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1Introduction

Abstract

In this chapter, we provide a very concise introduction to R. Furthermore,
we briefly introduce some statistical concepts: Testing linear restrictions in
regression models, the method of maximum likelihood estimation, and methods
of numerical optimization.

1.1 A Short Introduction to R

1.1.1 Objects

R is an object oriented programming environment for data manipulation, calcula-
tion, and graphical display. Objects (e.g., vectors, matrices, tables, and so on) can be
given some content using the assignment symbol <-. Functions can be called with
arguments given in brackets. For example c() combines some elements which we
name a:

a <- c(1,2)

We can print the object simply by calling its name, apply functions to it, and do
some arithmetics:

a

## [1] 1 2

mean(a)

## [1] 1.5

a+1

## [1] 2 3

© Springer International Publishing Switzerland 2015
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The in-built help-function can be called using a question mark:

?mean

1.1.2 Dataframes

Data are stored in a dataframe which contains the values and some attributes. As a
simple example, we create a small dataframe d using the command data.frame:

d <- data.frame(x = c("A","B","C"),
y = c(22,35,41),
z = c(0,1,0))

d

## x y z
## 1 A 22 0
## 2 B 35 1
## 3 C 41 0

Variables of the dataframed can be selected either by using $ or by using indices:

d$x

## [1] A B C
## Levels: A B C

d[1]

## x
## 1 A
## 2 B
## 3 C

Individual elements (or parts of the dataframe) can be selected using square
brackets Œ �:

d[1, 2]

## [1] 22

d[2:3,1:2]

## x y
## 2 B 35
## 3 C 41

d[,2]

## [1] 22 35 41

d[2,]

## x y z
## 2 B 35 1
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1.1.3 Sequences, Replications, and Loops

Sequences can be generated using the command seq(from,to,by).

seq(0.8,0.9,0.02)

## [1] 0.80 0.82 0.84 0.86 0.88 0.90

A short form for integers and step size 1 is:

1:5

## [1] 1 2 3 4 5

Replications can be generated by

rep(1:2,times=3)

## [1] 1 2 1 2 1 2

rep(1:2,each=3)

## [1] 1 1 1 2 2 2

rep(1:2,times=2:1)

## [1] 1 1 2

Loops are often used for control structures. An example is the following for-
loop:

for (x in 3:5) {print(paste("The value of x is",x))}

## [1] "The value of x is 3"
## [1] "The value of x is 4"
## [1] "The value of x is 5"

In many cases, we can avoid loops by using the functionsapply or tapply. Using
apply(X, MARGIN, FUN), we apply the function specified with the argument
FUN towards rows (MARGIN=1) or columns (MARGIN=2) of X. To demonstrate
apply, we construct a matrix and calculate the sums of the elements in each
column:

x <- matrix(1:9,ncol=3,byrow=F)
x

## [,1] [,2] [,3]
## [1,] 1 4 7
## [2,] 2 5 8
## [3,] 3 6 9

apply(X=x,MARGIN=2,FUN=sum)

## [1] 6 15 24
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An abbreviation making use of the ordering of the commands is:

apply(x, 2, sum)

## [1] 6 15 24

Note that we can define a function which we apply to columns or rows of X. For
example we may want to select the a-th smallest element of a vector:

mysort <- function(y,a) sort(y)[a]
mysort(c(3,7,9,6),2)

## [1] 6

Choosing a D 2, we apply the function towards the columns of X (here: X D y):

y <- matrix(rnorm(9),ncol=3,byrow=F)
y

## [,1] [,2] [,3]
## [1,] 0.2975 -1.4664 0.2488
## [2,] 0.3527 0.8105 0.6948
## [3,] -0.6467 0.1442 -0.6412

apply(y, 2, mysort, 2)

## [1] 0.2975 0.1442 0.2488

The function tapply(X, INDEX, FUN) applies a function specified with
FUN towards the elements in groups of X, which are specified using INDEX.

x <- 1:20
i <- rep(1:5,4)
tapply(x,i,mean)

## 1 2 3 4 5
## 8.5 9.5 10.5 11.5 12.5

1.1.4 Matrices

Contrary to numeric vectors, matrices have a dimension, that is a number of rows
and columns:

y <- 1:3
dim(y)

## NULL

x <- as.matrix(y)
x

## [,1]
## [1,] 1
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## [2,] 2
## [3,] 3

dim(x)

## [1] 3 1

x <- matrix(1:3)
dim(x)

## [1] 3 1

Multiplication applied to vectors is element-wise:

1:2

## [1] 1 2

3:4

## [1] 3 4

1:2*3:4

## [1] 3 8

For matrix multiplication, we have to use the symbol %*%:

matrix(1:2, ncol = 1)%*%matrix(3:4, ncol = 2)

## [,1] [,2]
## [1,] 3 4
## [2,] 6 8

We obtain the transpose of a matrix using t(). The inverse of a matrix solves the
equation A�1 � A D I:

A <- matrix(1:4,nrow = 2)
A

## [,1] [,2]
## [1,] 1 3
## [2,] 2 4

solve(A)

## [,1] [,2]
## [1,] -2 1.5
## [2,] 1 -0.5
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To generate an identity matrix , we use diag() and define the number of rows and
columns:

diag(2)

## [,1] [,2]
## [1,] 1 0
## [2,] 0 1

Using diag(), we can also extract diagonal elements of a matrix:

diag(matrix(1:4,nrow = 2))

## [1] 1 4

and generate a diagonal matrix with specified elements on its diagonal:

diag(1:2)

## [,1] [,2]
## [1,] 1 0
## [2,] 0 2

1.1.5 Reading and Storing Data Files

We save the dataframe d as file test.csv using the function write.table and read
it into the workspace using read.table1:

d <- data.frame(x = c("A","B","C"),
y = c(22,35,41),
z = c(0,1,0))

write.table(d,"test.csv")
d <- read.table("test.csv")
d

## x y z
## 1 A 22 0
## 2 B 35 1
## 3 C 41 0

One can also use the specification that is compatible with German defaults in Excel:

write.csv2(d,"test.csv",row.names=F)
read.csv2("test.csv")

## x y z
## 1 A 22 0
## 2 B 35 1
## 3 C 41 0

1Note that the default delimiter is a space; hence, the file is actually not a comma separated value
(csv) file.
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1.1.6 Probability Distributions

Many probability distributions are implemented in R, either in the base library or
in special packages. Note that probability distributions describe specific random
experiments or processes. Empirical data resulting from observed economic situ-
ations will never follow exactly theoretical distributions. Nevertheless, sometimes
distributions (e.g., histograms or density estimates) of empirical data look rather
similar to theoretical distributions. Using probability distributions with R neces-
sitates the specification of the distribution (e.g., normal) and the function (e.g.,
quantile function):

1. Distribution

– norm normal distribution
– unif uniform distribution
– binom binomial distribution
– pois poisson distribution
– . . .

2. Function

– d density function
– p probability function
– q quantile function
– r random number

For the standard normal distribution we obtain e.g.:

dnorm(0)

## [1] 0.3989

qnorm(0.975)

## [1] 1.96

pnorm(1.96)

## [1] 0.975

rnorm(3)

## [1] 1.4836 1.3018 -0.3861

Note that for reproducibility of random numbers, one has to initialize the generator
using set.seed():

rnorm(3)

## [1] -0.5387 1.6078 -0.9964
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rnorm(3)

## [1] -0.2099 0.2146 0.9011

set.seed(1)
rnorm(3)

## [1] -0.6265 0.1836 -0.8356

set.seed(1)
rnorm(3)

## [1] -0.6265 0.1836 -0.8356

1.1.7 Graphics

R allows very flexible configurations of graphics. Due to the recognition of object
classes and default settings, standard graphics can be produced very easily. We give
two examples, a histogram and a scatter plot with the regression line according to
the method of least squares added (see Fig. 1.1).

n <- 1000
x <- rchisq(n,5)
# histogram
hist(x)
u <- rnorm(n,sd=3)
y <- 10+0.5*x+u
# scatterplot
plot(x,y,pch=19,col="darkgrey",cex=0.5)
abline(lm(y~x),lwd=2) # add regression line
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Fig. 1.1 Example for standard graphics with R. (a) Basic histogram. (b) Scatter plot with
regression line
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One can export the plots as pdf-files for inclusion in documents using the following
command:

dev.copy(device=pdf, file="graphic.pdf",
width=7, height=4, pointsize=10,
onefile=FALSE, paper="special")

dev.off()

1.1.8 Linear Regression

We already made use of the lm()-function for estimating linear models in the
previous graphic (see Fig. 1.1b). The function lm() returns a lm-object with
detailed information on the estimated linear model:

reg <- lm(y~x)
names(reg)

## [1] "coefficients" "residuals" "effects"
## [4] "rank" "fitted.values" "assign"
## [7] "qr" "df.residual" "xlevels"
## [10] "call" "terms" "model"

For example we obtain the regression coefficients by referring to the sub-object or
by calling the function coef():

reg$coef

## (Intercept) x
## 10.060 0.495

coef(reg)

## (Intercept) x
## 10.060 0.495

The command summary() provides detailed information on the regression:

sreg <- summary(reg)
sreg

##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.422 -1.923 -0.096 1.944 8.994
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.0598 0.1721 58.4 <2e-16 ***
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## x 0.4950 0.0282 17.6 <2e-16 ***
## ---
## Signif. codes:
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 2.93 on 998 degrees of freedom
## Multiple R-squared: 0.236, Adjusted R-squared: 0.236
## F-statistic: 309 on 1 and 998 DF, p-value: <2e-16

The summary-object again contains many information on the regression. Using
names(), we obtain the names of the sub-objects contained in the summary-object:

names(sreg)

## [1] "call" "terms" "residuals"
## [4] "coefficients" "aliased" "sigma"
## [7] "df" "r.squared" "adj.r.squared"
## [10] "fstatistic" "cov.unscaled"

For example the coefficient of determination

sreg$r.squared

## [1] 0.2363

or the variance–covariance matrix of the regression parameters (scaled: O�2 �
.X0X/�1):

vcov(reg)

## (Intercept) x
## (Intercept) 0.029629 -0.0040892
## x -0.004089 0.0007935

1.2 Testing Linear Restrictions

We start with a simple linear model in matrix notation2

y D xˇ C u (1.1)

with k regressors and n observations. ˇ0 D .ˇ0; : : : ; ˇk�1/ is unknown and
estimated as

Ǒ D .X0X/�1X0y: (1.2)

2We follow closely the exposition in Johnston and DiNardo, Econometric Methods, 4th edition,
page 90–99.
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The covariance matrix˙ is unknown and estimated as

Ȯ D .X0X/�1 O�2; O�2 D 1

n � k
Ou0 Ou; Ou D y � X Ǒ: (1.3)

The general setup of hypothesis testing is of the form

Rˇ D r (1.4)

where R is a q � k matrix of constants and r is a q-vector of constants. For example
if we assume k D 5 and the hypothesis to be tested ˇ2 C ˇ3 D 1, we would express
this hypothesis as

Rˇ D r
�
0 0 1 1 0

�
ˇ D 1:

(1.5)

Assume again k D 5 and that we want to test the combined hypothesis ˇ2 D ˇ3 and
ˇ1 D 1. This hypotheses we would translate towards

Rˇ D r
�
0 0 1 �1 0
0 1 0 0 0

�
ˇ D

�
0

1

�
:

(1.6)

For testing, we formulate H0W Rˇ � r D 0. Intuitively, the test is based on R Ǒ � r
and the more R Ǒ � r deviates from 0, the less likely the hypothesis holds. Note that
under model assumptions and normality of error terms, we have

E. Ǒ/ D ˇ �! E.R Ǒ/ D Rˇ and

Var. Ǒ/ D .X0X/�1�2 �! Var.R Ǒ � r/ D R.X0X/�1R0�2:
(1.7)

r is constant and R Ǒ is a linear combination of normally distributed random
variates, hence, distributed normally. The sum of q normalized (through the inverse
covariance matrix) squared normal random variates follows the �2-distribution with
q degrees of freedom

.R Ǒ � r/0
�
R.X0X/�1R0�2

��1
.R Ǒ � r/ � �2.q/: (1.8)



12 1 Introduction

Because of

Ou D y � X Ǒ D y � X.X0X/�1X0y D �
I � X.X0X/�1X0� y

D �
I � X.X0X/�1X0� .Xˇ C u/

D �
I � X.X0X/�1X0�Xˇ C �

I � X.X0X/�1X0� u

D �
I � X.X0X/�1X0� u

(1.9)

the estimated residuals are linear combinations of normal random variates. There-
fore,

Ou0 Ou D u0 �I � X.X0X/�1X0�0 �I � X.X0X/�1X0� u

D u0 �I � X.X0X/�1X0� u
(1.10)

is a sum of squared normal random variates. Normalizing using the variance of u
and r being the rank of

�
I � X.X0X/�1X0� we find

Ou0 Ou
�2

� �2.r/: (1.11)

Finally, we use the ratio of the two independently �2-distributed statistics (�2

cancels out) to find

1
q .R

Ǒ � r/0
�
R.X0X/�1R0��1 .R Ǒ � r/

1
n�k Ou0 Ou � F.q; n � k/ or equivalently

1

q
.R Ǒ � r/0

� O�2R.X0X/�1R0��1 .R Ǒ � r/ � F.q; n � k/:

(1.12)
We look at a simple numerical example

y D

2

6
6
6
6
6
4

3

1

8

3

5

3

7
7
7
7
7
5

X D

2

6
6
6
6
6
4

1 3 5

1 1 4

1 5 6

1 2 4

1 4 6

3

7
7
7
7
7
5

(1.13)

and consider the linear model

y D Xˇ C u: (1.14)
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We obtain Ǒ as

Ǒ D .X0X/�1X0y D
2

4
4

2:5

�1:5

3

5 : (1.15)

In R this example is

y <- matrix(c(3,1,8,3,5))
X <- cbind(1,c(3,1,5,2,4),c(5,4,6,4,6))
x <- X[,2:3]
n <- nrow(y)
k <- ncol(X)
reg <- lm(y~x)
sreg <- summary(reg)
b <- matrix(coef(reg))
b

## [,1]
## [1,] 4.0
## [2,] 2.5
## [3,] -1.5

s2 <- sreg$sigma^2
s2

## [1] 0.75

v <- vcov(reg)
v

## (Intercept) x1 x2
## (Intercept) 20.025 3.375 -6.000
## x1 3.375 0.750 -1.125
## x2 -6.000 -1.125 1.875

The combined hypothesis we want to test is ˇ1 D 2 and ˇ2 D �1; now q D 2.
R Ǒ picks out two elements of Ǒ and O�2R.X0X/�1R0 picks out the variances and the
covariance. The test statistic is a linear combination of the differences of the two
parameters and the constants with variances and covariance as weights

1

q
.R Ǒ � r/0

� O�2R.X0X/�1R0��1 .R Ǒ � r/

D 1

2

�
0:5 �0:5�

�
13:33 8

8 5:33

� �
0:5

�0:5
�

D 0:33:

(1.16)

The p-value is then given by

p-value D 1 � F.0:33; 2; 2/ D 0:75: (1.17)
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In R we obtain the result by the following commands

R <- rbind(c(0,1,0),c(0,0,1))
R

## [,1] [,2] [,3]
## [1,] 0 1 0
## [2,] 0 0 1

r <- matrix(c(2,-1))
q <- nrow(R)
Fs <- 1/q*t(R%*%b-r)%*%solve(R%*%v%*%t(R))%*%(R%*%b-r)
Fs

## [,1]
## [1,] 0.3333

1-pf(Fs,q,n-k)

## [,1]
## [1,] 0.75

We can test the combined hypothesis ˇ0 C ˇ1 C ˇ2 D 2 and ˇ2 D �1 as follows:

R <- rbind(c(1,1,1),c(0,0,1))
R

## [,1] [,2] [,3]
## [1,] 1 1 1
## [2,] 0 0 1

r <- matrix(c(2,-1))
q <- nrow(R)
Fs <- 1/q*t(R%*%b-r)%*%solve(R%*%v%*%t(R))%*%(R%*%b-r)
Fs

## [,1]
## [1,] 2.911

1-pf(Fs,q,n-k)

## [,1]
## [1,] 0.2557

A convenient way to carry out hypothesis tests is using the command
linearHypothesis() implemented in the car package which leads to identical
results:

library(car)
linearHypothesis(model=reg,hypothesis.matrix=R, rhs=r)

## Linear hypothesis test
##
## Hypothesis:
## (Intercept) + x1 + x2 = 2
## x2 = - 1
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##
## Model 1: restricted model
## Model 2: y ~ x
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 4 5.87
## 2 2 1.50 2 4.37 2.91 0.26

1.3 Maximum Likelihood Estimation

1.3.1 The Basic Idea of Maximum Likelihood Estimation

The idea of maximum likelihood (ml) has been introduced by Ronald Fisher (1890–
1962) and is very intuitive: choose as an estimate for the unknown parameters
�1; : : : ; �r the numerical values, that give the observed values x1; : : : ; xn the highest
probability. The likelihood for n random variates X1; : : : ;Xn is defined as the joint
density fX1;:::;Xn.x1; : : : ; xnI �/, seen as a function of parameter vector � .

Let X1; : : : ;Xn be a simple random sample of X. Random variate X has the density
distribution fX.x;�/, then the likelihood function is

fX1;:::;Xn.x1; : : : ; xnI �/ D
nY

iD1
fXi.xiI �/ D

nY

iD1
fX.xiI �/: (1.18)

The likelihood function is often denoted by L.� I x1; : : : ; xn/ or L.�/, which in the
case of a simple random sample for continuous X is

L.� I x1; : : : ; xn/ D L.�/ D
nY

iD1
fX.xiI �/: (1.19)

1.3.2 The Exponential Distribution

We look at a very simple example, the exponential distribution. It is a continuous
distribution with one parameter only. Let X � Exp.�/ with density

f .xI�/ D
8
<

:

� e��x; for x � 0

0; for x < 0:
(1.20)
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The likelihood and log-likelihood functions are given by

L.�I x1; : : : ; xn/ D
nY

iD1
� e��xi and

ln L.�I x1; : : : ; xn/ D n ln� � �
nX

iD1
xi:

(1.21)

To find the maximum we obtain the derivatives and equate them to 0

@ ln L.�/

@�
D n

�
�

nX

iD1
xi

ŠD 0 ) O� D n
Pn

iD1 xi
D 1

Nx : (1.22)

The ml-estimator of the unknown parameter � is

O� D 1

NX : (1.23)

To illustrate the basic idea of the ml-estimation using R, we generate a small
artificial data set and carry out a grid search using the function optimize().3

set.seed(123)
n <- 20
x <- rexp(n,rate=5)
# Definition of likelihood functions
likelihood <- function(lambda){
prod(lambda*exp(-lambda*x))

}
loglikelihood <- function(lambda){
n*log(lambda)-lambda*sum(x)

}
# plotting the likelihood
lv <- seq(3,10,0.01)
lik <- rep(NA,length(lv))
for(i in 1:length(lv)) lik[i] <- likelihood(lv[i])
no <- which(lik==max(lik))
no

## [1] 317

The element of the object lv at position 317 is

lv[no]

## [1] 6.16

3Note that log() in R computes the natural logarithm.
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Fig. 1.2 Maximum likelihood estimation. (a) Likelihood. (b) Log-likelihood

Because the logarithm is a monotonic transformation the likelihood and the log-
likelihood have their maximal values at identical parameter values. We can plot the
likelihood and the log-likelihood as follows (see Fig. 1.2).

# likelihood
plot(lv,lik,type="l",xlab=expression(lambda),

ylab="Likelihood (in millions)",yaxt=’none’)
axis(2,at=c(2e+6,4e+6,6e+6,8e+6,10e+6,12e+6),

labels=c(2,4,6,8,10,12))
arrows(lv[no],lik[no],lv[no],0,length=0.15,

angle=15)
# log-likelihood
plot(lv,log(lik),type="l",xlab=expression(lambda),

ylab="Log-likelihood",ylim=c(12,16.5))
arrows(lv[no],log(lik[no]),lv[no],12,length=0.15,

angle=15)

The same estimate O� D 6:16, we obtain using the optimize function:

optimize(f=likelihood,interval=c(0,10),maximum=TRUE)

## $maximum
## [1] 6.164
##
## $objective
## [1] 12919465

optimize(f=loglikelihood,interval=c(0,10),maximum=TRUE)

## $maximum
## [1] 6.164
##
## $objective
## [1] 16.37
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For problems involving a parameter vector, we use the function optim() for
numerical optimization.4 For example the standard example is a normal random
variate:

set.seed(123)
n <- 20
x <- rnorm(n,mean=5,sd=2)
loglikelihood <- function(b){
-sum(dnorm(x,b[1],b[2],log=TRUE))

}
o <- optim(par=c(1,1),fn=loglikelihood,hessian=T)
o$value

## [1] 41.17

o$par

## [1] 5.283 1.895

1.3.3 Properties of ml-Estimators

If regularity conditions are met, ml-estimators have the following properties:

• Invariance:
If O� is the ml-estimator of � , then g. O�/ is the ml-estimator of g.�/. If the

parameter is a continuous differentiable function of �0 (true parameter), then this
function has its maximum at O� .

• Consistency:

P. lim
n�!1

O� D �0/ D 1:

That is with n going to infinity the probability mass will concentrate on the true
parameter value.

• Asymptotic normality:

p
n
� O�n � �

�
!d U � N .0;V.�//

O� a� N
h
�0; fI.�0/g�1i ;

where

I.�0/ D � E0
�
@2 ln L=@�0@�

0
0

�
:

4Because optim() by default minimizes we define a negative likelihood.
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• Asymptotic efficiency:
V.�/ is Cramér–Rao-lower bound. In the class of consistent estimators no

other estimator has smaller variance (given n is going to infinity).
• Feasibility:

Even if there is no analytic solution to the ml-problem, one can use numerical
optimization methods to obtain the estimate.

We use the following notation:

• ln f .yij�/ is the value of the log-likelihood function at yi.
• gi D @ ln f .yij�/=@� is the value of the derivative of the log-likelihood function

at yi.
• Hi D @2 ln f .yij�/=@�@� 0 is the value of the second order derivative of the log-

likelihood function at yi.

The derivatives of the log-likelihood function have the following properties

• E0 Œgi.�0/� D 0

The expected value for derivatives evaluated at yi is 0 for the true parameter.
• Var Œgi.�0/� D � E ŒHi.�0/�

The variance of the derivatives evaluated at yi equals the negative expected value of
the second derivatives evaluated at yi. The Fisher Information provides information
on the quality of the ml-estimator. The second derivative tells about the shape
(curvature) of the likelihood. The more the curvature is bend (changing slope of
the log-likelihood), the better we can locate the maximum of the log-likelihood and
find the estimate O� for � . The precision of the estimation is formally expressed
through the variance of the estimator. The smaller the variance, the more reliable is
the obtained estimator. In the maximum the second derivative is negative. Hence,
taking the negative second derivative results in a positive value

I.�0/ D � E ŒH.�0/� D � E

�
@2 ln L.�0/

@�0@�
0
0

�

D E

��
@ ln L.�0/

@�0

	�
@ ln L.�0/

@�0

	0�
:

(1.24)

We need the expected value of the second derivatives of the log-likelihood
evaluated at yi under the true parameter. This equals the positive expected value
of the first derivatives of the log-likelihood evaluated at yi under the true parameter.
The inverse of the Fisher information matrix is a lower bound (Rao–Cramer) for the
variance of the ml-estimator:

fI.�0/g�1 � Var. O�/: (1.25)
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Asymptotically, the variance of the ml-estimator approaches the inverse of the
Fisher information matrix

Avar. O�/ D fI.�0/g�1 D



� E

�
@2 ln L.�0/

@�0@�
0
0

���1

D



E

��
@ ln L.�0/

@�0

	�
@ ln L.�0/

@�0

	0���1
:

(1.26)

Note that when estimating we do not know the true parameter �0 and therefore we
cannot obtain the expected value under the true parameter. Usually, we also cannot
obtain the expected value. To circumvent these problems, we use the ml-estimator
O� instead of the true parameter �0 and we only evaluate at O� instead of taking
the expectation for all possible values. We can either approximate the information
matrix using the second derivatives

OI. O�/ D �
"
@2 ln L. O�/
@ O�@ O� 0

#

; (1.27)

or (more often, as second derivatives may be difficult to obtain) using the first
derivatives

OOI. O�/ D
 
@ ln L. O�/
@ O�

! 
@ ln L. O�/
@ O�

!0
: (1.28)

Because asymptotically the variance approaches the inverse of the Fisher informa-
tion matrix, we can obtain confidence intervals

P

�
O� � u1�˛=2

q
I .�/�1�� � O�Cu1�˛=2

q
I .�/�1

	
D 1� ˛: (1.29)

Our estimate is based on the evaluated Fisher information matrix

P

�
O� � u1�˛=2

q
OOI. O�/�1 � � � O� C u1�˛=2

q
OOI. O�/�1

	
D 1 � ˛: (1.30)

The asymptotic covariance matrix of the ml-estimator O� is

Cov. O�/ D
�
� E

�
@2 ln L.�0/

@�0@�
0
0

	��1
(1.31)



1.3 Maximum Likelihood Estimation 21

and can consistently be estimated by

bCov. O�/ D �
 
@2 ln L. O�/
@ O�@ O� 0

!�1
: (1.32)

Note that the Hessian matrix of the log-likelihood function can usually be estimated
using numerical optimization routines.

For our small numerical example, we use the Hessian matrix to construct a
confidence interval with ˛ D 0:05 for �:

h <- o$hessian
h

## [,1] [,2]
## [1,] 5.5665485 0.0008202
## [2,] 0.0008202 11.1433741

hi <- solve(h)
hi

## [,1] [,2]
## [1,] 0.17964453 -0.00001322
## [2,] -0.00001322 0.08973943

s <- sqrt(diag(hi))
s

## [1] 0.4238 0.2996

int_l <- o$par[1]+s[1]*qt(0.975,n-2)
int_l

## [1] 6.174

int_h <- o$par[1]-s[1]*qt(0.975,n-2)
int_h

## [1] 4.393

Finally, we show the curvature of the log-likelihood by drawing a perspective plot
(see Fig. 1.3).

m <- 40
mv <- seq(mean(x)-1.5*sd(x)/sqrt(n),

mean(x)+1.5*sd(x)/sqrt(n),length.out=m)
sv <- seq(0.8*sd(x),1.5*sd(x),length.out=m)
z <- matrix(NA,m,m)
loglikelihood <- function(b){
-sum(dnorm(x,b[1],b[2],log=TRUE))

}
for(i in 1:m){
for(j in 1:m){

z[i,j] <- -loglikelihood(c(mv[i],sv[j]))
}
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Fig. 1.3 Curvature of the
log-likelihood

mu

sigm
a

log-likelihood

}
jet.colors <- colorRampPalette(c("grey100", "grey40"))
nbcol <- 100
color <- jet.colors(nbcol)
zfacet <- z[-1, -1] + z[-1, -m] + z[-m, -1] + z[-m, -m]
facetcol <- cut(zfacet, nbcol)
# plot
# "\n" adds one line before the label
persp(mv,sv,z,

xlab="\n mu",ylab="\n sigma",
zlab="\n log-likelihood",
phi=35,theta=-30,col=color[facetcol])

1.4 Numerical Optimization

1.4.1 The General Form of Algorithms

We assume that we want to minimize function H.�/ (e.g., the sum of squared
residuals). Our aim is to vary the parameter vector � in a sensible way to find the
minimum. �n denotes the parameter vector in the nth-step of the iteration. We update
the parameter vector in the next step towards �nC1 according to the formula

�nC1 D �n C �n�n; H .�nC1/ < H .�n/ (1.33)

where �n is a scalar setting the length of the parameter adjustment. �n denotes the
vector of directions into which the parameter vector is updated. We stop the iteration
process if a previously specified criterion is reached, e.g.

.�nC1 � �n/
0 .�nC1 � �n/ < ": (1.34)
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The vector �n is the product of gradient zn of H.�/ evaluated at �n and the
positive definite matrix Pn

�n D �Pnzn: (1.35)

The gradient is given by

@H .x; �/

@�

ˇ̌
ˇ
ˇ
�n

D zn: (1.36)

Inserting into the equation above, we obtain

�nC1 D �n � �nPnzn: (1.37)

Many of the well-known algorithms follow this principle idea and differ only in
the choice of the matrix Pn.

1.4.2 The Newton–Raphson Algorithm

This algorithm is based on a second order Taylor series approximation of the
objective function H.�/. The function H.�/ at � can be approximated through the
expansion of the function around �n

H .�/ � H .�n/C @H .x; �/

@�

ˇ
ˇ
ˇ̌
�n

.� � �n/

C 1

2
.� � �n/

0 @2H .x; �/
@�@� 0

ˇ̌
ˇ
ˇ
�n

.� � �n/ :

(1.38)

We obtain the derivative of the approximation of H.�/ with respect to � and set the
derivative to zero

@H .x; �/

@�

ˇ
ˇ
ˇ
ˇ
�n

C @2H .x; �/

@�@� 0

ˇ
ˇ
ˇ
ˇ
�n

.� � �n/ D 0: (1.39)

Manipulating the expression results in the rule for updating the parameter vector:

�nC1 D �n �
 
@2H .x; �/

@�@� 0

ˇ
ˇ
ˇ
ˇ
�n

!�1
@H .x; �/

@�

ˇ
ˇ
ˇ
ˇ
�n

(1.40)

where the weighting matrix Pn is the inverse of the matrix of second derivatives
(Hessian matrix).
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1.4.3 Two Simple Examples

We illustrate the algorithm using a simple nonlinear regression function

y D f .x/C " D x� C ": (1.41)

The function H.�/ is the sum of squared residuals

H .�/ D
nX

iD1
Œyi � f .xi/�

2 D
nX

iD1

�
yi � x�i

�2
: (1.42)

Derivatives of H.�/ are given by

@H .�/

@�
D 2

nX

iD1

�
yi � x�i

� �� .ln xi/ x�i



(1.43)

and

@2H .�/

@�2
D 2

nX

iD1



�� .ln xi/ x�i


 �� .ln xi/ x�i



C �
yi � x�i


 �� .ln xi/
2 x�i

��
:

(1.44)

A very simple numerical example with two observations is

x1 D 1; x2 D 2; y1 D 1; y2 D 2

Starting with �0 D 0:5, we find

H .�/ j�0 D �
1 � 10:5�2 C �

2 � 20:5�2 D 0:34315: (1.45)

For the derivatives, we find

@H .�/

@�
D 2

nX

iD1

�
yi � x�i

� �� .ln xi/ x�i



D 2 � ��1 � 10:5

 �� .ln 1/ 10:5
C �

2 � 20:5
 �� .ln 2/ 20:5



D �1:1485

(1.46)
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and

@2H .�/

@�2
j�0 D 2 � ˚ �� ln 1 � 10:5
2 C �

1 � 10:5
 .� ln 1/2 � 10:5

C �
.� ln 2/ � 20:5
2 C �

2 � 20:5


.� ln 2/2 � 20:5�

D 2:7179:

(1.47)

For �1 we obtain

�1 D 0:5 � 1

2:7179
� .�1:1485/ D 0:92257: (1.48)

The next iterations will result in �2 D 0:9979581, �3 D 0:9999986 and finally
�4 D 1 for which we find

H .�/ j�4 D �
1� 11

�2 C �
2 � 21�2 D 0: (1.49)

We solve the numerical optimization problem with R:

x <- 1:2
y <- 1:2
b0 <- 0.5
H <- function(b){sum((y-x^b)^2)}
H1 <- function(b){2*sum( (y-x^b)*(-log(x)*x^b) )}
H2 <- function(b){2*sum((-log(x)*x^b)^2

+ (y-x^b)*(-log(x))^2*x^b)}
H(b0)

## [1] 0.34315

H1(b0)

## [1] -1.1484

H2(b0)

## [1] 2.7179

b1 <- b0-H2(b0)^(-1)*H1(b0)
b1

## [1] 0.92256

b2 <- b1-H2(b1)^(-1)*H1(b1)
b2

## [1] 0.99796

b3 <- b2-H2(b2)^(-1)*H1(b2)
b3

## [1] 1

H(b3)

## [1] 4.0091e-12
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R provides several algorithms for numerical optimization implemented in the
function optim(). We use the BFGS-algorithm named after Broyden, Fletcher,
Goldfarb, and Shanno which is a quasi-Newton method and provide the first
derivative5:

o <- optim(c(0.5),H,H1,method="BFGS")
o$par

## [1] 1

o$value

## [1] 7.0997e-30

We illustrate the algorithm using a second simple nonlinear regression example

y D f .x/C " D �1 C x�2 C ": (1.50)

The function H.�/ in this case is

H .�/ D
nX

iD1
Œyi � f .xi/�

2 D
nX

iD1

h
yi � �1 � x�2i

i2
: (1.51)

Derivatives of H.�/ are given by

@H .�/

@�1
D
@

nP

iD1

h
yi � �1 � x�2i

i2

@�1
D 2

nX

iD1

�
�1 � yi C x�2i

�
; (1.52a)

@H .�/

@�2
D
@

nP

iD1

h
yi � �1 � x�2i

i2

@�2
D 2

nX

iD1
x�2i .ln xi/

�
�1 � yi C x�2i

�
; (1.52b)

@2H .�/

@�21
D 2n; (1.52c)

@2H .�/

@�22
D 2

nX

iD1
x�2i

�
ln2 xi


 �
�1 � yi C 2x�2i

�
and (1.52d)

@2H .�/

@�1@�2
D 2

nX

iD1
x�2i ln xi: (1.52e)

5The Newton–Raphson algorithm is available in the maxLik package.
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A very simple numerical example with three observations is

x1 D 1; x2 D 2; x3 D 3; y1 D 2; y2 D 2:414; y3 D 2:732:

Starting with �0 D .2; 0:2/0 for the function H.�/ we find

H .�/ D
nX

iD1

h
yi � �1 � x�2i

i2 D �
2 � 2 � 10:2
2 C �

2:414 � 2 � 20:2

2

C �
2:732� 2 � 30:2


2 D 1:8037:

(1.53)

For the derivatives we find

@H .�/

@�1
D � 2

nX

iD1

h
yi � �1 � x�2i

i

D � 2f�2 � 2 � 10:2

C �

2:414� 2 � 20:2
 (1.54a)

C �
2:732� 2 � 30:2


g D 4:4969;

@H .�/

@�2
D � 2

nX

iD1
x�2i .ln xi/

h
yi � �1 � x�2i

i

D � 2f10:2 � ln 1 � �2 � 2 � 10:2


C 20:2 � ln 2 � �2:414 � 2 � 20:2



C 30:2 � ln 3 � �2:732 � 2 � 30:2

g (1.54b)

D � 2.0C 0:79622 � .�0:73470/
C 1:3686 � .�0:51373//

D 2:5761;

@2H .�/

@�21
D 2n D 6; (1.54c)

@2H .�/

@�22
D � 2

nX

iD1
x�2i

�
ln2 xi


 �
yi � �1 � 2x�2i

�

D � 2f10:2 � ln2 1 � �2 � 2 � 2 � 10:2


C 20:2 � ln2 2 � �2:414� 2� 2 � 20:2
 (1.54d)

C 30:2 � ln2 3 � �2:732� 2� 2 � 30:2
g
D � 2 � .0C 0:55190 � .�1:8834/

C 1:5035 � .�1:7595// D 7:3697 and
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@2H .�/

@�1@�2
D 2

nX

iD1
x�2i ln xi

D 2 � �10:2 � ln 1C 20:2 � ln 2C 30:2 � ln 3



(1.54e)

D4:3296:

For �1, we obtain

�nC1 D �n �
 
@2H .x; �/

@�@� 0

ˇ
ˇ̌
ˇ
�n

!�1
@H .x; �/

@�

ˇ
ˇ̌
ˇ
�n

�1 D
�
2

0:2

�
�
�

6 4:3296

4:3296 7:3697

��1 �
4:4969

2:5761

�

D
�
2

0:2

�
�
�
0:28932 �0:16997

�0:16997 0:23555

� �
4:4969

2:5761

�
D
�
1:1368

0:3575

�
:

(1.55)

The next iterations will result in �2 D .0:97571; 0:5391/0, �3 D .0:9977; 0:5031/0
and finally �4 D .1; 0:5/0 for which we find

H .�/ j�5 D �
2 � 1 � 10:5
2 C �

2:414 � 1 � 20:5

2

C �
2:732� 1 � 30:5
 D 0:

(1.56)

x <- 1:3
b <- c(1,0.5)
n <- length(x)
f <- function(x) b[1]+x^b[2]
y <- f(x)
H <- function(b){sum((y-b[1]-x^b[2])^2)}
H1 <- function(b){
matrix(c( 2*sum( b[1]-y+x^b[2] ),

2*sum(x^b[2]*log(x)*(b[1]-y+x^b[2]))))}
H2 <- function(b){
matrix(c( 2*n,

2*sum(x^b[2]*log(x)),
2*sum(x^b[2]*log(x)),
2*sum(x^b[2]*log(x)^2*(b[1]-y+2*x^b[2]))),
2,2)}

b0 <- c(2,0.2)
H(b0)%%

## [1] 1.8033

H1(b0)
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## [,1]
## [1,] 4.4963
## [2,] 2.5756

H2(b0)

## [,1] [,2]
## [1,] 6.0000 4.3296
## [2,] 4.3296 7.3693

b1 <- matrix(b0)-solve(H2(b0))%*%H1(b0)
b1

## [,1]
## [1,] 1.13691
## [2,] 0.35757

b2 <- matrix(b1)-solve(H2(b1))%*%H1(b1)
b2

## [,1]
## [1,] 0.97572
## [2,] 0.53913

b3 <- matrix(b2)-solve(H2(b2))%*%H1(b2)
b3

## [,1]
## [1,] 0.99765
## [2,] 0.50308

b4 <- matrix(b3)-solve(H2(b3))%*%H1(b3)
b4

## [,1]
## [1,] 0.99999
## [2,] 0.50002

H(b4)

## [1] 0.00000000066655

Using optim() and providing the first derivative for the BFGS-algorithm, we
obtain:

o <- optim(b0,H,H1,method="BFGS")
o$par

## [1] 1.0 0.5

o$value

## [1] 5.3571e-18
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1.5 Recommended Readings

The R software for statistical computing is now used in many faculties and
introductory courses are given at most universities. The R homepage (www.r-
project.org) provides manuals and an exhaustive list of R-books.

• R Core Team (2013) R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria, URL http://www.R-project.org/

An excellent book which provides concise overviews to many different areas of
statistics is

• Venables BD William N; Ripley (2002) Modern applied statistics with S, 4th edn. Springer,
New York

Some familiarity with regression analysis is assumed throughout the book, but
mainly so in the chapters on production functions (with cross sectional and with
panel data) and stochastic frontier analysis (again with cross sectional and with
panel data). A very recommendable introduction to regression analysis with R is

• Fox J, Weisberg S (2011) An R companion to applied regression. Sage Publications, Thousand
Oaks

Reference textbooks on econometrics are:

• Greene WH (2003) Econometric analysis, 5th edn. Pearson Education, New Jersey
• Johnston J, DiNardo J (1997) Econometric methods, 4th edn. R. R. Donnelley & Sons

1.6 Exercises

1. Define a vector x containing the values f1; 3; 5; 12g.
a. Sort x using sort() and order() commands.
b. Calculate

P
i xi:

c. Let object n contain the length of x:
d. Calculate the variance of x and compare your result with the result obtained

from var(x).
e. Calculate the median of x and compare your results with the results obtained

from the following commands:
quantile(x,type=1,0.5)
quantile(x,type=7,0.5)
median(x)

2. Probability distributions
a. Consider the exponential distribution with rate � D 0:2:

i. Calculate the value of the probability distribution for x D 2:5:

ii. Calculate the value of the density distribution for x D 0:8:

http://www.r-project.org
http://www.r-project.org
http://www.R-project.org/
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iii. Calculate the median.
iv. Generate a realization with n D 10 from the exponential distribution (rate
� D 0:2).

b. Consider the normally distributed random variate X � N .� D 2; �2 D 5/

and calculate

P.X < 3/; P.X > 0:5/; and P.�2 < X < 3/:

c. Consider the Poisson distributed random variate X � Pois.� D 4/ and
calculate

P.X D 3/; P.X � 2/; and P.1 < X � 5/:

d. Generate a realization with n D 100 from the normal distribution (X �
N .� D 2; �2 D 5/) and display the distribution using hist().

3. Define the following matrix using the command

x <- matrix(1:16,nrow=4,ncol=4,byrow=F)

x D

0

B
B
@

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

1

C
C
A :

a. Select the vector containing the second column of x:
b. Select the vector containing the third row of x:
c. Select the 2 � 2-matrix containing the elements x23; x24; x33; x34.

4. Consider the following simple numerical example

y D

2

66
6
6
6
4

3

1

8

3

5

3

77
7
7
7
5

X D

2

66
6
6
6
4

1 3 5

1 1 4

1 5 6

1 2 4

1 4 6

3

77
7
7
7
5
:

a. Obtain the parameter vector Ǒ of the linear model

yi D ˇ0 C ˇ1x1i C ˇ2x2i C ui:

b. Test the following hypotheses
i. H0 W ˇ1 D 0,

ii. H0 W ˇ1 D 1 and
iii. H0 W ˇ1 D 2Iˇ2 D �1.
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5. Consider the following production function

y D xˇ11 xˇ22 C u with u � N .0; �2/:

a. Derive the likelihood.
b. Derive the log-likelihood.
c. Derive the score function. Remember

@xˇ

@̌
D @ exp.log xˇ/

@̌
D @ exp.ˇ log x/

@̌
D xˇ log x:

d. Derive the Hessian matrix.
e. Generate realizations of the stochastic production function using the following

setting (set.seed(123))

ˇ1 D 0:6; ˇ2 D 0:4; n D 50

x1; x2 � U .0:1; 1/; with u � N .0; 0:052/

and estimate the parameters using the Newton–Raphson-algorithm.
f. Compare your results with the results obtained from optim().
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2Linear ProductionModel

Abstract

Linear production models allow a concise representation of the production
process in an economy. The interdependence between production units is its
main characteristic as each production unit uses the output of other producing
units as inputs. Empirical content is provided by analyzing highly aggregated
input–output tables for Germany.

