE ID=" +
_UserID))))))))))))))));

command.CommandText = sql;

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION144

command.ExecuteNonQuery();
MessageBox.Show("User added successfully!", "Error");
connection.Close();

}
catch (Exception ex)
{

MessageBox.Show(ex.ToString(), "Error");
}
finally
{

connection.Close();
}

}

The ClearDisplay() subroutine clears the information displayed in the various TextBox
controls.

Visual Basic 2005

'---Clears the user's particulars---
Public Sub ClearDisplay()

lblMessage.Text = _
"Please place your index finger on the fingerprint reader"

PictureBox1.Image = My.Resources.fingerprintreader

txtSSN.Text = String.Empty
txtName.Text = String.Empty
txtCompany.Text = String.Empty
txtContactNumber.Text = String.Empty
txtEmail.Text = String.Empty

End Sub

C# 2005

//---Clears the user's particulars---
public void ClearDisplay()
{

lblMessage.Text =
"Please place your index finger on the fingerprint" +
" reader";

PictureBox1.Image = FingerPrintReader_CS.
Properties.Resources.fingerprintreader;

txtSSN.Text = String.Empty;
txtName.Text = String.Empty;
txtCompany.Text = String.Empty;
txtContactNumber.Text = String.Empty;
txtEmail.Text = String.Empty;

}

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 145

When the Timer1_Tick event is fired (every five seconds), call the ClearDisplay() subrou-
tine to clear the display.

Visual Basic 2005

'---the Timer control---
Private Sub Timer1_Tick(_

ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles Timer1.Tick
ClearDisplay()
Timer1.Enabled = False

End Sub

C# 2005

private void Timer1_Tick(object sender, EventArgs e)
{

ClearDisplay();
Timer1.Enabled = false;

}

The WriteToLog() subroutine writes to the log file an entry containing the user’s ID and
the current time.

Visual Basic 2005

Public Sub WriteToLog(ByVal ID As String)
'---write to a log file---
Dim sw As New System.IO.StreamWriter(_

Logfile, True, System.Text.Encoding.ASCII)
sw.WriteLine(id & "," & Now.ToString)
sw.Close()

End Sub

C# 2005

public void WriteToLog(string ID)
{

//---write to a log file---
System.IO.StreamWriter sw = new

System.IO.StreamWriter(
Logfile, true, System.Text.Encoding.ASCII);

sw.WriteLine((ID + ("," +
System.DateTime.Now.ToString())));

sw.Close();
}

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION146

Testing the Application
You are now ready to test the application. Press F5 in Visual Studio 2005, and you will see the
application shown in Figure 3-10.

Figure 3-10. Testing the application

Place your index finger on the reader, and you should be prompted to register with your
particulars. Once registered, your particulars will be cleared after five seconds. You can now
try placing the same finger to check whether you can be identified correctly. If so, you will see
your information displayed, as shown in Figure 3-11.

Figure 3-11. Displaying the information of an identified user

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 147

Note that sometimes your fingerprint may not be correctly identified. This is likely due to
the incorrect positioning of your finger. Try again, and it should be identified correctly.

Summary
In this chapter, you saw how to integrate a fingerprint reader into your .NET application.
Although the example shown in this chapter was simple, you can easily extend it to more com-
plex scenarios, such as video rental applications, payment services, and so on. If you have not
started evaluating biometric authentication for your projects, this is a good time to start!

Listing 3-1. Util.vb

Visual Basic 2005

'---
'GrFinger Sample
'(c) 2005 Griaule Tecnologia Ltda.
'http://www.griaule.com
'---
'
'This sample is provided with "GrFinger Fingerprint Recognition Library" and
'can't run without it. It's provided just as an example of using GrFinger
'Fingerprint Recognition Library and should not be used as basis for any
'commercial product.
'
'Griaule Tecnologia makes no representations concerning either the merchantability
'of this software or the suitability of this sample for any particular purpose.
'
'THIS SAMPLE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
'IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
'OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
'IN NO EVENT SHALL GRIAULE BE LIABLE FOR ANY DIRECT, INDIRECT,
'INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
'NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
'DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
'THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
'(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
'THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
'
'You can download the free version of GrFinger directly from Griaule website.
'
'These notices must be retained in any copies of any part of this
'documentation and/or sample.
'
'---

' --

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION148

' Support and fingerprint management routines
' --

Imports GrFingerXLib
Imports Microsoft.VisualBasic

' Raw image data type.
Public Structure RawImage

' Image data.
Public img As Object
' Image width.
Public width As Long
' Image height.
Public height As Long
' Image resolution.
Public res As Long

End Structure

Public Class Util

' Some constants to make our code cleaner
Public Const ERR_CANT_OPEN_BD As Integer = -999
Public Const ERR_INVALID_ID As Integer = -998
Public Const ERR_INVALID_TEMPLATE As Integer = -997

' Importing necessary HDC functions
Private Declare Function GetDC Lib "user32" (ByVal hwnd As Int32) As Int32
Private Declare Function ReleaseDC Lib "user32" _

(ByVal hwnd As Int32, ByVal hdc As Int32) As Int32

' The last acquired image.
Public raw As RawImage
' The template extracted from last acquired image.
Public template As New TTemplate
' Database class.
Public DB As DBClass
' Reference to main form log.
Private _lbLog As ListBox
' Reference to main form Image.
Private _pbPic As PictureBox
' GrFingerX component
Private _GrFingerX As AxGrFingerXLib.AxGrFingerXCtrl

' --
' Support functions
' --

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 149

' This class creates an Util class with some functions
' to help us to develop our GrFinger Application
Public Sub New(ByRef lbLog As ListBox, _

ByRef pbPic As PictureBox, _
ByRef GrFingerX As AxGrFingerXLib.AxGrFingerXCtrl)
_lbLog = lbLog
_pbPic = pbPic
_GrFingerX = GrFingerX

End Sub

' Write a message in box.
Public Sub WriteLog(ByVal message As String)

_lbLog.Items.Add(message)
_lbLog.SelectedIndex = _lbLog.Items.Count - 1
_lbLog.ClearSelected()

End Sub

' Write and describe an error.
Public Sub WriteError(ByVal errorCode As Integer)

Select Case errorCode
Case GRConstants.GR_ERROR_INITIALIZE_FAIL

WriteLog("Fail to Initialize GrFingerX. (Error:" & errorCode & ")")
Case GRConstants.GR_ERROR_NOT_INITIALIZED

WriteLog("The GrFingerX Library is not initialized. (Error:" & _
errorCode & ")")

Case GRConstants.GR_ERROR_FAIL_LICENSE_READ
WriteLog(_

"License not found. See manual for troubleshooting. (Error:" _
& errorCode & ")")

MessageBox.Show(_
"License not found. See manual for troubleshooting.")

Case GRConstants.GR_ERROR_NO_VALID_LICENSE
WriteLog(_

"The license is not valid. See manual for " & _
"troubleshooting. (Error:" & errorCode & ")")

MessageBox.Show(_
"The license is not valid. See manual for troubleshooting.")

Case GRConstants.GR_ERROR_NULL_ARGUMENT
WriteLog("The parameter have a null value. (Error:" & _

errorCode & ")")
Case GRConstants.GR_ERROR_FAIL

WriteLog("Fail to create a GDI object. (Error:" & errorCode & ")")
Case GRConstants.GR_ERROR_ALLOC

WriteLog("Fail to create a context. Cannot " & _
"allocate memory. (Error:" & errorCode & ")")

Case GRConstants.GR_ERROR_PARAMETERS
WriteLog("One or more parameters are out of " & _

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION150

"bound. (Error:" & errorCode & ")")
Case GRConstants.GR_ERROR_WRONG_USE

WriteLog("This function cannot be called at " & _
"this time. (Error:" & errorCode & ")")

Case GRConstants.GR_ERROR_EXTRACT
WriteLog("Template Extraction failed. (Error:" & errorCode & ")")

Case GRConstants.GR_ERROR_SIZE_OFF_RANGE
WriteLog("Image is too larger or too short. (Error:" & _

errorCode & ")")
Case GRConstants.GR_ERROR_RES_OFF_RANGE

WriteLog("Image have too low or too high resolution. (Error:" & _
errorCode & ")")

Case GRConstants.GR_ERROR_CONTEXT_NOT_CREATED
WriteLog("The Context could not be created. (Error:" & _

errorCode & ")")
Case GRConstants.GR_ERROR_INVALID_CONTEXT

WriteLog("The Context does not exist. (Error:" & errorCode & ")")

' Capture error codes

Case GRConstants.GR_ERROR_CONNECT_SENSOR
WriteLog("Error while connection to sensor. (Error:" & _

errorCode & ")")
Case GRConstants.GR_ERROR_CAPTURING

WriteLog("Error while capturing from sensor. (Error:" & _
errorCode & ")")

Case GRConstants.GR_ERROR_CANCEL_CAPTURING
WriteLog("Error while stop capturing from sensor. (Error:" & _

errorCode & ")")
Case GRConstants.GR_ERROR_INVALID_ID_SENSOR

WriteLog("The idSensor is invalid. (Error:" & errorCode & ")")
Case GRConstants.GR_ERROR_SENSOR_NOT_CAPTURING

WriteLog("The sensor is not capturing. (Error:" & errorCode & ")")
Case GRConstants.GR_ERROR_INVALID_EXT

WriteLog("The File have a unknown extension. (Error:" & _
errorCode & ")")

Case GRConstants.GR_ERROR_INVALID_FILENAME
WriteLog("The filename is invalid. (Error:" & errorCode & ")")

Case GRConstants.GR_ERROR_INVALID_FILETYPE
WriteLog("The file type is invalid. (Error:" & errorCode & ")")

Case GRConstants.GR_ERROR_SENSOR
WriteLog("The sensor raise an error. (Error:" & errorCode & ")")

' Our error codes

Case ERR_INVALID_TEMPLATE
WriteLog("Invalid Template. (Error:" & errorCode & ")")

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 151

Case ERR_INVALID_ID
WriteLog("Invalid ID. (Error:" & errorCode & ")")

Case ERR_CANT_OPEN_BD
WriteLog("Unable to connect to DataBase. (Error:" & errorCode & ")")

Case Else
WriteLog("Error:" & errorCode)

End Select
End Sub

' Check if we have a valid template
Private Function TemplateIsValid() As Boolean

' Check template size
Return template.Size > 0

End Function

' --
' Main functions for fingerprint recognition management
' --

' Initializes GrFinger ActiveX and all necessary utilities.
Public Function InitializeGrFinger() As Integer

Dim err As Integer

DB = New DBClass
' Open DataBase
If DB.OpenDB() = False Then Return ERR_CANT_OPEN_BD
' Create a new Template
template.Size = 0
' Create a new raw image
raw.img = Nothing
raw.width = 0
raw.height = 0
' Initializing library
err = _GrFingerX.Initialize()
If err < 0 Then Return err
Return _GrFingerX.CapInitialize()

End Function

' Finalizes and close the DB.
Public Sub FinalizeGrFinger()

' finalize library
_GrFingerX.Finalize()
_GrFingerX.CapFinalize()

' close DB
DB.closeDB()
DB = Nothing

End Sub

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION152

' Display fingerprint image on screen
Public Sub PrintBiometricDisplay(_

ByVal biometricDisplay As Boolean, ByVal context As Integer)

' handle to finger image
Dim handle As System.Drawing.Image = Nothing

' screen HDC
Dim hdc As Integer = GetDC(0)

If biometricDisplay Then
' get image with biometric info
_GrFingerX.BiometricDisplay(_

template.tpt, raw.img, raw.width, raw.height, _
raw.res, hdc, handle, context)

Else
' get raw image
_GrFingerX.CapRawImageToHandle(_

raw.img, raw.width, raw.height, hdc, handle)
End If

' draw image on picture box
If Not (handle Is Nothing) Then

_pbPic.Image = handle
_pbPic.Update()

End If
' release screen HDC
ReleaseDC(0, hdc)

End Sub

' Add a fingerprint template to database
Public Function Enroll() As Integer

' Checking if template is valid.
If TemplateIsValid() Then

' Adds template to database and gets ID.
Return DB.AddTemplate(template)

Else
Return -1

End If
End Function

' Extract a fingerprint template from current image
Function ExtractTemplate() As Integer

Dim ret As Integer

' set current buffer size for extract template
template.Size = template.tpt.Length

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 153

ret = _GrFingerX.Extract(_
raw.img, raw.width, raw.height, raw.res, template.tpt, template.Size, _

GRConstants.GR_DEFAULT_CONTEXT)
' if error, set template size to 0
' Result < 0 => extraction problem
If ret < 0 Then template.Size = 0
Return ret

End Function

' Identify current fingerprint on our database
Public Function Identify(ByRef score As Integer) As Integer

Dim ret As Integer
Dim i As Integer

' Checking if template is valid.
If Not TemplateIsValid() Then Return ERR_INVALID_TEMPLATE

' Starting identification process and supplying query template.

Dim tmpTpt As Array = Array.CreateInstance(GetType(Byte), template.Size)
Array.Copy(template.tpt, tmpTpt, template.Size)
ret = _GrFingerX.IdentifyPrepare(tmpTpt, GRConstants.GR_DEFAULT_CONTEXT)
' error?
If ret < 0 Then Return ret
' Getting enrolled templates from database.
Dim templates As TTemplates() = DB.getTemplates()
' Iterate over all templates in database
For i = 1 To templates.Length

' Comparing the current template.
If Not (templates(i - 1).template Is Nothing) Then

Dim tempTpt As Array = _
Array.CreateInstance(GetType(Byte), _
templates(i - 1).template.Size)

Array.Copy(templates(i - 1).template.tpt, tempTpt, _
templates(i - 1).template.Size)

ret = _GrFingerX.Identify(tempTpt, score, _
GRConstants.GR_DEFAULT_CONTEXT)

End If
' Checking if query template and reference template match.
If ret = GRConstants.GR_MATCH Then

Return templates(i - 1).ID
End If
If ret < 0 Then Return ret

Next
' end of database, return "no match" code
Return GRConstants.GR_NOT_MATCH

End Function

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION154

' Check current fingerprint against another one in our database
Public Function Verify(ByVal id As Integer, ByRef score As Integer) As Integer

Dim tptref As System.Array

' Checking if template is valid.
If Not (TemplateIsValid()) Then Return ERR_INVALID_TEMPLATE
' Getting template with the supplied ID from database.
tptref = DB.getTemplate(id)
' Checking if ID was found.
If tptref Is Nothing Then Return ERR_INVALID_ID
' Comparing templates.
Dim tempTpt As Array = Array.CreateInstance(GetType(Byte), template.Size)
Array.Copy(template.tpt, tempTpt, template.Size)
Return _GrFingerX.Verify(tempTpt, tptref, score, _

GRConstants.GR_DEFAULT_CONTEXT)
End Function

' Show GrFinger version and type
Public Sub MessageVersion()

Dim majorVersion As Integer = 0
Dim minorVersion As Integer = 0
Dim result As GRConstants
Dim vStr As String = ""

result = _GrFingerX.GetGrFingerVersion(majorVersion, minorVersion)
If result = GRConstants.GRFINGER_FULL Then vStr = "FULL"
If result = GRConstants.GRFINGER_LIGHT Then vStr = "LIGHT"
If result = GRConstants.GRFINGER_FREE Then vStr = "FREE"
MessageBox.Show("The GrFinger DLL version is " & majorVersion & _

"." & minorVersion & "." & vbCrLf & _
"The license type is '" & vStr & "'.", "GrFinger Version")

End Sub

End Class

C# 2005

/*

GrFinger Sample
(c) 2005 Griaule Tecnologia Ltda.
http://www.griaule.com

This sample is provided with "GrFinger Fingerprint Recognition Library" and
can't run without it. It's provided just as an example of using GrFinger
Fingerprint Recognition Library and should not be used as basis for any
commercial product.

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 155

Griaule Tecnologia makes no representations concerning either the merchantability
of this software or the suitability of this sample for any particular purpose.

THIS SAMPLE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL GRIAULE BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You can download the free version of GrFinger directly from Griaule website.

These notices must be retained in any copies of any part of this
documentation and/or sample.

*/

// ---
// Support and fingerprint management routines
// ---

using GrFingerXLib;
using System;
using System.Drawing;
using System.Data.OleDb;
using System.Windows.Forms;
using System.Runtime.InteropServices;

// Raw image data type.
public struct TRawImage
{

// Image data.
public object img;
// Image width.
public int width;
// Image height.
public int height;
// Image resolution.
public int Res;

};

public class Util
{

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION156

// Some constants to make our code cleaner
public const int ERR_CANT_OPEN_BD = -999;
public const int ERR_INVALID_ID = -998;
public const int ERR_INVALID_TEMPLATE = -997;

// ---
// Support functions
// ---

// This class creates an Util class with some functions
// to help us to develop our GrFinger Application
public Util(ListBox lbLog, PictureBox pbPic,

Button btEnroll, Button btnExtract, Button btIdentify, Button btVerify,
CheckBox cbAutoExtract, CheckBox cbAutoIdentify)

{
_lbLog = lbLog;
_pbPic = pbPic;
_btEnroll = btEnroll;
_btExtract = btnExtract;
_btIdentify = btIdentify;
_btVerify = btVerify;
_cbAutoExtract = cbAutoExtract;
_cbAutoIdentify = cbAutoIdentify;
_DB = null;
_tpt = null;

}

~Util()
{
}

// Write a message in log box.
public void WriteLog(String msg)
{

_lbLog.Items.Add(msg);
_lbLog.SelectedIndex = _lbLog.Items.Count - 1;
_lbLog.ClearSelected();

}

// Write and describe an error.
public void WriteError(GrFingerXLib.GRConstants errorCode)
{

switch ((int)errorCode)
{

case (int)GRConstants.GR_ERROR_INITIALIZE_FAIL:
WriteLog("Fail to Initialize GrFingerX. (Error:" + errorCode + ")");
return;

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 157

case (int)GRConstants.GR_ERROR_NOT_INITIALIZED:
WriteLog("The GrFingerX Library is not initialized. (Error:" +

errorCode + ")");
return;

case (int)GRConstants.GR_ERROR_FAIL_LICENSE_READ:
WriteLog("License not found. See manual for " +

"troubleshooting. (Error:" + errorCode + ")");
MessageBox.Show("License not found. See " +

"manual for troubleshooting.");
return;

case (int)GRConstants.GR_ERROR_NO_VALID_LICENSE:
WriteLog("The license is not valid. See manual for " +

"troubleshooting. (Error:" + errorCode + ")");
MessageBox.Show("The license is not valid. See " +

"manual for troubleshooting.");
return;

case (int)GRConstants.GR_ERROR_NULL_ARGUMENT:
WriteLog("The parameter have a null value. (Error:" +

errorCode + ")");
return;

case (int)GRConstants.GR_ERROR_FAIL:
WriteLog("Fail to create a GDI object. (Error:" + errorCode + ")");
return;

case (int)GRConstants.GR_ERROR_ALLOC:
WriteLog("Fail to create a context. Cannot allocate " +

"memory. (Error:" + errorCode + ")");
return;

case (int)GRConstants.GR_ERROR_PARAMETERS:
WriteLog("One or more parameters are out of bound. (Error:" +

errorCode + ")");
return;

case (int)GRConstants.GR_ERROR_WRONG_USE:
WriteLog("This function cannot be called at this time. (Error:" +

errorCode + ")");
return;

case (int)GRConstants.GR_ERROR_EXTRACT:
WriteLog("Template Extraction failed. (Error:" + errorCode + ")");
return;

case (int)GRConstants.GR_ERROR_SIZE_OFF_RANGE:
WriteLog("Image is too larger or too short. (Error:" +

errorCode + ")");
return;

case (int)GRConstants.GR_ERROR_RES_OFF_RANGE:
WriteLog("Image have too low or too high resolution. (Error:" +

errorCode + ")");
return;

case (int)GRConstants.GR_ERROR_CONTEXT_NOT_CREATED:

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION158

WriteLog("The Context could not be created. (Error:" +
errorCode + ")");

return;
case (int)GRConstants.GR_ERROR_INVALID_CONTEXT:

WriteLog("The Context does not exist. (Error:" + errorCode + ")");
return;

