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Preface

Beauty will result from the form and correspondence of the whole, with respect
to the several parts, of the parts with regard to each other, and of these again
to the whole; that the structure may appear an entire and compleat body,
wherein each member agrees with the other, and all necessary to compose
what you intend to form.

—The First Book of Andrea Palladio’s Architecture, 1570

In the early 1970s, the generalized linear model (GLM) class of statistical models
was proposed by Nelder and Wedderburn (1972), providing a unified framework for
several important regression models. They showed that the linear model, Poisson
regression, logistic regression and probit analysis, and others could be treated as
special cases of GLMs, and that one algorithm could be used to estimate them
all. The unified GLM framework also provides an elegant overriding theoretical
structure resulting in inference, diagnostics, software interface, etc. that applies
to all of them. Prior to GLMs, these methods were largely treated as unrelated.
Since then, GLMs have gained universal acceptance in the statistical world, and
as Senn (2004, p. 7) writes, “Nelder and Wedderburn was a paper that changed
the statistical landscape for ever and it is simply impossible now to envisage the
modelling world without it.”

Although GLMs were a great advance, they are largely confined to one-
parameter distributions from an exponential family. There are many situations
where practical data analysis and regression modelling demands much greater flex-
ibility than this. To this end, this book describes a much larger and more flexible
statistical framework for fixed-effects regression modelling that greatly extends
GLMs. It comprises about half-a-dozen major classes of statistical models, and
having at its heart two classes, called vector generalized linear models (VGLMs)
and vector generalized additive models (VGAMs). (Other classes are listed below.)
Each class is related to each other in a natural way within this framework, e.g.,
VGAMs are a smooth or data-driven version of VGLMs.

The purpose of this book is to introduce the framework and each major sub-
class of models. VGLMs might be thought of loosely as multivariate GLMs, which
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are not confined to the exponential family. VGAMs replace the linear functions
of VGLMs by smooths. The remaining classes can be thought of as extensions
of VGLMs and VGAMs. As a software implementation of our approach, the R
package VGAM (and its companion VGAMdata) are used. Following the grand tra-
dition of GLMs, we demonstrate its usefulness for data analysis over a wide range
of problems and application areas. It is hoped that, in a way similar to what was
pioneered by GLMs, the overall framework described in this book will provide
a natural vehicle for thinking about regression modelling, and performing much
more of applied statistics as a coherent whole.

What advantages does the VGLM/VGAM framework confer? It provides the
same benefits that GLMs gave, but on a much larger scale. For example, the
theory and methodology of this book unifies areas such as univariate distribu-
tions, categorical data analysis, aspects of quantile regression, and extremes. And
the advantages which generalized additive models add to GLM-type analyses in
terms of smoothing, VGAMs do for VGLMs. It has long been my belief that what
should be ‘ordinary’ and ‘routine’ regression modelling in applied statistics has
been hampered by a lack of common framework. For VGLMs/VGAMs, the user
has the freedom to easily vary model elements within a large flexible framework,
e.g., currently VGAM implements over 150 family functions.

The underlying conception is to treat almost all distributions and classical mod-
els as generalized regression models. By ‘classical’, we mean models and distribu-
tions which are amenable to estimation by first and second derivative methods,
particularly Fisher scoring. For years there has been a need to broaden the scope
of GLMs and GAMs, and to fortify it with some necessary infrastructure to make
them more fully operable. The end is that the framework instils structure in many
classical regression models.

Audience

The book was written with three types of readers in mind. The first are exist-
ing users of the VGAM R package needing a primary source for the methodology,
and having sufficient examples and details to be useful. The second are people
interested in a new and very general modelling framework. The third are stu-
dents/teachers in courses on general regression following a basic regression course
on GLMs. For these, some notes for instructors are given below.

Some assumptions have been made about the background of the reader. Firstly
is a basic working knowledge of R. There are now many books that provide this,
e.g., Venables and Ripley (2002), Dalgaard (2008), Maindonald and Braun (2010),
Cohen and Cohen (2008), Zuur et al. (2009), de Vries and Meys (2012). Further
references are listed at the end of Chap. 8. Second is a mid-undergraduate level
knowledge of statistical theory and practice. Thirdly, some chapters assume a basic
familiarity with linear algebra and calculus up to mid-undergraduate level.

Some of the applied chapters (in Part II) would benefit from some prior ex-
posure to those subject areas, e.g., econometrics, plant ecology, etc. because only
a minimal attempt can be made to establish the background, motivation, and
notation there.

How This Book is Organized

There are two parts. Part I describes the general theory and computational details
behind each major class of models. These classes are displayed in the flowchart of
Fig. 1.2. Readers familiar with LMs, GLMs, and GAMs might jump directly into
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the VGLM and VGAM chapters (Chap. 2 is a summary of these topics), otherwise
they could go through sequentially from the beginning. However, Chap. 1 (espe-
cially Sect. 1.3) is crucial, because it sets the scene and gives a brief overview of the
entire framework. The other major classes of models are various generalizations
of reduced-rank methods. The main motivation for these is dimension reduction,
and they consequently operate on latent variables. They are:

• RR-VGLMs: these reduced-rank VGLMs (Chap. 5) are based on linear combi-
nations of the explanatory variables, and should be useful for many readers.

• QRR-VGLMs: these quadratic RR-VGLMs (Chap. 6) being relevant to mainly
ecologists could be generally skipped on first reading.

• RR-VGAMs: these allow for constrained additive ordination (CAO; Chap. 7),
which is a smooth version of RR-VGLMs.

Chapter 8 on the VGAM package should be read by all software users.
Part II explores some major application areas. Practitioners of certain topics in

Part II will usually not need to concern themselves with the other parts, because
they are mainly separate. However, readers will be able to at least browse through
the range of other applications there. The breadth of coverage should demonstrate
the versatility of the framework developed in Part I; I feel this is a major attrac-
tive feature of the book. Chapter 18 is a specialist chapter addressed more to R
programmers wishing to extend the capabilities of the current software, e.g., by
writing new VGAM family functions.

Most acronyms are listed on pp. xxiii–xxiv, and the appendices, notation, and
glossary are located at the back of the book. R packages are denoted in sans-serif
fonts, e.g., stats, splines; and R commands in typewriter font and functions ending
in parentheses, e.g., coef(). All logarithms are to base e unless otherwise specified.

The scope of this book is broad. To keep things to a manageable size, many
topics which I would like to have included have had to be omitted. Rather than
citing hundreds of journal articles, I have largely cited books and review papers.
Other references and sources of data, etc. can be found in the packages’ online
help files. I apologize beforehand for many peoples’ work that should probably
have been cited but are not, due to space limitations or ignorance. A slightly
unfortunate consequence of the book’s breadth is that some of the notation had to
be recycled, however, despite some symbols having multiple meanings, this should
not raise excessive confusion because the topics where they are used are far enough
apart.

Topics considered too specialized or technical for most readers have been marked
with a dagger (†); these may be safely skipped without losing the overall discourse.

Book Website and Software

Resources are available at the book’s webpage, starting at

http://www.stat.auckland.ac.nz/~yee

Amongst other things, these should include R scripts, complements, errata, and any
latest information. Readers wishing to run the software examples will need access
to R (see http://www.R-project.org), and the VGAM and VGAMdata packages
installed along side. The latter comprises some data used here. Version 1.0-0 or
later for both packages are needed for compatibility with this book.

http://www.stat.auckland.ac.nz/~yee
http://www.R-project.org
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Note for Instructors

Most of the contents are pitched at the level of a senior undergraduate or first-year
postgraduate in statistics. It might be considered a follow-on course after a first
course in GLMs. Students are assumed to have a reasonable working R background
already, because only a few important R topics that are crucial are covered (at a
cursory level too) in the first chapter. The first few chapters of Fox and Weisberg
(2011) would be useful preparation, as well as those listed above.

For a course based on this book, it is recommended that about half of the time
be devoted to Part I, so that the overall framework can be seen. The remaining time
might be used on a selection of topics drawn from Part II depending on interest
and need. Each Part II chapter is at an introductory level, and the references at
the end of each chapter can be pursued for a deeper coverage.

Some of the exercises might be suitable for homework or tutorial purposes. Over-
all, they are a blend of short analyses involving real and simulated data, math-
ematical statistics problems, and statistical computing (R programming) tasks.
While most problems are short, some are less straightforward and require more
advanced R programming to obtain an elegant solution. The most demanding or
time-consuming problems are marked with a dagger (†) and should be considered
optional or for a sizeable project.

The book is primarily focused on estimation. Theoretical rigour that was un-
necessary to the main messages has been omitted, and the presentation is chiefly
driven by a pragmatic approach. Most of the material is self-contained, and I have
tried to strike a balance between theory, computational details and practice for an
applied statistician.
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Chapter 1

Introduction

We hope that the approach developed in this paper will prove to be a useful way
of unifying what are often presented as unrelated statistical procedures, and
that this unification will simplify the teaching of the subject to both specialists
and non-specialists.
—Nelder and Wedderburn (1972)

1.1 Introduction

In 1972 a class of statistical models called generalized linear models (GLMs) was
proposed which provided a unified framework for several important regression
models. The paper, Nelder and Wedderburn (1972), showed that the linear
model (LM), Poisson regression, logistic regression plus others were special cases
of GLMs, and that an algorithm called iteratively reweighted least squares (IRLS)
could be used for their estimation. Prior to the advent of GLMs these methods
were largely treated as disparate. Since then GLMs have become accepted uni-
versally by applied and theoretical statisticians. The unified framework results in
streamlining inference, diagnostics, computation, software interface, etc.

Unfortunately, GLMs are mainly restricted to one-parameter distributions (or
two with an unknown scale parameter) within the classical exponential family.
Routine regression modelling and data analysis requires much greater flexibility
than afforded by GLMs. This book describes a very large class of models called
vector generalized linear models (VGLMs) which are purposely general so as to
confer greater usefulness. This class can be extended naturally in various directions
so as to offer a suite of variants, e.g., vector generalized additive models (VGAMs)
for smoothing, reduced-rank VGLMs (RR-VGLMs) for dimension reduction, etc.
The purpose of this book is to describe all these classes for regression modelling
and how they are interrelated. As a software implementation of the framework, the
R package VGAM and its companion VGAMdata are also described. Altogether, it
is hoped that this work will provide a broader and unified framework to perform
generalized regression modelling.

© Thomas Yee 2015

T.W. Yee, Vector Generalized Linear and Additive Models,
Springer Series in Statistics, DOI 10.1007/978-1-4939-2818-7 1
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4 1 Introduction

1.1.1 Outline of This Book and a Quick Start

Users familiar with GLMs and GAMs who are wishing to get into VGLMs and
VGAMs as quickly as possible might look at the following sections, in decreasing
order of cost-benefit.

• Sections 1.2–1.4 to obtain an overview.
• Chapter 8—to obtain an overall picture of the VGAM package.
• Part II can be perused, depending on interest, for some basic theory and exam-

ples of fitting some models.
• Chapters 3 and 4—to find out what VGLMs and VGAMs are in detail.
• The rest of Part I. The classes RR-VGLMs, QRR-VGLMs, etc. are important

variants but some users may not need them.
• The rest of Part II.

This chapter exposes the reader to the main ideas of the VGLM/VGAM frame-
work, so that users can start immediately. Much of the core/essential details are
touched upon here, and when read in conjunction with Chap. 8, should provide
a minimal amount of information needed to conduct the simplest type of VGAM
analysis. The rest of the book describes these and other advanced features, in
addition to the technical details behind them.

VGAM implements several large classes of regression models, of which vector
generalized linear and additive models are most commonly used (Table 1.1). In a
nutshell the overall key ideas or ‘features’ are:

• parameter link functions gj(θj) applied to all parameters,
• multivariate responses, and sometimes multiple responses too,
• linear predictors ηj = βT

j x and additive predictors ηj =
∑d

k=1 f(j)k(xk),
• constraints on the functions (H1, . . . ,Hp),
• ηj-specific covariates (i.e., ηj(xij)) via the xij facility,

• reduced-rank regression (RRR), latent variables ν = CTx2, ordination,
• Fisher scoring, IRLS, maximum likelihood estimation, vector smoothing,
• the VGAM package. It presently fits over 150 models and distributions.

Altogether the entirety represents a broad and unified framework. Section 1.3 gives
a brief overview of the general framework and this book.

The scope of VGAM is potentially very broad, and Part II of this book tries to
convey this by a few select application areas.

1.2 Six Illustrative Models

To motivate VGLMs/VGAMs and their variants, let’s consider a few specific mod-
els from applied statistics. They serve as concrete examples to illustrate structures
described throughout the whole book, e.g., constraints such as parallelism and ex-
changeability, ηj-specific covariates, and intercept-only parameters. We also pro-
vide some initial information on how some of these models may be fitted by VGAM.
Before doing so, we give some basic notation and a description of VGLMs and
VGAMs. The glossary (pp.561–565) gives most of the notation of this book.
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The data is written (xi,yi) for i = 1, . . . , n, where xi is a vector of explanatory
variables, yi is a (possibly vector) response, for n independent observations. Some-
times we drop the i and write x = (x1, . . . , xp)

T to focus only on the variables,
with x1 = 1 denoting an intercept if there is one.

We wish to fit a regression model involving parameters θj . Basically, VGLMs
model each parameter, transformed if necessary, as a linear combination of the
explanatory variables. That is,

gj(θj) = ηj = βT
j x = β(j)1 x1 + · · ·+ β(j)p xp, j = 1, . . . ,M, (1.1)

where gj is a parameter link function such as a logarithm or logit (1.17). Note
that potentially every parameter is modelled using all explanatory variables xk,
and the parameters need not be a mean such as for GLMs.

VGAMs extend (1.1) to

gj(θj) = ηj =

d∑

k=1

f(j)k(xk), j = 1, . . . ,M, (1.2)

i.e., an additive model for each parameter. The functions f(j)k are merely assumed
to be smooth and are estimated by smoothers such as splines, therefore the whole
approach is data-driven rather than model-driven. In (1.2) f(j)1(x1) = β(j)1 is
simply an intercept.

The distinction between p in (1.1) and d in (1.2) is made more apparent in
Sects. 1.5.2.2 and 1.5.3. For now, p is the number of parameters looking at one ηj
at a time, and d is the number of terms in an S formula.

1.2.1 The Linear Model

For a response Y assumed to be distributed as N(μ, σ2) with

μ = η1 = βT
1 x, (1.3)

the linear model (LM) is statistically ubiquitous. The standard theory of GLMs
treats σ as a scale parameter, because the classical exponential family is restricted
to only one parameter. However, in the VGLM/VGAM framework it is more nat-
ural to couple (1.3) with

log σ = η2 = βT
2 x. (1.4)

A log link is generally suitable because σ > 0. Incidentally, a consequence is that
some mean-variance relationships can be modelled together, such as in Sect. 5.5.1.

Modelling η2 as intercept-only means that the typical assumption of constant
variance (homoscedasticity) is made:

log σ = η2 = β(2)1. (1.5)
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If there were a covariate x2, then we might test the null hypothesisH0 : β(2)2 = 0 in

log σ = η2 = β(2)1 + β(2)2 x2 (1.6)

as a test for no heteroscedasticity.
The VGAM family uninormal() implements (1.3)–(1.4), the response being an

univariate normal. The typical call is of the form

vglm(y ~ x2 + x3 + x4, family = uninormal, data = udata)

where x1 = 1 is implicitly the intercept term. The function uninormal() assigned
to the family argument is known as a VGAM family function. It makes the usual
LM assumptions (Sect. 2.2): independence and normality of the errors yi − μi,
linearity (1.3), and constant variance (1.5). It is good style for the data frame udata
to hold all the variables, viz. y, x2, x3 and x4.

1.2.2 Poisson and Negative Binomial Regression

The Poisson distribution is as fundamental to the analysis of count data as the
normal (Gaussian) is to continuous responses. It has the simple probability mass
function (PMF)

P (Y = y;μ) =
e−μ μy

y!
, y = 0, 1, 2, . . . , μ > 0, (1.7)

resulting in E(Y ) = μ = Var(Y ). As μ is positive,

η = log μ (1.8)

is a very natural recommendation. This loglinear association is highly inter-
pretable: an increase of the kth variable by one unit, keeping other variables fixed,
implies

log μ(x1, . . . , xk−1, xk + 1, xk+1, . . . , xp)− log μ(x1, . . . , xp) = βk. (1.9)

That is,

μ(x1, . . . , xk−1, xk + 1, xk+1, . . . , xp) = μ(x+ ek) = μ(x) · eβk (1.10)

so that eβk is the multiplicative effect on μ(x) of increasing xk by one unit. Hence
a positive/negative value of βk corresponds to an increasing/decreasing effect,
respectively.

Counts sometimes arise from an underlying rate, e.g., if λ is the mean rate per
unit time, then μ = λt is the mean number of events during a period of time t.
For example, if λ is the mean number of earthquakes per annum in a specified
geographical region which exceed a certain magnitude, then μ = λt is the expected
number of earthquakes during a t-year period. For such, (1.8) means that

log μ ≡ η = (log t) + log λ. (1.11)
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When we want to model the rate, adjusting for time t, and provided that t is
known, then the Poisson regression (1.11) involves (known) offsets—see Sect. 3.3.
If all time periods are equal, then the offsets log ti can be omitted.

The same type of calculation holds with rates arising from a population of N
individuals, say. Then μ = λN where λ is the rate per unit size of population (e.g.,
100,000 people) and

η = (log N) + log λ (1.12)

also involves an offset. Of course, (1.11) and (1.12) can be combined for μi =
λitiNi, e.g., populations of various sizes with different follow-up times.

In practice, the property that the mean and variance coincide is often not re-
alized with real data. This may be indicated by the sample variance exceeding
the sample mean. This feature is called overdispersion with respect to the Poisson
distribution, and there are several common causes of it (Sect. 11.3). The most
common remedy is to allow

Var(Y ) = φ · μ (1.13)

in the standard Poisson regression (1.8), where φ is estimated by the method of

moments; then φ̂ > 1 indicates overdispersion relative to a Poisson distribution.
The quasi-Poisson estimate β̂ coincides with the usual maximum likelihood esti-
mate (MLE).

A better method of handling overdispersed data is to perform negative
binomial (NB) regression. An NB random variable Y has a probability function
that can be written as

P (Y = y;μ, k) =

(
y + k − 1

y

) (
μ

μ+ k

)y (
k

k + μ

)k

, y = 0, 1, 2, . . . , (1.14)

with positive parameters μ (= E(Y )) and k. The quantity k−1 is known as the
dispersion or ancillary parameter, and the Poisson distribution is the limit as k →
∞. The NB has Var(Y ) = μ + μ2/k ≥ μ, so that overdispersion relative to the
Poisson is accommodated—however, underdispersion (φ < 1) isn’t. The NB can
be motivated in various ways; one is as a mixture where the μ parameter of a
Poisson distribution is gamma distributed (Sect. 11.3).

Many software implementations are restricted to an intercept-only estimate of k
(called the NB-2 by some authors), e.g., one cannot fit log k = β(2)1 + β(2)2 x2. In
contrast, the VGLM/VGAM framework can naturally fit

log μ = η1 = βT
1 x, (1.15)

log k = η2 = βT
2 x, (1.16)

which is known as an NB-H. In VGAM this is achieved by a call of the form

vglm(y ~ x2 + x3 + x4, family = negbinomial(zero = NULL), data = ndata)

Implicit in (1.16) is the notion that any positive parameter would be better having
the log link as the default than an identity link gj(θj) = θj .

One feature that many VGAM family functions possess is the ability to handle
multiple responses. For example,

vglm(cbind(y1, y2) ~ x2 + x3 + x4, family = negbinomial(zero = NULL), data = ndata)
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Table 1.1 A simplified summary of VGAM and most of its framework. The latent variables ν =
CTx2, or ν = cTx2 if rank R = 1. Here, xT = (xT

1 ,xT
2 ). Abbreviations: A = additive, C =

constrained, I = interaction, Q = quadratic, RC = row–column, RR = reduced-rank, VGLM =

vector generalized linear model. See also Fig. 1.2 and Table 5.1.

η = (η1, . . . , ηM )T Model Modelling Reference

function

BT
1 x1 +BT

2 x2 (= BTx) VGLM vglm() Yee and Hastie (2003)

BT
1 x1 +

p1+p2∑

k=p1+1

Hk f∗
k(xk) VGAM vgam() Yee and Wild (1996)

BT
1 x1 +Aν RR-VGLM rrvglm() Yee and Hastie (2003)

BT
1 x1 +Aν +

⎛

⎜
⎜
⎝

νTD1ν

.

.

.

νTDMν

⎞

⎟
⎟
⎠ QRR-VGLM cqo() Yee (2004a)

BT
1 x1 +

R∑

r=1

fr(νr) RR-VGAM cao() Yee (2006)

(β0 + αi)1+ γ +Aνi RCIM rcim() Yee and Hadi (2014)

regresses two responses simultaneously. The responses are treated independently.
An important use is that some regression coefficients are allowed to common to
all responses, e.g., the effect of a variable such as x3 might allowed to be the same
for all the responses’ means. In the above example we have η = (η1, η2, η3, η4)

T =
(log μ1, log k1, log μ2, log k2)

T .
There are other variants of the NB distribution within the VGLM/VGAM

framework and implemented in VGAM, e.g., NB-1, the zero-inflated and zero-
altered versions (ZINB and ZANB), as well as an interesting reduced-rank variant
known as the RR-NB (also referred to as the NB-P); see Sect. 5.5.2.3. Other as-
pects of the NB distribution are expounded in Sects. 11.3 and 17.1.

1.2.3 Bivariate Odds Ratio Model

Logistic regression, where we have a single binary response Y , is one of the most
well-known techniques in the statistician’s toolbox. It is customary to denote Y = 1
and 0 as “success” and “failure”, respectively, so that E(Y ) equals the probability
of success, P (Y = 1) = p, say. Then the logistic regression model can be written

logit p(x) ≡ log
p(x)

1− p(x)
= η(x), (1.17)

where the quantity p/(1− p) is known as the odds of event Y = 1. Odds are very
interpretable, e.g., a value of 3 means that the event is 3 times more likely to occur
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than not occur. Also, if β(1)k is the coefficient of xk in (1.17), then β(1)k is the log
odds ratio of Y = 1 for an observation with xk + 1 versus an observation with xk

(keeping all other variables in x fixed at their values). That is, the odds of Y = 1
for an observation with xk +Δ is exp

{
β(1)k Δ

}
multiplied by the odds of Y = 1

for an observation with xk, keeping all other variables in x fixed.
In some applications it is natural to measure two binary responses, Y1 and Y2,

say, e.g., measurements of deafness in both ears, the presence/absence of cataracts
in elderly patients’ eyes, the presence/absence of two plant species at sites in a very
large forest region, etc. Then a natural regression model for such is to couple two
logistic regressions together with an equation for the odds ratio. (The responses
are often dependent, and the odds ratio is a natural measure for the association
between two binary variables). Specifically, the bivariate odds ratio model (also
known as a bivariate logistic model) is

logit pj(x) = ηj(x), j = 1, 2, (1.18)

log ψ(x) = η3(x). (1.19)

The joint probability p11(x) can be obtained from the two marginals pj(x) =
P (Yj = 1|x) and the non-negative odds ratio

ψ(x) =
p00(x) p11(x)

p01(x) p10(x)
=

P (Y1 = 0, Y2 = 0|x) P (Y1 = 1, Y2 = 1|x)
P (Y1 = 0, Y2 = 1|x) P (Y1 = 1, Y2 = 0|x) . (1.20)

Then Y1 and Y2 are independent if and only if ψ = 1.
As its name suggests, ψ is the ratio of two odds:

ψ(x) =
odds(Y1 = 1|Y2 = 1,x)

odds(Y1 = 1|Y2 = 0,x)
, (1.21)

i.e., ψ is the odds ratio of event Y1 = 1 for an observation with covariates (Y2 =
1,x) relative to an observation with covariates (Y2 = 0,x). Equation (1.21) is quite
interpretable, and this can be seen especially when the joint distribution (Y1, Y2)
is presented as a 2× 2 table.

In the VGLM/VGAM framework there is no reason why other link functions
could not be used for the marginal probabilities (1.18)—such as the probit [Φ−1(p)]
or complementary log–log [log(− log(1 − p))]—indeed, the binom2.or() VGAM
family function accommodates this. In fact, a different link for each linear predictor
is viable. A summary of some link functions in VGAM is given in Table 1.2. For
users wanting to write their own link function, some details are in Chap. 18.

The typical call to fit the model in VGAM is of the form

vglm(cbind(y00, y01, y10, y11) ~ x2 + x3, family = binom2.or, data = bdata)

where the LHS matrix contains the joint frequencies, e.g., y01 = (Y1 = 0, Y2 = 1).
The argument name family is for upward compatibility and simplicity: it mimics
the same argument in glm() which is for the half-dozen exponential family mem-
bers only. For such, the concept of an error distribution can be made rigorous.
In VGAM a family is viewed loosely, and usually it refers to some full-likelihood
specified statistical model worth fitting in its own right.
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Table 1.2 Some VGAM link functions currently available. They are grouped approximately
according to their domains. As with the entire book, all logarithms are natural: to base e.

Function Link gj(θj) Domain of θj Link name

cauchit() tan(π(θ − 1
2
)) (0, 1) Cauchit

cloglog() log{− log(1− θ)} (0, 1) Complementary
log–log

foldsqrt()
√
2θ −
√

2(1− θ) (0, 1) Folded square root

logit() log
θ

1− θ
(0, 1) Logit

multilogit() log
θj

θM+1
(0, 1)M Multi-logit;

M+1∑

j=1

θj = 1

probit() Φ−1(θ) (0, 1) Probit (for
“probability unit”)

fisherz() 1
2
log

1 + θ

1− θ
(−1, 1) Fisher’s Z

rhobit() log
1 + θ

1− θ
(−1, 1) Rhobit

loge() log θ (0,∞) Log (logarithmic)

logneg() log(−θ) (−∞, 0) Log-negative

negloge() − log(θ) (0,∞) Negative-log

reciprocal() θ−1 (0,∞) Reciprocal

nbcanlink() log (θ/(θ + k)) (0,∞) NB canonical link
(Sect. 11.3.3)

extlogit() log
θ −A

B − θ
(A,B) Extended logit

explink() eθ (−∞,∞) Exponential

identitylink() θ (−∞,∞) Identity

negidentity() −θ (−∞,∞) Negative-identity

logc() log(1− θ) (−∞, 1) Log-complement

loglog() log log(θ) (1,∞) Log–log

logoff(θ, offset = A) log(θ +A) (−A,∞) Log with offset

With certain types of data, sometimes one wishes to fit the model subject to
the constraint p1(x) = p2(x), e.g., if the Yj are the presence/absence of deafness
in the LHS and RHS ears. This corresponds to an exchangeable error structure,
and constraining η1 = η2 can be handled with the constraints-on-the-functions
framework described in Sect. 3.3. As well, it is not uncommon to constrain ψ to be
intercept-only, because of numerical problems that may arise when ψ is modelled
too flexibly. This too can be achieved with constraints on the functions.
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1.2.4 Proportional Odds and Multinomial Logit Models

Suppose that response Y is ordinal (an ordered categorical or grouping variable
or factor), e.g., Y = 1 = ‘low’, Y = 2 = ‘medium’, Y = 3 = ‘high’. McCullagh
and Nelder (1989) give strong reasons why ordinal responses are more naturally
modelled in terms of the cumulative probabilities P (Y ≤ j|x) rather than P (Y =
j|x) directly. To this end, the proportional odds model for a general ordinal Y
taking levels {1, 2, . . . ,M + 1} may be written

logit P (Y ≤ j|x) = ηj(x), (1.22)

subject to the constraint that

ηj(x) = β∗
(j)1 + xT

[−1] β
∗
[−(1:M)], j = 1, . . . ,M. (1.23)

Here, x[−1] is x with the first element (the intercept) deleted. The superscript “∗”
denotes regression coefficients that are to be estimated. Equation (1.23) de-
scribes M parallel surfaces in (p− 1)-dimensional space. The VGAM family func-
tions cumulative() and propodds() fit this model and variants thereof.

Here are some further comments.

(i) Selecting different link functions

Let γj(x) = P (Y ≤ j|x). The proportional odds model is also known as the
cumulative logit model ; there are M simultaneous logistic regressions applied
to the γj . If we replace the logit link in (1.22) by a probit link say, then this
may be referred to as a cumulative probit model. For this, the VGAM family
function cumulative() has an argument link that can be assigned probit.
More generally, models for (1.23) with any link are termed cumulative link
models.

(ii) Non-proportional odds model

In (1.23) the linear predictors are parallel on the logit scale because
the estimable regression coefficients β∗

[−(1:M)] in (1.23) are common for
all j. Consequently they do not intersect, therefore the probabilities
P (Y = j|x) do not end up negative or greater than unity for some x. This
is known as the so-called parallelism or proportional odds assumption. An
assumption that ought to be checked in practice, it gives rise to the prop-
erty that the odds of Y ≤ j given x1, relative to x2, say, does not depend
on j, hence its name. This means that the thresholds in the latent variable
motivation (Sect. 14.4) do not affect the regression parameters of interest.

(iii) Partial proportional odds model

An intermediary between the proportional odds and the fully non-proportional
odds models is to have some explanatory variables parallel and others not.
Some authors call this a partial proportional odds model. As an example,
suppose p = 4, M = 2 and

η1 = β∗
(1)1 + β∗

(1)2 x2 + β∗
(1)3 x3 + β∗

(1)4 x4,

η2 = β∗
(2)1 + β∗

(1)2 x2 + β∗
(2)3 x3 + β∗

(1)4 x4.
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The parallelism assumption applies to x2 and x4 only. This may be fitted by

vglm(ymatrix ~ x2 + x3 + x4, cumulative(parallel = TRUE ~ x2 + x4 - 1), cdata)

or equivalently,

vglm(ymatrix ~ x2 + x3 + x4, cumulative(parallel = FALSE ~ x3), data = cdata)

There are several other extensions that may easily be handled by the
constraint matrices methodology described in Sect. 3.3.

(iv) Common VGAM family function arguments

Rather than (1.22) many authors define the proportional odds model as

logit P (Y ≥ j + 1|x) = ηj(x), j = 1, . . . ,M, (1.24)

because M = 1 coincides with logistic regression. Many VGAM categorical
family functions share a number of common arguments and one such ar-
gument is reverse. Here, setting reverse = TRUE will fit (1.24). Other
common arguments include link (and its variants which usually start
with “l”), parallel, zero, and initial values of parameters (which usually
start with “i”). These are described in Sect. 8.1.2.

When a factor Y is unordered (nominal) it is customary to fit a multinomial
logit model

log
P (Y = j|x)

P (Y = M + 1|x) = ηj(x), j = 1, . . . ,M. (1.25)

The model is particularly useful for exploring how the relative chances of falling
into the response categories depend upon the covariates because

P (Y = j|x)
P (Y = s|x) = exp {ηj(x)− ηs(x)} = exp

{
xT
(
βj − βs

)}
. (1.26)

This can be interpreted as the relative risk of response j relative to response s,
given x. The interpretation of the coefficient β(j)k is based on increasing the kth
variable by one unit, keeping other variables fixed:

β(j)k = log
P (Y = j|x1, . . . , xk−1, xk + 1, xk+1, . . . , xp)

P (Y = j|x1, . . . , xk−1, xk, xk+1, . . . , xp)
. (1.27)

From (1.26) it is easy to show that

P (Y = j|x) =
exp{ηj(x)}

M+1∑

s=1
exp{ηs(x)}

, j = 1, . . . ,M. (1.28)

Clearly the numerator is positive and the M + 1 probabilities add to unity, which
are the essential properties of this regression model. Identifiability constraints such
as ηM+1(x) ≡ 0 are required because (1.28) may be multiplied by 1 = ec/ec for
any constant c. The VGAM family function multinomial() chooses the last level
of Y to be the baseline or reference group by default, but there is an argument
called refLevel to allow the choice of some other. It is most common to select the
first or last levels to be baseline, and if the first then this coincides with logistic
regression.

Chapter 14 gives details about the proportional odds model and other models
for categorical data.
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1.3 General Framework

In this section we describe the general framework and notation by briefly sketching
each major class of models. Fuller details can be found in the relevant Part I chapter
and the references in Table 1.1. To realize its full potential, it is stressed that it
is more important to see the forest than a few individual trees, i.e., grasping the
overriding VGLM/VGAM framework is paramount over concentrating on a few
special cases.

1.3.1 Vector Generalized Linear Models

Suppose the observed response y is a Q-dimensional vector. VGLMs are models
for which the conditional distribution of Y given explanatory x is of the form

f(y|x;B) = f(y, η1, . . . , ηM ) (1.29)

for some known function f(·), where B = (β1 β2 · · · βM ) is a p ×M matrix of
regression coefficients, and the jth linear predictor is

ηj = βT
j x =

p∑

k=1

β(j)k xk, j = 1, . . . ,M, (1.30)

where x = (x1, . . . , xp)
T with x1 = 1 if there is an intercept. VGLMs are thus

like GLMs but allow for multiple linear predictors, and they encompass models
outside the limited confines of the classical exponential family. In (1.30) some of
the β(j)k may be, for example, set to zero using quantities known as constraint
matrices which are described later.

The ηj of VGLMs may be applied directly to parameters of a distribution rather
than just to μjs as for GLMs. A simple example is a univariate distribution with
a location parameter ξ and a scale parameter σ > 0, where we may take η1 = ξ
and η2 = log σ. In general, ηj = gj(θj) for some parameter link function gj and
parameter θj . In the formulation all the explanatory variables can potentially be
used to model each parameter. In VGAM, there are currently over a dozen links
to choose from (Table 1.2).

There is no particular relationship between Q and M in general: it depends
specifically on the model or distribution to be fitted. Often M is the number of
independent parameters. Table 1.3 lists the values for the 6 illustrative models.

Table 1.3 Values of Q and M for the six illustrative models of Sect. 1.2. The categorical models
have a (M + 1)-level factor response.

Model Q M

Normal 1 2
Poisson 1 1
Negative binomial 1 2
Proportional odds model M + 1 M
Multinomial logit model M + 1 M
Bivariate odds ratio model 4 3
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VGLMs are estimated by IRLS. This algorithm is remarkably adaptable, and
it allows for many different enhancements. Its scope is wide, and this book and
accompanying software is a reflection of some of its flexibility. For data (xi,yi),
i = 1, . . . , n, most models that can be fitted have a log-likelihood


 =

n∑

i=1

wi 
i, (1.31)

and this will be assumed here. The wi are known and fixed positive prior weights.
Let xi denote the explanatory vector for the ith observation. Then one can write

ηi =

⎛

⎜
⎝

η1(xi)
...

ηM (xi)

⎞

⎟
⎠ = BTxi =

⎛

⎜
⎝

βT
1 xi

...

βT
Mxi

⎞

⎟
⎠ . (1.32)

VGLMs are covered in Chap. 3.

1.3.2 Vector Generalized Additive Models

VGAMs provide additive-model extensions to VGLMs, i.e., (1.30) becomes

ηj(x) = β(j)1 +

d∑

k=2

f(j)k(xk), j = 1, . . . ,M, (1.33)

a sum of smooth functions of the individual covariates, just as with ordinary
GAMs (Hastie and Tibshirani, 1990). The component functions comprising fk =
(f(1)k(xk), . . . , f(M)k(xk))

T are centred for uniqueness, and they are estimated
simultaneously using vector smoothers. VGAMs are thus a visual data-driven
method that is well-suited for exploring data. They retain the simplicity of in-
terpretation that GAMs possess because each xk has an additive effect in (1.33),
but the linearity assumption imposed by (1.1) is relaxed.

In practice we may wish to constrain the effect of a covariate to be the same
for some of the ηj and to have no effect for others, e.g., for VGAMs,

η1 = β(1)1 + f(1)2(x2) + f(1)3(x3),

η2 = β(2)1 + f(1)2(x2),

so that f(1)2 ≡ f(2)2 and f(2)3 ≡ 0. We can achieve this using “constraints-on-the-
functions” which are used to enforce relationships between the β(j)k of VGLMs,
etc. For VGAMs, we can represent these models using

η(x) = β(1) +
d∑

k=2

fk(xk) = H1 β
∗
(1) +

d∑

k=2

Hk f
∗
k(xk) (1.34)

where H1,H2, . . . ,Hd are known and fixed full column-rank constraint matrices,
f∗
k is a vector containing a possibly reduced set of component functions, and β∗

(1)
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is a vector of unknown intercepts. With no constraints at all, H1 = H2 = · · · =
Hd = IM and β∗

(1) = β(1). Like the fk, the f∗
k are centred for uniqueness. For

VGLMs, the fk are linear so that

BT =
(
H1β

∗
(1) H2β

∗
(2) · · · Hpβ

∗
(p)

)
. (1.35)

VGAMs are covered in Chap. 4.

1.3.3 RR-VGLMs

Reduced-rank VGLMs are a surprisingly useful and interesting class of models.
One of its primary aims is for dimension reduction. Partition x into (xT

1 ,x
T
2 )

T

and B = (BT
1 BT

2 )
T . In general, B is a dense matrix of full rank, i.e., min(M,p).

Thus there are M × p regression coefficients to estimate, and even when M and p
are moderate, for some data sets this is too large so that the model overfits.

One solution is based on a simple and elegant idea: replace B2 by a reduced-
rank regression (RRR). This dimension reduction technique is generally attributed
to Anderson (1951) but it obtained its generally used name from Izenman (1975).
Essentially RRR operates by determining a low-rank matrix which is an optimal
approximation to a full rank matrix. The low rank matrix is expressed as a product
of two ‘thin’ matrices A and C, i.e., B2 = ACT where A is M × R and C
is p2 × R, and where the rank R is the reduced dimension and p2 = dim(x2).
The resulting η given in Table 1.1 can be written in terms of an R-vector of
latent variables ν = CTx2. The concept of a latent variable is very important
in many fields such as economics, medicine, biology (especially ecology) and the
social sciences.

RRR can reduce the number of regression coefficients enormously, if the rank R
is kept low relative to large p2 and M . Ideally, the problem can be reduced down to
one or two dimensions and therefore plotted. The RRR is applied to B2 because
we want to make provision for some variables that define x1 which we want to
leave alone, e.g., the intercept. In practice, other variables usually chosen to be
part of x1 are covariates such as age and sex that the regression is adjusting for.
Variables which can be thought of as playing some role in an underlying latent
variable or gradient should belong to x2, e.g., temperature, solar radiation and
rainfall in an ecological application to represent ‘climate’.

It transpires that reduced-rank VGLMs (RR-VGLMs) are simply VGLMs where
the constraint matrices corresponding to x2 are equal and unknown, so need to be
estimated. As a consequence, the modelling function rrvglm() calls an alternating
algorithm which toggles between estimating A and C.

Incidentally, special cases of RR-VGLMs have appeared in the literature. For
example, an RR-multinomial logit model, is known as the stereotype model (An-
derson, 1984). Another is Goodman (1981)’s RC model which is an RRR applied to
several Poisson regressions—in fact it is a sub-variant called a row–column interac-
tion model (RCIM) which is applied to a Y (no X) only. Other useful RR-VGLMs
are the RR-NB and RR zero-inflated Poisson (RR-ZIP; Sect. 5.5.2.2). RR-VGLMs
are the subject of Chap. 5.
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Fig. 1.1 Rank-1 constrained quadratic ordination (CQO). (a) The mean abundance is μs(ν) =
E(Ys|ν) for s = 1, . . . , S species, and ν = cTx2 is a latent variable. (b) Zooming in on the
subinterval [A,B] in (a). This is approximately linearly on the η scale, meaning an RR-VGLM
would be suitable.

1.3.4 QRR-VGLMs and Constrained Ordination

RR-VGLMs form an optimal linear combination of the explanatory variables x2

and then fit a VGLM to these and x1. The η is linear with respect to ν, and
because the link functions are monotonic, the response is monotonic with respect
to ν.

In contrast, suppose a biologist has an n× S response matrix Y collected at n
sites upon S species; e.g., yij is the abundance of species j at site i. In biology,
species’ responses can be thought of as unimodal such as in Fig. 1.1a (e.g., animals
and plants die when the temperature is too hot or cold). Another situation where
unimodal responses occur is in psychology, where increasing the dosage of some
stimulus initially raises the level of some response but beyond a certain dosage the
response starts falling.

These examples suggest fitting a quadratic in ν on the η scale. This gives
rise to the class of quadratic RR-VGLMs (QRR-VGLMs), so as to perform con-
strained quadratic ordination (CQO). The results are bell-shaped curves/surfaces
on axes defined in terms of latent variables such as environmental gradients. This
is illustrated in Fig. 1.1a. In contrast, RR-VGLMs perform a constrained linear
ordination—this is illustrated in Fig. 1.1b.

As a specific example, a simple model for Poisson counts of S species is

log μj(νi) = ηj(νi) = β(j)1 + β(j)2 νi + β(j)3 ν
2
i , j=1, . . . , S, (1.36)

subject to β(j)3 < 0 to ensure bell-shaped response curves. The latent vari-
able ν = cTx2 is an optimal linear combination of the environmental variables
and is interpreted as a ‘gradient’. Usually the interpretation is based on the mag-
nitudes of the values of c, called the constrained coefficients or loadings.

CQO is detailed in Chap. 6.
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1.3.5 RR-VGAMs and Constrained Ordination

RR-VGLMs and QRR-VGLMs are model-driven. A data-driven version of these
two classes of models is available in the form of reduced-rank VGAMs (RR-
VGAMs). These are VGAMs which smooth latent variables as well as those vari-
ables in x1. For example, each quadratic in (1.36) might be replaced by a smooth
function

log μj(νi) = ηj(ν) = β(j)1 + f(j)1(νi1), j = 1, . . . , S, (1.37)

and estimated by a smoother such as a spline. RR-VGAMs have potential use in
community ecology, when one wants to see what the data-driven response curve
of each species looks like when plotted against an optimally estimated gradient.
More details are given in Chap. 7.

1.3.6 RCIMs

Row–column interaction models operate on a matrixY only; there is no explicitX.
They apply some link function to a parameter (such as the cell mean) to equal a row
effect plus a column effect plus an optional interaction modelled as a reduced-rank
regression, i.e., ACT as with RR-VGLMs. Technically, RCIMs are RR-VGLMs
with special constraint matrices and indicator variables, set up to handle the
row and column positions of each cell yij . They fit several useful models, e.g.,
Goodman’s RC association model for Poisson counts, median polish, simple Rasch
models and quasi-variances. RCIMs are described in Sect. 5.7.

1.4 An Overview of VGAM

Figure 1.2 gives an overview of all the major classes of models in the framework.
Recall we have data (xi,yi), for i = 1, . . . , n independent observations. Starting
from the LM μ = Xβ, or equivalently,

μi =

p∑

k=1

βk xik, (1.38)

one extends this mainly in three directions: toward

(i) generalized responses: that is, from the normal distribution to the classical
exponential family and beyond. This includes rates, quantiles, proportions,
counts, directions, survival times and positive data.

(ii) nonparametric models: that is, from linear modelling to additive models in-
volving smoothing.

(iii) multivariate responses: that is, handle a response that is vector-valued. Ad-
ditionally, sometimes several multivariate responses can be handled and the
response vectors are treated as being independent of each other, e.g.,
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fit1 <- vglm(cbind(y1, y2) ~ x2 + x3 + x4, poissonff, data = pdata)

fit2 <- vglm(cbind(y1, y2) ~ x2 + x3 + x4, binom2.or, data = bdata)

fit3 <- vglm(cbind(y1, y2, y3, y4) ~ x2 + x3 + x4, binormalcop, data= Bdata)

Here, fit1 has multiple responses y1 and y2 that are treated independently.
whereas for fit2 the y1 and y2 are treated as correlated. For fit3 the first
bivariate response is y1 and y2 which is treated independently of the second
bivariate response y3 and y4,

The first extension which handles a weighted multivariate response is the vector
linear model (VLM) class, which has

yi =

p∑

k=1

Hk β
∗
(k) xik + εi, εi ∼ (0,Wi) independently, (1.39)

where the Wi are known positive-definite symmetric matrices and the constraint
matrices Hk are known and of full column-rank. This implies

μi =

p∑

k=1

Hk β
∗
(k) xik. (1.40)

In practice, the VLM has few direct applications, but it serves as the computational
building block of the VGLM class.

As an extension of VLMs, VGLMs have

⎛

⎜
⎝

g1(θ1)
...

gM (θM )

⎞

⎟
⎠ = η =

p∑

k=1

Hk β
∗
(k) xk = BTx =

(
BT

1 BT
2

)(x1

x2

)

(1.41)

where the gj are link functions and θj are the parameters in the model or dis-
tribution. If a set of the Hk are equal, unknown and to be estimated, then this
produces the “reduced-rank” class, termed RR-VGLMs.

Written in S4 (Chambers, 1998), the VGAM modelling functions are used in
a similar manner as glm(), and gam() in gam. Given a vglm()/vgam() object,
standard generic functions such as coef(), fitted(), predict(), summary(),
vcov() are available (Tables 8.5, 8.6, 8.7). The typical usage is like

vglm(yvector ~ x2 + x3 + x4, family = aVGAMfamilyFunction, data = adata)

vgam(ymatrix ~ s(x2) + x3, family = aVGAMfamilyFunction, data = adata)

Many models have a multivariate response and/or VGAM family functions which
handle multiple (independent) responses, therefore the LHS of the formula can be
a matrix (otherwise a vector).

1.5 Some Background Topics

For completeness, the following background material that the reader is assumed to
be familiar with is summarized. Also, this section revises several sub-themes that
are woven throughout this book.



1.5 Some Background Topics 19
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RR−VGLM

RR−VLM

VLM

VGLM VGAM

VAM

Generalized

Normal errors

SmoothLinear

RCIM QRR−VGLM (CQO) / UQO

RR−VGAM (CAO)

Fig. 1.2 Flowchart for different classes of models. Legend: LM = linear model, V = vector,
G = generalized, A = additive, O = ordination, Q = quadratic, U = unconstrained, RCIM =
row–column interaction model. See also Table 1.1. Apart from the LM, the models of the bottom
half are more to be viewed as computational building blocks.

1.5.1 The Penalty Function Approach

In mathematical modelling it is common to estimate the parameters by balancing
two opposing quantities. For example, a smoother fitted to a scatter plot data
set (xi, yi), i = 1, . . . , n, will closely go through the data cloud if the residual
sum of squares

∑
i(yi − ŷi)

2 is small, e.g., Fig. 4.3. Choosing a curve that makes
this quantity approach 0 means setting the residuals to 0, implying that the curve
interpolates the data. The resulting curve will almost be certainly be too wiggly—
a case of overfitting. So, a technique to obtain a more moderate and generalizable
curve is to include a penalty for how wiggly it is.

In general, the minimization problem is

min
θ

A+ λB (1.42)

where θ(λ) is the vector of parameters and λ (≥ 0) is the balancing or trade-off
parameter. The smaller quantity A is, the closer the fit is with the data. Simply
minimizing A would result in an extreme fit that would not generalize well for
future data. But if we add a quantity B to the objective function that increases
as A decreases then we can regularize the fit.

As λ → 0+ the fit will become complicated because B becomes negligible.
As λ → ∞ the fit becomes simpler because λB is forced to remain small relative
to A, i.e., the penalty B is forced to decrease quicker relative to the increase in A.

In the subject of statistics, the penalty approach (1.42) is adopted commonly.
The following are a few instances, and in this book we see the approach appear a
number of times.
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AIC, BIC The Akaike information criterion and Bayesian information
criterion are commonly used to compare models. They bal-
ance goodness of fit by the number of parameters. These in-
formation criteria have known λ and are traditionally used on
multiple models that are not nested for the purpose of model
selection. See Sect. 9.3.

Smoothing splines The objective function (4.3) for a vector smoothing spline
minimizes a residual sum of squares plus a measure of the wig-
gliness of all the component functions. There are techniques
such as cross-validation which are used to try and obtain a
reasonable value for λ for a given data set (Sect. 2.4.7.6). See
Sect. 4.2.1.

LASSO Although not covered in this book, this method has generated
much interest and research activity in recent times. Proposed
by Tibshirani (1996), the method estimates the βk of an LM
by minimizing

n∑

i=1

(

yi − β1 −
p∑

k=2

xik βk

)2

+ λ

p∑

k=2

|βk|, (1.43)

and called the ‘least absolute shrinkage and selection opera-
tor’ (LASSO). The penalty is an l1 norm, and with increas-
ing λ, the shrinking is such that βk = 0 for values of k belong
to some set of variables, and thus xk is no longer selected
in the regression. For λ sufficiently large, all the coefficients
become 0 (except the intercept term which is unpenalized).
This can be seen in Fig. 1.3, where the paths of the LASSO
coefficients based on an LM fitted to the azpro data frame
described in Sect. 11.3.4.3 are traced. The first plot has λ on
a log-scale as its x-axis, and the second plot has the l1 norm
of (β2, . . . , βp)

T .
Trees Also not covered in this book, in the topic of classification

and regression trees, a popular algorithm for choosing a tree
of reasonable size is to contrast the number of leaves (the
penalty term B) with some measure of impurity, such as the
Gini index or deviance. The basics of trees are described in,
e.g., James et al. (2013).

P-splines These are similar to smoothing splines; see Sect. 2.4.5.

1.5.2 Snippets of the S Language

This book describes the VGAM R package as a software implementation of
VGLMs/VGAMs, etc. (Chap. 8). R is largely based on the S language, therefore
we summarize some aspects of the language here, especially those pertaining to
general regression modelling. This includes S formulas to describe the response
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Fig. 1.3 Paths of the estimated LASSO coefficients in an LM fit. The response log(los) is
regressed against the variables admit (black), age75 (red), procedure (green) and sex (blue) and
intercept, in the data frame azpro from COUNT. The first plot has log λ as its x-axis, whereas

second plot has the quantity
∑p

k=2 |βk| in (1.43). The upper numbers are the number of variables
in the model. Package glmnet is used here.

and explanatory variables, data frames to store the variables in, object-oriented
features used to streamline analyses, and generic functions to extract quantities
and perform actions on objects, etc.

The full language is actually quite deep, because it can redefine itself. But we
will use the language at the level of an applied statistician doing straightforward
analyses.

A basic question from the outset is: why R? There are many compelling reasons
such as it being free, open-source, fully featured (including 6500+ packages be-
tween early and mid-2015), and is based on the S language (Ihaka and Gentleman,
1996) which is quite elegant and was award-winning (1999 ACM Software System
Award). R is very powerful and has superb graphics. It runs on the most common
platforms including Windows, Macintosh and Linux/Unix systems. It was devel-
oped by Ross Ihaka and Robert Gentleman in the early 1990s at the Statistics
Department of the University of Auckland. Being based on S, it inherited a base
of many S-PLUS users who switched over during the early 2000s. R tends to be
first when it comes to the implementation of new statistical methodology. Being a
programmable language, it offers unrivalled flexibility and functionality. It is not
really GUI-based, hence it is a stumbling block to some novices who are unwilling
to ascend the rather steep initial learning curve. Probably its weakest point is its
difficulties handling huge data sets due to it being memory-bound. The software
can be downloaded from the Comprehensive R Archive Network (CRAN; http://
CRAN.R-project.org).

1.5.2.1 Arguments in lm()

The function lm() is a prototype of other modelling functions such as glm()

and vglm(). It has arguments

> args(lm)

function (formula, data, subset, weights, na.action, method = "qr",

model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,

contrasts = NULL, offset, ...)

NULL

http://CRAN.R-project.org
http://CRAN.R-project.org
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Some of the arguments are described a little below and in Table 1.4, however, here
are some brief comments about some of the other arguments.

• The weights argument in general can be assigned a vector with positive values.
They are called prior weights, and are the wi in (1.31). The default is usually a
vector of ones. A trick is sometimes to assign a very small value such as 10−10

so that observation effectively is not present during estimation, however its
fitted value can be returned as an ordinary observation. (This is another way
of performing prediction; the predict() generic is much more conventional.)

• The data argument can be assigned a data frame or list that contains all the
variables. This is good practice because having the variables scattered about
as separate vectors in the environment from which lm() is called is dangerous.
This is particularly important when predictions are made from the fitted model.

1.5.2.2 S Formulas

The first argument of modelling functions is typically formula. It is assigned an S
formula which is of the form response ∼ expression. The distinguishing feature of a
formula is the “∼” character which means “is modelled as a function of.” A simple
formula has the form

y ~ x2 + x3 + ... + xp

For us, the LHS is a vector or a matrix response, and the RHS are the explanatory
variables x1 = 1, x2, . . . , xp which forms the model matrix known as XLM (see
later). The “+” joining the terms, in most cases, means the terms are additive,
e.g., · · ·+βk xk+βk+1 xk+1+ · · · . By default a 1 is included in a formula, however,
intercepts may be suppressed by adding the term -1 or 0. It is good style to have
all the variables in the formula residing in a data frame.

More generally we can write a formula as a sum of d terms. The (LM) model
matrix has p ≡ pLM columns made up of d subsets of columns. For example,

y ~ x2 + poly(x3, 2) + bs(x4, 3) + x5

produces 1 + 1 + 2 + 3 + 1 = 8 = p regression coefficients to be estimated but
there are d = 5 terms. Confusingly, sometimes x = (x1, . . . , xd)

T is meant while
sometimes x = (x1, . . . , xp)

T is meant. The use of d is more natural when dealing
with additive models such as (1.2), while x = (x1, . . . , xp)

T is more natural dealing
with conventional linear/parametric models.

The terms of an object fit may be obtained by using the terms() generic, and
the "term.labels" attribute gives the term labels, omitting the intercept. For
example,

> d.AD <- data.frame(counts = c(18, 17, 15, 20, 10, 20, 25, 13, 12),

outcome = gl(3, 1, 9),

treatment = gl(3, 3))

> glm.D93 <- glm(counts ~ outcome + treatment, poisson, data = d.AD)

> attr(terms(glm.D93), "term.labels")

[1] "outcome" "treatment"
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Also, the "assign" attribute of the model matrix maps each term to specified
columns of the LM matrix. For example,

> attr(model.matrix(glm.D93), "assign")

[1] 0 1 1 2 2

shows that the intercept occupies the first column, outcome takes up the next two
columns, and treatment the last two columns.

S model formulas, which are based on the Wilkinson and Rogers (1973) notation,
allow operators such as interactions and nesting. As an example consider

y ~ -1 + x1 + x2 + x3 + f1:f2 + f1*x1 + f2/f3 + f3:f4:f5 + (f6 + f7)^2

where variables beginning with an x are numeric and those with an f are factors.
An interaction f1*f2 is expanded to 1 + f1 + f2 + f1:f2 where the terms f1

and f2 are main effects. An interaction between two factors can be expressed
using factor:factor: γjk. There are other types of interactions, e.g., between
a factor and numeric, factor:numeric, produce βj xk. Interactions between two
numerics, numeric:numeric, produce a cross-product term such as β x2 x3.

The term (f6 + f7)^2 expands to f6 + f7 + f6:f7. A term (f6 + f7 +

f8)^2 - f7:f8 would expand to all main effects and all second-order interactions
except for f7:f8.

Nesting is achieved by the operator “/”, e.g., f2/f3 is shorthand for 1 + f2 +

f3:f2, or equivalently,

1 + f2 + f3 %in% f2

An example of nesting is f2 = state and f3 = county. Another example
is mother/foetus for teratological experiments (Sect. 11.4) with individual-level
covariates.

From Table 1.4, there are times when the mathematical meaning of operators
such as +, -, *, /, etc. is desired. Then the identity function I() is needed, e.g.,

vglm(y ~ -1 + offset(o) + x1 + I(x2 - 1) + poly(x3, 2, raw = TRUE) + I(x4^2),

uninormal, data = udata)

fits the LM

yi = oi + β1 xi1 + β2 (xi2 − 1) + β3 xi3 + β4 x
2
i3 + β5 x

2
i4 + εi, (1.44)

εi ∼ i.i.d. N(0, σ2), i = 1, . . . , n, (1.45)

where o is a vector containing the (known and fixed) oi. Alternatively, offsets
may be inputted using the offset argument (see Table 1.4). The acronym “i.i.d.”
stands for ‘independent and identically distributed’, and the statement of (1.45)
holds various assumptions that should be checked (Sect. 2.2.1.1).

1.5.2.3 More on S Formulas

The S formula language endowed with the operators of Table 1.4 is flexible enough
to cater for a variety of simple functional forms as building blocks. For example,
the interaction operator allows for step functions in one or more dimensions, as well
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Table 1.4 Upper table: S formula operators. Sources: Chambers and Hastie (1991), Chambers
(1998) and Chambers (2008). Mid-table: logical operators. Lower table: some commonly used

arguments in modelling functions such as glm() and vglm().

Operator/function Comment

+ Addition of a term

1 Intercept (present by default)

- Omit the following term, e.g., -1 suppresses an intercept

. All variables in a data frame except for the response

0 No intercept (alternative method)

: Interaction (tensor product) between two terms

* Interaction (expansion), e.g., A * B = A + B + A:B

/ Nesting, same as %in%, e.g., A / B = A + B:A

ˆ Higher-order ‘expansion’, e.g., (A + B)^2 = A + B + A:B

∼ “is modelled as a function of”, defines a S formula

offset() Offset, a vector or matrix of fixed and known values, e.g.,
offset(log.time)

I() Identity or insulate, allows standard arithmetic operations to have
their usual meaning, e.g., I((x2 - x3)^2) for the variable (x2 − x3)2

Operator Comment

& Vector operator: and

| Vector operator: or

! Vector operator: not

Argument Comment

contrasts Handling of factor contrasts. See Sect. 1.5.2.4, e.g., contrasts =

c("contr.sum", "contr.poly")

na.action Handling of missing values. See Sect. 1.5.2.6, e.g., na.action =

na.pass

offset Offset, an alternative to offset() in the formula argument, e.g.,
offset = log(followup.time)

subset Subset selection, e.g., subset = 20 < age & sex == "M"

weight Prior weights, known and fixed, wi in (1.31)

as piecewise-linear functions that are continuous or discontinuous. Figure 1.4 gives
some examples. The fits are of the form of an LM regressing a response against
a variable x, or x2 and x3. The x, x2 and x3 are random samples from the unit
interval. The threshold value x0, called x0, was assigned an arbitrary value of 0.4.
The property that

> as.numeric(c(TRUE, FALSE))

[1] 1 0

is useful in S formulas, e.g., Fig. 1.4a, is of the form

lm(y ~ I(x - x0 < 0), data = ldata)
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and the first colour image, Fig. 1.4k, is

lm(y ~ I((x2 - x0 > 0) * (x3 - x0 > 0)), data = ldata)

Figure 1.4a has the same form of a stump in a regression tree with univariate
threshold splits, i.e., xk < x0 for some variable xk and threshold x0. Figure 1.4f
is a constrained version of Fig. 1.4b,c because the slopes on either side of x0 have
opposite signs. Figure 1.4l has the same form as a regression tree in two variables;
it has four leaves and three layers (including the root) but, of course, x0 need not
be the same as the threshold for each of the two variables.

Finally, to illustrate the “.” shortcut:

lm(y ~ . , data = ldata)

means y is regressed against all the other variables in data frame ldata. One can
use, e.g.,

lm(y ~ . - x5, data = ldata)

to exclude x5 as a regressor.
Model matrices are obtained first by combining the formula with the data frame

to produce a model frame, from which the model matrix is constructed.

1.5.2.4 Factors

Factors in regression are used for grouping variables and are represented by dummy
or indicator variables whose values equal 0 or 1. If there are L levels, then there
are L− 1 such variables. Table 1.5 gives three examples.

The contrast argument of lm() may be assigned a list whose entries are values
(numeric matrices or character strings naming functions) to be used as replacement
values for the contrasts() replacement function, and whose names are the names
of columns of data containing factors. For example,

lm(y ~ f1 + f2, data = ldata, contrasts = list(f1 = "contr.sum"))

lm(y ~ f1 + f2, data = ldata, contrasts = list(f1 = "contr.sum", f2 = "contr.poly"))

Here, assigning it to the contrast argument will have an effect for that model
only. One can change them globally, for example, by

options(contrasts = c("contr.SAS", "contr.poly"))

The R default is

> options()$contrasts

unordered ordered

"contr.treatment" "contr.poly"

Here are some notes.

1. By default, contr.treatment() is used so that each coefficient compares that
level with level 1 (omitting level 1 itself). That is, the first level is baseline.

2. Function contr.SAS() makes the last level of the factor the baseline level.
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Fig. 1.4 Some functional forms derived from the S formula language based on elementary func-
tions and operators. The formula heads each plot, followed by footnotes. The number of parame-
ters in the regression is given. An intercept term is assumed in all—and the blue • point indicates
its value at the location x = x0. Plots (k)–(l) are contour images with various colours denoting
different fitted values (blue for the intercept). The value x0 = x0 = 0.4 here, and variables x, x2

and x3 are defined on the unit interval. Function bs() resides in the splines package.

3. Function contr.sum() constrains the coefficients to sum to zero. For example,
the one-way analysis of variance model

lm(y ~ f1, data = ldata, contrasts = list(f1 = "contr.sum"))
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Table 1.5 Dummy variables D1, D2, D3, from contr.treatment() (LHS; the default in R) when
applied to the nominal ethnicity variable of xs.nz; the Europeans are the reference group. Middle:

the same with contr.SAS(); the Others are the reference group. RHS: the same with contr.sum().

contr.treatment() contr.SAS() contr.sum()

Ethnicity D1 D2 D3 D1 D2 D3 D1 D2 D3

European 0 0 0 1 0 0 1 0 0
Maori 1 0 0 0 1 0 0 1 0

Polynesian 0 1 0 0 0 1 0 0 1
Other 0 0 1 0 0 0 −1 −1 −1

with f1 taking on 3 levels has yij = α + βi + εij with β1 + β2 + β3 = 0,

for j = 1, . . . , ni. Then β3 is omitted from the regression and α̂ + β̂i = yi•
for i = 1, 2, 3 with β̂3 = −β̂1 − β̂2.

4. Function contr.poly() is used for equally spaced, equally replicated orthogonal
polynomial contrasts.

Other useful functions for manipulating factors are factor(), as.factor(),
ordered(), levels(), options().

For cumulative() and propodds() the response should represent an ordered
factor—if is.ordered() applied to a factor response is FALSE then a warning is
issued. Similarly, if the response for a multinomial() fit is an ordered factor, then
a warning is also issued.

1.5.2.5 Centring Variables

For linear predictors ηj the intercept may have little to no meaning if x2 = x3 =
· · · = 0 makes no physical sense, i.e., if x[−1] = 0 is unrealizable. For example,
suppose in human data, x = (1, age, sex, height, weight)T is measured in
years, female/male = 0/1, metres and kilograms. The fitted intercept is largely
uninterpretable because males just born with zero height and weight are hard to
find! However, some of the xk can be centred so that the intercept can refer to
some representative person, e.g.,

hdata <- transform(hdata, age30 = age - 30,

height1.7 = height - 1.7,

weight90 = weight - 90)

means that a regression performed with these new variables might have fitted
intercepts corresponding to a 30-year-old female American of height 1.7m and
weight 90 kg. In short, centring is an optional technique that can enhance the
interpretability of a statistical model.

Scaling the xk can also help, e.g., by dividing its standard deviation. If the
variable is approximately normally distributed, then ±2 units of the standardized
variable will provide a range that covers about 95% of that variable.

Standardizing by centring and scaling may be achieved by scale() or its smart
version sm.scale() (Sects. 8.2.5 and 18.6).
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Table 1.6 Standard functions that argument na.action can be assigned, for modelling functions
such as lm() and vglm(). The model frame comprises the explanatory and response variables

specified by formula.

na.omit() Any row with an NA in the model frame is deleted. This is the system
default (options("na.action"))

na.fail() Issues an error message if there are any NAs in the model frame

na.pass() Any NA is treated the same as an ordinary value so that the model
frame remains unchanged. Some VGAM family functions, such as for
the block Gumbel model (Sect. 16.2.2) for extreme value data, al-
low NAs in the response in order to handle ragged arrays, therefore
this option is sometimes preferred

na.exclude() Similar to na.omit() but its class is "exclude", whereas na.omit()

has the class "omit". Some functions such as naresid()

and napredict() need to distinguish between these two types, e.g.,
NAs are used to pad cases omitted by na.exclude()

1.5.2.6 Missing Values

Missing values are represented by NA for “not available” or “not applicable”. Mod-
elling functions usually come with an na.action argument that can be assigned
one of the functions listed in Table 1.6. Note that the model frame is constructed
from the data frame specified by argument data (otherwise from .GlobalEnv),
based on the variables in the formula. Other variables in the data frame that are
not part of the formula are ignored so that, e.g., rows from a data frame with miss-
ing values in unneeded variables will not be deleted by na.omit() in the fitted
object. In VGAM, the model matrix XLM is then constructed from model frame.
In general, na.action must be assigned a function that takes a data frame as
argument and returns another data frame as result with the same variables.

If any data frame has any NAs, then the data frame returned by the functions
has an attribute called "na.action" which has a certain class. For example,

> ldata <- data.frame(x2 = c(1, 2, 3), y = c(0, 10, NA))

> fit <- lm(y ~ x2, data = ldata, model = TRUE, na.action = na.exclude)

> attr(fit$model, "na.action")

3

3

attr(,"class")

[1] "exclude"

> class(attr(fit$model, "na.action"))

[1] "exclude"

1.5.2.7 Recycling and Storage of Elements

Two-dimensional data structures such as matrices and data frames store their
elements so that the left-most index varies fastest. e.g.,

> c(matrix(1:10, 5, 2))

[1] 1 2 3 4 5 6 7 8 9 10
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This is also true for arrays of any dimension, and the second left-most index varies
the second fastest, etc.

Recycling of values is an important feature of the S language and is used a lot
in VGAM.

1.5.3 More on the Number of Parameters and Terms

We saw from the Sect. 1.5.2.2 that a term in an S formula can generate multiple
columns of the model matrix, e.g, poly(x3, 2, raw = TRUE) in (1.44) creates two
columns. Something to bear in mind is that sometimes it is necessary to distinguish
between the number of parameters being estimated and the number of ‘raw’ or
original covariates. This is because each raw covariate xk is commonly expanded
using basis functions. In general, p denotes the number of regression coefficients
to be estimated (in some form or another because there are at least two of them
defined—pLM and pVLM), and d is the number of raw covariates. Often, d is the
number of terms in a simple additive model because each term is a function of
only one of the original explanatory variables (no interactions assumed). We tend
to express additive models (1.2) in terms of d.

Here is another simple example:

> y ~ poly(x2, 2, raw = TRUE) + poly(x3, 2, raw = TRUE) + x4

The corresponding (LM) model matrix has 6 columns {1, x2, x
2
2, x3, x

2
3, x4}

which are mapped to x = (x1, x2, . . . , xp)
T . But one might sometimes refer

to (1, x2, x3, x4)
T as the original x. An even simpler term that creates the need

for duality in notation is when xk as a factor; then, it expands into L− 1 columns
of the model matrix, where L is the number of levels.

When there is no need to distinguish between d and p usually the latter is used,
and often d = p and they are used loosely and interchangeably.

1.6 Summary

The purpose of this chapter is to provide a brief overview of the statistical frame-
work including a short description of each major class of models, and to provide
some preliminary background material for such.

Being a large project, VGAM is still in development. The project is largely
driven by practical expediencies, and is designed to be hopefully general. With a
potentially large capability, it is structured by its large and unified framework. It
is hoped that the package will be useful to many statistical practitioners.
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Bibliographic Notes

The S3 language was defined in Chambers and Hastie (1991), and S4 in Chambers
(1998); see also Chambers (2008). Many of VGAM’s features are similar to glm(),
therefore readers unfamiliar with these functions are referred to Chambers and
Hastie (1991). Readers unfamiliar with R and aspects of the S language are also
directed to more user-friendly account such as Zuur et al. (2009) and de Vries and
Meys (2012), as well as the statistical modelling books listed in the bibliographic
notes of Chap. 8.

References for categorical and count data analyses are given at the end of
Chaps. 14 and 11, respectively. Keogh and Cox (2014) describe the odds ratio
in the context of case-control studies. Imai et al. (2008) describe a common frame-
work for statistical analysis and development, and implement the ideas in zelig.
The subject of this book fits well under the umbrella of data analysis, and an
overview of this topic is Huber (2011).

Exercises

Ex. 1.1. Show for the proportional odds model (1.22)–(1.23) that the odds
of Y ≤ j given x1, relative to x2, does not depend on j. [McCullagh and Nelder
(1989)]

Ex. 1.2. Suppose Y ∼ Poisson(μ) with η ≡ log μ, and Y ∗ = I(Y > 0) is
binary. Show that a complementary log–log link applied to a binary regression
of Y ∗ results in the same η , i.e., cloglog(P [Y ∗ = 1]) = η .

Ex. 1.3. Suppose Y has a standard Cauchy distribution, i.e., f(y) = [π(1 +
y2)]−1 for all real y. Show that F−1(p) = tan(π(p− 1

2 )).

Ex. 1.4. Page et al. (2007) investigate the suicide rate in England and Wales
during heat waves that occurred in 1995 and 2003. The following data were adapted
from their Table 2 and other sources.

Run the following code and then fit a basic Poisson regression in order to esti-
mate the death rate per 100,000 persons per year (taken as 3651

4 days) during the
heat waves. The variables are: popn is an estimate of the population of England
and Wales during that year, days is the duration of each heat wave in days, dates
gives the time period of each heat wave (formatted as yyyymmdd), and deaths is
the number of suicides (estimated).

sdata <- data.frame(popn = c(51395000L, 52721000L, 52721000L),

deaths = c(104, 57, 119),

days = c(6, 5, 10),

dates = c("19950729-19950803", "20030713-20030717",

"20030804-20030813"))

Ex. 1.5. One example where Poisson regression with offsets is commonly used
is the estimation of catch per unit effort (CPUE) in fisheries studies. Consider
the lakeO trout data. Although the units of CPUE is usually the number of fish
caught per hour of fishing, we will use the number of fish caught per visit here and
call it CPUE2.
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(a) For the usual CPUE definition why is it necessary to assume that, over the
years, the mean fishing duration per visit to the lake was the same? Do you
think this is realistic?

(b) Plot the rainbow trout CPUE2 versus year, the brown trout CPUE2 versus
year, and the raw counts over time. Comment.

(c) Fit a simple intercept-only Poisson regression with offsets to estimate the rain-
bow trout CPUE2. Do the same for the brown trout CPUE2.

(d) Repeat (c) but add year as a covariate. Are these year terms justified?
(e) Fit a logistic regression to the proportion of brown trout with year as a co-

variate. Is there any evidence of a change over time? If so, does this mean that
the proportion of brown trout in the lake is changing over time? Justify your
answer by giving some possible explanations.

Ex. 1.6. Consider the logistic regression model (1.17). Some software represent

a binary explanatory variable with x‡
k = 1 and −1 for true and false respec-

tively, e.g., when a factor with 2 levels is converted into a numerical variable.
Suppose logit P (Y = 1) = η‡ =

∑
β‡
kx

‡
k is fitted, where Y = 1 or 0 is the usual

response. Express β‡
k in terms of the usual βk, and obtain an expression for the

standard error SE(β̂‡
k) in terms of SE(β̂k).

Ex. 1.7. Consider the bivariate odds ratio model (1.18)–(1.19).

(a) Show that the joint probability P (Y1 = 1, Y2 = 1) can be expressed as

p11 =

{
1
2 (ψ − 1)

−1 {a−√a2 + b}, ψ �= 1;
p1 p2, ψ = 1,

(1.46)

where a = 1 + (p1 + p2)(ψ − 1) and b = −4ψ(ψ − 1)p1p2.
(b) Show that (1.21) leads to (1.20).

Ex. 1.8. Consider Fig. 1.4a. Write three different S formula terms that have the
effect of fitting a 3-step function with known breakpoints, i.e., suppose 0 < a <
b < 1 for some known a and b. Then the fitted values of the LM are

μ̂i =

⎧
⎨

⎩

β̂1, 0 < xi ≤ a;

β̂2, a < xi ≤ b;

β̂3, b < xi ≤ 1.

Ex. 1.9. Show that a multinomial logit model (1.28) with constraints
∑M

t=1 β
∗
t =

0 implies that the “median” response can be viewed as the reference category. That
is, for s = 1, . . . ,M ,

log

⎛

⎝P (Y = s|x)÷
[

M∏

t=1

P (Y = t|x)
]1/M ⎞

⎠ = β∗
s. (1.47)

The denominator can be regarded as a geometric mean. [Tutz (2012)]

Ex. 1.10. Negative Binomial Distribution

(a) Suppose a negative binomial distribution (1.14) is fitted to Y with the con-
straint k ∝ μ. What then is Var(Y )?
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(b) Given log links for both μ and k parameters, what constraint matrices need
to be chosen to achieve (a)?

Ex. 1.11. If A = 1 − e−λ and B = 2 e−λ/λ2 in (1.42), find the optimal λ and
the value of the penalty (objective function) at the solution.

Ex. 1.12. Complete-Case Analysis
The function na.omit() performs what is known as complete-case analysis
whereby any row of an n × p matrix is deleted if there is a missing value in
any of the variables of that row. Suppose that X is n × p with missing values in
positions that are independent and random with probabilities that are uniform
over all elements. Assume both n and p are greater than the number of missing
values. Let N be the number of rows in a complete-case analysis of X.

(a) Suppose there is 1 missing value. Explain why E(N) = n− 1.
(b) Suppose there are 2 missing values. Show that E(N) = (n−1) [1− p/(np− 1)].
(c) Suppose there are 3 missing values. Obtain the probability function of N .

Ex. 1.13. Consider the ethnicity variable of xs.nz.

(a) Apply contr.SAS() to a simple vector equivalent of it, and obtain output of
the same format as Table 1.5. Explain it to show your understanding of it.

(b) Repeat the same with contr.sum().

Ex. 1.14. Given a data frame pdata with variables y and x2, show how to fit
Poisson regressions subject to the following scenarios. That is, how might one
call glm()? Assume the values of x2 are positive.

(a) We want μ ∝ xβ2

2 for some regression coefficient β2.
(b) We want μ ∝ x2. List two calls to glm() to achieve this. What dangers are

there in this model? Which call is to be preferred, if any?

Ex. 1.15. Given the Poisson probability function (1.7), show that

(a) E(Y ) =
∑∞

y=0 yf(y) = μ,

(b) Var(Y ) ≡ E[(Y − μ)2] = μ.

Ex. 1.16. Some S Formulas

(a) For Fig. 1.4h, express limx→x−
0
of the fitted values as a function of the param-

eters.
(b) For Fig. 1.4i, which is discontinuous at x0, express limx→x+

0
of the fitted values

as a function of the parameters.

R is a ratty, old, cobbled-together piece of crap (compared with what we now
know is possible).
—Ross Ihaka, 2012-08



Chapter 2

LMs, GLMs and GAMs

. . . I have long been a proponent of the following unified field theory for statis-
tics: “Almost all of statistics is linear regression, and most of what is left over
is non-linear regression.”
—R. I. Jennrich (discussion of Green (1984))

2.1 Introduction

This chapter reviews a few details about two building blocks for this book: LMs
and smoothing. These topics naturally draw in two others, viz. GLMs and GAMs,
whose inclusion poses the risk of distracting the reader from the main thrust of this
book by having to include some material that is not quite necessary. Some justifi-
cation and details, such as computational, are deferred to the next two chapters,
where they are described under more general conditions.

2.2 LMs

LMs operate on data (xi, yi), i = 1, . . . , n, where yi is the ith response, xi is
explanatory, and p ≤ n (classically, it is usually not considered good practice if n
is not much more than p). The data is assumed to follow the model

Yi = β1 xi1 + · · ·+ βp xip + εi, εi ∼ N(0, σ2) independently. (2.1)

Note that R has the first column of the model matrix X equal to ones if there is
an intercept, i.e., xi1 = 1. Often, people call (2.1) a multiple linear regression. In
the wide literature, the εi are known under various names, such as the (statistical)
error, white noise, innovations, random noise. The mean of Yi, given xi, is

E(Yi|xi) = μi(xi) = βTxi =

p∑

k=1

βk xik . (2.2)

© Thomas Yee 2015

T.W. Yee, Vector Generalized Linear and Additive Models,
Springer Series in Statistics, DOI 10.1007/978-1-4939-2818-7 2

33



34 2 LMs, GLMs and GAMs

Confusingly, some people call the LM a “general linear model”, which has the
same acronym as a “generalized linear model”(GLM). The general linear model
includes generalized least squares, whereas the LM usually refers to ordinary least
squares.

It is more compact to write the LM using vectors and matrices:

Y = Xβ + ε, εi ∼ Nn(0, σ2 In), (2.3)

where Y = (Y1, . . . , Yn)
T and xik = (X)ik. Later, we will sometimes write X

as XLM to distinguish it from another type of model matrix (design matrix ).
The LM makes strong assumptions. Embedded in the above equations, these

are the following.

(i) Independence of the errors: data such as time series often violate this as-
sumption because the errors are correlated with each other, in particular,
with observations from the past. Independence of the εi is not explicitly
stated in (2.3) because of a property of the multivariate normal distribution
that Cov(εi, εj) = 0 iff εi and εj are independent.

(ii) Linearity : the mean function defines a hyperplane in p-dimensional space.
Each covariate xk is usually modelled having a linear effect on the mean
response, keeping the other variables in x fixed. Actually, LMs are called
LMs because the mean is linear with respect to the parameters, so that a
polynomial in xk is a LM.

(iii) Errors that are normal with mean zero and constant variance: for example,
a common form of heteroscedasticity is when Var(εi) increases with increasing
mean μi.

In practice, all these assumptions should be checked as part of the model-building
process; see Sect. 2.3.2. Relaxing the linearity assumption is the main motivation
of additive models, e.g., see Sect. 2.5 and Chap. 4, and is a major theme of this
book.

To estimate β, it is most common to minimize the residual sum of squares

ResSS(β) =

n∑

i=1

ε2i = (y −Xβ)T (y −Xβ) (2.4)

as a function of β. Of course, this is why the name ‘least squares’ (LS) is used,
and the estimator corresponds to the MLE because the errors are assumed to be
normally distributed. Setting the derivative of ResSS with respect to β as 0 gives
the normal equations

XTXβ = XTY . (2.5)

Provided that X is of full column-rank, then

β̂ =
(
XTX

)−1

XTy (2.6)

is the LS estimate, and so

ŷ = Xβ̂ = X
(
XTX

)−1

XTy = Hy, say, (2.7)
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where H is known as the hat matrix. Then ŷi = xT
i β̂ are the fitted values, and ri =

yi − ŷi the residuals. It then follows that Var(β̂) = σ2(XTX)−1, and

β̂ ∼ Np

(

β, σ2
(
XTX

)−1
)

. (2.8)

Provided that an estimate of σ can be obtained, (2.8) can be used for inference, e.g.,

to calculate the standard errors for the β̂k, and construct confidence intervals. We
shall see below that the quantity S2, defined as

∑n
i=1(Yi− Ŷi)

2/(n−p), is unbiased
for σ2, therefore it is natural to use σ̂ = s.

Suppose we wish to test the null hypothesis H0 : Aβ = c for some q× p matrix
of known constants A having rank-q, and c is a vector of known constants. For
example, this can be used to test that a subset of the βk are all 0. Fitting the LM
under this constrained (smaller) model results in a residual sum of squares which
can be denoted by ResSS0. Likewise, the unconstrained (larger or full) model has
a ResSS1 which will be generally lower. Then the test statistic F0 is distributed as

F0 =
(ResSS0 − ResSS1)/q

ResSS1/(n− p)
∼ Fq,n−p. (2.9)

The null hypothesis is rejected at the α-significance level if F0 > Fq,n−p(1 − α).
The function linearHypothesis() in car may be used to test hypotheses of this
form. The special cases of testing H0 : βk = 0 versus H1 : βk �= 0, for all k one-
at-a-time, is printed out in the summary(lmObject) output. For these, the test
statistics are labelled “t values” because T 2 ∼ F1,ν for T ∼ tν , and have the

form t0k = (β̂k − 0)/SE(β̂k). The 2-sided p-values are printed as Pr(>|t|), and
any controversial ‘significance stars’ adjacent to them.

A 100(1− α)% confidence ellipsoid for β comprises values of β such that

(
β̂ − β

)T
XTX

(
β̂ − β

)
≤ p σ̂2Fp,n−p(1− α).

Often we wish to look at one coefficient of β at a time, then a 100(1 − α)%

confidence interval for βk is β̂k ± tn−p(1− α/2) SE(β̂k), where the standard error

is s · [(XTX)−1]kk. A call of the form confint(lmObject) returns such intervals.
For prediction at a value x0, say, a 100(1−α)% prediction interval for y(x0) is

xT
0 β̂ ± tn−p(1− α/2) σ̂

√

1 + xT
0

(
XTX

)−1

x0.

Similarly, a 100(1− α)% confidence interval for μ(x0) is

xT
0 β̂ ± tn−p(1− α/2) σ̂

√

xT
0

(
XTX

)−1

x0.

Prediction intervals focus on a future (random) value of y and are consequently
wider than a confidence interval for the (fixed) conditional mean E(Y |x0). This
is intuitively so because confidence intervals simply need to account for the un-
certainty in β̂, whereas prediction intervals have the additional randomness due
to Var(εi) as well.
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2.2.1 The Hat Matrix

From (2.7), we have the n× n matrix

H = X
(
XTX

)−1

XT , (2.10)

which is referred to as the ‘hat’ matrix because it adds a ‘hat’ to y (i.e., ŷ)
when y is premultiplied by it. Assuming that X is of rank-p, the hat matrix has
the following properties.

(i) H = HT , i.e., symmetric.
(ii) H2 = H, i.e., idempotent.
(iii) H1 = 1 if the LM has an intercept, i.e., all rows sum to unity.
(iv) rank(H) = trace(H) = p.
(v) H has p unit eigenvalues and n− p zero eigenvalues.
(vi) 0 ≤ hii ≤ 1, where hij = (H)ij is the (i, j)-element of H. If the LM has an

intercept, then n−1 ≤ hii ≤ 1.
(vii) Var(ri) = σ2(1− hii). This serves as motivation for (2.12).

The proofs are not difficult and are left as an exercise (Ex. 2.1). The hat matrix H
is also known as a projection matrix because it is the orthogonal projection of Y
onto the column (range) space of X; it has the two properties of being symmetric
and idempotent.

To show that S2 is unbiased for σ2, E[ResSS] = E[(Y − Ŷ )T (Y − Ŷ )] =
E[Y T (I−H)T (I−H)Y ] = E[Y T(I−H)Y ] = trace((I−H)σ2I)+μ(I−H)μ =
σ2(n − p) + 0 = σ2(n − p), by formulas given in Sect. A.2.5. These results are
generalized later for linear smoothers in, e.g., Sect. 2.4.7.4.

The importance of the hat matrix, especially for diagnostic checking, is due to
its interpretation as containing the weights of all the observations in obtaining the
fitted value at a particular point. This can be seen by focusing on the ith row
of (2.7):

ŷi =

n∑

j=1

hij yj , (2.11)

so that hij can be interpreted as the weight associated with datum (xj , yj) to give
the fitted value for datum (xi, yi). For the p = 2 case, plotting the hij versus xj2

for j = 1, . . . , n, is analogous to the equivalent kernels for smoothers considered in
the next chapter (e.g., Sect. 2.4.7.3).

However, it is usually the diagonal elements of H that are of greatest relevance
to people fitting LMs. Element hii measures how much impact yi has on ŷi, and
consequently it quantifies the amount of influence that observation i has on the fit.
Indeed, the hii are called leverages or leverage scores, and they measure how far xi

is away from the centre of all the data (x). Intuitively, as ResSS is being minimized,
observations xi that are isolated from the rest cause the regression plane μ(x) to
be ‘pulled’ unduly towards them. The leverages can be defined as ∂ŷi/∂yi. Since
the sum of the hii is p, any individual diagonal element that is substantially higher
than the mean value can be considered influential. It is common to use the rule-
of-thumb: if hii > 2p/n, say, then observation i is influential or has high leverage.
Others use hii > 3p/n instead. As high-leverage points may ‘pull’ the regression
line or plane towards them, they do not necessarily have a large residual.
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2.2.1.1 LM Residuals and Diagnostics

A major component in checking the underlying LM assumptions is the exam-
ination of the residuals. Indeed, the use of diagnostic plots and other tools to
check the adequacy of a fitted regression model separates competent practitioners
from amateurs. From above, the ordinary residuals do not have equal variances,
therefore

rstdi =
yi − ŷi

s
√
1− hii

(2.12)

are used commonly, called standardized residuals or (internally) Studentized resid-
uals. Here, s follows from the result that S2 is an unbiased estimator for σ2.
However, if (xi, yi) is an outlier, then s may be affected, therefore it is safer to use
the (externally) Studentized residuals (or simply Studentized residuals)

rstui =
yi − ŷi

s[−i]
√
1− hii

(2.13)

where s[−i] is the estimate of σ by deleting observation i. The function hat-

values() returns diag(H), and rstandard() and rstudent() return (2.12)
and (2.13), respectively.

LM diagnostics are quite a large subject and beyond the scope of this book. Here
is a small listing of popular diagnostic plots for detecting violations in some of the
underlying LM assumptions. Here, ‘residuals’ are best standardized or Studentized
residuals, although ordinary residuals are often used.

1. When the residuals are plotted against their fitted values, ideally one would
want a patternless horizontal band. A common form of departure from this is
a ‘funnel-effect’, where there is less spread at lower fitted values—this suggests
non-constant variance of the errors.

2. Plot the partial residuals against each xk, e.g., ri+β̂kxik versus xik. These types
of residuals attempt to remove the effect of xk from the regression temporarily.
If indeed xk has a linear effect on the response, then removing β̂kxik from
the residual should leave white-noise. Any nonlinear trend would suggest that
the βkxk term might be generalized to some smooth function fk(xk), i.e., an
additive model. Not surprising, partial residuals are central to the backfitting
algorithm for fitting VGAMs (Sect. 4.3.2).

3. Check the normality of the errors by a normal Q-Q plot of the residuals or a
histogram, e.g., with qqnorm() and hist().

4. As a check of the independence of the errors, plotting ε̂i−1 versus ε̂i and ob-
taining a pattern with a nonzero slope suggests a violation of the independence
assumption. For this, the Durbin-Watson test is popular, and there are imple-
mentations for this in, e.g., car and lmtest. More fundamentally, how the data
was generated and collected needs to be considered in the broader context of
the analysis.

Some of the above are produced by a call of the form plot(lmObject). Common
remedies to violations of the LM assumptions include transforming the response
or the xk, adding polynomial terms in xk, using weighted least squares (WLS) or
generalized least squares (GLS), and fitting additive models.
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From an inference point-of-view, it is generally thought that independence of the
errors is the most crucial assumption, followed by constant variance of the errors
and linearity with respect to each xk. Normality of the errors is the least important
assumption, and the Shapiro-Wilk test can be used for this (shapiro.test()). Of
course, gross features such as outliers and high-leverage points must be attended
to. Other potential problems include

• multicollinearity (sets of xk which are highly correlated or almost linearly de-
pendent, e.g., x2 = log width and x3 = log breadth would be highly correlated
with x4 = log area if regions were approximately rectangular in shape),

• interactions (e.g., the effect of xs on Y changes with the value of another ex-
planatory variable xt); these can be complicated and hard to deal with,

• variable selection, e.g., trying to determine which variables should be included
in the model. This problem is exacerbated in an age of Big Data, where many
variables are collected routinely.

Consequently, good linear modelling requires skill and diligence; it is an art as well
as a science.

Regarding variable selection, a simple technique for moderate p that can be
performed manually, called backward elimination, involves fitting a model with
all the explanatory variables in, and then removing the least significant variable
(i.e., the one with the largest p-value) and refitting a new model. This procedure
is repeated until all remaining variables are ‘significant’. The criterion for a ‘sig-
nificant’ variable might be one whose p-value less than 5% or 10%; it should be
decided upon beforehand.

For lm() fits, influence.measures() is the primary high-level function for
diagnostics. It returns a number of quantities such as DFBETAS, DFFITS, Cook’s
distances, and diag(H). These are ‘leave-one-out’ diagnostics because they measure
the effect of removing one observation at a time. In particular, DFBETA are the
quantities β̂ − β̂[−i], the dif ference in the beta vector of coefficients. DFBETAS
is the scaled version of DFBETA, DFFITS is a scaled version of DFFIT (which

is ŷi−xT
i β̂[−i] = xT

i (β̂− β̂[−i])). These quantities plus more are defined in Belsley
et al. (1980, Chap.2). Cook’s distances measure the effect of the ith observation

on β̂, in a way that picks up high-leverage points and observations with large
Studentized residuals—cooks.distance() can return these quantities.

2.2.2 WLS and GLS

The assumption in (2.3) that Var(ε) = σ2 In is commonly unrealistic in real
data analysis, as the previous section indicated. A generalization that relaxes ho-
moscedastic errors is to allow Var(ε) = σ2 diag(w1, . . . , wn)

−1 for positive known
weights wi. Then fitting an LM by minimizing

∑
i wi(yi− ŷi)

2 is known as weighted
least squares (WLS). Note that the εi are still independent, as in ordinary least
squares (OLS).

It is necessary to generalize WLS further. If Var(ε) = σ2 Σ for any known
positive-definite matrix Σ, then estimating β by minimizing (y −Xβ)TΣ−1(y −
Xβ) is called generalized least squares (GLS). GLS is needed when considering
VGLMs and VGAMs, whereas WLS is sufficient for fitting GLMs. GLS allows the
errors εi to be correlated.
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The following formulas hold for GLS, and it is left to the reader to supply their
proofs (Ex. 2.5):

β̂ =
(
XTΣ−1X

)−1

XTΣ−1 y, (2.14)

Var(β̂) = σ2
(
XTΣ−1X

)−1

, (2.15)

(y −Xβ̂)TΣ−1(y −Xβ̂)

σ2
∼ χ2

n−p. (2.16)

Also, its hat matrix (defined as H such that ŷ = Hy), is idempotent, but not
symmetric in general. Equation (2.16) implies that σ̂2 = ResSS/(n − p) is an
unbiased estimator of σ2.

2.2.3 Fitting LMs in R

The fitting function lm() is used to fit LMs. It has arguments

> args(lm)

function (formula, data, subset, weights, na.action, method = "qr",

model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,

contrasts = NULL, offset, ...)

NULL

Arguments formula and data should be used all the time. Arguments subset,
weights and na.action can be very useful at times, and offset can be incorpo-
rated into the formula instead by addition of the term offset(<value> ).

LMs may be fitted using glm(), albeit with slightly less efficiency. The normal
distribution being known as the Gaussian distribution, gaussian() is the default
for its family argument.

2.3 GLM Basics

This section gives a bare-bones and incomplete overview of GLMs. Such is not
really required for an understanding of the VGLMs described in Chap. 3, however
it does provide some background for such. Hence this section is given more for
completion than for necessity.

GLMs as proposed by Nelder and Wedderburn (1972) provide a unifying frame-
work for a number of important models in the exponential family. In particular,
these include the normal (Gaussian), binomial and Poisson distributions. One con-
sequence is that a single algorithm (IRLS) can be used to fit them all.

As with LMs, we have independent sample data (xi, yi), i = 1, . . . , n, where yi
is the response (more general now), n is the sample size, and xi = (xi1, . . . , xip)

T

is a vector of p explanatory variables (xi1 = 1 is the intercept if there is one).
A GLM is composed of three parts:
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(i) a random component f(y;μ) specifying the distribution of Y ,
(ii) a systematic component η = βTx specifying the variation in Y accounted for

by known covariates, and
(iii) a link function g(μ) = βTx that ties the two together. Often, g is simply

called the link.

The η is known as the linear predictor, and the random component f(y;μ) is
typically an exponential family distribution with E(Y |x) = μ(x) being the mean
function. GLMs thus fit

g(μ(xi)) = ηi = βTxi = β1 xi1 + · · ·+ βp xip, (2.17)

where g is known. The required properties of g are strict monotonicity and being
twice-differentiable in the range of μ. The main purpose of g is to transform the
mean, which is usually bounded, into an unbounded parameter space where the
optimization problem is unfettered and therefore simpler. Another purpose is that
it often aids interpretability. In the VGLM framework described in Chap. 3, we
write (2.17) as

g1(μ(xi)) = ηi1 = βT
1 xi = β(1)1 xi1 + · · ·+ β(1)p xip (2.18)

to allow for more than one linear predictor in a model. The linear predictor (2.18)
is central to this book. It takes the form of a weighted average of the covariate
values xi1, . . . , xip for object i—it is a plane in p-dimensional space.

For one observation, the probability density or mass function (PDF or PMF)
of the exponential family can be written

f(y; θ, φ) = exp

{
y θ − b(θ)

φ
+ c (y, φ)

}

, (2.19)

where θ is called the natural parameter or canonical parameter, φ is a possibly-
known dispersion parameter (or scale parameter), and b and c are known functions.
When φ is known, the distribution of Y is a one-parameter canonical exponential
family member. When φ is unknown, it is often a nuisance parameter and then it
is estimated by the method of moments. In most of GLM theory, the role of φ is
curious and unfortunate: it is often treated as an unknown constant but not as a
parameter. The VGLM framework views this as a deficiency, because of the original
framework’s inability to handle more than one parameter gracefully. The VGLM
framework tends to estimate all parameters by full maximum likelihood estimation.
This makes life easier in general, and estimation and inference is simpler.

At this stage, it is a good idea to handle known prior weights, Ai say, which may
be entered into modelling functions such as glm() and vglm() via the weights

argument. We will write φi = φ/Ai, where usually Ai = 1. In the case of the Yi

being binomial proportions, NiYi ∼ Binomial(Ni, μi) where the Ni can be assim-
ilated into the Ai by Ai = Ni. Another reason is because we want to maximize
a log-likelihood of the form

∑n
i=1 Ai 
i; most of this book dwells on maximizing the

log-likelihood (3.7) so that the Ai here can be absorbed into the prior weights wi

there (this is largely a change of notation).



2.3 GLM Basics 41

Noting that 
(μ; y) = log f(y;μ), the log-likelihood is


(θ, φ; y) =
n∑

i=1

yi θi − b(θi)

φ/Ai
+ c

(

yi,
φ

Ai

)

, (2.20)

and the score function is

U(θ) =
∂


∂β
=

n∑

i=1

yi − b′(θi)
φ/Ai

. (2.21)

Then, using (A.17) and (A.18),

E(Yi) = b′(θi) and Var(Yi) =
φ

Ai
b′′(θi). (2.22)

The variance function is V (μ) = b′′(θ(μ)), i.e., the variance of Y as a function of
the mean.

It is noted at this stage that the MLE β̂ is obtained by solving the estimating
equation

Uβ =

n∑

i=1

∂μi

∂β
Var(Yi)

−1 (yi − μi) = 0. (2.23)

To see this,

0 =
∂


∂β
=

n∑

i=1

∂
i
∂θi

∂θi
∂β

=

n∑

i=1

U(θi)
∂θi
∂β

=

n∑

i=1

Yi − b′(θi)
φ/Ai

1

(∂μi/∂θi)

∂μi

∂θi

∂θi
∂β

=
n∑

i=1

(Yi − μi)

φ/Ai

1

b′′(θi)
∂μi

∂β

=

n∑

i=1

{
Yi − μi

Var(Yi)

}
∂μi

∂β
, (2.24)

which is the LHS of (2.23). This equation serves as the motivation for quasi-
likelihood models described later because it only depends on the first two moments
of Y .

Table 2.3 lists the most common members of the exponential family and how
they are fitted in VGAM. For GLMs, the canonical parameter is a link function
applied to the mean. Consequently, this particular link is known as the canonical
link. With this link and given φ, XTy are a set of sufficient statistics for β.

Iteratively reweighted least squares (IRLS) forms the core algorithm behind
GLMs and GAMs. It is described under more general conditions in Sect. 3.2.
For GLMs, it involves regressing at each iteration (the ath iteration, say) the
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adjusted dependent variable (or modified dependent variable or working dependent

variate or pseudo-response) z
(a−1)
i against xi with (working) weights w

(a−1)
i ; these

are given by

z
(a−1)
i = η

(a−1)
i +

yi − μ
(a−1)
i

dμ
(a−1)
i /dηi

and w
(a−1)
i =

Ai

V
(
μ
(a−1)
i

)

(
dμ

(a−1)
i

dηi

)2

.

(2.25)

It can be achieved by WLS: X is the model matrix, and W(a−1)

is diag(w
(a−1)
1 , . . . , w

(a−1)
n ).

The above weights are actually obtained by the expected negative Hessian
(rather than the observed), so this is Fisher scoring. For some models this equates

to Newton-Raphson. With the new β(a), a new η(a) and μ(a) are computed, and
the cycle is continued till convergence. When close to the solution, the conver-
gence rate is quadratic for GLMs with a canonical link, meaning that the number
of correct decimal places doubles (asymptotically) at each iteration.

At convergence, we have

V̂ar(β̂) = φ̂
(
XTW(a)X

)−1

, (2.26)

which is returned by the function vcov().
Convergence problems with GLMs can occur in practice, although they are not

particularly common. Section 3.5.4 gives an example.

2.3.1 Inference

There is an elegant body of theory for inference pertaining to GLM models that
naturally extend that of ordinary linear theory. Under certain conditions (e.g.,
grouped binary data), the deviance D(y;μ) can be used to measure goodness-of-
fit of a model. The scaled deviance satisfies

D(y;μ)

φ
= 2 {
(y;y)− 
(μ;y)} (2.27)

which is non-negative. The term 
(y;y) corresponds to a saturated model—
one where μ maximizes 
 over μ unconstrained. For GLMs, a saturated model
has b′(θ̂i) = μ̂i = yi. The opposite extreme is a null model, which is what we call
intercept-only, i.e., the R formula is of the form y ∼ 1. If φ = 1 then D =

2

n∑

i=1

Ai

[
{yi θ(yi)− b(θ(yi))} −

{
yi θ̂i − b(θ̂i)

}]
(

=

n∑

i=1

Ai di, say

)

, (2.28)

where θ̂ is the MLE. This is called the deviance of a model even when the scale
parameter is unknown, or is known to have a value other than one. The scaled
deviance is sometimes called the residual deviance.
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Smaller values of D indicate a better fit. The deviance, which is a generaliza-
tion of the residual sum of squares for the LM, is a function of the data and of
the fitted values, and when divided by a dispersion parameter φ, it is sometimes
asymptotically χ2 (e.g., as n→∞, or as the number of binomial trials Ni →∞).
More generally, to test if a smaller model (i.e., one with fewer variables) is ap-
plicable given a larger model, it is only necessary to examine the increase in the
deviance, and to compare it to a χ2 distribution with degrees of freedom equal
to the difference in the numbers of independent parameters in the two models
(as each parameter has 1 degree of freedom). In the model-building process, this
enables a test to be carried out as to which variables can be deleted to form a
smaller model, or which variables need to be added to form a larger model.

For a Gaussian family with identity link, φ is the variance σ2, and D is the
residual sum of squares, i.e.,

D =

n∑

i=1

Ai (yi − μi)
2.

Hence
D/φ ∼ χ2

n−p,

leading to the unbiased estimator

φ̂ = D/(n− p) (2.29)

because, with an abuse of notation, E(χ2
ν) = ν.

An alternative estimator is the sum of squares of the standardized residuals
divided by the residual degrees of freedom:

φ̃ =
1

n− p

n∑

i=1

(yi − μ̂i)
2

V (μ̂i)/Ai
. (2.30)

This formula may be used to estimate the scale parameter φ. It has much less bias
than (2.29). For the Gaussian errors, φ̃ = φ̂.

IfM0 is a submodel within a modelM (that is, nested) with q < p parameters,
and if φ is known, then

DM0
−DM
φ

.∼ χ2
p−q.

If φ is unknown, then
DM0

−DM
φ̃ (p− q)

.∼ Fp−q,n−p.

2.3.2 GLM Residuals and Diagnostics

As with LMs, diagnostics are available for GLMs to help check the underlying
assumptions. These tend to be based on residuals, however, GLM residuals are
more difficult to utilize compared to LMs because they are harder to interpret.

There are several residual-types that may be defined for GLMs. The resid()

(or residuals()) method function returns one of five types of residuals for glm()
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objects, depending on the type argument. For simplicity we set Ai = 1 here,
but more general formulas are given in Sect. 3.7 for VGLMs. The five residual
types are:

(i) Deviance residuals are

rDi = sign(yi − μ̂i)
√

di, where D =

n∑

i=1

di (2.31)

(cf. (2.28)). This residual type is the default, and is the most useful for diag-
nostic purposes.

(ii) Pearson residuals are related to the working residuals, and are

rPi =
yi − μ̂i√
V (μ̂i)

. Note that X2 =
n∑

i=1

(
rPi
)2

=
n∑

i=1

(yi − μ̂i)
2

V (μ̂i)

is the Pearson chi-squared statistic.
(iii) Working residuals are

rWi = (yi − μ̂i)
∂η̂i
∂μ̂i

. (2.32)

They arise from the final IRLS iteration (cf. (2.25)).
(iv) Response residuals are simply rRi = yi − μ̂i.
(v) Partial residuals are used for enhancing plots of the component functions of

GAMs. For ηi = β1 + β2 xi2 + · · · + βp xip, these are βk(xik − xk) + rWi . For

GAMs having ηi of the form β1+f2(xi2)+· · ·+fp(xip), these are f̃k(xik)+rWi
for k = 2, . . . , p and where the f̃k are centred fks.

The first four types of residuals coincide for the Gaussian family. For the types of
plots listed in Sect. 2.2.1.1, some people maintain that deviance residuals are the
most informative for GLMs. Figure 2.21 is an example of the first four types of
residuals.

2.3.3 Estimation of φ

In the VGLM/VGAM framework, it is usually preferable to estimate the dispersion
parameter by full maximum likelihood because it is simpler, inference is simplified
too, and the models can be more flexible. However, for some GLM families such as
the gamma, there are problems such as bias, and extreme sensitivity in very small
values (McCullagh and Nelder, 1989, Chap. 8).

The most common GLM estimation method for φ is to use (2.30) which is based
on the method of moments. It is unbiased for the LM, and is generally consistent
for GLMs.
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2.3.4 Fitting GLMs in R

GLMs are well-served by the modelling function glm(). It has arguments

> args(glm)

function (formula, family = gaussian, data, weights, subset,

na.action, start = NULL, etastart, mustart, offset, control = list(...),

model = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL,

...)

NULL

They may be also fitted by vglm() with family functions having the same name
as glm() but with an “ff” appended (they must be different because they are
incompatible), e.g., gaussianff().

2.3.5 Quasi-Likelihood Models

It is not uncommon for one to be unsure about the full distribution (2.19) of the
response, e.g., when the variance of the data is much greater than the model sug-
gests (overdispersion). Wedderburn (1974) proposed the use of the quasi-likelihood
to help alleviate this problem. Specifically, it replaces the assumptions tied in
with (2.19) by the weaker variance assumption that

Var(Y ) =
φ

A
V (μ), (2.33)

where φ is assumed constant across samples. This can be very useful in applied
work when the data are limited and information on the distribution of Y is lacking.
However, one may have enough prior knowledge to specify, or data to reliably
estimate, a relationship between the first two moments, as required by the quasi-
likelihood model. In the absence of a likelihood function, one may estimate β by
solving (2.23) because it only depends on the first two moments. What is the
justification for using this? We have already seen that it yields the MLE of β for
families belonging to the exponential family (2.19).

Now the term in braces in (2.24) is an expression for ∂
i/∂μi. Coupled
with (2.33), this suggests that

q(μ; y) =

∫ μ

y

y − t

(φ/A) V (t)
dt (2.34)

might behave like a log-likelihood function for μ. Indeed, if

Ui =
Yi − μi

(φ/Ai) V (μi)

then E(Ui) = 0 and Var(Ui) = 1/{(φ/Ai)V (μi)} = −E(∂ Ui/∂ μi). These are the
same properties that a log-likelihood derivative has (see (A.17)–(A.18)). So the
overall conclusion is to solve the estimating equation
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Table 2.1 Some quasi-likelihood functions. VGAM families are quasibinomialff()

and quasipoissonff() (adapted from McCullagh and Nelder, 1989, Table 9.1).

Distribution V (μ) φ q(μ; y) glm() family

Gaussian 1 −(y − μ)2/2

Binomial μ(1− μ) y logitμ+ log(1− μ) quasibinomial()

Poisson μ y log μ− μ quasipoisson()

Gamma μ2 −y/μ− log μ

Inverse Gaussian μ3 −y/(2μ2) + 1/μ

n∑

i=1

∂ q(μi; yi)

∂ β
= 0. (2.35)

A list of some quasi-likelihood functions is given in Table 2.1 and the glm() family
functions for estimating them. In R, the glm() family functions quasibinomial()
and quasipoisson() solve for β in (2.35) for the binary and Poisson cases,
and φ̃ in (2.30) is printed out in the summary() as the ‘Dispersion parameter’.
For vglm() in VGAM, the family functions are called quasibinomialff()

and quasipoissonff().

2.3.6 Binary Responses

We now dwell a little on one specific GLM, viz. the binomial family. In contrast, the
Gaussian family is well-served in multitudes of books, and count data is described
in Sect. 11.3 via negative binomial regression.

It is noted that two popular models for handling overdispersion with respect
to the Poisson and binomial distributions are the negative binomial (Sect. 11.3)
and beta-binomial (Sect. 11.4) distributions. Also, the variants positive-binomial,
zero-inflated binomial and zero-altered binomial (Chap. 17) are available.

2.3.6.1 Links

Figure 2.1a,d plots four of the most commonly used link functions. The default
is the logit link, which is not only very interpretable in terms of log-odds, it
is usually indistinguishable in practice from the probit link unless n is large.
Of these, only the complementary log–log link is asymmetric; the other three
satisfy p( 12 − c) = p( 12 + c) for 0 < c < 1

2 . The cloglog link ties in with
Poisson regression very simply because if Y ∼ Poisson(μ) with η = log μ,
then cloglogP [Y > 0] = log(− logP [Y = 0]) = log(− log e−μ) = η.

The links correspond to the CDFs of some standardized distributions
(Table 12.3): the logit link of a logistic distribution, the probit of a normal, the
cauchit of a Cauchy, and the cloglog of a extreme-value (log-Weibull) distribution
(Chap. 16).

Figure 2.1b are plots of the reciprocal first derivatives, 1/g′j(p), which are
relevant to (2.25) because of the term dμ/dη. For grouped binomial data
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Fig. 2.1 Properties of some common link functions gj suitable for a probability. (a) gj(p);
(b) g′j(p); (c) g′′j (p); (d) g−1

j (p). The legend in (a) is common for all plots. The calls to (a)–(c)
are of the form link.function(p, deriv = d) for d = 0, 1 and 2 (Table 1.2).

where Yi represents the proportion of successes out of Ni trials, we have NiYi ∼
Binomial(Ni, μi), so that (2.25) with a logit link becomes

zi = βTxi +
yi − μi

μi(1− μi)
, with working weights wi = Ni μi(1− μi).

2.3.6.2 The Hauck-Donner Phenomenon

This effect, which was first observed by Hauck and Donner (1977), gives one reason
why the likelihood ratio test is to be preferred over the Wald test (these tests are
described in Sect. A.1.4.2). They used the following example. Suppose that n = 200
for a logistic regression involving two groups of 100 observations each. The observed
proportion of 1s in group k is pk, and let x2 = 0 and 1, denote groups 1 and 2
respectively. Then the coefficient of x2 is the log odds ratio, and we wish to test
equality of the population proportions in the two groups via H0 : β(1)2 = 0 for the
model logitP (Y = 1) = β(1)1 + β(1)2 x2.

For two illustrative values of p1, and allowing p2 to vary as 0.01(0.01)0.99 (i.e.,
0.01 to 0.99 in steps of 0.01), plotted in Fig. 2.2 is the square of the usual Wald
statistic for x2, which is χ2

1 under H0. The LRT statistic −2 log λ has the same
asymptotic distribution. The glaring feature is the quadratic shape about p1 of
both test statistics. Another feature is that the LRT increases as |p2−p1| increases.
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Fig. 2.2 Wald (orange) and likelihood ratio test (blue) statistics plotted against p2, for: (a) p1 =
0.5, (b) p1 = 0.25 (vertical dashed lines). Actually, the Wald statistic here is the square of the
usual Wald statistic, and p2 = 0.01(0.01)0.99 is discrete. The data follows Hauck and Donner
(1977).

This monotonicity is a good thing: there is increasing evidence against the null
hypothesis the more the two sample proportions differ. However, the Wald statistic
initially increases but then decreases near the boundaries. Thus Wald tests of
binomial (and Poisson GLMs) can be highly unreliable, because a moderate p-value
indicates no effect or a very large effect. Not only does it show aberrant behaviour,
it is also less powerful than a LRT.

2.3.6.3 Problems Due to Complete Separation

It is well-known that multiple maximums of the log-likelihood function cannot
occur with logistic regression because 
 is globally concave, meaning that the
function can have at most one maximum (Amemiya, 1985). However, it is possible
for the likelihood function to have no maximum, in which case the MLE is said
to not exist. The problem occurs when there is complete separation (Albert and
Anderson, 1984). For example, the data used by Allison (2004) is

> cs.data <- data.frame(y = rep(0:1, each = 5), x2 = c((-5):(-1), 1:5))

These data are plotted in Fig. 2.3 as solid blue circles. Suppose that we
fit logitP (Y = 1|x2) = β(1)1 + β(1)2 x2. Then it may easily be shown that the
log-likelihood function increases as a function of β(1)2 and that it flattens out
as β(1)2 −→ ∞, i.e., the MLE does not exist. Complete separation occurs when

there exists some vector β such at yi = 1 whenever βTxi > 0, and yi = 0 when-
ever βTxi < 0.

There is a related problem called quasi-complete separation. This occurs if there
exists a β such that βTxi ≥ 0 whenever yi = 1 and βTxi ≤ 0 whenever yi = 0, and
when equality holds for at least one observation in each category of the response
variable. Adding (0, 0) and (0, 1) to the previous data set will result in quasi-
complete separation (Fig. 2.3). Once again, the MLE does not exist.

In practice, quasi-complete separation is far more common than complete sepa-
ration. It most often occurs when an explanatory variable xk is a dummy variable,
and for one value of xk, either every observation has y = 1 or y = 0. In general,
consider the 2 × 2 table of y versus every dichotomous explanatory variable. If
there is a zero in any cell, then the MLE will not exist. Convergence failure in
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Fig. 2.3 Completely separable data (blue
circles). Adding the two orange hollow
points results in quasi-completely separable
data. The logistic regression estimate of the
slope will tend to infinity in both cases.
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logistic regression is most commonly caused by this. It occurs more often when
the sample size is small, however it is certainly possible in large data sets too.

Allison (2004) gives practical advice about a course of action to take if there
is complete separation or quasi-complete separation. Actually, the two cases are
best considered separately. One possibility is to use bias-reduction. Heinze and
Schemper (2002) have shown that this method always yields finite estimates of
parameters under complete or quasi-complete separation. However, the result that
bias-reduction of β gives a finite answer as a by-product is not a sufficient reason
for the blind application of the technique.

Of course, the problem can occur regardless of the link function chosen. And
it can also occur for the multinomial logit and cumulative link models described
in Chap. 14. Bias-reducing techniques have been developed for GLMs, which have
the effect that each coefficient in β̂ is finite for binary responses; see Sect. 9.4 for
an appetizer.

Complete separation is the subject of Altman et al. (2004, Chap.10).

2.4 Univariate Smoothing Methods

2.4.1 The Classical Smoothing Problem

Smoothing is a powerful tool for exploratory data analysis, and it allows a data-
driven approach to the more model-driven LM modus operandi. The simplest
form of smoothing operates on scatter plot data. As a preliminary (and imperfect)
example, consider Fig. 2.5a which is a scatter plot of the proportion of rainbow
trout caught from Lake Otamangakau (lakeO) between the years 1974 to 1989 by
a certain angler. A smoother called a regression spline has been fitted (Fig. 2.5b).
The main feature of the data has been picked up, namely it is flat on the LHS,
and then is followed by a decrease over the years. However, the smooth f̂(x) is
probably too flexible here and it overfits. (Another weakness with this example is
that smoothing proportions directly is not a good idea, because the smooth can
sometimes assume negative values or values greater than 1. A logistic regression
GAM would be recommended instead.)

Four broad categories of smoothers are:

[1.] Regression or series smoothers (polynomial regression, regression splines,
P-splines, Fourier regression, filtering, wavelets),
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[2.] Smoothing splines (with roughness penalties, e.g., cubic smoothing splines,
O-splines, P-splines),

[3.] Local regression (Nadaraya-Watson estimator, kernel smoothers, Lowess,
Loess, it generalizes to local likelihood),

[4.] Nearest-neighbour smoothers (running means, running lines, running
medians).

We will only be concerned with a small selection of these for two reasons: not
all so naturally generalize to the vector-y case, and VGAM currently implements
only two methods (regression splines and smoothing O-splines). However, we also
consider two other methods, local regression and P-splines, because of their con-
tribution to our understanding of vector smoothing as a whole, and because they
have favourable properties, respectively. P-splines (“P” for “penalized”) can be
considered a hybrid method, therefore they appear twice in the list as they share
similarities with regression splines and smoothing splines. Section 4.1.1 gives an
overview of how smoothing relates to VGLMs and VGAMs.

Smoothing has many general uses, e.g., data visualization and exploratory data
analysis, prediction, derivative estimation (e.g., growth curves, acceleration), and
it is used as a building block for many modern statistical techniques, such as in
Chap. 4. Examples of each of these uses can be found throughout this book.

For our purposes, the classical smoothing problem is to estimate an arbitrary
smooth function f based on the model

yi = f(xi) + εi, εi ∼ (0, σ2
i ) independently, (2.36)

for data (xi, yi, wi = 1), i = 1, . . . , n. If there is no a priori function form for f ,
then it may be estimated by a smoother. They do not impose any particular form
on the function apart from being smooth. Since the errors have mean 0, we are
modelling the conditional mean E(Y |x) = f(x). Ordinarily, it is usually assumed
that all the σi are equal. For this, the data sets of Figs. 2.4a and 2.5 appear to
violate this assumption. This section describes conventional smoothing methods for
the univariate problem (2.36). Indeed, hundreds of journal articles have addressed
this problem and its direct extensions.

It is needful to generalize (2.36) to the weighted case so that Var(εi) = σ2
i =

σ2w−1
i , where the wi are known and positive, and σ is unknown and may be

estimated. This can be written Var(ε) = σ2 W−1 where W = diag(w1, . . . , wn) =
Σ−1. For example, in the lakeO example, one might assign wi = {yi(1−yi)/Ni}−1

where Ni = total.fishi because yi is a sample proportion (however, in this case,
some yi = 1, which is problematic).

Without loss of generality, let the data be ordered so that x1 < x2 < · · · < xn.
Consider the unweighted case of wi = 1 for all i. The fundamental idea behind
all smoothing methods is the concept of a neighbourhood. Here, only observations
whose xi values are ‘close’ (are neighbours) to a target point x0, say, are used to
estimate f at x0, and the more closer xi is to x0, the more influence or weight
that (xi, yi) has for f̂(x0). As an extreme case, observation (x1, y1) has the least

effect on f̂(xn) because x1 is the furthest away from xn. This concept is espe-
cially easy to see for local regression, e.g., in Fig. 2.13 the shaded region denotes
the effective neighbourhood, and the kernel function at the bottom provides the
relative weights given to the (xi, yi). Rather than ‘neighbourhood’, many writers
use the word window to describe the localness idea because observations lying
outside the window are effectively ignored. This hypothetical window glides along
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the x-axis to estimate the entire f . The window may or may not have distinct sides
depending on whether the weights are strictly zero past a certain distance away
from the target point. In Table 2.2, all but one kernel function vanishes beyond
a certain distance away from its centre, hence such ‘windows’ have distinct sides.
The window of Fig. 2.13 has blurry edges because the Gaussian kernel function is
strictly positive.

We shall see later that the size of the window or neighbourhood about a target
point x0 is crucial because it controls how smooth or wiggly the smooth is. It is
fundamentally related to bias and variance. For example, a very large neighbour-
hood that effectively includes all the data corresponds to little or no smoothing at
all, and this has relatively little variance but much bias.

While kernel function smoothing methods are probably the easiest to under-
stand, other smoothing methods such as splines are motivated completely differ-
ently, however its asymptotic properties can be shown to be based on the neigh-
bourhood idea, e.g., Sect. 2.4.7.3 shows that, under certain conditions, a cubic
smoothing spline operates like a kernel function smoother.

This section describes a few common methods for fitting the classical smoothing
problem (2.36). The purpose is to lay a foundation for methods that apply to the
vector y case (Sect. 4.2). Some books covering this large topic can be found in the
bibliographic notes.

The reader should be aware that this section largely adopts commonly used
notation from the smoothing literature, and consequently there is some recyling
of notation, e.g., K denotes the number of knots for splines, as well as the kernel
function for local smoothers. This however should not present any severe problems
because these topics are quite separate and their context is easily grasped.

2.4.2 Polynomial Regression

Polynomial regression is a common technique that involves fitting polynomial func-
tions of each xk in order to provide more flexibility than the usual linear βkxk term.
One reason for its widespread use is that polynomials are easy to work with in
just about every way—mathematically, computationally and they have high in-
terpretability for low degrees. For (2.36), one may use an S formula having the
term poly(x2, degree) for degree = 1, 2, . . . , else explicit terms such as I(x2^2)
(or poly(x2, degree, raw = TRUE)). The former has the advantage of using or-
thogonal polynomials which are numerically stable, but at the expense of having
coefficients that are not so interpretable.

The Weierstrass approximation theorem, which states that every continuous
function on a closed interval [a, b] can be uniformly approximated as closely as
desired by a polynomial, might lead us to believe that fitting a sufficiently high
order polynomial will be a good idea for estimating most fs in general, however
this is not the case. The reasons include the following.

• Polynomials are not very local but have a global nature. Their derivatives are
continuous functions for all orders. For example, a small perturbation on the
LHS of the curve may result in a large change on the RHS. Consequently the
concept of a local neighbourhood does not really exist. Polynomials are thus
flexible but not flexible enough. This can be seen in Fig. 2.4a; polynomials of
degree 1–4 are unable to conform to the trend (which is admittedly complex).
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Fig. 2.4 Polynomials of degree 1–4 fitted to two data sets. (a) mcycles from MASS. (b) cars

from datasets.

The cubic and quartics are almost indistinguishable. It is left to the reader to
confirm that polynomials up to the 10th degree do not offer much improvement
(Ex. 2.17).

• They usually have edge effects: they do not model the boundaries well, especially
if the degree of the polynomial is high. This results in significant bias in regions
of the x-space. Figure 2.4b illustrates this. The trend should be monotonically
increasing, and if a polynomial of degree that is too high is fitted then often the
boundaries are not modelled well. Here, while the linear and quadratic functions
appear well-behaved over the range of x, the quartic at the LHS corner curls
upwards, and therefore would be dangerous for prediction.

• They are sensitive to outliers and high-leverage points.
• The polynomial degree is discrete rather than continuous.

It is probably a safe general recommendation that one should avoid fitting quartics
or higher, and even fitting a cubic should be done cautiously and with trepidation.

2.4.3 Regression Splines

Usually a better alternative to polynomial regression is the use of regression splines.
These are piecewise polynomials, hence the neighbourhood concept is built in di-
rectly. Each piece, usually of low degree, is defined on an x-region that is delimited
by knots (or breakpoints). The (x, y) positions where each pair of segments join
are called joints. The more knots, the more flexible the family of curves become.
It is customary to force the piecewise-polynomials to join smoothly at the knots,
e.g., a popular choice called cubic splines are piecewise-cubic polynomials with
continuous zeroth, first and second derivatives. By forcing the first few derivatives
to be continuous at the knots, the entire curve has the appearance of one nice
smooth curve. Using splines of degree > 3 seldom confers any additional bene-
fit. Figures 2.5b and 2.6 are examples of cubic regression splines. The coloured
segments of Fig. 2.6 join up at the joints, and the vertical lines mark the knots.

The word ‘spline’ comes from a thin flexible strip used by engineers and archi-
tects in the pre-computer days to construct ship hulls and the aerofoils of wings.
Splines were attached to important positions on a 2-dimensional plan (e.g., floor
of a design loft or on enlarged graph paper) using lead weights called “ducks”
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Fig. 2.5 (a) Proportion of fish caught that are rainbow trout from Lake Otamangakau (lakeO)
caught by an angler who frequented the spot. The variable Year is year-1900. (b) Smoothing
the same data with a cubic regression spline (truncated power basis) with one knot located at
the year 1980. A boundary effect on the RHS is evident.

and then released. The resting shapes assumed by the splines would minimize the
strain energy according to some calculus of variations criterion. Splines were used
by ancient Greek mathematicians (including Diocles) for drawing curves in dia-
grams (e.g., conic sections). In more modern times, I. J. Schoenberg is attributed
to be the first to use ‘splines’ in the mathematical literature, and is known as
the father of splines. The physical meaning of splines is especially relevant to the
smoothing spline (Sect. 2.4.4), where it is related to curvature and Hooke’s Law
for elastic bodies such as springs.

Regression splines are one example of multiple regression on a family of ba-
sis vectors. A simpler example is polynomial regression where the set S ={
1, x, x2, . . . , xr

}
form the usual basis of polynomials of degree r. We say S spans

this function space. There are two common bases for cubic splines:

1. Truncated power series These are easy to understand, but are not recom-
mended in practice because they may be ill-conditioned. Some details are in
Sect. 2.4.3.1.

2. B-splines These are more complex but are used in practice because they
are numerically more stable. The functions bs() and ns() are two implemen-
tations of B-splines. Some details are in Sect. 2.4.3.2. Called “B-splines” by
Schoenberg, “B” is usually taken to stand for “basic” or “basis”, and for some
others, “beautiful”.

From the glossary, a function f ∈ Ck[a, b] if derivatives f ′, f ′′, . . . , f (k) all ex-
ist and are continuous in an interval [a, b]. For example, ordinary polynomials
∈ Ck[a, b] for all k, a and b, but |x| /∈ C1[a, b] if 0 ∈ [a, b]. Then a spline of degree r
(some given positive integer) with knots ξ1, . . . , ξK (such that a < ξ1 < ξ2 < · · · <
ξK < b) is a function f(x) defined over an interval (a, b) if it satisfies the following
properties:

(i) for any subinterval (ξj , ξj+1), f(x) is a polynomial of degree r (order r + 1);
(ii) f ∈ Cr−1(a, b), i.e., f(x), f ′(x), . . . , f (r−1)(x) are continuous;
(iii) the rth derivative of f(x) is a step function with jumps at ξ1, . . . , ξK .
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Fig. 2.6 Smoothing some
data with a regression spline
(B-spline). Each segment of the
spline is coloured differently.
The term is effectively bs(x,

knots = c(1, 3.08, 6.03)).
The true function is the sine
function (dashed) and n = 50.
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The name cubic spline is used for the curve arising from the special case of r = 3.
An example of a plot of the first few derivatives of a cubic spline fit is Fig. 2.11—a
step function can be seen in the latter plot.

Regression splines have at least two advantages: they are computationally and
statistically simple, and standard parametric inferences are available. The first
advantage is partly because they are an LM representation of a smooth function.
An example of the second advantage is testing whether a particular knot can be
removed and the same polynomial equation used to explain two adjacent segments
(by using H0 : βj = 0 in (2.40)). In R, this corresponds to one of the t-test statistics
printed by summary(). However, they do have drawbacks such as the difficulty
choosing the number of knots and their locations, and their smoothness cannot be
controlled continuously as a function of a single smoothing parameter.

Regarding the first drawback, in a paper reflecting a lot of experience fitting
regression splines, Wold (1974) made the following recommendations for cubic
splines:

(i) They should have as few knots as possible, ensuring that a minimum of 4 or 5
observations lie between knot points.

(ii) No more than one stationary point and one inflexion point should fall between
two knots (because a cubic is not flexible enough to allow for too many of
such points).

(iii) Stationary points should be centred in intervals, and inflexion points should
be located near knot points.

These recommendations might be actioned using the knots argument of bs()

and ns(). As an illustration, consider Fig. 2.6. Overall, the fit is alright except at
the left-hand side boundary. This example illustrates how regression splines may
be poor at the boundaries, especially if the knot placement is careless. How bs()

and ns() choose their knots by default is described on p.58.

2.4.3.1 Truncated Power Series

Following the notation of Green and Silverman (1994), a cubic spline may be
written as

f(x) = ds (x− ξs)
3 + cs (x− ξs)

2 + bs (x− ξs) + as, ξs ≤ x ≤ ξs+1, (2.37)
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for s = 0, . . . ,K. For given constants as, bs, cs and ds, we define ξ0 = a and
ξK+1 = b. The coefficients are interrelated because of the various continuity
conditions, e.g., f is continuous at ξs+1 implies

ds (ξs+1 − ξs)
3 + cs (ξs+1 − ξs)

2 + bs (ξs+1 − ξs) + as = as+1 (2.38)

for s = 0, . . . ,K − 1. Thus there are 4(K + 1) − 3K = K + 4 parameters. The
truncated power series basis for a cubic spline with K knots is

{
1, x, x2, x3, (x− ξ1)

3
+, . . . , (x− ξK)3+

}
(2.39)

where u+ = max(0, u) is the positive part of u. Figure 2.7 gives an example of
these functions with ξk = k for k = 1, . . . , 5. When x is large the curves (x− ξk)

3
+

become almost vertical and parallel, therefore ill-conditioning occurs.
With (2.39) we can express the spline as

f(x) = β1 + β2 x+ β3 x
2 + β4 x

3 +

K∑

s=1

β4+s (x− ξs)
3
+ . (2.40)

As an example, here is the essential code behind the lakeO example of Fig. 2.5:

> Pos <- function(x) pmax(x, 0) # Same as ifelse(x > 0, x, 0)

> lakeO <- transform(lakeO, Year = year - 1900) # Because of ill-conditioning

> knot <- 80 # For the year 1980; a prespecified knot

> fit.trout <- lm(rainbow / total.fish ~ Year + I(Year^2) + I(Year^3) +

I(Pos(Year-knot)^3), data = lakeO)

> model.matrix(fit.trout)

(Intercept) Year I(Year^2) I(Year^3) I(Pos(Year - knot)^3)

1 1 74 5476 405224 0

2 1 75 5625 421875 0

3 1 76 5776 438976 0

4 1 77 5929 456533 0

5 1 78 6084 474552 0

6 1 79 6241 493039 0

7 1 80 6400 512000 0

8 1 81 6561 531441 1

9 1 82 6724 551368 8

10 1 83 6889 571787 27

11 1 84 7056 592704 64

12 1 85 7225 614125 125

13 1 86 7396 636056 216

14 1 87 7569 658503 343

15 1 88 7744 681472 512

attr(,"assign")

[1] 0 1 2 3 4

The variable Year = year-1900 has been used to ameliorate the ill-conditioning,
e.g., 19743 and 19883 are both large numbers, and are treated almost as having
the same value since the computations are performed using finite arithmetic. The
example reflects the recommendation that the truncated power series is unsuitable
for general use because the model matrices may be ill-conditioned (the columns
almost linearly dependent). In general, a B-spline basis is superior.
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Fig. 2.7 Truncated power series ba-
sis for cubic splines (2.39). The
black dashed lines are 1, x, x2, x3. The
coloured solid lines are (x − ξk)
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2.4.3.2 B-Splines

The reason why B-splines are used is mainly computational: their very good nu-
merical properties arise from the fact that B-splines have minimal support. That
is, Bs,q(x) > 0 for x belonging to the smallest overall region defined by the knots.
With minimal support, the concept of a neighbourhood is made computationally
more stable because the coefficient of one B-spline is related to the fewest num-
ber of coefficients associated with the other B-splines, i.e., the amount of overlap
is minimal. This can be seen in Fig. 2.8: a B-spline of order q consists of q seg-
ments only. Hence a B-spline on the LHS of a scatter plot is only concerned with
data around the neighbourhood there. In contrast, the value x = 6 in Fig. 2.7 is
associated with all the truncated power series basis functions.

It is convenient to consider splines of a general order, Q say. Some special cases
are as follows.

Q = 1: These are similar to a shifted unit rectangle function or boxcar function.
Q = 2: Linear spline which has continuous derivatives up to order Q − 2 = 0

at the knots—i.e., the function is continuous and is piecewise-linear. In
fact, it is a scaled density of a triangle distribution (Table 12.10).

Q = 3: Quadratic spline (parabolic spline) which has continuous derivatives up
to order Q− 2 = 1 at the knots.

Q = 4: Cubic spline, these are very popular, and have been described as the
lowest-order spline for which the discontinuities in the f (Q−1)(ξs) are
imperceptible (Hastie et al., 2009).

Let ξs for s = 1, . . . ,K, be K interior knots, and let ξ0 and ξK+1 be the two
boundary knots. Then we can augment these knots with 2Q others to obtain a
vector τ = (τ1, . . . , τK+2Q)

T satisfying the following inequality:

τ1 ≤ τ2 ≤ · · · ≤ τQ ≤ ξ0 (2.41)

< ξ1 ≤ · · · ≤ ξK (2.42)

< ξK+1 ≤ τK+Q+1 ≤ · · · ≤ τK+2Q, (2.43)

where τQ+s = ξs for s = 1, . . . ,K. Usually τ1 = · · · = τQ = ξ0 and τK+Q+1 =
· · · = τK+2Q = ξK+1 is chosen.

Denote by Bs,q(x) the sth B-spline basis function of order q (degree q − 1)
for the knot sequence τ for q = 1, . . . , Q. They are defined recursively as follows
(de Boor, 2001):
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(1) For s = 1, . . . ,K + 2Q− 1,

Bs,1(x) =

{
1, τs ≤ x < τs+1,
0, otherwise.

(2.44)

(2) Then for s = 1, . . . ,K + 2Q− q and q > 1,

Bs,q(x) = ωs,q Bs,q−1(x) + (1− ωs+1,q) Bs+1,q−1(x) (2.45)

=
x− τs

τs+q−1 − τs
Bs,q−1(x) +

τs+q − x

τs+q − τs+1
Bs+1,q−1(x), (2.46)

where ωs,q ≡ (x − τs)/(τs+q−1 − τs) for τs+q−1 > τs, while ωs,q ≡ 0
if τs+q−1 = τs. These may be computed using stable and efficient recursive al-
gorithms. Note that Bs,q only depends on the q+1 knots τs, . . . , τs+q, and van-
ishes outside the interval [τs, τs+q) and is positive in its interior. If τs = τs+q,
then Bs,q = 0.

Thus with Q = 4, Bs,4 (for s = 1, . . . ,K + 4) are the K + 4 cubic B-spline basis
functions for τ .

Some B-splines of orders 1 to 4 are plotted in Fig. 2.8. Essentially, the code is

knots <- c(1:3, 5, 7, 8, 10) # Interior knots

x.vector <- seq(0, 11, by = 0.01)

for (ord in 1:4) {
B.matrix <- bs(x = x.vector, degree = ord-1, knots = knots, intercept = TRUE)

matplot(x.vector, B.matrix, type = "l")

}

The significance of the argument intercept is due to the Bs,Q in (2.46) includ-

ing the intercept because
K+Q∑

s=1
Bs,Q(x) = 1 for x ∈ [ξ0, ξK+1]. Function bs()

has intercept = FALSE as the default, because usually it is called within an S
formula that has an intercept by default. Figure 2.10 shows B-spline basis func-
tions corresponding to a regression spline LM fitted without an intercept term
and with a bs(x, intercept = TRUE)-type term. Also, note however that bs()

presently does not accept a value of degree = 0, hence the first case ord = 1

might be computed as follows (it is assumed that intercept = TRUE).

allknots <- sort(c(Boundary.knots, knots))

B1.matrix <- matrix(0, length(x), length(knots) + intercept)

for (s in 1:(length(allknots)-1))

B1.matrix[, s] <- as.numeric(allknots[s] <= x & x < allknots[s+1]) # 0 or 1

Here are some additional notes.

1. > args(bs)

function (x, df = NULL, knots = NULL, degree = 3, intercept = FALSE,

Boundary.knots = range(x))

NULL

If argument knots is supplied, then the function returns a matrix of dimen-
sion c(length(x), df = length(knots) + degree + intercept). Alterna-
tively, the second dimension may be inputted directly by the df argument.
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Fig. 2.8 B-splines of order 1–4 ((a)–(d)), where the interior knots are denoted by vertical lines.
The boundary knots are at 0 and 11. The basis functions have been plotted from left to right.

It can be seen from the argument Boundary.knots that ξ0 = min(xi) and
ξK+1 = max(xi). By default, the internal knots selected by bs() and ns()

are of the form quantile(x.inside, probs) with equally spaced probs

values. In fact, if nIknots is the number of internal knots, then probs =

(1:nIknots)/(nIknots + 1), and x.inside are the x values inside the interval
described by the 2-vector Boundary.knots.

Note that predicting bs() outside the boundary knots is not recommended,
because Bs,Q(x) is not well defined outside of [ξ0, ξK+1]. In fact a warning is
issued if this is attempted.

2. A well-known type of cubic spline on [ξ0, ξK+1] called a natural cubic
spline (NCS) has second and third derivatives, which are zero at ξ0 and ξK+1:

f ′′(ξ0) = f ′′′(ξ0) = f ′′(ξK+1) = f ′′′(ξK+1) = 0. (2.47)

These are called the natural boundary conditions. NCSs are implemented
by ns(), which has defaults

> args(ns)

function (x, df = NULL, knots = NULL, intercept = FALSE,

Boundary.knots = range(x))

NULL

The lack of a degree argument is due to only cubic NCSs being implemented.
Given knots ξ1, . . . , ξK , an NCS is linear on (−∞, ξ0] and [ξK+1,∞). Func-
tion ns() has K + 2 parameters including the intercept because K + 2 =
(K + 4)− 2× 2 + 2: each boundary constraint in (2.47) deducts one parameter
from the total number, and there are two extra knots at ξ0 and ξK+1.

In practice, often there is not a huge difference between bs() and ns() terms,
when they are calibrated to be as similar to each other as possible. However,
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Fig. 2.9 Smoothing some data with cubic regression splines with knots of varying multiplicities.
The knots are at x = 2 and 4.

usually the natural boundary constraints means ns() behaves better at the
edges than bs(). The ns() function is also a double-edged sword compared
to bs(), because it is defined for all x, but as with all smoothers, prediction
beyond the range of the data poses more potential danger.

3. It is possible to move adjacent knots closer and closer together until they coin-
cide. We then say the set of distinct knots has varying multiplicities. Then we
need to define Bs,1 ≡ 0 if τs = τs+1, and use the maxim anything times zero
is zero in (2.46) to avoid division by 0. It transpires that if a knot is dupli-
cated then it loses one continuous derivative for each new knot there. It can be
shown that the number of continuity conditions at a knot ξs, plus the multiplic-
ity of knots at ξs, equals Q. The effect of this important formula can be seen
in Fig. 2.9: the cubic spline (Q = 4) with a knot of multiplicity m means that
only f (0), f (1), . . . , f (Q−m−1) exist there.

4. Although safe prediction in R will be sufficient for most users, it will not han-
dle nested expressions involving data-dependent functions such as I(bs(x))

and poly(scale(x), 2). In such cases, smart prediction will work; see
Sect. 18.6 for details.

2.4.4 Smoothing Splines

For regression splines, the user typically controls the flexibility of the smoother by
selecting a small number of basis functions, e.g., by assigning the df argument an
appropriate value that is less than 10, say. In contrast, the regularization approach
to smoothing is to start off with many basis functions (e.g., n of them) and penalize
some characteristic of these basis functions in order to control the flexibility of the
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fit. A popular example of this approach is the cubic smoothing spline. These are
defined as minimizers of the objective function

S(f) =
n∑

i=1

(yi − f(xi))
2
+ λ

∫ b

a

{f ′′(x)}2 dx, (2.48)

over a space of “smooth” functions. In fact, it is an infinite-dimensional space
of functions known as W2

2[a, b] (a Sobolev space of order 2 on [a, b] described in
Table A.3). Here, a < x1 < · · · < xn < b for some a and b is again assumed, and
the smoothing parameter satisfies λ ≥ 0.

The first term of S(f) penalizes lack-of-fit since it is a residual sum of squares.
The second term penalizes the wiggliness or lack of smoothness, e.g., the integral
equals zero for constant and linear functions. These two opposing quantities are
balanced with each other by λ. Larger values of λ produce more smooth curves,
indeed, as λ→∞, f ′′(x)→ 0 and the solution becomes the least squares line. The
other extreme is as λ→ 0+, and the solution tends to a twice-differentiable func-
tion that interpolates the data (xi, yi). These two extremes are often unacceptable
as a solution, so it is surmised that there is some λ value which balances the two
adequately. The quantity (2.48) fits into the “penalty function” approach described
in Sect. 1.5.1, and is expounded by Green and Silverman (1994) specifically for
splines.

Let Σ = W−1 = diag(w−1
1 , . . . , w−1

n )T to handle known prior weights as in
the weighted classical smoothing problem (2.36). Then the penalized least squares
criterion can be written

S(f) = (y − f)
T
Σ−1 (y − f) + λfTKf (2.49)

where K is a roughness penalty matrix described below. Setting its derivative with
respect to f to 0 yields the solution

f̂ = S(λ)y (2.50)

where S(λ) = (In + λΣK)−1 is known as the influence or smoother matrix. We
shall see that it has properties similar to the LM hat matrix H (2.10).

Here are some notes.

1. One can select λ by trial-and-error such as by eye, however, more objective
methods such as cross-validation are described below.

2. Following on from the description of a spline as a thin wooden strip in
Sect. 2.4.3, one justification for the penalty term of S(f) is that the energy

to bend it is proportional to
∫ b

a
curvature2 with1 respect to arc length, which

is approximately proportional to
∫ b

a
f ′′(t)2 dt. From Hooke’s Law, springs exert

an energy that is proportional to
∑n

i=1 (yi − f(xi))
2
. Hence (2.48) does have a

real physical meaning.

1 The curvature of a curve y = f(x) is |f ′′(x)| {1 + [f ′(x)]2
}−3/2

. If the { } term is dropped (be-
cause the assumption |f ′(x)| � 1 is almost always made in physics and engineering), then |f ′′(x)|
is left as an approximation to the curvature. In natural cubic spline interpolation, we are finding
a curve with minimal (approximate) curvature over an interval, for the quantity

∫
[f ′′(x)]2 dx is

being minimized.
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Fig. 2.10 (a)–(d) Linear combinations of B-splines of degrees 0–3 fitted to some scatter plot
data; the formula is similar to (2.55). The knots are equally spaced on the unit interval.

3. Importantly, Reinsch (1967) used the calculus of variations to show that the
solution of (2.48) is a cubic spline with knots at the distinct values of the xi

(provided that n ≥ 3 and λ > 0). Another important result is that if NCSs
interpolate the data (xi, yi) then they uniquely minimize

∫ {f ′′}2 over all func-
tions in W2

2[a, b] (for a < x1 < · · · < xn < b). Both these results are stated in,
e.g., Green and Silverman (1994, Thms 2.3, 2.4).

4. Actually, the optimization problem (2.48) derives from minimizing

∫ b

a

{f ′′(x)}2 dx subject to the constraint

n∑

i=1

{yi − f(xi)}2 ≤ A

for some A. Then (2.48) arises from applying the Lagrange multipliers technique
to this (Reinsch, 1967).

5. As n → ∞, λ should become smaller, consequently some authors replace λ
in (2.48) by λ/n.

6. There are alternative regularizations to the penalty of (2.48), e.g.,

∫ b

a

f ′(x)2 dx, (2.51)

whose solution is a linear spline. In general, using
∫ b

a
[f (ν)(x)]2 dx produces a

spline solution of degree 2ν − 1.
7. More generally, a Sobolev space of order m on [a, b] is written Wm

2 [a, b]. The
case of m = 2 corresponds to cubic splines. Absolutely continuity is a stronger
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condition than uniform continuity, given the definition of Ck[a, b] on p.53, it can
be shown that

C2[a, b] ⊂ W2
2[a, b]. (2.52)

As an example, Fig. 2.11a is a plot of a cubic smoothing spline fitted to the lakeO
data. Only a little nonlinearity is afforded to it. It suggests a gradual decline in
the proportion of rainbow trout caught there over time. The first 3 derivatives
are also shown in Fig. 2.11b–d, and these become increasingly more jagged. The
third derivative is a step function, and the second derivative is a piecewise-linear
function.

2.4.4.1 Computation by the Reinsch Algorithm

Cubic smoothing splines may be computed in several ways. All of the following
methods except for the first can be efficiently computed in O(n) operations.

1. Direct method (2.50). Not recommended because it involves O(n3) operations
due to an order-n matrix inversion.

2. B-splines—this numerically stable method is probably the most commonly used
algorithm nowadays, and is implemented in R by splines.

3. Reinsch algorithm—using clever linear algebra, one can transform the problem
into a banded system that can be efficiently solved. Green and Silverman (1994,
Sect.2.3.3) gives a succinct description and this is summarized even more below.
It forms the basis of the Fessler (1991) algorithm for vector splines (Sect. 4.2.1).

4. State-space approach—this is based on Kalman filter computations in time
series analysis (Wecker and Ansley, 1983; Kohn and Ansley, 1987).

Elements of the Reinsch (1967) algorithm are as follows. Firstly, it may be shown
that the roughness penalty matrix can be expressed2 as K = λQT−1QT , where Q
is a banded n× (n−2) matrix and T is symmetric tridiagonal of order n−2. Also,
it may be shown that QTf = Tγ for some vector γ. Secondly, starting at (2.50),

f =
(
In + λW−1 K

)−1
y = (W+ λK)

−1
Wy. (2.53)

Then f = y−λW−1QT−1QTf and hence f = y−λW−1Qγ. Premultiply both
sides by QT and substitute QTf = Tγ to give

(
T+ λQT W−1 Q

)
γ = QT y. (2.54)

This is the key equation. The LHS is a symmetric positive-definite band matrix
with bandwidth 5 (half-bandwidth 3). One can decompose this into the rational
Cholesky decomposition LDLT , where L is a unit lower diagonal band matrix
and D is a diagonal matrix with positive diagonal elements. The matrices Q and T
can be found in O(n) operations, and hence L and D require only linear time for
their computation.

2 Explicitly, letting hi = xi+1−xi for i = 1, . . . , n−1, their nonzero elements are: (T)ii = (hi+

hi+1)/3, (T)i,i−1 = (T)i,i+1 = hi/6, (Q)ii = h−1
i , (Q)i+1,i = −(h−1

i + h−1
i+1) and (Q)i+2,i =

h−1
i+1.
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Fig. 2.11 (a) Cubic smoothing spline fitted to the proportion of fish caught that are rainbow
trout from lakeO. The x-axis is year. The smoother has 1 nonlinear degrees of freedom.
(b)–(d) Derivatives of the smooth of orders 1–3. In contrast, Fig. 2.15 fits a local linear regression
to these data.

So the steps are:

(i) compute QT y,

(ii) find the non-zero bands of
(
T+ λQT W−1 Q

)
and hence its rational

Cholesky decomposition factors L and D,
(iii) solve LDLTγ = QT y,

(iv) compute f̂ = y − λW−1Qγ.

Unfortunately the Reinsch algorithm becomes numerically unstable as n gets
very large and/or if the xi are very unequally spaced. Like regression splines, a
more numerically stable algorithm can be devised, based on B-splines.

2.4.4.2 B-Splines

Here, we express f̂ as a linear combination of B-splines like Sect. 2.4.3.2 and
Fig. 2.10:

f̂(x) =

K+Q∑

s=1

βs Bs,Q(x) (2.55)

so that the elements of the roughness penalty matrix from (2.49) are (K)st =
∫ b

a
B′′

s,Q(x)B
′′
t,Q(x) dx. These integrals are not difficult to compute because the

integrands are merely quadratics.
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2.4.4.3 O-Splines

As stated above, an important property of cubic smoothing splines is that the
knots are the (distinct) xi. However, for large n, having so many knots is overkill.
Consequently, O-splines are used to reduced the computational cost by choosing
an ‘effective’ number of knots (K � n, say) that hopefully results in a fitted
curve that does not differ appreciably from the full-knot solution. The result has
been called a low-rank spline smoother (e.g., Ruppert et al., 2003) or reduced-knot
smoother.

How might the K knots be chosen? Ideally, they should ‘mimic’ the xis, hence
one technique is to take a simple random sample of them. Another suggestion is
to place relatively more knots in regions where f is wiggly as opposed to simple.
A good strategy would be to choose quantile-based knots, and another to use
equally spaced knots. For these two, it is possible to construct f and distributions
of the xi that cause the other strategy to perform poorly. O-splines use quantile-
based knots, whereas P-splines (Sect. 2.4.5) choose equally spaced knots. The
former is implemented in the R function smooth.spline() and also in VGAM as
a whole.

As for the value of K itself, the upper function of Fig. 2.12 is a plot of K
versus n used by smooth.spline(). As n → ∞, K = 200 + (n − 3200)1/5 grows
very slowly. To ‘fill the space’ of the xis, the software selects the sth knot to be
approximately the s/(K + 1)th sample quantiles of the unique xis. (In contrast,
P-splines choose equally spaced knots). But K = n for n ≤ 50 because of the light
computational cost. It should be noted that O-splines use the natural boundary
constraints (2.47) so that the solution is linear beyond the range of the data. Some
more details are given in Wand and Ormerod (2008).

The function vsmooth.spline() described in Sect. 4.4.2 also follows a similar
idea. However, it reduces K with greater severity because M > 1 increases the
computational cost quickly as M grows. Currently,

K =

{
n, n ≤ 40,
�40 + (n− 400)1/4�, n > 40,

(2.56)

which is the lower function of Fig. 2.12.
Incidentally, the “O” in “O-splines” is due to F. O’Sullivan, the author of a

software implementation of the above, named BART, which was written in the
mid-1980s. It forms the innards of smooth.spline(). By default, this function
will implement O-splines, but if argument all.knots = TRUE then the full-knot
solution to (2.48) will be returned. The early S-PLUS gam() function was built on
BART, as is gam() in gam presently. More details about the O-spline algorithm
are given in Sect. 4.2.1.3 for the general M case.

2.4.5 P-Splines

Rather than using smoothing splines, it is more convenient to smooth using the
“penalized B-splines” of Eilers and Marx (1996), also known as “P-splines”. They
are another example of a low-rank smoother and have several compelling advan-
tages. Their solution can be conveniently computed because it involves straight-
forward linear algebra computations, therefore estimation can proceed in a similar
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Fig. 2.12 O-splines: number of knots K
selected from n unique xi, for smooth.
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(3200, 200); logarithmic interpolation is
used for other n values.
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manner to GLMs. There is no need for backfitting (Sect. 4.3) and all functions
are estimated simultaneously. Furthermore, inference is straightforward, and au-
tomatic smoothing parameter selection is a less daunting problem. The R pack-
age mgcv conveys P-splines to the common GAM class plus about a dozen more
distributions.

P-splines extend regression splines by penalizing the coefficients of adjacent
B-splines. Suppose that xi ∈ [a, b] for some simple scatter plot data. Let the
regression spline be

f(x) =

K+Q−1∑

s=1

βs Bs,q(x), (2.57)

where there are K + 1 equidistant knots ξs = a+ s(b− a)/K (for s = 0, 1, . . . ,K)
in [a, b] (i.e., K−1 internal knots). We can write (2.57) as f = Xβ where (X)ij =
Bj,Q(xi). Then β can be estimated by minimizing

S(β) = (y −Xβ)TW(y −Xβ) + λβT DT
[d] D[d] β (2.58)

where λ > 0 is the smoothing parameter, and D[d] ((K +Q− 1− d)× (K+Q−1))

is the matrix representation of the dth-order differencing operatorΔd, e.g.,Δ1βs =
βs − βs−1 and Δ2βs = Δ(Δβs) = Δβs − Δβs−1 = βs − βs−1 − (βs−1 − βs−2) =
βs−2βs−1+βs−2. In practice, the values d = 2 and 3 are common. In general, the

roughness penalty term in (2.58) is λ
∑K+Q−1

s=d+1

(
Δdβs

)2
, and this penalty may not

make sense with non-equidistant knots. The form the DT
[d] takes on is similar to:

> (D_1 <- diff(diag(4)))

[,1] [,2] [,3] [,4]

[1,] -1 1 0 0

[2,] 0 -1 1 0

[3,] 0 0 -1 1

> (D_2 <- diff(diff(diag(4)))) # Same as diff(diag(4), diff = 2)

[,1] [,2] [,3] [,4]

[1,] 1 -2 1 0

[2,] 0 1 -2 1
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Fig. 2.13 Local linear regression with n = 40 points. The kernel weights have been divided by 10
for scaling purposes. The vertical line is at the target point x0 = 0.7 so that three curves/lines

intersect at (x0, f̂(x0)). The shaded region is effectively the window for computing f̂(x0).

It may be seen in (2.58) that β appears in both terms. This means that the
coefficients controls both the amount of goodness-of-fit and the wiggliness. The
solution obtained by setting ∂S/∂β = 0 is

β̂ =
(
XTWX+ λDT

[d]D[d]

)−1

XTWy. (2.59)

Then the variance-covariance matrix of β̂ is easy: Var(β̂) =

σ2
(
XTWX+ λDT

[d]D[d]

)−1

XTWX
(
XTWX+ λDT

[d]D[d]

)−1

, (2.60)

and so

Var(ŷ) = Var(Xβ̂) =

σ2 X
(
XTWX+ λDT

[d]D[d]

)−1

XTWX
(
XTWX+ λDT

[d]D[d]

)−1

XT . (2.61)

2.4.6 Local Regression

Local regression refers to a major class of smoothers that includes the Nadaraya-
Watson smoother (2.63), local polynomial kernel estimators (2.65), and variants
such as Loess and Lowess. No local regression smoother is currently implemented in
VGAM, so we describe it here mainly for completeness and for preparation of some
theoretical properties in the vector case (Sect. 4.2.2.1). We give scant attention to
any practical aspects, and only briefly mention that a popular smoother is loess()
(Cleveland et al., 1991) and its older variant lowess()—see Sect. 2.4.6.5.

Consider the classical smoothing problem (2.36) with σ2
i = σ2 and wi = 1 as

related to Fig. 2.13. To estimate f(x0), one computes a WLS fit to the (xi, yi)
with weights determined by the distance x0 is from the xi. In fact, these weights
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are Kh(x0 − xi) where K is some kernel function, h is the positive smoothing
parameter known as the bandwidth, and

Kh(u) = h−1 ·K
(u

h

)
(2.62)

is a scaled version of K that integrates to unity for all h. The bandwidth scales the
distance by adjusting the window size in a similar manner that the standard de-
viation does to a normal distribution. Small/large values of h mean a small/large
effective window size about x0. An h that is too low results in too few observa-
tions, therefore is prone to overfit. As h→∞, the solution becomes an essentially
unweighted LS fit (because all weights are equal) to all the data, e.g., f̂(x) = y for
all x if a polynomial of degree r = 0 is fitted.

Some popular kernel functions are given in Table 2.2 and are plotted in Fig. 2.14.
For convenience they possess the following properties:

(i) symmetric,
(ii) have unit area,
(iii) centred at the origin,
(iv) nonincreasing going away from the origin.

Regarding the latter property, apart from the uniform kernel which assigns an
equal weight to observations within the window, other kernel functions strictly
decrease as the distance from the origin increases. This is called the unimodal
property. The significance of the Epanechnikov kernel is that it minimizes the
asymptotic mean integrated squared error (2.84).