2.1 The Theoretical Linear Production Model

In this section, we introduce a simple linear production model to develop an idea of
the production process of an economy. The model is mainly based on the works
of Schwartz (1961) and Sraffa (1963). Input–output tables allow to bring some
empirical content to the linear production models. We analyze some input–output
tables for Germany for 1991 and 2007.

2.1.1 Industries and Goods

We assume that in our economy, there are n production units (firms or sectors)
!1; : : : ; !n. A strong simplification is the important assumption that the production
unit !i produces exactly one kind of good ci and that good ci is only produced
by unit !i. Therefore, corresponding to the n production units, we have c1; : : : ; cn

different goods. xi is the quantity of good ci that is produced by production unit !i.
Hence, the quantities produced in the economy x1; : : : ; xn are given by the following

© Springer International Publishing Switzerland 2015
A. Behr, Production and Efficiency Analysis with R,
DOI 10.1007/978-3-319-20502-1_2
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vector x1

x WD .x1; : : : ; xn/
0: (2.1)

As the quantity produced depends on the length of the production period, we assume
in the following that the length of the production period is one year. To produce
output of good cj, the producing unit !j needs other goods as inputs. The input
matrix A contains the elements aij stating how much input of kind i the production
unit j used

A D

2

6
4

a11 � � � a1n
:::
: : :

:::

an1 � � � ann

3

7
5 : (2.2)

	ij denotes the quantity of input of good ci that production unit !j needs to
produce one unit of cj. For the input coefficients it holds that 	ij � 0. If 	ij D 0, no
input ci is necessary to produce good cj. Note that usually 	ii > 0, which means that
producing units use some of their own output as inputs.2 Therefore, the production
process in production unit !j is characterized by its input coefficients. If production
unit !j wants to produce the quantity xj of good cj, it has to use the quantities
	1jxj; : : : ; 	njxj as inputs.

xi is the quantity of good ci that is produced in the production period. Thereof,
the quantities 	i1x1; : : : ; 	inxn are used as inputs in the n producing units. Hence,
only a fraction of the produced quantity of xi is available for final demand yi. This
can be formulated using matrix notation. We combine all input coefficients 	ij in the
production matrix ˘

˘ WD

2

6
4

	11 � � � 	1n
:::

:::

	n1 � � � 	nn

3

7
5 : (2.3)

If we multiply the production matrix with the vector of total output x, we obtain a
vector containing the quantities of the n goods that have to be used as inputs in the
production process

˘ x D

2

6
4

Pn
jD1 	1j xj

:::Pn
jD1 	nj xj

3

7
5 : (2.4)

1x is a column vector. The prime 0 indicates the transposition of the vector.
2For example wheat used as input in agriculture.
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If we subtract the amounts used as inputs from the quantities produced, we obtain
the vector y containing the quantities that are available for final demand

y WD x � ˘ x D .I � ˘ / x: (2.5)

The symbol I denotes the unit matrix of dimension .n; n/.
Equation (2.5) displays the connection between gross production x and net

production y (final demand). Inverting the matrix .I � ˘ / allows to calculate the
gross production that has to be produced if a vector of final demand y shall be
available for consumption and investment

x D .I � ˘ /�1 y: (2.6)

The matrix .I � ˘ /�1 is known as the Leontief-inverse.
.I � ˘ / has a non-negative inverse if the dominant eigenvalue of ˘ is smaller 1.

This can be stated as follows:

If the production matrix is non-negative and there is a vector of net production which is
non-negative having at least one positive element, then the production matrix will have a
dominant eigenvalue smaller 1.

Usually, these requirements are met as otherwise all the units would use the entire
output as input without delivering anything to other economic units.3

2.1.2 Direct and Indirect Inputs

	ij is the quantity of good i that must be used as input to produce one unit of good
j. But the goods used as inputs have to be produced by means of inputs as well.
Obviously, we can follow the production process backwards infinitely: inputs, inputs
of inputs, inputs of inputs of inputs, . . . In the following, we examine how we can
find the sum of all the direct and indirect amounts of inputs.

	
.1/
ij WD 	ij denotes the direct inputs

	
.2/
ij WD Pn

lD1 	
.1/
il 	lj denotes the indirect inputs (second stage)

	
.k/
ij WD Pn

lD1 	
.k�1/
il 	lj denotes the indirect inputs at the k-th stage of production

Summing up, we find

N	ij WD
1X

kD1
	
.k/
ij (2.7)

3For a formal treatment see Behr and Rohwer (2013), p. 320–323.
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as the total amount of direct and indirect inputs. Combining the coefficients N	ij in
the matrix N̆ , we find

N̆ D
1X

kD1
˘ k: (2.8)

Using the following expression for series

.I � ˘ /�1 D
1X

kD0
˘ k (2.9)

we find

.I � ˘ /�1 D
1X

kD0
˘ k D I C

1X

kD1
˘ k D I C N̆ (2.10)

and

N̆ D .I � ˘ /�1 � I: (2.11)

The matrix .I � ˘ /�1 is the Leontief-inverse already introduced above. If we sub-
tract the identity matrix from the Leontief-inverse, we obtain the matrix containing
the coefficients indicating the total amount of inputs (direct and indirect) necessary
for the production of one unit of output.

2.1.3 The Employment Model

The vector b WD .b1; : : : ; bn/
0 contains the amount of labor (e.g., the number of

employees or the number of hours worked) for the n units of production. bj is
the amount of labor in production unit j. Employment coefficients wj indicate the
quantity of labor bj per unit of output xj and are given by

wj D bj

xj
: (2.12)

Total employment in the economy b is obtained through summing up employment
over the n production units4:

b D w0x D
nX

jD1
wjxj D

nX

jD1
bj: (2.13)

4b (scalar) denotes the total amount of labor, b (vector) denotes the amount of labor in the n
production units.
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Because of

xD .I � ˘ /�1y (2.14)

we also find

b D w0x D w0.I � ˘ /�1y: (2.15)

Total employment is determined through three different factors: w containing the
labor coefficients wj; the Leontief-inverse .I � ˘ /�1, describing the structure of
production and the vector of final demand y containing the quantities of demand for
kinds of goods yj. The coefficients cij of the Leontief-inverse indicate the quantity
of good ci necessary (direct and indirect) in production unit j to produce one unit of
good cj.

If we build a diagonal matrix diag.w/ with elements wj and postmultiply with
the vector of outputs x, we obtain a vector of employment by producing units

b0 D w0 diagŒ.I � ˘ /�1y� D w0 diagŒx�: (2.16)

Premultiplying the input matrix A with the diagonalized vector of employment
coefficients diag.w/, we find the input-employment matrix Ba

Ba D

2

6
4

w1 � � � 0
:::
: : :

:::

0 � � � wn

3

7
5

2

6
4

a11 � � � a1n
:::
: : :

:::

an1 � � � ann

3

7
5

D

2

6
4

w1a11 � � � w1a1n
:::

: : :
:::

wnan1 � � � wnann

3

7
5 D

2

6
6
4

b1
x1

a11 � � � b1
x1

a1n

:::
: : :

:::
bn
xn

an1 � � � bn
xn

ann

3

7
7
5 :

(2.17)

The elements wiaij display the quantity of labor that is necessary to produce input i
used in production unit j.

Premultiplying the Leontief-inverse .I � ˘ /�1 with the diagonalized vector of
employment coefficients diag.w/, we obtain the employment inverse H

H D

2

6
4

w1 � � � 0
:::
: : :

:::

0 � � � wn

3

7
5

2

6
4

c11 � � � c1n
:::
: : :

:::

cn1 � � � cnn

3

7
5

D

2

6
4

w1c11 � � � w1c1n
:::

: : :
:::

wncn1 � � � wncnn

3

7
5 :

(2.18)
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The elements wicij show the direct and indirect amount of labor that is necessary in
production unit i to produce the input of good i that is used in production unit j per
unit output. If we sum the elements of H columnwise or premultiply the Leontief-
inverse by the row vector of employment coefficients, we obtain employment
multipliers for individual goods i. These multipliers

Pn
i wicij show the total amount

of labor that is necessary to produce one unit output of good j and are given by

�
w1; : : : ; wn

�
2

6
4

c11 � � � c1n
:::
: : :

:::

cn1 � � � cnn

3

7
5

D �
w1c11 C w2c21 C : : :C wncn1; : : : ; w1c1n C w2c2n C : : :C wncnn

�

D �Pn
i wici1; : : : ;

Pn
i wicin

�
:

(2.19)

2.1.4 A Numerical Example with R

To illustrate the theoretical model, we work through a simple fictitious numerical
example. Our economy is supposed to have four production units:

!1 produces wood;
!2 produces steel;
!3 produces cars;
!4 produces corn:

The production units produce the following quantities: x1 D 100, x2 D 50, x3 D 10,
and x4 D 80. The output vector therefore is

x <- matrix(c(100, 50, 10, 80));t(x)

## [,1] [,2] [,3] [,4]
## [1,] 100 50 10 80

Inputs are given in the following matrix:

A <- rbind(c(0, 40, 20, 0),
c(0, 0, 30, 10),
c(2, 0, 0, 2),
c(0, 0, 0, 0))

A

## [,1] [,2] [,3] [,4]
## [1,] 0 40 20 0
## [2,] 0 0 30 10
## [3,] 2 0 0 2
## [4,] 0 0 0 0
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This reads as follows: !1 uses 2 cars to produce wood, !2 uses 40 cords5 of wood
in its steel production, and so on.

The input matrix can be transformed to the production matrix ˘ through dividing
each column by the output of the respective production unit:

	ij D aij

xj
: (2.20)

The coefficients 	ij state the amount of input i that is in average used for one unit of
output j. In our example we find for ˘

P <- t(t(A)/as.vector(x));P

## [,1] [,2] [,3] [,4]
## [1,] 0.00 0.8 2 0.000
## [2,] 0.00 0.0 3 0.125
## [3,] 0.02 0.0 0 0.025
## [4,] 0.00 0.0 0 0.000

and matrix .I � ˘ /

n <- nrow(P);n

## [1] 4

IP <- diag(n)-P;IP

## [,1] [,2] [,3] [,4]
## [1,] 1.00 -0.8 -2 0.000
## [2,] 0.00 1.0 -3 -0.125
## [3,] -0.02 0.0 1 -0.025
## [4,] 0.00 0.0 0 1.000

When multiplying the output vector x from the right to this matrix, we obtain the
vector of net production

.I � ˘ / x D y: (2.21)

y <- IP%*%x;t(y)

## [,1] [,2] [,3] [,4]
## [1,] 40 10 6 80

This is the amount of the output that is not needed as input in the production process
and available for final demand.

5A standard cord is considered a 4’x4’x8’ stack of wood including bark and air space. ’ denotes a
foot which corresponds to 30,48 cm.
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In our numerical example, the requirements for the existence of the inverse are
surely met as we see that all units have a positive net production.6 Hence, we can
invert .I � ˘ / and obtain the following non-negative inverse .I � ˘ /�1:

IPi <- solve(IP);IPi

## [,1] [,2] [,3] [,4]
## [1,] 1.0965 0.8772 4.82 0.2303
## [2,] 0.0658 1.0526 3.29 0.2138
## [3,] 0.0219 0.0175 1.10 0.0296
## [4,] 0.0000 0.0000 0.00 1.0000

Subtracting the identity matrix from this inverse, we obtain a matrix containing in
each column j the quantities of goods that unit j has to use as inputs to produce one
quantity for final demand .I � ˘ /�1 � I D N̆ :

Pbar <- IPi-diag(n);Pbar

## [,1] [,2] [,3] [,4]
## [1,] 0.0965 0.8772 4.8246 0.2303
## [2,] 0.0658 0.0526 3.2895 0.2138
## [3,] 0.0219 0.0175 0.0965 0.0296
## [4,] 0.0000 0.0000 0.0000 0.0000

Let us look at the production unit !2 which produces steel. To produce one
quantity of steel, the unit uses 0.8 quantities wood as direct input. The total input of
wood, comprising direct and indirect inputs, is N	12 D 0.88. Referring to the 50 units
of steel, we find that direct input of wood is 40 but direct and indirect input of wood
amounts to 44 units of wood.

Assuming a vector with sectoral employment figures

b D .200; 200; 500; 800/0

we can calculate sectoral labor coefficients

b <- matrix(c(200,200,500,800))
w <- b/x;t(w)

## [,1] [,2] [,3] [,4]
## [1,] 2 4 50 10

Putting these labor coefficients on the diagonal, we can transform the input matrix
A towards the labor input matrix Ba through premultiplying by the diagonal matrix:

Ba <- diag(as.vector(w))%*%A;Ba

## [,1] [,2] [,3] [,4]
## [1,] 0 80 40 0

6The dominant eigenvalue is 0.4 in our example.
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## [2,] 0 0 120 40
## [3,] 100 0 0 100
## [4,] 0 0 0 0

The matrix element w1a12 D 80 states that 80 employees are necessary to provide
the input of good 1 (wood) which is used in the steel production process by !2.
The labor inverse H D diag.w/.I � ˘ /�1 is obtained as

H <- diag(as.vector(w))%*%IPi;H

## [,1] [,2] [,3] [,4]
## [1,] 2.193 1.754 9.65 0.461
## [2,] 0.263 4.211 13.16 0.855
## [3,] 1.096 0.877 54.82 1.480
## [4,] 0.000 0.000 0.00 10.000

The entry w3c31 D 1:0965 states that 1:0965 employees have to work in
production unit !3 to provide the input necessary to produce one unit (e.g., one
cord) wood in production unit 1. The sectoral employment multipliers w0.I � ˘ /�1
are obtained as

�Pn
i wici1; : : : ;

Pn
i wicin

�

D �
3:552 6; 6:842 1; 77:631 6; 12:796 1

�
:

(2.22)

t(w)%*%IPi

## [,1] [,2] [,3] [,4]
## [1,] 3.55 6.84 77.6 12.8

The multiplier
Pn

i wici3 D 77:631 6 states the number of employees that are
necessary to facilitate the production of one unit of output c3 in sector 3 available
for final demand.

2.2 Input–Output Tables

2.2.1 Aggregated Tables for Germany

The statistical office of Germany provides input–output tables since the 1970s.
Contrary to the empirical analysis of single tables (years), the analysis of longer
time periods is hampered by incomplete harmonization of the tables across time.
The researcher faces the problem of continuous changes in the level of aggregation,
the definition of sectors and product groups, and the treatment of trade and banking
services.

In recent years, the number of sectors increased from 59 to 71 and the German
input–output table for 2007 contains 74 sectors. Somewhat harmonized tables are
available for the time period 1991–2007. Nevertheless, not for all years detailed
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information of all components of value added is provided by the statistical office. In
the following, we first discuss the table for 2007 and then analyze the major changes
between 1991 and 2007 using both input–output tables. Throughout, we use highly
aggregated versions of the original table.

We define 12 broad sectors (production units) and three different components
(columns) of final demand (13 consumption, 14 investment, 15 export). The 12
sectors (index j D 1; : : : ; n), which correspond to 12 kinds of goods (index
i D 1; : : : ; n), are denoted as: 1 agriculture, 2 energy, 3 chemistry, 4 metal, 5
machines, 6 textiles, 7 food, 8 construction, 9 trade, 10 renting, 11 social, 12
services. Below the input matrix A additional rows provide information on imports,
taxes, and components of value added: 13 import, 14 tax, 15 due, 16 wage, 17
depreciation, 18 profit. For further calculations we use the table for 2007 from
Statistisches Bundesamt (2010). Tables 2.1, 2.2, and 2.3 contain values in current
prices in million Euro.

2.2.2 Some Identities

If we add for unit j (column) the 12 entries in row 1 to 12, we obtain the intermediate
consumption of unit j. Adding the tax on products paid minus subsidies on products
received (row 14), we obtain intermediate consumption at purchaser’s prices.

Table 2.1 Aggregated A-Table 2007 (1). Statistisches Bundesamt (2010). Published with the kind
permission of c� Statistisches Bundesamt 2010. All rights reserved

1 agric. 2 energy 3 chem. 4 metal 5 machines 6 textiles

1 agriculture 8319 47 21 0 0 2325

2 energy 1009 26922 11487 6057 5389 4311

3 chemistry 2817 1269 90268 6957 23019 7959

4 metal 357 1621 2410 91327 58571 1490

5 machines 1065 4536 4276 4352 185217 1483

6 textiles 183 350 3775 3091 7489 33713

7 food 3707 0 1028 0 0 3

8 construction 273 1439 893 803 1358 607

9 trade 3442 5037 17540 13972 39688 13990

10 renting 8181 10736 33951 14163 72598 19165

11 social 728 582 3569 1329 1771 1181

12 services 306 5095 2008 861 3980 3852

13 import 4793 15837 100544 60712 154736 31583

14 tax 1235 1501 1951 1575 3639 1626

15 due �6238 �121 1867 1776 4187 1273

16 wage 8161 19227 49022 43188 157911 34614

17 depreciation 7409 13254 12637 7375 24379 8397

18 profit 10638 16503 18389 17871 38153 13672
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Table 2.2 Aggregated A-Table 2007 (2). Statistisches Bundesamt (2010). Published with the kind
permission of c� Statistisches Bundesamt 2010. All rights reserved

7 food 8 const. 9 trade 10 renting 11 social 12 services

1 agriculture 23243 0 378 681 358 1011

2 energy 3133 1724 7256 2689 3773 3093

3 chemistry 3581 23114 11111 1836 4103 1750

4 metal 748 9372 2180 351 605 652

5 machines 1139 9665 10952 1719 2366 4862

6 textiles 2426 5065 7302 7386 3469 2518

7 food 24209 7 6811 17 3928 968

8 construction 433 7344 3806 20795 3858 3845

9 trade 16031 12547 137055 10355 11695 10504

10 renting 19182 32295 108746 240705 30073 25129

11 social 924 756 6173 7920 19226 4271

12 services 1247 1695 6794 18794 4031 23720

13 import 22299 17104 52954 39375 13894 11947

14 tax 2247 1626 11771 14998 12079 11205

15 due 532 868 11593 18057 �4692 �832
16 wage 21928 53157 248909 209975 184973 149365

17 depreciation 5206 4762 46495 160112 34867 34687

18 profit 5905 31633 92091 281249 48113 34073

Table 2.3 Aggregated
A-Table 2007 (3).
Statistisches Bundesamt
(2010). Published with the
kind permission
of c� Statistisches
Bundesamt 2010. All rights
reserved

13 cons. 14 inv. 15 export

1 agriculture 9352 5520 5130

2 energy 35048 462 11482

3 chemistry 34404 �9279 152727

4 metal 2860 3705 99160

5 machines 47155 103179 400119

6 textiles 40610 660 63207

7 food 75667 3058 35010

8 construction 3594 163517 169

9 trade 349559 19660 111302

10 renting 326202 36022 59866

11 social 328289 0 0

12 services 243814 4603 1968

13 import 124603 69317 176160

14 tax 144774 5116 �150
15 due

16 wage

17 depreciation

18 profit



44 2 Linear ProductionModel

Adding up other taxes on production less subsidies on production (due, row 15),
wages (16), depreciation (17), and profits (18) results in the value added. The sum
of intermediate consumption at purchaser’s prices and value added is output.

If we look at one good (row i) and add up the 12 entries in columns 1 to 12,
we obtain the value of the amount of good i that is used as intermediate input
in the production units. Summing up the value of consumption (column 13) and
investment (14) results in the final domestic demand for good i. Adding further
exports (15) leads to final demand for good i.

The value of the amount of good i used as intermediate input and the final demand
for good i add up to the total use of good i which, by definition, equals output of
unit i.

2.3 Analyzing German Input–Output Tables 1991 and 2007

2.3.1 Handling Input–Output Tables

The following analysis is based on input–output tables for Germany 1991 and 2007.
Throughout we only analyze highly aggregated tables with 12 sectors/goods. While
there have been attempts to provide input–output tables in constant prices of a base
year, the procedure is rather problematic, as meaningless results are likely to occur.
For example if the ratio of input to output prices changes, producers react with their
input and output mix. Combining quantities that have been chosen according to a
specific price scheme with outdated price schemes can easily result in meaningless
figures, e.g., a positive value added in current prices turning negative in constant
prices. Therefore, we adjust input–output tables only for overall price changes
leaving the price ratios unaltered. To measure overall price changes, we use the
price index of final domestic use. Choosing 2007 as base year with price index set
to the value 100, we inflate the input–output table from 1991 by the factor 1:243 556.
Note that the choice of the base year does neither effect real growth rates nor sector
shares.

We start with reading the input–output table for 2007 into an R object. Using
the function read.table(), we have to specify the name of the object that will
contain the table and the file-name that is to be loaded. Additionally, we specify that
“;” separates fields (delimiter) in the file and that “,” is the character used in the file
for decimal points. We divide all input–output and employment data by 1000, which
leaves input–output data in billions and employment data in millions.

d1 <- read.table("io_2007.csv", sep=";", dec=",")/1000

A shortcut to this command is the implemented function read.csv2() that uses
the mentioned options by default:

d1 <- read.csv2("io_2007.csv")/1000
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In the same way, we read the input–output table for 1991 (d0), the employment data
for 2007 (e1) and for 1991 (e0).

d0.org <- read.csv2("io_1991.csv")/1000
e1 <- read.csv2("et_2007.csv")/1000
e0 <- read.csv2("et_1991.csv")/1000

To allow comparisons of the tables for 1991 and 2007, we inflate the input–
output table of 1991 by the overall price change that has taken place between 1991
and 2007 using the index of final domestic demand. Note that inflating the table
from 1991 towards the overall price level of 2007 does not alter the relative prices
of 1991. Hence, differences between the two tables (1991 and 2007) will be the
combined result of changes in quantities and of changes in relative prices.

pfile <- read.csv2("pliv.csv")
p <- pfile$pliv
dp <- p[pfile$year==2007]/p[pfile$year==1991];dp

## [1] 1.24

d0 <- d0.org*dp

The input tables (d0, d1) and the employment data (e0, e1) are stored in the working
directory as dataframes by default. To ease the handling of the objects, we use
matrices and vectors instead:

d0 <- as.matrix(d0)
d1 <- as.matrix(d1)
e0 <- as.vector(as.matrix(e0))
e1 <- as.vector(as.matrix(e1))

Using brackets, we can pick elements of the io-table, e.g., the value of chemical
products (good i D 3) used as input in agriculture (unit j D 1):

d1[3,1]

## [1] 2.82

The identities discussed above can be used to obtain (gross) output and value added:

# gross output
x1 <- colSums(d1[,1:12]);x1

## agriculture energy chemistry metal
## 56.4 123.8 355.6 275.4
## machines textiles food construction
## 782.1 181.2 154.4 212.7
## trade renting social services
## 772.4 1037.0 376.7 322.8

# value added
va1 <- colSums(d1[c(15:18),1:12]);va1
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## agriculture energy chemistry metal
## 20.0 48.9 81.9 70.2
## machines textiles food construction
## 224.6 58.0 33.6 90.4
## trade renting social services
## 399.1 669.4 263.3 217.3

In the same way, we calculate x0 and va0 with the 1991 table.

x0 <- colSums(d0[,1:12]);x0

## agriculture energy chemistry metal
## 52.9 100.9 226.7 156.8
## machines textiles food construction
## 489.2 192.5 149.1 217.5
## trade renting social services
## 588.7 639.7 245.2 257.3

va0 <- colSums(d0[c(15:18),1:12]);va0

## agriculture energy chemistry metal
## 24.8 49.5 81.8 61.3
## machines textiles food construction
## 197.7 73.7 37.0 106.0
## trade renting social services
## 327.9 374.5 174.4 182.0

2.3.2 Some Empirical Results

Sectoral shares in output and in value added are obtained as

xt0jPn
kD1 xt0k

and
vat0jPn

kD1 vat0k
: (2.23)

The sectoral shares x1s in output can be calculated dividing x1 element by element
by the sum of x1:

x1s <- x1/sum(x1)

To compare the sectoral shares in output in 1991 and 2007, we bind the vectors with
shares in 1991 and 2007 and display the shares using a barplot. As labels, we use
the sector names given in the input–output tables. See Fig. 2.1.

x0s <- x0/sum(x0)
tab01 <- rbind(x0s,x1s)
barplot1 <- barplot(tab01, main="", ylim=c(0,0.25),

ylab="Share of gross output (in %)",
col=c("grey60","grey90"),
beside=TRUE, xaxt="n")
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Fig. 2.1 Sectoral shares in gross output by sector for 1991 and 2007

text(apply(barplot1, 2, mean),0,
labels=rownames(d1)[1:12],srt=45,
adj=c(1.1,1.1),xpd=TRUE,cex=1.1)

legend(1, 0.24, c("1991", "2007"),
fill=c("grey60","grey90"),
bty="n", ncol=2, cex=1.1)

We find renting, trade, and machines to be the biggest sectors. Five sectors have
increased their share in overall output at the expense of the remaining seven sectors:
chemistry, metal, machines, renting, and social.

Next, we compare sectoral shares in 2007 in output and value added. Sectoral
value added can be obtained by summing up taxes on production less subsidies on
production (row 14), dues (other taxes) (15), wages (16), depreciation (17), and
profits (18). Of course, subtracting intermediate consumption, which is obtained by
summing up all kinds of inputs (rows 1 to 12), also results in value added. See
Fig. 2.2.

va1s <- va1/sum(va1)
tab02 <- rbind(x1s,va1s)
barplot2 <- barplot(tab02, main="", ylim=c(0,0.35),

ylab="Share of output/va (in %)",
col=c("grey60","grey90"),
beside=TRUE, xaxt="n")

text(apply(barplot2, 2, mean),0,
labels=rownames(d1)[1:12],srt=45,
adj=c(1.1,1.1),xpd=TRUE,cex=1.1)

legend(1, 0.34, c("output", "value added"),
fill=c("grey60","grey90"), bty="n",
ncol=2,cex=1.1)

We find renting to be the most important sector according to its share in output as
well as in value added. It is remarkable that about one-third of total value added
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Fig. 2.2 Sectoral shares in output and value added (va) for 2007

is earned in renting. Note that the treatment of rents as income included in value
added is a questionable convention and implies that value added must not be seen as
a measure of production. If income would be distributed more equally and people
would own their homes, there would be no contribution of rents to total value added.
The second biggest sector is trade. Note that shares in gross production and in value
added are very alike. This is also the effect of a convention in national accounting:
the value of purchased goods is not counted as input in the trade sector. We find
strong differences between shares in output and value added for chemistry and
machines. Differences in the shares for output and value added imply differences
in the ratio of value added to output (vaj=xj). We find the highest value added to
output ratios in renting, social, and services.

round(va1/x1,2)

## agriculture energy chemistry metal
## 0.35 0.39 0.23 0.25
## machines textiles food construction
## 0.29 0.32 0.22 0.43
## trade renting social services
## 0.52 0.65 0.70 0.67

Comparing the sectoral shares in value added in 1991 and 2007 reveals that only
two sectors have gained shares: renting and social. The remaining ten sectors have
lower shares in 2007 compared to 1991. This fact implies that growth in value added
has been strongest in renting and social.

va0s <- va0/sum(va0)
round(rbind(va0s,va1s),3)

## agriculture energy chemistry metal machines
## va0s 0.015 0.029 0.048 0.036 0.117
## va1s 0.009 0.022 0.038 0.032 0.103
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## textiles food construction trade renting social
## va0s 0.044 0.022 0.063 0.194 0.222 0.103
## va1s 0.027 0.015 0.042 0.183 0.308 0.121
## services
## va0s 0.108
## va1s 0.100

Next, we compare the overall growth rate (percent) in real value added, that is
using the price level of 2007 also for the table of year 1991:

round(va1/va0*100-100,2)

## agriculture energy chemistry metal
## -19.48 -1.33 0.10 14.52
## machines textiles food construction
## 13.62 -21.34 -9.26 -14.70
## trade renting social services
## 21.72 78.75 50.99 19.38

We find that five sectors show a decline in real value added. Strong increases are
observed for renting and social.

Generally, productivity is obtained by dividing output through input. To compare
sectoral labor productivity in 1991 and 2007, we have to decide about the concepts
of measuring “output” and “input”. Here, we use value added to measure output and
labor input is measured using the number of employees. Note that we use prices of
2007 in both tables, therefore, changes in productivity include no effects of overall
inflation but changes in relative prices. An increase in labor productivity can be
caused by sectoral relative price increases or by increases in quantity. See Fig. 2.3.

lp0 <- colSums(d0[15:18,1:12])/e0
lp1 <- colSums(d1[15:18,1:12])/e1
tab03 <- rbind(lp0,lp1);tab03
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Fig. 2.3 Value added productivity of labor 1991 and 2007 (in th. euro)
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## agriculture energy chemistry metal machines
## lp0 16.0 72.8 54.6 44.1 48.2
## lp1 23.8 150.3 85.6 64.8 80.9
## textiles food construction trade renting social
## lp0 37.0 36.3 37.1 33.3 98.4 36.1
## lp1 48.2 37.9 40.8 38.3 94.9 39.8
## services
## lp0 37.3
## lp1 40.7

barplot3 <- barplot(tab03, main="", ylim=c(0,170),
ylab="Labor productivity",
col=c("grey60","grey90"),
beside=TRUE, xaxt="n")

text(apply(barplot3, 2, mean),0,
labels=rownames(d1)[1:12],srt=45,
adj=c(1.1,1.1),xpd=TRUE,cex=1.1)

legend(10, 150, c("1991", "2007"),
fill=c("grey60","grey90"),
bty="n",ncol=2,cex=1.1)

We observe that in 2007 labor productivity is outstandingly high in the energy
sector. In this sector, we also observe the strongest increase in labor productivity.
Noteworthy increases also took place in chemistry, metal, and machines.

Labor productivity is strongly influenced by capital intensity. Capital intensity is
obtained by dividing a measure of capital input through a measure of labor input. We
would prefer quantities or surrogates of quantities (capital stock, that is quantities
valued with base year (constant) prices) for labor and capital use. Unfortunately,
the German statistical office does not provide capital stock data disaggregated for
twelve (or more) sectors. We obtain the following figures of the ratio of depreciation
to wages as an approximate measure of capital intensity.

round(d1[17,1:12]/d1[16,1:12],2)

## agriculture energy chemistry metal
## 0.91 0.69 0.26 0.17
## machines textiles food construction
## 0.15 0.24 0.24 0.09
## trade renting social services
## 0.19 0.76 0.19 0.23

Interestingly, the highest capital intensity is found in agriculture. High capital
intensities are also obtained for energy and renting.

Sectoral (column) input coefficients 	ij provide information on the production
process of sector j. As a summary measure for sectoral changes, we compare the
sum of absolute changes in coefficients between 1991 and 2007 given by

nX

iD1

ˇ
ˇ	2007;ij � 	1991;ij

ˇ
ˇ :
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To obtain these sector specific summary measures, we make use of the recycling rule
implemented in R. A short object is recycled to meet the length of the longer object.
To make yourself comfortable with this rule, you can try the following commands:

a <- 1:9
b <- 1:3
A <- matrix(a,3,3)
a+b

## [1] 2 4 6 5 7 9 8 10 12

A/b

## [,1] [,2] [,3]
## [1,] 1 4.0 7
## [2,] 1 2.5 4
## [3,] 1 2.0 3

t(A)/b

## [,1] [,2] [,3]
## [1,] 1.00 2.00 3
## [2,] 2.00 2.50 3
## [3,] 2.33 2.67 3

t(t(A)/b)

## [,1] [,2] [,3]
## [1,] 1 2.0 2.33
## [2,] 2 2.5 2.67
## [3,] 3 3.0 3.00

In our empirical example, we want to divide column j by the output of this
sector xj. We use A for the matrix of input in Euro and P for the matrix of input
coefficients 	ij.

# 1991
A0 <- d0[1:12,1:12]
x0 <- colSums(d0[,1:12])
P0 <- t(t(A0)/x0)
# 2007
A1 <- d1[1:12,1:12]
x1 <- colSums(d1[,1:12])
P1 <- t(t(A1)/x1)

Sectoral changes in the input structure can now easily be obtained:

round(colSums(abs(P1-P0)),3)

## agriculture energy chemistry metal
## 0.264 0.084 0.171 0.173
## machines textiles food construction
## 0.135 0.089 0.154 0.112
## trade renting social services
## 0.099 0.087 0.107 0.095
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We find that in sector agriculture, the input structure has changed dramatically and
more than in any other sector. In chemistry, metal, and food sectors, we also observe
a considerable change in the input structure. Little change is observed in energy,
textile, and renting.

Next, we want to analyze the total amount of induced production through
additional sectoral demand. Note that additional demand for product j causes
additional production in sector j. To increase its output sector j has to use inputs
according to its input structure. These inputs will be produced in all sectors whose
products are used as inputs in sector j. But these inputs will have to be produced
again by means of other inputs. We can imagine this process ad infinitum. Therefore,
the output x that must be produced to allow final demand y will exceed that amount
of final demand considerably. Mathematically, the relation between y and total
output x is obtained using equation

x D .I � ˘ /�1y: (2.24)

Note that by setting dyj D 1, we simply pick a single column j of the Leontief-
inverse .I�˘ /�1. If we add up the coefficients cij in column j, we obtain the amount
of production that is necessary to allow one unit final demand for good j. The vector
of the sums of columns therefore shows the production stimulus that results from
demand for the different kinds of goods. In R, we first calculate the Leontief-inverse
matrices for both periods and sum up the columns. Results are presented by means
of a barplot (see Fig. 2.4):

n <- 12
leo0 <- solve(diag(n)-P0)
leo1 <- solve(diag(n)-P1)
tab04 <- rbind(colSums(leo0),colSums(leo1))
barplot4 <- barplot(tab04-1.3, main="", ylim=c(0,1),
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Fig. 2.4 Induced production by one unit of final demand
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ylab="Induced production",
col=c("grey60","grey90"),beside=T,
las=2, axes=F, xaxt="n")

text(apply(barplot4, 2, mean),0,
labels=rownames(d1)[1:12],srt=45,
adj=c(1.1,1.1),xpd=TRUE,cex=1.1)

axis(2, at=seq(0,1,0.2), labels=seq(0,1,0.2)+1.3, las=2)
legend(3, 0.98, c("1991", "2007"),

fill=c("grey60","grey90"),
bty="n",ncol=2,cex=1.1)

We find that in the food sector, an additional demand for one Euro causes production
to increase by more than two Euro. We observe low values of induced production in
the social and the service sectors.

While the coefficients of the Leontief-inverse in one column show the total
amount of induced production in the input producing sectors, we can express these
induced production in labor. We use the average amount of labor per unit output
bi=xi D wi used in each of the n sectors to express induced additional input
production (output of sector i induced by final demand for good j) cij in sector i
in labor wi � cij. Using matrix notation, the employment effect is obtained using
equation

w0.I � ˘ /�1y: (2.25)

As we have measured the data in the input–output table in billions and the
employment data in millions, the results show the number of additional employees
per million additional final demand for good j. For 2007, we obtain the following
employment effects, often called sectoral employment multipliers:

w0 <- e0/x0*1000;w0

## agriculture energy chemistry metal
## 29.30 6.74 6.61 8.87
## machines textiles food construction
## 8.39 10.33 6.83 13.16
## trade renting social services
## 16.73 5.95 19.71 18.95

w1 <- e1/x1*1000;w1

## agriculture energy chemistry metal
## 14.86 2.62 2.69 3.94
## machines textiles food construction
## 3.55 6.63 5.73 10.42
## trade renting social services
## 13.51 6.80 17.56 16.55

H0 <- diag(w0)%*%leo0
H1 <- diag(w1)%*%leo1
m0 <- colSums(H0);m0 # or: t(w0)%*%leo0



54 2 Linear ProductionModel

## agriculture energy chemistry metal
## 37.7 13.5 13.1 16.7
## machines textiles food construction
## 15.7 18.4 21.9 20.1
## trade renting social services
## 23.8 11.0 23.7 23.4

m1 <- colSums(H1);m1 # or: t(w1)%*%leo1

## agriculture energy chemistry metal
## 23.30 7.69 7.53 9.46
## machines textiles food construction
## 8.90 13.30 16.06 15.96
## trade renting social services
## 19.47 10.43 21.00 20.46

Employment is stimulated most by additional final demand for goods of the
sectors agriculture, trade, social, and services. Very little employment effects are
observed for the machines sector, where the expensive stimuli (“Abwrackpraemie”,
governmental subsidy for buying a new car when wrecking your old car) in the last
banking induced crisis were focused on. See Fig. 2.5.

tab005 <- cbind(m0,m1);tab005

## m0 m1
## agriculture 37.7 23.30
## energy 13.5 7.69
## chemistry 13.1 7.53
## metal 16.7 9.46
## machines 15.7 8.90
## textiles 18.4 13.30
## food 21.9 16.06
## construction 20.1 15.96
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Fig. 2.5 Sectoral employment multipliers 1991 and 2007 (empl. per million Euro)
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## trade 23.8 19.47
## renting 11.0 10.43
## social 23.7 21.00
## services 23.4 20.46

barplot5 <- barplot(t(tab005), main="", ylim=c(0,40),
ylab="Sectoral employment multipliers",
col=c("grey60","grey90"),
beside=T, xaxt="n")

text(apply(barplot5, 2, mean),0,
labels=rownames(d1)[1:12],srt=45,
adj=c(1.1,1.1),xpd=TRUE,cex=1.1)

legend(10,40, c("1991", "2007"),
fill=c("grey60","grey90"),
bty="n",cex=1.1)

2.4 Recommended Readings

The theoretical model is mainly based on the works of

• Schwartz J (1961) Lectures on the mathematical method in analytical economics. Mathematics
and its applications. Gordon and Breach, New York

and

• Sraffa P (1963) Production of commodities by means of commodities. Prelude to a critique of
economic theory. Cambridge University Press, Cambridge.

A reference monograph on linear production models is

• Gale D (1989) The theory of linear economic models. University of Chicago Press, Chicago.

A recommendable modern textbook focusing on theoretical aspects of input–output
analysis is

• ten Raa T (2005) The economics of input-output analysis. Cambridge University Press,
Cambridge.

Many extensions of the input–output model as well as many practical problems are
discussed in

• Miller R, Blair P (2009) Input-output analysis: foundations and extensions. Cambridge
University Press, Cambridge.
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2.5 Exercises

The data files io_1991.csv, io_2007.csv, et_1991.csv, and et_2007
.csv contain highly aggregated input–output tables and employment data for
Germany 1991 and 2007. The file pliv.csv contains the price index of final
domestic demand (Consumption and Investment).

1. The data structure
a. Load the data into objects d0.org, d1, e0, e1, pliv.
b. Calculate the price increase between 1991 and 2007.
c. Convert your table d0.org (1991) into the table d0 inflated towards the price

level of 2007.
2. Some graphics

a. Make a barplot showing the gross production in 1991 and 2007 by sectors.
b. Make a barplot displaying the percentage changes in gross production by

sectors between 1991 and 2007.
c. Make a barplot comparing the sectoral shares in value added and gross

production in 2007. What do differences in shares imply?
d. Make a barplot comparing the value added productivity of labor in 1991 and

2007 by sectors.
3. Sectoral multipliers

a. Calculate the sectoral employment multipliers for 1991 and 2007.
b. Did multipliers overall increase or decrease since 1991?
c. Display the results graphically.

4. Growth in real wages and real profits
a. Calculate the ratio of profits to wages by sector in 1991 and 2007 and display

the results graphically.
b. Calculate the sectoral growth rates of wages and profits and display the results

graphically.
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3Production Functions

Abstract

Production functions postulate a functional relation between inputs and output. In
the economic literature three production functions seem to play a dominant role:
The Cobb–Douglas production function, the constant elasticity of substitution
function, and the transcendental logarithmic production function. In this chapter,
we provide a short discussion of their theoretical properties. Overlaying the
deterministic output with a random error, we show how to generate artificial
data according to the production functions and demonstrate how to estimate the
parameters of the different production functions.

3.1 Introduction

Production functions formulate algebraically a relationship between inputs xi .i D
1; : : : ; r/ and output y:

y D f .x1; : : : ; xr/: (3.1)

An interesting historical account of the production function in economics is
provided by Mishra (2007). Early concepts of the production function date back
towards von Thünen (1910) and Wicksteed (1894). Empirically, most firms produce
technically not fully efficient. That is they could either maintain their output
and reduce their inputs or could increase their output using the given amount of
inputs. Despite this fact, in this chapter we assume technical efficient production
throughout.

Furthermore, throughout this chapter (and the next) we assume that a firm pro-
duces only one homogeneous output and uses only one kind of homogeneous capital
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as input. Both, homogeneous output and homogeneous capital could be measured
in suitable quantities. Thereby, we circumvent all problems of aggregation. When
using empirical data (in contrast to generated data by means of a random number
generator) one has to be aware that one faces severe problems of valuation and
aggregation.

