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Preface

This volume represents presentations given at the 78th annual meeting of the
Psychometric Society, organized by Cito and held at the Musis Sacrum in Arnhem,
the Netherlands, during July 22–26, 2013. The meeting attracted 334 participants
from 28 countries, with 242 papers being presented, along with 49 poster pre-
sentations, five pre-conference workshops, three keynote presentations, six invited
presentations, six state-of-the-art lecturers, and three invited symposia. We thank
the local organizer Anton Béguin and his staff and students for hosting this very
successful conference.

After the 77th meeting in Lincoln, Nebraska, the idea was presented to publish a
proceedings volume from the conference so as to allow presenters to quickly make
their ideas available to the wider research community, while still undergoing a thor-
ough review process. Because the first volume was received successfully, it was sug-
gested that we publish proceedings more regularly. Hence, this is the second volume,
and a third volume following the 79th meeting in Madison, Wisconsin, is expected.

We asked authors to use their presentation at the meeting as the basis of their
chapters, possibly extended with new ideas or additional information. The result is a
selection of 29 state-of-the-art chapters addressing a diverse set of topics, including
classical test theory, item response theory, factor analysis, measurement invariance,
test equating and linking, mediation analysis, cognitive diagnostic models, marginal
models, and multi-level models.

The joy of editing these proceedings was overshadowed by the tragic news
that Roger E. Millsap had passed away suddenly on May 9, 2014. As editor of
Psychometrika and former president, Roger played an important role in the Psy-
chometric Society. He was also the initiator and principal editor of the proceedings.
He passed away shortly after finalizing these proceedings. We will always remember
him fondly as the driving force of this project, and we will miss the friendly, helpful,
and competent advice of this well-seasoned editor. May you rest in peace Roger.

Amsterdam, The Netherlands L. Andries van der Ark
Madison, WI, USA Daniel M. Bolt
Hong Kong Wen-Chung Wang
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Chapter 1
What Do You Mean by a Difficult Item?
On the Interpretation of the Difficulty
Parameter in a Rasch Model

Ernesto San Martín and Paul De Boeck

Abstract Three versions of the Rasch model are considered: the fixed-effects
model, the random-effects model with normal distribution, and the random-effects
model with unspecified distribution. For each of the three, we discuss the meaning of
the difficulty parameter starting each time from the corresponding likelihood and the
resulting identified parameters. Because the likelihood and the identified parameters
are different depending on the model, the identification of the parameter of interest is
also different, with consequences for the meaning of the item difficulty. Finally, for
all the three models, the item difficulties are monotonically related to the marginal
probabilities of a correct response.

1.1 Introduction

In the Rasch model, the probability of success in an item is defined on the basis of a
contribution from the part of the person (person ability) and a contribution from the
part of the item (item difficulty), while the contribution from the part of the persons
does not depend on the item and neither does the effect of the items depend on the
person. The Rasch model is, therefore, a main-effect model. The basic formula is
the following:

Ypi ∼ Bern [Ψ(θp −βi)], (1.1)
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2 E. San Martín and P. De Boeck

whereΨ(x) = exp(x)/(1+exp(x)), θp is the effect of the person on the probability,
also called ability, and βi is the effect of the item on the probability, also called the
difficulty.

Different choices can be made for how the effects of the persons are considered.
Either the persons are modeled with fixed-effects (FE) or with random-effects (RE),
and for these random-effects one can either specify the distribution, for example,
the normal distribution (RE-N), or one can leave the distribution unspecified
(RE-U). The three models have led to three different likelihood functions (or
sampling probabilities) and, accordingly, to three different ways to estimate the
corresponding parameters: joint maximum likelihood (JML) in the case of the FE
model, parametric marginal maximum likelihood (MML) in the case of the RE-N
model, and semi-parametric MML in the case of the RE-U model.

It is our purpose to infer the consequences these choices have for the meaning of
the other parameter of the model, βi, the item difficulty. We will make this inference
from the likelihood for each of the three types of models. This approach is justified
by the fact that the likelihood function is supposed to generate the responses patterns
and, therefore, it provides the statistical meaning of the parameters indexing it; for
details, see Bamber and Van Santen (2000), Cox and Hinkley (1974), Fisher (1922),
and McCullagh (2002). Consequently, the inference proceeds in two steps:

1. One step for the identified parameterization, which is the parameterization as far
as possible on the basis of the likelihood.

2. Another step for the further identification of the parameter of interest, which
will require to establish an injective relationship (under constraints, if necessary)
between the parameter of interest and the identified parameterization.

It will be shown that the βi parameters have a different meaning in the three Rasch
models. The identified parameterization differs and also the identification of the
parameter of interest is different. Furthermore, we will also discuss a condition
based on marginal probabilities under which the difficulty of an item i is larger
than the difficulty of an item j; this empirical condition can also be related to the
empirical difficulty of an item (that is, the proportion of persons correctly answering
the item).

In order to differentiate between the three models, item difficulty parameters of
the three models will be denoted with different symbols: β FE

i , β RE-N
i , and β RE-U

i . It will
be shown that the meaning of these three parameters depends on the choice that is
made for how to treat the effects from the part of the persons and the assumptions
one is making regarding these effects.

1.2 Fixed-Effects Specification

1.2.1 Assumptions

The specification of a Rasch model rests on the following two assumptions:
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Assumption 1: {Ypi : p = 1, . . . ,N; i = 1, . . . , I} are mutually independent.

Assumption 2: For each person p and each item i, Ypi ∼ Bern(πpi), where πpi =
Ψ(θp −β FE

i ) andΨ(x) = exp(x)/(1+ exp(x)).

1.2.2 Likelihood and Identified Parameters

These assumptions induce the following likelihood function:

P(θ1:N ,β FE
1:I)(Y1 = y1 . . .YN = yN) =

N

∏
p=1

I

∏
i=1

πypi
pi (1−πpi)

1−ypi

=
N

∏
p=1

I

∏
i=1

exp[ypi (θp −βi)]

1+ exp(θp −βi)
,

where Yp = (Yp1, . . . ,YpI)
� ∈ {0,1}I , θ 1:N = (θ1, . . . ,θN), and similarly for β 1:I .

The parameter of a Bernoulli distribution is identified. This fact, together with
Assumption 1, implies that the identified parameters are {πpi : p = 1, . . . ,P; i =
1, . . . , I}.

1.2.3 Parameters of Interest

The problem now is to identify the parameter of interest (θ 1:N ,β FE
1:I), which means to

write them as functions of the identified parameters. From Assumption 2, it follows
that

θp −β FE
i = ln

[
πpi

1−πpi

]
, p = 1, . . . ,N; i = 1, . . . , I;

βi −β j = ln

[
1−πpi

πpi

πp j

1−πp j

]
, for all person p and i �= j.

These relationships show that {θp − β FE
i : p = 1, . . . ,N; i = 1, , . . . , I} as well as

{β FE
i − β FE

j : i = 1, . . . , I, j = i, . . . , I} are identified since they are written as
functions of identified parameters. Therefore, the parameters of interest (θ 1:N ,β FE

1:I)
are identified if one identification restriction is imposed. Two possibilities can be
considered:

1. To restrict one person parameter, namely θ1 = 0. Under this restriction, the
difficulty parameter becomes
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β FE
i = ln

(
1−π1i

π1i

)
,

that is, the logarithm of the ratio between the probability that person 1 incorrectly
answers item i and the probability that person 1 correctly answers the item.

2. To restrict one item parameter, namely β FE
1 = 0. Under this restriction, the

difficulty parameter becomes

β FE
i = ln

(
1−πpi

πpi

πp1

1−πp1

)
, (1.2)

that is, the logarithm of the odd ratio between item 1 and item i for each person p.

The first restriction depends on a specific person who is present in one application
of the test. Therefore, the second identification restriction is more convenient since
we may apply the same test to various sets of persons; see Andersen (1980).

1.2.4 Relationship of Item Difficulty with Empirical Difficulty

Regarding the relationship between item difficulty and empirical difficulty, from
(1.2) it follows that

β FE
i > β FE

j ⇐⇒ P(θp,β FE
1:I)(Ypi = 1)< P(θp,β FE

1:I)(Yp j = 1) for all persons p. (1.3)

Thus, item i is more difficult than item j if the probability that the person correctly
answers item i is less than the probability that a person correctly answers item j.

1.2.5 Comments

The previous considerations lead to the following comments:

1. The fixed-effects specification of the Rasch model is a rather easy model from
the perspective of identification, easier than the other two specifications, and it is
therefore often implicitly used to interpret the parameters of the Rasch model,
even when one is interesting in is the random-effects specification; for more
discussion, see San Martín and Rolin (2013).

2. On the other hand, for an estimation of the model, mostly the assumption of a
random-effects model is made, because the maximum likelihood estimator of
the difficulty parameters is inconsistent due to the presence of the incidental
parameters. For details, see Andersen (1980), Ghosh (1995), and Lancaster
(2000).
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1.3 Random-Effects Specification

The random-effects assumption for the persons leads to consider the ability
parameters as realizations of an iid process. Using the statistical jargon, the person’s
abilities are now considered as random-effects.

1.3.1 Assumptions

A random-effects specification rests on the following assumptions:

Assumption 1: {Yp : p = 1, . . . ,N} are mutually independent conditionally on
θ 1:N .

Assumption 2: For each person p, the conditional distribution of Yp given θ 1:N

only depends on θp and it is parameterized by β RE-N
1:I .

Assumption 3: For each person p, {Ypi : i = 1, . . . , I} are mutually independent
conditionally on θp. This is the so-called axiom of local independence.

Assumption 4: For each item i, (Ypi | θp)∼ Bern [Ψ(θp −β RE-N
i )].

Assumption 5: θp’s are mutually independent and identically distributed, with a
common distribution N (0,σ2).

1.3.2 Likelihood and Identified Parameters

These assumptions imply that the response patterns Yp’s are mutually independent
and identically distributed. To describe the likelihood function, it is enough to
describe the probability of each of the 2I response patterns, namely

q12···I = P(βRE-N
1:I ,σ)(Yp1 = 1,Yp2 = 1, . . . ,Yp,I−1 = 1,YpI = 1),

q12···I = P(βRE-N
1:I ,σ)(Yp1 = 1,Yp2 = 1, . . . ,YpI,−1 = 1,YpI = 0),

...
... (1.4)

q12···I = P(βRE-N
1:I ,σ)(Yp1 = 0,Yp2 = 0, . . . ,YpI,−1 = 0,YpI = 0),

and

P(βRE-N
1:I ,σ)(Yp = y) =

∫ ∞

−∞

I

∏
i=1

exp[yi (σθ −β RE-N
i )]

1+ exp(σθ −β RE-N
i )

φ(θ)dθ ,
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with φ(·) as the density of a standard normal distribution. Therefore, the
likelihood function corresponds to a multinomial distribution Mult(2I ,q), where
q = (q12···I ,q12···I−1,I , · · · ,q12···I). Consequently, the parameter q is the identified
parameter.

1.3.3 Parameters of Interest

It is possible to prove that βRE−N
1:I and σ can be written in terms of the identified

parameter q without restrictions on the item parameters. The proof rests on the
following arguments:

1. Let

αi
.
= P(βRE-N

1:I ,σ)(Ypi = 1) =
∫ ∞

−∞
Ψ(σθ −β RE-N

i )φ(θ)dθ .
= p(σ ,β RE-N

i ).

The parameter αi is an identified parameter because it is a function of q.
2. The function p(σ ,β RE-N

i ) is a strictly decreasing continuous function of β RE-N
i .

Therefore it is invertible and consequently

β RE-N
i = p−1(σ ,αi). (1.5)

3. For i �= j, let

αi j
.
= P(βRE-N

1:I ,σ)(Ypi = 1,Yp j = 1) =
∫ ∞

−∞
Ψ(σθ −β RE-N

i )Ψ(σθ −β RE-N
j )φ(θ)dθ .

The parameter αi j is also an identified parameter because it is a function of q.
Using (1.5), it follows that

αi j =
∫ ∞

−∞
Ψ(σθ − p−1(σ ,αi))Ψ(σθ − p−1(σ ,α j))φ(θ)dθ .

.
= r(σ ,αi, ,α j).

It can be shown that r(σ ,αi,α j) is a strictly increasing continuous function of σ ;
for details, see San Martín and Rolin (2013). It follows that

σ = r−1(αi j,αi,α j). (1.6)

1.3.4 Relationship of Item Difficulty with Empirical Difficulty

Regarding the relationship between item difficulty and empirical difficulty, from
(1.5) it follows that
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β RE-N
i > β RE-N

j ⇐⇒ P(βRE-N
1:I ,σ)(Ypi = 1)< P(βRE-N

1:I ,σ)(Yp j = 1) for all person p. (1.7)

Thus, item i is more difficult than item j if probability that a person correctly
answers item i is less than the probability that the person correctly answers item j.

1.3.5 Comments

The previous considerations lead to the following comments:

1. For each person p, the responses are positively correlated, that is,

cov(β
RE-N
1:I ,σ)(Ypi,Yp j)> 0

for i �= j. This is a marginal correlation and it follows from both Assumption 3
and the strict monotonicity ofΨ(θp −β RE-N

i ) as a function of θp for all β RE-N
i .

2. According to equality (1.6), σ represents the dependency between items i and
j induced by both the marginal probabilities αi and α j and the joint marginal
probability αi j. Furthermore, this dependency is the same for all pairs of items
since equality (1.6) is valid for all pairs of items i and j.

3. The item difficulty β RE-N
i is not only a function of the marginal probability αi of

correctly answering the item i, but also of terms of the common dependency.
4. The previous identification analysis is valid in the case πpi = Φ(θp − β RE-N

i ),
where Φ is the distribution function of a standard normal distribution; see San
Martín and Rolin (2013). In this case, it is possible to show that

αi =Φ
(
− β RE-N

i√
1+σ2

)
.

Therefore, the difficulty parameter β RE-N
i can be written as

β RE-N
i =−

√
1+σ2Φ−1 (αi). (1.8)

It follows that the difficulty parameter β RE-N
i is decreasing with σ . In other words,

the larger the individual differences, the more extreme the difficulty parameters
become.

5. There is not an explicit function as (1.8) for the logistic model, but approxi-
mately the same equation applies with σ2 premultiplied by 16

√
3/(15π); see

Molenberghs et al. (2010), Zeger et al. (1988).
6. The distribution of θp can be specified as a N (μ ,σ2). In this case, the identified

parameters are (β̃
RE-N

1:I , σ), where β̃ RE-N
i

.
= β RE-N

i − μ . In order to identify the
difficulty parameters β RE-N

1:I and the scale parameter μ , it is enough to introduce a
linear restriction on the item parameters β RE-N

1:I .
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1.4 Semiparametric Specification

As pointed out by Woods and Thissen (2006) and Woods (2006), there exist
specific fields, such as personality and psychopathology, in which the normality
assumption of θp is not realistic. For instance, psychopathology and personality
latent variables are likely to be positively skewed, because most persons in the
general population have low pathology, and fewer persons have severe pathology.
However, the distribution G of θp is unobservable and, consequently, though a
researcher may hypothesize about it, it is not known in advance of an analysis.
Therefore, any a priori parametric restriction on the shape of the distribution G could
be considered as a mis-specification.

1.4.1 Assumptions

These considerations lead to extend parametric Rasch models by considering the
distribution G as a parameter of interest, and thus specifying semi-parametric Rasch
models. These models rest on the following assumptions:
Assumptions 1–4 as in the random-effects specification.

Assumption 5: θp’s are mutually independent and identically distributed, with a
common unspecified distribution G.

1.4.2 Likelihood and Identified Parameters

As in the random-effects specification, these assumptions imply that the response
patterns Yp’s are mutually independent and identically distributed, with a common
multinomial distribution Mult(2I ,q), with q = (q12···I ,q12···I−1,I , · · · ,q12···I), where

q12···I = P(βRE-U
1:I ,G)(Yp1 = 1,Yp2 = 1, . . . ,Yp,I−1 = 1,YpI = 1),

q12···I = P(βRE-U
1:I ,G)(Yp1 = 1,Yp2 = 1, . . . ,YpI,−1 = 1,YpI = 0),

...
...

q12···I = P(βRE-U
1:I ,G)(Yp1 = 0,Yp2 = 0, . . . ,YpI,−1 = 0,YpI = 0),

and

P(βRE-U
1:I ,G)(Yp = y) =

∫ I

∏
i=1

exp[yi (θ −β RE-U
i )]

1+ exp(θ −β RE-U
i )

G(dθ). (1.9)
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Therefore, the likelihood function is parametrized by q, which corresponds to the
identified parameter.

Following San Martín et al. (2011), Equation (1.9) can be rewritten as follows:
for all J ⊂ {1, . . . , I}\ /0,

P(βRE-U
1:I ,G)

⎛
⎝ ⋂

j∈J
{Yp j = 1}∩

⋂
j∈J c

{Yp j = 0}
⎞
⎠=

= exp

(
− ∑

j∈J
β RE-U

j

)
×

∫ ∞

−∞

e|J |θ

∏
1≤i≤I

(1+ eθ−βRE-U
i )

G(dθ). (1.10)

By taking (1.10) with J = {1} and after (1.10) with J = {i}, we identify (β RE-U
2 −

β RE-U
1 , . . . ,β RE-U

I −β RE-U
1 ) because

β RE-U
j −β RE-U

1 = ln

⎡
⎢⎢⎢⎢⎢⎣

P(βRE-U
1:I ,G)

(
{Yp1 = 1}∩

⋂
2≤i≤I

{Ypi = 0}
)

P(βRE-U
1:I ,G)

(
{Yp j = 1}∩

⋂
i �= j

{Ypi = 0}
)

⎤
⎥⎥⎥⎥⎥⎦
. (1.11)

Not only the item differences can be identified, but also some characteristics of the
distribution G. As a matter of fact, working with the identified parameters β RE-U

j −
β RE-U

1 leads to a shift of θ which we express with u = θ +β RE-U
1 . Thus, for all J ⊂

{1, . . . , I}, (1.9) can be rewritten as

P(βRE-U
1:I ,G)

⎛
⎝ ⋂

j∈J
{Yp j = 1}∩

⋂
j∈Jc

{Yp j = 0}
⎞
⎠=

= e[−∑ j∈J (βRE-U
j −βRE-U

1 )]
∫ ∞

−∞

e|J |u

∏
1≤i≤I

[
1+ eu−(βRE-U

i −βRE-U
1 )

] GβRE-U
1

(du),

where GβRE-U
1

((−∞,x]) .
= G((−∞,x+β RE-U

1 ]). Therefore, the functionals

mGβRE-U
1

(k) =
∫ ∞

−∞

eku

∏
1≤i≤I

[
1+ eu−(βRE-U

i −βRE-U
1 )

] GβRE-U
1

(du),

for k = 0,1, . . . , I, are identified. Note that mGβRE-U
1

(0) = mGβRE-U
1

(| /0|) corresponds

to P(βRE-U
1:I ,G)(Yp1 = 0, . . . ,YpI = 0). Summarizing, the following I + 1 relationships

follow: For all J ⊂ {1, . . . , I} such that |J |= k,
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mGβRE-U
1

(k) =

= P(βRE-U
1:I ,G)

⎛
⎝ ⋂

j∈J
{Yp j = 1}∩

⋂
j∈Jc

{Yp j = 0}
⎞
⎠× e[∑ j∈J (βRE-U

j −βRE-U
1 )] (1.12)

for k = 0,1, . . . , I. These I + 1 identified parameters will be used for an alternative
way to identify the difficulties and to derive an interesting difficulty ratio.

1.4.3 Parameters of Interest

In order to identify the item parameters β RE-U
1:I , the previous equalities suggest to

introduce an identification restriction, namely β RE-U
1 = 0. Under this restriction, the

difficulty parameters β RE-U
i are given by Eq. (1.11) with β RE-U

1 = 0. Moreover, using
equalities (1.11) and (1.12) with β RE-U

1 = 0, the following relations follow:

β RE-U
j = ln

[
P(βRE-U

1:I ,G)(Yp1 = 1,Yp j = 0)

P(βRE-U
1:I ,G)(Yp1 = 0,Yp j = 1)

]
for all persons p; (1.13)

β RE-U
i

β RE-U
j

= ln

[
P(βRE-U

1:I ,G)(Ypi = 0,Yp j = 1)

P(βRE-U
1:I ,G)(Ypi = 1,Yp j = 0)

]
for all persons p. (1.14)

For a proof, see Appendix.

1.4.4 Relationship of Item Difficulty with Empirical Difficulty

Regarding the relationship between item difficulty and empirical difficulty, from
(1.14) it is possible to prove that

β RE-U
i > β RE-U

j ⇐⇒ P(βRE-U
1:I ,G)(Ypi = 1)< P(βRE-U

1:I ,G)(Yp j = 1) for all person p.
(1.15)

Thus, item i is more difficult than item j if probability that a person correctly
answers item i is less than the probability that the person correctly answers item j.

1.4.5 Comments

The previous considerations lead to the following comments:
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1. Equalities (1.13) and (1.14) apply independent of the distribution G.
2. Equality (1.13) shows that the difficulty of an item j essentially corresponds to

a ratio of probabilities involving two items: the item j itself and the item 1. This
ratio can be interpreted as a mirror property between items 1 and j.

3. Equality (1.14) can also be interpreted as a mirror property between items i and j.

1.5 Discussion

In the random-effects specification of the Rasch model, it is not possible to make
a distinction between a Rasch model with abilities distributed according to a
N (0,σ2) and a 2PL model with equal discriminations and abilities distributed
according to a N (0,1). Both models are identified and, therefore, this is an example
of equivalent models: the distribution generating the response patterns is not enough
to distinguish between these two equivalent models. Let us remark that for the 2PL
model with different discrimination parameters, the situation is different; for details
and a first interpretation of the parameters of interest, see San Martín et al. (2013,
Appendix B).

Relations (1.3), (1.7), and (1.15) suggest that the comparison between item
difficulties can empirically be interpreted in terms of the proportion of persons
answering correctly one or other item. This also suggests that the estimations of
the difficulty parameters in the three models will be (almost) perfectly correlated.
However, the meaning of these estimators is quite different. For the fixed-effects
specification, item difficulty is interpreted in terms of odd ratio [see equality (1.2)];
for the random-effects specification, item difficulty is interpreted as a function of
both the marginal probability of correctly answering the item and the dependency
common to all pairs of items [see equalities (1.5) and (1.6)]; and for the semi-
parametric specification, item difficulty is interpreted in terms of the mirror property
(1.13).

Appendix

Proof of Equality (1.13)

Consider the reparameterization ηi = exp(βi) and let

AJ =
⋂

j∈J
{Yp j = 1} ∩

⋂
j∈J c\{1,i}

{Yp j = 0}.

Let J ⊂ {2, . . . , I} and i /∈J . Using (1.12), it follows that
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mG(|J |+1) = P(βRE-U
1:I ,G)

⎛
⎝{Ypi = 1}∩

⋂
j∈J

{Yp j = 1}∩
⋂

j∈(J∪{i})c

{Yp j = 0}
⎞
⎠× ∏

j∈J
η j ×ηi

= P(βRE-U
1:I ,G)

⎛
⎝{Yp1 = 1}∩

⋂
j∈J

{Yp j = 1}∩
⋂

j∈J c\{1}
{Yp j = 0}

⎞
⎠× ∏

j∈J
η j.

It follows that

ηi =
P(βRE-U

1:I ,G)
({Yp1 = 1,Ypi = 0}∩AJ })

P(βRE-U
1:I ,G)

({Yp1 = 0,Ypi = 1}∩AJ }) . (1.16)

for all J ⊂ {2, . . . , I} and i /∈J . Therefore, using (1.16),

P(βRE-U
1:I ,G)(Ypi = 0,Yp j = 1)

P(βRE-U
1:I ,G)(Ypi = 1,Yp j = 0)

=

∑
{J⊂{2,...,I}:i/∈J }

P(βRE-U
1:I ,G)

({Yp1 = 1,Ypi = 0}∩AJ

)

∑
{J⊂{2,...,I}:i/∈J }

P(βRE-U
1:I ,G)

({Yp1 = 0,Ypi = 1}∩AJ

)

=

∑
{J⊂{2,...,I}:i/∈J }

ηi P(βRE-U
1:I ,G)

({Yp1 = 0,Ypi = 1}∩AJ

)

∑
{J⊂{2,...,I}:i/∈J }

P(βRE-U
1:I ,G)

({Yp1 = 0,Ypi = 1}∩AJ

)

= ηi.

Proof of Equality (1.14)

Let J such that |J | = I −2 and denote the label of two items excluded from J
as i and i′. Using (1.12), it follows that

mG(|J ∪{i}|) = P(βRE-U
1:I ,G)

⎛
⎝{Ypi = 1}∩

⋂
j∈J

{Yp j = 1}∩{Ypi′ = 0}∩
⋂

j∈J c\{i′}
{Yp j = 0}

⎞
⎠×

× ∏
j∈J

η j ×ηi,

mG(|J ∪{i′}|) = P(βRE-U
1:I ,G)

⎛
⎝{Ypi′ = 1}∩

⋂
j∈J

{Yp j = 1}∩{Ypi = 0}∩
⋂

j∈J c\{i}
{Yp j = 0}

⎞
⎠×

× ∏
j∈J

η j ×ηi′ .
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Therefore,

ηi

ηi′
=

P(βRE-U
1:I ,G)

⎛
⎝{Ypi = 0,Ypi′ = 1}∩

⋂
j∈J

{Yp j = 1}∩
⋂

j∈J c\{i}
{Yp j = 0}

⎞
⎠

P(βRE-U
1:I ,G)

⎛
⎝{Ypi = 1,Ypi′ = 0}∩

⋂
j∈J

{Yp j = 1}∩
⋂

j∈J c\{i′}
{Yp j = 0}

⎞
⎠

. (1.17)

Let J ⊂ {1, . . . , I} such that |J |= I −2 and take i, i′ /∈J . Denote

AJ =
⋂

j∈J
{Ypi = 1} ∩

⋂
j∈J c\{i}

{Ypi = 0},

BJ =
⋂

j∈J
{Ypi = 1} ∩

⋂
j∈J c\{i′}

{Ypi = 0}.

Then, using (1.17),

P(βRE-U
1:I ,G)(Ypi=0,Ypi′=1)

P(βRE-U
1:I ,G)(Ypi=1,Ypi′=0)

=

∑
{J⊂{1,...,I}:|J=I−2,i,i′ /∈J }

P(βRE-U
1:I ,G)({Ypi=0,Ypi′=1}∩AJ )

∑
{J⊂{1,...,I}:|J=I−2,i,i′ /∈J }

P(βRE-U
1:I ,G)({Ypi=1,Ypi′=0}∩BJ )

=
ηi

ηi′

∑
{J⊂{1,...,I}:|J=I−2,i,i′ /∈J }

P(βRE-U
1:I ,G)({Ypi=1,Ypi′=0}∩BJ )

∑
{J⊂{1,...,I}:|J=I−2,i,i′ /∈J }

P(βRE-U
1:I ,G)({Ypi=1,Ypi′=0}∩BJ )

=
ηi

ηi′
.

Proof of Relation (1.15)

Using the same notation introduced above and the ratio η ′
i/ηi′ , it follows that

P(βRE-U
1:I ,G)(Ypi′ = 1)

P(βRE-U
1:I ,G)(Ypi = 1)

=

∑
{J :|J |=I−2,i,i′ /∈J }

P(βRE-U
1:I ,G)({Ypi′ = 1,Ypi = 0}∩AJ )

∑
{J :|J |=I−2,i,i′ /∈J }

P(βRE-U
1:I ,G)({Ypi′ = 0,Ypi = 1}∩BJ )

=
ηi

ηi′
.

Acknowledgements This research was partially funded by the ANILLO Project SOC1107
Statistics for Public Policy in Education from the Chilean Government.



14 E. San Martín and P. De Boeck

References

Andersen EB (1980) Discrete statistical models with social science applications. North Holland,
Amsterdam

Bamber D, Van Santen JPH (2000) How to asses a model’s testability and identifiability. J Math
Psychol 44:20–40

Cox DR, Hinkley DV (1974) Theoretical statistics. Chapman and Hall, London
Fisher RA (1922) On the mathematical foundations of theoretical statistics. Philos Trans R Soc

Lond A 222:309–368
Ghosh M (1995) Inconsistent maximum likelihood estimators for the Rasch model. Stat Probab

Lett 23:165–170
Lancaster T (2000) The incidental parameter problem since 1948. J Econom 95:391–413
McCullagh P (2002) What is a statistical model? (with Discussion). Ann Stat 30:1225–1310
Molenberghs G, Verbeke G, Demetrio CGB, Vieira A (2010) A family of generalized linear models

for repeated measures with normal and cojugate random effects. Stat Sci 25:325–347
San Martín E, Rolin J-M (2013) Identification of parametric Rasch-type models. J Stat Plan

Inference 143:116–130
San Martín E, Jara A, Rolin J-M, Mouchart M (2011) On the Bayesian nonparametric generaliza-

tion of IRT-types models. Psychometrika 76:385–409
San Martín E, Rolin J-M, Castro M (2013) Identification of the 1PL model with guessing

parameter: parametric and semi-parametric results. Psychometrika 78:341–379
Woods CM (2006) Ramsay-curve item response theory (RC-IRT) to detect and correct for

nonnormal latent variables. Psychol Methods 11:235–270
Woods CM, Thissen D (2006) Item response theory with estimation of the latent population

distribution using spline-based densities. Psychometrika 71:281–301
Zeger SL, Liang K-Y, Albert PS (1988) Models for longitudinal data: a generalized estimating

equation approach. Biometrics 44:1049–1060



Chapter 2
Thurstonian Item Response Theory
and an Application to Attitude Items

Edward H. Ip

Abstract The assessment of attitudes has a long history dating back at least to the
work of Thurstone. The Thurstonian approach had its “golden days,” but today it is
seldom used, partly because judges are needed to assess the location of an item, but
also because of the emergence of contemporary tools such as the IRT. The current
work is motivated by a study that assesses medical students’ attitudes toward obese
patients. During the item-development phase, the study team discovered that there
were items on which the team members could not agree with regard to whether they
represented positive or negative attitudes. Subsequently, a panel of n= 201 judges
from the medical profession were recruited to rate the items, and the responses to the
items were collected from a sample of n= 103 medical students. In the current work,
a new methodology is proposed to extend the IRT for scoring student responses, and
an affine transformation maps the judges’ scale onto the IRT scale. The model also
takes into account measurement errors in the judges’ ratings. It is demonstrated that
the linear logistic test model can be used to implement the proposed Thurstonian
IRT approach.

Keywords Item response theory • Likert scaling • Linear logistic test model
• Attitudes toward obese persons • Equal-appearing interval scaling

2.1 Introduction

Together with the Guttman scale, Thurstone and Likert scaling are perhaps the
most prominently featured and researched scaling techniques in the history of
psychological measurement, especially in the assessment of attitudes. Historically,
Thurstone was one of the first quantitative psychologists to set his sights on
the development of a theory for psychological scaling (Thurstone 1925, 1928).
Thurstone’s pioneer work on conception of attitude was based on the assessment of
subjective attitudinal responses. The covert responses—or a sample of them—are
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linguistically represented in the form of opinion statements, which can then
be located on a single evaluative dimension (Ostram 1989). Based on the principle
of comparative judgment, Thurstone developed several scaling methods, of which
the best known is the equal-appearing interval scale (Thurstone and Chave 1929).
Given a collection of items, each of which contains a statement concerning the
psychological construct of interest, the technique consists of two steps.

First, a panel of judges is recruited to rate the items in terms of their favorability
to the construct of interest. Thurstone suggested using integral values of 1–11 for
the rating scale. The 11-point scale then becomes the psychological continuum on
which the statements have been judged, and the distribution of judgments obtained
is used to calculate a typical value, which can then be taken as the scale-value of
the statement on the 11-point psychological continuum. The value could be the
median or the mean of the judgment distribution, and descriptive statistics such as
standard deviations and the interquartile range are then used to eliminate questions
that have overly dispersed judgment scores. Ideally, the equal-appearing interval
scale is established by a final collection of items with small dispersions so that the
scale-value of the statements on the psychological continuum are relatively equally
spaced. In the second step, the statements are presented to subjects with instructions
to indicate those with which they are willing to agree and those with which they
disagree. The attitude score for a subject is based on the mean or the median of
the scale-values of the statements agreed with. In other words, if the responses are
dichotomously coded as 1 for Agree and 0 for Disagree, then the attitude score is an
average of a weighted combination of the response categories, of which the weights
are the scale-score.

One of the most fascinating aspects of Thurstone’s scaling procedure is that
the scale is determined by expert judges on a unidimensional continuum and that
the operating characteristic of a Thurstone item may reflect either an underlying
dominant-response process or an ideal-point process (Coombs 1964; Roberts and
Laughlin 1996). In the most common form of the dominance mechanism, respon-
dents and items are represented by positions on a latent trait, and the responses
are determined by a comparison process: if the respondent’s trait value is greater
than the item-trait value, then the response to the item is positive; otherwise, the
response is negative. The item-characteristic curve (ICC) of the item response for
a dominant-response process is monotone and can be well captured by existing
item response theory (IRT; Lord 1980) models. An example of a monotone ICC for
equal-appearing interval scaling is the Sickness-Impact Profile (SIP; Bergner et al.
1981). Judges rated the SIP items on the severity of the dysfunction described in an
item on an equal-interval 11-point scale. The end points were labeled “minimally
dysfunctional” and “severely dysfunctional” to provide meaningful referents. An
item concerning how sickness impacts work is: “I act irritable and impatient with
myself—for example, talk badly about myself, swear at myself, blame myself for
things that happen.” A monotone ICC for this item implies that a respondent with
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a higher SIP trait value (more dysfunctional) is more likely to endorse this item
than someone with a lower SIP trait value (less dysfunctional). For an empirical
comparison between IRT scaling and Thurstone scaling in education, see Williams
et al. (1998).

The Thurstone scaling procedure could also be used to describe an ideal point-
response process, a model commonly used in attitudinal measurement of political
and social views. Like the dominant-response process, the ideal-point process
postulates that the individual’s response also depends on the relative position of
the person’s trait value and the position of the item on the scale. However, a
respondent in an ideal-point process is more likely to endorse statements that have
trait values close to the respondent’s. Thus, the ICC from an ideal-point process
is not monotonic with respect to the trait and typically has a single peak at the
location of the item. These models are often referred to as unfolding models in the
IRT literature. An example of an unfolding item is a well-known General Social
Survey (GSS) item on legalized abortion. The respondent in the GSS is asked when
legalized abortion is allowed on a collection of seven conditions such as: “The
family has a very low income and cannot afford any more children” and “The
woman wants it for any reason.” For respondents who hold a more centralist view
about legalized abortion, the likelihood of endorsing the former statement would be
higher than it would be for those who hold a liberal view about abortion as well as
those who are strong anti-abortion.

In this paper, we only focus on Thurstone’s equal-appearing scaling methods for
items that do not fold—or items that are supposed to follow a dominant-response
process so that their ICCs are monotonic. We argue that the equal-appearing scaling
method is a way to set scales according to experts’ views of the construct of interest
and that it could be operationalized through IRT models in which the location
parameter of an item can be obtained by careful scaling of the judges’ ratings. The
extent to which the judges disagree on the location of an item can be incorporated
into the IRT model by assuming that the rating scores from the sample of judges
are normally distributed with a mean m and a standard deviation σ , both of which
could be directly estimated from the judges’ data. As such, the proposed model can
be viewed as an IRT implementation for equal-appearing scaling, which is distinct
from the Thurstonian item response model proposed in Brown and Maydeu-Olivares
(2012). We further demonstrate that the uncertainty associated with the judges’
ratings would lead to an attenuation of the slope of the ICC, which, in modern IRT
language, means that the information contained in the item is less than 1 at the same
scale location but has a steeper slope. Also, we show that through a convolution
technique the proposed Thurstonian IRT model can be solved using the estimation
procedure for the linear logistic test model (LLTM; Fischer 1973).

The remainder of this paper is organized as follows: first, we describe the
Thurston IRT model, then we illustrate the proposed model using a data set collected
from a study of attitudes. Finally, we conclude with a discussion.



18 E.H. Ip

2.2 Thurstonian IRT: Method

We begin with a simple Rasch model:

P(Yi j = 1
∣∣∣θ j) =

exp(θ j +bi)

1+ exp(θ j +bi)
, (1)

where Yij is the binary response of individual j to item i, with 1 indicating a correct
or positive response; θ j is the latent trait for individual j; and bi is the intercept
parameter for item i or the individual. We further assume that the intercept parameter
bi is a function of item attributes w

¯ i
and the judge’s rating, which has a mean mi and

variance σ 2
i . Specifically, we write:

bi = ηT
1 w

¯ i
+η2 (mi + εi) , εi ∼ N

(
0,σ2

i

)
, (2)

where η denotes regression coefficients.

P
(

Yi j = 1
∣∣∣θ j,εi

)
=

exp

[
θ j +ηT

1 w
¯ i
+η2 (mi + εi)

]

1+ exp

[
θ j +ηT

1 w
¯ i
+η2 (mi + εi)

] , (3)

θ j ∼ N (0,1) , εi ∼ N
(
0,σ2

i

)
.

In other words, we have

P
(

Yi j = 1
∣∣∣θ j,εi

)
=

exp [θ j +b′i +η2εi]

1+ exp
[
θ j +b

′
i +η2εi

] , (4)

where b′i = ηT
1 w

¯ i
+η2mi.

By integrating out the error term η2ε i through a convolution technique (Zeger
et al. 1988; Caffo et al. 2007; Ip 2010), we now have

P
(

Yi j = 1
∣∣∣θ j

)
=

exp
[
a∗i θ j +b∗i

)]

1+ exp
[
a∗i θ j +b∗i

)] , (5)

where a∗i = λlogit(ai1 +
η2ρσi
σ1

), b*
i = λ logitb’

i , λ logit = [k2η2
2(1− ρ2)σ 2

i + 1]− 1/2, and

k = 16
√

3/(15π) = 0.588. The factor a*
i represents an attenuation factor for the

slope of θ , which is assumed to be 1.0 in a Rasch model, and ρ represents the
correlation between ε and θ , which is set to zero.

Figure 2.1 shows the change in attenuation as a function of the standard deviation
of the measurement error. Generally speaking, when the noise level (measurement
error) increases, the attenuation factor becomes smaller and varies almost linearly
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from no attenuation (=1.0) to a value of 0.5. Notably, the graphs show that
attenuation is approximately 0.8 when the noise level (SD= 1) reaches the level of
the signal (SD= 1). We call the model specified by Eqs. (4) and (5) the Thurstonian
LLTM model.

Fig. 2.1 Attenuation factor
as a function of the standard
deviation of the judges’
ratings

2.3 Real Data Example

2.3.1 Data

The data were a subset of data collected from a recent study on the development
of a curriculum for medical school students for counseling obese patients. The
Nutrition, Exercise, and Weight Management (NEW) study collected attitude data
using an instrument—the NEW Attitude Scale (Ip et al. 2013)—which comprises
31 items measuring attitudes across three domains: nutrition, exercise, and weight
management. Examples of items include “I do feel a bit disgusted when treating a
patient who is obese” (Item 23), and “The person and not the weight is the focus
of weight-management counseling” (Item 25). In the item-development process,
the study team had a consensus view for some items but divergent views for
others. An example of a consensus item was “Overweight individuals tend to be
lazy about exercise” (Item 13), which the team agreed represented an unfavorable
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attitude. An item that solicited divergent views was “Patients are likely to follow
an agreed-upon plan to increase their exercise” (Item 10). Some tended to feel that
an endorsement of the item suggested a favorable attitude because the physician
sounded positive about the outcome, but others argued that the item should be
viewed negatively because the physician might not appreciate the challenges that
an obese person encountered when prescribed an exercise program. The study
team decided to use the Thurstonian approach of soliciting judges’ opinions about
the positivity/negativity of the items. A total of 201 judges (approximately 50%
clinically focused and the remaining research focused) rated the items. A sample
of N= 103 medical students completed the instrument. Using the scores that
were derived from traditional Thurstone scaling, the test–retest reliability of the
instrument was 0.89 (N= 24). Pearson correlations between two other anti-obesity
measures were the Anti-Fat Attitudes Questionnaire (AFA; Lewis et al. 1997) and
the Beliefs About Obese Persons Scale (BAOP; Allison et al. 1991) were -0.47
and 0.23, respectively. This shows satisfactory convergent validity with existing
measures of attitudes toward obese individuals. A full report about the validation
of the instrument can be found in Ip et al. (2013).

To illustrate the range of concordance in judges’ ratings across items, we used
two items as examples. Figures 2.2 and 2.3 show, respectively, the distributions of
ratings for Item 23 and Item 25. The former item has a relatively high level of
consensus as being indicative of an unfavorable attitude, as demonstrated by the
small standard deviation (SD= 0.8). In contrast, Item 25 exhibits high variance in
the judges’ ratings (SD= 2.2).

Fig. 2.2 Distribution of
judges’ ratings for Item 23
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Fig. 2.3 Distribution of
judges’ ratings for Item 25

Besides the three domains (nutrition, exercise, and weight management) that
defined the items, it was expected that some items also carried common charac-
teristics. For example, there were items across the three domains that were related
to counseling, and there were also items that were related to motivation of the patient
in dieting, exercise, and weight loss. Therefore, we also conducted a factor analysis
to extract factors that explained a large proportion of the variance of the items.

We used the Thurstonian LLTM described above to estimate the model param-
eters, and in addition to the judges’ ratings the following two covariates were
included: the factor score of the item from factor analysis and the domain to which
each item belonged. A standard LLTM program eRm (Mair and Hatzinger 2007)
was used to estimate the parameters.

2.3.2 Results

The factor analysis resulted in three factors that can be interpreted as (1) a factor for
counseling, (2) a factor for motivation of the patient, and (3) a factor for perception
about external factors. Table 2.1 summarizes the results from the Thurstonian LLTM
and reports the estimates and standard errors (SE). Except for the exercise domain
(as compared with weight management), all of the predictors that were entered into
the LLTM are significant. Specifically, judges’ ratings tend to be highly significant,
and each point increase in a judge’s rating results in a change of -1.4 in the intercept
parameter. Figure 2.4 shows the ICCs for two exemplifying items: the solid line
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shows that of Item 23 (“Patients tend to be lazy about exercise”) and Item 14
(“Patients understand the connection between nutrition and cancer”). The ICC for
Item 23 suggests that medical students with higher values on the NEW Attitude
Scale are less likely to endorse this item than they are to endorse Item 14. Finally,
the effect of measurement error on the attenuation within the LLTM appeared to be
small. The attenuation factor for the items in the sample ranged from 0.96 to 0.99.

Table 2.1 Estimates and
standard error for Thurstonian
LLTM for NEW attitude data

Predictor Estimate for η SE

Factor 1 −1.528* 0.115
Factor 2 −0.85* 0.125
Nutrition 0.449* 0.104
Exercise −0.04 0.102
Judges’ ratings −0.143* 0.02

*p< 0.01
Factor 3 is the reference factor

Fig. 2.4 Item-characteristic
curves for Item 23 (solid) and
Item 14 (dashed)

2.4 Discussion

There is often misunderstanding and confusion in the literature about the use of the
Likert scaling method (Likert 1932; Edwards and Kenney 1946). Partly because of
the convenience of constructing items and scoring respondents, it is not uncommon
to see confusion about the fundamental scaling idea behind the Likert method. In
particular, one misconception about the Likert scale that is relevant to this paper
is that using the Likert scale does not require a specific scaling procedure—i.e.,
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calibrating the continuum of metric by identifying the locations of the items on the
continuum because no judges are required. This is not true. Likert actually suggested
more than one way of assigning scale values, and indeed there are at least three
groups of persons that are capable to locating items on a continuum: (1) a panel of
expert judges, (2) the test developers, and (3) the respondents. Thurstone relied on
the first category, and Likert developed methods in using the other two categories
of persons. To understand his notion of scaling, we need to briefly describe Likert’s
assumptions underlying his procedure. Instead of following Thurstone’s approach
of creating positional statements, Likert used the level of agreement with specific
statements to measure attitudes. The “level of agreement” could be codified as
Strongly Agree to Strongly Disagree, or as judgmental statements about actions
concerning a given situation. In his study about racial attitudes among college
students, one of the questions was: “In a community in which the negroes [sic]
outnumber the whites, under what circumstances is the lynching of a negro [sic]
justifiable?” The possible responses were: “(a) Never. (b) In very exceptional cases
where an especially brutal crime against a white person calls for swift punishment.
(c) As punishment for any brutal crime against a white person. (d) As punishment for
any gross offense [felony or extreme insolence] committed against a white person.
(e) As punishment for any act of insolence against a white person.” It is difficult
not to notice the similarity of these response categories to statements in a Thurstone
scaling procedure. The response categories, when expressed in this form could be
more appropriately called sub-statements. Indeed, Likert scaling corresponds to a
scheme under which the test developers provide the rating for the sub-statements
(e.g., see Massof 2002).

The argument that Likert scaling corresponds to a predetermined scale is based
on the observation that Likert’s “theory” of scaling assumes that attitudes in a
population follow a normal distribution and that all items can be positioned on the
continuum by assigning them sigma units, or what we call z-scores now. Instead of
using continuous values, Likert argued that one could partition the continuum into
response categories, each of which signified a level of intensity on the continuum.
A critical step that Likert took was to assign ranks (1–5) to these intensity categories.

From the perspective of the Thurstone scaling procedure, Likert scaling is
equivalent to assigning transformed z-scores (1–5) as scale values to the sub-
statements in an item. If each sub-statement in an attitude instrument is treated as a
statement on Thurstone’s equal-appearing interval, there would be five distributions
at five equally separated positions. In other words, Likert’s scaling corresponds
to a form of equal-appearing interval scaling in which 5 points are used instead
of 11. The test developer assigns the scale value to each item, and it is assumed
that the assignment is without error. Alternatively, Likert alluded to the use of the
participants as rating “judges”—i.e., the intensity of an item is determined by how
frequent high scorers endorse the item (Babbie 2008, p. 188). Thus, although Likert
scaling creates the ordinal format in order to avoid the need for external judges when
developing scales, the scaling of the items still has to come from somewhere—
for example, either from a test developer or from the participants. Some criticized
the Thurstone scaling procedure because while it is valid for judges it may not
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be valid for participants. Yet, this is the whole point of Thurstone—the judges,
presumably practitioners and researchers in the field, set the scale for a construct
that they have all judged to be measurable using the proposed items. One can even
argue that this scaling method would be a more relevant measure for a construct
because a construct, after all, is an artifact conceived and created by practitioners
and researchers in the field.

In this paper, we attempted to operationalize the Thurstone scaling through an
IRT approach by following a two-step procedure: (1) establish a continuous, or at
least an approximate, intensity scale by locating each item on this scale through
a sample of experts; and (2) map the individual onto this scale by examining the
individual’s discrete response (e.g., binary agree/disagree to the statement of the
item). The proposed Thurstonian LLTM represents a method for this operational-
ization. As a method grounded in IRT, the LLTM accordingly inherits many of the
advantages of the IRT for scaling multiple dichotomous and polytomous responses.

There are some limitations to the current approach. The Rasch model appears to
be too restrictive for capturing the diversity in the data, and the ICCs of the 31 items
were not as diverse as we expected. A two-parameter logistic LLTM (e.g., Ip et al.
2009) may be more appropriate. Furthermore, in this paper only item attributes were
considered, and person attributes such as experience with the professional school
were not taken into account. Currently, further work that expands the Rasch model to
its two-parameter logistic counterpart and a regression model incorporating person
attributes is in progress.
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Chapter 3
Robustness of Mixture IRT Models to Violations
of Latent Normality

Sedat Sen, Allan S. Cohen, and Seock-Ho Kim

Abstract Unidimensional item response theory (IRT) models assume that a single
model applies to all people in the population. Mixture IRT models can be useful
when subpopulations are suspected. The usual mixture IRT model is typically
estimated assuming normally distributed latent ability. Research on normal finite
mixture models suggests that latent classes potentially can be extracted even in the
absence of population heterogeneity if the distribution of the data is nonnormal.
Empirical evidence suggests, in fact, that test data may not always be normal. In this
study, we examined the sensitivity of mixture IRT models to latent nonnormality.
Single-class IRT data sets were generated using different ability distributions
and then analyzed with mixture IRT models to determine the impact of these
distributions on the extraction of latent classes. Preliminary results suggest that
estimation of mixed Rasch models resulted in spurious latent class problems in the
data when distributions were bimodal and uniform. Mixture 2PL and mixture 3PL
IRT models were found to be more robust to nonnormal latent ability distributions.
Two popular information criterion indices, Akaike’s information criterion (AIC) and
the Bayesian information criterion (BIC), were used to inform model selection. For
most conditions, the performance of BIC index was better than the AIC for selection
of the correct model.

3.1 Introduction

Item response theory (IRT) models have been designed to describe the relationship
between observed item responses and latent variables (Embretson and Reise 2000).
The successful applications of standard IRT models depend on several assump-
tions such as unidimensionality, invariance, local independence, and monotonicity
(Reckase 2009). For instance, one set of item characteristic curves (ICCs) can be
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used to describe the relationship between item responses and the underlying latent
trait by assuming that all individuals come from a single homogeneous population.
However, other modeling approaches may be more appropriate when there are
subgroups of respondents with different response-trait relationships. Several models
have been developed to overcome violations of standard IRT models including
multidimensional IRT models (Reckase 2009), multiple group IRT models (Bock
and Zimowski 1997), and mixture IRT (MixIRT) models (Rost 1990; Mislevy
and Verhelst 1990). MixIRT models, for example, may be more useful when the
invariance assumption is violated (von Davier et al. 2007).

The popularity of MixIRT models has increased with the applications of these
models to many psychometric issues such as detecting test speededness (Bolt et al.
2002; Wollack et al. 2003; Yamamoto and Everson 1997) and differential item
functioning (Cohen and Bolt 2005; Cohen et al. 2005; Samuelsen 2005), identifying
different personality styles (von Davier and Rost 1997), and identifying solution
strategies (Mislevy and Verhelst 1990; Rost and von Davier 1993), as well as
classifying response sets (Rost et al. 1997).

The MixIRT model is based on finite mixture models (Titterington et al. 1985).
Finite mixture models are used in a number of latent variable models including
latent class analysis (LCA; Clogg 1995), structural equation models (Arminger et al.
1999; Jedidi et al. 1997), growth mixture models (GMMs) (Li et al. 2001), and
factor mixture analysis (FMA; Lubke and Muthén 2005). Typically, finite mixture
models are used to explain the underlying heterogeneity in the data by allocating
this heterogeneity to two or more latent classes. One problem with the application
of these models is that the extracted classes may not always reflect the heterogeneity
in the population (Bauer and Curran 2003). It may be possible to obtain some
extraneous classes as an artifact of misspecification. For instance, Bauer and Curran
(2003) demonstrated that nonnormality in the data can lead to identification of
spurious latent classes even in the absence of population heterogeneity (McLachlan
and Peel 2000; Bauer and Curran 2003). Similar situations have been observed in
mixture Rasch models when model specific assumptions are violated (Alexeev et al.
2011).

In contrast to application of multiple group IRT models, the number of groups (or
classes) may not be known a priori in exploratory applications of mixture models.
In a typical exploratory approach to determine the number of latent classes, several
models may be fit to the data. The model with the best fit is often selected based
on some statistical criteria (e.g., information criterion indices). Since the extracted
classes are latent (i.e., unobserved), one can never be sure about the true number
of latent classes. Thus, identification of the correct number of latent classes has
become a longstanding and unresolved issue in finite mixture models research. This
issue has been studied for a number of latent variable models (Alexeev et al. 2011;
Bauer 2007; Bauer and Curran 2003) or model selection statistics (Li et al. 2009;
Nylund et al. 2007; Tofighi and Enders 2007; Wall et al. 2012).

Bauer and Curran (2003) examined the effect of nonnormality on the detection of
the number of latent classes in GMMs. Data were generated for single-class data sets
with normal and nonnormal distributions and then analyzed with one- and two-class
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solutions. Results indicated that a one class solution was a better fit for normal data
and a two class solution (i.e., a spurious class) was a better fit for nonnormal data.
Results further suggested that data with nonnormal distributions may cause over-
extraction of latent classes even in a single homogeneous population.

Tofighi and Enders (2007) investigated the performances of nine different fit
indices (information criteria and likelihood based statistics) within the context of
GMMs. They showed that the sample-size adjusted BIC (SABIC; Sclove 1987) and
the Lo–Mendell–Rubin (LMR; Lo et al. 2001) likelihood ratio test are promising
in determining the number of classes. Similarly, Nylund et al. (2007) compared the
performances of information criteria and hypothesis tests using the likelihood ratio
test with three different mixture models: LCA, factor mixture models (FMMs), and
GMMs. Results indicated that the bootstrap likelihood ratio test (BLRT) performed
better than LMR or likelihood-ratio tests for determining the correct number of
classes in the LCA models with continuous outcomes, the FMM and the GMM
models. Results also showed that the Bayesian information criterion (BIC; Schwarz
1978) was superior to Akaike’s information criterion (AIC; Akaike 1974) and con-
sistent AIC (CAIC; Bozdogan 1987) for all three types of mixture model analyses.
Li et al. (2009) examined the performances of five fit indices for dichotomous
mixture Rasch, 2-parameter (2PL), and 3-parameter logistic (3PL) IRT models using
an MCMC algorithm. Results of a simulation study showed that in most conditions
BIC performed better than the deviance information criterion (Spiegelhalter et al.
1998), AIC, pseudo Bayes factor (PsBF), and posterior predictive model checks
(PPMC).

Alexeev et al. (2011) investigated the effects of violation of the Rasch model
assumption of equal discriminations on detection of the correct number of latent
classes in a mixture Rasch model. Spurious latent classes were observed when data
generated with a single-class 2PL IRT model were analyzed with a mixture Rasch
model. Results showed further that even a single item with a high discrimination
could result in detection of a second class even though the data were generated to
be a single class.

Even small departures from model assumptions may have an effect on the number
of latent classes detected as well as on model parameter estimates (Alexeev et al.
2011; Bauer 2007; Bauer and Curran 2003). Although latent nonnormality has been
investigated in the context of IRT (Bock and Aitkin 1981; Seong 1990; Woods 2004;
Zwinderman and Van den Wollenberg 1990), similar work has not been reported
with MixIRT models. As was shown for the GMM (Bauer and Curran 2003), it
is important to know whether the nonnormality may be responsible for generating
additional latent classes in MixIRT models. The purpose of this study, therefore,
was to examine the impact of distributional conditions on the extraction of latent
classes. We do this in the context of MCMC estimation with dichotomous MixIRT
models.
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3.2 Method

A Monte Carlo simulation study was conducted to investigate the following research
question: Is the accuracy of detection of latent classes affected by using a normal
prior on ability parameters when the latent ability distribution is nonnormal?

3.2.1 Simulation Design

The following conditions were simulated: Sample size (600 and 2,000 examinees),
test length (10 and 28 items), and five ability distributions (bimodal symmetric,
normal, platykurtic, skewed, and uniform). Data were simulated for each of the three
dichotomous IRT models × 3 MixIRT models × 2 latent class models (LCMs; one-
and two-classes) × 2 sample sizes × 2 test lengths × 5 ability distributions = 360
conditions. Twenty-five replications were generated for each condition.

Examinee ability parameters were simulated for normal, skewed, platykurtic,
bimodal symmetric, and uniform distributions. For the normal distribution condi-
tion, ability parameters were randomly sampled from a standard normal distribution
with unit variance (i.e., N(0, 1)). Skewed and platykurtic data were generated
using the power method proposed by Fleishman (1978). Skewness and kurtosis
values were 0.75 and 0.0 for skewed data and 0.0 and −0.75 for platykurtic data,
respectively. These values were selected to represent typical nonnormality situations
as described by Pearson and Please (1975) for skewness less than 0.8 and kurtosis
between −0.6 and 0.6. For the uniform condition, ability parameters were randomly
drawn from Uniform(−2, 2). The ability parameters for the bimodal symmetric
condition were randomly drawn from a combination of two normal distributions:
N(−1.5, 1) and N(1.5, 1). All of the conditions were generated using a program
written in R (R Development Core Team 2011). Graphical representations of the
four nonnormal generating distributions are presented in Fig. 3.1. A standard normal
distribution curve is superimposed on each figure for reference. It should be noted
that these are actual generating distributions for ability parameters.

Generating item parameters were obtained for the Rasch model, 2PL and 3PL
IRT model estimates using data from the Grade 9 mathematics test of the Florida
Comprehensive Assessment Test (FCAT; Florida Department of Education 2002)
using MULTILOG 7.03 (Thissen 2003). Estimated item parameters for these three
models are presented in Tables 3.1 and 3.2 (a—slope parameter, b—threshold
parameter, and c—guessing parameter).
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Fig. 3.1 Generating distributions for ability parameters

Table 3.1 Item parameters used for data generation for ten-item condi-
tion

Rasch model 2PL model 3PL model
Item b a b a b c

1 −1.83 0.91 −1.84 0.91 −0.37 0.53

2 −0.07 0.93 −0.07 1.17 0.69 0.30

3 −0.15 1.21 −0.13 1.23 0.39 0.24

4 0.90 0.84 0.94 0.91 1.23 0.16

5 −0.38 0.94 −0.37 0.66 −0.06 0.12

6 −0.59 1.14 −0.51 0.75 −0.37 0.06

7 0.98 0.76 1.14 0.76 1.38 0.14

8 0.51 1.06 0.45 1.58 0.88 0.22

9 0.99 0.34 2.37 3.87 1.67 0.28

10 0.19 1.27 0.15 1.05 0.46 0.14
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Table 3.2 Item parameters
used for data generation for
28-item condition

Rasch model 2PL model 3PL model
Item b a b a b c

1 −1.72 1.05 −1.66 1.45 −0.45 0.50

2 −0.09 0.88 −0.10 1.96 0.76 0.31

3 −0.16 1.24 −0.16 2.10 0.40 0.24

4 0.81 0.72 1.04 1.62 1.35 0.19

5 −0.37 0.93 −0.39 1.14 0.05 0.16

6 −0.57 1.28 −0.50 1.35 −0.34 0.06

7 0.91 0.72 1.16 1.31 1.40 0.15

8 0.45 1.07 0.42 2.82 0.88 0.22

9 0.91 0.38 2.08 3.97 1.67 0.26

10 0.16 1.27 0.12 1.85 0.48 0.15

11 0.69 0.67 0.95 2.42 1.34 0.25

12 0.42 0.94 0.43 2.26 0.93 0.23

13 0.93 0.69 1.26 3.61 1.35 0.22

14 1.22 0.98 1.24 2.67 1.29 0.14

15 0.31 0.94 0.32 1.66 0.81 0.20

16 1.19 0.92 1.25 2.88 1.30 0.16

17 0.27 1.18 0.23 2.47 0.72 0.22

18 −1.54 1.61 −1.15 1.59 −1.15 0.03

19 −0.39 1.69 −0.32 1.83 −0.15 0.06

20 −0.41 1.46 −0.35 1.77 −0.03 0.14

21 −0.34 1.01 −0.34 1.27 0.12 0.17

22 −0.30 1.22 −0.28 2.84 0.46 0.32

23 0.18 1.87 0.08 2.45 0.30 0.09

24 0.09 0.76 0.13 2.03 0.97 0.32

25 0.10 0.70 0.15 1.01 0.72 0.18

26 −0.31 1.01 −0.31 1.12 −0.09 0.08

27 −0.33 0.91 −0.35 0.93 −0.32 0.00

28 −0.47 1.43 −0.39 1.83 −0.01 0.17

3.2.2 Model Framework

The three dichotomous MixIRT models investigated in this study are described
below. These models can be viewed as straightforward extensions of traditional
Rasch, 2PL and 3PL IRT models, respectively. First, the mixed Rasch model (MRM;
Rost 1990) is described below. This model is a combination of two latent variable
models: a Rasch model and a LCM. MRMs explain qualitative differences according
to the LCM portion of the model and quantitative differences according to the Rasch
model portion of the model. The assumption of local independence holds for the
MRM as it does for the LCM and Rasch model. In addition, the MRM assumes
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that the observed item response data come from a heterogeneous population that
can be subdivided into mutually exclusive and exhaustive latent classes (Rost 1990;
von Davier and Rost 2007). The conditional probability of a correct response in the
MRM can be defined as

P(xi j = 1) = Pi j =
G

∑
g=1

πg
exp(θ jg −βig)

1+ exp(θ jg −βig)
, (3.1)

where xi j is the 0/1 response of examinee j to item i (0 = incorrect response, 1 =
correct response), πg is the proportion of examinees for each class, θ jg is the ability
of examinee j within latent class g, and βig denotes difficulty of item i within latent
class g. As proposed in Rost (1990), certain constraints on item difficulty parameters
and mixing proportions are made for identification purposes so that ∑iβig = 0 and
∑G

g πg = 1 with 0 < πg < 1.
The probability of a correct response in a mixture 2PL (Mix2PL) IRT model can

be written as

P(xi j = 1) = Pi j =
G

∑
g=1

πg
exp[αig(θ jg −βig)]

1+ exp[αig(θ jg −βig)]
, (3.2)

where αig denotes the discrimination of item i in class g. In the Mix2PL model,
both the item difficulty and item discrimination parameters are permitted to be
class-specific. Similarly, the mixture 3PL (Mix3PL) IRT model is assumed to
describe unique response propensities for each latent class. This model also allows
item guessing parameters to differ in addition to item difficulty and discrimination
parameters. As for the MRM and Mix2PL model, each latent class also can have
different ability parameters. The probability of a correct response for a Mix3PL
model can be described as

P(xi j = 1) = Pi j =
G

∑
g=1

πg

(
γig +(1− γig)

exp[αig(θ jg −βig)]

1+ exp[αig(θ jg −βig)]

)
, (3.3)

where γig is guessing parameter for item i in class g. The MixIRT models have been
applied in a number of studies (e.g., Cohen and Bolt 2005; Li et al. 2009).

3.2.3 MCMC Specification

As is the case with traditional IRT models, MixIRT models can also be estimated
either using MLE or MCMC methods in the Bayesian context. MLE algorithms
are applied in several software packages including Latent GOLD (Vermunt and
Magidson 2005), mdltm (von Davier 2005), Mplus (Muthén and Muthén 2011),
R (psychomix package; Frick et al. 2012), and Winmira (von Davier 2001). MCMC
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estimation is possible using the WinBUGS computer software (Spiegelhalter et al.
2003), Mplus and proc MCMC in SAS (v. 9.2; SAS Institute, Cary, NC, USA).
MRM estimations can be obtained using any of these software packages. The
Mix2PL IRT model can be fit using the Latent GOLD, Mplus and WinBUGS
programs, however, only the WinBUGS program has the capability at this time of
estimating the Mix3PL IRT model. Thus, the computer software WinBUGS was
used in this study for estimating all the models to be studied. In this study, the Rasch
model, 2PL and 3PL IRT models were generated to have one class. In order to see
whether a two-class solution (i.e., a spurious class situation) will fit where a one-
class model was simulated, each MixIRT model was fitted with one- and two-class
solutions.

MCMC estimation model specifications are described below including spec-
ifications of priors and initial values. In two-group model estimations, 0.5 was
used as initial values for the mixing proportions. The starting values for all other
parameters were randomly generated using the WinBUGS software. The following
prior distributions were used for the MRM:

βig ∼ Normal(0, 1),
θ j ∼ Normal(μ(θ),1),
μ(θ)g ∼ Normal(0, 1),
g j ∼ Bernoulli(π1,π2),

(π1,π2)∼ Dirichlet(.5, .5),

where θ j represents the ability parameter for examinee j, βig is the difficulty
parameter of item i within class g, and c j = {1,2} is a class membership parameter.
Estimates of the mean and standard deviation for each latent class, μg and σg, can
also be estimated via MCMC. As in Bolt et al. (2002), σg was fixed at 1 for both
groups. A Dirichlet distribution with 0.5 for each parameter was used as the prior
for πg for the two-group models. In addition, a prior on item discrimination was
used in the Mix2PL and Mix3PL models. A prior on guessing parameter was also
used in the Mix3PL. These two priors are defined as follows:

αig ∼ Normal(0,1)I(0,),

γig ∼ Beta(5,17).

An appropriate number of burn-in and post burn-in iterations needs to be determined
in order to remove the effects of starting values and obtain a stable posterior
distribution. Several methods have been proposed to determine the convergence
assessment and the number of burn-in iterations. The convergence diagnostics by
Gelman and Rubin (1992) and Raftery and Lewis (1992) are currently the most
popular methods (Cowles and Carlin 1996). In this study, convergence diagnostics
were assessed with these two methods using the R package called convergence
diagnosis and output analysis for MCMC (CODA; Plummer et al. 2006). For the
MRM conditions, 6,000 burn-in iterations and 6,000 post-burn-in iterations were
used based on the diagnostic assessment. For the Mix2PL IRT model conditions,
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7,000 burn-in iterations and 7,000 post burn-in iterations were used, and 9,000 burn-
in iterations and 9,000 post burn-in iterations were used in all Mix3PL IRT model
conditions.

3.2.4 Model Selection

For traditional IRT models, model selection is typically done using likelihood ratio
test statistics for nested models and information criterion indices for nonnested
models. Since MixIRT models are nonnested models, only information criterion
indices can be used to determine the correct number of latent classes. Several
information criterion indices have been proposed with different penalization terms
on the likelihood function. AIC and BIC indices and their extensions (i.e., SABIC
and CAIC) are often used to select the best model from among a set of candidate
models based on the smallest value obtained from the same data. In this study, only
AIC and BIC indices were used. These two indices are discussed below. AIC can be
calculated as

AIC =−2logL+2p, (3.4)

where L is the likelihood function and p is the number of estimated parameters
calculated as follows:

p = m∗ I ∗ j+m∗ j−1, (3.5)

where m can have values from 1 to 3 for the MRM, Mix2PL, and Mix3PL IRT
models, respectively, I denotes the number of items, and j is the number of latent
classes. For example, j = 2 is used for a two-class MixIRT solution. AIC does not
apply any penalty for sample size and tends to select more complex models than BIC
(Li et al. 2009). As can be seen below, the BIC index applies a penalty for sample
size and for the number of parameters. As a result, BIC selects simpler models
than AIC. The BIC has been showed to perform better than AIC for selection of
dichotomous MixIRT models (Li et al. 2009; Preinerstorfer and Formann 2011).
BIC can be calculated as follows:

BIC =−2logL+ p∗ log(N), (3.6)

where L is the likelihood of the estimated model with p free parameters and log(N)
is the logarithmic function of the total sample size N. It should be noted that the
likelihood values in these equations are based on ML estimation. Since we used
MCMC estimation, the likelihood values in these equations were replaced with the
posterior mean of the deviance D(ξ ) as obtained via MCMC estimation (Congdon
2003; Li et al. 2009) where ξ represents all estimated parameters in the model.
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3.2.5 Evaluation Criteria

Recovery of item parameters was assessed using root mean square error (RMSE)
which is computed as follows:

RMSE(βi) =

√
∑I

i=1∑
R
r=1(βi − β̂ir)2

RI
, (3.7)

where βi and β̂i are generating and estimated item difficulty parameters for item
i, respectively. I is the number of items and R is the number of replications.
This formula was also used for calculation of the RMSE for item discrimination
and item guessing parameters. In order to make an accurate calculation, the
estimated parameters were placed on the scale of the generating parameters using
the mean/mean approach (Kolen and Brennan 2004). It should be noted that item
parameter estimates from one-class mixture IRT solutions were used to calculate the
RMSE between the generated single-class IRT data sets. In addition, a percentage
of correct detection of simulated latent classes was calculated based on smallest
AIC and BIC indices for each condition. The proportion of correct detections for
the single-class condition was used as the percentage of correct identification.

3.3 Results

As mentioned earlier, each data set was generated to have one class. The data
generated by the Rasch model were fitted with the MRM and the data generated
by 2PL and 3PL IRT models were fitted with Mix2PL and Mix3PL IRT models,
respectively. These three models were fit with one-class and two-class models using
standard normal priors on ability parameters for each simulation condition. The
mean RMSE values of item parameters for each condition were calculated and
are given in Tables 3.3, 3.4, and 3.5. The proportion of correct positives for the
three MixIRT models was calculated based on minimum AIC and BIC between
one-class and two-class solutions. For instance, the number of classes for the given
data set was defined as correct when the information index for a one-class solution
was smaller than that of two-class solution. These proportions are presented in
Tables 3.6, 3.7, and 3.8 for each condition. Condition names given in the first column
of Tables 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8 include model name, number of items,
and number of examinees. For example, the condition Rasch10600 indicates a data
condition generated with the Rasch model for ten items and 600 examinees.

Table 3.3 summarizes the mean RMSE values of item difficulty parameters for
three MixIRT models. Mean RMSE values of item difficulty parameter for MRMs
were found to be less than 0.10 for most of the conditions. RMSE values were
around 0.15 in only three of the bimodal data conditions. As shown in Table 3.3,
mean RMSE values of the Mix2PL and Mix3PL IRT models were larger than those
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Table 3.3 Mean RMSE values of item difficulty parameters over 25
replications

Condition Bimodal Normal Platykurtic Skewed Uniform

Rasch10600 0.164 0.093 0.083 0.087 0.095

Rasch28600 0.146 0.089 0.091 0.093 0.095

Rasch102000 0.149 0.077 0.085 0.074 0.088

Rasch282000 0.097 0.051 0.050 0.050 0.057

2PL10600 0.337 0.187 0.196 0.179 0.199

2PL28600 0.280 0.131 0.135 0.133 0.131

2PL102000 0.364 0.111 0.136 0.109 0.161

2PL282000 0.286 0.072 0.072 0.077 0.107

3PL10600 0.777 0.391 0.371 0.363 0.387

3PL28600 0.675 0.204 0.206 0.214 0.290

3PL102000 0.776 0.333 0.341 0.339 0.426

3PL282000 0.617 0.132 0.137 0.183 0.230

Table 3.4 Mean RMSE values of item discrimination parameters over
25 replications

Condition Bimodal Normal Platykurtic Skewed Uniform

2PL10600 1.677 0.148 0.144 0.155 0.298

2PL28600 1.524 0.131 0.129 0.138 0.275

2PL102000 1.778 0.086 0.098 0.088 0.357

2PL282000 1.813 0.071 0.069 0.078 0.368

3PL10600 1.220 0.574 0.538 0.515 0.522

3PL28600 1.125 0.730 0.744 0.470 0.545

3PL102000 1.280 0.448 0.503 0.511 0.471

3PL282000 2.176 0.417 0.440 0.452 0.452

for the MRM. Mean RMSE values appear to increase as the complexity of model
increases. RMSEs for the Mix2PL IRT model condition with 28 items and 2,000
examinees, however, were less than 0.11 for all except the bimodal symmetric
distribution. For the Mix2PL analyses, mean RMSE values seemed to decrease
as the number of examinees increases. The mean RMSE values for the bimodal
distribution were relatively higher for the Mix3PL IRT model. Mean RMSE values
were around 0.30 for normal, platykurtic, skewed, and uniform distributions. These
results are consistent with previous simulation studies with MixIRT models (Li et al.
2009).

Mean RMSE values for item discrimination parameter estimates for the Mix2PL
and Mix3PL IRT models are presented in Table 3.4. As expected, RMSE values
for the Mix2PL and Mix3PL IRT models for the bimodal symmetric distribution
were the largest. Those for the uniform distribution were the second largest.
Mean RMSE values appeared to be smaller for all of the Mix2PL conditions
for the normal, platykurtic, and skewed distributions. Mean RMSE values for the
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Table 3.5 Mean RMSE values of item guessing parameters over 25
replications

Condition Bimodal Normal Platykurtic Skewed Uniform

3PL10600 0.096 0.089 0.088 0.092 0.089

3PL28600 0.061 0.063 0.058 0.073 0.653

3PL102000 0.092 0.085 0.086 0.093 0.093

3PL282000 0.039 0.047 0.049 0.074 0.048

Table 3.6 The correct positive rates for MRM analyses over 25 replications

Bimodal Normal Platykurtic Skewed Uniform
Condition AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

Rasch10600 0 0 2 25 6 23 0 19 0 2

Rasch102000 1 13 0 19 0 22 0 14 0 0

Rasch28600 0 0 20 25 20 25 15 25 10 25

Rasch282000 3 15 7 25 4 25 1 21 0 0

Mix3PL IRT model condition also decreased as the number of examinees increased,
although there was no clear pattern as the number of items increased. Table 3.5
summarizes mean RMSE values for the guessing parameter estimates. For most of
the conditions, mean RMSE values appeared to decrease as the number of items
and the number of examinees increased. Mean RMSE values for item guessing
parameters were relatively lower than those for item difficulty and discrimination
parameters. This is because the item guessing parameter estimates are always
between zero and one. Thus, the recovery of item guessing parameters is often easier
than the recovery of other item parameters, particularly discrimination parameters.

Table 3.6 summarizes the correct positive rates for MRM analyses. As shown
in Table 3.6, the BIC index performed well in the MRM analysis under normal,
platykurtic, and skewed conditions. However, the proportions of correct positives
for the BIC index for the bimodal and uniform conditions were low except in the
28 items and 600 examinees condition. The performance of AIC was lower than
BIC for the MRM analyses. AIC did not provide high correct identification rates in
the normal distribution conditions. Both AIC and BIC showed good performance in
data conditions with 28 items and 600 examinees except for bimodal data. In most
of the other simulation conditions, the correct positive rate for AIC index was very
low and close to zero.

Table 3.7 presents the correct positive rates for Mix2PL IRT model analyses. For
almost all conditions, the correct positive rates of the BIC index were found to be
almost perfect except for the skewed data conditions. Although the results of the
AIC index in the Mix2PL IRT model analyses provided higher correction rates than
that of the MRM analyses, the overall performance of AIC index was worse than
BIC results. Correct positive rates for AIC ranged from 0 to 10 in more than half
of the conditions. Based on the results from AIC index, latent nonnormality causes
spurious latent class in Mix2PL IRT model estimation. However, results based on
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Table 3.7 The correct positive rates for Mix2PL analyses over 25 replications

Bimodal Normal Platykurtic Skewed Uniform

Condition AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

2PL10600 5 25 9 25 7 25 1 16 7 25

2PL102000 6 24 2 22 6 25 0 2 2 17

2PL28600 25 25 25 25 24 25 10 25 19 25

2PL282000 18 25 12 22 21 25 0 10 2 25

Table 3.8 The correct positive rates for Mix3PL analyses over 25 replications

Bimodal Normal Platykurtic Skewed Uniform

Condition AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

3PL10600 15 25 17 25 13 25 14 25 6 25

3PL102000 2 25 3 24 3 22 23 24 2 17

3PL28600 25 25 25 25 25 25 25 25 25 25

3PL282000 17 25 23 25 16 25 21 25 5 25

the BIC index did not show strong evidence for existence of spurious latent class in
Mix2PL IRT model estimation with nonnormal latent distributions.

Table 3.7 presents the correct positive rates for Mix3PL IRT model analyses.
In all distribution conditions, BIC supported selection of one class in 100 % of the
replications at all three sample size × two test length conditions. Only the conditions
with ten items and 2,000 examinees yielded lower results in terms of the BIC
index. The number of correct selections was higher for AIC for the Mix3PL model
compared to the previous models. Consistent with the previous results, however,
the number of correct selections by AIC was lower than for BIC. Further, AIC had
problems with selecting the correct model in most of the uniform data conditions.
AIC failed to detect the correct model for the ten items and 2,000 examinees one-
class condition. It appears that the Mix3PL IRT models were more robust to latent
nonnormality than either the MRM or Mix2PL IRT models based on results for both
the AIC and BIC.

3.4 Discussion

The two-class MixIRT model was consistently judged to be a better representation
of the data than the one-class model when the data were analyzed with the MRM
under both bimodal and uniform data conditions. As expected, MRM analyses of
the data with normal and typical nonnormal ability distributions (i.e., skewed and
platykurtic) did not show any over-extraction. Both of the indices provided similar
results; however, the overall performance of AIC was worse than the BIC.

The results of the Mix2PL and Mix3PL analyses showed similar patterns. For
most of the conditions, nonnormality did not appear to lead to over-extraction with
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either the Mix2PL or MiX3PL IRT models. These results were not consistent with
the results of the MRM analyses. However, the relative performance of fit indices in
the Mix2PL and Mix3PL IRT model analyses was consistent with the analyses of
MRM in that the AIC selected solutions with two-classes more than BIC. This also
was consistent with previous research on model selection that found AIC to select
more complex model solutions.

Results suggested that latent nonnormality may be capable of causing extraction
of spurious latent classes with the MRM. More complex models, however, such
as the Mix2PL and Mix3PL appeared to be more robust to latent nonnormality in
that both tended to yield fewer spurious latent class solutions. With respect to the
penalty term used in the information indices considered here, the more parameters
added to the model, the larger the penalty term. In addition, the performance of
the information indices used to determine model fit also may be a function of the
underlying distribution of the data. Thus the interpretability of the latent classes in
any model selected also needs to be considered in determining model selection.
Relying only on statistical criteria may not always yield interpretable solutions.
Results in this study suggested that it may be misleading, even under the most ideal
conditions, to use the AIC index for identifying number of latent classes. Thus,
the solution accepted should be expected to have sufficient support not only from
statistical criteria but also from the interpretability of the classes. Further research
on the impact of different nonnormal distributions would be helpful, particularly
with respect to more extreme skewness and kurtosis conditions that can sometimes
arise in highly heterogeneous populations. The skewed and platykurtic data sets
in this study were limited to typical nonnormality conditions. It may be useful to
investigate the effects of extreme violations of normality on detection of the number
of latent classes.
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Chapter 4
An Option-Based Partial Credit Item
Response Model

Yuanchao (Emily) Bo, Charles Lewis, and David V. Budescu

Abstract Multiple-choice (MC) tests have been criticized for allowing guessing
and the failure to credit partial knowledge, and alternative scoring methods and
response formats (Ben-Simon et al., Appl Psychol Meas 21:65–88, 1997) have been
proposed to address this problem. Modern test theory addresses these issues by
using binary item response models (e.g., 3PL) with guessing parameters, or with
polytomous IRT models. We propose an option-based partial credit IRT model and
a new scoring rule based on a weighted Hamming distance between the option key
and the option response vector. The test taker (TT)’s estimated ability is based on
information from both correct options and distracters. These modifications reduce
the TT’s ability to guess and credit the TT’s partial knowledge. The new model
can be tailored to different formats, and some popular IRT models, such as the 2PL
and Bock’s nominal model, are special cases of the proposed model. Markov Chain
Monte Carlo (MCMC) analysis was used to estimate the model parameters and it
provides satisfactory estimates of the model parameters. Simulation studies show
that the weighted Hamming distance scores have the highest correlation with TTs’
true abilities, and their distribution is also less skewed than those of the other scores
considered.

Keywords Item Response Theory • MCMC • Partial credit • Partial knowl-
edge • Hamming distance • Multiple Choice • Scoring rule

4.1 A New Scoring Rule for Multiple-Choice Items

Multiple-Choice (MC) tests are widely used as an evaluation tool in aptitude and
achievement testing. The main reasons for their popularity are their efficiency
(they require less time per item to administer than tests requiring open-ended
responses), standardization in format, timing and administration, and the accuracy
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and objectivity of their scoring. However, MC tests have serious disadvantages.
Because of the binary scoring (correct or incorrect) typically used, they cannot
capture the test takers’ (TTs’) various levels of partial knowledge (e.g., Budescu
and Bar-Hillel 1993; Ben-Simon et al. 1997). Another potential drawback is that
the MC format may encourage “guessing.” The “guessing problem” and the tests’
inability to measure partial knowledge have motivated psychometricians to develop
alternative measurement methods to improve the measurement of the TTs’ “true”
state of knowledge.

Attempts to improve MC tests rely on reduction of the scope of guessing
and avoidance of dichotomous scoring. These approaches are consistent with the
common view that a TT’s true knowledge is continuous, thus any attempt to
score his/her responses dichotomously would result in some loss of information
(e.g., Hutchinson 1982; Ben-Simon et al. 1997). The methods developed include
alternative scoring rules for MC items, changing the items’ structure, changing the
response method, and differential item/option weighting.

The well-known “correction for guessing” formula (Holzinger 1924; Thurstone
1919) counts the number of correct answers, but it penalizes incorrect answers. This
approach replaces binary scoring with trinary scoring for every item. The expected
scores for omitting an item or “wild” guessing are equal, so this formula reduces
the incentive for “wild” guessing, especially for risk averse TTs who may choose to
leave items unanswered.

Budescu and Bar-Hillel (1993) explain that the “correction for guessing” scoring
rule has been justified on moral/ethical grounds as well as psychometric grounds,
such as improvement in the reliability of the test (e.g., Ben-Simon et al. 1997; Ruch
and Stoddard 1925). Budescu and Bar-Hillel (1993) have criticized the cognitive and
decision theoretical foundations of this approach. Recently, Budescu and Bo (2014,
in press) proposed a model that combines elements from Item Response Theory
(IRT) to describe the tests and Behavioral Decision Theory to describe the TTs’
behavior. Their analysis shows that penalties for incorrect answers have detrimental
effects for both TTs and test makers. TTs who are risk averse, loss averse, and overly
conservative are penalized disproportionately, and the distributions of estimated
scores are biased, display higher variance, and are more skewed as a function of
the severity of the penalty.

Elimination testing (ET) was proposed by Coombs et al. (1956) to measure
partial knowledge. It allows TTs to eliminate as many incorrect response options
as they can possibly identify and TTs are scored based on the number of correct
and incorrect eliminations. Subset selection testing (SST), proposed by Dressel and
Schmidt (1953), uses a complementary approach. It requires TTs to select those
options that are likely to be correct and scores on the basis of the number of correct
and incorrect selections. Both ET and SST measure partial knowledge and they
both penalize incorrect identification of one or more options. Various studies have
shown that ET and SST discourage wild guessing, discriminate among different
levels of knowledge and, in most cases, tend to improve the psychometric quality
of a test (e.g., Jaradat and Tollefson 1988; Gibbons et al. 1977). One disadvantage
of these response/scoring formats is that they require longer administration times
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than the standard MC response format. Also, as predicted by Prospect Theory (PT)
(Kahneman and Tversky 1979; Tversky and Kahneman 1992), several studies have
found that the selected set of options identified as correct was smaller under the
SST than under the ET rule, indicating that respondents were more willing to take
risks under the SST. Thus the two scoring rules, although mathematically equivalent,
seem to induce different response strategies on the part of TTs (Bereby-Meyer et al.
2003; Yaniv and Schul 1997, 2000).

Ben-Simon et al. (1997) developed a classification system of the alternative
response formats and scoring methods that have been proposed to improve MC tests.
The classification system includes (1) Differential item weighting based on objective
criteria; (2) Differential option weighting; (3) Changes to the item structure; (4)
Changes to the response method.

(1) Differential item weighting based on objective criteria. The basic principle of
these methods is to assign different weights to different items. The weights
could be related to item difficulty, validity, diagnostic ability, or be based on
regression or factor-analytical models. Empirical studies have yielded mixed
results (Gulliksen 1950; Stanley and Wang 1970; Wang and Stanley 1970;
Sykes and Hou 2003).

(2) Differential option weighting. The underlying principle of these methods is to
differentiate the severity of errors by assigning different weights to incorrect
answers. The weights can be based on experts’ judgment, a theory of the
structure of knowledge (Smith 1987), or a prior knowledge of the weightings
(Ben-Simon et al. 1997). Studies and reviews (for example, Frary 1989;
Haladyna 1988; Echternacht 1976) show that there might be advantages to
these methods in terms of improved internal consistency reliability. However,
these methods are not very popular (Frary 1989) because of the high cost of
developing weighting schemes, the complicated methods of calculating scores,
and the difficulties associated with explaining the scoring procedures to the TTs.

(3) Changes to the item structure. Various unusual item structures abandon the
convention of the MC items of choosing one response option. An example is
MC items with multiple correct options, where TTs are instructed to choose
more than one correct option. The final score is the number of correct options
identified and, in some versions, incorrect answers may be penalized. The
chance of guessing correctly the response pattern for these items is reduced
greatly, compared to a standard MC item. Imagine an MC item with five options,
and with two of the options being correct. If the instructions ask the TTs to
choose two options, the chance of selecting the correct pair by chance is the
reciprocal of the total number of possible pairs, 1/(5*4/2)= 1/10. If the TTs are
instructed to choose all that apply, the chance of selecting the correct pattern by
chance is the reciprocal of the total number of possible response patterns =1/31.
The major disadvantages of these methods are the difficulty in constructing
these unusual items and longer administration time.

(4) Changes to the response method. The methods in this group use weights
given by TTs, which involve self-assessment of knowledge, including internal
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calibration of their true knowledge and their confidence in their responses.
Studies have shown that tests with these response methods have better psy-
chometric properties (Michael 1968; Pugh and Brunza 1975; Hambleton et al.
1970; Rippey 1970) than traditional MC tests. However, the studies of Jacobs
(1971), Hansen (1971) and Swineford (1938, 1941) lead one to conclude that
there is a non-cognitive factor of “miscalibration” operating in the confidence
testing procedure that contaminates the results, yielding an increase in error. In
addition, these response methods involve longer administration time and require
more complex scoring procedures than simple binary (e.g., number correct
scoring) or trinary scoring (e.g., formula scoring) rules.

Modern test theory attempts to address this issue in different ways. For example,
the 3-parameter logistic (3PL) IRT model (Birnbaum 1968) has a “guessing” param-
eter. Formally, it is a lower-asymptote parameter, allowing a nonzero probability of
answering correctly by TTs at the lowest level of the trait. The 3PL IRT model
doesn’t assume “random/wild” guessing, and the lower-asymptote parameter is not
fixed (as it in formula scoring). The model addresses the TTs’ guessing behavior
through an item parameter, rather than a person parameter, which doesn’t consider
the fact that different TTs could have different strategies. The Rasch model (1PL)
and 2PL model do not consider guessing and also do not provide credit for partial
knowledge. The sufficient statistics for the 1PL and 2PL models are (weighted)
number correct scores.

Categorical response IRT models seek to extract the maximum information
regarding the TTs’ true state of knowledge for each item. Bock’s (1972) nominal
response model is an unordered polytomous response IRT model. The graded
response model (Samejima 1969), partial credit model (Masters 1982), and gener-
alized partial credit model (Muraki 1992) are IRT models for categorical responses
with a predetermined order. Samejima (1979) and Thissen and Steinberg (1984)
extended Bock’s nominal response model to allow for the effects of guessing.
Samejima added a “don’t know” latent response category for MC items. She
assumed that the proportion of those who tend to guess any of the options, given
that they are in the “don’t know” category, should be fixed across observed response
categories (and should equal the reciprocal of the number of response options for
each item). Thissen and Steinberg’s model allows the position or labeling of the
alternatives to affect the distribution of these guessed responses. Bechger et al.
(2005) developed a model with a guessing component for the multiple-category
response MC tests. Their model assumes a two-stage process: 1) the TT eliminates
the distracters he/she recognizes to be wrong; 2) the TT guesses randomly among
the remaining answers. San Martin et al. (2006) developed a 1PL model that
includes a guessing probability that depends on the ability of the TTs.

It is difficult to solve the guessing problem by invoking a simple mathematical
model because the TTs’ responses to an item may be based on various levels and
types of partial knowledge, and the strategy of responding in such cases can vary
from person to person. As an alternative, we suggest to focus on the TTs’ behavior
and improve the estimation of their abilities, including their partial knowledge.
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We focus here on MC items with multiple correct options. Such items are used
currently in large-scale assessments such as the GRE and TOEFL. Currently, ETS,
who administers the GRE1 and TOEFL tests, uses a binary scoring rule that can be
called grouped number correct/right: TTs have to choose all the correct answers to
get full credit; otherwise, they receive no credit, even if they endorse some of the
correct options.2

This scoring rule only focuses on TTs’ choices of the correct options and ignores
the distracters. This is perfectly sensible for “regular” MC items, but not for the
alternative, and more complex items with multiple correct options. Grouped number
correct scores don’t differentiate among TTs who choose distracters only and those
who choose some correct options and some distracters. TTs of the latter type
should presumably receive some credit because they endorsed some of the correct
responses, so their choices actually reflect the fact that they have the knowledge to
exclude wrong options.

We propose a new scoring rule in which items are scored based on (a) the
identification of the correct options as well as (b) the correct rejection of distracters,
thus giving TTs partial credit for any correct decision. Additionally, we propose an
option-based partial credit model to provide a statistical foundation for estimation
of the TTs’ scores under the new rule.

4.2 The Weighted Hamming Distance Scoring Rule

Item scores. To motivate the new proposed scoring rule, we first describe a different
way of looking at the “standard” binary scoring procedure. Imagine an item with
one correct response option. Let the “key” response vector for item j with Kj

options, ρ j =
(
ρ j1, .., ρ jk, . . . , ρ jKj

)
, consist of a “1” for the correct answer and

“0” elsewhere, and let the response of TTi be represented by a vector rij, that has a
“1” for the answer selected by the TT as the correct one and “0” elsewhere. Now
imagine comparing the two vectors in an element-wise fashion and counting the
number of agreements and disagreements. The score of TTi for item j is defined as
the number of agreements between the vectors and can be calculated by:

Si j = Kj −∑Kj

k=1

∣∣ri jk −ρ jk
∣∣ . (1)

1Based on the items from “Practice Book for the Paper-based GRE revised General Test,” 26 % of
the verbal items and 10 % of the quantitative items are of this type.
2In the text completion items, it is probably more justified to use grouped number correct scoring
than it is for MC items with multiple correct options, since the choice for each blank depends on
the other choices.



50 Y. Bo et al.

The sum of mismatches
Kj

∑
k=1

∣∣ri jk −ρ jk
∣∣ is the Hamming distance between the two

vectors (Hamming 1950). The scoring rule is based on the Hamming distance,
but is maximized when the distance is zero (perfect matching). In the case being
considered (items with a single correct response option), there will always be either
perfect matching or two mismatches, so the only two possible scores are Kj and
Kj − 2.

We propose two extensions to this rule. First assume that not all mismatches
are considered equally important or severe, so one can define a version of the
scoring rule that weights options differentially, according to a predetermined vector
of (positive) weights, wj:

SWi j =
Kj

∑
k=1

w jk −
Kj

∑
k=1

w jk
∣∣ri jk −ρ jk

∣∣ . (2)

The weighted sum of mismatches
Kj

∑
k=1

w jk
∣∣ri jk −ρ jk

∣∣ is the weighted Hamming

distance between the two vectors. Evidently, this differential weighting provides a
way of assessing partial knowledge.

To address the issue of guessing, we make a more radical suggestion, namely, to
allow items to have multiple correct answers. Suppose that a MC test consists of n
items, and there are Kj response options for item j. The number of correct options
may vary across items (e.g., there could be two correct options for some items and
one correct option for the other items3). In general, say item j has Qj correct answers
(Qj < Kj). The key vector consists of Qj ones and (Kj − Qj) zeros. The response
vector may have the same cardinality, but it is also possible to imagine cases where
TTs are not informed of the number of correct answers and they may end up over-,
or under-estimating, the number of correct answers (Qj). The original scoring rule,
as well as the weighted scoring rule, could be used for these items.

Test scores. A test may include items with various numbers of options, thus the
maximal scores of the items are different because of different numbers of distracters.
To eliminate the item score scale indeterminacy, the raw item scores could be
“normalized” by dividing the item scores by the corresponding sum of option
weights. The test scores would then be given by the sum of the normalized item
scores.

SWi =∑J
j=1
∑Kj

k=1w jk −∑Kj

k=1w jk
∣∣ri jk −ρ jk

∣∣
∑Kj

k=1w jk

(3)

3The GRE revised General Test has such items for which TTs are asked to choose all the options
that apply.
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Assume that the TTs are told that item j, which has Kj = 5 options (A, B, C,
D, E), could have Qj = 2 correct options. Suppose the response options A and B are
correct, while options C, D, and E are incorrect, so the key response vector for the
item is ρ j = (1, 1, 0, 0, 0). Table 4.1 shows the ten possible response patterns (r) that
identify exactly two options as correct. Each of the response patterns is scored by
four different scoring rules: the regular Hamming distance (equal weights) scoring
rule, the standardized weighted Hamming distance scoring rule, the grouped number
right scoring, and the standardized weighted number right scoring. The weighted
number correct score does not use distracter information and is based only on the
two correct options. Group number correct scores only credit the correct response
pattern and give no credit to any other response pattern. The four scores are listed in
order of the discrimination they allow between the TTs.

Table 4.1 Possible response patterns for items with 5 options with 2 correct answers

A B C D E

Score based
on group
number right

Standardized score
based on weighted
number correct
with weights wj

Score based
on Hamming
distance

Standardized score
based on weighted
Hamming distance
with weights wj

1 1 0 0 0 1 1 5 1
1 0 1 0 0 0 w1

TW2 3 w1+w4+w5
TW1

1 0 0 1 0 0 w1
TW2 3 w1+w3+w5

TW1

1 0 0 0 1 0 w1
TW2 3 w1+w3+w4

TW1

0 1 1 0 0 0 w2
TW2 3 w2+w4+w5

TW1

0 1 0 1 0 0 w2
TW2 3 w2+w3+w5

TW1

0 1 0 0 1 0 w2
TW2 3 w2+w3+w4

TW1

0 0 1 1 0 0 0 1 w5
TW1

0 0 1 0 1 0 0 1 w4
TW1

0 0 0 1 1 0 0 1 w3
TW1

Notes: TW1=w1 +w2 +w3 +w4 +w5, TW2=w1 +w2

If a TT chooses two answers (i.e., a response pattern) randomly, the chance of
answering correctly and getting full credit is 1/10. Thus the new format and scoring
rule reduces the chance to guess correctly by a factor of 2, compared to a regular
MC item with K = 5 options with only Q= 1 correct option.

Neither the standard binary IRT models (Rasch; 2PL; 3PL) nor any of the various
polytomous IRT models, including the partial credit model by Masters (1982),
Samejima’s graded response model (1969, 1972), Bock’s nominal categories model
(1972), Thissen and Steinberg’s (1984) multiple-choice model or Andersen’s rating
scale model (1977) can estimate the TTs’ ability in a way that fully captures the
richness of this new scoring rule. Next, we propose a new option-based partial credit
IRT model associated with the scoring rule, so that the estimation of the TTs’ ability
is based on information both from correct options and from distracters.
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4.3 An Option-Based Partial Credit Model

The model assumptions. The model belongs to the large family of IRT models. So
this model is built upon the assumption of item local independence. In addition,
the model is formulated using an option local independence assumption. The option
local independence assumption is similar to the item local independence assumption
in that the former assumes that the choices of the options are independent from
each other after the effect of the underlying trait is conditioned out, while the
latter assumes that the responses to the items are independent from each other
after partialling out the effect of the underlying trait. The item local independence
assumption is often thought of as capturing and describing the actual process used
by the TT. We do not make similar claims about the option local independence
assumption which is, simply, a convenient mathematical way of modeling the test
responses. The key feature of the option local independence assumption is to reduce
the number of parameters associated with an item and mathematically combine them
in the service of a simpler model.

The model. Let Pjk(θ i), the “true” probability that the ith TT correctly responds
to option k for item j, be represented by:

Pjk (θi) =
xi jk

1+ xi jk
, (4)

in which

xi jk = exp
[
a jk

(
θi −b jk

)]
, for k = 1, . . . , Kj. (5)

Here ajk is the (positive) option discrimination parameter and bjk is the option
difficulty parameter of the kth option for the jth item. Let rijk = 1 if test taker i selects
option k for item j, and rijk = 0 otherwise. To facilitate readability, we discuss a
model for MC items in which the first Qj options are correct, and the remaining
(Kj - Qj) are incorrect. If, for example, Qj = 2, the probability of rijk = 1 for the two
correct options is

Pr
(
ri jk = 1 |θi

)
= Pjk (θi) for k = 1,2.

and the probability of rijk = 1 for the incorrect options is

Pr
(
ri jk = 1 |θi

)
= 1−Pjk (θi) for k = 3, · · · ,Kj.

Test takers (TTs). There is a population of TTs who differ in their abilities (θ i).
The test. The test is a collection of n MC items, and there are a total of ∑n

j=1Kj

pairs of option parameters (ajk, bjk), where ajk is the option discrimination and bjk is
the option difficulty parameter of the kth option for the jth item.
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If there are no restrictions on the number of options that may be selected and TTs
don’t know the number of correct options within an item, we assume conditional
independence among the responses to the options of each item. So the probability
of a response pattern is the product of probabilities of the corresponding option
responses. Thus the likelihood of a response pattern for item j for a given TT is,
simply, the product of the probability of the responses for the 2 correct options and
the (Kj − 2) incorrect options:

p
(
ri j1, · · · ,ri jKj |θi

)

=
2

∏
k=1

[
Pjk (θi)

]ri jk
[
1−Pjk (θi)

]1−ri jk

Kj

∏
k=3

[
Pjk (θi)

]1−ri jk
[
1−Pjk (θi)

]ri jk (6)

Following the same logic, if a test taker is told there are two correct options and

is required to select exactly two options for an item, so
Kj

∑
k=1

ri jk = 2, the conditional

probability of any permissible response pattern is the unconditional probability of
the response pattern divided by the sum of all permissible response patterns:

p
(
ri j1, · · · ,ri jKj

∣∣θi,Σri jk = 2
)
=

p
(
ri j1, · · · ,ri jKj |θi

)
∑

Σri jk=2
p
(
ri j1, · · · ,ri jKj |θi

) . (7)

Note that, with any such restriction on the permissible response patterns, the option
responses are no longer independent in the model. The unconditional likelihood of
a response pattern for item j for a given TT can be written as:

p
(
ri j1, · · · ,ri jKj |θi

)
=

2

∏
k=1

(
x

ri jk
i jk

) Kj

∏
k=3

(
x

1−ri jk
i jk

)

Kj

∏
k=1

(
1+ xi jk

) (8)

Similarly, the probability of a response pattern, divided by the sum of the proba-
bilities for all the permissible response patterns, that is the likelihood of a response
pattern when TTs are instructed to choose exactly two options, can be written as:

p
(
ri j1, · · · ,ri jKj

∣∣θi,Σri jk = 2
)
=

2

∏
k=1

(
x

ri jk
i jk

) Kj

∏
k=3

(
x

1−ri jk
i jk

)

∑
Σri jk=2

[
2

∏
k=1

(
x

ri jk
i jk

) Kj

∏
k=3

(
x

1−ri jk
i jk

)] . (9)



54 Y. Bo et al.

4.4 A General Version of the Model

The option-based partial credit model is very general and flexible and can be applied
to different test settings and it can be tailored to different item types and levels
of information (as conveyed through instructions) about the structure of the item.
Table 4.2 gives a partial list of different item types and instructions to which the
model can be adapted.4

Table 4.2 Examples of
different item types and
instructions

Number of
correct options

Number of options that a TT
is told to choose

Case 1 1 1
Case 2 2 No restriction (all that apply)
Case 3 3 3
Case 4 2 ≤2
Case 5 1 ≤3

4.5 Relationship with 2PL IRT Model

It is easy to re-express the 2PL IRT model as a special case of the option-based
partial credit model. In this case all the items have only one correct option, and
the sufficient statistic of the 2PL IRT model is the weighted number correct score.
Thus, the information from the distracters does not contribute to the estimation of
the TTs’ ability. To make the option-based partial credit model imitate the 2PL
model, the first option should be coded as correct with the other (K - 1) options
coded as incorrect, and their option discrimination parameters set to 0. To be more
specific, Eq. (5) can be rewritten as xij1 = exp[aj1(θ i − bj1)] and ajk = 0 so xijk = 1
for k= 2, . . . , K. Then the model probability for the “correct” response pattern
(1,0, . . . ,0) can be written as

p
(

1,0, . . . ,0
∣∣∣θi,∑ri jk=1

)
=

xi j1

xi j1+(K−1)
=

exp
[
a j1

(
θi−b j1

)− ln(K−1)
]

exp
[
a j1

(
θi −b j1

)− ln(K−1)
]
+1

=
exp [a j (θi −b j)]

exp [a j (θi −b j)]+1
(10)

4Please note that the model is by no means restricted only to the scoring rules listed in the table.
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in which b j = b j1 +
ln(K−1)

a j1
is the adjusted item difficulty parameter, and aj = aj1 is

the item discrimination parameter.