Given the kernel weights, the WLS fit is a polynomial of degree r (Fig. 2.13),
hence the name local polynomial kernel estimator is sometimes used. The case r = 1
is known as a local linear regression or local linear kernel smoother. The case r = 0
gives the local constant or simple Nadaraya-Watson estimator

f̂nw(x0) =

n∑

i=1

K

(
x0 − xi

h

)

yi

n∑

i=1

K

(
x0 − xi

h

) =

n∑

i=1

⎧
⎪⎪⎨

⎪⎪⎩

Kh(x0 − xi)
n∑

t=1
Kh(x0 − xt)

⎫
⎪⎪⎬

⎪⎪⎭

yi. (2.63)

Clearly, it takes a weighted average of the yi, and more weight is assigned to
those xi that are closer to x0. The quantities in braces are normalized kernel
weights.

More generally, an explicit expression for the rth-degree local polynomial kernel
estimator can be obtained as follows. At a target point x, the estimator f̂(x; r, h)
is obtained by fitting the polynomial β1+β2(·−x)+· · ·+βr+1(·−x)r to the (xi, yi)

using weighted least squares with kernel weights Kh(xi−x). The value of f̂(x; r, h)

is the intercept β̂1 because of the centring, where β̂ = (β̂1, . . . , β̂r+1)
T minimizes

the WLS criterion

n∑

i=1

{yi − β1 − β2(xi − x)− · · · − βr+1(xi − x)r}2 Kh(xi − x). (2.64)
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Fig. 2.14 Kernel functions from Table 2.2. All but one has compact support.

Table 2.2 Some popular kernel functions for local regression. All but one is defined on [−1, 1],
and the quartic is also known as the biweight. They are graphed in Fig. 2.14.

Kernel K(u) Kernel K(u)

Cosinus π
4
cos(πu/2) · I(|u| ≤ 1) Triangle (1− |u|) · I(|u| ≤ 1)

Epanechnikov 3
4
(1− u2) · I(|u| ≤ 1) Tricube 70

81
(1− |u|3)3 · I(|u| ≤ 1)

Gaussian φ(u) = exp(− 1
2
u2)/

√
2π Triweight 35

32
(1− u2)3 · I(|u| ≤ 1)

Quartic 15
16

(1− u2)2 · I(|u| ≤ 1) Uniform 1
2
· I(|u| ≤ 1)

The centring about x is for mathematical convenience. The solution is

β̂x =
(
XT

xWx Xx

)−1

XT
xWx y (2.65)

where y = (y1, . . . , yn)
T , Wx = diag(Kh(x1 − x), . . . ,Kh(xn − x)) and the model

matrix specific to x is

Xx =

⎛

⎜
⎝

1 (x1 − x) . . . (x1 − x)r

...
...

...
1 (xn − x) . . . (xn − x)r

⎞

⎟
⎠ , (2.66)

which is n× (r + 1). Since the estimator of f(x) is the intercept, we have

f̂(x; r, h) = eT1 β̂x = eT1

(
XT

xWx Xx

)−1

XT
xWx y. (2.67)

Substituting r = 0 into this yields the Nadaraya-Watson estimator (2.63).
Similarly, the local linear estimator (r = 1) can be written as

f̂(x; 1, h) = n−1
n∑

i=1

{ŝ2(x;h)− ŝ1(x;h) · (xi − x)} Kh(xi − x) yi
ŝ2(x;h) ŝ0(x;h)− ŝ1(x;h)2

(2.68)

where

ŝr(x;h) = n−1
n∑

i=1

(xi − x)r Kh(xi − x). (2.69)
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Fig. 2.15 (a) Local linear regression fitted to the proportion of fish caught that are rainbow
trout from lakeO. The smoother has a bandwidth of h = 2.5 and uses the Gaussian kernel
function. (b) f̂ ′(x). In contrast, Fig. 2.11 fits a cubic smoothing spline to these data.

2.4.6.1 Derivative Estimation

Sometimes the first or second derivative of f is of more interest than f itself. For
example, in the study of human growth curves of height as a function of age, the
“speed” and “acceleration” of growth have important biological significance.

The νth derivative of f is easily estimated from above. As

dν

duν
βp+1 · (u− x)p

∣
∣
∣
∣
u=x

=

{
p!βp+1, ν = p,
0, otherwise,

we simply extract the (ν + 1)th coefficient of βx to give the estimate

f̂ (ν)(x; r, h) = ν! eTν+1

(
XT

xWx Xx

)−1

XT
x Wx y (2.70)

for all ν = 0, . . . , r. Of course, (2.67) is a special case of this. Note that f̂ (ν)(x; r, h)

is not in general equal to the νth derivative of f̂(x; r, h).
As an example, Fig. 2.15 fits a local linear regression to the lakeO data. In

contrast, Fig. 2.11 fits a cubic smoothing spline to these data. Both estimates
of f(x) and f ′(x) are similar for the two smoothers, which is not surprising for this

small simple scatter plot. As r = 1, f̂ ′′(x) is not available through (2.70), however
it might be estimated using a local quadratic polynomial kernel estimator.

2.4.6.2 Bias and Variance †

Compared to some other smoothers, the large-sample properties of local polyno-
mial kernel estimators are readily derived. This section demonstrates some of this
ability. From (2.65), write

β̂x = Δ−1
x θx (2.71)
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where Δx = n−1 XT
xWx Xx and θx = n−1 XT

xWx y, so that their means are
finite. If Var(yi) = σ2 then it follows from (2.65) that

E
[
β̂x

]
=

(
XT

xWx Xx

)−1

XT
xWx f , (2.72)

Var
[
β̂x

]
= σ2

(
XT

xWx Xx

)−1

XT
xW

2
x Xx

(
XT

xWx Xx

)−1

, (2.73)

where β̂x = (f̂(x), . . . , f̂ (r)(x)/r!)T and f = (f(x1), . . . , f(xn))
T .

Suppose the design points xi are a random sample from some distribution with
density function g (this is called a random design). Define

μq =

∫ ∞

−∞
uq K(u) du and νq =

∫ ∞

−∞
uq K2(u) du, (2.74)

so that μ0 = 1, and μq = νq = 0 for odd q ≥ 1. We assume that ν2 < ∞
and μ4 <∞. For the purposes of Sect. 4.2.2.1, we shall mainly consider the r = 1
case. Then it can be shown, subject to regularity conditions (e.g., Sect. 4.2.2.1),
that when the xi are uniformly distributed and x0 is away from the boundaries,
then asymptotically

Bias[f̂(x0)] ∼ h2

2
μ2 f

′′(x0), (2.75)

Bias[f̂ ′(x0)] ∼ h2

3!μ2
μ4 f

′′′(x0), (2.76)

Var
[
f̂(x0)

]
∼ ν0 σ

2

nh g(x0)
, (2.77)

Var
[
f̂ ′(x0)

]
∼ ν2 σ

2

nh3 μ2
2 g(x0)

. (2.78)

In these formulas, the bias-variance trade-off can be seen immediately, e.g., as h
decreases, the biases decrease and the variances increase. Another observation is
that in order for the estimator of f(x0) to be consistent, it is necessary for h→ 0
and nh→∞ as n→∞. In fact, it can be shown that to minimize the asymptotic
mean integrated squared error (2.84), the optimum rate is h = O(n−1/5). Addi-

tionally, it can be shown that the asymptotic bias of f̂(x0) from a local polynomial
regression of degree r is O(hr+1) for odd r, and O(hr+2) for even r. This suggests
that a higher degree r should be chosen for large samples if f is very wiggly.

To verify (2.75)–(2.76), one needs to show that, for example,

n−1
n∑

i=1

α(xi) (xi − x) Kh(xi − x) ∼ h2 {α′(x) g(x) + α(x) g′(x)}μ2

for h > 0 and some smooth function α(x). The following standard argument
is used to obtain the asymptotic mean of the LHS. Call the LHS I1, say, and
let z = (xi − x)/h. Then apply two Taylor series about x:
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I1 ∼
∫ ∞

−∞

[

α(x) + α′(x) (xi − x) + α′′(x)
(xi − x)2

2
+ · · ·

]

(xi − x) ·

1

h
K

(
xi − x

h

)[

g(x) + g′(x) (xi − x) + g′′(x)
(xi − x)2

2
+ · · ·

]

dxi

=
1

h

∫ ∞

−∞
(zh)K(z)

[

α(x) + α′(x) zh+
1

2
α′′(x) (zh)2 + · · ·

]

·
[

g(x) + g′(x) zh+
1

2
g′′(x) (zh)2 + · · ·

]

h dz

∼ h

∫ ∞

−∞
z K(z) {α′(x) g(x) zh+ α(x) g′(x) zh} dz

= h2 {α′(x) g(x) + α(x) g′(x)}
∫ ∞

−∞
z2 K(z) dz.

A similar argument to the above can be used to show the following:

n−1
n∑

i=1

α(xi)Kh(xi − x) (xi − x)t ∼

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α(x) g(x) +
h2 μ2

{
1
2 α(x) g

′′(x) + α′(x) g′(x) + 1
2 α

′′(x) g(x)
}
, t = 0,

h2 μ2 {α(x) g′(x) + α′(x) g(x)}+
h4 μ4

{
1
6 α g′′′ + 1

2 α
′ g′′ + 1

2 α
′′ g′ + 1

6 α
′′′ g

}
, t = 1,

h2 μ2 α(x) g(x) +
h4 μ4

{
1
2 α(x) g

′′(x) + α′(x) g′(x) + 1
2 α

′′(x) g(x)
}
, t = 2.

(2.79)

One makes good use of the above when working out the elements of Δx and E[θx]
(the latter uses α = f). For the local linear case,

Δ−1
x ∼ 1

g(x)

(
1 −g′(x)/g(x)

−g′(x)/g(x) 1/{h2 μ2}
)

, (2.80)

which can be used to premultiply the 2-vector E[θx]. This gives the first element

f(x) +
h2 μ2

g2(x)

{
1

2
f(x) g(x) g′′(x) +

1

2
f ′′(x) g2(x)− f(x) [g′(x)]2

}

.

Subtracting f(x) from this gives the asymptotic bias. If the xi are uniformly dis-
tributed (a fixed design), then g(x) is a constant, leading to the bias term (2.75).

Similarly, deriving the second element gives Bias[f̂ ′(x0)] ∼

h2

g(x0)

[
μ4

μ2

{
1

6
f(x0) g

′′′(x0) +
1

2
f ′(x0) g

′′(x0) +
1

2
f ′′(x0) g

′(x0) +
1

6
f ′′′(x0) g(x0)

}

−

μ2
g′(x0)

g(x0)

{
1

2
f(x0) g

′′(x0) + f ′(x0) g
′(x0) +

1

2
f ′′(x0) g(x0)

}]

.

Then uniformly distributed xi implies (2.76).
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The variance terms (2.77)–(2.78) follow from a similar standard argument that
shows n−1

∑n
i=1 α(xi)K

2
h(xi − x) (xi − x)t ∼

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h−1 ν0 α(x) g(x) +
h ν2

{
1
2 α(x) g

′′(x) + α′(x) g′(x) + 1
2 α

′′(x) g(x)
}
, t = 0,

h ν2 {α(x) g′(x) + α′(x) g(x)}+
h3 ν4

{
1
6 α g′′′ + 1

2 α
′ g′′ + 1

2 α
′′ g′ + 1

6 α
′′′ g

}
, t = 1,

h ν2 α(x) g(x) +
h3 ν4

{
1
2 α(x) g

′′(x) + α′(x) g′(x) + 1
2 α

′′(x) g(x)
}
, t = 2.

(2.81)

These are used in the n−1
(
XT

xW
2
x Xx

)
part of the formula of (2.73). Multiplying

Δ−1
x XT

xW
2
x XxΔ

−1
x together and setting g′ = 0 gives the required results.

Of further interest, the equivalent kernel (Sect. 2.4.7.3) of a smoother are the

weights assigned to yi in order to obtain f̂(x). That is, f̂(x) =
∑n

i=1 ω∗
i yi where

the ω∗
i are known as the equivalent kernel of f̂(x). For local linear regression, the

equivalent kernels are easily found by

(
f̂(x)

f̂ ′(x)

)

= Δ−1
x θx = n−1

n∑

i=1

Kh(xi − x) Δ−1
x

(
1

xi − x

)

yi,

therefore the ith vector of this sum which multiplies yi is

n−1 Kh(xi − x)

⎛

⎜
⎜
⎜
⎜
⎝

1

g(x)
− g′(x)

g2(x)
(xi − x)

− g′(x)
g2(x)

+
xi − x

h2 g(x)μ2

⎞

⎟
⎟
⎟
⎟
⎠

. (2.82)

The first element is the asymptotic equivalent kernel for f̂(x) [cf. (4.44)]. For uni-
formly distributed xi, this is proportional to Kh(xi − x), which makes intuitive
sense.

The second element of (2.82) is the asymptotic equivalent kernel for f̂ ′(x).
For a simple example of n = 101 equally spaced points on [0, 1] with h = 0.2
and a Gaussian kernel, Fig. 2.16 is a plot of these for three values of x0. The
weights for the yi are positive to the immediate RHS of x0, and negative on the
LHS; this makes sense given the central finite-difference formula in Sect. 9.2.5:
f ′(x) ≈ [f(x+ h/2)− f(x− h/2)]/h, whose error is O(h2).

The above argument may be simplified for the r = 0 case to show that the
Nadaraya-Watson estimator also has O(h2) bias in the interior. But it can also
be shown that the bias at the boundaries is O(h), which may be quite severe.
This can be seen quite simply by smoothing data of the form yi = α+ β xi where
the xi are not equally spaced: the Nadaraya-Watson estimate will be nonlinear!
If f(x) is quite flat, then the Nadaraya-Watson estimator can perform better than
local linear regression, but if f(x) is steep and curved, then local linear regression
should be the better choice.
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Fig. 2.16 Asymptotic equivalent kernel for f̂ ′(x) from (2.82). The 101 xi are equally spaced
on [0, 1] (as shown by the rugplot). The x0 values are 0.05, 0.25, 0.5 (vertical dashed lines), and
the bandwidth is 0.2. The kernel function K = φ(·).

2.4.6.3 On Choosing r, h and K

In the early 1990s, Fan and co-workers showed that, for the νth derivative of f , the
case of even r− ν had the same amount of variability as the next odd r− ν value.
It was therefore recommended that the lowest odd degree r = ν + 1 be chosen,
and occasionally, r = ν + 3. Thus, for most applications where f is of primary
interest, a local linear regression was suggested. Ruppert et al. (2003, pp.85–6)
suggest r = 1 when f is monotonically increasing, otherwise r = 2 is a good choice
(partly supported by simulations). In conclusion, probably r = 1 and/or r = 2 are
a good choice for many data sets, and occasionally r = 3.

However, in practice, the choice of the bandwidth h is the most crucial. Much
research has been directed towards this very difficult problem, and ideas such as
variable bandwidths have been investigated. Some packages reflecting bandwidth
selection are bbefkr, KernSmooth, lokern, and np. The choice of the kernel function
has long been known to be less important than bandwidth selection.

2.4.6.4 Further Comments

Practically, a major drawback of local regression as described above is the sparse
data problem: if some of the (sorted) xi have big gaps between them and the
bandwidth is too small, then there may not be any observations at all within the
window. For r = 0, this results in the denominator of (2.63) being 0 or nearly
so, hence the estimate is unstable or undefined. This problem does not occur so
much with splines. Hence the standard local regression formulation needs modi-
fication for coal-face general practice. One such modification is to use a nearest
neighbourhood such as (2.86).

Since f̂(x0) is essentially some WLS fit, many properties of local regression
estimators are consequently naturally defined for vector responses. For example,
the equivalent kernel, influential measures, bias and variance, degrees of freedom,
etc. Some of these are considered for the vector case in Sect. 4.2.2.
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2.4.6.5 Lowess and Loess

In passing, it mentioned that two popular methods based on local regression
are Lowess (Cleveland, 1979) and Loess (Cleveland and Devlin, 1988). Lowess
stands for locally weighted scatterplot smoother, and it robustifies the locally
WLS method described above. Loess is the more modern of the two (Cleveland
et al., 1991) and it can perform multivariate smoothing for x.

The basic idea of Loess is to fit a polynomial of degree r locally (the win-
dow sizes of which are determined by a nearest-neighbours scheme) and obtain
the fitted values. Then the residuals are assigned weights: larger/smaller residu-
als receive small/large weights respectively. Another local polynomial of degree r
(with weights given by the product of the initial weight and new weight) is fit-
ted. Thus observations showing large residuals at the initial fit are downweighted
in the second fit. The above process is repeated a few times. Cleveland (1979)
recommended 3 iterations and r = 1, which are the software defaults.

Loess can be invoked simply, e.g.,

fit.lo <- loess(y ~ x, data = ldata)

plot(y ~ x, data = ldata)

lines(predict(fit.lo) ~ x, data = ldata) # The variable x is assumed sorted here

and for additive models, it is implemented in gam, e.g.,

gam(y ~ lo(x2) + lo(x3), binomial, data = bdata)

Both Lowess and Loess measure the size of a neighbourhood using the ‘span’; the
larger the value, the larger the neighbourhood.

2.4.7 Some General Theory

In this subsection, a sprinkling of general theory relating to scatter plot smoothing
is provided. Here, there is a fundamental trade-off between the bias and variance of
the estimator, and this phenomenon is governed by the smoothing parameter. One
criterion that compares the two quantities directly at a value x is the (pointwise)
mean squared error (MSE; Sect. A.1.3.1)

MSE(f̂(x)) = E

[(
f̂(x)− f(x)

)2
]

= Var
(
f̂(x)

)
+
(
E f̂(x)− f(x)

)2
. (2.83)

A similar quantity to the above, known as the mean integrated squared error
(MISE), is

MISE(f̂(·)) =

∫ ∞

−∞
MSE(f̂(x)) g(x)W (x) dx, (2.84)

which is a global measure of precision. Here, W (x) is a weighting function that
might be needed for the integral to exist; it is assumed that W (x) = 1 unless

otherwise stated. This MISE weighs the MSE of f̂ by the density of the design
points g. For some smoothers, this criterion can be minimized with respect to the
smoothing parameter.
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2.4.7.1 Linear Smoothers

A smoother is said to be linear if

ŷ = Sy, (2.85)

where the influence matrix S can depend on x but not on y. The rank of S might
be n or much less than n—called full-rank and low-rank smoothers, respectively.

All four smoothers described in this section (regression splines, cubic smoothing
splines, P-splines and local polynomial kernel smoothers) are linear smoothers,
provided that the smoothing parameters are fixed. Strictly speaking, the use of
automatic smoothing parameter selection procedures makes a smoother nonlinear
because then S does depend on y. However, as Ruppert et al. (2003) confess, we
commonly pretend the smoothing parameter is fixed and, as an approximation,
treat the smoother as linear. Other linear smoothers not discussed here include
bin smoothers, running-mean smoothers and running-line smoothers.

One can define a symmetric nearest neighbourhood of xi as the set of indices
around about i as:

N i =

{

min

(

i− �sn� − 1

2
, 1

)

, . . . , i− 1, i, i+ 1, . . . ,

max

(

i+
�sn� − 1

2
, n

)}

, (2.86)

(Buja et al., 1989) where 0 < s < 1 is known as the span. For j ∈ Ni, one computes

the mean of observations (xj , yj) to get f̂(xi) for the running mean smoother.
An example of a nonlinear smoother is the running median smoother. To see

this, suppose that n is large and the size of the symmetric nearest neighbourhood
in the interior is 3 observations (these are xi−1, xi and xi+1). In the absence of
ties, the tridiagonal part of the smoother matrix will have two 0s and one 1 in
order to pick off the median of three yi observations. The position of the 1 can
only be determined by looking at the yi, therefore the influence matrix does not
depend on x alone.

The theory for linear smoothers is much simpler than for nonlinear smoothers,
and this is probably the reason why they are used much more commonly—their
properties are well-understood. In probably all respects, linear smoothers general-
ize all the properties of simple linear regression.

2.4.7.2 Eigenvalues

Many properties of smoothers can be seen by examining the eigenvalues and eigen-
vectors of S. For example, a cubic smoothing spline has all eigenvalues of S(λ)
in (0, 1], with exactly two unit eigenvalues with corresponding eigenvectors 1
and x, i.e.,

S1 = 11 and Sx = 1x. (2.87)

These correspond to constant and linear functions: smoothing yi that are constant
or lie on a line with respect to xi results in fitted values equal to yi because such
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Fig. 2.17 (a) Eigenvalues of the smoother matrix of a cubic smoothing spline. Here, n =
20 and the xi are equidistant on [0, 1]. (b) The same on a logarithmic scale. The two unit
eigenvalues correspond to constant and linear functions. The corresponding eigenvectors are
plotted in Fig. 2.18.

functions are not penalized by the roughness penalty criterion (2.48). Later, we
shall see that such functions which are not penalized belong to the null space H0

in the RKHS framework of Sect. 4.2.1.7.
If S is symmetric, then we can write

Svi = θi vi, i = 1, . . . , n, (2.88)

where θi are real eigenvalues. Smoothers with some 0 < θi < 1 are called shrinking
smoothers. If all the θi are 0 or 1, then the smoother is called a regression smoother.
For cubic smoothing splines, the vi are approximately orthogonal polynomials of
increasing order, and

θi = 1/(1 + λ ρi)

where ρ1 ≤ ρ2 ≤ · · · ≤ ρn so that θ1 ≥ θ2 ≥ · · · ≥ θn. Figure 2.17 illustrates how
quickly these eigenvalues can decay. Now {v1, . . . ,vn} forms an orthonormal basis
for Rn, and the spectral decomposition of S is

S = VDiag(θ1, . . . , θn)V
T =

n∑

i=1

θi vi v
T
i ≈

n∗
∑

i=1

θi vi v
T
i .

The approximation thereof holds for some appropriate n∗ � n because θi ≈ 0
for i > n∗. The predicted values then are

ŷ = Sy ≈
n∗
∑

i=1

θi · (vT
i y) · vi.

This shows that the fitted values are largely determined by the first few eigen-
values and eigenvectors. The high-frequency eigenvectors (Fig. 2.18) are not very
important because their effect is dampened by those almost-zero eigenvalues. This
suggests a low-rank approximation (e.g., Hastie, 1996) whereby a few of the largest
eigenvalues are retained and the remainder set to zero. This idea can be used to
motivate P-splines (Sect. 2.4.5).
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Fig. 2.18 Successive eigenvectors corresponding to the eigenvalues of Fig. 2.17.

2.4.7.3 Equivalent Kernels

Some properties of a smoother may be seen by considering its so-called equivalent
kernel, e.g., these may be used to compare different types of linear smoothers (e.g.,
Buja et al., 1989). For a typical linear smoother, plotting a row of the influence
matrix S (see (2.85)) against the xi values gives the form of neighbourhood used
and the weighting function.

For some smoothers, it is possible to derive analytical expressions for their
equivalent kernel as n → ∞. We saw this was the case for local linear smoothers
in Sect. 2.4.6.2. This is also the case for the cubic smoothing spline: consider the
weighted cubic smoothing problem

S(f) =

n∑

i=1

wi {yi − f(xi)}2 + λ

∫ b

a

{f ′′(x)}2 dx, (2.89)

where wi > 0 are known and they sum to unity. Silverman (1984) showed that

f̂(t) =

n∑

i=1

F (t, xi)wi yi (2.90)
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Fig. 2.19 Equivalent kernel of a cubic

spline, κ(u) (Eq. (2.92)). −5 0 5
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asymptotically, with weighting function

F (t, x) ≈ 1

g(x)h(x)
κ

(
t− x

h(x)

)

(2.91)

with h(x) = (λ/g(x))
1
4 , and kernel

κ(u) =
1

2
e−|u|/√2 sin

( |u|√
2
+

π

4

)

. (2.92)

The latter function is plotted in Fig. 2.19. Although κ is an even function that
integrates to unity, its values are not all positive everywhere. The elements of the
smoother matrix are given by (S)ij = wj F(xi, xj).

Equation (2.90) holds for large n, small λ and xi not too close to the boundary.
That g−1/4(x) is bounded by g0(x) and g−1(x) indicates that the behaviour of the
smoothing spline is between fixed-kernel smoothing and smoothing based on an
average of a fixed number of neighbouring values.

2.4.7.4 Effective Degrees of Freedom

All smoothers allow the user to vary the amount of smoothing via the smoothing
parameter, e.g., bandwidth h, λ, etc. However, it would be useful to have some
measure of the amount of smoothing done that applies to all linear smoothers.
One such measure is the effective degrees of freedom (EDF) of a smooth. It is
useful for a number of reasons, e.g., comparing different types of smoothers while
keeping the amount of smoothing roughly equal.

Using some basic results pertaining to the hat matrix of the linear model
(Sect. 2.2.1) by replacing H by S, these results suggest the following three defini-
tions for the effective degrees of freedom of a smooth:

df = trace(S), (2.93)

df var = trace(SST ), and (2.94)

df err = n− trace(2S− STS). (2.95)

More generally, with weights W, these are

df = trace(S), (2.96)

df var = trace(WSW−1ST ), and (2.97)

df err = n− trace(2S− STWSW−1). (2.98)
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It can be shown that if S is a (symmetric) projection matrix then trace(S),
trace(2S− SST ) and trace(SST ) coincide. For cubic smoothing splines, it can be
shown that

trace(SST ) ≤ trace(S) ≤ trace(2S− SST ), (2.99)

and that all three of these functions are decreasing in λ.
Computationally, df is the most popular and the cheapest because only the

diagonal elements of the smoother matrix are needed. Its cost is O(n) for most
smoothers.

Practically, the EDF lies in the interval [2, n], where a linear fit corresponds to
the smallest value and an interpolating function to the largest value. As the EDF
increases, the fit becomes more wiggly. Very crudely, a smooth with an EDF of
about 3 or 3.5 might have about the same flexibility as a quadratic, say. A value
of 4 or 5 degrees of freedom is often used as the default value in software, as this can
accommodate a reasonable amount of nonlinearity but without being excessive—it
should handle f having one or two stationary points.

Unfortunately, there is scope for confusion when citing the EDF because some
authors do not include the constant function because the function has already
been centred. For example, smooth.spline() and vsmooth.spline() have a df

argument that corresponds to the EDF above: the value 2 means a linear LS fit,
etc. However, the df argument of s() in gam’s gam(), and vgam(), is such that
the value 1 corresponds to a linear function. Its default is

> args(s)

function (x, df = 4, spar = 0, ...)

NULL

There may be less opportunity for confusion if the effective nonlinear degrees of
freedom (ENDF) is cited, e.g., it has value 0 for a linear function.

Zhang (2003) examines calibration issues with regard to their EDF relating to
local regression and spline smoothers.

2.4.7.5 Standard Errors

Plots of smooths are commonly supplemented with ±2 pointwise standard error
bands in order to prevent the over-interpretation of the estimated function. For
example, Fig. 17.3 shows that the weight smooth has its widest pointwise standard
errors at the boundaries. Such plots give the viewer some idea about how much to
trust f̂ , and which parts of the smooth have greater certainty.

From (2.85) it immediately follows that

Var(f̂) = σ2 SST , (2.100)

and so its diagonal elements may be extracted. However, this becomes impractical
with large n because the entire S is needed. For cubic splines, the approxima-
tion σ2 S has been used instead (and justified by a Bayesian argument, e.g., Wahba
(1990); Silverman (1985)). Its cost is O(n), and the approximation has been found
to work well in practice.
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2.4.7.6 Automatic Smoothing Parameter Selection

Choosing the smoothing parameter is arguably the most important decision for a
specified method. Ideally, we want an automated way of choosing the ‘right’ value.
In this section, we restrict ourselves to linear smoothers.

Occasionally it is possible to estimate λ by maximum likelihood, e.g., Wecker
and Ansley (1983) for smoothing splines. However, a more general and pop-
ular method is the cross-validation (CV) technique. The idea is to leave out
point (xi, yi) one at a time, and estimate the smooth at xi based on the remain-
ing n− 1 points. Then λCV can be chosen to minimize the cross-validation sum of
squares

CV(λ) =
1

n

n∑

i=1

{
yi − f̂

[−i]
λ (xi)

}2

, (2.101)

where f̂
[−i]
λ (xi) is the fitted value at xi, computed by leaving out (xi, yi).

While one could compute (2.101) näıvely, a more efficient way is to set the
weight of the ith observation to zero and increasing the remaining weights so that
they sum to unity. Then

f̂
(−i)
λ (xi) =

n∑

j=1
j �=i

sij
1− sii

yj . (2.102)

From this,

f̂
(−i)
λ (xi) =

n∑

j=1,j �=i

sij yj + sii f̂
(−i)
λ (xi)

and

yi − f̂
(−i)
λ (xi) =

yi − f̂λ(xi)

1− sii
.

Thus, CV(λ) can be written

CV(λ) =
1

n

n∑

i=1

{
yi − f̂λ (xi)

1− sii(λ)

}2

. (2.103)

This only requires the addition of the diagonal elements of the smoother matrix.
In practice, CV sometimes gives questionable performance. A popular alterna-

tive is the generalized cross validation (GCV) technique, where

GCV(λ) =
n−1‖(I− S(λ)y)‖2

[n−1 trace(I− S(λ))]
2 (2.104)

is minimized. The rationale for this expression is to replace sii by its average value,
trace(S)/n, which is easier to compute:
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GCV(λ) =
1

n

n∑

i=1

{
yi − f̂λ (xi)

1− trace(S)/n

}2

.

GCV enjoys several asymptotic optimality properties. However, neither method
can be trusted always, especially with small n, e.g., an interpolating spline (λ = 0)
has some positive probability of arising for a given data set.

Both CV and GCV are used when σ2 is unknown. They are related to other cri-
terion, such as Mallow’s Cp (unbiased risk estimator; UBRE). When σ2 is known,
minimizing the UBRE is a popular choice. Another popular criterion is AIC.

2.4.7.7 Testing for Nonlinearity

Suppose we wish to compare two smooths f̂1 = S1y and f̂2 = S2y, e.g., f̂2 might

be less smooth than f̂1, and we wish to test if it picks up any significant bias.

A standard case that often arises is when f̂1 is linear, in which case we want to

test if the linearity is real. We must assume that f̂2 is unbiased, and that f̂1 is
unbiased under H0. Letting ResSSj be the residual sum of squares for the jth

smooth, and γj be trace(2S− STS), then

(ResSS1 − ResSS2)/(γ2 − γ1)

ResSS2/(n− γ1)

.∼ Fγ2−γ1,n−γ1
(2.105)

approximately, which follows from a standard F test applied to a LM (2.9).
An approximate score test for VGAMs, given in Sect. 4.3.4, tests for the linearity

of component functions.

2.5 Generalized Additive Models

GAMs are a nonparametric extension of GLMs, and they provide a powerful data-
driven class of models for exploratory data analysis. GAMs extend (2.17) to

g(μ(xi)) = ηi = β1 + f2(xi2) + · · ·+ fp(xip), (2.106)

a sum of smooth functions of the individual covariates. As usual with these types
of models, an intercept is included because the fk are centred for identifiability.
GAMs loosen the linearity assumption of GLMs; this is very useful as it allows the
data to ‘speak for themselves’. Smoothers are used to estimate the fk. They still
assume additivity of the effects of the covariates, although interaction terms may
be accommodated.

We will see later that the VGAM framework writes (2.106) as

g1(μ(xi)) = η1(xi) = β(1)1 + f(1)2(xi2) + · · ·+ f(1)d(xid), (2.107)

to have provision for handling multiple additive predictors ηj . For VGAM’s vgam()
function, the s() function represents the smooths f(j)k(xk), and it has argu-
ments df and spar to regulate the amount of smoothness. However, df ≥ 1 only
is allowed, with a value of unity corresponding to a linear fit.
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2.5.1 Why Additive Models?

One of the reasons additive models are popular is that they do not suffer from the
curse of dimensionality (Bellman, 1961) because all the smoothing is done univari-

ately: ηj(x) =
∑d

k=1 f(j)k(xk). In one dimension, the concept of a neigbourhood
poses the least problems because the xi are spread out in only one dimension.
However, as the dimension of x increases, the volume of the space increases so
fast that the data rapidly becomes more and more isolated in d-space. Smoothers
then require a larger neighbourhood to find enough data points, hence the esti-
mate becomes less localized and can be severely biased. Theoretically, the sparsity
problem might be overcome by a sample size that grows exponentially with the
dimensionality, however, this is impractical in most applications.

Modelling the ηj(x) additively has another advantage: they have simple in-
terpretation. Each covariate has an additive effect, therefore each effect can be
determined by keeping the other xk fixed (although this may be unrealistic in the
presence of multicollinearity). The fitted functions are easily plotted separately
and examined. However, this simplicity comes at a cost, e.g., interactions are not
so readily handled.

One family of models which hold additive models as a special case is
based on classical analysis of variance (ANOVA) and called smoothing spline
ANOVA (SS-ANOVA). Here, functions replace the usual parameters, e.g., one-way
SS-ANOVA corresponds to an additive model. A simple example of a two-way
SS-ANOVA with covariates x2 and x3 is

μ = β(1)1 + f2(x2) + f3(x3) + f23(x2, x3),

where fk represents the main effects for xk, and f23 is a second-order interaction
between x2 and x3. More generally, the unique SS-ANOVA decomposition of a
multivariable function f is

f(x2, . . . , xd) = β(1)1 +

d∑

k=1

fk(xk) +
∑

s<t

fst(xs, xt) + · · · (2.108)

with the constraints Ek(fk) = 0, EsEt(fst) = 0, etc. where the Ek are averaging
operators. In practice, it is necessary to drop high-order interactions from the
model space in order to avoid the curse of dimensionality. Additive models and
models with second-order interactions are the most commonly used.

It should be noted that even bivariate smoothing of the form f(xs, xt) raises
difficulties: although possibly suffering from a mild case of the curse of dimen-
sionality, plotting the functions meaningfully can require some effort, and their
interpretation may be difficult.

SS-ANOVA has been extended to generalized SS-ANOVA (GSS-ANOVA), i.e.,
to η in the classical exponential family. It would be natural then to define the
Vector SS-ANOVA class as those VGLM/VGAM families having an ANOVA de-
composition (2.108) applied to each ηj .

Now just to show the simplest of GAMs, we now fit a nonparametric logistic
regression with one covariate, albeit with a grain of salt.
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Fig. 2.20 Fitted values from some logistic regression models applied to chinese.nz. The re-
sponse is the proportion of New Zealand Chinese who are female. The terms are year, poly(year,
2), bs(year, 4). Area sizes of the points are proportional to the number of people.

2.5.2 Binomial ‘example’

In the following, we (controversially) illustrate how ordinary logistic regression can
potentially misfit data. To do this, we do something that is not strictly correct, in
order to make a point.

The simple linear logistic regression model logitP (Y = 1) = β(1)1 + β(1)2 x2 for
a single covariate x2 results in a sigmoid curve that slopes upward or downward
depending on the sign of β(1)2. The limitation of sigmoid curves seems largely
unappreciated by many practitioners. To illustrate the potential inadequacies of
this model, consider the chinese.nz data frame, which gives the proportion of
females in the Chinese population of New Zealand from the mid-1800s to the start
of this century. These data are of historical interest, and the number of individuals
involved is large enough for the sample proportions to be clearly seen.

Figure 2.20 plots the fitted values of the basic model, as well as some alterna-
tives. Specifically, the underlying code are the first three models of:

vglm(cbind(female, male) ~ year, binomialff, data = chinese.nz)

vglm(cbind(female, male) ~ poly(year, 2), binomialff, data = chinese.nz)

vglm(cbind(female, male) ~ bs(year, 4), binomialff, data = chinese.nz)

vgam(cbind(female, male) ~ s(year, df = 3), binomialff, data = chinese.nz)

It can be clearly seen that there is underfitting in the ‘ordinary’ logistic regres-
sion. Any predictions based on this model would have severe biases. Applying
a quadratic yields a large improvement, and the regression spline is even more
flexible.

The above is unwarranted for any formal inference because the data are longi-
tudinal: most people appearing in one year will appear in adjacent years, hence the
binomial independence assumption does not hold. Thus the plot should be used
little more than for descriptive purposes. It is left to the reader to confirm that
the last two models are very similar (Ex. 2.11, 2.23).
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Fig. 2.21 Four residual types for the regression spline fit of Fig. 2.20. The fitted values are
plotted on the x-axis.

To give some idea about what residuals can look like, Fig. 2.21 plots four types
of residuals versus fitted values for the regression spline fit of Fig. 2.20. It shows
that the response residuals are very different from the others, and there is much
similarity between the Pearson and deviance residuals here.
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An additive model with at least one smooth term might be called a semipara-
metric regression model, and Harezlak et al. (2015) is a recent introductory book
to such. Ruppert et al. (2009) reviews semiparametric regression from 2002–7. The
class of partially linear models, as defined by Yi = xT

i β+ g(ti) + εi, is the subject
of Härdle et al. (2000).

B-splines are well-covered in the mathematical literature. Of these, some starters
include de Boor (2001) and Schumaker (2007). For smoothing splines and their
extensions specifically, a good introductory book is Green and Silverman (1994).
More intermediate treatments include Eubank (1999), Ruppert et al. (2003). Ad-
vanced treatments based on RKHS theory (Sect. 4.2.1.7) include Wahba (1990),
Wang (2011), Gu (2013). The two latter references cover the subject of SS-ANOVA
models; they are implemented by ssanova() in gss. A book specifically on RKHS is
Berlinet and Thomas-Agnan (2004), however, Nosedal-Sanchez et al. (2012) is the
simplest introduction to RKHS and is specifically focused on smoothing splines.

For kernel smoothing, local regression and likelihood, see e.g., Härdle (1987),
Härdle (1990), Wand and Jones (1995), Fan and Gijbels (1996), Loader (1999).
Loess was first described within S3 by Cleveland et al. (1991).

The two most comprehensive references on GAMs are Hastie and Tibshirani
(1990) and Wood (2006). The current approach of VGAM is much more similar
to the former, with respect to the theory and its software (gam). The latter is
more focused on automatic smoothing parameter selection based on P-splines and
GCV, as implemented by mgcv. Another GAM book is Ruppert et al. (2003). An
elementary applied GAM book for novice users only is Zuur (2012). Härdle et al.
(2004) gives more examples and theory on a number of topics considered in this
chapter, as does Gentle et al. (2012). An accessible overview of some of the ideas
behindmgcv is Marra and Radice (2010). The utility of GAMs was recognized quite
quickly and introduced into many fields during the 1990s, e.g., Yee and Mitchell
(1991) into plant ecology.

Linear algebra and matrices for statisticians are presented at a moderate level
by Banerjee and Roy (2014), and at a more advanced level by Harville (1997)
and Seber (2008). Yanai et al. (2011) is an accessible introduction to projection
matrices, generalized inverses and SVD.

Exercises

Ex. 2.1. Prove all the properties of the hat matrix H listed in Sect. 2.2.1.

Ex. 2.2. Hat Matrices

(a) Prove that H projects Y orthogonally onto the column (range) space of X.
(b) Obtain an expression for hii for an LM through the origin: yi = β1xi + εi,

for i = 1, . . . , n.
(c) Repeat (b) for the simple linear regression model yi = β1 + β2xi2 + εi.

Ex. 2.3. Explain why H1 = 1 is a good idea on p.36. Why would Hx = x also
be a good property?

Ex. 2.4. The degrees of freedom for an LM can be defined as
∑n

i=1

Cov(ŷi, yi)/σ
2. Show that this equals p.



86 2 LMs, GLMs and GAMs

Ex. 2.5. GLS
Prove the results (2.14)–(2.16), as well as its hat matrix being idempotent but not
symmetric in general.

Ex. 2.6. Show that the score function (2.21) leads to

Uβ =

n∑

i=1

Ai xi

(
yi − xT

i β
)

= 0

for multiple linear regression, and

Uβ =
n∑

i=1

Ai xi

(

yi − exp{xT
i β}

1 + exp{xT
i β}

)

= 0

for logistic regression (Ai Yi ∼ Binomial(Ai, μi) with η = logitμ).

Ex. 2.7. Given the exponential family (2.19), verify all the columns of Table 2.3
from θ to b′′(θ). What are the c(y, φ) functions?

Ex. 2.8. Using (2.19) with φi = φ/wi and where the diagonal elements of W =
diag(w1, . . . , wn) are known prior weights, show that XTWy are a set of sufficient
statistics for β for a GLM having a canonical link and known φ. Hint: use (A.4).

Ex. 2.9. The moment generating function (MGF) of a random variable Y is
defined as MY (t) = E(etY ) for real t, wherever this expectation exists.

(a) Show that E(Y ) = M ′
Y (0), E(Y 2) = M ′′

Y (0), and deduce that E(Y k) =

M
(k)
Y (0) for k = 0, 1, 2, . . ..

(b) Obtain an expression for MY (t) for Y belong to the exponential family (2.19).
(c) Apply (b) to the Poisson distribution to verify that E(Y ) = Var(Y ) = μ.

Ex. 2.10. LRT, Score and Wald Tests

(a) Generate 5 observations from Poisson(μ = 3) with the random number seed
initialized to some value. Then compute the MLE.

(b) Suppose we wish to test H0 : μ = 3 versus H1 : μ �= 3. Compute the p-values
from Wald, score and likelihood ratio tests for this. Comment.

(c) Reset the random number generator and generate 5 observations from
Poisson(μ = 30). Test H0 : μ = 30 versus H1 : μ �= 30. Repeat in a simi-
lar way to (b). Comment.

Ex. 2.11. Nonparametric Logistic Regressions
Fit the four models given in Sect. 2.5.2 to the chinese.nz data frame. Obtain the
same as Fig. 2.20, and then add the fitted values of the vgam() model—hence,
show its similarity with the regression spline fit.

Ex. 2.12. Suppose somebody wrote a log10link() function so that η = log10 μ
could be fitted somewhat like a Poisson regression. How would its estimate of β
be related to the usual MLE β̂?

Ex. 2.13. IRLS Initial Values

(a) Show that one iteration of IRLS starting from any value of μ(0) will give the
LS solution for the normal case, e.g., gaussianff().
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(b) Write down expressions for zi and the working weights wi for the Poisson and
binomial models (each with canonical link functions).

Ex. 2.14. GLM Residuals

(a) Show that the first four residual types in Sect. 2.3.2 simplify to yi − μ̂i for the
Gaussian case.

(b) Obtain a formula for the deviance residuals of a standard Poisson regression.
(c) Obtain a formula for the deviance residuals of a standard logistic regression.

Ex. 2.15. Exponential Family Members
Consider models in the exponential family (2.19).

(a) Show that the two-parameter NB distribution (1.14) is not a standard member
of the exponential family. Show that it is a member if k is a known.

(b) Find the canonical parameter θ of the NB, and show that the canonical link
is log (μ/(μ+ k)).

(c) Consider a Pareto distribution (Table 12.8) where the scale parameter b is
known. Is this distribution a member of the exponential family? If so, what is
its canonical link?

Ex. 2.16. For p �= 0, 1, 2, and V (μ) = μp, show that q(μ; y) = y μ1−p/(1− p)−
μ2−p/(2− p) where μ > 0. What is the canonical parameter? [McCullagh and
Nelder (1989)]

Ex. 2.17. Polynomial Regression
Fit polynomials up to the 10th degree to mcycles in MASS, and add them to a
scatter plot. Comment.

Ex. 2.18. Running-Mean Smoother

(a) Find S such that ŷ = Sy for a running-mean smoother with n = 10, and
span = 0.5 as defined by (2.86).

(b) Compute the eigenvalues of S and show that a few are negative. How many
unit eigenvalues are there? Comment.

(c) What range of span values would allow for a maximum of 3 values in a symmet-
ric nearest neighbourhood? [Buja et al. (1989)]

Ex. 2.19.

(a) Determine the coefficients a, b and c so that f(x) is a cubic spline, where

f(x) =

{
x3, x ∈ [0, 2],
1
3 (x− 2)3 + a (x− 2)2 + b (x− 2) + c, x ∈ [2, 5].

(b) Do the same for coefficients a–d, where

f(x) =

{
1
3x

3 + x− 1, x ∈ [−3, 0],
a x3 + b x2 + c x+ d, x ∈ [0, 1],

with f(1) = 7.
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(c) Do the same for coefficients a–h so that f(x) is a natural cubic spline satisfy-
ing f(−1) = 1, f(0) = 2 and f(2) = 2, where

f(x) =

{
a x3 + b x2 + c x+ d, x ∈ [−1, 0],
e x3 + f x2 + g x+ h, x ∈ [0, 2].

(d) Use R to plot the solution of (c) on [−2, 3]. What are f(−2) and f(3)?

Ex. 2.20. Express the order-3 Bspline Bs,3 as a linear combination of order-1
B-splines. The coefficients should be in terms of ωs,3, etc. [de Boor (2001)]

Ex. 2.21. Parabolic B-Splines
Plot the 5 parabolic B-spline basis functions whose support is in [0, 6] for the knot
sequence {0, 1, 1, 3, 4, 6, 6, 6}. Comment. [de Boor (2001)]

Ex. 2.22. Regression Splines and lakeO

(a) Modify the lakeO code that produces Fig. 2.5b to ‘work’ for the raw vari-
able year (taking on values 1974,. . . ,1988). Verify that the LM fails to give
finite regression estimates due to the ill-conditioning.

(b) Figure 2.5b is fitted with a cubic regression spline. Modify the code to use a
quadratic regression spline—keep the same knot. Does the fitted curve change
appreciably?

Ex. 2.23. Derivative Estimation for GAMs
Consider the chinese.nz data set, and let x0 = 1936.

(a) Create a subset of the data frame without the year x0. Fit 3 separate logistic
regressions to the subset; the η(x) should be (i) linear, (ii) quadratic, and
(iii) a smooth function, of x = year. Use vgam() for (iii). The response is the
proportion that are female. Call the fitted curves p̂j(x) for j = 1, 2, 3.

(b) Predict the values for pj(x0).
(c) Plot the sample proportions versus year. Predict the pj(x) along a fine grid of

time, and add the fitted curves to your plot.
(d) For model (iii) compute p̂′3(x0), the first derivative of p̂3(x) evaluated at x0.

Plot the sample proportions versus year again, then add p̂3(x) and the tangent
line at p̂3(x0) to the plot.

Ex. 2.24. Nadaraya-Watson Estimator: Bias and Variance

(a) Verify each entry of (2.79).
(b) Verify each entry of (2.81).
(c) Work out the expressions for the bias and variance, as in (2.72)–(2.73), for the

Nadaraya-Watson estimator (r = 0).

Ex. 2.25. Variance Estimates in Local Linear Regression
Given (2.81), derive the results (2.77)–(2.78).

Ex. 2.26. Equivalent Degrees of Freedom—Projection Matrix
Show that the 3 definitions of the EDF of a smooth, based on the trace in (2.93)–
(2.95), coincide when S is a projection matrix.
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Ex. 2.27. Nadaraya-Watson Estimate

(a) Generate scatter plot data coming from xi = 0((n − 1)−1)1, yi =
e−2xi sin(5xi) + εi, where εi ∼ N(0, σ2 = 0.01) i.i.d., for n = 101, i.e.,
the design points are equally spaced on the unit interval. Use set.seed()

for reproducibility.
(b) By eye, determine a reasonable value for the bandwidth h so that your

Nadaraya-Watson estimate fits reasonably well.
(c) For your bandwidth, what is the ENDF value? Comment on the how the

smoother handles the boundaries.
(d) Determine the values of h so that ENDF ≈ 4, 5, and 6.

Ex. 2.28. GCV and CV
Show that GCV(λ) can be written as a weighted version of CV(λ), i.e., CV(λ) =
n−1

∑
i w

∗
i {. . .}2 starting from (2.101). Obtain an expression for the weights w∗

i .

We believe that the generalized linear models here developed could form a
useful basis for courses in statistics.
—Nelder and Wedderburn (1972)
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Chapter 3

VGLMs

Life is really simple, but we insist on making it complicated.
—Confucius

3.1 Introduction

VGLMs lie at the heart of the overall statistical framework, being the linear or
parametric class. This chapter describes them somewhat incrementally. Firstly,
Sect. 3.2 describes them as a general method for maximum likelihood estimation
based on iteratively reweighted least squares. Section 3.3 adds to this the very
important feature of constraint matrices—these allow the ηj to share relationships
with each other, etc. To do this, we take the liberty to use VGAMs to aid their
definition. Then Sect. 3.4 describes a second important feature, which is called
the xij facility: allowing a covariate xk to have different values for different ηj—
meaning that it is a function of xT

ijβ. The remaining sections describe allied topics
such as inference and diagnostics. Relating many aspects of VGLMs with the
VGAM software is deferred to Chap. 8. The nonparametric version of VGLMs,
called VGAMs, is described in the next chapter.

One might loosely think of VGLMs as multivariate GLMs, however, this is only
partly true, because GLMs are intertwined with the exponential family. One might
then consider a multivariate generalization of (2.19),

f(yi;θi,φ) = exp

{
yT
i θi − b(θi)

a(φ)
+ c(yi,φ)

}

, (3.1)

for which models based on, e.g., the multinomial distribution are accommodated
(θi are the natural parameters, and φ the dispersion parameters). However, the
VGLM/VGAM framework is wider still, the main reason being that unnecessary
restrictions limit their scope and practical usage.

© Thomas Yee 2015
T.W. Yee, Vector Generalized Linear and Additive Models,
Springer Series in Statistics, DOI 10.1007/978-1-4939-2818-7 3
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3.2 Iteratively Reweighted Least Squares

Suppose that the observed response y is a Q-dimensional vector. VGLMs are
defined as a model for which the conditional distribution of Y given explanatory
variable(s) x is of the form

f(y|x;B,φ) = h(y, η1, . . . , ηM ,φ) (3.2)

for some known function h(·), where B = (β1 β2 · · · βM ) is a p ×M matrix of
unknown regression coefficients, and the jth linear predictor is

ηj = ηj(x) = βT
j x =

p∑

k=1

β(j)k xk, j = 1, . . . ,M. (3.3)

Here, x = (x1, . . . , xp)
T with x1 = 1 if there is an intercept. Note that (3.3) means

that all the parameters may be potentially modelled as functions of x. It can be
seen that VGLMs are like GLMs but allow for multiple linear predictors, and they
encompass models outside the small confines of the exponential family. Although
multivariate exponential family densities have been defined by many, such as (3.1),
VGLMs are not confined to these, so as to make them more general.

In (3.2), the quantity φ is an optional vector of scaling parameters which is
included for backward compatibility with GLMs. While GLMs are encumbered by
a scale factor, the VGLM philosophy is generally to estimate all parameters by
MLE, although it is by no means restricted to such. This tends to make inference
simpler.

We saw in Chap. 1 that in the S language, terms such as poly() and bs() will
usually generate more than one column of the model matrix X, and hence they
represent more than one k value in (3.3). This can be notationally confusing. A
simple example is a polynomial term of x2 such as poly(x2, 2, raw = TRUE),
which defines variables x2 and x3 = x2

2 for the second and third columns of X.
Consequently, it should be understood that ηj is called a linear predictor because it
is linear with respect to the coefficients βj , and not necessarily linear with respect
to the xk.

Let xi denote the explanatory vector for the ith observation, for i = 1, . . . , n.
Then one can write

ηi = η(xi) =

⎛

⎜
⎝

η1(xi)
...

ηM (xi)

⎞

⎟
⎠ = BTxi =

⎛

⎜
⎝

βT
1 xi

...

βT
Mxi

⎞

⎟
⎠ (3.4)

=

⎛

⎜
⎝

β(1)1 · · · β(1)p

...
β(M)1 · · · β(M)p

⎞

⎟
⎠xi =

(
β(1) · · · β(p)

)
xi. (3.5)

Let

X ≡ XLM = (x1, . . . ,xn)
T

(3.6)

be the usual n × p (LM) model matrix, or simply LM matrix, constructed from
the (first) argument formula of vglm().
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For models of the form (3.2), the log-likelihood can be expressed in the form


(β) =
n∑

i=1

wi 
i{η1(xi), . . . , ηM (xi)}, (3.7)

where

ηj = ηj(xi) = βT
j xi, β = (βT

(1), . . . ,β
T
(p))

T and β† = (βT
1 , . . . ,β

T
M )T . (3.8)

The wi are known fixed positive prior weights.
Applying a Newton-like algorithm for maximizing the likelihood,

β(a) = β(a−1) + I
(
β(a−1)

)−1

U
(
β(a−1)

)
(3.9)

at iteration a, which can be written in IRLS form as

β(a) =

(
n∑

i=1

XT
i W

(a−1)
i Xi

)−1( n∑

i=1

XT
i W

(a−1)
i z

(a−1)
i

)

. (3.10)

Here, Xi is the M ×Mp matrix Xi = xT
i ⊗ IM , and Wi is an M ×M matrix

with (j, k)th element

(Wi)jk = − E

(
∂2
i

∂ηj ∂ηk

)

, (3.11)

and zi are the working responses (cf. (2.25)) is an M -vector given by

z
(a−1)
i = Xi β

(a−1) +W
−1(a−1)
i u

(a−1)
i (3.12)

= η
(a−1)
i + r

W (a−1)
i , (3.13)

[cf. (3.58)], where the score vector ui has jth element

(ui)j =
∂
i
∂ηj

. (3.14)

In practice, the expected information matrices (EIMs; (3.11)) are used because
all the working weight matrices need to be positive-definite, not just their sum.
This generally holds in a much larger parameter space than for the observed in-
formation matrices (OIMs)

(Wi)jk =
−∂2
i
∂ηj ∂ηk

. (3.15)

Using the EIM and OIM corresponds to Fisher scoring and the Newton-Raphson
algorithms, respectively. Hence the latter is seldom used within the VGLM frame-
work except when the algorithms coincide. An important step when implementing
VGLMs, therefore, is to derive the EIM where possible. In cases where they are
intractable, one can try approximating them numerically (Sect. 9.2).



94 3 VGLMs

In (3.10), β(a) is the solution to the GLS problem

z(a−1) = XVLM β(a) + ε(a−1), (3.16)

where (suppressing superscript (a) for simplicity)

z =
(
zT
1 , . . . ,z

T
n

)T
, (3.17)

XVLM ≡ XLM ⊗ IM =
(
XT

1 , . . . ,X
T
n

)T
, (3.18)

Var(ε) = diag
(
w−1

1 W−1
1 , . . . , w−1

n W−1
n

)
= W−1. (3.19)

The VLM matrix, XVLM, is known informally as the ‘big’ model matrix, whereas
the LM matrix, XLM, is known as the ‘small’ one. Tables 8.5, 8.6 describe how
these and other quantities may be properly extracted from a fitted VGLM object.

Actually, (3.18) holds only when there are trivial constraints (the constraint
matrices are Hk = IM for all k). With more generality,

XVLM =

(

(X e1)⊗H1

∣
∣
∣
∣
∣
(X e2)⊗H2

∣
∣
∣
∣
∣
· · ·

∣
∣
∣
∣
∣
(X ep)⊗Hp

)

(3.20)

for any valid constraint matrices Hk (see Sect. 3.3), so that XVLM is (nM)×pVLM

where pVLM =
∑p

k=1 ncol(Hk). Lastly, with even more generality, when the xij ar-
gument is specified, XVLM becomes (3.41) as described in Sect. 3.4. Notationally,
sometimes we let Rk = ncol(Hk) be the rank of Hk.

At convergence, the estimated variance-covariance matrix is

V̂ar
(
β̂∗
)

= φ̂
(
XT

VLM W(a) XVLM

)−1

, (3.21)

where β∗, enumerated as in (3.30), are all the regression coefficients to be esti-
mated. The square roots of its diagonal elements are the standard errors, etc. For
most VGLMs, φ ≡ 1 so it need not be estimated.

3.2.1 Computation †

The quantity minimized at the heart of the VLM is the weighted sum of squares

ResSS =

n∑

i=1

wi

{
z
(a−1)
i − η

(a−1)
i

}T

W
(a−1)
i

{
z
(a−1)
i − η

(a−1)
i

}
. (3.22)

Sometimes referred to as a ‘residual sum of squares’, this quantity is minimized at
each IRLS iteration.

How is (3.16) computed? The GLS system of equations is converted to OLS by
the standard method of premultiplying both sides by the Cholesky decompositions
of the wiWi. This has the effect of standardizing the errors and removing the
correlation between them. Specifically, let W = UTU = diag(UT

1 U1, . . . ,U
T
nUn)

be such. Then premultiplying (3.16) by U(a−1) gives

z∗∗(a−1) = X
∗∗(a−1)
VLM β(a) + ε∗∗(a−1), (3.23)
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Algorithm 3.1 vglm.fit()

1. Construct XVLM from XLM and H1, . . . ,Hp.

2. Initialize: a = 1, converged = FALSE, one.more = TRUE, and assign η
(0)
i e.g., from β(0)

or μ(0).

3. If necessary, compute μ
(0)
i , �(0), define β(0), etc.

4. Compute the first and second derivatives: u
(0)
i and W

(0)
i .

5. Compute z(0) = (z
(0)T
1 , . . . , z

(0)T
n )T where z

(0)
i = η

(0)
i +
(
W

(0)
i

)−1
u
(0)
i .

6. While one.more

(a) Regress z(a−1) against XVLM with weights W(a−1) = diag(w1W
(a−1)
1 , . . . , wnW

(a−1)
n )

to obtain β(a). Use X
∗∗(a−1)
VLM in (3.23) to do this.

(b) Assign η(a) = XVLM β(a).
(c) Compute μ(a), �(a), etc. from η(a).
(d) Test for convergence, e.g., converged = if �(a) − �(a−1) < ε or ‖β(a) − β(a−1)‖∞ < ε.
(e) Let one.more = a < maxit and not converged. If one.more then a = a + 1 and then

compute u
(a−1)
i , W

(a−1)
i , and z

(a−1)
i = η

(a−1)
i +

(
W

(a−1)
i

)−1
u
(a−1)
i .

7. Save quantities such as a, η(a), μ(a), β(a) on the object.

say, where Var(ε∗∗(a−1)) = σ2
∗∗ InM . The linearly transformed response z∗∗(a−1)

has OLS applied to it, therefore the Gauss-Markov theorem applies and so the
GLS estimate is the best linear unbiased estimator (BLUE) for β(a).

The OLS normal equations (3.23) are currently computed using orthogonal
methods, that are less prone to numerical problems due to ill-conditioned design
matrices. Specifically, the QR algorithm is invoked using modified linpack subrou-
tines to give stable ordering and rank estimation. Applied to a large n×m matrix,
the QR decomposition costs approximately 2nm2 floating point operations (flops),
therefore a major component of fitting a VGLM with trivial constraints involves

about 2nM(Mp)2 = 2nM3p2 flops at each IRLS iteration for X
∗∗(a−1)
VLM . Also, if

XVLM is nM×Mp in dimension, then the storage requirements involves nM2p dou-
bles. It can be seen that both storage and time costs for fitting a VGLM grows
most rapidly with respect to M , followed by p and then n. One way to reduce the
storage is to reduce the number of parameters, e.g., through imposing constraints
such as intercept-only for some of the parameters θj . Another way is to perform a
reduced-rank regression (Chap. 5) in the form of an RR-VGLM.

A simplified description of the algorithm, as implemented by vglm.fit() (which
is called by vglm()), is given as Algorithm 3.1. Here are some accompanying
miscellaneous notes.

• Here, μ generically stands for the fitted values of the model, as returned
by fitted().

• The initialization step of η can be first brought about by an initial β(0) (in which

case η(0) = XVLM β(0)), or an initial μ(0) (in which case η(0) = g(μ(0))). These
alternatives are reflected in the arguments coefstart and mustart, respec-
tively. The preferred choice is etastart for η(0) because only a few VGAM fam-
ily functions support mustart (notably, those for GLMs and a few other M = 1
families). More information about these arguments is given in Sect. 8.3.1.

• Regarding the inversion of the working weight matrices, this involves computing
the Cholesky decomposition wiWi = UT

i Ui to each working weight matrix,
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where Ui is upper-triangular. Details are given in Sect. A.3.1. The total cost of
the Cholesky decompositions is about nM3/3 flops, and the total cost for the
substitutions is about 2nM2 flops.

• In testing for convergence, if 
(a) < 
(a−1), then half-stepping may be performed
to obtain an improvement for that step; details are at Sect. 3.5.4.

• The number of iterations required for convergence is a after the algorithm has
run, and it appears at the bottom of the summary() output.

3.2.2 Advantages and Disadvantages of IRLS

It is quite amazing that linearly regressing a pseudo-response with working weights
that both change from iteration to iteration can lead to the solution of a myriad
of nonlinear problems.

IRLS has its merits and demerits. One advantage is that it can be built on
existing LS software in a programming environment. Such exists in every statis-
tical package, because LS computations are fundamental to statistical regression.
Another is that generalized additive extensions can be naturally built on the IRLS
algorithm (Chap. 4). Another advantage is that the estimated variance-covariance

matrix of the estimate θ̂ is a natural by-product—this is not so readily available
in some others such as the Expectation-Maximization (EM) algorithm. IRLS is
conceptually simple and a versatile algorithm that is easy to implement. Also, it
would be easy to switch to a robust version by simply reducing large weights.
Altogether, there is a natural simplicity behind the entire scheme.

Some disadvantages of IRLS include the relatively large memory requirement
to store XVLM, and at least the first derivatives of the likelihood function are
needed. Actually these can be relaxed, for example, algorithms exist for piecewise
block computations (e.g., biglm), and derivatives can be approximated by finite
differences and/or simulation (see Sect. 9.2.2). Almost all VGAM family functions
implement Fisher scoring. Regularity conditions (Sects. 3.6.1 and A.1.2.2) must
be met, in general, by the assumed model.

3.3 Constraints on the Component Functions

In (3.3), the effect of each xk on ηj is linear. One can generalize this to

ηj = ηj(x) =

p∑

k=1

f(j)k(xk), j = 1, . . . ,M. (3.24)

where the component functions f(j)k are some (usually smooth) functions to be
estimated from the data. Equation (3.24) gives rise to the class of vector generalized
additive models (VGAMs) and these are detailed in Chap. 4. VGAMs are data-
driven rather than model-driven, i.e., they allow the data to speak for themselves
rather than having an a priori model imposed on the data. For identifiability, each
component function is centred, e.g., informally written E[f(j)k] = 0. VGLMs are
special cases of VGAMs, with all component functions constrained to be linear:
f(j)k(xk) = β(j)k xk.
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Additionally, a very important facility is to allow the f(j)k to be constrained,
e.g., often one wishes to force some of them to be equal or zero. For example, with
a bivariate odds ratio model applied to eye data, one should constrain η1 = η2
because of symmetry; then, we say the error structure is exchangeable. Another
example is the proportional odds model, where there is a parallelism (or propor-
tional odds) assumption β(1)k = · · · = β(M)k, for k = 2, . . . , p. Another example is
when gj(θj) = β(j)1, a constraint known as intercept-only for θj ; this models θj as
simply as possible by using a scalar parameter.

Writing (3.24) in vector form, with the allowance of a vector of known offsets,
o, gives linear/additive predictors of the form

η = (η1, . . . , ηM )T = o+ β(1) + f2(x2) + · · ·+ fp(xp)

= o+H1 β
∗
(1) +H2 f

∗
2(x2) + · · ·+Hp f

∗
p(xp), (3.25)

where f∗
k =

(
f∗
(1)k(xk), . . . , f

∗
(Rk)k

(xk)
)T

is a vector containing a (possibly re-

duced) set of component functions, f∗
1 = β∗

(1) is a vector of unknown intercepts,
and the H1, . . . ,Hp are constraint matrices. Valid matrices Hk have the following
properties:

(i) they are M ×Rk for 1 ≤ Rk ≤M ,

(ii) they have full column-rank, i.e.,
(
HT

k Hk

)−1

exists,

(iii) they are known,
(iv) they are fixed.

Usually the elements of Hk are 0s and 1s. It will be seen in Chap. 5 that RR-
VGLMs relax property (iii) so that some of theHk are estimated. Note that starred
quantities in (3.25) are unknown and need to be estimated. As with the fk, the f

∗
k

are centred. The default value of the M×1 offset vector o is 0, effectively meaning
no offsets at all.

Returning back to VGLMs, note that

ηi = oi +BTxi = oi +

⎛

⎜
⎝

βT
1 xi

...

βT
Mxi

⎞

⎟
⎠ (3.26)

where oi is the optional offset vector (ith row of the offset matrix). With constraints
on the functions, we have

ηi = oi + xi1 H1 β
∗
(1) + xi2 H2 β

∗
(2) + · · ·+ xip Hp β

∗
(p) (3.27)

= oi +

p∑

k=1

xik Hk

⎛

⎜
⎝

β∗
(1)k

...
β∗
(Rk)k

⎞

⎟
⎠ (3.28)

so that

BT =

(

H1 β
∗
(1)

∣
∣
∣
∣
∣
H2 β

∗
(2)

∣
∣
∣
∣
∣
· · ·

∣
∣
∣
∣
∣
Hp β

∗
(p)

)

(3.29)
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for vector

β∗ =
(
β∗T
(1), . . . ,β

∗T
(p)

)T
(3.30)

to be estimated. Equation (3.29) focuses on the rows of B, whereas (3.5) focuses
on the columns.

Here are some simple concrete examples of (3.25), with no offsets for simplicity.

(1) Exchangeability in a bivariate odds ratio model (1.18)–(1.19): η1 = η2

η1 = β∗
(1)1 + f∗

(1)2(x2) + f∗
(1)3(x3),

η2 = β∗
(1)1 + f∗

(1)2(x2) + f∗
(1)3(x3),

η3 = β∗
(2)1 + f∗

(2)2(x2) + f∗
(2)3(x3).

Then

H1 = H2 = H3 =

⎛

⎝
1 0
1 0
0 1

⎞

⎠ .

(2) Odds ratio is intercept-only in an exchangeable bivariate odds ratio model

η1 = β∗
(1)1 + f∗

(1)2(x2) + f∗
(1)3(x3),

η2 = β∗
(1)1 + f∗

(1)2(x2) + f∗
(1)3(x3),

η3 = β∗
(2)1.

Then

H1 =

⎛

⎝
1 0
1 0
0 1

⎞

⎠ , H2 = H3 =

⎛

⎝
1
1
0

⎞

⎠ . (3.31)

(3) The ηj differ by scalars; e.g., parallelism in the proportional odds model (1.23)

η1 = β∗
(1)1 + f∗

(1)2(x2) + f∗
(1)3(x3),

η2 = β∗
(2)1 + f∗

(1)2(x2) + f∗
(1)3(x3),

η3 = β∗
(3)1 + f∗

(1)2(x2) + f∗
(1)3(x3).

Then

H1 = I3, H2 = H3 =

⎛

⎝
1
1
1

⎞

⎠ .

(4) Negative binomial mimicking a quasi-Poisson model ((1.13), (1.15),
(1.16))
Consider an NB regression with η1 = log μ and η2 = log k. Stipulating
that H1 = I2 and H2 = · · · = Hp = (1, 1)T means that Var(Y ) = μ(1+μ/k) =
μ(1 + exp{β∗

(1)1 − β∗
(2)1}) (= φμ, say), where φ is estimated by MLE, and it

has associated confidence intervals and SEs. This is known as an NB-1 model.
Other NB variants are described in Sect. 11.3.
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3.3.1 Fitting Constrained Models in VGAM

There are two ways of fitting VGLMs/VGAMs with constraints in VGAM. The
first is through family function-specific arguments like parallel, exchangeable
and zero—this is the most convenient method, but it provides only limited flexi-
bility. The second is through the constraints argument of vglm()/vgam(), which
gives full flexibility but at the expense of having to set up each individual Hk. Ca-
sual users of VGAM should be able to manage with the first method. Most family
functions with M > 1 ηjs have a zero argument, and many others have parallel
and exchangeable, etc.; these arguments provide a convenient way of enforcing a
useful type of constraint for that particular model.

Arguments such as parallel, exchangeable and zero are described below,
and readers are directed to Chap. 8 for further details. Users wishing to constrain
component functions in more elaborate ways need to understand the underly-
ing details given in Sect. 3.3.1.3, and they should note that arguments such as
parallel, exchangeable and zero merely provide a convenient short-cut for the
method described in that section.

The default value of the arguments parallel and exchangeable is the logi-
cal FALSE, and if set to TRUE, then it may or may not apply to the intercepts—that
depends on that particular family. For example, setting cumulative(parallel =

TRUE) never affects the intercepts in a cumulative logit model, whereas setting
binom2.or(exchangeable = TRUE) does.

3.3.1.1 The zero Argument

The zero argument specifies which linear predictors are to be modelled with an
intercept term only (“intercept-only”), for example,

zfit <- vglm(cbind(y1, y2) ~ x2,

binom2.or(zero = 3, exchangeable = TRUE), data = bdata)

fits the bivariate odds ratio model

logit P (Y1 = 1) = η1 = β∗
(1)1 + β∗

(1)2 x2, (3.32)

logit P (Y2 = 1) = η2 = β∗
(1)1 + β∗

(1)2 x2,

log ψ = η3 = β∗
(2)1,

i.e., with an intercept-only log odds ratio. Thus the estimated odds ratio is simply
the scalar ψ̂ = exp{β̂∗

(2)1}.
The argument zero is often applied to models where at least one of the

parameters has good reason to be treated as an unknown scalar than to be mod-
elled with respect to the covariates. Parameters such as shape parameters, scale
parameters, odds ratios, correlation coefficients or powers are common examples.
Indeed, most of the family functions described in Chaps. 11–13 implement this
idea as the default. In general, zero can be assigned a vector whose (integer) val-
ues lie between 1 and M inclusive. Assigning negative values are also allowed for
multiple responses (Sect. 3.5.1).
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For families which are prone to numerical problems, judicious use of the zero

argument is recommended, at least in the early phases of the model-building pro-
cess, and at least for initial-value generation for more complex models (see the
stepping-stone model of Sect. 8.5).

A NULL value assigned to zero indicates that no ηj are intercept-only. This value
should be set if the constraints argument is used. If zero has a value j, then
it means that the jth row of all the Hks are all 0s, except for H1. Consequently,
ηj = β(j)1 is intercept-only.

3.3.1.2 Arguments Such as parallel and exchangeable

The parallel and exchangeable arguments differ from zero in that they may
be assigned TRUE or FALSE, or else a basic1 S formula consisting of a logical as
response and additive simple terms as explanatory variables. These arguments
always have FALSE as the default, and their syntax is best illustrated by examples.
Recall that, by default, an intercept term is included in an S formula, and that it
can be dropped by adding a 0 or a -1 term.

• parallel = TRUE means the parallelism assumption is applied to all terms (or
equivalently, to all columns of the model matrix), except possibly the intercept.
Each VGAM family function decides whether the constraint is applied to the
intercept or not—and for some families it is very clear whether it is or not.

• parallel = TRUE ∼ x2 + x5 means that the parallelism assumption is only
applied to x2, x5 and the intercept.

• parallel = TRUE ∼ -1 and parallel = TRUE ∼ 0 both means that the par-
allelism assumption is applied to no variables at all. Similarly, parallel =

FALSE ∼ -1 and parallel = FALSE ∼ 0 means that the parallelism assump-
tion is applied to all the variables, including the intercept.

• exchangeable = FALSE ∼ x2 - 1 applies the exchangeability constraint to all
terms (including the intercept) except for x2.

• exchangeable = TRUE ∼ s(x2, df = 2) - 1 applies the exchangeability
constraint only to the smooth term s(x2, df = 2). Note that one doesn’t need
to worry about white spaces, etc. when typing in the terms to match (but you
do have to worry about white spaces when using the constraints argument;
Sect. 3.3.1.3); nevertheless, the term must be syntactically identical. Typing
exchangeable = TRUE ∼ s(x2) - 1 would have no effect.

It can be seen therefore that special care must be taken regarding the intercept
term when a constraints argument is assigned a formula. The user in such a case
must specify explicitly whether or not the constraint applies to the intercept term.

Note there is room for contradiction between arguments and within arguments,
e.g., binom2.or(zero = 2:3, exchangeable = TRUE) is ambiguous with covari-
ates. Currently, there is very little safety by way of warnings to safeguard against

1 In being simple, the formula cannot handle terms such as . and -x2, nor interactions and
nested terms, etc.
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this, and the results are unpredictable. Users should try to keep things simple
and/or use the constraints argument (see Sect. 3.3.1.3). Upon fitting, users can
use the constraints() extractor function to double-check their results (Table 8.5).

3.3.1.3 The constraints Argument

The constraint matrices H1, . . . ,Hp may be inputted into vglm()/vgam() using
the constraints argument. It is assigned a list containing all the Hk, or func-
tions that create them. Each of these must be carefully named with the variable
name or term name. For example, the equivalent of zfit above can be obtained
from

H1 <- matrix(c(1, 1, 0, 0, 0, 1), 3, 2)

H2 <- H1[, 1, drop = FALSE]

zfit2 <- vglm(cbind(y1, y2) ~ x2, binom2.or(zero = NULL), data = bdata,

constraints = list("(Intercept)" = H1,

x2 = H2))

If the family function has a zero argument, then it needs to be set to NULL because
otherwise there is a high likelihood of contradiction between the arguments. If any
explanatory variable is a factor, then only the name of the factor (not any of its
levels) needs to appear in constraints.

When using the constraints argument with functions such as s(), bs() etc.,
one must be very careful to get any white spaces right. For example,

Hlist <- list("(Intercept)" = diag(3),

"poly(x2,3)" = matrix(1, 3, 1), # Incorrect spacings!

"bs(x3,df = 3)" = matrix(1, 3, 1)) # Incorrect spacings!

vglm(y ~ poly(x2,3) + bs(x3,df = 3), ..., constraints = Hlist)

will fail, but it will succeed with

Hlist <- list("(Intercept)" = diag(3),

"poly(x2, 3)" = matrix(1, 3, 1), # Correct spacings!

"bs(x3, df = 3)" = matrix(1, 3, 1)) # Correct spacings!

If unsure, apply something like

> as.character( ~ poly(x2,3))

[1] "~" "poly(x2, 3)"

> as.character( ~ bs(x3, df=3))

[1] "~" "bs(x3, df = 3)"

to each term separately to determine how white spaces are apportioned. The out-
put might then be copy-and-pasted. At present, it is necessary to get it exactly
right, because the names of the constraints list are matched with the character
representation of each term in the formula.
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3.3.1.4 Simple Examples from the Normal Distribution

Given a random sample Yi ∼ N(μ = θ, σ2 = θ2), how might θ be estimated? One
way is to use uninormal(), which has default η1 = μ and η2 = log σ, and then use
the identity link function for σ and set H1 = (1, 1)T . Suppose θ = 10 and n = 100.
Then

> theta <- 10; n <- 100; set.seed(123)

> udata <- data.frame(y1 = rnorm(n, mean = theta, sd = theta))

> Hlist <- list("(Intercept)" = rbind(1, 1))

> fit1a <- vglm(y1 ~ 1, uninormal(lsd = "identitylink"), udata, constraints = Hlist)

> fit1b <- vglm(y1 ~ 1, data = udata,

uninormal(lsd = "identitylink", parallel = TRUE ~ 1))

> coef(fit1a, matrix = TRUE)

mean sd

(Intercept) 9.7504 9.7504

are two equivalent models.
Consider a similar problem but from N(μ = θ, σ2 = θ). Now log μ = log θ =

2 log σ so that

> udata <- data.frame(y2 = rnorm(n, mean = theta, sd = sqrt(theta)))

> Hlist2 <- list("(Intercept)" = rbind(1, 0.5))

> fit2a <- vglm(y2 ~ 1, uninormal(lmean = "loge"), udata, constraints = Hlist2)

> fit2b <- vglm(y2 ~ 1, uninormal(var = TRUE, lvar = "identitylink",

parallel = TRUE ~ 1), data = udata)

> (cfit2a <- coef(fit2a, matrix = TRUE))

loge(mean) loge(sd)

(Intercept) 2.2844 1.1422

> loge(cfit2a[1, "loge(mean)"], inverse = TRUE) # Estimated mean

[1] 9.8197

are two ways of fitting this model. Here, fit2a is based on θ = σ, while fit2b

estimates θ = σ2. It is left to the reader as an exercise to estimate θ from a random
sample from N(μ = θ, σ2 =

√
θ) (Ex. 3.8).

3.3.1.5 The s() Term and Constraints

Jumping ahead a little to fit VGAMs, the specification of arguments df and spar

in s() under zero, parallel and exchangeable, etc. is simple: the successive
values of df correspond to successive columns of the constraint matrix of that
variable. If the length of df is less than the number of columns of the constraint
matrix, then values are recycled. This recycling also applies similarly to spar, e.g.,

vgam(cbind(y1, y2) ~ s(x2, df = c(4, 1)),

binom2.or(exchangeable = TRUE, zero = NULL), data = bdata)

fits the model

logit P (Yj = 1) = β∗
(1)1 + f∗

(1)2(x2), j = 1, 2 ,

log ψ(x) = β∗
(2)1 + β∗

(2)2 x2,

where f∗
(1)2 has 4 degrees of freedom (1 degree of freedom denotes a linear fit).
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For VGAMs fitted with regression splines, it is noted that bs() and ns() cannot
be assigned a vector of df values, hence one term is needed for each component
function having a different degree of freedom. For example,

vglm(y ~ ns(x2, df=4) + ns(x2, df=3), negbinomial(zero = NULL), data = ndata,

constraints = list("(Intercept)" = diag(2),

"ns(x2, df = 4)" = rbind(1, 0),

"ns(x2, df = 3)" = rbind(0, 1)))

fits the negative binomial additive model

log μ = β∗
(1)1 + f∗

(1)2(x2),

log k = β∗
(2)1 + f∗

(2)2(x2),

where f∗
(1)2 has 4 degrees of freedom, and f∗

(2)2 has 3 degrees of freedom.
To round-up this section, as it can be seen, the constraints argument is

powerful and flexible, albeit a little cumbersome. Users are encouraged to use
zero/parallel/exchangeable etc. where possible, but to be aware of possible
conflicts.

3.4 The xij Argument

Initially, we had (3.3), viz.

ηj(xi) = βT
j xi =

p∑

k=1

xik β(j)k, j = 1, . . . ,M, (3.33)

as the jth linear predictor. Importantly, this can be generalized to

ηj(xij) = βT
j xij =

p∑

k=1

β(j)k xikj , (3.34)

where xikj is the ‘jth value’ of variable xk for ηj and observation i. Writing this
another way,

ηj(x
∗
i ,x

∗
ij) = β∗T

j x∗
i + β∗∗T

j x∗
ij . (3.35)

Usually β∗∗
j = β∗∗, say. In (3.35), the variables in x∗

i each have the same value for
all ηj , and the variables in x∗

ij have different values for differing ηj . This allows
for covariate values that are specific to each ηj , a facility which is very important
in many applications. Here are a few simple examples.

1. Suppose that two binary responses, Yj = 1 or 0, measure the presence/absence
of a disease in the jth eye, where j = 1, 2 for the left and right eye, respectively.
There is a single covariate, called intraocular ocular pressure (IOP), which mea-
sures the internal fluid pressure within each eye. With data from n people, it
would be natural to fit an exchangeable bivariate odds ratio model:

logit P (Yij = 1) = ηj = β∗
(1)1 + β∗

(1)2 xi2j , j = 1, 2; i = 1, . . . , n;

log ψ = η3 = β∗
(2)1. (3.36)
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Note that the regression coefficient for xi21 and xi22 is the same, and xi21 �= xi22

in general, because each person’s eyes may have different intraocular pressures.
The constraint matrices H1 and H2 are the same as (3.31) and (3.32).

2. The Mtbh capture-recapture models fitted in Sects. 17.2.4 and 17.2.6 include a
time-varying covariate. For example, to model the effect on a capture at time j
from memory effects resulting from previous captures, a capture history variable
can be fed into the model in the form (3.34), because the ηj are largely functions
of the jth sampling occasion.

3. Suppose that an econometrician is interested in peoples’ choice of transport
between two cities, and that there are four choices: Y = 1 for “bus”, Y = 2
“car”, Y = 3 “train” and Y = 4 for “plane”. Assume that people only choose
one of these means. Suppose that there are three covariates: X2 = cost, X3 =
journey time, and X4 = the person’s income. Of the covariates, only X4 (and
the intercept X1) are the same for all transport choices; the cost and journey
time differ according to the means chosen. Suppose that a random sample of n
people is collected from some population, and that each person has access to
all these transport modes.2 For such data, a natural regression model would be
a multinomial logit model with M = 3: for j = 1, . . . ,M ,

ηj = log
P (Y = j)

P (Y = M + 1)

= β∗
(j)1 + β∗

(1)2 (xi2j − xi24) + β∗
(1)3 (xi3j − xi34) + β∗

(1)4 xi4, (3.37)

where, for the ith person, xi2j is the cost for the jth transport means, and xi3j

is the journey time of the jth transport means. The income variable is xi4; it
has the same value regardless of the transport means.

Equation (3.37) implies H1 = I3 and H2 = H3 = H4 = 13. Note also
that if the last response category is used as the baseline or reference group
(the default of multinomial()), then xik,M+1 can be subtracted from xikj

for j = 1, . . . ,M—this is the natural way that xik,M+1 enters into the model.
An example based on this scenario is given in Sect. 14.2.1.

The use of the xij argument with the VGAM family function multinomial()

has a very important application in economics with consumer choice or discrete
choice modelling. In that field, the term “multinomial logit model” includes a
variety of models such as the “generalized logit model” where (3.33) holds, the
“conditional logit model” where (3.34) holds, and the “mixed logit model”, which
is a combination of the two, where (3.35) holds. The generalized logit model focuses
on the individual as the unit of analysis, and it uses individual characteristics as
explanatory variables, e.g., age of the person in the transport example. The con-
ditional logit model assumes different values for each alternative, and the impact
of a unit of xk is assumed to be constant across alternatives, e.g., journey time
in the choice of transport mode. The conditional logit model was proposed for
econometrics by McFadden (1974), and it has been used in many fields including
biomedical research to estimate relative risks in matched case-control studies. Un-
fortunately, there is confusion in the literature for the terminology of the models.

2 If not, then this is known as a “varying choice set” in the discrete-choice model literature.
This presently is outside the VGLM/VGAM framework.
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Some authors call multinomial() with (3.33) the “generalized logit model”, while
others call the mixed logit model the “multinomial logit model”, and they view
the generalized logit and conditional logit models as special cases. In VGAM ter-
minology, there is no need to give different names to all these slightly-different
special cases. They can all be called multinomial logit models, although it may be
added that some have covariate-specific linear/additive predictors. The important
thing is that the framework accommodates xij , so one tries to avoid making life
unnecessarily complicated. And xij can apply in theory to any VGLM and not
just to the multinomial logit model.

3.4.1 The Central Formula

VGAM handles an explanatory variable taking different values for each ηj , (3.35),
using the xij argument. It is assigned an S formula, or a list of S formulas. Each
formula, which must have M different terms on the RHS, forms the diagonal of a
diagonal matrix that premultiplies a constraint matrix. In detail, recall that (3.33)
can accommodate constraint matrices, and be written

η(xi) = BTxi =

p∑

k=1

Hk β
∗
(k) xik, (3.38)

where the β∗
(k) = (β∗

(1)k, . . . , β
∗
(Rk)k

)T are to be estimated. This may be written

[cf. (3.27)]

η(xi) =

p∑

k=1

diag(xik, . . . , xik)Hk β
∗
(k). (3.39)

To handle (3.34)–(3.35), we can generalize (3.39) to

ηi = oi +

p∑

k=1

diag(xik1, . . . , xikM )Hk β
∗
(k) (3.40)

= oi +

p∑

k=1

X#
(ik) Hk β

∗
(k), say,

with provision for offsets oi. This is the central formula for the xij facility and the
most general for VGLMs. Then the big model matrix has the block form (cf. (3.20))

XVLM =

⎛

⎜
⎜
⎝

X#
(11)H1 · · · X#

(1p)Hp

...
...

X#
(n1)H1 · · · X#

(np)Hp

⎞

⎟
⎟
⎠ . (3.41)

To summarize, for VGLMs, the fundamental computation at each IRLS itera-
tion is the fitting of a VLM to the zi upon XVLM with working weights Wi. The
model matrix XVLM incorporates the constraint matrices Hk and xij . The VLM
for GLMs is a simple weighted least squares regression.
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3.4.2 Using the xij Argument in VGAM

To fit such models in VGAM, one needs to use the xij and form2 arguments.
Each component of the argument xij list is a formula having M different terms
(ignoring the intercept) which specifies the successive diagonal elements of the

matrix X#
(ik) in (3.40). By “different”, this guarantees there will be M terms. The

constraint matrices themselves are not affected by the xij argument.
Here are two examples revisited.

1. fit.eyes <- vglm(formula = cbind(leye, reye) ~ iop,

data = eyesData,

family = binom2.or(exchangeable = TRUE, zero = 3),

xij = list(iop ~ liop + riop + fill1(liop)),

form2 = ~ iop + liop + riop + fill1(liop))

Here, liop and riop are the intraocular pressures of the left and right eyes.
The specific values of the vector iop are not needed (unless plotted—see
Sect. 3.4.4.1) because they are overwritten by liop and riop when form-
ing XVLM. One could call iop a “dummy” vector since its purpose is only
for labelling; however, it is not a dummy variable! The function fill1() makes
the number of terms equal to 3 (= M for binom2.or()), and the value it returns
is a structure of 0s the same dimension as liop—here it is just a vector. Each
response term in the formulas in xij connects with the same term in formula,
so essentially it is for labelling purposes only (here, “iop”). One can see this la-
belling by using model.matrix(fit.eyes, type = "vlm") to get XVLM; there
will be a column called “iop”. The argument form2 should contain all terms
used in arguments formula and xij, except possibly the response; it creates an
all-encompassing LM matrix from which columns are extracted (this matrix is
called Xform2).

The desired model is

logitP (Yi1 = 1) = β∗
(1)1 + β∗

(1)2 xi21,

logitP (Yi2 = 1) = β∗
(1)1 + β∗

(1)2 xi22,

log ψ = β∗
(2)1.

By the way,

bad.eyes1 <- vglm(cbind(leye, reye) ~ liop + riop, data = eyesData,

binom2.or(exchangeable = TRUE, zero = 3))

would result in the model

logitP (Yi1 = 1) = β∗
(1)1 + β∗

(1)2 xi21 + β∗
(1)3 xi22,

logitP (Yi2 = 1) = β∗
(1)1 + β∗

(1)2 xi21 + β∗
(1)3 xi22,

log ψ = β∗
(2)1, (3.42)
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which is incorrect. Another similar model is

logitP (Yi1 = 1) = β∗
(1)1 + β∗

(1)2 xi21,

logitP (Yi2 = 1) = β∗
(1)1 + β∗

(1)3 xi22,

log ψ = β∗
(2)1,

which can be fitted with

bad.eyes2 <- vglm(cbind(leye, reye) ~ liop + riop, binom2.or, data = eyesData,

constraints = list("(Intercept)" = matrix(c(1,1,0, 0,0,1), 3, 2)

liop = rbind(1, 0, 0),

riop = rbind(0, 1, 0)))

This differs from (3.36) because it allows for a different regression coefficient for
each eye, i.e., the effect of intraocular pressure on each eye is different. Such a
model is not exchangeable. For this reason, it too is incorrect.

2. Let’s fit (3.37). Suppose the journey cost and time variables have had the cost
and time by plane subtracted from them. Then, using “.trn” to denote train,

gfit <- vglm(cbind(bus, car, train, plane) ~ Cost + Time + Income,

family = multinomial(parallel = TRUE ~ Cost + Time + Income - 1),

xij = list(Cost ~ Cost.bus + Cost.car + Cost.trn,

Time ~ Time.bus + Time.car + Time.trn),

form2 = ~ Cost.bus + Cost.car + Cost.trn +

Time.bus + Time.car + Time.trn +

Cost + Time + Income, data = gotowork)

should do the job. It has H1 = I3 and H2 = H3 = H4 = 13 because the lack of
parallelism only applies to the intercept. However, unless Cost is the same as
Cost.bus and Time is the same as Time.bus, this model should not be plotted
with the "vgam" methods function for plot(); see Sect. 3.4.4.1 for details.

Incidentally, it can be argued that β∗
(1)4 in (3.37) is better replaced by β∗

(j)4.
Then the above code, but with one line replaced by

family = multinomial(parallel = FALSE ~ 1 + Income),

should fit this model. Equivalently,

family = multinomial(parallel = TRUE ~ Cost + Time - 1),

3.4.3 More Complicated Examples

The xij facility allows a lot of flexibility among all the regression coefficients with
respect to linear constraints. The following are some further examples. To exploit
the full flexibility, sometimes some manipulation is required. We assume below that
the data frame adata contains the variables x1 and x2 from the outset. Recall that
the crucial equation is (3.40).

Example 1 Suppose that

η = β1 x1 + β2 x2.
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How can one fit this subject to β1 + β2 = δ, say, where δ is known? The answer is
to let

η = β1 x1 + (δ − β1) x2

= δ x2 + β1 (x1 − x2) ,

i.e., use an offset δ x2 and regress on x3, where x3 = x1−x2. Use code of the form

adata <- transform(adata, x3 = x1 - x2)

vglm(y ~ offset(delta * x2) - 1 + x3, aVGAMfamilyFunction, data = adata)

or alternatively,

vglm(y ~ 0 + I(x1 - x2), aVGAMfamilyFunction, offset = delta * x2, data = adata)

Example 2 Suppose that

η1 = β(1)1 x1 + β(1)2 x2, (3.43)

η2 = β(2)1 x1 + β(2)2 x2. (3.44)

How can one fit (3.43)–(3.44) subject to β(1)1 + β(1)2 = β(2)1 + β(2)2? The answer
is to let

η2 = β(2)1 x1 +
(
β(1)1 + β(1)2 − β(2)1

)
x2

= β(1)1 x2 + β(1)2 x2 + β(2)1 (x1 − x2) .

Letting x3 = x1 − x2, then

η =

(
x1 0
0 x2

)(
1
1

)

β(1)1 + x2

(
1
1

)

β(1)2 + x3

(
0
1

)

β(2)1

=

(
x1 0
0 x2

)(
1
1

)

β∗
(1)1 + (x2 I2)

(
1
1

)

β∗
(1)2 + (x3 I2)

(
0
1

)

β∗
(1)3.

Use code of the form

adata <- transform(adata, X1 = x1, x3 = x1 - x2)

Hlist <- list(X1 = rbind(1, 1), x2 = rbind(1, 1), x3 = rbind(0, 1))

fit2 <- vglm(y ~ -1 + X1 + x2 + x3, aVGAMfamilyFunction, data = adata,

constraints = Hlist, xij = list(X1 ~ -1 + x1 + x2),

form2 = ~ -1 + x1 + x2 + x3 + X1)

Here, the value of X1 is ignored, therefore it could be assigned any numerical vector
of the appropriate length. Alternatively, one could use form2 = Select(adata,

TRUE, as.formula = TRUE), which chooses every variable in adata to be on the
RHS of an S formula—this is overkill but it would work.

Example 3 How can one fit (3.43)–(3.44) subject to β(1)1+β(2)2 = β(2)1+β(1)2?
The answer is to let

η2 = β(2)1 x1 +
(
β(2)1 + β(1)2 − β(1)1

)
x2

= β(2)1 (x1 + x2) + β(1)2 x2 − β(1)1x2.
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Write this as

η =

(
x1 0
0 x2

)(
1

−1
)

β(1)1 + x2

(
1
1

)

β(1)2 + x3

(
0
1

)

β(2)1

=

(
x1 0
0 x2

)(
1

−1
)

β∗
(1)1 + (x2 I2)

(
1
1

)

β∗
(1)2 + (x3 I2)

(
0
1

)

β∗
(1)3

where x3 = x1 + x2, say. This can be fitted by code of the form

adata <- transform(adata, X1 = x1, x3 = x1 + x2)

Hlist <- list(X1 = rbind(1, -1), x2 = rbind(1, 1), x3 = rbind(0, 1))

fit3 <- vglm(y ~ -1 + X1 + x2 + x3, aVGAMfamilyFunction, data = adata,

xij = list(X1 ~ -1 + x1 + x2), constraints = Hlist,

form2 = ~ -1 + x1 + x2 + x3 + X1)

Example 4 Suppose that

η1 = β(1)1 x1 + β(1)2 x2, (3.45)

η2 = β(2)1 x1 + β(2)2 x2, (3.46)

η3 = β(3)1 x1 + β(3)2 x2. (3.47)

How can one fit this subject to β(1)1 + β(2)1 + β(3)1 = δ, where δ is known? The
answer is to let

η3 =
(
δ − β(1)1 − β(2)1

)
x1 + β(3)2 x2

= δ x1 + β(1)1 (−x1) + β(2)1 (−x1) + β(3)2 x2.

Thus

η =

⎛

⎝
0
0

δ x1

⎞

⎠+ x1

⎛

⎝
1 0
0 1

−1 −1

⎞

⎠

(
β(1)1

β(2)1

)

+ x2 I3

⎛

⎜
⎝

β(1)2

β(2)2

β(3)2

⎞

⎟
⎠ .

This can be fitted by code of the form

fit4 <- vglm(y ~ offset(cbind(0, 0, delta * x1)) + x1 + x2 - 1,

aVGAMfamilyFunction, data = adata,

constraints = list(x1 = matrix(c(1, 0, -1, 0, 1, -1), 3, 2),

x2 = diag(3)))

Example 5 How can one fit (3.45)–(3.47) subject to β(1)1 + β(2)1 + β(3)1 =
β(1)2 + β(2)2 + β(3)2? The answer is to let

η3 = β(3)1 x1 +
(
β(1)1 + β(2)1 + β(3)1 − β(1)2 − β(2)2

)
x2.

Usually (trivial constraints)

η = x1 I3

⎛

⎜
⎝

β(1)1

β(2)1

β(3)1

⎞

⎟
⎠+ x2 I3

⎛

⎜
⎝

β(1)2

β(2)2

β(3)2

⎞

⎟
⎠
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but here,

η3 = β(3)1 (x1 + x2) + β(1)1 x2 + β(2)1 x2 + β(1)2(−x2) + β(2)2(−x2).

So

η =

⎛

⎝
x1 0 0
0 x1 0
x2 x2 x1 + x2

⎞

⎠

⎛

⎜
⎝

β(1)1

β(2)1

β(3)1

⎞

⎟
⎠+

⎛

⎝
x2 0
0 x2

−x2 −x2

⎞

⎠

(
β(1)2

β(2)2

)

.

The second term is easy:

x2

⎛

⎝
1 0
0 1

−1 −1

⎞

⎠

(
β(1)2

β(2)2

)

.

The first term is problematic if dealt with wholly. Instead, one needs to break it
up by columns:

⎛

⎝
x1

0
x2

⎞

⎠β(1)1 +

⎛

⎝
0
x1

x2

⎞

⎠β(2)1 +

⎛

⎝
0
0

x1 + x2

⎞

⎠β(3)1

which equals

⎛

⎝
x1 0 0
0 a1 0
0 0 x2

⎞

⎠

⎛

⎝
1
0
1

⎞

⎠β(1)1 +

⎛

⎝
a2 0 0
0 x1 0
0 0 x2

⎞

⎠

⎛

⎝
0
1
1

⎞

⎠β(2)1 +

⎛

⎝
a3 0 0
0 a4 0
0 0 x3

⎞

⎠

⎛

⎝
0
0
1

⎞

⎠β(3)1

where x3 = x1 + x2, and aj has any value. Thus p = 4. The model can be fitted
using code of the form

adata <- transform(adata, X1 = x1, X2 = x1, X3 = x1, x3 = x1 + x2,

a1 = 0 * x1, a2 = 0 * x1, a3 = 0 * x1, a4 = 0 * x1)

fit5 <- vglm(y ~ X1 + X2 + X3 + x2 - 1, aVGAMfamilyFunction, data = adata,

constraints = list(X1 = rbind(1, 0, 1),

X2 = rbind(0, 1, 1),

X3 = rbind(0, 0, 1),

x2 = matrix(c(1, 0, -1, 0, 1, -1), 3, 2)),

form2 = Select(adata, TRUE, as.formula = TRUE),

xij = list(X1 ~ -1 + x1 + a1 + x2,

X2 ~ -1 + a2 + x1 + x2,

X3 ~ -1 + a3 + a4 + x3))

Once again, the values assigned to X1, X2 and X3 do not matter.

3.4.4 Smoothing

The examples in Sect. 3.4.2 are reasonably straightforward because the variables
are entered linearly. Things become more tricky if data-dependent functions are
used in any xij terms, e.g., bs() or poly() (see Sect. 18.6). In particular, regres-
sion splines such as bs() can be used to estimate a general smooth function f(xij),
which is very useful for exploratory data analysis.
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For the eyesData example, the code

fit.wrong <- vglm(cbind(leye, reye) ~ bs(iop), data = eyesData,

family = binom2.or(exchangeable = TRUE, zero = 3),

xij = list(bs(iop) ~ bs(liop) + bs(riop) + fill(bs(liop))),

form2 = ~ bs(iop) + bs(liop) + bs(riop) + fill(bs(liop)))

is incorrect because the basis functions for bs(liop) and bs(riop) are not iden-
tical since the knots differ. Consequently, they represent two different functions
despite having common regression coefficients.

Fortunately, it is possible to force the two bs() terms to have identical basis
functions by using a trick: combine the vectors temporarily. To do this, one can use

BS <- function(x, ..., df = 3)

bs(c(x, ...), df = df)[1:length(x), , drop = FALSE]

This computes a B-spline evaluated at x, but using other arguments as well, to
form an overall vector from which to obtain the (common) knots. Then the usage
of BS() can be something like

fit.BS <- vglm(cbind(leye, reye) ~ BS(iop), data = eyesData,

binom2.or(exchangeable = TRUE, zero = 3),

xij = list(BS(iop) ~ BS(liop, riop) +

BS(riop, liop) +

fill1(BS(liop, riop))),

form2 = ~ BS(iop) + BS(liop, riop) + BS(riop, liop) +

fill1(BS(liop, riop)) + iop + liop + riop)

So BS(liop, riop) is the smooth term for liop, and BS(riop, liop) is the
smooth term for riop.

The generic predict() should work as usual with vglm() models that uti-
lize the xij argument, provided that the argument newdata is assigned a data
frame with all the variables, i.e., those needed by the argument form2. However,
Select() should not be assigned to form2 when there are BS() or NS() terms.

Plotting the terms of fit.BS correctly, however, requires finesse, and this is
explained in the next section.

3.4.4.1 Plotting †

Plotting each term of a VGLM can be achieved by coercing the object into
a "vgam" object and calling the corresponding methods function; the call is of
the form plot(as(vglmObject, "vgam")). If vglmObject uses the xij argument,
then some finesse is required. The details are as follows.

The important rules for a valid plot are:

(i) terms in RHS of formula should match both

(a) the LHS term (response) of each formula in the xij list, and
(b) the first term of the RHS of each formula in the xij list.
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For example, term1 and term2 in

tfit <- vglm(response ~ term1 + term2 + term3 + ..., aVGAMfamilyfunction, adata,

xij = list(term1 ~ term1 + term1a + term1b + ...,

term2 ~ term2 + term2a + term3b + ...),

form2 = ~ term1 + term2 + term3 + ... +

term1a + term1b + ... +

term2a + term2b + ... )

plot(as(tfit, "vgam"), se = TRUE)

Here, the first component functions of term1 and term2 should plot correctly
against their first (inner) arguments, e.g., if term1 is myfun(x5, x6, df = 4)

then its first inner argument is x5.
(ii) the varxijth (inner) argument of each such term is used for the plotting. The

default is varxij = 1, meaning the first. For example, if term1 was NS(dum1,
dum2), then it has two variables dum1 and dum2, and so its component func-
tions would be plotted against dum1. If term2 was NS(dum3, dum4), then its
component functions would be plotted against dum3 by default.

The above rules arise because the default for plot() applied to a "vgam" object
is raw = TRUE, meaning that if a constraint matrix Hk has Rk columns then Hk

is temporarily replaced by

H∗
k =

(
IRk

O

)

, (3.48)

so that

H∗
k f∗

k(xk) =

(
f∗
k(xk)
0

)

.

Since only the first Rk component functions of xk are plotted, these are then just

the f̂
∗
k(xk) plotted against xk.

The call plot(as(VGLMobject, "vgam")) uses the formula argument
of VGLMobject to obtain the xk variable for which the plots of the component

functions f̂
∗
k(xk) are produced. Since xk may vary for each ηj , this means that

only one of them is potentially correct. By default, VGAM chooses the first ar-
gument (more generally the varxijth one) of the first term of the RHS of each
formula in the xij list. For example, the term NS(dum1, dum2) has two vari-
ables dum1 and dum2, and so all the raw component functions for that term are
plotted against dum1.

With terms affected by xij, the default values of some other arguments
need to be changed to give a more accurate representation. For example, some-
thing like xlab = "dum1" should be assigned in plot(as(., "vgam")) be-
cause NS(dum1, dum2) produces an xlab equalling dum1 and dum2 written on two
lines. Also, it may be necessary to use the which.term and which.cf arguments
to select only ‘correct’ component functions.
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The above method of how plot(as(., "vgam")) works means that essentially
only one-column constraint matrices are handled. If necessary, use the which.cf

argument to select the component function. Note that although the xij argument
is not restricted to one-column constraint matrices, plotting essentially is.

Example 1
The call

Fit1 <-

vglm(cbind(leye, reye) ~ BS(liop, riop),

binom2.or(exchangeable = TRUE, zero = 3), data = eyesData,

xij = list(BS(liop, riop) ~ BS(liop, riop) + BS(riop, liop) + fill1(BS(liop))),

form2 = ~ liop + riop + BS(liop, riop) + BS(riop, liop) + fill1(BS(liop)))

plot(as(Fit1, "vgam"), se = TRUE)

plots the estimated smooth component function against liop. To plot the (same)
component function against riop, try

plot(as(Fit1, "vgam"), varxij = 2, se = TRUE)

Example 2
We jump ahead to Chap. 14 where a discrete-choice model similar to the one de-
scribed in this section is fitted. Following from the analysis of TravelMode in AER
in Sect. 14.2.1, we will allow regression spline smoothing of the cost variable(s).

> NS <- function(x, ..., df = 4)

ns(c(x, ...), df = df)[1:length(x), , drop = FALSE]

> tfit2 <-

vglm(mode ~ NS(gcost.air, gcost.trn, gcost.bus) + wait + income,

multinomial(parallel = FALSE ~ 1), data = TravelMode2,

xij = list(NS(gcost.air, gcost.trn, gcost.bus) ~

NS(gcost.air, gcost.trn, gcost.bus) +

NS(gcost.trn, gcost.bus, gcost.air) +

NS(gcost.bus, gcost.air, gcost.trn),

wait ~ wait.air + wait.trn + wait.bus,

income ~ inc.air + inc.trn + inc.bus),

form2 = ~ NS(gcost.air, gcost.trn, gcost.bus) +

NS(gcost.trn, gcost.bus, gcost.air) +

NS(gcost.bus, gcost.air, gcost.trn) +

wait + income +

inc.air + inc.trn + inc.bus +

gcost.air + gcost.trn + gcost.bus +

wait.air + wait.trn + wait.bus)

> plot(as(tfit2, "vgam"), se = TRUE, lcol = "orange", scol = "blue",

which.term = 1, xlab = "gcost", ylab = "Fitted smooth", noxmean = TRUE)

This gives Fig. 3.1. The fitted function appears linear where the bulk of the data
are. An approximate p-value for testing linearity of the function can be obtained
from lrtest(tfit2, fit.travel), and has the value 0.082, which indicates weak
evidence against linearity. The first few rows of XVLM, which is (3.41), can be
obtained by
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Fig. 3.1 An extension of the fitted
model fit.travel from Sect. 14.2.1,
where the cost variable is smoothed with
regression splines. The variable gcost

stands for ‘generalized cost’.
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> head(model.matrix(tfit2, type = "vlm"), 4)

(Intercept):1 (Intercept):2 (Intercept):3

1:1 1 0 0

1:2 0 1 0

1:3 0 0 1

2:1 1 0 0

NS(gcost.air, gcost.trn, gcost.bus)1 NS(gcost.air, gcost.trn, gcost.bus)2

1:1 0.53076 0.377890

1:2 0.51110 0.390758

1:3 0.53076 0.377890

2:1 0.88402 0.012843

NS(gcost.air, gcost.trn, gcost.bus)3 NS(gcost.air, gcost.trn, gcost.bus)4

1:1 0.144633 -0.053282

1:2 0.150849 -0.052711

1:3 0.144633 -0.053282

2:1 0.066754 -0.036113

wait income

1:1 69 35

1:2 34 0

1:3 35 0

2:1 64 30

The stacking of ηj-specific values can be seen, which result from the parallelism
constraints, cf. (3.41).

3.4.5 Last Word

The xij argument operates after the ordinary XVLM matrix is created. Then se-
lected columns of XVLM are modified from information in the constraint matrices,
xij and form2 arguments, i.e., from Xform2 and Hk. This whole operation is pos-
sible because XVLM remains structurally the same. The crucial equation is (3.40).

Some examples of the xij argument found elsewhere include a pooled SUR
model (Sect. 10.2.3.1), a positive-Bernoulli Mtbh model (Sect. 17.2.4), and a
discrete-choice model (Sect. 14.2.1). Other xij examples are given in the online
help of fill1() and vglm.control().



3.5 Other Topics 115

3.5 Other Topics

3.5.1 Multiple Responses

A feature that some VGAM family functions possess is the ability to handle multiple
responses. For example,

nfit <- vglm(cbind(y1, y2, y3) ~ x2 + x3, negbinomial, data = ndata)

might be S = 3 species’ counts regressed upon some environmental variables for
data collected at n sites. This can be achieved by invoking vglm() thrice, so why
then offer this capability? One reason is because some of the regression coefficients
might be constrained to be equal over all the responses. In fact, the Hk allow linear
constraints over all variables and responses. Another reason is that the ordination
methods described in Chaps. 6–7 need to handle multiple responses naturally. In
this example, the enumeration of the ηjs are

η = (η1, . . . , η6)
T = (log μ1, log k1, log μ2, log k2, log μ3, log k3)

T
(3.49)

so that Species 1 specifies the first two ηjs, then Species 2 for the next two, etc.
One generally writes the overall M -vector as

η =
(
ηT
(1), . . . ,η

T
(S)

)T
= (η1, . . . , ηM )T (3.50)

say, for S multiple responses (i.e., the η(s) is the usual set of linear predictors for
the sth response).

Some care is needed to distinguish between multiple responses and multivariate
responses. Multiple responses are treated independently of each other, and are to
be inputted side-by-side on the LHS of the formula using cbind(). Each response
may be a vector, of dimension Q1. Multivariate responses correspond to Q1 > 1,
and are handled by some full-likelihood model that takes into account their joint
distribution. The quantity Q1 is not to be confused with the length of each column
of the response matrix, which is n. It is possible to have multiple multivariate
responses, e.g.,

mfit <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ x2, binormal, data = bdata)

treats the response cbind(y1, y2) as one bivariate normal response, cbind(y3,
y4) as another set of N2-distributed random vectors, and cbind

(y5, y6) as another. Thus one might say there are S = 3 (multiple) responses,
and each response is bivariate. For binormal(), M1 = 5 because the standard bi-
variate normal distribution can be considered as having 5 parameters to estimate.
Hence, M = 5× 3 = 15 is the total number of linear/additive predictors ηj . More
details about binormal() are in Sect. 13.2.1.

Here are some basic results. For ‘one’ response, the number of linear/additive
predictors is denoted by M1. The quantity M is always the total number of
linear/additive predictors ηj , hence M = M1 · S, and with multiple responses,
dim(yi) = SQ1 = Q. Table A.4 summarizes the notation.

With multiple responses, the overall log-likelihood can be written


(β∗) =

n∑

i=1

S∑

s=1

wis 
is{η1(xi), . . . , ηM (xi)}, (3.51)
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and all the derivations naturally extend to cover this case. Importantly, the order-
ing of η is as (3.50). One can input the prior weights of each response side-by-side
as in the response, e.g.,

vglm(cbind(y1, y2) ~ x2 + x3, negbinomial, data = ndata, weights = cbind(w1, w2))

If the inputted prior weights are a vector or one-column matrix, then recycling is
used, e.g.,

vglm(cbind(y1, y2) ~ x2 + x3, negbinomial, data = ndata, weights = w1)

recycles w1 for both responses. By default, all prior weights are unity.
Returning back to the zero argument of Sect. 3.3.1.1, it is noted that this

argument may be assigned negative values in order to handle multiple responses
more easily. A negative j value means that each η|j| for each response is intercept-
only, e.g.,

vglm(cbind(y1, y2, y3) ~ x2 + x3, negbinomial(zero = -2), data = ndata)

models all three kj parameters in (3.49) as scalars.

3.5.2 Deviance

The generic function deviance() returns the deviance for VGAMmodels. However,
it mainly applies to GLMs because they are readily defined for such. A few details
are as follows. The deviance D is defined by

D(y;μ)

φ
= 2 {
(y;y)− 
(μ;y)} , (3.52)

since μ̂i = yi when the log-likelihood is maximized over μi unconstrained, i.e.,
when the number of parameters is equal to the number of observations. This is
called the saturated model. (That μ̂i = yi is easily shown for the normal, binomial
and Poisson families). The LHS of (3.52) is known as the scaled deviance. When
the GLM is an LM, then φ = σ2 is the variance, the numerator is the residual sum
of squares

∑n
i=1 wi(yi−μi)

2, and the scaled deviance is χ2
n−p distributed. For the

standard binomial and Poisson families, φ = 1.
For GLMs, if φ is unknown, then it is most commonly estimated by the method

of moments. This results in a φ̂ that is generally consistent, and in the case of
an ordinary LM, it is unbiased. Contrary to popular opinion, the deviance is not
asymptotically χ2

n−p in general. Indeed, the use of χ2
n−p for the scaled deviance is

only justified in some cases by ‘small-dispersion asymptotics’. While the deviance
itself may have some complicated distribution, differences in the deviance between
two nested models is well-approximated by a χ2

p1−p2
distribution, where p1 and p2

are the number of parameters in the complex and simpler models, respectively.
Further details can be found, e.g., in Firth (1991).

For the few VGLMs that have a definable deviance, it follows the usual formula,
viz.,

D = 2 (
max − 
) , (3.53)

where 
max is the maximum achievable log-likelihood. There usually is no scaling
parameter, because this is estimated along with the other parameters in a full-
likelihood model.
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The deviance is not defined for most models, and if so then deviance() will
return a NULL. If a VGAM family function has a @deviance slot programmed in,
then this will usually mean that function will be used for testing convergence
while the model is estimated, otherwise usually the log-likelihood is used instead
(almost all VGAM family functions have the log-likelihood function programmed
in the @loglikelihood slot).

Quantities such as the deviance and log-likelihood should be retrieved from a
fitted object using the appropriate accessor function (Tables 8.5, 8.6, 8.7), e.g.,
logLik() for 
.

3.5.3 Convergence

Section A.1.2.4 describes Newton-like algorithms that are relevant to the
VGLM/VGAM framework. Although Fisher scoring does not converge as fast
as the quadratically convergent Newton-Raphson algorithm in general, it is much
faster than the EM algorithm that is so popular in many fields. It has the additional
advantage over the EM algorithm in that the standard errors are automatically
available as a by-product. As Dempster et al. (1977, p.35) write, “. . . it is impor-
tant to remember that Newton-Raphson or Fisher-scoring algorithms can be used
in place of EM. The Newton-Raphson algorithm is clearly superior from the point
of view of rate of convergence near a maximum, since it converges quadratically.”

Note that there are two approximations in the estimation process. Firstly, there
is the quadratic approximation to 
, and secondly, there is the OIM approximated
by the EIM. Regarding the quadratic approximation, this is illustrated with the V1
data set in Fig. 3.2. In World War II, some of the grids (each 1

4 of a square km)
about south London were heavily hit by V1 flying bombs, and we define a ‘success’
here as 3 or more hits. A simple intercept-only logistic regression gives μ̂ = 0.075
as the probability of being heavily hit. Figure 3.2a plots 
 as a function of μ,
and Fig. 3.2b as a function of η = logitμ. It may be seen that the logit link
increases the symmetry about μ̂. Hence the quadratic approximation to 
 about
its MLE is slightly better under the logit transformation than under the raw
parameter μ. Consequently, it is to be expected that its SEs will be more accurate.
For completion, applying the delta method (A.29) to these data, approximate 95%
confidence intervals for μ from both methods are

> V1 <- transform(V1, hit3 = hits >= 3)

> fit.logit <- vglm(hit3 ~ 1, binomialff, weights = ofreq, data = V1)

> fit.ident <- vglm(hit3 ~ 1, binomialff(link = "identitylink"), weights = ofreq, V1)

> logit(predict(fit.logit)[1] + 1.96 * c(-1, 1) * sqrt(vcov(fit.logit)), inv = TRUE)

[1] 0.055828 0.099159

> fitted(fit.ident)[1] + 1.96 * c(-1, 1) * sqrt(vcov(fit.ident))

[1] 0.053188 0.096117

Here, they do not appear to be markedly different. Incidentally, since the Poisson
model fits the data well, if the response was whether the square grids were hit
versus not hit, then a complementary log–log link would be the most natural
choice.
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Fig. 3.2 Log-likelihood � as a function of (i) μ and (ii) η = logitμ, for the V1 data frame. The
model is a logistic regression with 3 or more hits defining ‘success’. The vertical dashed lines are
at the MLE μ̂. The dashed curves are the quadratic approximation to � at μ̂.

3.5.4 Half-Stepping

The Newton-Raphson algorithm unfortunately does not guarantee convergence to
a maximum of the likelihood, even when the Wi are positive-definite. VGAM uses
two enhancements to aid convergence: parameter link functions and half-stepping.

The use of parameter link functions is mainly for two reasons.

1. To transform the parameter to (−∞,∞), hence does not suffer from parameter
estimates that go outside its boundary.

2. To make the log-likelihood better approximated by a quadratic.

Sometimes, it may aid interpretation too.
Half-stepping is the other enhancement. Sometimes an iteration may step too

far and reduce the likelihood. This problem, which can be due to a log-likelihood
that is far from locally quadratic, occurs when 
(a) < 
(a−1). It can be rectified
by repeatedly halving the step until the likelihood is increased, because the score
vector points in the direction of greatest ascent in 
 at the current iteration. In
more detail (cf. (3.9)),

β(a) = β(a−1)+
(
X∗TW(a−1)X∗

)−1

X∗TW(a−1)z(a) = β(a−1)+h(a−1) (3.54)

where h(a−1) is referred to as the step. Half-stepping involves replacing h(a−1)

by 1
2h

(a−1), 1
4h

(a−1), 1
8h

(a−1), . . . , if 
(a) < 
(a−1) until 
(a) > 
(a−1). It entails
computing 
 at

β(a−1) + α
(
β(a) − β(a−1)

)
= (1− α)β(a−1) + αβ(a), a = 1, 2, . . . , (3.55)

for α = 1
2 ,

1
4 ,

1
8 , . . . until an improvement occurs. Note that half-stepping requires

both β(a) and β(a−1), therefore it can be implemented at the first iteration only if
the initial value of the coefficient vector β(0) is known. This is only so if coefstart
is inputted.

Currently, half-stepsizing is presently only implemented in vglm(). Further-
more, the value of α in (3.55) is specified in vglm.control()$stepsize, and de-
faults to unity. The value provides an upper bound on the size of any step during
the Newton-type iterations. At any particular iteration, the stepsize is the min-
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imum of this value and twice the previous stepsize. Half-stepping can be turned
off by setting vglm.control(half.stepsizing = FALSE) because it is TRUE by
default.

To illustrate that plain Fisher scoring may fail occasionally without half-
stepping, consider the toy data set of Ridout (1990) involving a dilution series
method to estimate the density of organisms (this sort of experiment is described
in, e.g., McCullagh and Nelder, 1989, Sect.1.2.4).

> ridout <- data.frame(v = 10^(3:1), r = c(4, 3, 3), n = c(5, 5, 5))

> (ridout <- transform(ridout, logv = log(v)))

v r n logv

1 1000 4 5 6.9078

2 100 3 5 4.6052

3 10 3 5 2.3026

It is left to the reader (Ex. 3.11) to run the following:

glm.fail <- glm(r/n ~ offset(logv) + 1, weight = n,

binomial(link = cloglog), data = ridout, trace = TRUE, maxit = 25)

and confirm that the iterations oscillate between two local solutions. With VGAM,
the half-stepping feature results in a slight improvement:

vglm.okay <- vglm(cbind(r, n-r) ~ offset(logv) + 1,

binomialff(link = "cloglog"), data = ridout, trace = TRUE)

Then

> c(deviance(glm.fail), deviance(vglm.okay))

[1] 17.866 17.437

According to Ridout (1990), 
 has its maximum at θ̂ = −5.4007, and is nearly
quadratic in the vicinity of the MLE.

The morale of this example is that it is a good idea to monitor convergence
all the time, e.g., by setting trace = TRUE, especially as the VGLM/VGAM
framework fits many types of statistical models, some of which are naturally ill-
conditioned and/or require greater skill levels to fit safely. Indeed, the manner
a model converges (or doesn’t) provides important insights into the underlying
problem modelling (Osborne, 1992). Slow convergence, or a lack of it, should raise
alarm bells to the statistical modeller, and generate caution on any use of it. In
the case of this data set, the model provides a very poor fit to the observed data,
e.g., the residual deviance is 17.44, and the Pearson statistic is 54.32 (both with 2
degrees of freedom; the large discrepancy between the two statistics arises because,
of the three fitted probabilities, one is close to 0 and another is close to 1) (Ridout,
1990).

For handling working weight matrices that are not positive-definite, see
Sect. 9.2.1. How VGAM tests for convergence and some practicalities are described
in Sect. 8.2.4.
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3.6 Inference

3.6.1 Regularity Conditions

Section A.1 summarizes some classical likelihood theory relevant to the VGLM
class. In particular, regularity conditions that must be satisfied in order for Fisher
scoring to be expected to work properly, and for correct inferences to be made.

3.6.2 Parameter Link Functions

As mentioned above, parameter link functions are recommended for several rea-
sons. They are the first port of call for handling range restrictions, e.g., θj ∈ (0,∞)
is naturally handled by ηj = log(θj). Secondly, and partly as a consequence, the
log-likelihood is usually more quadratic-shaped about the solution when an appro-
priate transformation is chosen, hence convergence will be faster and inferences
more accurate. Intuitively, it is due to the Taylor series approximation to 
 about
the solution being more accurate. This can be seen in Fig. A.2 where a simple
negative binomial model is fitted to the machinists data set. This intercept-only
model has μ̂ = 0.4831 and k̂ = 0.4743, and the parameter of interest is θ = k. In
Fig. A.2a there is pronounced asymmetry about θ̂, whereas Fig. A.2b is clearly
more quadratic-shaped as a function of η = log k.

A third reason is that the initial-value parameter space where successful con-
vergence will occur tends to be larger when the θj have been transformed suitably;
see, e.g., Green (1984, Figs. 1–2).

3.6.3 Hypothesis Testing

Hypothesis testing under classical likelihood theory is described in Sect. A.1.4.2.
The function linearHypothesis() in car may be used to conduct Wald tests

for linear combinations of the fitted coefficients, given only β̂ and V̂ar(β̂) (as
accessed by the extractor functions coef() and vcov()). An example, applied to
the nonproportional odds model, is in Sect. 14.4.3.

3.6.4 Residual Degrees of Freedom

In the LM, the quantity nLM − pLM is known as the (total) (residual) degrees of
freedom. It can be seen from (3.23) that the VLM-degrees of freedom can be
defined as

nVLM − pVLM = nM − pVLM. (3.56)

The call df.residual(vglmObject, type = "vlm") returns this quantity.



3.7 Residuals and Diagnostics 121

In some applications, it is useful to know the residual degrees of freedom corre-
sponding to a specific ηj . For Hk = IM , this is

nLM − p(j)LM = n− p(j)VLM, j = 1, . . . ,M, (3.57)

where p(j)VLM = dim(β∗
j ) + dim(β∗∗

j ) in (3.35). The M values are returned
by df.residual(vglmObject, type = "lm"). Of course, taking the sum of the
M values will not necessarily equal the degrees of freedom of the VLM because
of the constraints on the functions, e.g., one coefficient may appear in several ηjs,
such as in a parallelism constraint.

As a simple example, consider fit1a from Sect. 3.3.1.4.

> df.residual(fit1a, type = "lm")

mean sd

99 99

> df.residual(fit1a, type = "vlm")

[1] 199

3.7 Residuals and Diagnostics

As with GLMs, there are several types of residuals that can be defined for VGLMs.
However, for some specific VGLMs, only a subset of these residual types are prop-
erly defined. For example, working and Pearson residuals are always defined ac-
cording to (3.12), but deviance and response residuals may not be. Currently, the
VGAM default are working residuals, cf. deviance residuals for glm(). In general,
residuals in the VGLM framework are best seen in the context of the IRLS al-
gorithm of Sect. 3.2. To reduce clutter, the superscript (a) denoting the iteration
number is omitted, and quantities at the final IRLS iteration are assumed.

In practice, residuals should be extracted by the extractor function resid()

(or residuals()). These have a type argument that can be used to select from
the following residual types.

3.7.1 Working Residuals

As in the univariate case, these are the differences between the working responses
and the linear predictors at the final IRLS iteration. From (3.12), they are de-
fined as

rWi = zi − ηi = W−1
i ui. (3.58)

Of course, they are on the η-scale. For GLMs,

∂�i

∂η
=

yi − μ̂i

Var(Yi)

∂μ̂i

∂η̂i
and Wi =

(

∂μi

∂ηi

)2 1

Var(Yi)
, so that rWi = (yi − μ̂i)

∂η̂i

∂μ̂i
.
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If fit is a vglm() or vgam() object then

predict(fit) + resid(fit, type = "working")

is an n×M matrix of adjusted dependent variables, i.e., the ith row is zT
i .

Working residuals are used in partial residual plots—see Chap. 4. An example
of them is Fig. 10.1.

3.7.2 Pearson Residuals

Pearson residuals, rPi , are related to the working residuals and defined by

rPi =
√
wi W

1/2
i rWi =

√
wi W

−1/2
i ui. (3.59)

The justification for this is that each IRLS step minimizes (3.22), and at conver-
gence, (3.22) reduces to

n∑

i=1

wi u
T
i W

−1
i ui =

n∑

i=1

(
rPi
)T

rPi =

n∑

i=1

M∑

j=1

(
rPij
)2

.

For GLMs,

rPi =
√
wi

yi − μ̂i√
V (μ̂i)

and X2 =

n∑

i=1

(
rPi
)2

=

n∑

i=1

wi
(yi − μ̂i)

2

V (μ̂i)
(3.60)

is the Pearson chi-squared statistic.

In the above, W
1/2
i must be obtained by the spectral decomposition of Wi

(Sect. A.3.4) and not its Cholesky decomposition, therefore they are not cheap to
compute. Note also that when wi = 1, rPi

.∼ (0, IM ) as ni →∞.

3.7.3 Response Residuals

These are simply
yij − μ̂ij , (3.61)

obtained from the components of yi−μ̂i. Note that μ̂i is not necessarily the mean,
but is generically the ‘fitted value’ as returned by fitted(). For some models, the
fitted values are selected quantiles, for others such as the Cauchy distribution,
they are an estimated location parameter.

This residual type is not always defined, e.g., the dimensions of depvar(fit)

and fitted(fit) must be the conformable so that their difference can be com-
puted. Of course, for GLMs, they are well-defined.
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3.7.4 Deviance Residuals

Chambers and Hastie (1991, Sect.6.2.1, 6.4.1) define deviance residuals for GLMs
and GAMs as

rDi =
√
wi sign(yi − μ̂i)

√
di, where D =

n∑

i=1

(
rDi
)2

=

n∑

i=1

wi di (3.62)

is the deviance. Deviance residuals in VGAM are as in (3.62), but are only de-
fined for some regression models, e.g., requiring a univariate response Yi, a well-
defined μi and 
i.

The deviance is defined generally by (3.53).

3.7.5 Hat Matrix

The hat or projection matrix for VGLMs might be defined as

H = UXVLM

(
XT

VLMWXVLM

)−1

XT
VLMUT (3.63)

computed at the final IRLS iteration, where it satisfies

ẑ∗∗(a) = H z∗∗(a). (3.64)

As with LMs and GLMs, and based on (3.16), it is useful for regression diagnos-
tics such as influence and residuals, where the diagonal elements play the most
important role. The projection matrix H retains the properties of symmetry and
being idempotent, i.e., H = H2. Since UXVLM = QR = X∗∗

VLM in (3.23) is its
QR decomposition, we have H = QQT whose diagonal is easily computed as
the row sums of Q ◦ Q, the Hadamard product of Q with itself. The methods
function hatvalues(vglmObject) returns an n ×M matrix arrangement of the
diagonal elements of H. Then trace(H) = pVLM, which is equal to the rank of Q,
and has pVLM and nVLM − pVLM unit and zero eigenvalues respectively.

The hat matrix is also useful for bias-reduction (see Sect. 9.4), a method for
removing the O(n−1) bias from a maximum likelihood estimate. For a substantial
class of models including GLMs, bias-reduction can be formulated in terms of a
minor adjustment of the score vector within an IRLS algorithm. One by-product,
for logistic regression, is that while the MLE can be infinite, the adjustment leads
to estimates that are always finite.

The generic function hatplot(vglmObject) produces an index plot of the lever-
ages, with horizontal dashed lines at 2 and 3 multiple of pVLMn/M , which is the
‘average’ value per plot. With small samples, usually 3 is used as the rough rule-of-
thumb, otherwise 2 is commonly used. Observations above these thresholds might
be interpreted as being influential.

It can be shown that

Var(η̂i) = U−1
i Hii U

−T
i , (3.65)

where the order-M matrices Hii are the ith central block matrices of H, i.e., H
is made up of blocks Hij for i, j = 1, . . . , n. In VGAM, the square roots of the
diagonal elements of (3.65) are returned by predict(vglmObject, se = TRUE).
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Fig. 3.3 Hat values from a proportional odds model fitted to the severity of pneumoconiosis
data set in coalminers, called pneumo.

To see how the MLE is affected by removing one observation at a time,
dfbeta(vglmObject) can return an n × pVLM matrix of differences in the re-
gression coefficients due to deleting observation i. Notationally, the ith row of

dfbeta(vglmObject) might be written as the transpose of β̂
∗− β̂

∗
[−i]. As a simple

example, for the proportional odds model fitted to the pneumo data of Sect. 14.4.2
and Table 14.2,

> pneumo <- transform(pneumo, let = log(exposure.time))

> fit.pom <- vglm(cbind(normal, mild, severe) ~ let, propodds, data = pneumo)

> hatplot(fit.pom, multiplier = 2:3, ylim = c(0, 0.6), col = "blue")

This produces Fig. 3.3. All the 8 exposure times lie below the thresholds, suggesting
than none of them individually are influential to the extent of raising concern.

Bibliographic Notes

IRLS is a very powerful and general technique for the numerical maximum likeli-
hood estimation. The method is generally attributed to Beaton and Tukey (1974).
Some references include Green (1984), McCullagh and Nelder (1989), del Pino
(1989), Jorgensen (2001), Rubin (2006). Dempster et al. (1980) give general prop-
erties of IRLS, and convergence results can be found in Byrd and Pyne (1979)
and Birch (1980).

The term VGLM was coined after VGAMs, since the latter made use of vector
splines (Sect. 4.2.1). VGLMs are similar to the multivariate GLMs of Fahrmeir and
Tutz (2001). VGAMs were proposed by Yee and Wild (1996), and VGLMs were
developed in Yee and Hastie (2003). The function vglm() is largely Green (1984,
Eq.(7)), while vgam() is largely Yee and Wild (1996). Green’s method, which is
central to VGAM, has been extended by Jørgensen (1984).

Davison and Snell (1991) describe several types of residuals for GLMs. Fox and
Weisberg (2011, Chap.6) provide R examples of regression diagnostics for LMs and
GLMs, as does Faraway (2006, Sect.6.4).
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Exercises

Ex. 3.1. The constraints Argument I

(a) How can one fit (3.45)–(3.47) subject to β(3)2 = 0, β(1)2+β(2)2 = 0 and β(1)1 =

β(2)1? Write down the equations in the form of (3.27).

(b) Write down the form of the call to vglm() in order to fit such a model (as in
Sect. 3.4.3).

Ex. 3.2. The constraints Argument II
Repeat Ex. 3.1 but fitting (3.45)–(3.47) subject to β(1)1 + 2β(2)1 + β(3)1 = 1
and β(1)2 = 3β(2)2 = β(3)2.

Ex. 3.3. The xij Argument I

(a) How can one fit (3.45)–(3.47) subject to β(1)1 + β(1)2 = β(2)2 + β(3)2? Write

down the equations in the form of (3.40).
(b) Write down the form of the call to vglm() in order to fit such a model.

Ex. 3.4. The xij Argument II
Repeat Ex. 3.3 but fitting (3.45)–(3.47) subject to β(1)1 + β(1)2 = β(2)1 + β(3)2.

Ex. 3.5. The xij Argument III
Repeat Ex. 3.3 but fitting (3.45)–(3.47) subject to β(1)1 + β(2)1 = β(3)2.

Ex. 3.6. The xij Argument IV
Repeat Ex. 3.3 but fitting (3.45)–(3.47) subject to β(1)1 + β(1)2 = β(2)1 + β(2)2.

Ex. 3.7. The xij Argument V
Repeat Ex. 3.3 but fitting (3.45)–(3.47) subject to β(2)1+β(3)1 = β(1)2 and β(1)1+
β(2)2 = 0.

Ex. 3.8. Simple Constraints—Normal Distribution

(a) Generate a random sample of 100 observations from a N(μ = θ, σ2 =
√
θ)

distribution with θ = 10. Then estimate θ using uninormal().
(b) Repeat (a) using a N(μ = θ, σ2 = 1 +

√
θ) distribution.

(c) Repeat (a) using a N(μ = 2θ, σ2 = 1 +
√
θ) distribution.

Ex. 3.9. Simple Constraints—Beta Distribution

(a) Generate a random sample of 100 observations from a beta distribution with
shape parameters s1 = e1 and s2 = e2. Then estimate the sj using betaR().

(b) Repeat (a) but estimate s1 knowing that s1 + s2 = e1 + e2.
(c) Repeat (a) but estimate s1 knowing that s2 = e1 s1.
(d) Comment on your results, e.g., which of (a)–(c) seems to give the best estimate?

Ex. 3.10. Fit a Poisson regression to the V1 data. Display some evidence that
the convergence rate is quadratic.

Ex. 3.11. Dilution Series Data
Run the analyses on the ridout data frame in Sect. 3.5.4. Confirm that the log-
likelihood is nearly quadratic in the vicinity of the MLE.
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Ex. 3.12. Deviance

(a) Show that the deviance of an unweighted Poisson regression is 2
∑n

i=1{yi
log(yi/μ̂i) + μ̂i − yi}.

(b) Derive the deviance function for a logistic regression fitted to proportions yi,
where NiYi ∼ Binomial(Ni, μi), for i = 1, . . . , n.

Ex. 3.13. Show that (3.22) at the final IRLS iteration is R̂esSS =
∑n

i=1 u
T
i W

−1
i ui evaluated at β̂

∗
.

Ex. 3.14. Prove (3.65).

Ex. 3.15. Link Functions for Binomial Regression
Using the V1 data, obtain a plot similar to Fig. 3.2b but with a complementary
log–log link.

Ex. 3.16. The constraints and zero Arguments

(a) Run the following code to generate some artificial data.

set.seed(1)

n <- 200

ndata <- data.frame(x2 = sort(runif(n)))

ndata <- transform(ndata, y1 = rnbinom(n, mu = exp(1), size = exp(2 - x2)),

y2 = rnbinom(n, mu = exp(2 + x2), size = exp(3)))

Knowing that x2 affects only some parameters, simultaneously fit two nega-
tive binomial regressions to these data, in two ways, as follows. The first call
to vglm() should only use the zero argument. The second call to vglm()

should use the constraints argument to input the constraint matrices.
(b) Apply df.residual() to one of your fits, to obtain the LM-type residual

degrees of freedom. Repeat for the VLM-type residual degrees of freedom.
(c) Fit an NB regression to y2 alone using x2 as the covariate, and then plot

several residual types against x2. Comment.
(d) Plot the hat values of your fit in (c). Comment.

In our experience VGAM is a useful package, but at times is confusing to
work with.
—Zuur (2012)



Chapter 4

VGAMs

As I am sure the editor and authors will agree, this is a fun area to work in.
—G. Wahba, Foreword to Schimek (2000)

4.1 Introduction

VGAMs are VGLMs based on smoothing. As with GAMs, they are particularly
useful for exploratory data analysis to allow the data to “speak for themselves”.
Rather than restricting the linear predictors ηj to be linear in x as with VGLMs,
one allows for flexible curves determined by the data so that the ηj are referred to
as additive predictors. The method used in this chapter to estimate these curves is
smoothing. VGAMs thus extend the GAM class outside the small confines of the
exponential family and allow multiple ηj .

4.1.1 Smoothing for VGLMs and VGAMs

“Vector GAMs” were coined because of their use of vector smoothers, and in
particular, the cubic vector smoothing spline described in Sect. 4.2.1. Vector
smoothers should not be confused with multivariate smoothers. There are four
types of smoothing:

(1) y-scalar, x-univariate,
(2) y-scalar, x-multivariate,
(3) y-vector, x-univariate,
(4) y-vector, x-multivariate

(see, e.g., Miller and Wegman, 1987); vector smoothers for us are case (3), and are
the subject of Sect. 4.2. Case (1) was covered in Sect. 2.4. Case (4) is the least
common, and it is not considered here at all. Multivariate smoothers, where x is a
vector, suffer from the curse of dimensionality when dim(x) is large, e.g., d > 2 not
including the intercept (see Sect. 2.5.1). Vector x can be computationally handled
and interpreted more easily by considering one xk at a time—these are two reasons
why additive models are popular (Sect. 2.5.1).
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Recall for VGAMs (1.34) that

η(x) = β(1) +

d∑

k=2

fk(xk) = H1 β
∗
(1) +

d∑

k=2

Hk f
∗
k(xk) (4.1)

where f∗
k(xk) = (f∗

(1)k(xk), . . . , f
∗
(Rk)k

(xk))
T . Currently there are two practical

approaches for estimating the f∗
k:

(i) Regression splines. These is a parametric way to represent a nonparametric
function. They typically involve the use of bs() and ns() from splines, in
conjunction with vglm(), e.g.,

vglm(y ~ bs(x2) + ns(x3, df = 4), VGAMfamily, data = vdata)

Of course, regression splines may be used for LMs, GLMs, etc. Section 2.4.3
described this powerful technology.

(ii) Vector smoothing splines. These fit into the classical Hastie and Tibshirani
(1990) framework and involve a procedure called vector backfitting (Sect. 4.3).
An example of their use is of the familiar form

vgam(y ~ s(x2) + s(x3, df = 2), VGAMfamily, data = vdata)

Vector splines fit nicely into the penalty function approach of Sect. 1.5.1—see
Sect. 4.3.1 for details.

(iii) P-splines. This more modern approach is more amenable to automatic
smoothing parameter selection and inference: the wiggliness of the curves
may be automatically chosen by some objective criterion. These low-rank
smoothers were sketched in Sect. 2.4.5, and they are currently under devel-
opment for VGAMs.

Much of this chapter is aimed towards (ii). We draw upon results from ordinary
univariate smoothing in Sect. 2.4, as they form the building blocks of GAMs and
we shall see that their ideas naturally extend to the vector y case.

Like GLMs, GAMs have historically been restricted to the exponential family.
They were developed from the mid-1980s both theoretically (Hastie and Tibshirani,
1990) and in software (e.g., S-PLUS’ gam()), and have since become an invaluable
tool in the statistician’s toolbox. The original GAM software required prespecified
smoothing parameters—this is also the case in the present R implementation gam
with its gam() function. The treatment of VGAMs in this chapter largely follows
from this.

The use of regression splines is sprinkled throughout this book, and kernel
smoothers are only covered (Sect. 4.2.2.1) to bolster our understanding of vec-
tor smoothing as a whole—traditionally their asymptotic properties are the most
mathematically tractable. But smoothing splines are described in relatively more
detail (Sect. 4.2.1), because they are the only ‘real’ smoother currently imple-
mented in VGAM.

A major enhancement to GAM methodology was the development of automatic
smoothing parameter selection (Wood, 2006) and its R implementation, the pack-
agemgcv. It is hoped that in the not too distant future, the development of P-spline
VGAMs will be completed and confer automatic smoothing parameter selection
to VGAM.
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4.1.2 The Vector Smoothing Problem

The vector smoothing problem involves a vector response yi = (yi1, . . . , yiM )T

measured at each xi. For example, one might regress Y1 = diastolic and Y2 =
systolic blood pressures (DBP/SBP) versus X = age with data from n people
in a cross sectional study. This is illustrated in Fig. 4.1 for a random sample
of n = 100 participants from xs.nz. The plots suggest that both types of blood
pressure increase over the 20–50 year age range.

In general, for scatter plot data (xi,yi,Σi), i = 1, . . . , n, the vector
measurement model (VMM), which generalizes the classical smoothing prob-
lem (2.36), is

yi = f(xi) + εi, εi ∼ (0,Σi) independently, (4.2)

where yi ∈ R
M , f(xi) = (f1(xi), . . . , fM (xi))

T is a vector of M smooth component
functions to be estimated. Sometimes a vector smoothing problem may be simpli-
fied to M separate ordinary smoothing problems. In the case of vector smoothing
splines, Sect. 4.2.1 lists some conditions that suffice for this.

In this book we are not primarily interested in (4.2) to vector smooth data
directly. Instead, its main role is to serve as the building block for estimating
VGAMs. In a nutshell, the response vector yi in (4.2) becomes the zi in the IRLS
algorithm (3.12), and the Σi are treated as known because they are the inverse
of the working weight matrices Wi. Further details are given in Sect. 4.3. The
vector x case is handled one xk at a time by a procedure known as modified
(vector) backfitting.

In practice, tied observations (x,yj ,Σj) for j = 1, . . . , T , may be replaced by
a single observation (x,y∗,Σ∗), where

y∗ =

⎛

⎝
T∑

j=1

Σ−1
j

⎞

⎠

−1⎛

⎝
T∑

j=1

Σ−1
j yj

⎞

⎠ and Σ∗ =

⎛

⎝
T∑

j=1

Σ−1
j

⎞

⎠

−1

.

The assumption x1 < x2 < · · · < xn is still made.
Returning to the blood pressures example, if we assume that the Σi are equal

then the sample variance of the residuals gives

Σ̂i =

(
68.87 43.12
43.12 101.13

)

.

Not surprisingly, this gives a positive sample correlation coefficient (0.64 actually),
e.g., elevated SBP levels tend to be associated with elevated DBPs.

4.2 Vector Smoothing Methods

This section describes two methods for fitting the VMM (4.2). This problem is im-
portant because it forms the ‘backbone’ of the estimating algorithm of the VGAM
class, viz. vector backfitting.
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Fig. 4.1 (a) Scatter plot of diastolic (◦) and systolic (×) blood pressures (mm Hg) versus
age, for a random sample of 100 European-type females from xs.nz. (b) A vector smoothing
spline fit overlaid on the same. Each component function has 2 effective nonlinear degrees of
freedom (ENDF).

4.2.1 Vector Splines

Fessler (1991) proposed the vector (smoothing) spline for fitting the VMM. It
minimizes S(f1, . . . , fM ) =

n∑

i=1

{yi − f(xi)}T Wi {yi − f(xi)} +

M∑

m=1

λm

∫ b

a

{f ′′
m(x)}2 dx (4.3)

over fj ∈ W2
2[a, b]. Here, the Wi = Σ−1

i are known. The quantity S is a natural
extension of the objective function of an ordinary (weighted) cubic smoothing
spline, (2.48), and it fits naturally in the roughness penalty approach described
in Green and Silverman (1994). The smoothing parameters λ1, . . . , λM are non-
negative, and the design points satisfy a ≤ x1 < · · · < xn ≤ b.

A fundamental result is that the solution to (4.3) consists of M natural cubic
splines (NCSs). The argument follows that of the M = 1 case and is as follows.

Suppose that each fm is any curve that is not a NCS with knots at the xi. Let f̃(xi)

be a vector of NCS interpolants to the values f(xi); since by definition, f̃m(xi) =
fm(xi) for all i and m, it follows readily that

n∑

i=1

{yi − f̃(xi)}TWi{yi − f̃(xi)} =
n∑

i=1

{yi − f(xi)}TWi{yi − f(xi)}.

Because of the optimality property of the NCS interpolant,
∫
f̃ ′′2
m dx <

∫
f ′′2
m dx for

all m, and hence (since λm > 0) we can conclude that S(f̃) < S(f). This means
that, unless each fm is an NCS, we can find an NCS for each component function
which attains a smaller value of the penalized sum of squares (4.3); then, it follows
that the minimizers of S must each be an NCS. Thus, each fm is a piecewise-cubic
polynomial with continuous first and second derivatives on [a, b]. This important
result has practical consequences, e.g., each component function can be written as
a linear combination of B-splines. We exploit this property in Sect. 4.2.1.3.
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Miller and Wegman (1987) identify a number of special cases when the vector
spline can be estimated by M separate ordinary smoothing splines:

(1) When all the Σi are diagonal.
(2) When all the Σi are equal. If its spectral decomposition is PΛPT , say, then

it is possible to univariately smooth each component of PTyi since this re-
sponse has a diagonal covariance matrix. An example of this case is given in
Sect. 4.2.1.2.

(3) More generally, if the Σi are simultaneously diagonalizable (Σi = PΛi P
T ),

then separate weighted smoothing is applicable.

More generally, Fessler (1991) proposed an algorithm based on the Reinsch
method described in Sect. 2.4.4.1, and implemented his technique in a C program
called VSPLINE. The cost of estimating the fm(·) is approximately n( 272 M3 +
O(M2)) flops. Unfortunately, it can be numerically unstable as in the M = 1 case,
and therefore a B-spline-based algorithm has been developed (Sect. 4.2.1.3). It is
currently invoked by s() within vgam(), and vsmooth.spline().

Equation (4.3) can be written as

(y − f)T Σ−1(y − f) + fTKf , (4.4)

where f = (f1(x1), . . . , fM (x1), . . . , f1(xn), . . . , fM (xn))
T , y = (yT

1 , . . . ,y
T
n )

T

and Σ = diag(Σ1, . . . ,Σn). The roughness penalty matrix now equals K =
(QT−1QT ) ⊗ diag(λ1, . . . , λM ) where Q and T are defined in Sect. 2.4.4.1.
Differentiating (4.4) with respect to f shows that the minimization occurs when

f̂ = A(λ)y where A(λ) = (InM +ΣK)−1. (4.5)

This expression for the smoother matrix reveals that it does not depend on y,
therefore vector splines are linear smoothers, provided that λ is known and fixed.
Many of its properties presented below derive from this fact.

Some basic properties of vector splines are as follows.

1. They have 2M unit eigenvalues corresponding to constant and linear functions
for each component function fm.

2. Large values of λm produce smoother curves for fm(·), and λm = 0 corresponds

with no smoothing at all: f̂m(xi) = yim is an interpolation spline. As λm →∞,

f̂m(x2)→ β̂(m)1 + β̂(m)2 x2 is the LS solution.

4.2.1.1 Other ‘vector splines’

Compared with the literature on the ordinary cubic spline, there is a paucity of
literature on vector splines. However, the vector splines here differ from others
bearing the same name in the literature, e.g., Wegman (1981), Wahba (1982)
considered vector splines on the sphere, and Amodei and Benbourhim (1991). The
vector spline of Wang (2011, Sect.8.2.3), which has the closest similarity with
the one considered here, is based on a large framework called semiparametric
linear regression models, that includes the projection pursuit regression model yi =
β1+

∑R
k=1 fk(β

T
k xi)+εi, and the Gaussian varying-coefficient model (Sect. 10.2.1),

as special cases.
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4.2.1.2 Equivalent Kernels

The same principle for ordinary smoothers may be applied to linear vector
smoothers, except that there are M ‘curves’—one for each response. Some of the
effects of joint smoothing can be seen by considering a simple example of the
simultaneously diagonalizable Σi case.

Figure 4.2 displays the equivalent kernel for f̂j(0) from a vector spline fitted to
a data set generated from

yi =

(
sinxi

cosxi

)

+ εi, εi ∼ N2

(

0, Σi =
1

100

(
1 ρ
ρ 1

))

(4.6)

independently, where the xi are equidistant on [−π, π] and n = 25. Data were
generated at 5 different values of ρ. For simplicity, only the 25th row of A(λ) is
plotted, with λ chosen to give the same amount of smoothing (λ1 = λ2, and with
about 8 degrees of freedom (= df(m))). The 25th row corresponds to a fitted value
of the first component function evaluated at x = 0 which is located in the central
interior.

Several features can be seen. The equivalent kernel for the first component
function is very similar to the theoretical EK an ordinary cubic spline ((2.92), as

plotted in Fig. 2.19). As expected, when ρ = 0, f̂1(0) is a weighted average of
the yi1 only because the errors between the component functions are independent.
The weighting of yi1 for the first component function does not differ much with
respect to ρ, whereas the weighting of yi2 for the first function component increases
in magnitude with increasing |ρ|, but its sign is the opposite of ρ.

4.2.1.3 Computation by B-Splines

VGAM implements the following algorithm based on B-splines for computing vector
splines. It is to be expected to be more numerically stable than the Reinsch-
Fessler algorithm. The vector smoothing spline solution consists of component
functions fm that are spline functions; the solution to (4.3) consists of M NCSs,
therefore we can write

fm(x) =

n∗+2∑

j=1

θjm Bj(x), m = 1, . . . ,M, (4.7)

where n∗ is the ‘effective’ n as for O-splines (Sect. 2.4.4.3), θjm are coefficients,
and Bj(x) are B-spline basis functions. Defining the n × (n∗ + 2) matrix B and
the (n∗ + 2)× (n∗ + 2) penalty matrix Ω by

[
(B)ij

]
= Bj(xi) and

[
(Ω)ij

]
=

∫ b

a

B′′
i (x)B

′′
j (x) dx,

we can rewrite (4.3) as

(y −B∗θ)TW(y −B∗θ) + θTΩ∗ θ, (4.8)
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Fig. 4.2 (a) Data used from (4.6). The black curves are the true functions; (b)–(f) Equivalent
kernels based on (4.6) for various values of ρ. The row of the influence matrix corresponds

to f̂1(x = 0), and is midway between the boundaries.

where y = (yT
1 , . . . ,y

T
n )

T , W = Diag(W1, . . . ,Wn), B∗ = B ⊗ IM , Ω∗ =
Ω ⊗ Diag(λ), and λ = (λ1, . . . , λM )T . The columns of B are the B-spline ba-
sis functions evaluated at the sorted values of xi, therefore B has bandwidth 4
and has O(n1/4) � n columns when n is large. One can think of (4.8) as gen-
eralized ridge regression. Note that Ω is symmetric and has half-bandwidth 4 so
that Ω∗ has half-bandwidth 3M + 1.

Let θ = (θ11, . . . , θ1M , . . . , θ(n∗+2)1, . . . , θ(n∗+2)M )T be all the parameters that
are estimated. Setting the derivative of (4.8) with respect to θ as 0 gives the
solution

(
BT

∗ WB∗ +Ω∗
)
θ̂ = BT

∗ Wy. (4.9)
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The matrix M = BT
∗ WB∗ +Ω∗ is symmetric and positive-definite and has half-

bandwidth 4M , and therefore θ̂ can be solved for by computing its Cholesky de-

composition. The fitted values are f̂m = B θ̂
(m)

where θ = vec

(

θ̂
(1)

, . . . , θ̂
(M)

)

.

The influence matrix is

A(λ) = B∗
(
BT

∗ WB∗ +Ω∗
)−1

BT
∗ W. (4.10)

The diagonal elements of this smoother matrix (for df calculations) may be
obtained by firstly applying the Hutchinson and de Hoog (1985) algorithm
(Sect. A.3.1) to M to get the 6M+1 central bands of its (symmetric) inverse. Then
the M central bands of B∗M−1BT

∗ are computed by performing block-quadratic-
form-type calculations. The diagonal of this matrix gives the pointwise Bayesian
variances. Finally, the diagonal elements of this matrix post-multiplied by W are
computed; this is Diag(A).

4.2.1.4 Linear Constraints on the Functions

Actually, the estimation of vector splines is based on fitting a linear model first
and then a vector spline is fitted to the residuals. This modification leads to better
numerical properties for additive models where there are multiple xk, especially
when they are highly correlated. In such cases, the algorithm used is calledmodified
vector backfitting which is described in Sect. 4.3.2.2. For this, we adapt the notation
here to match Chap. 3 by writing x1 = 1 and x2 = x.

Consider linear constraints on the component functions:

f(x2) = H1 β
∗
(1) +H2 f

∗
2(x2), (4.11)

where f∗
2(x2) = (f∗

(1)2(x2), . . . , f
∗
(R2)2

(x2))
T is a possibly reduced vector of un-

known component functions, and β∗
(1) is a vector of unknown intercepts. Compu-

tationally, vector splines should be decomposed into a linear and nonlinear com-
ponent

f (x2) =
{
H1 β

∗
(1) + x2 H2 β

∗
(2)

}
+H2 r

∗
(2)(x2). (4.12)

The projection step involves minimizing the VLM residual sum of squares

n∑

i=1

(

yi −
2∑

k=1

Hk β
∗
(k) xik

)T

Wi

(

yi −
2∑

k=1

Hk β
∗
(k) xik

)

.

Next, the nonlinear fit r∗(2) is obtained by vector spline smoothing the scatter plot

data
(

xi2,
(
HT

2 Wi H2

)−1

HT
2 Wi

(

yi −
2∑

k=1

Hk β̂
∗
(k) xik

)

,
(
HT

2 Wi H2

)−1
)

. (4.13)

Figure 4.3 illustrates the decomposition (4.12) for a single component function.
The fitted LS line is evident, and then a linear combination of B-splines makes up
the nonlinear component.
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Fig. 4.3 O-smoothing spline
(blue curve) fitted to scatter
plot data •, which is equal
to a least squares fit (black
line) plus the sum of individ-
ual B-spline basis functions;
cf. Fig. 2.8. It corresponds to
the decomposition (4.12). The
rugplot denotes the position of
the xi.
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The function vsmooth.spline(), which fits a vector spline by this method, is

described in Sect. 4.4.2.

4.2.1.5 An Iterative Vector Spline Solution

An iterative solution to the vector spline problem can be seen by partitioning f(xi)
in (4.3) into (f1(xi),f2(xi)

T )T , and supposing an estimate of f2(xi) is available.
Then (4.3) can be written

n∑

i=1

(
yi1 − f1(xi)
yi2 − f2(xi)

)T (
wi11 wT

i21

wi21 Wi22

)(
yi1 − f1(xi)
yi2 − f2(xi)

)

+
M∑

j=1

λj

∫ b

a

{f ′′
j (t)}2 dt =

C1 +

n∑

i=1

wi11

[{

yi1 +
wT

i21(yi2 − f2(xi))

wi11

}

− f1(xi)

]2

+ λ1

∫ b

a

{f ′′
1 (t)}2 dt

for some constant C1. That is, f1 can be estimated by applying a cubic smoothing
spline to a modified response with weights wi11. An iterative solution is therefore to
update each component function fj from the others in this manner. Initial values
for the fj could be obtained by smoothing (xi, yij) with weights (Wi)jj .

The above can be adapted for the additive model so that there is a nested loop
in the computation. While the method is not implemented in VGAM presently, the
idea allows VGAMs to be fitted using GAM-type software, i.e., it bypasses the
need for a vector smoother.

4.2.1.6 Choosing Vector Smoothing Parameters

Fessler (1991) suggested several criteria for vector spline smoothing parameter
selection. These can be regarded as applying more generally to all linear vector
smoothers. He suggested

MSE(λ) =
1

n

n∑

i=1

(
f̂(xi)− f(xi)

)T (
f̂(xi)− f(xi)

)
,
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UR(λ) =
1

n

{
yT (InM −A)T (InM −A)y

}
− 2

n
trace (Σ(InM −A)) +

1

n
trace (Σ) ,

and CV(λ) =

1

n

n∑

i=1

(
yi − f̂(xi)

)T (
IM −A(nn)(λ)

T
)−1

Σ−1
i

(
IM −A(nn)(λ)

)−1
(
yi − f̂(xi)

)
,

where A(nn) is the nth M ×M block diagonal submatrix of A(λ).
His software VSPLINE supports span selection by unbiased risk, CV and GCV.