In this chapter, we discuss three production functions which are most often
used in empirical analysis. The Cobb–Douglas (CD) production function is the
most prominent production function in economics. Its main charm is the easy
mathematical handling which made the function the basic model of production
in standard micro- and macroeconomic textbooks. The literature on the Cobb–
Douglas function is tremendous but also highly controversial. Theoretically, it has
been shown that due to the possibility of reswitching, an aggregate production
function is meaningless.1 Robinson (1953) called the standard textbook exposition
“miseducation”. Furthermore, it is often argued that the Cobb–Douglas production
function is merely a bookkeeping identity and of no empirical relevance [cf. Shaikh,
1974].

The constant elasticity of substitution (CES) production function encompasses
the Cobb–Douglas function allowing the elasticity of substitution between different
inputs to deviate from 1. While theoretically superior, the CD is just a special
case of the CES, estimation of the CES production function is sometimes difficult
because of its nonlinearity. This can result in rather flat shapes of the likelihood and
occurrences of multiple optima. As this problem easily occurs even in the case of
simulations using the correct model, the empirical usefulness of the CES production
function is very limited.

The transcendental logarithmic production function (TL) is an approximation
to complex nonlinear production relations and easy to handle. Nowadays, the TL
production function can be seen as the standard production function in empirical
analysis due to its flexibility and linearity in parameters which strongly simplifies
estimation. Empirically, the estimated coefficients of the TL rather often imply
theoretically implausible properties of the production process and an explicit
interpretation of coefficients is often avoided.

In the following, we try to give a very concise presentation of the production
functions and their properties and focus on the estimation using the R environment.

1To obtain the relative price of labor and capital the amounts of labor and capital are taken as
given. But the aggregation of capital itself already rests on relative prices of capital. The famous
Cambridge controversy focused on the question whether capital intensity would monotonically
increase with a decreasing relative price of capital (no reswitching). During the debate it has been
clarified that reswitching cannot be ruled out: “We wish to make it clear for the record that the
nonreswitching theorem associated with us is definitely false. We are grateful to Dr. Pasinetti . . . ”
Levhari and Samuelson (1966).
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3.2 The Cobb–Douglas Function

The Cobb–Douglas production function (CD) dates back to von Thünen (1850),
Wicksell (1923), and Wicksell (1934) but is attributed in the literature to (and named
after) Cobb and Douglas (1928).

3.2.1 Properties of the Function

We denote the inputs with xi .i D 1; : : : ; r/ and the output with y

y D f .x1; x2; : : : ; xr/ D ˇ0

rY

iD1
xˇi

i

with ˇ0 > 0; 0 < ˇi;i¤0 < 1 and
Xr

iD1 ˇi D 1:

(3.2)

The marginal product is positive

@y

@xi
D ˇ0ˇix

ˇi�1
i

rY

jD1;j¤i

x
ˇj
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With factor prices wi .i D 1; : : : ; n/ and output price p, profit maximization results in

@y

@xi
D wi

p
: (3.4)

The ratio of the marginal productivity of two factors is referred to as the marginal
rate of technical substitution (MRTS)
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: (3.5)

Second order partial derivatives are
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and
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The Cobb–Douglas function is linearly homogeneous
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If real factor price equals marginal product, the income share equals the exponent
of the production factor
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D ˇix

�1
i y ) xiwi
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D ˇi: (3.9)

Euler’s theorem states that the total product will be exhausted if the factors are paid
according to their marginal product. For the CD the theorem holds, as factor rewards
exhaust the product:
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The elasticity of substitution defined as the relative change of inputs to relative
change of input prices is 1. Because of

.xiwi/=yp

.xjwj/=yp
D xi=xj

wj=wi
D ˇi

ˇj
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wi
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we find

� D
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wj=wi

D @.xi=xj/

@.wj=wi/
� wj=wi

xi=xj
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ˇj
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3.2.2 Estimating the CDwith R

Linearization through taking logs facilitates the estimation of the Cobb–Douglas
production function. We generate artificial data according to the following
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production function

y D f .x/eu D eˇ0xˇ11 xˇ22 eu with ˇ1 C ˇ2 D 1 (3.13a)

or use the log model

ln y D ˇ0 C ˇ1 ln x1 C ˇ2 ln x2 C u: (3.13b)

In R, the data can be generated according to the model as:

n <- 100
b0 <- 1
b1 <- 0.7
b2 <- 0.3
set.seed(123)
# lin-lin-model
x1 <- exp(runif(n))
x2 <- exp(runif(n))
u <- rnorm(n,sd=0.2)
y <- exp(b0)*x1^b1*x2^b2*exp(u)
# create logs
lx1 <- log(x1)
lx2 <- log(x2)
ly <- log(y)

We display the data using a 3D-scatterplot in Fig. 3.1.

library(scatterplot3d)
scatterplot3d(x1, x2, y, main="",

xlab=expression(x[1]),
ylab=expression(x[2]),
zlab="y",
color="darkgrey", pch=20, type="h")
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Fig. 3.1 Cobb–Douglas production function. (a) Original data. (b) Data in logs
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scatterplot3d(lx1, lx2, ly, main="",
xlab=expression(paste("log(", x[1], ")")),
ylab=expression(paste("log(", x[2], ")")),
zlab="log(y)",
color="darkgrey", pch=20, type="h")

For estimating the regression, we use the function lm().

reg1 <- lm(log(y)~log(x1)+log(x2))
coef(reg1)

## (Intercept) log(x1) log(x2)
## 0.9718 0.7195 0.2941

The command summary(reg1) would provide more details of the estimated
regression.

We next test a simple linear restriction based on the following test statistic

1

q
.R Ǒ � r/0

� O�2R.X0X/�1R0��1 .R Ǒ � r/ � F.q; n � k/: (3.14)

where X denotes the model matrix, R the matrix picking the relevant parts of the
parameter vector ˇ, and r contains the constants of the hypothesis. The hypothesis
we want to test is H0 W ˇ1 D 0:65; ˇ2 D 0:35. To test this hypothesis we need the
estimated variance–covariance matrix of the regression parameters and we have to
define r and R.

b <- matrix(coef(reg1))
v <- vcov(reg1)
R <- rbind(c(0,1,0),c(0,0,1))
r <- matrix(c(0.65,0.35))
q <- nrow(R)
n_k <- length(y)-length(coef(reg1))
Fs <- 1/q*t(R%*%b-r)%*%solve(R%*%v%*%t(R))%*%(R%*%b-r)
1-pf(Fs,q,n_k)

## [,1]
## [1,] 0.4276

We obtain a p-value above the 5 % level and would not reject the false hypothesis.

3.3 The Constant Elasticity of Substitution Function

The constant elasticity of substitution function (CES) was introduced by Arrow et al
(1961). In the Cobb–Douglas production function the elasticity of substitution has
value 1. For example if the price ratio of labor to capital increases by one percent,
firms will increase the ratio of capital to labor by one percent. The production
function formulated by Arrow et al. permitted the elasticity of substitution to lie
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between zero and infinity. Whereas the value of the elasticity can deviate from one,
the CES shares the property with the CD that the elasticity is fixed irrespective of
the quantity of output produced and of the quantity of inputs (capital and labor) used
in the production process.

3.3.1 Properties of the Function

While the elasticity of substitution is constrained to the value 1 for the Cobb–
Douglas production function, the constant elasticity of substitution (CES) produc-
tion function only restricts � to be the same for all pairs of inputs:

y D ˇ0

 
rX

iD1
ˇix

�

i
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where

ˇ0: efficiency parameter with ˇ0 > 0;

ˇi: distribution parameter with 0 < ˇi < 1 and


: substitution parameter with � 1 < 
 < 1:

(3.15)

The marginal product of factor xi is
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Profit maximization requires that marginal product equals real factor price
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The marginal rate of technical substitution is
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Second order derivatives are
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The CES production function
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is linearly homogeneous
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Because of being linearly homogeneous, Euler’s theorem
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The ratio of inputs xi and xj can be obtained from the marginal rate of technical
substitution
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Through differentiation, we obtain
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and the elasticity of substitution as
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Looking again at the marginal product
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we find (with the definition of � in Eq. (3.27))
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Note that the regression coefficient of the regression of logarithmic factor produc-
tivity on logarithmic real wages is the constant elasticity of substitution which in the
Cobb–Douglas is 1 by definition.
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Using again the marginal product for input xi, we obtain the factors share in
output

@y

@xi
D y1C
ˇ�


0 ˇix
�.1C
/
i D wi

p

wixi

py
D y
ˇ�


0 ˇix
�

i D

�
ˇi

ˇ


0

	� �wi

p

	��1 (3.30)

and using the marginal rate of technical substitution, we find the ratio of input shares
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3.3.2 Estimating the CESwith R

We consider the following parametrization of the constant elasticity of substitution
production function

y D ˇ1

�
ˇ2X

�ˇ4
1 C .1 � ˇ2/X�ˇ4

2

�� ˇ3
ˇ4 eu (3.32a)

Using the log model we obtain

ln y D lnˇ1 � ˇ3

ˇ4
ln
�
ˇ2X

�ˇ4
1 C .1 � ˇ2/X

�ˇ4
2

�
C u: (3.32b)

We generate data .n D 100/ according to the CES-production function with
parameter values ˇ1 D 2:7; ˇ2 D 0:8; ˇ3 D 1:2; ˇ4 D 1 with the following R
commands:

n <- 100
b1 <- 2.7
b2 <- 0.8
b3 <- 1.2
b4 <- 1
set.seed(123)
x1 <- exp(runif(n))
x2 <- exp(runif(n))
u <- rnorm(n,sd=0.2)
y <- b1 * ( b2*x1^(-b4) + (1-b2)*x2^(-b4) )^(-b3/b4) *

exp(u)
ly <- log(y)
lx1 <- log(x1)
lx2 <- log(x2)
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Fig. 3.2 CES production function. (a) Original data. (b) Data in logs

We display the data using a 3D-scatterplot in Fig. 3.2.

library(scatterplot3d)
scatterplot3d(x1, x2, y, main="",

xlab=expression(x[1]),
ylab=expression(x[2]),
zlab="y",
color="darkgrey", pch=20, type="h")

scatterplot3d(lx1, lx2, ly, main="",
xlab=expression(paste("log(", x[1], ")")),
ylab=expression(paste("log(", x[2], ")")),
zlab="log(y)",
color="darkgrey", pch=20, type="h")

Next we write a function fmin returning the sum of squared residuals (RSS)
for a given parameter vector ˇ that we want to minimize by choosing ˇ. To avoid
the occurrence of a ratio of parameters to be estimated (ˇ3=ˇ4), we estimate this
ratio using a single parameter ˇ3 from which the original parameter can easily be
obtained

RSS D
X

u2

D
X�

ln y �
h
lnˇ1 � ˇ3 ln

�
ˇ2X

�ˇ4
1 C .1 � ˇ2/X�ˇ4

2

�i�2
:

(3.33)

fmin <- function(b){
sum((ly-(log(b[1])-b[3]*log(b[2]*x1^(-b[4])

+(1-b[2])*x2^(-b[4]))))^2)
}

Using optim() and a rather robust default algorithm (“Nelder–Mead”) without
providing analytic derivatives, we obtain the following parameter estimates when
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providing the true parameters as starting values:

#b1 <- 2.7; b2 <- 0.8; b3 <- 1.2; b4 <- 1
bstart <- c(2.7,0.8,1.2,1)
optim(bstart, fmin)$par

## [1] 2.6243 0.8083 1.2873 0.9413

As an alternative to the function optim(), we use the function maxLik()
implemented in the maxLik package. As we now want to maximize instead of
minimizing, we have to revert the sign of our function and define fmax accordingly.
The default algorithm is the Newton–Raphson algorithm discussed in some detail
above.

library(maxLik)
fmax <- function(b){-sum((ly-(log(b[1])-b[3]*log(b[2]*x1^(-b[4])

+(1-b[2])*x2^(-b[4]))))^2)}
bstart <- c(2.7,0.8,1.2,1)
summary(maxLik(fmax, start=bstart))

## --------------------------------------------
## Maximum Likelihood estimation
## Newton--Raphson maximisation, 7 iterations
## Return code 2: successive function values within tolerance limit
## Log-Likelihood: -3.699
## 4 free parameters
## Estimates:
## Estimate Std. error t value Pr(> t)
## [1,] 2.624 0.585 4.49 0.0000072 ***
## [2,] 0.808 0.191 4.24 0.0000227 ***
## [3,] 1.289 7.020 0.18 0.85
## [4,] 0.940 5.057 0.19 0.85
## ---
## Signif. codes:
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## --------------------------------------------

Choosing some other starting values results in varying parameter estimates indicat-
ing a rather badly behaved function we want to minimize.

bstart <- c(0.5,0.5,0.5,0.5)
optim(bstart, fmin)$par

## [1] 2.5991 0.8061 2.7561 0.4415

bstart <- rep(1,4)
optim(bstart, fmin)$par

## [1] 2.6371 0.8108 1.0507 1.1495

While the estimated parameter values for ˇ1 and ˇ2 are almost identical with
different starting values, the estimates for ˇ3 and ˇ4 differ strongly. We draw the
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residual sum of squares we want to minimize as a function of ˇi holding the other
parameter values constant at their true values2:

nn <- 101
b1v <- seq(2.2,3.2,length=nn)
b2v <- seq(0.3,1.3,length=nn)
b3v <- seq(0.7,1.7,length=nn)
b4v <- seq(0.5,1.5,length=nn)
lb1v <- length(b1v)
be <- matrix(NA,lb1v,4)
for (i in 1:lb1v){
be[i,] <- c(fmin(c(b1v[i],0.8,1.2,1)),

fmin(c(2.7,b2v[i],1.2,1)),
fmin(c(2.7,0.8,b3v[i],1)),
fmin(c(2.7,0.8,1.2,b4v[i])))

}

The plot is obtained by the following code and can be seen in Fig. 3.3.

plot(b1v,be[,1],type="l",xlab=expression(beta[1]),
ylab="RSS",main="")

plot(b2v,be[,2],type="l",xlab=expression(beta[2]),
ylab="RSS",main="")
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Fig. 3.3 Residual sum of squares for different parameter values

2In this case the residual sum of squares equals the negative partial log-likelihood if assuming
normal error terms up to a scaling factor.
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plot(b3v,be[,3],type="l",xlab=expression(beta[3]),
ylab="RSS",main="")

plot(b4v,be[,4],type="l",xlab=expression(beta[4]),
ylab="RSS",main="")

The figure of the (negative) partial log-likelihood plots reveal no hint for estimating
problems. Note that partially varying the parameter value is not what happens in the
numerical optimization process where all parameters are varied simultaneously. We
now obtain the parameter values when minimizing the residual sum of squares by
varying the starting values for one parameter systematically.

nn <- 51
b1v <- seq(2.2,3.2,length=nn)
b2v <- seq(0.3,1.3,length=nn)
b3v <- seq(0.7,1.7,length=nn)
b4v <- seq(0.5,1.5,length=nn)
lb1v <- length(b1v)
be <- matrix(NA,lb1v,4)
for (i in 1:lb1v){
be[i,] <- c(optim(c(b1v[i],0.8,1.2,1), fmin)$par[1],

optim(c(2.7,b2v[i],1.2,1), fmin)$par[2],
optim(c(2.7,0.8,b3v[i],1), fmin)$par[3],
optim(c(2.7,0.8,1.2,b4v[i]), fmin)$par[4])

}

The plot is obtained by the following code and can be seen in Fig. 3.4.
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Fig. 3.4 Parameter estimates for different starting values



3.4 The Transcendental Logarithmic Production Function 71

plot(b1v,be[,1],type="l",xlab="Starting value",
ylab=expression(beta[1]),main="")

plot(b2v,be[,2],type="l",xlab="Starting value",
ylab=expression(beta[2]),main="")

plot(b3v,be[,3],type="l",xlab="Starting value",
ylab=expression(beta[3]),main="")

plot(b4v,be[,4],type="l",xlab="Starting value",
ylab=expression(beta[4]),main="")

Obviously, the numerical optimization procedure for obtaining the parameter
estimates of the CES production function is highly fragile. This may be one of the
reasons rather few empirical applications of the CES production function can be
found in the literature. Finally, we look at the correlation matrix of the parameter
estimates which is obtained using a numerical approximation in the optim()
routine.

bstart <- c(2.7,0.8,1.2,1)
V <- optim(bstart, fmin, hessian=T)$hessian
round(cov2cor(V),4)

## [,1] [,2] [,3] [,4]
## [1,] 1.0000 0.0765 0.9042 0.8998
## [2,] 0.0765 1.0000 0.3214 0.3214
## [3,] 0.9042 0.3214 1.0000 0.9997
## [4,] 0.8998 0.3214 0.9997 1.0000

We find that several pairs of parameters are highly correlated (some are almost
linear functions) and therefore cannot be identified sufficiently in the numerical
optimization process.

3.4 The Transcendental Logarithmic Production Function

So far, we have considered the Cobb–Douglas and the CES production function.
Both functions are restrictive because of the following assumptions:

• Homotheticity: factor shares of output are independent of total output
• Additivity (Separability): the elasticities of substitution are constant and equal

for any pair of inputs

Typical specifications of aggregate value added functions assume these
restrictions (homotheticity, additivity) to hold. Berndt and Christensen (1973) and
Christensen et al (1973) suggest a translog second order approximation of quantities
and price functions. In this approximate production function homotheticity and
additivity are not imposed as restrictions generally but can be imposed and tested.

Using duality, it can be shown that the production and the price function are
identical with respect to shares of inputs and partial elasticities of substitution.
In the literature, the translog function is regarded as superior compared to Cobb–
Douglas and CES production functions because of its flexibility. When estimating
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the translog function, one usually faces the problem of a large number of regression
coefficients and highly correlated regressors.

3.4.1 Properties of the Function

The function is given as
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with ˇij D ˇji. The derivative of the logarithm of the production with respect to
input i is
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Using the following relation
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we obtain the following condition
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For the marginal product of input i to be positive, this condition must hold. Only the
term in parenthesis must be verified to be positive because y > 0 and xi > 0.

Assuming that factor prices equal their marginal products, the term in brackets is
factor i’s share (Si) in output
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Therefore, the assumption of monotonicity can be tested empirically. The second
order derivatives are
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and
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(3.40)

The translog function is homogeneous of degree one if the following equalities
are fulfilled:
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Therefore, the restrictions are
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The function is separable if the marginal rate of technical substitution between
any two inputs is independent of the amount used of the other inputs. We consider
the case with three inputs x1; x2, and x3. The condition for weak separability is
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and
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Assuming that all inputs and S2 are positive, the condition simplifies towards

ˇ13S2 � ˇ23S1 D 0: (3.45)

Hence, the condition is met if ˇ13 D ˇ23 D 0. If considering the MRTS between x1
and x3 and between x2 and x3, we obtain the conditions

ˇ12 D ˇ13 D ˇ23 D 0: (3.46)
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Now using the definition of income shares, the condition is also met if ˇ13 ¤
0; ˇ23 ¤ 0 but
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and

ˇ2ˇ13 � ˇ1ˇ23 D 0

ˇ13ˇ21 � ˇ23ˇ11 D 0
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(3.48)

Manipulation of the conditions results in
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This condition is referred to as the nonlinear separability condition whereas ˇ13 D
ˇ23 D 0 is referred to as the linear separability condition. Note that if these
conditions are not met, the estimation of substitution parameters between inputs
ignoring further relevant inputs will result in misleading parameter estimates.

3.4.2 Estimating the TL with R

The transcendental logarithmic function with two inputs x1 and x2 is

ln y Dˇ0 C ˇ1 ln x1 C ˇ2 ln x2 C ˇ3.ln x1/
2

C ˇ4.ln x2/
2 C ˇ5 ln x1 ln x2:

(3.50)

To estimate the function, we use the data generated according to the CES-production
function.
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n <- 100
b0 <- log(2.7)
b1 <- 0.8
b2 <- 1.2
b3 <- 1
set.seed(123)
x1 <- exp(runif(n))
x2 <- exp(runif(n))
u <- rnorm(n,sd=0.2)
y <- exp(b0) *

( b1*x1^(-b4) + (1-b1)*x2^(-b3) )^(-b2/b3) *
exp(u)

ly <- log(y)

Because the TL is linear in parameters it can be estimated by ordinary least squares
using the function lm(). Before estimating, we calculate the transformed variables
necessary for the translog production function:

lx1 <- log(x1)
lx2 <- log(x2)
lx1_2 <- lx1^2
lx2_2 <- lx2^2
lx1lx2 <- lx1*lx2
reg1 <- lm(ly~lx1+lx2+lx1_2+lx2_2+lx1lx2)
summary(reg1)

##
## Call:
## lm(formula = ly ~ lx1 + lx2 + lx1_2 + lx2_2 + lx1lx2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3893 -0.1376 -0.0332 0.1149 0.6702
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.84458 0.14555 5.80 0.000000088
## lx1 1.11269 0.36428 3.05 0.0029
## lx2 0.62521 0.36553 1.71 0.0905
## lx1_2 -0.12382 0.29025 -0.43 0.6706
## lx2_2 -0.36232 0.29743 -1.22 0.2262
## lx1lx2 -0.00308 0.28609 -0.01 0.9914
##
## (Intercept) ***
## lx1 **
## lx2 .
## lx1_2
## lx2_2
## lx1lx2
## ---
## Signif. codes:
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
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## Residual standard error: 0.197 on 94 degrees of freedom
## Multiple R-squared: 0.684, Adjusted R-squared: 0.667
## F-statistic: 40.7 on 5 and 94 DF, p-value: <2e-16

We know that the data have not been generated according to the Cobb–Douglas
production function. Nevertheless, we test this hypothesis. In the Cobb–Douglas
case the parameter restriction ˇ3 D ˇ4 D ˇ5 D 0 holds. In this case, a simple F-test
can be used to test whether a restricted model has a significantly higher sum of
squared residuals. Denoting the vector of estimated residuals from the unrestricted
model by Ou and from the restricted model by Ou�, the test statistic is

Fk�k�;n�k D . Ou0� Ou� � Ou0 Ou/=.k � k�/
. Ou0 Ou/=.n � k/

: (3.51)

k � k� is the number of restrictions (here 3) and k is the number of regression
parameters in the unrestricted regression (here 6). In R, we use the following
commands

reg2 <- lm(ly~lx1+lx2)
u <- matrix(reg1$resid)
us <- matrix(reg2$resid)
k <- length(coef(reg1))
ks <- length(coef(reg2))
F.stat <- as.vector(((t(us)%*%us-t(u)%*%u)/(k-ks))/

(t(u)%*%u/(n-k)))
F.stat

## [1] 0.5225

pvalue <- 1-pf(F.stat,k-ks,n-k)
pvalue

## [1] 0.6679

The result indicates that one would obtain a difference in sums of squares at least as
large as we have obtained with our data with a probability of about 67 % if the data
had been generated with the Cobb–Douglas model. A much nicer way to obtain the
test result is using the function anova():

anova(reg2,reg1)

## Analysis of Variance Table
##
## Model 1: ly ~ lx1 + lx2
## Model 2: ly ~ lx1 + lx2 + lx1_2 + lx2_2 + lx1lx2
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 97 3.72
## 2 94 3.66 3 0.061 0.52 0.67
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The translog function with restriction ˇ3 D ˇ4 D �0:5ˇ5 has been shown by
Kmenta to be a reasonable approximation to the CES-production function. This can
be tested in R using the methodology of testing linear restrictions.

b <- matrix(coef(reg1))
v <- vcov(reg1)
R <- rbind(c(0,0,0,1,-1,0),c(0,0,0,0,1,0.5))
r <- matrix(c(0,0))
q <- nrow(R)
n_k <- length(y)-length(coef(reg1))
Fs <- as.vector(1/q*t(R%*%b-r)%*%

solve(R%*%v%*%t(R))%*%(R%*%b-r))
Fs

## [1] 0.5879

1-pf(Fs,q,n_k)

## [1] 0.5575

The number of parameters increases fast with an increasing number of inputs.
Including the intercept, the number of parameters with k inputs is

k.k C 3/

2
C 1: (3.52)

Transforming the inputs into regressor variables is tedious with k > 2. In this case,
one might want to use the function translogEst() available in the package
micEcon. The function sets up the model matrix automatically when given the k
input variables. Note that the squared regressors are multiplied by factor 0.5. The
following R-code results in identical estimated parameters (using again the artificial
CES-data):

library(micEcon)
dat <- data.frame(y,x1,x2)
TLE <- translogEst(yName="y",xNames=c("x1","x2"),

data=dat)
LM <- lm(ly~lx1+lx2+I(0.5*lx1_2)+lx1lx2+I(0.5*lx2_2))
e <- data.frame(TLE=coef(TLE),LM=coef(LM))
e

## TLE LM
## a_0 0.844575 0.844575
## a_1 1.112692 1.112692
## a_2 0.625206 0.625206
## b_1_1 -0.247641 -0.247641
## b_1_2 -0.003078 -0.003078
## b_2_2 -0.724631 -0.724631
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3.5 Recommended Readings

The seminal papers for the discussed production functions are for the Cobb–Douglas
production function

• Cobb CW, Douglas PH (1928) A theory of production. Am Econ Rev 18:139–165,

for the constant elasticity of substitution function

• Arrow KJ, Chenery HB, Minhas BS, Solow RM (1961) Capital–labor substitution and
economic efficiency. Rev Econ Stat 43(3):225–250,

and for the translog production function

• Christensen LR, Jorgensen DW, Lau JL (1971) Conjugate duality and the transcendental
logarithmic production function. Econometrica 39:255–256

and

• Christensen LR, Jorgensen DW, L LJ (1973) Transcendental logarithmic production frontiers.
Rev Econ Stat 55(1):28–45.

The standard textbook on theoretical production analysis is

• Chambers R (1988) Applied production analysis. A dual approach. Press Syndicate of the
University of Cambridge, Cambridge.

A concise discussion of the most important utility and production functions and
their characteristics is provided by

• Chung JW (1994) Utility and production functions. Blackwell, Oxford.

A very intuitive presentation of regression analysis with R is provided by

• Fox J, Weisberg S (2011) An R companion to applied regression. Sage Publications, Thousand
Oaks.

Nonlinear regression models are discussed by

• Ritz C, Streibig JC (2008) Nonlinear regression with R. Springer, New York.
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3.6 Exercises

In this exercise, we will use a single cross-section (1997) of the data set “riceProd-
Phil” available in the package frontier. The variables we use are:

• PROD output (tonnes of freshly threshed rice)
• AREA area planted (hectares)
• LABOR labor used (man-days of family and hired labor)

1. The data structure
a. Load the data from year 1997 into object d using the following command:

install.packages("frontier")
data("riceProdPhil", package = "frontier")
d <- subset(riceProdPhil,YEARDUM==8,

select=c(PROD,LABOR,AREA))

b. Try to get an overview of the data through
i. using summary()

ii. studying the distributions of the three variables LABOR .x1/, AREA .x2/,
PROD .y/ (hint: use hist() or density()).

iii. studying the distributions of the three variables in logarithms.
c. Draw bivariate plots of .x1; y/ and .x2; y/ using

i. original and
ii. logarithmic values.

d. Calculate the variance–covariance matrix and the correlation matrix of
x1; x2; y in
i. original and

ii. logarithmic values.
2. Consider a simple two-factor Cobb–Douglas production function

y D eˇ0xˇ11 xˇ22 eu:

a. Estimate the regression function using lm() and discuss the detailed results
contained in the summary of the regression.

b. Plot the distribution of the estimated residuals.
c. Estimate the production function under the restriction ˇ1Cˇ2 D 1 and discuss

the results.
d. Display the residual distribution and the bivariate plot of regressors graphi-

cally.
e. Re-fit the restricted regression after dropping the outlier. Are there any eye-

catching differences in results?
3. Consider the constant elasticity of substitution production function

y D ˇ0

�
ˇ1x

�ˇ3
1 C .1 � ˇ1/x�ˇ3

2

�� ˇ2
ˇ3 eu:
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a. Obtain the regression function after taking the logarithm.
b. Try to obtain the ML-estimates of the parameters using the function
optim(). Hints: (1) try several different starting values. (2) As constants
do not change during the numerical optimization, it is sufficient to minimizeP
.y � f .x//2 for maximizing the log-likelihood. (3) To prevent ratios of

parameters to be estimated, use �b2 instead of �b2=b3 in your log-likelihood.
c. Compare the results with the ones you obtain when using maxLik() from

the maxLik-package.
d. Plot the partial log-Likelihood for each parameter keeping the other parameter

values constant at their ML-estimates.
e. How do you value your chances when trying to estimate a CES function with

empirical data?
4. The translog production function.

a. Estimate the translog production function with two inputs .x1; x2/ using lm./.
b. Test whether the data could have been generated using a simple Cobb–

Douglas production function.
c. Test whether the Kmenta-approximation to the CES production function

holds.
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4Production Functions with Panel Data

Abstract

In this chapter, we discuss the estimation of production functions using panel
data. Panel data sets include data for producing units which have been observed
for several periods. Information about differences of production relations
between units and of differences between time periods allows to drop some
restrictive assumptions on parameter homogeneity which have to be employed
in the cases of cross sectional or time series data. We discuss the pooled, the
between, the within, and the random effects estimator for static models and
hint for some problems when instrumenting in dynamic panel data models. The
generation of data according to the different models and their estimation are
demonstrated.

4.1 Introduction

Panel data provide information about changes of inputs and output in time on
the individual firm level. This additional information allows to take into account
firm specific effects. Throughout this chapter, like we did in the previous chapter,
we assume that firms operate technically efficient and that observed deviations
from the functional production relation solely reflect pure random variations in
output. Throughout this chapter, we restrict the discussion towards static models
of production. In recent years, it has become rather popular to include the output of
the previous period as an additional regressor in regression functions. While lagged
output is almost always found to be “statistically significant”, the economic meaning
of lagged output is not clear.1

1An overview of dynamic panel data estimators provides Behr (2003).
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4.2 Introduction to Panel Data

We use two indices i and t for each observation. i .i D 1; : : : ; n/ refers to a firm
whereof we observe n. The index t refers to the time period .t D 1; : : : ;Ti/, most
often years. To ease the exposition, we assume a balanced panel data set, i.e., Ti D T
for all i.

4.2.1 Unrestricted and RestrictedModels

We assume that unit i .i D 1; : : : ; n/ uses the amount xit of labor as input and
produces output yit in period t. We further assume that we have observed each firm
in T different production periods .t D 1; : : : ;T/ and therefore have information
on T different input and output quantities for this unit. To make the exposition as
simple as possible, we assume a linear relationship between input and output of the
following form

yit D ˇ0i C x0
itˇ1i C vit: (4.1)

In this notation, ˇ0i denotes the intercept for firm i, ˇ1i the slope parameter of firm
i’s production function, and vit is by assumption a random error term, capturing
nonsystematic deviations from the linear production function with expectation
E.vit D 0/. Using ordinary least squares (OLS), we obtain estimates of the
regression parameters Ǒ

0i and Ǒ
1i.

Assuming n D 3 and T D 3 for the moment, i.e., i D 1; 2; 3 and t D 1; 2; 3, we
obtain three regression equations based on time series of length T D 3

yit D ˇ0i C x0
itˇ1i C vit; (4.2)

with three different intercepts ˇ0i and three different slope parameters ˇ1i: Note that
we assume the regression parameters ˇ0i and ˇ1i to be the same in all time periods t
when estimating the unit specific regressions based on time series data.

We can also look at the cross-sectional regression equations. For each period t,
we obtain one cross-sectional regression

yit D ˇ0t C x0
itˇ1t C vit: (4.3)

If we use cross-sectional data in a single period t, we assume the parameters ˇ0t and
ˇ1t to be the same for all different units i.

Combining the data for all T periods and all n units, we obtain a data set with
n � T observations. Note that the general model

yit D ˇ0it C x0
itˇ1it C vit (4.4)
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cannot be estimated, as there would be n � T intercepts and n � T slope parameters
to be estimated with only n � T observations available. Therefore, some restrictions
have to be imposed on the model.

4.2.1.1 Introducing Error Components
So far, we have only used vit to denote the error term of the regression equation.
In the panel data literature it is common to use a notation allowing to talk about
possible components of the error term vit. The notation vit D ˛i C�t Cuit introduces
a unit specific term ˛i and a period specific term �t: The uit is assumed to be unit and
period specific. Using ˇ0 for an overall intercept and assuming unit specific slope
parameters for the moment, the model can be written as

yit D ˇ0 C x0
itˇ1i C ˛i C �t C uit: (4.5)

Based on this equation, one can make different assumptions on the error terms. For
example, assuming �t D 0 for all t D 1; : : : ;T and including ˛i leads to a model
with unit specific intercepts

yit D .ˇ0 C ˛i/C x0
itˇ1i C uit: (4.6)

Assuming ˛i D 0 for all i D 1; : : : ; n and regarding �t leads to a model with time
specific intercepts

yit D .ˇ0 C �t/C x0
itˇ1i C uit: (4.7)

If ˛i and �t are included, the intercepts will be unit and period specific

yit D .ˇ0 C ˛i C �t/C x0
itˇ1i C uit: (4.8)

4.2.2 Pooled, Within, Between

The panel data set provides information on n firms observed in T periods. This
allows to estimate different models. We could ignore that fact that firms and periods
may be specific and pool all the data. This results in the pooled model. We could
regard the firms as specific and assume that each firm has an individual intercept but
that all firms have identical slope parameters. This is what is assumed in the within
model. We could also use the T observations for each firm to calculate mean values
of inputs and output for each firm across time and use the n observations (averages)
to estimate a production function. This is called the between model.

4.2.2.1 Pooled
The most restrictive model for panel data is the pooled model that restricts the
intercept and the slope parameter to be identical for all units i and all periods t

yit D ˇ0 C x0
itˇ1 C vit: (4.9)



86 4 Production Functions with Panel Data

This model can be estimated by OLS. Note that if there had been error components

vit D ˛i C �t C uit (4.10)

the residuals for a single unit i would be correlated because the same unit specific
component ˛i is contained in each of the T observations for firm i. For a single time
period t, the residuals would be correlated because of the common error component
�t contained in each of the n observations for this period.

4.2.2.2 Within
The within estimator only uses the variation within units and eliminates the
differences in levels between units. The within estimation is also called the fixed
effects estimator. In this case the slope parameter is assumed to be identical for all
units and all periods, but the intercept is allowed to vary across the n units

yit D ˇ0i C x0
itˇ1 C uit: (4.11)

Using the notation for the error components model, here vit D ˛i Cuit and assuming
�t D 0, we can express the unit specific intercept ˇ0i as the sum of the overall
intercept ˇ0 and the fixed unit specific error component ˛i

yit D .ˇ0 C ˛i/C x0
itˇ1 C uit: (4.12)

Note that with n units we can either include an overall intercept and n � 1 fixed
components ˛i or n fixed components omitting an overall intercept. Both model
matrices will result in n different intercepts for the n units. For estimators to have
nice properties, we most often want to include an overall intercept.

The model allows to capture for the n units effects which are constant across
time, but vary over units. In the context of production functions, one could, e.g.,
think about different qualities of soil that lead to constant differences in logarithmic
output between units at all levels of production. Note that the slope parameter can
be obtained either through the inclusion of dummy variables (variables taking only
the values 0 or 1) for units or equivalently through demeaning the data before
estimation. When demeaning the data, we subtract for each individual firm i its
specific mean across time from the observations.

4.2.2.3 Between
The between estimator only uses the variation across units and eliminates the
variation within units across time. The average level for units is captured by the
unit specific means across time

Nyi D ˇ0 C Nx0
tˇ1 C ui: (4.13)
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4.2.3 Random Effects

We can generate data according to a specific model using random number gen-
erators. With random number generators, we can, e.g., generate n realizations of
a random variate following a previously specified distribution (e.g., the normal
distribution). Often economists regard empirical data as if they have been generated
using random number generators.

4.2.3.1 Random Error Components
We have already introduced the notation for unit and time components

vit D ˛i C �t C uit: (4.14)

In fixed effects models, the unit effects ˛i and time effects �t are regarded as fixed
for units/periods carrying information specific to units/periods. In random effects
models, these effects are regarded as the result of random processes (generation
of random numbers by the use of a random number generator) with the following
properties:

E .˛i/ D E .�t/ D E .uit/ D 0

E .˛i�t/ D E .˛iuit/ D E .�tuit/ D 0

E
�
˛i˛j


 D


�2˛ ; if i D j
0; if i ¤ j

E .�t�s/ D


�2�; if t D s
0; if t ¤ s

E
�
uitujs


 D


�2u ; if i D j; t D s
0; otherwise

E
�
˛ix

0
it


 D E
�
�tx

0
it


 D E
�
uitx

0
it


 D 00

(4.15)

Based on these assumptions, the total variance of the composed error term vit is
the sum of the variances of unit effects ˛i, time effects �t and idiosyncratic error uit

E
�
v2it

 D E

�
Œ˛i C �t C uit�

2
�

D E
�
˛2i C �2t C u2it C 2˛i�t C 2˛iuit C 2�tuit




D E
�
˛2i C �2t C u2it


 D �2˛ C �2� C �2u :

(4.16)

In the following, we assume �t D 0 and consider only unit specific error terms ˛i

v0
i D .vi1 : : : viT/ ; vit D ˛i C uit: (4.17)
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To demonstrate the resulting dependencies in the covariance matrix of the error
vector v0

i , we look at the most simple n D 2; T D 2 case. With

v D

2

6
6
4

˛1 C u11
˛1 C u12
˛2 C u21
˛2 C u22

3

7
7
5

and

Cov.v/ D E Œv � E.v/�2 D E Œv�2 D E
�
vv0� (4.18)

we get

Cov.v/ D E

2

6
6
6
66
6
4

0

B
B
B
BB
B
@

˛1 C u11

˛1 C u12

˛2 C u21

˛2 C u22

1

C
C
C
CC
C
A

�
˛1 C u11 ˛1 C u12 ˛2 C u21 ˛2 C u22

�

3

7
7
7
77
7
5

D E

2

6
6
6
6
6
6
4

.˛1 C u11/
2 .˛1 C u11/ .˛1 C u12/ .˛1 C u11/ .˛2 C u21/ .˛1 C u11/ .˛2 C u22/

.˛1 C u12/ .˛1 C u11/ .˛1 C u12/
2 .˛1 C u12/ .˛2 C u21/ .˛1 C u21/ .˛2 C u22/

.˛2 C u21/ .˛1 C u11/ .˛2 C u21/ .˛1 C u12/ .˛2 C u21/
2 .˛2 C u21/ .˛2 C u22/

.˛2 C u22/ .˛1 C u11/ .˛2 C u22/ .˛1 C u12/ .˛2 C u22/ .˛2 C u21/ .˛2 C u22/
2

3

7
7
7
7
7
7
5

(4.19)

Using the assumed property E.˛; u/ D 0, we find

Cov.v/ D E

2

6
6
4

˛1˛1 C u11u11 ˛1˛1 C u11u12 ˛1˛2 C u11u21 ˛1˛2 C u11u22
˛1˛1 C u12u11 ˛1˛1 C u12u12 ˛1˛2 C u12u21 ˛1˛2 C u12u22
˛2˛1 C u21u11 ˛2˛1 C u21u12 ˛2˛2 C u21u21 ˛2˛2 C u21u22
˛2˛1 C u22u11 ˛2˛1 C u22u12 ˛2˛2 C u22u21 ˛2˛2 C u22u22

3

7
7
5 (4.20)

Given the assumptions (see Eq. 4.15)

E.uis; ujt/ D


�2u ;

0;

if i D j and s D t
else

E.˛i; ˛j/ D


�2˛ ;

0;

if i D j
else

we obtain

Cov.v/ D E

2

6
6
4

�2˛ C �2u �2˛ 0 0

�2˛ �2˛ C �2u 0 0

0 0 �2˛ C �2u �2˛
0 0 �2˛ �2˛ C �2u

3

7
7
5 : (4.21)
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Picking one specific unit i in the simple n D 2; T D 2 case, we find

Cov.vi/ D
�
�2˛ C �2u �2˛
�2˛ �2˛ C �2u

�
(4.22)

with its inverse

ŒCov.vi/�
�1 D

�
�2˛ C �2u �2˛
�2˛ �2˛ C �2u

��1

D
2

4
1
�2u

� �2˛
�2u .�2u CT�2˛/

� �2˛
�2u .�2u CT�2˛/

� �2˛
�2u.�2u CT�2˛/

1
�2u

� �2˛
�2u .�2u CT�2˛/

3

5

(4.23)

This inverted covariance matrix can also be written as

V�1
i D 1

�2u

��
IT� 1

T
ee0
	

C 1
T

ee0
�

D 1

�2u

�
Q C  

1

T
ee0
�

(4.24)

where

 D �2u
�2u C T�2˛

(4.25)

making use of the idempotent matrix

Q D IT � 1

T
ee0 (4.26)

with e being a vector with ones and dimension T �1:Q has the following properties

Q D Q0 D Q�1 D QQ (4.27)

and premultiplying a vector by Q results in a demeaned vector.
Given the following equation

V�1
i D ŒCov.vi/�

�1 D 1

�2u

�
Q C  

1

T
ee0
	

D 1

�2u

�

IT � 1

T
ee0
�

C  
1

T
ee0
	

D 1

�2u

�
IT �

�
1
T

1
T

1
T

1
T

�
C
�
1
T 

1
T 

1
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1
T 

�	

D 1

�2u

0

@IT �
2

4
�2u CT�2˛

T.�2u CT�2˛/
�2u CT�2˛
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�2u CT�2˛

T.�2u CT�2˛/
�2u CT�2˛

T.�2u CT�2˛/

3

5C
2

4
1
T

�2u
�2u CT�2˛

1
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�2u
�2u CT�2˛

1
T

�2u
�2u CT�2˛

1
T

�2u
�2u CT�2˛
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1

A

D 1

�2u

8
<

:
IT�

2

4
�2˛

�2u CT�2˛

�2˛
�2u CT�2˛

�2˛
�2u CT�2˛

�2˛
�2u CT�2˛

3

5

9
=

;
D 1

�2u

(

IT� �2˛�
�2u C T�2˛


ee0
)

(4.28)
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we have

Cov.vi/ D E
�
viv0

i


 D �2u IT C �2˛ee0 D Vi (4.29)

and for the inverse

V�1
i D 1

�2u

�
IT� �2˛

�2u C T�2˛
ee0
�

D 1

�2u

�
Q �  1

T
ee0
�
: (4.30)

Because E.vitvis/ D �2˛ , the error terms vit are correlated within units. Therefore
OLS estimation is inefficient and efficiency can be improved by taking the known
structure of the covariance matrix into account.