4.6 Relationship with Bock’s Nominal Model

Bock’s nominal response model is another special case. Bock’s nominal IRT model
gives the probability of choosing option h, for h= 1,.., K, given θ , as

p
(

h
∣∣∣θ)=

exp(zh)

∑K
k=1 exp(zk)

, (11)

in which zk = ak(θ − bk). If we define xk = exp(zk), Bock’s model can be rewritten as

p
(

h
∣∣∣θ)=

xh

∑K
k=1xk

. (12)

In our model, we consider a more general response format than Bock’s, namely that
more than one option may be chosen. For this purpose, we use a vector r, of zeros
and ones, with rh = 1 indicating that option h has been chosen and rh = 0 indicating
that it has not been chosen. Using this notation, we may rewrite Bock’s model once
again as

p
(

r
∣∣∣θ , ∑rk = 1

)
=
∏K

k=1xrk
k

∑K
k=1xk

, (13)

with the condition ∑ rk = 1 used to indicate that only one option is chosen in Bock’s
model. Now consider the version of our model where there is only one correct option
(the first) and the TT must choose exactly one option:

p(r |θ ,Σrk = 1 ) =

xr1
1

K

∏
k=2

x1−rk
k

∑
Σrk=1

[
xr1

1

K

∏
k=2

x1−rk
k

] . (14)

Divide the numerator and denominator of this expression by
K

∏
k=2

xk:

p(r |θ ,Σrk = 1 ) =

xr1
1

K

∏
k=2

x−rk
k

∑
Σrk=1

[
xr1

1

K

∏
k=2

x−rk
k

] . (15)
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Next, rewrite the denominator of this expression as

∑
Σrk=1

[
xr1

1

K

∏
k=2

x−rk
k

]
= x1 +

K

∑
k=2

x−1
k , (16)

so the response probability becomes

p(r |θ ,Σrk = 1 ) =

xr1
1

K

∏
k=2

x−rk
k

x1 +
K

∑
k=2

x−1
k

. (17)

If we define y1 = x1 and yk = x− 1
k for k= 2, · · · , K, we may rewrite Eq. (17) as

p(r |θ ,Σrk = 1 ) =

K

∏
k=1

yrk
k

K

∑
k=1

yk

, (18)

in which, for k= 2, · · · , K, we have yk = x− 1
k = {exp[ak(θ − bk)]}− 1 =

exp[−ak(θ − bk)]. This has the same form as Bock’s nominal model.
For identifiability, Bock’s model requires a linear constraint for the discrimina-

tion parameters (for instance, that they sum to zero), as well as one for the intercept
parameters. Thus, using Bock’s framework, and setting the first discrimination
parameter to be positive implies that the discrimination parameters for options 2
through K are all negative!

4.7 Sufficient Statistics

In Eq. (9), we use xijk = exp[α jk(θ i − bjk)], for k= 1, . . . , Kj to replace xijk in the
numerator. The numerator can be rewritten as

2

∏
k=1

(
x

ri jk
i jk

) Kj

∏
k=3

(
x

1−ri jk
i jk

)
= exp

{
θi

[
2

∑
k=1

ri jka jk +
Kj

∑
k=3

(
1− ri jk

)
a jk

]

−
[

2

∑
k=1

ri jka jkb jk +
Kj

∑
k=3

(
1− ri jk

)
a jkb jk

]}
(19)
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The option responses are related to θ i only through the weighted sum:

2

∑
k=1

ri jka jk +
Kj

∑
k=3

(
1− ri jk

)
a jk.

In other words, this weighted sum—which is the weighted Hamming distance
score—is a sufficient statistic for estimating θ i:

∑2
k=1ri jka jk +

Kj

∑
k=3

(
1− ri jk

)
a jk =

Kj

∑
k=1

a jk −
2

∑
k=1

a jk
(
1− ri jk

)−
Kj

∑
k=3

ri jka jk.

Note that the right-hand side of the equation matches the definition of the weighted
Hamming distance score (Eq. (2)) by replacing the actual key response vector
ρ j, in which the first two options are correct, and using the option discrimination
parameters as the weights.

4.8 Item Information Statistics

To simplify notation, in addition to dropping subscripts for items and TTs, consider
using negative discrimination parameters for the response functions corresponding
to incorrect options. Formally, for an incorrect option, k, and positive discrimination
parameter, ak, we may write the probability of rk = 1 for option k is as follows:

Pr
(

rk = 1
∣∣∣θ)= 1− exp [ak (θ −bk)]

1+ exp [ak (θ −bk)]
=

1
1+ exp [ak (θ −bk)]

=
exp [−ak (θ −bk)]

1+ exp [−ak (θ −bk)]
. (20)

Thus the unconditional probability of a response pattern can be written as:

p
(

r1, . . . ,rk

∣∣∣θ)=
∏K

k=1xrk
k

∏K
k=1 (1+ xk)

, (21)

in which xk = exp[ak(θ − bk)], and the discrimination parameters for incorrect
options are negative. Equation (21) applies regardless of the number, or location,
of the correct options.

Now let R denote the set of all permissible response vectors r’ = (r1, . . . , rK). For

instance, R might refer to the set of all those response vectors for which
K

∑
k=1

rk = 2.

Then using Eq. (21), the model can be written as:
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p
(

r
∣∣∣θ ,r ∈ R

)
=

∏K
k=1xrk

k

∑r∈R

(
∏K

k=1xrk
k

) . (22)

The derivative of the log likelihood for an item with respect to the ability θ is

∂
∂θ

{
log

[
p
(

r
∣∣∣θ ,r ∈ R

)]}
=∑K

k=1rkak−
[
∑
r∈R

(
K

∏
k=1

xrk
k

)]−1

∑
r∈R

{
K

∏
k=1

xrk
k

[
K

∑
h=1

(rhah)

]}
.

(23)

(The detailed derivation can be found in Appendix 1.) After substituting the
expressions (22) and (23) into the expression (24),

I (θ) =∑r∈R

[
p
(

r
∣∣∣θ ,r ∈ R

)(
∂
∂θ

{
log

[
p
(

r
∣∣∣θ ,r ∈ R

)]})2
]
, (24)

we can obtain the Fisher information function for an item following the model.

4.9 Response Pattern Curves and Option Response Curves

To illustrate the model we explore the response pattern curves, option response
curves, and marginal response curves for a single, hypothetical, item with K = 5
options (A, B, C, D, E). The first Q= 2 options, A and B, are correct and the TTs
are explicitly instructed to only choose Q= 2 options. The option parameters for
the item are listed in Table 4.3. We consider a synthetic population with 61 groups
of TTs with abilities ranging from -3 to 3 in increments of 0.1 (i.e. -3.0, -2.9, . . . ,
2.9, 3.0).

Table 4.3 Option parameters for the item

Option parameters for item j

Option 1 Option 2 Option 3 Option 4 Option 5

Discrimination 2.0 1.5 1.0 0.5 0.3
Difficulty −0.7 1.2 0.0 −1.0 1.5

Figure 4.1 shows the response pattern curves for the model. The ten curves with
different line symbols represent the ten possible response patterns. They can be
categorized into three groups. The monotonically increasing curve is the correct
response pattern, representing a TT who obtains a score of 5 using the unweighted
Hamming distance. The non-monotonic curves represent the response patterns in
which a TT chooses only one of the correct options. These are the cases where
the TT obtains a score of 3 using (unweighted) Hamming distance scoring. The
monotonically decreasing curves represent the response patterns in which a TT
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chooses neither of the correct options, and obtains a score of 1 using the unweighted
Hamming distance. It is clear from an examination of the curves that there is an
ordinal correspondence between ability (θ ) and the Hamming distance score. The
relationship among the three groups of response patterns (the key response pattern,
the response patterns with only one correct option, the response patterns without any
correct options) is more pronounced in Fig. 4.2, which plots the marginal response
pattern curves and uses the same symbols. Clearly, as the proficiency increases, so
does the probability of answering the item correctly.
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Fig. 4.1 Response pattern curves for the hypothetical item (see parameters in Table 4.3)

Figure 4.3 shows the option response curves for the model. The curves are based
on the sum of all the corresponding response patterns. For example, the curve for
option A is the sum of the curves for all the response patterns in which option A was
selected. The marginal probabilities of selecting the two correct options (option A
and option B) increase as the TTs’ proficiencies increase. The marginal probabilities
of selecting the three incorrect options decrease as the TTs’ proficiencies increase.

4.10 Simulation Studies

In the following, we will present two simulation studies to assess the weighted
Hamming distance scoring rule and to test the ability of an MCMC algorithm to
recover the model’s parameters.



60 Y. Bo et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-3
-2

.6
-2

.2
-1

.8
-1

.4 -1
-0

.6
-0

.2 0.
2

0.
6 1

1.
4

1.
8

2.
2

2.
6 3

Pr
ob

ab
ili

ty

Marginal response pa ern curves

two correct

one is correct

the other is correct

two wrong

Fig. 4.2 Marginal response pattern curves for the hypothetical item (see parameters in Table 4.3)

0

0.2

0.4

0.6

0.8

1

1.2

-3

-2
.6

-2
.2

-1
.8

-1
.4 -1

-0
.6

-0
.2 0.
2

0.
6 1

1.
4

1.
8

2.
2

2.
6 3

M
ar

gi
na

l p
ro

ba
bi

lt
y

Op on response curves

op on A

op on B

op on C

op on D

op on E

Fig. 4.3 Option response curves for the hypothetical item (see parameters in Table 4.3)

Simulation study 1. We simulated item responses to examine the model’s ability
to estimate TTs’ true abilities, and compare these estimates to alternative scoring
rules. A total of N = 10,000 TTs’ proficiencies sampled from a standard normal
distribution were used to simulate item responses for three tests of length 10. For
all three tests, there are K = 5 options per item and the first Q= 2 options are
correct. The simulated TTs choose exactly two options (there is no ommision). The
probabilities of all N = 10,000 TTs’ responses to each option in all items within
a test were calculated using the 2PL IRT model with the corresponding option
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parameters in each of the three tests. Each of the probabilities was compared against
a random uniform number between 0 and 1. If the former is greater than the latter,
the simulated TT considers the option to be correct; otherwise not. To make the
simulated response patterns match the underlying item instruction (choosing only
two options), only response patterns that consisted of exactly two endorsements
(“1”) and three rejections (“0”) were included. Response patterns with more, or
fewer, than two correct answers were discarded, and the procedure was repeated
until the generated response pattern was one of the permissible patterns under the
item instruction.

All the items have identical option discrimination and option difficulty parame-
ters in each of the three tests. The different tests represent three different spacings of
the option discrimination parameters, a crucial factor in determining the correlations
between the scores and the ability. We used four different scoring rules: weighted
Hamming distance, simple (equally weighted) Hamming distance, weighted number
correct scores, and grouped number correct scores. (Please refer to Table 4.1.)

In the first test, the option difficulty parameters are (1.0, 1.0, 0.0, 0.0, 0.0), and
the option discrimination parameters are (1.2, 2.0, 0.3, 0.4, 0.8) for all 10 items.
Figure 4.4 is the scatter plot matrix (splom) in which the diagonal cells show
five frequency distributions: true ability, weighted Hamming distance, unweighted
Hamming distance, weighted number correct, and grouped number correct scores,
respectively. The two distributions based on the number correct scores are much
more skewed than the two distributions related to Hamming distance scores. The
product moment correlations between the four different scores and the true abilities
can be found in the first row of the splom. The correlation between the true
abilities and the weighted Hamming distance scores is 0.86—higher than for all
the other scores. The correlation between the grouped number correct scores (the
ones currently employed for the GRE) and the abilities, 0.64, is much lower than
the other three correlations.

Table 4.4 summarizes the descriptive statistics—mean, standard deviation (SD),
median and skewness—for all the scores. In addition, to measure the deviations of
the scores from the true ability parameters, we include Root Mean Squared Differ-
ence (RMSD) and the Mean Absolute Difference (MAD) between the standardized
scores and the ability parameters. Means and the SDs of the measures are reported
in the table. In this case, the weighted Hamming distance scores are superior to
the other scores. The advantage over unweighted Hamming distance and weighted
number correct scores is trivial (around 0.02), but is more pronounced (more than
0.2) when compared to the grouped number correct scores.

Figure 4.5 gives results for a test in which there are 10 items with identical option
parameters: the option discrimination parameters are (1.5, 0.6, 0.9, 0.7, 1.0) and
the option difficulty parameters are (1.0, 1.0, 0.0, 0.0, 0.0). The distributions of
all four scores are positively skewed, but the weighted number correct scores and
the grouped number correct scores are much more skewed than the other two. The
corresponding descriptive statistics of the distributions can be found in Table 4.5.
The correlation between the weighted Hamming distance scores and the distribution
of ability is slightly higher (by 0.01) than the correlations of the simple Hamming
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Fig. 4.4 SPLOM of estimates for a test with ten identical items [option difficulty parameters
(1,1,0,0,0), and option discrimination parameters (1.2,2,0.3,0.4,0.8)]

distance and the weighted number correct scores. The correlation for the grouped
number correct scores is much lower than the other three. The deviation statistics in
Table 4.5 show that the weighted Hamming behaves slightly better (by 0.01) than
the Hamming and the weighted number correct scores and is much better (by 0.22
in MAD and by 0.29 in RMSD) than the grouped number correct scores.

The splom in Fig. 4.6 represents a test in which there are 10 items with identical
option discrimination parameters (0.3, 1.5, 0.6, 0.1, 0.9) and option difficulty
parameters (1.0, 1.0, 0.0, 0.0, 0.0). The weighted Hamming distance scores have
a higher correlation with the true abilities than do the other three scores. Replicating
the results from Figs. 4.4 and 4.5, the grouped number correct scores have the lowest
correlation with the actual abilities, and the weighted number correct scores have a
higher correlation than the unweighted Hamming distance scores. The descriptive
statistics are shown in Table 4.6. The differences between the deviations of the
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Table 4.4 Summary statistics of scores for a test with 10 identical items (option difficulty
parameters (1.0,1.0,0.0,0.0,0.0), and option discrimination parameter (1.2, 2, 0.3, 0.4, 0.8))

Statistic
Variable Mean SD Median Skew MAD SD(AD) RMSD

True θ 0 1 0 0 – – –
Weighted Hamming 13.64 8.87 10.50 0.35 0.43 0.33 0.54
Standardized weighted Hamming 0 1 −0.35
Simple Hamming 19.80 8.18 17.00 0.34 0.46 0.36 0.58
Standardized simple Hamming 0 1 −0.34
Weighted NR 5.58 6.63 3.20 0.36 0.44 0.34 0.56
Standardized weighted NR 0 1 −0.36
Grouped NR 0.54 1.35 0 0.40 0.66 0.53 0.85
Standardized grouped NR 0 1 −0.40

Note: Absolute Deviation(AD)= |θ i − standardized scorei|; Skew= (Mean−Median)/SD

Table 4.5 Summary statistics of scores for a test with ten identical items (option difficulty
parameters (1.0,1.0,0.0,0.0,0.0), and option discrimination parameters (1.5,0.6,0.9,0.7,1.0))

Statistic
Variable Mean SD Median Skew MAD SD(AD) RMSD

True θ 0 1 0 0 – – –
Weighted Hamming 18.75 7.95 16.60 0.27 0.42 0.33 0.53
Standardized weighted Hamming 0 1 −0.27
Simple Hamming 21.06 8.01 19.00 0.26 0.43 0.33 0.54
Standardized simple Hamming 0 1 −0.26
Weighted NR 4.22 4.27 2.70 0.36 0.43 0.33 0.54
Standardized weighted NR 0 1 −0.36
Grouped NR 0.59 1.25 0 0.47 0.64 0.51 0.82
Standardized grouped NR 0 1 −0.47

Note: Absolute Deviation= |θ i − scorei|; Skew= (Mean−Median)/SD

weighted Hamming and the other scores are more pronounced in this case than
in the other two cases. The mean of absolute deviations of the weighted Hamming
is at least 0.06 lower than those of the other scores and the RMSD of the weighted
Hamming is at least 0.08 lower than those of the other scores.

From the above simulations with tests with varying option discrimination param-
eters, we conclude that the weighted Hamming distance scores are consistently the
most highly correlated with the true abilities and that the group number correct
scores consistently have the lowest correlations. The other descriptive statistics
presented support this pattern.

Simulation study 2. The purpose of this simulation is to address the issue of
recovery of the option-based partial credit model’s parameters. We simulated
responses of 500 TTs (with proficiencies sampled from a standard normal
distribution) to a test of 15 items with identical parameters using the option-based
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Fig. 4.5 SPLOM of estimates for a test with ten identical items [option difficulty parameters
(1.0,1.0,0.0,0.0,0.0), and option discrimination parameters (1.5,0.6,0.9,0.7,1.0)]

partial credit model. There are K = 5 options per item and the first Q= 2 options are
correct. All the option difficulty parameters are set to 0. The option discrimination
parameter vector is (0.3, 1.5, 0.6, 0.1, 0.9). The TTs’ responses were simulated to
choose two options only.

We used a Markov Chain Monte Carlo (MCMC) algorithm to estimate the model
parameters. We ran 3 MCMC chains, each with 10,000 iterations. The first 5,000
for each chain were discarded. The priors used for each of the option discrimination
parameters and the option difficulty parameters were N(0,5). All the code5 was
written in R (R Core Development Team 2013) and used WinBugs (Lunn et al.

5Interested readers may email Yuanchao Emily Bo (ybo@fordham.edu) for the R and WinBugs
code.
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Fig. 4.6 SPLOM of estimates for a test with ten identical items [option difficulty parameters
(1.0,1.0,0.0,0.0,0.0), and option discrimination parameters (0.3,1.5,0.6,0.1,0.9)]

2000). Table 4.7 shows the results for the recovery of the option discrimination
parameters. The standard deviations of the posterior means for the parameters vary
across items from 0.04 for option D to 0.20 for option B. The discrepancies (“bias”)
between the mean of the posterior means and the parameter values vary across items
between 0.03 for options A and C, and 0.13 for option E. The (RMSD) across items
for the posterior means are within the range of 0.09–0.20. The overall RMSD for
the estimated option discrimination parameters is 0.15. The range of the posterior
standard deviations is from 0.1 to 0.3.

Table 4.8 shows the results for the option difficulty parameters. The true values
are all 0 and the mean of the posterior means across items and options is 0.03.
The standard deviation across items and options of the posterior means is 0.28.
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Table 4.6 Summary statistics of scores for a test with 10 identical items [option difficulty
parameters (1.0,1.0,0.0,0.0,0.0), and option discrimination parameters (0.3,1.5,0.6,0.1,0.9)]

Statistic
Variable Mean SD Median Skew MAD SD(AD) RMSD

True θ 0 1 0 0 – – –
Weighted Hamming 12.45 5.91 11.00 0.25 0.42 0.32 0.52
Standardized weighted Hamming 0 1 −0.25
Simple Hamming 21.64 6.66 20.00 0.25 0.50 0.38 0.63
Standardized simple Hamming 0 1 −0.25
Weighted NR 3.45 3.52 2.10 0.38 0.48 0.36 0.60
Standardized weighted NR 0 1 −0.38
Grouped NR 0.45 0.93 0 0.49 0.68 0.54 0.87
Standardized grouped NR 0 1 −0.49

Note: Absolute Deviation= |θi − scorei|; Skew= (Mean−Median)/SD

The bias across options and items for the posterior means is 0.03. The overall RMSD
across options and items for the posterior means of the option difficulty parameters
is 0.28.

We also used the MCMC algorithm to estimate the ability parameters of the 500
TTs, the true values having been sampled from a N(0,1) distribution. The mean
across test takers of the posterior mean ability parameters is -0.005, and the
standard deviation is 0.94. The overall RMSD for the posterior means of the ability
parameters is 0.31.

4.11 Discussion

The first stimulation study confirms the superiority of the weighted Hamming
distance over grouped number correct scores in estimating TTs’ abilities when the
proposed model is used to generate the item responses. The weighted Hamming
distance scoring improves estimation of TTs’ abilities by assigning partial credit and
extracting information from distracters. The second simulation study demonstrates
that one can implement a parameter estimation procedure for the proposed model
using WinBugs and R. In this example the MCMC algorithm provides satisfactory
estimates of the model parameters when the model is used to generate the item
responses.

The weighted Hamming distance scoring can be considered as a combination of
elimination scoring (Coombs et al. 1956) and the subset selection method (Dressel
and Schmidt 1953). Each of these rules is asymmetric and focuses its attention
on the potentially correct or incorrect options. The new method highlights both
aspects and TTs have the opportunity to express their partial knowledge by either
eliminating a subset of the options or endorsing some of them. A potential problem
of the scoring rule is that full misinformation cannot always be identified when a
TT chooses to respond. Take an example of an item for which TTs are instructed to
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Table 4.7 Option discrimination parameter posterior means obtained by
MCMC

est_alpha Option A Option B Option C Option D Option E

Item 1 0.2 1.6 0.7 0.1 1.3
Item 2 0.2 1.6 0.7 0.2 1.1
Item 3 0.3 1.6 0.7 0.2 1.0
Item 4 0.2 1.5 0.6 0.2 1.1
Item 5 0.2 1.4 0.5 0.2 1.2
Item 6 0.4 1.3 0.6 0.3 0.9
Item 7 0.3 1.6 0.6 0.2 1.1
Item 8 0.3 1.7 0.6 0.2 0.8
Item 9 0.4 1.3 0.3 0.2 0.8
Item 10 0.1 0.9 0.8 0.1 1.2
Item 11 0.3 1.6 0.5 0.2 0.9
Item 12 0.3 1.5 0.8 0.2 1.1
Item 13 0.2 1.5 0.6 0.2 1.0
Item 14 0.3 1.6 0.7 0.2 1.0
Item 15 0.3 1.2 0.8 0.2 1.0
Mean 0.27 1.46 0.63 0.19 1.03
Std Dev 0.08 0.20 0.13 0.04 0.14
True value 0.30 1.50 0.60 0.10 0.90
Bias −0.03 −0.04 0.03 0.09 0.13
RMSE 0.09 0.20 0.13 0.10 0.19

Note: The output results from WinBugs and R are rounded by default to
the first decimal place

choose only 2 out of 5 options. In all 10 possible response patterns TTs gain credit
for correct endorsement(s). The problem could be solved by allowing omission and
assuming full misinformation when a TT chooses to omit. Another solution is to
specify the scoring rule in a way that the sum of the possible number of choices
that a TT can choose is the total number of options in the item. For example, in a
3-option MC item, TTs are instructed to choose 1 or 2 options; in a 5-option item,
TTs are instructed to choose 2 or 3 options.

The item information function of the model is the variance of the weighted
Hamming distance (see proof in Appendix 2). Optimal test design seeks items that
minimize the sampling variance of the (ML) estimates of the ability parameters by
maximizing the test information. So items with the largest conditional variance at
the target ability of their “scores” (as defined by the weighted Hamming distance)
should be chosen to construct the test. In other words, the ideal items are those with
the largest standard error of measurement for the item score. This is a “paradox” for
the model that also occurs with the Rasch model (Andrich 1988).

The option-based partial credit model and its underlying scoring mechanism-
weighted Hamming distance scores are the very first attempt in the Psychometric
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Table 4.8 Option difficulty parameter posterior means obtained by MCMC

est_beta Option A Option B Option C Option D Option E Mean

Item 1 −0.6 0.0 0.1 0.0 0.1 −0.08
Item 2 −0.4 −0.1 −0.2 0.6 0.1 0.00
Item 3 0.6 0.1 −0.2 −0.3 0.0 0.04
Item 4 −0.3 0.1 0.2 0.1 0.2 0.06
Item 5 0.0 0.1 0.1 0.5 0.1 0.16
Item 6 −0.3 0.0 0.2 0.4 0.0 0.06
Item 7 −0.5 0.1 0.3 −0.5 0.0 −0.12
Item 8 −0.1 0.1 0.1 0.1 0.1 0.06
Item 9 0.0 −0.1 0.2 0.0 0.2 0.06
Item 10 −0.1 0.2 0.0 −0.1 −0.1 −0.02
Item 11 −0.2 0.2 0.0 0.2 −0.2 0.00
Item 12 0.3 0.0 −0.1 −0.1 −0.2 −0.02
Item 13 0.3 0.1 0.0 −0.2 −0.1 0.02
Item 14 1.0 0.2 −0.3 −0.1 0.0 0.16
Item 15 1.0 0.1 −0.3 −0.2 −0.2 0.08
Mean 0.05 0.07 0.01 0.03 0.00 0.03
Std Dev 0.48 0.09 0.18 0.29 0.13 0.28
True value 0.00 0.00 0.00 0.00 0.00 0.00
Bias 0.05 0.07 0.01 0.03 0.00 0.03
RMSE 0.50 0.12 0.19 0.30 0.14 0.28

Note: The output results from WinBugs and R are rounded by default to the first
decimal place

literature to provide both a feasible and simple scoring procedure for multiple
selection MC items and partial credit to TTs by using the information in the
distracters. The results from the simulation studies confirm the unique contribution
of the weighted Hamming distance scores in manifesting TTs’ latent traits and the
feasibility of using the MCMC algorithm to recover the model parameters.

Appendix 1

We can use the following form to derive the Fisher information for an item

I (θ) = E

[(
∂
∂θ

log p(X ;θ)
)2

∣∣∣∣∣θ
]
.
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The logarithm of the likelihood for the model given in Eq. (22) is
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The derivative in the last term may be simplified as follows:
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Thus, we may write the derivative of the log likelihood for an item as
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rkak −
[
∑
r∈R

(
K

∏
k=1

xrk
k

)]−1

∑
r∈R

{
K

∏
k=1

xrk
k

[
K

∑
h=1

(rhah)

]}
.

Appendix 2

Start with the expression for the derivative of the log likelihood,

∂
∂θ

{
log

[
p
(

r
∣∣∣θ ,r ∈ R

)]}

=
K

∑
k=1

rkak −
[
∑
r∈R

(
K

∏
k=1

xrk
k

)]−1

∑
r∈R

{
K

∏
k=1

xrk
k

[
K

∑
h=1

(rhah)

]}
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and notice that the second term is actually the expected value of the quantity
K

∑
h=1

(rhah). Specially, if we define

s(r) =
K

∑
h=1

(rhah) ,

we may write

E
[
s(r)

∣∣∣θ , r ∈ R
]

= ∑
r∈R

[
p
(

r
∣∣∣θ ,r ∈ R

)
s(r)

]
= ∑

r∈R

⎧⎨
⎩

⎡
⎣ ∏K

k=1xrk
k

∑r∈R

(
∏K

k=1xrk
k

)
⎤
⎦
[

K

∑
h=1

(rhah)

]⎫⎬
⎭ .

This allows us to rewrite the derivative of the log likelihood as

∂
∂θ

{
log

[
p
(

r
∣∣∣θ ,r ∈ R

)]}
=

K

∑
k=1

rkak−E
[
s(r)

∣∣∣θ , r ∈ R
]

=s(r)−E
[
s(r)

∣∣∣θ , r ∈ R
]
.

The item information function then becomes

I (θ) = ∑
r∈R

[
p
(

r
∣∣∣θ ,r ∈ R

)(
∂
∂θ

{
log

[
p
(

r
∣∣∣θ ,r ∈ R

)]})2
]

= ∑
r∈R

[
p
(

r
∣∣∣θ ,r ∈ R

)(
s(r)−E

[
s(r)

∣∣∣θ , r ∈ R
])2

]
.

Since the right-hand side of this expression is the conditional variance of s(r), we
may write

I (θ) = var
[
s(r)

∣∣∣θ ,r ∈ R
]
.
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Chapter 5
A General Saltus LLTM-R for Cognitive
Assessments

Minjeong Jeon, Karen Draney, and Mark Wilson

Abstract The purpose of this paper is to propose a general saltus LLTM-R
for cognitive assessments. The proposed model is an extension of the Rasch
model that combines a linear logistic latent trait with an error term (LLTM-R), a
multidimensional Rasch model, and the saltus model, a parsimonious, structured
mixture Rasch model. The general saltus LLTM-R can be used to (1) estimate
parameters that describe test items by substantive theories, (2) evaluate the latent
constructs that are associated with the knowledge structures of the test items, and (3)
test hypotheses on qualitative differences between the sub-populations of subjects
with different problem solving strategies, cognitive processes, or developmental
stages. Bayesian estimation of the proposed model is described with an application
to a test of deductive reasoning in children.

Keywords Saltus model • Mixture IRT • LLTM • LLTM-R • Multidimensional
IRT • Deductive reasoning

5.1 Introduction

In psychometrics, it is an important research topic to identify the response pro-
cesses, strategies, and knowledge structures that are involved in solving test items
(Embretson 1984). Several item response theory (IRT) models have been developed
to study theoretical or practical construct representation, task decomposition, and
information processing of test items. For example, the linear logistic test model
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(LLTM; Fischer 1973) models task decomposition of test items that underlie the
knowledge structure. In multidimensional IRT models, item features are used to
form sub-tests that represent different theoretical constructs (e.g., Embretson 1984;
Kelderman and Rijkes 1994). Mixture IRT models are developed to investigate
qualitatively different sub-populations of subjects with different problem solving
strategies, cognitive processes, or developmental stages (e.g., Wilson 1989; Mislevy
and Verhelst 1990; Bolt et al. 2001)

The purpose of the study is to present an extension of the Rasch model that
includes LLTM, multidimensionality, and mixture components. For the LLTM
component, we use an extended version of the LLTM that allows for a random
deviation term for items (LLTM-R; Janssen et al. 2004). For multidimensionality,
a between-item multidimensional Rasch model is adopted as a special case of the
general multidimensional random coefficients multinomial logit model (MRCML;
Adams et al. 1997). For the mixture component, we use an extension of the saltus
model (Wilson 1989) that is a confirmatory mixture Rasch model (Rost 1990). The
elegance of the saltus model is its parsimony and theory-based structure which is
well suited for building a complex mathematical model to evaluate an underlying
substantive theory.

The following section gives a general description of the proposed model, which
is referred to as a general saltus LLTM-R. Estimation of the model is illustrated with
an example of children’s deductive reasoning. Further uses of the proposed model
are discussed at the end.

5.2 Model

This section lays out the basic structures of the proposed model: (1) LLTM,
(2) multidimensionality, and (3) mixture components. The final model will be
expressed as a combination of these basic building blocks. Discussion will be
limited to dichotomous items for convenience, but extensions to polytomous items
are straightforward.

5.2.1 Linear Logistic Test Models

We begin by briefly describing a regular one parameter logistic (1PL) IRT or Rasch
model. For a dichotomous response yi j (1 if correct, 0 if not) to item i (i = 1, . . . , I)
for person j ( j = 1, . . . ,N), the conditional probability for a correct response can be
expressed as

Pr(yi j = 1|θ j) =
exp [θ j −βi]

1+ exp [θ j −βi]
, (5.1)
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where θ j is a latent variable, representing ability, trait, scale, or proficiency for
person j. θ j can be considered as a fixed parameter but is more often viewed as
a random variable with a distributional assumption defined over the population of
people. For convenience, we specify a normal distribution θ j ∼ N(μ ,σ2) although
other distributions can be considered. To identify the model, we constrain μ = 0.
Otherwise, ∑iβi = 0 could be imposed, where βi represents the position of item i on
the latent scale and is usually called the item difficulty parameter for item i.

Suppose a cognitive theory suggests that the effects of items can be decomposed
into relevant stimulus features. The item parameter βi can then be expressed as
a linear function of the stimulus features. An important example of this type is
the LLTM (Fischer 1973). Under the LLTM, a model for item parameters can be
written as

βi =
Q

∑
q=0

βqXiq, (5.2)

where βq is the regression coefficient or the effect of the item feature Xiq (q =
1, . . . ,Q, typically, Q < I) on the item difficulty βi, with β0 as the intercept. The
I × (Q+1) matrix X is called an item design matrix, and its vector Xi indicates the
extent to which item i exhibits each item characteristic.

The LLTM is based on the strong assumption that item difficulty is perfectly
predicted by the item characteristics. That is, items in the same “item groups” that
have the same combination of values on the item properties are assumed to have
equal difficulties. We can relax this assumption by allowing for a random deviation
of each item, resulting in a random effects LLTM (LLTM-R; Janssen et al. 2004)

Pr(yi j = 1|θ j) =
exp

[
θ j −∑Q

q=0βqXiq + εi

]

1+ exp
[
θ j −∑Q

q=0β ′
qXiq + εi

] , (5.3)

where εi ∼N(0,σ2
ε ). Here the variance σ2

ε can be interpreted as the residual variance
of the regression model for βi or a within-population variance of βi across items
belonging to the same item group (Janssen et al. 2004). By adding the error term
εi, items in the same “item groups” can be modeled to have unequal difficulties
which may arise from item-specific features, such as wording or content of the items
(Rijmen and De Boeck 2002).

5.2.2 Multidimensional Rasch Models

The Rasch model (5.1) and LLTM-R (5.3) all assume a single underlying latent
trait θ j, implying all items are located on the same scale that the test measures.
In practice, however, the trait to be measured may be more complex than what is
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assumed by the model. For example, a complex performance can be understood
by taking into account knowledge structures, cognitive processes, or interactions
between multiple component behaviors.

In the LLTM, the item properties have a quantitative effect on the items. On the
other hand, the item task properties may lead to sub-tests that require qualitatively
different types of problem solving behaviors, locating subjects on different sub-
scales on a multidimensional latent space (Kelderman and Rijkes 1994).

Assuming that a test consists of K sub-scales of items, model (5.1) can be
extended for dimension k

Pr(yi(k) j = 1|θ j) =
exp

[
θ jk −βi

]
1+ exp

[
θ jk −βi

] , (5.4)

where yi(k) j is the response to item i in dimension k for person j, θ jk is the kth latent
trait for person j, and βi is difficulty for item i. For all K sub-scales, the model can
be expressed as

Pr(yi j = 1|θ j) =
exp

[
∑K

k=1 rikθ jk −βi
]

1+ exp
[
∑K

k=1 rikθ jk −βi
] , (5.5)

where θ j is a K-dimensional vector representing the positions on K continuous
latent variables and θ j = (θ j1, . . . ,θ jK)

′, and rik is the ith row and kth column
element of I×K score matrix R whose vector ri contains only one non-zero element
(equal to 1), indicating which sub-scale item i belongs to. θ j is assumed to have
a multivariate normal distribution as θ j ∼ N(μ ,Σ), where μ is a K dimensional
vector of means and Σ is a K × K variance–covariance matrix. As in the Rasch
model, we constrain μ = 0 to identify the model. Since each item measures
only one dimension, the model is called a between-item multidimensional model
(Adams et al. 1997). The advantage of using the multidimensional model (instead
of analyzing the K scales separately) is threefold: (1) the multi-component test
structure is explicitly taken into account, (2) disattenuated correlations between the
dimensions are provided (Briggs and Wilson 2003), and (3) more accurate parameter
estimates are obtained by relying on the relationship between the dimensions
(Adams et al. 1997; Rijmen and De Boeck 2005). Model (5.5) is a special instance
of the multidimensional random coefficients multinomial logit model (MRCML;
Adams et al. 1997).

Several IRT models have been developed to combine LLTM and multidimen-
sional models. Fischer and Forman (1982) presented the linear logistic model
with relaxed assumptions (LLRA) in the context of measuring change. In LLRA,
item task components are associated with different latent traits at different time
points. In the general multicomponent latent trait model (GLTM) (Embretson 1984),
different cognitive components are associated with different latent traits or sub-
scales. Rijmen and De Boeck (2002) presented a random weights linear logistic test
model (RW-LLTM), which can be seen as a within-item multidimensional model
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where item properties have both fixed and random effects. The random slope for
the constant represents a general dimension that is measured by all items, and the
random slopes for item properties represent dimensions or sub-scales of the test.

5.2.3 Mixture Rasch Models

The unidimensional and multidimensional Rasch models (5.1) and (5.5) commonly
assume that the sub-scale(s) that a test is measuring is the same for all subjects.
However, the group of subjects may consist of qualitatively different sub-groups,
because of their different cognitive strategies (e.g., Mislevy and Verhelst 1990),
developmental stages (e.g., Wilson 1989), or problem-solving processes (e.g., Bolt
et al. 2001). Since their group membership is unobserved, the sub-groups are
referred to as latent classes. The resulting model becomes a mixture IRT model.

Suppose there are G qualitatively different sub-groups (latent classes). Within
each sub-group, the same item response model is assumed to hold. For example, by
assuming a Rasch model within a class, the response model of the mixture Rasch
model can be written as

Pr(yi j = 1|θ j) =
G

∑
g=1

πg Pr(yi j = 1|θ jg,g),

Pr(yi j = 1|θ jg,g) =
exp [θ jg −βig]

1+ exp [θ jg −βig]
, (5.6)

where πg is the probability of belonging to latent class g (g= 1, . . . ,G), and θ jg is the
ability for person j in latent class g. Within a class, we assume θ jg ∼ N(μg,σ2

g ), and
βig is the item difficulty of item i specific to latent class g. This implies that items
are located on the same scale within a latent class, but across latent classes, the
scale might be qualitatively different. To anchor the metric across latent classes and
to identify the model, μg = 0 or ∑iβig = 0 should be imposed within each class g.
This restriction is important to ensure scale comparability across latent classes. The
metric can be anchored relative to the scale of a reference group by fixing the mean
of only one group to zero, e.g., μ1 = 0 with the first latent class as the reference
group. However, in this case anchor items should be chosen, whose parameters are
invariant across classes (Cho et al. 2013).

Mislevy and Verhelst (1990) extended the mixture Rasch model (5.6) by
combining with LLTM (5.1). The resulting model becomes a mixture LLTM and
can be written as

Pr(yi j = 1) =
G

∑
g=1

πg

exp
[
θ jg −∑Q

q=0βqgXiq

]

1+ exp
[
θ jg −∑Q

q=0β ′
qgXiq

] , (5.7)
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where πg is the probability of belonging to latent class g, and the ability θ jg is
assumed to follow a normal distribution within class g, θ jg ∼N(μg,σ2

g ), with μg = 0
for identification and metric anchoring. q (= 1, ..,Q) is an index for item predictors
and βqg is the class-specific regression coefficient for each item predictor for class
g with β0g is the intercept.

5.2.4 Saltus Models

Recall that the mixture Rasch model in (5.6) assumes class-specific item difficulties
for different latent classes. Suppose a substantive theory suggests that there are
a subset of items whose difficulty systematically increases or decreases from one
class to another. Using the item groups that are associated with corresponding latent
classes, a parsimonious version of the mixture Rasch model can be formulated,
which is the saltus model (Wilson 1989).

In the saltus model, the item parameters are posited to be equal across all latent
classes. Instead, the qualitative difference from one class to another is captured by
a shift parameter, also called a saltus parameter, which is basically the effect of the
item groups (representing latent classes) on the latent scale.

Assuming G qualitatively different latent classes and corresponding H item
groups, a saltus response model can then be specified as

Pr(yi j = 1|θ j) =
G

∑
g=1

πg Pr(yi j = 1|θ jg,g),

Pr(yi j = 1|θ jg,g) =
exp

[
θ j −βi +∑H

h=1 τghwih
]

1+ exp
[
θ j −βi +∑H

h=1 τghwih
] , (5.8)

where τgh is the shift or saltus parameter that represents the effect of item group h in
latent class g. It is important to note that item groups have the same number of levels
as person latent classes (G = H). τgh is also the regression coefficient for wih, whose
vector wi contains only one non-zero element (equal to 1) and indicates the item
group that item i belongs to. As in model (5.6), πg is a probability of belonging to
latent class g (g = 1, . . . ,G), and θ jg is the ability for person j in latent class g with
θ jg ∼ N(μg,σ2

g ). To identify the model, we can have a constraint, either ∑iβi = 0
or μ1 = 0 (g = 1 as the reference group). Note that since all items work as anchor
items in the saltus model, it is sufficient to fix the mean of only one latent class to 0.
In the mixture Rasch model, arbitrary anchor items should be chosen for setting the
metric relative to the reference group.
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To illustrate the saltus or shift parameters, suppose two latent classes and three
item groups (G = H = 3). Matrix T of the shift parameters can then be written as

⎡
⎣ τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

⎤
⎦ ,

where τgh represents the effect of item group h in person class g or an advantage
or a disadvantage that people in class g have for items in item group h. Therefore,
τgh can be seen as an indication of differential item functioning for item group h
between class g and class h. To estimate the saltus parameters, further restrictions
should be imposed as follows: the first row τ ′1h (h = 1, . . . ,H) and the first column
τg1 (g = 1, . . . ,G) are set to zero (Mislevy and Wilson 1996).

The saltus model was originally developed in a developmental context. Different
developmental stages are assumed for the population of people and the item groups
are based on the substantive developmental theory. However, the model can also
be applied to other contexts where test items are constructed in such a way to
successfully predict the rates between latent classes (Mislevy and Wilson 1996).

5.2.5 General Saltus LLTM-R

Finally, the proposed model can be formulated as a combination of models (5.3),
(5.5), and (5.8). Specifically, the proposed model is based on the following four
assumptions: (1) item difficulty is expressed as a regression model of Q item
properties with an item-specific random error, (2) a test can be better represented
by K dimensional sub-scales of items, (3) the population of people consists of
G qualitatively different sub-populations or latent classes, and (4) the qualitative
differences between latent classes are well captured by a set of shift parameters in
each sub-scale of the test.

The resulting response model in dimension k can be written as

Pr(yi(k) j = 1|θ jk) =
G

∑
gk=1

πgk Pr(yi(k) j = 1|θ jkg,gk),

Pr(yi(k) j = 1|θ jkg,gk) =
exp

[
θ jkg −∑Q

q=0βqXiq + εi +∑H
h=1 τkghwih

]

1+ exp
[
θ jkg −∑Q

q=0βqXiq + εi +∑H
h=1 τkghwih

] , (5.9)

where πgk is the probability of belonging to class gk (gk = 1, . . . ,G) in sub-scale
k (k = 1, . . . ,K), θ jkg is an ability for person j in sub-scale k for class g, and τkgh

is the shift parameter for the effect of item group h in person class g in dimension
k. The random error is εi ∼ N(0,σ2

ε ), and θ jkg is the kth ability for person j in
class g. Within class g, a K dimensional vector of ability θ jg = (θ j1g, . . . ,θ jKg)

′ is
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assumed to follow a multivariate normal distribution, θ jg ∼ N(μg,Σg), where μg is
a K dimensional mean vector and Σg is a K×K covariance matrix. For identification,
we set the means of the reference latent class to 1, μ1 = 0 (g = 1 as the reference
latent class), implying the test metric is set relative to the reference class across
dimensions. In model (5.9), the saltus parameter τkgh is specific to dimension k,
meaning that the effect of item group h (on person latent class g) can be different
in each sub-scale (dimension) of the test. When K = 1, the model becomes a
unidimensional saltus LLTM-R. Therefore, we refer model (5.9) to as a general
saltus LLTM-R as it includes both uni- and multi-dimensional saltus LLTM-R.

Various extensions of mixture IRT models have been presented, for example,
a mixture LLTM (e.g., Mislevy and Verhelst 1990), a mixture random weights
LLTM (e.g., Fieuws et al. 2004), a multidimensional mixture model for longitudinal
analysis (e.g., Cho et al. 2010; von Davier et al. 2011), for cross-country large-
scale data analysis (e.g., De Jong and Steenkamp 2010), and a mixture bifactor IRT
model (e.g., Cho et al. 2014). However, these is no extension of a mixture IRT
model including the decomposition of the item (LLTM with an error) and person
sides (multidimensionality) simultaneously. Furthermore, the saltus model has not
been part of these developments although due to its parsimonious and confirmatory
nature, the saltus model has great potential as a mathematical tool to construct and
evaluate a complex cognitive theory.

5.3 Estimation

Several maximum likelihood (ML) software packages are available for estimating
mixture IRT models, such as LatentGold (Vermunt and Magidson 2005), WIN-
MIRA (von Davier 2001), and Mplus (Muthén and Muthén 2008) and for the saltus
model, software by Draney (2007). Although a variety of complex mixture IRT
models are estimable with these software packages, none appears able to estimate
the proposed model.

A major obstacle is due to the inclusion of the random error term in the
structural part of the mixture IRT model. With a simultaneous inclusion of random
item and person variations, the model involves crossed random effects, for which
ML estimation is inhibited for the high-dimensional integrals in the likelihood
function. General-purpose software for estimating crossed random effects models
(e.g., xtmelogit in Stata StataCorp 2009, lme4 R package Bates and Maechler
2009) is also not available because of the mixture component of the model.

As an alternative to ML, we adopt a Bayesian estimation with a Markov chain
Monte Carlo (MCMC) method for estimating the proposed general saltus LLTM-
R. MCMC methods have been found particularly useful in estimating mixture
distributions (Diebolt and Robert 1994), including mixtures that involve random
effects within classes (Lenk and DeSarbo 2000). With MCMC, a class membership
parameter is readily sampled for each observation at each stage of the Markov chain
(Robert 1996).
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To implement an MCMC algorithm, a freely available software, WinBUGS
(Lunn et al. 2000) is used in this study. The WinBUGS software adopts Gibbs
sampling or adaptive rejection sampling based on its own check to determine the
best sampling method for each parameter.

The following prior distributions are assumed for the parameters of model (5.9):

gk ∼ Multinomial(1,πgk [1 : G]),

πk = (π1k , . . . ,πGk)∼ Dirichlet(α1, . . . ,αG),

βq ∼ N(0,10), (q = 0, . . . ,Q),

τkgh ∼ N(0,10), (g = 1, . . . ,G,h = 1, . . . ,H),

σε ∼ Gamma(1,1),

θ jg ∼ N(μg,Σg),

μkg ∼ N(0,10), (g = 2, . . . ,G),

Σg ∼ Wishart−1(R,2),

where the hyperparameters (α1, . . . ,αG) for the Dirichlet distribution are set to 1,
and R for the inverse Wishart is set to a K×K identity matrix. The means of the first
latent class (as the reference group) are fixed to 0 (μk1 = 0) in each dimension k.

Using MCMC for estimation of models with mixture components implies that
label switching should be addressed with the posterior samples. Label switching
involves permutations of the class labels resulting in the same value of the likeli-
hood, or the log-posterior in the Bayesian context. With MCMC, label switching can
occur within- and between-chains. Within-chain label switching can be monitored
by examining the marginal posterior distribution. A unique mode means that there
is a unique labeling of classes, while multiple modes mean that the labels of
latent classes are mixed up within the chain. Between-chain label switching can be
monitored by checking out the modality of the marginal posterior distributions for
each chain. If different modes are observed between the chains, between-chain label
switching exists, implying the latent classes have a different order across chains
(Cho et al. 2013).

A common strategy for removing label switching is to impose artificial identi-
fiability constraints on the model parameters (e.g., De Jong and Steenkamp 2010),
but this method does not always provide a satisfactory solution (Stephens 2000). In
this study, we monitored label switching by examining the modality of the marginal
posterior distribution of model parameters within and across chains. If observed,
label switching is corrected by matching the labels of latent classes by comparing
the estimates of the other parameters between and within chains (e.g., Bolt et al.
2001; Cho and Cohen 2010; Cho et al. 2010, 2013).

Unlike many mixture IRT models where the number of latent classes is found
by an exploratory search, the proposed general saltus LLTM-R is a confirmatory
approach and therefore the number of latent classes is given as a priori.
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5.4 Illustration: Deductive Reasoning

In this section, we illustrate the general saltus LLTM-R in the context of cognitive
development of children in deductive reasoning.

5.4.1 Data

We used the data from the Competence Profile Test of Deductive Reasoning—
Verbal (DRV; Spiel et al. 2001; Spiel and Gluck 2008) that was developed based
on Piaget’s cognitive-developmental theory (Piaget 1971), in order to assess the
competence profile and competence level of children in deductive reasoning.
According to the theory, children move through four developmental stages that
qualitatively differ in the cognitive processes: the sensorimotor, the preoperational,
the concrete-operational, and the formal-operational stages (Spiel et al. 2001). The
DRV focused on the transition from the concrete-operational stage to the formal-
operational stage. In the concrete operational stage, children are able to perform
logical operations, but only be represented by concrete objects. In the formal
operational stage, children are able to perform abstract operations on abstractions
as well as concrete objects. The progress from one stage to another involves a major
reorganization of the thinking process used by children to solve various sorts of
problems (Draney et al. 2007).

The DRV consists of 24 items that systematically vary in three major character-
istics in a 4×3×2 orthogonal design:

1. Type of inference: Modus Ponens (MP), Modus Tollens (MT), Negation of
Antecedent (NA), and Affirmation of Consequent (AC)

2. Content of the conditional: Concrete (CO), Abstract (AB), and Counterfatual
(CF)

3. Presentation of the antecedent: no negation (NN) and Negation (NE)

To develop the DRV, six premises were first developed for four main different
types of syllogistic inference. Specifically, each item consists of a given premise
(“if A, then B”) and a conclusion. The task is to evaluate a conclusion, assuming the
premise as given. The four types of inferences are: Modus Ponens (A, therefore B),
Negation of Antecedent (Not A, therefore B or not B), Affirmation of Consequent
(B, therefore A or not A), and Modus Tollens (Not B, therefore not A). Modus
ponens (MP) and modus tollens (MT) are biconditional conclusions, and therefore
the response to the items is either “yes” or “no.” For negation of antecedent (NA)
and affirmation of consequent (AC), the correct solution is “perhaps” as the premise
does not allow for deciding whether these conclusions are correct. NA and AC items
are also called logical fallacies because they provoke the choice of a biconditional,
but logically incorrect conclusion (“no” for NA, “yes” for AC).
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It has been shown that people at the concrete-operational stage treat all four
inferences as biconditional (e.g., Evans et al. 1993; Janveau-Brennan and Markovits
1999). The probability of correctly solving the fallacy items increases with progress
in cognitive development, but the performance on biconditional items (MT and
MP) sometimes decreases because people who have noticed the uncertainty of the
fallacies tend to overgeneralize (e.g., Byrnes and Overton 1986; Markovits et al.
1998).

In addition to the major factor (type of inference), two moderator variables were
considered to construct the items: (1) content of the conditional (Concrete (CO),
Abstract (AB), and Counterfatual (CF) items) and (2) presentation of the antecedent
(no negation (NN) and Negation (NE) items). Research has shown that Concrete
items are easier to solve than Abstract and Counterfactual items but differences
between abstract and counterfactual items are unclear (e.g., Overton 1985). Also it
has been shown that when negation was used in the antecedents, items become more
difficult to solve (e.g., Roberge and Mason 1978).

Table 5.1 lists example items corresponding to four inference types that have
Concrete content (CO) and no negation (NN) features.

Table 5.1 Example DRV items that correspond to four types of inference with
Concrete content (CO) and no negation (NN)

Type of inference Item Correct solution

Modus ponens Tom is ill. Yes

(MP) Is Tom lying in his bed?

Modus tollens Tom is not lying in his bed. No

(MT) Is Tom ill?

Negation of antecedent Tom is not ill. Perhaps

(NA) Is Tom lying in his bed?

Affirmation of consequent Tom is lying in his bed. Perhaps

(AC) Is Tom ill?

The premise is “If Klaus is ill, he is lying in his bed”

The DRV data were collected in various secondary schools in Graz, Austria.
To cover a broad age range, students in grades 7 through 12 (ages 11 to 18)
participated. Altogether, data from 418 participants, 162 females and 256 males,
were included in the analyses. Participants were about equally distributed across
grades. Questionnaires were administered in classrooms during regular class hours
and no time limits were set. To control for order effects, two task versions (A and B)
were constructed with different random orders of the items. Half of the participants
were presented with each version (Spiel et al. 2001). The item responses were coded
dichotomously, with 1 for correct, and 0 for incorrect responses.
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5.4.2 Method

There were two previous empirical analyses on this dataset. Spiel et al. (2001)
analyzed the data using the mixture Rasch model. They found that a model with
three latent classes fit the data best, with class 1 correctly solving only MP and MT
items correctly, class 2 starting to solve correctly NA and AC items but making
mistakes in MP and MT items, and class 3 performing better in NA and AC item
than class 2. Draney et al. (2007) employed a saltus model to analyze the data. In
their two-class analysis, they defined two item groups (MP/MT vs. NA/AC) and
in a three-class analysis, defined three item groups (MP/MT, NA/AC, and AB/CF).
They found that the three-class model fit the data better than the two-class model
but could not clearly identify the characteristics of the third latent class.

These previous analyses suggest that (1) there are two clear sub-populations of
people that are well represented by MP/MT and NA/AC items, respectively, (2) a
third class is likely to exist, but its characteristics are not evident based on these
previous research, and (3) it is unclear how the two moderator factors, the content
of the conditional and presentation of antecedent play a part in identifying and
discriminating different latent classes.

Based on the reasoning, our mathematical modeling stems from the following
rationale: First, we investigate the role of the test design factors in understanding
the development of deductive reasoning of children. Therefore, we directly model
the item design factors as the predictors of item parameters in the model. Six item
predictors are considered based on three design factors as follows:

• Type of inference: NA, AC, MT, (MP: reference)
• Content of the conditional: AB, CF (CO: reference)
• Presentation of antecedent: NE (NN: reference).

We also allow for a random deviation of each item in the prediction model for a
realistic prediction.

Second, we assume that there are at least two distinct sub-populations of
children whose membership is unknown. The sub-populations represent two distinct
developmental stages, Concrete-operational stage, and Formal operational stage.

Third, the two sub-populations are well described by the major design factor,
type of inference. Hence, the two item groups are used to represent the concrete-
and formal-operational stages, respectively

• Concrete operational items: MP, MT
• Formal operational items: NA, AC.

Fourth, the other two design factors, content of the conditional and presentation
of antecedent, are assumed to represent qualitatively different cognitive features and
therefore, can be used to define the sub-scales of the test as
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• Two sub-scales by presentation of antecedent: NN, NE
• Three sub-scales by conditional of the conditional: CO, AB, CF.

By the content of the conditional (CO, AB, and CF), some sub-scales contain
only a few items. Hence, we apply the two sub-scales for empirical analysis.

Based on these assumptions, we specify two general saltus LLTM-R models to
fit the data: (1) unidimensional saltus LLTM-R with an overall dimension (K = 1),
and (2) two-dimensional saltus LLTM-R with NN and NE dimensions (K = 2). In
the two-dimensional model with NN and NE dimensions, the item feature of NE for
Presentation of antecedent (NN: reference) is not included in the model since it is
used to define the sub-scales. As a comparison with an existing model, we consider
a mixture LLTM (Mislevy and Verhelst 1990) that was presented in Eq. (5.7).

The priors are specified as described in Sect. 5.3. Posterior samples were obtained
based on 100,000 iterations including 90,000 burn-in with five thinning. Three
chains were used with three different starting values. For convergence checking,
the Gelman and Rubin (1992) method and the Geweke (1992) method were used in
addition to graphical checks.

5.4.3 Results

We first estimated the mixture LLTM in (5.7) with two latent classes and the
class-specific feature difficulty parameters. Table 5.2 lists the parameter estimates
(posterior means) and standard errors (posterior standard deviations) of the model.

Table 5.2 Parameter
estimates (posterior means)
and standard errors (posterior
standard deviations) for the
mixture LLTM

Class 1 Class 2
Par Est SE Par Est SE

β01 −2.48 0.15 β02 −1.27 0.12

β11(NA) 3.73 0.19 β12(NA) −0.04 0.13

β21(AC) 3.94 0.22 β22(AC) 0.34 0.13

β31(MT) 0.63 0.12 β32(MT) 1.04 0.10

β41(AB) 0.56 0.10 β42(AB) 0.44 0.08

β51(CF) 0.54 0.10 β52(CF) 0.62 0.08

β61(NE) 0.62 0.08 β62(NE) 0.34 0.08

σ1 0.44 0.07 σ2 0.86 0.07

π1 0.50 0.03 π2 0.50 0.04

Table 5.2 shows that most differences between class 1 and 2 were found in
β1g, β2g, and β3g, which were the difficulty parameters for NA, AC, and MT
item features. The NA and AC items were more difficult and the MT/MP items
were relatively easier in class 1 than class 2. This means that class 1 and 2 were
distinguished from each other in terms of their performance on the NA/AC and
MT/MP items; class 1 can be regarded as the concrete-operational stage and class
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2 as the formal-operational stage. The estimated proportions of children were 0.50
and 0.50 in class 1 and 2, respectively. The estimated standard deviations of ability
were larger in class 2 (σ̂2=0.86) than in class 1 (σ̂2=0.44).

The result of the mixture LLTM confirms our assumption that the type of
inference (NA/AC, MT/MP) can be used to represent the formal and concrete-
operational stages. Table 5.3 lists the results of the saltus LLTM-R analyses.

In the unidimensional model, the shift parameter τ122 was estimated as −4.3,
meaning that the NA and AC items were significantly more difficult in class 2 than
in class 1. Since τ1 indicates the effects of NA/AC items (vs. MT/MP items) on the
probability of correctly solving an item, the estimated feature difficulties for NA
and AC items are β̂12 = β̂1 − τ̂122 = 4.00 and β̂22 = β̂2 − τ̂122 = 4.53 in class 2 and

Table 5.3 Parameter
estimates and standard errors
for the uni-dimensional saltus
LLTM-R (1D) and
two-dimensional saltus
LLTM-R (2D)

LLTM-R(1D) LLTM-R(2D)
Par Est SE Est SE

Structural part β0 −1.24 0.51 −0.99 0.51

β1(NA) −0.30 0.56 −0.40 0.57

β2(AC) 0.23 0.55 0.13 0.57

β3(MT) 0.85 0.55 0.87 0.56

β4(AB) 0.54 0.48 0.56 0.50

β5(CF) 0.68 0.47 0.69 0.50

β6(NE) 0.44 0.39 − −
σε 0.95 0.18 0.98 0.18

k = 1 Overall Dim1: NE

shift22 τ122 −4.3 0.17 −4.53 0.22

mean2 μ12 1.54 0.12 1.56 0.16

sd1 σ111 0.94 0.07 1.16 0.10

cov1 σ121 0.88 0.14

sd2 σ221 0.51 0.08 0.82 0.08

prop1 π11 0.51 0.03 0.50 0.04

prop2 π21 0.49 0.03 0.50 0.04

k = 2 Dim2: NN

shift22 τ222 −4.53 0.22

mean2 μ22 1.69 0.16

sd1 σ112 0.51 0.10

cov2 σ122 0.18 0.09

sd2 σ222 0.53 0.10

prop1 π12 0.51 0.04

prop2 π22 0.50 0.04

NN and NE are No Negation and Negation; The shift (saltus)
parameter: τkgh, k = 1,2 and G = H = 2; Means: μkg, k = 1,2
and g= 2; Standard deviations and covariances: σkkg, k = 1,2
and g = 1,2; Proportion of belonging to latent class g: πgk ,
k = 1,2 and g = 1,2. Est is the posterior mean and SE is the
posterior standard deviation
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β̂11 = β̂1 = −0.30 and β̂21 = β̂2 = 0.23 in class 1. This implies that class 2 can be
seen as the concrete-operational stage and class 1 as the formal-operational stage as
expected. The proportions of children in class 1 and 2 were estimated as 0.51 and
0.49, respectively, which was similar to the results from the mixture LLTM. Unlike
the mixture LLTM, however, the overall mean of ability for each latent class was
estimated (except the reference group). The estimated mean of ability (μ12) for class
2 was 1.54; because the estimated item intercept parameter (β̂0) contributes to the
overall ability, the overall mean ability for class 2 is μ̂12 + β̂0 = 1.54− 1.24 = 0.3
and the overall mean ability for class 1 is μ11 + β̂0 = 0 − 1.24 = −1.24 (μ11 =
0). That is, μ12 represents the difference in the overall mean ability between class
1 and 2 and it was significantly different from zero. This means that the overall
proficiency of the formal-operational group was lower than that of the concrete-
operational group; it might be because children who noticed the uncertainty of the
fallacies in MP/MT items overgeneralized the problems and got those items wrong.
This was consistent with findings in Byrnes and Overton (1986) and Markovits et al.
(1998). The estimated standard deviations of ability were 0.94 and 0.51 in class 1
and 2, respectively.

In the two-dimensional model, the shift parameter was estimated as −4.53 in
the NE dimension and in the NN dimension. This means that the NA/AC items
were relatively more difficult in class 2 than in class 1 in both dimensions. In
the NE dimension, the estimated mean proficiency for class 2 was 1.56 and in the
NN dimension, the estimated mean for class 2 was 1.69, which were significantly
different from the zero means of class 1 (reference group) in both dimensions. In
the NE dimension, about 50 and 50 % of students were observed in class 1 and
2, and in the NN dimension, 51 and 49 % of students were observed in class 1
and 2. The overall abilities of the formal-operational group were lower in both
NE and NN dimensions than those of the concrete-operational group. The standard
deviations were estimated as 1.16 and 0.82 in class 1 and 2 in the NE dimension,
and 0.59 and 0.53 in class 1 and 2 in the NN dimension. The estimated correlations
( σ̂12
σ̂11σ̂22

) between the NE and NN dimensions were somewhat different between class
1 and class 2, which were 0.92 in class 1 and 0.67 in class 2. This implies that the
presentation of antecedent (NE/NN) of items might be related to the performance on
different types of inferential items (NA/AC, MT/MP). For instance, the performance
of students who can correctly solve NA/AC items (class 1) is not influenced by
whether items are presented with negation (NE) or no negation(NN). In contrast,
the performance of students who cannot correctly solve NA/AC items (class 2) is
influenced by whether items are presented with negation (NE) or no negation (NN).
This explains lower correlations between the NE and NN dimensions in class 2 than
in class 1.
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5.5 Discussion

In this paper, the specification, estimation, and illustration of a general saltus
LLTM-R are presented. The general saltus LLTM-R combines three Rasch models:
a linear logistic latent trait with an error term (LLTM-R), multidimensional, and
mixture Rasch models. The saltus model is chosen to specify the mixture compo-
nent of the model because of its parsimony and confirmatory nature. Qualitative
differences between latent classes are captured by a shift parameter in the saltus
model rather than all item parameters as in typical mixture models. In addition, in
the saltus model latent classes are posited as a priori based on a theory rather than
found by exploratory search.

The proposed model can best be applied to well-designed educational or
psychological tests where definite hypotheses of the behavior elicited by the test
items are available. Specifically, the model can be used to (1) estimate parameters
that describe test items by substantive theories, (2) evaluate the latent constructs
that are associated with the knowledge structures of the test items, and (3) test
hypotheses on qualitative differences between the sub-populations of subjects with
different problem solving strategies, cognitive processes, or developmental stages.

The model is illustrated in a developmental context, but its application should
not be limited to that context. First, it can be applied to psychological or educational
assessment data where the test items are constructed in such a way to be associated
with presumed latent classes. Second, the model can also be useful to analyze
longitudinal data where a different latent trait is assumed at a different time point.
Significant changes in shift parameters imply there is a “shift” in item difficulty
across time for the group of items that represent different latent classes.
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Chapter 6
Multidimensional IRT Models to Analyze
Learning Outcomes of Italian Students
at the End of Lower Secondary School

Mariagiulia Matteucci and Stefania Mignani

Abstract In this paper, different multidimensional IRT models are compared in
order to choose the best approach to explain response data on Italian student
assessment at the end of lower secondary school. The results show that the
additive model with three specific dimensions (reading comprehension, grammar,
and mathematics abilities) and an overall ability is able to recover the test structure
meaningfully. In this model, the overall ability compensates for the specific ability
(or vice versa) in order to determine the probability of a correct response. Given the
item characteristics, the overall ability is interpreted as a reasoning and thinking
capability. Model estimation is conducted via Gibbs sampler within a Bayesian
approach, which allows the use of Bayesian model comparison techniques such as
posterior predictive model checking for model comparison and fit.

Keywords Item response theory • Multidimensional models • Gibbs sampling •
Student assessment

6.1 Introduction

In the last decades the debate in educational research highlights the importance of
analyzing students’ performances for supporting educational policies in order to
allocate resources, reform formative curricula, train teachers, monitor standards, and
promote equal opportunity of access. In this context the study of the educational
outcomes defined as the competences acquired has a primary role and recently
there has been an increased focus on defining tools to assess the performances.
Such points accentuate the growing interest assumed by international standardized
tests, such as OECD-PISA, PIRLS, and TIMSS, that guarantee important results on
students’ achievement determinants (Grek 2009).
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In educational practice the concept of competence reflects a person’s potential
to meet cognitive demands in specific areas of learning (domains). Adequate tools
for measuring competence need to be based on models that represent the internal
structure in terms of specific basic skills and abilities and take into account changes
occurring in learning and developmental processes. Furthermore, measurements of
competence should build on psychometric models that link the empirical measure-
ment operations with theoretical (cognitive) models of competencies (Koeppen et al.
2008).

In the field of educational measurement, item response theory (IRT) is a popular
approach for modeling the probabilistic relationship between responses to test
items and individual abilities. IRT models are often used under the assumption
of unidimensionality, i.e. the presence of a single or at least one predominant
latent ability, while more complex structures incorporating specific abilities could
explain the response process. In fact, it often happens that a test consists of different
subscales or domains involving explicitly several ability dimensions.

The attention has recently been devoted to models that include more than one
latent trait, the so-called multidimensional IRT (MIRT) models (see, e.g., van der
Linden and Hambleton 1997; Reckase 2009). These models perform better than
separate unidimensional models in fitting the subtests because they are able to
describe the data complexity, taking into account correlated abilities and also the
hierarchical structure typical of mental abilities.

Within the multidimensional context, different approaches are possible: explo-
rative models where all latent traits are allowed to load on all item response variables
or confirmatory models where the relations between the observed and the latent
variables are specified in advance. By adopting a confirmatory approach, it is also
possible to assume the concurrent presence of general and specific latent traits
underlying the response process (Sheng and Wikle 2008).

Different MIRT models can be distinguished on the basis of statistical relations
between latent dimensions and test items. The pattern of these relations can be
defined by a loading matrix with a simple structure (between-item multidimension-
ality) or by a complex loading structure (within-item multidimensionality). Another
distinction is among noncompensatory and compensatory models, where a lack in
one ability naturally compensates for the other (Reckase 2009).

Moreover, the main goal of multidimensional measurement is to assess multiple
different abilities that are necessary for performing successfully within a given
content domain. In general, the key question is if there is a scale score primarily
reflecting variation on a single construct, or due to multiple non-ignorable sources
of variability, subscales need to be formed (Reise et al. 2010).

In many assessment cases, content domains show a hierarchical structure with
dimensions on different levels that vary in their degree of generality and abstraction.
On the highest levels of these hierarchies, dimensions represent overall ability levels
while, on lower levels of the hierarchy, dimensions represent more specific abilities.
Additive models and higher-order models are two alternative approaches for dealing
with items that assess several related domains that are hypothesized to comprise
a general structure. Additive models are potentially applicable when there are a
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general factor and multiple domain specific factors, each of which is hypothesized to
account for the unique influence of the specific domain over the general factor (Chen
et al. 2006). In addition, researchers may be interested both in the domain specific
factors and in the general factor. Higher-order models are potentially applicable
when the lower-order factors are substantially correlated with each other and there
is a higher-order factor that is hypothesized to account for the relationship among
the lower-order factors. In the additive model, we can directly examine the strength
of the relationship between the domain specific constructs and their associated
items, as the relationship is reflected in the loadings, whereas these relationships
cannot be directly tested in the higher-order model as the domain specific factors are
represented by the disturbances of the first-order factors (Yung et al. 1999; Chen et
al. 2006). However, the differences between the two models become more important
when researchers are also interested in the contribution of the one or more specific
abilities besides the general/higher-order factor. The choice of a model preferred
against another should be made only with regard to the specific research question
especially because different models may be equivalent in terms of fitting (Hartig
and Hohler 2009; Huang et al. 2013).

In this paper, a MIRT approach is considered to analyze the structure of
a large-scale standardized test developed to assess specific abilities. We focus
on the data coming from annual surveys conducted by the National Evaluation
Institute for the School System (INVALSI) at different school grades. The INVALSI
develops tests to assess pupils’ Italian language and mathematics competencies,
and administers them to the whole population of primary school students (second
and fifth grade), lower secondary school students (sixth and eighth grade), and
upper secondary school students (tenth grade). The INVALSI test consists of two
subtests representing learning specific domains and, consequently, it is appropriate
to assume a multidimensional structure. Each subtest contains both items which
mainly measure the literacy, i.e. the specific competence intended as the capability
of using suitable instruments and procedures to solve a particular task, and items
which mainly measure the reasoning and thinking ability. We consider data from
the administration of the INVALSI test at the end of lower secondary school (eighth
grade). The choice of the eighth grade assessment data is motivated by the fact that
students receive a test score based on their performance, which contributes to the
definition of the final student score at the end of lower secondary school within a
state certification exam with legal validity. In this test, the Italian language test is
further divided into two separate sections: reading comprehension and grammar.
Within this assessment, it is particularly relevant the need for multidimensional
evaluation measures meeting the purposes, which inspired the test development.

Hence, in this work, we propose the use of the additive model with one general
and three specific factors, where the specific factors are intended to measure the
ability within each domain of the test (reading comprehension, grammar, and
mathematics) in terms of literacy, and the general factor measures the reasoning and
thinking skills that determine the learning achievement primarily. Considering these
definitions for the latent abilities, we believe that the general ability can be correlated
with reading comprehension, grammar, and mathematics abilities, because these
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specific literacy abilities all directly involve reasoning and thinking. The model that
we assumed and estimated represents indeed the best solution with respect to the
data structure and the INVALSI purposes.

We show that the proposed model fit the data better in comparison with
other multidimensional models, it is consistent with the assumed test structure,
and it is able to describe the relations among the latent abilities precisely and,
most important, meaningfully. The study of dimensionality characteristics is very
important to interpret correctly the test structure and to estimate test scores reflecting
the presence of different ability dimensions. Our work represents the first attempt
to model this complex structure considering different number of dimensions and
orders and introducing a correlation between the abilities.

A further innovative and important aspect of our proposal deals with the
estimation procedure. In fact, an approach suitable to model the dependencies
among parameters and sources of uncertainty for different kinds of IRT models is
needed. For years, the standard methodology has been mainly involving marginal
maximum likelihood (MML). Unfortunately, this estimation method may be com-
putational heavy due to the approximation of integrals involved in the likelihood
function, especially for increasingly complex models. Moreover, the success of
MML estimation based on the EM algorithm strongly depends on the choice of
starting values.

One possible alternative is offered by Markov chain Monte Carlo (MCMC)
methods, in a fully Bayesian framework. This approach has the advantage of
estimating item parameters and individual abilities jointly and it is proved to
be more accurate and efficient in parameter estimation compared with the usual
MML method (Albert 1992). MCMC is powerful for complicated models where
the probabilities or expectations are intractable by analytical methods or other
numerical approximation. Furthermore, at the end of the analysis, the user has
access to the entire posterior distribution of every parameter, not just to a point
estimate and standard error.

Another important advantage concerns the model comparison that can be carried
out using Bayes factors, Bayesian deviance, and a Bayesian predictive approach,
i.e. posterior predictive model checks. These model comparison techniques provide
an alternative method of checking model assumptions (Cowles and Carlin 1996;
Sahu 2002; Spiegelhalter et al. 2002; Sinharay and Stern 2003), for example
unidimensionality versus multidimensionality.

Among the MCMC methods, the Gibbs sampler (Geman and Geman 1984)
has been successfully applied to estimation of IRT models (see, e.g., Albert
1992; Béguin and Glas 2001; Fox and Glas 2001; Edwards 2010). The method is
straightforward to implement when each full conditional distribution is a known
distribution that is easy to sample from.

In this paper we refer to the estimation procedure developed by Sheng and Wikle
(2008, 2009) for both additive and hierarchical models. We should provide useful
insights to encourage a diffuse use of (a) multidimensional models with complex
ability structures, and (b) Bayesian estimation via MCMC, among educational and
psychological researchers and practitioners. In fact, MCMC offers the many above
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mentioned advantages including, from a practical point of view, a relative ease of
implementation and the availability of free software. Unfortunately, the method is
not largely used, probably due to the computational intensiveness that limited its use
in the past.

The paper is organized as follows. In Sect. 6.2, MIRT models are reviewed, in
Sect. 6.3 we present the results, while in Sect. 6.4 we address the main issues and
conclusions.

6.2 MIRT Models

Within IRT models, we refer here to normal ogive modes for binary data (Lord
and Novick 1968), where Yij denotes the response variable for the respondent i to
item j, with i= 1, . . . ,n and j= 1, . . . ,k, and P(Yij = 1) is the probability of a correct
response expressed as the standard normal cumulative distribution function of item
and person parameters.

In the simplest case, it is possible to assume a single, or at least predominant,
latent ability underlying the response process. By considering the class of models
with two item parameters, the unidimensional two-parameter normal ogive (2PNO)
model (Lord and Novick 1968) can be formulated as follows:

P
(
Yij = 1

∣∣∣θi,αj,δj
)
=Φ(αjθi−δj) =

∫ αjθi−δj

−∞

1√
2π

e−t2/2dt, (6.1)

where α j is the discrimination parameter for item j representing the slope of the
item characteristic curve (ICC), δ j is the difficulty or threshold parameter for item
j denoting the location of the ICC, and θ i is the ability for the subject i. Figure 6.1
shows a unidimensional model in the path diagram representation, where circles and
squares represent the latent variables and the item response variables, respectively.
Parameter estimation of model (6.1) via the Gibbs sampler algorithm within MCMC
methods was proposed by Albert (1992).

Fig. 6.1 Graphical
representation for the
unidimensional model
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Turning to a multidimensional solution, the choice of an explorative or a
confirmatory approach is required. In the former approach, all latent traits are
allowed to load on all item response variables, while in the latter approach the
existence of relations between the observed and the latent variables is specified in
advance. We refer here to a confirmatory approach only. In fact, we assume that a
test consisting of k items is specifically designed to assess a set of m domains, i.e.
the test is divided into m subtests each containing kv items, where v= 1,..m.

Under this confirmatory approach, the first intuitive solution is to assume that
each item is related to a single latent ability only, turning out with m separate
unidimensional models. This kind of relationship among observed items and
abilities is called between-item multidimensionality (Wang et al. 2004). Within this
approach, Sheng and Wikle (2007) introduced the estimation via Gibbs sampler for
the so-called 2PNO multi-unidimensional model, expressed as follows:

P
(
Yvij = 1

∣∣∣θvi,αvj,δvj
)
=Φ(αvjθvi−δvj) =

∫ αvjθvi−δvj

−∞

1√
2π

e−t2/2dt, (6.2)

where each parameter is specific for the vth dimension and the abilities may be
correlated. The multi-unidimensional model is shown graphically in Fig. 6.2 for the
bidimensional case.

An alternative multidimensional approach is based on the assumption of the
concurrent presence of general and specific latent traits underlying the response
process (Sheng and Wikle 2008). This approach is derived from the corresponding
models in the traditional factor analysis for continuous observed variables such as
bi-factor or hierarchical models and higher-order factor models (see Holzinger and
Swineford 1937; Schmid and Leiman 1957; Yung et al. 1999). A first approach
consists in specifying the same measurement model (6.2) adding a linear relation
among each latent trait to a general, overall ability. In the IRT literature, these
models are called higher-order models (de la Torre and Song 2009) or hierarchical
models (Sheng and Wikle 2008). In the following, we will refer to the 2PNO
hierarchical model

Fig. 6.2 Graphical
representation for the
multi-unidimensional model.
The abilities may be
correlated, even not
graphically shown
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Fig. 6.3 Graphical
representation for the
hierarchical model

P
(
Yvij = 1

∣∣∣θvi,αvj,δvj
)
=Φ(αvjθvi−δvj) =

∫ αvjθvi−δvj

−∞

1√
2π

e−t2/2dt, (6.3)

where θvi ∼ N(βvθ0i,1) and β v is a measure of association among the general and
the vth specific latent trait. A graphical representation of the hierarchical model (6.3)
is provided in Fig. 6.3.

An estimation procedure for the hierarchical model via Gibbs sampler was
proposed by Sheng and Wikle (2008, 2009) and Sheng (2010).

A second approach consists in assuming that the general ability directly affects
the candidate’s responses, and that this effect is summed to the effect of specific
factors to determine the probability of a correct response to a given test item for the
so-called 2PNO additive model (Sheng and Wikle 2009) as follows:

P
(
Yvij = 1

∣∣∣θ0i,θvi,α0j,αvj,δvj
)
=Φ(α0jθ0i+αvjθvi−δvj) =

=
∫ α0jθ0vi+αvjθvi−δvj

−∞

1√
2π

e−t2/2dt,
(6.4)

The model involves the estimation of a general and a specific discrimination
parameter α0j and αvj, respectively, and a threshold parameter δ vj for each item j.
Moreover, for each subject i, an overall ability θ 0i and m specific abilities θ vi are
estimated. The abilities may be correlated and are assumed to be distributed as
θi ∼ Nm+1 (0,P), where P is the correlation matrix. A graphical representation for
model (6.4) is provided in Fig. 6.4. In the literature on traditional factor models,
Fig. 6.4 represents the so-called bi-factor model (Holzinger and Swineford 1937)
with orthogonal factors. In the IRT literature, this underlying structure was extended
to models for categorical response variables (see, e.g., Gibbons and Hedeker 1992).
Moreover, Sheng and Wikle (2009) introduced a Gibbs sampler algorithm for the
estimation of model parameters, including the case of correlated latent variables.

In the following section, the Gibbs sampler algorithm is briefly reviewed for
model (6.4) only. In fact, the additive model represents the most general structure
and the estimation procedure can be easily derived for all the models discussed
here. Analogously to traditional factor analysis, where the standard second-order
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Fig. 6.4 Graphical
representation for the additive
model. The abilities may be
correlated, even not
graphically shown

model was demonstrated to be a constrained case of the bi-factor model (Yung et al.
1999; Chen et al. 2006), it can be demonstrated that the hierarchical model (6.3) is a
special case of the additive model (6.4). As discussed in Sect. 1, the general ability
has the same meaning in both approaches while the specific abilities for the additive
model are equivalent to the disturbances of the first-order factors for the hierarchical
model.

6.2.1 Estimation of the Additive Model via Gibbs Sampler

The use of the Gibbs sampler in the estimation of the 2PNO additive model (6.4) was
proposed by Sheng and Wikle (2009) and implemented in the MATLAB package
IRTm2noHA by Sheng (2010). The algorithm involves the specification of the
conditional distribution of each variable with respect to all the other variables.
Within a Bayesian approach, the item parameters, the abilities, and the correlations
among the traits are viewed as random variables with their own prior distribution.

First, independent continuous underlying variables Zvij ∼ N(α0jθ0i+αvjθvi
−δvj,1) are introduced so that binary response variables {Yvij} are viewed as
indicators of values of {Zvij}, as follows:

Yvij =

{
1 if Zvij > 0,
0 if Zvij ≤ 0.

(6.5)

Second, we should specify the prior distributions. Normal priors can be assumed
for the item parameters ξvj = (α0j,αvj,δvj) ’, i.e. ξvj ∼ Nm+2

(
�ξv

,Σξv

)
, with

�ξv
=

(
μα0v ,μαv ,μδv

)
’ and Σξv = diag

(
σ2
α0v

,σ2
αv ,σ

2
δv

)
. A multivariate normal

prior of dimension m+ 1 is assumed for the abilities: θi Nm+1(0,R), where
θ i = (θ 0i, θ 1i, . . . ,θmi)’ is the vector of general and specific abilities for the subject
i, with i= 1, . . . ,n, 0 is a vector of length m+ 1 of zeros and R is the corresponding
variance–covariance matrix. In particular, R is a constrained covariance matrix
with diagonal elements equal to 1 and off-diagonals elements being the ability
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correlations. Following Sheng and Wikle (2009), an unconstrained covariance

matrix Σm+1 is introduced with a noninformative prior P(Σ) ∝ |Σ|−m+1
2 so that R

can be derived directly from Σ.
Given the prior distributions, the joint posterior distribution of interest is given by

P
(
Z,θ,ξ,Σ

∣∣∣Y)
∝ f

(
Y
∣∣∣Z)P(

Z
∣∣∣θ,ξ)P(ξ)P(

θ
∣∣∣R)

P(Σ) . (6.6)

Because distribution (6.6) has an intractable form, it is appropriate to resort to the
Gibbs sampler in order to simulate iteratively from the single treatable conditional
distributions until convergence. Conditional distributions are:

1. Z | θ, ξ, Y
2. θ | Z, ξ, R, Y
3. ξ | θ, Z, Y
4. Σ | θ, ξ, Y.

Then, the final step consists in transforming the variance–covariance matrix Σ in
the correlation matrix R.

The first conditional distribution is a truncated normal as follows:

Zij

∣∣∣θ,ξ,y ∼
{
N(ηvij;1) with Zvij > 0 if Yvij = 1
N(ηvij;1) with Zvij ≤ 0 if Yvij = 0

(6.7)

where ηvij = α0jθ0i+αvjθvi−δvj.
The second conditional distribution is

θi
∣∣∣Z,ξ,R,y ∼ Nm+1

(
(A’A+R)−1A’B;(A’A+R)−1

)
, (6.8)

where A is a k by m+ 1 matrix containing in the first column the general
discrimination parameters and in the remaining m columns a block diagonal matrix
with elements αv = (αv1, . . . , αvkv), i.e. the specific discrimination parameters, and
B is a vector of length k with elements Zvi + δ v.

The third conditional distribution is multivariate normal as follows:

ξvj

∣∣∣θ,Z,y ∼ N3

((
X’
vXv+Σξv

−1
)−1 (

X’
vZvj+Σξv

−1�ξv

)
;

)(
X’
vXv+Σξv

−1
)−1

,

(6.9)

where Xv = [θv, −1]. It is also possible to include in distribution (6.9) an indicator
function to ensure positive discrimination parameters (see, e.g., Sheng and Wikle
2009).

The last conditional distribution is an inverse Wishart distribution, as follows:

Σ
∣∣∣θ,ξ,y ∼W-1 (S−1,n

)
, (6.10)



100 M. Matteucci and S. Mignani

where S =
n

∑
i=1

(Cθi)(Cθi) ’ and C = diag

⎛
⎝

(
m

∏
v=1

kv

∏
j=1

α0vj

)1/k

,

(
k1

∏
j=1

α1j

)1/k1

, . . . ,

(
km

∏
j=1

αmj

)1/km
⎞
⎠.

Finally, the correlation matrix R should be transformed from the variance–
covariance matrix Σ. For identification purposes, at each iteration, the ability
parameters are rescaled to have mean equal to zero and standard deviation equal to
one. For the same reason, the item parameters are rescaled to preserve the likelihood
(details can be found in Bafumi et al. 2005). Within this approach, the general
ability is allowed to be correlated to the specific abilities. However, it should be
noted that high correlations are not supported by the model, because a problem of
multicollinearity is posed.

6.2.2 Model Selection

One of the most important issues in educational and psychological measurement is
the choice of an adequate model. This decision is crucial and should account for (a)
the aim of the assessment and the capability of interpretation of the results; (b) the
statistical fit of the model to the observed data.

Firstly, if the data clearly show a multidimensional structure in sub-domains,
all the multidimensional approaches allow to increase the measurement precision
and the reliability of each subscale, especially for high correlated domains and for
multiple short subtests (de la Torre and Patz 2005; Wang et al. 2006). The choice
of the best multidimensional model primarily depends on the evaluation objectives
and on the specific test used to reach them.

In a multi-unidimensional model, a construct domain is broken apart into its
separate distinct correlated elements. This model is most reasonable when a scale is
composed of multiple items with similar content, but in this model there is no one
common overall dimension to be measured or that directly affects item variance.

It is clear that if a researcher intends to both recognize multidimensionality
and simultaneously consider the idea of a single important overall construct, the
higher-order or additive models are the best choices. In fact the higher-order model
places that the factors are correlated because they share a common cause. In other
words, this model states that the overall construct is a “second-” or “higher-order”
dimension that explains why two or more specific dimensions are correlated. This
model doesn’t assume there is a direct relationship between the item and the general
construct, but rather the relationship between this general trait and each item is
mediated through the specific factor, an indirect effect as just said before.

On the other side, the additive model describes a latent structure where each item
loads on both a general and a specific factor directly. The general factor reflects
what is common among the items and represents the individual differences on
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the dimension that a researcher is most interested in (e.g., learning achievement).
Moreover, two or more specific factors represent common factors measured by
the items that potentially explain item response variance not accounted for by the
general factor. The additive model is a generalization of the most popular bi-factor
model, where all traits (common and specific) are orthogonal. Several papers show
the traditional second-order model is nested within the bi-factor model, and thus,
the more general bi-factor can be used to evaluate the decrement in fit resulting
from placing the restrictions inherent in the correlated traits, second-order, and
unidimensional models (Yung et al. 1999; Chen et al. 2006; Reise et al. 2010).

In real data applications, the additive model allows to take into account gen-
eral and domain specific factors simultaneously, whereas the higher-order model
“forces” a primary trait to be a domain specific factor. Moreover, in the additive
model the contribution of the group factors to prediction of an external variable
can be studied independently of the general factor. This model allows to test
measurement invariance and group mean differences at both the general and group
factor levels.

Besides the specific goal of the assessment and the possibility of interpreting the
results meaningfully, the statistical aspects for model choice should be taken into
account. From a statistical point of view, the model choice pertains to the selection
of the model that fits the data best. Certainly, one of the strengths of Bayesian
methods is represented by model comparison techniques. Within this approach,
Bayes factors, Bayesian deviance, and a Bayesian predictive approach, i.e. posterior
predictive model checks can be used to test multiple hypotheses and to compare the
fit of different models (Sinharay and Stern 2003; Sinharay et al. 2006).

6.3 Case Study

In this application we take into account response data coming from the INVALSI
national assessment for the eighth grade in the scholastic year 2008/2009 on a
sample of n= 1,548 students. The Italian language subtest consists of 30 reading
comprehension items (R1–R30) and 10 grammar items (G1–G10), while the
mathematics subtest consists of 21 items (M1–M21). All items are multiple-choice
with one correct answer and can be easily recoded into binary (1= correct response,
0= incorrect response) so that 2PNO models could be used.

Given the test specification, a multidimensional ability structure can be clearly
assumed. In particular, two different confirmatory structures could be used, by
dividing the items into two subgroups (Italian language and mathematics items)
or three subgroups (reading comprehension, grammar, and mathematics items).

An explorative analysis was also conducted to verify the existence of different
subscales for the mathematics test. Despite the items were classified as belonging
to four different domains (numbers, geometry, functions and relationships, and data
and predictions), no evidence of multidimensionality was found and the presence of
a predominant latent variable is assumed.
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Table 6.1 Test reliability for the estimated models

Test reliability

Unidimensional 0.88
Two specific dimensions Overall Italian language Mathematics

Multi-unidimensional – 0.86 0.82
Hierarchical 0.73 0.86 0.82
Additive 0.74 0.74 0.72
Three specific dimensions Overall Reading comprehension Grammar Mathematics

Multi-unidimensional – 0.85 0.74 0.82
Hierarchical 0.78 0.84 0.74 0.82
Additive 0.76 0.72 0.56 0.74

A comparison was conducted in order to choose the best model in terms of data
fit. First of all, the unidimensional model (6.1) was estimated by using the MATLAB
package IRTuno by Sheng (2008a). Then, the multi-unidimensional model (6.2) was
taken into account with both two or three specific dimensions. Model estimation
was conducted with the MATLAB package IRTmu2no by Sheng (2008b). Finally,
the hierarchical model (6.3) and the additive model (6.4) were estimated again with
two or three specific dimensions but assuming one overall ability too. Parameter
estimation was conducted by using the MATLAB package IRTm2noHA (Sheng
2010). For all models, convergence of the Gibbs sampler was assessed by checking
that the Gelman–Rubin statistic was around or close to 1 for each parameter. This
required 20,000 total and 10,000 burn-in iterations.

Firstly, test reliability was computed for the different models as reported in
Table 6.1. The results show that the reliability is sufficiently large to be useful for
most approaches. The weakest subscale is represented by the grammar test where the
number of items is probably too low with respect to the complexity of this domain.
Moreover, the mathematics test seems to be weaker than the Italian language test in
terms of reliability and this may be due to the presence of much more heterogeneous
items. Both for the multi-unidimensional and hierarchical models, test reliabilities
are rather large for all subscales. In the additive model, the addition of a general
ability reduces the reliabilities associated with the specific traits. This effect is not
observed for the hierarchical model, as the specific factors are a linear function of
the general one.

Table 6.2 reports the results for the deviance information criterion (DIC;
Spiegelhalter et al. 2002) for all models.

As can be clearly seen from the results, a multidimensional approach should
be preferred in comparison with a unidimensional one, which is associated with
the highest DIC= 96272.61. In the comparison of models with two or three
specific traits, the highest number of dimensions should be definitely chosen. By
comparing different approaches with three specific dimensions, the additive model
with DIC= 94381.91 turns out to be the best model. By considering DIC, test
reliability, and test structure jointly, we believe that the additive model with three
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Table 6.2 DIC for the estimated models

DIC

Unidimensional 96272.61
Two specific dimensions Three specific dimensions

Multi-unidimensional 95163.57 94902.07
Hierarchical 95158.37 94900.61
Additive 94587.39 94381.91

Fig. 6.5 Graphical
representation for the chosen
additive model with three
specific dimensions and one
general ability for the
INVALSI test data

specific dimensions would be an appropriate choice for the evaluation purposes.
Based on these considerations, we assume that the item response probability
depends on a general cognitive ability, on a specific literacy on the item topic, and
on the joint effect that these abilities have in the problem solving. Therefore, we
introduce correlations among all the traits, so that general and specific dimensions
are not totally separated, in accordance with the cognitive process we assume to
explain the learning achievement.

The latent structure is made of three specific abilities (θ 1 = reading comprehen-
sion ability, θ 2 = grammar ability, θ 3 =mathematics ability) and a general, overall
ability θ 0 with a compensatory effect in determining the probability of a correct
response, as graphically represented in Fig. 6.5.

The INVALSI test was developed in order to assess not only specific literacy but
also general ability, i.e. reasoning and thinking capability. For this reason, a latent
structure consisting of both specific and general abilities is a good solution. In the
comparison among the additive and the hierarchical model, the former should be
preferred. This can be proved not only in terms of DIC but also by using posterior
predictive models checks (PPMC). In fact, the choice of a Bayesian approach
allows the use of PPMC for assessing model fit (Sinharay and Stern 2003) by
comparing the observed data to replicated data sampled from the posterior predictive
distribution. Within IRT models, Sinharay et al. (2006) evaluated a number of
different discrepancy measures and suggested the use of the odds ratio as measure
of associations among item pairs in order to detect lack of fit. This approach is
implemented in the IRTm2noHA package (Sheng 2010), where the odds ratio and
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Fig. 6.6 PPMC of the hierarchical and the additive models for the INVALSI test data

the corresponding PPP-values are calculated for each item pair, as shown in Fig. 6.6
for the hierarchical model (on the left) and the additive model (on the right) with
three specific abilities. In particular, Fig. 6.6 highlights with a triangle the extreme
predicted odds ratios, i.e. tail-area probabilities PPP-values for odds ratios larger
than 0.995 or smaller than 0.005. Clearly, the additive model is associated with a
smaller number of extreme predicted odds ratios in comparison with the hierarchical
model. Henceforth, the results for the additive model will be taken into account.

The estimated item parameters are shown in Table 6.3. The model requires, for
each item, the estimation of a general discrimination parameter α0, a specific dis-
crimination αv, and a difficulty parameter δ v, for v= 1, . . . ,3 first-order dimensions.
For each parameter, the mean of the posterior distribution of the samples, i.e. the
expected a posterior (EAP) estimate, and the corresponding standard deviation (SD)
are reported.

The item parameters have been estimated accurately, as proved by the standard
deviations describing a low statistical uncertainty. Furthermore, Monte Carlo stan-
dard errors (MCSE) computed according to the batching method were all lower than
0.01.

The discrimination parameters are largely positive for most items, suggesting that
the assumed structure is consistent and able to give information on the contribution
of each dimension. As can be clearly seen from the results, the test items can be
divided into three main groups depending on the discrimination parameter estimates
and the comparison between the general α0 and the specific αv discrimination.
In a first group, we can include items with considerably higher estimates for the
specific discrimination than for the general discrimination which can be interpreted
as items measuring literacy mainly. In a second group, items assumed to measure
thinking and reasoning skills, instead of mere literacy, can be included. These items
are characterized by a higher general discrimination parameter in comparison with
the specific one. Lastly, a third group of items can be identified by both positive and
balanced discrimination parameters. In order to endorse these items, both literacy
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Table 6.3 Item parameter
estimates for the additive
model

α0 αv δ v

Domain Item EAP SD EAP SD EAP SD

Reading R1 0.18 0.09 0.64 0.09 −0.38 0.04
R2 0.16 0.08 0.27 0.08 −1.03 0.04
R3 0.18 0.07 0.27 0.08 −0.69 0.04
R4 0.15 0.07 0.29 0.07 −0.33 0.03
R5 0.22 0.09 0.44 0.09 −1.11 0.05
R6 0.58 0.10 0.37 0.10 −1.23 0.06
R7 0.30 0.08 0.25 0.08 −0.52 0.04
R8 0.36 0.08 0.31 0.08 −0.09 0.03
R9 0.94 0.09 0.09 0.06 −0.75 0.05
R10 0.14 0.05 0.04 0.03 0.15 0.03
R11 0.90 0.08 0.05 0.04 −1.02 0.05
R12 0.76 0.08 0.11 0.07 −0.80 0.04
R13 0.70 0.08 0.10 0.06 −0.63 0.04
R14 0.21 0.07 0.27 0.08 −0.68 0.04
R15 0.51 0.08 0.10 0.07 −1.11 0.05
R16 0.06 0.05 0.33 0.06 0.18 0.03
R17 1.29 0.11 0.07 0.06 −0.99 0.06
R18 0.45 0.08 0.35 0.08 −0.41 0.04
R19 0.06 0.04 0.18 0.06 0.63 0.03
R20 0.30 0.08 0.24 0.08 −0.28 0.03
R21 0.13 0.08 0.46 0.08 −1.05 0.04
R22 0.32 0.10 0.61 0.10 −0.99 0.05
R23 0.10 0.07 0.62 0.10 −1.68 0.07
R24 0.08 0.05 0.27 0.06 −0.07 0.03
R25 0.21 0.07 0.27 0.08 −0.07 0.03
R26 0.30 0.08 0.38 0.08 −0.45 0.04
R27 0.08 0.06 0.53 0.07 −0.73 0.04
R28 0.16 0.08 0.48 0.08 −0.67 0.04
R29 0.21 0.09 0.50 0.09 −0.80 0.04
R30 0.45 0.11 0.42 0.11 −1.58 0.07

Grammar G1 0.31 0.08 0.39 0.08 −1.35 0.05
G2 0.29 0.08 0.53 0.07 −0.44 0.04
G3 0.45 0.08 0.44 0.07 −0.87 0.04
G4 0.04 0.03 0.40 0.06 0.18 0.03
G5 0.44 0.10 0.64 0.09 −1.29 0.06
G6 0.12 0.07 0.52 0.06 −0.16 0.03
G7 0.23 0.12 0.92 0.10 −0.24 0.04
G8 0.66 0.10 0.52 0.09 −1.67 0.08
G9 0.49 0.09 0.27 0.09 −1.71 0.07
G10 0.26 0.05 0.15 0.05 −0.49 0.03

Maths M1 0.17 0.05 0.17 0.05 −0.93 0.04
M2 0.25 0.07 0.57 0.06 −0.99 0.05
M3 0.14 0.05 0.31 0.05 −0.03 0.03
M4 0.39 0.07 0.53 0.07 −1.20 0.05
M5 0.14 0.06 0.18 0.07 −1.51 0.05
M6 0.49 0.08 0.73 0.07 −1.03 0.05
M7 0.16 0.07 0.76 0.07 −0.70 0.04
M8 0.11 0.05 0.48 0.05 −0.59 0.04
M9 0.23 0.06 0.57 0.06 −0.32 0.04
M10 0.14 0.06 0.64 0.06 −0.61 0.04
M11 0.22 0.06 0.48 0.06 −0.67 0.04
M12 0.24 0.07 0.67 0.07 −1.06 0.05
M13 0.35 0.06 0.42 0.05 −0.70 0.04
M14 0.41 0.07 0.67 0.06 −0.69 0.04
M15 0.14 0.06 0.54 0.06 −0.61 0.04
M16 0.14 0.05 0.47 0.05 −0.49 0.04
M17 0.06 0.04 0.60 0.06 −0.97 0.04
M18 0.19 0.08 0.84 0.08 0.87 0.05
M19 0.12 0.06 0.58 0.06 −0.51 0.04
M20 0.08 0.05 0.37 0.05 −0.35 0.03
M21 0.07 0.04 0.40 0.05 −0.67 0.04



106 M. Matteucci and S. Mignani

and reasoning abilities are needed. In this last group of items, the interaction among
the general and specific abilities is more evident.

In the reading comprehension subtest, items R1, R16, R21, R22, R23, R24, R27,
R28, R29 can be included in the first group. These items mainly require lexical
competence and local or global comprehension of the text to be solved. On the
contrary, items R6, R9, R11, R12, R13, R15, R17 are characterized by a higher
estimate in the general discrimination parameter with respect to the specific one
and require to interpret, identify a meaning, or make an inference from the text.
The remaining items are associated with both positive and moderate discrimination
parameters. This means that, in order to be solved, the item needs both a specific
ability in reading comprehension and a more general capability of reasoning and
thinking.

By looking at the results for the grammar subtest, it can be noticed that most
items (G2, G4, G5, G6, G7) are related more specifically to grammar literacy. These
items require the knowledge of morphology and linguistic syntax. The remaining
items are related to both a specific and an overall ability, by requiring to understand
the meaning or the communicative use of a word or a sentence.

In the mathematics subtest, most items are associated with high specific dis-
crimination parameters, denoting a stronger relationship with the corresponding
literacy instead of the thinking and reasoning ability. In fact, the mathematics
items were designed with a special focus on the specific competence especially
on numbers and geometry. On the other hand, items with a moderate general
discrimination parameter deal with relations and functions (D4, D6), measurement,
data and prevision (D13), and space and figures (D14). All these items have a strong
reasoning component.

The threshold parameters δ v can be used to identify the difficulty level of the
item. However, for this model, it is not possible to order univocally the items
by difficulty level on the basis the parameter estimate. In fact, this order may
vary depending on various combination of ability ranges. By fixing the ability
scores at their mean value (θ̂0 = θ̂v = 0), it is possible to interpret the difficulty
of the items for a median student, by evaluating the standard normal cumulative
distribution function at minus the threshold parameter. This means that, as the
threshold parameter decreases, the probability of a correct response for a median
individual increases. As can be easily noticed from Table 6.3, most items are
associated with a negative threshold parameter with few exceptions (R10, R16, R19,
G4, M18). This means that that the test is unbalanced in favor of “easy” items, where
the probability of endorsing the item for a student with an average reasoning ability
and specific ability, depending on the item subgroup, is higher than 50 %.

To sum up, the reading comprehension items need a higher reasoning and
thinking ability in comparison with grammar and especially mathematics items
which are more related to the specific competence (literacy). On average, the
grammar items are associated with a relative easiness of solution for a student with
mean abilities.