For the latter, λGCV is chosen by minimizing the generalized cross validation (GCV)
score: GCV(λ) =

1

n

n∑

i=1

(
yi − f̂(xi)

)T
Σ−1

i

(
yi − f̂(xi)

)
/

(
1

n
trace{InM −A(λ)}

)2

. (4.14)

This may be computed cheaply by the Hutchinson and de Hoog (1985) algorithm.

4.2.1.7 RKHS †

Reproducing kernel Hilbert space (RKHS) theory provides an elegant mathematical
framework for handling penalized regression problems, including the vector spline.
Indeed, one major reason for its use is its generality. For M = 1, the objective
function (4.3) can be written in the form

n−1
n∑

i=1

[yi − f(xi)]
2
+ λJ(f), (4.15)

where the penalty J(f) can be expressed as an inner product 〈f, f〉, with

〈f, g〉 =

∫ b

a

f ′′(t) g′′(t) dt. (4.16)

The ideas behind RKHS are based on vector spaces, Banach spaces and Hilbert
spaces. The latter allows concepts from finite-dimensional linear algebra to be
applied to infinite-dimensional spaces of functions. As the area is specialized, only
some sketchy details are given here, and the reader is directed to the references in
the bibliography of Chap. 2 for full details. The description here is based on Wang
(2011) and Nosedal-Sanchez et al. (2012). Some terms used in this section are
defined in the Glossary.

A vector space V is a set1 whose elements (generically called “vectors”, but
can be an entity such as a function, matrix or sequence) fundamentally satisfy 8
axioms, e.g., involving operators called ‘addition’ and ‘multiplication’. A vector
space endowed with a real-valued function called a norm (denoted by ‖ · ‖) is
known as a normed vector space. The norm generalizes the concept of a length,
and must satisfy 4 basic mathematical properties, e.g., ‖u‖ ≥ 0. A complete
normed space is known as a Banach space—by ‘complete’, it is meant that every

1 More strictly, V is defined over a field, and the operators called ‘addition’ and ‘multiplication’,
and there is an element called 0.
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Cauchy sequence in the normed space converges to an element of that normed
space. Now an inner product is a mapping V × V → R, and it generalizes the
dot product uTv of two vectors. The squared norm can be defined using an inner
product by ‖ · ‖2 = 〈·, ·〉. Then put simply, a Hilbert space is a complete inner
product space. The inner product supplies structure to the space by allowing not
only length to be measured but also angles and projections, e.g., two vectors u
and v in a Hilbert space H are orthogonal (perpendicular) if 〈u,v〉 = 0.

Hilbert spaces can be finite-dimensional or infinite-dimensional, e.g., V = R
n =

{x = (x1, . . . , xn)
T : xi ∈ R} with inner product 〈u,v〉 = uTAv (for any positive-

definite matrix A) is n-dimensional, whereas for positive integer m, the Sobolev
space V = {f : f (ν)(0) = 0 and f (ν) are absolutely continuous on R, for ν =
0, . . . ,m − 1, and f (m) ∈ L2} with inner product 〈f, g〉 = ∫∞

−∞ f (m)(s) g(m)(s) ds
is infinite-dimensional. In this section, a “Sobolev space” is used loosely to mean
a function space with a norm involving derivatives.

A Hilbert space H of real-valued functions defined on some domain Ω is an
RKHS if there exists a function K(s, t) (called the reproducing kernel) defined
on Ω ×Ω such that

(i) for every s, K(s, t) as a function of t is an element of H; and
(ii) for every t ∈ Ω and every f ∈ H,

f(t) = 〈f(s), K(s, t)〉s. (4.17)

The subscript s on the inner product indicates that the inner product applies
to functions of s. This equation is known as the reproducing property.

RKHSs possess a number of properties, including the following (Aronszajn, 1950).

1. Uniqueness. If an RK K exists, then it is unique.
2. Existence. An RK K exists iff for every t ∈ Ω, f(t) is a continuous functional

for f running through H. Continuous functionals are defined below.
3. K(·, ·) is a non-negative definite function. That is, for all real c1, . . . , cn,

n∑

i=1

n∑

j=1

ci cj K(ti, tj) ≥ 0

for all t1, . . . , tn in Ω.
4. Converse. To every non-negative definite function K(·, ·) there corresponds

a uniquely determined quadratic form forming a Hilbert space and admit-
ting K(·, ·) as a reproducing kernel. This is known as the Moore–Aronszajn
theorem.

5. RK sums. If H has RK K, and H0 and H1 are two subspaces of H (such
that H0 ⊕H1 = H with H0 ∩ H1 = {0}) and having RKs K0 and K1, respec-
tively, then

K(·, t) = K0(·, t) +K1(·, t). (4.18)

Soon, it will be seen that K(·, ti) provides a basis for representing the solution.
An example of an RKHS is a Sobolev space defined on [0, 1]: H = {f :

f is absolutely continuous on [0, 1], f(0) = f(1) = 0, f ′ ∈ L2[0, 1]} with 〈f, g〉 =
∫ 1

0
f ′(t) g′(t) dt. Then it can be shown that K(s, t) = (1 − t)s for s ≤ t,
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and K(s, t) = (1 − s)t for t ≤ s. In contrast, the space of squared integrable
functions on the closed unit interval, L2[0, 1], is a Hilbert space but not an RKHS,
because the boundedness property (4.19) does not hold.

A function φ : V → R is known as a functional, e.g., φ(f) =
∫ b

a
[f ′′(t)]2 dt,

where a and b are fixed. An important type of functional is the evaluation func-
tional : let V be a vector space of functions f : Ω → R for some bounded do-
main Ω ∈ R

d, then e is an evaluation functional if e(f) = f(t) for t ∈ Ω and f ∈ V.
It is commonly written et(f) to emphasize that the function f is evaluated at t.
Observe that et(·) is a linear functional because et(c1 f+c2 g) = c1 f(t)+c2 g(t) =
c1 et(f) + c2 et(g), for constants ci. Then an alternative definition of an RKHS is
that it is a Hilbert space H of real-valued functions defined on a set Ω having
evaluation functionals that are bounded, i.e., there exists some constant C such
that

|φ(t)| ≤ C ‖f‖, ∀f ∈ H. (4.19)

Additionally, it may be shown that boundedness here is also equivalent to the eval-
uation functionals being continuous, i.e., limn→∞ fn = f implies limn→∞ et(fn) =
et(f). An important result known as the Reisz representation theorem states that
for a Hilbert space H and a linear continuous functional φ, there exists a unique
vector g ∈ H such that

φ(f) = 〈f, g〉, ∀ f ∈ H. (4.20)

Then g is called the representation or representer of φ. Applying this result specifi-
cally to the evaluation functional and an RKHS, we can see from (4.17) that g = K.
We shall see soon that instead of expressing the estimate of the vector spline com-
ponent function fj in terms of basis functions only, representers (in a subspace
called H1) will be used instead.

Note that, from the reproducing property (4.17),

K(s, t) = 〈K(·, s), K(·, t)〉. (4.21)

Example 1: Linear Interpolating Splines

A simple example developed in Nosedal-Sanchez et al. (2012) concerns scatter plot
data (ti, yi), i = 0, . . . , n, where y0 = 0 and 0 = t0 < t1 < · · · < tn = 1. The prob-
lem is to find the smoothest function f that interpolates these data, subject to the
constraint that f ∈ H where H = {f : f is absolutely continuous on [0, 1], f(0) =

0,
∫ 1

0
(f ′(t))2 dt < ∞}. Define 〈f, g〉 = ∫ 1

0
f ′(t) g′(t) dt on H, so that the squared

norm can be used for measuring smoothness. It can be shown that if K(s, t) =
min(s, t) on [0, 1]× [0, 1] then (4.17) holds:

〈f(s), K(s, t)〉s =

∫ 1

0

f ′(s) · ∂K(s, t)

∂s
ds

=

∫ t

0

f ′(s) · 1 ds+

∫ 1

t

f ′(s) · 0 ds = f(t)− f(0) = f(t).
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Thus K(·, ·) is the reproducing kernel, and H is an RKHS. Writing Ki(s) =
min(s, ti) for i = 1, . . . , n, then 〈f,Ki〉 = f(ti), and

f̂(t) =

n∑

i=1

ci Ki(t) (4.22)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(c1 + · · ·+ cn) t, t ≤ t1;
c1 t1 + (c2 + · · ·+ cn) t, t1 ≤ t ≤ t2;
c1 t1 + c2 t2 + (c3 + · · ·+ cn) t, t2 ≤ t ≤ t3;

...
...

c1 t1 + · · ·+ cn−1 tn−1 + cn t, tn−1 ≤ t ≤ tn,

where the ci ∈ R are coefficients that can be estimated. Note that

〈Ki, Kj〉 = Kj(ti) = Ki(tj) = min(ti, tj)

by (4.21).

Example 2: Vector Splines

For vector splines, we want to minimize a penalized least squares criterion, sub-
ject to each component function fj belonging to the RKHS of an ordinary cubic
smoothing spline. We start off by considering the ordinary cubic smoothing spline
case by solving the penalized least squares criterion (4.15), written equivalently as

min
f∈H

n−1
n∑

i=1

[yi − f(ti)]
2
+ λ ‖P1f‖2 (4.23)

where P1 is the projection of f onto some RKHS (called H1 below). We write ti =
xi in this example.

Following Wang (2011), a real-valued function f with continuous derivatives up
to f (m−1) at a, and f (m) ∈ L2[a, b], has Taylor expansion

f(t) =
m−1∑

ν=0

(t− a)ν f (ν)(a)

ν!
+

∫ b

a

(t− s)m−1
+

(m− 1)!
f (m)(s) ds, (4.24)

where the integral is called the remainder. For cubic smoothing splines, we
have m = 2. Also, let Wm

2 [a, b] be

{f : f, f ′, . . . , f (m−1) are absolutely continuous on [a, b], f (m) ∈ L2[a, b]},

and let the inner product be

〈f, g〉 =

m−1∑

ν=0

f (ν)(a) · g(ν)(a) +
∫ b

a

f (m)(s) · g(m)(s) ds, (4.25)

which is an RKHS. The integral vanishes for polynomials f and g of degree m− 1
or less. As these functions are not penalized, they span the null space, which is
called H0 in the following. Decompose

Wm
2 [a, b] = H0 ⊕H1 (4.26)
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so that H1 = {f : f (ν)(a) = 0 for ν = 0, . . . ,m − 1; f (m) ∈ L2[a, b]}. Then we
could write (4.25) as 〈f, g〉H = 〈f, g〉H0

+ 〈f, g〉H1
. From the Taylor series,

H0 = span

{

1, (t− a), . . . ,
(t− a)m−1

(m− 1)!

}

, (= {φ1(t), . . . , φm(t)}, say),

and it can be shown that these basis functions are orthonormal, i.e., 〈φj , φk〉 = 1
if j = k, otherwise 0.

Because of (4.26), the RK of H can be expressed as the sum of two RKs, as
in (4.18). For the first,

K0(s, t) =
m∑

ν=1

φν(s)φν(t) =
m∑

ν=1

(s− a)ν−1

(ν − 1)!

(t− a)ν−1

(ν − 1)!
.

Now, for H1, it has RK

K1(s, t) =

∫ b

a

Gm(t, u) Gm(s, u) du, s, t ∈ [a, b], (4.27)

where

Gm(t, s) =
(t− s)m−1

+

(m− 1)!
(4.28)

is known as a Green’s function. This can be seen by reconciling the Taylor series
remainder term with the Reisz representation theorem under 〈f, g〉H1

: then it is
seen that the representer g = K1. Thus

f(t) =

∫ b

a

Gm(t, s) f (m)(s) ds

for f ∈ H1.
By the Kimeldorf–Wahba representer theorem (see, e.g., Wahba, 1990,

Thm 1.3.1), the solution is of the form

f̂λ(t) =
m∑

ν=1

dν φν(t) +
n∑

i=1

ci K1(ti, t). (4.29)

This means that a minimization problem over a possibly infinite-dimensional
Hilbert space simplifies to an optimization problem in R

n. Compared to our pre-
vious description of splines based on the more familiar subject of B-splines, the
quantities K1(ti, t) dictate the knot placement of the space of natural cubic splines.

From (4.29), the penalized least squares criterion (4.23) can be written as

n−1 ‖y −Td−Ξc‖2 + λ cTΞc,

where c = (c1, . . . , cn)
T , d = (d1, . . . , dm)T , (T)ij = φj(ti), and the Gram ma-

trix Ξ has elements (Ξ)ij = 〈K1(t, ti), K1(t, tj)〉. The solution is

c = M−1

[

In −T
(
TTM−1T

)−1

TTM−1

]

y,

d = (TTM−1T)−1TTM−1y,
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where M = Ξ + nλIn, however, this is not practical computationally. Instead,
setting the derivatives with respect to c and d to 0 yields the system of equations

MΞc+ΞTd = Ξy,

TTΞc+TTTd = 0,

which can then be simplified to other sets of equations, one of which is

Mc+Td = y,

TT c = 0.

This set is amenable to the QR method.
Now for a (cubic) vector (smoothing) spline, we have each component func-

tion fj ∈ Hj = H0j⊕H1j for j = 1, . . . ,M , where Hj =Wm
2 [a, b] is Sobolev space

defined earlier—it is an RKHS, and H0j is an m-dimensional subspace that is not
penalized. Once again, m = 2. The objective function to be minimized is

n∑

i=1

{yi − f(xi)}T Σ−1
i {yi − f(xi)}+

M∑

j=1

λj ‖Pj fj‖2, (4.30)

where Pj is the projection of fj onto H0j .
By the Kimeldorf–Wahba representation theorem, the minimizer has the form

fj(x) =

m∑

ν=1

dνj φν(x) +

n∑

i=1

cij K1j(xi, x), (4.31)

where {φ1, . . . , φm} = {1, x − a} is the orthonormal basis of H0j , and K1j(·, ·) is
the RK of H1j . The objective function can be written in matrix form:

(
y − T̃d− Ξ̃c

)T
Σ−1

(
y − T̃d− Ξ̃c

)
+ cT Ξ̃c, (4.32)

where y = (yT
1 , . . . ,y

T
n )

T , T̃ = T⊗IM , c = (c11, . . . , c1M , c21, . . . , c2M , . . . , cnM )T ,

d = (d11, . . . , d1M , d21, . . . , d2M , . . . , dmM )T , Ξ̃ = Ξ⊗diag(λ1, . . . , λM ), and Σ =

diag(Σ1, . . . ,Σn). Note here that it is more convenient to absorb the λj into the Ξ̃.
The solution could be computed by solving

(
InM + Ξ̃Σ−1 Ξ̃Σ−1T̃

T̃
T
Σ−1 T̃

T
Σ−1T̃

)(
Ξ̃c
d

)

=

(
Ξ̃Σ−1y

T̃
T
Σ−1y

)

.

4.2.2 Local Regression for Vector Responses †

The estimation of VGAMs in Sect. 4.3 by vector backfitting and vector splines
within an IRLS algorithm engenders questions about its properties, such as con-
vergence and statistical efficiency. To this end, in this section we extend the results
of local regression for the M = 1 case (Sect. 2.4.6) to the M = 2 VMM case.
We can gain insight into the advantages of vector smoothing and its asymptotic
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properties. This section is based on Welsh and Yee (2006), who investigated local
linear regression under the more general conditions of seemingly unrelated regres-
sions (SUR; Sect. 10.2.3). We will summarize some results from that article which
are more relevant to the context here.

In this vein we summarize in this section some results of vector smoothing based
on local regression so that light may be shed on the gain in efficiency that vector
smoothing may bring in general (not just for vector smoothing splines), as opposed
to smoothing M component functions separately. The starting point is to realize
that, at each IRLS iteration, we are effectively solving the VMM as a building
block. In particular, the working weight matrices Wi differ by i and are treated
as known in the smoothing.

The material presented here applies to a univariate normal likelihood, since it
maximizes a sum of squares. More generally, local regression can be applied to log-
likelihoods from the exponential family, say, and this is the topic of local likelihood
estimation.

Without loss of generality, we let each component function be locally approxi-
mated by an r-degree polynomial. Let Xx be defined as in (2.66), X∗

x = Xx⊗ IM ,
and W∗

x = Diag(Kh(x1 − x)W1, . . . ,Kh(xn − x)Wn). For the VMM (4.2), an r-
degree vector local polynomial kernel estimator is

f̂(x; r, h) = β̂
[1]

x , (4.33)

where β̂x =

(

β̂
[1] T

x , . . . , β̂
[r+1] T

x

)T

minimizes the GLS criterion

n∑

i=1

∥
∥
∥
∥
∥
yi −

r∑

s=0

β[s+1]
x (xi − x)s

∥
∥
∥
∥
∥

2

Kh(xi−x)Wi

. (4.34)

One can see that the weight matrices Wi are downweighted the further xi is away
from the target point x, and the M = 1 case corresponds to the ordinary local
polynomial kernel estimator (2.67).

The solution to (4.34) is

β̂x =
(
X∗

x
T
W∗

x X
∗
x

)−1

X∗
x
T
W∗

x y

[cf. (2.65)], so that (2.67) becomes

f̂(x; r, h) =
(
eT1 ⊗ IM

)
β̂x.

Thus, to handle vector responses, the essential difference is that the usual weighted
multiple linear regression is supplanted by a weighted multivariate regression.

The estimation of the νth derivatives is straightforward: for ν = 0, . . . , r,

f̂
(ν)

(x; r, h) = ν!
(
eTν+1 ⊗ IM

) (
X∗

x
T
W∗

x X
∗
x

)−1

X∗
x
T
W∗

x y = ν! β̂
[ν+1]

x

[cf. (2.70)].
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4.2.2.1 Local Regression for M = 2 †

Traditionally, local regression methods have been used by mathematical statisti-
cians, because their asymptotic properties are relatively easy to obtain compared
with splines. In this spirit, the vector smoothing problem (4.3) was considered
from a local regression viewpoint by Welsh and Yee (2006). That paper, which
considered a more general setting involving seemingly unrelated regressions (SUR;
Sect. 10.2.3), has results relating to the vector smoothing problem extracted and
presented here. They mainly considered the M = 2 component function case, and
showed that the placement of the kernel weights in WLS estimators is very impor-
tant in the SUR problem (to ensure that the estimator is asymptotically unbiased)
but not in the vector measurement model (4.2). While the component estimators
are asymptotically uncorrelated in the SUR model, they are asymptotically corre-
lated in the VMM.

We consider the vector regression model in which observations y
(j)
i are related

to known, univariate explanatory variables x
(j)
i , i = 1, . . . , n, j = 1, . . . ,M , by

y
(1)
i = f1(x

(1)
i ) + ε

(1)
i

... (4.35)

y
(M)
i = fM (x

(M)
i ) + ε

(M)
i ,

where f1, . . . , fM are unknown regression functions and εi = (ε
(1)
i , . . . , ε

(M)
i )T are

independent random vectors with E(εi) = 0.
Welsh and Yee (2006) considered the following two cases for Var(εi), because

the estimators have different asymptotic properties.

Case A: Var(εi) = Σi Here, the elements of Σi are treated as un-
known constants. Write the diagonal elements
as σ2

ji, and the off-diagonal elements as σjiσki

ρjki. There are nM(M+1)/2 nuisance param-
eters so they cannot all be unknown.

Case B: Var(εi) = Σ(xi) Here, xi = (x
(1)
i , . . . , x

(M)
i )T .

Note that the vector smoothing fitted at each IRLS iteration more closely corre-
sponds to Case A but with effectively known working weights Σ−1

i . Hence we do
not concern ourselves so much with Case B.

We can write (4.35) explicitly as M separate but dependent regression models.

Let y(j) =
(
y
(j)
1 , . . . , y

(j)
n

)T
, x(j) =

(
x
(j)
1 , . . . , x

(j)
n

)T
, ε(j) =

(
ε
(j)
1 , . . . , ε

(j)
n

)T
,

and f (j)(x(j)) =
(
fj(x

(j)
1 ), . . . , fj(x

(j)
n

)T
so we can write each model as

y(j) = f (j)(x(j)) + ε(j), j = 1, . . . ,M,

where E(ε(j)) = 0, Var(ε(j)) = Djj = diag(σ2
j1, . . . , σ

2
jn) and Cov(ε(j), ε(k)) =

Djk = diag(σj1σk1ρjk1, . . . , σjnσknρjkn).
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In the following, it is more convenient to stack vectors in a different order
than what is usually used. For this, the superscript “(∗)” is used to reflect

this change. If we let y(∗) =
(
y(1)T , . . . ,y(M)T

)T
, x =

(
x(1)T , . . . ,x(M)T

)T
,

f (∗)(x) =
(
f1(x

(1))T , . . . ,fM (x(M))T
)T

and ε =
(
ε(1)

T
, . . . , ε(M)T

)T
, then we

can stack the component models so that

y(∗) = f (∗)(x) + ε(∗),

where E(ε(∗)) = 0 and V = Var(ε(∗)) = (Djk) is an nM × nM matrix made up
as an M ×M array of n× n diagonal matrices.

If we have x
(j)
i = x

(k)
i , then (4.35) is a nonparametric VMM (4.2) which may be

useful for modelling multiple measurements made on the same unit. For example,
relating systolic and diastolic blood pressure to covariates such as body mass index
(BMI), age, measures of stress, etc., on n independent subjects. If, in addition, f1 =
f2 = · · · = fM , then the VMM corresponds to a marginal model for clustered data
with a cluster-level covariate. All of these models can be viewed as generalizations
of the classical univariate smoothing model (M = 1).

When the mean functions in (4.35) are linear, fj(x) = β(j)1 + β(j)2 x so if

we put β(∗) = (β(1)1, β(1)2, . . . , β(M)1, β(M)2)
T and X(∗) = diag(X(1), . . . ,X(M)),

where X(j) =
(
1, x(j)

)
, then the LS estimator of β(∗) is the solution to

0 = X(∗)T
(
y(∗) −X(∗) β(∗)

)
=

⎛

⎜
⎜
⎜
⎝

X(1)T
(
y(1) −X(1)β(1)

)

...

X(M)T
(
y(M) −X(M)β(M)

)

⎞

⎟
⎟
⎟
⎠

, (4.36)

where β(j) = (β(j)1, β(j)2)
T . The least squares estimator effectively fits each com-

ponent model separately (i.e., marginal fitting). We can often obtain a more effi-
cient estimator by fitting the combined component models appropriately. In par-
ticular, the WLS estimator which, when V is known, is the solution to

0 = X(∗)T V−1
(
y(∗) −X(∗) β(∗)

)
, (4.37)

is at least as efficient as, and often more efficient than, the least squares estimator.
When V is unknown, we replace it in (4.37) by a consistent estimator V̂ without
affecting the asymptotic efficiency of the estimator.

In the nonparametric case, let xj denote the point at which we want to esti-

mate fj , X
(j)
xj

=
(
1, x(j) − xj1, . . . , (x

(j) − xj1)
r
)
be an n× (r + 1) matrix, x =

(x1, . . . , xM )T , and X(∗)
x = block diagonal (X(1)

x1
, . . . ,X(M)

xM
) be an nM × (r+1)M

matrix. The local regression approach approximates the model (4.35) by making
a Taylor expansion of the mean function to obtain a multivariate linear model
with (r + 1)M -vector regression parameter

δx =
(
f1(x1), f

′
1(x1), . . . , f

(r)
1 (x1), . . . , fM (xM ), f ′

M (xM ), . . . , f
(r)
M (xM )

)T



4.2 Vector Smoothing Methods 145

and then estimates δx by fitting the approximate model locally. Let Kj =

diag(Khj
(x

(j)
1 − xj), . . ., Khj

(x
(j)
n − xj)), j = 1, . . . ,M , denote the kernel weights,

and put K(∗) = block diagonal(K1, . . . ,KM ). Then the local polynomial estimator
derived from the LS estimator (4.36) is the solution to 0 =

X(∗)T
x K(∗)

(
y(∗) −X(∗)

x δx

)
=

⎛

⎜
⎜
⎜
⎝

X(1)T
x1

K1

(
y(1) −X(1)

x1
δ(1)x1

)

...

X(M)T
xM

KM

(
y(M) −X(M)

xM
δ(M)
xM

)

⎞

⎟
⎟
⎟
⎠

, (4.38)

where δ(j)xj
= (fj(xj), f

′
j(xj), . . . , f

(r)
j (xj))

T . As in the linear case, this estimator
fits each component model separately, and the question arises as to whether we
can improve on such marginal smoothing. An obvious approach is to try to use the
WLS estimator (4.37) rather than the LS estimator (4.36), to fit the approximate
polynomial model locally. However, it is much less clear how to introduce the local
kernel weights K into (4.37). Consider the four possibilities

0 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X∗T
x V−1 K(∗)

(
y(∗) −X(∗)

x δx

)
,

X(∗)T
x K(∗)1/2 V−1 K(∗)1/2

(
y(∗) −X(∗)

x δx

)
,

X(∗)T
x K(∗) V−1

(
y(∗) −X(∗)

x δx

)
,

X(∗)T
x V−T/2 K(∗) V−1/2

(
y(∗) −X(∗)

x δx

)
,

(4.39)

where A−T/2 = (A−1/2)T . These estimators are all the same when V is diagonal
but not otherwise. We compare the asymptotic efficiencies of these estimators to
that of (4.38). Again, when V is unknown, we replace it in (4.39) by a consistent
estimator.

Welsh and Yee (2006) show that, for the SUR model (x
(j)
i �= x

(k)
i for some j �=

k), incorporating the correlation structure into local polynomial estimators can

gain or lose asymptotic efficiency, but for the VMM (x
(j)
i = x

(k)
i ) leads to gains in

asymptotic efficiency for Case A but not for Case B. Derivative estimators behave
very differently in both the bias and the variance under cases A and B, and this is
also true of the covariance between the estimators of the mean functions and their
derivatives in the VMM. In addition, the placement of the kernel weights in WLS
estimators is very important in the SUR problem (to ensure that the estimator
is asymptotically unbiased) but not in the VMM, and the component estimators
are asymptotically uncorrelated in the SUR model but asymptotically correlated
in the VMM. These interesting results add to our understanding of the problem
of smoothing dependent data.

4.2.2.2 Bivariate Local Linear Estimators

The issues are the same for any M ≥ 2, so there is no real loss of generality in re-
stricting attention to the bivariate (M = 2) case. We can simplify X(j)

xj
to X(j)

xj
= 1

to obtain a vector version of the Nadaraya-Watson estimator, but local polynomial
estimators with r ≥ 1 are well-known to enjoy advantages over the Nadaraya-
Watson estimator (design adaption, automatic edge-effect properties, derivative
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estimation, etc.) so it makes sense to consider at least local linear estimators. In-
cluding higher powers of x(j) − xj1 in a general local polynomial estimator can
reduce the asymptotic bias and enable us to estimate higher-order derivatives of f1
and f2. However, to obtain theoretical results for local polynomial estimators of
order r, we have to analytically invert order-M(r + 1) matrices and this quickly
becomes intractable. In general, we do not have to use the same order polynomial
for both components, and we could allow both parametric and nonparametric com-
ponents. For simplicity, we restrict attention to the simplest case in which both
components are nonparametric and both polynomials are linear (r = 1).

For the bivariate local linear case, y(∗) =
(
y(1)T ,y(2)T

)T
, X(j)

xj
=

(
1, x(j) − xj1

)
is an n × 2 matrix, x = (x1, x2)

T is a 2-vector, X(∗)
x =

diag
(
X(1)

x1
,X(2)

x2

)
is a 2n× 4 matrix and

Σi =

(
σ2
1i σ1i σ2i ρi

σ1i σ2i ρi σ2
2i

)

. (4.40)

Let Wi = Σ−1
i denote the weight matrix and define W = n−1

n∑

i=1

Σ−1
i . Let

αi = 1/{σ2
1i(1− ρ2i )}, βi = − ρi/{σ1iσ2i(1− ρ2i )}, γi = 1/{σ2

2i(1− ρ2i )},

so that

Wi = Σ−1
i =

(
αi βi

βi γi

)

and W
−1

=
1

α γ − β
2

(
γ −β
−β α

)

.

It is also useful to note that

V−1 =

(
diag(α1, . . . , αn) diag(β1, . . . , βn)
diag(β1, . . . , βn) diag(γ1, . . . , γn)

)

.

The solutions to the first three sets of estimating equations in (4.39) can be
written compactly as

δ̂
(∗)
x (a) =

{
X

(∗)T
x K(∗)aV−1 K(∗)(1−a)X

(∗)
x

}−1

X
(∗)T
x K(∗)a V−1 K(∗)(1−a)y(∗)

= Δ(∗)
n (a)−1 θ(∗)

n (a), (4.41)

where a ∈ {0, 0.5, 1}. Multiplying out the terms in (4.41), we see that the 4 × 4

matrix nΔ(∗)
n (a) equals

n∑

i=1

⎛

⎜
⎜
⎜
⎝

αi Kh1
(x

(1)
i − x1)Γ i(11) βi Kh1

(x
(1)
i − x1)

a×
Kh2

(x
(2)
i − x2)

1−a Γ i(12)

βi Kh1
(x

(1)
i − x1)

1−a×
Kh2

(x
(2)
i − x2)

a Γ i(21) γi Kh2
(x

(2)
i − x2)Γ i(22)

⎞

⎟
⎟
⎟
⎠

,

where

Γ i(jk) =

(
1 x

(k)
i − xk

x
(j)
i − xj (x

(j)
i − xj)(x

(k)
i − xk)

)
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and, similarly, nθ(∗)
n (a) is

n∑

i=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

αi Kh1
(x

(1)
i − x1) y

(1)
i + βi Kh1

(x
(1)
i − x1)

aKh2
(x

(2)
i − x2)

1−a y
(2)
i

αi Kh1
(x

(1)
i − x1)(x

(1)
i − x1) y

(1)
i +

βi Kh1
(x

(1)
i − x1)

aKh2
(x

(2)
i − x2)

1−a(x
(1)
i − x1) y

(2)
i

βi Kh1
(x

(1)
i − x1)

1−aKh2
(x

(2)
i − x2)

a y
(1)
i + γi Kh2

(x
(2)
i − x2) y

(2)
i

βi Kh1
(x

(1)
i − x1)

1−aKh2
(x

(2)
i − x2)

a(x
(2)
i − x2) y

(1)
i +

γi Kh2
(x

(2)
i − x2)(x

(2)
i − x2) y

(2)
i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The solution to the fourth estimating equation in (4.39) is

δ̂
(∗)
x =

{
X(∗)T

x V−T/2 K(∗)V−1/2 X(∗)
x

}−1

X(∗)T
x V−T/2 K(∗) V−1/2 y(∗)

=
[
Δ(∗)

n

]−1

θ(∗)
n . (4.42)

It is generally difficult to obtain V−1/2 explicitly. However, if we use the Cholesky
decomposition V−1 = UTU, where U is the upper triangular Cholesky factor
of V−1, and define V−1/2 = U, then we can show that

V−1/2 =

(
diag(α

1/2
1 , . . . , α

1/2
n ) diag(β1/α

1/2
1 , . . . , βn/α

1/2
n )

O diag({(α1γ1 − β2
1)/α1}1/2, . . .)

)

.

It follows that δ̂
(∗)
x in (4.42) is the product of the inverse of nΔ(∗)

n , which is

n∑

i=1

(
αi Kh1

(x
(1)
i − x1)Γ i(11) βi Kh1

(x
(1)
i − x1)Γ i(12)

βi Kh1
(x

(1)
i − x1)Γ i(21) Gi Γ i(22)

)

(where Gi = (β2
i Kh1

(x
(1)
i − x1))/αi + ((γiαi− β2

i )Kh2
(x

(2)
i − x2))/αi), and nθ(∗)

n

which is

n∑

i=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

{
αi y

(1)
i + βi y

(2)
i

}
Kh1

(x
(1)
i − x1)

{
αi y

(1)
i + βi y

(2)
i

}
Kh1

(x
(1)
i − x1)(x

(1)
i − x1)

βiKh1
(x

(1)
i − x1) y

(1)
i +

β2
i

αi
Kh1

(x
(1)
i − x1) y

(2)
i +

γiαi − β2
i

αi
Kh2

(x
(2)
i − x2) y

(2)
i

{

βiKh1
(x

(1)
i − x1) y

(1)
i +

β2
i

αi
Kh1

(x
(1)
i − x1) y

(2)
i +

γiαi − β2
i

αi
Kh2

(x
(2)
i − x2) y

(2)
i

}

(x
(2)
i − x2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This is clearly of the same basic form as δ̂
(∗)
x (a) but with different weights.
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4.2.2.3 Conditions

Here, we will treat V as known. First, the estimators with known V give a lower
bound on the asymptotic efficiency of the estimators with an estimated V. Un-
less the estimators with known V are asymptotically more efficient than the un-
weighted estimator, there is no point in exploring the complexity of the general
case. Second, our results are relevant to the general case. In the homoscedastic
case in which Σi = Σ, the terms in Σ can be estimated at the parametric n−1/2

rate, even though the mean is only estimated at a nonparametric rate. Obviously
in this case, there is no loss of generality in treating the variance as known.

The asymptotic results are quite different for the cases x(1) �= x(2) (SUR)
and x(1) = x(2) (VMM), so we treat these cases separately. For the SUR model
(x(1) �= x(2)) results see Welsh and Yee (2006). For the VMM (x(1) = x(2)), we
state the conditions for our main theorems with a single kernel function K and
common bandwidths h = h1 = h2. We may use a single kernel function but dif-
ferent bandwidths (to allow for different curvature in f1 and f2, say)—this case is
considered briefly in Sect. 4.2.2.4.

Our results require the following conditions.

VMM Conditions

(i) The random variables xi are independent and identically distributed with
common density function g(x). The derivative g′(x) of g(x) exists and is
continuous.

(ii) The point x where estimation is taking place is an interior point of the support
of g, and g(x) > 0.

(iii) The third derivatives f ′′′
j of the component functions fj are continuous on an

open interval about x.
(iv) The kernel function K is a density function with compact support which is

symmetric about zero.
(v) The bandwidth h→ 0 such that nh3 →∞ as n→∞.
(vi) For Case A, the matrices Σi and W are bounded and non-singular.

The above conditions ensure that we can estimate both the mean functions and
their derivatives together. If we consider the estimators of the mean functions and
ignore the estimators of their derivatives, then we can discard conditions (vi) and
then weaken the conditions by replacing (iii) and (v) by

(iii′) The second derivatives f ′′
j of the component functions fj are continuous on

an open interval about x.
(v′) The bandwidth h→ 0 such that nh→∞ as n→∞.

4.2.2.4 The Vector Measurement Model

Now suppose that x(1) = x(2). We take x1 = x2 = x, say, as some terms diverge
as n → ∞ when x1 �= x2. Then X(1)

x = X(2)
x = Xx say, and we can write X(∗)

x =
I2 ⊗ Xx. This structure allows more flexibility in the positioning of the kernel
weights in the local estimator in the sense that all four estimators in (4.39) are
consistent.
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Generally, the choice of bandwidth depends on the estimand and the distribu-
tion of the covariate. Since we have the same covariate in each component, we may
choose to use different bandwidths h1 and h2 or the same bandwidth h1 = h2 in
our estimators according to whether f1 and f2 are different or similar. We consider
both of these cases.

For the case h1 �= h2, it can be shown that, under the VMM conditions,

(a) the bias of δ̂
(∗)
x (a) or δ̂

(∗)
x does not depend on the correlation so it is the same

as the asymptotic bias from separate marginal fits to the two components,
(b) the diagonal blocks in the asymptotic variance are of the same order as in the

SUR case,
(c) the off-diagonal blocks are of the same order as the diagonal blocks (so the

component estimators are asymptotically correlated when ρi or ρ(x) �= 0), and
(d) the constants in the asymptotic variance depend on both components of the

model.

When h1 = h2 and K1 = K2, all four weighted estimators are identical and the
results are simpler, so that we can obtain explicit results which give insight into

the general asymptotic behaviour of the estimators δ̂
(∗)
x . The estimator

δ̃
(∗)
x =

⎛

⎜
⎝

(
XT

xK1 Xx

)−1

XT
xK1 y

(1)

(
XT

xK2 Xx

)−1

XT
xK2 y

(2)

⎞

⎟
⎠ .

has asymptotic bias

bias

(

δ̃
(∗)
x

)

∼ h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ2 f
′′
1 (x)/2

(μ4 − μ2
2)g

′(x) f ′′
1 (x)

2μ2 g(x)
+

μ4 f
′′′
1 (x)

3!μ2

μ2 f
′′
2 (x)/2

(
μ4 − μ2

2

)
g′(x) f ′′

2 (x)

2μ2 g(x)
+

μ4 f
′′′
2 (x)

3!μ2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.43)

Its asymptotic variance is

Σ ⊗ 1

nh g(x)

(
ν0 −ν0 g′(x)/g(x)

−ν0 g′(x)/g(x) ν2/(hμ2)
2

)

for Case A. And for both cases A and B, we obtain

Var(δ̃
(∗)
x ) ∼ Σ ⊗ 1

nh g(x)

(
ν0 −ν0 g′(x)/g(x)

−ν0 g′(x)/g(x) ν2/(hμ2)
2

)

.

For the weighted estimators, we have the following results.
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Theorem 1. Suppose that h1 = h2, K1 = K2 and the VMM conditions (i),
(ii), (iii ′), (iv) and (v ′) hold. Then, for all four weighted estimators (4.39), the

asymptotic bias of (f̂1(x), f̂2(x))
T is

1

2
h2 μ2

(
f ′′
1 (x)
f ′′
2 (x)

)

,

and the asymptotic variance of (f̂1(x), f̂2(x))
T is ν0 {nh g(x)}−1W

−1
for Case A.

Theorem 2. Suppose that h1 = h2, K1 = K2 and the VMM conditions (i)–(vi)
hold. Then, for all four weighted estimators (4.39), for Case A, the bias satis-
fies (4.43), and the asymptotic variance is

W
−1 ⊗ 1

nh g(x)

(
ν0 −ν0 g′(x)/g(x)

−ν0 g′(x)/g(x) ν2/(hμ2)
2

)

.

Here are some remarks.

1. The off-diagonal blocks in the variance matrix are of the same order as the di-
agonal blocks, therefore the estimates of (f1, f

′
1) and (f2, f

′
2) are asymptotically

correlated.
2. The asymptotic variance is the same as in the unweighted case under ho-

moscedasticity Σi = Σ or Σ(x) = Σ. That is, there is no gain in smoothing
jointly compared to smoothing marginally. The covariance between the 2 × 2
matrices Var(f̂1(x), f̂

′
1(x)) and Var(f̂2(x), f̂

′
2(x)) depends on ρ. (This outcome is

analogous to the parametric case where the same thing occurs.) This means that,
as in the SUR model, the weighted and unweighted estimators have the same
asymptotic variance. However, whether we use a weighted or an unweighted
estimator, in the VMM, the off-diagonal blocks in the asymptotic variance
matrix depend on ρ and ignoring this correlation can result in a large loss
of efficiency in some applications. For example, suppose that we want to es-
timate θ = f1(x) − f2(x) or θ = f ′

1(x) − f ′
2(x) corresponding to the mean

difference (or difference in change) between measurements at x. Then ignoring
the asymptotic correlation between the estimates can lead to a substantial loss
in efficiency, as reflected in unnecessarily wide confidence intervals.

3. In the heteroscedastic case, and for the VMM, under Case A, the weighted
estimators have smaller asymptotic variance for estimating fj(x) and f ′

j(x) than
the unweighted estimator. However, for Case B, the weighted estimators have
the same asymptotic variance for estimating fj(x) and f ′

j(x) as the unweighted
estimator. The results under Case A are therefore quite different from those
under Case B.

Further insight into the nature of the weighted estimators can be obtained by
examining their equivalent kernels. Equivalent kernels for estimating any single
component of the model by a linear vector smoother are obtained in the same
way as equivalent kernels for linear smoothers, except that there are M ‘curves’—

one for each y
(j)
i . The proofs of Theorems 1–2 allow us to derive formulas for the
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asymptotic equivalent kernels; we present results only for Case A. In the case K1 =

K2 and h1 = h2, the asymptotic equivalent kernel for f̂1(x) weights y
(1)
i by

1

n
Kh(xi − x)

(
αi γ − βi β

α γ − β
2

)(
1

g(x)
− g′(x)

g2(x)
(xi − x)

)

, (4.44)

and y
(2)
i by

1

n
Kh(xi − x)

(
βi γ − γi β

α γ − β
2

)(
1

g(x)
− g′(x)

g2(x)
(xi − x)

)

. (4.45)

Similarly, the asymptotic equivalent kernel can be derived for f̂ ′
1(x) with weights

with respect to y
(1)
i and y

(2)
i . In the homoscedastic case, the terms involving the

components of Wi equal one in (4.44) and for f̂ ′
1(x) with respect to y

(1)
i , and zero

for (4.45) and for f̂ ′
1(x) with respect to y

(2)
i , so in this case, the weighted estimator

is effectively smoothing marginally. In the heteroscedastic case, numerical explo-
ration shows that even when the correlation is quite large, relatively little weight

is given to y
(2)
i for estimating f1 and f ′

1.

4.2.2.5 Conclusions

We have considered the problem of estimating the regression functions and their
first derivatives in the vector regression model (4.35) under the assumption that
the errors are correlated. Specifically, we have explored whether we can construct
linear local polynomial estimators which are more efficient than unweighted local
polynomial estimators which ignore the correlation structure and estimate each
component regression function and its derivative separately. Our results depend
on the covariate structure and the form of the variance model. In particular, the

results are different for the SUR model, in which x
(j)
i �= x

(k)
i for some j �= k,

and the VMM in which x
(j)
i = x

(k)
i . They also depend on whether the variance is

modelled as constants (Case A) or as smooth functions of the covariates (Case B).
In the univariate case, the SUR model reduces to a marginal model, and the VMM
to a (marginal) cluster-level model so this distinction is natural.

Under the SUR model, only the second estimator in (4.39) is consistent when the
correlation is nonzero, while under the VMM, when the kernels and bandwidths
are equal, all four estimators in (4.39) are always identical. For estimating the
regression functions, we find that the asymptotic bias of the (consistent) weighted
and unweighted estimators is the same. The components of the consistent weighted
estimator under the SUR model are asymptotically uncorrelated while under the
VMM, the components of the weighted estimator are asymptotically correlated.
Table 4.1 shows the estimator of the regression function with the smaller asymp-
totic variance in the different cases.

The results for the derivative estimators are more complicated, because the
asymptotic biases of the (consistent) weighted estimators are the same as those of
the unweighted estimators under Case A but differ under Case B. The asymptotic



152 4 VGAMs

Table 4.1 The estimator of the regression or derivative function with the smaller asymptotic
variance in the different cases. Here, “Either” means the weighted estimator will sometimes be
more efficient, and will sometimes be less efficient.

Case SUR VMM

Not all covariates are equal Common covariates

A Variance is unrelated to covariates ρi = ρ Weighted Weighted

ρi �= ρ Either

B Variance is a function of covariates ρ(x) = ρ Equal Equal

ρ(x) �= ρ Either

variances of the derivative estimators follow the same pattern as the regression
estimators in Table 4.1. However, note that the asymptotic correlation between
the weighted regression and derivative estimators of a component of the model
bears the same relation to that of the unweighted estimators as the asymptotic
variances of the weighted to the unweighted estimators in Case A, but they include
different terms in Case B.

Finally, simulation results show that the asymptotic results apply in finite sam-
ples, and hence it is important when selecting an estimator for vector regression
to distinguish between Cases A and B.

4.2.3 On Linear Vector Smoothers

The general theory relating to linear smoothers described in Sect. 2.4.7 quite nat-
urally extends to the vector smoothing situation. Some results of practical impor-
tance are summarized below.

4.2.3.1 Degrees of Freedom for Linear Vector Smoothers

Following on from Sect. 2.4.7.4, for vector smoothers with Var(y) = Σ, there are
at least three definitions for the degrees of freedom of a linear vector smoother:
they are df = trace(A), dfvar = trace(Σ−1AΣAT ) and df err = tr(InM −
2A + ATΣ−1AΣ), respectively. These are the degrees of freedom for the over-
all smooth f . However, we need to define the degrees of freedom for each of
the M component functions of f as well. Intuitively, one would want the lat-
ter to be the sum of the former. Correspondingly, we define the degrees of freedom
of the jth component function fj(·) as the sum of those diagonal elements cor-
responding to the jth component function. For example, for vector splines, the
degrees of freedom of the jth smooth is the sum of elements (j,j), (M+j,M+j),
. . . , ((n− 1)M+j,(n− 1)M+j) of A(λ), Σ−1A(λ)ΣA(λ)T and InM − 2A(λ) +
A(λ)TΣ−1A(λ)Σ for df(j), dfvar

(j) and df err
(j) , respectively. They can be written

compactly, e.g.,

df(m) = trace {diag(1n ⊗ em) A(λ) diag(1n ⊗ em)} , m = 1, . . . ,M.

Hastie and Tibshirani (1990, App.B) describe an approximation for df err for
cubic splines as
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2 trace S(λ)− trace(S(λ)S(λ)T ) ≈ 5

4
trace S(λ)− 1

2
. (4.46)

In our work with vector splines, this approximation also works well for each com-
ponent function, i.e., df err(m) ≈ 1.25 df(m) − 0.5, no matter what the correlations
are.

4.2.3.2 Standard Errors

Following on from Sect. 2.4.7.5, the variance-covariance matrix of a linear vector
smoother fit f̂ is A(λ)ΣA(λ)T . In theory, this can be used to form pointwise
standard error bands for each of theM component functions of f . Unfortunately, it
is impractical if nM is large, as the complete influence matrix must be computed.
However, for vector splines, the Bayesian-based alternative A(λ)Σ is used. This
is computationally quite cheap, because only the central 2M−1 bands of A(λ) are
required and these may be efficiently computed using the Hutchinson and de Hoog
(1985) algorithm, and gives similar results to A(λ)ΣA(λ)T .

4.3 The Vector Additive Model and VGAM Estimation

Recall from Sect. 3.2 that the IRLS algorithm used to estimate VGLMs. Simply
put, VGAMs are estimated by fitting a vector additive model at each iteration
of the IRLS algorithm to the pseudo-response zi with explanatory variables xi

and working weight matrices Wi. Many of the results pertaining to the univariate
additive models generalize naturally to the vector case. Consequently, this section
draws upon Hastie and Tibshirani (1990, Chap.5).

4.3.1 Penalized Likelihood

A heuristic argument is given to show that using vector smoothing splines can
be justified by a penalized likelihood argument. Consider penalizing 
 for lack of
smoothness by maximizing


{η1(xi), . . . , ηM (xi)} −
d∑

k=2

Rk∑

j=1

λ(j)k

∫

{f∗′′
(j)k(xk)}2 dxk . (4.47)

We saw from Sect. 3.2 that maximizing a log-likelihood 
 (3.7) by Fisher scor-
ing amounted to minimizing a GLS criterion (3.22) at each IRLS iteration. This
entailed fitting a weighted multivariate regression to working responses zi to
some XVLM with working weights Wi. Hence, with trivial constraints, the so-
lution minimizes

n∑

i=1

{zi − ηi}T Σ−1
i {zi − ηi}+

d∑

k=2

M∑

j=1

λ(j)k

∫

{f ′′
(j)k(xk)}2 dxk,

and when d = 2, this reduces to the vector spline problem (4.3).
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4.3.2 Vector Backfitting

The (weighted) vector additive model (VAM) for a response M -vector yi is

yi = H1 β
∗
(1) +

d∑

k=2

Hk f
∗
k(xik) + εi, εi ∼ (0,Σi), (4.48)

where f∗
k(xik) = (f∗

(1)k(xik), . . . , f
∗
(Rk)k

(xik))
T , and E(f∗

k) = 0 for all k. It is

applied to observations (xi, yi, Σi), i = 1, . . . , n. The VAM is clearly a natural
extension of the univariate additive model to vector or multivariate responses. As
with the ordinary additive model, the component functions of the kth variable,
f∗
(m)k(·), are arbitrary smooth functions.
For VGAMs, the VAM is fitted to the adjusted dependent vectors zi with

working weights Wi = Σ−1 described in Sect. 3.2. This can be done by a vec-
tor backfitting algorithm using vector smoothers as the basic building block. The
essential idea of backfitting is to smooth partial residuals against one covariate
at a time, having adjusted for all other covariates. This algorithmic procedure is
iterated until convergence.

As with the univariate additive model, conditional expectations provide a simple
motivation. Under the VAM (4.48),

E

⎡

⎣yi −H1 β
∗
(1) −

∑

s �=k

Hs f
∗
s(xis)

∣
∣
∣
∣
∣
∣
xk

⎤

⎦ = Hk f
∗
k(xik) (4.49)

for all k. The vectors under the expectation are the partial residuals. Here, the
effects of all covariates except for the kth are ‘removed’ from yi for the updat-
ing of f∗

k. The above formula motivates the vector backfitting algorithm (Algo-
rithm 4.1), which is presented with trivial constraints for simplicity.

There are actually two common updating techniques depending on whether the
latest updates are used. Algorithm 4.1 is of the block-Jacobi type. The block
Gauss-Seidel type involves replacing

∑

s �=k

f (a−1)
s (xis) in (a) by

∑

s<k

f (a)
s (xis) +

∑

s>k

f (a−1)
s (xis), i.e., the most recent estimate of the component functions are used.

Also, it is noted that any vector norm would do for testing convergence. The al-
gorithm is justified more fully below.

It is possible to apply the iterative vector spline solution idea of Sect. 4.2.1.5 by
looping over the k and the j; Yee (1998) considers this procedure. In the backfitting
with vector smoothing here, we only have to loop over the k. Vector backfitting
has advantages such as handling high correlations better (especially when the
algorithm is modified by a projection step) and it is faster, because it treats up
to M component functions at a time as one computational block.

To justify the vector backfitting algorithm as a technique for estimating the
vector additive model, note that when there are d (> 1) covariates,

(

y −
d∑

k=1

f j

)T

Σ−1

(

y −
d∑

k=1

f j

)

+

d∑

k=1

fT
kKjfk,
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Algorithm 4.1 The vector backfitting algorithm (with trivial constraints).

Initialize: β(1) = average{z1, . . . , zn}, and f
(0)
2 ≡ f

(0)

d
· · · ≡ 0.

Iterate: For a = 1, 2, . . .

(i) Iterate: For k = 2, . . . , d :

(a) Compute the function f̃ , as the weighted vector smooth of

observations

⎛

⎝xik, zi − β(1) −
∑

s �=k

f
(a−1)
s (xis), Σi

⎞

⎠.

(b) Adjust the intercept: β(1) = β(1) + average{f̃ (x1k), . . . , f̃ (xnk)}.
(c) Compute: f

(a)
k (xik) = f̃ (xik)− average

{
f̃ (x1k), . . . , f̃ (xnk)

}
.

(ii) Test for convergence: If ‖f (a)
k − f

(a−1)
k ‖ < ε ∀k and positive ε ≈ 0 then stop.

where lack-of-smoothness penalties fT
kKkfk are imposed on each function fk. The

quantities in this formula are defined as in (4.4). By differentiating with respect
to fk, this is minimized when

f̂k = (InM +ΣKk)
−1

⎛

⎝y −
∑

s �=k

f̂s

⎞

⎠ , k = 2, . . . , d,

which corresponds to a weighted backfitting algorithm using vector splines.

4.3.2.1 Consistency and Convergence

Properties such as the convergence of the vector backfitting algorithm are exam-
ined by considering the nMd× nMd system of estimating equations

⎛

⎜
⎜
⎜
⎜
⎜
⎝

InM A1 A1 · · · A1

A2 InM A2 · · · A2

...
. . .

...
Ad−1 · · · Ad−1 InM Ad−1

Ad · · · Ad Ad InM

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

f1

f2
...

fd−1

fd

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A1y
A2y
...

Ad−1y
Ady

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (4.50)

or
P̂f = Q̂y, say.

This is the usual estimating equations withAj replacing Sj . The following theorem
gives the consistency and convergence result for the vector backfitting algorithm
using vector splines.

Theorem With vector splines, the estimating equations (4.50) are consistent for

every y, and the solution is unique unless there exists a g �= 0 such that P̂g =
0 (concurvity). Furthermore, a vector backfitting algorithm using vector splines
converges to some solution of the estimating equations.
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Proof These are consequences of Hastie and Tibshirani (1990, Sect.5.3.7). �

It may be noted that Hastie and Tibshirani (1990, Sect.5.3.6) recognize that their
convergence results also hold for some non-univariate smoothers, however, they do
not mention vector smoothers explicitly. Also note that it can be shown that if all
the smoothers are vector splines, then exact concurvity only exists if the covariates
are exactly collinear—a result which is known for ordinary cubic splines.

When the Σi are not all equal, the theorem may be generalized to deal with the
non-symmetric case. This is important, because Ak(λk) will not be symmetric in

most applications. It is done by premultiplying y by Σ− 1
2 . The resulting influence

matrix is symmetric with eigenvalues in [0, 1], and unit eigenvalues corresponding
to linear component functions of the kth variable. The transformation in fact
leads to M separate unweighted additive models. Hence, all results on existence,
uniqueness and convergence of algorithms apply.

4.3.2.2 Modified Vector Backfitting

The vector backfitting algorithm described above is actually not implemented en-
tirely as stated. Instead, a VLM is first fitted to estimate the linear parts of the
component functions,

f∗
(j)k(xk) = β∗

(j)k xk + g∗(j)k(xk), (4.51)

and then the vector of residuals

ri = zi −
d∑

k=1

Hk β̂
∗
(k) xik

is formed and ordinary vector backfitting is performed on the ri to estimate
the g∗(j)k(xk). Clearly, this is an extension of (4.12). The reason for this modi-
fication is that the first step is a projection onto the space of linear fits, and the
second step relates to a nonprojection component (they correspond toH0j andH1j

as related to (4.30)). The result is that it generally leads to fewer vector backfitting
iterations required, especially when the xk are correlated.

4.3.3 Degrees of Freedom and Standard Errors

As a further approximation in the case of more than one covariate, the three
forms of the degrees of freedom are defined additively, e.g., df err becomes nM −(

M +
d∑

k=2

[trace(Ak)−M ]

)

. For more than a single component function, the

breakdown by successive diagonal elements applies as before.
With more than one covariate, one can express f̂ j = Rjy for some nM × nM

matrix Rj at convergence. Direct computation of Rj is too costly in practice.
Instead, very approximate Bayesian standard errors (SEs) are available and can
be plotted in VGAM. These pointwise ±2 standard error bands are useful to give
an indication about which parts of the curve are more variable.
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For covariate xk, VGAM computes SEs as the square root of

σkk (xk − xk)
2 + diag(AkW

−1), (4.52)

being the sum of the variances of the linear and nonlinear components of (4.51).
The latter term is not quite right—the true variance of ĝ∗(j)k(xk) is complicated

and involves a large hat matrix. In (4.52) Ak is the influence matrix of the vector
smooth of the kth covariate and W the weight matrix at the final local scoring
iteration. However, the pointwise ±2 SE bands plotted for linear terms is correct
because the latter term is zero for such. For nonlinear terms the pointwise ±2 SE
bands are slightly too wide.

Currently, it is not possible for VGAM to compute SEs at new data, nor to
handle non-trivial constraint matrices.

4.3.4 Score Tests for Linearity †

Suppose

ηij =

d∑

k=1

f(j)k(xik) = βT
j xi +

d∑

k=1

s(j)k(xik)

is an additive predictor using modified backfitting for a VGAM. The s(j)1, . . . , s(j)p
are nonlinear part of the smooth component functions f(j)1, . . . , f(j)d where j =
1, . . . ,M . We want to test H0 : f(j)t is linear versus H1 : f(j)t is nonlinear, for
some t ∈ {1, . . . , d} and j ∈ {1, . . . ,M}, i.e., H0 : s(j)t = 0 versus H1 : s(j)t �= 0.
The following approximate score test is applied. It follows Chambers and Hastie
(1991, p.306) by adjusting only for the linear parts while keeping the other non-
linear parts fixed.

Define the Pearson chi-squared statistic for VGAMs to be the same as with
VGLMs (Sect. 3.7.2). Then X2 .∼ χ2

nM because zi
.∼ (ηi, w

−1
i W−1

i ). Allowing for
constraint matrices Hk (M × ncol(Hk)), at convergence under H1,

zi −
d∑

k=1

Hk ŝk(xik) ∼ B̂
T
xi.

The notation “∼” here means when the LHS is regressed upon xi it yields B̂—but
the regression adjusts for weights wiWi and constraint matrices Hk in the design
matrix. Write the columns of Hk as (h1k, . . . ,hncol(Hk)k). Suppose

hjt ŝ(j)t(xit) ∼ hjt γ̂
T
(j)txi, j = 1, . . . , ncol(Ht).

Then

zi −
∑

k �=t

Hk ŝk(xik)−
∑

m �=j

hmt ŝ(m)t(xit) ∼
(
B̂

T
+ hjt γ̂

T
(j)t

)
xi,



158 4 VGAMs

and so

zi − ηi =

(

B̂
T
xi +

d∑

k=1

Hk ŝk(xik) + rWi

)

−
⎛

⎝
(
B̂

T
+ hjt γ̂

T
(j)t

)
xi +

∑

k �=t

Hk ŝk(xik) +
∑

m �=j

hmt ŝ(m)t(xit)

⎞

⎠

= hjt

{
ŝ(j)t(xit)− γ̂T

(j)t xi

}
+ rWi .

Let
δ̂itj =

{
ŝ(j)t(xit)− γ̂T

(j)t xi

}
hjt (= δ̂itj hjt, say).

[With no constraints, hjt = ej ]. Then the difference in the Pearson chi-squared
statistic between H0 and H1 is

X2
0t −X2

1t =

n∑

i=1

wi

(
rWi + δ̂itj

)T
Wi

(
rWi + δ̂itj

)
−

n∑

i=1

wi r
WT
i Wi r

W
i

= 2

n∑

i=1

wi r
WT
i Wi δ̂itj +

n∑

i=1

wi δ̂
T

itj Wi δ̂itj (4.53)

= 2

n∑

i=1

wi u
T
i δ̂itj +

n∑

i=1

wi δ̂
T

itj Wi δ̂itj . (4.54)

With no constraints, this simplifies to wiu, and

X2
0t −X2

1t = 2

n∑

i=1

wi δ̂itj uij +

n∑

i=1

wi δ̂
2
itj (Wi)jj .

The quantity (4.54) is returned by vgam.nlchisq() and is printed by
the summary() generic. One can test H0 : st = 0 versus H1 : st �= 0 using (4.53),
and dropping the “j”,

δ̂it = Ht

⎧
⎪⎨

⎪⎩
ŝt(xit)−

⎛

⎜
⎝

γ̂T
(1)t

...

γ̂T
(ncol(Ht))t

⎞

⎟
⎠xi

⎫
⎪⎬

⎪⎭
.

From practical point-of-view, some comments on the bias of the above score
test are made in Sect. 4.4.

It is noted that several workers have developed alternative methods for conduct-
ing tests within a spline-additive model context. For example, Cantoni and Hastie
(2002) propose a likelihood-ratio-type test statistic for smoothing splines based on
mixed-effects models which enables tests of linearity to be conducted. Their test
can be applied to additive models too, and in contrast with the test presented
here, the exact distribution of their test statistic is derived. A second example is
Fan and Jiang (2005) who extend the generalized likelihood ratio (GLR) tests to
additive models using the backfitting estimator and show that, under the null mod-
els, the newly proposed GLR statistics follow asymptotically rescaled chi-squared
distributions.
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4.4 On More Practical Aspects

4.4.1 Using the Software

Here are some notes about using VGAM to fit VGAMs.

1. The call is typically of the form

vgam(y ~ s(x2) + s(x3, df = 2) + x4 + s(x5, df = c(1, 4)),

VGAMfamily, data = vdata)

Now s is symbolic for a vector smoothing spline, and it defaults to 4 degrees
of freedom (1 means linear) for each component function, therefore its ENDF
is 3. So here, the smooths with respect to x3 have about the flexibility of a
curve somewhat between a line and a quadratic. Values of df are recycled if
necessary, and the above call implies M ≥ 2—if not, then a warning message is
issued.

The function s() should only be used with vgam()—not with vglm(). If all
terms in the formula are parametric, then vglm() should be called instead.

Variables x2, x3 and x5 should be numeric with at least 7 unique values; this
is partly because smoothing with n < 7 is rather nonsensical.

2. It is usual to input argument df rather than spar. The latter denotes scaled
versions of the smoothing parameters λ(j)k in (4.47). The present implemen-

tation details are to have lambda ∝ 2563·spar−1 where lambda is λ(j)k after

scaling (4.3) from [a, b] to [0, 1]. When df is specified, a root-finding procedure
is applied to spar on an interval [− 3

2 ,
3
2 ] (the default).

3. The p-values printed by the summary() generic are based on the approximate
score test described in Sect. 4.3.4. Because this test is sub-optimal, the χ2-
statistics for nonlinearity tend to be biased upward (too large), hence the asso-
ciated p-values for testing linearity are generally anticonservative (too small).

4.4.2 vsmooth.spline()

The stand-alone function vsmooth.spline() fits vector smoothing splines. It cur-
rently has arguments

> args(vsmooth.spline)

function (x, y, w = NULL, df = rep(5, M), spar = NULL, i.constraint = diag(M),

x.constraint = diag(M), constraints = list(‘(Intercepts)‘ = i.constraint,

x = x.constraint), all.knots = FALSE, var.arg = FALSE,

scale.w = TRUE, nk = NULL, control.spar = list())

NULL

and operates in a similar spirit to smooth.spline(). By default, O-splines are
fitted (Sect. 2.4.4.3) so that if n is large then n∗ � n unless all.knots = TRUE.
At present, VGAM uses a piecewise function to choose the ‘effective’ number of
design points, n∗, as plotted in Fig. 2.12. For small data sets (n < 50), a knot is
placed at every distinct data point xi, so n∗ = n. For larger data sets, the number



160 4 VGAMs

of knots is O(n1/5) when all.knots = FALSE (the default). Given n∗, the number
of B-spline coefficients is (n∗+2)M and the number of knots is n∗+6. Given x1 <
x2 < · · · < xn, three boundary knots are chosen at both min(xi) and max(xi),
and n∗ knots at x	1+(j−1)(n−1)/(n∗−1)
 for j = 1, . . . , n∗. The result are four knots
each at min(xi) and max(xi), and the spline is linear beyond the boundaries.

As described in Sect. 4.2.1.4, vsmooth.spline() decomposes each component
function into a linear and nonlinear part. When the generic coef() is applied to
such a fit, the coefficients belonging to the linear and nonlinear parts are returned
in two separate lists.

Like its univariate counterpart smooth.spline(), there is a predict() meth-
ods function that allows different order derivatives to be computed. Note that
the df value for vsmooth.spline() is one higher than the df value for s(); this is
because s()’s corresponds to number of nonlinear degrees of freedom and the func-
tion is centred. For example, df = 2 for vsmooth.spline() and df = 1 for s()

are linear functions.
Constraints can be inputted in two ways in vsmooth.spline(). The first

is through the arguments i.constraint and x.constraint, which stand for
intercept-constraint and x-constraint, respectively. These may be assigned a con-
straint matrix, or a function returning one. The second way is through the argu-
ment constraints, which is a list with one or more constraint matrices. When
none of these arguments are assigned, IM is assumed (trivial constraints) for both
intercept and x. The constraints slots of vgam() and vsmooth.spline() objects
have the same form.

As with vglm(), the weight matrices Wi = Σ−1
i may be inputted in matrix-

band format (Sect. 18.3.5).

4.4.3 Example: Cats and Dogs

To illustrate some basic aspects of VGAM fitting, let’s fit a bivariate odds ratio
model to examine how the probability of having a household cat and dog varies
as a function of peoples’ ages, in the xs.nz data frame. We choose a more homo-
geneous subset by restricting the analysis to European women, and we regress the
two binary responses nonparametrically against age. We create this subframe first
because we want to make use of it later, and also take the liberty to remove any
missing values from those variables at this early stage. The initial model allows
all 3 parameters to be smooth functions of age, however, the marginal probabilities
are afforded more flexible than the odds ratio on their respective ηj scale.

> f.euro <- subset(xs.nz, sex == "F" & ethnicity == "European")

> f.euro.cd <- subset(f.euro, !is.na(age) & !is.na(cat) & !is.na(dog))

> fit1.cd <- vgam(cbind(cat, dog) ~ s(age, df = c(4, 4, 2)),

binom2.or(zero = NULL), data = f.euro.cd)

The data frame f.euro.cd has 2569 rows so it is not a small data set. A plot of
the component functions with SEs, and under a common y-axis scale to make the
component functions more comparable, can be obtained as follows (Fig. 4.4).

> plot(fit1.cd, se = TRUE, scol = "limegreen", lcol = "blue", scale = 4)



4.4 On More Practical Aspects 161

The first two plots suggest that an exchangeable error structure might be present.
Testing this by
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Fig. 4.4 A bivariate odds ratio model fitted as a VGAM to a subset of female Europeans
from xs.nz, with household cat and dog ownership as the responses. The plots are the f̂(j)2(x2).

> fit2.cd <- vgam(cbind(cat, dog) ~ s(age, df = c(4, 2)),

binom2.or(zero = NULL, exchangeable = TRUE), data = f.euro.cd)

> lrtest(fit1.cd, fit2.cd)

rejects the hypothesis strongly.
Whether the component functions are nonlinear can be answered by

> summary(fit1.cd)

Call:

vgam(formula = cbind(cat, dog) ~ s(age, df = c(4, 4, 2)), family = binom2.or(zero = NULL),

data = f.euro.cd)

Number of linear predictors: 3

Names of linear predictors: logit(mu1), logit(mu2), loge(oratio)

Dispersion Parameter for binom2.or family: 1

Residual deviance: 6160.2 on 7694.3 degrees of freedom

Log-likelihood: -3080.1 on 7694.3 degrees of freedom

Number of iterations: 6

DF for Terms and Approximate Chi-squares for Nonparametric Effects

Df Npar Df Npar Chisq P(Chi)

(Intercept):1 1

(Intercept):2 1

(Intercept):3 1

s(age, df = c(4, 4, 2)):1 1 3.0 77.2 0.00000

s(age, df = c(4, 4, 2)):2 1 2.8 68.8 0.00000

s(age, df = c(4, 4, 2)):3 1 0.9 5.8 0.01267
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These results suggest that all three functions are nonlinear. A plot of the four
fitted joint probabilities can be obtained by

> ooo <- with(f.euro.cd, order(age)) # Need to sort by age

> mycol <- c("orange", "green", "blue", "purple"); mylty <- c(1, 1, 2, 2)

> with(f.euro.cd,

matplot(age[ooo], fitted(fit1.cd)[ooo, ], type = "l", col = mycol, las = 1,

xlab = "Age", lty = mylty, ylab = "Fitted joint probabilities"))

> legend("topleft", c("No cat or dog", "Dog only", "Cat only", "Cat and dog"),

lty = mylty, col = mycol)

which gives Fig. 4.5.
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Fig. 4.5 Joint probabilities from fit.cd1.

This plot suggests that the probability of having both types of pets in the home
attains its maximum for women who are middle-aged. Possibly, this might corre-
spond mainly to mothers of families with children. Not surprisingly, pet ownership
declines with age.

One use of VGAMs is to replace nonparametric component functions by para-
metric ones. Let’s try the following parametric replacement.

> Hlist <- list("(Intercept)" = diag(3),

"bs(age, degree = 1, knot = 40)" = rbind(1, 0, 0),

"bs(age, degree = 1, knot = 50)" = rbind(0, 1, 0),

"poly(age, 2)" = rbind(0, 0, 1)) # Correct white spaces needed!

> fit3.cd <- vglm(cbind(cat, dog) ~ bs(age, degree = 1, knot = 40) +

bs(age, degree = 1, knot = 50) +

poly(age, 2),

binom2.or(zero = NULL), data = f.euro.cd, constraints = Hlist)

One might then compare them separately by

> plot(fit1.cd, se = TRUE, scol = "orange", lcol = "blue", scale = 4)

> plot(as(fit3.cd, "vgam"), se = TRUE, scol = "orange", lcol = "blue", scale = 4)

however, it’s sometimes more effective to overlay them (Fig. 4.6):

> for (cf in 1:3) { # Loop over the component functions

plot(fit1.cd, which.cf = cf,

se = TRUE, scol = "blue", lcol = "blue", scale = 3.5)

plot(as(fit3.cd, "vgam"), which.term = cf, raw = TRUE, add = TRUE, overlay = TRUE,

se = TRUE, scol = "orange", lcol = "orange", scale = 3.5)

}
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Fig. 4.6 The first three plots are the fitted component functions overlaid; the models
are fit1.cd are fit3.cd. The fourth plot is the estimated log odds ratios of fit3.cd.

A natural question is to ask whether the parametric fit is acceptable. One might
wish to use either of

> lrtest(fit3.cd, fit1.cd)

> lrtest(fit1.cd, fit3.cd)

however, comparing a model with an s() term with another with a bs() term is
treacherous. It is safer to perform the test manually, using something like

> pchisq(2 * (logLik(fit1.cd) - logLik(fit3.cd)),

df = df.residual(fit3.cd) - df.residual(fit1.cd), lower.tail = FALSE)

[1] 0.10755

which is very heuristic and approximate. This suggests that the parametric
model fit3.cd is reasonable. This is in accord with the close resemblance of the
functions in Fig. 4.6. Now

> coef(fit3.cd, matrix = TRUE)

logit(mu1) logit(mu2) loge(oratio)

(Intercept) -0.11032 -0.90412 0.33448

bs(age, degree = 1, knot = 40)1 0.81614 0.00000 0.00000

bs(age, degree = 1, knot = 40)2 -1.59353 0.00000 0.00000

bs(age, degree = 1, knot = 50)1 0.00000 0.37173 0.00000

bs(age, degree = 1, knot = 50)2 0.00000 -2.51084 0.00000

poly(age, 2)1 0.00000 0.00000 13.21548

poly(age, 2)2 0.00000 0.00000 14.40974
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which the reader can show (Ex. 4.1) that the estimated odds ratio is greater than
unity for all ages represented in the data set. It is not surprising that these two
types of pets have a positive association in terms of household ownership. Another
observation is that the point estimates of the odds ratio are closest to unity at
around 43 years, which suggests that choice of the type of pet is made almost
independently at around that age.

Bibliographic Notes

All of the references on GAMs listed in the bibliographic notes of Chap. 2 have
a direct bearing on VGAMs. Further to the references on Hilbert space the-
ory in Chap. 2, of relevance to statisticians are Small and McLeish (1994) and
Berlinet and Thomas-Agnan (2004). The iterative vector spline solution described
in Sect. 4.2.1.5 is based on Yee (1998). The algorithm of Sect. 4.2.1.3 is due to Yee
(2000).

The package mgcv can fit a few models with M > 1 additive predictors using
automatic smoothing parameter selection, e.g., the Cox model, the multinomial
logit model, and zero-inflated Poisson model.

Exercises

Ex. 4.1. Confirm that the estimated odds ratio in the model fit3.cd of
Sect. 4.4.3 is greater than unity for all ages represented in the data set. Show
that the odds ratio is closest to unity at around 43 years.

Ex. 4.2. Consider the xs.nz data frame, with acne as the response and age as
the explanatory variable. Restrict your analyses to European-type people.

(a) Fit two GAMs, one for each gender. Plot the fitted values for each gender on
a single plot. Comment and discuss the interpretation of the curves, e.g.,

(i) Does it mean that older people tend to have less of an acne problem?
(ii) Has the prevalence of acne changed over time?
(iii) Has there been availability of treatment for acne only in more modern times?
(iv) Are younger people these days more concerned about their looks and health?

(b) Do the curves coincide?—conduct an approximate hypothesis test.

Ex. 4.3. Fit a VGAM bivariate odds ratio model to the male Europeans from
the xs.nz data frame with worry and worrier as the responses. Use age as the
covariate, and model the log odds ratio as a function of age too. Comment on the
estimated component functions and fitted values.

Ex. 4.4. London Tube Patronage
Fit two simultaneous GAMs to the tube10 data for the CharingCross

and SouthKensington stations—use each quarter-hour time block as values of
the explanatory variable. Using Poisson or negative binomial regression, describe
quantitatively and qualitatively the differences between the two stations.
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Ex. 4.5. VGAMs Fitted to Two Tree Species
Consider the species Tawa and Rewarewa from the hunua data frame.

(a) Use vgam() to fit simultaneous smooth logistic regressions to the two species
against altitude. Overlay the (centred) component functions, along with their
standard error bands. Comment.

(b) On one plot, overlay the fitted values of both species against altitude. Com-
ment.

(c) † Repeat (a) but plot the uncentred component functions. Repeat (b) but
include the SE bands.

Ex. 4.6. Kauri Trees in Two Forests
Consider the species Agathis australis in the hunua and waitakere data frames.

(a) Use vgam() to fit smooth logistic regressions to the species against altitude—
one for each data set. Overlay the (centred) component functions, along with
their standard error bands, on a single plot. Comment.

(b) Are the species’ distributions the same in both forests? i.e., are the two com-
ponent functions the same? Conduct some approximate hypothesis test. Com-
ment.

Ex. 4.7. RKHS for Cubic Smoothing Splines
Consider the cubic smoothing spline as a special case of a vector spline withM = 1.

(a) Show that {1, t − a} is an orthonormal basis with respect to the inner prod-
uct (4.25) for a cubic smoothing spline defined on (a, b).

(b) For Ω = [0, b] show that the RK for H1 is

K1(s, t) =
(min(s, t))2

6
{3 max(s, t)−min(s, t)} , s, t ∈ [0, b].

Ex. 4.8. Linear Interpolating Splines
For the linear interpolating spline example of Sect. 4.2.1.7, express f̂(t) in the
form αm + βmt for each segment, given data f(0) = 0, f(0.1) = 1, f(0.3) = 0.5,
f(0.6) = 0.9 and f(1) = 2.

Ex. 4.9. Equivalent Kernels for Vector Local Linear Regression
for M = 2 Following from (4.44) and (4.45) obtain asymptotic equivalent ker-

nel for f̂ ′
1(x) with respect to y

(1)
i and y

(2)
i .

Ex. 4.10. p-Values for Testing Linearity in VGAMs

(a) Generate values of a variable x2 such that xi2 ∼ Unif(0, 1) independently,
for i = 1, . . . , n = 100. Then do the following 1000 times. Generate Pois-
son counts with ηi = 1 + xi2. Using calls of the form vgam(y ∼ s(x2),

poissonff, ...), obtain the p-value for testing linearity of the component
function. Examine the 1000 p-values and comment.

(b) Repeat (a) but with n = 30. Do the results change much?
(c) Repeat (a) but with n = 1000. Do the results change much?

Ex. 4.11. p-Values for Testing Linearity in VGAMs (Regression
Splines)
Repeat Ex. 4.10(a)–(c) but use calls of the form vglm(y ∼ bs(x2), poissonff,

...). Obtain the p-values using lrtest().
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Ex. 4.12. Sleep in xs.nz

Consider the response variable sleep in the data frame xs.nz.

(a) Fit an additive model to these data, using age, sex and ethnicity as ex-
planatory variables. Delete all the missing values from these variables first.
Use uninormal() and allow both ηj to be additive in the variables.

(b) Plot the estimated component functions of your model and interpret them.
(c) Some of the values of sleep are unrealistic. Delete those values which you

think are not ‘true’, and repeat your analyses above. Does the deletion of
these values make much of a difference to the results?

(d) Repeat (a)–(b), but fit a Poisson regression instead. What are the advantages
of each type of regression model?

A councillor ought not to sleep the whole night through, a man to whom the
populace is entrusted, and who has many responsibilities.
—Homer



Chapter 5

Reduced-Rank VGLMs

True love yields not to high rank.
—Sextus Aurelius Propertius

5.1 Introduction

This chapter describes the first of three major classes of models that spring as
extensions of the VGLM and VGAM classes. These main variants are summa-
rized in Table 5.1, and their primary defining characteristic is that they operate
on R latent variables which can be written ν = (ν1, . . . , νR)

T . The phrase “latent
variable” has several shades of meaning in statistics, such as a random variable
which cannot be measured directly, or an unobserved or latent trait. For example,
a person’s quality of life might be ascertained using measurable variables such as
wealth, health, employment, environment, education, leisure time and social be-
longing. Other examples of the use of latent variables are to measure happiness,
business confidence and emotional intelligence. The concept of latent variables is
used in many fields such as psychology, economics, medicine, biology (especially
ecology) and the social sciences.

Here, a latent variable is defined as a linear combination of some (measured)
explanatory variables x2, i.e.,

ν = CTx2 (5.1)

for some p2 × R matrix of coefficients C. Although the rank R ≤ p2, usually R
is very low such as 0, 1 or 2, hence C is described as a ‘thin’ matrix. The role of
reduced-rank regression (RRR) is to ‘replace’ a large vector x2 by a smaller vector ν
as explanatory variables. The matrix C contains the constrained (or canonical)
coefficients, which are highly interpretable. They are sometimes called the weights
or loadings.

The idea of taking a linear combination of x pervades much of statistics. One
reason is its simple interpretation as a weighted average of x values. Another is
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Table 5.1 A summary of the models described in Chaps. 5–7 (upper table). The latent variables
are ν = CTx2, or ν = cTx2 if R = 1. These models compare with VGLMs where η = BT

1 x1 +

BT
2 x2. Abbreviations: A = additive, C = constrained, L = linear, O = ordination, Q = quadratic,

RR = reduced-rank. The lower table are subvariants: Goodman’s row–column association model
and row–column interaction models. See also Table 1.1.

ηi Model Purpose R function See also

BT
1 x1i +Aνi RR-VGLM CLO rrvglm() Chap. 5

BT
1 x1i +Aνi +
M∑

j=1

(νT
i Djνi) ej QRR-VGLM CQO cqo() Chap. 6

BT
1 x1i +

R∑

r=1

fr(νir) RR-VGAM CAO cao() Chap. 7

(μ+ αi)1M + γ +Aνi GRC GRC grc() Eq. (5.25)

(μ+ αi)1M + γ +Aνi RCIM RCIM rcim() Sect. 5.7

computational: βTx is easily differentiated with respect to β. The quantity cTx
is the mainstay of many multivariate techniques, such as principal components
analysis and linear discriminant analysis.

Notationally, recall that the data comprises n × Q Y and n × p X. In the
next few chapters, it is common for each column of Y to pertain to a different
species of plant or animal—and there are S of them. Furthermore, we often fit a
one-parameter model to each species, such as a binomial for presence/absence, or
a Poisson regression for counts. Hence we often have Q = M = S and use s =
1, . . . , S to index across species. In statistical ecology, the Y matrix is sometimes
referred to as “species-by-site” data. This might be better called “site-by-species”
data since Y is n× S instead of S × n. Since one application of fitting regression
models to Y as a function of X is to arrange the species in a meaningful order, we
have R axes in the ordination (Chap. 6).

5.2 What Are RR-VGLMs?

Partition x into (xT
1 ,x

T
2 )

T and B = (BT
1 BT

2 )
T , cf. (3.4). In general, B is a dense

matrix of full rank, i.e., the rank is min(M,p). Thus there are M × p regression
coefficients to estimate. For some data sets, both M and p are “too” large for the
given n, and that results in overfitting. For example, in a classification problem
of the letters “A” to “Z” and “0” to “9” using a 16 × 16 grey-scale character
digitization, we have M+1 = 26+10 = 36 and p = 1+162 = 257 in a multinomial
logit model. Then there would be M × p = 9252 coefficients! Unless the data set
were huge, this would mean that the standard errors of each coefficient would be
very large and some simplification would be necessary. Additionally, fitting the
model in the first case would require a large amount of computer memory.

One solution is based on a simple and elegant idea: replaceB2 by a reduced-rank
regression. This will cut down the number of regression coefficients enormously if
the rank R is kept low. Ideally, the problem can be reduced down to one or two
dimensions—a successful application of dimension reduction—and therefore can
be plotted. The RRR is applied to B2 because we want to make provision for
some variables x1 that are to be left alone, meaning B1 remains unchanged. In
practice, we often let x1 = 1 for the intercept term only (the software default).
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“Reduced-rank regression” was coined by Izenman (1975) and the idea goes
back at least to Anderson (1951). Since then, most applications of RRR have been
to continuous responses (normal errors), and unfortunately this is one reason why
RRR has never become as popular as it should be. It has been mainly confined to
the statistical and econometrics literature.

The RR-VGLM class arises by endowing the VGLM class with RRR capabilities.
It has

η = BT
1 x1 +ACTx2 = BT

1 x1 +Aν (5.2)

where

C =
(
c(1) c(2) · · · c(R)

)
= (c1, . . . , cp2

)
T

is p2 ×R, (5.3)

A =
(
a(1) a(2) · · · a(R)

)
= (a1, . . . ,aM )

T
is M ×R. (5.4)

Both A and C are of full column-rank. The effect is that the dense matrix B2

is approximated by the product of two thin matrices C and AT . Of course, R ≤
min(M,p2), but ideally we want R � min(M,p2). One can think of (5.2) as
an RRR of the coefficients of x2 after having adjusted for the variables in x1.
Equation (5.2) can also be thought of as a two-phase regression where the first
phase is to choose a few optimal directions in the form of the bestC, and the second
phase is to regress upon the new variables obtained by projecting the original x2

variables onto the new axes. Thus ν of an RR-VGLM assumes the role of x2 in
an ordinary VGLM.

Strictly speaking, we call models given by (5.2) partial RR-VGLMs, because
only a subset of the regressors have a reduced-rank representation. We drop the
“partial” for convenience. Since dim(x1) = p1 and dim(x2) = p2 then p1 + p2 = p.
To distinguish between variables belonging to x1 and x2, the argument noRRR

of rrvglm() receives a formula with terms that are left untouched by RRR, i.e.,
those for x1. By default, noRRR ∼ 1 so that x1 = 1. Here’s an example:

rrvglm(y ~ x2 + x3 + x4 + x5, multinomial(parallel = TRUE ~ x2 - 1),

data = mdata, noRRR = ~ x2 + x3)

This means that only variables x4 and x5 are subject to an RRR, i.e., x2 =
(x4, x5)

T , and x1 = (1, x2, x3)
T are left alone. The variable x2 receives a parallelism

constraint so that H2 = IM . The function rrvglm() has Rank = 1 as default.

5.2.1 Why Reduced-Rank Regression?

Here are a few reasons why RRR can be useful.

1. They can be readily interpretable. One can think of ν as a vector of R latent
variables—linear combinations of the original predictor variables that give more
explanatory power. They often can be thought of as a proxy for some under-
lying variable behind the mechanism of the process generating the data. For
some models, such as the cumulative logit model, this argument is natural and
well-known (Sect. 14.4.1.1). Indeed, this chapter overlaps with several models
for categorical data, because such regression models naturally produce a large
number of parameters. Therefore they are good candidates for reduced-rank
modelling. In fields such as plant ecology, the idea is an important one—see
Sect. 6.1.
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2. If R � min(M,p2), then a more parsimonious model can result. The resulting
number of parameters is often much less than the full model. This difference
is (M −R)(p2 −R), which is substantial when R� min(M,p2).

3. It allows for a flexible nonparametric generalization—the RR-VGAM class—the
subject of Chap. 7.

4. The reduced-rank approximation to B2 provides a vehicle for a low-dimensional
view of the data, e.g., the biplot. This is illustrated later.

Unfortunately, much of the standard theory of RRR (see, e.g., Reinsel and Velu
(1998)) and its ramifications are not directly transferable to RR-VGLMs in general,
in a similar way that LM theory is not to GLMs. Another complication in inference
of RR-VGLMs is that the solution to a lower-rank problem is not nested within a
higher-rank problem.

5.2.2 Normalizations

The factorization (5.2) is not unique, because

η = BT
1 x +AMM−1 ν

for any nonsingular matrix M. The following lists some common uniqueness con-
straints.

1. Restrict A to the form

A =

(
IR

Ã

)

, say. (5.5)

This is referred to as a corner constraint, and it corresponds to Corner = TRUE

in rrvglm.control(). The argument Index.corner = 1:Rank specifies the
rows of (5.5) which IR resides, because it may be necessary or more conve-
nient to store IR in rows other than the first R. Of course, only the elements
of Ã are to be estimated.

2. Another normalization of A, which makes direct comparisons with other sta-
tistical methods possible, is based on the singular value decomposition (SVD;
Sect. A.3.4)

ACT = (UDα)
(
D1−α VT

)
(5.6)

for some specified 0 ≤ α ≤ 1. For the alternating method of estimation de-
scribed below, α = 1

2 is the default as it scales both sides symmetrically. The
parameter α is Alpha = 0.5 in rrvglm.control().

3. Sometimes we want to choose M so that the latent variables are uncorrelated,
i.e., V̂ar(ν̂i) is diagonal. Furthermore, we can scale M so that V̂ar(ν̂i) = IR,
i.e., unit variances.

4. For the stereotype model described in Sect. 5.2.3, we could choose M so that
the columns of C are orthogonal with respect to the within-group covariance
matrix—this type of normalization is similar to linear discriminant analysis.
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5.2.3 The Stereotype Model

When RRR is applied to the multinomial logit model (MLM; see Sects. 1.2.4
and 14.2) the result is known as a stereotype model (Anderson, 1984). He de-
fined the rank-1 stereotype model to have the additional constraint of ordered
elements of A, however, VGAM treats all the elements of Ã as unconstrained. A
rank-2 RR-MLM might be fitted like

rr.mlm2 <- rrvglm(factor.with.many.levels ~ x2 + x3 + x4 + x5,

multinomial, data = mdata, noRRR = ~ 1 + x2, Rank = 2)

5.3 A Few Details

It transpires that RR-VGLMs are VGLMs where some of the constraint matrices
(those corresponding to x2) are equal, unknown and estimated rather than being
known and fixed. This important characterization can be seen by considering

η = BT
1 x1 +Aν = BT

1 x1 +

p2∑

k=1

A

⎛

⎜
⎝

ck1
...

ckR

⎞

⎟
⎠x2k (5.7)

where (C)ij = cij . A comparison of (5.7) with (3.25) shows that A matches

with Hk for all variables in x2, and the kth row of C matches with β∗T
(k). This

characterization naturally leads to the algorithm that is used to estimate RR-
VGLMs, described in the next section.

5.3.1 Alternating Algorithm

Like VGLMs, RR-VGLMs are estimated by the IRLS algorithm. At iteration a,
one can minimize a residual sum of squares

n∑

i=1

(

z
(a)
i − B̂

T

1 x1i − Â Ĉ
T
x2i

)T
Wi

(

z
(a)
i − B̂

T

1 x1i − Â Ĉ
T
x2i

)
(5.8)

by fixing A and solving for ν = CTx2 and B1, and then keeping ν fixed, solving
for A and B1. Equation (5.8), which is a specific case of (3.22), is called an RR-
VLM (see Fig. 1.2).

This alternating algorithm has been called by various names, e.g., the criss-cross
method by Gabriel and Zamir (1979). Each alternation is a full minimization,
therefore it is a ‘zigzag’ method in the terminology of Smyth (1996). Given ν,
solving for A and B1 is easily obtained by using x1 and ν as covariates in a VLM.
Given A, the quantities C and B1 can be solved from (5.7) by recognizing that this
falls within the constraints-on-the-functions framework (Sect. 3.3) with Hp1+1 =
Hp1+2 = · · · = Hp1+p2

= A assumed to be known, and β∗
(p1+k) = (ck1, . . . , ckR)

T

to be estimated. It entails fitting a VLM to the z
(a)
i , with each of the p2 constraint

matrices of x2 equalling A.
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The alternating algorithm can sometimes experience large speed gains by per-
forming a line search with respect to the elements of C (Sect. 5.4.2).

5.3.2 SEs of RR-VGLMs

With corner constraints (5.5), let θ = (θT
1 ,θ

T
2 ,θ

T
3 )

T be the vector of all coefficients

to be estimated, where θ1 = vec(Ã) = (ãT
(1), . . . , ã

T
(R))

T , θ2 = (β∗T
1 , . . . ,β∗T

p1
)T

and θ3 = vec(C) = (cT(1), . . . , c
T
(R))

T . Partition

− E

(
∂2


∂θ ∂θT

)

= − E
(

̈
)

= − E

⎛

⎝

̈11 
̈12 
̈13

̈21 
̈22 
̈23

̈31 
̈32 
̈33

⎞

⎠ (5.9)

where 
̈jk = ∂2
/(∂θj ∂θ
T
k ).

Standard errors of θ̂ can be obtained by computing the complete−E[∂2
/(∂θ ∂θT )]

matrix (5.9) evaluated at θ̂ and inverting it. The block matrices

− E

(

̈11 
̈12

̈21 
̈22

)

and − E

(

̈22 
̈23

̈32 
̈33

)

(5.10)

may be obtained by fixing θ3 and θ1, respectively, and are easily computed using
the description presented in Sect. 5.3.1. The most difficult part is −
̈13, which may
be calculated using profile likelihoods (Richards (1961); see, e.g., (18.6), Seber and
Wild (1989, Eq.(2.70))):

− E

[
∂2


∂θ1 ∂θ
T
3

]

= − E

[
∂θT

3 (θ1)

∂θ1

(

− ∂2


∂θ3 ∂θ
T
3

)]

. (5.11)

The matrix ∂θT
3 (θ1)/∂θ1 is given in Yee and Hastie (2003, App.B). This method

also works for Fisher scoring. Equation (5.11) is computed by the RR-VGLM
summary() methods function.

5.4 Other RR-VGLM Topics

5.4.1 Summary of RR-VGLM Software

The function rrvglm(), which operates very much like vglm(), should operate on
all VGAM family functions with M ≥ 2, although RRR does not make sense for
many of them. The special case of models with M = 2 (Sect. 5.5) has a simple
tractable formula for the coupling of two parameters, and it furnishes several
interesting regression models such as RR-zero inflated Poisson and RR-NB (NB-
P) models. The function rrvglm() returns an object of class "rrvglm" which, not
surprisingly, inherits much of a "vglm" object.

Table 5.2 lists generic functions which are also applicable to RR-VGLMs.
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Table 5.2 A summary of VGAM functions and generic functions for RR-VGLMs. The x variables
have been assumed to be in the order (xT

1 ,xT
2 )T . See also Table 8.7.

Function Purpose

rrvglm() Fits RR-VGLMs

grc() Goodman’s RC association model (for two-way
tables), Eq. (5.25)

rcim() Row–column interaction models (for two-way tables),
Eq. (5.24)

rrar() RR-autoregressive time series model family function
(for vglm() only)

biplot() Biplot for RR-VGLMs (R = 2 only)

coef(fit) (β̂
∗T
(1), . . . , β̂

∗T
(p1)

, vec(Ĉ
T
)T )T

coef(fit, matrix = TRUE) B̂ =
(
B̂

T
1 |ÂĈ

T
)T

Coef() Various coefficients, e.g., Â, B̂1, Ĉ

concoef() Constrained coefficients Ĉ

constraints(fit) H1, . . . ,Hp1 and p2 repetitions of Â

latvar() Matrix of latent variable values (ν̂1, . . . , ν̂n)T

lvplot() Currently the same as biplot()

summary() Summary function for ‘all’ RR-VGLMs

5.4.2 Convergence

The alternating algorithm can be very slow at converging, however, VGAM allows
a line search to be performed which may improve the speed substantially. It is
invoked by Linesearch = TRUE. The slowness is due to high correlations between
the elements of Ã and C, and sometimes the fix is to choose different rows for
storing IR in the corner constraints (argument Index.corner).

During initialization, the unknown elements in C are chosen randomly us-
ing rnorm(). One should use set.seed() before invoking rrvglm() if reproducibil-
ity is required.

5.4.3 Latent Variable Plots and Biplots

Biplots are available for RR-VGLMs, and they provide a graphical summary of
the rank-2 approximation to B2. These are based on (5.2), and show that the k-j
element of B2 is the inner-product of the kth row of C and the jth row of A.
The rows of C are usually represented by arrows, and the rows of A by points.
Currently, lvplot(fit) is equivalent to biplot(fit).

If fit2 is a rank-2 RR-VGLM, then lvplot(fit2) will produce a scatter plot
of the fitted latent variables ν̂i2 versus ν̂i1 (see (5.2)). A convex hull can be overlaid
on each group. By default, all the observations belong to one group.
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5.4.4 Miscellaneous Notes

Here are some miscellaneous notes.

1. The methods function for summary() computes the asymptotic standard er-
rors of Sect. 5.3.2. Unfortunately, sometimes the estimated variance-covariance
matrix (5.9) is not positive-definite, and if so, then this indicates an ill-posed
model (e.g., one where the intercepts are part of x2 rather than x1) and a
warning is issued. In such cases, some tactics to overcome this setback include
the following.

(i) Set numerical = TRUE to use numerical derivatives.
(ii) Fit a slightly perturbed version of the model such as omitting or adding

variables.
(iii) Increase or decrease the rank.

(iv) Choose another vector for Index.corner because some elements of Â may
be very large or very small.

Alternatively, there are the arguments omit13 and kill.all that allow an
‘inferior’ variance-covariance matrix to be returned, for example, one where A
is fixed or C is fixed. Then the standard errors will be biased downwards.

2. The methods function for summary() only works with corner constraints (5.5).

In the output, the elements of Ã in (5.5) come first. They are labelled with the
prefix "I(latvar.mat)". The elements are enumerated going down each col-
umn starting from the first column, as in vec(Ã). Then comes the fitted coeffi-

cients β̂
∗
(k) corresponding toB1, followed by vec(CT ). Actually,B1 and vec(CT )

are intermingled, depending on the order of the variables in the original formula.

5.5 RR-VGLMs with Two Linear Predictors

A special subfamily of RR-VGLMs are models with M = 2 and R = 1. For these, it
is easy to obtain a simple formula for the coupling between the two parameters θ1
and θ2 using the rank-1 constraint. The result is surprisingly useful because the
parameters are usually treated separately, and there is additional flexibility due to
the choice of link functions. Indeed, quite a number of special cases proposed in
isolated contexts by various authors belong to this subfamily. This section draws
heavily upon Yee (2014) and omitted details can be found there. We will show that,
while dimension reduction is customarily applied to high-dimensional problems,
even a drop from two dimensions to one dimension can be very useful.

5.5.1 Two-Parameter Rank-1 RR-VGLMs

From (5.2), we apply RRR to all explanatory variables, except possibly for the
intercept. As we restrict ourselves to models with M = 2 and R = 1, corner
constraints give us A = (1, a21)

T so that there is only one parameter to estimate.
Then
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Table 5.3 Expressions for θ2 as a function of θ1 for several parameter link functions (Eq. (5.15)).
The rows are for θ1, columns for θ2. The parameters t1, Kj and a21 are unknown and are to

be estimated, and the Kj are positive. Notes: (i) For Variant II, t1 = 0 (so K1 = 1), and for
Variant I, t1 �= 0 and is to be estimated. (ii) K1 = exp(t1), K2 = exp(a21) and K3 = exp(K1).
(iii) The power link is gj(θj) = θ

sj
j for a prespecified sj . (iv) A = θ1/(1− θ1) for the θ1 = logit

row. Source: Yee (2014).

Identity Log Logit Power

Identity t1 + a21 θ1 K1 ·Kθ1
2

K1 ·Kθ1
2

1 +K1 ·Kθ1
2

(t1 + a21 θ1)
1/s2

Log t1 + a21 log θ1 K1 · θ1a21
K1 · θ1a21

1 +K1 · θ1a21
(t1 + a21 log θ1)

1/s2

Logit t1 + a21 logit θ1 K1 Aa21
K1Aa21

1 +K1Aa21
(t1 + a21 logit θ1)

1/s2

Power t1 + a21 θ
s1
1 K1 ·Kθ

s1
1

2

K1 ·Kθ
s1
1

2

1 +K1 ·Kθ
s1
1

2

(
t1 + a21 θ

s1
1

)1/s2

g1(θ1) = η1 = β(1)1 + cTx2, (5.12)

g2(θ2) = η2 = β(2)1 + a21
(
cTx2

)

=
(
β(2)1 − a21 · β(1)1

)
+ a21 η1

= t1 + a21 · η1, say. (5.13)

There are two variants: the RRR may or may not involve the intercept. The latter
(called Variant I) has H1 = I2 and Hk = (1, a21)

T for k = 2, . . . , p. The former
(called Variant II) has all Hk = (1, a21)

T so that t1 = 0 in (5.13). Thus for
Variant I,

(
g1(θ1)
g2(θ2)

)

= η =

(
η1
η2

)

= BT
1 x1 +ACTx2 =

(
β(1)1

β(2)1

)

+

(
1
a21

)

ν (5.14)

where ν = cTx2.
The link gj is invertible, therefore an expression for θ2 as a function of θ1 is

θ2 = g−1
2 (t1 + a21 · g1(θ1)) . (5.15)

This is the central equation. It provides the coupling of η1 and η2, inducing a rela-
tionship between two parameters that can be useful, for example, for modelling a
mean-variance relationship. The choice of link functions determines the form of the
coupling between the two parameters. Some pairs of commonly used link functions
and the coupling they produce are given in Table 5.3. For example, the RR-NB
(which coincides with what some people call the NB-P) model of Sect. 5.5.2.3 is
based on the log–log coupling. There is additional flexibility too, because the user
can often choose between alternative link functions, e.g., for parameters in (0, 1)
one can select a link such as the logit, probit and complementary log–log (Table 1.2
lists the link functions currently available in VGAM). Furthermore, (5.15) provides
a unified approach to a large number of nonlinear regression models found in the
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Table 5.4 Summary of some reduced-rank two-parameter families for the normal, negative
binomial, inverse Gaussian and gamma distributions. Parameters μ, t1, a21, K1, δ1 and δ2 are

unknown and to be estimated. The final column is the family argument of the call rrvglm(y ∼
x2 + x3 + · · · , family = . . .) in VGAM. Variant I is used here throughout. Source: Yee (2014).

μ V (μ) = Var(Y ) family =

βTx K2
1 ·K2μ

2 uninormal(zero = NULL)

eβ
Tx δ1 μδ2 = K2

1 · μ2a21 uninormal(lmean = loge, zero = NULL)

βTx (t1 + a21 · μ)2 uninormal(lsd = identitylink, zero =

NULL)

βTx t1 + a21 · μ uninormal(lvar = identitylink, zero =

NULL, var = TRUE)

eβ
Tx μ+ δ1 μδ2 = μ+K−1

1 μ2−a21 negbinomial(zero = NULL)

eβ
Tx δ1 μδ2 = K−1

1 μ3−a21 inv.gaussianff(zero = NULL)

eβ
Tx δ1 μδ2 = K−1

1 μ2−a21 gamma2(zero = NULL)

statistical literature for which classification is not straightforward, e.g., the models
described in Sect. 5.5.2 are special cases of (5.15).

Before giving some examples, it is noted that it is certain that there are other
useful but as yet unidentified RR-variants amongst the myriads of documented
statistical distributions.

5.5.2 Some Examples

5.5.2.1 RR-Normal

Under the usual LM we have link functions η = (μ, log σ)T . While it has ho-
moscedasticity as an assumption, one can test for heteroscedasticity immediately
through H0 : a21 = 0 versus H1 : a21 �= 0 because K2 = ea21 and the variance
function Var(Y ) ≡ V (μ) = K2

1 ·K2μ
2 . Other combinations of the link functions can

be used (Table 5.4).
There is a very large literature on heteroscedastic linear regression, e.g., Smyth

et al. (2001), Carroll and Ruppert (1988). The latter lists three “off-the-shelf”
models for a hormone assay data set (hormone in VGAM):

log σ = θ∗0 + θ∗1 x+ θ∗2 x
−1, (5.16)

log σ = θ∗0 + θ∗1 μ, (5.17)

log σ = θ∗0 + θ∗1 log μ, (5.18)

the latter being known as the power-of-the-mean model. The first two may be
fitted as VGLMs or RR-VGLMs.

Incidentally, uninormal() has a logical argument var that allows σ2 to re-
place σ as the parameter of interest. Then, e.g., using an identity link for η2,
modelling σ2 = θ∗0 + θ∗1 μ is possible, cf. (5.17).
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5.5.2.2 RR-Zero-Inflated Poisson

The zero-inflated Poisson (ZIP) described in Chap. 17 is a mixture distribution of
a Poisson and a structural or degenerate zero. There are two processes generating
this type of data: one that generates the zeros and one that generates the Poisson
counts, therefore there are two linear/additive predictors η1 and η2. Usually these
processes are considered separately, however in ecology, the two may be coupled
and bear some systematic relationship. Liu and Chan (2010) give an example in-
volving trawl survey studies, where the spatio-temporal aggregation of fish due to
schooling results in the probability of a positive catch being a monotonic function
of the mean. Another example by the same authors is grasshopper species’ abun-
dances affected by swarming, due to suitable environmental conditions becoming
available. In their development they have named these types of models ‘constrained
zero-inflated generalized additive models’, or COZIGAMs, and there is an R pack-
age by the same name. Section 17.4 shows that COZIGAMs are RR-ZIPs and can
be easily fitted using regression splines.

For the above situations, a reduced-rank zero-inflated Poisson (RR-ZIP) model
may be suitable. It is given by

log μ = η1 = βT
1 x (5.19)

logit φ∗ = η2 = β(2)1 + a21 · η1 (5.20)

where β1, β(2)1 and a21 are to be estimated. The model has P (Y = y) = I(y =
0) · (1 − φ∗) + φ∗ e−μμy/y! with η = (log μ, logitφ∗)T as default link functions,
and η2 = t1 + a21 η1 because in some applications the probability of a non-zero
value has a monotonic relationship with the Poisson mean.

Fitting an RR-ZIP is very easy in VGAM. As an example, suppose there are
two covariates plus an intercept. Then such might be fitted by code of the form

rr.zip <- rrvglm(y ~ x2 + x3, zipoissonff(zero = NULL), data = zdata)

Setting zero = NULL annuls the intercept-only default for φ, to allow for (5.20). It
works because the corner constraintA = (1, a21)

T is default (Sect. 5.2.2). Here, one
might wish to replace the linear predictors by additive predictors using regression
splines as illustrated in Sect. 17.4.

As a closing comment, where any theoretical justification is lacking, the use of
this model should be checked empirically.

5.5.2.3 RR-Negative Binomial (NB-P)

In the nomenclature of Hilbe (2011), the negative binomial regression (1.15)–(1.16)
is called the NB-H (“H” for heterogeneous) because it models the k parameter with
all the covariates x. If we apply the RRR idea to the NB-H model with the default
links η = (log μ, log k)T , then some simple algebra with (5.15) reveals the RR-NB
(strictly, the RR-NB-H) has variance function

V (μ(x)) = μ(x) + δ1 μ(x)
δ2 (5.21)

where the δj are to be estimated. This coincides with the so-called NB-P (“P”
for parameterized) subfamily. The NB-P is important because (5.21) is quite an
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adaptable function—it includes the NB-1 and NB-2 as special cases, and it can be
thought of as somewhat data-driven rather than model-driven. An NB-2 model is
the NB regression (1.15)–(1.16), but with the k parameter being intercept-only.

The typical coding to fit the RR-NB is of the convenient form

rrnb <- rrvglm(y ~ x2 + x3 + x4, family = negbinomial(zero = NULL), data = ndata)

Then quantities such as

a21 <- Coef(rrnb)@A["loge(size)", 1]

beta11 <- Coef(rrnb)@B1["(Intercept)", "loge(lambda)"]

beta21 <- Coef(rrnb)@B1["(Intercept)", "loge(size)"]

delta1 <- exp(-beta21 + a21 * beta11)

delta2 <- 2 - a21

can be extracted and computed. Currently the accessor function Confint.rrnb()

facilitates these calculations.
Here are some further comments on (5.21).

(i) If 1 < δ2 < 2, then the RR-NB can be loosely thought of as an intermediary
model between NB-1 and NB-2. The RR-NB describes a continuum or family
of NB-type models.

(ii) If δ2 > 2, then this suggests overdispersion with respect to the NB-2 distri-
bution when μ is large (μ > 1).

(iii) Taylor’s power law in ecology states that Var(Y ) = aμb for constants a
and b (Taylor, 1961). Here, a is a ‘sampling’ parameter and b is an index
of aggregation characteristics of the species. So if μ is large then V (μ(x)) ≈
δ1 μ(x)

δ2 so that the RR-NB can be used to approximate estimating b by
estimating δ2. Note that the rightmost term of (5.21) is the same as for a
Tweedie distribution.

(iv) As stated above, confidence intervals for δ2 are available, therefore it allows
one to choose between NB-1 and NB-2 if this is really desired. If a 95%
confidence interval for δ2 covers unity, then an NB-1 (see also (11.9)) would
be implied. If the interval for δ2 covers 2, then an ordinary NB-2 would be
suggested. If δ2 = 1.5, say, then it would be quite appropriate to retain it as
an RR-NB and say it appears neither as an NB-1 nor a NB-2 model.

NB regression is covered in greater detail in Sect. 11.3 including an RR-NB example
in Sect. 11.3.4.3. In particular, many important variants can be fitted within the
VGLM/RR-VGLM framework.

5.5.2.4 RR 1-Parameter Families

Although (5.15) directly applies to a single distribution with two parameters, it is
possible to apply the RRR to two 1-parameter distributions provided the VGAM
family function can handle multiple responses. For example,

rrvglm(cbind(y1, y2) ~ x2 + x3, poissonff, data = pdata)

results in the coupling μ2(x) = K1 · [μ1(x)]
a21 . Similarly,

rrvglm(cbind(y1, y2) ~ x2 + x3, binomialff(multiple.responses = TRUE), data = bdata)
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results in

p2(x)

1− p2(x)
= K1 ·

(
p1(x)

1− p1(x)

)a21

(5.22)

where y1 and y2 are binary with values 0 and 1, and pj = P (Yj = 1).
The multiple.responses argument indicates the response matrix is made up
of multiple responses; if multiple.responses = FALSE, then the first/second
columns would be interpreted as the number of successes/failures of a single re-
sponse variable.

5.6 RR-VGLM Examples

5.6.1 RR-Multiple Binomial Model

Sometimes it is informative to perform logistic regressions on several binary
responses simultaneously, using a latent variable as explanatory. For example,
in xs.nz, is there is any association between diseases such as asthma and can-
cer, and psychological variables such as worry, depression and nervousness? Here,
we perform an analysis with the idea behind Sect. 5.5.2.4 in mind. Note, how-
ever, that this regression can be argued as being flawed, because the psychological
variables might be considered responses rather than explanatory.

In the following, we have responses asthma, cancer, diabetes, heartattack,
and stroke, and adjusting for ethnicity, sex, age50, smokenow, fh.cancer

and fh.heartdisease, we treat ν as the real variable of interest. The latent vari-
able ν is a linear combination of the 11 psychological variables depressed, . . . ,
worrier.

> xs.nz <- transform(xs.nz, age50 = age - 50) # Intercepts will be important

> rr.binom <-

rrvglm(cbind(asthma, cancer, diabetes, heartattack, stroke) ~

ethnicity + sex + age50 + smokenow + fh.cancer + fh.heartdisease +

depressed + embarrassed + fedup + hurt + miserable + # 11 psychological

nofriend + moody + nervous + tense + worry + worrier, # variables

noRRR = ~ ethnicity + sex + age50 + smokenow +

fh.cancer + fh.heartdisease,

binomialff(multiple.responses = TRUE), data = xs.nz)

The centred variable age50 was created so that the intercepts are more meaningful.
Let’s look at some selected output. Firstly,

> round(sort(concoef(rr.binom)[, 1]), digits = 2)

worry hurt moody nervous embarrassed nofriend

-0.07 -0.06 -0.04 -0.01 0.01 0.03

miserable fedup tense worrier depressed

0.09 0.12 0.15 0.15 0.24

Those coefficients which are largest in magnitude are positive, therefore we in-
terpret ν̂ as a measure of psychological ill-being as opposed to well-being. Vari-
ables worry and hurt exhibit quite large negative signs but are dismissed as ran-
dom error. To gauge the scale of ν̂, a person exhibiting TRUE to all the psychological
variables compared to somebody with all FALSEs would have a difference in ν̂ of
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> sum(concoef(rr.binom))

[1] 0.6138

The matrix Â is

> Coef(rr.binom)@A

latvar

logit(E[asthma]) 1.0000

logit(E[cancer]) 0.7140

logit(E[diabetes]) 0.2778

logit(E[heartattack]) 1.6232

logit(E[stroke]) 1.1768

and it measures the slopes of each response on the logit scale with respect to ν̂.
It suggests that any effect on the log-odds of a disease, for a fixed change in ν̂, is
greatest for heart disease and least for diabetes. Not surprisingly, all elements are
positive, so that there appears to be a positive association between the diseases
and psychological ill-being.

We can apply the antilogit function to the fitted intercepts, to give the estimated
prevalences:

> intercepts <- Coef(rr.binom)@B1["(Intercept)", ]

> sort(intercepts) # Sorted intercepts

logit(E[heartattack]) logit(E[stroke]) logit(E[diabetes])

-5.625 -5.352 -3.902

logit(E[cancer]) logit(E[asthma])

-2.820 -2.337

> prevalences <- logit(intercepts, inverse = TRUE)

> names(prevalences) <- colnames(depvar(rr.binom))

> sort(prevalences) # Sorted prevalences

heartattack stroke diabetes cancer asthma

0.003594 0.004715 0.019808 0.056243 0.088076

For a person with x1 = 0 and ν = 0, this suggests that asthma has the highest
prevalence among all the diseases, and surviving a heart attack the lowest preva-
lence. Such a person corresponds to a 50-year-old European-type female who does
not currently smoke, has no family history of cancer or heart disease, is psycholog-
ically healthy in that she does not suffer from depression, is not miserable, etc. For
this type of person, one may plot the estimated probabilities P̂ (Yj = 1|ν̂). This is
given in Fig. 5.1a and was produced by

> grid.len <- 200

> Latvar.fit <- latvar(rr.binom)

> Latvar.grid <- seq(min(Latvar.fit), max(Latvar.fit), length = grid.len)

> eta.vals <- outer(rep(1, grid.len), Coef(rr.binom)@B1["(Intercept)", ]) +

cbind(Latvar.grid) %*% t(Coef(rr.binom)@A)

> probmat <- logit(eta.vals, inverse = TRUE)

> matplot(Latvar.grid, probmat, type = "l", lwd = 2, lty = 1:3, las = 1,

xlab = "Latent psychological variable", main = "(a)",

ylab = "Probability")

> legend("topleft", lwd = 2, lty = 1:3, col = 1:npred(rr.binom), bty = "n",

legend = colnames(depvar(rr.binom)))
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Fig. 5.1 (a) RR-VGLM-binomial model applied to several disease responses. The x-axis is ν̂, a
linear combination of 11 binary psychological variables. The y-axis is disease prevalence. (b) The
same on a log scale.

Plotting the fitted values on a log-scale gives Fig. 5.1b. Both the relative preva-
lences and slopes of the diseases with respect to ν̂ can be seen quite clearly.

5.6.2 Reduced Rank Regression for Time Series

Consider the multivariate autoregressive AR(L) model

Y t =

L∑

j=1

ΦjY t−j + εt, εt ∼ (0,Ω) independently, t = 1, . . . , n, (5.23)

where Y t is M × 1, and Φj is M ×M and to be estimated. As the number of
lags L increases, the number of parameters involved grows rapidly. Ahn and Reinsel
(1988) proposed the nested reduced-rank autoregressive model where Φj is replaced
by a matrix of rank Rj . One has the Rjs being a nonincreasing sequence and Φj =

AjC
T
j and range(Aj) ⊃ range(Aj+1). It is nested because, with Rj ≡ R < M

and Aj = A, the special model Y t = A
∑L

j=1 C
T
j Y t−j + εt is obtained. Ahn and

Reinsel (1988) gave a canonical form and computational details, and showed that
a Newton-Raphson-like algorithm could be implemented, using standard software
for GLS regression.

Strictly speaking, model (5.23) lies outside the RR-VGLM framework because
each Φj is of reduced rank, not the combined matrix (ΦT

1 ,Φ
T
2 , . . . ,Φ

T
L)

T (= Φ∗,
say). Nevertheless, the VGAM family function rrar() has been written to im-
plement this model. It takes in an n ×M matrix response, and the explanatory
variables should just be an intercept term. The argument Ranks in rrar() speci-
fies the ranks and must be of length L. Convergence is slow (much slower than a

second-order rate) because Ω has to be estimated. We use Ω̂ = n−1
∑n

t=1 ε̂t ε̂
T
t .

As a numerical example, we mimic the analysis presented in Ahn and Reinsel
(1988) who considered data consisting of monthly averages of grain prices in the
United States for wheat flour, corn, wheat and rye for the period January 1961–
October 1972. The units are dollars per 100 pound sack for wheat flour, and per
bushel for corn, wheat and rye. The model
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Fig. 5.2 Monthly average prices of Grain series, January 1961–October 1972, in data
frame grain.us.

Y t = Φ1 Y t−1 +Φ2 Y t−2 + εt

was fitted to grain.us, where rank(Φ1) = 4 and rank(Φ2) = 1 was chosen. This
lag L = 2 model can be parameterized

Y t = Ak1

(
CT

1 Y t−1 +D2 C
T
2 Y t−2

)
+ εt.

We have

> year <- seq(1961 + 1/12, 1972 + 10/12, by = 1/12)

> for (j in 1:4)

plot(grain.us[, j] ~ year, main = names(grain.us)[j],

type = "b", pch = "*", ylab = "", col = "blue")

This produces Fig. 5.2.
Now, some of the results of Ahn and Reinsel (1988) can be obtained as follows.

> colMeans(grain.us) # mu vector

wheat.flour corn wheat rye

6.850 1.251 1.543 1.164

> cgrain <- scale(grain.us, scale = FALSE) # Centre the time series only

> grain.rrar <- vglm(cgrain ~ 1, rrar(Ranks = c(4, 1)))

> print(grain.rrar@misc$Ak1, digits = 2)

[,1] [,2] [,3] [,4]

[1,] 1.000 0 0 0

[2,] -0.017 1 0 0

[3,] 0.327 0 1 0

[4,] 0.191 0 0 1

> print(grain.rrar@misc$C[[1]], digits = 3)

[,1] [,2] [,3] [,4]

[1,] 0.986 0.0271 -0.2890 -0.2000

[2,] -0.411 0.7951 -0.1184 -0.0996

[3,] 0.576 0.0559 0.8236 0.0448

[4,] -0.452 -0.0167 0.0466 0.8088
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Fig. 5.3 Canonical variables of the Grain Price series, January 1961–October 1972.

and the reader is left to see what output arises from

summary(grain.rrar)

print(grain.rrar@misc$C, digits = 3)

print(grain.rrar@misc$D, digits = 3)

print(grain.rrar@misc$omega, digits = 3)

print(grain.rrar@misc$Phi, digits = 2)

The results differ slightly from Ahn and Reinsel (1988), possibly because we have
used t = 1 + L, . . . , n instead of t = 1, . . . , n, i.e., we have ignored the first L
observations for simplicity.

Finally, the canonical variables are also returned. This transformed series Zt

whose components Zit are arranged such that, with increasing values of the in-
dex i, less past information on Zt is necessary to explain the present value of
subvector Zit. They may be plotted using

> for (j in 1:4)

plot(grain.rrar@misc$Z[, j] ~ year, type = "b", pch = "*", col = "blue",

main = eval(substitute(expression(Z[ .j ]), list(.j = j))), ylab = "")

to give Fig. 5.3. The y-limits do not correspond to the original series because of
the centring. These y-limits corresponding to the original series can be obtained
by using

(as.matrix(grain.us) %*% t(solve(grain.rrar@misc$Ak1)))[, i]

instead. More information can be found in Ahn and Reinsel (1988).

5.7 Row–Column Interaction Models

Row–column interaction models (RCIMs) are a subfamily of models applied to a
matrix response Y. They are essentially RR-VGLMs with certain row and column
dummy variables set-up. As with VGLMs, the response Y may be continuous,
counts, proportions, etc., however there is no explicit X except for what is deter-
mined from the row and column locations of the Yij values.
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Define RCIMs as an RR-VGLM applied to Y with

g1(θ1) ≡ η1ij = β0 + αi + γj +

R∑

r=1

cir ajr. (5.24)

This means that the first parameter of a statistical model relating to a response
matrix is, after a suitable transformation, equal to the sum of an intercept, a row
and column main effect plus optional interaction term of the familiar form CAT .
In (5.24), the parameters αi and γj may be called the row and column scores,
respectively. Identifiability constraints are needed for these, such as corner con-
straints, e.g., α1 = γ1 = 0. The parameters ajr and cir also need constraints, e.g.,
a1r = c1r = 0 for r = 1, . . . , R. We can write (5.24) as

η1ij = β0 + αi + γj + δij

where the n ×M matrix Δ = [(δij)] of interaction terms is approximated by a
reduced rank regression.

Equation (5.24) makes sense if the first parameter is some measure of location
such as a mean or median. For example, if Y = [(yij)] is a n×M matrix of counts
and Yij ∼ Poisson(μij) independently then

log μij = β0 + αi + γj +

R∑

r=1

cir ajr, i = 1, . . . , n; j = 1, . . . ,M, (5.25)

is known as Goodman’s RC(R) association model (GRC; Goodman, 1981). The
model is saturated when R = min(n,M).

For most RCIMs, each column ofY is treated as one response so that, for the ith
row, all the responses are modelled simultaneously by an ηi. Exceptions to this
can be handled by a careful selection of arguments of rcim() , e.g., Sect. 5.7.2.3
fits the multinomial logit model as a RCIM.

Note that (5.24) applies to the first linear/additive predictor; for models
with M > 1, one can leave η2, . . . , ηM unchanged or intercept-only. Of course,
choosing η1 for (5.24) is done only for convenience, and the software can allow the
RRR to be applied to any other ηj instead. Then g−1

j (η̂j) may be returned as the
fitted values of the model via fitted(rcim.object), and the result should be the
same dimension as the two-way table.

To summarize, RCIMs in general are RR-VGLMs where one of the linear pre-
dictors is modelled as the sum of a row effect, a column effect, and an optional in-
teraction effect expressed as an RRR. Table 5.5 summarizes a few possible RCIMs.
Some more details may be found in Yee and Hadi (2014).

5.7.1 rcim()

The modelling function rcim() calls vglm() if the rank is zero, other-
wise rrvglm(). In both cases the dummy variables and constraint matrices are
set-up beforehand corresponding to (5.27) below. The family argument of rcim()
is passed as an argument of the same name into vglm()/rrvglm().
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Table 5.5 Some VGAM family functions potentially useful in conjunction with rcim(). “GRC”
stands for Goodman’s RC model.

Family name Comments

alaplace2(0.5) Median polish (Mosteller and Tukey, 1977)
when rank-0, (5.26)

binomialff(multiple.responses =

TRUE)

Rasch conditional (fixed effects) model
(Sect. 5.7.2.2)

negbinomial() GRC-type model with overdispersion with re-
spect to the Poisson

poissonff() GRC model

uninormal() Two-way ANOVA (one observation per cell)

uninormal("explink") Quasi-variances when rank-0 (Sect. 5.7.3)

zipoissonff() GRC-type model with lots of 0s and/or struc-
tural 0s

Currently, it is important that the first linear/additive predictor η1 corre-
sponds to the mean or some parameter measuring central location. Consequently,
zipoissonff() should be used rather than zipoisson() because the latter mod-
els the complement of the probability of a structural zero in η1, whereas the former
models the mean of the Poisson distribution. All other parameters are generally
fitted with intercept-only, for example, the k parameter for the negative bino-
mial NB(μ, k).

Ideally every possible VGAM family function will work with rcim(), however,
currently not all family functions handle multiple responses. For those that do, the
resulting RCIM may not make sense or be sensible, for example, the Kumaraswamy
distribution has two positive shape parameters a and b so that η1 = log a equals
the RHS of (5.24) and b is intercept-only for

silly1 <- rcim(Y, kumar, Rank = 1)

The mean of this distribution is b ·Be(1+1/a, b), hence such a fit is unlikely to be
meaningful. In contrast, a useful model might be a median polish-type fit of the
form

medpol0 <- rcim(Y, alaplace1(tau = 0.5), Rank = R)

This is because

μ̃ij = β0 + αi + γj +

R∑

r=1

cir ajr (5.26)

for the median of the (i, j) cell of Y. Scoring is not a reliable method for estimat-
ing the location parameter of an asymmetric Laplace distribution (Sect. 15.3.2),
therefore if it does not fail then

fitted(medpol0)

should be the fitted values ̂̃μij .
Sometimes a summary() of a "grc" object fails because the estimated covariance

matrix is not positive-definite. This is often due to numerical ill-conditioning: the
position of the corner constraint for IR in A causes some of the elements of Ã
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to be very large or small in magnitude. The easiest fix is to try choose different
values for the Index.corner argument in grc(), e.g., if

summary(grc(y, Rank = 2, Index.corner = 2:3))

fails, something like

summary(grc(y, Rank = 2, Index.corner = c(3, 5)))

might succeed.
Internally, the manner in which the row and column dummy variables are set

up as follows. Starting from (5.2), BT
1 x1i =

(
β01M α21M · · · αn1M

(
Diag(γ1, . . . , γM )[−1,]

)T
)
⎛

⎝
1

e[−1]i

1M−1

⎞

⎠ . (5.27)

This shows, for example, that the intercept and row score variables have 1M

as their constraint matrices. Similarly, because B2 is approximated by CAT ,
the ith row of Δ will be approximated by xT

2iCAT , or equivalently,

Δ ≈

⎛

⎜
⎝

x21

...
x2n

⎞

⎟
⎠CAT .

The desired reduced-rank approximation of Δ can be obtained if x2i = ei so
that Ip2

CAT = CAT . Note that

Δ =

(
0 0T

0 Δ̃

)

≈ CAT =

(
0T

C[−1]

)(
0
(
A[−1]

)T
)
,

that is, the first row of A consists of structural zeros which are ‘omitted’ from the
RRR of Δ. To effect this, if R > 0, then the argument str0 defaults to 1. The
argument str0 may be assigned any vector of values from {1, 2, . . . ,M} excluding
those rows constituting the corner constraints—and such rows of A are set to be
equal to 0T

M . For example, if we set str0 = 4 when M = 5 and R = 2, then

A =

⎛

⎜
⎜
⎜
⎜
⎝

1 0
0 1
a31 a32
0 0
a51 a52

⎞

⎟
⎟
⎟
⎟
⎠

(5.28)

because Index.corner = 1:Rank by default. Elements a31, a51, a32, a52 are esti-
mated.

Thus VGAM can fit (5.24) by setting up indicator variables, etc. before call-
ing rrvglm(). Additionally, the function grc() has been written to fit Good-
man’s RC model easily. It accepts a matrix as its first argument, and most of the
other arguments are fed into rrvglm.control(). Function rcim() has R = 0 as
a default whereas grc() defaults to R = 1.
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Fig. 5.4 Mosaic plot of alcoff; the area sizes are proportional to the counts.

5.7.2 Examples

For simplicity, in the following we mainly fit no-interaction models because the
row and column effects cannot be interpreted when there are such.

5.7.2.1 Alcohol Offences

We use the matrix alcoff from VGAM which is 24× 7. It records the number of
alcohol offenders caught by the police from breath screening drivers, during 2009
in New Zealand A third of the data set can be seen by

> rbind(head(alcoff, 4), tail(alcoff, 4))

Mon Tue Wed Thu Fri Sat Sun

0 121 98 165 324 827 1379 1332

1 97 92 157 278 619 1327 1356

2 60 69 107 229 410 979 1011

3 55 60 75 238 401 693 718

20 74 135 283 508 591 490 166

21 84 154 326 610 866 754 131

22 90 143 345 765 976 1026 114

23 110 169 363 899 1265 1179 159

Here, the first row is from midnight to 1am, and the last row is for 11pm to mid-
night. Figure 5.4 is a mosaic plot of these data. The plot and perusal of the counts
confirms what is expected: the greatest number of alcohol-related offences occur
late on Friday and Saturday nights.

We fit a rank-0 Goodman’s RC model to alcoff but first preprocess the data
by offsetting the time of the day: we say the effective day starts at 6am, say, since
partying late at night often spills over to the early morning. Hence effective Monday
starts at 6am and finishes on Tuesday at the same hour. The function Rcim()

and/or moffset() enables us to create the effective day variable. The GRC model
is fitted by

> grc0.alcoff <- rcim(moffset(alcoff, "6", postfix = "*"),

rprefix = "Hour.24.", cprefix = "Day.")
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Fig. 5.5 Hourly and effective daily effects of a rank-0 Goodman’s RC model fitted to alcoff.
This is output from plot(grc0.alcoff).

Alternatively, we could have used grc() with Rank = 0.
A plot of the fitted main effects was obtained from

> plot(grc0.alcoff, rcol = "blue", ccol = "orange", rfirst = 14, cfirst = 1,

rtype = "h", ctype = "h", lwd = 3, ylim = c(-1.5, 1.5), las = 1,

cylab = "Effective daily effects", rylab = "Hourly effects",

rxlab = "Hour", cxlab = "Effective day") -> plot.grc0.alcoff

to give Fig. 5.5. The results agree with what is expected: as well as Friday and
Saturday nights showing the greatest numbers of alcohol-related offences (and their
following morning), there is a gradual increase from Sunday/Monday to these peak
days. Also, they are at their lowest in the late morning to lunchtime period.

The estimated row and column effects, some raw, may be extracted as follows.

> round(plot.grc0.alcoff@post$raw.col.effects, digits = 2)

Col.1 Day.2 Day.3 Day.4 Day.5 Day.6 Day.7

0.00 0.46 1.11 1.81 2.22 2.26 0.79

> t(round(plot.grc0.alcoff@post$col.effects, digits = 2))

Col.1 Day.2 Day.3 Day.4 Day.5 Day.6 Day.7

[1,] -1.23 -0.78 -0.12 0.58 0.98 1.02 -0.45

attr(,"scaled:center")

[1] 1.234

5.7.2.2 Rasch Model

Latent trait or item response theory models have traditionally been applied in the
fields of psychological and attainment testing. The Rasch model considered here
is the simplest of a group of similar models. We wish to fit

logitP (Yij = 1|αi) = αi − dj (5.29)

to an n ×M matrix Y consisting of 0s and 1s, where the probability is for the
ith individual’s correct response on item (question) j, and αi denotes an individ-
ual’s ability parameter, and dj is the difficulty of the jth item. Ability is assumed
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to be an unobserved or latent trait. We will treat all parameters in (5.29) as fixed
effects whereas a random effects approach would be more practical for large data
sets (they typically assume αi ∼ N(0, τ2) independently). It is customary to have
a minus sign for dj because it represents item difficulty rather than ease, and it is
common for a probit link to be used.

The original Rasch (1961) model treated the αi as fixed effects, and one can
use conditional maximum likelihood estimation by conditioning on their sufficient
statistics, e.g., as dealing with matched pairs (Agresti, 2013, Sect.11.2.3).

The matrix exam1 available in VGAMdata is a fictional data set involving 35
students given an 18-item ability test. We wish to determine which items are
easiest and hardest, as well as who has the least and most ability. The first few
students have results

> head(exam1, 3)

q01 q02 q03 q04 q05 q06 q07 q08 q09 q10 q11 q12 q13 q14 q15 q16 q17 q18

Richard 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Tracie 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Walter 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0

For this analysis it is necessary to remove items that were answered totally
correct or wrong by all students, and students who scored 0 or 100% in the items,
as these cases cause the d̂j and α̂i to diverge to ±∞.

> Exam1 <- exam1[, colMeans(exam1) > 0] # Delete questions that are too hard

> Exam1 <- Exam1[, colMeans(Exam1) < 1] # Delete questions that are too easy

> Exam1 <- Exam1[rowMeans(Exam1) > 0, ] # Delete people that are too weak

> Exam1 <- Exam1[rowMeans(Exam1) < 1, ] # Delete people that are too smart

> rfit <- rcim(Exam1, family = binomialff(multiple.responses = TRUE))

Then

> plot.rfit <- plot(rfit, rcol = "blue", ccol = "orange", cylab = "Item effects",

rylab = "Person effects", rxlab = "", cxlab = "", lwd = 2)

produces Fig. 5.6. The plot shows that the questions as a whole become increasingly
more easy and the existing order of the students shows no particular pattern.
Finally,

> names(plot.rfit@post)

[1] "row.effects" "col.effects" "raw.row.effects" "raw.col.effects"

> order(plot.rfit@post$col.effects) # Same as order(plot.rfit@post£raw.col.effects)

[1] 14 13 12 11 9 10 8 7 5 3 6 4 2 1

ranks the difficulty of the items in increasing order.
One must be careful with fixed-effects Rasch models, because plain maximum

likelihood estimation leads to inconsistent estimates because the number of pa-
rameters increases with increasing number of elements of Y.
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Fig. 5.6 Rasch fixed effects model to exam1, Eq. (5.29). Only a few people and items are labelled.

5.7.2.3 Multinomial Logit Model

Here, we fit a multinomial logit model (MLM) to a table of counts collected from
Harvard University. Ethnicity is explanatory and the education program is re-
sponse. A few programs have been omitted for simplicity.

> (Hued <- hued[, -c(1, 4, 5, 12)])

GSAS Business Divinity Education Government Law Medical PHealth

AsianPI 80 120 4 63 36 49 48 42

Black 18 41 10 47 24 67 17 22

Hispanic 28 32 7 30 33 32 12 12

IntStudent 281 285 10 103 238 199 20 200

NatAmer 3 5 2 3 7 3 1 3

White 350 311 99 364 166 310 77 130

NAOther 95 122 23 75 72 101 5 70

We can fit a rank-1 MLM-RCIM as follows.

> rcim1 <- rcim(Hued, family = multinomial, Rank = 1,

cindex = 2:(ncol(Hued)-1), M = ncol(Hued)-1)

As there are 8 columns, M = 8−1 and the model is log (pij/pi8) = β0+αi+βj+δij
for i = 1, . . . , 7 and j = 1, . . . , 7. Here, β1 ≡ 0 because the argument cindex stands
for column index, and these point to the columns of the response which are part
of the vector of linear/additive predictor main effects.

5.7.3 Quasi-Variances

One useful application of RCIMs is the quasi-variances methodology as developed
by Firth and de Menezes (2004) and implemented in qvcalc. Recall that, in R, a
regression model with an explanatory factor has its first level’s coefficients set to 0
by default (“treatment contrasts” in Table 1.5)—the baseline or reference category.
Suppose there are L levels and the coefficient for the ith level is βi. Upon fitting, we
have β1 ≡ 0, and β̂i and SE(β̂i) for i = 2, . . . , L, as the ‘conventional’ output, e.g.,

for publications. However, with these, it is only possible to compare β̂i with β1
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since β̂i = β̂i − β1. Plotting the conventional output gives the familiar form of
Fig. 5.7a. To compare β̂i − β̂j for all i and j it is necessary to have the complete
variance-covariance matrix, however most publications omit all but its diagonal
because of space constraints.

Quasi-variances ameliorate these shortcomings. Their purpose is to be able to
quickly make inferences about contrasts of the parameters without having to re-
evaluate standard errors after reparameterization. The methodology attempts to
assign standard errors to all levels such that all pairwise levels may be compared.
They allow for a plot such as Fig. 5.7b, where each level has a quasi-standard
error (QSE) associated with it. In a nutshell, quasi-variances are based on an

approximation which summarizes all of the covariances among β̂1, . . . , β̂L at the
cost of an additional number; there are L quasi-standard errors compared to L−1
‘conventional’ standard errors. They are also known as ‘floating absolute risks’ in
epidemiology.

The quasi-variance methodology finds constants q1, . . . , qL such that

Var
(
cT β̂

)
≈

L∑

i=1

c2i qi (5.30)

for all contrasts c = (c1, . . . , cL)
T . Recall that a contrast is a linear combina-

tion
∑

cjβj with
∑

cj = 0. In practice, we restrict ourselves to the simple but

very commonly used contrasts of the form β̂i − β̂j , so that

vij ≡ Var
(
β̂i − β̂j

)
≈ qi + qj . (5.31)

Consequently one treats β1, β̂2, . . . , β̂L as uncorrelated and with quasi-standard
errors

√
q1, . . . ,

√
qL, respectively. Then (5.31) has a simple Pythagorean interpre-

tation. Applied to the ships data in MASS, one can see that Fig. 5.7b is superior
to Fig. 5.7a because of its more general interpretation, its shorter intervals and its
overall greater information content.

Quasi-variances are not variances in general, and unfortunately negative values
are possible. The RHS of (5.31) will almost always be non-negative, therefore only
one or zero of the L quasi-variances can be negative.

5.7.3.1 Estimation

How can quasi-variances be estimated? Starting from (5.31) firstly observe that
minimizing the relative errors is preferred to absolute errors, e.g., an error of 0.1 is
small if the standard errors are 10, say, but large for 0.01. To this end, the quantity

∑

i < j

{log vij − log (qi + qj)}2 (5.32)

is minimized, which is akin to dealing with the quantity (qi + qj)/vij − 1 rather
than vij − qi − qj .

It is easy to see that minimization of (5.32) can be performed by fitting an RCIM
to a Gaussian-GLM. The only novelty is the use of an exponential link function,
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explink(): g1(μij) = ηij = exp(μij) where ηij = qi + qj , and the ‘response’
is yij = log vij .

5.7.3.2 Software Usage

If fit is a vglm() object with a factor as explanatory then minimizing (5.32) can
be achieved by calls such as

fit.qvar1 <- rcim(Qvar(fit, "factorname"), family = uninormal("explink"))

fit.qvar2 <- rcim(Qvar(fit, coef.indices = c(0, 7:9)), fam = uninormal("explink"))

Here, the processing function Qvar() takes as input a vglm() object and informa-
tion directing it to the factor of interest. Then the relevant subset of the estimated
variance-covariance matrix is extracted (and if necessary, a column of 0s and a row
of 0s is appended to the LHS and top), and then an estimate of the LHS of (5.31)
is computed for each pairwise combination, and then the logarithm is taken.

Behind the scenes, what is also fed into rcim() is an L × L matrix of prior
weights upon which the objective function (5.32) is minimized using least squares.
This square matrix of prior weights is of order-L. It comprises 1s, except that its
diagonal elements are some small positive number, i.e., 1L1

T
L − (1− ε)IL for ε ≈ 0

with ε > 0. The function Qvar() constructs this matrix, attaches it to the response,
and then it is picked up specifically by uninormal() later.

All the input is symmetric, therefore upon convergence the ith row effect
and ith column effect should be equal. Although the RCIM is estimated using
corner constraints as in (5.25), the matrix of predicted values has ith diagonal
elements 2qi so that quasi-variances may be computed with:

QuasiVar <- exp(diag(fitted(fit.qvar1))) / 2 # Version 1

QuasiVar <- diag(predict(fit.qvar2)[, c(TRUE, FALSE)]) / 2 # Version 2

QuasiSE <- sqrt(quasiVar)

Both expressions for the quasi-variance yield identical results. For convenience,
one may use qvar():

QuasiVar <- qvar(fit.qvar2) # Equivalent to Versions 1 and 2

A function is available to produce plots similar to Fig. 5.7b,c. These have been
called comparison intervals to emphasize that they are constructed for inference
about differences.

Note that quasi-variances for explanatory factors should be possible for any
VGLM that has one linear predictor. Things become complicated when the factor
appears in more than one ηj .

Another note is that the result of the quasi-variance approximation can be
treated as uncorrelated, so that the Pythagorean rule holds ((5.31), for simplicity),
but the approximation itself makes use of the full variance-covariance matrix in
its calculation.

5.7.3.3 The Accuracy of the Approximation

Quasi-variances effectively approximate a matrix of simple contrasts that has been
formed from a subset of V̂ar(β̂) by a rank-0 RCIM with normal errors on a log
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scale. The approximation tends to work well in practice. It may fail, however,
with qi < 0 (but this is not very common) and only one qi may be negative. Also,

when the β̂i are highly correlated, the approximation becomes less accurate.
A measure of the approximation’s accuracy is

RE(c) ≡
√

c21 q1 + · · ·+ c2L qL

cT Var(β̂1, . . . , β̂L) c
− 1 =

(
Var

(
cTQ

)

Var(cT β̂)

) 1
2

− 1, (5.33)

where Q = diag(q1, . . . , qL), known as the relative error for any contrast c. Two
statistics are commonly reported to gauge the error in the approximation. The first
is the worst possible errors—i.e., the minimum and maximum values of RE(c) over

all c. The second is RE(c) over all simple contrasts β̂i − β̂j . Firth (2003) suggests
that relative errors of up to ±10 percent may be considered not very serious.

5.7.3.4 Least Significant Difference Plots

An enhancement to comparison intervals based on quasi-variances is to add least
significant difference (LSD) intervals. This is motivated by the difficulty of inter-
preting confidence intervals in one-way ANOVA. It is well-known that if two 95%
confidence intervals (one for βi and another for βj) do not overlap then the dif-
ference is significantly different at the 5% level of significance. Compared to the
standard method (computing a confidence interval for the difference), the overlap
method (rejecting H0 if and only if there is no overlap) is more conservative and
less powerful. That is, H0 : βi = βj is rejected less often when H0 is true, and H0

is rejected less frequently when the null hypothesis is false.
The above difficulty also applies to when plotting β̂i±2QSE(β̂i) where QSE(θ̂i) =√
qi as in Fig. 5.7b. Additionally, it has the drawback that it is ineffective for mak-

ing immediate decisions: ideally one would want intervals that do not overlap if
and only if they are statistically significantly different. Motivated by ANOVA, we
apply the LSD intervals technique here.

The usual ANOVA formula for LSD intervals is

θ̂i ± tdf (α/2)√
2

SE(θ̂i)

where df = min(df1, df2, . . .). However, LSD intervals for factors are appropri-
ate with quasi-variances, since each level now has one. So replacing the conven-
tional standard error by the quasi-standard error, and simplifying the t-multiplier
to z(α/2), yields the limits

θ̂i ± z(α/2)√
2

QSE(θ̂i). (5.34)

Plotting these with α = 0.05 displays the so-called 5% LSD intervals, which pro-
vides an approximate but quick visual check on whether the difference between
two estimates is significant at the 5% level of a 2-sided test. Its derivation as-
sumes qi ≈ qj .

The plotting methods function qvplot() represents LSD intervals by arrows.
The function has arguments which can be set for adjustments, e.g., default
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Fig. 5.7 Quasi-variances computed for the ships data in MASS. The fitted model is a quasi-
Poisson-GLM fitted to the ship data (McCullagh and Nelder, 1989) with respect to ship types (A–
E) on the damage rate on a log scale. (a) Confidence intervals for contrasts with type A
ships based on conventional standard errors; (b) Comparison intervals based on quasi-variances;
(c) 5% LSD intervals (arrows) based on quasi-variances overlaid on (b). For (a)–(c), the formulas

are β̂i ± 2 SE(β̂i), β̂i ± 2
√
qi and β̂i ± z(0.025)

√
qi/2, respectively.

conf.level = 0.95 produces α = 5% LSD intervals but conf.level = NA sup-
presses them. Since argument interval.width = 2 by default, the arrows reside
within the ±2 QSE bands. A warning is issued if the QSEs are deemed very dif-
ferent, e.g., max(qi)/min(qi) is large.

As an example, the 5% LSD intervals in Fig. 5.7c for the first two levels for
the ship data almost cross, therefore we expect their p-value to be close to 0.05.
Indeed, testing the second coefficient from the original fit, one has a Wald statistic
of −1.96, which borders on exactly the 5% level of significance. Visually, two other
pairs appear significantly different, viz. B versus E, and C versus E.

5.7.3.5 Example

We illustrate how quasi-variances may be fitted by use of the ships data in MASS.

> data("ships", package = "MASS")

> ships <- within(ships, { year <- as.factor(year)

period <- as.factor(period) })
> Shipmodel <- vglm(incidents ~ type + year + period, quasipoissonff, data = ships,

subset = (service > 0), offset = log(service))

The basic RCIM and plots in Fig. 5.7b,c are from

> rcim.ship <- rcim(Qvar(Shipmodel, "type"), fam = uninormal("explink"), maxit = 99)

> quasiVar <- qvar(rcim.ship)

> quasiSE <- sqrt(quasiVar)

> qvplot(rcim.ship, scol = "blue", ylim = c(-1.5, 1), main = "(b)",

pch = 16, slwd = 1.5, conf.level = NA) # Suppress arrows (LSD intervals)

> qvplot(rcim.ship, scol = "blue", ylim = c(-1.5, 1), main = "(c)",

pch = 16, slwd = 1.5, length.arrows = 0.07) # Has LSD arrows

Plots such as these are sometimes called centipede plots—especially when the num-
ber of levels of the factor L is large and the levels of the factors are arranged
according to the sorted values of the estimates.
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Bibliographic Notes

Reinsel and Velu (1998) is a treatment of classical RRR applied to the normal-
errors case. RR-VGLMs were proposed in Yee and Hastie (2003), and the special
cases of models with M = 2 and R = 1 were elucidated in Yee (2014). RCIMs
were first described in Yee and Hadi (2014). A modern treatment of many classical
multivariate techniques, including RRR, is Izenman (2008).

There are many books on item response theory such as Baker and Kim (2004);
a small description is given in Agresti (2013) and de Gruijter and Van der Kamp
(2008, Chaps.9–10) is a good introduction.

LSD intervals are described in Andrews et al. (1980) and Schenker and Gen-
tleman (2001). The R packages gnm and qvcalc fit some models described in this
chapter.

Exercises

Ex. 5.1. Similar to Sect. 5.6.1, fit a RR-bivariate odds ratio model to the xs.nz
data with asthma and cancer as responses. Use ν as a linear combination of the 11
psychological variables. Can you interpret ν̂? How does the association between
the responses change as a function of ν̂?

Ex. 5.2. Other Couplings
Using Table 1.2 as a reference, add the following links to Table 5.3, i.e., specify
the additional rows and columns.

(a) log–log link,
(b) complementary log–log link,
(c) reciprocal link.

Ex. 5.3. RR-MLM Fitted to Vowel Data [(Yee and Hastie, 2003)]
Consider the vowel.train and vowel.test data frames in ElemStatLearn.

(a) Fit RR-multinomial logit models to vowel.train of ranks 1,. . . ,10. Use all the
covariates x.1–x.10 as x2. Based on the AIC, which dimension seems to be
preferred?

(b) For each model in (a), use vowel.test to estimate the probability of misclas-
sification. Based on this criterion, what is the optimal rank?

(c) Given a set of I models with estimates of their performance in terms of an
‘error’ (e.g., prediction error, or probability of misclassification) and associated
SE (êi and SE(êi), say), the 1-SE rule chooses the simplest model that is
within one SE of the best model. That is, the least complex model whose error
estimate is no more than êj + SE(êj) where j = arg mini=1,...,I ei. The 1-SE
rule attempts to choose a simpler model which is essentially indistinguishable
from the ‘best’ model, by taking into account the statistical variability in the
performance estimates. The rule can help reduce any overfitting. Apply the
1-SE rule to (b); is there any change to your answer?

Ex. 5.4. Continuing on somewhat from Ex. 5.3(a), consider the rank-2 RR-

MLM fitted to the training data. Show that a multinomial logit model treating Â
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as known and fixed produces standard errors (for all the intercepts and elements
of C) that are smaller than those of the rank-2 RR-MLM. Of course, your fitted
coefficients should be identical to the RR-MLM.

Ex. 5.5. Couplings
Verify the following entries in Table 5.4.

(a) negbinomial(zero = NULL).
(b) inv.gaussianff(zero = NULL).
(c) gamma2(zero = NULL).
(d) Repeat (a)–(c) with Variant II.

Ex. 5.6. RR-Normal
Consider models (5.16)–(5.18).

(a) Explain how (5.16) may be fitted as a VGLM or RR-VGLM.
(b) Explain how (5.17) may be fitted as a VGLM or RR-VGLM.
(c) Suppose g1(μ) = log μ. Explain how (5.18) may be fitted as a VGLM or RR-

VGLM, and within VGAM.
(d) Fit (5.16) to the hormone data.
(e) Fit (5.17) to the hormone data.

Ex. 5.7. Quasi-Variances and LSD Intervals

(a) If qi ≈ qj (= q), say, verify that an approximate 100(1 − α)% CI for βi − βj

is β̂i − β̂j ± z(α/2)
√
2 q.

(b) Suppose β̂i > β̂j . We want a multiplier λ so that the LSD intervals only just

overlap, i.e., β̂i − λ
√
q = β̂j + λ

√
q. Deduce from (a) that λ = z(α/2)/

√
2.

Ex. 5.8. Quasi-Variances: miserable and marital Example
A sociologist is interested in the association of the miserable variable as a response
and marital status, after adjusting for gender and age, in the xs.nz data frame.

(a) Run the following logistic regression

> mdata <- na.omit(xs.nz[, c("miserable", "marital", "age", "sex")])

> mfit <- vglm(miserable ~ marital + age + sex, binomialff, data = mdata)

and, for the marital variable, compute all simple contrasts and their standard
errors from the complete variance-covariance matrix.

(b) Compute the quasi-variances within VGAM, and obtain a plot of them. Can
anything be learnt from this?

Ex. 5.9. RR 1-Parameter Families
Consider fitting RR 1-parameter families as in Sect. 5.5.2.4.

(a) What mathematical formula results from

rrvglm(cbind(y1, y2, y3, y4) ~ x2 + x3, poissonff, data = pdata)

Express your answer in a similar manner to (5.22).
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(b) Do the same as (a) for

rrvglm(cbind(y1, y2, y3, y4) ~ x2 + x3, binomialff(multiple.responses = TRUE),

data = bdata)

Ex. 5.10. A RR-VGLM Variant: ‘transposed’ RRR
Reinsel and Velu (2006) consider RRR where only a subset of the components of η
have the CAT formulation. In particular, suppose that one wants to perform RRR
on a response y = (yT

1 ,y
T
2 )

T , but with

η =

(
η1

η2

)

=

(
BT

1 x1

ACTx2

)

where the dimension of yj and ηj is Mj , with M1 +M2 = M . Here, B1 is of full
rank, and A is M2 ×R, and C is p2 ×R.

(a) Work out the constraint matrices associated with every variable in x1 and x2.
(b) As a specific example, if M = 6, M1 = 3 = M2, x1 = (x1, x2, x3)

T , x2 =
(x4, x5, x6)

T and R = 1, then complete the following call:

rrvglm(ymatrix ~ -1 + x1 + x2 + x3 + x4 + x5 + x6,

VGAMfamilyFunction(zero = ???), noRRR = ~ ???,

Index.corner = ???, Rank = ???, constraints = ???, str0 = ???)

Ex. 5.11. Analysis of Crash Data

(a) Fit a rank-0 GRC model (e.g., using rcim()) to the crashp data frame (crash
data involving pedestrians.) Plot the row and column main effects and then
try interpreting them.

(b) Do the same as (a) using a zero-inflated Poisson distribution. Is there much
quantitative and qualitative difference?

(c) Repeat (a) applied to crashtr (crashes involving trucks).
(d) Repeat (a) applied to crashi (crashes involving injuries).
(e) All of the above fitted no-interaction models. Comment.

Ex. 5.12. More general than (5.2) is

η = BT
1 x1 +

K∑

k=2

AkC
T
k xk,

where K ≥ 2 is any specified positive integer, Ak is M ×Rk and unknown, and xk

is a pk-vector with p1+· · ·+pK = p. Although this is currently not yet implemented
in VGAM, discuss the computational details behind estimating such a model.

Ex. 5.13. Fatal Crash Data (Two Countries)
Consider the data frames crashf and crashf.au.

(a) Create a data frame called crashf.nz from crashf having the same dimension
and format as crashf.au.

(b) Fit rank-0 Goodman’s RC models to crashf.au and crashf.nz separately.
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(c) † Fit a rank-0 Goodman’s RC model to both data sets simultaneously subject
to the constraint μau

ij = φμnz
ij , where φ is some additional parameter to be

estimated. Show that φ̂ =
∑

ij y
au
ij /

∑
ij y

nz
ij = 10 2

3 .
Hint: extract out the VLM matrix of both fits and feed it into vglm.fit().
Some hacking may be required to get it working.

(d) † For your answer in (c) calculate the standard errors for the row effects,

column effects and φ̂.

Ex. 5.14. † Search the literature for an unimplemented model that has many
parameters for which a reduced-rank fit would be a good idea. Write a VGAM
family function for the model, and run it under rrvglm() on a suitable data set.
Does a biplot of your fit add to your understanding of the data?

Ex. 5.15. Olympic Games Medal Counts

(a) Fit a rank-0 GRC model to the first 10 countries in the data frame olym08. Can
you interpret the coefficients? By looking at a barplot of these select countries
choose a subset of 5 of them and repeat the fitting—and justify your choice of
countries. Are the new coefficients more accurate or meaningful?

(b) Repeat (a) with olym12.
(c) Do the results of (a) and (b) differ appreciably? Try giving a reason for this.

Ex. 5.16. Suppose one runs

rrvglm(y ~ bs(x2, 4), family = multinomial,

Rank = 1, Corner = TRUE,

data = mdata)

Show that this is a multinomial logit model with

ηj = β(j)1 + ajf(x2), a1 = 1, j = 1, . . . ,M,

where f is a smooth function of x2 estimated by a B-spline.

Ex. 5.17. Variance Functions

(a) For

rrvglm(y ~ x2 + x3, gamma2(zero = NULL), data = gdata)

show that Var(Y ) = K1μ
δ for some parameters K1 and δ.

(b) Show that the same form of the variance function results from

rrvglm(y ~ x2 + x3, inv.gaussianff(zero = NULL), data = gdata)

How can this code be adapted to have Var(Y ) = μ?
(c) What is the variance function for

vglm(y ~ x2 + x3, gamma2(parallel = TRUE, zero = NULL), data = gdata)

Ex. 5.18. Consider the NB-1, whose variance function is V (μ) = φμ.

(a) Use (11.2) to write down the density function f(y;μ, φ) of the NB-1.
(b) Take the limit as φ → 1 of f(y;μ, φ) and show that it gives the Poisson(μ)

probability function (1.7). Hint: use (A.46) and (A.47).
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Ex. 5.19. Consider the machinists data set.

(a) Fit an NB-1 and NB-2 model to the data set. Explain why the two are equiv-
alent. Do you think an ordinary Poisson model would suffice?

(b) Now fit an NB-2 subject to μ = k. Test to see whether such a model is plausible.
(c) Write down the probability function of the model corresponding to (b).

Ex. 5.20. Median Polish
Consider the USPersonalExpenditure data set in datasets.

(a) Apply medpolish() to log10(USPersonalExpenditure). Obtain a matrix of
fitted values.

(b) Try to obtain a similar result using RCIMs. Compare the fitted values of the
two models.

Ex. 5.21. Rasch Model to LSAT Data
Bock and Leiberman (1970, Table 1) present data on the Law School Admission
Test (LSAT) for n = 1000 students. These students were drawn from a larger
sample of students applying for admission to law schools at various universities
in USA. We shall concern ourselves with “Section 6” of the test. It is a 5-item
multiple-choice test, where a 1 for each item means the correct answer, else 0.

(a) Fit a simple binomial Rasch model to this data set (lsat data frame in SMIR;
use wt6 for the frequencies).

(b) Rank the items according to difficulty.

Ex. 5.22. RR-Normal and Quasi-Poisson Models

(a) Consider the following models.

fit1 <- vglm(y ~ x2 + x3 + x4, quasipoissonff, data = qdata)

fit2 <- vglm(y ~ x2 + x3 + x4, data = qdata,

uninormal(var = TRUE, parallel = TRUE ~ x2 + x3 + x4 - 1,

zero = NULL, lmean = "loge"))

Explain why both models would be expected to give similar results when μ >
10, say.