4.2.3.2 The GLS Estimator for the Random Effects Model
In general notation, the OLS estimator is

ǑOLS D �
X0X


�1
X0y (4.31)

and the generalized least squares estimator is

ǑGLS D �
X0V�1X


�1
X0V�1y: (4.32)

In the case of unit specific random effects, the .n � T/ � .n � T/ inverse covariance
matrix V is block-diagonal with identical blocks Vi at its diagonal (see above).

It is interesting that the random effects estimator can be obtained as a weighted
linear combination of the within ˇW and between estimators ˇB:

ǑGLS D � ǑB C .IK��/ ǑW: (4.33)

Here, the parameter vector ˇGLS does not include the overall intercept, which can
be obtained as

ǑGLS
0 D Ny � ǑGLS0 Nx: (4.34)

The weighting matrix� is

� D  T

"
nX

iD1
X0

iQXi C  T
nX

iD1
.Nxi � Nx/ .Nxi � Nx/0

#�1

�
"

nX

iD1
X0

i Qyi C  T
nX

iD1
.Nxi � Nx/ .Nyi � Ny/

#

:

(4.35)
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Note that  and therefore Vi is not known and has to be estimated to make the
GLS-estimator feasible. The variance components O�2u and O�2˛ can be estimated using
the within and between estimators:

O�2u D

nP

iD1

h
.yit � Nyi/� ǑW .xi � Nxi/

i2

n .T � 1/� K
(4.36a)

O�2˛ D

nP

iD1
�Nyi � Q� � ˇB0 Nxi

�2

n � .K C 1/
� 1

T
O�2u : (4.36b)

Based on the estimators of the variance components, an estimate O of the
unknown parameter  can be obtained:

O D O�2u
O�2u C T O�2˛

: (4.37)

An easy way to find the random effects estimator empirically is applying OLS to
transformed variables Myit and Mxit making use of O with

Myit D yit � �
1 �  1=2


 Nyi (4.38a)

Mxit D xit � �
1 �  1=2


 Nxi: (4.38b)

4.2.3.3 TheMaximum Likelihood Estimator
The GLS estimation is a two-step procedure. In the first step, within and between
estimators are obtained ignoring the covariance structure. Based on these estimates
the covariance matrix is estimated and used in the second step to estimate the
feasible GLS estimator. One can argue that this procedure is not efficient, as the
estimates in the first round ignore the dependence structure in the residuals.

One possibility is to iterate the procedure. The basic idea is that in the second
round the estimation of residuals which are used to estimate the variance would be
improved, resulting in an improved estimation of the parameter vector ˇ and so on.
A method that basically does this iteration is the maximum likelihood estimation. It
is common to assume that the error terms are distributed normally.

The basic idea of the maximum likelihood estimation is to find the parameters
which would give the observed values the highest probability to realize given the
model assumptions.

In the univariate case the density function is

'.X/ D 1

�
p
2	

� e� 1
2 � .X��/2

�2 (4.39)
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Assuming independence between the different realizations, the ex ante probability
of the realized values is

W.x1 \ x2 \ : : : \ xn/ D '.x1/ � '.x2/ � : : : � '.xn/

D L.�; � jx1; : : : ; xn/

D
�

1

�X

p
2	

	n

� e� 1
2 �

nP

iD1
.xi��/

2

�2 :

(4.40)

Since taking the logarithm is a strict monotone transformation, the likelihood and
log-likelihood have their maxima at identical points. Usually, the log-likelihood
function is easier to work with

ln L.�; � jx1; : : : ; xn/ D �n �
�

ln � C ln
p
2	
�

� 1

2�2
�

nX

iD1
.xi � �/2: (4.41)

In the multivariate case � is a vector and instead of the variance parameter (scalar)
we have to consider the covariance matrix ˙: The product of densities in the
multivariate case is

W.x1 \ x2 \ : : : \ xn/ D .2	/�n=2j˙ j�1=2 e.�1=2/.x��/0˙ �1.x��/ : (4.42)

We now return to our random effects regression model using ˇ0 for the overall
intercept and ˇ for the vector of slope coefficients. Despite the index i at the variance
matrix in the summation across firms, in this model the variance matrix is identical
for all firms i. In the multivariate case the likelihood for the vector of residuals is

L.ˇ;˙ jx/ D .2	/�nT=2jVj�n=2 e
� 1
2

nP

iD1

.yi�eˇ0�Xiˇ/
0V�1

i .yi�eˇ0��Xiˇ/

(4.43)

and the log-likelihood is

ln L D � nT

2
ln 2	 � n

2
ln jVij

� 1

2

nX

iD1
.yi � eˇ0 � Xiˇ/

0 V�1
i .yi � eˇ0 � Xiˇ/

(4.44)

with covariance matrix

Vi D �2u IT C �2˛ee0: (4.45)
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Inserting the inverse of the covariance matrix for units

V�1
i D 1

�2u

��
IT � 1

T
ee0
	

C  
1

T
ee0
�

D 1

�2u

�
Q C �2u

�2u C T�2˛

1

T
ee0
�

(4.46)

and using the determinant of the covariance matrix

jVij D �2.T�1/
u

�
�2u C T�2˛



(4.47)

results in the following log-likelihood
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� 1
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�2u C T�2˛

nX

iD1
.yi � eˇ0 � Xiˇ/

0 ee0 .yi � eˇ0 � Xiˇ/ :

(4.48)

Because of

1

T
.yi � eˇ0 � Xiˇ/

0 e D Nyi � ˇ0 � ˇ0 Nxi (4.49)

and

1

T
e0 .yi � eˇ0 � Xiˇ/ D Nyi � �� ˇ0 Nxi (4.50)

we finally obtain

ln L D � nT
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ln 2	 � n .T � 1/ ln
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�2u
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�2u C T�2˛




� 1

2�2u
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iD1
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� T

�2u C T�2˛

nX

iD1

�Nyi � ˇ0 � ˇ0 Nxi

2
:

(4.51)
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The value of the log-likelihood will be maximized by means of the parameter
vector

ı0 D �
ˇ0; ˇ

0; �2u ; �2˛


: (4.52)

For the numerical optimization, we can make use of the analytic derivatives of the
log-likelihood

@ ln L

@�
D T

�2u C T�2˛

nX

iD1

�Nyi � ˇ0 � ˇ0 Nxi

2 D 0 (4.53a)
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0 Q .yi � eˇ0 � Xiˇ/ (4.53c)
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2

nX

iD1

�Nyi � ˇ0 � ˇ0 Nxi

2 D 0:

(4.53d)

4.2.4 Fixed or Random?

The choice between fixed and random effects models can either be grounded in
substantial or technical considerations. In general, it is rather difficult to provide any
substantial arguments for the random processes typically assumed in econometrics.
Taken literally, the observed values of statistical variables characterizing objects
have to be regarded as realizations obtained by using a random number generator.
Of course, this is obviously not the case when analyzing empirical data and the
usual argument is that observations look somewhat similar to realizations generated
using a random generator. In our context of production functions, one may argue
that a large number of influences not captured in the regression function will sum
up to something that can be fruitfully seen as a stochastic error term. Turning to
the question of fixed or random, we can speculate about the nature of persistent
deviations ˛i from the “normal” production relation. We can also ask whether we
are interested in the individual production processes of the individual firms (fixed ˛i)
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or whether we are rather interested in an “average behavior” seeing the individual
units only as providing bits of information to this “average behavior” (random ˛i).
These aspects are formally expressed in the way we formulate expected values of
output. Do we want to estimate the expected output given inputs for a specific unit
i; that is EŒYijXiI˛i�; or are we rather interested in the expected output given inputs
for any firm (or average firms) EŒYijXi�?

While discussions about the presumed stochastic nature of statistical variables
are rather sparse, more often purely formal arguments are provided. Because the
random effects estimator is biased if individual effects ˛i are correlated with inputs
x0

i, that is CovŒx0
i; ˛i� ¤ 0 (e.g., if bigger firms have smaller values of ˛i), the

decision is simply based on the formal question whether the empirical data hint for
a “significant” correlation (note that in empirical data there is always correlation). If
there is “significant evidence” for correlation, the fixed effects estimator is chosen
which is unbiased in this case. If there is no “significant evidence” for correlation,
the random effects estimator is chosen, because in the absence of correlation
between ˛i and x0

i, both estimators are unbiased, but the random effects estimator
is more efficient. Usually, the Hausman-test is applied to decide about whether the
correlation contained in the data is “significant”.

4.3 Panel Data Analysis with R

4.3.1 Generating a Panel Data Set

We start with creating a small panel data set with three units (i D 1; 2; 3) observed at
three different time periods (t D 1; 2; 3). The way the data are generated meets the
assumption of a model with normally distributed idiosyncratic errors uit, normally
distributed random effects for units ˛i, and normally distributed random effects for
periods �t:

N <- 3
M <- 3
NM <- N*M
set.seed(123)
x <- runif(NM)
a <- rep(rnorm(N,sd=0.2),each=M)
l <- rep(rnorm(N,sd=0.2),each=M)
u <- rnorm(NM,sd=0.2)
y <- 1+a+l+x+u
i <- rep(1:3,each=3)
m <- rep(1:3,3)

The two vectors i and m contain the unit and time index respectively and will turn
out helpful when carrying out panel data specific data transformations. To make
evident which data belong to a single unit i, we use triangles, dots, and rhombuses
for units 1,2,3. To indicate the time periods 1,2,3, we use three different sizes,
growing with t. In Fig. 4.1, we show the estimated pooled regression, the three
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Fig. 4.1 Panel data, pooled, unit, and time specific regressions

separately estimated time series regressions for the three units and three separately
estimated cross-sectional regressions for time periods 1, 2, and 3. These regressions
can be obtained with the function lm().

ylimits <- range(y)
xlimits <- range(x)
picture <- function(a) {
plot(x[1:3],y[1:3],xlim=c(0,1),ylim=c(0.9,2.6),

xlab="x",ylab="y",pch=16,cex=c(1.5,2,2.5))
points(x[4:6],y[4:6],pch=17,

cex=c(1.5,2,2.5),col=’grey’)
points(x[7:9],y[7:9],pch=18,

cex=c(1.5,2,2.5),col=’grey40’)
}
# data points
picture(1)
legend(0, 2.7, c("u1","t1","u2","t2","u3","t3"),

pch=c(16,16,17,16,18,16),
col=c(1,1,"grey",1,"grey40",1),
pt.cex=c(2,1.5,2,2,2,2.5), cex=0.8,
ncol=3, bty="n", y.intersp=1.5)

# pooled
picture(1)
reg.pooled <- lm(y~x)#;reg.pooled
lines(x,fitted(reg.pooled),lwd=1)
text(0,2.5,"pooled",pos=4)
# unit specific
picture(1)
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nr <- 1:9
colv <- c(1,"grey","grey40")
lty <- 1:3
for (j in 1:3){
ind <- nr[i==j]
reg <- lm(y[ind]~x[ind])
lines(x[ind],fitted(reg),lwd=1.5,col=colv[j])
}

text(0,2.5,"unit specific",pos=4)
legend(0,2.44,c("firm 1","firm 2","firm 3"),

lwd=1.5,lty=1,col=colv,cex=0.7,bty="n",seg.len=2)
# period specific
picture(1)
for (j in 1:3){
ind <- nr[m==j]
reg <- lm(y[ind]~x[ind])
lines(x[ind],fitted(reg),lty=j,lwd=1.5)
}

text(0,2.5,"period specific",pos=4)
legend(0,2.44,c("period 1","period 2","period 3"),

lwd=1.5,lty=1:3, cex=0.7, bty="n", seg.len=2)

We now turn to the estimation of fixed effects models. Again, these regressions
can be obtained with the function lm(). Note that there is a difference between
estimating separate regressions and one model with fixed effects, as the variance
of the residual in one model with fixed effects is restricted to be identical for all
units/time periods. In the following, we estimate in turn the pooled model, the
model with fixed unit effects (slopes identical but intercepts varying across units),
the model with fixed time effects (slopes identical but intercepts varying across
time periods), and a model with fixed unit and time effects (but identical slope
parameters).

fi <- as.factor(i)
fm <- as.factor(m)
# pooled
reg.pooled <- lm(y~x); reg.pooled

##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 1.316 0.754

# fixed unit effects
reg.fixed.units <- lm(y~x+fi); reg.fixed.units

##
## Call:
## lm(formula = y ~ x + fi)
##
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## Coefficients:
## (Intercept) x fi2 fi3
## 1.5369 0.8710 -0.7932 -0.0784

# fixed time effects
reg.fixed.time <- lm(y~x+fm); reg.fixed.time

##
## Call:
## lm(formula = y ~ x + fm)
##
## Coefficients:
## (Intercept) x fm2 fm3
## 1.541 0.370 0.184 -0.179

# fixed unit and time effects
reg.fixed.both <- lm(y~x+fi+fm); reg.fixed.both

##
## Call:
## lm(formula = y ~ x + fi + fm)
##
## Coefficients:
## (Intercept) x fi2 fi3
## 1.6713 0.6086 -0.7596 -0.0358
## fm2 fm3
## 0.1108 -0.1242

4.3.2 Some Transformations with Panel Data

When working with data sets containing a large number of units, the simple
approach using many (sometimes thousands of) dummy variables may lead
to computational difficulties. In this case, demeaning the data before running
the regression might be appropriate. This could be accomplished using the
tapply()-command.

We illustrate this by estimating the slope parameter of the model with fixed unit
effects. Note that the regression coefficient obtained is identical to that obtained with
dummy variables. But as the computer cannot know that we already “estimated”
three unit specific means for demeaning the data, the standard errors would have to
be corrected to allow sensible inference.

xb <- unlist(tapply(x,i,function(z) z-mean(z)))
yb <- unlist(tapply(y,i,function(z) z-mean(z)))
lm(yb~xb)$coef

## (Intercept) xb
## 1.612e-17 8.710e-01

In a similar manner, we could subtract time period specific means to estimate
the model with fixed time effects with demeaned data. Accordingly, the slope
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parameter of the model with fixed unit and fixed time effects can be obtained after a
twofold demeaning. In this case, the overall mean has to be added after the twofold
demeaning.

xbb <- unlist(tapply(xb,
m,function(z) z-mean(z)))+mean(x)

ybb <- unlist(tapply(yb,
m,function(z) z-mean(z)))+mean(y)

lm(ybb~xbb)$coef

## (Intercept) xbb
## 1.4016 0.6086

Note that the demeaned data (for unit specific levels) contain only information
about deviations from unit specific levels whereas information on the differences in
average levels is discarded. If there had been no variation across time, all differences
in levels between units would be removed by the demeaning and the resulting data
would contain no information at all.

The opposite happens with the between transformation. Using averages across
time periods means that only the information about differences in levels between
units is regarded. The number of observations is reduced from n � T towards n and
all variation within units across time is discarded.

xm <- tapply(x,i,mean)
ym <- tapply(y,i,mean)
lm(ym~xm)$coef

## (Intercept) xm
## 2.456 -1.173

4.3.3 Estimating Panel Data Models Using the plm Package

Handling panel data is comfortable with the panel data package plm. The R-package
“plm” (library(plm)) contains a variety of panel data methods and several
panel data sets. Beside our small artificial panel data set, we will use the data set
“EmpUK” available in the package which has been studied by Arellano and Bond
(1991).

Figure 4.2 shows the three time series regressions for the models defined in
Sect. 4.3.1.

# left panel
picture(1)
for (j in 1:3){
ind <- nr[i==j]
lines(x[ind],fitted(reg.fixed.units)[ind],

lwd=1,col=colv[j])
}
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Fig. 4.2 Fixed effects. (a) Fixed unit effects. (b) Fixed time effects

text(0,2.5,"unit effects",pos=4,cex=1.4)
legend(0,2.45,c("firm 1","firm 2","firm 3"),

lty=1,col=colv,bty="n",seg.len=2)
# right panel
picture(1)
lty <- c(1,2,3)
for (j in 1:3){
ind <- nr[m==j]
lines(x[ind],fitted(reg.fixed.time)[ind],lty=lty[j])
}

text(0,2.5,"time effects",pos=4,cex=1.4)
legend(0,2.45,c("period 1","period 2","period 3"),

lty=1:3,bty="n",seg.len=2)

The package plm uses a specific kind of dataframe containing additional
information of the panel structure of the data in the form of an index attribute.
The command pdata.frame transforms a dataframe into a panel dataframe
(pdataframe for short).

library(plm)
d <- pdata.frame(data.frame(i,m,x,y));d[1:2,]

## i m x y
## 1-1 1 1 0.2876 1.623
## 1-2 1 2 0.7883 2.528

The plm-package contains some commands useful to transform panel data.
The simple alternative for our already discussed demeaning is the command
Within(). The command between() returns unit specific means across time.
The command corresponding to linear models lm() for panel data models is
plm(). The model option allows (inter alia) to choose between pooled, fixed, and
random models. The option effect allows to specify whether the fixed effects are for
units (“individual”), time periods (“time”), or both (“twoways”).
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The R commands for our small artificial data set are as follows:

library(plm)
# fixed unit effects
plm(y~x, data=d, model="within",

effect="individual")$coef

## x
## 0.871

# fixed unit and time effects
plm(y~x, data=d, model="within",

effect="twoways")$coef

## x
## 0.6086

# between model for units
plm(y~x, data=d, model="between",

effect="individual")$coef

## (Intercept) x
## 2.456 -1.173

# random unit effects
plm(y~x, data=d, model="random",

effect="individual")$coef

## (Intercept) x
## 1.2503 0.8644

# random unit and time effects
plm(y~x, data=d, model="random",

effect="twoways")$coef

## (Intercept) x
## 1.2521 0.8614

Note that despite the fact that the last model (two-ways random effects) corresponds
to the generation of our small artificial dataframe, we obtain a negative estimate
of the variance of the random time effect. In plm there are five different random
estimators implemented. The default estimator has been proposed by Swamy.
Finally, we try to estimate a Cobb–Douglas production function using the Arellano–
Bond data set contained in the plm package. We load the data set and construct a
pdataframe. It covers the 140 firms observed in the time period 1976 to 1984. The
panel data set is unbalanced as firms have been observed between 7 and 9 years. We
use employment and capital stock as inputs and the net value added at fixed factor
costs as output. We estimate a model with fixed unit and time effects.

library(plm)
data("EmplUK", package="plm")
E <- pdata.frame(EmplUK)
reg <- plm(log(output) ~ log(emp)+log(capital), data=E,

model="within",effect="twoways")
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summary(reg)

## Twoways effects Within Model
##
## Call:
## plm(formula = log(output) ~ log(emp) + log(capital), data = E,
## effect = "twoways", model = "within")
##
## Unbalanced Panel: n=140, T=7-9, N=1031
##
## Residuals :
## Min. 1st Qu. Median 3rd Qu. Max.
## -0.13400 -0.03680 0.00132 0.03680 0.18500
##
## Coefficients :
## Estimate Std. Error t-value Pr(>|t|)
## log(emp) 0.0341 0.0137 2.50 0.013 *
## log(capital) 0.0470 0.0116 4.05 0.000056 ***
## ---
## Signif. codes:
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Total Sum of Squares: 2.63
## Residual Sum of Squares: 2.45
## R-Squared : 0.0677
## Adj. R-Squared : 0.0578
## F-statistic: 31.972 on 2 and 881 DF, p-value: 3.94e-14

Note that the model information given by the command summary() refers to the
twofold demeaned data. This results in a very low fraction of explained variance
(about 6 %). Most variance in the dependent variable is eliminated by the twofold
demeaning before estimation. If we estimate the model with dummy variables for
firms and years, the fraction of explained variance is about 73 %.

One should also keep in mind that these models only provide some descriptive
information about the data. As the empirical data have not been generated using
a simple random generator, estimated models at best can provide some guidance
for further speculations about empirical production processes. While panel data
models have the advantage of providing highly condensed descriptive information,
this is practically always gained at the cost of false assumptions. For example the
assumption of identical slope parameters across firms is presumably false as the
figure of simple one-factor production functions reveals. In Fig. 4.3, we have drawn
the 140 firm specific linear one-factor production functions into the scatter plot.
In Fig. 4.4, we show the distribution of the firm specific slope coefficients of the
two-factor Cobb–Douglas production function.

ly <- log(E$output)
lemp <- log(E$emp)
lcap <- log(E$capital)
lf <- length(unique(E$firm))
erge <- rep(NA,lf)
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Fig. 4.3 Firm specific linear one-factor production functions. (a) For labor. (b) For capital
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Fig. 4.4 Distribution of firm specific slope coefficients. (a) Log-employment. (b) Log-capital

ergc <- erge
plot(lemp,ly,pch=19,cex=0.5,col="darkgrey")
for (i in 1:lf){
ind <- E$firm==i
lmi <- lm(ly[ind]~lemp[ind])
lines(lemp[ind],fitted(lmi))
erge[i] <- lmi$coef[2]
}

plot(lcap,ly,pch=19,cex=0.5,col="darkgrey")
for (i in 1:lf){
ind <- E$firm==i
lmi <- lm(ly[ind]~lcap[ind])
lines(lcap[ind],fitted(lmi))
ergc[i] <- lmi$coef[2]
}

for (i in 1:lf){
ind <- E$firm==i
lmi <- lm(ly[ind]~lemp[ind]+lcap[ind])
erge[i] <- lmi$coef[2]
ergc[i] <- lmi$coef[3]
}
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hist(erge,nclass=20,main="",prob=T,ylab="Density",
xlab="log-employment")

hist(ergc,nclass=20,main="",prob=T,ylab="Density",
xlab="log-capital", xlim=c(-3,2))

4.3.4 Dynamic Panel Data Models

In the last decades it has become a standard practice to formulate and estimate
dynamic panel data models, i.e., the model includes the production of the previous
period (year) as an explanatory variable. Obviously, it is rather difficult to give
such a model any economic meaning, as it states that without using any labor and
capital in period t, nevertheless there will be output in period t just because there has
been some output in period t � 1. One argument for a dynamic specification of the
production function might be that the production period for some goods may be of
considerable length and therefore may extend towards the next period. In this case a
fraction of the production which started in year t � 1 may continue in period t. This
will result in autocorrelated output data.

Empirically, we usually find a considerable correlation between the production
in t � 1 and t. To exemplify this, we use again the Arellano and Bond data for 140
firms operating in the UK. We draw the 140 linear regressions between logarithmic
output in period t � 1 (yt�1) and in period t (yt) and show the empirical distribution
of the 140 individual autoregression coefficients (see Fig. 4.5).

library(plm)
data("EmplUK", package="plm")
E <- pdata.frame(EmplUK)
names(E)[6:7] <- c("cap","y")
ly <- log(E$y)
ly_1 <- lag(ly,1)
lf <- length(unique(E$firm))
erge <- rep(NA,lf)
plot(ly_1,ly,pch=19,cex=0.5,col="darkgrey")
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Fig. 4.5 Firm specific autoregression. (a) Linear regressions. (b) Individual autoregression
coefficients
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for (i in 1:lf){
ind <- E$firm==i
lmi <- lm(ly[ind]~ly_1[ind])
lines(na.omit(ly_1[ind]),fitted(lmi))
erge[i] <- lmi$coef[2]
}

hist(erge,nclass=20,main="",prob=T,ylab="Density",
xlab="Autoregression coefficients",
xlim=c(-0.5,1.5))

We restrict the discussion to one specific dynamic model which includes a firm
specific effect

yit D 
yi;t�1 C x0
itˇ1 C ˛i C vit: (4.54)

Note that firmwise demeaning to eliminate the fixed effect ˛i results in a
correlation between the error term vit � Nvi and yi;t�1 � Nyi;�1: For example vit�1 is
contained in yi;t�1 and with weight 1=T also in Nvi:

An alternative to demeaning is taking differences

yit � yi;t�1 D 
 .yi;t�1 � yi;t�2/C .x0
it � x0

i;t�1/ˇ1 C .vit � vi;t�1/

�yit D 
�yi;t�1 C�x0
itˇ1 C�vi;t�1:

(4.55)

Again the estimation with OLS would be inconsistent as the regressor �yi;t�1 is
correlated with �vit because vi;t�1 is contained in both terms. Ignoring the negative
correlation of �yi;t�1 and�vit we obtain the following parameter estimates:

reg3 <- plm(diff(log(y)) ~ lag(diff(log(y)),1)
+diff(log(emp))+diff(log(cap)),
model="pooling",effect=NULL,data=E)

round(summary(reg3)$coef,4)

## Estimate Std. Error t-value
## (Intercept) -0.0185 0.0021 -8.6399
## lag(diff(log(y)), 1) 0.2180 0.0374 5.8289
## diff(log(emp)) 0.0553 0.0163 3.4023
## diff(log(cap)) 0.0103 0.0135 0.7624
## Pr(>|t|)
## (Intercept) 0.0000
## lag(diff(log(y)), 1) 0.0000
## diff(log(emp)) 0.0007
## diff(log(cap)) 0.4461

One possible way to circumvent this problem is the use of instruments. The
idea is to find a variable (or several variables) which is strongly correlated with
the regressor �yi;t�1 but uncorrelated with the error term �vi;t: The fitted values of
the regression of the regressor on the instrument will then be uncorrelated with the
error term and hence OLS will be consistent. As a simple example we use�yi;t�2 as
instrument for �yi;t�1 (cf. Anderson and Hsiao (1981)) in a simple Cobb–Douglas
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Fig. 4.6 Bivariate plots for the original and instrumented variable. (a) Original relation. (b) Rela-
tion for instrumented variable

type production function including lagged output as an additional regressor using
again the Arellano and Bond data.

dly <- diff(log(E$y))
dly_1 <- lag(diff(log(E$y)),1)
dly_2 <- lag(diff(log(E$y)),2)
reg1 <- plm(lag(diff(log(y)),1)~lag(diff(log(y)),2),

model="pooling",effect=NULL,data=E)
#summary(reg1)
r2 <- round(summary(reg1)$r.squared[1],3)*100;r2

## rsq
## 11.9

fit.dly_1 <- reg1$model[[1]]-residuals(reg1)

We observe that the instrument �yi;t�2 is rather weak as it explains only about
11:9 % of the variation of �yi;t�1. We show the simple linear association between
�yi;t�1 and �yi;t in the left panel and between instrumented �Oyi;t�1 (fit.dly_1) and
�yi;t in the right panel (see Fig. 4.6).

nna <- !is.na(dly_1)
plot(dly_1,dly,pch=19,cex=0.5,col="darkgrey")
lines(dly_1[nna],fitted(lm(dly[nna]~dly_1[nna])))
nna <- !is.na(dly_2)
plot(fit.dly_1,dly[nna],pch=19,cex=0.5,col="darkgrey")
lines(fit.dly_1,fitted(lm(dly[nna]~fit.dly_1)))

Using the fitted values �Oyi;t�1 as new regressor instead of �yi;t�1 we obtain the
following results:

E2 <- pdata.frame(merge(E,cbind(fit.dly_1,index(fit.dly_1)),
all=T))

reg2 <- plm(diff(log(y))~fit.dly_1+diff(log(emp))+
diff(log(cap)),

model="pooling",effect=NULL,data=E2)
summary(reg2)
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## Oneway (individual) effect Pooling Model
##
## Call:
## plm(formula = diff(log(y)) ~ fit.dly_1 + diff(log(emp)) + diff(log(cap)),
## data = E2, effect = NULL, model = "pooling")
##
## Unbalanced Panel: n=140, T=4-6, N=611
##
## Residuals :
## Min. 1st Qu. Median 3rd Qu. Max.
## -0.20400 -0.03320 0.00802 0.03700 0.13500
##
## Coefficients :
## Estimate Std. Error t-value Pr(>|t|)
## (Intercept) -0.05144 0.00484 -10.62 < 2e-16
## fit.dly_1 -0.60929 0.11875 -5.13 0.00000039
## diff(log(emp)) 0.06806 0.01744 3.90 0.00011
## diff(log(cap)) 0.02260 0.01640 1.38 0.16885
##
## (Intercept) ***
## fit.dly_1 ***
## diff(log(emp)) ***
## diff(log(cap))
## ---
## Signif. codes:
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Total Sum of Squares: 1.87
## Residual Sum of Squares: 1.73
## R-Squared : 0.0748
## Adj. R-Squared : 0.0743
## F-statistic: 16.3547 on 3 and 607 DF, p-value: 0.000000000312

Because of the weak instrument �yi;t�2 the estimate of the parameter of
the lagged output O
 obtained through this instrumenting approach is obviously
meaningless.

The instrumentation rests on the assumption that the production of a previous
period is predetermined and hence not correlated with the current error term.
According to this reasoning the number of available instruments increases with t:

period regressor yi;t�1 � yi;t�2 error term instruments
t D 3 yi;2 � yi;1 vi3 � vi;2 y1
t D 4 yi;3 � yi;2 vi4 � vi;3 y1; y2
t D 5 yi;4 � yi;3 vi5 � vi;4 y1; y2; y3
:::

:::
:::

:::

t D T yi;T�1 � yi;T�2 viT � vi;T�1 y1; y2; : : : ; yT�2

This results in a large number of instruments
PT�2

tD1 t; e.g., if T D 10 we may
use 36 instruments. If the panel is unbalanced, the number of instruments will
vary for different firms. This estimator is named General Method of Moments
(GMM) estimator based on the orthogonality conditions (moments) of instruments
and error terms (cf. Arellano and Bond (1991)) and implemented in the plm-
package (the pgmm() function). If the error term is originally free of autocorrelation,
then the error terms in differences will be negatively correlated, because �vit
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contains �vi; t � 1 and �vi;t�1 contains vi; t � 1. This presumably present auto-
correlation caused by differencing is considered in the estimation.

reg3 <- pgmm(log(y) ~ lag(log(y),1)+log(emp)+log(cap)
| lag(log(y),2:10),
effect="individual",
model="onestep",data=E)

summary(reg3)

## Oneway (individual) effect One step model
##
## Call:
## pgmm(formula = log(y) ~ lag(log(y), 1) + log(emp) + log(cap) |
## lag(log(y), 2:10), data = E, effect = "individual", model = "onestep")
##
## Unbalanced Panel: n=140, T=7-9, N=1031
##
## Number of Observations Used: 751
##
## Residuals
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.24100 -0.02060 0.00000 -0.00117 0.01750 0.17400
##
## Coefficients
## Estimate Std. Error z-value Pr(>|z|)
## lag(log(y), 1) 0.7477 0.0491 15.22 < 2e-16
## log(emp) 0.1522 0.0296 5.14 0.00000027
## log(cap) -0.0530 0.0156 -3.39 0.00069
##
## lag(log(y), 1) ***
## log(emp) ***
## log(cap) ***
## ---
## Signif. codes:
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Sargan Test: chisq(27) = 131.2 (p.value=1.2e-15)
## Autocorrelation test (1): normal = -3.199 (p.value=0.00138)
## Autocorrelation test (2): normal = -4.912 (p.value=0.000000901)
## Wald test for coefficients: chisq(3) = 2300 (p.value=<2e-16)

Note that according to the test results given in the summary, there is autocorre-
lation present in the residuals as well as in the differenced residuals. Furthermore,
the assumption that the instruments are valid (i.e., uncorrelated with the error term)
seems also to be violated.

4.4 Recommended Readings

A very readable textbook on panel data econometrics is

• Hsiao C (2003) Analysis of panel data. Cambridge University Press, Cambridge.

An alternative textbook albeit less didactical is

• Baltagi BH (2013) Econometric analysis of panel data, 5th edn. Wiley, New York.
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A brief overview provides the chapter on panel data in

• Greene WH (2011) Econometric analysis, 7th edn. Pearson Education, New Jersey.

The description of the plm-package also provides a very nice overview of panel data
models and contains many exemplary analyses:

• Croissant Y, Millo G (2008) Panel data econometrics in R: The plm package. J Stat Software
27(2), URL http://www.jstatsoft.org/v27/i02/.

Many different aspects of estimating production functions are discussed in

• Griliches Z, Mairesse J (1995) Production functions: The search for identification. NBER
Working Paper Series pp 169–203.

Two specific papers for instrumenting are

• Anderson T, Hsiao C (1981) Estimation of dynamic models with error components. J Am Stat
Assoc 76:598–606

• Arellano M, Bond S (1991) Some tests of specification for panel data : Monte carlo evidence
and an application to employment equations. Rev Econ Stud 58:277–297.

4.5 Exercises

The R-package “plm” (library(plm)) contains a variety of panel data methods
and panel data sets. In this exercise, we will use some functions of plm and the
data set “EmpUK” available in the package which has been studied by Arellano and
Bond (1991).

1. The data structure
a. Load the data into the work space using the command data("EmplUK",
package="plm").

b. Try to get an overview of the data using [], dim() and summary().
c. How many firms have been observed?
d. Derive the distribution of spell length (that is: how many firms have been

observed for seven years, eight years, . . . ).
e. The package plm has a special type of data.frame suitable to handle the panel

data structure by means of an index attribute. Read the information provided
by the help page on the function pdata.frame().

f. Create a pdata.frame using the command
E <- pdata.frame(EmplUK).

g. Draw a scatter plot with data of firm no. 77 only using the variables ‘emp’ (x)
and ‘output’ (y).

h. Draw a scatter plot with ‘emp’ (L) and ‘output’ (Y).
i. Draw a scatter plot with ‘capital’ (K) and ‘output’ (Y).

http://www.jstatsoft.org/v27/i02/
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j. Draw a scatter plot with ‘ln(emp)’ (l) and ‘ln(output)’ (y).
k. Draw a scatter plot with ‘ln(capital)’ (k) and ‘ln(output)’ (y).
l. Draw a scatter plot with firm-means, Nli and Nyi using the command
between().

m. Draw a scatter plot with firm-means, Nki and Nyi using the command
between().

n. Draw a scatter plot with deviations from firm specific means, lit �Nli and yit � Nyi

using the command Within().
o. Draw a scatter plot with deviations from firm specific means, kit �Nki and yit �Nyi

using the command Within().
p. Add the correlation coefficient to all your plots.

2. Consider a simple one-factor production function with firm specific intercepts
and slopes

ln.Y/it D ˇ0i C ˇ1i ln.L/it C uit with i D 1; : : : ; nI t D 1; : : : ;T:

a. Draw the bivariate plot.
b. Explain the difference between estimating this regression function and esti-

mating n individual time series regressions for the n firms.
c. Estimate the regression function for all n � T data points using the function
lm().

d. Estimate the n regressions for individual firms and add the n regression lines
to your scatter plot (hint: $fitted or fitted()). Be careful not to join
lines from different firms.

3. Consider a simple pooled one-factor production function

ln.Y/it D ˇ0 C ˇ1 ln.L/it C uit with i D 1; : : : ; nI t D 1; : : : ;T:

a. Estimate the regression function using the commands lm() and plm(...,
model="pooling") and compare your results.

b. Add the pooled regression line to your plot.
4. Consider a simple within one-factor production function

ln.Y/it D ˇ0i C ˇ1 ln.L/it C uit with i D 1; : : : ; nI t D 1; : : : ;T:

a. Draw the bivariate plot.
b. Estimate the regression function using the commands lm() and plm(...,
model="within") and compare your results.

c. Add the regression lines to your plot. Be careful not to join lines from different
firms.

5. Consider a simple random one-factor production function

ln.Y/it D ˇ0 C ˇ1 ln.L/it C ˛i C vit with i D 1; : : : ; nI t D 1; : : : ;T:
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a. Estimate the slope parameter ˇ1 for the model containing a random firm-effect
˛i using plm(...,model="random").

b. Compare this parameter estimate with the estimates you obtain in the between
and within models.

c. Add the between regression line to your (dummy-variable-) plot.
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5Linear Programming

Abstract

In production economics, we often want to maximize (e.g., output) or minimize
(e.g., costs) an objective function under inequality constraints. When restricting
the problem to be linear both in the objective function and in the inequality
constraints, the simplex-tableau is a convenient way to formulate the problem and
to obtain the solution using the simplex method. R provides several functions to
obtain the solution of linear programming problems which will be used to solve
some exemplary problems.

5.1 Introduction

In economics, we often face optimization problems. For example we want to
maximize the likelihood function for a parameter vector given the observations.
These problems are typically nonlinear. If we face constraints, these are typically
equality constraints. In linear programming, we face problems that have a linear
objective function and inequality constraints. For example the quantity of an input
that can be used is limited by the amount in stock. Or there might be some capacity
constraints which have to be met in the production process. In general, we deal with
quantities in production economics that must be non-negative.

5.1.1 Cost Minimization

We start with an example:1 Two kinds of food (inputs) contain amounts of three
different minerals. There are two inputs: x1 and x2. The input prices are w1 D 0:6

1We follow closely Chiang (1984), chapters 19 and 20.
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Fig. 5.1 Cost minimization
example: x1=x2-diagram
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for input 1 and w2 D 1 for input 2. There are three outputs y1; y2, and y3. Each input
“produces” outputs in a fixed ratio of quantities. To meet the demand for the goods,
there must be certain quantities of outputs produced: 20 of good 1, 20 of good 2,
and 12 of good 3. Our aim is to produce at least the required amounts of the output
goods spending as little as possible for the inputs.

We formulate the problem as a cost minimization problem:

objective function C D 0:6x1 C x2
restrictions A: y1 W 10x1 C 4x2 � 20

B: y2 W 5x1 C 5x2 � 20

C: y3 W 2x1 C 6x2 � 12

non-negativity x1; x2 � 0:

(5.1)

We display the problem using a x1; x2-diagram (see Fig. 5.1). The objective function
(linear cost function) is a negative sloping line

C D 0:6x1 C x2 H) x2 D C � 0:6x1: (5.2)

The closer this objective function (iso-cost line) is located to the origin, the lower the
costs. The three inequality constraints (here expressed as equalities for the purpose
of drawing) are also downward sloping:

y1 W 10x1 C 4x2 D 20 H) x2 D 5 � 5

2
x1

y2 W 5x1 C 5x2 D 20 H) x2 D 4 � x1

y3 W 2x1 C 6x2 D 12 H) x2 D 2 � 1

3
x1:

(5.3)

Only x1; x2 combinations to the north-east of the inequality constraints are feasible.
Other combinations violate the constraints as the output falls below the required
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level. Hence, our aim is to move the objective function as close to the origin as
possible without violating the inequality constraints, that is without leaving the
feasible region.

We observe that the lines for inequality restrictions cross each other. The
constraints for y1 and y2 cross at

y1 D y2 W

x2 D 5 � 5

2
x1 D 4 � x1 H) x1 D 2

3
I x2 D 10

3
:

(5.4)

The constraints for y2 and y3 cross at

y2 D y3 W

x2 D 4 � x1 D 2 � 1

3
x1 H) x1 D 3I x2 D 1:

(5.5)

Additionally, we also obtain the point where restriction of y1 crosses the x2-axis

y1 W

x2 D 5 � 5

2
x1 D 5 � 5

2
� 0 D 5

(5.6)

and the points where restriction of y3 crosses the x1-axis

y3 W

x2 D 2 � 1

3
x1 H) x1 D 6 � x2 D 6 � 0 D 6:

(5.7)

Note that (with the rare exception that a restriction has the same slope as the
objective function) the cost minimizing point will be one of the extreme points of
the feasible region. Therefore, the strategy is to walk through these extreme points
and compare the resulting costs. With the known linear cost function (see Eq. (5.2))

C.x1; x2/ D 0:6x1 C x2 (5.8)

we obtain the costs at the four extreme points as

C.0; 5/ D 0:6 � 0C 5 D 5

C.2=3; 10=3/D 0:6 � 2=3C 10=3 D 3:7333

C.3; 1/ D 0:6 � 3C 1 D 2:8

C.6; 0/ D 0:6 � 6C 0 D 3:6:

(5.9)
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The objective function is closest to the origin in point .3; 1/ with costs 2.8. Given
these costs, we can find the points at which the iso-cost line (see Eq. (5.2)) crosses
the axes:

x1 D 1

0:6
.C � x2/ D 1

0:6
.2:8 � 0/ D 4:666 7

x2 D C � 0:6x1 D 2:8 � 0:6 � 0 D 2:8:

(5.10)

5.1.2 Profit Maximization

Now we look at a maximization problem. Assume we have two outputs x1 and x2
and output prices are c1 D 40 for x1 and c2 D 30 for x2. There are three production
restrictions .A;B;C/.