// Capture error codes

case (int)GRConstants.GR_ERROR_CONNECT_SENSOR:
WriteLog("Error while connection to sensor. (Error:" +

errorCode + ")");
return;

case (int)GRConstants.GR_ERROR_CAPTURING:
WriteLog("Error while capturing from sensor. (Error:" +

errorCode + ")");
return;

case (int)GRConstants.GR_ERROR_CANCEL_CAPTURING:
WriteLog("Error while stop capturing from sensor. (Error:" +

errorCode + ")");
return;

case (int)GRConstants.GR_ERROR_INVALID_ID_SENSOR:
WriteLog("The idSensor is invalid. (Error:" + errorCode + ")");
return;

case (int)GRConstants.GR_ERROR_SENSOR_NOT_CAPTURING:
WriteLog("The sensor is not capturing. (Error:" + errorCode + ")");
return;

case (int)GRConstants.GR_ERROR_INVALID_EXT:
WriteLog("The File have a unknown extension. (Error:" +

errorCode + ")");
return;

case (int)GRConstants.GR_ERROR_INVALID_FILENAME:
WriteLog("The filename is invalid. (Error:" + errorCode + ")");
return;

case (int)GRConstants.GR_ERROR_INVALID_FILETYPE:
WriteLog("The file type is invalid. (Error:" + errorCode + ")");
return;

case (int)GRConstants.GR_ERROR_SENSOR:
WriteLog("The sensor raise an error. (Error:" + errorCode + ")");
return;

// Our error codes
case ERR_INVALID_TEMPLATE:

WriteLog("Invalid Template. (Error:"+errorCode+")");
return;

case ERR_INVALID_ID:
WriteLog("Invalid ID. (Error:"+errorCode+")");
return;

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 159

case ERR_CANT_OPEN_BD:
WriteLog("Unable to connect to DataBase. (Error:"+errorCode+")");
return;

default:
WriteLog("Error:" + errorCode);
return;

}
}

// Check if we have a valid template
private bool TemplateIsValid() {

// Check the template size and data
return ((_tpt._size > 0) && (_tpt._tpt != null));

}

// ---
// Main functions for fingerprint recognition management
// ---

// Initializes GrFinger ActiveX and all necessary utilities.
public int InitializeGrFinger(AxGrFingerXLib.AxGrFingerXCtrl grfingerx)
{

GRConstants result;

_grfingerx = grfingerx;
//Check DataBase Class.
if (_DB == null)

_DB = new DBClass();
//Open DataBase
if(_DB.openDB()==false)
{

return ERR_CANT_OPEN_BD;
}

//Create a new Template
if (_tpt == null)

_tpt = new TTemplate();

//Create a new raw image
_raw = new TRawImage();

//Initialize library
result = (GRConstants)_grfingerx.Initialize();
if (result < 0) return (int)result;
return (int)_grfingerx.CapInitialize();

}

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION160

// Finalizes library and close DB.
public void FinalizeUtil() {

// finalize library
_grfingerx.Finalize();
_grfingerx.CapFinalize();
// close DB
_DB.closeDB();
_raw.img = null;
_tpt = null;
_DB = null;

}

// Display fingerprint image on screen
public void PrintBiometricDisplay(bool isBiometric,

GrFingerXLib.GRConstants contextId)
{

// handle to finger image
System.Drawing.Image handle = null;
// screen HDC
IntPtr hdc = GetDC(System.IntPtr.Zero);

if (isBiometric) {
// get image with biometric info
_grfingerx.BiometricDisplay(ref _tpt._tpt,

ref _raw.img,_raw.width,_raw.height,_raw.Res,hdc.ToInt32(),
ref handle,(int)contextId);

} else {
// get raw image
_grfingerx.CapRawImageToHandle(ref _raw.img,_raw.width,

_raw.height, hdc.ToInt32(), ref handle);
}

// draw image on picture box
if (handle != null)
{

_pbPic.Image = handle;
_pbPic.Update();

}

// release screen HDC
ReleaseDC(System.IntPtr.Zero,hdc);

}

// Add a fingerprint template to database
public int Enroll()
{

int id = 0;

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 161

// Checks if template is valid.
if (TemplateIsValid())
{

// Adds template to database and returns template ID.
_DB.addTemplate(_tpt, ref id);
return id;

}
else
{

return -1;
}

}

// Extract a fingerprint template from current image
public int ExtractTemplate()
{

int result;

// set current buffer size for the extract template
_tpt._size = (int)GRConstants.GR_MAX_SIZE_TEMPLATE;
result = (int)_grfingerx.Extract(

ref _raw.img, _raw.width, _raw.height, _raw.Res,
ref _tpt._tpt,ref _tpt._size,
(int)GRConstants.GR_DEFAULT_CONTEXT);

// if error, set template size to 0
if (result < 0)
{

// Result < 0 => extraction problem
_tpt._size = 0;

}
return result;

}

// Identify current fingerprint on our database
public int Identify(ref int score) {

GRConstants result;
int id;
OleDbDataReader rs;
TTemplate tptRef;

// Checking if template is valid.
if(!TemplateIsValid()) return ERR_INVALID_TEMPLATE;
// Starting identification process and supplying query template.
result = (GRConstants) _grfingerx.IdentifyPrepare(ref _tpt._tpt,

(int)GRConstants.GR_DEFAULT_CONTEXT);
// error?
if (result < 0) return (int)result;

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION162

// Getting enrolled templates from database.
rs = _DB.getTemplates();
while(rs.Read())
{

// Getting current template from recordset.
tptRef = _DB.getTemplate(rs);

// Comparing current template.
result = (GRConstants) _grfingerx.Identify(ref tptRef._tpt,

ref score,(int)GRConstants.GR_DEFAULT_CONTEXT);

// Checking if query template and the reference template match.
if(result == GRConstants.GR_MATCH)
{

id = _DB.getId(rs);
rs.Close();
return id;

}
else if (result < 0)
{

rs.Close();
return (int)result;

}
}

// Closing recordset.
rs.Close();
return (int)GRConstants.GR_NOT_MATCH;

}

// Check current fingerprint against another one in our database
public int Verify(int id, ref int score) {

TTemplate tptRef;

// Checking if template is valid.
if(!TemplateIsValid()) return ERR_INVALID_TEMPLATE;

// Getting template with the supplied ID from database.
tptRef = _DB.getTemplate(id);

// Checking if ID was found.
if ((tptRef._tpt==null) || (tptRef._size == 0))
{

return ERR_INVALID_ID;
}

// Comparing templates.

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 163

return (int) _grfingerx.Verify(ref _tpt._tpt,ref tptRef._tpt,
ref score, (int)GRConstants.GR_DEFAULT_CONTEXT);

}

// Show GrFinger version and type
public void MessageVersion()
{

byte majorVersion=0,minorVersion=0;
GRConstants result;
string vStr = "";

result = (GRConstants)_grfingerx.GetGrFingerVersion(ref majorVersion,
ref minorVersion);

if(result == GRConstants.GRFINGER_FULL)
vStr = "FULL";

else if(result == GRConstants.GRFINGER_LIGHT)
vStr = "LIGHT";

else if(result == GRConstants.GRFINGER_FREE)
vStr = "FREE";

MessageBox.Show("The GrFinger DLL version is " +
majorVersion + "." + minorVersion + ". \n" +
"The license type is '" + vStr + "'.","GrFinger Version");

}

//Importing necessary HDC functions
[DllImport("user32.dll",EntryPoint="GetDC")]
public static extern IntPtr GetDC(IntPtr ptr);

[DllImport("user32.dll",EntryPoint="ReleaseDC")]
public static extern IntPtr ReleaseDC(IntPtr hWnd,IntPtr hDc);

// Database class.
public DBClass _DB;
// The last acquired image.
public TRawImage _raw;
// Reference to main form Image.
public PictureBox _pbPic;

// The template extracted from last acquired image.
private TTemplate _tpt;
// Reference to main form log.
private ListBox _lbLog;
//references Main form Auto Extract Check Box

private CheckBox _cbAutoExtract;
//references Main form Auto Identify Check Box

private CheckBox _cbAutoIdentify;

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION164

//references Main form enroll button
Button _btEnroll;
//references Main form extract button
Button _btExtract;
//references Main form identify button
Button _btIdentify;
//references Main form verify button
Button _btVerify;
// GrFingerX component
AxGrFingerXLib.AxGrFingerXCtrl _grfingerx;

};

Listing 3-2. DBClass.vb

Visual Basic 2005

'---
'GrFinger Sample
'(c) 2005 Griaule Tecnologia Ltda.
'http://www.griaule.com
'---
'
'This sample is provided with "GrFinger Fingerprint Recognition Library" and
'can't run without it. It's provided just as an example of using GrFinger
'Fingerprint Recognition Library and should not be used as basis for any
'commercial product.
'
'Griaule Tecnologia makes no representations concerning either the merchantability
'of this software or the suitability of this sample for any particular purpose.
'
'THIS SAMPLE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
'IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
'OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
'IN NO EVENT SHALL GRIAULE BE LIABLE FOR ANY DIRECT, INDIRECT,
'INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
'NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
'DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
'THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
'(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
'THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
'
'You can download the free version of GrFinger directly from Griaule website.
'
'These notices must be retained in any copies of any part of this
'documentation and/or sample.
'
'---

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 165

' --
' Database routines
' --

Imports System.Data.OleDb
Imports System.Runtime.InteropServices

' Template data
Public Class TTemplate

' Template itself
Public tpt As System.Array = Array.CreateInstance(GetType(Byte), _

GrFingerXLib.GRConstants.GR_MAX_SIZE_TEMPLATE)

' Template size
Public Size As Long

End Class

' Template list
Public Structure TTemplates

' ID
Public ID As Integer
' Template itself
Public template As TTemplate

End Structure

Public Class DBClass

' the database we'll be connecting to
Const DBFile As String = "GrFingerSample.mdb"
Const ConnectionString As String = _

"Provider=Microsoft.Jet.OLEDB.4.0;Data Source="

' the connection object
Dim connection As New OleDbConnection

' Open connection
Public Function OpenDB() As Boolean

Dim filePath As String
Try

filePath = Application.StartupPath() & "\" & DBFile
connection = New OleDb.OleDbConnection(ConnectionString & filePath)
Return True

Catch
Return False

End Try
End Function

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION166

' Close conection
Public Sub closeDB()

connection.Close()
End Sub

' Clear database
Public Sub clearDB()

Dim sqlCMD As OleDbCommand = _
New OleDbCommand("DELETE FROM enroll", connection)

' run "clear" query
sqlCMD.Connection.Open()
sqlCMD.ExecuteNonQuery()
sqlCMD.Connection.Close()

End Sub

' Add template to database. Returns added template ID.
Public Function AddTemplate(ByRef template As TTemplate) As Long

Dim da As New OleDbDataAdapter("select * from enroll", connection)

' Create SQL command containing ? parameter for BLOB.
da.InsertCommand = New OleDbCommand(_

"INSERT INTO enroll (template) Values(?)", connection)
da.InsertCommand.CommandType = CommandType.Text
da.InsertCommand.Parameters.Add("@template", _

OleDbType.Binary, template.Size, "template")

' Open connection
connection.Open()

' Fill DataSet.
Dim enroll As DataSet = New DataSet
da.Fill(enroll, "enroll")

' Add a new row.
' Create parameter for ? contained in the SQL statement.
Dim newRow As DataRow = enroll.Tables("enroll").NewRow()
newRow("template") = template.tpt
enroll.Tables("enroll").Rows.Add(newRow)

' Include an event to fill in the Autonumber value.
AddHandler da.RowUpdated, _

New OleDbRowUpdatedEventHandler(AddressOf OnRowUpdated)

' Update DataSet.
da.Update(enroll, "enroll")
connection.Close()

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 167

' return ID
Return newRow("ID")

End Function

' Event procedure for OnRowUpdated
Private Sub OnRowUpdated(ByVal sender As Object, _

ByVal args As OleDbRowUpdatedEventArgs)
' Include a variable and a command to retrieve identity value
' from Access database.
Dim newID As Integer = 0
Dim idCMD As OleDbCommand = _

New OleDbCommand("SELECT @@IDENTITY", connection)

If args.StatementType = StatementType.Insert Then
' Retrieve identity value and store it in column
newID = CInt(idCMD.ExecuteScalar())
args.Row("ID") = newID

End If
End Sub

' Returns a DataTable with all enrolled templates from database.
Public Function getTemplates() As TTemplates()

Dim ds As New DataSet
Dim da As New OleDbDataAdapter("select * from enroll", connection)
Dim ttpts As TTemplates()
Dim i As Integer

' Get query response
da.Fill(ds)
Dim tpts As DataRowCollection = ds.Tables(0).Rows
' Create response array
ReDim ttpts(tpts.Count)
' No results?
If tpts.Count = 0 Then Return ttpts
' get each template and put results in our array
For i = 1 To tpts.Count

ttpts(i).template = New TTemplate
ttpts(i).ID = tpts.Item(i - 1).Item("ID")
ttpts(i).template.tpt = tpts.Item(i - 1).Item("template")
ttpts(i).template.Size = ttpts(i).template.tpt.Length

Next
Return ttpts

End Function

' Returns template with supplied ID.
Public Function getTemplate(ByVal id As Long) As Byte()

Dim ds As New DataSet

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION168

Dim da As New OleDbDataAdapter(_
"select * from enroll where ID = " & id, connection)

Dim tpt As New TTemplate

' Get query response
da.Fill(ds)
Dim tpts As DataRowCollection = ds.Tables(0).Rows
' No results?
If tpts.Count <> 1 Then Return Nothing
' Deserialize template and return it
Return tpts.Item(0).Item("template")

End Function

End Class

C# 2005

/*

GrFinger Sample
(c) 2005 Griaule Tecnologia Ltda.
http://www.griaule.com

This sample is provided with "GrFinger Fingerprint Recognition Library" and
can't run without it. It's provided just as an example of using GrFinger
Fingerprint Recognition Library and should not be used as basis for any
commercial product.

Griaule Tecnologia makes no representations concerning either the merchantability
of this software or the suitability of this sample for any particular purpose.

THIS SAMPLE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL GRIAULE BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You can download the free version of GrFinger directly from Griaule website.

These notices must be retained in any copies of any part of this
documentation and/or sample.

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 169

*/

// ---
// Database routines
// ---

using System;
using System.Data;
using System.Data.OleDb;
using GrFingerXLib;
using System.Runtime.InteropServices;

// the template class
public class TTemplate
{

// Template data.
public System.Array _tpt;
// Template size
public int _size;

public TTemplate(){
// Create a byte buffer for the template
_tpt = new byte[(int)GRConstants.GR_MAX_SIZE_TEMPLATE];
_size = 0;

}
}

// the database class
public class DBClass{

// the connection object
private OleDbConnection _connection;

// temporary template for retrieving data from DB
private TTemplate tptBlob;

// the database we'll be connecting to
public readonly string CONNECTION_STRING =

"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=GrFingerSample.mdb";

public DBClass(){
}

// Open connection
public bool openDB()
{

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION170

_connection = new OleDbConnection();
_connection.ConnectionString = CONNECTION_STRING;
try{

_connection.Open();
}
catch{

return false;
}
tptBlob = new TTemplate();
return true;

}//END

// Close conection
public bool closeDB()
{

if(_connection.State != ConnectionState.Closed)
_connection.Close();

return true;
}

// Clear database
public bool clearDB()
{

OleDbCommand cmdClear = null;
cmdClear = new OleDbCommand("DELETE FROM enroll", _connection);

// run "clear" query
if(_connection.State == ConnectionState.Open)

cmdClear.ExecuteNonQuery();

return true;
}

// Add template to database. Returns added template ID.
public bool addTemplate(TTemplate tpt,ref int id)
{

OleDbCommand cmdInsert = null;
OleDbParameter dbParamInsert = null;
OleDbCommand cmdSelect = null;

try{
// Create SQL command containing ? parameter for BLOB.
cmdInsert = new OleDbCommand(

"INSERT INTO enroll(template) values(?) ", _connection);
// Create parameter for ? contained in the SQL statement.
System.Byte [] temp = new System.Byte[tpt._size + 1];

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 171

System.Array.Copy(tpt._tpt, 0, temp, 0, tpt._size);

dbParamInsert = new OleDbParameter("@template",
OleDbType.VarBinary, tpt._size,
ParameterDirection.Input, false, 0, 0,"ID",
DataRowVersion.Current, temp);

cmdInsert.Parameters.Add(dbParamInsert);

//execute query
if(_connection.State == ConnectionState.Open)

cmdInsert.ExecuteNonQuery();
}
catch{

return false;
}

try{
// Create SQL command containing ? parameter for BLOB.
cmdSelect = new OleDbCommand(

"SELECT top 1 ID FROM enroll ORDER BY ID DESC", _connection);

id = System.Convert.ToInt32(cmdSelect.ExecuteScalar());
}
catch {

return false;
}

return true;
}

// Returns an OleDbDataReader with all enrolled templates from database.
public OleDbDataReader getTemplates()
{

OleDbCommand cmdGetTemplates;
OleDbDataReader rs;

//setting up command
cmdGetTemplates = new OleDbCommand("SELECT * FROM enroll", _connection);
rs = cmdGetTemplates.ExecuteReader();

return rs;
}

// Returns template with the supplied ID.
public TTemplate getTemplate(int id)
{

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION172

OleDbCommand cmd = null;
OleDbDataReader dr = null;
tptBlob._size = 0;
try
{

cmd = new OleDbCommand(System.String.Concat(
"SELECT * FROM enroll WHERE ID = ",
System.Convert.ToString((int)id)), _connection);

dr = cmd.ExecuteReader();
// Get query response
dr.Read();
getTemplate(dr);
dr.Close();

}
catch{

dr.Close();
}
return tptBlob;

}

// Return template data from an OleDbDataReader
public TTemplate getTemplate(OleDbDataReader rs)
{

long readedBytes;
tptBlob._size = 0;
// alloc space
System.Byte[] temp = new System.Byte[

(int)GRConstants.GR_MAX_SIZE_TEMPLATE];
// get bytes
readedBytes = rs.GetBytes(1, 0, temp, 0,temp.Length);
// copy to structure
System.Array.Copy(temp, 0, tptBlob._tpt,0,(int)readedBytes);
// set real size
tptBlob._size = (int)readedBytes;

return tptBlob;
}

// Return enrollment ID from an OleDbDataReader
public int getId(OleDbDataReader rs)
{

return rs.GetInt32(0);
}

}

CHAPTER 3 ■ INCORPORATING F INGERPRINT RECOGNITION INTO YOUR .NET APPLICATION 173

Infrared Programming

With all the buzz around WiFi, Bluetooth, and other wireless technologies, it’s easy to over-
look one of the simplest and most common forms of wireless communications—infrared.
Anyone who has ever used a remote control has used it! Infrared uses the invisible spectrum
of light just beyond red in the visible spectrum. You can use it in applications for short-range,
point-to-point data transfer. Because it uses light, line-of-sight is a prerequisite for infrared.
Despite this limitation, infrared is increasingly popular in devices such as digital cameras,
PDAs, and notebook computers.

In this chapter, I will show you how to build an application that allows two devices (as
well as computers) to communicate wirelessly using infrared. You can adapt the programming
technique illustrated in this chapter for other programming tasks, such as writing wireless
network games, and so on.

Introducing IrDA
Founded in 1993 as a nonprofit organization, the Infrared Data Association (IrDA) is an
international organization that creates and promotes interoperable, low-cost infrared data
interconnection standards that allow users to point one device at another and have it work.
The Infrared Data Association standards support a broad range of appliances, computing, and
communication devices.

The term IrDA also refers to the protocols for infrared communications, not exclusively to
the nonprofit body. Currently four versions of IrDA exist, with their differences mainly being
transfer speed:

• Serial Infrared (SIR) is the original standard with transfer speeds of up to 115Kbps.

• Medium Infrared (MIR) has improved transfer speeds of 1.152Mbps. This is not widely
implemented.

• Fast Infrared (FIR) has speeds of up to 4Mbps. Most new computers implement this
standard.

• Very Fast Infrared (VFIR) has speeds of up to 16Mbps. This is not widely implemented yet.

Future versions of the IrDA will boost speeds to 50Mbps. When two devices with two dif-
ferent IrDA implementations communicate with each other, they’ll both step down to the
lower transfer speed.