(b) What advantage does fit2 have over fit1?
(c) Explain why

fit3 <- rrvglm(y ~ x2 + x3 + x4,

uninormal(lmean = "loge", imethod = 2, var = TRUE, zero = NULL),

data = qdata)

might be a good idea first for these data.

Ex. 5.23. What relationship between μ1 and μ2 does (5.15) imply for the 2-
stage (sequential) binomial model (10.35)? Tailor your answer to hold specifically
for the call

rrvglm(cbind(y1, y2) ~ x2 + x3, seq2binomial, weights = size1, data = sdata)



200 5 Reduced-Rank VGLMs

Ex. 5.24. RR-Adjacent Categories Model
Let y be a categorical response taking on levels {1, 2, 3}, and consider the call

rrvglm(y ~ x2 + x3 + x4, acat, data = adata)

Show that this model has p3/p1 ∝ exp{(1 + a21)ν} where ν = (x2, x3, x4) · c.
Then show that P (Y = 1) = p1 =

[
1 + exp{β(1)1 + ν}+ exp{β(1)1 + β(2)1+

(1 + a21) ν}]−1
.

The vulgar are found in all ranks, and are not to be distinguished by the dress
they wear.
—Lucius Annaeus Seneca



Chapter 6

Constrained Quadratic Ordination

For this cause left I thee in Crete, that thou shouldest set in order the things
that are wanting, and ordain elders in every city, as I had appointed thee:. . .
Titus 1:5

6.1 Introduction

6.1.1 Ordination

In this chapter, RR-VGLMs are extended to give the Quadratic RR-VGLM
(QRR-VGLM) class. This enables one to perform constrained quadratic ordina-
tion (CQO). The word “ordination” has several meanings, but its use here is
based on older English for ordering, and in statistics it is traditionally the name
given to a collection of multivariate techniques that order or arrange certain as-
pects of data. We will mainly describe ordination applied to the field of plant
ecology, whereby species and environmental data are ordered and displayed on an
ordination diagram to reveal their interrelationships. For example, which species
are similar? And how do specific environmental variables affect all the species? In-
deed, ordination remains one of the most common tasks of community ecologists
who perform statistical analyses on field data.

Notationally, the species and environmental data are held in matrices Y (known
as a site-by-species matrix ) and X = (X1,X2), which are n×S and n× p, respec-
tively. There are n sites, p environmental variables of which the first is an inter-
cept term, and S species. For example, the data might be collected inside 100 m2

quadrants randomly distributed over a very large region encompassing a wide
range of environmental types such as forest, desert, alpine and hinterland. At each
site, the abundance of S species might be measured as counts (or simply as pres-
ence/absence), and variables in X recorded at each site too. In practice, any cli-
mate variables might need to be estimated, therefore suffer from the complication
of measurement error—however, we shall assume that this has not occurred. The
special case of the elements of Y equalling 1/0 for presence/absence, respectively,
is known as an incidence matrix.

© Thomas Yee 2015
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Fig. 6.1 Four hypothetical models for community ecology, along a gradient or latent variable.
Plot (c) corresponds to a species packing model.

One of the key concepts in community ecology is that of an ecological gradi-
ent. Clearly, species are affected by environmental variables such as temperature,
soil acidity, amount of rainfall and solar radiation, etc., and these may be com-
bined to produce an ecological gradient that ‘explains’ the species’ distributions.
Representing a proxy or conglomerate variable, an ecological gradient is usually
modelled as a linear combination of the environmental variables, i.e., (5.1). They
are what some statisticians call latent variables. One can theorize that there is
a dominant gradient which explains species’ abundance the most. Then there is
a secondary gradient that explains what was left unexplained by the first, etc.
Subservient gradients are assumed to be independent of the ones before it, so that
the overall estimation and interpretation is easier.

It may be argued that response curves should be unimodal in nature because
very low and very high values of many types of environmental variables, such as
temperature and certain nutrients, lead to species being absent, as opposed to an
optimal environment for the species being somewhere in between. Expanding on
the nutrient example, in plant ecology, it is well-known that while the deficiency
of a particular nutrient stunts growth, the other extreme leads to it becoming
toxic. That is, too much of a good thing can be detrimental to a species. This
has been called the Goldilocks principle in many disciplines such as developmental
psychology, economics and engineering. A first-stab approximation is to assume
a symmetric bell-shape, like the density of a normal distribution. Indeed, such
curves/surfaces have become a tenet in community ecology.

In keeping with RR-VGLMs, the first environmental variable is an intercept
term of ones because we partition the environmental variables at a site by
x = (xT

1 ,x
T
2 )

T , and usually x1 = 1 and x2 contains the abiotic environmental
variables. That is, X2 are the ‘real’ environmental variables one wants to use in
the ordination, but we want to do so after adjusting for the explanatory vari-
ables X1—which is often just an intercept term.

As in the previous chapter, let R be the rank (or dimension) of the ordi-
nation, ν = (ν1, . . . , νR)

T = CTx2 is the vector of R latent variables or un-
derlying environmental gradients or trends. We write ν = cTx2 when R = 1.
The matrix C holds the constrained (or canonical) coefficients, and νi are the
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Table 6.1 Does a QRR-VGLM make the four CCA assumptions? The first three constitute a
species packing model. Note: an RR-VGAM (Chap. 7) makes none of the four CCA assumptions,

nor the bottom one.

CCA assumption QRR-VGLM for CQO

1. Equal tolerances No and yes. No: the ordination di-
agram needs contours (if R ≥ 2).
Yes: the ordination diagram is very
easy to interpret

2. Equal maximums No

3. Species’ optimums uniformly distributed
over the latent variable space

No

4. Species’ site scores uniformly distributed
over the latent variable space

No

Symmetric bell-shaped responses Yes

site scores. The elements of C are interpreted as weights or coefficients, e.g.,
if cT = (1.03, 0.05,−0.95,−0.08) and x2 = (maximum annual temperature, soil
pH, minimum annual temperature, rainfall)T (scaled), then ν is essentially annual
temperature seasonality. As another example, if cT = (1.03, 0.05,−0.05,−0.08),
then we would treat ν as maximum annual temperature, and one might view
this as variable selection. It is the role of the data analyst to ascribe the human
interpretation of ν based on the value of c, if possible.

It should be noted that if the site scores are connected to the x2 via νi = CTx2i

then this is known as direct gradient analysis. Most of this chapter is devoted to this
case. Where the site scores are totally free parameters, because no environmental
variables x2 were measured, this is known as indirect gradient analysis, and it is
the subject of Sect. 6.7.

There are several popular ecological conjectures on how the species’ response
curves are distributed along the (primary) ecological gradient, such as those of
Fig. 6.1, e.g., it has been postulated that species tend to develop maximally sep-
arated niches over limiting environmental resources. If so, then the optimal con-
strained coefficients should be in a direction in which the species’ response func-
tions are the most different. The suppositions of response functions’ properties
belong to the so-called niche theory, but we will not involve ourselves with that
here.

In practice we estimate one or two, or maybe even three, gradients. The first
will have the most explanatory power, followed by the second, etc. so that the first
is known as the dominant gradient. If there are two, then an ordination diagram,
where the axes are the fitted gradients, may be plotted so that two species close
to each other imply their distributions are similar, etc.

Since the 1930s, a number of ordination techniques have been proposed, mostly
based on heuristic arguments. Consequently many of them were defective and were
limited in scope, e.g., the ‘horseshoe’ effect, and not suitable for presence/absence
or count species data. Probably the most popular technique is canonical correspon-
dence analysis (CCA; ter Braak, 1986); however, it was developed as a heuristic
approximation to CQO described in this chapter. The reasons put forth at the time
for using CCA instead of CQO were mainly because of CQO’s higher computa-
tional complexity and expense. Ironically, the two raw ingredients of CQO—GLM
software and a general optimizer—were readily available in the 1980s. CCA as-
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sumes a species packing model (Fig. 6.1c and Table 6.1) whereas CQO is more
flexible.

One can think of CQO as a more rigorous way to perform ordination. Based
on GLM ideas, QRR-VGLMs have several advantages compared to CCA such as
its simpler formulation, greater flexibility due to fewer assumptions, the ability
to extract out more ecologically meaningful information, and it possesses greater
soundness of statistical theory. It operates on common types of species data such
as presence/absence data and Poisson counts, whereas CCA treats all data-types
the same—this is like using a baseball bat to play golf, badminton and tennis.
One advantage that CCA does have over QRR-VGLMs is its robustness; a reason
for this is that QRR-VGLMs are estimated by MLE, and therefore are sensitive
to departures from the model formulation. Consequently, they are much more
challenging to fit, and this chapter attempts to offer some suggestions in this
regard.

This chapter concentrates on 1-parameter distributions such as the Poisson and
binomial, therefore M = S. Then both j and s are interchangeably used to index
the species from S, where S = {1, . . . , S} is the set of all species or responses.

To summarize thus far, we wish to fit symmetric bell-shaped response curves
or surfaces, as a function of ν1 (and possibly ν2) to species’ data, especially
counts and presences/absences. The resulting ordination is something formerly
called canonical Gaussian ordination, or CGO, by Yee (2004a). This acronym
was abandoned because the word “Gaussian” has two meanings that may cause
confusion. The first meaning is that the response is normally distributed or con-
tinuous. The other is that of a bell-shaped curve. Of course, it is the latter that
was intended, hence “quadratic” is more informative, provided it is understood
that it is on the η-scale. Also, “constrained” is more meaningful than “canonical”
to most non-mathematicians because the site scores are constrained to be linear
combinations of the explanatory variables.

6.1.2 Prediction and Calibration

Table 6.2 gives the nomenclature for the methods advocated in this chapter, and
it is largely built upon the ideas of ter Braak and Prentice (1988). It arises by
cross-classifying two factors:

(i) constrained (C) or unconstrained (U);
(ii) the shape of the response to the latent variable on the (transformed) η-scale

(linear (L), quadratic (Q), or just smooth (A)).

The rationale behind this classification scheme is that ecologists have long debated
what shape species’ responses have along a dominant gradient—the second factor
gives the three most important cases. The first factor acknowledges that X may or
may not have been collected from a field study—an important demarcation—i.e.,
direct or indirect gradient analysis.

Table 6.2 shows therefore that all three “constrained” methods have an “un-
constrained” counterpart whereby the site scores νi are not constrained to be
linear combinations of x2. For example, UQO is CQO but where the site scores
are largely free parameters. Although this chapter is primarily about constrained
ordination, Sect. 6.7 looks at the unconstrained ordination problem.
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Table 6.2 Nomenclature for 6 ordination methods based on GLM-type regression techniques.
The shapes are on the η-scale. In each cell, the first bold line is the biological application or

ordination method, the second line is the statistical class of models, and the remaining lines

are some special cases. Abbreviations: A = additive, C = constrained (preferred) or canonical,

L = linear, O = ordination, Q = quadratic, R = regression, RDA = redundancy analysis, RR =

reduced-rank, U = unconstrained.

Constrained Unconstrained

Linear CLO ULO

RR-VGLM (Yee and Hastie, 2003) U-VGLM

e.g., (Gaussian) RRR (= RDA)
(Anderson, 1951), RR-MLM (Yee
and Hastie, 2003)

e.g., Goodman’s RC model
(Goodman, 1981)

Quadratic CQO UQO

QRR-VGLM (Yee, 2004a) QU-VGLM (Yee, 2006)

e.g., Gaussian logit ordination (ter
Braak and Prentice, 1988)

e.g., Gaussian ordination (Gauch
et al. (1974), Kooijman (1977))

Smooth CAO UAO

RR-VGAM (Yee, 2006) U-VGAM (Yee, 2006)

e.g., projection pursuit regression
(Friedman and Stuetzle, 1981),
constrained principal curves
(De’ath, 1999)

e.g., principal curves (Hastie and
Stuetzle, 1989)

The regression methods of Table 6.2 have the 3 major application areas listed in
Table 6.3, of which heuristic ordination methods such as CCA are unsuitable for
the latter two. In contrast, all the methods in Table 6.2 can perform all 3 tasks,
and Sect. 6.4 looks at a few specific types of analyses to perform these tasks. Note
that the three tasks refer to ν instead of x2 because x2 might not exist, or else if
it does, since ν = cTx2 implies it is impossible to estimate the value of a variable
in x2 unless one assigns values to the other variables in x2. Because of the 3-fold
potential use, “O” in the table could be replaced by “P” for prediction and “C”
for calibration, e.g., “constrained quadratic prediction”, or CQP, might be coined
for a QRR-VGLM whose primary purpose is to predict species compositions at
sites.

6.2 Quadratic RR-VGLMs for CQO

QRR-VGLMs are a class of models that can fit bell-shaped curves or surfaces to
a set of latent variables. They extend RR-VGLMs (5.2) by adding on a quadratic
form in ν. For one-parameter distributions such as the Poisson and binomial,

η ≡

⎛

⎜
⎝

η1
...

ηM

⎞

⎟
⎠ = BT

1 x1 +Aν +

⎛

⎜
⎝

νTD1ν
...

νTDMν

⎞

⎟
⎠ (6.1)

= α− 1

2

⎛

⎜
⎝

(ν − u1)
T
T−1

1 (ν − u1)
...

(ν − uM )
T
T−1

M (ν − uM )

⎞

⎟
⎠ , (6.2)
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where Dj are R×R symmetric matrices, and α is some vector depending on x1,
the optimums uj and the tolerance matrices Tj . It is easy to show (Ex. 6.1) that

ηj(ν) =

{
1

2
uT
j T

−1
j uj + βT

j x1

}

− 1

2
(ν − uj)

T
T−1

j (ν − uj) , (6.3)

for j = 1, . . . ,M , which gives the expression for αj .
The jth response surface in (6.2) is bell-shaped in the latent variables ν if and

only if Dj is negative-definite, i.e., if and only if Tj = − 1
2D

−1
j is positive-definite.

The matrices Dj and Tj control the (ellipsoidal) contours of the bell-shaped sur-
face in the R-dimensional latent variable space, e.g., if they are diagonal, then
the axes of the ellipsoids are parallel to the νr (r = 1, . . . , R) (ordination) axes.
The contours represents points that have the same fitted value (e.g., abundance

or probability). The fitted Ĉ are called the (estimated) constrained coefficients,

the jth column of Ĉ are called the jth constrained coefficients (which are inter-
preted as weights), and the optimum of Species j is

uj = Tj aj . (6.4)

The representation (6.2) is preferred to (6.1), because of the ecological interpre-
tations that can be ascribed to the parameters. In particular, in one dimension,

• the tolerance measures how wide the response curve is, i.e., how much devi-
ation the species can tolerate from its optimal environment, so that if tj is
large then the response curve decreases slowly as ν moves away from its opti-
mum, implying that the species can still flourish under a variety of different en-
vironments. Technically, the large tj case refers to a stenoecous species, whereas
the small tj case is called a eurycous species. Thus the tolerance is a measure
of niche width, and the parameter acts like the standard deviation of a normal
distribution;

• the parameter uj is the value of the gradient (in the ecological rather than the
mathematical sense) in which μj(ν) is a maximum; therefore, it is the optimal
environment for Species j. For example, with Poisson counts, μj(uj) = eαj so
that αj is directly related to the prevalence/abundance of the species at its
optimum (Eq. (6.3)). We call μj(uj) the maximum of Species j.

As a specific rank-1 example of a QRR-VGLM, consider Poisson data
with S species. The model for Species s is the Poisson regression

log μs(ν) = ηs(ν) = β(s)1 + β(s)2 ν + β(s)3 ν
2 (6.5)

= αs − 1

2

(
ν − us

ts

)2

, s = 1, . . . , S. (6.6)

Much of classical ecological theory can be expressed in terms of the three pa-
rameters αs, us and ts, e.g., Shelford’s law of tolerance, Liebig’s law of the min-
imum, and Gause’s law. Equation (6.5) is a quadratic in ν so that the response
curve E(Ys|ν) is symmetric bell-shaped provided that β(s)3 < 0. More generally,
η(ν) ought to be a concave function in ν. The coefficient β(s)3 in (6.5) is impor-
tant, because a negative value implies that the response curve is unimodal about
the optimum us. If β(s)3 = 0, then the curve is sigmoid, and if β(s)3 > 0, then the
curve is “u”-shaped—something ecologically unrealistic.
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Table 6.3 Three major application areas of the regression methods advocated in this chapter.

Use Comment

Ordination Order the response curves/surfaces as functions of ν. This is an arrangement of
the species with each other, and with the environmental variables, if any

Prediction Predict y, given ν. This is possible because standard regression models are used

Calibration Estimate ν, given y. Given a site with species composition y0 = (y01, . . . , y0S)
T ,

say, the generic calibration problem is to estimate ν0, the value of the site score
there, e.g., bio-monitoring pollution levels based on species’ responses, and re-
constructions of climate history based on species compositions. Calibration is
the subject of Sect. 6.4.5

For the practitioner, the equal-tolerances assumption is of particular
importance:

T1 = T2 = · · · = TS . (6.7)

Ideally, the analyses should be made with and without that assumption, and the
results compared. Some self-proclaimed experts and proponents of niche theory
have indicated strongly that most species do not have equal niche width. However,
practitioners who assume equal tolerances have several good reasons for doing so.
Firstly, because ordination diagrams (Sect. 6.4.2) for R = 2 are much easier to

interpret—contours are unneeded. Secondly, often T̂s can be non-positive-definite
for some species (i.e., not bell-shaped), but estimating one common tolerance ma-
trix over all species might at least give sensible results overall. This is likened
to borrowing strength over the species, and it often results in greater numerical
stability, provided that most of the data exhibits unimodality.

QRR-VGLMs are fitted using the modelling function cqo(), which may one
day be renamed to qrrvglm(). By default, it assumes equal tolerances, however,
the estimated tolerance matrix may not be positive-definite; see Sect. 6.4.1. The
reasons given in Sect. 5.2.1 for RRR also hold for CQO.

6.2.1 An Example: Hunting Spiders Data

To illustrate the basic ideas early on, consider the hunting spiders data set,
called hspider. It is well known in the ordination literature, and is detailed in ter
Braak (1986). Briefly, these data were collected in a Dutch dune area over a 60-
week period, and consists of abundances (numbers trapped) of 12 species of hunting
spiders. There were 6 environmental variables (water, bare sand, twigs, cover moss,
cover herbs, and light reflection) measured at the n = 28 sites. We standardize the
environmental variables in our analyses here.

In our first model, we try a rank-1 Poisson CQO with unequal tolerances.

> hspider[, 1:6] <- scale(hspider[, 1:6]) # Standardized environmental variables

> set.seed(1234) # For reproducibility of the results

> p1ut.hs <- cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,

Auloalbi, Pardlugu, Pardmont, Pardnigr, Pardpull,

Trocterr, Zoraspin) ~

WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,

poissonff, data = hspider, eq.toler = FALSE, trace = FALSE)
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Fig. 6.2 Ordination of 11 species from the hspider data frame; a Poisson model with unequal
tolerances, called p1ut.hs.2. (a) lvplot() output. (b) persp() output, which is a perspective
plot and a ‘continuous’ version of (a).

The estimated tolerances, t̂s, are

> Tol(p1ut.hs)[1, 1, ]

Alopacce Alopcune Alopfabr Arctlute Arctperi Auloalbi Pardlugu Pardmont

1.00000 0.72101 1.09723 0.22434 0.71902 0.51714 -2.39571 0.89509

Pardnigr Pardpull Trocterr Zoraspin

0.27949 0.35603 0.86867 0.50134

The scaling is such that the first species’ tolerance is unity. This suggests that
attempting to fit a bell-shaped curve to the species Pardlugu has failed because
its ν̂2 coefficient is positive. Let’s omit that species and refit the model.
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> set.seed(1234) # For reproducibility of the results

> p1ut.hs.2 <- cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi, Auloalbi,

Pardmont, Pardnigr, Pardpull, Trocterr, Zoraspin) ~

WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,

poissonff, data = hspider, Crow1positive = FALSE, eq.toler = FALSE,

trace = FALSE)

> S <- ncol(depvar(p1ut.hs.2)) # Number of species

> clr <- (1:(S+1))[-7] # Omits yellow

> lvplot(p1ut.hs.2, main = "(a)", y = TRUE, lcol = clr, pch = 1:S, pcol = clr)

> legend("topright", leg = colnames(depvar(p1ut.hs.2)), col = clr,

pch = 1:S, merge = TRUE, bty = "n", lty = 1:S, lwd = 2)

This gives Fig. 6.2a. It can be seen that there is a mixture of dominant and low-
abundance species. This plot has the observed values added, which may clutter
the plot when n and/or S are large, as well as lines joining the fitted values that
give the appearance of discreteness. An alternative plot which does not have these
features is persp(). The output of

> persp(p1ut.hs.2, main = "(b)", col = clr, label = TRUE) # Perspective plot

appears in Fig. 6.2b. All the fitted bell-shaped curves can be seen—but there is
always the danger with this type of plot of not knowing how well the fitted curves
fit the observed data. The constrained coefficients are

> round(concoef(p1ut.hs.2), digits = 2)

latvar

WaterCon -0.33

BareSand 0.46

FallTwig -0.57

CoveMoss 0.23

CoveHerb -0.27

ReflLux 0.68

These signs agree with the CCA analysis of ter Braak (1986), who interpreted ν̂
as a moisture gradient.

Now we can try fitting an equal-tolerances model to all the species, just to see
if it makes any qualitative difference.

> set.seed(1234) # For reproducibility of the results

> p1et.hs <- cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,

Auloalbi, Pardlugu, Pardmont, Pardnigr, Pardpull,

Trocterr, Zoraspin) ~

WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,

poissonff, data = hspider, Crow1positive = FALSE, eq.toler = TRUE,

trace = FALSE)

> lvplot(p1et.hs, main = "(a)", y = TRUE, lcol = clr, pch = 1:S, pcol = clr, las = 1)

> legend("topright", leg = colnames(depvar(p1et.hs)), col = clr,

pch = 1:S, merge = TRUE, bty = "n", lty = 1:S, lwd = 2)

> persp(p1et.hs, main = "(b)", col = clr, label = TRUE, las = 1) # Perspective plot

This gives Fig. 6.3. Not surprisingly, the two models are very similar. The
species Pardlugu is shown to be a minor species appearing at the boundary of
the environmental space. This explains why it did not exhibit unimodality—its
signal has been overwhelmed by random error and weakened by an edge effect.
This ill-conditioning is commonly the case for species distributed away from the
convex hulls of the site scores. The same is seen in the rank-2 ordination (Fig. 6.6).

We can look at the constrained coefficients, optimums, tolerances, etc. by
using Coef():
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> Coef(p1et.hs)

C matrix (constrained/canonical coefficients)

latvar

WaterCon -0.35750

BareSand 0.55314

FallTwig -0.91928

CoveMoss 0.31630

CoveHerb -0.30516

ReflLux 0.70390

B1 and A matrices

(Intercept) A

loge(E[Alopacce]) 1.09373 1.98832

loge(E[Alopcune]) 2.84707 -0.44120

loge(E[Alopfabr]) -2.24519 3.10397

loge(E[Arctlute]) 0.92198 -0.72167

loge(E[Arctperi]) -8.69297 4.83720

loge(E[Auloalbi]) 2.57346 -0.66305

loge(E[Pardlugu]) -0.67625 -2.55136

loge(E[Pardmont]) 3.58278 0.89167

loge(E[Pardnigr]) 3.76112 -0.58679

loge(E[Pardpull]) 4.21020 -0.40758

loge(E[Trocterr]) 4.44445 -0.84106

loge(E[Zoraspin]) 2.76993 -0.85949

Optimums and maximums

Optimum Maximum

Alopacce 1.98832 21.5513

Alopcune -0.44120 18.9992

Alopfabr 3.10397 13.0937

Arctlute -0.72167 3.2622

Arctperi 4.83720 20.2118

Auloalbi -0.66305 16.3345

Pardlugu -2.55136 13.1768

Pardmont 0.89167 53.5343

Pardnigr -0.58679 51.0744

Pardpull -0.40758 73.2049

Trocterr -0.84106 121.2850

Zoraspin -0.85949 23.0875

Tolerance

latvar

Alopacce 1

Alopcune 1

Alopfabr 1

Arctlute 1

Arctperi 1

Auloalbi 1

Pardlugu 1

Pardmont 1

Pardnigr 1

Pardpull 1

Trocterr 1

Zoraspin 1

Standard deviation of the latent variables (site scores)

latvar

2.371
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The constrained coefficients are qualitatively the same as the unequal-tolerances
model. From the bottom of the output, we have sd(latvar(p1et.hs)) =

V̂ar(ν̂i) ≈ 2.371. It is left to the reader to reconcile the remaining output with
Fig. 6.3.

It is a good idea to see how often the best model was chosen out of all those
fitted:

> sort(deviance(p1et.hs, history = TRUE)) # A history of all the iterations

[1] 1585.1 1585.1 1585.1 1585.1 1585.1 1585.1 2472.1 2472.1 2472.1 2472.1

Thus the best model was achieved 6 out of 10 times. This suggests that there does
seem to be a global solution that is relatively easy to converge to, compared with
several local solutions. One would be worried if the best model was only obtained
once, because this suggests there may be some other better solution not found yet.

Lastly for now, we try fitting a rank-2 equal-tolerances Poisson model. We
cheat a little here by using arguments that will be explained a little later, as well
as knowing what the true global optimal model is.

> set.seed(555) # For reproducibility of the results

> p2et.hs <- cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi,

Auloalbi, Pardlugu, Pardmont, Pardnigr, Pardpull,

Trocterr, Zoraspin) ~

WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,

poissonff, data = hspider, Crow1positive = FALSE, Rank = 2,

I.toler = TRUE, Bestof = 3, isd.latvar = c(2.1, 0.9))

> if (deviance(p2et.hs) > 1127) warning("suboptimal fit obtained")

> persp(p2et.hs, xlim = c(-6, 5), ylim = c(-6, 3), theta = 120, phi = 20)

This gives Fig. 6.4, which blends in all the silhouettes of the bell-shaped surfaces
of each species combined. The dominant species mask the rarer species, and some
of the species distributions are outside the range of the environmental data.

Table 6.4 lists some particularly useful arguments which users of cqo() should
heed.

6.2.2 Normalizations for QRR-VGLMs

For QRR-VGLMs, it is more convenient to abandon the corner constraints of
RR-VGLMs (5.5). Instead, upon examination of (6.1)–(6.2), there is quite some
scope to choose normalizations that make interpretation easier. In particular,
T−1

s (ν − us) = T−1
s M1M

−1
1 (ν − us) and Aν = AM2M

−1
2 ν for any nonsingular

matrices M1 and M2. Two nice properties to have are as follows.

• Property (A)

T̂s = IR. (6.8)

That is, the niche width in every dimension is unity. Additionally, since the
matrix is diagonal, the Mahalanobis distance and Euclidean distance coincide
in every direction. This normalization is similar to a multivariate normal dis-
tribution with variance-covariance matrix IR.
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Fig. 6.3 Ordination of 12 species from the hspider data frame; a Poisson model with equal
tolerances, called p1et.hs. (a) lvplot() output. (b) persp() output, which is a perspective plot
and a ‘continuous’ version of (a).

• Property (B)

V̂ar(ν̂i) = IR. (6.9)

That is, the latent variables have unit standard deviation, and are uncorrelated.
Uncorrelated latent variables are a good idea because they can be loosely be
thought of as unrelated to each other. With two ordination axes of uncorrelated
latent variables, one can think of the second axis as being unrelated to, and less
important than, the first axis, which represents the dominant gradient.
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Fig. 6.4 Perspective plot of a rank-2 CQO fitted to the hspider data frame, called p2et.hs.
All 12 species are fitted, using an equal-tolerances Poisson model, but only the response surfaces
of the dominant species may be seen. See also Fig. 6.6 for an ordination diagram of the above.

We can choose M1 and M2 to obtain Property (A) or (B), but not both. Whatever
we choose, a compromise on the other property can be obtained (in terms of the
matrix just being diagonal). Because the following results are so important, we
state them as a theorem.

Theorem For QRR-VGLMs (6.1)–(6.2), provided ∃ s ∈ S such that T̂s is
positive-definite, it is possible to scale the ν̂i so that

1. (6.8) is satisfied for at least one s ∈ S, and
2. V̂ar(ν̂i) is diagonal.

Furthermore, (6.8) holds for all s ∈ S if I.tolerances = TRUE or
if eq.tolerances = TRUE. �

The proof is left as an exercise to the reader (Ex. 6.2).
Currently, the defaults are eq.tolerances = TRUE and I.tolerances =

FALSE, which means that if the pooled tolerance estimate is positive-definite,
then (6.8) holds for all s ∈ S, and V̂ar(ν̂i) is diagonal.

Conversely, it is easy to show that if (6.9) is desired, then one needs to relax (6.8)
by making Ts diagonal.

In the case of unequal tolerances, the argument refResponse can be used to
select the s value such that (6.8) holds. This argument applies to Coef(), lvplot()
and other generic functions. See Sect. 6.4.1 for details.

6.3 Fitting QRR-VGLMs

Table 6.7 describes the 3 cases of how QRR-VGLMs may be fitted. They depend
critically on the 2 arguments I.tolerances and eq.tolerances. These arguments
also relate directly to the theorem of Sect. 6.2.2. Having either of them TRUE results
in an equal-tolerances model (6.7), however, they are subtlety different in 2 ways.
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Table 6.4 Upper table: certain qrrvglm.control() arguments of particular relevance to the
user. Some defaults are given. Lower table: other arguments used by some methods functions.
Recall s ∈ S denotes one selected response.

Argument Comment

Bestof = 10 Number of models fitted. The one with the minimum deviance is se-
lected. Helps safeguard against local solutions. Increase this value for
greater certainty, in conjunction with set.seed() for reproducibility

Cinit = NULL An initial C matrix (p2×R). If inputted, only one model is fitted. Fit-
ting a stereotype model is one possibility for Poisson counts (Ex. 6.7);
see also Sect. 6.3.2

Crow1positive = TRUE An R-vector of logicals describing whether the signs of the first row
of C are positive, i.e., c11, . . . , c1R. If the rth value is FALSE, then the
solution is reflected about the rth ordination axis

eq.tolerances = TRUE By default, an equal-tolerances model (6.7) is fitted, however, the T̂s

may not be positive-definite. If FALSE, then each species is modelled
separately, and one of the species has T̂s ≡ IR (provided at least
one species has a positive-definite tolerance matrix). This option is
memory-hungry. See Sect. 6.2.2 and Table 6.7

isd.latvar See Sects. 6.3.1 and 6.3.2

I.tolerances = FALSE If TRUE, then another way to fit an equal-tolerances model (6.7) is
used; then T̂s ≡ IR ∀s ∈ S, therefore all the variables in x2 should
be scale()d. This is computationally the fastest method on simu-
lated data. See Sects. 6.3.1, 6.3.2 and Table 6.7

MUXfactor = rep(7,

length = Rank)

See Sect. 6.3.2

noRRR = ∼ 1 A formula indicating which variables comprise x1

Rank = 1 R, the dimension of the ordination. A rank-1 model should always be
attempted first. Rank-2 models are much harder to fit, and certainly
not all data sets are expected to support this

trace = TRUE Prints out some output as a record of the computational details, in
real time

Use.Init.Poisson.QO

= TRUE

Logical. Use an algorithm based on an equal-tolerances Poisson QO
to find initial values? If FALSE, then Cinit should be inputted

refResponse A value s ∈ S specifying the response to be considered as the refer-
ence species. It will have T̂s ≡ IR. Mainly used if eq.tolerances =

FALSE

varI.latvar Logical. If TRUE, then V̂ar(ν̂i) = IR (Eq. (6.9)), else V̂ar(ν̂i) is diag-
onal. See Sect. 6.2.2

Firstly, in the algorithm used—one is fast but requires scaling of the environmental
variables—while the other is memory-hungry and slower (at least with simulated
data). Secondly, though (6.7) holds in both cases, the tolerance matrices are only
guaranteed to be positive-definite if I.tolerances = TRUE; if eq.tolerances =

TRUE, then the T̂s may or may not be positive-definite. Some more computational
details about these arguments are given in Sect. 6.3.1.

Currently, only the VGAM family functions listed in Table 6.5 are supported
by cqo(). The multiple.responses argument for the binomial-variants indicates
that the response matrix is composed of multiple binary responses, i.e., there
are S species. This is necessary to retain upward compatability, e.g., binomialff()
with a 2-column matrix response is interpreted as a matrix of successes and fail-
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Table 6.5 Summary of some properties of statistical distributions in regression-based ordina-
tion. The φj are overdispersion parameters. The argument mul = TRUE is an abbreviation for

multiple.responses = TRUE.

Family function Var(Yj) Support ηj Notes

binomialff(mul = TRUE) μj(1− μj) {0, 1} logitμj link = "cloglog"

may be preferable

gaussianff() σ2
j (−∞,∞) μj Constant variance in

the LM

poissonff() μj 0(1)∞ log μj

quasibinomialff(mul = TRUE) φj μj(1− μj) {0, 1} logitμj link = "cloglog"

may be preferable

quasipoissonff(mul = TRUE) φj μj 0(1)∞ log μj

Table 6.6 Methods functions currently for CQO and CAO objects in VGAM. The bottom section
are plotting functions. See also Table 8.7.

R function Purpose

calibrate() Calibration: estimate ν from y. See Sect. 6.4.5

Coef() Â, B̂1, Ĉ, D̂, ûs, T̂s, ν̂i, etc. (Eq. (6.1))

concoef() Constrained (canonical) coefficients Ĉ (Eq. (6.1))

is.bell() Are the species’ response curves/surfaces bell-shaped? (Eq. (6.1))

latvar() Matrix of latent variables ν̂i = Ĉ
T
x2i (site scores; Eq. (5.1)). Is n×R

Max() Maximums E[Ys|ûs] = g−1(α̂s) (Eq. (6.2)). If x1 �= 1, then the maximum of
a species is undefined as it depends on values of variables in x1. Consequently,
an NA will be returned

Opt() Optimums ûs (species scores; Eq. (6.2))

predict() Prediction: estimate y from x

Rank() Rank R

resid() Residuals (e.g., working, response, . . . )

summary() Summary of the object

Tol() Tolerances T̂s (Eq. (6.2))

biplot() Same as lvplot()

lvplot() Latent variable plot (ordination diagram; for R = 1 or 2). See Sect. 6.4.2

persp() Perspective plot (for R = 1 or 2). See Sect. 6.4.3

trplot() Trajectory plot (for R = 1 only). See Sect. 6.4.4

ures rather than two species. If multiple.responses = TRUE then the response
(matrix) must contain 0s and 1s only. The use of a complementary log–log link
for presence/absence data may be preferred, because of its connection with the
Poisson distribution (Ex. 1.2).

6.3.1 Arguments I.tolerances and eq.tolerances

These arguments reside in qrrvglm.control(). However, their differences should
be understood. Basically, the reason is computational.
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Choosing between an equal-tolerances and unequal-tolerances model is a trade-
off between interpretability and quality of fit. In real life, it is unrealistic assump-
tion. But then it can be argued that bell-shaped curves/surfaces are an unrealistic
assumption too. Certainly, for R = 2, equal tolerances make interpretation much
easier because elliptical contours need not be added to the ordination diagram.
With R = 1, one doesn’t need an equal-tolerances assumption so much because
one can gauge how large the tolerances are by applying a function such as persp().

So how are the arguments I.tolerances and eq.tolerances related? And
how are algorithms for fitting the models affected by these? The answers to
these questions are given in Table 6.7. The argument eq.tolerances refers to
whether Ts = T for all s ∈ S, for some order-R matrix T. Note that T may or
may not be positive-definite; ideally, it is. In contrast, the argument I.tolerances
is positive-definite; it is more directed at specifying the algorithm used, and
if TRUE, offsets (Sect. 3.3) of the form − 1

2ν
2
ir are used in the algorithm be-

cause Ts = IR by definition. Note that setting I.tolerances = TRUE forces
bell-shaped curves/surfaces on the data regardless of whether this is appropri-
ate or not. Having I.tolerances = TRUE implies eq.tolerances = TRUE, but
not vice versa.

Computationally, any offset values which are large will cause numerical prob-
lems. Therefore it is highly recommended that all numerical variables in x2 be
standardized to mean 0 and unit variance. This will result in the site scores being
centred at 0 because

E(ν) = E(CTx2) = CTE(x2) = CT0 = 0.

Standardizing variables can be achieved with scale(), hence something like

cqo(cbind(spp1, spp2, spp3) ~

scale(temperature) + scale(rainfall) + scale(log1p.nitrogen),

poissonff, data = pdata, I.tolerances = TRUE)

is probably a good idea for species counts.
In practice, scaling x2 and setting I.tolerances = TRUE is the recommended

way of fitting an equal-tolerance model because they are computed more efficiently.
Each species can be fitted separately, and the number of parameters is low, e.g.,
with R = 1, there are 2 parameters per species, and for R = 2 there are 3 param-
eters per species (In general, there are R + 1 parameters for a rank-R problem).
This contrasts with eq.tolerances = FALSE, where there are 3 and 6 parameters,
respectively, for R = 1 and 2.

On simulated data, it is often the case that Case 1 is the fastest, followed
by Case 3 and then Case 2. However, with real data, this ordering can easily be
scrambled because of the lack of convergence problems, etc. for a particular species.

However, if I.tolerances = TRUE fails because of numerical problems, then
the next best thing to do is to set I.tolerances = FALSE and eq.tolerances =

TRUE. This will result in a different algorithm being used, which will usually be
much slower but there is less risk of numerical problems. The memory require-
ments, however, will be much larger for this choice.
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Table 6.7 The relationship between the arguments eq.tolerances and I.tolerances. It is
assumed that the constraint matrices of all variables in x1 is IS . “Separate estimation” means

each species can be fitted separately, otherwise “Joint estimation” means fitting one big model

involving all the species. The index s ∈ S indexes species. The significance of the 3 cases is
discussed in Sect. 6.4.1.

eq.tolerances = TRUE eq.tolerances = FALSE

I.tolerances = TRUE Case 1 (Sect. 6.4.1) Error message

Ts ≡ IR ∀s ∈ S
Separate estimation

Computationally the fastest

The xk should be scaled

I.tolerances = FALSE Case 2 (the default) Case 3

T̂s = T̂ ∀s ∈ S, but may
not be positive-definite

T̂s are unequal, but may not
be positive-definite

Joint estimation Separate estimation

Computationally memory-
hungry and the slowest

6.3.2 Initial Values and the isd.latvar Argument

Initial values require some comment. It is possible to efficiently obtain an ini-
tial C based on an equal-tolerances Poisson model. This method is the default
because of Use.Init.Poisson.QO = TRUE. The user can bypass this by assigning
to the Cinit argument a p2 × R matrix. If Use.Init.Poisson.QO = FALSE and
Cinit is not assigned a value, then VGAM will choose some random normal vari-
ates. Users should therefore use set.seed() with different seeds before running
the same code, and thus try to ensure the global solution is obtained.

The solution of a lower-rank QRR-VGLM might be used for initial values for
a higher-rank model. For example, for a rank-R model, try C0

R = (ĈR−1, ε)
where ε ∼ Np2

(0, σ2Ip2
).

The isd.latvar argument specifies the initial standard deviation of the latent
variable values νi. It is used to scale the columns of the initial C, and is used
only if I.tolerances = TRUE. Because all species’ tolerances are unity, it is easy
to picture how spread out the site scores are relative to the response curves. For
example, the effect of several values of isd.latvar is illustrated in Fig. 6.5. It
can be seen that as isd.latvar increases, the range of the sites scores increases
relative to species’ tolerances. That is, there is more environmental range in the
data as isd.latvar increases. An another example, Fig. 1.1a has a value of about 5
whereas the value for Fig. 1.1b is about 0.3.

In practice, reasonable values of isd.latvar might be between 2 to 10, say.
Values less than 2 correspond to little range of the environmental space relative
to the species’ distributions, and in such cases, CQO is very difficult and prob-
ably should not be attempted. The argument should actually be of length R,
and it is recycled to this length if necessary. Each successive value should be less
than the previous one, e.g., c(4, 2) might be appropriate for a rank-2 problem.
This is because the first ordination axis should have the greatest spread of site
scores. Each successive ordination axis will have less explanatory power compared
to previous axis, hence a decreasing isd.latvar sequence. If convergence failure
occurs, then try varying this argument somewhat, e.g., isd.latvar = c(6, 2) or
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Fig. 6.5 The effect of the argument isd.latvar on the site scores. All response curves have
unit tolerances (because Ts = IR ∀s), and the optimums are located the same relative distance
from each other. The site scores are uniformly distributed over the latent variable space, and have
been scaled to have a standard deviation isd.latvar. The tick marks are at the same values.

isd.latvar = c(2, 1), because good initial values are usually needed for QRR-
VGLMs. Big data sets with a lot of species collected over a wide range of environ-
ments should warrant larger values of isd.latvar.

A related argument is MUXfactor, which stands for ‘multiplicative factor’. If
any offset value are greater than MUXfactor * isd.latvar[r] in absolute value,
then the rth ordination axis is scaled so that the standard deviation of the site
scores is MUXfactor * isd.latvar[r]. This is why it is a good idea for the site
scores to be centred at 0—and this can be achieved if all the variables in x2 are
centred at 0. The reason for MUXfactor is that optim() may perform a line search
at a value of C that gives a very large spread of site scores. If values are too large,
then numerical difficulties will occur. Usually a value of MUXfactor between 3 or 4
should be alright. If not, then the value should be decreased slightly.

6.3.3 Estimation

QRR-VGLMs are estimated using an algorithm different from RR-VGLMs, and
it is more difficult for a number of reasons. Firstly, the log-likelihood may contain
local maximums, therefore a local solution may be obtained instead of the global
solution. Thus the model should be fitted several times with different starting val-
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ues, to increase the chances of obtaining the solution. Consequently, if the solution
does not look right, then try fitting the model several more times and/or adjusting
some arguments and/or transforming the environmental variables. The argument
Bestof specifies how many different initial values are to be used, and this should
be assigned a reasonable integer value (e.g., at least 10). Secondly, the estimation
is more prone to numerical difficulties, especially as S increases. Thirdly, it can
be many times more numerically intensive than RR-VGLMs, therefore trace =

TRUE is currently the default (so that the function does not appear to freeze while
running).

Internally, VGAM currently employs optim(), which is a general-purpose opti-
mization function. It uses the BFGS quasi-Newton method to minimize the total
deviance over all the species, as a function of the elements of C. Given C, a
GLM is fitted to each species with x1 and ν as explanatory variables. The code
calls C functions to evaluate the logistic and Poisson regressions more quickly.
The software design is not ideal, and it may be improved in the future. Care in
programming must be taken to ensure that the GLMs converge even when the
optimizer attempts to evaluate the objective function at an extreme value of C
because numerical problems can easily occur.

It is mentioned in passing here that an equal-tolerances Poisson QRR-VGLM
can be approximated by fitting a reduced-rank multinomial logit model (RR-MLM
or stereotype model; Sect. 5.2.3).

Standard errors for Â, Ĉ, B̂1 and Ĉ are presently too difficult to compute;
bootstrapping may be a solution here.

6.4 Post-Fitting Analyses

Fitted cqo() objects have class "qrrvglm". Once a QRR-VGLM has been fitted,
the generic functions listed in Table 6.6 may be applied to the fit. Their use should
be seen in the light of the three uses of Table 6.3.

6.4.1 Arguments varI.latvar and refResponse

Section 6.2.2 described two favourable normalization properties that a CQO might
have, called Properties (A) and (B). Sometimes it is desired to renormalize a fitted
model, e.g., for an unequal-tolerances model, one of the species has a tolerance
matrix of IR, but it is desired to change the species that has this. Rather than
refitting a new model, there are two arguments varI.latvar and refResponse

(Table 6.4) which allow a renormalization of the original fit. These arguments are
available in some of the generic/methods functions such as Coef() and persp().

The varI.latvar argument specifies whether (6.9) holds or not. If it has the
value TRUE, then the site scores are uncorrelated, and have a standard deviation
along each ordination axis equal to unity. With this option, species’ tolerances can
be compared with the amount of variability of the data set. If FALSE, then V̂ar(ν̂i)
is simply diagonal, i.e., the site scores are uncorrelated, but each ordination axis
has a different standard deviation of sites scores. The ordination axes are sorted so
that the standard deviation of sites scores never increases. In other words, V̂ar(ν̂i)



220 6 Constrained Quadratic Ordination

is always a diagonal matrix, and the elements along the diagonal are either all 1s
or a decreasing sequence.

The argument refResponse specifies which species or response is to be chosen
as the reference species. This designated species then has a tolerance matrix equal
to IR. Setting a value different from what the original fit chose will only have
an effect for Case 3, which is when each species has its own tolerance matrix. In
practice, the reference species could be chosen as the dominant species, or some
species that all other species can be compared with. The default value of NULL

means that the software searches from the first to the last species, and chooses the
first one with a positive-definite tolerance matrix.

For all three cases, the general algorithm is, in sequential order, as follows.

(i) If necessary, find a reference species.
(ii) If possible, transform it so that its tolerance matrix is IR.

(iii) Transform, by rotation, the site scores to be uncorrelated (i.e., V̂ar(ν̂i) is
diagonal).

(iv) If varI.latvar = TRUE, then scale the ordination axes so that the standard
deviation of the site scores are unity (i.e., (6.9)), and the reference species’
tolerance matrix is diagonal.

Let’s look at what this algorithm does in the three individual cases.

Case 1 This is the nicest of all cases. All tolerance matrices are equal and
positive-definite because they are all IR. The general algorithm gives
a unique solution, and the first ordination axis has the greatest spread
of the sites scores (as measured by the standard deviation), followed by
the second ordination axis, etc. That is, (6.9) does not hold—the matrix
is diagonal only. The general algorithm results in an ordination diagram
where distances have their intuitive meanings. If the distribution of the
sites scores and optimums are spread out much more on the first ordina-
tion axis compared to the second axis, then this suggests that a rank-1
ordination should suffice.

Case 2 This case is equivalent to Case 1 if the (common) estimated tolerance
matrix is positive-definite. Ideally, this is so. If not, then the general al-
gorithm will only return uncorrelated ordination axes. If varI.latvar =

TRUE, then (6.9) will hold.

Case 3 This case is the most arbitrary. Each species has its own tolerance matrix,
which may or may not be positive-definite. The reference species ends up
with an IR tolerance matrix, and the site scores are uncorrelated but have
a different standard deviation along each ordination axis. Choosing the
reference species does make a difference forR = 2: the ordination diagram
is rotated so that the elliptical contours of the reference species has semi-
major and semi-minor axes parallel to the ordination axes. Other species
will generally have semi-major and semi-minor axes that are not parallel
to the ordination axes.

A species whose tolerance matrix is not positive-definite will not have an optimum
or maximum—they are assigned an NA value.
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6.4.2 Ordination Diagrams

A major goal of CQO is to produce an ordination diagram (or latent variable plot),
which is practical for ranks R = 1 and 2. They enable one to explore relationships
among the site scores ν̂i, the environmental variables x2, and the optimums ûj .
Relative abundances can also be read off CQO diagrams. In VGAM, latent variable
plots are implemented by the generic function lvplot().

A CQO latent variable plot for rank R = 1 such as Fig. 6.2a is straightforward:
the x-axis is ν̂ and the y-axis is μ̂ or η̂. For a CQO diagram for a rank R = 2 model,
the x-axis is ν̂1 and the y-axis is ν̂2. However, ideally, one would want directions
and Euclidean distances to have a natural meaning, as well as latent variables that
are uncorrelated. All these ideals are met when an equal-tolerances assumption is
made. To see this, note that distances between points on an ordination diagram
must be viewed in terms of the quantity (ν−uj)

TT−1
j (ν−uj) in (6.2). This term

is like a squared Mahalanobis distance, therefore proximities must be viewed with
respect to the contours associated with the bell-shaped response surfaces defined
by (6.2). This is because, for example, the abundance or probability of occurrence
of a species decreases with distance from its optimum. We wish the Mahalanobis
distance and Euclidean distance to coincide by having Tj = IR.

If eq.tolerances = FALSE is used for a rank-2 model, then it is necessary to
interpret the latent variable plot with reference to the elliptical contours. Then the
user would have to compute Mahalanobis distances to correctly interpret distances!

As an example of a Tj = IR ordination diagram, consider one for p2et.hs that
is given in Fig. 6.6. It is resultant from

> lvplot(p2et.hs, ellipse = 0.95, label = TRUE, xlim = c(-3, 5.7),

C = FALSE, Ccol = "brown", sites = TRUE, scol = "gray50",

pcol = "blue", pch = "+", chull = TRUE, ccol = "gray50", main = "(a)")

> lvplot(p2et.hs, ellipse = FALSE, label = TRUE, xlim = c(-3, 5.7),

C = TRUE, Ccol = "brown", sites = TRUE, scol = "gray50",

pcol = "blue", pch = "+", chull = TRUE, ccol = "gray50", main = "(b)")

If ûs is outside the convex hull of the site scores, then the ordination becomes
more difficult, and there is a good reason for dropping that species from the re-
gression. For example, the optimum of Arctperi is clearly seen to lie outside the
convex hull, therefore there would be a lot of uncertainty (statistical error) as-
sociated with this species. It should probably be dropped. The species Pardnigr

also lies outside the convex hull, albeit only a little and only with respect to one
ordination axis. This species is still difficult to model accurately in 2-dimensions,
and its inclusion in an analysis would be more subjective; possibly it could be
considered in a rank-1 ordination only.

Now

> (allvariance <- diag(latvar(p2et.hs)))

[1] 0.72092 0.35305

> sqrt(allvariance)

[1] 0.84907 0.59418

therefore one might say that 67.1 percent of the variance in the site scores is
explained by the first ordination axis.
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Fig. 6.6 Ordination diagrams of 12 species from the hspider data frame; the Poisson
model p2et.hs with equal tolerances. A convex hull surrounds the site scores. In (a), the circles
indicate the abundance of each species at 95% of its maximum abundance. In (b), the arrows
display the contribution of each environmental variable towards each of the ordination axes.

For a rank-2 equal-tolerances model, the default output of lvplot() will give
a ‘natural’ latent variable plot, in the sense that distances between points will be
subject to their intuitive interpretation (the closer they are, the more similar).
This is because the contours of the ellipses are scaled so that they are circular.
Consequently, V̂ar(ν̂i) will be diagonal. In order for the latent variable plot to not
look misleading, the aspect ratio of the graph should be unity, i.e., the sides of the
graph must be scaled so that the circular contours do actually appear circular. On
a computer screen, this is easy since it simply entails resizing the graphics window
using the mouse. If eq.tolerances = TRUE, then these latent variable plots are
computed by rotating the species so that their tolerance matrices are diagonal,
and then the canonical axes are stretched/shrunken so that the estimated Tj are
now IR.

One of the beauties about CQO is that there is a lot of information that can
be gleaned from the fit. Here are some examples applying to Fig. 6.6.

1. The latent variable plot suggests that Sites 1, 11 and 12 have similar and high
abundances of Pardmont; indeed, the counts are 60, 95 and 96, respectively. The
model gives this species a maximum of 70.6, therefore the (response) residuals
are a mixture of small and large values.
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2. From (6.6), if T̂ = I2 in a Poisson CQO, then the estimated mean abundance
one tolerance unit away from the optimum is about 40 percent less than the
species’ maximum. This comes about by, e.g.,

> exp(-0.5 * (1:3)^2)

[1] 0.606531 0.135335 0.011109

More generally, the absolute abundance of a species at a location that is a dis-
tance k away (in latent variable units) from the species’ optimum is exp(− 1

2k
2)

multiplied by the species’ maximum. For example, ‖ν̂6− ûPardmont‖ ≈ 2 implies
the absolute abundance of Pardmont at Site 6 has been reduced by a factor of
about 86%. Since its maximum is 70.6, then it is expected to have about 10
counts. In fact, the observed value is 11.

3. In general, if Site i2 is c times more far from a species optimum u than Site i1
(c > 1), then

Ai1

Ai2

= exp

{
c2 − 1

2
‖νi1 − u‖2

}

, (6.10)

where Ai is the absolute abundance of the species at site i.
4. Relative abundances of one species at two sites can be readily read off from

the CQO biplots. For example, let A3 and A4 be the absolute abundance of
Trocterr at Sites 3 and 4, respectively. Then, because T̂ = I2, we have A3 =
exp(αTrocterr− 1

2‖ν3−uTrocterr‖2) and A4 = exp(αTrocterr− 1
2‖ν4−uTrocterr‖2),

where the Euclidean distances are measured in latent variable units. In Fig. 6.6,
it can be seen that ‖ν̂4−ûTrocterr‖ ≈ 1.27 and ‖ν̂3−ûTrocterr‖ ≈ 1.07, therefore

Â4/Â3 ≈ exp
{

1
2 (1.19

2 − 12)
} ≈ 1.25. That is, Site 4 is expected to have about

1.25 times the counts of Trocterr than Site 3. In fact, the actual ratio is
86/66 ≈ 1.3.

5. In the same vein, relative abundances of two species at one site can be readily
read off from the CQO diagrams. Let A′

s be the absolute abundance of Species s
at Site i. Then, because A′

s = exp(αs − 1
2‖νi − us‖2), we have

A′
s1

A′
s2

= exp(αs1 − αs2) · exp
{
1

2

(‖νi − us2‖2 − ‖νi − us1‖2
)
}

. (6.11)

When the maximums of the two species s1 and s2 are equal (i.e., αs1 = αs2),
then the first exponential can be ignored. To give a simple example, it is noted
that, from the output from the rank-1 model, the maximums of Pardmont and
Pardnigr are very similar. Now ‖ν̂14 − ûPardmont‖ ≈ ‖ν̂14 − ûPardnigr‖ ≈ 1.78
so that Site 14 is expected to have approximately the same Pardmont and
Pardnigr counts. In fact, the counts are 14 and 15.

6.4.3 Perspective Plots

For rank-2 models with x1 = 1, the response surface of any subset of the species
can be plotted as a perspective plot using the generic function persp().

For rank-1 models with x1 = 1, persp() will produce a plot similar
to lvplot(), but with the fitted curves smoothed out. We saw previously an
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Fig. 6.7 Trajectory plot of three hunting spiders species. A rank-1 Poisson CQO is fitted to
these. Site numbers have been placed on each curve.

example in Fig. 6.2b. The choice between lvplot() and persp() then depends on
the purpose of plotting them; lvplot() is ‘closer’ to the data set, while persp()

can easily be wrongly interpreted as the ‘truth’.

6.4.4 Trajectory Plots

For rank-1 models, some authors make use of trajectory plots or isocline plots,
whereby the estimated abundances of two species are plotted as a curve in two-
dimensional space (sometimes referred to as “species space”). Trajectory plots are
often employed in ecological theory. Here, they are suitable for rank-1 models, and
they plot the fitted values of pairwise combinations of species. If S is large, then it
is wise to select only a few species to plot. A log scale on both axes is often more
effective. Here is an example.

> myxlim <- c(0.5e-4, 20)

> tr.hs <- trplot(p1ut.hs.2, which.species = 1:3, log = "xy", type = "b", lty = 1,

col = mycols, lwd = 2, label = TRUE, xlim = myxlim, ylim = myxlim)

> legend("left", lwd = 2, lty = 1, col = mycols,

with(tr.hs, paste(species.names[, 1], species.names[, 2], sep = " and ")))

> abline(a = 0, b = 1, lty = "dashed", col = "gray50") # A useful reference line
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The plot (Fig. 6.7) shows the trajectories of the first three species of an equal-
tolerances Poisson CQO model fitted to the hunting spiders. The site labels have
been added to the trajectories, and this enables the ordering of the sites along the
gradient to be read off. It is important in trajectory plots that both x- and y-axes
use identical scales for easier interpretation. To aid this, using a logarithmic scale
is recommended.

In analogy to the curve (x(t), y(t)) parameterized by t, the mathematical equa-
tion for the path of the trajectory plot (parameterized by ν and assuming that
both axes are on a log scale) is

(x(ν), y(ν)) =

(

α1 − 1

2

(
ν − u1

t1

)2

, α2 − 1

2

(
ν − u2

t2

)2
)

(6.12)

for A < ν < B, say. From (6.12), the furthest extent the curve reaches along
the x-axis is at α1, and it corresponds to ν = u1. Similarly, the highest point
of the curve along the y-axis is at α2, and it corresponds to ν = u2. It is thus
easy to see which species has a higher maximum. (For example, the curve for
“Alopcune and Alopfabr” gets closer to the RHS edge than to the top edge,
therefore α1 > α2, i.e., Alopcune has a higher maximum than Alopfabr). The
trajectory is anticlockwise and clockwise for u1 < u2 and u2 < u1, respectively.
For example, it is clockwise for “Alopacce and Alopcune” and anticlockwise for
the other two.

Note that if both species’ response curves are identical (μ1 = μ2) then the curve
will lie on the line x = y, i.e., have unit slope. This is the dashed line in Fig. 6.7.

Trajectory plots can, theoretically, be applied to 3 species at a time if a z-axis
is added, but currently the software limit is 2 axes.

6.4.5 Calibration

Calibration is of vital importance in many applications in the biological sciences.
Here, it refers to estimating values of the latent variables νi at a site to be es-
timated, given the species data yi there. For example, when the environmental
variables are of greater interest than the species data, e.g., bio-monitoring such
as monitoring pollution levels based on species’ responses. Here, the tenet is that
“species automatically integrate environmental conditions over time”. In other sit-
uations, it is impossible to measure the environmental variables, e.g., reconstruc-
tion of climate history from fossil records. Calibration can be particularly impor-
tant because measuring species abundances is often much easier than measuring
certain environmental variables. In this section, we show how the regression meth-
ods of Table 6.2 can be used to perform calibration. In particular, maximum like-
lihood calibration is implemented using the generic function calibrate(), where
methods functions for CQO and CAO objects have been written for these.

With CQO we cannot estimate all the environmental variables there, x0, in
general unless R = p2, and this is rarely the case. However, it is feasible to esti-
mate ν0, the site score, or value of the latent variables ν, at the site. An ecological
application of calibration is to plot calibrated values onto an ordination diagram,
to see how close they are. Values far apart imply that the joint species distribu-
tions are very different. Thus calibration can be used as a measure of the distance
between two sites’ species compositions. This is illustrated in the example below
(Fig. 6.8).
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We will use maximum likelihood calibration using fitted CQO response func-
tions. It makes the fundamental assumption that the species are statistically
independent—this will be quite unreasonable in some applications because of sym-
biotic relationships such as competition and mutualism. Regardless of its realism,
there seems little one can do otherwise! In practice, it is usually impossible to
know the dependency amongst the species, especially as S becomes large. That is,
the interspecific associations cannot be modelled well, in general.

The basic idea is as follows. For discrete independent responses, the calibrated
site score is defined as the solution to the problem

ν̃0 = max
ν

P [Y = y0|ν] = max
ν

S∑

s=1

log P [Ys = y0s|ν]. (6.13)

In VGAM, the generic function calibrate() can be thought of as the opposite
of predict() because predict() starts from x0 and outputs η̂0 and μ̂0, whereas
calibrate() starts from y0 and outputs ν̃0 (and possibly η̃0 and μ̃0, evaluated
at ν̃0). An example of its use is

fit <- cqo(cbind(spp1, spp2, spp3) ~ rainfall + temperature + soilpH + humidity,

poissonff, data = myframe, Rank = 2)

y0 <- data.frame(spp1 = c(5, 12), spp2 = c(45, 65), spp3 = c(0, 2))

calibrate(fit, y0)

which would return a 2-row matrix of ν̃0 estimates.
Maximum likelihood calibration has the nice theoretical property that, under

regularity conditions, the calibrated value converges to the truth as the number of
species increases indefinitely: ν̃i → νi as S →∞.

As an example, we fit a rank-1 equal-tolerances Poisson CQO to the hunting
spiders data set, minus 2 randomly chosen sites i. Then we estimate the site scores

there in two ways: (i) forming ν̂i = Ĉ
T
x2i from the CQO; (ii) calibration to

give ν̃i. In the machine learning literature, one can consider the 2 sites as a test
sample, and the remainder as the training data.

> set.seed(1234) # For reproducibility

> hspider[, 1:6] <- scale(hspider[, 1:6]) # Standardize the environmental variables

> N <- 2 # Number of sites to calibrate for

> test.index <- sample(nrow(hspider), size = N) # N randomly chosen sites

> p1et.hs.m2 <- cqo(cbind(Alopacce, Alopcune, Alopfabr, Arctlute,

Arctperi, Auloalbi, Pardlugu, Pardmont,

Pardnigr, Pardpull, Trocterr, Zoraspin) ~

WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,

quasipoissonff, data = hspider[-test.index, ], trace = FALSE)

> cal.p1et.hs <- calibrate(p1et.hs.m2, hspider[test.index, ])

>

> # Add the calibrated sites scores to a perspective plot

> S <- ncol(depvar(p1et.hs)) # Number of species

> clr <- rep(c(1:6, 8), len = S) # Omits yellow

> persp(p1et.hs, las = 1, col = clr, label = TRUE)

> abline(v = cal.p1et.hs, col = 1:N, lty = 1:N, lwd = 1) # Calibrated values

> C.matrix <- concoef(p1et.hs) # Constrained coefficients C

> abline(v = as.matrix(hspider[test.index, rownames(C.matrix)]) %*% C.matrix,

col = 1:N, lty = 1:N, lwd = 2) # From CQO fit
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Fig. 6.8 Two calibrated sites from a rank-1 equal-tolerances Poisson QRR-VGLM fitted to the
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This gives Fig. 6.8. Now the species compositions at the calibrated sites are

> hspider[test.index, colnames(depvar(p1et.hs))]

Alopacce Alopcune Alopfabr Arctlute Arctperi Auloalbi Pardlugu Pardmont

4 2 6 0 1 0 24 1 7

17 0 0 0 0 0 0 2 0

Pardnigr Pardpull Trocterr Zoraspin

4 29 94 86 25

17 0 0 23 2

and it is not difficult to explain the results. The calibrated value for Site 4, ν̃4, is
not too far from its CQO site score ν̂4 because of its high abundance of species such
as Trocterr and Pardpull. In contrast, Site 17 has almost no hunting spiders apart
from Trocterr, hence it appears at the very LHS of the plot, far away from ν̂17.
This example illustrates the obvious: calibration can perform poorly when there
is insufficient data.

6.5 Some Practical Considerations

CQO is not a robust methodology, and its sensitivity to departures from the un-
derlying statistical assumptions is a major shortcoming. The models are also com-
putationally expensive and prone to numerical difficulties. Consequently, fitting
QRR-VGLMs requires finesse, and a lot of prior experience modelling with GLMs
is beneficial. To help ameliorate these problems, some practical suggestions are
given, which are roughly ordered sequentially. In general, using the technique re-
quires care, preparation and thought—much more than other ordination methods.

1. Data suitability The data needs to cover a wide enough environmental
range so as to exhibit unimodal behaviour, e.g., Fig. 1.1a, and not Fig. 1.1b.
For example, are there sites where the temperature is too cold, and sites that
are too hot for species to flourish? Otherwise a CLO might be possible, although
this is not biologically sensible for inferences beyond the range of the data.
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2. Subsetting A small and careful selection of a subset of species and environ-
mental variables is more likely to lead to success than feeding in all the data
without careful pre-screening. Choose a small subset of dominant species and
environmental variables which are likely to conform to the model reasonably
well. For example, omit species that are rare or have very narrow tolerances.
Later models can build upon the simple ones by the possible addition of species
and variables.

Especially for larger data sets, initially work with a simple random sample of
the sites in order to reduce the computation. This is particularly true for CAO,
but CQO is expensive too. For example,

(i) The number of species should be kept reasonably low, e.g., 12 maximum.
Feeding in 100+ species wholesale is a recipe for failure. Choose a few
species carefully, e.g., 5 well-chosen species is better than 20 species thrown
in willy-nilly.

(ii) If the number of sites is large, then choose a smaller random sample to do
the model building, e.g., n = 500 maximum. This will reduce the memory
requirements and time expense of the computations, while constructing a
suitable model.

(iii) The number of explanatory variables should be kept low, e.g., 7 maximum.
If the fitted constrained coefficient for a particular covariate is ≈ 0 in all
CQO models, then consider dropping it permanently from future models.

3. Pre-processing x2 Outliers and heavy skew, etc. will easily annul the
method, hence we need to pre-process the environmental variables well. This
involves:

(a) Removal of outliers and influential sites (high-leverage points). This entails
visually examining plots of each variable. Highly correlated variables should
be avoided, e.g., with the trapO data analysis of Sect. 6.6, variables Rain

and LevelTW are both measures of the water level, therefore only one of
them is included in the model p1ut.to.

(b) Scaling of each environmental variable is highly recommended, e.g.,
scale()d to mean 0 and unit variance. This, of course, applies to all the x2

variables apart from the factors (grouping variables). If I.tolerances =

TRUE is chosen, then scaling is almost necessary.
(c) Transform variables in x2 to reduce heavy skew and increase the symmetry.

For example, suppose that x2 = (x21, x22, x23)
T = (temperature, soil pH,

Nitrogen concentration)T where each variable is centred and scaled. A CAO
diagram shows that all species’ response curves are right-skewed. Then re-
placing x23 by log(x23) is tried and the subsequent CAO diagram shows
a marked improvement in symmetry of all response curves. Then a CQO
model is fitted to the transformed data set to obtain better estimates of the
optimums, maximums and tolerances, etc. This example is based on Palmer
(1993), who advocated using the logarithm transformation for soil chemi-
cal data. In general, CAO is best used as an exploratory tool and to help
CQO work better, and inferences based on CQO instead are recommended.
The function log1p() for log(1 + xk) may be more suitable than log() to
handle 0s.

4. Processing y Each species should be screened individually first, e.g., for
presence/absence data, is the species totally absent or totally present at all
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sites?—sort(colMeans(data)) can help screen for such species. Species with
only a handful of presences or a handful of absences should probably be omitted
from a binomial CQO analysis. For counts, be on the lookout for outliers.

5. Fit RR-VGAMs first One should obtain a CAO (Chap. 7) first to see
whether the species display unimodal responses. Some responses may be iden-
tified as unsuitable for CQO, and omitted. Unless the responses are unimodal
and bell-shaped, it is senseless fitting QRR-VGLMs to these.

6. On fitting QRR-VGLMs The following is advised.

(a) Rank-1 first, possibly rank-2 A rank-1 model should always be at-
tempted first. Often, a rank-1 model is all that is warranted, even after
much work. Only if the data is very amenable should a rank-2 model be
attempted. Obtaining a good rank-2 model is no easy task, in general, since
there are a lot of things that can go wrong; suitable techniques are needed
to alleviate them.

If the ‘truth’ is of rank-R, then fitting a higher-rank model will give numer-
ical problems, because the site scores will lie in an R-dimensional subspace.
For example, if R = 1 but a rank-2 model is fitted, then the site scores and
optimums will lie effectively on a line. (That is, provided one manages to fit
the model in the first place). The tolerance and/or canonical coefficients for
the second ordination axis would then be unstable and difficult to estimate.

(b) Fit an equal-tolerances model first This can be done as Case 1 and
Case 2 (Table 6.7). Ideally both should be attempted and shown to be the
same.

(c) Fit equal-tolerances and unequal-tolerances models It is a good
idea to try fit equal-tolerances and unequal-tolerances models, and com-
pare them. When R = 2, the ordination diagram of the equal-tolerances
model is more easily interpreted because elliptical contours are required for
the unequal-tolerances model—otherwise it would be susceptible to mis-
interpretation. The plot’s aspect ratio should be adjusted correctly. More
details are given in Sect. 6.4.2.

(d) For I.tolerances = TRUE, as well as scaling the xk, a careful choice of
values for the argument isd.latvar is important, as well as MUXfactor

(Sect. 6.3.2).
(e) The liberal use of set.seed() be made to ensure reproducibility of results.

As many starting values as possible should be used, to safeguard against
obtaining local solutions.

7. Practice on simulated data It is advisable to gain experience with simu-
lated data first, because the ‘truth’ is known. The experimental function rcqo()

may be used to generate data conforming to the CQO model, with and with-
out certain assumptions of the species packing model. Also, the hunting spiders
data is a nice, realistic and small data set that is worth the time and effort to
learn to model well using CQO and CAO, before attempting the analysis of
other data sets.

8. Read the online help and software changes Unfortunately, the present
implementation is not static, and hopefully it will be improved over time. Some
of the software defaults may change.

9. Closing comments Fitting CQO models well require a substantial amount
of GLM experience, as well as an understanding of the basic mathematics and
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assumptions behind the models. Numerical problems often are indicative that
the model and data do not agree. In the context of CQO, attempting to fit bell-
shaped curves/surfaces to data that isn’t is likely to be a frustrating experience.

6.6 A Further Example: Trout Data

The data frame trapO contains the counts of 2 fish species, rainbow (Oncorhynchus
mykiss) and brown (Salmo trutta) trout, trapped at Lake Otamangakau in the cen-
tral North Island of New Zealand. Brown trout were introduced from Europe via
Tasmania, Australia, in the 19th century, whereas rainbows came from California,
a state of USA adjacent to Mexico. Brown trout are actually quite wily, whereas
rainbows are a lot dumber and easier to catch. In this example, we segregate the
males and females in order to create 4 ‘species’ or responses. The data were col-
lected daily from about April to September each year during 2005–2012 inclusive.

We use the following as explanatory variables: minimum and maximum ambient
temperatures (◦C), water level (0 = none, 100 = flooding situation), day of the
year (1 = January 1st, . . . , 365 = December 31st), and the year represented as a
factor. The non-factors are scaled prior to analysis to make them more comparable,
at least in magnitude. It is shown in Sect. 7.3.2 that the 4 curves arising from a
CAO are indeed approximately symmetric bell-shaped, hence a CQO is justified
(fitting an RR-VGAM first is always recommended). Here, our intent is just fitting
a CQO.

> trapO <- transform(trapO, sc.doy = scale(doy),

sc.LevelTW = scale(LevelTW),

sc.MinAT = scale(MinAT),

sc.MaxAT = scale(MaxAT),

f.year = factor(Year))

> set.seed(123)

> p1ut.to <- cqo(cbind(BFTW, BMTW, RFTW, RMTW) ~

sc.doy + f.Year + sc.MinAT + sc.MaxAT + sc.LevelTW,

eq.tolerances = FALSE, family = poissonff,

trace = FALSE, Bestof = 10, Crow1positive = TRUE,

data = trapO)

Now the constrained coefficients of this rank-1 unequal-tolerances Poisson QRR-
VGLM are

> round(concoef(p1ut.to), digits = 2) # sc.doy is by far the largest coefficient

latvar

sc.doy 2.21

f.Year2006 0.13

f.Year2007 -0.30

f.Year2008 -0.21

f.Year2009 -0.38

f.Year2010 -0.17

f.Year2011 0.29

f.Year2012 0.11

sc.MinAT 0.07

sc.MaxAT -0.04

sc.LevelTW 0.11
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Fig. 6.9 Perspective plot of an
unequal-tolerances Poisson CQO model
fitted to the trapO trout data. Legend:
“B” = brown trout, “R” = rainbow
trout, “F” = female, “M” = male. The
trap was located at the Te Whaiau
Trap, hence the “TW”. The BFTW

response curve has unit tolerance.
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The variable sc.doy has by far the largest coefficient, hence the fitted latent
variable is interpreted largely as the time of the year. That its sign is positive
means that the latent variable axis runs from left to right with the passage of
time. As 2005 is the reference year, each dummy variable shows the annual shift
compared to this particular year. For example, the fish tended to go upstream
earlier in 2007, whereas 2011 appeared to have relatively late-season spawning
runs as a whole. It would be interesting to see if these observations are correlated
with the El Niña and El Niño weather cycle patterns affecting that part of the
world.

A perspective plot from

> persp(p1ut.to, col = 1:4, label = TRUE)

produces Fig. 6.9. Several features that can be seen are well-known to fishermen
who frequent the waters. These include the following.

(i) The brown trout peak earlier than rainbow trout. This is not surprising since
the two species have quite different life cycles and ecology. As every Taupo
region fisherman will tell the reader, brown trout are targeted a few months
before rainbow trout.

(ii) The counts are much higher in the middle of the Julian year, viz. mid-winter.
This is not surprising; starting in the autumn months (around April), the
fish are known to congregate at the river mouths before heading upstream to
spawn. The peak rainbow population is achieved around early Spring (Octo-
ber) and then it declines towards the summer months of December–February.

(iii) There are fewer jacks compared to hens. The reason is that the post-spawning
survival is higher in females despite the largest biomass investment in females
(c.25% of body weight in egg mass). Males invest less biomass in milt pro-
duction (< 10%), but they defend potential spawning grounds until complete
exhaustion.

(iv) The coefficient of sc.LevelTW is positive. Not surprisingly, the large spawning
runs are triggered by rain that raises the water level. Trout possess a magnetic
strip along their sides that can measure the humidity in the air above, and
this is used to help predict the likelihood of rain. Swimming through very
shallow water is more hazardous!

(v) The jacks peak earlier than hens, for both species. Evidently, males defend
their spawning grounds before and while the hens occupy them.
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With ν̂ being so dominantly comprised of one variable, it is left as an exercise to
the reader to fit Poisson regressions to these data with a quadratic effect in doy

only.
We now examine the tolerances:

> Tol(p1ut.to)[1, 1, ]

BFTW BMTW RFTW RMTW

1.0000 1.2776 2.1519 2.3020

> sqrt(range(Tol(p1ut.to)[1, 1, ]))

[1] 1.0000 1.5172

The widths of the response curves do seem to differ by a factor of about 1.5, i.e.,
an equal-tolerances assumption is unrealistic. Lastly, we look at the maximums.

> sort(round(Max(p1ut.to), digits = 1))

BMTW BFTW RMTW RFTW

6.6 12.4 13.8 23.5

The brown trout appear to have approximately half the numbers compared to
rainbows at their respective optimums.

6.7 Unconstrained Quadratic Ordination

We saw from Sect. 6.1.2 that sometimes no environmental variables x2 have been
measured, hence setting νi = CTx2i is impossible. Instead, the site scores are
treated largely as free parameters which are able to take on any possible value.
In this section, we show how they may be estimated by MLE. Even more so than
CQO, the MLEs are very sensitive to departures from the model assumptions.

6.7.1 RCIMs and UQO

Solving for the optimal ν̂i by maximum likelihood estimation sounds like a very
difficult optimization problem, because the site scores are totally unconstrained
and there are n of them. Indeed it is difficult, especially for binary responses and/or
unequal species’ tolerances. However, we now show that unconstrained quadratic
ordination (UQO) can be performed generally by fitting an RCIM (Sect. 5.7)
in order to obtain initial values, and then iterate between fitting a CQO and
calibration. We might write this method by the following (which misuses notation):

UQO ≈ RCIM+ (CQO+ Calibration)
∞

. (6.14)
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The CQO may or may not assume equal tolerances, and the quality of the initial
values from the RCIM is determined by how similar all the species’ tolerances are
(unequal tolerances means curvature when the estimated site scores are plotted
against the true site scores, e.g., Fig. 6.10). In fact, simulations show that this
method does not converge, and that often only one iteration is recommended.

For simplicity, consider Poisson count responses and a rank-1 model with equal
tolerances (tj = 1, say). Goodman’s RC(1) model is

ηij = log μj(νi) = β0 + αi + γj + ci aj , (6.15)

(cf. (5.24)) for i = 1, . . . , n, and j = 1, . . . , S. For identifiability, let α1 = γ1 = 0
and a2 = 1 (corner constraints for A) and a1 = c1 = 0 (structural zeros).

Now, the Poisson UQO model, with a slight change in notation, is

log μij = Aj − 1

2

(
νi − uj

tj

)2

= − 1

2
ν2i +

(

Aj − 1

2
u2
j

)

+ νi uj . (6.16)

Matching up terms of (6.15) with (6.16) suggests that

aj = uj and (6.17)

ci = νi (6.18)

(actually, the RCIM is overparameterized but we focus on the cross-product term).
With this parameterization, the parameters are scaled so that the second species’
optimum is at unity, and the first site score is at the origin.

Here is the methodology illustrated using simulated data.

> set.seed(111)

> n <- 100; p <- 5; S <- 5

> pdata <- rcqo(n, p, S, es.opt = FALSE, eq.max = FALSE, eq.toler = TRUE,

sd.latvar = 3/4)

> true.nu <- attr(pdata, "latvar") # The ’truth’

> attr(pdata, "tolerances")[, 1] # The tolerances

y1 y2 y3 y4 y5

1 1 1 1 1

> attr(pdata, "optimums")[, 1] # The optimums

y1 y2 y3 y4 y5

-0.581651 -0.017276 1.335232 -0.160282 -0.337917

> Y <- Select(pdata, "y") # Y matrix (n x S)

> uqo.rcim1 <- rcim(Y, Rank = 1) # Traditional parameterization

> uqo.grc1 <- grc(Y) # An equivalent simpler call

This uses the traditional parameterization of Goodman’s RC model described in
Chap. 5.7, which has c1 ≡ 0.

The estimated species’ optimums can be plotted against the true optimums as
follows (ditto for the site scores).
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> max(abs( fitted(uqo.grc1) - fitted(uqo.rcim1))) # Should be 0

[1] 1.3593e-05

> max(abs(predict(uqo.grc1) - predict(uqo.rcim1))) # Should be 0

[1] 4.1183e-06

>

> # Plot 1

> plot(attr(pdata, "optimums"), Coef(uqo.grc1)@A, col = 1:S, type = "p",

main = "(a)")

> mylm <- lm(Coef(uqo.grc1)@A ~ attr(pdata, "optimums"))

> abline(coef = coef(mylm), col = "orange", lty = "dashed")

>

> # Plot 2

> fill.val <- 0 # Choose this for the traditional parameterization

> plot(attr(pdata, "latvar"), c(fill.val, Coef(uqo.grc1)@C),

las = 1, col = "blue", type = "p", main = "(b)")

> mylm <- lm(c(fill.val, Coef(uqo.grc1)@C) ~ attr(pdata, "latvar"))

> abline(coef = coef(mylm), col = "orange", lty = "dashed")

This gives Fig. 6.10a,b. It may be seen that there is close correspondence between
the fitted RCIM and the truth. The estimates are linearly related to the exact
values, because of some scaling that has not yet been performed. In Fig. 6.10b, the
correlation between the true site scores and the estimated UQO site scores is 0.93.
Consequently, these results look quite acceptable.

Given a UQO fit, one can then fit a CQO using the ν̂i as explanatory variables,
without making an equal-tolerances assumption. This can be done here with

> myform <- attr(pdata, "formula")

> p1ut <- cqo(myform, family = poissonff,

eq.toler = FALSE, trace = FALSE, data = pdata)

> c1ut <- cqo(cbind(y1, y2, y3, y4, y5) ~ scale(latvar(uqo.rcim1)),

family = poissonff, eq.toler = FALSE, trace = FALSE, data = pdata)

> lvplot(p1ut, lcol = 1:S, y = TRUE, pcol = 1:S, pch = 1:S, pcex = 0.5, main = "(c)")

> lvplot(c1ut, lcol = 1:S, y = TRUE, pcol = 1:S, pch = 1:S, pcex = 0.5, main = "(d)")

Here, p1ut is a CQO fit of the original data, and c1ut is a CQO fit of the UQO
fit. The two plots are very similar, which is to be expected with such ‘nice’ data.

It is left as an exercise (Ex. 6.11) to show that the above UQO-RCIM argument
holds for general rank-R, e.g., Goodman’s RC(R) fits rank-R Poisson UQO. Once
again, equal tolerances are assumed, and the algebra is simplest when Tj = IR.

It was mentioned above that UQO is too difficult, in general, for pres-
ence/absence data. This is partly because binary data contains relatively little
information. It is also partly because, e.g., a site with yi = 0 results in ν̂i → ±∞
because it wants to go to regions of the parameter space where the joint probabil-
ity P (Yi1 = 1, . . . , YiS = 1) is zero.

Bibliographic Notes

Most books on statistical ecology that cover ordination only describe the older clas-
sical multivariate techniques, which are largely ignored here. However, Jongman
et al. (1995) remains a useful overview of ordination; it describes techniques that
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Fig. 6.10 (a)–(b) compares the UQO solution with the truth for a rank-1 Poisson simulated
data set. (a) Estimated optimums ûj versus uj . (b) Estimated site scores ν̂i versus νi. (c) CQO
fitted to the original data. (d) CQO fitted to the scaled UQO site scores. In (a)–(b) the dashed
orange line is a simple linear regression through the points.

overlap substantially with this chapter, as well as the older multivariate methods.
An introduction to the subject of calibration is ter Braak (1995). This chapter is
motivated by the pioneering work of ter Braak and Prentice (1988), and reflections
on some topics in constrained and unconstrained ordination are given in ter Braak
and Šmilauer (2015).

Zhu et al. (2005) propose an alternative algorithm for fitting CQO models,
based on the equivalence of CCA and LDA (this equivalence is shown in, e.g.,
Takane et al. (1991), ter Braak and Verdonschot (1995)), and their algorithm can
be generalized to allow for CAO. Zhang and Thas (2012) consider CQO with
zero-inflated data.

The connection between Poisson UQO and Goodman’s RC model is made in Yee
and Hadi (2014). More generally, for a range of data types, an RCIM might be used
to estimate the site scores and optimums of an equal-tolerances UQO, because both
models share a common ηij . A recent article on unconstrained ordination is Hui
et al. (2015).
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Exercises

Ex. 6.1.

(a) Show that (6.1) leads to (6.4).
(b) Show that (6.1) and (6.2) lead to (6.3).

Ex. 6.2. Prove the theorem in Sect. 6.2.2.

Ex. 6.3. Prove (6.10).

Ex. 6.4. Consider the rank-1 Poisson CQO model (6.5)–(6.6).

(a) Express coefficients us, ts, αs as functions of β(s)1, β(s)2 and β(s)3.
(b) Express the coefficients β(s)1, β(s)2 and β(s)3 as functions of us, ts, αs.

Ex. 6.5. Consider a rank-1 Poisson QRR-VGLM with x1 = 1. Let tj be the
tolerance of species j. Show that

μj(uj ± k tj)

μj(uj)
= exp

{

−1

2
k2
}

, (6.19)

where k > 0. This says that if you are k tolerance units away from the species’
optimum then the ratio of the mean abundance there, relative to the species’
maximum, declines exponentially in − 1

2k
2. Show that the RHS of (6.19) is also

the corresponding expression for the rank-2 equal-tolerances Poisson CQO model
with Tj = I2 when k is the Euclidean distance away from the species’ optimum.
Is this true for general rank-R?

Ex. 6.6. Hunting Spiders Data—Quasi-Poisson CQO
Fit a rank-1 equal-tolerances quasi-Poisson CQO to the hunting spiders data frame
hspider, but omit the species Pardlugu. Confirm that 10 of the 11 species indicate
overdispersion relative to the Poisson model.

Ex. 6.7. RR-Multinomial Logit Model and Poisson QRR-VGLMs

(a) Show that fitting an equal-tolerances Poisson QRR-VGLM to data Y and X
is approximately the same as fitting a reduced-rank multinomial logit model
(Sect. 5.2.3).

(b) To confirm (a) on a real data set, fit a rank-1 reduced-rank multinomial logit
model to all the species and variables in the hspider data frame. Confirm that
most of the scale()d constrained coefficients of the 2 models are largely in
agreement. [Yee (2006, App.C)]

Ex. 6.8. Hunting Spiders Data—CQO

(a) Fit a rank-1 equal-tolerances Poisson CQO to the hunting spiders data, as in
Sect. 6.2.1 for p1et.hs. Obtain a perspective plot.

(b) Convert the data into presence/absence, and fit a binomial QRR-VGLM that
employs a complementary log–log link. Obtain a perspective plot.

(c) Compare the results of (a) and (b) with respect to: (i) the ordering of the
optimums, (ii) the ordering of the maximums

(d) Attempt to fit a rank-2 equal-tolerances binomial CQO model. If successful,
obtain an ordination diagram (and use colour to improve the presentation).
Compare your plot to Fig. 6.6.
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Ex. 6.9. Hunting Spiders Data—UQO

(a) Fit a rank-1 equal-tolerances Poisson CQO to the hunting spiders data, as in
Sect. 6.2.1 for p1et.hs. Obtain a perspective plot.

(b) Fit a Goodman’s RC(1) model to the same.
(c) Plot the site scores of both models. Is there a linear association? If not, can

you explain why?

Ex. 6.10. trapO Analysis

(a) Following on from Sect. 6.6, fit a Poisson regression to each of the 4 responses
with respect to doy only; allow for a quadratic effect so that effectively, p1ut.to
is fitted but the gradient is the day of the year directly.

(b) For each species-sex combination, find the optimum, i.e., the day of the year
that each maximum occurs. Ignore February 29.

(c) Suppose on a certain day that the following numbers of fish were trapped.

data.frame(BFTW = 10, BMTW = 5, RFTW = 20, RMTW = 10)

Suggest the most likely Julian date that this occurs on.

Ex. 6.11. Rank-R UQO by RCIMs

(a) Modify the argument in Sect. 6.7.1 to the rank-2 case. Assume Tj = I2 for
Species j.

(b) Extend the argument in (a) to the general rank-R case.

Ex. 6.12. Calibration and hspider

For each site separately in the hspider data frame, omit that site and fit a CQO to
the remaining sites; then calibrate at the omitted site. Compare all the calibrated
site scores with the site scores obtained by fitting one CQO to the entire data set.
Comment. Note: for all of the above, fit equal-tolerances Poisson QRR-VGLMs.

Ex. 6.13. Calibration and hspider and Presence/Absence Data
Repeat Ex. 6.12 but convert the species data into presence/absence and fit equal-
tolerances binomial QRR-VGLMs. Note: some species may have to be omitted
because of numerical problems.

The reader should realise by now that, like other statistical methods, ordina-
tion techniques cannot be blindly used but require thought and experience to
get the best results.
—Gower (1987)



Chapter 7

Constrained Additive Ordination

Nothing is well ordered which is hasty and precipitate.
—Lucius Annaeus Seneca

7.1 Introduction

In the previous chapter, response curves/surfaces were assumed to be bell-shaped
and symmetric functions of underlying environmental gradients. The true shape of
these has been alluded to by hundreds, if not thousands, of papers in the biological
literature. Its determination has important implications for both continuum theory
and community analysis, because many theories and models in community ecology
assume that responses are symmetric unimodal (e.g., Fig. 6.1).

This chapter describes the class of reduced-rank vector generalized additive mod-
els (RR-VGAMs), which peforms constrained additive ordination (CAO). There
is no need for the species packing model assumptions of Table 6.1. CAO is data-
driven as opposed to CQO, which is model-driven. Allowing the data to ‘speak for
themselves’, community ecologists can more readily explore how response curves
behave as a function of the dominant gradient.

7.2 Constrained Additive Ordination

RR-VGAMs are a nonparametric extension of QRR-VGLMs, and can loosely be
thought of as a GAM fitted to each species against a very small number of latent
variables. The modelling function cao() currently implements CAO, but it is quite
limited in its capabilities: to rank R = 1, Poisson and binary responses, and
with known dispersion parameters (i.e., poissonff() and binomialff() families).
Also, x1 must be an intercept term only, i.e., x1 = 1.

In more detail, suppose R = 1 and we have presence/absence responses. Then

cao(cbind(spp1, ..., sppS) ~ x2 + ... + xp,

family = binomialff(multiple.responses = TRUE),

data = bdata)

© Thomas Yee 2015
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will fit the nonparametric logistic regressions

logitμis = ηs = β(s)1 + fs(νi), s = 1, . . . , S, (7.1)

to optimally chosen site scores, where fs are arbitrary smooth centred functions
estimated by a smoothing spline. Actually, the current implementation absorbs the
intercept β(s)1 into the fs(νi), as shown in Figs. 7.1 and 7.3. The variables spp1,
. . . , sppS should have values 1/0 for presence/absence, respectively. In (7.1), the

estimated site scores are ν̂i = ĉTx2i where x2i = (xi2, . . . , xip). With Poisson abun-
dance data, (7.1) has its logit link replaced by log, and the call would have family
= poissonff.

In order to make the fs and νi unique in (7.1), we can stipulate V̂ar(νi) =
1 (cf. (6.9); this is actually the VGAM default), and specify whether the first
coefficient of ĉ is positive (the default) or negative. Choosing the negative sign
reflects the ν axis at the origin.

With RR-VGAMs, there is no clear definition of the tolerance; compared to
CQO, this is one disadvantage of CAO. Maximums and optimums can be defined,
however,

us = argmax
ν∈H

ηs(ν) (7.2)

where H is some region encompassing the data, such as a convex hull surrounding
the site scores. At least in one dimension, the optimum should not be defined too
close to the boundary, e.g., if ûs = min(ν̂i) or max(ν̂i) then an NA is returned. The
maximum for Species s still retains its definition as before as μs(us).

Another example of a rank-2 Poisson CAO model is

log μis = β(s)1 + f1(s)(νi1) + f2(s)(νi2), s = 1, . . . , S, (7.3)

where the smooth functions fr(s)(νr) are centred for identifiability. The two latent
variables

ν1 = cT(1)x2 and ν2 = cT(2)x2

are ideally rotated to make them uncorrelated. Unfortunately, this model cannot
be fitted easily yet. Similarly, (7.3) can be naturally extended to R gradients.

7.2.1 Controlling Function Flexibility

Importantly, the df1.nl argument controls how smooth the functions fs are. An ef-
fective nonlinear degrees of freedom (ENDF; Sect. 2.4.7.4) value of 0 means that
a function is linear, resulting in a RR-VGLM for that species and the perform-
ing of a constrained linear ordination (CLO). As the nonlinear degrees of freedom
increases, the smooth can become more wiggly. A value between 0 and 3 (say)
is suggested. However, a common mistake is to allow too much flexibility to the
curves, especially when the data set is not too large. As the nonlinear degrees of
freedom increases, the optimization problem becomes more difficult because of the
increased number of local solutions. Crudely, a value of about 1.5 might give the
approximate flexibility of a quadratic, hence df1.nl = 1.5 might give approxi-
mately the same qualitative results as a CQO, but with the advantage that the
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model is data-driven. The df1.nl argument allows different species to have dif-
ferent nonlinear degrees of freedom, e.g., df1.nl = c(1.5, spp8 = 2, spp4 =

1.75) means that Species 8 and Species 4 have 2 and 1.75 nonlinear degrees of
freedom, respectively, and all other species have 1.5 nonlinear degrees of freedom.
Assigning a df1.nl value that is too low for a species may result in a lack-of-
convergence problem in the IRLS algorithm. For this, a remedy is to assign a
slightly larger value.

Overfitted models adapt too closely to the particular data set on hand and to
its specific nuances, thus they do not generalize well to other future data sets. For
many data sets, it should be possible to find a nonlinear degrees of freedom value
somewhere between 0 and 3 that gives a suitable fit for each species. Data sets
with more sites might be given slightly higher values.

7.2.2 Estimation

As with the internals of cqo(), VGAM currently employs optim(). Given c, the νi
are computed, and a GAM fitted to each response separately. Like VGAMs, the
optimization may be justified by maximizing a penalized log-likelihood similar
to (4.47). The time cost of cao() is usually substantially more than cqo() for the
same number of responses and explanatory variables.

Approximate standard error bands about the η̂s in (7.1) can be obtained by
computing the estimated site scores and fitting an ordinary GAM to the species.
However, the resulting standard error bands will be too narrow, due to not taking
account of the variability in the constrained coefficients. An example is given in
Sect. 7.3.3. Improved standard errors are an area for future work.

7.2.3 Practical Advice

Fitting CAO models requires as much finesse as fitting CQOs, and prior GAM
experience is needed to avoid making poor choices. The following advice may be
considered supplementary to Sect. 6.5.

(1) Keep the nonlinear degrees of freedom low, e.g., 0–2, and possibly up to 2.5
or 3. Excessive values make the optimization problem unstable and fraught
with a proliferation of local solutions. Unfortunately, the constrained coef-
ficients ĉ can be very sensitive to the amount of wiggliness afforded to the
smooths, hence several attempts are generally required to choose reasonable
values. Typically, the user cycles in a loop of plotting the component functions
and refitting with revised smoothing parameters.

(2) Keep the number of species, sites and explanatory variables low, e.g., S ≤ 10,
n ≤ 500 and p ≤ 5. Because the computations are even more expensive than
CQO, sites may be sampled and a few species chosen judiciously during the
model-building process. The full data set may be used towards the end of the
analysis.

(3) Try a large range of initial values. This is because the log-likelihood has in-
creasingly more local solutions as the smooths are allowed to be more flexible.
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(4) As with cqo(), set.seed() should be used beforehand if reproducible answers
are to be obtained—the initial values depend on random numbers. To get a
guage on how stable the solution is, try sort(deviance(caoModel, history

= TRUE)).

7.3 Examples

7.3.1 Hunting Spiders

We perform a rank-1 Poisson CAO to the hunting spiders data set, to confirm that
the unequal-tolerances CQO of Sect. 6.2.1 is reasonably justified. This might be
done in an indirect manner by examining the residuals of p1ut.hs.2, however we
do it more directly by

set.seed(1)

hspider[, 1:6] <- scale(hspider[, 1:6]) # Standardize the environmental variables

p1cao.hs <- cao(cbind(Alopacce, Alopcune, Alopfabr, Arctlute, Arctperi, Auloalbi,

Pardlugu, Pardmont, Pardnigr, Pardpull, Trocterr, Zoraspin) ~

WaterCon + BareSand + FallTwig + CoveMoss + CoveHerb + ReflLux,

poissonff, data = hspider, Rank = 1,

df1.nl = 2, Bestof = 10, Crow1positive = FALSE)

Then the estimated component functions can be seen (Fig. 7.1) by

> plot(p1cao.hs, lcol = "blue", lwd = 2, ylim = c(-5, 5), xlab = "", ylab = "")

Most species’ component functions appear quadratic and concave, therefore they
would be suitable for inclusion in a CQO. The species Pardlugu might be omit-
ted, as well as Arctperi, since they appear to deviate from the parabolic shape
expected in a QRR-VGLM. The estimated constrained coefficients are

> round(concoef(p1cao.hs), digits = 2)

latvar

WaterCon -0.15

BareSand 0.23

FallTwig -0.41

CoveMoss 0.16

CoveHerb -0.14

ReflLux 0.26

and not surprisingly, these largely agree with the ‘equivalent’ CQO with respect
to their signs (p1ut.hs.2 in Sect. 6.2.1).

7.3.2 Trout Data

In Sect. 6.6 a rank-1 unequal-tolerances Poisson QRR-VGLM was fitted to
the trapO data with a few environmental variables and the day of the year.
There were 4 responses: rainbow and brown trout, crossed with males and females.
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Fig. 7.1 Estimated (uncentred) component functions of p1cao.hs, a rank-1 Poisson RR-VGAM
fitted to the hspider data. The x-axis is ν̂.

They are the counts of such fish, trapped daily during the non-summer months.
In this section, we confirm that the response curves are indeed symmetric bell-
shaped with respect to the dominant gradient. As before, we scale all covariates
to zero mean and unit variance, so that the relative importance of the xk can be
compared, with at least a little justification, when looking at ĉ. The following is
quite numerically intensive.

> trapO <- transform(trapO, sc.doy = scale(doy),

sc.LevelTW = scale(LevelTW),

sc.MinAT = scale(MinAT),

sc.MaxAT = scale(MaxAT),

f.year = factor(Year))

> set.seed(123) # For reproducibility

> p1cao.to <- cao(cbind(BFTW, BMTW, RFTW, RMTW) ~

sc.doy + f.Year + sc.MinAT + sc.MaxAT + sc.LevelTW,

family = poissonff, df1.nl = 2.5, trace = FALSE, data = trapO)
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Fig. 7.2 Perspective plot of a rank-1

Poisson RR-VGAM fitted to the trapO

data. The latent variable of this CAO,
which is predominantly the day of the
year, has unit variance. The responses are
combinations of male and female rain-
bow and brown trout, all captured at the
Te Whaiau Trap of Lake Otamangakau.
See also Fig. 6.9.
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Then

> Coef(p1cao.to)

C matrix (constrained/canonical coefficients)

latvar

sc.doy 0.9711

f.Year2006 0.0448

f.Year2007 -0.1362

f.Year2008 -0.0884

f.Year2009 -0.1719

f.Year2010 -0.0682

f.Year2011 0.1335

f.Year2012 0.0537

sc.MinAT 0.0282

sc.MaxAT -0.0127

sc.LevelTW 0.0532

Optimums and maximums

Optimum Maximum

BFTW -0.39 11.1

BMTW -0.56 5.9

RFTW 0.62 22.2

RMTW 0.28 12.7

Nonlinear degrees of freedom

df1.nl

BFTW 1.5

BMTW 1.5

RFTW 1.5

RMTW 1.5

The overall interpretation is in conformity with the biology of the data. The bulk of
the constrained coefficients is weighted on the day of the year, hence the seasonality
effect is by far the largest component. One can see this in the perspective plot
(Fig. 7.2)

> index <- 1:ncol(depvar(p1cao.to))

> persp(p1cao.to, col = index, label = TRUE, las = 1)
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The shapes are clearly unimodal with a great deal of symmetry, therefore a CQO
would be quite acceptable for these data.

7.3.3 Diseases in a Cross-Sectional Study

In Sect. 5.6.1 an RR-multiple binomial model was fitted to some common diseases
in a large cross-sectional study of working New Zealanders. In this example, we
allow for smoothing to explore the effect of the binary psychological variables.
Because of the inability of cao() to handle x1 �= 1, we restrict this analysis to
a more homogenous subset of middle-aged European-type males who were not
current smokers, and had no family history of cancer or heart disease.

> xs.nz.em <- subset(xs.nz, 45 < age & age < 55 & sex == "M" & smokenow == 0 &

ethnicity == "European" & fh.cancer == 0 & fh.heartdisease == 0)

> sort(colMeans(xs.nz.em[, c("asthma","cancer","diabetes","heartattack","stroke")],

na.rm = TRUE)) # Disease prevalences

stroke heartattack diabetes cancer asthma

0.0034483 0.0068493 0.0137457 0.0547945 0.0756014

Then

> set.seed(123)

> b1cao.xs <-

cao(cbind(asthma, cancer, diabetes, heartattack, stroke) ~

depressed + embarrassed + fedup + hurt + miserable + # 11 psychological

nofriend + moody + nervous + tense + worry + worrier, # variables

df1.nl = 1.25, Crow1positive = FALSE, trace = FALSE,

binomialff(multiple.responses = TRUE), data = xs.nz.em)

> nrow(depvar(b1cao.xs)) # n

[1] 276

> sort(deviance(b1cao.xs, history = TRUE))

[1] 328.14 328.14 328.14 328.14 328.14 328.14 328.14 328.15 328.19 328.65

The answer seems quite stable here. The estimated constrained coefficients are

> round(sort(concoef(b1cao.xs)[, 1]), digits = 2)

depressed nervous fedup embarrassed worry nofriend

-1.42 -0.99 -0.69 -0.34 -0.13 -0.08

worrier hurt miserable tense moody

0.03 0.15 0.90 1.19 1.56

This is more difficult to interpret than in Sect. 5.6.1, since there is a mixture of
large positive and negative loadings. A plot of the fitted component functions from

> plot(b1cao.xs, ylim = c(-10, 0), lcol = "blue", las = 1)

appears as Fig. 7.3. The interpretion of ĉ is made easier by this plot, be-
cause the slopes for the diseases are mainly positive and negative. It appears
that miserable, tense and moody are positively associated with cancer, diabetes
and stroke. Likewise, depressed, nervous and fedup appear positively associ-
ated with heartattack and asthma. Approximate pointwise ±2 SE bands about
the functions are given in Fig. 7.4.
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Fig. 7.3 Component functions (uncentred) of a rank-1 binomial RR-VGAM fitted to a subset of
the xs.nz data. The latent variable of this CAO is a linear combination of 11 binary psychological
variables.

We have already seen that plotting the component functions of a CAO to see
if they are quadratic in shape is an informal way to select species that might be
suitable for CQO analysis. It is possible to do better. If the functions were indeed
quadratic, then we would expect the first derivative of the fitted functions to be
linear with respect to ν̂. This can be done as follows.

> lvdata <- data.frame(latvar1 = c(latvar(b1cao.xs)))

> check.b1cao.xs <-

vgam(depvar(b1cao.xs) ~ s(latvar1, df = 1.25), # Must be same as the original

binomialff(multiple.responses = TRUE), data = lvdata, trace = FALSE)

> plot(check.b1cao.xs, lcol = "blue", scol = "orange", se = TRUE, ylim = c(-4, 4),

las = 1)

> plot(check.b1cao.xs, lcol = "blue", deriv = 1)

The idea is to fit a VGAM to the species against the site scores, thus mimicking
the CAO. But for VGAMs, one can plot the first derivatives of the component
functions. The bottom row of Fig. 7.4 shows f̂ ′

j(ν̂), although they are likely to be
affected by considerable uncertainty.

7.4 Some Afterthoughts

CAO requires more powerful computing and fairly specialized training to master,
and can exhibit fragility with dirty data. However, it provides the ability to explore
the data. For inference, CQO models are preferred over CAO in an analogous
manner that GLMs are preferred over GAMs for the same reason. CAO models
can help obtain better CQO models because it allows the data to “speak for itself”.
From the examples, it is readily apparent that CAO diagrams allow a data-driven,



Exercises 247

−2 0 2

−4

−2

0

2

4

latvar1

s(
la

tv
ar

1,
 d

f 
=

 1
.2

5)
:1

−2 0 2

−4

−2

0

2

4

latvar1
−2 0 2

−4

−2

0

2

4

latvar1
−2 0 2

−4

−2

0

2

4

latvar1
−2 0 2

−4

−2

0

2

4

latvar1

s(
la

tv
ar

1,
 d

f 
=

 1
.2

5)
:2

s(
la

tv
ar

1,
 d

f 
=

 1
.2

5)
:3

s(
la

tv
ar

1,
 d

f 
=

 1
.2

5)
:4

s(
la

tv
ar

1,
 d

f 
=

 1
.2

5)
:5

−2 0 2

−
0.

8
−

0.
4

latvar1

s'(
la

tv
ar

1,
 d

f 
=

 1
.2

5)
:1

−2 0 2

0.
15

0.
25

0.
35

latvar1

s'(
la

tv
ar

1,
 d

f 
=

 1
.2

5)
:2

−2 0 2

1.
25

1.
30

1.
35

latvar1
s'(

la
tv

ar
1,

 d
f 

=
 1

.2
5)

:3
−2 0 2

−
1.

6
−

1.
4

−
1.

2

latvar1

s'(
la

tv
ar

1,
 d

f 
=

 1
.2

5)
:4

−2 0 2

1.
3

1.
5

1.
7

1.
9

latvar1

s'(
la

tv
ar

1,
 d

f 
=

 1
.2

5)
:5

Fig. 7.4 Top row : component functions (centred) of a rank-1 binomial RR-VGAM fitted to a
subset of the xs.nz data, cf. Fig. 7.3. The latent variable of this CAO is a linear combination of 11
binary psychological variables. Bottom row : first derivatives of the respective fitted functions.

investigative and interactive examination of the data. Altogether, RR-VGAMs are
a natural class of models that allow constrained ordination to be performed in an
exploratory manner.

RR-VGAMs are related to other regression models proposed in the literature.
In particular, single-index models (Ichimura, 1993) have

Y = f(β1 x1 + · · ·+ βp xp) + ε,

for some smooth function f . Here, x1 �= 1 because f includes any shift in location
and level, and the coefficients βp are subject to some normalization, for uniqueness.
This might be called a rank-1 RR-VAM. The generalization of this to count and
presence/absence data and beyond would be a rank-1 RR-VGAM.

Bibliographic Notes

RR-VGAM-like models have been used a lot in econometrics, e.g., Yatchew (2003).
Schimek (2000) also surveys a number of such models; see also Harezlak et al.
(2015).

Constrained additive ordination models were proposed by Yee (2006), with spe-
cific applications to plant ecology. The alternative algorithm of Zhu et al. (2005)
potentially allows CAO to be performed.

Exercises

Ex. 7.1. Consider (7.1) where ν = (x2, x3, x4) · c, say. Obtain expressions
for ∂μis/∂xk and ∂2μis/∂x

2
k, treating fs and c as fixed.
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Ex. 7.2. Create a data frame from hspider comprising presence/absence data,
and fit a rank-1 Bernoulli RR-VGAM with a complementary log-log link. How do
your constrained coefficients compare to the results of Sect. 7.3.1?

Ex. 7.3. Plot the fitted component functions for the trapO example with ap-
proximate pointwise ±2 SE bands about the functions. Also, plot the first deriva-
tives as a function of the site scores. Your plots should be something like Fig. 7.4.
Comment.

This then, is a proof of a well-trained mind, to delight in what is good, and
to be annoyed at the opposite.
—Marcus Tullius Cicero



Chapter 8

Using the VGAM Package

Results from VGAM . . . should be treated with caution.
—Freedman and Sekhon (2010)

8.1 Introduction

This chapter attempts to describe the VGAM package for R as a whole, and tie it
in with the preceeding theory. We mainly start from scratch so that there is some
duplication of previous content. Section 1.5.2 reviewed a few important facets of
the S language, but more details can be found in the references at the end of this
chapter. Other VGAM details, aimed more at programmers, appear in Chap. 18.
Note that the software details presented here are subject to change.

8.1.1 Naming Conventions of VGAM Family Functions

On the face of it, VGAM offers a bewildering set of family functions. However, it
can be seen from Fig. 1.2 that there is a lot of structure! Many of them cluster
naturally in groups, e.g., as described in Chaps. 11–12. Because of such numbers, it
is useful to have some naming conventions to help navigate among them. Table 8.1
gives a brief summary. Some character strings appear at the beginning of the name,
others end with certain characters, including digits. While not all family functions
adopt these conventions, most do.

8.1.2 Naming Conventions of Arguments

To further make VGAM easier for practitioners, the arguments of almost all VGAM
family functions adhere to additional conventions. They are listed below, in no
particular order. Distributions involving the form

© Thomas Yee 2015

T.W. Yee, Vector Generalized Linear and Additive Models,
Springer Series in Statistics, DOI 10.1007/978-1-4939-2818-7 8
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Table 8.1 Some naming conventions for VGAM family functions. Prefixes appear in the upper
table; suffixes in the lower table. Note: not all VGAM family functions follow these conventions.

Prefix Comments

a Asymmetric, e.g., alaplace1(), Sect. 15.3.2

aml Asymmetric maximum likelihood, e.g., amlnormal(), Sect. 15.4

bi Bivariate, e.g., binormal() for N2(μ1, μ2, σ11, σ22, σ12)

cens. Censored, e.g., cens.gumbel(), cens.normal(), cens.poisson(),
cens.rayleigh()

d, e, p, q, r Density, expectiles, cumulative distribution, quantile, random variates,
Sect. 11.1.1

double. Double, e.g., double.cens.normal()

fold Folded, e.g., foldnormal()

gen Generalized, e.g., gengamma.stacy(), genpoisson()

inv. Inverse, e.g., inv.binomial(), inv.lomax()

loglin Loglinear, e.g., loglinb2()

mix Mixture, e.g., mix2poisson(), mix2normal()

neg Negative, e.g., negbinomial()

pos Positive (Sect. 17.1), e.g., posbinomial(), pospoisson()

rec. Records, e.g., rec.normal()

sc. Scaled, e.g., sc.studentt2()

seq Sequential, e.g., seq2binomial()

skew Skewed, e.g., skewnormal()

sm. Smart (Table 8.3), e.g., sm.bs(), sm.ns(), sm.poly() sm.scale()

trunc Truncated, e.g., truncgeometric()

uni Univariate, e.g., uninormal() for N1(μ, σ)

za Zero-altered (hurdle) (Sect. 17.1)

zi Zero-inflated (Sect. 17.1)

Suffix Comments

1, 2, 3,. . . Number of parameters, e.g., studentt(), studentt2(), studentt3()

61, . . . Year of an article, e.g., freund61() for Freund (1961)

cop Copula (Sect. 13.3), e.g., binormalcop()

ff “family function”, e.g., poissonff() to avoid interference with poisson(),
zetaff() rather than zeta() for ζ(x) (Sect. A.4.3)

I, II, III, . . . Type I, Type II, . . . e.g., paretoII()

R Two purposes: (1). ‘Raw’ parameter(s) such as the scale and shape (as
opposed to the mean) that match R’s dpqr-type function, e.g., betaR(),
gammaR(). (2). Also, the order of the arguments may not match R’s unless
setting lss = FALSE, e.g., weibullR().

.or Odds ratio, e.g., binom2.or()

.rho ρ, e.g., binom2.rho()

.vcm Varying-coefficients model, e.g., normal.vcm()
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(
y − a

b

)s

(8.1)

have a as the location parameter, b as the positive scale parameter, and s as the
shape parameter. Almost always, b has the log link, loge(), as the default. Note
that some authors define a scale parameter as b−1 in (8.1), i.e.,

(B[y − a])
s

(8.2)

where B = b−1 might be called a rate parameter. Dealing directly with B is possi-
ble using the negloge() link function, because log(1/θ) = − log θ is the negative
log link so that the regression coefficients would be merely negated compared to
the default.

Here are the main conventions. Not all family functions fully comply, however,
the vast majority do.

1. The argument names zero, parallel and exchangeable all have the same
effect over all VGAM family functions (Table 18.6). While these are used to
construct constraint matrices conveniently, there are limitations and room for
conflict.

2. Scale and shape parameters are called scale and shape if the model/distribution
has only one of them. If there are more, then they are usually called scale1,
scale2, . . . , and shape1, shape2, . . . .

3. Argument names for parameter link functions begin with the letter “l”. For ex-
ample, lscale or lscale1, lscale2, . . . for the scale parameter(s), and lshape

or lshape1, lshape2, . . . for the shape parameter(s). The default has a charac-
ter value, e.g., lscale = "loge" means a loge link is default.

4. Argument names for initial values begin with the letter “i”. For example,
ishape, ishape1, ishape2, . . . . A default value of NULL means that an ini-
tial value for that parameter is computed internally (self-starting). Often the
location and scale parameters are estimated from the initial shape parameter.

5. The location parameter is slightly different. When there is one, it is usually
called location with link function llocation. When there is more than one
location parameter, they are called loc1, loc2, . . . , and serviced by lloc1,
lloc2, . . . , and iloc1, iloc2, . . . , for initial values. If a location parameter is
known or must be specified, then the default value is given in the arguments of
the function.

6. With respect to the definition of η, the default order is always location, scale,
and then shape parameters. This also holds in terms of the order of the argu-
ments. For link function and initial values they are grouped in blocks of “l”
and “i”.

7. In terms of the documentation, the Greek letters for denoting the location,
shape, scale parameters are flexible and can be chosen according to the con-
vention of the area. For example, in extreme value modelling, ξ is often used
for the shape parameter for the GEV distribution (16.2). Another example is
quantile regression where τ is used, while ω is used for expectile regression.

8. For a model/distribution with only one parameter, the argument link

or link.parameterName is quite acceptable. Similarly, an argument init or
init.parameterName is common too.
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8.2 Basic Usage of VGAM

VGAM centres on the functions vglm() and vgam(). The former is similar to glm(),
i.e., which has as its central ideas data frames, families, IRLS, and the formula
language described in Chambers and Hastie (1991). Here are some examples:

1. vglm(y ~ 1, family = chisq, data = cdata)

solves for the MLE of the parameter ν of a random sample y1, y2, . . . assumed
from a χ2

ν distribution. As ν > 0, η = log ν is the default.

2. vglm(y ~ x2 + x3, family = cumulative(parallel = TRUE), data = cdata)

fits a proportional odds model (1.22) to a factor response y and explanatory
variables x2 and x3, found in a data frame called cdata. Whereas in glm()

where y is usually a vector, vglm() often allows y to be a matrix. There is
no x1 in the formula because it is implicitly there as the intercept (x1 = 1). In
general, all variables ought to be stored in a data frame.

3. vgam(y ~ s(x2) + x3 + s(x4, df = c(5, 1)), multinomial, data = mdata)

fits a nonparametric multinomial logit model; the “s()” denotes a vector smooth
term which is a generalization of a cubic smoothing spline (smooth.spline()).
The function s() should only be used in conjunction with vgam(), and then
its use is only symbolic because it does not directly result in any computation.
If s(x2) is used in the formula of a vglm() call, say, then it will simply return
its argument, here, x2.

Many options available with glm()/gam() are also available with vglm()/vgam(),
e.g., subset, na.action, trace. Importantly, a VGAM object should be ma-
nipulated as much as possible via generic functions such as coef(), predict()
and summary(). In general, the raw components of a VGAM object may be mis-
leading, and they should be extracted by extractor or accessor functions where
possible (Tables 8.5, 8.6, 8.7).

8.2.1 Some Miscellaneous Arguments

Some miscellaneous arguments are as follows.

extra This argument enables one to pass any additional information into
the innards of the IRLS algorithm. It is suitable for big structures
such as vectors and matrices. In particular, extra appears as an argu-
ment in @deviance() and @loglikelihood as well as @linkfun(), and
@linkinv(). Some family functions require select input to be inputted
through extra.

form2 Unlike lm() and glm(), vglm() and vgam() have two formula argu-
ments, called formula and form2. Some VGAM family functions require
the model to be specified using two formulas, such as normal.vcm().
Table 8.5 describes a few details about the model matrix and response
for form2. Sometimes the response for form2 is optional.



8.2 Basic Usage of VGAM 253

Table 8.2 Certain vglm.control() arguments.

Argument Comments

criterion =

"deviance"

The criterion used for testing convergence. Usually is
"loglikelihood" or "coefficients" in practice. Assign-
ing "coefficient" will often result in a more stringent con-
vergence criterion, giving a more accurate answer, however,
half-stepping will be unavailable

epsilon = 10−7 Positive convergence tolerance ε in (8.3). Roughly speaking, the
Fisher-scoring iterations are assumed to have converged when two
successive (and scaled) criterion values are within epsilon of
each other

half.stepsizing =

TRUE

Is half-stepsizing is allowed? If TRUE and �(a) < �(a−1) then a half-
step (or 1

4
or 1

8
. . . ) is taken until an improvement is made. The

argument is ignored if criterion = "coefficients"

maxit = 30 Maximum number of IRLS iterations allowed. Usually the default
is adequate, however, if stepsize and/or half.stepsizing are set
then this argument should be assigned a higher value

stepsize = 1 Usual stepsize to be taken between each Fisher-scoring iteration
(α in (3.55)). It should be a value in (0, 1], where a value of unity
corresponds to an ordinary step. A value of 0.5 means half-steps
are taken. Setting a value near zero will cause convergence to be
generally slow, but may help increase the chances of successful
convergence for some family functions such as the negative bino-
mial with canonical link (Sect. 11.3.3) and the asymmetric Laplace
distribution (Sect. 15.3.2)

trace = FALSE Assigning TRUE is recommended in general. At each IRLS itera-
tion some output is printed out that is helpful for monitoring con-
vergence. This is particularly important for some families whose
MLEs are intrinsically more difficult to estimate

xij See Sect. 3.4

Argument form2 is mandatory if the xij argument is used. Then form2

should contain the union of all terms in xij and formula. It transpires
that, from the large model matrix Xform2, select columns are extracted
in order to build XVLM.

8.2.2 Constraints

As described in Sect. 3.3, the constraints argument may be assigned a list with
a constraint matrix Hk for each term. Here are some examples.

1. fit.npom <- vglm(y ~ x2, cumulative(parallel = FALSE), data = cdata)

stops the parallelism constraint from being applied to any of the explanatory
variables. The result is a fully non-proportional odds model, which is suscep-
tible to numerical problems if the fitted ηj do intersect inside the data cloud.
Equivalently,

fit.npom <- vglm(y ~ x2, cumulative(parallel = TRUE ~ -1), data = cdata)

fit.npom <- vglm(y ~ x2, cumulative(parallel = TRUE ~ 0), data = cdata)
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—these are actually more recommended as they are more informative: one
cannot determine whether a constraint applies to an intercept or not from a
single logical.

2. Both

myform <- y ~ x2 + s(x3, 3) + s(x4) + x5

vgam(myform, binom2.or(exchangeable = TRUE ~ s(x3, 3) + x5), data = bdata)

vgam(myform, binom2.or(exchangeable = FALSE ~ x2 + s(x4) - 1), data = bdata)

make the effect of X3 and X5 to be the same for both marginal probabilities.
Explicitly, the model they fit is

logit p1 = β∗
(1)1 + β∗

(1)2 x2 + f∗
(1)3(x3) + f∗

(1)4(x4) + β∗
(1)5 x5,

logit p2 = β∗
(1)1 + β∗

(2)2 x2 + f∗
(1)3(x3) + f∗

(2)4(x4) + β∗
(1)5 x5,

log ψ = β∗
(2)1 + β∗

(3)2 x2 + f∗
(2)3(x3) + f∗

(3)4(x4) + β∗
(2)5 x5.

3. vgam(y ~ x2 + s(x3), binom2.or(zero = 3), data = bdata)

constrains the third linear/additive predictor to equal an intercept term only,
i.e., η3 = β(3)1. In this case the odds ratio is simply a point estimate and
not a function of the covariates. In general, zero may be assigned a vector
of integers in the range 1 to M . If multiple responses are handled, then zero

may be assigned a vector of negative integers in the range −1 to −M1 which is
applied to each response. Note that the exchangeability constraint applies to
the intercepts, whereas the parallelism constraint usually doesn’t.

4. What happens when there is a contradiction of arguments such as

cm <- diag(M)

fit <- vglm(ymatrix ~ x2 + x3, myVGAMfamfun(parallel = TRUE),

constraints = list("(Intercept)" = cm, x2 = cm, x3 = cm))

i.e., which constraint is applied to x2, say? The answer depends on the model
and what the programmer feels has higher precedence. However, since it is
more difficult to specify constraints, this should override values produced
by the constraints vector parallel. Note that, at present, VGAM requires the
constraints list to be fully specified, i.e., all terms must be included in the list.
Unfortunately, there is little to no internal consistency checking at this stage.
This deficiency might be addressed in the future.

It should be noted that the arguments parallel, exchangeable and zero are
merely quick methods of constructing the Hk and assigning it to the constraints
argument internally—this is used in a similar manner contrasts is used for factors
in lm()/glm()/gam()—but for VGAMs it is used to constrain the functions. See
Sect. 3.3 for more details.

8.2.3 Control Functions

The functions vglm() and vgam() come with vglm.control() and vgam.

control(), respectively. These provide default values for algorithmic variables
to test for convergence, e.g., maxit is the maximum number of IRLS iterations,
epsilon is the tolerance in the convergence criterion between two successive
iterations. Table 8.2 gives some details about the most useful vglm.control()
arguments.
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Users can supply values when invoking vglm()/vgam(), e.g.,

vgam(y ~ s(x2), aVGAMfamily, data = adata, maxit = 4, epsilon = 1e-9)

vgam(y ~ s(x2), aVGAMfamily, data = adata,

control = vgam.control(maxit = 4, epsilon = 1e-9))

8.2.4 Convergence Criteria

In contrast to glm(), which iterates until the change in deviance is sufficently
small, VGAM allows a number of alternative quantities for testing convergence.
The most common three are

• deviance, D, chosen by criterion = "deviance",
• log-likelihood, 
, chosen by criterion = "loglikelihood",
• coefficients, β, chosen by criterion = "coefficients".

The reason for allowing a variety of criteria is because many models do not have
an expression for the deviance. For a few others, a log-likelihood does not exist.
Testing convergence by examining the change in β(a) is the one method that is ap-
plicable to all VGAM models, and therefore is the last choice if the family function
can compute the others. Should they exist, the deviance is computed in @deviance

of the family function, and log-likelihood in @loglikelihood. VGAM will look in
the above order for a function with the specified name in the family function. As
a last resort, it will use the regression coefficients if there is no objective function.

Some of these arguments can be seen in Table 8.2:

> args(vglm.control)

function (checkwz = TRUE, Check.rank = TRUE, Check.cm.rank = TRUE,

criterion = names(.min.criterion.VGAM), epsilon = 1e-07,

half.stepsizing = TRUE, maxit = 30, noWarning = FALSE, stepsize = 1,

save.weights = FALSE, trace = FALSE, wzepsilon = .Machine$double.eps^0.75,

xij = NULL, ...)

NULL

Regardless of the convergence criterion used, the deviance and log-likelihood are
computed at the final iteration, if possible, and their values stored on the ob-
ject. They should be retreived using the appropriate accessor function (Tables 8.5,
8.6, 8.7).

Currently, the exact criterion for testing the convergence of the regression co-
efficients is when the maximum over k = 1, . . . , p of the following is satisfied:

∣
∣β

∗(a)
(j)k − β

∗(a−1)
(j)k

∣
∣

epsilon+
∣
∣β

∗(a)
(j)k

∣
∣

< epsilon (8.3)

for all j = 1, . . . , ncol(Hk). Here, a is the iteration number. This will ensure that

each β̂∗
(j)k will be correct to approximately d significant figures, where d is the

number of zero decimal places in epsilon, e.g., d ≈ 3 if epsilon = 0.0001. The
reason for the epsilon in the denominator is to avoid division by zero.

In general, for a scalar quantity A such as the deviance and log-likelihood,
currently VGAM will terminate when the criterion
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∣
∣A(a) −A(a−1)

∣
∣

epsilon+
∣
∣A(a−1)

∣
∣ <

epsilon√
n

(8.4)

is satisfied. The justification for the
√
n is that for the most common case of A,

which is the log-likelihood, the normalizing constant means that the value of 

grows with increasing sample size. Having the

√
n partially compensates for this

and helps avoid premature convergence for very large sample sizes.
To round off this section, it is mentioned that the exact S expressions

for (8.3) and (8.4) are the convergence components of vglm.control()

and vgam.control(). Of course, it is possible for programmers to replace these
by their own code.

8.2.5 Smart Prediction

Models involving terms with data-dependent functions such as scale(), bs()

and poly() can sometimes give wrong predictions. To see why, consider the snippet

> fit <- lm(y ~ scale(x2) + bs(x3), data = ldata)

> pfit <- predict(fit, newdata)

The data-dependent parameters of fit are the mean and standard deviation of x2,
and the knot locations of x3. In the prediction, these data-dependent parameters
must be reused instead of näıvely computing the terms based on the new data, e.g.,
scale(x2) gets evaluated on newdata$x2 so that its mean and standard deviation
might be used instead.

Admittedly, the technology is sufficient here so that pfit is correct, however,
counter-examples that users need to be wary of are models such as

fit1 <- lm(y ~ I((x - mean(x)) / sqrt(var(x))), data = ldata)

fit2 <- glm(y ~ I((x - min(x))^2), poisson, data = pdata)

fit3 <- glm(y ~ I(scale(x2)) + bs(scale(x3)) + poly(scale(x4), 2, raw = TRUE),

binomial, data = bdata)

wrong.prediction1 <- predict(fit1, newdata1)

wrong.prediction2 <- predict(fit2, newdata2)

wrong.prediction3 <- predict(fit3, newdata3)

Indeed, any function such as min(), max(), var(), range() or functions computing
quantiles, etc. can potentially lead to incorrect predictions. This may occur because
the data-dependent parameters, when applied to the new data, will be in general
different from their values with the original data. In statistical jargon, the problem
is that the basis functions change but the old coefficients are used. Specifically,
during the predict() call, the terms of fit are reused to construct a model frame

and then a model matrix X̃, say, so that the new η̂ = X̃ β̂ may be computed. Unless
the original data-dependent parameters are used in the computation of pfit, the

wrong basis functions will be used by the prediction, i.e., X̃ is wrong.
Most calls are correctly handled using R’s safe prediction (based on Chambers

and Hastie, 1991, pp.108,288–9). Its inner workings are a little complicated. Tech-
nically, one has an S3 makepredictcall() methods function that will modify a
term’s call so that the data-dependent parameters can be passed in via arguments.
These data-dependent parameters are extracted from the attributes attached to
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Table 8.3 Smart functions supplied in VGAM for users. They currently work with vglm()

and vgam(), etc., but not with lm() and glm(), etc. The bottom-most subtable is a utility

function.

Smart function Comments

sm.bs() B-splines. Smart version of bs() in splines

sm.ns() Natural cubic splines. Smart version of ns() in splines

sm.poly() Orthogonal polynomials. Smart version of poly()

sm.scale() Standardizing: centring and scaling. Smart version of scale()

sm.cut(), sm.max(),

sm.mean(), sm.min(),

sm.sd(), sm.var() Not written yet—see Ex. 18.8

is.smart() Logical. Is a function smart? e.g., is.smart(sm.bs) returns TRUE

the value of the function. However, terms such as those of fit3 exposes safe pre-
diction as inadequate because the attributes associated with the inner function
call are lost in nested calls.

Fortunately, VGAM provides smart functions (Table 8.3) which potentially han-
dles the most complex of terms. The resulting scheme is called smart prediction.
Although most users need not be concerned with the technical details behind the
scheme, they will have to be aware of terms that lead to erroneous predictions, and
then call (and if necessary, write—see Sect. 18.6) the appropriate smart function.
By convention, the names of these smart functions begin with an sm., and presently
work only in VGAM with modelling functions such as vglm() and vgam(). These
modelling functions have a smart = TRUE argument because there may be times
when it is certain that smart prediction is neither needed or desired, e.g., a VGAM
family function that calls vlm(). The data-dependent parameters are stored on
the object’s smart.prediction slot.

As an example, the equivalent of fit3 is

Fit3 <- vglm(y ~ I(sm.scale(x2)) + sm.bs(sm.scale(x3)) +

sm.poly(scale(x4), 2, raw = TRUE), binomialff, data = bdata)

right.prediction3 <- predict(Fit3, newdata3)

Historically, when lm() was first written for S-PLUS, it was very difficult to decide
which was better for prediction—a general solution that worked reasonably well
all the time, or a specific solution (like presented here) which works perfectly well
most of the time. The former option was chosen. By “most” of the time, smart
prediction has a lurking danger—users can get lulled into complacency and then
let an unsmart function slip in unnoticed and make errors without being aware. A
careful examination of the smart.prediction slot is one way of checking, but this
is prone to error if there are many data-dependent terms in the formula. Another
check is to predict on several subsets of the original data and then compare these
to the original predictions, e.g.,

fit <- vglm(y ~ sm.ns(x2), acat, data = adata) # Suppose adata has more than 6 rows

max(abs(head(predict(fit)) - predict(fit, head(adata)))) # Should be 0

max(abs(tail(predict(fit)) - predict(fit, tail(adata)))) # Should be 0

Admittedly, this can be a little laborious and it is not entirely fool-proof.
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8.3 More Advanced Usage of VGAM

8.3.1 Initial Values

VGAM family functions having the imethod argument usually correspond to a
model or distribution that is relatively hard to fit successfully, therefore care is
needed to ensure that good initial values are obtained. To exhaust all algorithms
currently implemented, this argument accepts an integer with value 1 or 2 or 3,
. . . . For example, imethod = 1 might be the method of moments, and imethod =

2might be based on a grid search. For many VGAM family functions, it is advisable
to try imethod with all possible values, and in conjunction with trace = TRUE,
in order to safeguard against problems such as converging to a local solution.

8.3.1.1 More General Arguments

In contrast to arguments for initial values specific to a VGAM family function, there
are three arguments that are common to vglm() and vgam(). They are summarized
in Table 8.4. All three are related directly to VGAM output, for example, if

fit <- vglm(...)

has converged, then for most family functions,

vglm(..., etastart = predict(fit), trace = TRUE)

vglm(..., coefstart = coef(fit), trace = TRUE)

vglm(..., mustart = fitted(fit), trace = TRUE)

should result in the same model within one or two iterations. The one
with etastart assigned is most likely to require the least cost to re-converge.
Section 8.5 describes a trick whereby etastart may be assigned the predicted
values from a simpler model in order for a more complex model to be fitted.

For many models such as univariate discrete distributions, let μ̃ be some positive
measure of central tendency, e.g., the weighted mean or the median of yi+

1
8 . One

method is to use (Fig. 8.1)

μ
(0)
i = s μ̃+ (1− s) yi, 0 ≤ s ≤ 1. (8.5)

Practical experience has shown that this often works quite well, for s ≈ 0.95, say.
That is, initial values for the fitted mean are a slight perturbation of the central
measure towards the actual values. For some distributions, setting s = 1 actually
gives poor performance. The argument ishrinkage in some family functions is
the adjustment factor s.

Table 8.4 Three general arguments peculiar to vglm() and vgam(), which allow the input of

initial values.

Argument Comments

etastart n-vector or n×M matrix of ηT
i s. This is the preferred of the three

coefstart β(0) in (3.9) and (3.23). Must be the correct length and order

mustart n-vector or n-row matrix of μT
i ’s. This is the least preferred because it

only works for a few families with M1 = 1
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Fig. 8.1 Response yi (×) in a simple lin-
ear regression, with shrinkage initial val-
ues (•) based on s = 1

2
in (8.5). The

dashed horizontal line is at y, and s is ar-
gument ishrinkage. x2

y

8.3.2 Speeding Up the Computations

It is well-known that glm() calls the method glm.fit() to perform the actual
IRLS computations. The front-end function glm() expends a considerable amount
of resources to process the formula and data frame into the model frame and
then the model matrix XLM. When doing simulations and other expensive tasks
requiring a very large number of GLMs, it is possible to eliminate a lot of overhead
by calling glm.fit() directly with model matrix and response, etc. fed in as pre-
processed input.

In the same spirit, VGLMs can be fitted more quickly by calling vglm.fit(),
since it has argument method = "vglm.fit". However, this demands greater so-
phistication and a high level of hacking—certainly not recommended for even
semi-skilled users. Now

> args(vglm.fit)

function (x, y, w = rep(1, length(x[, 1])), X.vlm.arg = NULL,

Xm2 = NULL, Ym2 = NULL, etastart = NULL, mustart = NULL,

coefstart = NULL, offset = 0, family, control = vglm.control(),

criterion = "coefficients", qr.arg = FALSE, constraints = NULL,

extra = NULL, Terms = Terms, function.name = "vglm", ...)

NULL

It is recommended that a VGLM be fitted the usual (slower) way once in order to
set things up before attempting to call it the faster way. Here’s a simple example.
First generate some data and fit a model the ordinary manner.

> mdata <- data.frame(x2 = sort(runif(n <- 100))) # Generate some data

> mdata <- transform(mdata, y = rnorm(n, mean = 1 + 2 * x2))

> fit0 <- vglm(y ~ x2, uninormal, data = mdata) # Fit a model the slow usual way

Now extract the LM matrix with some necessary attributes and call vglm.fit().

> quickfit <- vglm.fit(y = depvar(fit0),

# etastart = predict(fit0), # Faster convergence if used

x = model.matrix(fit0, type = "lm"),

family = fit0@family,

Terms = terms(fit0), # This may need hacking

constraints = constraints(fit0, type = "term"),

control = fit0@control)

Often convergence is faster by uncommenting the etastart argument.
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One can measure the execution time using system.time(). Applying it in this
case with etastart uncommented shows that the call to vglm.fit() on the au-
thor’s machine was about 2.2 times faster.

One disadvantage is that the output of vglm.fit() is only semi-packaged com-
pared to vglm(). Here, the object quickfit is a list with components

> names(quickfit)

[1] "assign" "coefficients" "constraints" "df.residual"

[5] "df.total" "effects" "fitted.values" "offset"

[9] "rank" "residuals" "R" "terms"

[13] "loglikelihood" "predictors" "contrasts" "control"

[17] "crit.list" "extra" "family" "iter"

[21] "misc" "post" "ResSS" "x"

[25] "y"

Consequently, all the generic functions cannot be used, and further hacking
may be needed to extract out the relevant components, e.g., β̂ can be accessed
as quickfit$coefficients. A second disadvantage is the inherent danger that
calling vglm.fit() directly can bring—users are advised to test their code and
examine their answers carefully.

The reader might well wonder why constraints(fit0, type = "term") is
used. The answer is that terms such as bs(x2) will generate multiple columns in
the LM matrix, whereas vglm.fit() expects one constraint matrix per term.

8.4 Some Details on Selected Methods Functions

Upon estimation, the fitted object should be manipulated using generic functions
where possible. This section provides some details on a few such methods functions.
A summary is given in Tables 8.5, 8.6, 8.7, which lists the results of many generic
functions applied to fitted VGAM objects.

8.4.1 The fitted() Generic

Some VGAM family functions possess the argument type.fitted, which accepts
a vector of character strings and offers a variety of fitted values. The first choice
is always the default. For example,

> args(zipoissonff)

function (llambda = "loge", lonempstr0 = "logit", type.fitted = c("mean",

"pobs0", "pstr0", "onempstr0"), ilambda = NULL, ionempstr0 = NULL,

imethod = 1, ishrinkage = 0.8, zero = -2)

NULL

means that this family function returns the mean φ̂i λ̂i as the fitted values, by
default (cf. (17.7)).
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Table 8.5 VGAM generic functions applied to a vglm()/vgam() object called fit. Most are
extractor functions. Those marked “‡” are the default. Many quantities are linked to equations

described elsewhere. Here, i = 1, . . . , n, j = 1, . . . ,M , k = 1, . . . , p, t = 1, . . . , τ , where τ is
the number of terms. Also, S = Q/Q1 is the number of responses. All estimated quantities are
computed at the final IRLS iteration. See also Tables 8.6, 8.7, and Table A.2- for a glossary. Let
Y be the response(s).

Function Value

AIC(fit) Akaike information criterion (Table 9.1)

AICc(fit) AIC, corrected for finite samples (Table 9.1)

BIC(fit) Bayesian (Schwarz) information criterion
(Table 9.1)

coef(fit) β̂
∗

(Eq. (3.30)); β̂∗
(j)k

in (3.28) is labelled

like xk:j

coef(fit, matrix = TRUE) B̂ (Eq. (3.29))

Coef(fit) θ̂ =
(
. . . , g−1

j (β̂(j)1), . . .
)T

, i.e., for Y ∼ 1

only

constraints(fit, type = "lm")‡ Hk, k = 1, . . . , pLM, constraint matrices
(Eqs. (3.27), (3.29), (3.38)), a list

constraints(fit, type = "term") Ht, t = 1, . . . , τ , constraint matrices per term
(Eq. (3.25))

constraints(fit, matrix = TRUE) (H1|H2| · · · |HpLM ), constraint matrices side-
by-side, is M × pVLM

depvar(fit) Dependent/response variables Y =
(y1, . . . ,yn)

T (cf. Eq. (3.2)), is n×Q

depvar(fit, type = "lm2") Dependent/response variables for argu-
ment form2

deviance(fit) Deviance D =
S∑

s=1

n∑

i=1

dis, Sect. 3.5.2. Is NULL

if unimplemented or undefined

dfbeta(fit) β̂
∗ − β̂

∗
[−i], n× p, Sect. 3.7.5

df.residual(fit, type = "vlm")‡ Residual (VLM) degrees of freedom =
nVLM − pVLM (Eq. (3.56)). Printed in
summary(vglmObject)

df.residual(fit, type = "lm") Residual (LM) degrees of freedom = nLM −
p(j)LM (Eq. (3.57)), i.e., for each ηj

fitted(fit) [(μ̂ij)], Sect. 8.4.1

hatvalues(fit) diag(H), n×M (Eq. (3.63))

is.parallel(fit) Are Hk = 1M? Section 3.3.1.2

is.zero(fit) Are ηj = β(j)1 (intercept-only)? Section
3.3.1.1

linkfun(fit) gj , the link functions for each ηj

logLik(fit) Log-likelihood � =
n∑

i=1

wi �i (Eq. (3.7)), � =

S∑

s=1

n∑

i=1

wis �is for S > 1 responses (Eq. (3.51))

logLik(fit, summation = FALSE) Log-likelihood elements [(wis �is)]
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Table 8.6 Continuation of Table 8.5. See also Table 8.7.

Function Value

model.matrix(fit, type = "vlm")‡ VLM matrix (nM × pVLM) XVLM (= X∗)
(Eq. (3.20))

model.matrix(fit, type = "lm") LM matrix (n × p) X (= (x1, . . . ,xn)T =
XLM) (Eq. (3.18))

model.matrix(fit, "lm", linp = j) Subset of XVLM corresponding to ηj

model.matrix(fit, type = "lm2") VLM matrix for form2, Xform2, has ele-
ments [(x2ij)]

nobs(fit, type = "lm")‡ n (= nLM)

nobs(fit, type = "vlm") nM (= n∗ = nVLM) = nrow(XVLM)

nparam(fit) Number of parameters (Table 9.2)

npred(fit) M (Eqs. (3.2), (3.5)) = dim((η1, . . . , ηM )T ) =
total number of linear/additive predictors

npred(fit, type = "one") M1: M for one response

nvar(fit, type = "vlm")‡ pVLM (= p∗ =
p∑

k=1

ncol(Hk))

nvar(fit, type = "lm") p (= pLM)

predict(fit, type = "link")‡ [(η̂ij)] is n×M (Eq. (3.40))

predict(fit, type = "response") [(μ̂ij)], same as fitted(fit)

QR.Q(fit) The Q matrix of a QR decomposition

of X
∗∗(a−1)

VLM in (3.23) at the final IRLS
iteration

QR.R(fit) The R matrix of a QR decomposition

of X
∗∗(a−1)

VLM in (3.23) at the final IRLS
iteration

resid(fit, type = "working")‡ zi − ηi = W−1
i ui, n×M (Eq. (3.58))

resid(fit, type = "deviance")
√
wi sign(yi − μ̂i)

√
di or

√
wis sign(yis −

μ̂is)
√
dis. Is NULL if deviance is non-existent

(Eq. (3.62))

resid(fit, type = "pearson")
√
wi W

−1/2
i ui, n×M (Eq. (3.59))

resid(fit, type = "response") [(yij − μ̂ij)] (Eq. (3.61))

simulate(fit, nsim = 1) Simulate ŷi (Sect. 8.4.3). Available for selected
families only

vcov(fit) V̂ar(β̂
∗
) (Eq. (3.21))

vcov(fit, untransform = TRUE) V̂ar(θ̂) where gj(θj) = β(j)1, i.e., for Y ∼ 1

only

weights(fit, type = "prior")‡ Prior weights wi (usually the weights argu-
ment of vglm()) (Eq. (3.7)), or [(wis)]

weights(fit, type = "working") wiWi (in matrix-band format is the ith row)
(Eq. (3.11)), see Sect. 18.3.5 for S > 1 case
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Table 8.7 Continuation of Tables 8.5, 8.6. These functions apply more to RR-VGLMs, QRR-
VGLMs and/or CAOs. Here, S is the number of species/responses, and s = 1, . . . , S. See also

Table 6.6.

Function Value

calibrate(fit) Calibrate, estimate ν̂i from yi, Sect. 6.4.5

Coef(fit) B̂1, Â, Ĉ for RR-VGLMs (Eq. (5.2)), plus T̂s, ûs for QRR-VGLMs

(Eq. (6.2))

concoef(fit) Constrained (canonical) coefficients Ĉ (Eq. (6.1))

hatplot() Plot of the hat matrix diagonals (Sect. 3.7.5)
is.bell(fit) Are the species’ response curves/surfaces bell-shaped? (Eq. (6.1))

latvar(fit) Latent variables (site scores), (ν̂1, . . . , ν̂n)T where ν̂i = Ĉ
T
x2i, n×R

(Eq. (5.2))

lvplot() Latent variable plot (ordination diagram; for R = 1 or 2) (Sect. 6.4.2)
Max(fit) Maximums μ̂s(ûs) for QRR-VGLMs, S-vector, (Eq. (6.2))

Opt(fit) Optimums ûs for QRR-VGLMs, R× S (Eqs. (6.1), (6.2))

persp() Perspective plot (for R = 1 or 2) (Sect. 6.4.3)
Rank(fit) R, rank (Eq. (5.2))

Tol(fit) Tolerance matrices, for QRR-VGLMs, R×R×S array, T̂s (Eq. (6.1))

trplot(fit) Trajectory plot (Sect. 6.4.4)

After fitting a vglm()/vgam() object, it is sometimes possible to obtain the
other types of fitted values by using a call of the form

fitted(vglm.object, type.fitted = "another.choice")

In this case, the appropriate fitted() methods function will compute (not extract
in this case) the new type of fitted value using the model’s η̂i values. The value of
the argument here should match one in the VGAM family function. So continuing
with this example,

fit <- vglm(y ~ x2 + x3, zipoissonff, data = zdata)

fitted(fit, type.fitted = "pobs0")

returns a 1-column matrix with elements equal to the probability of an observed 0,
i.e., P̂ (Yi = 0) = 1− φ̂i + φ̂i exp(−λ̂i).

8.4.2 The summary() Generic

All good summary() methods functions return an object of a certain class that
is printed out by some other methods function. In the case of summary() being
applied to a vglm() object, the result is an object of class "summary.vglm", and
this is displayed by the show() methods function.

When displayed, the output appears similar in form to the output of
a summary() of a glm() object. At the heart of the output is a 4-column ma-

trix whose columns are: the estimates β̂
∗
(j)k, their standard errors SE(β̂

∗
(j)k), the

Wald statistics (β̂
∗
(j)k − 0)/SE(β̂

∗
(j)k), and (usually) the 2-sided p-values. Cur-

rently, all the Wald statistics are assumed to follow a standard normal distri-
bution, so that these correspond to approximate asymptotic tests. Specifically,
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they test H0 : β∗
(j)k = 0 versus H1 : β∗

(j)k �= 0. Occasionally, for some mod-
els, the p-values are suppressed because the model’s regularity conditions are not
met. The matrix should be extracted by applying coef() to the summary(), e.g.,
coef(summary(vglmObject)).

Usually, the very rightmost part of the matrix is embellished with the signifi-
cance stars characters: ‘.’, ‘*’, ‘**’ and ‘***’, depending on how diminutive the
p-values are. The use of significance stars is controversial, and it has led towards
statistical malpractice. They can be suppressed by, e.g.,

> options(show.signif.stars = FALSE) # Global effect

> summary(vglmObject)

> summary(vglmObject, signif.stars = FALSE) # Local effect

The overall residual degrees of freedom, given by df.residual(vglmObject,

type = "vlm"), is printed towards the bottom of the output. As can be seen from
Table 8.5, it is possible to obtain the residual degrees of freedom corresponding to
each ηj separately by df.residual(vglmObject, type = "lm").

8.4.3 The simulate() Generic

Many VGAM family functions with a corresponding r-type function have
a @simslot slot so that simulate() can be run on the model. This allows random
variates to be generated for each observation at the MLE, i.e., ŷi based on (xi, θ̂).
Now

> args(simulate)

function (object, nsim = 1, seed = NULL, ...)

NULL

The most basic call to simulate() returns an n-row data frame with 1-column if
the usual fitted value is a 1-column matrix and the model has a single response.
More generally, usually there are nsim columns and multiples of n rows. Let N be
the number of simulations (nsim).

Care must be given for models that return a multi-column matrix as fitted
values. Let F = ncol(fitted(fit)) be the number of columns of the fitted values
of the object fit. Models with F > 1 can arise from, e.g.,

• a multivariate model or distribution, e.g., binormal(), dirichlet(), and/or
• those with multiple responses.

Depending on the family function, the elements may be ordered either as in an
array of dimension n×N ×F or n×F ×N .

An n×N ×F example is the bivariate normal distribution, where F = 2. Most
VGAM family functions return the mean as the fitted value, therefore one would
expect the means over all simulations to be approximately equal to their respective
fitted values, provided that nsim is large.
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> set.seed(123); n <- 100

> bdata <- data.frame(x2 = runif(n), x3 = runif(n))

> bdata <- transform(bdata, y1 = rnorm(n, 1 + 2 * x2),

y2 = rnorm(n, 3 + 4 * x2))

> fit1 <- vglm(cbind(y1, y2) ~ x2, binormal(eq.sd = TRUE), data = bdata)

> nsim <- 1000 # Number of simulations for each observation

> my.sims <- simulate(fit1, nsim = nsim)

> dim(my.sims) # A data frame

[1] 200 1000

> aaa <- array(unlist(my.sims), c(n, nsim, ncol(fitted(fit1)))) # n by N by F

> summary(rowMeans(aaa[, , 1]) - fitted(fit1)[, 1]) # Should be all 0s

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.065900 -0.024300 -0.000190 0.000947 0.023900 0.080200

> summary(rowMeans(aaa[, , 2]) - fitted(fit1)[, 2]) # Should be all 0s

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.05440 -0.01580 0.00209 0.00494 0.02470 0.09010

Note that the order of elements is such that the left-most index varies fastest for
arrays (Sect. 1.5.2.7).

Here is an n×F ×N example, based on a zero-inflated Poisson distribution.

> n <- 100; set.seed(111); nsim <- 1000

> zdata <- data.frame(x2 = runif(n))

> zdata <- transform(zdata, lambda1 = loge(-0.5 + 2 * x2, inverse = TRUE),

lambda2 = loge( 0.5 + 2 * x2, inverse = TRUE),

pstr01 = logit( 0, inverse = TRUE),

pstr02 = logit(-1.0, inverse = TRUE))

> zdata <- transform(zdata, y1 = rzipois(n, lambda = lambda1, pstr0 = pstr01),

y2 = rzipois(n, lambda = lambda2, pstr0 = pstr02))

> fit.zip <- vglm(cbind(y1, y2) ~ x2, zipoissonff, data = zdata, crit = "coef")

> my.sims <- simulate(fit.zip, nsim = nsim)

> dim(my.sims) # A data frame

[1] 200 1000

> aaa <- array(unlist(my.sims), c(n, ncol(fitted(fit.zip)), nsim)) # n by F by N

> summary(rowMeans(aaa[, 1, ]) - fitted(fit.zip)[, 1]) # Should be all 0s

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.151000 -0.025300 0.001040 0.000171 0.017200 0.115000

> summary(rowMeans(aaa[, 2, ]) - fitted(fit.zip)[, 2]) # Should be all 0s

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.32300 -0.04350 0.00602 -0.00352 0.04060 0.22700

8.4.4 The plot() Generic

The component functions of a vgam() object may be plotted using the generic
function plot(). Table 8.8 is a brief summary of some of the more useful argu-
ments. Here are some additional notes about this methods function.
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Table 8.8 Some useful arguments when plotting a vgam() object. Some default values are given.

Argument Comment

deriv = 0 Derivatives can be plotted, e.g., for 1 and 2 too (but currently
only for linear and s() terms), e.g., Fig. 2.11

lcol, scol, llwd,
slwd, llty, slty

Line colours, line width and line types for the component functions
and their pointwise standard errors bands

noxmean = FALSE Standard errors of the linear component of each component func-
tion at the mean value of xk is 0 by definition. By default, this
property is accentuated by explicitly adding this point (called A
in Fig. 8.2a)

overlay = FALSE Component functions can be plotted on the same graph or sepa-
rately. If TRUE then the use of which.cf and/or which.term may
be useful to select the component functions to be overlaid

raw = TRUE By default, the f̂∗
(j)k

are plotted, else the f̂
(j)k

are plotted. See

Sect. 8.4.5

residuals =

FALSE

The type of residuals specified by argument type.residuals are
plotted too if set to TRUE. This may be more informative than
having rug = TRUE

rugplot = TRUE Add a rugplot? If TRUE then these are jittered ‘rug’ values at the
bottom of each xk plot that denote the approximate xik values.
In Fig. 8.2 there is so much data that the rug appears solid

scale Makes the y-axes comparable to all component functions. Setting
a (positive) value means that ylim will be at least scale in range,
in all plots. An alternative is to use ylim directly

se = FALSE Plot the pointwise ±2 standard errors? See Sect. 4.2.3.2

which.cf = NULL Specifies which component functions are to be plotted, i.e., the j
for f̂∗

(j)k
, e.g., which.cf = 2 for the second one. The default value

means all of them

which.term =

NULL

Specifies which terms are to be plotted, e.g., which.term =

c("s(age)", "s(height")). The default value means all of them.
May be numeric or a character string. If character then the white
spaces must be exactly correct, e.g., "s(age, df = 3)" might
be alright but "s(age, df=3)" wouldn’t (it follows similarly to
Sect. 3.3.1.3)

1. One can plot the component functions of a vglm() object as if it were a VGAM.
To do this, coerce the object into an object of class "vgam", e.g.,

plot(as(vglmObject, "vgam"), se = TRUE)

2. The pointwise SEs of smooth terms are currently stored in the preplot slot,
after a call to plot(). A simple example involving η = f(1)2(x2) is given in
Sect. 17.2.3; its derivation is based on the decomposition (4.12).

3. The argument noxmean = FALSE means, by default, the SE for the linear com-
ponent of a smooth function at xk is 0. In the case that xk is binary and nu-
meric, such as for variable sex01 in the following example, it is a good idea to
set noxmean = TRUE. (This might be implemented in the future automatically.)
The two plots, for sex01 only, are in Fig. 8.2.
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Fig. 8.2 Fitted logistic regression VGAM (the response is nofriend) to European-type people
in xs.nz with (a) noxmean = FALSE, (b) noxmean = TRUE. In (a), the point A, which has 0 as its
SE, has been explictly added to the plot, whereas it has been omitted in (b). The x-coordinate
of A is at the mean of the variable sex01. The y-coordinate is 0 because component functions
are centred.

xs.nz.e <- subset(xs.nz, ethnicity == "European")

xs.nz.e <- na.omit(xs.nz.e[, c("nofriend", "age", "sex", "ethnicity")])

xs.nz.e <- transform(xs.nz.e, sex01 = as.numeric(sex) - 1) # 0 == female

fit1.nof <- vgam(nofriend ~ s(age, df = 3) + sex01, binomialff, data = xs.nz.e)

plot(fit1.nof, se = TRUE, scol = "blue", main = "(a)", which.term = 2) -> pfit1

# Add point A

term2 <- pfit1@preplot["sex01"]

term2 <- term2[[1]]

points(mean(term2$x), 0, col = "orange", pch = 15)

text(mean(term2$x), 0, "A", adj = 3)

plot(fit1.nof, se = TRUE, scol = "blue", main = "(b)", which.term = 2,

noxmean = TRUE)

Currently, the plot() methods function for "vgam" objects calls the predict()

methods function with type = "terms".

8.4.5 The predict() Generic

The methods function for predict() for "vgam" objects allows deriv = a non-
negative integer value. It works only with type = "terms", and currently, it only
works for linear and s() terms.

Note that for VGAMs (cf. (3.25)),

ηi = oi +

p∑

k=1

fk(xik) = oi +

p∑

k=1

Hk f
∗
k(xik), (8.6)

and if raw = TRUE then

ηi = oi +

p∑

k=1

H∗∗
k f∗

k(xik) (8.7)
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where

H∗∗
k =

(
Incol(H∗∗

k )

O

)

. (8.8)

That is, when raw = TRUE, artificial constraint matrices H∗∗
k are constructed to

pick out the raw component functions comprising f∗
k.

If raw = FALSE, then the smooth functions have been premultiplied by the
constraint matrices. Thus the f̂(j)k are plotted instead of the f̂∗

(j)k.
When using predict(as(vglmObject, "vgam"), ..., type = "terms"), an

attribute called attr(, "vterm.assign") is returned. This is needed for term-
wise information and prediction. As well, attr(, "constant") is returned if
deriv = 0: it is based on

ηj =

p∑

k=1

β(j)k xk =

(

β(j)1 +

p∑

k=2

β(j)k xk

)

+

p∑

k=2

β(j)k (xk − xk) . (8.9)

Because of how "vgam" objects plot()s standard errors, the model matrix is
centred when type = "terms"; hence the modified constants. Actually, (8.9) only
holds when there are trivial constraints.

8.5 Some Suggestions for Fitting VGLMs and VGAMs

Fitting VGLMs/VGAMs well requires experience and skill. For example, Zuur
et al. (2012, p.86) construct constraint matrices with columns equal to 0M—a
fundamental mistake—and not surprisingly, they report “We encounter numerical
optimisation problems. . . ” (Zuur et al., 2012, p.84).

Here are some suggestions and tricks. Some of them apply to general regression
modelling as a whole.