The problem set up is

objective function 	 D 40x1 C 30x2
restrictions A W x1 � 16

B W x2 � 8

C W x1 C 2x2 � 24

non-negativity x1; x2 � 0

(5.11)

We illustrate the problem using a x1; x2-diagram (see Fig. 5.2). The objective
function is

	 D 40x1 C 30x2 H) x2 D 	

30
� 4

3
x1: (5.12)

The profit increases with the amount of x1 and x2. Hence, we aim to move the iso-
profit line as far to the north-east as possible without violating the restrictions. We

Fig. 5.2 Profit maximization
example: x1=x2-diagram
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insert the three lines representing the inequality constraints:

A W x1 D 16

B W x2 D 8

C W x1 C 2x2 D 24 H) x2 D 12� 1

2
x1:

(5.13)

We obtain the point where restrictions A and C cross

A D C W

x1 D 16 H) x2 D 12 � 1

2
x1 D 12 � 8 D 4

(5.14)

and where restrictions B and C cross

B D C W
x2 D 8 H) x1 D 24 � 2x2 D 24� 16 D 8:

(5.15)

Additionally, the feasible region has the two extreme points where restriction B
meets the x2-axis .0; 8/ and where restriction A meets the x1-axis .16; 0/: To find the
maximum, we compare the profit at the extreme points of the feasible region

	.x1; x2/ D 40 � x1 C 30 � x2

	.0; 8/ D 40 � 0C 30 � 8 D 240

	.8; 8/ D 40 � 8C 30 � 8 D 560

	.16; 4/ D 40 � 16C 30 � 4 D 760

	.16; 0/ D 40 � 16C 30 � 0 D 640:

(5.16)

Choosing the profit maximizing point .16; 4/ with profit 760

40 � x1 C 30 � x2 D 760; (5.17)

we find the points where the iso-profit line meets the axes

x2 D 760

30
D 25:333 and x1 D 760

40
D 19: (5.18)

5.1.3 General Notation

In the following, we state the maximization and the minimization problems in a very
general way. We also show the shorthand exposition using matrix notation.
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Maximization problem:

objective function .max/ 	 D Pn
jD1 cjxj

restrictions
Pn

jD1 aijxj � ri .i D 1; : : : ;m/
non-negativity xj � 0 .j D 1; : : : ; n/

(5.19)

In matrix notation:

objective function .max/ 	 D c0
.1�n/

x
.n�1/

restrictions A
.m�n/

x
.n�1/ � r

.m�1/
non-negativity x

.n�1/
� 0

.n�1/

(5.20)

Minimization problem:

objective function .min/ C D Pn
jD1 cjxj

restrictions
Pn

jD1 aijxj � ri .i D 1; : : : ;m/
non-negativity xj � 0 .j D 1; : : : ; n/

(5.21)

In matrix notation:

objective function .min/ C D c
.1�n/

0 x
.n�1/

restrictions A
.m�n/

x
.n�1/

� r
.m�1/

non-negativity x
.n�1/ � 0

.n�1/

(5.22)

5.1.4 Convex Sets

For n > 2, variables minimization and maximization problems cannot be solved
graphically. We have to apply numerical rather than graphical methods. Still, only
the extreme points of the convex feasible set have to be examined. The strategy is
to move along the extreme points to compare the value of the objective function. A
convex set S has the property that each point on the linear connection between two
points belonging to set S will also belong to set S:

u 2 S
v 2 S

H) w 2 S where w D �u C .1 � �/v with .0 � � � 1/: (5.23)



5.1 Introduction 119

5.1.5 Slacks and Surpluses

For applying numerical methods, the use of slack variables is helpful. With the
help of slack variables, the inequality constraints can be expressed as equalities.
In the solution usually not all of the inequality constraints will be met exactly.
Some constraints will not be binding, hence there is some slack (excess capacity,
underutilization) of inputs or some surplus (overproduction) of outputs.

Using a slack variable s � 0, the inequality restriction x � 16 can be stated as
an equality x C s D 16. Because s is non-negative, the inequality restriction will
not be violated. If s > 0 the inequality constraint is not binding. Using three slack
variables s1; s2, and s3, the profit maximization problem with two outputs and three
production restrictions can be stated as follows:

objective function .max/ 	 D 40x1 C 30x2 C 0s1 C 0s2 C 0s3
restrictions A W x1 C s1 D 16

B W x2 C s2 D 8

C W x1 C 2x2 C s3 D 24

non-negativity x1; x2; s1; s2; s3 � 0

(5.24)

In matrix notation, we note the problem as

2

4
1 0 1 0 0

0 1 0 1 0

1 2 0 0 1

3

5

2

6
66
6
6
4

x1
x2
s1
s2
s3

3

7
77
7
7
5

D
2

4
16

8

24

3

5 : (5.25)

Comparing again the five possible solutions (extreme values), we find the
following values of the slack variables

output solution target value
.x1; x2/ .x1; x2; s1; s2; s3/ 	
.0; 0/ .0; 0; 16; 8; 24/ 0

.16; 0/ .16; 0; 0; 8; 8/ 640

.16; 4/ .16; 4; 0; 4; 0/ 760

.8; 8/ .8; 8; 8; 0; 0/ 560

.0; 8/ .0; 8; 16; 0; 8/ 240

We observe that the solution with a profit of 760 has output quantities x1 D 16; x2 D
4 and s1 D 0; s2 D 4; s3 D 0. Therefore, the restriction B is not binding and there is
a slack s2 D 4.
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5.2 Simplex Algorithm

The basic idea of the simplex algorithm is moving from one extreme point to the
next, each time calculating the value of the maximand (minimand) until the optimal
extreme point is found.

5.2.1 Maximization

We combine the objective function

	 D 40x1 C 30x2

1	 � 40x1 � 30x2 D 0
(5.26)

and the rows of the constraints including the slack variables which are used to
transform the inequality constraints into equality constraints. The simplex tableau is
given by

	 x1 x2 s1 s2 s3 const.

1 �40 �30 0 0 0 0

0 1 0 1 0 0 16

0 0 1 0 1 0 8

0 1 2 0 0 1 24

One (trivial) solution .S1/ is the origin x1 D 0; x2 D 0

S1 W 	 D x1 D x2 D 0; s1 D 16; s2 D 8; s3 D 24: (5.27)

Of course, 	 D 0 is no optimal solution. Without any production, the slacks
are obtained as the constants of the inequality restrictions. Note that the objective
function and the equality constraints are linearly independent:

	 s1 s2 s3 const.

1 0 0 0 0

0 1 0 0 16

0 0 1 0 8

0 0 0 1 24
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An additional unit of x1 increases the profit by c1 D 40 .compared to c2 D 30/.
Therefore, we choose x1 as the pivot-column.

	 Œx1� x2 s1 s2 s3 const.

1 �40 �30 0 0 0 0

0 1 0 1 0 0 16

0 0 1 0 1 0 8

0 1 2 0 0 1 24

To obtain linear independent columns, the pivot-column .x1/ has to be transformed
into the vector .0; 1; 0; 0/. We choose the pivot-element with the smallest ratio of
slack to the quantity (replacement ratio) of x1 (here: 16=1 < 24=1.) The pivot-
element Œ1� (at position 2; 2) is indicated by brackets.

	 x1 x2 s1 s2 s3 const.

1 �40 �30 0 0 0 0

0 Œ1� 0 1 0 0 16

0 0 1 0 1 0 8

0 1 2 0 0 1 24

Next, we multiply row 2 by 40 and add the result to row 1. We then subtract row 2
from row 4. This results in:

	 x1 x2 s1 s2 s3 const.

1 0 �30 40 0 0 640

0 Œ1� 0 1 0 0 16

0 0 1 0 1 0 8

0 0 2 �1 0 1 8

Ignoring columns x2 and s1, we obtain the following tableau:

	 x1 s2 s3 const.

1 0 0 0 640

0 Œ1� 0 0 16

0 0 1 0 8

0 0 0 1 8
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We now have obtained solution S2 with a profit of 640.

S2 W 	 D 640I x1 D 16I x2 D 0; s1 D 0; s2 D 8; s3 D 8: (5.28)

Next we can increase the amount of x2 choosing Œ1� (position 4; 3) as the pivot-
element after dividing row 4 by 2.

	 x1 x2 s1 s2 s3 const.

1 0 �30 40 0 0 640

0 1 0 1 0 0 16

0 0 1 0 1 0 8

0 0 Œ1� �0:5 0 0:5 4

We convert this column into the vector .0; 0; 0; 1/ by multiplying row 4 by 30,
adding the result to row 1 and subtracting row 4 from row 3.

	 x1 x2 s1 s2 s3 const.

Œ1� 0 0 25 0 15 760

0 Œ1� 0 1 0 0 16

0 0 0 0:5 Œ1� �0:5 4

0 0 Œ1� �0:5 0 0:5 4

In each of the columns 	; x1; x2; s2, we now have obtained only zeros and a single
1. The constants indicate the solution:

S3 W 	 D 760I x1 D 16I x2 D 4; s1 D 0; s2 D 4; s3 D 0: (5.29)

Graphically, we find that we started from the origin .S1/; walked through S2 to
finally end up at S3.

5.2.2 Minimization

The minimization problem

objective function .max/ C D 12y1 C 42y2

restrictions

2

4
1 2

1 4

3 1

3

5
�

y1
y2

�
�
2

4
3

4

3

3

5

non-negativity y1; y2 � 0

(5.30)
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We add the slack variables s1; s2; s3 to transform the inequality constraints into
equalities. Because si � 0; we insert a negative identity matrix

C y1 y2 s1 s2 s3 const.

1 �12 �42 0 0 0 0

0 1 2 �1 0 0 3

0 1 4 0 �1 0 4

0 3 1 0 0 �1 3

We try to start in the origin y1 D y2 D 0 but obtain the values f�3;�4;�3g for
the slack variables s1; s2; s3. Because of the non-negativity constraint si � 0, the
origin is not feasible. Therefore, we have to find another extreme point to start our
search with. To make sure that the non-negativity constraints are met, we introduce
further auxiliary variables vi with prohibitive costs (e.g., �100). These prohibitive
costs ensure that these artificial variables will enter the solution with values v1 D
v2 D v3 D 0.

C y1 y2 s1 s2 s3 v1 v2 v3 const.

1 �12 �42 0 0 0 �100 �100 �100 0

0 1 2 �1 0 0 1 0 0 3

0 1 4 0 �1 0 0 1 0 4

0 3 1 0 0 �1 0 0 1 3

To set the variables vi in the objective row to 0; we add each of the rows 2; 3; 4
multiplied by 100 to row 1. We obtain the following tableau 1, our initial basic
feasible solution. Now we choose the pivot-element. We look for the column with
the highest cost (here 658) per unit of output and the row according to the lowest
replacement ratio (4=4 < 3=2 < 3=1).

C y1 y2 s1 s2 s3 v1 v2 v3 const.

1 488 658 �100 �100 �100 0 0 0 1000

0 1 2 �1 0 0 1 0 0 3

0 1 Œ4� 0 �1 0 0 1 0 4

0 3 1 0 0 �1 0 0 1 3

In tableau 1 we divide row 3 by 4. Then we subtract the new row 3 (pivot-element
now is 1) from row 4, subtract two times row 3 from row 2 and finally we subtract
658 times row 3 from row 1. This results in tableau 2, where we choose a new pivot-
element (indicated by brackets). Because of the high value of y1, we choose column
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2 and the fourth row is chosen because it has the lowest replacement ratio.

C y1 y2 s1 s2 s3 v1 v2 v3 const.

1 323:5 0 �100 64:5 �100 0 �164:5 0 342

0 0:5 0 �1 0:5 0 1 �0:5 0 1

0 0:25 1 0 �0:25 0 0 0:25 0 1

0 Œ2:75� 0 0 0:25 �1 0 �0:25 1 2

We then divide row 4 by 2.75 to transform the pivot-element to 1. Next, we subtract
a quarter of the obtained row 4 from row 3, subtract a half of row 4 from row 2, and
finally subtract 323.5 times row 4 from row 1. This results in tableau 3.

C y1 y2 s1 s2 s3 v1 v2 v3 const.

1 0 0 �100 35:09 17:63 0 �135:09 �117:64 106:73
0 0 0 �1 Œ0:45� 0:18 1 �0:45 �0:18 0:64

0 0 1 0 �0:27 0:09 0 0:27 �0:09 0:82

0 1 0 0 0:09 �0:36 0 �0:09 0:36 0:73

We proceed in the same manner as before. We choose a pivot-element (row 2,
column 5), transform this row to obtain the value 1 for the pivot-element and
transform the remaining rows to obtain zeros in the column of the pivot-element.
This results in tableau 4.

C y1 y2 s1 s2 s3 v1 v2 v3 const.

1 0 0 �22:8 0 3:6 �77:20 �100 �103:6 57:6

0 0 0 �2:2 1 Œ0:4� 2:2 �1 �0:4 1:4

0 0 1 �0:6 0 0:2 0:6 0 �0:2 1:2

0 1 0 0:2 0 �0:4 �0:2 0 0:4 0:6

Choosing a pivot-element (row 2, column 6) and again doing some manipulations,
we finally arrive at tableau 5 which contains the results of the optimization
procedure.

C y1 y2 s1 s2 s3 v1 v2 v3 const.

1 0 0 �3 �9 0 �97 �91 �100 Œ45�

0 0 0 �5:5 2:5 1 5:5 �2:5 �1 3:5

0 0 1 0:5 �0:5 0 �0:5 0:5 0 0:5

0 1 0 �2 1 0 2 �1 0 2

In this tableau, we find the following results: Minimal costs are NC D 45 (first row).
Optimal quantities are y1 D 2 and y2 D 0:5. The third restriction is not binding
with (slack) s3 D 3:5. Note that the column for s3 contains only zeros and a single
1 which indicates the row of the constant giving the amount of the slack. If we
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insert the optimal quantities of y1 and y2, we find the following results for the three
restrictions:

A W 2C 1 D 3

B W 2C 2 D 4

C W 6C 0:5 � 3

(5.31)

The restrictions A and B are exactly met (no slacks) with slack variables s1 D s2 D
0. From restriction C, we obtain the slack s3 D 3:5.

5.2.3 Duality

So far, we analyzed minimization and maximization problems differently. In fact,
each minimization problem can be formulated as a maximization problem and vice
versa. The original optimization problem is called the primal, the obtained problem
the corresponding dual. Variables which have to be chosen are denoted by xj in the
primal and by yi in the corresponding dual.

Example 1

Primal
objective function .max/ 	 D 3x1 C 4x2 C 3x3

restrictions

�
1 1 3

2 4 1

�
2

4
x1
x2
x3

3

5 �
�
12

42

�

non-negativity x1; x2; x3 � 0

(5.32a)

Dual
objective function .min/ 	� D 12y1 C 42y2

restrictions

2

4
1 2

1 4

3 1

3

5
�

y1
y2

�
�
2

4
3

4

3

3

5

non-negativity y1; y2 � 0

(5.32b)

Example 2

Primal
objective function .min/ C D 4x1 C 3x2 C 8x3

restrictions

�
1 0 1

0 1 2

�
2

4
x1
x2
x3

3

5 �
�
2

5

�

non-negativity x1; x2; x3 � 0

(5.33a)
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Dual
objective function .max/ C� D 2y1 C 5y2

restrictions

2

4
1 0

0 1

1 2

3

5
�

y1
y2

�
�
2

4
4

3

8

3

5

non-negativity y1; y2 � 0

(5.33b)

The general transformation of the primal into the dual is given in matrix notation:

Example 1

Primal
obj. funct. .max/ 	 D c0x
restrictions Ax � r
non-negativity x � 0

�!
Dual
obj. funct. .min/ 	� D r0y
restrictions A0y � c
non-negativity y � 0

(5.34)

Example 2

Primal
obj. funct. .min/ C D c0x
restrictions Ax � r
non-negativity x � 0

�!
Dual
obj. funct. .max/ C� D r0y
restrictions A0y � c
non-negativity y � 0

(5.35)

Duality allows to choose the representation of the problem which can be solved
more easily. If the primal has m restrictions and n variables, the matrix A has
dimension m � n. The corresponding dual accordingly has n restrictions and m
variables. For the examples above (Eq. 5.32a, 5.33a), the dual can still be solved
graphically because it has 2 variables (the primal has 3 variables). In general,
for applying the simplex algorithm, we like to choose the formulation with less
restrictions. And because maximization is most often easier than minimization, we
often like to choose the dual of a minimization problem. In the following, solutions
are indicated with a bar. For example Nyi is the solution of the dual NC� and Nxj is the
solution of the primal NC. s denotes the slack variables in the primal and t denotes
the slack variables in the dual.

The close correspondence between the primal and the dual can be further utilized
as the two theorems state:

Duality Theorem I: The optimal values of the primal and the dual objective
functions are always identical, provided that optimal feasible solutions do exist;
that is C D C� and 	 D 	�.

Duality Theorem II (a): If a certain choice variable in a linear program is opti-
mally nonzero, then the corresponding slack variable in the counterpart program
must be optimally zero. That is (using si to denote the ith primal slack variable,
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and tj to denote the jth dual slack variable),

Nyi > 0 H) Nsi D 0 and Nxj > 0 H) Ntj D 0: (5.36)

Duality Theorem II (b): If a certain slack variable in a linear program is optimally
nonzero, then the corresponding choice variable in the counterpart program must
be optimally zero. That is,

Nsi > 0 H) Nyi D 0 and Ntj > 0 H) Nxj D 0: (5.37)

5.2.4 Simplex Tableau

We now apply the duality theorems to solve the following linear programming
problem:

Dual
objective function .min/ 	� D 12y1 C 42y2

restrictions

2

4
1 2

1 4

3 1

3

5
�

y1
y2

�
�
2

4
3

4

3

3

5

non-negativity y1; y2 � 0

(5.38)

We set up the simplex tableau in several steps. First, we define the first row
containing the objective function, zero coefficients for the slack variables (t1; t2; t3),
and prohibitive costs (here 100, the negative sign results from setting the cost
function to 0) for the artificial variables v1; v2; v3 to help finding an initial solution
to start with

	� D 12y1 C 42y2

1	� � 12y1 � 42y2 D 0:
(5.39)

Because the restrictions are of the �-form, we subtract the non-negative slack
variables (s � 0). Each restriction is supplemented with an artificial variable. This
results in the following simplex tableau:

	� y1 y2 t1 t2 t3 v1 v2 v3 const.

1 �12 �42 0 0 0 �100 �100 �100 0

0 1 2 �1 0 0 1 0 0 3

0 1 4 0 �1 0 0 1 0 4

0 3 1 0 0 �1 0 0 1 3
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The solution is given as:

C y1 y2 t1 t2 t3 v1 v2 v3 const.

f1g 0 0 Œ�3� Œ�9� Œ0� �97 �91 �100 Œf45g�
0 0 0 �5:5 2:5 f1g 5:5 �2:5 �1 f3:5g
0 0 f1g 0:5 �0:5 0 �0:5 0:5 0 f0:5g
0 f1g 0 �2 1 0 2 �1 0 f2g

The solutions are indicated by brackets fg in the tableau:

f N	�; Ny1; Ny2; Nt1; Nt2; Nt3; g D f45; 2; 0:5; 0; 0; 3:5g: (5.40)

The corresponding primal of the dual

Primal
objective function .max/ 	 D 3x1 C 4x2 C 3x3

restrictions

�
1 1 3

2 4 1

�
2

4
x1
x2
x3

3

5 �
�
12

42

�

non-negativity x1; x2; x3 � 0

(5.41)

is also given in the solution-tableau. Solutions of the dual are indicated by brackets
Œ�:

N	 D 45; Nx1 D N3; Nx2 D 9; Nx3 D 0; Ns1 D 0; Ns2 D 0: (5.42)

According to duality theorem 2, we know that two (s1 and s2) out of the three
slack variables will be 0 and that because the solution-value of the third slack
variable is positive, x3 will be 0 in the solution of the primal:

Ny1 > 0I Ny2 > 0 H) Ns1 D 0I Ns2 D 0

Nt3 > 0 H) Nx3 D 0:
(5.43)

Because of Nx3 D 0, the restrictions simplify towards

x1 C x2 D 12

2x1 C 4x2 D 42

x2 D 12 � x1 D 10:5 � 0:5x1

) Nx1 D 3I Nx2 D 9:

(5.44)
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5.3 Solving the Simplex Using R

In the preceding sections, we solved the linear programming problems either
graphically (if the minimand (cost function) or maximand (profit function) had only
up to two variables) or through setting up the simplex tableau and shuffling around
rows to obtain the solution. Of course, linear programming problems can be solved
very easily using the R programming environment.

5.3.1 The Setup of Simplex Tableaus

We have already introduced the shorthand notation for the profit maximization
problem and its dual:

Primal
obj. funct. .max/ 	 D c0x
restrictions Ax � r
non-negativity x � 0

�!
Dual
obj. funct. .min/ 	� D r0y
restrictions A0y � c
non-negativity y � 0

(5.45)

In R, there are many different packages for solving linear programs. An easy to
use function is simplex() which is included in the boot-package. This function
will optimize the linear function a�x, subject to the constraints A1�x � b1, A2�x �
b2, A3� x D b3, and x � 0. The vector a of length n contains the coefficients of the
objective function. The matrix A1 has dimension m1�n and contains the coefficients
for the � type of constraints. b1 is a vector of length m1 giving the right-hand side of
the � constraints. All values in b1 must be non-negative. A2 is the m2� n matrix of
coefficients for the � type of constraints. b2 is a vector of length m2 giving the right-
hand side of the � constraints. As in b1, all values in b2 must be non-negative. And
finally, the matrix A3 is a m3 � n matrix of coefficients for the equality constraints.
Here b3 is a vector of length m3 giving the right-hand side of equality constraints.
By default, simplex() minimizes the linear function. The option maxi=T can be
set for maximization problems.

5.3.2 Solving Some Examples

We first use simplex() to solve the following profit maximization problem which
we already solved graphically above.

objective function 	 D 40x1 C 30x2
restrictions A W x1 � 16

B W x2 � 8

C W x1 C 2x2 � 24

non-negativity x1; x2 � 0

(5.46)
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We have vector a of length n D 2 and three inequality constraints of the � type.
Therefore, we have to define a 3 � 2 matrix A1 and a vector b1 of length 3.

library(boot)
simplex(a = c(40,30),

A1 = rbind(c(1,0),c(0,1),c(1,2)),
b1 = c(16,8,24),
A2 = rbind(c(1,0),c(0,1)),
b2 = c(0,0),
maxi = T)

##
## Linear Programming Results
##
## Call : simplex(a = c(40, 30), A1 = rbind(c(1, 0), c(0, 1), c(1, 2)),
## b1 = c(16, 8, 24), A2 = rbind(c(1, 0), c(0, 1)), b2 = c(0,
## 0), maxi = T)
##
## Maximization Problem with Objective Function Coefficients
## x1 x2
## 40 30
##
##
## Optimal solution has the following values
## x1 x2
## 16 4
## The optimal value of the objective function is 760.

We also solve the dual of the primal. The dual is given by

objective function .min/ 	� D 16y1 C 8y2 C 24y3 C t1 C t2
restrictions A W 1y1 C 0y2 C 1y3 � 40

B W 0y1 C 1y2 C 2y3 � 30

non-negativity y1; y2; y3; t1; t2 � 0

(5.47)

Because we already use A2 and b2 for the inequality restrictions of the � type, we
use A1 and b1 for the non-negative restrictions by simply changing the sign of the
entries of A1. The following R code and the results show that the solution values of
the maximand of the primal and of the minimand of the dual are identical.

library(boot)
simplex(a = c(16,8,24),

A2 = t(rbind(c(1,0),c(0,1),c(1,2))),
b2 = c(40,30),
A1 = rbind(c(-1,0,0),c(0,-1,0),c(0,0,-1)),
b1 = c(0,0,0))

##
## Linear Programming Results
##
## Call : simplex(a = c(16, 8, 24), A1 = rbind(c(-1, 0, 0), c(0, -1, 0),
## c(0, 0, -1)), b1 = c(0, 0, 0), A2 = t(rbind(c(1, 0), c(0,
## 1), c(1, 2))), b2 = c(40, 30))
##
## Minimization Problem with Objective Function Coefficients
## x1 x2 x3
## 16 8 24
##
##
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## Optimal solution has the following values
## x1 x2 x3
## 25 0 15
## The optimal value of the objective function is 760.

We work through another simple example. This time we start with a cost
minimization problem as the primal. We revisit the cost minimization problem
already discussed above.

objective function C D 0:6x1 C x2
restrictions y1 W 10x1 C 4x2 � 20

y2 W 5x1 C 5x2 � 20

y3 W 2x1 C 6x2 � 12

non-negativity x1; x2 � 0

(5.48)

The R-code to set up the problem (primal) and the solution is as follows:

library(boot)
simplex(a = c(0.6,1),

A2 = rbind(c(10,4),c(5,5),c(2,6)),
b2 = c(20,20,12),
A1 = rbind(c(-1,0),c(0,-1)),
b1 = c(0,0))

##
## Linear Programming Results
##
## Call : simplex(a = c(0.6, 1), A1 = rbind(c(-1, 0), c(0, -1)), b1 = c(0,
## 0), A2 = rbind(c(10, 4), c(5, 5), c(2, 6)), b2 = c(20, 20,
## 12))
##
## Minimization Problem with Objective Function Coefficients
## x1 x2
## 0.6 1.0
##
##
## Optimal solution has the following values
## x1 x2
## 3 1
## The optimal value of the objective function is 2.8.

Again, we solve the dual as well. To obtain the formulation of the dual we use the
following correspondence:

Primal
obj. funct. .min/ C D c0x
restrictions Ax � r
non-negativity x � 0

�!
Dual
obj. funct. .max/ C� D r0y
restrictions A0y � c
non-negativity y � 0

(5.49)
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The dual we obtain is:

objective function C� D 20y1 C 20y2 C 12y3
restrictions A W 10y1 C 5y2 C 2y3 � 0:6

B W 4y1 C 5y2 C 6y3 � 1

non-negativity y1; y2; y3 � 0

(5.50)

The solution we find using the following R-code:

library(boot)
simplex(a = c(20,20,12),

A1 = t(rbind(c(10,4),c(5,5),c(2,6))),
b1 = c(0.6,1),
A2 = rbind(c(1,0,0),c(0,1,0),c(0,0,1)),
b2 = c(0,0,0), maxi=T)

##
## Linear Programming Results
##
## Call : simplex(a = c(20, 20, 12), A1 = t(rbind(c(10, 4), c(5, 5), c(2,
## 6))), b1 = c(0.6, 1), A2 = rbind(c(1, 0, 0), c(0, 1, 0),
## c(0, 0, 1)), b2 = c(0, 0, 0), maxi = T)
##
## Maximization Problem with Objective Function Coefficients
## x1 x2 x3
## 20 20 12
##
##
## Optimal solution has the following values
## x1 x2 x3
## 0.00 0.08 0.10
## The optimal value of the objective function is 2.8.

5.4 Recommended Readings

This chapter is strongly based on chapters 19 and 20 of

• Chiang AC (1984) Fundamental methods of mathematical economics, 3rd edn. McGraw-Hill,
New York.

The exposition in this text is very didactical and works through many examples in
great detail.

A seminal reference on optimization is

• Gill PE, Murray W, Wright MH (1991) Numerical linear algebra and optimization, vol. 1 edn.
Addison Wesley, London.
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5.5 Exercises

1. Consider the following profit maximization problem

objective function 	 D 4x1 C 3x2
restrictions A W 1x1 C 1x2 � 5

B W 3x1 C 2x2 � 12

non-negativity x1; x2 � 0

a. Solve the objective function and the restrictions for x2 and sketch the problem
graphically.

b. Obtain the point where restrictions A and B intersect.
c. Obtain the points where the relevant linear restrictions intersect the x- and

y-axes.
d. Indicate the feasible region in your graphic.
e. Calculate the profits at the three extreme points of the feasible region.
f. Solve the problem by introducing slack variables, setting up the simplex

tableau and solving the problem stepwise by choosing pivot elements and
shuffling around the rows.

2. Consider the following cost minimization problem

objective function C D 6x1 C 5x2
restrictions A W 1x1 C 1x2 � 8

B W 3x1 C 2x2 � 18

C W 1x1 C 2x2 � 10

non-negativity x1; x2 � 0

a. Solve the objective function and the restrictions for x2 and sketch the problem
graphically.

b. Obtain the points where the restrictions intersect.
c. Obtain the points where the relevant linear restrictions intersect the x- and

y-axes.
d. Indicate the feasible region in your graphic.
e. Calculate the costs at the four extreme points of the feasible region.
f. Solve the problem by introducing slack variables, setting up the simplex

tableau and solving the problem stepwise by choosing pivot elements and
shuffling around the rows.

g. Explain why the origin is no valid starting point for the search of the optimal
x1; x2-combination and how you circumvent this problem.

3. Consider the profit maximization problem from exercise 1.
a. Use the function simplex() of the boot-package to find the solution.
b. Derive the dual of the problem.
c. Solve the dual using the function simplex().
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4. Consider the cost minimization problem from exercise 2.
a. Use the function simplex() of the boot-package to find the solution.
b. Derive the dual of the problem.
c. Solve the dual using the function simplex().
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6Data Envelopment Analysis

Abstract

Data envelopment analysis is a very popular method to obtain efficiency scores
for firms. Its charm is its simplicity. The firms under analysis are compared to
the most efficient firm, which most often is a synthetic firm obtained as a linear
combination of reference firms. The method is nonparametric as no assumptions
on functional relations between inputs and outputs have to be made.

6.1 Introduction

6.1.1 Productivity and Efficiency

The basic idea of productivity is the ratio of output to input

Output

Input
: (6.1)

The aim of efficient production is characterized by maximizing output given a
certain amount of input or by minimizing input given a certain amount of output.
In empirical efficiency analysis, we most often apply a rather relative than absolute
concept of efficiency. That is, we do not compare actual output with a theoretical
output but with maximum observed output. The empirical analysis is always based
on a sample of Decision Making Units (DMUs). The most efficient DMU is regarded
as the benchmark for calculating the relative efficiency of the DMUs.1

1In this chapter we follow rather closely the highly recommended monograph on Data Envelop-
ment Analysis by Cooper et al. (2007).
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6.1.2 One Input–One Output

We start with a very simple example: for each of eight DMUs we have observed
the quantity of labor employed and sale. The ratio of output to input is sale per
employee. The data is given in Table 6.1 and is generated in R by the following
code:

emp <- c(2,3,3,4,5,5,6,8)
sales <- c(1,3,2,3,4,2,3,5)
nam <- LETTERS[1:8]
tab <- rbind(emp,sales,round(sales/emp,3))
colnames(tab) <- nam
rownames(tab) <- c("Employees","Sales","Sales/Empl.")

To the different DMUs we refer by capital letters. We find that B has the highest
ratio of output to input. Therefore, DMU B is the unit of reference. If we assume
constant returns to scale and that DMUs can simply be scaled up or down, a straight
line from the origin through B is the “efficient frontier”. For example a DMU half
the size of B will be able to produce half the output of B and also a DMU twice the
size of B will be able to produce twice the output of B.

We can benchmark all DMUs indexed by i relative to the efficient DMU B

0 � Sales per employee of DMU i

Sales per employee of B
� 1: (6.2)

The relative efficiency describes an aspect of production for a specific period of
time. An inefficient DMU can become efficient by moving to the frontier. This
can be achieved either through increasing output at constant input or through
decreasing input at constant output. Of course, inputs and outputs can also change
simultaneously.

We can display the situation with the following code (see Fig. 6.1).

# plot data
plot(emp,sales,pch=19,cex=0.8,

xlim=c(0,9), ylim=c(0,6),
xlab="Employees", ylab="Sales")

# labels
text(emp+0.4,sales+0.1,nam)
# efficient frontier
segments(0,0,6,6)

Table 6.1 One input–one
output production data

A B C D E F G H

Employees 2.00 3.00 3.00 4.00 5.00 5.00 6.00 8.00

Sales 1.00 3.00 2.00 3.00 4.00 2.00 3.00 5.00

Sales/Empl. 0.50 1.00 0.67 0.75 0.80 0.40 0.50 0.62
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Fig. 6.1 One input–one output case

Table 6.2 Two inputs–one
output production data

A B C D E F G

Employee 4.00 7.00 8.00 4.00 2.00 5.00 6.00

Floor Area 3.00 3.00 1.00 2.00 4.00 2.00 4.00

Sales 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6.1.3 Two Inputs–OneOutput

We now turn to a situation with two inputs (employees and floor area) and one
output (sales). We express both inputs relative to output, obtaining average input
per unit of output. Using this ratio implies that we are again assuming constant
returns to scale. Using a 2-dimensional diagram, the piecewise linear production
possibility set can be displayed. The “efficient frontier” assumes that two DMUs
can be linearly combined (convexity). The data for the simple numerical example
are given in Table 6.2 and is generated in R by the following code:

nam <- LETTERS[1:7]
emp <- c(4,7,8,4,2,5,6)
flo <- c(3,3,1,2,4,2,4)
sales <- rep(1,7)
tab <- round(rbind(emp,flo,sales),3)
colnames(tab) <- nam
rownames(tab) <- c("Employee","Floor Area","Sales")

We can display the situation with the following code (see Fig. 6.2).

# plot data
plot(emp,flo,pch=19,cex=0.8,

xlim=c(0,9), ylim=c(0,5),
xlab="Employee/Sales", ylab="Area/Sales")

# efficient frontier
lines(emp[5:3],flo[5:3])
segments(emp[3],flo[3],emp[3]+1,flo[3])
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Fig. 6.2 Two inputs–one output case

Table 6.3 One input–two
outputs production data

A B C D E F G

Employees 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Customers 1.00 2.00 3.00 4.00 4.00 5.00 6.00

Sales 5.00 7.00 4.00 3.00 6.00 5.00 2.00

segments(emp[5],flo[5],emp[5],flo[5]+1)
# labels
text(emp+0.2,flo+0.2,nam)
# inefficient unit A
segments(0,0,emp[1],flo[1])

The three efficient units C, D, and E serve as the benchmark for the non-efficient
DMUs. If we, for example, look at inefficient unit A, we find that the two relevant
efficient units D and E form the “reference set” for unit A. Note that all linear
combinations of the reference set fD;Eg are efficient. If unit A moves to the efficient
frontier, it will become efficient.

There are several ways for DMU A to reach the efficient frontier: A could reduce
either the input area or the input employees, A could reduce both inputs when
moving along the path through the origin towards the origin, A could maintain the
amount of inputs and increase output.

6.1.4 One Input–TwoOutputs

The data for the small example with one input (employees) and two outputs
(customers and sales) are given in Table 6.3 and is generated in R by the following
code:

cus <- c(1:4,4:6)
sales <- c(5,7,4,3,6,5,2)
emp <- rep(1,7)
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Fig. 6.3 One input–two outputs case

nam <- LETTERS[1:7]
tab <- round(rbind(emp,cus,sales),3)
colnames(tab) <- nam
rownames(tab) <- c("Employees","Customers","Sales")

The outputs are standardized per unit of input. Using average amount of output per
input again implies constant returns to scale. In Fig. 6.3, we observe that the DMUs
B;E;F, and G are efficient and the linear connections form the “efficient frontier”.
To create the plot, we use the following code:

# plot data
plot(cus,sales,pch=19,cex=0.8,

xlim=c(0,7), ylim=c(0,8),
xlab="Customers/Employee", ylab="Sales/Employee")

# labels
text(cus[-4]+0.3,sales[-4]+0.3,nam[-4])
text(cus[4]+0.1,sales[4]+0.5,nam[4])
# efficient frontier
lines(cus[-c(1,3,4)],sales[-c(1,3,4)])
segments(cus[2],sales[2],0,sales[2])
segments(cus[7],sales[7],cus[7],0)
# inefficient units A and D
segments(0,0,1.4,7)
text(1.4+0.1,7+0.3,"Q")
segments(0,0,16/3,4)
text(16/3+0.1,4+0.3,"P")

Looking at DMU D, we observe that the efficient units F and G form the reference
for D. Again, we assume that all linear combinations of the two efficient DMUs
are a relevant benchmark. The line from the origin through D meets the frontier in
point P. Note that P is a synthetic DMU and its relevance rests on the assumption of
convexity. Moving the inefficient unit D towards the efficient point of production P
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implies an increase in both outputs using the same amount of input. Comparing the
length d.0;D/ with d.0;P/ serves as a measure of inefficiency

d.0;D/

d.0;P/
D 0:75: (6.3)

Hence, actually unit D produces only 75% of the possible output under efficient
production. Analogously, the output could be increased by the factor of 4=3 D
1:333. The coordinates of the efficient point P can be obtained from the coordinates
of D

4

3
.4; 3/ D

�
16

3
; 4

	
: (6.4)

6.1.5 Fixed and Variable Weights

So far, we only discussed examples with either one input or one output. In these
cases, we could standardize the outputs or inputs using the single input or single
output. This method is not applicable in the case of several inputs and outputs. A
simple comparison of output relative to input is only possible if we can sum up the
different inputs towards a single measure of input and sum up the different outputs
towards a single measure of output. As the different goods cannot be summed up
using their quantities, we have to use weights (prices).

We consider the simple 2 input–2 output case. Example data are given in
Table 6.4.

The two inputs are doctors (x1) and nurses (x2) and the two outputs are outpatients
(y1) and inpatients (y2). More generally, we denote outputs with yr .r D 1; : : : ; s/,
inputs with xi .i D 1; : : : ;m/, output prices with ur .r D 1; : : : ; s/, and input prices
with vi .i D 1; : : : ;m/. j is the index for the DMUs . j D 1; : : : ; n/. Given input
prices v1 and v2 and output prices u1 and u2, we can compare the sum of weighted
output with the sum of weighted input

Output

Input
D
P

r yrurP
i xivi

: (6.5)

Note that scaling output prices c �ur and input prices k �vi does not alter the efficiency
measure if comparing different DMUs. Hence, only relative input and output prices

Table 6.4 Two inputs–two
outputs production data

A B C D E F G H

x1: Doctors 20 19 25 27 22 55 33 31

x2: Nurses 151 131 160 168 158 255 235 206

y1: Outpatients 100 150 160 180 94 230 220 152

y2: Inpatients 90 50 55 72 66 90 88 80
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Table 6.5 Two inputs–two outputs production data, effect of different weighting schemes

A B C D E F G H

x1: Doctors 20:00 19:00 25:00 27:00 22:00 55:00 33:00 31:00

x2: Nurses 151:00 131:00 160:00 168:00 158:00 255:00 235:00 206:00

y1: Outpat. 100:00 150:00 160:00 180:00 94:00 230:00 220:00 152:00

y2: Inpat. 90:00 50:00 55:00 72:00 66:00 90:00 88:00 80:00

Weights 1 1:47 1:33 1:14 1:31 1:09 0:94 1:21 1:09

Weights 2 0:99 1:18 1:02 1:14 0:79 0:88 1:02 0:87

Efficiency 1 1:00 0:90 0:77 0:89 0:74 0:64 0:82 0:74

Efficiency 2 0:84 1:00 0:87 0:96 0:67 0:74 0:86 0:73

are relevant. Of course, the resulting measure of efficiency depends on the chosen
relative input and output prices.

Table 6.5 contains two different (arbitrarily chosen) weights. Weighting
scheme 1:

v1

v2
D 5

1
I u1

u2
D 1

3
: (6.6)

Weighting scheme 2:

v1

v2
D 2

1
I u1

u2
D 1

1
: (6.7)

We observe the efficiency scores to depend strongly on the weighting scheme used.
For measuring efficiency, we therefore have to decide which weighting scheme to
use.

6.2 Charnes–Cooper–Rhodes-Model

6.2.1 Introduction

The ratio of weighted outputs to weighted inputs depends on the weighting scheme
chosen. So how to judge the efficiency of DMUs if their relative efficiency depends
on the weighting scheme? The idea of the Charnes–Cooper–Rhodes-model (CCR-
Model) is to choose for each DMU the set of input and output prices which results in
the maximum ratio of weighted output to weighted input given a set of restrictions:

1. all input and output prices must be non-negative.
2. for all DMUs weighted output must not exceed weighted input.

For the DMU under consideration o, we choose v and u to maximize � under the
constraint that for all n DMUs weighted output does not exceed weighted input
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and all prices are non-negative. Therefore, the problem is expressed as a linear
programming problem which can be solved by means of the simplex algorithm.
Obviously, the number of restrictions which have to be met is rather large. The
number equals the number of firms (n) plus the number of inputs (m) plus the
number of outputs (s).

This maximization problem has to be solved for each of the n DMUs and in each
maximization problem n C m C s constraints have to be met. For firm o the problem
is formally given as:

.LPo/ max
v;u
� D

P
r yrourP
i xiovi

subject to
P

r yrjurP
i xijvi

� 1 . j D 1; : : : ; n/

vi � 0 .i D 1; : : : ;m/
ur � 0 .r D 1; : : : ; s/:

(6.8)

6.2.2 Programming Problem

We consider positive input prices v > 0 and positive amounts of input x > 0 and
normalize the input from DMU o to 1. The maximization problem then is

.LPo/ max
�;�
� D P

r yro�r

subject to
P

i xio�i D 1P
r yrj�r � P

i xij�i . j D 1; : : : ; n/
vi � 0 .i D 1; : : : ;m/
ur � 0 .r D 1; : : : ; s/:

(6.9)

�� denotes the solution to the maximization problem. v� and u� are the vectors of
optimal input and output prices. A DMU is efficient only if �� D 1. In this case, its
weighted output equals its weighted input and the restriction that weighted output
must be less equal weighted input is just met. Beside that restriction, we have the
non-negativity constraints v� � 0 and u� � 0. If �� < 1; then at least for one DMU
(usually for several) we find

P
r yru�

r D P
i xi�

�
i . DMUs for which this equality

holds belong to the reference set E0
o of the inefficient DMU o

E0
o D

(

j W
X

r

yru
�
r D

X

i

xi�
�
i

)

: (6.10)

The set of efficient DMUs in E0
o span the “efficient frontier” for inefficient DMU o.