175

C H A P T E R 4

■ ■ ■

In terms of operating range, infrared devices can communicate up to 1–2 meters (3–7 feet).
Depending on the implementation, if a device uses a lower power version, the range can be
stepped down to a mere 20–30 centimeters (8–12 inches). This is crucial for low-power devices.

All data packets exchanged are protected using a cyclic redundancy check (CRC), which
uses a number derived from the transmitted data to verify its integrity. CRC-16 is used for
speeds up to 1.152Mbps, and CRC-32 is used for speeds up to 4Mbps. The IrDA also defines
bidirectional communication for infrared communications.

Creating Infrared Communications Between
Windows Mobile Devices
The first application you will build in this chapter is a Pocket PC application that allows two
Pocket PCs to communicate with each other using the built-in infrared port. Although this
doesn’t have much practical usage in the real world (who would want to point their Pocket PCs
at each other and then type on their Pocket PCs instead of talking face to face?), this applica-
tion serves as a good foundation for you to learn how to build a robust application that
persistently listens for incoming infrared data and at the same time allows you to send data
via infrared. You can easily adapt this application for other uses, such as file transfer using
infrared, wireless network games, or any other cool applications you can think of that use
infrared.

What You Need
For this project, you need a Windows Mobile 5.0 Pocket PC device with an infrared port. For
my testing, I used a Dopod 838 (see Figure 4-1).

Figure 4-1. The Dopod 838

CHAPTER 4 ■ INFRARED PROGRAMMING176

Creating the Project
To begin creating the application, launch Microsoft Visual Studio 2005, and create a Windows
Mobile 5.0 Pocket PC project, as shown in Figure 4-2. Name the project IRChat.

■Tip By default, Visual Studio 2005 does not come with the Windows Mobile 5.0 Pocket PC project template.
You need to download the Windows Mobile 5.0 SDK for Pocket PC by going to http://www.microsoft.com/
downloads/ and searching for Windows Mobile 5.0 for Pocket PC SDK.

Figure 4-2. Creating a new Windows Mobile 5.0 Pocket PC project

You will start by first building the interface of the chat application. Populate the default
Form1 with the following controls (see also Figure 4-3 and name the controls as shown):

• TextBox

• StatusBar

• MainMenu

CHAPTER 4 ■ INFRARED PROGRAMMING 177

Figure 4-3. Populating the default Form1 with the various controls

Set the properties for the various controls as shown in Table 4-1.

Table 4-1. Setting the Properties for the Various Controls

Control Property Value

txtMessage Anchor Top, Bottom, Left, Right

txtMessagesArchive Anchor Top, Bottom, Left, Right

txtMessagesArchive MultiLine True

txtMessagesArchive ScrollBars Vertical

Coding the Application
You are now ready to code the application. Switch to the code-behind of Form1, and add the
following namespaces.

Visual Basic 2005

Imports System.Net
Imports System.IO
Imports System.Net.Sockets

StatusBar Control (StatusBar1)

TextBox Control (txtMessagesArchive)

TextBox Control (txtMessage)

MenuItem Control
(mnuSend)

CHAPTER 4 ■ INFRARED PROGRAMMING178

C# 2005

using System.Net;
using System.IO;
using System.Net.Sockets;

To use the relevant libraries in the .NET Compact Framework for infrared communica-
tions, you need to add a reference to the System.Net.IrDa library to the project. Right-click
the project name (IRChat) in Solution Explorer, and select Add Reference. Double-click the
System.Net.IrDa component, and click OK.

■Note All the infrared functions are located in the System.Net.Sockets namespace.

Next, declare the following constants and member variables.

Visual Basic 2005

Public Class Form1
Inherits System.Windows.Forms.Form

'---define the constants---
Const MAX_MESSAGE_SIZE As Integer = 1024
Const MAX_TRIES As Integer = 3

'---define the member variables---
Private ServiceName As String = "default"

C# 2005

public partial class Form1 : Form
{

//---define the constants---
const int MAX_MESSAGE_SIZE = 1024;
const int MAX_TRIES = 3;

//---define the member variables---
private string ServiceName = "default";

The MAX_MESSAGE_SIZE constant is the maximum size of a message exchanged, and
MAX_TRIES is the maximum number of times to try sending a message before giving up.
The ServiceName variable is a unique identifier for an infrared communication session.

CHAPTER 4 ■ INFRARED PROGRAMMING 179

Receiving Messages
When the application is loaded, it needs to start listening for messages in the background.
And so, in the Form1_Load event, invoke the ReceiveLoop() method on a separate thread to
continuously listen for incoming messages.

■Note Henceforth in this chapter, to make Visual Studio 2005 automatically create the event handler for
a control (such as a form’s Load event or a button’s Click event), double-click the control to create the
event handler.

Visual Basic 2005

Private Sub Form1_Load(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

txtMessage.Focus()

'---receive incoming messages as a separate thread---
Dim t1 As System.Threading.Thread
t1 = New Threading.Thread(AddressOf ReceiveLoop)
t1.Start()

End Sub

C# 2005

private void Form1_Load(object sender, EventArgs e)
{

txtMessage.Focus();

//---receive incoming messages as a separate thread---
System.Threading.Thread t1;
t1 = new System.Threading.Thread(ReceiveLoop);
t1.Start();

}

Essentially, I’ve spun off a separate thread to invoke the ReceiveLoop() method. The aim
here is to listen for messages in the background so you can send messages at any time. The
code for the ReceiveLoop() subroutine is as follows.

Visual Basic 2005

Public Sub ReceiveLoop()
Dim strReceived As String

strReceived = ReceiveMessage()

CHAPTER 4 ■ INFRARED PROGRAMMING180

'---keep on listening for new message---
While True

If strReceived <> String.Empty Then
txtMessagesArchive.BeginInvoke(_
New myDelegate(AddressOf UpdateTextBox), _
New Object() {strReceived})

End If
strReceived = ReceiveMessage()

End While
End Sub

C# 2005

public void ReceiveLoop()
{

string strReceived;
strReceived = ReceiveMessage();

//---keep on listening for new message---
while (true)
{

if (strReceived != string.Empty)
{

txtMessagesArchive.BeginInvoke(
new myDelegate(UpdateTextBox),
new object[] { strReceived });

}
strReceived = ReceiveMessage();

}
}

The main use of the ReceiveLoop() subroutine is to repeatedly invoke the ReceiveMessage()
function. The ReceiveMessage() function returns the message received from the infrared port.
The code for the ReceiveMessage() method is as follows.

Visual Basic 2005

Private Function ReceiveMessage() As String
Dim bytesRead As Integer = 0
Dim listener As IrDAListener = New IrDAListener(ServiceName)
Dim client As IrDAClient = Nothing
Dim stream As System.IO.Stream = Nothing
Dim Buffer(MAX_MESSAGE_SIZE - 1) As Byte
Dim str As String = String.Empty
Try

listener.Start()

'---blocking call---

CHAPTER 4 ■ INFRARED PROGRAMMING 181

client = listener.AcceptIrDAClient()
stream = client.GetStream()
bytesRead = stream.Read(Buffer, 0, Buffer.Length)

'---format the received message---
str = ">" & _

System.Text.ASCIIEncoding.ASCII.GetString(_
Buffer, 0, bytesRead)

Catch ex As SocketException
'---ignore error---

Catch e As Exception
StatusBar1.BeginInvoke(_

New myDelegate(AddressOf UpdateStatus), New Object() _
{e.ToString})

Finally
If (Not stream Is Nothing) Then stream.Close()
If (Not client Is Nothing) Then client.Close()
listener.Stop()

End Try
Return str

End Function

C# 2005

private string ReceiveMessage()
{

int bytesRead = 0;
IrDAListener listener = new IrDAListener(ServiceName);
IrDAClient client = null;
System.IO.Stream stream = null;
byte[] Buffer = new byte[MAX_MESSAGE_SIZE - 1];
string str = string.Empty;
try
{

listener.Start();

//---blocking call---
client = listener.AcceptIrDAClient();
stream = client.GetStream();
bytesRead = stream.Read(Buffer, 0, Buffer.Length);
//---format the received message---
str = ">" +

System.Text.ASCIIEncoding.ASCII.GetString(
Buffer, 0, bytesRead);

}
catch (SocketException ex)
{

CHAPTER 4 ■ INFRARED PROGRAMMING182

//---ignore error---
}
catch (Exception e)
{

StatusBar1.BeginInvoke(new myDelegate(UpdateStatus),
new object[] { e.ToString() });

}
finally
{

if ((!(stream == null)))
{

stream.Close();
}
if ((!(client == null)))
{

client.Close();
}
listener.Stop();

}
return str;

}

Let’s spend some time going through this function. First, you set up the relevant variables
for this function. In particular, you created an IrDAListener object. The IrDAListener object
listens for incoming data through the infrared port. It takes the ServiceName argument.

■Tip Two devices communicating through infrared must have the same service name.

You also created an IrDAClient object for sending and receiving data from the other
device. The IrDAListener object starts listening for incoming data and returns an IrDAClient
object when data is received. You then use a Stream object to read the data on the stream and
format it for display.

Finally, the ReceiveMessage() function returns the data formatted in a fashion ready to be
displayed on the form.

Displaying the Received Messages
Since Windows Forms controls aren’t thread-safe, accessing Windows controls from another
thread will have unpredictable results. As such, you need to use a delegate method to call the
UpdateTextBox() method to update the TextBox control with the received message.

CHAPTER 4 ■ INFRARED PROGRAMMING 183

Visual Basic 2005

Private Delegate Sub myDelegate(ByVal str As String)

C# 2005

private delegate void myDelegate(string str);

The UpdateTextBox() subroutine displays the received message in a TextBox control.

Visual Basic 2005

Private Sub UpdateTextBox(ByVal str As String)
'---delegate to update the TextBox control---
txtMessagesArchive.Text = str & vbCrLf & _

txtMessagesArchive.Text
End Sub

C# 2005

private void UpdateTextBox(string str)
{

//---delegate to update the TextBox control---
txtMessagesArchive.Text = str + "\r\n" +

txtMessagesArchive.Text;
}

The UpdateStatus() subroutine displays status information on the StatusBar control.

Visual Basic 2005

Private Sub UpdateStatus(ByVal str As String)
'---delegate to update the StatusBar control---
StatusBar1.Text = str

End Sub

C# 2005

private void UpdateStatus(string str)
{

//---delegate to update the StatusBar control---
StatusBar1.Text = str;

}

Sending Messages
Now that you’ve seen how to receive messages, you will write the code for sending messages.
When the Send menu item is clicked, you will invoke the SendMessage() subroutine.

CHAPTER 4 ■ INFRARED PROGRAMMING184

Visual Basic 2005

Private Sub mnuSend_Click(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles mnuSend.Click
mnuSend.Enabled = False
sendMessage(MAX_TRIES, txtMessage.Text)
mnuSend.Enabled = True
txtMessage.Text = String.Empty
txtMessage.Focus()

End Sub

C# 2005

private void mnuSend_Click(object sender, EventArgs e)
{

mnuSend.Enabled = false;
SendMessage(MAX_TRIES, txtMessage.Text);
mnuSend.Enabled = true;
txtMessage.Text = string.Empty;
txtMessage.Focus();

}

The SendMessage() subroutine first tries to establish a connection with the other device
until the number of retries is exceeded. Once a connection is established, it writes to the other
device using an I/O Stream object. Finally, it closes the stream and the connection.

Visual Basic 2005

Private Sub SendMessage(_
ByVal NumRetries As Integer, ByVal str As String)
Dim client As IrDAClient = Nothing
Dim CurrentTries As Integer = 0

'---try to establish a connection---
Do

Try
client = New IrDAClient(ServiceName)

Catch se As Exception
If (CurrentTries >= NumRetries) Then

Throw se
End If

End Try
CurrentTries = CurrentTries + 1

Loop While client Is Nothing And CurrentTries < NumRetries

'---timeout occurred---
If (client Is Nothing) Then

CHAPTER 4 ■ INFRARED PROGRAMMING 185

StatusBar1.BeginInvoke(_
New myDelegate(AddressOf UpdateStatus), New Object() _
{"Error establishing contact"})

Return
End If

'---send the message over a stream object---
Dim stream As System.IO.Stream = Nothing
Try

stream = client.GetStream()
stream.Write(_

System.Text.ASCIIEncoding.ASCII.GetBytes(str), 0, _
str.Length)

'---update the status bar---
StatusBar1.BeginInvoke(_

New myDelegate(AddressOf UpdateStatus), New Object() _
{"Message sent!"})

'---display the message that was sent---
txtMessagesArchive.Text = str & vbCrLf & _

txtMessagesArchive.Text
Catch e As Exception

StatusBar1.BeginInvoke(_
New myDelegate(AddressOf UpdateStatus), New Object() _
{"Error sending message."})

Finally
If (Not stream Is Nothing) Then stream.Close()
If (Not client Is Nothing) Then client.Close()

End Try
End Sub

C# 2005

private void SendMessage(int NumRetries, string str)
{

IrDAClient client = null;
int CurrentTries = 0;
//---try to establish a connection---
do
{

try
{

client = new IrDAClient(ServiceName);
}
catch (Exception se)
{

if ((CurrentTries >= NumRetries))

CHAPTER 4 ■ INFRARED PROGRAMMING186

{
throw se;

}
}
CurrentTries = CurrentTries + 1;

} while (client == null & CurrentTries < NumRetries);

//---timeout occurred---
if ((client == null))
{

StatusBar1.BeginInvoke(new myDelegate(UpdateStatus),
new object[] { "Error establishing contact" });

return;
}

//---send the message over a stream object---
System.IO.Stream stream = null;
try
{

stream = client.GetStream();
stream.Write(

System.Text.ASCIIEncoding.ASCII.GetBytes(str), 0,
str.Length);

//---update the status bar---
StatusBar1.BeginInvoke(new myDelegate(UpdateStatus),

new object[] { "Message sent!" });

//---display the message that was sent---
txtMessagesArchive.Text = str + "\r\n" +

txtMessagesArchive.Text;
}
catch (Exception e)
{

StatusBar1.BeginInvoke(new myDelegate(UpdateStatus),
new object[] { "Error sending message." });

}
finally
{

if (!(stream == null))
{

stream.Close();
}
if (!(client == null))
{

client.Close();
}

}
}

CHAPTER 4 ■ INFRARED PROGRAMMING 187

Compiling and Deploying the Application
That’s it! To test the application, you need to install the application on two Windows Mobile
5.0 Pocket PCs. The easiest way to do this is to connect each Windows Mobile 5.0 device to the
development machine and use Visual Studio 2005 to deploy the application on the device.
When you press F5, the application will automatically be copied on to the device.

To start chatting using infrared, align the infrared port of each Pocket PC to face each
other, and you can then start chatting. Figure 4-4 shows two Windows Mobile 5.0 Pocket PCs
communicating using infrared.

Figure 4-4. Testing the application using two Windows Mobile 5.0 Pocket PCs

Creating Infrared Communications on the Desktop
In the previous project, you saw how to enable two Windows Mobile 5.0 Pocket PCs to commu-
nicate with each other using the infrared ports. Using infrared on the Pocket PC is easy using
the System.Net.IrDA library available in the .NET Compact Framework. What about using
infrared on a desktop computer? Unfortunately, the .NET Framework does not come with the
System.Net.IrDA library, and hence you cannot directly use infrared using the .NET Framework.

Fortunately, Peter Foot (http://www.peterfoot.net/), a fellow MVP, has written the
32feet.NET library that makes infrared programming available on the desktop. 32feet.NET is
a project that aims to make wireless networking (via Bluetooth and IrDA) much more easily
accessible from .NET code, be it on mobile devices or on desktop computers. You can down-
load the latest version of 32feet.NET (version 2.0.60828) from http://32feet.net/files/.
Hence, in this project, you will port your Windows Mobile 5.0 application to the desktop
and enable infrared programming using the 32feet.NET library.

CHAPTER 4 ■ INFRARED PROGRAMMING188

What You Need
Most desktop computers and notebooks today do not come with
infrared ports anymore. Hence, if you want to use infrared as a
communication option, you need to equip your computer with
one. The easiest way is to buy a USB infrared adapter (see Figure
4-5) that plugs into the USB port. Most adapters are plug and
play; connect it to your computer, and Windows XP should be
able to use it immediately.

Creating the Project
Using Visual Studio 2005, create a new Windows Application
project, and name it IRChat_Desktop. Populate the default
Form1 with the following controls (see also Figure 4-6, and
name them accordingly):

• TextBox control

• Button control

• StatusStrip (add a StatusLabel control within it) control

Set the MultiLine and ReadOnly properties of the txtMessagesArchive control to True, and
set its ScrollBars property to Vertical.

Figure 4-6. Populating the default Form1 with the various controls

Button Control (btnSend)

ToolStripStatusLabel Control (ToolstripStatusLabel1)

TextBox Control (txtMessagesArchive)

TextBox Control (txtMessage)

CHAPTER 4 ■ INFRARED PROGRAMMING 189

Figure 4-5. A USB infrared adapter

■Note You need to first download and install the 32feet.NET library before coding the application.

Add a reference to the InTheHand.Net.Personal component to the project by right-
clicking the project name in Solution Explorer and then selecting Add Reference. Select
the InTheHand.Net.Personal component, and click OK (see Figure 4-7).

Figure 4-7. Adding a reference to the InTheHand.Net.Personal component

The next step is to begin coding the application. Because most of the code is similar
to what you saw in the previous project, I will simply show you the code and point out the
changes you need to make so you can use the libraries in the InTheHand.Net.Personal library.

Importing the Namespaces
In addition to importing the three namespaces as you did earlier, import the following name-
space for use with the InTheHand.Net.Personal component.

Visual Basic 2005

Imports System.Net
Imports System.IO
Imports System.Net.Sockets
Imports InTheHand.Net.Sockets

CHAPTER 4 ■ INFRARED PROGRAMMING190

C# 2005

using System.Net;
using System.IO;
using System.Net.Sockets;
using InTheHand.Net.Sockets;

Essentially, in the Windows Mobile 5.0 application, you are using the System.Net.IrDA
library (in particular, the functions located in the System.Net.Sockets namespace) for all the
infrared functionalities, whereas for the desktop version of the application, all the necessary
infrared functionalities are fulfilled by the InTheHand.Net.Personal library (located within the
InTheHand.Net.Sockets namespace). Because of this, there are almost no code changes for the
infrared portion of the project.

Declaring the Constants and Member Variables
The following code shows how to declare the constants and member variables.

Visual Basic 2005

Public Class Form1
'---define the constants---
Const MAX_MESSAGE_SIZE As Integer = 1024
Const MAX_TRIES As Integer = 3
'---define the member variable---
Private ServiceName As String = "default"

C# 2005

public partial class Form1 : Form
{

//---define the constants---
const int MAX_MESSAGE_SIZE = 1024;
const int MAX_TRIES = 3;

//---define the member variable---
private string ServiceName = "default";

Coding the Form1_Load() Event
The following code shows the Form1_Load event.

Visual Basic 2005

Private Sub Form1_Load(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles MyBase.Load

CHAPTER 4 ■ INFRARED PROGRAMMING 191

txtMessage.Focus()
'---receive incoming messages as a separate thread---
Dim t1 As System.Threading.Thread
t1 = New Threading.Thread(AddressOf ReceiveLoop)
t1.Start()

End Sub

C# 2005

private void Form1_Load(object sender, EventArgs e)
{

txtMessage.Focus();

//---receive incoming messages as a separate thread---
System.Threading.Thread t1;
t1 = new System.Threading.Thread(ReceiveLoop);
t1.Start();

}

Coding the ReceiveLoop() Subroutine
The following code shows how to code the ReceiveLoop() subroutine.

Visual Basic 2005

Public Sub ReceiveLoop()
Dim strReceived As String
strReceived = ReceiveMessage()
'---keep on listening for new message---
While True

If strReceived <> String.Empty Then
txtMessagesArchive.BeginInvoke(_
New myDelegate(AddressOf UpdateTextBox), _

New Object() {strReceived})
End If
strReceived = ReceiveMessage()

End While
End Sub

C# 2005

public void ReceiveLoop()
{

string strReceived;
strReceived = ReceiveMessage();

//---keep on listening for new message---
while (true)
{

CHAPTER 4 ■ INFRARED PROGRAMMING192

if (strReceived != string.Empty)
{

txtMessagesArchive.BeginInvoke(new
myDelegate(UpdateTextBox),
new object[] { strReceived });

}
strReceived = ReceiveMessage();

}
}

Coding the ReceiveMessage() Function
The following code shows how to code the ReceiveMessage() function.