1. Examine each xk separately to check for features such as heavy skew and out-
liers. Often a transformation such as a sqrt(), log() or log1p() is begging.
The function pairs() is useful here.

2. Monitor convergence: set trace = TRUE. Many models/distributions are intrin-
sically difficult to fit, therefore monitoring convergence is a good idea. Increas-
ing the maximum number of iterations allowed is usually not needed, unless
the stepsize is chosen to be less than unity. Difficulty obtaining convergence
is symptomatic of the data and model not agreeing. It may be due to gross
overfitting or underfitting, multicollinearity, outliers or influential points, etc.

slowfit <- vglm(y ~ x2 + x3, aVGAMfamilyFunction, data = adata, trace = TRUE,

maxit = 100, stepsize = 0.5) # Sometimes more reliable

3. Use a stepping-stone model: fit a simpler model to provide initial values for a
complex model.

fit.simple <- vglm(y ~ 1, aVGAMfamilyFunction, data = adata, trace = TRUE)

vglm(y ~ x2 + x3, aVGAMfamilyFunction, data = adata,

etastart = predict(fit.simple), trace = TRUE)
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A specific example is the partial proportional odds model (Sect. 14.4.1)

fit.pom <- vglm(y ~ x2 + x3 + x4 + x5, cumulative(parallel = TRUE), data = cdata)

fit.ppom <- vglm(y ~ x2 + x3 + x4 + x5, cumulative(parallel = FALSE ~ x2),

etastart = predict(fit.pom), data = cdata, trace = TRUE)

Here, the parallelism assumption is not made for x2. However, if the lines in-
tersect within the data range of x2, then numerical problems will occur.

Another example is setting, e.g., zero = 2:3 first and then relaxing zero =

NULL later with the use of etastart from the first model. Specifically,
for zinegbinomial(),

fit0 <- vglm(y ~ x2 + x3, zinegbinomial(zero = c(1, 3)), data = ndata)

fit1 <- vglm(y ~ x2 + x3, zinegbinomial(zero = NULL), data = ndata,

etastart = predict(fit0), trace = TRUE)

Here, fit0 is a simpler model because two of its parameters are intercept-only.
Then fit1, which has all covariates affecting each of the three parameters, is less
likely to suffer from converge problems. Incidentally, fit1 would not be justified
unless the data size were large and all the linear effects had been checked by
fitting smoothers.

4. Multicollinear xk: it is not a good idea to enter pairs of highly correlated vari-
ables. Selecting one sometimes suffices. The functions pairs() and cor() are
useful here, as well as examining the hat values and using other diagnostics.

5. After fitting, check the coefficients in matrix form and/or the constraint
matrices.

coef(fit1, matrix = TRUE) # See all the linear predictors (a good idea)

constraints(fit1)

head(depvar(fit1)) # Garbage in ==> garbage out

6. Perform diagnostic plots using the residuals (Sect. 3.7).
7. Allow for smoothing if the data set is not tiny. That is, vgam() may be the

better function to see what’s going on first before switching to vglm(). The
component functions often suggest a parametric shape such as a quadratic, or
a transformation on the xk to make it parametric.

8. Read the help files! Especially, see the default for zero.
9. Fit several models and compare them.

8.5.1 Doing Things in Style

To promote good style and more portable code, the following are recommended.

1. Use extractor/accessor functions where possible such as coef(), fitted(),
depvar(), predict(), etc., and not fit@coefficients, fit@fitted.values,
fit@y, fit@predictors, etc. Tables 8.5, 8.6, 8.7 lists many such functions.

2. Have all the variables in a data frame, and use the data argument
of vglm()/vgam(), etc. As well as providing safety, prediction is more likely
to be correct.
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3. Monitor convergence, e.g., set trace = TRUE. If convergence fails, set imethod
= 2, then imethod = 3, then imethod = 4,. . . , where possible. For exam-
ple, vglm(y ∼ ..., uninormal(lmean = "loge", imethod = 2)) currently
is more likely to work if y contains negative values.
Use arguments such as ilocation, iscale, ishape, etc. when available to safe-
guard against local solutions.

8.5.2 Some Useful Miscellanea

1. Fitting a VGAM as a VGLM with regression splines: bs() and ns().

Fit.vglm <- vglm(y ~ ns(x2) + ns(x3, df = 5), ...)

Fit.vgam <- vgam(y ~ s(x2) + s(x3, df = 5), ...)

should be similar. Both s() and ns() use natural cubic splines, therefore gen-
erally handle the boundaries better than bs(). The advantages of Fit.vglm

are the half-stepping feature and more standard inference. Its disadvantages
include being more prone to initial-value problems.

2. Here is a fictional example of constraint matrices when the formula contains an
interaction term.

H1 <- diag(3)[, -3]

H2 <- diag(3)[, 1, drop = FALSE]

Hlist <- list("(Intercept)" = diag(3), "Area" = H1,

"Year" = H1, "Area:Year" = H2, "Length" = H1)

fit.zinb <- vglm(Intensity ~ Area * Year + Length, stepsize = 0.5,

zinegbinomial(zero = NULL, nsimEIM = 500),

constraints = Hlist, data = zdata, trace = TRUE)

The interaction term Area * Year has been expanded out manually into its
main effects and pairwise-interaction term—this is reflected in Hlist.

3. Here is an example involving regression splines where ηj is a function of f(j)2(x2)
for j = 1, 2, but the component functions have differing flexibilities.

> xs.nz.f <- subset(xs.nz, sex == "F")

> xs.nz.f <- na.omit(xs.nz.f[, c("babies", "age", "ethnicity")])

> Hlist1 <- list("(Intercept)" = diag(2),

"bs(age, df = 3)" = rbind(1, 0),

"bs(age, df = 4)" = rbind(0, 1),

"ethnicity" = diag(2))

> fit1.baby <- vglm(babies ~ bs(age, df = 3) + bs(age, df = 4) + ethnicity,

zipoisson(zero = NULL), data = xs.nz.f, constraints = Hlist1)

The reason why a different bs() term is needed to fit each f(j)2(x2) is because
its df argument cannot accept a vector. In contrast, one can fit a similar model
to fit1 easier with vgam(), using

> fit2.baby <- vgam(babies ~ s(age, df = c(3, 4)) + ethnicity,

zipoisson(zero = NULL), data = xs.nz.f)

because s() can be assigned a vector for df.
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4. fit.1 <- vglm(...)

Hlist <- constraints(fit.1, type = "term")

fit.2 <- vglm(..., constraints = Hlist)

should result in fit.1 and fit.2 being identical. If the family function of fit.2
has a zero argument, then set zero = NULL in order to effectively disable it.

5. Adjusted dependent vectors (n×M) and working weight matrices (M×M×n)
(Sect. 3.2) may be obtained as follows.

zmat <- predict(fit) + resid(fit, type = "working") # Matrix of working responses

wz.array <- m2a(weights(fit, type = "working", M = npred(fit))) # M x M x n

8.6 Slots in vgam() Objects

R implements two object systems, known as S3 and S4. S4 methods, which are
more formal and rigorous, are adopted by VGAM. However, probably more readers
will be more familiar with S3, therefore some brief notes are now given.

While accessor functions such as coef() and fitted() are recommended for
enquiring or interrogating information about a statistical model fit, occasionally
users will require to access information stored in less obvious parts of an object.
For this, the function slotNames() is helpful to list the slot names of objects. Slots
are similar to components of a list, and they are accessed using the operator “@”
(not “$”). For example,

> pneumo <- transform(pneumo, let = log(exposure.time))

> fit <- vgam(cbind(normal, mild, severe) ~ s(let), propodds, data = pneumo)

> slotNames(fit)

[1] "Bspline" "nl.chisq" "nl.df" "spar"

[5] "s.xargument" "var" "extra" "family"

[9] "iter" "predictors" "assign" "callXm2"

[13] "contrasts" "df.residual" "df.total" "dispersion"

[17] "effects" "offset" "qr" "R"

[21] "rank" "ResSS" "smart.prediction" "terms"

[25] "Xm2" "Ym2" "xlevels" "call"

[29] "coefficients" "constraints" "control" "criterion"

[33] "fitted.values" "misc" "model" "na.action"

[37] "post" "preplot" "prior.weights" "residuals"

[41] "weights" "x" "y"

Hence, e.g., one uses slot(fit, "post") or fit@post, instead of fit$post.
Table 8.9 gives a few details about some of these. Here are some further notes:

1. Many of these slots should not be accessed directly. Rather, Tables 8.5, 8.6, 8.7
should be used where possible.

2. VGAM objects have been designed with economy in size in mind. This is be-
cause many models have multiple ηj , multiple responses and/or a multivari-
ate responses, therefore the data structures can be naturally large. One of
the largest data structures is wz, the working weights. By default, these are



272 8 Using the VGAM Package

Table 8.9 Some slots in a vgam() object and a few details. Almost all also hold for a vglm()

object except the daggered (†) ones.

Slot name Comment

@Bspline † The B-spline coefficients, knot locations, and the minimum and maximum
of the design points, are stored here. This list comprises sub-components
identical to vsmooth.spline()@fit (for prediction purposes)

@family The complete evaluated family function is saved here. This means, e.g.,
that @weight can usually be empty. If present, the infos() function
can also be evaluated too, e.g., fit@family@infos(), which is data-

independent

@misc A list where miscellaneous pieces of information may be placed. Writers
of family functions should assign values to misc in @last

@qr The output of linpack implementing the QR decomposition at the final
IRLS iteration. Possibly this may be dropped in the future, and/or only
one of it and object@x kept. Currently, QR.Q(vglmObject) accesses this
slot

@R Part of the QR decomposition too. Currently QR.R(vglmObject) returns
this slot

@weight Working weights held here, in matrix-band format (Sect. 18.3.5). Usually
this slot is empty and is recomputed later when needed since, by default,
save.weights = FALSE in vglm.control(). This is because @weights

tends to be one of the largest slots on the object. In general, it is n·O(M2)
in size, which is very large for M � 1. An exception is when simulated
Fisher scoring is used; then they are usually saved on the object

usually not assigned to @weights if they can be recomputed easily. These
Wi come from the final IRLS iteration, and can be saved on the object by
choosing save.weights = TRUE. By default, save.weights = FALSE in the
vglm() and vgam() control functions. To obtain @weights from an object, type
weights(object, type = "working"). This will be in matrix-band format.

8.7 Solutions to Some Specific Problems

8.7.1 Obtaining the LM-Type Model Matrix for ηj

How can one obtain the LM-type model matrix for ηj? That is, corresponding to
the jth row of (3.27). It is very easy for trivial constraints because it is simply XLM.
When there are constraints, one can invoke

model.matrix(fit, linpred.index = j, type = "lm")

It constructs XVLM and then extracts the relevant subset. The LM-type model
matrix for ηj is useful for, e.g., seemingly unrelated regressions (Sect. 10.2.3).

Note that, in Table 8.5, the formula and form2 arguments of vglm() give rise
to XLM and Xform2, respectively. The latter should be extracted by

model.matrix(vglmObject, type = "lm2")
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8.7.2 Predicting at x

How can predictions from an ‘average’ value x be made as if it were an obser-
vation? The solution is to add it to the data frame and give it some very small
positive prior weight. Then its fitted and predicted values can be used. For exam-
ple, since pneumo is a data frame with wholly numerical variables, the following
fits a non-proportional odds model.

> mydata <- transform(pneumo, prior.wts = 1, let = log(exposure.time))

> mydata <- data.frame(rbind(mydata, colMeans(mydata))) # A new (last) row

> N <- nrow(mydata) # The last row

> mydata$prior.wts[N] <- 1e-7 # A tiny positive value

> mydata$normal[N] <- mydata$normal[1] # A junk response

> mydata$mild[N] <- mydata$mild[1] # Ditto

> mydata$severe[N] <- mydata$severe[1] # Ditto

>

> fit1.ave <- vglm(cbind(normal, mild, severe) ~ let,

cumulative, data = mydata, weight = prior.wts)

> fit2.ave <- vglm(cbind(normal, mild, severe) ~ let,

cumulative, data = mydata[-N, ], weight = prior.wts)

> predict(fit2.ave, mydata[N, ], type = "response") # Average response

normal mild severe

9 0.78564 0.11941 0.094944

> fitted(fit1.ave)[N, ] -

predict(fit2.ave, mydata[N, ], type = "response") # Should be 0

normal mild severe

9 9.7225e-09 -5.3954e-09 -4.3271e-09

Thus the last row of mydata corresponds to an ‘average’ value of the data set. Its
inclusion in fit1.ave has very little effect on the fit itself.

Bibliographic Notes

There are many resources on the internet for learning the deeper aspects of R
(http://www.R-project.org). Currently there is an explosion of applied statistics
books based on R, and a few general titles include Dalgaard (2008), Maindonald
and Braun (2010), de Vries and Meys (2012). An even more elementary text is Zuur
et al. (2009), and Spector (2008) focuses on data manipulation.

For linear and generalized linear modelling, try Faraway (2006), Fox and Weis-
berg (2011), Faraway (2015). Other general books on statistical modelling in R
include Venables and Ripley (2002), Davison (2003), Crawley (2005), Aitkin et al.
(2009), Jones et al. (2014).

Altman et al. (2004) cover many topics that the serious regression modeller
should know. Although focused on the social sciences, the book covers core topics
such as convergence problems, numerical problems, sensitivity analysis, etc.

http://www.R-project.org
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Exercises

Ex. 8.1. Run the code underlying Fig. 8.2, but plot the component function
in age. Interpret all the component functions, e.g., what does this say about older
versus younger people, and males versus females?

Ex. 8.2. Simulation

(a) Run the following code

> set.seed(123); n <- 1000; nsim <- 20

> ddata <- data.frame(rdiric(n = n, shape = exp(c(y1 = -1, y2 = 1, y3 = 0))),

x2 = runif(n))

> dfit <- vglm(cbind(y1, y2, y3) ~ x2, dirichlet, data = ddata, crit = "coef")

> head(fitted(dfit), 2) # Each row sums to unity

y1 y2 y3

1 0.092607 0.66398 0.24341

2 0.087349 0.66967 0.24298

> twenty.sims <- simulate(dfit, nsim)

and show that all the simulated fitted values for the first observation (i = 1)
sum to unity. (This is because the Dirichlet distribution has response vectors
and fitted values which sum to unity.)

(b) Compute the MLEs for each of the 20 simulation data sets, and work out
the standard deviation of each regression coefficient over the simulation data.
Compare them to the original SEs, i.e., of dfit.

Ex. 8.3. For each of fit1.baby and fit2.baby in Sect. 8.5.2, replace any one
of the component functions in age by a linear function.

Ex. 8.4. Smart Prediction

(a) Run the following code and verify that prediction for the model is wrong.

set.seed(123); n <- 20; pdata <- data.frame(x2 = sort(runif(n)))

pdata <- transform(pdata, y1 = rpois(n, exp(1 + 2 * x2)))

bad.pred <- glm(y1 ~ bs(scale(x2), df = 3), poisson, data = pdata)

(b) Using smart prediction, fit a model named good.pred that is the equivalent
of bad.pred. Show that good.pred results in correct prediction.

(c) Identify 5 more (ordinary) R functions, additional to those given in Table 8.3,
which will give prediction problems unless smart or safe.

Ex. 8.5. † Calling vglm.fit()

Suppose x2 ∼ Unif(0,1) independently, μ = exp(1+2x2), and Y ∼ Poisson(μ). We

want to estimate SE(β̂(1)1) and SE(β̂(1)2) from η = log μ using simulation.

(a) Suppose that each data set has n = 50. Let N = 1000. Call vglm.fit()

N times, each with a new data set generated as above. Then work out the
standard deviation of the estimates of each regression coefficient.

(b) Repeat (a) but call vglm() instead. How much faster is calling vglm.fit()?
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Ex. 8.6. For a proportional odds model fitted to the pneumo data mimicking
McCullagh and Nelder (1989, p.179),

pneumo <- transform(pneumo, let = log(exposure.time))

pom.pneumo <- vglm(cbind(normal, mild, severe) ~ let, propodds, data = pneumo)

obtain the n × M matrix of first derivatives of the log-likelihood function, i.e.,
the ith row is uT

i as in (3.14). Check that the column sums are 0 (cf. (A.17)).

Casually perusing scholarly journals, and briefly scanning those articles
that conduct nonlinear estimation, will convince the reader of two things.
First, many researchers run their solvers with the default settings. This, of
course, is a recipe for disaster. . .
—Altman et al. (2004)



Chapter 9

Other Topics

Surely you do not think that we can keep ourselves supplied with something
to say every day on such a variety of topics, unless we thoroughly cultivate
our minds by study, or that our minds could endure such strain, unless we
should relax them by the same study?
—Marcus Tullius Cicero

9.1 Introduction

This chapter looks at a few topics not conveniently placed previously. Section 9.2
is more computational in nature, and describes some details about how working
weights can be computed and some alternative algorithms. The remaining two
sections are more practical: Sect. 9.3 briefly describes information criteria such as
AIC and BIC which users often resort to for model selection, and Sect. 9.4 sketches
the details for bias-reduction estimation, currently for the GLM class, an approach
which can be useful when n is small.

9.2 Computing the Working Weights †

Usually the greatest impediment in implementing a VGLM is the computing of
adequate working weight matrices Wi (3.11). The EIM, leading to Fisher scoring,
is the first choice because it is usually positive-definite over a large region of the
parameter space, and consequently it is preferred over the OIM (Newton-Raphson
algorithm). Given reasonable initial values, Fisher scoring tends to work well when
the model is appropriate for the data—slow convergence is usually indicative of
something not quite right, hence the general recommendation to set trace = TRUE

to monitor convergence. The VGAM package mainly uses the EIM, else it resorts
to a technique called simulated Fisher scoring (SFS). This section describes SFS
and a few other techniques.

It is emphasized that each individual working weight matrix must be com-
puted, and they all need to be positive-definite—it is not sufficient that their

© Thomas Yee 2015
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sum is so. It is also remarked that software with symbolic algebra facilities, such
as mathStatica (Rose and Smith, 2002, 2013) and Maple, are powerful tools for
obtaining expressions for EIMs. Even R’s deriv() may also be useful for simple
log-likelihoods involving cumbersome differentiation. However, even if a closed ex-
pression for an EIM element is available, being able to evaluate it may be too
difficult, e.g., it may require numerical integration.

9.2.1 Weight Matrices Not Positive-Definite

Sometimes a subset of the Wi are not positive-definite, such as those whose fitted
values are far away from the optimal solution during the first few IRLS iterations.
There are many possible remedies, and a simple one currently adopted by VGAM is
to apply a Greenstadt modification to each Wi. This involves computing its spec-
tral decomposition Wi = Pi Λi P

T
i and replacing negative eigenvalues λi by |λi|,

and then recomputing a new W∗
i . If λi ≈ 0, then it is replaced by some small

positive value. The intent is to obtain a quick fix to get away from the fringes
of the parameter space and into its interior. If the last IRLS iteration employs a
Greenstadt modification, then the fitted model must be treated with caution, e.g.,
the estimated variance-covariance of the regression coefficients may be mislead-
ing or inaccurate (this is another good reason for monitoring convergence, e.g.,
setting trace = TRUE).

Another technique for ensuring the Wi are positive-definite is to make them
diagonally dominant, e.g., by adding a matrix diag(ε) where each element εj is
some small positive quantity. This can be done absolutely or relatively: replace
wjj by wjj + εj ; or wjj by wjj(1 + εj). Probably the relative method is to be
preferred in general, and the family function posbernoulli.tb() is an exam-
ple of this idea. This function has arguments ridge.constant and ridge.power

to describe a common value of εj , which decays quickly to 0 as the IRLS iter-
ations progress. Specifically, at iteration a, a positive value ωKaπ is added to
the diagonals, where K and π correspond to the two arguments, and ω is the
mean of elements of such working weight matrices. At present, ridge.power has
value π = −4. Upon convergence, the ridge factor should play a negligible role.

9.2.2 Simulated Fisher Scoring

SFS approximates

Var

(
∂
i
∂θ

)

(9.1)

by simulation at the current iteration θ(a), cf. (18.15) and (A.18). SFS requires
three ingredients:

(i) a model satisfying the usual MLE regularity conditions,
(ii) a tractable and computable score vector, and
(iii) the ability to generate random variates from the model, i.e., an r-type

function.
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In (9.1), repeated realizations of the score vector are generated and the sample
variance is computed. This is done for all i by a vectorized computation. If the
model is intercept-only, then the variance can be averaged over all i as well, in
order to obtain a more accurate estimate. The method will fail if all the random
variates have the same value so that the sample variance and therefore working
weight is zero.

Families which use simulated Fisher scoring have a nsimEIM argument. This
specifies the number of simulations to be performed, so that increasing its value
should lead to a more accurate approximation.

As a specific example, currently negbinomial() employs two algorithms, one
of which is SFS since rnbinom() comes in base R and

∂
i
∂ki

= ψ(yi + ki)− ψ(ki)− yi + ki
μi + ki

+ 1 + log
ki

μi + ki
(9.2)

is amenable. Clearly, −E[∂2
i/∂k
2
i ] involves an infinite series of trigamma func-

tions, hence it is not trivial to compute (Sect. 11.3.1). But something like the code
snippet

ysim <- rnbinom(n = n * S, mu = mu, size = kmat) # mu & kmat are current estimates

dl.dk <- digamma(ysim + kmat) - digamma(kmat) - (ysim + kmat) / (mu + kmat) +

1 + log(kmat / (kmat + mu)) # Random score vectors

run.varcov <- run.varcov + dl.dk^2 # Unscaled variance (element-wise)

can be performed nsimEIM times, and then the element-wise mean of the vari-
able run.varcov can be taken to estimate (9.1). Here, S is S, the number of
responses, and the matrices mu and kmat are both n× S. In this example though,

SFS may fail if μ
(a)
i is close to 0, because all random variates can be zero with

high probability.

9.2.3 The BHHH Method

IRLS is flexible enough to incorporate various different sub-algorithms. For exam-
ple, one popular technique for maximum likelihood estimation, called the Berndt-
Hall-Hall-Hausman (BHHH; Berndt et al., 1974) method, involves using the mean
of the outer products of the score vectors (gradients) to approximate the negative
Hessian. Applied to the log-likelihood (1.31), the approximation is

−W = −
(

n∑

i=1

wi

)−1 n∑

i=1

wi
∂
i
∂ηi

∂
i
∂ηT

i

(9.3)

evaluated at the current iteration. Clearly, one advantage is that its implementa-
tion does not require any second derivatives. Another is that the approximation
is positive-semidefinite—a better property than possibly being negative-definite
as in the case of the Newton-Raphson algorithm because the problem is not as
severe. It is common to allow for stepsizing to be applied in the BHHH algorithm,
and this entails multiplying (9.3) by the step, which can then be determined by a
line search. Applying the BHHH algorithm to the VGLM/VGAM framework, the
working weight for observation i can be wiW.
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9.2.4 Quasi-Newton Updates

Another method for obtaining the working weight matrices is to apply a quasi-
Newton update at each IRLS iteration where possible. Quasi-Newton methods,
also known as variable metric methods, usually apply a rank-1 or rank-2 update
to the Hessian matrix as the optimization proceeds. In this way, it is hoped that the
curvature in 
 becomes better and better approximated as the algorithm iterates.
There are two common quasi-Newton variants, called the DFP and BFGS (named
after their proposers, Davidon-Fletcher-Powell and Broyden-Fletcher-Goldfarb-
Shanno), with general consensus that the latter is superior. Importantly, only first-

order derivative information is used. One can start out withW
(0)
i = W

(1)
i = wiIM ,

which are steepest-descents steps for the first two steps.

One can apply the BFGS update to each working weight matrix W
(a−1)
i at

iteration a of the IRLS algorithm. Let

q
(a−1)
i = −

(
u
(a−1)
i − u

(a−2)
i

)
, s

(a−1)
i = η

(a−1)
i − η

(a−2)
i , (9.4)

where ui is defined in (3.14). The reason for the negative sign for q
(a−1)
i is that

the formula (9.5) is for minimizing an objective function, whereas we are maxi-
mizing a log-likelihood. Symmetry and positive-definiteness are assured, provided

that s
(a−1)T
i q

(a−1)
i > 0. We have, for each i and at iteration a,

W
(a−1)
i = W

(a−2)
i +

q
(a−1)
i q

(a−1)T
i

s
(a−1)T
i q

(a−1)
i

− W
(a−2)
i s

(a−1)
i s

(a−1)T
i W

(a−2)
i

s
(a−1)T
i W

(a−2)
i s

(a−1)
i

. (9.5)

Practical experience with this method shows that it does not perform as well
as simulated Fisher scoring. The latter gives the user direct control over how
accurately each EIM is to be computed, but the unmodified quasi-Newton method
lacks this ability. That the working weights (9.5) are not very accurate at the MLE
is reflected in the property that quasi-Newton does not produce very accurate
standard errors, e.g., as acknowledged by other authors such as Greene (2012,
p.1139). Hence, summary() cannot be expected to yield accurate SEs and Wald
statistics, etc. if the family function uses (9.5).

9.2.5 Numerical Derivatives

Occasionally, numerical derivatives of a function are computed for want of an
analytical expression, e.g., some blocks of (5.9). In one variable, the näıve forward
finite-difference approximation f ′(x) ≈ [f(x + h) − f(x)]/h for h ≈ 0, h �= 0,
has error O(h), which is better replaced by the central difference formula f ′(x) ≈
[f(x+ h/2)− f(x− h/2)]/h whose error is O(h2). Similarly,

f ′′(x) ≈ f ′(x+ h/2)− f ′(x− h/2)

h
≈ f(x+ h)− 2f(x) + f(x− h)

h2

has error O(h2).
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Table 9.1 Some information criterion (IC). See text for notation. Here, n = number of obser-
vations, p = number of parameters, � = log-likelihood. See Table 9.2 for the value of p for each

class in the VGLM/VGAM framework.

Acronym Function Formula Name

AIC AIC() −2�+ 2p Akaike’s information criterion.
Akaike (1973)

AICc AICc() −2�+ 2p+
2p(p+ 1)

n− (p+ 1)
AIC with a finite sample size

correction

BIC BIC() −2�+ p logn Bayesian information criterion.
Also known as the Schwarz
(1978) IC or SIC

The ideal choice of h is affected by the higher-order derivatives of f , and by
floating-point arithmetic, e.g., when h is too small then subtracting two nearly
equal quantities results in catastrophic cancellation and a large loss of significance.
A generally recommended choice is h =

√
εx where ε is known as the machine

epsilon: the smallest value of the form 2k for which 1 + ε > 1. It can be accessed
by .Machine$double.eps in R, and is typically around 10−16.

Finite-difference formulas for partial derivatives are also readily available, e.g.,
Cheney and Kincaid (2012). Package numDeriv provides methods for calculating
(usually) accurate numerical first and second order derivatives.

9.3 Model Selection by AIC and BIC

The VGLM/VGAM framework fits many models, therefore some form of model
selection is very useful. Given a set of candidate models, a common model-selection
technique is to choose the one with the minimum value of some information cri-
terion (IC). Among such, the Akaike IC (AIC) and Bayesian IC (BIC) are the
most common. Their formula follows the simple penalty function idea outlined
in Sect. 1.5.1, by which the log-likelihood is contrasted with the number of pa-
rameters in the model. More generically, this is the goodness-of-fit of the model
penalized by its complexity.

While the likelihood ratio test is applicable to nested models, ICs are commonly
applied to non-nested models. They measure the relative qualities of statistical
models, not their absolute qualities, so it is their ranking that matters.

The AIC has been shown to be inconsistent: as n → ∞, it tends to overfit. In
contrast, BIC is a consistent estimator of the true model, which roughly means that
it will pick the truly best model, from a set of candidate models, with probability
one, asymptotically.

The AIC has been corrected for bias in finite samples by Hurvich and Tsai
(1989), commonly called AICc. Its derivation is based on an LM. Some authors
such as Burnham and Anderson (2002) recommend using AICc over AIC when the
sample size is small, or when the number of parameters is large. When n is large,
their difference tends to be negligible.

The Bayesian or Schwarz IC is closely related to the AIC, but it has a greater
penalty term for model complexity, making it a popular alternative to the AIC,
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especially when n is large. It too has been applied widely to maximum likelihood-
based models, but it has a tendency to underfit when n is small because of its
heavy penalty term.

Methods functions for computing AIC and BIC for VGLMs, VGAMs and other
variants are available in VGAM (Table 9.1). To compute these, the number of
parameters p for each class of models is needed. Table 9.2 gives formulas for p, and
for simplicity, some of the formulas are given for special cases of M1 = 1 models
only. For VGAMs with vector smoothing splines, the effective degrees of freedom
is a heuristic quantity, therefore model selection for these models is approximate.

When comparing certain models with others, it is necessary to set the
argument omit.constant = TRUE, e.g., posbinomial(omit.constant = TRUE)

versus posbernoulli.tb(). This is because the log-likelihood functions based
on (17.12) and fB(y) in Table 17.6 differ by constants of the form log

(
N

Nyi

)
. Setting

the argument as such omits the constants so that the 
, and consequently AIC and
BIC, become comparable.

In closing, we note that in stats, the methods function step() allows an au-
tomated stepwise search of variables for lm() and glm() objects, based on the
AIC. Both forward and backward directions are allowed for at any particular step.
Users of stepwise regression for variable selection should be mindful of its potential
perils, e.g., Miller (2002), who writes

I hope that it will disturb many readers and awaken them to the dangers of
using automatic packages that pick a model and then use least squares to
estimate regression coefficients using the same data.

A more fully featured function called stepAIC() is available in MASS. At present,
there is no step() equivalent for VGLMs/VGAMs.

9.4 Bias-Reduction

While maximum likelihood estimation results in estimates that are asymptotically
unbiased, for small samples there may be a sizeable bias that warrants some form
of correction. This section describes a bias-reduction technique that can be easily
embedded within the IRLS algorithm of VGLMs. We will find some of its techni-
calities are very much related to the hat matrix H described in Sect. 3.7.5. Recall
from Sect. 2.3.6.3 the simple example of complete separation and quasi-complete
separation.

To reemphasize the need and effect of bias-reduction, consider the simple ex-
ample shown in Fig. 9.1 of n = 20 equally spaced points from −1 to 1 including
the endpoints, with yi = 0 for negative xi, else yi = 1. This completely separa-
ble data set can easily arise from an underlying logistic regression model when the
sample size is small. Figure 9.1 plots the näıve logistic regression fit—its estimated
slope diverges to infinity but the algorithm is deemed to have converged before it
explodes. Overlaid are the bias-reduced binary regression models with logit and
probit links—the slopes are finite and monitoring the convergence of the models
displays no unusual behaviour. To obtain a finite estimate, bias-reduction has had
the effect of shrinking the regression coefficients towards 0.

Figure 9.1 points towards an increasingly common application: in an era of ‘big
data’ that includes large genomic studies in bioinformatics, fitting multinomial
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Table 9.2 Number of parameters for models fitting within the VGLM/VGAM/etc. framework.
Several equivalent formulas are given for some models. Notes: (i) R is the rank for several of

the models; and S is the number of responses/species too. (ii) The edf.nl refers to the effective
nonlinear degrees of freedom (ENDF) of a smooth (0 = linear function). (iii) Only special case
models of QRR-VGAMs and RR-VGAMs are given here.

Model Number of parameters

VGLMs pVLM = p∗ =
p∑

k=1

ncol(Hk) = dim(β∗) =

ncol(XVLM)

VGAMs
p∑

k=1

ncol(Hk)∑

j=1

{
1 + edf.nl(f∗

(j)k
(xk))
}

RR-VGLMs
p1∑

k=1

ncol(Hk) + (M −R+ p2)R

RCIMs (M1 = 1) 1 + (R+ 1)(n+M − 2)−R2

QRR-VGLMs (CQO) (M1 = 1, equal toler-
ances)

p1∑

k=1

ncol(Hk) + {S−R+ p2 + (R+1)/2}R

QRR-VGLMs (CQO) (M1 = 1, unequal toler-
ances)

p1∑

k=1

ncol(Hk)+{S−R+p2+S(R+1)/2}R

RR-VGAMs (CAO) (M1 = 1 and R = 1)
p1∑

k=1

ncol(Hk) +

S∑

s=1

{
1 + edf.nl(f

(s)1
(ν1))
}

logit models to sparse data in a high-dimensional x-space often results in infinite
estimates in some β̂k. Bias-reduction is a technique that will always give a finite
answer, hence a ‘sensible’ solution to some people.

For a regular parametric model, the maximum likelihood estimator β̂ has an
asymptotic bias of the form

b(β) =
b1(β)

n
+

b2(β)

n2
+

b3(β)

n3
+ · · · . (9.6)

To reduce this, Firth (1993) gave a general method removing the O(n−1) term. It
involves a modified score vector with components

U∗
k (β) = Uk(β) +Ak(β), k = 1, . . . , p, (9.7)

in which Ak is allowed to depend on the data and is Op(1) as n→∞. Here,

Uk(β) =
∂


∂βk
=

∂


∂η

∂η

∂βk
=

n∑

i=1

(ui)k xi, cf. (3.14). (9.8)

Let β̃ be the solution of the adjusted score function

U∗(β) = U(β) +A(β) = 0. (9.9)
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Fig. 9.1 Fitted curves for three binary regression models fitted to completely separable data,
with n = 20. A grey vertical line at x2 = 0 is plotted. If there were an additional two points
at (0, 0) and (0, 1), then the data would have quasi-complete separation.

Firth showed that β̃ has O(n−2) bias, if A is chosen to be

A(E) =
1

2
trace

(I−1
E (Pk +Qk)

)
, (9.10)

where Pk = E(UUTUk) and Qk = E(−IO Uk) are higher-order joint moments of

the derivatives of 
. Another expression for A(E) is −IE(β) b1(β)/n. The reason
for the superscript “(E)” is that this is one of two popular choices for A—based
on the EIM—with the other being based on the OIM and usually denoted by
superscript “(O)”. Solving (9.9) may be achieved by modifying the usual VGLM
Fisher scoring algorithm to

β̃
(a)

= β̃
(a−1)

+
(
I(a−1)

E

)−1

U (a−1)∗,

and standard errors for β̃ can be obtained in the usual way by taking the square
roots of diag(I−1

E ) evaluated at β̃.
Unfortunately, obtaining closed-form expressions for ∂A/∂β involves tedious

algebra even for the simplest models. To address this, Kosmidis and Firth (2010)
developed a new generic algorithm, which unifies bias-reducing methods previously
proposed for specific models. This new algorithm uses a series of iterative bias

corrections, e.g., using the A(E) adjustment, β(a) = β̂
(a) − b(β(a−1)) where β̂

(a)

is the candidate value for the MLE based on taking a single Fisher scoring step
from the current value of the bias-reduced estimate, and b(β(a−1)) is the O(n−1)

bias evaluated at β(a−1).
For GLMs, (9.9)–(9.10) are tractable and are as follows. The adjusted score

function reduces to

U∗(β) =

n∑

i=1

wi

di

(

yi +
hii d

′
i

2wi
− μi

)

xi (9.11)

where di = dμi/dηi, d
′
i = d2μi/dη

2
i , and hii is the diagonal of the hat matrix (3.63).

Equation (9.11) suggests simply using the pseudo-response
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y∗i = yi +
hii d

′
i

2wi
(9.12)

instead of yi in the IRLS algorithm. Two cases of this, with logit and probit links
for a binary response, are seen in Fig. 9.1.

9.4.1 Binary Case

The special case of logistic regression warrants further comment. For this, there
are three configurations of the sample points (xi, yi): completely separation, quasi-
complete separation and overlap (Albert and Anderson, 1984). MLEs only exist
for the latter case. The definitions of the separation cases can be formulated by
considering a multinomial logit model with J = M + 1 groups. Let the last group
be baseline, say, and let β† be the vector of all the regression coefficients as in (3.8).
Then groups H1, . . . ,HJ are completely (quasi-completely) separated for the sam-
ple x1, . . . ,xn, if there exists an β† �= 0 such that for all xi ∈ Hj and j, k = 1, . . . , J
(j �= k)

(
βj − βk

)T
xi > (≥) 0

then β̂
†
does not exist. Its effects are that some regression coefficients diverge

to ±∞. With such data, many software implementations give warnings that are
vague, if any at all. In R, the safeBinaryRegression package can be used to detect
(but not remedy) this problem.

9.4.2 Software Implementation

At present, VGAM implements bias-reduction for only a few families, e.g.,
poissonff() and binomialff(). They have a default argument bred = FALSE

which can be assigned TRUE to obtain β̃. Another package with bias-reducing ca-
pabilities is brglm by I. Kosmidis, and it has a function separation.detection()

that can be used also to detect separation. A third package, specifically for logistic
regression and based on Firth (1993), is logistf.

Some users might be tempted to use always the bias-reduced method, as it
seems to offer a free lunch compared to the ordinary method. This is not advised
because bias-reduction may inflate the asymptotic variance substantially, e.g., in
the gamma model. In particular, Wald-type confidence intervals for β̃ perform
poorly in small samples.

Bibliographic Notes

Osborne (2006) looks at several relevant topics such as the connection between
least squares and Fisher scoring, especially for ML problems belonging to the
exponential family (3.1) and monitoring convergence; see also Osborne (1992).
Lange (2010, Chap.14) and Lange (2013, Chap.10) cover some of the basic aspects
of scoring.
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Simulation-based estimation methods are described more generally in Greene
(2012, Chap.15). The Greenstadt modification is described in Kennedy and Gentle
(1980), as well as other numerical topics. For more about non-invertible Hessians,
see Gill and King (2004). Yee and Stephenson (2007) suggested the use of the
quasi-Newton update method of Sect. 9.2.4 within the IRLS algorithm.

Detailed treatments of IC-based model selection can be found, e.g., in Sakamoto
et al. (1986), Burnham and Anderson (2002), Miller (2002), Claeskens and Hjort
(2008), Konishi and Kitagawa (2008). A few aspects of model selection are given in
Ripley (2004). For practical examples of variable selection and stepwise regression
for LMs/GLMs, try Venables and Ripley (2002), Fox andWeisberg (2011), Faraway
(2015).

Bias-correction as a whole now has a sizeable literature, and Kosmidis (2014a)
is a review paper that gives context to the bias-reduction technique described here.
A reference for separable data is Lesaffre and Albert (1989).

Exercises

Ex. 9.1. Run the mix2poisson() example on the London Times data. Fit sev-
eral other similar models, but with different settings for the nsimEIM argument.
Does this make much difference to the solution? Answer by comparing the MLEs
and comparing their standard errors.

Ex. 9.2. For a standard Poisson regression model, how large does nsimEIM

have to be in order that the sample variance of randomly generated ∂
i/∂η is

within ±0.1 of the true value μ
(a)
i = 10, with 95% probability?

Ex. 9.3. Low Birthweights: Model Selection
Consider the data frame birthwt in MASS, which concerns a medical study about
low birth weight (less than 2.5 kg) babies, and several risk factors for such. About
a third are classified as being low weight. We shall fit logistic regressions to the re-
sponse low, with candidate explanatory variables lwt, age and (transformed) race.
[Claeskens and Hjort (2008)]

(a) Create a data frame from birthwt which has a variable f.race, say, that is a
factor version of the race variable (currently it is numeric).

(b) It is thought that lwt is an important (protected) variable, therefore must
always be in a logistic regression. The other two, age and f.race, are optional.
Fit several combinations of models and use AIC to choose the best one.

(c) Repeat (b) using the BIC. Are the ‘best’ models different?

Ex. 9.4. Complete Separation for Binary Responses
Consider Fig. 9.1.

(a) Suppose P (Yi = 1|xi) = 1
3 independently, and the xi are equally spaced

in [−1, 1] including the endpoints. Compute the probability of complete sepa-
ration, given that the data are not all 0s or all 1s. The separation may occur
anywhere in (−1, 1).

(b) Repeat (a) for general n; obtain a formula for the probability of complete
separation. Plot the probabilities for n = 4, 6, 8, . . . , 20. Comment.
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Ex. 9.5. Bias-Reduction: Adjusted Responses
Show that bias-reduction, when applied to the following situations, results in the
following pseudo-responses. Hint: use (9.12) and some links are in Table 1.2.

(a) Poisson regression: y∗i = yi + hii/2, [(Kosmidis and Firth, 2009, Table 1)]
(b) Poisson regression with η = μ: y∗i = yi,
(c) logistic regression: y∗i = yi + hii

(
1
2 − pi

)
,

(d) probit analysis: y∗i = yi − hii pi(1− pi)ηi/[2φ(ηi)].
(e) For binary regression with a complementary log-log link: derive y∗i .

Ex. 9.6. Search for a binary response in xs.nz which is completely separable
for some subset of the data, but having at least n ≥ 100. Then fit a bias-reduced
logistic regression.

Now this is not the end, nor is it even the beginning of the end, but it is,
perhaps, the end of the beginning.
—Winston Churchill, November 1942
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Some Applications



Chapter 10

Some LM and GLM Variants

Experience has shown, and a true philosophy will always show, that a vast,
perhaps the larger portion of the truth arises from the seemingly irrelevant.
—Edgar Allan Poe, The Mystery of Marie Rogêt

10.1 Introduction

In this chapter we survey a few miscellaneous models that may be considered
extensions of LMs and binomial GLMs, and which are accommodated within the
VGLM/VGAM framework.

10.2 LM Variants

The standard linear model has been embellished in more ways than any other
regression model. While the variants are almost endless, we obtain a flavour by
considering a few here which naturally succumb to the framework. In particular,
they are varying-coefficient models where the regression coefficients are modelled
as functions of some explanatory variables, the Tobit model which is a censored
LM, seemingly unrelated regressions where we have a set of LMs tied together at
the random-error level, and the first-order autoregressive time series model which
allows for correlation between successive yi values. These models are summarized
in Table 10.1.

10.2.1 Varying-Coefficient Models

Rather than having fixed regression coefficients as an LM, varying-coefficient mod-
els (VCMs) allow the regression coefficients to be modelled as functions of other
explanatory variables (known as effect modifiers), here with the help of parameter

© Thomas Yee 2015

T.W. Yee, Vector Generalized Linear and Additive Models,
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Table 10.1 LM variants described in Sect. 10.2.

Model Main specification VGAM family function

Varying coefficient model Eq. (10.1) normal.vcm()

Tobit model Eqs. (10.6)–(10.7) tobit()

Seemingly unrelated regressions Eq. (10.13) SURff()

AR(1) time series model Eqs. (10.27)–(10.29) AR1()

link functions. For example, we may want a subset of regression coefficients to be
positive, and another subset to be positive and add to unity. Although VCMs can
be generalized to, e.g., the GLM class, we restrict our attention to the LM here.

Notationally, we augment “(xi, yi)” in this section by (xi,x2i, yi) to represent
our data, for i = 1, . . . , n. Here, the usual LM applies to Yi as a linear function
of x2i = (x2i1, . . . , x2ip2

)T , and the regression coefficients are allowed to vary
with xi. We write the VCM as Yi ∼ N(μi, σ2) independently, where

μi =

p1∑

k=1

γk(xi) · x2ik +

p2∑

k=1+p1

γk(xi) · x2ik, (10.1)

coupled with ηM = gM (σ) or ηM = gM (σ2). The RHS of (10.1) has two parts
and this is intentional, because the right-most part applies specifically to an op-
tional multilogit() link that enables the regression coefficients γ1+p1

, . . . , γp2
to

be positive and sum to unity. These γk might be interpreted as proportions, e.g.,
asset allocations in a financial portfolio, after adjusting for covariates x21, . . . , x2p1

.
The effect modifiers xi sometimes contain a time variable so that the model

captures the temporal changes of the response with respect to the x2i. Linearity
between E(Y ) and the x2i is still retained, but the additional flexibility in the
coefficients allows for the modelling of a special type of interaction. Consequently,
VCMs have found applications in such areas as nonlinear time series, functional
data analysis and longitudinal studies, and financial modelling.

As a VGLM/VGAM, the vector of linear/additive predictors for (10.1) is ηT ≡
(η1, . . . , ηM )T =

(

g−1
1 (γ1), . . . , g−1

p1
(γp1

), log

(
γ1+p1

γp2

)

, . . . , log

(
γp2−1

γp2

)

, log σ

)

, (10.2)

for parameter link functions gj . Thus one can model each of the regression coeffi-
cients γk(xi) nonparametrically as a GAM. With no multi-logit links, and identity
links with ηj(xi) = βT

j xi throughout, the VCM (10.2) can easily be fitted using
any LM software. A multi-logit link applied to several proportions has one less
independent parameters, therefore if there is such a link then M = p2, other-
wise M = p1 + 1 = p+ 1.

The VCM (10.1)–(10.2) is implemented by the family function normal. vcm().
Covariates x2i are serviced by the argument form2, which is assigned the usual LM
formula for the mean. How each regression coefficient γk is modelled as a function
of the xi is entered through the argument formula. Here is an example.
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vglm(y1 ~ 1 + x2, form2 = ~ 1 + x2.2 + x2.3 + x2.4 + x2.5,

normal.vcm(link.list = list("(Intercept)" = "multilogit",

"x2.2" = "multilogit",

"x2.3" = "loge",

"x2.4" = "logoff",

"(Default)" = "identitylink",

"x2.5" = "multilogit"),

earg.list = list("(Intercept)" = list(),

"x2.2" = list(),

"x2.3" = list(),

"x2.4" = list(offset = 1),

"(Default)" = list(),

"x2.5" = list()),

zero = c(1:2, 5)), data = ndata, trace = TRUE)

which has xi = (1, xi2)
T as effect modifiers, and it fits

μi =
∑

k ∈ C1

γk(xi) · x2ik +
∑

k ∈ C2

γk(xi) · x2ik

where γ1 + γ2 + γ5 = 1 with each γj > 0. Here, the sets C1 = {3, 4},
C2 = {1, 2, 5}, γ3 = exp(η3) and γ4 = exp(η4)−1. The last sorted level of C2 is the
baseline/reference group and this is dropped from η, hence M = 5. The default
for η5 is log σ. The order of the variables here has not been arranged as (10.1), and
variables 1, x2.2 and x2.5 comprise x2i. The use of zero = c(1:2, 5) means σ
and the multi-logit link parameters are modelled as intercept-only.

A default link function can be assigned using "(Default)" as a list component.
This mirrors the naming style "(Intercept)" for 1 in a formula. As a default,
normal.vcm() uses the identity link for all γk, i.e., γk = β(k)1 x1+β(k)2 x2+ · · · .
Extra arguments such as offsets can be passed in using the earg.list argument,
and it requires names just like list.link to match up the respective term. An
ordinary LM is fitted to obtain initial values for the γk, and to ensure that they
satisfy the range restrictions pertaining to each parameter link function, some
of the most common link functions in Table 1.2 are checked explicitly. However,
should that fail, there are arguments icoefficients and etastart.

Technically, the working weight matrices are strictly of rank-1. To see this,
suppose that there are no multilogit terms in (10.1) for simplicity, then

− E

(
∂2
i

∂ηj ∂ηk

)

= −E
(
∂2
i
∂μ2

)
∂μi

∂γj

∂μi

∂γk

∂γj
∂ηj

∂γk
∂ηk

=
1

σ2
i

· x2ij · x2ik · ∂γj
∂ηj

∂γk
∂ηk

(10.3)

so that

Wi ≡ − E

(
∂2
i

∂η ∂ηT

)

∝ x2i x
T
2i. (10.4)

A remedy for this problem is to apply the BHHH method described in Sect. 9.2.3.
When an ordinary LM is fitted as the VCM, this remedy leads to the LM so-
lution (Ex. 10.2). The BHHH method pools the x2i x

T
2i over the entire data set.

Specifically, the outer product in the very most-RHS of (10.4) is approximated
by n−1XT

2 X2. Partly as a result of this approximation, normal.vcm() can exhibit
fragility if disparate link functions are used.
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10.2.1.1 Engine Example

As an illustration, we mimic part of an analysis described in Hastie and Tibshirani
(1993) concerning a data set of n = 88 observations from a single-cylinder engine.
The response is Y = NOx, the nitric oxide and nitrogen dioxide concentration when
fuelled by ethanol. The explanatory variables are E for the engine’s equivalence
ratio, and C for its compression ratio.

A plot of Y versus E, stratified by C into three groups (low, medium and high
values), is given in Fig. 10.1a. Likewise, a plot of Y versus E for three strata
of C is given in Fig. 10.1b, and this plot reveals interactions because systematic
differences occur between them, as also can be seen in Fig. 10.2, which is Fig. 10.1b
with least squares lines fitted to each stratum. These lines have different slopes.
After fitting several models (10.55)–(10.58), they focus on

NOx = β1(E) + β2(E) · C + ε, (10.5)

which is a VCM applied to the simple linear regression of Y versus C, where
smoothing splines are used to estimate the intercept and slope as a function of E.
This is justified from Fig. 10.2, because a simple linear regression of Y versus C
is not unreasonable for each stratum.

We can fit the VCM (10.5) with

> data("ethanol", package = "locfit")

> fit.vcm <- vgam(NOx ~ s(E, df = 5.8), normal.vcm,data = ethanol, form2 = ~ C)

Here, to provide about 8 degrees of freedom as Hastie and Tibshirani (1993), the
empirical formula df ≈ 5

4 trace(S)− 1
2 , (4.46), was used, hence trace(S) ≈ 6.8; this

contains an intercept and a slope. Then each (centred) component function can
be plotted, with some labelling, by

> working.resids <- resid(fit.vcm, type = "working")[, 1:2]

> plot(fit.vcm, se = TRUE, scol = "blue", which.cf = 1,

resid = working.resids, pcol = "orange", main = expression(hat(beta)[1](E)))

> plot(fit.vcm, se = TRUE, scol = "blue", which.cf = 2,

resid = working.resids, pcol = "orange", main = expression(hat(beta)[2](E)))

to give Fig. 10.1c,d. Not surprisingly, they are very similar to their solution (Hastie
and Tibshirani, 1993, Figs. 3(a)–(b)). It can be seen from the scale of the y-axis

that the effect of β̂1(E) is much larger than β̂2(E), and that both functions are
nonlinear.

10.2.2 The Tobit Model

Figure 10.3a displays what appears to be an LM fitted to some fictional
scatter plot data. The response is the amount spent per month by house-
holds on a certain type of good such as “luxuries”, regressed against
X = household income. What makes this different from an ordinary LM is the
presence of yi = 0 values, which are plotted with a different colour and symbol. If
the yi = 0 observations were treated at face-value, then β̂ from an ordinary LM fit
would yield a downwards-biased estimate of the slope coefficient and an upward-
biased estimate of the intercept. It could be surmised that the mean response is
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Fig. 10.1 (a)–(b) Scatter plots of the ethanol data stratified by C and E, respectively. In (a) C

has been split into low, medium and high subgroups. In (b) E has been split into three similar
subgroups—see Fig. 10.2 for an expansion. Plots (c)–(d) are the estimated (centred) component
functions of the VCM (10.5) where both the intercept and slope are a smoothing spline of the
variable E. The dashed lines are pointwise ±2 SEs about the β̂j(E). The points about the curves
are the working residuals.

zero until the household income exceeds a certain level. One could envisage an
underlying LM whose negative points have been replaced by zero values—so that
it satisfies the constraint that yi ≥ 0 (expenditures are non-negative because this
was prior to the widespread use of credit cards!). Tobin (1958) first considered
such a model, and this has since been referred to as the (standard) Tobit model.

The Tobit model is essentially a censored normal distribution. The standard
Tobit is the multiple linear regression

y∗i = βTxi + εi, εi ∼ N(0, σ2) independently, (10.6)

coupled with

yi =

{
y∗i , if y∗i > 0;
0, if y∗i ≤ 0.

(10.7)

With more generality, the Tobit model has observations yi = min{max(y∗i , L), U}
where L < U are two known censoring points (L = 0 and U =∞ in the standard
model.) That is, the response is as usual if it lies between L and U , else has
value L or U if ‘out of range’. The censoring points are determined by physical
limitations/meanings.
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Fig. 10.2 Expansion of Fig. 10.1b with a least squares line added to each subset.

Historically, the word “Tobit” was coined by Goldberger (1964) as an amalga-
mation of “Tobin’s probit.” Probit models share similarities with the Tobit model.

Many refer to Y ∗ as a latent (i.e., unobserved) variable. Tobit modelling is
synonymous with Y being a limited dependent variable, i.e., a dependent variable
subject to a known upper and/or lower bound. As well as being widely used
in econometrics, the Tobit model has potential applications in every field where
the ordinary LM is used, e.g., an academic test that is too difficult/easy so that
many students score the lowest/highest possible mark, respectively, a water-testing
device for lead poisoning that is applied to households but is unable to detect lead
concentrations below a certain threshold.

Note that P (Y = L) = P (Y ∗ ≤ L) and P (Y = U) = P (Y ∗ ≥ U), so that the
likelihood function comprises a mixture of one continuous and two discrete parts:

∏

i:yi=L

Φ

(
L− μ∗

i

σi

) ∏

i:L<yi<U

σ−1
i φ

(
yi − μ∗

i

σi

) ∏

i:yi=U

Φ

(−(U − μ∗
i )

σi

)

, (10.8)

where μ∗
i = xT

i β. The middle term corresponds to a doubly truncated normal
(10.59), and the EIM for the standard Tobit is given in Amemiya (1985). The
MLE of a correctly specified Tobit model is consistent.

The VGAM family tobit() implements Tobit model estimation. Not surpris-
ingly, it is similar to uninormal() in that it has

g1(μ
∗) = η1 = μ = βT

1 x (10.9)

g2(σ) = η2 = log σ = β(2)1 (10.10)

as the default. Here is a simple simulated example (which serves as the basis of
Fig. 10.3).

> tdata <- data.frame(Income = seq(0, 2, length = (n <- 100))); set.seed(1)

> Meanfun <- function(x) -2 + 3 * x

> tdata <- transform(tdata, Spending = rtobit(n, mean = Meanfun(Income)))

> tfit <- vglm(Spending ~ Income, tobit, data = tdata)

> coef(tfit, matrix = TRUE)

mu loge(sd)

(Intercept) -1.9940 -0.12474

Income 3.0581 0.00000
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Fig. 10.3 Tobit model fitted to some simulated data. This mimics the type of problem moti-
vating (Tobin, 1958), viz. spending is non-negative, and is linear beyond a certain income. Values
of zero are plotted with a different colour and symbol for clarity. (a) The purple dashed line is
a näıve fit that treats all values as if they were ‘real’. The estimate and the truth are similar.
(b) The 3 types of fitted values currently distinguished by the argument type.fitted.

There are currently three types of means that tobit() may return as fitted values,
as determined by the argument type.fitted (they are illustrated in Fig. 10.3b):

"uncensored" μ̂∗
i , the mean corresponding to (10.6), which is linear with respect

to xi, and unbounded. That is, the estimate of E(Y ∗
i |x) = xT

i β̂
(the default).

"censored" min{max(μ̂∗
i , L), U}, the censored mean. These fitted values are

constrained to lie in [L,U ].
"mean.obs" The expected value E(Y |xi) =

μ∗
i {ΦU − ΦL}+ σi {φL − φU}+ LΦL + U(1− ΦU ) (10.11)

where ΦU = Φ((U −μ∗
i )/σi), φL = φ((L−μ∗

i )/σi), etc. This is the
mean of the observed values yi. These fitted values are also con-
strained to lie in [L,U ]. This version asymptotes smoothly where
the regression line meets the threshold, whereas the "censored"-
typed fitted value has a discontinuous first derivative at the inter-
section.

To finish up here, it is mentioned that Amemiya (1985) distinguishes between 5
variants of the Tobit model, called Types I–V, depending on where and when
censoring occurs. Family function tobit() implements the Type I. The other
types are more complicated, involving more than one latent variable or response.

10.2.3 Seemingly Unrelated Regressions

Seemingly unrelated regressions (SUR) were proposed by Zellner (1962) and that
has become one of the most enduring innovations in the field of econometrics. The
basic model is a set of LMs tied together at the error-term level, and it can be
written

y(j) = Xj β
(j) + ε(j), j = 1, . . . ,M, (10.12)
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where y(j) is an n × 1 vector of observations on the jth response variable, Xj is
an n× pj model matrix with full column-rank, E(ε(j)) = 0, and Cov(ε(j), ε(k)) =
σjk In, for j, k = 1, . . . ,M . If the observations correspond to different time points,
then the model implies that the errors in different equations are correlated at each
point in time but are uncorrelated over time. The entire system may be written

⎛

⎜
⎜
⎜
⎝

y(1)

y(2)

...
y(M)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

X1 0 · · · 0

0 X2
. . .

...
...

. . .
. . . 0

0 · · · 0 XM

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

β(1)

β(2)

...

β(M)

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

ε(1)

ε(2)

...
ε(M)

⎞

⎟
⎟
⎟
⎠

(10.13)

or y = Xβ + ε, say, where E(ε) = 0 and Cov(ε) = Σ0 ⊗ In.
If Σ0 (= [(σjk)]) is known, then the single equation ordinary and generalized

least squares estimators are

β̂OLS = (XTX)−1XTy and (10.14)

β̂GLS =
[
XT (Σ−1

0 ⊗ In)X
]−1

XT (Σ−1
0 ⊗ In)y. (10.15)

The OLS estimator is consistent, but it does not take into account the correla-
tion structure of the disturbances across equations. Consequently, it is generally
less efficient than β̂GLS. The GLS estimator (also known as Aitken’s GLS estima-
tor) is the best linear unbiased estimator (BLUE) for β. Zellner (1962) observed

that β̂GLS in (10.15) is the Gauss-Markov estimator, given Σ0, of β. He showed

that β̂GLS reduces to β̂OLS when X1 = · · · = XM and/or Σ0 is diagonal. In the
latter case, the regressions are truly unrelated.

The equations in (10.12) can be stacked side-by-side to give

(
y(1)

∣
∣ · · · ∣∣y(M)

)
=

(
X1 β

(1)
∣
∣ · · · ∣∣XM β(M)

)
+
(
ε(1)

∣
∣ · · · ∣∣ε(M)

)
(10.16)

=
(
X1

∣
∣ · · · ∣∣XM

)
Diag(β(1), . . . ,β(M)) +

(
ε(1)

∣
∣ · · · ∣∣ε(M)

)
,

where Cov(ε(j), ε(k)) = σjk In. Continuing to assume thatΣ0 is known, the ith row
of (10.16) is

yT
i =

(
xT
i1 β

(1), . . . ,xT
iM β(M)

)
+ εTi (10.17)

where E(εi) = 0, Cov(εi) = Σ0, and the εi are independent. We can write the
transpose of (10.17) as yi = ηi+εi and interpret this as a VLM, so that constraint
matrices Hk specify which response variables each xk is a regressor for. If Σ0 is
unknown, then we can still treat (10.17) as a VLM, provided that an estimate of
it is available. Indeed, the model can be be fitted with vglm(), and the SURff()

family. Its arguments are

> args(SURff)

function (mle.normal = FALSE, divisor = c("n", "n-max(pj,pk)",

"sqrt((n-pj)*(n-pk))"), parallel = FALSE, Varcov = NULL,

matrix.arg = FALSE)

NULL
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As well as constraining the coefficients, the VGLM/VGAM framework allows
the xij facility to operate on (10.17) too. It is noted, however, that XVLM �= X
here, because the ordering of the response taken by VGAM differs from the order
of the response vector in (10.13).

Suppose now that Σ0 in the seemingly unrelated regressions model is unknown
(the usual case). Zellner’s idea is to replace Σ0 by a consistent estimator, Σ̃0, say.
Then one can utilize the estimated GLS estimator

̂̂
β =

[
XT

(
Σ̃

−1

0 ⊗ In

)
X
]−1

XT
(
Σ̃

−1

0 ⊗ In

)
y, (10.18)

where Σ̃0 is based on OLS residuals ε̃j = y(j) −Xj β̂
(j)

OLS and has elements

σ̃jk = n−1 · ε̃Tj ε̃k, j, k = 1, . . . ,M. (10.19)

Then
̂̂
β, defined by (10.18) and (10.19), is frequently referred to as Zellner’s SUR

estimator and is very commonly used. Other names include Zellner’s (asymptoti-
cally) efficient estimator and Zellner’s 2-stage (Aitken) estimator. It is a two-stage
estimator because it entails M OLS regressions followed by the GLS regression.
Zellner (1962) showed that the bias of (10.18) is at most O(n−1), and that it is
asymptotically efficient. Under general conditions, its asymptotic distribution is
normal.

A second estimator is to continue past the 2-stage estimator by iterating be-
tween estimating Σ0 from the latest residuals and re-estimating β by GLS, until
final convergence is achieved. This is known as the iterative GLS (IGLS) method
(another common name is Zellner’s iterative (Aitken) estimator).

A third estimator, obtainable by setting the argument mle.normal = TRUE, is
the MLE made under the assumption that the errors have a multivariate normal
distribution. Then

β̃ML =
[
XT

(
Σ̃

−1

0,ML⊗ In

)
X
]−1

XT
(
Σ̃

−1

0,ML ⊗ In

)
y, (10.20)

Σ̃0,ML = n−1 · (ũ1 ũ2 · · · ũM )
T
(ũ1 ũ2 · · · ũM ) , (10.21)

where ũj = y(j) − Xj β̃
(j)

ML are vectors of residuals. Under general conditions,

β̃ML has the usual properties of consistency, asymptotic efficiency and asymptotic
normality, and having asymptotic variance-covariance matrix

(
XT

[
Σ−1

0 ⊗ In
]
X
)−1

. (10.22)

In fact, all three estimators have the same asymptotic properties.
If the variables in Xj are all the same and β1 = · · · = βM , then this is known

as the pooled model. It corresponds to constraint matrices H1 = · · · = Hp = 1M ,
which is the usual parallelism assumption. An example is given below. A slight
relaxation of this model is to allow H1 = IM instead.

SUR amounts to estimated GLS (EGLS) or feasible GLS (FGLS)—this is GLS
with a variance-covariance matrix that has been estimated consistently. The 2-
stage SUR estimator is unbiased in small samples, assuming that the error terms
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Table 10.2 General Electric (GE) and Westinghouse (WE) data (gew). Regressors x2 & x4 are
the capital stocks for GE, and x3 & x5 are the market values for WE. The response variables y1
& y2 may be regarded as investment figures for the companies. The year is shown for GE only.

General Electric Westinghouse

year y1 x2 x3 year y1 x2 x3 y2 x4 x5 y2 x4 x5

1934 33.1 97.8 1170.6 1944 93.6 319.6 2007.7 12.93 1.8 191.5 39.27 92.4 737.2
1935 45.0 104.4 2015.8 1945 159.9 346.0 2208.3 25.90 0.8 516.0 53.46 86.0 760.5
.
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.

.

.

.
.
.
.

.

.

.
.
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.

.

.
.
.
.

.
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.
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.
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.

.

.

.
.
.
.

.

.

.
1942 61.3 319.9 1749.4 1952 179.5 800.3 2371.6 37.02 84.4 617.2 90.08 174.8 1193.5

1943 56.8 321.3 1687.2 1953 189.6 888.9 2759.9 37.81 91.2 626.7 68.60 213.5 1188.9

have a symmetric distribution; in large samples, it is consistent and asymptotically
normal with limiting distribution

√
n

(
̂̂
β − β

)
D−→ Np

(

0,
(
n−1 XT

[
Σ−1

0 ⊗ In
]
X
)−1

)

.

Rather than having n as the divisor as in (10.19), some alternatives have been
suggested, such as

n−max(pi, pj) and
√
(n− pi)(n− pj). (10.23)

The estimate of σjk is unbiased for pj = pk. The argument divisor offers these
choices, but the default is n.

10.2.3.1 SUR Example

As a simple seemingly unrelated regressions example, consider the well-known
General Electric and Westinghouse data, called gew (Table 10.2). Many texts and
articles illustrate SUR by fitting the simple model

Yi1 = β(1)1 + β(1)2 xi2 + β(1)3 xi3 + εi1, (10.24)

Yi2 = β(2)1 + β(2)4 xi4 + β(2)5 xi5 + εi2, i = 1, . . . , 20.

Variables in gew are postfixed with “.g” and “.w” to specify the two companies:
x2 = capital.g, x3 = value.g, x4 = capital.w, and x5 = value.w. It is very
common in SUR analyses to enter in all the variables linearly, but we shall see
below that an additive model of this data actually shows a lot of curvature. The
responses are y1 = invest.g and y2 = invest.w.

Note that E(yi) = ηi =

I2

(
β(1)1

β(2)1

)

+

(
1
0

)

β(1)2 xi2 +

(
1
0

)

β(1)3 xi3 +

(
0
1

)

β(2)4 xi4 +

(
0
1

)

β(2)5 xi5

= I2

(
β∗
(1)1

β∗
(2)1

)

+

(
1
0

)

β∗
(1)2 xi2 +

(
1
0

)

β∗
(1)3 xi3 +

(
0
1

)

β∗
(1)4 xi4 +

(
0
1

)

β∗
(1)5 xi5

corresponding to the notation established in Sect. 3.3. We can fit the Zellner
model (10.24) as follows.
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> Hlist <- list("(Intercept)" = diag(2),

"capital.g" = rbind(1, 0),

"value.g" = rbind(1, 0),

"capital.w" = rbind(0, 1),

"value.w" = rbind(0, 1))

> zef <- vglm(cbind(invest.g, invest.w) ~ capital.g + value.g + capital.w + value.w,

SURff(divisor = "sqrt"), data = gew,

constraints = Hlist, maxit = 1, epsilon = 1e-11)

By setting maxit = 1, the Zellner’s 2-stage estimator is computed. The estimates
and SEs are

> coef(zef, matrix = TRUE)

invest.g invest.w

(Intercept) -27.71932 -1.251988

capital.g 0.13904 0.000000

value.g 0.03831 0.000000

capital.w 0.00000 0.063978

value.w 0.00000 0.057630

> round(sqrt(diag(vcov(zef))), digits = 3) # SEs

(Intercept):1 (Intercept):2 capital.g value.g capital.w

29.321 7.545 0.025 0.014 0.053

value.w

0.015

The estimate of Σ0 at the final IRLS iteration can be obtained by inverting one of
the working weight matrices (because they are identical). As they are in matrix-
band format, some processing is needed.

> Sigma0.inv.mb <- head(weights(zef, type = "work"), 1) # All identical

> Sigma0.inv <- m2a(Sigma0.inv.mb, M = npred(zef))[,, 1] # All identical

> (Sigma0.hat <- chol2inv(chol(Sigma0.inv)))

[,1] [,2]

[1,] 811.08 224.28

[2,] 224.28 105.96

Its correlation coefficient is 0.77, which is non-negligible. The number of regression
parameters for each of the M LMs can be obtained by, e.g.,

> nobs(zef, type = "lm") - df.residual(zef, type = "lm")

invest.g invest.w

3 3

which performs an n− (n− pj)-type calculation.
If one leaves maxit at its default, then the usual IRLS iterations will mean

the IGLS estimate is computed. Let’s do this and use the square root estimator
in (10.23) as the divisor.

> igls <- vglm(cbind(invest.g, invest.w) ~ capital.g + value.g + capital.w + value.w,

SURff(divisor = "sqrt"), data = gew, constraints = Hlist)

For this, Σ̂0 is
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> sigma0.hat

[,1] [,2]

[1,] 826.16 229.83

[2,] 229.83 107.00

which is essentially the same as zef (correlation coefficient is 0.77.)
Now to illustrate the mechanics of fitting a pooled model, this requires the use of

the xij argument to stack values on top of each other, plus H1 = · · · = Hp = 1M

obtained by setting parallel = TRUE or using the constraints argument. The
following is not suitable for the gew data, but it is used for illustrative purposes
only.

> Gew <- transform(gew, Capital = capital.g, Value = value.g)

> fitp1 <- vglm(cbind(invest.g, invest.w) ~ Capital + Value,

SURff(parallel = TRUE), data = Gew, maxit = 1,

xij = list(Capital ~ capital.g + capital.w - 1,

Value ~ value.g + value.w - 1),

form2 = ~ capital.g + value.g + capital.w + value.w +

Capital + Value)

> Hlist <- list("(Intercept)" = rbind(1, 1),

"Capital" = rbind(1, 1),

"Value" = rbind(1, 1))

> fitp2 <- vglm(cbind(invest.g, invest.w) ~ Capital + Value,

SURff, data = Gew, maxit = 1, constraints = Hlist,

xij = list(Capital ~ capital.g + capital.w - 1,

Value ~ value.g + value.w),

form2 = ~ capital.g + value.g + capital.w + value.w +

Capital + Value)

Both fitp1 and fitp2 are identical. Of course, it is possible here to allow H1 = I2
instead—this is left as an exercise (Ex. 10.4).

While SUR traditionally enters variables linearly as in (10.24), there is no rea-
son why an additive model cannot be fitted (e.g., Smith and Kohn (2000))—the
VGLM/VGAM framework naturally accommodates this. For example, the addi-
tive model extension of (10.24) is

Yi1 = β(1)1 + f(1)2(xi2) + f(1)3(xi3) + εi1 (10.25)

Yi2 = β(2)1 + f(2)4(xi4) + f(2)5(xi5) + εi2, i = 1, . . . , 20. (10.26)

To fit such a model in VGAM using regression splines and smoothing splines, try

> Hlist3 <- Hlist4 <- list("(Intercept)" = diag(2),

"bs(capital.g)" = rbind(1, 0),

"bs(value.g)" = rbind(1, 0),

"bs(capital.w)" = rbind(0, 1),

"bs(value.w)" = rbind(0, 1))

> names(Hlist4) <- c("(Intercept)", "s(capital.g)", "s(value.g)", "s(capital.w)",

"s(value.w)")

> fit.rs <- vglm(cbind(invest.g, invest.w) ~

bs(capital.g) + bs(value.g) + bs(capital.w) + bs(value.w),

SURff, data = gew, constraints = Hlist3, maxit = 1)

> fit.ss <- vgam(cbind(invest.g, invest.w) ~

s(capital.g) + s(value.g) + s(capital.w) + s(value.w),

SURff, data = gew,

constraints = Hlist4, maxit = 1, bf.maxit = 100) # Suppress warning

> plot(as(fit.rs, "vgam"), se = TRUE, scol = "blue")



10.2 LM Variants 303

200 400 600 800

−100

−50

0

50

capital.g

bs
(c

ap
it
al

.g
)

1500 2000 2500

−40
−20

0
20
40
60
80

value.g

bs
(v

al
ue

.g
)

0 50 100 150 200

−40
−30
−20
−10

0
10

capital.w

bs
(c

ap
it
al

.w
)

200 600 1000

−20

0

20

40

60

value.w

bs
(v

al
ue

.w
)

Fig. 10.4 Smooths of a SUR model applied to the gew data. The fitted model is called fit.rs.

which gives Fig. 10.4. The plots and the summary suggest nonlinearity in about 3
of the 4 plots! Hence this casts doubt on the validity of (10.24): most of the vari-
ables x2, . . . , x5 should not be entered linearly. This example illustrates a point
in data analysis that does not seem to be well-heeded: employing a sophisticated
method to obtain a small improvement, such as avoiding a small loss of efficiency,
is misguided if more fundamental errors are made, such as overlooking gross non-
linearity.

For a pooled nonparametric model, one is restricted to regression splines, how-
ever, the technique described in Sect. 3.4.4 can be used.

10.2.4 The AR(1) Time Series Model

The first-order autoregressive process time series model AR(1) provides a simple
example where the EIMs are not all identical even when the model is intercept-
only. For data yi, i = 1, . . . , n, it is common for the AR(1) model to be defined by

Y1 ∼ N(μ, σ2/(1− ρ2)), (10.27)

Yi = μ∗ + ρYi−1 + εi, i = 2, . . . , n, (10.28)

εi ∼ N(0, σ2) independently, (10.29)

where |ρ| < 1. Some books omit the drift parameter μ∗ from (10.28), which corre-
sponds to E(Yi) = 0. Having this parameter therefore allows a test of stationarity
in the form of H0 : μ∗ = μ∗

i versus H1 : μ∗ �= μ∗
i for all i, i.e., is the scaled mean

intercept-only?
From (10.27)–(10.29) it is easy to see that the conditional distribution

Yi|Yi−1 ∼ N(μ∗ + ρYi−1, σ2) (10.30)
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can be used to calculate the joint distribution: f(y;μ∗, σ, ρ) =

fY1
(y1) ·

n∏

i=2

fYi|Yi−1
(yi|yi−1) =

√
1− ρ2

2πσ2
exp

{

−1

2

(y1 − μ)2

σ2
(1− ρ2)

}

·
n∏

i=2

1√
2πσ2

exp

{

−1

2

(yi − μ∗ − ρ yi−1)
2

σ2

}

,

which is the product of the marginal likelihood with the conditional likelihood.
Some very basic properties arising from (10.27)–(10.29), for intercept-only mod-

els, are:

E(Yi) ≡ μ =
μ∗

1− ρ
, i = 2, . . . , n,

Var(Yi) =
σ2

1− ρ2
for all i = 1, . . . , n,

Cov(εi, Yi−j) = 0 for j > 0,

Corr(Yi, Yi−j) = ρj for j = 0, 1, 2, . . . .

Let θ = (μ∗, σ, ρ)T be the parameters to be estimated. Then


(θ;y) = 
1(θ; y1) +

n∑

i=2


i(θ; yi|yi−1). (10.31)

Sometimes, practitioners maximize the conditional log-likelihood function only,
while others use the full (exact) log-likelihood function (10.31). These two op-
tions are reflected in the type.likelihood argument of the VGAM family func-
tion AR1(), which has default value c("exact", "conditional"), with the first
choice being the default method. If type. likelihood = "conditional", then
the MLE of μ∗ and ρ may be obtained by the simple linear regression (10.28),
while if type.likelihood = "exact" then iteration is really needed to compute
the MLE of θ. Computationally, if type.likelihood = "conditional", then the
first observation is effectively deleted by setting its prior weight equal to some
small positive number, e.g., w1 ≈ 0 in (3.7). This crude way of ignoring the first
observation may be replaced by actual deletion in future versions of the software.

The EIM for the first observation is

IE1(μ
∗
1, σ1, ρ1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 + ρ1
1− ρ1

1

σ2
1

0 0

0
2

σ2
1

2ρ1
σ1(1− ρ21)

0
2ρ1

σ1(1− ρ21)

2ρ21
(1− ρ21)

2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (10.32)

It is easy to show that this is of rank-2, and that it might be ‘fixed up’ by multi-
plying the off-diagonal element by a number slightly less than 1, e.g., 0.99.

For i > 1, the EIM for the ith observation is

IEi(μ
∗
i , σi, ρi) =

1

σ2
i

⎛

⎜
⎜
⎝

1 0 μi

0 2 0

μi 0 μ2
i−1 +

σ2
i−1

1− ρ2i−1

⎞

⎟
⎟
⎠ , (10.33)
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where a subscript i is needed. When the individual EIMs are added, and μ∗ is
disregarded, and an intercept-only model is fitted, then the EIM is given by the
well-known matrix

IE(σ, ρ) =

⎛

⎜
⎜
⎝

2n

σ2

2ρ

σ(1− ρ2)
2ρ

σ(1− ρ2)

2ρ2

(1− ρ2)2
+

n− 1

1− ρ2

⎞

⎟
⎟
⎠ . (10.34)

10.3 Binomial Variants

Variant models of the binomial distribution that have been implemented in VGAM
are summarized in Table 10.3, and most are cast into the VGLM/VGAM frame-
work in this section. For example, Sect. 10.3.1 describes a model for two sequential
binomial distributions, and Sects. 10.3.3–10.3.4 describe models for bivariate bi-
nary responses (one is based on odds ratios, one is based on an underlying N2

distribution; and there is also a family of loglinear models.)

10.3.1 Two-Stage Sequential Binomial

Crowder and Sweeting (1989) considered a ‘bivariate binomial’ model where there
are Y ∗

1 successes arising from a binomial distribution, and then Y ∗
2 successes out

of the initial number of successes. Their example was that each of w spores has
a probability μ1 of germinating. Of the Y ∗

1 spores that germinate, each has a
probability μ2 of bending in a particular direction. Let Y ∗

2 be the number that
bend in the specified direction.

This model can be described as a 2-stage (sequential) binomial distribution,
and the VGAM family function seq2binomial() implements this. Let Y1 = Y ∗

1 /w
and Y2 = Y ∗

2 /Y
∗
1 be the respective sample proportions. The joint probability

function is P (y1, y2;μ1, μ2) =

(
w

wy1

)

μwy1

1 (1− μ1)
w(1−y1) ·

(
wy1
wy1y2

)

μwy1y2

2 (1− μ2)
wy1(1−y2), (10.35)

where independence is assumed throughout. Here, the support is y1 = 0(w−1)1
and y2 = 0((wy1)

−1)1. The default links are η = (logitμ1, logitμ2)
T , and the fitted

values returned are (μ̂1, μ̂2). The parallel argument allows the constraint μ1 =
μ2. As with other binomial-based family functions, the prior weights w give the
number of trials, here for the first stage only.
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Table 10.3 Binomial variants currently implemented in VGAM. Most are described in Sect. 10.3.
Index j takes on values 1 and 2.

Model Main specification VGAM family

Bivariate odds ratio model Eqs. (1.18)–(1.19) binom2.or()

Bivariate probit model Eqs. (10.40)–(10.41) binom2.rho()

Bradley-Terry model Eq. (10.36) brat()

Double-exponential binomial Eq. (10.54) double.expbinomial()

Loglinear bivariate binomial Eq. (10.46) loglinb2()

Loglinear trivariate binomial Eq. (10.47) loglinb3()

Two-stage sequential binomial Eq. (10.35) seq2binomial()

10.3.2 The Bradley-Terry Model

The standard Bradley-Terry model is applicable to pairwise-comparisons data
where there are two outcomes, such as win/lose or better/worse. Typical exam-
ples are sports competitions between two individuals or teams, and comparing two
food items (e.g., wines, olive oils, cheeses) at a time—in food-tasting experiments,
judges can more easily decide between two items rather than comparing more than
two items at a time. Also known as the Bradley-Terry-Luce model, they have also
been used to rank different journals, e.g., Journal A citing Journal B is a ‘loss’
to A and a ‘win’ to B. The possibility of a third outcome—ties—is deferred till
later.

Suppose that the comparison between items Ti and Tj is conducted nij times
for i = 1, . . . , I = M + 1, e.g., there could be nij judges or sports matches.
Let N =

∑∑
i<j nij be the total number of pairwise comparisons, and assume

independence for ratings of the same pair by different judges, and for ratings of
different pairs by the same judge. If αi > 0 is the ability or worth of item Ti, then

P [Ti > Tj ] = pi/ij =
αi

αi + αj
, i �= j,

where “Ti > Tj” means i is preferred over j. Hence the probability that Ti is
superior to Tj in any given trial is their relative values to each other. Let Y ∗

ij

be the number of times that Ti is preferred over Tj in the nij comparisons of
the pairs. Then Y ∗

ij ∼ Bin(nij , pi/ij) but, as usual, we operate on the sample
proportions Yij = Y ∗

ij/nij (also known as the scaled binomial distribution). Then

L(α1, . . . , αM ) ∝
M∏

i=1

M+1∏

j=i+1

(
nij

nij yij

)(
αi

αi + αj

)nijyij
(

αj

αi + αj

)nij(1−yij)

and the VGAM family function brat() maximizes this. By default, αM+1 ≡ 1 is
used for identifiability, however, this can be changed very easily to some other
baseline category and/or value. Note that

logit

(
αi

αi + αj

)

= log

(
αi

αj

)

= λi − λj , (10.36)

say.



10.3 Binomial Variants 307

In its current implementation, brat() can only handle intercept-only models
because the response is taken to be a 1 × M(M + 2) matrix of counts, hence
effectively n = 1. By default, it has

ηj = λj = log αj = β(j)1, j = 1, . . . ,M. (10.37)

When fitting the Bradley-Terry model, one may use the preprocessing func-
tion Brat() to convert the square matrix of counts into the format used internally
by brat(). The typical usage is

vglm(Brat(counts.matrix) ~ 1, family = brat)

Here, the rows of counts.matrix are ‘winners’, and the columns are ‘losers’.
To close, we mention two extensions of the standard Bradley-Terry model, the

first of which is implemented in VGAM. Firstly, ties (e.g., a draw or equal prefer-
ence) are allowed for some types of comparison. Of several common proposals to
handle ties, one is

P (Ti > Tj) = αi/(αi + αj + α0), (10.38)

P (Ti < Tj) = αj/(αi + αj + α0),

P (Ti = Tj) = α0/(αi + αj + α0),

where α0 (> 0) is an extra parameter. This is implemented by the family func-

tion bratt(). It has η = (logα1, . . . , logαM−1, logα0)
T

by default, where there
are now M competitors, and αM ≡ 1. Like brat(), one can choose a different base-
line group and value. A count matrix of ties can be fed in as the second argument
of Brat().

Secondly, in some applications, it is realistic to postulate a ‘home team advan-
tage’, e.g., the contest occurs at one of the team’s location. Another example is
where the order of the comparison makes a difference, e.g., in wine tasting compe-
titions, it is well-known that the first wine tasted is usually thought of as better
than the other. Then (10.36) might be generalized to

logit (αi/(αi + αj)) = log (αi/αj) = αh + λi − λj . (10.39)

The home team advantage parameter αh is positive if indeed there is a real home
advantage.

10.3.2.1 Rugby Example

Let’s fit a Bradley-Terry model with ties to the rugby and rugby.ties data, which
give the wins, losses and ties of international rugby union matches up to late-2013
of about 10 countries. We’ll only look at a few selected countries.
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> countries <- c("Australia", "England", "France", "New Zealand", "South Africa")

> (Rugby.small <- rugby[countries, countries])

loser

winner Australia England France New Zealand South Africa

Australia NA 24 23 41 33

England 16 NA 53 7 12

France 17 37 NA 12 11

New Zealand 101 27 39 NA 50

South Africa 44 22 21 34 NA

> (Rugby.ties.small <- rugby.ties[countries, countries])

loser

winner Australia England France New Zealand South Africa

Australia NA 1 2 6 1

England 1 NA 7 1 2

France 2 7 NA 1 6

New Zealand 6 1 1 NA 0

South Africa 1 2 6 0 NA

Here are two models, the latter allowing for ties (draws).

> rugger.fit <- vglm(Brat(Rugby.small) ~ 1, brat(refgp = 1))

> rugger.fitt <- vglm(Brat(Rugby.small, Rugby.ties.small) ~ 1, bratt(refgp = 1))

The ‘abilities’ of each team may be computed as follows.

> abilities <- c(exp(0), Coef(rugger.fitt))

> names(abilities) <- c(countries,

if (familyname(rugger.fitt) == "brat") NULL else "alpha0")

> round(abilities, 2)

Australia England France New Zealand South Africa alpha0

1.00 0.77 0.62 2.33 1.38 0.10

> round(sort(abilities), 2)

alpha0 France England Australia South Africa New Zealand

0.10 0.62 0.77 1.00 1.38 2.33

These results rank the countries according to their rugby abilities. The
value alpha0 is a measure of the frequency of draws.

Here is some output for the model without ties.

> check <- InverseBrat(fitted(rugger.fit)) # Probabilities of winning

> round(check, 2)

Australia England France New Zealand South Africa

Australia NA 0.56 0.61 0.30 0.41

England 0.44 NA 0.55 0.25 0.36

France 0.39 0.45 NA 0.22 0.31

New Zealand 0.70 0.75 0.78 NA 0.62

South Africa 0.59 0.64 0.69 0.38 NA

This shows each pair of countries and the probability that the winner country
beats the loser country. It is left to the reader to check that check + t(check)

is a matrix whose off-diagonal elements are all 1s.
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So, based on these data, who might win the next Rugby World Cup, say?
Based on historical data over all test matches, one might be led to believe that
New Zealand has the best chance. However, as sports followers and investors know,
spectacular past performance does not necessarily mean a similar future result.

10.3.3 Bivariate Responses: The Bivariate Probit Model

Pairs of binary responses are a frequent form of data. Such commonly arise in
medical and biological studies, e.g., ophthalmic studies where each eye is a re-
sponse, and measurements on pairs such as twins. Write Y = (Y1, Y2)

T , where Y1

and Y2 takes only the values 0 and 1 (denoting “failure” and “success”, respec-
tively). Let μrs = P (Y1 = r, Y2 = s), r, s = 0, 1, be the joint probabilities,
and μj = P (Yj = 1), j = 1, 2, be the marginal probabilities.

We saw in Sect. 1.2.3 that a commonly used model for bivariate responses is the
bivariate odds ratio model. Another popular model is the bivariate probit model
(BPM; Ashford and Sowden, 1970), which can be written

P (Yj = 1|x) = Φ(ηj(x)) , j = 1, 2, (10.40)

P (Y1 = 1, Y2 = 1|x) = Φ2 (η1(x), η2(x); ρ(x)) . (10.41)

Essentially, the two binary responses are mapped onto a standardized bivariate
normal distribution with correlation parameter ρ, where the 4 quadrants intersect
at (η1, η2). The BPM can be simply interpreted in terms of latent variables:

y∗1i = η1 + ε1i, (10.42)

y∗2i = η2 + ε2i, (10.43)

where the errors have a standardized bivariate normal distribution
(
ε1i
ε2i

)

∼ N2

((
0
0

)

,

(
1 ρi
ρi 1

))

, (10.44)

independently. Then the observed responses are generated by

ysi =

{
1, y∗si > 0,
0, y∗si ≤ 0, s = 1, 2.

(10.45)

The standardized version is used for identifiability and to enhance interpretability,
e.g., the zero means that the intercepts for the marginals are adjusted accordingly.

Note that while the bivariate odds ratio model may be fitted with different links
for the marginals, the BPM is theoretically tied to the bivariate normal distribution
and so it does not offer such flexibility: each marginal is modelled as a “probit
analysis”. The multivariate probit model, of which the BPM is a special case, is
generally applicable to M ≥ 3 binary responses, however, it is computationally
difficult to estimate because it requires integration of an NM density.

Also note that, as Fisher scoring is implemented, no Yj is allowed as an ex-
planatory variable otherwise the EIM becomes invalid (Freedman and Sekhon,
2010).
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As −1 < ρ < 1, the default link for η3 = log((1 + ρ)/(1− ρ)) (called "rhobit")
and therefore ρ = (exp{η3(x)}−1)/(exp{η3(x)}+1) satisfies the range restrictions.
While ρ may be modelled as a function of covariates, it is recommended that it
remain as intercept-only (the default) unless the data set or its effect is large. The
same is true for the association parameter for the bivariate odds ratio model: it
has an argument oratio, denoting the odds ratio, which is set to intercept-only
because zero = 3, by default, too.

The bivariate odds ratio model has several other advantages over the BPM,
e.g., it is computationally simpler, and odds ratios are preferred to correlation
coefficients when describing the association between two binary variables, because
they are more interpretable and have less severe range-restriction problems.

10.3.4 Binary Responses: Loglinear Models

Models for multivariate binary responses can be constructed from loglinear models.
The bivariate case is

log P (Y1 = y1, Y2 = y2|x) = u0(x)+u1(x) y1+u2(x) y2+u12(x) y1 y2, (10.46)

where yj = 0 or 1, and η = (u1, u2, u12)
T . Here, u0 is a normalizing parameter

equal to − log(1 + eu1 + eu2 + eu1+u2+u12). The trivariate case has

log P (Y1 = y1, Y2 = y2, Y3 = y3) = u0 + u1 y1 + u2 y2 + u3 y3 +

u12 y1 y2 + u13 y1 y3 + u23 y2 y3 (10.47)

with η = (u1, u2, u3, u12, u13, u23)
T . Family functions loglinb2() and

loglinb3() fit these models, e.g.,

vgam(cbind(y1, y2) ~ s(x2, df = c(4, 2)),

loglinb2(exchangeable = TRUE, zero = NULL), data = ldata)

should fit (10.46) subject to u1 = u2. Here, u1(x2) and u12(x2) are assigned 4
and 2 degrees of freedom, respectively. An identity link for each of the us and ust is
chosen, because the parameter space is unconstrained. For the reason given below,
parameters ust are intercept-only by default. As another example of exchange-
able errors, loglinb3(exch = TRUE) would fit (10.47) subject to u1 = u2 = u3

and u12 = u13 = u23. Exchangeable models with 3 binary responses are less com-
monly encountered than the 2-response case.

A VGAM convention is that the fitted values correspond to the matrix with
columns μ̂stv where (s, t, v, . . .) = (0, 0, . . . , 0), (0, . . . , 0, 1), . . . , (1, . . . , 1). In par-
ticular, for Q = 2 responses, these are (0, 0), (0, 1), (1, 0), (1, 1). The input of the
response is easiest fed in as a Q-column matrix of 1s and 0s.

Now suppose more generally that there are Q binary responses. For loglinear
models, it is often a good idea to force ustv ≡ 0, and similarly for other higher-order
associations (done for the Q = 3 case above). There are several reasons why this
is so. Unless the data contain all fitted combinations, such assumptions are often
necessary because the estimates become unbounded. It also reduces the complexity
of the problem, furthermore, higher-order associations become increasingly more
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difficult to interpret. And if smoothed, higher-order associations should be assigned
less flexibility than lower-order associations. The general loglinear model is

log P (Y1 = y1, . . . , YQ = yQ|x) = u0(x) +

Q∑

s=1

us(x) ys +
∑

s<t

ust(x) ys yt +

∑

s<t<v

ustv(x) ys yt yv + . . . . (10.48)

The normalizing parameter u0 satisfies e−u0 = 1+
∑Q

s=1 e
us +

∑
s<t e

us+ut+ust +

∑

s<t<v

eus+ut+uv+ust+usv+utv + · · ·+ exp

(
Q∑

s=1

us +
∑

s<t

ust + · · ·
)

.

One has η = (u1, . . . , uS , u12, u13, . . . , u123···Q)T which grows very quickly in di-
mension with respect to Q, hence the need to set high-order interaction terms to 0.
With IRLS, it may be shown for this model that Newton-Raphson coincides with
Fisher scoring. Although a simpler algorithm called the iterative proportional fit-
ting procedure is still used for estimating loglinear models, our limited experience
has indicated that IRLS works well.

As an example, we try to mimic the results of McCullagh and Nelder (1989,
Sect.6.6). We’ll coerce the initial table of counts into a 2-column matrix of 0s
and 1s that will be weighted by a variable Frequency, which will be uses as input.
Below, the matrix Counts has 4 columns ordered as (y1 = 0, y2 = 0), (0, 1), (1, 0)
and (1, 1).

> coalminers <- transform(coalminers, Age = (age - 42) / 5)

> fit.temp <- vglm(cbind(nBnW, nBW, BnW, BW) ~ Age, binom2.or, data = coalminers)

> Counts <- round(c(weights(fit.temp, type = "prior")) * depvar(fit.temp))

> newminers <- data.frame(breathlessness = c(0, 0, 1, 1), # Values recycle

wheeze = c(0, 1, 0, 1), # Values recycle

Frequency = c(t(Counts)),

Age = with(coalminers, rep(Age, each = 4)))

> newminers <- subset(newminers, Frequency > 0) # Not needed here, actually

> fit.coal <- vglm(cbind(breathlessness, wheeze) ~ Age, loglinb2(zero = NULL),

weight = Frequency, data = newminers)

> coef(fit.coal, matrix = TRUE)

u1 u2 u12

(Intercept) -3.4778 -2.0090 3.05948

Age 0.5154 0.2006 -0.16615

As an exercise (Ex. 10.14), it is left to the reader to reconcile this with the following
conditional probabilities (McCullagh and Nelder, 1989):

logitP (Y1 = 1|Y2 = 1, x2) = −0.418 + 0.349x2, (10.49)

logitP (Y2 = 1|Y1 = 1, x2) = 1.051 + 0.034x2,

log ψ = 3.059− 0.166x2, (10.50)

where ψ is the odds ratio. Conditional probabilities are a natural outcome when
the joint probabilities are modelled via loglinear models.
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10.3.5 Double Exponential Models

Overdispersion is a common characteristic of data and one potential method for
handling it is to consider the class of double exponential distributions (Efron, 1986).
The basic idea is that an ordinary one-parameter exponential family allows the
addition of a second parameter θ which varies the dispersion of the family without
changing the mean. The extended family behaves like the original family with
sample size changed from N to Nθ. Then 0 < θ < 1 corresponds to overdispersion.
The extended family is an exponential family in μ when N and θ are fixed, and
an exponential family in θ when N and μ are fixed.

The formal definition

f̃μ,θ,N (y) = c(μ, θ,N) θ1/2 {gμ,N (y)}θ {gy,N (y)}1−θ
[dGN (y)] (10.51)

is called a double exponential family with parameters μ, θ and N . Here,

gμ,N (y) = eN [ηy−ψ(μ)] · [dGN (y)] (10.52)

is the density of a given exponential family. The expectation parameter μ =∫∞
−∞ y gμ,N (y) dGN (y), y is the natural statistic, η is the canonical or natural
parameter, ψ(μ) is a normalizing function, and GN (y) is the carrier measure for
the exponential family.

The normalizing constant c(μ, θ, n) in (10.52) nearly equals 1, so (10.52) is
approximated by

fμ,θ,N (y) ≈ θ1/2 {gμ,N (y)}θ {gy,N (y)}1−θ
[dGN (y)] . (10.53)

Approximately, the mean of Y is μ. The effective sample size is the dispersion
parameter multiplied by the original sample size, i.e., Nθ.

At present, only one double exponential family is implemented, and that
is double.expbinomial(). The default model has η = (logitμ, logit θ)T , which
restricts both parameters to lie between 0 and 1—although the dispersion param-
eter can be modelled over a larger parameter space by assigning the link function
argument ldispersion. The approximate double-binomial family based on (10.53)
gives

fμ,θ(y) ∝ θ1/2 μNyθ(1− μ)N(1−y)θyNy(1−θ)(1− y)N(1−y)(1−θ) (10.54)

for y = 0(N−1)1. Maximum likelihood estimation is used for the two (mean and
dispersion) parameters. In fact, Fisher scoring is used, and the two estimates are
asymptotically independent because the EIM is diagonal. Indeed, it is approxi-
mated by diag(Nθ/V (μ), 1

2θ
−2) where Var(Y ) = V (μ).

For overdispersed binomial data, the most commonly used full-likelihood model
is the beta-binomial (Sect. 11.4). Likewise, for counts that are overdispersed with
respect to the Poisson distribution, negative binomial regression is most commonly
employed (Sect. 11.3).
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Exercises

Ex. 10.1. VCMs Fitted to the ethanol Data
Here, some alternative models to (10.5) are fitted.

(a) Produce scatter plots of Y versus E and C, as in Fig. 10.1a,b. Note that each
stratum has approximately equal sample sizes.

(b) Fit the following VCMs and compute their residual sum of squares. From these
values and the degrees of freedom, suggest which model is to be preferred.
Here, estimate the βj(E) by smoothing splines using s(E, df = 6.8 - 1)

within vgam().

NOx = β1(E) + β2 · C + ε, (10.55)

NOx = β1(E) + β2 · C · E + ε, (10.56)

NOx = β1(E) + β2 · C + β3 · C · E + ε, (10.57)

NOx = β1(E) + β2(E) · C + ε. (10.58)

Note that (10.5) and (10.58) are identical.
(c) Replace both functions in (10.58) by poly(E, 2) and obtain the value of E

which gives the maximum value. Are these replacement functions acceptable?
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Ex. 10.2. VCM Fitting an Ordinary LM
Consider a VCM used to fit an ordinary LM, i.e., formula = y ∼ 1 and family =

normal.vcm. Show that the BHHH method leads to the ordinary LM normal
equations solution and therefore has the same standard errors. For simplicity, do
this for η1, . . . , ηM−1 only and ignore ηM = log σ.

Ex. 10.3. Observed Mean of the Tobit Model
A random variable V has a doubly truncated normal distribution if its probability
density function is [Johnson et al. (1994)]

σ−1 φ

(
v − μ

σ

){

Φ

(
B − μ

σ

)

− Φ

(
A− μ

σ

)}−1

, A < v < B. (10.59)

Here, A and B are the lower and upper truncation points.

(a) Show that

E(V ) = μ+ σ
φ[(A− μ)/σ]− φ[(B − μ)/σ]

Φ[(B − μ)/σ]− Φ[(A− μ)/σ]
.

(b) The Tobit model is where Y has a rescaled distribution of V , augmented by
P (Y = A) = P (Y ∗ < A) and P (Y = B) = P (Y ∗ > B), where Y ∗ ∼ N(μ, σ2).
Show that E(Y ) equals Eq. (10.11).

(c) Use (10.11) to show that, for the standard Tobit model,

E(Y |xi) = Φ(μ∗
i /σi) [μ∗

i + σi λ(−μ∗
i /σi)]

where

λ(u) =
φ(u)

1− Φ(u)
=

φ(−u)
Φ(−u)

is known as the inverse Mills ratio.

Ex. 10.4. Relaxed Pooled SUR
Adapt fitp1 and fitp2 in Sect. 10.2.3.1 to allow H1 = I2, i.e., a relaxation of the
pooled model. Confirm that your solutions are the same.

Ex. 10.5. Pooled Nonparametric SUR
For illustration’s sake only, suppose x2 = x4 and x3 = x5 in the gew data, i.e., the
capital stock variables are the same, and ditto for the market values. Fit (10.25)–
(10.26) using regression splines, subject to the functions being equal, i.e., a pooled
model.

Ex. 10.6. OLS and GLS in Seemingly Unrelated Regressions
Show that OLS and the GLS estimators (10.14)–(10.15) are equivalent when any
one of the following conditions hold.

(a) Σ is diagonal.
(b) X1 = X2 = · · · = XM .

Ex. 10.7. Derive the mean and variance of Y ∗
1 and Y ∗

2 in the sequential binomial
model (10.35). Derive the EIM with respect to μ1 and μ2.

Ex. 10.8. seq2binomial()

Suppose that during WW2, of 376 heavy bombers that were dispatched to raid
an enemy target, 60 were lost. Of those that returned and were sent on another
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mission, 54 were lost. Use seq2binomial() to test whether the probabilities of
returning from each operation was equal. Discuss the realism of the assumptions
behind this short analysis.

Ex. 10.9. Bradley-Terry Model with Rugby Data
Repeat the analysis of Sect. 10.3.2.1 but use the entire data set. Do the results
change much for those select countries originally considered? Comment on all the
results as a whole.

Ex. 10.10. Consider a 2 × 2 table for a bivariate binomial response vector.
Suppose that three cells are mapped onto η = (η1, η2, η3)

T in the order (y1 =
0, y2 = 0), (y1 = 0, y2 = 1), (y1 = 1, y2 = 0), and a multinomial logit model is
fitted with constraint matrices

Hk =

⎛

⎝
1 0
0 1
0 1

⎞

⎠ , k = 1, . . . , p.

Hence the (y1 = 1, y2 = 1) cell is baseline. Compare this model with that of
binom2.or(exchangeable = TRUE, ZERO = NULL): is there any difference?

Ex. 10.11. Thurstone Model
In what is known as Thurstone’s model for paired comparisons, suppose the worth
of two options Aj are N(μj , σ

2
j ) distributed, for j = 1, 2, and that a judge decides

that A1 is better than A2 with probability P (A1 > A2). Let’s initially make
allowance for a nonzero correlation between A1 and A2, so that A1−A2 ∼ N(μ∗ ≡
μ1 − μ2, σ2

∗ ≡ σ2
1 + σ2

1 − 2ρ σ1σ2).

(a) Show that P (A1 > A2) = Φ(μ∗/σ∗).
(b) Under the simplifying assumptions that ρ = 0 and σ1 = σ2 = 1, say, deduce

that
μ̂∗ =

√
2 Φ−1(π̂) (10.60)

where π̂ is the sample proportion of people preferring A1 over A2.
(c) Deduce that Thurstone’s model is like a Bradley-Terry model, but A1 −A2 is

normally distributed rather than logistically distributed, i.e., it uses a probit
link rather than a logit link.

Ex. 10.12. Consider a Bradley-Terry-type model generalized for triple compar-
isons, i.e., let

θijk = P (Ti > Tj > Tk)

be the probability that Ti is preferred to Tj , and Tj is preferred to Tk. One way is
to choose

θijk =
αi

αi + αj + αk
· αj

αj + αk
.

Write down an expression for the likelihood function. Compute its first derivatives
with respect to the parameters.

Ex. 10.13. † Loglinear Model for 4 Binary Responses

(a) Consider a loglinear model for four binary responses, as a special case
of (10.48). Enumerate η as (u1, . . . , u4, u12, . . . , u14, u23, . . . , u34)

T , where
higher-order interactions have been set to 0. Write down the log-likelihood,
its first derivatives with respect to the parameters, and its EIM.
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(b) Write a VGAM family function for the model, called loglinb4(). Allow for
the exchangeable and zero arguments, and set the ust to be intercept-only,
by default.

Ex. 10.14. Reconcile the fit fit.coal in Sect. 10.3.4 with the conditional prob-
abilities (10.49)–(10.50).

Ex. 10.15. Fit a double exponential binomial model to the xs.nz data, as fol-
lows. Consider the 11 psychological variables of Sect. 5.6.1. We are interested in
the proportion of these psychological variables which are present for any particular
person. Adjust for age, ethnicity, gender, current smoking, family history of can-
cer, and family history of heart disease. Does the regression model confer anything
additional to an ordinary logistic regression?

Double, double toil and trouble; Fire burn, and caldron bubble.
—William Shakespeare, Macbeth



Chapter 11

Univariate Discrete Distributions

I count him braver who overcomes his desires than him who conquers his
enemies; for the hardest victory is over self.
—Aristotle

11.1 Introduction

This chapter and the next summarize a collection of univariate discrete and
continuous distributions that are presented as VGLMs/VGAMs, and have been
implemented as VGAM family functions. There are currently over 70 such distri-
butions in total. Most can be classified as belonging to at least one subclass, and
some of these subclasses are described here. Due to space limitations, most appear
only as entries in the appropriate table, and it is only possible to provide some
sketchy notes on a handful of distributions, e.g., negative binomial (Sect. 11.3),
and beta-binomial (Sect. 11.4). Some family functions appear in multiple tables.
Zero-inflated, zero-altered and positive variants are deferred to Chap. 17. The
notes primarily related to univariate continuous distributions in Sect. 12.2.3 also
apply to the tables at the end of this chapter.

Many VGAM family functions are accompanied by dpqr-type functions for the
density, the distribution function, the quantile function, and generation of ran-
dom deviates, respectively, e.g., dzipois(), pzipois(), qzipois(), rzipois()
for the zero-inflated Poisson family function zipoisson() (or zipoissonff() is
preferable). For example, these appear in Table 17.7. Often the dpqr-type function
names are abbreviated, while the VGAM family function name is fuller. Another
example is dnaka(), pnaka(), qnaka(), rnaka() for the Nakagami family func-
tion nakagami(), collectively represented as “nakagami(dpqr)” in Table 12.8.
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Table 11.1 S conventions for functions associated with distributions and random variates, i.e.,
dpqr-type functions. These are adopted by VGAM, although some arguments such as lower.tail

and log.p may not be implemented yet. Arguments specific to the distribution are denoted
by .... The bottom half of the table correspond to bivariate distributions (see Chap. 13).

Function, with defaults Default values

d<distribution> (x, ..., log = FALSE) f(x)

p<distribution> (q, ..., lower.tail = TRUE, log.p = FALSE) F (q) = P (X ≤ q)

q<distribution> (p, ..., lower.tail = TRUE, log.p = FALSE) minq:p≤F (q) q = F−1(p)

r<distribution> (n, ...) yi ∼ F independently

d<distribution> (x1, x2,, ..., log = FALSE) f(x1, x2)

p<distribution> (q1, q2, ..., log.p = FALSE) F = P (X1 ≤ q1, X2 ≤ q2)

r<distribution> (n, ...) yi ∼ F independently

The standard dpqr-type functions available in the stats package of R appear
in Table 11.6 (discrete) and Table 12.3 (continuous). Entries there have, e.g.,
“negbinomial([dpqr])”, where the “[” and“]” indicate that the dpqr-type func-
tions are part of stats. To offer greater compatibility with these pre-existing R
functions, the argument lss appears in some VGAM family functions because the
order of the arguments is not location, scale and then shape—see Sect. 12.2.1 for
details.

In keeping with R, the word “density” is used loosely here to denote f in gen-
eral. More strictly, discrete distributions call f(y) = P (Y = y) the probability
function or the probability mass function (PMF), whereas the probability density
function (PDF) is reserved for continuous Y . With further looseness, although
this book uses Y as the response, we sometimes deviate here and use X to keep it
compatible with d-type functions with first argument x.

It is added that the CRAN Task Views on ‘Probability Distributions’ lists many
other R packages relevant to the subject of this chapter and the next.

11.1.1 dpqr-Type Functions

R comes with about 20 in-built distributions that are supplied in the stats pack-
age. Most whose regularity conditions are satisfied can have parameter estimation
performed by full MLE by a VGAM family function. They are listed in Tables 11.6
(discrete) and 12.3 (continuous). As well as providing a VGAM family function,
some distributions have a selection of associated dpqr-type functions.

VGAM follows standard S conventions for dpqr-type functions as given in
Table 11.1. Here are some notes concerning univariate distributions (the upper
half of the table).

1. The d-type functions return the PMF or PDF f(x) = P (X = x), p-type func-
tions return the value of the CDF p = P (X ≤ q) = F (q), q-type functions for
continuous distributions return the quantile q such that q = F−1(p), r-type
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functions return n random variates from that distribution. Clearly, the p-type
and q-type functions are ‘inverses’ of each other, e.g., pnaka(qnaka(p = probs,

shape = 2), shape = 2) should return probs.
For discrete distributions, q-type functions define the quantile as the smallest
value x such that p ≤ F (x). That is, quantiles are right-continuous. This is in
agreement with the general definition of a quantile (15.1).

2. The logical argument log in d-type functions indicate whether the natural
logarithm of the density is returned. When the log density is needed, setting
d<distribution> (x, ..., log = TRUE) is recommended over the näıve call
log(d<distribution> (x, ..., log = FALSE)) because a more accurate an-
swer may be returned, as well as being less likely to suffer from numerical
problems such as overflow, e.g.,

> dnorm(40, log = TRUE) # More accurate

[1] -800.92

> log(dnorm(40)) # May be inaccurate

[1] -Inf

3. In a similar way, setting the logical argument log.p = TRUE in p-type functions
returns logF (q) instead of F (q) (the default). If needed, it is better practice
to set log.p = TRUE rather than taking the logarithm of the ordinary answer,
because the former may be more accurate. For example,

> pnorm(9, log.p = TRUE) # More accurate

[1] -1.1286e-19

> log(pnorm(9)) # May be less accurate

[1] 0

for the upper tail of a standard normal distribution. Similarly, some q-type
functions also have a log.p argument, and if it is set TRUE, then the p argument
should have negative values because it is interpreted as being log p instead of p.
For example,

> log.prob <- -1e-20 # This means prob is very close, but not equal to, 1

> qexp(exp(log.prob), log.p = FALSE) # Infinite solution

[1] Inf

> qexp(log.prob, log.p = TRUE) # Finite solution

[1] 46.052

at the upper tail of a standard exponential distribution.
4. Some p-type functions have a lower.tail argument; if so then it allows

more precise results when the default, lower.tail = TRUE, would return 1.
Hence setting lower.tail = FALSE, which returns P (X > x), is a good
idea when this upper tail probability is smaller than machine precision
(.Machine$double.eps; about 2× 10−16 on many machines). For example,
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> pexp(40, lower.tail = FALSE) # More accurate

[1] 4.2484e-18

> 1 - pexp(40) # May be inaccurate

[1] 0

5. For r-type functions, argument n may be a single integer or else a vector
whose length is used instead. Also, for distributions with an r-type function,
the generic function simulate() can often be applied to fitted VGAM families
corresponding to that distribution—see Sect. 8.4.3.

6. For r-type functions, usually 1 of 2 algorithms are commonly employed. They
both can be applied to a continuous distribution, however, the acceptance-
rejection method can be adapted to handle discrete distributions. They are:

(i) The inverse transform method. If U ∼ Unif(0, 1), then the random vari-
able F−1(U) has PDF f(y). Practically, this method requires Y to be con-
tinuous and F to be algebraically invertible. The inverse transform method
also forms the basis for many q-type functions. A simple example is the
Rayleigh distribution where F (y; b) = 1 − exp{− 1

2 (y/b)
2}. It is easily in-

verted to F−1(p) = b
√−2 log(1− p). Consequently, random variates gener-

ated by rrayleigh() use b
√−2 logU .

(ii) The acceptance-rejection method. A simplified version is as follows. Sup-
pose we can find a density g that we can sample from, which has the property
that we can find some constant C ≥ 1 such that f(y) ≤ C g(y) for all y. Then:

(a) generate T1 ∼ g(y),
(b) generate U2 ∼ Unif(0, 1),
(c) if u2 ≤ f(t1)/(C g(t1)) then Y = t1 is used (accept), else go to (a) (reject).

As a specific example, consider Fig. 11.1a where random variates from a
Beta(2, 4) distribution, say, are generated using g = dunif(). For this, it is
easy to show that the mode occurs at y = 0.25, and that the density value
there is C = dbeta(0.25, 2, 4) ≈ 2.109. Generating 300 random points in
the overall rectangle results in 149 acceptances—a rejection rate of about 50
percent.

As another example, suppose that we wish to generate random variates from
Kumaraswamy distribution (Table 12.11) with shape parameters 3 and 4,
say, based on already having dbeta() as g, and access to rbeta(), i.e., using
the Beta distribution. From Fig. 11.1b, we can see that a Beta(3, 2) density
overshadows it when multiplied by a constant C = 1.5. Then

> shape1 <- 3; shape2 <- 4; Constant <- 1.5

> set.seed(1); N <- 200

> t1 <- rbeta(N, shape1, shape2 / 2)

> u2 <- runif(N)

> u2.scaled <- u2 * Constant * dbeta(t1, shape1, shape2 / 2)

> Accept <- (u2.scaled < dkumar(t1, shape1, shape2))

> y.rv <- t1[Accept] # Approximates rkumar(n, shape1, shape2)

> length(y.rv) / N # Proportion of acceptances; length(y.rv) is effectively n

[1] 0.695

The points plotted under and above the curve are from
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Fig. 11.1 Acceptance-rejection method for generating random variates. The solid blue points
are accepted; the hollow orange points are rejected. (a) The density g = dunif() is used to
generate Beta(2, 4) random variates. The vertical line at y = 0.25 denotes the position of the
mode, thus defining C = f(0.25). (b) A Kumaraswamy(3, 4) density (f ; blue) is overshadowed
by a scaled Beta(3, 2) density (C · g(y); purple dashed); the scaling constant is C = 1.5.

> points(y.rv, u2.scaled[Accept], pch = 16, cex = 0.5, col = "blue")

> points(t1[!Accept], u2.scaled[!Accept], col = "orange")

The value of C used here was not determined optimally, but chosen simply
because it worked. In practice, given g, the smallest possible value of C
might be determined to improve the efficiency of the algorithm so that the
rejection rate is minimized. The acceptance-rejection method can be adapted
for discrete distributions by choosing a discrete distribution for g.

7. For zero-altered, zero-inflated and positive distributions, there are straightfor-
ward techniques to express the formulas for the dpqr-type functions, based on
those of their parent distribution.

11.2 Dispersion Models

This subclass contains continuous and discrete distributions, but are described
here, based on Jørgensen (1997). The central notion is that the location and scale
are generalized to position and dispersion, which are parameterized by μ and σ2,
respectively. The density of a reproductive dispersion model has the form

f(y;μ, σ2) = a(y;σ2) · exp
{−d(y;μ)

2σ2

}

, (11.1)

where d is known as a unit deviance function, and σ > 0. If a log-likelihood 
(y;μ)
is such that the MLE of μ is y, then the unit deviance can be written d(y;μ) ∝

(y; y) − 
(y;μ), provided that d(y;μ) > 0 for all y �= μ. Of course, the normal
distribution is the obvious example of (11.1) having d = (y − μ)2, a squared
distance. Only special functions are allowed for a and d because (11.1) must be a
density for all values of μ and σ2.

Jørgensen (1997) discusses many models lying within a dispersion model frame-
work. Some of these are GLMs, and they are listed in Table 2.3. Others which are
discrete and implemented by VGAM are listed in Table 11.7; others which are
continuous are listed in Table 11.8.
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A special subclass of dispersion models is called natural exponential fam-
ily (NEF) or exponential dispersion models. Morris (1982) showed that there are 6
exponential dispersion models which have a variance function that is a polynomial
function of μ of degree 2 or less. These are called NEF-QVF (quadratic variance
function), and they are the binomial, Poisson, negative binomial, normal, gamma,
and NEF-GHS (generalized hyperbolic secant distribution). The first three are
discrete and the remainder are 2-parameter continuous distributions. The nor-
mal has constant variance function, the Poisson has a linear variance function,
and the remaining four are quadratics in the mean. VGAM implements all ex-
cept the NEF-GHS (Tables 11.7 and 11.8)—they are binomialff(), poissonff(),
negbinomial()/polyaR(), uninormal(), gamma2().

11.3 Negative Binomial Regression

The negative binomial distribution (NBD) is commonly used for count regression,
because of its ability to accommodate overdispersion with respect to the Pois-
son distribution. Several different scenarios give rise to it, and consequently there
are various common parameterizations. Since μ is of central interest for GLMs,
especially when compared to a Poisson regression, we concern ourselves mainly
with

f(y;μ, k) =
Γ (y + k)

Γ (y + 1)Γ (k)

(
μ

μ+ k

)y (
k

k + μ

)k

, μ > 0, k > 0, (11.2)

=

(
y + k − 1

y

) (
μ

μ+ k

)y (
k

k + μ

)k

, y = 0, 1, 2, . . . , (11.3)

which is implemented by the family function negbinomial(). This parameteriza-
tion is particularly popular in ecology, and it has mean μ and variance μ+ μ2/k.
As k →∞ the probability function (11.2) converges to the Poisson PMF (1.7). It
is natural to choose the link η1 = log μ, as in Poisson regression (also the software
default).

That the NBD can model overdispersion relative to the Poisson is a not surpris-
ing but important consequence of the fact that it arises from a Poisson distribu-
tion whose mean parameter is gamma distributed, i.e., a Poisson-gamma mixture.
Specifically, suppose that Y |Λ = λ ∼ Poisson(λ) and that Λ ∼ Gamma(μ, s), as
in gamma2() (Table 12.13 with s being used as the shape parameter). Then

P (Y = y;μ, k) =

∫ ∞

0

P (Y = y|Λ = λ) fΛ(λ) dλ (11.4)

can readily be shown to be equal to (11.3) with k = s.
While the NBD can accommodate overdispersion relative to the Poisson dis-

tribution, it cannot for underdispersion because Var(Y ) ≥ μ. The parameter k
is known as an index parameter. Its reciprocal, 1/k (= α, say), is also known as
an index parameter, but it is more commonly known as the dispersion parame-
ter. Other names for α include the ancillary and heterogeneity parameter. Others
describe α as an aggregation or clumping parameter, with large values meaning
more clumping. With k being positive too, the software default link is η2 = log k,
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Table 11.2 A summary of some NBD variants implemented in VGAM. Their variance func-
tions Var(Y ) ≡ V (μ) are included, and omission of “(x)” after a parameter indicates that the

parameter is intercept-only. See also Tables 5.4 and 11.3.

Variant Variance function V (μ(x)) Comment

NB-1 φμ(x) NB-2 with no exponent

NB-2 μ(x) +
μ(x)2

k
The negbinomial() default. Else-
where, the most common software
implementation

NB-C1-H NB-H with η = log

(
μ(x)

μ(x) + k(x)

)

“C1-H” for canonical link with k(x)
known

NB-C2-2 NB-2 with η1 = log

(
μ(x)

μ(x) + k

)

“C2-2” for canonical link with k un-
known

NB-G μ(x) + μ(x)2, i.e., k ≡ 1 “G” for geometric

NB-H μ(x) +
μ(x)2

k(x)
“H” for heterogeneous

NB-P μ(x) + δ1 μ(x)δ2 “P” for exponent parameterized

however, η2 = β(2)1 is intercept-only for negbinomial(). The parameters μ and k
are asymptotically independent because the EIM is diagonal (Sect. A.1.2.3), and

the distribution of k̂ is very skewed so that the standard error of log k̂ is more
useful.

The NBD provides an example of a variance function containing an unknown
parameter that is not a dispersion parameter, in the usual GLM sense. That the
Poisson distribution is the limiting case as k →∞ is one extreme; another extreme
is the logarithmic distribution, which is the limiting distribution of a positive NBD
as k → 0+ (logff() in Table 11.10; Ex. 17.1).

NB regression as a whole has now become a sizeable subject, due to
the number of variants proposed, e.g., Hilbe (2011, Table 8.1) lists 22 of
them. Table 11.2 enumerates those NB variants implemented in VGAM with
η1 = g1(μ). As Table 11.3 shows, they are all easily fitted by using a combi-
nation of appropriate constraint matrices, link functions, and choice between a
VGLM versus a RR-VGLM.

11.3.1 Computational Details

For a given data set, currently negbinomial() uses an exact method and/or sim-
ulated Fisher scoring (Sect. 9.2.2) to compute the (k, k)-EIM element. SFS may

fail for μ̂ ≈ 0 and k̂ � 1, however, in this region of the parameter space the exact
method works well (Fig. 11.2). The exact method näıvely computes

− E

[
∂2
i
∂k2i

]

≈ 1

μi + ki
− 1

ki
+ ψ′(ki)−

Ui∑

y=0

f(y;μi, ki) · ψ′(y + k), (11.5)
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Fig. 11.2 Contour plot of qnbinom(0.995, size = size, mu = mu), where μ and k are on
a log-scale. Regions of the (μ, k)-space with a value less than 1000, say, might have the EIM
computed by the exact method (11.5). Some of the contour levels appear jagged due to the
discrete nature of qnbinom().

for sufficiently large Ui. The upper bound Ui might be computed by qnbinom(0.995,

size = size, mu = mu), say, and if sufficiently small (< 1000, say), then this
method might be adopted, otherwise SFS used. Some other computational details
for (11.2) are given in Lawless (1987).

The shrinkage method for initial values (Sect. 8.3.1) is implemented in the code.

11.3.2 A Second Parameterization—polyaR()

Another popular NBD parameterization, which is implemented by
polyaR(), is

f(y2; k, p) =

(
y2 + k − 1

y2

)

pk (1− p)y2 , 0 < p < 1, k > 0, (11.6)

for y2 = 0, 1, 2, . . .. If k is a (positive) integer, then Y2 = the number of failures
which occur in a sequence of independent Bernoulli trials until k successes are
reached. For k being a positive real as in (11.2), the mean and variance of Y2

are μ = k (1−p)/p and k (1−p)/p2 = μ+μ2/k. Strictly, (11.6) holds for 0 < p ≤ 1
but we omit both endpoints as possibilities.

Note that some practitioners reserve “negative binomial” strictly for the inte-
ger k case (where it is also known as the Pascal distribution). These people then
refer to the NBD with the real k case as the Pólya distribution. In VGAM, we
always treat k as real, and use the two names to distinguish between the two
parameterizations with tongue in cheek. Regardless, the geometric distribution
corresponds to k = 1; and the sum of k independent geometric random variables
has probability function f(y2; p) = p(1− p)y2 for y2 = 0, 1, 2, . . ..
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Incidentally, a third parameterization, very similar to the second, is

f(y3; k, p) =

(
y3 − 1

k − 1

)

pk (1− p)y3−k, y3 = k, k + 1, . . . (11.7)

for 0 < p < 1 and positive integer k. This models the number of Bernoulli trials
until the kth success occurs, and has Y3 = Y2 + k.

11.3.3 Canonical Link

The use of the NBD with its canonical link gc,NB = log(μ/(μ + k)) is more for
theoretical interest than for practice. With known k, fitting an NB regression
with gc,NB amounts to fitting a GLM in the usual sense (Ex. 11.9). However, in the
VGLM/VGAM framework, if k is known then it is really more accurate to write k
as ki (or kij if there are more than one response) to reflect the possibility of it being
inputted as a general vector (or matrix if there are multiple responses). For this
reason, “k(x)” is actually used, and this leads to the notation adopting an “H”.
A second comment about the framework is that there is no need to be restricted
to its canonical link in the first place: the family function negbinomial.size()

performs NB regression with the full range of links for η = g(μ) subject to
known k(x), and its first argument receives the k(x), which may be a vector or
a matrix of the same dimension as the response. Thus the special case NB-C1-H
may be fitted by, e.g., negbinomial.size(size, lmu = "nbcanlink") which has
ηij = gc,NB(μij , kij).

NB-C2 models are more difficult to fit than the NB-C1. Both pose dangers
due to η1 < 0, whereas an ordinary linear/additive predictor ηj ought to be un-
bounded. Since the NB-C2 has both μ and k to be estimated, negbinomial(lmu
= "nbcanlink") is not recommended in general. Practical experience has shown
that k is best left as an intercept-only (the default)—this model is therefore called
the NB-C2-2. Also, one should actively take smaller steps to try to improve its
estimation reliability. Also, as Hilbe (2011, pp.210,309) notes, having k in the link
and variance can result in estimation difficulties, with it being sensitive to initial
values and having tedious convergence with NR-type algorithms. Currently, set-
ting something like imethod = 3, stepsize = 0.5, maxit = 100 can help, which
is a combination of ambling to the solution and using different initial values.

11.3.4 Fitting Other NB Variants

11.3.4.1 Quasi-Likelihood Poisson

The two most common methods of handling counts are quasi(-likelihood)-
Poisson (QLP) and NB regression. Both share the loglinear relationship

log μ(x) = η1(x) = βT
1 x. (11.8)

The QLP model has β̂1 being the Poisson MLE and the variance function

Var(Y |x) = φμ(x), (11.9)
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Table 11.3 How VGAM can fit NB variants and other associated models. All parameters receive
full maximum likelihood estimation, and k is an intercept-only (scalar) unless specified. Argu-

ment size is the NB parameter k. The NB-P is also known as an RR-NB (Sect. 5.5.2.3). See also
Tables 11.2 and 17.6–17.7.

NB variant Var(Y ) Modelling
function

VGAM family function

NB-1 (1 + δ−1
0 )μ(x) =

φμ(x)
vglm() negbinomial(parallel = TRUE,

zero = NULL)

NB-2 μ(x) + μ(x)2/k vglm() negbinomial()

NB-C1-H μ(x) + μ(x)2/k(x) vglm() negbinomial.size(size, lmu =

"nbcanlink")

NB-C2-2 μ(x) + μ(x)2/k vglm() negbinomial("nbcanlink")

NB-G μ(x) + μ(x)2 vglm() negbinomial.size(size = 1)

NB-H μ(x) + μ(x)2/k(x) vglm() negbinomial(zero = NULL)

NB-P μ(x) + δ1 μ(x)δ2 rrvglm() negbinomial(zero = NULL)

Poisson μ(x) vglm() negbinomial.size(size = Inf)

Poisson μ(x) vglm() poissonff()

Quasi-Poisson φμ(x) vglm() quasipoissonff()

where φ is a scale or dispersion parameter that is usually estimated by the method
of moments (Eq. (2.30)). Overdispersion corresponds to φ > 1, and the case φ = 1
is known as equidispersion. Confidence intervals for φ have been a research problem
but they are available for the NB-1 fitted as a VGLM (Sect. 11.3.4.2 below).

How might one choose between the QLP and NB-1? One solution is to fit the
RR-NB (5.21), which has the flexible variance function μ+ δ1μ

δ2 , where δ1 and δ2
are all positive parameters that are estimated by full MLE. We can conduct tests
of H0 : δ2 = 1 and H0 : δ2 = 2. For example, if we do not reject δ2 = 1, then full
MLE of (11.9) is easy via a VGLM. Confidence intervals for φ are then available
(whereas they are unavailable or nontrivial for QLP). If a 95% confidence interval
for φ covers unity, then an ordinary Poisson regression could be reasonable.

11.3.4.2 Fitting a NB-1

How can one fit a negative binomial subject to Var(Y ) ∝ μ? The answer is to
choose k = δ0 μ, say. Then Var(Y ) = (1 + δ−1

0 )μ which is of the form (11.9).
Also, log k = log δ0 + log μ so that η2 = log δ0 + η1, i.e., η2 and η1 differ only
by log δ0. To force the coefficients of log μ to be equal to those of log k for every
explanatory variable in x except for the intercept, a parallelism assumption is used
so that H2 = · · · = Hp = (1, 1)T in (3.27). The intercepts are estimated without
constraints: H1 = I2.

The call in VGAM for the NB-1 is of the form

nb1 <- vglm(y ~ x2 + x3, negbinomial(parallel = TRUE, zero = NULL), data = ndata)
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where argument parallel is a shortcut for constructing the Hk. Setting zero =

NULL annuls that argument. Then

1 + exp(-diff(coef(nb1, matrix = TRUE)["(Intercept)", ]))

is φ̂ because the parallel argument here does not apply to the intercept term by

default. Thus the first row of coef(nb1, matrix = TRUE) is
(
β̂(1)1, β̂(2)1

)
. The

interpretation of an NB-1 fitted in this manner is as an NB regression which is
subject to a quasi-Poisson-type variance function constraint (11.9).

11.3.4.3 Fitting a NB-P

As a numerical illustration, we fit an NB-P to the azpro data frame in COUNTS
(Yee, 2014). These data comprise 3589 patients entering a hospital in 1991 in Ari-
zona, USA, to receive one of two standard cardiovascular treatments (CABG = 0,
PTCA = 1), called variable procedure. The other variables being adjusted for
are sex (M = 1, F = 0), admit (0 = elective, 1 = urgent/emergency), and age75

(0 if age < 75 years, otherwise 1). The response is the length of hospital stay (los,
in days).

> data(azpro, package = "COUNT")

> rrnb.azpro <- rrvglm(los ~ procedure + sex + admit + age75,

negbinomial(zero = NULL), data = azpro)

> unlist(Confint.rrnb(rrnb.azpro)) # Neither a NB-1 nor NB-2

a21.hat beta11.hat beta21.hat CI.a211 CI.a212 CI.delta21 CI.delta22

0.588840 1.442765 1.390036 0.403762 0.773918 1.226082 1.596238

delta1 delta2 SE.a21.hat

0.582470 1.411160 0.094429

The fitted NB-2 (Hilbe, 2011) purports a variance function of

μ̂+
μ̂2

6.25
≈ μ̂+ 0.16 · μ̂2.

In fact, the fitted RR-NB has μ̂+0.58 · μ̂1.41, and an approximate 95% confidence
interval for δ2 is [1.23, 1.6], therefore neither an NB-1 or NB-2 is strictly appropri-
ate. This is supported by a likelihood ratio test of the RR-NB versus NB-2 with
p-value 1.5×10−12. The profile log-likelihood as a function of â21 (Fig. 11.3) is well
approximated by a quadratic, and it reveals that both NB-1 and NB-2 models can
be seen as inappropriate compared to the likelihood ratio confidence limits (A.24).

11.3.5 Some Practical Suggestions

Here are some practical suggestions when using VGAM to perform NB regression.

• The parameters of (11.2) match with the arguments of [dpqr]nbinom(size,

prob, mu) by size = k and mu = μ, while prob = p in the Pólya parameteri-
zation (11.6) described in Sect. 11.3.2.

• Both negbinomial() and polyaR() handle multiple responses. By default, the k
are modelled as intercept-only (as zero = -2). As k is positive, a number of
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Fig. 11.3 Profile log-likelihood �(a21) for rrnb.azpro; �(â21) is the highest point. The MLE
and likelihood-ratio confidence limits are the orange horizontal lines. The Wald confidence limits
are the grey vertical lines. The point at a21 = 0 is � for NB-2 (intercept-only for k). The point
at a21 = 1 is � for NB-1.

links are reasonable choices including reciprocal(), which might be more nu-
merically stable than just k or even log k. Alternatively, the loglog() is feasible

for k̂ � 1. If lsize = negloge, then η2 = − log k = logα.
• Although the fitting of an NB-2 (default) is often a reasonable first model,

difficulties will occur with Poisson data or underdispersion relative to the Pois-
son distribution. Both cases have k̂ → ∞ so that numerical problems will be
encountered. In these situations, possibly using a reciprocal or loglog link

might help; else simply fit a quasi-Poisson model having φ̃ < 1. It is always a
good idea to monitor convergence, e.g., set trace = TRUE, and try tricks such
as those described in Sect. 8.5.

• Another reasonable first model is the RR-NB. One can think of the NB-P as
a data-driven NB model. The δ2 parameter and its confidence interval can be
examined to see if it covers the values 1 or 2 for the NB-1 or NB-2, respectively.
If so, then these simpler models should be fitted.

• Currently, the deviance of a NB-2 regression,

2

n∑

i=1

wi

{

yi log

(
yi
μi

)

− (yi + k) log

(
yi + k

μi + k

)}

(11.10)

is not returned unless specifically requested, and half-stepping is effectively
turned off. This is because the deviance does not necessarily decrease at each
IRLS step, since both μ and k are being estimated. Half-stepping can be sup-
pressed and the deviance computed by using a call of the form

vglm(y ~ x2 + x3, negbinomial(deviance = TRUE), criterion = "coef", data = ndata)

or

vglm(y ~ x2 + x3, negbinomial(deviance = TRUE), half.step = FALSE, data = ndata)

The deviance is calculated only after convergence, and then it is attached to
the object. Of course, the deviance() generic function should be applied to the
fitted object to obtain its value.
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11.4 The Beta-Binomial Model

The beta-binomial model is a random-effects binomial model that is commonly
used for the analysis of teratological data. Proposed by Williams (1975), the clas-
sical example of this type of experiment involves a group of n pregnant rats which
are randomized and exposed to a chemical. The ith rat gives birth to a litter of
size Ni, of which y∗i are malformed or die within a specified time period. Table 11.4
gives a small data set of this description. The scientific objective is to determine
whether the risk of malformation differs between groups. Here, there were 32 preg-
nant rats which were randomized to receive a placebo or a chemical, and sacrificed
prior to the end of gestation or pregnancy. Each fetus was examined and a bi-
nary response indicating the presence or absence of a particular malformation was
recorded. It is well-known that such data is very likely to exhibit the so-called lit-
ter effect, whereby offspring from the same litter tend to respond more alike than
offspring from different litters. We will find below that such an effect is typically
reflected by a positive correlation parameter ρ. If ρ = 0, then an ordinary logistic
regression should suffice. The beta-binomial model has been shown to provide a
much better fit to many such data sets than the simple binomial model. Another
example of the litter effect, from dental science, is the number of teeth with caries,
Y ∗
i , out of Ni teeth for individual i.
The beta-binomial distribution assumes that a random malformation probabil-

ity Πi in cluster i comes from a beta distribution with mean μi. Such an assump-
tion is based more on mathematical convenience than any biological justification.
Given Πi = πi, the number of malformations Y ∗

i within the ith cluster follows a
Binomial(Ni, πi) distribution. Note that Π ∼ Beta(α, β) implies

f(π;α, β) =
πα−1 (1− π)β−1

Be(α, β)
, 0 < π < 1, 0 < α, 0 < β, (11.11)

with E(Π) = α/(α+β) and Var(Π) = αβ/[(α+β)2(α+β+1)]. Then the marginal
distribution of Y ∗

i is

P (Y ∗
i = y∗i ) =

(
Ni

y∗i

)
Be(y∗i + αi, Ni − y∗i + βi)

Be(αi, βi)
, y∗i = 0(1)Ni. (11.12)

Write Y ∗
i = Zi1 + · · · + Zi,Ni

where Zij = 0 or 1, and let ρi = Corr(Zij , Zik). It
then follows from (A.34) that E(Y ∗

i ) = Ni αi/(αi + βi) = Ni μi, say, and ρi =
(αi + βi + 1)−1, as well as (A.36) leading to

Var(Y ∗
i ) = Ni μi (1− μi) [1 + (Ni − 1)ρi] . (11.13)

Provided that Ni > 1, it can be seen that the beta-binomial allows overdispersion
with respect to the binomial distribution when ρ > 0. As an illustration, taking
the square root of (11.13) with Ni = 10, say, the standard deviation of Y ∗

i is
plotted in Fig. 11.4. It can be seen how, as ρ increases from 0, Var(Y ∗

i ) increases
relative to the binomial. Thus the beta-binomial distribution is a way of modelling
overdispersion relative to the binomial distribution.

The beta-binomial model can be fitted by the family function betabinomial().
However, like binomialff(), the response Y is a proportion rather than the num-
ber of successes. Thus Yi = Y ∗

i /Ni so that E(Yi) = μi, and the Ni are assimi-
lated as prior weights. The family function has default links η = (logitμ, logit ρ)T ,
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Table 11.4 Toxological experiment data (Williams (1975); in data frame prats). The subjects
are fetuses from 2 randomized groups of 16 pregnant rats each, and they were given a placebo
or chemical treatment. For each litter, the number of pups alive at 4 days (the litter size) and at
the 21 day lactation period were recorded. Bold values in the boxes represent 2 such litters.

Control 13/13, 12/12, 9/9 , 8/8 , 12/13, 11/12, 9/10 , 8/9, 11/13, 4/5, 5/7, 7/10

Treated 12/12, 11/11, 10/10, 9/9, 10/11, 9/10 , 8/9 , 4/5, 7/9, 4/7, 5/10, 3/6, 3/10, 0/7

because both parameters lie in the unit interval. Also, an intercept-only model
for ρ is the default, in order to provide greater numerical stability: betabinomial
(zero = 2).

Actually, Prentice (1986) pointed out that the correlation coefficient ρ need
not be positive as had been previously thought. He showed that the lower bound
for ρi is

max

{ −μi

Ni − μi − 1
,
−(1− μi)

Ni + μi − 2

}

.

VGAM cannot handle this type of constraint directly, however, users might try
lrho = "rhobit" (Table 1.2; allows −1 < ρ < 1) and hope that there are no
numerical difficulties resulting from estimates falling below the lower bounds
during estimation.

Here are some further notes.

1. An alternative VGAM family for the beta-binomial, betabinomialff(), deals
directly with the shape parameters, and has default links η = (log α, log β)T .

2. The basic model assumes all covariates are cluster-specific, e.g., treatment and
mothers’ characteristics. At present, individual-specific covariates cannot be
handled because multiple responses are not supported. If it were, then its
usage would be something like betabinomial(multiple.responses = TRUE),
and each column of the response matrix would be a different rat (and padded
by NAs), and the xij argument detailed in Sect. 3.4 would be operable.

3. Writing θi = ρi/(1− ρi) = 1/(αi + βi), it follows from (11.13) that

Var(Y ∗
i ) = Ni μi(1− μi)(Ni θi + 1)/(1 + θi).

Thus, the binomial is a special case of the beta-binomial with θi = 0. Note
that choosing lrho = "logit" means that θ = exp(η2). It is usual to test
for homogeneity of proportions (in the presence of common dispersion): H0 :
μ1 = · · · = μn versus H1 : not all the μi are equal, with the assumption
that θ1 = · · · = θn = θ which is unknown and unspecified.

11.5 Lagrangian Probability Distributions

This class of probability distributions is detailed in Consul and Famoye (2006),
which this description is based on. Lagrangian distributions are divided into three
subclasses, and are based on the Lagrange transformation u = z/g(z) where g(z)
is an analytic function on [−1, 1] with g(0) �= 0:
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Fig. 11.4 Standard deviation, SD(Y ∗
i ), in the beta-binomial distribution, from (11.13)

with Ni = 10. (a) As a function of μ, for ρ = 0.33 (blue), ρ = 0.67 (green) and ρ = 0 (or-
ange dashed). (b) As a function of ρ, where μi = 0.5.

z =
∞∑

k=1

uk

k!

{
Dk−1(g(z))k

}
z=0

. (11.14)

A function is analytic iff its Taylor series about x0 converges to the function in some
neighbourhood for every x0 in its (open) domain. Consequently, they are infinitely
differentiable there. Equation (11.14) expresses g(z) as a power series in u. Here, D
is the differentiation operator, e.g., Df(x) = df(x)/dx, D2f(x) = d2f(x)/dx2. We
say that the probability generating function (PGF) of a random variable Y is g(t),
say, where g(t) = E(tY ) =

∑∞
y=0 t

yPy and Py = P (Y = y) are the probabilities.
The significance of

u g(z) = z (11.15)

is that, in a multiplicative process, g(z) is the PGF of the number of segments
from any vertex in a rooted tree with numbered vertices, and u is the PGF for
the number of vertices in the rooted tree. Indeed, the number of vertices after n
segments in a tree can be interpreted as the number of members in the nth gen-
eration of a branching process. Application areas include population growth, the
spread of epidemics and rumors, and nuclear chain reactions.

The three subclasses are called basic, delta and general Lagrangian distribu-
tions. For brevity, we will only mention the first type. Let g(z) be as above with
the additional constraint that g(1) = 1. Then the smallest root z = 
(u) of the
transformation z = u g(z) defines a PGF z = ψ(u), and the Lagrangian expan-
sion (11.14) in powers of u as

z = ψ(u) =

∞∑

y=1

uy

y!

{
Dy−1(g(z))y

}
z=0

, (11.16)

if Dy−1(g(z))y|z=0 ≥ 0 for all values of y. Then the corresponding PMF of the
basic Lagrangian distribution is

P (Y = y) =
1

y!

{
Dy−1(g(z))y

}
z=0

, y ∈ N
+. (11.17)
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Table 11.5 Lagrangian probability distributions currently supported by VGAM. Notes: (i) the
geometric distribution is a special case of the Borel distribution, which is itself a special case of
the Borel-Tanner distribution with Q = 1. (ii) geometric() actually has support 0(1)∞.

Distribution Density f(y;θ) Support Range of θ Mean VGAM family,
and some g(z)

Borel
yy−2 ay−1

(y − 1)!
e−ay 1(1)∞ (0, 1)

1

1− a
borel.tanner(dr,

Q = 1),
exp{a(z − 1)}

Felix
y(y−3)/2 a(y−1)/2

((y − 1)/2)! eay
1(2)∞ 0 < a < 1

2

1

1− 2a
felix(d),
exp{a(z2 − 1)}

Generalized
Poisson

θ(θ + yλ)y−1

y! eyλ+θ
0(1)∞ 0 < λ < 1,

0 < θ

θ

1− λ
genpoisson()

Geometric (1− p)y−1 p 1(1)∞ 0 < p < 1
1− p

p
geometric([dpqr]),
1− p+ pz

VGAM family functions belonging to the Lagrangian class are listed in Table 11.5,
along with g(z) for the basic sublass entries. Other basic Lagrangian distributions
result from other choices of g(z).

Bibliographic Notes

Johnson et al. (2005) is a general encyclopaedic book for univariate discrete dis-
tributions. There are some general books that summarize many common distri-
butions, e.g., Balakrishnan and Nevzorov (2003) and Forbes et al. (2011). Leemis
and McQueston (2008) describes the relationships between over 70 univariate dis-
tributions. More details about random variate generation can be found in, e.g.,
Devroye (1986), Fishman (1996), Hörmann et al. (2004), Jones et al. (2014).

Fuller accounts of the negative binomial distribution can be found in Johnson
et al. (2005, Chap.5), Hilbe (2011) and Cameron and Trivedi (2013). The notation
of Hilbe (2011) is largely adopted in this chapter.

Jørgensen (1997) is an authoritative treatment of dispersion models. Lagrangian
distributions are also described in Johnson et al. (2005, Sect.7.2).

Exercises

Ex. 11.1. Use runif(n) and the acceptance-rejection method to generate ran-
dom variates from the beta distribution with 3 and 5 as the shape parameters.
That is, to generate the equivalent of rbeta(n, 3, 5).
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Ex. 11.2. Find the optimal value of C for an acceptance-rejection method ap-
plied to a standard normal density, based on having rlaplace() and dlaplace().
That is, we wish to write rnorm() so that f = φ and g(y) = 0.5 exp(−|y|). For
simplicity, fix the location/mean and scale/standard deviation parameters at 0
and 1 respectively. [Devroye (1986)]

Ex. 11.3. Show that μ̂ = y for the Poisson PMF, and then obtain an expression
for the unit deviance function.

Ex. 11.4. Suppose that Y ∼ truncated geometric(L,U) where y = L,L +
1, . . . , U , and L and U are known. Explain why this model can be fitted by some-
thing like

vglm(y - L ~ x2 + x3, truncgeometric(upper.limit = U - L), data = tdata)

Ex. 11.5. Suppose that we want to simultaneously regress two species’ counts
called y1 and y2, each with an NB-2, to covariates x2 and x3. Write down η,
the Hk, and the syntax for fitting the model in VGAM under the following con-
straints (treated separately).

(a) Subject to their k parameters being equal and intercept-only.
(b) Subject to their μ parameters being equal, and each k parameter being

intercept-only.

Ex. 11.6. Consider the variable pubtotal (total number of publications, from
the MathSciNet database) of the profs.nz data frame.

> ooo <- order(with(profs.nz, pubtotal), decreasing = TRUE)

> head(profs.nz[ooo, -4], 3)

pubtotal cites initials firstyear ID pub1stAuthor ARPtotal institution

1 84 80 CDL 1977 109295 38 86 MU

21 58 48 JAJ 1965 234899 31 NA UW

7 56 827 DVJ 1957 203111 33 59 VU

> tail(profs.nz[ooo, -4], 3)

pubtotal cites initials firstyear ID pub1stAuthor ARPtotal institution

3 7 1 MJA 1999 650954 5 NA MU

13 6 25 CMT 1977 273433 0 NA UA

15 1 0 JMC 2006 791650 0 NA UA

(a) Obtain the five number summary, mean and variance. Comment.
(b) Fit NB-1, NB-2, NB-H and NB-P models, with I(2014 - firstyear) as ex-

planatory. Why use this variable and what are its limitations?
(c) Decide which model in (b) seems best by applying some goodness-of-fit test,

i.e., justify your reasoning.
(d) Repeat (b)–(c) but using the variable pub1stAuthor (the number of first-

author publications) as the response.

Ex. 11.7. Doodlebugs
Fit a Poisson regression to the V1 data set. Do the same with a quasi-Poisson
model. Which is preferable? Try fitting an NBD—hint: the reciprocal() link
function may be better for the k parameter since its value will be large if the data
is Poisson.
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Ex. 11.8. Geometric-Binomial Relationship

(a) Generate a random sample of 100 random variates from a geometric distri-
bution with probability 1

4 of success. Show that fitting a logistic regression
with response of the form cbind(1, y1) gives the same regression coefficient
(an intercept-model will do) as using the family function geometric() on y1

directly.
(b) Use log-likelihood contributions 
i to explain the result.
(c) Apply logLik() to your fits—are they different? Compute this difference ex-

plicitly.

Ex. 11.9. Show that, if k is known, the NB regression gc,NB(μ) = η results in
a GLM with its canonical link.

Ex. 11.10. Derive the deviance formula (11.10) for the NB-2.

Ex. 11.11. Negative Binomial Computations

(a) Obtain an expression for the log-likelihood function of the NBD probability
function (11.2). Show that the off-diagonal element of the EIM is 0.

(b) Show that ∂
i/∂k = log p+ ψ(yi + k)− ψ(k)− (yi − μ)/(μ+ k).
(c) How might this be computed, even without access to digamma()?

Ex. 11.12. NBD Arising from a Poisson-Gamma Mixture
Starting at (11.4), complete the steps to show that the PMF of the NBD, (11.3),
results with μ = μ and k = s.

Ex. 11.13. Beta-Binomial Distribution

(a) Given the conditional distribution of Y ∗
i and the distribution of Πi outlined in

Sect. 11.4, show that the marginal distribution of Y ∗
i is (11.12).

(b) Show that, for y∗ = 0, 1, . . . , N ,

P (Y ∗ = y∗) =

(
N

y∗

) y∗−1∏

r=0

(μ+ rθ)

N−y∗−1∏

r=0

(1− μ+ rθ)

N−1∏

r=0
(1 + rθ)

. (11.18)

(c) Fit a simple beta-binomial model to the prats data of Table 11.4. Obtain an
approximate 95% confidence interval for ρ. Would an ordinary binomial model
suffice? Quantify any difference between the control and treatment groups by
using the odds ratio.

Ex. 11.14. Borel-Tanner Distribution

(a) From its PMF in Table 11.9, show that the mean of the Borel-Tanner distri-
bution is as specified. Show that its variance is Qa/(1− a)3.

(b) Derive its EIM.
(c) Let Q = 1, i.e., the Borel distribution. Show that underdispersion and overdis-

persion (relative to the Poisson) occurs for 0 < a < (3−√5)/2 and (3−√5)/2 <
a < 1, respectively. [Consul and Famoye (2006)]
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Ex. 11.15. † Write a VGAM family function for the positive beta-binomial dis-
tribution, defined as a beta-binomial distribution with zeros excluded.

Ex. 11.16. The following data concerns accidents to 647 women working on
high explosive shells during a 5-week period during WW1, and was reported by
Greenwood and Yule in 1920. The number of accidents was y = 0, 1, . . . , 5, with
respective frequencies 447, 132, 42, 21, 3, 2 (actually, the 5 here was a “≥ 5”). Fit
the standard Poisson and NB-2 models, plus any other two discrete distributions.
Use some measure of goodness of fit to decide which of your models is best.

Ex. 11.17. 2008 World Fly Fishing Championships
Consider the wffc data set.

(a) Fit a negative binomial regression to the number of trout caught per session,
using the sector, time of day (morning and afternoon), and the day as covari-
ates.

(b) Does the data appear to be overdispersed relative to a Poisson distribution?
Interpret the fitted coefficients.

(c) Estimate the catch per unit effort (CPUE; number of fish caught per hour
of fishing) for an angler on the Waihou River during the afternoon of
Day 1. [Yee (2010b)]

Chance is always powerful: let your hook always be cast. In a pool where you
least expect it, there will be a fish.
—Publius Ovidius Naso
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Chapter 12

Univariate Continuous Distributions

On the other hand, it is impossible for a cube to be written as the sum of
two cubes or a fourth power to be written as a sum of two fourth powers or,
in general, for any number which is a power greater than the second to be
written as a sum of two like powers. I have a truly marvellous demonstration
of this proposition, which this margin is too narrow to contain.
—Pierre de Fermat

12.1 Introduction

As in the previous chapter, many univariate distributions are amenable to the
VGLM/VGAM framework due to (i) regularity conditions holding, and (ii) EIMs
that can be computed or approximated easily. This chapter enumerates the current
crop of univariate continuous distributions implemented in VGAM (Tables 12.3–
12.14). As with the previous chapter, they are arranged in overlapping groups,
and users are directed to the online help and references for details (Table 12.1).
Unfortunately, space limitations do not permit any details about any particular
distribution here, apart from a handful in Sect. 12.3.

For those univariate continuous distributions already ‘supported’ in R (in the
stats package) via the dpqr-type functions, Table 12.3 lists the corresponding
VGAM family functions. For these, the parameter names of the VGAM family
function are the same as the argument names, e.g., ‘rate’ in rexp() is the
parameter name used by exponential(). Other examples are ‘size’ and ‘mu’
for negbinomial(), and ‘mean’ and ‘sd’ for uninormal(). Of course, this does not
apply to those distributions which are fitted by glm(); for these, VGAM adds ‘ff’
to the end of the family function name to avoid conflict, and these family functions
attempt to replicate the functionality of their glm()-type counterparts.

© Thomas Yee 2015
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Table 12.1 Some references for some specific distributions (upper table), and classes of distri-
butions (lower table), relevant to VGAM—some classes are relevant to other chapters.

Distribution References

Beta Gupta and Nadarajah (2004)

Exponential Balakrishnan and Basu (1995), Pal et al. (2006), Marshall and
Olkin (2007), Ahsanullah and Hamedani (2010)

Gamma Bowman and Shenton (1988), Marshall and Olkin (2007)

Laplace Kotz et al. (2001), Kozubowski and Nadarajah (2010)

Lagrangian Consul and Famoye (2006)

Pareto Arnold (2015)

Weibull Murthy et al. (2004), Rinne (2009)

Types of distributions References

General distributions Balakrishnan and Nevzorov (2003), Leemis and McQueston
(2008), Forbes et al. (2011)

Univariate continuous Johnson et al. (1994), Johnson et al. (1995), Kotz and van
Dorp (2004)

Incomes/actuarial/loss
models

Kleiber and Kotz (2003), Chotikapanich (2008), Kaas et al.
(2008), Klugman et al. (2012), Richards (2012), Klugman et al.
(2013), Nadarajah and Bakar (2013)

Dispersion models Jørgensen (1997)

Mixture Everitt and Hand (1981), Titterington et al. (1985), Lind-
say (1995), McLachlan and Peel (2000), Frühwirth-Schnatter
(2006)

Skew normal Azzalini (2014)

Survival Lawless (2003), Marshall and Olkin (2007)

Bivariate distributions
and copulas (ch.13)

Joe (2014), Trivedi and Zimmer (2005), Nelsen (2006), Balakr-
ishnan and Lai (2009), Mai and Scherer (2012), Schepsmeier
and Stöber (2014)

The other tables in this chapter correspond to

• their support, e.g.,

– (−∞,∞): Tables 12.4, 12.5,
– (A,∞): Tables 12.6, 12.7, 12.8, 12.9,
– (A,B) for finite A and B: Table 12.10,

• the ‘parent’ distribution they are based on, e.g.,

– beta-type: Table 12.11,
– exponential-type: Table 12.12,
– gamma-type: Table 12.13,

• their focus, e.g.,

– size distributions: Table 12.14.
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Table 12.2 Some special cases of the Pearson system of distributions, and VGAM family func-
tions for fitting them. The normal distribution arises as limiting cases of all types.

Pearson Type Distribution VGAM family

I Beta betaff(), betaR()

VI Beta-prime betaprime()

IV Cauchy cauchy1(), cauchy()

III Chi-squared chisq()

III Exponential exponential(). See also Table 12.12

III Gamma gammaff(), gamma2(), gammaR(). See also Table 12.13

VI F fff()

All types Normal gaussianff(), uninormal()

XI Pareto paretoff()

XII Pareto truncpareto()

VII Student t studentt(), studentt2(), studentt3()

12.2 Some Basics

12.2.1 Location, Scale and Shape Parameters

Scale parameters play a larger role with continuous distributions than with discrete
ones. A (positive) scale parameter b (sometimes called θ2 here) can be defined as
satisfying

F (y; b,θ∗) = F (y/b; 1,θ∗) (12.1)

where θ∗ denotes the remaining parameters. Consequently,

f(y; b,θ∗) =
1

b
f(y/b; 1,θ∗). (12.2)

Additionally, a location parameter a (sometimes called θ1 here) is often used in
the form y − a to shift the distribution to the right by the amount a. Combining
both location and shift, along with a shape parameter s (sometimes called θ3,
or sj if there are more than one) more generally, if one has a random variable Y ,
then one may also consider the random variable T = [(Y − θ1)/θ2]

s for suitable θ1
and θ2 > 0. Then

f(t; θ1, θ2, s) =
s |y − θ1|s−1

θs2
f0

([
y − θ1
θ2

]s)

(12.3)

relates both densities (A.30). To provide a more unified front, most VGAM fam-
ily functions represent θ1 and θ2 by the arguments location and scale, and
with shape, or shape1, shape2, . . . , for any shape parameters. As seen many
times before, the link function for scale is always "loge", by default, due to its
positivity.

Unfortunately, in some software including R itself, the terms ‘intercept’,
‘scale’ and ‘shape’ are used very loosely, e.g., survreg()’s scale is the re-
ciprocal of rweibull()’s shape, and survreg()’s intercept is the logarithm
of rweibull()’s scale. Note that [dpqr]weibull() parameterizes the density
as f(x) = (s/b)(x/b)s−1 exp(−(x/b)s) for shape parameter s and scale parame-
ter b.
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Many 3-parameter distributions are not implemented in VGAM because their
support is defined by the location parameter, therefore the usual regularity condi-
tions are not met. For example, the 3-parameter Weibull having support (a,∞) has
been a topic considered by more than a few workers, e.g., Harper et al. (2011). Con-
sequently, VGAM family functions for only some distributions have a 1-parameter
variant (location only), a 2-parameter variant (location and scale only), and a
3-parameter variant (location, scale and shape). These often attach a 1, 2 and 3

to the end of the function name, and sometimes the default for a distribution is
so obvious that the number is omitted, e.g., studentt() estimates the degrees of
freedom ν, which is its shape parameter.