Hence, all inefficient DMUs are measured relative to their specific reference sets.
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Table 6.6 One input–one output case

A B C D E F G H

x: Input 2.000 3.000 3.000 4.000 5.000 5.000 6.000 8.000

y: Output 1.000 3.000 2.000 3.000 4.000 2.000 3.000 5.000

A: u � 1.000 0.500 0.750 0.667 0.625 1.250 1.000 0.800

B: u � 0.667 0.333 0.500 0.444 0.417 0.833 0.667 0.533

6.2.3 Examples

In this section, we work through some simple examples. We start with the most
simple case considering only one input and one output. The data is given in
Table 6.6.

6.2.3.1 One Input–OneOutput
When standardizing the weighted input towards 1, we obtain the input price v as
the reciprocal of the input quantity. For firm A, e.g., with input quantity 2 we obtain
v� D 0:5. As the output quantity of firm A is just 1, maximizing weighted output
is simply maximizing the output price u. Meeting the restriction that for no firm
weighted output must exceed weighted input, maximal u for firm A is obtained as
the minimum u which guarantees that the restrictions are met for all firms. In this
example, the restriction for firm B 3u � 3v results in u � 0:5 for v� D 0:5.
Formally, the programming problem for DMU A is given as

< A > max � D u
subject to 2v D 1

.A/ u � 2v .B/ 3u � 3v

.C/ 2u � 3v .D/ 3u � 4v

.E/ 4u � 5v .F/ 2u � 5v

.G/ 3u � 6v .H/ 5u � 8v:

(6.11)

The smallest u is the solution, which because of output quantity 1, is also the
solution for � : v� D 0:5, u D 0:5, �� D 0:5. Therefore, if we multiply the inputs of
the inefficient DMU A with factor �� D 0:5, we obtain the efficient amount of input
for the given output.

The LP-problem for DMU B is given as

< B > max � D 3u
subject to 3v D 1

.A/ u � 2v .B/ 3u � 3v

.C/ 2u � 3v .D/ 3u � 4v

.E/ 4u � 5v .F/ 2u � 5v

.G/ 3u � 6v .H/ 5u � 8v:

(6.12)
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Table 6.7 Two inputs–one
output

A B C D E F G

x1: Input 4.00 7.00 8.00 4.00 2.00 10:00 3.00

x2: Input 3.00 3.00 1.00 2.00 4.00 1:00 7.00

y: Output 1.00 1.00 1.00 1.00 1.00 1:00 1.00

We first find that v� D 1=3. Given this value, we can solve all restrictions for u.
Because all restrictions have to be met, the smallest u is the solution: v� D 1=3,
u D 1=3, �� D 1. Solution �� D 1 means that firm B is efficient. Therefore, if
we multiply the inputs of the efficient DMU B with factor �� D 1, we obtain the
efficient amount of input for the given output, which is just the amount actually used
by firm B. Table 6.6 contains two rows showing the values of u resulting from the
eight restrictions. The smallest u is the maximal value of u that can be obtained in
the programming problem for firm A (the last but one row) and firm B (last row).

6.2.3.2 Two Inputs–OneOutput
We consider a simple example with two inputs and one output (see Table 6.7). The
LP-problem for DMU A is given as

< A > max � D u
subject to 4v1 C 3v2 D 1

.A/ u � 4v1 C 3v2 .B/ u � 7v1 C 3v2

.C/ u � 8v1 C v2 .D/ u � 4v1 C 2v2

.E/ u � 2v1 C 4v2 .F/ u � 10v1 C v2

.G/ u � 3v1 C 7v2:

(6.13)

The LP-problem can be solved using the simplex-algorithm. We have to find u; v1
and v2 which maximize the target function 1u C 0v1 C 0v2 meeting the restrictions.
The solution for A is: u� D 0:8751; v�

1 D 0:1429; v�
2 D 0:1429; �� D 0:8751. We

find that firm A has an efficiency score of 0.8751. Therefore, this unit could reduce
its input vector by 12.5 %. The corresponding LP-problems have to be solved for all
n DMUs to obtain efficiency scores for the n DMUs.

6.2.4 Production Correspondence

We assume non-negative input vector xj and non-negative output vector yj. The pair
of input and output vector .xj; yj/ with xj 2 Rm and yj 2 Rs is called “activity”. The
set of potential activities P is called “production possibility set”. The set P has
the following characteristics:

1. Observed activities .xj; yj/ (j D 1; : : : ; n) belong to P .
2. If .x; y/ belongs to P , then .tx; ty/ belongs to P for a positive scalar

t .t > 0/. This property is the constant-returns-to-scale assumption.
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3. If .x; y/ belongs to P , then any semi-positive activity .Nx; Ny/ with Nx � x
and Ny � y belongs to P .

4. Any semi-positive linear combination of observed activities belongs to P
(convexity).

If we observe n firms with activities .xj; yj/ ( j D 1; : : : ; n), we can combine the
inputs xj column wise to obtain a matrix X with dimension (m � n) and the outputs
yj column wise to obtain a matrix Y with dimension (s � n). Using �, which is a
semi-positive column vector of dimension (n � 1), we can define the production
possibility set P as follows:

P D f.x; y/jx � X�; y � Y�;� � 0g
X D .x1; : : : ; xn/I Y D .y1; : : : ; yn/I � 2 Rn:

(6.14)

Note that � D .�1; : : : ; �j; : : : ; �n/
0 contains the weights, which are given to the

inputs and outputs of the n firms when constructing a synthetical firm as reference
with input X� and output Y�. X� is the column vector containing the m inputs
of this synthetical reference firm. For each component xi of the input vector of
the activity x; y it must hold that it is not smaller than the corresponding quantity
(i-th row) of X� (i.e., sum of weighted inputs xij which is

P
j �jxij). Similarly, each

component yr of the output vector of the activity x; y must not exceed the r-th row
of Y� (i.e., sum of weighted outputs yrj which is

P
j �jyrj). Therefore, P must

not contain activities which are more efficient than linear combinations of observed
activities.

So far, we considered the maximization problem using input-multipliersv (fictive
input-prices) and output-multipliers u (fictive output-prices). Hence, the resulting
linear programming problem is said to have the multiplier form:

.LPo/ max
v;u

u0yo

subject to v0xo D 1

�v0X C u0Y � 0

v � 0; u � 0:

(6.15)

The dual of the linear program (LP) in multiplier form is called the LP in
envelopment form:

.DLPo/ min
�;�

�

subject to �xo � X� � 0

Y� � yo

� � 0:

(6.16)

Whereas in the multiplier form we choose the vectors of input and output prices
to maximize sales, we now choose the vector � which combines the observed
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activities of the n firms and � which states the factor of input reduction possible
when adopting the efficient production technique. X� denotes the input vector of
the combined activity and Y� denotes the output vector of the combined activity.
Under efficient production, the observed input quantity xo can be reduced towards
�xo. In the combined production process the amount of input X� must not exceed
the amount used in the optimum �xo and the amount of output Y� must not fall
below observed output yo. The solution �� .0 � �� � 1/ indicates the fraction of
the observed amount of input xo needed if producing the output yo efficiently. The
“proportional” reduced amount of input �xo for producing observed output yo can
imply wasted input s�

s� D �xo � X� (6.17)

or forgone output sC

sC D Y� � yo (6.18)

where s� � 0 and sC � 0:

The observed input mix used by an inefficient DMU can be proportionally
reduced by the factor .1 � ��/ when moving towards the efficient frontier.
Nevertheless, there might be some slacks. Slacks in the production process are
present if at least one input could be reduced further without decreasing output or if
at least one output could be increased given the input. This problem is analyzed in a
two-step approach:

1. The LP-problem is solved to obtain the optimal � denoted by ��.
2. Given � D ��; we search for the optimal value of �, which maximizes the input

slacks s� D �xo � X� or foregone output sC D Y� � yo.

The second step again is an LP-problem

max
�;sC;s�

! D esC C es�

subject to s� D �xo � X�

sC D Y� � yo

� � 0; s� � 0; sC � 0:

(6.19)

To characterize the DMU as CCR-efficient, the following equalities must hold:

�� D 1; s� D 0; sC D 0: (6.20)

Therefore, a DMU is said to be CCR-efficient if there is no radial reduction in input
possible and there are no slacks. The potential existence of slacks even after a radial
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reduction in input is the distinction between two different concepts of efficiency:

• If �� D 1 but s� Ê 0 or sC Ê 0, the DMU is Farrell-efficient.2

• If �� D 1 and s� D 0; sC D 0; the DMU is Pareto–Koopman-efficient.

The computational scheme of the CCR-Model can be written as a two-stage LP
problem

.DLPo/

Phase I objective min �

Phase II objective min �esC � es�
subject to �xo D X� C s�

yo D Y� � sC
� � 0;� � 0; s� � 0; sC � 0:

(6.21)

In more general LP notation the problem can be stated as follows

.DLP0
o/

Phase I objective min z1 D cx
min z2 D dx

subject to Ax D b
x � 0

(6.22)

where

x D .�;�0; s�0; sC0/0; c D .1; 0; 0; 0/; d D .0; 0;�e;�e/;

A D
��

xo �X �I 0

0 Y 0 �I

�	
and b D

��
0
yo

�	
:

(6.23)

We return to our last numerical example (Table 6.7). The two input–one output
example can be displayed graphically (Fig. 6.4). We find that firms E, D, C, F are
Farrell-efficient. For these firms, no radial reduction in input is possible if their
output level should be maintained. Firms G, A, B are inefficient and therefore can
proportionally reduce their amount of inputs holding output constant. If firms A
and B would radially reduce their inputs, they would become Farrell- as well as
Koopman-efficient. Firm F is Farrell-efficient, but not Koopman-efficient, because
there is some slack in input x1. Input x1 could be reduced by the amount of 2 holding
output constant. If firm G radially reduces its input, it will shift onto the efficient
frontier and therefore then will be Farrell-efficient. As there would still be some
slack in input x2, it still would not be Koopman-efficient. Note that inefficient firms
are compared to synthetic firms. For example firm A is compared with a synthetic

2The symbol Ê indicates that for all elements of the vector � and at least for one element > holds.



148 6 Data Envelopment Analysis

0 2 4 6 8 10

0
2

4
6

8

x1

x 2

A B

C

D

E

F

G

Fig. 6.4 Two input–one output case

Table 6.8 Two inputs–one
output case: results of DEA
analysis assuming constant
returns to scale

A B C D E F G

x1: Input 4.00 7.00 8.00 4.00 2.00 10:00 3.00

x2: Input 3.00 3.00 1.00 2.00 4.00 1:00 7.00

y: Output 1.00 1.00 1.00 1.00 1.00 1:00 1.00

Efficiency 0.86 0.63 1.00 1.00 1.00 1:00 0.67

Slack x1 0.00 0.00 0.00 0.00 0.00 2:00 0.00

Slack x2 0.00 0.00 0.00 0.00 0.00 0:00 0.67

A W � 0.00 0.00 0.00 0.71 0.29 0:00 0.00

B W � 0.00 0.00 0.11 0.89 0.00 0:00 0.00

G W � 0.00 0.00 0.00 0.00 1.00 0:00 0.00

firm consisting of 71 % of firm D and 29 % of firm E. All the results are given in
Table 6.8.

6.2.5 Output-OrientedModel

So far, we analyzed the input-oriented model, that is we minimized input while
producing at least the observed output level. In the output-oriented model the aim is
to maximize output while using no more than the observed inputs:

.DLPOo/ max
�;�

�

subject to xo � X� � 0

�yo � Y� � 0

� � 0:

(6.24)

Note that there is a direct correspondence between the input- and the output-oriented
model. Having obtained the solution of the input-oriented model, the solution of the
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output-oriented model can easily be derived. The following relation holds

� D �

�
; � D 1

�
: (6.25)

Inserting this relation into the output-oriented model results in the input-oriented
model

.DLPo/ min
�;�

�

subject to �xo � X� � 0

yo � Y� � 0

� � 0:

(6.26)

Therefore, the following relation holds also for the optimal values

�� D ��

�� ; �� D 1

�� : (6.27)

Instead of noting the slacks s� D �xo � X� and sC D Y� � yo, we now denote the
slacks as

t� D xo � X�; tC D Y� � �yo: (6.28)

For the slacks there is a direct link between input- and output-oriented models

t�� D s��

�� ; tC� D sC�

�� : (6.29)

6.2.6 Returns to Scale in DEAModels

We restrict the discussion of different assumptions on returns to scale to a simple one
input–one output example. Consider five data points (input,output): A D f2; 1g;B D
f3; 3g;C D f5; 4g;D D f2:5; 1:5g;E D f4; 2:5g.

The first stage problem of the CCR-model with input minimization had been
stated as follows:

.DLPo/

objective min �

subject to �xo D X� C s�
yo D Y� � sC
� � 0;� � 0; s� � 0; sC � 0:

(6.30)
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We only apply the restriction � � 0, which allows to scale inputs and outputs
downward

P
� < 1 or upward

P
� > 1. Note that in this case B is the reference set,

hence
P
� consists of only one summand which is �B. We illustrate this situation

graphically (see Fig. 6.5a).
For example the hypothetical input–output combination that firm A is compared

to is A0 which is B scaled down with � D 1=3 and C is compared to C0 which is B
scaled up by � D 4=3.

Under the assumption of decreasing returns to scale we allow firms only to be
scaled down (see Fig. 6.5b). Therefore, point C0 does not belong to the frontier
which now will run from 0 to B and from B to C, hence C now is regarded efficient.
In this case, E will be compared to a hypothetical input–output combination E0,
which is obtained as a linear combination with equal weight .0:5/ of B and C. The
linear program in the case of decreasing returns to scale is supplemented with the
condition

P
� � 1.

Under the assumption of increasing returns to scale we allow firms only to be
scaled up (see Fig. 6.6a). Therefore, the segment running from the origin to B does
not belong to the frontier which now will run from point .2; 0/ to A, from A to B
and from there on it is the path from the origin through B. Hence, D will now be
compared to a hypothetical input–output combination D0, which is obtained as a

0 1 2 3 4 5 6
0

1

2

3

4

5

x

y

A

B

C

D

E

A’

C’

0 1 2 3 4 5 6
0

1

2

3

4

5

x

y

A

B

C

D

E
E’

(a) (b)

Fig. 6.5 Returns to scale (1). (a) Constant returns to scale. (b) Decreasing returns to scale
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linear combination of A (weight 0.75) and B (weight 0.25). The linear program in
the case of increasing returns to scale is supplemented with the condition

P
� � 1.

In this case D and E both are compared to hypothetical firms.
The most restrictive case we consider is the case of variable returns to scale

(see Fig. 6.6b). In this case firms are always compared to a hypothetical firm that
is a linear combination of firms whereof at least one is smaller and at least one
is bigger in terms of output (the exception is the rare case of firms with identical
output, in which case the reference set consists of only one firm). This prevents
rather unrealistic comparisons of firms of strongly different size which can become
relevant in the other cases. Think about the relevance of comparing a big firm with
thousands of employees with a small “efficient” firm that had to be scaled up by
a factor of 100. In the case of variable returns to scale the weights of the firms
have to meet the restriction

P
� D 1. In this case D and E both are compared to

hypothetical firms which are linear combinations, i.e., of A and B and of B and C
respectively.

6.3 Data Envelopment Analysis with R

6.3.1 Benchmarking Package

In this section, we use the Benchmarking package, which contains a rather extensive
number of methods for parametric and nonparametric efficiency analysis.3 The
package offers a variety of DEA methods as well as easy to use plotting facilities. In
this introductory chapter, we only cover the most basic functions of this extensive
package.

6.3.2 Examples

We work through three different examples, the one input–one output case, the two
inputs–one output case, and the one input–two outputs case. While the extension
to the several inputs and several outputs case is straightforward, these simple cases
have the advantage that we are still able to graph the problems. This will help to
build some intuition for the analysis.

3The package is described in detail in the monograph of the package authors: Bogetoft and Otto
(2001).
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Table 6.9 One input–one
output case: results of DEA
analysis assuming constant
returns to scale

A B C D E

Input x 1.000 2.000 3.000 4.000 5.000

Output y 1.000 3.000 2.000 5.000 4.000

y/x 1.000 1.500 0.667 1.250 0.800

Efficiency 0.667 1.000 0.444 0.833 0.533

Fig. 6.7 One input–one
output case
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6.3.2.1 One Input–OneOutput
The data for the small numerical example are given in Table 6.9 and are obtained by
the following code:

x <- matrix(1:5)
y <- matrix(c(1,3,2,5,4))
nam <- LETTERS[1:5]
eff <- y/x / max(y/x)
tab <- t(round(cbind(x,y,round(y/x,3),eff),3))
colnames(tab) <- nam
rownames(tab) <- c("input x","output y","y/x","efficiency")

Because of the assumption of constant returns to scale we simply calculate the
ratio of output to input. We find that DMU B has the highest ratio. Dividing all ratios
of output to input by the maximal ratio results in efficiency scores. We observe, e.g.,
that DMU C would only require 44 % of its actual input to produce its output level if
it would produce with the same efficiency as DMU B which serves as the benchmark
in this case. The situation is displayed in Fig. 6.7 and is obtained by:

library(Benchmarking)
dea.plot(x,y,RTS="crs",ORIENTATION="in-out",pch=19,cex=0.8,

txt=LETTERS[1:length(x)],las=1)
for (i in c(1,3:5)) arrows(x[i,1],y[i,1],x[i,1]*eff[i,1],y[i,1],

length=0.1)

The arrows indicate the movement towards the efficient frontier when reducing the
actual input level towards the efficient input level.
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Table 6.10 Two inputs–one
output case: results of DEA
analysis assuming constant
returns to scale

A B C D E

x1: Input 4.00 7.00 8.00 5.00 2.00

x2: Input 3.00 2.00 1.00 5.00 5.00

y: Output 1.00 1.00 1.00 1.00 1.00

6.3.2.2 Two Inputs–OneOutput
The data for the two inputs–one output case example is given in Table 6.10. We set
up the LP problem for firm A. The LP problem in multiplier form is noted as:

.LPo/ max
v;u

uyo

subject to vxo D 1

�vX C uY � 0

v � 0; u � 0:

(6.31)

The inequality restrictions that for all firms output must not exceed weighted input
are expressed using Matrix A1 and vector b1 in the simplex call. The standardization
of the weighted input to value 1 is expressed using matrix A3 and vector b3 (equality
constraint).

x1 <- c(4,7,8,5,2)
x2 <- c(3,2,1,5,5)
y <- rep(1,5)
library(boot)
simplex(a = c(1,0,0),

A1 = cbind(1,-x1,-x2), b1 = rep(0,5),
A3 = matrix(c(0,4,3),ncol=3), b3=1,
maxi = TRUE)

##
## Linear Programming Results
##
## Call : simplex(a = c(1, 0, 0), A1 = cbind(1, -x1, -x2), b1 = rep(0,
## 5), A3 = matrix(c(0, 4, 3), ncol = 3), b3 = 1, maxi = TRUE)
##
## Maximization Problem with Objective Function Coefficients
## x1 x2 x3
## 1 0 0
##
##
## Optimal solution has the following values
## x1 x2 x3
## 1.0000 0.1429 0.1429
## The optimal value of the objective function is 1.

The solution for firm A shows that this firm is efficient (value of x1 is 1).
In the same manner this LP problem has to be set up for all n firms. We therefore

use a for-loop. The first column of the matrix for collecting the results of the
simplex-algorithms shows the efficiency scores for the n DMUs.

x1 <- c(4,7,8,5,2)
x2 <- c(3,2,1,5,5)
y <- rep(1,5)
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erg <- matrix(NA,5,3)
for (i in 1:5){
e <- simplex(a = c(1,0,0),

A1 = cbind(1,-x1,-x2), b1 = rep(0,5),
A3 = matrix(c(0,x1[i],x2[i]),ncol=3), b3=1,
maxi = TRUE)

erg[i,] <- e$soln}
erg

## [,1] [,2] [,3]
## [1,] 1.0000 0.14286 0.1429
## [2,] 0.9091 0.09091 0.1818
## [3,] 1.0000 0.10000 0.2000
## [4,] 0.7000 0.10000 0.1000
## [5,] 1.0000 0.14286 0.1429

With the dea() command in the Benchmarking package, we obtain the same
results:

library(Benchmarking)
x1 <- c(4,7,8,5,2)
x2 <- c(3,2,1,5,5)
y <- rep(1,5)
X <- cbind(x1,x2)
Y <- matrix(y)
dea(X,Y,RTS="crs",ORIENTATION="in",SLACK=T)

## [1] 1.0000 0.9091 1.0000 0.7000 1.0000

Figure 6.8, showing the isoquant, the location of the firms in the input space, and the
potential movement towards the efficient frontier, is generated using the following
code:

library(Benchmarking)
x1 <- c(4,7,8,5,2)
x2 <- c(3,2,1,5,5)
y <- rep(1,5)
dea.plot.isoquant(x1,x2,txt=LETTERS[1:5], xlim=c(0,10),

pch=19,cex=0.8)
segments(0,0,x1[2]*erg[2,1],x2[2]*erg[2,1],

lty=2,lwd=1.5)
segments(0,0,x1[4]*erg[4,1],x2[4]*erg[4,1],

lty=2,lwd=1.5)
arrows(x1[2],x2[2],x1[2]*erg[2,1],x2[2]*erg[2,1],

length=0.1,angle=20)
arrows(x1[4],x2[4],x1[4]*erg[4,1],x2[4]*erg[4,1],

length=0.1,angle=20)
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Fig. 6.8 Two inputs–one
output case
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We also solve the LP problem using its dual that is the envelopment form.

.DLPo/ min
�;�

�

subject to �xo � X� � 0

Y� � yo

� � 0:

(6.32)

As an example, we choose the LP for DMU B:

library(boot)
x1 <- c(4,7,8,5,2)
x2 <- c(3,2,1,5,5)
y <- rep(1,5)
simplex(a = c(1,0,0,0,0,0),
A2 = cbind(c(0,7,2),rbind(1,-x1,-x2)), b2 = c(1,0,0),
A1 = matrix(-c(0,1,1,1,1,1),ncol=6), b1=0)

##
## Linear Programming Results
##
## Call : simplex(a = c(1, 0, 0, 0, 0, 0), A1 = matrix(-c(0, 1, 1, 1, 1,
## 1), ncol = 6), b1 = 0, A2 = cbind(c(0, 7, 2), rbind(1, -x1,
## -x2)), b2 = c(1, 0, 0))
##
## Minimization Problem with Objective Function Coefficients
## x1 x2 x3 x4 x5 x6
## 1 0 0 0 0 0
##
##
## Optimal solution has the following values
## x1 x2 x3 x4 x5 x6
## 0.9091 0.4091 0.0000 0.5909 0.0000 0.0000
## The optimal value of the objective function is 0.909090909090909.

In the simplex call a is the vector specifying the target function to be minimized.
As we want to minimize � , only the first element is set to 1. The remaining five
elements for the �-coefficients are set to 0. Matrix A1 and vector b1 are used to
define a � restriction to ensure all �-coefficients are � 0. Matrix A2 and vector b2
are set to meet the � restrictions. The first row states the restriction that weighted
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output of the n firms is at least the actual output. The second and third row ensure
that weighted input of all n firms is less than actual input times the radial potential
input reduction (�). We observe that we obtain the same result for potential radial
input reduction as in the LP in multiplier form.

6.3.2.3 One Input–TwoOutputs
The data for the efficiency analysis with one input and two outputs are given in
Table 6.11. Note that input is already normalized to 1. The LP for the firms are quite
similar to the case just discussed and we only have to make some minor adjustments.
We first set up the LP and use the function simplex() to solve the tableau for firm
A and B.

We now choose prices for outputs y1 and y2 to maximize sales. The restrictions
we have to meet are the normalization that weighted input is 1 (matrix A3 and vector
b3), that weighted output does not exceed weighted input (A1 and b1) and the non-
negativity constraints for output prices (A2 and b2). The solution is obtained by:

y1 <- c(1,2,5,4,8)
y2 <- c(8,5,6,2,1)
x <- rep(1,5)
library(boot)
simplex(a = c(0,1,8),

A1 = cbind(-1,y1,y2), b1 = rep(0,5),
A3 = matrix(c(1,0,0),ncol=3), b3=1,
A2 = rbind(c(0,1,0),c(0,0,1)),b2=c(0,0),
maxi = TRUE)

##
## Linear Programming Results
##
## Call : simplex(a = c(0, 1, 8), A1 = cbind(-1, y1, y2), b1 = rep(0, 5),
## A2 = rbind(c(0, 1, 0), c(0, 0, 1)), b2 = c(0, 0), A3 = matrix(c(1,
## 0, 0), ncol = 3), b3 = 1, maxi = TRUE)
##
## Maximization Problem with Objective Function Coefficients
## x1 x2 x3
## 0 1 8
##
##
## Optimal solution has the following values
## x1 x2 x3
## 1.000 0.000 0.125
## The optimal value of the objective function is 1.

We observe that firm A is efficient (value of objective function). The LP for firm
B is almost identical, except that we use the different output quantities in the

Table 6.11 One input–two
outputs case: results of DEA
analysis assuming constant
returns to scale

A B C D E

x: Input 1.000 1.000 1.000 1.000 1.000

y1: Output 1.000 2.000 5.000 4.000 8.000

y2: Output 8.000 5.000 6.000 2.000 1.000

Efficiency 1.000 0.706 1.000 0.605 1.000
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Fig. 6.9 One input–two
outputs case
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specification of the parameters of the objective function (a = c(0,2,5)). We
then obtain 0.7059 as efficiency score for firm B. That means firm B is inefficient
and could potentially either reduce its input by almost 30 % or increase its output
radially by the factor 1/0.7059=1.41663.

Using the dea() command from the Benchmarking package, we obtain the
results for all n DMUs. Using the option RTS="crs" (RTS for returns to scale)
we define constant returns to scale (crs). To illustrate the LP problem, we use the
plot facilities of the Benchmarking package and indicate the potential radial increase
in output by arrows (see Fig. 6.9).

library(Benchmarking)
y1 <- c(1,2,5,4,8)
y2 <- c(8,5,6,2,1)
x <- rep(1,5)
Y <- cbind(y1,y2)
X <- matrix(x)
e <- dea(X,Y,RTS="crs",ORIENTATION="in",SLACK=T)$eff
#plot
dea.plot.transform(y1,y2,txt=LETTERS[1:5],pch=19,cex=0.8)
segments(0,0,y1[2],y2[2],lty=2,lwd=1.5)
segments(0,0,y1[4],y2[4],lty=2,lwd=1.5)
segments(y1[3],y2[3],y1[5],y2[5],lty=1)
arrows(y1[2],y2[2],y1[2]/e[2],y2[2]/e[2],

length=0.1,angle=20)
arrows(y1[4],y2[4],y1[4]/e[4],y2[4]/e[4],

length=0.1,angle=20)

6.4 Recommended Reading

The reference text for data envelopment analysis is

• Cooper WW, Seiford LM, Tone K (2007) Data envelopment analysis. Springer, New York.
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Despite its coverage of many specialized aspects of DEA, the book is very didactical
and starts with most basic numerical examples. A less didactical and more concise
overview is

• Cooper WW, Seiford LM, Zhu J (2011) Handbook on data envelopment analysis, chap Data
envelopment analysis: history, models and interpretations. Springer, New York, pp 1–39.

An overview of DEA is also provided (chapters 6 and 7) by

• Coelli TJ, Prasada Rao DS, O’Donnell CJ, Battese GE (2005) An introduction to efficiency and
productivity analysis, 2nd edn. Springer, New York

• Thanassoulis E, Portela MCS, Despic O (2008) The measurement of productive efficiency and
productivity growth, chap Data envelopment analysis: the mathematical programming approach
to efficiency analysis. Oxford University Press, Oxford.

Chapters 4 and 5 of

• Bogetoft P, Otto L (2001) Benchmarking with DEA, SFA and R. Springer, New York.

are devoted towards deterministic data envelopment analysis and provide examples
using their R-package Benchmarking.

6.5 Exercises

Consider the following input and output data for 8 DMUs (Table 6.12):

1. Display the LP problem graphically using the function dea.plot.
transform() and explain the plot. Which firms are inefficient? Estimate
the inefficiency scores by eyesight.

2. Consider the LP in multiplier form and set up the problem for DMU A.
3. Use the function simplex() of the boot-package to find the solution of the LP

for DMU A.
4. Solve the LP in multiplier form for DMU C.
5. State the dual of the LP in multiplier form that is the LP in envelopment form for

DMU C.
6. Solve the LP in envelopment form for DMU C.
7. Solve the LP using the function dea() from the Benchmarking package.

Store the returned object and study its contents (use here, e.g., names() and
summary()).

Table 6.12 Example A B C D E F G H

x: Input 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

y1: Output 1.00 3.00 2.00 5.00 4.00 8.00 6.00 4.00

y2: Output 8.00 8.00 5.00 6.00 2.00 1.00 2.00 4.00
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7Stochastic Data Envelopment Analysis

Abstract

The deterministic data envelopment analysis is descriptive. The observed firms
are compared with a (most often synthetic) benchmark firm which is either
observed or constructed as a linear combination of observed firms. The stochastic
data envelopment analysis now enriches the analysis by speculating about firms
which have not been observed. The basic idea is that there would probably
be an even more efficient benchmark firm if only more firms would have
been observed. According to this speculation, the deterministic DEA efficiency
scores are probably too optimistic. In this chapter, we discuss how stochastic
considerations can be added to data envelopment analysis.

7.1 Introduction

The data envelopment analysis (DEA) is known as a deterministic method. The
deviation from an individual firm from the efficient frontier is taken completely
as due to inefficient production. There is no stochastic disturbance regarded
which could have caused the deviation from the efficient frontier despite efficient
production.

DEA is a rather intuitive and practical method. Having observed an amount
of n firms, one picks the firms belonging to the efficient set and combines them
linearly towards a synthetic firm, which then serves as a benchmark for the
firm k under analysis. Probably, the fact that no dubious statistical assumptions
(e.g., invented probability distributions) are necessary makes the DEA so popular
among practitioners. Nevertheless, statisticians felt rather uncomfortable with the
deterministic concept, missing any probability statements.

This putative gap has been closed within the last 15 years with the development
of the so-called Stochastic Data Envelopment Analysis (SDEA). In this chapter, we
will have a closer look at the SDEA. As the main tool used in SDEA is the bootstrap

© Springer International Publishing Switzerland 2015
A. Behr, Production and Efficiency Analysis with R,
DOI 10.1007/978-3-319-20502-1_7
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method, we first give a brief introduction to the bootstrap before discussing its use
in SDEA.

7.2 Population and Simple Random Samples

We first define two vectors to examine a numerical example (N D 10).

x <- c(2, 4, 5, 7, 9, 11, 14, 16, 17, 18)
y <- c(2, 4, 14, 11, 19, 15, 14, 10, 20, 16)
N <- length(x)

Now suppose we want to draw a simple random sample S of size n D 6 from the
set S of possible random samples. For the moment, we focus on the variable Y
only. What can we say about the mean of the random sample? We know that the
population mean is the expected value of the sample mean, as the sample mean is
an unbiased estimation function for the population mean, given as

E.ONy/ D E

 
1

n

X

s

yk

!

D 1

n

X

s

E.yk/ D 1

n

X

s

Ny D 1

n
nNy D Ny: (7.1)

The variance of the sample mean is

Var.ONy/ D
�
1 � n

N




n
S2y with S2y D 1

N � 1

X

U

.yk � Ny/2 : (7.2)

For the numerical example we find

n <- 6
m.y <- mean(y);m.y

## [1] 12.5

v.m.y <- (1-n/N)/n*var(y);v.m.y

## [1] 2.315

Now assume that we would not know the analytic expression of the variance of
the sample mean (the derivation in fact is somewhat tedious). One way to obtain the
variance is complete enumeration of S which contains all possible samples of size n
drawn from the population of size N. The number M of possible samples is obtained
using the binomial coefficient N over n as we are interested in all combinations
without replacement (that is not regarding the ordering of sample). For each of the M
samples, we can calculate the sample mean to obtain the distribution of the sample
mean and to calculate its variance.
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# setup
M <- choose(N,n);M

## [1] 210

sp.index <- combn(N,n)
sp <- matrix(y[sp.index],ncol = M,byrow=F)
mu <- apply(sp,2,mean)
tab0 <- table(mu)/length(mu)

# estimate variance
var(mu)*(M-1)/M

## [1] 2.315

v.m.y # analytic

## [1] 2.315

# lowest and highest deviation from var(y)
va <- apply(sp,2,var)
no1 <- which(abs(va-var(y)) == min(abs(va-var(y))))[1];no1

## [1] 79

no2 <- which(abs(mu-mean(y)) == max(abs(mu-mean(y))))[1];no2

## [1] 200

The exact distribution of the arithmetic mean can be approximated by sampling
repeatedly without replacement. The larger the number of samples drawn, the better
the approximation will be. Here, we draw B D 1000 samples.

B <- 1000
v <- rep(NA,B)
set.seed(123)
for (i in 1:B) v[i] <- mean(sample(y,n))
tab1 <- table(v)/B

# estimate variance
var(v)*(B-1)/B

## [1] 2.359

v.m.y # analytic

## [1] 2.315

Graphically we can compare the exact and the approximated distribution (see
Fig. 7.1).

# exact
plot(tab0,type="h",xlab="Sample mean",

ylab="Rel. frequency",axes=F,
col="darkgrey")
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Fig. 7.1 Distribution of sample mean. The black dot represents the sample mean of the original
y-vector. (a) Exact. (b) Approximated

points(m.y,0,pch=19)
axis(1)
axis(2)
# approximated
plot(tab1,type="h",xlab="Sample mean",

ylab="Rel. frequency",axes=F,
col="darkgrey")

points(m.y,0,pch=19)
axis(1)
axis(2)

7.3 The Bootstrap

So far, we have examined all possible samples contained in S . In practical problems
only one specific sample S D s has been drawn and the remaining N � n elements
of the population are unknown. Therefore, the only information available is the
drawn sample. The population mean and the distribution and variance of the sample
mean are unknown and have to be estimated. One way is to use analytic estimation
functions. Let us for the moment assume we have drawn sample no1 (which is
sample number 79 of the 210 samples and has the lowest deviation):

ys <- sp[,no1];ys

## [1] 2 14 11 19 10 16

Our estimator of the variance of the sample mean is

cVar.ONy/ D
�
1 � n

N




n
OS2y ; with OS2y D 1

n � 1

X

s

.yk � Nys/
2 : (7.3)
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mean(ys)

## [1] 12

(1-n/N)/n*var(ys)

## [1] 2.32

m.y # true mean

## [1] 12.5

v.m.y # true variance

## [1] 2.315

We slightly underestimate the population mean and come very close to the true
variance of the sample mean.

An alternative way to obtain an estimate of variance of the sample mean is the
bootstrap method.1 The idea is that the sample relates to the population in a similar
way as a sub-sample of the sample relates to the sample. From the original sample
s, we sample with replacement B sub-samples (bootstrap-samples) s� and use the
variance of the means of the bootstrap samples as an estimator for the variance
of the sample mean drawn from the population. Because we sample from a finite
population, we consider a correction factor (one minus sampling fraction) in all
variance estimates.

B <- 1000
e <- rep(NA,B)
set.seed(7)
for (i in 1:B) e[i] <- mean(sample(ys,n,replace=T))
mean(e)

## [1] 11.91

mean(ys)

## [1] 12

# bootstrap estimator of variance of sample mean:
(1-n/N)*var(e)

## [1] 1.959

# analytic estimator of variance of sample mean:
(1-n/N)/n*var(ys)

## [1] 2.32

1In Wikipedia, we find the following explanation: “Widely attributed to The Surprising Adventures
of Baron Munchausen, (1781) by Rudolf Erich Raspe, where the eponymous Baron pulls himself
out of a swamp by his hair (specifically, his pigtail), though not by his bootstraps; misattribution
dates to US, 1901”.
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v.m.y # true variance of sample mean

## [1] 2.315

Note that in this very small example, there is a noteworthy difference between the
analytic and the bootstrap estimators of variance of the sample mean.

We consider another sample s no2 (which is sample number 200 of the 210
samples and had the highest deviation) from S :

ys <- sp[,no2];ys

## [1] 14 19 15 14 20 16

mean(ys)

## [1] 16.33

# analytic estimator of variance of sample mean:
(1-n/N)/n*var(ys)

## [1] 0.4444

m.y # true mean

## [1] 12.5

v.m.y # true variance of sample mean

## [1] 2.315

Note that based on this sample, we overestimate the population mean by about
30.67 % and underestimate that variance of the sample mean by about �80.8 %.
As the bootstrap samples rely completely on the original sample, the deviations
between sample and population parameters of course cannot be cured by the
bootstrap.

B <- 1000
e <- rep(NA,B)
set.seed(7)
for (i in 1:B) e[i] <- mean(sample(ys,n,replace=T))
# bootstrap estimator of variance of sample mean
n/(n-1)*(1-n/N)*var(e)

## [1] 0.4492

Note that we use the factor n=.n � 1/ to take into account the loss of one degree
of freedom and to obtain an unbiased estimate of variance of the sample mean.
We find that the result of the bootstrap procedure is almost identical to the analytic
result based on the specific sample. Hence, the bootstrap is an alternative method
for obtaining, e.g., variance estimates which might be very welcome if analytic
expressions are difficult to derive, but, of course, the bootstrap cannot remedy bad
luck in sampling.
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7.4 Sampling and DEA

We first look at the population data and carry out a DEA assuming variable returns
to scale.

library(Benchmarking)
# data
x <- c(2, 4, 5, 7, 9, 11, 14, 16, 17, 18)
y <- c(2, 4, 14, 11, 19, 15, 14, 10, 20, 16)
t(data.frame(x,y, row.names=LETTERS[1:10]))

## A B C D E F G H I J
## x 2 4 5 7 9 11 14 16 17 18
## y 2 4 14 11 19 15 14 10 20 16

# DEA (population)
d <- round(dea(x,y,RTS=1,ORIENTATION="in")$eff,3)
names(d) <- LETTERS[1:10];d

## A B C D E F G H I
## 1.000 0.625 1.000 0.607 1.000 0.527 0.357 0.250 1.000
## J
## 0.367

For example for firm H, we obtain an efficiency value of 0.25. Therefore, this unit
could either reduce its inputs by about 75 % or increase its output by about 100 %
(see Fig. 7.2) by producing efficiently.

But now suppose that a sample of n D 6 has been drawn and a DEA is carried
out based on the sample. As an example, we look at a sample containing the firms
A, B, D, H, I, J (corresponding to the identification numbers 1, 2, 4, 8, 9, 10).

# create sample
set.seed(7)
s <- sort(sample(1:10,n));s

## [1] 1 2 4 8 9 10

Fig. 7.2 Frontier and
observations, population (10
observations) and sample (6
out of 10 observations)
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# obtain data of the sample
xs <- x[s]
ys <- y[s]
# DEA (sample)
ds <- round(dea(xs,ys,RTS=1,ORIENTATION="in")$eff,3)
names(ds) <- LETTERS[s];ds

## A B D H I J
## 1.000 0.778 1.000 0.403 1.000 0.698

The comparison between population and sample shows:

rbind(population=d[s],sample=ds)

## A B D H I J
## population 1 0.625 0.607 0.250 1 0.367
## sample 1 0.778 1.000 0.403 1 0.698

Both analyses can be illustrated graphically using the following code (see Fig. 7.2).

dea.plot(x,y,txt=LETTERS[1:10],xlab=’x’,ylab=’y’,
cex=1.2,pch=19,col="darkgrey",ylim=c(0,25))

points(x[s],y[s],pch=19,col=1,cex=0.5)
lines(x[s][ds==1],y[s][ds==1],lty=2)
legend(0.5,25,c("population (solid line)",

"sample (dashed line)"),
pch=c(19),col=c("darkgrey","black"),bty="n")

In the sample, firm D belongs to the efficient set and therefore has efficiency 1.
Obviously, the result of the efficiency calculation depends on the sample S which is
drawn from the space S .

withD <- apply(sp.index,2,function(z) 4%in%z)
sum(withD)

## [1] 126

mean(withD)

## [1] 0.6

In our example, only the fraction n=N D 6=10 D 0:6 of all M D 210 samples
contain firm D. We calculate the resulting efficiency score for firm D (�D) in the 126
samples that include firm D. Note that because it is random which sample S will
be drawn, the efficiency score is random depending also on S: �D.S/. We derive the
probability distribution of the efficiency score of firm D. As we only regard simple
random sampling, all M samples have the same probability to occur.

# take all samples (126) which include firm D
sp.index4 <- sp.index[,withD]
# input/output data for these samples
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sp4.y <- matrix(y[sp.index4],ncol = M*n/N,byrow=F)
sp4.x <- matrix(x[sp.index4],ncol = M*n/N,byrow=F)
# DEA for the first sample which includes firm D
dea(matrix(sp4.x[,1]),matrix(sp4.y[,1]))

## [1] 1.0000 0.6250 1.0000 0.6071 1.0000 0.5273

# DEA for each sample which includes firm D
M4 <- (M*n/N)
e4 <- rep(NA,M4)
for (i in 1:M4){
e4[i] <- dea(matrix(sp4.x[,i]),

matrix(sp4.y[,i]))$eff[sp.index4[,i]==4]
}

The object e4 holds all 126 efficiency scores for firm D from each sample. The
results can be plotted with the following code (see Fig. 7.3).

plot(table(round(e4,2))/M4,lwd=1,
xlab="Efficiency scores for firm D",
ylab="Probability")

If a firm belongs to the efficient set in the population, it will belong to the efficient
set in all samples containing this firm. We derive the distribution of efficiency scores
for the firms not belonging to efficient set in the population by examining all relevant
samples.