An advantage of using the additive model is the possibility to score students
on both the overall and the specific dimensions. In this way, it is possible to
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Fig. 6.7 Box-plots of the estimated ability scores for the additive model

Table 6.4 Estimated
correlations among the
abilities (MCSE in brackets)

θ 0 θREAD θGRAM θMATH

θ 0 1.00 (0.00)
θREAD 0.60 (0.08) 1.00 (0.00)
θGRAM 0.24 (0.12) 0.62 (0.07) 1.00 (0.00)
θMATH 0.35 (0.07) 0.55 (0.05) 0.50 (0.05) 1.00 (0.00)

evaluate students both on reasoning and thinking capability and on specific literacy.
In particular, each specific ability score can be interpreted as a residual ability in
comparison with the overall ability. The box-plots of the ability estimates in the
sample are shown in Fig. 6.7.

The overall and the reading abilities are able to score the subjects on the widest
range of values. On the contrary, the grammar test contains only ten items and the
estimated ability scores cover the smallest interval. Median values are close to zero
for all abilities, while variability is lower for the grammar ability.

In the additive model, the general and specific abilities are assumed to be
correlated. Estimates of these correlations are reported in Table 6.4.

The results confirm that the assumption of correlated traits is appropriate.
Moreover, the estimated correlations are not so high to cause a multicollinearity
problem. As expected, the reasoning and thinking ability θ 0 is fairly correlated
to the reading ability, whose items mostly require reasoning capability. On the
contrary, θ 0 is slightly correlated to grammar and mathematics abilities, whose
items mainly assess specific literacy. Obviously, there is a fair correlation among the
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reading comprehension and grammar ability and, generally, the specific dimensions
are correlated to each other. This empirical evidence suggests that the use of a model
with correlated abilities is needed in order to explain deeply the underlying response
structure.

Concluding Remarks
In educational studies, the analysis of outcomes has a primary role and,
recently, there has been an increased focus on defining tools to assess the
competences acquired by students. Adequate tools for measuring competence
need to be based on psychometric models that represent the internal structure
in terms of specific basic abilities. One of the main approaches is IRT. IRT
models are often used under the assumption of a single or at least one
predominant latent ability but, in real applications, tests often consist of
different subscales or domains involving explicitly several ability dimensions.
For this reason, the attention has recently been devoted to MIRT models
incorporating multiple abilities taking into account the hierarchical structure
typical of mental abilities.

Additive models and higher-order models are two alternative approaches
for dealing with items that assess several related domains. Additive models
consider a general factor and multiple domain specific factors, each of which
is hypothesized to account for the unique influence of the specific domain
over the general factor. Higher-order models consider lower-order factors
correlated with each other and a higher-order factor that is hypothesized
to account for the relationship among the lower-order factors. The model
choice should be made with regard to the specific research question especially
because different models may be equivalent in terms of fit.

In this paper, a multidimensional additive IRT model is proposed in order
to explain response data for the INVALSI test administrated at the end of
lower secondary school (eighth grade). We propose the use of the additive
model with one general and three specific factors, where the specific factors
are intended to measure the abilities within each domain of the test (reading
comprehension, grammar, and mathematics) in terms of literacy, and the
general factor is interpreted as measuring reasoning and thinking skills.
The model includes the correlations among the different traits because the
existence of an association among these abilities is well known. To estimate
the model we use MCMC methods, in a fully Bayesian framework. This
approach has the advantage of estimating item parameters and individual
abilities jointly and it is more accurate and efficient compared with the
usual MML method. MCMC is powerful for complicated models where the
probabilities or expectations are intractable by analytical methods or other
numerical approximation. We show that the proposed model fit the data better
in comparison with other multidimensional models. The model is consistent

(continued)
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with the assumed test structure, it offers evidences on the item measurement
characteristics and it is able to describe the relations among the latent abilities
meaningfully.

The results clearly show the cognitive test structure. Student performances
depend on a general factor, called reasoning and thinking ability, with a more
or less pronounced impact on single items, and on three specific literacy
factors. According to the results, it was possible to classify each item on
the basis of the predominant cognitive characteristics. In particular, within
each domain there are items mainly measuring the literacy component, i.e. the
capability of applying concepts and procedures, while other items measure a
more general component by involving reasoning and thinking abilities. Lastly,
for some items, the two components are equivalent. In the reading subtest
there is quite a balance among the different item types, while in the grammar
and especially in the mathematics subtest there are more items with a greater
score for the literacy.

These results probably depend on how these topics are taught at school
and how the students are evaluated. In Italy, the mathematics is still a subject
which is strongly related to notions and, as a consequence, students are
required to merely use instruments while less attention is given to reasoning
skills. This may partially justify the low results of Italian students within
international student assessments such as OECD PISA or TIMSS, where the
number of items requiring not only literacy but especially reasoning capability
is quite relevant.

The item classification based on different weights (discrimination param-
eters) for the abilities may be extremely useful for evaluators in order to
better understand the learning outcomes and to use the information provided
to modify the test structure and to build new items.

The additive model allowed to score separately students on both overall
and specific dimensions. In order to endorse the item, the specific ability is
the prevalent component in the grammar and mathematics subtests, while the
overall ability has a larger effect for the reading comprehension subtest.

The results give important recommendations to test developers and policy
makers on learning contents and processes and on instruments for the
evaluation of performances.

This work represents a first attempt of analyzing the results of the INVALSI
test from a multidimensional perspective, by offering important causes for
reflection and opening the way for in-depth analyses using more sophisticated
but more flexible methods in comparison with classical techniques to deal
with complex testing situations. The results could also be used by INVALSI
in order to assign a final test score and separate subtest scores to students.
The Institute is currently working on new tests containing items classified
according to both the content domain and the cognitive process needed to

(continued)
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solve the item. We expect that new data would allow a multidimensional
analysis also for the mathematics subtest. As a consequence, it will be possible
to include more than one second-order trait and a third-order general trait
(Huang et al. 2013).
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Chapter 7
Graphical Representations of Items and Tests
That are Measuring Multiple Abilities

Terry A. Ackerman and Robert A. Henson

Abstract This article compares graphical representations of items and tests for four
different multidimensional item response theory (MIRT) models: compensatory
logistic model, the noncompensatory logistic model, a noncompensatory diagnostic
model (DINA), and a compensatory diagnostic model (CRUM/GDM). Graphical
representations can provide greater insight for measurement specialists and item/test
developers about the validity and reliability of the multidimensional tests. They also
can provide a link between quantitative analyses and substantive interpretations of
the score scale and inform the test development process.

Over the past several years there has been a growth of interest in multidimensional
item response (MIRT) models, especially diagnostic classification models (DCM)
(Rupp et al. 2010). These new MIRT models take a different approach in the type of
information they provide. Specifically, instead of providing ability estimates along
latent continuums the DCM provide information about whether examinees have
achieved a pre-designated level of competency on each trait being measured. The
purpose of this paper is to examine graphical representation of four particular two-
dimensional MIRT models to illustrate how different aspects of each model can
be represented. Graphical representations can provide greater insight for measure-
ment specialists and item/test developers about the validity and reliability of the
multidimensional tests. They also can provide a link between quantitative analyses
and substantive interpretations of the score scale and inform the test development
process. The models that will be examined are the compensatory logistic model,
the noncompensatory logistic model, a noncompensatory diagnostic model (DINA),
and a compensatory diagnostic model (CRUM/GDM). We will exam four particular
aspects of each model from a graphical perspective: item representation, information
representation, true score estimation, and conditional estimation.
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7.1 The Models

The first model is the compensatory logistic model. This is a direct extension of
the 2-PL unidimensional model. The two-dimensional compensatory model can be
expressed as

Pij =
1.0

1.0+ e−1.7(a1iθ1j+a2iθ2j+di)
(7.1)

where a1i and a2i represent the discrimination parameters for item i on dimension
one and two, respectively; and, θ 1j and θ 2j denote the latent abilities for subject j. In
this model, item difficulty for each dimension is indeterminate, thus we have just one
overall difficulty parameter for item i, di. This model is described as “compensatory”
because the abilities weighted by an item’s respective discrimination parameters are
additive in the logit. Thus, being “low” on one ability can be compensated by being
“high” on the other ability. This aspect will be illustrated later in the article.

The second model is the noncompensatory model given as

Pij =

[
1.0

1.0+ e−1.7(a1iθ1j−b1i)

] [
1.0

1.0+ e−1.7(a2iθ2j−b2i)

]
. (7.2)

In this model for a given item i each dimension has a discrimination parameter,
a1i and a2i, as well as a difficulty parameter, b1i and b2i. Also θ 1j and θ 2j denote
the latent abilities on the two dimensions for subject j. Notice also that this
model is essentially the product of two 2PL unidimensional IRT models, one for
each dimension. The multiplicative nature of this model also implies that being
“low” on one dimension cannot be compensated by being “high” on the other
dimension. That is, the overall probability of correct response is never greater than
the largest probability of the two dimensions. Specifically, if the first dimension (θ 1)
component is 0.20 and then even if the second dimensional component (θ 2) was 1.0,
the overall probability of correct response would only be 0.20.

The third model is the two-dimensional compensatory diagnostic model
(CGUM/GDM). Using the notation presented in Rupp et. al. (2010) this model
can be expressed as

Pij =
1.0

1.0+ e−1.7(λ1iα1j+λ2iα2j+λ0i)
(7.3)

where λ 1i and λ 1i are the discrimination parameters for item i on the first and second
dimensions, α1j and α2j denote the two latent dichotomous abilities for subject j,
and λ 0i represents the difficulty parameter for item i. Note that this model is very
similar to the compensatory model given in Eq. 7.1. The difference between the
two is that there are only two values of the latent attributes in α and the overall
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interpretation of the intercept. As opposed to defining an “average” difficulty of the
item, λ 0i is related to the probability of a correct response for someone who has not
mastered any of the measured attributes.

The final model is the noncompensatory diagnostic model called the DINA (the
Deterministic Noisy “and” model, Junker and Sijtsma 2001). In contrast to the
compensatory model, the DINA divides examinees into only two groups. The first
group has mastered all measured attributes by the item (η ij = 1) and thus should
correctly respond to the item and a second group that has not mastered at least one
of the measured items (η ij = 0) and should miss the item. Given the groups defined
by η ij, the probability of correct response to item i for person j can be written as

Pij = (1− sj)
ηig

(1−ηi)
j (7.4)

where sj is referred to as the “slip” parameter and specifies the probability that an
examinee who should answer the item right “slips up” and misses the item. The
parameter gj represents the probability that and examinee correctly “guesses” (i.e.,
the guessing the parameter) the answer when in fact they are expected to miss the
item.

7.2 Item Representation: Compensatory
and Noncompensatory Items

For the compensatory and noncompensatory items, because they are based upon a
continuous two-dimensional latent space, researchers can graphically represent the
probability of correct response for subject j for item i for all θ 1j, θ 2j combinations as
a response surface. This surface is the two-dimensional analog to the unidimensional
item characteristic curve (ICC). An example of such a surface for a compensatory
item with parameters a1 = 0.80, a2 = 1.40, and d = –0.30 from four different
perspectives is shown in Fig. 7.1. These figures were created using the software
CA-DISSPLA.

An example of a response surface for the noncompensatory model having
parameters

a1 = 2.0, a2 = 0.9, b1 = 0.6, and b2 = 0.5 is shown from four different perspec-
tives in Fig. 7.2. The effect of the multiplicative nature of this model can be seen by
the curving of the surface.

The response surfaces are not very helpful in that only one can be examined at
a time unlike their unidimensional ICC counterparts. A more helpful representation
would be to construct the contour plot for each surface. Such plots illustrate the
equi-probability contours of the response surface. Representations of such plots are
shown in Figs. 7.3, 7.4, and 7.5 for the compensatory model. In Fig. 7.3 the item
contours represent an item that only discriminates only among levels of θ 1 with
parameters a1 = 1.5, a2 = 0.0, and d = 0.3. Notice the examinees A and B, whohave
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Fig. 7.1 An example item characteristic surface

a θ 1 value of about −1 yet differ greatly on their θ 2 abilities, have exactly the same
probability of correct response, 0.2. That is, even though there is a huge discrepancy
in their θ 2 values, there is no compensation when an item is distinguishing between
levels of proficiency on only one ability. Notice also that examinees B and C,
who have the same θ 2 ability but differ greatly on their θ 1 abilities, do have quite
different probabilities of correct response, 0.2 for B and 0.8 for C. One should also
note that the larger the a-parameters the steeper the response surface and the closer
together the equi-probability contours.

In Fig. 7.4 the contour plot for an item that is measuring both θ 1 and θ 2 equally
is displayed. That is, a1 = a2 = 1.0. In this figure note examinees A and B have
opposite “profiles.” That is, examinee A is low on θ 1 but high on θ 2. Examine
B is high on θ 1 and low on θ 2. However, due to the compensatory nature of this
model, both examinees have the same probability of correct response, 0.7. Thus,
compensation in this model is maximal when both dimensions are being measured
equally well. (This also is why some researchers refer to this model as a partially
compensatory model, because the degree of compensatory is a function of the
discrimination parameters. As seen in Fig. 7.3, when only one latent trait is being
measured, there is no compensation.)
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Fig. 7.2 An example of a noncompensatory response surface

The contour plot also helps one to see the difference between the compensatory
and noncompensatory models. The curving around of the response surface is
much more noticeable when viewed in terms of contours. The contour plot for
the noncompensatory model with parameters a1 = 1.2, a2 = 1.1, b1 =−0.60, and
b2 = 0.50 is displayed in Fig. 7.5. Notice also in this figure that subjects A, B, and C
all have approximately the same probability of correct response, even though their
ability profiles are quite distinct. That is, examinee A is high on θ 2 and low on θ 1,
examinee B is low on θ 1 and low θ 2, whereas examinee C has the opposite profile
of examinee A and is low on θ 2 and high on θ 1. Clearly in this case, there is no
compensation, being high on one ability offers no compensation for examinees who
are low on the other ability.

Although contours are an improvement over response surfaces, practitioners
can only examinee one item at a time with this method. Perhaps the best way to
illustrate items for these two models is using vectors. Following the work of Reckase
(1985), Reckase and McKinley (1991), Ackerman (1994a, b), Ackerman (1996),
and Ackerman et al. (2003) an item can be represented as a vector where the length
of the vector, MDISC, is a function of the discrimination of the item,
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Fig. 7.3 A contour plot for an item measuring only θ1

A

B

Fig. 7.4 A contour plot for a compensatory item with equal discrimination parameters
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B

A

C

Fig. 7.5 A contour plot for a noncompensatory item

MDISC=
√(

a2
1 +a2

2

)
. (7.5)

The vector is orthogonal to and lies on the p= 0.5 equi-probability contour. All
vectors lie on a line that passes through the origin of the θ 1 − θ 2 coordinate system.
Because discrimination parameters are constrained to be positive, vectors can only
lie in the first and third quadrants. The distance from the origin to the tail of vector,
D, is equal to

D=
−d

MDISC
. (7.6)

The angular direction of the vector with the θ 1-axis, α , can be obtained using the
formula

α = cos−1
( a1

MDISC

)
. (7.7)

Note that the angular direction is a function of the ratio of the a1 parameter with
MDISC. If a2 = 0, then the vector will lie along the θ 1-axis. If a1 = a2, the vector
will lie at a 45◦ angle. An example of an item vector in relationship to a response
surface is illustrated in Fig. 7.6.
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Fig. 7.6 An item vector shown in relationship to its corresponding response surface

Fig. 7.7 An example of an item vector for a compensatory item

In Fig. 7.7 a vector is imposed upon a contour plot of an item. The parameters
for this item are a1 = 1.8, a2 = 1, and d = 0.8. Note that the more discriminating an
item is, the closer together the equi-probability contours and the longer the vector.



7 Graphical Representations of Items and Tests That are Measuring Multiple Abilities 121

Item vectors can be color coded according to content. When this is done
practitioners can answer several different questions. Are items from a certain content
area more discriminating or more difficult? Do different items from different content
areas measure different ability composites? How similar are the vector profiles for
different yet “parallel” forms? An example illustrating what a group of vectors for a
particular would look like is illustrated in Fig. 7.8. Note in this 101-item test, there
are three main categories of items, each color coded differently. Notice how items
for each content tend to lie within a relatively narrow sector.

Vector representation for the noncompensatory model has not been well devel-
oped. This is an area that needs to be studied more in the future.

Fig. 7.8 Item vectors for a
101-item test

7.3 Item Representation: Compensatory
and Noncompensatory Diagnostic Model

For the two diagnostic models the item representation is quite different. Specifically,
when using the MIRT models presented first with continuous ability, a smooth
surface was plotted to represent the ICC. However, in the case of diagnostic models
an examinee’s ability is represented as a set of classes, where each class is defined
by mastery or nonmastery of a set of skills. Therefore, there will not be a smooth
surface in ICC for diagnostic modeling. Instead it is better represented as a bar plot.
Figures 7.9 and 7.10 provide examples of such bar plots. In this example, there are
only two attributes. The plots on the left in each figure represent plots that are most
similar to the surfaces discussed previously. The z-axis represents the probability of
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Fig. 7.10 Item representation for a compensatory diagnostic model λ0 =−2 λ1 = 1.5, and
λ2 = 1.5

a correct response given an examinee’s attribute mastery profile. The x and y axes
represent the values of the first and second attributes. Notice that because diagnostic
models assume that individuals can be characterized as either masters or nonmasters
then there are only two possible values for each attribute.

While this approach of providing a three-dimensional plot can be useful with
two attributes, typical diagnostic models have more than two attributes. The plots
on the left of Figs. 7.9 and 7.10 do not easily extend to more typical examples of
diagnostic models. The plots on the right provide an alternative design to provide
the items ICC. In these two-dimensional plots each bar represents by a specific
class (i.e., mastery profile). By plotting each profile as its own class, such a graph
could be provided for more than two attributes. The limitation of such a method
is that the “shape” of the graph cannot be easily described because the ordering of
classes is somewhat arbitrary. However, one recommended ordering is to increase
the number of mastered attributes from left to right, as in done in these example
plots. In addition, the number of classes increases exponentially with the number of
attributes.

Contour plots could also be constructed in simple cases where only two
dimensions are being measured. However, in these cases they would not prove
to be as useful as was the case when continuous abilities where used. A contour
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plot for two attributes would create a simple two-by-two grid where each square
contains the corresponding probability of a correct response for each combination
of mastery/nonmastery. For this reason we do not include additional contour plots
for diagnostic models.

Like the models presented first, these graphs do not naturally allow for the
presentation of several items on the same plot. Vector plots were used to summarize
what is being measured by several items on a single plot. Vector plots are more
difficult to conceptualize for diagnostic models. These plots could be reproduced
when using a compensatory model. Recall that the CRUM has weights (discrimi-
nation parameters) for each attribute. As a result these weights could be plotted as
coordinates, which could be used to indicate what is being measured and to what
degree. However, the interpretation would be limited to substantive meanings. For
example, when using a continuous model the vector’s location was related to the
ability combinations that resulted in a probability of a correct response equal to
0.50. For diagnostic models, only a finite number of probabilities are possible and
so it is unlikely that a probability of 0.50 is ever predicted by the model.

Vector plots for the DINA model could also be determined in this case, but
may not be overly informative. The DINA model can either rely on only a single
attribute or measure both in the two-attribute example. However, if both attributes
are measured, the DINA model assumes that each attribute is measured equally.
Thus, for the DINA model, these vectors would only point in one of three directions,
only along the x-axis, only along the y-axis, and at a 45◦ angle (i.e., between
these two). Future research should consider alternative vector representations for
diagnostic model and explore their usefulness.

7.4 Information Representation for the Compensatory
Logistic Model

Unlike the unidimensional IRT model in which the Fischer information function
yields a unimodal curve that indicates how accurately each ability along the latent
continuum is being assessed by an item or a test, in two dimensions determining
the information is more complicated. With both the compensatory and noncompen-
satory models information is both a function of the discrimination parameters and
the direction or composite of skills being measured. That is, for a single location on
the latent ability plane, the accuracy of the ability estimation is a function of what
θ 1 − θ 2 composite is being measured.

Representation of test information for these two models is done through a series
of vectors (Ackerman 1994a, b). The latent ability plane is broken up into a 49-point
grid, i.e. a seven-by-seven grid from θ 1, θ 2 =−3 to +3.0 in increments of 1. At each
of the 49 θ 1, θ 2 combinations, the amount of information is estimated from 0◦ to
90o in 10o increments. The length of each information vector for the compensatory
model is given as vector I(θ1,θ2) computed using the formula
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I(θ1,θ2) = (cosα)2Var
(
θ̂1

∣∣∣θ1,θ2

)
+(sinα)2Var

(
θ̂2

∣∣∣θ1,θ2

)
+(2sin2α)

Cov
(
θ̂1, θ̂2

∣∣∣θ1θ2

)
(7.8)

where α is defined in Eq. 7.7. If the test is measuring different content, how do the
information profiles compare across the different contents? Is the information profile
similar across “parallel” forms? An example of such a “clamshell plot” is shown in
Fig. 7.11. The amount of information is greatest in a diagonal band extending from
the upper left (high θ 2 low θ 1 to the lower right (high θ 1, low θ 2). At the origin
the information appears to be maximal in the direction composites between 30◦ and
60◦. Notice further that the amount of information drops significantly as one moves
away from the origin in the first and third quadrants. Little information accuracy
exists at latent ability points (2, 2) and (−2, −2).

Fig. 7.11 Test Information vectors displayed as “clamshell” plots

Multiple categories can be easily compared in the test information plots by using
two different colors, one for each content. At each of the 49 latent ability locations,
the color representing the content that provides the most information is used. An
example of this is shown in Fig. 7.12. In this plot one can see that at the origin
content 1 provides the more accurate estimation of abilities combinations at 40◦,
whereas Content 2 appears to be measuring θ 1 more accurately.

One final representation of test information is a number plot. In this type of plot
at each of the 49 points the information is computed for each composite direction
from 0◦ to 90◦ in 1◦ increments. The number representing the direction having the
maximum information is indicated. The size of the font used to represent the number
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Fig. 7.12 Test information vectors comparison of two different contents

is a function of the amount of information. An example of such a plot is displayed
in Fig. 7.13. In this diagram it is clear that the composite that is being best measured
throughout the latent ability plane is at 62◦ – 63◦. This creates a very consistent
interpretation of the composite of skills being measured for all examinees.

As was the case for the item vector representation, the formulation of information
for the noncompensatory model has not been well developed. This also is an area
for future research.

7.5 Information Representation for the Diagnostic Models

Whereas Fisher’s information is quite common in IRT models that assume contin-
uous abilities in one or more dimensions, it is not applicable in diagnostic models.
For Fisher’s information to be computed the ICC must be a continuous and smooth
function or surface. DCMs define ability based on the mastery or nonmastery
of attributes and thus and define classes. As a result, an alternative to Fisher’s
information must be used. Chang and Ying (1996) discuss the use of Kullback–
Liebler information (KLI) to be used as an alternative to Fisher’s information in IRT.
KLI was described a global approach to information, whereas Fisher’s information
is described as a local measure of information. The advantage of KLI is that it is
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Fig. 7.13 An example of a
test information number plot

defined even when the ICC is not a continuous smooth function or surface and so
can be used when the underlying model is a DCM (Henson and Douglas 2005).

Specifically, the KLI can be used to measure the “discrimination” (or distance)
between two different attribute patterns α j and αk as an indication of how different
the response is expected to be between the two different attribute patterns. Notice
that if the expected responses are different then this item helps differentiate between
the two different attribute patterns. The KLI between these two different attribute
patterns is:

KLi (αj,αk) =
1

∑
x=0

P
(
x
∣∣∣αj

)
ln

⎛
⎝ P

(
x
∣∣∣αj

)

P
(
x
∣∣∣αk

)
⎞
⎠ (7.9)

where P(x|α) is the probability of a response x given the examinee has the
attribute pattern α . However, the KLI only provides the discrimination power (or
information) between two attribute patterns and thus, this value must be computed
for all possible pairs of attribute patterns. Where this value is large, the item is
most informative and where this value is small the item does not discriminate well
between those two respective attribute patterns (Henson and Douglas 2005).

Henson and Douglas (2005) suggest storing the information of the KLI for all
possible pairwise comparisons in a matrix; however, it can also be plotted (see
Fig. 7.14) to provide a visual display of what attribute patterns are discriminated
by a given item. In Fig. 7.14 attribute patterns are along the x and y axes. The z axis
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represents the value of the KLI for that combination. Notice that the values when
comparing attribute pattern {0, 0} to {1, 1} are the largest, indicating that these two
attribute patterns are highly discriminated. In contrast, the KLI is 0 when comparing
any attribute pattern to itself. Finally, attribute patterns that differ by mastery of only
one attribute have mild discrimination. Thus the KLI plot can be interpreted in a
similar way as Fisher’s information is used in IRT with continuous latent variables.
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Fig. 7.14 An example of and item’s discrimination through all pairwise KLI

7.6 True Score Representation for the Compensatory
Logistic Model

In this section only the compensatory model will be discussed, although the
noncompensatory extension closely follows. In unidimensional IRT the true score
representation allows practitioners to relate the latent ability scale to the expected
number correct scale. In the two-dimensional case this translates to relating the
latent ability plane to the expected number correct surface. This is achieved by
summing the probability of correct response to all of the test items at each point in
the latent ability plane and then using this information to create a true score surface.
This is illustrated in Fig. 7.13. In this plot the equal-expected score contours are
shown on the latent ability plane. Every θ 1, θ 2 combination that lies on the same
contour would be expected to achieve the same number correct score. Thus, every
subject along the contour corresponding to a true score of 80 would be expected
to achieve a score of 80 on the test. Above the latent ability plane is the true score
surface.
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The contour is important from a practitioner’s perspective when cut-scores are set
to determine licensure or certification. Such plots indicate the different combinations
of θ1, θ2 that would be expected to successfully meet the cut score, giving more
insight into what combinations of skills would be represented by examinees who
passed (Fig. 7.15).
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Fig. 7.15 An example of a true score surface and corresponding contours

One interesting comparison that can be created is the difference between two
contour surfaces. Such a plot, shown in Fig. 7.16, can aid practitioners to examine
the degree of parallelism between two test forms. That is, if two tests were truly
parallel, examinees would have the same expected score on each form. In Fig. 7.16,
the difference surface and corresponding contours are illustrated for two 40-item
math tests. Where the surface lies above the no-difference plane examinees would
be expected to achieve a higher score on Form A. Conversely, where the surface
dips below the no-difference plane examinees would be expected to score higher on
Form B. Thus, examinees near the origin would be expected to score slightly higher
on Form A.
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7.7 Conditional Estimation for the Compensatory
Logistic Model

One final graphical analysis is one which allows practitioners to visualize the
consistency of an observed number correct score scale. In this analysis, the θ 1, θ 2

centroids for each number correct score are plotted on the latent ability plane. This
is, where the

(
θ 1,θ 2

)
for each raw score is located. An example for a short ten-

item test is shown in Fig. 7.17. In this figure the number correct score is located
at the position of its corresponding

(
θ 1,θ 2

)
centroid. This is an ideal situation

because the centroids are linear meaning the composite being measured does not
change throughout the observable score scale. Practitioners should be concerned
when this plot is not linear, such as when there is a confounding of difficulty
and dimensionality. This could occur when easy items are measuring one skill and
difficult items are measuring another skill.

Another interesting arrangement is to plot the centroids for different content
categories. In Fig. 7.18 centroids plots are shown for a test having three different
content areas. In this figure the centroid plot for each content is displayed along
with the centroid plot for the overall test. Somewhat amazingly, the three contents
are measuring quite different composites, yet when all three are combined the plot
becomes linear. The item vectors for this test are displayed in Fig. 7.8. Clearly this
situation would have implication for equating. That is, should the test be equated
by content, or as a single test? Also displayed in this picture are ellipses about the
numbers for each score category. These ellipses are red if σ 2

θ1 >σ 2
θ2 and green if

σ 2
θ1 <σ 2

θ2, thus indicating which ability is being measured better.
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Fig. 7.17 A centroid plot for
a 10-item test

7.8 Conditional Analyses from a DCM Perspective

An analogous situation to the centroid plot in a diagnostic model is to create a
likelihood graph of each raw score category for each pattern of mastery. Such a
graph is shown in Fig. 7.19. For a test that is measuring only two attributes there
are actually four possible profiles of mastery (0, 0), (0, 1), (1, 0), (1, 1). A graph
indicating the likelihood of each possible score on a 31-item test is displayed for
each of the four attribute patterns. As would be expected, the complete mastery case
(1, 1) has the largest likelihood for the higher level score categories.

7.9 Discussion

In this paper four different models were illustrated, the compensatory and noncom-
pensatory logistic models and their diagnostic counterparts, the noncompensatory
diagnostic model and the compensatory diagnostic model. Graphical illustrations of
four different psychometric analyses were examined. These include item represen-
tation, test information, true score representation, and conditional representation.
By examining these illustrations practitioners should begin to better understand.
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Fig. 7.18 Conditional plots for a 101-item test having three different content areas

Too often researchers and testing practitioners immerse themselves in statistical
analyses to understand their assessment results. Hopefully this paper has helped
to illustrate how graphical analyses can also provide a great deal of insight into
what items and the test as a whole are measuring when the test data are truly
multidimensional. This information should cross validate descriptive statistics,
statistical analyses, as well as the tables of specification. Equally important one
should never overlook the substantive analyses and relate the actual items to what
both the graphical and numerical results are indicating.
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Chapter 8
New Item-Selection Methods for Balancing
Test Efficiency Against Item-Bank Usage
Efficiency in CD-CAT

Wenyi Wang, Shuliang Ding, and Lihong Song

Abstract Cognitive diagnostic computerized adaptive testing (CD-CAT) is a
popular mode of online testing for cognitive diagnostic assessment (CDA). A key
issue in CD-CAT programs is item-selection methods. Existing popular methods
can achieve high measurement efficiencies but fail to yield balanced item-bank
usage. Diagnostic tests often have low stakes, so item overexposure may not be a
major concern. However, item underexposure leads to wasted time and money on
item development, and high test overlap leads to intense practice effects, which in
turn threaten test validity. The question is how to improve item-bank usage without
sacrificing too much measurement precision (i.e., the correct recovery of knowledge
states) in CD-CAT, which is the major purpose of this study. We have developed
several item-selection methods that successfully meet this goal. In addition, we
have investigated the Kullback–Leibler expected discrimination (KL-ED) method
that considers only measurement precision except for item-bank usage.

8.1 Introduction

Cognitive diagnosis has received significant attention recently, especially since
the No Child Left Behind Act (Representatives 2001) mandated that diagnostic
feedback (cognitive strengths and weaknesses) should be provided to students,
teachers, and parents. Cognitive diagnostic assessment (CDA), which combines
psychometrics and cognitive science, has received increasing attention recently, but
it is still in its infancy (Leighton and Gierl 2007). The CDA based on the incidence
Q-matrix (Embretson 1984; Tatsuoka 1995) is quite distinct from traditional
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item-response theory. The entries in each column of the incidence Q-matrix indicate
which skills or knowledge are involved in the solution of an item. The Q-matrix
plays an important role in establishing the relationship between the latent attributes
and the ideal-response patterns in order to provide information about students’
cognitive strengths and weaknesses. Conversely, CDA requires the specifications of
which latent attributes are measured by which items and how these characteristics
are related to one another. Leighton et al. (2004) suggest the attribute hierarchy
method (AHM) as follows. First, the hierarchy of attributes must be identified
through protocol techniques before item construction. Second, items are developed
by specialists using the attribute hierarchy. Finally, the attribute hierarchy and item
attributes should be validated. In real situations, it will cost a lot of money to identify
attributes through specialists. If the item-attribute specification is incorrect, invalid
inferences will be made based on students’ performance.

Online testing is available in numerous international, national, and state assess-
ment programs (Quellmalz and Pellegrino 2009). A flourishing research area
in psychological and educational measurement is computerized adaptive testing
(CAT). One advantage of CAT is the increased measurement efficiency that is
associated with items tailored to an individual examinee’s ability level. CAT can
provide more efficient estimates of continuous or discrete latent traits of interest
than nonadaptive testing.

Researchers have attempted to combine the two above mentioned research
areas and developed cognitive diagnostic computerized adaptive testing (CD-CAT)
algorithms (McGlohen 2004; Tatsuoka 2002; Tatsuoka and Ferguson 2003; Xu et al.
2003). The essential components of fixed-length or variable-length CD-CAT include
(a) a cognitive diagnostic model, (b) a calibrated item bank (Q-matrix and item
parameters), (c) an entry level (starting point), (d) an item-selection rule, (e) a scor-
ing method, and (f) a termination criterion. Three of the most popular item-selection
methods in CD-CAT are based on the Kullback–Leibler (KL) information, Shannon
entropy (SHE) (Cheng 2009), and expected discrimination (ED) method (Shang and
Ding 2011). These three methods can achieve high efficiency and accuracy; how-
ever, they often lead to unbalanced item usage. Cognitive diagnostic tests are often
low stakes, so item overexposure may not be a great concern. Because item develop-
ment usually involves a long and costly process of writing, reviewing, and pretest-
ing, a large number of unused items are undesirable (Veldkamp and Linden 2010).
Although the restrictive progressive method and restrictive threshold method have
been proposed to balance item exposure and measurement accuracy (Wang et al.
2011), they do not directly control item-exposure rates to a predetermined level.

CAT is attractive to practitioners because it yields a high measurement precision
with a short test. Studies have been conducted to investigate the possibility of
variable-length CD-CAT (Cheng 2009, 2010; Xu et al. 2003), in which different
examinees may receive different test lengths. Variable-length CAT is desirable
because each examinee receives a similar degree of measurement precision. A less
explored but important issue in variable-length CD-CAT is how to maintain good
item-bank usage.

There are solutions to improving item-bank usage, such as a careful item-bank
design and a good item-exposure control (Breithaupt et al. 2010; Veldkamp and
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Linden 2010). In this chapter, we proposed several new methods based on the
randomization strategy and halving algorithms for item-bank usage and a general
algorithm for measure efficiency in the context of CD-CAT. The remainder of
this chapter is organized as follows. First, a review of common item-selection
methods is presented. Second, new item-selection methods for item-bank usage and
measurement efficiency are described. Third, the details of the simulation studies
are reported. Finally, conclusions and discussions are provided.

8.2 Review of Existing Item-Selection Methods for CD-CAT

To introduce the existing literature, one commonly used cognitive diagnostic model
is described here. The “deterministic input; noisy ‘and’ gate” (DINA) model (de la
Torre and Douglas 2004; Haertel 1989; Junker and Sijtsma 2001) is a parsimonious
and interpretable model that requires only two parameters for each item (i.e., gj

and sj) regardless of the number of attributes being considered. The item-response
function for the DINA model is as follows:

Pj (αi) = P
(

Xi j = 1
∣∣∣αi

)
= g

1−ηi j
j (1− s j)

ηi j ,

where the deterministic latent response ηi j =
K

∏
k=1

αqk j
ik indicates whether examinee

i possesses all of the attributes required for item j. αi denotes a knowledge state
from the universal set of knowledge states (Qs). The entries of a Q-matrix indicate
1 or 0, in which qkj = 1 when item j involves attribute k for answering item j
correctly; otherwise, qkj = 0. The parameter sj refers to the probability of slipping
and incorrectly answering the item when η ij = 1, and gj is the probability of
correctly guessing the answer when η ij = 0. Xij refers to the response of examinee i
to item j.

After the item bank is calibrated with a cognitive diagnostic model, when
applying adaptive testing to the cognitive diagnostic, one must determine how to
choose items for examinees. The sequential application of test items can be naturally
implemented in the context of computer adaptive testing, in which items can be
administered one at a time. Table 8.1 presents a list of the item-selection methods
included in this review, along with pertinent references and with the abbreviations
that will be used to refer to these methods.

There are two heuristic approaches to solve the problem of the sequential
selection of items in the poset model (Tatsuoka 2002; Tatsuoka and Ferguson 2003),
which is very similar to the DINA model (Tatsuoka 2009).



136 W-Y. Wang et al.

Table 8.1 List of reviewed item-selection methods

Method abbreviation Model(s) Exposure rates Reference(s)

SHE Poset NA Tatsuoka (2002)
SHE, HA Poset Tatsuoka and Ferguson (2003)
SHE, KL FM High Xu et al. (2003)
SHE, KL, FI 3PL,FM High McGlohen and Chang (2008)
SHE, KL, PWKL, HKL DINA NA Cheng (2009)
GDI, MMGDI DINA NA Cheng (2010)
ED DINA NA Shang and Ding (2011)
RP-PWKL; RT-PWKL RUM Low Wang et al. (2011)
KL; MPI 2PL, HO-DINA High Wang et al. (2012)
Mutual information DINA NA Wang (2013)
SHE; FI 3PL, DINA NA Liu et al. (2013)
KL, PWKL, SHTVOR DINA,FM Low Hsu et al. (2013)

Note: SHE Shannon entropy procedure, HA halving algorithm, KL Kullback–Leibler algorithm,
GDI global discrimination index, MMGDI modified maximum global discrimination index
(balancing attribute coverage), PWKL posterior-weighted KL, HKL hybrid KL, RP-PWKL
restrictive progressive PWKL, RT-PWKL restrictive threshold PWKL, FI Fisher information,
MPI maximum-priority method, ED expected discrimination method, RD randomized selection,
poset partially ordered sets model, 2PL two-parameter logistic, 3PL three-parameter logistic

The first intuitive method is the halving algorithm (HA), which chooses an item
for examinee i randomly from a set of items:

{
j(t+1)

}
= arg min

j∈R(t)
i

(∣∣π j (i, t)−0.5
∣∣) ,

where π j (i, t) = ∑
c:α’

c qj≥q’
j qj

π
(
αc

∣∣∣i, t). Supposing that t items are selected, R(t)
i

represents the set of available items at stage t. Supposing that the prior is chosen as
π0l for each knowledge state from the universal set of knowledge states, the posterior
distribution π(αc|i, t) after t responses observed can then be written as:

π
(
αc

∣∣∣i, t) ∝ π0cL(Xi,αc) ,

where L(Xi,αc) is the likelihood function, and it is simply the product of each
item-response function when local independence is assumed. Computationally, this
algorithm is very simple. It does not depend on the item parameters of the DINA
model except through the posterior distributions π(αc|i, t) and qj. At stage t, the
posterior distribution of examinee i is divided into two parts by item j. HA selects
the items that partition the knowledge states universality into two parts closest to
one-half in terms of mass, and then an item is randomly selected for administration
from a group of several items near the optimal one-half in terms of mass.
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The second item-selection rule is SHE. The basis for SHE comes from informa-
tion theory. SHE chooses an item j(t+ 1) for examinee i that satisfies:

j(t+1) = arg min
j∈R(t)

i

(
1

∑
x=0

H
(
πt+1

∣∣∣Xi j = x
)

Pr
(

Xi j = x
∣∣∣u(t)i

))
,

where

H
(
πt+1

∣∣∣Xi j = x
)
=− ∑

αc∈Qs

π
(
αc

∣∣∣i, t +1
)

logπ
(
αc

∣∣∣i, t +1
)
,

Pr
(

Xi j = x
∣∣∣u(t)

i

)
= ∑

αc∈Qs

P
(

Xi j = x
∣∣∣αc

)
π
(
αc

∣∣∣i, t),

and π(αc|i, t+ 1) denotes the posterior distribution updated at stage t+ 1 given item
j and Xij = x.

Another familiar selection rule is the KL algorithm (KL) based on Kullback–
Leibler information (Chang and Ying 1996; Xu et al. 2003). KL chooses an item
j(t+ 1) for examinee i that satisfies:

j(t+1) = arg max
j∈R(t)

i

(
KLi j

(
α̂ t)) ,

where KLi j

(
α̂(t)

)
= ∑

αc∈Qs

1

∑
x=0

log

⎡
⎣P

(
Xi j = x

∣∣∣α̂ (t)

i

)

P
(

Xi j = x
∣∣∣αc

)
⎤
⎦P

(
Xi j = x

∣∣∣α̂ (t)

i

)
, and α̂ t is

the current knowledge-state estimate.
To quantify the contribution of each knowledge state to the KL index (Wang

2013) or to reflect the updated posterior distribution for each knowledge state, the
posterior weighted KL (PWKL) index proposed as a Bayesian version of the KL
index (Cheng 2009) can be written as:

PWKLi j = ∑
αc∈Qs

⎧⎨
⎩π

(
αc

∣∣∣i, t) 1

∑
x=0

log

⎡
⎣P

(
Xi j = x

∣∣∣α̂ (t)

i

)

P
(

Xi j = x
∣∣∣αc

)
⎤
⎦P

(
Xi j = x

∣∣∣α̂ (t)

i

)⎫⎬
⎭.

Researchers suggest that SHE and KL must control exposure rates (Xu et al.
2003), and alternative exposure-control techniques may be an interesting area of
future research (McGlohen and Chang 2008). To create exposure control in adaptive
testing, by applying the primary idea of the restrictive progressive method with
the PWKL information, Wang et al. (2011) proposed the following modified index
(RP-PWKL):

RP−PWKLi j = 1− exp j /r[(1− t/L)R j+PWKLi j ∗β t/L],
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where r= the certain maximum exposure rate that will be maintained, expj =
the current exposure rate for item j, t= number of items administered, L= test
length, H∗ = max

j∈R(t)
i

(PWKLi j), β is a weight, and Rj follows the uniform distri-

bution U(0, H*). The term “progressive” is reflected by the weight (1− t/L) of
the random component. Specifically, the role the information plays in the item-
selection process increases as the exam progresses, whereas the role of the stochastic
component decreases. It is reasonable that, at the beginning of the test, when the
knowledge-state estimates markedly differ from the final estimates, the information
should contribute little to the item selection. However, as the test progresses and
the provisional-ability estimates approach the true ability of the examinee, the
information component should gain importance.

Additionally, to maintain exposure control in adaptive testing, Wang et al. (2011)
propose another modified index (PT-PWKL):

{
j(t+1)

}
=

{
j
∣∣∣H∗ −δ ≤ PWKLi j ≤ H∗

}
,

where δ =

[
H∗ − max

j∈R(t)
i

(PWKLi j)

]
f (t), and f (t) is a monotonically decreasing

function. The function f (t) can take various forms, for example, f (t)= (1− t/L)β .
Another new selection rule for the DINA model is the expected discrimination

method (ED) (Shang and Ding 2011). It is based on the idea of maximum likelihood
estimation and can be written as:

j(t+1)
i = arg max

j∈R(t)
i

(
∑

k,l:αk,αl∈Qs

(
π
(
αk

∣∣∣i, t) f (αk,αl , j)π
(
αl

∣∣∣i, t))
)
,

where the discrimination function

f (αk,αl , j) =

⎧⎨
⎩

1− s j i f ηk j = 1 and ηl j = 0
1−g j i f ηk j = 0 and ηl j = 1
0.5 otherwise

.

There are other methods based on the Bayesian network (Collins et al. 1993;
Millán and Pérez-de-la-Cruz 2002), order theory (Wu et al. 2006), transition
diagrams (Lin and Ding 2007), and so on.

8.3 New Item-Selection Methods

Although several item-selection methods focus on maximizing the psychomet-
ric efficiency of the test whereas others focus on balancing the item-exposure
rate in CD-CAT, we must consider how to balance the test efficiency with the
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item-bank-usage efficiency in CD-CAT. There are several questions that we would
like to answer: (a) How well does the theoretical HA method perform in CD-CAT?
(b) How is it possible to extend the HA method to improve the pool utilization? (c)
How is it possible to extend RP-PWKL and RT-PWKL to variable length CD-CAT?
(d) How is it possible to define the flexible-discrimination function of ED for other
cognitive diagnostic models?

8.3.1 Randomization HA Method

For better pool utilization, a random component is added into the HA method as the
progressive strategy (Revuelta and Ponsoda 1998); the modified HA method can be
written as:

{
j(t+1)
i

}
=

{
j ∈ R(t)

i ,c j (i, t)≥ r max(c j (i, t))
}
,

where cj(i, t)= π j(i, t)(1− π j(i, t)), the value of r ranges from 0 to 1 and it plays
the role of balancing the measurement accuracy and the exposure control. The
randomization halving algorithm (RHA) method differs from HA in that we
intentionally embed a constant weight r. For the new method, the weight r is
assigned two different values, 0.75 [called RHA(0.75)] and 0.5 [called RHA(0.5)],
to illustrate the role of this parameter in increasing the measurement accuracy and
exposure control. The contribution of a random component is important at the
beginning of the test and decreases in influence as the test progresses.

8.3.2 VRP-PWKL and VPT-PWKL for the Variable-Length
CD-CAT

In both RP-PWKL and RT-PWKL, t/L reflects the relative importance of the
random component and the information measure, but it is not suitable for use in
variable-length CD-CAT. Supposing a variable-length CD-CAT terminated when
the posterior probability that an examinee belongs to a given state exceeds 0.80
(Huebner 2010; Tatsuoka 2002), we extend RP-PWKL and RT-PWKL to the

variable-length CD-CAT by using
max

l

(
π
(
αl

∣∣∣i,t))

0.8 as the alternative of the value
of t

L in RP-PWKL and PT-PWKL. VRP-PWKL and VPT-PWKL are used here to
distinguish the original methods.



140 W-Y. Wang et al.

8.3.3 The Kullback–Leibler expected discrimination Method

Because the definition of the discrimination function in the ED method is established
in the DINA model, we must establish a more general discrimination function that
can be widely used in other cognitive diagnostic models. Because KL information is
a commonly used objective function and is not symmetric, we let the discrimination
function f

(
αl1 ,αl2 ,q j

)
be KL j

(
αl1 ,αl2

)
, and the resulting, new, flexible methods

can be written as:

j(t+1)
i = arg max

j∈R(t)
i

(
∑
l1,l2

π
(
αl1

∣∣∣i, t)KL j
(
αl1 ,αl2

)
π
(
αl2

∣∣∣i, t)
)
.

This new method is now generally denoted the Kullback–Leibler expected discrim-
ination (KL-ED) method.

8.3.4 Similarities and Differences Between These
Item-Selection Methods

It is important to highlight some of the key similarities and differences between
these methods. It is apparent that there are identical distributional dependents
for each method but with different criteria. For the RHA method, it selects the
item that partitions the knowledge states universality into two parts closest to
one-half in terms of the posterior distribution π(αc|i, t). For VRP-PWKL, VPT-
PWKL, and the KL-ED methods, the equations all multiply the KL index with
the corresponding posterior distributions π(αc|i, t). One difference is that the RHA
method does not depend on the item parameters of the DINA model, whereas
others do. Another difference is that they have different levels of computational
complexity: the RHA method is very simple to compute, whereas the KL-ED
method is computationally intensive. Fortunately, under the DINA model, KL-ED
can be expressed explicitly as:

j(t+1)
i = arg max

j∈R(t)
i

(w jc j (i, t)) ,

where w j = (1− s j −g j)
(

log
1−s j

g j
+ log

1−g j
s j

)
captures the discrimination power

of item j. Then, the KL-ED method can be regarding as a weighted HA method.
It also presents a simpler formula designed to make the KL-ED method under the
DINA model amenable to real-time CD-CAT.
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8.4 Simulation Study

8.4.1 Simulation Design

The performances of the item-selection procedures were evaluated and compared
to each other by means of simulation studies. Because the KL-ED method only
considers the measurement precision, it is expected that the KL-ED method results
in better precision. When the random component becomes large, the RHA method
will decrease the precision and provide better overlap control. It is also expected
that the performance of the RHA method appears promising in fixed-length and
variable-length testing.

Two simulation studies were performed, one using a simulated-item bank, and
the other based on items calibrated from real data (Table 8.2). The simulated data
are generated with independent structures using six attributes. The following are the
details of the first simulation study. Under the simulation item bank, we consider
fixed-length and variable-length testing. For fixed-length testing, a stopping rule is
used, and the test length L is assumed to be 18. For variable-length testing, two
stopping rules are used, with stopping being invoked if one of the rules calls for
it. One rule calls for stopping when the largest posterior probability value exceeds
0.80. The other is a fixed-maximum-length stopping rule (18). For the calibrated
item bank, we only consider the fixed-length testing for content constraints.

8.4.2 Evaluation Criterion

For each simulation condition, the following evaluation criteria are calculated
to evaluate the performances of the item-selection methods, including three
measurement-precision criteria and two pool-utilization criteria.

8.4.2.1 Correct Classification Rate of the Attribute Patterns

Letting N be the number of subjects, given the simulated or true attribute patterns
α i and the estimated attribute patterns α̂i, i= 1, 2, . . . , N, the correct classification
rate (CCR) of the attribute patterns is the proportion of the entire attribute patterns
identified correctly for all subjects (Chen et al. 2012; Henson 2005). CCR can be
written as:

CCR =
1
N

N

∑
i=1

I (α̂i,αi) ,

where I (α̂i,αi) is an indicator function that uses ones if the vector α i is equal to α̂i

and zeroes otherwise.
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8.4.2.2 Marginal Correct Classification Rate of the Attributes

The marginal correct classification rate (MCCR) of the attributes is the proportion
of attributes identified correctly for all subjects (Chen et al. 2012; Henson 2005).
MCCR can be written as:

MCCR =
1

NK

N

∑
i=1

K

∑
k=1

I (α̂ik,αik),

where I (α̂i,αi) is an indicator function that uses one if the value α ik is equal to α̂ik

and zeroes otherwise, and K is the numbers of attributes.

8.4.2.3 Equivalent Class Rate of Attribute Patterns

The set of the test items have been administered to examinee i adaptively. Let the
Q-matrix of these items be the test Q-matrix (Q(i)

t ). Let α̂i be the estimation of the
attribute pattern after the test has been completed. Given the universality of the
attribute patterns and the test Q-matrix, the ideal-response patterns are determined

by the latent response ηi j =
K

∏
k=1

αqk j
ik . If α̂i belongs to the equivalent class of the

attribute patterns in which several different attribute patterns correspond to a single
ideal item-response pattern (Tatsuoka 2009), we define the indication function

I
(
α̂i,Q

(i)
t

)
to be one, or otherwise as zero. For all examinees, the equivalent class

rate of the attribute patterns is defined as follows:

ECR =
1
N

N

∑
i=1

I
(
α̂i,Q

(i)
t

)
.

The larger the equivalent class rate or the error rate is, the worse the measurement
precision is.

8.4.2.4 Pearson’s χ2 Statistic (Chang and Ying 1999)

Let the observed exposure rate for the jth item be:

er j =
number o f times the jth item is used

N
.

Therefore, the desirable uniform rate for all items is:

er j = L/M =
N

∑
i=1

Li/NM,
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where L is the average test length across examinees, Li is the test length for examinee
i and M is the size of the item bank. The following scaled χ2 is designed to measure
the similarity of the observed and desired exposure rates:

χ2 =
m

∑
j=1

(er j − er j)
2/er j,

which captures the discrepancy between the observed and the ideal item-exposure
rates, and it quantifies the efficiency of the item-bank usage. One of the primary
goals of an item exposure-control method is to make the best use of all items in the
bank. The smaller the value of the chi square is, the more even the exposure rates
become. If a method results in a low chi-square value, then most (if not all) of the
items have been fully used.

8.4.2.5 Test Overlap Rate (Chang and Zhang 2002)

Let O denote the mean number of the shared items for each of the C2
N =N(N − 1)/2

pairs of examinees. Dividing the mean number of the overlapping items by the
average test length, the test overlap becomes:

TOR =
O

L
=

⎛
⎝ N

2

⎞
⎠

∑
m=1

Om/

(
N
2

)
L,

in which Om is the number of overlapping items encountered by the mth pair of two
examinees.

8.5 Results

The evaluation criteria corresponding to the first simulation study under the
simulation item bank are shown in Tables 8.3 and 8.4. Table 8.3 shows the results of
fixed-length CD-CAT and Table 8.4 shows the results of variable-length CD-CAT.

For fixed-length CD-CAT, Table 8.3 suggests that KL-ED and PWKL without
any exposure control generate the highest precision but also the largest chi-square
value and the largest test overlap rate (TOR); For RP-PWKL, HA, RHA(0.75),
RHA(0.5), the loss in the measurement precision is even smaller, but the decrease
in chi square and the overlap rate is remarkable; the advantage of the RHA(0.75)
method is more apparent. Given a precomputation table of the KL index for each
item, the CPU times for all algorithms to select an item on a notebook with an Intel
Core Duo CPU (T6570 2.1 GHz) are less than 0.043 s.
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Table 8.3 Fixed-length CD-CAT under the simulation item bank (test
length 18)

Measurement precision Pool utilization
Methods CCR MCCR ECR χ2 TOR Time(s)

KL-ED 0.908 0.982 0.000 96.70 0.607 0.041
PWKL 0.907 0.981 0.000 92.26 0.584 0.041
RT-PWKL 0.850 0.969 0.005 5.99 0.127 0.041
RP-PWKL 0.796 0.954 0.009 0.22 0.096 0.041
HA 0.856 0.970 0.000 4.81 0.120 0.041
RHA(0.75) 0.845 0.969 0.001 0.90 0.100 0.041
RHA(0.5) 0.807 0.960 0.002 1.26 0.102 0.041
Stra_KL-ED 0.854 0.968 0.009 32.25 0.266 0.041
RD 0.504 0.882 0.250 0.09 0.095 0.043

Note: In the Stra_KL-ED approach, the items in the item bank are
stratified with different attribute patterns. Stra_KL-ED selects a strati-
fication based on the average of KL-ED, and then one item is randomly
selected to be administered.

Table 8.4 Variable-length CD-CAT under the simulation item bank for all examinees

Measurement precision Pool utilization
Methods CCR MCCR ECR χ2 TOR Test length Number of examinees

KL-ED 0.769 0.954 0 101.79 0.62 10.34 1,920
PWKL 0.789 0.958 0 99.15 0.606 10.39 1,920
VRT-PWKL 0.785 0.955 0.002 4.81 0.096 12.68 1,920
VRP-PWKL 0.734 0.94 0.023 0.14 0.077 13.93 1,920
HA 0.805 0.962 0 4.39 0.095 13.34 1,920
RHA(0.75) 0.785 0.957 0.001 1.07 0.079 13.76 1,920
RHA(0.5) 0.765 0.952 0.001 1.27 0.084 14.47 1,920
Stra_KL-ED 0.776 0.948 0.002 22.55 0.19 12.43 1,920
RD 0.505 0.883 0.244 0.08 0.093 17.45 1,920

For variable length CD-CAT, Table 8.4 suggests that variable-length CD-CAT
provides examinees with roughly the same level of measurement precision using
few items (13.34 vs. 18) than for HA and RP-PWKL (CCR, 0.7979 vs. 0.796);
the performances of the VRT-PWKL method, the RHA(0.75) method, and the
RHA(0.5) method are more comparable in both precision and pool utilization;
moreover, the performances of the KL-ED method and the PWKL method are also
comparable in terms of precision. Tables 8.5 and 8.6 suggest that the RHA (0.5)
method works better than the other methods for balancing the test efficiency with
the item-bank usage efficiency.

The evaluation criteria corresponding to the second simulation study under the
item bank calibrated from real data are shown in Table 8.7. Table 8.7 indicates that
(as shown in Table 8.1) KL-ED and PWKL generate the highest precision with the
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Table 8.5 Variable-length CD-CAT under the simulation item bank for examinees who finished
their CAT without the largest posterior probability being greater than 0.8

Measurement precision Pool utilization
Methods CCR MCCR ECR χ2 TOR Test length Number of examinees

KL-ED 0.450 0.846 0.000 96.19 0.593 18 40
PWKL 0.436 0.876 0.018 87.87 0.551 18 55
VRT-PWKL 0.527 0.895 0.016 6.20 0.123 18 186
VRP-PWKL 0.515 0.883 0.100 0.41 0.095 18 410
HA 0.565 0.907 0.000 4.42 0.115 18 246
RHA(0.75) 0.519 0.889 0.000 2.73 0.107 18 293
RHA(0.5) 0.598 0.913 0.005 2.70 0.107 18 366
Stra_KL-ED 0.556 0.899 0.039 14.96 0.171 18 232
RD 0.433 0.864 0.303 0.12 0.095 18 1,613

Table 8.6 Variable-length CD-CAT under the simulation item bank for examinees who finished
their CAT with the largest posterior probability greater than 0.8

Measurement precision Pool utilization
Methods CCR MCCR ECR χ2 TOR Test length Number of examinees

KL-ED 0.767 0.953 0.000 103.65 0.631 9.98 1,880
PWKL 0.767 0.953 0.000 101.46 0.619 10.16 1,865
VRT-PWKL 0.820 0.964 0.000 5.02 0.094 12.42 1,734
VRP-PWKL 0.826 0.963 0.000 0.28 0.073 13.29 1,510
HA 0.824 0.967 0.000 4.48 0.093 12.76 1,674
RHA(0.75) 0.833 0.968 0.000 1.01 0.076 13.14 1,627
RHA(0.5) 0.828 0.968 0.000 1.12 0.079 13.63 1,554
Stra_KL-ED 0.818 0.962 0.000 24.82 0.199 11.68 1,688
RD 0.772 0.958 0.000 0.72 0.080 14.87 307

Table 8.7 Fixed-length CD-CAT under the item bank calibrated from
real data (test length 40)

Measurement precision Pool utilization
Methods CCR MCCR ECR χ2 TOR Time(s)

KL-ED 0.906 0.987 0.000 197.25 0.691 0.154
PWKL 0.898 0.986 0.000 181.06 0.644 0.155
RT-PWKL 0.756 0.962 0.001 46.45 0.251 0.153
RP-PWKL 0.670 0.949 0.000 4.41 0.129 0.156
HA 0.552 0.923 0.000 14.15 0.157 0.154
RHA(0.75) 0.571 0.927 0.000 6.17 0.134 0.157
RHA(0.5) 0.530 0.922 0.001 4.77 0.130 0.157
Stra_KL-ED 0.572 0.931 0.001 18.44 0.169 0.147
RD 0.273 0.852 0.135 0.31 0.117 0.148
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largest chi-square value and the largest TOR; For RP-PWKL, HA, RHA (0.75),
RHA (0.5), the MCCRs are quite similar, but the decrease in the CCR is remarkable
because the test measures a larger number of attributes.

Table 8.8 presents the item exposure-rate distribution. We can see that RHA(0.75)
without the maximum exposure-rate control obtains more similar results than RP-
PWKL with the maximum exposure-rate control. In RP-PWKL and RT-PWKL,
we limit the maximum exposure rates to 0.15 and 0.3 for the simulation and the
calibration item banks, respectively.

Conclusion and Discussion
The chapter proposes two item-selection methods for CD-CAT. First, accord-
ing to the idea of randomization strategies, in which the selection of the item
is always made at random among the most informative items, the RHA is
proposed. For the RHA, all items within the specified range are available
for selection rather than an arbitrary or only one number. Second, using KL
information as a discrimination function of ED, KL-ED is proposed to handle
other cognitive diagnostic models, besides the DINA model. Moreover, we
show the connections among KL-ED, HA and RHA; KL-ED can be regarded
as a weighted HA method, weighted by the corresponding item parameters;
and HA can be regarded as RHA without adding a random component
between different item attribute vectors in the Q matrix of the item pool.

Then, two simulation studies are performed, one using a simulated-
item bank, and the other based on items calibrated from real data. Eight
item-selection strategies are taken into consideration in these studies, includ-
ing random, posterior-weighted KL (PWKL), RP-PWKL, RT-PWKL, ED,
halving algorithm (HA), KL-ED, Stra_KL-ED, and RHA. In addition, VRP-
PWKL and VRT-PWKL are proposed for variable-length CD-CAT as an
extended version of RP-PWKL and RT-PWKL. Simulation studies for fixed-
or variable-length CD-CAT are conducted based on these methods, and the
results are compared in terms of pattern or attribute classification correct rate,
error rate, item-exposure rate, or TOR.

The simulation results show that the KL-ED method generates the highest
precision. RHA, HA, and RP-PWKL have more balanced usage of the item
bank and slight decrements of the CCR of the attribute pattern, but RP-PWKL
and RT-PWKL suppress overexposure by adding a restriction so that the
maximum exposure rate will be kept lower than a predetermined value. VRT-
PWKL and VRP-PWKL are suitable for both fixed-length and variable-length
test situations.

Although the results from the simulation study are encouraging, the appli-
cation of these new methods to other cognitive diagnostic models should be
studied further in CD-CAT. It is a limitation of this study that the experiment is
conducted under only two independent attribute structures. The studies should

(continued)
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be conducted on additionally attribute hierarchies, such as linear, convergent,
divergent, and unstructured hierarchical structures (Leighton et al. 2004).

Although this method can be effective for limiting the item exposure at
the time of administration, it is a short-term solution (Breithaupt et al. 2010).
Thus, another method should be targeted for the usage efficiency of raw items
and should consider how to implement online item attribute calibration in CD-
CAT. Chang and Lu (2010) noted that the online calibration for ordinary CAT
may be one of the most cost-effective processes. The great significance of the
Q-matrix in CDA has been widely recognized, and the online item attribute
calibration method may be important for item replenishing.
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Chapter 9
Comparison of Linear, Computerized Adaptive
and Multi Stage Adaptive Versions
of the Mathematics Assessment of Turkish
Pupil Monitoring System

Semirhan Gökçe and Giray Berberoğlu

Abstract The purpose of this study is to compare the results of computer based
linear Turkish Pupil Monitoring System (TPMS) administrations with Computer-
ized Adaptive Testing (CAT) and Multi Stage Adaptive Testing (MSAT) results
in mathematics assessment. On the basis of the real data obtained from TPMS,
different CAT scenarios were tested in post-hoc simulations with various starting
rules, termination criteria, and different control strategies of CAT using either
Maximum Likelihood (ML) or Weighted Maximum Likelihood (WML) estimation
procedures. Results of the CAT study indicated that WML with easy initial item
difficulty, fixed test reliability termination along with item exposure and content
control strategies produced defensible results. Alternatively, a multi stage scenario
was designed to compare the efficiency of CAT and MSAT. Examinees were
administered a fixed subtest with 15 items followed by two subtests having ten items
each. Using MSAT in TPMS seemed to be producing more valid results in terms of
content sampling than CAT.
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9.1 Introduction

9.1.1 Pupil Monitoring System

Today, monitoring students’ growth in learning is the major concern of many
educational systems. Teachers may develop growth curves for their students’
learning based on the scores obtained on teacher-made tests but the main problem
here is that the teachers use different assessment methods, which do not allow
mapping ability estimations on the same scale. The Pupil Monitoring System
(PMS) provides continuous evaluation of pupils over several years to monitor their
learning development (Glas and Geerlings 2009; Vlug 1997). The PMS has some
unique psychometric properties such as: using incomplete test design, locating
each pupil’s score in proficiency level descriptions for the purpose of providing
criterion-referenced interpretation of the test results. The PMS not only monitors
pupils’ learning according to national standards but also allows the comparison of
individuals within norm groups. For example, National Institute for Educational
Measurement in the Netherlands develops one of the well-known PMS in which
coherent sets of standardized linear tests are used to assess 4–12 years old pupils
in arithmetic, language, and world orientation subjects. Pupils are given different
standardized linear tests at different time and analyses based on IRT framework
allow the representation of test scores on the same scale so that teachers could make
decisions about the progress of students’ learning process and could determine the
relative position of pupils compared to norm groups. Based on the principles of PMS
developed in the Netherlands, Cito Türkiye developed Turkish Pupil Monitoring
System (TPMS) for Turkish students. The TPMS focuses on the evaluation of
higher order thinking skills, calibrates items by using One Parameter Logistic model
(OPLM), uses anchor items and incomplete test design to equate different test
forms both vertically and horizontally and it is a linear computer based test (Özgen
Tuncer Ç 2008; İş Güzel et al. 2009).

Glas and Geerlings (2009) recommend using computerized adaptive test in the
PMS because of two main reasons. One of them is the measurement efficiency since
the difficulty of the test items is changing according to the pupils’ ability level. It is a
well-known fact that pupils from different ability levels have different growth rates
but the tests need to be informative at each ability level. Therefore, adapting the test
items (test item difficulty) to pupils’ abilities has a positive impact on measurement
efficiency. The second advantage is the possibility of testing on demand since pupils
can take the test on their most suitable time period. It is related to flexibility of
testing date and time because using computerized adaptive tests in PMS facilitates
examinees to take the test whenever they feel ready. Thus, it is aimed to implement
the TPMS as a computer adaptive test (CAT) in Turkey. The major issue in this
process is the method through which the test items will be delivered.

In CAT, the items are selected individually according to the responses of the
pupils. Different than CAT, there is another approach in which instead of admin-
istering an individual item a group of items is administered which is called testlet.
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This procedure is known as Multi Stage Adaptive Testing (MSAT). There are studies
in the literature indicating the superiority of MSAT over CAT. According to Rotou
et al. (2003), MSAT produced slightly higher reliability than CAT. Furthermore,
MSAT requires content considerations in developing the testlets which bring the
expertise in assembling the items with respect to their content specifications. On
the other hand, CAT basically uses an algorithm which selects items with respect
to item information functions. Thus, MSAT seems more compatible with the test
development process in line with item specifications (Wainer and Kiely 1987;
Wainer et al. 1990).

The purpose of this study is to investigate the applicability of computerized
adaptive testing (CAT) and multistage adaptive testing (MSAT) to TPMS. For this
purpose, pupils’ real responses in mathematics assessment of the TPMS were used
and compared with respect to the results of post-hoc CAT simulations by two
different ability estimation methods such as Maximum Likelihood or Weighted
Maximum Likelihood. Through these estimation processes different starting rules,
termination criteria, and control strategies were simulated and ability estimations
were compared with the ones obtained as a result of real TPMS administration.
Three starting rules, such as easy, medium, and difficult initial item difficulties, three
termination criteria, such as fixed test length and fixed reliability and four control
strategies such as no control, only content control, only exposure control, and both
content and exposure control were implemented in the analyses. In the final step,
the result of the optimum CAT algorithm was compared with MSAT where a fixed
subtest with 15 items as a starting test followed by two subtests having ten items
each were used.

9.2 Method

In the present study, real responses of 3,073 pupils to 322 mathematics items
between 2010 and 2012 were used. The participants of the real TPMS administration
were from sixth grade level. In the analyses, the reported standard scores of the
students in the real TPMS administration were used as criterion to evaluate different
post-hoc CAT and MSAT simulations.

9.2.1 Item Bank

One of the major issues of CAT studies is the size of the item bank. In the present
study, the linear computer based TPMS was used to investigate the comparability
of ability estimates with the ones obtained through CAT simulations. The linear
nature of the TPMS somehow limits the number of items used in the mathematics
sub-dimensions. This would definitely limit the size of the item bank to be used
in CAT simulations if study is conducted in the sub-dimension level. In order
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to increase the number of items in the item bank different sub-dimensions were
combined. Since the items in the TPMS were basically designed to assess the
understanding of mathematical concepts and principles within the daily life context
and problem solving skills regardless of the sub-dimensions, combination of items
from different subtests of TPMS seems a defensible approach, as long as they
measure a unidimensional trait. In order to meet the unidimensionality requirement,
the items for the item bank were selected by the factor analysis. The selected items
were all loaded on the first factor even though they come from various subtests of
the TPMS. As a result of this analysis, the items from different sub-dimensions of
mathematics which were loaded on the same factor are assumed to measuring a
general mathematical ability of the students. Finally, 78 items in “geometry,” 65
items in “measurement,” 114 items in “numbers,” and 65 items in “probability and
statistics” were selected for the item bank for further CAT analysis. The item bank
contained 322 items and the distribution of the item parameters is given in Fig. 9.1.

Dif iculty (b)

Discrimination (a)

Fig. 9.1 Distribution of item parameters

9.2.2 Simulations

The first researcher developed web-based simulation software by using PHP
programming language and MySQL database. For each simulation scenario 1,000
examinees were selected randomly from the sample.

9.2.2.1 CAT Phase

In order to find out the optimum CAT algorithm for the TPMS, by the use of different
ability estimation procedures different starting rules, test length, and item exposures
were used in the simulations. The two estimation procedures such as “maximum
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likelihood (ML)” versus “weighted maximum likelihood (WML)” were used for
each condition to be tested. Three different starting rules were used with different
initial item difficulties, such as starting the test with an easy item (b value between
−1.5 and −0.5), item with moderate difficulty (b value between −0.5 and 0.5),
or with a more difficult item (b value between 0.5 and 1.5). For the fixed-length
termination criteria three different test lengths were used, such as 15, 25, and 35
items. For the fixed test reliability three standard error values, such as 0.20, 0.30, and
0.40 were used in the analyses. Item exposure control was carried out by Sympson
and Hetter’s (1985) strategy, whereas for content control Kingsbury and Zara (1991)
control strategy were used. In Sympson and Hetter strategy, the probability of using
the same item during CAT administration is controlled by considering the frequency
of each item’s usage in the process. In Kingsbury and Zara strategy, the content
of the items is taken into consideration. In the present study, since the item bank
includes items from numbers, geometry, measurement, and probability&statistics,
using this strategy actualizes total item delivery in CAT procedure in line with
the weights of the sub-dimensions in the item bank. Thus, each individual CAT
administration samples out all the sub-dimensions with respect to their weights in
the item bank. It is expected that at the end of CAT simulations, the most optimum
approach which provides reasonable reliability and test length will be determined.
This approach will be further compared with the MSAT.

9.2.2.2 MSAT Phase

In this phase, 322 items in the bank were grouped into 8 intervals according to the
highest information they provide. The theta intervals and the number of items within
each interval are presented in Table 9.1.

Table 9.1 Distribution of the
items to intervals according to
the highest information

Interval of theta Number of items

[−4.00, −3.00) 8
[−3.00, −2.00) 19
[−2.00, −1.00) 50
[−1.00, 0.00) 90
[0.00, 1.00) 77
[1.00, 2.00) 35
[2.00, 3.00) 30
[3.00, 4.00) 13
Total 322

Each MSAT administration contains 35 items. MSAT phase starts with 15 items
from average difficulty level (items having item difficulties between −1.00 and
1.00) considering balanced content coverage. After initial ability estimation was
calculated based on 15-item testlet, two more testlets containing ten items each were
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administered. If there is no remaining item to be administered in the interval, MSAT
algorithm selected the most informative items from the nearest interval. Finally, a
total of 35 items were administered to randomly selected 1,000 examinees.

9.2.3 Statistical Analyses

After obtaining all ability estimations from different simulation scenarios, basically
the correlation coefficient was used to evaluate the congruence between simulation
and real TPMS results. TPMS reports one standard score for each sub-dimension.
Each student has four subscale scores for the mathematics assessment which are not
on the same metric. Thus, the scores obtained in simulations were correlated with
each of the subscale scores of the real TPMS administration. In the correlational
analyses given below, the median of correlations obtained between the simulation
and each of the subscale scores of TPMS were reported in the tables.

9.3 Results

9.3.1 Results of Post-hoc Simulations

9.3.1.1 Determination of Optimum Starting Rule with Fixed
Test Reliability Termination Criteria

First post-hoc simulation was implemented by ML and WML ability estimation
methods under three different starting rules and three different standard error values
as a termination rule. As a starting rule, initial item was selected either from easy
items (item difficulty between −1.50 and −0.50), moderate items (item difficulty
between 0.50 and 1.50), or difficult items (item difficulty between +0.50 and
+1.50). For the termination, fixed test reliability of SE= 0.20, SE= 0.30, and
SE= 0.40 constraints. Table 9.2 indicates number of items administered under fixed
test reliability termination rule through ML and WML ability estimations. Within
the simulations, ability estimations of the participants were calculated after the
termination criteria were met for all 1,000 randomly selected participants.

As it is seen from Table 9.2, more items are used to obtain more reliable ability
estimations as expected but when the standard error is fixed to 0.30, the number of
items in the test seemed to be the most rational choice.

Then, ability estimations of the randomly selected participants were correlated
with the real TPMS mathematics assessment scores. The correlations are presented
in Table 9.3.

As it is seen in Table 9.3, correlation coefficients under WML estimations
seem to be relatively higher. Weighted Maximum Likelihood provides slightly
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Table 9.2 Number of items administered under different starting rules and fixed test
reliability termination rules in ML and WML

Termination rule: fixed test reliability
Estimation Starting rule SE< 0.40 SE< 0.30 SE< 0.20

ML −1.50< b< −0.50 (Easy) 15.29 34.53 128.78
−0.50< b<+0.50 (Moderate) 15.56 34.47 128.84
+0.50< b<+1.50 (Difficult) 15.60 34.76 128.47

WML −1.50< b< −0.50 (Easy) 15.27 33.34 127.29
−0.50< b<+0.50 (Moderate) 15.4 33.28 126.63
+0.50< b<+1.50 (Difficult) 15.47 33.64 127.07

Table 9.3 Median of the correlation coefficients between CAT ability estimations
and TPMS mathematics assessment scores under different starting rules and fixed
test reliability termination rules

Termination rule: fixed test reliability
Estimation Starting rule SE< 0.40 SE< 0.30 SE< 0.20

ML −1.50< b< −0.50 (Easy) 0.792* 0.826* 0.898*
−0.50< b<+0.50 (Moderate) 0.790* 0.825* 0.898*
+0.50< b<+1.50 (Difficult) 0.788* 0.826* 0.897*

WML −1.50< b< −0.50 (Easy) 0.801* 0.837* 0.909*
−0.50< b<+0.50 (Moderate) 0.803* 0.836* 0.906*
+0.50< b<+1.50 (Difficult) 0.790* 0.831* 0.908*

*All correlations are significant at the 0.01 level

higher correlations especially for the 0.30 and 0.40 standard error criteria than the
Maximum Likelihood estimations.

9.3.1.2 Determination of Optimum Starting Rule with Fixed Test Length
Termination Criteria

Second post-hoc simulation was designed to compare the results of fixed-length
termination rule under 15, 25, and 35 items for different starting rule. Table 9.4
indicates the standard error values in ML and WML ability estimations.

For fixed test length simulations, 35 items provided more reliable ability
estimations as expected. Table 9.5 indicates the correlations of real TPMS ability
estimates with the estimates obtained under different test length constraints through
ML and WML procedures.

As it is seen from Table 9.5, there is a positive relationship between the test
length and the correlation coefficients. WML ability estimation method provides
slightly higher correlations than ML. Standard error values were directly related to
the reliability of the test scores. In fixed-length test administration, standard error
of each score is estimated separately and can be different from one estimation to
another but the students take the same number of test items. On the other hand,
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Table 9.4 Mean standard error estimations under different starting rules and
fixed test length termination rules in ML and WML

Termination rule: fixed test length
Estimation Starting rule N= 15 N= 25 N= 35

ML −1.50< b< −0.50 (Easy) 0.397 0.328 0.295
−0.50< b<+0.50 (Moderate) 0.399 0.326 0.295
+0.50< b<+1.50 (Difficult) 0.397 0.327 0.294

WML −1.50< b< −0.50 (Easy) 0.397 0.325 0.293
−0.50< b<+0.50 (Moderate) 0.398 0.326 0.292
+0.50< b<+1.50 (Difficult) 0.396 0.326 0.292

Table 9.5 Median of the correlation coefficients between CAT ability estimations
and TPMS mathematics assessment scores under different starting rules and fixed
test length termination rules

Termination rule: fixed test length
Estimation Starting rule 15 items 25 items 35 items

ML −1.50< b< −0.50 (Easy) 0.781* 0.816* 0.840*
−0.50< b<+0.50 (Moderate) 0.782* 0.815* 0.840*
+0.50< b<+1.50 (Difficult) 0.780* 0.812* 0.841*

WML −1.50< b< −0.50 (Easy) 0.786* 0.818* 0.846*
−0.50< b<+0.50 (Moderate) 0.789* 0.819* 0.848*
+0.50< b<+1.50 (Difficult) 0.784* 0.821* 0.849*

*All correlations are significant at the 0.01 level

fixing standard error value in CAT administration guarantees the same reliability for
the ability estimations but examinees respond to different number of test items. It
is obvious that each method has its own pros and cons with respect to termination
rules. On the other hand, different starting rules did not create any difference in the
analyses. The results also revealed that almost in all the estimations WML provided
slightly better results over ML.

9.3.1.3 Determination of a Need to Content and Item Exposure
Control Strategies

Mathematics item bank of TPMS contained items from four different sub-
dimensions such as geometry (GE), measurement (ME), numbers (NU), and
probability & statistics (PS). In real TPMS administration, students take almost
the same number of items in each sub-dimension in the same grade level. Naturally,
the real TPMS administration controls item exposure by considering the sub-
dimensions of mathematics. As was explained before, for the purpose of increasing
the number of items in the item bank, items from different sub-dimensions of the
TPMS which were loaded on the same factor were piled up together. This brought
the necessity of item content and exposure control in the present study for improving
the content validity of the CAT administrations. For this purpose, CAT simulation
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was carried out by content and exposure controls in order investigate the average
number of items to be used in CAT administration and the correlation of ability
estimates obtained through content and exposure controls with the ones obtained in
real TPMS administration.

Thus, in this particular simulation four different scenarios were tested such as
(1) no use of content and exposure control, (2) use of only content control, (3) use
of only exposure control, and finally (4) using both content and exposure controls
were checked. The stopping rule was set as fixed test reliability with standard error
0.30. The number of items administered and correlation coefficients between ability
estimations were indicated in Table 9.6.

Table 9.6 Median of the correlation coefficients between CAT ability
estimations and subscales of TPMS mathematics assessment scores under
different control strategies

Average number of
items administered

Correlation
coefficient

No content and exposure control 33.05 0.830*
Exposure control only 64.48 0.838*
Content control only 34.30 0.842*
Both content and exposure control 74.75 0.887*

*All correlations are significant at the 0.01 level

The TPMS reports standard scores for each sub-dimension of the mathematics
domain. However, in the present study for the purpose of increasing the size of
the item bank items from different sub-domain are combined together. Thus, in the
correlation analysis the standard scores obtained in real TPMS administration for
each sub-dimension were averaged.

Using control strategies increased the number of items administered as expected.
“CAT with content control” needed one more item in average than “CAT with no
control.” Moreover, the number of items in the test is almost doubled when Sympson
and Hetter (SH) exposure control was used. The maximum item exposure rate was
0.28 in SH strategy.

9.3.2 Comparison of Multi Stage Adaptive Testing Results
with TPMS

It is clearly seen that the content and exposure controls are two important concerns,
when the content validity of the CAT administration is considered. As it is seen
from the previous analysis, using both content and exposure controls increases the
number of items tremendously. In fact, in the real TPMS administration almost the
same number of items was used in linear test administration. For instance, in the
sixth grade, a total of 78 items are used in the linear TPMS. Thus, using CAT with
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both content and exposure controls does not bring any parsimony in the number
of items being used during the testing process. On the other hand, MSAT naturally
brings the content and exposure controls in designing the testlets. In the last step of
the present study MSAT simulation was carried out for the purpose of predicting the
real TPMS standard scores.

The correlation of 0.846 obtained between the ability estimations of MSAT and
TPMS. In this comparison, the test is terminated when standard error was lower than
0.30. The mean of the standard errors of ability estimation was obtained as 0.298
in this particular analysis. Additionally, the maximum item exposure rate of MSAT
was 0.31.

Conclusion
Current TPMS mathematics assessments use linear computer based tests in
which the item responses are analyzed within the framework of OPLM. This
study provides a further step to investigate the applicability of adaptive test
strategies in the TPMS. A set of simulations based on real responses of
examinees indicated that CAT ability estimations provide higher correlation
with the real TPMS mathematics assessment scores when the algorithm is
set on (1) WML ability estimations rather than ML because of profitable
statistical properties (2) fixed reliability estimates with the SE (smaller than
0.30 constraint) rather than fixed test length (Eggen and Straetmans 2000;
Eggen and Verschoor 2006; Boyd et al. 2010).

The major concern of the CAT administration is the content validity
especially in the subject matters such as mathematics, where there are
different sub-dimensions. In this respect using exposure and content control
approximates the number of items used in the CAT administration to linear
TPMS administration. Considering the importance of content validity MSAT
provided a defensible approach with 35 items used in total. This is as half
as the CAT simulation with both controls. However, since the content of
the testlets is under the control of tester, it seems possible to determine the
item exposures and sample out different sub-domains in the preparation of
the content of the testlets and as a consequence of this, validity of the test
contents could be enhanced. Moreover, MSAT is simple to administer and
provides almost the same reliability with the CAT administration. This is not
a surprising result when the studies conducted by Macken-Ruiz (2008) and
Rotou et al. (2003) are considered. As a result of the analyses, the researchers
suggest using MSAT with WML estimation of abilities if the TPMS will be
administered in adaptive test format.
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Chapter 10
Optimal Sampling Design for IRT Linking
with Bimodal Data

Jiahe Qian and Alina A. von Davier

Abstract Optimal sampling designs for an IRT linking with improved efficiency
are often sought in analyzing assessment data. In practice, the skill distribution of
an assessment sample may be bimodal, and this warrants special consideration when
trying to create these designs. In this study we explore optimal sampling designs for
IRT linking of bimodal data. Our design paradigm is modeled to gain the efficiency
in linking and equating in analyzing assessment data and presents a formal setup
for optimal IRT linking. In an optimal sampling design, the sample structure of
bimodal data is treated as being drawn from a stratified population. The optimum
search algorithm proposed is used to adjust the stratum weights and form a weighted
compound sample that minimizes linking errors. The initial focus of the current
study is the robust mean–mean transformation method, though the model of IRT
linking under consideration is adaptable to generic methods.

Keywords Optimal sampling design • Stratified population • Complete grouped
jackknifing • Optimum search

10.1 Introduction

For a complex standardized assessment with multiple test forms, typically used
linking procedures could have large errors and be unstable over time because
of heterogeneity of the samples across administrations and of the seasonality in
test results. Such variability can adversely affect scale invariance over time and
reduce efficiency in linking and equating. In this paper, we use the term linking
to describe a transformation of IRT parameters from two or more test forms to
establish a common scale, particularly a linear transformation of the IRT parameters
from the two test forms. Although the same instrument and test specifications are
administered across different regions, equating and linking procedures can still be
unstable because of sample heterogeneity. An unstable linking is a major cause of
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Fig. 10.1 The distributions of observed scores and IRT-based fitted scores

defective analysis and is always a concern to test investigators (Dorans and Holland
2000; Kolen and Brennan 2004; von Davier and Wilson 2008; Zumbo 2007).

In practice, the skill distribution of an assessment sample may be bimodal. Sam-
ples with bimodal distributions in test data could also arise during the introductory
period of a new assessment instrument and/or when unexpected events prevent
certain groups of examinees from participating. The disparity among multiple
ability groups in an actual sample can be substantial, possibly yielding test data with
bimodal distributions. A typical example of bimodal data (Duong and von Davier
2012), to be discussed later, is exhibited in the plot in Fig. 10.1 in Sect. 10.3.1.
In scenarios such as these, making a decision ahead of time to include or exclude
specific groups is a demanding task. Optimal, or at least improved, sampling
designs for an IRT linking are sought to improve the efficiency in linking and
equating in analyzing assessment data (Berger 1991, 1997; Lord and Wingersky
1985; Qian et al. 2013; van der Linden and Luecht 1998). The concept of optimal
sampling design for linking and equating has been discussed by many researchers
in the equating literature (Berger and van der Linden 1992; Buyske 2005; Stocking
1990). Our design paradigm is modeled after the work of Berger and presents a
formal setup of optimal IRT linking (von Davier and von Davier 2011). The formal
expression of this IRT linking, expressed as a restriction function on the parameter
space as given in von Davier and von Davier, is a constrained optimization problem
which can be practically and quickly approximated using the optimum searching
approach described in Sect. 10.2.5.

An offshoot of this study is focused on searching for an optimal design to gain
efficiency in item calibration by maximizing the determinant of the information
matrix on the item parameters of IRT models (Berger et al. 2000; Buyske 2005;
Jones and Jin 1994). The optimum searching algorithm (Beveridge and Schechter
1970; Wilde 1964) seeks an optimal solution of a nonlinear programming problem
such as IRT linking and, in this study, is applied to bimodal data to form a weighted
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stratified sample that minimizes linking errors. Samples with bimodal distributions
warrant special consideration when trying to create these optimal designs.

In optimal sampling design, the sample structure of bimodal data is treated as
being drawn from a stratified population (Cochran 1977). Our linking design will
adjust stratum weights to achieve an optimal linking according to a criterion based
on a function of the information matrix. When a target population is available,
weighting techniques (Cochran 1977) are often used to achieve a stabilized linking
(Qian et al. 2013). Duong and von Davier (2012) used weighting techniques
to reduce the disparity between a sample and its target population (by aligning
the proportions of the demographic groups in the sample to those of the target
population). In this way, a weighted sample distribution is made to be consistent
with the distribution of the target population (Kish 1965). Rather than achieving
stabilized linking, this study aims to reduce linking errors. Note that, although
this study is focused on applying optimal sampling design to data with bimodal
distributions, this method can be extended and used for optimal design to the
assessment samples with a stratified structure (Qian & Spencer 1994).

In this study, the model of IRT linking under consideration is quite general
and encompasses many types of linking procedures, including mean–sigma and
mean–mean (m–m), concurrent calibration, fixed-parameters calibration, the test
characteristic curves approach of Stocking and Lord (1983, S-L TCC), and the
test characteristic curves approach of Haebara (1980, as cited in Kolen and
Brennan 2004). Although the initial focus of the current study is the robust m–m
transformation method (Loyd and Hoover 1980; Mislevy and Bock 1990), the
optimal sampling design proposed in this study can be readily extended to other
types of linking, such as the S-L TCC approach.

In Sect. 10.2, we introduce the methodology of the study, including study
design, optimal sampling designs for IRT linking, complete grouped jackknifing,
and the algorithm used to solve our constrained optimization problem. In Sect. 10.3,
we document the empirical results of weighting examinee samples in IRT linking.
The final section offers a summary and conclusions.

10.2 Methodology

10.2.1 Test Design

In this study, data collection is based on the NEAT design with nonequivalent groups
from an anchor test (Angoff 1984; von Davier et al. 2004). There are two forms
involved in linking: one operational form that contains the operational items and
a set of anchor items, labeled X and U, respectively, and one reference form with
the same common anchor U in a calibrated item pool. Moreover, all the items in
the pool have already been placed on a base scale through simultaneous linking
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(Haberman 2009). The design links the IRT model parameters of the operational
form with those of the reference form in the pool through the common anchor.

10.2.2 Structure of Bimodal Data and Stratum Weights

Let P be a sample drawn from a population P. Assume the sample has a two-stratum
structure, , and the strata sample sizes are . The stratum weight
equals the ratio of stratum size to total size. The stratum weight vector for is
labeled as . Clearly, both and are between 0 and 1, and

. (10.1)

Nevertheless, the initial partition of weights in is usually not optimized for
linking.

Our goal is to find a set of optimized stratum weights that
minimizes linking error. Let and then In the special case when
ω = 1, the linking only uses the data from the first stratum and when ω = 0, the
linking only uses the data in the second stratum. These extreme cases deviate from
the target population substantially, and such a selection of groups in a sample,
as expected, will result in lost efficiency in linking, as shown by the results in
Sect. 10.3.

10.2.3 A General Model for Linking Errors and Mean–Mean
IRT Linking

In general, IRT linking takes place after IRT calibration (except for the case of
concurrent calibration). In the calibration, the two-parameter logistic regression
(2PL) IRT model is used to fit the dichotomous data (Lord 1980; Muraki and Bock
2002).

For data ( or ), let and be the subsets of the data X and U, of the
operational items and anchor items, respectively. Let vectors ,
ξQ= (XQ, UQ) for the reference data Q, and . Let πP· be ability distri-
bution for P·. Let βXP· and βUP· be the item parameter vector for XP· and UP· . Let

be the item parameter vector and ability distribution for , where

and . Let

and be the log-likelihood functions for . For the reference
form data Q in a pool, let ηQ =

(
βUQ

,πQ
)

be the item parameter vector and ability
distribution and let LQ= L(ηQ; XQ, UQ) be the log-likelihood function. .
Note that the reference distribution (from Q) is unimodal. Also note that the data sets
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Q and are independent and and , in separate strata in , are also independent.
Then, L joint = LP1 +LP2 +LQ is the joint log-likelihood function for the IRT model
applied to data X and anchor U.

10.2.3.1 Mean–Mean IRT Linking

For given ω , let a2l and b2l (l = 1, 2, . . . L) be the slope and difficulty parameter
estimates of the items on anchor U, and let a2· and b2· be means of a2l and b2l,
respectively. Let a1l and b1l be the slope and difficulty parameter estimates on the
reference form, and let a1· and b1· be the means of a1l and b1l.

The m–m transformation parameters (Kolen and Brennan 2004; Loyd and
Hoover 1980) are

A =
a2·
a1·

and

B = b1· −A b2·.

In an improved robust m–m transformation (Haberman 2009), the A parameter
estimates are

A = exp
[
log(a2·)− log(a1·)

]
,

where log(a2·) = L−1∑L
l=1 log(a2l) and log(a1·) = L−1∑L

l=1 log(a1l). Let θ 2 and
θ *

2 be the ability scores for the same examinee on the operational and reference
forms, respectively. The score transformation between two forms is θ *

2 =Aθ 2 +B.

10.2.3.2 A General Model for Linking

Following von Davier and von Davier (2011) notations, let R(ω ,η)= {Ra(ω ,η),
Rb(ω ,η)} be the conditional restrictions on an anchor U for the m–m linking for
the 2PL and the symbols a and b stand for the restrictions of slope and difficulty,
respectively. Its components are

Ra (ω,η) =
(
∑L

l=1a2l −∑L
l=1a1l

)

and
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Rb (ω,η) =
(
∑L

l=1b2l −∑L
l=1b1l

)
.

In order to obtain the optimal weighting for this constrained optimization
problem by applying the Lagrange multiplier method, the general linking model
for IRT linking (von Davier and von Davier 2011) can be expressed as

Λ
(
η ,λ ,ω,θ

∣∣∣ξ)= L joint +λ ’R(ω,η) , (10.2)

where λ is a vector of Lagrange multipliers and R(ω ,η) is the constraint function
for this model. Note that in linking to a pool, the anchor items in the reference
form item pool had been calibrated and updated periodically (Haberman 2009). In
a linking process, all the parameters in LQ in Ljoint are fixed; the term LQ can be
dropped and the model can be simplified to

. (10.3)

For some λ , the optimal solution is the maximum of Eq. (10.3). To find the
restricted maximum likelihood estimates, the task is to obtain a solution for the
following equations

∇L joint +λ ’∇R(ω,η) = 0,

R(ω,η) = 0,

where ∇Ljoint and ∇R(ω ,η) denote the gradients of Ljoint and R(ω ,η), respectively
(Nocedal and Wright 2006; Silvey 1970).

10.2.4 Variance Estimation and Optimal Weighting

10.2.4.1 Linking Error

A complete grouped jackknife repeated replication method (CGJRR; Haberman
et al. 2009) is used to estimate the standard errors of the whole linking procedure,
including IRT calibration, item parameter scaling, and IRT linking. Although
CGJRR is effective and powerful, as a resampling method, it can be computationally
intensive and, in application, we usually need to adjust the grouping approach
based on how data are sampled. Alternatively, other methods of variance estimation
can also be used to estimate linking errors, such as balanced repeated replication
(BRR), the bootstrap method, and the Taylor series method (Wolter 2007). To
conduct CGJRR, first, the examinees in the sample were randomly aggregated into
J (120 in this study) groups of similar sizes. Then the jth jackknife replicate sample
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was formed by deleting the jth group from the whole sample, and therefore, 120
jackknife replicate samples were formed in total.

Given ω , for the whole sample and each jackknife replicate sample, we con-
ducted the same IRT calibration, scaling, and equating procedure. Then we esti-
mated the jackknifed standard errors of the parameters of interest. Let μ be the
parameter estimated from the whole sample and μ (j) be the estimate from the jth
jackknife replicate sample. The jackknifed variance of μ was estimated by

V (μ) =
J−1

J ∑J
j=1

[
μ( j)−μ(.)

]2
, (10.4)

where μ (.) is the mean of all μ (j) (Wolter 2007). The variance estimate V(μ) is just
one measure of linking error, which is empirically unimodal.

10.2.4.2 Minimizing the Linking Error

In this paper we are interested in minimizing the linking error. Let θ be the mean of
transformed scores of θ *

2. The linking error of θ can be expressed as ,
for example, the V

(
θ
)

mentioned above. The task of optimal weighting is to find
a solution of ω that minimizes . The other statistics of interest include
the transformation parameters A and B, and in these cases, the task is then to find an
optimal ω that minimizes and . The symbol V(·) is used to
refer to linking error from here on. Thus the new model for linking errors becomes

, (10.5)

where λ is the Lagrange multiplier, F(ω,η) is the constraint function for adjusted
ω , and is a linking error term. Under this model, the task is to yield
an optimal ω that minimizes .

Kuhn and Tucker (1951) discussed the optimality conditions for a Lagrange
problem, such as the models for linking errors in Eqs. (10.3) and (10.5). Because
solving the general model involves the whole linking procedure, including IRT
calibration, item parameter scaling, and IRT linking, it is a demanding task to
obtain the analytical solution for the equation. In this study, instead of solving the
Lagrange problem analytically, we used the optimum searching approach, described
in Sect. 10.2.4, to find the optimal ω , which minimizes a quantity
in Eq. (10.5) iteratively. Before introducing the optimum seeking algorithm, we
discuss the existence of an optimal solution ω that minimizes the linking error of a
statistic of interest.



172 J. Qian and A.A. von Davier

10.2.4.3 Existence of Optimal Weighting

The linking errors in Eq. (10.5) are measured by variances and/or
mean squared errors (MSEs) of the statistics of interest. The variance and MSE
are quadratic functions. Assume θ̂ is an estimator of θ . The MSE of θ̂ is

MSE
(
θ̂
)
=V

(
θ̂
)
+

[
E
(
θ̂
)
−θ

]2
.

Let y∗1 and y∗2 be the means of transformed scores for the first and second strata,
respectively. For the stratified sample the mean estimate is y∗ = ωy∗1 +(1−ω)y∗2
and the variance estimator V (y∗) =ω2V (y∗1)+(1−ω)2V (y∗2). Let f1 (ω) =V (y∗).
For ω , the function of linking error f1(ω) is convex on (0, 1). Because

d f1 (ω)

dω
= 2ω [V (y∗1)+V (y∗2)]−2V (y∗2) ,

when

ω =
V (y∗2)

V
(
y∗1

)
+V

(
y∗2

) ∈ (0, 1) ,

the f1(ω) reaches its minimum on (0, 1).
Similarly, there also exists an optimal ω that minimizes the MSE. Define

the biases of y∗, y∗1, and y∗2 : Δ = E (y∗)− Y
∗
, Δ1 = E (y∗1)− Y

∗
1, and Δ2 =

E (y∗2)−Y
∗
2,. Assume the bias estimates for the two strata are approximately equal,

Δ1 ≈Δ2; then, for a stratified sample, the squared bias of y∗ can be expressed
as Δ2 =ωΔ2

1 + (1−ω)Δ2
2. Because the MSE of an estimate equals the sum of

the variance and the squared bias of the estimate, this implies that MSE(y∗) =
ω2MSE(y∗1)+(1−ω)2MSE(y∗2). Let f2 (ω) = MSE(y∗). Because Δ1 ≈Δ2,

d f2 (ω)

dω
≈ 2ω [V (y∗1)+V (y∗2)]−2V (y∗2) .

When

ω ≈ V (y∗2)
V

(
y∗1

)
+V

(
y∗2

) ∈ (0, 1) ,

the f2(ω) reaches its minimum on (0, 1). The optimum ω that minimizes the MSE,
with the assumption of Δ1 ≈Δ2, approximates the minimizer for variance. So the
linking error of variance is used in assessing the weighting effects in Sect. 10.3.2.

Although it is difficult to provide an analytic proof of the existence of an optimal
ω that minimizes the linking errors of the linking parameters A and B, the empirical
curves of the linking errors of these linking parameters are all approximately
quadratic. Section 10.3.2 provides the empirical curves in Fig. 10.3a–d.
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10.2.5 An Algorithm to Yield Optimal Weighting for IRT
Linking

The optimum searching approach (Beveridge and Schechter 1970; Wilde 1964) is
an iterative method. Its algorithm alternates between two steps: the first step is
to conduct IRT calibration and m–m linking; the second step, given the linking
obtained from the first step, is the use of the optimum seeking approach to narrow
the range for ω . Iteration continues until a solution for ω is found, i.e., the range is
narrower than a small control length, say ε . The ω yielded by the iterative algorithm
converges to the optimal solution for Λ*(ω ,η , θ |ξ ) which satisfies the constraint

condition in Eq. (10.1). Of note is the fact that the golden ratio,
√

5−1
2 ≈ 0.618, is

often used in fast optimum searching (Wilde 1964) as in the algorithm described
below.

We start with four initial values of ω (i.e., the stratum weight for ),
(ω0

1,ω0
2,ω0

3,ω0
4)= (0, 0.382, 0.618, 1), and then we narrow the range for ω until

it converges. When the vector for ω is set, the vector of 1−ω (i.e., the stratum
weight for ) can be determined correspondingly. For example, when ω equals
0.382, which is the second value of the four initial values of ω , then 1−ω = 0.618.
Note that the two points in the middle, ω0

2 and ω0
3, divide the possible range of

ω , which is [0, 1] initially, into three subsegments with sequential proportions that
satisfy the golden ratio: 0.382 and 0.618. Let (V0

1, V0
2, V0

3, V0
4) be the vector of the

corresponding linking errors with (ω0
1,ω0

2,ω0
3,ω0

4), and let (η0
1,η0

2,η0
3,η0

4) be the
vector of the corresponding parameters of item calibration. Let ε be a small control
constant and let i= 0. The optimization algorithm we use (Hua et al. 1989; Wilde
1964) consists of three steps after this initial setup:

a. Narrow the range of ω:
If Vi

2 <Vi
3, then let ω*=ω i

1 + 0.618 *ω i
2 and vector (ω i+ 1

1 ,ω i+ 1
2 ,

ω i+ 1
3 ,ω i+ 1

4 )= (ω i
1,ω*,ω i

2,ω i
3); otherwise let ω*=ω i

2 + 0.618 *ω i
3 and

(ω i+ 1
1 ,ω i+ 1

2 ,ω i+ 1
3 ,ω i+ 1

4 )= (ω i
2,ω i

3,ω*,ω i
4).

b. Conduct a mean–mean linking:
Based on the data set with (ω i+ 1

1 ,ω i+ 1
2 ,ω i+ 1

3 ,ω i+ 1
4 ), calibrate the items and let

the parameter vector be (η i+ 1
1 ,η i+ 1

2 ,η i+ 1
3 ,η i+ 1

4 ). Note that three out of the four
elements in the vector remain the same as in the previous loop iteration and only
η i+ 1

2 or η i+ 1
3 need to be estimated.

c. Judge if a solution of ω has been reached:
Based on (η i+ 1

1 ,η i+ 1
2 ,η i+ 1

3 ,η i+ 1
4 ), conduct linking and let the vector of linking

errors be (Vi+ 1
1 , Vi+ 1

2 , Vi+ 1
3 , Vi+ 1

4 ). If |Vi+ 1
2 −Vi+ 1

3 |< ε , then stop; otherwise,
i= i+ 1, and go to step a).
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10.3 Data and Results

10.3.1 Data Resources

10.3.1.1 An Example of Bimodal Data

Figure 10.1 presents a typical example (Duong and von Davier 2012) of the
distribution of bimodal data from an English listening assessment that consists
of 100 dichotomous items. In addition to the observed scores in the figure, the
IRT-based fitted scores were estimated based on Lord and Wingersky’s recursion
algorithm (Kolen and Brennan 2004; Lord and Wingersky 1985). The data came
from 6,852 test takers that are classified into two groups based on level of education.
In the first group of 2,808 (41 %) test takers, whose scores are clustered around
the left mode, the level of education is lower than a bachelor’s degree; the second
group of 4,044 (59 %) have a bachelor’s degree or higher. In this study we use real
but manipulated data that match the shape of the bimodal distribution described in
Fig. 10.1.