Since the EIM is so important for the VGLM/VGAM framework, the follow-
ing result (see, e.g., Lehmann and Casella, 1998) is useful. For the location-scale
families with PDF

f

(
y − θ1
θ2

)

, (12.4)

if f(y) > 0 and f ′(y) exists for all y, θ1 ∈ R and θ2 > 0, then the EIM elements
are

IE,11 =
1

θ22

∫ ∞

−∞

[
f ′(y)
f(y)

]2
f(y) dy, (12.5)

IE,22 =
1

θ22

∫ ∞

−∞

[
yf ′(y)
f(y)

+ 1

]2
f(y) dy, (12.6)

IE,12 =
1

θ22

∫ ∞

−∞
y

[
f ′(y)
f(y)

]2
f(y) dy, (12.7)

assuming that all the integrals are finite. Other authors such as Shao (2005) express
the off-diagonal element as

IE,12 =
1

θ22

∫ ∞

−∞

[
yf ′(y)
f(y)

+ 1

]

f ′(y) dy. (12.8)

While many distributions have the form (12.4), others such as the exponential
and gamma customarily use the reciprocal of the scale parameter b instead, e.g.,

λ (y − a) =
y − a

b
,

where λ is sometimes referred to as the rate parameter. If so, then the parameter
name is often called rate rather than scale, and then the "negloge" link function
is a way of interchanging between the two because it operates on the very simple
relationship log λ = − log b. Here’s simple example involving the Erlang distri-
bution, which is a special case of the gamma distribution with an integer-valued
shape parameter. To add a twist, there are multiple responses.

> n <- 1000

> set.seed(123)

> rate1 <- exp(2); rate2 <- exp(4)

> edata <- data.frame(y1 = rgamma(n, shape = 3, rate = rate1), # Generate Erlang

y2 = rgamma(n, shape = 5, rate = rate2)) # random variates

> fit1 <- vglm(cbind(y1, y2) ~ 1, erlang(shape = c(3, 5)), data = edata)

> fit2 <- vglm(cbind(y1, y2) ~ 1, erlang(shape = c(3, 5), link = "negloge"),

data = edata)
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> coef(fit1, matrix = TRUE)

loge(scale1) loge(scale2)

(Intercept) -2.0405 -4.0121

> coef(fit2, matrix = TRUE)

negloge(scale1) negloge(scale2)

(Intercept) 2.0405 4.0121

Note that, for multiple responses, the parameter names are postfixed by the char-
acters 1, 2, . . . , according to their order, e.g., in this example, scale1 and scale2

are used.
Incidentally, because the shape parameter is integer-valued, how might one es-

timate it?—because using a family function based on the gamma distribution
returns a real-valued estimate. In this example, we can compute 
 based on the
two integers either side of ŝ, as follows. For simplicity, we do this for one of the
responses.

> fit3 <- vglm(y1 ~ 1, gammaR(lss = FALSE), data = edata, trace = FALSE)

> coef(fit3, matrix = TRUE) # Order of parameters is the same as rgamma()

loge(shape) loge(rate)

(Intercept) 1.1458 2.0877

> shape.hat <- Coef(fit3)["shape"] # Can do this for intercept-only models

> c(shape.hat, floor = floor(shape.hat), ceiling = ceiling(shape.hat))

shape floor.shape ceiling.shape

3.145 3.000 4.000

> fit4 <- vglm(y1 ~ 1, erlang(shape = floor(shape.hat)), data = edata)

> fit5 <- vglm(y1 ~ 1, erlang(shape = ceiling(shape.hat)), data = edata)

> logLik(fit4) > logLik(fit5)

[1] TRUE

Hence fit4 is the better fitting model, corresponding to the correct shape param-
eter of 3.

12.2.1.1 Order of Arguments

Almost all VGAM family functions order their arguments as: location, scale,
and shape (or rate), i.e., θ = (a, b, s1, s2, . . .)

T . For some families it is necessary to
have the argument lss for the purpose of matching the order of some pre-existing R
functions residing in stats (dpqr-type functions). Here are two examples.

> args(rweibull)

function (n, shape, scale = 1)

NULL

> args(weibullR)

function (lscale = "loge", lshape = "loge", iscale = NULL, ishape = NULL,

lss = TRUE, nrfs = 1, probs.y = c(0.2, 0.5, 0.8), imethod = 1,

zero = ifelse(lss, -2, -1))

NULL
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> args(dgamma)

function (x, shape, rate = 1, scale = 1/rate, log = FALSE)

NULL

> args(gammaR)

function (lrate = "loge", lshape = "loge", irate = NULL, ishape = NULL,

lss = TRUE, zero = ifelse(lss, -2, -1))

NULL

Hence weibullR(lss = FALSE) and gammaR(lss = FALSE) correspond to θ =
(s, b)T and θ = (s, λ)T , respectively, i.e., matching their respective dpqr-type R
functions. One may see from the output that zero always points to the shape
parameter as being intercept-only, by default.

Whenever it appears, the default is lss = TRUE, and setting lss = FALSE is
necessary to match the order of pre-existing R functions.

12.2.2 Initial Values

Because of the large number of distributions, initial values require much more
attention in general compared to GLMs because their convergence properties are
far less well-behaved.

For illustration, consider a simple example involving a 1-parameter Cauchy
distribution with a known scale parameter of unity.

> n <- 10; set.seed(91)

> cdata <- data.frame(y = rcauchy(n))

> cfit <- vglm(y ~ 1, cauchy1, data = cdata, trace = FALSE) # TRUE is a good idea

> coef(cfit, matrix = TRUE)

location

(Intercept) 0.16096

The log-likelihood 
 is plotted in Fig. 12.1 as a function of a. It is evident that 
 is
multimodal, and that poor initial values may lead to a local solution. For certain
families such as this, VGAM chooses initial values based on a grid search. But the
user should make liberal use of arguments such as imethod, ilocation, iscale,
etc. Incidentally, for the Cauchy distribution, if both location and scale parame-
ters are to be estimated (cauchy()), then there is a unique maximum likelihood
solution provided that n > 2 and less than half the data are located at any one
point. By the way, occurrences of trace = FALSE in this chapter are to conserve
space; it is recommended readers use trace = TRUE to monitor convergence.

As the number of parameters increases, it often becomes more difficult to safe-
guard against the multimodal 
 problem. For example, the 4-parameter generalized
beta II distribution of Table 12.14 is much harder to estimate than special cases of
itself. Large sample sizes are needed, in general, to justify the estimation of its 3
parameters. And if so, then probably these (shape) parameters should be intercept-
only. For some distributions such as the GEV (Chap. 16), it often takes n in the
order of thousands in order to reasonably model the shape parameter as a func-
tion of even one covariate. Having intercept-only shape parameters often leads
to greater stability in the estimation because of fewer numerical problems that
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Fig. 12.1 Log-likelihood �(a) as a function of the location parameter, for a random sample of
size 10 from a standard Cauchy distribution. The dashed vertical line denotes â, and the purple×
denotes the data.

arise when they are allowed to become too flexible. The zero argument should be
used to limit the number of parameters which are allowed to vary as a function of
the covariates. Setting zero = NULL is quite unjustified unless there is much data
and/or there is a strong signal and/or only a few variables.

From both a user’s and developer’s point of view, it is worth knowing that many
distributions have several common parameterizations. Some complex densities such
as the generalized hyperbolic distribution are critically dependent on the best
choice of these—for these the EIM is more well-conditioned. Ideally, EIMs are best
diagonal where possible because the parameters are asymptotically uncorrelated,
therefore the estimation can more easily be broken down to separate subproblems.

As with all VGAM family functions, monitoring convergence is a very good idea.
If the data and model agree, then usually 4–8 iterations are all that are necessary
for convergence. More than 10 iterations, say, suggests something is awry and that
corrective action might be taken, else that distribution abandoned.

As an example of using a simpler model to provide initial values for a more
complex one, consider the Fisk distribution which is a special case of the Singh-
Maddala distribution with shape parameter q = 1 (Table 12.14). In the following,
fit0 is nested in fit1 and is used to provide initial values for the more flexible
model.

> set.seed(123); sdata <- data.frame(x2 = runif(n <- 1000))

> sdata <- transform(sdata, eta.shape1.a = 2,

eta.scale.b = -1 + x2,

eta.shape3.q = 1)

> sdata <- transform(sdata, shape1.a = exp(eta.shape1.a),

scale.b = exp(eta.scale.b),

shape3.q = exp(eta.shape3.q))

> sdata <- transform(sdata, y1 = rsinmad(n, shape1.a = shape1.a,

scale = scale.b, shape3.q = shape3.q))

> fit0 <- vglm(y1 ~ x2, fisk(lss = FALSE), data = sdata) # A 2-parameter problem

> init.shape3.q <- 1 # Try this initial value for shape3.q

> fit1 <- vglm(y1 ~ x2, sinmad(zero = c(1, 3), lss = FALSE), data = sdata,

etastart = cbind(predict(fit0), log(init.shape3.q)))

> coef(fit1, matrix = TRUE) # A 3-parameter problem

loge(shape1.a) loge(scale) loge(shape3.q)

(Intercept) 2.0313 -1.0121 0.87166

x2 0.0000 0.9706 0.00000
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Here, it is important to match up each column of etastart so that they refer
to the same parameter, and having the same link function too. Incidentally, fit1
took 6 iterations to converge; this value is presently stored as fit1@iter.

12.2.3 About the Tables

As most of this chapter consists of the tables at the end, here are some general notes
regarding them—they hold for most VGAM family functions but not necessarily all
of them. Some of the notes also hold for the discrete distributions of the previous
chapter.

1. For location-scale families, there are two forms:

(i) (12.4) is the most common, where a or θ1 is used to refer to the location
parameter, and b or θ2 the positive scale parameter. Often the argument
and parameter names are called location and scale. If the distribution’s
support depends on a, then its value must be specified by the user.

(ii) For completeness, the second form is stated:

f(λ (y − θ1)) , (12.9)

i.e., λ = b−1. Then λ is referred to a rate parameter, although r may be used
instead. Then the argument and parameter names are often called location

and rate.

The order of the parameters is, if relevant, location, followed by scale, followed
by shape parameters. Some families allow for known a to be inputted—and if
so, then it is common for the lower support limit to be a so that a < yi for
all i.

2. Usually the mean is returned as the fitted values, by default. If not, then the
median μ̃ is returned instead.

3. The parameters θj ∈ R unless specified otherwise.
4. Section A.4 may need to be consulted for details about special functions such

as those of Bessel, digamma and trigamma.
5. Some family functions have for accompaniment the full range of dpqr-type

functions; others a smattering, and others none at all (currently). Functions
written in the future will be added to VGAM incrementally.

6. The VGAM family functions of continuous distributions do not allow data lying
on the boundaries of their support, e.g., chisq() will crash for yi = 0. Of
course, Inf-valued responses are not allowed in general either.

7. Of a, b and s, the highest probability of an intercept-only parameter, by default,
is for the shape parameter s, followed by the scale parameter b. The location
parameter is never intercept-only, by default. Section 12.2.5 attempts to justify
the default values of zero based on this ordering. Recall that setting zero =

NULL makes none of the parameters intercept-only, however, this should only
be used if there is a lot of data at hand and x is very low-dimensional.

8. Distributions based on mathematical functions (e.g., beta(), gamma(), zeta(),
lgamma()) often have a postfix “ff” or “R” appended to the name, e.g.,
gammaR(), betaff(). The “R” means it tries to match up with some pre-
existing R function, e.g., gammaR() is based on dgamma()’s shape and scale
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parameters. However, most applied statisticians are more interested in directly
the mean, therefore will find gamma2() more useful. In this case, gammaff()
is the Gamma()-imitation that runs with glm(). When written, weibull() will
use the parameterization of (12.15)–(12.16).

9. For those distributions with dpqr-type functions, sometimes μ̂, μ̃ or general
quantiles may be returned as fitted values. Then the arguments type.fitted
and percentiles are relevant, e.g., family = VGAMFamilyFn(type.fitted =

"quantile", perc = 50) will return the median. Then a vector for perc is
allowable, e.g., perc = c(25, 50, 75) should return a 3-column matrix of
fitted values. In general, percentiles can be assigned a value in (0, 100). If
the mean is supported, then type.fitted = "mean" is the way to obtain this.

10. Because some distributions are intrinsically more difficult to estimate, espe-
cially those with more parameters, the estimation reliability of the VGAM
family functions vary. Over time, it is hoped that all of them will be improved
in terms of their reliability and choice of initial values.

12.2.4 Q-Q Plots

With the multitude of distributions that may be fitted, the ability to compare the
fits of several models against the data is important. A QQ-plot may be used to
compare two distributions by plotting the quantiles (the “Q”) against each other.
If the distributions are the same, then we should expect the points to lie approx-
imately on the x = y line. This method is applicable if a VGAM family function
is accompanied by a p-type or q-type function. Also, the method is restricted to
intercept-only models.

In the following toy example, the response y1 follows a Birnbaum-Saunders dis-
tribution, and y2 is Fréchet distributed. Fitting a Birnbaum-Saunders distribution
to both, the resulting QQ-plots confirm that the fit to y1 is reasonable but the fit
to y2 isn’t (Fig. 12.2).

> n <- 100; set.seed(1)

> bdata <- data.frame(x1 = rep(1, n)) # bdata has n rows

> bdata <- transform(bdata, Scale = exp(1), Shape = exp(0.5)) # Recycling

> bdata <- transform(bdata, y1 = rbisa(n, scale = Scale, shape = Shape),

y2 = rfrechet(n, scale = Scale, shape = Shape))

> fit1 <- vglm(y1 ~ 1, bisa, data = bdata, trace = FALSE)

> fit2 <- vglm(y2 ~ 1, bisa, data = bdata, trace = FALSE)

> pfit1 <- predict(fit1, untransform = TRUE)

> pfit2 <- predict(fit2, untransform = TRUE)

> bdata <- transform(bdata, scale1.hat = pfit1[, "scale"],

shape1.hat = pfit1[, "shape"],

scale2.hat = pfit2[, "scale"],

shape2.hat = pfit2[, "shape"])

> pvector <- ppoints(n) # n equally-spaced points on (0, 1)

>

> plot(qbisa(pvector, scale = scale1.hat, shape = shape1.hat) ~ sort(y1),

data = bdata, col = "blue", log = "xy", ylab = "Estimated quantiles",

main = "(a); q-type function")

> abline(a = 0, b = 1, col = "orange", lty = "dashed")

>
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Fig. 12.2 QQ-plots of 2 simulated data sets. A Birnbaum-Saunders distribution is fitted to both.
(a)–(b) Data from a Birnbaum-Saunders distribution; (c)–(d) data from a Fréchet distribution.
Plots (a) and (c) are based on the q-type function, and both axes are on a log-scale. Plots (b)
and (d) use the p-type function. An x = y line appears in all plots.

> plot(sort(pbisa(y1, scale = scale1.hat, shape = shape1.hat)) ~ pvector,

data = bdata, col = "blue", ylab = "Estimated CDF from the model",

main = "(b); p-type function")

> abline(a = 0, b = 1, col = "orange", lty = "dashed")

>

> plot(qbisa(pvector, scale = scale2.hat, shape = shape2.hat) ~ sort(y2),

data = bdata, col = "blue", log = "xy", ylab = "Estimated quantiles",

main = "(c); q-type function")

> abline(a = 0, b = 1, col = "orange", lty = "dashed")

>

> plot(sort(pbisa(y2, scale = scale2.hat, shape = shape2.hat)) ~ pvector,

data = bdata, col = "blue", ylab = "Estimated CDF from the model",

main = "(d); p-type function")

> abline(a = 0, b = 1, col = "orange", lty = "dashed")

To explain a few details behind this, the R function ppoints(n) is used to
form an equally spaced vector of length n on the interval (0, 1), e.g., the plot-
ting positions are something similar to (i + 1

2 )/(1 + n) (= pi, say). If Y1, . . . , Yn

are a random sample from some continuous distribution with CDF FY (y;θ),
then Ui = FY (yi;θ) has a standard uniform distribution. Let Y(i) be the ith order
statistic, so that Y(1) ≤ Y(2) ≤ · · · ≤ Y(n). Then FY (Y(i);θ) = U(i) ≈ pi. Plots (a)

and (c) check to see whether F−1(pi; θ̂) ≈ y(i), while plots (b) and (d) check to

see whether F (y(i); θ̂) ≈ pi. For the interested reader, the ideas here are borrowed
from, e.g., qqnorm() and qqplot().
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A common mistake amongst amateur data analysts is the over-interpretation of
QQ-plots. When n is small, there is a substantial amount of statistical variation
amongst the order statistics, hence it is unreasonable to expect the plotted points
to lie very close to the x = y line. It is common to quantify the agreement of a
fitted distribution with the observed data by citing a correlation coefficient.

12.2.5 Scale and Shape Parameters

It was recommended above that usually shape parameters should be modelled more
simply compared to scale parameters, as often reflected in the default of the zero

argument of VGAM family functions. In this section, we offer a little justification
for this recommendation; and if accepted, it must be taken with a grain of salt (or
perhaps several pinches).

Consider a 2-parameter gamma distribution parameterized by positive scale and
shape parameters b and s (equivalent to gammaR(lrate = "negloge")):

f(y; b, s) =
e−y/b ys−1

bs Γ (s)
, 0 < y. (12.10)

We use this as illustrative of the general principle that often there is less infor-
mation content on the shape parameter compared to the scale parameter. For one
observation, it is easy to show that the inverse of its EIM is

b2

sψ′(s)− 1

(
ψ′(s) −1/b
−1/b s/b2

)

,

upon which the SEs can be obtained. Figure 12.3a plots these SEs as a function
of s, for 3 values of b: e−1, e0 = 1, e1. A log-scale is used in plot (b). With these b
values, the densities for 2 values of s appear in Fig. 12.3c,d, under the original scale
and a log-scale. It may be seen that, for fixed b, SE(ŝ) > SE(̂b) for s sufficiently
large. With such greater variability in ŝ, it pays to model such parameters more
simply, e.g., as intercept-only. This recommendation, however, is not without its
dangers: SE(ŝ) � SE(̂b) when s ≈ 0. Ideally, the user will know that, for low s
and large b, there is the ability to model this parameter more accurately than b.

12.3 A Few Groups of Distributions

12.3.1 Size Distributions

Table 12.14 summarizes a subset of distributions on (0,∞) described in Kleiber
and Kotz (2003), called statistical size distributions. These are concerned with
economic and actuarial size phenomena of various types such as income and wealth.
This topic started with the work of Pareto around the turn of the 20th century,
and other applications include the size of cities and companies, the number of
publications of authors, and word frequencies in text. They classify size distribution
into 3 types according to their tail behaviour as y →∞: Pareto-type (f(y) ∼ y−α),
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Fig. 12.3 The 2-parameter gamma distribution (12.10). (a) SE(̂b) are the solid curves, for
various values of the scale parameter b given in the legend of (b). The purple dashed line is SE(ŝ).
(b) The same with both axes on a log-scale. (c) The densities with shape parameters s = e0

(solid lines) and e1 (dashed). (d) The same as (c) with one axis on a log-scale.

lognormal-type (f(y) ∼ exp{−(log y)α}), gamma-type (f(y) ∼ e−αy). Indeed, all
the entries are special cases of a generalized beta II distribution, and parameterized
by a scale parameter (b, say) and one or more shape parameters called a, p, q. All 4
parameters are positive, and are called scale, shape1.a, shape2.p, shape3.q.
The 4- and 3-parameter distributions, being so flexible, can be especially difficult
to estimate reliably due to multiple local solutions, particularly for small samples.
The tricks given in Sect. 8.5 are very relevant and recommended for use.

12.3.2 Pearson System

Karl Pearson’s system of continuous distributions is based on the differential
equation

df

dy
=

(y − a) f(y)

b0 + b1 y + b2 y2
. (12.11)

There are 13 members, of which several currently can be fitted with VGAM family
functions. Note that for some members this may be no easy task, e.g., Johnson
et al. (1994, p.19) state that fitting Type IV by MLE is very difficult and is rarely
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attempted. The normal density corresponds to b1 = b2 = 0, and some people refer
to it as Type V even though it is the limit of all types. Table 12.2 lists some
examples falling in the Pearson system and VGAM family functions for fitting
them.

12.3.3 Poisson Points in the Plane and Volume

A problem from geometric probability involves measuring the distance between a
fixed point P inside an areal region or volume and its nearest neighbours. Suppose
the number of points in any region of area A of the plane has a Poisson(μ = λA)
distribution so that λ is the density of the points. Let Y(j) be the distance from P to
its jth nearest neighbour, so that it is the jth order statistic in terms of distances.
Then its PDF is

fY(j)
(y) =

2(λπ)j

(j − 1)!
y2j−1 exp

{−λπy2} , 0 < y. (12.12)

A similar formula holds when considering a volume V with number of points
generated from a Poisson(μ = λV ) distribution. Then the PDF for Y(j) is

fY(j)
(y) =

3
(
4
3λπ

)j

(j − 1)!
y3j−1 exp

{

−4

3
λπy3

}

, 0 < y. (12.13)

The VGAM family function poisson.points() estimates the density λ in both
cases. It has argument ostatistic which is assigned the single value j, and an
argument dimension which has value 2 or 3. While ostatistic stands for “order
statistic” the argument need not be assigned an integer, e.g., the value 1.5 coincides
with the Maxwell distribution when the dimension is 2. Note that the value 1
coincides with the Rayleigh distribution when the dimension is 2.

Exercises

Ex. 12.1. EIMs for Location-Scale Distributions

(a) Given (12.7), show that (12.8) is an identical expression.
(b) Use (12.5)–(12.7) to obtain the EIM for the N(μ, σ) distribution.
(c) Use (12.5)–(12.7) to obtain the EIM for the 2-parameter logistic distribution

(Table 12.3).

Ex. 12.2. Normal Distribution EIM
For parameters (μ, σ) and for one observation, show that the EIM is equal
to σ−2 · diag(1, 2). What is the EIM for parameterization (μ, σ2)? For symmet-
ric distributions about a location parameter θ1, of the form (12.4), deduce that
the off-diagonal EIM element is 0.
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Ex. 12.3. ALD EIM
For κ known and fixed, why cannot (12.5)–(12.8) be used to obtain the top-left 2×
2 submatrix of the EIM of the asymmetric Laplace distribution (15.12) given
by (15.14)?

Ex. 12.4. Random Variates from a Triangular Distribution
Write a simple R function rTriangle(n, theta, lower = 0, upper = 1) which
expects single-valued arguments satisfying L < θ < U , where L = lower and U =
upper. Implement the acceptance-rejection method described in Sect. 11.1.1 based
on a uniform distribution covering it. You may make use of dtriangle() in VGAM.
Test your function out on several θ values including 1

2 , 1 and 1 1
2 , fixing L = −1

and U = 2.

Ex. 12.5. Generalized Gamma Distribution

(a) Generate 1000 observations from a generalized gamma (Stacy, 1962) distribu-
tion with parameter values b = e2, d = e0, k = e2.5.

(b) Fit some 2-parameter gamma distribution, and use it for initial values to fit
the 3-parameter distribution.

(c) Does (b) improve the convergence rate? What about the reliability for success-
ful convergence?

Ex. 12.6. Mixture of 2 Exponential Distributions
Consider the mixture of two exponential distributions specified in Table 12.12.

(a) Derive the CDF F (y).
(b) Does this mixture distribution possess the memoryless property of the expo-

nential distribution? i.e., does P (Y > s+ t|Y > t) = P (Y > s)?
(c) Generate 1000 observations from the distribution with φ = expit(− 1

2 ), λ1 = e2

and λ2 = e−1. (The expit function is the inverse of the logit). Then estimate
the parameters thereof.

Ex. 12.7. Singh-Maddala Distribution
The 2-parameter paralogistic distribution is a special case of the 3-parameter
Singh-Maddala distribution with parameter constraint a = q.

(a) Generate 1000 observations from a paralogistic distribution with a = e1 and
unit scale parameter, and then estimate its parameters with paralogistic().

(b) Use the constraints argument of vglm() and the family function sinmad()

to estimate its parameters. Confirm that the log-likelihood, fitted values and
standard errors of the estimates are the same as (a).

Ex. 12.8. Dagum Distribution
The 2-parameter inverse paralogistic distribution is a special case of the
3-parameter Dagum distribution with parameter constraint a = p.

(a) Generate 1000 observations from an inverse paralogistic distribution with a =
e1 and unit scale parameter, and then estimate its parameters with the VGAM
family function inv.paralogistic().

(b) Use the constraints argument of vglm() and the family function dagum()

to estimate its parameters. Confirm that the log-likelihood, fitted values and
standard errors of the estimates are the same as (a).
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Ex. 12.9. Weibull EIM
Consider the Weibull distribution in Table 12.3 whose EIM is given by (for θ =
(b, s)T ; see also (A.49))

(
(s/b)

2 − (1− γ)/b
− (1− γ)/b [π2 + 6(γ − 1)2]/(6s2)

)

. (12.14)

(a) Show that the EIM is positive-definite for all positive b and s.
(b) Consider the parameterization

η1 = log μ, (12.15)

η2 = log s. (12.16)

Derive −E[∂2
i/(∂η ∂ηT )].

Ex. 12.10. Kumaraswamy Distribution
Jones (2009) gives EIM of the Kumaraswamy distribution for θ = (α, β)T where
f(y;θ) = αβyα−1 (1 − yα)β−1 is the density (α is shape1, etc., see Table 12.11).
Then the elements of the EIM are

IE,11 = α−2
(
1 + [β/(β − 2)]

{
[ψ(β)− ψ(2)]2 − [ψ′(β)− ψ′(2)]

})
,

IE,22 = β−2,

IE,12 = −{ψ(1 + β)− ψ(2)} /[α (β − 1)].

Identify any singularities, and propose any corrections for computing these quan-
tities.

Ex. 12.11. Maxwell and Rayleigh Distributions—and Poisson Points

(a) Show that Maxwell’s distribution and the 2-dimensional Poisson points distri-
bution coincide with s = 3

2 and a = 2πλ.
(b) Show that Rayleigh distribution and the 2-dimensional Poisson points distri-

bution coincide . . . what is the value of b?
(c) Derive the score vectors and EIMs of the Maxwell and Rayleigh distributions.
(d) Repeatedly (500 times) generate 100 random points uniformly distributed on

the unit square and record the distance from (12 ,
1
2 ) to the closest point. Then

feed your data into the appropriate VGAM family function to estimate the
density. Obtain an approximate 95% confidence interval for the density. Does
it contain the truth?

Ex. 12.12. Pareto Distribution
Show that if Y |Λ has an exponential distribution with rate parameter λ and Λ has
a gamma distribution, then the marginal distribution of Y has a shifted Pareto-like
distribution. Hint: use the gammaR() density, and show the unconditional density
of Y is close to that of paretoff().

Ex. 12.13. Hypersecant Distribution
Look up hypersecant() and hypersecant01() in the tables, and use the change
of variable technique (A.30) to show that π y = logitu ties the two together.

Ex. 12.14. Pearson Type I and II Densities
Consider the Pearson system (12.11). [Balakrishnan and Lai (2009)]
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(a) The Pearson I is a shifted beta density

f(y; s1, s2) ∝ (1 + y)s1−1 (1− y)s2−1, y ∈ (−1, 1). (12.17)

Derive an expression for the constant of proportionality, and then evaluate its
value for s1 = 1 and s2 = e.

(b) Generate 1000 observations from (12.17). Then estimate the sj .
(c) The Pearson II has density

f(y; s) ∝ (
1− y2

)s−1
, y ∈ (−1, 1) (12.18)

(called the symmetric beta distribution). Derive an expression for the constant
of proportionality, and then evaluate its value for s = exp( 12 ).

(d) Generate 1000 observations from (12.18). Then estimate s.

Ex. 12.15. Lindley Distribution
Derive the EIM for the 1-parameter Lindley distribution. Derive an expression for
its CDF.

Ex. 12.16. Triangle Distribution
Derive the EIM for the triangle distribution (Table 12.10). Derive an expression
for its CDF.

A thought is an idea in transit.
—Pythagoras
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Chapter 13

Bivariate Continuous Distributions

Two are better than one; because they have a good reward for their
labour. . .And if one prevail against him, two shall withstand him; and a
threefold cord is not quickly broken.
Ecclesiastes 4:9,12

13.1 Introduction

A number of bivariate distributions for (Y1, Y2)
T responses whose EIMs are easily

computed have been implemented as VGLMs/VGAMs. This chapter summarizes
the current offerings (Tables 13.1, 13.2). These include a special class of bivariate
distributions called copulas. VGAM does not currently have any discrete bivariate
distributions—these tend to involve infinite sums which are not computationally
easy to handle. The typical usage is, e.g.,

fit <- vglm(cbind(y1, y2) ~ x2, family = binormal, data = bdata)

whereupon fitted(fit) is a 2-column matrix made up of the mean of each
response, although not always.

Notationally, we let F(y1, y2;θ) = P (Y1 ≤ y1, Y2 ≤ y2;θ) be the CDF, which is
dependent on parameters θ. Its PDF is f(y1, y2;θ).

13.1.1 Bivariate Distribution Theory—A Short Summary

Before encountering copulas, a few basic properties and results for bivariate dis-
tributions are briefly reviewed. Subscripts such as “Y1, Y2” are omitted unless
necessary. Firstly, some fundamental properties: the PDF satisfies the two prop-
erties f(y1, y2) ≥ 0 for all y1 and y2; and

∫ ∞

−∞

∫ ∞

−∞
f(y1, y2) dy1 dy2 = 1. (13.1)
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Then

P (a1 ≤ Y1 ≤ b1, a2 ≤ Y2 ≤ b2) =

∫ b1

a1

∫ b2

a2

f(y1, y2) dy1 dy2.

The PDF and CDF relate by

f(y1, y2) =
∂2

∂y1 ∂y2
F (y1, y2), (13.2)

and then

P (Y1 ≤ y1) = FY1
(y1) = F (y1,∞), (13.3)

P (Y2 ≤ y2) = FY2
(y2) = F (∞, y2), (13.4)

are the marginal CDFs. Also, F (y1,−∞) = F (−∞, y2) = 0. The marginal PDF
for, e.g., Y1 is

fY1
(y1) =

∫ ∞

−∞
f(y1, y2) dy2,

and the conditional PDF of Y2, given Y1 = y1, is

fY2|Y1
(y2|y1) =

fY1,Y2
(y1, y2)

fY1
(y1)

for fY1
(y1) > 0.

Random variables Y1 and Y2 are independent iff fY1,Y2
(y1, y2) = fY1

(y1)·fY2
(y2)

for all y1 and y2. Under independence, E(Y1 · Y2) = E(Y1) · E(Y2), but more
generally, E[H1(Y1)·H2(Y2)] = E[H1(Y1)]·E[H2(Y2)] for any functions H1 and H2.
Regarding expectations, for any function H,

E[H(Y1, Y2)] =

∫ ∞

−∞

∫ ∞

−∞
H(y1, y2) f(y1, y2) dy1dy2. (13.5)

Hence, for j = 1, 2,

μj ≡ E(Yj) =

∫ ∞

−∞

∫ ∞

−∞
yj f(y1, y2) dy1dy2. (13.6)

Related to (13.6) is the iterated expectation formula (A.35); see Sect. A.2.4 for
similar formulas relating to the variance. The pq-th joint moment of (Y1, Y2)
is μpq = E[Y p

1 Y
q
2 ] for p = 0, 1, 2, . . . and q = 0, 1, 2, . . . but excluding p = q = 0.

A common measure of the dependency between Y1 and Y2 is their covariance

Cov(Y1, Y2) = E[(Y1 − μ1)(Y2 − μ2)], (13.7)

and the correlation between Y1 and Y2 is

Corr(Y1, Y2) =
Cov(Y1, Y2)√

Var(Y1) Var(Y2)
, (13.8)

where Var(Yj) = Cov(Yj , Yj). Independence of Y1 and Y2 implies zero covari-
ance, but not the converse. An exception is the multivariate normal distribution
where Cov(Ys, Yt) = 0 iff Ys and Yt are independent.
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13.1.2 dpr-Type Functions

Table 11.1 gives the conventions for dpqr-type functions, including those for
bivariate distributions. Most functions for bivariate distributions are prefixed
by bi. Those concerning copulas have suffix cop (Table 13.2), and it is common
for these functions to have an argument called apar, generically standing for the
association parameter.

Currently, q-type functions are not available for any bivariate distributions in
VGAM.

13.2 Two Bivariate Distributions

Of the many bivariate distributions proposed, only two are briefly described here.

13.2.1 Bivariate Normal Distribution

Its density is φ2(y1, y2;μ1, μ2, σ1, σ2, ρ) =

1

2πσ1σ2

√
1− ρ2

exp

{
−1

2(1− ρ2)

[(
y1 − μ1

σ1

)2

−

2ρ

(
y1 − μ1

σ1

)(
y2 − μ2

σ2

)

+

(
y2 − μ2

σ2

)2
]}

, (13.9)

for all real yj and μj , and for σj > 0 and −1 < ρ < 1. It is more compactly written
using vector notation as

1
√

(2π)d |Σ| exp
{

−1

2
(y − μ)

T
Σ−1 (y − μ)

}

, Σ =

(
σ2
1 ρ σ1σ2

ρ σ1σ2 σ2
2

)

, (13.10)

for all y, where d = 2. Here, |Σ| = σ2
1σ

2
2(1 − ρ2) is the determinant of Σ. It is

common shorthand to write Y ∼ N2(μ,Σ). The standard N2 distribution has
means μ = (0, 0)T , and variances σ2

1 = σ2
2 = 1. The function dbinorm() re-

turns φ2(·), effectively with ρ = 0 as the default. The N2 CDF is commonly
abbreviated Φ2(·), and may be computed using pbinorm().

The properties of the bivariate normal distribution are well-known. The den-
sity is bell-shaped with elliptical contours. The marginals are N(μj , σ2

j ). The
conditional density Y1|Y2 = y2 is univariate normal. Figure 13.1 gives scatter
plots of some randomly generated standard N2 random vectors with various val-
ues of ρ. To generate these, let Z1 and Z1 be independent N(0, 1) distributed, and

let Y2 = ρZ1 +
√

1− ρ2 Z2. Then it easily shown (Ex. 13.1) that (Z1, Y2) has a
standard N2 distribution. From this, it is easily generalized to any N2 distribution,
as implemented in rbinorm().

The family function binormal() estimates the parameters by Fisher scoring.
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Fig. 13.1 250 random vectors generated from a standard bivariate normal distribution, with
various values of ρ.

> args(binormal)

function (lmean1 = "identitylink", lmean2 = "identitylink", lsd1 = "loge",

lsd2 = "loge", lrho = "rhobit", imean1 = NULL, imean2 = NULL,

isd1 = NULL, isd2 = NULL, irho = NULL, imethod = 1, eq.mean = FALSE,

eq.sd = FALSE, zero = 3:5)

NULL

It has η = (μ1, μ2, log σ1, log σ2, rhobit ρ)
T as the default. The "rhobit" link func-

tion (Table 1.2; (13.11) below) is a scaled version of Fisher’s Z transformation.
Given a formula containing covariates, the σj and ρ are intercept-only, by default.
The arguments eq.mean and eq.sd constrain μ1 = μ2 and σ1 = σ2, provided
that each parameter’s link function is identical (strictly, η1 = η2 and η3 = η4 are
enforced, respectively). Hence,

> fit.bvn <- vglm(cbind(y1, y2) ~ x2 + x3, family = binormal(eq.sd = TRUE), bdata)

corresponds to

μj = β∗
(j)1 + β∗

(j)2 x2 + β∗
(j)3 x3, j = 1, 2,

log σ1 = log σ2 = β∗
(3)1,

log
1 + ρ

1− ρ
= β∗

(4)1, (13.11)

because

H1 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

, H2 = H3 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0
0 1
0 0
0 0
0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

As a simple example, we consider something similar to the data of Fig. 4.1, but
regressing Y1 = diastolic and Y2 = systolic blood pressures (DBP/SBP) versusX =
age with data for all (5649) male Europeans in that cross-sectional study. Firstly,
we create a data frame of the subset:

> M.euro <- subset(xs.nz, sex == "M" & age < 70 & ethnicity == "European")

> M.euro <- na.omit(M.euro[, c("age", "dbp", "sbp")])
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Fig. 13.2 Fitted (centred) component functions of a VGAM N2 fitted to diastolic and systolic
blood pressures data, versus age. The data set are 5649 male Europeans from xs.nz. From left
to right, those for μ̂1 and μ̂2, those for log σ̂1 and log σ̂2, those for log((1 + ρ̂)/ (1− ρ̂)).

Now we can fit an N2 model to the means, allowing for smoothness for all functions
including the correlation parameter—something that is feasible because the sample
size is so large. It can be done as follows.

> fit.N2 <- vgam(cbind(dbp, sbp) ~ s(age, df = c(4, 4, 3, 3, 3)),

binormal(zero = NULL), data = M.euro)

> mycl <- c("blue", "limegreen")

> plot(fit.N2, which.cf = 1:2, overlay = TRUE, se = TRUE, lcol = mycl, scol = mycl)

> plot(fit.N2, which.cf = 3:4, overlay = TRUE, se = TRUE, lcol = mycl, scol = mycl)

> plot(fit.N2, which.cf = 5, se = TRUE, lcol = mycl, scol = mycl)

This gives Fig. 13.2. The functions for the means have been overlaid to help com-
parison, as also are those for the scale parameters. It is clear that the mean DBP
and SBP functions are not parallel—this can be considered as an interaction be-
tween them with respect to age. For elderly people, the first plot suggests that
DBP declines while SBP increases, with age. The second plot shows both com-
ponent functions are monotonically increasing, which suggests that BP variability
increases with age. The third plot suggests that the correlation between DBP and
SBP increases from a young age, peaking for c.50-year-olds, and then declines.

These plots suggest that the standard deviation parameters, on a log scale,
might be modelled linearly with respect to age; and that ρ should not be modelled
as intercept-only. For models where ρ is intercept-only (the default), it is possible
to test for the conditional independence between Y1 and Y2, given x, by the p-
value obtained from the Wald test H0 : ρ = 0 versus H1 : ρ �= 0. This p-value is
outputted by summary().

13.2.2 Plackett’s Bivariate Distribution

We saw in Sect. 1.2.3 that the odds ratio is a measure of association in a 2 × 2
contingency table. One scenario for this table is that it arises from some con-
tinuous bivariate distribution F having cutpoints on both axes, intersecting at
point (z1, z2), say. Then R

2 is partitioned into four quadrants, so that the two
binary responses (Y1, Y2) could be thought of being generated with probabili-
ties corresponding to those quadrants. For example, (Y1 = 0, Y2 = 0) occurs
with probability F (z1, z2) (corresponding to the bottom left quadrant), while
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(Y1 = 1, Y2 = 1) occurs with probability 1 − F1(z1) − F2(z2) + F (z1, z2), the Fj

being the marginal CDFs (upper right quadrant).
Given two marginal distributions, Plackett (1965) showed how to construct a

1-parameter class of bivariate distributions. The odds ratio ψ (also called the cross
product ratio) was used to measure dependence:

ψ =
F (z1, z2) · (1− F1(z1)− F2(z2) + F (z1, z2))

(F1(z1)− F (z1, z2)) · (F2(z2)− F (z1, z2))
. (13.12)

By solving the quadratic (ψ − 1)F 2 − TF + ψF1F2 = 0 where T = 1 + (ψ − 1)
(F1 + F2), he obtained

F (y1, y2) =
T −√T 2 − 4ψ(ψ − 1)F1F2

2(ψ − 1)
, ψ > 0, ψ �= 1, (13.13)

and F (y1, y2) = y1y2 for ψ = 1. Upon differentiation of (13.13) with respect to
both yj (i.e., using (13.2)), the Plackett family PDF is

f(y1, y2) =
ψf1f2 [1 + (ψ − 1)(F1 + F2 − 2F1F2)]

{[1 + (ψ − 1)(F1 + F2)]2 − 4ψ(ψ − 1)F1F2}3/2
, (13.14)

where the fj are the marginal PDFs.
The Plackett family of copulas arises when the marginal distributions are the

standard uniform, so its support is the unit square. The VGAM family function for
this is biplackettcop() (Table 13.2).

13.3 Copulas

A special class of bivariate distributions are copulas. They have received much
attention over the last two decades or so, and are now used widely in fields such
as actuarial science, financial and economic modelling, survival analysis, extremes,
environmental modelling, time series and biostatistics.

Informally, copulas are multivariate distributions whose univariate margins
are Unif[0, 1] distributed. It is a function that connects or “couples” multivariate
distributions with their marginal distributions, consequently, they are important
because they allow the dependency between random variables to be studied, sep-
arate from the effects of the marginal distributions. In areas such as economic
modelling, there is usually much more information about the marginal distribu-
tions than about their joint behaviour, hence copulas are a way of modelling joint
distributions from only marginal distributions.

A related reason for their importance is that multivariate distributions can be
easily ‘built’ by way of copulas. One can choose the marginal distributions and
the copula function, and the result is a multivariate distribution essentially of our
choosing. A large number of copulas appear in the literature, and they differ by
imposing different dependency structures. However, copulas are not a philosopher’s
stone; criticisms of them are highlighted in, e.g., Mikosch (2006) who wrote “It is
not enough to introduce new copula families, give them a name and fit them to
any kind of data.”
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Fig. 13.3 500 random vectors generated from two copulas. (a) Bivariate Gaussian copula
with α = ρ = 0.8. (b) Bivariate Frank copula with α = 50.

In this section we will restrict our treatment of copulas to the bivariate case. We
also deviate in this section by using (U1, U2) in addition to (Y1, Y2), to reinforce
the fact that the response vector lies in the open unit square (0, 1)2.

Sklar (1959)’s theorem is the central result and starting point of copula theory:
if F is the CDF of a random vector (Y1, Y2) with marginals F1 and F2, then there
exists a corresponding copula C such that

F (y1, y2) = C (F1(y1), F2(y2);α) = C(u1, u2;α), (13.15)

say, for all (y1, y2) ∈ R
2. We will assume that the Fj are continuous so that C is

unique. One can view C as containing information on the dependence structure
of F through the dependency parameters α.

Usually α is only 1- or 2-dimensional, e.g., α = ρ for the bivariate Gaussian
copula. For this particular copula,

C(u1, u2; ρ) = Φ2

(
Φ−1(u1), Φ

−1(u2); ρ
)

(13.16)

for −1 < ρ < 1, and 0 ≤ uj ≤ 1 (Table 13.2), and a randomly generated sam-
ple is displayed in Fig. 13.3a. If ρ = −0.8 is plotted, then the points appear
rotated by 90◦, i.e., they cluster about the line y2 = 1 − y1. The family func-
tion binormalcop() estimates ρ by Fisher scoring, and it has the associated dpr-
type suite of functions.

Often the α are of central interest, therefore the VGLM/VGAM framework
should be suitable for this because each dependency parameter may be modelled
like a GLM/GAM. Prior to this work, most analyses fitted the α as intercept-only.
However, it is crucial that the dependency parameters can be naturally modelled
as functions of x, either in a model-driven or data-driven manner, e.g., x might
be the risk factors within a total-risk portfolio in financial mathematics.

In general, copulas have many interesting properties, and here are a few of them
for the bivariate case:

1. C(u1, u2) = 0 if u1 = 0 and/or u2 = 0.
2. C(u1, 1) = u1 and C(1, u2) = u2.
3. For j = 1, 2, C(u1, u2) is nondecreasing as uj increases, keeping the other

argument fixed.
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4. To generate random variates from F , the following method may be used.
It is based on the property just mentioned but, for simplicity, we will
assume the more stronger assumption of C(u1, u2) increasing as uj increases,
keeping the other argument fixed. The idea is to obtain a random variate from
one of the marginal distributions, then the other random variate conditional on
the first value, i.e., the inverse transform method described in Sect. 11.1.1.

(i) Generate U1 and U2 independently from a standard uniform distribution.
(ii) Let Z2 = C−1

U2|U1
(u2) where CU2|U1

(u2) = ∂C(u1, u2)/∂u1 = P (U2 ≤ u2|
U1 = u1) is the conditional CDF for U2 given U1 = u1.

(iii) Then (U1, Z2) ∼ F .

If the more general assumption of “nondecreasing” is used, then quasi-inverses
are used—see Nelsen (2006, Sect.2.9) for details.

5. The unique copula corresponding to the continuous random vector (Y1, Y2) ∈ R
2

remains unchanged when continuous monotonic transformations are applied
to Y1 and/or Y2.

13.3.1 Dependency Measures

The product copula C(u1, u2) = u1 u2 corresponds to two independent random
variables, and it serves as the benchmark of all other copulas. Hence, for all copulas
bar this one, it is needful to be able to measure the dependence somehow. Many
such measures have been proposed, and the most well-known is Pearson’s linear
correlation coefficient

ρ(X,Y ) =
Cov(X,Y )

√
Var(X)Var(Y )

(13.17)

for random variables1 X and Y , equivalent to (13.8). Some advantages and prop-
erties of it are:

• ρ ∈ [−1, 1];
• when ρ = ±1 then there exists an a ∈ R and b > 0 such that Y = a± bX;
• ρ(X,Y ) = ρ(f(X), g(Y )) where f and g are both strictly increasing linear

functions;
• when X and Y are independent then ρ = 0, but the converse is not necessarily

true, e.g., one exception is (X,Y ) ∼ N2.

However, its disadvantages include being only defined for finite variances, not being
invariant to nonlinear strictly-increasing functions, and not necessarily being an
optimal measure. It can be suitable for elliptical distributions (e.g., normal and t
distributions), but not always.

Instead, it is common to use dependency measures based on ranks. One such
commonly used measure is Kendall’s tau (ρτ ). Another popular one is Spear-
man’s rho (ρS), but this is not described here. Loosely, two random variables
are concordant if ‘large’ values of one random variable are associated with ‘large’

1 In this subsection it is more convenient to use (X,Y ) rather than (Y1, Y2) for the bivariate
response.
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values of the other random variable. Similarly, two random variables are discordant
if large values of one random variable are associated with ‘small’ values of the other
random variable. Kendall’s tau is simply the difference in the probability of con-
cordance and the probability of discordance:

ρτ = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0], (13.18)

where (X1, Y1) and (X2, Y2) are two independent pairs of random variables from F .
With data (xi, yi), i = 1, . . . , n, if (xi − xj) · (yi − yj) > 0 then that comparison

is concordant (i �= j). Similarly, (xi − xj) · (yi − yj) < 0 for discordance. Out of
(
n
2

)

comparisons, let c and d be the number of concordant and discordant pairs. Then
Kendall’s tau can be estimated by (c − d)/(c + d). If there are t ties, then half
the ties can be deemed concordant and the other half discordant, so that τ̂ =
(c− d)/(c+ d+ t), say.

It can be shown that

ρτ = 4

∫ 1

0

∫ 1

0

C(u1, u2) c(u1, u2) du1 du2 − 1, (13.19)

where c is the PDF, assuming it exists. Using this, it is sometimes possible to
obtain an expression for ρτ as a function of α, e.g., Table 13.2, and the function
inverted to provide initial values (Sect. 13.3.3).

The R function cor() computes Pearson, Kendall and Spearman correlation
coefficients.

13.3.2 Archimedean Copulas

A very important class of copulas known as Archimedean copulas takes the form

C(u1, . . . , ud) = ϕ−1(ϕ(u1) + · · ·+ ϕ(ud)) , (13.20)

for all (u1, . . . , ud) ∈ [0, 1]d (the bivariate case is d = 2). Archimedean copulas are
popular largely because they can be easy to fit and there are lots of them. Here,
ϕ is known as the generator function. Different generator functions yield several
important families of copulas. However, (13.20) is a copula only if ϕ is a convex
decreasing: ϕ : (0, 1]→ [0,∞) such that ϕ(1) = 0.

Some bivariate Archimedean copula families are implemented in VGAM
(Table 13.2); these have prefix bi to reinforce that they are the special case
of d = 2.

Another class of copulas are elliptical copulas. These correspond to certain well-
known distributions whose densities have contours which are elliptical. Examples
of this class are the Gaussian (normal) distribution and the Student t-distribution.
Elliptical copulas are quite popular for fitting financial data, due to certain prop-
erties they possess.
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13.3.3 Initial Values

In the past, estimation of α was based on the method of moment estimators when it
was possible. This was due to its simplicity and the lack of iteration needed. VGAM
uses method of moment estimators for initial values for distributions whose α
involves a simple formula in ρτ or ρS , e.g., as in Table 13.2. For example, the bivari-
ate Gaussian copula can have its correlation parameter ρ estimated by sin(πρ̂τ/2)
or 2 sin(πρ̂S/6). However, computing ρ̂τ is an O(n2) operation, therefore pro-
hibitive for large n. Under these situations, a small random sample of pairs can be
taken.

Bibliographic Notes

Two texts on bivariate distributions are Marshall and Olkin (2007) and Balakrish-
nan and Lai (2009). Although not directly in the domain of this chapter, Kocher-
lakota and Kocherlakota (1992) covers discrete bivariate distributions, and John-
son et al. (1997) concerns discrete multivariate distributions.

Copulas are described in detail in Nelsen (2006) and Mai and Scherer (2012);
see also Joe (2014), Trivedi and Zimmer (2005), Balakrishnan and Lai (2009). In R
there are the copula, fCopulae and VineCopula packages, among others, for copula
modelling.

Exercises

Ex. 13.1. N2, from Sect. 13.2.1

(a) Fill in the details for generating random vectors first from a standard N2 dis-
tribution, and then to a general N2 distribution, all based on calls to rnorm().

(b) If Y ∼ N2 show that the conditional density of Y1, given Y2 = y2, is Y1|Y2 =
y2 ∼ N(μ1 + ρ(σ1/σ2)(y2 − μ2), σ2

1(1− ρ2)).
(c) If Yj ∼ N1(μj , σ

2) independently, for j = 1, 2, then show that Y1 + Y2 and
Y1 − Y2 are independent.

(d) Write down the Hk for fit.bvn if the following are used instead.

(i) family = binormal(eq.sd = FALSE)

(ii) family = binormal(eq.mean = TRUE)

(iii) family = binormal(eq.mean = TRUE, eq.sd = TRUE)

(iv) family = binormal(eq.sd = TRUE, zero = NULL)

(e) One might define exchangeability for N2 by μ1 = μ2 subject to σ1 = σ2. Under
these assumptions, what Hk would arise for cbind(y1, y2) ∼ x2 + x3? For
simplicity, suppose that only the means are not intercept-only.
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Ex. 13.2. FGM Copulas

(a) Show that when the standard exponential distribution is used as the marginals
of the Farlie-Gumbel-Morgenstern (FGM) copula, then the result is the CDF
of bifgmexp() (Table 13.1).

(b) Derive the CDF and PDF of the FGM copula with standard logistic marginal
distributions.

Ex. 13.3. Bivariate Normal Copulas—Simulated Data

(a) Generate 500 random vectors from: Xi2 ∼ Unif(0, 1) independently,
(Yi1, Yi2) ∼ Bivariate normal copula, with η = rhobit ρi = −1 + 3xi2.

(b) Apply smoothing to estimate η. Comment.
(c) Estimate the regression coefficients of this model, assuming linearity on the

η-scale. Is the regression coefficient for x2 significant?

Ex. 13.4. Starting at the CDF of the bivariate Gaussian copula in Table 13.2,
derive the PDF c(y1, y2; ρ). For one observation, compute the first derivative
of 
 and show it has mean zero, then derive the EIM and show that it equals
(1 + ρ2)/(1− ρ2)2.

Couples are wholes and not wholes, what agrees disagrees, the concordant is
discordant. From all things one and from one all things.
—Heraclitus
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Chapter 14

Categorical Data Analysis

Unless what we do be useful, vain is our glory.
—Phaedrus

14.1 Introduction

Iteratively reweighted least squares is a suitable algorithm for fitting regression
models to a categorical response variable Y , and the VGLMs/VGAMs frame-
work is convenient for handling nuances in this topic. We let Y take values la-
belled 1, 2, . . . ,M + 1, i.e., there are M + 1 levels, categories or classes, and any
observed Yi takes on one of these values. The response is said to be polytomous.
This chapter describes VGAM family functions for such a Y as this, and Table 14.1
summarizes those functions currently available. As in Agresti (2013, p.xiv), cate-
gorical data analysis is interpreted as methods for categorical response variables.
It is convenient to consider separately the two main cases: when Y is nominal (no
order) and ordinal (ordered). An example of the former is the choice of trans-
port (air/bus/train/car) between two cities by 210 commuters, as described in
Sect. 14.2.1. An example of the latter is Table 14.2, where the stages of a lung
disease amongst coalminers are Y = 1 for none, Y = 2 for mild, and Y = 3 for
severe symptoms; we use this data frame a number of times in this chapter for
illustrative purposes.

14.1.1 The Multinomial Distribution

The foundation of categorical data analysis in this chapter is the multinomial
distribution, a generalization of the binomial distribution to more than two classes.
For a single individual, we drop the subscript i and denote y∗ = (y∗1 , . . . , y

∗
M+1)

T

as a vector of counts. We write Y ∗ ∼ Multinomial(N, p1, . . . , pM ), having joint
distribution
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P (Y ∗
1 = y∗1 , . . . , Y

∗
M = y∗M ) =

(
N

y∗1 y
∗
2 · · · y∗M

)

p
y∗
1

1 · · · py
∗
M+1

M+1 (14.1)

=
N !

y∗1 ! y
∗
2 ! · · · y∗M+1!

M+1∏

s=1

p
y∗
s

s ,

where pM+1 = 1 − p1 − · · · − pM , 0 < pj < 1, and N = y∗1 + · · · + y∗M+1 is the
number of trials. The reason for havingM+1 levels is that there areM independent
probabilities to estimate. For convenience, let J = M + 1.

Some basic properties of the multinomial distribution are as follows. We let s
and t both ∈ {1, . . . ,M}.
1. E(Y ∗

s ) = Nps, and Cov(Y ∗
s , Y

∗
t ) = N ps(1− ps) if s = t, and −N ps pt if s �= t.

This may be written compactly as Var(Y ∗) = N [ diag(p) − ppT ], where p =
(p1, . . . , pM )T . Its inverse is

N−1
[
diag(1/p) + p−1

M+1 1M 1T
M

]
, (14.2)

provided 0 < ps < 1 for all s, although this is not explicitly exploited by VGAM.
The diagonal matrix in (14.2) has elements 1/ps.

2. Y ∗
s ∼ Binomial(N, ps) are the marginal distributions, for s = 1, . . . , J . The

quantity N is known as the binomial index.
3. If the Y ∗

j ∼ Poisson(λj) independently, then

(Y ∗
1 , Y

∗
2 , . . . , Y

∗
J |Y ∗

+ = N) ∼ Multinomial(N,λ1/λ+, . . . , λM/λ+) (14.3)

where Y ∗
+ = Y ∗

1 +· · ·+Y ∗
J and λ+ = λ1+· · ·+λJ . This result has been exploited

by the “Poisson trick” (Sect. 14.3.1).
4. As with binomial GLMs, it is more convenient to treat the response as sample

proportions rather than counts, and assimilate the N as prior weights. That is,
Y = N−1Y ∗ so that Y T1J = N . Now for data (xi,yi), i = 1, . . . , n, we have


 =

n∑

i=1

wi 
i =

n∑

i=1

Ni

M+1∑

j=1

yij log pij (14.4)

where pij = pj(xi) = P (Yi = j|xi). Then, for j = 1, . . . ,M ,

∂
i
∂pij

=
yij
pij
− yiJ

piJ
and − E

(
∂2
i
∂pij

)

=
1

pij
+

1

piJ
. (14.5)

14.2 Nominal Responses—The Multinomial Logit Model

The multinomial logit model (MLM) is the most common model in this case. We
describe this below, as well as its reduced-rank variant called the stereotype model.
The model, also known as the multiple logistic regression model or polytomous
logistic regression model, is given by (1.28) It is a neural network—see, e.g., Ripley
(1996)—and sometimes it is fitted as such, e.g., nnet() in MASS.



14.2 Nominal Responses—The Multinomial Logit Model 387

It is a good idea to centre the x[−1], if possible, so that x = (1,0T )T implies

eβ(j)1 =
pj(1,0)

pJ(1,0)
,

i.e., β(j)1 is more interpretable because it measures the chance of landing in cate-
gory j, relative to category M + 1, for an individual with x[−1] = 0.

Continuing on from (14.4) and (14.5), for j �= s,

∂pij
∂ηs

=
∂

∂ηs

eηij

J∑

t=1
eηit

=
−eηijeηis

(
J∑

t=1
eηit

)2 = − pij pis,

∂pis
∂ηs

=

(
J∑

t=1
eηit

)

eηis − eηis eηis

(
J∑

t=1
eηit

)2 = pis(1− pis).

Using the chain rule formulas (18.10) and (18.11), then

∂
i
∂ηs

=
M+1∑

j=1

∂
ij
∂pij

∂pij
∂ηs

=
yis
pis

pis(1− pis) +
∑

j �=s

yij
pij

(−pij pis) = yis − pis,

and for s �= t,

−E
[
∂2
i
∂η2s

]

=
M+1∑

j=1

−E
[
∂2
i
∂p2ij

](
∂pij
∂ηs

)2

=
1

pis
p2is(1− pis)

2 +
∑

j �=s

1

pij
(−pij pis)2

= pis(1− pis)
2 + p2is(1− pis) = pis(1− pis),

−E
[

∂2
i
∂ηs ∂ηt

]

=
M+1∑

j=1

−E
[
∂2
i
∂p2ij

](
∂pij
∂ηs

)(
∂pij
∂ηt

)

=
1

pis
pis(1− pis)(−pis pit) + 1

pit
pit(1− pit)(−pis pit) +

∑

j �=s, j �=t

1

pij
(−pij pis) (−pij pit)

= pis pit {1− pis − pit − (1− pis)− (1− pit)} = − pis pit.

Thus the working weight matrices are Ni

{
diag(μ̂i)− μ̂i μ̂

T
i

}
, where μi = pi

(a slight change in notation) is an M -vector corresponding to ηi.
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Table 14.1 Quantities defined in VGAM for a categorical response Y taking values 1, . . . ,M+1.
Covariates x have been omitted for clarity. The LHS quantities are usually for g−1(ηj)

or g−1(ηj−1) for j = 1, . . . ,M and j = 2, . . . ,M + 1, respectively. All except for multinomial()

are suited to ordinal Y . Notes: (i) † means a fixed link function g; (ii) propodds() is a
shortcut to cumulative(parallel = TRUE, reverse = TRUE, link = "logit"); (iii) reverse =

FALSE for all families except for propodds(); (iv) The link for multinomial() is known as the
multilogit link (multilogit()).

Quantity Default g Range of j VGAM family

P (Y = j + 1)/P (Y = j) log {1, . . . ,M} acat()

P (Y = j)/P (Y = j + 1) log {2, . . . ,M + 1} acat(reverse = TRUE)

P (Y > j|Y ≥ j) logit {1, . . . ,M} cratio()

P (Y < j|Y ≤ j) logit {2, . . . ,M + 1} cratio(reverse = TRUE)

P (Y ≤ j) logit {1, . . . ,M} cumulative()

P (Y ≥ j) logit {2, . . . ,M + 1} cumulative(reverse = TRUE)

P (Y = j)/P (Y = M + 1) log † {1, . . . ,M} multinomial()

P (Y = j)/P (Y = r) log † {1, . . . ,M + 1}\{r} multinomial(refLevel = r )

P (Y ≥ j) logit † {2, . . . ,M + 1} propodds()

P (Y ≤ j) logit † {1, . . . ,M} propodds(reverse = TRUE)

P (Y = j|Y ≥ j) logit {1, . . . ,M} sratio()

P (Y = j|Y ≤ j) logit {2, . . . ,M + 1} sratio(reverse = TRUE)

14.2.1 The xij Argument

Recall from Sect. 3.4 that the xij facility allows ηj to have a different value of a
variable xk and observation i. One common application of this is the multinomial
logit model in a branch of econometrics called discrete choice modelling. Here, the
concept of utility is central. The word ‘utility’ means usefulness and the ability of
a ‘product’ to satisfy the needs or wants of a ‘consumer’. It is a latent variable that
cannot be measured or observed directly. An example is that it might be measured
indirectly by the price somebody is willing to pay for a product, or by his/her pref-
erence as shown by choosing to buy one particular product from amongst a pool
of several products, e.g., when somebody chooses to buy product B from prod-
ucts A–E, s/he is maximizing some utility function so that his/her desire or want
is satisfied maximally. If product j’s satisfaction to the person has some statistical
distribution Fj as a function of the latent variable, then the maximum also has
some distribution 1 −∏

j(1 − Fj). An analogy of this is if Uj ∼ N(μj , σ2) then
what is the distribution of max(U1, . . . , UJ )? [Here, Uj is the utility of product j
for j = 1, . . . , J ]. In the pioneering work of McFadden (1974), if the each product’s
utility is Gumbel (standard Type I extreme value; Gumbel(μ = 0, σ = 1) in Ta-
ble 16.1) distributed, then the maximum has an extreme value distribution. That
is, if

Uij = ηij + εij , εij ∼ Gumbel independently,

where ηij = xT
ijβ, and Yi = argmaxj{Uij} then

P (Yi = j|xij) = P (max(Ui1, . . . , UiJ ) = Uij) =
exp{ηij}

∑J
s=1 exp{ηis}

, cf. (1.28).

A more accessible proof of this is given in, e.g., Maddala (1983, Sect.3.1).
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As a specific example of a random utility model, we mimic the ‘conditional logit
model’ reported in Greene (2012, Table 18.3) by considering the TravelMode data
frame in AER. This concerns the mode choice for travel between the Australian
cities Sydney and Melbourne. The data set consists of 210 people’s choice of trans-
portation for travel between the two cities. Four choices of travel mode are air,
trn (train), bus and car. The data set arises from case-control data: almost an
equal number of each choice is represented. The explanatory variables are gcost

(a measure of the generalized cost of the travel), wait (the terminal waiting time,
0 for car), and household income. The variables gcost and wait clearly differ for
each travel mode. In contrast, variable income is individual-specific so that every
person has the same fixed household income regardless what choice he/she made.
The data frame TravelMode has a ‘long’ format or shape meaning the first 4 rows
belong to individual 1, followed by the next 4 rows for individual 2, etc. Hence we
need to manipulate the original data first in order to build a suitable data frame
for using vglm():

> data("TravelMode", package = "AER")

> air.df <- subset(TravelMode, mode == "air") # Form 4 smaller data frames

> bus.df <- subset(TravelMode, mode == "bus")

> trn.df <- subset(TravelMode, mode == "train")

> car.df <- subset(TravelMode, mode == "car")

> TravelMode2 <- data.frame(income = air.df$income,

wait.air = air.df$wait - car.df$wait,

wait.trn = trn.df$wait - car.df$wait,

wait.bus = bus.df$wait - car.df$wait,

gcost.air = air.df$gcost - car.df$gcost,

gcost.trn = trn.df$gcost - car.df$gcost,

gcost.bus = bus.df$gcost - car.df$gcost,

gcost = air.df$gcost, # Value is unimportant

wait = air.df$wait) # Value is unimportant

> TravelMode2$mode <- subset(TravelMode, choice == "yes")$mode # The response

> TravelMode2 <- transform(TravelMode2, inc.air = income, inc.trn = 0, inc.bus = 0)

> fit.travel <-

vglm(mode ~ gcost + wait + income,

multinomial(parallel = FALSE ~ 1), data = TravelMode2, trace = FALSE,

xij = list(gcost ~ gcost.air + gcost.trn + gcost.bus,

wait ~ wait.air + wait.trn + wait.bus,

income ~ inc.air + inc.trn + inc.bus),

form2 = ~ gcost + wait + income +

gcost.air + gcost.trn + gcost.bus +

wait.air + wait.trn + wait.bus +

inc.air + inc.trn + inc.bus)

> coef(summary(fit.travel))

Estimate Std. Error z value Pr(>|z|)

(Intercept):1 5.20744 0.779054 6.684 2.320e-11

(Intercept):2 3.86904 0.443126 8.731 2.519e-18

(Intercept):3 3.16319 0.450265 7.025 2.138e-12

gcost -0.01550 0.004408 -3.517 4.370e-04

wait -0.09612 0.010440 -9.208 3.338e-20

income 0.01329 0.010262 1.295 1.954e-01

These results agree with Greene (2012, Table 18.3). The reason for subtracting
wait and gcost of the cars option from the others is because cars are the baseline
group, cf. (3.37). Section 3.4.4.1 ‘continues’ this example by smoothing with respect
to the cost variable.
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Table 14.2 Period of exposure (years) and severity of pneumoconiosis amongst a group of
coalminers. Source: Ashford, J. R. (1959), Biometrics 15 (4), 573–581. The data are in pneumo.

Exposure time (ET) Normal Mild Severe ET Normal Mild Severe

5.8 98 0 0 33.5 32 10 9
15.0 51 2 1 39.5 23 7 8
21.5 34 6 3 46.0 12 6 10
27.5 35 5 8 51.5 4 2 5

14.2.2 Marginal Effects and Deviance

The marginal effects for a model with a categorical response are the derivatives
of the probabilities with respect to the explanatory variables. For an MLM (1.26)
without constraints, the marginal effects are easily shown (Ex. 14.1) to be

∂ pj(xi)

∂ xi
= pj(xi)

{

βj −
M+1∑

s=1

ps(xi)βs

}

. (14.6)

Care must be taken because the marginal effect for xk need not have the same
sign as β(j)k (they are for the J = 2 case, i.e., logistic regression), and they are
suited for continuous xk rather than discrete ones (especially binary xk). Marginal
effects are implemented in margeff(), which will accept a multinomial() VGLM
as its first argument.

From (14.5), the MLE of pij is yij (= p̃ij , say). Hence the deviance is

D = 2 
(p̃;y)− 2 
(p̂;y) (14.7)

= 2
n∑

i=1

Ni

J∑

j=1

yij log p̃ij − 2
n∑

i=1

Ni

J∑

j=1

yij log p̂ij (14.8)

= 2
n∑

i=1

Ni

J∑

j=1

yij log

(
yij
p̂ij

)

. (14.9)

When the Ni (or more particularly the pijs) are sufficiently large, the deviance
is approximately χ2 with nM − p degrees of freedom, which can be used as a
measure of goodness of fit. The methods function deviance() returns D, where
it is necessary for 0 log 0 to be defined as 0 to handle yij = 0. This is justified by

lim
u→0+

u · log u = 0. (14.10)

14.2.3 Stereotype Model

As described in Sect. 5.2.3, this model is better called a reduced-rank multinomial
logit model (RR-MLM). It was proposed by Anderson (1984), who described it as
being suitable for all (ordered or unordered) categorical response variables. This
was due to his rank-1 stereotype model restricting the elements of the A matrix
to be ordered, however RR-VGLMs defined in Chap. 5 have no such constraints.
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The basic idea of the RR-MLM is that if M and p are even moderately large,
then the total number of regression coefficients in the MLM will be large. In such
circumstances, the reduced-rank regression can decrease the number of parameters
substantially if the rank is low.

As an imperfect example of a rank-2 RR-MLM, the marital status of the 9,000+
people in the xs.nz cross-sectional study is regressed against 11 psychological
variables, adjusting for basic variables such as gender, age and ethnicity. One cause
of the imperfection is due to the psychological variables being as much responses
as explanatory. Therefore this example is to be viewed for its mechanical virtues
than its interpretative vices.

> fit2.ms <-

rrvglm(marital ~

ethnicity + sex + age + smokenow + fh.cancer + fh.heartdisease +

depressed + embarrassed + fedup + hurt + miserable + # 11 psychological

nofriend + moody + nervous + tense + worry + worrier, # variables

noRRR = ~ ethnicity + sex + age + smokenow + fh.cancer + fh.heartdisease,

multinomial(refLevel = 2), data = xs.nz, Rank = 2)

> sort(round(concoef(fit2.ms)[, 1], 2)) # First latent variable

worrier moody miserable fedup worry embarrassed

-0.17 -0.15 -0.06 -0.05 -0.04 -0.01

hurt tense depressed nervous nofriend

0.00 0.20 0.24 0.31 0.64

> sort(round(concoef(fit2.ms)[, 2], 2)) # Second latent variable

worry embarrassed moody worrier nervous hurt

-0.26 -0.22 -0.12 -0.09 0.01 0.06

miserable tense fedup nofriend depressed

0.06 0.20 0.28 0.42 0.96

The first latent variable is interpreted as the absence of friends; the second mainly
as being depressed, with a lack of friends manifesting itself again in more subdued
role. Now the married group was chosen to be the baseline group because it is the
largest group, and because all the other classes are linked to this group directly.
For example, if the single group were baseline, then the widowed group could only
connect to the single group via the married group, which is indirect and hence
hinders the interpretation.

> head(depvar(fit2.ms), 2) # Note the order of the response

single married divorced widowed

1 0 1 0 0

2 0 1 0 0

> Coef(fit2.ms)@A

latvar1 latvar2

log(mu[,1]/mu[,2]) 1.000000 0.0000

log(mu[,3]/mu[,2]) 0.000000 1.0000

log(mu[,4]/mu[,2]) 0.002523 0.4662

The corner constraints means that the latent variable ν̂1 relates to the prob-
ability of being single, relative to being married/partnered; and ν̂2 relates to
the probability of being divorced/separated, relative to being married/partnered.
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Fig. 14.1 Biplot of an RR-MLM fitted to marital status in xs.nz, with the latent variables
being linear combinations of 11 binary psychological variables. The x- and y-axes are ν̂1 and ν̂2,
respectively. The groups are: 1 single, 2 married/partnered (baseline), 3 divorced/separated,
4 widowed.

Being a widow appears to be a function of ν̂2 only. One might write the fitted
model as

η̂ =

⎛

⎝
log (p̂single/p̂married)
log (p̂divorced/p̂married)
log (p̂widowed/p̂married)

⎞

⎠ ≈

⎛

⎜
⎜
⎝

β̂
T

1 x1 + ν̂1

β̂
T

3 x1 + ν̂2

β̂
T

4 x1 +
1
2 ν̂2

⎞

⎟
⎟
⎠ ,

for some nuisance β̂j , where

ν̂1 ≈ 2

3
nofriend+

1

3
nervous, and ν̂2 ≈ depressed+

2

5
nofriend.

Now the effect of

> biplot(fit2.ms, xlim = c(-0.3, 1.2), ylim = c(-0.3, 1.1),

Ccol = "blue", Acol = "purple")

is seen in Fig. 14.1. The widower group appears midway between the origin and
the divorced/separated group, and therefore it suggests that the ill-effects of be-
reavement are less severe than divorce/separation. The origin corresponds to the
absence of all the (unhealthy) 11 emotional variables, hence denotes a psycholog-
ical healthy person. The singles group, to the far right, is mainly associated with
the lack of companionship. However, as mentioned above, all these ‘results’ must
be taken with pinches of salt because, e.g., the psychological variables are likely
to interact as both response and explanatory.
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14.2.4 Summation Constraints

The identifiability constraints mentioned in Sect. 1.2.4 are, for any constant c, due
to pj = eηj+c/{∑M+1

t=1 eηt+c}. The choice c = −ηM+1 leads to the default corner
constraint ηM+1 ≡ 0. A popular alternative to having the last level as baseline is
to have summation constraints

M+1∑

j=1

β†
j = 0. (14.11)

This can be achieved by using offsets. Let o = (−∑M+1
j=1 βj)/(M + 1) from some

MLM fit, and let cij = oTxij for the ith observation and ηj . Call this oij , say. The
following simple example illustrates the method using the pneumoconiosis data
set of Table 14.2.

> pneumo <- transform(pneumo, let = log(exposure.time))

> fit1 <- vglm(cbind(normal, mild, severe) ~ let, multinomial, data = pneumo)

>

> # Augment to get the complete B matrix; B becomes p x (M+1)

> B1 <- cbind(coef(fit1, matrix = TRUE), 0)

> mean.B1 <- rowMeans(B1)

> oij <- matrix(model.matrix(fit1, type = "lm") %*% cbind(mean.B1),

nrow = nobs(fit1), ncol = npred(fit1))

>

> fit2 <- vglm(cbind(normal, mild, severe) ~ offset(oij) + let, multinomial, pneumo)

> B2 <- cbind(coef(fit2, matrix = TRUE), -mean.B1)

Objects fit1 and fit2 are two parameterizations of the same model. To check,

> c(rowSums(B2), diff = max(abs(fitted(fit1) - fitted(fit2)))) # Should be all 0s

(Intercept) let diff

3.486e-14 -1.038e-14 6.661e-16

are effectively all zeros. The two matrices, separated by NAs for readability, are

> both <- cbind(B1, NA, B2)

> colnames(both) <- NULL # Column names are no longer correct

> both

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

(Intercept) 11.975 3.0391 0 NA 6.970 -1.9657 -5.005

let -3.067 -0.9021 0 NA -1.744 0.4211 1.323

Incidentally, some authors call (14.11) the symmetric side constraint, while
βM+1 ≡ 0 is called the reference category side constraint.

14.3 Using the Software

Here are some potentially useful notes.

• Some software chooses the first level of Y to be the reference level. To replicate
this, use multinomial(refLevel = 1).
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• For the classification problem, multinomial-based models can classify observa-
tions to the level with the largest predicted or fitted probability. This is known
as Bayes’ decision rule (for minimum error). Code such as

> apply(fitted(fit1), 1, which.max) # Highest probability

1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 3

> colnames(fitted(fit1))[apply(fitted(fit1), 1, which.max)] # Classification class

[1] "normal" "normal" "normal" "normal" "normal" "normal" "normal" "severe"

> newdata <- pneumo # For example

> apply(predict(fit1, newdata, type = "response"),

1, which.max) # Test sample classification

1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 3

can be useful here, provided that there are no tied probabilities. This data
suggests that, after about 50 years coalmining, severe pneumoconiosis becomes
the most likely class. This method requires care also if there are missing values.
The code operates because the fitted values are a (M + 1)-column matrix.

• Input for categorical families may be

(i) an n × (M + 1) matrix of counts. The columns are best labelled, and
the jth column denotes Y = j.

(ii) a factor vector. The unique values, when sorted (or levels, if a factor), de-
note the M + 1 levels from 1, . . . ,M + 1. If a factor, it may be ordered or
unordered. The functions factor(), is.ordered(), levels(), ordered(),
are useful (Sect. 1.5.2.4). The ordinal regression models of Sect. 14.4 may
issue a warning if the response is an unordered factor, and the same may be
true if multinomial() operates on an ordered factor.

• Output for categorical families: if fit is an categorical VGAM object, then
fitted(fit) is a n× (M +1) matrix of fitted category probabilities (rows sum
to unity), and weights(fit, type = "prior") contain the prior weights Ni =∑M+1

j=1 y∗ij . The call depvar(fit) returns the matrix of sample proportions yij .

14.3.1 The Poisson Trick

The conditional distribution (14.3) forms the basis of what is known informally as
the “Poisson trick”. It allows an MLM to be estimated by fitting a simpler Poisson
regression with a suitable factor set up. Such was useful in the past when statistical
software was less sophisticated. However, this trick is only really practical for
grouped data because a regression coefficient is estimated for every i. They are
treated as nuisance parameters. For completeness, we give a toy example here.

The sketch details are as follows. Suppose Yij are independently Poisson with
means

μij = exp
{
αi + xT

i βj

}
(14.12)
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for j = 1, . . . ,M + 1, and βM+1 = 0. Then it can be shown that the Poisson
likelihood factorizes the conditional distribution of Y i given Ni (the multinomial

model of interest) with Ni defined in (14.3). Hence the multinomial MLEs β̂j can
be obtained from the full unconditional Poisson likelihood. This result is due to
the profile log-likelihood (using α̂i) being equal, up to an additive constant, to
the MLM log-likelihood. The only twist to fitting (14.12) here is that while every
other piece of software uses an nJ-vector response, we can fit this more naturally
as J Poisson responses because poissonff() handles multiple responses.

As a numerical example, we fit an MLM to the pneumo data with log-exposure
time as the covariate. This is particularly easy with VGAM because the interaction
between the jth level of the response and x is easily handled, by forming the appro-
priate constraint matrices. In the following, the variable ref.level is the baseline
reference level for the MLM, so it can take any value from {1, . . . ,M + 1}. The
only slight complication is that the factor representing the dummy variables αi

sets α1 = 0, so that α1 becomes the intercept of the reference group. Then the in-
tercepts of the non-reference groups should be adjusted by setting the ref.levelth
column of H1 to 1M .

pneumo <- transform(pneumo, let = log(exposure.time)) # Covariate

pneumo <- transform(pneumo, i.factor = factor(1:nrow(pneumo))) # Nuisance variables

Mplus1 <- 3 # The number of levels of the response

ref.level <- 2 # Choose any single value in the set {1:Mplus1}
H1 <- diag(Mplus1)

H1[, ref.level] <- 1 # Slight adjustment

clist <- list("(Intercept)" = H1,

i.factor = matrix(1, Mplus1, 1), # Parallelism

let = diag(Mplus1)[, -ref.level, drop = FALSE])

pois.pneumo <- vglm(cbind(normal, mild, severe) ~ i.factor + let,

poissonff, data = pneumo, constraints = clist) # Poisson trick

mlm.pneumo <- vglm(cbind(normal, mild, severe) ~ let,

multinomial(refLevel = ref.level), data = pneumo) # The ’answer’

Then the output can be compared as follows.

> coef(mlm.pneumo, matrix = TRUE) # The ’answer’

log(mu[,1]/mu[,2]) log(mu[,3]/mu[,2])

(Intercept) 8.936 -3.0391

let -2.165 0.9021

> coef(pois.pneumo) # Hopefully the ’answer’

(Intercept):1 (Intercept):2 (Intercept):3 i.factor2 i.factor3

8.9360 -0.5519 -3.0391 1.3994 1.8567

i.factor4 i.factor5 i.factor6 i.factor7 i.factor8

2.3739 2.7043 2.5857 2.3977 1.5220

let:1 let:2

-2.1654 0.9021

To select out the MLM coefficients, we bypass the reference group’s intercept and
all the nuisance parameters:

> index <- (1:Mplus1)[-ref.level]

> B.hat <- coef(pois.pneumo, matrix = TRUE)

> as.vector(c(coef(pois.pneumo)[index], B.hat["let", -ref.level]))

[1] 8.9360 -3.0391 -2.1654 0.9021
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The purpose of as.vector() is to remove the misleading names. It is left as an
exercise for the reader (Ex. 14.9) to show that the standard errors of the coefficients
match and also to fit the same model using glm() with family = poisson.

14.4 Ordinal Responses

Here, the response Y = 1, 2, . . . ,M + 1, is ordered, e.g., low to high in some
sense. Most of the regression models in this chapter are tailored for this common
situation. One might be tempted to use a multinomial logit model, however this is
inefficient because it ignores the information contained in the ordering. As reflected
in Table 14.1, ordinal responses allow a greater variety of quantities to be modelled.
Whatever quantity that is chosen should be based on the type of question being
asked, e.g., if the J classes relate to time-order then a sequential model using
stopping or continuation-ratios may be the more natural choice.

14.4.1 Models Involving Cumulative Probabilities

The most common models involve the cumulative probabilities γj(x) = P (Y ≤
j|x), as popularized by McCullagh (1980). This gives rise to the class of cumulative
link models of the form

g(γj(x)) = ηj(x), j = 1, . . . ,M, (14.13)

where g is a suitable link function for a probability. They can be motivated by the
underlying latent idea described in Sect. 14.4.1.1.

The most well-known example of (14.13) is not surprisingly with a logit link:

logit P (Y ≤ j|x) = ηj(x), j = 1, . . . ,M, (14.14)

and is known as the cumulative logit model. Another example, with a complemen-
tary log-log link, is known as the proportional hazards model in discrete time and
used in survival analysis. A third example, bearing a probit link, is often referred
to as the cumulative probit model or ordinal/ordered probit model.

Some care is needed for (14.13)–(14.14). For fixed x, the condition

η1(x) < η2(x) < · · · < ηM (x) (14.15)

must be satisfied in order for the class probabilities pj(x) to be in range, be-
cause pj(x) = γj(x)− γj−1(x). Since the ηj(x) are planes in p-dimensional space
they will intersect unless parallel. In the VGLM formulation, the parallelism as-
sumption amounts to having constraint matrices H1 = IM and H2 = · · · = Hp =
1M . Model (14.14) with a parallelism assumption is known as the proportional-odds
model ; it may be written

logit P (Y ≤ j|x) = β∗
(j)1 + β∗T

[−(1)] x[−1], j = 1, . . . ,M, (14.16)

because x1 = 1. It has the property that the intercepts are an increasing sequence
in j, due to P (Y ≤ j|x) being an increasing function of j.
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Another nice property of the proportional-odds model, called strict stochastic
ordering (McCullagh, 1980), is that the effect of the covariates on the odds ratio
is the same regardless of the division point j, hence its name. By separating out
the intercept from two vectors x1 and x2, the result is that

odds(Y ≤ j|(1,x[−1]1))

odds(Y ≤ j|(1,x[−1]2))
= exp

{
β∗T
[−(1)]

(
x[−1]1 − x[−1]2

)}
(14.17)

does not depend on j. Consequently, the interpretation of the regression coefficients
is very similar to logistic regression: exp{β∗

(1)k} is the odds ratio for Y ≤ j, from
a change in xk to xk + 1, keeping all other variables fixed.

In practice, the parallelism assumption should be checked. One might allow
non-parallelism to (i) some, or (ii) all of the xk. With a logit link, the former
case has been called a partial proportional-odds model, whereas the latter case
a non-proportional-odds model. Regardless of the link, one would hope that the
intersections of the ηj occur outside the xi data cloud. If not then there will be
problems due to (14.15) being violated for some observations i. Practically, for a
final model that does satisfy (14.15) for all i in the first instance, there are some
tricks available that can help avoid numerical problems during estimation. They
are described in Sect. 8.5. Another alternative is to perform score tests—these do
not require the fitting of any non-parallel model.

Formally, there are two common ways to test the parallelism assumption. The
first is by a likelihood ratio test (LRT; Sect. A.1.4.2):

> fit.pom <- vglm(cbind(normal, mild, severe) ~ let, propodds, data = pneumo)

> fit.npom <- vglm(cbind(normal, mild, severe) ~ let, cumulative, data = pneumo)

> lrtest(fit.npom, fit.pom)

Likelihood ratio test

Model 1: cbind(normal, mild, severe) ~ let

Model 2: cbind(normal, mild, severe) ~ let

#Df LogLik Df Chisq Pr(>Chisq)

1 12 -25.0

2 13 -25.1 1 0.14 0.71

This tends to be the most accurate method for one model nested within another.
The large p-value here indicates that a parallelism assumption is reasonable. The
second method is using the Wald test:

> (cfit.npom <- coef(fit.npom))

(Intercept):1 (Intercept):2 let:1 let:2

9.593 11.105 -2.571 -2.744

> index <- 3:4 # These coefficients need testing for equality

> L.mat <- cbind(diag(npred(fit.npom) - 1), -1) # Matrix of contrasts

> T.mat <- solve(L.mat %*% vcov(fit.npom)[index, index] %*% t(L.mat))

> W.stat <- t(L.mat %*% cfit.npom[index]) %*% T.mat %*% (L.mat %*% cfit.npom[index])

> W.stat

[,1]

[1,] 0.1576

> pchisq(W.stat, df = nrow(L.mat), lower.tail = FALSE) # p-value

[,1]

[1,] 0.6914
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Not surprisingly, the Wald statistic and its associated p-value closely resembles
those of the LRT here, because of the large sample sizes. The theory behind this
Wald test for parallelism for xk, by testing β∗

(1)k = · · · = β∗
(M)k, is to compute

W =
(
L β̂

∗
(k)

)T
T(β̂

∗
(k)) L β̂

∗
(k)

where L = (IM−1 | −1M−1 ) is a matrix of contrasts of β∗
(k). The matrix

T(β∗
(k)) =

(
LFβ∗

(k)β
∗
(k)(β∗)LT

)−1

is the inverse of the variance-covariance matrix

of the asymptotic distribution of L β̂
∗
(k), where Fβ∗

(k)β
∗
(k)(β∗) is the β∗

(k)-block of

the inverse of the EIM. By the asymptotic normality of β̂
∗
, the Wald test statis-

tic W is asymptotically χ2
M−1.

Informally, Harrell (2001) describes graphical methods for assessing the paral-
lelism assumption, as well as an (anticonservative) score test.

14.4.1.1 Latent Variable Motivation

One reason for the proportional-odds model’s popularity is its connection to the
idea of a continuous latent response (cf. Chap. 5). That the model can be moti-
vated by the categorical outcome Y being a categorized version of an unobservable
(latent) continuous variable, Y ′, say, goes along the following lines (Fig. 14.2).

Suppose that we have a continuous variable Y ′ and some unknown cutpoints
ordered as β(1)1 < β(2)1 < · · · < β(M)1. Additionally, with −∞ ≡ β(0)1

and β(M+1)1 ≡ ∞ defined, then

Y = j if β(j−1)1 < Y ′ ≤ β(j)1.

Suppose also that an LM explains Y ′, given x:

Y ′ = − βT
[−1] x[−1] + ε, (14.18)

where ε has distribution function F (·), and x is assumed to have an intercept.
Then

P (Y ≤ j) = P
(
−βT

[−1] x[−1] + ε ≤ β(j)1

)
= F

(
β(j)1 + βT

[−1] x[−1]

)
= F (ηj).

If ε has a logistic distribution, then

F (ε) =
eε

1 + eε
, and so P (Y ≤ j) =

eηj

1 + eηj
.

This is the proportional-odds model (14.16).
The above derivation can be seen to hold for other link-distribution pairs, e.g.,

• a probit link and normal distribution,
• a complementary log-log link and extreme value distribution,
• a cauchit link and Cauchy distribution.

To partly summarize, here are some advantages of the proportional-odds model.
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Fig. 14.2 Latent variable Y ′ interpre-
tation for the cumulative logit model.
Here, β(j)1 are thresholds or cutoff
points so that P (Y ≤ j|x) = P (Y ′ ≤
β(j)1). Then pj = P (Y = j|x). The dis-

tribution is a logistic (see (14.18)). Y 'β(1)1 β(2)1 β(3)1 β(4)1

p1 p2 p3 p4 p5

1. If the ordering of Y is reversed, then the model remains the same, because

P (Y > j) = 1− eηj

1 + eηj
=

1

1 + eηj
=

e−ηj

1 + e−ηj
.

Hence, effectively, only the sign of β changes. This is an advantage in data where
the order is, in some sense, reversible. This property applies to other symmetric
link functions such as the probit and cauchit, but not to the complementary
log-log.

2. If adjacent categories are amalgamated, then the model has the same form and β
is unchanged. This is conceptually appealing for data where the categories are
arbitrary, and one could have used fewer or more.

3. The parallelism assumption results in fewer parameters to estimate and fewer
numerical problems.

14.4.1.2 Software Use

VGAM fits cumulative link models (14.13) by the family function cumulative()

(Table 14.1). It has an argument link whose default is "logit". However,
its parallel argument needs to be set to TRUE in order for the parallelism as-
sumption to be applied to all the xk except for the intercept. For this reason,
there is less flexible shortcut called propodds() for fitting the proportional-odds
model. As simple examples of its use,

vglm(y ~ x2, cumulative(link = probit, reverse = TRUE, parallel = TRUE), cdata)

fits the reversed ordered probit model

Φ−1{P (Y ≥ j|x)} = β∗
(j−1)1 + β∗

(1)2 x2, j = 2, . . . ,M + 1, and

vgam(y ~ s(x2), cumulative(link = cloglog, reverse = FALSE, parallel = TRUE), cdata)

fits the proportional hazards model

log (− logP (Y > j|x)) = β∗
(j)1 + f∗

(1)2(x2), j = 1, . . . ,M,

for some smooth function f∗
(1)2.



400 14 Categorical Data Analysis

All categorical data family functions have the parallel argument, and most
have zero. By default, parallel = FALSE (except for propodds()) and zero =

NULL for all models. Unfortunately, the default value of parallel leads to a greater
failure rate because of the intersecting ηj problem, and/or leads to a large number
of parameters if it succeeds. Making a parallelism assumption requires explicit
invocation, hence the existence of propodds() is a compromise solution. Table 14.3
summarizes whether parallel = TRUE results in the parallelism constraint being
applied to the intercepts.

All the VGAM family functions in Table 14.1 for ordinal Y have a reverse

argument which controls the direction of Y as a function of j, with respect to
the ηj . Some authors use “backward” and “forward” for “reversed” and “non-
reversed”, respectively.

Marginal effects are also available for cumulative() fits. If reverse = FALSE

then pj = γj − γj−1 = h(ηj) − h(ηj−1) where h = g−1 is the inverse of the link
function. Then margeff() will return the

∂ pj(x)

∂ x
= h′(ηj)βj − h′(ηj−1)βj−1 (14.19)

as a p× (M + 1)× n array.
Practically, if the proportional-odds assumption is inadequate then one might

try using a different link function, or add interaction terms to the formula. An-
other strategy is the so-called partial proportional-odds model where the paral-
lelism assumption is applied to a subset of the explanatory variables. Hence the
proportional-odds assumption is relaxed for some variables while being retained
for others. It is easy to fit partial proportional-odds models in VGAM using the
syntax described in Sect. 3.3.1.2, e.g., the following are equivalent:

vgam(y ~ x2 + s(x3) + x4 + x5, cumulative(parallel = TRUE ~ s(x3) + x5 - 1), cdata)

vgam(y ~ x2 + s(x3) + x4 + x5, cumulative(parallel = FALSE ~ x2 + x4), data = cdata)

14.4.1.3 Estimation Difficulties

As mentioned above, one of the advantages of assuming parallelism with respect
to all the xk (bar x1) is that there are fewer numerical problems to contend with.
Hence fitting a partial proportional-odds model requires care because of intersect-
ing ηj during the IRLS iterations. Often there will be convergence failure if the
data and the model are not in agreement, or if there is ill-conditioning in a loose
sense. Here is a checklist of things to consider.

1. Are the ηj really linear and additive with respect to each xk? If not, then try a
transformation (e.g., log exposure time is used in the proportional-odds model
for the pneumo data set), as well as interaction terms.

2. Consider amalgamating levels so there are a sizeable number of counts per
level. An insufficient number of counts in a level aggravates the problem of
intersecting ηj due to its relatively greater statistical variability.

3. Try several links, as these may have a noticeable effect on the parallelism.
4. Try other alternative types of ordinal models, e.g., continuation- and stopping-

ratios models (Sect. 14.4.4), adjacent category models (Sect. 14.4.5).
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Table 14.3 Summary of the default values of the parallel argument, and whether parallel =

TRUE applies to the intercept.

family = Default: parallel = Applied to intercepts?

acat() FALSE No

cratio() FALSE No

cumulative() FALSE No

multinomial() FALSE Yes

propodds() TRUE (implicit) No

sratio() FALSE No

5. One can performM logistic regressions by dichotomizing the response according
to Y ≤ j, and then the β̂(j)k compared (also in light of their SEs). Those which
are similar suggest that a parallelism assumption may be valid.

6. The number of possible partially parallel models grows very quickly with the
number of variables (O(2v) with v explanatory variables), therefore one strategy
is to fit a fully parallel model and then try relaxing one xk at a time.

7. Can better initial values be used? The stepping-stone trick of Sect. 8.5 may
increase the chances of successful convergence if in fact they do not cross. Ar-
guments etastart and coefstart may be useful here.

8. Allow the ηj to be more flexible with respect to xk, e.g., using splines rather
than as a linear term. However, do not allow too much flexibility because this
will result in a higher chance that some of the ηjs will cross.

14.4.2 Coalminers Example I

Here is a simple example relating to the pneumo data, which mimics some of
the results of McCullagh and Nelder (1989, p.179). But we first estimate a more
flexible model, a nonparametric nonparallel cumulative logit model, to check out
the linearity and parallelism assumptions of η1 and η2. There are only 8 distinct
values of the log-exposure time variable, therefore we do not allow the smooths to
be very flexible.

> pneumo <- transform(pneumo, let = log(exposure.time))

> np.npom.pneumo <- vgam(cbind(normal, mild, severe) ~ s(let, df = 3),

cumulative(rev = TRUE), data = pneumo)

> plot(np.npom.pneumo, se = TRUE, overlay = TRUE, lcol=3:4, scol=3:4, main = "(a)")

>

> matplot(with(pneumo, let), fitted(np.npom.pneumo), type = "l", col = 1:3,

ylab = "Fitted value", xlab = "Log exposure time", main = "(b)")

> mycex <- sqrt(c(weights(np.npom.pneumo, type = "prior")) *

depvar(np.npom.pneumo)) * 0.5

> Q <- ncol(depvar(np.npom.pneumo))

> for (j in 1:Q)

points(depvar(np.npom.pneumo)[, j] ~ let, data = pneumo,

cex = mycex[, j], col = j, pch = j)

>

> matplot(with(pneumo, let), predict(np.npom.pneumo, untransform = TRUE),

type = "b", col = 1:3, ylab = "P(Y>=j), j=1,2",

xlab = "Log exposure time", main = "(c)")
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Figure 14.3a shows that the functions appear to be linear and parallel. This gives
us confidence in fitting the standard proportional odds model. The fitted class
probabilities p̂j(xi) in plot (b), along with the raw sample proportions plotted
approximately proportional to their size, show a close correspondence between the
data and fitted model. Plot (c) shows the fitted reversed cumulative probabili-

ties P̂ (Y ≥ j) for j = 2, 3.

> pom.pneumo <- vglm(cbind(normal, mild, severe) ~ let, propodds, data = pneumo)

> coef(pom.pneumo, matrix = TRUE)

logit(P[Y>=2]) logit(P[Y>=3])

(Intercept) -9.676 -10.582

let 2.597 2.597

> margeff(pom.pneumo)[,, 1]

normal mild severe

(Intercept) 0.05763 -0.031970 -0.025664

let -0.01547 0.009169 0.006298

> matplot(with(pneumo, let), t(margeff(pom.pneumo)["let",, ]), type = "b", col = 1:3,

ylab = "Marginal effects", xlab = "Log exposure time", main = "(d)")

> abline(h = 0, col = "gray50", lty = "dashed")

To interpret just the severe group, a 10-year exposure has η3 ≈ −10.582 +
2.597 log 10 ≈ −4.602, meaning a probability of about 0.00993, or one chance
in about 100. Doubling the exposure results in the odds (risk) of severe pneu-

moconiosis being multiplied by 2β̂
∗
(1)2 ≈ 6.05, hence a 20-year exposure results in

approximately one chance in 17 (≈ 100/6).
The marginal effects for the first time point with respect to let, which is

exposure.time = 5.8, has a (larger) negative value for normal, and positive values
for mild and severe. This is not surprising as Fig. 14.3b shows the normal curve
falling faster and the others rising more slowly.

14.4.3 Coalminers Example II

We continue the previous example and illustrate how linearHypothesis() in car
may be used to test for parallelism in each variable separately in a nonproportional
odds model. To add a little complexity, we create the unrelated variable x3 and
add it to the regression.

> library("car")

> set.seed(1); n <- nrow(pneumo)

> pneumo <- transform(pneumo, x3 =

runif(n)) # Added variable

> npom <- vglm(cbind(normal, mild, severe) ~ let + x3, cumulative, data = pneumo)

> coef(npom) # Labelling is very important here

(Intercept):1 (Intercept):2 let:1 let:2 x3:1

9.6329 10.9482 -2.6064 -2.6581 0.1254

x3:2

-0.2129
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Fig. 14.3 Nonparametric nonparallel cumulative logit model fitted to the pneumo data: (a) the
two centred functions are overlaid on to one plot; (b) the fitted values as a function of let

with sample proportions plotted proportional to their counts; (c) reversed cumulative probabili-
ties P̂ (Y ≥ j) for j = 2, 3. (d) Proportional odds model: the marginal effects for variable let for
each of the 3 levels.

> Terms <- attr(terms(npom), "term.labels") # These match the coefficients

> for (Term in Terms) {
lh <- paste(Term, ":", 1, " = ", Term, ":", 2, sep="")

print(car::linearHypothesis(npom, lh) )

}

Linear hypothesis test

Hypothesis:

let:1 - let:2 = 0

Model 1: restricted model

Model 2: cbind(normal, mild, severe) ~ let + x3

Res.Df Df Chisq Pr(>Chisq)

1 11

2 10 1 0.01 0.91

Linear hypothesis test
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Hypothesis:

x3:1 - x3:2 = 0

Model 1: restricted model

Model 2: cbind(normal, mild, severe) ~ let + x3

Res.Df Df Chisq Pr(>Chisq)

1 11

2 10 1 0.45 0.5

> detach("package:car")

This example requires the fitting of a totally nonproportional odds model, which
can be very difficult for some data sets. Then Wald tests are performed on each
explanatory variable (term). In the above, the p-values indicate that there is no
evidence against parallelism for any of the variables, keeping the coefficients for
the other explanatory variable nonparallel.

14.4.4 Models Involving Stopping- and
Continuation-Ratios

Quantities known as continuation-ratios are useful for the analysis of a sequential
process where Y takes on successive values 1, 2, . . . ,M+1 over time. Some examples
of such are

(i) to ascertain the effect of a covariate on the number of children a couple have
[Y = 1 (no children), 2 (1 child), 3 (2 children), 4 (3+ children)];

(ii) whether a risk factor is related to the progression of a certain type of cancer
[Y = 1 (no disease), 2 (localized), 3 (widespread), 4 (terminal)].

(iii) to determine what variables (such as age, gender, ethnicity and marital sta-
tus) influence the highest degree attained among university students [Y = 1
(Bachelors), 2 (Masters), 3 (Doctorate)].

For such data, two types of probabilities may be of interest: that of stopping
at Y = j, or continuing past Y = j, given that Y has reached level j in the first
place. Which of the two is more natural depends on the particular application. If
there are time-varying covariates, as is the likely case in the examples, then the
use of the xij argument is needed.

Unfortunately, continuation-ratios have been defined differently in the litera-
ture. Table 14.1 gives the VGAM definitions, which includes a new quantity termed
the stopping-ratio to distinguish between the two types. For example, our (forward)
stopping-ratio matches the definition of the continuation-ratio in Agresti (2013,
pp.311–3), where continuation-ratio logits are defined as log(pj/(pj+1 + · · ·+ pJ ))
for j = 1, . . . , J − 1.

Incidentally, continuation-ratios and stopping-ratios may be fitted by setting
up the appropriate responses and indicator variables and using logistic regression.
As an illustration, consider the model

logitP (Y = j|Y ≥ j) = logit
P (Y = j)

P (Y ≥ j)
= log

P (Y = j)

P (Y > j)
= ηj , j = 1, 2,

applied to pneumo. We fit 3 stopping-ratio models of varying degrees of parallelism.
In the following, the two ηjs are effectively stacked together and estimated as

one η; and the parallelism applies to the intercept too.
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> fit.sr2 <- vglm(cbind(normal, mild, severe) ~ let,

sratio(parallel = FALSE ~ 0), data = pneumo)

> coef(fit.sr2, matrix = TRUE)

logit(P[Y=1|Y>=1]) logit(P[Y=2|Y>=2])

(Intercept) 9.012 9.012

let -2.454 -2.454

> fit.lr2 <- vglm(cbind(c(normal, mild), c(mild + severe, severe)) ~ c(let, let),

binomialff, data = pneumo)

> coef(fit.lr2, matrix = TRUE)

logit(prob)

(Intercept) 9.012

c(let, let) -2.454

In the following, the parallelism does not apply to the intercept.

> fit.sr1 <- vglm(cbind(normal, mild, severe) ~ let,

sratio(parallel = FALSE ~ 1), data = pneumo)

> coef(fit.sr1, matrix = TRUE)

logit(P[Y=1|Y>=1]) logit(P[Y=2|Y>=2])

(Intercept) 8.734 8.051

let -2.321 -2.321

> fit.lr1 <- vglm(cbind(c(normal, mild), c(mild + severe, severe)) ~

-1 + gl(2, nrow(pneumo)) + c(let, let), binomialff,

data = pneumo)

> coef(fit.lr1, matrix = TRUE)

logit(prob)

gl(2, nrow(pneumo))1 8.734

gl(2, nrow(pneumo))2 8.051

c(let, let) -2.321

(The function gl() generates levels of a factor. Here, it creates a factor variable
of length 16 having 2 levels, the first 8 values having the first level, etc.) Finally,
there is no parallelism at all in the following.

> fit.sr0 <- vglm(cbind(normal, mild, severe) ~ let,

sratio(parallel = TRUE ~ 0), data = pneumo) # Same as sratio()

> coef(fit.sr0, matrix = TRUE)

logit(P[Y=1|Y>=1]) logit(P[Y=2|Y>=2])

(Intercept) 9.609 3.864

let -2.576 -1.136

> fit.lr0 <- vglm(cbind(c(normal, mild), c(mild + severe, severe)) ~

-1 + gl(2, nrow(pneumo)) + gl(2, nrow(pneumo)):c(let, let),

binomialff, data = pneumo)

> coef(fit.lr0, matrix = TRUE)

logit(prob)

gl(2, nrow(pneumo))1 9.609

gl(2, nrow(pneumo))2 3.864

gl(2, nrow(pneumo))1:c(let, let) -2.576

gl(2, nrow(pneumo))2:c(let, let) -1.136
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The interaction between a factor and a numerical vector means that there is a
different slope for two let terms. It is left as an exercise to the reader (Ex. 14.6)
to modify the above code in order to fit reversed continuation-ratio models, with
varying degrees of parallelism, to these data.

14.4.5 Models Involving Adjacent Categories

An adjacent category model, which is not as popular as the proportional odds
model, compares a level with the one immediately adjacent. This is very natural
if the levels are enumerated over time, so that one can model successive changes.
From Table 14.1, the reversed form is

g(pj/pj+1) = ηj , j = 1, . . . ,M, (14.20)

where the logarithm is the most natural link function g because the ratio of interest
is positive. For this model,

log (pj/pj+1) = log (pj/pM+1)− log (pj+1/pM+1) = ηMLM
j − ηMLM

j+1 ,

for j = 1, . . . ,M , therefore one can perform estimation by fitting an MLM and
then subtracting the adjacent ηj . For example,

> pneumo <- transform(pneumo, let = log(exposure.time)) # Covariate

> fit.mlm <- vglm(cbind(normal, mild, severe) ~ let, multinomial, data = pneumo)

> cfit.mlm <- coef(fit.mlm, matrix = TRUE)

> cbind(cfit.mlm[, 1] - cfit.mlm[, 2], cfit.mlm[, 2]) # Same as cfit.acat

[,1] [,2]

(Intercept) 8.936 3.0391

let -2.165 -0.9021

> fit.acat <- vglm(cbind(normal, mild, severe) ~ let, acat(rev = TRUE), pneumo)

> coef(fit.acat, matrix = TRUE)

loge(P[Y=1]/P[Y=2]) loge(P[Y=2]/P[Y=3])

(Intercept) 8.936 3.0391

let -2.165 -0.9021

For the above, it may be shown that, under a parallelism assumption not applying
to the intercepts, β(j)k is the log-odds ratio of falling into category j versus j + 1
when xk increases by one unit, holding all other covariates in x fixed.

14.4.6 Convergence

The algorithm of McCullagh (1980) matches that of Chap. 3. He showed that a
unique maximum of the likelihood is guaranteed for sufficiently large sample sizes,
though infinite parameter values can arise with sparse data sets containing certain
patterns of zeros.

However, one problem that can arise with categorical regression models is that
the MLEs can be on the boundary of the parameter space with positive probability.
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For example, the oenological data set wine of Randall (1989), examined by
Christensen (2013) and Kosmidis (2014b), is

temp contact bitter1 bitter2 bitter3 bitter4 bitter5

1 cold no 4 9 5 0 0

2 cold yes 1 7 8 2 0

3 warm no 0 5 8 3 2

4 warm yes 0 1 5 7 5

The bitter variables and temp are for the bitterness taste (1 = none, 5 = intense)
and temperature. Variable contact is whether the juice came in contact with the
skin for a specified period.

A partial proportional-odds model with separate slopes for the temperature
variable exhibits such problems. When boundary problems occur, numerical prob-
lems may occur during the estimation and misleading standard errors result. In
particular, Wald statistics → 0 because the SEs diverge much faster than the
estimates.

Some references for the convergence properties of several categorical models, and
conditions that guarantee that the MLE exists, are given in Kosmidis (2014b).

14.5 Genetic Models

A number of common population genetics models based on the multinomial distri-
bution are implemented in VGAM. Due to space limitations, this section does little
more than just list them: Table 14.4 serves to direct the user to other tables of
specific models. Two other distributions useful to genetics are also briefly touched
upon.

As one example, for ABO(), the alleles A, B and O form six possible combinations
(genotypes) consisting of AA, AO, BB, BO, AB, OO as in Table 14.5, where
alleles A and B are dominant over allele O, while A and B are co-dominant,
thus giving rise to four phenotypes (blood groups): A, B, AB, O. Let p, q and r
be the probabilities for A, B and O, respectively, for a given population. We
let η = (g1(p), g2(r))

T , with the logit link for gj being the default. The 4-column
input has columns corresponding to A-B-AB-O blood types, respectively.

Some of the family functions allow the modelling of an inbreeding coefficient f
when the argument inbreeding = TRUE. Weir (1996) describes three types of
inbreeding coefficients, using other common notation found in the literature of
that area:

• f or FIS ;
• F or FIT : the total inbreeding coefficient ;
• θ or FST : the coancestry coefficient between individuals.

These measures of relationship between pairs of alleles are related by f = (F −
θ)/(1− θ) where random mating implies F = θ and f = 0. The quantity f is one
minus the observed frequency of heterozygotes over that expected from Hardy-
Weinberg equilibrium (HWE), and if inbreeding = FALSE then f ≡ 0 so that
the parameter is not estimated—this corresponds to HWE.

To conduct a hypothesis test for H0 : f = 0 deserves some comment. The
null hypothesis is nonstandard in that the hypothesized value is at the boundary
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Table 14.4 Genetic models based on the multinomial distribution currently implemented
by VGAM and their unique parameters. All (independent) parameters are probabilities, whose

default link is the logit. Argument inbreeding refers to whether the inbreeding coefficient f is
to be estimated (f = 0 if inbreeding = FALSE).

Family Parameters Response order Table

ABO() p, q A, B, AB, O Table 14.5

AB.Ab.aB.ab() p AB, Ab, aB, ab Table 14.6

AA.Aa.aa(inbreeding = FALSE) pA AA, Ab, aa Table 14.7

AA.Aa.aa(inbreeding = TRUE) pA, f AA, Ab, aa Table 14.7

A1A2A3(inbreeding = FALSE) p1, p2 A1A1, A1A2, A2A2,
A1A3, A2A3, A3A3

Table 14.8

A1A2A3(inbreeding = TRUE) p1, p2, f G1G1, G1G2, G1G3,
G2G2, G2G3, G3G3

Table 14.9

MNSs() mS , ms, nS MS, Ms, MNS, MNs, NS,
Ns

Table 14.10

of its parameter space. While χ2 tests and exact tests are common, a standard
likelihood ratio test (LRT) is not applicable because it is based on the assumption

that θ̂ is an interior point of the parameter space (Sect. A.1.2.2). Consequently,
the standard asymptotic results for MLEs and LRTs do not hold. Self and Liang
(1987) examined this problem and gave examples where the limiting distributions
of LRT statistics are mixtures of χ2 distributions, e.g., 50% χ2

0 and 50% χ2
1. Here

are two other examples of hypothesis testing of parameters at a boundary of its
parameter space:

1. Testing a Poisson versus negative binomial distribution (NBD). From
Sects. 1.2.2 and 11.3, an NBD with k →∞ approaches a Poisson distribution.
Hilbe (2011, Sect.7.4.2) conducts boundary LRT on an NB-2 example.

2. Testing for no zero-inflation in a zero-inflated Poisson (ZIP) distribution. From
Table 17.6, testing H0 : φ = 0 in a zipoisson() model is a test for no zero-
inflation, i.e., an ordinary Poisson distribution. It may be seen that this testing
of a boundary value is the same for the other zero-inflated distributions in
that table. Likewise, for the zipoissonff() parameterization, testing no zero-
inflation H0 : φ∗ = 1 occurs at a boundary. For the ZIP, it is common to use a
Vuong test (Vuong, 1989).

14.5.1 The Dirichlet Distribution

We now mention the Dirichlet distribution, a natural extension of the beta distri-
bution, because it has been used in genetics. Suppose Y = (Y1, . . . , YM )T . We say
the random vector Y has a Dirichlet distribution if (Y1, . . . , YM )T has density

Γ (α+)
M∏

j=1

Γ (αj)

M∏

j=1

y
αj−1
j (14.21)
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Table 14.5 Probability table for the ABO blood group system. The genotype probabilities are
derived under the assumption that Hardy-Weinberg equilibrium holds. Note: r = 1 − p − q.

Source: Elandt-Johnson (1971, Table 14.1).

Phenotype (blood group) A B AB OO

Genotype AA AO BB BO AB OO

Probability p2 2pr q2 2qr 2pq r2

Table 14.6 Two-locus counts for F2 population for linked loci. Allele ‘A’ is assumed dominant
over ‘a’, and allele ‘B’ is assumed dominant over ‘b’. Source: Weir (1996, Table 7.4).

Phenotypes Probability Genotypes Probability

AB (2 + p2)/4 AABB p2/4

AABb p(1− p)/2

AaBB p(1− p)/2

AaBb (1− 2p(1− p))/2

Ab (1− p2)/4 AAbb (1− p)2/4

Aabb p(1− p)/2

aB (1− p2)/4 aaBB (1− p)2/4

aaBb p(1− p)/2

ab p2/4 aabb p2/4

Table 14.7 Probability table for the AA-Aa-aa genotypes, with (f = 0) and without the as-
sumption of Hardy-Weinberg equilibrium. Source: Weir (1996, pp.56–58).

Genotype AA Aa aa

Without inbreeding p2A 2pA(1− pA) (1− pA)2

With inbreeding p2A + pA(1− pA)f 2pA(1− pA)(1− f) (1− pA)2 + pA(1− pA)f

Table 14.8 Probability table and frequencies yj for 3 alleles, which give rise
to A1A2A3(inbreeding = FALSE). This table corresponds to Table 14.9 with f = 0. See also Weir
(1996, pp.61–3).

A1A1 A1A2 A1A3 A2A2 A2A3 A3A3

p21 2p1p2 2p1(1− p1 − p2) p22 2p2(1− p1 − p2) (1− p1 − p2)2

Table 14.9 Probability table for the A1A2A3(inbreeding = TRUE) family, and Brazilian geno-
types data at the Haptoglobin locus (Lange, 2002, Table 3.2). The probability p3 = 1− p1 − p2.

Genotype Genotype probability Observed number

A1/A1 f p1 + (1− f)p21 108

A1/A2 2(1− f)p1 p2 196

A1/A3 2(1− f)p1 p3 429

A2/A2 f p2 + (1− f)p22 143

A2/A3 2(1− f)p2 p3 513

A3/A3 f p3 + (1− f)p23 559

where α+ = α1 + · · ·+αM , αj > 0, and the density is defined on the unit simplex

ΔM =

⎧
⎨

⎩
(y1, . . . , yM )T : y1 > 0, . . . , yM > 0,

M∑

j=1

yj = 1

⎫
⎬

⎭
.
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Table 14.10 Probability table for the combinations of MNSs blood group system. Two probabil-
ities are pMS = m2

S +2mSms and pMNS = 2(mSmS +msnS +mSns). Source: Elandt-Johnson

(1971, Table 14.3).

Phenotype MS Ms MNS MNs NS Ns

Genotype LMSLMS ,
LMSLMs

LMsLMs LMSLNS ,
LMsLNS ,
LMSLNs

LMsLNs LNSLNS ,
LNSLNs

LNsLNs

Probability pMS m2
s pMNS 2msns n2

S+2nSns n2
s

The means are E(Yj) = αj/α+. The family function dirichlet() estimates the αj

from an M -column response. The function rdiric() generates Dirichlet random
vectors based on the property that Yi = Gi/

∑M
j=1 Gj where the Gj are inde-

pendent gamma random variates of unit scale. This ensures that
∑M

j=1 Yj = 1
and Yj ≥ 0.

14.5.2 The Dirichlet-Multinomial Distribution

Its density is given by P (Y1 = y1, . . . , YM = yM ) =

(
2y∗

y1 y2 · · · yM
)

Γ (α+)

Γ (2y∗ + α+)

M∏

j=1

Γ (yj + αj)

Γ (αj)
(14.22)

where 2y∗ =
∑M

j=1 yj and αj > 0. The motivation for this distribution is a
Bayesian one—see Weir (1996) and Lange (2002). The posterior mean is E(Yj) =
yj + αj/(2y∗ + α+). Note that yj must be a non-negative integer.

The performance of the family function dirmultinomial() is found to deterio-
rate with large y∗ (e.g., y∗ > 104; Yu and Shaw, 2014). Such large values of y∗ are
motivated by problems found in contemporary high-throughput sequencing data
sets in bioinformatics.
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Most of the genetic models of Sect. 14.5 are based on Elandt-Johnson (1971),
Weir (1996), Lange (2002). The book van den Boogaart and Tolosana-Delgado
(2013) gives an applied introduction to compositional data analysis based on R.

Exercises

Ex. 14.1. Marginal Effects

(a) Derive (14.6) for the multinomial logit model. Hint: consider ∂ log pj(xi)/∂xi.
(b) Derive (14.19) for the (nonparallel) cumulative logit model.
(c) Derive ∂ log pj(xi)/∂xi for the acat() model.
(d) Derive ∂ log pj(xi)/∂xi for the cratio() model.
(e) Derive ∂ log pj(xi)/∂xi for the sratio() model.

Ex. 14.2. Prove (14.10).

Ex. 14.3. Wine Data
For the wine data, fit a partial proportional-odds model with separate slopes for
the temperature variable. Show that the solution is found on the boundary of the
parameter space. [Kosmidis (2014b)]

Ex. 14.4. Pearson Chi-Squared Statistic
For the M = 2 case of the multinomial logit model, show that

(yi − pi)
TΣ−1

i (yi − pi) =
M+1∑

j=1

Ni
(yij − pij)

2

pij
,

where Σi = Var(yi), and Ni is the number of counts, with yi being a vector of
sample proportions (this is Pearson’s χ2 statistic). [Tutz (2012)]

Ex. 14.5. Show that the multinomial distribution belongs to the multivariate
exponential family (3.1).

Ex. 14.6. Continuation-Ratio Models Fitted to pneumo

Fit the following backward continuation-ratio models to the pneumo data with x =
(1, let)T :

logitP (Y < j + 1|Y ≤ j + 1) = ηj , j = 1, 2,

where the parallelism (i) applies to all x, (ii) applies to let only, (iii) applies to
no covariates at all. Use both logistic regression and cratio() for (i)–(iii).

Ex. 14.7. Consider the following output (the models are for illustration only).

(a) > pneumo <- transform(pneumo, let = log(exposure.time))

> coef(vglm(cbind(normal, mild, severe) ~ let, multinomial, data = pneumo),

matrix = TRUE)

log(mu[,1]/mu[,3]) log(mu[,2]/mu[,3])

(Intercept) 11.975 3.0391

let -3.067 -0.9021

Without running the following, what output is obtained?
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coef(vglm(cbind(normal, mild, severe) ~ let, multinomial(refLevel = 2), pneumo),

matrix = TRUE)

(b) Without running the following, what output is obtained?

coef(vglm(cbind(severe, mild, normal) ~ let, multinomial, data = pneumo),

matrix = TRUE)

(c) Given

> coef(vglm(cbind(normal, mild, severe) ~ let, cumulative, data = pneumo),

matrix = TRUE)

logit(P[Y<=1]) logit(P[Y<=2])

(Intercept) 9.593 11.105

let -2.571 -2.744

without running the following, what output is obtained?

coef(vglm(cbind(normal, mild, severe) ~ let, cumulative(reverse = TRUE), pneumo),

matrix = TRUE)

(d) Based on the model in (a), classify a coalminer who has an exposure time of 50
years with respect to pneumoconiosis.

Ex. 14.8. Poisson Trick
Consider fitting an MLM, based on estimating the Poisson regressions (14.12).

(a) Explain why the likelihood function L∗, say, is

L∗ ∝
n∏

i=1

J∏

j=1

μ
yij

ij exp{−μij}.

(b) Set the derivative of 
∗ ≡ logL∗ (with respect to αi) to zero, and then substi-
tute α̂i into the log-likelihood. Show that this is, up to an additive constant,
the MLM log-likelihood.

Ex. 14.9. Poisson Trick for pneumo

(a) Show that the standard errors of the relevant coefficients of pois.pneumo

and mlm.pneumo match (Sect. 14.3.1).
(b) Using glm() with family = poisson, fit a multinomial logit model to

the pneumo data frame that is linear with respect to log(exposure.time)

using the Poisson trick. Use the first level as the baseline group. Hint: cre-
ate a ‘long’ version of the data frame pneumo, called pneumo.long say, us-
ing reshape(). Note: the first few rows of pneumo.long should look something
like

> head(pneumo.long, 13)

exposure.time let i.factor x3 y.factor obs.freq id

1.normal 5.8 1.758 1 0.2655 normal 98 1

2.normal 15.0 2.708 2 0.3721 normal 51 2

3.normal 21.5 3.068 3 0.5729 normal 34 3

4.normal 27.5 3.314 4 0.9082 normal 35 4
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5.normal 33.5 3.512 5 0.2017 normal 32 5

6.normal 39.5 3.676 6 0.8984 normal 23 6

7.normal 46.0 3.829 7 0.9447 normal 12 7

8.normal 51.5 3.942 8 0.6608 normal 4 8

1.mild 5.8 1.758 1 0.2655 mild 0 1

2.mild 15.0 2.708 2 0.3721 mild 2 2

3.mild 21.5 3.068 3 0.5729 mild 6 3

4.mild 27.5 3.314 4 0.9082 mild 5 4

5.mild 33.5 3.512 5 0.2017 mild 10 5

Ex. 14.10. For sratio(reverse = TRUE, parallel = FALSE) applied to an
ordinal response Y with levels {1, . . . ,M +1}, show that this fits ηj = log{P (Y =
j + 1)/P (Y ≤ j)} for j = 1, . . . ,M . Write down ηj in terms of the coefficients of
an intercept plus x2, as explanatory.

Ex. 14.11. Show that Fisher scoring is equivalent to the Newton-Raphson al-
gorithm for the multinomial logit model (1.28).

Ex. 14.12. † rcumulative()
Based on Sect. 14.4.1.1, write a simple R function rcumulative() that generates
random variates from an intercept-only cumulative link model. Allow for at least
the "logit", "probit" and "cauchit" links. The associate distributions should
be standardized, i.e., have location parameter 0 and unit scale parameter. It should
have an argument cutpoints that receives the β(j)1.

Ex. 14.13. Derivatives of the Non-proportional-Odds Model
For the non-proportional-odds model (14.14) applied to data (xi,yi, Ni),
i = 1, . . . , n with Ni = Ni y

T
i 1M+1 = 1 being the prior weights, show that the first

and expected second derivatives are

(
∂
i
∂ηi

)

j

= Ni γj(xi)[1− γj(xi)]

{
yij

pj(xi)
− yi,j+1

pj+1(xi)

}

,

(

−E
[

∂2
i
∂ηi ∂η

T
i

])

jj

= Ni γ
2
j (xi)[1− γj(xi)]

2

{
1

pj(xi)
+

1

pj+1(xi)

}

,

(

−E
[

∂2
i
∂ηi ∂η

T
i

])

t−1,t

= −Ni
γt−1(xi) [1− γt−1(xi)] γt(xi) [1− γt(xi)]

pt(xi)
,

and the other elements are zero, i.e., the EIM is tridiagonal. Here, j = 1, . . . ,M
and t = 2, . . . ,M .

Ex. 14.14. Relationship with binomialff()

(a) Suppose y is a vector of 0s and 1s, and one wants to perform a simple logistic
regression η = logitP (Y = 1|x). Determine which of the following will do this.
If it doesn’t, provide a simple adaptation to make it work. If it does, briefly
explain why.

(i) glm(y ~ ..., binomial, ...)

(ii) vglm(y ~ ..., binomialff, ...)

(iii) vglm(cbind(1 - y, y) ~ ..., binomialff, ...)

(iv) vglm(1 - y ~ ..., multinomial, ...)

(v) vglm(y ~ ..., multinomial(refLevel = 1), ...)
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(vi) vglm(cbind(1 - y, y) ~ ..., multinomial, ...)

(vii) vglm(cbind(y, 1 - y) ~ ..., multinomial, ...)

(viii) vglm(y ~ ..., cumulative(reverse = TRUE), ...)

(b) Work out further calls of the above using cratio(), with and/or without
reverse = TRUE.

(c) Work out further calls of the above using sratio(), with and/or without
reverse = TRUE.

(d) Work out further calls of the above using acat(), with and/or without
reverse = TRUE.

Ex. 14.15. Derivatives for the AA.Aa.aa() Genotypes

(a) Assuming HWE, for this 1-parameter model given in Table 14.7, write down
the log-likelihood and its first derivative with respect to pA.

(b) Derive its second derivative and EIM.

Ex. 14.16. Derivatives for the AB.Ab.aB.ab() Phenotypes

(a) For this 1-parameter model given in Table 14.6, write down the log-likelihood
and its first derivative.

(b) Derive its second derivative and EIM.

Ex. 14.17. Brazilian Genotypes at the Haptoglobin Locus
Table 14.9 gives data cited by Yasuda (1968) from 1948 people from north east
Brazil. [Lange (2002)]

(a) Apply the A1A2A3() family function to these data, with both inbreeding =

TRUE and inbreeding = FALSE.
(b) Using a chi-squared test or otherwise, test for the goodness of fit.

Ex. 14.18. Derivatives for the ABO() Blood Group

(a) For this 2-parameter model given in Table 14.5, write down the log-likelihood
and its first derivatives.

(b) Derive its second derivatives and EIM.

Ex. 14.19. Dirichlet Distribution
Use dirichlet() to fit a Dirichlet distribution to the data frame ducklings. Here,
the response are the relative frequencies of serum proteins in white Pekin ducklings
as determined by electrophoresis: p1 = pre-albumin, p2 = albumin, p3 = globulins
(proportions). Are the second and third shape parameters equal?

. . . Second, even researchers who do not rely on default options practically
never attempt to verify the solution. One can only wonder how many incorrect
nonlinear results have been published.
—Altman et al. (2004)



Chapter 15

Quantile and Expectile Regression

The percentile curves are usually computed one level at a time. Associated
with great flexibility is the embarrassing phenomenon of quantile crossing.
—He (1997)

15.1 Introduction

A major deficiency of much of statistical modelling involving the regression func-
tion E(Y |x) is the resultant information loss. In contrast, quantile regression (QR)
allows for a complete picture by considering the (entire) conditional distribution
of Y given x. As such, there is no information loss because F (y|x) contains all the
information about the random variable Y at x, whereas E(Y |x) is but the first
moment. This may be one reason why QR has become increasingly popular over
the last decade or so.

This chapter mainly dwells on three topics. The first is a popular QR tech-
nique called the LMS method, which is amenable to IRLS (Sect. 15.2). Secondly,
starting with what is called here the classical method, QR based on the asymmet-
ric Laplace distribution (ALD) is described (Sect. 15.3). Note however that IRLS
is not well-suited for solving for the location parameters of an ALD, neverthe-
less sometimes a reasonable solution may be obtained. Currently this work can be
viewed as tentative and experimental. It will be seen that (i) a parallelism assump-
tion (Hk = 1M ) is a natural solution to the quantile-crossing problem; (ii) The log
link applied to the ALD location parameter means that quantiles may be posi-
tive; (iii) A method called the ‘onion’ method may be used to perform QR, like
estimating the layers of an onion—and it provides a second natural solution to
the quantile-crossing problem. Thirdly, quantities somewhat similar to quantiles
called expectiles are described (Sect. 15.4). As usual, some VGAM family functions
are used for illustrative purposes—they are summarized in Table 15.2.

© Thomas Yee 2015

T.W. Yee, Vector Generalized Linear and Additive Models,
Springer Series in Statistics, DOI 10.1007/978-1-4939-2818-7 15

415



416 15 Quantile and Expectile Regression

The subject of QR has received considerable research attention over the last
decade, and there are now many application areas and quite a few proposed meth-
ods. Applications include medical studies (e.g., obesity and height versus age), ecol-
ogy, economics (e.g., Fitzenberger et al., 2002), education and climatology (e.g.,
Fig. 15.13a of some Melbourne temperature data exhibits bimodal behaviour) to
name just a few.

15.1.1 Some Notation and Background

In this chapter we use the words quantile, centile, and percentile interchangeably,
and note that, for example, a 0.5-quantile is equivalent to the 50-percentile, which
is the median. VGAM family functions for QR use an argument percentiles which
should be assigned values between 0 and 100. Related terms are quartiles, quintiles
and deciles, which divide the distribution into 4, 5 and 10 equal parts, respectively.
Table 15.1 summarizes the notation used in this chapter.

Suppose a real-valued random variable Y has CDF F (y) = P (Y ≤ y). Then
the τth-quantile of Y may be defined to be QY (τ) = F−1

Y (y) =

Q(τ) = inf{y : τ ≤ F (y)}, (15.1)

where 0 < τ < 1. Thus, for continuous F , a proportion τ lies below Q(τ) and 1−τ
lies above Q(τ). In R, q-type functions satisfy (15.1) for discrete distributions
as well as continuous ones. Like the CDF, the quantile function Q(τ) completely
describes the distribution of Y ; there is no information loss. This contrasts sharply
with LMs and GLMs where only the mean of Y is modelled.

Quantiles are invariant to monotone transformations: if ψ is a nondecreasing
function on R, then

Qψ(Y )(τ) = ψ(QY (τ)). (15.2)

This means the quantiles of the transformed variable ψ(Y ) are the transformed
quantiles of the original variable Y .

15.2 LMS-Type Methods

LMS-type quantile regression methods are based on three parameters called λ, μ
and σ from which the method derives its name (i.e., the first letters of the Roman
transcriptions of these Greek characters). For scatter plot data (xi, yi), i = 1, . . . , n,
with yi > 0, the underlying idea is that a 3-parameter Box-Cox power transforma-
tion of the yi, given xi, has some parametric distribution, whose quantiles can be
extracted. Then an inverse Box-Cox transformation of these quantiles will result
in estimated quantiles on the original scale. In the VGLM/VGAM framework, po-
tentially all 3 parameters are allowed to be smooth functions of x—and penalized
MLE is used.
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Table 15.1 Notation and nomenclature used in this chapter.

Notation and nomenclature Comments

Y Response. Has mean μ, CDF F (y), PDF f(y)

QY (τ) = τ -quantile of Y 0 < τ < 1,

ξ(τ) = ξτ = τ -quantile Koenker and Bassett (1978), ξ( 1
2
) = median

μ(ω) = μω = ω-expectile 0 < ω < 1, μ( 1
2
) = μ, Newey and Powell (1987)

ξ̂(τ), μ̂(ω) Estimated quantiles and expectiles

Centile Same as quantile and percentile here

Regression quantile Koenker and Bassett (1978)

Regression expectile Newey and Powell (1987)

Regression percentile All forms of asymmetric fitting (Efron, 1992)

ρτ (u) = u · (τ − I(u < 0)) Check function corresponding to ξ(τ), (15.6), Fig. 15.6a

ρ
[2]
ω (u) = u2 · |ω − I(u < 0)| Check function corresponding to μ(ω), (15.22), Fig. 15.6b

τ = (τ1, τ2, . . . , τL)
T Vector of τj values, used for simultaneous estimation,

Sect. 15.3.2.1

When LMS-Box-Cox QR is used, it is almost always meant that the transforma-
tion is made to a standard normal distribution. This is described in Sect. 15.2.1.
Two lesser-known and experimental variants are sketched in Sect. 15.2.2.

15.2.1 The Box-Cox-Normal Distribution Version

The Box-Cox transformation of a positive Y is to Z ∼ N(0, 1) where

Z =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
Y

μ(x)

)λ(x)
− 1

σ(x)λ(x)
, λ(x) �= 0;

1

σ(x)
log

(
Y

μ(x)

)

, λ(x) = 0.

(15.3)

The transformation is plotted in Fig. 15.1a for μ = σ = 1. Approximately, one
might interpret μ somewhat like a running median or mode of Y , since Y/μ ≈ 1
which gets mapped to the origin of the N(0, 1) density. Of course, σ is the scale
parameter and λ can be considered a shape parameter. For right-skewed data
one would expect λ < 1 in order to bring its heavy tail in. The second equation
of (15.3) handles the singularity at λ = 0. The parameter σ must be positive,

therefore VGAM chooses η(x) = (λ(x), μ(x), log(σ(x)))
T
as the default. Given η̂,

the α percentile (e.g., α = 50 for median) can be estimated by inverting the
Box-Cox power transformation to yield

μ̂(x)
[
1 + λ̂(x) σ̂(x) Φ−1(α/100)

]1/λ̂(x)
. (15.4)

One advantage of the LMS method is that it does not suffer from the quantile-
crossing problem. This “disturbing” and “serious embarrassment” can occur for
some QR methods (see, e.g., He (1997), Koenker (2005, Sect.2.5)), for example,
where a point (x0, y0) may be classified as below the 20th but above the 30th
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Table 15.2 Main functions for quantile and expectile regression in this chapter. The upper table
are VGAM family functions; the lower table are generic functions. A “L∗” denotes an asymmetric

Laplace distribution (ALD).

lms.bcn() Box-Cox transformation to normality (Sect. 15.2)

lms.bcg() Box-Cox transformation to gamma distribution

lms.yjn() Yeo-Johnson transformation to normality

laplace(dpqr) Laplace distribution (Sect. 15.3)

alaplace1(dpqr) L∗(ξ) with σ and κ (or τ) specified, Eq. (15.12)

alaplace2(dpqr) L∗(ξ, σ) with κ (or τ) specified, Eq. (15.12)

alaplace3(dpqr) L∗(ξ, σ, κ), Eq. (15.12)
sc.studentt2(dpqr) Scaled Student t2 distribution,

√
2T2, Ex. 15.14

amlnormal([dpqr]) Asymmetric maximum likelihood—for normal (asymmetric least
squares or ALS; Sect. 15.4.2)

amlbinomial([dpqr]) Asymmetric maximum likelihood—for binomial

amlpoisson([dpqr]) Asymmetric maximum likelihood—for Poisson

amlexponential([dpqr]) Asymmetric maximum likelihood—for exponential

deplot() Density plot; of the fitted probability density functions (Sect. 15.2)

qtplot() Quantile plots; of the fitted quantiles

cdf() Cumulative distribution function F̂ (yi)

fitted() Estimated quantiles for yi

percentile! The methods of Sects. 15.3 and 15.4 suffer from this problem, however
a parallelism constraint is a natural solution of the VGLM/VGAM framework.
One can also use an onion method in conjunction with a log link.

It is worth noting the residuals. In the LMS method, the conditional distribution
of the Z-scores defined in (15.3) was assumed to be standard normal. One can nat-
urally define the residuals as the Z-scores themselves. Thus, fitting the λ, μ and σ
curves with appropriate degrees of freedom, we can obtain the raw residuals as

zi = (σ(xi)λ(xi))
−1 ·

{(
yi

μ(xi)

)λ(xi)

− 1

}

. (15.5)

The availability of this definition of residual can be thought of as an advantage of
the LMS method. In parametric or nonparametric QR methods it is not always
possible to define residuals, particularly when quantiles are estimated separately.
From a practical point of view, the residuals should be checked for standard nor-
mality, e.g., by a QQ-plot or overlaying the probability density function of a stan-
dard normal onto a histogram. Implementing these types of residuals in R is left
as an exercise (Ex. 15.2).

One disadvantage of the LMS-BCN method is that it only handles unimodal Y
at a given x, since the Box-Cox transformation to normality is monotonic. For
example, the Melbourne temperatures data (Fig. 15.13a) is therefore not mod-
elled well by this method. However, probably its greatest disadvantage is that the
Box-Cox transformation to normality cannot be justified convincingly in many
applications.

Here are some practical suggestions if this method is adopted.

1. Of the three functions, it is a good idea to allocate relatively more degrees of
freedom to μ(x2), because the two functions λ(x2) and σ(x2) usually vary as
a function of x2 more smoothly. These preferences can be easily be chosen in
VGAM, e.g., by using
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Fig. 15.1 (a) The Box-Cox transformation (yλ − 1)/λ for various values of λ. (b) The Yeo-
Johnson transformation ψ(λ, y).

vglm(y ~ bs(x2, df = c(2, 4, 2)), lms.bcn(zero = NULL), data = ldata,

trace = TRUE)

vgam(y ~ s(x2, df = c(2, 4, 2)), lms.bcn(zero = NULL), data = ldata,

trace = TRUE)

Assigning too much flexibility to the parameters often leads to numerical prob-
lems. Consequently the defaults for λ and σ are chosen to be intercept-only:

> args(lms.bcn)

function (percentiles = c(25, 50, 75), zero = c(1, 3),

llambda = "identitylink", lmu = "identitylink", lsigma = "loge",

idf.mu = 4, idf.sigma = 2, ilambda = 1, isigma = NULL, tol0 = 0.001)

NULL

and this more simple model is less likely to give convergence problems, provided
that the amount of flexibility of μ(x) is chosen suitably.

2. The VGAM solution involves maximizing an approximate likelihood and using
approximate derivatives. In fact, if too many iterations are performed, the so-
lution may diverge and fail! For this reason it is a good idea to set trace =

TRUE to monitor convergence. Using vgam(), sometimes setting, e.g., maxit =

5, is reasonable if the fit starts diverging after the 5th iteration. Also, successful
convergence is sensitive to the choice of initial values.

The LMS QR method need not be restricted to a single covariate x2. One can
adjust for other explanatory variables such as gender and ethnicity. Section 15.2.4.1
gives such an example.

15.2.2 Other Versions

Two other LMS-type quantile regression methods are also available—one from a
Box-Cox transformation to a gamma distribution, and one from a Yeo and Johnson
(2000) transformation to a standard normal distribution. The latter transformation
can be considered as a generalization of the Box-Cox transformation to the whole
real line (Fig. 15.1). These methods are less likely to be used than the LMS-BCN,
therefore the reader is referred to Lopatatzidis and Green (1998) and Yee (2004b).
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Fig. 15.2 Hexagonal binning plot of BMI versus age for European-type women in xs.nz.

15.2.3 Example

We fit an LMS-BCN quantile regression to a subset of 2614 European-type women
from the xs.nz data frame. The response is body mass index (BMI; weight/height2

in kg/m2), a measure of obesity, regressed against age. As the data set is not
small we use hexbin to obtain a hexagonal binning plot, as an alternative of the
usual scatter plot. It appears in Fig. 15.2. The main features are that (i) BMI is
increasing until about 60 years old followed by a decline, (ii) BMI is positively
skewed at most ages, (iii) most of the data are of women aged about 55 or younger
and is most dense for people in their 20s and 40s. Additionally, there appears an
almost-linear trend from 20 to 50 years old. A fair proportion of women aged 40–50
are overweight because their BMI > 25. There appears to be two clusters linked
together around age 30 plus another small cluster of women in their 70s.

Now to fit an LMS-Box-Cox-normal model let’s try the following.

> women.eth0 <- subset(xs.nz, sex == "F" & ethnicity == "European")

> women.eth0 <- transform(women.eth0, BMI = weight/height^2)

> women.eth0 <- subset(women.eth0, !is.na(age) & !is.na(BMI))

> w0.LMS0 <- vgam(BMI ~ s(age, df = c(2, 4, 2)), trace = FALSE,

lms.bcn(zero = NULL), data = women.eth0)

> plot(w0.LMS0, se = TRUE, scol = "blue", rug = TRUE, cex.lab = 1.7)

The rationale for this first choice of df is to allow a little flexibility to λ and log σ
so as to allow its true functional form to be seen. The component functions are
plotted in Fig. 15.3. From this and summary(w0.LMS0), we model λ as a linear
function of x:

> w0.LMS <- vgam(BMI ~ s(age, df = c(1, 4, 1.5)),

lms.bcn(zero = NULL, percentile = c(5, 25, 50, 75, 95)),

data = women.eth0, trace = FALSE) # trace = TRUE is a good idea

is a suggested improvement. The corresponding quantile plot from

> qtplot(w0.LMS, pcol = "darkorange", lcol = "blue", tcol = "blue",

ylab = "BMI", main = "", xlim = c(15, 100))
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Fig. 15.3 Plot of the VGAM component functions of w0.LMS0, a lms.bcn() fit of BMI versus age
for European-type women in the xs.nz data frame. These are (centred) λ̂(x), μ̂(x), log σ̂(x).

is given in Fig. 15.4a. The three quartiles seem reasonable and appear to peak
around the early 60s and exhibit right-skew. One explanation for the decline is
due to overweight women dying prematurely. Or possibly they tended to leave the
workforce while those who were not overweight had a greater chance of continuing
on in the company.

To obtain a density plot with deplot() for x = 20-and 30-year-old women,
say, try

> Ages <- c(20, 30); mycol <- c("blue", "limegreen")

> deplot(w0.LMS, x0 = Ages[1], y = seq(15, 35, by = 0.1), col = mycol[1],

xlab = "BMI") -> dw0.LMS

> deplot(w0.LMS, x0 = Ages[2], y = seq(15, 35, by = 0.1), col = mycol[2],

add = TRUE)

> abline(v = c(18.5, 24.9), col = "orange", lty = 2) # Approximate healthy range

> legend("right", lty = 1, col = mycol, legend = as.character(Ages))

This gives Fig. 15.4b. Clearly, the distribution of BMI is positively skewed for
both age groups and there is a tendency for older women to put on more weight.
While most women have a healthy BMI there are a lot more overweight people
than underweight ones.

One can check empirically the sample proportions below each quantile curve by

> 100 * colMeans(depvar(w0.LMS, drop = TRUE) < fitted(w0.LMS)) # Sample proportions

5% 25% 50% 75% 95%

4.7819 24.5983 50.5356 75.3634 94.4912

There is good agreement here. To finish up for now, some selected quantiles of
BMI for 40-year-old European-type women, say, can be obtained from

> predict(w0.LMS, data.frame(age = 40), type = "response")

5% 25% 50% 75% 95%

1 19.584 21.861 23.922 26.588 32.262
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Fig. 15.4 (a) Quantile and (b) density plots of w0.LMS. In (b) the estimated densities are for 20
and 30 year olds, and the vertical lines denote an approximate healthy range.

15.2.4 More Advanced Usage of Some Methods Functions

With VGAM family functions for quantile regression the resulting fitted models
can be plotted in more ways than just the generic function plot(). Here are some
more details.

15.2.4.1 qtplot()

In theory the LMS QR method can operate with more than one ‘primary’ covariate
such as age, e.g., adjust for other variables such as ethnicity and gender. To plot
the results using qtplot(), however, is not easy, but possible by using its newdata
argument. This allows prediction to occur for that data frame. Note that plotting
the quantiles against the primary variable only makes sense if the non-primary
variables have a common value.

Below is some code to illustrate this. We will use women.eth02, which consists
of the women from xs.nz whose ethnicity traces to either Europe or the Pacific
islands. That is, there is another variable which one adjusts for (the indicator
variable is called european) and the ‘primary’ variable is age.

Figure 15.5 was obtained from running the simpler additive model

> fit3 <- vgam(BMI ~ s(age, df = 4) + european, data = women.eth02,

lms.bcn(percentile = 50, zero = c(1, 3)), trace = FALSE)

> Age <- seq(18, 85, length = 100) # Predict at these values

> half <- with(women.eth02, split(women.eth02, european))

> plot(BMI ~ age, women.eth02, type = "n")

>

> # First plot - for Pacific Islanders

> with(half[["0"]], points(jitter(age), BMI, pch = 15, cex = 0.7,

col = "green4"))

> Newdata <- data.frame(age = Age, european = 0)

> PI <- qtplot(fit3, newdata = Newdata, add = TRUE,

lcol = "green4", tcol = "green4", lwd = 2, tadj = 0)

>
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Fig. 15.5 Output of qtplot() when there are non-primary variables. The two groups are
European and Pacific island women. The fitted 50-percentiles differ by a constant.

> # Second plot - for Europeans

> with(half[["1"]], points(jitter(age), BMI, pch = "o", cex = 0.7,

col = "orange"))

> Newdata <- data.frame(age = Age, european = 1)

> EU <- qtplot(fit3, newdata = Newdata, add = TRUE,

lcol = "orange", tcol = "blue", llwd = 3, tadj = 0)

Here, the two ethnicities’ BMIs are assumed to only differ by some constant at
any given age. Not surprising, Pacific Islander women have a more solid built than
European-type women of the same age. In fact,

> range(PI@post$qtplot$fitted - EU@post$qtplot$fitted)

[1] 5.2088 5.2088

shows that the median BMI of Pacific Island women is about 5.21 kg/m2 higher
than European women.

Here are some further notes about qtplot().

1. When newdata is specified in qtplot() it is important to note that the function
chooses the first term in the formula as the primary variable. If one had used

fit <- vgam(BMI ~ european + s(age, df = 4), lms.bcn(zero = c(1, 3)), women.eth02)

then qtplot(fit, Newdata) would attempt using Newdata$european as the
primary variable and fail.

2. qtplot() uses the percentile values from the original model if the argu-
ment percentiles isn’t specified.

15.2.4.2 deplot()

If deplot() is applied to an LMS-type QR model, then the post slot is assigned
a list called "deplot" containing three components including the estimated den-
sities. For example,



424 15 Quantile and Expectile Regression

> names(dw0.LMS@post)

[1] "cdf" "deplot"

> names(dw0.LMS@post$deplot)

[1] "newdata" "y" "density"

> dw0.LMS@post$deplot$newdata

age

1 20

The components y and density are the x- and y-axes, respectively, of one of the
curves in Fig. 15.4b.

15.2.4.3 cdf()

The cdf() methods function for an LMS-type QR model returns a vector
with P̂ (Y ≤ yi|xi) for the ith observation, e.g.,

> head(cdf(w0.LMS))

5 10 13 20 24 26

0.011586 0.973394 0.015822 0.741580 0.054708 0.513065

This matches with

> head(fitted(w0.LMS), 3)

5% 25% 50% 75% 95%

5 18.960 20.738 22.379 24.570 29.627

10 19.584 21.861 23.922 26.588 32.262

13 19.852 22.276 24.453 27.239 33.029

> head(women.eth0[, c("age", "BMI")], 2)

age BMI

5 18 18.053

10 40 34.657

For example, a 40-year-old female European with a BMI of 34.66 corresponds to
a cumulative probability of 0.973, i.e., as such she is at the top end of the BMI
distribution of women her age.

15.3 Classical Quantile Regression by Scoring

In this section we explore how classical quantile regression might possibly be esti-
mated by scoring an ALD. There are many types of ALDs, e.g., Kozubowski and
Nadarajah (2010) review all known variations of the univariate Laplace distribu-
tion and identify over sixteen of them! Basically, the classical quantile regression
approach of Koenker and Bassett (1978) estimates quantiles by linear programming
techniques because both the objective function and constraints are linear functions
of x. However, it is known that the quantiles also coincide with the maximum like-
lihood solution of the location parameter in an ALD; see, e.g., Poiraud-Casanova
and Thomas-Agnan (2000), Geraci and Bottai (2007)). This section is an attempt
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Fig. 15.6 Loss functions for: (a) quantile regression with τ = 0.5 (L1 regression) and τ = 0.9;
(b) expectile regression with ω = 0.5 (least squares) and ω = 0.9. Note: (a) is also known as the
asymmetric absolute loss function or pinball loss function.

to direct the usual VGLM/VGAM Fisher scoring algorithm towards these models.
The work described here is experimental and tosses about a few ideas, therefore
the software is especially subject to change.

15.3.1 Classical Quantile Regression

The formulation of quantiles in terms of a regression problem is due to Koenker and
Bassett (1978) and is referred here as the “classical” method. It is now described.
As well as being a popular QR method it serves as the basis for expectile regression
(Sect. 15.4). The classical QR method minimizes with respect to ξ the expectation
of ρτ (Y − ξ), where

ρτ (u) = u · (τ − I(u < 0)), (15.6)

is known as a check function. This is plotted in Fig. 15.6a for two values of τ .
The first value of τ = 0.5 produces a symmetric loss function and corresponds
to median estimation. The second case of τ = 0.9 has slope τ on the RHS and
slope −(1 − τ) = −0.1 on the LHS; compared to the first case, this effectively
shifts the solution to the RHS because negative deviations Y −ξ are penalized less
relative to positive ones. To minimize

E [ρτ (Y − ξ)] = (τ − 1)

∫ ξ

−∞
(y − ξ) dF (y) + τ

∫ ∞

ξ

(y − ξ) dF (y), (15.7)

under regularity conditions, we set the derivative of (15.7) with respect to ξ equal
to 0 to give

0 = (τ − 1)

{[

(y − ξ) f(y)

]y=ξ

y=−∞
+

∫ ξ

−∞

∂

∂ ξ
(y − ξ) dF (y)

}

+

τ

{[

(y − ξ) f(y)

]y=∞

y=ξ

+

∫ ∞

ξ

∂

∂ ξ
(y − ξ) dF (y)

}

(15.8)

= (τ − 1) {0− F (ξ)}+ τ {0− (1− F (ξ))}
= F (ξ)− τ,

so that F (ξ̂) = τ (cf. (15.1)). The solution ξ̂(τ) may not necessarily be unique.
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The above dealt with population quantities. With random sample data y1, . . . , yn
one can replace F by its empirical CDF

Fn(y) =
1

n

n∑

i=1

I(yi ≤ y),

so that the τth sample quantile can be found by solving

min
ξ∈R

n∑

i=1

ρτ (yi − ξ) = min
ξ∈R

n∑

i=1

[(1− τ) · (yi − ξ)− + τ · (yi − ξ)+] . (15.9)

Equation (15.9) is more convenient than defining the τth sample quantiles in terms
of the order statistics y(1), . . . , y(n) because the optimization problem can be gen-
eralized to the situation where there are covariates x. Specifically, if the regression
model yi = xT

i β + εi, εi ∼ F , is assumed, then the τth quantile is defined as any
solution to the quantile regression minimization problem

β̂(τ) = argmin
β∈Rp

n∑

i=1

ρτ
(
yi − xT

i β
)

(15.10)

[cf. (15.9)]. This gives rise to the linear conditional quantile function

QY (τ |X = x) = xT β̂(τ). (15.11)

Computationally, (15.9) is solved by linear programming because it involves
minimizing the sum of asymmetric least absolute deviations (ALADs) which can
be expressed as a linear combination of the xi subject to linear constraints in xi.
Details can be found in Koenker (2005, Chap.6).

As a whole, there are some compelling advantages which this classical method-
ology has over the LMS-type methods of Sect. 15.2. They include:

1. Rather than estimate these models by linear programming, one can (at least
attempt to) use scoring which is the natural domain of the VGAM framework.
Details are given in Sect. 15.3.

2. Inference is based on a well-established bed of theory, e.g., summarized
in Koenker (2005, Chap.3). In contrast, inferences for LMS methods are ad hoc.

3. The idea can be generalized to other responses, e.g., counts and binary re-
sponses.

4. The idea can be generalized to expectile regression (Sect. 15.4) which lies more
naturally in the domain of a scoring environment.

It is also argued that solving problem (15.7) is inadequate for four reasons.
Firstly, it suffers from range restriction problems when applied to certain types
of data, e.g., count data where the quantiles ought to be non-negative. Secondly,
the rigid formulation (15.7) is solved by linear programming which requires spe-
cial software and only solves that particular problem (Barrodale and Roberts,
1974). Thirdly, there is the ever-present quantile crossing problem. Fourthly, the
VGLM/VGAM framework is simpler.
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15.3.2 An Asymmetric Laplace Distribution

This section briefly outlines an ALD that can be used for quantile regression.
A definitive treatment of ALDs is Kotz et al. (2001, Chap.3) where several ALD
variants are described. They nominate a particular one as the ALD and label it
as L∗(ξ, σ, κ). Its density is specified to be

g(y; ξ, σ, κ) =

√
2

σ

κ

1 + κ2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

exp

(

−
√
2

σ κ

∣
∣
∣y − ξ

∣
∣
∣

)

, y ≤ ξ,

exp

(

−
√
2κ

σ

∣
∣
∣y − ξ

∣
∣
∣

)

, y > ξ,

(15.12)

for κ > 0. The special case κ = 1 corresponds to their (symmetric) Laplace
distribution L(ξ, σ) which is also known as the double exponential distribution.
An important property of L∗(ξ, σ, κ) is that

P (Y ≤ ξ) =
κ2

1 + κ2
. (15.13)

VGAM’s suite of alaplace[123]() functions are based on the vari-
ant L∗(ξ, σ, κ). The first derivatives of the log-likelihood function (3.7) with respect
to its location and scale parameters are easily derived, in particular, setting the
derivative of (15.12) with respect to ξ to zero implies

∑

i: yi≤ξ

wi

√
2

σi κi
=

∑

i: yi>ξ

wi

√
2κi

σi
.

Only if the σi are equal (e.g., σ is modelled as an intercept-only) would we expect
the solution of alaplace1() and alaplace2() to be similar because the σi cancel
out of both sides of the equation. However, it is a good idea to estimate ξ and σ
because the estimated quantiles will be invariant to location and scale, i.e., a
linear transformation of the response produces the same linear transformation of
the fitted quantiles. This comes about because (y − ξ)/σ = (cy − cξ)/(cσ) for
any constant c �= 0. Thus it is safest to use alaplace2() to attempt quantile
regression.

The EIM of L∗(ξ, σ, κ) given by Kotz et al. (2001, Eq.(3.5.1)) is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2

σ2
0

−√8

σ (1 + κ2)

0
1

σ2

−(1− κ2)

σκ(1 + κ2)

−√8

σ (1 + κ2)

−(1− κ2)

σκ(1 + κ2)

1

κ2
+

4

(1 + κ2)2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (15.14)

From this, it might be decided that quantile regression can be performed by
Fisher scoring. The computations are simplified because κ is specified (through τ)
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so alaplace2() only deals with the 2×2 diagonal submatrix. Fortunately this sub-
matrix is positive-definite over the entire parameter space meaning each iteration
step is in an ascending direction.

If σ and κ are known, then the MLE of ξ based on a random sample of n
observations is consistent, asymptotically normal and efficient, with asymptotic
covariance matrix

(
σ2/2

)
(Kotz et al., 2001).

15.3.2.1 Parallelism of the Quantiles

The VGLM/VGAM framework naturally offers two solutions to the crossing quan-
tile problem. The first is to choose the appropriate constraint matrices. The basic
idea is to fit parallel curves on the transformed scale, an idea shared with the
proportional odds model (1.23). The second solution is described in Sect. 15.3.4
and can be likened to estimating successive layers of an onion. However, while it
does not make the strong parallelism assumption, it is numerically less stable.

For the first solution, suppose τ = (τ1, τ2, . . . , τL)
T are the L values of τ of

interest to the practitioner. Let ξs and σs be the corresponding τsth quantile and
scale parameter in the ALD, s = 1, . . . , L. For alaplace2() the elements of η are
enumerated as

g1(ξs(x)) = η2s−1 = βT
2s−1x (15.15)

g2(σs(x)) = η2s = βT
2sx, (15.16)

for links g1 and g2. By default, η = (ξ1, log σ1, . . . , ξL, log σL)
T because

> args(alaplace2)

function (tau = NULL, llocation = "identitylink", lscale = "loge",

ilocation = NULL, iscale = NULL, kappa = sqrt(tau/(1 - tau)),

ishrinkage = 0.95, parallel.locat = TRUE ~ 0, parallel.scale = FALSE ~

0, digt = 4, idf.mu = 3, imethod = 1, zero = -2)

NULL

It can be seen that the default sets the scale parameters to be the same and
intercept-only: σ1 = σ2 = · · · = σL = β∗

(L+1)1. The classical approach fits into the

above framework by g1 being the identity link: ξs = βT
2s−1x.