Visual Basic 2005

Private Function ReceiveMessage() As String
Dim bytesRead As Integer = 0
Dim listener As IrDAListener = New IrDAListener(ServiceName)
Dim client As IrDAClient = Nothing
Dim stream As System.IO.Stream = Nothing
Dim Buffer(MAX_MESSAGE_SIZE - 1) As Byte
Dim str As String = String.Empty
Try

listener.Start()

'---blocking call---
client = listener.AcceptIrDAClient()
stream = client.GetStream()
bytesRead = stream.Read(Buffer, 0, Buffer.Length)

'---display the received message---
str = ">" & _

System.Text.ASCIIEncoding.ASCII.GetString(_
Buffer, 0, bytesRead)

Catch ex As SocketException
'---ignore error---

Catch e As Exception
txtMessagesArchive.BeginInvoke(_

New myDelegate(AddressOf UpdateStatus), New Object() _
{e.ToString})

Finally
If (Not stream Is Nothing) Then stream.Close()
If (Not client Is Nothing) Then client.Close()
listener.Stop()

End Try
Return str

End Function

CHAPTER 4 ■ INFRARED PROGRAMMING 193

C# 2005

private string ReceiveMessage()
{

int bytesRead = 0;
IrDAListener listener = new IrDAListener(ServiceName);
IrDAClient client = null;
System.IO.Stream stream = null;
byte[] Buffer = new byte[MAX_MESSAGE_SIZE - 1];
string str = string.Empty;
try
{

listener.Start();

//---blocking call---
client = listener.AcceptIrDAClient();
stream = client.GetStream();
bytesRead = stream.Read(Buffer, 0, Buffer.Length);

//---format the received message---
str = ">" +

System.Text.ASCIIEncoding.ASCII.GetString(
Buffer, 0, bytesRead);

}
catch (SocketException ex)
{

//---ignore error---
}
catch (Exception e)
{

txtMessagesArchive.BeginInvoke(new
myDelegate(UpdateStatus),
new object[] { e.ToString() });

}
finally
{

if (!(stream == null))
{

stream.Close();
}
if (!(client == null))
{

client.Close();
}
listener.Stop();

}
return str;

}

CHAPTER 4 ■ INFRARED PROGRAMMING194

Coding the Delegate and the UpdateTextBox() and
UpdateStatus() Subroutines
The following shows how to code the delegate and the UpdateTextBox() and UpdateStatus()
subroutines.

Visual Basic 2005

Private Delegate Sub myDelegate(ByVal str As String)

Private Sub UpdateTextBox(ByVal str As String)
'---delegate to update the TextBox control
txtMessagesArchive.Text = str & vbCrLf & _

txtMessagesArchive.Text
End Sub

Private Sub UpdateStatus(ByVal str As String)
'---delegate to update the StatusBar control
ToolStripStatusLabel1.Text = str

End Sub

C# 2005

private delegate void myDelegate(string str);

private void UpdateTextBox(string str)
{

//---delegate to update the TextBox control---
txtMessagesArchive.Text = str + Environment.NewLine +

txtMessagesArchive.Text;
}

private void UpdateStatus(string str)
{

//---delegate to update the StatusBar control---
ToolStripStatusLabel1.Text = str;

}

Coding the SendMessage() Subroutine
The following shows how to code the SendMessage() subroutine.

Visual Basic 2005

Private Sub SendMessage(_
ByVal NumRetries As Integer, ByVal str As String)
Dim client As IrDAClient = Nothing
Dim CurrentTries As Integer = 0

CHAPTER 4 ■ INFRARED PROGRAMMING 195

'---try to establish a connection---
Do

Try
client = New IrDAClient(ServiceName)

Catch se As Exception
If (CurrentTries >= NumRetries) Then

Throw se
End If

End Try
CurrentTries = CurrentTries + 1

Loop While client Is Nothing And CurrentTries < NumRetries

'---timeout occurred---
If (client Is Nothing) Then

txtMessagesArchive.BeginInvoke(_
New myDelegate(AddressOf UpdateStatus), New Object() _
{"Error establishing contact"})

Return
End If

'---send the message over a stream object---
Dim stream As System.IO.Stream = Nothing
Try

stream = client.GetStream()
stream.Write(_

System.Text.ASCIIEncoding.ASCII.GetBytes(str), 0, _
str.Length)

'---update the status bar---
txtMessagesArchive.BeginInvoke(_

New myDelegate(AddressOf UpdateStatus), New Object() _
{"Message sent!"})

'---display the message that was sent---
txtMessagesArchive.Text = str & vbCrLf & _

txtMessagesArchive.Text
Catch e As Exception

txtMessagesArchive.BeginInvoke(_
New myDelegate(AddressOf UpdateStatus), New Object() _
{"Error sending message."})

Finally
If (Not stream Is Nothing) Then stream.Close()
If (Not client Is Nothing) Then client.Close()

End Try
End Sub

CHAPTER 4 ■ INFRARED PROGRAMMING196

C# 2005

private void SendMessage(int NumRetries, string str)
{

IrDAClient client = null;
int CurrentTries = 0;

//---try to establish a connection---
do
{

try
{

client = new IrDAClient(ServiceName);
}
catch (Exception se)
{

if ((CurrentTries >= NumRetries))
{

throw se;
}

}
CurrentTries = CurrentTries + 1;

} while (client == null & CurrentTries < NumRetries);

//---timeout occurred---
if ((client == null))
{

txtMessagesArchive.BeginInvoke(new
myDelegate(UpdateStatus),
new object[] { "Error establishing contact" });

return;
}

//---send the message over a stream object---
System.IO.Stream stream = null;
try
{

stream = client.GetStream();
stream.Write(

System.Text.ASCIIEncoding.ASCII.GetBytes(str), 0, _
str.Length);

//---update the status bar---
txtMessagesArchive.BeginInvoke(new

myDelegate(UpdateStatus),
new object[] { "Message sent!" });

CHAPTER 4 ■ INFRARED PROGRAMMING 197

//---display the message that was sent---
txtMessagesArchive.Text = str + Environment.NewLine +

txtMessagesArchive.Text;
}
catch (Exception e)
{

txtMessagesArchive.BeginInvoke(new
myDelegate(UpdateStatus),
new object[] { "Error sending message." });

}
finally
{

if (!(stream == null))
{

stream.Close();
}
if (!(stream == null)))))
{

client.Close();
}

}
}

Coding the Send Button Control
The following shows how to code the Send button control.

Visual Basic 2005

Private Sub btnSend_Click(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnSend.Click
btnSend.Enabled = False
SendMessage(MAX_TRIES, txtMessage.Text)
btnSend.Enabled = True
txtMessage.Text = String.Empty
txtMessage.Focus()

End Sub

C# 2005

private void btnSend_Click(object sender, EventArgs e)
{

btnSend.Enabled = false;
SendMessage(MAX_TRIES, txtMessage.Text);
btnSend.Enabled = true;
txtMessage.Text = string.Empty;
txtMessage.Focus();

}

CHAPTER 4 ■ INFRARED PROGRAMMING198

Testing the Application
Testing the application is straightforward. Follow these steps:

1. Connect the USB infrared adapter to your computer (if your computer does not have a
built-in infrared port).

2. Press F5 in Visual Studio 2005 to run the application.

3. Using one of the Pocket PCs used in the first project, launch the IRChat application.
The application is by default located in My Device/Program Files/IRChat (use the File
Explorer in the Pocket PC to navigate to this directory, and launch the application by
tapping on IRChat.exe).

4. Align the infrared port on the Pocket PC with the USB infrared adapter.

You can now start chatting!

Summary
In this chapter, I gave you a bit of background on infrared technology and showed you how to
use Microsoft Visual Studio 2005 to develop infrared-enabled Pocket PC and desktop applica-
tions. Though the two sample applications are used for chatting, you should be able to easily
adapt them for your own applications.

CHAPTER 4 ■ INFRARED PROGRAMMING 199

Fun with RFID

Radio frequency identification (RFID) is one of the buzzwords receiving a lot of coverage
in the IT world lately. An RFID system is an identification system that uses radio waves to
retrieve data from a device called a tag or a transponder. RFID is all around us in our daily
lives—in the supermarkets, libraries, bookstores, and so on. RFID provides a quick and effi-
cient way to collect information, such as stocktaking in a warehouse or tracking of the
whereabouts of items.

In this chapter, you will learn how to build a Windows application that incorporates RFID
technology for data collection. You will use two RFID readers and understand their relative
pros and cons.

Introducing RFID
At its bare minimum, an RFID system consists of two main components:

• Reader/writer

• Tags

An RFID reader/writer contains a scanning
antenna and a transceiver. It uses the scanning
antenna to send out radio frequency signals in a
relatively short range. The radio frequency sent out
is used to communicate and power the tags (also
known as transponders; see Figure 5-1 for an
example of a tag) that are within range, which will
then transmit the data on the tag to the reader. The
scanning antenna then picks up the information
sent out by the tag. The data is then interpreted
and decoded by the transceiver.

Two types of RFID tags exist: active and pas-
sive. Active RFID tags have their own power
source, and hence they can transmit signals that
travel farther. In contrast, passive RFID tags have
no power source, and they have to rely solely on the signal sent from the scanning antenna to
power them. Hence, the range supported by passive tag is limited. Active tags are much bigger
in size than passive tags, and active tags have a limited life span. Passive tags, on the other
hand, are much smaller in size and have a virtually unlimited life span. 201

C H A P T E R 5

■ ■ ■

Figure 5-1. An EPC RFID tag used for Wal-Mart
(image courtesy of http://en.wikipedia.org/
wiki/Image:EPC-RFID-TAG.jpg)

CHAPTER 5 ■ FUN WITH RFID202

RFID systems are categorized by their transmitting frequencies and are broadly grouped into
three bands: low frequency (LF), high frequency (HF), and ultra high frequency (UHF). Table 5-1
shows the different frequencies used by the three bands and shows their characteristics.

Table 5-1. Three Bands of RFID Systems*

Frequency Common Typical Maximum Data Reader
Band Frequency Communication Communication Rate Cost

Range Range

LF 125kHz to 135kHz 20cm 100cm Low Low

HF 13.56Mhz 10cm 70cm High Medium

UHF 868Mhz to 928Mhz 3m 10m Medium Very High

* Source: http://www.atmel.com/dyn/resources/Prod_documents/secrerf_3_04.pdf

■Note Note that 1 inch equals 2.54 centimeters, and 1 meter equals 39.3700787 inches.

Each RFID tag has a unique tag ID. Current tags carry no more than 2KB of data and can
be used to store information such as history, location, and so on.

RFID AND BAR CODING

Some have criticized that RFID is simply a more expensive type of bar-coding technology (as well as a form
of intrusion of a user’s privacy), since the aim is to pick up a number stored on the tag (either an RFID tag or
a bar-code label). However, RFID offers several advantages over bar coding:

• You don’t need line of sight for RFID to work. For bar coding, you need to point the laser at the label
before you can scan its ID.

• Each RFID tag ID is unique. A bar-code label does not uniquely identify a product—it just identifies a
particular product type.

• RFID can track the whereabouts of goods. In places such as supermarkets, RFID readers can be
deployed to track expensive goods. For example, if an item is removed from the shelf, an RFID reader
could detect its absence and take the appropriate action.

Most common RFID applications use the tag ID transmitted by RFID tags as a key to
information stored in databases. For example, an RFID tag attached to an employee pass con-
tains only an RFID tag ID, which can be used to retrieve more detailed employee information
stored in the organization databases. Although read-only RFID applications are cheaper,
sometimes you may need to write data back to an RFID tag. These kinds of tags are known as
read-write tags. Read-write RFID systems are deployed in situations where you need to write
information back to the tag, like with stored value cards used in subways around the world.

■Note Some tags can be written only once.

Building an Attendance-Taking Application
Now that you have a good understanding of how RFID works, it is time to build the sample proj-
ect for this chapter. For this chapter, you will build a simple attendance application that registers
an employee when he reports for work. Figure 5-2 shows the user interface of the application.

When an employee scans his tag (assuming the tag is embedded in his employee pass),
the application will display the employee information. The administrator can assign an
unused tag to an employee by using the buttons on the right of the application. For security
reasons, the employee information will be cleared after three seconds. To deploy this applica-
tion in a real-life setting, the administrative functions could be hidden so that the user sees
only the necessary information (see Figure 5-3).

CHAPTER 5 ■ FUN WITH RFID 203

Figure 5-3. Hiding the administrative
functions in a deployed environment

Figure 5-2. The attendance system you will build in
this chapter

RFID Reader #1: Parallax’s RFID
Reader Module
The RFID reader you will be using in this example
is the Parallax RFID Reader Module (http://
www.parallax.com/detail.asp?product_id=28140).
This low-cost ($39) RFID reader reads passive
RFID transponder tags and uses serial communi-
cation to transmit the tag IDs. As you can see in
Figure 5-4, the reader has four pins at the bottom
(from left to right):

• VCC is for +5V DC power.

• /ENABLE is the enable (ground) or disable
(+5V DC) pin.

• SOUT is the serial output.

• GND is the ground.

The effective read range of the Parallax RFID
Reader Module is 13/4 inches to 3 inches (depend-
ing on the tag used). When a tag ID is acquired, the
data is sent through the serial port using a 12-byte
ASCII string. The linefeed (LF) serves as the Start
byte, and the carriage return (CR) serves as the Stop
byte. The ten digits contained within the LF and CR
characters serve as the unique tag ID.

RFID Tags
The Parallax RFID Reader Module reads the following tags:

• 54mm × 85mm Rectangle Tag (http://www.parallax.com/detail.asp?product_id=28141;
$2.25 each)

• 50mm Round Tag (http://www.parallax.com/
detail.asp?product_id=28142; $2.25 each), as
shown in Figure 5-5

CHAPTER 5 ■ FUN WITH RFID204

Figure 5-4. The Parallax’s RFID Reader
Module

Figure 5-5. The tags used for the
Parallax reader

Setting Up the Reader
To connect the reader to your computer, you need to
perform a TTL-to-RS232 level shifting so the data can
be read via a serial port. One way is to connect the
reader to the RS-232 DCE AppMod (http://www.
parallax.com/detail.asp?product_id=29120; $29;
see Figure 5-6).

Alternatively, for those with a little electronic circuit
board know-how, check out the following site that
shows how to construct a low cost ($5) TTL-to-RS232
level shifter: http://www.zero-soft.com/HW/RS232/.

For my project, I used the Javelin Demo Board
(http://www.parallax.com/detail.asp?product_
id=550-00019; $119; see Figure 5-7) to connect to
the reader.

Figure 5-7. The Javelin Demo Board

■Tip Either board will work well. I just happened to have the Javelin Demo Board, which is the more
expensive option. If you are a modder, you can wire up the reader yourself using an RS-232 level shifting IC.

CHAPTER 5 ■ FUN WITH RFID 205

Figure 5-6. The RS-232 DCE AppMod

Figure 5-8 shows the wiring on the Javelin Demo Board. After that, you need to do the
following:

1. Connect a 5V power source to the power connector.

2. Connect your RS-232 serial cable to the serial port at the top of the board.

3. Connect the reader module to the board using the pins shown in the diagram.

■Tip Be sure to use a “straight” serial cable to connect the board to your computer, or else you will not be
able to get any data from the reader.

Figure 5-8. The wiring on the Javelin Demo Board

If you do not have a serial port
on your computer, you can use a
USB-to-serial converter to convert a
USB connector into a serial port. You
will also need a DB9 straight serial
cable (see Figure 5-9).

VCC
/ENABLE
SOUT
GND

RS-232 Cable

POWER

CHAPTER 5 ■ FUN WITH RFID206

Figure 5-9. A USB-to-serial converter and a serial cable

Figure 5-10 shows the assembled reader and board.

Figure 5-10. The Parallax RFID Reader Module and the Javelin Demo Board connected and ready
to go

Building the Application User Interface
Using Visual Studio 2005, create a new Windows application, and name it Attendance. You
will use the Northwind sample database provided by SQL Server 2000 in this example (see the
“Installing the Sample Database” sidebar to learn how to install the SQL Server 2000 sample
databases using SQL Express). To simplify data binding, you will use the drag and drop data-
binding feature that is new in Visual Studio 2005.

CHAPTER 5 ■ FUN WITH RFID 207

INSTALLING THE SAMPLE DATABASE

Since SQL Server 2005 Express does not come with any sample databases, you need to install the sample
databases.

You can install the pubs and Northwind sample databases by downloading their installation scripts at
http://www.microsoft.com/downloads/details.aspx?familyid=06616212-0356-46a0-
8da2-eebc53a68034&;displaylang=en.

Once the scripts are installed on your system, go to the Visual Studio 2005 command prompt (Start ➤
Programs ➤ Microsoft Visual Studio 2005 ➤ Visual Studio Tools ➤ Visual Studio 2005 Command Prompt),
and change to the directory containing your installation scripts. Type the following to install the pubs and
Northwind databases:

C:\SQL Server 2000 Sample Databases>sqlcmd -S .\SQLEXPRESS -i instpubs.sql
C:\SQL Server 2000 Sample Databases>sqlcmd -S .\SQLEXPRESS -i instnwnd.sql

In addition, you will also add a new TagID field to the Employees table in the Northwind
database. To do so, follow these steps:

1. Go to Server Explorer (View ➤ Server Explorer).

2. Right-click Data Connections, and select Add Connection.

3. Select the Microsoft SQL Server (SqlClient) data source, and in the Server Name field,
enter .\SQLEXPRESS (assuming you have SQL Express installed on your local com-
puter). Select Northwind as the database name, and click OK.

4. In Server Explorer, expand the Northwind database and then the Tables item. Double-
click Employees, and add the TagID field. For Data Type, select nchar(10), as shown in
Figure 5-11.

■Note Ensure that the data source selected is Microsoft SQL Server (SqlClient). If it is not, click Change,
and select Microsoft SQL Server.

Add a new data source to your project by selecting Data ➤ Add New Data Source. Using
the Data Source Configuration Wizard, select Database, and click Next. Click the New Connec-
tion button to specify the database to use. You will see the Add Connection dialog box (see
Figure 5-12). As before, enter .\SQLEXPRESS as the server name, and select Northwind as the
database. Click OK.

CHAPTER 5 ■ FUN WITH RFID208

CHAPTER 5 ■ FUN WITH RFID 209

Figure 5-11. Adding a new TagID field to the Employees table

Figure 5-12. Adding a new connection to
the Northwind database

CHAPTER 5 ■ FUN WITH RFID210

Back in the Data Source Configuration Wizard, click Next. On the next screen, select the
table and fields to use. Expand the Tables and Employees items, and then check the following
fields (see also Figure 5-13):

• EmployeeID

• LastName

• FirstName

• Title

• Photo

• TagID

Figure 5-13. Choosing the fields to use in the Employees table

CHAPTER 5 ■ FUN WITH RFID 211

You can now view the newly added data source by selecting Data ➤ Show Data Sources.
Figure 5-14 (left) shows the Employees data source. By default, the Employees table is bound
to a DataGridView control, and all its fields (except the Photo field) are bound to TextBox con-
trols. You should change the bindings to those shown in Table 5-2. The Employees data source
should now look like the right of Figure 5-14.

Figure 5-14. The Employees data source

Table 5-2. Changing the Binding of the Employees Data Source

Table/Fields Binding

Employees Details

Employee Label

LastName TextBox

FirstName TextBox

Title TextBox

Photo PictureBox

TagID Label

CHAPTER 5 ■ FUN WITH RFID212

Drag and drop the Employees data source onto the default Form1. Figure 5-15 shows the
controls that automatically populate the form. For the PictureBox control, set its Size property
to 95,110, and set SizeMode to StretchImage.

■Note Move the TagID label and its accompanying Label control (on the right) to the top.

Figure 5-15. The data-bound controls

To test that the data binding works, you can now press F5 to debug the application. Figure
5-16 shows the application displaying the records in the Employees table.