10.3.1.2 Data Resources Used in Analysis

Because it is difficult to obtain record-based bimodal data as shown in Fig. 10.1,
we decided to create the data sets with bimodal distributions from real assessment
samples. In the analysis, we employed four administrations of a reading assessment
from a large-scale international language test; these tests were administered across
different testing seasons. All of the examinees had responses to 42 operational
items from two blocks having 14 and 28 items, respectively. The IRT linking was
accomplished using both internal and external anchors. The anchor items were used
to link the scale of a new test form to the scale of reference forms.

The initial task of the data analysis was to form bimodal data from the original
data. We dropped 14–17 % of the cases from the original samples, respectively.
Specifically, the percentage of the reduced cases in the score range of [21, 22] is
10 %, the percentage in [23, 25] is 35 %, the percentage in [26, 28] is 55 %, the
percentage in [29, 30] is 35 %, and the percentage in [31, 32] is 10 %. Figure 10.2a–d
present the four original Reading data sets and the corresponding bimodal data sets
formed after 25 % of the cases in the mid-score range were dropped. Then, based
on score and demographic variables, we partitioned all cases into two groups that
form the two strata of the sample structure of bimodal data. The first group consists
of all the cases in the score range of [1, 20], around 65–75 % of the cases in [21, 26]
and 28–35 % of the cases, in [27, 32] who plan to apply for college level studies or
have other plans, and around 35–45 % of the cases in [21, 32] who plan to apply
for graduate level studies. The test takers in the second group are all those with
scores of 33 and above, and all those not included in the first group. Specifically,
Table 10.1 shows the sample sizes for all four samples, their bimodal subsamples,
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Fig. 10.2 The distributions of the sample, bimodal subsample, and two groups for reading 1
(a), reading 2 (b), reading 3 (c), and reading 4 (d)

Table 10.1 Statistics of the Samples, Bimodal Subsamples, and two groups in each data set

Data
Original
sample

The size of
bimodal subsample

Percentage of
cases reduced (%)

Sample
size of G1

Sample
size of G2

Reading1 10,313 8,585 16.8 3,542 5,043
Reading2 8,628 7,226 16.2 2,771 4,455
Reading3 9,454 8,159 13.7 2,249 5,910
Reading4 10,120 8,359 17.4 3,091 5,268

and the groups in each data set; Fig. 10.2a–d present the distributions for the original
samples, bimodal subsamples, and the groups in each data set.

10.3.2 Results

The evaluation of weighting effects is based on the comparisons of the variances of
the m–m linking based on an optimally weighted sample against those based on an
unweighted sample.

Figure 10.3a–d present the curves of the jackknifed standard errors of m–m
linking parameters A and B for the four Reading data sets. The curves of standard
errors are approximately quadratic when the stratum weight ω changes on (0, 1);
this shows that, on each curve, there exists an optimal ω at which the standard error
of A (or B) reaches its minimum. Figure 10.4a–d are the curves of the jackknifed
standard errors of mean score estimates for the four Reading data sets. The curves
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Fig. 10.3 Standard errors of m–m linking parameters A & B for reading 1 (a), reading 2
(b), reading 3 (c), and reading 4 (d)

are also approximately quadratic when the stratum weight ω changes on (0, 1). Note
that in Sect. 10.2.4 we have shown that the linking errors of the mean estimates,
variances, and/or MSEs, are convex on (0, 1).

In Table 10.2, we present the two types of jackknifed SEs for the bimodal sub-
sample, i.e., SEopt for the optimally weighted sample and SEun for the unweighted
sample. In the analysis, the convergence criterion for the optimization algorithm
was set as |Vi+ 1

2 −Vi+ 1
3 |< 0.0001. The algorithm usually converged within 5–7

iterations. The ratio of SEun to SEopt ranges between 1.01 and 1.23 and the averages
of these ratios for the transformation parameters A and B are 1.10 and 1.08,
respectively, whereas the average of these ratios for the mean estimates is about
1.11. The efficiency of the m–m linking based on an optimally weighted sample is
indeed improved.

10.4 Summary

In this study, we have applied optimal sampling techniques to yield an optimally
weighted linking for bimodal data. This is an improvement over the conventional
procedure of weighted IRT linking (Qian et al. 2013) that is designed to achieve a
stable scale across multiple forms or to obtain an unbiased estimation in statistical
inference. In this study, based on the definition of an optimal sampling design
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Fig. 10.4 Standard errors of mean score estimates for reading 1 (a), reading 2 (b), reading 3
(c), and READING 4 (d)

Table 10.2 The SEs of the estimates of interest for unweighted and optimally weighted
samples and the efficiencies of a linking with optimally weighted bimodal sample

Transformation
parameter/mean Data set SEun SEopt Optimal ω

Number of
iteration SEun

SEopt

A Reading 1 0.00106 0.00087 0.93 7 1.21
A Reading 2 0.00134 0.00132 0.65 6 1.01
A Reading 3 0.00135 0.00133 0.79 7 1.02
A Reading 4 0.00141 0.00122 0.89 6 1.16
B Reading 1 0.00141 0.00130 0.21 7 1.08
B Reading 2 0.00143 0.00135 0.84 7 1.06
B Reading 3 0.00173 0.00154 0.85 7 1.12
B Reading 4 0.00159 0.00151 0.46 5 1.05
Mean Reading 1 0.02983 0.02418 0.94 6 1.23
Mean Reading 2 0.03873 0.03804 0.65 6 1.02
Mean Reading 3 0.04314 0.04199 0.84 7 1.03
Mean Reading 4 0.04046 0.03451 0.89 6 1.17

(Berger 1991, 1997), we (a) achieved a formal optimal sampling design for IRT
linking conducted on tests with bimodal data; (b) improved the efficiency of such
linking procedures based on a different optimality criterion, i.e., by minimizing the
error of the whole linking procedure; (c) provided a practical quality control method
to IRT linking procedures with large-scale testing data collected from a population
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with heterogeneous subpopulations; and, finally, (d) applied a rapidly convergent,
iterative algorithm to find an optimal solution for a general model of IRT linking.

From the empirical data analyzed, the optimal sampling design was shown to
reduce the errors, on average, by 10 %. This is a fast and practical approach as the
iterative algorithm can usually converge close to an optimal solution in less than
seven iterations.

The focus of this study was on optimally weighted bimodal samples for IRT
linking. Future research will be aimed at developing a generalized optimal sampling
design to attain improved efficiency in obtaining a stable linking. In practice, the
skill distribution of an assessment sample is often influenced by some examinee
demographics, such as gender, age, region/native country, time studying a foreign
language, or grade level. We can recode such demographic variables to their own
binary-type responses, and then, based on these variables, we can form a cross-
tabulated structure of the sample. On the marginal distribution of each variable, there
are two categories (strata), and our task for this multivariate optimization problem is
to adjust the category allocation on each margin to yield a solution which minimizes
linking errors.
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Chapter 11
Selecting a Data Collection Design for Linking
in Educational Measurement: Taking
Differential Motivation into Account

Marie-Anne Mittelhaëuser, Anton A. Béguin, and Klaas Sijtsma

Abstract In educational measurement, multiple test forms are often constructed
to measure the same construct. Linking procedures can be used to disentangle
differences in test form difficulty and differences in the proficiency of examinees
so that scores for different test forms can be used interchangeably. Multiple data
collection designs can be used for collecting data to be used for linking. Differential
motivation refers to the difference in test-taking motivation that exists between high-
stakes and low-stakes administration conditions. In a high-stakes administration
condition, an examinee is expected to work harder and strive for maximum per-
formance, whereas a low-stakes administration condition elicits typical, rather than
maximum, performance. Differential motivation can be considered a confounding
variable when choosing a data collection design. We discuss the suitability of
different data collection designs and the way they are typically implemented in
practice with respect to the effect of differential motivation. An example using data
from the Eindtoets Basisonderwijs (End of Primary School Test) highlights the need
to consider differential motivation.

Keywords Data collection design • Differential motivation • Linking

In educational measurement, multiple test forms are often constructed to measure
the same construct to prevent item disclosure and maintain fairness. To make
accurate comparisons of results, different test forms are created with as equal
content and psychometric properties as possible. However, it is unlikely that the test
forms will be perfectly comparable. Therefore, score differences between test forms
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can be attributed either to differences in difficulty of the test forms or to differences
in proficiency of the examinees. Equating and linking1 procedures can be used to
disentangle differences between test form difficulty and differences between the
proficiency of examinees (von Davier 2013) so that scores on different test forms
can be used interchangeably (see Angoff 1971; Holland and Rubin 1982; Kolen and
Brennan 2004). Multiple data collection designs can be considered for collecting
data to be used for linking. Choosing one type of data collection design over
another depends on practical and statistical limitations. For example, differential
student motivation for test taking needs to be considered when choosing a data
collection design (Holland and Wightman 1982). Differential motivation refers to
the difference with respect to test-taking motivation that exists between high-stakes
and low-stakes administration conditions. In a high-stakes administration condition,
an examinee is expected to work harder and strive for maximum performance,
whereas a low-stakes administration condition elicits typical, rather than maximum,
performance. Even though essentially all data collection designs are effective when
all examinees are sufficiently motivated, the way in which data collection designs
are typically implemented in practice results in some data collection designs being
more robust against the effect of differential motivation than others.

In this paper, we first discuss differential motivation, followed by an overview
and discussion of the robustness of linking procedures against the effect of
differential motivation for five well-known types of data collection designs. Then,
an example is used to highlight the need to consider differential motivation when
choosing a data collection design for linking.

11.1 Differential Motivation

Researchers often implicitly assume that a test score is a valid indicator of an
examinee’s best effort (Wolf and Smith 1995). However, accumulated evidence
shows that if item performance does not contribute to the test score or if no
feedback is provided, examinees may not give their best effort (Kiplinger and
Linn 1996; O’Neill et al. 1996; Wise and DeMars 2005). Unusual patterns of item
scores or under-performance are common for low-stakes administration conditions.
Within the item response theory (IRT) framework, unusual item-score patterns and
under-performance threaten the correct estimation of examinee proficiency and item
parameters (Béguin and Maan 2007). For example, Mittelhaëuser et al. (2011) found
that, compared to using common items administered in a high-stakes condition,
using common items administered in a low-stakes condition to link two high-stakes
tests yielded different conclusions about the proficiency distributions.

1Despite the theoretical difference between linking and equating, the same statistical methods are
used in the two procedures. Therefore, the terms equating and linking are used interchangeably for
the purpose of this paper.
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Many studies have focused on preventing, detecting, or correcting the effect of
differential motivation. For example, Wise and Kong (2005) pointed out that the
effort an examinee devotes to an item may vary throughout the test. Furthermore,
Wolf et al. (1995) found that the effect of the administration condition on test
performance differs substantially for different groups of items. In particular, items
scoring highly on perceived difficulty or items considered mentally taxing were
more affected by a difference in administration condition. Despite the growing
knowledge of differential motivation, in practice, the effect differential motivation
has on data is hard to detect and correct. Reise and Flannery (1996, p. 12) address
this problem by stating, “Typical performance tests are usually not taken as seriously
by examinees as are maximum performance measures. . . . which is potentially more
damaging to the measurement enterprise than any of the other so-called ‘response
biases.’” Since differential motivation might threaten the correct estimation of
examinee proficiency and item parameters, thereby threatening the link between
two test forms, differential motivation has to be taken into account when choosing a
data collection design for linking.

11.2 Data Collection Designs

This section provides an overview of five well-known types of data collection
designs suitable for linking and addresses the robustness of linking procedures
and the way data collection designs are typically implemented in practice against
the effect of differential motivation. A detailed description of these data collection
designs and a discussion of the general advantages and disadvantages can be
found in the equating literature (see, e.g., Béguin 2000; Kolen and Brennan
2004; Scheerens et al. 2003; von Davier et al. 2004). A distinction is made
between data collection designs in which the tests to be linked are administered
to equivalent groups (i.e., single-group design or equivalent-groups design) or to
non-equivalent groups (i.e., common-item non-equivalent groups design, pre-test
design or linking-groups design). Symbolic representations of the data collection
designs are presented in Fig. 11.1 in the form of person-by-item matrices. Rows
correspond to examinee data and columns to item data. Shaded areas represent
combinations of items and examinees for which data are available. Blank areas
represent combinations of items and examinees for which no data are available. The
ordering of the items presented in the figures does not necessarily correspond to the
ordering of items in the test form. Furthermore, sample sizes are not proportional to
the sizes of the shaded and blank areas in the figures.
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Fig. 11.1 (a) Single-group design, (b) equivalent-groups design, (c) common-item non-equivalent
groups design, (d) pre-test design, and (e) linking-groups design
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11.2.1 Single-Group or Equivalent-Groups Designs

The first data collection design is the single-group design (Fig. 11.1a). Both test
forms are presented to a single group of examinees. An important assumption is
that the proficiency of examinees does not change from one test form to the next.
By assuming that the proficiency of examinees does not change, score differences
between the two test forms can be attributed to differences in test form difficulty.
Differential motivation should not pose a problem when using this data collection
design if both test forms are administered under the same (high-stakes) conditions.
However, if Test I is administered in a condition where the stakes are higher than
in the administration condition of Test II, score differences between the test forms,
due to differences in administration conditions, will be attributed to differences in
test difficulty, resulting in overestimation of the difficulty of Test II.

The equivalent-groups design (Fig. 11.1b) is a variation on the single-group
design in which each test form is administered to separate, non-overlapping groups
of examinees. An important assumption is that the groups are randomly equivalent.
By assuming that the groups are randomly equivalent, score differences between
the two test forms can be attributed to differences in test form difficulty. Similar to
the single-group design, differential motivation should not pose a problem if both
tests are administered under the same (high-stakes) conditions. However, if Test I is
administered in a condition where the stakes are higher than in the administration
condition of Test II, overestimation of the difficulty of Test II is likely.

Kolen and Brennan (2004, pp. 17–19) give an empirical example of differential
motivation in a (supposedly, counterbalanced) single-group design. They describe
how a dataset collected according to a single-group design was used to scale an old
test form and a new test form of the Armed Services Vocational Aptitude Battery
(ASVAB) (Maier 1993). It appeared that many examinees were able to distinguish
the items of the old test form and the new test form. Furthermore, many examinees
were aware that only the items of the old test form were used to determine the
score that was employed for selection purposes. Therefore, examinees were more
motivated to answer the items of the old test form than the items of the new test
form. This difference in stakes between the items from the old test form and items
from the new test form resulted in high scores on the new test form, resulting in
an estimated 350,000 individuals entering the military between January 1, 1976 and
September 30, 1980 who should have been judged ineligible (Maier 1993).

11.2.2 Non-equivalent Groups Designs

In non-equivalent groups designs, examinees taking different test forms are assumed
to be drawn from different populations. These designs are especially useful when
it is unrealistic to assume random equivalence of examinee groups. For example,
in educational measurement, the proficiency level of examinee groups may differ.
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Data in non-equivalent groups designs are collected from the administration of two
non-overlapping test forms to two different groups. The data contain no information
to disentangle the differences in test form difficulty and the differences in exami-
nees’ proficiency. Therefore, non-equivalent groups designs must be ‘linked.’ Using
the common-item non-equivalent groups design, pre-test design or linking-groups
design will establish the link in three different ways.

The common-item non-equivalent groups design (Fig. 11.1c) is the most fre-
quently used data collection design for equating test results across programs and
testing organizations (von Davier 2013). In this data collection design, test forms
are administered to non-overlapping and non-equivalent groups of examinees. Both
groups, or samples of both groups, are administered an additional set of common
items, which are often referred to as anchor items. Since the anchor items are the
same across different groups of examinees, the difference in difficulty between the
two test forms can be identified from the relative performance of both groups on the
anchor items. The common-item non-equivalent groups design has two variations,
one using an internal anchor and the other using an external anchor (Kolen and
Brennan 2004, p. 19). When using an internal anchor, the score on the anchor items
counts towards the score on the test form, whereas using an external anchor, the
score on the anchor items does not count towards the score on the test form. In
an internal-anchor design, the test form and anchor items are administered under
the same (high-stakes) administration conditions, and differential motivation should
not pose a problem when using this data collection design. Whether differential
motivation poses a problem to the external-anchor design depends on the way the
design is implemented in practice.

First, differential motivation might be a problem when using an external anchor
design if examinees can distinguish which items count towards the score on the test
form (i.e., items belonging to the test form) and which items do not (i.e., items
belonging to the external anchor). If external anchor items are administered as
a separately timed test section, examinees are most likely aware that the scores
on these items do not count towards their score on the test form and differential
motivation is likely to have an effect. However, if external anchor items are
administered at the same time as the test form and examinees are not able to
distinguish which items count towards the score on the test form, differential
motivation will most likely not pose a problem. Second, differential motivation
might be a problem when its effects are unequal between the two populations that
are administered the external anchor items. If the effects are equal, differential
motivation does not pose a problem and the linking result is unbiased. To see this,
one may notice the following. In the common-item non-equivalent groups design
the difference in difficulty between the test forms is estimated in two steps. First,
the difference in proficiency between the populations is estimated from the relative
performance of both populations on the anchor items. Second, the difference in
difficulty of the forms is determined based on the relation between the anchor items
and the items of the test forms. If the effect of differential motivation is equal among
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the populations administered the external anchor items, the difficulty of the external
anchor items is overestimated, but the relative performance of both populations
on the external anchor items represents the true difference between population
proficiency; hence, the linking result is unbiased.

In the pre-test design (Fig. 11.1d), different subgroups are administered one of
the test forms (Test I), and each subgroup receives a different additional subset of
items intended for use in the new test form (Test II). In this way, items can be
pre-tested to examine their psychometric properties before including them in a test
form, here Test II. The score on the pre-test items usually does not count towards the
score on the test form, since their psychometric properties are unknown at the time
of administration. The number of items administered together with Test I is often
relatively small to maintain the security of items in the new form (Béguin 2000).
The pre-test items should be administered in such a way that the examinees cannot
distinguish between the pre-test items and the items of the actual test form. In this
case, differential motivation should not have an effect on the linking result. However,
examinees might be able to distinguish the items of the actual test form and the pre-
test items, for example, when the pre-test items are administered as a separately
timed test section. In this case, differential motivation results in an overestimation
of the differences in proficiency between the two test forms.

An application of the pre-test design can be found in the standard-setting pro-
cedure for the Swedish Scholastic Aptitude Test (SweSat; Emons 1998; Scheerens
et al. 2003). The additional items do not count towards an examinee’s score and
examinees are not aware of which items do not belong to the actual examination,
thereby guaranteeing the same level of motivation of the examinees on both the
SweSat items and the items that are pre-tested.

Using the linking-groups design (Fig. 11.1e), a link can be established between
the test forms by means of linking groups (Béguin 2000; Scheerens et al. 2003).
Linking groups consists of examinees who do not participate in the actual admin-
istration of Test I and Test II, but are administered subsets of items from both
test forms. Since these examinees are administered subsets of items from both test
forms, the difference in difficulty between the two test forms can be estimated from
the relative performance of the linking groups on the subsets of items from Test I to
Test II. Differential motivation should not pose a problem if the subsets of items are
administered to the linking groups in the same (high-stakes) condition as Test I and
Test II. If linking groups are administered the items in a lower-stakes condition than
Test I and Test II, differential motivation does not necessarily pose a problem. If
the effects of differential motivation within the linking groups are equal among the
subset of items from Test I to Test II, the linking result is unbiased. To see this, one
may notice that if the effects of differential motivation are equal among the subsets
of items, the relative performance of the linking groups on the subsets of items from
Test I to Test II remains the same and the linking result is unbiased.
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11.3 Example: Linking Mathematics Tests Using
Different Data Collection Designs

This section introduces the mathematics scales of the ‘Eindtoets Basisonderwijs’
(End of Primary School Test) and the different data collection designs that can be
used for linking the mathematics scales of the Eindtoets Basisonderwijs 2011 and
the Eindtoets Basisonderwijs 2012. The linking results obtained using different data
collection designs are compared.

11.3.1 Eindtoets Basisonderwijs

The Eindtoets Basisonderwijs is administered each year at the end of Dutch primary
education to give pupils, their parents, and their school advice about the type of
secondary education most appropriate for the pupil. Each year, approximately 80 %
of all primary schools in The Netherlands participate in the test. Even though the
advice provided by the Eindtoets Basisonderwijs is not binding, almost all pupils
consider the test high-stakes. This is caused by social and parental pressure and
ample media attention. In addition, some more selective secondary schools use the
test scores as part of their admission requirements. Item secrecy is vital; hence, the
test form is renewed each year. The test forms of 2011 and 2012 each contained 60
mathematics items.

11.3.2 Method

11.3.2.1 Data

Samples of examinees were used to link the mathematics scales. The samples
contained 4,841 examinees for the 2011 test form and 5,150 examinees for the 2012
test form.

Data were available to establish the link between the mathematics scales using
either an equivalent-groups design (Fig. 11.1b), a common-item non-equivalent
groups design (Fig. 11.1c) with either an internal or external anchor, a pre-
test design (Fig. 11.1d) or a linking-groups design (Fig. 11.1e). When using the
equivalent-groups design to link the mathematics scales, it was assumed that the
samples of 2011 and 2012 were randomly equivalent when estimating the item
parameters. Therefore, the differences between the proficiency distributions of the
2011 and 2012 samples did not have to be estimated.

The common-item non-equivalent groups design could be applied to the math-
ematics scales in two ways, since both an internal anchor and an external anchor
were available. When using internal anchor items, samples of examinees were
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administered a different test form, which in both cases included 20 anchor items
and 40 items from the test form. The anchor items count towards the final score
on the Eindtoets Basisonderwijs and examinees were not aware that they had
been presented an alternative test form. Therefore, differential motivation was not
expected to pose a problem. The internal anchor items were administered to 3,027
and 2,708 examinees in 2011 and 2012, respectively. The external anchor items were
administered in a low-stakes condition as a separately timed test. Schools often
use this setup as an additional measurement of proficiency in preparation for the
Eindtoets Basisonderwijs. The external anchor test was administered in the same
month as the Eindtoets Basisonderwijs. The external anchor test, consisting of 50
mathematics items, was administered to 1,696 and 1,756 examinees in 2011 and
2012, respectively.

To pre-test the mathematics items intended for use in the Eindtoets Basisonder-
wijs 2012, 22 pre-test booklets (ranging from 28 to 62 items) were administered in
2011 approximately two to three weeks before the administration of the Eindtoets
Basisonderwijs 2011. The number of examinees who were administered the pre-test
booklets ranged from 244 to 347. Since the same pre-test items were administered
in more than one pre-test booklet, the number of observations per item was larger,
ranging from 276 to 976. The pre-test booklets were administered in a low-stakes
condition. Similar to the common-item non-equivalent groups design, the link was
established for the 2011 and 2012 samples.

Subsets of items intended for use in the Eindtoets Basisonderwijs 2011 or the
Eindtoets Basisonderwijs 2012 were pre-tested on different samples of examinees
to examine the psychometric properties of the items. These samples of examinees
could be used as linking groups in a linking-groups design. Twenty pre-test booklets
(ranging from 27 to 63 items) were administered in 2010 approximately two to three
weeks before the administration of the Eindtoets Basisonderwijs 2010. The number
of examinees who were administered the pre-test booklets ranged from 150 to 349.
Since the same pre-test items were administered in more than one pre-test booklet,
the number of observations per item was larger and ranged from 194 to 692. The
pre-test booklets were administered in a low-stakes condition.

11.3.2.2 Analyses

Marginal maximum likelihood estimates of the proficiency distributions of the
examinees who were administered the 2011 or 2012 test forms were obtained using
the Rasch model (Rasch 1960). According to the Rasch model, the probability of
passing an item i for individual j is a function of proficiency parameter θ j and can
be given by

P
(

Xi j = 1
∣∣∣θ j

)
=

exp(θ j −βi)

1+ exp(θ j −βi)
,



190 M.-A. Mittelhaëuser et al.

where β i is the difficulty parameter of item i. OPLM software was used to estimate
the Rasch model (Verhelst et al. 1995). The differences in mean proficiency of
the 2011 and 2012 samples were compared between the different data collection
designs used. Student’s t-tests were used to determine whether mean proficiency of
the samples of 2011 and 2012 differed significantly. Cohen’s d was used to assess
the effect size (Cohen 1988).

It may be argued that the Rasch model properties of unidimensionality, nonin-
tersecting response curves, and a zero lower asymptote may not be appropriate for
the data sets investigated here. However, Béguin (2000) showed that the procedure
involving the Rasch model for equating the examinations in the Netherlands is
robust against violations of unidimensionality and guessing. We assumed that this
result could be generalized to our data and that the use of the Rasch model was
appropriate. To investigate whether this assumption was valid, the data analysis
was repeated on item sets from which items that did not fit the Rasch model were
removed.

11.3.3 Results

Table 11.1 shows the estimated proficiency means of the mathematics scales of the
Eindtoets Basisonderwijs 2011 and 2012. For all data collection designs, the mean
proficiency of the population presented with the 2012 test form was higher than
the population presented with the 2011 test form. All effects were significant at a
0.01 level, but the effect size is considered to be very small when using the common-
item non-equivalent groups designs or the linking-groups design, and medium when
using the pre-test design (Cohen 1988). It appears as if differential motivation has a
noticeable effect on the resulting link when using a pre-test design with link items
administered in a low-stakes condition.

Item misfit was investigated using Infit and Outfit statistics (Wright and Masters
1982) available in the eRm package in R (Mair et al. 2010). In scale construction,

Table 11.1 Proficiency distributions of the end test using different data collection designs

Data collection design Population N M SD Cohen’s d/Sign. Student’s t

Common-item internal 2011 4841 1.232 1.038 0.07/**
2012 5150 1.306 1.064

Common-item external 2011 4841 1.133 1.037 0.07/**
2012 5150 1.208 1.062

Pre-test design 2011 4841 0.050 1.036 0.47/**
2012 5150 0.547 1.061

Linking-groups design 2011 4841 1.176 1.037 0.12/**
2012 5150 1.303 1.062

**p< 0.01
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items having an Infit Mean Square value or Outfit Mean Square value outside the
range of 0.5–1.5 (Linacre 2002) are usually not selected. Items of the Eindtoets
Basisonderwijs and the internal anchor had Outfit Mean Square and Infit Mean
Square statistics between 0.5 and 1.5, indicating that the Rasch model was consistent
with these items (Linacre 2002). Among the external anchor items, one item had an
Outfit Mean Square statistic of 2.031. From the 467 items, which were pre-tested in
2011 and used to link the test forms according to a pre-test design, 14 items had an
Outfit Mean Square statistic higher than 1.5. A total of 516 items were pre-tested in
2010 and used to link the test forms according to a linking-groups design, of which
15 items had an Outfit Mean Square statistic higher than 1.5. Given the total number
of items, the small numbers of misfitting items indicate that the Rasch model is
consistent with these datasets. Deleting the misfitting items from the different data
collection designs led to the same conclusion, which is the overestimation of the
difference in proficiency distributions when using a pre-test design.

11.4 Discussion

Empirical data analyses illustrate the potential effect of differential motivation on
results of linking using different data collection designs. Since there is no reason to
assume that differential motivation affects the linking result when using a common-
item non-equivalent groups design with an internal anchor, the different linking
results can be compared with the linking result of this data collection design.
The results suggest that the equivalent-groups design is not appropriate for linking
both test forms of the Eindtoets Basisonderwijs, since there is a small, although
significant difference in proficiency distributions between the samples who were
presented either the 2011 or the 2012 test forms. Even though examinees were
aware that the items of the external anchor test did not count towards the score
on the Eindtoets Basisonderwijs, both common-item non-equivalent groups designs
provide the same result. The most likely explanation for this result is that the effects
of differential motivation are approximately equal for both populations administered
the external anchor test, which leads to the unbiased estimation of the difference
between the proficiency of both populations. The same explanation is likely for
the linking-groups design, on the basis of which the same conclusion has to be
drawn as for both common-item non-equivalent groups designs. Even though all
types of data collection designs led to the conclusion that the mean proficiency of
the population presented with the 2012 test form was significantly higher compared
to the population presented with the 2011 test form, the effect size when using the
pre-test design was larger compared to the other data collection designs. Using a pre-
test design with linking items administered in a low-stakes administration condition
produced differential motivation causing an overestimation of the difference in
proficiency distributions, which is consistent with expectation.

All data collection designs may be effective provided all examinees are suffi-
ciently motivated. However, the way in which data collection designs are typically
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implemented in practice results in some data collection designs being more robust
against the effect of differential motivation than others. The conclusions with respect
to the different data collection designs can therefore only be generalized to the
extent that data collection designs are implemented in the same way as they were
implemented for the Eindtoets Basisonderwijs. To illustrate this, the link items
used in the external anchor design, pre-test design, and linking-groups design are
administered as separately timed tests in low-stakes conditions. The differences
between the data collection designs with respect to the estimated proficiency
distributions will undoubtedly be negligible if the link items are administered in
high-stakes conditions. Furthermore, we expect that administering the link items
in a low-stakes condition at the same time as the Eindtoets Basisonderwijs with
examinees being able to distinguish link items and items from the test form, results
in larger differences between the data collection design with respect to the estimated
proficiency distributions. To see this, one may notice that under these circumstances
the difference in performance on the link items and the items from the test form is
expected to be larger, since examinees are likely more inclined to spend effort on
answering items correctly from the test form than the link items.

The question that remains is how the effect of differential motivation can be
modeled. For example, when items are administered in a low-stakes administration
condition, is it possible to classify item-score vectors as either resulting from
motivated or unmotivated performance? If this is true, a mixture IRT model
with latent classes might be useful for linking high-stakes tests when differential
motivation is known to have an effect (Mittelhaëuser et al. in 2013). Alternatively,
examinees might be motivated to a certain degree to answer items correctly in which
case a multidimensional IRT model (Embretson and Reise 2000; Reckase 2009)
might be useful. Furthermore, person-fit methods (e.g., Meijer and Sijtsma 2001)
may be used to investigate how differential motivation affects the individual item-
score vector. Since the results suggest that differential motivation has an effect on the
linking result in different data collection designs, using methods that produce greater
insight into the effect differential motivation has on linking tests administered in
a high-stakes condition is valuable for measurement practice and measurement
research.
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Chapter 12
Vertical Comparison Using Reference Sets

Anton A. Béguin and Saskia Wools

Abstract When tests for different populations are compared, vertical item response
theory (IRT) linking procedures can be used. However, the validity of the linking
might be compromised when items in the procedure show differential item func-
tioning (DIF), violating the assumption of the procedure that the item parameters
are stable in different populations. This article presents a procedure that is robust
against DIF but also exploits the advantages of IRT linking. This procedure,
called comparisons using reference sets, is a variation of the scaling test design.
Using reference sets, an anchor test is administered in all populations of interest.
Subsequently, different IRT scales are estimated for each population separately. To
link an operational test to the reference sets, a sample of the items from the reference
set is administered with the operational test. In this article, a simulation study is
presented to compare a linking method using reference sets with a linking method
using a direct anchor. From the simulation study, we can conclude that the procedure
using reference sets has an advantage over other vertical linking procedures.

12.1 Theoretical Framework

In educational measurement, results of different tests or test forms often need
to be compared, for example, when comparing examinations from 1 year to the
next (Béguin 2000). Since the tests can differ in difficulty and other measurement
properties, techniques are developed to make results comparable or to maintain
scores across forms. This process is called linking or equating (Holland and Dorans
2006, pp. 193–195). Linking procedures can be divided into two types. The first
type assumes that the groups of students taking different operational test forms are
sampled from the same population. The second type accommodates groups sampled
from different populations; this difference is estimated based on the administration
of some common items (Holland and Dorans 2006, pp. 197–201). The common
items are referred to as anchors or anchor tests, and the results on these anchors
are used to estimate the difference in proficiency between the groups in the design.
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A special case of linking occurs when the aim is to assess growth and the results
are compared across grades. This type of comparison is called vertical scaling
or vertical linking. In contrast to this, linking of operational tests administered in
the same grade or in a similar population is also referred to as horizontal linking.
Vertical linking procedures (see, e.g., Carlton 2011; Harris 2007; Kolen and Brennan
2004, pp. 372–418; Kolen 2006, pp. 171–180) are largely comparable to the default
linking techniques. Similar to regular equating and linking procedures, some forms
of linking data (e.g., results on anchor tests) are used to compare two assessments
suitable for different age or grade levels. Often an item response theory (IRT)
model is applied to construct a common scale for the characteristics of the items
from the two assessments. Application of IRT provides additional flexibility in
the linking design, but depending on the linking approach, different restrictions on
the parameter space are assumed (Von Davier and Von Davier 2004, 2012). These
assumptions determine how the item parameters for different test forms are placed
on a single scale. In the ideal linking design, item parameters between forms can
be scaled to be the same. In vertical linking, the assumptions used to place the
forms on a single scale provide an additional challenge, since vertical linking must
take into account that some item characteristics differ between groups of students
(differential item functioning or DIF). The standard procedures deal with this in
a way that is not necessarily robust. As a standard feature of vertical linking,
items that are considered to show DIF are removed from the anchor mostly on
statistical grounds and sometimes regardless of their content. Obviously, treating
DIF in a linking procedure in this way is somewhat arbitrary and could be a
threat to the validity of the linking. This is especially a concern when selective
removal of items alters the construct that is measured in the anchor, consequently
influencing the linking of the test forms for the different groups in the design.
Especially in testing situations, where we expect a large proportion of items with
differences in the item characteristics, this threat to validity could have serious
implications for the inferences made from vertical linking. The same validity threat
could occur in horizontal equating if data samples from populations with a largely
different educational background are compared. Here, differences in performance
on individual items may also be the result of bias or DIF and not a difference in
proficiency. In both cases, how the relative performance of the groups of students in
the design is evaluated depends on the particular items in the anchor. If more items
that are relatively easy for a particular group of students are included in the anchor,
the perceived relative performance of this group compared to the other groups will
increase.

We developed a procedure that is robust against DIF. The newly developed
procedure, called comparison using reference sets, is based on an existing procedure
described by Petersen et al. (1989) that uses a scaling test design, which has
been applied on the Iowa Test of Basic Skills. In this design, the same anchor
test is administered with an operational test in samples of all the populations of
interest. In each population, there is a single group linking design (e.g., Holland
and Dorans 2006, p. 197; Kolen and Brennan 2004) to link the operational test for
this population to the anchor. Two operational tests aimed at different populations
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are compared based on the predicted scores on the anchor. Petersen et al. (1989)
referred to the above procedure as Hieronymus scaling and called the anchor test in
the above procedure a scaling test. The scaling test contains test items representative
of the content domains from all the tests compared, but the test is designed to be
short enough for administration as an anchor next to the operational test. A potential
drawback of the design is that in educational assessments it is often not appropriate
to test a majority of students with a number of items that are too easy or too
difficult and hence provide no relevant information on the performance level of these
students (Carlton, 2011, p. 60).

12.2 Technique

The procedure for (vertical) comparison using reference sets draws on the idea of the
scaling test but combines it with IRT. The two operational tests that are compared
link to a large anchor test called a reference set. A typical design of the data structure
for vertical comparison is graphically represented in Fig. 12.1. Items are on the
horizontal axis and persons are on the vertical axis. The gray areas in the graph
represent the available data in the design, and the white space reflects data missing
by design.
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Fig. 12.1 Design linking two operational tests based on a reference set

In this design, four groups of students from two different populations take either
a reference set or an operational test together with an anchor to the reference set.
Both Groups 1 and 2 are samples from Population 1. Group 1 takes operational test
1 and a part of the reference set, and Group 2 takes all the items on the reference
test. A similar pattern occurs for Groups 3 and 4 from Population 2.

Within the procedure for (vertical) comparison using reference sets, five steps are
distinguished:

1. Construct a set of items suitable to form a basis of comparison. This is referred
to as a reference set;

2. Administer the reference set in all the populations using an incomplete design;
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3. Estimate an IRT scale on the reference set for each population separately;
4. Administer the operational tests for each population, together with a sample of

the items from the reference set that is most suitable to the population;
5. Link the assessment to the reference set and compare between the different

populations.

In Step 1, we constructed the reference set, which is the basis for comparison.
This reference set is a relatively large set of items (e.g., 50–80 items) designed to
be an optimal measurement of the intended construct for all relevant populations.
For this reason, it contains a representative mix of items from the underlying
content domains and the relevant assessments that need to be compared. The
reference set is composed in such a way that if it is administered in the different
populations, none of the groups of students is advantaged. This is mainly a content
argument. The total construct operationalized in the reference set should be fair
to all populations. Individual items in the reference set could perform relatively
differently in the different populations, but the measurement based on all the items
should be unbiased. Differences between the populations in results on the reference
set should be due to differences in proficiency and not the result of the selection
of specific items in the reference set. To use the reference set as a valid basis for
comparison, the reference set must be regarded as a high-quality operationalization
of the underlying standard (that needs to encompass the different populations and
grades).

To support the claim that the reference set is a high-quality operationalization, a
rigorous construction process is used. In the construction phase of the reference
set, a number of stakeholders—independent content experts and representatives
from each grade level—must be involved to achieve concordance on the content of
the operationalization of the standard. The reference set can theoretically function
similarly to the classical scaling test, but the number of items in the set will be
too large for it to practically function as an anchor test next to an operational test.
Therefore, in Step 2, data on performance of the students on the reference set is
collected separately from the linking of operational tests. For each population of
students in the design, the items from the total reference set are administered using
an incomplete design. Such an incomplete design entails that not all the items are
administered to all the students, but are administered in such a way that the results
on all the items can be scaled as if they were administered to a group of students
taking the reference sets. From that perspective, the graphical representation in
Fig. 12.1 is a simplification of the actual design, since the incomplete nature of
the administration in Groups 2 and 4 is ignored. Using the data from the samples,
separate IRT scales are estimated for each population (Step 3). In this way, we model
the behavior of each specific population on the reference set. Due to the separate
scales for each population, we allow for different item characteristics between the
populations.

In traditional linking with separate calibration, these scales are linked to a
common scale, but here we assume the scales will not necessarily fit a common
metric. This is more flexible than the difference between IRT scales that is due
to the potential difference in scale identification. The ordering of items within
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each scale could be different, allowing for DIF between the populations. Finally,
operational tests are linked to the reference set using a sample of items from the
reference set that fit the intended population (Step 4). As a result, the operational
test can be compared to the reference set, but due to the different IRT scales for
the different populations, the operational tests are not on a common scale with one
another. A comparison between the operational tests can be based on the predicted
performance (e.g., number-correct score) on the reference set (Step 5).

The procedure using reference sets deviates from existing linking procedures.
It does not directly predict response behavior on the operational tests, as is done
in classical linking procedures such as observed score equating (see Kolen and
Brennan 2004), and it does not assume a single IRT scale over the operational
test, as is done in observed score number-correct equating (Zeng and Kolen 1995).
Comparison using reference sets results in a more flexible procedure in comparison
with the traditional vertical linking procedures and, as a consequence, this procedure
is robust against the effect of DIF in the anchor.

12.3 Methods

To illustrate the procedure using reference sets, a small simulation study was carried
out in which the effectiveness of comparison using reference sets was compared
with two other linking procedures based on three different designs. In this study, we
sampled data for two operational tests that needed to be compared and were suitable
for different populations. Next to the data of the operational forms, we sampled
data for a reference set administered in the same two populations that also took
the operational tests. Furthermore, we sampled data linking the operational tests
to the reference set. This design resembled a situation where some of the students
who took the operational test were also administered an anchor test consisting of
part of the reference set. In a separate test, administration data were collected of
the performance of this population on all items from the reference set. The data
structure is graphically represented in Fig. 12.2.

In design 1, the reference set consisted of three item subsets (A, B1, and B2).
Subset A was unbiased, B1 was biased in favor of population 1, and B2 was biased
in favor of population 2. If subset B1 is seen as more suitable to population 1,
and B2 as more suitable to population 2, then subset B1 provides unbiased latent
trait estimates for subjects from population 1 but not from population 2, whereas
B2 provides unbiased latent trait estimates for subjects from population 2 but not
from population 1. In design 1, two populations were administered six different
test forms in total. Population 1 contained three groups. Group 1 was administered
operational test 1, Group 3 was administered the reference set, and Group 2 took
operational test 1 and an anchor (A and B1) to the reference set. For population 2,
a similar design occurred in which Groups 4 and 5 were administered operational
test 2; Group 5 also took an anchor form (A and B2). Group 6 was administered
the reference set. In summary, operational test 1 was linked to the reference set by a
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Fig. 12.2 Design with unbiased direct linking and comparing based on reference set

common administration of subsets A and B1, while operational test 2 was linked to
the reference set using subsets A and B2.

Alternative designs (Figs. 12.3 and 12.4) were simulated in which both opera-
tional tests were linked to the reference set using an anchor with an unbiased and
biased part (containing A and B1) and a totally biased anchor containing only B1
(design 3), respectively.
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Fig. 12.3 Design with partly biased direct linking and comparison based on reference set

Data were simulated based on parameters from operational tests in which a
vertical equating problem was present. In this case, the parameters were based on
results from a test bank with ten equated versions of a mathematics test administered
at the end of secondary education in the Netherlands. In total, 11,320 students in
two pre-academic tracks of secondary education in the Netherlands took one of the
10 test versions. Sample size per item was more than 2,100 for each item and at
least 500 for each combination of an item and a population. This assessment was
designed to provide a valid measurement of the same standard in both populations.
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The populations differed in proficiency. In addition, 67 of the 259 items that were
administered showed DIF between the populations when using the One Parameter
Logistic Model (OPLM; Verhelst et al. 1994). This model is a variation of the 2-
Parameter Logistic (2-PL) IRT model in which the discrimination parameters are
fixed to discrete values. In practice, the values of the discrimination parameters are
often estimated for part of the data and used as fixed values for the remainder of
the data. The advantage of the OPLM model is that it combines some favorable
properties of the Rasch models, such as the ability to use conditional maximum
likelihood estimation and well-developed test statistics, with the flexibility of a two-
parameter model (Verhelst et al. 1994; Verhelst and Glas 1995). In the 2-PL model,
the probability of a correct response of a person i on an item j, denoted Xij = 1, is
written as

P(Xi j = 1) =
exp(α jθi −β j)

1+ exp(α jθi −β j)
,

where α j is the discrimination parameter of item j, β j is the difficulty parameter,
and θi is the proficiency of person i. In the OPLM, α j is fixed to an integer value
prior to model estimation and is therefore denoted as a constant a.
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Fig. 12.4 Design with ‘biased’ direct linking and comparison based on reference set

For the simulation, four sets of items were selected from the available data. One
set of 20 biased items that favored students from educational track 1 (B1) and a set
of 20 biased items that favored students from educational track 2 (B2) were selected
from the 67 biased items. To complete the simulated reference set alongside the
biased items, a set of 20 unbiased items were randomly sampled from the 192 items
without DIF. To sample the operational tests, parameters of a random sample of 60
unbiased items were used. The crucial aspect of this simulation study was to assess
the effect of biased items on the linking of the operational tests. Since the operational
tests were only administered in a single population, and the tests aimed at the same
standard, we used the same parameter values for both operational tests 1 and 2. The
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advantage of this approach is that the true relation of the tests is known. In this way,
the results of the linking can be easily evaluated since the two tests are simulated
to be of equal difficulty. Based on these parameters, estimate data were generated
according to designs 1, 2, and 3. The item parameter values a and β that were used
in the simulation are given in Tables 12.1 and 12.2. For the items in blocks B1 and
B2 of the anchor, a separate set of item parameters is given for both educational
tracks (Tables 12.3 and 12.4). Therefore, these items will perform differently in the
two different populations. The average difference in difficulty between populations
1 and 2 is -0.144 in Block 1 and 0.158 in Block 2.

In the samples, the operational tests included 3,000 persons, and the anchor
and the reference set included 1,000 persons in each population. For each design,
100 samples were drawn. Data were simulated using a 2-PL model with item
parameters from the separate analyses for each of the groups in the original data.
Two population conditions were used, a non-equivalent and an equivalent group

Table 12.1 Item parameters used to generate data for operational test forms

Item a β Item a β Item a β Item a β
1 3 −0.795 16 2 −0.411 31 2 −1.644 46 3 −0.560
2 3 −0.627 17 3 −0.670 32 3 0.040 47 3 −0.873
3 4 −0.827 18 2 −0.510 33 3 0.274 48 3 −0.547
4 2 −1.370 19 3 −0.690 34 2 −0.398 49 2 −0.551
5 2 −0.335 20 3 −0.581 35 3 −0.229 50 2 −0.110
6 3 0.017 21 3 −1.050 36 2 0.084 51 3 −1.005
7 5 0.642 22 3 −0.443 37 1 −0.501 52 2 −1.282
8 2 −0.824 23 2 −0.718 38 3 −1.612 53 3 −1.005
9 1 1.792 24 4 −0.598 39 2 −0.331 54 2 −0.091
10 3 −0.735 25 2 −1.370 40 4 0.012 55 5 0.407
11 3 −0.942 26 3 −0.703 41 2 −0.091 56 3 0.274
12 2 −0.369 27 4 −0.936 42 3 0.405 57 3 0.429
13 2 −0.331 28 4 0.286 43 2 −0.649 58 2 −0.448
14 1 −1.268 29 3 −0.458 44 4 0.026 59 3 −0.884
15 3 −0.154 30 4 0.427 45 4 0.179 60 2 0.631

Table 12.2 Item parameters
used to generate data for
anchor A

Item a β Item a β
1 2 −0.551 11 4 −0.662
2 3 −0.627 12 3 −0.443
3 3 −0.503 13 3 −0.087
4 2 −1.046 14 4 0.011
5 3 −0.581 15 2 −0.552
6 3 0.049 16 3 −1.005
7 2 0.543 17 5 −0.931
8 3 −0.499 18 2 0.170
9 3 −0.193 19 1 −0.232
10 2 0.284 20 3 −0.817
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Table 12.3 Item parameters for items in anchor B1 for two different
populations

Item a1 β 1 a2 β 2 Item a1 β 1 a2 β 2

1 2 −0.156 3 −0.177 11 3 0.101 3 −0.019
2 3 −0.489 4 −0.521 12 3 0.650 4 0.519
3 2 0.456 3 0.419 13 4 −0.588 3 −0.730
4 3 0.110 3 0.057 14 3 −0.431 1 −0.573
5 4 0.068 6 0.002 15 2 −0.671 2 −0.818
6 4 0.124 4 0.052 16 2 −1.008 2 −1.185
7 4 0.123 4 0.040 17 2 −0.558 1 −0.754
8 3 0.033 3 −0.055 18 2 −0.642 2 −0.852
9 1 0.824 1 0.716 19 3 −0.447 2 −0.727
10 2 −0.120 3 −0.231 20 2 −0.756 1 −1.421

Table 12.4 Item parameters for items in anchor B2 for two different
populations

Item a1 β 1 a2 β 2 Item a1 β 1 a2 β 2

1 2 −0.083 1 0.353 11 2 −1.115 3 −0.986
2 2 0.050 2 0.303 12 3 −0.238 4 −0.110
3 3 −0.141 2 0.097 13 4 −0.249 4 −0.144
4 2 −0.378 1 −0.142 14 4 −0.243 2 −0.142
5 2 −0.559 3 −0.332 15 3 −0.712 3 −0.627
6 3 −0.227 4 −0.039 16 5 −0.053 3 0.028
7 2 −1.167 2 −0.981 17 3 −0.890 3 −0.809
8 3 −0.754 3 −0.583 18 2 −0.589 3 −0.510
9 3 −0.028 3 0.133 19 4 −0.528 3 −0.454
10 2 −1.034 2 −0.900 20 5 −0.034 5 0.022

condition. It was assumed that proficiency distributions were normally distributed,
so θ ∼N(μg,σg), with μg and σg as the mean and standard deviation for group g.
In the equivalent group condition, the proficiency parameters in each of the groups
in the design were sampled from N(0, 0.3). In the non-equivalent groups’ conditions,
the two populations were assumed to differ in proficiency. The proficiency of
population 1 was N(0.3, 0.3) distributed, while population 2 had a N(0, 0.3)
distribution. This difference was similar to the difference in mean proficiency found
in the operational tests on which the parameters of the simulation study were based.

12.4 Analyses

The data sampled in the three designs were analyzed using the 2-PL model and
estimated using BILOG-MG (Zimowski et al. 1996). For each of the designs, three
procedures for linking the operational tests were compared:
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A. Direct anchor: Direct linking using concurrent estimation based on the anchor
and ignoring the data from the reference set (Groups 1, 2, 4, and 5).

B. Direct total: Direct linking using concurrent estimation based on the total design
(Groups 1–6).

C. Comparison through the reference sets: Operational tests linked with the
reference set separately for each population (linking of operational test 1 based
on Groups 1, 2, and 3, and of operational test 2 based on Groups 4, 5, and 6).

The direct linking procedure using the anchor and ignoring the data of the
reference set is comparable to a standard linking procedure. The direct linking
procedure based on the total design occurs less often in practice but uses the same
data as the comparison using reference sets. So in the total design, the anchor items
are administered more often than in the data used for direct linking based on only
the anchor. For evaluating the procedure based on the reference set, direct linking
using the total data therefore provides a relevant and potentially fairer comparison.

12.5 Evaluation of Results

To evaluate the quality of the linking procedures, differences in results between
direct linking and comparison based on reference sets were assessed. The quality of
the linking of operational tests 1 and 2 was evaluated for each of the procedures and
designs. For the direct linking procedures, the IRT-observed-score (OS) equating of
number-correct (NC) scores (Zeng and Kolen 1995) was used. Here, the estimated
score distributions of operational tests 1 and 2 were estimated for population 1.
In the comparison based on reference sets, a calibration was carried out for each
of the populations separately. Based on the first calibration, operational test 1
and the reference set were linked using OS-NC linking. This provided estimated
comparable scores between operational test 1 and the reference set. In the same
way, the estimated comparable scores between operational test 2 and the reference
set were determined using the data from population 2.

Score distributions were computed using the estimated item and population
parameters and integrating over the population distribution of θ; that is

fr(x) =
∫
∑{

x

∣∣∣r} fr

(
x
∣∣∣θ)g

(
θ
∣∣∣μg,σg

)
∂θ ,

where {x |r } stands for the set of all possible response patterns resulting in a
scorer. In the case of normally distributed populations, the integrals were computed
using Gauss–Hermite quadrature (Abramowitz and Stegun 1972). At each of the
quadrature points, a recursion formula by Lord and Wingersky (1984) was used to
obtain fr(x|θ ), the score distribution of respondents of a given proficiency, θ. To
obtain accurate results, 180 quadrature points were used.
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12.5.1 Criterion

The criterion to evaluate the quality of the linking was based on comparing
equivalent score points from the various linking procedures with the true equivalent
score points (Hanson & Béguin 2012). Let strue, r be the score point on operational
test 2 that is equivalent with the score point r on operational test 1 based on the true
parameters. Since the item parameters of operational tests 1 and 2 used in generating
the samples were identical, strue, r = r for all r, let shr be an equivalent score point
on operational form 2 to score r on operational form 1 estimated in replication h.
To compare the equivalent score points in different conditions, a mean squared error
(MSE) was calculated by summing over score points and samples:

MSE =
1

61∗100∑
60
r=0∑

100
h=1(shr − strue,r)

2. (1)

The MSE provided a measure of the deviation of the comparison table of the score
distributions of the operational tests, and therefore provided a relevant basis for
comparison of the different linking procedures. The procedures with a higher MSE
were less accurate than procedures with a lower value. Additional information about
the performance of the linking procedures was obtained by decomposition of the
MSE into terms representing the average of the squared bias of equivalent score
points and the average variance of equivalent score points. So,

MSE =
1

61

[
∑60

r=0(sr − strue,r)
2 +

1
100∑

100
h=1(shr − sr)

2
]
,

where sr is the mean equivalent score of score point r over replications; that is,

sr =
1

100∑
100
h=1shr.

An alternative measure of the deviation of the comparison table of the score
distributions of the operational tests is the mean absolute error (MAE). The MAE is
obtained if the squared error in (1) is replaced by the absolute value of the error. So,

MAE =
1

61∗100∑
60
r=0∑

100
h=1 |shr − strue,r|.

The scale of the MAE is more easily interpreted than the MSE, since the MAE
reports the average deviation in score points. Therefore, a value of 0.6 can be seen
as an average deviation of 0.6 score points.
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12.6 Results

Comparison using reference sets was contrasted with IRT number-correct observed
equating using three different designs, two linking conditions for the IRT calibration
and both equivalent and non-equivalent groups. In Table 12.5, the mean absolute
error, mean squared error, bias, and variance are given for the different designs and
linking conditions.

For comparison using reference sets, the MAE and MSE were mostly comparable
over the different designs. Somewhat larger MAE and MSE were found only in
design 3, with equivalent groups. This effect is due to a larger mean variance in
this condition. For the direct linking procedures, the MAE and MSE were larger
in design 2 than in design 1. For these procedures, the error in design 3 increased
substantially due to an increase in mean squared bias.

Table 12.5 Results for the different conditions

Design Group Method MAE MSE
Mean
squared bias

Mean
variance

1 Equivalent groups Reference sets 0.64 0.41 0.09 0.32
Direct anchor 0.28 0.29 0.00 0.29
Direct total 0.20 0.20 0.01 0.20

1 Non-equivalent groups Reference sets 0.60 0.37 0.06 0.31
Direct anchor 0.30 0.32 0.04 0.27
Direct total 0.25 0.26 0.07 0.19

2 Equivalent groups Reference sets 0.69 0.45 0.10 0.35
Direct anchor 0.63 0.67 0.48 0.19
Direct total 0.63 0.67 0.48 0.19

2 Non-equivalent groups Reference sets 0.58 0.36 0.06 0.30
Direct anchor 0.53 0.54 0.35 0.19
Direct total 0.52 0.53 0.33 0.20

3 Equivalent groups Reference sets 0.81 0.60 0.07 0.53
Direct anchor 1.25 2.21 1.91 0.30
Direct total 1.24 2.16 1.87 0.29

3 Non-equivalent groups Reference sets 0.67 0.45 0.04 0.41
Direct anchor 1.10 1.73 1.48 0.26
Direct total 1.08 1.68 1.43 0.25
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Direct linking using calibration with only the anchor or linking using the total
data including the reference sets resulted in a smaller MAE, except for design 3,
where the MAE was smaller for the comparison with the reference sets. Direct
linking using the total data in all designs resulted in a smaller equal MAE and
MSE than linking using only the anchor. Comparison using reference sets yielded a
smaller MSE for all conditions using designs 2 and 3. This is due to a smaller bias
in these conditions, since in all conditions the comparison using reference sets had
a larger variance than the direct linking conditions.

The distribution of the contribution to MSE for the equivalent groups condition
over score points is given in Figs. 12.5, 12.6, and 12.7. For the non-equivalent
groups, the results were similar. In designs 2 and 3, the MSE is larger than 1 for
a substantial part of the score distribution, while the MSE for comparison based on
the reference sets is smaller than or equal to 1 for all score points in all conditions.
This indicates that in design 2, the MAE is smaller for the direct linking procedures
compared to the comparison based on reference sets, while this relation is reversed
for the MSE.

Fig. 12.5 MSE for each score point in design 1 and equivalent groups
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Fig. 12.6 MSE for each score point in design 2 and equivalent groups

Fig. 12.7 MSE for each score point in design 3 and equivalent groups
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12.7 Conclusions and Discussion

The simulation study showed that the results of a comparison based on a reference
set were stable across the different simulated conditions. The sum of the variance of
the comparison using reference sets was larger than in the direct linking conditions.
This can be explained because the comparison involves two separate linking
analyses linking operational tests to the reference test. The results of these linking
analyses were combined based on discrete score distributions. The two linking
analyses both added some variance, while the comparison based on discrete score
distributions was vulnerable to variance due to rounding error.

In design 1, the direct linking approach was theoretically unbiased for the linking
using only the anchor and not the reference set. In this analysis, the biased items
(blocks B1 and B2) were only administered in a single group. The actual linking
items were the unbiased items (block A). In the direct linking analysis using the total
design (which included the reference set), direct linking led to some misfit due to the
bias of blocks B1 and B2 in the two reference set administrations in populations 1
and 2. This did not lead to substantial bias in the outcomes since the anchor for both
populations was biased in favor of the population that was administered the anchor.
In design 2, direct linking should lead to biased results due to the use of an anchor
in which half of the items favored one of the populations. The comparison using the
reference sets should not be affected by this biased anchor. In the simulation study,
this result was confirmed by the analyses wherein the direct linking clearly showed
more biased results than the comparison using reference sets. In the analyses on the
data of design 3, results were even more pronounced. The bias of the direct linking
approaches was severe, and the results of the comparison using reference sets were
comparable to the results for designs 1 and 2. As expected, direct linking using all
the available data provided slightly better results than direct linking using only the
anchor. This is due to the additional data on the anchor items that is available in the
reference set. In the given conditions, with at least 1,000 observations for each item
in the design, this effect is relatively small, but it probably would have been larger
in conditions with fewer observations of the anchor items. The relative performance
of the comparison based on the reference set was also as expected. In designs 2 and
3, the mean squared bias of this procedure did not change compared to design 1.
Using direct linking, the mean squared bias in designs 2 and 3 was clearly increased
compared to the unbiased design 1.

It can be concluded from this simulation study that the proposed procedure
(using a comparison based on reference sets) performed as was expected. It is fair
to mention that the simulation study confirmed the theoretical advantage of the
proposed procedure using reference sets. However, as with all simulation studies,
some restraint should be used in generalizing these results. Although empirical
data were used as a starting point, only a limited number of potential aspects of
the involved models were studied. In future research, additional validation studies
should be done in addition to empirical piloting of the procedure using reference
sets.
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In conclusion, this study introduced a procedure that could form a basis for
vertical comparison that is robust against DIF between populations. Comparison
using reference sets is a promising procedure that aims to better suit construct
comparability between assessments used in populations that differ substantially in
age, relative performance level, or curriculum. This procedure could be helpful
for testing students at different grade levels, students who have followed different
curricula, or students from different education tracks who need to comply with the
same performance standard. Practical examples are the levels in the Key Stage 2 and
3 tests in England and Wales, which must be comparable between students aged 11
and 14 (Ofqual 2011). Another example are the recently introduced standards in the
Netherlands (Scheerens et al. 2012). There, test results must be comparable between
students aged 12, 16, and 18. The procedure introduced in this present research can
also be used in horizontal equating to compare performance of different subgroups
or populations whose test-takers are likely to respond to items in a different way.
This might occur in international comparison studies such as PISA. This could also
occur in the USA if students from different states, using different curricula, are
compared on the common core standards.
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Chapter 13
A Dependent Bayesian Nonparametric Model
for Test Equating

Jorge González, Andrés F. Barrientos, and Fernando A. Quintana

Abstract Equating methods utilize functions to transform scores on two or more
versions of a test, so that they can be compared and used interchangeably. In
common practice, traditional methods of equating use parametric models where,
apart from the test scores themselves, no additional information is used for the
estimation of the equating transformation. We propose a flexible Bayesian nonpara-
metric model for test equating which allows the use of covariates in the estimation
of the score distribution functions that lead to the equating transformation. A major
feature of this approach is that the complete shape of the score distribution may
change as a function of the covariates. As a consequence, the form of the equating
transformation can change according to covariate values. We discuss applications
of the proposed model to real and simulated data. We conclude that our method has
good performance compared to alternative approaches.

13.1 Introduction

Equating is a family of statistical models and methods that are used to make test
scores comparable on two or more versions of a test, so that scores on these different
test forms, intended to measure the same attribute, may be used interchangeably
(see, e.g., Holland and Rubin 1982; Kolen and Brennan 2004; von Davier et al.
2004; Dorans et al. 2007; von Davier 2011). To avoid the confounding of differences
in form difficulty with those of test takers’ abilities, different equating designs to
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collect data are used. Once these effects are corrected, the purpose of equating is to
obtain comparable scores for both groups, by adjusting for differences in difficulty
of the test forms.

Let Tx and Ty be the random variables denoting the scores on tests X and Y
which are to be equated, with associated cumulative distributions functions (c.d.f)
Sx = S(tx) and Sy = S(ty), respectively. In what follows we assume that scores on X
are to be equated to the scale of scores on Y, but arguments and formulas for the
reverse equating are analogous. Let tx and ty be the quantiles in the distributions of
tests X and Y for an arbitrary common cumulative proportion p of the population,
such that tx = Sx−1

(p) and ty = Sy−1
(p). It follows that an equivalent score ty on test

Y for a score tx on X can be obtained as

ty = ϕ(tx) = Sy−1
(Sx(tx)). (13.1)

In the equating literature, function ϕ(tx) is known as the equipercentile transfor-
mation. A graphical representation of the equipercentile method of equating is
shown in Fig. 13.1. Note that because ϕ(tx) is built from distribution functions, the
equipercentile equating method is nonparametric by nature.

Fig. 13.1 Graphical
representation of
equipercentile equating.
A score tx in test X is
mapped into a score on the
scale of test Y using
ty = ϕ(tx) = Sy−1

(Sx(tx))
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Because sum scores (i.e., total number of correct answers) are typically used
in measurement programs, an evident problem with (13.1) is the discreteness of
the score distributions, rendering their corresponding inverses unavailable. The
common solution given to this problem in the equating literature is to actually
“continuize” the discrete score distributions Sx and Sy, so that (13.1) may be properly
used for equating.

In many applications, complementary information besides the test scores them-
selves is available most of the time (e.g., examinee gender, type of school, point
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in time of the administration, etc.), yet the use of covariates seems to be a rather
unexplored topic in the equating literature. It is natural to think that the information
provided by covariates could improve the equating task. Additionally, despite the
nonparametric nature of the transformation ϕ(tx), the problem of obtaining a
point estimate of it has traditionally relied on either parametric or semi-parametric
models (González and von Davier 2013). For instance, in the linear equating
transformation (Kolen and Brennan 2004) both Sx and Sy are assumed to be a
location-scale family of distributions leading to ϕ(tx;�) = μy +

σy
σx
[tx − μx] where

in this case � = (μX ,μY ,σX ,σY ) are the means and standard deviations of the
two score distributions. Constraining the inference to a specific parametric form,
however, may limit the scope and type of inferences that can be drawn. Indeed,
in many practical situations, a parametric model could not describe in a proper
way the observed data. Bayesian nonparametric (BNP) generalization of parametric
statistical models (see, e.g., Ghosh and Ramamoorthi 2003; Müller and Quintana
2004; Hjort et al. 2010) allow the user to gain model flexibility and robustness
against mis-specification of a parametric statistical model. See Müller and Mitra
(2013) who give many examples that highlight typical situations where parametric
inference might run into limitations, and BNP can offer a way out.

In this paper we propose a flexible Bayesian nonparametric model for test
equating which allows the use of covariates in the estimation of the score distribution
functions that lead to the equating transformation. A major feature of this approach,
compared to other traditional methods, is that not only the location but also the
complete shape of the score distribution may change as a function of the covariates.

The rest of this paper is organized as follows. We briefly review the Bayesian
nonparametric modeling approach in Sect. 13.2, presenting the dependent BNP
model for test equating which allows the use of covariates. Section 13.3 illustrates
the uses and applications of the model in both simulated and the real data. The paper
finishes in Sect. 13.4 with conclusions and discussions.

13.2 Bayesian Nonparametric Modeling

In this section we present the proposed model, including a brief description of
nonparametric models. We develop the material to the extent needed for clarity of
presentation.

13.2.1 Nonparametric Models

Statistical models assume that observed data are the realization of random variables
following some probability distribution. Let x1, . . . ,xn be observed data defined
on a sample space X , and distributed according to a probability distribution Fθ ,
belonging to a known family F = {Fθ : θ ∈ Θ}. This setup is referred to as a
parametric model whenever Θ is assumed to be a subset of a finite dimensional
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space. In the parametric Bayesian framework (e.g., Gelman et al. 2003), a prior
p(θ) is defined on Θ . Parametric Bayesian inference is then based on the posterior
distribution p(θ | x), which is proportional to the product of the prior p(θ) and the
likelihood p(x | θ).

Although the parametric approach is adequate in many situations, it could
not be realistic in many others. For instance, under a normal model, all we can
possibly learn about the distribution is determined by its mean and variance. The
nonparametric approach starts by focusing on spaces of distribution functions, so
that uncertainty is expressed on F itself. Of course, the prior distribution p(F)
should now be defined on the space F of all distribution functions defined on X .
If X is an infinite set, then F is infinite-dimensional, and the corresponding prior
model p(F) on F is termed nonparametric. The prior probability model is also
referred to as a random probability measure (RPM), and it essentially corresponds
to a distribution on the space of all distributions on the set X . Thus Bayesian
nonparametric models are probability models defined on a function space (Müller
and Quintana 2004). These models are dealt with in the same spirit as the usual
parametric Bayesian models, and all inferences are based on the implied posterior
distribution. BNP methods have been the subject of intense research over the past
few decades. For a detailed account, we refer the reader to Dey et al. (1998), Ghosh
and Ramamoorthi (2003), and Hjort et al. (2010).

13.2.2 The Dirichlet Process (DP) and the DP
Mixture (DPM) Model

The most popular RPM used in BNP is the DP introduced by Ferguson (1973).
We say that F is a DP with parameters m and F∗, denoted as F ∼ DP(m,F∗),
if for every partition of the sample space A1, . . . ,Ap, F(A1), . . . ,F(Ap) is jointly
distributed as Dir(mF∗(A1), . . . ,mF∗(Ap)). Here, F∗ is a base measure specifying
the mean, E(F) = F∗, and m is a parameter that helps in determining the uncertainty
of F . The DP is a conjugate prior under iid sampling which means that, given the
data, the posterior distribution of F is also a DP.

A convenient way to express the DP is via Sethuraman’s (1994) representation,
which states that F ∼ DP(m,F∗) can be constructed as

F(·) =
∞

∑
i=1

ωiδθi(·), (13.2)

where δθi(·) denotes a point mass at θi, θi
iid∼ F∗, ωi = Ui∏ j<i(1 −Uj), and

Uj
iid∼ Beta(1,M). Note that by definition, the resulting random probability functions

are discrete. Equation (13.2) is usually called a stick-breaking representation.
The discrete nature of the DP implies that it cannot be used as a probability model
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for densities. A standard approach to deal with this problem is to define a mixture
of smooth densities based on the DP, commonly called DPM.

The increase in applications of BNP methods in the statistical literature has
been motivated largely by the availability of simple and efficient methods for
posterior computation in DPM models (Ferguson 1983; Lo 1984). The DPM models
incorporate Dirichlet process (DP) priors (Ferguson 1973, 1974) for components in
Bayesian hierarchical models, resulting in an extremely flexible class of models. In
particular, a DPM model g is defined as

g(· | F) =
∫
Θ
ψ(·,θ)F(dθ), (13.3)

where for every θ ∈Θ , ψ(·,θ) is a probability density function, whereΘ ⊆R
q and

F is a DP defined on Θ . Due to their flexibility and ease in implementation, DPM
models are now routinely employed in a wide variety of applications (see, e.g.,
Hjort et al. 2010). Furthermore, a rich theoretical literature about support, posterior
consistency, and rates of convergence (Lo 1984; Ghosal et al. 1999; Lijoi et al.
2005; Ghosal and Van der Vaart 2007) justify the use of DPM models for inference
in single density estimation problems.

13.2.3 Dependent Prior Probability Models

In many applications, it is desirable to allow for dependence of the data on
covariates. For instance, in linear regression models the mean of responses is
allowed to change with covariates. Expanding on this idea, under a BNP approach it
is desired to define a probability model that features a set of covariate-dependent
continuous distributions F = {Fz : z ∈ Z }, where now the entire shape of F
changes with z, and not just the mean or some other particular functional of the

distribution. The nonparametric model is then changed to x1, . . . ,xn | Fz
i.i.d∼ Fz with

a corresponding prior p(F ) on F = {Fz : z ∈ Z }. Such models are known as
dependent nonparametric models. Here, the main problem, which has received
substantial attention over the past few years, is to construct p(F ), a probability
model for a set of covariate-dependent continuous probability distributions, such
that the result has good theoretical properties and can be easily applied.

13.2.3.1 Dependent Dirichlet Processes

MacEachern (1999, 2000) proposed a dependent Dirichlet process (DDP) where
dependence is achieved by changing the elements ω and θ in the stick-breaking
representation (13.2) of F by independent stochastic processes such that

Fz(·) =
∞

∑
i=1

ωi(z)δθi(z)(·) (13.4)
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where ωi(z) = Ui(z)∏ j<i(1 −Uj(z)) and both θi(z) and Ui(z) are independent

stochastic processes with Uj
iid∼ Beta(1,M). Notice that the DDP can be used as a

mixing distribution in a mixture model, exactly as in (13.3) so that it is possible to
define a predictor-dependent mixture model.

MacEachern (1999, 2000) also considered a version of the process with
predictor-independent weights, Fz(·) = ∑∞

i=1ωiδθi(z)(·). Versions of the predictor-
dependent mixture models based on single weights DDP have been successfully
applied to ANOVA (De Iorio et al. 2004), survival (De Iorio et al. 2009; Jara et al.
2010), spatial modeling (Gelfand et al. 2005), functional data (Dunson and Herring
2006), time series (Caron et al. 2006), discriminant analysis (De la Cruz et al. 2007),
and longitudinal data analysis (Müller et al. 2005).

On the other hand, extensions of the DP for dealing with related probability
distributions include the DPM mixture of normals model for the joint distribution
of the response and predictors (Müller et al. 1996), the hierarchical mixture of
DPM (Müller et al. 2004), the hierarchical DP (Teh et al. 2006), the order-based
DDP model (Griffin and Steel 2006), the nested DP (Rodriguez et al. 2008), the
kernel-stick breaking process (Dunson and Park 2008), among many others. Based
on a different formulation of the conditional density estimation problem, Tokdar
et al. (2010) and Jara and Hanson (2011) proposed alternatives to convolutions of
dependent stick-breaking approaches, which yield conditional probability measures
with density w.r.t. Lebesgue measure without the need of convolutions.

A particular kind of prior for dependent BNP models is the dependent Bernstein–
Dirichlet prior which we describe next.

13.2.3.2 Dependent Bernstein Polynomial Priors

As earlier, we begin with the non-dependent version and then extend it to incorpo-
rate dependence. Let H be a function on the [0,1] interval. The kth order Bernstein
polynomial of H (Lorentz 1986) is defined by

B(t;k,H) =
k

∑
j=0

H

(
j
k

)(
k
j

)
t j(1− t)k− j, (13.5)

with derivative

b(t;k,H) =
k

∑
j=1

w jkβ (t | j,k− j+1), (13.6)

where w jk = H( j/k)−H(( j− 1)/k), and β (· | a,b) denotes the beta density with
parameters a and b. Note that if H is a distribution function whose support is the
unit interval, then B(t;k,H) is also a distribution function on [0,1]. Moreover, if
H(0) = 0, then b(t;k,H) is the corresponding density function.
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Starting from this definition, and additionally assuming both H and k as random
quantities, Petrone (1999) proposed the resulting random distribution based on
B(·;k,H) as a class of prior distributions on the space F of distributions on X =
[0,1]. Let p(k) represent the probability mass function of a random variable k on the
positive integers. We say that a random distribution F follows a Bernstein–Dirichlet
prior, denoted as F | F0 ∼ BDP(k,MF0) if F can be represented as B(·;k,H) in
(13.5), where H | F0 ∼ DP(M,F0).

The Bernstein–Dirichlet prior defined above can be extended to allow for
dependence on covariates. MacEachern (1999) proposed to introduce covariate
dependence in the elements of the stick-breaking representation. Borrowing from
this idea, Barrientos et al. (2012) used an alternative definition of MacEach-
ern’s DDP and defined a dependent Bernstein polynomial process (DBPP). The
dependence is introduced by replacing the DP mixing distribution H in (13.5)
by a dependent stick-breaking process defined in terms of transformed stochastic
processes indexed by predictors z ∈Z .

For a detailed definition and a description of good properties related to the
association structure, continuity, and support of the DBPP process as well as the
asymptotic behavior of the posterior distribution, the reader is referred to Barrientos
et al. (2012).

In our application, a simplified version of the general DBPP model will be used.
In this version, the dependence on covariates is accounted for by using a dependent
stick-breaking process with common weights, and support points given by stochastic
processes indexed by predictors z ∈ Z . This version of the model is called single
weights DBPP and it is denoted by wDBPP (Barrientos et al. 2012). Consider then
k ∼ p(k | λ ), where p(k | λ ) is the Poisson(λ ) distribution, truncated to {1,2, . . .}.

The model then becomes

s(z)(·) =
∞

∑
j=1

w jβ (· | �kθ j(z)�,k−�kθ j(z)�+1) , (13.7)

where �·� denotes the ceiling function, θ j(z) = hz(r j(z)), and

w j = v j∏
i< j

[1− vi] ,

and where r1,r2, . . . are independent and identically distributed real-valued stochas-
tic processes with probability measure indexed by the parameter Ψ, hz is a
function defined on a set H = {hz : z ∈ Z } of known bijective continuous func-
tions, and v1,v2, . . . are independent random variables with common distribution
indexed by a parameter α . We denote (13.7) by S = {Sz

.
= S(z) : z ∈Z } ∼

wDBPP(α,λ ,Ψ,H ). We will discuss specific choices for hz and the {ri} processes
in Sect. 13.3. It should be noted that under equivalent assumptions on the parameters
defining the process, the wDBPP retains all the properties shown for the general
version of the model.
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13.3 Dependent BNP Model for Equating and Illustrations

Let T be the random variable denoting the scores with S(t) the associated probability
distribution function. For a vector of covariates z, we are interested in modeling the
covariate-dependent score distributions, which will be used to obtain the equating
transformation ϕ(t;z). With a slight abuse of notation, we will denote this as
Sz(t) = S(t | Z = z), stressing the fact that is not meant to be interpreted as stochastic
conditioning, but as expressing dependence of the distribution on covariates z.

As noted before, we need to specify a prior probability model for the set
S = {Sz : z ∈Z }. We use a DBPP so that

S = {Sz : z ∈Z } ∼ wDBPP(α,λ ,Ψ,H ). (13.8)

As an example, assume that a new test form X is to be equated to an old form
Y. In this case the covariate values denote the test form administered, that is,
Z ∈ {X ,Y}. The c.d.f. of interest would be S(t | Z = z). Thus having score data
and assuming S = {Sz

.
= S(z) : z ∈Z } ∼ wDBPP(α,λ ,Ψ,H ) we can express

the equating function as

ϕ(t;z) = S−1(S(t | Z = X) | Z = Y )

where in this case ϕ(t;z) corresponds to the transformation function which puts
scores on version X in the scale of version Y . As the equating function is not
available in closed form for the adopted model, in practice we need to compute
it as part of an MCMC-type of posterior simulation scheme.

Note that other kind of covariates such as examinee’s gender and type of school
can also be used. The combination of all these variables will produce different
versions of the test score distributions (e.g., the score distribution of females in 2008
coming from municipal schools). This produces a number of possible equatings,
which amounts to the number of combinations of levels in the covariates. In the
application below, we will focus only on two covariates, the examinee gender and
the year of administration, so that a total of 4 score distributions will be available
for equating.

13.3.1 Illustrations

13.3.1.1 Simulation Study

To illustrate the performance of the dependent BNP model for equating, a total of
eighteen simulated data sets were generated. The varying factors are the type of
distribution, the combination of covariates considered that lead to different models
for score distributions, and the sample size. The covariates are Z = (Z1,Z2) where
Z1 = {M,F} is gender and Z2 = {Y1,Y2} the year of application.
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We consider two different general scenarios. The conditional distributions for
Scenario I are unimodal with asymmetry induced by the value of the covariates.
For instance, we could want to deliberately make the score distribution for males
and females differ and have the model capture this feature. For Scenario II, we
consider more complex score distributions, for instance, presenting bimodalities.
Score distributions of this type emerge when gaps and spikes in the distributions or
zero frequencies or other atypical situations are present in the data. The combination
of levels of covariates lead to four models: (1) one where the score distributions
indexed by both year and gender differ; (2) one where differences occur for gender
only in year 2; (3) one where differences arise in years but not in gender; and (4) one
where no differences in the score distributions are due to the covariates. For each
combination of models and scenarios, three different sample sizes n = 250, 500, and
1,000 were considered, leading to a total of eighteen simulated data sets.

The computational implementation of the models is based on MCMC methods.
A full description of the MCMC implementation used here is given in Appendix
E of the supplementary material of Barrientos et al. (2012). All calculations were
done in the R software (R Development Core Team 2013). The BDP is implemented
in the general-purpose Bayesian non- and semi- parametric R library DPpackage
(Jara et al. 2011). User-friendly functions and wrappers specially written for the
dependent BNP models for test equating will be incorporated in the SNSequate R
library (González 2014).

For the wDBPP model we assume that hz(·) = exp{·}/(1+ exp{·}), r j(z) = zT γ j

and γ j | μ,S iid∼ Np (μ,S), j = 1,2, . . .. The model specification was completed by
assuming

v j | α iid∼ Beta(1,α), k | λ ∼ Poisson(λ )I{k>1},

μ | m0,S0 ∼ Np (m0,S0) , S | ν ,Ψ∼ IWp (ν ,Ψ) ,

where IWp(ν ,A) denotes the p-dimensional inverted-Wishart distribution with
degrees of freedom ν and scale matrix A. The models were fit by assuming λ = 25,
m0 = 0p, S0 = 2.25× Ip, ν = p+2 and α = 1.

For each simulated data set, one Markov chain was generated completing a total
number of 110,000 iterations. The full chain was subsampled every ten iterations,
after a burn-in period of 10,000 samples, to give a reduced chain of length 10,000.
Standard tests (not shown), as implemented in the BOA R library (Smith 2007),
suggested convergence of the chains.

The posterior inferences for the conditional densities showed that for each sce-
nario, sample size and version of the proposed model, the corresponding estimates
follow closely the true densities. In most cases, the true model was completely
covered by 95 % point-wise highest probability density (HPD) bands, and the
quality of the estimation improved as the sample size increases. As an example,
Fig. 13.2 shows estimated score distributions as well as equating transformations
when n = 1,000 in Scenario II, and where the score distributions of males and
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females were generated so that they do not differ for year 1, but do so for year 2.
It can be seen in Fig. 13.2c that the equating function that maps the scores of males
to the scale of females for year 1 is accordingly estimated as an identity line. This
is not the case for year 2, where indeed the equating function substantially differs
from the identity line.
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Fig. 13.2 Simulated data—Scenario II (n= 1,000). True (continuous line), posterior mean (dotted
line), and 95 % point-wise HPD intervals (in gray) for conditional densities [panels (a), (b), (d),
(e), (g), (h)], and equating functions [panels (c), (f), and (i)]. (a) Males (M) in year 1 (Y1). (b)
Females (M) in year 1 (Y1). (c) Males to females in Y1. (d) Males (M) in year 2 (Y2). (e) Females
(M) in year 2 (Y2). (f) Males to females in Y2. (g) Year 1 (Y1). (h) Year 2 (Y2). (i) Year 1 to Year 2
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13.3.1.2 Real Data Application

We use data from a private national evaluation system in Chile called SEPA (Sistema
de Evaluación del Progreso en el Aprendizaje; System of Assessment Progress in
Achievement) administered by the measurement center MIDE UC. SEPA consists
of tests specifically designed to assess achievement in students from first to eleventh
grade in the fields of Language and Mathematics. The program started in 2007
and until now, the SEPA tests have been applied in 230 schools, corresponding to
about 70,000 students throughout Chile. We consider the SEPA mathematics test
applied for eighth degree students in the years 2008 and 2009. Note that because the
sum scores we consider are discrete and the DBPP defines continuous distribution
functions in the unit interval, we first mapped the scores into the unit interval. After
equating calculations are made, the inverse mapping is used to obtain equated scores
in the original discrete scale.

Figure 13.3 shows estimated score distributions as well as equating transfor-
mations for each of the four combinations of gender and year. We see that for
both years, the corresponding score distributions do not differ by much, and the
equating transformations are close to linear. See Fig. 13.3a–f. As a comparison, we
considered an aggregated model where gender is now ignored. In this case we can
clearly see from Fig. 13.3g–i that the score distributions in years 1 and 2 do differ
and the equating function that maps the scores from the year 1 scale form to the
year 2 scale form is nonlinear. This suggests that ignoring the gender effect creates
differences in the estimated score distributions. These differences are softened when
incorporating gender into the analysis. In either case, the particular features of such
distributions are adequately captured by the proposed model.

13.4 Concluding Remarks

The estimation and statistical inference of equating functions can be approached
either under a parametric, semi-parametric, or (fully) nonparametric approach
(González and von Davier 2013). In this paper we have introduced a novel
dependent Bayesian nonparametric model for test equating, which features the use
of covariates for the estimation of score distributions that lead to the equating
transformation. In a simulation study, the model was shown to capture very well
different types of shapes in the score distributions. An advantage of the dependent
BNP model for equating is that it does not need pre-smoothing, selection of
bandwidth parameters, or derivation of standard error of equating (SEE), either
analytically or asymptotically, as do other equating methods.

The proposed approach can be extended in many different ways, by replacing the
random probability measure from Bernstein polynomials with suitable continuous
alternatives such as Polya tree processes (Mauldin et al. 1992; Lavine 1992, 1994),
and mixtures of polya trees (Hanson and Johnson 2002), to name just a few. The
motivation is that all these nonparametric models lead to continuous distributions,
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Fig. 13.3 SEPA data—posterior mean (dotted line), and 95 % point-wise HPD intervals (in gray)
for conditional densities [panels (a), (b), (d), (e), (g), (h)], and equating functions [panels (c), (f),
and (i)]. (a) Males in year 1. (b) Females in year 1. (c) Males to females in Y1. (d) Males in year 2.
(e) Females in year 2. (f) Males to females in Y2. (g) Year 1. (h) Year 2. (i) Year 1 to year 2

so that the general strategy used in this paper to obtain equated scores still applies.
The comparison between our proposed dependent BNP model for test equating and
other equating methods is a subject of future research.
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Chapter 14
Using a Modified Multidimensional Priority
Index for Item Selection Under Within-Item
Multidimensional Computerized
Adaptive Testing

Ya-Hui Su and Yen-Lin Huang

Abstract Computerized adaptive testing (CAT) not only enables efficient and
precise ability estimation but also increases the security of testing materials since
examinees are given different sets of items from a large item bank. The construc-
tion of assessments usually involves fulfilling a large number of non-statistical
constraints, such as item exposure control and content balancing. To improve
measurement precision, test security, and test validity, the priority index (PI) and
multidimensional priority index (MPI) were proposed to monitor many constraints
simultaneously for unidimensional and multidimensional CATs, respectively. Many
educational and psychological tests are constructed under a multidimensional
framework. Some of the items (multidimensional items) in a test are often intended
to assess multiple latent traits. However, Yao’s MPI method was developed for a
between-item multidimensional framework. When a within-item multidimensional
test is assembled, a modified MPI algorithm is necessary. Therefore, the purposes of
the study were to derive an algorithm for the modified MPI method for the within-
item multidimensional CATs and to investigate the efficiency of the modified MPI
method through simulations.

Keywords CAT • Priority index • Multidimensional • Item selection • IRT

14.1 Introduction

Computerized adaptive testing (CAT) not only enables efficient and precise ability
estimation but also increases the security of testing materials since examinees
are given different sets of items from a large item bank. CAT may also provide
diagnostics information to parents, teachers, and students, which can be used
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to direct additional instruction to the areas needed most by individual students.
Therefore, CAT may greatly improve the efficiency, security, and usefulness of
educational and psychological assessments.

The construction of assessments usually involves fulfilling various non-statistical
constraints in addition to statistical optimization. Examples include content bal-
ancing (selecting proportionate numbers of items from different content areas),
key balancing (distributing correct answers evenly between options A, B, C, etc.),
limiting specific types of items (such as those with negative stems), and so on.
It is challenging to meet many non-statistical constraints simultaneously in CATs
because items are selected sequentially. Several methods (Chang and van der Linden
2003; Stocking and Swanson 1993; van der Linden and Chang 2003) have been
proposed to monitor content balancing flexibly; however, these methods require
rather complex linear programming techniques. To improve measurement precision,
test security, and test validity, the maximum priority index (PI) method can be used
to handle several non-statistical constraints simultaneously (Cheng and Chang 2009;
Cheng et al. 2009) under unidimensional CATs, and it was found that the PI method
leads to fewer constraint violations and better exposure control while maintaining
the same level of measurement precision.

Many educational and psychological tests are constructed within a multidi-
mensional framework. One primary benefit of the multidimensional CAT is that
information provided by items of correlated dimensions can lead to greater mea-
surement efficiency, manifested by either greater precision or reduced test lengths
(Segall 1996; Wang and Chen 2004). In practice, multidimensional CAT rather than
unidimensional CAT is feasible. The multidimensional priority index (MPI; Yao
2011, 2012, 2013) method can be used to monitor item exposure control and content
constraints under the framework of multidimensional CATs. However, Yao’s MPI
method was developed for a between-item multidimensional test. The item pool
used in Yao’s studies was the CAT Armed Services Vocational Aptitude Battery
(CAT ASVAB), which is a between-item multidimensional test because each
test in the battery is assumed to measure only one distinct latent trait, and the
overall assessment is assumed to measure four latent traits. By contrast, some tests
might have a within-item multidimensional structure such that individual items are
intended to assess multiple latent traits. For instance, a science performance-based
item can be used to assess both scientific declarative and procedural knowledge, a
composition task can be used to assess both content understanding and language
skills; or an arithmetic item can be used to assess both symbolic representation and
calculation. As it might be inappropriate to use Yao’s MPI method when a within-
item multidimensional test is assembled, it is necessary to extend Yao’s MPI method
to within-item multidimensional CATs.

The objectives of this study were to derive an algorithm for a modified MPI
method under within-item multidimensional CATs and to investigate its efficiency
through simulations.
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14.1.1 The Priority Index (PI) Method and its Development

To improve measurement precision, test security, and test validity, the maximum pri-
ority index (PI) method was proposed to monitor several non-statistical constraints
simultaneously (Cheng and Chang 2009). Denote the constraint relevancy matrix
CI X K , where I is the number of items in the pool and K is the total number of
constraints. Let cik = 1 represent constraint k being relevant to item i and cik = 0
otherwise. The C matrix is identified before item selection by content experts and
psychometricians. Each constraint k is associated with a weight wk. Usually, major
constraints such as content balancing are given larger weights than others. The
priority index of item i can be computed as

PIi = Ii

K

∏
k=1

(wk fk)
cik , (1)

where Ii represents the Fisher information of item i being defined as a function of the
current θ̂ . The term fk measures the scaled ‘quota left’ of constraint k. For a content
constraint k, the PI can be considered in a certain content area. After xk items have
been selected, the resulting scaled ‘quota left’ is

fk =
(Xk − xk)

Xk
. (2)

Note that when cik = 0, meaning item i is not restricted by constraint k, the term
wkfk will not contribute to the final product PIi. For every available item in the pool,
the PI can be computed according to Eq. (1). Instead of selecting the item with the
largest Fisher information, the item with the largest PI value will be chosen in the
CAT algorithm. When more than one item has the same highest PI value, the item
with the largest Fisher information will be selected.

Item exposure control can be implemented as follows. Assume constraint k
requires the item exposure rates of all items to be less than or equal to rmax. Among
the N examinees who have taken the CAT, n examinees have seen item i. Then, the
term fk can be calculated as

fk =
1

rmax

(
rmax − n

N

)
, (3)

where n/N is the provisional exposure rate of item j after N examinees have taken
the CATs.

When flexible content balancing constraints are required, Cheng and Chang
(2009) suggested that the PI method be used jointly with the two-phase item
selection strategy (Cheng et al. 2007). Each flexible content balancing constraint
involves a lower bound lk and an upper bound uk. Denote the number of items to be
selected from content area k as μk. Then,
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lk ≤ μk ≤ uk, (4)

and

K

∑
k=1

μk = L, (5)

where K (k= 1, 2, . . . , K) and L are the total number of content areas and test length,
respectively. In the first phase, lk items are selected from each content area to meet

the lower bound constraints such that L1 =
K

∑
k=1

lk. After xk items have been selected,

the resulting scaled ‘quota left’ is

fk =
1
lk
(lk − xk) . (6)

Then, in the second phase, the remaining L2 =L−L1 items are selected within the
upper bounds of each content area. The fk can be computed as

fk =
1
uk

(uk − xk) . (7)

It was found that the PI method leads to fewer constraint violations and better
exposure control while maintaining the same level of measurement precision.
However, the PI method leaves almost half of the items in the pool unused.
According to the study of Chang and Ying (1999), item selection methods based
on the maximum information criterion (Thissen and Mislevy 2000), which selects
the item with the largest Fisher information evaluated at the provisional ability,
provide the most efficient ability estimation but tend to overexpose items with high
discrimination.

To increase pool usage, Cheng et al. (2009) proposed constraint-weighted a-
stratification for CAT with non-statistical constraints, which implemented the PI
method with the a-stratified design. When flexible content balancing constraints are
considered, a one-phase item selection strategy can be used by incorporating both
upper bounds and lower bounds. The PI becomes

PIi = Ii

K

∏
k=1

( f1k f2k)
cik , (8)

where

f1k =
1
uk

(uk − xk −1) , (9)

and
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f2k =
(L− lk)− (t − xk)

L− lk
, (10)

where t is the number of items that have already been administered and t =
K

∑
k=1

xk.

The term f1k in Eq. (9) measures the closeness to the upper bound. The L− lk in
Eq. (10) is the maximum of the sum of items that can be selected from other content
areas. When the term f2k equals to 0, this implies that the sum of administered
items from other content areas has reached its maximum. Cheng et al. (2009)
indicated that item selection with a-stratification should be considered on the basis
of matching the item difficulty parameter b to the current θ̂ , rather than matching
the Fisher information to the current θ̂ . They modified the PI for one-phase and
two-phase item selection as

PIi =
1∣∣∣bi − θ̂

∣∣∣
K

∏
k=1

( f1k f2k)
cik , (11)

and

PIi =
1∣∣∣bi − θ̂

∣∣∣
K

∏
k=1

( fk)
cik , (12)

respectively. This version of a-stratification allows for inclusion of many constraints
on item type and format as well as constraints to ensure balanced item exposure.
It was found the weighted mechanism successfully addresses the constraints. This
method not only helps to a great extent in balancing item exposure rates but also
improves measurement precision.

14.1.2 Yao’s Multidimensional Priority Index (MPI) Method

Yao (2011) defined the multidimensional priority index (MPI) for each item i as

MPIi =
D

∏
d=1

fid
cid , (13)

where the constraint matrix CI X D has row dimension I equal to the number of
items in the pool and column dimension D equal to the total number of domains,
and cid is the loading information for item i on domain d such that cid = 1 if item
i is from domain d and cid = 0 otherwise. Including the item exposure rate, content
constraints with upper and lower limits for each domain, and the estimated domain
score precision, Yao (2013) defined the term fid in Eq. (13) with the standard error
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stopping rule as

fid =
[
max

{[
1−

(
pd
p̂d

)a
+ ε1

]
,0

}][
max

{(
ri−ni/N

ri

)
,0

}]
[

1xd≤ld

(
ld−xd

ld
+ ε2/xd

)
+1xd>ld max

{
1−

(
xd
ud

)b
,0

}]
,

(14)

where pd and p̂d represent the required standard error of measurement (SEM)
and the SEM estimates based on the administered items for the domain d ability
estimates, respectively. The smaller the SEM, the larger the precision. If the required
precision of domain d has been achieved, then the items loading in domain d will
not be selected further [the first term in Eq. (14)]. If an item has been selected so as
to reach the required exposure rate, then it will not be selected further [the second
term in Eq. (14)]. Each domain will have the minimum required number of items
(the first part of the third term in Eq. (14)), and no further items will be selected
from a domain if the number of selected items from that domain has reached its
maximum limit [the second part of the third term in Eq. (14)]. Here, the smaller
the values of a and b, the larger the weight given to the precision. The term ε1 is
a small number that can be adjusted so that the precision of the estimates can be
slightly above the required precision, whereas the term ε2 is a small number that
can be adjusted so that the minimum required number of items for each domain can
be administered first.

14.1.3 Statement of the Problems

Yao’ MPI method (2011, 2012, 2013) in Eqs. (13) and (14) can be used for
assembling between-item multidimensional tests, such as CAT ASVAB, in which
each test in the battery is assumed to measure only one distinct latent trait,
and the overall assessment is assumed to measure four latent traits. There are
three potential problems when Yao’s MPI (2013) method is used under within-
item multidimensional CATs. Because every item measures only one latent trait
in CAT ASVAB, the loading information for item i is only on one domain d.
However, it is common for educational and psychological tests to have within-item
multidimensional structure such that items are intended to assess multiple latent
traits. A multidimensional item has loading information on more than one domain.
For instance, as mentioned earlier, an arithmetic item can be used to assess both
symbolic representation and calculation. This item i has loading information on two
domains in Eq. (13). Applying Yao’s MPI in Eqs. (13) and (14), the MPI for item i
becomes
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MPIi =
(

fiSymbolicRepresentation
)1
( fid)

0 . . .( fiCalculation)
1( fid)

0

=
([

DomainPrecisionSymbolicRepresentation
]
[ItemExposureControli][

ContentConstraintsSymbolicRepresentation
])

1(
[DomainPrecisionCalculation] [ItemExposureControli]

[ContentConstraintsCalculation]
)

1

(15)

First, the domain precision term measures the distance between the required SEM
and the SEM estimates based on the administered items, and its value is smaller than
1 [the first terms of decomposed fid for symbolic representation and calculation in
Eq. (15)]. The larger the domain precision term, the higher the priority for selecting
the item. The MPI of the arithmetic item measuring symbolic representation and
calculation is smaller than that of an item measuring only symbolic representation
or calculation. Hence, the arithmetic item is much less likely to be administered.
Second, the item exposure control term measures the distance between the required
exposure rate for item i and the frequency with which the item i has been exposed,
and its value is smaller than 1 [the second terms of decomposed fid for symbolic
representation and calculation in Eq. (15)]. The larger the item exposure control
term, the higher the priority for selecting the item. The item exposure control term
is calculated twice in Yao’s MPI method for the arithmetic item. For this reason
also, the item’s MPI would generally have a smaller value than an item measuring
only symbolic representation or calculation. Again, this arithmetic item is much
less likely to be administered. In practice, a multidimensional item usually has much
higher information than a unidimensional item. However, this arithmetic item is less
likely selected than an item measuring only symbolic representation or calculation
when Yao’s MPI algorithm is applied. Third, the content constraints in MPI are
domain constraints [the last terms of decomposed fid for symbolic representation and
calculation in Eq. (15)]. If one considers content constraints under some domain,
Yao’s MPI is not available.

In addition, Yao (2013) found high-quality items tend to be administered to
examinees who take the test earlier. Although the first few items were randomly
chosen, Yao still found the order affected the performances of some item selection
procedures, especially for the first 200 examinees. In practice, those items that are
most informative and useful in CATs are not needed in the early stages when ability
estimation is very uncertain. Hence, a-stratification (Chang et al. 2001; Chang and
Ying 1999) should be implemented in within-item multidimensional CATs to save
informative items for the later stages and achieve better item usage in the study.

There are two additional problems noticed by author in the one-phase item
selection strategy of the PI method (Cheng et al. 2009). For flexible content



234 Y.-H. Su and Y.-L. Huang

balancing constraints, both upper bounds and lower bounds are incorporated for the
one-phase item selection strategy in Eqs. (8), (9), and (10). First, the f1k in Eq. (9)
measures closeness to the upper bound of constraint k. When only one more item
is needed to reach the upper bound, f1k in Eq. (9) is equal to 0. If item i is related
to constraint k (cik = 1), the PI is equal to 0 and item i is impossible to select for
administration; if item i is not related to constraint k (cik = 0), the PI is not certain to
be 0 and item i can potentially select for administration. Therefore, it is impossible
to have one more item for constraint k such that the upper bound of constraint k
in Eq. (4) can be reached. Hence, it is suggested by the author that the last term
of the numerator in Eq. (9), -1, be removed from the equation. The modified f1k is
defined as

f1k =
1
uk

(uk − xk) . (16)

Second, when the f2k in Eq. (10) is equal to 0, it indicates that the sum of items
from other domains has reached its maximum. However, a similar situation as for
the f1k happens here. If item i is related to constraint k (cik = 1), the PI is equal
to 0 and item i is impossible to select for administration; if item i is not related
to constraint k (cik = 0), the PI is not certain to be 0 and item i can potentially
select for administration. All contents but constraint k have reached their maxima;
however, items related to constraint k cannot be selected for administration. Hence,
it is suggested by the author that the f1kf2k for constraint k in Eq. (8) be defined as 1
when f2k is equal to 0. Then, the PI will not always be 0 and item i can be selected
for administration if this item is related to constraint k.

14.1.4 Purpose of the Study

It is of great value to develop a multidimensional CAT item selection procedure
that facilitates efficient control over non-psychometric constraints, item exposure,
and content balance simultaneously. It is also important to develop quality control
procedures for integration in the item selection algorithm to identify potential
problems in the item pool structure design. Therefore, the purpose of the study is
threefold. First, to derive an algorithm of the modified MPI method for the within-
item multidimensional CATs. Second, to develop a procedure of integrating the
a-stratified design with the MPI method under the multidimensional CATs. Third,
to evaluate the efficiency of the modified MPI methods in terms of constraint
management, measurement precision, exposure control, and test length through
simulations.
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14.2 Method

14.2.1 The Modified MPI Method

The main framework of the PI method in Eq. (1) is included in the modified MPI
method. For a fixed-length content constraint k, the term fk defined in Eq. (2) can be
included in the modified MPI method. For item exposure control, the term fk defined
in Eq. (3) can be included in the modified MPI method. Since item exposure control
is one of the constraints in Eq. (1), the modified MPI method will not include it
twice. For flexible content balancing constraints in Eqs. (4) and (5), the term fk in
Eq. (1) can be replaced with Eqs. (6) and (7) for a two-phase item selection strategy;
Or, the term fk in Eq. (1) can be replaced with f1kf2k defined in Eqs. (16) and (10) for
a one-phase item selection strategy by incorporating both upper bounds and lower
bounds, and f1kf2k is defined as 1 when f2k in Eq. (10) is equal to 0.

14.2.2 Integrating a-Stratification with the Modified
MPI Method

Chang and Ying (1996, 1999, 2007) and Hua and Chang (2001) suggested that a
parameters should be selected in an ascending order. This means item selection
begins with low discriminating items and high discriminating items are saved to
later stages of testing. The rationale is that less discriminating items at the initial
stage of testing are more appropriate when the latent trait estimation is not reliable
and high discriminating items are more appropriate at the later stages of testing
when the latent trait estimation is of greater certainty. In this way, measurement
efficiency and accuracy can be improved.

The item pool is stratified into several strata, usually three or more, in such a way
that the distributions of difficulty parameters in these strata remain roughly constant
and discrimination parameters have ordered distributions across these strata. This
is achieved by rank ordering all of the items by their difficulty parameters and by
taking an adjacent K (number of strata) items and separating them into K different
bins according to the size of their corresponding discrimination parameters. This
results in K strata that have ordered distributions of discrimination parameters
and roughly balanced difficulty parameters. The above considers an a-stratification
design under a unidimensional framework. The a-stratification needs be modified
to fit into the multidimensional framework when more than one dimension is
considered. The item pool is stratified into KD strata for a D-dimensional CAT if K
strata are used for a unidimensional framework. The discrimination parameters have
ordered distributions from the stratum with the lowest a parameters to the stratum
with the highest a parameters for all dimensions.