Mk <- M*n/N # number of samples including element k
ie <- (1:N)[d!=1] # inefficient firms
nie <- length(ie) # number of inefficient firms
ee <- matrix(NA,Mk,nie)
for (j in 1:nie){
k <- ie[j]
withk <- apply(sp.index,2,function(z) k%in%z)
sp.indexk <- sp.index[,withk]
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spk.y <- matrix(y[sp.indexk],ncol = Mk,byrow=F)
spk.x <- matrix(x[sp.indexk],ncol = Mk,byrow=F)
for (i in 1:Mk) ee[i,j] <- dea(matrix(spk.x[,i]),

matrix(spk.y[,i]))$eff[sp.indexk[,i]==k]
}

The results can be plotted with the following code (see Fig. 7.4).

for (i in 1:nie){
plot(table(round(ee[,i],2))/Mk,lwd=1,

xlab=paste("Efficiency scores, firm", LETTERS[ie][i]),
ylab="Probability")

}

We find the following intervals (min.�.S// and max.�.S//) means E.�.S// and
biases �.S/� � of efficiency scores for the six inefficient firms:

eet <- data.frame(round(rbind(
apply(ee,2,min),
apply(ee,2,max),
apply(ee,2,mean),
d[ie],
apply(ee,2,mean)-d[ie]),3))

names(eet) <- LETTERS[ie]
rownames(eet) <- c("min","max","mean","pop. efficiency","bias")
eet

0.
0

0.
1

0.
2

0.
3

0.
4

Efficiency scores, firm B

Pr
ob

ab
ili
ty

0.62 0.71 0.85 1

0.
00

0.
10

0.
20

Efficiency scores, firm D

Pr
ob

ab
ili
ty

0.61 0.71 0.82 0.9 1

0.
00

0.
10

0.
20

Efficiency scores, firm F

Pr
ob

ab
ili
ty

0.53 0.64 0.82 1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Efficiency scores, firm G

Pr
ob

ab
ili
ty

0.36 0.5 0.64 0.86

0.
00

0.
10

0.
20

Efficiency scores, firm H

Pr
ob

ab
ili
ty

0.25 0.33 0.4 0.47 0.54

0.
00

0.
10

0.
20

Efficiency scores, firm J

Pr
ob

ab
ili
ty

0.37 0.5 0.68 1

Fig. 7.4 Distribution of efficiency scores for firms not in the efficient set
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## B D F G H J
## min 0.625 0.607 0.527 0.357 0.250 0.367
## max 1.000 1.000 1.000 0.971 0.562 1.000
## mean 0.826 0.768 0.724 0.465 0.325 0.552
## pop. efficiency 0.625 0.607 0.527 0.357 0.250 0.367
## bias 0.201 0.161 0.197 0.108 0.075 0.185

7.5 DEA and the Naive Bootstrap

In the last section, we have examined the probability distributions of the efficiency
scores. In real world problems, of course, the population cannot be completely
enumerated as one is stuck with the single sample that has been drawn. We now
want to ask whether any insights can be gained from SDEA beyond the classical
non-stochastic DEA using bootstrap methods.

Applying the idea of bootstrapping directly to the drawn sample causes some
problems. In the bootstrap samples, some firms of the original sample will be
missing and other firms will be included twice or multiple times. In contrast to,
e.g., regression analysis, in DEA it is not possible to include multiple observed
firms more than once, as the linear program would be identical. Therefore, we can
either use only the unique firms in the bootstrap sample which makes the number
of unique firms m (m <D n) in the bootstrap sample random, or we sub-sample
without replacement with m < n.

7.5.1 Some Notation

We denote a specific sample with subscript s and a bootstrap sample with superscript
b. To a specific firm, we refer to with subscript k. �k denotes the efficiency score for
firm k in the population. �s;k denotes the efficiency of firm k in sample s and �b

s;k
denotes it in the bootstrap sample b drawn from sample s. M denotes the number of
all possible samples

M D jS j D
 

N

n

!

(7.4)

I.s3k/ is the inclusion indicator. It takes value 1 if element k is contained in the sample
s and 0 otherwise. Mk is the number of all samples containing firm k

Mk D
MX

sD1
I.s3k/ D M

n

N
: (7.5)

We use the expression s 3 k to qualify the samples that contain firm k. The bias bk,
we define as the difference between the average efficiency score O�k obtained for firm
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k in all Mk relevant samples and its efficiency score in the population �k

bk D N�k � �k D 1

Mk

X

s3k

.�sk � �k/ : (7.6)

The estimate of the bias based on sample s obtained through the bootstrap is

Obsk D 1

B�
X

b3k

�
�b

sk � �sk


; with B� D

BX

bD1
I.b3k/: (7.7)

Note that while we draw B bootstrap samples, only B� bootstrap samples will
contain firm k. We denote this by b 3 k. An estimate of the bias based on all Mk

samples containing k is then

Obk D 1

Mk

X

s3k

Obsk D 1

Mk

X

s3k

 
1

B�
X

b3k

�
�b

sk � �sk


!

: (7.8)

Note that bk and Obk can only be calculated in simulation studies as they rely on
observing the population. If sample size n and sub-sample size m are small, it is
possible to completely enumerate all Be possible sub-samples where

Be D
 

n

m

!

: (7.9)

In the case of simple random sampling, the number of sub-samples containing firm
k is denoted by Be

k and obtained by

Be
k D

 
n � 1

m � 1

!

: (7.10)

7.5.2 Bootstrap Estimation Based on a Specific Sample

The procedure can be characterized by the following steps:

1. Obtain a bootstrap sample fx; ygb of size m from the original sample fx; ygs D
f.x1; y1/; � � � ; .xk; yk/; � � � ; .xn; yn/; gs through sampling without replacement.

2. Calculate DEA efficiency scores for the m units in the bootstrap sample to obtain
bootstrap efficiency estimates �b

k .
3. Repeat the procedure B-times and evaluate the distribution of the B�-bootstrap

estimates O�b
k for each k.

4. Estimate the bias bk as the difference between O�b
k D 1=B�PB�

bD1 O�b
k and �sk.



7.5 DEA and the Naive Bootstrap 173

We use the same data as above:

# data
x <- c(2, 4, 5, 7, 9, 11, 14, 16, 17, 18)
y <- c(2, 4, 14, 11, 19, 15, 14, 10, 20, 16)
# create sample (like above)
n <- 6
set.seed(7)
s <- sort(sample(1:10,n));s

## [1] 1 2 4 8 9 10

# input/output data of the sample
xs <- x[s]
ys <- y[s]
# DEA
ds <- Benchmarking::dea(xs,ys,RTS=1,ORIENTATION="in")
es <- ds$eff
names(es) <- LETTERS[s]
# obtain data of the sample
xs <- x[s]
ys <- y[s]

We sub-sample without replacement m D 4 firms from the n D 6 firms in the
sample. We first demonstrate the procedure using a single bootstrap sample (si)2:

# bootstrap sample
m <- 4
si <- c(1,2,3,6)
# input/ouput data of the bootstrap sample
xi <- xs[si];xi

## [1] 2 4 7 18

yi <- ys[si];yi

## [1] 2 4 11 16

# DEA of the bootstrap sample
di <- Benchmarking::dea(xi,yi,RTS=1,ORIENTATION="in")$eff
names(di) <- LETTERS[s][si]

The results can be plotted with the following code (see Fig. 7.5).

dea.plot(x,y,txt=LETTERS[1:10],cex=1.2,pch=19,col="darkgrey",
xlab=’x’,ylab=’y’,ylim=c(0,25))

points(x[s],y[s],pch=19,col=1,cex=0.5)
lines(x[s][ds$eff==1],y[s][ds$eff==1],lty=2)
points(xi,yi,pch=1,cex=1.3)
lines(xi[di==1],yi[di==1],lty=3,lwd=1)

2Because the function dea() is contained in several packages we use the command
Benchmarking::dea() for using the one implemented in the Benchmarking package.
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Fig. 7.5 Frontier and
observations, population (10
observations), sample (6 out
of 10 observations), and
bootstrap-sample (4 out of 6
observations)
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legend(0.5,25,c("population (solid line)",
"sample (dashed line)",
"b-sample (dotted line)"),pch=c(19,19,1),

col=c("darkgrey","black", "black"),bty="n")

In this bootstrap sample, firm B produces inefficiently. Despite the fact that in this
small example

Be D
 
6

4

!

D 15

we do not enumerate completely but bootstrap as we would do with larger samples.
We calculate for B D 1000 bootstrap samples the efficiency scores and evaluate the
result.

m <- 4
B <- 1000
Be <- matrix(NA,B,n)
set.seed(1)
# Bootstrap
for (i in 1:B){
si <- sample(1:n,m,replace=F)
xi <- xs[si]
yi <- ys[si]
di <- Benchmarking::dea(xi,yi,RTS=1,ORIENTATION="in")
Be[i,si] <- di$eff

}
m.Be <- apply(Be,2,function(z) mean(z,na.rm=T))

We use the difference between average bootstrap efficiency and efficiency scores of
the original sample to estimate the bias and bias-corrected efficiency scores:

bias <- m.Be-es
bcor <- es-bias
round(rbind(es,m.Be,bias,bcor,pop=d[s]),3)
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## A B D H I J
## es 1 0.778 1.000 0.403 1 0.698
## m.Be 1 0.914 1.000 0.482 1 0.840
## bias 0 0.136 0.000 0.079 0 0.142
## bcor 1 0.642 1.000 0.324 1 0.555
## pop 1 0.625 0.607 0.250 1 0.367

It holds that an efficient firm in the population will be efficient in any sample. It
holds too that an efficient firm in an original sample will be efficient in any bootstrap
sample. Therefore, no bootstrap bias correction can cure a biased efficiency if in the
original sample �sk D 1 has been obtained.

7.5.3 Bootstrap Estimation Based on All Samples

As we have picked one specific sample to exemplify the bootstrap approach, we now
examine the bootstrap results (with B D 100 replications) for each of the jS j D
M D 210 possible samples.

B <- 100
Ep <- matrix(NA,M,N)
Es <- Ep
Eb <- Ep
set.seed(1)
for (j in 1:M){
s <- sp.index[,j]
Ep[j,s] <- d[s]
Es[j,s] <- dea(x[s],y[s],RTS=1,ORIENTATION="in",SLACK=F)$eff
Be <- matrix(NA,B,N)
for (i in 1:B){
si <- sample(s,m,replace=F);si
xi <- x[si];xi
yi <- y[si];yi
Be[i,si] <- dea(xi,yi,RTS=1,ORIENTATION="in",SLACK=F)$eff
}
Eb[j,s] <- apply(Be,2,function(z) mean(z,na.rm=T))[s]
}
tab <- as.data.frame(cbind(d,apply(Es,2,

function(z) mean(z,na.rm=T)),
apply(Eb,2,function(z) mean(z,na.rm=T))))

tab <- tab[1:10,]
rownames(tab) <- LETTERS[1:10]
tab$bias <- tab[,2]-tab[,1]
tab$estb <- tab[,3]-tab[,2]
tab$diffb <- tab$estb-tab$bias
names(tab) <- c("pop.","sample","boot","bias",

"est.bias","d.bias")
tab <- round(tab,3)

The results are displayed in Table 7.1. We observe that on average the approximation
of the bias is quite good using the naive bootstrap approach with sub-samples
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Table 7.1 Results of
bootstrap estimation based on
all samples

pop. sample boot bias est.bias d.bias

A 1.00 1.00 1.00 0.00 0.00 0.00

B 0.62 0.83 0.92 0.20 0.10 �0.10

C 1.00 1.00 1.00 0.00 0.00 0.00

D 0.61 0.77 0.88 0.16 0.11 �0.05

E 1.00 1.00 1.00 0.00 0.00 0.00

F 0.53 0.72 0.87 0.20 0.14 �0.06

G 0.36 0.47 0.61 0.11 0.14 0.03

H 0.25 0.33 0.42 0.07 0.09 0.02

I 1.00 1.00 1.00 0.00 0.00 0.00

J 0.37 0.55 0.73 0.18 0.17 �0.01

of fixed size m < n. Therefore, correcting the sample efficiency estimates with
bootstrap estimates of the bias on average results in a considerable bias reduction.

7.6 The Simar–Wilson Approach

In the previous section, we have drawn sub-samples without replacement from the
original sample to obtain bootstrap samples with m pairs xk; yk. This resulted in
bootstrap samples which did not allow to calculate bootstrap estimates for only m
of the n firms of the original sample in individual bootstrap replications. Therefore,
the number of bootstrap estimates for firm k was B� with B� < B.

A completely different approach has been suggested by Simar and Wilson.
Instead of sampling firms, in this approach, observed inputs of firms are randomly
altered using one randomly chosen efficiency score from the efficiency scores which
have been obtained for the original sample. Furthermore, the randomly chosen
score is overlaid by a normal error term. This approach is not based on the idea
of sampling from finite populations but rather on the ideas of superpopulation
models. One implication of these approach is that even if all firms of a sector
have been considered, it is still assumed that there is an overestimation bias due
to neglecting “non-existing” firms. These “non-existing” firms are nevertheless
regarded as “potentially” existing. In this approach, observed efficiency scores
are assumed to be realizations of an existing “distribution of efficiency scores”.
Therefore, using a bootstrap approach shall mimic the process of realizations from
this distribution.

7.6.1 Strongly Simplified Algorithm

We first examine a strongly simplified version of the approach which does not con-
sider normally distributed disturbances to focus on the basic idea. For convenience,



7.6 The Simar–Wilson Approach 177

the efficiency parameter � denotes the Shepard input distance (being � 1) and
therefore is the reciprocal of the Farrell efficiency score (which is � 1).

1. Obtain a bootstrap sample of size n f��
1 ; � � � ; ��

k ; � � � ; ��
n g from the efficiency

scores of the original sample f O�1; � � � ; O�k; � � � ; O�ng through sampling with replace-
ment.

2. Generate fictional inputs for the bootstrap sample as x�
k D xk �

�
k =

O�k.
3. Calculate bootstrap DEA efficiency scores O��

k using original outputs y, inputs
x, and fictional bootstrap inputs x� as the reference input for the n firms k D
1; : : : ; n.

4. Repeat the procedure B-times to obtain B-bootstrap estimates O��
k for each k.

5. Estimate the bias b. O�k/ D ON��
k � O�k with ON��

k D 1=B
PB

bD1 O��
k .

6. Estimate the bias corrected (bc) efficiency score as:
O�bc
k D O�k � b. O�k/ D 2 O�k � ON��

k .
7. Obtain a nonparametric confidence interval for the efficiency scores using

quantiles (e.g., q0:05 and q0:95 for ˛ D 0:1). The quantiles have to be corrected by
subtracting two times the estimated bias.

We apply this algorithm towards a small data set (5 firms) in the one input–one
output case (to simplify the code, we use d for � throughout).

library(Benchmarking)
x <- c(2,4,3,5,6) # input
y <- 1:5 # output
n <- length(x)
dhat <- 1/dea(x,y,RTS=1,ORIENTATION="in")$eff;dhat

## [1] 1.000 1.600 1.000 1.111 1.000

B <- 2000
Bm <- matrix(NA,B,n)
set.seed(1)
# Step 4
for (i in 1:B){
# Step 1
dstar <- sample(dhat,n,replace=T)
# Step 2
xs <- x*dstar/dhat
# Step 3
Bm[i,] <- 1/dea(x,y,XREF=xs,YREF=y,

RTS=1,ORIENTATION="in")$eff
}
# Step 5
dhat.m <- colMeans(Bm)
dhat.bias <- dhat.m-dhat
# Step 6
dhat.bc <- dhat-dhat.bias
# Step 7
ci.low <- apply(Bm,2,quantile,0.05)-2*dhat.bias
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Table 7.2 Results of the
strongly simplified algorithm

1 2 3 4 5

dhat 1.000 1.600 1.000 1.111 1.000

dhat.m 0.934 1.560 0.942 1.079 0.903

dhat.bias �0.066 �0.040 �0.058 �0.032 �0.097

dhat.bc 1.066 1.640 1.058 1.143 1.097

ci.low 0.853 1.422 0.915 1.061 0.818

ci.high 1.133 1.680 1.115 1.175 1.193

ci.high <- apply(Bm,2,quantile,0.95)-2*dhat.bias
# Results
tab <- round(rbind(dhat,dhat.m,dhat.bias,

dhat.bc,ci.low,ci.high),3)

The results are displayed in Table 7.2.

7.6.2 The Simar–Wilson Algorithm

We now examine a less simplified version of the approach and add a realization of
a normally distributed random variate to the bootstrapped efficiency scores. As this
procedure can result in efficiency scores exceeding the value 1, we have to make an
adjustment in these cases to guarantee that the randomly overlaid score has a value
not exceeding 1. Furthermore, the increase in the variance of the efficiency scores
caused by the addition of a random term has to be taken care of.

1. Obtain a bootstrap sample of size n f��
1 ; � � � ; ��

k ; � � � ; ��
n g from the mirrored

efficiency scores of the original sample f O�1; � � � ; O�k; � � � ; O�n; 2 � O�1; � � � ; 2 �
O�k; � � � ; 2 � O�ng through sampling with replacement.

2. Choose an “optimal” bandwidth h for the set of values f O�; 2 � O�g.
3. Generate a realization " of size n of a standard normal random variate and

calculate Q�k D ��
k C "k.

4. Standardize the bootstrap efficiency scores

Q��
k D NO� C 1

q
1C h2= O�2O�

. Q�k � NO�/;

with

NO� D 1

2n

nX

kD1
. O�k C .2 � O�k// D 1 and

O�2O� D 1

2n � 1
nX

kD1
Œ. O�k � NO�k/

2 C ..2 � O�k/� NO�k/
2�:
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5. Restrict the bootstrap efficiency scores to be � 1:

Q���
k D


 Q��
k ;

2 � Q��
k ;

if Q��
k � 1

otherwise.

6. Generate fictional inputs for the bootstrap sample as x�
k D xk

O�k= Q���
k .

7. Calculate bootstrap DEA efficiency scores O�� using original outputs y and
inputs x and fictional bootstrap inputs x� as reference inputs for the n firms.

8. Repeat the procedure B-times to obtain B-bootstrap estimates O��
k for each k.

9. Estimate the bias b. O�k/ D ON��
k � O�k with ON��

k D 1=B
PB

bD1 O��
k .

10. Estimate the bias corrected (bc) efficiency score as:
O�bc
k D O�k � b. O�k/ D 2 O�k � ON��

k .
11. Obtain a nonparametric confidence interval for the efficiency scores using

quantiles (e.g., q0:05 and q0:95 for ˛ D 0:1). The individual estimates O��
k are used

to correct O� by subtracting the estimated bias based on this bootstrap sample
O��
k � O� , i.e., O� � . O��

k � O�/ D 2 O� � O��
k .

library(Benchmarking)
x <- c(2,4,3,5,6) # input
y <- 1:5 # output
n <- length(x)
# Step 1
dhat <- 1/dea(x,y,RTS=1,ORIENTATION="in")$eff
# Step 2
h <- density(c(dhat,2-dhat))$bw # bw: bandwidth
dhat2 <- c(dhat,2-dhat)
B <- 2000
Bm <- matrix(NA,B,n)
set.seed(1)
# Step 8
for (i in 1:B){
# Step 3
dstar <- sample(dhat2,n,replace=T)
eps <- rnorm(n)
dt <- dstar+h*eps
# Step 4
v <- var(dhat2)
dts <- 1+1/sqrt(1+h^2/v)*(dt-1)
# Step 5
dtss <- ifelse(dts > 1,dts,2-dts)
# Step 6
xs <- x*dtss/dhat
# Step 7
Bm[i,] <- 1/dea(x,y,XREF=xs,YREF=y,RTS=1)$eff

}
# Step 9
dhat.m <- colMeans(Bm)
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dhat.bias <- dhat.m-dhat
# Step 10
dhat.bc <- dhat-dhat.bias

# Step 11
Bm.c <- t(apply(-Bm,1,function(z) z+2*dhat))
ci.low <- apply(Bm.c,2,quantile,0.05)
ci.high <- apply(Bm.c,2,quantile,0.95)

# Results
tab <- round(rbind(dhat,dhat.m,dhat.bias,

dhat.bc,ci.low,ci.high),2)

The results are displayed in Table 7.3.
We compare the results with the implemented bootstrap routine in the “FEAR”

package. The bootstrap procedure can be invoked using the boot.sw98()
command.

library(FEAR)
b <- boot.sw98(matrix(x,1),matrix(y,1),RTS=1,alpha=0.1)
tab <- round(rbind(dhat=b$dhat,dhat.m=rowMeans(b$boot),

bias=b$bias,dhat.bc=b$dhat.bc,
ci.low=b$conf.int[,1],
ci.high=b$conf.int[,2]),2)

The results obtained using boot.sw98() are almost identical and are displayed
in Table 7.4.

Table 7.3 Results of the
Simar–Wilson algorithm

1 2 3 4 5

dhat 1.00 1.60 1.00 1.11 1.00

dhat.m 0.86 1.45 0.87 1.01 0.85

dhat.bias �0.14 �0.15 �0.13 �0.10 �0.15

dhat.bc 1.14 1.75 1.13 1.21 1.15

ci.low 1.01 1.62 1.01 1.12 1.01

ci.high 1.32 1.94 1.27 1.36 1.39

Table 7.4 Results obtained
with the function boot.sw98()
from the FEAR package

1 2 3 4 5

dhat 1.00 1.60 1.00 1.11 1.00

dhat.m 0.86 1.45 0.87 1.01 0.85

bias �0.14 �0.15 �0.13 �0.10 �0.15

dhat.bc 1.14 1.75 1.13 1.21 1.15

ci.low 1.01 1.62 1.01 1.12 1.01

ci.high 1.32 1.94 1.28 1.36 1.38
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7.7 Recommended Reading

The stochastic data envelopment approach has been developed by Simar and Wilson
in a series of papers. A comprehensive overview is provided by the authors in

• Simar L, Wilson PW (2000) Statistical inference in nonparametric frontier models: The state
of the art. J Prod Anal 13:49–78.

A concise description of the algorithm which is implemented in the FEAR package
is given in

• Simar L, Wilson PW (1998) Sensitivity analysis of efficiency scores: How to bootstrap in
nonparametric frontier models. Manag Sci 44(1):49–61.

Detailed information on the FEAR package is provided in

• Wilson PW (2008) Fear 1.0: A software package for frontier efficiency analysis with r. Soc
Econ Plann Sci 42:247–254.

A comprehensive overview on the topic and recent developments is given in

• Simar P, Wilson PW (2007) Statistical inference in nonparametric frontier models: Recent
developments and perspectives. In: Fried HO, Lovell CAK, Schmidt SS (eds) The measurement
of productive efficiency and productivity growth. Oxford University Press, Oxford, pp 421–521.

7.8 Exercises

Consider the following input and output data for 8 DMUs (Table 7.5):

1. Display the inputs and outputs graphically.
2. Estimate efficiency scores (potential output increase given input quantity) under

the assumption of variable returns to scale.
3. Add the efficient frontier to your plot.
4. Indicate the potential output increase for inefficient firms with arrows.
5. Assume that a sample of size n D 4 shall be drawn. How many different samples

are possible?
6. Consider the specific sample s with firm indices f2; 3; 6; 7g. Obtain the effi-

ciency scores for the four firms and calculate the bias.
7. Assume that the 8 firms given in the example are a random sample drawn from

all N D 20 firms operating in a specific sector. Would you expect your efficiency

Table 7.5 Example A B C D E F G H

x: Input 1 2 3 4 5 6 7 8

y: Output 1 2 2 7 5 6 4 8



182 7 Stochastic Data Envelopment Analysis

scores to be biased? How would you assess the situation if there were only 8
firms in the sector and you observed the complete population?

8. Draw B D 100 samples of size n D 4 without replacement and calculate
the efficiency scores for each sample. Compare the average efficiency scores
obtained from samples of size n D 4 with your original efficiency scores.

9. Describe the strongly simplified version (see Sect. 7.6.1) of the approach
suggested by Simar and Wilson.

10. Apply the strongly simplified version regarding the 8 firms as a sample
from a superpopulation. Note that you have to consider the reciprocal of the
input-oriented efficiency scores instead of output-oriented scores to make the
algorithm work.
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8Stochastic Frontier Analysis

Abstract

The stochastic frontier analysis is an econometric approach to efficiency mea-
surement. The basic idea is the introduction of two error components, a random
error term and an inefficiency term. For both terms, a distributional assumption
is made, which facilitates maximum likelihood estimation.

8.1 Introduction

Stochastic frontier analysis has been introduced in the literature by Aigner et al.
(1977) and Meeusen and van de Broeck (1977). The basic idea of the stochastic
frontier analysis is the introduction of an composed error term which is the sum of a
purely random (usually normal) error term and a stochastic inefficiency term which
is assumed to be generated with a specific random distribution (e.g., the exponential
or the half-normal).

8.2 Production and Inefficiency

We introduce a deterministic production process, e.g., a production function we
already discussed, which is overlaid by two different stochastic terms.

© Springer International Publishing Switzerland 2015
A. Behr, Production and Efficiency Analysis with R,
DOI 10.1007/978-3-319-20502-1_8
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8.2.1 Observed and Efficient Production

The basic idea of efficiency analysis is the comparison of an observed output y and
an output Qy that would result if inputs were used “efficiently”. The ratio

� D observed production

efficient production
D y

Qy (8.1)

serves as a measure of efficiency. The reciprocal of � indicates the gain in output
when moving from inefficient to efficient production.

Efficiency literature is focused mainly on the question of how to obtain an
estimate of the unknown Qy. While there have been many different methods proposed,
two methods dominate the literature: data envelopment analysis (DEA) and stochas-
tic frontier analysis (SFA). Usually, these two approaches are characterized as
nonparametric and deterministic (DEA) on one hand and stochastic and parametric
(SFA) on the other hand. In this chapter we discuss the SFA.

8.2.2 Production Frontier and Deviations

We use simple models and random number generators to fix ideas. While this might
help thinking about production and efficiency, at this stage of reasoning, we do
not refer to any real production process taking place in firms. We first propose a
parametric relation between inputs x and efficient output Qy by means of a production
function

Qy D f .x; ˇ/: (8.2)

To keep the model simple, we assume a very specific one-factor production function
of the following form

Qy D xˇ: (8.3)

A firm i might produce output yi that deviates from the efficient output Qy for a variety
of reasons. We can think of a deviation ui resulting from the fact that producer i uses
his inputs in an inefficient way.1 Additionally we can imagine a “random” deviation
vi that might result in higher or lower output compared to Qy because of influences
producer i cannot control.2 This results in the introduction of a combined error term
in the production function e
 D e�u ev D ev�u.

1For example a winemaker cutting his grapevines too rigorously and thereby lowering his harvest.
2For example, the weather conditions could be either advantageous or disadvantageous for the
winemaker.
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Overlaying a simple one-factor deterministic production function with the
combined error term results in

y D xˇ e�u ev; with u > 0: (8.4)

Taking logs, we obtain

ln y D ˇ ln x � u C v: (8.5)

8.2.3 Data Generation

We generate some artificial data according to the normal-half normal model using a
simple one-factor production function:

ln y D ˇ0 C ˇ1 ln x C 
 D ˇ0 C ˇ1 ln x C v � u: (8.6)

Observations will be generated using the following setting

ln x D f0:05; 0:1; : : : ; 1g; ˇ0 D 0:2; ˇ1 D 0:5;

v
i.i.d.� N .0; 0:01/; u

i.i.d.� N C.0; 0:04/; n D 20:
(8.7)

With normally distributed error terms v and positive normally distributed ineffi-
ciency u terms the marginal density of the combined error term 
 D v � u is

f .
/ D 2

�
�
�

��1
 �1 �˚ �
���1
� ; where �2 D �2v C �2u and � D �u

�v
:

(8.8)

The density distribution of 
 is asymmetric and characterized by

E.
/ D E.v � u/ D E.v/� E.u/ D � E.u/ D �
p
2p
	
�u: (8.9)

and

Var.
/ D �2
 D Var.u/C Var.v/ D
�
	 � 2
	

	
�2u C �2v : (8.10)

The generation of the output values y proceeds in the following steps:

1. Obtain the deterministic logarithmic output ˇ0 C ˇ1 ln x displaying the true
production relation in the absence of both inefficiency and random noise.

2. Generate random inefficiency terms and random noise according to the distribu-
tional assumptions.



186 8 Stochastic Frontier Analysis

3. Add the half-normal inefficiency terms �u and the random noise v resulting in
the ln y-values.

We first generate the error terms and display the density distributions of random
noise v, the inefficiency term u, and the combined error term 
 D v � u.

s_u <- 0.2
s_v <- 0.1
s_2 <- s_u^2 + s_v^2
s <- sqrt(s_2)
l <- s_u/s_v
s_e_2 <- (pi-2)/pi*s_u^2 + s_v^2
s_e <- sqrt(s_e_2)
xx <- (seq(-2,2, by=0.001))
# function for density of v-u
fe <- function(x,s_u,s_v){

s <- sqrt(s_u^2 + s_v^2)
l <- s_u/s_v
2/s*dnorm(x/s)*pnorm(-x*l/s)
}

# realizations of u and v
set.seed(3)
n <- 20
u <- abs(rnorm(n,sd=s_u))
expu <- exp(-u)
v <- rnorm(n,sd=s_v)
expv <- exp(v)

In Fig. 8.1 we display the three distributions and indicate the realizations by small
ticks.

# noise
plot(xx,dnorm(xx,0,sd=s_v),type="l",xlim=c(-1,1),

lwd=1, col=1,xlab="v",ylab="f(v)")
rug(v)
# inefficiency
plot(xx,2*dnorm(xx,0,sd=s_u)*(xx>=0),type="l",xlim=c(-0.2,2),

lwd=1,col=1,xlab="u",ylab="f(u)")
rug(u)
# combined error
plot(xx,fe(xx,s_u,s_v),type="l",xlim=c(-2,2),

lwd=1,col=1,xlab="v-u",ylab="f(e)")
rug(v-u)

The input ln x and outputs ln y are generated as follows:

lx <- seq(1/n,1,length=n)
x <- exp(lx)
b0 <- 0.2
b1 <- 0.5
lxb <- b0+b1*lx
xb <- exp(lxb)
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Fig. 8.1 Artificial production data: SFA, normal-half normal. Top: distributions of error term v

(left) and inefficiency term u (right), bottom: scatter plot of logarithmic values with true frontier
(combined error .v � u/)
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Fig. 8.2 Artificial production data: The production frontier and output including two error
components

ly <- lxb-u+v
y <- exp(ly)
xb.u <- xb*expu
lxb.u <- lxb-u

We next display the model graphically using generated input and output in
Fig. 8.2.
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Fig. 8.3 Logarithmic
artificial production data
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# data
plot(x,y,ylim=c(0.8,2.2),xlim=c(1,2.8),

ylab="y",axes=F,pch=19,cex=0.8)
axis(1,at=seq(1,2.8,0.2))
axis(2,at=seq(0.8,2.2,0.2))
# model and deviations
lines(x,xb)
arrows(x-0.005, xb, x-0.005, xb.u, length=0.1,

angle=20,col="grey70")
arrows(x+0.005, xb.u, x+0.005, y, length=0.1, angle=20, col=1)
# legend
arrows(1,2.2,1,2.1, length=0.08, angle=20,col="grey70")
arrows(1,1.9,1,2, length=0.08, angle=20, col=1)
arrows(1.04,2,1.04,1.9, length = 0.08, angle = 20, col=1)
segments(0.95,1.8,1.05,1.8)
text(1.06,2.15,"u, inefficiency", pos=4)
text(1.06,1.97,"v, noise", pos=4)
text(1.06,1.8,"frontier", pos=4)

The model in logarithms is depicted in Fig. 8.3.

# data
plot(lx,ly,ylim=c(-0.2,1),xlim=c(0,1),pch=19,

ylab="ln(y)",xlab="ln(x)",axes=F,cex=0.8)
axis(1,at=seq(0,1,0.2))
axis(2)
# model in logs and deviations
lines(lx,lxb)
arrows(lx-0.005, lxb, lx-0.005, log(xb.u),

length=0.1, angle=20, col="grey70")
arrows(lx+0.005, log(xb.u), lx+0.005, ly,

length=0.1, angle=20, col=1)
# legend
arrows(0,1,0,0.9, length=0.08, angle=20, col="grey70")
arrows(0,0.8,0,0.7, length=0.08, angle=20, col=1)
arrows(0.03,0.7,0.03,0.8, length=0.08, angle=20, col=1)
segments(0,0.57,0.05,0.57)
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text(0.05,0.95,"u, inefficiency", pos=4)
text(0.05,0.75,"v, noise", pos=4)
text(0.05,0.57,"frontier", pos=4)

8.2.4 Corrected Ordinary Least Squares

When estimating the production function with empirical data, we usually assume
that the deterministic relation between output and inputs f .xi; ˇ/ is overlaid by
an error term. In ordinary least squares (OLS) regression analysis, we are used to
estimate an average relationship between x and y by minimizing the sum of squared
residuals. In this case, the estimated quantity of production Oy given the observed
quantity of input x allows to calculate the difference between observed and estimated
input yi � Oyi. In the context of efficiency measurement, we have to keep in mind
that this means that we use the conditional “average” output given the observed
amount of input as a yardstick to judge the observed output. Because the estimated
conditional “average” output does not comply with our idea of efficient output given
the observed input, several approaches to estimate the production frontier have been
discussed. Efficient production Qy implies maximal possible production given the
quantity of inputs. In the deterministic approach, the deviation between observed
output y and output at the frontier Qy is regarded as inefficiency. In this approach,
we neglect the possibility of random errors and regard deviations from the frontier
as coming from inefficient production only. A plausible idea in this case is to shift
the estimated OLS-regression outwards by the maximal deviation between observed
output y and fitted regression values Oy

Qycols D Oy C max.y � Oy/: (8.11)

Efficiency scores O� are then calculated as

O� D y

Qycols
: (8.12)

The estimated frontier, obtained by shifting the OLS-regression, is also called
corrected OLS (COLS) regression. In Fig. 8.3, we show the OLS as well as the
shifted OLS regression line. In our model setup including an inefficient term u and
an error term v, COLS will lead to somewhat misleading efficiency scores because
negative random errors will cause an overestimation of inefficiency and positive
random errors accordingly an underestimation.

8.2.5 Corrected Ordinary Least Squares Using R

The corrected ordinary least squares approach (COLS) is obviously not appropriate
to the generation of data according to the SFA approach. Despite the fact that the
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Fig. 8.4 Artificial production data: OLS and shifted OLS-regression line. (a) Original. (b) In logs

COLS approach ignores the existence of pure random noise, we run through a
small example. We first estimate a simple OLS-regression, then we pick the highest
residual and finally we shift the OLS-regression outwards. Because of ignoring the
random noise, the COLS-approach results in an overestimation of inefficiency. This
can be seen in Fig. 8.4.

We obtain the shifted regression by the following code:

reg <- lm(ly~lx)
sreg <- summary(reg)
yd <- exp(fitted(reg))
lyd <- fitted(reg)
yd.cols <- yd * max(y/yd)
lyd.cols <- lyd + max(ly-lyd)
no <- which(y/yd==max(y/yd))

Figure 8.4, which is obtained by the following code, displays the results
graphically:

# original data
plot(x,y,ylim=c(0.6,2.6),xlim=c(1,2.8),

ylab="y",pch=19,axes=F,cex=0.8)
axis(2,at=seq(0.6,2.6,0.4))
axis(1,at=seq(1,2.8,0.2))
# OLS/COLS
lines(x,yd)
lines(x,yd.cols,lty=2)
# legend
legend(1,2.6,c("Corrected OLS","OLS"),

col=c(1,1),lty=c(2,1),bty="n")
arrows(x[no], yd[no], x[no], yd.cols[no],

length = 0.1, angle = 20)

# data in logs
plot(lx,ly,ylim=c(-0.2,1),xlim=c(0,1),pch=19,

ylab="ln(y)",xlab="ln(x)",axes=F,cex=0.8)
axis(1,at=seq(0,1,0.2))
axis(2)
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# OLS/COLS
lines(lx,lyd)
lines(lx,lyd.cols,lty=2)
# legend
legend(0,1,c("Corrected OLS","OLS"),col=c(1,1),

lty=c(2,1),bty="n")
arrows(lx[no], lyd[no], lx[no], lyd.cols[no],

length = 0.1, angle = 20)

8.3 Maximum Likelihood Estimation

The stochastic frontier analysis is based on two error components (u and v) which
have been already introduced above. To allow a maximum likelihood estimation of
the production frontier, one has to make strong distributional assumptions. Typical
assumptions about the distribution of the error components are that the noise term
v follows the normal distribution and that inefficiency term u > 0 follows the
half-normal distribution. Sometimes other assumptions for the inefficiency term are
made, e.g., truncated normal, exponential, gamma, . . . . In the following we stick to
the normal-half normal assumption

u
i.i.d.� N C.0; �2u / and v

i.i.d.� N .0; �2v /: (8.13)

We can think of the data generating process as a three step procedure:

1. The deterministic efficient output according to the production model is generated.
2. The efficient output is reduced because of inefficiency �u.
3. The inefficient output is overlaid by noise v.

The inefficiency term u is positive by assumption. Therefore, the composed error
term 
 D v�u has a skewed distribution and an expected value less than 0. Because
of E.
 D v � u/ ¤ 0, OLS estimation results in biased estimates.

In the simple Cobb–Douglas case, we obtain the following function

yi D e
i

KY

kD1
xˇk

ki ; i D 1; : : : ; n: (8.14)

In logs the production function is

ln yi D
KX

kD1
ˇk ln xki C 
i D ln.x0

i/ˇ C 
i: (8.15)
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8.3.1 The Log-Likelihood

Because of the additive error term, we have to deal with the two densities: The
density of the noise fv.y/ and the density of the inefficiency fu.x/. Assuming
independence, results in fu;v.x; y/ D fu.x/fv.y/. Note that the joint density of 
 and
u can be written as the product of a conditional and an unconditional density

fu;
.x; z/ D f
ju.zjx/ � fu.x/: (8.16)

The marginal density f
.z/ of 
 D v � u can be obtained from the joint density
fu;
.x; z/ through integrating out x

f
.z/ D
Z 1

0

f
ju.zjx/ � fu.x/ dx: (8.17)

For the normal-half normal case, we obtain the marginal density as

f .
/ D 2

�
�
�

��1
 �1 �˚ �
���1
� ;

where �2 D �2v C �2u and � D �u

�v
:

(8.18)

Note that this integration is somewhat tedious. The density distribution of 
 is
asymmetric and characterized by

E.
/ D E.v � u/ D E.v/ � E.u/ D � E.u/ D �
p
2p
	
�u: (8.19)

The variance of 
 is given by

Var.
/ D �2
 D Var.u/C Var.v/ D
�
	 � 2
	

	
�2u C �2v : (8.20)

Based on the distribution of the composed error term f .
/ and the assumption of
independence across firms, the log-likelihood is given by

ln L.yjˇ; �; �2; x/ D ln P .y1 \ : : : \ yi \ : : : \ yn/

D ln
nY

iD1
f .
i/ D

nX

iD1
ln f .
i/

D
nX

iD1
ln

�
2

�
�
�

i�

�1
 �1 �˚ �
i��
�1
�

	
:

(8.21)
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Using the expression for the standard normal distribution �, we find

ln L.yjˇ; �; �2; x/ D
nX

iD1
ln

 
2

�

 
1p
2	

e� 1
2


2i
�2

!
�
1 � ˚

�

���1
�

!

D
nX

iD1
ln

 p
2p
	

1

�
e� 1

2


2i
�2
�
1 �˚ �
���1
�

!

D n ln

 p
2p
	

!

� n ln .�/ � 1

2�2

nX

iD1

2i

C
nX

iD1
ln
�
1 � ˚

�

i��

�1
�

(8.22)

where the additive error term 
i is replaced by ln yi � ln.x0
i/ˇ for estimation.

Maximizing the log-likelihood results in the estimates Ǒ; O�2, and O�. Given these
estimates

O�2 D O�2u C O�2v and O� D O�u

O�v (8.23)

estimates of the variance components �2u and �2v can be obtained as follows

O�2v D O�2 � O�2u D O�2 � O�2 O�2v D O�2
.1C O�2/ (8.24)

and

O�2u D O�2 � O�2
.1C O�2/ D O�2.1C O�2/ � O�2

.1C O�2/ D O�2
O�2

.1C O�2/ : (8.25)

8.3.2 Estimation of Individual Inefficiency Terms

Given the ML-parameter estimates, we can calculate estimated composed errors
O
. Given the single estimate O
i for an individual firm i, it is impossible to obtain
estimates for u and v for each individual firm.

But as the main objective of the analysis is the estimation of individual
inefficiency scores �i, we can calculate the conditional expectation of e�u given
the composed error term 


�� D E .e�u j
/ (8.26)
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where


 D ln y � ln.x0/ˇ: (8.27)

The intuition is as follows: We want to estimate two quantities, inefficiency u and
noise v; but obtain only an estimate of 
 D v � u. Obviously, we will not be
able to obtain consistent estimates of u and v from a cross section (twice as many
observations, twice as many u and v to estimate!). But we know E.v/ D 0 and
E.�u/ < 0; therefore, if we obtain an O
 > 0; we will rather assume that u is small
(rather efficient firm) and if we obtain O
 << 0; we will rather assume that u is big
(rather inefficient firm).