Figure 5-16. Testing to ensure that the data binding works

CHAPTER 5 ■ FUN WITH RFID 213

The next part is to add controls to the form to allow an administrator to assign an RFID
tag to a user. Figure 5-17 shows the controls to be added.

Figure 5-17. Populating the form with the various controls

For the txtTagID control, set both the ReadOnly and MultiLine properties to True.
In addition, drag and drop a Timer control from the Toolbox onto the form. This control

will ensure that the employee record that is displayed will be cleared after three seconds.

Coding the Application
With the UI of the application out of the way, you can now focus on writing the code to wire up
all the controls. Switch to the code-behind of Form1, and import the following namespaces.

Visual Basic 2005

Imports System.Data
Imports System.Data.SqlClient
Imports System.IO

Button Control (btnFind)
Label Control

TextBox Control (txtTagID)

Label Control GroupBox Control

ToolStatusStripLabel Control
(ToolStatusStripLabel1)

TextBox Control
(txtEmployeeID)

Button Control
(btnAssign)

Button Control
(btnDeassign)

StatusStrip Control
(StatusStrip1)

C# 2005

using System.Data;
using System.Data.SqlClient;
using System.IO;

Declare the following member variables and constants.

Visual Basic 2005

Public Class Form1
'---serial port to listen to incoming data---
Private WithEvents serialPort As New IO.Ports.SerialPort

'---tag ID read from the reader---
Private tagID As String = String.Empty

'---the time that the tag ID was recorded---
Private timeRecorded As DateTime = Now

'---COM port to listen to---
Const COM As String = "COM3"

'---filename of the log file---
Const FILE_NAME As String = "C:\Attendance.csv"

'---the interval before the employee record is cleared
' from the screen (in seconds)---
Const INTERVAL As Integer = 3

■Note For simplicity I have hard-coded the path for storing the log file. In a real-life application, you are
better off using the Application.ExecutablePath property to retrieve the path of the application.

C# 2005

public partial class Form1 : Form
{

//---serial port to listen to incoming data---
private System.IO.Ports.SerialPort serialPort =

new System.IO.Ports.SerialPort();

//---tag ID read from the reader---
private string tagID = string.Empty;

//---the time that the tag ID was recorded---
private DateTime timeRecorded = System.DateTime.Today;

CHAPTER 5 ■ FUN WITH RFID214

//---COM port to listen to---
const string COM = "COM3";

//---filename of the log file---
const string FILE_NAME = "C:\\Attendance.csv";

//---the interval before the employee record is cleared
// from the screen (in seconds)---
const int INTERVAL = 3;

When the form is loaded, you first clear the displayed employee by setting its filter to a
nonexistent tag ID. The Timer control clears the displayed employee after a certain amount
of time, and in this case you will set it to three seconds (as defined by the Interval constant).
That is to say, when an employee is identified using his RFID tag, his information will be
cleared from the screen after three seconds.

Because the Parallax RFID Reader Module uses a serial connection, you will use the
SerialPort class (see Chapter 2 for a detailed description of the SerialPort class) to commu-
nicate with the reader.

■Note For this example, I have assumed that COM3 is the port that is connected to the Parallax RFID
Reader Module. You need to change it to the correct port number for your own use.

Code the Form1_Load event as follows.

■Note Henceforth in this chapter, to make Visual Studio 2005 automatically create the event handler for a
control (such as a form’s Load event or a button’s Click event), double-click the control to create the event
handler.

Visual Basic 2005

Private Sub Form1_Load(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

'TODO: This line of code loads data into the
' 'NorthwindDataSet.Employees' table. You can move,
' or remove it, as needed.
Me.EmployeesTableAdapter.Fill(Me.NorthwindDataSet.Employees)

'---Clear the employee when the app is loaded---
EmployeesBindingSource.Filter = "TAGID='xxxxxxxxxx'"

CHAPTER 5 ■ FUN WITH RFID 215

'---set the timer interval to clear the employee record---
Timer1.Interval = INTERVAL * 1000 'convert to milliseconds

'---open the serial port connecting to the reader---
If serialPort.IsOpen Then

serialPort.Close()
End If

Try
With serialPort

.PortName = COM

.BaudRate = 2400

.Parity = IO.Ports.Parity.None

.DataBits = 8

.StopBits = IO.Ports.StopBits.One

.Handshake = IO.Ports.Handshake.None
End With
serialPort.Open()

Catch ex As Exception
MsgBox(ex.ToString)

End Try
End Sub

C# 2005

private void Form1_Load(object sender, EventArgs e)
{

// TODO: This line of code loads data into the
// northwindDataSet.Employees' table. You can move,
// or remove it, as needed.
this.employeesTableAdapter.Fill(

this.northwindDataSet.Employees);

serialPort.DataReceived += new
System.IO.Ports.SerialDataReceivedEventHandler(
DataReceived);

//---Clear the employee when the app is loaded---
employeesBindingSource.Filter = "TAGID='xxxxxxxxxx'";

//---set the timer interval to clear the employee
// record---
timer1.Interval = INTERVAL * 1000;

//---open the serial port connecting to the reader---
if (serialPort.IsOpen)
{

CHAPTER 5 ■ FUN WITH RFID216

serialPort.Close();
}

try
{

serialPort.PortName = COM;
serialPort.BaudRate = 2400;
serialPort.Parity = System.IO.Ports.Parity.None;
serialPort.DataBits = 8;
serialPort.StopBits = System.IO.Ports.StopBits.One;
serialPort.Handshake = System.IO.Ports.Handshake.None;
serialPort.Open();

}
catch (Exception ex)
{

MessageBox.Show(ex.ToString());
}

}

To receive incoming data from the SerialPort class, you need to service the DataReceived
event. In this case, when incoming data is received, you will update the txtTagID control. Code
the DataReceived event as follows.

Visual Basic 2005

Private Sub DataReceived(_
ByVal sender As Object, _
ByVal e As System.IO.Ports.SerialDataReceivedEventArgs) _
Handles serialPort.DataReceived
'---when incoming data is received, update the TagID
' textbox---
txtTagID.BeginInvoke(New _

myDelegate(AddressOf updateTextBox), _
New Object() {})

End Sub

C# 2005

private void DataReceived(
object sender,
System.IO.Ports.SerialDataReceivedEventArgs e)

{
//---when incoming data is received, update the TagID
// textbox---
txtTagID.BeginInvoke(new myDelegate(updateTextBox),

new object[] { });
}

CHAPTER 5 ■ FUN WITH RFID 217

You need to define a delegate to call a routine to update the txtTagID control. Here, define
the myDelegate() delegate and the updateTextBox() subroutine.

Visual Basic 2005

'---update the Tag ID textbox---
Public Delegate Sub myDelegate()
Public Sub updateTextBox()

'---for receiving plain ASCII text---
With txtTagID

.AppendText(serialPort.ReadExisting)

.ScrollToCaret()
End With

End Sub

C# 2005

//---update the Tag ID textbox---
public delegate void myDelegate();
public void updateTextBox()
{

//---for receiving plain ASCII text---
txtTagID.AppendText(serialPort.ReadExisting());
txtTagID.ScrollToCaret();

}

One important point you need to understand about RFID readers (at least for the RFID
readers shown in this chapter) is that when a tag is scanned, it will continuously send the tag
ID to the serial connection. For example, suppose a tag with an ID of 0F0296AF3C is placed
near the reader. In this case, the reader will continuously send the value of 0F0296AF3C to the
serial connection. For the Parallax RFID Reader Module, each value starts with the LF charac-
ter (character 10: <10>) and ends with the CR character (character 13: <13>). To make matters
complicated, using the ReadExisting() method of the SerialPort class does not guarantee
you will read the complete tag ID in its entirety. This is because a value may be sent in four
blocks, like this:

<10>0F
029
6AF3
C<13>

You may be tempted to use the ReadLine() method of the SerialPort class to read incom-
ing data, but that will not work because the ReadLine() method will look for <13><10> at the
end of the line. But since the incoming data does not end with <10>, this will cause the appli-
cation to go into an infinite loop.

CHAPTER 5 ■ FUN WITH RFID218

And if you don’t clear the incoming data buffer fast enough, you may get a series of data
queued up like this:

<10>
0F
029
6AF3
C
<13>
<10>
04
158D
C82B
<13>

Instead of writing elaborate logic to process the incoming data, an easy way is to append
all incoming data to a TextBox control (with the MultiLine property set to True). Using the data
just described, Figure 5-18 shows how it will look in the TextBox control.

Figure 5-18. Appending incoming data to a TextBox control

As data is appended to the TextBox control, the first line contains the LF character (<10>),
and hence the first line is always empty. As more data is appended to the control, the CR and
LF characters (<13><10>) will force subsequent data to be appended to the new line of the con-
trol. The second-to-last line will hence always contain the tag ID you are interested in even if
the last line is an empty string. In contrast, if the tag ID is only partially received, the state of
the TextBox control will be as shown in Figure 5-19.

Figure 5-19. The state of the TextBox control containing the last incomplete tag ID

Because all incoming data is updated in the TextBox control, you can check whether the
tag ID belongs to an employee whenever there are changes in the content of the TextBox con-
trol. You can detect this via the TextChanged event, which is defined next.

txtTagID.Lines(0)“”

txtTagID.Lines(1)0F0296AF3C

txtTagID.Lines(2)04158D

txtTagID.Lines(0)“”

txtTagID.Lines(1)0F0296AF3C

txtTagID.Lines(2)04158DC82B

txtTagID.Lines(3)“”

CHAPTER 5 ■ FUN WITH RFID 219

Visual Basic 2005

Private Sub txtTagID_TextChanged(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles txtTagID.TextChanged

If txtTagID.Lines(txtTagID.Lines.Length - 1) = _
String.Empty Then
'---get the tag ID that is read---
Dim temptagID As String = _

txtTagID.Lines(txtTagID.Lines.Length - 2)

'---get the time interval between the last read time
' and the current time---
Dim tp As TimeSpan = Now.Subtract(timeRecorded)
Dim timeInterval As Double = _

tp.Ticks / TimeSpan.TicksPerSecond

If (temptagID = tagID) And timeInterval < INTERVAL Then
'---if it is the same tag and the time interval
' is less than 3 seconds, the tag won't be
' registered---
Exit Sub

End If

'---the tag is saved---
tagID = temptagID
EmployeesBindingSource.RemoveFilter()

'---find the employee associated with the tag---
EmployeesBindingSource.Filter = "TAGID='" & tagID & "'"
If EmployeesBindingSource.Count < 1 Then

ToolStripStatusLabel1.Text = "Employee not found."
Else

ToolStripStatusLabel1.Text = "Employee found."

'---write the employee information to log file---
WriteToLog(EmployeeIDLabel1.Text, _

LastNameTextBox.Text & ", " & _
FirstNameTextBox.Text)

'---reset the timer---
Timer1.Enabled = False
Timer1.Enabled = True

End If
'---save the time this tag was recorded---
timeRecorded = Now

End If
End Sub

CHAPTER 5 ■ FUN WITH RFID220

C# 2005

private void txtTagID_TextChanged(
object sender,
EventArgs e)

{
//---get the tag ID that is read---
if (txtTagID.Lines[txtTagID.Lines.Length - 1] ==

string.Empty)
{

string temptagID =
txtTagID.Lines[txtTagID.Lines.Length - 2];

//---get the time interval between the last read time
// and the current time---
TimeSpan tp =

System.DateTime.Today.Subtract(timeRecorded);
double timeInterval =

tp.Ticks / TimeSpan.TicksPerSecond;

if ((temptagID == tagID) & timeInterval < INTERVAL)
{

//---if it is the same tag and the time interval
// is less than 3 seconds, the tag won't be
// registered---
return;

}

//---the tag is saved---
tagID = temptagID;
employeesBindingSource.RemoveFilter();

//---find the employee associated with the tag---
employeesBindingSource.Filter = "TAGID='" + tagID +

"'";
if (employeesBindingSource.Count < 1)
{

ToolStripStatusLabel1.Text =
"Employee not found.";

}
else
{

ToolStripStatusLabel1.Text = "Employee found.";

//---write the employee information to log file---
WriteToLog(employeeIDLabel1.Text,

lastNameTextBox.Text +
", " + firstNameTextBox.Text);

CHAPTER 5 ■ FUN WITH RFID 221

timer1.Enabled = false;
timer1.Enabled = true;

}

//---save the time this tag was recorded---
timeRecorded = System.DateTime.Today;

}
}

In this event, you first examine whether the last line in the txtTagID control is an empty
string; if it is, then you can find the scanned tag ID in the second-to-last line. Using this tag ID,
you will check the time difference between the current time and the last time the tag ID was
read. If it is less than three seconds and the tag ID is the same as the last read tag ID, it means
it is the same user, and thus you can ignore the current tag ID. Using this implementation, the
same user would be ignored for the next three seconds from the moment he first scanned his
tag.

With the tag ID, you will apply a filter to the EmployeesBindingSource control to look for an
employee with a matching tag ID. If an employee is found, an entry will be written to the log
file using the WriteToLog() subroutine. The WriteToLog() subroutine is defined as follows.

Visual Basic 2005

Private Sub WriteToLog(_
ByVal employeeID As String, _
ByVal employeeName As String)
'---write to log file---
Dim str As String = employeeID & "," & _

employeeName & "," & Now & Chr(13)
My.Computer.FileSystem.WriteAllText(FILE_NAME, str, True)

End Sub

C# 2005

private void WriteToLog(
string employeeID, string employeeName)

{
//---write to log file---
string str = employeeID + "," + employeeName + "," +

System.DateTime.Today.ToString() + Environment.NewLine;
File.AppendAllText(FILE_NAME, str);

}

Figure 5-20 shows the content of a typical log file.

CHAPTER 5 ■ FUN WITH RFID222

Figure 5-20. The content of a typical log file

The Timer control will fire off the Tick event every three seconds (as determined by the
value set in its Interval property). Therefore, you need to service the Tick event so that every
time it fires, you can clear the current employee information that is displayed. Here is the
implementation of the Tick event.

Visual Basic 2005

Private Sub Timer1_Tick(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles Timer1.Tick
'---clear the employee---
EmployeesBindingSource.Filter = "TAGID='xxxxxxxxxx'"
Timer1.Enabled = False

End Sub

C# 2005

private void timer1_Tick(object sender, EventArgs e)
{

//---clear the employee---
employeesBindingSource.Filter = "TAGID='xxxxxxxxxx'";
timer1.Enabled = false;

}

If the tag ID that was just scanned does not belong to any user, the administrator can
assign the tag ID to an employee. To do so, he can first click the Find button to find a user
and then assign the tag ID to that user. The implementation of the Find button is as follows.

CHAPTER 5 ■ FUN WITH RFID 223

Visual Basic 2005

Private Sub btnFind_Click(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnFind.Click
'---search for employee---
If txtEmployeeID.Text = String.Empty Then

EmployeesBindingSource.RemoveFilter()
Else

EmployeesBindingSource.Filter = _
"EmployeeID='" & txtEmployeeID.Text & "'"

End If
End Sub

C# 2005

private void btnFind_Click(object sender, EventArgs e)
{

//---search for employee---
if (txtEmployeeID.Text == string.Empty)
{

employeesBindingSource.RemoveFilter();
}
else
{

employeesBindingSource.Filter =
"EmployeeID='" + txtEmployeeID.Text + "'";

}
}

Basically, you search for a user by applying a filter to the EmployeesBindingSource control.
To assign a tag ID to the current employee, copy the tag ID onto the TagIDLabel1 control, and
then save the changes. Here is the implementation of the Assign button.

Visual Basic 2005

Private Sub btnAssign_Click(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnAssign.Click
'---obtain the tag ID that was read---
If txtTagID.Lines.Length > 1 Then

Dim tagID As String = _
txtTagID.Lines(txtTagID.Lines.Length - 2)

Else
ToolStripStatusLabel1.Text = "No tag id scanned."
Exit Sub

End If

CHAPTER 5 ■ FUN WITH RFID224

If txtTagID.Text <> String.Empty Then
'---assign the Tag ID to the current employee---
TagIDLabel1.Text = tagID
ToolStripStatusLabel1.Text = _

"Tag associated with employee."

'---save the record---
Me.Validate()
Me.EmployeesBindingSource.EndEdit()
Me.EmployeesTableAdapter.Update(_

Me.NorthwindDataSet.Employees)
End If

End Sub

C# 2005

private void btnAssign_Click(object sender, EventArgs e)
{

//---obtain the tag ID that was read---
if (txtTagID.Lines.Length > 1)
{

string tagID = txtTagID.Lines[
txtTagID.Lines.Length - 2];

}
else
{

ToolStripStatusLabel1.Text = "No tag id scanned.";
return;

}
if (txtTagID.Text != string.Empty)
{

//---assign the Tag ID to the current employee---
tagIDLabel1.Text = tagID;
ToolStripStatusLabel1.Text =

"Tag associated with employee.";

//---save the record---
this.Validate();
this.employeesBindingSource.EndEdit();
this.employeesTableAdapter.Update(

this.northwindDataSet.Employees);
}

}

The Deassign button allows a tag ID to be disassociated from an employee. You can easily
accomplish this by setting the TagIDLabel1 control to an empty string. Here is the implemen-
tation of the Deassign button.

CHAPTER 5 ■ FUN WITH RFID 225

Visual Basic 2005

Private Sub btnDeassign_Click(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnDeassign.Click
If Trim(TagIDLabel1.Text) = String.Empty Then

ToolStripStatusLabel1.Text = _
"Current employee has no tag ID."

Exit Sub
End If

'---deassociate tag ID from employee---
TagIDLabel1.Text = String.Empty

'---save the record---
Me.Validate()
Me.EmployeesBindingSource.EndEdit()
Me.EmployeesTableAdapter.Update(Me.NorthwindDataSet.Employees)
ToolStripStatusLabel1.Text = "Tag deassociated from employee."

End Sub

C# 2005

private void btnDeassign_Click(object sender, EventArgs e)
{

if (tagIDLabel1.Text.Trim() == string.Empty)
{

ToolStripStatusLabel1.Text =
"Current employee has no tag ID.";

return;
}

//---deassociate tag ID from employee---
tagIDLabel1.Text = string.Empty;

//---save the record---
this.Validate();
this.employeesBindingSource.EndEdit();
this.employeesTableAdapter.Update(

this.northwindDataSet.Employees);
ToolStripStatusLabel1.Text =

"Tag deassociated from employee.";
}

CHAPTER 5 ■ FUN WITH RFID226

Testing the Application
You are now ready to test the application. Press F5 to debug the application. Scan a tag using
the RFID reader. The application should register your tag ID and show that no employee is
found (see Figure 5-21).

Figure 5-21. Scanning a tag that does not belong to any employee

You can associate the tag ID with an employee by searching for an employee; enter the
employee ID in the TextBox control, and click the Find button (or leave it empty, and it will
return all records). Once you have located the employee you want, click the Assign Tag to
Employee button to assign the tag ID to the employee.

The next time you scan the same tag, the employee will be shown!

RFID Reader #2: PhidgetRFID
The second RFID reader you will use is the PhidgetRFID
reader (http://www.phidgetsusa.com/cat/viewproduct.
asp?category=3000&subcategory=3100&SKU=1023; $59.95;
see Figure 5-22) from Phidgets USA. The PhidgetRFID
reader is also a read-only RFID reader that can read tags
within a 3-inch proximity.

Unlike the Parallax RFID Reader Module, the
PhidgetRFID reader uses a USB connection, which is
actually easier for most people since almost all comput-
ers today support USB devices. And since it draws power
from the USB connection, you don’t need an external
power source. Simply connect the PhidgetRFID reader
to your computer, and you are ready to go.

CHAPTER 5 ■ FUN WITH RFID 227

Figure 5-22. The PhidgetRFID

RFID Tags
Instead of purchasing the stand-alone PhidgetRFID reader, I suggest you purchase the Phidget
RFID kit (http://www.phidgetsusa.com/cat/viewproduct.asp?category=3000&subcategory=
3300&SKU=93001; $88.95; see Figure 5-23), which comes with the following:

• Six 30mm disc RFID tags

• Two credit card–sized RFID tags

• Two key-fob RFID tags

• USB cable

Figure 5-23. The PhidgetRFID kit

The PhidgetRFID reads RFID tags that use the EM Marrin protocol, EM4102 (which is a
125kHz read-only protocol).