The item pool is firstly divided into strata. Item selection in a-stratification
involves moving upward through these KD strata as the test proceeds and matching
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the current ability estimate with the closest difficulty parameter within each stratum.
In this way, item exposure balance is achieved simultaneously during the test.
Under the multidimensional framework, one-phase and two-phase item selection
in a-stratification with the modified MPI method in Eq. (1) are achieved by

modified MPIi =
1√

(θ1 −bi)
2 +(θ2 −bi)

2 + . . .(θD −bi)
2

K

∏
k=1

(wk f1k f2k)
cik , (17)

and

modified MPIi =
1√

(θ1 −bi)
2 +(θ2 −bi)

2 + . . .(θD −bi)
2

K

∏
k=1

(wk fk)
cik , (18)

respectively. For flexible content balancing constraints, all of the simulations in this
study are based on the one-phase approach in Eq. (17). For fixed-length constraints,
the MPI in Eq. (18) is used.

14.2.3 Simulation Study

14.2.3.1 Data Generation

A popular multidimensional model used in this study is the multidimensional three-
parameter logistic (M3PL; Hattie 1981; Reckase 1985) model, which is defined as

pni1 = ci +(1-ci)
exp [a′i (θn −bi1)]

1+ exp [a′i (θn −bi1)]
, (19)

where pni1 is the probability of a correct response; θ
′
n = (θ1, θ2, . . . , θp) represents

the p-dimensional latent traits; ai is a p× 1 vector of the discrimination parameter;
bi and ci are the difficulty and the guessing parameters of item i, respectively; and 1
is a p× 1 vector of 1 s. When there is only one latent trait, Eq. (19) reduces to the
three-parameter logistic model (Birnbaum 1968).

Our study considers one thousand M3PL items from a two-dimensional pool, in
which 40 % of the items measure the first dimension, 30 % of the items measure the
second dimension, and the remaining 30 % of the items measure both dimensions.
Therefore, some items are unidimensional whereas others are two-dimensional. The
items are randomly assigned to two dimensions according to the percentage of each
dimension. The discrimination parameters are drawn from a uniform distribution
on the interval of real numbers (0.5, 1.5) for each dimension, difficulty parameters
are drawn from a standard normal distribution, and guessing parameters are drawn
from a uniform distribution on (0, 0.4). All item responses are generated according
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to Eq. (19). The number of content areas used for these two dimensions are 3 and 2,
and items are randomly assigned to these areas with equal probability. The lower
and upper bounds of items needed by each content area for the first dimension
are 3–5, 5–7, and 4–6, respectively. The lower and upper bounds of items needed
by each content area for the second dimension are 5–8 and 6–9, respectively. In
addition, the lower and upper bounds of the answer keys for each of four choices
are 5–10. All 3,000 simulated examinees are drawn from a multivariate standard
normal distribution with correlation 0.8, indicating high correlation. The total test
length is L= 30. The MAP method with a multivariate standard normal distribution
(correlation is set at 0.8) prior is used to estimate θ̂ until the response pattern
contains both a 0 and 1. After that the MLE method is used.

14.2.3.2 Simulation Design

Six conditions are simulated in this study: four experimental conditions with the
MPI method and two control conditions. The two control conditions, treated as
baseline, are the maximum determinant of the Fisher information matrix (MDFIM)
method and the randomized (R) item selection method. The four experimental
conditions implemented with MPI method are (1) a method without a-stratification
(NonStr), (2) a method without a-stratification but with item exposure (NonStr-
Expo), (3) a method with a-stratification (Str), and (4) a method with a-stratification
and item exposure (StrExpo). For the conditions without a-stratification, Eq. (8) is
used for item selection. For the conditions with a-stratification, Eq. (17) is used as
the item selection criterion after the item pool is stratified.

14.2.3.3 Evaluation Criteria

The results of the simulation study were analyzed and discussed based on the
following criteria: (a) constraint management, (b) measurement precision, and (c)
exposure control.

Constraint management is to check whether the test sequentially assembled for
each student meets all the specified test-construction constraints. The number of
constraints that are violated in each test is recorded, and then the proportion of tests
violating a certain number of constraints is calculated. Finally, the effectiveness of
constraint management is the averaged number of violated constraints (V ):

V =
∑N

n=1Vn

N
, (20)

where Vi represents the number of constraint violations in the nth examinees’ test.
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Measurement precision is evaluated by latent trait recovery through the bias
(bias), mean squared error of estimation (MSE), and a measure of relative efficiency,
which is the square root of MSE, for each method compared to that of the MDFIM.
The formulas for bias and MSE are given as follows:

bias =
1
N

N

∑
n=1

(
θ̂n −θn

)
, (21)

and

MSE =
1
N

N

∑
n=1

(
θ̂n −θn

)2
, (22)

where θ̂n and θn are the estimated and true abilities, respectively.
With respect to exposure control, the maximum item exposure rate, the number of

overexposed items (i.e., items with exposure rates that are higher than 0.20), and the
number of items that are never exposed will be reported. In addition, the χ2 statistic
can be used to measure the skewness of item exposure rate distribution (Chang and
Ying 1999)

χ2 =
1

L/I

I

∑
i=1

(ri −L/I)2, (23)

where ri is the exposure rate of item i and L is the test length. The χ2 statistic is
a good index of the efficiency of item pool usage as it qualifies the discrepancy
between the observed and the expected under a uniform distribution. The smaller
the χ2 statistic, the better the item exposure control.

14.3 Results

The results of the simulation study were summarized according to measurement
precision, exposure control, and constraint management criteria in Tables 14.1, 14.2,
and 14.3, respectively. With respect to measurement precision, the bias, RMSE, and
relative efficiency for the six different item selection methods list in Table 14.1.
The MDFIM and R item selection methods, treated as control conditions, were
baselines in this study. Since the MDFIM item selection method was one of the
baselines in this study, the relative efficiency was defined as the ratio of RMSE
for each item selection method to that for the MDFIM method. Among the six
item selection methods, the MDFIM item selection method obtained the best
measurement precision with the smallest bias and RMSE; the R item selection
method obtained the worse measurement precision with the largest bias and RMSE
and it also had the smallest relative efficiency compared to the MDFIM item
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Table 14.1 Measurement precision of the six item selection methods

Bias RMSE Relative efficiency
Methods Dim1 Dim2 Dim1 Dim2 Dim1 Dim2

Non modified MPI

R 0.014 0.024 0.428 0.444 0.545 0.549
MDFIM 0.002 0.009 0.233 0.244 1.000 1.000
Modified MPI

NonStr 0.002 0.010 0.311 0.317 0.750 0.770
NonStrExpo 0.011 0.011 0.313 0.291 0.744 0.840
Str 0.016 0.020 0.308 0.303 0.756 0.805
StrExpo 0.020 0.028 0.309 0.311 0.753 0.786

Note: Six item selection methods in this study are (1) the maximum
determinant of the Fisher information matrix (MDFIM) method, (2)
the randomized (R) item selection method, (3) a method without a-
stratification (NonStr), (4) a method without a-stratification but with
item exposure (NonStrExpo), (5) a method with a-stratification (Str),
and (6) a method with a-stratification and item exposure (StrExpo)

Table 14.2 Exposure control results for the six item selection methods

Methods min 25 % 50 % 75 % max Chi-square Unused items
Test
overlap

Nonmodified MPI

R 0.022 0.028 0.030 0.032 0.038 0.179 0 0.030
MDFIM 0.000 0.000 0.000 0.000 0.527 206.456 743 0.236
Modified MPI

NonStr 0.000 0.000 0.000 0.000 0.586 202.646 755 0.233
NonStrExpo 0.000 0.011 0.021 0.059 0.106 23.613 135 0.053
Str 0.000 0.005 0.017 0.047 0.194 36.316 85 0.066
StrExpo 0.000 0.012 0.026 0.046 0.134 16.505 53 0.046

selection method. The other four item selection methods with the modified MPI
methods performed very similar in terms of RMSE and relative efficiency, but
the NonStr and NonStrExpo item selection methods performed slightly better with
smaller bias than the other two methods.

With respect to exposure control, the item exposure rates of each item were
calculated for the six item selection methods. The minimum, the 25th percentile,
the 50th percentile, the 75th percentile, and the maximum of the item exposure rate
distribution list in the first five columns of Table 14.2. In addition, the χ2 statistic,
the number of unused items, and test overlap rates list in the last three columns of
Table 14.2. Among the six item selection methods, the MDFIM and NonStr item
selection methods obtained the worse exposure control with the maximum item
exposure rate 0.52 and 0.58, respectively. The MDFIM and NonStr item selection
methods also yielded the largest values in χ2 statistic, the number of unused items,
and test overlap rates. Among the six item selection methods, the R item selection
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Table 14.3 Constraint management results for the six item selection methods

Methods 0 1 2 3 4 5 6 7 8 9
Averaged
violation

Nonmodified MPI

R 10.18 27.64 27.98 19.94 9.86 3.54 0.66 0.16 0.02 0.02 2.06
MDFIM 14.94 21.60 30.64 21.32 9.14 1.84 0.32 0.16 0.02 0.02 1.96
Modified MPI

NonStr 100 0 0 0 0 0 0 0 0 0 0
NonStrExpo 99.80 0.06 0.08 0.06 0 0 0 0 0 0 <0.01
Str 90.52 9.18 0.30 0 0 0 0 0 0 0 0.10
StrExpo 89.74 9.52 0.74 0 0 0 0 0 0 0 0.11

method obtained the best exposure control with the maximum item exposure rate
0.03, and yielded the smallest in χ2 statistic, the number of unused items, and test
overlap rates. The NonStrExpo, Str, and StrExpo item selection methods obtained
the maximum item exposure rate less than 0.19, and the χ2 statistic, the number
of unused items, and test overlap rates much smaller than those of the MDFIM
and NonStr item selection methods. In general, the StrExpo item selection method
performed the best exposure control with the smallest values in the χ2 statistic,
unused items, and test overlap rates among the NonStrExpo, Str, and StrExpo
methods.

With respect to constraint management, the proportions of assembled tests
violating a certain number of constraints were calculated for the six item selection
methods, which list in the first ten columns of Table 14.3. The average number of
violated constraints was also calculated, which list in the last columns of Table 14.3.
The R item selection method yielded the severest violation when assembling tests,
followed by the MDFIM item selection method. The other four item selection
methods with the modified MPI performed better. Among the other four item
selection methods with the modified MPI method, those without a-stratification
(NonStr and NonStrExpo) performed better than those with a-stratification (Str
and StrExpo) in terms of averaged constraint violations. It was also found that
the NonStr item selection method could meet all the specified test-construction
constraints when the test sequentially assembled for each student.

Conclusions
It is not only of great value to develop a multidimensional CAT item selection
procedure but also important to develop quality control procedures for integra-
tion in the item selection algorithm to identify potential problems in the item
pool structure design. The purposes of this study were to develop an algorithm
of the modified MPI method for within-item multidimensional CATs, to
integrate the modified MPI method with constraint-weighted a-stratification,

(continued)
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and to investigate its efficiency through simulations. These methods were
evaluated according to the constraint management, item exposure control, and
measurement precision criteria. It was found that the item selection with a-
stratification and exposure control (that is StrExpo item selection method in
the study) under the framework of the modified MPI method would obtain
better pool usage and lower test overlap rates; however, it also yields some
loss in measurement precision and constraint management.

Today one of the main challenges in educational and psychological mea-
surement is to develop theories and methods for the new mode of large-scale
implementation of computerized assessment, especially in developing item
selection methods for CATs. The modified MPI method has great potential in
operational CATs. Therefore, research findings from this study will advance
our knowledge for item selection in multidimensional CAT.

This study has some limitations that can be addressed in future work.
First, the algorithms of the modified MPI method derived for M3PL, which
is for multidimensional dichotomous items, might not be appropriate for the
polytomous items. In psychological inventories, it is common to have Likert-
type items in which subjects specify their level of agreement or disagreement
on a symmetric agree–disagree scale for a series of statements. Since the
polytomous items provide more information than dichotomous items do, it
is important to extend the MPI approach to polytomous items. In addition,
a fixed test length of 30 items was used in this study as stopping rule.
However, when a fixed precision is considered among all subjects, subjects
might receive tests with variable test length. It is also important to investigate
the efficiency of the modified MPI method when the fixed precision is used as
stopping rule under multidimensional CATs in the future as well.
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Chapter 15
Assessing Differential Item Functioning
in Multiple Grouping Variables with Factorial
Logistic Regression

Kuan-Yu Jin, Hui-Fang Chen, and Wen-Chung Wang

Abstract Differential item functioning (DIF) can occur among multiple grouping
variables (e.g., gender and ethnicity). For such cases, one can either examine DIF
one grouping variable at a time or combine all the grouping variables into a single
grouping variable in a test without a substantial meaning. These two approaches,
analogous to one-way analysis of variance (ANOVA), are less efficient than an
approach that considers all the grouping variables simultaneously and decomposes
the DIF effect into main effects of individual grouping variables and their inter-
actions, which is analogous to factorial ANOVA. In this study, the idea of factorial
ANOVA was applied to the logistic regression method for the assessment of uniform
and nonuniform DIF, and the performance of this approach was evaluated with
simulations. The results indicated that the proposed factorial approach outperformed
conventional approaches when there was interaction between grouping variables;
the larger the DIF effect size, the higher the power of detection; the more DIF items
in the anchored test, the worse the DIF assessment. Given the promising results, the
factorial logistic regression method is recommended for the assessment of uniform
and nonuniform DIF when there are multiple grouping variables.

Keywords Differential item functioning • Logistic regression • Uniform differ-
ential item functioning • Nonuniform differential item functioning

Many tests and inventories have been developed to measure latent traits in the
human sciences and to compare inter-individual differences. A major concern
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that arises under such group comparisons is whether or not test items reflect
the same latent dimensions across all groups of examinees, termed measurement
equivalence or measurement invariance (Candell and Hulin 1986; Drasgow 1987).
A lack of measurement invariance leads to a problematic situation where examinees
having the same underlying ability but belonging to different groups have different
probabilities of success on an item. Thus, the test favors one or more groups of
examinees but disadvantages others. Measures are not comparable across groups,
and test fairness is threatened.

Assessment of differential item functioning (DIF) is a routine practice to
investigate measurement invariance at the item level, especially for large-scale
assessment programs such as the Program for International Student Assessment and
the Trends in International Mathematics and Science Study. DIF refers to examinees
with the same ability level from different groups having different probabilities
of pass or endorsing an item. In the framework of item response theory (IRT),
an item shows DIF if its response functions are not identical across groups. The
psychometric properties differ across groups, and the differences in the measures
across groups do not reflect true differences.

Most DIF studies focus on the difference between a reference group (e.g.,
majority) and a focal group (e.g., minority). Latent traits of the two groups of
examinees are placed on the same metric based on an anchored test, and then the
responses to a studied item are examined for DIF. Sometimes, more than two groups
of examinees may be involved, such as in cross-cultural and cross-ethnic research
(Iwata et al. 2002). In such cases, a group (e.g., white Americans) is selected to
serve as the reference group, so the other focal groups can be compared against
the reference group, one focal group at a time. This procedure is analogous to the
independent-samples t-test. Just as the one-way ANOVA is statistically superior
to multiple independent-samples t-tests, simultaneous DIF analysis across multiple
groups has been found to be statistically more efficient than multiple two-group DIF
analyses (Güler and Penfield 2009; Kim et al. 1995; Penfield 2001).

Specifically, Kim et al. (1995) developed the Qj statistic using the vectors of item
parameter estimates. If the vectors differ significantly across groups, then the item
characteristic functions differ across groups, and the item is deemed to exhibit DIF.
Being an IRT-based method, the Qj statistic requires large sample sizes for stable
item parameter estimation. To resolve this problem, Penfield (2001) proposed a non-
IRT-based method: the generalized Mantel–Haenszel (MH) statistic (Somes 1986;
Zwick et al. 1993). Simulation results confirmed that both methods yielded well-
controlled Type I error rates and high power rates, but they differed in computation
time and sample size requirements.

When DIF analysis is to be conducted on multiple grouping variables (factors),
such as gender (two levels) and ethnicity (three levels), two approaches are often
adopted: The first approach is to consecutively conduct DIF analysis, one grouping
factor at a time. For example, one can conduct a gender DIF analysis, followed by an
ethnicity DIF analysis. The second approach is to combine these two grouping fac-
tors into a pseudo-grouping factor with six levels and to implement the procedures
proposed by Kim et al. (1995) or Penfield (2001). The first approach, analogous to
conducting one-way ANOVA procedures consecutively, aims to evaluate whether
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there is a gender DIF or an ethnicity DIF. The second approach, also analogous
to one-way ANOVA, creates a pseudo-grouping factor that often lacks substantial
meaning. Both approaches are less statistically efficient than factorial ANOVA,
where all grouping factors are simultaneously considered and the “total” DIF effect
is partitioned into main effects of individual grouping factors and their interaction
effects, such as a main effect of gender, a main effect of ethnicity, and an interaction
effect between gender and ethnicity.

Factorial DIF analysis procedures in the framework of Rasch models have
been proposed and proven to be effective in DIF assessment (Wang 2000a, b)
and outperform conventional consecutive DIF analyses when an interaction exists
between grouping factors (Chen et al. 2012). Embedded in the framework of
Rasch models, such factorial procedures are parametric and not applicable to the
assessment of nonuniform DIF. In this study, we adopt the logic of factorial DIF
analysis and apply it to a nonparametric approach—the logistic regression (LR)
method (Swaminathan and Rogers 1990)—which is applicable to both uniform and
nonuniform DIF.

The LR method is one of the most widely used nonparametric approaches in DIF
assessment (Kim and Oshima 2013; Li et al. 2012). It is simple, easy to implement,
and does not require a large sample size or a specific form of item response
functions. It can be easily implemented in common computer packages such as
SPSS, SAS, or Matlab, or free software such as R. The LR method works equally
as well as the MH method in uniform DIF assessment, and outperforms the MH
method in nonuniform DIF assessment (Narayanan and Swaminathan 1994, 1996;
Swaminathan and Rogers 1990). Often, a raw test score is treated as a matching
variable to place examinees from different groups on the same metric, so studied
items can be assessed for uniform or nonuniform DIF. Compared to IRT-based
DIF assessment methods, disadvantages of the LR method include inflated Type
I error rates when different groups of examinees have very different mean ability
levels (Güler and Penfield 2009; Narayanan and Swaminathan 1996) and its poor
performance when the underlying IRT model is a multiparameter logistic model
(Bolt and Gierl 2006; DeMars 2010).

Given the importance of factorial DIF analysis and the simplicity and popularity
of the LR method in uniform and nonuniform DIF assessment, this study develops
the factorial logistic regression (FLR) method to assess DIF effects when there
are multiple grouping factors. Its performance in DIF assessment is evaluated and
compared to other LR methods via two simulation studies. In the following sections,
we introduce the key ideas of the FLR method, present the results of the simulation
studies, draw conclusions, and give suggestions for future studies.

15.1 The FLR Method

Let Tn denote the raw test score for person n. Let Xn be an indicator of group
membership for person n; for example, Xn = 1 if person n belongs to the reference
group, and Xn = -1 if person n belongs to the focal group. Let Pn be the probability of
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success on the studied item for person n. When the studied item is to be assessed for
DIF, one can formulate the log-odds (or logit) of a correct answer over an incorrect
answer as:

log

(
Pn

1−Pn

)
= τ0 + τ1Tn + τ2Xn + τ3XnTn, (1)

where τ0 - τ3 are the regression coefficients for the studied item. If τ2 or τ3 is not
zero, then the item is deemed to exhibit DIF. Normally, if τ3 is not zero, then the
item is deemed to exhibit nonuniform DIF; if τ3 is zero but τ2 is not, then the item
is deemed to exhibit uniform DIF (Narayanan and Swaminathan 1994).

When there is one grouping factor and it has more than two groups (g= 1, . . . ,G),
one can create a set of G - 1 dummy variables to represent the group membership:
Xn

′= (Xn1, . . . , Xn(G− 1)). For example, if there are three groups, two dummy
variables, X1 and X2, can be created. If examinee n is in group 1, then Xn1 = 1,
Xn2 = 0; in group 2, Xn1 = 0, Xn2 = 1; in group 3, Xn1 = -1, Xn2 = -1. That is,

Xn
′ =

⎡
⎣ 1 0

0 1
−1 −1

⎤
⎦ , (2)

where the two columns stand for X1 and X2, and the three rows stand for the three
groups. Equation (1) can then be extended as follows:

log

(
Pn

1−Pn

)
= τ0 + τ1Tn +τ2

′Xn +τ3
′XnTn, (3)

where τ0, τ1, τ2, and τ3 are the regression coefficients for the studied item. For the
three groups, Eq. (3) becomes

log

(
Pn

1−Pn

)
= τ0 + τ1Tn + τ21Xn1 + τ22Xn2 + τ31Xn1Tn + τ32Xn2Tn, (4)

where τ2
′= (τ21, τ22), τ3

′= (τ31, τ32), and Xn
′= (Xn1, Xn2). If τ3 is not a zero

vector, then the item is deemed to exhibit nonuniform DIF; if τ3 is a zero vector but
τ2 is not, then the item is deemed to exhibit uniform DIF.

The interpretation of τ2 and τ3 is analogous to that in standard logistic
regression. Take the design matrix in Eq. (3) as an example. When there is no
nonuniform DIF (i.e., τ3 = 0), then Eq. (4) becomes

Group 1 (X1 = 1, X2 = 0) : log

(
Pn

1−Pn

)
= τ0 + τ1Tn + τ21, (5)
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Group 2 (X1 = 0, X2 = 1) : log

(
Pn

1−Pn

)
= τ0 + τ1Tn + τ22, (6)

Group 3 (X1 =−1, X2 =−1) : log

(
Pn

1−Pn

)
= τ0 + τ1Tn − τ21 − τ22. (7)

If τ2
′= (τ21, τ22)= (0.4,− 0.3), then for examinees with an equal ability level,

the log-odds (logit) of group 1 examinees will be 0.8 higher than that of group 3
examinees, and the log-odds (logit) of group 2 examinees will be 0.6 lower than
that of group 3 examinees.

Next, suppose there is more than one grouping factor. For illustrative simplicity,
let there be two grouping factors, A (e.g., gender) and B (e.g., ethnicity), and let
each factor have two levels (e.g., male and female; white and black), so that in total
there are four groups of examinees (e.g., white male, white female, black male, and
black female). Let X1 be the dummy variable for factor A, and X2 be the dummy
variable for factor B. To account for the interactions between factors A and B, one
additional dummy variable is needed: X1X2. Thus, a 4 by 3 matrix can be created:

Xn
′ =

⎡
⎢⎢⎣

1 1 1
−1 1 −1

1 −1 −1
−1 −1 1

⎤
⎥⎥⎦ , (8)

where the three columns stand for X1, X2, and X1X2, and the four rows stand for
the four groups. That is, Xn1 = 1, Xn2 = 1, Xn1Xn2 = 1 if examinee n is in group 1
(white male); Xn1 = -1, Xn2 = 1, Xn1Xn2 = -1 if in group 2 (white female); Xn1 = 1,
Xn2 = -1, Xn1Xn2 = -1 if in group 3 (black male); Xn1 = -1, Xn2 = -1, Xn1Xn2 = 1 if in
group 4 (black female). When the general form of Eq. (3) is applied, one has:

log

(
Pn

1−Pn

)
= τ0 + τ1Tn + τ21Xn1 + τ22Xn2 + τ23Xn1Xn2

+ τ31Xn1Tn + τ32Xn2Tn + τ33Xn1Xn2Tn, (9)

in which τ2
′= (τ21, τ22, τ23), τ3

′= (τ31, τ32, τ33), and Xn
′= (Xn1, Xn2, Xn1Xn2).

With the design matrix in Eq. (8), τ21 depicts the main effect of factor A on
uniform DIF, τ22 depicts the main effect of factor B on uniform DIF, τ23 depicts the
interaction effect of factors A and B on uniform DIF, τ31 depicts the main effect of
factor A on nonuniform DIF, τ32 depicts the main effect of factor B on nonuniform
DIF, and τ33 depicts the interaction effect of factors A and B on nonuniform DIF.
When there is no nonuniform DIF, Eq. (9) becomes
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White Male (X1=1, X2=1, X1X2=1) : log

(
Pn

1−Pn

)
=τ0+τ1Tn+τ21+τ22+τ23,

(10)

White Female(X1=−1, X2=1, X1X2=−1): log

(
Pn

1−Pn

)
=τ0+τ1Tn−τ21+τ22−τ23,

(11)

Black Male(X1=1,X2=−1,X1X2=−1) : log

(
Pn

1−Pn

)
=τ0+τ1Tn+τ21−τ22−τ23,

(12)

Black Female(X1=−1,X2=−1, X1X2=1) : log

(
Pn

1−Pn

)
=τ0+τ1Tn−τ21−τ22+τ23,

(13)

If τ2
′= (τ21, τ22, τ23) = (0.4, − 0.3, 0.2), then it can be shown that, on average,

males have a logit 0.8 higher than that of females; white people have a logit 0.6
lower than that of black people; and white males and black females have a logit 0.4
higher than that of white females and black males. A similar interpretation applies
to τ3.

The use of design matrices like Eq. (8) enables users to decompose uniform DIF
and nonuniform DIF into a main effect of factor A, a main effect of factor B, and
an interaction effect between factors A and B. Furthermore, Eq. (9) can be easily
generalized to cover more than two grouping factors, which can be categorical or
continuous, as in factorial ANOVA or ANCOVA (analysis of covariance).

The likelihood ratio test can be adopted to statistically test whether the τ2 and
τ3 vectors are zero. By comparing the likelihood ratio of Eqs. (14) and (3), one can
test whether the studied item has DIF:

log

(
Pn

1−Pn

)
= τ0 + τ1Tn, (14)

against a chi-square distribution with degrees of freedom of the length of τ2 and τ3.
Likewise, one can compare the likelihood ratio of Eqs. (15) and (3) to test whether
the studied item has nonuniform DIF:

log

(
Pn

1−Pn

)
= τ0 + τ1Tn +τ2

′Xn, (15)
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against a chi-square distribution with degrees of freedom of the length of τ3. When
τ3 is a zero vector, it is desirable to test whether this item has uniform DIF, which
can be done by comparing the likelihood ratio of Eqs. (14) and (15) against a chi-
square distribution with degrees of freedom of the length of τ2. All these equations
and likelihood ratio tests can be easily implemented on commercial programs such
as SPSS and SAS, or free software such as R.

In the following simulation studies, we were particularly interested in two
questions: (a) Could the FLR method detect uniform DIF effectively under different
conditions, as compared to traditional LR methods? and (b) Could the FLR method
detect nonuniform DIF effectively under different conditions, as compared to
traditional LR methods? Each question was answered by a simulation study. In both
simulation studies, there were two grouping variables and each had two levels.

15.2 Simulation Study 1: Uniform DIF

15.2.1 Design

Let the two grouping variables be denoted A and B. Let X1 be the dummy variable
for factor A, X2 be the dummy variable for factor B, and X1X2 be the dummy variable
for factors A and B. The design matrix was identical to that in Eq. (5). Each of the
four groups of examinees had a sample size of 125, and their ability levels were
generated from N(0, 1). There were 21 items in the test, in which items 1–20 were
treated as an anchored test to place all the examinees from different groups on the
same scale, so that item 21 could be detected for DIF. The item responses followed
the Rasch model. There were three independent variables: (a) percentage of DIF
items in the anchored test, 0, 10, and 20 % DIF items in the 20-item anchored
test; (b) DIF size in the studied item, 0, 0.2, 0.4, and 0.6 logits; and (c) DIF source,
consisting of main effect of factor A, main effects of factors A and B, the interaction
effect, main effect of factor A and the interaction effect, and main effects of factors
A and B and the interaction effect. Let the difficulty parameter be b when an item did
not have DIF. It became b± 0.2, b± 0.4, and b± 0.6 for the four groups, according
to the design matrix in Eq. (5) when the DIF size was 0.2, 0.4, and 0.6, respectively.
Although an anchored test should preferably include exclusively DIF-free items, in
reality, DIF items may be included in an anchored test. Inclusion of DIF items often
results in poorer DIF assessment (Narayanan and Swaminathan 1996; Rogers and
Swaminathan 1993). Scale purification procedures for logistic regression methods
have been developed (French and Maller 2007). However, this study did not consider
scale purification because its major purpose was to evaluate the FLR method and
others, even when the anchored test included DIF items.

A total of 76 conditions were examined with 1,000 replications under each
condition. Each simulated dataset was analyzed with the following four methods:
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1. The LR-A method in which DIF analysis was conducted to assess DIF of
grouping variable A;

2. The LR-B method in which DIF analysis was conducted to assess DIF of
grouping variable B;

3. The LR-AB method in which DIF analysis was conducted to assess DIF of
grouping variables A and B consecutively; and

4. The proposed FLR method.

Although there were two grouping variables and DIF analysis should be con-
ducted on both variables (meaning that the LR-A and LR-B methods were not
applicable in practice), the LR-A and LR-B methods were adopted, by which the
LR-AB and FLR methods can be compared. The nominal level of hypothesis testing
was set at 0.05. Note that in the LR-AB method there were two hypothesis tests, so
the Bonferroni adjustment was applied.

The outcome variables were the Type I error rate and the power rate. The
empirical Type I error rate (false positive rate) was computed as how many times
in the 1,000 replications a DIF-free studied item (DIF size= 0) was mistakenly
declared as having DIF; and the empirical power rate (true positive rate) was
computed as how many times in the 1,000 replications a DIF item was correctly
detected as having DIF.

It was expected that (a) when the anchored tests did not contain any DIF items,
all four methods would yield well-controlled Type I error rates; (b) when the
anchored tests contained DIF items, the performance of these four methods would
be degraded; (c) the FLR method would have higher power than the other methods
when the DIF source contained the interaction of factors A and B; and (d) the larger
the DIF size, the higher the power rate.

15.2.2 Results

15.2.2.1 Empirical Type I Error Rates

When the anchored test did not contain any DIF items, the empirical Type I error
rates were 0.058, 0.058, 0.053, and 0.047 for the FLR, LR-AB, LR-A, and LR-B
methods, respectively. All methods yielded well-controlled Type I error rates, as
expected. When the anchored test contained 10 % DIF items, as shown in the upper
panel of Table 15.1, the Type I error rates were inflated, especially when the DIF
size was large. In addition, it was evident that the LR-AB and FLR methods were
more adversely affected than the LR-A and LR-B methods by the inclusion of DIF
items in the anchored test. When the anchored test contained 20 % DIF items, as
shown in the lower panel of Table 15.1, the inflation in the Type I error rates was
even worse than it was in the condition of 10 % DIF items. For example, when the
DIF source contained the interaction between factors A and B and the DIF size was
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large, the FLR method yielded a Type I error rate of 0.077 when there were 10 %
DIF items in the anchored test, and 0.235 when there were 20 % DIF items. Thus,
the second expectation was supported, too.

15.2.2.2 Empirical Power Rates

First, consider the case where the anchored test did not contain any DIF items. As
shown in the upper panel of Table 15.2, when the DIF source contained exclusively
the interaction between factors A and B, only the FLR method yielded high power
rates: 0.462, 0.971, and 1.000 when the DIF size was small (0.2 logits), medium (0.4
logits), and large (0.6 logits), respectively, whereas the other three methods yielded
power rates between 0.033 and 0.050. A close inspection of the panel revealed that
the FLR method substantially outperformed the other three methods as long as the
DIF source contained the interaction. When the DIF source contained exclusively
the main effect of factor A, the LR-A method had the highest power rates, and the
LR-B had the lowest power rates. It was also very clear that the larger the DIF size,
the higher the power rate.

Second, consider the case in which the anchored test contained 10 or 20 %
(uniform) DIF items, as shown in the middle and lower panels. Take the power rates
when the anchored tests did not contain any DIF items as a reference. Across the 15
conditions (5 DIF sources by 3 DIF sizes), the mean power rate was increased by 1,
2, 5, and 2 %, for the FLR, LR-AB, LR-A, and LR-B methods, respectively, when
the anchored tests contained 10 % DIF items, and increased by 4, -5, -4, and 2 % for
the four methods, respectively, when the anchored tests contained 20 % DIF items.
It appears that the inclusion of 10 or 20 % (uniform) DIF items in the anchored test
did not substantially affect the power rates of these four methods.

15.3 Simulation Study 2: Nonuniform DIF

15.3.1 Design

This simulation study focused on the assessment of nonuniform DIF. Item responses
were simulated according to the three-parameter logistic model. The settings were
identical to those in Simulation Study 1, except (a) the discrimination parameters
were generated from a log-normal distribution with mean of 0 and variance
of 0.1, and the guessing parameters were fixed as 0.2 for all items; (b) the
DIF occurred only on the discrimination parameters across different groups of
examinees, and the DIF size on a logarithm scale was set at 0, 0.13, 0.26, and
0.39, representing DIF-free, small, medium, and large DIF effects, respectively.
Let the discrimination parameter be a when an item did not have DIF. It became
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log(a)± 0.13, log(a)± 0.26, log(a)± 0.39, for the last three groups according to the
design matrix in Eq. (8) when the DIF size was 0.13, 0.26, and 0.39, respectively.
Note that the difficulty parameter did not exhibit DIF.

15.3.2 Results

15.3.2.1 Empirical Type I Error Rates

The Type I error rates were 0.054, 0.048, 0.052, and 0.044 for the FLR, LR-AB,
LR-A, and LR-B methods, respectively, suggesting a very good control. As shown
in Table 15.3, when the anchored test contained 10 or 20 % DIF items, the Type
I error rates for the four methods were still very close to their expected value of
0.05. A comparison of the Type I error rates in Tables 15.1 (uniform DIF) and 15.3
(nonuniform DIF) reveals that the inclusion of uniform DIF items (with difference
in the difficulty parameters across groups) in the anchored test had a more adverse
effect on the DIF assessment than the inclusion of nonuniform DIF items (with
difference in the discrimination parameters across groups). This was mainly because
the inclusion of uniform DIF items in the anchored test would deteriorate the
correspondence between the raw test score used in the LR methods and the ability
level simulated from IRT models, whereas the correspondence was not substantially
affected by the inclusion of nonuniform DIF items. Note that including DIF items
with difference in both the difficulty and discrimination parameters across groups
(referred to as nonuniform DIF items in the literature) would also exhibit an adverse
effect.

15.3.2.2 Empirical Power Rates

The upper panel of Table 15.4 shows the power rates of the four methods when
the anchored test did not contain any DIF items. When the DIF source contained
exclusively the interaction between factors A and B, only the FLR method yielded
high power rates: 0.084, 0.186, and 0.538 when the DIF size on the discrimination
parameter was small (0.13), medium (0.26), and large (0.39), respectively; whereas
the other three methods yielded power rates between 0.036 and 0.055. The panel
also shows that the FLR method substantially outperformed the other three methods
as long as the DIF source contained the interaction. When the main effect of factor
was the only DIF source, the LR-A method had the highest power rates, and the
LR-B had the lowest power rates. Furthermore, the larger the DIF size, the higher
the power rate.

The middle and lower panels of Table 15.4 show the power rates of the four
methods where the anchored test contained 10 or 20 % (nonuniform) DIF items,
respectively. Take the power rates when the anchored tests did not contain any DIF
items as a reference. Across the 15 conditions (5 DIF sources by 3 DIF sizes), the
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mean power rate was increased by -2, -5, -5, and -2 % for the FLR, LR-AB, LR-A,
and LR-B methods, respectively, when the anchored tests contained 10 % DIF items,
and increased by 1, -5, 2, and -5 % for the four methods, respectively, when the
anchored tests contained 20 % DIF items. Thus it can be concluded that the inclusion
of 10 or 20 % nonuniform DIF items in the anchored test did not substantially affect
the Type I error rates or power rates of these four methods.

Conclusion and Discussion
DIF assessment may be conducted across several grouping factors. In addition
to detecting whether an item has DIF, it is also informative to account for
DIF source: whether the DIF came from a specific grouping factor or from
their interactions. In this study, we incorporated a factorial procedure on the
commonly used logistic regression method. The use of design matrices, like
those commonly used in factorial ANOVA, enables the decomposition of DIF
source into main effects of individual grouping factors and their interaction
effects. The parameters in the FLR methods can be interpreted as they are in
standard logistic regression. Furthermore, being a nonparametric method, the
FLR method is simple to implement and fast to converge, and does not require
specification of an item response model or a large sample.

Two simulation studies were conducted to evaluate the performance of the
FLR in the detection of uniform and nonuniform DIF, as compared to three
other LR methods. The simulation results demonstrate the superiority of the
FLR method over the LR-A, LR-B, and LR-AB methods when there was
an interaction effect between grouping factors. In reality, interactions among
grouping factors can occur and their magnitude may be too large to neglect. In
such cases, among the four methods investigated in this study, only the FLR
method can yield a higher power of detection. We also investigated whether
the FLR method would be adversely affected by including 10 or 20 % DIF
items in the anchored test. The results showed a small deflation in the mean
power rates, but a substantial inflation in Type I error rates when the anchored
test had uniform DIF items with large DIF sizes. The adverse effect was less
obvious when the DIF items in the anchored test had different discrimination
parameters but the same difficulty parameters across groups.

In this study, all groups were simulated to have an equal mean ability (i.e.,
no impact). In reality, different groups may have different means (i.e., with
impact). It has been shown that the LR method yields inflated Type I error
rates and deflated power rates when there is a large impact (Bolt and Gierl
2006; Güler and Penfield 2009). The test raw scores do not match ability
levels and thus, the approach fails to place different groups on the same scale
for DIF assessment, when groups have very different means. Roussos and
Stout (1996) suggest a longer anchored test for large impacts. Even so, the

(continued)
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advantages of the FLR method over the LR method would remain unchanged
even with large impacts.

This study has implications for DIF research methodology and enables
practitioners to assess DIF sources for future item revision. The FLR method
can be generalized to assess DIF in polytomous items. Future studies can
evaluate the FLR method under different conditions of test lengths, sample
sizes, and combinations of uniform and nonuniform DIF items. It is also
important to evaluate the FLR method when there is an impact, or when tests
consist of both dichotomous and polytomous items.

Acknowledgment The research was supported by the General Research Fund, Hong Kong
Research Grants Council (No. 844110).
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Chapter 16
MTP2 and Partial Correlations in Monotone
Higher-Order Factor Models

Jules L. Ellis

Abstract For binary variables, multivariate positivity of order 2 (MTP2) implies
nonnegative partial correlations (NPC). This is so because for any triple of variables,
MTP2 is equivalent with conditional association.

Under weak distribution assumptions of the noise variables, monotone higher-
order one-factor models imply MTP2 of the manifest variables. This remains true
after discretization of the manifest variables. Therefore, MTP2 and NPC cannot
be used to discriminate unidimensional monotone latent variable models from
multidimensional monotone higher-order one-factor models.

Keywords Conditional association • Multivariate positivity of order 2 •
Nonlinear factor analysis • Partial correlation • Second-order factor
• Supermodularity

16.1 Introduction

Many item response theory (IRT) models belong to the class of unidimensional
monotone latent variable models, as defined by Holland and Rosenbaum (1986). An
interesting question is how these models can be characterized by restrictions of the
manifest variables. For this, Junker and Ellis (1997) used the property of conditional
association (CA) (e.g., Holland and Rosenbaum 1986; De Gooijer and Yuan 2011).
The present paper will study the related condition that the manifest variables are
multivariate totally positive of order 2 (MTP2) (e.g., Rinott and Scarsini 2006).
Bartolucci and Forcina (2005) discussed this condition in the context of IRT models.
In other fields, MTP2 is also known as supermodularity of the log density, the FKG
inequality, or affiliation (Denuit et al. 2005, pp. 276–278). It is related to the concept
of monotone likelihood ratio and uniform conditional stochastic order (Whitt 1982).
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The first part of this paper describes how MTP2 is related to the result of Ellis
(2014, Theorem 1). Ellis showed that for binary variables, conditional association
implies that each triple of variables has nonnegative partial correlations:

CA ⇒ NPC

Here, it will be investigated whether the requirement of conditional association can
be replaced by the weaker condition of MTP2:

MTP2 ⇒ NPC?

The relationship between CA and MTP2 is discussed by Holland and Rosenbaum
(1986), to which the present paper adds only some details. Holland and Rosenbaum
show that for binary variables, CA implies MTP2 (their Theorem 10), but not
conversely (their counterexample 6.1):

CA ⇒ MTP2

Thus, for binary variables, MTP2 is strictly weaker than CA, and therefore the
implication MTP2⇒NPC is not directly obvious.

It is not difficult to prove that this implication is indeed true, because MTP2 is
preserved under various forms of conditioning. This will be done in the first part of
this paper. But then the question becomes: Is there even a difference between CA and
MTP2? What kind of models imply MTP2 but not CA? This will be considered in
the second part of the paper. It will be considered how MTP2 is related to monotone
(possibly nonlinear) factor models.

The plan of the paper is as follows. First, the definitions of the various concepts
related to MTP2 will be stated. Next, it will be shown that MTP2 implies NPC for
binary variables. Regarding the difference between MTP2 and CA, it will be shown
that MTP2 and CA are equivalent for triples of variables. The second half of the
paper studies the MTP2 property in monotone factor models. First, it is shown that,
under fairly general conditions, monotone one-factor models imply MTP2. Next,
this result is generalized to monotone higher-order one-factor models. Finally, in
the Discussion, I will point out some implications of this for the practice of testing
unidimensionality of psychological tests.

Throughout the paper, some propositions will be labeled as elementary. These are
propositions of which I suspect that authors in the field of MTP2 find them trivial.
I do not find them trivial, so I provide proofs. However, I will omit the proofs of
propositions that follow easily from their preceding proposition.

16.2 Definition of MTP2 and Related Concepts

The concept of MTP2 generalizes the idea of a positive correlation, and is also
known as the FKG condition or affiliation (Denuit et al. 2005). The definitions of
Rinott and Scarsini (2006) will be used here to define MTP2 and related concepts.
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Let χ :=× m
i= 1χm be a product lattice in R

m. Let the lattice operators be

x∨y = (max{x1,y1} , . . . ,max{xm,ym})

x∧y = (min{x1,y1} , . . . ,min{xm,ym})

Definition 1 (TP Order, MTP2, Association). Let X and Y be χ-valued random
vectors with densities f and g, respectively.

(a) f�TP g if f (x)g(y)≤ f (x∧ y)g(x∨ y) for all x, y∈ χ
(b) f is MTP2 if f�TP f
(c) X�TP Y if f�TP f
(d) X is MTP2 if f is MTP2
(e) If X consists of two variables, then the term TP2 is commonly used instead of

MTP2.
(f) X is associated (A) if Cov(φ (X),ψ(X))≥ 0 for all nondecreasing functions φ

and ψ .

Holland and Rosenbaum (1986) discuss the conditional forms of MTP2 and
association, where every subset of variables is MTP2 or associated conditionally
on any event of the remaining variables.

Definition 2 (Conditional Association, Conditional MTP2).

(a) X is conditionally associated (CA) if for every partition X= (Y, Z) and every
measurable function η , Y|η(Z) is associated almost surely.

(b) X is conditionally MTP2 (CMTP2) if for every partition X= (Y, Z) and every
measurable function η , Y|η(Z) is MTP2 almost surely.

For the sake of readability, the phrases “measurable” and “almost surely” will be
omitted henceforth.

Ellis (2014) discussed how conditional association implies a restriction upon the
bivariate correlations. Denote the correlation between variables X and Y by ρXY .

Definition 3 (Nonnegative Partial Correlations). X has nonnegative partial
correlations (NPC) if for every triple (X, Y, Z) of variables in X, ρXY ≥ ρXZρZY .

16.3 Nonnegative Partial Correlations

In this section it will be considered whether Theorem 1 of Ellis (2014) (for
binary variables, CA⇒NPC) can be generalized to the conclusion that, for binary
variables, MTP2⇒NPC.

If one considers the proof of Ellis (2014, Theorem 1), then it becomes clear
that most of the proof does not require CA. The only exception is the phrase
“Cov(X, Y|Z)≥ 0 by conditional association”. Below, it will be shown that, under
some mild regularity conditions,
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(X ,Y,Z) is MTP2 ⇒ Cov(X ,Y |Z)≥ 0.

After this, we can obtain a proof for the claim that “for binary variables,
MTP2⇒NPC” in the following way: Copy the proof of Theorem 1 of Ellis,
but replace the phrase “Cov(X, Y|Z)≥ 0 by conditional association” by the phrase
“Cov(X, Y|Z)≥ 0 by MTP2”.

It is well known (e.g., Karlin and Rinott 1980; Rinott and Scarsini 2006) that

MTP2 ⇒ A

The fact that MTP2 and CMTP2 are distinct, nonequivalent conditions, implies
that MTP2 is not always preserved under conditioning. It is, however, preserved
under many forms of conditioning. One of these forms is described in the following
proposition.

Proposition 1 (Elementary). If (X, Y) is MTP2 and Y has positive densities, then
X|Y is MTP2.

Proof. Let the densities of X|Y and Y be f and g, respectively. Write the
joint density of (X, Y) as h(x, y)= f (x|y)g(y). It is MTP2 by premise, so for
all x1, x2, y∈ χ , h(x1, y)h(x2, y)≤ h(x1 ∧ x2, y∧ y)h(x1 ∨ x2, y∨ y). After rewriting
this with f and g, the four factors g(y) cancel out against each other, yielding
f (x1|y)f (x2|y)≤ f (x1 ∧ x2|y)f (x1 ∨ x2|y). This means that [X|Y= y] is MTP2. �

According to Proposition 1, if (X, Y, Z) is MTP2, then (X, Y)|Z is MTP2,
and therefore Cov(X, Y|Z)≥ 0. This implies that Ellis’ (2014) Theorem 1 can be
generalized to MTP2 binary variables.

Corollary 1. For any triple of binary variables with positive densities (and hence
positive variances and correlations smaller than 1): MTP2⇒NPC.

This answers the initial question, posed in the Introduction. However, since
MTP2 is preserved under so many forms of conditioning, one may wonder whether
there is at all a difference between MTP2 and CA in the present situation. This will
be considered in the next section.

16.4 MTP2 and CA for Three Variables

The difference between MTP2 and CA in case of three variables is discussed in
this section. Holland and Rosenbaum give an example with four binary variables
that satisfies MTP2 but not CA. But here we consider three variables. In general,
one difference between MTP2 and CA is the kind of conditioning events on
which they are preserved. MTP2 of (X, Y) is preserved with conditioning upon
events of the form Y= y, and many more events (Rinott and Scarsini 2006).
But unlike CA, MTP2 is not necessarily preserved with conditioning upon events
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of the form η(Y)= c, particularly not when this induces orthant events of the
form [Y1 < y1, . . . , Yi < yi, Yi+ 1 > yi, . . . , Yn > yn]. Such events provide in a sense
conflicting conditioning information, because both< and> are being used. How-
ever, such conflicting information is not possible if there is only one conditioning
variable.

Proposition 2. If the triple of random variables (X, Y, Z) is MTP2, and η is a
function with P([η(Z)= c])> 0, then (X, Y)|[η(Z)= c] is MTP2.

Proof. Denote the range of a variable V by χV , and write η− 1({c}) := {x∈ χZ :
η(x)= c}. Define A=B= χX × χY ×η− 1({c}). Adopting the definitions of Rinott
and Scarsini (2006, p. 1253), we have A∨B=B and A∧B=A. Write X= (X, Y, Z);
so [X∈A]= [η(Z)= c]. Since X is MTP2, we have X�TP X. Now apply Rinott and
Scarsini’s Theorem 2.5 with X=Y and A and B as defined. This yields X|[X∈A]
� TP X|[X∈A], which means that X|[X∈A] is MTP2. �
Corollary 2. If a triple of variables is MTP2, then it is CMTP2 and hence CA.

Theorem 1. For any triple of binary variables, CA ⇐⇒ MTP2 ⇐⇒ CMTP2.

Proof. Holland and Rosenbaum (1986, Theorems 4 and 10) showed that for
binary variables, CMTP2 ⇐⇒ CA⇒MTP2. By Corollary 1, we also have
MTP2⇒CMTP2. �

Note that the variables are supposed to be binary in Theorem 1, but not in
Proposition 2 and Corollary 2.

16.5 MTP2 in One-Factor Models

Corollary 1 states that MTP2⇒NPC for binary variables, and this is applicable
in models that imply that X is MTP2. But Ellis (2014) already showed that NPC
holds in models where X is binary and CA, thus including unidimensional monotone
latent variable models for binary variables. For an illustration of the present results
it would be nice to find an example where X is MTP2 but not necessarily CA.
Obviously, that example cannot be a unidimensional monotone latent variable
model. To benefit from a logical structure of propositions, however, this section will
first consider unidimensional models. Multidimensional models will be considered
in the next section.

Consider a vector of manifest variables Y= (Y1, . . . , Yn), where the Yi may be
continuous variables. The manifest variables are now denoted by Y rather than X
to resemble the notation in structural equation modelling. The following definition
describes a nonlinear factor model (e.g., Yalcin and Amemiya 2001; Sardy and
Victoria-Peser 2012).

Definition 4 (One-Factor Model, Linear, Monotone, Normal, Nonnegative,
Noise). (Y,η) is called a one-factor model if Y=ψ(Λη)+ ε, where η is a scalar
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random variable, Λ is a matrix of factor loadings, ψ= (ψ1, . . . ,ψn) is a function,
and the components of ε are independent of each other and of η . The model will
be called linear if ψ is the identity. The model will be called monotone if each
component of ψ is monotone nondecreasing and Λ≥ 0. The model will be called
nonnegative if Λ≥ 0. The model will be called normal if each component of ε and
η has a normal density. The term noise will be used to designate ε.

In a normal linear one-factor model with Λ= 1 and equal variances of the noise
components, it is easy to see that Y is MTP2. This is so because the correlation
matrix of such Y is an equicorrelation matrix, and the inverse Σ− 1 of such matrices
is readily obtained (e.g., Raveh 1985). Σ− 1 is an M-matrix, that is: Σ is nonsingular,
Σ≥ 0, and Σ− 1 ≤ 0. For normal variables, that is equivalent to being MTP2 (Karlin
and Rinott 1983, p. 422).

However, the conclusion that Y is MTP2 can be drawn much more generally.
This can be done by adapting the method that Karlin and Rinott (1980) use in the
proof of their Propositions 3.7 and 3.8. They use the concept of Pólya frequency
functions of order 2 (PF2) (e.g., Efron 1965).

Definition 5 (PF2). A univariate density f (x), with x∈R, is PF2 if x1 ≤ x2, y1 ≤ y2

implies

∣∣∣∣ f (x1 − y1) f (x1 − y2)

f (x2 − y1) f (x2 − y2)

∣∣∣∣≥ 0

The normal density is an example of a PF2 density. Every PF2 density is log-
concave (e.g., Efron 1965, p. 272). The property PF2 is closely related to TP2, the
bivariate version of MTP2. TP2 means that for the bivariate density f (x, y), with
x, y∈R, x1 ≤ x2, y1 ≤ y2 implies

∣∣∣∣ f (x1,y1) f (x1,y2)

f (x2,y1) f (x2,y2)

∣∣∣∣≥ 0

Now, if Λ= 1 and each ε i has a PF2 density, then the linear one-factor model has
the form described in Proposition 3.8 of Karlin and Rinott (1980), which entails the
conclusion that Y is MTP2. Their proof can easily be generalized to the case that
the factor loadings are different and the model is merely monotone instead of linear.
We need the following elementary fact.

Proposition 3 (Elementary). Let g(x, y)= f (x−ψ(y)), ∀ x, y∈R, where ψ is a
monotone nondecreasing function. If f is PF2, then g is TP2.

Proof. Let x1 ≤ x2, y1 ≤ y2. Put z1 =ψ(y1) and z2 =ψ(y2), then z1 ≤ z2. So, apply-
ing PF2,

f (x1 − z1) f (x2 − z2)− f (x1 − z2) f (x2 − z1)≥ 0,

f (x1 −ψ (y1)) f (x2 −ψ (y2))− f (x1 −ψ (y2)) f (x2 −ψ (y1))≥ 0,

g(x1,y1)g(x2,y2)−g(x1,y2)g(x2,y1)≥ 0. �
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This yields the following result. For binary variables, a similar result was
obtained by Holland (1981) and Holland and Rosenbaum (1986), who showed
that a unidimensional monotone latent variable model implies CA and CA implies
MTP2. However, in such models the noise is generally not independent of the latent
variable; so the next proposition pertains to a different class of models. Moreover,
the variables are not required to be binary here.

Proposition 4. If (Y,η) is a monotone one-factor model where each noise
component ε i has a PF2 density, then Y is MTP2.

Proof. Denote the density function of any variable Z by fZ . Then the joint density
of Y is

fY (y1, . . . ,yn) =
∫ (

n

∏
i=1

fεi (yi −ψi (λiη))

)
fη (η)d (ε1, . . . ,εn,η) .

By Proposition 3, the function gi (yi,η) := fεi (yi −ψi (λiη)) is TP2, because fεi is
PF2 and ψ i is nondecreasing and λ i ≥ 0. Now, the product of MTP2 functions is
MTP2, and the integral of MTP2 functions is MTP2 too (Proposition 3.4 of Karlin
and Rinott 1980), which shows that fY is MTP2. �

16.6 MTP2 in Second and Higher Order Factor Models

In this section we will generalize the result of the previous section (monotone one-
factor model⇒MTP2) to models with second-order factors, and subsequently to
models with higher-order factors. Many psychological theories use a second-order
factor model (e.g., Chen et al. 2005, and the references therein; Yung et al. 1999).
The following definition describes a possibly nonlinear version of such models.

Definition 6 (Monotone Second-Order One-Factor Model). Y satisfies a mono-
tone second-order one-factor model with PF2 noise if all of the following four
conditions hold:

1. The variables are a priori clustered into different contents, say Y= (Y1, . . . , Yk)
with Yi = (Yi1, . . . ,Yini).

2. Each content Yi satisfies a monotone one-factor model Yi =ψi(Λiη i)+ εi.
3. The vector variable of factors η= (η1, . . . ,ηk) in turn satisfies a monotone one-

factor model η=Ξ(Γξ )+ ζ. Here, ξ is called the second-order factor.
4. The vector variable (ε1, . . . , εk, ζ, ξ ) has independent components and each

component of (ε1, . . . , εk, ζ) has PF2 densities.

Proposition 5. If Y satisfies a monotone second-order one-factor model with PF2
noise, then Y is MTP2.
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Proof. Write εi = (εi1, . . . ,εini), Λi = (λi1, . . . ,λini) and ψi = (ψi1, . . . ,ψini). The
joint density of Y at y =

(
y11, . . . ,yknk

)
is

∫ (
k

∏
i=1

ni

∏
j=1

fεi j (yi j −ψi j (λi jηi))

)
fη (η1, . . . ,ηk)d

(
ε11, . . . ,εknk ,η1, . . . ,ηk

)

By the Proposition 3, fεi j (yi j −ψi j (λi jηi)) is TP2 as a function of (yij,η i). By
Proposition 4, η is MTP2, that is, fη is MTP2. So the integrand is a product of
MTP2 functions, which is MTP2; and the integral of MTP2 functions is MTP2
(Proposition 3.4 of Karlin and Rinott 1980). �

This proposition might seem to be a special case of Theorem 7 of Holland and
Rosenbaum (1986), who use Proposition 3.4 of Karlin and Rinott (1980). However,
I am not convinced that their theorem can be applied here, because it requires that
the density of Y|η is MTP2 as a function of (y,η).

By induction, we can generalize Proposition 5 to higher-order factor models.

Theorem 2. If Y satisfies a monotone higher-order one-factor model with PF2
noise variables at each level, then Y is MTP2.

Independent variables satisfy a monotone one-factor model, with all loadings
equal to 0. So instead of the restriction that there is a single highest-order factor, we
may allow many highest-order factors if these are independent and PF2.

Corollary 3. If Y satisfies a monotone higher-order multi-factor model, with
independent PF2 highest-order factors, and with PF2 noise variables at each level,
then Y is MTP2.

16.7 Discrete Manifest Variables

Many IRT models can be expressed in a form where the manifest variables are
obtained by discretization of continuous latent variables. In this section it will be
shown that if these latent variables are MTP2, then the discrete manifest variables
are MTP2 too. As a background, the model is sketched in Fig. 16.1.

Proposition 6 (Elementary). If two variables (X, Y) are TP2, and φ is a nonde-
creasing function, possibly with finite or countable range, then (φ (X), Y) is TP2.

Proof. Denote the density of (X, Y) at (x, y) by pxy, and the density of (φ (X), Y) at
(n, y) by fny. These densities might be densities with respect to different probability
measures (for example, if φ has finite range while X is continuous in the sense that
it has a density with respect to the Lebesgue measure). Nonetheless, we can write
the new density as
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Fig. 16.1 Overview of transformations in a second-order factor model with discretization

fny =

∫

x∈φ−1(n)

pxy =

∫

u∈φ−1(n)

puy.

Now, (φ (X), Y) is TP2 if, for all m≤ n, y≤ z,

fmy fnz ≥ fmz fny.

This can be rewritten as
∫

x∈φ−1(m)

pxy

∫

u∈φ−1(n)

puz ≥
∫

x∈φ−1(m)

pxz

∫

u∈φ−1(n)

puy

∫

x∈φ−1 (m)

∫

u∈φ−1(n)

pxy puz ≥
∫

x∈φ−1 (m)

∫

u∈φ−1(n)

pxz puy

This is true if pxypuz ≥ pxzpuy for all x∈ φ− 1(m), u∈ φ− 1(n), y≤ z, which is true
because (X, Y) is TP2. �

For the next result, we need the support condition used in Proposition 2.15 of
Rinott and Scarsini (2006). However, for ease of reading we will replace it by the
more restrictive condition that all densities are positive. Recall that χ is the product
lattice in which (X1, . . . , Xn) assumes values.

Proposition 7 (Elementary). Suppose the density of (X1, . . . , Xn) is everywhere
positive within χ . If (X1, . . . , Xn) is MTP2, and φ is a nondecreasing function, then
(φ (X1), X2, . . . , Xn) is MTP2.
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Proof. Use the fact that (X1, . . . , Xn) is MTP2 if and only if each pair of variables
is TP2 given the other variables (Proposition 2.15 of Rinott and Scarsini 2006).
For A⊆{1, . . . , n}, denote the variables Xi with i �∈A as X−A. The premise
implies that each (Xi, Xj)|X−{i,j} is MTP2, and then by Proposition 6 we have
that (φ (X1), Xj)|X−{1,j} is MTP2. It remains to be proven that for i, j> 1,
(Xi, Xj)|φ (X1), X−{1,i,j} is MTP2. This follows from Theorem 2.5 of Rinott and
Scarsini (2006), with (X1, Xi, Xj)|X−{1,i,j} as their X and Y, and [φ (X1)= c] as their
A and B, using the fact that (X1, Xi, Xj)|X−{1,i,j} is MTP2. �
Proposition 8 (Elementary). Suppose the density of (X1, . . . , Xn) is everywhere
positive within χ . If (X1, . . . , Xn) is MTP2, and φ 1, . . . , φ n are nondecreasing
functions, then (φ 1(X1), . . . , φ n(Xn)) is MTP2.

Proof. Apply Proposition 7 repeatedly. �
Now suppose that Y satisfies a factor model of Theorem 2, and that X is obtained

from Y by nondecreasing transformations Xi = φ i(Yi). An example of this would be
if Yi contains the latent response to the ith question of a psychological test, and the
subjects determine their observable response Xi by discretizing Yi. This is the model
underlying polychoric correlations (e.g., Olsson 1979). So, even if the range of each
Yi is R, the range of each Xi may be a subset of N, such as {1, 2, 3, 4}.

Theorem 3. If Y satisfies a monotone higher-order one-factor model with PF2
noise variables at each level, and has positive densities everywhere, and X is
obtained from Y by monotone nondecreasing transformations (possibly discretiza-
tion), then X is MTP2.

In this way we have constructed a fairly large class of psychometric models that
have manifest variables that are MTP2 but not necessarily CA.

16.8 Discussion

According to Corollary 1, Ellis’ (2014) Theorem 1 can be extended from binary
CA variables to binary MTP2 variables. The subsequent results show that this is so
because, for triples of variables, MTP2 and CA are in fact equivalent. So we have
the following implications for binary variables, shown in Fig. 16.2.

In a (possibly nonlinear) monotone one-factor model with noise components that
have PF2 densities, the manifest variables are MTP2. So, in a monotone second-
order factor model with similar restrictions, the first-order factors are MTP2. This
can be used to show that the manifest variables are MTP2, too. By induction,
it follows that in any monotone higher-order one-factor model with PF2 noise
components, the manifest variables are MTP2. It was shown that this remains true
after discretization of the manifest variables with nondecreasing functions.

The latter conclusion implies that testing of MTP2 cannot be used to distin-
guish between unidimensional monotone latent variable models or monotone one-
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CMTP2

CMTP2 for triples CA for triples MTP2 for triples

CA MTP2

NPC

Fig. 16.2 Implications between types of association for binary variables

factor models, on the one hand, versus multidimensional monotone higher-order
one-factor models with PF2 noise, on the other hand. This is important, because
many psychological tests are constructed within a domain for which a second-order
or third-order factor model holds according to the theory. All items belonging to the
same higher-order factor would be MTP2, so testing of MTP2 cannot be used to
assess whether they belong to the same first-order factor.

For example, suppose intelligence tests satisfy Cattell–Horn–Carroll (CHC)
theory (Flanagan et al. 2010) with PF2 noise, and that the scores on items within
each test can be modelled by discretization in this way. Then all intelligence items
jointly should be MTP2. Then, within the domain of intelligence items, one would
generally expect to find item sets that are MTP2, even if they are not unidimensional
in the sense of a unidimensional monotone latent variable model or a monotone one-
factor model. For example, combining items from crystallized and fluid intelligence
would lead to a test that is multidimensional but MTP2. As far as one believes
CHC-theory, therefore, MTP2 would not be very useful in the assessment of
unidimensionality of intelligence tests. However, if a violation of MTP2 is found,
this would be all the more important, because it suggests a violation of CHC-theory.
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Chapter 17
A Comparison of Confirmatory Factor Analysis
of Binary Data on the Basis of Tetrachoric
Correlations and of Probability-Based
Covariances: A Simulation Study

Karl Schweizer, Xuezhu Ren, and Tengfei Wang

Abstract Although tetrachoric correlations provide a theoretically well-founded
basis for the investigation of binary data by means of confirmatory factor anal-
ysis according to the congeneric model, the outcome does not always meet the
expectations. As expected from analyzing the procedure of computing tetrachoric
correlations, the data must show a high quality for achieving good results. In a
simulations study it was demonstrated that such a quality could be established
by a very large sample size. Robust maximum likelihood estimation improved
model-data fit but not the appropriateness of factor loadings. In contrast, probability-
based covariances and probability-based correlations as input to confirmatory
factor analysis yielded a good model-data fit in all sample sizes. Probability-
based covariances in combination with the weighted congeneric model additionally
performed best concerning the absence of dependency on item marginals in factor
loadings whereas probability-based correlations did not. The results demonstrated
that it is possible to find a link function that enables the use of probability-based
covariances for the investigation of binary data.
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17.1 Introduction

The investigation of the structure of binary data by means of confirmatory factor
analysis is especially demanding since binary data do not show the characteristics
that qualify data for the investigation by this method directly. Binary data differ from
what is expected concerning the scale level and the distribution. So it is necessary
to modify either the data or the model of confirmatory factor analysis appropriately
before conducting the investigation. In the past the modification of the data usually
preceded confirmatory factor analysis of binary data. Tetrachoric correlations were
computed for this purpose and used as input to confirmatory factor analysis (Muthén
1984, 1993). These correlations are expected to provide estimates of the correlations
between the underlying variables that are assumed to be continuous. Unfortunately
the results of confirmatory factor analysis achieved this way were not always as good
as expected. Therefore, the use of the robust maximum likelihood estimation method
(Bryant and Satorra 2012; Satorra and Bentler 1994) was suggested in combination
with tetrachoric correlations. This estimation method is expected to compensate
for deviations from the normal distribution. Such deviations were found to have
a detrimental influence on the outcome of confirmatory factor analysis (Fan and
Hancock 2012; West et al. 1995).

The research work presented in this paper is guided by the hypothesis that
the unfavorable outcomes of investigating tetrachoric correlations by means of
confirmatory factor analysis are the results of a low quality of the binary data that
is mainly due to a low sample size. Since increasing the sample size is expected
to improve the quality of data, in a simulation study the effect of the sample size
on the outcome of confirmatory factor analysis is investigated. This investigation is
restricted to confirmatory factor analysis according to versions of the congeneric
model of measurement (Jöreskog 1971). Furthermore, an alternative method of
investigating binary data is considered. This method requires probability-based
covariances as input to confirmatory factor analysis (Schweizer 2013). In this point
it is in agreement with the original purpose for which confirmatory factor analysis
was proposed (Jöreskog 1970). Another characteristic is the integration of a link
function into the model of measurement. It gives rise to a weighted version of the
congeneric model.

17.1.1 The Tetrachoric Correlation and Its Threshold Problem

This section serves the presentation of the tetrachoric correlation and the argument
that the computation of this correlation is impaired by the threshold problem. This
problem denotes the special sensitivity of the estimation of thresholds as part of the
computation of tetrachoric correlations to the influence of imprecision and error.
It is a sensitivity that comes into play when the probabilities of the binary events
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are very small or very high. In the following paragraphs this sensitivity is traced
back to the normal distribution function that plays a major role in the computation
of tetrachoric correlations.

The idea of a correlation that estimates the relationship between two continuous
variables on the basis of binary data, which are assumed to originate from these
continuous variables, was presented by Pearson (1900). This correlation is denoted
tetrachoric correlation. It is computed from binary data that follow a binomial dis-
tribution; but the outcome of the computation is expected to refer to the underlying
variables that are continuous and follow the normal distribution. Therefore, the
method of computing tetrachoric correlations must not only provide an estimate
of the relationship between two variables but also accomplish the switch from the
binomial to normal distributions.

There are several methods that have been proposed for estimating tetrachoric cor-
relations (e.g., Divgi 1979; Owen 1956; Tallis 1962). The most influential method
appears to be the maximum likelihood estimation method. A major characteristic
of this method is the estimation of latent thresholds (Tallis 1962). The cumulative
normal distribution function plays an important role in estimating latent thresholds.
In order to arrive at a formal description, assume the continuous random variable
V following the normal distribution, the binary random variable X with zero and
one as values and the threshold τ . In the first step the relationship of the probability
that X equals one Pr(X = 1) and the probability that V is larger than τ Pr(V> τ) is
specified:

Pr(X = 1) = Pr(V > τ) (17.1)

Next, the probability that V is larger than τ is described by means of the
cumulative normal distribution function:

Pr(V > τ) =
∫ τ

−∞

e−v2/2
√

2π
dv (17.2)

where τ limits the cumulative normal distribution function and v is a quantity
varying between −∞ and τ . The short term that is usually selected for representing
this function is Φ:

Φ(τ) =
∫ τ

−∞

e−v2/2
√

2π
dv (17.3)

Relating Eqs. (17.1)–(17.3) to each other establishes a relationship between param-
eters of the binomial and normal distributions.

In the case of the computation of the tetrachoric correlation it is necessary to
estimate the threshold instead of the probability that X equals one. Therefore, the
inverse of the cumulative normal distribution function Φ− 1 needs to be considered:

τ =Φ−1 [Pr(X = 1)] (17.4)
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Equation 17.4 is achieved in considering the Eqs. (17.1)–(17.3). It relates the
threshold to the probability that X equals one. It is useful for the computation of
tetrachoric correlations since probabilities serve as the input for the computation.

The threshold problem that denotes the proneness of estimates to distortions
due to imprecision and error becomes especially obvious in the investigation of the
properties of the normal distribution function φ :

φ(v) =
e−v2/2
√

2π
(17.5)

From Eq. (17.5) it is obvious that for v larger than two and v smaller than minus
two φ returns a rather small number. It is asymptotic. Furthermore, the slope of this
function is nonlinear, as it is obvious from the first derivative:

d
dv

φ(v) =−v
e−v2/2
√

2π
(17.6)

and approaches zero for large positive and negative values of v. In the tail areas of
the distribution, which in this paper are the areas of the normal distribution that are
at least two standard deviations away from the mean, it returns a value larger than
−0.11 (but smaller than 0), respectively, smaller than 0.11 (but larger than zero).

Because of the low slope and the asymptotic course of the function in the tail
areas a major change of the threshold within these areas can be expected to have a
very minor effect on the probability that X equals one only. In contrast, even a minor
change of the probability can lead to a large effect on the threshold in these tail areas.
So, if the probability that X equals one is rather low or high in a binary random
variable, a small distortion due to imprecision or error can have a large effect on the
estimate of the corresponding threshold and, consequently, on the estimation of the
tetrachoric correlation. Especially in small sample sizes the probability computed
as the number of selected events divided by all events may not precisely reflect the
true probability and lead to an inappropriate estimate of the threshold because of
imprecision.

However, since the high sensitivity to distortion due to imprecision or error is
restricted to the tail areas, it can be expected that the tetrachoric correlation does
well if the considered binary variables show probabilities that are neither very high
nor very low. Furthermore, the quality of the data is of importance. If the quality
is very high that is usually achieved by a very large sample size, this sensitivity
is not at all disadvantageous. There were attempts to meet this quality demand by
the transformation of the margins (Genest and Lévesque 2009) and an asymptotic
expansion of the distribution (Ogasawara 2010).
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17.1.2 The Probability-Based Covariance Complemented
by a Link Function

This section concentrates on the probability-based covariance as basis for the
investigation of binary data by means of confirmatory factor analysis. Although
the probability-based covariance is especially well suited for confirmatory factor
analysis that expects variances and covariances as input, it is not without problems.
The problem is that it does not consider the switch from the distribution of the binary
random variables, on the one hand, to the normal distribution, on the other hand. In
the following paragraphs the probability-based covariance is presented and a link
function for overcoming this problem is described.

The probability-based covariance is a covariance that is achieved on the basis
of probabilities. It was proposed in order to overcome the difference between
the scale levels characterizing binary random variables and continuous random
variables (Schweizer 2013). The computation of the probability-based covariance
is accomplished in two steps. At first probabilities are computed. Given two binary
random variables Xi and Xj (i, j= 1, . . . , p) with zero and one as values it is
necessary to compute the probabilities that Xi equals one Pr(Xi = 1), that Xj equals
one Pr(Xj = 1), and that both at the same time equal one Pr(Xi = 1∧Xi = 1). Then
the probability-based covariance of the binary random variables Xi and Xj cov(Xi,
Xj) is computed according to the following definition:

cov(Xi,Xj) = Pr(Xl = 1∧Xj = 1)−Pr(Xi = 1)Pr(Xj = 1) (17.7)

The right-hand part of this equation relates the probabilities to each other and retains
the scale level of the probabilities that is continuous. Therefore, the probability-
based covariance is well suited as input to confirmatory factor analysis concerning
the scale level. The standard confirmatory factor model is the congeneric model that
assumes continuous variables (Jöreskog 1971).

However, the probability-based covariance is not without a major problem.
The problem is the difference between the distributions of the data and of the
variables of the model of measurement. Binary data show a binomial distribution
whereas the model of measurement includes continuous variables following the
normal distribution. Because of this difference the completely standardized factor
loadings computed even from probability-based covariances show dependency on
item marginals (Kubinger 2003; Torgerson 1958) that characterizes factor loadings
obtained from ordinary covariances and correlations. This dependency becomes
obvious in comparing the completely standardized factor loadings associated with
very low and very high probabilities of the binary events with the completely
standardized factor loadings obtained from medium degrees of probability. Quite
large differences can be observed this way.

Dependency on item marginals can be eliminated by means of a link function.
The generalized linear model (McCullagh and Nelder 1985; Nelder and Wedderburn
1972) includes a link function for accomplishing the switch between different
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distributions. Various link functions have been proposed for this purpose, which
mostly concentrate on means. The link function g relates the random variable η
serving as latent predictor to the random variable μ serving as criterion such that

η = g(μ) (17.8)

(see McCullagh and Nelder 1985, p. 20). The link function for relating probability-
based covariances to the model of the covariance matrix of confirmatory factor
analysis (Jöreskog 1970) must apply to variances and covariances instead of
to means. The function w has been proposed as link function for this purpose
(Schweizer 2013). This function that is actually a weight function is defined with
respect to the binary random variable Xi (i= 1, . . . , p) with zero and one as values
such that

w(Xi) =
√

Pr(Xi = 1) [1−Pr(Xi = 1)]/0.25 (17.9)

Because of the constant of 0.25 the weight function returns numbers between zero
and one. This link function has done well when considered in combination with
models including constrained factor loadings.

Furthermore, two ways of employing this weight function have been proposed:
the criterion-focused and predictor-focused ways because these ways create differ-
ent properties. The predictor-focused way demands the multiplication of weights
with factor loadings. The various weights are inserted into the p× p diagonal matrix
W as the diagonal elements and presented as part of the model of the covariance
matrix

Σ= (WΛ)Φ(WΛ) ’+Θ (17.10)

where Σ is the p× p model-implied matrix of variances and covariances, Λ is the
p× q matrix of factor loadings, Φ the q× q matrix of the variances and covariances
of latent variables, and Θ the p× p diagonal matrix of error variances.

In contrast, the criterion-focused way requires the division of the probability-
based covariances by the corresponding weights, and in doing so the constant (0.25)
is omitted. Again, for the formal representation the weights are included into a
weight matrix. Since this time the weights have to serve as dividers, the weight
matrix of the criterion-focused way is represented by the p× p diagonal matrix
W−1. Finally the empirical p× p matrix S that is approximated in confirmatory
factor analysis is achieved by weighting the p× p matrix of the probability-based
covariances CPbC appropriately:

S = W−1CPbCW−1 (17.11)

This way of employing the weight function yields correlations that are addressed as
probability-based correlations and should be similar to Phi correlations. Because of
the omission of the constant of .25 the inverse weight matrix W-1 of Equation 11 is
not the exact inverse of W of Eq. (17.10).
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The two ways of employing the link function are not equivalent. Instead they
show a fundamental difference. In the criterion-focused way the link function is
applied to the true and error variances in the same way. Implicitly it is assumed
that the distortion as part of the initial dichotomization leading to the binary nature
of the data affected the true and error variances equally. The outcome of selecting
this way is a correlation matrix. In contrast, in the predictor-focused way the link
function is applied to the true component of measurement, and its influence is
restricted to the true variance. In this case the assumption is that the deviation of
the observed distribution from the symmetric binomial distribution is the result of a
systematic modification of the originally continuous and normally distributed data.
Systematic modification means that the true component of measurement is modified
in a systematic way and that the true variance is affected by the modification but not
the error variance. According to this position it would contradict the random nature
of error to assume that the error component and error variance reflect the systematic
modification of the data.

17.1.3 The Standard and Weighted Versions
of the Congeneric Model of Measurement

The investigation of the binary data can be accomplished by means of the congeneric
model of measurement (Jöreskog 1971) that is to be considered as the standard
model of confirmatory factor analysis. This model is given by the following
equation:

y = �+Λη+ε (17.12)

where y is the p× 1 vector of observations, � the vector of intercepts, Λ is the p× q
matrix of factor loadings, η the q× 1 vector of latent variables (= latent factors),
and ε the p× 1 vector of error components. The first part (a) of Fig. 17.1 gives a
graphical representation of this model.

The ellipse represents the latent variable and the rectangles the manifest vari-
ables. Arrows with solid shafts represent parameters that need to be estimated
whereas dashed shafts signify that the parameters are constrained. The variance
of the latent variable is constrained. This model is suitable for the investigation
of tetrachoric correlations and also probability-based correlations in the criterion-
focused way.

Realizing the predictor-focused way as a congeneric model is a bit of a problem
since the weight matrix must be integrated into the model of measurement in order
to achieve the weighted congeneric model. Equation (17.12) needs to be changed
accordingly:

y = �+(WΛ)η+ε (17.13)
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Fig. 17.1 Illustrations of the original (a) and weighted (b) congeneric models of measurement

where W is the p× p diagonal matrix including the weights. The problem with
the right-hand part of Eq. (17.13) is that the weights are fixed whereas the factor
loadings need to be estimated. In order to be able to estimate the parameters, it is
necessary to separate the weights and factor loadings from each other.

Unfortunately, the separation demands a major modification of the standard
congeneric model. The first step in doing so is concerning the number of latent
variables. The latent variable of the original model that is normally expected to
represent one construct is replaced by as many latent variables as there are manifest
variables. These latent variables are assumed to represent the same construct and,
therefore, to correlate perfectly with each other. Furthermore, since each latent
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variable has one factor loading from one manifest variable only, the weight can
be merged with the variance of the corresponding latent variable, i. e. they are
multiplied with each other. Because of the replacement of one by several latent
variables the definitions of some components of Eq. (17.10) need to be changed:
the original q× q matrix of the variances and covariances of latent variables Φ is
modified and subdivided into two p× p matrices ΦV and ΦC such that

Φ=ΦV +ΦC (17.14)

where ΦV is a diagonal matrix including the variances of the latent variables that
are set equal to one and each element of ΦC corresponds to the number one with
the exception of the elements of the main diagonal since these elements are zero.
Additionally, the original p× q matrix of factor loadings Λ becomes a p× p matrix.
The elements of the main diagonal are estimated whereas the other elements are
fixed to zero. The model of the covariance matrix that reflects the modification
necessary for realizing the weighted congeneric model of measurement is given by

Σ= Λ(WΦVW’+ΦC)Λ’+Θ (17.15)

The definitions of the other components of Eq. (17.15) correspond to the definitions
provided for Eq. (17.10). Because of the in-built assumption that there is perfect
correlation between the latent variables the factor loadings are estimated with
respect to one latent variable only. However, this model is not without problems
since varying sizes of the variances may influence the correlations among the latent
variables. The second part (b) of Fig. 17.1 provides an illustration of this weighted
congeneric model. As is obvious from the dashed lines, the modified variances of
the latent variables and the relationships between the latent variables are constrained
whereas the factor loadings are free for estimation.

17.2 The Present Study

The major objective of the study was to compare the two methods of investigating
binary data by means of confirmatory factor analysis by contrasting their properties
and by conducting a simulation study. Since the investigation of the properties
already made obvious that the performance of the tetrachoric correlation would
heavily depend on the characteristics and the quality of the data, four different
sample sizes were considered: 200, 400, 1,000, and 2,000, in addition to a broad
range of probabilities.
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Table 17.1 Population
pattern used for the
generation of simulated data

1.00
0.25 1.00
0.25 0.25 1.00
0.25 0.25 0.25 1.00
0.25 0.25 0.25 0.25 1.00
0.25 0.25 0.25 0.25 0.25 1.00
0.25 0.25 0.25 0.25 0.25 0.25 1.00
0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.00
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.00

17.2.1 Data Generation and Analysis

The generation of the random data was conducted according to a specific population
pattern. This pattern was assumed to result from correlating nine continuous
variables with each other where all correlations were 0.25. Table 17.1 shows the
lower triangle of this population pattern.

The next step served the generation of four types of matrices of continuous
and normally distributed random data: 200× 9, 400× 9, 1,000× 9, and 2,000× 9
matrices. In order to achieve the structure according to the population pattern, these
matrices were re-computed in using weights achieved by means of a procedure
proposed by Jöreskog and Sörbom (2001). The outcomes of the re-computation
were the matrices of simulated data that provided the outset for the construction of
binary data. Furthermore, these matrices served as continuous data for the standard
case of confirmatory factor analysis since they could be assumed to follow the
normal distribution.

Next, the numbers of the columns of the re-computed matrices were
dichotomized by transforming them into zeros and ones. In order to create binary
items that were very demanding to the methods of data analysis, splits of the
continuous data giving rise to a broad range of probability levels were selected.
There were splits according to the following nine proportions: 0.10, 0.20, 0.30,
0.40, 0.50, 0.60, 0.70, 0.80, and 0.90. So the 10 % smaller numbers of the first
column were transformed into zeros and the remaining numbers into ones. In the
second column zeros replaced the 20 % smaller numbers whereas the other numbers
were changed into ones. The third to ninth columns were processed in the same
way in considering the other splits of the list in corresponding order. The data
matrices obtained this way provided the basis for computing matrices of tetrachoric
correlations and of probability-based covariances, respectively, correlations.

It was the plan to compute 100 matrices of simulated data of each type of matrix.
However, it turned out that the outcomes showed a very high degree of variability
if tetrachoric correlations were investigated by means of the congeneric model of
measurement and the sample sizes were 200, 400, and 1,000, as it is especially
obvious from the chi-squares obtained for the sample size of 400 (see Fig. 17.2).
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Fig. 17.2 Chi-squares observed in confirmatory factor analysis according to the congeneric model
of measurement with tetrachoric correlations as input for N = 400

As is obvious from this figure, the chi-squares show an enormous variability.
Therefore, it was decided to have 200 matrices for this kind of investigations in
sample sizes of 200, 400, and 1,000. Furthermore, matrices leading to tetrachoric
correlations larger than 0.80 or showing lack of convergence in the investigation
of structure were eliminated and replaced by new matrices. As a consequence, 210
matrices of the 200× 9 type, 260 matrices of the 400× 9 type, and 206 matrices
of the 1,000× 9 type were generated for the combination of the congeneric model
and tetrachoric correlations. In contrast, it was not necessary to have more than 100
matrices of the 2,000× 9 type.

Confirmatory factor analysis according to the congeneric model (Jöreskog 1971)
was conducted if tetrachoric correlations served as input or probability-based covari-
ances that were additionally transformed by a link function, as it is described by
Eq. (17.11), for obtaining probability-based correlations. Furthermore, confirmatory
factor analysis according to the weighted congeneric model [see Eqs. (17.13) and
(17.15)] was conducted. In the first case the model comprised one latent variable
and nine manifest variables. In the second case there were nine latent and nine
manifest variables, and the latent variables were constrained to correlate perfectly
with each other. Because of the special demands of the weighted congeneric model
the following link function that was actually a weight function leading to squared
weights w2(Xi) was considered:

w2 (Xi) =

{√
0.25

var(Pri) [1−var(Pri)]
+

0.25
var(Pri) [1−var(Pri)]

}
/2
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where Xi (i= 1, . . . , 9) represented the binary random variable with zero and one
as values and Pri the probability that Xi was equal to one. The numerators of the
ratios that were 0.25 corresponded to the variance for Pr= 0.5. This weight was
the mean of two ratios that counterbalanced each other in order to achieve factor
loadings of equal size for all columns. Its construction was only partly theory-driven.
Since w2(Xi) for Pri = 0.5 differed from one, all factor loadings had to be divided
by this weight that was 1.244 in order to achieve the expected size. Furthermore,
disattenuation of the factor loadings was necessary (Schweizer 2013).

The investigations of the various matrices were conducted by means of LISREL
(Jöreskog and Sörbom 2006). The maximum likelihood estimation method was
selected for most of the investigations. The robust maximum likelihood estimation
method was additionally considered in combination with tetrachoric correlations.
The results of the investigations were evaluated with respect to model-data fit and
the sizes of the completely standardized factor loadings. The report of the results
of investigating model fit includes the following fit indexes: chi-square, degree
of freedom, normed chi-square, RMSEA, SRMR, CFI, TLI, and GFI. Cut-offs
provided by Kline (2005) and Hu and Bentler (1999) served the evaluation of the
results (RMSEA 0.06, SRMR 0.08, CFI 0.95, TLI 0.95, GFI 0.90). Furthermore,
normed chi-squares below 2 (N = 200), 3 (N = 400), and 5 (N = 1,000 and larger)
were taken as indications of a good model fit. Two perspectives were taken in
investigating the sizes of the completely standardized factor loadings. First, the
recovery of the completely standardized factor loadings that were expected to
correspond to the factor loadings obtained for the population pattern and for the
continuous data was checked. The size that characterized these factor loadings
was 0.50. Second, the absence of the dependency on item marginals was checked.
This check was conducted by means of Hartley’s Fmax test. Since the same size
was expected for each completely standardized factor loadings, the variances of
the factor loadings obtained in investigating binary data at the level of the means
were compared with the variance of the factor loadings achieved in investigating
continuous data at the level of the means. In this check the Fmax statistic served in
the first place as a kind of summary statistic.

17.2.2 The Results Concerning Model Fit

The following sections are organized in the following way: at first, the results of
investigating the model fit are presented and subsequently the results of investigating
the completely standardized factor loadings. In order to facilitate the reading of
the tables including fit statistics, the superscript “M” was added to a mean statistic
if the mean was favorable when compared with the corresponding cut-off. If the
confidence interval meaning 95 % of the distribution of the observed results was in
the favorable area, it was replaced by the superscript “CI.” In contrast, no further
information was added to the means of the completely standardized factor loadings.
The outcomes of the Fmax test are reported in the text.
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Table 17.2 Means and standard deviations (printed in italics) of the fit results for the population
pattern and simulated continuous data in different sample sizes (N= 200, 400, 1,000, 2,000)

Input Sample size χ2 df Normed χ2 RMSEA SRMR CFI TLI GFI

Population pattern – 0 27 0 – – – – –
Covariances 200 27.36 27 1.01CI 0.015CI 0.041CI 0.99CI 1.00CI 0.97CI

SD 7.16 0.26 0.02 0.01 0.01 0.02 0.01

Covariances 400 27.87 27 1.03CI 0.012CI 0.029CI 0.99CI 1.00CI 0.98CI

SD 8.04 0.30 0.01 0.01 0.01 0.02 0.00

Covariances 1,000 27.15 27 1.01CI 0.007CI 0.018CI 1.00CI 1.00CI 0.99CI

SD 7.78 0.29 0.01 0.00 0.01 0.01 0.00

Covariances 2,000 28.01 27 1.04CI 0.005CI 0.013CI 1.00CI 1.00CI 1.00CI

SD 8.24 0.30 0.01 0.00 0.00 0.00 0.00

CIThe 95 % confidence interval is in the favorable area; M: the mean is in the favorable area
MThe mean is in the favorable area

Table 17.2 provides the results for the population pattern (first row) and for the
covariance matrices computed from continuous data (other rows). The numbers
printed normal are means and the numbers printed in italics are standard deviations.
The chi-squares obtained for the population pattern indicated a perfect model fit. As
a consequence, the majority of statistics could not be estimated and, therefore, was
not available. The fit statistics obtained in investigating the continuous data reveal
that there was an overall good model-data fit. In all cases with one exception the
results were according to the expectations. Furthermore, the sample size showed
virtually no influence on model-data fit.

The results obtained for tetrachoric correlations computed from binary data
contrasted the results reported in the previous paragraph. These results are included
in the first quarter of Table 17.3.

The majority of results indicated a bad model-data fit. The chi-square results of
the first column were rather large and showed a very special characteristic: there was
a decrease in chi-square if the sample size was increased from 200 to 1,000. This
observation was quite unusual since normally an increase in sample size was likely
to be accompanied by an increase in chi-square. Only the means and confidence
intervals of a few SRMR and GFI statistics were good. It was only in the sample size
of 2,000 that there were four fit statistics that were good according to the confidence
interval and another one that was good according to the mean. As it is obvious from
the second quarter of Table 17.3, robust maximum likelihood estimation improved
the chi-squares considerably. Without robust estimation the range of the chi-squares
was from 151 to 186 whereas in combination with robust estimation there was
variation between 28 and 46. As a consequence, the normed chi-squares and the
RMSEAs indicated a good model-data fit for all sample sizes. However, in the
smallest sample size there were still four fit statistics indicating a bad degree of
model-data fit whereas in the largest and second to largest sample sizes virtually all
results were good.
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Table 17.3 Means and standard deviations (printed in italics) of the fit results for the congeneric
model applied to binary data in different sample sizes (N= 200, 400, 1,000, 2,000)

Input Sample size χ2 df Normed χ2 RMSEA SRMR CFI TLI GFI

ML estimation
TetraCora 200 186.5 27 6.9 0.163 0.113 0.68 0.57 0.85
SD 101.2 3.7 0.06 0.05 0.13 0.20 0.08

TetraCora 400 161.7 27 5.9 0.109 0.070CI 0.78 0.71 0.92M

SD 67.6 2.5 0.02 0.01 0.07 0.10 0.03

TetraCora 1,000 151.2 27 5.6 0.067 0.043CI 0.91 0.88 0.97CI

SD 40.1 1.5 0.01 0.01 0.03 0.04 0.01

TetraCorb 2,000 164.8 27 6.1 0.050CI 0.031CI 0.97CI 0.96M 0.98CI

SD 54.9 2.0 0.01 0.00 0.01 0.02 0.01

Robust ML estimation
TetraCora 200 46.2 27 1.71M 0.051M 0.130 0.94 0.93 0.85
SD 30.3 1.12 0.04 0.06 0.07 0.10 0.08

TetraCora 400 42.3 27 1.53CI 0.026M 0.087 0.98M 0.98M 0.92M

SD 49.2 0.35 0.05 0.04 0.03 0.04 0.03

TetraCora 1,000 30.4 27 1.09CI 0.008CI 0.048M 1.00CI 1.00CI 0.97CI

SD 15.1 0.55 0.02 0.02 0.00 0.01 0.01

TetraCorb 2,000 28.8 27 1.06CI 0.006CI 0.031CI 1.00CI 1.00CI 0.98CI

SD 9.2 0.34 0.01 0.00 0.00 0.00 0.01

ML estimation—criterion-focused way
PbCorb 200 26.1 27 0.96CI 0.012CI 0.046CI 0.97M 1.03M 0.97CI

SD 7.0 0.26 0.02 0.01 0.05 0.16 0.01

PbCorb 400 26.7 27 0.99CI 0.010CI 0.033CI 0.98M 1.00M 0.99CI

SD 7.2 0.27 0.01 0.01 0.03 0.06 0.01

PbCorb 1,000 29.7 27 1.10CI 0.009CI 0.022CI 0.99CI 0.99M 0.99CI

SD 8.2 0.31 0.01 0.00 0.01 0.03 0.01

PbCorb 2,000 32.1 27 1.19CI 0.009CI 0.016CI 0.99CI 0.99M 1.00CI

SD 9.8 0.36 0.01 0.00 0.01 0.02 0.00

ML estimation—predictor-focused way
PbCOVb 200 26.3 27 0.97CI 0.012CI 0.046CI 0.97M 1.02M 0.97CI

SD 7.5 0.28 0.02 0.01 0.05 0.13 0.01

PbCOVb 400 28.1 27 1.04CI 0.012CI 0.034CI 0.98M 0.99M 0.98CI

SD 7.3 0.27 0.01 0.00 0.03 0.06 0.00

PbCOVb 1,000 29.8 27 1.10CI 0.010CI 0.022CI 1.00CI 0.99M 0.99CI

SD 8.2 0.30 0.01 0.00 0.01 0.03 0.01

PbCOVb 2,000 32.6 27 1.19CI 0.009CI 0.016CI 0.99CI 0.99M 1.00CI

SD 9.8 0.36 0.01 0.00 0.01 0.02 0.00

TetraCor tetrachoric correlations, PbCor probability-based correlations, PbCOV probability-based
covariances
aThe number of datasets is 200
bThe number of datasets is 100
CIThe 95 % confidence interval is in the favorable area; M: the mean is in the favorable area
MThe mean is in the favorable area
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The investigation of probability-based covariances and the probability-based
correlations obtained in realizing the two ways of applying the link function led to
the results reported in the third and fourth quarters of Table 17.3. There were only
minor differences between the results achieved in investigating probability-based
correlations and covariances so that there was no need to discuss them separately.
The chi-squares observed for the four sample sizes varied between 26 and 32. There
was a small but continuous increase from the sample size of 200 to the sample size
of 2,000. In all sample sizes the normed chi-squares, RMSEAs, SRMRs, and GFIs
were good according to the confidence interval. The remaining fit statistics were at
least good according to the mean.

In summary, the results for tetrachoric correlations confirmed the expected
dependency on sample size. The increase of the sample size led to an overall
increase in model-data fit. A sample size of 2,000 appeared to be necessary in order
to achieve a good or acceptable degree of model-data fit. Combining the robust
estimation method with tetrachoric correlations led to an improvement of fit. In
contrast, the results obtained in the investigations of probability-based covariances
and probability-based correlations were generally good, and there was virtually no
dependency on the sample size.

17.2.3 The Results Concerning the Sizes of the Completely
Standardized Factor Loadings

Table 17.4 provides the means and standard deviations of the completely standard-
ized factor loadings achieved in investigating the population pattern (first row) and
the covariance matrices computed from continuous data (other rows).

The numbers printed normal are means and the numbers printed in italics are
standard deviations. All completely standardized factor loadings obtained for the

Table 17.4 Means and standard deviations (printed in italics) of the completely standardized
factor loadings obtained for the population pattern and simulated continuous data in different
sample sizes (N= 200, 400, 1,000, 2,000)

Position of variable
Input Sample size 1 2 3 4 5 6 7 8 9

Population pattern – 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Covariances 200 0.49 0.51 0.49 0.50 0.50 0.49 0.51 0.51 0.51
SD 0.07 0.07 0.06 0.06 0.07 0.07 0.06 0.06 0.07

Covariances 400 0.50 0.51 0.50 0.50 0.50 0.50 0.51 0.52 0.50
SD 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.10 0.06

Covariances 1,000 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.49 0.50
SD 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.03

Covariances 2,000 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
SD 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02



288 K. Schweizer et al.

population pattern were 0.50. Since there was only one population pattern, there
was no variability. The means for the continuous data varied between 0.49 and 0.52.
Whereas in the sample sizes smaller or equal than 1,000 the means showed some
variation, in the sample size of 2,000 all means of the completely standardized factor
loadings were 0.50. Furthermore, the variability decreased when the sample size was
increased.

The results obtained in investigating binary data are presented in Table 17.5.

Table 17.5 Means and standard deviations (printed in italics) of the completely standardized
factor loadings for the congeneric model applied to binary data in different sample sizes (N= 200,
400, 1,000, 2,000)

Position of variable
Input Sample size 1 2 3 4 5 6 7 8 9

ML estimation/robust ML estimation
TetraCora 200 0.60 0.48 0.43 0.45 0.44 0.44 0.46 0.50 0.62
SD 0.26 0.18 0.14 0.14 0.15 0.14 0.14 0.20 0.24

TetraCora 400 0.52 0.49 0.48 0.47 0.49 0.47 0.47 0.47 0.56
SD 0.16 0.12 0.11 0.11 0.11 0.10 0.11 0.13 0.17

TetraCora 1,000 0.51 0.51 0.50 0.49 0.50 0.49 0.50 0.50 0.53
SD 0.10 0.06 0.07 0.06 0.06 0.06 0.06 0.08 0.09

TetraCorb 2,000 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.51
SD 0.05 0.04 0.04 0.03 0.04 0.04 0.03 0.04 0.06

ML estimation—criterion-focused way
PbCorb 200 0.38 0.48 0.54 0.56 0.59 0.56 0.54 0.48 0.41
SD 0.12 0.12 0.16 0.15 0.13 0.13 0.12 0.15 0.13

PbCorb 400 0.38 0.51 0.53 0.55 0.57 0.56 0.54 0.51 0.41
SD 0.09 0.09 0.08 0.09 0.08 0.09 0.09 0.12 0.08

PbCorb 1,000 0.40 0.49 0.54 0.57 0.58 0.56 0.55 0.49 0.41
SD 0.05 0.05 0.06 0.05 0.06 0.06 0.06 0.05 0.05

PbCorb 2,000 0.41 0.49 0.54 0.57 0.57 0.56 0.55 0.49 0.41
SD 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03

ML estimation—predictor-focused way
PbCOVb 200 0.49 0.50 0.49 0.51 0.52 0.50 0.51 0.52 0.51
SD 0.14 0.11 0.10 0.10 0.09 0.10 0.10 0.14 0.13

PbCOVb 400 0.50 0.50 0.50 0.51 0.52 0.50 0.52 0.51 0.51
SD 0.09 0.07 0.07 0.07 0.07 0.08 0.08 0.09 0.10

PbCOVb 1,000 0.49 0.50 0.51 0.51 0.52 0.51 0.51 0.50 0.51
SD 0.06 0.05 0.05 0.04 0.04 0.04 0.05 0.05 0.06

PbCOVb 2,000 0.51 0.50 0.51 0.51 0.51 0.51 0.51 0.50 0.51
SD 0.04 0.04 0.03 0.03 0.3 0.03 0.04 0.04 0.04

TetraCor tetrachoric correlations, PbCor probability-based correlations, PbCOV probability-based
covariances
aThe number of datasets is 200
bThe number of datasets is 100
CIThe 95 % confidence interval is in the favorable area; M: the mean is in the favorable area
MThe mean is in the favorable area
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The first part of this table includes the completely standardized factor loadings
for the tetrachoric correlations. Since the two estimation methods are known to
lead to the same completely standardized factor loadings, there are no separate
results sections for these methods. The investigation of tetrachoric correlations
revealed quite a bit of variability. In the sample size of 200 the mean fac-
tor loadings varied between 0.43 and 0.62, in 400 between 0.47 and 0.56, in
1,000 between 0.49 and 0.53 and in 2,000 between 0.50 and 0.51. Further-
more, the Fmax test results indicated deviations from the expected equality of the
completely standardized factor loadings with the exception of the largest sample size
[N = 200: Fmax(2,200)= 140.06, p< 0.05; N = 400: Fmax(2,400)= 29.30, p< 0.05;
N = 1,000: Fmax(2,1000)= 4.69, p< 0.05; N = 2,000: Fmax(2,2000)= 0.61, n.s.].
Note. The original Fmax test does not allow for values smaller than one since the
larger number always has to be assigned to the numerator. Since in the present
investigation variances smaller than the comparison level are desirable, in such cases
the Fmax statistic is deliberately used in an unconventional way.

The investigation of the completely standardized factor loadings obtained on the
basis of probability-based correlations by means of the congeneric model revealed
a characteristic pattern (see second part of Table 17.5): the smallest factor loadings
were observed for the first and last columns that were associated with the most
extreme splits (first column: 0.38, 0.38, 0.40, 0.41 for N = 200, 400, 1,000, 2,000
and last column: 0.41, 0.41, 0.41, 0.41 for N = 200, 400, 1,000, 2,000) whereas the
largest factor loadings were found for the fifth column that was based on the median
split (0.59, 0.57, 0.58, 0.57 for N = 200, 400, 1,000, 2,000). Apparently, there
were considerable degrees of dependency on item marginals. This dependency was
also obvious from the Fmax test results (N = 200: Fmax(2,200)= 160.23, p< 0.05;
N = 400: Fmax(2,400)= 140.06, p< 0.05; N = 1,000: Fmax(2,1000)= 142.41,
p< 0.05: Fmax(2,2000)= 129.00, p< 0.05).

Finally there were the results achieved in investigating probability-based covari-
ances in considering the weighted congeneric model of measurement. These results
are included in the third part of Table 17.5. The means showed a considerably
lower degree of variability than the means reported in the other parts of this
table: there was variation between 0.49 and 0.52 in the sample size of 200,
between 0.50 and 0.52 in the sample size of 400, between 0.49 and 0.51 in the
sample size of 1,000 and between 0.50 and 0.51 in the sample size of 2,000.
Furthermore, the investigations of the equality of the factor loadings by means
of the Fmax test revealed substantial differences for the sample sizes up to 1,000
although the Fmax values appeared to be small when compared with the values
observed for tetrachoric correlations and probability-based correlations (N = 200:
Fmax(2,200)= 4.69, p< 0.05; N = 400: Fmax(2,400)= 2.17, p< 0.05; N = 1,000:
Fmax(2,1000)= 2.35, p< 0.05). In contrast, in the sample size of 2,000 there was
no indication of a deviation [Fmax(2,2000)= 0.60, n.s.].