For estimating the inefficiency term, we derive the expected value of the
inefficiency term given the composed error term

E Œe�u j
 D z� : (8.28)

Therefore, we need the conditional distribution of u given 


fuj
.xjz/ D fu;
.x; z/

f
.z/
: (8.29)

Given this distribution, the expected value can be derived

E Œe�u j
 D z� D
Z 1

0

e�x fuj
.xjz/ dx D
Z 1

0

e�x fu;
.x; z/

f
.z/
dx

D 1

f
.z/

Z 1

0

e�x fu;
.x; z/ dx:

(8.30)

The conditional density of u given 
 in the normal-half normal case is

f .uj
/ D ���1�
�

u � ��

��

	�
1 �˚

����

��

	�
; with u > 0;

where �� D �
�
2
u

�2
D �
�; �� D

r
�2u�

2
v

�2
D
p
�2�.1� �/

and � D ��2�2u :

(8.31)

The inefficiency term u given the composed error term 
 follows a normal
distribution

uj
 � N C.��; ��/: (8.32)
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Based on the conditional distribution f .uj
/, the expected value of e�u given 
 is

E.e�u j
/ D 1 � ˚.�� � ��=��/
1 �˚.���=��/

e���C 1
2 �

�2

: (8.33)

Because we have introduced a stochastic error term v, we define the technical
efficiency scores as

� D factual production

stochastic efficient production
D f .x0Iˇ/ ev e�u

f .x0Iˇ/ ev
D e�u : (8.34)

In the case of efficient production (u D 0), we find � D e�u D e0 D 1. We estimate
E.e�u j
/ using the ML-estimates

O�� D O�2u O�2v
O�2u C O�2v

and O�� D � O
 O�2u
O�2u C O�2v

(8.35)

as

O� D 1 �˚. O�� � O��= O��/
1 � ˚.� O��= O��/

e� O��C 1
2 O��2

: (8.36)

Note that there are some critical drawbacks with the stochastic frontier analysis. The
estimation rests on strong distributional assumptions, which can hardly be justified
by economic reasoning. The precision of the estimated individual inefficiency scores
depends strongly on the ratio of the variance of the inefficiency term and the variance
of the error term. The estimation procedure is highly sensitive towards individual
outliers. The estimates of individual inefficiency terms are not consistent, that is with
increasing n the mass of the distribution does not concentrate on the true individual
inefficiency.

8.3.3 Maximum Likelihood with R

We have to maximize the log-likelihood function numerically to obtain the maxi-
mum likelihood estimates of the parameters of the production function ˇ0 and ˇ1
and of the variances �2u and �2v . Given these estimates, we can calculate deviations
O
 from the estimated productions frontier. And given these estimates, we finally
calculate our estimates of the expected values of the inefficiency terms EŒe�u� which
we use as estimates of individual inefficiency e�u.
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The following expression shows that we have to maximize the likelihood through
variation of a parameter vector � containing four elements: � 0 D .ˇ0; ˇ1; �; �

2/.

ln L.yjˇ; �; �2; x/ D n ln

 p
2p
	

!

� n ln .�/ � 1

2�2

nX

iD1

2i

C
nX

iD1
ln
�
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�

i��

�1
� ;

(8.37)

where the additive error term 
i is replaced by ln yi�ln.x0
i/ˇ for estimation. We write

a function returning the value of the log-likelihood for a given vector of parameters.
To maximize the log-likelihood, we use the function optim(). Because by default
optim() minimizes, we scale the objective function by �1.

logl <- function(theta){
b0 <- theta[1]
b1 <- theta[2]
g <- theta[3]
s2 <- theta[4]
lxd <- b0+b1*lx
e <- ly-lxd
pn <- pnorm(-e*g/sqrt(s2))

n*log(sqrt(2/pi))-n*log(sqrt(s2))+
sum(log(pn))-1/(2*s2)*sum(e^2)

}
thetastart <- c(b0,b1,l,s_2)
o <- optim(thetastart,logl,control=list(fnscale=-1))
tab <- round(o$par,3)
names(tab) <- c("b0","b1","lambda","s^2");tab

## b0 b1 lambda s^2
## 0.163 0.603 2.760 0.036

Figure 8.5 displays the shape of the log-likelihood through varying a single
parameter keeping the other three parameters fixed at their maximum likelihood
values.

thetastart <- o$par
vec <- seq(0.001,5,0.001)
lvec <- length(vec)
erg <- matrix(NA,lvec,4)
for (i in 1:lvec) {
t1i <- c(vec[i],thetastart[2:4])
t2i <- c(thetastart[1],vec[i],thetastart[3:4])
t3i <- c(thetastart[1:2],vec[i],thetastart[4])
t4i <- c(thetastart[1:3],vec[i])
erg[i,] <- c(logl(t1i),logl(t2i),logl(t3i),logl(t4i))}

plot(vec,erg[,1],type="l",xlim=c(0,0.5),ylim=c(-60,20),
xlab=expression(beta[0]),ylab="Log-likelihood")

plot(vec,erg[,2],type="l",xlim=c(0,1.2),ylim=c(-100,20),
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Fig. 8.5 Shape of the partial log-likelihoods

xlab=expression(beta[1]),ylab="Log-likelihood")
plot(vec,erg[,3],type="l",xlim=c(1,4),ylim=c(10,14),

xlab=expression(lambda),ylab="Log-likelihood")
plot(vec,erg[,4],type="l",xlim=c(0.01,0.1),ylim=c(0,16),

xlab=expression(sigma^2),ylab="Log-likelihood")

To obtain the ML-estimates of the variances, we convert the estimated parameters
�2 and � to estimates of the variances �2u and �2v .

b0.d <- o$par[1]
b1.d <- o$par[2]
g.d <- o$par[3]
s2.d <- o$par[4]
s2.u.d <- s2.d*g.d^2/(1+g.d^2);s2.u.d

## [1] 0.03225

s2.v.d <- s2.d-s2.u.d;s2.v.d

## [1] 0.004234

tab <- round(c(b0.d,b1.d,g.d,s2.d,s2.u.d,s2.v.d),3)
names(tab) <- c("b0","b1","lambda","s^2","s_u^2","s_v^2");tab

## b0 b1 lambda s^2 s_u^2 s_v^2
## 0.163 0.603 2.760 0.036 0.032 0.004
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Fig. 8.6 Inefficiency scores. (a) True inefficiency scores exp.�u/ and estimates O�. (b) u and
� ln.O�/

Using the estimated regression parameters, we calculate the residuals of the
regression and finally obtain the estimated efficiency scores O�:

ly.sfa <- b0.d+b1.d*lx
y.sfa <- exp(ly.sfa)
e.d <- ly-ly.sfa
mu.s <- -e.d*s2.u.d/s2.d
s.s <- sqrt(s2.u.d*s2.v.d/s2.d)
eta.d <- (1-pnorm(s.s-mu.s/s.s))/

(1-pnorm(-mu.s/s.s))*exp(-mu.s+0.5*s.s^2)

Figure 8.6 shows the scatter plot of the true inefficiency scores exp.�u/ and our
estimates O� (left panel) as well as the scatter plot for u and � ln. O�/ (right panel).
Figure 8.6 is obtained by the following code.

plot(exp(-u),eta.d,ylab=expression(hat(eta)),
xlim=c(0.7,1),ylim=c(0.7,1),pch=19,cex=0.8)

segments(0.7,0.7,1,1)
r <- cor(exp(-u),eta.d)
text(0.75,0.96,paste("r =",round(r,2)),cex=1.3)
plot(u,-log(eta.d),

ylab=expression(paste("-ln(",hat(eta),")")),
xlim=c(0,0.4),ylim=c(0,0.4),pch=19,cex=0.8)

segments(0,0,0.4,0.4)
r.u <- cor(u,-log(eta.d))
text(0.08,0.35,paste("r =",round(r.u,2)),cex=1.3)

A final comparison can be seen in Fig. 8.7 and is obtained by the following code.
The regression has to be performed again, because we did not store the results in an
object (same as in Sect. 8.2.5).

plot(lx,ly, xlim=c(0,1), ylim=c(0,1),
ylab="ln(y)", xlab="ln(x)",axes=T,
pch=19,cex=0.8)

lines(lx,lxb,col="darkgrey")
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Fig. 8.7 Artificial production data: True frontier, SFA-frontier, OLS-regression, COLS-frontier

lines(lx,lyd.cols,lty=2)
lines(lx,fitted(reg),lty=3)
lines(lx,ly.sfa)
legend("topleft",c("COLS","SFA","True frontier","OLS"),

lty=c(2,1,1,3),col=c(1,1,"darkgrey",1),bty="n")

8.4 Recommended Reading

The reference monograph on stochastic frontier analysis is

• Kumbhakar SC, Lovell CK (2000) Stochastic frontier analysis. Cambridge University Press,
Cambridge.

The approach has been published almost simultaneously in two papers in 1977

• Aigner D, Lovell CK, Schmidt P (1977) Formulation and estimation of stochastic frontier
production function models. J Econometrics 6:21–37.

• Meeusen W, van de Broeck J (1977) Efficiency estimation from Cobb–Douglas production
functions with composed errors. Int Econ Rev 18:435–444.

A comprehensive overview on the topic and recent developments is provided by

• Greene WH (2008) The econometric approach to efficiency analysis. In: Fried HO, Lovell
CAK, Schmidt SS (eds) The measurement of productive efficiency and productivity growth,
chap 2. Oxford University Press, New York, pp 92–250.
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8.5 Exercises

1. Consider the following stochastic production function

ln y D ˇ0 C ˇ1 ln x C " D ˇ0 C ˇ1 ln x C v � u

and generate a realization (n=20, set.seed(123)) using the following
setup

ˇ0 D 0:3; ˇ1 D 0:5; ln x � U .0; 1/; u � N C.0; 0:52/;

v � N .0; 0:32/:

2. Estimate the conditional mean function to obtain Ǒ and O�2:
3. Estimate the deterministic frontier (corrected ordinary least squares) assuming
v D 0 and using

ycols
i D Oyi C maxfyi � Oyiji D 1; : : : ; ng:

4. Stochastic frontier analysis.
Consider the following likelihood

ln L.yjˇ; �; �2/ Dn ln

 r
2

	

!

� n ln .�/ � 1

2�2

nX

iD1
"2i

C
nX

iD1
ln
�
1 � ˚

�
"i��

�1
�

where

�2 D �2v C �2u and � D �u

�v

and the expected value of the inefficiency u given the combined error term "

E.e�u j"/ D 1 � ˚.�� � ��=��/
1 �˚.���=��/

e���C 1
2 �

�2

�� D �"�
2
u

�2
D �"� I �� D

r
�2u�

2
v

�2
:

a. Write a function returning a vector containing the start values for the
parameter vector of the maximization problem � D .ˇ0; ˇ1; �; �

2/0 using the
OLS-estimates for ˇ and for �2 and the ad hoc chosen value � D 1 based on
observed ln y and ln x.
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b. Write a function returning the log-likelihood value for a given parameter
vector � (intern a).

c. Write a function returning the estimates of E.e�u j"/ for a given parameter
vector � (intern a).

d. Obtain the ML-estimator O�ML using the function optim().
e. Compare graphically the OLS regression and the stochastic production fron-

tier (SFA).
f. Obtain estimates of the individual inefficiency e�u.
g. Compare graphically the true inefficiencies e�u and the estimated inefficien-

cies.
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Abstract

Stochastic frontier analysis based on cross-sectional data is hampered by the fact
that only one observation is available for the estimation of two error components.
Panel data containing several observations for each firm considerably improve
the situation for estimating firm specific efficiency scores if some assumptions
on the time path of inefficiencies are introduced.

9.1 Introduction

The stochastic frontier analysis (SFA) is widely used to estimate firm individual
efficiency scores and has been suggested by Aigner et al. (1977) and Meeusen
and van de Broeck (1977). The basic idea is the introduction of an additive error
term consisting of a noise and an inefficiency term. For the error as well as the
inefficiency term, distributional assumptions are made, most often the normal and
half-normal assumption, i.e., the error term (noise) is assumed to follow the normal
distribution and the efficiency term is assumed to be half-normally distributed. Early
discussions of using panel data sets for efficiency analysis have been provided by
Pitt and Lee (1981) and Schmidt and Sickles (1984). Greene (2005) provides a
detailed discussion of fixed and random effects in stochastic frontier models.

While typical panel data models assume a time invariant “inefficiency effect”,
this assumption must be regarded as highly unrealistic, as it excludes by assumption
the possibility for firms to react on inefficiencies. Furthermore, if disregarded
in the estimation procedure, firm specific time invariant heterogeneity may be
“masquerading” as inefficiency. This problem is discussed in detail by Greene
(2005).

© Springer International Publishing Switzerland 2015
A. Behr, Production and Efficiency Analysis with R,
DOI 10.1007/978-3-319-20502-1_9
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9.2 Homogeneity and Firm Specific Time Invariant Inefficiency

In this section, we regard time invariant firm specific inefficiency ui and assume that
any firm specific effects ˛i are absent. Furthermore, we use a very simple one input
log-linear model of production. We index the N firms by i .i D 1; : : : ;N/, each
observed for Ti periods. To ease the exposition, we assume Ti D T for all i: This
assumption of a balanced data set could easily be dropped. To ease the exposition,
in this section, we regard only one input and one output and we use capital letters
for original values and small letters for logarithmic values. Hence, Xit denotes the
amount of input used by firm i in period t to produce output Yit.

The deterministic production frontier is given by function eˇ0 Xˇ1it . Output Yit is
given by the deterministic production multiplied by a purely random term evit which
is firm and time specific and multiplied by a time invariant firm specific inefficiency
term e�ui :

Yit D eˇ0 Xˇ1it evit e�ui : (9.1)

Taking logarithms, we obtain

yit D ˇ0 C ˇ1xit C vit � ui: (9.2)

The inefficiency term e�ui therefore is

e�ui D Yit

eˇ0 Xˇ1it evit
(9.3)

and its logarithm �ui is

� ui D yit � .ˇ0 C ˇ1xit C vit/: (9.4)

Note that the model

yit D ˇ0 C ˇ1xit C vit � ui (9.5)

is formally identical to the panel data model without inefficiency terms ui but firm
specific effects ˛i:

yit D ˇ0 C ˇ1xit C vit C ˛i: (9.6)

Therefore, without taking distributional assumptions on vit and ui into account, a
natural choice for estimating firm specific effects is the fixed effects panel data
model.

For the generation of data according to the model, we make some distributional
assumptions which we (for the moment) disregard in the estimation procedure.
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The error term "it is assumed to be composed of two components

"it D vit � ui: (9.7)

The error component vit is assumed to be normally distributed

vit
i.i.d.� N .0; �2v / (9.8)

and the component ui is assumed to be positive representing time invariant firm
specific production inefficiency and assumed to follow the half-sided normal
distribution:

ui
i.i.d.� N C.0; �2u /: (9.9)

Note that in R we use M instead of T:

N <- 9 # Number of firms
M <- 3 # Number of years
NM <- N*M # Number of observations
i <- rep(1:N,each=M) # firm identifier
m <- rep(1:M,N) # year identifier
set.seed(123)
x <- sort(runif(NM))
us <- abs(rnorm(N,sd=0.2))
u <- rep(us,each=M)
v <- rnorm(NM,sd=0.05)
y <- 1+x+v-u

Figure 9.1 shows the distributions used to generate the inefficiencies (�u) and error
terms (v) and the obtained realizations.

In Fig. 9.2, we show the true deterministic production function (v D u D 0)
and the N linear production relations including the firm specific inefficiencies (v D
0; u D ui). The observations are denoted by numbers indicating the number of the
firm and contain inefficiencies (ui) as well as noise (vit).
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Fig. 9.1 Generating inefficiency and error terms. (a) Inefficiencies. (b) Error terms
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Note that with one individual intercept ˇ0 and N individual inefficiency terms,
the model can be formulated as

yit D .ˇ0 � ui/C ˇ1xit C vit

D �i C ˇ1xit C vit; with �i D .ˇ0 � ui/:
(9.10)

Because of complete linear dependence of an overall intercept and N dummy
variables, in estimation we drop the first dummy variable (that is for firm i D 1)
and use only N � 1 dummy variables in the regression with intercept:

yit D ˇ�
0 C ��

2 d2t C : : : ��
j djt C : : :C ��

N dNt C ˇ1xit C vit

djt D


1; if j D i
0; if j ¤ i:

(9.11)

From the regression, we obtain the estimates Ǒ�
0 ; O��

2 ; : : : ; O��
N : The estimates of the

� -parameters can be obtained as

O�1 D Ǒ�
0

O�2 D Ǒ�
0 C O��

2

:::

O�N D Ǒ�
0 C O��

N :

(9.12)

# Dummy-regression
reg1 <- lm(y~x+as.factor(i))
g.s.h <- coef(reg1)
g.h <- c(g.s.h[1],g.s.h[-(1:2)]+g.s.h[1])
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When using demeaned data Qxit D xit � Nxi and Qyit D yit � Nyi, we obtain Ǒ
1 from the

regression and the estimates O�i as

O�i D Nyi � Ǒ
1 Nxi: (9.13)

# Demeaned data
x.t <- unlist(tapply(x,i,function(z)z-mean(z)))
y.t <- unlist(tapply(y,i,function(z)z-mean(z)))
reg2 <- lm(y.t~x.t)
coef(reg2)

## (Intercept) x.t
## 5.342e-18 6.778e-01

y.f <- fitted(reg2)
y.m <- unlist(tapply(y,i,mean))
x.m <- unlist(tapply(x,i,mean))
g.h <- y.m-x.m*coef(reg2)[2]

Instead of demeaning the data using the tapply() command before running the
regression, we could also use a panel data command from the plm-package:

library(plm)
d <- pdata.frame(data.frame(i,m,x,y))
reg3 <- plm(y~x, data=d, model="within", effect="individual")

Unfortunately the estimates O�i are not the estimated Oui inefficiencies because �i D
.ˇ0 � ui/. Obviously we need the estimate Ǒ

0 to obtain estimated inefficiencies. The
inefficiency term �ui is negative and its theoretically maximal value is 0: Therefore,
it is plausible to use the maximum of the estimated O�i parameters as an estimate
for ˇ0

Ǒ
0 D maxf O�jg; j D 1; : : : ;N: (9.14)

We finally obtain the estimated inefficiency terms Oui as

Oui D Ǒ
0 � O�i D maxf O�jg � O�i; j D 1; : : : ;N: (9.15)

b0.d <- max(g.h)
u.h <- b0.d-g.h

In Fig. 9.3, we show the N true inefficiencies �u and the estimated inefficiencies
�Ou. To estimate the firm-specific inefficiency term �ui, which in this model is
assumed to be constant across time, we can make use of the Ti observations for
firm i. Therefore, the more time periods are available, the smaller the variance of
the estimator �Oui. Using the same set up but choosing Ti D T D 10 instead of
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Fig. 9.3 Generated and estimated inefficiencies

Ti D T D 3, the correlation between true and estimated inefficiencies increases on
average towards about 0:93. But of course the assumption of constant inefficiencies
across time becomes the less plausible, the longer the time period T is.

9.3 Time Varying Firm Specific Inefficiency

So far, we assumed that the technical inefficiency is constant across time
.�uit D �ui/: As firms in a competitive environment will compare their own
performance with its competitors, it is highly unlikely that inefficiency will be
constant for several periods (e.g., years). Therefore, a natural extension of the
model is to allow inefficiency to vary in time. This can be achieved by introducing
a function of time �it D ˇi.t/:

euit D e�ui eˇi.t/ D e�uiCˇi.t/ D e�uiC�it : (9.16)

Starting from the model

Yit D eˇ0 Xˇ1it evit e�uiC�it (9.17)

and taking logarithms, we obtain

yit D ˇ0 C ˇ1xit C vit � ui C �it: (9.18)

The time specific inefficiency term e�uiCˇi.t/ D e�uiC�it , therefore, is

e�uiC�it D Yit

eˇ0 Xˇ1it evit
(9.19)
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and its logarithm �ui C �it is

� ui C �it D yit � .ˇ0 C ˇ1xit C vit/: (9.20)

As the spell length of time series observed for individuals is most often rather short,
it is desirable to have a scarce parameterization when modeling the inefficiency
as a function of time. Note that the model can be restricted to have an identical
development of inefficiency in time, i.e., ˇi.t/ D ˇ.t/: One specific scarce
parameterization has been suggested by Battese and Coelli (1992) which introduces
only one additional parameter for the time path1

e�it D e��i.t�T/; t D 1; : : : ;T (9.21)

which in logarithm simplifies towards

�it D ��i.t � T/; t D 1; : : : ;T: (9.22)

Note that in the final period observed .t D T/; we have exp.�it/ D 1 and �it D 0:

Therefore, exp .�ui C �it/ D exp .�ui/ and �ui C �it D �ui. Despite its simplicity,
the function exp.��i.t � T// can generate a variety of time paths (see Fig. 9.4).

Inserting ˇi.t/ into the logarithmic model, we obtain

yit D ˇ0 C ˇ1xit C vit � �i.t � T/ � ui: (9.23)
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Fig. 9.4 Time path of inefficiency

1In the context of the stochastic frontier model relying on the assumption of normality, Battese and
Coelli (1992) introduced a time varying inefficiency term of the form exp .�uiˇi.t// convenient
because of its simple effect on the parameters of the normal distribution. To obtain linearity
in the parameters, we regard exp .�ui C ˇi.t// instead. Therefore, we assume a scaling of the
exponentiated inefficiency term exp.�u/ instead of �u.
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The model can be estimated by OLS and differs only from the simple fixed effects
model in the additional inclusion of a linear deterministic time trend.

We generate some artificial data according to the model and display the data
graphically. To ease the interpretation, we use equidistant and sorted (increasing)
values of the covariate x. Note that with non-sorted x-data, we would not obtain
linear time trends in the plot (see Fig. 9.5).

N <- 6
NM <- N*M
i <- rep(1:N,each=M)
m <- rep(1:M,N)
tmT <- 1:M-M
tmTl <- rep(tmT,N)
set.seed(12)
x <- seq(0.1,0.99,length=NM)
us <- abs(rnorm(N,sd=0.2))
gv <- c(0.06,0.04,0.02,-0.02,-0.05,-0.1)
gvl <- rep(-gv,each=M)
b <- gvl*tmTl
u <- rep(us,each=M)
v <- rnorm(NM,sd=0.1)
y <- 1+x+v-u+b

With one individual intercept ˇ0 and N individual inefficiency terms, the model
can be formulated as

yit D .ˇ0 � ui/C ˇ1xit � �i.t � T/C vit

D �i C ˇ1xit � �i.t � T/C vit; where �i D .ˇ0 � ui/:
(9.24)

Because of complete linear dependence of an overall intercept and N dummy
variables, we drop the first dummy variable (that is for firm i D 1) in the regression
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Fig. 9.5 Firm and time specific inefficiencies
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with intercept.

yit Dˇ�
0 C ˇ1xit C ��

2 d2t C : : : ��
j djt C : : :C ��

N dNt

� ��
1 .t � T/ � ��

2 d2t.t � T/ � : : : � ��
NdNt.t � T/C vit

djt D


1; if j D i
0; if j ¤ i:

(9.25)

From the regression, we obtain the estimates Ǒ�
0 ; O��

2 ; : : : ; O��
N ;

O��
1 ; : : :

O��
N : The esti-

mates of the firm and time period specific deviations ˛it from the stochastic efficient
frontier can be calculated for firm i D 1 as

˛it D Ǒ�
0 � O��

1 .t � T/; (9.26)

and for the N � 1 remaining firms as

˛it D Ǒ�
0 C ��

i � . O�1 C O�i/.t � T/: (9.27)

The most efficient firm in period t is the firm with maximal value of ˛it in period t.
This firm is used as the benchmark for the N � 1 other firms in this year. We finally
obtain the estimated firm and period specific inefficiency terms Ouit as

Ouit D ˛it � max
i
.˛itjt D t0/; j D 1; : : : ;N; t D 1; : : : ;T: (9.28)

We estimate the time specific inefficiency terms using the linear regression function
with dummy variables for firm effects and firm dummies interacted with the trend
variable. Note that for the numerical example. We generate randomly input values x
to prevent linear time dependence with the deterministic time trend as it was the case
in the artificial example for the graphical exposition (see Fig. 9.6). For the numerical
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Fig. 9.6 Generated and estimated time varying inefficiency terms
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example the correlation between generated and estimated firm specific time varying
inefficiency terms is rather strong.

set.seed(123)
x <- runif(NM,0,1)
y <- 1+x+v-u+b
fi <- as.factor(i)
reg <- lm(y~x+fi+fi*tmTl)
ait <- fitted(reg)-coef(reg)[2]*x
ait.m <- tapply(ait,m,max)
u.h <- ait-rep(ait.m,N)
r <- round(cor(-u+b,u.h),2)

9.4 The Stochastic Frontier Model with Time Varying
Inefficiency

So far, we estimated fixed effects panel data models and used the maximal firm
specific fixed effect as the benchmark for the remaining firms. Both models with
constant and time varying inefficiency have been estimated by ordinary least squares
without any distributional assumptions of the noise and inefficiency terms. We now
discuss a stochastic frontier model relying on the distributional assumptions of the
noise and the efficiency term. The stochastic frontier analysis (SFA) is based on the
pioneering work of Aigner et al. (1977) and Meeusen and van de Broeck (1977).
Kumbhakar and Lovell (2000) provide a comprehensive overview. Because the SFA
normal-half normal model can be regarded as the standard approach to efficiency
estimation, we focus on this data generating process. The panel data model with a
firm and time specific inefficiency term has been introduced by Battese and Coelli
(1992).

A variation of the inefficiency term is allowed by introducing a function of
time �it D e��.t�T/ which allows the inefficiency term to vary in time Uit D
�itUi D e��.t�T/ Ui. Note that from now on we use uppercase letters for both random
variates U and V and lowercase letters for their realizations. In original values the
inefficiency term is exponentiated

e�Uit D e��itUi : (9.29)

Starting from a simple production model

Yit D eˇ0 Xˇ1it eVit e�Uit ; (9.30)
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the time specific inefficiency term e�Uit D e��itUi is

e�Uit D e��itUi D Yit

eˇ0 Xˇ1it eVit
: (9.31)

Taking logarithms, we obtain the model as

yit D ˇ0 C ˇ1xit C Vit � Uit (9.32)

and logarithm of the inefficiency term as

� Uit D ��itUi D yit � .ˇ0 C ˇ1xit C Vit/: (9.33)

The specific scarce parameterization we discuss here has been suggested by Battese
and Coelli (1992). The time path is determined by a single parameter

�it D e��i.t�T/; t D 1; : : : ;T: (9.34)

Note that in the final period observed .t D T/; we have �it D e0 D 1 and, therefore,
exp .��itUi/ D exp .�Ui/ : The error term Eit is assumed to have two components:

Eit D Vit � Uit: (9.35)

The error component Vit is assumed normal

Vit
i.i.d.� N .0; �2v / (9.36)

and the component Ui representing time invariant production inefficiency is
assumed to be (positive) truncated normal

Ui
i.i.d.� N C.�; �2u /: (9.37)

9.4.1 Sketching the Idea of the Approach

Because the derivation of the log-likelihood is somewhat cumbersome, we first
sketch the basic idea of deriving the log-likelihood. fU.u/ and fV.v/ denote
the density functions of U and V , respectively. Because of the assumption of
independence, the joint density function of U and V is fU;V .u; v/ D fU.u/fV.v/:
Note that the joint density of E and U can be written as the product of a conditional
and an unconditional density

fU;E.u; e/ D fEjU.eju/ � fU.u/: (9.38)
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Because of .V�U/jUDu being simply V shifted by a constant, the conditional density
of EjU is fV.v/ D fV.e C u/ D fEjU.eju/: The marginal density fE.e/ of E D V � U
can be obtained from the joint density fU;E.u; e/ through integrating out u

fE.e/ D
Z 1

0

fEjU.eju/ � fU.u/ du: (9.39)

Since we only get an estimate of the combined error term by the maximum
likelihood estimation, we have to derive an estimate for the inefficient term given
the combined error term. Therefore, we derive the expected value of the inefficiency
term given the composed error term

E Œe�ujE D e� : (9.40)

Therefore, we need the conditional distribution of U given E

fUjE.uje/ D fU;E.u; e/

fE.e/
(9.41)

to derive the expected value UjE

E Œe�ujE D e� D
Z 1

0

e�u fUjE.uje/ du D
Z 1

0

e�u fU;E.u; e/

fE.e/
du

D 1

fE.e/

Z 1

0

e�u fU;E.u; e/ du:

(9.42)

9.4.2 Obtaining the Log-Likelihood

The density function of the positive truncated normal term Ui is

fU.u/ D
exp

�
� 1
2

.u��/2
�2u

�

p
2	�u Œ1 � �.��=�u/�

; u � 0: (9.43)

The expected value of ui and its variance are given by

EŒu� D �C �u



� .��=�u/

1 �˚.��=�u/

�
(9.44a)

and

VarŒu� D �2u



1 � � .��=�u/

1 �˚.��=�u/

�
�

�
C � .��=�u/

1 � ˚.��=�u/

��
: (9.44b)
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We obtain the joint density as

fU;V .u; v/ D 1p
2	�u

exp
�
� 1
2

.u��/2
�2u

�

Œ1 � �.��=�u/�

1p
2	�v

exp

�
�1
2

v2

�2v

	
: (9.45)

The joint density of Eit D Vit � �itUi and Ui can be written as the product of a
conditional and an unconditional density

fU;E.u; e/ D fEjU.eju/ � fU.u/: (9.46)

Because of .V � U/jUDu being simply V shifted by a constant and the conditional
density of EjU being fV.v/ D fV .e C u/ D fEjU.eju/, we obtain the joint density as

fUi;Ei.ui; ei/ D fEijUi .eijui/ � fUi.ui/

D
exp

n�
� 1
2

.ui��/2
�2u

�
C .eiC�iui/

0.eiC�iui/

�2v

o

.2	/.TiC1/=2�u�
Ti
V Œ1 � �.��=�u/�

:

(9.47)

The marginal density fE.e/ of E D V � U can be obtained from the joint density
fU;E.u; e/ through integrating out u

EŒu� fE.e/ D
Z 1

0

fEjU.eju/ � fU.u/ du (9.48a)

and for a specific i, we obtain

fEi.ei/ D

h
1 � �

�
���

i
��

ui

�i
exp

(
e0

i ei

�2V
C
�
�

�U

�2 �
�
��

i
��

Ui

	2)

.2	/.Ti/=2�u�
.Ti�1/
V

�
�2V C �0

i�i�2u
�1=2

Œ1 � �.��=�u/�
; (9.48b)

where ��
i D ��2V � �0

iei�
2
U

�2V C �0
i�i�2u

and ��2
Ui

D �2U�
2
V

�2V C �0
i�i�2u

: (9.48c)

The density of Ui conditional on Ei D ei is given as

fUijEi.uijei/ D 1

.2	/Ti=2��
ui

exp
�
� 1
2

.ui���

i /
2

��2
u

�

�
1 � �.���

i =�
�
Ui
/
� ; ui � 0: (9.49)
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and therefore is the density of a positive truncated normal distribution with
parameters ��

i and ��2
Ui
: The expected value of the time varying error term e��itUi

conditional on the combined error term is obtained through integration

E
�
e��itUi jEi D ei

� D
Z 1

0

e��itui fUijEiDei.ui/ dui

D
 �
1 � �.�it�

�
Ui

� ��
i =�

�
Ui
/
�

�
1 � �.���

i =�
�
Ui
/
�

!

� exp

 

�1
2

��it�
�
i C 1

2
�it�

�2
Ui

��2
u

!

:

(9.50)

The expected value of UijEi D ei is obtained as

E ŒUijEi D ei� D
Z 1

0

ui fUijEiDei.ui/ dui

D ��
i C ��

Ui

(
�.���

i =�
�
Ui
/

1 � �.���
i =�

�
Ui
/

)

:

(9.51)

The log-likelihood is given by

ln L.� jy/ D 1

2

 
NX

iD1
Ti

!

ln.2	/� 1

2

NX

iD1
.Ti � 1/ ln.�2V/

� 1

2

NX

iD1
ln.�2V C �0

i�i�
2
U/ � N ln Œ1 �˚.��=�u/�

C
NX

iD1
ln
�
1 � �.���

i =�
�
Ui
/
�

� 1

2�2V

NX

iD1
.yi � xiˇ/

0.yi � xiˇ/ � 1

2
ŒN.�=�u/�

2

C 1

2

NX

iD1
.��

i =�
�
Ui
/2;

(9.52)
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with parameter vector � D .ˇ0; �2V ; �2U ; �; �/0: For programming, it is appropriate to
use a slightly different parameterization

�2S D �2V C �2U ; � D �2U

�2S
D �2U

�2V C �2U
; z D �

q
��2S

D �

�U

and z�
i D �.1 � �/� ��0

i.yi � xiˇ/q
�.1� ��2S

�
�.�0

i�i � 1
� :

(9.53)

Using this parameterization, we obtain the log-likelihood as

ln L.� jy/ D 1

2

 
NX

iD1
Ti

!
˚
ln.2	/C ln.�2S /

�� 1

2

NX

iD1
.Ti � 1/ ln.1 � �/

� 1

2

NX

iD1
ln
�
1C �.�0

i�i � 1/� � N ln Œ1 �˚.�z/� � 1

2
Nz2

C
NX

iD1
ln
�
1 � ˚.�z�/

�C 1

2

NX

iD1
z�2

i

� �2S
2.1� �/

NX

iD1
.yi � xiˇ/

0.yi � xiˇ/;

(9.54)

with parameter vector � D .ˇ0; �2S ; �; �; �/0.

9.4.3 Generating Data According to theModel

We want to generate a small data set with N D 10 firms and Ti D T D 5 years,
hence a balanced panel. As parameters, we choose ˇ0 D 1; ˇ1 D 1; � D 0:2; �u D
0:8; �v D 0:5; � D �0:2.

N <- 10
M <- 5
NM <- N*M
i <- rep(1:N,each=M) # firm identifier
m <- rep(1:M,N) # year identifier
b0 <- 1
b1 <- 1
mu <- .2
su <- 0.8
sv <- 0.5
h <- 0.2
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We generate the x-values using a uniform distribution. The inefficiency and the
random terms are generated using normal distributions. In R, we use h for � and
g for � . We denote the T observations t � T by tmT. The suffix l indicates a long
vector of length NM, suffix s a short vector of length N.

su2 <- su^2
sv2 <- sv^2
g <- su2/(su2+sv2)
tmT <- rep(1:M-M,N)
set.seed(5)
x <- runif(NM,0,10)
us <- abs(rnorm(N,mean=mu,sd=su))
hl <- exp(-h*tmT)
u <- rep(us,each=M)*hl
v <- rnorm(NM,sd=sv)
y <- b0+b1*x+v-u

We draw a plot (see Fig. 9.7) of input and output and indicate the deterministic
production relation by a line (left panel). The right panel shows the N D 10 different
time trends of firm specific inefficiencies.

We write a function that returns the value of the negative log-likelihood for a
given parameter vector (a).

#a <- astart
LL <- function(a){
b0 <- a[1]
b1 <- a[2]
s2 <- a[3]
g <- a[4]
mu <- a[5]
h <- a[6]
hl <- exp(-h*tmT)
hi2 <- as.vector(tapply(hl,i,function(z) sum(z^2)))
e <- y-b0-x*b1
ei2 <- as.vector(tapply(e,i,function(z) sum(z^2)))
he <- hl*e
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Fig. 9.7 Data and inefficiency trends. (a) Artificial SFA data. (b) Inefficiency trends
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hei <- as.vector(tapply(he,i,sum))
gs2 <- g*s2
z <- mu/sqrt(gs2)
zisn <- g*(1-g)*s2*( 1+(hi2-1)*g );zisn
zis <- (mu*(1-g)-g*hei)/sqrt(zisn);zis

-( -0.5*NM*(log(2*pi)+log(s2)) -
0.5*(NM-N)*log(1-g) -
0.5*sum(log(1+(hi2-1)*g)) -
N*log(1-pnorm(-z)) -
0.5*N*z^2 +
sum(log(1-pnorm(-zis))) +
0.5*sum(zis^2) -
0.5*sum(ei2)/(1-g)/s2)

}

We define a starting vector which we use as the argument for the log-likelihood
function. Next we use optim() to numerically optimize the log-likelihood
function.

astart <- c(b0,b1,su2+sv2,g,mu,h);astart

## [1] 1.0000 1.0000 0.8900 0.7191 0.2000 0.2000

LL(astart)

## [1] 46.19

o <- optim(astart*0.8,LL)
round(o$par,2)

## [1] 0.93 0.97 0.88 0.81 0.36 0.21

We compare our results with the results we obtain when using the function sfa()
implemented in the frontier package. Before using the sfa-function, we load the
package plm to define a dataframe for panel data.

library(plm)
library(frontier)
dat <- plm.data(data.frame(cbind(i,m,x,y)),c("i","m"))
reg <- sfa( y ~ x, data = dat, timeEffect = TRUE,

truncNorm = TRUE, startVal=astart*0.8)
round(cbind(astart,o$par,coef(reg)),3)

## astart
## (Intercept) 1.000 0.933 0.941
## x 1.000 0.966 0.967
## sigmaSq 0.890 0.883 0.679
## gamma 0.719 0.807 0.749
## mu 0.200 0.361 0.569
## time 0.200 0.213 0.213
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We find that both functions result in very similar parameter estimates. Note that the
number of firms in our generated data set is very small. Hence, the estimation is
rather imprecise.

The estimates of technical inefficiency are obtained as the conditional expecta-
tion given the composed error term

E
�
e�Uit jEi

� D
 
1 � ˚

�
�it�

�
i � ��

i =�
�
i




1 �˚ ����
i =�

�
i




!

exp

�
��it�

�
i C 1

2
�2it�

�2
i

	
;

with ��
i D ��2V � �0

iEi�
2

�2V C �0
i�i�2

and ��
i D �2V�

2

�2V C �0
i�i�2

:

(9.55)

Given the maximum likelihood estimates of the parameters, the following transfor-
mations have to be used to calculate the inefficiency estimates

�2U D ��2S and �2V D �2S .1 � �/: (9.56)

We write a function that returns the estimates of the efficiency given the
maximum likelihood parameter estimates.

ef <- function(a){
su2 <- a[3]*a[4];su2
sv2 <- a[3]*(1-a[4]);sv2
hl <- exp(-a[6]*tmT)
hi2 <- as.vector(tapply(hl,i,function(z) sum(z^2)))
e <- y-a[1]-x*a[2]
he <- hl*e
hei <- as.vector(tapply(he,i,sum))
mus <- (a[5]*sv2-hei*a[3])/(sv2+hi2*a[3]);mus
ss <- sqrt((sv2*a[3])/(sv2+hi2*a[3]));ss
musl <- rep(mus,each=M)
ssl <- rep(ss,each=M)
(1-pnorm(hl*ssl-musl/ssl))/(1-pnorm(-musl/ssl))*

exp(-hl*musl+0.5*hl^2*ssl^2)
}
E.u <- ef(o$par)

In the frontier package, the function efficiencies() returns a matrix of
estimated efficiencies with a sfa-object as an argument for the function.

E.u.sfa <- as.vector(t(efficiencies(reg)))
round(cor(E.u,E.u.sfa),3)

## [1] 1
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Fig. 9.8 Generated and estimated inefficiency trends. (a) Generated. (b) Estimated

These estimates are almost identical to the estimates we obtained previously.
Finally, we graphically compare the generated and estimated inefficiency trends (see
Fig. 9.8).

9.5 Recommended Reading

Panel data stochastic frontier models are discussed in

• Kumbhakar SC, Lovell CK (2000) Stochastic frontier analysis. Cambridge University Press,
Cambridge

• Greene WH (2008) The econometric approach to efficiency analysis. In: Fried HO, Lovell
CAK, Schmidt SS (eds) The measurement of productive efficiency and productivity growth,
chap 2. Oxford University Press, New York, pp 92–250.

The panel data model discussed in detail in this chapter which is implemented in the
frontier package

• Coelli T, Henningsen A (2013) Frontier: stochastic frontier analysis. URL http://CRAN.R-
Project.org/package=frontier, r package version 1.1–0.

has been suggested by

• Battese GE, Coelli TJ (1992) Frontier production functions, technical efficiency and panel data:
with application to paddy farmers in India. J Prod Anal 3:153–169.

9.6 Exercise

We use data which have been analyzed by Battese and Coelli (1992; 1995) and are
available in the frontier package. The data set contains data for 43 farms observed
over a period of 8 years for output, area, labor, and fertilizer. Read the data into a

http://CRAN.R-Project.org/package=frontier
http://CRAN.R-Project.org/package=frontier
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panel-dataframe using the following commands:

library(frontier)
data(riceProdPhil)
d <- subset(riceProdPhil,

select=c(FMERCODE,YEARDUM,PROD,AREA,LABOR,NPK))
names(d) <- c("firm","year","y","a","l","f")
pd <- plm.data(d,c("firm","year"))

1. Use the function summary() for an overview of the data.
2. Use the data for year 8 and plot the three bivariate scatterplots with one input and

output. Plot the data again in logs.
3. Estimate a simple cross-sectional production function of the Cobb–Douglas type

without restricting the elasticities to sum to unity using data from year 8 only.
4. Use the function lm() and the panel data set to obtain time invariant efficiency

estimates for the N D 43 firms using a fixed effects model. Display the estimated
inefficiencies graphically.

5. Estimate a fixed effects model allowing the firm specific inefficiency to vary
in time according to a simple one-parameter function using the function lm().
Display the estimated inefficiencies graphically.

6. Estimate the SFA model suggested by Battese and Coelli (1992) with time
varying inefficiencies using the function sfa() in the frontier package. Display
the estimated inefficiencies graphically.
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