■Tip The PhidgetRFID reader also reads the tag I used for the Parallax RFID Reader Module. In fact, the
tags described here also work with Parallax’s reader.

CHAPTER 5 ■ FUN WITH RFID228

Building the Sample Application
Rather than modify the application built in the previous sections to work with the PhidgetRFID
reader (and have a lot of repetitive code snippets), I have opted to build a simpler application so
you can learn the fundamentals without being bogged down with the details of the application.

■Note If you are interested in a copy of the attendance application that works with the PhidgetRFID reader, you
can download it from the Source Code/Download section of the Apress website (http://www.apress.com/).

Using Visual Studio 2005, create a new Windows application, and populate the default
form with the controls shown in Figure 5-24.

Figure 5-24. Populating the form with the controls

Using this application, you can view the tag ID that is being scanned, and you can also
programmatically turn on/off the LED on the reader and enable/disable the reader.

Label Control
TextBox Control

(txtTagID)
TextBox Control

(chkEnableReader)

CheckBox Control
chkTurnOnLED

StatusStrip Control
(StatusStrip1)

ToolStripStatusLabel Control
(ToolStripStatusLabel1)

CHAPTER 5 ■ FUN WITH RFID 229

Running the PhidgetRFID WebService
Phidget has made it easy for .NET programmers to use the PhidgetRFID reader. The Phidget
WebService component actually controls the reader and interacts with your PhidgetRFID
reader. The Phidget WebService component must be installed and running on the computer
that has the PhidgetRFID reader connected. Once the Phidget WebService component is up
and running, your program can then communicate with it in order to control the PhidgetRFID
reader. You can obtain the Phidget library (containing the Phidget WebService component)
from http://www.phidgetsusa.com (go to Downloads, click Phidget Library Files and Exam-
ples, and then choose Phidget21 Downloads) and download the PHIDGET.msi file.

■Note The use of the term web service is a little misleading here. The Phidget WebService component is
not an XML web service like most people are familiar with. Rather, it is a Windows service that runs in the
background.

When installed, you can find the Phidget WebService
component in C:\Program Files\Phidgets. You can invoke
the Phidget WebService Manager (a GUI version of the com-
ponent) by running PhidgetWebServiceManger.exe from this
directory. Once it is up and running, you can find it in the
system tray (see Figure 5-25).

Double-click the icon to launch the Phidget WebService
Manager. Using the manager, you can change the settings of
the component as well as manage your Phidget devices (not
just the PhidgetRFID reader). As shown in Figure 5-26, the Phidget WebService component is
listening at port 5001 and requires the password pass (the default) in order to access it. With
your PhidgetRFID reader attached to your computer, click Start. In my case, my reader has the
serial number of 6207, which can be used to uniquely identify it.

One unique feature of the Phidget WebService component is that your client application
does not necessarily need to be running on the same computer as the one with the reader
connected. The client application uses sockets communication to talk to the Phidget
WebService component, so this means a PhidgetRFID reader can be connected to one
computer and the client application can be running on another computer (as long as they
are accessible on the network). Figure 5-27 shows one possible scenario. The advantage of
this approach is that your client can be running on mobile platform devices (such as a Pocket
PC) as long as it can communicate with the host computer using sockets communication.

CHAPTER 5 ■ FUN WITH RFID230

Figure 5-25. Phidget WebService
Manager in the system tray

CHAPTER 5 ■ FUN WITH RFID 231

Figure 5-26. The Phidget WebService Manager

Figure 5-27. The client and the reader don’t
need to be on the same computer.

PhidgetRFID APIs
The functionalities of the PhidgetRFID reader are exposed as APIs located in the PhidgetsNET.dll
library. This library is installed with the Phidget WebService component in C:\Program Files\
Phidgets\.

To use the PhidgetRFID, first import the PhidgetNET.dll library into your application.
Right-click the project name in Solution Explorer, and then select Add Reference. On the Browse
tab, navigate to C:\Program Files\Phidgets\, and select PhidgetsNET.dll (see Figure 5-28).

Figure 5-28. Importing the PhidgetsNET.dll into your .NET application

Coding the Application
Switch to the code-behind of Form1, and first declare a member variable representing the
PhidgetRFID reader.

Visual Basic 2005

Public Class Form1
Dim WithEvents RFIDReader As PhidgetsNET.PhidgetRFID

C# 2005

public partial class Form1 : Form
{

PhidgetsNET.PhidgetRFID RFIDReader;

CHAPTER 5 ■ FUN WITH RFID232

When the form is loaded, instantiate the PhidgetReader variable, and open a connection
to the computer running the Phidget WebService component. You accomplish this by using
the Form1_Load event (for the C# version of the code, you need to wire up the various event
handlers for the PhidgetRFID class).

Visual Basic 2005

Private Sub Form1_Load(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles MyBase.Load
RFIDReader = New PhidgetsNET.PhidgetRFID
RFIDReader.OpenRemoteIP("localhost", 5001, -1, "pass")
ToolStripStatusLabel1.Text = "Not Connected"

End Sub

C# 2005

private void Form1_Load(object sender, EventArgs e)
{

RFIDReader = new PhidgetsNET.PhidgetRFID();

//---wire up the various event handler for the PhidgetRFID
// class---
RFIDReader.Attach += new

PhidgetsNET.AttachEventHandler(this.RFIDReader_Attach);
RFIDReader.Detach += new

PhidgetsNET.DetachEventHandler(this.RFIDReader_Detach);
RFIDReader.Tag += new

PhidgetsNET.TagEventHandler(this.RFIDReader_Tag);
RFIDReader.Error += new

PhidgetsNET.ErrorEventHandler(this.RFIDReader_Error);

RFIDReader.OpenRemoteIP("localhost", 5001, -1, "pass");
ToolStripStatusLabel1.Text = "Not Connected";

}

■Note Notice that I used localhost because my reader is connected to my local computer. The port 5001
corresponds to the port number entered in the Phidget WebService Manager (see Figure 5-26). The -1 refers
to the first device that is found in the Phidget WebService component. Alternatively, you can use 6207 (the
device serial number). pass is the password (also set in the Phidget WebService Manager) you need.

CHAPTER 5 ■ FUN WITH RFID 233

For the PhidgetRFID reader, you need to service four important events:

Attach: Fired when a PhidgetRFID reader is attached to the computer running the Phidget
WebService component

Detach: Fired when a PhidgetRFID reader is detached from the computer running the
Phidget WebService component

Error: Fired when there is an error with the PhidgetRFID reader

Tag: Fired when a tag is scanned using the PhidgetRFID reader

In the Attach event, when a reader is connected, you will turn on the LED on the reader as
well as enable the reader by using the SetOutputState() method of the PhidgetRFID class.

Visual Basic 2005

Private Sub RFIDReader_Attach(_
ByVal sender As Object, _
ByVal e As PhidgetsNET.AttachEventArgs) _
Handles RFIDReader.Attach
'---display the status---
ToolStripStatusLabel1.Text = "Phidget RFID Reader Connected"

'---Enable onboard LED---
chkTurnOnLED.Checked = True
RFIDReader.SetOutputState(2, True)

'---Enable RFID Reader---
chkEnableReader.Checked = True
RFIDReader.SetOutputState(3, True)

End Sub

C# 2005

private void RFIDReader_Attach(
object sender,
PhidgetsNET.AttachEventArgs e)

{
//---display the status---
ToolStripStatusLabel1.Text =

"Phidget RFID Reader Connected";

//---Enable onboard LED---
chkTurnOnLED.Checked = true;
RFIDReader.SetOutputState(2, true);

//---Enable RFID Reader---
chkEnableReader.Checked = true;
RFIDReader.SetOutputState(3, true);

}

CHAPTER 5 ■ FUN WITH RFID234

When a reader is detached, you simply update its status in the status bar.

Visual Basic 2005

Private Sub RFIDReader_Detach(_
ByVal sender As Object, _
ByVal e As PhidgetsNET.DetachEventArgs) _
Handles RFIDReader.Detach
'---display the status---
ToolStripStatusLabel1.Text = _

"Phidget RFID Reader Not Connected"
End Sub

C# 2005

private void RFIDReader_Detach(
object sender,
PhidgetsNET.DetachEventArgs e)

{
//---display the status---
ToolStripStatusLabel1.Text =

"Phidget RFID Reader Not Connected";
}

The same goes for the Error event.

Visual Basic 2005

Private Sub RFIDReader_Error(_
ByVal sender As Object, _
ByVal e As PhidgetsNET.ErrorEventArgs) _
Handles RFIDReader.Error
'---display the error---
ToolStripStatusLabel1.Text = e.getError

End Sub

C# 2005

private void RFIDReader_Error(
object sender,
PhidgetsNET.ErrorEventArgs e)

{
//---display the error---
ToolStripStatusLabel1.Text = e.getError();

}

For the Tag event, you will invoke a delegate to display the tag ID.

CHAPTER 5 ■ FUN WITH RFID 235

Visual Basic 2005

Private Sub RFIDReader_Tag(_
ByVal sender As Object, _
ByVal e As PhidgetsNET.TagEventArgs) _
Handles RFIDReader.Tag
'---when incoming data is received, update the TagID
' textbox---
txtTagID.BeginInvoke(New _

myDelegate(AddressOf updateTextBox), _
New Object() {e.getTag})

End Sub

C# 2005

private void RFIDReader_Tag(
object sender, PhidgetsNET.TagEventArgs e)

{
//---when incoming data is received, update the TagID
// textbox---
txtTagID.BeginInvoke(new myDelegate(updateTextBox),

new object[] { e.getTag() });
}

■Note Unlike the previous project using the Parallax’s RFID reader, using the PhidgetRFID APIs eliminates
the need to specially handle the incoming tag ID using a TextBox control. In this case, when a tag is scanned,
you can obtain its tag ID via the Tag event.

The delegate and the subroutine to update the textbox with the tag ID is defined as follows.

Visual Basic 2005

'---update the Tag ID textbox---
Public Delegate Sub myDelegate(ByVal str As String)
Public Sub updateTextBox(ByVal str As String)

'---update the textbox control---
With txtTagID

.Text = str
End With

End Sub

C# 2005

//---update the Tag ID textbox---
public delegate void myDelegate(string str);

CHAPTER 5 ■ FUN WITH RFID236

public void updateTextBox(string str)
{

//---update the TextBox control---
txtTagID.Text = str;

}

You can also turn on/off the LED on the reader during runtime. This is serviced by the
CheckChanged event of the chkTurnOnLED control.

Visual Basic 2005

Private Sub chkTurnOnLED_CheckedChanged(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles chkTurnOnLED.CheckedChanged
'---Enable/Disable onboard LED---
RFIDReader.SetOutputState(2, chkTurnOnLED.Checked)

End Sub

C# 2005

private void chkTurnOnLED_CheckedChanged(
object sender,
EventArgs e)

{
//---Enable/Disable onboard LED---
RFIDReader.SetOutputState(2, chkTurnOnLED.Checked);

}

Similarly, you can enable/disable the reader by servicing the CheckChanged event of the
chkEnableReader control.

Visual Basic 2005

Private Sub chkEnableReader_CheckedChanged(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles chkEnableReader.CheckedChanged
'---Enable RFID Reader---
RFIDReader.SetOutputState(3, chkEnableReader.Checked)

End Sub

C# 2005

private void chkEnableReader_CheckedChanged(
object sender, EventArgs e)

{
//---Enable RFID Reader---
RFIDReader.SetOutputState(3, chkEnableReader.Checked);

}

CHAPTER 5 ■ FUN WITH RFID 237

Testing the Application
That’s it! You can now press F5 to test the application. Ensure that your PhidgetRFID reader is
enabled in the Phidget WebService Manager. Figure 5-29 shows a tag scanned successfully.

Figure 5-29. A tag scanned successfully

Figure 5-30 shows the reader with the LED turned on (top) and off (bottom).

Figure 5-30. Turning the onboard LED on and off

CHAPTER 5 ■ FUN WITH RFID238

Comparing the Two RFID Readers
You have seen two types of RFID readers; so, which one should you buy? Here are some factors
you can consider.

Cost
In terms of cost, the Parallax RFID Reader Module is very affordable at $39. However, you need
to factor in the additional cost of wiring up the unit. You need to buy a power adapter (output
5V DC), a serial cable, and the additional hardware needed to convert the signal to serial out-
put. In contrast, the PhidgetRFID reader costs about $58, and you don’t need to worry about
any additional costs.

Ease of Use
In terms of use, the PhidgetRFID reader is truly plug and play. Just make sure you download
the Phidget WebService component, and you can start coding straightaway. The Parallax RFID
Reader Module takes some effort to set up, especially if you are not familiar with electronics
and worry about causing damage to the unit.

Flexibility
If you simply want to connect an RFID reader to your computer, then the PhidgetRFID reader
is one clear option. However, the beauty of the Parallax RFID Reader Module is that it allows
you to connect the unit to devices other than a PC, such as an embedded controller. Using the
Parallax RFID Reader Module, you can embed it in a door and write your own code to authen-
ticate users.

■Tip At the moment, you can’t really use the .NET Framework (or the .NET Compact Framework) to write
code for an embedded controller; however, I am really looking forward to the new .NET Micro Framework
(http://www.aboutnetmf.com/entry.asp) to do the job in the near future.

Dimension
Both readers are similar in size and are flat enough to be hidden from view.

Summary
In this chapter, you saw how RFID works and then went on to build a Windows application
that uses two RFID readers—one from Parallax and one from Phidget USA. Depending on
your needs, both low-cost readers offer a lot of exciting possibilities for integrating RFID
capabilities into your projects. If you have not tried RFID yet, this is a good time to begin!

CHAPTER 5 ■ FUN WITH RFID 239

Interfacing with
External Devices

Today, a webcam is a common peripheral that most people can easily afford; and it’s used
most often for video conferencing. But what can you do with your webcam besides video
conferencing? For .NET developers, the answer is plenty; and you will be glad to know that
integrating a webcam with a Windows application is not as difficult as you might imagine.

Besides integrating a webcam with your application, you can connect your Windows appli-
cation to an external device such as a sensor to monitor the movements of the surroundings.

In this chapter, you will build a security system by interfacing a Windows application with
an external sensor and a webcam so you can monitor for unwanted activities. You will be able
to detect the proximity of an intruder and use the webcam to record the intruder’s movements.
Figure 6-1 shows the application you will build in this chapter.

Figure 6- 1. The application you will build in this chapter 241

C H A P T E R 6

■ ■ ■

Components Used
You’ll use two components in this chapter:

• An ultrasonic sensor that is able to precisely measure distance

• A webcam you can use for your Windows Live Messenger or other instant messaging
(IM) software

Sensor
The sensor, the PING ultrasonic sensor (http://www.parallax.com/detail.asp?product_
id=28015; see Figure 6-2), is able to provide a precise measurement of distances ranging from
2 centimeters to 3 meters (0.79 inch to 9.84 feet). It works by emitting a short ultrasonic burst
and then measuring the time it takes the burst to bounce back when it hits an object. By tim-
ing this process, it is able to calculate the exact distance between the sensor and the object.
The PING sensor has a three-pin connector: GND, 5V DC, and a signal line. The signal line will
return the distance measured in pulses (I will talk more about this in the “Programming the
PING Sensor” section).

Figure 6-2. The PING sensor

■Note The PING sensor costs $24.95.

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES242

Webcam
You can use any webcam you already have. As long as it is recognized by Windows, it will be all
right. For my case, I used the Logitech QuickCam for Notebooks Deluxe webcam (see Figure 6-3),
which connects to my computer directly using a USB cable.

■Note Some webcams are plug and play in Windows, while others require you to install the drivers that
came with them.

Figure 6-3. The Logitech QuickCam for Notebooks Deluxe webcam

Connecting the Sensor to the PC
Unlike the webcam, the PING sensor cannot be directly connected to the serial/USB port of
the PC. The sensor is not designed for connecting to RS-232 serial (or USB) ports; a PC serial
port works on RS-232 voltages and serial communication, while the PING sensor runs at 5V
(TTL) and uses pulse-trigger and pulse-width to trigger. Hence, you would need a microcon-
troller to connect to the sensor and then use the microcontroller to return the results to the
PC via a serial/USB connection.

For this purpose, I used the BASIC Stamp 2 (BS2) module (http://www.parallax.com/
detail.asp?product_id=BS2-IC), also from Parallax. The BS2 is a microcontroller that runs at
20MHz and can execute approximately 4,000 instructions per second.

■Note The BS2 costs $49.

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES 243

You also need a board to house the BS2 module. I used Parallax’s USB Board of Education
(BoE) development board ($65; http://www.parallax.com/detail.asp?product_id=28850; see
Figure 6-4).

Figure 6-4. Parallax’s BS2 module and the USB BoE board

The BoE board has two versions: serial and USB. I recommend you get the USB version
because this saves you the trouble of buying a USB-to-serial adapter if you do not have a serial
port on your computer (this especially applies to notebooks). Technically, the USB version is
the same as the serial version—when you connect the USB cable to the BoE and your PC, you
will notice that it is actually a serial port connection (the BoE actually performs a serial-to-
USB conversion internally). To the .NET programmer, this is good news because you can now
communicate with the BoE using serial connections (via the SerialPort class in the .NET
Framework 2.0).

■Tip If cost is a concern, you might want to consider the Parallax HomeWork Board (http://www.
parallax.com/detail.asp?product_id=28158; see Figure 6-5), which has the BS2 built onto the
BoE board. The HomeWork Board costs $400 in quantities of ten, which is ideal if you have a few friends
willing to share the pack. The price of $40 is cheaper than the combined cost of $114 for the BS2 and the
BoE board.

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES244

Figure 6-5. The Parallax HomeWork Board

Connecting the PING Sensor
For the PING sensor, you will connect it to the built-in breadboard on the BoE board. Using
jumper wires, connect the points as shown in Figure 6-6. For the PING sensor, you can directly
plug in its three-pin connection to the breadboard. Specifically, GND connects to Vss, 5V con-
nects to Vdd, and SIG connects to P15 (pin 15).

Figure 6-6. Connection for the PING sensor

GND
5V
SIG
(PING)) Sensor)

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES 245

Figure 6-7 shows the completed connection.

Figure 6-7. The connected BoE board and the two sensors

Programming the PING Sensor
To program the PING sensor, you need to use the Parallax Basic (PBASIC) language. Parallax
provides the free BASIC Stamp Windows Editor (http://www.parallax.com/dl/sw/bs/win/
Setup-Stamp-Editor-Lrg-v2.2.6.exe), which makes programming the BS2 easy.

Once you have downloaded and installed the BASIC Stamp Windows Editor, you can
launch it (see Figure 6-8).

Programming PBASIC is actually not a difficult task, and I will explain the syntax as I go
along.

The first step is to add a PBASIC BS2 directive to your program to tell the editor that your
program is going to run on a BS2 module. You can insert the following directive by clicking the
button labeled (1) shown in Figure 6-9:

' {$STAMP BS2}

Next, you need to insert the PBASIC 2.5 directive to specify the version of PBASIC you are
using. Clicking the button labeled (2) in Figure 6-9 will insert the following directive:

' {$PBASIC 2.5}

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES246

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES 247

Figure 6-8. The free BASIC Stamp Windows Editor

Figure 6-9. Writing a program using the free BASIC Stamp Windows Editor

To program the PING sensor, you need to understand how it works. To activate the PING
sensor, you need to send a low-high-low pulse to trigger it. After it is triggered, it will wait for
about 200 microseconds before it sends out an ultrasonic burst. In the meantime, you will

(2) Insert the
PBASIC 2.5 directive

(1) Insert the
PBASIC B S2 directive

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES248

wait for the burst to be bounced back; this entire pulse duration (which starts when the burst
is sent) represents the round-trip distance from the sensor to the object you are detecting.

In the BS2, a pulse is defined to be 2µs (two microseconds). Hence, to convert the pulse
to time, you multiply the number of pulses by 2. This will give you the time in µs. Because the
measured pulse is for the trip to and fro, you need to divide it by 2 to get the time from the
sensor to the detected object.