The arguments parallel.locat and parallel.scale may be used to control
the parallelism assumption with respect to the location and scale parameters.
A parallelism assumption should always be made for the scale parameters. The
default constraint matrices for alaplace2() are

H1 =

(

IL ⊗
(
1
0

) ∣
∣
∣
∣ 1L ⊗

(
0
1

))

and Hk = IL ⊗
(
1
0

)

, k = 2, . . . , p.

(15.17)
Setting parallel.locat = TRUE leaves H1 unchanged and sets

Hk = 1L ⊗
(
1
0

)

, k = 2, . . . , p. (15.18)

This has the effect that the location parameters are parallel, therefore the esti-
mated quantiles never cross.
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15.3.3 Example

To test out the methodology we use a simulated data set so that the ‘truth’
is known. Let’s consider simple Poisson counts. A random sample of n = 500
observations were generated from Xi2 ∼ Unif(0, 1) and

Yi ∼ Poisson

(

μ(xi2) = exp

{

−2 + 6 sin(2xi2 − 1
5 )

(
xi2 +

1
2

)2

})

. (15.19)

Figure 15.7a is a jittered scatter plot of these data:

> set.seed(123); n <- 500

> adata <- data.frame(x2 = sort(runif(n)))

> mymu <- function(x) exp(-2 + 6 * sin(2 * x - 0.2) / (x + 0.5)^2)

> adata <- transform(adata, y = rpois(n, mymu(x2)))

Notice that there is a cluster of yi = 0 at the LHS.
Let τ = ( 14 ,

3
4 )

T be the initial quantiles of interest. When faced with a typical
data set, it is often a good idea to perform smoothing in order to suggest the
functional form of the quantiles, especially when there is nonlinearity. So a VGAM
with a nominal 4 degrees of freedom (1 = linear fit) to the vector smoothing spline
was fitted here. The the model is

log ξs(xi2) = β∗
(s)1 + f∗

(s)2(xi2) (15.20)

where the f∗
(s)2 are effectively cubic smoothing splines. We can attempt to fit this

model by

> Tau <- c(0.25, 0.75)

> afit <- vgam(y ~ s(x2, df = 4), data = adata, # trace = TRUE,

alaplace2(tau = Tau, llocation = "loge", parallel.locat = FALSE))

Setting trace = TRUE indicates that half-stepping was used at almost every iter-
ation and that this clumsy behaviour is due to scoring being an unsuitable general
algorithm for maximizing the likelihood. The behaviour is likened to hiccuping and
crawling back and forth, taking two steps forward and one backward. Although the
score vectors point in an upward direction, the combination of first and expected
second derivatives usually do not lead to an improved step. Currently vgam() does
not allow half-stepping, however vglm() does and that is a viable alternative.

Figure 15.7b plots the data and the fitted quantile curves (solid lines). Overlaid
are the ‘true’ quantiles obtained by qpois() which appear as step functions. It
may be seen that there is agreement over some parts of the fitted curves. The
largest discrepancies are with τ = 3

4 at the x ≈ 0 region. This lack of agreement
may be attributed to a number of reasons—such as relative paucity of data there,
insufficient flexibility given to the smoother (the remedy is to increase the degrees
of freedom of the smoother) or intrinsic boundary-effects problems associated with
the smoother. However, the two main points to take from the figure are that the
quantile curves are always positive and that the smoothness of the fitted curves is
more pleasing aesthetically than the discontinuity of step functions (which could
not be obtained without knowing μ(x) in the first case).
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Fig. 15.7 (a) Scatter plot of simulated Poisson counts (15.19). The points have been jittered
slightly. (b) Fitted L∗(ξ = exp{β∗

(s)1
+ f∗

(s)2
(xi2)}, σ = 1, τ = ( 1

4
, 3
4
)T ) model to the data. The

smooth curves are the fitted τ = 0.25 and 0.75 quantiles from a vector smoothing spline fit. The
step functions are the output from qpois() at the corresponding τ values. The actual sample
proportions lying below the curves are 35.2 and 79.6%. See also Fig. 15.8b.

This example also serves to highlight a potential problem with quantile regres-
sion applied to count data, viz., for τ < P (Y = 0). In terms of sample data, if
the sample proportion of zeros exceeds τs, then the optimization problem becomes

ill-conditioned and the elements of the fitted regression coefficients β̂s may diverge
to ±∞.

Some selected output is

> afit@extra$percentile

(tau = 0.25) (tau = 0.75)

34.8 79.2

We wanted τ = ( 14 ,
3
4 )

T , but the actual percentage of observations falling below
the curves is 34.8 and 79.2. The desired and actual match directly only with an
identity link.

What effect has a parallelism assumption on these results? This model is

log ξs(xi2) = β∗
(s)1 + f∗

(1)2(xi2), (15.21)

where f∗
(1)2 is centred. We attempt to fit this with

> fitp <- vgam(y ~ s(x2, df = 4), data = adata, # trace = TRUE,

alaplace2(tau = Tau, llocation = "loge", parallel.locat = TRUE))

and Fig. 15.8b shows the fitted values. There is evidence of bias at the midpoints
and edges of x; this lack of fit maybe the cost one must pay in order to ensure
noncrossing quantiles. More formally, an approximate likelihood ratio test for H0 :
parallelism versus H1 : nonparallelism has test statistic 2(
1 − 
0) = X = 29
which has an approximate χ2

df distribution under the null hypothesis. Here, df =

1993.76 − 1990.61 = 3.15. An approximate p-value is P (χ2
df > X) ≈ 3 × 10−6.

There is very strong evidence against H0. That is, it is concluded that the lower
and upper quartiles are not parallel on the log scale. Viewed graphically, Fig. 15.8a
overlays the estimates of the f∗

(s)2 from (15.20). The code is
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Fig. 15.8 (a) Fitted functions f̂(s)2(xi2) in (15.20) overlaid, with pointwise ±2 SE bands.
(b) Same as Fig. 15.7b except the quantiles (purple curves) are constrained to be parallel on the η-
scale (log scale here). The actual sample proportion lying below the curves are 36.4 and 78.4%.

my.col <- c("blue", "limegreen")

plot(as(afit, "vgam"), se = TRUE, scol = my.col, lcol = my.col, overlay = TRUE)

Clearly the two functions are roughly similar in shape, but they do not differ by
a constant. From this too it may be concluded that a parallelism assumption is
unreasonable for τ = 0.25 and 0.75.

15.3.4 The Onion Method

Section 15.3.2.1 described one solution to the noncrossing problem: use paral-
lelism constraint matrices so that the quantiles never intersect on the transformed
scale. This assumption might be argued as being too restrictive. In this section we
describe a second solution that is less restrictive. The method is called the accu-
mulative quantile method (AQM). Informally, it can be called the ‘onion’ method
since it can be likened to estimating successive layers of an onion.

Suppose we want the quantile solutions for a fixed τ where the elements are
sorted into ascending order. The basic idea is to obtain the quantiles corresponding
to τ1 and then add a positive amount to get the quantile for τ2. Then add another
positive amount to get the quantile for τ3, etc. The positive amounts are called
corrections. The correction for τ2 can be obtained by quantile regression using a
log link applied to r∗2i = yi− ξ̂1i (which can be considered a “residual”). This gives

an estimate ξ̂∗2i, say, which is then added to ξ̂1i to give solution ξ̂2i. We repeat the

same process to r∗3i = yi − ξ̂2i, etc. for the remaining τs.
A log link ensures that each successive quantile is greater than the previous

quantile over all values of x. The method gets its name because the solutions are
accumulated sequentially by a series of L−1 corrections starting from the initial τ1
quantile regression. Here is a basic numerical example.

> my.tau <- seq(0.2, 0.9, by = 0.1) # Fixed, the desired values

> quant.mat <- matrix(0, nrow(adata), length(my.tau)) # Stores the quantiles

> adata <- transform(adata, offset.y = y * 0)

> use.tau <- my.tau
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Fig. 15.9 (a) Quantile plot from the onion method applied to some simulated Poisson data.
The quantiles are positive, nonparallel and noncrossing. Here, τ has values 0.2(0.1)0.9. (b) A
zoom-in view of the LHS of (a).

> for (i in 1:length(my.tau)) {
adata <- transform(adata, use.y = y - offset.y)

iloc <- ifelse(i == 1, with(adata, median(y)), 1.0) # Well-chosen!

mydf <- ifelse(i == 1, 5, 3) # Maybe less smoothing will help

fit3 <- vglm(use.y ~ ns(x2, df = mydf),

alaplace2(tau = use.tau[i], llocation = "loge", iloc = iloc),

data = adata, trace = FALSE)

quant.mat[, i] <- (if (i == 1) 0 else quant.mat[, i-1]) + fitted(fit3)

adata <- transform(adata, offset.y = quant.mat[, i])

}

Then Fig. 15.9a was produced by

> plot(y ~ x2, adata, col = "orange")

> with(adata, matlines(x2, quant.mat, col = "blue", lty = 1))

This particular example seems to work because the successive τs values are far
enough apart. In practice numerical problems may occur when the values are
too close, in which case good initial values become very important. Also, one
can propose several enhancements to the above description. These include the
following.

1. Start with the τs value closest to 0.5 in order to get a more stable solution and
then apply the above description to all values of τs greater than 0.5, in sorted
order. For τs < 0.5 values apply a similar process to −yi using 1−τs values. This
enhancement starts in the centre and works its way out to both ends separately.

2. Allow for less flexibility to be given to the functions associated with the correc-
tions. The first function may be more complicated, but subsequent ones should
be simpler because they operate on residuals which are probably less complex
in form.

Better initial values might be inputted using certain arguments in alaplace2()

as well as coefstart, etastart and/or mustart of vglm()/vgam() (Sect. 8.3.1.1).
A variant of the above is an onion method, based on fitting expectiles and

calibrating them so that a certain percentage falls below the curve. Expectiles
are naturally estimated by scoring and therefore should exhibit less numerical
problems compared to ALDs. A numerical example is given in Sect. 15.4.5.
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15.4 Expectile Regression

15.4.1 Introduction

Rather than minimizing the expectation of ρτ (Y − ξ) in (15.6), one can instead

consider minimizing the expectation of ρ
[2]
ω (Y − μ) with respect to μ where

ρ[2]ω (u) = u2 · |ω − I(u < 0)|, 0 < ω < 1. (15.22)

This is plotted in Fig. 15.6b for two values of ω. As with τ in the ALAD case, as ω
changes from 0.5 to 0.9, positive deviations Y − μ(w) are penalized more heavily
compared to negative ones, therefore the expectile increases in value. The formula
is a very natural alternative to (15.6), and the results will be shown below to be
quite interpretable. The essential difference is that the u has been replaced by the
second-order moment u2.

Applying the same argument as (15.7)–(15.8), we minimize the asymmetric least
squares (ALS) criterion

E
[
ρ[2]ω (Y − μ)

]
= (1− ω)

∫ μ

−∞
(y − μ)2 dF (y) + ω

∫ ∞

μ

(y − μ)2 dF (y), (15.23)

and setting the derivative with respect to μ to zero gives

(1− ω)

∫ μ(ω)

−∞
(y − μ(ω)) dF (y) + ω

∫ ∞

μ(ω)

(y − μ(ω)) dF (y) = 0. (15.24)

Newey and Powell (1987, Thm 1) showed that a unique solution exists if E(Y ) =
μ(0.5) = μ exists, and they called the quantities expectiles. They used this name
for regression surfaces obtained by ALS. This was deliberate, for the purpose of
distinguishing them from the original regression quantiles of Koenker and Bassett
(1978). Efron (1991, 1992) used the general name regression percentile to apply to
all forms of asymmetric fitting.

In terms of interpretation, it can be seen that, given X = x, the quantile ξτ (x)
specifies the position below which 100τ% of the (probability) mass of Y lies while
the expectile μω(x) determines (again at X = x) the point such that 100ω% of the
mean distance between it and Y comes from the mass below it. Thus expectiles
are quite interpretable. Note that the 0.5-expectile μ( 12 ) is the mean μ while the
0.5-quantile ξ( 12 ) is the median.

The above corresponds to the population. In terms of the sample, expectiles
involve minimizing the asymmetrically weighted least-squares criterion

n∑

i=1

(1− ω) [(yi − μ)−]
2
+ ω [(yi − μ)+]

2
(15.25)

with respect to μ.
Although quantiles and expectiles are interrelated (see Sect. 15.4.1.1), each

holds certain advantages and disadvantages so that neither is uniformly superior
(it is like choosing between the conditional mean and median in conventional
regression). The choice will usually depend on the particular application at hand.
Here are some further sundry notes.
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1. The ALS method is not as robust as the ALAD method against outliers. Quan-
tiles depend only on local features of the distribution whereas expectiles have
a more global nature. For example, increasing values in the upper tail of a dis-
tribution do not affect the quantiles of the lower tail but it affects the values of
all the expectiles.

2. In view of the one-to-one mapping between expectiles and quantiles, Efron
(1991) proposes that the τ -quantile be estimated by the expectile for which
the proportion of in-sample observations lying below the expectile is τ . This
provides justification for practitioners who use expectile regression to perform
quantile regression. This approach is used in this section.

3. An ALS estimator is easier to compute, since least-squares calculations are
more familiar to statisticians than linear programming. Furthermore, an ALS
estimator is reasonably efficient under normality conditions (cf. Efron (1991)).

4. For quite a large class of nonlinear regression models, the conditional expectiles
as functions of x are in a one-one correspondence with the conditional per-
centiles. Therefore, the ALS approach can be adapted to estimate conditional
percentiles directly.

5. ALS regression is the least squares analogue of quantile regression.
6. Both quantile and expectile regression coincide with the MLE solutions where

the data are assumed to be drawn from some specific distributions.

15.4.1.1 Interrelationship Between Expectiles and Quantiles

Quite generally, Newey and Powell (1987) stated that “expectiles have properties
that are similar to quantiles”. Jones (1994) explored this statement in greater detail
and showed that the reason for this is that the expectiles of a distribution F are
quantiles a distribution G which is related to F . The main details are as follows.

Let P (s) =
∫ s

−∞ yf(y) dy be the partial first moment,

ρ{1}τ (u) = τ − I(u < 0) and (15.26)

ρ{2}ω (u) = (ω − I(u < 0)) · |u|. (15.27)

From (15.7)–(15.8) we saw that one way of defining the ordinary τ -quantile of a

continuous distribution with density f is as the value of ξ that equates
∫
ρ
{1}
τ (y−

ξ)f(y) dy to 0. Similarly, for expectiles μ(ω), (15.24) corresponds to the equation
∫ ∞

−∞
ρ{2}ω (y − μ(ω)) f(y) dy = 0. (15.28)

Then solving this equation shows immediately that ω = G(μ(ω)) where

G(t) =
P (t)− t F (t)

2[P (t)− t F (t)] + t− μ
, (15.29)

a rearrangement of Newey and Powell (1987, Eq.(2.7)). Thus G is the inverse of
the expectile function and its derivative is

g(t) =
μF (t)− P (t)

{2[P (t)− t F (t)] + t− μ}2 . (15.30)

It can be shown that G is actually a distribution function so that g is its density
function, i.e., the expectiles of F are precisely the quantiles of G defined here.
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Fig. 15.10 (a)–(c) Density plots of expectile derived g (orange solid lines; (15.30)) for the
original f of standard normal, standard uniform and standard exponential distributions (blue
dashed lines). (d) Illustration of the interpretation of expectiles in terms of centres of balance,
the hollow triangles at positions c1 and c2. Here, the vertical dashed line is at the 0.1-expectile,
the solid triangle at μ(ω = 0.1), which means that (15.33) is satisfied with ω = 0.1.

Jones (1994) illustrated these results with the standard normal, standard uni-
form and standard exponential distributions (reproduced in Fig. 15.10a–c). For
example, for the standard uniform,

g(t) =
2t(1− t)

{2t(1− t)− 1}2 , 0 ≤ t ≤ 1, (15.31)

which is symmetric.
A few g and G have been written for VGAM in terms of the usual dpqr-type

functions associated with a distribution (Table 15.3). An “e” has been added
to signify its root as an expectile-defined distribution. For example, deunif()

corresponds to the density (15.31). For some of the q-type functions a Newton-
Raphson algorithm is used to solve for q satisfying p = G(q). For such, numerical
problems may occur when values of p are very close to 0 or 1.

Expectiles are interpretable, albeit not as simply as quantiles. Upon a rear-
rangement of (15.24), it can be seen that

ω =

∫ μ(ω)

−∞
[(μ(ω)− y) f(y) dy

∫ ∞

−∞

∣
∣
∣
∣μ(ω)− y

∣
∣
∣
∣ f(y) dy

. (15.32)

Loosely, the ω-expectile is the value μ(ω) such that ω is the ratio of the total
distances of randomly generated observations to the left of it compared to the to-
tal sum of distances of all randomly generated observations to μ(ω). Of course
these totals are influenced by the number of observations falling on the LHS
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and overall. The numerator of (15.32) is E [μ(ω)− Y |Y ≤ μ(ω)] × P (Y ≤ μ(ω)).
The denominator is E [|Y − μ(ω)|], which is the sum of the numerator and the
term E[Y − μ(ω)|Y > μ(ω)]× P (Y > μ(ω)).

An even simpler method of interpretation is via centre of balances. Observe in
Fig. 15.10d that the positions of c1 and c2 denote the centres of balance for the
distributions to the left and right of the ω-expectile μ(ω). Then

ω =
P [Y < μ(ω)] · (μ(ω)− c1)

P [Y < μ(ω)] · (μ(ω)− c1) + P [Y > μ(ω)] · (c2 − μ(ω))
. (15.33)

Here,

c1 = E[Y |Y < μ(ω)] =

∫ μ(ω)

−∞
y

f(y)

F (μ(ω))
dy, (15.34)

and c2 is similarly defined. Another important equation is

μ = P [Y < μ(ω)] · c1 + P [Y > μ(ω)] · c2. (15.35)

We’ll see in Sect. 15.4.1.2 that c1 is related to a quantity called the expected
shortfall. In Fig. 15.10d the parent distribution happens to be a normal distribution
with ω = 0.1. Here, 10 percent of the centre of gravity at the expectile is found to
its left due to c1. Here’s a simple numerical example to illustrate this.

> my.omega <- 0.25

> set.seed(1)

> y <- rnorm(n = 1000)

> (my.exp <- qenorm(my.omega))

[1] -0.43633

> sum(my.exp - y[y <= my.exp]) / sum(abs(my.exp - y)) # Should be my.omega

[1] 0.26158

This should be equal to my.omega. That is, ω should be the sum of all the distances
(from observations to the expectile) left of the expectile, divided by the total sum
of distances of all observations to the expectile. Equivalently:

> I1 <- mean(y < my.exp) * mean( my.exp - y[y < my.exp])

> I2 <- mean(y > my.exp) * mean(y[y > my.exp] - my.exp)

> I1 / (I1 + I2) # Should be my.omega

[1] 0.26158

or

> I1 <- sum( my.exp - y[y < my.exp])

> I2 <- sum(y[y > my.exp] - my.exp)

> I1 / (I1 + I2) # Should be my.omega

[1] 0.26158

It may be shown that

c1 = μ(ω) + {ω/(2ω − 1)}(μ− μ(ω))/F (μ(ω)), (15.36)

c2 = μ(ω)− {(1− ω)/(2ω − 1)}(μ− μ(ω))/[1− F (μ(ω))]. (15.37)
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15.4.1.2 Expected Shortfall †

The expected shortfall (ES) is a concept used in financial mathematics to measure
portfolio risk. It is also called the Conditional Value at Risk (CVaR), expected tail
loss (ETL) and worst conditional expectation (WCE). The ES at the 100τ% level
is the expected return on the portfolio in the worst τ% of the cases. It is often
defined as

ES(τ) = E(Y |Y < a), (15.38)

where a is determined by P (Y < a) = τ and τ is the given threshold.
The ES is very much related to expectiles via (15.24) (Taylor, 2008). It can be

shown that μ(ω) satisfies

(
1− 2ω

ω

)

E [(Y − μ(ω)) · I(Y < μ(ω))] = μ(ω)− E(Y ), (15.39)

which is another rearrangement of Newey and Powell (1987, Eq.(2.7)). Equa-
tion (15.39) can be rewritten E [Y |Y < μ(ω)] =

(

1 +
ω

(1− 2ω)F (μ(ω))

)

μ(ω)− ω

(1− 2ω)F (μ(ω))
E(Y ), (15.40)

which is the same as (15.36). This provides a formula for the ES of the quantile
that coincides with the ω-expectile. Referring to this as the τ -quantile, we can
write F (μ(ω)) = τ and rewrite the expression as

ES(τ) =

(

1 +
ω

(1− 2ω) τ

)

μ(ω)− ω

(1− 2ω) τ
E(Y ). (15.41)

This equation relates the ES associated with the τ -quantile of the distribution
of Y and the ω-expectile that coincides with that quantile. The equation is for
the ES in the lower tail of the distribution. The equation for the upper tail of the
distribution is produced by replacing ω and τ with 1− ω and 1− τ , respectively.

Incidentally, another popular measure of financial risk is the Value at Risk
(VaR). The VaR (νp, say) specifies a level of excessive losses such that the prob-
ability of a loss larger than νp is less than p (often p = 0.01 or 0.05 is chosen).
Then the ES can be defined as the conditional expectation of the loss, given that
it exceeds the VaR.

15.4.2 Expectiles for the Linear Model

Since quantiles are estimated by regression (“quantile regression”) it comes as
no surprise that expectiles are also estimated by regression and subsequently the
method is called “expectile regression”. The methodology is generally attributed
to Aigner et al. (1976) and Newey and Powell (1987) and further developed
in Efron (1991). For normally distributed responses, it is based on asymmetric
least squares (ALS) estimation, a variant of OLS estimation. The method pro-
posed by Koenker and Bassett (1978) is similar but is based instead on minimizing
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Table 15.3 Density function, distribution function, expectile function and random generation
for the distribution associated with the expectiles of several standardized distributions. These
functions are available in VGAM.

Functions Distribution

[dpqr]eexp() Exponential

[dpqr]sc.t2() (Scaled)
√
2T2

[dpqr]enorm() Normal

[dpqr]eunif() Uniform

the ALAD (15.9). Then, Efron (1992) generalized ALS estimation to families in
the exponential family, and in particular, the Poisson distribution. He called this
asymmetric maximum likelihood (AML) estimation.

Consider the linear model yi = xiβ+ εi and let ri(β) = yi−xT
i β be a residual.

The asymmetric squared error loss function for a residual r is r2 if r ≤ 0 and wr2

if r > 0. Here w is a positive constant and is related to ω by w = ω/(1 − ω), a
renormalization of (15.23). The solution is the set of regression coefficients that
minimize the sum of these over the data set, weighted by the weights argument (so
that it can contain frequencies). Written mathematically, the asymmetric squared
error loss Sw(β) is

Sw(β) =

n∑

i=1

wi Q
∗
w(ri(β)) (15.42)

and Q∗
w is the asymmetric squared error loss function

Q∗
w(r) =

{
r2, r ≤ 0,
w r2, r > 0.

(15.43)

The wi are known prior weights, inputted using the weights argument of vglm(),
etc. and retrievable afterwards as weights(fit, type = "prior").

Here are some notes about ALS regression as implemented by the VGAM family
function amlnormal().

1. For quantile regression, usually the user will specify some desired value of the
percentile and then the necessary w value is solved for numerically to obtain
this. One useful property here is that the percentile is a monotonic function
of w, meaning one can more easily solve for the root of a nonlinear equation.
A numerical example is given in Sect. 15.4.3.

2. A rough relationship between w and the percentile 100α is given on in Efron
(1991, p.102). Let w(α) denote the value of w such that βw equals z(α) = Φ−1(α),
the 100α standard normal percentile point. If there are no covariates (intercept-
only model) and yi are standard normal, then

w(α) = 1 +
z(α)

φ
(
z(α)

)− (1− α)z(α)
. (15.44)

Some values are

> alpha <- c(1/2, 2/3, 3/4, 0.84, 9/10, 19/20)

> z.alpha <- qnorm(p = alpha)

> w.alpha <- 1 + z.alpha / (dnorm(z.alpha) - (1 - alpha) * z.alpha)

> round(cbind(alpha, w.alpha), digits = 2)
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alpha w.alpha

[1,] 0.50 1.00

[2,] 0.67 2.96

[3,] 0.75 5.52

[4,] 0.84 12.81

[5,] 0.90 28.07

[6,] 0.95 79.73

3. Some workers in the field are not very sympathetic to the parametric forms of
quantile regression, and even less so to expectiles.

4. An iterative solution is required, and the Newton-Raphson algorithm is used.
In particular, for Poisson regression with the canonical (log) link, following in
from Efron (1992, Eq.(2.16)),

β(a) = b(a−1) + db(a−1)

= b− S̈
−1

w S̈w

= (XT (WV)X)−1XT (WV)
[
η + (WV)

−1
Wr

]

are the Newton-Raphson iterations (iteration number a suppressed for clarity),
cf. (3.9). Here, r = y − μ(b), V = diag(v1(b), . . . , vn(b)) = diag(μ1, . . . , μn)
contains the variances of yi and W = diag(w1(b), . . . , wn(b)) with wi(b) = 1
if ri(b) ≤ 0 else w.

5. ALS quantile regression is consistent for the true regression percentiles y(α)|x
in the cases where y(α)|x is linear in x. Newey and Powell (1987) give a more
general proof of this.

6. The ALS loss function (15.43) leads to an important invariance property: if

the yi are multiplied by some constant c, then the solution vector β̂w is also
multiplied by c. Also, a shift in location to yi+d means the estimated intercept
increases by d too.

15.4.3 ALS Example

ALS quantile regression is implemented by the function amlnormal(), which has
a deviance slot to compute the weighted asymmetric squared error loss (15.42)
summed over all w.aml values. Here is a simple example that fits something similar
to w0.LMS in Sect. 15.2.3. Recall the response is BMI regressed upon age for 2614
European women from the xs.nz data frame. Suppose we want to estimate using
expectiles the same quantiles as w0.LMS in Sect. 15.2.3, viz. the 5, 25, 50, 75, 95
percentiles. Then we need to numerically search for the appropriate w for these
and there are several ways of attempting this. One of them is to first define a new
function

> find.w <- function(w, percentile = 50) {
fit <- vglm(BMI ~ ns(age, df = 3), amlnormal(w = w), data = women.eth0)

fit@extra$percentile - percentile

}

Solving for the root as a function of w should hopefully give the desired percentile.
The following code gives Fig. 15.11. It uses uniroot() since the percentile is a
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Fig. 15.11 ‘Quantile’ plot from amlnormal() applied to women.eth0: 5, 25, 50, 75, 95 ‘percentile’
curves. Each regression curve is a regression spline with 3 degrees of freedom (1 = linear fit).

monotonic function of w. A small complication is that uniroot() can only find one
root at a time. We assume that each appropriate w lies between 0.0001 and 10000.
After all the appropriate w values are found a model is fitted with all of these
simultaneously and the curves are added to the plot.

> Tau <- c(5, 25, 50, 75, 95)

> w.aml <- numeric(length(Tau)) # Stores the appropriate w.aml values

> plot(BMI ~ age, women.eth0, col = "darkorange", las = 1)

> ooo <- with(women.eth0, order(age))

> women.eth0 <- women.eth0[ooo, ] # Sort by age

> for (i in 1:length(Tau))

w.aml[i] <- uniroot(f = find.w, interval = c(1/10^4, 10^4),

percentile = Tau[i])$root

> fit3 <- vglm(BMI ~ ns(age, df = 3), amlnormal(w = w.aml), data = women.eth0)

> matlines(with(women.eth0, age), fitted(fit3), col = "blue", lty = 1)

The result is Fig. 15.11. The values of w corresponding to each τ value and the
empirical sample proportions below each curve are

> fit3@extra$w.aml

[1] 0.0083459 0.1181113 0.6143516 3.1700633 50.8633500

> fit3@extra$percentile

w.aml = 0.0083 w.aml = 0.1181 w.aml = 0.6144 w.aml = 3.1701 w.aml = 50.8633

5.0115 24.9809 50.0000 75.0191 94.9885

Altogether, this appears to give a reasonable fit to the data, apart from boundary
effects at low ages. Unfortunately the generic functions qtplot(), deplot(), etc.
do not presently work on an amlnormal() fit.

15.4.4 Poisson Regression

ALS is a special case of AML estimation. The latter was used by Efron (1992) to
obtain expectiles from the Poisson distribution. More generally,

Sw(β) =

n∑

i=1

wi Dw(yi, μi(β)) (15.45)
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Fig. 15.12 Quantile plot from an amlpoisson() fit using simulated data. The dashed step
functions are the qpois() quantiles calibrated with the true mean function and the proportion
under the expectile curves. The response has been jitted to aid clarity.

is minimized (cf. (15.42)), where

Dw(μ, μ
′) =

{
D(μ, μ′), μ ≤ μ′,
wD(μ, μ′), μ > μ′. (15.46)

Here, D is the deviance from a model in the exponential family gη(y) = eηy−ψ(η).
The VGAM family function amlpoisson() is an implementation of AML esti-

mation for the Poisson model. Here is a simple example.

> set.seed(1); pdata <- data.frame(x2 = sort(runif(n <- 200)))

> meanfun <- function(x) exp(-sin(8*x))

> pdata <- transform(pdata, y = rpois(n, meanfun(x2)))

> w.aml <- c(0.2, 1, 5, 50) # An assortment of positive values

> fit.amlpois <- vgam(y ~ s(x2), amlpoisson(w.aml = w.aml), data = pdata)

The proportions under the expectile curves are

> p.hat <- colMeans(depvar(fit.amlpois, drop = TRUE) < fitted(fit.amlpois))

> 100 * p.hat

w.aml = 0.2 w.aml = 1 w.aml = 5 w.aml = 50

52.0 62.5 76.0 92.5

Using these values, one can compare the expectile curves to the Poisson quantiles
as given by qpois(). Plotting these and the (discrete) quantiles together can be
achieved by

> mycol <- 1:length(w.aml)

> plot(jitter(y) ~ x2, pdata, col = "purple", las = 1)

> with(pdata, matlines(x2, fitted(fit.amlpois), col = mycol, lwd = 2, lty = 1))

> for (i in 1:length(w.aml))

lines(qpois(p = p.hat[i], lambda = meanfun(x2)) ~ x2,

pdata, col = mycol[i], lty = 2, lwd = 2)

Closer agreement is observed when the mean function has larger values (Fig. 15.12).
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Fig. 15.13 (a) Melbourne maximum temperature data, called melbmaxtemp, in ◦C. (b) Onion
method using amlnormal() expectiles applied to the data with an assortment of wj values. The
sample proportions below the curves are 1, 4.8, 20.2, 54.9, 65.2, 74.8, 82.7, 88.2, 91.7, 94.8%.

15.4.5 Melbourne Temperatures and the Onion Method

Here is a second example of the onion method which is based on the computation-
ally more suitable expectile regression. It is applied to the Melbourne maximum
temperatures data and uses a vector of prespecified w.aml values.

> w.vector <- sort(c(1 / 10^(0:3), 2^(1:6))) # An assortment of values

> quant.mat <- matrix(0, nrow(melb), length(w.vector)) # Stores the expectiles

> melb <- transform(melb, offset.y = today * 0)

> for (i in 1:length(w.vector)) {
melb <- transform(melb, use.y = today - offset.y)

init.val <- (if (i == 1) NULL else with(melb, max(use.y) / 10))

onion.melb <- vgam(use.y ~ s(yesterday, df = 3),

amlnormal(w.aml = w.vector[i],

imethod = 3,

iexpectile = init.val,

lexpectile = "loge"),

data = melb, trace = FALSE)

quant.mat[, i] <- (if (i == 1) 0 else quant.mat[, i-1]) + fitted(onion.melb)

melb <- transform(melb, offset.y = quant.mat[, i])

}

A plot of the results is given in Fig. 15.13. One weakness of this analysis is that
the serial dependency is glossed over by an implicit independence assumption
here. Despite this, the bimodal feature is somewhat detected and handled, albeit
not very well. Evidently, the bimodality is due to a high-pressure system from
the Australian mainland bringing high temperatures to Melbourne but is often
followed by a cold front.

15.5 Discussion

Quantile regression is an important and useful type of regression that allows
modelling the entire distribution of a response, rather than just through its mean
function. It has become a large topic with a lot of research activity, directed
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especially at nonstandard types of data such as longitudinal and censored data,
and now it has a wide range of applications.

Amazingly, as a consequence of an “Extremal Types Theorem”, quantiles can
also be modelled for data consisting of extremes, e.g., minimum temperatures and
maximum flood levels. This is the subject of Chap. 16.

Bibliographic Notes

Koenker (2005) is a very accessible book on both the theory and practice of quan-
tile regression and it has become a standard reference. His R package quantreg
implements his generalized L1 approach, and it has features enabling it to handle
large data sets. Other QR books include Hao and Naiman (2007) and Davino et al.
(2014). Fahrmeir et al. (2011) includes a chapter on quantile regression.

The LMS-Box-Cox-normal method is described in Green and Silverman (1994,
Chap.6) in the same context of penalized likelihood and cubic spline regression
that the VGLM/VGAM framework espouses.

As Ex. 15.14 shows, the Student t distribution with 2 degrees of freedom (Jones,
2002) is a particularly interesting distribution because a scaled version of it cor-
responds to a distribution whose expectiles and quantiles coincide. The package
expectreg implements methods for expectile and quantile regression, and a data-
analytic description of expectiles given in Schnabel and Eilers (2009).

Exercises

Ex. 15.1. † Show that the mean and median of a distribution cannot differ by
more than one standard deviation. [K. F. Yu]

Ex. 15.2. Consider the residuals defined by (15.5) for the LMS-Box-Cox-normal
method. Write a small R function to calculate them for any lms.bcn() fit. Test
out your code on w0.LMS from Sect. 15.2.3.

Ex. 15.3. Repeat the BMI analyses of Sect. 15.2.3 by using lms.bcg() instead.
Are there any significant differences between the results?

Ex. 15.4. The LMS-Box-Cox-Normal Method
Consider the model behind lms.bcn() as described in Sect. 15.2.1.

(a) Provide the details of how the bottom equation of (15.3) arises as λ(x)→ 0 in
the top equation.

(b) Show that, for fixed x, the PDF of Y is given by

1√
2π μσ

(
y

μ

)λ−1

exp

⎧
⎨

⎩
− 1

2λ2 σ2

[(
y

μ

)λ

− 1

]2
⎫
⎬

⎭
. (15.47)

(c) Provide the details behind (15.4).
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Ex. 15.5. Show that ρτ (u) defined by (15.6) can be written as

ρτ (u) = 0.5 |u|+ (τ − 0.5)u.

Obtain a similar formulation for ρ
[2]
ω (u), as defined by (15.22) using 0.5u2 as the

first term.

Ex. 15.6. Expectiles

(a) Show that (15.35) holds.
(b) Show that c1 and c2 are given as (15.36) and (15.37).

Ex. 15.7. Quantiles and Expectiles

(a) Verify that setting the derivative of
∫
ρτ (y − ξ) f(y) dy = 0 with respect to ξ

results in (15.8) for quantiles. Likewise that setting the derivative of
∫
ρ
[2]
ω (y−

μ(ω)) f(y) dy = 0 with respect to μ implies (15.24) for expectiles.
(b) Now confirm (15.29). Then differentiate G to obtain g as in (15.30).
(c) Obtain expressions for g(t) and G(t) in (15.29)–(15.30) for the (i) standard

normal, (ii) standard uniform, and (iii) standard exponential distributions.
Show that two of these densities are symmetric. Plot them in R as in Fig. 15.10.

Ex. 15.8. Show that if Y1 and Y2 are i.i.d. standard exponential distributions
then Y1/p−Y2/(1− p) has an ALD with unit scale parameter. [Kotz et al. (2001)]

Ex. 15.9. Use alaplace2() to fit a QR that is similar to what w0.LMS is fitted
to (described in Sect. 15.2.3). Compare the two models. . . do they differ apprecia-
bly?

Ex. 15.10. L∗(ξ, σ, κ)

(a) Consider the L∗(ξ, σ, κ) density (15.12). Verify (15.13).
(b) Derive the 2× 2 diagonal submatrix (15.14). [Kotz et al. (2001)]

Ex. 15.11. Logit-Laplace and Log-Laplace Distributions

(a) A random variable Y defined on (0, 1) is said to have a logit-Laplace distribu-
tion if logitY ∼ ALD. Suppose the ALD has the form [Kotz et al.
(2001)]

f(w; ξ, α, β) =
αβ

α+ β

{
exp (β(w − ξ)) , w < ξ,
exp (−α(w − ξ)) , w ≥ ξ,

(15.48)

for α > 0 and β > 0. Derive the PDF of the logit-Laplace distribution.
(b) A random variable Y defined on (0,∞) is said to have a log-Laplace distribution

if log Y ∼ ALD. For an ALD having the form (15.48), derive the density of Y .

Ex. 15.12. Yu and Zhang (2005) use an ALD whose density is

f(y; ξ, b, τ) =

⎧
⎪⎪⎨

⎪⎪⎩

τ(1− τ)

b
exp

(

− (1− τ)

b

∣
∣
∣y − ξ

∣
∣
∣

)

, y ≤ ξ,

τ(1− τ)

b
exp

(
−τ

b

∣
∣
∣y − ξ

∣
∣
∣
)
, y > ξ,

(15.49)

with the usual support and parameter range restrictions. For want of a better
name, we shall call this the “YZALD”.
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(a) Match the parameters of the L∗(ξ, σ, κ) distribution with the YZALD(ξ, b, τ)
parameterization.

(b) Show that E(Y ) = ξ+b (1−2τ)/(τ(1−τ)), and obtain an expression for Var(Y ).

Ex. 15.13. Show that if Y = a+ bX for constants a and b then the ω-expectile
of Y equals a+ b×(the ω-expectile of X). [Efron (1991)]

Ex. 15.14. (Scaled)
√
2T2 Distribution

Here we derive a distribution whose expectiles and quantiles are the same.

(a) By equating q(α) = e(α) in

α

∫ ∞

e(α)

(y − e(α)) dF (y) = (1− α)

∫ e(α)

−∞
(e(α)− y) dF (y)

show that

F (y) =

⎧
⎪⎨

⎪⎩

1
2 ·
(
1 +

√
1− 4/(4 + y2)

)
, y ≥ 0,

1
2 ·
(
1−√1− 4/(4 + y2)

)
, y < 0.

(15.50)

(b) Confirm that the density function is

f(y) =
2 |y|

(4 + y2)2
√

1− 4/(4 + y2)
. (15.51)

What is f(0)?
(c) Verify that

lim
y→∞

− log(1− F (y))

log y
= 2.

(d) Show that this distribution is equivalent to K =
√
2 T2, where K has a stan-

dard dsc.t2() distribution and T2 has a Student’s t distribution with 2 degrees
of freedom. [Koenker (1992)]

What I fail to see is any benefit derived from introducing the expectiles.
Expectiles belong in the spittoon.
—Koenker (2013, p.332)



Chapter 16

Extremes

And to the C students, I say you, too, can be President of the United States.
—George W. Bush, Yale University commencement address, May 2001

16.1 Introduction

Most of applied statistics is concerned with what goes on in the centre of a
distribution F , usually via the mean. In contrast, extreme value theory (EVT)
is the branch of statistics concerned with inferences about the tails of F . EVT
has important applications in many fields, such as environmental science (e.g.,
sea-levels, wind speeds, hydrology, peak flows of a river), reliability modelling
(e.g., weakest-link-type models), finance and sport science (e.g., fastest running
times). The subject began to mature during the 1950s with the pioneering work of
E. J. Gumbel (1891–1966), and has emerged to become a sizeable field in its own
right with very important applications because unusually large or small observa-
tions can be very influential, e.g., very large claims for an insurance company may
result in bankruptcy, extremes in climate may result in environmental and human
disasters including animal and plant species extinctions.

In this chapter, we depart from the notation of Chap. 12 and replace a, b and s
by μ, σ and ξ for the location parameter, scale parameter and shape parameter,
respectively—this is in keeping with most of the EVT literature. Also, the terms
quantiles and percentiles are be used interchangeably, as in Chap. 15, so that, e.g.,
a 0.5-quantile is equivalent to percentile = 50, which is the median. VGAM family
functions (Table 16.1) use the argument percentile to specify quantiles, so it
should be assigned values between 0 and 100.

Historically, EVT was slow in adopting smoothing. This may have been due
to most workers being theoreticians who were not confronted with routine data
analyses. There were also computational hindrances because most of these people
were not keen computer programmers. Estimation of the parameters were firstly
intercept-only, then linear in one covariate, then linear with respect to multiple
covariates, and then allowed to be additive models. Smoothing extremes data can
still be a stumbling block to some, because many extreme value models are based
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on asymptotics that require extrapolation, and thus are fundamentally model-
driven. We believe, though, that a data-driven approach nested within this model-
driven framework can be as useful as in any other application area.

The two most important distributions in EVT are the generalized extreme value
(GEV) distribution and generalized Pareto distribution (GPD). The former applied
to maximums is to EVT what the normal distribution, applied to sums, is to
statistics, i.e., there is an analogy between EVT and the Central Limit Theorem
based on the classical EV theory to follow. This chapter centres mainly on these
two models.

16.1.1 Classical EV Theory

Let MN = max(Y1, . . . , YN ) where Yi are i.i.d. random variables from a continuous
cumulative distribution function F . Then

P (MN ≤ y) =

N∏

j=1

P (Yj ≤ y) = [F (y)]N .

As N → ∞, the RHS → 0 so its distribution becomes degenerate and not very
useful. But suppose that we can find normalizing constants aN and bN > 0 such
that (this is convergence in distribution)

P

(
MN − aN

bN
≤ y

)

−→ G(y) (16.1)

as N → ∞, where G is some proper distribution function. Then G becomes use-
ful as it is a nondegenerate limiting distribution function. As a simple example,
suppose that Yj ∼ Exp(λ = 1) independently, hence F (y) = 1 − e−y. For bN = 1
and aN = logN ,

P (MN − logN ≤ y) = [F (y + logN)]
N

=
[
1− e−y−logN

]N

=

[

1− e−y

N

]N
→ exp

{−e−y
}
.

In a famous result called the “Extremal Types Theorem”1 Fisher and Tippet
in the 1920s showed that G is necessarily one of the following 3 possible types.

• Weibull-type (ξ < 0 in (16.2))

G(y) = exp{−(−y)−1/ξ} for −∞ < y < 0, and 1 otherwise, is the standard
form. This has been used for wind speed, sea levels and temperature data.

• Gumbel-type (ξ = 0 in (16.2))

G(y) = exp{−e−y} for −∞ < y < ∞, is the standard form. This distribution
was named after the pioneer Emil Gumbel, and is known simply as the extreme

1 Also known as the extreme value trinity theorem or three types theorem.
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Table 16.1 VGAM family functions for extreme value distributions. Notes: (i) All distribu-
tions have μ ∈ R, σ > 0, ξ ∈ R. (ii) All family functions have associated dpqr-type functions.

(iii) Plotting functions include guplot(), meplot(), qtplot(), rlplot(). (iv) The fitted values
are percentiles by default, but the fitted mean is also available.

Distribution CDF F (y;θ) Support VGAM family

GEV(μ, σ, ξ) exp

{

−
[
1 + ξ
(y − μ

σ

)]−1/ξ

+

}

(−∞, μ−σ/ξ) if ξ < 0,
(μ− σ/ξ,∞) if ξ > 0

gev()

Generalized
Pareto(σ, ξ)

1−
[
1 + ξ
(y − μ

σ

)]−1/ξ

+
(μ, μ − σ/ξ) if ξ < 0,
(μ,∞) if ξ ≥ 0

gpd()

Gumbel(μ, σ) exp
{
− exp

[
−
(y − μ

σ

)]}
(−∞,∞) gumbel()

value distribution. It is perhaps the most widely applied statistical distribu-
tion for climate modelling, and is also known as the Gumbel and log-Weibull
distributions.

• Fréchet-type (ξ > 0 in (16.2))

G(y) = exp{−y−1/ξ} for 0 < y < ∞, and 0 otherwise, is the standard form.
This has been used for stream flow, rainfall, and economic analyses.

These are also known as Type III, I and II extreme value distributions, respectively,
according to Gumbel (1958), and also as EV3, EV1 and EV2 by others.

Figure 16.1 displays some sample densities of the three extremal types. The
Gumbel-type is characterized by a thin (some say medium) tail and positive-skew,
whereas the Fréchet-type has a heavy tail and infinite higher-order moments. The
Weibull-type has a short tail which is bounded at μ−σ/ξ. For the latter model, it
is therefore impossible to exceed some threshold—the fact that there is an upper
bound is of special relevance for certain applications, e.g., building an engineering
object to withstand the largest possible catastrophe. Some applications such as
tensile strength have a natural lower bound of zero.

The above theory is very easily adapted to handle minimums by the relation-
ship min(Y1, . . . , YN ) = −max(−Y1, . . . ,−YN ). Some applications of these are the
fastest running times for the 100m sprint each year, and the study of monthly
minimum temperatures.

In practice, it is common to block the data so that the three types theorem
can be thought of as applying to each block. For example, if daily maximum
temperatures are recorded, then each block is a calendar year, Ni = 365 or 366,
n = the number of years of data and yi = the annual maximum temperatures. This
is in keeping with the notation (xi,yi), i = 1, . . . , n, used to represent data in the
VGLM/VGAM framework. Later, when considering the r-largest order statistics,
the response is yi with elements satisfying yi1 ≥ yi2 ≥ · · · ≥ yiri .

Care must be taken when blocking data to ensure independence. For example, if
the response is wave heights or surge heights, then a big storm passing through in
very late December is likely to induce dependencies between both calendar years.
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The problem of trying to create a subset of hopefully independent data from
dependent responses is often tackled by the declustering method. This is particu-
larly true with exceedances data and GPD modelling (Sect. 16.3).

In the past, controversy would often result because practitioners chose one of
these types—without much justification—to model their data.

16.2 GEV

It has been realized that it is more convenient to consider the generalized extreme
value (GEV) distribution, a family which holds the three types as special cases.
Its cumulative distribution function can be written

G(y;μ, σ, ξ) = exp

{

−
[

1 + ξ

(
y − μ

σ

)]−1/ξ

+

}

, σ > 0, (16.2)

−∞ < μ <∞, and the subscript “+” means its support is y satisfying 1 + ξ(y −
μ)/σ > 0. The μ, σ and ξ are the location, scale and shape parameters, respectively.

For the GEV distribution, the kth moment about the mean exists if ξ < k−1.
Provided that they exist, the mean and variance are given by μ+σ{Γ (1−ξ)−1}/ξ
and σ2{Γ (1− 2ξ)− Γ 2(1− ξ)}/ξ2, respectively.

The GEV distribution can be fitted using the VGAM family function gev(),
which handles multiple responses as well (see Sect. 16.2.1). It has

> args(gev)

function (llocation = "identitylink", lscale = "loge",

lshape = logoff(offset = 0.5), percentiles = c(95, 99), iscale = NULL,

ishape = NULL, imethod = 1, gshape = c(-0.45, 0.45), tolshape0 = 0.001,

type.fitted = c("percentiles", "mean"), giveWarning = TRUE, zero = 2:3)

NULL

so that

η =

(

μ, log σ, log

(

ξ +
1

2

))T

(16.3)

is its default. The first value of argument type.fitted indicates that percentiles
are returned as the fitted values; for this, the values of argument percentiles are
used. However, the mean can be returned instead if type.fitted = "mean".

Why such a link for ξ in (16.3)? Smith (1985) established that if ξ > −0.5
then the MLEs are completely regular and the usual asymptotic properties apply.
The 1

2 in the above formula is represented by the default setting of the lshape =

logoff(offset = 0.5) argument. For −1 < ξ < −0.5, the MLE generally ex-
ists and is superefficient. One might allow for −1 < ξ by setting lshape =

logoff(offset = 1). If ξ < −1, then the MLE generally does not exist as it effec-
tively becomes a 2-parameter problem; one might try lshape = "identitylink"

but MLEs are unlikely to be obtainable for this case in general. In practice, it
is quite uncommon to encounter the case ξ < − 1

2 , hence it should be a common
requirement to have to change the default settings for lshape.

It is worth pointing out that it usually requires much data to estimate ξ
accurately, typically, n of the order of hundreds or thousands of observations.
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Fig. 16.1 GEV densities for values μ = 0, σ = 1, and ξ = − 1
3
, 0, 1

3
(Weibull-, Gumbel- and

Fréchet-types, respectively). The orange curve is the CDF, the dashed purple segments divide
the density into areas of 1

10
. The bottom RHS plot has the densities overlaid.

Consequently, the shape parameter should be modelled as simply as possible, and
the zero argument of gev() reflects this by choosing intercept-only for this pa-
rameter. Simulation can be used to confirm this property.

Along the same lines, it can be seen from above that the scale parameter is
modelled more simply than the location parameter, by default. This might not be
a good idea because the variability trend, not the mean trend, drives extremes,
at least for an upper tail of power-type or gamma-type (Withers and Nadarajah,
2009), i.e., the trend in scale dominates the trend in location. Consequently, mod-
elling the scale parameter is not unimportant relative to the location parameter,
and the software defaults might change in the future to reflect this.

In terms of quantiles, the inversion of (16.2) yields

yp = μ− σ

ξ

{
1− [− log(1− p)]

−ξ
}
, ξ �= 0, (16.4)

so that G(yp) = 1 − p. In extreme value terminology, yp is called the return
level associated with the return period p−1. For example, in terms of waiting
times, if every year there is a probability p of an event occurring, and if the years
are independent, then yp is the level expected to be exceeded, on average, once
every p−1 years. Alternatively, it may be interpreted as the mean number of events
occurring within a unit time period, e.g., one year. The argument percentiles

of gev() allows users to specify values of p by assigning the values 100(1−p), and
the return levels can then be obtained by the fitted() methods function, as the
example of Sect. 16.6.1 shows. Coles (2001, p.56) give details for SE(ŷp) based on
the delta method; however, it is only for intercept-only models.

A common strategy is to test whether the data is Gumbel by fitting a GEV and
conducting a likelihood ratio test of H0 : ξ = 0 versus H1 : ξ �= 0. A Wald test
is also common but is usually less accurate (Sect. 2.3.6.2). It is common to use
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Table 16.2 Subset of the Venice sea levels data (data frame venice). For each year from 1931–
1981, the 10 highest daily sea levels (cm) are recorded (except for 1935, with 6 values).

year r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 year r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

1931 103 99 98 96 94 89 86 85 84 79 1976 124 122 114 109 108 108 104 104 102 100
1932 78 78 74 73 73 72 71 70 70 69 1977 120 102 100 98 96 96 95 94 91 90
1933 121 113 106 105 102 89 89 88 86 85 1978 132 114 110 107 105 102 100 100 100 99
1934 116 113 91 91 91 89 88 88 86 81 1979 166 140 131 130 122 118 116 115 115 112
1935 115 107 105 101 93 91 NA NA NA NA 1980 134 114 111 109 107 106 104 103 102 99
1936 147 106 93 90 87 87 87 84 82 81 1981 138 136 130 128 119 110 107 104 104 104

profile likelihoods in EVT to reduce the dimension of the optimization problem,
however, this is not really needed in the VGLM/VGAM framework.

16.2.1 The r-Largest Order Statistics

Suppose now that instead of recording the maximum value, we record the most
extreme ri values (at a fixed value of xi). Thus this block data can be writ-
ten (xi,yi)

T , where yi = (yi1, . . . , yiri)
T with the property that yi1 ≥ yi2 ≥ · · · ≥

yiri . Given xi, the data (not just the extremes) are assumed to be i.i.d. realizations
from some distribution with continuous CDF F . Here are some examples of this
type of data:

• Table 16.2 provides data where, for each year between x = 1931 and 1981,
the 10 highest sea levels in Venice were measured (except for 1935 where the 6
highest were recorded). Thus ri = 10 for all but one i.

• The top 10 runners in each age group in a school are used to estimate the 99
percentile of running speed as a function of age.

Let Y(1), . . . , Y(r) be the r largest observations in any particular block, such
that Y(1) ≥ · · · ≥ Y(r). Tawn (1988) showed that, for one block and for fixed r,
as N →∞, the limiting joint distribution has density f(y(1), . . . , y(r);μ, σ, ξ) =

σ−r exp

⎧
⎨

⎩
−
[

1 + ξ

(
y(r) − μ

σ

)]−1/ξ

− (1 + ξ−1
) r∑

j=1

log

[

1 + ξ

(
y(j) − μ

σ

)]
⎫
⎬

⎭
,

for y(1) ≥ · · · ≥ y(r), and 1 + ξ(y(j) − μ)/σ > 0 for j = 1, . . . , r.
The gev() family function can handle this type of ri ≥ 1 data. If the ri are

not all equal, then the response should be a matrix padded with NAs. The data
frame venice (Table 16.2) is an example of this. A special case of the block-GEV
model is the block-Gumbel model described in the next section.

16.2.2 The Gumbel and Block-Gumbel Models

In terms of the three types theorem, the Gumbel distribution accommodates many
commonly used distributions such as the normal, lognormal, logistic, gamma,
exponential and Weibull. However, the rate of convergence of (16.1) varies
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enormously, e.g., the standard exponential converges quickly, but for the standard
normal it is extremely slow. The Gumbel CDF is

G(y) = exp

{

− exp

[

−
(
y − μ

σ

)]}

, −∞ < y <∞. (16.5)

The mean and variance are given by E(Y ) = μ + σγ (where γ ≈ 0.5722 is the
Euler–Mascheroni constant (A.49)) and Var(Y ) = π2σ2/6. Inversion of (16.5) gives
the quantiles

yp = μ+ σ [− log (− log(1− p))] . (16.6)

Suppose that, for all blocks, the maximums are Gumbel distributed. For any
particular block, let Y(1), . . . , Y(r) be the r largest observations such that Y(1) ≥
· · · ≥ Y(r). Given that ξ = 0, the joint distribution of

(
Y(1) − aN

bN
, . . . ,

Y(r) − aN

bN

)T

has, for large N , a limiting distribution having density

f(y(1), . . . , y(r);μ, σ) = σ−r exp

⎧
⎨

⎩
− exp

(

−
[
y(r) − μ

σ

])

−
r∑

j=1

(
y(j) − μ

σ

)
⎫
⎬

⎭
,

for y(1) ≥ · · · ≥ y(r) (Smith, 1986). Upon taking logarithms, one can treat this as
an approximate log-likelihood.

The VGAM family function gumbel() implements this model. The default

is η(x) = (μ(x), log σ(x))
T
. Half-stepping may occur because of the approxi-

mate likelihood, therefore setting criterion = "coeff" may be a good idea to
avoid any resultant peculiar behaviour.

Extreme quantiles for this block-Gumbel model can be calculated as follows. If
the yi1, . . . , yiri are the ri largest observations from a population of size Ri at xi,
then a large α = 100(1− ci/Ri)% percentile of F can be estimated by

μ̂i − σ̂i log ci , (16.7)

cf. (16.5). For example, for the Venice data, Ri = 365 (if all the data were collected,
then there would be one observation per day each year resulting in 365 observa-
tions) and so a 99 percentile is obtained from μ̂i− σ̂i log(3.65). When Ri is missing
(which is the default, signified by the argument R = NA), then the α% percentile
of F can be estimated using ci = − log(α/100) in (16.7).

The median predicted value (MPV) for a particular year is the value for which
the maximum of that year has an even chance of exceeding, i.e., the probability is 1

2 .
It corresponds to ci = log(log(2)) ≈ −0.367 in (16.7). To obtain this, set mpv =

TRUE.
From a practical point of view, one weakness of the block-Gumbel model is

that often there is insufficient data to verify the assumption of ξ = 0. Also, it
is recommended that ri � Ri because the convergence rate to the limiting joint
distribution drops sharply as ri increases.
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16.3 GPD

The second important distribution in EVT is the generalized Pareto distribu-
tion (GPD). Giving rise to what is known as the threshold method, this com-
mon approach is based on exceedances over high thresholds. The idea is to
pick a high threshold value u and study all the exceedances of u, i.e., values
of Y greater than u. In extreme value terminology, Y − u are the excesses.
For deficits below a low threshold u, these may be converted to the upper tail
by −MN = max(−(Y1−u), . . . ,−(YN −u)) where −(Yi−u) are known as deficits.

The GPD approach is considered superior to GEV modelling for several reasons.
One is that it makes more efficient use of data: although the GEV can model the
top r values (Sect. 16.2.1), the GPD models any number of observations above
a certain threshold, therefore is more general. GPD modelling allows explanatory
variables to be more efficiently used to explain the response, which is fully in line
with the VGLM/VGAM framework. Compared to the GEV approach, this so-
called peaks over thresholds (POT) approach also assumes Y1, Y2, . . . are an i.i.d.
sequence from a marginal distribution F .

Suppose that Y has CDF F , and given Y > u, let Y ∗ = Y − u. Then

P (Y ∗ ≤ y∗) = P (Y ≤ u+ y∗|Y > u) =
F (u+ y∗)− F (u)

1− F (u)
, y∗ > 0. (16.8)

If P (max(Y1, . . . , YN ) ≤ y) ≈ G(y) for G in (16.2), and for sufficiently large u,
then the distribution of Y − u|Y > u is approximately that of the GPD. That is,
the GPD is the limiting distribution of (scaled) excesses above high thresholds.
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The GPD was proposed by Pickands (1975), and has CDF

G(y;μ, σ, ξ) = 1−
[

1 + ξ

(
y − μ

σ

)]−1/ξ

, σ > 0, (16.9)

for 1+ξ(y−μ)/σ > 0. The μ, σ and ξ are the location, scale and shape parameters,
respectively.

As with the GEV, there is a “three types theorem” to the effect that the fol-
lowing 3 cases can be considered, depending on ξ in (16.9).

• Beta-type (ξ < 0)

G has support on μ < y < μ − σ/ξ. It has a short tail and a finite upper
endpoint.

• Exponential-type (ξ = 0)

G(y) = 1 − exp{−(y − μ)/σ}. The limit ξ → 0 in the survivor function 1 − G
gives the shifted exponential with mean μ + σ as a special case. This is a thin
(some say medium) tailed distribution with the “memoryless” property P (Y >
a+ b|Y > a) = P (Y > b) for all a ≥ 0 and b ≥ 0.

• Pareto-type (ξ > 0)

G(y) ∼ 1 − cy−1/ξ for y > μ and some c > 0. The tail is heavy, and follows
Pareto’s “power law” g(y) ∝ y−α for some α.

An example of each type can be seen in Fig. 16.2. The mean and variance are
given by μ+ σ/{1− ξ} and σ2/{(1− 2ξ)(1− ξ)2}, provided that ξ < 1 and ξ < 1

2 ,
respectively.

In practice, choosing a threshold may be a delicate matter. The bias-variance
tradeoff means that if u is too high, then the reduction in data means higher
variance. Many applications of EVT do not have sufficient data anyway because
extremes are often rare events, therefore information loss may be particularly
costly.

Another practical consideration is the possible need to decluster the data. For
example, very cold days are often followed by more very cold days, hence minimum
daily temperatures are dependent. Then it would be dangerous to treat the (xi,yi)
as n independent observations. Declustering involves defining the clusters somehow
so that they can be treated as being independent, selecting an observation from
each cluster, and fitting a GPD to those observations.

It can be shown that the mean excess function of Y ,

E(Y − u |u < Y ) =
σ + ξ u

1− ξ
, (16.10)

which holds for any u > μ, provided that ξ < 1. This gives a simple diagnostic
for threshold selection: the residual mean life (16.10) should be linear with respect
to u at levels for which the model is valid (Sect. 16.4.3). This suggests producing an
empirical plot of the residual life plot and looking for linearity. If so, then the slope
is ξ/(1 − ξ). It involves plotting the sample mean of exceedances of u, versus u.
This is known as a mean life residual plot or a mean excess plot. It is implemented
in VGAM with meplot().
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VGAM fits the GPD by the family function gpd(), which accepts μ as known
input, and internally operates on the excesses y − μ. It has

> args(gpd)

function (threshold = 0, lscale = "loge", lshape = logoff(offset = 0.5),

percentiles = c(90, 95), iscale = NULL, ishape = NULL, tolshape0 = 0.001,

type.fitted = c("percentiles", "mean"), giveWarning = TRUE,

imethod = 1, zero = -2)

NULL

as its defaults. Note that the working weight matrices Wi are positive-definite
only if ξ > − 1

2 , and this is ensured with the default lshape = logoff(offset =

0.5) argument: g2(ξ) = log(ξ + 1
2 ).

The fitted values of gpd() are percentiles obtained from inverting (16.9):

yp = μ+
σ

ξ

[
p−ξ − 1

]
, 0 < p < 1. (16.11)

If ξ = 0, then
yp = μ− σ log(1− p). (16.12)

The mean is returned as the fitted value if type.fitted = "mean" is assigned.
In terms of the regularity conditions, the GPD is very similar to the GEV. Smith

(1985) showed that for ξ > − 1
2 the EIM is finite and the classical asymptotic theory

of MLEs is applicable, while for ξ ≤ − 1
2 , the problem is nonregular and special

procedures are needed.
The POT approach is often linked with point processes (PP). Here, the prob-

ability of no event in [0, T ] is e−λt, and the mean number of events in this time
period is λt, where λ is a rate parameter. Then a GEV(μ, σ, ξ) is related to a
PP(λ, σ∗, ξ) via

− log λ = −1

2
log (1 + ξ[(y − μ)/σ]) , (16.13)

σ∗ = σ + ξ(u− μ), (16.14)

where ξ coincides for both models.

16.4 Diagnostics

Based on the above theory, a number of diagnostic plots have been proposed
in order to check some of the underlying assumptions. They apply to intercept-
only models only. Some of the following are based on order statistics of the re-
sponse y(1) ≤ y(2) ≤ · · · ≤ y(n).

16.4.1 Probability and Quantile Plots

Probability plots plot
(
Ĝ(y(i)), i/(n+ 1)

)
for i = 1, . . . , n. Ideally, the points

should hug the line x = y if G is reasonable.
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Quantile plots are similar and plot the points
(
y(i), Ĝ

−1(i/(n+ 1))
)
, for

i = 1, . . . , n. As with probability plots, the points should fall on the line x = y
if F has been specified correctly.

Some authors call probability and quantile plots by the names P-P and Q-Q
plots.

16.4.2 Gumbel Plots

Gumbel plots are simply one special case of a quantile plot, using the Gumbel as the
reference distribution. It is a good idea to perform one before more formal GEV
regression fitting because curvature may indicate Weibull or Fréchet forms. As
with the quantile plot in general, outliers may be detected. From its CDF (16.5),
the Gumbel plot is a scatter plot of the points

(− log(− log[(i− 1
2 )/n]), y(i)

)
,

for i = 1, . . . , n.
Although the venice data is looked at in some detail in Sect. 16.6.2, we take

the liberty to Gumbel plot the highest and second highest annual sea levels.

> coords1 <- guplot(with(venice, r1), col = "blue", pch = 16)

> with(coords1, abline(lsfit(x, y), col = "gray50", lty = "dashed"))

> coords2 <- guplot(with(venice, r2), col = "blue", pch = 16)

> with(coords2, abline(lsfit(x, y), col = "gray50", lty = "dashed"))

This gives Fig. 16.3. A simple linear regression line has been added to each plot
just to aid interpreting the trend. This is easily done, because guplot() returns a
list with components x and y. The first plot is clearly linear, but the second plot
shows a little nonlinearity, however, this does not raise much concern.

16.4.3 Mean Excess Plots

As seen from the mean excess function (16.10), the mean excess plot is a diagnostic
plot for the GPD to help choose a suitable threshold, u0, say. This involves plotting
the mean excess over u versus values of u. If the data are GPD, then a straight line
is expected beyond u0. As seen from Fig. 16.8b, sometimes this is not an easy task
because of the jaggedness, and the assessment of linearity is rather subjective.

16.5 Some Software Details

Here are some miscellaneous notes about general features and details regarding
VGAM for EV data analysis.

1. For gev(), VGAM may fail because of the range restriction in (16.2). If this
problem occurs at initialization, then the error may be irrecoverable. After
the first iteration, with vglm() half-stepping avoids this problem, but vgam()

does not presently implement half-stepping. If smoothing is required and a
range restriction problem occurs, then try using vglm() with regression splines
(Sect. 2.4.3).
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Fig. 16.3 Gumbel plot of the two highest annual sea levels of the Venice data (venice).

2. The three types theorem allows the shape parameter ξ to take on any sign or
be equal to 0. In the situation that it is known that, e.g., ξ < 0 in the GEV,
then lshape = "logneg" might be used to obtain η3 = log(−ξ). Of course, if
it is known that ξ = 0, then the gumbel() family function should be used.

3. Most VGAM family functions handle multiple (independent) responses such
as cbind(y1, y2, y3), and the vector of linear/additive predictors are, e.g.,
(ηT

1 ,η
T
2 ,η

T
3 )

T . Since gev() and gumbel() handle matrix responses according
to their joint distribution, we say that these family functions handle multivari-
ate responses rather than multiple responses. Possibly in the future, gevff()
and gumbelff() might be written to handle multiple responses. Then they
might be applicable to, e.g., annual maximum temperatures data measured
at 3 very far apart locations.

4. For the block-Gumbel model of Sect. 16.2.2, if ri > 1 then the response
for vglm()/vgam() is an n × max(ri) matrix, and padded with NAs if the ri
are unequal. If there are NAs, then one must use na.action = na.pass. How-
ever, NAs in the model matrix are disallowed. A few details about missing values
are summarized in Sect. 1.5.2.6.

16.6 Examples

Some of the following examples use data sets from ismev.

16.6.1 Port Pirie Sea Levels: GEV Model

We will follow the analysis of the Port Pirie sea levels data described in Coles (2001,
Sect.3.4.1). These data concern the annual maximum sea levels during 1923–1987
at Port Pirie, a sea port with an elevation of 4m above sea level, and located
about 200 km north of the city of Adelaide, South Australia. Of interest is to
estimate the maximum sea levels over the next 100 years.

A scatter plot of the response versus year shows no particular trend, therefore
we simply fit an intercept-only model as follows.
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> data("portpirie", package = "ismev")

> fit1.pp <- vglm(SeaLevel ~ 1, gev, data = portpirie)

# trace = TRUE is a good idea

> plot(depvar(fit1.pp) ~ Year, data = portpirie, col = "blue",

ylab = "Sea level (m)", main = "(a)")

> matlines(with(portpirie, Year), fitted(fit1.pp), col = 1:2, lty = 2)

This produces Fig. 16.4a. The default quantiles are 95% and 99%, and these are
the dashed horizontal lines. Some diagnostic plots are given in Fig. 16.4b–d, from
the following code.

> n <- nobs(fit1.pp)

> params3 <- predict(fit1.pp, untransform = TRUE)

>

> plot(pgev(sort(depvar(fit1.pp)), loc = params3[, "location"],

scale = params3[, "scale"], shape = params3[, "shape"]),

ppoints(n), xlab = "Empirical", ylab = "Model", col = "blue",

main = "(b)")

> abline(a = 0, b = 1, col = "gray50", lty = "dashed")

>

> plot(qgev(ppoints(n), loc = params3[, "location"],

scale = params3[, "scale"], shape = params3[, "shape"]),

sort(depvar(fit1.pp)), xlab = "Model", ylab = "Empirical", col = "blue",

main = "(c)")

> abline(a = 0, b = 1, col = "gray50", lty = "dashed")

>

> hist(depvar(fit1.pp), prob = TRUE, col = "wheat", breaks = 9, main = "(d)")

> Range <- range(depvar(fit1.pp))

> Grid <- seq(Range[1], Range[2], length = 400)

> lines(Grid, dgev(Grid, loc = params3[1, "location"], scale = params3[1, "scale"],

shape = params3[1, "shape"]), col = "blue")

The model seems to fit satisfactorily. The estimated parameters and their standard
errors are

> Coef(fit1.pp) # Only for intercept-only models

location scale shape

3.87475 0.19804 -0.05010

> (SEs <- sqrt(diag(vcov(fit1.pp, untransform = TRUE))))

location scale shape

0.027337 0.019468 0.082086

An approximate 95% confidence interval for ξ is given by

> c(Coef(fit1.pp)["shape"] + 1.96 * c(-1, 1) * SEs["shape"])

[1] -0.21099 0.11079

The value 0 is contained inside, hence it is not possible to distinguish which of
the 3 types of GEV it is. This is not surprising since n = 65 is rather small.

The above results agree with Coles (2001), whose SEs were 0.028, 0.020
and 0.098 for the 3 parameters, respectively. The difference is probably due to
the OIM being used instead of our EIM. His approximate 95% confidence inter-
val for ξ was [−0.242, 0.142], and he obtained greater accuracy by repeating his
calculations using a profile likelihood and obtained [−0.21, 0.17].
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Now the estimates of the 10-year and 100-year return levels can be obtained by

> fit1.pp@extra$percentiles <- c(90, 99)

> head(fitted(fit1.pp, type.fitted = "percentiles"), 1)

90% 99%

1 4.2962 4.6884

Details are not given here about how to construct an approximate 95% confi-
dence interval for these. But to predict 100 years in advance requires some serious
thought, because such long-distance extrapolation into the future is based on the
stationarity assumption made in the analysis, and that excludes the effect of future
climate change.

To close up, Fig. 16.4d–e give return level plots produced by

> rlplot(fit1.pp, main = "(e)", pcol = "blue")

> rlplot(fit1.pp, main = "(f)", pcol = "blue", log = FALSE)

Linearity means a Gumbel model; convexity corresponds to ξ < 0 with an asymp-
tote of μ − σ/ξ as p → 0. If ξ > 0, then the plot is concave. Here, the plot looks
linear, which is in agreement with the possibility that the GEV is of the Gumbel
form.

16.6.2 Venice Sea Levels: The Block-Gumbel Model

We will fit a block-Gumbel model to the venice sea levels data of Table 16.2. Note
that, in 1935, only the top 6 values are available. A preliminary VGAM fitted to
all the data is

> fit1 <- vgam(cbind(r1, r2, r3, r4, r5, r6, r7, r8, r9, r10) ~ s(year,

df = c(9, 3)),

gumbel(R = 365, mpv = TRUE), data = venice, na.action = na.pass)

A large amount of flexibility is purposely allocated to the location parameter
because a sneak preview of a scatter plot of these data confirms what is mentioned
in Smith (1986) as two cycles—an astronomical one with a 19-year period, and an
inexplicable one having an 11-year period. There is also a possible outlier with a
value of almost 200. It is left to the reader (Ex. 16.5) to redo this analysis with
df = 3, say, in the above, and deleting the outlier, to show how to gloss over the
effect of these cycles and whether the results are sensitive to the outlier.

Figure 16.5 was produced by

> plot(fit1, se = TRUE, lcol = "blue", scol = "limegreen", slty = "dashed")

It appears that the first function, μ, is nonlinear, and that the second function, σ,
may be a quadratic. The nonlinearity can more formally be tested by

summary(fit1)

which shows that both functions are significantly nonlinear. Let’s fit such a
model with
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Fig. 16.4 Intercept-only GEV model fitted to the portpirie annual maximum sea levels data.
(a) Scatter plot, and the dashed horizontal lines are the resulting 95% and 99% quantiles.
(b) Probability plot. (c) Quantile plot. (d) Density plot. (e)–(f) Return level plots, with slight
changes in the x-axis labelling.
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Fig. 16.5 VGAM fitted to the Venice sea level data (fit1).

> Hlist <- list("(Intercept)" = diag(2), "s(year, df = 9)" = rbind(1, 0),
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"poly(year, 2)" = rbind(0, 1))

> fit2 <- vgam(cbind(r1, r2, r3, r4, r5, r6, r7, r8, r9, r10) ~

s(year, df = 9) + poly(year, 2), gumbel(R = 365, mpv = TRUE),

constraints = Hlist, data = venice, na.action = na.pass)

> head(fitted(fit2), 3)

95% 99% MPV

1 67.072 90.595 114.87

2 68.473 91.575 115.42

3 69.884 92.587 116.02

Then the quantile plot in Fig. 16.6a was produced by

> with(venice, matplot(year, cbind(r1, r2, r3, r4, r5, r6, r7, r8, r9, r10),

ylab = "Sea level (cm)", type = "p", main = "(a)",

ylim = c(70, 200), col = "blue", pch = 16))

> mycols <- c(1, 2, 3)

> with(venice, matlines(year, fitted(fit2), lty = 1, col = mycols))

Clearly, it is seen that there is a general increase in extreme sea levels over time
(and/or that Venice is sinking), and that there is cyclical behaviour.

Now, for purely illustrative purposes, we obtain the quantile plot of an underfit-
ted model where the location parameter is linear in year and the scale parameter
is intercept-only. The purpose is to compare the quantile plots of the two models.

> fit3 <- vglm(cbind(r1, r2, r3, r4, r5, r6, r7, r8, r9, r10) ~ year,

gumbel(R = 365, mpv = TRUE, zero = 2), data = venice,

na.action = na.pass)

Following (16.7),

> qtplot(fit3, mpv = TRUE, lcol = mycols, tcol = mycols, pcol = "blue",

pch = 16, tadj = -0.2, main = "(b)", ylim = c(70, 200), ylab = "")

This produces Fig. 16.6b. The quantiles of fit3 are linear functions, and not
surprisingly, they convey the main message of an increase during the whole time
period.

Incidentally, fit3 might be fitted equivalently by using

Select(venice, "r", sort = FALSE) ~ year

instead in the formula.
The plots include the 99 percentiles of the distribution. That is, for any par-

ticular year, we should expect 99% × 365 ≈ 361 observations below the line, or
equivalently, 4 observations above the line. To check this, Fig. 16.7a was produced
by

> plot(r4 ~ year, data = venice, ylab = "sea level",

main = "(a)", ylim = range(r1), pch = "4", col = "blue")

> lines(fitted(fit2)[, "99%"] ~ year, data = venice, col = "orange")

The points of this plot are the fourth highest annual sea level recorded (4/365 ≈
1%) and the fitted 99 percentile curve of the block-Gumbel model (same as
Fig. 16.6a).

Finally, the MPV can be seen in Fig. 16.7b. It was produced by
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Fig. 16.6 (a) Quantile plot of the Venice sea level data (fit2). (b) Venice data overlaid with
the fitted values of fit3. This model underfits.

> plot(r1 ~ year, data = venice, ylab = "sea level",

main = "(b)", ylim = range(r1), pch = "1", col = "blue")

> lines(fitted(fit2)[ , "MPV"] ~ year, data = venice, col = "orange")

The MPV for a particular year is the value for which the maximum of that year
has an even chance of exceeding. It is evident from this plot too that the sea level
is increasing over time and/or Venice is sinking. As this data set is now rather
truncated because its last year was over 30 years ago, it would be interesting to
add data from 1981 to 2014, say, and repeat the analysis. This is especially relevant
and interesting in an age of concern and uncertainty about global climate change
and the rising of sea levels.

16.6.3 Daily Rainfall Data: The GPD Model

This is a quite large data set consisting of the daily rainfalls at a location in south-
west England during 1914–1962 (Fig. 16.8a). There are 17531 observations in total,
of which 47 percent have 0 values. We will fit a simple GPD intercept-only model
to these data, mimicking the analysis of Coles (2001, Sect.4.4.1). Before fitting
two equivalent models, we first place the data into a data frame—this is better
practice than having one large vector, the original format of the data. As well, the
mean excess plot was obtained (Fig. 16.8b):

> data("rain", package = "ismev")

> Rain <- data.frame(rain = rain, day = 1:length(rain))

> plot(rain ~ day, data = Rain, pch = 16, col = "blue", cex = 0.5, main = "(a)")

> meplot(with(Rain, rain), main = "(b)")

The plot appears to be piecewise-linear, with a knot around 60. Beyond this knot,
there are very few observations and this is shown by the large 95% confidence in-
tervals. There might be a knot at around 30, because the segment running from 30
to 60 appears linear with a different slope to the segment running from 0 to 30.
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level each year). (b) Fitted median predicted value (MPV) of the Venice sea level data from fit2.
The points are the highest sea levels for each year.

Hence, choosing a threshold of 30 seems reasonable. We fit two equivalent GPD
models with this choice:

> fit1.rain <- vglm(rain - 30 ~ 1, gpd, data = Rain, subset = rain > 30)

> fit2.rain <- vglm(rain ~ 1, gpd(threshold = 30), data = Rain,

subset = rain > 30)

> length(depvar(fit2.rain)) # Effective sample size, n

[1] 152

In both cases, a subset of Rain is fed into vglm(). In fit1.rain, the threshold
is explicitly subtracted from the response, whereas it is inputted as an argument
in fit2.rain. The model fit2.rain is preferred, because it stores the value of
the argument threshold on the object. Note that the saved responses of the 2
models differ by the threshold value:

> c(range(depvar(fit1.rain)), range(depvar(fit2.rain)),

fit2.rain@extra$threshold[1])

[1] 0.2 56.6 30.2 86.6 30.0

The estimates and variance-covariance matrix are

> Coef(fit2.rain)

scale shape

7.44047 0.18447

> round(VC2 <- vcov(fit2.rain, untransform = TRUE), digits = 5)

scale shape

scale 0.86263 -0.05799

shape -0.05799 0.00923

These differ a little from Coles (2001, Sect.4.4.1) but are qualitatively the same.
An approximate 95% confidence interval for ξ is given by

> SEs <- sqrt(diag(VC2))

> c(Coef(fit2.rain)["shape"] + 1.96 * c(-1, 1) * SEs["shape"])

[1] -0.0038601 0.3728037



16.6 Examples 465

0 5000 10000 15000

0

20

40

60

80
a b

day

ra
in

0 20 40 60 80

0

5

10

15

20

Threshold

M
ea

n 
E

xc
es

s

Fig. 16.8 The rain daily rainfall data. (a) Scatter plot. (b) Mean excess plot.
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Fig. 16.9 Intercept-only GPD model fitted to the rain daily rainfall data. (a) Scatter plot,
with the solid black horizontal line denoting the threshold at 30. The dashed horizontal lines are
the resulting 90% and 99% quantiles. (b) Probability plot. (c) Quantile plot. (d) Density plot.

cf. his approximate 95% confidence interval [−0.014, 0.383]. In both cases, the
lower limit is only a little negative compared to a much larger positive upper
limit. Since ξ̂ > 0, it might be concluded that this implies that the support of the
distribution is semi-infinite. The diagnostic plots given in Fig. 16.9 show that the
fitted model is reasonable.

In Fig. 16.9a the fitted quantiles apply to the subset of data fed in, not the
entire data set in this case. Hence, e.g., we should expect about 15.2 observations
above the 90% quantile, and there actually are 15 such observations.
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Bibliographic Notes

There is now a substantial literature in EVT. An accessible introductory text
is Coles (2001). Most EVT books tend to be much more theoretical in nature,
and include technicalities and derivations not mentioned here; these books include
Leadbetter et al. (1983), Embrechts et al. (1997), Kotz and Nadarajah (2000),
Finkenstadt and Rootzén (2003), Smith (2003), Beirlant et al. (2004), Castillo
et al. (2005), de Haan and Ferreira (2006), Reiss and Thomas (2007), Novak (2012).
A recent review of univariate EVT is Gomes and Guillou (2015). Some further
examples and details are given in Yee and Stephenson (2007). Specific important
applied topics omitted in this chapter include multivariate extremes, spatial and
temporal dependencies; these are covered in the above references.

Alternative software for fitting extremes are reviewed by Gilleland et al. (2013),
and among the several R packages for such, there are extRemes, evd, evir, ismev,
SpatialExtremes.

Exercises

Ex. 16.1. Obtain expressions for (16.8) for the following distributions: (a) stan-
dard uniform, (b) standard exponential.

Ex. 16.2. Consider (16.1).

(a) If the Yj are standard uniformly distributed, bN = N−1 and aN = 1, then
find G(y).

(b) Show that if the Yj are standard Cauchy distributed, bN = N/π and aN = 0,
then G(y) = e−1/y (for positive y).

Ex. 16.3. Max-Stability
A CDF F is said to be max-stable if, for all positive integers N , there exists
constants aN and bN > 0 such that [F (aN + bN y)]N = F (y). Show that the
standard version of the Gumbel distribution (16.5) is max-stable.

Ex. 16.4.

(a) From (16.2), obtain expressions for the density, median, and lower and upper
quartiles of the 3-parameter GEV distribution.

(b) Repeat (a) for the 3-parameter GPD (16.9).

Ex. 16.5. Venice Sea Levels Data—Without Underfitting and
Overfitting
The analysis in Sect. 16.6.2 deliberately allowed some underfitting & overfitting.

(a) Make a copy of venice and set the outlier to NA.
(b) Fit a VGAM block-Gumbel model with df = 3 for both parameters. Plot the

fitted component functions with SEs. Comment.
(c) Obtain a quantile plot similar to Fig. 16.6. Comment.
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Ex. 16.6. Fitting GEV Models to Simulated Data

(a) Generate GEV data having the following parameters: xi2 ∼ Unif(0, 1),
μi = xi2, σi = 1, log

(
ξi +

1
2

)
= 1

4 cos(2πxi2)− 1, for n = 500, 1000(1000)5000.
All observations are independent.

(b) Fit a VGAM GEV to each data set in (a). Comment on your results.

Ex. 16.7. Maximum Daily Drinks Drunk in xs.nz

Consider the response variable drinkmaxday in the data frame xs.nz.

(a) Fit a VGAM GEV to these data, using age, sex and ethnicity as explanatory.
Delete all the missing values from these variables first. For simplicity, model
the scale and shape parameters as intercept-only.

(b) Plot the estimated component functions of your model and interpret them.
(c) Estimate the 25, 50, 75, 90 and 99 percentiles of the response for a 50-year-old

male European. Compare your results with quantiles computed on the subset
of male Europeans aged between 48 and 52 inclusive.

(d) Some of the values of drinkmaxday are unrealistically excessive. Delete those
values which you think are not ‘true’, and repeat your analyses above. Does
the deletion of the outliers make much of a difference to the results?

Ex. 16.8. Longest Fish Caught per Competitor in wffc.indiv

Consider the response variable length in the data frame wffc, along
with wffc.indiv.

(a) Create a data frame with each individual competitor as a row, and having at
least the following 2 columns: the longest fish caught from the Waihou River,
and the number of fish caught there.

(b) Obtain a scatter plot of the length of each competitor’s biggest fish versus the
number of fish caught. Comment.

(c) Fit a VGAM GEV to these data, with explanatory variable and response spec-
ified by the scatter plot. Overlay the 50, 75, 90, 95 percentiles on to the plot.

(d) Fit some quantile regression model to these data, and overlay the 50, 75, 90, 95
percentiles on to a scatter plot. Is there much difference between (c) and (d)?

Ex. 16.9.

(a) Show that the residual mean life (16.10) holds for the GPD.
(b) Derive an expression for (16.10) for the exponential-type GPD. Comment in

terms of the memoryless property of the exponential distribution.
(c) Use simulation to demonstrate a simple example of (b).

Ex. 16.10. Show that the limit as ξ → 0 of G in (16.2) results in (16.5). Obtain
the density from this.

Ex. 16.11. Show that the difference between two independent standard Gumbel
random variables has a standard logistic distribution, i.e., use μ = 0 and σ = 1 in
Table 16.1, and a = 0 and b = 1 in Table 12.4.
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Ex. 16.12. Show for the block-Gumbel model that

∂
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= σ−1
i
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ri − exp
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−yiri − μi
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)}
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− yiri − μi

σ2
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[
ψ′(ri) + ψ2(ri)− 1

]
}

.

Ex. 16.13. Derivatives of the GEV Distribution

(a) Starting at (16.2), derive the log-likelihood, and show that, as ξi → 0,

∂
i
∂μ

=
(
1− e−zi

)
/σi,

∂
i
∂σ

=
[
zi
(
1− e−zi

)− 1
]
/σi, (16.15)

∂
i
∂ξ

= zi

[zi
2

(
1− e−zi

)− 1
]
, where zi = (yi − μi)/σi.

(b) Now consider the EIM. Let ϕ1 = (1 + ξ)2Γ (1 + 2ξ) and ϕ2 = Γ (2 + ξ)
{ψ(1 + ξ) + (1 + ξ)/ξ}. Then Prescott and Walden (1980) showed that (the
subscript i will be dropped)
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, (16.16)
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.

Calculate the limit of these expressions as ξ → 0. Note that (16.16) does not
depend on the other 2 parameters, hence calculate its value to 2 decimal places
numerically, as it is the most difficult case and appears intractable.

Ex. 16.14. Consider the GPD applied to a response yi, where i = 1, . . . , n.
Starting at (16.9), derive the log-likelihood, and show that, as ξi → 0,

∂
i
∂σi

=
1

σi

[
yi
σi
− 1

]

,
∂
i
∂ξi

=
yi
σi

[
yi
2σi

− 1

]

. (16.17)

Assume that μi = 0.

Man’s days are determined; you have decreed the number of his months and
have set limits he cannot exceed. —Job 14:5



Chapter 17

Zero-Inflated, Zero-Altered and Positive
Discrete Distributions

Better to be a nobody and yet have a servant than pretend to be somebody
and have no food.
—Proverbs 12:9

17.1 Introduction

Zero-truncated (positive), zero-inflated and zero-altered distributions are impor-
tant extensions of discrete distributions, and the most common of such families
occupy a happy niche within the VGLM/VGAM framework. This chapter describes
those currently implemented in VGAM, which are summarized in Tables 17.6, 17.7.
These three variants of an ordinary discrete distribution (called the parent here)
defined on 0(1/n)1 or 0(1)∞ involve very simple modifications to the parent. For
example, if the parent distribution for a random variable Y ∗ has probability func-
tion f(y) = P (Y ∗ = y) for y = 0, 1, 2, 3, . . . then a positive discrete distribution
would arise by setting P (Y = 0) to zero and the other probabilities scaled up, i.e.,
Y ∼ (Y ∗|Y ∗ > 0) as portrayed in the right branch of Fig. 17.1a. The probability
function is therefore

P (Y = y) =
f(y)

1− f(0)
for y = 1, 2, 3, . . . . (17.1)

Since E[g(Y )] = (1− f(0))−1 E[g(Y ∗)] for a general function g, it follows that

E(Y ) =
μ∗

1− f(0)
and (17.2)

Var(Y ) =
[1− f(0)]σ2

∗ − f(0)μ2
∗

[1− f(0)]2
. (17.3)

Some common examples include the positive Poisson (e.g., the size of crowds of
people in a park, the positive number of traffic accidents recorded at an inter-
section, the number of items purchased per customer queuing in a supermarket
checkout line) and positive binomial (e.g., the number of times individual animals
are captured in a capture–recapture survey).
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Fig. 17.1 Decision tree diagram for (a) zero-alteration versus (b) zero-inflation. They de-
pict (17.4) and (17.7), respectively. Here, Y ∗ corresponds to a parent distribution such as the
binomial or Poisson, and Y is the response of interest. The probabilities ω and φ dictate the
decisions.

Zero-valued responses often require special treatment compared to the other
positive values because a zero may arise from multiple sources, e.g., from a ‘ran-
dom’ component and a ‘fixed’ component, for example, Y = the number of children
born to an individual: males always have zero values but a female might possibly
have a zero value. Another example is Y = the number of insects per leaf on a
plant but a proportion φ of leaves are unsuitable for feeding and therefore do not
have any insects. Empirically, count data is often characterized by an ‘excess’ of
zeros relative to such distributions as the Poisson and negative binomial. There
are two popular approaches for handling these (portrayed in Fig. 17.1).

1. Zero-alteration. Here P (Y = 0) is modelled separately from P (Y > 0). Then
the probability function is

P (Y = y) =

⎧
⎨

⎩

ω, y = 0;

(1− ω)
f(y)

1− f(0)
, y = 1, 2, 3, . . . ,

(17.4)

with 0 < ω < 1 being the probability of an observed 0 (argument “pobs0” is
used in VGAM). The bottom equation of (17.4) is the positive version of the
parent distribution. Zero-altered distributions have been called hurdle models
because the first of two processes, the one generating the zeros (the second
is generating positive values), is a Bernoulli random variable that determines
whether the response is zero or positive—in the latter case the “hurdle is
crossed.” Whereas zero-inflated distributions have been described as overlap-
ping models because of the two sources of zeros, zero-altered distributions are
known as separated models. It is straightforward to show (e.g., from (17.2)–
(17.3)) that

E(Y ) =
(1− ω) μ∗
1− f(0)

and (17.5)

Var(Y ) =
1− ω

1− f(0)

{

σ2
∗ +

μ2
∗ [ω − f(0)]

1− f(0)

}

(17.6)

where μ∗ and σ2
∗ pertain to the parent distribution of Y ∗.

2. Zero-inflation. A (discrete) random variable Y has a zero-inflated distribution
if it has value 0 with probability φ, otherwise it has some other distribution
that also includes the value 0. The two processes generating this type of data
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Fig. 17.2 Probability functions of a (a) zero-inflated Poisson with φ = 0.2, (b) zero-
deflated Poisson with ω = −0.035. Both are compared to their parent distribution which is
a Poisson(μ=3) in orange.

implies that it is a mixture model of the parent distribution and a degenerate
distribution with the probability concentrated at the origin. Thus

P (Y = y) =

{
φ+ (1− φ) f(0), y = 0;
(1− φ) f(y), y = 1, 2, 3, . . . .

(17.7)

The φ parameter is sometimes called the probability of a structural zero,
whereas a zero generated from the parent distribution is sometimes called
a sampling zero. The former is represented by the argument “pstr0” in VGAM.
Depending on the application, we might or might not be able to distinguish
between the two types. As φ → 0+, the zero-inflated distribution approaches
its parent distribution. It is easy to show the zero-inflated model has

E(Y ) = (1− φ)μ∗ and Var(Y ) = (1− φ)
[
σ2
∗ + φμ2

∗
]
. (17.8)

A simple example of a zero-inflated Poisson distribution is Fig. 17.2a.

Which of the two models is preferable often depends on the application, e.g.,
zero-inflated models are used more often in ecology because their justification is
stronger and there is greater interpretability.

Note that zero-deflation is also possible: −f(0)/(1−f(0)) ≤ φ < 0 in (17.7) still
ensures P (Y = 0) ≥ 0 but φ no longer retains its interpretation as a probability.
For example,

P (Y = y) = I[y = 0]φ+ (1− φ)
e−λλy

y!
, φ ∈ (0, 1), y = 0(1)∞ (17.9)

is the usual zero-inflated Poisson (ZIP) density, but if −(eλ − 1)−1 ≤ φ < 0 then
it is known as the zero-deflated Poisson distribution. The resulting probability of
a zero count is less than its nominal parent’s value. As φ ↓ −f(0)/(1 − f(0)),
the distribution converges to its positive-distribution counterpart. A zero-deflated
Poisson probability function is plotted in Fig. 17.2b.
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17.1.1 Software Details

Tables 17.1, 17.6, 17.7 summarize current positive, ZA- and ZI-functions available
in VGAM. The za-type and zi-type come in pairs: those ending in ff and those
that don’t. Each pair differs by the following:

1. Those ending in ff are parameterized by ω∗ = 1− ω or φ∗ = 1− φ, which are
intercept-only by default. Those that don’t end in ff use ω or φ, which are not
intercept-only.

2. The ω∗ and φ∗ correspond to ηM , the last linear/additive predictor. The ω
and φ correspond to η1.

3. Arguments pobs0 and pstr0 correspond to ω and φ, respectively. These are
the probability of an observed 0 and the probability of a structural 0. Likewise,
“onem” means “one minus” or 1−·, hence arguments onempobs0 and onempstr0

correspond to ω∗ and φ∗, respectively.

As a specific example, zipoisson() and zipoissonff() differ in that η =
(logitφ, log λ)T in the former, and for the latter, the ηj are switched to η =
(log λ, logitφ∗)T . Parameter φ∗ is intercept-only whereas φ is not. Incidentally,
reduced-rank regression may be applied to the ZIP; see Sect. 17.4.

Since those ending in ff have more parameters which are intercept-only, they
are less likely to exhibit numerical problems and therefore are recommended more
generally. Another reason the ff-type function is recommended is that they can
be fed into rcim() more simply.

Internally, a za-type function is a merger of binomialff() and the pos-type
function. The working weight matrices are block-diagonal, and Fisher scoring is
implemented as usual.

The corresponding [dpqr]-type functions are available. By default, the
[dpqr]za-type functions have pobs0 = 0 so they behave like their respective pos-
itive distributions. Similarly, pstr0 = 0 for the [dpqr]zi-type functions, hence
they act like their ordinary parent distributions. Some of the [dpqr]zi-type func-
tions handle zero-deflation; for these, the argument pstr0 loses its interpretation
as a probability.

17.1.2 A Zero-Inflated Poisson Example

The Poisson model is nested within the ZIP (17.9) by virtue of φ = 0, therefore
testing the common hypothesis of a ZIP versus Poisson can be done by a modified
LRT. Note that H0 : Y ∼ Poisson corresponds to a point on the boundary of the
parameter space. A common alternative is a ZIP-adaption of one of Vuong (1989)’s
general tests of nonnested models.

Sometimes it is required to estimate the probability that a zero response is due
to a structural zero. That is, given yi = 0, what is the probability its source is
the structural zero? For zipoisson(), it involves dividing φ̂i by P̂ (Yi = 0) =

φ̂i + (1− φ̂i) exp(−λ̂i). The following code illustrates this.
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Table 17.1 How VGAM can fit ZI-, ZA- and positive-type models. All parameters receive full
maximum likelihood estimation. Most of the NB nomenclature follows Hilbe (2011). Legend: ZI =

zero-inflated, ZA = zero-altered (hurdle), Pos = positive, and φ = P (Y = 0) for a structural
zero in ZI-type models. Argument size is the NB parameter k. The quantities A = 1− (1− p)n

and B = {k/(k + μ)}k apply to the ZAB and NB-variants, respectively. See also Tables 11.2,
17.6–17.7.

Variant

(ZA, ZI, Pos)

Var(Y ) Modelling

function

VGAM family

function

ZIB (1− φ)n p [1 + (φn− 1)p] vglm() zibinomial()

ZIG (1− φ)
1− p

p2
[1 + φ(1− p)] vglm() zigeometric()

ZINB (1− φ)μ
[
1 + μ(φ+ k−1)

]
vglm() zinegbinomial()

ZIP (1− φ)μ (1 + φμ) vglm() zipoisson()

ZAB
1− φ

A

{
p(1− p)

n
+

p2 (φ− (1− p)n)

A

}

vglm() zabinomial()

ZAG (1− φ)(1 + φ− p)/p2 vglm() zageometric()

ZANB
1− φ

1− B

{

μ
(
1 +

μ

k

)
+

μ2 (φ− B)
1− B

}

vglm() zanegbinomial()

ZAP
(1− φ)μ

1− e−μ

{

1 +
μ
(
φ− e−μ

)

1− e−μ

}

vglm() zapoisson()

Pos-B
p(1− p)

n {1− (1− p)n} − p2 (1− p)n

{1− (1− p)n}2 vglm() posbinomial()

Pos-NB
μ+ μ2/k

1− B − μ2 B
(1− B)2 vglm() posnegbinomial()

Pos-P μ eμ(−1 + eμ − μ)/(eμ − 1)2 vglm() pospoisson()

COZIGAM
K1 μ1+a21 (1 + μ+K1 μa21 )

[1 +K1 μa21 ]2
rrvglm() zipoissonff(zero

= NULL)

> set.seed(123)

> zdata <- data.frame(x2 = runif(n <- 100))

> zdata <- transform(zdata, pstr0 = logit(0.5 + 1 * x2, inverse = TRUE),

lambda = loge(-0.5 + 2 * x2, inverse = TRUE))

> zdata <- transform(zdata, y1 = rzipois(n, lambda = lambda, pstr0 = pstr0))

> zipfit <- vglm(y1 ~ x2, zipoisson(zero = NULL), data = zdata)

> head(zdata, 1)

x2 pstr0 lambda y1

1 0.28758 0.68731 1.0781 0
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Table 17.2 Short summary of the notation used for the positive-Bernoulli distribution
(Sect. 17.2) for capture–recapture experiments. Some additional details are in the text.

Symbol Explanation

N (Closed) population size to be estimated
Y Capture history matrix (n× τ) with values 1 (captured) and 0 (noncaptured).

Each row has at least one 1
n Total number of individual animals caught in the trapping experiment
τ Number of sampling occasions, τ ≥ 2

“h” Model M subscript, for heterogeneity
“b” Model M subscript, for behavioural effects
“t” Model M subscript, for temporal effects
zij = 1 if animal i has been captured before occasion j, else = 0
pij Probability that animal i is captured at sampling occasion j (j = 1, . . . , τ)

y0i Number of noncaptures before the first capture, for animal i
yr0i Number of noncaptures after the first capture, for animal i
yr1i Number of recaptures after the first capture, for animal i,

y0i + 1 + yr0i + yr1i = τ
pcj , prj Probability that an animal is captured/recaptured at sampling occasion j

β∗ All the regression coefficients related to the capture

Qs:t =
t∏

j=s

(1− pcj). Simplifications possible, e.g., Q1:τ = (1− pc)τ for Mbh

The first observation has a 0 response, therefore

> i <- 1

> (fitted(zipfit, type.fitted = "pstr0") / fitted(zipfit, type.fitted = "pobs0"))[i]

[1] 0.75523

This suggests that there is about a 75.5 percent chance that the 0 response is due
to a structural zero as opposed to both sources.

17.2 The Positive-Bernoulli Distribution

The positive-binomial can be considered a special case of a ‘positive-Bernoulli’
distribution. The former makes the same assumptions as the binomial (fixed num-
ber and independence of trials, two outcomes, unchanging probabilities of success
between trials), whereas the latter is less restrictive. In some applications, the
response is a sequence of Bernoulli trials which permits an examination of some
of the binomial assumptions. In this section, we describe the positive-Bernoulli
distribution in the context of capture–recapture experiments for wildlife surveys,
so that animals (more generally, units or individuals) are used for members of
the population. Capture–recapture surveys have found numerous applications in
ecology and epidemiology. Table 17.2 summarizes most of the terminology and
notation used in this section.

Suppose we have a closed population of N animals of a certain type of species.
By ‘closed’, we mean that there are no births or deaths, and no emigration or
immigration. Such an assumption might be reasonable if the overall time period is
short enough. Further to the binomial assumptions, the following are also assumed:
animals do not lose their tags, and tags are recorded correctly. Animals are sampled
at τ occasions, e.g., trapping a nocturnal mammal species on seven consecutive
nights. If an animal is captured for the first time, then it is marked or tagged so
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that it can be identified individually later and it is immediately returned to the
population to remix. Thus each animal caught has a capture history: a τ -vector
of 1s and 0s denoting capture/recapture and noncapture, respectively. In total, we
have a sample consisting of n animals, and the n × τ response matrix Y has 0/1
values with rows containing at least one 1. The aim of the experiment is to estimate
the unknown population size N using the observed capture history data Y and
any other additional information collected on captured individuals such as weight
or sex, or environmental information such as rainfall or temperature.

Enumerate the individuals in the sample by i = 1, . . . , n and those never cap-
tured by i = n+ 1, . . . , N . The general form of the full likelihood function is

L† = K ·
N∏

i=1

τ∏

j=1

p
yij

ij (1− pij)
1−yij (17.10)

where yij = 0 or 1, and pij is the probability that animal i is captured at sampling
occasion j. Here, K is independent of the pij but may depend on N . One can
write (17.10) as

L† = K ·
⎧
⎨

⎩

n∏

i=1

τ∏

j=1

p
yij

ij (1− pij)
1−yij

⎫
⎬

⎭
·
⎧
⎨

⎩

N∏

i=n+1

τ∏

j=1

(1− pij)

⎫
⎬

⎭
. (17.11)

The RHS of (17.11) is unknown, therefore cannot be used because it refers to data
that has not been collected. Consequently, no MLE of N will be available unless
some homogeneity assumption is made about the uncaptured animals.

In practice, a conditional likelihood function of the form

L =

n∏

i=1

τ∏

j=1

p
yij

ij (1− pij)
1−yij

1−
τ∏

s=1
(1− p∗is)

(17.12)

can be used (Huggins, 1989). The denominator is the probability that an ani-
mal is captured at least once. It is a conditional likelihood because it involves
only the captured animals. The quantities p∗is are the pij adjusted for possible
behavioural effects—see Mb and Mtb below. Equation (17.12) differs from the
positive binomial likelihood by the normalizing constants log

(
τ

τyi

)
, where yi is

the sample proportion of captures. This difference must be removed if compar-
isons between models are to be made using criteria such as AIC and BIC. Further
details are given in Sect. 17.2.1.

Otis et al. (1978) describe 8 variant models which apply to the positive-Bernoulli
model (17.12) under various assumptions, i.e., capture/recapture probabilities can
depend on time (t), individual heterogeneity (h) and behavioural response (b),
which are described below. Models which depend on one or a combination of these
effects are defined using subscripts, e.g., Mth depends on time and heterogeneity.
Half of the variants are prefixed with “h”. Since the conditional likelihood (17.12)
belongs to the exponential family, all 8 models are GLMs (Huggins and Hwang,
2011).

Heterogeneity models (Mh, Mth, Mbh and Mtbh) allow for each individual
animal to have its own probability of capture/recapture, independent of other an-
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Table 17.3 Upper table gives the relationships between the 8 Otis et al. (1978) models and
function calls. Note: see Table 17.5, and Sect. 3.3.1.2 details the parallel argument. Lower table

gives the η for the 8 models. The g = logit link is the default for all.

Model family =

M0/Mh posbinomial(omit.constant = TRUE)

posbernoulli.b(drop.b = FALSE ∼ 0)

posbernoulli.t(parallel.t = FALSE ∼ 0)

posbernoulli.tb(drop.b = FALSE ∼ 0, parallel.t = FALSE ∼ 0)

Mb/Mbh posbernoulli.b()

posbernoulli.tb(drop.b = FALSE ∼ 1, parallel.t = FALSE ∼ 0)

Mt/Mth posbernoulli.t()

posbernoulli.tb(drop.b = FALSE ∼ 0, parallel.t = FALSE ∼ 1)

Mtb/Mtbh posbernoulli.tb()

Model ηT

M0/Mh g(p)

Mb/Mbh (g(pc), g(pr))

Mt/Mth (g(p1), . . . , g(pτ ))

Mtb/Mtbh (g(pc1), . . . , g(pcτ ), g(pr2), . . . , g(prτ ))

imals. Hence, individual covariates such as weight and gender can be included in
the linear/additive predictors. Non-heterogeneity models (M0,Mb,Mt andMtb)
are simply intercept-only models, i.e., ∼ 1. Consequently, the description of
the models below can be grouped into pairs, e.g., Mh is M0 with covariates.
Both M0 and Mh are serviced by family = posbinomial(omit.constant =

TRUE) since pi = pij = p∗is in (17.12), and the others by a posbernoulli.-type
family function. They have the probabilities in (17.12) as their default fitted values.
All but M0/Mh are amenable to reduced rank regression, e.g., Sect. 17.4.

The 8 models have a nested structure of which Mtbh is the most general.
The simpler models can be fitted as special cases of more complex models with
appropriate arguments set. Table 17.3 summarizes these. It is noted that, al-
though posbernoulli.tb() may be used to fit the simpler models, its compu-
tation is less efficient in terms of memory and speed.

It is useful to consider the special case of τ = 2 sampling occasions given in
Table 17.4 to illustrate the interrelationships between the models. A short descrip-
tion of the variants are as follows.

M0/Mh The null model M0 is the simplest and has homogeneous capture

probabilities H0 : pij = p. It indicates that all animals have the
same probability of capture regardless of the sampling occasion. In
its original formulation, the catchability p in M0 did not depend
on any covariates (intercept-only). Since VGAM allows for general η,
the model is better described as Mh. Both models may be fitted
by posbinomial() by summing the response as counts over the sam-
pling occasions. The default link is η = g(p) for g = logit link.

Note that Otis et al. (1978) described the extreme case for Mh

where pij = pi with pi being parameters in their own right.
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Table 17.4 Capture history sample space and corresponding probabilities for various models of
a τ = 2 sample capture–recapture experiment of a closed population. Here, pj refers to sampling

period j. The “00” row is never realized in sample data. The VGAM family function for fitting
the model is given in the last row. Models without the “h” prefix are intercept-only models.

Capture Joint probability

history M0/Mh Mb/Mbh Mt/Mth Mtb/Mtbh

01 (1− p)p (1− pc) pc (1− p1)p2 (1− pc1) pc2

10 p(1− p) pc(1− pr) p1(1− p2) pc1(1− pr2)

11 p2 pc pr p1 p2 pc1 pr2

00 (1− p)2 (1− pc)2 (1− p1)(1− p2) (1− pc1)(1− pc2)

M = dim(η) 1 2 2 (= τ) 3 (= 2τ − 1)

Family posbinomial() posbernoulli.b() posbernoulli.t() posbernoulli.tb()

While this could possibly be fitted by creating a covariate of the
form factor(1:n) there would be far too many parameters for
comfort. Such an extreme case is not recommended, to avoid over-
parameterization.

Mt/Mth ForMt, the probabilities of capture are the same for each animal but

may vary with time, i.e., H0 : pij = pj . In VGAM, the default links
and constraints are

η = (logit(p1), . . . , logit(pτ ))
T and H1 = Iτ , Hk = 1τ , (17.13)

and these can be seen in

> args(posbernoulli.t)

function (link = "logit", parallel.t = FALSE ~ 1, iprob = NULL,

p.small = 1e-04, no.warning = FALSE)

NULL

Of course, the number of parameters grows proportionally with τ .

Mb/Mbh It is well-known that some species of animals acquire a behavioural

change from their first capture. Let pc and pr be the probability of cap-
ture and recapture, respectively. If pc < pr or pr < pc, then these are
known as being trap-happy and trap-shy, respectively. Trap-happiness
may be due to the consumption of food during capture. Trap-shyness
may be due to the overall negative experience of the animal due to
injury, handling, fear, etc. Let (η1, η2) = (logit(pc), logit(pr)) be the
default link functions for posbernoulli.b(). Then the denominator
of (17.12) becomes 1− (1− pc)

τ and, because argument I2 = FALSE,

g(pc) = η1 = ηc, (17.14)

g(pr) = η2 = ηb + ηc, say, (17.15)

where ηc and ηb model the capture and behavioural effects. That is,
the difference in parallelism ηb(x) = η2(x) − η1(x) can be ascribed
as the behavioural effect on the g-scale. For example, variables whose
coefficients in ηb are positive correspond to trap-happiness.
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Unless the data set is large, one will want to keep ηb as simple as
possible, such as by using a dummy variable—then it is convenient to
absorb it into the intercept term. This is achieved by the default

H1 =

(
0 1
1 1

)

, H2 = H3 = · · · =

(
1
1

)

. (17.16)

Hence the first coefficient β∗
(1)1 = ηb. If Hk �= (1, 1)T (i.e., not par-

allel), then argument I2 specifies whether Hk is as H1 above or IM ,
the usual trivial constraint matrix. We have

> args(posbernoulli.b)

function (link = "logit", drop.b = FALSE ~ 1,

type.fitted = c("likelihood.cond","mean.uncond"), I2 = FALSE,

ipcapture = NULL, iprecapture = NULL, p.small = 1e-04,

no.warning = FALSE)

NULL

To remove any behavioural effect, set drop.b = FALSE ∼ 0 to re-
move the first column from the constraint matrix H1. Then this re-
duces to M0/Mh.

Mtb/Mtbh For these, the (2τ − 1)-vector η is defined in Table 17.3. There are

three arguments which determine whether there are behavioural ef-
fects and/or time effects: parallel.b, parallel.t and drop.b. The
last two are as above. Their defaults can be seen

> args(posbernoulli.tb)

function (link = "logit", parallel.t = FALSE ~ 1,

parallel.b = FALSE ~ 0, drop.b = FALSE ~ 1,

type.fitted = c("likelihood.cond", "mean.uncond"), imethod = 1,

iprob = NULL, p.small = 1e-04, no.warning = FALSE,

ridge.constant = 0.01, ridge.power = -4)

NULL

and their effect on theHk can be seen in Table 17.5. One would usually
want to keep the behavioural effect to be equal over different sampling
occasions, therefore parallel.b should be normally left to its default.
Allowing it to be FALSE for a covariate xk means an additional τ − 1
parameters—something that is not warranted unless the data set is
very large and/or the behavioural effect varies a lot over time.

Given the above models, how can N be estimated? Let

pi(β
∗) = 1−

τ∏

s=1

(1− p∗is) (17.17)

be the probability that animal i is captured at least once in the course of the study.
It is the denominator of (17.12). Here, β∗ are all the regression coefficients of the
model related to the capture (but not recapture) probabilities. Then

N̂ =
n∑

i=1

pi(β
∗)−1 (17.18)
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Table 17.5 For the general Mtbh(τ) family posbernoulli.tb(), the constraint matrices corre-
sponding to the arguments parallel.t, parallel.b and drop.b. In each cell, the LHS matrix

is Hk when drop.b is FALSE for xk. The RHS matrix is when drop.b is TRUE for xk; it simply
deletes the left submatrix of Hk. See also Table 17.3. Notes: (i) the default for posbernoulli.tb()
is H1 = the LHS matrix of the top-right cell, and Hk = the RHS matrix of the top-left cell.
(ii) Iτ [−1,] = (0τ−1|Iτ−1).

parallel.t !parallel.t

parallel.b

(
0τ 1τ

1τ−1 1τ−1

)

,

(
1τ

1τ−1

) (
0τ Iτ

1τ−1 Iτ [−1,]

)

,

(
Iτ

Iτ [−1,]

)

!parallel.b

(
Oτ×(τ−1) 1τ

Iτ−1 1τ−1

)

,

(
1τ

1τ−1

) (
Oτ×(τ−1) Iτ

Iτ−1 Iτ [−1,]

)

,

(
Iτ

Iτ [−1,]

)

is unbiased (and the Horvitz and Thompson (1952) estimator) for the population

size N . It can be shown that an associated estimate of the variance of N̂(β∗) is

s2(β∗) =

n∑

i=1

pi(β
∗)−2 [1− pi(β

∗)] (17.19)

if β∗ is known. If β∗ is to be estimated, then one can use

Var
(
N̂(β̂

∗
)
)
≈ s2(β̂

∗
) + d̂

T
V̂ar(β̂

∗
) d̂, (17.20)

where

d =
dN(β∗)
dβ∗ =

n∑

i=1

pi(β
∗)−2 dpi(β

∗)
dβ∗

=

n∑

i=1

−1
pi(β

∗)2

τ∑

s=1

⎡

⎣
τ∏

t=1, t �=s

(1− p∗it)

⎤

⎦ ∂p∗is
∂β∗ . (17.21)

This follows from a Taylor series expansion of N̂(β̂
∗
) about N̂(β∗).

In closing, we note in passing that several capture–recapture methods can be
fitted as loglinear GLMs, e.g., as implemented by Rcapture. From Baillargeon and
Rivest (2007), let y = (y1, . . . , yτ )

T be the capture history for a particular animal.
For simplicity, assume variantM0 so that P (y) = (1−p)τ−y∗

py
∗
where y∗ = yT1

is the number of times the animal is caught. The expected number of animals in
the population having capture history y is

μy = N × P (y) = exp {log (N(1− p)τ ) + y∗ logit p} . (17.22)

Stacking all 2τ−1 possibilities of y together suggests fitting μ = exp{Xβ}, with X
being a (2τ −1)×2 model matrix with rows of the form (1, y∗j ). Let the coefficients

be β = (β1, β2)
T , say. Then one can use N̂ = n + exp(β̂1). This is justified

because exp(β1) = exp{log(N(1 − p)τ )} = N × P (y0) = μ0 where y = 0 is
unobservable, and μ0 is the expected number of animals never captured. Of course,
the most straightforward approach to (17.22) is to assume a Poisson model.
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17.2.1 Further Software Details

All the family functions of Table 17.3 except posbinomial() should have an n× τ
capture history matrix as the response, preferably with column names. With zij
defined (Table 17.2) as indicators of the past capture of animal i, these are stored
on VGAM objects as the cap.hist1 component in the extra slot. Also, there is
a component called cap1 which indicates on which sampling occasion the first
capture occurred.

All family functions return a point estimate N̂ (17.18) in the extra slot with
component name N.hat. Likewise, its standard error based on the square root
of (17.20) has component name SE.N.hat. The posbinomial() family function
differs from the others in that the number of trials can differ from observation to
observation; if so then the two values are not computed.

The AIC, BIC and other information criteria are widely used by biologists
especially (Burnham and Anderson, 2002) to choose between the 8 models. For
fitting M0/Mh by posbinomial(), one must set argument omit.constant =

TRUE if model comparisons are to be made with AIC() or BIC(), since one needs
to omit the log-normalizing constant log

(
τ

τyi

)
from its log-likelihood so that it is

comparable with the logarithm of (17.12).
By default, all the family functions have fitted values corresponding to the

probabilities in the conditional likelihood function (17.12), viz.

p̂
yij

ij (1− p̂ij)
1−yij ·

[

1−
τ∏

s=1

(
1− p̂i,cs

)
]−1

.

Alternatively, the unconditional means of the Yj can be returned as the fitted
values upon selecting type.fitted = "mean" argument. They are μ1 = E(Y1) =
pc1/(1−Q1:τ ), μ2 = [(1− pc1) pc2 + pc1 pr2]/(1−Q1:τ ), and for j = 3, 4, . . . , τ ,

μj = (1−Q1:τ )
−1

{

pcj Q1:(j−1) + prj

[

pc1 +

j−1∑

s=2

pcs Q1:(s−1)

]}

. (17.23)

Estimator N̂(β∗) in (17.18) may be unstable when any of the pi(β
∗) are very

close to 0, and by default, a warning is issued if this occurs. The family functions
also have arguments which specify exactly what is meant by being close to 0, and
to suppress the warning if so desired.

Yee et al. (2015) give the first and expected second derivatives for the Mtbh,
Mbh and Mth models. In the implementation of posbernoulli.tb(), argu-
ments ridge.constant and ridge.power, add a ridge parameter to the some
of the diagonal EIM elements to ensures that the working weight matrices are
positive-definite. The ridge factor decays to zero as iterations proceed, and it plays
a negligible role upon convergence. See Sect. 9.2.1 for details.

17.2.2 Deermice Example

Huggins (1991) reports an analysis involving fitting all 8 variations of the positive-
Bernoulli model to a small deer mouse (Peromyscus maniculatus) data set. A deer
mouse is a small rodent native to North America, and about 8 to 10 cm long,
not counting the length of the tail. There were 38 individual mice caught over 6
trapping occasions. Individual body weight, sex and age were also recorded, which
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we use as covariates to model heterogeneity. The data are given in the data
frame deermice:

> cbind(head(deermice), ’ ’ = tail(rownames(deermice)), tail(deermice))

y1 y2 y3 y4 y5 y6 sex age weight y1 y2 y3 y4 y5 y6 sex age weight

1 1 1 1 1 1 1 0 y 12 33 0 0 0 0 1 0 0 y 14

2 1 0 0 1 1 1 1 y 15 34 0 0 0 0 1 0 1 y 11

3 1 1 0 0 1 1 0 y 15 35 0 0 0 0 1 0 0 a 24

4 1 1 0 1 1 1 0 y 15 36 0 0 0 0 0 1 0 y 9

5 1 1 1 1 1 1 0 y 13 37 0 0 0 0 0 1 0 a 16

6 1 1 0 1 1 1 0 a 21 38 0 0 0 0 0 1 1 a 19

We mimic part of the analysis by fitting theMbh,Mtb andMtbh models as follows.

> deermice$Age <- 2 - as.numeric(deermice$age) # 0 == young, 1 == adult

> deermice$Sex <- 1 - as.numeric(deermice$sex) # 0 == female, 1 == male

> M.bh <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ weight + Sex + Age,

posbernoulli.b, data = deermice)

> M.tb <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ 1,

posbernoulli.tb, data = deermice)

> M.tbh <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ weight + Sex + Age,

posbernoulli.tb, data = deermice)

Based on AIC values, the analysis concluded that Mbh was superior. Then

> coef(M.bh)

(Intercept):1 (Intercept):2 weight Sex Age

1.17596 -2.90702 0.15917 0.91629 -1.88451

> sqrt(diag(vcov(M.bh)))

(Intercept):1 (Intercept):2 weight Sex Age

0.40981 0.90493 0.06432 0.35024 0.63498

which agree with the results of Huggins (1991). The first coefficient, 1.18, is positive
and hence implies a trap-happy effect. The Wald statistic for the behavioural effect,
being 2.87, suggests the effect is real. Lastly,

> c(M.bh@extra$N.hat, M.bh@extra$SE.N.hat)

[1] 47.1442 7.3219

suggests there are N̂ = 47 mice in the population of interest, with an associated
standard error of 7.32.

To perform some model checking, we now confirm that the component function
of weight is indeed linear. To do this we apply some smoothing, but do not allow
the smooth to be too flexible because of the size of the data set.

> deermice.bh <- vgam(cbind(y1, y2, y3, y4, y5, y6) ~ s(weight, df = 3) + Sex + Age,

posbernoulli.b, data = deermice)

> plot(deermice.bh, se = TRUE, las = 1, lcol = "blue", scol = "orange",

rcol = "purple", scale = 5)

Plots of the component functions against each covariate are given in Fig. 17.3.
In general, weight does seem to have a (positive) linear effect on the logit scale.
Young deer mice appear more easily caught compared to adults, and gender seems
to have a smaller effect than weight. A more formal test of linearity is
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Fig. 17.3 Estimated component functions for the deermice VGAM.

> summary(deermice.bh)

Call:

vgam(formula = cbind(y1, y2, y3, y4, y5, y6) ~ s(weight, df = 3) +

Sex + Age, family = posbernoulli.b, data = deermice)

Number of linear predictors: 2

Names of linear predictors: logit(pcapture), logit(precapture)

Dispersion Parameter for posbernoulli.b family: 1

Log-likelihood: -137.93 on 69.04 degrees of freedom

Number of iterations: 12

DF for Terms and Approximate Chi-squares for Nonparametric Effects

Df Npar Df Npar Chisq P(Chi)

(Intercept):1 1

(Intercept):2 1

s(weight, df = 3) 1 2 3.22 0.1942

Sex 1

Age 1

and this suggests there is no significant nonlinearity. This is in agreement
with Hwang and Huggins (2011) who used kernel smoothing.

17.2.3 Prinia Example

This example looks at the Yellow-bellied Prinia (Prinia flaviventris), a common
bird species located in Southeast Asia. A capture–recapture experiment was con-
ducted at the Mai Po Nature Reserve in Hong Kong during 1991, where cap-
tured individuals had their wing lengths measured and fat index recorded. A total
of τ = 19 weekly capture occasions were considered, where n = 151 distinct birds
were captured. Here, we use (standardized) wing length and fat index (0 or 1) as
covariates, in conjunction with posbinomial(). Part of the relevant data are



17.2 The Positive-Bernoulli Distribution 483

> head(prinia)[, 1:4]

length fat cap noncap

1 1.006504 1 5 14

2 1.264626 1 3 16

3 -0.025983 1 6 13

4 3.071478 0 1 18

5 0.438636 1 5 14

6 0.748382 0 1 18

We allow smoothing the wing length variable as follows.

> M.h.GAM <-

vgam(cbind(cap, noncap) ~ s(length, df = 3) + fat, data = prinia,

posbinomial(omit.const = TRUE, parallel = TRUE ~ s(length, df = 3) + fat))

> c(M.h.GAM@extra$N.hat, M.h.GAM@extra$SE.N.hat)

[1] 447.63 108.89

> plot.info <- plot(M.h.GAM, se = TRUE)

The fitted capture probabilities, with and without fat content, are plotted against
wing length in Fig. 17.4. The code to do this is as follows.

> fit2.info <- plot.info@preplot[[1]]

> fat.effect <- coef(M.h.GAM)["fat"]

> intercept <- coef(M.h.GAM)["(Intercept)"]

> ooo <- order(fit2.info$x)

> centring.const <- mean(prinia$length) - coef(M.h.GAM)["s(length, df = 3)"]

> plotframe <- data.frame(lin.pred.b = intercept + fat.effect * 1 +

centring.const + fit2.info$y[ooo],

lin.pred.0 = intercept + fat.effect * 0 +

centring.const + fit2.info$y[ooo],

x2 = fit2.info$x[ooo])

> plotframe <- transform(plotframe,

up.lin.pred.b = lin.pred.b + 2 * fit2.info$se.y[ooo],

lo.lin.pred.b = lin.pred.b - 2 * fit2.info$se.y[ooo],

up.lin.pred.0 = lin.pred.0 + 2 * fit2.info$se.y[ooo],

lo.lin.pred.0 = lin.pred.0 - 2 * fit2.info$se.y[ooo])

> plotframe <- transform(plotframe,

fv.b = logit( lin.pred.b, inverse = TRUE),

up.fv.b = logit(up.lin.pred.b, inverse = TRUE),

lo.fv.b = logit(lo.lin.pred.b, inverse = TRUE),

fv.0 = logit( lin.pred.0, inverse = TRUE),

up.fv.0 = logit(up.lin.pred.0, inverse = TRUE),

lo.fv.0 = logit(lo.lin.pred.0, inverse = TRUE))

> with(plotframe,

matplot(x2, cbind(up.fv.b, fv.b, lo.fv.b), type = "l", col = "blue",

lty = c(2, 1, 2), las = 1, cex.lab = 1.5, lwd = 1.5, cex.axis = 1.5,

main = "", ylab = ~ hat(p), xlab = "Wing length (standardized)"))

> with(plotframe, matlines(x2, cbind(up.fv.0, fv.0, lo.fv.0), col = "darkorange",

lty = c(2, 1, 2), lwd = 1.5))

> legend("topleft", legend = c("Fat present", "Fat not present"), bty = "n",

lwd = 1.5, col = c("blue", "darkorange"), merge = TRUE, cex = 1.5)

The capture probabilities appear larger for individuals with fat content present.
As is usually the case, the approximate ±2 pointwise SEs become wider at the
boundaries.
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Fig. 17.4 Capture probability estimates with approximate ±2 pointwise SEs, versus wing length
with (blue) and without (orange) fat content present fitting a Mh-VGAM, using the prinia data.

17.2.4 A Mtbh Example

Here, we will attempt to mimic the results of Huggins (1989), who fitted aMtbh to
a tiny data set of 18 individuals and 10 trapping occasions. For the ith individual,
the model will be written as (i = 1, . . . , 18, j = 1, . . . , 10 = τ)

logit pij = β∗
(1)1 zij + β∗

(2)1 + β∗
(1)2 · x2i + β∗

(1)3 · x3j , (17.24)

where β∗
(1)1 is the behavioural effect, and zij is defined in Table 17.2. Variable x2

is an ordinary individual covariate such as weight, but x3 is a time-varying or
occasion-specific covariate such as temperature or daily rainfall that is handled
using the xij argument described in Sect. 3.4. Variable x3 takes on variable val-
ues z1–z10 in the data frame depending on the linear predictor.

Firstly, let’s look at some of the data and, after renaming the variables, delete
two observations which were never caught (so that n = 18).

> head(Huggins89table1[, -c(5, 10, 15)], 4)

x2 y01 y02 y03 y05 y06 y07 y08 y10 t01 t02 t03 t05 t06 t07 t08 t09 t10

1 6.3 0 1 0 1 0 0 1 0 5.8 2.9 3.7 3.5 3.6 1.9 3 4.8 4.7

2 4.0 0 1 1 1 0 0 1 0 5.8 2.9 3.7 3.5 3.6 1.9 3 4.8 4.7

3 4.7 0 1 0 1 1 1 1 0 5.8 2.9 3.7 3.5 3.6 1.9 3 4.8 4.7

4 4.8 0 0 1 1 0 1 1 0 5.8 2.9 3.7 3.5 3.6 1.9 3 4.8 4.7

> small.table1 <- transform(Huggins89table1, x3.tij = t01,

T02 = t02, T03 = t03, T04 = t04, T05 = t05, T06 = t06,

T07 = t07, T08 = t08, T09 = t09, T10 = t10)

> small.table1 <- subset(small.table1,

y01 + y02 + y03 + y04 + y05 + y06 + y07 + y08 + y09 + y10 > 0)

Here, the Z02–Z10 are for the recapture ηj and there is no Z01 because recapture
is not possible at the first time occasion. Then (17.24) can be fitted by
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> fit.tbh <-

vglm(cbind(y01, y02, y03, y04, y05, y06, y07, y08, y09, y10) ~ x2 + x3.tij,

xij = list(x3.tij ~ t01 + t02 + t03 + t04 + t05 +

t06 + t07 + t08 + t09 + t10 +

T02 + T03 + T04 + T05 +

T06 + T07 + T08 + T09 + T10 - 1),

posbernoulli.tb(parallel.t = TRUE ~ x2 + x3.tij),

data = small.table1, trace = FALSE,

form2 = ~ x2 + x3.tij +

t01 + t02 + t03 + t04 + t05 + t06 + t07 + t08 + t09 + t10 +

T02 + T03 + T04 + T05 + T06 + T07 + T08 + T09 + T10)

The form2 argument is required if xij is used, and it needs to include all the vari-
ables in the model. It is from this formula that XVLM is constructed; the relevant
columns are extracted to construct the diagonal matrix in (3.40) in the specified
order of diagonal elements given by xij. Their names need to be uniquely specified.

To check, the constraint matrices are

> head(constraints(fit.tbh, matrix = TRUE), 4)

(Intercept):1 (Intercept):2 x2 x3.tij

[1,] 0 1 1 1

[2,] 0 1 1 1

[3,] 0 1 1 1

[4,] 0 1 1 1

> tail(constraints(fit.tbh, matrix = TRUE), 4)

(Intercept):1 (Intercept):2 x2 x3.tij

[16,] 1 1 1 1

[17,] 1 1 1 1

[18,] 1 1 1 1

[19,] 1 1 1 1

Then the β̂∗
(j)1 and their standard errors are

> coef(fit.tbh)

(Intercept):1 (Intercept):2 x2 x3.tij

1.09376 -0.63056 0.38449 -0.83692

> sqrt(diag(vcov(fit.tbh))) # SEs

(Intercept):1 (Intercept):2 x2 x3.tij

0.53648 1.36080 0.22291 0.18567

These results largely agree with Huggins (1989). The first coefficient, 1.09, is posi-
tive and hence implies a trap-happy effect. The Wald statistic for the behavioural
effect is 2.04, which suggests that the effect is real.
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Estimates of the population size can be obtained from

> fit.tbh@extra$N.hat # Estimate of the population size N

[1] 20.935

> fit.tbh@extra$SE.N.hat # Its standard error

[1] 3.4559

17.2.5 Using Select()

We now refit fit.tbh using Select() to illustrate the avoidance of manual ma-
nipulation of cumbersome formulas and response matrices with many columns,
especially as related to arguments form2 and xij. For example, if pdata is a data
frame with columns y01, y02, . . . , y30, then Select(pdata, "y") will return the
matrix cbind(y01, y02, ..., y30), provided that there are no other variables
beginning with "y". Another example is

Select(pdata, "t", as.formula = TRUE, lhs = "ymatrix", rhs = "0")

which will return the formula ymatrix ∼ t01 + t02 + · · · + t30 + 0, provided
that there are no other variables beginning with "t". At present, the arguments
of Select() are

> args(Select)

function (data = list(), prefix = "y", lhs = NULL, rhs = NULL,

rhs2 = NULL, rhs3 = NULL, as.character = FALSE, as.formula.arg = FALSE,

tilde = TRUE, exclude = NULL, sort.arg = TRUE)

NULL

Starting with Huggins89table1, the following code works quite generally
provided that the original variables are labelled as y01, y02, . . . , and t01, t02, . . . .

> Hdata <- subset(Huggins89table1, rowSums(Select(Huggins89table1, "y")) > 0)

> Hdata.T <- Select(Hdata, "t") # A 10-column submatrix copy

> colnames(Hdata.T) <- gsub("t", "T", colnames(Hdata.T)) # Rename colnames

> Hdata <- data.frame(Hdata, Hdata.T)

> Hdata <- transform(Hdata, x3.tij = y01)

> Form2 <- Select(Hdata, prefix = TRUE, as.formula = TRUE)

> Xij <- Select(Hdata, c("t", "T"), as.formula = TRUE,

sort = FALSE, rhs = "0", lhs = "x3.tij", exclude = "T01")

> fit.tbh <- vglm(Select(Hdata, "y") ~ x2 + x3.tij, form2 = Form2, xij = list(Xij),

posbernoulli.tb(parallel.t = TRUE ~ x2 + x3.tij),

data = Hdata, trace = FALSE) # Setting trace = TRUE is a good idea

> coef(fit.tbh) # Same as before

(Intercept):1 (Intercept):2 x2 x3.tij

1.09376 -0.63056 0.38449 -0.83692

The argument Form2 might be described as greedy here because it contains more
terms than is strictly needed. In fact, it contains all the columns of Hdata actually.

Note that this demonstrates the ability to enter a matrix response without an
explicit cbind(). Also, if Y <- Select(Hdata, "y"), then vglm(Y ∼ · · · ) can
work as well—however, this can be argued as having bad style because the response
is detached from the data frame.
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In closing, it is noted that an alternative of Select() is to use the R func-
tion subset(), for example

subset(pdata, TRUE, select = y01:y10) # Same as with(pdata, cbind(y01,...,y10))

is equivalent to with(pdata, cbind(y01, ..., y10)). More generally,

subset(pdata, TRUE, select = grepl("^y", colnames(pdata)))

selects all variables beginning with “y”. However, subset() does not generate
formulas.

17.2.6 Ephemeral and Enduring Memory Example

Yang and Chao (2005) consider modelling the behavioural effect with both endur-
ing (long-term) and ephemeral (short-term) memory components. For example,
the short-term component depends on whether or not the animal was caught on
the most recent sampling occasion. We call this a lag-1 effect. In the example of
this section, which combines aspects of the previous 3 examples, we illustrate how
this may be easily achieved within the VGLM framework; it is another case of
using the xij argument. We retain the enduring component as with the Mtbh:
the first column of H1 is (0T

τ ,1
T
τ−1)

T applies to all the recapture probabilities. For
simplicity, we first consider a lag-1 effect only for the short-term component.

In the following, we fit a Mtbh model to deermice with both long-term and
short-term effects:

logit pcs = β∗
(2)1 + β∗

(1)2 sex+ β∗
(1)3 weight,

logit prt = β∗
(1)1 + β∗

(2)1 + β∗
(1)2 sex+ β∗

(1)3 weight+ β∗
(1)4 yt−1,

where s = 2, . . . , τ , t = 1, . . . , τ and τ = 6. The inclusion of yt−1 is to model the
short-term effect, which is only activated upon a capture or recapture, and lasts
to the next sampling occasion.

> deermice <- transform(deermice, Lag1 = y1)

> M.tbh.lag1 <-

vglm(cbind(y1, y2, y3, y4, y5, y6) ~ sex + weight + Lag1, data = deermice,

posbernoulli.tb(parallel.t = FALSE ~ 0,

parallel.b = FALSE ~ 0,

drop.b = FALSE ~ 1),

xij = list(Lag1 ~ fill(y1) + fill(y2) + fill(y3) + fill(y4) +

fill(y5) + fill(y6) +

y1 + y2 + y3 + y4 + y5),

form2 = ~ sex + weight + Lag1 +

fill(y1) + fill(y2) + fill(y3) + fill(y4) +

fill(y5) + fill(y6) +

y1 + y2 + y3 + y4 + y5 + y6)

> coef(M.tbh.lag1)

(Intercept):1 (Intercept):2 sex weight Lag1

1.2776930 -0.4268384 -1.1513794 0.0058372 0.0230575
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The coefficient of Lag1, 0.0231, is the estimated ephemeral effect β̂∗
(1)4. The

estimated enduring effect β̂∗
(1)1 has value 1.2777. Note that the fill() function is

used to create 6 variables having 0 values, i.e., 0n.
There is an alternative method to fit the above model; here, we set HLag1 =

(0T
τ ,1

T
τ−1)

T , and the variables fill(y1),. . . ,fill(y6) can be replaced by variables

that do not need to be 0. Importantly, the two methods have X#
(ik)Hk in (3.40)

being the same regardless. The second alternative method requires constraint ma-
trices to be inputted using the constraints argument. For example,

> deermice <- transform(deermice, Lag1 = y1)

> deermice <- transform(deermice, f1 = y1, f2 = y1, f3 = y1, f4 = y1,

f5 = y1, f6 = y1)

> tau <- 6

> H2 <- H3 <- cbind(rep(1, 2*tau-1))

> H4 <- cbind(c(rep(0, tau), rep(1, tau-1)))

> M.tbh.lag1.method2 <-

vglm(cbind(y1, y2, y3, y4, y5, y6) ~ sex + weight + Lag1, data = deermice,

posbernoulli.tb(parallel.b = TRUE ~ 0, parallel.t = TRUE ~ 0),

constraints = list("(Intercept)" = cbind(H4, 1), sex = H2, weight= H3,

Lag1 = H4),

xij = list(Lag1 ~ f1 + f2 + f3 + f4 + f5 + f6 +

y1 + y2 + y3 + y4 + y5),

form2 = Select(deermice, prefix = TRUE, as.formula = TRUE))

> coef(M.tbh.lag1.method2)

(Intercept):1 (Intercept):2 sex weight Lag1

1.2776930 -0.4268384 -1.1513794 0.0058372 0.0230575

is identical. In closing, it can be noted that more complicated models can be
handled. For example, the use of pmax() to handle lag-2 effects as follows.

> deermice <- transform(deermice, Lag2 = y1)

> M.tbh.lag2 <-

vglm(cbind(y1, y2, y3, y4, y5, y6) ~ sex + weight + Lag2, data = deermice,

posbernoulli.tb(parallel.t = FALSE ~ 0,

parallel.b = FALSE ~ 0,

drop.b = FALSE ~ 1),

xij = list(Lag2 ~ fill(y1) + fill(y2) + fill(y3) + fill(y4) +

fill(y5) + fill(y6) +

y1 + pmax(y1, y2) + pmax(y2, y3) + pmax(y3, y4) +

pmax(y4, y5)),

form2 = ~ sex + weight + Lag2 +

fill(y1) + fill(y2) + fill(y3) + fill(y4) +

fill(y5) + fill(y6) +

y1 + pmax(y1, y2) + pmax(y2, y3) + pmax(y3, y4) +

pmax(y4, y5) + y6)

> coef(M.tbh.lag2)

(Intercept):1 (Intercept):2 sex weight Lag2

1.9676972 -0.4417297 -1.2172470 0.0074673 -0.7222657

It is left as an exercise to the reader (Ex. 17.11) to show how both lag-1 and lag-2
effects may be estimated from the same model.
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17.3 The Zero-Inflated Binomial Distribution

One application area of the zero-inflated binomial (ZIB) distribution is occupancy
survey modelling. Here, data is collected by repeatedly sampling n sites and count-
ing the total number of times a species is present at each site. For example, Webb
et al. (2014) consider a migratory and endangered swift parrot called Lathamus
discolor which nests in tree hollows in Tasmania, Australia. Suppose that all sites
are either continuously occupied or unoccupied during the survey period. Detec-
tion is imperfect so that there is a detection probability pij of sighting the species
at the jth of Ni visits to site i, given that it is truly occupied there. The occupancy
probability φ∗

i is the chance the species is really present at site i. If it is assumed
that detections occur independently, and are constant across the survey period
(pi1 = · · · = pi,Ni

(= pi, say)), then Y ∗
i ∼ Binomial(Ni, zi pi) where Y ∗

i = Ni Yi

is the total number of times the species is detected there. The latent binary vari-
able zi indicates whether site i is truly occupied. The use of Y ∗

i is because Yi is
retained as a sample proportion. Of course, y∗i > 0 implies zi = 1, and zi = 0
implies y∗i = 0. The model can be fitted with zibinomialff().

If Ni = 1, then it is not possible to separate out the effects of pi and φ∗
i .

Indeed, imperfect detection makes estimation and modelling difficult in general.
Another major weakness is that the pij may depend on the abundance of the
species occupying the site—an unknown quantity. A recent article highlighting
the subtleties and difficulties of occupancy survey modelling is Welsh et al. (2013);
see also McCrea and Morgan (2015, Chap. 6).

17.4 RR-ZIPs and RR-ZA Models

In Chap. 5 we saw reduced-rank regression (RRR) was applied to some of the
models described in this chapter, to good effect. In particular, the ZIP becomes a
(rank-1) reduced-rank zero-inflated Poisson distribution, or RR-ZIP. In a nutshell,
this RR-VGLM variant is motivated by applications where the probability of a
non-zero value may have a monotonic relationship with the Poisson mean.

‘Constrained zero-inflated generalized additive models’, or COZIGAMs, were
defined by Liu and Chan (2010) as (5.19)–(5.20) but with ηj as additive predictors.
One could use regression splines to estimate the component functions, therefore a
COZIGAM might be fitted using something akin to

cozivgam.zip <- rrvglm(y ~ bs(x2, 3) + ns(x3, 3), zipoissonff(zero = NULL),

data = zdata)

In the case of (5.19)–(5.20) remaining as ηj = linear predictors, the RR-ZIP might
be better called a COZIGLM or COZIVGLM rather than a COZIGAM. The cou-
pling can be seen, for example, if μ increases then η1 increases, and then η2 and φ
increase provided that a21 is positive.

The statistical and software infrastructure allows natural extensions to other
models, e.g., a COZIVGLM applied to a NB-2 model might be fitted by

rrzinb <-

cozivglm.nb2 <-

rrvglm(y ~ x2 + x3, zinegbinomial(zero = NULL), data = zdata, str0 = 3)



490 17 Zero-Inflated, Zero-Altered and Positive Discrete Distributions

Here, str0 stands for a structural zero, and rrzinb stands for an RR-ZINB. Equa-
tions (5.19)–(5.20) hold for this model too, and since k is estimated as an intercept-
only, the variance function is that of NB-2. The ability to fit COZIVGLMs and
COZIVGAMs based on Poisson and NB distributions suggests a more accurate
naming system (e.g., COZIVGLM-ZIP and COZIVGAM-ZINB-2), however there
is good reason to loosely refer them simply as RR-ZIPs and RR-ZINBs, etc.

17.4.1 RR-ZAPs and RR-ZABs and Other Variants

Of course, the RR-VGLM idea can be conveyed to ZAPs and ZABs too, etc. What
does one obtain? The RR-zero-altered Poisson distribution, or RR-ZAP, yields the
coupling

φ(x)

1− φ(x)
∝ [μ(x)]

a−1
21 . (17.25)

That is, the odds of observing a zero is proportional to the Poisson mean raised
to some power—this is highly interpretable.

The RR-zero-altered binomial distribution, or RR-ZAB, with a logit link applied
to both φ = P (Y = 0) and the binomial probability of success p, results in the
coupling

φ(x)

1− φ(x)
= K ·

(
p(x)

1− p(x)

)α

(17.26)

for parameters α and K to be estimated. That is, the odds of an observed zero is
proportional to the odds of success in an ordinary binomial distribution raised to
some power—this is highly interpretable too. Note that α is unconstrained, e.g.,
it is unnecessary for α > 0.

As a final example here, RRR can be applied to the Mbh model to yield the
relationship

pr(x)

1− pr(x)
= K1 ·

(
pc(x)

1− pc(x)

)a21

(17.27)

for pc(x), pr(x), K1 and a21 to be estimated. A typical call is of the form

rrvglm(cbind(y1, y2, y3, y4, y5) ~ x2 + x3 + x4, posbernoulli.b, data = pdata)

which may generate some warnings that may be ignored. Of course, an RR-Mth

might be a good idea, especially with large τ and/or many covariates. But a diffi-
culty with an RR-Mtbh is that the RRR cannot model pcj and prj in a symmetric
manner, e.g., for a rank-1 model, by constraining two elements of A to be equal.
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mann and Boes (2006), Winkelmann (2008), Cameron and Trivedi (2013). Other
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(2014) develops RRR for coupling two ηjs, and mentions some other R packages
for fitting ZI- and ZA-distributions.
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Some references on capture–recapture methods related to the positive-Bernoulli
distribution: Huggins (1991) who justified the use of (17.12) for the purpose of
asymptotic theory, Williams et al. (2002), Amstrup et al. (2005), McCrea and
Morgan (2015).

Exercises

Ex. 17.1. Logarithmic and Positive-NB Distributions
Show that the logarithmic distribution (logff() in Table 11.10) is the lim-
iting distribution of the positive (0-truncated) negative binomial distribution
(Table 17.6) as k → 0+. Hint: a series expansion of the reciprocal gamma function
is 1/Γ (k) = k + γk2 +O(k3). [Johnson et al. (2005)]

Ex. 17.2. Explain why Table 17.6 has no posgeometric().

Ex. 17.3. If θ = (φ, λ)T in the ZIP distribution (17.9), determine the score
vector, and show that the EIM is given by

⎛

⎜
⎜
⎜
⎝

1− e−λ

(1− φ)(φ+ (1− φ) e−λ)

−e−λ

φ+ (1− φ) e−λ

−e−λ

φ+ (1− φ) e−λ

1− φ

λ
− φ(1− φ) e−λ

φ+ (1− φ) e−λ

⎞

⎟
⎟
⎟
⎠

. (17.28)

Ex. 17.4. Derive the score vector and EIM of the ZIB detailed in Table 17.7.

Ex. 17.5. Family function posbernoulli.tb() has η defined as in Table 17.3
rather than as η = (g(pc1), g(pc2), g(pr2), . . . , g(pcτ ), g(prτ ))

T . Using the matrix-
band format described in Sect. 18.3.5, show that the chosen enumeration requires
less storage for the working weight matrices. Approximately what percentage is
the savings when τ is large?

Ex. 17.6. CDFs for ZA- and ZI-Distributions
Let F be the CDF corresponding to the parent distribution in Fig. 17.1.

(a) Write down the CDF of the ZA-distribution as a function of ω and F .
(b) Do the same for the ZI-distribution as a function of φ and F .
(c) Invert your answer in (a) so as to obtain an expression for the p-quantile,

where 0 < p < 1.
(d) Invert your answer in (b) so as to obtain an expression for the p-quantile,

where 0 < p < 1.

Ex. 17.7. Capture–recapture Models Fitted to hare in Rcapture
Consider the hare data frame in package Rcapture.

(a) Fit models M0, Mb, Mt, Mtb models to the data.
(b) Obtain the estimates of N from the models. Do they differ much?
(c) Compute the AICs of the models and suggest which fit is to be preferred. For

that one, obtain an approximate 95% confidence interval for N .
(d) Repeat (c) using BICs. Is there much of a difference in the answers?
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Ex. 17.8. Mtbh(τ = 3)
Consider the Mtbh model with τ = 3 sampling occasions.

(a) Write down the equivalent of Table 17.4 for this model.
(b) With covariates x2 and x3 plus the intercept, and with τ = 3, write down η,

and the constraint matrices corresponding to parallel.b = TRUE ∼ x2 - 1

and parallel.t = FALSE ∼ x3.

Ex. 17.9. Positive-Bernoulli EIMs for Mtbh(τ = 2)
Consider sample data generated by Mtb(τ = 2) in Table 17.4.

(a) Derive the marginal distributions f1(y1) and f2(y2). Derive their means μ1

and μ2.
(b) Derive the score vector and EIM.

Ex. 17.10. Positive-Bernoulli EIMs for Mbh(τ = 2) and Mbh(τ = 3)

(a) Consider the Mbh model (17.14)–(17.15) with τ = 2 sampling occasions. This
is also illustrated in Table 17.4. Show that, for one observation, −E(∂2
/∂p2r) =
pc/

{
pr(1− pr)(1− (1− pc)

2)
}
. Explain why the EIM is diagonal, and derive

its other diagonal element.
(b) Repeat (a) with the τ = 3 case. Show that, for one observation,−E(∂2
/∂p2c) =

(3− 6pc + 7p2c − 3p3c)/
{
pc(1− pc)(1− (1− pc)

3)
}
+ ∂A/∂pc where A = 3(1−

pc)
2/(1− (1− pc)

3).
(c) Explain why an RR-Mbh model results in (17.27).
(d) Write down an expression for ηj produced by

rrvglm(cbind(y1, y2, y3, y4, y5) ~ x2 + x3 + x4, posbernoulli.t, data = pdata)

Ex. 17.11. Adapt the short-term memory model M.tbh.lag2 from Sect. 17.2.6
so that it has a parameter for a lag-1 effect and another parameter for a lag-2
effect. Of course, there will be the usual enduring effect β̂∗

(1)1.

Ex. 17.12. posbernoulli.t() with the xij Argument
In Sect. 17.2.4, a Mtbh model was fitted to simulated data.

(a) Fit a Mth model using posbernoulli.t().
(b) Fit the equivalent model as (a) but using posbernoulli.tb().

Ex. 17.13. Mean and Variances

(a) From (17.2)–(17.3), derive the mean and variance for the positive-Poisson,
positive-binomial and positive-geometric distributions.

(b) From (17.8), do the same for these ZI-distributions.
(c) From (17.5)–(17.6), do the same for these ZA-distributions.

Ex. 17.14. Occupancy Modelling
A biologist decides to visit n sites to see whether a tree species grows there. At
each site visit, he has a probability pi of detecting the species (i = 1, . . . , n).
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He will go to each site a maximum of K times but will stop going there once he
detects the species there. Here, K is fixed. Each site is occupied by the species
with probability ψi. Let Y

∗
i be the number of visits to site i.

(a) Write down the probability function and log-likelihood.
(b) Derive the first derivatives with respect to (pi, ψi). Derive the EIM too.
(c) †Write a VGAM family function to fit this model. The response will be an n×K

matrix of 0s and 1s. Reading along a row, once a 1 is encountered, what goes
after that is ignored. A row made up entirely of 0s means that species was
never seen there.

Ex. 17.15. Explain why a zero-inflated binomial distribution fitted to Bernoulli
responses will fail.

Ex. 17.16. EIMs—ZI-Distributions
Consider (17.7) and let A = φ+(1−φ)f(0) = P (Y = 0) where f(0) = P (Y ∗ = 0)
where Y ∗ denotes the random variable from the parent distribution.

(a) Let 
i+ and 
i0 be parts of the log-likelihood corresponding to positive yi
and yi = 0, respectively. Show that

(i) ∂
i0/∂φ = [1− f(0)]/A and ∂
i0/∂θ = [(1− φ)/A] ∂f(0)/∂θ,
(ii) ∂
i+/∂φ = −1/(1− φ) and ∂
i+/∂θ = ∂
∗i /∂θ.

(b) Show that the score component ∂
/∂φ has zero mean.
(c) Show that the EIM for a zero-inflated 1-parameter discrete distribution, that

is parameterized in terms of (φ, θ), is

⎛

⎜
⎜
⎝

1

A

(1− f(0))

(1− φ)

1

A
· ∂ f(0)

∂ θ

1

A
· ∂ f(0)

∂ θ
J

⎞

⎟
⎟
⎠ (17.29)

where a conditional expectation is used for J =

− E

[
∂2 
∗i
∂ θ2

]

· (1−A)−
[
1− φ

A

]

·
{

A
∂2 f(0)

∂ θ2
− (1− φ)

(
∂f(0)

∂ θ

)2
}

. (17.30)

Hint: E(Y ) = E(Y ∗)/(1− f(0)) for 
i+.
(d) Use (17.29) to show the EIM for the ZIP distribution is (17.28). Show it is

positive-definite for (φ, λ) ∈ (0, 1)× (0,∞).
(e) Use (17.29) to derive the EIM for the ZI-binomial and ZI-geometric.

Ex. 17.17. Show that, for one observation from a positive normal distribution,

−E
[
∂2 


∂μ2

]

=
1

σ2

{

1− μφ

σ(1− Φ)
− φ2

(1− Φ)2

}

,

−E
[
∂2 


∂σ2

]

=
2

σ2
− μφ

σ3(1− Φ)

{

1 +
μ2

σ2
+

φμ

σ(1− Φ)

}

,

−E
[

∂2 


∂μ ∂σ

]

=
φ

σ2(1− Φ)

{

1 +
μ2

σ2
+

φμ

σ(1− Φ)

}

,

where φ = φ(−μ/σ) and Φ = Φ(−μ/σ).
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Ex. 17.18. Try fitting positive-Poisson and positive-NB distributions to
the corbet butterfly data. Assess your fits using some goodness-of-fit test.

Ex. 17.19. Suppose the response Y = number of babies born is regressed
against x2 = age and x3 = sex, in a large data set collected from a human
cross-sectional study, as follows:

vglm(nbabies ~ age + sex, zipoisson, data = zdata, crit = "coeff", trace = TRUE)

(a) Explain why this regression fails by using a relevant selection from the fol-
lowing terms: (i) interaction, (ii) quasi-complete separation, (iii) orthogonal
parameters, (iv) canonical link, (v) structural 0, (vi) Hauck-Donner effect,
(vii) idempotent, (viii) seemingly unrelated regression.

(b) How might one proceed with a regression analysis?
(c) Why is crit = "coeff", trace = TRUE above a good idea?

Ex. 17.20. The reciprocal of a positive normal random variable is said to have
an alpha distribution. Show that

F (y;α, β) =
Φ(α− β/y)

Φ(α)

for some α > 0 and β > 0 (express these as functions of μ and σ), and that the
resulting density is

f(y;α, β) =
β√

2π y2 Φ(α)
· exp

{

−1

2

(

α− β

y

)2
}

.

Ex. 17.21. Consider the variable pub1stAuthor (the number of first-author
publications, from the MathSciNet database) of the profs.nz data frame.

(a) Fit a zero-inflated Poisson model to these data with I(2014 - firstyear) as
explanatory. Model the probability of a structural 0 as intercept-only.

(b) Do the same but with log(2014 - firstyear) as explanatory.
(c) Which of (a) and (b) seems most satisfactory? Why?

Ex. 17.22. Consider the ugss data frame.

(a) Choose a response from the set {movies, piercings, receivetxt, sendtxt,
tattoos}. Then, using explanatory variables age and sex, fit the following
models: (i) quasi-Poisson, (ii) NB-1, (iii) NB (NB-2), (iv) NB-P, (v) ZIP,
(vi) ZINB, (vii) ZAP, (viii) ZANB.

(b) Perform some goodness-of-fit test such as AIC or BIC to suggest which model
appears best.

(c) For the ‘best’ model:

(i) Interpret the estimated regression coefficients.
(ii) Try estimating the effect of age using smoothing. Is there much

nonlinearity?
(iii) Explore interactions between age and sex. Are there significant

interactions?
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Ex. 17.23. Consider the belcap dental data frame.

(a) For the response dmfte, and using explanatory variables log(0.5 + dmftb),
gender, ethnic and school, fit a ZIP.

(b) Is the model really linear with respect to log(0.5 + dmftb)? Try smoothing.
(c) For whatever model deemed best, interpret the estimated regression

coefficients.

Ex. 17.24. Consider all the females in the xs.nz data frame, and the number
of babies born to them.

(a) Fit a simple zero-inflated NB and zero-inflated Poisson regression. Use an
intercept-only term.

(b) Add the variables age and ethnicity to your ZINB model. Try to allow for
some smoothing.

(c) Add the variables age and ethnicity to your ZIP model. Allow for some
smoothing.

(d) Comment on the four models. Is any one of them to be preferred?