After focussing on the issue of the equality of the completely standardized
factor loadings, the correspondence of the observed sizes and the expected size was
considered. Investigating the tetrachoric correlations led to the mean factor loadings
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of 0.49, 0.49, 0.50, and 0.50 for the sample sizes of 200, 400, 1,000, and 2,000.
In probability-based correlations and probability-based covariances all mean factor
loadings were 0.51.

All in all, the investigation of the equality of the completely standardized
factor loadings yielded agreeable results for the tetrachoric correlations and the
probability-based covariances in the larger sample sizes. In contrast, the completely
standardized factor loadings obtained for probability-based correlations showed the
typical dependency on item marginals. The comparisons of the observed sizes with
the expected size of factor loadings that were performed on the level of the means
revealed a good degree of agreement for all types of input to confirmatory factor
analysis.

Conclusions
The investigation of binary data by means of confirmatory factor analysis is
especially demanding since the properties of these data and the requirements
of the method do not fit to each other. The use of tetrachoric correlation has
been proposed in order to improve the fit. The analysis of the properties of
tetrachoric correlations reveals that this method of computing correlations
is especially demanding to the quality of the data. If the quality of the
data is high, it can be expected to do well although it must be mentioned
that tetrachoric correlations do not completely meet the requirements since
confirmatory factor analysis is a method for the investigation of covariances
in the first place (Jöreskog 1970). In contrast, bad results can be expected
in data showing a low quality. The results of the simulation study confirmed
this expectation. In small sample sizes the outcomes of confirmatory factor
analysis were not favorable, and the increase in sample size was associated
with a sizable improvement.

Robust maximum likelihood estimation is expected to compensate for
deviations from normality. Therefore, in the simulation study confirmatory
factor analysis with tetrachoric correlations as input was conducted separately
by means of the maximum likelihood estimation method and the robust
maximum likelihood estimation method. The replacement of the estimation
method led to a considerable improvement of the model-data fit. Only in the
smallest sample size the majority of fit statistics did not indicate a good fit
after the replacement. The comparison of the results obtained by the two
estimation methods revealed that the majority of fit indexes showed an effect.
Only the SRMRs and GFIs were not changed considerably, and the factor
loadings stayed the same. So as a result of such a replacement, it can happen
that the model-data fit changes from bad to good but the estimated factor
loadings still deviate considerably from the expected factor loadings.

The use of probability-based covariances and correlations in the simulation
study led to generally good results concerning model-data fit. This good

(continued)
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degree of model-data fit even seems to be independent of the sample size
and is obvious in all the considered fit indexes. This outcome is no surprise
since the computation of probability-based covariances and correlations
does not imply the estimation of parameters in considering an asymptotic
function. The use of the asymptotic areas of such a function is risky since
small deviations due to imprecision and error are considerably magnified.
Furthermore, probability-based covariances and correlations turn out to be
rather robust since in no case there were problems due to lack of convergence
or factor loadings that were out of range.

The investigation thought to secure the absence of dependency on item
marginals (Kubinger 2003; Torgerson 1958) has revealed problems when
probability-based correlations served as input to confirmatory factor analysis.
The sizes of the completely standardized factor loadings were considerably
lower than expected for the extreme splits. The sizes increased if the split
became more and more moderate. The largest sizes were found for the median
split. This kind of change is characteristic of dependency on item marginals.
In contrast, in probability-based covariances the sizes of the completely
standardized factor loadings showed the highest degree of similarity among
each other, as it becomes obvious in the comparisons with the factor load-
ings obtained for tetrachoric correlations and probability-based correlations.
Although the Fmax test yielded a substantial result in three sample sizes,
the Fmax values obtained for the probability-based covariances were in all
conditions the smallest ones.

Apparently, the link function selected for the investigation of probability-
based covariances was efficient in securing the absence of dependency on item
marginals. It is a link function that was derived from the original link function
by optimizing performance in considering the special characteristics of the
weighted congeneric model of measurement. The avoidance of dependency
on item marginals is a very important property because in this case there
is no more a distortion of the relations between the factor loadings. This is
an important prerequisite for the investigation of binary data by means of
confirmatory factor analysis.
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Chapter 18
On Cronbach’s Alpha as the Mean
of All Split-Half Reliabilities

Matthijs J. Warrens

Abstract A famous description of Cronbach’s alpha is that it is the mean of all
(Flanagan–Rulon) split-half reliabilities. The result is exact if the test is split into
two halves that are equal in size. This requires that the number of items is even,
since odd numbers cannot be split into two groups of equal size. In this chapter it is
shown that alpha is approximately identical to the mean of all split-half reliabilities,
if a test consists of an odd number of items and has at least eleven items.

Keywords Split-half reliability • Spearman–Brown prophecy formula •
Flanagan–Rulon split-half

18.1 Cronbach’s Alpha

An important concept in psychometrics and measurement theory is the reliability
of a test score. Reliability of a test score concerns the overall consistency of a
participant’s score. It can be conceptualized in different ways. In layman’s terms
a test score is said to be reliable if it produces similar outcomes for participants
when administration conditions are consistent. In classical test theory reliability is
defined as the ratio of the true score variance and the total score variance (McDonald
1999; Lord and Novick 1968; Revelle and Zinbarg 2009). Since the true score
variance cannot be directly observed, the reliability of a test score needs to be
estimated. Examples of reliability estimation methods are the test-retest method and
the internal consistency method (Osburn 2000). The latter method can be used if
there is only one test administration available. The most commonly used coefficient
of internal consistency in psychology and other behavioral sciences is coefficient
alpha (Cortina 1993; Cronbach 1951; Field 2009; Furr and Bacharach 2008; Osburn
2000; Sijtsma 2009).

Coefficient alpha was proposed by Guttman (1945) as lambda 3 and later
popularized as alpha by Cronbach (1951). The coefficient has been applied in
thousands of research studies and the number of citations of Cronbach’s paper is
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impressive (Cortina 1993; Sijtsma 2009). Various authors have criticized the use
of alpha. Examples have been presented that show that alpha is not a measure of
the one-dimensionality of a test (Cronbach 1951; Grayson 2004; Sijtsma 2009).
Furthermore, there are several coefficients that are higher lower bounds to the
reliability of a test score than alpha (Revelle and Zinbarg 2009; Sijtsma 2009).
However, most critics and reviewers of alpha agree that it is likely that the coefficient
will continue to be a standard tool in reliability estimation in the near future (Cortina
1993; Sijtsma 2009). Moreover, many years after Cronbach’s paper, alpha is still a
hot topic in current research. For example, the derivation of alpha is based on several
assumptions from classical test theory (Lord and Novick 1968; Thorndike 1971).
Robustness of alpha to violations of essential tau-equivalence and uncorrelated
errors have been documented in Grayson (2004), Green and Hershberger (2000),
Green and Yang (2009), while robustness to non-normal data has been studied in
Sheng and Sheng (2012).

A famous description of alpha is that it is the mean of all split-half reliabilities
(Cortina 1993; Cronbach 1951). The split-half method is another approach to
estimating the reliability of a test score when there is only one administration (Field
2009; Furr and Bacharach 2008; Revelle and Zinbarg 2009). In this method the test
is randomly split into two halves, and the sum scores of the two halves are compared
as if they were two separate administrations of the same test score. The correlation
between the sum scores of the two halves is an estimate of the reliability of the half
test. This estimate must then be corrected for the fact that the tests were half tests
rather than full tests (Field 2009; Revelle and Zinbarg 2009). Different split-half
formulas have been proposed in the literature (Brown 1910; Flanagan 1937; Rulon
1939; Spearman 1910). The problem with the split-half approach is that there are
multiple ways to divide the items of the test into two halves. The estimate therefore
depends on the way the split is made (Field 2009). Cronbach (1951) showed that if
the test is split into two subtests of equal size, then alpha for the full test is the mean
of all possible split-half reliabilities. Using alpha instead of the split-half estimate
removes in a way the arbitrariness of how to split a test.

There are two limitations to “the average of all possible split-half estimates”
description of alpha. As noted by Cortina (1993) the result holds for the split-half
reliability proposed in Flanagan (1937) and Rulon (1939), not for the more famous
split-half formula proposed in Spearman (1910) and Brown (1910). There is no
simple relationship between alpha and the mean of all Spearman–Brown split-half
reliabilities. The second limitation is that Cronbach (1951) showed that alpha is
the mean of all (Flanagan–Rulon) split-half reliabilities if the test is split into two
halves that are equal in size. This requires that the number of items is even, since
odd numbers cannot be split into two groups of equal size.

In this chapter we study how alpha is related to the mean of all (Flanagan–Rulon)
split-half reliabilities when the number of items is odd. We present conditions under
which the difference between the two quantities is negligible for most practical
purposes. A formula of the mean of the split-half reliabilities is first derived in
Sect. 18.2. Raju (1977) showed that alpha always exceeds the mean if the halves
have unequal sizes. Furthermore, he argued that the two quantities can be quite
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different when the number of items is odd. In Sect. 18.3 it is shown that if the test
consists of at least eleven items and one half of the split contains one more item than
the other half, then the difference between alpha and the mean of all possible split-
half reliabilities is less than 0.01. Section 18.4 contains a conclusion. We conclude
that given a moderate number of items, alpha is approximately identical to the mean
of all (Flanagan–Rulon) split-half reliabilities.

18.2 The Mean of All Split-Half Reliabilities

Suppose we have a test that consists of k ≥ 2 items. Let σi j denote the covariance
between items i and j with 1 ≤ i, j ≤ k, and let σ2

T denote the variance of the test
(sum) score. Guttman’s lambda 3 or Cronbach’s alpha is defined as

α =
k

k−1
· ∑i �= j σi j

σ2
T

. (18.1)

Suppose we split the test into two halves of sizes k1 and k2 with 1 ≤ k1,k2 < k and
k1 + k2 = k. Furthermore, let p1 = k1/k and p2 = k2/k denote the proportions of
items in the two halves, and let σ12 denote the covariance between the sum scores
of the two halves. Flanagan (1937) and Rulon (1939) proposed the split-half formula

α2 =
4σ12

σ2
T

. (18.2)

The formula in (18.2) is denoted by α2 because it is a special case of alpha in (18.1)
(Cronbach 1951; Raju 1977). Cronbach (1951) showed that if k1 = k2, then α =
E(α2), that is, the overall alpha is the mean of all possible split-half reliabilities
defined in (18.2). A proof can also be found in Lord and Novick (1968) and Raju
(1977). Raju (1977) showed that α > E(α2) if k1 �= k2.

In this paper we are interested in how much α is bigger than E(α2). To investigate
this question we will use the non-negative difference α−E(α2). An expression for
the expected value E(α2) is presented in the following theorem.

Theorem 1. E(α2) = α ·4p1 p2.

Proof Since σ2
T is the same for each split we have

E(α2) =
4

σ2
T

·E(σ12). (18.3)

The total number of possible splits in groups of sizes k1 and k2 is given by
Abramowitz and Stegun (1970, p. 823)
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T =
k!

k1!k2!
. (18.4)

Furthermore, since the covariance is a bilinear form, the covariance of two sums of
two random variables is given by

σ(A+B,C+D) = σ(A,C)+σ(A,D)+σ(B,C)+σ(B,D).

Hence, to determine E(σ12) in (18.3) we must find how often two items i and j are
not in the same half if we sum over all possible splits T . The number of times two
items are together in the first half is, using (18.4),

(
k−2
k1 −2

)
=

(k−2)!
(k1 −2)!(k− k1)!

=
k1(k1 −1)
k(k−1)

·T.

We have a similar expression for how often two items i and j are in the second half.
The number of times two items are in the same half is thus given by

k1(k1 −1)+ k2(k2 −1)
k(k−1)

·T.

The number of times two items are not in the same half is then given by

S =

(
1− k1(k1 −1)+ k2(k2 −1)

k(k−1)

)
T =

2k1k2

k(k−1)
·T =

k
k−1

·2T p1 p2. (18.5)

Using (18.4) and (18.5) we can write E(σ12) as

E(σ12) =
2S
T ∑

i �= j

σi j = p1 p2 · k
k−1 ∑i �= j

σi j = α ·σ2
T · p1 p2. (18.6)

Finally, using (18.6) in (18.3) we obtain E(α2) = α ·4p1 p2. ��
It follows from Theorem 1 that if the two halves have the same size, that is,

p1 = p2 =
1
2 , then we have E(α2) = α . This case was originally proved in Cronbach

(1951). Theorem 1 presents an alternative proof of the identity α =E(α2) if k1 = k2.
The difference α−E(α2) is further studied in the next section.

18.3 Difference Between Alpha and the Split-Half Mean

Using Theorem 1 we have

α−E(α2) = α(1−4p1 p2). (18.7)
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Identity (18.7) shows that the difference depends on α and p1 = 1− p2. Since 0 ≤
α ≤ 1 we have the inequality

α−E(α2)≤ 1−4p1 p2. (18.8)

Since the right-hand side of (18.8) only depends on p1 = 1− p2, this inequality
allows us to study difference (18.7) independent of the value of α . We will say that
α is approximately equal to E(α2) if the difference is less than 0.01. A difference
of 0.01 is negligible for most practical purposes. Using (18.8) the requirement is
satisfied if 1−4p1 p2 ≤ 0.01 or

4p1 p2 ≥ 0.99. (18.9)

In the remainder of this chapter we study several ways of splitting a test in half. First
of all, suppose the number of items k is odd. If we want the sizes of the halves to be
as similar as possible, one half must contain one more item, and we have

p1 =
k−1

2k
and p2 =

k+1
2k

. (18.10)

Using the proportions in (18.10) we have

4p1 p2 =
(k−1)(k+1)

k2 =
k2 −1

k2 . (18.11)

Since the right-hand side of (18.11) is increasing in k, inequality (18.9) holds for
sufficiently large k. For k = 9 items we have

4p1 p2 =
80
81

<
99

100
,

but for k = 11 items we have

4p1 p2 =
120
121

>
99

100
.

Hence, if we put one more item in one half, then alpha is approximately identical to
the mean of all possible split-half reliabilities if the test consists of at least eleven
items.

Next, suppose that the number of items k is even. Instead of a perfect split we
may put 2 more items in one half. In this case we have

p1 =
k−2

2k
and p2 =

k+2
2k

. (18.12)

Using the proportions in (18.12) we have
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4p1 p2 =
k2 −4

k2 . (18.13)

The right-hand side of (18.13) is increasing in k. For k = 20 items we have

4p1 p2 =
396
400

=
99

100
.

Hence, for this split, alpha is the mean of all the split-half reliabilities if we have at
least twenty items.

If a difference of 0.01 is not small enough, we may also study difference (18.7)
with respect to other numbers. For example, suppose we want difference (18.7) to
be equal or less than 0.001. Using (18.8) this requirement is satisfied if

4p1 p2 ≥ 0.999. (18.14)

Using k = 31 items in (18.11) we have

4p1 p2 =
960
961

<
999

1000
,

but for k = 33 items we have

4p1 p2 =
1088
1089

>
990

1000
.

Hence, if we put one more item in one half, then alpha is very close to the mean of
all possible split-half reliabilities if the test consists of at least 33 items.

For the functions in (18.11) and (18.13) we have the limits

lim
k→∞

k2 −1
k2 = lim

k→∞

k2 −4
k2 = 1.

These limits suggest that for any split-half inequality (18.9) may hold for sufficiently
large k. This is however not the case. For example, consider the split

p1 =
1
k

and p2 =
k−1

k
. (18.15)

If we want the halves to have approximately equal sizes, this is the worst possible
split. Using the proportions in (18.15) we have

4p1 p2 =
4(k−1)

k2 .

Due to the k2 term in the denominator we have 4p1 p2 → 0 as k → ∞.
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18.4 Conclusion

Coefficient alpha is the most commonly used statistic for estimating reliability of a
test score if there is only one test administration (Cortina 1993; Cronbach 1951;
Field 2009; Furr and Bacharach 2008; Osburn 2000; Sijtsma 2009). A famous
description of alpha is that it is the mean of all (Flanagan–Rulon) split-half
reliabilities. This is an important result because it provides a proper interpretation
of alpha. The result is exact if the test is split into two halves that are equal in size.
In this chapter we studied how alpha is related to the mean of all (Flanagan–Rulon)
split-half reliabilities when the number of items is odd. The split was made so that
the group sizes were as similar as possible, that is, one half contained one more
item. It was shown in Sect. 18.3 that the difference between alpha and the mean of
all split-half reliabilities is less than 0.01 if the test consists of at least 11 items. We
conclude that given a moderate number of items alpha is approximately identical to
the mean of all (Flanagan–Rulon) split-half reliabilities.
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Chapter 19
An Empirical Assessment of Guttman’s Lambda
4 Reliability Coefficient

Tom Benton

Abstract Numerous alternative indices for test reliability have been proposed as
being superior to Cronbach’s alpha. One such alternative is Guttman’s L4. This is
calculated by dividing the items in a test into two halves such that the covariance
between scores on the two halves is as high as possible. However, although simple
to understand and intuitively appealing, the method can potentially be severely
positively biased if the sample size is small or the number of items in the test is
large.

To begin with this paper compares a number of available algorithms for
calculating L4. We then empirically evaluate the bias of L4 for 51 separate upper
secondary school examinations taken in the UK in June 2012. For each of these
tests we have evaluated the likely bias of L4 for a range of different sample sizes.
The results show that the positive bias of L4 is likely to be small if the estimated
reliability is larger than 0.85, if there are less than 25 items and if a sample size of
more than 3,000 is available. A sample size of 1,000 may be sufficient if the estimate
of L4 is above 0.9.

Keywords Assessment • Reliability • Split-half • Lambda 4 • Bias • Sample
size

19.1 Introduction

The reliability of a test score is defined as the extent to which the result achieved by
any pupil would be repeated if the entire exercise were replicated (Brennan 2001).
In particular we are often interested in the extent to which pupils’ results would
change had a different (but equally valid) set of items been used in the test rather
than those that were actually included. Conceptually, the aim is to try to calculate
the likely correlation between scores on the test actually sat by pupils and another
(theoretical) test designed to the same specification.
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Answering the above question has become a fairly routine task within psycho-
metrics. Whilst the most commonly applied metric used to quantify reliability is
Cronbach’s alpha (Cronbach 1951), research suggests that in many cases this may
not be the most appropriate technique and will underestimate the true reliability of
a test (Sijtsma 2009; Revelle and Zinbarg 2009).

An alternative method to calculate reliability is Guttman’s1 L4 (Guttman 1945).
The concept behind the method is quite simple. Reliability is calculated by first
splitting a test into two halves. For example, this might be all the odd numbered
versus all the even numbered questions, or all the questions in the first half of a test
versus all the questions in the second half. Now the covariance between the scores
pupils achieve on each half is calculated. The variance of the total test score (that is,
including both halves) is also calculated. The overall test reliability coefficient can
now be calculated by the formula below.

Reliability Coefficient=
4Covariance(Half 1 scores,Half 2 scores)

Variance(Total score on test)

Although the above formula can be applied to any split half, L4 is generally taken
to mean the reliability from the split that maximises this coefficient.

Although L4 is an appealing reliability coefficient in terms of being easy to
understand and being less likely to underestimate reliability than Cronbach’s alpha,
it has two notable drawbacks. Firstly, routines to calculate L4 are not included in
most standard statistical packages. Secondly, as has been noted by Ten Berge and
Socan (2004) there is the danger that L4 may overestimate reliability if there are a
large number of items or if the sample size is small.

This paper intends to address both of these drawbacks. The first issue will be
addressed by evaluating the performance of two recently published R packages in
terms of their ability to accurately identify L4. Furthermore, R code for two further
methods to calculate L4 is provided in the appendix of this paper. To address the
second issue we shall empirically evaluate the bias of L4 for a number of real
assessments and examine how this varies dependent upon the sample size and the
number of items in the test.

19.2 Algorithms to Find L4

There are a number of possible algorithms that could be used to find the optimal
split of the items into two halves.

1Although most subsequent literature refers to this reliability index as “Guttman’s”, this same
coefficient was presented in an earlier work by Rulon (1939). As such it is also sometimes referred
to as the “Flanagan-Rulon” coefficient.
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1. An exhaustive search of all possible splits to identify the split leading to the
highest reliability, although such a method will be computationally demanding if
our test has a large number of items.

2. A reduced exhaustive search, where, to begin with, pairs of items that are highly
correlated are deemed to be in opposite halves. This method is applied in the R
package Lambda4 written by Tyler Hunt and published in 2012.2

3. A cluster analysis based method drawing on the item correlation matrix. This
method is applied in the R package psych3 by William Revelle and first published
in 2007.4

4. The method of Callender and Osburn (1977) based on sequentially adding one
item to each half so as to maximise the reliability coefficient at each step.

5. A method based on beginning with an initial split of the items into two groups
and then iteratively improving the reliability by swapping items until no further
improvements are possible. This procedure is relatively straightforward and only
requires the item covariance matrix as an input. It works from the fact that if X
is the total current score on half 1, Y is the total current score on half 2, and we
wish to switch items Xi and Yj to opposite sides then the improvement in the
covariance between the two halves that will be yielded by the switch is

Cov (X−Xi+Yj,Y+Xi−Yj)−Cov (X,Y)

= 2Cov (Xi,Yj)+Cov (X,Xi)+Cov (Y,Yj)

−Cov (X,Yj)−Cov (Y,Xi)−V (Xi)−V (Yj) .

All of these terms can be quickly calculated from the item covariance matrix.
This allows us to identify the best possible swap and then recalculate possible
improvements for subsequent swaps.

For this last method there are clearly a number of options for how to split
items into two groups to start with. For many assessments, because items dealing
with similar subjects are often placed consecutively in a test, a split into odd and
even items may provide a sensible starting point. However, in order to increase
our chances of identifying the best possible split, we may prefer to try several
different starting splits and see which leads to the largest reliability coefficient
overall. Hadamard matrices provide a possible effective method for trying numerous
different starting splits as they can ensure that each new starting split is as different
as possible from starting splits that have been tried before.

2Hunt (2013).
3Revelle (2013).
4Although the functions for finding L4 were not introduced until 2009.
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R code for methods 1 and 5 is provided in the appendix5 along with code showing
how method 5 can be applied from multiple different starting values derived from a
Hadamard matrix.6

19.3 Evaluation of Alternative Algorithms

Each of the methods described in the previous section was evaluated against data
from 51 separate upper secondary school examinations taken in the UK in June
2012. These tests each contains between 10 and 37 questions7 and were each taken
by a minimum of 5,000 candidates. The number of available marks per question
ranged between 1 and 22 with both the mean and the median number of available
marks per question equal to 5. For each of these assessments, L4 was calculated
using each of the algorithms described in the previous section. Because the psych
package works from the correlation matrix rather than the covariance matrix, all
item scores were standardised before applying any of the methods.8

Table 19.1 shows the results of analysis in terms of how often each algorithm
identifies the best possible split of those that were identified. The table also shows
the mean and median L4s from each algorithm as well as the largest amount by
which the algorithm underestimated the best L4. As can be seen, the algorithm
used in the psych package failed to find the best possible split in any of the 51
assessments. In general the reliabilities estimated by this method were not too
far below the optimum (0.02 on average) but could be as high as 0.05 below the
actual maximum L4. The Callender–Osburn algorithm performed a little better,
identifying the optimal split in 4 out of 51 cases. More importantly, the estimated
reliability from this algorithm was never more than 0.02 below the maximum L4.
The algorithm in the Lambda4 package also failed to find the optimal split for the
majority of assessments. Having said this, the differences between the L4 estimated
by this algorithm and the maximum L4 tended to be extremely small; roughly 0.002
on average and never more than 0.01. The start-then-improve algorithm based on
starting with odd and even question numbers identified the best split for over half
the assessments (28 out of 51). Once again, where this algorithm failed to find the
optimum split, the difference from the largest L4 tended to be very small. The
start-then-improve algorithms tended to identify the best possible split for almost

5The code in the appendix also applies to adjustments proposed by Raju (1977) and Feldt (1975)
for cases where the split halves may be of unequal length.
6Hadamard matrices are generated using the survey package published by Thomas Lumley and
available from http://cran.r-project.org/web/packages/survey/index.html (Lumley 2004).
7Whole question scores were analysed for the purposes of calculating reliability rather than items
from the same question stem. This was to avoid the possibility of irrelevant associations between
item scores within the same question spuriously inflating the reliability estimate.
8The same analysis was also run with unstandardized item scores. The results were very similar.

http://cran.r-project.org/web/packages/survey/index.html
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Table 19.1 Relative performance of different methods of optimising L4

Algorithm used to
maximise L4

Number of times
largest L4 identified
(out of 51) Mean L4 Median L4

Furthest distance
below largest L4

R package psych 0 0.846 0.856 0.050
Callender–Osburn
algorithm

4 0.861 0.867 0.020

R package Lambda4 13 0.863 0.868 0.010
Start-then-improve
(odd/even start)

28 0.864 0.868 0.008

Start-then-improve
(odd/even and 5 other
random starts )

46 0.865 0.869 0.002

Start-then-improve
(odd/even and 12
further starts from
Hadamard matrix)

51 0.865 0.869 0.000
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Fig. 19.1 The relationship between estimated Cronbach’s alpha and L4

all assessments if an additional five random starting splits were used (46 out of 51),
and for all assessments if a Hadamard matrix was used to provide additional starting
splits.

Thirty-nine of the 51 assessments contained 15 questions or fewer. For these
assessments the algorithm based upon exhaustive search was also applied. In every
case, the best split identified by exhaustive search matched the split identified by the
start-then-improve algorithm using a Hadamard matrix.

A plot of Cronbach’s alpha for each of these assessments against the maximised
value of L4 is shown in Fig. 19.1. As can be seen the value of L4 is universally larger
than the value of alpha (as we would expect). On average there was a difference
of 0.04 between the two reliability indices, although, as can be seen, for some
assessments the difference was somewhat larger than this.
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19.4 Examining the Level of Positive Bias in L4

Having identified an efficient algorithm to calculate L4, we now turn our attention
to the issue of how the likely positive bias of L4 changes dependent upon the sample
size and the number of items.

For each of the 51 assessments, ten samples at each of sizes 100, 200, 400, 800,
1,500, 3,000, and 5,000 were drawn from the available data. L4 was calculated9

for each of the samples and the average reliability coefficient was computed for
each sample size for each assessment. The results of this analysis are shown in
Fig. 19.2. As can be seen, for each of the assessments, there is a tendency for the
estimated value of L4 to decrease as the sample size increases. The rate of decrease
is particularly evident for smaller sample sizes, indicating that in such cases L4 is
likely to be severely positively biased.
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Fig. 19.2 Average values of L4 for different sample sizes for each of 51 assessments

Using the results in Fig. 19.2, it is possible to estimate a bias corrected version
of L4 based upon the method suggested by Verhelst (2000, pp. 31–32). This method
involves a regression analysis of estimated L4 values on the reciprocal of the square
root of the sample size. The intercept10 of this regression analysis (that is, the
predicted value of L4 for an infinite sample size) is then a bias corrected estimated
of L4. This procedure was applied for each of the 51 assessments allowing us to
identify the estimated bias of L4 for each sample size. Of particular interest was
identifying the sample size where the bias of L4 was likely to fall below 0.01
meaning that for most practical purposes the estimate could be treated as unbiased.
These required sample sizes were termed the critical sample size.

9This time without standardising item scores before beginning.
10The intercept is referred to as the “additive coefficient” in the report by Verhelst.
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The critical sample size required is plotted against the number of items for all 51
assessments in Fig. 19.3. Different coloured points are used to identify assessments
with different levels of L4. For assessments with high levels of L4 (above 0.85) it can
be seen that there is a fairly clear relationship between the number of items on the
test and the critical sample size. On a practical note we can see that if we have less
than 25 items then a sample size of 3,000 appears to be always sufficient in these
cases. Furthermore, if the estimated L4 is greater than 0.9 a sample size of 1,000
appears to be usually sufficient. However, where the size of L4 is below 0.85, the
relationship between the number of items and the required sample size is less clear-
cut. For the small number of such assessments included in this analysis, sample
sizes between 1,000 and 5,000 were required with little evidence of the required
sample size being closely determined by the number of items. This indicates that,
for assessments with lower estimated reliabilities, it is probably necessary to make
an assessment of the likely positive bias of L4 on a case-by-case basis. This may
prove particularly difficult for small sample sizes as it will require greater amount of
extrapolation from the regression method used to generate bias corrected estimates.
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Conclusion
Guttman’s L4 provides a reliability coefficient that is relatively simple to
understand and can be easily computed using code written in R. In addition
to the code provided in the appendix of this paper, the Lambda4 package by
Tyler Hunt also appears to provide a robust estimation method.

(continued)
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Our analysis has confirmed that L4 can suffer from positive bias for small
sample sizes. Positive bias is less likely to be an issue if the estimated value of
L4 is above 0.85, if the number of items is below 25, and if the sample size is
bigger than 3,000. Potentially, a sample size of 1,000 may be sufficient if the
estimated value of L4 is greater than 0.9. However, our analysis shows that if
the estimated value of L4 is below 0.85 it is difficult to identify the necessary
sample size dependent upon the number of items. In such cases the likely bias
of the method should be evaluated on a case-by-case basis.

A.1 Appendix: R Code to Find Best Split Using
the “Start-Then-Improve” Algorithm

#Function to find best split half from a given starting split
MaxSplitHalf = function(data,xal){
#data - matrix of items scores (row=candidates,column=items)
#xal - vector of 0s and 1s specifying initial split
nite = ncol(data)
cov1 = cov(data)
v = diag(cov1)
yal = 1-xal
ones = rep(1,nite)
covxy = t(xal)%*%cov1%*%yal

#Code to examine all possible swaps
maxchg1=9;
while(maxchg1>0){
#Calculate change for swapping items in X and Y;
#This is equal to 2covxiyj+covxix+covyyj-vx-vy-covxiy-covxyj;
covxiyj = cov1
covxix = (cov1%*%xal)%*%t(ones)
covyyj = ones%*%(yal%*%cov1)
vx = v%*%t(ones)
vy = t(vx)
covxiy = (cov1%*%yal)%*%t(ones)
covxyj = ones%*%(xal%*%cov1)
result = 2*covxiyj+covxix+covyyj-vx-vy-covxiy-covxyj
for (i in 1:nite){for (j in 1:nite){if (xal[i]==xal[j])

{result[i,j]=0}}}
#Add bits for swapping with no other item
result = cbind(result,as.vector(cov1%*%xal-cov1%*%yal-v)*xal)
result = rbind(result,c(as.vector(cov1%*%yal-cov1%*%xal-v)*yal,0))
#find indices of maximum change;
maxchg=0
maxchgx=0
maxchgy=0
which1=which(result==max(result),arr.ind=TRUE)[1,]
if (result[which1[1],which1[2]]>0){maxchgx=which1[1]



19 An Empirical Assessment of Guttman’s Lambda 4 Reliability Coefficient 309

maxchgy=which1[2]
maxchg=result[which1[1],which1[2]]}
maxchg1 = maxchg
if (maxchgx>0 & maxchgx<(nite+1)) {xal[maxchgx]=0}
if (maxchgy>0 & maxchgy<(nite+1)) {xal[maxchgy]=1}
if (maxchgx>0 & maxchgx<(nite+1)) {yal[maxchgx]=1}
if (maxchgy>0 & maxchgy<(nite+1)) {yal[maxchgy]=0}
covxy = t(xal)%*%cov1%*%yal}
guttman = 4*covxy/sum(cov1)
pites = sum(xal)/nite
raju = covxy/(sum(cov1)*pites*(1-pites))

v1 = t(xal)%*%cov1%*%xal
v2 = t(yal)%*%cov1%*%yal
feldt = 4*covxy/(sum(cov1)-((v1-v2)/sqrt(sum(cov1)))**2);

res = list(guttman=as.vector(guttman),
raju=as.vector(raju),
feldt=as.vector(feldt),
xal=xal)
return(res)}
#Maximise L4 starting from odd/even and 12 splits from 12x12 Hadamard matrix
library(survey)
MaxSplitHalfHad12 = function(data){
#data - matrix of items scores (row=candidates,column=items)
#start with odd vs even
nite = ncol(data)
sequence = 1:nite
xal = (sequence%%2)
res1 = MaxSplitHalf(data,xal)
#now try 12 further splits based on 12*12 Hadamard matrix
had = hadamard(11)
for (iz in 1:12){
nextra = max(nite-12,0)
resrand = MaxSplitHalf(data,c(had[,iz],rep(0,nextra))[1:nite])
if (resrand$guttman>res1$guttman){res1 = resrand}}
return(res1)}
#Maximise using exhaustive search
library(Lambda4)
MaxSplitExhaustive = function(data){
#data - matrix of items scores (row=candidates,column=items)
cov1 = cov(data)
nite = dim(data)[2]
mat1 = (bin.combs(nite)+1)/2
res1 = list(guttman=0,xal=rep(-99,nite))
for (jjz in 1:length(mat1[,1])){
xal = mat1[jjz,]
gutt1 = 4*(t(xal)%*%cov1%*%(1-xal))/sum(cov1)
resrand = list(guttman=gutt1,xal=xal)
if (resrand$guttman>res1$guttman){res1 = resrand}}
return(res1)}
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#Examples of use (using data from the Lambda4 package)
data(Rosenberg)
MaxSplitHalf(Rosenberg,c(0,1,0,1,0,1,0,1,0,1))
MaxSplitHalfHad12(Rosenberg)
MaxSplitExhaustive(Rosenberg)
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Chapter 20
A Test for Ordinal Measurement Invariance

Rudy Ligtvoet

Abstract One problem with the analysis of measurement invariance is the reliance
of the analysis on having a parametric model that accurately describes the data.
In this paper an ordinal version of the property of measurement invariance is
proposed, which relies only on nonparametric restrictions. This property of ordinal
measurement invariance provides a coarse (initial) indication of measurement
invariance, based on the sum scores. A small example is given to illustrate the
procedure for testing the property of ordinal measurement invariance.

20.1 Introduction

Many of the questions asked in psychological research are of the type “Does group A
score lower on X than group B?”, where the groups A and B may differ, for example,
according to their demographics or with respect to the treatment the members of the
group received, and X is an observable measure of some psychological attribute
on which the groups are to be compared. Because most psychological attributes do
not render themselves for direct observations, psychological test usually comprises
of multiple test items, which are assumed to elicit responses thought to be typical
for the attribute that the test is suppose to measure. These responses are assigned
item scores, and these multiple item scores need to be aggregated to obtain X . Let
Yi denote the item score variable of item i, with scores yi ∈ {1,2, . . . ,mi} assigned
to it, and also let Y = (Y1, . . . ,Yk) denote the vector with the k item score variables.
Before comparing two groups, two questions need to be addressed. The first of these
questions is: What scoring rule should be used to obtain X? In item response theory,
a latent variable Θ is assumed to account for the associations that exist between the
item scores, and if an IRT model is found to accurately describe Y , then the scoring
rule could simply consist of the estimation ofΘ based on, say, maximum likelihood
or Bayesian methods. In practice, however, we find that the simple sum score ∑k

i=1 Yi

is the most popular scoring rule (and is used often without any empirical support).
But beside the choices of a scoring rule, there is also the question concerning the
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comparability of the scores to consider: Are the measures X for the different groups
commensurable? Does the attribute as expressed by X bare the same meaning
for the different groups, or are we comparing apples with oranges? For example,
asking men questions about women’s rights might reflect their attitude towards a
liberal society, whereas for women, the same questions might be a measure of their
personal freedom. Ignoring the question of commensurable measures might lead to
the conclusion that men are more positive towards a liberal society than women feel
free. But this would be a meaningless comparison.

In IRT, the question of commensurable measures is addressed by the analysis of
measurement invariance (Mellenbergh 1989; Meredith and Millsap 1992; Millsap
and Everson 1993). To define measurement invariance, Meredith and Millsap (1992)
considered a selection rule that operates on the demographics of the members of a
parent group (here A∪B) for which measurements from the IRT model are deemed
appropriate. This selection rule creates the subgroups (A and B) by selecting only the
members of a particular group, and measurement invariance corresponds to the case
for which the distribution of Y given Θ = θ is the same irrespective of the selection
rule (i.e., the same for A and B). The implication of this definition is that (1) the
same IRT model should hold for both groups A and B, as well as their parent, and
(2) to guarantee that the distribution of Y given Θ = θ is the same for both groups,
all item parameters should be the same. For the practical analysis of measurement
invariance this amounts to testing the IRT model for both groups and imposing
equality restrictions across the item parameters of the two groups. But what if we
cannot find an appropriate IRT model?

The problem with the analysis of measurement invariance as outlined above is
that it relies heavily on having an adequate IRT model for the item scores. Failure
of an IRT model to accurately describe the item scores may lead to incorrect
conclusions with regard to the property of measurement invariance. To alleviate the
burden of finding an adequate parametric IRT model, a more general type of model
may be considered (Mokken 1971; Molenaar 1997). Such general ordinal models
are characterized by inequality restrictions, like monotonicity, where the item score
functions relatingΘ to Yi (for i= 1, . . . ,k) are not subjected to a particular parametric
shape. Instead, these ordinal models provide information on whether some scores of
Y may be more or less likely for some values of θ . Having an adequate ordinal model
does, however, not guarantee that the distribution of Y is exactly equal across groups
for a given value θ . So the problem with the analysis of measurement invariance is
that the burden on the IRT model is of the all-or-nothing type with respect to the
parametric requirements it imposes on Y ; but see also Shealy and Stout (1993). In
this paper, an ordinal version of measurement invariance is introduced to provide a
middle ground for the analysis of measurement invariance. For this ordinal version
of measurement invariance only the first implication of finding an adequate model
for A and B is tested. So, we say that for the two groups A and B ordinal measurement
invariance holds, if it is found that: (a) (a falsifiable) model holds for group A, and
the same model also holds for (b) group B, and (c) the combination of the groups
A and B (i.e., A∪B). Here, the adjective “falsifiable” is added to the definition to
exclude most trivial cases. As a model for Y , the isotonic partial credit model is here
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considered (Ligtvoet 2012). The reason for considering this model is (1) it is general
in the sense that it does not impose any parametric restriction onto the item score
distribution, and may thus be applicable to a wider range of test scores, (2) it implies
a stochastic ordering of Θ by the sum scores ∑k

i=1 Yi, thus providing a scoring rule
for obtaining ordinal measures, and (3) it imposes restrictions on the distribution of
Y that allow the model to be tested empirically (Ligtvoet in press).

20.2 Model and Procedure

Like most IRT models, the assumptions of conditional independence and mono-
tonicity are at the heart of the isotonic partial credit model. Conditional indepen-
dence states that the item scores are independent given Θ = θ . The monotonicity
assumption pertains to the local odds of a score Yi = yi over Yi = yi − 1, which
corresponds to a class of models (Hemker et al. 1997; Thissen and Steinberg
1986) to which, for example, the partial credit model belongs (Masters 1982).
Monotonicity means that the local odds are non-decreasing in θ . In addition to
the conditional independence and monotonicity assumptions, the isotonic partial
credit model assumes that these local odds are decreasing for higher values of yi

given Θ = θ (Ligtvoet 2012). In case the item i is assigned binary scores (i.e.,
yi ∈ {1,2}), only a single local odds exist for the item, and the third assumption
becomes superfluous. Hence, for binary item scores (i.e., mi = m = 2), the isotonic
partial credit model is equivalent to the monotone homogeneity model (Mokken
1971). For the case of binary item scores this means that the analysis proposed
below for ordinal measurement invariance may also be viewed as an initial test
for measurement invariance before subjecting the item scores to the parametric
requirements of, say, the Rasch model (Rasch 1960) or the 2-parameter logistic
model (Birnbaum 1968). For the present purpose, the two important properties of
the isotonic partial credit model are that it provides a direct method for testing the
model based on the observable Y , and that it allows for the sum score ∑k

i=1 Yi to be
used for the ordinal comparison of the groups on Θ .

Consider a partition of Y into three non-empty sets of item scores, whereby we
compute the sum score of each of the three sets. Ligtvoet (in press) showed that the
isotonic partial credit model implies that the three-variate distribution of the three
sum scores is totally positive (Karlin and Rinott 1980). This means that the isotonic
partial credit model implies that each of the bivariate 2× 2 sub-tables of the joint
distribution of two of the sum scores has a non-negative determinant conditional
on any value of the third sum score. To test whether this ordinal restriction on the
distribution of the three sum scores holds for any of these sub-tables, Ligtvoet (in
press) proposed a test, which basically looks at all the implied inequalities, selects
the largest (if any) standardized violation of the restrictions, and tests whether this
violation is significant. A significant result would discredit the hypothesis that the
isotonic partial credit model provides an adequate description of the item scores.
One problem to take into consideration is that the three-variate distribution of the
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three sum scores may contain many empty or sparse numbers of observations,
which would produce unreliable test results. This problem of sparse numbers of
observations was tackled by joining adjacent sum scores to obtain a more coarse but
better supported distribution of the observed scores, and subsequently test the largest
violation at α = 0.01; see Ligtvoet (in press) for details of the testing procedure.

20.3 Example

To illustrate the test procedure, a hypothetical example is considered, consisting
of the scores on six items, with mi = 3 if i is an even number, and with binary
scores for the odd numbered items. Consider also a sample of size 500 from
group A, whereby the item scores are partitioned into the three sets containing
the first two, the middle two, and the last two items, respectively; i.e., Y =
((Y1,Y2),(Y3,Y4),(Y5,Y6)). Table 20.1 shows the observed three-variate distribution
of the sum scores on the three sets of item score variables. Table 20.2 shows the
distribution after joining the sum scores 3–5 of the first set and 4–5 of the third set
to account for the sparse data, where observations were considered sparse in case of
fewer than three observations. In boldface it also shows a 2×2 sub-table for which
the determinant is negative. These boldface observations correspond to the largest
standardized violation: z = −2.136, p = 0.016, which is not significant according
to the criterion of α = 0.01. Hence, on the basis of these observations, the isotonic
partial credit model is not rejected for group A.

Next, consider also group B with a sample size of 500 responding to the same
items. Table 20.3 shows the observed three-variate distribution of the sum scores on
the three sets of item score variables after joining the sum scores 2–4 of the second
set and 1–2 of the third set to account for the sparse data. Again, the observations

Table 20.1 Observed three-variate sum-score distribution of group A

2 3 4 5
2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

2 14 31 28 5 14 27 24 5 7 16 11 8 2 4 1 1

3 7 28 21 6 7 17 24 12 1 10 14 9 2 5 7 5

4 1 6 8 6 4 13 17 11 0 1 11 14 0 1 2 4

5 0 0 2 2 0 1 4 4 0 0 0 6 0 1 0 8

Table 20.2 Observed three-variate sum-score distribution after joining adja-
cent sum scores

2 3 4–5
2 3 4 5 2 3 4 5 2 3 4 5

2 14 31 28 5 14 27 24 5 9 20 12 9

3–5 8 34 31 14 11 31 45 27 3 18 34 46
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Table 20.3 Distribution after
joining sum scores for
group B

2–3 4 5
2-4 5 2-4 5 2-4 5

2 18 5 6 4 3 7

3 30 19 20 23 11 30

4 18 23 15 46 26 60

5 8 22 10 30 18 48

Table 20.4 Counter example A B A∪B

1 1 2 4 3 5

2 2 1 2 3 4

Table 20.5 Observed distribution, after joining adjacent sum scores, for A∪B

2 3 4 5

2-3 4 5 2-3 4 5 2-3 4 5 2-3 4 5

2 49 31 8 44 32 7 28 12 12 7 3 8

3 37 28 9 31 38 28 14 31 32 10 15 35

4–5 9 12 16 22 39 52 4 33 96 4 44 120

that corresponding to the largest standardized violation are indicated in boldface:
z = −0.519, p = 0.302. For group B, the isotonic partial credit model is also not
rejected.

For testing ordinal measurement invariance, it is not sufficient to test the isotonic
partial credit model for groups A and B separately, because the model for both
groups separately does not guarantee that the model also holds for the two groups
together (i.e., the parent A∪B). To illustrate this consider the values in Table 20.4,
for the 2 × 2 tables of observations of groups A and B. For both groups, the
determinant is non-negative, but combining the frequencies by joining the groups
results in a negative determinant. Hence, a third test is performed for the isotonic
partial credit model on the combined observations of the two groups.

Table 20.5 shows the observed distribution of the sum scores on the three sets
of item score variables after joining the sum scores 4–5 of the first set and 2–3
of the third set to account for the sparse data. Again, in boldface the observations
are indicated corresponding to the largest standardized violation: z = −1.984, p =
0.024, which is again not significant at α = 0.01. On the basis of the above three
tests, it is thus concluded that the hypothesis of ordinal measurement invariance
could not be rejected for this example.

Finally, to assess whether group A score lower on ∑k
i=1 Yi than group B, Table 20.6

shows the cumulative proportions of the sum scores of both groups. For group B, the
cumulative proportions in Table 20.6 are smaller than the proportions of group A for
each sum score, so it may be inferred that the distribution of the sum scores of group
A stochastically dominates the distribution of group B. A significance test for this
type of ordering of distributions was proposed by Darnanoni and Forcina (1998).
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Table 20.6 Cumulative proportions of the sum scores for group A and group B

∑Yi 6 7 8 9 10 11 12 13 14 15

A 0.028 0.132 0.328 0.520 0.686 0.820 0.912 0.964 0.984 1.000

B 0.002 0.008 0.028 0.090 0.146 0.268 0.430 0.690 0.904 1.000

For this example, such a statistical test is redundant as the unrestricted proportions
all satisfy the ordinal restrictions, a situation which always favours the hypothesis
that the distribution of the sum score of group A dominates the distribution of group
B. (The same conclusion holds when testing the difference of medians or performing
a statistical test on the rank numbers.)

20.4 Discussion

The hypothesis of ordinal measurement invariance based on the isotonic partial
credit model implies that the ordering by the sum scores reflects an ordering on
Θ , irrespective of the group membership. It should be stressed, however, that the
analysis of ordinal measurement invariance does not undermine the importance or
replace the need for measurement invariance analysis based on adequate parametric
models. It seems, for example, necessary to impose equality restrictions onto the
item score distribution to be able to make inferences about the fairness of any
comparison on the individual level (Shealy and Stout 1993). Ordinal measurement
invariance only provides a coarse comparison of groups that differ with respect to
the sum-score distribution. However, if the application at hand only requires such
a coarse comparison, without the need to compare individual group members, then
the proposed procedure does offer an extension to measurement invariance research
that reaches beyond the realm of parametric IRT models.
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Chapter 21
Model Selection Criteria for Latent Growth
Models Using Bayesian Methods

Zhenqiu (Laura) Lu, Zhiyong Zhang, and Allan Cohen

Abstract Research in applied areas, such as statistical, psychological, behavioral,
and educational areas, often involves the selection of the best available model from
among a large set of candidate models. Considering that there is no well-defined
model selection criterion in a Bayesian context and that latent growth mixture
models are becoming popular in many areas, the goal of this study is to investigate
the performance of a series of model selection criteria in the framework of latent
growth mixture models with missing data and outliers in a Bayesian context. This
study conducted five simulation studies to cover different cases, including latent
growth curve models with missing data, latent growth curve models with missing
data and outliers, growth mixture models with missing data and outliers, extended
growth mixture models with missing data and outliers, and latent growth models
with different classes. Simulation results show that almost all the proposed criteria
can effectively identify the true models. This study also illustrated the application of
these model selection criteria in real data analysis. The results will help inform the
selection of growth models by researchers seeking to provide states with accurate
estimates of the growth of their students.

21.1 Introduction

Traditional criteria are available for researchers to select the best-fit model from
among a large set of candidate models. Akaike (1974) proposed the Akaike’s
information criterion (AIC), which offers a relative measure of the information lost.
For Bayesian models the Bayes factor, which is the ratio of posterior odds to prior
odds, can work for both hypothesis testing and model comparison. But the Bayes
factor is often difficult or impossible to calculate, especially for models that involve
random effects, large numbers of unknowns or improper priors. To approximate
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the Bayes factor, Schwarz (1978) developed the Bayesian information criterion
(BIC, sometimes called the Schwarz criterion). To obtain more precise criteria,
Bozdogan (1987) proposed the consistent Akaike information criterion (CAlC), and
Sclove (1987) proposed the sample-size adjusted Bayesian information criterion
(ssBIC). The deviance information criterion (DIC, Spiegelhalter et al. 2002) is a
recently developed criterion designed for hierarchical models. It is based on the
posterior distribution of the log-likelihood and is useful in Bayesian model selection
problems where the posterior distributions have been obtained by Markov chain
Monte Carlo (MCMC) simulation. DIC is usually regarded as a generalization of
AIC and BIC. It is defined analogously to AIC or BIC with a penalty term of the
number equal to effective model parameters in Bayesian models. In practice, rough
DIC (RDIC or DICV in some literature, e.g., Oldmeadow and Keith 2011) is an
approximation of DIC. The mathematical forms of AIC, BIC, CAIC, ssBIC, and
DIC are closely related to each other. They all try to find a balance between accuracy
and complexity of the fitting model. The accuracy of a model can be shown by
a deviance D(θ) = −2log( f (y|θ))+C for some constant C where θ is a vector of
model parameters. For all the criteria above, the model with a smaller criterion value
is better supported by data.

Bayesian approach is becoming increasingly important in estimating models
as it provides many advantages in dealing with complex statistical models with
complicated data structure (e.g., Dunson 2000). However, there is no well-defined
model selection criterion in a Bayesian context (e.g., Celeux et al. 2006). There
are at least three problems. First, in a Bayesian context there are two versions of
deviance because the Bayesian procedure generates Monte Carlo Markov chains
for each parameter. One version is the posterior estimate which can be expressed
as D(θ̂) = −2log(p(y|Eθ |y[θ ]))+C, which is analogous to a frequentist estimate.
It can be estimated by adopting a point parameter estimate of θ . Another version
is the Monte Carlo estimate of the expected deviance, which can be calculated as
D(θ) = Eθ |y[−2log(p(y|θ))]+C, which is based on Bayesian iterations. It can be
estimated as the posterior mean across a converged Markov chain. Conceptually,
D(θ) is the average of all deviances, and D(θ̂) is the deviance of the average of
all estimates. The second problem is related to the complexity of the raw data.
The data often come from heterogeneous populations which almost unavoidable
contain outliers and attrition. The estimates from mis-specified models may result
in severely misleading conclusions. The third problem relates to the likelihood
function. When latent variables are considered in statistical models, the likelihood
function can be an observed-data likelihood function, a complete-data likelihood
function, or a conditional likelihood function (Celeux et al. 2006). Furthermore, if
data come from heterogeneous populations, the class membership indicator may
have different versions, for example, a posterior mode or a posterior mean. Also,
with missing data, the likelihood functions have different ways to construct.

To address these problems, new criteria are expected. As latent growth mod-
eling is becoming increasingly popular in applied research, such as in statistical,
psychological, behavioral, and educational areas, in this study we consider to use
latent growth models to test the performance of proposed model selection criteria.
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Specifically, the goal of this paper is to examine the performance of the Bayesian
model selection criteria with more general growth models, such as non-normally
distributed growth models, robust growth mixture models, and robust extended
growth mixture models. Lu et al. (2013b) proposed a series of Bayesian criteria,
based on the traditional model selection criteria. However, in Lu et al. (2013b)
the performances of these criteria were investigated when data are non-mixture,
normally distributed, and with simple non-ignorable missingness. And only latent
growth models were used. In this study, data are more complex. We conduct five
simulation studies. The results will help inform the selection of growth models by
researchers seeking to provide people with accurate estimates of growth across a
variety of possible contexts.

21.2 Robust Growth Models with Non-ignorable Missingness

Our investigation of the performance of the Bayesian selection criteria involves
fitting growth models to complex data. In this section, different types of growth
models are briefly introduced. Given the fact that the data used in growth models
are almost inevitably contain attrition (e.g., Little and Rubin 2002; Yuan and Lu
2008; Lu et al. 2011) and outliers (e.g., Maronna et al. 2006), different types of
growth models are developed, which include traditional latent growth curve models
with missing data (Lu et al. 2013b), robust growth curve models (Zhang et al. 2013)
with missing data (Lu et al. 2013a), growth mixture models (e.g., Bartholomew
and Knott 1999) with missing data (Lu and Zhang 2014), extended growth mixture
models (EGMMs, Muthén and Shedden 1999) with missing data (Lu and Zhang
2014), and robust growth mixture models with missing data (Lu and Zhang 2014).

In the following, we discuss three types of models: traditional growth models
(including growth curve models, growth mixture models, and extended growth
mixture models), robust growth models (including three types of robust models),
and models that account for missingness (we mainly focus on non-ignorable
missingness). By combining different elements of these models, it becomes possible
to consider a series of growth models with a variety of missing data mechanisms and
contaminated data.

21.2.1 Traditional Growth Models

The density for a latent growth curve model is

{
yi =Λη i + ei ,

η i = ˇ+�i ,
(21.1)
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where yi is a T × 1 vector of outcomes for participant i(i = 1, . . . ,N), η i is a q× 1
vector of latent effects, Λ is a T × q matrix of factor loadings for η i, ei is a T × 1
vector of residual or measurement errors, ˇ is a q×1 vector of fixed-effects, and �i

captures the variation of η i. We have to note that ei and �i are usually assumed
normally distributed but not necessary. When data have outliers and are heavy-
tailed, this assumption might cause estimate biases. To reduce the effects of outliers,
we adopt robust models in this study.

The density function of a growth mixture model is

f (yi) =
K

∑
k=1

πk fk(yi), (21.2)

where πk is the invariant class probability (or weight) for class k satisfying 0 ≤ πk ≤
1 and ∑K

k=1πk = 1 (e.g., McLachlan and Peel 2000), and fk(yi)(k = 1, . . . ,K) is the
density of a latent growth model for class k.

For extended growth mixture models (EGMMs, Muthén and Shedden 1999), πk

is not invariant across individuals. It is allowed to vary individually depending on
covariates, so it is expressed as πik(xi). If a probit link function is used, then

⎧⎨
⎩
πi1(xi) =Φ(X ′

i '1),

πik(xi) =Φ(X ′
i 'k)−Φ(X ′

i 'k−1), (k = 2,3, . . . ,K −1)
πiK(xi) = 1−Φ(X ′

i 'K−1),

(21.3)

where Φ(·) is the cumulative distribution function (CDF) of the standard normal
distribution, and Xi = (1,x′i)′ with an r × 1 vector of observed covariates xi. Note
that Φ(X ′

i 'k) = ∑k
j=1πi j(xi) and Φ(X ′

i 'K)≡ 1.
A dummy variable zi = (zi1,zi2, . . . ,ziK)

′ is used to indicate the class mem-
bership. If individual i comes from group k, zik = 1 and zi j = 0 (∀ j �= k).
zi is multinomially distributed (McLachlan and Peel 2000, p. 7), that is, zi ∼
MultiNomial(πi1,πi2, . . . ,πiK).

21.2.2 Robust Growth Models

When data have outliers and are heavy-tailed, robust methods are used to reduce the
effects of outliers. As t-distributions are more robust than normal distributions, the
following are robust growth models (Lu et al. 2013a; Zhang et al. 2013).

(1) t-Normal (TN) model in which the measurement errors are t-distributed and the
latent random effects are normally distributed,

{
ei ∼ MtT (0,� ,ν),
�i ∼ MNq(0,Ψ),

(21.4)
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where MtT (0,� ,ν) is a T -dimensional multivariate t-distribution with a scale
matrix � and degrees of freedom ν , and MNq(0,Ψ) is a q-dimensional
multivariate Normal distribution with a covariance matrixΨ .

(2) Normal-t (NT) model in which the measurement errors are normally distributed
but the latent random effects are t-distributed,

{
ei ∼ MNT (0,�),

�i ∼ Mtq(0,Ψ ,u).
(21.5)

(3) t-t (TT) model in which both the measurement errors and the latent random
effects are t-distributed,

{
ei ∼ MtT (0,� ,ν),
�i ∼ Mtq(0,Ψ ,u).

(21.6)

21.2.3 Non-ignorable Missingness

To build models with non-ignorable missingness, selection models (Glynn et al.
1986; Little 1993, 1995) are used. For individual i, let mi = (mi1,mi2, . . . ,miT )

′ be a
missing data indicator for yi, with mit = 1 when yit is missing and 0 when observed.
Let τit = p(mit = 1) be the probability that yit is missing. Then mit ∼ Bernoulli(τit),
so its density function is f (mit) = τmit

it (1− τit)
(1−mit ). The missingness probability

τit can have different forms. Lu and Zhang (2014) proposed the following non-
ignorable missingness mechanisms for mixture models.

(1) Latent-Class-Intercept-Dependent (LCID) missingness in which τit is a function
of latent class, covariates, and latent individual initial levels. For example,
students are more likely to miss a test if their starting levels of that course are
low. We model it as follows.

τit =Φ(z′i�zt + IiγIt +x′i�xt), (21.7)

where Ii is the latent initial levels for individual i, γIt is the coefficient for Ii, �zt

is the coefficient for class membership, and �xt are coefficients for covariates.
For non-mixture homogenous growth models, LCID can be simplified to
Latent-Intercept-Dependent (LID) without the class membership indicator zi

and expressed as τit =Φ(γ0t + IiγIt +x′i�xt), where γ0t is the intercept.
(2) Latent-Class-Slope-Dependent (LCSD) missingness in which τit is a function

of latent class, covariates, and latent individual slopes of growth. For example,
students are more likely to miss a test if they have slow growth of the course. In
this case, τit can be modelled as

τit =Φ(z′i�zt +SiγSt +x′i�xt), (21.8)
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where Si is the latent slope for individual i, and γSt is the coefficient for Si.
Similarly, for non-mixture homogenous growth models, LCSD is simplified to
Latent-Slope-Dependent (LSD) case as τit =Φ(γ0t +SiγSt +x′i�xt).

(3) Latent-Class-Outcome-Dependent (LCOD) missingness in which τit is a func-
tion of latent class, covariates, and potential outcomes that may be missing. For
example, a student who feels he/she is not doing well on the test may be more
likely to give up taking the rest of the test. We express τit as

τit =Φ(z′i�zt + yitγyt +x′i�xt), (21.9)

where yit is the potential outcomes for individual i at time t, and γyt is the
coefficient for yit . And LCOD can be simplified to Latent-Outcome-Dependent
(LOD) for non-mixture homogeneous growth models with a probability of
missingness τit =Φ(γ0t + yitγyt +x′i�xt).

In a more general framework, LCID and LCSD can be further encompassed
into Latent-Class-Random Effect-Dependent missingness as intercept and slope
are different random effects according to different situations under consideration.
And for non-mixture structure, LID and LSD are encompassed into Latent-Random
Effect-Dependent missingness.

21.3 Bayesian Selection Criteria

Based on Lu et al. (2013a), model selection criteria are proposed in the framework
of Bayesian growth models with missing data. The definitions of selection criteria
are listed in Table 21.1. The model selection criteria in the table are based on two
versions of deviance in the Bayesian context, ED|y[D(θ)] and D(Eθ |y[θ ]). As we
have discussed in the introduction section, Eθ |y[D] is the expected value of all the
deviances, and D(Eθ |y[θ ]) is the deviance score based on the expected parameters.
For different models, the detailed mathematical form of these two deviances is
different. In this paper, we focus on both homogeneous and heterogenous latent
growth models with non-ignorable missing data.

(1) We first look at the homogeneous growth curve models with non-ignorable
missing data. One version of deviance, ED|y[D(θ)], is approximated by

ED|y[D(θ)]≈ D(θ) =− 2
S

S

∑
s=1

N

∑
i=1

T

∑
1=t

l(s)it (θ |y,m)

=− 2
S

S

∑
s=1

N

∑
i=1

T

∑
1=t

[
(1−m(s)

it )l(s)it (y)+ l(s)it (m)
]
, (21.10)
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Table 21.1 Model selection
criteria

Criterion(Index) = Deviance + Penalty

Dbar.AICa D(θ)b 2 p

Dbar.BICc D(θ) log(N) p

Dbar.CAIC D(θ) (log(N)+1) p

Dbar.ssBIC D(θ) log((N+2)/24) p

RDIC D(θ) var(Dbar)/2

Dhat.AIC D(θ̂)d 2 p

Dhat.BIC D(θ̂) log(N) p

Dhat.CAIC D(θ̂) (log(N)+1) p

Dhat.ssBIC D(θ̂) log((N+2)/24) p

DICe D(θ̂) 2 pD
a p is the number of parameters, which are on the same
level as the likelihood value is.
bD(θ) is shown as in Eq. (21.10) for growth curve
models and as in Eq. (21.13) for growth mixture
models. It is one type of the approximations of the
deviance score.
cN is the sample size.
dD(θ̂) is shown as in Eq. (21.12) for growth curve
models and as in Eq. (21.14) for growth mixture mod-
els
e pD = D(θ)−D(θ̂)

where S is the number of iterations for converged Markov chains, l(s)it (θ |y,m) =

log(L(s)
it (θ |y,m)) is a conditional joint loglikelihood function (see, Celeux et al.

2006) of y and m, mit is the missing data indicator for individual i at time t
with a likelihood function likt(m) = mit log(τit)+ (1−mit)log(1− τit), where
τit is the missing data rate for individual i at time t and is defined differently for
different missingness models as in the previous section. When yit is missing, the
corresponding likelihood is excluded. So combining y and m, the conditional
likelihood function of a selection model with non-ignorable missing data can
be expressed as

Lit(θ |y,m) = [ f (yit |η i)(1− τit)]
(1−mit ) τmit

it , (21.11)

And the other version of deviance, D(Eθ |y[θ ]), is approximated by

D(Eθ |y[θ ])≈ D(θ̂) =−2
N

∑
i=1

T

∑
t=1

[
(1−mit)lit(y|θ̂)+ lit(m|θ̂)] , (21.12)

where θ̂ is the posterior mean of parameter estimates across S iterations.
(2) For growth mixture models with missing data, Eθ |y[D] is expressed as
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ED|y[D(θ)]≈ D(θ) =−2
S

S

∑
s=1

N

∑
i=1

K

∑
k=1

z(s)ik

T

∑
1=t

[
(1−mit)l

(s)
ikt (y)+ l(s)ikt (m)

]
, (21.13)

where zi = (zi1,zi2, . . . ,ziK) is the class membership indicator which follows

a multinomial distribution, zi ∼ MultiNomial(πi1,πi2, . . . ,πiK), and z(s)ik is the
class membership estimated at iteration s. And

D(Eθ |y[θ ])≈ D(θ̂) =−2
N

∑
i=1

K

∑
k=1

ẑik

T

∑
t=1

[
(1−mit)likt(y|θ̂)+ likt(m|θ̂)] , (21.14)

where ẑik is the posterior mode of class membership, θ̂ is the posterior mean
of parameter estimates across all S iterations. In both the D(θ) and D(θ̂)
definitions of deviance, likt(y) and likt(m) are the conditional loglikelihood
functions for yit and mit , respectively, for individual i in class k at time t.

If people calculate deviance scores using D(θ̂), then D(θ) is the sum of an
approximation of the deviance score (D(θ̂)) and some penalties. The difference
between D(θ) and D(θ̂) can be quantified by a statistic called pD (Spiegelhalter
et al. 2002),

pD = D(θ)−D(θ̂). (21.15)

Based on the Jensen’s inequality (Casella and George 1992), when D(θ) is convex,
then D(θ) ≥ D(θ̂) and as a result pD is positive. When D(θ) is concave, then
D(θ)≤ D(θ̂) and pD is negative.

21.4 Simulation Studies

In this section, five simulation studies are conducted to evaluate the performance of
the Bayesian criteria. For each study, four waves of complete data were generated
first and then missing data were created on each occasion according to pre-designed
missing data rates. After data are generated, full Bayesian methods are used by
adopting uninformative priors, obtaining conditional posterior distributions through
application of a data augmentation algorithm, generating Markov chains through a
Gibbs sampling procedure, conducting convergence testing, and making statistical
inference for model parameters. For all simulations, the software OpenBUGS is
used for the implementation of Gibbs sampling, and R codes are written for data-
generation, convergence testing, and parameter estimation.

The five studies are designed such that the data complexity increases from study
1 to study 5. Studies 1–2 focus on non-mixture growth data and thus, latent growth
curve models with missing data are used. Studies 3–5 focus on mixture growth data
and thus, growth mixture models with missing data are used. Simulation factors
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include measurement error distributions, random effect distributions, missingness
patterns, sample size, and class separation (Anderson and Bahadur 1962). Under
each condition, 100 converged replications are used to calculate the model selection
proportion. Table 21.2 lists the design details.

Study 1 investigated the performance of the Bayesian criteria when data were
non-mixture homogenous, normally distributed with non-ignorable missingness.
The true model was NN-XS, which was the model with normally distributed
measurement errors (ei) at level 1 and random effects (�i) at level 2, with
missingness depending on covariate x and latent slope S. Specifically, ei ∼MN(0, I),
η i ∼ MNq(ˇ,Ψ) where ˇ = (Intercept,Slope) = (1,3) and Ψ was a 2 by 2
symmetric matrix with Var(I) = 1, Cov(I,S) = 0, and Var(S) = 4. For miss-
ingness, the bigger the latent slope was, the higher the missing data rate would
be. The missingness probit coefficients were set as γ0 = (−1,−1,−1,−1), γx =
(−1.5,−1.5,−1.5,−1.5), and γS = (0.5,0.5,0.5,0.5). For example, if a participant
had a latent growth slope 3, with a covariate value 1, then his or her missing
probability at each wave was τ ≈ 16%; if the slope was 5, with the same covariate
value, the missing probability increased to τ = 50%; but if the slope was 1, then
the missing probability decreased to τ = 2.3%. The covariate x was also generated
from a normal distribution, x ∼ N(1,sd = 0.2). In study 1, totally there were 16
conditions with 4 missingness mechanisms (XS non-ignorable, XY non-ignorable,
XI non-ignorable, and ignorable) combined with 4 levels of sample size (1,000,
500, 300, and 200). Table 21.3 lists the model selection proportions across 100
replications for each of these criteria across all conditions in study 1. The largest
proportion across four missingness models is indicated in the shaded cell for each
criterion. When sample size is relatively large, 1,000 or 500, all of the model
selection criteria, except for the rough DIC (RDIC), correctly identify the true model
with 100 %. When sample size becomes smaller, 300 or 200, except for the RDIC,
all of the model selection criteria choose the true model with certainty above 93 %.
Comparing the criteria defined based on Dbar with those defined based on Dhat, one
can see that the former performs a little bit better.

Study 2 investigated the performance of these criteria when data were non-
mixture homogeneous with outliers and non-ignorable missingness. The main
difference between study 2 and 1 was that the data for study 2 contain outliers
such that they are not normally distributed. So robust growth curve models were
used. The true model was TN-XS, which means measurement errors (ei) at level 1
followed a t-distribution. Specifically, ei were generated from a t distribution with
5 degrees of freedom and a scale matrix I, i.e., ei ∼ Mt(0, I,5). Other settings were
kept the same as those in study 1. In this study, totally 32 conditions were considered
with 4 data distributions (NN, TN, NT, and TT), 4 missingness patterns (XS non-
ignorable, XY non-ignorable, XI non-ignorable, and ignorable), and 2 levels of
sample size (1,000 and 500). Table 21.4 lists the model selection proportions. The
largest proportion across 16 missingness models is indicated in the shaded cell for
each criterion. Except for the RDIC, all of the model selection criteria correctly
identify the true model. TT-XS is a competing model, which also gains high
selection probabilities. This is because the normal distribution is almost identical
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to a t-distribution with large degrees of freedom. The degrees of freedom of t is also
estimated by the model. Also, the Dbar-based criteria perform a little bit better than
the Dhat-based criteria. Among them, Dbar-based BIC and CAIC perform best.

Study 3 was designed for mixture data with outliers and non-ignorable missing
data. As data were mixture, growth mixture models were used. In this study, the
true model was 2-class mixture TN-XS RGMM. Only intercepts of these 2 classes
were different, with 5 for class 1 and 1 for class 2. Other settings for each class
were the same as in study 2. Both classes have t5 distributed measurement errors.
Based on Anderson and Bahadur (1962), the class separation is around 2.7. In this
study, we assumed they are traditional mixture models, i.e., class probabilities were
fixed. We were fixed as (50 %, 50 %) in this study. Similar as in study 2, there
were 32 conditions considered with 4 data distributions (NN, TN, NT, and TT),
4 missingness patterns (XS non-ignorable, XY non-ignorable, XI non-ignorable,
and ignorable), and 2 levels of sample size (1,000 and 1,500). As mixture data
require more data to obtain estimates, we increased the sample size. Table 21.5
shows the results for study 3. The shaded cell indicates the largest proportion across
16 missingness models for each criterion. Again, almost all of the model selection
criteria correctly identify the true model. And the Dbar-based criteria perform a
little bit better than the Dhat-based criteria. Specifically, Dbar-based BIC and CAIC
perform best among these criteria, and then Dbar-based ssBIC also performs well.

Study 4 extended study 3 such that the class probabilities were not fixed. Instead,
they depended on values of covariates. Also, the non-ignorable missingness in
this study was allowed to depend on the corresponding observations’ latent class
membership. The true model in this study was 2-class mixture TN-CXS robust
extended growth mixture models (REGMM). The differences between this study
and study 3 were (1) the class proportions in this study were predicted by the
value of covariate x; (2) the missing data rates were predicted by the latent class
membership; (3) both medium size, 2.7, and small size, 1.7, class separations were
used. Specifically, for small class separation, the intercept for class 1 was 3.5 and
the intercept for class 2 was 1. To simplify the simulation, based on the findings in
study 3, 5 competing mixture models (TN-CXS, TT-CXS, TN-CX, NN-CXS, and
NN-CX) were chosen to fit the data. Totally, we considered 20 conditions with 5
mixture models, 2 levels of sample size (1,500 and 1,000), and 2 levels of class
separation (2.7 and 1.7). Table 21.6 shows the model selection proportions in study
4. Again, almost all of the model selection criteria correctly identify the true model.
Specifically, Dbar-based BIC and CAIC perform best among these criteria.

Study 5 focused on the number of classes. In this study, different growth curve
models with different numbers of classes were fitted and compared. In total, 9
conditions were considered, including 3 models (TN-XS, TT-XS, NN-XS) and 3
numbers of classes (1, 2, and 3). The true model was the 2-class mixture TN-XS
model. The simulation results for study 5 were presented in Table 21.7. Among these
criteria, Dhat-based criteria perform better than Dhbar-based criteria. Specifically,
Dhat-based BIC and CAIC perform best, and ssBIC and AIC also provide high
certainty.
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Table 21.4 Model selection proportion in study 2

N= 1,000 N= 500
Non-ignorable Non-ignorable

Criterion XSa XY XI Ignorable XS XY XI Ignorable

Dbar.AIC TNb 0.519 0.000 0.000 0.000 0.597 0.013 0.000 0.000
TTc 0.469 0.000 0.000 0.012 0.377 0.000 0.000 0.000
NTd 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000
NNe 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000

Dbar.BIC TN 0.781 0.000 0.000 0.000 0.855 0.013 0.000 0.000
TT 0.200 0.000 0.000 0.019 0.113 0.000 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.013 0.000 0.000 0.000

Dbar.CAIC TN 0.819 0.000 0.000 0.000 0.888 0.012 0.000 0.000
TT 0.162 0.000 0.000 0.019 0.075 0.000 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.019 0.000 0.000 0.000

Dbar.ssBIC TN 0.625 0.000 0.000 0.000 0.631 0.012 0.000 0.000
TT 0.362 0.000 0.000 0.012 0.338 0.000 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000

RDIC TN 0.000 0.000 0.106 0.000 0.000 0.000 0.094 0.000
TT 0.000 0.000 0.100 0.000 0.000 0.000 0.113 0.000
NT 0.000 0.000 0.394 0.000 0.000 0.000 0.390 0.000
NN 0.000 0.000 0.400 0.000 0.000 0.000 0.403 0.000

Dhat.AIC TN 0.544 0.000 0.000 0.000 0.547 0.025 0.000 0.000
TT 0.506 0.006 0.000 0.000 0.447 0.019 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.BIC TN 0.675 0.006 0.000 0.000 0.717 0.025 0.000 0.000
TT 0.319 0.000 0.000 0.000 0.245 0.013 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.CAIC TN 0.700 0.006 0.000 0.000 0.788 0.025 0.000 0.000
TT 0.294 0.006 0.000 0.000 0.169 0.012 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.ssBIC TN 0.575 0.006 0.000 0.000 0.588 0.025 0.000 0.000
TT 0.419 0.006 0.000 0.000 0.369 0.012 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DIC TN 0.325 0.000 0.000 0.000 0.415 0.006 0.000 0.000
TT 0.462 0.000 0.000 0.194 0.409 0.000 0.000 0.000
NT 0.012 0.000 0.000 0.000 0.088 0.000 0.000 0.000
NN 0.006 0.000 0.000 0.000 0.082 0.000 0.000 0.000

aOther abbreviations are as given in Table 21.3
bGrowth model with t-distributed measurement errors and normally distributed random effects
cGrowth model with t-distributed measurement errors and t-distributed random effects
dGrowth model with normally distributed measurement errors and t-distributed random effects
eGrowth model with normally distributed measurement errors and random effects
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Table 21.5 Model selection proportion in study 3

N= 1,500 N= 1,000

Non-ignorable Non-ignorable

Criterion XS XY XI Ignorable XS XY XI Ignorable

Dbar.AIC TN 0.621 0.000 0.000 0.000 0.593 0.000 0.000 0.000

TT 0.357 0.000 0.000 0.000 0.314 0.000 0.000 0.000

NT 0.000 0.000 0.000 0.000 0.021 0.000 0.000 0.000

NN 0.021 0.000 0.000 0.000 0.071 0.000 0.000 0.000

Dbar.BIC TN 0.864 0.000 0.000 0.000 0.843 0.000 0.000 0.000

TT 0.114 0.000 0.000 0.000 0.064 0.000 0.000 0.000

NT 0.000 0.000 0.000 0.000 0.014 0.000 0.000 0.000

NN 0.021 0.007 0.000 0.000 0.079 0.000 0.000 0.000

Dbar.CAIC TN 0.893 0.000 0.000 0.000 0.857 0.000 0.000 0.000

TT 0.079 0.000 0.000 0.000 0.043 0.000 0.000 0.000

NT 0.000 0.000 0.000 0.000 0.007 0.007 0.000 0.000

NN 0.021 0.007 0.000 0.000 0.086 0.000 0.000 0.000

Dbar.ssBIC TN 0.729 0.000 0.000 0.000 0.750 0.000 0.000 0.000

TT 0.250 0.000 0.000 0.000 0.157 0.000 0.000 0.000

NT 0.000 0.000 0.000 0.000 0.014 0.000 0.000 0.000

NN 0.021 0.007 0.000 0.000 0.079 0.000 0.000 0.000

RDIC TN 0.071 0.000 0.000 0.000 0.143 0.000 0.000 0.000

TT 0.086 0.000 0.000 0.000 0.071 0.000 0.000 0.000

NT 0.450 0.000 0.000 0.000 0.393 0.007 0.000 0.000

NN 0.393 0.000 0.000 0.000 0.379 0.007 0.000 0.000

Dhat.AIC TN 0.586 0.000 0.000 0.000 0.621 0.000 0.000 0.000

TT 0.379 0.000 0.000 0.000 0.329 0.000 0.000 0.000

NT 0.014 0.000 0.000 0.000 0.014 0.007 0.000 0.000

NN 0.014 0.007 0.000 0.000 0.057 0.000 0.000 0.000

Dhat.BIC TN 0.757 0.000 0.000 0.000 0.793 0.000 0.000 0.000

TT 0.207 0.000 0.000 0.000 0.121 0.000 0.000 0.000

NT 0.007 0.000 0.000 0.000 0.007 0.007 0.000 0.000

NN 0.021 0.007 0.000 0.000 0.071 0.000 0.000 0.000

Dhat.CAIC TN 0.757 0.000 0.000 0.000 0.814 0.000 0.000 0.000

TT 0.207 0.000 0.000 0.000 0.100 0.000 0.000 0.000

NT 0.007 0.000 0.000 0.000 0.007 0.007 0.000 0.000

NN 0.021 0.007 0.000 0.000 0.071 0.000 0.000 0.000

Dhat.ssBIC TN 0.586 0.000 0.000 0.000 0.664 0.000 0.000 0.000

TT 0.379 0.000 0.000 0.000 0.250 0.000 0.000 0.000

NT 0.014 0.000 0.000 0.000 0.014 0.007 0.000 0.000

NN 0.014 0.007 0.000 0.000 0.064 0.000 0.000 0.000

DIC TN 0.507 0.000 0.000 0.000 0.364 0.007 0.000 0.000

TT 0.371 0.000 0.000 0.000 0.286 0.000 0.000 0.000

NT 0.043 0.036 0.000 0.000 0.129 0.029 0.007 0.000

NN 0.043 0.000 0.000 0.000 0.150 0.029 0.000 0.000

Abbreviations are as given in Table 21.3
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Table 21.7 Model selection proportion in study 5

2 CLASSES 1 CLASS 3 CLASSES

Criterion TN-XS TT-XS NN-XS TN-XS TT-XS NN-XS TN-XS TT-XS NN-XS

Dbar.AIC 0.000 0.000 0.057 0.393 0.129 0.000 0.021 0.007 0.393

Dbar.BIC 0.000 0.000 0.036 0.821 0.064 0.000 0.000 0.000 0.079

Dbar.CAIC 0.000 0.000 0.036 0.864 0.043 0.000 0.000 0.000 0.057

Dbar.ssBIC 0.000 0.000 0.057 0.593 0.100 0.000 0.000 0.000 0.25

RDIC 0.036 0.014 0.2 0.014 0.014 0.679 0.014 0.014 0.014

Dhat.AIC 0.621 0.343 0.064 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.BIC 0.793 0.136 0.071 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.CAIC 0.814 0.114 0.071 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.ssBIC 0.664 0.264 0.071 0.000 0.000 0.000 0.000 0.000 0.000

DIC 0.000 0.000 0.000 0.164 0.193 0.121 0.000 0.000 0.521

Abbreviations are as given in Table 21.3

21.5 Application

In this section, a real data set on mathematical growth is analyzed to demonstrate
the application of the criteria. The same sample that has been analyzed in Lu
et al. (2011) is used here. It is a mathematical ability growth sample from the
NLSY97 survey (Bureau of Labor Statistics, U.S. Department of Labor 1997),
which were collected from N = 1,510 adolescents yearly from 1997 to 2001 when
each adolescent was administered the Peabody Individual Achievement Test (PIAT)
Mathematics Assessment to measure their mathematical ability. There are some
outliers at all five grades. Lu et al. (2011) conducted a power transformation
to normalize the sample and assumed the data are normally distributed without
outliers. In this study, however, we use the original non-transformed data with
outliers, so robust methods are used. Also, different non-ignorable missingness
mechanisms are considered. Overall, the means of mathematical ability increased
over time with a roughly linear trend. The missing data rates range from 4.57 to
9.47 %, and the raw data show the missing pattern is intermittent. About half of the
sample is female.

The analysis is conducted following the steps in Table 21.8. In step 1, a tentative
model (the TT-ignorable model) is fitted to the data. Gender is a covariate. The
estimates of degrees of freedom of t for both classes are 2.342 and 3.263 for
measurement errors and 75.65 and 50.96 for random effects, which indicates
that measurement errors are t distributed while random effects are approximately
normally distributed (i.e., a TN model). And then in step 2, to compare models
with different non-ignorable missingness and numbers of classes, 10 models are
fitted to the data. During estimation we use uninformative priors which carry little
information for model parameters. A burn-in period is run first to ensure estimates
are based on the Markov chains that have converged. For testing convergence, the
history plot is examined and the Geweke’s z statistic (Geweke 1992) is checked
for each parameter. The Geweke’s z statistics for all the parameters are smaller than
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Table 21.8 Steps and fitting models in real data analysis

Step 1: Fit a tentative 2 classes model, and check
the estimated df of t

ei η i missingness

Model N T N T C X I S Y
TT-ignorable � �

Step 2: Try models with different missingness and
number of classes

2 Classes RGMMs
TN-X � � �
TN-XI � � � �
TN-XS � � � �
TN-XY � � � �
2 Classes REGMMs
TN-CX � � � �
TN-CXI � � � � �
TN-CXS � � � � �
TN-CXY � � � � �
3 Classes GMMs
NN-X � � �
4 Classes GMMs
NN-X � � �

Step 3: Compare selection criteria

Step 4: Interpret results obtained from the selected model

Abbreviations are as given in Table 21.2

1.96, which indicates converged Markov chains. To make sure all the parameters are
estimated accurately, the next 50,000 iterations are then saved for data analysis. The
ratio of Monte Carlo error (MCerror) to standard deviation (S.D.) for each parameter
is smaller than or close to 0.05, which indicates parameter estimates are accurate
(Spiegelhalter et al. 2003). In step 3, model selection criterion is used to compare the
ten models. The indices are listed in Table 21.9. And in step 4, the results obtained
from the final selected model are interpreted.

As suggested by Dhat.CAIC, Dhat.ssBIC, Dhat.BIC, and Dhat.AIC, without
further substantive information, the TN-CXY model would appear to be a good
candidate for best-fitting model. Table 21.10 provides the results of the TN-CXY
REGMM model. It can be seen that (1) class 1 has a higher average initial level
but a smaller average slope; (2) class 2 has larger variations for initial levels and
slope; (3) the residual variance of class 2 is much larger than that of class 1; (4) in
class 1 the initial level and the slope are significantly negatively correlated at the
confidence level of 95 %; (5) the missingness is not related to gender because none
of the coefficients of gender are significant at the α level of 0.05; (6) at grade 11,
adolescents in class 2 are more likely to miss tests than those in class 1 because the
probit coefficient of class membership for grade 11 is significantly positive; and (7)
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Table 21.10 Estimates of TN-CXY REGMM in real data analysis

Parameter Mean S.D. MC.e./S.D.a Lowerb Upperc Geweke td
G

ro
w

th
cu

rv
e

pa
ra

m
et

er
s

C
la

ss
1

Intercept 8.647 0.037 0.026 8.572 8.717 0.007
Slope 0.229 0.009 0.023 0.211 0.247 0.014
Var(I) 0.234 0.028 0.024 0.183 0.293 −0.009
Var(S) 0.014 0.002 0.018 0.011 0.017 0.004
Cov(I,S) −0.036 0.006 0.022 −0.049 −0.026 −0.005
Var(e) 0.044 0.004 0.031 0.037 0.053 0.024
d fy

e 2.386 0.205 0.043 2.118 2.900 0.050

C
la

ss
2

Intercept 6.196 0.047 0.020 6.103 6.287 0.054
Slope 0.315 0.011 0.022 0.295 0.336 0.036
Var(I) 1.326 0.084 0.017 1.167 1.497 0.020
Var(S) 0.034 0.004 0.022 0.027 0.042 0.010
Cov(I,S) 0.010 0.014 0.021 −0.018 0.037 −0.023
Var(e) 0.372 0.020 0.033 0.336 0.412 −0.061
d fy 3.200 0.195 0.040 2.850 3.600 −0.042

Pr
ob

it
pa

ra
m

et
er

s

C
la

ss ϕ10
f −0.214 0.119 0.051 −0.438 0.018 −0.039

ϕ11 −0.223 0.077 0.051 −0.372 −0.076 0.026

G
ra

de
7 γ∗01

g −0.711 0.532 0.066 −1.843 0.204 −0.255
γ∗11

h −0.132 0.216 0.058 −0.527 0.310 0.231
γx1

i −0.154 0.108 0.046 −0.368 0.058 0.008
γY 1

j −0.087 0.059 0.065 −0.190 0.038 0.251

G
ra

de
8 γ∗02 −1.157 0.446 0.064 −2.097 −0.447 −0.373

γ∗12 0.046 0.217 0.055 −0.345 0.489 0.347
γx2 0.113 0.114 0.046 −0.109 0.334 0.032
γY 2 −0.108 0.045 0.062 −0.188 −0.021 0.330

G
ra

de
9 γ∗03 −0.613 0.454 0.065 −1.519 0.163 −0.462

γ∗13 −0.057 0.181 0.056 −0.403 0.292 0.381
γx3 −0.147 0.094 0.046 −0.332 0.038 0.045
γY 3 −0.074 0.045 0.064 −0.155 0.022 0.459

G
ra

de
10

γ∗04 −0.032 0.512 0.066 −0.861 0.985 −0.426
γ∗14 −0.324 0.204 0.059 −0.732 0.029 0.362
γx4 0.059 0.101 0.047 −0.142 0.251 0.128
γY 4 −0.166 0.050 0.065 −0.266 −0.084 0.378

G
ra

de
11

γ∗05 −1.298 0.421 0.065 −2.130 −0.442 −0.192
γ∗15 0.341 0.176 0.055 0.015 0.708 0.159
γx5 −0.087 0.091 0.045 −0.263 0.083 0.001
γY 5 −0.019 0.040 0.064 −0.092 0.062 0.189

aRatio of MC error to standard deviation. A value around or less than 0.05 indicates that
the corresponding estimate is accurate (Spiegelhalter et al. 2003)
b,cThe lower 2.5 percentile and upper 97.5 percentile
dGeweke test t value. An absolute value less than 1.96 indicates that the corresponding
chain has passed the convergence test
eThe degrees of freedom of the multivariate-t
fThe probit coefficient of the class probability for class 1, defined in Eq. (21.3)
gThe probit coefficient of the class membership 1 at Grade 7, defined in Eq. (21.9)
hThe probit coefficient of the class membership 2 at Grade 7, defined in Eq. (21.9)
iThe probit coefficient of the covariate at Grade 7, defined in Eq. (21.9)
jThe probit coefficient of the potential output Y at Grade 7, defined in Eq. (21.9)
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at grades 8 and 10, students with higher potential scores are more likely to miss tests
than the students having lower scores because the probit coefficients of the potential
outcomes y at the two grades are significantly negative.

21.6 Conclusions and Future Research

Based on the results from the five simulation studies, one can conclude that (1)
almost all of the model selection criteria, except for the rough DIC (RDIC), can
correctly choose the true model with high certainty; (2) if the number of classes is
correctly identified, then the Dbar-based criteria perform better than the Dhat-based
criteria; if candidate models have different numbers of classes, then the Dhat-based
criteria might be used to select the best-fit model; (3) across five studies, CAIC
and BIC provide higher probabilities than those ssBIC, AIC, or DIC does. The
results will help inform the selection of growth models by researchers seeking
to provide people with accurate estimates of growth across a variety of possible
contexts. The real data analysis demonstrated the application of the criteria to typical
longitudinal growth studies such as educational, psychological, and social research.
Future research of this study includes proposing more effective model selection
criteria, such as Bayes factors, and testing their performance with more practice
statistical models, such as survival models.
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Chapter 22
A Comparison of the Hierarchical Generalized
Linear Model, Multiple-Indicators
Multiple-Causes, and the Item Response
Theory-Likelihood Ratio Test for Detecting
Differential Item Functioning

Mei Ling Ong, Laura Lu, Sunbok Lee, and Allan Cohen

Abstract The purpose of this study was to compare the DIF detection performance
of the hierarchical generalized linear model (HGLM), the multiple-indicators
multiple-causes (MIMIC) method, and the IRT likelihood ratio (IRT-LR) test in
simulated hierarchical data. Conditions in the simulation study included the number
of clusters, cluster sizes, and the intraclass correlation coefficient (ICC). Those
methods are compared in terms of Type I error rates. These rates should be close
to 0.05 when the level of significance is set at 0.05. Results show that the HGLM
maintained the marginal Type I error rate. The MIMIC model maintained a Type I
error control rate better than the other two methods when cluster sizes were small.
When cluster size and intraclass correlation ρ increased, however, the Type I error
rates increased as well. The IRT-LR test maintained a marginal Type I error control
for small sample cluster sizes but failed to do so for larger cluster sizes.
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A well-constructed test is the best way to evaluate students’ mastery in a particular
field after they have been taught the material. To this end, all items and the complete
assessment as well should be reviewed in order to make sure that they are as free
as possible from irrelevant variables, which could interfere with students’ abilities
to demonstrate their knowledge and skills (NAEP 2009). Detecting differential item
functioning (DIF) involves testing examinees from different groups that share the
same abilities but differ in their probabilities of giving correct responses on test
items (Holland and Thayer 1988) and can be seen as a critical step in detecting
biased items and assessing test score validity. To detect DIF, we usually consider two
groups, a reference group and a focal group, with the majority typically treated as the
reference group. There are two types of DIF, uniform and non-uniform. The former
occurs when the difference in the item difficulty parameters between a reference
and a focal group is the same at all ability levels. That is, uniform DIF shows no
interaction between the ability levels of the two groups (Camilli and Shepard 1994).
This type of DIF occurs when other item parameters are the same in reference-
and focal- groups. The latter, also called crossing DIF, refers to the case in which
the item discriminates differently across ability levels in the reference and focal
groups. In this type of DIF, there is an interaction between ability level and group.
In other words, non-uniform DIF examines the difference in the item discrimination
parameters (Cohen et al. 1996).

The presence of DIF is a potential threat to validity (Thissen et al. 1993), as
it may result in providing misleading ability estimates for one or more groups of
examinees. Thus, DIF items need to be revised or removed, because the existence
of DIF items may seriously affect the fairness of a test (Kim and Cohen 1998).
Detecting DIF can be done for dichotomous or polytomous items by checking
the probability of the responses modeled using any of the different item response
functions. In the present study, without loss of generality, we focus on uniform DIF
detection and dichotomous items, specifically in the context of the Rasch model
(Rasch 1960), which is appropriate for dichotomous responses. With the Rasch
model, the discriminations of all items are set to be equal to one. The model assumes
the probability of a correct answer is solely a function of the difference between the
student’s ability, θ , and the difficulty of the item, b. The difficulty of the item is
defined for the Rasch model as that point on the ability scale at which the probability
of a correct response to the item is 0.5 (Baker and Kim 2004). The Rasch model is
given as (Baker and Kim 2004)

Pi (θ j) =
exp(θ j −bi)

1+ exp(θ j −bi)
, (22.1)

where θ j is students’ ability, and bi is item difficulty.
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Traditionally, there are two popular methods for detecting DIF, non-IRT (or
observed-score) methods and IRT based methods. Non-IRT methods include meth-
ods such as the Mantel–Haenszel (Holland and Thayer 1988) and the standard-
ization method (Dorans and Kulick 1986). IRT based methods include Lord’s
chi-square (Lord 1980), Raju’s area measures (Raju 1988, 1990), and the likelihood
ratio test for DIF (Thissen et al. 1993). In this paper, we focus on IRT based methods.

Note that standard IRT methods such as these do not consider the possible nested
structure of the data. However, in educational research, data often include a nested
structure, for example repeated observations are nested within individuals who are,
in turn, nested within schools (Raudenbush and Bryk 2002). Raudenbush and Bryk
(2002) note that ignoring this nesting structure can result in biased estimates of
students’ abilities. This kind of nesting structure is quite common, for example,
in state-level achievement test data (French and Finch 2013). Another example
is that teachers may teach more than one level of a course within a subject area
(e.g., elementary algebra, geometry, and trigonometry). Also, teachers may teach
the same subject in more than one school in a district. In such contexts as these,
if traditional IRT methods are used for the detection of DIF, there is a risk of
ignoring hierarchical structure (Kamata and Vaughn 2011), with results that bias
point estimates, standard errors, and corresponding conference intervals. Incorrect
DIF detection in such a context would result in inflated Type I error rates in DIF
detection. Recently, hierarchical liner models (HLM) in the context of IRT have
been reported in a number of studies (e.g., Acar 2012; French and Finch 2010).
Likewise, structural equation models (SEM) have been discussed in the context of
IRT (French and Finch 2010; Woods 2009).

With respect to HLM and IRT, French and Finch (2010) compared logistic
regression and hierarchical logistic regression based on a two-parameter logistic
(2PL) model. Type I error rates for hierarchical logistic regression were at or below
the nominal level of 0.05 under several combinations of intraclass correlation, ρ ,
and cluster size, N, in the between-cluster condition. Finch and French concluded
that ignoring the multilevel structure may result in failure to correctly identify DIF
items. Further, accounting for the multilevel structure clearly demonstrated control
of a Type I error in the detection of DIF.

Regarding SEM and IRT, Finch (2005), for example, compared the multiple-
indicators, multiple-causes (MIMIC) method with the Mantel–Haenszel, SIBTEST,
and IRT-LR for 2PL and 3PL models. The results suggested that the MIMIC model
for detecting DIF has an inflated Type I error rate for shorter tests (20-items) in the
3PL model but a viable option for longer tests (50-items) in the 2PL models. In
addition, the MIMIC model performed well when the proportion of DIF items was
large. Woods (2009) also compared the MIMIC model with the IRT-LR test for 2PL
models and indicated that “With small focal-group samples, tests of uniform DIF
with binary or five-category ordinal responses were more accurate with MIMIC
models than IRT-LR-DIF. At all values of NF , the Type I error was well below the
nominal α level [0.05] and power was greater for the MIMIC approach than for
IRT-LR-DIF” (p. 23). In sum, the HLM was found to be more accurate when using
multilevel structures of data, and the MIMIC was recommended for detecting DIF
in small sample sizes, when compared to other IRT methods.
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However, so far no study has compared these three methods under the same
conditions. As the hierarchical generalized linear model (HGLM) is increasingly
becoming popular in the IRT area, the purpose of the current study is to compare
the performance of three models for detecting DIF, the IRT-LR test, the HGLM,
and the MIMIC. In the following, the first section reviews these three methods,
the IRT-LR, the HGLM, and the MIMIC, for detecting DIF. The second section
describes simulation studies. The third section discusses the results. The fourth
section presents a discussion of the findings.

22.1 Three Methods for DIF Detection

22.1.1 IRT-LR Test

The IRT-LR was proposed by Thissen, Steinberg, and Gerrard (1986) and Thissen
et al. (1993) to assess the significance of differences in item parameter estimates
between reference and focal groups (Kim and Cohen 1998). Thissen et al. (1988)
noted that the IRT-LR test method is preferable for theoretical reasons, because the
comparison of item parameters and an area measure require accurate estimates of
variances and covariances of the item parameters. In the IRT-LR, some items are
used to establish a common metric between the reference and focal groups. These
are referred to as the anchor items and are assumed to be DIF-free. The anchor item
parameters are constrained to be equal between these groups. The studied items are
then evaluated for DIF by releasing them to be freely estimated. This can be done
one item at a time (e.g., Cohen et al. 1996) or in groups (e.g., Thissen et al. 1993;
Woods 2008).

The IRT-LR test procedure can be used to detect both uniform and non-uniform
DIF. This method compares an augmented model, which is the model with the
studied item response that is to be tested, and a constrained model in which the
items are all constrained to be equal across the two groups (Thissen et al. 1993).
The metric of the compact model and the augmented model is established on a
common scale by the anchor items (Cohen et al. 1996). The null hypothesis for
this test assumes that the parameters of the studied items in the reference and focal
groups are equal. Item parameters for all items except those for the studied items
are constrained to be equal (Cohen et al. 1996). These items form the anchor set in
an augmented model. Because the augmented model includes all parameters of the
compact model and additional parameters of the studied items, the compact model
is hierarchically nested within the augmented model (Cohen et al. 1996). The test
statistic for the IRT-LR test is the difference between the values of −2log likelihood
for the compact model (LC) and that for the augmented model (LA). The IRT-LR test
is defined as (Thissen 2001):

G2(d. f .) =−2logLC − (−2logLA) , (22.2)
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where G2(d.f.) is distributed as chi-square. The degrees of freedom for this statistic
are the difference between the number of parameters in the augmented and the
compact models. The number of items considered determines the degrees of
freedom. If a single item is the studied item under the Rasch model, then the degrees
of freedom is 1. If more than one item is studied at a time, then the degrees of
freedom will be usually more than 1. For instance, if three items are studied in the
same augmented model, then the degrees of freedom would be 3, that is, one degree
of freedom for each of the studied items. If this statistic is significant at the nominal
level selected for this test, then DIF is defined as existing in the studied item.

22.1.2 HGLM

In addition to the traditional IRT methods for detecting DIF, several recent findings
use alternative methods for detecting DIF. The HGLM models hierarchical data
when the outcome is categorical data, such as nominal or ordinal-scaled data
(Raudenbush and Bryk 2002). This model is an extension of the generalized linear
model (GLM) to multilevel data (McCullagh and Nelder 1989; Kamata 1998).
The level-1 model in the two-level HGLM consists of a sampling model, a link
function, and a structural model. According to Raudenbush and Bryk (2002), a
binomial sampling and a logit link are used when the outcome is binary. Based
on the binomial distribution, the expected value and variance of Yij for the level-1
sampling model for the two-level model can be written as

E
(

Yi j

∣∣∣ϕi j

)
= ϕi j, and Var

(
Yi j

∣∣∣ϕi j

)
= ϕi j (1−ϕi j) , (22.3)

where ϕij is the probability of examinee j giving a correct response to item i. The
level-1 logit link function in the HGLM can be written as

ηi j = log

(
ϕi j

1−ϕi j

)
, (22.4)

where η ij represents the log of the odds of examinee j giving a correct response to
item i. It can take any real value. ϕij is constrained to the values between 0 and 1,
since it is a probability. If ϕij is equal to 0.5, the odds of a correct response is equal
to 1, i.e., 0.5/0.5= 1, and the logit is 0, log(1)= 0. If ϕij is smaller than 0.5, then
the logit is negative; if ϕij is larger than 0.5, then the logit is positive. The level-1
structural question, which defines the relationship between the item indicators and
the transformed predicted value, can be written as

ηi j = β0 j +β1 jX1i j +β2 jX2i j + ....+βk jXki j = β0 j +
k

∑
h=1

βh jXhi j, (22.5)
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where Xhij is the h-th item-indicator dummy variable for examinee j, with value 1
when h= i and 0 when h �= i, for item i related to a coefficient β hj, where h= 1, . . . ,k.
β 0j is the intercept of the structural equation.

For the two-level HGLM model, which is algebraically the same as the Rasch
model, the frameworks of the GLM and the HLM can produce the Rasch model
(Kamata 2001, 2002). A link function and a linear predictor model can be specified
as the lowest level or item-level model. In fact, the two-level HGLM can be
easily expanded to a three-level latent regression model, which provides estimated
group- and person-level abilities, allows the analysis of a variation of examinees’
performances across groups, such as in schools, and exhibits the variation of the
interactive effect of person- and group-characteristic variables (Kamata 2001).

In this study, we employ three-level hierarchical models, with item responses as
Level 1 variables, students as Level 2 variables, and schools as Level 3 variables.
The outcome variables to be considered are dichotomous and are assumed to be
following a binomial distribution (Raudenbush and Bryk 1986). The logit link
function for the three-level Rasch model is given as (Kamata 2002):

ηi jm = log

[
ϕi jm

1−ϕi jm

]
, (22.6)

where ϕijm is the probability that the i-th response is correct for student j in school m.
η ijm is the log-odds of probability that the i-th response is correct for student j in
school m. When the Rasch model is fit into the two-level HGLM framework, the
equation without any predictors of Level 1 is given as

log

(
ϕi j

1−ϕi j

)
= ηi j = θ j −bi = θ j +βi, (22.7)

where β i =−bi. By adding predictors or covariates, the conditional three-level
HGLM models of Level 1 can be written as

log

(
ϕi jm

1−ϕi jm

)
= ηi jm = β0 jm +β1 jmX1i jm + ....+βk jmXki jm

= β0 jm +
k

∑
h=1

βh jmXhi jm, (22.8)

where the outcome variable is connected to a predictor with a logistic link function.
Xhijm, which is used to identify the items in the linear predictor model, is the h-th
item-indicator dummy variable (h= 1, . . .k), with values of either 1 or 0, for student
j for item i in school m. The coefficient β 0jm is an intercept term, and it is the only
item that has an effect when every Xhijm has a value of zero. The coefficient β hjm is
related to Xhijm. The Level 1 model predicts the probability of student j in school m
answering item i correctly. The Level 2 model is the student-level model for student
j in school m.
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22.1.2.1 Level 2 Model

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

βo jm = γ00m +u0 jm, with u0 jm ∼ N (0,τγ)
β1 jm = γ10m +γ11m(group) jm
...
βk jm = γk0m +γk1m(group) jm,

(22.9)

where (group)jm is an indicator variable for binary group membership, with
value 0= focal group and value 1= reference group. γ00m is a random intercept
representing the average ability of a specific group m . If the magnitude of γk1m is
statistically significantly different from zero, item l is a DIF item. u0jm is the ability
of student j in school m, specifying how much the student’s ability originates in
the average ability of that student in school m. If DIF is detected in an item, the
interest is in whether the DIF differs across schools. Thus, in order to test for such a
difference, the model is extended to a level-3 model, and the DIF parameters, γ11m

through γk1m, are treated as random effects (Chu 2002). In a level-3 model, which is
a school-level model, γ00m, the intercept, is the only term that varies across schools.