Because sound travels through air at 1,130 feet per second (at sea level), this works out
to be 1 inch in 73.746 µs (or 1 cm in 29.034 µs). To convert the time in µs to a distance in cen-
timeters, you need to multiply the time by 29.034 (or 30 for simplicity). This will give you the
distance in centimeters. The following BS2 code summarizes what I have just described:

' {$STAMP BS2}
' {$PBASIC 2.5}

'---duration of the trigger; 1 represents 2 microseconds---
Trigger CON 1 '---CON represents constant---

'---variable to measure the pulse---
rawDist VAR Word '---VAR represents variable---

'---the I/O Pin connected to the PING sensor---
Ping PIN 15 '---PIN represents pin on the BS2---

DO
'---Set the pin to low first---
Ping = 0

'---trigger the sensor by sending a pulse ---
PULSOUT Ping, Trigger

'---measure the echo pulse by reading it---
PULSIN Ping, 1, rawDist

'---convert pulses to microseconds---
rawDist = rawDist * 2

'---get the single-trip timing---
rawDist = rawDist / 2

'---convert the distance to cm---
rawDist = rawDist / 30

'---print out the distance in cm---
DEBUG DEC rawDist, CR

'---delay for 100 milliseconds---
PAUSE 100

LOOP

■Note I have modified the previous from the sample provided by Parallax (http://www.parallax.com/
dl/docs/prod/acc/28015-PING-v1.3.pdf). Note that BASIC Stamp is able to deal only with integer divi-
sion; for complex floating-point division, check out the language reference for PBASIC.

The DEBUG command will send a value (or string) to the BASIC Stamp Windows Editor
(running on the PC). This command is useful for debugging your program running on the BS2.
In this case, you are printing the calculated distance (rawDist) as a decimal value (DEC). The CR
part indicates a carriage return.

Click the Run icon (or press Ctrl+R) to download the program onto the BS2. The Down-
load Progress dialog box will appear (see Figure 6-10). You can observe from this dialog box
that the BoE is connected to my computer via COM3.

Figure 6-10. The Download Progress dialog box

The Debug Terminal dialog box will now appear; it shows the output from the BS2 (see
Figure 6-11). Slowly move an object toward the PING sensor, and you will see that the distance
gets smaller and smaller.

Figure 6-11. Testing the PING sensor

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES 249

Integrating with the PC
So far, all the work has been done on the BoE. How do you integrate the PING sensor with your
PC so you can do something useful? More specifically, how do you get the sensor values into
your PC?

If you observe the top of the Debug Terminal dialog box, you will realize that it gets the
debugging information from the BS2 through a serial connection (see Figure 6-12). In my case,
it connects to COM3 with a baud rate of 9600bps. Hence, you can retrieve the sensor data
through this serial connection.

Figure 6-12. Serial connection information at the top of the Debug Terminal dialog box

However, besides using the DEBUG function to send the output from the BS2 to the PC, you
can also use the SEROUT command in PBASIC, which allows you to send asynchronous serial
data out of the BS2. To use the SEROUT command, remove the DEBUG command in the program,
and insert two SEROUT commands, as follows:

'---DEBUG DEC rawDist, CR <--- comment out this line
SEROUT 16, 16468, [DEC RawDist]
SEROUT 16, 16468, [LF]

The SEROUT command takes the following arguments:

• 16 is the pin to use for the output. If 16 is specified,
it indicates that it is using the dedicated serial out-
put pin (Sout) of the BS2 (see Figure 6-13).

• 16468 is the baud mode. You can obtain this value
from the Help documentation in the Basic Stamp
Editor. This value specifies a baud rate of 9600bps,
N81.

• [DEC RawDist] / [LF] is the data to send. DEC means
decimal, and LF means linefeed.

■Note The BS2 has two dedicated serial input/output pins (Sout and Sin).

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES250

Figure 6-13. The dedicated serial
input/output pins of the BS2

Sin

Sout

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES 251

Using Visual Studio 2005, create a Windows application, and name it SecuritySystem.
Populate the default Form1 with the following controls (see also Figure 6-14):

• Label

• ProgressBar

Figure 6-14. Populating the default Form1

For the ProgressBar control, set its Minimum property to 1 and its Maximum property to 160.

■Note For this project, I am interested only in measuring relatively short distances. Hence, I have set the
maximum value of the ProgressBar control to 160 so you are able to detect small changes in the Progress-
Bar control.

Switch to the code-behind of Form1, and declare the following member variables.

Visual Basic 2005

Public Class Form1
Private WithEvents serialPort As New IO.Ports.SerialPort
Private proximity As Integer

C# 2005

public partial class Form1 : Form
{

System.IO.Ports.SerialPort serialPort =
new System.IO.Ports.SerialPort();

int proximity;

In the Load event of the form, open a serial connection to COM3 (assuming the COM port
number used is COM3) using the SerialPort class.

ProgressBar1

■Note Henceforth in this chapter, to make Visual Studio 2005 automatically create the event handler for a
control (such as a form’s Load event or a button’s Click event), double-click the control to create the event
handler.

Visual Basic 2005

Private Sub Form1_Load(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles MyBase.Load
'---close the serial port if it is open---
If serialPort.IsOpen Then

serialPort.Close()
End If
Try

'---configure the serial port with the various
' parameters---
With serialPort

.PortName = "COM3"

.BaudRate = 9600

.Parity = IO.Ports.Parity.None

.DataBits = 8

.StopBits = IO.Ports.StopBits.One

.Handshake = IO.Ports.Handshake.None
End With
'---open the serial port---
serialPort.Open()

Catch ex As Exception
MsgBox(ex.ToString)

End Try
End Sub

C# 2005

private void Form1_Load(object sender, EventArgs e)
{

//---close the serial port if it is open---
if (serialPort.IsOpen)
{

serialPort.Close();
}
try
{

//---configure the serial port with the various
// parameters---

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES252

serialPort.PortName = "COM3";
serialPort.BaudRate = 9600;
serialPort.Parity = System.IO.Ports.Parity.None;
serialPort.DataBits = 8;
serialPort.StopBits = System.IO.Ports.StopBits.One;
serialPort.Handshake = System.IO.Ports.Handshake.None;

//---wire up the event handler for the DataReceived
// event---
serialPort.DataReceived +=

new
System.IO.Ports.SerialDataReceivedEventHandler(
DataReceived);

'---open the serial port---
serialPort.Open();
serialPort.DiscardInBuffer();

}
catch (Exception ex)
{

MessageBox.Show(ex.ToString());
}

}

In this project, you are interested only in getting data from the sensor (and not sending data
to it); therefore, you just need to service the DataReceived event from the SerialPort class.

Visual Basic 2005

Private Sub DataReceived(___
ByVal sender As Object, __
ByVal e As System.IO.Ports.SerialDataReceivedEventArgs) __
Handles serialPort.DataReceived
'---read the data from the serial port---
Dim str As String = serialPort.ReadLine
If str <> String.Empty Then

proximity = CInt(str)
'---use the data received to update the ProgressBar
' control---
ProgressBar1.BeginInvoke(New _

myDelegate(AddressOf updateControl), _
New Object() {})

End If
End Sub

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES 253

C# 2005

private void DataReceived(object sender,
System.IO.Ports.SerialDataReceivedEventArgs e)

{
//---read the data from the serial port---
string str = serialPort.ReadLine();
if (str != string.Empty)
{

proximity = System.Convert.ToInt32(str);
//---use the data received to update the ProgressBar
// control---
ProgressBar1.BeginInvoke(new

myDelegate(updateControl));
}

}

Once the value from the BoE is received, it is saved into the proximity variable. This value
updates the ProgressBar control. However, because Windows Forms controls are not thread-
safe, you need to use a delegate to update it.

A delegate is declared to write the received sensor data into the lblProximity control as
well as update the ProgressBar control.

Visual Basic 2005

Public Delegate Sub myDelegate()
'---update the ProgressBar control---
Public Sub updateControl()

Try
If proximity <= 160 Then

ProgressBar1.Value = proximity
lblProximity.Text = proximity & " cm"

End If
Catch ex As Exception

MsgBox(ex.ToString)
End Try

End Sub

C# 2005

public delegate void myDelegate();
//---update the ProgressBar control---
public void updateControl()
{

try
{

if (proximity <= 160)
{

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES254

ProgressBar1.Value = proximity;
lblProximity.Text = proximity + " cm";

}
}
catch (Exception ex)
{

MessageBox.Show(ex.ToString());
}

}

To test the application, press F5. Observe how the values change as you initiate some
movements in front of the sensors (see Figure 6-15).

Figure 6-15. Displaying the sensor information in a Windows application

■Tip Remember to close the Debug Terminal dialog box of the BASIC Stamp Windows Editor. If you don’t,
you will have a problem opening the specified COM port (COM3 in my example) when you run the applica-
tion because the debugging terminal is still using the port.

Programming the Webcam
The next step of the project is to program the webcam so you can use it to record footage as
well as take snapshots of the surroundings. To program the webcam, you can use the AVICap
class API available in the Windows operating system. Using this API, you can easily incorpo-
rate video capture capabilities into your Windows application.

The AVICap class (located in the avicap32.dll file) contains message-based interfaces to
access video and waveform-audio acquisition hardware, and it provides the ability to capture
streaming video to disk. The only downside to the AVICap class is that it is a Win32 API and is
thus not exposed as a managed class to the .NET developer. Hence, as a .NET developer, you’ll
need to use Platform Invoke (P/Invoke) to use the API.

In the following sections, you will learn how to incorporate video capabilities into the
Windows application that you built in the previous sections. In particular, you will learn how
to do the following:

• Preview video input (within your Windows application) from your webcam

• Record streaming videos

• Capture images using your webcam

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES 255

Using the AVICap Class
First, add the controls to the form (see Figure 6-16). You will need a PictureBox control so you
can preview the video captures and three Button controls to start and stop the video recording
as well as to stop a snapshot using the webcam.

Figure 6-16. Adding the controls to the form

Switch to the code-behind of the form, and import the following namespace (required for
P/Invoke).

Visual Basic 2005

Imports System.Runtime.InteropServices

C# 2005

using System.Runtime.InteropServices;

PictureBox Control
(PictureBox1)

Button Control
(btnStartRecording)

Button Control
(btnStopRecording)

Button Control
(btnTakeSnapshop)

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES256

Within the Form1 class, declare the constants used by the AVICap class.

Visual Basic 2005

Const WM_CAP_START = &H400S
Const WS_CHILD = &H40000000
Const WS_VISIBLE = &H10000000

Const WM_CAP_DRIVER_CONNECT = WM_CAP_START + 10
Const WM_CAP_DRIVER_DISCONNECT = WM_CAP_START + 11
Const WM_CAP_EDIT_COPY = WM_CAP_START + 30
Const WM_CAP_SEQUENCE = WM_CAP_START + 62
Const WM_CAP_FILE_SAVEAS = WM_CAP_START + 23

Const WM_CAP_SET_SCALE = WM_CAP_START + 53
Const WM_CAP_SET_PREVIEWRATE = WM_CAP_START + 52
Const WM_CAP_SET_PREVIEW = WM_CAP_START + 50

Const SWP_NOMOVE = &H2S
Const SWP_NOSIZE = 1
Const SWP_NOZORDER = &H4S
Const HWND_BOTTOM = 1

C# 2005

const int WM_CAP_START = 1024;
const int WS_CHILD = 1073741824;
const int WS_VISIBLE = 268435456;
const int WM_CAP_DRIVER_CONNECT = (WM_CAP_START + 10);
const int WM_CAP_DRIVER_DISCONNECT = (WM_CAP_START + 11);
const int WM_CAP_EDIT_COPY = (WM_CAP_START + 30);
const int WM_CAP_SEQUENCE = (WM_CAP_START + 62);
const int WM_CAP_FILE_SAVEAS = (WM_CAP_START + 23);
const int WM_CAP_SET_SCALE = (WM_CAP_START + 53);
const int WM_CAP_SET_PREVIEWRATE = (WM_CAP_START + 52);
const int WM_CAP_SET_PREVIEW = (WM_CAP_START + 50);
const int SWP_NOMOVE = 2;
const int SWP_NOSIZE = 1;
const int SWP_NOZORDER = 4;
const int HWND_BOTTOM = 1;

■Note You can learn how to use each of the constants listed previously by checking out the Windows
Multimedia SDK Help Reference at ms-help://MS.VSCC.v80/MS.MSDN.v80/MS.WIN32COM.v10.en/
multimed/htm/_win32_video_capture_reference.htm. You can view the Help files using the Help
system that comes installed with Visual Studio 2005.

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES 257

After declaring the constants, you need to declare the necessary functions in the AVICap
class. You need the first two functions for video-capturing purposes, and you can find them in
the avicap32.dll library; the next three functions (found in user32.dll) are for Windows man-
agement.

Visual Basic 2005

'---The capGetDriverDescription function retrieves the version
' description of the capture driver---
Declare Function capGetDriverDescriptionA Lib "avicap32.dll" _

(ByVal wDriverIndex As Short, _
ByVal lpszName As String, ByVal cbName As Integer, _
ByVal lpszVer As String, _
ByVal cbVer As Integer) As Boolean

'---The capCreateCaptureWindow function creates a capture
' window---
Declare Function capCreateCaptureWindowA Lib "avicap32.dll" _

(ByVal lpszWindowName As String, ByVal dwStyle As Integer, _
ByVal x As Integer, ByVal y As Integer, _
ByVal nWidth As Integer, ByVal nHeight As Short, _
ByVal hWnd As Integer, ByVal nID As Integer) As Integer

'---This function sends the specified message to a window or
' windows---
Declare Function SendMessage Lib "user32" Alias "SendMessageA" _

(ByVal hwnd As Integer, ByVal Msg As Integer, _
ByVal wParam As Integer, _
<MarshalAs(UnmanagedType.AsAny)> ByVal lParam As Object) _
As Integer

'---Sets the position of the window relative to the screen
' buffer---
Declare Function SetWindowPos Lib "user32" Alias "SetWindowPos" _

(ByVal hwnd As Integer, _
ByVal hWndInsertAfter As Integer, ByVal x As Integer, _
ByVal y As Integer, _
ByVal cx As Integer, ByVal cy As Integer, _
ByVal wFlags As Integer) As Integer

'---This function destroys the specified window---
Declare Function DestroyWindow Lib "user32" _

(ByVal hndw As Integer) As Boolean

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES258

C# 2005

//---The capGetDriverDescription function retrieves the
// version description of the capture driver---
[System.Runtime.InteropServices.DllImport("avicap32.dll")]
static extern bool capGetDriverDescriptionA(

short wDriverIndex, string lpszName,
int cbName, string lpszVer, int cbVer);

//---The capCreateCaptureWindow function creates a capture
// window---
[System.Runtime.InteropServices.DllImport("avicap32.dll")]
static extern int capCreateCaptureWindowA(

string lpszWindowName, int dwStyle, int x, int y,
int nWidth, short nHeight, int hWnd, int nID);

//---This function sends the specified message to a window or
// windows---
[System.Runtime.InteropServices.DllImport(

"user32", EntryPoint = "SendMessageA")]
static extern int SendMessage(

int hwnd, int Msg, int wParam,
[MarshalAs(UnmanagedType.AsAny)] object lParam);

//---Sets the position of the window relative to the screen
// buffer---
[System.Runtime.InteropServices.DllImport(

"user32", EntryPoint = "SetWindowPos")]
static extern int SetWindowPos(

int hwnd, int hWndInsertAfter, int x, int y,
int cx, int cy, int wFlags);

//--This function destroys the specified window--
[System.Runtime.InteropServices.DllImport("user32")]
static extern bool DestroyWindow(int hndw);

Also, declare the following member variable.

Visual Basic 2005

'---used as a window handle---
Private hWnd As Integer

C# 2005

//---used as a window handle---
private int hWnd;

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES 259

When the form is loaded for the first time, preview the video after the serial port connec-
tion has been established.

Visual Basic 2005

Private Sub Form1_Load(__
ByVal sender As System.Object, __
ByVal e As System.EventArgs) __
Handles MyBase.Load
'---close the serial port if it is open---
If serialPort.IsOpen Then

serialPort.Close()
End If
Try

'---configure the serial port with the various
' parameters---
With serialPort

.PortName = "COM3"

.BaudRate = 9600

.Parity = IO.Ports.Parity.None

.DataBits = 8

.StopBits = IO.Ports.StopBits.One

.Handshake = IO.Ports.Handshake.None
End With

'---open the serial port---
serialPort.Open()
serialPort.DiscardInBuffer()

Catch ex As Exception
MsgBox(ex.ToString)

End Try

'---preview the selected video source---
PreviewVideo(PictureBox1)

End Sub

C# 2005

private void Form1_Load(object sender, EventArgs e)
{

//---close the serial port if it is open---
if (serialPort.IsOpen)
{

serialPort.Close();
}
try
{

//---configure the serial port with the various

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES260

// parameters---
serialPort.PortName = "COM3";
serialPort.BaudRate = 9600;
serialPort.Parity = System.IO.Ports.Parity.None;
serialPort.DataBits = 8;
serialPort.StopBits = System.IO.Ports.StopBits.One;
serialPort.Handshake = System.IO.Ports.Handshake.None;
serialPort.DataReceived +=

new
System.IO.Ports.SerialDataReceivedEventHandler(
DataReceived);

//---open the serial port---
serialPort.Open();
serialPort.DiscardInBuffer();

}
catch (Exception ex)
{

MessageBox.Show(ex.ToString());
}
//---preview the selected video source---
PreviewVideo(PictureBox1);

}

Define the PreviewVideo() subroutine as follows.

Visual Basic 2005

'---preview the selected video source---
Private Sub PreviewVideo(ByVal pbCtrl As PictureBox)

hWnd = capCreateCaptureWindowA(0, __
WS_VISIBLE Or WS_CHILD, 0, 0, 0, __
0, pbCtrl.Handle.ToInt32, 0)

If SendMessage(__
hWnd, WM_CAP_DRIVER_CONNECT, __
0, 0) Then

'---set the preview scale---
SendMessage(hWnd, WM_CAP_SET_SCALE, True, 0)

'---set the preview rate (ms)---
SendMessage(hWnd, WM_CAP_SET_PREVIEWRATE, 30, 0)

'---start previewing the image---
SendMessage(hWnd, WM_CAP_SET_PREVIEW, True, 0)

'---resize window to fit in PictureBox control---
SetWindowPos(hWnd, HWND_BOTTOM, 0, 0, __

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES 261

pbCtrl.Width, pbCtrl.Height, __
SWP_NOMOVE Or SWP_NOZORDER)

Else
'---error connecting to video source---
DestroyWindow(hWnd)

End If

End Sub

C# 2005

//---preview the selected video source---
private void PreviewVideo(PictureBox pbCtrl)
{

hWnd = capCreateCaptureWindowA(
"0", WS_VISIBLE | WS_CHILD, 0, 0, 0, 0,
pbCtrl.Handle.ToInt32(), 0);

if (SendMessage(hWnd, WM_CAP_DRIVER_CONNECT, 0, 0) != 0)
{

//---set the preview scale---
SendMessage(hWnd, WM_CAP_SET_SCALE, 1, 0);

//---set the preview rate (ms)---
SendMessage(hWnd, WM_CAP_SET_PREVIEWRATE, 30, 0);

//---start previewing the image---
SendMessage(hWnd, WM_CAP_SET_PREVIEW, 1, 0);

//---resize window to fit in PictureBox control---
SetWindowPos(hWnd, HWND_BOTTOM, 0, 0,

pbCtrl.Width, pbCtrl.Height,
SWP_NOMOVE | SWP_NOZORDER);

}
else
{

//---error connecting to video source---
DestroyWindow(hWnd);

}
}

The Start Recording button allows you to start capturing the selected video source.

Visual Basic 2005

Private Sub btnStartRecording_Click(_
ByVal sender As System.Object, __
ByVal e As System.EventArgs) __
Handles btnStartRecording.Click
btnStartRecording.Enabled = False

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES262

btnStopRecording.Enabled = True
Application.DoEvents()
'---start recording---
SendMessage(hWnd, WM_CAP_SEQUENCE, 0, 0)

End Sub

C# 2005

private void btnStartRecording_Click(
object sender,
EventArgs e)

{
btnStartRecording.Enabled = false;
btnStopRecording.Enabled = true;
Application.DoEvents();
//---start recording---
SendMessage(hWnd, WM_CAP_SEQUENCE, 0, 0);

}

When the Stop Recording button is clicked, the video stream is saved as an .avi file.