We begin to die the moment we are born, and the end is linked to the begin-
ning.
—Manilius
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Chapter 18

On VGAM Family Functions

Our goal in programming with data is to turn ideas into software, quickly and
faithfully.
—Chambers (1998)

18.1 Introduction

This chapter gives some details about what a VGAM family function consists of.
The casual reader need not delve into the details, however, developers and serious
users should benefit. Such readers are assumed to be familiar with aspects of the
R language, including the object-oriented programming features of the S4 language.
VGAM has a reasonably flexible design that, theoretically, allows users to solve for
the MLEs of straightforward problems. At its simplest, one just creates a basic
VGAM family function that has the appropriate derivatives and working weights
and initial values, etc. Due to space limitations, only skeletal details are provided.

An outline of this chapter is as follows. We begin by looking at the associated
topic of VGAM link functions. Then Sect. 18.3 describes the basics of simple family
functions. Section 18.4 provides details on more advanced features. Section 18.5
gives further examples. Section 18.6 provides the technical details behind the smart
prediction facility of Sect. 8.2.5. For those wanting just to solve a simple one-off
problem, reading up to Sect. 18.3.1 might suffice. For VGAM family functions that
allow a suite of arguments, Sect. 18.3.2 onwards will be necessary.

Here is a checklist for those contemplating writing a VGAM family function.

(i) Do the usual regularity conditions hold for the model? Is scoring a suitable
algorithm?

(ii) Do closed-form expressions for the EIM exist, and if so, can it be computed?
If not, can it be approximated by generating random score vectors?—this will
mean the first derivatives are needed and an r-type function written. Details
of SFS are given in Sect. 9.2.2.

© Thomas Yee 2015
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Table 18.1 Compulsory arguments in a VGAM link function for gj(θj) = ηj , and their defaults.
The first argument should always be named theta.

Argument + default Function

theta The default is θj , but is interpreted as ηj if inverse = TRUE. May be

numerical or character. If character then short and tag are accessed

inverse = FALSE Logical. If TRUE then return the inverse link function θj = g−1
j (ηj)

deriv = 0 Returns dkηj/dθ
k
j for k = 0, 1, 2. If inverse = TRUE then return

dkθj/dη
k
j

short = TRUE Logical. If TRUE then return a short (character) label, else a long label,
e.g., "logit(theta)" and "log(theta/(1-theta))"

tag = FALSE If TRUE then add a descriptor to the front of the label, e.g., "Logit:
logit(theta)"

(iii) Does the writer have lots of time, skill and patience? More often than not,
getting even the simplest function bug-free requires much more work than
first anticipated. There is a steep learning curve, and a reasonable requisite
of theory too. Hacking is usually needed, and this is partly a result of the
limited documentation available and the absence of support.

(iv) Is the problem a one-off exercise that could be easier solved using a general
purpose function, such as optim() or nlm()? Is it really worthwhile writ-
ing and documenting a function? Who else will use it, and how will it be
disseminated to the community of users? As an R package?

(v) Optionally, can the log-likelihood be computed? If so, then it is preferably
done in the form of a d-type function with a log argument.

A warning to the reader: writing even a simple VGAM family function is not to
be considered an easy task! Another warning is that some VGAM internals may
change in the future, hence software maintenance is definitely required.

Something to be mindful of is that there are four stages of complexity regarding
writing VGAM family functions. These are the (recall that M1 ≡ dim(η) for one
response)

(i) M1 = 1 case with 1 response,
(ii) M1 = 1 case with multiple responses,
(iii) M1 > 1 case with 1 response,
(iv) M1 > 1 case with multiple responses.

All good VGAM family functions ought to handle multiple responses, e.g., of the
form cbind(y1, y2, y3), where possible. However, this is an optional feature to
have. If it does, then it potentially can be modelled as an RCIM (Sect. 5.7). Over
time, more case (i) functions may be upgraded to case (ii), as well as case (iii)
to case (iv). Programming for (i) and (ii) is relatively easy, but cases (iii)–(iv)
generally need support in the form the functions listed in Table 18.5. For example,
case (iii) may require iam() to map the (s, t) element of the EIM to wz. Case (iv)
is the most difficult, and it involves interleaving the columns of matrices, and
consequently the code becomes more complicated. Functions such as arwz2wz()

and w.wz.merge() can facilitate this latter case.
Where the EIM is programmable, some suggested families to scrutinize, respec-

tively, for the above cases, are:

(i) borel.tanner, fgm(), posbinomial(), simple.exponential(),
(ii) biclaytoncop(), lindley(), maxwell(), rayleigh(), zetaff(),
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(iii) binom2.or(), multinomial(), posbernoulli.b(),
(iv) gamma2(), kumar(), uninormal(), weibullR(), zipoisson().

These examples of (i) and (iii) hold at the time of writing, but may be upgraded in
the future to (ii) and (iv), respectively. Likewise, where the EIM is unavailable but
random variates are available, some suggested families to examine, respectively,
for the above cases, are:

(i) hzeta(), skewnormal(),
(ii) yulesimon(),
(iii) fff(), riceff(), slash(),
(iv) negbinomial(), perks(), posnegbinomial(), zinegbinomial() (Sect.

18.5.2).

Should the OIM and EIM coincide, deriv3() might be of help, to avoid manual
programming of certain simple derivatives (Table 18.5).

18.2 Link Functions

Table 1.2 gives a summary of some VGAM link functions currently available. These
are the gj in the basic ηj = gj(θj) formula. The functions are incompatible with
families associated with glm() such as binomial() and poisson(). Table 18.1
gives details on what the functions are expected to return. As a specific example,
let’s consider the logit link. Here are a few basic calls.

> pvec <- seq(0.1, 0.8, by = 0.1)

> eta <- 0:4

> logit(pvec)

[1] -2.19722 -1.38629 -0.84730 -0.40547 0.00000 0.40547 0.84730 1.38629

> logit(eta, inverse = TRUE) # Also known as the antilogit

[1] 0.50000 0.73106 0.88080 0.95257 0.98201

> logit("prob")

[1] "logit(prob)"

> logit("prob", tag = TRUE, short = FALSE)

[1] "Logit: log(prob/(1-prob))"

> logit(pvec, deriv = 1)

[1] 11.1111 6.2500 4.7619 4.1667 4.0000 4.1667 4.7619 6.2500

> logit(pvec, deriv = 1, inverse = TRUE)

[1] 0.09 0.16 0.21 0.24 0.25 0.24 0.21 0.16

> logit(pvec, deriv = 2)

[1] -98.7654 -23.4375 -9.0703 -3.4722 0.0000 3.4722 9.0703 23.4375

> logit(pvec, deriv = 2, inverse = TRUE)

[1] 0.072 0.096 0.084 0.048 0.000 -0.048 -0.084 -0.096
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The logit() function is easily understood given that η = log{θ/(1 − θ)} im-
plies θ = eη/(1 + eη), dθ/dη = θ(1− θ) and d2θ/dη2 = θ(1− θ)(1− 2θ).

Link functions are invoked within VGAM family functions using eta2theta()

and theta2eta(), as well as dtheta.deta() and d2theta.deta2() (Table 18.2).
This is because the link chosen by the user is passed into the appropriate slot
using substitute(). Actually, “passed into” might be more accurately replaced
by “embedded” or “infixed”. Here are some simple calls to compute some of the
above.

> theta2eta(pvec, "logit")

[1] -2.19722 -1.38629 -0.84730 -0.40547 0.00000 0.40547 0.84730 1.38629

> eta2theta(eta, "logit")

[1] 0.50000 0.73106 0.88080 0.95257 0.98201

> dtheta.deta(pvec, "logit")

[1] 0.09 0.16 0.21 0.24 0.25 0.24 0.21 0.16

> d2theta.deta2(pvec, "logit")

[1] 0.072 0.096 0.084 0.048 0.000 -0.048 -0.084 -0.096

Actually, these four functions also have a third argument called earg, which is an
extra argument to allow other parameters to be passed in. This will be seen in
Sect. 18.3.4.

18.2.1 Chain Rule Formulas

Most computations involving link functions and IRLS make use of the chain rule
in some form. In order to handle ηj = gj(θj), the following formulas are useful:

∂
i
∂ηj

=
∂
i
∂θj

∂θj
∂ηj

, (18.1)

∂2
i
∂η2j

=
∂2
i
∂θ2j

(
∂θj
∂ηj

)2
+

{
∂
i
∂θj

∂2θj
∂η2j

}

, (18.2)

∂2
i
∂ηj ∂ηk

=
∂2
i

∂θj ∂θk

∂θj
∂ηj

∂θk
∂ηk

, j �= k, (18.3)

E

(
∂
i
∂θ

)

= 0. (18.4)

Sometimes a ηj involves more than one parameter, e.g., the NB-C2-2 model
which is a negative binomial regression with its canonical link η1 = log (μ/(μ+ k))
(Sect. 11.3.3) involving both its parameters. Then, more generally for vector η,
the following formulas are required.
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Table 18.2 Functions that make use of a VGAM link function. The argument earg is a list,
which often defaults to list(inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE).

Function Value and comments

dtheta.deta(theta, link, earg) dθ/dη

d2theta.deta2(theta, link, earg) d2θ/dη2

eta2theta(eta, link, earg) θ = g−1(η)

theta2eta(theta, link, earg) η = g(θ)

link2list() Processes a VGAM family function link argument
(Sect. 18.3.3)

namesof(theta, link, earg, tag =

FALSE, short = TRUE)

A description of the link function. Useful
in @blurb, and for assigning predictors.names

in @initialize

∂
i
∂η

=
∂θT

∂η

∂
i
∂θ

, (18.5)
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An example of (18.5)–(18.6) is when ηj and ηk are both functions of θs and θt,
e.g., the NB-C2-2 model. Then
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, j �= k. (18.9)

The implication of (18.4) is that all the above terms in braces {· · · } vanish if one
uses the EIM instead of the OIM. Most VGAM family functions have ηj = gj(θj),
therefore should Fisher scoring be implemented, (18.2) and (18.3) reduce to

− E
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18.3 Family Function Basics

The essential requirement to create a VGAM family function is a model that can be
estimated by IRLS. This usually means a model whose log-likelihood (3.7), score
vector (3.14), and EIM (3.11) can be computed. If EIMs are unavailable, then
the ability to generate random variates from the model is the second-best choice.
An optional requirement is some measure of the fit, e.g., a deviance function or,
more commonly, just the log-likelihood 
. If there is no objective function to be
minimized or maximized, then iterations will continue until the changes in the
regression coefficients (3.9) are sufficiently small.

In terms of writing code, Table 18.3 enumerates the most important slots
of the typical VGAM family function. For example, the variable wz computed
in @weight typically is wiWi where the elements of Wi are defined by (3.11),
whereas @deriv typically returns wiui where the elements of ui are defined
by (3.14). In general, Fisher scoring is much preferred over Newton-Raphson. This
is mainly because all the Wi are required to be positive-definite over a larger
parameter space.

18.3.1 A Simple VGAM Family Function

As a first example, here’s a simple family function for the exponential distri-
bution f(y;λ) = λ e−λ y where y > 0, and λ > 0 is the rate parameter. It
has η = log λ embedded in it, therefore it is unnecessarily too rigid. And like
most VGAM family functions for continuous distributions, it does not handle data
on the boundaries, e.g., yi = 0 will cause a failure.

> print(simple.exponential)

function() {

new("vglmff",

blurb = c("Simple exponential distribution\n",

"Link: log(rate)\n"),

deviance = function(mu, y, w, residuals = FALSE, eta, extra = NULL,

summation = TRUE) {

devy <- -log(y) - 1

devmu <- -log(mu) - y / mu

devi <- 2 * (devy - devmu)

if (residuals) {

sign(y - mu) * sqrt(abs(devi) * c(w))

} else {

dev.elts <- c(w) * devi

if (summation) sum(dev.elts) else dev.elts

}

},
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Table 18.3 The most important slots of a typical VGAM family object (of S4 class "vglmff"),
and their purposes. Those in the bottom half of the table are optional.

Slot Type Purpose

@blurb character string Descriptive. Usually calls namesof()

@infos function(...) Returns a list with, e.g., M1 (M1), Q1 (Q1)
and logical multipleResponses, etc. These
are data-independent ‘constants’

@linkinv function(eta, extra =

NULL)

Returns fitted values, e.g., a matrix with

rows μT
i

@constraints expression Processes the constraint matrices. This
comprises the (i) constraints argument,
and (ii) arguments such as parallel

and zero. Calls cm.VGAM(), cm.zero.VGAM(),
negzero.expression.VGAM, etc.

@initialize expression Allows error checking for x and y, etc.;
preprocesses w and y if necessary; com-
putes initial mustart and/or etastart; as-
signs predictors.names

@last expression Assigns misc$link, misc$earg and other
information; evaluated after final IRLS
iteration

@loglikelihood function(mu, y, w,

resid = FALSE, eta,

extra = NULL, summation

= TRUE)

Returns �, or [(�)is] if summation = FALSE

@vfamily character string For identification, and may be used for S4
classes in the future. Assigned the family
function name

@deriv expression Returns an n × M matrix of score vectors;
has rows wi ∂�i/∂η

T , cf. (3.7) and (3.14)

@weight expression Computes working weights wz, wiWi, in
matrix-band format ((3.11) and Sect. 18.3.5).
Evaluated immediately after @deriv so that
assigned variables can be used without
interruption

@deviance function(mu, y, w,

resid = FALSE, eta,

extra = NULL, summation

= TRUE)

This slot is optional. Returns the deviance,
or deviance contributions if summation =

FALSE, or deviance residuals (Sects. 2.3.2,
3.7.4) if resid = TRUE (and NULL if they do
not exist)

@first expression Optional; evaluated at the beginning of IRLS
iterations

@linkfun function(mu, extra =

NULL)

Returns n×M eta (η1, . . . ,ηn)
T . Sometimes

not needed because it may not be possible
to compute ηi, given μi. Indeed, for some
models, μi does not even exist! Usually this
slot is only applicable for M1 = 1 families

@simslot function(object, nsim) Returns nsim random variates ŷi

(Sect. 8.4.3)
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loglikelihood = function(mu, y, w, residuals = FALSE, eta, extra = NULL,

summation = TRUE) {

if (residuals) return(NULL)

if (summation) sum(c(w) * dexp(y, rate = 1 / mu, log = TRUE)) else

c(w) * dexp(y, rate = 1 / mu, log = TRUE)

},

initialize = expression({

predictors.names <- "loge(rate)"

mustart <- y + (y == 0) / 8

}),

linkinv = function(eta, extra = NULL) exp(-eta),

linkfun = function(mu, extra = NULL) -log(mu),

vfamily = "simple.exponential",

deriv = expression({

rate <- 1 / mu

dl.drate <- mu - y

drate.deta <- dtheta.deta(rate, "loge")

c(w) * dl.drate * drate.deta

}),

weight = expression({

ned2l.drate2 <- 1 / rate^2 # EIM

wz <- c(w) * drate.deta^2 * ned2l.drate2

wz

}))

}

<environment: namespace:VGAM>

Family functions in VGAM have the form

my.family.function <- function(<argument list>) {
new("vglmff", ...)

}

where the slots of the "vglmff" object are described in Table 18.3. This creates an
object of S4 class "vglmff" (the name might be changed in the future) which is fed
into modelling functions such as vglm() and vgam() via their family argument.

What is the statistical derivation behind this function? Recall that μ = λ−1 and
Var(Y ) = λ−2. Because λ > 0, it is natural for a log link on the parameter to be
taken. Thus log λ = η, which equals − log μ. Now wi 
i(λi; yi) = wi log f(yi;λi) =
wi (log λi − λi yi) so that

wi
∂ 
i
∂ λi

= wi

(
1

λi
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)
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Table 18.4 Some variables in vglm.fit() and vgam.fit(), and their properties. Daggered (†)
variables should be assigned values. See also Table 8.5.

Variable Purpose

coefstart To be assigned a vector of coefficients in @initialize

control List, the result of vglm.control(), etc. Has components maxits, etc.

deriv.mu † n×M matrix of score vectors (3.14) returned by @deriv

eta n×M matrix of linear predictors. May be a vector if M = 1

etastart † To be assigned a matrix of ηT
i in @initialize

extra † List containing useful data and/or intermediate computations

Hlist A pVLM-list containing named constraint matrices Hk

intercept.only Logical: TRUE if the only explanatory variable is an intercept, other-
wise FALSE

M M , the total number of linear/additive predictors ηj
misc † List containing useful data and/or intermediate computations

mu n-row matrix or n-vector of fitted values. Not necessarily a mean

mustart To be assigned a matrix of fitted values in @initialize

n Number of observations in the data set; is n = nLM = nrow(x)

ncolHlist A pVLM-vector with elements ncol(Hk)

ncol.X.vlm Number of variables in XVLM = ncol(X.vlm.save); is pVLM

p Number of variables in XLM = ncol(x); is p = pLM

predictors.names † To be assigned a vector of M names for the ηj
w Prior weights wi; the weights argument. Default: rep(1, n), but may

be a n× S matrix

wz † The working weight matrices (3.11) returned by @weight. Format is
in matrix-band representation (Sect. 18.3.5)

x LM matrix, XLM (n× p). Column 1 is 1n for optional intercept

X.vlm.save VLM matrix, XVLM is nM × pVLM

Xm2 LM matrix for argument form2

y Response. May be a n-vector or a n×Q matrix

explain @deriv and @weight, respectively (the EIM was used rather than the

OIM). The MLE is given by setting ∂
i/∂λi = 0 giving λ̂i = y−1
i so that 
i,max =

− log yi − 1.
Unfortunately, simple.exponential() has some crippling deficiencies, e.g.,

there is no choice of a link function, and it does not handle multiple responses.
Section 18.3.4 remedies these shortcomings. In the meanwhile, here are some notes
about VGAM family functions.

1. Notationally, recall that Y = [(yiq)] for q = 1, . . . , Q is the ‘total’ response
allowing for multiple responses. Let Q1 = dim(yi) for one response so that Q =
Q1 ·S for S responses. This matches M = M1 ·S. For models with fixed Q1, the
corresponding family function has the slot @infos having a list component Q1
and M1 to store Q1 and M1. If these are not set, then it is assumed that M1 =
Q1 = 1.
Let M1 be defined as in Table A.4, viz. as the number of ηj for a single response.
Many VGAM family functions can handle multiple responses (e.g., cbind(y1,
y2, y3)), and so it is necessary internally to know the value of M1. This is
returned by the infos slot. For example,
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Table 18.5 Some internal utility functions useful for writing VGAM family functions.

Function Purpose and comments

arwz2wz() May be useful in @weight when M > 2 and if multiple responses

are supported. It receives as input the working weights in an array

of dimension n × S × t, say, where t ∈ {1, 2, . . . ,M(M + 1)/2},
and then copies the elements into the appropriate wz format such
as (18.14). An example can be seen in gpd()@weight

deriv3() Can avoid laborious differentiation. Used by, e.g., bistudentt()
foldnormal(), hzeta(), mix2normal(), slash()

dimm(M, hbw = M) Returns M∗ in (18.12), given M . The name dimm stands
for dimension-of-matrix. Argument hbw is the half-bandwidth

grid.search() Performs a grid search to help locate the maximum or minimum
of a function (usually �). Useful in @initialize

iam(j, k, M, both =

TRUE, diag = TRUE)

Either maps (j, k) onto {1, 2, . . . ,M∗} as in (18.13), or supplies
the indices of the array. The name iam stands for index-of-array-
to-matrix

interleave.VGAM(L, M) Interleaves columns with rows, e.g., interleave.VGAM(10, 2)

gives 1, 6, 2, 7, 3, 8, 4, 9, 5, 10. An example based on kumar() is
in Sect. 18.3.5

w.wz.merge() May be used in @weight for merging w with wz, e.g., (18.14).
If S = 1 then c(w) * wz is returned. This function is particularly
useful for models with M > 1. Examples include negbinomial()

and uninormal()

w.y.check() May be used in @initialize for checking the w and y input, e.g.,
that they are conformable, and it allows some basic range check-
ing. Only one response, if stipulated, can be policed too. It may
return w and y as matrices of the required dimension

> appletree <- data.frame(y = 0:7, w = c(70, 38, 17, 10, 9, 3, 2, 1))

> apple.nbfit <- vglm(cbind(y, y) ~ 1, negbinomial, data = appletree, weights = w)

> (keep <- unlist(apple.nbfit@family@infos()))

M1 Q1 multipleResponses lmu

"2" "1" "TRUE" "loge"

lsize zero

"loge" "-2"

This shows that, for negative binomial regression, there are M1 = 2 parameters
per response, that each response takes up Q1 = 1 column of the response ma-
trix, and that every abs(as.numeric(keep["zero"])) = 2nd ηj is intercept-
only (i.e., the k parameters). In general, M = SM1 where S is the number of
responses, hence Q = Q1S is the total number of columns of the LHS of the
formula.

2. The computations for vglm() and vgam() are actually performed by vglm.fit()

and vgam.fit() respectively. It is here that the slots of VGAM family functions
are utilized. Table 18.4 lists the main variables involved. Some of these need
to be assigned values; others such as w and y can be modified with care. The
variables in @initialize, @deriv and @weight are global because these slots
are evaluated as expression()s.
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18.3.2 Initial Values

The main purpose of @initialize is to compute starting values. All VGAM
family functions should be self-starting, and it suffices to assigning to the vari-
able etastart an n×M matrix of linear predictors (η1, . . . ,ηn)

T . Less generally,
assigning mustart is only applicable if there is a slot linkfun which can convert
this to etastart.

Choosing good starting values is an art and is not always easy, but it is of-
ten crucial to the success of the scoring algorithm. For simple univariate models,

choosing η̂
(0)
i = g(yi) often works. This follows, as it can be shown for GLMs that

g(yi) ≈ g(μi) + g′(μi) (yi − μi) = ηi +

(
∂μi

∂η

)−1

(yi − μi) = zi,

which tells us that the adjusted dependent variable zi is a local approximation
to g(yi). However, sometimes g(yi) is undefined for certain values of yi, and this
must be taken care of, e.g., log(0) is undefined for the Poisson distribution.

A second strategy is to choose μ
(0)
i equalling its MLE, if tractable. For this,

an improvement involves perturbing the initial values towards the individual data
values. In particular, the argument ishrinkage that appears in a number of family
functions such as negbinomial() denotes the parameter s in (8.5). The resulting
initial fitted value (usually for a ‘mean’-like parameter) is perturbed slightly to-
wards each individual response value, such as illustrated in Fig. 8.1. In particular,
using s = 0.5 and μ̃ = y is akin to using (weighted.mean(y, w) + y) / 2, and
has the advantage that the initial values are in the interval (min(yi),max(yi)),
and consequently links such as logit() and loge() should work with binary and
count data, etc.

18.3.3 Arguments in VGAM Family Functions

Although there are no arguments in simple.exponential(), almost all VGAM
family functions offer a variety, such as a

• link, e.g., cumulative(link = "logit"),
• initial value, e.g.,

> args(betabinomialff)

function (lshape1 = "loge", lshape2 = "loge", ishape1 = 1, ishape2 = NULL,

imethod = 1, ishrinkage = 0.95, nsimEIM = NULL, zero = NULL)

NULL

Here, ishape1 and ishape2 are optional initial values. Those with a default
value of NULL, as in ishape2 here, are usually based on other initial values
(such as ishape1 here). The argument imethod is described in Sect. 8.3.1.

• constraint, e.g.,

> args(cratio)

function (link = "logit", parallel = FALSE, reverse = FALSE,

zero = NULL, whitespace = FALSE)

NULL
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The arguments parallel and zero refer to linear constraints on the functions
(Sects. 3.3 and 18.3.6).

This richer set of options contrasts sharply with the paucity of arguments of glm()
family functions, which is usually just link.

Table 18.2 mentions link2list() for processing a VGAM family function link
argument such as lshape. As an example, here are the first few lines of gpd().

> head(gpd, 10)

1 function (threshold = 0, lscale = "loge", lshape = logoff(offset = 0.5),

2 percentiles = c(90, 95), iscale = NULL, ishape = NULL, tolshape0 = 0.001,

3 type.fitted = c("percentiles", "mean"), giveWarning = TRUE,

4 imethod = 1, zero = -2)

5 {

6 type.fitted <- match.arg(type.fitted, c("percentiles", "mean"))[1]

7 lscale <- as.list(substitute(lscale))

8 escale <- link2list(lscale)

9 lscale <- attr(escale, "function.name")

10 lshape <- as.list(substitute(lshape))

Presently, the call to link2list() for each link argument, such as lshape here,
is the standard way such are processed. Extra parameters end up being stored
in variables beginning with “e”, e.g., eshape is a list with a component called
offset having the value 0.5. Then eshape is passed into the earg argument of
eta2theta(), etc.

18.3.4 Extending the Exponential Distribution Family

We now extend simple.exponential() in 5 ways. Firstly, we allow for multiple
responses y(s) for s = 1, . . . , S. Secondly, suppose one wishes to introduce a known1

location parameter as, i.e., f(y
(s);λs) = λs exp{−λs (y

(s)−as)} for y(s) > as. One
then has

E(Y (s)) = μs = as + λ−1
s and Var(Y (s)) = λ−2

s = (μs − as)
2 .

The default value of as is zero. Thirdly, we allow the user to input a link function
applied to λs so that ηj = g(λj) for g not necessarily loge(). Fourthly, we will
allow a choice between the EIM and the OIM in computing the working weights.
Fifthly, we allow parallelism constraints, intercept-only constraints, and some con-
trol over initial values. The VGAM family function, which is considerably longer, is

1 The location parameter of an exponential distribution must be treated as known. Due to

the memoryless property, it would be unestimable if unknown. And if unknown, the regularity

conditions would be violated as the support depends on it.
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> print(better.exponential)

function(link = "loge", location = 0, expected = TRUE,

ishrinkage = 0.95, parallel = FALSE, zero = NULL) {

link <- as.list(substitute(link))

earg <- link2list(link)

link <- attr(earg, "function.name")

new("vglmff",

blurb = c("Exponential distribution\n\n",

"Link: ", namesof("rate", link, earg, tag = TRUE), "\n",

"Mean: ", "mu = ", if (all(location == 0)) "1 / rate" else

if (length(unique(location)) == 1)

paste(location[1], "+ 1 / rate") else "location + 1 / rate"),

constraints = eval(substitute(expression({

constraints <- cm.VGAM(matrix(1, M, 1), x = x, bool = .parallel ,

constraints = constraints, apply.int = TRUE)

constraints <- cm.zero.VGAM(constraints, x, .zero , M)

}), list( .parallel = parallel, .zero = zero ))),

infos = eval(substitute(function(...) {

list(M1 = 1, Q1 = 1, multipleResponses = TRUE, zero = .zero )

}, list( .zero = zero ))),

deviance = function(mu, y, w, residuals = FALSE, eta,

extra = NULL, summation = TRUE) {

location <- extra$location

devy <- -log(y - location) - 1

devmu <- -log(mu - location) - (y - location ) / (mu - location)

devi <- 2 * (devy - devmu)

if (residuals) sign(y - mu) * sqrt(abs(devi) * w) else {

dev.elts <- c(w) * devi

if (summation) sum(dev.elts) else dev.elts

}

},

initialize = eval(substitute(expression({

checklist <- w.y.check(w = w, y = y, ncol.w.max = Inf, ncol.y.max = Inf,

out.wy = TRUE, colsyperw = 1, maximize = TRUE)

w <- checklist$w # So ncol(w) == ncol(y)

y <- checklist$y

extra$ncoly <- ncoly <- ncol(y)

extra$M1 <- M1 <- 1

M <- M1 * ncoly

extra$location <- matrix( .location , n, ncoly, byrow = TRUE) # By row!

if (any(y <= extra$location))

stop("all responses must be greater than argument ’location’")

mynames1 <- if (M == 1) "rate" else paste("rate", 1:M, sep = "")

predictors.names <-

namesof(mynames1, .link , earg = .earg , short = TRUE)
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if (length(mustart) + length(etastart) == 0)

mustart <- matrix(colSums(y * w) / colSums(w), n, M, byrow = TRUE) *

.ishrinkage + (1 - .ishrinkage ) * y + 1 / 8

if (!length(etastart))

etastart <- theta2eta(1 / (mustart - extra$location), .link , .earg )

}), list( .location = location, .link = link, .earg = earg,

.ishrinkage = ishrinkage ))),

linkinv = eval(substitute(function(eta, extra = NULL)

extra$location + 1 / eta2theta(eta, .link , earg = .earg ),

list( .link = link, .earg = earg ))),

last = eval(substitute(expression({

misc$link <- rep( .link , length = M)

misc$earg <- vector("list", M)

names(misc$link) <- names(misc$earg) <- mynames1

for (ii in 1:M)

misc$earg[[ii]] <- .earg

misc$location <- .location

misc$expected <- .expected

}), list( .link = link, .earg = earg,

.expected = expected, .location = location ))),

linkfun = eval(substitute(function(mu, extra = NULL)

theta2eta(1 / (mu - extra$location), .link , earg = .earg ),

list( .link = link, .earg = earg ))),

loglikelihood =

function(mu, y, w, residuals = FALSE, eta, extra = NULL, summation = TRUE)

if (residuals) stop("loglikelihood residuals not implemented yet") else {

rate <- 1 / (mu - extra$location)

ll.elts <- c(w) * dexp(y - extra$location, rate = rate, log = TRUE)

if (summation) sum(ll.elts) else ll.elts

},

vfamily = c("better.exponential"),

simslot = eval(substitute(function(object, nsim) {

pwts <- if (length(pwts <- object@prior.weights) > 0)

pwts else weights(object, type = "prior")

if (any(pwts != 1)) warning("ignoring prior weights")

mu <- fitted(object)

rate <- 1 / (mu - object@extra$location)

rexp(nsim * length(rate), rate = rate)

}, list( .link = link, .earg = earg ))),

deriv = eval(substitute(expression({

rate <- 1 / (mu - extra$location)

dl.drate <- mu - y

drate.deta <- dtheta.deta(rate, .link , earg = .earg )

c(w) * dl.drate * drate.deta

}), list( .link = link, .earg = earg ))),

weight = eval(substitute(expression({

ned2l.drate2 <- (mu - extra$location)^2

wz <- ned2l.drate2 * drate.deta^2 # EIM

if (! .expected ) { # Use the OIM, not the EIM

d2rate.deta2 <- d2theta.deta2(rate, .link , earg = .earg )

wz <- wz - dl.drate * d2rate.deta2

}

c(w) * wz

}), list( .link = link, .expected = expected, .earg = earg ))))

}

<environment: namespace:VGAM>
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Here are some notes.

1. The function substitute() is the workhorse for substituting argument values
of a function into an S expression or function that will be evaluated later. Here,
better.exponential() repeatedly substitutes the argument link as .link—
it is conventional in VGAM for the substituted variable name to begin with
a “.” to aid in identification. Rather than substitute the location parameter
into all the components, the above code has the value placed into the extra

list in @initialize, and the remainder of the function use it through extra.
This technique is particularly beneficial if the size of the argument is large
because substituting a large structure can be inefficient, e.g., for

vglm(y ~ x2, better.exponential(location = 1:length(y)), data = edata)

where y is a large vector.
2. Ideally, at least one of @deviance and @loglikelihood should exist. If it does,

then VGAM uses @deviance to test convergence at each IRLS step, otherwise
@loglikelihood is used, else the regression coefficients as a final resort. It is
sometimes a good idea to program both where possible. Having either enables
half-stepping to occur—each IRLS iteration is guaranteed to be an improvement
if the next step happens to ‘overshoot’. Half-stepping means that a half-step will
be taken until the change in deviance or loglikelihood is an improvement over the
current iteration (Table 8.2). Half-stepping is not possible with criterion =

"coef" since there is no objective function.
3. The argument earg is a list that is eventually inputted into do.call().

It contains several components, including inverse, deriv, short and tag.
For example, for link = logoff(offset = 0.5), earg has a component
called offset with the value 0.5.

4. Families which handle multiple responses and/or have M > 1 should possess
a zero argument, and if they make sense, parallel, exchangeable and
nointercept. All these are handled in the constraints slot. Table 18.6 is a list
of common arguments that set up constraint matrices conveniently, and this is
the subject of Sect. 18.3.6. Stylistically, the conventions described in Sect. 8.1
applying to the naming of functions and arguments are worth adhering to.

5. For VGAM family functions which operate on a common type of data, it is
convenient for users to have a uniform type of processing of the response y. For
example, binom2.or() and binom2.rho() both pertain to a bivariate binary
response. Another example are the group of categorical models in Table 14.1.
Then it makes sense for each member of that group of family functions to call
a common R expression or function in @initialize. Developers therefore may
need to examine the @initialize slot of any similar family functions to check
whether this is so.

6. As well as writing a VGAM function, it is customary to try write matching
dpqr-type functions where possible. If so, then the details in Sect. 11.1 are
useful.

7. The loglikelihood and deviance slots have the form

> args(acat()@loglikelihood)

function (mu, y, w, residuals = FALSE, eta, extra = NULL, summation = TRUE)

NULL
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The summation argument means that the log-likelihood 
 is returned. If it is
set to FALSE, then it returns a vector or matrix with elements wis
is, whose
sum is 
. Currently the residuals argument is not used much at all, except
in the case of GLM families where they are well-defined. Nevertheless, there is
general provision for deviance residuals as well as log-likelihood residuals to be
returned in the future.

8. Yee and Stephenson (2007) propose applying quasi-Newton updates to the work-
ing weight matrices within the IRLS algorithm. More experience since then has
shown that this technique does not work as well as using simulated Fisher scor-
ing (Sect. 9.2.2). This inferiority applies to both the estimation process and the
resulting standard errors of the estimates.

9. Although not used in this example, functions such as expm1() and log1p()

should be used where possible to avoid catastrophic cancellation when pro-
gramming certain formulas. For example, the EIM for the zero-inflated Pois-
son (17.28) involves a term 1− e−λ which is better coded as -expm1(-lambda).
This remains positive for positive lambda, whereas näıve coding will return
a 0 for lambda less than about 10−16 and will result in an EIM that is not
positive-definite. Another example is to use log1p(-rho^2) for the log-N2 den-
sity (13.9).

18.3.5 The wz Data Structure

The variable wz stores the working weight matrices wiWi in a special format
named the matrix-band format. This format comprises an n×M∗ matrix where

M∗ =

hbw∑

j=1

(M − j + 1) =
1

2
hbw (2M − hbw + 1) (18.12)

is the number of columns. Here, hbw refers to the half-bandwidth of the matrix,
which is an integer between 1 and M inclusive: a diagonal matrix has unit half-
bandwidth, a tridiagonal matrix has half-bandwidth 2, etc. For a general matrix
M∗ = M(M + 1)/2. As an example, if M = 4 then wz will have up to M∗ = 10
columns enumerating the unique elements of (symmetric) Wi as follows:

Wi =

⎛

⎜
⎜
⎝

1 5 8 10
2 6 9
3 7

4

⎞

⎟
⎟
⎠ . (18.13)

The order is firstly the diagonal, then the band above that, and so on until
the (1,M) element. The function iam() described below helps manipulate the
elements more conveniently and assists with the overall bookkeeping. If Wi is
banded, then wz needs not have 1

2M(M + 1) columns; only M∗ columns suffice,
and the rest of the elements are implicitly zero—this conserves storage.

The matrix-band format is adopted for parsimony. As well as reducing the size of
wz itself in most cases, the matrix-band format often makes the computation of wz
more simple and efficient. A final reason is that we sometimes need to input Wi

into VGAM. If wz is M ×M × n, then vglm(..., weights = wz) will result in
an error, whereas wz being an n×M∗ matrix will work.
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With S responses, the combined working weights Wi have the form of a block-
diagonal matrix diag(wi1Wi1, . . . , wiSWiS) because one can have different prior
weights wis for the sth response. For example, for S = 3 responses of an M1 = 2
model, the overall enumeration is

Wi =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 7
2
3 9
4
5 11

6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(18.14)

(cf. (18.13)). This tridiagonal matrix requires at least 11 columns of which columns
8 and 10 are all 0s. Sometimes elements 1, 3 and 5 are computed in some matrix for
E(−∂2
is/∂η

2
1s), and elements 2, 4 and 6 in another matrix for E(−∂2
is/∂η

2
2s),

and elements 7, 9 and 11 in a third matrix for E(−∂2
is/(∂η1s∂η2s)); then piecing
them together as in (18.14) can be finicky, however this may be facilitated by
w.wz.merge() and/or arwz2wz() (Table 18.5). These functions may also be useful
for multiplying each Wis by its prior weight wis, e.g., columns 1, 2 and 7 need to
be multiplied by wi1, etc. If S = 1, then w.wz.merge() returns c(w) * wz.

With S responses, here is an example of the use of interleave.VGAM(). It
applies to kumar() (Sect. 18.5.1) and we let S = 5, say. The variables mynames1

and mynames2 are used separately for the two shape parameters, and these are
interleaved to obtain predictors.names.

> ncoly <- 5 # Suppose there are 5 responses

> lshape1 <- lshape2 <- "loge" # Defaults

> eshape1 <- eshape2 <- NULL # No extra arguments

> M1 <- 2 # 2 parameters per response

>

> M <- M1 * ncoly

> mynames1 <- paste("shape1", if (ncoly > 1) 1:ncoly else "", sep = "")

> mynames2 <- paste("shape2", if (ncoly > 1) 1:ncoly else "", sep = "")

> predictors.names <-

c(namesof(mynames1, lshape1 , earg = eshape1 , tag = FALSE),

namesof(mynames2, lshape2 , earg = eshape2 , tag = FALSE))[

interleave.VGAM(M, M = M1)]

> mynames1

[1] "shape11" "shape12" "shape13" "shape14" "shape15"

> mynames2

[1] "shape21" "shape22" "shape23" "shape24" "shape25"

> predictors.names

[1] "loge(shape11)" "loge(shape21)" "loge(shape12)" "loge(shape22)"

[5] "loge(shape13)" "loge(shape23)" "loge(shape14)" "loge(shape24)"

[9] "loge(shape15)" "loge(shape25)"
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18.3.5.1 Auxiliary Functions

The functions listed in Table 18.5 are available to facilitate the use of the matrix-
band format. Here are some common examples of usage.

1. For the 4× 4 example (18.13), the call

> iam(2, 3, M = 4)

[1] 6

returns the position of the (2, 3) element. A specific example of its use is betaR()
which currently only handles a single response. Its weight slot is

> betaR()@weight

expression({

trig.sum <- trigamma(shapes[, 1] + shapes[, 2])

ned2l.dshape12 <- trigamma(shapes[, 1]) - trig.sum

ned2l.dshape22 <- trigamma(shapes[, 2]) - trig.sum

ned2l.dshape1shape2 <- -trig.sum

wz <- matrix(as.numeric(NA), n, dimm(M))

wz[, iam(1, 1, M)] <- ned2l.dshape12 * dshapes.deta[, 1]^2

wz[, iam(2, 2, M)] <- ned2l.dshape22 * dshapes.deta[, 2]^2

wz[, iam(1, 2, M)] <- ned2l.dshape1shape2 * dshapes.deta[,

1] * dshapes.deta[, 2]

c(w) * wz

})

A second type of use of iam() takes the form of, e.g.,

> iam(NA, NA, M = 4, both = TRUE, diag = TRUE)

$row.index

[1] 1 2 3 4 1 2 3 1 2 1

$col.index

[1] 1 2 3 4 2 3 4 3 4 4

which returns the indices for the respective array coordinates for successive
columns of matrix-band format, as in (18.13). If diag = FALSE, then the
first 4 elements in each vector are omitted. Note that the first two arguments
of iam() are not used here, and they have been assigned NAs for simplicity.
Here is an example of its use to compute the working weights of the multino-
mial logit model. The diagonal elements are wi μij(1 − μij) for j = 1, . . . ,M ,
and the off-diagonal elements are −wi μijμik for j �= k. This is programmed
in multinomial()@weight and appears as something like

wz <- mu[, 1:M] * (1 - mu[, 1:M])

if (M > 1) {
index <- iam(NA, NA, M = M, both = TRUE, diag = FALSE)

wz <- cbind(wz, -mu[, index$row] * mu[, index$col])

}

2. If M > 1, then a typical use is as follows. Consider the VGAM family func-
tion uninormal() for the univariate normal distribution. Its default is η =
(μ, log(σ))T , and for θ = (μ, σ)T , it has ith EIM equal to σ−2

i · diag(1, 2). Then
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> uninormal()@weight

expression({

wz <- matrix(as.numeric(NA), n, M)

ned2l.dmu2 <- 1/sdev^2

if (FALSE) {

ned2l.dva2 <- 0.5/Varm^2

}

else {

ned2l.dsd2 <- 2/sdev^2

}

wz[, M1 * (1:ncoly) - 1] <- ned2l.dmu2 * dmu.deta^2

wz[, M1 * (1:ncoly)] <- if (FALSE) {

ned2l.dva2 * dva.deta^2

}

else {

ned2l.dsd2 * dsd.deta^2

}

w.wz.merge(w = w, wz = wz, n = n, M = M, ndepy = ncoly)

})

The code block corresponding to if (FALSE) is for η = (μ, log(σ2))T corre-
sponding to argument var.arg = FALSE. Note that M1 is already set to 2, and
wz has M columns. An alternative is to have wz <- matrix(0, n, dimm(M))

in the top line but this is wasteful in terms of storage, especially for multiple
responses. Incidentally, one might instead use c(TRUE, FALSE) and c(FALSE,

TRUE) in the indexing of the columns of wz.

18.3.6 Implementing Constraints Within Family Functions

For most models, certain types of linear constraints on the functions are common,
and thus they should be made convenient for the user to choose. In particular,
these include the parallel, exchangeable and zero arguments (Table 18.6 and
Sect. 3.3). Writers of VGAM family functions should implement any such arguments
anticipated for that model.

Table 18.6 shows that there are two groups of arguments: the first group
is assigned a logical or a formula with a logical response, and the second group is
assigned a numerical vector. VGAM has the function cm.VGAM() to process the
first group. The second group has a separate function for each argument. Here are
some brief details.

• cm.VGAM() applies to arguments such as parallel and exchangeable, viz. hav-
ing the format described in Sect. 3.3.1 such as TRUE, TRUE ∼ x2 + x3 + x4,
FALSE ∼ 0.

• cm.zero.VGAM() processes a numerical vector, specifying those values of j for
which ηj are intercept-only. Similarly, cm.nointercept.VGAM() processes a nu-
merical vector, specifying those values of j for which ηj have no intercept. The
role of these two functions is to delete certain columns off relevant constraint
matrices.
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Table 18.6 Common arguments that set up constraint matrices. The syntax for the upper table
are, e.g., TRUE, FALSE, TRUE ∼ x2 + x3 - 1, FALSE ∼ 0. The syntax for the lower table are, e.g.,

NULL (none), 2:3, -c(1, 3), c(1, -3). The upper table arguments are processed by cm.VGAM().

Argument Comments

drop.b e.g., for posbernoulli.b(), posbernoulli.tb(), Table 17.3, drop the be-
havioural effect?

eq.sd e.g., for mix2normal(), are the standard deviation parameters equal?

exchangeable e.g., for binom2.or(), binom2.rho(), loglinb2()

parallel Sets Hk = 1M , i.e., β(s)k = β(t)k for all s, t ∈ {1, 2, . . . ,M}, for selected k,
e.g., for cumulative(), negbinomial(), posbernoulli.b()

zero Sets β(j)k = 0 for selected j (for k = 2, 3, . . .), e.g., for almost all VGAM
family functions with M > 1. Processed by cm.zero.VGAM()

nointercept Sets β(j)1 = 0 for selected j. Processed by cm.nointercept.VGAM()

All functions should be invoked in @constraints. Here is an example.

> args(multinomial)

function (zero = NULL, parallel = FALSE, nointercept = NULL,

refLevel = "last", whitespace = FALSE)

NULL

> print(multinomial()@constraints)

expression({

constraints <- cm.VGAM(matrix(1, M, 1), x = x, bool = FALSE,

apply.int = TRUE, constraints = constraints)

constraints <- cm.zero.VGAM(constraints, x, NULL, M)

constraints <- cm.nointercept.VGAM(constraints, x, NULL,

M)

})

The first argument of cm.VGAM() is the constraint matrix: 1M for the parallelism
constraint. The second argument is always the LM matrix x. The third argument
is the argument itself, which is substitute()d in. The fourth argument should
always be the variable constraints. The argument apply.int = TRUE means
that, by default, the constraint is applied to the intercept if that argument has
the value TRUE. A contrasting example is cumulative(parallel = TRUE), which
will not apply the parallelism to the intercept. The programmer needs to decide
whether the value TRUE applies the constraint to the intercept or not, and program
it accordingly.

The function cm.zero.VGAM() is even simpler. The line containing that func-
tion should be pasted in its entirety as above, except that the argument’s value
is substitute()d into the third argument.

The function cm.nointercept.VGAM() is programmed in a very similar man-
ner to cm.zero.VGAM(). The argument’s value is substitute()d into the third
argument.
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18.4 Some Other Topics

18.4.1 Writing R Packages and Documentation

R package creation is documented in the “Writing R Extensions” document. Details
are given regarding a host of topics, including the NAMESPACE file for declar-
ing which variables, functions and S4-style classes to export and import, and
the DESCRIPTION file that includes specifying package dependencies. In VGAM,
currently not all the contents of NAMESPACE are documented in an online help file.

To create the online help file, the prompt() function may be used to create the
corresponding .Rd file upon which to edit.

18.4.2 Some S4 Issues

VGAM operates using the S4 object-oriented programming system. The S4-style
classes reflect the structure apparent from Fig. 1.2, and Table 18.7 is a summary
of these for the major modelling functions. Most modelling functions return an
object having a class equal to the name of the modelling function, e.g., a vglm()

fit has class "vglm". Lines of inheritance also follow Fig. 1.2 to a large degree,
e.g., "vgam" extend "vglm" by the addition of more slots such as @Bspline. We
say "vgam" contains "vglm".

All the classes in VGAM can be seen by

> getClasses("package:VGAM")

[1] "Coef.qrrvglm" "Coef.rrvgam" "Coef.rrvglm"

[4] "grc" "qrrvglm" "rcim"

[7] "rrvgam" "rrvglm" "summary.qrrvglm"

[10] "summary.rrvgam" "summary.rrvglm" "summary.vgam"

[13] "summary.vglm" "summary.vlm" "SurvS4"

[16] "vcov.qrrvglm" "vgam" "vglm"

[19] "vglmff" "vlm" "vlmsmall"

[22] "vsmooth.spline" "vsmooth.spline.fit"

For more information about one class, try, for example,

> getClass("vglm")

which produces much output including the ‘distance’ between known subclasses
and superclasses, as well as

> extends("rrvglm") # "vlmsmall" is experimental & may be depreciated in the future

[1] "rrvglm" "vglm" "vlm" "vlmsmall"

Methods functions can be determined by showMethods(), e.g.,

> showMethods(classes = "vglm")

Writers of VGAM family functions need not become overly involved with S4 object-
oriented programming, because their function is largely fed into the family argu-
ment of the modelling function. However, new methods do require S4. Suppose that
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Table 18.7 Classes of fitted objects in VGAM and inheritance relationships (using “⊂”). These
are subject to future change.

Modelling
function

S4 class Comments

vlm() "vlm" Not really useful in practice, and might be written for
completeness

vglm() "vglm" "vlm" ⊂ "vglm", i.e., "vlm" is a subclass of "vglm", or

"vglm" is a superclass of "vlm", or "vglm" extends "vlm"

vgam() "vgam" "vglm" ⊂ "vgam"

rrvglm() "rrvglm" "vglm" ⊂ "rrvglm"

cqo() "qrrvglm" "rrvglm" ⊂ "qrrvglm". Function cqo() might be better
(or later) called qrrvglm()

cao() "rrvgam" "qrrvglm" ⊂ "rrvgam". Function cao() might be better
(or later) called rrvgam()

rcim() "rcim" "rcim" ⊂ "rrvglm"

grc() "grc" "grc" ⊂ "rcim"

one wanted to write an accessor function called Depvar() to return the response
or dependent variable as held in the @y slot. Then

Depvar.vlm <- function(object, ...) object@y

if (!isGeneric("Depvar"))

setGeneric("Depvar", function(object, ...) standardGeneric("Depvar"))

setMethod("Depvar", "vlm", function(object, ...) Depvar.vlm(object, ...))

is a very simple implementation: Depvar(fit) should work for any fit which
inherits from "vlm". The choice here of dispatching with respect to "vlm" objects
means that all the major classes of models (Table 1.1) should be handled by this
one function. That is, "vlm" is the fundamental subclass, as seen in Fig. 1.2.

Other particularly useful S4 functions to the programmer include as(), is(),
new(), setClass(), slotNames().

18.5 Examples

This section looks at two more examples. Prospective writers of family functions
will probably need to examine these in detail and invest substantial time hacking
into the code. The source code is available in the .tar.gz form and not in the .zip
file for Windows machines.

18.5.1 The Kumaraswamy Distribution Family

This distribution, which is summarized in Table 12.11, has a VGAM family function
that is more representative of most other family functions. It handles multiple
responses, has M1 = 2 and its EIM is tractable. Here it is.
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> print(kumar)

function(lshape1 = "loge", lshape2 = "loge",

ishape1 = NULL, ishape2 = NULL,

grid.shape1 = c(0.4, 6.0), tol12 = 1.0e-4, zero = NULL) {

lshape1 <- as.list(substitute(lshape1))

eshape1 <- link2list(lshape1)

lshape1 <- attr(eshape1, "function.name")

lshape2 <- as.list(substitute(lshape2))

eshape2 <- link2list(lshape2)

lshape2 <- attr(eshape2, "function.name")

if (length(ishape1) &&

(!is.Numeric(ishape1, length.arg = 1, positive = TRUE)))

stop("bad input for argument ’ishape1’")

if (length(ishape2) && !is.Numeric(ishape2))

stop("bad input for argument ’ishape2’")

if (!is.Numeric(tol12, length.arg = 1, positive = TRUE))

stop("bad input for argument ’tol12’")

if (!is.Numeric(grid.shape1, length.arg = 2, positive = TRUE))

stop("bad input for argument ’grid.shape1’")

if (length(zero) &&

!is.Numeric(zero, integer.valued = TRUE))

stop("bad input for argument ’zero’")

new("vglmff",

blurb = c("Kumaraswamy distribution\n\n",

"Links: ", namesof("shape1", lshape1, eshape1, tag = FALSE), ", ",

namesof("shape2", lshape2, eshape2, tag = FALSE), "\n",

"Mean: shape2 * beta(1 + 1 / shape1, shape2)"),

constraints = eval(substitute(expression({

dotzero <- .zero

M1 <- 2

eval(negzero.expression.VGAM)

}), list( .zero = zero ))),

infos = eval(substitute(function(...) {

list(M1 = 2, Q1 = 1, expected = TRUE, multipleResponses = TRUE,

lshape1 = .lshape1 , lshape2 = .lshape2 , zero = .zero )

}, list( .zero = zero, .lshape1 = lshape1, .lshape2 = lshape2 ))),

initialize = eval(substitute(expression({

checklist <- w.y.check(w = w, y = y, Is.positive.y = TRUE,

ncol.w.max = Inf, ncol.y.max = Inf,

out.wy = TRUE, colsyperw = 1, maximize = TRUE)

w <- checklist$w

y <- checklist$y # Now ’w’ and ’y’ have the same dimension.

if (any((y <= 0) | (y >= 1)))

stop("the response must be in (0, 1)")
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extra$ncoly <- ncoly <- ncol(y)

extra$M1 <- M1 <- 2

M <- M1 * ncoly

mynames1 <- paste("shape1", if (ncoly > 1) 1:ncoly else "", sep = "")

mynames2 <- paste("shape2", if (ncoly > 1) 1:ncoly else "", sep = "")

predictors.names <-

c(namesof(mynames1, .lshape1 , earg = .eshape1 , tag = FALSE),

namesof(mynames2, .lshape2 , earg = .eshape2 , tag = FALSE))[

interleave.VGAM(M, M = M1)]

if (!length(etastart)) {

kumar.Loglikfun <- function(shape1, y, x, w, extraargs) {

mediany <- colSums(y * w) / colSums(w)

shape2 <- log(0.5) / log1p(-(mediany^shape1))

sum(c(w) * dkumar(y, shape1 = shape1, shape2 = shape2, log = TRUE))

}

shape1.grid <- seq( .grid.shape1[1], .grid.shape1[2], len = 19)

shape1.init <- if (length( .ishape1 )) .ishape1 else

grid.search(shape1.grid, objfun = kumar.Loglikfun,

y = y, x = x, w = w)

shape1.init <- matrix(shape1.init, n, ncoly, byrow = TRUE)

mediany <- colSums(y * w) / colSums(w)

shape2.init <- if (length( .ishape2 )) .ishape2 else

log(0.5) / log1p(-(mediany^shape1.init))

shape2.init <- matrix(shape2.init, n, ncoly, byrow = TRUE)

etastart <- cbind(theta2eta(shape1.init, .lshape1 , earg = .eshape1 ),

theta2eta(shape2.init, .lshape2 , earg = .eshape2 ))[,

interleave.VGAM(M, M = M1)]

}

}), list( .lshape1 = lshape1, .lshape2 = lshape2,

.ishape1 = ishape1, .ishape2 = ishape2,

.eshape1 = eshape1, .eshape2 = eshape2,

.grid.shape1 = grid.shape1 ))),

linkinv = eval(substitute(function(eta, extra = NULL) {

shape1 <- eta2theta(eta[, c(TRUE, FALSE)], .lshape1 , earg = .eshape1 )

shape2 <- eta2theta(eta[, c(FALSE, TRUE)], .lshape2 , earg = .eshape2 )

shape2 * (base::beta(1 + 1/shape1, shape2))

}, list( .lshape1 = lshape1, .lshape2 = lshape2,

.eshape1 = eshape1, .eshape2 = eshape2 ))),

last = eval(substitute(expression({

misc$link <- c(rep( .lshape1 , length = ncoly),

rep( .lshape2 , length = ncoly))[interleave.VGAM(M, M = M1)]

temp.names <- c(mynames1, mynames2)[interleave.VGAM(M, M = M1)]

names(misc$link) <- temp.names
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misc$earg <- vector("list", M)

names(misc$earg) <- temp.names

for (ii in 1:ncoly) {

misc$earg[[M1*ii-1]] <- .eshape1

misc$earg[[M1*ii ]] <- .eshape2

}

}), list( .lshape1 = lshape1, .lshape2 = lshape2,

.eshape1 = eshape1, .eshape2 = eshape2 ))),

loglikelihood = eval(substitute(

function(mu, y, w, residuals = FALSE, eta, extra = NULL, summation = TRUE) {

shape1 <- eta2theta(eta[, c(TRUE, FALSE)], .lshape1 , earg = .eshape1 )

shape2 <- eta2theta(eta[, c(FALSE, TRUE)], .lshape2 , earg = .eshape2 )

if (residuals) {

stop("loglikelihood residuals not implemented yet")

} else {

ll.elts <- c(w) * dkumar(x = y, shape1, shape2, log = TRUE)

if (summation) sum(ll.elts) else ll.elts

}

}, list( .lshape1 = lshape1, .lshape2 = lshape2,

.eshape1 = eshape1, .eshape2 = eshape2 ))),

vfamily = c("kumar"),

simslot = eval(substitute(

function(object, nsim) {

eta <- predict(object)

shape1 <- eta2theta(eta[, c(TRUE, FALSE)], .lshape1 , earg = .eshape1 )

shape2 <- eta2theta(eta[, c(FALSE, TRUE)], .lshape2 , earg = .eshape2 )

rkumar(nsim * length(shape1), shape1 = shape1, shape2 = shape2)

}, list( .lshape1 = lshape1, .lshape2 = lshape2,

.eshape1 = eshape1, .eshape2 = eshape2 ))),

deriv = eval(substitute(expression({

shape1 <- eta2theta(eta[, c(TRUE, FALSE)], .lshape1 , earg = .eshape1 )

shape2 <- eta2theta(eta[, c(FALSE, TRUE)], .lshape2 , earg = .eshape2 )

dshape1.deta <- dtheta.deta(shape1, link = .lshape1 , earg = .eshape1 )

dshape2.deta <- dtheta.deta(shape2, link = .lshape2 , earg = .eshape2 )

dl.dshape1 <- 1 / shape1 + log(y) - (shape2 - 1) * log(y) *

(y^shape1) / (1 - y^shape1)

dl.dshape2 <- 1 / shape2 + log1p(-y^shape1)

dl.deta <- c(w) * cbind(dl.dshape1 * dshape1.deta,

dl.dshape2 * dshape2.deta)

dl.deta[, interleave.VGAM(M, M = M1)]

}), list( .lshape1 = lshape1, .lshape2 = lshape2,

.eshape1 = eshape1, .eshape2 = eshape2 ))),

weight = eval(substitute(expression({

ned2l.dshape11 <- (1 + (shape2 / (shape2 - 2)) *

((digamma(shape2) - digamma(2))^2 -

(trigamma(shape2) - trigamma(2)))) / shape1^2

ned2l.dshape22 <- 1 / shape2^2

ned2l.dshape12 <-

(digamma(2) - digamma(1 + shape2)) / ((shape2 - 1) * shape1)
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index1 <- (abs(shape2 - 1) < .tol12 ) # Fix up singular point at shape2 == 1

ned2l.dshape12[index1] <- -trigamma(2) / shape1[index1]

index2 <- (abs(shape2 - 2) < .tol12 ) # Fix up singular point at shape2 == 2

ned2l.dshape11[index2] <- (1 - 2 * psigamma(2, deriv = 2)) / shape1[index2]^2

wz <- array(c(c(w) * ned2l.dshape11 * dshape1.deta^2,

c(w) * ned2l.dshape22 * dshape2.deta^2,

c(w) * ned2l.dshape12 * dshape1.deta * dshape2.deta),

dim = c(n, M / M1, 3))

wz <- arwz2wz(wz, M = M, M1 = M1)

wz

}), list( .lshape1 = lshape1, .lshape2 = lshape2,

.eshape1 = eshape1, .eshape2 = eshape2, .tol12 = tol12 ))))

}

<environment: namespace:VGAM>

Here are some short notes.

1. As 
i = logαi + log βi + (αi − 1) log yi + (βi − 1) log(1− yαi
i ), the score vector

comprises α−1
i + log yi − (βi − 1)(log yi) y

α
i /(1 − yαi

i ) and β−1
i + log(1 − yαi

i ).
The EIM requires digamma and trigamma evaluations (Sect. A.4.1). A small
complication is that singularities for two EIM elements exist at β = 1 and β = 2.
These are easily dealt with an application of the L’Hospital rule:

lim
β→1

ψ(2)− ψ(1 + β)

β − 1
= −ψ′(2),

lim
β→2

β

β − 2

{
[ψ(β)− ψ(2)]2 − [ψ′(β)− ψ′(2)]

}
= −2ψ′′(2).

2. A grid search is conducted in @initialize as a function of shape1. Given
a value of shape1, a suitable value of shape2 can be obtained from its
CDF F (y) = 1− (1− yα)β .

3. The first subscript of array() variables varies the fastest, followed by the sec-
ond, etc. This property is exploited by wz when it is inputted into arwz2wz().

18.5.2 Simulated Fisher Scoring

Working weights approximated by simulated Fisher scoring (Sect. 9.2.2) have
a @weight slot comprising of a for() loop running over the nsimEIM simula-
tions. Each of these simulations is vectorized. Here is an example involving a
(currently) S = 1 response family called slash().

> VGAM:::slash.control

function(save.weights = TRUE, ...) {

list(save.weights = save.weights)

}

<environment: namespace:VGAM>
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> slash()@deriv

expression({

mu <- eta2theta(eta[, 1], link = "identitylink", earg = list(

theta = , inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE))

sigma <- eta2theta(eta[, 2], link = "loge", earg = list(theta = ,

bvalue = NULL, inverse = FALSE, deriv = 0, short = TRUE,

tag = FALSE))

dmu.deta <- dtheta.deta(mu, link = "identitylink", earg = list(

theta = , inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE))

dsigma.deta <- dtheta.deta(sigma, link = "loge", earg = list(

theta = , bvalue = NULL, inverse = FALSE, deriv = 0,

short = TRUE, tag = FALSE))

zedd <- (y - mu)/sigma

d3 <- deriv3(~w * log(1 - exp(-(((y - mu)/sigma)^2)/2)) -

log(sqrt(2 * pi) * sigma * ((y - mu)/sigma)^2), c("mu",

"sigma"))

eval.d3 <- eval(d3)

dl.dthetas <- attr(eval.d3, "gradient")

dl.dmu <- dl.dthetas[, 1]

dl.dsigma <- dl.dthetas[, 2]

ind0 <- (abs(zedd) < 2.22044604925031e-13)

dl.dmu[ind0] <- 0

dl.dsigma[ind0] <- -1/sigma[ind0]

c(w) * cbind(dl.dmu * dmu.deta, dl.dsigma * dsigma.deta)

})

> slash()@weight

expression({

run.varcov <- 0

ind1 <- iam(NA, NA, M = M, both = TRUE, diag = TRUE)

sd3 <- deriv3(~w * log(1 - exp(-(((ysim - mu)/sigma)^2)/2)) -

log(sqrt(2 * pi) * sigma * ((ysim - mu)/sigma)^2), c("mu",

"sigma"))

for (ii in 1:(250)) {

ysim <- rslash(n, mu = mu, sigma = sigma)

seval.d3 <- eval(sd3)

dl.dthetas <- attr(seval.d3, "gradient")

dl.dmu <- dl.dthetas[, 1]

dl.dsigma <- dl.dthetas[, 2]

temp3 <- cbind(dl.dmu, dl.dsigma)

run.varcov <- run.varcov + temp3[, ind1$row] * temp3[,

ind1$col]

}

run.varcov <- run.varcov/250

wz <- if (intercept.only)

matrix(colMeans(run.varcov, na.rm = FALSE), n, ncol(run.varcov),

byrow = TRUE)

else run.varcov

dthetas.detas <- cbind(dmu.deta, dsigma.deta)

wz <- wz * dthetas.detas[, ind1$row] * dthetas.detas[, ind1$col]

c(w) * wz

})
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Here are some notes.

1. The family function’s .control() function sets the value of save.weights

to TRUE. This means that the working weights are attached to the
object after convergence. For families having ‘proper’ EIMs programmed in,
save.weights = FALSE and they are recomputed when needed, e.g., to obtain
standard errors. This eliminates the need to attach a large data structure on
the object. It is a good idea to set save.weights = TRUE for families imple-
menting simulated Fisher scoring because recomputing them later tends to be
too expensive, and there are reproducibility issues.

2. The R function deriv3() is used to differentiate the loglikelihood with respect
to the parameters. While this saves the programmer’s time, the execution time is
usually longer than manually programming. Manually programming also allows
safer evaluation if the L’Hospital rule is needed, e.g., Ex. 16.13.

3. The code in the @weight slot is based on the code from @deriv. One simply
replaces y by ysim, where the latter are random variates generated at the current
parameter values. In particular, the ith row of run.varcov stores

Var

(
∂
i
∂θ

)

≈ N−1
N∑

s=1

∂
i
∂θ

∂
i

∂θT
(18.15)

where N = nsimEIM, and the partial derivatives are random score vectors.
4. For models where the only explanatory variable is an intercept, one can average

the working weights over the n observations as well. Usually, one can only
overage over the nsimEIM simulations for each i. Should the grand mean be
used, this should result in more accurate working weight matrices.

18.6 Writing Smart Functions †

In this section we look at the more technical aspects of smart prediction
(Sect. 8.2.5) and how to write smart functions.

Smart prediction is based on the fundamental property that the evaluation of
the model frame during prediction is done in precisely the same order as the orig-
inal fit. Consequently we can use a data structure known in computer science as a
first-in first-out (FIFO) queue (cf. a last-in first-out (LIFO) stack) held temporarily
in a pre-ordained place to store the data-dependent parameters while the original
model frame is constructed from the formula. Upon the model’s convergence the
contents of the queue are stored on the fitted object in the smart.prediction

slot. Upon prediction, the queue contents are copied back into the hidden location
and reused during the construction of the second model frame. Each function that
has data-dependent parameters need to know how to write to and read from the
hidden location—they are consequently called smart. Table 18.8 summarizes the
functions and variables in VGAM implementing smart prediction.

The first example is to write sm.min1(), say, to help fit the equivalent of fit2
in Sect. 8.2.5. Then
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> print(sm.min1)

function(x) {

x <- x # Evaluate x; needed for nested calls, e.g., sm.bs(sm.scale(x)).

minx <- min(x)

if (smart.mode.is("read")) {

smart <- get.smart()

minx <- smart$minx # Overwrite its value

} else if (smart.mode.is("write"))

put.smart(list(minx = minx))

minx

}

<environment: namespace:VGAM>

attr(,"smart")

[1] TRUE

Incidentally, this function lacks the generality of min(), e.g., it has no na.rm

argument and it should be only used on a vector x.
The functions put.smart() and get.smart() are opposites—the former

writes a list to a specified location, and the latter retrieves it. The function
smart.mode.is() returns TRUE or FALSE depending on its argument.

Here is a second example. The function sm.scale() was written so that models
such as fit1 could be predicted from. For simplicity, we have written a similar
function to sm.scale() called sm.scale1() which only standardizes a numerical
vector (sm.scale() handles matrices). It performs no error checking and here is
what it looks like:

> print(sm.scale1)

function(x, center = TRUE, scale = TRUE) {

x <- x # Evaluate x; needed for nested calls, e.g., sm.bs(sm.scale(x)).

if (!is.vector(x))

stop("argument ’x’ must be a vector")

if (smart.mode.is("read")) {

smart <- get.smart()

return((x - smart$Center) / smart$Scale)

}

if (is.logical(center))

center <- if (center) mean(x) else 0

if (is.logical(scale))

scale <- if (scale) sqrt(var(x)) else 1

if (smart.mode.is("write"))

put.smart(list(Center = center,

Scale = scale))

(x - center) / scale

}

<environment: namespace:VGAM>

attr(,"smart")

[1] TRUE

Here are some technical details needed for writing a smart function. They operates
in three modes: “neutral”, “write” and “read”.

• In “neutral” mode (assumed so unless “write” or “read”) it operates like an
ordinary function and simply returns the result, e.g., min(x).

• In “write” mode (at fitting time) it writes out the data-dependent parameters
that need saving into a special data structure called .smart.prediction in an
R environment called VGAM:::smartpredenv and then returns the result as well.
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When the regression modelling function is finishing, .smart.prediction is at-
tached to the object’s smart.prediction slot.

• In “read” mode (at prediction time) the smart.prediction slot is copied back
into smartpredenv (and called .smart.prediction) by the prediction methods
function. It is now available for reading by the smart function, which is invoked
the second time when the model frame is computed. If the original parameters
are needed, then the smart function will access them from .smart.prediction.

In “read” mode, smart functions can be programmed in two ways. The first way
is without recursion, e.g., sm.scale1(). The second way by recursion operates
by evaluating a do.call() once the original parameters have been reinstated.
The cleanest way is if the information originally written is in a list, with compo-
nents whose names match the function’s arguments—see sm.scale.default(),
sm.scale2() below, sm.bs() and sm.ns() as examples. If there are only one or
two parameters, or if the expression is simple, then the first option is usually the
best. A disadvantage of the recursive call is the possible need of extra nuisance
arguments.

A line such as x <- x (where x is the primary argument of the smart function)
is needed at the very beginning of the function to cause lazy evaluation to work
immediately. This is necessary because of terms such as sm.bs(sm.scale1(x)),
where a smart function calls another smart function. The inner sm.scale1() needs
to be evaluated using its smart parameters before the outer bs is evaluated. The
statement x <- x ensures that. In general, writing smart function poses poten-
tial pitfalls for inexperienced programmers and it requires careful testing. Upon
writing a smart function, a logical attribute "smart" should be assigned TRUE so
that is.smart() can return true, e.g.,

sm.myfunction <- function(x, ...) {
...

}
attr(sm.myfunction, "smart") <- TRUE

Here is an equivalent function of sm.scale1(), called sm.scale2():

> print(sm.scale2)

function(x, center = TRUE, scale = TRUE) {

x <- x # Evaluate x; needed for nested calls, e.g., sm.bs(sm.scale(x)).

if (!is.vector(x))

stop("argument ’x’ must be a vector")

if (smart.mode.is("read")) {

return(eval(smart.expression)) # Recursion used

}

if (is.logical(center))

center <- if (center) mean(x) else 0

if (is.logical(scale))

scale <- if (scale) sqrt(var(x)) else 1

if (smart.mode.is("write"))

put.smart(list(center = center,

scale = scale,

match.call = match.call()))

(x - center) / scale

}

<environment: namespace:VGAM>

attr(,"smart")

[1] TRUE
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It runs the second way because the expression smart.expression invokes the
recursion. In order for smart.expression to work it is crucial that:

(a) the list in put.smart() to have exactly the same names as the arguments of
the smart function (here, they are center and scale), and

(b) the primary argument of the smart function is called x.

As another recursive example,

> print(sm.min2)

function(x, .minx = min(x)) {

x <- x # Evaluate x; needed for nested calls, e.g., sm.bs(sm.scale(x)).

if (smart.mode.is("read")) { # Use recursion

return(eval(smart.expression))

} else

if (smart.mode.is("write"))

put.smart(list( .minx = .minx , match.call = match.call()))

.minx

}

<environment: namespace:VGAM>

attr(,"smart")

[1] TRUE

implements another simple sm.min()-type function. Outwardly, it differs from
sm.min1() in that .minx is a nuisance argument. That it begins with a period is
to signify that it should not be used by the user.

VGAM’s smart prediction writes three data structures (.smart.prediction,
.smart.prediction.counter, and .smart.prediction.mode) to smartpredenv.
They are deleted after both fitting and prediction is complete using wrapup

.smart(). The user should be oblivious to their existence.
The character variable .smart.prediction.mode equals "neutral", "read"

or "write". It is in "write" mode when the smart functions write their arguments
out (i.e., when model is originally fitted), and in "read" mode while predicting,
and in "neutral" otherwise, e.g., at the command line, or while predicting but
needing to be momentarily out of "read" and "write" mode so that it acts like
an ordinary function.

On set up, .smart.prediction is a list with max.smart empty components
and the variable .smart.prediction.counter is assigned 0. When a smart func-
tion writes out its data-dependent parameters, .smart.prediction.counter is
incremented and the argument of put.smart() is written to that component
of .smart.prediction. If more than max.smart components are used up, then
.smart.prediction is lengthened automatically. The list .smart.prediction is
trimmed of any unused components just prior to being attached to the object.

Similarly, upon prediction, .smart.prediction (object@smart.prediction)
is placed back in smartpredenv, and .smart.prediction.counter is as-
signed 0. When in read mode, .smart.prediction.counter is incremented
and get.smart() returns the .smart.prediction.counterth component of the
list .smart.prediction. As mentioned above, this data structure is known as a
queue.
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Table 18.8 Functions and variables for smart prediction, supplied in VGAM for programmers.

Function or variable Comments

is.smart() Returns a logical. Is a function smart?

VGAM:::smartpredenv Pre-ordained hidden environment where the queue
.smart.prediction resides

get.smart() Reads the next list component from .smart.prediction

put.smart() Writes the next list component to .smart.prediction

.smartprediction List, each component contains a term’s data-dependent pa-

rameters

.smart.prediction.counter Non-negative integer, points to the last element in the queue
when writing, and the first element when reading

max.smart An argument of setup.smart(), the length
of .smartprediction, e.g., 30. Automatically expands
to a larger value if needed

smart.expression Expression, useful for a smart function that uses recursion.
Has some limitations, e.g., first argument name x

smart.mode.is() Returns a character string of the smart prediction mode:
"read", "write" or "neutral"

.smart.prediction.mode Character, the smart prediction mode, has the value "read",
"write" or "neutral". This variable is best accessed
by smart.mode.is()

setup.smart() Sets up the data structures ready for smart prediction

wrapup.smart() Wraps up smart prediction by deleting the data structures

Bibliographic Notes
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There are many potential areas where VGAM family functions may be written,
because IRLS is a suitable estimation algorithm, for example, generalized estimat-
ing equations (Wild and Yee, 1996) and robust regression (Huber and Ronchetti,
2009).

Exercises

Ex. 18.1. Modify better.exponential() so that it has an additional default
argument called irate = NULL, which is an optional initial value for the rate
parameter. If inputted by the user, then it should override all other self-starting
initial values.
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Ex. 18.2. Consider the NB-C, viz. negative binomial regression with the canon-
ical link η1 = log(μ/(μ+k)). Derive the first and expected second derivatives based
on (18.7)–(18.9). Use (11.2) and η2 = log k.

Ex. 18.3. Suppose x, A (symmetric) and X consist of constants, and 
(η) is a
log-likelihood with η = Xβ. Show the following:

∂ xTβ

∂β
= x, (18.16)

∂ βTAβ

∂β
= 2Aβ, (18.17)

∂2


∂β ∂βT
= XT ∂2


∂η ∂ηT
X. (18.18)

Ex. 18.4. † Find some univariate discrete or continuous distribution currently
unimplemented in VGAM, whose EIM can be derived or accessed from the
literature.

(a) Write a (simpler) VGAM family function to fit this model—it should handle
one such response.

(b) If practical, write the dpqr-type functions associated with the distribution. If
there is an r-type function, use it to test your answer to (a).

(c) Extend your answer to (a) by allowing for multiple responses.
(d) Use prompt() to write a suitable .Rd file for the family function and, if relevant,

another for the dpqr-type functions.

Ex. 18.5. † Consider a zero-inflated beta-binomial distribution based on φ =
probability of a structural zero, and positive shape parameters a and b. Complete
Ex. 18.4 specifically for this distribution. Hint: Table 11.10, Sect. 11.4 and Ex. 17.16
may be useful. Call the family function zibetabinomialff().

Ex. 18.6. † Wong (1989) [Biometrika 76 (1), 55–60] describes a simple linear
regression model with measurement error where the joint distribution of (x, y)
satisfies x = ξ + εx, y = η + εy, ξ ∼ N(μ, τ2), and the errors are uncorrelated.
Then the joint distribution is subsequently bivariate normal

N2

((
μ
α+ βμ

)

,

(
τ2 + σ2

0 βτ2

βτ2 β2τ2 + σ2
0

))

,

and the EIM is tractable when the common error variance Var(εx) = Var(εy) = σ2
0

is known. Write a VGAM family function called simple.lm.eiv(sigma0) to im-
plement this model. Use the orthogonal parameterization detailed in the paper
involving parameters θ = (λ0, λ1, λ2, β)

T . Test out your function using some sim-
ulated data.

Ex. 18.7. New Link Functions

(a) For the links of Table 18.9 derive dkη/dθk for k = 1 and 2, as well as
θ = g−1(η).

(b) † Write VGAM-compatible link functions for some self-selected entries from
the table. Choose suitable default values for a and b if needed. Test them out
on some data sets. Write the .Rd files too.
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Table 18.9 Link functions for Ex. 18.7. Here, a and b are prespecified constants, and Tν is the
CDF of a Student-t distribution with df = ν degrees of freedom.

Link g (θ) Range of θ

qtlink(df) T−1
ν (θ) (0, 1)

pregibonlink()
θa−b − 1

a− b
− (1− θ)a+b − 1

a+ b
(0, 1)

logitpowerlink() log (θa/ (1− θa)) (0, 1)

oddspowerlink() a−1 ([θ/ (1− θ)a]− 1) (0, 1)

aolink() log
([
(1− θ)−a − 1

]
/a
)

(0, 1)

neglognegloglink() −log (−log θ) (0, 1)

logit10link() log10 (θ/(1− θ)) (0, 1)

loglog1plink() log (log (1 + θ)) (0, ∞)

log10link() log10 θ (0, ∞)

Ex. 18.8. † Smart Functions (Table 18.8)
Write the following smart functions and their corresponding .Rd files: sm.cut(),
sm.max(), sm.mean(), sm.min(), sm.sd(), sm.var(). Try to implement the full
capabilities that their unsmart functions offer. Test out your functions well.

Correct with care, if you expect to write anything which shall be worthy of a
second perusal.
—Quintus Horatius Flaccus
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Vector Generalized Linear and Additive Models

Thomas W. Yee
Department of Statistics, University of Auckland, Auckland, New Zealand

T.W. Yee, Vector Generalized Linear and Additive Models,
Springer Series in Statistics, DOI 10.1007/978-1-4939-2818-7 19,
c© Thomas Yee 2015

DOI 10.1007/978-1-4939-2818-7 19

The paperback and online versions of the book contain some errors, and the
corrections to these versions are given below:

Repeatedly throughout the text: “an RR-VGLM” should be “a RR-VGLM”.

Chapter 1
Page 27, Section 1.5.2.5: “... because males just born ...” should be “... because
females just born ...”.

Page 30, Package “zelig” should be “Zelig”

Chapter 5
Page 177, Section 5.5.2.2: first paragraph: “... or COZIGAMs, and there was an R
package by the same name”. Evidently COZIGAM was removed from CRAN in
mid-2012.

Chapter 10
Page 315, Exercise 10.10: binom2.or(exchangeable = TRUE, zero = NULL) is
correct, rather than binom2.or(exchangeable = TRUE, ZERO = NULL).

Chapter 11
Page 327, Package “COUNTS” should be “COUNT”

Chapter 14
Section 14.4.2 page 401 bottom: the code chunk should end with

matplot(with(pneumo, let), predict(np.npom.pneumo, untransform = TRUE),

type = "b", col = 1:3, ylab = "Pr(Y>=j), j=2, 3", pch = c("2", "3"),

xlab = "Log exposure time", main = "(c)")

That is, arguments “ylab” and “pch” have been changed.

© Thomas Yee 2015
T.W. Yee, Vector Generalized Linear and Additive Models,
Springer Series in Statistics, DOI 10.1007/978-1-4939-2818-7 19
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Appendix A
Page 555, Eqn. (A.50): the sign before the summation is “−” rather than “+”,
i.e.,

ψ(x) = log x− 1

2 x
−

∞∑

k=1

B2k

2 k x2k
= log x− 1

2 x
− 1

12 x2
+ · · · , (A.50)

The online version of the original book can be found at
http://dx.doi.org/10.1007/978-1-4939-2818-7

http://dx.doi.org/10.1007/978-1-4939-2818-7


Appendix A

Background Material

All who debate on matters of uncertainity, should be free from prejudice,
partiality, anger, or compassion.
—Caius Sallustius Crispus

A.1 Some Classical Likelihood Theory

Most of the VGLM/VGAM framework is infrastructure directed towards maxi-
mizing a full-likelihood model, therefore it is useful to summarize some supporting
results from classical likelihood theory. The following is a short summary of a few
selected topics serving the purposes of this book. The focus is on aspects of di-
rect relevance to the practitioners and users of the software. The presentation is
informal and nonrigorous; rigorous treatments, including justification and proofs,
can be found in the texts listed in the bibliographic notes. The foundation of this
subject was developed by Fisher a century ago (around the decade of WW1), and
he is regarded today as the father of modern statistics.

A.1.1 Likelihood Functions

The usual starting point is to let Y be a random variable with density func-
tion f(y;θ) depending on θ = (θ1, . . . , θp)

T , a multidimensional unknown param-
eter. Values that Y can take are denoted in lower-case, i.e., y. By ‘density function’,
here is meant a probability (mass) function for a discrete-valued Y , and probabil-
ity density function for continuous Y . We shall refer to f as simply the density
function, and use integration rather than summation to denote quantities such as
expected values, e.g., E(Y ) =

∫
f(y) dy where the range of integration is over the

support of the distribution, i.e., those values of y where f(y) > 0 (called Y).
A lot of statistical practice centres upon making inference about θ, having

observed Y = y. As well as obtaining an estimate θ̂, it is customary to cite some
measure of accuracy or plausibility of the estimate, usually in the form of its

© Thomas Yee 2015

T.W. Yee, Vector Generalized Linear and Additive Models,
Springer Series in Statistics, DOI 10.1007/978-1-4939-2818-7

533



534 A Background Material

standard error, SE(θ̂). It is also common to conduct hypothesis tests, e.g., for a
one-parameter model, test the null hypothesis H0 : θ = θ0 for some known and
fixed value θ0.

Let Ω be the parameter space, which is the set of possible values that θ can
take. For example, if Y ∼ N(μ, σ2) where θ = (μ, σ)T , then Ω = R × (0,∞) =
R × R+. Another simple example is the beta distribution having positive shape
parameters θ = (s1, s2)

T , therefore Ω = R
2
+. Clearly, Ω ⊆ R

p.
In the wider VGLM/VGAM framework, some of our responses yi may be mul-

tivariate, therefore let Y = (Y T
1 , . . . ,Y

T
n )

T be a random vector of n observations,
each Y i being a random vector. We observe y = (yT

1 , . . . ,y
T
n )

T in totality.
Each yi can be thought of as being a realization from some statistical distri-

bution with joint density function f(yi;θ). With n observations, the joint density
function can be written f(y ;θ). We say that a (parametric) statistical model is a
set of possible density functions indexed by θ ∈ Ω, i.e.,

Mθ = {f(·;θ) : θ ∈ Ω} ,
which may be simplified to just M.

The approach considered in this book is to assume that the user knows such a
family of distributions. Often this strong assumption is groundless, and therefore
parametric models may give misleading results. A method that lies in between
the fully-parametric method adopted in this book and nonparametric methods
is based on using an empirical likelihood (Owen, 2001), which gives the best of
both worlds. The empirical likelihood supplies information at a sufficient rate that
reliable confidence intervals/regions and hypothesis tests can be constructed.

Of course, parameterizations are not unique, e.g., for many distributions in
Chap. 12, the scale parameter b is used so that the form y/b appears in the density,
whereas some practitioners prefer to use its reciprocal, called the rate, and then
the densities have the term λy. Two other examples, from Table 12.11, are the
beta and beta-binomial distributions which are commonly parameterized in terms
of the shape parameters, otherwise the mean and a dispersion parameter.

Regardless of the parameterization chosen, the parameter must be identifiable.
This means that each element ofMθ corresponds to exactly one value of θ. Stated
another way, if θ1 and θ2 ∈ Ω with θ1 �= θ2 then the densitiesMθ1(y) �=Mθ2(y).
As an example, consider the multinomial logit model (1.25) described in Sect. 14.2.
We can have

P (Y = j|x) = ec

ec
exp{ηj}

∑M+1
k=1 exp{ηk}

=
exp{ηj + c}

∑M+1
k=1 exp{ηk + c}

,

for any constant c, hence the M+1 ηjs are non-identifiable. In practice, we choose
c = −ηt for some t, and then redefine the ηj . The family function multinomial()

chooses t = M +1, by default, as the reference group so that ηM+1 ≡ 0, but t = 1
is another popular software default.

A.1.2 Maximum Likelihood Estimation

Maximum likelihood estimation is the most widely used general-purpose estima-
tion procedure in statistics. It centres on the likelihood function for θ, based on
the observation of Y = y:

L(θ;y) = f(y;θ), θ ∈ Ω. (A.1)
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With a philosophical twist, two quantities can be seen contrasted here: the like-
lihood function that is a function of the parameter θ, given the data y, cf. the
density that is a function of the data y, given the parameter θ. The likelihood
function is thus the probability of observing what we got (y) as a function of θ
based on our model. Clearly, this holds for discrete responses, but it can be easily
justified for continuous responses too (see below). Thus maximum likelihood esti-
mation treats the data as being fixed and given, and it determines θ which makes
our observed data most probable.

It is much more convenient to work on a log-scale. One major reason for this
monotone transformation is that data is very commonly assumed to be inde-
pendent, so we can obtain additivity of log-likelihood contributions. Also, rather
than having a single observation Y = y, it is more general to have Y i = yi

for i = 1, . . . , n, where n is the sample size. Putting these two properties together,

L(θ;y) = f(y;θ) =

n∏

i=1

f(yi;θ) =

n∏

i=1

Li, (A.2)

where the data is y = (y1, . . . ,yn)
T .

Now, taking the logarithm of this joint distribution gives the log-likelihood
function


(θ;y) =

n∑

i=1

log f(yi;θ) =

n∑

i=1


i. (A.3)

The fact that this is a sum will enable us later to state large sample properties of
ML estimators by application of the law of large numbers.

Maximum likelihood estimation involves maximizing L, or equivalently, 
. We
can write

θ̂ = argmax
θ∈Ω


(θ;y),

and the solution need not be unique or even exist. Unless θ̂ is on the boundary, we
obtain θ̂ by solving ∂
(θ)/∂θ = 0. Iterative methods (Sect. A.1.2.4) are commonly

employed to obtain the maximum likelihood estimate θ̂, because no closed-form
expression can be obtained.

In maximizing 
, it is the relative values of 
(θ) that matter, not their values in
absolute terms. Hence, some authors omit any additive constants not involving θ
from 
 but still use “=” in (A.3). This actually holds implicitly for continuous re-
sponses Y because the probability that Y = y is actually 0, hence fundamentally,
(A.1) is actually of the form f(y;θ) · ε which is a ‘real’ probability—it represents
the chances of observing a value in a small set of volume centred at y. Then (A.2)
involves a ∝ because the width of the volume, as measured by ε, does not de-
pend on θ, and therefore (A.3) is equality up to a constant. For families such
as posbinomial(), it is necessary to set the argument omit.constant to TRUE

when comparing nested models that have different normalizations (Sect. 17.2.1).
ML estimators are functions of quantities known as sufficient statistics. A statis-

tic is simply a function of the sample space S, and it will be denoted here by T .
Sufficient statistics are statistics that reduce the data into two parts: a useful
part and an irrelevant part. The sufficient statistic contains all the information
about θ that is contained in Y , and it is not unique. By considering only the
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useful part, sufficient statistics allow for a form of data reduction. The usual def-
inition of a statistic T that is sufficient for Mθ of Y is that the conditional
distribution f(Y |T = t) does not depend on θ, for all values of t. However, this
definition is not as useful as one would like. Fortunately, there is a famous result
called the factorization theorem that is more useful than the original definition,
because it provides a method for testing whether a statistic T is sufficient, as well
as obtaining T in the first place. It can be stated as follows.

Factorization Theorem A statistic T (Y ) is sufficient for Mθ iff there exist
non-negative functions g(·;θ) and h such that

f(y;θ) = g(T (y);θ) · h(y). (A.4)

Then clearly maximizing a likelihood via f is equivalent to maximizing g only,
because h is independent of θ.

Some well-known examples of sufficient statistics are as follows.

(i) If Yi ∼ Poisson(μ) independently, then
∑

i Yi is sufficient for θ = μ. Similarly,
if Yi ∼ Binomial(n = 1, μ) is a sequence of independent Bernoulli random
variables, then

∑
i Yi is also sufficient for θ = μ. In both cases, there is a

reduction of n values down to one value.
(ii) If the Yi are a random sample from an N(μ, σ2) distribution, then (y, s2) are

sufficient for θ = (μ, σ)T . This is reduction of an n-vector down to 2 values.

A.1.2.1 Notation

The standard notation

∂
(θ)

∂θ
=

(
∂
(θ)

∂θ1
, · · · , ∂
(θ)

∂θp

)T

=

(
∂
(θ)

∂θT

)T

,

∂b(θ)

∂θT
=

[(
∂bj(θ)

∂θk

)]

=

(
∂bT (θ)

∂θ

)T

, and
∂2
(θ)

∂θ ∂θT
=

[(
∂2
(θ)

∂θj ∂θk

)]

is adopted.
Before describing the Fisher scoring algorithm which is central to this book, it

is necessary to define some standard quantities first. Let the score (or gradient)
vector be defined as

U(θ) =
∂
(θ)

∂θ
, (A.5)

the Hessian as

H(θ) =
∂U(θ)

∂θT
=

∂2


∂θ ∂θT
, (A.6)

and the (observed) information matrix as

IO(θ) = −H(θ) = − ∂2


∂θ ∂θT
. (A.7)
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Sometimes it is necessary to distinguish between the true value of θ (called θ∗)
and θ itself. If not, then θ is used for both meanings.

The acronym “MLE” is used loosely to stand for: maximum likelihood estima-
tion, maximum likelihood estimator, and maximum likelihood estimate.

A.1.2.2 Regularity Conditions

To formalize the method of MLE more adequately, some mathematical proper-
ties required of Mθ must be established. These are called regularity conditions.
A distribution satisfying them is called regular, otherwise it is nonregular.

Regularity Condition I The dimension of θ is fixed. A counterexample is a
problem used commonly to motivate James-Stein estimation, which is that Yi ∼
N(μi, σ2 = 1) independently. Then θ = (μ1, . . . , μn)

T grows with increasing n.
Neyman and Scott (1948) showed that MLEs could be inconsistent when the num-
ber of parameters increased with n. In such cases, a method to eliminate unnec-
essary parameters is often sought, e.g., by integrating or conditioning them out.

Regularity Condition II The parameter θ is identifiable.

Regularity Condition III The distributions Mθ have a common support,
i.e., are independent of θ. Here are some counterexamples.

(i) The simplest is Yi ∼ Unif(0, θ), so that its support is a function of θ.
(ii) Another common type of example is a 3-parameter density parameterized

by a location (a), scale (b) and shape (s) parameter, and whose support is
defined on (a,∞). A specific example of this that has received considerable
attention is the 3-parameter Weibull distribution, whose CDF can be written
as 1− exp{−[(y−a)/b]s} for y > a, and 0 otherwise. Another example of this
sort is the 3-parameter lognormal distribution where log(Y − a) ∼ N(μ, σ2)
so that a < Y <∞.

(iii) The generalized extreme value distribution (GEV; Sect. 16.2) depends on the
unknown parameter values. This problem is studied in depth in Smith (1985),
who also considered the 3-parameter Weibull distribution.

Regularity Condition IV Ω is an open set (of Rp).

Regularity Condition V The true value θ∗ lies in the interior of Ω.

Regularity Condition VI The first three derivatives of 
 exist on an open set
containing θ∗ (call it A, say), and ∂3 log f(y;θ)/(∂θs ∂θt ∂θu) ≤ M(y) uniformly
for θ ∈ A, where 0 < E(M(y)) <∞.

The next condition addresses the interchange of the order of double differenti-
ation with respect to θ and integration over S.
Regularity Condition VII For all y ∈ Y and θ ∈ Ω, 
 is twice-differentiable
with

∂

∂θ

∫

Y
f(y;θ) dy =

∫

Y

∂

∂θ
f(y;θ) dy,

and
∂2

∂θ ∂θT

∫

Y
f(y;θ) dy =

∫

Y

∂2

∂θ ∂θT
f(y;θ) dy.
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A commonly used counterexample of regularity conditions VI–VII is the double
exponential (Laplace) distribution (Sect. 15.3.2), whose derivative does not exist
at the location parameter.

A.1.2.3 Fisher Information

A very important quantity in MLE theory is the Fisher information, which can
manifest itself in the form of the Fisher information matrix, or expected informa-
tion matrix (EIM). This measures the average amount of information about the
parameter θ over all possible observations, not just those actually observed. Intu-
itively, it measures the average amount of curvature of 
 at the MLE θ̂. If the data
provides a lot of information about θ, then the peak at the MLE will be sharp, not
flat, because the parameter has a large effect on the likelihood function. Flatness,
or a lack of steepness, denotes a lot of uncertainty in the estimated parameter.
The EIM can be defined as

IE(θ) = Var

(
∂


∂θ

)

. (A.8)

The Fisher information has some basic properties:

1. For independent observations, it is additive; and for i.i.d. random variables, this
can be written as

IE(θ) = nIE1(θ),

where IE1(θ) is the EIM for the first observation. This makes intuitive sense, be-
cause increasing n ought to increase the amount of information there is about θ.
That the total Fisher information is the sum of each observation’s Fisher infor-
mation will be shown later to imply that the amount of uncertainty in θ̂ should
decrease with increasing n, i.e., Var(θ̂) should decrease in a matrix sense.

2. It is positive-semidefinite. Practically, for us it is positive-definite over a large
part ofΩ, though singular EIMs can occur as extreme cases in likelihood theory.

3. It changes under transformations, and the EIM under monotonic transforma-
tions is readily available, as follows. Let gj(θ) be a set of p invertible functions
that are differentiable. Then

IE(g) =
∂θT

∂g
IE(θ)

∂θ

∂gT
(A.9)

where g = (g1(θ), . . . , gp(θ))
T . This result is used much in this book, both

directly and indirectly, e.g., the variance-covariance matrix (A.27) for the delta
method, and it lurks in the background of (18.6), (18.9) and (18.11).
As a simple example, if τ = g(θ) where g is smooth and g′(θ) �= 0, then IE1(τ) =
IE1(θ)/[g

′(θ)]2. Applied specifically to Y ∼ Poisson(λ), then IE1(λ) = 1/λ,
and for τ =

√
λ, IE1(τ) = (4λ)/4 = 4, which is independent of λ (this is known

as the Poisson variance-stabilizing transformation).
4. For some models with p > 1, it is possible for the (j, k) EIM element to be

equal to 0 (j �= k). If so, then θj and θk are said to be orthogonal, and this
implies asymptotic independence between them. An important consequence of
two parameters being orthogonal is that the MLE of one parameter varies
only slowly with the other parameter. Indeed, for some models where several



A Background Material 539

parameterizations have been proposed, it is not uncommon to prefer ones with
orthogonal parameters because of the stability they produce. Computationally,
it can lead to faster convergence and be numerically well-conditioned. And in
the case of VGAM, less storage may arise because of the matrix-band format
used to represent EIMs (Sect. 18.3.5), e.g., for the bivariate odds ratio model
it has the form (McCullagh and Nelder, 1989, p.228)

⎛

⎝
× × 0
× × 0
0 0 ×

⎞

⎠

so that the working weights can be stored in an n× 4 matrix, which is a saving
of 2n doubles compared to n general 3×3 working weight matrices. If necessary,
one might reorder the θj so that the non-zero values cluster about the diagonal
band; this idea holds for family function posbernoulli.tb() (Ex. 17.5).
For more details, see Cox and Reid (1987) and Young and Smith (2005).

Some Examples of EIMs

The VGAM package implements Fisher scoring on most parts, therefore each model
must have EIMs that are tractable or can be approximated. In the latter case,
Sect. 9.2 describes some methods. We now illustrate the former case by considering
simple distributions that have closed-form expressions for the EIM elements. These
examples come from the VGAM package.

1. betaR() The standard beta density, as implemented by [dpqr]beta(),
parameterizes the density in terms of the two positive shape parameters, and
it is

f(y; s1, s2) =
ys1−1 (1− y)s2−1

Be(s1, s2)
=

ys1−1 (1− y)s2−1 Γ (s1 + s2)

Γ (s1)Γ (s2)

for y ∈ (0, 1). For one observation, 
 = (s1 − 1) log y + (s2 − 1) log(1 − y) +
logΓ (s1 + s2)− logΓ (s1)− logΓ (s2), from which the derivatives are

∂


∂s1
= log y + ψ(s1 + s2)− ψ(s1),

∂


∂s2
= log(1− y) + ψ(s1 + s2)− ψ(s2),

−∂2


∂s2j
= ψ′(sj)− ψ′(s1 + s2), j = 1, 2,

− ∂2


∂s1 ∂s2
= −ψ′(s1 + s2).

The second derivatives are not functions of y, and therefore the OIM and EIM
coincide, both being

(
ψ′(s1)− ψ′(s1 + s2) −ψ′(s1 + s2)
−ψ′(s1 + s2) ψ′(s2)− ψ′(s1 + s2)

)

.

2. rayleigh() Sometimes the property E[∂
/∂θj ] = 0 can be used to
good effect when working out elements of the EIM, as the following simple
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Fig. A.1 The first few Newton-like iterations for a Poisson regression fitted to the V1 data set.
The solid orange curve is �(θ) with θ = μ. The initial value is θ(1) = 0.2. Each iteration θ(a)

corresponds to the maximum of the quadratic (dashed curves) from the previous iteration.

example shows. From Table 12.8, the density of the Rayleigh distribution
is y · exp{−2−1(y/b)2}/b2 for positive y and positive scale parameter b. Then,
for one observation, 
 = log y − 2−1(y/b)2 − 2 log b so that 
′ = ([y/b]2 − 2)/b.
Equating this to 0 implies that E(Y 2) = 2b2. Then −
′′ = (3y2 − 2b2)/b4 so
that the EIM is (3× 2b2 − 2b2)/b4 = 4/b2.

A.1.2.4 Newton-Like Algorithms

Given that an iterative method will be used to solve for the MLE, let’s expand 

in a first-order Taylor series about the current estimate at iteration a− 1:


(θ(a)) ≈ 
(θ(a−1)) + (θ(a) − θ(a−1))T
∂
(θ(a−1))

∂θ
.

Now take the first derivatives: ∂
/∂θ evaluated at θ(a) is equal to

∂
(θ(a))

∂θ
=

∂
(θ(a−1))

∂θ
+

∂2
(θ(a−1))

∂θ ∂θT

(
θ(a) − θ(a−1)

)
(A.10)

= U(θ(a−1)) +H(θ(a−1))
(
θ(a) − θ(a−1)

)
.

Ideally, the next iteration will be very good, or even better, it will be optimal. If
so, then θ(a) will have the value θ̂, which is the MLE—and then its score vector
will be 0. Thus we will be totally optimistic and set the LHS of (A.10) to 0. Upon
rearrangement, this leads to the Newton-Raphson step

θ(a) = θ(a−1) −H(θ(a−1))−1 U(θ(a−1)). (A.11)

The algorithm converges quickly at a quadratic convergence rate, provided that 

is well-behaved (close to a quadratic) in a neighbourhood of the maximum, and
if the starting value is close enough to the solution. By a ‘quadratic convergence
rate’, it is meant that
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lim
a→∞

‖θ(a) − θ̂‖
‖θ(a−1) − θ̂‖2

= c

for some positive c. What this means in practice is that the number of correct
decimal places doubles at each iteration near the solution.

Figure A.1 illustrates the idea behind Newton-like algorithms for a simple one-
parameter problem involving a Poisson regression fitted to the V1 data set. Starting
at θ(0) = 0.2, successive quadratics are fitted to approximate 
 and obtain the next
iteration θ(a). These quadratics match the derivatives 
(ν)(θ(a−1)) for ν = 0, 1, 2.

The Newton-Raphson algorithm requires the inversion of an order-p matrix,
which is O(p3) and therefore expensive for very large p, and it does require the
programming of the p(p+1)/2 unique elements of H. And a Newton-Raphson step

is not guaranteed to be an improvement: 
(θ(a)) < 
(θ(a−1)) is a possibility. There
have been many modifications proposed to the plain Newton-Raphson algorithm,
but that is beyond the scope of this book; for more details see, e.g., Dennis and
Schnabel (1996), Nocedal and Wright (2006), Weihs et al. (2014).

An alternative procedure proposed by Fisher is to replace the OIM by the EIM.
The result is

θ(a) = θ(a−1) + I−1
E (θ(a−1)) U(θ(a−1)), (A.12)

which is known as Fisher’s method of scoring, or just Fisher scoring. This method
usually possesses only a linear convergence rate, meaning

lim
a→∞

‖θ(a) − θ̂‖
‖θ(a−1) − θ̂‖

= c,

for some 0 < c < 1, however typically c ≈ 0 so that the convergence rate is quite
acceptable. As the n EIMs are usually positive-definite, this means that each step is
in an ascent direction, and half-stepping can be used to guarantee an improvement
at each step (Sect. 3.5.4).

Fisher scoring is implemented by VGAM mainly for two reasons. The first is
that, for most models, the EIMs are positive-definite over a large portion of the
parameter space Ω, in contrast to OIMs which tend to be positive-definite in a
smaller subset. As an example, consider the Rayleigh distribution above. Clearly,
−
′′ is positive for y >

√
2/3 b, whereas the EIM is positive for all b. As mentioned

elsewhere, IRLS requires each of the n EIMs to be positive-definite, not just their
sum. The second reason is that EIMs are often simpler than the OIM. Fisher
scoring may be performed by using the iteratively reweighted (generalized) least
squares algorithm—see Sect. 3.2 for details. For GLMs with a canonical link, the
OIM equals the EIM, therefore Newton-Raphson and Fisher scoring coincide.

How can one know whether one has reached the true solution? We say that θ̂
is a stationary point if U(θ̂) = 0. Iterative numerical methods may converge
to a stationary point called a local maximum, e.g., when 
 is multimodal such as
Fig. 12.1 and the initial values are not very good. Also, if IO(θ̂) is positive-definite,

then θ̂ is a relative maximum. Equivalently, all its eigenvalues are positive, but
if Ĥ has positive and negative eigenvalues, then θ̂ is known as a saddle point. For
some models, it can be proven that 
 is concave in θ. If so, then the MLE is unique,
and any local solution is the global solution. For example, for several categorical
regression models, see Pratt (1981).
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Incidentally, another common Newton-like method known as the Gauss-Newton
method is used, particularly in nonlinear regression. This approximates the Hessian
by

∑
i u(θ

(a−1))u(θ(a−1))T . It has the advantage that only first derivatives are
needed, however it can suffer from the so-called large residual problem that causes
its convergence to be very slow.

A.1.3 Properties of Maximum Likelihood Estimators

Under regularity conditions, MLEs have many good properties. They are described
as asymptotic because n → ∞. We write θ̂n to emphasize the MLE is based on
a sample of size n, because this is enlightening in the case of i.i.d. observations.
Recall here that θ∗ is the true value of θ. The properties of MLEs include the
following.

1. Asymptotic consistency : for all ε > 0 and θ∗ ∈ Ω,

lim
n→∞P [‖θ̂n − θ∗‖∞ > ε] = 0. (A.13)

That is, the distribution of θ̂n collapses around θ∗. Here, the maximum (in-
finity) norm is used to show that the usual plim definition (A.32) is applied

element-by-element to θn. It is common to write θ̂n
P−→θ∗ (convergence in

probability). This is called weak consistency; a stronger form based on almost
sure convergence in probability can be defined.

2. Asymptotic normality : θ̂n is asymptotically Np(θ∗, I−1
E (θ∗)) as n→∞, i.e.,

θ̂n
D−→ Np(θ∗, I−1

E (θ∗)) (A.14)

(convergence in distribution). For i.i.d. data, this can be stated as

√
n
(
θ̂n − θ∗

) D−→ Np(0, I−1
E1(θ∗)). (A.15)

Thus under i.i.d. conditions, θ̂n converges to θ∗ in distribution at a
√
n-rate.

In consequence of the above,

(θ̂n − θ∗)T IE(θ∗) (θ̂n − θ∗) ∼ χ2
p (A.16)

as n→∞.
3. Asymptotically unbiasedness : E(θ̂n)→ θ∗ as n→∞, for all θ∗ ∈ Ω.
4. Asymptotically efficiency : If a most-efficient (unbiased) estimator exists, then

it will be the MLE. See the Cramér-Rao inequality of Sect. A.1.3.1.
5. Invariance: Another fundamental property is that if θ̂ is the MLE, then un-

der a different parameterization g(θ) (where g is some monotone function of θ),

the MLE of g(θ) is g(θ̂). This means we can choose the most convenient param-
eterization, or one having superior properties. Maximum likelihood estimation
is also invariant under transformation of the observations. This can be seen
from (A.30): the LHS density is fY (y;θ) and the RHS is fX(x(y);θ) · |dx/dy|
where dx/dy is independent of θ.
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6. Under mild regularity conditions,

E

(
∂


∂θ

)

= 0, (A.17)

IE(θ) = E

(
∂


∂θ

∂


∂θT

)

= −E
(

∂2


∂θ ∂θT

)

= − E

(
∂

∂θT
U

)

. (A.18)

7. Under regularity conditions, the score itself is asymptotically normal. In
particular,

U(θ∗) ∼ Np(0, IE(θ∗)) (A.19)

as n→∞.

A.1.3.1 The Cramér-Rao Inequality

A simplified version of the famous Cramér-Rao inequality is stated as follows. Un-
der regularity conditions and i.i.d. conditions, for all n and unbiased estimators θ̂n,

Var(θ̂n)− I−1
E (θ) (A.20)

is positive-semidefinite. It is usually stated for the one-parameter case only, in
which case

1

n IE1(θ)
= I−1

E (θ) ≤ Var(θ̂n). (A.21)

That is, the inverse of the EIM (known as the Cramér-Rao lower bound; CRLB) is
a lower bound for the variance of an unbiased estimator; it is used as a benchmark
to compare the performance of any unbiased estimator. An approximation to the
multiparameter case (A.20) is to apply (A.21) to each diagonal element of I−1

E (θ).
For some models, equality in (A.21) can be attained, therefore that estimator is

(fully) efficient, or best, or a minimum variance unbiased estimator (MVUE). For
other models, there exists no unbiased estimator that achieves the lower bound.
Typically, the MLE achieves the CRLB.

While unbiasedness of an estimator is considered a good thing for many people,
a viable option is to consider biased estimators which have a lower mean-squared
error

MSE = E

⎡

⎣
p∑

j=1

(θ̂j − θ∗j)2

⎤

⎦ = E[‖θ̂ − θ∗‖2] = trace{E[(θ̂ − θ∗)(θ̂ − θ∗)T ]}.

The decomposition

MSE(θ̂) = trace{Var(θ̂)}+ ‖Bias(θ̂)‖2 (A.22)

is in contrast to the variance of the estimator with its bias E(θ̂)− θ∗.
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A.1.4 Inference

Based on the above properties, MLE provides confidence intervals/regions for esti-
mated quantities, tests of goodness-of-fit, and tests for the comparison of models.
Loosely, one can view confidence intervals/regions and hypothesis testing as two
sides of the same coin. Our summary here will separate out the two. Sometimes we
partition θ = (θT

1 ,θ
T
2 )

T where pj = dim(θj), and treat θ2 as a nuisance parameter.
Let the true value of θ1 be θ∗1.

A.1.4.1 Confidence Intervals and Regions

There are two common methods, although three are listed here to parallel the
hypothesis testing case.

1. Wald Test Based on (A.16),

(
θ̂ − θ∗

)T
V−1

(
θ̂ − θ∗

)
.∼ χ2

p

in large samples. Here, V−1 is commonly chosen to be one of the following:
(a) IE(θ̂), (b) IO(θ̂). The idea behind these is to use any consistent estimator,
and both choices are equivalent to 1st-order approximation. Based on 2nd-order
approximations and conditional arguments, Efron and Hinkley (1978) argued
that the OIM is superior as an estimator of variance. As VGAM implements
Fisher scoring, type (a) serves as the basis for the estimated variance-covariance
matrix.
Based on the above, an approximate normal-theory 100(1 − α)% confidence
region for θ1 is the ellipsoid defined as the set of all θ1∗ satisfying

(θ̂1 − θ1∗)T IE(θ̂1) (θ̂1 − θ1∗) ≤ χ2
p1
(α).

For VGAM, an approximate 100(1− α)% confidence interval for θj is given by

θ̂j ± z(α/2) SE(θ̂j), (A.23)

where the SE derives from the EIM, which is of the form (XT
VLMWXVLM)

−1

(Eq. (3.21); see Sect. 3.2 for details).

2. Score Test Like the Wald test, confidence regions may be proposed which
are based on a quadratic approximation to 
. Consequently, parameterizations
which improve this approximation will give more accurate results, e.g., with the
aid of parameter link functions. However, since the score test method is the
least common of the three, no details are given here apart from a small mention
in the hypothesis testing situation below.

3. Likelihood Ratio Test (LRT) Let the profile likelihood for θ1 be

R(θ1) = max
θ2

L(θ1,θ2)/L(θ̂).

Then the LR subset statistic −2 logR(θ∗1) ∼ χ2
p1

asymptotically, therefore an
approximate 100(1−α)% confidence region for θ1 is the set of all θ1∗ such that
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−2 logR(θ1∗) < χ2
p1
(α).

For a simple 1-parameter model, this reduces to the set of all θ values satisfying

2
[

(θ̂;y)− 
(θ;y)

]
≤ χ2

1(α). (A.24)

The methods function confint.glm() in MASS computes confidence intervals
for each coefficient of a fitted GLM, based on the method of profile likelihoods.
More generally, we can write the profile log-likelihood of θ1 as 
P (θ1, θ̂2(θ1)),

where θ̂2(θ1) is the MLE of θ2 given θ1. Being of lower dimension, 
P is often

used for inference, e.g., if θ̂2(θ1) is easy.

A.1.4.2 Hypothesis Testing

For hypothesis testing, there are three well-known ways for tests of H0 : θ = θ0

where θ0 is known and fixed. None of the tests are uniformly better, although
the LRT is considered superior in many problems. Another advantage of the LRT
is that it is invariant under nonlinear reparameterizations—this is not so for the
Wald test, and for the score test, invariance depends on the choice of V.

1. Wald Test Based on (A.16) and under the null hypothesis H0 : θ = θ0,

(
θ̂ − θ0

)T
V−1

(
θ̂ − θ0

)
.∼ χ2

p (A.25)

in large samples. Here, V−1 is commonly chosen to be one of the following:
(a) IE(θ̂), (b) IO(θ̂), (c) IE(θ0), (d) IO(θ0). The idea behind (a)–(b) is to
use any consistent estimator.
This result can be extended to arbitrary linear combinations of θ. In particular,
for the linear combination eTj θ = θj , and θ0 = 0, we usually take the square
root and obtain the Wald statistic for H0 : θj = 0

z0 =
θ̂j − 0

√

V̂ar(θ̂j)
=

θ̂j

SE(θ̂j)
,

which is treated as a Z-statistic (or a t-ratio for LMs). One-sided tests are then
accommodated, e.g., H1 : θj < 0 or H1 : θj > 0, in which case the p-values

are Φ(z0) and Φ(−z0) provided θ̂j < 0 and θ̂j > 0, respectively [and 2Φ(−|z0|)
for the 2-sided alternative H1 : θj �= 0]. Alternatively, Z2 may be treated as hav-
ing an approximate χ2

1 distribution. For VGLMs, VGAM prints out Wald statis-
tics (usually type (a)) with the methods function summary(). The 4-column
table of estimates, SEs, Wald statistics and p-values can be obtained by, e.g.,

> coef(summary(vglmObject)) # Entire table

> coef(summary(vglmObject))[, "Pr(>|z|)"] # p-values

Given a fitted model (including an LM or GLM) that has θ̂ and

some estimate V̂ar(θ̂) obtainable by coef() and vcov(), the func-
tion linearHypothesis() in car can test a system of linear hypotheses based
on the Wald test.
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2. Score Test Using the result (A.19) and under H0 : θ = θ0,

U(θ0)
T I−1

E (θ0) U(θ0) ∼ χ2
p (A.26)

asymptotically (Rao, 1948). The EIM is evaluated at the hypothesized value θ0,

but at the MLE θ̂ is an alternative. Both versions of the test are valid; in
fact, they are asymptotically equivalent. One advantage of using θ0 is that
calculation of the MLE may be bypassed. One disadvantage is that the test can
be inconsistent (Freedman, 2007). In spite of their simplicity, score tests are not
as commonly used as Wald and LR tests. Further information about score tests
is at, e.g., Rao (1973). The package mdscore implements a modified score test
for GLMs that offers improvements in accuracy when n is small.

3. Likelihood Ratio Test (LRT) This test is based on a comparison of max-
imized likelihoods for nested models. Suppose we are considering two models,
M1 and M2 say, such that M1 ⊆M2. That is, M1 is a subset or special case
of M2. For example, one may obtain a simpler model M1 by setting some of
the θj in M2 to zero, and we want to test the hypothesis that those elements
are indeed zero.

The basic idea is to compare the maximized likelihoods of the two models. The
maximized likelihood under the smaller model M1 is

sup
θ∈M1

L(θ;y) = L(θ̂M1 ;y),

where θ̂M1 is the MLE of θ under model M1. Likewise, the maximized likeli-
hood under the larger model M2 has the same form

sup
θ∈M2

L(θ;y) = L(θ̂M2
;y),

where θ̂M2
is the MLE of θ under model M2. The ratio of these quantities,

λ =
L(θ̂M1 ;y)

L(θ̂M2
;y)

,

lies in [0, 1]. Values close to 0 indicate that the smaller model is not acceptable
compared to the larger model, while values close to unity indicate that the
smaller model is almost as good as the large model.

Under regularity conditions, the likelihood ratio test statistic

−2 log λ = 2 logL(θ̂M2
;y)− 2 logL(θ̂M1

;y) → χ2
ν

where ν = dim(M2)− dim(M1), the difference in the number of parameters in
the two models. When applied to GLMs, the LRT is also known as the deviance
test.

LRTs may be performed using lrtest(), e.g., for the following two vglm()

objects where the simpler model is a special case of the more complex model,

> # Models must be nested:

> lrtest(Complex.model, Simpler.model)

returns the LRT statistic and p-value.
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In the above, the Wald and score tests were for H0 : θ = θ0, however, hypothesis
tests involving only a subset of dim(θ0) parameters are easily handled: replace p
in (A.25) and (A.26) by p0 and choose the relevant submatrix of V−1.

All three tests are asymptotically equivalent, and therefore can be expected
to give similar results in large samples. In small samples, simulation studies have
suggested that LRTs are generally the best. Note that the calculation of a LRT
requires fitting two models (M1 and M2), compared to only one model for the
Wald test (M2), and sometimes no model at all for the score test. However, note
that the Hauck-Donner phenomenon (Sect. 2.3.6.2) may affect the Wald test but
not the LRT.

The three test statistics have an elegant geometric interpretation that is illus-
trated in Fig. A.2a,b for the single-parameter case. In a nutshell, the pertinent
features are the horizontal and vertical distances between 
(θ0) and 
(θ̂), and the
slope 
′(θ0). This example comes from a negative binomial NB(μ, k) distribution
fitted to the machinists data set. The two plots are for θ = k and θ = log k.
Here, H0 : k = 1

3 , chosen for illustrative purposes only.

• The Wald test statistic is a function of |θ̂− θ0|. Heuristically, the justification is

to expand 
(θ0) about θ̂ in a Taylor series under the assumption that the null
hypothesis is true:


(θ0) ≈ 
(θ̂) +
1

2

′′(θ̂)(θ0 − θ̂)2

because 
′(θ̂) = 0 and H0 : θ∗ = θ0. Then the Wald test statistic

(θ0 − θ̂) [−
′′(θ̂)] (θ0 − θ̂) ≈ 2{
(θ̂)− 
(θ0)}

i.e., approximates the LRT statistic. Here, choice (b) in (A.25) provides the
metric. Expanded the way it appears here, the Wald test statistic is the squared
horizontal distance after some standardization.

• The score test is a function of 
′(θ0), i.e., its slope. If θ̂ approaches θ0, then this
derivative gets closer to 0, hence we would tend to reject the null hypothesis
if the slope is very different from zero. Heuristically, it can be justified by ex-
panding 
′(θ̂) about θ0 in a Taylor series under the assumption that the null
hypothesis is true:


′(θ̂) = 0 ≈ 
′(θ0) + 
′′(θ0)(θ̂ − θ0) +
1

2

′′′(θ0)(θ̂ − θ0)

2

so that (θ̂ − θ0) ≈ 
′(θ0)/{−
′′(θ0)}. Choosing choice (d) in (A.25), we can

write
√IO(θ0) (θ̂− θ0) ≈ 
′(θ0)/

√IO(θ0). Both sides are approximately stan-
dard normally distributed. Upon squaring both sides,

(θ̂ − θ0) IO(θ0) (θ̂ − θ0) = U(θ0) IO(θ0) U(θ0)

which is a Wald test statistic expressed in terms of the gradient at the hypoth-
esized value.

• The LRT statistic is a function of 
(θ̂) − 
(θ0), in fact, it is simply twice that.
This corresponds to the labelled vertical distance.
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Fig. A.2 Negative binomial NB(μ, k) distribution fitted to the machinists data set. The y-axis
is �. Let θ = k and θ∗ = log k. (a) �(θ) is the solid blue curve. (b) �(θ∗) is the solid blue curve.
Note: for H0 : θ = θ0 (where θ0 = 1

3
), the likelihood-ratio test, score test and Wald test statistics

are based on quantities highlighted with respect to �. In particular, the score statistic is based
on the tangent �′(θ0).

Figure A.2b shows the same problem but under the reparameterization θ = log k.
The log-likelihood is now more symmetric about θ̂, i.e., its quadratic approximation
is improved, therefore we would expect inferences to be more accurate compared
to the first parameterization.

A.1.4.3 Delta Method

The delta method is a general method for obtaining approximate standard errors
of functions of the parameter. Its basic idea is local linearization via derivatives.
Let φ = g(θ) be some function of the parameter. Apply a Taylor-series expansion
about the true value:

φ̂ = g(θ̂) = g(θ∗) + (θ̂ − θ∗)T
∂g(θ∗)
∂θ

+
1

2
(θ̂ − θ∗)T

∂2g(θ∗)
∂θ ∂θT

(θ̂ − θ∗) + · · · ,

hence √
n
(
g(θ̂)− g(θ∗)

)
≈ √

n (θ̂ − θ∗)T (∂g(θ∗)/∂θ).

Consequently, from (A.14),

g(θ̂n)− g(θ∗)
D−→ Np

(
0, (∂g(θ∗)/∂θT ) I−1

E (θ∗) (∂g(θ∗)/∂θ)
)
. (A.27)

To make use of this result, all quantities are computed at the MLE: for large n,

SE(φ̂) ≈
⎧
⎨

⎩

p∑

j=1

p∑

k=1

∂g

∂θj

∂g

∂θk
v̂jk

⎫
⎬

⎭

1
2

=

{
∂g(θ̂)

∂θT
V̂ar(θ̂)

∂g(θ̂)

∂θ

} 1
2

, (A.28)

i.e., all the partial derivatives are evaluated at θ̂. In the case of p = 1 parameter,
(A.28) reduces to
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SE(φ̂) ≈
∣
∣
∣
∣
dg

dθ

∣
∣
∣
∣

√
v̂11, (A.29)

where dg/dθ is evaluated at θ̂.
For simple intercept-only models, VGAM uses the delta method in calls of the

form vcov(vglmObject, untransform = TRUE). This is possible because (A.29)
is readily computed for models having the form ηj = gj(θj) = β(j)1 for simple
links. The accuracy of the method depends on the functional form of gj and the

precision of θ̂j .

A.2 Some Useful Formulas

A.2.1 Change of Variable Technique

Suppose that a random variableX has a known PDF fX(x), and Y = g(X) is some
transformation of X, where g : R → R is any differentiable monotonic function.
That is, g is increasing or decreasing, therefore is invertible (one-to-one). Then the
PDF of Y , by the change-of-variable formula, is

fY (y) = fX
(
g−1(y)

) ·
∣
∣
∣
∣
d

dy
g−1(y)

∣
∣
∣
∣ = fX(x(y)) ·

∣
∣
∣
∣
dx

dy

∣
∣
∣
∣ . (A.30)

A.2.2 Series Expansions

The following series expansions are useful, e.g., to work out the first and expected
second derivatives of the GEV and GPD, as ξ → 0:

log(1 + z) = z − z2

2
+

z3

3
− z4

4
+ · · · for |z| ≤ 1 and z �= −1,

ez = lim
n→∞

(
1 +

z

n

)n
,

(1 + z)α = 1 + αz +
α(α− 1)

2!
z2 +

α(α− 1)(α− 2)

3!
z3 + · · · , for |z| ≤ 1,

(1 + x)−1 = 1− x+ x2 − x3 + · · · for − 1 < x < 1.

A.2.3 Order Notation

There are two types of Landau’s O-notation which are convenient abbreviations
for us.
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A.2.3.1 For Algorithms

Here, the O(·) notation is mainly used to measure the approximate computational
expense of algorithms, especially in terms of time and memory. For functions f(n)
and g(n), we say f(n) = O(g(n)) if and only if there exists two (positive and finite)
constants c and n0 such that

|f(n)| ≤ c |g(n)| (A.31)

for all n ≥ n0. For us, f and g are positive-valued, therefore (A.31) states that f
does not increase faster than g. Saying that the computing time of an algorithm
is O(g(n)) implies that its execution time takes no more than some constant mul-
tiplied by g(n).

It can be shown that, e.g., O(1) < O(log n) < O(n) < O(n log n) < O(n2) <
O(n3) < O(2n) < O(n!) < O(nn). In any pairwise comparison, these inequalities
usually do not hold in practice unless n is sufficiently large. As an example, the
fastest known sorting algorithms for elements of a general n-vector cost O(n log n)
whereas simpler algorithms such as bubble sort cost O(n2). Some people have
suggested that usually an algorithm should be no more than O(n log n) to be
practically manageable for very large data sets.

The so-called big-O notation, described above implicitly for integer n, is also
useful and similarly defined for a real argument. For example, an estimator with an
asymptotic bias of O(h2) has less asymptotic bias than another estimator whose
asymptotic bias is O(h), because h→ 0+ as n→∞. Such considerations are made
in, e.g., Sect. 2.4.6.2.

A.2.3.2 For Probabilities

In direct parallel with the above, the order in probability notation deals with
convergence in probability of sets of random variables. A sequence of random
variables X1, X2, . . . is said to converge in probability to the random variable X if,
for all ε > 0,

lim
n→∞P [ |Xn −X| > ε] = 0. (A.32)

The random variable X is called the probability limit of Xn, and it is written

plim Xn = X, or alternatively, as Xn
P−→X.

Now if {Xn} is a set of random variables and {an} is a set of constants,
then Xn = Op(an) if for all ε > 0, there exists a finite N > 0 such that

P

[ ∣
∣
∣
∣
Xn

an

∣
∣
∣
∣ > N

]

< ε, (A.33)

for all n. If Xn = Op(an), then we say that Xn/an is stochastically bounded. As an
example, we say that {Xn} is at most of order in probability nk if, for every ε > 0,
there exists a real N so that P [n−k |Xn| > N ] < ε for all n.
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A.2.4 Conditional Expectations

Provided that all the expectations are finite, for random variables X and Y ,

E(Y ) = EX{E(Y |X)} , (A.34)

E[g(Y )] = EX{E[g(Y )|X]} (iterated expectation), (A.35)

Var(Y ) = EX{Var(Y |X)}+VarX{E(Y |X)} (conditional variance). (A.36)

One application of these formulas is the beta-binomial distribution (Sect. 11.4).

A.2.5 Random Vectors

Here are some basic results regarding random vectorsX = (X1, . . . , Xn)
T and Y =

(Y1, . . . , Yn)
T , i.e., vectors of random variables.

1. E(X) = μX , where the ith element of μX is E(Xi). Similarly, E(Y ) = μY .
2. Cov(X,Y ) = E[(X − μX)(Y − μY )

T ], with Var(X) = Cov(X,X) (=
ΣX , say). We write X ∼ (μX ,ΣX).

3. Cov(AX,BY ) = ACov(X,Y )BT for conformable matrices A and B of con-
stants.

4. E[XTAX] = μT
XAμX + trace(AΣX).

5. trace(AB) = trace(BA) for conformable matrices A and B.
6. rank(A) = rank(AT ) = rank(ATA) = rank(AAT ).
7. If A is n× n with eigenvalues λ1, . . . , λn, then

trace(A) =

n∑

i=1

λi, det(A) =

n∏

i=1

λi.

8. A symmetric matrix A is positive-definite if xTAx > 0 for all x �= 0. Such
matrices have positive eigenvalues, are invertible, and have a Cholesky decom-
position that exists and is unique.

Some proofs for these can be found in, e.g., Seber and Lee (2003).

A.3 Some Linear Algebra

Least squares computations are usually based on orthogonal methods such as the
QR factorization and singular value decomposition, because they are numerically
more stable than näıve methods. They almost always give more accurate answers.
A few details are given below.
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A.3.1 Cholesky Decomposition

Given an n × n symmetric positive-definite matrix A, its Cholesky decomposi-
tion A = UTU where U is an upper-triangular matrix (i.e., (U)ij ≡ Uij = 0
for i > j) with positive diagonal elements. When A is 1 × 1, then U is just the
square root of the element A11. The computation of U might be written:

Iterate: For i = 1, . . . , n

(i) Uii =
√

Aii −
∑i−1

k=1 U
2
ki

(ii) Iterate: For j = i+ 1, . . . , n

Uij = (Aij −
∑i−1

k=1 Uki Ukj)/Uii

The first operation is to compute U11 =
√
A11. The algorithm requires 1

3n
3+O(n2)

flops, which is about half the cost of the more general LU decomposition (Gaussian
elimination).

Solving the linear system of equations Ax = y can be achieved by first solv-
ing UTz = y by forward substitution, and then solving Ux = z by backward
substitution. Each of these steps requires n2 + O(n) flops. Forward substitution
here might be written as

Iterate: For i = 1, . . . , n

zi = (yi −
∑i−1

k=1 Uki zk)/Uii

The first operation is to compute z1 = y1/U11. Likewise, backward substitution
here might be written as

Iterate: For i = n, . . . , 1

xi = (zi −
∑n

k=i+1 Uik xk)/Uii

The first operation is to compute xn = zn/Unn.
A variant of the above is the rational Cholesky decomposition, which can be

written A = LDLT , where L is a unit lower-triangular matrix, and D is a diagonal
matrix with positive diagonal elements. By ‘unit’, we mean that the diagonal
elements of L are all unity. This variant avoids computing n square roots in the
usual algorithm, and should be used if A is banded with only a few bands, e.g.,
tridiagonal. (A matrix T is tridiagonal if (T)ij = 0 for |i− j| > 1).

If A is a band matrix, with (2m + 1) elements in its central band, then the
Hutchinson and de Hoog (1985) algorithm is a method for computing the 2m+ 1
central bands of its inverse. The rational Cholesky decomposition of A has an L
which is (m+ 1)-banded, and the approximate cost is 1

3m
3 + nm2 +O(m2) flops.

For cubic smoothing splines, m = 2 and the algorithm can be applied to compute
the GCV.

Incidentally, a common method of measuring the width of a symmetric band
matrix is by its half-bandwidth, e.g., c = (2m+1) elements in its central band cor-
responds to a half-bandwidth of (c+1)/2 = m+1. Hence diagonal and tridiagonal
matrices have half-bandwidths 1 and 2, etc.



A Background Material 553

A.3.2 Sherman-Morrison Formulas

If A is invertible, and u and v are vectors with 1 + vTA−1u �= 0, then the
Sherman-Morrison formula is

(
A+ uvT

)−1
= A−1 − A−1uvTA−1

1 + vTA−1u
. (A.37)

If A is invertible, then the Sherman-Morrison-Woodbury formula is

(A+UV)
−1

= A−1 −A−1U
(
I+VA−1U

)−1
VA−1. (A.38)

Incidentally, provided all inverses exist,

(
A11 A12

A21 A22

)−1

=

(
A11 A12

A21 A22

)

(A.39)

where A11 = A−1
11 + A−1

11 A12

(
A22 −A21 A

−1
11 A12

)−1
A21 A

−1
11 or equivalently,

A11 =
(
A11 −A12 A

−1
22 A21

)−1
.

A.3.3 QR Method

The QR decomposition of an n× p matrix X with n > p is

X = QR = (Q1 Q2)

(
R1

O

)

= Q1 R1, (A.40)

where Q (n × n) is orthogonal (i.e., QTQ = QQT = In, or equivalently, Q−1 =
QT ) and R1 (p× p) is upper triangular.

In R, the function qr() computes the QR factorization, and there are associated
functions such as qr.coef(), qr.qty(), qr.Q() and qr.R(). These functions are
based on LINPACK by default, but there is a logical argument for qr() in the
form of LAPACK = FALSE that can be set to TRUE to call LAPACK instead. One can
think of LAPACK (Anderson et al., 1999) as a more modern version of LINPACK
(Dongarra et al., 1979).

Given a rank-p model matrix X, solving the normal equations (2.6) by the

QR method means that the OLS estimate β̂ = R−1
1 QT

1 y is easily computed be-
cause qr.qty() returns QT

1 y, and back substitution can be then used. As X is of
full column-rank, all the diagonal elements of R1 are nonzero (positive by conven-
tion, actually).

It is easily verified that if the diagonal elements of R1 are positive (trivially
achieved by negating certain columns of Q1 if necessary) then R1 corresponds to
the Cholesky decomposition of XTX, i.e., XTX = RT

1 R1. But the QR decomposi-

tion is the preferred method for computing β̂ because there is no need to compute
the sum-of-squares and cross-products matrix XTX—doing so squares the con-
dition number, so that if the columns of X are almost linearly dependent, then
there will be a loss of accuracy. In general, orthogonal methods do not exacerbate
ill-conditioned matrices.
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For large n and p, the cost of performing a QR decomposition on X using
Householder reflections1 is approximately 2np2 floating point operations. This is
about twice the cost of solving the normal equations by Cholesky when n� p.

A.3.4 Singular Value Decomposition

The singular value decomposition (SVD) of X as above is

X = UDVT , (A.41)

where U (n× p) is such that UTU = Ip, and V (p× p) is orthogonal, and D is a
p× p diagonal matrix with non-negative elements dii (called the singular values).
The matrix U here comprises the first p columns of an orthogonal matrix, much
like Q1 does to Q in (A.40).

It is easy to show that the eigenvalues of XTX are d2ii, and it is usual to sort
the singular values so that d11 ≥ d22 ≥ · · · ≥ dpp ≥ 0. With this enumeration,

the eigenvectors of XTX make up the columns of V, and the first p eigenvectors
of XXT make up the columns of U. A common method for determining the rank
of X is to count the number of nonzero singular values, however, comparisons
with 0 are made in light of the machine precision, i.e, .Machine$double.eps. In R,
svd() computes the SVD by LAPACK, and the cost is approximately 6np2 +11p3

flops—which can be substantially more expensive than the QR decomposition.
A special case of the SVD is when X is square, symmetric and positive-definite.

Then its SVD can be written as

X = PΛPT , (A.42)

where Λ has the sorted eigenvalues of X along its diagonal, and P is orthogonal
with the respective eigenvectors of X defining its columns. Equation (A.42) is
known as the spectral decomposition or eigendecomposition of X, and a useful
consequence is that powers of X have the simple form

Xs = PΛsPT , (A.43)

e.g., s = ± 1
2 especially.

A.4 Some Special Functions

Many densities or their log-likelihoods are expressed in terms of special functions.
A few of the more common ones are mentioned here.

1 Ex.A.6; another common algorithm by Givens rotations entails an extra cost of about 50%
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A.4.1 Gamma, Digamma and Trigamma Functions

The gamma function is defined for x > 0 as

Γ (x) =

∫ ∞

0

tx−1 e−t dt (A.44)

and can be computed by gamma(x), and its logarithm by lgamma(x). For positive
integer a,

Γ (a+ 1) = aΓ (a) = a! (A.45)

and Stirling’s approximation for large x is

Γ (x+ 1) ∼
√
2πxxx e−x. (A.46)

A useful limit is

lim
n→∞

Γ (n+ α)

Γ (n) nα
= 1 ∀α ∈ R. (A.47)

The incomplete gamma function

P (a, x) =
1

Γ (a)

∫ x

0

ta−1 e−t dt (A.48)

may be evaluated by pgamma(x, a).
Derivatives of the log-gamma function are often encountered in discrete and

continuous distributions. For such, define ψ(x) = Γ ′(x)/Γ (x) as the digamma
function, and ψ′(x) as the trigamma function.

For the digamma function, since ψ(x + 1) = ψ(x) + x−1, it follows that for
integer a ≥ 2,

ψ(a) = − γ +

a−1∑

i=1

i−1 where − ψ(1) = γ ≈ 0.5772 (A.49)

is the Euler–Mascheroni constant. For large x, a series expansion for the digamma
function is

ψ(x) = log x− 1

2x
+

∞∑

k=1

B2k

2 k x2k
= log x− 1

2x
− 1

12x2
+ · · · , (A.50)

where Bk is the kth Bernoulli number.
For the trigamma function, since ψ′(x + 1) = ψ′(x) − x−2, it follows that for

integer a ≥ 2, ψ′(a) = π2/6−∑a−1
i=1 i−2 because ψ′(1) = π2/6. For large x, a series

expansion for the trigamma function is

ψ′(x) =
1

x
+

1

2x2
+

∞∑

k=1

B2k

x2k+1
=

1

x
+

1

2x2
+

1

6x3
− 1

30x5
+ · · · . (A.51)

Higher-order derivatives of ψ(x) may be computed by psigamma().
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A.4.2 Beta Function

The beta function is defined as

Be(a, b) =

∫ 1

0

ta−1 (1− t)b−1 dt, 0 < a, 0 < b. (A.52)

Then

Be(a, b) =
Γ (a)Γ (b)

Γ (a+ b)
. (A.53)

The incomplete beta function is

Ix(a, b) =
Bex(a, b)

Be(a, b)
, (A.54)

where

Bex(a, b) =

∫ x

0

ta−1 (1− t)b−1 dt. (A.55)

The function Ix(a, b) can be evaluated by pbeta(x, a, b).

A.4.3 The Riemann Zeta Function

The Riemann zeta function is defined by

ζ(s) =

∞∑

n=1

n−s, !(s) > 1. (A.56)

Analytic continuation via

ζ(s) = 2s πs−1 sin(πs/2) Γ (1− s) ζ(1− s)

implies that it can be defined for all !(s), with ζ(1) = ∞. Some special values
are ζ(2) = π2/6, and ζ(4) = π4/90. Euler found that for integer n ≥ 2, ζ(2n) = A2n

where A2n is rational. Indeed, A2n = 1
2 (−1)n+1 B2n (2π)

2n/(2n)! in terms of the
Bernoulli numbers.

A.4.4 Erf and Erfc

The error function, erf(x), is defined for all x as

2√
π

∫ x

0

exp(−t2) dt, (A.57)

therefore is closely related to the CDF Φ(·) of the standard normal distribution.
The inverse function is defined for x ∈ [−1, 1], i.e., erf(x, inverse = TRUE).
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The complementary error function, erfc(x), is defined as 1-erf(x). Its inverse
function is defined for x ∈ [0, 2].

A.4.5 The Marcum Q-Function

The (generalized) Marcum Q-function is defined as

Qm(a, b) =

∫ ∞

b

x
(x

a

)m−1

exp

{

−x2 + a2

2

}

Im−1(ax) dx (A.58)

= exp

{

−a2 + b2

2

} ∞∑

k=1−m

(a

b

)k
Ik(ab)

where a ≥ 0, b ≥ 0 and m is a positive integer. Here, Im−1 is a modified Bessel
function of the first kind of order m−1 (as in Table A.1). The Marcum Q-function
is used, e.g., as a CDF for noncentral chi-squared and Rice distributions, i.e.,
price().

The case m = 1 is known as the ordinary Marcum Q-function.

A.4.6 Exponential Integral, Debye Function

The exponential integral, which is defined for real x, can be computed by expint()

and is

Ei(x) =

∫ x

−∞
t−1 et dt, x �= 0. (A.59)

The function expexpint() computes e−x Ei(x), and expint.E1() computes

E1(x) =

∫ ∞

x

t−1 e−t dt, x ≥ 0. (A.60)

The Debye function Dn(x) is defined as

Dn(x) =
n

xn

∫ x

0

tn

et − 1
dt (A.61)

for x ≥ 0 and n = 0, 1, 2, 3, . . ..

A.4.7 Bessel Functions

Bessel functions appear widely in probability and statistics, e.g., distributions for
directional data such as those defined on circles and spheres, Poisson processes and
distributions (the most notable being the difference of two Poisson distributions,
called the Skellam distribution). Of the various kinds, Table A.1 lists the most
relevant ones relating to Chaps. 11–12.
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Table A.1 Bessel functions (modified and unmodified) of order ν. The order nu may be frac-
tional.

Function Formula R function Name

Iν(x)

∞∑

m=0

1

m! Γ (m+ ν + 1)

(x

2

)2m+ν
besselI(x, nu) Modified Bessel func-

tion of the first kind

Kν(x) lim
λ→ν

π

2

I−λ(x)− Iλ(x)

sin(λπ)
besselK(x, nu) Modified Bessel func-

tion of the third kind

Jν(x)

∞∑

m=0

(−1)m

m! Γ (m+ ν + 1)

(x

2

)2m+ν
besselJ(x, nu) Bessel function of the

first kind

Yν(x) lim
λ→ν

Jλ(x) cos(λπ)− J−λ(x)

sin(λπ)
besselY(x, nu) Bessel function of the

second kind (Weber’s
function)

Bibliographic Notes

There are multitudes of books covering statistical inference and likelihood theory
in detail, e.g., Edwards (1972), Rao (1973), Cox and Hinkley (1974), Silvey (1975),
Barndorff-Nielsen and Cox (1994), Lindsey (1996), Welsh (1996), Severini (2000),
Owen (2001), Casella and Berger (2002), Young and Smith (2005), Boos and Ste-
fanski (2013). Most texts on mathematical statistics include at least a chapter on
MLE, e.g., Knight (2000), Bickel and Doksum (2001), Shao (2003). Another book
on statistical inference, which is compact and is concentrated on concepts, is Cox
(2006). Hypothesis testing is treated in detail in Lehmann and Romano (2005).

A readable and applied account of models based on ML estimation is Azzalini
(1996). Another applied book based on likelihood is Clayton and Hills (1993).
GLMs are covered in detail in McCullagh and Nelder (1989); see also Lindsey
(1997), Dobson and Barnett (2008). There have been a number of extensions of
GLMs proposed. One of them, called “multivariate GLMs” by Fahrmeir and Tutz
(2001, Sect.3.1.4). Another is the idea of composite link functions (Thompson and
Baker, 1981). Standard texts for GAMs are Hastie and Tibshirani (1990) andWood
(2006).

A comprehensive account on many aspects of linear algebra, both theoretically
and numerically, is Hogben (2014). Another, Golub and Van Loan (2013), remains
an authoritative reference on matrix computations.

Detailed treatments of many special functions can be found in, e.g., Abramowitz
and Stegun (1964), Gil et al. (2007), Olver et al. (2010).



A Background Material 559

Exercises

Ex. A.1. Let A and B be general n × n matrices, and x and y be general
n-vectors. Work out the cost (expressed in O(·) complexity) of computing the
following quantities in terms of the number of multiplications and additions, e.g.,
n(n− 1) = n2 +O(n) multiplications, n− 1 = n+O(1) additions.

(a) A+B,
(b) 5A,
(c) xTy,
(d) Ax,
(e) xTAx,
(f) AB,
(g) trace(A),
(h) trace(ATA).
(i) Which is cheaper for computing ABx: A(Bx) or (AB)x? By how much?

Ex. A.2. Prove that if f1 = O(g1) and f2 = O(g2) then f1 · f2 = O(g1 · g2).
Ex. A.3. The R function sort(), by default, uses an algorithm called Shellsort.
There are variants of this algorithm, but suppose the running time is O(n4/3).
Suppose it takes 2.4 seconds to sort 2 million (random) observations on a certain
machine. Very crudely, how long might it be expected to sort 11 million (random)
observations on that machine?

Ex. A.4. Use the results of Sect. A.2.4 to derive the mean and variance of Y ∗
i

for the beta-binomial distribution, i.e., (11.13).

Ex. A.5. From Sect. A.3.2, if K is a positive-definite matrix, show that

(
I+TKTT

)−1

= I−T
(
K−1 +TTT

)−1

TT . (A.62)

Ex. A.6. QR Factorization by the Householder Reflections
Suppose X is n× p with n > p and of rank p. A Householder matrix is of the form

P = In − 2vvT

vTv
(A.63)

for some n-vector v �= 0.

(a) Show that P is symmetric and orthogonal.
(b) If v = x− y with ‖x‖2 = ‖y‖2, show that Px = y.
(c) Let x(1) be the first column ofX. Suppose we want to choose v so thatPx(1) =

c e1 for some c �= 0. Show that selecting v = x(1)+αe1 with α = ±‖x(1)‖2 will
achieve this. Given the choice of the sign of α, why is α = sign(x11) · ‖x(1)‖2
the better choice?

(d) Now for the kth column of X, suppose we want to annihilate elements be-
low the kth diagonal, leaving elements above the kth diagonal unchanged.
Let x(k) = (x∗T

(k),x
∗∗T
(k) )

T be the kth column of X, for k = 2, . . . , p, where
the first element of x∗∗

(k) is the diagonal element xkk. We want to choose vk
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so that Pk x(k) = (x∗T
(k), ck, 0

T
n−k)

T for some ck �= 0. Show that select-

ing vk = (0T
k−1, xkk + αk,x

∗∗T
(k)[−1])

T with αk = ±‖x∗∗
(k)‖2 achieves this.

(e) Show that the product of two orthogonal matrices is orthogonal.
(f) Deduce that Q1 comprises the first p columns of the product P1P2 · · ·Pp,

and that R = Pp · · ·P2P1X, in the QR factorization (A.40) of X.

Ex. A.7. QR Factorization and Hilbert Matrices
Hilbert matrices, which are defined by (X)ij = (i + j − 1)−1 for i, j = 1, . . . , n,
are notorious for being ill-conditioned for n as little as 8 or 9. Compute the QR
decomposition of the 8×4 left submatrix of an order-8 Hilbert matrix by explicitly
computing the Householder matrices P1,P2,P3,P4 described in the previous
exercise. Then check your answer with qr().

Ex. A.8. QR Method and Weighted Least Squares

(a) Extend the algorithm for estimating the OLS β̂ by the QR method to handle
WLS.

(b) For (a), how can V̂ar(β̂) be computed?

Ex. A.9. Show that

(a) the inverse of a nonsingular upper triangular matrix is also upper triangular,
(b) the product of two upper triangular matrices is upper triangular.

Ex. A.10. Express the error function (A.57), and its inverse, in terms of Φ(·)
or Φ−1(·).
Ex. A.11. Consider the log-gamma function. Show that logΓ (y+a)−logΓ (y) ∼
a log y as y →∞, where 0 < a� y.

Ex. A.12. Digamma Function

(a) Verify the recurrence formula ψ(z + 1) = ψ(z) + z−1.
(b) The digamma function has a single root on the positive real line. Apply the

Newton-Raphson algorithm (A.11) to compute this root to at least 10 decimal
places.

Ex. A.13. Derive the score vector and EIM for the following distributions, to
show that they involve digamma and trigamma functions.

(a) The log-F distribution (logF()).
(b) The Dirichlet distribution (dirichlet()).

Everything comes to an end which has a beginning.
—Marcus Fabius Quintilianus
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Table A.2 Summary of some notation used throughout the book. Some R commands are given.

Notation Comments

μ Mean

μ̃ Median

u+ = max(u, 0) Positive part of u, with up
+ = (u+)p and not (up)+, pmax(u, 0)

u− = −min(u, 0) Negative part of u, so that u = u+−u− & |u| = u++u−, -pmin(u, 0)

�u� Floor of u, the largest integer not greater than u, e.g., �28.1� = 28,
floor(u)

�u� Ceiling of u, the smallest integer not less than u, e.g., �28.1� = 29,
ceiling(u)

sign(u) Sign of u, −1 if u < 0, +1 if u > 0, 0 if u = 0, sign(u)

I(statement) Indicator function, 1/0 if statement is true/false, as.numeric(statement)

C Complex plane (excluding infinity), with �(z) = the real part of z

N0 Set of all nonnegative integers, 0(1)∞
N+ Set of all positive integers, 1(1)∞
R Real line (excluding infinity), i.e., (−∞,∞)

Z Set of all integers

a(b)c {a, a+ b, a+ 2b, . . . , c}; seq(a, c, by = b)

‖x‖p (
∑

i |xi|p)1/p, the p-norm of x, so that ‖x‖∞ = max(|x1|, |x2|, . . .). By
default, p = 2 so that ‖x‖ is the length of x

‖x− y‖ Euclidean distance between two vectors x and y, i.e.,√
(x− y)T (x− y), norm(x - y, "2")

1M M -vector of 1s, rep(1, M)

0n n-vector of 0s, rep(0, n)

ei (0, . . . , 0, 1, 0, . . . , 0)T , a vector of zeros, but with a one in the ith posi-
tion, diag(n)[, i, drop = FALSE]

ncol(A) Number of columns of matrix A, ncol(A). And Rk = ncol(Hk)

vec(A) Vectorization of matrix A by columns, (aT
1 , . . . ,aT

n )T , c(A)

x[−1]i The vector xi with the first element deleted, x[-1]

B[−1,] The matrix B with the first row deleted, B[-1, ]

B[,−1] The matrix B with the first column deleted, B[, -1]

⊗ Kronecker product, A⊗B = [(aijB)], kronecker(A, B)

◦ Hadamard (element-by-element) product, (A ◦B)ij = AijBij , A * B
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Table A.3 Summary of further notation used throughout the book.

Notation Comments

∼ Is distributed as

∼ Is asymptotically equivalent to, or converges to (e.g., (2.75), (2.79))

.∼ Is approximately distributed as

D−→ Convergence in distribution, i.e., {Yi} D−→ Y if limn→∞ Fn(y) = FY (y)
for all y where FY is continuous (Yi has CDF Fi)

P−→ Convergence in probability, (A.32)

φ(z) PDF of a standard normal, N(μ = 0, σ2 = 1), (2π)−
1
2 e−

1
2
z2 for z ∈ R,

dnorm(z)

Φ(z) CDF of a standard normal, pnorm(z)

z(α) (1 − α)-quantile of N(0, 1), i.e., qnorm(1-alpha), qnorm(alpha,

lower.tail = FALSE)

χ2
ν(α) (1 − α)-quantile of a chi-square distribution with ν degrees of

freedom, i.e., qchisq(1-alpha, df = nu), qchisq(alpha, df = nu,

lower.tail = FALSE)

tν(α) (1−α)-quantile of a Student t distribution with ν degrees of freedom, i.e.,
qt(1-alpha, df = nu), qt(alpha, df = nu, lower.tail = FALSE)

iff If and only if, i.e., a necessary and sufficient condition, ⇐⇒
log x Natural logarithm, loge, ln, log(x)

Γ (x) Gamma function
∫∞
0

tx−1 e−t dt for x > 0, Sect. A.4.1, gamma(x)

ψ(x) = Γ ′(x)/Γ (x) Digamma function, d log Γ (x)/dx, digamma(x)

ψ′(x) Trigamma function, trigamma(x)

γ = −ψ(1) Euler–Mascheroni constant, ≈ 0.57722, -digamma(1)

Cauchy sequence A sequence {xn} in a vector space V satisfying: given any ε > 0, ∃N ∈
N+ such that ‖xm − xn‖ ≤ ε whenever m,n ≥ N

L2(a, b) {f : f is a Lebesgue square integrable function on (a, b)}, i.e.,
∫ b
a

|f(t)|2 dt < ∞. For (a, b) = R, we write L2

Ck[a, b] {f : f ′, f ′′, . . . , f (k) all exist and are continuous on [a, b]}. Note that f ∈
Ck[a, b] implies that f ∈ Ck−1[a, b]. Also, C[a, b] ≡ C0[a, b] = {f(t) : f(t)
continuous and real valued for a ≤ t ≤ b}

Wm
2 [a, b] A Sobolev space of order m is {f : f (j), j = 0, . . . ,m− 1, are absolutely

continuous on [a, b], and f (m) ∈ L2[a, b]}
f absolutely con-
tinuous on [a, b]

∀ ε > 0, ∃ δ > 0 such that
n∑

i=1

|f(x′
i)−f(xi)| < ε whenever {[xi, x

′
i] : i =

1, . . . , n} is a finite collection of mutually disjoint subintervals of [a, b]

with
n∑

i=1

|xi−x′
i| < δ. That is, f is differentiable almost everywhere and

equals the integral of its derivative

lp(Rn) {x = (x1, . . . , xn)T : (
∑n

i=1 |xi|p)1/p < ∞ for 1 ≤ p < ∞}
Convex func-

tion f : X → R

f(tx1 + (1 − t)x2) ≤ t f(x1) + (1 − t) f(x2) ∀t ∈ [0, 1] and x1, x2 ∈ X ,

e.g., x2 and ex on R. A sufficient condition is that f ′′(x) > 0 ∀x ∈ X
Concave func-
tion f : X → R

f(tx1+(1−t)x2) ≥ t f(x1)+(1−t) f(x2) ∀t ∈ [0, 1] and x1, x2 ∈ X , e.g.,√
x and log x on (0,∞). A sufficient condition is that f ′′(x) < 0 ∀x ∈ X
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Table A.4 Summary of some quantities. Data is (yi,xi) for i = 1, . . . , n. See also Table 8.5. The
indices i = 1, . . . , n, j = 1, . . . ,M , k = 1, . . . , p, s = 1, . . . , S, q = 1, . . . , Q. Starred quantities are

estimated, as well as C and A.

Notation Comments

S Number of responses. If S > 1 then these are
“multiple responses”

M1 Number of ηj for a single response

M Number of ηj (summed over all S responses),
e.g., M = M1S

Q1 dim(yi) for a single response, hence Q = Q1S

Y = (y1, . . . ,yn)
T = (y(1), . . . ,y(Q)) Response matrix, is n×Q

X = XLM = (x1, . . . ,xn)T =
(x(1), . . . ,x(p))

LM (model) matrix [(xik)], is n × p (= nLM ×
pLM); x(1) = 1n if there is an intercept term

XVLM VLM (model) matrix, (nM)× pVLM (= nVLM ×
pVLM), (3.18), (3.20)

x = (x1, . . . , xp)T = (xT
1 ,xT

2 )T Vector of explanatory variables, with x1 = 1 if
there is an intercept term, x1 is p1 × 1, and x2

is p2 × 1. Sometimes x = (x1, . . . , xd)
T , espe-

cially when referring to additive models

xT
i = (xi1, . . . , xip) = (xT

1i,x
T
2i) ith row of X

xij = (xi1j , . . . , xipj)
T Vector of explanatory variables for ηj(xij). Ex-

planatory variables specific to ηj (see xij argu-
ment). Partitioned into x∗

i and x∗
ij as in (3.35)

Xform2 LM (model) matrix for argument form2.
Has n rows

η = (η1, . . . , ηM )T Vector of linear/additive predictors, with ηi =
(η1i, . . . , ηMi)

T

Hk =
(
h
(1)
k , . . . ,h

(Rk)
k

)
=

(h1k, . . . ,hMk)
T

Constraint matrix (M × Rk) for xk. Known,
fixed and of full column-rank, (3.25)

ηi =
p∑

k=1

Hk β∗
(k) xik Vector of linear predictors, (3.27)

ηi =
d∑

k=1

Hk f∗
k(xik) Vector of additive predictors, (3.25)

ηj(xi) =
p∑

k=1

β(j)k xik jth linear predictor (without constraints), (1.1)

ηj(xi) =
d∑

k=1

f(j)k(xik) jth additive predictor (without constraints),
(1.2)

f∗
k(xk) =

(
f∗
(1)k

(xk), . . . , f
∗
(Rk)k

(xk)
)T

A Rk-vector of smooth functions of xk

C = (c(1), . . . , c(R)) = (c1, . . . , cp2 )
T Matrix of constrained coefficients, (5.3)

A = (a(1), . . . ,a(R)) = (a1, . . . ,aM )T Matrix of regression coefficients, (5.4)

ν = (ν1, . . . , νR)T = CTx2 Vector of R latent variables or gradients, (5.1)

νi = (νi1, . . . , νiR)T = CTx2i ith site score

β∗
(k) = (β∗

(1)k
, . . . , β∗

(Rk)k
)T Coefficients for xk to be estimated, (3.28)

B = (β1 β2 · · · βM ) =
(
H1 β

∗
(1) | · · · | Hp β∗

(p)

)T
Matrix of VLM/VGLM regression coefficients,
p×M , (1.32), (3.29)
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Table A.5 Summary of some further quantities. See also Table 8.5.

Notation Comments

AT Transpose of A, (AT )ij = (A)ji

β† vec(B) = (βT
1 , . . . ,βT

M )T , (3.8)

θ A generic vector of parameters to be estimated, often (θ1, . . . , θp)T ,
can denote its true value

θ∗ The true value of θ , used occasionally when needed, p.536

H Hat matrix, (2.10)

H Hessian matrix, [(∂2�/(∂θ ∂θT ))], (A.6)

IE Expected (Fisher) information matrix (EIM), (A.8)

IE1 EIM for one observation

IO Observed information matrix, −H (OIM), (A.7)

P Householder matrix, (Ex.A.6)

Y(i) ith order statistic of Y1, Y2, . . . , Yn, so that Y(1) ≤ Y(2) ≤ · · · ≤ Y(n)

yi• Mean of yij over all j,
∑ni

j=1 yij/ni, (Sect. 1.5.2.4)

D Deviance, e.g., (3.53)
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