22.1.2.2 Level 3 Model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ00m = r00m, with r00m ∼ N (0,ω)

γ10m = π100
γ11m = π110+ r11m
...
γk0m = πk00
γk1m = πk10+ rk1m,

(22.10)

where room is a random component of γ00m, and it is the random effect related to
school m. room is the average ability of students in school m; r11m through rk1m

indicate the variance of DIF at the school level. This study is interested in the
magnitudes of variance (rk1m). The DIF magnitude differs across school units if
the var(rk1m) is large (Binici 2007). The procedure for analyzing the HGLM model
is to examine and evaluate which items contain DIF. Note that in order to achieve
“full rank” for the design matrix of the model, one of the dummy variable items
must be dropped or no-intercept model can be fitted (Kamata and Cheong 2007;
Kamata and Vaughn 2011). This study does not include the intercept term π000, and
it retains all dummy variable items in a level-3 model. Hence, there are no grand
means in level-3, and ability is a random effect, room.
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22.1.3 MIMIC

Other than the HGLM, many studies employ the SEM method to detect DIF. The
link between the IRT model and SEM, such as the multiple-group analysis and the
MIMIC models, for detection of DIF has been discussed in recent research (e.g.,
Finch 2005; Finch and French 2010; Shih and Wang 2009; Willse and Goodman
2008; Woods 2009) The multiple-group analysis allows a great deal of flexibility in
observing group differences and can be used to investigate both uniform and non-
uniform DIF. When a sample size is large, the multiple-group analysis can examine
more types of hypotheses than the MIMIC model (Woods 2009). The MIMIC model
is popular with estimation methods appropriate for dichotomous data because of its
flexibility in multiple applications and efficiency under different practical testing
conditions (Woods et al. 2009). It is also simple and effective to extend this to
the multilevel context, and it is based on a single covariance matrix. In addition,
the analysis of the MIMIC model is based on the regression of latent variables
onto group variables (Willse and Goodman 2008). The MIMIC model has several
advantages. One of the most important features of the MIMIC model is that a latent
variable can be predicted by at least one observed variable (Woods 2009). It can also
be estimated using ordinal or continuous data, data with different numbers of groups
and with multiple independent continuous or categorical variables (Woods 2009).
Further, it supplies information for the structural and measurement models (Muthén
1989) and does not require large sample sizes. It is also based on matching with a
latent variable, which may be more accurate than an observed score (Woods et al.
2009). In addition, establishing a common metric does not seem to be necessary
(Jones 2006). The disadvantages of the MIMIC model include that: (1) it is sensitive
to uniform DIF only; (2) it cannot justify the lower asymptote, c, in the three-
parameter model; (3) it has been discovered to have an inflated Type I error rate for
shorter tests; and (4) it does not provide any effect size estimates when DIF exists
(Finch and French 2010). Even though the MIMIC model does not provide an effect
size, the detection of DIF is dependent solely on the results of the hypothesis test
(Finch and French 2010). The MIMIC model is used in this study, because the focus
is only on uniform DIF. Figure 22.1 illustrates a MIMIC model for detecting uniform
DIF. A unidimensional IRT model with ability, a latent variable, η, is regressed on an
observed grouping variable for testing DIF (Woods 2009). In this figure, the dotted
line is used to indicate the case in which group membership is found to predict
item response directly. This is evidence that DIF is present in the item. In other
words, when the group variable and an item in question have a direct significant
relationship, DIF is determined to exist in the item. If the discrimination parameters
are invariant, this means the discrimination parameter is equal to 1.

22.2 Comparison

Table 22.1 shows the comparison of three models for detecting DIF.
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Fig. 22.1 A MIMIC model is shown here as used for the detection of DIF in this study. Rectangles
are observed variables; circles are latent variables; γ = the regression coefficient displaying the
mean difference on the latent variable; β i = the group difference in the threshold for item i and
the grouping variables, i = 1, 2, . . . , k; ak = discrimination parameter (all ak = 1); τk = threshold
parameter (τk depends on the group if DIF exists in an item); ε i = the measurement error for item
i; ζ = a residual for η

22.3 Simulation Studies

A simulation study was conducted where the performance of the HGLM
wascompared to the MIMIC and the standard IRT-LR methods on the outcome
variable of the Type I error rate for uniform DIF detection. The Type I error rate was
determined by the ratio of the number of times DIF was incorrectly identified by
each method across replications. Item responses were generated to have multilevel
data structures based on Eqs. (22.8), (22.9), and (22.10) for the multilevel Rasch
model in the previous section. A test length of 20 dichotomous items was simulated.
The value of the difficulty parameters of the 20 items were arbitrarily fixed to −1,
−0.5, 0, 0.5, and 1 (Cheong and Kamata 2013) with four repetitions. The variance
of level 1 was to be π2/3 based on Snijder and Bosker (2012). The variance, τy,

of level 2 was to be 1. Based on the previous research (Snijder and Bosker 2012),
the variance, ω, of level 3 was proposed to be ICC*[σ2 + (1+ ((0.5)ˆ2)* τy) /
(1−ICC)]. In other words, to assess the type I errors of the DIF tests for Item 1,
item responses for Item 1 were generated without any DIF across the hypothetical
group variable. Specifically, the coefficient of the group covariate for Item 1 in
Eq. 22.9, which is γ11m, was fixed to zero. Item responses for all of the other 19
items were generated to have DIF across the group variable. Various conditions were
manipulated to aid in the comparison of the HGLM, the MIMIC, and the IRT-LR
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methods, including one grouping variable, two number of clusters, three number of
examinees per cluster, and three intraclass correlation coefficients (ICC), ρ.

1. Group variable for DIF: A within-group variable referred to level 2, which, for
instance, could be gender or ethnicity, and this variable was simulated to be
dichotomous.

2. ICC: The ICC was set up at .1, .2, and .3 for the target item based on Maas and
Hox (2005).

3. Number of clusters: The numbers of clusters simulated were 30 and 50 clusters.
Previous researchers (Hox and Maas 2001; Maas and Hox 2005) have used
similar values.

4. Number of examinees within cluster: The cluster sizes were simulated balanced
sizes with 5, 30, and 50. These values matched prior research (Maas and Hox
2005) investigating hierarchical data.

There are 2× 3× 3 factorial designs for a total of 18 conditions. We generated
1,000 simulated data sets for each of the 18 conditions. Data were generated using
a program written in R Program. Analyses were conducted with lme4 (Bates et al.
2013) in R for the HGLM. Mplus 7.1 (Muthén and Muthén 1998–2012) was used
to estimate the MIMIC model with a robust weighted least squares estimator for
categorical outcomes, and the discrimination parameters of the items were set to 1.
BILOG-MG 3 (Zimowski et al 2003) was used for the IRT-LR test. Each simulated
data set for each condition was analyzed three times, including the HGLM, the
MIMIC, and the IRT-LR test, respectively. Item2–Item20 are specified the anchor
item in testing DIF using those three methods since they are constrained to be equal
across groups in both constrained and augmented model.

22.4 Results

Table 22.2 shows the Type I error rates for the HGLM, MIMIC, and IRT-LR methods
across the number of clusters, cluster sizes, and for different ICCs. As noted earlier,
the nominal Type I error rate for this study was 0.05. The Type I error rates for the
HGLM indicate marginal control was maintained for specific conditions. The Type
I error rates for the MIMIC model were higher than the HGLM. When the cluster
size was small, such as in the 30-cluster, 5-examinee or 50-cluster, 5-examinee
conditions, the performance of the MIMIC model appeared to maintain better Type
I error control. However, when the level 3 cluster size and ρ increased, the Type I
error rates also increased, such that no control was maintained at the nominal level.
The IRT-LR test showed no control of the Type I error in any of the conditions
simulated.

Figure 22.2 shows the tendency of the Type I error rates for HGLM to remain
at the nominal 0.05 level for most of the conditions in this study. When the level
3 cluster sizes were small, the Type I error rates for the MIMIC model remained
close to the nominal 0.05 level. When cluster sizes and ρ increased, Type I error
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Table 22.2 The mean of type I error rates with a theoretical value of
0.05 for the three methods for number of groups, the group sizes, and
ICC value

Methods
Number of groups Group size ICC HGLM MIMIC IRT-LR

30 5 0.10 0.066 0.051 0.080
0.20 0.065 0.057 0.076
0.30 0.068 0.054 0.065

30 0.10 0.055 0.117 0.473
0.20 0.068 0.121 0.380
0.30 0.055 0.130 0.473

50 0.10 0.046 0.145 0.686
0.20 0.059 0.182 0.565
0.30 0.067 0.172 0.496

50 5 0.10 0.070 0.054 0.147
0.20 0.054 0.046 0.107
0.30 0.054 0.068 0.076

30 0.10 0.050 0.108 0.720
0.20 0.066 0.146 0.594
0.30 0.054 0.158 0.594

50 0.10 0.064 0.169 0.894
0.20 0.058 0.209 0.812
0.30 0.070 0.228 0.741
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Fig. 22.2 The tendency of the type I error rates

control for the MIMIC model failed to be maintained. The results for the IRT-LR
test indicate the complete lack of control for the conditions studied here. These
results appear to suggest that ignoring the multilevel structure in the data leads to
inflated Type I errors.
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In sum, the Type I error rates for the HGLM model were not as seriously affected
by the number of clusters, cluster sizes, and ρ as were the MIMIC and IRT-LR
tests. When the number of clusters, cluster sizes, and ρ increased, they appeared to
influence the outcomes for the MIMIC model. For the largest cluster sizes and ρ
sizes considered, the Type I error rate was inflated for the MIMIC. Results of this
study suggest that standard IRT methods which ignore the multilevel structure in
the data are not appropriate for the detection of DIF when the data have a multilevel
structure. Overall, the results support previous research (e.g., French and Finch
2010; Woods 2009) which suggests that multilevel modeling is more appropriate
for detecting DIF when a multilevel structure is present in the data.

22.5 Discussion

A great deal of educational data is hierarchical data. However, using standard
methods, such as a non-IRT based methods or IRT based methods which do not
account for this kind of structure, could result in biased results. Previous research
has examined the HLM, SEM, and IRT- LR methods. Thus far, however, no study
directly compares these methods on the same data. In this research, we compared
the Type I error rates of these approaches to determine whether they yielded similar
or different results for the detection of uniform DIF in multilevel data.

Results of this study supported previous findings that HLM was more accurate
for controlling the Type I error rate when the data structure is multilevel. In order
to simulate the real-world situations, anchor items are assumed to have DIF in this
study. Consistent with the results from the previous study (Finch 2005), the Type
I error rate of the IRT-LR test was more sensitive to the item contamination of the
anchor items than the Type I error rate of the MIMIC model. It would be useful
for future research to investigate the effect of multilevel data on DIF detection with
no anchor items and to consider the effect sizes of DIF tests with multilevel data.
A single test length was used in this study. It is possible that other test lengths might
differentially affect detection of DIF in multilevel data. Other conditions which
might be considered include the percentage of DIF items present and the power
and detection of DIF using other dichotomous and polytomous IRT models.
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Chapter 23
Comparing Estimation Methods for Categorical
Marginal Models

Renske E. Kuijpers, Wicher P. Bergsma, L. Andries van der Ark,
and Marcel A. Croon

Abstract Categorical marginal models are flexible models for modelling dependent
or clustered categorical data which do not involve any specific assumptions about the
nature of the dependencies. Categorical marginal models are used for different pur-
poses, including hypothesis testing, assessing model fit, and regression problems.
Two different estimation methods are used to estimate marginal models: maximum
likelihood (ML) and generalized estimating equations (GEE). We explored three
different cases to find out to what extent the two types of estimation methods
are appropriate for investigating different types of research questions. The results
suggest that ML may be preferred for assessing model fit because GEE has limited
fit indices, whereas both methods can be used to assess the effect of independent
factors in regression. Moreover, ML is asymptotically efficient, while GEE loses
efficiency when the working correlation matrix is not correctly specified. However,
for parameter estimation in regression GEE is easier to apply from a computational
perspective.

23.1 Introduction

In the social and behavioral sciences, researchers frequently collect data that are
correlated or dependent, such as longitudinal data, dyadic data, and data obtained
from psychological or educational testing in which each respondent answers several
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items. Although the dependencies are not always of main interest for the research,
they cannot be ignored. Ignoring the dependencies in the analysis may produce
incorrect standard errors and p-values. Categorical marginal models (Bergsma
et al. 2009) are flexible models for categorical data that take these dependencies
into account without making assumptions about their nature. These models are
useful when researchers investigate research questions concerning the marginal
distributions of a set of variables instead of testing hypotheses with respect to the
joint distribution for all variables in a certain data set.

Categorical marginal models are used to answer various types of research
questions. Two types of research questions we encountered in the literature are
research questions that involve hypothesis testing and research questions that
involve parameter estimation. An example of a research question that involves
hypothesis testing is provided by Kuijpers et al. (2013a). They proposed fitting cate-
gorical marginal models to test the hypothesis that Cronbach’s alpha is equal for two
or more subgroups. Other examples include testing marginal models for scalability
coefficients (Van der Ark et al. 2008; Kuijpers et al. 2013b), marginal homogeneity
(Bergsma et al. 2009), and ordinal association measures (e.g., Lang 2004).

For the second type of research question, the main interest lies in the values of
the estimated regression parameters. For example, Molenberghs and Verbeke (2005)
used marginal models to investigate the effect of two types of vaccinations from two
different companies on the presence/absence of headaches and respiratory problems
in two trial periods. Other examples include (1) modelling the effect of different
demographic variables on the relation between smoking and drinking behavior in
different subgroups of the Belgian Interuniversity Research on Nutrition and Health
study (Kesteloot et al. 1989) and (2) investigating whether different (combinations
of) variables such as gender, age, education, and religiosity have a significant effect
on the attitude towards women’s roles (Bergsma et al. 2009, pp. 168–171).

Both likelihood methods and quasi-likelihood methods have been used to
estimate marginal models. For likelihood methods, which include maximum like-
lihood (ML) estimation (Bergsma 1997), maximum empirical likelihood (MEL)
estimation, and maximum augmented empirical likelihood (MAEL) estimation
(Van der Ark et al. 2013), the full likelihood is optimized under the marginal
model of interest and under the assumption that the data follow a multinomial
distribution. ML, MEL, and MAEL estimation differ with respect to whether or
not they use all possible item-score patterns of a set of items for the estimation of
a model. For research questions that concern hypothesis testing, the authors have
used ML (e.g., Kuijpers et al. 2013a,b; Van der Ark et al. 2008). For this paper,
we only consider ML estimation. The most popular quasi-likelihood method is
generalized estimating equations (GEE; Liang and Zeger 1986). GEE is not based
on a specific probability model for the data. The estimation method assumes only
a mean-variance relationship for the dependent variable. GEE is mainly used for
estimating regression models (e.g., Agresti 2013; Molenberghs and Verbeke 2005;
Pawitan 2001). Skrondal and Rabe-Hesketh (2004, p. 200) noted that GEE has some
limitations with respect to hypothesis testing and assessing model adequacy.
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In this study, we explored to what extent ML estimation and GEE are appropriate
for investigating the three types of research questions. We considered three different
research questions, referred to as Case 1, Case 2, and Case 3. Let θ denote a
particular coefficient, and let c denote a fixed value. In this study θ can refer to
either the mean (μ) or the reliability coefficient Cronbach’s alpha (α). In Case 1,
we investigated whether θ is equal to a fixed value c (i.e., θ = c); in Case 2,
we investigated whether θ is equal for two groups (i.e., θ1 = θ2); and in Case 3,
we investigated whether θ is a linear function of independent variable X (i.e.,
θ = β0 + β1X). In each case, we investigated the two coefficients μ and α , and
we compared the results obtained with ML estimation and GEE. We illustrated each
case with a real-data example.

The remainder of this paper is organized as follows. First, we briefly explain
categorical marginal models. Second, we discuss the two groups of estimation
methods. Third, we discuss how to express μ and α in an appropriate notation for
ML estimation. Fourth, using a real-data set, we compare the estimation methods
for the three cases. Finally, we discuss the outcomes and provide recommendations
for future research.

23.2 Categorical Marginal Models

In order to use categorical marginal models for testing hypotheses for a coefficient
or for estimating parameters in a regression model, the first step is to write the
coefficient or the regression model as a function of the frequencies of the item-score
patterns that are observed in the data. Consider a set of J items, each item having
z+1 ordered answer categories (0,1, . . . ,z); this produces L=(z+1)J possible item-
score patterns. Let n be an L× 1 vector containing the observed frequencies of the
L possible item-score patterns. For example, a dichotomously scored test consisting
of J = 3 items (denoted by a, b, and c) has L = 23 = 8 possible item-score patterns;
hence, vector n equals

n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n000
abc

n001
abc

n010
abc

n011
abc

n100
abc

n101
abc

n110
abc

n111
abc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (23.1)

where the subscripts denote the items and the superscripts the item scores. The
observed frequencies of the item-score patterns in vector n are given in lexico-
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graphic order, running from 00 . . .0 to zz . . .z with the last digit changing fastest
and the digit in the first column changing slowest.

The expected frequencies under a categorical marginal model are collected in an
L× 1 vector m. Because there may be more than one set of expected frequencies
that satisfy a marginal model, m is as close as possible to n. Let matrix C be a
marginal matrix consisting of zeros and ones, such that C′m produces the relevant
marginals from the contingency table. Vector ˇ contains the K model parameters βk

(k = 0,1, . . . ,K−1). Then, let Z be the design matrix of the marginal model that uses
effect coding in order to select the right parameters from vector ˇ. In a categorical
marginal model, a function of the relevant marginals is then written as

f(C′m) = Zˇ, (23.2)

where f is an appropriate vector function. Alternatively, the model can be written
without parameter vector ˇ (Agresti 2013, pp. 460–461; Aitchison and Silvey 1958;
Bergsma et al. 2013). Let B be the orthogonal complement of Z, then B′Z = 0. By
premultiplying both sides of Eq. (23.2) by B′, the categorical marginal model can
be written as a set of constraints

B′f(C′m) = B′Zˇ = 0.

Because B and C are known design matrices, we can write g(m) = B′f(C′m).
Then, a concise notation for a categorical marginal model, as is used throughout
the literature (e.g., Bergsma 1997; Kuijpers et al. 2013a; Van der Ark et al. 2008), is

g(m) = 0. (23.3)

Let D be the number of constraints on the expected frequencies m. Each constraint
is a scalar function, so, for example, g1(m) = d1, and can be collected in the
vector g(m). So g(m) contains all constraints that are placed on a vector m. The
constraints in Eq. (23.3) constitute the categorical marginal model. Some examples
of constraints are α = 0.80 and μ1 = μ2.

23.3 Estimation Methods

23.3.1 Likelihood Methods

Likelihood methods use the constraint notation in Eq. (23.3) in combination with
ML estimation. The unconstrained log-likelihood function (for more details see
Bergsma 1997) is

�(m|n) = n′ logm.
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The maximum likelihood estimate m̂ maximizes �(m|n) subject to the constraints
implied by the categorical marginal model, g(m) = 0 [Eq. (23.3)], and to the
constraint that ∑i mi = ∑i ni = N, where N denotes the total sample size.

Let � be a D× 1 vector of Lagrange multipliers and let ν be a single Lagrange
multiplier, then under some regularity conditions, the ML estimates under Eq. (23.3)
are a saddle point of the Lagrangian log-likelihood

�(m|n,�,ν) = n′ logm−ν(1′m−N)−�′g(m). (23.4)

Bergsma (1997) proposed a Fisher scoring algorithm to find the vector m in
Eq. (23.4). The fit of the categorical marginal model can be assessed by means
of a likelihood ratio test G2 = 2n′ log(n/m̂) or a Pearsons’ chi-square test X2 =
(m̂− n)′D−1

m̂ (m̂− n) with D degrees of freedom. Here, Dm̂ is a diagonal matrix
with the elements of vector m̂ on the diagonal. Because ML estimation is based
on the likelihood function, models can be compared and statistical inferences about
parameters can be made.

23.3.2 Generalized Estimating Equations

GEE specifies a link function for the mean, and specifies the dependence of the
variance on the mean. Furthermore, GEE replaces the often complex dependence
structure by a so-called working correlation structure that is more straightforward to
define. GEE can be used to fit any categorical marginal model expressed in terms of
Eq. (23.2), but traditionally GEE is used for regression models for longitudinal data.
In the case of longitudinal data, Yit is the response for person i (with i = 1,2, . . . ,N)
on time point t (with t = 1,2, . . . ,T ). For GEE, for person i, the model of interest is
equal to

h(�i) = Ziˇ, (23.5)

In Eq. (23.5), h(·) is a link function that applies element by element to vector �i.
Vector �i contains the expected responses (i.e., for person i, �i = (μi1, . . . ,μiT )

′).
GEE links the mean μ to a linear predictor and in addition specifies a variance

function that describes how the variance of Yit depends on μit (Agresti 2013, p. 462).
This model applies to the marginal distribution for each Yit . The estimating equation
used in GEE is

N

∑
i=1

∂�i

∂
ˇV−1

i (yi −�i) = 0 (23.6)



364 R.E. Kuijpers et al.

where yi is a vector with t observed responses (i.e., yi = (yi1, . . . ,yiT )
′), and Vi is an

appropriately chosen working correlation matrix. The estimates of the parameters
βi in vector ˇ are a solution of Eq. (23.6). For an exponential family μit = E(Yit).

For GEE, the particular working correlation structure needs to be specified for
the relation between the t different responses of person i collected in yi. Different
correlation structures can be chosen, depending on the nature of the dependencies
between the different responses (Pawitan 2001, p. 396). Choosing a working
correlation structure that approximates the true correlation structure between the
dependent responses enhances the efficiency of the parameter estimates (Agresti
2013, p. 463). Commonly used specifications of the working correlation matrix are:
(1) the independence structure, which treats the different responses as independent;
thus, no dependency exists; (2) the exchangeable structure, which assumes constant
dependency; thus, the correlations between the different responses are assumed
to be equal for each observed response; (3) the autoregressive structure, which is
often used for measurement over time, and treats the correlations as an exponential
function of the time lag; thus, this structure assumes that observations farther
apart in time have weaker correlations; and (4) the unstructured structure, which
assumes a free specification of the working correlation matrix, implying a separate
correlation for each pair of observations (see Agresti 2013, p. 462, and Pawitan
2001, pp. 396–397, for more details).

The choice of the working correlation structure determines the GEE estimates
of the model parameters and the accompanying standard errors (Agresti 2013,
pp. 462–463). However, even if the working correlation matrix is misspecified,
the estimates of the parameters are consistent. In contrast, the estimates of the
standard errors of the parameters are not accurate, and need to be adjusted for
misspecification of the working correlation matrix by using the so-called sandwich
estimator (e.g., Agresti 2013, p. 467). Liang and Zeger (1986) proposed estimating
the GEE parameter estimates and the standard errors by means of a Fisher scoring
algorithm.

GEE can also be used for fitting categorical marginal models that are defined by
more complex functions than the link function h(), and by functions that have n
rather than y as an argument. Here, f(C′n) is a function of the observed responses
and Zˇ = f(C′m) is a function of the expected responses, so Eq. 23.6 becomes

Z′V−1(f(C′n)−Zˇ) = 0. (23.7)

A marginal model Zˇ can represent a wide range of parameters or coefficients, with
f(C′n) being the corresponding sample value (Bergsma et al. 2013). Equation (23.7)
can easily be solved by using

ˇ = (Z′V−1Z)−1Z′V−1f(C′n), (23.8)

which is equivalent to weighted least squares, with V−1 being a weight matrix. By
means of Eq. (23.8), estimates for the parameters in ˇ can be obtained.
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23.4 Expressing Item Means and Cronbach’s Alpha in Terms
of the Generalized Exp-Log Notation

Maximizing the Lagrangian likelihood in Eq. (23.4) requires the matrix of first
partial derivatives of g(m) with respect to m. This matrix, also known as the
Jacobian, is usually difficult to obtain. However, if g(m) is written in the so-called
exp-log notation (Bergsma 1997; Kritzer 1977), the derivation of the Jacobian is
straightforward, and an automated recursive algorithm can be used to compute the
Jacobian for a particular categorical marginal model (Bergsma 1997, p. 68).

23.4.1 Item Means in Exp-Log Notation

For testing hypotheses about the means in vector �, the coefficient should first be
rewritten in the generalized exp-log notation. In this recursive exp-log notation let
A1 and A2 be appropriate design matrices. Then � is equal to

� = exp(A2 log(A1m)). (23.9)

Let R be a J×L matrix that contains all L possible item-score patterns. The rows
of R correspond to the J different items. The item-score patterns in R are from left
to right in lexicographic order, running from 00 . . .0 to zz . . .z with the digit in the
last row changing fastest and the digit in the first row changing slowest, just as is
the case in vectors m and n. Furthermore, let u′

L be a 1× L unit row vector. The
[J+1]×L design matrix A1 is a concatenation of matrix R and vector u′

L; that is,

A1 =

(
R
u′

L

)
.

For a dichotomously scored test consisting of J = 3 items [Eq. (23.1)] this produces

A1n =

⎛
⎜⎜⎝

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n000
abc

n001
abc

n010
abc

n011
abc

n100
abc

n101
abc

n110
abc

n111
abc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝
∑Xa

∑Xb

∑Xc

N

⎞
⎟⎟⎠ . (23.10)
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As the first three elements of the right-hand side of Eq. (23.10) show, Rn produces
a vector containing the sum of the scores on items a, b, and c across respondents,
and u′

Ln produces the sample size N.
Let IJ be an identity matrix of order J. Then, the J × [J +1] design matrix A2 is

a concatenation of matrix IJ and unit vector −uJ

A2 =
(

IJ −uJ
)
.

For the three items a, b, and c, substituting the right-hand side of Eq. (23.10) for
A1n, exp(A2 log(A1n)) yields

exp

⎡
⎢⎢⎣
⎛
⎝ 1 0 0 −1

0 1 0 −1
0 0 1 −1

⎞
⎠ log

⎛
⎜⎜⎝
∑Xa

∑Xb

∑Xc

N

⎞
⎟⎟⎠

⎤
⎥⎥⎦=

⎛
⎝Xa

Xb

Xc

⎞
⎠ . (23.11)

Equation (23.11) shows that exp(A2 log(A1n)) produces the mean score for each
item in a data set.

23.4.2 Coefficient α in Exp-Log Notation

Kuijpers et al. (2013a) used categorical marginal models for testing different
hypotheses about Cronbach’s alpha (Cronbach 1951). They showed that Cronbach’s
alpha, denoted by α , can be written as a function of m in the generalized exp-log
notation:

α = A5 exp(A4 log(A3 exp(A2 log(A1m)))), (23.12)

where matrices A1 to A5 are appropriate design matrices. For the exact specification
of the design matrices and more details about the procedure, see Kuijpers et al.
(2013a).

23.5 Three Cases

23.5.1 Data

The use of the two different estimation methods to test three different cases is
illustrated by means of a data set obtained by administering a questionnaire to
N = 496 Dutch union members (Van der Veen 1992). The questionnaire measures
the attitudes and opinions on general militancy, and consists of four subscales—
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Table 23.1 Item means and Cronbach’s alpha for each subscale

Subscales

Items General attitude Permissibility Effectiveness Intention

Strike 1.383 1.208 1.698 1.151

Work-to-rule 2.278 1.556 1.788 1.536

D. walkout 2.266 1.573 1.702 1.442

C. walkout 2.161 1.546 1.560 1.450

Protest meeting 2.653 2.258 1.835 1.589

Street protest 2.214 1.810 1.625 1.351

Cronbach’s alpha 0.744 0.840 0.738 0.877

D. walkout demonstrative walkout, C. walkout collective walkout

General Attitude, Permissibility, Effectiveness, and Intention—which each contains
six items. Each of the six items in a subscale refers to different actions union
members can engage in, such as a strike, a protest meeting, or a street protest. For
the subscales Permissibility and Intention, the answer categories range from 0 to
3, and for the subscales General Attitude and Effectiveness the answer categories
range from 0 to 4. Table 23.1 shows the item means, and the values for Cronbach’s
alpha for each subscale.

Coefficient θ is used to express the different hypotheses. In what follows, θ will
be replaced by either the mean (μ) or Cronbach’s alpha (α). For ML estimation, we
used the R package cmm (Bergsma and Van der Ark 2013), and for GEE, we used
the R package geepack (Yan et al. 2012).

23.5.2 Case 1: θ = c

First, we tested whether the mean value of General Attitude towards a Strike was
significantly greater than 1 (sample value 1.383, Table 23.1). Second, we tested
whether Cronbach’s alpha of the subscale Permissibility was significantly greater
than 0.80 (sample value 0.84, Table 23.1). Nunnally (1978, pp. 245–246) argued
that tests used for making decisions about groups should have at least a reliability of
0.80. The research question is of the form θ > c, and the associated null hypothesis
is θ = c.

For investigating θ = c by means of ML estimation, θ = c should be written
in the constraint notation, g(m) = θ − c = 0. In the generalized exp-log notation,
g(m) = θ − c equals

g(m) =
[

1 −c
]

exp

([
1 0
1 −1

]
log

([
1
1

]
θ
))

. (23.13)

The categorical marginal model estimates vector m under the constraint θ = c.
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Replacing θ in Eq. (23.13) by μ [Eq. (23.9)] and letting c = 1 yields the
hypothesis μ = 1. In general, G2 pertains to a two-sided test. Here, the hypothesis
is one-sided, so for a significance level of 0.05 the value of G2 at the 2 × 0.05
significance level is used. Comparing the observed and expected frequencies
allowed us to reject the hypothesis (G2 = 77.662, d f = 1, p ≤ 0.000), and conclude
that μ > 1. Replacing θ in Eq. (23.13) by α [Eq. (23.12)], and letting c= 0.80 yields
the hypothesis α = 0.80. Comparing the observed and expected frequencies allowed
us to reject the hypothesis (G2 = 9.489, d f = 1, p = 0.002), and conclude that
α > 0.8. This example illustrates that likelihood methods can be used to investigate
research questions of the type θ = c.

For testing whether θ = c by means of GEE, θ = c should be written as θ = Zˇ.
It trivially follows that Z equals the scalar 1, and ˇ = c, so θ̂ is trivially fixed to c,
and the standard error is zero. The software did not provide goodness of fit statistics.
Because θ̂ is fixed to c and no model fit statistics are available, we could not use
GEE to meaningfully answer research questions that can be cast into θ = c. This is
in accordance with Skrondal and Rabe-Hesketh (2004, p. 200), who stated that GEE
has limitations with respect to hypothesis testing and assessing model fit.

23.5.3 Case 2: θ1 = θ2

In this example, we considered whether the population means of the two items
General Attitude towards a Demonstrative Walkout and General Attitude towards
a Collective Walkout were equal. The sample means for the items were 2.266
and 2.161, respectively (see Table 23.1). Furthermore, we investigated whether the
alphas of the two subscales Permissibility and Intention were equal. For the subscale
Permissibility α̂ = 0.840, for subscale Intention α̂ = 0.877 (see Table 23.1). This
categorical marginal model can be useful when one wants to compare the alphas of
two subscales or tests, or for assessing change in reliability over time. Differences
between the reliabilities of two alternate test forms can indicate that the two forms
differ in content and measure slightly different traits (Nunnally 1978, p. 231).

For investigating this model by means of ML estimation, θ1 = θ2 has to
be rewritten in the constraint notation, g(m) = θ1 − θ2 = 0. Because the two
coefficients we compared are dependent, vector n first should be premultiplied by
A0, a marginal matrix (Bergsma et al. 2009, pp. 52–56). Multiplication by matrix
A0 yields the marginal frequencies of the item-score patterns for both sets of items
separately. Let L1 and L2 be the number of possible item-score patterns for which
coefficients θ1 and θ2 are computed, respectively. Let ⊗ denote the Kronecker
product. The general form of the (L1 +L2)× (L1L2) matrix A0 is

A0 =

(
IL1 ⊗u′

L2

u′
L1
⊗ IL2

)
.
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After premultiplying vector n by A0, the two coefficients for the two sets of items
are computed using design matrices that are constructed as follows. Let design
matrix Aq, with q = 1, . . . ,q, be the particular qth design matrix constructed for the
particular coefficient. For testing the equality of two coefficients, design matrices
A1 to Aq are the direct sum of Aq and Aq. Since for each design matrix Aq the
procedure is the same, it can be expressed in a general form

A∗
q = Aq ⊕Aq =

(
Aq 0
0 Aq

)
.

For more details, see Kuijpers et al. (2013a).
In the generalized exp-log notation, g(m) = θ1 −θ2 equals

g(m) =
[

1 −1
][θ1

θ2

]
. (23.14)

The categorical marginal model estimates vector m under the constraint θ1−θ2 = 0.
Then, vectors m and n are compared by means of G2 in order to assess whether the
two coefficients are equal.

If the coefficient of interest is the mean μ , the population means for the two items
are denoted by μ1 and μ2, and calculated by using Eq. (23.9). For testing Case 2, θ1

and θ2 in Eq. (23.14) should be replaced by μ1 and μ2, respectively. Comparing the
observed and expected frequencies allowed us to reject the null hypothesis (G2 =
5.429, d f = 1, p = 0.020), and conclude that the means are significantly different
from each other.

If the coefficient of interest is Cronbach’s alpha, the population alphas for the two
subscales are denoted by α1 and α2, and calculated using Eq. (23.12). For testing
Case 2, θ1 and θ2 in Eq. (23.14) should be replaced by α1 and α2, respectively.
Comparing the observed and expected frequencies allowed us to reject the null
hypothesis (G2 = 8.939, d f = 1, p = 0.003), and conclude that the alphas are not
equal.

For GEE estimation, constraint θ1 = θ2 must be cast into Eq. (23.2). One
possibility is defining a regression model with only an intercept β0, which can be
interpreted as the value of the coefficient under the constraint that θ1 = θ2. Let
Z = u2, then θ1 = θ2 is equivalent to

f(C′m) =

(
θ1

θ2

)
= u2β0.

If the vector of sample estimates of θ1 and θ2 is represented by (θ̂1, θ̂2)
′, then the

estimating equation [Eq. (23.7)] reduces to

u′
2V−1

([
θ̂1

θ̂2

]
−u2β0

)
= 0. (23.15)
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For an arbitrary correlation matrix V, Eq. (23.15) reduces to

[
θ̂1

θ̂2

]
−u2β0 = 0,

which is minimized for β̂0 =
θ̂1+θ̂2

2 . So the estimated values for θ1 and θ2 are then
both equal to the mean of the two values. The hypothesis θ1 −θ2 = 0 can be tested
by computing the standard errors by means of the sandwich estimator, computing
the confidence interval, and then checking whether 0 is included in the interval.

Using GEE for testing the equality of the means of the two items General Attitude
towards a Demonstrative Walkout and General Attitude towards a Collective
Walkout, the analysis only estimates a mean value for both values and a standard
error, model fit statistics are not available. The estimated mean value for the two
means is equal to 2.214, which is obtained independent of the correlation structure.
The standard error equals 0.037. To test whether the hypothesis of equal means
could be rejected, a 95 % Wald confidence interval for the difference between the
two means (denoted by Δμ) was constructed using Δ̂μ ± 1,96 ∗ se(Δ̂μ). Zero was
not included in the interval, so the means are significantly different. GEE was also
used for testing the equality of the two alphas of the subscales Permissibility and
Intention. The mean value for the two alphas equaled 0.859. The standard error
equaled 0.013. A 95 % confidence interval for the difference between the two alphas
was constructed in a way similar to the computation for the means. Zero was not
included in the confidence interval, so the alphas are significantly different.

23.5.4 Case 3: θ = β0 +β1X

Here, the question was whether the Effectiveness of an action can explain the
General Attitude towards that action. We used Effectiveness measured for a Strike
(denoted by X1) and a Work-to-rule (X2) as the explanatory variables, and General
Attitude measured for a Strike (Y1) and a Work-to-rule (Y2) as the outcome variables.
Hence, we had T = 2 actions and z + 1 = 5 levels of the exploratory variable.
In longitudinal research, one would consider T time points rather than actions.
Estimating a regression model in which Cronbach’s alpha is the dependent variable
seemed artificial from a substantive point of view. Hence, we only investigated Case
3 for μ . However, there are other situations in which testing the effects of one or
more (continuous) variables on the value of a particular coefficient is interesting.
For instance, using the log-odds ratio as a measure of association, Bergsma et al.
(2013) tested whether the association between two categorical variables remained
stable over time.



23 Comparing Estimation Methods for Categorical Marginal Models 371

The regression model is f(C′m) = Zˇ [Eq. (23.2)], where f(C′m) is the
T (z+1)×1 vector of conditional means:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E(Y1|X1 = 0)
E(Y2|X2 = 0)
E(Y1|X1 = 1)
E(Y2|X2 = 1)
E(Y1|X1 = 2)
E(Y2|X2 = 2)
E(Y1|X1 = 3)
E(Y2|X2 = 3)
E(Y1|X1 = 4)
E(Y2|X2 = 4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Matrix Z is a T (z+1)×2 design matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
1 1
1 1
1 2
1 2
1 3
1 3
1 4
1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The first column is a column of ones, and the second column contains the levels of
X1 and X2. Vector ˇ = (β0,β1)

′ contains the intercept and the regression parameter.
Vector m refers to the joint distribution of (X1,X2,Y1,Y2).

For ML estimation, first C′ and f should be determined. In our example, pre-
multiplying n by the (T (z+1)2 ×L) marginal matrix

C′ =
(

Iz+1 ⊗u′
z+1 ⊗ Iz+1 ⊗u′

z+1
u′

z+1 ⊗ Iz+1 ⊗u′
z+1 ⊗ Iz+1

)

produces the bivariate marginal frequencies of (X1,Y1) and (X2,Y2). Function f
consists of two design matrices: A1 and A2. Let rz+1 be a (z + 1)× 1 vector
containing scores 0,1, . . . ,z; then A1 is a 2T (z+1)×T (z+1)2 matrix

A1 = IT ⊗
(

Iz+1 ⊗ r′z+1
Iz+1 ⊗u′

z+1

)
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and

A2 = IT ⊗
(

I(z+1) −I(z+1).
)

Hence,

f(C′m) = exp
(
A2 log

(
A1C′m

))
.

Second, B, the orthogonal complement of Z, should be determined such that
B′Z = 0. Third, the expected categorical marginal model B′f(C′m) = 0 is estimated,
producing estimates for vector m. Using this method for maximizing the likelihood
includes the constraints, such that the expected frequencies in vector m̂ sum to N
(Agresti 2013, p. 460). Fourth, the estimates m̂ are plugged into model f(C′m) =
Zˇ, producing f(C′m̂). Fifth, parameters ˇ are obtained by solving

ˆ̌ = (Z′Z)−1Z′f(C′m̂).

Finally, the standard errors of ˆ̌ are computed using the delta method (for more
details, see, for instance, Bergsma et al. 2009, pp. 71–73), so that each individual
parameter in ˇ can be tested for significance.

The regression model describes the linear relation between the means that are
calculated for each dependent variable given the response to the corresponding
independent variable (i.e, the means for Y1 given the different scores on X1, and
the means for Y2 given the different scores on X2). Table 23.2 provides the estimates
for the parameters in the regression model.

The categorical marginal model also tests whether the regression model that
assumes a linear relation between the means fits the data. The results of the analysis
showed that the linear regression model does not fit the data, with G2 = 173.071,
d f = 8 and p < 0.000, which implies that the means cannot be fitted onto a
single straight line; thus, there is not a strictly common linear relation between
the conditional means of Y1 and Y2 given the scores on X1 and X2. However, the
regression coefficient is significant, meaning that the scores on X1 and X2 have a
significant effect on the mean scores of Y1 and Y2.

Also, GEE was used to test whether the items Effectiveness of a Strike and
Effectiveness of a Work-to-Rule predicted the mean response to General Attitude
towards a Strike and General Attitude towards a Work-to-Rule. Table 23.3 shows the

Table 23.2 Parameter
estimates using ML
estimation

Parameter Estimate Standard error

β0 1.003 0.063

β1 0.471 0.032

Table 23.3 Parameter
estimates using GEE
estimation

Parameter Estimate Standard error

β0 0.921 0.056

β1 0.522 0.027
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GEE estimates of the parameters in the regression model, as defined by Eq. (23.2).
The regression coefficient is significantly different from zero, which indicates
that the scores on X1 and X2 have a significant effect on the mean scores of Y1

and Y2. For the regression problems, alternative model fit statistics exist for GEE
(e.g., Lipsitz and Fitzmaurice 2009, pp. 62–64; Molenberghs and Verbeke 2005,
pp. 160–161) but these statistics were unavailable in the R package geepack, so
the model fit could not be investigated.

23.6 Discussion

For this study, we explored to what extent the two estimation methods are
appropriate for investigating and testing three types of research questions. The two
estimation methods, ML and GEE, both have advantages and disadvantages. ML
estimation is based on the likelihood function, so that model fit statistics can be
obtained, models can be compared, and inferences about individual parameters
can be made. In contrast to ML estimation, GEE does not assume a specific
probability model for the data, but only assumes a mean-variance relationship for
the response variable, making it impossible to obtain likelihood based model fit
statistics. Furthermore, GEE replaces the often complex dependence structure by
a simpler working correlation matrix. Therefore, GEE is more straightforward to
compute than ML methods. For a large number of items, in contrast to GEE, using
ML estimation becomes problematic, since it uses each cell of the contingency table
for computation of the estimates (Bergsma et al. 2013; Van der Ark et al. 2013).
However, ML estimation is asymptotically efficient (e.g., Agresti 2013), whereas
GEE is not when the working correlation structure is not correctly specified.

By means of the three cases, we showed that ML estimation has to be preferred
when one is more interested in testing hypotheses and assessing the fit of the
marginal model. Both methods are appropriate when one investigates the effect of
the independent factors in regression models. For Case 1, GEE could not be used.
This is in line with Skrondal and Rabe-Hesketh (2004, p. 200) who stated that GEE
has limitations with respect to hypothesis testing and assessing model adequacy. An
alternative to solve some of the limitations would be to estimate the standard error
of the saturated model, and then use a Wald-based confidence interval to assess
whether the value c is included in the confidence interval (Lipsitz and Fitzmaurice
2009, p. 55). Furthermore, since standard goodness of fit statistics are unavailable
for GEE, Lipsitz and Fitzmaurice (2009, pp. 62–64) suggested some alternative
model fit diagnostics. For Case 2, ML was easier to apply than GEE, and for ML
model fit statistics could be obtained right away. For Case 3, we found that GEE
was easier to apply than ML from a computational perspective.

ML estimation uses all item-score patterns that are possible for a set of items,
so all elements in vector n are used. ML estimation becomes problematic for large
numbers of items (e.g., Agresti 2013, p. 462) because the number of elements in
vector n and the size of the design matrices increase rapidly (Bergsma et al. 2013;
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Van der Ark et al. 2013). For instance, for a set of ten items (J = 10) each with
five answer categories (z+ 1 = 5), the number of elements in vector n is equal to
(z+1)J = 510 = 9,765,625. An alternative is using MEL estimation (Owen 2001).
MEL uses only the observed item-score patterns, so that the zero-frequencies in
vector n can be ignored. MEL uses much less memory space than ML estimation,
and as a result it also is computationally less complex. Therefore, computation time
is much shorter, and MEL can be used for large numbers of variables. However,
for large sparse contingency tables the empty set problem and the zero likelihood
problem can occur when using MEL estimation (for details, see Van der Ark et al.
2013; also see Bergsma et al. 2012), which causes MEL to break down. Van der Ark
et al. (2013) proposed MAEL estimation as a solution for the problems with MEL.
MAEL uses all observed item-score patterns, plus a few well-chosen unobserved
item-score patterns, the choice of which depends on different factors; see Van der
Ark et al. (2013) for more details.

For marginal models, GEE and the likelihood methods require further research.
We only illustrated the use of both estimation methods by means of three simple
cases for two different coefficients. Many more cases and situations can be
investigated. The research can be extended to more complex models and to other
coefficients. Furthermore, the cases also can be investigated for MEL and MAEL
estimation, which can be compared to GEE estimation in order to investigate which
method yields more efficient estimates.
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Chapter 24
Evaluating Simplicial Mixtures of Markov
Chains for Modeling Student Metacognitive
Strategies

April Galyardt and Ilya Goldin

Abstract Modeling and discovery of the strategies that students use, both cognitive
and metacognitive, is important for building accurate models of student knowledge
and learning. We present a simulation study to examine whether simplicial mixtures
of Markov chains (SM-MC) can be used to model student metacognitive strategies.
We find that SM-MC models cannot be estimated on the moderately sized data sets
common in education, and must be adapted to be useful for strategy modeling.

24.1 Introduction

An increasingly popular instructional practice involves learners using educational
technologies such as homework practice systems or intelligent tutoring systems
(ITS) (VanLehn 2008). For example, in secondary-school geometry courses, stu-
dents may work problems on a computer, rather than on paper. Depending on the
user interface of the system, the computer may be able to capture not only a student’s
final answer to the problem but also the solution process and the use of various
learning aids and resources.

We aim to build a psychometric model of problem solving. Such a model could
help us describe student activity, and diagnose student weaknesses for formative
feedback and assessment. A student’s solution process may reveal the student’s
problem-solving strategy, such as when a problem may be solved in multiple ways.
The use of learning resources may reveal the student’s metacognitive strategy, i.e.,
the ways in which the student goes about choosing a problem-solving strategy or
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acquires missing knowledge to carry out the problem-solving. Thus, weaknesses
may lie either in domain knowledge or in learning skills, such as in knowing how to
study an example.

Students will differ in the strategies they choose. For example, a tutoring system
may allow a student to request hints, which may be arranged in a sequence from
most general to most specific. Some students may never seek hints, even when they
should (possibly a case of hint avoidance), and some may seek hints too often, even
when they should solve a problem on their own (Aleven et al. 2006).

Even within a student, choice of problem-solving and metacognitive strategies
is not static. A student may try a novice strategy when first learning how to solve
a kind of problem, and may use an expert strategy for the same kind of problem
after acquiring sufficient skill. Similar strategy-switching may happen at the level of
steps within a problem, some of which may be new and others familiar. Even while
attempting a single step of a single problem, the student may switch between novice
and expert strategies. Moreover, a student may switch metacognitive strategies, such
as from attempting to solve the problem to trying to guess the answer, and then to
requesting a hint.

Thus, a psychometric model of problem-solving needs to represent not merely
the final correct/incorrect scores, as in traditional Item Response Theory models,
and not only whether students follow some prescribed textbook like solution path,
but also the variety of problem-solving and metacognitive strategies that students
may use. Further, the model needs to allow for individual differences among
students.

At the same time, it is not sensible to treat the space of strategies as infinite.
Suppose we identify a new way to solve a problem; that adds just one strategy to
the set of possible strategies. Similarly, at the metacognitive level, there may be
no fundamental difference between making one versus two unsuccessful problem-
solving attempts prior to requesting a hint. Thus, a psychometric model should
constrain the space of possible strategies.

Ultimately, an effective model will characterize learning and problem-solving
processes, differences among students, the domain of study, and the learning
resources or instructional supports available to the students. For instance, we hope
to learn whether students benefit by using hints, whether different types of hints
differ in effectiveness, and what actions students take on a problem that they do not
know how to solve.

24.2 Target Problem

We use data that reflect student problem-solving in an intelligent tutoring system
(ITS). An ITS is first and foremost a learning environment; students solve problems
within the system and receive immediate feedback and hints designed to assist with
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the learning process. They are implemented as part of the curriculum and are used
regularly by students over an entire unit, semester, or school year. The log data
from students interacting with these systems provides us with a large amount of
fine-grained data for examining student knowledge, learning, and strategies.

The modeling challenge here is very different than in the “standard assessment
paradigm” (Mislevy et al. 2012). In a setting such as a high-stakes test that is a
typical context for psychometric modeling, we can often plausibly assume that there
is no learning over the brief duration of the test. Further, modeling for summative
assessment often aims to reduce performance on a variety of questions to placement
along a unidimensional latent trait. Instead, given that an ITS is meant to stimulate
learning and that ITS use takes place over a long time period, our data-generation
context is very different. In this context, we aim to identify and measure which
strategies a student is using to learn from the available resources.

While working in an ITS, when students encounter a problem step, they can
(1) enter a correct response, (2) enter an incorrect response, or (3) request a hint.
A student can attempt each step multiple times, and must correctly complete all
problem steps before moving on to the next problem. For the study in this paper, we
simulated data consistent with this pattern of behavior.

A similar real assessment data set has previously been studied using IRT-style
and multinomial models, including observed covariates on each student’s history
of skill practice with the system, random effects accounting for the effectiveness
of hints of different types for each student, and covariates for textual predictors
of difficulty with hint comprehension (Goldin et al. 2012; Goldin and Carlson
2013; Goldin et al. 2013). The prior models did not represent strategies or strategy-
switching, which is our goal in this paper.

The sequence of actions that a student takes on each item are indicators of the
student’s metacognitive strategy. If a student enters an incorrect answer, pauses,
enters another incorrect answer, pauses and enters a correct answer, then this would
indicate one strategy. On the other hand, if a student asks for 3 hints in a row without
pausing, then that sequence of actions indicates a different strategy, namely a hint
abuse strategy.

We wish to identify the common strategies over the entire population of students,
as well as estimate how much each student uses each strategy. Mixed membership
models are designed to model exactly this sort of structure where latent profiles are
common across the population, and observational units have membership in mul-
tiple profiles (Blei and Lafferty 2009; Galyardt 2014). Girolami and Kaban (2005)
introduced the simplicial mixtures of Markov chains (SM-MC) model to describe
sequences of actions that users take in different software environments, including
sequences of editing commands in word processing programs and sequences of
clicks on a website. In this paper, we test whether this same model can be used
to model sequences of student actions in an intelligent tutoring system.
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24.3 Simplicial Mixtures of Markov Chains

We assume that there is a single set of metacognitive strategies over the whole
population of students, indexed k = 1, . . . ,K. Second, we assume that each student,
i = 1, . . . ,N, may use these strategies in different proportions. For example, some
students may be more likely to guess when they don’t know an answer, while other
students may be more likely to ask for a hint. How much each student uses each
strategy is parameterized by the vector θi = (θi1, . . . ,θiK). θi must be non-negative
and sum to 1, so that θik is the proportion of problems on which student i uses
strategy k. These assumptions form the basis of the mixed membership class of
models (Erosheva et al. 2004).

For each student, we record a series of actions Xi = (Xi0,Xi1, . . . ,Xit , . . . ,XiTi).
This is one sequence of actions over the entire set of items that student i sees.
If a student gets two items in a row correct, then {Xi,t ,Xi,t+1} ={correct, cor-
rect}. On the other hand, if a student answers one item correctly, then makes
an incorrect attempt at the next problem before answering it correctly, then
{Xi,t ,Xi,t+1,Xi,t+2} ={correct, incorrect, correct}. Note that the length of the
sequence will be different for each student; some students may have seen more
problems, and some students may have had many more hints or incorrect tries before
successfully solving a problem.

The mixed membership model structure allows for students to switch between
strategies (Galyardt 2014). The exchangeability assumptions in SM-MC allow for
this strategy-switching to occur between every action. As we shall see, this may
allow for too much flexibility in the model, and in future work, we may need to alter
this assumption. For each action a student takes, they will choose (consciously or
not) a strategy Zit ∈ {1, . . . ,K}for their next action:

P(Zit = k|θi) = θik, (24.1)

or equivalently,

Zit |θi ∼ Multinomial(θi). (24.2)

Each strategy is defined by a discrete time Markov process. The state-space
for the Markov chain is the set of observable student actions such as answering
correctly, answering incorrectly, or asking for a hint. Each Markov process k =
1, . . . ,K is parameterized by a transition probability matrix Pk, where the entry {r,s}
in the matrix gives the probability of moving from state r to state s.

P[krs] = P(Xt = s | {Xt−1, . . .Xt−m}= r, Zt = k). (24.3)

Note that for an mth order Markov process with S states, P will have dimensions
Sm ×S. An individual will choose strategy k with probability θik, so the probability
of student i’s tth action is:
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Pr(Xit = xt | θi, {Xt−1, . . .Xt−m}= rt) =
K

∑
k=1

θikPkrt xt . (24.4)

The likelihood of an individual’s sequence is then given by:

Pr(Xi = x|θi) =
K

∑
k=1

θik

[
πkx0

Ti

∏
t=1

Pkrt xt

]
, (24.5)

where πk is the initial state probability.
It is worth noting that SM-MC is one of the special cases when the blending

interpretation of mixed membership is also available (Galyardt 2014). We can
interpret individuals as switching between strategies according to the membership
vector θ . Additionally, if we notice that Eq. (24.5) defines an individual Markov
transition matrix Pi that will be “between” the profile matrices Pk, this allows us to
interpret an individual as using a strategy that is a blend of the profile strategies.

24.4 Simulations and Results

The size of the simulations was chosen to correspond to the size of the data analyzed
in Girolami and Kaban (2005), which are larger than our data from the Geometry
Cognitive Tutor. The word processor command usage data set from Girolami and
Kaban contained S = 23 states, and N = 1460 chains each at least of length three,
Ti ≥ 3. The model was fit with K = 10, . . . ,80 profiles, and Markov processes of 0th

to 3rd order were considered. To make the model easier to estimate, we increased
the number of actions per student (the length of each chain), decreased the number
of profiles, decreased the number of states, and focused on 2nd order Markov
processes. The smaller number of profiles and states are consistent with the number
of strategies and states that we would observe in data from an ITS system.

Each row of the transition matrices, Pks, was randomly generated from
Dirichlet(α), with α = (0.05, . . . ,0.05). This created sparse and distinct matrices
for each profile. Details for each simulation are listed in Table 24.1.

We used Markov Chain Monte Carlo (MCMC) for estimation in all 3 simulations.
In addition, the variational approximation method from Girolami and Kaban (2005)
produced identical results to the MCMC estimation for Simulation 1.

24.4.1 Simulation 1

The first simulation represents a “simplest possible case,” with only three profiles,
and very distinct profile transition matrices (Fig. 24.1). The estimated posterior
distribution collapsed to a single global average distribution. The estimated profile
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Table 24.1 Summary of simulation parameters

Simulation 1 Simulation 2 Simulation 3

N 1,500 1,500 1,500

T 200 200 200

K simulated 3 4 5

K estimated 3 4 15

θ ∼ Dirichlet(α) α = (0.1,0.1,0.1) α = (1,0.1,0.1,0.05) α = (0.1,0.1,0.1,0.1,0.1)

Number of states 6 6 6

Order of Markov
Process

2 2 2

Pks· ∼ Dirichlet(α) α = (0.05, . . . ,0.05) α = (0.05, . . . ,0.05) α = (0.05, . . . ,0.05)

transition matrices are essentially identical (Fig. 24.2), and the distribution of the
membership parameter is a point-mass at

(
1
K ,

1
K ,

1
K

)
, as shown in Fig. 24.3. We were

unable to recover the original transition matrices.

24.4.2 Simulation 2

In the ITS setting, we expect to find that one strategy is much more common than
the others. Namely, most students get items correct most of the time. Simulation
2 reflects this situation with a distribution of the membership parameter θ that
is highly asymmetric. As in Simulation 1, the estimated posterior distribution
collapsed to a single global average distribution, and we were unable to recover
the transition matrices (Figs. 24.4, 24.5, and 24.6).

24.4.3 Simulation 3

The third simulation considers the possibility that SM-MC overfit the word proces-
sor data in Girolami and Kaban (2005). These simulations use N and T similar that
data set, but Girolami and Kaban fit an SM-MC model with a much larger K and
S, and thus many more model parameters. To explore the possibility of overfitting
the data, we simulated data with K = 5, and estimated the model with K = 15. Yet
again, SM-MC was unable to recover the transition matrices, the distribution of θ
collapsed to a point-mass, and all 15 transition matrices represent a single global
transition matrix (Figs. 24.7 and 24.8).
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Fig. 24.1 Transition matrices used to generate data for Simulation 1, represented as heat maps.
(Three strategy profiles, six states, second order Markov process.) Row 2 is the probability of
moving into each of the six states when the last two states are {1,2}, whereas row 7 is when the
previous two states are {2,1}
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Fig. 24.2 Posterior mean transition matrices for Simulation 1, represented as heat maps. (Three
strategy profiles, six states, second order Markov process.) Row 2 is the probability of moving into
each of the six states when the last two states are {1,2}, whereas row 7 is when the previous two
states are {2,1}
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Fig. 24.5 Transition matrices used to generate data for Simulation 2, represented as heat maps.
(Four strategy profiles, six states, second order Markov process.) Row 2 is the probability of
moving into each of the six states when the last two states are {1,2}, whereas row 7 is when
the previous two states are {2,1}
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Fig. 24.6 Posterior mean transition matrices for Simulation 2, represented as heat maps. (Four
strategy profiles, six states, second order Markov process.) Row 2 is the probability of moving into
each of the six states when the last two states are {1,2}, whereas row 7 is when the previous two
states are {2,1}
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Fig. 24.7 Transition matrices used to generate data for Simulation 3, represented as heat maps.
(Simulated with five strategy profiles, six states, second order Markov process.) Row 2 is the
probability of moving into each of the six states when the last two states are {1,2}, whereas row 7
is when the previous two states are {2,1}
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Fig. 24.8 Posterior mean
transition matrices for
profiles k = 1, . . . ,5 in
Simulation 3, represented as
heat maps. (Simulated with
five strategy profiles, six
states, second order Markov
process, estimated with 15
strategy profiles.) All 15
estimated strategy profiles are
identical. Row 2 is the
probability of moving into
each of the six states when
the last two states are {1,2},
whereas row 7 is when the
previous two states are {2,1}
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24.5 Discussion

In all three simulations, SM-MC was unable to recover profiles and membership
parameters. Instead, the posterior distribution converged to a global mean transition
matrix and a point-mass distribution of membership parameters. This phenomenon
has been observed in other mixed membership applications when either the number
of individuals or the number of observations per individual is not large enough
(Galyardt 2012). Further simulations that consider larger sample sizes, or longer
chains for each individual may reveal under what conditions the SM-MC model
becomes useful.

However, it is desirable to find a solution that is also useful for the “medium-
sized” data sets common in education. In future work, we will consider a model
with fewer opportunities for “switching” strategies. Rather than assuming students
may switch strategies between each action, we will assume that every action taken
to solve a particular problem stem (a single psychometric item) came from the
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same strategy. The resulting model, mixed membership-Markov chains (MM-MC),
is described fully in section “Description of the Mixed Membership: Markov Chain
Model” in Appendix. This change in the exchangeability assumptions should mean
that it is easier to estimate the transition matrices in MM-MC than in SM-MC.

At the same time, these models do not represent important aspects of the domain,
e.g., properties of students, items, and skills. For example, we may wish to account
for differential difficulty of items, and student expertise in skills relevant to each
item. Moreover, these models do not account for change over time. For instance,
we may wish to describe strategy-switching behavior after accounting for student
experience or training with strategies.

Automatic discovery of cognitive or metacognitive strategies that students use
while engaged with computerized learning systems is a difficult problem. This work
represents only a first step towards this goal by testing out an existing model for the
purpose.

Appendix

Description of the Mixed Membership: Markov Chain Model

First, we assume that there is a single set of metacognitive strategies that is common
across all students, indexed k = 1, . . . ,K. Second, we assume that each student,
i = 1, . . . ,N, may use these strategies in different proportions. Some students may
be more likely to guess when they don’t know an answer, while other students
may be more likely to ask for a hint. How much each student uses each strategy
is parameterized by the vector θi = (θi1, . . . ,θiK), so that θik is the proportion of
problems that student i uses strategy k.

For each item (or problem step), r = 1, . . . ,R, that student i encounters, they will
take a sequence of actions Xir = (Xir1, . . . ,Xirt , . . . ,XirTir). Note that the length of the
sequence Tir differs from student to student and item to item. In this application,
the last action in every sequence is that a student correctly answers the item,
XirTir =Correct. When a student begins a problem, they will choose (consciously or
unconsciously) a strategy Zir ∈ {1, . . . ,K} which will determine the likely sequence
of actions.

Pr(Zir = k|θi) = θik (26.6)

or, equivalently,

Zir|θi ∼ Multinomial(θi). (26.7)
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In this formulation of the model, the strategy Zir depends only on the person i,
not the item r. This is an oversimplification which seems highly unlikely to be true;
students may be more willing to guess on items they perceive to be easy and more
ready to ask for a hint on items they perceive to be difficult. Future work will explore
the interaction between students and items in generating the strategy choice Z.

Each strategy is defined by a discrete time Markov process. The state-space
for the Markov chain is the set of observable student actions such as answering
correctly, answering incorrectly, or asking for a hint. Each Markov chain k =
1, . . . ,K is parameterized by the initial probability vector πk, and the transition
probability matrix Pk. Thus, the probability of a student’s sequence of actions Xir

given their strategy choice Zir is modeled as:

Pr(Xir = x|Zir = k) = Pr(Xir1 = x1|Zir = k)
Tir

∏
t=2

Pr(Xirt = x1|Zir = k,Xir(t−1) = xt−1) (26.8)

= πk,x1

Tir

∏
t=2

Pkxt−1xt . (26.9)

Thus,

Pr(Xir = x|θi) =
K

∑
k=1

Pr(Zir = k|θi)Pr(Xir = x|Zir = k) (26.10)

=
K

∑
k=1

θik

[
πk,x1

Tir

∏
t=2

Pkxt−1xt

]
, (26.11)

and finally, if we denote Xi = (Xi1, . . . ,Xir, . . . ,XiR), we have,

Pr(Xi = x|θi) =
R

∏
r=1

[
K

∑
k=1

θik

[
πk,xr1

Tir

∏
t=2

Pkxr(t−1)xrt

]]
. (26.12)

Note that these equations are written using a first-order Markov process, but they
are easily extensible to higher order processes.

The primary difference between SM-MC and MM-MC is in when students are
modeled as switching strategies. In SM-MC, the model allows students to switch
strategies between each and every action. In MM-MC, students are modeled as
having the opportunity to switch strategies only between items.
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Chapter 25
Partitioning Variance Into Constituents
in Multiple Regression Models:
Commonality Analysis

Burhanettin Ozdemir

Abstract Commonality analysis is a method of partitioning the explained variance
in a multiple regression analysis into variance constituents associated with each
independent variable uniquely and variance associated with common effects of one
or more independent variables in various combinations. By partitioning variance,
commonality analysis helps to determine accurately the degree of multicollinearity
between the independent variables, suppressor variable and related importance
of independent variables. In addition, commonality analysis provides regression
effects (R2) of all possible simple and multiple regression models that can be
constructed by the independent variables and thus helps researchers choose the most
appropriate regression model. The purposes of this study are to (a) provide a general
overview of multiple regression analysis and its application, (b) explain how to
conduct commonality analysis in a regression model, and (c) determine the degree
of multicollinearity between independent variables and suppressor variable in the
model by means of commonality analysis results. For these purposes, OBBS data
set which was collected during a project in Turkey was used to provide a heuristic
example. In this example, three independent variables that are assumed to predict
students’ academic performance were selected to create model and then multiple
regression analysis and commonality analysis were conducted.

Keywords Variance analysis • Commonality analysis • Multiple regression
models

25.1 Introduction

Some studies require investigating phenomena associated with educational and
social sciences, as the nature of these phenomena, the researcher must employ
multivariate statistical techniques. Thus, researchers have access to a more
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comprehensive and realistic results which increases both the reliability and the
validity of the research results. One of the most commonly used multivariate
statistical techniques is multiple linear regression model.

Multiple regression analysis is a statistical tool used to predict a dependent
variable (DV) from multiple independent variables (IVs) (Harlow 2005; Stevens
2009). The focus of multiple regression is to investigate which, if any, of these
predictor variables can significantly predict the dependent variable. The multiple
linear regression equation is as follows:

y = b0 +b1x1 +b2x2 + . . . ..+bnxn+ ε

where y is the predicted or expected value of the dependent variable, X1 through
Xn are n independent or predictor variables, b0 is the value of Y when all of the
independent variables (X1 through Xn) are equal to zero, and b1 through bn are the
estimated regression coefficients.

Multiple regression holds increase utility within the social sciences as it allows
for more comprehensive analysis of constructs related to human behavior. However,
it is critical to recognize that multiple regression is inherently a correlation technique
and cannot explain the causalities that may underlie the relationship between the
variables being observed (Stevens 2009). Apart from the advantages of using
multiple regression analysis methods, researchers must be careful when it comes
to interpreting regression results.

Courville and Thompson (2001) found in their review of all the articles published
in multiple volumes of one journal that the authors of all articles using regression
analyses interpreted only beta weights. The relative importance of the predictor
variables cannot correctly be evaluated solely on the basis of interpreting the
regression beta weights (i.e., standardized regression weights; Thompson 2006).
When predictor variables are correlated, structure coefficients (denoted by rs),
which are the Pearson correlation coefficients between the given predictors and the
predicted Y outcome scores (i.e., 9), must also be consulted (Thompson and Borrello
1985).

Some researchers use stepwise methods when they have a large pool of predic-
tors, either to evaluate (erroneously) the relative importance of the predictors or to
select a subset of predictors that has almost as large an R2 effect size as the full set
of predictors (Zientek and Thomspon 2006). Unfortunately, as Thompson (1995)
explained the best team might not include the best players. Similarly, the best set of
predictors, with the highest R2, might not include any of the five predictors picked
by stepwise.

Regression analysis is a poor method to determine the degree of multicollinearity
and to detect a suppressor effect. Multicollinearity occurs when the independent
variables are highly correlated and as the nature of social and behavioral science,
it is common to have correlated IVs. As Zientek and Thomspon (2006) stated
“collinearity is not problematic with respect to data analysis, but does complicate
result interpretation” (p. 299).
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Another problem with multiple regression which obscures interpreting regression
results is having a suppressor variable in the model. Suppressor variables are IVs
that by themselves have very little impact on the DV. However, when combined
with other IVs, suppressors can improve the predictive power of other IVs in the
regression equation (Smith et al. 1992).

Especially in the presence of multicollinearity and suppressor variables, inter-
pretation of regression results becomes much more complex and may lead to
misinterpretation. In order to increase accuracy of interpretation, regression analysis
should be reinforced by other techniques. A useful solution would be to conduct
supplemental analyses to help uncover the complex interrelationships that make
up a regression effect (Seibold and McPhee 1979). In this research, commonality
analysis was conducted alongside with regression analysis in order to uncover
complex relationship between the variables in the model.

25.1.1 Commonality Analysis

Commonality analysis has been applied across disciplines in social science research,
including education (e.g., Zientek and Thomspon 2006), counseling (e.g., Gill
et al. 2010), human resource development (e.g., Nimon et al. 2010), behavioral
science (e.g., Sorice and Conner 2010), and information science (e.g., Nimon and
Gavrilova 2010). Across these disciplines and others, commonality analysis allows
rich interpretation of the regression effect that advances theory and the application
of research findings (Nimon and Gavrilova 2010).

Commonality analysis is a method of partitioning the explained variance (R2)
into the variance constituents associated with each independent variable uniquely
and the variance associated with the one or more independent variables commonly
in various combinations. In a multiple regression analysis by partitioning variance,
commonality analysis helps to determine accurately;

• The degree of multicollinearity between IVs,
• The relative importance of IVs in a model (regardless of predictors order),
• Suppressor effect (if any).

In addition, commonality analysis provides regression effects (R2) of all possible
simple and multiple regression sub-models that can be constructed by given
independent variables and thus it helps researchers decide the most appropriate
regression model. Considering the advantages of commonality analysis mentioned
above, it overcomes shortcomings of multiple regression such as multicollinearity,
suppressor effects and determining relative importance of IVs without conducting
hierarchical regression analysis.

Commonality analysis has the advantage of producing the same results for a
given set of predictors—regardless of the order in which the predictors are entered
into the model (Amado 2003). Therefore, commonality analysis overcomes some of
the shortcomings inherent in multiple regression (Thompson 1995)
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Fig. 25.1 Venn diagram of hypothetical commonality variance partitions of two predictors

The process of conducting commonality analysis includes four steps. The first
step is to perform an all possible subsets (APS) regression. The second step is to
derive a formula for each unique and common effect. The third step is to populate
(substitute) the resulting formulas with the appropriate R2 values from the APS
regression. The fourth step is to verify results and interpret the unique and common
variance for each predictor in the model.

Not only should the sum of all unique and common effects equal the multiple
R2 value for the full regression model, the sum of unique and common effects
associated with each predictor should equal the r2 between the predictor and
criterion variable (Nimon and Reio 2011).

Figure 25.1 shows a Venn diagram for a hypothetical case involving two predictor
variables (X1 and X2) and a criterion variable (Y). The hatched area represents the
total explained variance. The variance in Y that is explained by X1 and X2 (R2

y.12)
can be partitioned into three components:

U1 = unique effect of X1 to R2
y.12

U2 = unique effect of X2 to R2
y.12

C12 = common effect of X1 and X2 to R2
y.12.

Formulas for computing variance components:

U1 =R2
y.12−R2

y.2
U2 =R2

y.12−R2
y.1

U12 =R2
y.1+ R2

y.2−R2
y.12

At that point it is important to understand difference between common variance
associated with two or more IVs and interaction effects of IVs in ANOVA. Common
variance accounts for overlapping variance between IVs and determines the degree
of multicollinearity in a regression model, whereas in ANOVA the interaction effect
is perfectly uncorrelated with the main effects (Zientek and Thomspon 2006).

It is quite easy to compute unique and common variance when there are only two
predictors in a regression model. However, as the number of predictor variables
increases, the process becomes more complicated. This is due to the fact that
the number of commonality coefficients is exponentially related to the number of
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predictor variables (2n−1). For example, the number of commonality coefficients
for three, four or five predictor variables is 23−1= 7, 24−1= 15 and 25−1= 31,
respectively. In addition, the formulas to compute commonality coefficients differ
according to the number of predictors in the model (Nimon and Gavrilova 2010).

Without the aid of software, this process can be laborious and even almost impos-
sible, depending on the number of predictor variables. But with the development of
software, researchers have the opportunity to conduct commonality analysis using
traditional software packages such as SPSS, SAS, SYSTAT and R.

25.2 Method

In this study, a data set from OBBS 2005 which was administered by Ministry of
National Education was used to provide a heuristic example. OBBS stands for “The
Student Achievement Test” and it is a national large-scale examination which aims
to assess primary and secondary school students’ academic achievement routinely
in Turkey. It was first performed in 1994 and then repeated every three-year circle
(EARGED 2010). Totally, 93.806 secondary school students (6th, 7th and 8th grade
students) participated in OBBS 2005. Since large sample size may lead to the
rejection of a null hypothesis even if the actual effect is so small, thus a random
sample of 937 (1% of total sample) was drawn from the secondary school data set.

In this example, three independent variables that were interest (students’ interest
to Turkish class), perception (students’ perception of passing the Turkish exam)
and social science (students’ score on social science) were selected as IVs, and
Turkish (students’ Turkish score) was selected as the DV in a multiple regression
analysis and a commonality analysis. The analysis was conducted in SPSS. More-
over, an SPSS scriptfile (Nimon et al. 2008, available from http://profnimon.com/
commonality.sbs), was used to conduct commonality analysis.

25.3 Results

Before conducting regression commonality analysis, it is better to examine correla-
tion between variables in the model which gives insight into relationship between
the variables and existence of multicollinearity.

Table 25.1 shows the Pearson’s correlation matrix of the four variables. The
first two IVs are correlated modestly with the DV (r= 0.150 and 0.426) and with
each other (r= 0.394). Social science was correlated higher with Turkish (DV)
(r= 0.689), indicating a clear relationship between social science and Turkish.

The multiple regression results are displayed in Table 25.2. In a multiple regres-
sion equation, social science and perception were found to be statistically significant
predictors of the DV (p< 0.001), while interest variable was not (p= 0.370). Given
the magnitude of the correlation between students’ social science and Turkish, it

http://profnimon.com/commonality.sbs
http://profnimon.com/commonality.sbs
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Table 25.1 Correlation matrix of variables in the model (N = 937)

Turkish Interest Perception Social science

Turkish 1.00
Interest 0.150 1.00
Perception 0.426 0.394 1.00
Social science 0.689 0.140 0.384 1.00

Note. All correlations are statistically significant (p< 0.001)

Table 25.2 The multiple regression results

Model-1 B
Standardized
beta(β) p R R2 ANOVAp

Intercept 1.189 0.032 0.712a 0.507 0.000
Social science 0.794 0.622 0.000
Interest −0.140 −0.023 0.370
Perception 1.290 0.190 0.000

is not surprising that social science was found to be the most powerful predictor
of Turkish (DV) in the model (β= 0.794). Nevertheless, the students perception of
success provided a useful contribution to predicting Turkish (p= 0.00). In total, the
three IVs had an R2 value of 50.7 %.

Using the information supplied, the script generates three SPSS data files
(CommonalityMatrix.sav, CCByVariable.sav and ModelAps.sav) providing the com-
monality analysis results. Tables 25.3, 25.4, and 25.5 show the results from these
SPSS files.

Table 25.3 contains the unique and common commonality coefficients as well
as the percent of variance in the regression effect that each coefficient contributes.
The individual entries in the table can be used to determine how much variance
is explained by each effect as well as which coefficients contribute most to the
regression effect.

Table 25.3 Commonality matrix

Predictors
Commonality
coefficients (R2)

Percentile
(% R2)

Unique effect (Un) Social science 0.330 65.100

Interest 0.001 0.122
Perception 0.027 5.249

Common effect (Cn) Social science—interest 0.001 0.244

Social science—perception 0.131 25.856
Interest—perception 0.001 0.189
Social science—interest-perception 0.016 3.240
Total 0.507 100.000
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According to commonality coefficients in Table 25.3, the major contributor to the
regression effect was the unique variance associated with social science. Excluding
its relationship with interest and perception, it uniquely contributed 65.1 % of the
regression effect.

The other major contributor to the regression effect was common variance
associated with social science and perception, which accounted for 25.81 % of the
regression effect. This indicates the amount of multicollinearity between social sci-
ence and perception variables. Although regression analysis results showed no sign
of multicollinearity, according to commonality analysis results, a month of common
variance associated with social science and perception indicated multicollinearity
between social science and perception variables. Thus, in the presence of social
science, perception could be excluded from the regression model.

In commonality analysis negative commonality coefficients are possible. As
Pedhazur stated “negative commonalities may be obtained in situations where some
of the variables act as suppressors, or when some of the correlations among the
independent variables are positive and others are negative” (Pedhazur 1997, p. 271).
In Table 25.3, all commonality coefficients are positive which means there is no
suppressor variable which obscures regression results and complicates regression
results interpretation.

Table 25.4 provides another view of the commonality effects. The unique effect
for each of the predictors was displayed, as well as the total of all common
effects for which the predictor was involved. In order to calculate the common
variance of a predictor variable in the model, all common variance components
associated with that predictor variable, shown in Table 25.3, have to be added
up. For example, total common variance associated with social science, shown in
Table 25.4, is equal to the sum of all common effect that social science variable is
involved (0.148= 0.001+ 0.131+ 0.016). The last column is the sum of the unique
and common effect and is equivalent to the squared correlation (rs

2) between the
predictor and dependent variable.

Table 25.4 Commonality coefficients

Predictors Unique variance (Ru
2) Common variance (Rc

2) Total variance (Ri
2)

Social Science 0.330 0.149 0.479
Interest 0.001 0.019 0.019
Perception 0.027 0.148 0.175

One might observe the role that interest plays in the regression effect. Not
only does it have a small beta weight and small structure coefficient, its unique
effect indicates that it could be excluded from the regression model with only
a small reduction in R2 (0.507−0.0006= 0.5064). The discrepancy between the
significance of the interest’s beta weight and its contribution to the regression effect
could easily be explained as most of its effect was due to variance that it shared
common with other predictor.
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Perception itself explains 17.5 % of variance in criterion variable. At first it
seems that perception makes an important contribution to the model. However, small
unique variance of perception alongside with large common variance with social
science variable indicates that there is multicollinearity between social science and
perception.

Thus, at first the multiple linear regression model appeared to consist of three
IVs, but in fact interest and perception variables could be excluded from the model
because of their small contribution in the presence of social science variable and
our regression model turned out to be a simple regression model with a dependent
variable. In addition, all commonality coefficients found to be positive which means
there is no suppressor variable in the model.

Table 25.5 provides R2 effect size of all possible simple and multiple regression
models (All Possible Sub-Models -APS) that can be constructed by the given
independent variables and thus it helps researcher decide the most appropriate
regression model.

Table 25.5 R2 of all possible
sub-models

Independent variables K R2

Social science 1 0.478
Interest 1 0.019
Perception 1 0.175
Social science—interest 2 0.480
Social science—perception 2 0.506
Interest—perception 2 0.177
Social science—interest-perception 3 0.507

The first column in Table 25.5 represents which of the three predictor variables
are involved in predicting criterion variable. Dividing the variance sum by the
regression effect yields the percent variance explained by each variable, equivalent
to a squared correlation coefficient (U1 +C1/R2 = rs

2). One can observe from
Table 25.5 that social science explained 47.8 % of variance in Turkish. However,
adding interest and perception variables to the model caused an increase of 2.8 %
in R2 effect size which was very small compared to contribution of social science
itself.

Table 25.6 presents an example of how the commonality effects by variables can
be displayed alongside with traditional multiple regression output to add another
layer of consideration when evaluating the importance of predictors. Such a table
allows researchers to simultaneously consider beta weights, structure coefficients,
unique effects, and common effects when interpreting regression effects and
predictor importance.

The last column in Table 25.6 presents sum of the squared structure
coefficients (rs

2) associated with each independent variables. One can observe
from Table 25.6 that social science explained 94.44 % of the total variance
explained by the model. The sum of the squared structure coefficients of IVs
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(94.44 %+ 3.79 %+ 34.34 %= 132.57 %) in the regression model is higher than
100 %, which indicates that there is multicollinearity between predictors.

To conclude, at first the regression model appeared to consist of three IVs, but
in fact interest and perception variables could be excluded from the model because
of their small contribution in the presence of social science variable. Our multiple
regression model turned out to be a simple regression model with an independent
variable. In addition, all commonality coefficients found to be positive which means
there is no suppressor variable in the model.

25.4 Discussion

In this article, we tried to demonstrate commonality analysis which can provide
important information about the variables in the regression model that may not be
revealed by only examining beta weights and structure coefficients.

Considering the advantages of commonality analysis mentioned above, it over-
comes shortcomings of multiple regression such as multicollinearity, suppressor
effect and determining relative importance of IVs without conducting hierarchical
regression analysis. In addition, commonality analysis provides regression effects
(R2) of all possible simple and multiple regression sub-models that can be con-
structed by the given independent variables and thus it helps researcher decide the
most appropriate regression model.

Although there are a lot of advantages of commonality analysis, Warne (2011)
identified a few caveats associated with the method. The first one, common variance
components between variables should not be interpreted as the presence of an
interaction effect (Thompson and Borrello 1985) in ANOVA. Because, interaction
effects between variables are unique relationships with the DV that develop as
differing levels of the IVs interact with one another. Another difference between
common variance and interaction effects is that the latter can be subjected to
hypothesis testing, while the former cannot (Warne 2011; Mood 1971). Another
caveat with commonality analysis is that it can quickly become a complex method as
the number of independent variables increases. However, development of software
which enables conducting commonality analysis for any number of IVs has solved
this problem.

Recently, a lot of work has done on the development of software which enables
conducting regression commonality analysis such as Nimon et al. (2008) and
Nimon and Gavrilova (2010). Researchers now have the opportunity to conduct
commonality analysis using traditional software packages such as SPSS, SAS,
SYSTAT, and R with the development of software.

We suggest researchers and practitioners to conduct commonality analysis
alongside with other multivariate statistical methods such as canonical correlations
and ANOVA which of them aims to examine undetected relationship between the
variables in social and educational science. Conducting Supplementary analyses
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such as commonality analysis helps researchers have access to a more comprehen-
sive and realistic results which increases both the reliability and the validity of the
research results.
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Chapter 26
Multilevel Random Mediation Analysis:
A Comparison of Analytical Alternatives

Fang Luo and Hongyun Liu

Abstract The present article focuses on the multilevel random mediation effects
model (1-1-1) and examines its various analytical procedures. The performances of
these procedures under a variety of conditions were compared using Monte Carlo
simulations. We compared the multilevel random mediation model with two com-
pact models: the multilevel fixed mediation model and the single-level traditional
mediation model. The results showed better performance for the multilevel random
mediation model. The results also indicated that we can obtain unbiased estimation
of the mediation effect, the correct standard error, and proper hypothesis testing
results from the multilevel random mediation model. Moreover, the differences
between the multilevel fixed mediation model and the single-level traditional
mediation model are minimal. Several implications and recommendations for this
application are discussed.

Keywords Multilevel random mediation model • Multilevel fixed mediation
model • Single-level mediation model • Restricted maximum likelihood

26.1 Introduction

The analysis of mediation effects is important in the research of education,
psychology, and other social sciences. In the context of traditional regression and
path analysis, the methods for estimating and testing mediation are widely known
and relatively standard (e.g., Imai et al. 2010; Baron and Kenny 1986; MacKinnon
et al. 2002; Shrout and Bolger 2002). Such methods, however, are inappropriate
when the data are hierarchical in nature, primarily because the assumption of
independence of observations is violated and the standard errors are biased (Bryk
and Raudenbush 2002). For this reason, the multilevel model, also known as the
hierarchical linear or mixed model, has been proposed, and subsequently, methods
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for the analyses of mediation effects within the model have also been developed
(Krull and MacKinnon 1999, 2001; Kenny et al. 2003; Bauer et al. 2006; Zhang
et al. 2009).

In brief, a mediator is a variable that falls into the casual ordering and at least
partially explains the effects of X (the independent variable) on Y (the dependent
variable). In the field of organization psychology, for example, Vandenabeele (2009)
examined how public service motivation raises job satisfaction and organizational
commitment, which subsequently improves job performance. Similarly, Liu et al.
(2011) found that individual’s psychological empowerment mediates the effect of
autonomy orientation on a team member’s voluntary turnover.

Several procedures have been recommended and implemented in existing com-
mercial software for the testing of mediation effects in multilevel models, such
as SAS PROC MIXED, HLM, and Mplus. An important feature of multilevel
mediation models is that predictors, mediators, and outcome variables can reside at
different levels of the data. Adopting the notation proposed by Krull and MacKinnon
(2001), we can differentiate several forms of multilevel mediation models, as
summarized by Preacher et al. (2010). Because level 2 dependent variables are not
permitted in the framework of multilevel modeling, the outcome variable is always
restricted to being measured at level 1 (L1). The mediation in a two-level model
may take three forms (Bauer et al. 2006). Specifically in the 2→ 2→ 1 model, both
predictor and mediator are at the group level (L2) while the dependent variable is at
L1. In the 2→ 1→ 1 model, only the predictor X is at L2 while in the 1→ 1→ 1
model, the predictor, mediator, and outcome are all at L1.

The multilevel mediation model has attracted an increasing amount of attention,
Krull and MacKinnon (2001), and Pituch et al. (2006) examined the 2-2-1 mediation
model, and MacKinnon (2008), Pituch and Stapleton (2008), and Raudenbush and
Sampson (1999) examined the 2-1-1 mediation model, and Krull and MacKinnon
(1999, 2001) offered an alternative method to all three types of multilevel mediation,
which is similar to the causal steps approach proposed by Baron and Kenny (1986).

These above methods assumed that the mediation effects are fixed. However,
in the 2-1-1 and 1-1-1 models, the casual effects can be random because the
predictors and/or the mediators may reside at L1. Particularly for the 1-1-1 model,
the mediation effect can be random across L2 units and consists of two parts: the
fixed part and the random part. This finding was first noted by Kenny et al. (2003)
who proposed a two-step method for estimating and testing 1-1-1 models when the
causal effects and the indirect effect are all random. They estimated each 1-1 model
separately and then computed the covariance to obtain the overall mediation effect
using L2 residuals. This two-step approach has the drawback that it cannot directly
estimate the covariance of the random effects in the different L1 models, and this ad
hoc approach is not an optimal strategy (Bauer et al. 2006). In contrast, the newer
method implemented in SAS MIXED (Bauer et al. 2006) can estimate the mediation
for models with L1 random effects. The method formulates and models a single L1
equation through the use of indicator variables.

The performance (e.g., efficiency, precision) of these multilevel mediation
analysis approaches and the influential factors have been examined. Krull and
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MacKinnon (2001) compared several types of multilevel mediation models (e.g.,
2-2-1, 2-1-1, and 1-1-1) with the traditional single-level mediation approach and
showed that an underestimation of the standard error of the mediated effect exists
in single-level models with cluster data. Similarly, Pituch et al. (2005) conducted
Monte Carlo studies to assess the power and Type I error rates of four methods
using the joint significance test and the asymmetric confidence limits recommended
by MacKinnon (2008), Baron and Kenny (1986), and Sobel (1982). The conditions
simulated were actual multi-site experiments in which the number of sites, the
number of participants within the sites, and effect sizes were all relatively small.
However, because the mediated effects in these studies were fixed to be identical
across the groups, they are not real random mediated models.

Subsequently, Bauer et al. (2006) proposed new procedures for evaluating
random indirect effects in multilevel models and examined the difficulties in
estimation, estimation bias, Type I errors, CI coverage rates, and power. They found
that the estimates using the new procedures are unbiased under most conditions, and
the confidence intervals based on a normal approximation or a simulated sampling
distribution perform well.

Although Preacher et al. (2011) and Preacher et al. (2010) suggested that a
multilevel structural equation modeling (MSEM) approach for assessing mediation
in two-level data is more inclusive and flexible, their findings didn’t generalize to
the 1-1-1 model with random slopes. Therefore, at the present Bauer’s procedure is
more suitable for lower level random mediation model.

26.1.1 Lower Level Random Mediation Model
and Bauer’s Procedure

Following the notation of Kenny et al. (2003) and Bauer et al. (2006), the lower
level (L1) equations for M (mediator) and Y (dependent variable) are:

Mi j = dM j +a jXi j + eMi j

Yi j = dY j + c′jXi j +b jMi j + eYi j

where eMij and eYij are L1 residuals for M and Y, dMj and dYj are the intercepts
for M and Y, bj is the effect of M on Y controlling for X, c

′
j is the direct effect

of X on Y controlling for M, and aj is the effect of X on M. Because all of these
coefficients may vary across the upper level units, each of them has the subscript j.
The respective L2 equations for the random L1 coefficients when there are no L2
predictors are:
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dM j = dM +uM0 j

a j = a+uM1 j

dY j = dY +uY 0 j

c′j = c′+uY 1 j

b j = b+uY 2 j

The un-subscripted parameters are the average estimation values, while uM0j, uM1j,
uY1j and uY2j are the L2 residuals for the L1 random parameters.

Several assumptions are made for this multilevel random mediation model. First,
the predictors are uncorrelated with the random effects (intercepts and slopes) and
the residuals both within and across equations (e.g., Xij must be uncorrelated with
dMj, aj, and eMij, and Mij should be uncorrelated with dYj, bj, c

′
j, and eYij). Second, the

residuals eMij and eYij are both normally distributed with an expected value of zero,
and they are uncorrelated with each other. Typically, the residuals for each outcome
are assumed to be independent and homoscedastic across i within j, but these
restrictions can be relaxed under certain circumstances (e.g., when residuals are
expected to be auto-correlated with repeated measures). An additional assumption,
which states that the residuals are uncorrelated across the outcomes, is required to
identify the effect of M on Y. Third, the random effects are normally distributed with
their means equal to the average effects in the population. Fourth, the L1 residuals
are uncorrelated with the random effects both within and across equations (e.g.,
eMij is uncorrelated with dMj, aj, dYj, bj and c

′
j. From assumptions 2 and 3, we can

conclude that the distribution of M is normal, conditional on X, and the distribution
of Y is normal, conditional on M and X.

Bauer et al. (2006) proposed a procedure to reformulate the model with a single
L1 equation using indicator variables. In general, a new outcome variable Z is
formed by stacking Y and M for each unit i within j. Two indicator variables, SM

and SY are then created to distinguish the two variables stacked in Z. The variable
SM is set to be equal to 1 and eZij equal to eMij when Z refers to M and is equal to
0 otherwise. Similarly, the variable SY is set to be equal to 1 and eZij equal to eYij

when Z refers to Y and is equal to 0 otherwise. The L1 mediation model can be
represented by a single equation:

Zi j = SMi j (dM j +a jXi j)+SYi j
(
dY j +b jMi j + c′jXi j

)
+ eZi j (26.1)

The two outcomes Y and M are distinguished in the model by the indicator
variables. Using the indicator variable approach, we can estimate the complete lower
level mediation model simultaneously.
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26.1.2 Indirect Effect in Lower Level Random
Mediation Model

The L1 equations reflect the heterogeneity in the causal effects through the L2 units.
The indirect effects for a given unit j are represented by ajbj. Because aj and bj are
not necessarily independent, the expected value of ajbj is (Goodman 1960)

E (a jb j) = ab+σa j ,b j , (26.2)

meaning the average indirect effect in the population is a function of the average
effect of X on M (i.e., a), the average effect of M on Y (i.e., b), and the covariance
between the two random effects (i.e., σa j ,b j ).

Assuming that aj and bj are normally distributed, Kenny et al. (2003) showed that
the variance of ajbj is

Var (a jb j) = b2σ2
a j +a2σ2

b j +σ2
a jσ2

b j +2abσa j,b j +σ2
a j,b j (26.3)

The sampling variance of the estimated average indirect effect âb̂+ σ̂a j,b j is

Var
(

âb̂+ σ̂a j,b j

)
= b̂2Var (â)+ â2Var

(
b̂
)
+Var (â)Var

(
b̂
)

+2âb̂Cov
(

â, b̂
)
+Cov

(
â, b̂

)2
+Var

(
σ̂a j,b j

) (26.4)

The variances and covariances in the equation (designated as Var and Cov) represent
the asymptotic sampling variances and covariances of the fixed effect estimates â
and b̂ and the covariance estimate σ̂a j ,b j .

To develop inferences on the average indirect effect, we can form CIs for
the estimates. One method to construct CIs assumes normality for the sampling
distributions of the estimates. Under this assumption, a 95 % CI for the average
indirect effect is obtained as

(
âb̂+ σ̂a j,b j

)
±1.96

(
Var

(
âb̂+ σ̂a j,b j

))1/2
(26.5)

where ±1.96 is the critical value of the z distribution and Var is used to indicate the
estimated sampling variance obtained when the respective values in Eq. (26.4) are
substituted by their sample-based estimates.

A promising alternative for the construction of CIs is the Monte Carlo (MC)
method which was first applied to the mediation context by MacKinnon et al.
(2004). The MC method has several distinct advantages over rival methods (e.g., the
bootstrapping and distribution of the product method) (Preacher and Selig 2012). In
this approach, the sampling distribution for the effect of interest is not assumed to
be normally distributed, and instead, the CIs are simulated from the model estimates
along with their respective asymptotic variances and covariances.
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Following Bauer et al. (2006) study, the purpose of this work focuses on the 1-1-1
model and examines the improvement in performance using the multilevel random
mediation model (MRMM) compared with two simple models, the multilevel
fixed mediation model (MFMM) and the single-level mediation model (SLMM).
The performances of these analytical models were compared using Monte Carlo
simulations with respect to several factors, including the size of the true mediational
relationship, the sample size, and the characteristics of the multilevel data.

26.2 The Simulation Study

26.2.1 Main Simulation Design

A simulation study was conducted to compare the performances of MRMM,
MFMM, and SLMM analyses in estimating and testing indirect effects in multilevel
data. The SAS programming language was used to generate simulated data sets to
represent mediational chains in which an initial variable X affected a mediator M,
which affected an outcome variable Y.

Utilizing the parameter simulation designs by Krull and MacKinnon (1999,
2001), Kenny et al. (2003), Bauer et al. (2006), Zhang et al. (2009), and Pituch
et al. (2005), four factors were systematically varied in the simulations. The number
of groups and the group size were manipulated so that the simulated data sets had a
fixed total sample size of 800, and the number of groups was 32, 50, 100, and 160,
with group sample sizes of 25, 16, 8, and 5, respectively. The ICCs for Mij and Yij

were identical, and were set to ICCM = ICCY = 0.05, 0.15, and 0.30. The true values
of parameters aj and bj, which referred to the averages of the random effects aj and bj

also systematically varied. In the simulation model, we set a= b= 0.1, a= b= 0.3,
and a= b= 0.6, and the random effects aj and bj were both normally distributed
with variances of σ2

a j
= σ2

b j
= 0.16, and c

′
j was normally distributed with a mean

of c
′
j = 0.2 and a variance of σ2

c′j
= 0.04 The covariance between aj and bj (σaj,bj)

was -0.113, 0, 0.0565, and 0.113. In addition, the predictor X was simulated from
the equation xij = xj + exij, where xj ∼ N(0,1) and exij ∼N(0, 1). For simplicity,
the means of dMj and dYj were set to zero. These four factors combined to yield
4× 4× 3× 3= 144 conditions.

26.2.2 Supplemental Design for Examining Type I Error

To investigate the Type I error, we added a supplemental design to set the average
indirect effect at ab+σaj,bj = 0. Similar to the method used by Bauer et al. (2006),
we fixed the covariance between aj and bj to zero (σaj,bj = 0) and (1) set a= b= 0;
(2) a= 0 and b= 0.3; and (3) a= 0.3, b= 0 to ensure ab+σaj,bj = 0 at each sample
size and residual variance for M and Y. These situations combined to generate 36
conditions.
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In addition, we also considered that the covariances between aj and bj were
not zero, but varied at (1) σaj,bj =− 0.113, a= b= 0.336155 (or −0.336155);
(2) σaj,bj =− 0.0565, a= b= 0.237697 (or −0.237697); (3) σaj,bj = 0.0565,
a= 0.237697, b=−0.237697 (or a=−0.237697, b= 0.237697); and (4)
σaj,bj = 0.113, a= 0.33615, b=−0.33615 (or a=−0.33615, b= 0.33615) to
ensure ab+σaj,bj = 0. For simplicity, we fixed the residual variances to be 0.3
for M and Y in each situation. These situations combined to generate 32 conditions.

For each cell of the design, we simulated 500 sets of data, which were then
used in SAS PROC to fit three models. The models were a traditional single-level
mediation model (SAS PROC REG), a multilevel fixed mediation model (SAS
PROC MIXED REML), and a multilevel random mediation model (SAS PROC
MIXED REML). The performance of each model was evaluated according to six
criteria, namely, (1) the convergence rates, (2) the bias and precision of the media-
tion effects estimates, (3) the coverage rates of the CIs constructed with the normal
approximation and MC methods, (4) the estimated sampling variance of the indirect
effect, (5) the statistical power in testing the indirect effect, and (6) the Type I
error rates for the null hypothesis test on the average indirect effect. In addition,
we examined the influences of four design factors on the indirect effect estimators.

26.3 Result

26.3.1 Convergence Behavior

The solutions for replicate were categorized as either non-converged or converged.
All of the 144× 500= 72,000 replicates for both the MFMM and the SLMM
converged. For the MRMM using the REML estimation method, only 0.7 % of the
solutions did not converge. Non-convergence likely occurred because the MRMM is
more complex than the fixed multilevel and single-level mediation models as there
are more parameters to be estimated. In addition to these results, small effects from
other factors were also identified. Generally, the MRMM was more likely to produce
non-convergence, and it requires more iterations if a, b, or the absolute covariance
of aj and bj were large.

26.3.2 Bias and Precision of Estimation

Bias was measured as the difference between the mean estimate and the correspond-
ing population value, and the absolute bias was computed as the mean of absolute
difference between the estimate and the corresponding population value. The bias
and absolute bias were used to evaluate the precision of the parameter estimations.
The estimate biases and the absolute biases of indirect effects for the three different
models are presented in Table 26.1.
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Table 26.1 Bias and absolute bias of indirect effect in different models

MRMM MFMM SLMM
Condition BIAS ABS(BIAS) BIAS ABS(BIAS) BIAS ABS(BIAS)

σaj,bj

−0.113 −0.0015 0.0318 0.0849 0.0865 0.0883 0.0894
0 −0.0001 0.0345 0.0002 0.0253 0.0003 0.0255
0.057 0.0011 0.0368 −0.0426 0.0550 −0.0441 0.0555
0.113 0.0018 0.0399 −0.0848 0.0944 −0.0881 0.0961
Sample size

(32,25) 0.0009 0.0445 −0.0102 0.0700 −0.0103 0.0714
(50,16) 0.0006 0.0377 −0.0101 0.0662 −0.0103 0.0677
(100,8) 0.0000 0.0313 −0.0106 0.0630 −0.0111 0.0644
(160,5) −0.0002 0.0294 −0.0114 0.0621 −0.0118 0.0632
Parameters of a and b

0.1 0.0007 0.0255 −0.0136 0.0700 −0.0136 0.0701
0.3 0.0001 0.0325 −0.0122 0.0664 −0.0124 0.0676
0.6 0.0002 0.0493 −0.0060 0.0595 −0.0067 0.0622
ICCMand ICCY

0.05 0.0002 0.0358 −0.0107 0.0653 −0.0109 0.0655
0.15 0.0005 0.0358 −0.0104 0.0653 −0.0107 0.0664
0.30 0.0002 0.0356 −0.0106 0.0652 −0.0111 0.0681
All replications 0.0003 0.0357 −0.0106 0.0653 −0.0109 0.0667

Note: MRMM Multilevel Random Mediation model, MFMM Multilevel Fixed Mediation model,
SLMM Single-level Fixed Mediation model

The results indicated that across all 144 conditions, the mean bias and the mean
absolute bias of the average indirect effect estimate were 0.0003 and 0.0357 for
MRMM, -0.0106 and 0.0653 for MFMM, and -0.0109 and 0.0667 for SLMM. It is
not surprising that the bias is the smallest for the MRMM model under all conditions
because it is more complex and the random indirect effects are properly considered.
The bias and the absolute bias of the MFMM were slightly smaller than those of the
SLMM, although the differences between them were trivial.