Visual Basic 2005

Private Sub btnStopRecording_Click(__
ByVal sender As System.Object, __
ByVal e As System.EventArgs) __
Handles btnStopRecording.Click
btnStartRecording.Enabled = True
btnStopRecording.Enabled = False
Application.DoEvents()
'---save the recording to file---
SendMessage(hWnd, WM_CAP_FILE_SAVEAS, 0, __

"C:\" & Now.ToFileTime & ".avi")
End Sub

C# 2005

private void btnStopRecording_Click(
object sender,
EventArgs e)

{
btnStartRecording.Enabled = true;
btnStopRecording.Enabled = false;
Application.DoEvents();

//---save the recording to file---
SendMessage(hWnd, WM_CAP_FILE_SAVEAS, 0,

"C:\\" + System.DateTime.Now.ToFileTime() + ".avi");
}

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES 263

■Tip I have used the ToFileTime() method of the Now property as the unique filename of the video.
A Windows file time is a 64-bit value that represents the number of 100-nanosecond intervals that have
elapsed since 12 a.m., January 1, 1601 A.D. (C.E.) Coordinated Universal Time (UTC).

To take a snapshot, the user clicks the Take Snapshot button. The image captured by the
webcam is then copied to the Clipboard and saved to a file.

Visual Basic 2005

Private Sub btnTakeSnapshot_Click(__
ByVal sender As System.Object, __
ByVal e As System.EventArgs) __
Handles btnTakeSnapshot.Click

Dim data As IDataObject
Dim bmap As Image
'---copy the image to the Clipboard---
SendMessage(hWnd, WM_CAP_EDIT_COPY, 0, 0)

'---retrieve the image from Clipboard and convert it
' to the bitmap format---
data = Clipboard.GetDataObject()
If data.GetDataPresent(GetType(System.Drawing.Bitmap)) Then

bmap = __
CType(data.GetData(GetType(System.Drawing.Bitmap)), __
Image)

bmap.Save("C:\" & Now.ToFileTime & ".bmp")
End If

End Sub

C# 2005

private void btnTakeSnapshot_Click(
object sender,
EventArgs e)

{
IDataObject data;
Image bmap;

//---copy the image to the Clipboard---
SendMessage(hWnd, WM_CAP_EDIT_COPY, 0, 0);

//---retrieve the image from Clipboard and convert it
// to the bitmap format---
data = Clipboard.GetDataObject();

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES264

if (data.GetDataPresent(typeof(System.Drawing.Bitmap)))
{

bmap =
((Image)(data.GetData(typeof(
System.Drawing.Bitmap))));

bmap.Save("C:\\" + System.DateTime.Now.ToFileTime() +
".bmp");

}
}

That’s it! You can now test the application by pressing F5. Make sure you have the webcam
connected to your computer. You can place the webcam on top of the PING sensor and use it
to monitor the entrance of your company, for example. As someone approaches the door, you
will be able to detect his distance and perhaps start a recording. To start recording, click the
Start Recording button, and then click the Stop Recording button to save the video to a file.
Click the Take Snapshot button to take a picture (see Figure 6-17).

Figure 6-17. Testing the application

Summary
In this chapter, you learned how to integrate external devices into your .NET application. In
particular, you saw how to use a webcam in your Windows application, and you can combine
this with an ultrasonic sensor to build a security system.

CHAPTER 6 ■ INTERFACING WITH EXTERNAL DEVICES 265

Index

267

■Special Characters
$GPGGA sentence, NMEA, 108, 111
$GPGLL sentence, NMEA, 108
$GPGSA sentence, NMEA, 108
$GPGSV sentence, NMEA, 108
$GPRMC sentence, NMEA, 108
$GPVTG sentence, NMEA, 108
… (ellipsis) icon, 127

■Numbers
16 argument, 250
32feet.NET library, 188
16468 argument, 250

■A
AcceptTcpClient() method, 8
active tag, 201
ActiveSync, 92
AddNewUser() function, 141, 143
addPushpin() function, JavaScript, 99
AllClients HashTable object, 16, 34
Answer Call button, 86
Application.ExecutablePath property, 214
Assign Tag, 227
AT command, 68, 84, 85
AT* command, 85
AT*EVA command, 85
AT+CBC? command, 85
AT+CGMI command, 85
AT+CGMM command, 85
AT+CSQ command, 85
Attach event, 234
.avi file, 263
AVICap class, 255, 256–265
avicap32.dll library, 258

■B
BASIC Stamp 2 (BS2) module, 243
BASIC Stamp Windows Editor, 246, 249
baud rate, 68
BeginRead() method, 11, 32
\bin folder, 24
Biometric recognition, 123
bits per second (bps), 68
Bluetooth, 70, 71–72, 87
Bluetooth-enabled GPS receiver, 94, 106
BoE (USB Board of Education) development

board, 244

bps (bits per second), 68
Broadcast() function, 12, 34, 36, 62
BS2 (BASIC Stamp 2) module, 243

■C
calculated distance (rawDist), 249
carriage return (CR), 204
ChatClient class, 8, 31
chatting

using serial ports
building chat application, 72–73
connecting to other serial devices,

84–86
disconnecting Serial Port, 77–78
hardware needed, 70–72
instantiating SerialPort class, 73
listing all available Serial Port names,

74–75
opening Serial Port, 75–77
overview, 69
receiving data on Serial Port, 79–80
sending data using Serial Port, 78–79
testing application, 80
transmitting Unicode characters, 81–83

using serial ports on Pocket PC
building application, 88
coding application, 89–92
hardware needed, 87
overview, 87

CheckChanged event, 237
Clear Path button, 120
ClearDisplay() subroutine, 145–146
COM number, 69
comma-separated values (CSV) file, 133
computer to computer connection, 70
ComVisibleAttribute class, 100
constants and member variables, 191
Copy to Output Directory property,

Map.html, 99
CR (carriage return), 204
CR character, 218
CRC (cyclic redundancy check), 176
CSV (comma-separated values) file, 133
cyclic redundancy check (CRC), 176

■D
data bits, 68
data source, 208
Data Source Configuration Wizard, 208

DataGridView control, 211
DataReceived() event handler, 102
DataReceived event, 73, 75, 79, 109, 217, 253
DBClass.vb library, 128
DBClass.vb/DBClass.cs library, 128
ddmm.mmmm directions, 111
Deassign button, 225
DEBUG function, 249, 250
Debug Terminal dialog box, 249
[DEC RawDist] / [LF] argument, 250
decimal degree format, 112
decimal value (DEC), 249
delUpdateHistory() delegate, 22, 51, 54
desktop

infrared communications on
coding Form1_Load() event, 191–192
coding ReceiveLoop() subroutine, 192
coding ReceiveMessage() function,

193–194
coding Send button control, 198
coding SendMessage() subroutine,

195–198
coding the delegate, 195
coding UpdateStatus() subroutine, 195
coding UpdateTextBox() subroutine,

195
creating project, 189–190
declaring constants and member

variables, 191
importing namespaces, 190–191
overview, 188
testing application, 199
what you need, 189

Detach event, 234
Device Application template, 88
Dial Number button, 86
Disconnect() subroutine, 18, 23, 47, 65
DNS (Domain Name System), 2
Domain Name System (DNS), 2
Dopod 838, 176
Download Progress dialog box, 249
drag and drop data-binding feature, 207

■E
ellipsis (…) icon, 127
EM Marrin protocol, 228
EmployeesBindingSource control, 222, 224
Enabled property, 16, 118
Encoding property, SerialPort class, 81
Encoding.ASCII.GetBytes() method,

System.Text namespace, 6
Encoding.ASCII.GetString() method,

System.Text namespace, 6
EndRead() method, 12, 35
enroll, 128
Enroll() method, 142
EnrollFingerprint() function, 142

Error event, 234–235
.exe file, 24, 66
external devices, interfacing with

components used
sensor, 242
webcam, 243

connecting sensor to PC
connecting PING sensor, 245–246
integrating with PC, 250–255
overview, 243–244
programming PING sensor, 246–249

overview, 241
programming webcam

overview, 255
using AVICap class, 256–265

ExtractTemplate() function, 134

■F
F5, Visual Studio 2005, 66
Fast Infrared (FIR), 175
Find button, 223
fingerprint recognition

creating application
coding application, 128–129
overview, 125, 127
testing application, 147–148
wiring up all controls, 130–146

overview, 124
using GrFinger SDK, 124

fingerprintreader image, 127
FIR (Fast Infrared), 175
Form1 class, 257
Form1_Load() function, 191–192
Form1_Load event, 73, 101, 130, 180, 215, 233
FormClosing event, 24
FTP_Receive() subroutine, 62
FTP_Send() subroutine, 60
full-duplex devices, 68

■G
General Packet Radio Service (GPRS), 94
GetUserInfo() subroutine, 136, 139
Google Maps, 93
Goto Point button, 104
goto_map_position() function, JavaScript,

99, 106
gotoPosition() subroutine, 105
GPRS (General Packet Radio Service), 94
GPS receiver and Microsoft Virtual Earth

(VE), creating mapping application
using

building application, 97
coding application, 100–102
connecting to GPS receiver, 106–115
displaying coordinates of map, 103–106
overview, 93–96
plotting saved path, 115–121

■INDEX268

GrFinger Fingerprint SDK, 124
GrFinger SDK, 124
GrFingerSample.mdb database, 129
GrFingerXCtrl Class item, 125
GrFingerXCtrl control, 125, 132
GrFingerXLib namespace, 130
Griaule, 124

■H
Handles keyword, 75
HashTable object, 10, 31
HF (high frequency) band, 202
high frequency (HF) band, 202

■I
Identify() method, 138
IdentifyFingerprint() function, 134, 138
Image property, PictureBox control, 127
ImageAcquired event, GrFingerXCtrl control,

134
infrared programming

communications between Windows
Mobile devices

coding application, 178–179
compiling and deploying application,

188
creating project, 177–178
displaying received messages, 183–184
overview, 176
receiving messages, 180–183
requirements, 176
sending messages, 184–187

communications on desktop
coding Form1_Load() event, 191–192
coding ReceiveLoop() subroutine, 192
coding ReceiveMessage() function,

193–194
coding Send button control, 198
coding SendMessage() subroutine,

195–198
coding the delegate, 195
coding UpdateStatus() subroutine, 195
coding UpdateTextBox() subroutine,

195
creating project, 189–190
declaring constants and member

variables, 191
importing namespaces, 190–191
overview, 188
testing application, 199
what you need, 189

Infrared Data Association (IrDA), 175–176
overview, 175

installation scripts, 208
Internet Protocol (IP), 2
Interval property, Timer control, 127
InTheHand.Net.Personal component, 190

Invoke()/BeginInvoke() method, 21
IO.Ports.SerialPort class, 73
IP (Internet Protocol), 2
IrDAClient object, 183
IrDAListener object, 183

■J
Javeline Demo Board, 205

■L
lblProximity control, 254
LF (linefeed), 204
LF (low frequency) band, 202
LF character, 36, 218–219
line array, 117
linefeed (LF), 204
ListBox control, 27
Load event, 251
loadMap() function, JavaScript, 99
Logitech QuickCam, 243
low frequency (LF) band, 202
low-high-low pulse, 247

■M
Main() function, 8
Map.html file, 101
Map.html page, 99, 103
mapping application, creating

building application, 97
coding application, 100–102
connecting to GPS receiver, 106–115
displaying coordinates of map, 103–106
overview, 93–96
plotting saved path, 115–121

mapPositionChange() method, 103
Maximum property, ProgressBar control, 251
Medium Infrared (MIR), 175
Microsoft Fingerprint Reader, 123
Microsoft Virtual Earth (VE). See GPS receiver

and Microsoft Virtual Earth (VE)
Microsoft Visual Studio 2005, 177
Minimum property, ProgressBar control, 251
MIR (Medium Infrared), 175
Module1.vb file, 29
Module1.vb/Program.cs file, 7
MultiLine property

txtMessageHistory control, 16, 45
txtMessagesArchive control, 189

multiuser chat application, creating
building client, 16–24, 45–66
building server, 7–16, 29–45
defining your own communication

protocol, 25
overview, 3, 25
protocol description

chatting, 26
leaving chat, 27

■INDEX 269

Find it faster at http://superindex.apress.com
/

multiuser chat application, creating
protocol description (continued)

logging in, 26
overview, 26
requesting usernames, 26
transferring files, 26

testing application, 66
testing chat applications, 24
using TcpClient and TcpListener classes

for network communications, 3–7
walking through features, 27–29

myDelegate() delegate, 218

■N
namespaces, importing, 190–191
.NET Compact Framework, 87, 188
NetworkStream object, 6, 11
NMEA standard, 108
Notebooks Deluxe webcam, 243
null characters, 36

■O
obj\Debug folder, 127
onClick event, VE Map control, 103

■P
Parallax Basic (PBASIC) language, 246
Parallax HomeWork Board, 244
Parallax RFID Reader Module, 204, 215, 218
parallel port, 67
parity bit, 68
pass password, 230
passive tag, 201
PBASIC (Parallax Basic) language, 246
PBASIC 2.5 directive, 246
PBASIC BS2 directive, 246
Phidget library, 230
PHIDGET.msi file, 230
PhidgetNET.dll library, 232
PhidgetReader variable, 233
PhidgetRFID APIs, 232
PhidgetRFID reader, 227
PhidgetRFID WebService, 230
PhidgetsNET.dll library, 232
PhidgetWebServiceManger.exe file, 230
PictureBox control, 132, 212, 256
PING sensor, 250, 265

connecting, 245–246
programming, 246–249

PING ultrasonic sensor, 242
Platform Invoke (P/Invoke), 255
Pocket PC, chatting using serial ports on

building application, 88
coding application, 89–92
hardware needed, 87
overview, 87

port 80, 1

port number, 7
processGPSData() function, 112
proximity variable, 254
pulses, 242, 247, 248
pulse-trigger, 243
pulse-width, 243

■R
radio frequency identification (RFID)

building attendance-taking application
application user interface, 207–213
coding application, 213–237
comparing two RFID readers, 239
overview, 203
Parallax's RFID Reader Module, 204
PhidgetRFID APIs, 232
PhidgetRFID reader, 227
PhidgetRFID WebService, 230
setting up reader, 205–207
tags, 204, 228
testing application, 227, 238

overview, 201–203
rawDist (calculated distance), 249
Read() method, 81
read range, Parallax RFID Reader Module,

204
ReadExisting() method, 81, 218
ReadLine() method, SerialPort class, 218
ReadOnly property

txtMessageHistory control, 16, 45
txtMessagesArchive control, 189

read-write tags, 203
ReceiveLoop() function, 180, 192
ReceiveMessage() function, 11, 21, 32, 35–36,

51, 181, 193–194
removePushPin() subroutine, 121
RFID. See radio frequency identification
RFID reader/writer, 201
RS-232 serial ports, 243
Run icon, 249

■S
scanning antenna, 201
ScrollBars property, txtMessageHistory

control, 16
SelectionMode property, lstUsers, 45
Send button control, 198
Send File button, 28, 58
SendMessage() function, 15, 18, 20, 33, 47,

50, 184, 195–198
sensors

connecting to PC
connecting PING sensor, 245–246
integrating with PC, 250–255
overview, 243–244
programming PING sensor, 246–249

overview, 242

■INDEX270

serial communications
chatting using serial ports

building chat application, 72–73
connecting to other serial devices,

84–86
disconnecting Serial Port, 77–78
hardware needed, 70–72
instantiating SerialPort class, 73
listing all available Serial Port names,

74–75
opening Serial Port, 75–77
overview, 69
receiving data on Serial Port, 79–80
sending data using Serial Port, 78–79
testing application, 80
transmitting Unicode characters, 81–83

chatting using serial ports on Pocket PC
building application, 88
coding application, 89–92
hardware needed, 87
overview, 87

creating mapping application
building application, 97
coding application, 100–102
connecting to GPS receiver, 106–115
displaying coordinates of map, 103–106
overview, 93–96
plotting saved path, 115–121

overview, 67–68
serial connection, 69
Serial Infrared (SIR), 175
serial ports

chatting using
building chat application, 72–73
connecting to other serial devices,

84–86
disconnecting serial port, 77–78
hardware needed, 70–72
instantiating SerialPort class, 73
listing all available serial port names,

74–75
opening serial port, 75–77
overview, 69
receiving data on serial port, 79–80
sending data using serial port, 78–79
testing application, 80
transmitting Unicode characters, 81–83

chatting using on Pocket PC
building application, 88
coding application, 89–92
hardware needed, 87
overview, 87

SerialCommChat.exe application, Debug
folder, 80

SerialPort class, 68, 73, 79, 81, 87, 215, 217,
251

serialPort member variable, 73

SerialPort object, 89
SerialPort Windows Forms control, 73
serialPort.ReadExisting() method, 111
serialPort.ReadLine() method, 112
SEROUT command, 250
ServiceName argument, 183
SetOutputState() method, PhidgetRFID

class, 234
Show Path button, 115
single computer connection, 70
single-duplex devices, 68
SIR (Serial Infrared), 175
Size property, PictureBox control, 212
Socket class, System.Net.Sockets namespace,

2
sockets communication, 230
sockets programming

multiuser chat application, creating
building client, 16–24, 45–66
building server, 7–16, 29–45
defining your own communication

protocol, 25
overview, 3, 25
protocol description, 26–27
testing application, 66
testing chat applications, 24
using TcpClient and TcpListener classes

for network communications, 3–7
walking through features, 27–29

overview, 1–2
Start() method, 8
start bit, 68
Start Recording button, 262
stop bit, 68
Stop Recording button, 263
straight serial cable, 206
Stream object, 185
SyncLock statement, 15
System.Net.IrDa library, 179, 188, 191
System.Net.Sockets namespace, 3, 7, 10, 179
System.Text namespace, 6

■T
Tag event, 234–235
tag IDs, 202
TagIDLabel1 control, 224–225
tags, 201
Take Snapshot button, 264–265
TCP (Transmission Control Protocol), 2
TcpClient class, 3–7
TcpClient variable, 11, 32
TCP/IP communications, 1
TcpListener class, 3–8
template, 137
TextBox control, 112, 211, 219, 227
TextChanged event, 219
TFTP (Trivial File Transfer Protocol), 2

■INDEX 271

Find it faster at http://superindex.apress.com
/

Tick event, 120, 222
Timer control, 215, 222
Timer1_Tick event, 118, 146
ToFileTime() method, 264
transceiver, 201
Transmission Control Protocol (TCP), 2
transponders, 201
Trivial File Transfer Protocol (TFTP), 2
TTL-to-RS232 level shifting, 205
txtMessage control, 178
txtMessageHistory control, 21, 51
txtMessagesArchive control, 178
txtTagID control, 213, 217–218, 222

■U
UDP (User Datagram Protocol), 2
UDP/IP communications, 1
UHF (ultra high frequency) band, 202
ultrasonic sensor, 242
Unicode characters, 81–83
UpdateHistory() function, 22, 54
updatePosition() event handler, Map.html

page, 103
updatePosition() function, JavaScript, 99
UpdateStatus() function, 184, 195
UpdateTextBox() function, 183, 195
updateTextBox() subroutine, 80, 82, 218
USB Board of Education (BoE) development

board, 244
USB connection, 227
USB infrared adapter, 189
USB-to-serial converter, 206
USB-to-serial-port adapter, 70
USB-to-serial-port converters, 70–71
User Datagram Protocol (UDP), 2
Util class, 132
Util.vb class, 138
Util.vb/Util.cs library, 128

■V
VE (Microsoft Virtual Earth). See GPS receiver

and Microsoft Virtual Earth (VE)
VE Map control, 93, 103
Very Fast Infrared (VFIR), 175
VFIR (Very Fast Infrared), 175
VirtualEarth (VE). See GPS receiver and

Microsoft Virtual Earth (VE)
VoIP (Voice over IP), 2

■W
web service, 230
webcams

overview, 243
programming, 255–265

Windows Mobile 5.0 Pocket PC Device, Visual
Studio 2005, 92

Windows Mobile devices
infrared communications between

coding application, 178–179
compiling and deploying application,

188
creating project, 177–178
displaying received messages, 183–184
overview, 176
receiving messages, 180–183
requirements, 176
sending messages, 184–187

WithEvents keyword, 73
Write() method, SerialPort class, 78
WriteToLog() subroutine, 136, 146, 222

■INDEX272

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