Furthermore, when the covariance σaj,bj between aj and bj is zero, the estimates
of the average indirect effects were essentially unbiased for all three types of
models. However, as the covariance between aj and bj increased, the bias also
increased; for MRMM, F(3, 140)= 17.21, p< 0.0001, partial η2 = 0.269; for
MFMM, F(3, 140)= 525.63, p< 0.0001, partial η2 = 0.918; for SLMM, F(3,
140)= 728.51, p< 0.0001, partial η2 = 0.940, for SLMM; similarly for the abso-
lute bias, for MRMM, F(3, 140)= 2.829, p= 0.041, partial η2 = 0.057; for MFMM,
F(3, 140)= 134.88, p< 0.0001, partial η2 = 0.743; for SLMM, F(3, 140)= 162.01,
p< 0.0001, partial η2 = 0.776. It can be concluded that the estimates of the average
indirect effects are nearly unbiased for MRMM, but the estimates of the other two
models are imprecise when σaj,bj was significantly different than zero.
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For a fixed number of overall observations, the estimates of the average indirect
effect became more precise (using absolute bias as index) when there was a
larger number of L2 units for the MRMM; F(3, 140)= 13.45, p< 0.0001, partial
η2 = 0.224. The L2 sample size, however, had no effect on the precision of estimates
for the other two simple methods. The absolute bias of the average indirect effect for
MRMM increased as the average values of a and b increased; F(2, 141)= 120.872,
p< 0.0001, partial η2 = 0.632. However, the effects of the values of a and b on
the bias and absolute biases for the other two simple models were not significant.
Furthermore, the effects of the residual intraclass correlations ICCM and ICCY on
the precision of the average indirect effect estimates were not significant for all three
models.

26.3.3 Coverage Rate

The 95 % confidence interval (CIs) were constructed with the normal approximation
and Monte Carlo methods (Mackinnon et al. 2004). The precision of the average
indirect effect estimates was examined, and the closer the coverage rates were to the
95 %, the more precise the estimates would be. The coverage rates for the CIs are
presented in Table 26.2 for different design factors and models.

Across all 144 conditions in the factorial design, the mean coverage rates for
MRMM were 94.51 and 94.44 % for the normal approximation and Monte Carlo
methods, respectively, producing close to a 95 % coverage of the true population
parameter values. For the MFMM, however, the mean coverage rates were 32.61
and 32.90 % for the normal approximation and Monte Carlo methods, respectively.
Similarly, for the SLMM, the mean coverage rates were 32.18 and 32.46 % for
the normal approximation and Monte Carlo methods, respectively. In each of the
conditions in the simulation study, the CI coverage rates of MRMM were much
higher than those of MFMM and SLMM and were close to 95 %.

For the MFMM and SLMM models, the CI coverage rates reached a maximum
of approximately 69 % when the covariance σaj,bj between aj and bj was zero.
However, when the covariance σaj,bj between aj and bj was different from zero, the
CI coverage rates rapidly dropped below 30 %. For example, when the covariance
σaj,bj between aj and bj was 0.113, the coverage rates were not more than 18 %.
The results indicated that the magnitude of the covariance σaj,bj between aj and bj

had significant effects on the CI coverage rates for the MFMM and SLMM. The
CI coverage rates, however, were much smaller than the expected 95 % regardless
of whether the covariance σaj,bj between aj and bj was zero. Moreover, we can
conclude that the effect of the covariance σaj,bj between aj and bj on the CI coverage
rates is not significant for MRMM.

For a fixed number of overall observations, we can conclude from Table 26.2 that
(1) the number of group level units and values of a and b have significant effects on
the CI coverage rates for the MFMM and SLMM, (2) the coverage rates increase as
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the L2 sample size increases, (3) the CI coverage rates increase as the values of a and
b increase, and (4) for the MRMM, the magnitudes of the residual intracorrelations
ICCM and ICCY have no effect on the CI coverage rates.

26.3.4 Estimated Sampling Variance of Indirect Effect

With the assumption of normality for the random effects, the sampling variances of
the indirect effect for the MRMM can be estimated using Eq. (26.4), while those for
the MFMM an SLMM can be computed using the Sobel (1982) method as follows:

Var
(

âb̂
)
= â2σ2

b̂
+ b̂2σ2

â (26.6)

The sampling errors under different design factors and models are presented in
Table 26.3. Across all of the conditions, the sampling errors (standard errors) of the
indirect effects were 0.002248 (0.0474), 0.000357 (0.0189), and 0.00037 (0.0192)
for the MRMM, MFMM, and SLMM, respectively. The results indicated that for
the MFMM and SLMM, the sampling errors of the indirect effects were largely
underestimated. Although the sampling errors using the MFMM were slightly larger
than those of the SLMM, the differences between them were small relative to the
differences between the random effect model and the fixed effect models.

For the MRMM, the estimated sampling error of the indirect effect was a
function of the covariance between the random effects aj and bj, i.e., the sampling
error decreased as the covariance decreased: F(3, 140)= 3.225, p= 0.025, partial
η2 = 0.065. For a finite number of observations, the estimated sampling error
of the indirect effect became smaller with the increase in the number of L2
units: F(3, 140)= 16.263, p< 0.0001, partial η2 = 0.258. The sampling error
also decreased as the values of the average effects a and b became smaller:
F(2, 141)= 68.695, p< 0.0001, partial η2 = 0.494. An interaction between the
values of the average effects and the covariance of the random effects affected
the sampling error estimates: F(6, 132)= 3.41, p= 0.0037, partial η2 = 0.134,
indicating that the difference in the estimated sampling error between different
levels of covariance increased as the magnitude of the average effects a and b
increased. Interactions between the values of the average effects and the group
size also affected the sampling error estimates: F(6, 132)= 11.009, p< 0.0001,
partial η2 = 0.334, indicating that the difference in the sampling errors between
the different group sample sizes was smaller for low average effects (a and b) than
for those with high average effects.

The relative bias in the sampling error estimation was examined to detect the
conditions under which the advantages of a multilevel random mediational analysis
were most apparent. Because the true sampling error was not known, the estimated
sampling error of 500 replicates for the MRMM was used as the comparison
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standard. The relative bias (RB) of the estimated variance of the indirect effect of
the MFMM compared to MRMM was calculated using the equation:

RBMFMM−MRMM =
Var(Indirect)MRMM −Var(Indirect)MFMM

Var(Indirect)MRMM
(26.7)

and the relative bias of SLMM to MRMM was calculated using the equation:

RBSFMM−MRMM =
Var(Indirect)MRMM −Var(Indirect)SLMM

Var(Indirect)MRMM
(26.8)

The results of the relative biases are shown in the last two columns in Table 26.3.
Across all conditions in the simulation study, the relative biases of the MFMM to
the MRMM and the SLMM to the MRMM were 0.855 and 0.850, respectively. For
the MFMM model, the relative bias decreased as the number of group level units
increased: F(3, 140)= 9.450, p< .0001, partial η2 = .168. When the values of the
average effects values a and b became smaller, the relative bias became larger: F(2,
141)= 166.358, p< .0001, partial η2 = .702. In addition, the interaction between
the number of units at L2 and the average effects values a and b was significant:
F(6, 132)= 46.275, p< .0001, partial η2 = .678. When the average effects values a
and b were small (e.g., 0.1), the difference in the relative bias of the sampling errors
among the different numbers of units was small. As the average effects values a and
b became large, however, the differences in the relative bias of the sampling errors
among the different numbers of units became large. Similar results were obtained
for the SLMM model.

26.3.5 Type I Error

We examined the Type I error rates in testing the average indirect effect using
a supplementary simulation design in which the population value of the average
indirect effect was set to zero. There were 36 conditions in which the covariance
σa jb j between the random effects aj and bj was set to zero and 24 conditions in
which the covariance σa jb j between the random effects aj and bj was not set to zero.
As is customary practice, we set the nominal error rate at 5 %. Type I error rates for
different design factors and models were estimated (see Table 26.4).

When the covariance between the random effects was set to 0, a and b were also
set to zero and the Type I error generated by both the normal approximation and the
Monte Carlo methods varied with the models being examined. When the MRMM
was used, the Type I errors were 0.0389 and 0.0440 for the normal approximation
method and the Monte Carlo method, respectively. However, when MFMM was
used, the Type I errors were 0.0612 and 0.0997 for the normal approximation
method and the Monte Carlo method, respectively, and when the SLMM was used,
they reached 0.0575 and 0.0949 for the normal approximation method and the
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Monte Carlo method, respectively. Therefore, the MRMM with the Monte Carlo
method was more likely to reach a 5 % Type I error. However, the Type I errors
produced by the MFMM and SLMM models with either the normal approximation
or Monte Carlo methods could also be controlled adequately. Under the condition
that either a or b was 0, the Type I errors of the normal approximation and the
Monte Carlo methods reached 0.0434 and 0.0518, respectively, for MRMM; 0.2968
and 0.3092, respectively, for the MFMM; and 0.2897 and 0.3016, respectively, for
SLMM. Under this condition, the MRMM with the MC method was more likely to
reach a 5 % Type I error level. In comparison, the MFMM and SLMM produced
higher Type I error rates. Under the condition that the covariance between two
random effects was 0 and the total sample size was set at 800, the smaller the sample
size at L2, the more likely it was that the Type I error generated by the MFMM and
SLMM was above 5 %. For the MRMM, if the sample size is very small, the MC
method is superior to the normal approximation method.

When the covariance of the random effects was not 0, under the condition that
σa jb j +ab = 0, the overall Type I error rates produced by the normal approximation
and MC methods reached 0.0471 and 0.0513, respectively, for the MRMM; 0.9831
and 0.9843, respectively, for the MFMM; and 0.9813 and 0.9828, respectively, for
the SLMM. Because the covariance was not considered in either the MFMM or the
SLMM, the Type I error rate tended to be extremely large.

When the MRMM was used, a large sample size at L2 led to a large Type I
error rate. The MC method was superior to the normal approximation method with
a small sample size.

26.3.6 Power

To evaluate power, we calculated the proportion of replications with CIs for the
average indirect effect excluding zero for each of the 144 cells in the factorial design.
Similar to the CI coverage rates, both the normal approximation and the Monte
Carlo methods were examined. The results are presented in Table 26.5. Across all
conditions for the normal approximation method, the power estimates of the indirect
effects were 0.7727, 0.8155, and 0.8089 for the MRMM, MFMM, and SLMM,
respectively. For the MC method, the powers were 0.7784, 0.8416, and 0.8377
for the MRMM, MFMM, and SLMM, respectively. In general, the simple fixed
indirect effect models (the MFMM and SLMM) resulted in power estimates superior
to that of the MRMM, but the results were not completely consistent across the
different conditions (see Table 26.4). Furthermore, high power was not an indicator
of the strength of the model because it was based on an incorrectly underestimated
standard error.

Because the power is affected by the magnitude of the indirect effects, we
calculated the indirect effects by combining the average effects and the covariance
of the random effects, i.e., σa jb j +ab. In the simulation study, there are 12 types of
indirect effects with a mean of 0.188, a minimum of 0.01, and a maximum of 0.473.
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From Table 26.5, we can conclude that: (1) when the indirect effects were 0.15 or
above, the power was high for both of the different methods and different models;
(2) when the covariance σa j ,b j between aj and bj was large (0.113 or -0.113) and
average effects a and b were small (a= b= 0.1), the MRMM had greater power than
the other two simple models; (3) power was increased with the size of the indirect
effect for the MRMM but not for the MFMM and SLMM; and (4) similar to the MC
method, which produced consistently narrower CIs than the normal approximation
method, the MC method resulted in superior power in 140 of the 144 conditions in
the simulation study. The differences in power were, however, quite small and never
greater than 0.054.

In general, the power increased as the indirect effect increased when the
indirect effects were between 0.123 and 0.247: F(11, 132)= 376.60, p< 0.0001,
partial η2 = 0.969 for the approximation normal method; and F(11, 132)= 461.35,
p< 0.0001, partial η2 = 0.975 for the MC method. Under the total 800-sample
size, a larger number of group level units produced greater power, especially
for the MRMM model. It was also observed that the magnitude of the residual
intracorrelation ICCM and ICCY had no effect on the power.

Discussion and Conclusion

Summary

This research aimed to investigate the conditions for proper MRMM analyses.
We examined the indirect effects when the data are hierarchical under the
condition that the three variables X, M, and Y are all from the lower level.
If the effects of X on M and M on Y vary at the group level, the MRMM
model, rather than the MFMM or SLMM models, should be used to obtain
unbiased estimation of the indirect effect and the standard error. When the
MFMM and SLMM methods are used and the covariance between aj and bj is
different from 0, the mean indirect effect coefficient a (or b) will decrease,
the point estimation bias of the indirect effect will increase, and the CI
coverage rate for the true parameter will be smaller than 95 %. Even when
the covariance is fixed at 0, which is an ideal situation for these two methods,
the CI coverage rate will be less than 70 %. Therefore, the mean mediation
effect is deleteriously affected when failing to account for its variability across
grouping units, because the standard error of the mean mediation effect is
being underestimated when it is treated as fixed, the Type I error rate tends to
be too large, especially when the covariance is not zero.

Despite several possible desirable characteristics, the MRMM must be
used with caution. First, if the indicator method developed by Bauer et al.
(2006) is used to estimate the random mediation effect, the estimation preci-

(continued)
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sion is influenced by the covariance between the random effects. However, the
present study has not yet provided an explanation for this result, and further
exploration is needed. Extra care is necessary when the covariance is positive
(or negative), which results in an overestimated (or underestimated) mediation
effect. Fortunately, this problem could be addressed by increasing the number
of the groups.

Second, when the mediation effect is fixed to be larger than 0.103 and the
sample size is similar to that used in this study, the power of the MRMM is
greater than 90 %. Controlling for the total sample size, an increase in the
sample size of the number of groups will help to improve the power of the
MC method.

Third, when the sample size is at an intermediate level, such as a sample
size of 50 at the group level and 16 at the individual level, or 100 at the group
level and 8 at the individual level, the Type I error rate reaches 5 %. However,
if the sample size of the group level is small, the Type I error rate produced
by the MC method is more likely to reach 5 % than the normal approximation
method.

Fourth, the MRMM model can lead to increased frequency of non-
convergence. In empirical applications, when the normality assumptions are
violated, the chance of non-convergence is great; this, however, can be
addressed by increasing the sample size.

Fifth, the distribution of eYij has no effect on the mediation effect. The
deviation from the normal distribution of b or “aj and bj” will affect
the mediation effect, especially when the magnitude of the deviation and
the covariance between these two effects are large.

Implications

First, there are situations when the MRMM outperforms other methods.
Shrout and Fleiss (1979) suggested that the ICC obtained from a null model
could be used to evaluate whether the data structure is clustered.

ICC =
σ2

b

σ2
b +σ2

w

where σ 2
b represents the variance at the group level, σ 2

w represents the variance
at the individual level, and the ICC represents the percentage of the total
variance that occurs at the group level. A high ICC value indicates a high
similarity among the individuals in each unit at the group level. Kreft (1996)
recommended that the multilevel model should be used when the ICC is 0.1

(continued)
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or higher. When the MRMM is used, the criteria could be even lower. In
our studies, that the estimation of the indirect effect by the three different
models was not affected by the values of the residuals, ICCM and ICCY. This
conclusion is consistent with the model containing the fixed mediation effect,
as proposed by Krull and MacKinnon (1999) and Pituch et al. (2005). The
conclusions of these studies indicate that, irrespective of the value of ICC,
the MRMM is accurate provided that clustered data are involved and random
effects are possible.

In addition, the variables at the individual level should be centered in the
analyses of the random mediation effects in the multilevel model. Krull and
MacKinnon (2001) suggested that for a multilevel mediation model without
random slopes or for models with a random intercept only, the centering
of the variable at the lower level will not have a significant impact on the
results. However, for the model with random slopes (e.g., 2-1-1 and 1-1-
1 random slope mediation models), it is critical and essential to center the
predictors. Zhang et al. (2009) noted that it is difficult to differentiate the
mediation effect at the group level from that at the individual level when
the centering procedure is not used appropriately. The results have also been
compared when centering was performed against those without centering
using multilevel mediation models with fixed slopes, and a few conclusions
were made: First, for the 2-2-1 model, the results of the two methods were
almost the same, and the mediation effect at the two different levels (group
level vs. individual level) could not be confounded. Second, for the 2-1-
1 model, however, the results of the two methods were quite different.
Under this condition, group centering was required in the analyses of the
mediation effects at the group level. Third, for the 1-1-1 model, when the
random mediation effect was not allowed, the results with centering were
also different from those without centering. In this case, group centering was
required to differentiate the mediation effect at the group level from that at the
individual level.

On the basis of the findings in this study, a procedure with five steps is
proposed as follows:

Step 1. Provide theoretical support and justification for the mediation effects
model from the existing literature. A data-driven exploration for a media-
tion effect is not recommended.

Step 2. Identify the data structure and investigate whether the predictor, the
mediating variable, and the outcome variable are all from the lower level
in the model.

Step 3. Identify whether the effects of X on M and the effects of both X and
M on Y have sufficiently large variances at the second level of the model.

(continued)
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Step 4. If the multilevel random mediation model is used in investigating the
mediation effect, the predictor variable X and M in the first level should be
centered prior to the analysis to mitigate the multicollinearity, simplify the
explanation of the intercept, enable the proper analysis of the interaction
across the level, and differentiate the mediation effect at the individual and
group levels. However, if the predictor variable at the first level is centered,
the group mean of this variable should be used to predict the intercept
at the second level so as to include the variance of this variable between
the groups in the model. The multilevel random mediation model can be
represented as follows:
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⎪⎩

Mi j = βm
0 j +βm

1 j

(
Xi j −X• j

)
+ rm

i j

βm
0 j = γm

00 + γm
01X• j +um

0 j

βm
1 j = γm

10 +um
1 j⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Yi j = β y
0 j +β y

1 j

(
Xi j −X• j

)
+β y

2 j

(
Mi j −M• j

)
+ ry

i j

β y
0 j = γy

00 + γy
01X• j + γy

02M• j +uy
0 j

β y
1 j = γy

10 +uy
1 j

β y
2 j = γy

20 +uy
2 j
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To use the method provided by Bauer et al. (2006), Eq. (26.9) can be
rearranged as:
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Equation (26.10) can be transformed into a form similar to that of Eq. (26.1):
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(continued)
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Step 5: The restricted maximum likelihood method of SAS PROC MIXED or
other multilevel programs can be used to investigate the mediation effect
in the model.

Limitations

This study investigated the use of the random mediation model in the
hierarchical linear model. The influences of different simulation design
factors on estimation bias and hypothesis testing were investigated in a series
of simulation studies. Based on these findings, the general strategies and
procedures to explore the mediating effects in multilevel data have been
provided. Despite the potential contributions of this study, there are still
limitations to be addressed. First, given that variables X and M are not
centered, only the combined mediation relationship has been discussed in
this study. Second, the mediating variable M and the outcome variable Y
contain the group level variance component, whereas the group level variance
of the predictor variable X has not been considered in the current model.
One possible solution is to center X with the group mean and include X −X
at the individual level and X in the group level. Third, the comparison of
three approaches introduced by Bauer et al. (2006), Kenny et al. (2003), and
Preacher et al. (2010) were not considered in this study. Further research to
compare these methods is desirable. Fourth, the model discussed in this study
is limited to a simple two-level model with one mediation effect. A two-level
model consisting of multiple mediation effects or a three-level model with
mediation effects have not been included in the present study. Although it
is reasonable to generalize the estimation method to more complex models,
caution should be taken in explaining the results. In addition, Preacher et al.
(2010) have proposed to use a multilevel structural equation model to develop
seven HLM models with mediation effects 2-2-1, 2-1-1, 1-1-1, 2-1-2, 1-2-1,
1-2-2, and 1-1-2. Only the first three models, however, have been examined
here. Future research in this area is also highly recommended.
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Chapter 27
Mediation Analysis for Ordinal
Outcome Variables

Hongyun Liu, Yunyun Zhang, and Fang Luo

Abstract This study compared four methods with respect to three factors, namely
sample size, size of mediating effects, and the number of categories of the outcome
variable, as based on the work of MacKinnon, to analyze the mediation effects for
ordinal outcome variables. Mplus 6.0 was used to generate the simulated datasets,
and each condition was replicated 500 times. Each dataset was analyzed using all
of the four methods. The results revealed that, first, for the mediating model with
a binary or ordinal outcome variable, the approach using Product of Coefficient
always performed better than the approach using the Difference in Coefficients
irrespective of whether the logistic regression was used or not. Second, the general
linear regression produced a lower precision of estimates, poorer performance in
statistical tests, and an underestimation of SE, compared with the logistic regression.
In conclusion, the approach using the Product of Coefficients with the logistic
regression is the recommended method for mediation analyses of ordinal data.

Keywords Mediation analysis • Ordinal variable • Monte Carlo simulation

27.1 Introduction

Mediating effects play an important role in psychology research and application. In
previous decades, the mediating effect, which refers to how the independent variable
(X) affects the dependent variable (Y) by affecting the mediating variable (M), rather
than by having a direct casual effect, has attracted a lot of interest. The relationships
of the three elements of this model are shown in Fig. 27.1b.

In Fig. 27.1a, c refers to the effect of Y on X without considering the mediating
variable; e1 refers to the corresponding error; b represents the effect of Y on M; c′
is the direct effect of Y on X when considering the mediating variable M; and eM

and eY are the error of M and Y, respectively. Based on the model demonstrated

H. Liu • Y. Zhang • F. Luo (�)
National Innovation Center for Assessment of Basic Education Quality,
School of Psychology, Beijing Normal University, No. 19 Xin Jie Kou Wai Street,
Hai Dian District, Beijing 100875, China
e-mail: luof@bnu.edu.cn

© Springer International Publishing Switzerland 2015
R.E. Millsap et al. (eds.), Quantitative Psychology Research, Springer Proceedings
in Mathematics & Statistics 89, DOI 10.1007/978-3-319-07503-7__27

429

mailto:luof@bnu.edu.cn


430 H. Liu et al.

Fig. 27.1 Mediating effect model

in Fig. 27.1, the method and procedure for testing the mediating effect proposed
by Baron and Kenny (1986) is still in use today. There are usually two methods
to calibrate the mediating effect. One is Difference in Coefficient (or DC, for
short), which computes c - c′ to represent the mediating effect and uses Freedman
and Schatzkin’s (1992) method to perform hypothesis testing. Another method is
Product of Coefficient (or PC, for short), which regards the mediating effect as the
product of two regression coefficients (a*b), the mediating variable on independent
variable (a) and dependent variable on mediating variable (b). The Sobel test (Sobel
1982), Aroian test (Aroian 1994), and Goodman test (Goodman 1960) are widely
used in testing the estimator a*b. For a dataset without missing values, general linear
regression can be used to estimate the mediating effect for continuous variable, and
in this condition, DC and PC have the same estimating value (MacKinnon et al.
1995). With the development of the structure equation model and new estimating
methods, mediating effect analysis has been continually developed. MacKinnon
et al. (1995) made a great contribution to the improvement of precision and accuracy
of mediating effect estimation, and Baron and Kenny’s method (1986) also has been
improved in practical applications (Fang, Zhang and Qiu 2012; Wen et al. 2004;
Zhao et al. 2010; Wen et al. 2012).

However, the former studies were restricted to the condition that the independent
variables, mediating variables, and dependent variables are all continuous variables,
and few studies focused on the condition that dependent variables are categorical
or ordinal variables (Mackinnon et al. 2002). When the independent variable X
is a categorical or ordinal variable, we can define a dummy variable to estimate
the mediating effect, referring to the same procedure as used in the continuous
variable condition. Nevertheless, if the dependent variable is categorical or ordinal
and the independent variable is continuous, a logistic regression method should be
used instead of general linear regression (Nelder and Wedderburn 1972; Pregibon
1981), and the scale of the regression coefficient should be converted to a Log
scale. For the mediating effect analysis of binary data or the mix of binary and
continuous data, researchers have come up with some solutions. Muthén (1984)
proposed a computationally feasible three-stage estimator for any combination of
observed variable types. This approach provides large-sample chi-square tests of
fit and standard errors of estimates. Under the assumption of normal and binomial
distribution, Winship and Mare (1983) built a probabilistic model for categorical
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observed variables using the threshold method and estimated the mediating effect
with the general least squares method. Both methods have many theoretical
assumptions and are not easy to apply to real data. Because of the different scaling
of regression coefficients in different regression equations, MacKinnon and Dwyer
(1993) proposed conducting a variance correction, i.e., standardization, to make
the scaling of regression coefficients consistent with that of standardized predict
variables. After that, MacKinnon et al. (2007) contrasted DC with PC, revealing
different results and even large differences sometimes, and they also discussed the
robustness of PC and made a recommendation. Iacobucci (2012) discussed the
mediating effect for categorical outcome variables, emphasizing that researchers
should focus on the character of the dependent variable and choose a proper
estimation method for practical applications. In terms of application, Li et al. (2007)
concluded that MacKinnon and Dwyer’s Correction of PC is much more precise
than DC when estimating the mediating effect of binary mediating variables.

Currently, almost all studies about the mediating effect concern continuous
variables, although some researchers have extended this research to the context of
non-continuous data, but such studies are relatively rare and the existing studies
are mainly focused on binary outcome variables, while the mediating effects of
outcome variables of ordinal variables with more than two categories require further
study. In addition, whether the mediating effect analysis of ordinal data can be
approximated as a continuous data procedure, as well as whether the number of
categories of ordinal data will affect the results and some other relative issues,
has not been discussed yet. Studies about other statistical methods, such as factor
analysis, have revealed that if the number of categories of ordinal data is small (less
than five), the estimated parameters, model fit indicators, and parameters’ standard
deviation will have a smaller bias with the increase in the number of categories when
using maximum likelihood estimation, but when the number of categories is five or
larger, the robust maximum likelihood estimation can obtain approximated unbiased
parameters (Muthén and Kaplan 1985; Rhemtulla et al. 2012). Moreover, in the
mediating effect analysis of ordinal outcome variables, there remains a question of
whether the estimated parameters are more accurate with an increasing number of
categories when using a continuous procedure.

This study will answer the following questions using a simulation method: (1)
the nature of the contrast between logistic regression and general linear regression
for the mediating effect model of ordinal outcome variables, (2) the nature of the
contrast between DC and PC, and (3) whether the number of categories of the
ordinal outcome variable will affect the mediating effect analysis results. In addition,
the effect of sample size and the size of the mediating effect on the parameter
estimation and statistics test will be explored. Finally, we will use a practical
application example to illustrate the process of analyzing the ordinal outcome
variable mediating effect model.
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27.2 Mediating Effect Model with Ordinal Outcome Variable
and Its Analysis Method

27.2.1 Mediating Effect Model with Binary Outcome Variable

For the mediating effect model shown in Fig. 27.1, several logistic regression
equations can be established when the outcome variable is binary.

Y ′ = i1 + cX + e1 (27.1)

Y ′′ = i2 + c′X +bM+ eY (27.2)

M = i3 +aX + eM (27.3)

The left terms of Eqs. (27.1) and (27.2) are not outcome variables but are the
Logit odds of the two categories of the binary outcome variable (see Eqs. (27.4) and
(27.5)).

Y ′ = LogitP
(

Y = 1
∣∣∣X)

= ln
P
(

Y = 1
∣∣∣X)

P
(

Y = 0
∣∣∣X) (27.4)

Y ′′ = LogitP
(

Y = 1
∣∣∣M,X

)
= ln

P
(

Y = 1
∣∣∣M,X

)

P
(

Y = 0
∣∣∣M,X

) (27.5)

In mediating the effect model of a continuous outcome variable, the mediating
effect is a*b or c - c′. However, in the Logistic regression model condition, b is the
logit coefficient-unit and not on the same scale with a. Therefore, the mediating
effect is not a*b. Similarly, in Eqs. (27.1) and (27.2), the conditional probabilities
of the dependent variables are not affected by the same independent variables, and
the regression coefficients c and c′ are not on the same scale.

The regression coefficients of different equations are comparable, and the
mediating effects are calculable when and only when the coefficients are on the
same scale. According to the recommendation of MacKinnon and Dwyer (1993)
and MacKinnon (2008), scale equalization of regression coefficients can be achieved
through standardization of regression coefficients.

bstd = b · SD(M)

SD
(
Y ′′) (27.6)
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cstd = c · SD(X)

SD(Y ′)
(27.7)

c′std = c′ · SD(X)

SD
(
Y ′′) (27.8)

In the above equations, the left variables are marked with the superscript
std, indicating the standardized regression coefficients converted from regression
coefficients with logit units. SD(X) and SD(M) are available from the original data,
and SD(Y ′) and SD(Y′′) are available according to MacKinnon’s method (2008).

var
(
Y ′)= c2 var(X)+

π2

3
(27.9)

var
(

Y ′′
)
= c′2 var(X)+b2 var(M)+2c′bcov(X ,M)+

π2

3
(27.10)

In those equations, π2/3 is the variance of the standard logistic distribution.
According to Eqs. (27.6)–(27.9), we can calculate the standardized regression
coefficients, and thus, the mediating effect and the proportions of the mediating
effect can be obtained using either the DC or PC method.

27.2.2 Mediating Effect Model of Ordinal Outcome Variable
with Multi Categories

In psychology studies, researchers often address ordinal data; typical examples are
data obtained from Likert scales. A cumulative logistic regression can be applied to
the analysis of those data when there are more than two categories for the ordinal
outcome variable.

If the dependent variable Y has J categories, then there are J - 1 cumulative
logistic regression models.

When Y > j(0≤ j< J − 1), then

Y ’ = LogitP
(

Y > j
∣∣∣X)

= ln
P
(

Y > j
∣∣∣X)

1-P
(

Y > j
∣∣∣X) = i1 j + cX + e1 (27.11)

Y ′′ = Logit
(

Y > j
∣∣∣M,X

)
= ln

P
(

Y > j
∣∣∣M,X

)

1-P
(

Y > j
∣∣∣M,X

) = i2 j + c′X +bM+ eY (27.12)

M = i3 +aX + eM (27.13)
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X and M are continuous variables, and so Eqs. (27.13) and (27.3) are the same.
In Eqs. (27.11) and (27.12), as c, b, and c′ will not vary with different j values, the
mediating effect will not be affected by the number of categories of ordinal outcome
variables, and its standardized process is the same as with binary outcome variables.

27.2.3 Test of Mediating Effect of Ordinal Outcome Variable
and Interval Estimation

The standard errors corresponding to standardized regression coefficients are as
follows (MacKinnon 2008):

SE
(

bstd
)
= SE(b) · SD(M)

SD
(
Y ′′) (27.14)

SE
(

cstd
)
= SE(c) · SD(X)

SD(Y ′)
(27.15)

SE
(

c′std
)
= SE

(
c′
) · SD(X)

SD
(
Y ′′) (27.16)

For the PC method, abstd is used to estimate the mediating effect,
which is equal to that obtained by multiplying astd by bstd, and Sobel’s
equation (1982) is used to obtain the standard error of abstd, SE

(
abstd

)
=√

(astd)
2
[SE (bstd)]

2
+(bstd)

2
[SE (astd)]

2. A significant mediating effect can be

decided by using the Sobel test, whose test statistic is z= ab/SE(abstd), under the
assumption of normality, and the confidence interval of the mediating effect is
[abstd - zα/2 × SE(abstd), abstd + zα/2 × SE(abstd)].

For the DC method, we use the standardized regression coefficients cstd and c′std

to estimate the mediating effect, namely cstd − c′std, and Freedman and Schatzkin’s

method (1992) to calculate the standard error of cstd − c′std, with SE
(

cstd-c′std
)
=√

(SE (cstd))
2
+

[
SE

(
c′std

)]2
-2SE (cstd)SE

(
c′std

)√
1-r2

XM . The test statistic is

tn-2 = cstd-c′std
SE(cstd-c′std)

. Under the assumption of normality, the confidence interval of

the mediating effect is [cstd - c′std − tα/2 × SE(cstd - c′std), cstd - c′std + tα/2 × SE(cstd -
c′std)].
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27.3 Simulation Study

27.3.1 Simulation Design

In the simulation study, we mainly consider four factors: number of categories of
ordinal outcome variable, sample size, mediating effect size, and analysis method.

(1) The number of categories (J) of the outcome variable has three levels: 2, 3, and
5. In the case of 2 categories, it follows a binomial distribution, and in the case of
3 and 5 categories, it follows a multinomial distribution. Independent variables
and mediating variables are assumed to have standard normal distributions.

(2) The sample size has 5 levels: 50, 100, 200, 500, and 1,000.
(3) Mediating effect size has seven levels: 0, 0.0196, 0.0546, 0.0826, 0.1521,

0.2301, and 0.1521. Following MacKinnon, we investigated four values (0,
0.14, 0.39, and 0.59) for the three regression coefficients a, b, and c′, which
produces 43 = 64 possible combinations. The combination a= b= c′= 0.59
produces an unfeasible mediating effect size. Each of the 63 other combinations
produces a mediating effect size equal to one of the six levels. Thus, the 63
feasible combinations were aggregated to seven levels.

(4) The performances of PC and DC with the logistic regression (or LR, for short)
and the general linear regression (or GR, for short) analyses are compared.
Therefore, there are four analysis methods, which are DCLR, PCLR, DCGR,
and PCGR.

(5) The simulation study generated 3× 5× 63= 945 groups of data and was
repeated 500 times for each condition. For each group of data, we use four types
of analysis methods to estimate the mediating effect. The simulation data’s
generation and analysis are both completed in Mplus 6.0, using SPSS to clean
data and calculate relative indicators.

27.3.2 Indicators for Evaluation

The indicators for evaluating different methods mainly include the following:
precision of estimation of mediating effect [including the bias of estimation and root
mean square error (RMSE)], precision of estimation of mediating effect standard
error, confidence interval recovery rate, statistical power and type I error rate.
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27.4 Simulation Results

27.4.1 Model Convergences

The convergence rate was 100 % for PCGR and DCGR and between 96 and 100 %
for the methods PCLR and DCLR. In some circumstances, for example, when the
sample size is small (50) or the size of the mediating effect is large (b and c′ both are
0.59), the simulation does not converge, but overall, the rate of non-convergence is
very low. It is noteworthy that as the number of ordinal outcome variables category
increases, the rate of non-convergence displays an increasing trend when the sample
size is small.

27.4.2 Precision of Estimation of Mediating Effect

The precision of estimation of the mediating effect is mainly reflected by relative
bias of estimation and RMSE. The relative bias is the result of a difference between
the estimation value and true value divided by the true value. A positive relative
bias indicates an overestimation of the true value, and a negative bias indicates
an underestimation. The RMSE is mainly used to evaluate different models, the
value of which reflects the ability of the method to estimate proper parameters,
namely the ability to be close to the true values of this model. A smaller RMSE
indicates a smaller difference between the estimation and true value and a smaller

standard error. The relative bias and RMSE are defined by Bias = 1
R

R

∑
r=1

(
E −T

T

)

and RMSE =

√
1
R

R

∑
r=1

(E −T )2, respectively; R denotes the number of replications;

E is the estimated mediating effect; and T is the true mediating effect.
For each group of data, four analysis methods were conducted. The biases of the

different estimation methods are shown in Fig. 27.2a–c. Because PCGR and DCGR
obtain the same results, the bias of PCGR is only shown here.

Figure 27.2a–c shows that the relative bias of the mediating effects is negative
overall, and the mediating effects are underestimated to varying degrees for all
methods. However, a smaller relative bias is yielded using the proper methods. For
example, for binary outcome variables, three methods result in the largest difference.
PCLR has the minimum relative bias (close to zero), followed by DCLR, and PCGR
has the maximum bias. The difference between the three methods decreases with the
increase in the number of categories of the outcome variable, and when the number
is 5, the difference is nearly 0.

The relative bias increases with the increase in the mediating effect and is slightly
affected by sample size. The RMSE indicates that for binary and 3 categories of
outcome variables, PCLR will obtain the highest precision, whereas DCLR and
PCGR are relatively low. Figure 27.2d–f shows how the RMSE of each method
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Fig. 27.2 Relative bias and RMSE of different methods

varies with the mediating effect size. Three methods all display the trend of RMSE
increase with the increase in the mediating effect. For the binary outcome variables,
the difference between PCLR and PCGR is small when the mediating effect is
small. However, with the increasing mediating effect, the RMSE of PCGR gradually
becomes greater than that of PCLR. Furthermore, the estimation of PC is slightly
better than DC regardless of the condition.
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Table 27.1 RMSE of estimated mediating effect

Binary Three categories Five categories
Sample size PCLR DCLR PCGR PCLR DCLR PCGR PCLR DCLR PCGR

50 0.070 0.072 0.062 0.065 0.067 0.062 0.062 0.064 0.062
100 0.047 0.048 0.044 0.042 0.044 0.042 0.041 0.043 0.041
200 0.033 0.035 0.033 0.030 0.032 0.030 0.029 0.031 0.030
500 0.020 0.023 0.025 0.019 0.021 0.021 0.018 0.021 0.020
1,000 0.015 0.018 0.021 0.014 0.017 0.017 0.013 0.016 0.015

The RMSE shown in Fig. 27.2f is less than the values in Fig. 27.2d and e, which
demonstrates that precision of the mediating effect estimation is affected by the
number of categories of the outcome variable, such that the greater the number of
categories, the better the parameter will be estimated. Finally, in Fig. 27.2f, when
there are five categories, the RMSE of the GR analysis is nearly the same as the LR
analysis.

The relative bias remains stable as the sample size varies, whereas the RMSE has
a clearly decreasing trend with the increasing sample size (see Table 27.1). Even if
we use PCLR, the RMSE is still very large when the sample size is small and is
even larger than the RMSE of PCGR when the sample size is smaller than 200.

Therefore, for ordinal outcome data, the sample size should be larger if a more
precise estimation is needed. Typically, when the sample size is larger than 200, the
precision of LR analysis is superior to that of the GR analysis, especially for binary
outcome data.

27.4.3 Precision of Estimation of Mediating
Effect Standard Error

The standard error of the mediating effect is very important for the testing of the
mediating effect and interval estimation. The relative bias is calculated to illustrate
the precision of the estimation of the mediating effect standard error. For each
condition, the standard deviation of 500 estimated mediating effect values (we
regard this value as the true value of the standard error, denoted by TSE) and the
mean of the estimated standard error of the mediating effect (denoted by MSE)
were calculated under each condition. The relative bias of the standard error is
(MSE −TSE)/TSE, which is concretely shown in Appendix 1. In each condition,
regardless if LR or GR analysis was performed, the relative bias of PC is much
lower than DC, and the relative bias of DC is below 0 for each condition, proving
that DC underestimates the standard error of the mediating effect. Furthermore, the
relative biases of two regression methods are very close in all conditions, which
demonstrates that the bias of the standard error of the mediating effect is not large.
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27.4.4 Confidence Interval Coverage Rate

We built a confidence interval by using an estimated value ±1.96× standard error.
The CI coverage rate is defined as the proportion of the confidence interval covered
true value in 500 replications, which can reflect the precision of the estimation of
the mediating effect to some extent. The CI coverage rates of the different methods
are shown in Appendix 2. When using LR analysis, the CI coverage rate of the PC is
nearly 95 % in most conditions. Moreover, the CI coverage rate is not affected by the
mediating effect, sample size and categories of outcome variable, which indicates
that PCLR is the best analysis method.

However, the CI coverage rate of DC is approximately 70 % and significantly
lower than PC in all conditions. In association with the estimation precision
discussed above, the results suggest that the low CI coverage rate is related to
the underestimation of the standard error of DC. The CI coverage rate of PCGR
is significantly smaller than that of PCLR; however, a smaller gap occurs as the
categories increase.

Briefly, PCLR is the priority method based on CI coverage rate. Similar to the
precision discussed above, the difference in the CI coverage rate of PCLR and
PCGR decreases as the number of categories increases.

27.4.5 Statistical Power

When the true value of the mediating effect is not 0, the probability of the estimated
mediating effect being non-zero reflects the statistical power. In the 500 repeat times
of each condition, the proportion of significant test results (0.05) is called the power
of this condition, which is described specifically in Appendix 3. As the mediating
effect and sample size increase, the powers of both the LR and GR analyses increase.
In addition, the difference in power of PCLR and PCGR is small. However, the
power of DCGR is slightly higher than that of DCLR, especially in a small sample
or small mediating effect condition. Compared with PC, the power of DC is slightly
higher, which may be due to the underestimation of standard error. Moreover, the
power has a slight increasing trend with an increasing category number change. The
underestimations of both the standard error and mediating effect by GR analysis
may result in a non-significant difference between the powers of PC and DC.
Therefore, it cannot be rashly decided that the two estimation methods are the same.

27.4.6 Type I Error

When the true value of the mediating effect is 0 and the estimated mediating effect
is significant, then a type I error occurs statistically. After 500 repeats for each
condition, the proportion of results having a type I error is called the type I error rate.
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In this study, there are three different conditions when the true value of the mediating
effect is 0: (1) a= b= 0; (2) a= 0, b �= 0; and (3) a �= 0, b= 0. The type I error
rates are shown in Appendix 4. Overall, the type I error rate of PCLR is 0.01270
and 0.01299 for PCGR, and the difference is less than 0.05 (level of significance).
Comparatively, the type I error rate of DCLR is 0.11310 and 0.14530 for DCGR.
They are slightly higher than for PC, which is consistent with the conclusion that
DC underestimates the standard error. The type I error rate of PC is much lower than
that of DC in each condition. In addition, for varying sample sizes, the type I error
rates of PCLR and PCGR are very close, whereas the type I error rate of DCLR
is less than that of DCGR. For the condition a= b= 0, the type I error rates of all
methods are lower than for the a= 0, b �= 0 or a �= 0, b= 0 condition, and the type I
error rate is maximum when a= 0, b �= 0.

27.5 Practical Application and Concrete Procedures

We will use the following example of a practical application to illustrate the analysis
steps of the mediating effect of ordinal outcome variables. Data for the example
were drawn from Hair et al. (2006).

Research Question: In research examining the impact factors of customers’
buying behavior in consumer psychology, the participants were asked to fill in rating
scales for products’ quality and satisfaction with the services of the company HBAT,
and then the researchers recorded whether the participants bought the products, with
the aim of studying the relation between customers’ buying behaviors (Y), quality
of products (X) and satisfaction of customers (M).

In this research, we assumed Y to be the dependent variable in which y= 1 stands
for buying the product and y= 0 not buying; X is the independent variable and M is
the mediating variable, both of which are continuous.

Step one: regression analysis
Three regressions need to be performed in this step:

1. To perform logistic regression of dependent variable Y on independent variable
X, obtain the estimated value of c and standard error SEc. In this case, c= 1.058,
and SEc= 0.217.

2. To perform a general linear regression of the dependent variable M on the
independent variable X, obtain the estimated value of a and the accompanying
standard error SEa. In this case, a= 0.415, and SEa= 0.075.

3. To perform logistic regression of the dependent variable Y on independent
variables X and M, obtain the estimated value of b and c′ and the accompanying
standard errors SEb and SEc′. In this case, b= 0.959, SEb= 0.283, c′= 0.755,
and SEc′= 0.221.

Step two: standardization
In this step, the regression coefficients obtained in step one are converted to a

unified scale using a standardized method.
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1. First, calculate the standard deviations, variances of X, M, Y ′ and Y′′, and
the covariance of X and M. In this case, SD(X)= 1.396, SD(M)= 1.192,
Var(X)= 1.950, Var(M)= 1.420, and Cov(X, M)= 0.809. Using Eq. (27.9),
calculate the variances of Y ′ and Y′′, Var(Y ′)= 5.473, Var(Y′′)= 6.879,
SD(Y ′)= 2.339 and SD(Y′′)= 2.623.

2. Next, standardize the regression coefficients through Eqs. (27.6)–(27.8).
bstd = 0.436, cstd = 0.631, and c′std = 0.402 in this case. For a, the standardized
coefficient is calculated in a similar way, and it is equal to the standardized
solution in SPSS.

astd = a · SD(X)

SD(M)
= 0.415× 1.396

1.192
= 0.486

3. Calculate the standard errors of standardized regression coefficients using
Eqs. (27.14)–(27.16). In this case, SE(bstd)= 0.129, SE(cstd)= 0.130,
SE(c′std)= 0.118, and SE(astd)= 0.088.

Step three: calculation, testing, and interpretation of the mediating effect and
standard error.

The standardized mediating effect is abstd = 0.486× 0.436= 0.212. In this study,
PCLR was proved to be the optimal method and the standard error is SE

(
abstd

)
=√

(bstd)
2
(SE (astd))

2
+(astd)

2
(SE (bstd))

2
= 0.073.

Using the Sobel test, Z = 0.212/0.073= 2.904, the 2.904> 1.96 proves that the
quality of products significantly affects customers’ buying behaviors as mediated
by product satisfaction. The 95 % confidence interval is (0.069, 0.355), and the
proportion of the mediating effect in the total effect is abstd

abstd+c′std
= 0.345.

27.6 Discussion

In the mediation model, if the dependent variable is ordinal, then the logistic
regression should be the best analysis method. If the general linear regression
method is applied mistakenly, underestimations of the mediating effect and standard
error and incorrect estimation of the confidence interval will occur. Thus, for the
mediation model with an ordinal outcome variable, first, a logistic regression is
chosen to obtain regression coefficients, and then a standardization procedure is
performed to convert the coefficients to a unified scale to keep them comparable
and computable.

Based on the results, we recommend PCLR as the optimal analysis method when
dealing with a mediating effect model with an ordinal outcome variable.

This research examined the difference in two analysis methods: DC and PC.
Regardless of whether LR or GR analysis was used, the result trends were
consistent. That is, for all indicators, including the confidence interval coverage
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probability and type I error rate, PC was superior to DC, which is consistent with
previous conclusions when the dependent variable is continuous (MacKinnon et al’s.
2002). The reason for this finding is rooted in the two separate methods of represent-
ing the standard error of the mediating effect. Furthermore, the calculation method
of the standard error of DC does not consider the effect of the mediating variable
on the dependent variable sufficiently and directly, resulting in an underestimation
of the standard error and a false higher statistical power than the PC method. On the
contrary, PC’s advantage lies in a more precise estimation and a lower type I error
rate. Moreover, the confidence interval coverage rates of PCLR are approximately
95 %, consistent with MacKinnon (2008). These results indicate another significant
advantage of PC.

In addition, in testing of the power and type I error rate with each condition, we
find that the test of significance of the mediating effect of DC is more inclined to
be reflected by the relation between the mediating variable and dependent variable,
that is, for the fixed mediating effect ab, the larger b will more likely be significant,
resulting in a higher statistical power and type I error rate, which is not the case with
PC. For example, in a mediation model with a three-category outcome variable, if
the mediating effect is 0.0826, then we have two alternative conditions, a= 0.14 and
b= 0.59 or a= 0.59 and b= 0.14, and for a sample of 500, the statistical power is
0.93 and 0.50, respectively, which makes it easy to say that a higher b will lead to
a higher power. Similar to MacKinnon et al.’s (2002) conclusion about continuous
outcome variables, the type I error rate of the condition when a= 0 and b �= 0 is
always higher than when b= 0 and a �= 0. The gap increases as the category number
increases.

The differences between LR and GR analyses become increasingly smaller as
the number of categories of the dependent variable increases. This indicates that the
bias of GR analysis is too small to notice when the number of categories increases
to a higher level. In this study, the confidence interval coverage rates of LR and
GR analyses are 95 and 93 %, respectively, and the type I error rates are both
approximately 0.014 when the number of categories is 5. Acceptable indicators
can be expected with the increasing of categories. With the increasing number
of categories, the ordinal data resemble continuous data more and thus better fit
the assumption of ordinal linear regression. However, although this study proves
that when the number of categories is 5 or larger, the GR analysis is appropriate,
researchers still need to be careful to choose an appropriate method to obtain a
suitable interpretation conveniently (Rucker et al. 2011). For instance, we can obtain
the Logit odds of each category and intercept the difference in the categories by LR
analysis. Therefore, if researchers are interested in the effect of the independent
variable on Logit odds, cumulative logistic regression needs to be used.

In a small sample, the LR analysis results have difficult converging, especially
when the mediating effect is large. LR analysis has obvious advantages with a larger
sample, which implies that a larger sample is needed than for GR analysis if a more
stable estimation is acquired. Based on this study, a sample size of at least 200 is
suggested
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Finally, when testing the mediating effect, the standardization of the standard
error and mediation effect should be performed first. Complete standardization
and partial standardization are two optional methods. In different software, the
procedures have small differences. In SPSS or SAS, some calculations need to
be performed manually or using Hayes syntax (see Appendix 5, from http://
www.afhayes.com/). In Mplus, the STDYX procedure can obtain the standardized
solutions directly using complete standardization, and it is more convenient and
transplantable to a multivariable situation.

27.7 Limitations and Expectations

In this research, we compared several mediating effect analysis methods and
explored the factors affecting them. The related tests and interval estimation
method for each analysis method are not unique. With PC, for example, the
method to estimate standard error can be based on a first-order method, sFirst =√

â2s2
b̂
+ b̂2s2

â; second-order method, sSecond =
√

â2s2
b̂
+ b̂2s2

â + s2
âs2

b̂
; and unbiased

method, sUnbiased =
√

â2s2
b̂
+ b̂2s2

â − s2
âs2

b̂. The method to estimate the interval can

be based on a traditional normality assumption, the distribution of the product
bootstrap and a Markov Chain Monte Carlo method. In addition, this study only
used first-order standard error estimation methods and interval estimation methods
with normality assumptions. Both methods are traditional, and thus, the other
methods mentioned above need to be further investigated. In practical applications,
researchers should be cautious when choosing methods to ensure superior inter-
pretable results. Yuan and MacKinnon (2009) and Fang and Zhang (2012) make
some suggestions in choosing interval estimation methods. Preacher and Kelley
(2011) and Fang et al. (2012) both mention that a full report about the mediating
effect should include the size of the mediating effect, in addition to hypothesis tests
and parameter estimation.

In addition, only the ordinal dependent variable is considered, and the indepen-
dent variable and mediating variable are ordinal is not included in this research.
If the independent variable is ordinal, a dummy variable can be converted from
the independent variable. As a result, ordinal linear regression can be applied to
the analysis of the mediating effect. If the mediating variable is ordinal, a logistic
regression of the mediating variable on the independent variable can be applied first,
and the regression coefficient standardization procedure is the same as the method
used in this article, with the conversion of the mediating variable to a dummy
variable followed by finally applying general linear regression of the dependent
variable to the mediating variable and using PC or DC to estimate the mediating
effect and interval. Researchers should choose the appropriate analysis method,
based first of all on the variable properties.

http://www.afhayes.com/
http://www.afhayes.com/
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Conclusions
When using a mediating effect model, with an outcome variable that is
binary or more categories, LR analysis should be used. If GR analysis is
applied, biased results will be obtained, such as a lower precision for the
estimated mediating effect, a lower confidence interval coverage rate and an
underestimation of the standard error.

PC and DC provide different estimation results, and PC is more suitable
for the mediating effect model with an ordinal outcome variable.

If the number of categories of the ordinal outcome variable is large
(5 or more), the differences between the LR and GR analyses are small,
and therefore, GR analysis can also be applied. Researchers should choose
analysis methods considering sample size, size of the mediating effect and
some other factors.
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Appendix 5: Syntax by Hayes (from http://www.afhayes.com/)

TITLE: this is an example of a Mediation in Categorical Data Analysis
DATA: FILE IS data.dat;
VARIABLE: NAMES ARE id x m y;

CATEGORICAL ARE y;
ANALYSIS:

ESTIMATOR=ML;
MODEL: y on x m;

m on x;
OUTPUT: standardize
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Chapter 28
Comparison of Nested Models for Multiply
Imputed Data

Yoonsun Jang, Zhenqiu (Laura) Lu, and Allan Cohen

Abstract The multiple imputation (MI) is one of the most popular and efficient
methods to deal with missing data. For MI, the estimated parameters from imputed
data sets are combined based on the Rubin’s rule; however, there are no general
suggestions on how to combine the log-likelihood functions. The log-likelihood is
a key component for model fit statistics. This study compares different ways to
combine likelihood functions when MI is used for hierarchically nested models.
Specifically, three ways for pooling likelihoods and four weights for combined
log-likelihood value suggested by Kientoff are compared. Simulation studies are
conducted to investigate the performance of these methods under six conditions,
such as different sample sizes, different missing rates, and different numbers of
parameters. We imputed missing data using the multiple imputation by chained
equations for MI.

28.1 Introduction

Missing data are almost inevitable in social science research, especially when
data are collected through surveys, tests, or questionnaires (e.g., Little and Rubin
2002). Not considering missing data might lead to biased estimates as well as false
conclusions. In general, there are three main types of missing data mechanisms
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missing at completely random (MCAR), missing at random (MAR), and missing not
at random (MNAR) (e.g., Little and Rubin 2002). In the case of MCAR, the missing
values occur completely randomly, so they are independent of any observed or latent
variable in the estimation model. For MAR, the missing values are conditional on
some observed variables in the estimation model. For MNAR, the missing values
depend on some unobserved or latent variables. Generally, MCAR and MAR could
be considered as an ignorable missing value because the model estimates won’t be
biased if the missingness mechanism is ignored, while MNAR is considered as a
non-ignorable missing value and the missingness mechanism has to be modeled in
order to get unbiased estimates.

Various methods have been proposed to deal with missing data. Among them,
traditional methods include listwise deletion, pairwise deletion, and single impu-
tation (SI). These traditional methods are very clear to understand and easy to
apply; however, they introduce significantly biased results. First of all, we lose
lots of information by deleting cases, and the results without enough information
might not be valid. Also, we cannot guarantee that the new complete data after
deletion represent the entire sample. In addition, the single imputation method
reduces the variance of variables in data, and diminishes the relationship between
variables. Modern methods include multiple imputation (MI) and maximum like-
lihood estimation (ML). These two methods to deal with missing data have a
strong theoretical foundation, and a lot of empirical research supports their use. The
most significant advantages of these approaches are that they require less stringent
assumptions about the missing data mechanism. In addition, the results of these
methods might be more accurate and powerful than traditional approaches such as
listwise deletion or single imputation. In ML, the estimator uses a mathematical
function called log-likelihood to quantify the standardized distance between the data
points and the parameters for each case. Although the estimation process does not
literally impute the missing values, it does borrow information from the observed
responses when estimating parameters from incomplete data (Enders 2011). The
ML commonly used for current statistical softwares, such as the full information
maximum likelihood (FIML) option of SAS and Mplus. This option provides a very
easy and statistically powerful method to deal with missing values, when missing
occurs in a dependent variable. When missing occurs in independent variables,
however, these softwares use listwise deletion. Unlike ML, the basic idea of multiple
imputation is to substitute a set of reasonable guesses for each missing value and
then proceed to do the analysis as if there were no missing values (Allison 2002).
In MI, the natural variability of data could be maintained since the imputed values
are determined based on variables which are correlated to the missing values. Not
only that, the uncertainty could be solved by creating several sets of imputed data
(Wayman 2003). There are three distinctive steps involved in MI. The first step
is the imputation procedure. Multiple copies of data sets which contain different
plausible values for missing are created during this step. A number of statistical
approaches for this step have been proposed such as parametric regression methods,
nonparametric methods, and Markov chain Monte Carlo (MCMC) methods (see,
e.g., Enders 2010; Yuan 2000). The second step is the analysis procedure. Multiply
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imputed data sets are separately analyzed using the same statistical model. If there
are m sets of imputed data, the analysis is repeated m times and we have m sets of
estimated parameters. Thus, the last step of MI is a pooling of the results (i.e., several
sets of estimated parameters) because the pooling results across multiple imputed
data sets are more valid than the results relied on with any single data set. The
many researches related to MI have been focused on the first step (i.e., imputation
procedure); however, model comparison and selection after multiple imputation
have not been fully developed (Lee and Chi 2012). For example, Davey (2005)
evaluated several model fit indices like room mean squared error of approximation
(RMSEA), normed fit index (NFI), and Tucker-Lewis Index (TLI) with missing
data. Kientoff (2011) suggested different weights to adjust model fit indices for
structural equation models using multiple imputation.

In general, there are two types of model comparison, nested models comparison
and non-nested models comparison. Nested models are cases where a specific model
(also called a reduced model) can be derived from a more general model (also
called a full model) by putting some constraints on some model parameters. For
example, in multilevel modeling, a reduced model with constant level 2 random
effects is nested within a full model with varying random effects. Both models
have the same fixed effects but different number of random effects. For comparing
nested models, a deviance statistic, defined as −2(log− likelihood), is commonly
used. If the reduced model contains k restrictions on parameters of the full model,
the difference of deviances for two nested models follows a chi-square distribution
with k degree of freedom. This difference of deviance is also called a chi-square
criterion, which measures the increase in discrepancy produced by changing from
the full model to the reduced model (Busemeyer and Wang 2000). Thus, the lower
deviance means the better model fit. For comparing non-nested models, many types
of model fit indices have been developed, such as Akaike’s Information Criterion
(AIC), and Schwarz’s Bayesian Information Criterion (BIC). The model that had the
lowest value of AIC or BIC is considered to be the appropriate model. According
to the equation of AIC and BIC (see, e.g., Hox 2002), AIC and BIC are calculated
based on their deviance statistics which is based on likelihood functions. Therefore,
for both types of model comparisons, the likelihood is a key component statistic.
Regardless of the fact that the likelihood is the basic value for model comparison,
there are a few studies about how to combine likelihood values of several sets of
imputed data. So far, there is only one outline described by Meng and Rubin (1992)
to compute the likelihood ratio test (LRT), and other research has been done based
on the outline of Meng and Rubin (1992) (see, e.g., Asparouhov and Muthen 2010;
Enders 2010).

As mentioned above, some statistical software provides a specific option like
FIML for missing data, but they have some limitations in the implementation of
ML. Also, other software still uses traditional methods such as pairwise deletion for
multilevel models. For example, MLwiN and HLM, which are the popular statistical
software for multilevel models delete all level-1 cases with missing values when
missing occurs on any level-1 variables. And if missing occurs on higher level
variables (e.g., level-2), all level-2 cases associated with missing, as well as all
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associated level-1 cases are deleted. The specific procedure for multilevel models
of general purpose statistical software, such as SAS PROC MIXED, SPSS MIXED,
and the R package nlme, also uses a similar way to deal with missing data (van
Buuren 2011). In addition, MI is an intuitive and easy to understand method for
especially less-advanced analysts. Moreover, any method or statistical software can
be used with complete data sets. Therefore, MI is an attractive choice to deal with
missing for multilevel models. The main goal of this paper is to investigate the
performance of different methods to generate likelihood for multiple imputation.
Specifically, three ways for pooling likelihoods and four weights for combined log-
likelihood value suggested by Kientoff are compared. As hierarchical data are very
common in social science research (Singer and Willett 2003), this study focuses on
the hierarchically nested models with multiply imputed data. First, three different
pooling ways for likelihoods are compared. In addition, four types of weights
suggested by Kientoff (2011) for the LRT are compared. Simulation studies are
conducted to compare nested models with multiply imputed data. The data sets
are generated under two different sample sizes and three different missing rates.
We only focus on MAR in this study since the multiple imputation fundamentally
assumes that the missing mechanism of the data set is MAR.

28.2 Methods

28.2.1 Models

In this study, we focused on the basic two-level model with one continuous level-1
covariate. Two hierarchically nested models are compared. The following is the
reduced model (i.e., Model 1), that is, the random intercept and fixed slopes model.

Level-1:

Ŷi j = β0 j +β1 j(xi j)+ ri j (28.1)

where ri j ∼ N(0,σ2).

Level-2:

β0 j = γ00 +u0 j

β1 j = γ10 (28.2)

where u0 j ∼ N(0,τ0
2).
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The full model (i.e., Model 2) is random intercept and random slopes model. The
Model 1 is nested within Model 2. In the equation for Model 2, the level-1 is same
with the Model 1; however, there are one more random parts (i.e., u1 j) in the level-2.

Level-1:

Ŷi j = β0 j +β1 j(xi j)+ ri j (28.3)

where ri j ∼ N(0,σ2).

Level-2:

β0 j = γ00 +u0 j

β1 j = γ10 +u1 j (28.4)

where

(
u0 j

u1 j

)
=Ui j ∼ MV N

((
0
0

)
,

(
τ0

2 τ10

τ01 τ1
2

))
.

28.2.2 Data Generation

In the simulation, first, a complete data set is generated based on Model 1 (i.e., fixed
slope model) and the parameters of this model are set as follows. For fixed effects,
the average intercept is 30 and the average slope of level-1 covariate (i.e., xi j) is 5.
For random effects, the level-1 and level-2 variance are 80 and 20, respectively; the
level-1 covariate follows a normal distribution with a mean of 0 and a standard
deviation of 3. Second, missing values on the dependent variable (i.e., yi j) are
generated based on the complete data and pre-designed missingness probabilities.
As mentioned in the previous section, we assumed the missing mechanism is MAR
in this study, and the probability of missingness depends on the observed covariate
(i.e., xi j). The probability of missingness is set higher when xi j has a larger value.
In this simulation, we use three different missing data rates (10, 35, and 60 %) and
two different sample sizes (500 and 1,000). In total, six conditions are generated
with each condition having 1,000 replications. All data are generated by running the
program R (R Development Core Team 2008).

28.2.3 Imputation Missing Values

To impute missing values, we use multiple imputation by chained equations
(MICE). MICE is also called fully conditional specification and partially incompati-
ble MCMC and a flexible approximate procedure. In MICE, an imputation model is
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used. Unlike the flat-file imputation methods that ignore hierarchical structures for
nested data, the imputation model in MICE considers the multilevel structure (van
Buuren 2011). The principle of the MICE is to treat in turn the imputation for each
of the variables while considering the others as given, using these regression-type
models, and cycle repeatedly through the variables (Snijders and Bosker 2012).

There are six steps using MICE (Azur et al. 2011). First, to do a simple
imputation. For instance, mean imputations can be used in this step and these
imputed means can be thought of as place holders. Second, the place holders for
target variable are deleted to set back to missing. Third, to set a regression model, in
which the target variable is treated as a dependent variable, and other variables are
treated as predictors. Fourth, missing values of target variable are replaced with
predictions from the regression model. Fifth, to repeat the fourth step from the
second step by changing a target variable. At the end of this iteration, one imputed
complete data set is created. Sixth, to repeat the whole iteration the number of
imputation times.

In this study, generated data sets with missing values are imputed by using MICE
method. The R package “mice” (van Buuren and Groothuis-Oudshoorn 2011) is
used. The number of imputation for each condition is 10 as this number is generally
advisable as a minimum value for multilevel data (Goldstein 2011).

28.2.4 Pooling Likelihood

When the imputation procedure is finished, there are m sets of estimated parameters,
as well as likelihood values. And these several likelihood values have to be
combined because we need one statistics for the model selection. We used three
pooling ways to combine the likelihood value (i.e., deviance value) over m imputed
data set.

(1) The first way is overall mean (D) of likelihood values over m imputed data sets,
and it defined like below:

D =
1
m

m

∑
i=1

Dm. (28.5)

(2) The second way is re-estimation of deviance value (D
′
), a likelihood value using

posterior estimates of multiple imputations.

D
′
= D(posterior estimates). (28.6)

(3) The third one is Dimp, a modification of D
′
, and is defined as follows.

Dimp =
D

′

(k2 − k1)(1+ r3)
, (28.7)
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where (r3) is a correction factor with k1 is the number of parameters for the
reduced model and k2 is the number of parameters for the augmented model
defined by Meng and Rubin (1992), and

r3 =
m+1

(m−1)(k2 − k1)
(D−D

′
). (28.8)

With missing data, there are four types of weights to adjust the likelihood value.
These four weights are suggested by Kientoff (2011), and are defined as follows.

w1 = (1−missing rate) (28.9)

w2 = min

(
1,(1−missing rate)+

(
k+1+

1
m

)−1
)

(28.10)

w3 = (1−missing rate)

(
1− 1

mk

)
(28.11)

w4 = min

(
1,(1−missing rate)

(
1+

1
k

))
(28.12)

where k is the number of estimated parameters in the model, and m is the number
of imputation. The w1 is a correction based on the missing rate. This weight will
decrease when the missing rate increases. Other weights are defined based on the
w1. The w2 is modified the test statistics of Li et al. (1991). The number of estimated
parameters and the number of imputed data sets are included in the w3, and the w4is
considered only the number of estimated parameters. The range of these weights
is zero to one. According to the Kientoff (2011), the results of w3 are shown more
reasonable output among other weights in the case of 20 and 40 % missing rate.
However, the results of w4 were better in the case of 50 % missing rate. Kientoff
(2011) concluded that it is worth to consider the number of estimated parameters for
all conditions. The calculated four kinds of weights for each condition are shown
in Table 28.1 and Fig. 28.1. The number of imputation (m) is fixed as 10 and the
numbers of estimated parameter (k) for the fixed slope model and random slope
model are four and six, respectively.

As can be seen in Table 28.1, the w1 for the fixed slope model and the random
slope model are equal because it depends on the only missing rate. Thus, the w1 are
0.900, 0.650, 0.400 in the case of missing rate is 10, 35, and 60 %, respectively.
Since other weights are related to the missing rate, the number of estimated
parameters, and the number of imputations, the w1 differs according to conditions.
For example, for the fixed slope model with 35 % missing rate, the w2 is 0.846, the
w2 is 0.634, and the w3 is 0.813. Each weight is multiplied to the pooled likelihood
value to explore that which weight can make the most appropriate pooled likelihood
value.
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Table 28.1 Four kinds of
weights

Missing rate (%)

Weight 10 35 60

Fixed slope model w1 0.900 0.650 0.400

w2 1.000 0.846 0.596

w3 0.878 0.634 0.390

w4 1.000 0.813 0.500

Random slope model w1 0.900 0.650 0.400

w2 1.000 0.791 0.541

w3 0.885 0.639 0.393

w4 1.000 0.758 0.467

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

w4w3w2w1

Fixed_10% Fixed_35% Fixed_60% Random_10% Random_35% Random_60%

10%

35%

60%

Fig. 28.1 Four kinds of weights

28.2.5 Model Comparison

We compared a fixed slope model (i.e., Model 1, the reduced model) and a random
slope model (i.e., Model 2, the full model) in this study. Model 1 is nested in
Model 2. The log-LRT is used for the comparison of nested models. However, the
regular chi-square distribution in LRT has been approved not accurate when the
difference in degrees of freedom of both models is one. In this case, the corrected
likelihood ratio test (Corrected LRT) is suggested. For the corrected LRT, the
50–50 mixture chi-square distribution is used and it is also called chi-bar-square
distribution. The corrected LRT is particularly suggested when the null hypothesis
assumes the variance to be zero and the alternative hypothesis is nonnegative
character of variance. The p-value for the difference of deviances between two
nested models could be calculated as the average of the p-values from chi-square
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distribution with d f = p + 1 and d f = p, where p + 1 equals to a difference
between the number of parameters for two nested models. Table 28.2 gives a part of
critical values for 50–50 mixture chi-square distribution. Since our Model 1 has four
number of parameters and Model 2 has six number of parameters (i.e., p+ 1 = 2),
the critical value is 5.14 with the significant level 0.05 (see, LaHuis and Ferguson
2009; Snijders and Bosker 2012).

Table 28.2 Critical values
for 50–50 mixture chi-square
distribution

Significant level
p 0.10 0.05 0.01 0.001

1 3.81 5.14 8.27 12.81

2 5.53 7.05 10.50 15.36

3 7.09 8.76 12.48 17.61

Source: Snijders and Bosker (2012), p. 99

Table 28.3 The false positive error rates

Missing rate (%)

10 35 60

Sample size Weight D D
′

Dimp D D
′

Dimp D D
′

Dimp

500 No weight 0.052 0.034 0.084 0.054 0.033 0.094 0.028 0.024 0.089

w1 0.039 0.023 0.077 0.008 0.005 0.077 0.000 0.001 0.058

w2 0.052 0.034 0.084 1.000 1.000 0.069 1.000 1.000 0.073

w3 0.000 0.000 0.084 0.000 0.000 0.075 0.000 0.000 0.062

w4 0.052 0.034 0.084 1.000 1.000 0.068 1.000 1.000 0.068

1,000 No weight 0.067 0.033 0.016 0.117 0.033 0.024 0.090 0.034 0.034

w1 0.045 0.025 0.015 0.013 0.006 0.020 0.000 0.000 0.029

w2 0.067 0.033 0.016 1.000 1.000 0.015 1.000 1.000 0.031

w3 0.000 0.000 0.017 0.000 0.000 0.021 0.000 0.000 0.027

w4 0.067 0.033 0.016 1.000 1.000 0.015 1.000 1.000 0.026

Also, the null hypothesis for LRT is the variance of random slope equals zero. If
the null hypothesis is rejected, that means the random slope model has better model-
fit than the fixed slope model. Because our complete data sets are generated based
on the fixed slope model, the rejection rate can be considered as the false positive
error rate. We investigate the performance of pooling likelihood with missing data
by checking false positive error rate.
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28.3 Results

The false positive error rates for each condition are summarized in Table 28.3.
Figures 28.2 and 28.3 visualized the false positive error rates of each condition for
500 sample size and 1,000 sample size, respectively.

Fig. 28.2 The false positive error rates for 500 sample size

Fig. 28.3 The false positive error rates for 1,000 sample size
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According to Bradley (1978), the test can be considered as robust if the false error
rate is approximately equal to a significant level α . As can be seen in Table 28.3, for
the 500 sample size, the false positive error rates of overall mean of likelihood (D)
and re-estimated likelihood values (D

′
) without weight are closed to a significant

level 0.05 when the missing rate are 10 and 35 %; however, these values are much
smaller than 0.05 with large missing rate (i.e., 60 %). And all kinds of weights
caused quite extreme false positive error rates for both D and D

′
. The false positive

error rate of D (= 0.39) with w1 and the false positive error rates of D (= 0.39) with
w2 and w4 are reasonable for small missing rate (i.e., 10 % missing rate), but the
false positive error rates for 35 and 60 % missing rates are almost zero. Similar to
the results of D, the false positive error rates of D

′
(= 0.34) with w2 and w4 are more

reasonable than the other weighs. The false positive error rates of the modification
of D

′
(Dimp) for all conditions are between 0.058 and 0.094. These false positive

error rates are higher than a significant level 0.05, but these are more stable than
other two pooling methods (i.e., D and D

′
). The results for 1,000 sample size were

also pretty similar to the results for 500 sample size. These patterns of results also
can be seen in Figs. 28.2 and 28.3. For the 1,000 sample size, the false positive error
rates of D equal to 0.067 without weight, with w2 and w4. And the false positive
error rate of D is 0.045 with w1 at the 10 % missing rate. But the false positive error
rates of D are not closed to 0.05 at 35 and 60 % missing rate. All false positive error
rates of D

′
are not closed to the significant level 0.05. Unlike the 500 sample size,

the false positive error rates of Dimp are smaller than 0.05 for all conditions.
The patterns of weights according to the number of parameters are shown in

Fig. 28.4. The first weight, w1, was excluded in Fig. 28.4 because w1 depends on
only missing rate by the definition, thus, these values would be same across different
numbers of parameter. As can be seen in Fig. 28.4, the values of w2 and w4 are
unstable at the small number of parameters for 35 and 60 % missing rate. But the
values of w2 and w4 at between quite small number of parameters (i.e., between
one and seven) are quite stable for 10 % missing rate. By the equations for w2

and w4, the number of estimated parameters has large influence on the weights,
especially when a model has small number of estimated parameters. The values w3

also relatively unstable at the small number of parameters compared at the large
number of parameters. In this study, the number of estimated parameters was four
for fixed slope model and six for random slope model. Thus, a big difference of
weight according to these small numbers of parameters for our study models might
be one reason of extreme false positive error rate.
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Fig. 28.4 Patterns of weights according to the number of parameters
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Conclusion and Future Research
Based on our result, we could not find an appropriate weight to correct the
combined likelihood value. Especially, w2 and w4 are led to very extreme
false positive error rate (i.e., all rejections or all acceptances). As described in
the results section, three weights except for the w1 are related to the number
of estimated parameters of models. In addition, the weights used in our study
are originally suggested for the SEM model. Thus, these weights do not work
to correct combined likelihood values of multiply imputed data for multilevel
modeling.

For the small missing rate, using the overall mean of likelihood values
(D) without a weight is the most appropriate among three different ways to
combine likelihood values over multiply imputed data sets. But the results
of D are shown very extreme false positive error rate with weights. The
modification of D

′
(i.e., Dimp) among three different pooling ways for

likelihood value is the most stable across four different weights, although the
false positive error rates are higher than 0.05 for the 500 sample size and
smaller than 0.05 for the 1,000 sample size. This result differs with the results
of previous studies (e.g., Meng and Rubin 1993; Asparouhov and Muthen
2010). In the Meng and Rubin (1992) and Asparouhov and Muthen (2010),
Dimp was nicely worked, whereas our results showed inflated false positive
error rates for the 500 sample size and deflated false positive error rates for
the 1,000 sample size. According to the definition of correction factor r3,
the number of imputation, the number of estimated parameters for a reduced
model, and an augmented model are involved in this factor. Therefore, the
false positive error rates of Dimp might be affected by the difference of r3. The
number of estimated parameters and the number of imputation in our study
differ from Meng and Rubin (1992) and Asparouhov and Muthen (2010). Our
small difference of the number of parameters for two nested models might
have an influence on the false positive error rate. Thus, we need to evaluate
the effect of the correction factors on the Dimp. In addition, the LRT was used
for the model comparison of the true model and the saturated model in the
previous study. In our study, however, we compared two nested multilevel
models. This different condition of model comparison might result in the
different results between this study and previous studies.

For the future study, a specific pooling way of likelihood value for the
hierarchically nested models is needed. In addition, a study to use more
complex models with large number of estimated parameters is needed to test
the weights as well as the correction factor. Another application is to use data
set with missing values on covariate variables or on both dependent variable
and covariate variables. Furthermore, we need to develop weights that can
consider the characteristics of multilevel model such as a group size or an
intra class correlation (ICC).
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Chapter 29
A Paradox by Another Name Is Good
Estimation

Mark D. Reckase and Xin Luo

Abstract This chapter describes the property of estimates of points in a multidi-
mensional space that is labeled by some as paradoxical, shows when this property
of the estimates is present, and also shows that the paradoxical result is not flaw
in estimation because estimates improve with additional information even when the
paradox occurs. The paradox is that when a correct response to a test item is added
to the string of responses for an examinee to previous items, at least one of the
coordinates of the new estimated θ -point decreases compared to the estimate based
on the initial string of responses. The information presented in the chapter shows
that this can occur whenever the likelihood function for the estimates has a particular
form. This form is present in many cases when the item responses for a test can not
be described by simple structure. Results are presented to show that the additional
response improves the estimate of the θ -point even though the paradoxical result
occurs.

Keywords Multidimensional item response theory • Estimation • Likelihood
function • Compensatory model

29.1 Introduction

Recently, the term “paradoxical” has appeared in the research literature related to
estimation of the location of persons in a multidimensional space using multidi-
mensional item response theory (MIRT) (Hooker et al. 2009; Hooker 2010; Hooker
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and Finkelman 2010; Finkelman et al. 2010; Jordan and Spiess 2012; van Rijn and
Rijmen, 2012). There are two definitions of paradoxical that might be the intent of
the use of the word in these articles. The first is “a statement or proposition that
seems self-contradictory or absurd but in reality expresses a possible truth.” The
second definition is “a self-contradictory and false proposition” (Flexner and Hauck
1987). It seems that some of the authors think that estimation within MIRT follows
the second definition while others believe that the first definition is more appropriate.

The phenomenon that is considered paradoxical is the observation that some-
times one of the estimated θ -coordinates in the θ -vector that indicates a person’s
location in the θ -space defined by a MIRT model decreases after a correct response
to an item, or alternatively, increases after an incorrect response. More precisely,
suppose a test has k items. After k−1 items are administered, the estimated location

is θ̂ k−1 =
[
θ̂ k−1,1, θ̂ k−1,2, . . . , θ̂ k−1,m

]
. Then the kth item is administered and a

correct response is observed. After the kth item is included in the estimation of
the location in the space, the paradoxical result is that for at least one of the
coordinates, θ̂ k,i < θ̂ k−1,i. This result is paradoxical because some authors expect
that all coordinates should increase after a correct response and all coordinates
should decrease after an incorrect response.

The purpose of this chapter is to provide explanations for why and when the
paradoxical result occurs in the context of a commonly used MIRT model, the
multidimensional extension of the two-parameter logistic model. There is a further
discussion of whether the presence of paradoxical results constitutes a problem that
needs to be addressed, or if it is a normal feature of the estimation of locations of a
point in a multidimensional space.

The model that will be the focus of this study is given below as Eq. (29.1). This
particular model is used because it is common in the MIRT literature and because its
properties are well known (see Reckase 2009). It is expected that the results reported
here will generalize to a wide variety of models that include linear combinations of
the coordinates in the θ -space. The equation for the model used here is given by

P
(

ui j = 1
∣∣∣θ i,a j,d j

)
=

ea jθ ′i +d j

1+ ea jθ ′i +d j
(29.1)

where uij is the response by examinee i to item j, θ i is the m-element row vector of
coordinates representing the location of examinee i in the m-dimensional proficiency
space, aj is the m-element row vector of discrimination parameters for item j, and dj

is a scalar parameter for item j that is related to the difficulty of the item.
The paper that stimulated the current interest in paradoxical results for the

estimation of location of persons in a multidimensional space was Hooker et al.
(2009). However, the paradoxical result was evident in the MIRT literature before
that paper, particularly in the literature on multidimensional adaptive testing. There
is an example of the paradoxical result in Reckase (2009, p. 317) as part of an
example of the functioning of a computerized adaptive test. In that example, the
estimate of the location of an examinee in a three-dimensional MIRT space was
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(−0.25, 2.55, 0.27) after six items, and (−0.30, 2.50, 1.23) after a correct response to
the seventh item. In this example, two of the θ -coordinates decreased in magnitude
while the third increased quite dramatically. This result was not highlighted in the
discussion of that example because the estimates from the adaptive test converged
on the true value as the number of items increased in this simulation. These slight
decreases in the estimates of the coordinates for the first two dimensions were
considered a normal part of the estimation process.

This chapter will first provide a simple example of the paradoxical results to
set the stage for an explanation of the results related to the shape of the likelihood
function for after k−1 items have been administered. Then a more complex example
is provided. Next, a different criterion for the quality of estimates of location in a
MIRT solution space is suggested as a way of dealing with the paradoxical result.
Finally, a rotational solution is provided as a way of addressing the issue. All of
these results are discussed in the final section with the intention of providing useful
insights into what is considered as a paradoxical result in the research literature.

29.2 A MIRT Explanation of the Paradox Phenomenon

29.2.1 A Simple Example

To facilitate understanding of the paradoxical result, a two-dimension example is
provided here. Suppose three items were administered to an examine and the item
scores for the items are as listed in Table 29.1. The item parameters for the items
for the multidimensional extension of the two-parameter logistic model are also
presented in the table.

Table 29.1 Item parameters
and responses for a three-item
test

a1 a2 d Response

Item 1 0 1 0 Correct
Item 2 1 0 −1 Correct
Item 3 0.707 0.707 −1.5 Incorrect

After three items were administered, the maximum likelihood estimate (MLE)
of the location in the MIRT space is θ̂1 = 1.6, θ̂2 = 0.6, and the distance of the
estimated point from the origin of the θ -space (0, 0) is 1.71. Then a fourth item
is administered and a correct response is observed. In order to determine when
the paradoxical result occurs, a variety of items are considered as the fourth item.
These items are specified as having their angle of best measurement with the θ 1-
axis as ranging from 0◦ to 90◦ with an increment of 5◦ and the constraint that
a2

1 + a2
2 = 1. The ability estimate (θ̂1 new, θ̂2 new) as well as the distance from the

origin was determined after the administration of each of the possible fourth items.
The estimates of location after the fourth item, and the differences between each
coordinate estimate and the previous estimate are given in Table 29.2.



468 M.D. Reckase and X. Luo

Table 29.2 Ability estimate and distance increase from the origin
compared to the three-item solution

Angle θ̂1 new θ̂2 new θ̂1 new − θ̂1 θ̂2 new − θ̂2 Distance increase

0 1.99 0.44 0.41 −0.14 0.35
5 1.97 0.48 0.39 −0.1 0.34
10 1.95 0.51 0.37 −0.07 0.33
15 1.93 0.55 0.35 −0.03 0.32
20 1.91 0.58 0.33 0 0.31
25 1.89 0.62 0.31 0.04 0.31
30 1.87 0.66 0.29 0.08 0.30
35 1.84 0.7 0.26 0.12 0.29
40 1.82 0.74 0.24 0.16 0.28
45 1.79 0.79 0.21 0.21 0.27
50 1.76 0.84 0.18 0.26 0.27
55 1.72 0.89 0.14 0.31 0.25
60 1.68 0.95 0.1 0.37 0.25
65 1.63 1.01 0.05 0.43 0.23
70 1.58 1.07 0 0.49 0.23
75 1.52 1.14 −0.06 0.56 0.22
80 1.46 1.2 −0.12 0.62 0.21
85 1.39 1.27 −0.19 0.69 0.20
90 1.33 1.33 −0.25 0.75 0.20

Table 29.2 shows an interesting pattern of results. After a correct response to the
alternative fourth items, sometimes the θ 1-estimate increases and the θ 2-estimate
decreases, sometimes the opposite pattern occurs, and sometimes both θ -coordinate
estimates increase. The particular result that is observed is related to the direction
of best measurement of the fourth item. If the fourth item has its direction of best
measurement along Dimension 1 (0–15◦ from the θ 1-axis), the new θ 1-estimate
increases, but the θ 2-estimate decreases; if the fourth item has its direction of best
measurement along Dimension 2 (75–90◦ from the θ 1-axis), the opposite result is
observed; if the fourth item has a direction of best measurement between the two
coordinate axes (20–70◦ from the θ 1-axis), the estimates of the coordinates on both
dimensions increase. The distance from the origin after a correct response is always
greater than the three-item distance for all of the angles of best measurement. More
illustrations of this phenomenon are given in Sect. 2.4.

29.2.2 When Does the Paradox Occur?

The example in Sect. 2.1 casts some light on when the paradoxical result occurs.
However, before moving on to a further elaboration of when the paradoxical result
occurs, the concept of an orbit in the statistical sense is needed. An orbit of a
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likelihood function is the set of points in the m-dimensional space that results in
the same value of the likelihood. The orbits form closed curves when the likelihood
function has a unique maximum (Reckase 2009). Figure 29.1 is a likelihood surface
for a ten-item test and Fig. 29.2 shows a number of orbits for this likelihood
function.
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The orbits shown in Fig. 29.2 are portions of approximately oval shaped curves.
The full ovals could be seen if the range of values for the θ -axes were extended. The
largest of the “ovals” shown in the figure is the 0.0008-orbit. That orbit is the set
of points in the θ -space that yield a likelihood of 0.0008 for the item scores on the
ten-item test. The smallest “oval” in the figure shows the 0.0056-orbit that surrounds
the maximum of the likelihood function. The set of all possible orbits totally cover
the θ -space.

A property of the “ovals” shown in Fig. 29.2 is that their major axis has a negative
slope. The shape of the orbits and the slope of the major axis is a function of the
characteristics of the items that were included in the ten-item test. A different set of
items would result in orbits with different shapes and orientations.

Now suppose a new item measuring only along θ1 is administered and the
examinee responds correctly to the item. The vertical lines in Fig. 29.3 show the
equal-probable contours for the item response surface from the MIRT model for the
new item. Note that for every possible orbit of the likelihood function, there is also
an equal-probability contour from the new item that is tangent to the curve for the
orbit—actually for the cases where there is a unique MLE for the item scores for the
ten-item test, there are two tangent equal-probability contours, one at either extreme
of the orbit. The tangent points are shown as dots in Fig. 29.3 and an example for
one orbit is given in Fig. 29.4. Figure 29.5 shows the likelihood along one of the
equal-probability contours for the 11th item.
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Fig. 29.3 Likelihood orbits and equal-probable contours

The likelihood function for the 11-item test, including the new item, is the
product of the previous likelihood function and the probability of answering the
new-added-item correctly. Because the probability of a correct response is the same
along one of the equal-probability contours for the item, the likelihoods along the
line after the addition of the item have the same shape and the maximum is at the
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Fig. 29.5 Conditional likelihood along one equal-probability contour line

point of tangent with the original orbits. That is, the new MLE for the estimated
location of the examinee in the θ -space must be on the line formed by all the points
of tangent for the equal-probability contours and the orbits. If the line connecting
the points for the conditional maxima has a negative slope, any change from the
previous estimate must have a decrease in one of the coordinate axes.

Figure 29.6 is based on the ten-item test shown above. In Fig. 29.6, the round dot
is the original MLE for the ten-item test. The black triangle is the new MLE after
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an item with direction of best measurement along the θ 1-axis is administered and a
correct response is obtained. The black square is the true location of the examinee
used to generate simulated responses to the test items. Because there is a negative
slope for the major axis of the ovals for the orbits, the new estimate of location
must be on the line connecting the points of tangent to the orbits. In this case, the
maximum of the likelihoods at those tangent points is at the triangle which shows
an increase in θ 1 and a decrease in θ 2. It indicates that a correct response to the
new item will yield a decrease in θ 2, and in this sense the paradoxical result occurs.
It also shows that, although the paradoxical result occurs, the new MLE is closer to
the true location than the original estimate.
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The same relationship between likelihood orbits and equal-probability contours
for the next item generalizes to the situation where the new item has a direction
of best measurement that does not parallel one of the axes, i.e., the equal-probable
lines are not vertical or horizontal. Figure 29.7 shows the result when the angle of
best measurement for the new item and the θ 1-axis is 20◦, and the new estimate for
θ 2 is lower than the original one (the round dot is the original MLE and the black
triangle is the new MLE).

An example of the administration of an additional item where the paradoxical
result does not occur can be developed based on the results in Table 29.2.
In Fig. 29.8, the round dot is the original MLE and the new MLE is the triangle. The
angle of best measurement for the new item with the θ 1-axis is 30◦. In this case, the
line connecting the tangent points for the likelihood orbits and the equal-probable
contours for the item does not have a negative slope. After answering the new item
correctly, the coordinates for the new location increase for both dimensions.

The two-dimensional case has some special characteristics so it is important
to determine if the pattern of results shown by the examples in two dimensions
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Fig. 29.8 An example that does not show the paradoxical result

generalizes to higher dimensional solutions. A three-dimensional case was inves-
tigated and the results are shown in Table 29.3. Table 29.3 presents the item
parameters for a ten-item test measuring in a three-dimensional space along with
simulated item scores. When items measure three dimensions, the orbits are approx-
imately ellipsoidal surfaces rather than a two-dimensional ellipse. Figure 29.9 shows
one of the orbits when likelihood is fixed at 0.00004. Figure 29.10 shows slices
through the surface when each of the values of the coordinate axes is successively
set to 0.
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Table 29.3 Item parameters and item scores for a three-dimensional case

Item a1 a2 a3 d Score Item a1 a2 a3 d Score

1 0.89 0.46 0.93 0.89 0 6 0.47 0.69 1.06 1.44 0
2 1.40 2.14 0.48 −1.15 0 7 0.64 0.71 0.95 0.33 0
3 0.34 0.95 0.95 −1.07 1 8 0.84 1.25 0.67 −0.75 1
4 1.00 0.72 1.31 −0.81 1 9 2.59 1.21 0.82 1.37 1
5 0.83 0.95 0.88 −2.94 0 10 1.95 1.22 0.56 −1.71 1

Fig. 29.9 Ellipsoidal orbit for a three-dimensional case

When the item response data are modeled in three dimensions, the equal-
probable contours of a test item are planes rather than the straight lines shown
for the two-dimensional cases given in Figs. 29.6 and 29.7. Figure 29.11 shows
the 0.00004-orbit for the likelihood function with the tangent planes for an item
that is measuring only along θ 1. As with the two-dimensional case, the conditional
maxima for the likelihood function after the additional item is administered will
be along the line that connects the tangents of the equal-probable planes with the
likelihood surface for the previous set of items and responses. In this case, the
coordinates of the tangent points are (−0.88, 1.60, −0.40) and (5.10, −2.40, −2.00).
Because of the orientation of the likelihood surface in the three-dimensional space,
the paradoxical result will also occur after administering an item measuring along
θ 1 because the location of the tangent points result in reductions of θ 2 and θ 3 even
though there is an increase in θ 1.

Figure 29.12 shows the likelihood orbits of the ten-item solution for likelihood
values of 0.00009, 0.00006, and 0.00003. A slice has been cut into the end of the
surface to show the nested structure of the successive likelihood orbits. The figure
also has “dots” showing the tangent points for the equal-probable planes for an
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Fig. 29.11 Equal-probable
item planes tangent to the
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first ten items

item measuring along θ 3. Figure 29.13 shows the pattern of the successive tangent
points in the three-dimensional space. The MLE for the 11-item test with the 11th
item measuring along θ 3 must fall on this line.
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Fig. 29.12 Nested likelihood
orbits for the ten-item test

Fig. 29.13 Successive points of tangent with the likelihood orbits for an item measuring along θ3

For the three-dimensional case, there is clear curvature in the line of tangent
points. This indicates that the conditions under which the paradoxical result occurs
are complex when the estimates of location are in a higher dimensional space.

29.2.3 The Shape of the Likelihood Function
and Its Relationship to Test Information

The shape of the likelihood function (and its orbits) is dependent on the items
that are selected for administration. The item parameters in the two-dimensional
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Table 29.4 Item parameters
for the two-dimensional
example

Item a1 a2 d Item a1 a2 d

1 1.11 0.90 −0.43 7 0.83 0.38 0.28
2 0.90 0.71 −1.75 8 0.72 1.01 −0.90
3 0.57 0.43 −0.44 9 0.89 0.46 0.49
4 1.12 0.68 0.16 10 0.50 0.48 −0.64
5 0.77 0.88 −0.27 11 1 0 0
6 1.05 0.69 0.92

example are in Table 29.4 (the original test consisted of ten items, and the 11th item
is the additional item). The original set of items measured best in a direction that is
30–40◦ from the θ 1-axis. The result is that the error of estimate of the location in
the θ -space is smaller in that direction than along the coordinate axes.

The standard error pattern can be seen from the pattern of information in the
two-dimensional space. Figure 29.14 shows the information provided by the ten-
item test in directions in increments of 10◦ from the θ 1-axis. The length of the line
from each point in the space indicates the information in that direction. The standard
error in each direction is inversely proportional to the length of the line indicating
the amount of information. The figure shows the same pattern of negative slope that
indicates when paradoxical results can occur. That is, when the test information has
this pattern, the major axis of the orbits of the likelihood function for the items
will have a negative slope. The paradoxical results will occur when the next item is
measuring along the axes of the solution.
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Fig. 29.14 Information for the ten items in Table 29.4 with directions in ten-degree increments



478 M.D. Reckase and X. Luo

If the majority of the items exhibit simple structure (i.e., they only provide
information along a single coordinate axis), the likelihood orbits will have a major
axis that is parallel to one of the axes. For that case, the paradoxical result will
not appear as long as the new item has non-negative discrimination parameter in
each dimension. In fact, the only way to avoid the paradox is to have true simple
structure or only administer items that yield a line connecting the tangent points
that have positive slope. The latter case only occurs when the test items meet
the requirements for essential unidimensionality. For the simple structure case,
estimating the coordinates with separate tests would be equally good. However, no
real achievement or licensure tests actually match simple structure. See more details
about the simple structure case in Sect. 2.5.

29.2.4 Change the Evaluation Criteria

Whenever the item response data from a test do not meet the requirements for simple
structure, the paradoxical result can occur. Most item response matrices do not meet
the simple structure requirement. However, the presence of the paradox does not
mean the new estimate is meaningless or that it is seriously flawed. In the simulated
CAT example in Reckase (2009, Chap. 10), the paradoxical result occurred, but the
CAT still converged to the true value.

Reckase proposes that one advantage of MIRT over IRT is it can estimate
the ability on multiple dimensions simultaneously (Reckase 2009). And when
evaluating the abilities and making decisions, these estimates should be considered
all together, rather than make separate judgments about whether the examinee met
the criterion along each dimension. For cases where the paradoxical result occurs,
the estimates along at least one dimension decrease, but the new MLE is still closer
to the true location than the old one. This can readily be shown with an example.

Assume 500 examinees were randomly selected from a bivariate normal dis-
tribution with mean vector 0 and the identity matrix for the variance/covariance
matrix and each simulated person took the same ten-item test with items generated
as follows: (a1 log normal (−0.3, 0.35), a2 log normal (−0.3, 0.35), and d normal
(0, 1)). The item parameters and examinee parameters were then used to generate
a 500*10 item score matrix using the multidimensional extension of the two-
parameter logistic model. The ability estimates from the ten-item test were the
old estimates. Then scores to an 11th item were simulated with the direction of
best measurement for the item parallel to θ 1 and new estimates of location were
computed. This process was replicated 30 times.

Table 29.5 presents the results from the simulation study. Each replication in
the table gives the average of the distances between the estimates of location for
the 500 simulated examinees after ten items and the true θ -vector used to generate
the data, noted as old distance, and the average distance between the estimate of
location after 11 items and the same true θ -vector, noted as new distance. For all
30 replications, the old distance is larger than the corresponding new distance with
an average difference of the distances of 0.41. For all of the simulated examinees
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who answering the 11th item correctly θ 1 increased and θ 2 decreased. That, is
the paradoxical result occurred. However, even when the paradoxical result did
occur, the distance from the true point in the space to the estimated point decreases
when the score from the additional item was added. This result shows that the
paradoxical result is not an indicator of poor estimation. In this example, the
maximum likelihood estimator is working. It should improve the estimate of the
examinee’s location even when there are paradoxical cases.

Table 29.5 Comparison of distance between old/new estimate and true ability

Replication Old distance New distance Replication Old distance New distance

1 2.93 2.44 16 2.63 2.35
2 2.25 2.04 17 2.54 2.20
3 2.99 2.69 18 3.06 2.58
4 3.13 2.63 19 2.36 1.97
5 2.33 2.03 20 2.74 2.33
6 2.44 2.04 21 2.72 2.28
7 2.62 2.19 22 2.44 2.20
8 2.66 2.41 23 2.63 2.18
9 2.84 2.44 24 3.07 2.75
10 2.32 2.06 25 3.06 2.34
11 3.17 2.55 26 2.91 2.43
12 1.94 1.77 27 3.03 2.51
13 3.12 2.33 28 2.39 2.00
14 2.79 2.43 29 2.48 2.15
15 2.96 2.47 30 3.18 2.64

29.2.5 A Rotation Explanation for the Paradoxical Result

In MIRT, the selection of the orientation of the coordinate axes, the location of
the origin and the units for each axis are arbitrary (Reckase 2009). The previous
sections showed that the paradoxical result is a consequence of the shape of the
likelihood surface and the characteristics of the test item added to the test. Some
of these features of the causes of the paradoxical result are a consequence of the
way that the coordinate system for the solution was selected. Considering how
the coordinate system can be rotated may help in understanding of the paradoxical
result. Figure 29.15 gives a representation of the measurement information provided
by two sets of items: one set contains five items mainly measuring more in
a direction along θ 1 than along θ 2 (the angle between the direction of best
measurement and the θ 1-axis is 20◦), and the other item set mainly measures
more along the θ 2-axis than the θ 1 axis (the angle between the direction of best
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measurement and the θ 2-axis is 20◦). Then an 11th item is administered, which has
a direction of best measurement alongthe θ 1-axis.
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Fig. 29.15 Best measurement directions before rotation

Selected likelihood orbits for the estimate of location based on the responses to
the ten-item test are shown in Fig. 29.16. These orbits have a negative slope for their
major axis as in the previous examples. As a result, after adding a correct response
to the 11th item, the paradoxical result occurs.

The information plot in Fig. 29.17 indicates that the items provide most infor-
mation along a direction of approximately 45◦.

But, the coordinate system that is shown in Figs. 29.15 and 29.16 is not uniquely
determined by the MIRT model. It can be rotated and translated as long as the
inverse transformation is applied to the item parameters. If done properly, the
probability of correct response to the items will remain the same and the invariance
property of the model holds. In this case, a non-orthogonal rotation (Reckase 2009)
can be applied to the space to align the two coordinate axes with the directions
of best measurement of the two item sets. The result is shown in Fig. 29.18. Note
that the 11th item now has a negative discrimination along the new θ 2. Selected
likelihood orbits for the rotated ten items are shown in Fig. 29.19 along with equal-
probable contours for the 11th item.

If the new 11th item only measures the new θ 1 instead of the old θ 1 dimension,
the best measurement direction after rotation is shown in Fig. 29.20. In this case, the
paradoxical result does not occur because the tangents to the likelihood orbits fall
along a horizontal line. The specifics of this particular case are shown in Fig. 29.21.
The likelihood orbits for ten items have axes that are parallel to the θ 1 and θ 2 axes
and the equal-probable contours for 11th item are vertical.
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Fig. 29.16 Selected likelihood orbits and equal-probable contours
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Fig. 29.17 Information plot for the ten-item test

The clamshell information plot for the ten-item test after rotation is shown in
Fig. 29.22. It shows that the items provide almost equal information along each
direction. This is the pattern of information that is present when the items exhibit
simple structure. For this case, when the 11th item has non-negative discrimination
power, the paradoxical result does not occur.
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Fig. 29.19 Likelihood orbits and equal-probable contours after rotation (with 11th item only
measures the old θ1)
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Fig. 29.20 Best measurement direction after rotation (with 11th item only measures the new θ1)
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Fig. 29.21 Likelihood orbits and equal-probable contours after rotation (with 11th item only
measures the new θ1)
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Fig. 29.22 Clamshell information plot for ten items after rotation

Discussion and Conclusions
At the beginning of this chapter, two interpretations were suggested for the
paradoxical result that is sometimes observed when estimating the locations
of individuals using MIRT models. One interpretation suggested that the
paradoxical result indicates a flaw in the estimation process that gave poor
estimates for the coordinates of the locations of the individuals. The other
interpretation was that the paradoxical result is a natural result of the
corrections that are made when additional information is used to improve the
quality of the estimate of examinees locations. The information provided in
this chapter shows that the second of the two interpretations is the correct
one. The paradoxical result is a fairly frequent occurrence and thanks should
be given to Hooker et al. for bringing it to our attention.

The analysis provided in this chapter shows that the paradoxical result is a
result of the shape of the likelihood function for the prior set of items, and the
direction of best measurement of the added item. If the likelihood function has
a major axis that has a negative slope, the paradoxical result is possible when
the next item is administered and it will occur when the item tends to measure
along one of the coordinate axes. The likelihood function will have a negative
slope for the major axis of the orbits for the function whenever a number
of items have been administered that measure in a direction that does not
parallel the coordinate axes—that is, the items measure a composite of skills
and knowledge. This is often called complex structure. Most achievement and

(continued)
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aptitude tests have this type of structure. The analysis presented here indicates
that the paradoxical result will be present in almost all real test data analyses.

Because the paradoxical result is common, it is important to investigate
whether it constitutes a problem that needs to be fixed. In this chapter, it is
suggested that it is not a problem because the estimate including the additional
item that shows the paradoxical result gives an estimate of location that is
closer to the true location than was the case before the item was administered.
The reason the paradoxical result is sometimes considered a flaw in the
process is that the estimation process is thought to be considering each θ
in the vector of locations independently rather than as being interrelated as
indicators of a location in the space. Using a criterion such as the distance
from the true location shows the interrelated nature of the θ coordinates and
the improvement of the estimate with the increased information from the
additional item.

The paradoxical result can be avoided in two ways. The first is to have a set
of items that yields a likelihood function that does not have the property of a
negative slope for the equal likelihood orbits. This can be achieved if the items
have simple structure. A more complex way to achieve this is by rotating the
solution so that the likelihood function has the desired form.

The second approach is to select items that have equal-probable contours
that have tangents to the likelihood orbits that form a line with positive slope.
This will require the items to be measuring composites of the dimensions and,
if the test is long enough, will ultimately result in an item set that meets the
requirements for essential unidimensionality. If that approach is taken to avoid
the paradoxical result, it is probably not necessary to use a multidimensional
model.

Several other researchers have presented analyses that address the para-
doxical result in a much more elegant way than was presented in this paper.
van der Linden (2012) and van Rijn and Rijmen (2012) present mathematical
analyses that give theoretical explanations for the paradoxical result. Readers
are urged to look at this work to gain other perspectives. The purpose of
this chapter is to give a conceptual description of the paradoxical result that
supplements the work done by these researchers.
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